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Zusammenfassung

Viele physikalische und chemische Prozesse, die unser tägliches Leben bestimmen,

laufen auf atomaren Längen- und Zeitskalen ab. Zeitaufgelöste Elektronenbeugung

eignet sich durch die kurze de-Broglie-Wellenlänge schneller Elektronen hervorra-

gend zur Aufklärung atomarer Strukturdynamik (
”
4D imaging“). Dafür sind Elek-

tronenpulsdauern im Bereich von Femtosekunden (10−15 s) oder kürzer erforder-

lich. Schwierigkeiten dabei sind die Coulombabstoßung sowie Dispersion von nicht-

relativistischen Elektronenwellenpaketen im Vakuum. Momentan ist deshalb die

Zeitauflösung von Beugungsexperimenten auf einige hundert Femtosekunden be-

schränkt. Dies ist unzureichend für die Untersuchung ultraschneller Primärprozesse

in Molekülen und Festkörpern.

Um mit Elektronenbeugung künftig eine Zeitauflösung von wenigen Femtose-

kunden oder darunter zu erreichen, werden in dieser Arbeit vier neue Konzepte

untersucht und kombiniert: Erstens wird die Coulombabstoßung verhindert, indem

nur ein einzelnes Elektron pro Puls erzeugt wird, welches sich nicht selbst abstößt,

jedoch in der Beugung an Atomen mit sich selbst interferiert.

Zweitens wird eine Dispersionskontrolle für Elektronenpulse mittels zeitabhän-

giger elektrischer Felder bei Mikrowellenfrequenzen eingesetzt. So werden die Ein-

zelelektronenpulse zeitlich komprimiert bei gleichzeitiger Energieverbreiterung, wo-

durch prinzipiell fast beliebig kurze Pulsdauern ermöglicht werden.

Drittens wird aus ultrakurzen Laserpulsen, die sowohl für die Elektronenerzeu-

gung, als auch zur Anregung einer Probe in einem Beugungsexperiment eingesetzt

werden, ein Mikrowellensignal erzeugt, dessen Signal-Rausch-Verhältnis durch opti-

sche Überhöhung um drei Größenordnungen verbessert wird. Dies ermöglicht eine

zeitliche Synchronisation zwischen dem Mikrowellenfeld und den Laserpulsen mit

einer Präzision von unter einer Femtosekunde.

Viertens wird in dieser Arbeit eine Kreuzkorrelation zwischen Laserfeldern und

Elektronenpulsen gemessen, um die mögliche Zeitauflösung von Beugungsexperimen-

ten mit komprimierten Einzelelektronenpulsen zu ermitteln und die theoretischen
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ii Zusammenfassung

Modelle für Elektronendispersion und -kompression zu überprüfen. Diese neu entwi-

ckelte Charakterisierungsmethode basiert auf dem Prinzip einer Streak-Kamera mit

optischen Feldern und besitzt potenziell eine Zeitauflösung im Bereich von Attose-

kunden (10−18 s).

Diese vier Konzepte bieten eine klare Perspektive zur Verbesserung der Zeit-

auflösung von Elektronenbeugung hin zur Zeitskala weniger Femtosekunden oder

darunter. Dies eröffnet die Möglichkeit, Elektronendichten in Bewegung zu beobach-

ten. Die in dieser Arbeit nachgewiesene komprimierte Elektronenpulsdauer beträgt

(28± 5) fs Halbwertsbreite, entsprechend einer Standardabweichung von (12± 2) fs,

bei einer de-Broglie-Wellenlänge von 0.08 Å. Dies sind momentan die kürzesten für

Beugung geeigneten Elektronenpulse, etwa sechsfach kürzer als was bisher erreicht

worden ist. Atomare Ortsauflösung und eine exzellente transversale Kohärenz wird

anhand von Beugung an einem komplexen organischen molekularen Kristall de-

monstriert. Ultraschnelle Elektronenbeugung erfüllt nun die nötigen Anforderungen

zur Untersuchung der schnellsten Primärprozesse in Molekülen und Festkörpern mit

atomarer Auflösung in Raum und Zeit.



Abstract

Many physical and chemical processes which define our daily life take place on atomic

scales in space and time. Time-resolved electron diffraction is an excellent tool for

investigation of atomic-scale structural dynamics (“4D imaging”) due to the short

de Broglie wavelength of fast electrons. This requires electron pulses with durations

on the order of femtoseconds (10−15 s) or below. Challenges arise from Coulomb re-

pulsion and dispersion of non-relativistic electron wave packets in vacuum. Thus,

the temporal resolution of diffraction experiments is currently limited to some hun-

dreds of femtoseconds, which is insufficient for studying ultrafast primary processes

in molecules and solids.

In order to eventually advance the temporal resolution of electron diffraction

into the few-femtosecond range or below, four new concepts are investigated and

combined in this work: First, Coulomb repulsion is avoided by using only a single

electron per pulse, which does not repel itself but interferes with itself when being

diffracted from atoms.

Secondly, dispersion control for electron pulses is implemented with time-depen-

dent electric fields at microwave frequencies, compressing the duration of single-

electron pulses at the expense of simultaneous energy broadening. Thus, almost

arbitrarily short pulse durations can be potentially achieved.

Thirdly, a microwave signal is derived from an ultrashort laser pulse train, which

is also used for the generation of electron pulses as well as for the excitation of

a sample in a diffraction experiment. Optical enhancement improves the signal-to-

noise ratio of the microwave signal by three orders of magnitude, which allows a

temporal synchronization between the microwave field and the laser pulses with a

precision below one femtosecond.

Fourthly, a cross-correlation between laser fields and electron pulses is measured

in this work with the purpose of determining the possible temporal resolution of dif-

fraction experiments employing compressed single-electron pulses and to verify the

theoretical models of electron pulse dispersion and compression. This novel char-
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iv Abstract

acterization method uses the principles of a streak camera with optical fields and

potentially offers attosecond (10−18 s) temporal resolution.

These four concepts show a clear path towards improving the temporal resolu-

tion of electron diffraction into the few-femtosecond domain or below, which opens

the possibility of observing electron densities in motion. In this work, a compressed

electron pulse’s duration of (28± 5) fs full width at half maximum, corresponding to

a standard deviation of (12± 2) fs, at a de Broglie wavelength of 0.08 Å is achieved.

Currently, this constitutes the shortest electron pulses suitable for diffraction, about

sixfold shorter than in previous work. Atomic spatial resolution and excellent trans-

verse coherence is demonstrated via diffraction from a complex organic molecular

crystal. Ultrafast electron diffraction now meets the requirements for investigating

the fastest primary processes in molecules and solids with atomic resolution in space

and time.
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Chapter 1
Observing atomic and electronic motion

Time-dependent interactions between the fundamental constituents of matter dic-

tate the course of our material world and its appearance. Understanding phenomena

in nature thus requires insight into the underlying dynamics – from the largest scope

of astronomy down to the most minute of atoms and elementary particles.

Processes which are faster than the human perception have been studied since

the end of the 19th century, the first one being motion of animals visualized via

photographic movies [1]. Since then, numerous visualization techniques have been

developed to experimentally access ever faster dynamics. For instance, time-resolved

photography has progressed tremendously, resulting nowadays in so-called femto-

photography with a temporal resolution of a few picoseconds, which allows visual-

izing propagating bursts of light [2].

Some of the most fundamental processes defining our immediate life take place

on molecular and atomic length scales. Microscopic interactions between electrons

and nuclei determine macroscopic properties of substances. Therefore, understand-

ing their dynamics, i.e. the motion of nuclei and charge densities in space and time,

is of the highest importance for prediction and control of chemical reactions or trans-

formations in condensed matter [3]. The length scale of atoms and molecules is in the

ångström range (10−10 m), while the time scale of their dynamics is determined by

the energy and bandwidth of the process and by the masses of the involved particles

or structures [4, 5]. For example, biological macromolecules, such as proteins, fold

due to weak interactions (e.g. hydrogen bonds) on time scales of microseconds and

above [6], while typical motions of simple molecules in the condensed phase – e.g.

collective lattice oscillations or phase transformations in solids, vibrations or reori-

entation in liquids – take place on time scales of picoseconds [7–9] and below [7, 10,

11]. Primary processes in chemical reactions or molecular transformations involve

motion of individual atoms (i.e. nuclei) on femtosecond time scales [4, 11].

1



2 Chapter 1. Observing atomic and electronic motion

Motion of electronic charge densities takes place on the attosecond time scale, on

which the nuclei are nearly inert due to their large mass [12], at least at moderate

interaction energies which do not destroy the atom or molecule. Although chem-

ical processes – in their classical meaning – are therefore “frozen” in this regime,

electronic attosecond dynamics drive some of the most fundamental phenomena in

atomic and solid state physics. Recent research in this field includes decay of atomic

inner-shell vacancies by an Auger process [13], time-resolved observation of electron

tunneling in atoms [14], dissociation dynamics in diatomic molecules [15], tracing of

coherent valence electron motion [16], attosecond control of collective electron mo-

tion on the nanoscale in metals [17] and dielectrics [18], and delayed photoemission

between electrons from different bands [19] or orbitals [20] by means of attosec-

ond streaking. Further fundamental processes on the attosecond time scale, such as

the formation and breakup of molecular bonds or the time-dependent polarization

response of electron densities upon interaction with electromagnetic fields, consti-

tuting the refractive index of a material, are yet to be investigated [5]. Attosecond

science is a rapidly advancing field offering, ultimately, unforeseen possibilities to

study the very constituents of matter and their fundamental interactions [21].

1.1 The pump-probe experiment

Direct observation or measurement of ultrafast phenomena in real-time, i.e. from a

single process, is limited by the sampling rate of current detectors. Optical high-

speed cameras are capable of a sampling rate of up to 200 million exposures per

second [22], though at the expense of a very limited number of consecutive exposures,

providing a temporal resolution of a few nanoseconds, while electronic sampling with

a real-time bandwidth of up to 100 GHz and an according temporal resolution on

the order of picoseconds has been recently demonstrated [23].

In order to study even faster processes, a repetitive technique must be employed

to capture snapshots of a particular ultrafast process at different instances in time

with a “slow” detector. The dynamics is initiated via an ultrafast interaction, re-

ferred to as the pump pulse, which is typically significantly shorter than the dynamics

of the process under investigation, and probed after a well-defined delay time by a

second pulse, the probe pulse, which usually does not modify the dynamics of the

process but illuminates it within an ultrashort time window, allowing the detector

to capture a snapshot with a temporal resolution limited only by the duration of

the pulses. In the case of optical photography, the probe pulse would be a short

flash of light facilitating an ultrafast exposure independent of the speed of the cam-

era’s shutter or image processing. In order to elucidate the complete dynamics, a

series of snapshots needs to be taken at different pump-probe delay times. Provided
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repeatability of both the investigated process and the interactions with the pump

and probe pulses, this technique offers the possibility to make “movies” of ultrafast

dynamics, albeit not in real-time.

Note that the pulses for pump-probe interaction can be of any nature suitable

to initiate and illuminate the process of interest. Usually, ultrashort pulses of (la-

ser) light and/or particles are employed in pump-probe experiments for studying

ultrafast dynamics in matter (see section 1.3).

1.2 The streak camera

Another tool to visualize the temporal structure of a process is the streak camera [24,

25]. Here, a well-defined temporal gradient – typically a time-dependent electric field

– is used to map (or streak) the temporal profile of an incoming pulse into an easily

accessible quantity, such as position or energy, on a detector. The streaked pulse

needs to be prepared such that it carries the temporal information of the process of

interest; or the pulse itself (e.g. a light or particle pulse) can be temporally charac-

terized in that way.

Incident
light pulse

Photo-
electrons

Fluorescent
screen

Streak image

High-
voltage ramp

V(t)

t

Figure 1.1: Schematic concept of a streak camera for characterizing the temporal profile of a
light pulse. The light is converted into photoelectrons, which are then streaked in a transient
electric field generated by an applied voltage ramp, V(t). The temporal width, ∆t, is thereby
mapped into a spatial width, ∆x, on the screen. Figure adapted from [21].

Fig. 1.1 illustrates the principle of a streak camera intended to record the tem-

poral structure of an optical pulse. The pulse hits a photocathode, i.e. a thin metal

film, usually on a transparent substrate, and emits electrons from the cathode via
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the photoelectric effect. The temporal profile of the photoelectron pulse is closely re-

lated to that of the optical pulse, given that the photoemission yield is proportional

to the optical intensity and the duration of the photoemission dynamics is negligible

compared to the temporal structure of the pulse. The electron pulse then propagates

through a pair of plates biased at an electric potential that changes linearly in time.

This transient electric field effects a time-dependent transverse momentum trans-

fer to the electron pulse, leading to a sideways deflection, which maps the pulse’s

temporal profile into the position on the screen. The temporal resolution of a streak

camera therefore depends only on the temporal gradient used for streaking and the

resolution of the detector for the quantity which the temporal profile is mapped into

(e.g. position or energy).

This technique serves as a powerful tool for ultrafast metrology when using tran-

sients of intense optical fields for streaking [19, 21, 26, 27] and is capable of resolving

delays on the order of several attoseconds [20].

1.3 Ultrafast spectroscopy, microscopy, and dif-

fraction

Historically, the development of ultrafast coherent light sources – from the first

mode-locked helium-neon laser [28] until present-day Ti:sapphire oscillators [29] ca-

pable of producing few-cycle optical pulses [30] – is constantly pushing the limits

of ultrafast science towards extreme temporal resolutions. The shortest controllable

bursts of light reported up to now are pulses of coherent extreme ultraviolet (XUV)

radiation, created by high-order harmonic generation, with durations below 80 at-

toseconds [31–33], constituting the shortest man-made temporal confinement.

Laser-driven femtosecond pump-probe experiments offer vast insight into the

dynamics of chemical processes by means of optical pump-probe spectroscopy [34],

establishing the field of femtochemistry [3, 12, 35, 36], while attosecond XUV pulses

allow studying electronic dynamics, as pointed out in the previous sections1. How-

ever, despite the superior temporal resolution achieved with laser pulses in the op-

tical to the XUV range, their potential to elucidate molecular or atomic structures

is limited to indirect spectroscopic approaches. While resonant to many electronic

transitions, the wavelength of this light (∼1 µm to ∼10 nm) is orders of magnitude

too large to directly visualize the motion of atoms [4, 37, 38]. Replacing classical

static light sources for spectroscopy with ultrafast lasers is straightforward; however,

a sophisticated choice of excited states and transitions of the system under investiga-

1A rigorous review of current techniques and applications for attosecond XUV pump-probe
spectroscopy and streaking can also be found in [21].
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tion as well as extensive modeling is required to determine structural dynamics from

time-resolved spectroscopy. Linking spectral features to atomic or electronic motion,

e.g. in order to map out pathways of chemical reactions, is intricate when lacking

a direct access to the structural changes. This is caused particularly by degener-

ate states and superposition of different transitions of similar resonance frequencies,

which are difficult to separate [10, 39], or by radiationless transitions [40].

Microscopy techniques with atomic spatial resolution employ beams of light or

particles with sub-atomic wavelengths and respective energies for illumination, a

notable exception being the scanning tunneling microscope, which uses an atomic-

sized probe to map out a surface with ångström resolution [41, 42]. The first work

on the determination of the atomic structure of simple crystals in reciprocal space

by X-ray diffraction has been conducted a century ago by W. L. Bragg [43]. Since

then, crystallography has advanced tremendously and allows nowadays visualizing

huge biomolecules consisting of ten thousands of atoms [44]. Besides X-rays, par-

ticle beams of electrons [45] or neutrons [46] are used for diffraction crystallogra-

phy, providing complementary insight due to their different nature of interaction

with the specimen and the required energies for atomic resolution. Alongside dif-

fraction, which usually requires crystalline samples, electron microscopy facilitates

direct imaging of atoms with sub-̊angström resolution [47] and thus provides a first-

hand access to the most fundamental constituents of life [48].

Despite the enormous progress in both the visualization techniques with atomic

resolution and the control on ultrashort time scales, the combination of these two

fields into 4D imaging, i.e. highest resolution in space and time [49], is challenging

and still emerging. Applying the well-established principles from the generation of

ultrashort laser pulses to high-energy X-ray or electron beams capable of atomic

spatial resolution promises an unprecedented understanding of structural dynamics

by directly observing atoms and electron densities in motion.

Ultrashort X-ray pulses

Femtosecond X-ray pulses at 30 keV have been reported in 1996 for the first time [50,

51] by Thomson scattering of highly intense femtosecond near-infrared laser pulses

from relativistic electron bunches [52]. Previously, sources of pulsed X-rays have

utilized synchrotron radiation, providing a pulse duration limited by the picosecond

duration of electron bunches in particle accelerators at that time. Current sources

of ultrashort and highly brilliant X-ray pulses are free-electron lasers (FEL) [53–

59], providing soft [53–55] and hard [56–58] X-rays with pulse durations in the

ten-femtosecond to few-femtosecond range. Coherent X-ray pulses are emitted as

synchrotron radiation when ultrarelativistic electron bunches of very low emittance
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(closely related to the phase space volume, see section 2.1) undergo a wiggling mo-

tion in an undulator, which is an arrangement of periodically alternating static

magnetic fields. The electron pulse is sliced into wavelength-spaced microbunches

inside a long undulator due to interaction with the emitted synchrotron radiation,

providing a coherent self-amplification of the spontaneous synchrotron emission [60]

or amplification of seeded coherent X-ray radiation [61]. Generation of attosecond

hard-X-ray pulses is proposed by electron bunch shaping in FEL [62], thus effec-

tively compressing the X-ray pulse, or by enhanced Thomson scattering, employing

tightly focused electron and laser beams from present-day sources [63].

These X-ray sources – despite their enormous potential in time-resolved crystal-

lography and atomic-scale imaging – are extremely intricate and limited to a few

large-scale facilities worldwide, as they require particle accelerators capable of pro-

viding electron bunches in the 100 MeV to GeV range. However, recent progress in

the development of compact laser-driven particle accelerators [64, 65] might promote

table-top and comparatively inexpensive coherent few-femtosecond X-ray sources in

the future [59, 66, 67].

Ultrashort electron pulses

Ultrafast electron diffraction (UED) with sub-relativistic electrons and a temporal

resolution of one picosecond has been pioneered about two decades ago [68, 69] and is

currently approaching the 100 fs range for dense electron bunches [70]. According to

Bragg’s famous law for diffraction in reflection, 2d sin θ = nλ, d being the interplanar

distance of a crystal lattice (∼1 Å), θ the diffraction angle, and n an integer, the

diffracted beam’s wavelength, λ, should be on the order of a few ångström to a

few picometer for practical diffraction angles. Due to the electron’s wave properties

and the associated de Broglie wavelength, this condition is fulfilled at moderate

kinetic energies, ranging from only a couple of eV to mildly relativistic ∼300 keV.

Diffraction with electrons at kinetic energies in the MeV range requires additional

electron optics to enlarge the very small diffraction angles for practical imaging and

a more intricate electron source [71]. In electron microscopy, kinetic energies up to

a few MeV are used in order to increase imaging resolution [72].

The charged particle nature of electrons leads to some key advantages in using

electron beams rather than X-rays for atomic-scale diffraction and imaging: Elec-

trons can be accelerated in static electric fields. High-voltage sources up to some

100 kV for static accelerators are readily available, stable, and inexpensive. Thus,

contrary to photons from synchrotron radiation sources, electrons can be generated

at conveniently low kinetic energies, e.g. by thermal emission, field emission, or pho-

toemission, and then accelerated to the desired kinetic energy. This substantially
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relaxes the requirements for generation of femtosecond electron pulses compared to

X-ray pulses. A common femtosecond laser oscillator is sufficient for photoemission

of ultrashort electron pulses from a thin metal foil for subsequent acceleration in

a static electric field, thereby facilitating compact table-top experiments. Electron

beams can be deflected and manipulated by means of electric and magnetic fields

– the enormous progress in electron microscopy with high resolution has been only

feasible on account of available and well-designed electron optics – while X-ray optics

is limited to reflection or diffraction at grazing incidence [73], which is more intri-

cate to control. Furthermore, the scattering cross-section of electrons in the 100 keV

range (typical for diffraction or microscopy) is about six orders of magnitude larger,

while the radiation damage due to the deposited energy after inelastic scattering

is about three orders of magnitude smaller2 compared to X-rays from current FEL

sources [4]. The energy deposition from a highly intense X-ray FEL pulse usually de-

stroys the sample and therefore a diffraction image has to be captured from a single

shot and during a sufficiently short time before the atomic structure is significantly

altered by the pulse [55].

However, in some cases the nature of electrons is unfavorable. The high scattering

cross-section leads to a short inelastic mean free path inside the sample [74, 75], lim-

iting the sample’s thickness typically to some tens of nanometers for experiments in

transmission. This constraint can be somewhat relaxed by using electrons at kinetic

energies in the MeV range [71] if the additional effort is acceptable, whereas X-rays

penetrate through matter over macroscopic distances3. The space charge of dense

electron bunches poses another severe limitation. In contrast to photons, electrons

within a bunch interact with each other via the Coulomb force. This mutual repul-

sion leads to self-broadening in space and time, resulting in an increased emittance

and pulse duration and reduced coherence, except for highly relativistic energies.

The broadening can be compensated to some extent by compression techniques [70,

76, 77]; however, the minimum pulse duration is limited by the space charge den-

sity at the beam’s focus (in space and time). Moreover, vacuum is dispersive for

sub-relativistic electrons, i.e. electrons of different kinetic energies travel at differ-

ent velocities, thus any energy spread, whether from the generation process or due

to space charge interaction, leads to a temporal broadening, especially at the very

beginning of the acceleration where the electrons are still slow [78–80].

Currently, there is no prospective technology to advance the pulse duration of

dense electron bunches at sub-relativistic kinetic energies suitable for diffraction into

2This refers to the deposited energy normalized to the elastic scattering events, which constitute
the diffraction image.

3Note that an extended penetration depth of a probe pulse, unless velocity-matched with the
pump pulse, limits the temporal resolution to the propagation time through the sample.
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the few-femtosecond or even attosecond domain. Hence, avoiding space charge, i.e.

using single-electron pulses, is a crucial requirement for achieving ultimate temporal

resolutions with UED [81]. With absent broadening due to space charge, only the

dispersion of vacuum for electrons and their energy spread have to be taken into

account. Reducing the energy spread of the electrons by minimizing their excess

kinetic energy after photoemission [82–84] not only increases the coherence but also

reduces the temporal broadening of single-electron pulses due to dispersion [82]. In

the absence of space charge, dispersion compensation with time-varying longitudi-

nal electric fields transforms the phase space of the electrons almost linearly (cf.

section 3.1), allowing for temporal compression to nearly arbitrarily short pulse du-

rations at the expense of an accordingly increased energy spread [37, 79–81]. This

approach is demonstrated in this work. However, the limitation to one electron

per pulse constitutes a considerable constraint for practical UED. For an adequate

signal-to-noise ratio of a diffraction image, 105–106 electrons (or more, depending on

the studied system and desired resolution) need to be collected by the detector [78].

This necessitates very long acquisition times or very high pulse repetition rates in the

100 kHz to MHz range, respectively, when using single-electron pulses. The studied

dynamics are therefore limited to reversible processes and highly stable specimens

capable of withstanding millions of consecutive pump-probe cycles [85, 86]. When

using optical pump pulses for excitation at high repetition rates and nanometer thin

samples for UED in transmission, thermal damage can be a substantial issue [87].

Albeit being demanding with respect to the choice and excitation of the sample,

single-electron UED paves the path towards visualizing dynamics on the electronic

time scale and atomic length scale and offers the prospect of the highest spatiotem-

poral resolution available in the near future. Moreover, the achievable temporal

resolution of ultrafast electron microscopy can also be improved by using ultrashort

single-electron pulses [37], provided a minimized dispersion of the electron optics.

In this work, sub-relativistic single-electron pulses are compressed to about 28 fs

FWHM (about 12 fs of standard deviation) and fully characterized (see sections 7.2

and 7.3). This demonstrates, to our knowledge, the shortest electron pulses at a

kinetic energy suitable for diffraction or microscopy reported up to now, having

a sixfold shorter duration than in previous work [70]. More importantly, the here

presented concepts provide a clear perspective for advancing 4D imaging into the

few-femtosecond or even attosecond regime.

A survey of currently existing and proposed sources for both photon and elec-

tron pulses for studying ultrafast structural dynamics is depicted in fig. 1.2. The

wavelength, as a measure for the structural resolving power, and the full-width-at-

half-maximum (FWHM) pulse duration of various instruments, covering femtosec-

ond and attosecond optical and XUV laser pulses, ultrafast X-ray sources, ultrafast
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Figure 1.2: Spatiotemporal resolution capabilities of various sources for ultrashort photon and
electron pulses in comparison to the present work. Wavelength denotes the de Broglie wave-
length in the case of electron pulses. The single-cycle limit is the duration of one period of the
according wavelength at the speed of light in vacuum. Note that the temporal localization due
to the uncertainty principle can become shorter than one cycle if the bandwidth is sufficiently
high, as demonstrated in a. References: a [27], b [31], c [88], d [31], e [33], f [53], g [89],
h [54], i [66], j [56], k [58], l [90], m [51], n [63], o [91], p [68], q [92], r [93], s [94], t [82],
u [80], v [37], w [95], x [70], y [96], z [97], α [98], β [65], γ [64].

electron diffraction and microscopy, as well as high-energy particle accelerators ca-

pable of providing ultrashort electron bunches, are shown in comparison to the

sub-relativistic single-electron pulses for ultrafast diffraction generated in this work.

1.4 Basics of a laser-driven UED experiment

Unlike femtosecond laser spectroscopy [10], UED poses the technological challenge

of employing both ultrashort laser and electron pulses. Since vacuum is dispersive

for electrons and their charged nature leads to mutual repulsion and broadening

(unless single-electron pulses are used) – both not being the case for photons – con-

trol of electron pulses strongly differs from laser optics. Nevertheless, manipulation

of the electron pulse’s spatial, temporal, and spectral properties (e.g. deflection and

steering, focusing, and dispersion control) can be achieved in analogy to optics by

using magnetic and electric fields.
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Figure 1.3: Concept of a laser-driven UED pump-probe experiment, employing electron pulse
compression with microwave fields. A femtosecond laser pulse is divided into two parts by a
beam splitter. One part is used to excite photoinduced structural dynamics at the sample, while
the other part generates an ultrashort electron pulse for diffraction via photoemission from a
thin metal cathode. The electron pulse is accelerated in a static electric field and collimated or
focused by a solenoid magnetic lens. A microwave compressor with a longitudinally oscillating
electric field can be used to reverse the dispersion of the electron pulse, which leads to self-
compression (see section 3.1). A variable optical delay allows acquiring diffraction snapshots
at different delay times after excitation, thus recording a “structural movie”.

Fig. 1.3 shows a schematic of the UED pump-probe concept used in this work,

suitable for structural probing of photoinduced dynamics. Femtosecond laser pulses

are divided via a beam splitter into a pump and a probe part. While the pump pulse

is used for excitation of structural dynamics at the sample, the probe pulse is used to

generate ultrashort electron pulses via photoelectric emission from a photocathode.

A typical photocathode consists of a thin film (5 nm to 50 nm) of gold or silver coated

on a quartz or sapphire substrate and is biased at a negative high voltage (−10 kV

to −300 kV). In order to generate photoelectrons, the work function of the material

has to be overcome by the laser pulse’s photon energy, which is in the ultraviolet

(UV) range (∼4.2 eV for thin gold films [99]). Since most UED experiments employ

Ti:sapphire lasers with a central wavelength around 800 nm (1.55 eV of photon en-

ergy), photoemission from a gold film requires either parametric conversion of the

fundamental laser frequency, such as frequency tripling (providing 4.65 eV of pho-

ton energy) [81] or continuum generation [82], or multiphoton absorption [100]. The

density of the generated electron packets is adjusted via the optical pulse energy on

the photocathode or via the optical intensity in the case of multiphoton photoemis-

sion. For minimized transverse emittance4, which is a requirement for coherent and

4The transverse emittance is defined as the product between the source size and the divergence
of a longitudinal cross-section of a beam (e.g. in units of mm mrad). For asymmetric beam profiles,
the emittance depends on the cross-section’s angle with respect to the beam profile [101].
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tightly focused or collimated electron beams, the laser has to be tightly focused onto

the photocathode in order to confine the area of photoemission [87]. This is limited

to the order of 1 µm by the laser’s wavelength and focusing optics, although it can

be substantially reduced by using nanometer-sized tips for photoemission instead of

metal films [102, 103], which can also potentially improve transverse coherence [104]

and provide an enhanced electrostatic field around the tip for acceleration [85]. How-

ever, this field is strongly curved close to the tip, which leads to a curved spatial

profile of the electron pulse (i.e. an intrinsic spatiotemporal broadening), while a

flat source produces spatially flat electron packets due to the homogeneous electro-

static field [105]. Since the photoemission process is statistical (see section 2.1) and

“instantaneous” with respect to the femtosecond laser pulse’s duration [19, 20], its

temporal spread is initially transferred to the electron pulses.

The electron pulses are then accelerated in a static electric field towards a

grounded anode with a small center hole, thus acquiring their final energy for diffrac-

tion. The beam is divergent due to the intrinsic transverse momentum spread of the

electrons after photoemission (see section 2.1) and the defocusing effect arising from

distortions of the electric field at the anode hole [106]. Since vacuum is dispersive for

electrons, i.e. electrons with higher kinetic energy travel faster than those with lower

kinetic energy, unless accelerated to highly relativistic energies, any initial energy

spread after photoemission leads to temporal broadening of the pulse, essentially at

the very beginning of the static acceleration [78–80]. This initial dispersion can be

minimized by using the highest possible electric fields for acceleration. It is limited to

∼10 kV/mm due to vacuum breakdown [82] and can only be overcome by dynamic

acceleration with radiofrequency (RF) [79, 107] or laser fields [64, 65, 95], which

pose other challenges, particularly with respect to synchronization (in the case of

RF acceleration) and achievable energies and energy spreads suitable for diffraction

(in the case of laser acceleration). A solenoid constitutes a focusing lens for the elec-

tron beam, utilizing the gradient of the magnetic field, which can be controlled by

the current through the solenoid. It can be employed for collimation, focusing, or

beam steering to some extent. Further details and a theoretical background of the

magnetic lens can be found elsewhere [87, 105, 106].

Highest temporal resolutions require temporal compression of the electron pack-

ets, since it is impossible or impractical to maintain the shortest pulse duration

during the entire propagation from the photoemission at the photocathode until the

diffraction sample due to the vacuum’s dispersion for electrons as pointed out above.

Concepts for compression with static fields include magnetic chicanes [108], electro-

static reflectrons [109, 110], or a combination of electric and magnetic fields [91].

In the absence of space charge, these approaches can entirely reverse the dispersion

gained by the electron pulses during propagation and by that recompress their du-
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ration to the initial value at the instant of photoemission, i.e. the duration of the

generating laser pulse. In contrast, the employment of time-dependent electric fields

allows almost arbitrary compression of the electron pulses, even below the laser

pulse’s duration, at the expense of increased bandwidth, which promises reaching

the few-femtosecond or even attosecond range (see section 3.1). A common approach

for an electron pulse compressor with time-dependent electric fields is a cavity res-

onantly driven by a RF signal at microwave frequencies (see section 3.2), which can

compress both single-electron and dense electron pulses [70, 76–81, 96].

The electron pulse compressor acts as a longitudinal lens, i.e. it compresses the

pulse duration at a certain point along the beam, which is referred to as the temporal

focus. The parameters of the compressor, e.g. RF field amplitude and frequency in

the case of a microwave cavity, have to be chosen such that the temporal focus

coincides with the position of the sample. In transmission geometry, as depicted in

fig. 1.3, the thickness of the sample must not exceed some tens of nanometers (cf.

section 1.3); therefore, the time for the electrons to pass through the sample is in

the attosecond range. However, the transverse extent (i.e. the beam diameter) of

a collimated or focused electron beam from a photocathode source is on the order

of 10 µm–100 µm. Thus, the laser pump pulse needs to illuminate each point of the

sample’s surface, which is probed by the electron beam, at the same temporal delay

across the transverse profile of the electron pulse. Unless both the laser and the

electron beam propagate collinearly and impinge perpendicularly onto the sample,

group velocity matching needs to be ensured, e.g. by choosing appropriate angles,

such that the wavefronts of both pulses sweep along the sample’s surface at a fixed

delay (see section 7.1). Also, the entire cross-section of the electron probe beam

at the sample should be covered by the laser pump beam in order to obtain the

highest signal of structural change. Bulk samples can also be used for diffraction

in reflection under a grazing angle. Here, the area of the sample’s surface swept

by the electron pulse is much larger than for a transmission geometry, requiring a

larger energy of the laser pulse for excitation of this area. The same group velocity

matching argument applies to the grazing incidence geometry, which necessitates a

wavefront tilt of the laser pump pulses [111, 112].

Note that the entire electron beam, from the photocathode to the detector, needs

to propagate inside a vacuum chamber at a pressure in the mid high vacuum range

(<10−5 hPa) in order to avoid scattering from residual gas molecules. For surface

sensitive applications, e.g. diffraction in reflection, contamination of the sample’s

surface by the residual gas needs to be avoided and might require ultrahigh vacuum

conditions (<10−9 hPa). Moreover, contamination of the photocathode can poten-

tially alter the material’s work function and hence the yield and energy spread of

photoemission, which affects the long-term stability of the electron source [113].



Chapter 2
Single-electron pulses for UED

In contrast to optical pulses, electron pulses suffer from both dispersion in vacuum

and electron-electron interaction via the Coulomb force within the pulse, as pointed

out in section 1.3. Although dense electron bunches offer the advantage of recording a

diffraction image of a transient atomic structure within a single shot in a UED pump-

probe experiment (see section 8.2), the temporal resolution is strongly limited by

Coulomb broadening of the electron pulse. Achieving ultimate temporal resolutions

for studying electronic dynamics with UED thus requires the elimination of space

charge.

The approach in this work is to use single-electron pulses for UED. In the ab-

sence of space charge, the propagation and dispersion of the electrons is dictated by

a simple equation of motion without any nonlinear internal forces. Moreover, single-

electron pulses facilitate excellent dispersion control by means of time-dependent

energy modulation with microwave fields, allowing virtually arbitrary temporal com-

pression of the pulse’s duration (see chapter 3).

2.1 Phase space statistics and coherence of single-

electron pulses

In order to understand the concept of pulse duration and compression of single-

electron pulses, it is instructive to consider their phase space during propagation.

At any given instant in time, each electron can be classically described by its posi-

tion and momentum in three-dimensional space, spanning a six-dimensional phase

space. The temporal properties of collimated high-energy electron bunches can be

described by a simplified two-dimensional phase space consisting of the longitudinal

position and momentum, i.e. along the main direction of propagation. The transverse

phase space, on the other hand, provides information about the beam’s diameter and

13
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divergence. The phase space volume, enclosing all states of the electrons, is a direct

measure for the longitudinal and transverse emittance, respectively, when converting

the relative momentum spread into an angular spread (cf. section 1.4). For dense

electron packets, the spatial and temporal profile is directly evident from the distri-

bution of each electron (or the electron density) constituting the packet within the

phase space: The longitudinal spatial distribution yields the pulse duration when

divided by the mean velocity, while the longitudinal momentum distribution is cor-

related with the packet’s energy spread or bandwidth.

For single-electron pulses, however, the concept of statistical quantities, i.e. dis-

tributions, applies to ensembles of many consecutive pulses with respect to a repet-

itive timing reference, as illustrated in fig. 2.1. This is a consequence of the discrete

(quantum) nature of electrons: It is impossible to measure the spatial or temporal

distribution of a single electron’s quantum mechanical wave function, since the par-

ticle is consumed after being detected by any mechanism and its wave function col-

lapses at a particular point in space and time. Only a repetitive measurement yields

a distribution and eventually a diffraction image. Therefore, we implicitly invoke the

statistics of repetitive ensembles when referring to pulse durations, beam diameters,

or other distributions related to the phase space of single-electron pulses [85]. It is

noteworthy that the intrinsic quantum mechanical wave function (or any statistical

distribution) of a single-electron pulse cannot be measured exactly, because a repet-

itive measurement imprints additional broadening on the statistical quantities of the

pulse, e.g. due to timing jitter or limited resolution [114], yielding convolutions as

upper limits for those quantities.

Illumination of an extended source, such as a flat photocathode, leads to inco-

herent photoemission, i.e. a random probability distribution of the emission across

the illuminated area and within the laser pulse’s duration, weighted by the laser’s

intensity profile in space and time. Typically, photoelectrons are emitted from within

a few-nanometer depth of a metal film after UV excitation [115]. The physics de-

scribing the subsequent propagation of the electrons to the surface is indirect and

rather complex, involving scattering, electron-electron interaction, and refraction

from rough surfaces [116–118]. Therefore, the excess energy, Eph−Φ, Eph being the

photon energy (for single-photon photoemission) and Φ the material’s work func-

tion, is smeared out due to inelastic scattering during the emitted electron’s travel

from the bulk into vacuum, resulting in an energy spread. The laser pulse’s finite

bandwidth (i.e. Eph spans over a range of energies) also contributes to the bandwidth

of the electrons. Likewise, elastic and inelastic scattering leads to a broad angular

distribution of the emitted electrons, which is assumed to be isotropic into a half

sphere [82], despite the directed momenta of the laser pulse’s photons.

Coherence is particularly important for diffraction, as it requires interference of

the electron wave packets scattered from different unit cells of the sample’s crystal
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Figure 2.1: Illustration of the effective pulse duration of single electrons [5, 81, 85]. All sta-
tistical quantities of single-electron pulses refer to ensembles of many consecutive (repetitive)
single-electron wave packets. The duration of single-electron pulses is therefore defined as the
distribution of arrival times with respect to a repetitive timing reference, e.g. the laser pump
pulses at the sample. Note that the coherence time of a single-electron wave packet, which
follows from the uncertainty relation and the bandwidth ∆E, can be substantially shorter than
the effective pulse duration at the sample due to the random emission time (within the laser
pulse’s duration) and dispersion.

lattice. Single electrons interfere with themselves, as in Young’s double-slit exper-

iment; therefore, their coherence length has to exceed the dimensions of a unit

cell. The longitudinal coherence time1, τc, as illustrated in fig. 2.1, follows from the

energy-time uncertainty: τc ≈ ~/(2∆E), ~ being the reduced Planck constant and

∆E the bandwidth (time and energy distributions referring to standard deviations).

The corresponding longitudinal coherence length, ξl = vlτc, vl being the longitudinal

velocity, is in the ∼100 nm range for typical UV photoemission sources. However,

the transverse coherence length, ξt, determines the visibility of Bragg spots for dif-

fraction in transmission, constituting an important beam parameter for electron

diffraction experiments. A common definition is ξt = λ/(2πσθ), λ being the de

Broglie wavelength and σθ the standard deviation of the angular spread, which is

a consequence of the transverse momentum distribution [76, 78, 82, 86, 114]. Ac-

cording to this definition, the visibility of interference fringes (or Bragg spots) is

reduced by 12 % over a transverse distance of ξt at the diffraction sample [119].

Typically, transverse coherence lengths from photocathode sources for UED are in

the sub-nanometer to few-nanometer range [76, 82, 114]. This coherence can be in

principle arbitrarily improved by magnifying the beam [86, 104]; however, the max-

imum practical beam diameter is technically limited by the sample’s transverse size

(some 100 µm in the case of thin crystalline foils for transmission) and the laser

1In optics, the temporal coherence is sometimes defined as τc ≈ h/∆E, which follows from the
autocorrelation theorem [119].



16 Chapter 2. Single-electron pulses for UED

pump pulse’s energy. Since dense electron packets suffer from increased transverse

momentum spread due to Coulomb repulsion, single-electron sources can in prin-

ciple provide better transverse coherence. In combination with magnifying electron

optics, a transverse coherence of 20 nm has been achieved at the diffraction sample

with a reasonably small beam radius of ∼80 µm (standard deviation), allowing in-

vestigation of large biomolecules [86]. Reducing the momentum spread by using an

ultracold electron source [83, 84, 104] rather than a thin-film photocathode renders

a different approach for increasing the coherence of electron pulses.

2.2 Dispersion of single-electron pulses

Dispersion relates the angular frequency (or phase velocity) ω of a plane wave

to its wave number k = 2π/λ, λ being the wavelength, by the group velocity

v(k) = ∂ω(k)/∂k. For electromagnetic waves, v(k) = c in vacuum, i.e. the group ve-

locity is constant for all wavelengths. However, inside a material v(k) = c/n(k) with

the wavelength-dependent refractive index n(k). A wavelength-dependent group ve-

locity leads to temporal spreading of a wave packet (e.g. a pulse), which is a su-

perposition of plane waves of different wavelengths. In analogy to electromagnetic

waves, the angular frequency ω and wave number k of a matter wave are related to

its energy E (sum of the kinetic energy and rest energy of a particle) and momen-

tum p, respectively, according to de Broglie, by E = ~ω and p = ~k. Therefore, the

dispersion of electrons in vacuum in terms of energy and momentum is given by:

E(p) =
√
p2c2 +m2

ec
4, (2.1)

me being the electron’s rest mass. The relativistic momentum, p, is given by:

p = γmev, γ =
1√

1−
(
v
c

)2
, (2.2)

where v is the electron’s group velocity and γ the Lorentz factor. Note that p and

v are vector quantities and we consider projections along their directions. In the

sub-relativistic case (v � c ⇒ γ ≈ 1), p ≈ mev and eqn 2.1 can be simplified by

Taylor expansion:

E(p) ≈ p2

2me

+mec
2 =

1

2
mev

2 +mec
2 (2.3)

Subtracting the rest energy, E0 = mec
2, from eqn 2.3 yields the classical kinetic

energy of an electron:

Ekin(p) = E(p)− E0 ≈
p2

2me

=
1

2
mev

2 (2.4)
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Note that the electron’s group velocity, which results from the dispersion relation,

v = ∂E(p)/∂p, is the same for both the relativistic and non-relativistic case and

is identical to the velocity of a particle defined in Newtonian mechanics as the

time derivative of the particle’s position. As a direct consequence, a longitudinal

distribution of initial sub-relativistic velocities, ∆vz, at a position z0 with (ideally)

zero or negligible initial spatial spread leads to a spatial broadening, ∆z, after a

propagation time t:

∆z = ∆vzt, (2.5)

while the center of the distribution propagates a distance of z = z0 + vzt with a

central velocity of vz. For realistic distributions of particles with a nonzero phase

space volume, the transformation of a certain velocity or momentum spread into

a spatial spread after some propagation needs to be calculated using the equation

of motion for each particle. In the absence of space charge, the propagation of a

dynamic phase space density function, %(z, pz, t), with pz = mevz, describing the

temporal evolution of an arbitrary initial phase space density, %0(z, pz), is given by:

%(z, pz, t) = %0(z − vzt, pz) (2.6)

The projection of the density function onto the position or momentum axis, respec-

tively, then yields the corresponding distribution.

Fig. 2.2 illustrates the phase space of a dispersing repetitive ensemble of single-

electron pulses (cf. section 2.1). For simplicity, the velocity is shown instead of the

momentum. In fig. 2.2 (a), the velocities and positions of the single electrons are

initially uncorrelated, representing the situation at the instant of photoemission at

the photocathode. After some propagation time, the finite velocity spread leads to

a broadening of the initial spatial distribution according to eqns 2.5 and 2.6 and a

linear correlation of the velocity with the relative position within the distribution

becomes visible, since faster electrons move to the front, while slower ones stay at

the back. In optics, this is referred to as the group delay dispersion, or chirp. Note

that the initial phase space volume is conserved. This simple relation is only valid

for single-electron distributions, as space charge would introduce nonlinear internal

forces in dependence on the instantaneous charge density, leading to an additional

broadening of the spatial distribution as well as a broadening of the velocity spread.

Also, the phase space volume is in general not conserved for dense electron packets.

Remarkably, the vacuum dispersion, which usually broadens an electron pulse,

can also be used to compress it, as shown in fig. 2.2 (b). If a phase space distribution

is prepared in such a way that the faster electrons are at the back and the slower at

the front (i.e. an inverted linear correlation, or chirp, compared to fig. 2.2 (a)), the

back catches up with the front at a certain instant in time due to the dispersion.
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Figure 2.2: Phase space illustration of dispersing single-electron pulses. The position axis is
shifted to the center of the distribution, z0. The blue arrows represent different velocities.
(a) An initially uncorrelated phase space disperses due to the velocity spread, ∆vz, leading
to a broadening of the spatial distribution, ∆z. The dispersion produces a linear position-
dependence of the velocity, faster electrons being moved to the front of the distribution, while
the phase space volume is conserved. (b) A phase space initially correlated for compression,
slower electrons being at the front, compresses itself at a certain point in time, at which the
trailing fast electrons catch up with the slow front, and then broadens again.

This instant of least correlation, or zero chirp, yields the smallest spatial and hence

temporal distribution and is therefore referred to as the temporal focus. After this,

the dispersion broadens the spatial distribution again as in fig. 2.2 (a). This disper-

sive nature of electron distributions prohibits maintaining a constantly short pulse

duration over an extended propagation distance, unless for a very small velocity

spread or at highly relativistic velocities, and therefore the temporal focus needs

to be carefully matched with the sample’s position. For an ideally linear velocity

distribution as in fig. 2.2 (b), defined as vz(z) = v0 − (z − z0) ∆vz/∆z, v0 being the

central velocity, the time it takes for the faster electrons at the back to catch up

with the front simply follows from eqn 2.5 as tf = ∆z/∆vz. The distance f from

the distribution’s center, z0, to the temporal focus is therefore given by:

f = v0tf = v0
∆z

∆vz
(2.7)

Preparing a phase space distribution with an inverted chirp with respect to the

electron’s normal dispersion in vacuum, as shown in fig. 2.2 (b), requires manipu-

lation of the electron pulse’s phase space by means of external electric fields. This

concept of chirp reversal for electron pulse compression by energy (or velocity) mod-

ulation with microwave fields is discussed in the next chapter.



Chapter 3
Compression of single-electron pulses with

microwave fields

UED experiments are based on the pump-probe technique (cf. sections 1.1 and 1.4),

using laser pulses to excite ultrafast structural dynamics and electron pulses to

record snapshots of the transient structure via diffraction. Therefore, the synchro-

nization between the laser pump pulses and the electron probe pulses is crucial in

order to assign the exact timing to a particular acquisition relative to the initiat-

ing pump pulse, especially when exposures are integrated over many consecutive

pump-probe cycles, e.g. in the case of single-electron or few-electron pulses. While

this synchronization is naturally maintained in all-optical pump-probe experiments

(i.e. driven by the same laser source), the optically triggered generation of electron

pulses, their dispersion, and especially their interaction with electric and magnetic

fields can deteriorate the synchronization to the laser pump pulses and hence de-

grade the temporal resolution of the experiment. In the case of single-electron pulses,

these effects broaden their temporal distribution with respect to the laser pulses (cf.

fig. 2.1), even if the electron pulse’s intrinsic duration is short [81].

In this work, an oscillating electric field inside a resonant cavity at microwave

frequencies is used for dispersion control of single-electron pulses. This technique

allows manipulation of the electron pulse’s phase space in the energy domain in

order to prepare a velocity distribution suitable for subsequent self-compression

(cf. fig. 2.2 (b)). Moreover, the conservation of phase space volume in the absence

of space charge allows achieving almost arbitrarily short single-electron pulses at

the expense of according energy broadening. However, the synchronization between

the microwave’s phase and the laser pulses poses the most intricate technological

challenge in advancing the temporal resolution of UED into the few-femtosecond or

attosecond domain by compression of single-electron pulses with microwave fields.

19
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3.1 Dispersion control of single-electron pulses

As pointed out in section 1.4, static electric or magnetic fields can be employed to

introduce reversed dispersion in relation to vacuum’s dispersion, thus delaying faster

electrons with respect to the slower ones [91, 108–110]. These principles rely on spa-

tially separating electrons of different velocities and forcing the faster ones to prop-

agate over a longer distance before being spatially recombined again. This is similar

to dispersion management and pulse compression in optics based on prisms [120],

gratings [121], or chirped mirrors [122]. Although these methods are in principle

suitable to reshape the electron pulse’s phase space for subsequent self-compression

(cf. fig. 2.2 (b)), the shortest achievable pulse duration at the temporal focus, i.e. the

instant of zero chirp, cannot go below the initial duration of photoemission, which

is defined by the laser pulse’s duration, owing to the conservation of phase space

volume.

Using time-dependent rather than static (conservative) fields, a net momentum

transfer to the electrons can be achieved. For a longitudinal time-dependent electric

field, Ez(t), the momentum transferred to an electron after propagation through the

field is given by:

∆pz = e

∫
τ

Ez(t) dt, (3.1)

e being the elementary charge and τ the duration of the interaction with the field. A

linear time dependence therefore imprints a linear momentum transfer on the phase

space as a function of the electron’s position within the distribution. This can be used

to reverse the chirp acquired during dispersion by slowing down the leading electrons,

while accelerating the trailing ones, instead of merely delaying the faster electrons, as

in the case of static fields. Moreover, the chirp can be overcompensated by choosing a

steeper temporal slope of the field, leading to an increased bandwidth and therefore

a shorter pulse duration at the temporal focus than at the photocathode, since the

phase space volume is conserved in the absence of space charge.

Time-dependent electric fields thus provide complementary phase space control

of single-electron pulses: Dispersive elements, e.g. static fields or free propagation

in vacuum, manipulate the temporal (or spatial) distribution of the single-electron

pulse’s phase space, while maintaining a constant bandwidth; in contrast, time-

dependent fields manipulate the energy (or momentum) distribution, while not al-

tering the temporal distribution, provided a short interaction time with the fields.

Combining both, a complete phase space control is possible, while conserving the

phase space volume – the pulses can be made arbitrarily short at the expense of

increased bandwidth, or arbitrarily monochromatic at the expense of according tem-

poral broadening, limited only by quantum uncertainty. Note that independent ma-
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Figure 3.1: Concept of single-electron pulse compression with time-dependent longitudinal
electric fields [81]. The velocity coordinate of the phase space diagram can also be interpreted
as energy when considering small relative velocity spreads and the position coordinate can be
directly interpreted as time. Immediately after photoemission (1), the phase space is uncor-
related, having a temporal spread of τinitial. After free propagation, dispersion broadens the
distribution (2) to a duration of τdisp and imprints a linear chirp. The time-dependent longi-
tudinal electric field is set such that the electrons at the front are slowed down (energy loss),
while the trailing electrons are accelerated (energy gain), thus inverting and overcompensating
the chirp (3). The dispersion during subsequent propagation then leads to self-compression (4).
Note that the excess energy spread imprinted by the field results in a final duration of τfinal,
which is shorter than the initial duration, since the phase space volume is conserved. The finite
duration of static acceleration after photoemission is ignored here. The inset shows a practical
realization of the time-dependent electric field, using the nearly linear time dependence of an
oscillating microwave field around the zero crossing, provided an oscillation period which is
substantially longer than τdisp.

nipulation of the electron pulse’s phase space in the temporal and energy domain

is in general impossible in the presence of space charge, since the internal Coulomb

forces broaden the phase space both temporally and energetically at the same time.

Fig. 3.1 demonstrates single-electron pulse compression below the initial duration

of photoemission using longitudinal electric fields with a linear time dependence.

Here, the initial phase space distribution (1) is shown assuming an instantaneous

acceleration to the final energy after photoemission, i.e. the finite acceleration time

inside the static electric field at the photocathode, which leads to a slightly curved
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shape of the phase space, is neglected. After free propagation, dispersion temporally

broadens the pulse (τdisp), leading to a linear chirp (2). The temporal slope of the

longitudinal electric field is set to slow down the fast electrons at the front and

to accelerate the trailing slow electrons, as illustrated in the inset. The temporal

distribution is nearly unchanged after the interaction with the field; however, the

chirp is inverted and overcompensated, yielding an increased bandwidth (3). The

subsequent propagation leads to self-compression at a temporal focus in the same

way as in fig. 2.2 (b) with the notable difference that the final duration, τfinal, at

the temporal focus is shorter than the initial duration, τinitial, due to the increased

bandwidth, since the phase space volume is conserved (4). If the longitudinal electric

field is linear with time and exactly correlated to the center of the phase space, the

reduction of the pulse duration at the temporal focus with respect to the initial pulse

duration at the photocathode corresponds to the relative increase in bandwidth:

τfinal = τinitial
∆vinitial

∆vfinal

≈ τinitial
∆Einitial

∆Efinal

, (3.2)

∆vinitial, ∆vfinal, ∆Einitial, and ∆Efinal being the initial and final velocity and energy

spread, respectively. Since the relation between energy and velocity is nonlinear (cf.

eqns 2.1 and 2.2), the simple proportionality in eqn 3.2 is only valid for a small

relative bandwidth, which is true for UED, typical relative bandwidths being in the

range of 10−5–10−3, even after compression with longitudinal electric fields. At rela-

tivistic velocities, the dispersion in vacuum is very small and therefore the distance

to the temporal focus can become impractically long, necessitating additional dis-

persive elements for temporal compression after the interaction with the longitudinal

electric field.

Modeling the dispersion during the static acceleration within the region between

photocathode and anode (which is neglected in fig. 3.1) is essential for an estimation

of the uncompressed pulse duration, τdisp. Without any compression technique, this

limits the temporal resolution of UED experiments. After acceleration in a static

field, Eacc, an initial longitudinal velocity spread of ∆vz at the photocathode leads

to a temporal spread according to the non-relativistic equation of motion:

τacc ≈
me∆vz
eEacc

(3.3)

Note that the initial temporal spread of the photoemission (essentially the laser

pulse’s duration) broadens the duration of the dispersed pulse, which is a convolution

between the initial and the purely dispersive temporal spread (for Gaussian-like

distributions):

τ 2
disp = τ 2

initial + τ 2
acc (3.4)
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Since the simple model in eqn 3.3 only calculates the time difference between elec-

trons with initial velocities of zero and ∆vz, the particular shape of the initial ve-

locity distribution significantly affects the resulting temporal distribution. Different

models exist correlating the energy bandwidth at photoemission to a certain longi-

tudinal velocity spread and according temporal spread, τacc, after acceleration [78,

80, 82, 100, 114], based on different assumptions about the photoemission process.

Despite this theoretical uncertainty, it is evident from eqn 3.3 that minimizing the

bandwidth at photoemission, e.g. by matching the laser’s wavelength to the pho-

tocathode’s work function [82], produces the shortest pulses. However, the optical

Fourier limit dictates that the achievable laser pulse’s duration increases when re-

ducing its bandwidth and thus temporally broadens the electron pulse (cf. eqn 3.4).

Increasing the acceleration field, Eacc, can also reduce the dispersion (cf. eqn 3.3).

This is limited for static acceleration by vacuum breakdown to about 10 kV/mm

(cf. section 1.4); therefore, a minimum single-electron pulse’s duration of about 70 fs

FWHM is predicted at this acceleration field when using bandwidth-limited 40 fs

laser pulses, being a trade-off between narrow bandwidth and short duration, and

tuning the laser’s wavelength close to the photocathode’s work function [82].
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Figure 3.2: Simulation of electron pulse propagation with static acceleration followed by
compression with longitudinal microwave fields; data taken from [80]. The 2σ pulse duration
denotes two standard deviations of the temporal distribution. After photoemission by a 10 fs
laser pulse and static acceleration in a field of 4 kV/mm to a kinetic energy of 40 keV, the pulse
is compressed by the linear part of a microwave field, transferring energy to the electrons at
a rate of 95.5 eV/ps. The subsequent self-compression is linear for single-electron pulses and
yields a minimum duration at the temporal focus of ∼1 fs. In the presence of space charge,
compression still works; however, the achievable compressed pulse duration deteriorates. Note
that the initial broadening after photoemission occurs mainly within the first micrometers of
acceleration. The right panel is a zoom around the temporal focus.

Fig. 3.2 shows a simulated propagation of electron pulses under realistic con-

ditions, including static acceleration and compression with longitudinal microwave
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fields, for both the single-electron and space-charge regime (durations denote two

standard deviations). A 10 fs laser pulse generates electron pulses with an energy

spread of ∼1 eV from a photocathode, which are accelerated in a static field of

4 kV/mm to a kinetic energy of 40 keV. Note that the initial broadening to about

250 fs takes place within the first micrometers of acceleration, while the electrons

are still slow. A longitudinal microwave field at 5 GHz is used to interact with the

electron pulses over a few millimeters around the zero-crossing phase of the energy

modulation. Thus, electrons at the front are slowed down, while trailing ones are

accelerated (cf. fig. 3.1). The rate of energy transfer is 95.5 eV/ps. Further details of

the simulation can be found in [80]. The linear time dependence of the microwave

field leads to linear self-compression due to dispersion during the subsequent free

propagation. The simulation yields a duration at the temporal focus of about 1 fs

for single-electron pulses. This constitutes a remarkable first proof for the concept

of electron pulse compression into the few-femtosecond range or below. At the same

time, the requirements for optimizing the photoemission bandwidth and acceleration

field are largely relaxed, allowing operation at technically convenient conditions.

The presence of space charge causes nonlinear and non-conservative transforma-

tions of the phase space, thus limiting the achievable compressed pulse’s duration. In

addition, the distance to the temporal focus increases with increasing space charge

because Coulomb repulsion grows near to the temporal focus, retarding the process

of compression. Nevertheless, pulses consisting of up to a few hundred electrons can

be compressed into the few-femtosecond range.

3.2 The microwave cavity

The concept for the compression of electron pulses by means of time-dependent

electric fields, as pointed out in the previous section, makes certain technically chal-

lenging demands concerning the attributes of the employed fields. First, the field

needs to be longitudinal, i.e. oriented along the propagation direction of the elec-

tron pulses. Secondly, the time dependence must be linear and its slope has to be

high enough to compensate the chirp acquired by dispersion and to imprint a certain

amount of inverse chirp for a desired temporal focus, according to eqn 2.7. Thirdly,

the field must be maintained at constant conditions (i.e. amplitude, direction, and

temporal slope) over the entire longitudinal interaction distance as well as over the

transverse extent of the electron beam. Homogeneous transient electric fields with a

steep linear time dependence are usually employed in streak cameras (cf. section 1.2),

though in the transverse direction. For electron pulse compression, the concept of a

longitudinal streak camera needs to be employed.
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Here, we exploit the on-axis electric field of the TM010 mode oscillating at mi-

crowave frequencies inside a resonant cavity. For the simplest cavity shape, a hollow

cylinder of a conducting material, also referred to as a pill-box cavity, standing-

wave solutions of Maxwell’s equations yield modes of different shapes and resonance

frequencies. They are categorized as transverse electric (TE) or transverse mag-

netic (TM) modes, meaning that either the electric or magnetic field, respectively,

has no longitudinal component, i.e. is entirely transverse. In cylindrical coordinates

(r, φ, z), their geometrical shapes are further characterized by three indices, TEmnp

or TMmnp, respectively, where m is the number of azimuthal full-period variations,

n the number of radial zero crossings, and p the number of longitudinal half-period

variations of the field components. Thus, m, n, and p quantify the number of nodes

of the field distribution along orthogonal directions in cylindrical coordinates. By

definition, only TM modes provide a nonzero longitudinal component of the elec-

tric field, the TM010 mode being the simplest solution of Maxwell’s equations. This

mode consists of a longitudinal electric field, Ez, and an azimuthal magnetic field,

Hφ, both being independent of the longitudinal coordinate z, while all other field

components are zero:

Ez(r, t) = E0J0(krr) cos(ω0t) ≡ E0,z(r) cos(ω0t), (3.5)

Hφ(r, t) =

√
ε0
µ0

E0J1(krr) sin(ω0t) ≡ H0,φ(r) sin(ω0t), (3.6)

E0 being the electric field amplitude, ε0 and µ0 the permittivity and permeability

of vacuum, respectively, ω0 = 2πf0 the resonant angular frequency (f0 being the

resonant frequency), Ji the i-th order Bessel function of the first kind, and kr the

radial wave number. E0,z(r) and H0,φ(r) describe the radial dependence of the electric

and magnetic field amplitude, respectively. For a pill-box cavity with radius R and

perfectly conducting walls, the resonant boundary condition at the walls requires

Ez(R, t) = 0 and therefore J0(krR) = 0. This implies kr ≈ 2.405/R (the first root of

J0 being approximately at 2.405) and thus the resonance frequency is given by:

ω0 = krc ≈
2.405c

R
(3.7)

For example, a pill-box cavity with a radius of 2 cm has therefore a resonance fre-

quency, f0, of about 6 GHz. Electrons can interact with the electric field inside the

cavity by adding small entrance and exit holes to the cavity’s walls on the axis,

which only negligibly perturb the field distribution. The mode inside the cavity is

excited by applying an RF signal via a coaxial cable or waveguide which is coupled

via an antenna (i.e. a thin wire) inside the cavity to the mode. Usually, magnetic
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coupling is used, for which the antenna is formed into a current loop perpendicularly

to the magnetic field lines and positioned radially at the maximum of the magnetic

field amplitude (see fig. 3.3 (a)). Coupling to the electric field is unfavorable, as the

antenna would have to be placed close to the axis in that case and thus would

interfere with the electron beam. TM010 cavities are used in almost all RF parti-

cle accelerators, hence a rigorous cavity theory can be found in many accelerator

textbooks [106, 123].
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Figure 3.3: Field profiles of the TM010 mode of an ideal pill-box cavity and illustration of an
optimized omega-shaped cavity. (a) Transverse profile of the normalized field amplitudes E0,z(r)
(electric field) and H0,φ(r) (magnetic field), essentially the Bessel functions J0 and J1, in units
of the pill-box cavity’s radius R. (b) The toroidal omega-shaped cavity design concentrates
the electric field on the axis, maximizing the field strength, and reduces the surface-to-volume
ratio for the volume enclosed by the magnetic field, minimizing the losses due to eddy currents
in the walls.

The radial field profiles of the TM010 mode of a pill-box cavity are shown in

fig. 3.3 (a). The magnetic field is nonzero at the cavity’s walls and therefore induces

eddy currents, since it is oscillating. This results in ohmic losses due to the finite

conductivity of the material which the cavity is made of (e.g. copper). In order

to maintain a certain amplitude of the oscillating electric field, determined by the

velocity of the electrons and the desired distance to the temporal focus, these losses

have to be compensated by the RF source feeding the cavity. The RF power which

is directly obtained from typical primary RF sources, e.g. oscillators or photodiodes,

(milliwatts at microwave frequencies) is insufficient for electron pulse compression;

hence, further amplification is required (see section 5.2). High amplification poses

a technical challenge and introduces additional noise which translates into timing

jitter (see section 3.3); thus, a power-efficient cavity design is crucial. The simple

cylindrical pill-box cavity is not ideal in this respect [124]. In an optimized design, the

shape is modified by narrowing the cavity longitudinally around the axis within the

electric field region. Thus, the capacitance is increased around the axis, leading to an

increased electric field and stored electric energy there. Furthermore, the losses are
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reduced if the surface integral of the magnetic field, which induces the eddy currents

that lead to ohmic losses, is minimized. This requires the smallest possible surface-

to-volume ratio of the part of the cavity within the magnetic field region (i.e. away

from the axis), while maintaining the correct radial size for the desired resonance

frequency. A sphere has the smallest surface-to-volume ratio; however, because of

the narrow region around the axis, the optimum shape is a toroid with an elliptical

cross-section [124]. This design is referred to as an “omega-shaped” cavity, since the

cross-section resembles the letter Ω [80, 81, 125]. Fig. 3.3 (b) illustrates the shape

and the field distribution of such a cavity with an (exaggerated) axial aperture for

the electrons to interact with the electric field.

The losses of the cavity can be described in analogy to an electric circuit of

lumped elements, representing the cavity’s ohmic resistance, inductance, and ca-

pacitance. A series or parallel connection of these three elements are both suitable

to model the cavity. For a series connection, the current through all elements is

constant, while for a parallel connection the voltage across all elements is constant,

which affects the respective contributions of the resistance, inductance, and capac-

itance to the cavity’s losses [126]. However, both approaches yield the same results

for the resonance frequency, bandwidth, and phase [126, 127]; therefore, the series

connection is chosen here for simplicity. Using Kirchhoff’s voltage law results in a

differential equation for the time-dependent current response to a voltage driving

the circuit. The steady-state solution for an ideal driving voltage, U(t) = U0 cos (ωt),

with an amplitude U0, oscillating at an angular frequency ω, is given by:

I(t) =
U0 cos (ωt)

|Z(ω)|
, 〈I〉t =

U0√
2 |Z(ω)|

, (3.8)

where 〈I〉t denotes the cycle-averaged root mean square (rms) of the current and

Z(ω) is the complex frequency-dependent impedance:

Z(ω) = Rcav + iωLcav +
1

iωCcav

, (3.9)

Rcav, Lcav, and Ccav denoting the cavity’s ohmic resistance, inductance, and ca-

pacitance, respectively. Since eqn 3.9 describes a series connection, the respective

impedance contributions can be simply summed up in order to obtain the total

impedance. A complete derivation can be found in textbooks [127]. The complex

cycle-averaged power delivered to the circuit is then given by:

P (ω) = |〈I〉t|2 Z(ω) =
U2

0

2Rcav + 2i
(

1
ωCcav

− ωLcav

) (3.10)



28 Chapter 3. Compression of single-electron pulses

It is evident from eqn 3.10 that the delivered power is maximized when the inductive

and capacitive impedance cancel out at the resonance frequency:

ω0 = 2πf0 =
1√

LcavCcav

(3.11)

At this frequency, the impedance is purely real, Z(ω0) = Rcav, thus the power

delivered to the circuit is entirely dissipated by ohmic losses. A useful quantity to

characterize the quality of a resonant circuit is the dimensionless Q-factor, defined

as the energy stored inside the circuit, Estored, divided by the energy loss per cycle,

Eloss:

Q0 = 2π
Estored

Eloss

= ω0
Estored

Ploss

, (3.12)

where Ploss = Elossf0 is the cycle-averaged energy loss rate. At resonance, the losses

are purely ohmic, thus, according to eqn 3.10, Ploss = U2
0/ (2Rcav). The energy inside

the circuit is stored in the magnetic field produced by the current through the circuit,

I(t), and in the electric field produced by the voltage across the capacitor, Uc(t):

Estored =
1

2
Lcav |I(t)|2 +

1

2
Ccav |Uc(t)|2 (3.13)

Since the current through each element of the series circuit is given by eqn 3.8, the

voltage across the capacitor follows as:

Uc(t) =
1

Ccav

∫
I(t) dt =

U0

ω |Z(ω)|Ccav

sinωt ≡ U0,c(ω) sinωt (3.14)

Substituting eqns 3.8 and 3.14 in eqn 3.13 and using eqn 3.11 and the identity

Z(ω0) = Rcav at the resonance frequency (ω = ω0) yields for the stored energy:

Estored =
U2

0Lcav

2R2
cav

cos2 ω0t+
U2

0

2ω2R2
cavCcav

sin2 ω0t =
U2

0Lcav

2R2
cav

(3.15)

Here, the identity cos2 φ + sin2 φ = 1 is used. Note that the inductive energy is

equal to the capacitive energy at resonance. Together with Ploss at resonance, the

Q-factor1 in eqn 3.12 can be then expressed in terms of ohmic resistance, inductance,

and capacitance of the cavity:

Q0 = ω0
Lcav

Rcav

=
1

ω0RcavCcav

(3.16)

1Note that this definition of the Q-factor applies to a series connection. For a parallel connection,
the Q-factor is inverted: Q0 = Rcav/ (ω0Lcav) = ω0RcavCcav [126].
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For the second equality in eqn 3.16, the identity in eqn 3.11 at resonance is used.

The voltage across the capacitor which is formed by the cavity’s shape around the

axis, Uc(r, t), is of particular interest for accelerating electrons, since it is related

to the magnitude of the longitudinal electric field of the TM010 mode (cf. eqn 3.5)

according to:

Uc(r, t) =

∫
d

Ez(r, z, t) dz, (3.17)

d being the longitudinal on-axis distance between the cavity’s walls (i.e. its thick-

ness). Note that for an optimized cavity design deviating from the cylindrical (pill-

box) shape and a wall material with finite conductivity, the amplitude of Ez is in

general not constant along the longitudinal z-direction inside the cavity. A use-

ful figure of merit concerning the power efficiency of a cavity is the corresponding

shunt resistance2, Rs, which relates the voltage amplitude across the capacitor (cf.

eqn 3.14), U0,c, to the cycle-averaged input power at resonance (cf. eqn 3.10), using

the identity in eqn 3.11:

Rs =
U2

0,c

Ploss

= 2
Lcav

RcavCcav

, (3.18)

This quantity describes the input power required for a maximum energy transfer

of (ideally) eU0,c to the electrons. Note that the factor of 2 is sometimes omitted

in literature, depending on whether the amplitude, U0,c, or the cycle-averaged rms

value of the voltage across the capacitor, U0,c/
√

2, is considered.

The power absorbed by the cavity (cf. eqn 3.10) as a function of frequency,

normalized to the maximum at resonance, can be expressed in terms of the Q-factor:

<
[
P (ω)

P (ω0)

]
=

1

1 +
(

1
ωRcavCcav

− ω Lcav

Rcav

)2 =
1

1 +
(
Q0

[
ω0

ω
− ω

ω0

])2

=
1

1 +
(
Q0

[
(ω+ω0)∆ω

ωω0

])2 ≈
1

1 +
(

2Q0
∆ω
ω0

)2 (3.19)

Here, Q0 from eqn 3.16 is substituted and ∆ω = ω − ω0 is used. The last identity

in eqn 3.19 is valid around the resonance frequency (ω ≈ ω0) and for high Q-factors

(Q0 � 1). Therefore, the absorbed power can be approximated by a Lorentzian

around the resonance frequency. It follows from eqn 3.19 that the Q-factor is closely

related to the cavity’s bandwidth, since its FWHM is given by:

∆ωFWHM =
ω0

Q0

=
2πf0

Q0

(3.20)

2In the same way as for the Q-factor, this definition for the shunt resistance applies to a series
connection. For a parallel connection, Rs = 2Rcav [126].



30 Chapter 3. Compression of single-electron pulses

Similarly to eqn 3.19, the phase of the complex power delivered to the circuit is

given by:

φ(ω) = arctan
= [P (ω)]

< [P (ω)]
≈ arctan

(
2Q0

∆ω

ω0

)
(3.21)

The parameters of the microwave cavity used in this work have been chosen ac-

cording to the requirements for efficient compression of electron pulses at energies

around 30 keV. A high Q-factor is desirable, since it provides a higher stored energy

and compression field for a particular input power (cf. eqns 3.12, 3.13, and 3.17).

However, this comes at the expense of a reduced bandwidth (cf. eqn 3.20), which

limits the range of usable frequencies, e.g. for synchronization with the laser’s rep-

etition rate (see chapter 4). Also, the slope of the phase with respect to frequency

depends on the bandwidth (cf. eqn 3.21) and therefore a frequency drift of the input

signal translates into a severe phase or timing drift of the intra-cavity field for very

high Q-factors (see section 3.3).

A similar trade-off applies to the choice of the resonance frequency. The temporal

slope of the longitudinal electric field increases with frequency at a given amplitude.

Also, the requirements for the phase synchronization of the RF source to the laser’s

repetition rate are relaxed, since a higher amount of phase jitter (in degrees) is ac-

ceptable to maintain the same timing jitter (in femtoseconds) at higher frequencies.

However, linear manipulation of the electron pulse’s phase space, as described in

section 3.1, requires a linear time dependence of the electric field. For a sinusoidal

microwave field, this holds only if the period is much larger than the temporal spread

of the electron pulses interacting with the field and poses a fundamental upper limit

for usable frequencies. As the dimensions of the TM010 mode scale inversely with the

resonance frequency (cf. eqn 3.7), transverse inhomogeneities of the field distribu-

tion become more severe for a particular diameter of the electron beam (limited by

its emittance, cf. section 2.1) and accurate machining becomes challenging for very

small cavity dimensions. Finally, low-noise high-performance electronics (amplifiers,

filters, etc.) for very high frequencies are less available and more expensive than

components used for common telecommunication and radar applications within the

standard microwave bands.

Considering these requirements, the microwave cavity used in this work has been

designed for a resonance frequency of 6.2 GHz (lying in the IEEE C-band) and a

bandwidth of about 2 MHz FWHM (Q0 = 3100) and manufactured by the Budker

Institute of Nuclear Physics (Novosibirsk, Russia) [81]. The cavity is made of copper

and has an omega-shaped design with an on-axis thickness of 3 mm and a central

aperture of 2 mm for the electron beam. Thus, the propagation time through the

longitudinal field region is about 30 ps, extending significantly beyond the linear part

of the field. However, according to eqn 3.1, the momentum transferred to an electron
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has the same periodicity with the time when it enters the cavity as the oscillation

of the electric field. Therefore, only the electron pulse’s duration in relation to the

microwave’s period is essential for a linear compression, rather than the absolute

propagation time through the cavity.

In addition to the input coupling antenna, a second probe antenna allows online

monitoring of the amplitude and phase of the field inside the cavity, e.g. for syn-

chronization purposes, while the power extracted by the probe antenna (−60 dB of

the input power) is negligible. The resonance frequency can be tuned over a range

of ∼100 MHz by inserting a pin into the cavity, effectively reducing its volume; fine

tuning is achieved by temperature control, the coefficient being about −0.1 MHz/K.

The shunt resistance (cf. eqn 3.18) is on the order of 2 MΩ, which allows setting

the temporal focus for 30 keV electrons at about 20 cm after the cavity using well

below 1 W of microwave power. At the same time, the bandwidth is high enough for

reasonable synchronization with our laser system (see section 4.3).
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Figure 3.4: Absorption and phase of the microwave cavity. (a) Measured absorption curve of
the cavity (black line) and fitted Lorentzian profile (red line) according to eqn 3.19. The reso-
nance frequency is at 6.2368 GHz and the Q-factor is 3500, yielding a bandwidth of 1.78 MHz
FWHM. (b) The measured phase of the cavity (black line) and calculated phase (red line)
according to eqn 3.21 using the fitted parameters from (a). The phase slope at the resonance
frequency is 64.3 ◦/MHz. The purple areas mark the FWHM bandwidth in both graphs.

Fig. 3.4 shows the measured power absorption and phase together with theoret-

ical curves from eqns 3.19 and 3.21. The absorption in fig. 3.4 (a) is determined by

measuring the power at the output (probe) port of the cavity, while sweeping the

frequency of a microwave source at the input port at a constant power (black line).

The data is fitted by a Lorentzian (red line), which yields a resonance frequency, f0,

of 6.2368 GHz and a Q-factor of 3500. This corresponds to a bandwidth of 1.78 MHz

FWHM according to eqn 3.20. The phase in fig. 3.4 (b) is measured in a similar
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way (black curve); however, the signal from the microwave source is split in two

parts, one of which is fed into the cavity. The cavity’s output is then mixed with

the other part of the original signal in a well-characterized double-balanced mixer.

The voltage at the output of such a mixer is proportional to the phase difference

between the signals at its two inputs. The phase (red curve), calculated according to

eqn 3.21 using the fitted values from fig. 3.4 (a), fits well to the measurement within

the FWHM bandwidth but deviates significantly outside the bandwidth. The mixer’s

calibration fails there because of the rapidly decreasing output signal’s amplitude.

Imperfect impedance matching between the cavity and the source can also cause de-

viations from the ideal curves for both the absorption and the phase. Nevertheless,

the measured phase shows the characteristic 90◦ flip over the FWHM bandwidth

and a slope at the resonance frequency of 64.3 ◦/MHz.

3.3 Limits of temporal resolution and jitter

The general principle of phase space control with time-dependent electric fields, as

pointed out in section 3.1, promises single-electron UED with potentially attosecond

temporal resolution. However, technological constraints both in the transverse (spa-

tial) and longitudinal (temporal) domain broaden the spatiotemporal confinement

of the electron pulses and thus limit the temporal resolution of UED pump-probe

experiments. Addressing these technological challenges and minimizing their contri-

butions to temporal broadening is therefore crucial for ultimate resolutions.

Broadening in the transverse domain is related to the electron beam’s diameter

and divergence. The ideal manipulation of the electron pulse’s longitudinal phase

space, as shown in fig. 3.1, requires the longitudinal position and velocity distribu-

tions (∆z and ∆vz) to be constant over the transverse plane (i.e. along the x- and

y-directions). Radially inhomogeneous electric and magnetic fields bend the pulse

front, since the amount of momentum transferred from such fields to the electrons

varies as a function of distance from the axis. Every component for beam steering

or shaping introduces more or less pronounced transversely inhomogeneous fields,

especially focusing or defocusing components, such as the anode hole and magnetic

lenses [105]. The longitudinal electric field of the microwave cavity has a radial de-

pendence (cf. fig. 3.3 (a)). Also, only the linear part of the microwave around the

zero-crossing phase is used for compression, where the azimuthal magnetic field is

strongest and acts as a transversely defocusing lens. In general, beam divergence or

convergence leads to temporal broadening: For a constant magnitude of the velocity

across a non-collimated beam, which is true e.g. after a magnetic lens, the pulse

front is bent. In contrast, a straight pulse front requires a radially inhomogeneous
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magnitude of the velocity for a non-collimated beam, which leads to inhomogeneous

interactions with electric and magnetic fields.

Transverse inhomogeneities deteriorate the temporal resolution because the dif-

fraction pattern is collected from the entire volume of interaction between the elec-

tron beam and the sample. A correlation of the electrons at the detector to their

lateral position at the sample is impossible. Therefore, a longitudinal displacement

of the electrons across the beam profile at the instant when structural dynamics

are initiated by the pump pulse translates into a temporal delay, thus broadening

the temporal confinement of the diffraction snapshot. A common strategy to reduce

transverse inhomogeneities is to minimize emittance and to employ the smallest

possible collimated beam diameter. The influence of inhomogeneous fields can be

reduced by using large field sources (e.g. for magnetic steering of the beam) or large

mode areas (e.g. the size of the TM010 mode), minimizing the variation of the field

across the electron beam’s diameter. The temporal distortions introduced by trans-

verse inhomogeneities of magnetic lenses or the anode hole are typically on the order

of 10 fs [80, 105]. They can be in principle compensated by an “isochronic” opera-

tion of the magnetic lens (or lenses), at which a temporal focus, i.e. an instant of

minimized or zero transverse distortions, exists and coincides with the spatial focus

(see section 8.3). Transverse distortions from the fields of a compression cavity can

also be compensated in the same way, providing the ability to focus the electron

beam simultaneously in space and time [105].

Longitudinal broadening can arise from such interactions with fields which re-

sult in a nonlinear relation between the longitudinal position and velocity, i.e. a

nonlinear chirp. A nonlinearly shaped phase space at the entrance of the compres-

sion cavity gives rise to an effectively reduced compression ratio, which can be in

principle compensated at the expense of a higher velocity spread required for com-

pression compared to linearly chirped electron pulses of the same duration. This is

the case for the static acceleration after photoemission, since electrons of initially

different velocities spend a different amount of time inside the accelerating field. It

is also true for the interaction with the longitudinal electric field of a compression

cavity; however, the relative longitudinal velocity spread after the static acceleration

(on the order of 10−6) is negligible and so is the difference in interaction time with

the field inside the cavity. Furthermore, the relative velocity spread gained inside

the cavity during propagation (typically on the order of 10−4) is negligible for rea-

sonable compression ratios. Likewise, a nonlinear time dependence of the microwave

field deteriorates the compression. At 6.2 GHz, the period of the microwave field is

161 ps and the deviation from linearity for a 1 ps electron pulse entering the cavity

around the zero-crossing phase is ∼10−4, implying a timing deviation of 100 as at

the temporal focus and proportionally less for shorter incoming pulses.
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Figure 3.5: Illustration of timing jitter between the laser’s repetition rate and the microwave’s
phase. The timing of the laser pulses relative to the microwave’s zero-crossing phase defines
the timing of the electrons (within the laser pulse’s duration). The momentum transferred from
the microwave to the electrons depends on the arrival time at the microwave cavity (t0). The
jitter is thus compensated at the temporal focus (tf), which is the intended working principle of
electron pulse compression with microwave fields. However, the timing of the electron pulses
is not correlated to the laser pulses anymore but rather to the microwave’s phase. Hence,
the temporal resolution of pump-probe experiments involving the laser pulses deteriorates by
the amount of timing jitter between the laser pulses and the microwave’s phase. Note that
the temporal jitter gives rise to an additional velocity spread after the interaction with the
microwave field (cf. fig. 3.1).

The most severe contribution to longitudinal broadening is usually timing jitter

between the electron pulses and the phase of the microwave field used for compres-

sion. The effect of jitter is illustrated in fig. 3.5. The timing of the electron pulse’s

arrival at the temporal focus is entirely defined by the microwave’s phase – this is

by definition the concept of electron pulse compression: The electrons gain or lose

momentum according to their timing relative to the microwave’s zero-crossing phase

such that their propagation time to the temporal focus (at a fixed distance) is iden-

tical after the interaction with the microwave, regardless of their arrival time at the

cavity (cf. section 3.1), as long as the arrival times are distributed over the linear

part of the microwave field. If the timing of the laser pump pulses at the sample

jitters with respect to the microwave’s phase, which defines the timing of the elec-

tron probe pulses at the sample, the effective temporal resolution of the pump-probe

experiment is compromised, since a diffraction image requires integration over many

consecutive pulses. Note that after the interaction with the microwave field a distinc-

tion between the intrinsic duration of the electron pulse, defined by the laser pulse’s

duration at the instant of photoemission and subsequent dispersion (cf. sections 2.1

and 2.2), and the temporal broadening due to jitter between laser and microwave is

impossible for single-electron pulses. In a phase space plot defined relative to the mi-

crowave’s zero-crossing phase (cf. fig. 3.1), this is equivalent to electron pulses which
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are initially broadened in time with the consequence of an accordingly increased ve-

locity spread after the interaction with the microwave field. Such a broadened pulse

would still be compressed with respect to the microwave’s zero-crossing phase, as

shown in fig. 3.5, yet lose its synchronization with the laser pump pulse.

A certain amount of timing jitter between the laser pulses and the microwave’s

phase is always present because any synchronization scheme suffers from electronic

noise (see section 4.1) which translates into phase noise and therefore timing noise

of the microwave’s phase with respect to the laser’s repetition rate. At 6.2 GHz, a

synchronization with a relative period jitter of 6 · 10−6 or a phase jitter of 40 µrad

is required in order to maintain a temporal resolution of 1 fs. The next chapter

is dedicated to the challenge of reducing the phase noise and thus enhancing the

quality of synchronization between laser and microwave.

Additionally, systematic timing drifts between the laser pulses and the micro-

wave’s phase compromise the temporal long-term stability of single-electron UED

pump-probe experiments which require long acquisition times on the order of min-

utes to hours (cf. section 1.3). They usually arise from fluctuations of the environ-

mental conditions, such as mechanical vibrations, temperature drifts, or fluctuating

external electric and magnetic fields. Tiny mechanical displacements of the laser’s

optical components due to vibrations at acoustic frequencies lead to fluctuations of

the delay between the laser pulses and the microwave. Fluctuating external fields,

especially magnetic fields, e.g. from power lines or elevators, have to be considered

and properly shielded or compensated, since they can deflect electrons and thus

distort their spatial and temporal distributions. Slower temperature drift causes

not only displacements and according delays similar to mechanical vibrations, but

also changes of the cavity’s dimensions and therefore its resonance frequency, which

changes the phase of the microwave inside the cavity according to eqn 3.21. This re-

quires a temperature stabilization of our cavity (cf. section 3.2) to about 0.4 mK for

a timing drift of 1 fs. Likewise, the frequency dependence of the phase implies a max-

imum allowable frequency drift of the microwave source – due to drift of the laser’s

repetition rate which the microwave is synchronized to – of about 40 Hz for 1 fs of

timing drift. Amplitude fluctuations of the microwave field alter the amount of veloc-

ity spread imprinted onto the electrons (cf. section 3.1) and therefore, according to

eqn 2.7, the position of the temporal focus. In order to maintain the temporal focus

within a distance corresponding to 1 fs at sub-relativistic electron velocities typi-

cal for UED, the required stability of the microwave power is about 0.2 %. These

requirements, though technologically intricate, are within reach of state-of-the-art

stabilization and synchronization systems, paving the way for advancing the tem-

poral resolution of UED into the few-femtosecond domain or below.





Chapter 4
Passive optical enhancement of

laser-microwave synchronization

A precise synchronization between the timing of ultrashort laser pulses and the phase

of RF signals at microwave frequencies is required for all applications which com-

bine ultrafast optical excitation with the manipulation of charged particles. Apart

from dispersion and phase space control of electron pulses for UED, as described

in chapter 3, synchronization between optical pulses and microwaves is of highest

importance for time-resolved experiments with FEL or synchrotron sources which

employ particle accelerators at microwave frequencies [128–130]. Another emerging

field of a broad range of applications for laser-microwave synchronization is timing

distribution and metrology [131–139]. Here, ultrastable laser oscillators are used to

generate equally stable microwaves by optical frequency division [139], or the fre-

quency stability of a microwave signal from an atomic clock can be transferred to

a laser for precise spectroscopy [131]. Femtosecond mode-locked lasers can easily

bridge the large frequency gap between the RF/microwave domain (MHz to GHz

range) and the optical domain (100 THz range): Their optical spectrum is a fre-

quency comb, containing a large number of equidistant optical modes which are

spaced by multiples of the repetition rate, while beating between the optical modes,

e.g. at a photodetector, produces the fundamental repetition rate and its harmon-

ics in the RF range. Thus, optical and radiofrequencies are linked in a fundamental

way, constituting an accurate and broadband rule in the frequency domain. Synchro-

nization techniques allow locking femtosecond lasers to ultrastable continuous-wave

lasers or atomic clocks and, at the same time, extraction of microwaves at harmonics

of the repetition rate, thus providing precise timing distribution, e.g. for large-scale

FEL facilities, which require long-term timing stability between synchronized laser

and microwave sources over kilometers of distance [133–135].

37
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In almost all approaches for laser-microwave synchronization, with the notable

exception of the balanced optical mixer [136, 137], a photodetector is used at some

point to convert the optical pulse train from a mode-locked laser into an electric sig-

nal [138–142]. A fast photodiode generates pulses of photocurrent upon illumination

by a laser pulse train, which are composed of mode-locked harmonics of the laser’s

repetition rate up to the photodiode’s cutoff frequency, extending in the GHz range

for photodiodes with the largest bandwidths [143, 144]. Subsequent narrow-band fil-

tering of the pulsed signal then yields a single harmonic signal at a desired frequency,

e.g. in the microwave range, the phase of which is locked to the laser’s repetition

rate [81]. In general, this process of photoelectric conversion ensures an intrinsic syn-

chronism between the optical and electric pulse trains, similar to the photoemission

process of electron pulses from a photocathode (cf. section 2.1). However, nonlin-

earities and saturation effects of the conversion process can introduce systematic

delays between the optical and current pulses [145, 146], while electronic thermal

noise [141, 142] and optical shot noise [147] give rise to statistical phase noise and

hence timing jitter.

The inherent phase noise of the photocurrent with respect to the timing of the

impinging laser pulses poses a lower limit for the achievable timing jitter between

the laser’s repetition rate and the phase of the extracted microwave signal. It is

therefore crucial for all applications employing laser-synchronized microwaves to

minimize this initial phase noise upon photodetection of the laser pulse train by all

means. In this chapter, an optical enhancement technique is presented, which sub-

stantially reduces the thermal noise floor of a laser-synchronized microwave signal

extracted from a low-repetition-rate (∼5 MHz) femtosecond laser oscillator via pho-

todetection [142]. Furthermore, the phase noise and phase drift of such a microwave

signal are evaluated, as well as the limits they impose on the achievable duration of

compressed electron pulses and hence the temporal resolution of UED experiments

(cf. section 3.3).

4.1 The thermal noise limit

Thermal agitation of charge carriers in a material of a resistance R at a temperature

T gives rise to purely random potential fluctuations across the resistance. The asso-

ciated standard deviation (rms) of the thermal noise voltage, Uth, consists of nearly

identical components at all frequencies within the range of practical radiofrequen-

cies. For a finite bandwidth, ∆f , it is given by [148, 149]:

Uth =
√

4kBTR∆f, (4.1)
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kB being the Boltzmann constant. If the impedance of the source (e.g. a photodiode)

is matched to the load (i.e. the remaining electric circuit), only half of this voltage

contributes to the dissipated power, Pth, inside the load, and therefore:

Pth =
U2

th

4R
= kBT∆f (4.2)

At room temperature (T = 300 K), the power spectral density (PSD) of the thermal

noise, Pth/∆f = kBT , is hence about −174 dBm/Hz (4.14 · 10−21 W/Hz). According

to the Fourier theorem, noise can be described in the time domain as a superposition

of harmonic signals of different frequencies, amplitudes, and phases. Therefore, each

harmonic component of the noise spectrum modulates the desired ideal RF signal

which oscillates at its carrier frequency, producing usually symmetric sidebands in

the frequency domain at sum and difference frequencies. These modulations con-

stitute amplitude modulations if both sidebands have the same phase, or phase

modulations if they have opposite phase. The overall effect of noise is a smeared-out

PSD around the carrier. Note that the thermal noise PSD is independent of the

resistance and its nearly “white”1 (i.e. frequency-independent) nature gives rise to

a fundamental lower limit of the phase and amplitude noise of an electric signal.

A phase shift of a harmonic signal, ∆φ, is directly related to a timing delay, ∆t,

via the signal’s carrier frequency, f0: ∆φ = 2πf0∆t. Therefore, the rms timing jitter

of a signal, J , with respect to a clock, e.g. the repetition rate of a laser pulse train,

can be expressed in terms of its phase fluctuations [150]:

J =
1

2πf0

√∫
∆f

Sφ(f) df (4.3)

Here, Sφ(f) denotes the double-sideband2 spectral density of the signal’s phase vari-

ations and is integrated over the bandwidth of interest, ∆f , while f refers to the

offset frequency with respect to the carrier. Since the phase noise is usually sym-

metric around the carrier, it is more common to refer to the single-sideband phase

noise spectral density, Lφ(f) = Sφ(f)/2 [151], describing the contribution of phase

noise sidebands at positive offset frequencies only. If the phase fluctuations (in rad)

at an offset frequency f are small, this quantity is directly accessible by measuring

the signal’s PSD in the phase noise sidebands, Pφ(f), in relation to the carrier’s

1In contrast, technical noise sources, such as electronic 1/f-noise, are frequency-dependent: They
are more pronounced around the carrier frequency and vanish at high offset frequencies with respect
to the carrier.

2The term “double-sideband” indicates the contribution of both the positive and negative side-
band at a particular offset frequency around the carrier to the spectral density of a particular
quantity, although Sφ(f) is a one-sided function of a positive argument f .
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total power, Pc, as a function of the offset frequency: Lφ(f) = Pφ(f)/Pc, usually ex-

pressed in relative units of decibel below the carrier’s power per unit of bandwidth,

dBc/Hz. For practical reasons, any RF power measurement always applies to a finite

resolution bandwidth, i.e. it is integrated over this bandwidth around a particular fre-

quency. Hence, offset frequencies around the carrier below the resolution bandwidth

of the measurement instrument (representing slow drift) are attributed to the car-

rier’s power. Likewise, the PSD is simply the power measured at an offset frequency,

divided by the used resolution bandwidth. Note that the total PSD of a signal at

a certain offset frequency contains both amplitude and phase noise; however, only

phase noise contributes to timing jitter and therefore amplitude noise needs to be

suppressed for an accurate measurement if the total power is measured [152].

The rms timing jitter due to the thermal noise floor, Jth, follows from eqn 4.3,

expressed in terms of Lφ(f), using the thermal noise PSD from eqn 4.2, Pth/∆f :

Jth =
1

2πf0

√
2

∫
∆f

Lφ,th(f) df =
1

2πf0

√
kBT∆f

Pc
(4.4)

Here, Lφ,th(f) = Pth/ (2Pc∆f) = kBT/ (2Pc) represents the phase noise floor due to

thermal noise, which contributes equally to amplitude and phase noise [141, 153],

hence Pth is divided by 2. It is evident from eqn 4.4 that the timing jitter due

to thermal noise depends on the signal-to-noise ratio (SNR), i.e. the power in the

carrier over the power in the thermal noise background within the bandwidth of

interest. Thus, minimizing the timing jitter of a microwave signal extracted from a

photodiode with respect to the laser’s repetition rate requires the highest possible

RF power from the photodiode (Pc) at the highest possible microwave frequency

(f0) and a minimized bandwidth of the application (∆f). The carrier frequency and

noise bandwidth are given by the design of the microwave cavity (cf. section 3.2),

which is based on a reasonable resonance frequency for linear and efficient electron

compression and a minimum bandwidth to accommodate for the frequency fluctua-

tions of the laser’s repetition rate (see section 4.3). Therefore, in order to reduce the

contribution of the thermal noise floor to the total timing jitter below 1 fs rms at

a carrier frequency of 6.2 GHz and a bandwidth of 1 MHz, the microwave power in

the carrier, Pc, must exceed −26 dBm (2.5 µW) at room temperature. Reducing the

temperature can also improve the timing jitter, since it reduces the thermal noise

floor. However, the technical effort for this is substantial, while the benefit is rather

small. Cooling down from room temperature to liquid nitrogen temperature (77 K)

reduces the timing jitter only by a factor of 2, and reducing the temperature by

orders of magnitude is impossible due to the heat deposition from the laser, besides

the obvious technical challenges. Hence, we choose to enhance the power of the ex-
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tracted microwave signal in order to increase the SNR and consequently to reduce

the jitter related to the thermal noise floor into the attosecond range.

4.2 Optical mode filtering
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Figure 4.1: Frequency response and saturation effects of a fast photodiode. (a) Schematic
power spectral density of the photocurrent response of a photodiode illuminated by a fem-
tosecond laser pulse train of a repetition rate frep. The laser’s frequency comb is transferred to
the photocurrent, which is composed of harmonics of the repetition rate until the photodiode’s
cutoff frequency, fcutoff . The entire photocurrent spectrum can comprise thousands of modes
for a high-bandwidth photodiode (fcutoff in the GHz range) and a laser of low repetition rate
(few MHz or less). The width of the modes is exaggerated. (b) Measurement of the microwave
power (single harmonic at 6.2 GHz, blue) and pulse charge (integrated photocurrent over one
pulse, red) of a fast photodiode, illuminated by 800 nm laser pulses at ∼5 MHz repetition rate,
as a function of the average laser power. Saturation effects manifest as a decrease of microwave
response at high laser intensities, while the pulse charge (i.e. photocurrent) is still linear.

The microwave power which can be extracted from a photodiode is limited, since

the extractable photocurrent density saturates at a certain optical intensity (i.e.

power per area). The total saturation current depends on the photodiode’s design,

as does the cutoff frequency: While a large active area facilitates a high photocurrent

at a given optical intensity, it also increases the photodiode’s capacitance and hence

reduces its cutoff frequency. There is an optimum choice of the active area to extract

the highest possible microwave power, when the frequency of the desired microwave

signal is near to the photodiode’s cutoff frequency.

When illuminated by femtosecond laser pulses, the electric power generated in

the photodiode is distributed over all modes constituting the photocurrent pulses.

This is illustrated in fig. 4.1 (a). However, only one mode of the frequency comb at the

desired microwave frequency, optimally near to the photodiode’s cutoff frequency, is

needed for the application (e.g. electron pulse compression), while all other modes

are suppressed or disregarded. This single mode contains only a fraction of the total
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electric power, roughly frep/fcutoff , frep being the laser’s repetition rate and fcutoff

the photodiode’s cutoff frequency. Therefore, the effective loss of microwave power

due to this power distribution into many modes becomes more severe for lasers of

low repetition rate (few MHz or less), for which frep/fcutoff is on the order of 10−3

or less if a fast photodiode with a cutoff frequency in the GHz range is used.

Recently developed high-power photodiodes promise watts of average microwave

power if a suitable light source is used [144, 154]. However, the high peak power of

femtosecond laser pulses, rather than the average power, is the dominating cause

for saturation in this regime due to the generation of high space charge densities

inside the p-n junction of a photodiode, leading to a significantly reduced high-

frequency response [140, 155]. Fig. 4.1 (b) demonstrates the effect of saturation on

the extractable microwave power from a fast GaAs photodiode used in this work

(ET4000, EOT, Inc. with a cutoff frequency of &10 GHz), illuminated by femtosec-

ond laser pulses from a Ti:sapphire oscillator (see section 4.3) at 800 nm wavelength

and a repetition rate of 5.128 MHz. The microwave power of a single mode (blue)

at the ∼1200th harmonic of the repetition rate at about 6.2 GHz is measured with

a spectrum analyzer (PSA E4447A, Agilent Technologies, Inc.) as a function of the

average laser power on the photodiode. At the same time, the photocurrent is inte-

grated over a single pulse with an oscilloscope, yielding the generated pulse charge

(red). Saturation due to the peak power is evident above 0.85 mW of laser power,

corresponding to 0.17 nJ of optical pulse energy, since the microwave yield decreases

with increasing optical power, while the pulse charge, i.e. the integrated photocur-

rent, is still linear. The peak photocurrent (not shown) starts to saturate at about

the same laser power, thus broadening the photocurrent pulse in time.

Our approach is to redistribute the PSD in the photocurrent response of a pho-

todiode into (ideally) a single harmonic at the desired microwave frequency, while

still allowing a laser of low repetition rate to be used. This is achieved by an opti-

cal mode filter for the laser pulses: a small optical cavity which converts each laser

pulse into a rapid pulse train before impinging on the photodiode [142]. Fig. 4.2 (a)

illustrates this approach. Two curved mirrors of a reflectivity R, separated by a

distance L, form a cavity with an oscillation frequency of fmicrowave = c/(2L) for a

laser pulse that is coupled into the cavity through one of the mirrors. If the laser’s

repetition rate, frep, is much smaller than fmicrowave, only a single pulse oscillates

inside the cavity, generating a decaying pulse train at the output with a temporal

spacing of 1/fmicrowave. In the frequency domain, this constitutes a band-pass filter

with a central passband frequency of fmicrowave; thus, only laser modes at multiples

of fmicrowave are transmitted, while all others are reflected – hence the term “mode

filter”. If the cavity length, L, is chosen such that fmicrowave is the desired microwave

frequency, the power extracted from the photodiode at this frequency is enhanced
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Figure 4.2: Concept of microwave enhancement by mode filtering. (a) Mode filter in the time
domain. A passive optical cavity (reflectivity R, mirror separation L) converts incoming laser
pulses with a repetition rate frep into trains of decaying pulses, separated in time by 1/fmicrowave.
(b) Simulation of the power at fmicrowave = 6.2 GHz extracted from a photodiode after mode
filtering as a function of the mirror reflectivity with input laser pulses of constant intensity and
at frep = 5.1 MHz. The optimum is at R = 99.75 %.

because all other modes are suppressed, provided that the optical power after mode

filtering is sufficient to saturate the photodiode.

The enhancement of the microwave power by optical mode filtering depends on

the reflectivity R of the cavity mirrors. A too high reflectivity might require more

laser power than available at the input in order to couple in enough optical power to

extract the maximum microwave power from the photodiode (just below saturation).

Also, the cavity needs to be optically depleted before the next laser pulse; otherwise

it would interfere with the residual previous pulse oscillating inside the cavity and

thus distort the output pulse train or require an interferometric stabilization of the

cavity’s length. A low reflectivity, on the other hand, leads to a rapid decay of the

output pulse train, resulting in a reduced enhancement. The optimum reflectivity

can be found by considering the decaying mode-filtered pulse train. The intensity of

the N th pulse within the pulse train (starting at N = 1) is given by:

IN ∝ (1−R)2R2(N−1) (4.5)

The frequency response of the mode-filtered laser pulses on a photodiode is numeri-

cally simulated in the time domain with a laser repetition rate of frep = 5.128 MHz,

a response time of the photodiode of 60 ps FWHM, a repetition rate of the pulses

within the decaying pulse train of fmicrowave = 6.237 GHz (i.e. a mirror separation of

L = 24 mm), and an envelope given by eqn 4.5. The input laser intensity is kept con-

stant and the reflectivity, R, is varied. Fig. 4.2 (b) shows the amplitude of the PSD

of this simulated time-domain signal at fmicrowave as a function of the reflectivity.

An optimum is found at R = 99.75 %, corresponding to a finesse3 of the cavity of

3The finesse of the optical mode filter described here, which is by definition a Fabry-Pérot

interferometer or etalon, is given by F = π
√
R

1−R .
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1255, which is the best trade-off between optical throughput (low reflectivity) and

low decay rate (high reflectivity). Note that the power ratio transmitted through

the mode filter is (1 − R)/2 (the factor 1/2 accounts for the fact that a decaying

pulse train is produced at both cavity mirrors), leaving only a small fraction of the

input laser power to be used for microwave generation at the photodiode. In the

experiment, all available laser power from the oscillator (see section 4.3) needs to

be directed onto the mode filter in order to maximize the microwave output from

the photodiode (near saturation). Nearly the total power is reflected from the first

mirror (∼R) and separated from the incoming beam via a Faraday rotator. This

power, less the losses from the Faraday rotator, is available for UED experiments.

Fabry-Pérot cavities similar to the one reported here are sometimes used as

repetition rate multipliers [140, 141, 156–158] for the generation of femtosecond laser

pulse trains at very high repetition rates (in the GHz range), which are difficult

to obtain directly from laser oscillators. However, these cavities are operated at

comparably small multiplication factors (up to 20) and at already high repetition

rates of the input laser pulses (hundreds of MHz to 1 GHz) [141, 159]. At these

repetition rates, the incoming pulses interfere with the pulse oscillating inside the

cavity, thus precise active stabilization of the cavity’s length and the corresponding

fmicrowave to a harmonic of the laser’s repetition rate is required. In contrast, our

cavity is operated at a very high multiplication factor (∼1200) and is optically

depleted before the next pulse arrives, thus avoiding interference and the need for

an active stabilization (i.e. feedback or lock).

4.3 The laser system

As pointed out earlier (cf. section 1.3), the ideal laser system for single-electron UED

experiments operates at intermediate repetition rates between typical ultrafast laser

oscillators (tens to hundreds of MHz) and regenerative amplifier systems (few kHz).

For many UED samples with interesting structural dynamics upon photoexcitation,

a repetition rate in the 100 kHz to few MHz range leaves enough time for relaxation

between two consecutive shots, while allowing acquisition of a diffraction image

with single-electron pulses in a reasonable time [85]. The required optical pulse

energy is essentially determined by the pump volume and absorption cross-section

of the sample, since the generation of single-electron pulses from a photocathode

only requires some pJ of pulse energy in the UV and the photodiode for microwave

extraction saturates already at well below 1 nJ (cf. section4.2). Higher pulse energy

is required if parametric conversion of the fundamental wavelength is employed.

The laser system used in this work is a long-cavity Ti:sapphire oscillator (Fem-

tosource XL, Femtolasers Produktions GmbH), providing a high pulse energy of



4.3. The laser system 45

about 500 nJ directly from the oscillator and a repetition rate of 5.128 MHz (about

2.6 W of average power) at a central wavelength of about 800 nm [87]. The oscilla-

tor operates in the positive dispersion regime, i.e. the pulses inside the cavity are

chirped and therefore temporally broadened in order to achieve high pulse energies

at peak intensities below the damage threshold of the laser crystal. The pulses are

compressed by a prism compressor outside the cavity, allowing pre-compensation of

dispersion in the experiment. Mode-locking is achieved by a combination of Kerr-lens

mode-locking and a saturable semiconductor Bragg reflector [160]. Fig. 4.3 shows a

typical spectrum and intensity autocorrelation of the laser, yielding a duration of

the compressed optical pulses of about 50 fs FWHM (Gaussian intensity envelope).

The non-Gaussian spectrum with the steep edges produces a temporal pedestal of

the pulse over several 100 fs, >90 % of the total power being confined within ±100 fs.
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Figure 4.3: (a) Typical spectrum of the long-cavity Ti:sapphire oscillator, spanning from
770 nm to 825 nm. (b) Corresponding intensity autocorrelation, yielding a pulse duration of
50 fs FWHM. Note that the temporal width of the intensity autocorrelation is larger than the
actual pulse duration by a factor of

√
2.

The quality of laser-microwave synchronization via a fast photodiode depends,

apart from the thermal noise limit (cf. section 4.1), also on the amplitude and fre-

quency fluctuations of the laser pulses. While the absolute timing of the laser pulses

directly transfers to the photocurrent pulses extracted from the photodiode, any fil-

ter components with a frequency-dependent phase, e.g. the optical mode filter cavity

or subsequent microwave electronics, convert frequency fluctuations into phase and

therefore timing fluctuations. Likewise, amplitude noise can induce timing jitter

via amplitude-to-phase coupling in photodiodes [145, 146]. Measurements of the la-

ser’s phase noise and slow drift of the repetition rate are shown in fig. 4.4, acquired

with the same photodiode and spectrum analyzer as in fig. 4.1 (b). The phase noise

in fig. 4.4 (a) is measured at the fundamental repetition rate of 5.128 MHz for off-
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Figure 4.4: Phase noise and drift of the repetition rate of the laser system. (a) Phase noise
measured relative to the internal clock of a spectrum analyzer at the fundamental repetition
rate of 5.128 MHz. Significant phase noise contributions from the laser are visible at acoustic
frequencies (<2 kHz) due to mechanical vibrations, while the plateau (>2 kHz) is dominated by
the phase noise of the analyzer’s clock. The dashed line denotes the analyzer’s noise floor due to
its dynamic range. (b) Repetition rate drift showing deviations from the central repetition rate
at 5.128 MHz. The characteristic oscillations reflect fluctuations of the ambient temperature.

set frequencies from 10 Hz to the Nyquist frequency (2.56 MHz). The measurement

reproduces the relative phase noise between the laser’s repetition rate and the ana-

lyzer’s internal clock (frequency stability of 5 · 10−7). Hence, the general 1/f-behavior

at low offset frequencies and the characteristic plateau (>2 kHz) are dominated by

the phase noise of the analyzer’s clock, while its dynamic range limits the measure-

ment floor (dashed line) above 500 kHz. The spikes at acoustic frequencies denote

mechanical vibrations of the laser cavity’s mirrors, which can cause substantial tim-

ing jitter of a long-cavity oscillator, contributing about 10 ps rms at the fundamental

repetition rate. This value is scaled down by the harmonic number when consider-

ing harmonics of the repetition rate, e.g. at microwave frequencies (cf. eqn 4.3). The

drift of the central repetition rate, shown in fig. 4.4 (b), is mainly limited by tem-

perature stabilization, since it follows the temperature oscillations in the laboratory

(about 0.1 ◦C with a half an hour period). Nevertheless, the frequency stability is

better than 1 Hz (or 2 · 10−7) over one hour and substantially better on a minute

time scale. Amplitude fluctuations are ∼0.5 % rms under good conditions [142].

Consequentially, the bandwidth of the microwave cavity for electron pulse com-

pression used in this work (about 2 MHz, cf. section 3.2) has been chosen to accom-

modate for the phase noise and drift of the laser’s repetition rate, which are trans-

ferred to the extracted microwave signal. The drift is on the order of 1 kHz over one

hour at the ∼1200th harmonic of the repetition rate, and also nearly the entire noise

power is contained within this narrow bandwidth, according to fig. 4.4 (a). However,
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the bandwidth of the microwave cavity has been chosen to be substantially larger in

order to reduce the effect of its frequency-dependent phase. According to eqn 3.21 in

section 3.2, such a drift of the repetition rate corresponds to a timing drift of about

30 fs for the microwave cavity used in this work. This drift is expected to be much

smaller over shorter time scales.

Ultrafast laser oscillators at high repetition rates, especially monolithic Erbium-

doped fiber lasers, offer a superior stability of the repetition rate, since mechanical

vibrations are substantially reduced and less severe in terms of timing jitter com-

pared to the long-cavity laser system used in this work. Microwave extraction with

sub-femtosecond timing jitter has been demonstrated with such types of oscilla-

tors at repetition rates of 75 MHz and above [134, 136–139]. However, despite their

tremendous value for precise timing distribution and metrology, these laser sources

provide too little pulse energy for studying ultrafast dynamics in condensed mat-

ter. Amplifying the pulses from such oscillators at strongly reduced repetition rates,

in order to provide sufficient energy of the pump pulses, can introduce additional

femtosecond timing jitter at the sample. Since the microwave is extracted from the

oscillator, the temporal resolution is limited by the relative timing jitter between the

amplified pulses and the pulses directly from the oscillator. Another intricate ap-

proach involves locking a laser of low repetition rate, capable of providing sufficient

pulse energy, to a highly stable oscillator for microwave extraction [133, 134].

Deriving the microwave signal directly from the pump pulses promises the lowest

pump-probe jitter for UED applications and minimal technical effort. The long-ca-

vity laser system used in this work provides pulse energies suitable for UED directly

from the oscillator and a reasonable frequency stability without the need for ampli-

fication or active control of the repetition rate. Here, mode filtering (cf. section 4.2)

enables microwave extraction from laser pulses of low repetition rate at power levels

sufficiently above the thermal noise floor for a timing jitter in the few-femtosecond

range or below.

4.4 Experimental performance

As a first experiment, the optical enhancement of microwave yield at the 1216th har-

monic of the laser’s repetition rate is determined. The optical mode filter cavity in

the experiment consists of curved mirrors with a reflectivity of R = (99.75± 0.05) %

over the entire spectrum of the laser, a radius of curvature of 200 mm, and a separa-

tion between the mirrors of L = 24 mm. Transverse mode size matching with the in-

coming beam is approximately achieved via a 200 mm focusing lens outside the mode

filter. The total available laser power is impinging at the end mirror of the mode filter

and the reflected beam is separated from the incoming beam via a Faraday rotator.
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Figure 4.5: Microwave power enhancement by mode filtering. The PSD of the photocurrent
signal from a fast photodiode after mode filtering (upper panels) shows an enhancement at
the 1216th harmonic of the laser’s repetition rate at 6.237 GHz by 36 dB (a factor of ∼4000),
compared to photodetection at the same optical power but without mode filtering (lower
panels). Note that the individual modes are indistinguishable at the zoom level in the left
panels. The right panels show a zoom of the red shaded region and the mode spacing by the
laser’s repetition rate (5.128 MHz) is visible.

After mode filtering, about 2.5 mW of power is available for microwave extraction,

which is focused via a 20 mm focusing lens onto a fast photodiode (ET4000, EOT,

Inc.) with a diameter of the active area of 40 µm. The photocurrent signal from the

photodiode is monitored with a spectrum analyzer around the desired microwave

frequency at 6.237 GHz for optimization of all alignment parameters of the mode

filter (especially the mirror separation) and the photodiode. Fig. 4.5 shows the mi-

crowave PSD extracted from the photodiode after mode filtering in comparison to

unfiltered photodetection at the same average optical power at the photodiode. The

microwave power is clearly redistributed from an initially almost flat PSD (lower

panels) into modes around the desired microwave harmonic (upper panels), defined

by the mirror separation of the mode filter cavity. If no mode filtering is applied, the

microwave power in the 1216th harmonic of the laser’s repetition rate at 6.237 GHz

is −51 dBm. According to eqn 4.4, this power level above thermal noise amounts to

18 fs rms of timing jitter per 1 MHz of bandwidth, setting a fundamental limit for

the quality of synchronization. With the mode filter, the microwave power in this

harmonic is enhanced to −15 dBm and the timing jitter related to thermal noise

is accordingly reduced to 0.3 fs rms per 1 MHz of bandwidth, paving the way for

laser-microwave synchronization with attosecond precision at low repetition rates.

This power enhancement by 36 dB corresponds to a factor of almost 4000.
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The optical cavity acts as a passive band-pass filter for laser modes around

multiples of its passband frequency (cf. section 4.2). This filter can be characterized

by its finesse, F , in analogy to the Q-factor used for oscillating electric circuits

or RF cavities (cf. section 3.2). The finesse is defined as the ratio between the

free spectral range, i.e. the fundamental passband frequency, fmicrowave, given by

the separation between the mirrors, and the FWHM bandwidth of each transmitted

band. An optical mode filter has identical transmission characteristics at all multiples

of fmicrowave (within the wavelength range of the reflective coating), which is generally

not the case for electric circuits. The Q-factor is thus identical to the finesse for the

fundamental passband at fmicrowave (cf. eqn 3.20). According to eqn 3.21, a phase

flip of ±90◦ is expected over the passband, or ±45◦ within the FWHM bandwidth.
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Figure 4.6: Phase measurement of the optical mode filter. (a) Setup for the phase measure-
ment. The laser is split into a mode-filtered and an unfiltered part, each detected via a fast
photodiode. Each photocurrent signal passes through a band-pass filter in order to isolate a
mode at 6.237 GHz. The signal without the mode filter is used to lock a PLL-VCO to the
laser’s repetition rate. The mode-filtered signal is amplified and combined with the signal from
the PLL-VCO at a double-balanced mixer. The mode filter’s phase is measured by varying the
separation between the mirrors, L, while the output of the mixer, which is a periodic function
of the phase difference at its inputs, is controlled to zero by a calibrated phase shifter in the
mode-filtered signal’s path. (b) The enhanced PSD at the photodiode is shown as dark blue
spikes (data identical to fig. 4.5, upper panels) and the envelope is fitted with a Lorentzian
(blue line) according to eqn 3.19. The measured phase (dark red diamonds) is fitted according
to eqn 3.21 (red line), yielding a finesse of 1312. Note that the phase shows ripples around
the passband frequency and the frequency range between ±45◦ implies a smaller FWHM
bandwidth and thus a higher finesse than what is measured for the transmission (blue line).

A measurement of the mode filter’s phase is shown in fig. 4.6. The technique is

similar to the phase measurement of the microwave cavity (cf. section 3.2); however,

sweeping the input frequency (i.e. the laser’s repetition rate) is not possible here.

Instead, the passband frequency of the mode filter is varied over a short range by

changing the distance of the mirror separation, L, as shown in fig. 4.6 (a). The laser

is split into a mode-filtered and an unfiltered part, each detected via a fast photodi-

ode. The corresponding signals are shown in the upper and lower panels of fig. 4.5,
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respectively. A single mode is isolated from both photocurrent signals via narrow

band-pass filters at 6.237 GHz (FWHM bandwidth of 5 MHz). For measuring the

phase between two signals of identical frequencies, a double-balanced mixer is used,

the output of which is a periodic function of the phase difference between the two

input signals. The mixer requires similar amplitudes of the input signals at a power

level on the order of 0 dBm to 10 dBm to properly work as a linear phase detector.

Therefore, the mode-filtered signal is amplified by ∼15 dB via a low-noise amplifier

(HD26945, HD Communications Corp.) to approximately 0 dBm. The initial power

level of the unfiltered signal is much lower and even after the band-pass filter it con-

tains pronounced sidebands at multiples of the laser’s repetition rate (5.128 MHz),

which would compromise the phase measurement at the mixer. The unfiltered sig-

nal is therefore used to lock an external microwave synthesizer (SMF100A, Rohde &

Schwarz GmbH) to the laser’s repetition rate by means of a proportional-integrating

loop filter (D2-125 Laser Servo, Vescent Photonics, Inc.) controlling the synthesizer’s

frequency modulation. The loop filter detects a phase mismatch between the syn-

thesizer’s signal and the 6.237 GHz signal from the photodiode via another double-

balanced mixer and permanently adjusts the synthesizer’s frequency via a control

voltage output in order to keep the phase mismatch at zero. This system constitutes

a phase-locked loop voltage-controlled oscillator (PLL-VCO), which is widely used

in RF electronics to lock the frequency and phase of a signal generator to an arbi-

trary reference signal. The power of the microwave synthesizer is adjusted to match

the power of the amplified mode-filtered signal at the mixer. In order to measure

the phase difference between the mode-filtered and unfiltered signal, a calibrated

manual phase shifter is introduced into the mode-filtered signal path and the direct

current (DC) part of the mixer’s output signal is controlled to zero for each value L

of the separation between the mode filter’s mirrors.

The resulting phase measurement is shown in fig. 4.6 (b) as dark red diamonds,

fitted according to eqn 3.21 (red line). A Q-factor or finesse of 1312 (FWHM band-

width of 4.8 MHz) is extracted from the fit, matching well to the designed finesse of

1255. A deviation from the ideal damped cavity (cf. section 3.2) manifests as ripples

of the phase around the passband frequency and can also be observed as modula-

tions of the transmission curve in the upper left panel of fig. 4.5. For comparison,

the transmitted modes are shown in dark blue (cf. the upper panels in fig. 4.5; here

on a linear scale). The envelope is fitted with a Lorentzian (blue line) according to

eqn 3.19, yielding a finesse of only 723 (FWHM bandwidth of 8.6 MHz). The incon-

sistency with the finesse extracted from the phase measurement can be attributed to

nonlinearities of the photodetection process (e.g. saturation), non-ideal transverse

mode matching between the incoming laser beam and the mode filter, and imperfect

focusing on the photodiode. The phase measurement reveals the mode filter’s finesse



4.4. Experimental performance 51

more accurately, since it does not depend on the efficiency of photodetection. This

also implies that the microwave enhancement by mode filtering the laser pulses can

be about a factor of 2 higher than reported here (approaching 104) with optimized

photodetection. The phase slope at the central passband frequency, extracted from

the fit, is 24.1 ◦/MHz, corresponding to a timing deviation of 10.7 fs/kHz or 2.8 fs/nm

in terms of the drift of the separation, L, between the mode filter’s mirrors at the

chosen microwave frequency.

As pointed out before, sources for systematic phase drift of the mode-filtered

signal, such as mechanical vibrations of the mode filter’s mirrors, drift of the laser’s

repetition rate, and amplitude-to-phase coupling in the photodiode, contribute to-

gether with purely statistical noise (thermal noise and shot noise) to the total phase

noise and drift of the microwave signal. Here, we demonstrate the improvement of the

statistical noise floor, governed by thermal noise, by mode filtering. Fig. 4.7 shows a

measurement of the statistical phase noise and the according timing jitter of the en-

hanced microwave signal at 6.237 GHz. To this end, the mode-filtered laser beam is

split in two parts, impinging on two identical photodiodes (see fig. 4.7 (a)). System-

atic fluctuations of the mode filter cavity, the laser’s repetition rate, or the amplitude

are correlated and thus cause identical phase fluctuations of the signals from both

photodiodes. In contrast, thermal noise, being purely statistical, causes uncorrelated

phase fluctuations at the photodiodes. As before, harmonics at 6.237 GHz are iso-

lated via narrow band-pass filters; then both signals are amplified by ∼15 dB and

combined at a double-balanced mixer. The mixer’s output is low-pass filtered be-

low 2.5 MHz and amplified via a low-noise voltage amplifier (HVA-10M-60B, Femto

Messtechnik GmbH) by 60 dB, corresponding to a power amplification of 30 dB.

Since only small phase fluctuations are measured, the mixer’s output voltage is pro-

portional to the phase difference. The slope of the mixer’s voltage is thus calibrated

by a manual phase shifter within a short range around zero phase difference and

used to convert the measured fluctuations of the voltage amplitude into phase noise.

A spectrum analyzer records the PSD of the mixer’s amplified output signal within

the range of 1 Hz to 1 MHz, while an analog-to-digital converter (ADC) samples the

signal in real-time with a sampling rate of 5 kHz.

Fig. 4.7 (b) shows the single-sideband phase noise PSD measured with the spec-

trum analyzer (light blue line) and the phase noise PSD calculated from the sampled

ADC signal by Fourier transformation (dark blue line), together covering slow drift

as well as high-frequency components within a frequency range of 2 mHz (8.3 min)

to 1 MHz (1 µs). The integrated jitter within this frequency range is ∼3.5 fs rms

(green line), which is an upper limit, essentially inflicted by the instrument’s noise

floor, as well as the reduced optical power on the two photodiodes due to the split

mode-filtered laser beam. The calculated thermal noise PSD of the unfiltered signal



52 Chapter 4. Laser-microwave synchronization

Laser

15 dB

(a)
P

h
a

s
e

 n
o

ise
 (d

B
c/H

z)

Offset frequency (Hz)

Thermal noise limit
(unfiltered)

 I
n

te
g

ra
te

d
 j
it
te

r 
(f

s
)

15 dB

30 dB

Analyzer /
ADC

(b)

10-3 10-2 10-1 100 101 102 103 104 105 106

-160

-140

-120

-100

-80

1

2

3

4

5

Figure 4.7: Measurement of the statistical (uncorrelated) single-sideband phase noise and
timing jitter of the enhanced microwave signal. (a) Two identical photodiodes are illuminated
by the same mode-filtered laser beam via a beam splitter. The two signals are band-pass fil-
tered around 6.237 GHz, amplified, and combined at a double-balanced mixer. The mixer’s
output signal, proportional to the phase difference between the input signals, is low-pass fil-
tered, amplified, and characterized with a spectrum analyzer (high frequencies) and an ADC
(low frequencies and drift). (b) Phase noise PSD measured with the spectrum analyzer (light
blue line) and calculated from the time-domain signal sampled by the ADC (dark blue line).
This measurement is essentially limited by the instrument’s noise floor. However, at offset
frequencies above ∼50 Hz the measured phase noise PSD of the enhanced signal is already
below the theoretical thermal noise limit without mode filtering (red dotted line). The inte-
grated timing jitter (green line) amounts to about 3.5 fs rms from 2 mHz to 1 MHz, while the
unfiltered thermal noise floor amounts to 18 fs rms of jitter within this range.

is at −123 dBc/Hz (red dotted line), amounting to 18 fs rms of jitter within this

range. This clearly demonstrates the improvement of the statistical noise floor by

mode filtering. However, systematic drift and noise sources which are not measured

by this approach can deteriorate the synchronization between the laser’s repetition

rate and the extracted microwave signal.

4.5 Quality of synchronization

The quality of laser-microwave synchronization dictates the achievable temporal

resolution in UED experiments employing compression of electron pulses with mi-

crowave fields (cf. section 3.3). Enhancement of the microwave power extracted from
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a photodiode, as presented in this chapter, substantially increases the microwave’s

SNR with respect to thermal noise, potentially offering microwave synchronization

to laser pulses of low repetition rate with attosecond timing jitter. Other sources for

phase noise and drift, and hence timing jitter, are not compensated by this passive

synchronization scheme and need to be carefully considered, as they pose a technical

limit for the temporal resolution.

The passively enhanced microwave signal suffers mainly from three systematic

contributions to timing drift or jitter: First, mechanical vibrations of the mode filter’s

mirrors cause phase fluctuations (cf. fig. 4.6 (b)). Second, drift of the laser’s repetition

rate translates into phase drift due to the mode filter’s frequency-dependent phase.

Third, fluctuations of the laser’s power give rise to phase noise due to amplitude-to-

phase coupling in the photodiode. As shown in the previous section, the separation

between the mode filter’s mirrors needs to be stabilized with nanometer precision or

better for few-femtosecond timing jitter or below. Long-term thermal drift changes

the length of the mode filter by an amount on the order of 20 nm–30 nm, correspond-

ing to a delay drift of 60 fs–90 fs on a time scale of about one hour. The mechanical

stability can be improved by a monolithic design. In addition, thermal and mechan-

ical isolation as well as appropriate materials can provide a length stability on the

picometer scale [161], which would facilitate sub-femtosecond timing stability. Drift

of the laser’s repetition rate (cf. section 4.3) is less severe: Harmonics of the repe-

tition rate at microwave frequencies drift about 1 kHz on an hour scale, leading to

about 11 fs of timing drift due to the mode filter’s frequency-dependent phase. This

is less than the timing drift caused by the microwave cavity’s phase (cf. section 3.2),

since the bandwidth of the microwave cavity is narrower. The frequency-dependent

phase of all involved microwave electronics, such as filters, amplifiers, and even ca-

bles [162], likewise contributes to timing drift, although to a substantially smaller

degree due to their (usually) much higher bandwidth compared to the mode filter

and microwave cavity.

Amplitude-to-phase coupling in the photodiode translates fluctuations of the la-

ser’s power into phase noise [145]. The amplitude-to-phase coefficient depends mainly

on the extracted photocurrent (i.e. optical power) and the type of the photodiode.

It has been found to vanish at certain values of the photocurrent, depending on

the carrier frequency and the photodiode type [145, 146]. At a carrier frequency of

6.237 GHz and 2 mW of optical power incident on the photodiode, this coefficient is

0.07 rad/(∆P/P0) [142], where ∆P/P0 denotes the relative change in optical power.

For the laser system used in this work, ∆P/P0 ≈ 0.5 % rms under good conditions

(cf. section 4.3), yielding about 10 fs rms of timing jitter. This contribution can be

significantly reduced by carefully choosing an appropriate photodiode and optical

power with a minimized or vanishing amplitude-to-phase coefficient.
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Quantum noise of the photon number contained in the laser pulses, also referred

to as shot noise, poses another fundamental limit on the quality of laser-microwave

synchronization. This noise source inherently smears out the timing of laser pulses

with respect to an ideal timing reference because it randomly distorts the pulse’s

temporal intensity envelope and thus its center of mass. In contrast, thermal noise

is imprinted onto the electric signal after photodetection. However, for femtosec-

ond laser pulses and the power levels of the extracted microwave demonstrated in

section 4.4, the shot noise PSD lies several orders of magnitude below the thermal

noise floor [147]. Shot noise competes with thermal noise only at extreme levels of

microwave power extracted from the photodiode, on the order of 1 W [147]. At that

power level, the thermal noise floor corresponds to a timing jitter of only 1.6 as rms

per 1 MHz of bandwidth at a carrier frequency of 6.237 GHz (cf. eqn 4.4).

For applications that require a high level of microwave power, such as compres-

sion of electron pulses with microwave fields [70, 81], further amplification of the

signal from the photodiode is required. The SNR of the microwave is reduced after

amplification because additional noise from the amplifier, referred to as the noise

figure, is added. Typically, the noise figure depends on the gain and therefore a high

power level of the signal from the photodiode is beneficial in order to maintain the

SNR, since less amplification is required afterwards. For example, a noise figure of

6 dB (typical for a gain between 40 dB and 50 dB at ∼6 GHz) increases the timing

jitter related to thermal noise due to the reduced SNR by a factor of 2, according

to eqn 4.4.

The passively enhanced microwave extraction from a femtosecond laser pulse

train presented here constitutes a simple but effective microwave source for electron

pulse compression at low repetition rates suitable for UED. A high-quality synchro-

nization with a timing drift and jitter of some tens of femtoseconds over short times

is readily available without any active compensation. The achievable stability of this

microwave source is currently limited by thermal drift, mechanical vibrations, and

amplitude fluctuations. Advancing the synchronization into the few-femtosecond or

attosecond range with the passive approach therefore requires extensive thermal and

mechanical stabilization of the environment as well as a specially engineered photo-

diode, which provides high microwave power and a minimized amplitude-to-phase

coefficient.

The improved thermal noise floor of the microwave source presented here paves

the way for attosecond synchronization. Active compensation of the remaining drift

and jitter via optical interferometric laser-microwave phase detection in combination

with a feedback loop promises sub-femtosecond stability with regard to both timing

drift and jitter [136, 137].



Chapter 5
Characterization of jitter by microwave

streaking

The temporal resolution of UED experiments employing electron pulse compression

with microwave fields is limited by the quality of synchronization between the mi-

crowave’s phase and the timing of the laser pump pulses (cf. sections 3.3 and 4.5).

Noise and drift of the microwave signal have been estimated in the previous chapter;

however, only a direct characterization of the timing jitter between the microwave’s

phase and the laser’s repetition rate reveals the system’s actual performance. Laser-

microwave phase detection has been demonstrated before with sub-femtosecond pre-

cision [136, 137]. These approaches, however, require a separate feed of the microwave

signal and hence fail to measure the microwave’s phase inside the cavity for electron

pulse compression. Thus, possible cavity-related phase drift, e.g. due to temperature

drift or fluctuations of the laser’s repetition rate, is not detected. Only recently a

laser-microwave phase detection scheme has been demonstrated which directly em-

ploys the electric field of the TM010 mode inside a microwave cavity suitable for

electron pulse compression [163]. This scheme utilizes the Pockels effect of a crystal

placed inside a microwave cavity, which therefore cannot be used for UED at the

same time but rather requires using an additional identical cavity under the same

conditions for electron pulse compression.

In contrast, our approach exploits the energy modulation of electron pulses pass-

ing through the microwave cavity [81]. Electrons arriving at different times at the

cavity with respect to the microwave’s phase gain or lose kinetic energy as a func-

tion of the arrival time (cf. section 3.3). The energy transfer is nearly linear with

the arrival time around the microwave’s zero crossing, which is the intended purpose

of the cavity for electron pulse compression (cf. section 3.1). As a consequence, the

arrival time is mapped into the kinetic energy of the electrons leaving the cavity,

55
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which constitutes a streak camera, as introduced in section 1.2, yet in the energy

domain1. The temporal distribution of the arrival times with respect to the micro-

wave’s phase can then be measured via an energy analyzer. This yields a convolution

between the laser-microwave jitter and the statistical temporal distribution of the

electron pulses with respect to the laser pulses, i.e. the effective duration of the elec-

tron pulses, as defined in section 2.1. Both contributions are indistinguishable and

therefore the electron pulse’s duration has to be known or estimated independently

in order to obtain the laser-microwave jitter. Note that this microwave streaking

technique yields the duration of the electron pulses at the entrance of the cavity if

jitter is negligible.

In this chapter, the concept of laser-microwave jitter measurement by microwave

streaking is presented, employing a Wien filter as an energy analyzer. The jitter

of the synchronized microwave source presented in chapter 4 is characterized with

this method and compared with the jitter from two different PLL-VCO sources,

demonstrating the ability of this approach for relative assessment of the quality

of different microwave sources. The absolute value of the measured timing jitter

is limited by the energy resolution and the uncertainties of the theoretical model

predicting the duration of the electron pulses at the entrance of the microwave cavity.

5.1 The Wien filter energy analyzer

The experimental arrangement of the microwave streak camera using ultrashort

electron pulses is depicted in fig. 5.1. It resembles a simplified version of a UED

experiment employing electron pulse compression with a microwave cavity (cf. fig. 1.3

in section 1.4), yet with an energy analyzer instead of a laser-pumped diffraction

sample. Single-electron pulses are generated by converting about 0.1 W of 800 nm

laser pulses from a Ti:sapphire laser system (cf. section 4.3) at a repetition rate of

5.128 MHz into UV by third harmonic generation. To this end, a frequency tripler

(TPL Tripler, Minioptic Technologies, Inc.) is used for collinear second harmonic

generation and subsequent sum-frequency generation between the second harmonic

and the fundamental light with two thin β-barium-borate crystals and a delay plate

which ensures temporal overlap at the sum-frequency generation. The resulting UV

pulses at 267 nm wavelength are attenuated to ∼20 pJ of pulse energy and focused

onto a 40 nm thin gold photocathode on a quartz substrate, biased at −25 kV. On

1The classical streak camera, as shown in fig. 1.1, operates in the transverse domain, i.e. mapping
time into a deflection angle or transverse position on the detector, while the TM010 mode inside
a microwave cavity operates in the longitudinal domain, mapping time into energy. In contrast,
the TM110 mode, exhibiting a transverse electric field, is sometimes used as a transverse streak
camera, similar to the concept shown in fig. 1.1 [70, 124].
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Figure 5.1: Concept of the microwave streak camera using a Wien filter as an energy analyzer.
Pulses from a Ti:sapphire laser at a central wavelength of 800 nm are split in two parts. One
part is used to generate a microwave signal which is synchronized to the laser’s repetition
rate via a photodiode (cf. section 5.2). The other part is converted into 267 nm UV pulses by
third harmonic generation (THG) and focused onto a gold photocathode. The optical power
is attenuated, thus generating not more than one electron per pulse. A static potential of
−25 kV is applied to the photocathode, which accelerates the electrons towards the grounded
microwave cavity being fed by the synchronized microwave signal. The shading of the depicted
electron pulses indicates reversed dispersion and thus compression; i.e. the microwave cavity
operates in the same way as in UED experiments (cf. fig. 1.3). A Wien filter, consisting of
perpendicularly arranged static electric and magnetic fields (EW and BW, respectively), deflects
electrons according to their kinetic energy around the Wien filter’s pass energy, which is set to
25 keV by choosing appropriate field strengths. The electrons are then detected on a phosphor
screen coupled to a CMOS camera chip and the energy spectrum is extracted from the image
after calibration. A pinhole can be inserted before the Wien filter in order to increase the
resolution. The inset illustrates the principle of a streak camera in the energy domain, i.e.
using the longitudinal microwave field to map the temporal profile of electron pulses into
energy.

average, about 0.1 electrons per pulse are generated, ensuring the single-electron

regime; i.e. pulses containing more than one electron have a negligible probability

(<1 %) according to Poisson statistics. The electrons are accelerated towards the

grounded casing of a microwave cavity (cf. section 3.2), which serves as an anode

here. The optically enhanced and amplified microwave signal from a photodiode

(cf. chapter 4) as well as two PLL-VCO systems (see section 5.2) are employed

as microwave sources for driving the cavity and are synchronized to the laser’s

repetition rate. For each source a photodiode provides an electronic reference of

the laser’s repetition rate. The UV pulses can be mechanically delayed in order to

adjust the relative timing between the electron pulses (generated by the UV) and

the microwave’s phase inside the cavity.
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After passing through the microwave cavity, the electrons enter a Wien filter,

which is an arrangement of homogeneous electric and magnetic fields perpendicular

to the electron’s trajectory and to each other, used as an energy analyzer. Finally,

the electron beam is detected on a phosphor screen coupled to a camera chip by fiber

optics (TemCam F416, 4096×4096 pixels, 16 bit dynamic range, CMOS technology,

TVIPS GmbH).

Wien filters2 are used as energy analyzers in electron microscopes [165] or as

mass spectrometers for ions [166]. This element allows high energy resolution, while

maintaining a straight beam line design, in contrast to e.g. bending magnets. The

perpendicular electric and magnetic fields are adjusted to compensate each other’s

forces for the electron’s central kinetic energy, here 25 keV, which is referred to as

pass energy. Thus, electrons with this energy maintain their trajectory after passing

through the Wien filter, while electrons at different energies are deflected accord-

ing to the resulting Lorentz force. This energy-dependent angular dispersion maps

the kinetic energy into a transverse position on the screen, from which the energy

spectrum can be retrieved. While the pass energy is set via the ratio of the magni-

tudes of the electric and magnetic fields, their absolute values define the amount of

angular dispersion and hence the energy resolution. For opposite directions of the

forces resulting from the electric and magnetic fields inside a Wien filter, EW and

BW , respectively, and for small magnitudes of the magnetic field, the acceleration

of an electron inside the Wien filter is given by [166]:

dvt
dt

=
e

me

(EW − vlBW ) , (5.1)

vt being the electron’s transverse velocity, i.e. perpendicular to its initial direction of

propagation, vl its longitudinal velocity, and e and me its charge and mass, respec-

tively. The final transverse velocity of a deflected electron at the exit of the Wien

filter is then obtained by integrating eqn 5.1 over the drift time spent inside the

Wien filter, given by td = d/vl, d being the Wien filter’s length:

vt =
e

me

(EW − vlBW ) td =
de

mevl
(EW − vlBW ) (5.2)

It is evident from eqn 5.2 that electrons with vl = EW/BW gain zero transverse ve-

locity and thus are not deflected. This condition describes the pass velocity or equiv-

alently the pass energy, since the kinetic energy, Ekin, is given by vl =
√

2Ekin/me

2Historically, W. Wien has used parallel electric and magnetic fields simultaneously to identify
different types of anode rays (i.e. ion beams) [164]. The perpendicular arrangement has been
adapted later for energy and mass spectrometry.
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in the non-relativistic case. Thus, the energy-dependent deflection angle α is given

by:

tanα =
vt
vl

=
de

2Ekin

(
EW −

√
2Ekin

me

BW

)
(5.3)

The displacement on the screen with respect to the position of zero deflection (i.e.

the pass energy) is simply given by ∆s = L tanα, L being the on-axis distance

between the exit of the Wien filter and the screen.

In the experiment, two parallel electrodes provide a homogeneous electric field

of about 1 kV/mm and a solenoid attached to an iron yoke of high permeability

with a gap perpendicular to the electrodes provides a corresponding magnetic field

of about 11 mT, setting the pass energy to 25 keV. The field region is shielded by

µ-metal3 in order to minimize stray fields and a 50 µm pinhole is placed before the

Wien filter, which increases the resolution at the expense of a reduced signal.
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Figure 5.2: Calibration measurement of the Wien filter analyzer. (a) Central position of the
electron beam on the screen (the pixel size is 15.6 µm) as a function of the kinetic energy. X
(blue diamonds) and Y (red diamonds) denote orthogonal directions, X being chosen along the
Wien filter’s deflection plane. The solid blue line is a fit according to eqn 5.3. (b) Corresponding
FWHM spot widths ΔX (blue diamonds) and ΔY (red diamonds). The solid lines are linear
fits. An increasing spot width at lower kinetic energies is a consequence of the electron beam’s
intrinsic transverse velocity spread (i.e. divergence). (c) A typical camera image of an electron
spot after the Wien filter. A 50 µm pinhole is used in front of the Wien filter in order to reduce
the spot size, thus increasing the resolution. The geometric quantities (position and width)
are determined by fitting a Gaussian surface to the spot.

Since eqn 5.3 describes the ideal energy mapping for well-known field strengths

and dimensions, an experimental energy calibration is required for precise energy

3µ-metal is a “soft” magnetic nickel-iron alloy (also containing other metals in small quantities)
with a very high relative permeability of up to 105, typically used for shielding low-frequency
magnetic fields.
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measurements. To this end, the acceleration voltage is scanned with the microwave

cavity being switched off and the electron beam’s position on the screen is recorded.

Fig. 5.2 shows a typical calibration measurement of the Wien filter analyzer. The

spot on the camera, as shown in fig. 5.2 (c), is fitted with a Gaussian surface in order

to determine its central position and width. Fig. 5.2 (a) depicts the spot position

on the screen (15.6 µm pixel size) along orthogonal directions, X and Y , X being

chosen as a direction parallel to the Wien filter’s deflection plane. Note that there is

no notable deflection along the orthogonal direction Y (red diamonds). The position

on the screen is fitted as a function of the kinetic energy using eqn 5.3 (blue line).

This provides a calibration which can then be used to convert an arbitrary position

on the screen into energy. Although a 50 µm pinhole is used in front of the Wien

filter, the spot size on the camera is about 50 pixels or ∼0.8 mm FWHM, as shown

in fig. 5.2 (b). This large divergence is caused by inhomogeneous stray fields around

the Wien filter, despite the shielding, which act as a defocusing lens. This limits the

usable field strengths (currently below the limit of vacuum breakdown) and thus the

achievable resolution. An increase of the spot diameter can be seen at lower kinetic

energies (i.e. longer total propagation times) due to the electron beam’s intrinsic

transverse velocity spread. This can be linearly approximated within the scanned

energy range (solid lines).

The spot position and width can be determined with sub-pixel accuracy, which

is more than one order of magnitude smaller than the typical spot size shown in

fig. 5.2 (b). As a consequence, the intrinsic spot width caused by the Wien filter’s

lensing effect contributes substantially to the spot width measured after microwave

streaking. According to the calibration (cf. fig. 5.2 (a)), the intrinsic spot width of

about 50 pixels corresponds to a calculated energy spread of ∼200 eV. Since the ac-

tual energy bandwidth imprinted by the microwave onto the electrons is considerably

smaller for most of the measurements in this work (see section 5.3), the broadening

of the spot on the screen is minute compared to its intrinsic width without the mi-

crowave. Therefore, the energy-dependent intrinsic spot width shown in fig. 5.2 (b)

needs to be removed from the measured width after streaking by deconvolution. The

uncertainty of retrieving a small change in width from a large spot size leads to a

noise floor of 15 eV–20 eV FWHM or ∼10−3 of the central energy [81], which poses

the resolution limit for small bandwidths. At larger bandwidths, the broadening of

the spot exceeds the uncertainty of the intrinsic beam size; thus, relative changes are

better resolved there. Note that the energy bandwidth of photoemission (<1 eV) is

negligible here, contributing less than one pixel to the spot width. This is supported

by the round spot shown in fig. 5.2 (c), i.e. having nearly identical widths, ∆X and

∆Y , along the deflected and undeflected direction, respectively.
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5.2 Synchronized microwave sources

PLL-VCOs are widely used in high-frequency electronics in order to generate a

RF signal which is synchronized to a (typically much weaker) reference signal. To

this end, a voltage-controlled oscillator generates a signal at a frequency close to

the reference signal’s frequency. The signal from the oscillator is then mixed with

the reference signal in a double-balanced mixer at similar power levels. The mixer’s

output signal is periodic with the phase difference between the input signals, carrying

a beating at the difference frequency between the input signals or a DC voltage if

both input signals have the same frequency but a different phase. A loop filter,

basically a proportional-integrating circuit, controls the frequency of the oscillator

via a low-frequency control voltage (up to several MHz of bandwidth) such that

the mixer’s output signal is maintained at zero. Effectively, relative timing drift

and jitter between the two signals are compensated by the loop filter within its

bandwidth. The precision of the loop filter is limited by the accuracy with which

the phase difference between the two signals is detected.

In contrast, the passively synchronized and optically enhanced microwave signal

extracted from the photodiode (cf. chapter 4) operates without any phase detection

or feedback loop. However, the microwave signal contains harmonic components

of the laser’s repetition rate even after filtering and the available power is limited

by saturation of the photodiode. The microwave streak camera introduced in the

previous section is capable of assessing the performance of this source in comparison

to state-of-the-art PLL-VCO sources.

Fig. 5.3 depicts the three microwave sources used in this work. The source based

on direct microwave extraction from a photodiode is shown in fig. 5.3 (a). The optical

mode filter enhances the 1209th harmonic of the laser’s repetition rate at 6.2 GHz4,

providing about −15 dBm of microwave power. This is insufficient for electron pulse

compression or microwave streaking and therefore the signal is band-pass filtered

around 6.2 GHz and amplified in two stages to a power level of up to 33 dBm (2 W).

After passing through the two narrow band-pass filters and the microwave cavity

(constituting another band-pass filter), the sidebands at ±5.128 MHz are suppressed

by about 30 dB with respect to the desired mode at 6.2 GHz. Hence, their contribu-

tion to the signal is negligible. A saturating amplifier is used in the first amplification

stage in order to minimize amplitude fluctuations.

The microwave source shown in fig. 5.3 (b) is referred to as the 1209th-harmonic-

PLL-VCO and has been manufactured by the Budker Institute of Nuclear Physics

4The optical mode filter is slightly detuned here compared to section 4.4 in order to match the
frequency of the 1209th-harmonic-PLL-VCO system operating at 6.2 GHz, which has been in use
prior to the 76th-harmonic-PLL-VCO system operating at 6.237 GHz.
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Figure 5.3: Microwave sources used in this work. (a) Optically enhanced direct microwave
extraction from a photodiode at the 1209th harmonic of the laser’s repetition rate (6.2 GHz).
The signal is band-pass filtered and amplified in two stages to a power level of about 2 W.
(b) PLL-VCO system at the 1209th harmonic of the laser’s repetition rate (6.2 GHz). The
signals from a photodiode and from the output port of the microwave cavity are band-pass
filtered around 6.2 GHz, amplified, and mixed with a heterodyne signal from a synthesizer
at 6.1 GHz, converting both signals down to ∼100 MHz. The 100 MHz signals are amplified
and mixed in a double-balanced mixer, providing the phase error signal for a loop filter which
controls the frequency of a voltage-controlled oscillator around 6.2 GHz. The oscillator feeds
the microwave cavity with about 5 W of power. (c) PLL-VCO system at the 76th harmonic of
the laser’s repetition rate (simplified diagram). The signal from a voltage-controlled oscillator
at 3.119 GHz is split in two parts. One part is frequency-divided by 8 and then mixed with the
signal from a photodiode, which is band-pass filtered around 390 MHz. This provides the phase
error for a loop filter controlling the oscillator’s frequency. The other part of the oscillator’s
output is frequency-doubled to 6.237 GHz, amplified to about 5 W, and fed into the microwave
cavity. A detailed description of this system can be found in [167].

(Novosibirsk, Russia). This system is designed to lock a microwave synthesizer at

6.2 GHz to the 1209th harmonic of the laser’s repetition rate obtained from a photodi-

ode without mode filtering. To this end, the signals from the microwave cavity’s out-

put port (cf. section 3.2) and the photodiode are band-pass filtered around 6.2 GHz,

amplified to a power level of about −30 dBm, and mixed with a signal at 6.1 GHz

from an auxiliary synthesizer. The resulting intermediate signals at ∼100 MHz pre-

serve the same absolute frequency and phase difference as before, since they are
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both mixed with an identical heterodyne signal at 6.1 GHz. The subsequent high

amplification by 60 dB is more convenient at 100 MHz than at microwave frequen-

cies. Finally, both amplified signals are mixed in a double-balanced mixer which

provides the phase error signal for a loop filter. The high amplification is required

in order to achieve appropriate power levels at the double-balanced mixer, which

operates as a phase detector, since the power of the 6.2 GHz signal from the pho-

todiode is between −60 dBm and −50 dBm without mode filtering. The loop filter

controls the frequency of a voltage-controlled oscillator around 6.2 GHz, which feeds

the microwave cavity and provides about 37 dBm (5 W) of power. Note that this

feedback loop scheme is capable of measuring the microwave’s phase inside the cav-

ity via the cavity’s output port. Both the reference signal from the photodiode

as well as the feedback signal from the microwave cavity are processed inside the

same temperature-stabilized casing, using identical RF components, and at identical

power levels in order to minimize drifts. The oscillator’s amplitude is also actively

stabilized via a power sensor at the microwave cavity.

The third microwave source is shown in fig. 5.3 (c) and is referred to as the

76th-harmonic-PLL-VCO. It is a customized commercial system (PLL Synchronizer,

AccTec B.V.), originally designed to operate around 3 GHz [126, 167]. Here, the feed-

back signal is taken directly from a voltage-controlled oscillator operating at around

3.119 GHz, frequency-divided by 8, and mixed in a double-balanced mixer with the

signal from a photodiode, which is band-pass filtered around the 76th harmonic of

the laser’s repetition rate (390 MHz). This provides the phase error signal for a loop

filter which controls the oscillator’s frequency. A photodiode of lower bandwidth

and higher saturation threshold can be used at this frequency, offering significantly

more RF power than the fast photodiode used for the other two approaches. Hence,

less amplification is required for appropriate power levels at the double-balanced

mixer (see [167] for details). The output of the oscillator is frequency-doubled to

6.237 GHz, providing about −3 dBm of power, which is further amplified by 40 dB

to a power level of about 37 dBm (5 W). Due to the internal feedback, this PLL-VCO

is not capable of compensating drift of the microwave cavity’s phase and therefore

precise environmental stabilization of the cavity is required. Using an intermediate

frequency for the phase-locked loop is favorable in terms of electronic noise, since the

thermal noise floor of the photodetection (cf. section 4.1) is reduced and less ampli-

fication is needed. However, the phase detection operates only at 1/16 of the output

frequency here and therefore the required accuracy is 16 times higher than for phase

detection at the final microwave frequency. Note that the output frequency of the

76th-harmonic-PLL-VCO is thus restricted to multiples of 5.128 MHz ·16 ≈ 82 MHz,

5.128 MHz being the laser’s repetition rate. Consequently, 6.237 GHz, based on the

76th harmonic of the laser’s repetition rate, is closest to the frequency of the other
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two systems (6.2 GHz), for which the 1209th-harmonic-PLL-VCO has been initially

designed. The resonance frequency of the microwave cavity can be adjusted between

these two values via a tuning pin (cf. section 3.2).

The PLL-VCO systems presented here are locked to the repetition rate of a free

running laser oscillator. Alternatively, a phase detector and a loop filter can also be

used to lock the laser’s repetition rate to a stable microwave source by modulating

the length of the laser’s cavity. We employ the former approach, since mechanical

modulation of the laser’s cavity length by means of a high-frequency piezo actu-

ator is technically more intricate and the control bandwidth is smaller compared

to a voltage-controlled microwave oscillator [167]. Moreover, the range of frequency

tuning is very limited for a piezo actuator and might require an additional (slow)

translation stage in order to implement a large tuning range, e.g. for compensating

temperature drift. Although a microwave reference can be more stable against slow

temperature drift, a femtosecond mode-locked laser oscillator has usually a superior

high-frequency phase noise performance (cf. section 4.3 and fig. 4.4).

5.3 Microwave streaking results

Fig. 5.4 shows some typical microwave streaking images obtained with the 1209th-

harmonic-PLL-VCO and electron pulses at 25 keV after 10 s of exposure time for

each image. The line profiles in the right panels show the raw data converted to

energy using eqn 5.3 and the calibration from fig. 5.2 (a) but without deconvolution

of the intrinsic beam size from fig. 5.2 (b). Hence, the widths of the line profiles

do not represent the actual energy spreads but rather are intended to supplement

the images in the left panels. Fig. 5.4 (a) depicts the raw image and retrieved energy

spectrum with a free running microwave oscillator, i.e. without synchronization. The

microwave’s phase inside the cavity is random for each electron pulse and therefore

the energy spectrum contains all energy values accessible by the interaction with

the microwave. The shape resembles the cycle-averaged probability distribution (or

histogram) of the magnitude of the sinusoidal microwave field inside the cavity. The

two peaks represent the most frequent microwave phases of highest energy gain or

loss, i.e. the extrema of the energy modulation curve, and the maximum energy

modulation can be inferred from their separation (several keV). The asymmetry of

the intensity is caused by the energy-dependent sensitivity of the phosphor screen

which is more sensitive at higher energies.

Fig. 5.4 (b)–(d) show streaking images with activated laser-microwave synchro-

nization of the PLL-VCO. When the microwave’s phase is set at the compressing

zero crossing, as shown in fig. 5.4 (b), the central energy is unchanged. However, an

increased spot size is evident along the the Wien filter’s deflection plane compared
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Figure 5.4: Raw images and converted energy spectra for different conditions of the microwave
field, obtained with the 1209th-harmonic-PLL-VCO and electron pulses at 25 keV. (a) Without
synchronization, each electron pulse interacts with the microwave at a random phase. Thus,
an energy spectrum is produced which covers all energies accessible by the interaction with
the microwave. The shape resembles the probability distribution, i.e. the histogram, of the
sinusoidal microwave field inside the cavity. (b) The PLL-VCO is synchronized to the laser’s
repetition rate and the microwave’s phase is set to the compressing zero crossing. The central
energy is unchanged; however, energy broadening is visible, indicating a temporal spread or
timing jitter of the electron pulses at the microwave cavity. The microwave’s phase is shifted
by ±90◦ in (c) and (d), respectively, showing a shift of the central energy but no apparent
energy broadening. Note that the right panels show integrated line profiles of the raw data,
converted to energy using eqn 5.3. No deconvolution of the intrinsic beam size is applied here;
hence the widths of the line profiles do not represent the actual energy spreads.

to the perpendicular direction, indicating a significant energy spread and therefore

temporal spread or jitter of the electrons with respect to the microwave’s phase as

they enter the cavity. The images in fig. 5.4 (c) and (d) are obtained at phase shifts

of ±90◦. The central energy is shifted towards the maximum and minimum values

corresponding to the peaks in fig. 5.4 (a); however, no apparent energy broadening

is visible. As expected, microwave streaking, like electron pulse compression, works

best around a zero crossing of the energy modulation curve where the rate, i.e. the

temporal derivative, of the energy transfer is highest. Note that electron pulse com-

pression only takes place at one of the two possible zero crossings at which the leading

electrons are decelerated, while the trailing ones are accelerated (cf. section 3.1). The

correct zero crossing can be easily identified with the microwave streak camera by

scanning the delay between the electron pulses and the microwave’s phase around

the zero crossing of the energy modulation curve.

Fig. 5.5 shows such delay measurements and the evaluated FWHM temporal

spreads for the three microwave sources used in this work, covering more than one

period of the microwave. The results for the 1209th-harmonic-PLL-VCO source are
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Figure 5.5: Delay scan between the electron pulses and the microwave’s phase for the three
different microwave sources. The left panels show the central energy of the electrons (solid
lines) and their FWHM energy spread (diamonds), while the right panels show the FWHM
temporal spread (squares) calculated from the energy spread and the temporal derivative of
the respective energy modulation. The dashed lines reproduce the central energy modulation
curves, taken from the corresponding left panels, as guides to the eye. The intrinsic beam
size is deconvoluted from the measured spot widths, yielding the actual energy and temporal
spreads. (a) and (d): 1209th-harmonic-PLL-VCO, (b) and (e): 76th-harmonic-PLL-VCO, (c)
and (f): direct extraction source.

shown in fig. 5.5 (a) and (d), for the 76th-harmonic-PLL-VCO source in fig. 5.5 (b)

and (e), and for the passive direct microwave extraction source in fig. 5.5 (c) and (f),

respectively. The solid lines in fig. 5.5 (a)–(c) depict the modulation of the central

energy, E(t), of the electrons by the microwave. Zero delay time is chosen at the

compressing phase, i.e. where leading (early) electrons are decelerated and trailing

(late) electrons are accelerated, while the central energy is unchanged. Note that

the amplitude of the energy modulation is different for the three microwave sources,

reflecting the available microwave power. Also, slightly different acceleration voltages

are used for the different sources: 25 kV for the 1209th-harmonic-PLL-VCO source,
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26 kV for the 76th-harmonic-PLL-VCO source, and 23.5 kV for the direct extraction

source.

The energy spread (diamonds) is determined as FWHM for each delay step by

deconvolution of the intrinsic beam size from the measured spot width using the

according calibration, as shown in fig. 5.2 (b). As suggested by fig. 5.4, the energy

spread is largest at the zero crossings of the energy modulation curve and smallest

at the extrema, where it drops below the detection noise floor (cf. section 5.1). Since

the temporal spread of the electron pulses with respect to the microwave’s phase,

τe, stays constant during the delay scan, the energy spread, ∆E(t), at a particular

delay time is given by the temporal derivative of the energy modulation curve,

gE(t) = dE(t)/ dt (in units of eV/ps):

∆E(t) ≈ |gE(t)τe| , (5.4)

as long as τe is small compared to the period of the microwave and the initial energy

bandwidth of photoemission (<1 eV) is negligible. The rate of energy gain, gE, is

also referred to as microwave compression strength, since it determines the energy or

velocity spread imprinted onto the electrons and hence the position of the temporal

focus when used at the compressing phase (see section 7.2).

The temporal spread of the electron pulses, calculated according to eqn 5.4, is

shown in fig. 5.5 (d)–(f) as squares. In order to evaluate the temporal spread by

streaking, a single measurement of the energy spread and the according rate of en-

ergy gain, gE, is sufficient – preferably at the zero crossing of the energy modulation

curve, where gE and thus the induced energy spread are highest. Here, the tem-

poral spread is evaluated over the entire delay scan for improved statistics, with

the exception of the extrema of the energy modulation curve, where gE becomes

small and the energy spread drops below the noise floor of the detection. We obtain

τe = (3560± 100) fs for the 1209th-harmonic-PLL-VCO, τe = (715± 50) fs for the

76th-harmonic-PLL-VCO, and τe = (800± 150) fs for the direct extraction source

(all values denote FWHM). The two latter approaches produce nearly identical re-

sults, despite their different conceptions, and clearly show a better performance than

the former one. The streaking results are summarized in table 5.1.

The duration τe, obtained by microwave streaking, constitutes a convolution

between the temporal spread of the dispersed electron pulses entering the microwave

cavity (cf. sections 2.2 and 3.1) and the laser-microwave timing jitter. According

to fig. 3.1, the initial duration of the electron pulses after photoemission, τinitial,

is given by the duration of the laser pulses used to generate the electron pulses.

Dispersion broadens the pulses during static acceleration by τacc, as described in

eqns 3.3 and 3.4, to a total dispersed duration of the electron pulses, τdisp, with
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Microwave source
Acc. field Max. gE Max. ∆E

τe (fs)
(kV/mm) (eV/ps) (eV)

1209th-harmonic-PLL-VCO 1.71± 0.06 51.8± 0.2 184± 6 3560± 100
76th-harmonic-PLL-VCO 2.11± 0.08 73.8± 0.5 53± 4 715± 50
Direct extraction source 1.91± 0.08 32.1± 0.1 26± 5 800± 150

Table 5.1: Microwave streaking results for three different microwave sources, showing the
static acceleration field, the maximum energy gain rate, gE, and energy spread, ∆E, at the
zero crossing of the energy modulation curve, and the resulting temporal spread, τe. The
spreads denote FWHM.

respect to the timing of the laser pulses. Timing jitter between the laser’s repetition

rate and the microwave’s phase further broadens the temporal spread of the electron

pulses by τjitter, yielding a measured duration, τe, of:

τ 2
e = τ 2

initial + τ 2
acc + τ 2

jitter = τ 2
disp + τ 2

jitter (5.5)

Here, eqn 3.4 is substituted in eqn 5.5. The duration of the 267 nm UV laser pulses

used for photoemission is estimated as τinitial = (90± 20) fs FWHM, based on the

measured spectral bandwidth and the calculated optical dispersion of the vacuum

window. The amount of dispersive broadening, τacc (cf. eqn 3.3), depends on the

initial energy spread, the static acceleration field, and the assumed shape of the

initial velocity or energy distribution, as pointed out in section 3.1. Literature offers

different models to calculate τacc [78, 80, 82, 100, 114], which are based on eqn 3.3,

yet differ by a factor of up to ∼
√

2, owed to different assumptions about the initial

velocity or energy distribution. An initial energy spread of typically 0.2 eV FWHM

and a static acceleration field of Eacc = 2 kV/mm then yield a FWHM temporal

broadening between τacc ≈ 520 fs [100] and τacc ≈ 750 fs [78]. When assuming a half-

spherical distribution of the photoemission with a normal probability distribution

of the kinetic energies, the temporal broadening lies in between. The initial energy

bandwidth, ∆ε, then denotes the width of the probability function at half maximum

and eqn 3.3 can be rewritten according to [82] as:

τacc ≈
√√

2me∆ε

eEacc

(5.6)

The work function of the 40 nm thin gold photocathode is ∼4.2 eV [99] (cf. sec-

tion 1.4) and the photon energy of the 267 nm UV laser pulses is 4.65 eV. The

resulting FWHM energy spread of the photoelectrons is between 0.2 eV and 0.3 eV,

estimated from the beam’s divergence according to the model described in [82].
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Figure 5.6: Deconvoluted FWHM timing jitter for the three different microwave sources and
for different dispersion models, assuming an initial energy spread of ∆ε = 0.2 eV (left) and
∆ε = 0.3 eV (right), respectively. The 1209th-harmonic-PLL-VCO (blue dots) clearly exhibits
a jitter above 3 ps, while the jitter of the other two microwave sources is comparable to the
experimental and model uncertainties. This yields an upper limit of the jitter of 580 fs for
the 76th-harmonic-PLL-VCO (green diamonds) and 770 fs for the direct microwave extraction
source (red squares). Dispersion models: A [100], B [82] (cf. eqn 5.6), C [78].

The laser-microwave timing jitter can then be deconvoluted from the measured

temporal spread using eqn 5.5. The uncertainties arising from the applied dispersion

model and the initial energy spread are substantial and limit the precision of a

quantitative assessment of the jitter. Fig. 5.6 shows the FWHM laser-microwave

timing jitter, deconvoluted from the streaking measurement, for the three microwave

sources using different dispersion models and assuming an initial FWHM energy

spread of ∆ε = 0.2 eV and ∆ε = 0.3 eV, respectively. The error bars arise from

experimental uncertainties of τe (cf. table 5.1) and τinitial. The FWHM timing jitter

of the 1209th-harmonic-PLL-VCO (blue dots) lies between 3300 fs and 3600 fs within

the error margins of both experimental and model uncertainties, revealing a poor

synchronization of this microwave source. In contrast, the FWHM timing jitter of the

other two approaches appears to be on the order of the electron pulse’s duration at

the microwave cavity, τdisp, or below. Here, the experimental and model uncertainties

are comparable in magnitude to the deconvoluted jitter, thus yielding only an upper

limit of the jitter. We obtain τjitter ≤ 580 fs FWHM for the 76th-harmonic-PLL-VCO

(green diamonds) and τjitter ≤ 770 fs FWHM for the direct microwave extraction

source (red squares) within all error margins.

The timing jitter of a PLL-VCO source [167] very similar to the 76th-harmonic-

PLL-VCO used in this work has been determined before by single-shot streaking [70]

and by direct laser-microwave phase detection inside a microwave cavity [163]. In

both cases the jitter is ≤100 fs rms (or ≤240 fs FWHM for a Gaussian distribution



70 Chapter 5. Characterization of jitter by microwave streaking

of the timing noise), indicating that the jitter of the 76th-harmonic-PLL-VCO is

below the resolution limit of the microwave streak camera presented in this chapter.

The direct extraction source yields a similar value for the upper limit of the jitter

with a slightly higher uncertainty due to less available microwave power and thus

a smaller value of gE. Therefore, the actual jitter of the direct extraction source is

also very likely below the resolution limit of the streak camera, as concluded for

the 76th-harmonic-PLL-VCO. This is supported by the estimations in section 4.5,

predicting a high-frequency timing jitter on the order of some tens of femtoseconds

in addition to slow timing drift, which is not measured here (see section 6.3).

5.4 Limitations of microwave streaking

Absolute assessment of laser-microwave jitter by microwave streaking is limited by

three factors: First, the jitter and the electron pulse’s duration at the entrance of

the microwave cavity are added quadratically (cf. eqn 5.5); therefore, uncertainties

start to dominate when these values become comparable. For the same reason the

minimum energy detectable with the Wien filter is limited by the electron beam’s

size (cf. section 5.1). Thus, the electron pulse’s duration, τdisp, roughly limits the

minimum measurable jitter and constitutes a noise floor of the measurement. In

contrast, if the jitter is considerably larger than τdisp, as in the case of the 1209th-

harmonic-PLL-VCO, the uncertainties are less significant and the measurement is

more precise. Therefore, the microwave streak camera presented in this chapter is

readily capable of assessing jitter on the order of picoseconds with high precision.

In order to resolve femtosecond jitter, however, reducing τdisp is crucial. Using the

highest possible static acceleration field (about 10 kV/mm) and minimizing the ini-

tial energy spread, ∆ε, by tuning the wavelength of the UV laser pulses close to the

photocathode’s work function promises τdisp ≈ 70 fs FWHM [82].

Secondly, the dispersion model applied for calculating τacc introduces a relative

uncertainty of ∼
√

2. Although eqn 5.6 is based on a reasonable assumption about the

initial velocity distribution of the photoelectrons [82], the actual distribution might

differ. A precise measurement, e.g. by energy and angular resolved photoemission

electron microscopy [168], can facilitate accurate modeling of the dispersion.

Thirdly, the energy resolution of the Wien filter limits the shortest measurable

temporal spread for a given microwave amplitude or gE. Currently, the energy reso-

lution is limited by the beam size, the maximum applicable field strength inside the

Wien filter, and stray fields. An improved energy analyzer with a FWHM resolution

of ∼1 eV (see chapter 6) is capable of measuring a timing jitter on the order of some

tens of femtoseconds, given a short enough τdisp.
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Characterization of the dispersed electron pulses in the time domain can provide

τdisp directly without the need for modeling. Suitable techniques include transverse

streak cameras [70, 169, 170], ponderomotive scattering [96, 171], or the recently

developed optical field streaking technique [93]. Certainly, the laser-microwave jit-

ter can be characterized by these techniques as well, rather than by microwave

streaking, if the additional effort is acceptable. The temporal resolution of optical

field streaking is even sufficient for characterization of compressed electron pulses

in the 10 fs range (see chapter 7). Nevertheless, the microwave streaking technique

presented here constitutes an efficient method for assessing the quality of different

microwave sources, while effectively only using components which are already re-

quired for UED with electron pulse compression, besides the Wien filter analyzer.

In a first experiment, the 1209th-harmonic-PLL-VCO has been identified as inca-

pable of femtosecond synchronization, owing to excessive noise in the amplifiers,

while the 76th-harmonic-PLL-VCO and the passively enhanced direct microwave

extraction source potentially offer a sufficient quality of synchronization for electron

pulse compression.





Chapter 6
High-resolution time-of-flight spectrometer

for sub-relativistic electron pulses

The energy domain offers powerful and versatile possibilities for characterization

of ultrashort electron pulses for UED, especially if microwave compression is em-

ployed. Energy-resolved analysis has been demonstrated in the previous chapter by

means of a microwave streak camera, constituting a precise laser-microwave phase

detector capable of measuring sub-picosecond timing jitter as a first application.

Time-resolved spectroscopy of the electron pulses by optical field streaking [93] (see

chapter 7) can provide a time-domain characterization as well as a visualization of

the phase space transformations imposed by vacuum dispersion and microwave com-

pression. Besides UED, ultrafast electron energy loss spectroscopy (EELS), usually

in combination with an electron microscope in order to resolve nanostructures, can

provide further insight into structural and electron dynamics in matter [97, 172–

175].

These applications rely on a high-resolution energy analyzer suitable for electron

pulses at sub-relativistic energies (tens of keV). The Wien filter analyzer (cf. sec-

tion 5.1) is not capable of detecting few-femtosecond drift or jitter when operated

as a laser-microwave phase detector, since the energy resolution is limited by a noise

floor of about 20 eV. For a typical rate of energy gain from the microwave, gE, of

50 eV/ps, an energy resolution of 0.5 eV is required in order to detect a timing drift

of 10 fs. Also, the pinhole significantly reduces the usable signal, which particularly

affects low-signal applications, such as optical field streaking or EELS.

Here, we introduce a home-built time-of-flight (ToF) spectrometer for sub-rel-

ativistic electron pulses with an energy resolution of well below 1 eV FWHM over

a range of more than 10 eV at up to 30 keV of central energy. Nearly the entire

signal can be used with little loss by employing collimating electron optics with-

73
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out the need for an aperture. In this chapter, the conception, construction, and

characterization of this instrument is presented. The ToF spectrometer replaces the

previously used Wien filter analyzer as a laser-microwave phase detector in order to

measure laser-microwave timing drift with few-femtosecond precision. Furthermore,

this spectrometer is used in the experiments described in chapter 7 for time-domain

characterization of uncompressed and compressed electron pulses.

6.1 Conception and design

Fig. 6.1 depicts the concept of a ToF spectrometer, which is based on a precise

measurement of the arrival times of electron pulses at a detector with respect to

a timing reference. As a consequence, a ToF spectrometer necessarily operates in

pulsed mode, while transverse deflecting energy analyzers, such as the Wien filter

(cf. section 5.1), also accept continuous beams of charged particles. Both types of

spectrometers can be integrated into an existing UED experiment with manageable

effort. Besides the aforementioned advantages of low signal loss and substantially

higher resolution compared to the Wien filter analyzer, the single-shot nature of a

ToF spectrometer also allows evaluating drift and noise in real-time on a shot-to-shot

basis.

An electron gun, consisting of a photocathode, a region of static acceleration to

some tens of keV of kinetic energy, and a solenoid for collimation [87] (cf. fig. 1.3 in

section 1.4), generates ultrashort electron pulses using femtosecond laser pulses for

photoemission. An electronic time-to-digital converter (TDC) measures the arrival

time of each electron pulse at a micro-channel plate (MCP) detector with respect to

a start signal which is triggered via a photodiode by a portion of the laser pulse used

for photoemission. At 30 keV of central energy, an energy spread of 1 eV transforms

into a temporal spread of ∼160 fs over a length of 1 m, which is not detectable

by electronics. The temporal resolution of a state-of-the-art TDC is on the order

of 200 ps FWHM, limited by the speed of the digital electronics as well as the

analog bandwidth of the MCP detector which converts impinging electron pulses

into short current pulses. Therefore, the central energy of the electron pulses needs

to be substantially reduced, allowing the electrons to acquire sufficient temporal

dispersion in order to achieve the desired energy resolution at the given temporal

resolution of the detector. To this end, a high-voltage drift tube is employed, which is

biased nearly at the same high negative potential as the photocathode. The electrons

are thus strongly slowed down inside the drift tube, gaining the desired temporal

dispersion, and accelerated afterwards again towards the grounded detector.

A commercial MCP detector is used in this work (MCP 3636, Surface Concept

GmbH), providing a digital time bin size of 27.4 ps and an impulse response of
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Figure 6.1: Concept of a ToF spectrometer for sub-relativistic electron pulses. Femtosecond
laser pulses are used to generate ultrashort electron pulses (cf. the electron gun in fig. 1.3). A
single-shot time-to-digital converter (TDC) measures the time between a start signal, triggered
by the laser pulse via a photodiode, and a stop signal from a micro-channel plate (MCP)
detector, triggered upon the arrival of an electron pulse. The electronic time resolution of the
TDC is about 200 ps FWHM; therefore, the electrons are slowed down in a high-voltage drift
tube in order to acquire sufficient temporal dispersion for the desired energy resolution. Two
pairs of electromagnetic steering coils are used for precise alignment of the electron beam
along the drift tube’s axis. The MCP detector is retractable and a phosphor screen coupled
to a CMOS camera chip behind the detector is used to monitor the beam geometry during
alignment. The energy spectrum can be extracted from the ToF measurement provided by the
TDC after calibration.

about 200 ps FWHM. The MCP stack is biased at about −2.5 kV and exhibits an

active area with a diameter of 36 mm. Electrons impinging on the MCP release

an avalanche of secondary electrons in the micro-channels, which are accelerated

towards an underlying anode. This creates a current pulse which is subsequently

amplified and detected by the electronics at a rate of up to 7 MHz. The detector

consists of four quadrants, each being an individual anode, which allows for rough

spatial resolution of the electron beam. In order to align the electron beam precisely

along the axis of the drift tube, the MCP detector can be retracted, allowing the

beam geometry to be monitored on a phosphor screen coupled to a CMOS camera

chip (cf. section 5.1). Two pairs of deflecting electromagnetic coils are used for beam

steering in front of the drift tube.

Slowing down the electron pulses inside a drift tube can in principle arbitrarily

enhance the energy resolution by reducing the central kinetic energy almost to zero

and thus arbitrarily increasing the temporal dispersion. However, this applies only

to an infinitely thin and non-divergent electron beam along the drift tube’s axis. A

cylindrical drift tube constitutes an electrostatic lens for a realistic electron beam of

a finite diameter and divergence. Thus, electrons entering the drift tube nonparallel

or at a distance to the axis exhibit trajectories differing from the straight line of ideal
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on-axis electrons and hence a larger ToF at the same kinetic energy. Therefore, the

benefit of temporal dispersion inside a drift tube is to some extent compensated by

the drift tube’s geometrical effect on the trajectories of the electrons, i.e. the width

of a ToF spectrum is constituted of both the energy spread and the beam’s geometry

inside the drift tube. Since both contributions are indistinguishable, the geometry-

related broadening of the ToF poses a limit to the achievable energy resolution.

The practical design of the drift tube is defined by its diameter and length. A long

drift tube provides more temporal dispersion than a short one; however, the length

is limited in this work to 200 mm due to the dimensions of the vacuum chamber. For

the diameter, there is an optimum choice: The electrostatic lensing effect becomes

weaker for a larger diameter; however, the electric potential inside the drift tube is

more homogeneous for a smaller diameter at a given length. In order to determine

the achievable energy resolution and the optimum diameter of the drift tube, particle

tracking simulations are performed using a finite element software (COMSOL, Inc.).

Fig. 6.2 (a) shows an on-axis cross-section of the geometry used for the simulation

(black). Note that the geometry has cylindrical symmetry around the axis. The

drift tube (inner cylinder) is biased at −30 000 V, while the casing (outer cylinder)

is grounded. The calculated electric potential (color-coded) is homogeneous and at

a high negative value inside the drift tube. A lensing effect is evident as curvature of

the electric potential at the openings of the drift tube. The dimensions of the casing

are chosen to minimize stray fields outside the drift tube and inhomogeneities of the

electric potential at the openings, complying with the physical constraints of the

vacuum chamber.

The results of particle tracking inside the calculated electric potential are de-

picted as white trajectories for a collimated monoenergetic electron beam with a

diameter of 1.9 mm at a kinetic energy of 30 002 eV. The electrons are thus slowed

down to a kinetic energy of ∼2 eV inside the drift tube. At this reduced kinetic

energy, an energy difference of 0.1 eV leads to a ToF difference of about 5.7 ns over

the drift tube’s length of 200 mm, which is well within the temporal resolution of the

MCP detector. However, the electrostatic lensing effect at the openings of the drift

tube leads to different trajectories for off-axis electrons of the same kinetic energy,

as evident in fig. 6.2 (a). The simulated ToF as a function of the kinetic energy is

shown in fig. 6.2 (b) for the on-axis trajectory (blue) and for a trajectory 0.9 mm off-

axis at the entrance of the drift tube (green), representing the outer trajectories in

fig. 6.2 (a). The ToF curves differ roughly by an offset of 2 ns and diverge for kinetic

energies approaching the potential energy of the drift tube (30 000 eV), referred to

as the threshold energy, Eth. The temporal dispersion per unit of energy bandwidth

is directly given by the derivative of the ToF curves with respect to energy; thus,

the energy resolution, R(E), is strongly energy-dependent and highest close to the
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Figure 6.2: Drift tube geometry and particle tracking results. (a) On-axis cross-section through
the drift tube (inner cylinder) and its casing (outer cylinder), indicated in black. The drift tube
is biased at −30 000 V, while the casing is grounded; the calculated electric potential is color-
coded. The white traces depict a collimated monoenergetic electron beam with a diameter of
1.9 mm at a kinetic energy of 30 002 eV. Different trajectories imply different ToF values. (b)
ToF as a function of the kinetic energy for the on-axis trajectory (blue) and for a trajectory
0.9 mm off-axis at the entrance of the drift tube (green), representing the outer trajectories in
(a). The energy resolution (red) is defined as the ToF difference between the two trajectories,
convoluted with the MCP detector’s temporal resolution, divided by the average derivative of
the ToF curves with respect to energy (see eqn 6.1). The best (i.e. minimum) energy resolution
of ∼0.2 eV is achieved over a narrow energy range of up to 3 eV above the threshold energy
corresponding to the drift tube’s potential (Eth ≈ 30 000 eV). (c) Maximum acceptable beam
diameter as a function of the drift tube’s radius for different achievable energy resolutions
(between 0.01 eV and 0.5 eV). The optimum radius of the drift tube in order to achieve an
energy resolution of 0.1 eV is thus 20 mm, facilitating a beam diameter of up to 1.7 mm. Note
that the beam diameter is clipped at 1.9 mm, since the trajectories are only simulated up to
this value.



78 Chapter 6. High-resolution time-of-flight spectrometer

threshold energy. It is given by the ToF difference between the two trajectories at a

particular energy E, convoluted with the MCP detector’s temporal resolution, τdet,

divided by the average derivative of the ToF curves with respect to energy:

R(E) =
2
√

(toff-axis(E)− ton-axis(E))2 + τ 2
det∣∣∣dtoff-axis(E)

dE
+ dton-axis(E)

dE

∣∣∣ , (6.1)

ton-axis(E) and toff-axis(E) being the ToF of the on-axis and off-axis electron trajectory,

respectively. The resolution, calculated from numerical derivatives of the ToF curves

and assuming τdet = 150 ps FWHM, is shown in fig. 6.2 (b) in red. The minimum

value is ∼0.2 eV over a narrow energy range of up to 3 eV above Eth. This curve

denotes the FWHM resolution for a FWHM beam diameter of 1.8 mm in the case

of a Gaussian profile of a collimated electron beam.

In fig. 6.2 (c), the maximum acceptable beam diameter is shown as a function of

the drift tube’s radius for different achievable energy resolutions (between 0.01 eV

and 0.5 eV). The curves denote beam diameters which yield the same value for the

best (i.e. minimum) achievable resolution. An optimum radius of the drift tube is

evident, which slightly shifts towards higher values for worse (i.e. larger) target reso-

lutions. Note that the beam diameter is clipped at 1.9 mm, since the trajectories are

only simulated up to this value. A 20 mm radius of the drift tube is chosen for man-

ufacturing, which is optimized for a resolution of 0.1 eV, allowing a beam diameter

of up to 1.7 mm, which is easily achievable with a collimating magnetic lens. The

achievable resolution scales in the same way with the beam’s divergence as with its

diameter, yielding the same optimum radius of the drift tube at a maximum accept-

able divergence of about 4 mrad for an infinitely thin beam. A realistic beam has

both a finite diameter and divergence; hence, the maximum acceptable beam diam-

eter is reduced at a simultaneously present divergence, reflecting the conservation

of emittance (cf. sections 1.4 and 2.1). A beam diameter of 1 mm thus allows for a

maximum divergence of about 2.4 mrad in order to maintain an energy resolution

of 0.1 eV.

Since the drift tube is biased at a high negative voltage, it is held inside the

grounded casing cylinder via ceramic spacers. The edges are rounded in order to

minimize local fields at the surface, which are enhanced by sharp edges and surface

roughness and can cause arcing due to vacuum breakdown. A high-voltage connec-

tion is provided through a hole at the side of the casing. At the low kinetic energies

inside the drift tube, external magnetic fields, especially earth’s magnetic field, can

substantially alter the trajectories of the electrons. Thus, the drift tube’s casing is

shielded by ∼1 mm of µ-metal, providing a nearly magnetic-field-free region inside

the drift tube.



6.2. Calibration and resolution 79

6.2 Calibration and resolution

For the precise alignment of the electron beam along the axis of the drift tube, the

electrostatic lensing effect is utilized by monitoring the beam’s shape and position on

the camera, while slowly increasing the negative voltage applied to the drift tube.

After the desired voltage is reached and the beam is properly aligned, the MCP

detector is inserted into the beam and ToF spectra can be recorded. Fig. 6.3 (a)

depicts several representative ToF spectra for different kinetic energies of the electron

pulses, set by the acceleration voltage, at a drift tube voltage of about −29 513 V.

Note that this value is slightly smaller in magnitude than the −30 000 V used in the

simulation (cf. section 6.1), since the voltage applied to accelerate the electrons needs

to exceed the drift tube voltage, which in that case would be beyond the range of the

high-voltage supply used for electron acceleration (up to −30 000 V). The exposure

time is about 1 s per spectrum, during which single-shot ToF measurements are

triggered at 5.128 MHz, being the repetition rate of the laser system (cf. sections 4.3

and 6.1). The ToF spectra are time histograms of all measured events within the

exposure time. Additionally, single-shot data can be used for time-domain analysis,

since it contains modulations of the measured ToF at Fourier frequencies up to

the count rate. Thus, systematic ToF or energy broadening, e.g. due to electronic or

mechanical noise at characteristic Fourier frequencies, can be revealed and separated

from purely statistical broadening which is “white” in the frequency domain.

The energy bandwidth of the electron pulses is 0.2 eV–0.3 eV (cf. section 5.3)

throughout all measurements; hence, the different shapes of the ToF spectra are

related to different amounts of temporal dispersion and geometry-related broadening

at different central kinetic energies. The asymmetric broadening towards larger ToF

values, which is more evident at higher central kinetic energies, arises from the

beam’s finite diameter and divergence, since all off-axis trajectories result in larger

ToF values compared to the position of the peak (cf. section 6.1).

In order to convert an arbitrary ToF spectrum into an energy spectrum, a cali-

bration of the spectrometer needs to be performed (cf. section 5.1). To this end, the

kinetic energy of the electrons is scanned by changing the acceleration voltage over

the range of interest (here about 50 V), starting at the value of the drift tube voltage,

in steps of about 1 V. The ToF value at the peak of the ToF spectrum as a function

of the kinetic energy then yields a calibration curve which can be used to convert

an arbitrary ToF spectrum into energy. The relation between ToF after passing the

drift tube, t(E), and kinetic energy, E, follows from the classical equation of motion

(cf. eqn 2.4):

t(E) = d

√
me

2(E − Eth)
+ toffset, (6.2)
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Figure 6.3: Results of the calibration scan for a drift tube voltage of about −29 513 V, cor-
responding to Eth ≈ 29 513 eV. (a) Representative ToF spectra for different kinetic energies
of the electrons, showing an energy-dependent width due to different amounts of temporal
dispersion and geometry-related broadening. Asymmetric broadening due to the beam’s finite
diameter and divergence is evident, since all off-axis trajectories result in larger ToF values
compared to the position of the peak. (b) ToF spectra of the calibration scan are color-coded
on a logarithmic scale, exhibiting a pronounced asymmetric background around the peak at
larger ToF values due to geometry-related broadening. The dashed black line shows a fit of the
energy-dependent position of the peaks of the ToF spectra, t(E), according to eqn 6.3. The
FWHM energy resolution (red) is determined from the width of the ToF spectra (FWHM) and
t(E), according to eqn 6.4, yielding <0.6 eV over a range of up to 5 eV above Eth.

d being the drift tube’s length, me the electron’s mass, Eth the threshold energy

below which electrons are rejected and do not pass the drift tube, and toffset a time

offset accounting for the ToF outside the drift tube as well as delays of the signals

inside the cables and the TDC. toffset does not depend on the kinetic energy within

the temporal resolution of the detector. This simple relation is only valid for a

uniform motion and does not take into account the acceleration within regions of
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inhomogeneous electric potential at the openings of the drift tube. Therefore, eqn 6.2

poorly reproduces the measured t(E) curve as well as the simulated traces depicted in

fig. 6.2 (b). An empirical relation is found to reproduce the actual energy dependence

of the ToF very well, based on a generalization of eqn 6.2:

t(E) =
A

(E − Eth)B
+ toffset, (6.3)

A and 0 < B < 1 being fitting parameters. B is found to be ∼0.3 in order to

reproduce the data, while it is 0.5 in eqn 6.2. All parameters, A, B, Eth, and toffset,

can be retrieved from a calibration scan by fitting eqn 6.3 to the data. This is

shown as the dashed black line in fig. 6.3 (b), which is in excellent agreement with

the numerically determined positions of the peaks of the measured ToF spectra. A

calibration curve which is parametrized in that way can then be used to convert

the ToF axis of an arbitrary spectrum into energy. In addition, the count values

need to be weighted by dt(E)/ dE in order to conserve the total number of counts

when integrating a part of the ToF spectrum and the corresponding part of the

converted energy spectrum. This accounts for the nonlinear relation between the

equidistantly sampled time bins (ToF spectrum) and non-equidistant energy bins

(energy spectrum). The transmission through the drift tube is energy-dependent

and varies by up to 50 % over a few-eV range above Eth, which can be compensated

when converting an arbitrary ToF spectrum into energy, since the transmission curve

is also acquired during the calibration scan. More than 80 % of the electrons are

transmitted at kinetic energies of 5 eV above Eth and higher.

The raw ToF spectra of the calibration scan, some of which are also depicted in

fig. 6.3 (a), are shown in fig. 6.3 (b), the counts being color-coded on a logarithmic

scale. Asymmetric geometry-related broadening around the peak is evident as a

broad background at larger ToF values, corresponding to smaller energies when

converting the ToF spectrum into energy. Finally, the FWHM energy resolution,

RFWHM(E), can be determined from the derivative of the t(E) curve with respect

to energy and the energy-dependent ToF width of the measured spectra (FWHM),

τFWHM(E), in analogy to the resolution defined in eqn 6.1:

RFWHM(E) = τFWHM(E)

∣∣∣∣dt(E)

dE

∣∣∣∣−1

(6.4)

Since the ToF spectra are asymmetric and non-Gaussian, their FWHM is determined

numerically as the ToF width at half maximum. The resulting energy-dependent

FWHM energy resolution is shown in fig. 6.3 (b) in red, yielding <0.6 eV over a

range of up to 5 eV above Eth and <3 eV over a range of up to 50 eV above Eth. The
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measured minimum energy resolution of ∼0.55 eV is limited by the bandwidth of

the electron pulses, which is on the same order. Thus, the actual energy resolution

is likely better and in good agreement with the intended specifications based on the

simulations (cf. section 6.1).

6.3 Application: Laser-microwave phase detector

As a first application, the ToF spectrometer is employed as a laser-microwave phase

detector, replacing the Wien filter analyzer presented in chapter 5 (cf. fig. 5.1). The

superior energy resolution of the ToF spectrometer substantially improves the mea-

surement precision of temporal spreads and drift by means of microwave streak-

ing. Also, an improved electron gun is used [87], providing an acceleration field of

8.3 kV/mm at an acceleration voltage of −25 kV. The microwave cavity is driven at

a frequency of 6.237 GHz and a power of ∼2 W by the direct microwave extraction

source (cf. section 5.2). A calibrated phase shifter is used to set the microwave’s

phase inside the cavity to the compressing zero crossing of the energy modulation

curve (cf. section 5.3). The rate of energy gain at this phase is gE = (69± 2) eV/ps1,

which is determined by scanning the microwave’s phase over a short range around

the zero crossing, while recording the central kinetic energy with the ToF spectrom-

eter. The drift tube’s threshold energy, Eth, is set about 30 eV below the central

kinetic energy of the electrons in order to accommodate for the large energy spread

imprinted by the microwave field. After 5 s of acquisition time, the energy broaden-

ing induced by the microwave field is ∆E = (25± 1) eV FWHM compared to the

intrinsic energy spread with the microwave cavity being switched off. This yields

a temporal spread of τe = ∆E/gE = (360± 20) fs FWHM, constituting an upper

limit for both the dispersed electron pulse’s duration at the microwave cavity and

the laser-microwave jitter, since τe is a convolution between both values (cf. sec-

tion 5.3). Here, τe is significantly smaller than in section 5.3 (cf. table 5.1), despite

a nearly identical microwave source being used in both cases; thus, the reduced τe

is owed predominantly to the higher acceleration field and an accordingly shorter

duration of the dispersed electron pulses at the microwave cavity.

Fig. 6.4 depicts a measurement of the long-term drift of the central kinetic en-

ergy, i.e. the peak of the energy spectrum, as well as the corresponding timing drift,

reflecting the drift of the microwave’s phase inside the cavity. Each data point rep-

resents an energy spectrum which is averaged over an exposure time of 5 s. The

relation between energy drift and timing drift is linear for small values and given by

1This value is higher than in the previous microwave streaking experiment with the direct
extraction source (cf. table 5.1) because a prototype of this microwave source has been used in the
experiments described in section 5.3, not yet providing the full power of ∼2 W.
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Figure 6.4: Long-term drift of the microwave’s phase inside the microwave cavity, measured
with the ToF spectrometer which is operated as a laser-microwave phase detector, in terms of
timing drift as well as drift of the central energy. A timing drift on the order of 100 fs peak-
to-peak is evident with a half-hour period, reflecting the periodic drift of the temperature in
the laboratory despite stabilization. However, a timing stability of below 3 fs rms is achieved
over short periods of up to 15 min. The precision of the measurement is about 1 fs rms for an
integration time of 5 s.

gE. A half-hour period of the timing drift is evident with a peak-to-peak amplitude

of about 100 fs, reflecting periodic drift of the temperature in the laboratory. The

period corresponds to the cooling cycle of the liquid used for air conditioning in the

building. Since the temperature of the microwave cavity is stabilized separately, the

timing drift is attributed mainly to drift of the laser’s repetition rate (cf. section 4.3)

and the separation between the mirrors of the optical mode filter (cf. section 4.5).

Both contributions cause a timing drift due to the mode filter’s and the microwave

cavity’s frequency-dependent phase.

This slow timing drift poses a limitation of the temporal resolution of UED em-

ploying electron pulse compression with microwave fields. Thus, a slow active phase

stabilization is required in order to facilitate extended acquisition times (cf. sec-

tion 4.5). However, a timing stability of below 3 fs rms over periods of up to 15 min

is evident, enabling measurements of short acquisition times with high timing preci-

sion, e.g. electron pulse characterization in the time domain (see section 7.2). Note

that the laser-microwave phase detector employing the ToF spectrometer presented

in this chapter is capable of measuring the timing drift with a remarkable precision

of about 1 fs rms, which is an upper limit based on the fluctuations of the data

in fig. 6.4, for an integration time of 5 s. This corresponds to a precision of about

40 µrad rms in terms of microwave phase.





Chapter 7
Ten-femtosecond (rms) electron diffraction

Advancing the temporal resolution of UED by electron pulse compression requires

an accurate and reliable characterization technique in the time domain, suitable for

compressed and uncompressed electron pulses. Streaking by the microwave field used

for compression [81], as presented in chapter 5, can be employed with little additional

effort to characterize the dispersed electron pulses at the microwave cavity, i.e. before

compression, thus providing some insight about the initial dispersion. However, this

streak camera lacks the capability to elucidate the electron pulse compression after

the microwave cavity and its temporal resolution is limited by the laser-microwave

jitter. Only a direct temporal characterization of the compressed electron pulses

at the temporal focus with respect to the laser pulses reveals the actual quality

of the microwave compression, which determines the temporal resolution of UED

pump-probe experiments.

An additional microwave cavity can be used as a streak camera for electron

pulses at the temporal focus [70, 124]. However, the temporal resolution is limited to

about 100 fs FWHM by the available microwave power; furthermore, laser-microwave

jitter is neglected in this approach if the additional streaking cavity is driven by

the same microwave source as the compression cavity. Thus, in order to determine

the temporal resolution of UED pump-probe experiments, the jitter needs to be

separately taken into account.

Ponderomotive scattering [96, 171] provides a free-space cross-correlation be-

tween an electron pulse and a laser pulse. The temporal resolution is limited by

the spatial extent of the interaction region which the electron pulse has to traverse,

given roughly by the focal cross-section of the electron beam and the laser pulse’s

duration. A temporal resolution of about 80 fs FWHM is reported in [96]. Typically,

a laser pulse energy of several hundred µJ is required under optimized conditions

for a significant ponderomotive interaction between the electron pulse and the laser

85
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pulse, since the ponderomotive force scales with the gradient of the optical intensity.

Hence, this method is restricted to amplified laser systems at kHz repetition rates

and is not suitable for the 5 MHz laser oscillator used in this work, since the available

pulse energy of this laser source is about 500 nJ (cf. section 4.3).

In this work, we employ a recently developed technique of optical field streaking

of the electron pulses, providing a direct laser-electron cross-correlation for ultrafast

characterization [93]. Here, the electric field of a laser pulse modulates the electron’s

kinetic energy; thus, the temporal resolution, given by the optical field transients,

can ultimately reach down to tens of attoseconds [20, 33], provided that the shape

of the optical field is well controlled. The pulse energy of a typical femtosecond

Ti:sapphire oscillator is sufficient to modulate the kinetic energy of sub-relativistic

electron pulses by an amount which is easily detectable, e.g. by the high-resolution

ToF spectrometer presented in chapter 6. Besides a temporal laser-electron cross-

correlation, streaking measurements also provide a correlation between time and

energy, thus offering a powerful tool for visualization of the electron pulse’s phase

space and its transformation when microwave compression is applied.

In this chapter, the compression of single-electron pulses with microwave fields

is studied by optical field streaking, employing the ToF spectrometer presented in

chapter 6. A record-short electron pulse duration of (28± 5) fs FWHM or (12± 2) fs

rms is demonstrated with respect to the arrival time of the streaking laser pulses,

reflecting the achievable temporal resolution of possible UED pump-probe experi-

ments. Furthermore, linear transformations of the electron pulse’s phase space by

the interaction with the microwave field and the dispersion in vacuum, as predicted

in section 3.1, are verified. Characterization by optical field streaking also allows

investigating the influence of space charge on the compressibility of the electron

pulses and the achievable pulse duration when using few- and multi-electron pulses.

Finally, the potential applicability of the compressed electron pulses for UED and

ultrafast EELS is demonstrated by recording static diffraction patterns from an

organic molecular crystalline sample as well as EELS spectra from aluminum.

7.1 Optical field streaking of sub-relativistic free

electron pulses

Optical field streaking is based on a rapid transition of the electrons into or out of a

controlled optical field within a transition time well below the duration of an optical

cycle. In contrast, a free-space interaction between an optical pulse and an electron

pulse leaves the electron’s kinetic energy nearly unchanged, apart from a pondero-

motive scattering effect [171]. For any intersection geometry between the two pulses,
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the alternating acceleration of the electron inside the optical field cancels out after

the interaction, since the time integral of the electric field of an optical pulse over

the entire pulse is zero for any projection of the Gaussian optical beam onto the

electron’s trajectory. In optical streaking experiments employing attosecond XUV

pulses, electrons are generated via photoemission by the XUV pulses from gas [20,

27] or solid state [19] targets in the presence of an optical streaking field. Thus, the

electrons are released or “born” into the optical streaking field within the duration

of the attosecond XUV pulse. Here, the net momentum transfer to the electrons is

defined by the time integral of the streaking field over the remaining part of the

streaking pulse. Depending on the phase of the streaking field at the instant at

which the electrons are released by the XUV pulse, a non-zero momentum gain or

loss is permitted after the streaking pulse has passed. As a consequence, the mo-

mentum modulation (and also the energy modulation for small changes around the

central kinetic energy) as a function of the delay time between the XUV pulse and

the streaking pulse reflects the streaking pulse’s vector potential. Thus, the streak-

ing electric field as well as the duration and phase of the XUV pulse releasing the

electrons can be reconstructed [26]. This constitutes a streak camera, similar to the

microwave streak camera presented in chapter 5, yet employing optical field tran-

sients at frequencies in the 100 THz range with a corresponding temporal resolution.

Streaking of free electron pulses by optical fields relies on the same principle,

yet at kinetic energies of the electrons suitable for UED, 25 keV in this work, as

compared to the ∼100 eV range in attosecond XUV streaking experiments. Here, an

almost instantaneous transition of the electrons from the streaking field into a field-

free region is facilitated by a 50 nm thin free-standing aluminum foil1, as depicted

in fig. 7.1, constituting a mirror for the streaking laser pulses but partially trans-

mitting electron pulses (about 3.5 % of transmission at 25 keV). The experimental

arrangement represents a UED pump-probe experiment employing microwave pulse

compression (cf. fig. 1.3 in section 1.4) with the diffraction sample being replaced by

the streaking foil. A non-collinear intersection between the laser beam and the elec-

tron beam at the foil and a polarization of the laser parallel to the plane spanned by

the two beams provides a component of the optical electric field along the electron

beam’s propagation direction upon reflection at the foil (orange arrow in fig. 7.1),

which modulates the electron’s kinetic energy. At a wavelength of 800 nm, the 1/e

penetration depth of aluminum is about 7.6 nm [176]. Therefore, the transition time

for electrons at a kinetic energy of 25 keV is about 84 as, which is a small fraction of

an optical cycle at this wavelength (2.67 fs). The non-collinear arrangement and the

1The foil is manufactured by thermal evaporation of aluminum onto a soap-covered glass sub-
strate. The soap is subsequently removed with water and the foil is transferred to a copper mesh
for support with a grid line separation of 250 µm [93].
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Figure 7.1: Concept of electron pulse characterization via optical field streaking. The ex-
perimental arrangement is essentially identical with a UED pump-probe experiment employing
electron pulse compression with microwave fields (cf. fig. 1.3). However, instead of a diffraction
sample, an ultrathin (50 nm) aluminum mirror is used as a streaking target. The free-standing
aluminum foil on a copper grid is shown in the inset, the green scale bar denoting 100 µm. The
laser pulse impinging on the foil is polarized parallel to the plane spanned by the laser and the
electron beam, providing an optical field component along the electron beam’s propagation
direction upon reflection at the foil (orange arrow). The optical field is shielded by the foil
within a fraction of the optical wavelength, while electrons are partially transmitted. Thus,
electrons passing though the foil gain or lose energy from the interaction with the field, de-
pending on the field’s phase at that moment. A ToF spectrometer (cf. chapter 6) records the
energy modulation as a function of the delay between the laser pulse and the electron pulse.
This constitutes an optical streak camera with a resolution given by the optical oscillations.

finite diameter of the beams at the intersection necessitate group velocity matching

between the respective wave fronts at the streaking foil by an appropriate choice

of angles in order to ensure a constant delay over the entire interaction area at the

foil. For electron pulses at 25 keV, the sweeping velocity of the wave front along the

foil’s surface is matched to the laser pulses at an angle of incidence of 17◦ and 77◦ to

the surface normal for the electron beam and the laser beam, respectively [87]. The

energy modulation by the optical streaking field is recorded via a high-resolution

ToF spectrometer (cf. chapter 6) as a function of the delay time between the optical

streaking pulse and the electron pulse. This yields streaking spectrograms which vi-

sualize the time-dependent energy modulation, providing a cross-correlation between

the electron pulse and the optical streaking pulse.

A non-relativistic analysis of the acceleration of the electrons inside the optical

streaking field yields an energy modulation which is proportional to the oscillat-

ing streaking field but phase-shifted by 90◦ [13]. This represents the vector poten-

tial. Higher-order terms can be neglected for the streaking field strengths used in

this work. Assuming a field of the optical streaking pulse at the foil of the form
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E(t) = EA(t) cos(ωt), EA(t) being the temporal envelope of the electric field (i.e. its

amplitude) and ω its angular frequency, the energy modulation due to a longitudinal

interaction of the electrons with the streaking field is given by [87, 93]:

∆E =
eEA(t)

ω

√
2E0

me

sin(ωt), (7.1)

e and me being the electron’s charge and mass, respectively, and E0 its central

kinetic energy. A constant phase offset is neglected here. The carrier-envelope phase

of the laser pulses used in this work (cf. section 4.3) is not stabilized and hence

random for every laser shot. Therefore, the energy modulation in eqn 7.1 results

in a cycle-averaged energy spectrum after a certain integration time, the maximum

energy gain (or loss) at each delay time t reflecting the field envelope EA(t). Thus,

the cycle-averaged maximum energy gain at t = 0 is simply given by:

∆Emax =
eEA,max

ω

√
2E0

me

, (7.2)

EA,max = EA(t = 0) being the peak electric field at the streaking foil. Note that EA

and EA,max refer to effective optical field amplitudes at the foil along the electron

pulse’s trajectory, taking into account the superimposed field of the reflected beam

as well as the Lorentz force on the electrons [87]. For the experimental geometry used

in this work, the effective field at the foil is enhanced by about 50 % as compared

to the optical field in free space at the same intensity. The laser beam’s diameter

at the foil is 44 µm × 68 µm FWHM, projected onto the electron beam’s axis, and

the maximum pulse energy used for streaking is about 370 nJ, yielding EA,max ≈
1.83 GV/m [87] and a maximum – or cutoff – energy gain of about ∆Emax ≈ 73 eV

at E0 = 25 keV according to eqn 7.2. In order to avoid thermal damage of the

streaking foil, the repetition rate of the laser system is reduced to the 100 kHz range

via a pulse picker [87]. The electron beam (same source as in section 6.3) is coarsely

focused by a solenoid magnetic lens to a diameter of 288 µm× 323 µm FWHM.

Fig. 7.2 (a) shows a streaking spectrogram employing dispersed electron pulses

with the microwave cavity switched off. Negative delay times indicate an early arrival

of the electron pulses at the streaking foil with respect to the laser pulses, which is a

common definition for pump-probe traces with the electron pulses being considered

as probe. Here, about three electrons per pulse are used for enhanced statistics. The

“unstreaked” energy spectrum at large negative delay times is subtracted from each

spectrum constituting the spectrogram in order to enhance changes. Note that both

increase and decrease of electron counts are depicted on a logarithmic scale using

different color ranges. Hence, electron counts are visibly redistributed during the
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Figure 7.2: Optical streaking of dispersed electron pulses without microwave compression;
data taken from [93]. (a) Streaking spectrogram showing the energy gain region around the
central kinetic energy of E0 = 25 keV. Negative delay times indicate an early arrival of the
electron pulses at the streaking foil with respect to the laser pulses. The “unstreaked” electron
spectrum at large negative delays is subtracted in order to enhance changes. Increase and
decrease of electron counts are both shown on a logarithmic scale using different color ranges.
A spectral interference with a modulation period of ∼1.6 eV, corresponding to the streaking
pulse’s photon energy, indicates a longitudinal coherence time of the electron wave packet
on the order of one optical cycle (2.67 fs) or longer. The interference orders as well as the
decrease feature at zero energy gain are slanted, denoting an earlier arrival of higher-energetic
electrons. This visualizes the electron pulse’s chirp due to dispersion in vacuum. The temporal
width of the spectrogram constitutes a cross-correlation between the electron pulse and the
field envelope, EA(t), of the streaking laser pulse. (b) Maximum measured energy gain reveals
a linear dependence on the peak optical streaking field, EA,max, confirming the applicability of
eqn 7.2 to sub-relativistic free electron pulses. (c) FWHM duration of the cross-correlation,
extracted from the streaking spectrogram, as a function of the energy gain. The energy gain is
proportional to the streaking field envelope; thus, the temporally broad pedestal of the streaking
laser pulse (cf. fig. 4.3 (b)), despite carrying little optical intensity, is sufficient to induce a small
energy gain. The electron pulse’s duration dominates at higher values of the energy gain, since
only the center of the laser pulse (50 fs FWHM duration of the intensity envelope) exhibits
sufficient field strength to induce this energy gain. Thus, the width of the cross-correlation
converges to the electron pulse’s duration of (360± 20) fs FWHM (blue line) above ∼10 eV
of energy gain. The inset shows a temporal line profile of the spectrogram integrated around
the 6th interference order at about 9 eV of energy gain and a Gaussian fit (blue line).
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temporal overlap between the electron pulse and the streaking laser pulse from their

central kinetic energy (E0 = 25 keV) to higher and lower energies. The threshold

energy of the ToF spectrometer is set to few eV below the central kinetic energy of

the electrons, such that the range of highest resolution covers the energy gain re-

gion, since the noise background is substantially lower for energies above the central

kinetic energy than for lower energies (cf. section 6.2).

Since the carrier-envelope phase of the laser pulses is not fixed and the elec-

tron pulse’s duration is much longer than an optical cycle, the streaking spectra are

cycle-averaged, reflecting the streaking field’s envelope rather than the field oscilla-

tions. A pronounced spectral interference is visible, spaced by a modulation period of

∼1.6 eV which corresponds well to the photon energy of the streaking pulse (1.55 eV).

A single-electron wave packet which coherently extends over more than one optical

cycle can interfere with itself if different parts of the wave packet leave the streak-

ing field at subsequent optical cycles, while gaining or losing the same amount of

energy [13, 93, 177]. This semi-classical description requires a quantum mechanical

treatment of the electrons, while applying a classical optical field. The visibility of

the interference fringes indicates a longitudinal coherence time of the electrons on

the order of an optical cycle (2.67 fs) or longer, which is in good agreement with

the longitudinal coherence estimated from the uncertainty relation (cf. section 2.1).

However, a detailed quantitative analysis is limited by the spectrometer’s energy

resolution. Note that the visibility of the fringes decreases at higher interference

orders due to the spectrometer’s energy-dependent resolution which continuously

deteriorates at higher energies above the threshold energy (cf. fig. 6.3 (b)). Similar

sidebands have been observed in ultrafast electron microscopy of evanescent optical

near-fields at nanostructures [174]. In contrast to optical streaking, this effect has

been explained by multi-photon absorption of the electrons as a consequence of in-

elastic scattering, mediated by the near-field in the vicinity of a nanostructure [175].

The measured energy gain extends to ∼65 eV (not shown in the spectrogram),

which is in agreement with the expected cutoff energy of 73 eV, according to eqn 7.2,

and likely underestimated due to the small signal-to-noise ratio at high energy gain

values. Fig. 7.2 (b) shows the measured maximum energy gain as a function of the

peak effective electric field of the streaking pulse, EA,max, at the foil. The linear

dependence (green line) verifies optical field streaking (cf. eqn 7.2) rather than a

nonlinear multi-photon effect as the mechanism responsible for the modulation of

the electron’s kinetic energy. Note that the linear field dependence of the streaking

effect facilitates employing low-power laser oscillators at high repetition rates for

streaking. At a pulse duration of 50 fs FWHM, a pulse energy of 10 nJ (typical for a

Ti:sapphire oscillator in the 100 MHz range) is sufficient to induce a maximum energy

gain of about 12 eV, which is well within the spectrometer’s energy resolution.
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According to eqn 7.1, the cycle-averaged temporal profile of the maximum en-

ergy gain follows the electric field envelope of the streaking field, EA(t), if assuming

a negligibly short electron pulse. However, for a significant duration of the electron

pulse, the temporal profile is broadened by the electron pulse’s duration. Hence, the

temporal width of the spectrogram at a particular energy gain value constitutes a

cross-correlation between the electron pulse’s temporal profile and the portion of

the streaking laser pulse’s field envelope which is capable of imprinting this energy

gain onto the electrons. The FWHM cross-correlation width is shown in fig. 7.2 (c)

as a function of the energy gain. The width is evaluated by integrating the spectro-

gram over a range of ∼1.6 eV along the energy dimension around each interference

order and fitting a Gaussian to the temporal line profile, as shown in the inset [87].

Since the interference orders become indistinguishable at higher energy gain values,

equidistant slices of the same energy range are integrated there in order to obtain

temporal line profiles.

The large temporal width at small energy gain values, i.e. for the lowest interfer-

ence orders, results from the temporally broad pedestal of the streaking laser pulse

(cf. figs. 4.3 (b) and 7.5 (a)). Despite the little optical power being carried within

the pedestal (few percent), the corresponding electric field is sufficient to modulate

the electron’s kinetic energy by several eV. Higher energy gain requires a higher

optical field strength, which is only provided by a temporally shorter portion of the

streaking laser pulse around its peak. The highest energy gain corresponds to the

peak electric field, i.e. an infinitely short moment in time. Practically, the temporal

confinement at the maximum energy gain is dictated by the size of the delay time

steps, the energy resolution, and the noise floor. The temporal broadening by the

electron pulse’s duration is equal for each energy gain value. Effectively, the width

of the cross-correlation at each energy gain value is a convolution between the tem-

poral profile of the electron pulse and an energy-gain-dependent sampling function

which is given by the envelope of the streaking laser pulse’s electric field. Thus, the

cross-correlation width converges to the electron pulse’s duration above a certain

energy gain where the temporal width of the contributing streaking field envelope

becomes significantly shorter than the electron pulse’s duration. The laser pulse’s

duration is about 50 fs FWHM for the intensity envelope (cf. section 4.3), which is

substantially shorter than the expected duration of the dispersed electron pulse (cf.

section 5.3). Thus, the measured cross-correlation width converges to (360± 20) fs

FWHM already at energy gain values above ∼10 eV (blue line in fig. 7.2 (c)), yield-

ing directly the dispersed electron pulse’s duration at the streaking foil. Remarkably,

this value is in excellent agreement with the temporal spread measured by micro-

wave streaking (cf. section 6.3), indicating a significantly smaller upper limit for the

laser-microwave jitter (<170 fs FWHM within the error margins; cf. eqn 5.5).
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The interference orders in fig. 7.2 (a) in both the energy gain and loss regions

as well as the decrease feature at zero energy gain are slightly slanted, indicating

higher kinetic energies of earlier arriving (i.e. faster) electrons due to dispersion in

vacuum (cf. sections 2.2 and 3.1). This demonstrates the capability of the optical

streaking technique of simultaneous temporal and spectral characterization, allowing

a measurement of all phase space characteristics of the electron pulses, such as the

temporal spread, the energy bandwidth, and the chirp.

7.2 Characterization of electron pulse compres-

sion in the time domain

Fig. 7.3 shows several representative streaking spectrograms, obtained by the optical

streaking technique described in section 7.1, for different values of the microwave

compression strength, gE. The microwave source used to drive the compression cavity

is based on optically enhanced direct microwave extraction from a photodiode (cf.
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Figure 7.3: Visualization of electron pulse compression with microwave fields. Five represen-
tative streaking spectrograms are shown for increasing values of the microwave compression
strength, gE (left to right). The spectrograms are processed and presented in the same way as in
fig. 7.2 (a). A minimum temporal width of the cross-correlation is evident for gE = 20.1 eV/ps
at high energy gain values where the temporal width of the streaking laser pulse contributing
to the cross-correlation is small (cf. section 7.1). Here, the temporal focus is at the streaking
foil, while at higher or smaller values of gE the temporal focus is before or behind the streak-
ing foil, respectively. The linear chirp of the electron pulse is shown for each spectrogram as
a white dashed line at the decrease feature, denoting the temporal distribution of different
kinetic energies. The chirp changes its sign around the gE value of optimum compression.
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sections 5.2, 5.3, and 6.3). The microwave’s phase is set via a phase shifter to the

compressing2 zero crossing of the energy modulation curve (cf. section 5.3) such

that the central kinetic energy of the electron pulses is unchanged after passing

the cavity. A variable attenuator is used to set the microwave’s amplitude inside the

cavity and thus the compression strength gE. The microwave’s phase is scanned over

a short range around the zero crossing of the energy modulation curve in order to

calibrate gE for a particular microwave power fed into the cavity. All other values of

gE are calculated via this calibration and the measured microwave power, P , after

the attenuator, according to P ∝ g2
E. Since the distance between the cavity and the

streaking foil is fixed at (24.0± 0.5) cm, the temporal focus needs to be adjusted via

the microwave compression strength to coincide with the streaking foil.

The phase space transformations involved in the compression of single-electron

pulses are visualized in fig. 7.3 in an instructive way, being consistent with the illus-

tration in fig. 2.2 (b): At small values of gE, the chirp of the electron pulse (white

dashed lines) is reversed, as compared to the uncompressed pulse (cf. fig. 7.2 (a)),

i.e. electrons of higher kinetic energy arrive later at the streaking foil, in contrast to

normal dispersion in vacuum. However, the temporal focus is behind the streaking

foil due to insufficient compression strength. At gE = 20.1 eV/ps, corresponding to

an input microwave power of P ≈ 100 mW, the temporal focus coincides with the

position of the streaking foil, yielding the shortest duration of the cross-correlation.

The chirp is nearly zero, as no apparent correlation between kinetic energy and delay

time is evident. At higher values of gE, the electron pulses become over-compressed,

i.e. the temporal focus is before the streaking foil, leading to a longer duration of

the cross-correlation at the foil. Here, the chirp is reversed again, as compared to

smaller values of gE, due to vacuum dispersion, which manifests itself in an earlier

arrival time of higher-energetic electrons, as in the case of uncompressed pulses (cf.

fig. 7.2 (a)). The duration of the cross-correlation is a convolution between the elec-

tron pulse’s duration and the field envelope of the streaking laser pulse, as pointed

out in section 7.1. Therefore, a reduced width of the cross-correlation due to electron

pulse compression is only evident at energy gain values at which the compressed elec-

tron pulse’s duration dominates the width of the cross-correlation (cf. fig. 7.2 (c)).

For the shortest electron pulse, the cross-correlation essentially reproduces the field

envelope of the streaking laser pulse (see section 7.3). Note that no spectral interfer-

ence is visible, in contrast to the uncompressed electron pulses (cf. fig. 7.2 (a)). This

is a result of the pulse’s temporal compression, which also compresses the longitudi-

nal coherence of the single-electron’s wave function and thus reduces the visibility of

2Besides recording the energy modulation curve (cf. section 5.3), the compressing and anti-
compressing zero crossings can also be distinguished by the associated transverse defocusing and
focusing effect, respectively [77].
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interference orders, even for small values of the compression strength. In addition,

incoherent spectral broadening occurs due to residual laser-microwave jitter.

The velocity spread, ∆v, required to compress a dispersed electron pulse of a

duration τdisp at a certain temporal focus can be expressed in terms of the corre-

sponding energy spread, ∆E, imprinted by the microwave. The distance from the

microwave cavity to the temporal focus, f , as introduced in section 2.2 (cf. eqn 2.7),

is thus given by:

f = v0
∆z

∆v
= v2

0

τdisp

∆v
≈ τdisp

Dvac∆E
(7.3)

Here, ∆z denotes the spatial extent of the electron pulse, as defined in eqn 2.7, v0 is

the electron pulse’s central velocity, and Dvac the energy-dependent group velocity

dispersion of vacuum for electrons, defined as:

Dvac =
1

v2
0

dv(E)

dE

∣∣∣∣
E0

≈ ∆v

v2
0∆E

, (7.4)

E0 = mev
2
0/2 being the electron pulse’s central kinetic energy and v(E) =

√
2E/me

the electron’s non-relativistic velocity, i.e. the inverse of the dispersion defined in

eqn 2.4. At 25 keV of central kinetic energy, Dvac ≈ 206 fs/(eV m), meaning that

after 1 m of propagation an electron pulse of 1 eV of bandwidth is broadened or

compressed by 206 fs, depending on the sign of the pulse’s initial chirp. In eqns 7.3

and 7.4 the identity

∆v ≈ ∆E
dv(E)

dE

∣∣∣∣
E0

(7.5)

is used for small relative velocity and energy spreads (∆v � v0, ∆E � E0), respec-

tively. Hence, eqns 7.3 and eqn 7.4 are only valid for small relative energy spreads,

single-electron pulses, and sub-relativistic kinetic energies. This approximation is

justified, since the highest microwave amplitudes used in this work imprint a rela-

tive energy spread on the order of 10−3 onto the electrons. As pointed out in sec-

tion 5.3, the energy spread imprinted by the microwave onto the electrons is given

by ∆E ≈ τdispgE (cf. eqns 5.4 and 7.8) if gE stays approximately constant within

τdisp. Thus, using eqn 7.3, the distance to the temporal focus is simply given by:

f ≈ 1

DvacgE
(7.6)

Note that eqn 7.6 neglects the chirp of the dispersed electron pulse at the entrance

of the microwave cavity. However, the additional compression strength required to

compensate for this dispersion caused by the initial energy spread (see eqn 7.9 below)

is typically small for practical values of gE which allow compression below the initial
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duration (cf. section 3.1). Therefore, the electron pulse is considered “unchirped”

with a duration of τdisp at the entrance of the cavity. According to eqn 7.6, the

compression strength required to set the temporal focus at the streaking foil at

f = (24.0± 0.5) cm is gE = (20.2± 0.4) eV/ps, which is in good agreement with the

measured value of 20.1 eV/ps for the shortest duration of the cross-correlation.

The cutoff energy gain for the peak effective electric field of the streaking pulse

used here (1.9 GV/m, slightly higher than in section 7.1) is expected to be at about

77.4 eV, according to eqn 7.2, which is in good agreement with the maximum mea-

sured energy gain of (80± 4) eV for the gE value at optimum compression, consid-

ering the additional energy broadening by the microwave field (see fig. 7.4 (b)). Note

that at other values of gE the highest measurable energy gain is somewhat below the

calculated cutoff value due to the broader temporal spread of the cross-correlation,

which leads to a reduced signal-to-noise ratio.

Fig. 7.4 shows a quantitative evaluation of the temporal spread of the cross-

correlation as well as the energy bandwidth and the linear chirp of the electron

pulses for different values of the microwave compression strength, gE, extracted from

the streaking spectrograms. In order to minimize the contribution of the streaking

pulse’s field envelope to the duration of the cross-correlation, the spectrograms are

integrated over a range of ∼15 eV below the highest measurable energy gain and

the line profiles are fitted by a Gaussian (cf. fig. 7.4 (d) and the inset in fig. 7.2 (c)).

The FWHM duration as a function of gE is shown in fig. 7.4 (a) as black diamonds,

the vertical error bars denoting the statistical error of the fit for the respective

spectrogram and the horizontal error bars denoting the uncertainty of the calibration

of gE. Each duration marks an upper limit for the electron pulse’s duration at the

respective compression strength, limited by the residual contribution of the temporal

width of the streaking pulse’s field envelope to the duration of the cross-correlation.

The characteristic quantities of the electron pulse’s phase space – duration, band-

width, and chirp – are correlated during electron pulse compression, which is sche-

matically demonstrated in fig. 3.1, and a simple analytic model is employed to de-

scribe this process, assuming linear phase space transformations by the microwave

field and vacuum dispersion. For ideal compression, the electron pulse’s duration,

τel, decreases linearly with the propagation distance, starting from its dispersed du-

ration at the entrance of the microwave cavity, τdisp, to a limit, τfinal, which is given

by the initial duration at the instant of photoemission, τinitial, and the additional

energy spread imprinted by the microwave (cf. eqn 3.2 in section 3.1). Since the

distance to the temporal focus linearly depends on the compression strength, gE (cf.

eqn 7.6), the measured electron pulse’s duration at the streaking foil is given by:

τel =
√
τ 2

disp (1− fDvacgE)2 + τ 2
final (7.7)
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Figure 7.4: Quantitative analysis of electron pulse compression with microwave fields. The
dashed gray vertical line in (a)–(c) denotes the compression strength yielding the shortest
electron pulse, gE = 20.1 eV/ps. (a) The shortest FWHM duration of the cross-correlation is
determined by integrating each spectrogram over a range of ∼15 eV below the highest mea-
surable energy gain and fitting a Gaussian to the line profile (see (d)). The solid lines are
calculated according to eqn 7.7 for τfinal being limited by the shortest measured duration of
the cross-correlation (blue) and for ideal phase-space-limited compression (green). Note that
the duration of the cross-correlation falls significantly below the initial duration of photoemis-
sion (red dotted line) around the optimum compression strength. (b) FWHM bandwidth of
the electron pulses after the microwave cavity, measured directly with the ToF spectrometer
without the streaking laser pulse. A linear dependence on the microwave compression strength
is evident, according to eqn 7.8 (blue line). (c) Linear chirp of the electron pulses, evaluated
from the decrease feature of the spectrograms around zero energy gain (cf. white dashed lines
in fig. 7.3). Nearly zero chirp is measured at optimum compression strength where the temporal
focus is at the streaking foil. The blue line is calculated according to eqn 7.9. (d) Line profile
of the cross-correlation of the shortest electron pulse at gE = 20.1 eV/ps, integrated over
∼15 eV below the cutoff energy gain. A Gaussian fit yields a duration of (35± 3) fs FWHM,
corresponding to a standard deviation of (15± 1) fs.

Here, 267 nm UV pulses are used for photoemission (cf. sections 5.1, 5.3, and 6.3)

with a duration of (90± 20) fs FWHM at the photocathode after a dispersive vac-

uum window, implying τinitial = (90± 20) fs FWHM (cf. section 5.3). The dispersed

electron pulse’s duration at the entrance of the microwave cavity is measured as

τdisp = (360± 20) fs FWHM3 (cf. section 7.1). Thus, the energy spread imprinted

3In fact, the duration of the uncompressed electron pulse is measured at the streaking foil
rather than directly at the position of the microwave cavity. However, according to eqn 7.4, the
small energy bandwidth leads to an error of only ∼10 fs due to the additional distance.
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onto the electrons at gE = 20.1 eV/ps for optimum compression at the streaking

foil is about 7.2 eV FWHM (cf. eqn 5.4). The measured initial energy spread, ex-

tracted from the tilt of the interference orders of the uncompressed electron pulse

(cf. fig. 7.2 (a)) and its duration, is ∆ε ≈ 0.4 eV FWHM [87, 93] and therefore the

electron pulse’s duration at the temporal focus is τfinal ≈ 4.9 fs FWHM for ideal

phase-space-limited compression, according to eqn 3.2. This is shown as the green

line in fig. 7.4 (a), while the blue line indicates the duration of the cross-correlation,

assuming τfinal ≈ 35 fs FWHM, which is the minimum measured duration, as shown

in fig. 7.4 (d). Note that the duration of the cross-correlation, which constitutes an

upper limit for the electron pulse’s duration, falls significantly below τinitial (red

dotted line in fig. 7.4 (a)) around the optimum compression strength.

The FWHM energy bandwidth of the electron pulses after the interaction with

the microwave field is extracted directly from the “unstreaked” energy spectra, i.e.

without the streaking laser pulse, and depicted in fig. 7.4 (b). According to eqn 5.4,

the energy broadening imprinted by the microwave field onto an electron pulse of a

duration τdisp is simply given by gE. The initial energy bandwidth after photoemis-

sion, ∆ε, is negligible for realistic values of the compression strength gE:

∆E =
√
τ 2

dispg
2
E + ∆ε2 ≈ |τdispgE| (7.8)

The calculated energy bandwidth is shown as the blue line in fig. 7.4 (b), in good

agreement with the measurement (black diamonds).

The linear chirp of the electron pulses is defined in analogy to optics as the

derivative of the arrival time of each energy component constituting the pulse’s

phase space with respect to energy, in units of ps/eV. In the phase space diagram

depicted in fig. 3.1 as well as in the measured streaking spectrograms this corresponds

to the inverse slope of the peak delay time of each energy slice (white dashed lines in

fig. 7.3). Furthermore, the sign of the chirp is positive if the low-energetic components

are further advanced in time, i.e. arrive earlier at the target, than the high-energetic

components; therefore, vacuum dispersion without microwave compression leads to a

negative chirp, since electrons at higher kinetic energies propagate faster. Fig. 7.4 (c)

shows the chirp evaluated from the spectrograms at the decrease feature around

zero energy gain (black diamonds). Without the microwave field (cf. fig. 7.2 (a)),

the chirp is negative. As the microwave compression strength increases, the chirp’s

sign becomes positive and its magnitude is successively reduced to zero at optimum

compression (nearly vertical white dashed line in the central spectrogram in fig. 7.3).

At higher values of the compression strength, the sign of the chirp is negative again,

since the high-energetic components outrun the low-energetic components after the

temporal focus and arrive earlier at the streaking foil. The chirp of the electron
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pulses, Cel, at the streaking foil depends on three constituents: the dispersed chirp,

Cdisp, at the entrance of the microwave cavity, the effect of energy modulation by

the microwave, gE, and the subsequent dispersion through free propagation, Dvac,

which leads to temporal compression or broadening. As discussed in section 3.1, the

microwave field modulates the electron pulse’s phase space in the energy domain,

while vacuum dispersion modulates it in the time domain. Hence, we obtain:

Cel =
1

C−1
disp + gE

− fDvac (7.9)

Note that Cdisp is calculated from the chirp Cel,0, which is measured at the streak-

ing foil without microwave compression (gE = 0), according to eqn 7.9: Cdisp =

Cel,0 + fDvac. The calculated chirp as a function of gE is shown as the blue line

in fig. 7.4 (c), using Cdisp ≈ −1.76 ps/eV obtained from the streaking measurement

without compression. The singularity at gE = −C−1
disp ≈ 0.57 eV/ps denotes the

microwave compression strength required to exactly compensate for the chirp due

to the initial dispersion in vacuum. This mode of operation, though undesirable

for temporal compression, can be utilized to compress the electron pulse’s energy

bandwidth rather than its duration, since the correlation between kinetic energy

and delay time is removed here, conserving the phase space volume (cf. sections 2.2

and 3.1), while the dispersed duration, τdisp, is maintained.

The remarkable agreement of the simple analytical model with the measured

phase space transformations verifies the linearity and reliability of electron pulse

compression with microwave fields, constituting a longitudinal “lens” for electron

pulses [77]. At the optimum compression strength, a duration of the cross-correlation

of (35± 3) fs FWHM or (15± 1) fs rms is achieved, as shown in fig. 7.4 (d), which

deviates from the ideal compression due to the residual contribution of the streak-

ing laser pulse’s duration, laser-microwave jitter, and geometric broadening (see

section 7.3).

7.3 Shortest electron pulses

As pointed out in section 7.1, the duration of the cross-correlation obtained by opti-

cal streaking is a convolution between the electron pulse’s duration and an energy-

gain-dependent sampling function which is given by the envelope of the streaking

laser pulse’s electric field. Therefore, the duration of the cross-correlation converges

towards the electron pulse’s duration above a certain energy gain value where the

temporal width of the streaking field envelope becomes significantly shorter than the

electron pulse’s duration (cf. fig. 7.2 (c)). When microwave compression is employed,
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the electron pulse’s duration becomes comparable to the streaking pulse’s duration

or even shorter; thus, the temporal width of the streaking field envelope significantly

contributes to the duration of the cross-correlation, even close to the cutoff energy

gain. The spectrogram at optimum compression is integrated over ∼15 eV below the

cutoff energy gain, i.e. from 65 eV to 80 eV, in order to extract the duration of the

cross-correlation (cf. fig. 7.4 (d)). The center of this range is about 10 % below the

cutoff. A Gaussian streaking laser pulse with a duration of the intensity envelope

of 50 fs FWHM (cf. section 4.3), corresponding to a temporal width of the field en-

velope of 50 fs ·
√

2 ≈ 71 fs FWHM, has a duration of ∼28 fs (full width) at 10 %

below the peak, which is close to the measured duration of the cross-correlation of

∼35 fs FWHM. This motivates precise modeling of the laser-electron interaction at

the streaking foil in order to deconvolute the actual electron pulse’s duration from

the cross-correlation.

Fig. 7.5 shows the calculated field of the streaking laser pulse in comparison to

the spectrogram at optimum compression strength (cf. fig. 7.3). The streaking field is

derived by Fourier transformation of the measured optical spectrum (cf. fig. 4.3 (a)),

assuming zero group delay dispersion (linear chirp), which is compensated at the

streaking foil by adjusting the prism compressor (cf. section 4.3), and −20 200 fs3 of

uncompensated third-order dispersion. A significant asymmetry and a temporally

broad pedestal are evident and also qualitatively reproduced at low energy gain

values in the streaking spectrogram. The temporal width of the field envelope is

53 fs FWHM. The portion of the streaking pulse’s field contributing to the duration

of the cross-correlation, integrated from 65 eV of energy gain until the cutoff energy

gain, is marked by the upper red arrows. The temporal width of the streaking field

corresponding to an energy gain of 65 eV is ∼32 fs, which is comparable to the

measured duration of the cross-correlation in this energy range, as discussed above.

A semi-classical simulation of the laser-electron interaction at the streaking foil

is performed in order to deconvolute the electron pulse’s duration from the measured

cross-correlation. The electron is treated as a non-relativistic quantum mechanical

wave packet in a classical optical field and the interaction at the streaking foil

is assumed to be instantaneous. A detailed formalism can be found in [93]. The

calculated streaking laser field (cf. fig. 7.5 (a)) is used in the simulation with a peak

field amplitude fixed at 2 GV/m, corresponding to the measured cutoff energy gain

of about 80 eV (cf. eqn 7.2). The coherence time of each single-electron wave packet

is set to about 100 as of standard deviation, according to the uncertainty relation

and the energy bandwidth imprinted by the microwave field (cf. section 2.1). At

each laser-electron delay step, the interaction of single-electron wave packets with

the streaking field is integrated over a Gaussian temporal electron density with a

duration of τfinal (cf. the illustration in fig. 2.1). In addition, an integration over
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Figure 7.5: Contribution of the streaking laser pulse’s temporal profile to the cross-correlation.
(a) Streaking laser field calculated from the optical spectrum (cf. fig. 4.3 (a)) and uncom-
pensated third-order dispersion of −20 200 fs3. The group delay dispersion (linear chirp) is
compensated by the prism compressor and assumed to be zero. The pulse exhibits significant
asymmetry and a broad temporal pedestal; the duration is 53 fs FWHM. (b) Spectrogram at
optimum compression strength (cf. fig. 7.3) for comparison, which qualitatively reproduces the
asymmetry as well as the pedestal. The upper red arrows mark the integration range used
to calculate the duration of the cross-correlation, starting at 65 eV of energy gain, and the
corresponding duration of the streaking pulse’s field in (a) of about 32 fs.

the Gaussian cross-section of the interaction area between the streaking laser pulse

and the electron pulse at the streaking foil accounts for the non-uniform streaking

field strength across the beam diameter. Here, the laser beam’s diameter at the

foil is 56 µm × 86 µm FWHM, projected onto the electron beam’s axis, and the

electron beam is focused to a diameter of 94 µm × 113 µm FWHM (smaller than

in section 7.1). τfinal, being the compressed electron pulse’s duration, as well as the

third-order dispersion of the laser pulse, defining the shape of the streaking field,

are used as optimization parameters in order to maximize the agreement between

the simulation and the measurement.

Fig. 7.6 shows the results of the simulation in comparison with the measurement.

The measured streaking spectrogram at optimum compression strength (cf. fig. 7.3)

is depicted in fig. 7.6 (a), while the simulated spectrogram is shown in fig. 7.6 (b).

The best agreement with the measurement is achieved for a third-order dispersion

of −20 200 fs3 (cf. fig. 7.5 (a)) and τfinal = 28 fs FWHM. Ripples of the streaking field

envelope are clearly visible in the simulated spectrogram, while they are smeared

out in the measured spectrogram due to larger steps of the delay time (∼20 fs), drift,

and noise. Nevertheless, the outer shape shows good agreement. Fig. 7.6 (c) depicts
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Figure 7.6: Semi-classical simulation of the laser-electron interaction at the streaking foil and
comparison with the measurement. (a) Measured streaking spectrogram at optimum compres-
sion strength (cf. fig. 7.3). (b) Simulated streaking spectrogram which fits best to the data,
using the third-order dispersion of the laser pulse and the electron pulse’s duration as param-
eters. The streaking laser field in fig. 7.5 (a) is used and an electron pulse’s duration of 28 fs
FWHM. (c) Line profiles extracted from (a) (black diamonds) and from (b) (blue lines) at
20 eV, 25 eV, 30 eV, 35 eV, and 40 eV of energy gain, each integrated over a range of ∼2 eV.
(d) Gaussian FWHM duration of the measured cross-correlation (black diamonds) as a func-
tion of the energy gain in comparison to three simulations (solid lines), assuming a duration
of the compressed electron pulse of 38 fs FWHM (red), 28 fs FWHM (blue), and 18 fs FWHM
(purple). (e) Zoom of (d), revealing the best agreement with the measured data for an electron
pulse’s duration of τfinal = 28 fs FWHM.

line profiles extracted from the measured spectrogram (black diamonds) and from

the simulation (blue lines) at different energy gain values, each integrated over a

range of ∼2 eV. The error bars denote statistical errors of the measured spectrogram

within the integration range. The FWHM duration of the cross-correlation as a

function of the energy gain is shown in fig. 7.6 (d), evaluated by fitting a Gaussian

to each line profile (cf. fig. 7.2 (c)). The measurement (black diamonds) is depicted in

comparison to three simulations (solid lines), assuming a compressed electron pulse’s

duration of τfinal = 38 fs FWHM (red), τfinal = 28 fs FWHM (blue), and τfinal =

18 fs FWHM (purple), respectively. Fig. 7.6 (e) shows a zoom of fig. 7.6 (d), revealing

the best agreement of the simulation with the measurement for an electron pulse’s

duration of τfinal = 28 fs FWHM. The error bars denote uncertainties of the respective

Gaussian fits. The overall good agreement of the simulation with the measurement

justifies a deconvoluted compressed electron pulse’s duration of (28± 5) fs FWHM

or (12± 2) fs rms, the error margin being estimated from fig. 7.6 (e).
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This demonstrates a temporal compression of the electron pulses by more than

an order of magnitude as compared to the dispersed pulses at the entrance of the

microwave cavity, having a duration of τdisp = (360± 20) fs FWHM. Moreover, the

compressed single-electron pulses reported here are about threefold shorter than

the UV laser pulses used for photoemission and about sixfold shorter than previous

demonstration of microwave compression using dense electron pulses [70], constitut-

ing, to our knowledge, the shortest electron pulses at a kinetic energy suitable for

UED. Ideally, phase-space-limited compression implies a compressed electron pulse’s

duration of about 5 fs FWHM (cf. section 7.2). The deviation of this value from the

measured duration is attributed to the nonlinear phase space transformation dur-

ing the initial acceleration, transverse distortions of the beam profile inside electric

and magnetic fields (cf. section 3.3), imperfect group velocity matching between

the laser and the electron beam at the streaking foil (cf. section 7.1), and residual

laser-microwave jitter and drift (cf. sections 4.5 and 6.3). The estimated temporal

broadening due to these contributions, as discussed in the respective sections, is in

good agreement with the achieved duration of the compressed electron pulse. Fur-

ther compression into the few-femtosecond domain and below requires addressing

all sources of temporal broadening, especially the quality of laser-microwave syn-

chronization [136, 137] and geometric broadening [105] (see sections 8.2 and 8.3).

The characterization of electron pulse compression described in this work is also

suitable for multi-electron pulses. In order to assess the influence of space charge on

the achievable pulse duration, identical streaking measurements as reported above

for single-electron pulses are also performed for 3, 10, 15, 27, and 43 electrons per

pulse. The number of electrons per pulse is adjusted via the pulse energy of the UV

laser pulses used for photoemission. The FWHM duration of the compressed electron

pulses is obtained for each measurement by deconvolution, as described above, and

shown in fig. 7.7. The optimum compression strength required to set the temporal

focus at the streaking foil increases from 20.1 eV/ps for single-electron pulses to

25.3 eV/ps for 43 electrons per pulse. This trend is also predicted by simulations (cf.

fig. 3.2), since the growing Coulomb repulsion around the temporal focus retards the

compression. A significant temporal broadening is already evident for few electrons

per pulse, roughly doubling the single-electron pulse’s duration at 10 electrons per

pulse. Nevertheless, this temporal resolution is still sufficient for studying interesting

ultrafast structural dynamics at a tenfold electron flux, substantially reducing the

acquisition time or providing improved statistics. Note that space-charge-induced

broadening crucially depends on the electron’s kinetic energy and the beam geometry

throughout the entire propagation. A compressed electron pulse’s duration of about

160 fs FWHM has been achieved for dense pulses of about 106 electrons at a similar

distance of the temporal focus as reported in this work [70], albeit at a relativistic



104 Chapter 7. Ten-femtosecond electron diffraction

1 10 20 30 40
0

25

50

75

100

C
o
m

p
re

s
s
e
d
 d

u
ra

ti
o
n
 (

fs
)

Electrons per pulse

Figure 7.7: Broadening of multi-electron pulses due to space charge. The deconvoluted elec-
tron pulse’s FWHM duration (black diamonds) is shown for 1, 3, 10, 15, 27, and 43 electrons
per pulse, the black dashed line being a guide to the eye. The optimum compression strength
increases from 20.1 eV/ps for single-electron pulses to 25.3 eV/ps for 43 electrons per pulse.
Temporal broadening due to space charge is evident even for few electrons per pulse.

kinetic energy of 95 keV and a beam diameter of about 1 mm FWHM. Although

temporal broadening due to space charge is certainly less severe at higher kinetic

energies, fig. 7.7 clearly demonstrates the necessity of single-electron pulses in order

to study electronic dynamics on a few-femtosecond or attosecond time scale.

7.4 Application: Static diffraction and EELS

In order to verify the feasibility of atomic-scale imaging with compressed single-elec-

tron pulses, static diffraction patterns are recorded from an organic molecular crystal

of N-(triphenylmethyl)-salicylidenimine (schematic structure is shown as an inset in

fig. 7.8 (a)), which forms a bi-molecular unit cell with a size of about 1 nm× 1 nm×
1 nm. Free-standing films of 50 nm thickness are produced by ultramicrotomy [86]

and placed at the temporal focus. Diffraction is observed via a phosphor screen

coupled to a CMOS camera chip (cf. section 5.1) with the ToF spectrometer removed.

Fig. 7.8 shows the diffraction patterns for two cases, one with the spatial focus set at

the sample for maximum diffraction efficiency (fig. 7.8 (a)) and one with the spatial

focus adjusted onto the screen for maximum coherence and sharpness of the Bragg

spots (fig. 7.8 (b)). Some asymmetry remains due to imperfect angular alignment.

The observed sharpness of the spots in fig. 7.8 (b) indicates that the microwave

compression and the associated energy broadening does not deteriorate the superior

transverse coherence of the original single-electron source [86]. This demonstrates

the ability to achieve atomic resolution with single-electron pulses using compression

with microwave fields.
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Figure 7.8: Static diffraction and EELS with compressed single-electron pulses. (a) Diffraction
pattern obtained with compressed single-electron pulses focused on an organic molecular crystal
of N-(triphenylmethyl)-salicylidenimine (structure shown as an inset) with unit cell dimensions
of about 1 nm. (b) Diffraction pattern with the electron beam focused through the sample onto
the screen for maximum coherence and sharpness of the Bragg spots. The measured intensities
and the sharpness of the spots demonstrate the ability to achieve atomic-scale resolution with
compressed single-electron pulses. The electron counts are color-coded on a logarithmic scale
and some characteristic Bragg spots are labeled in the diffraction images. (c) EELS spectra of
aluminum obtained with uncompressed (black line) and compressed (blue line) single-electron
pulses. The plasmonic loss peak at about 15 eV of energy loss, representing the bulk metal’s
plasma frequency, is clearly distinguishable from the zero-loss peak in both cases.

As pointed out in the introduction of chapter 6, EELS is another powerful method

for time-resolved structural analysis [172, 173]. Fig. 7.8 (c) shows an EELS spec-

trum of the aluminum foil used for streaking, recorded with uncompressed (∼360 fs

FWHM, black line) and compressed (∼28 fs FWHM, blue line) electron pulses, re-

spectively. The well-known plasmonic loss peak at about 15 eV of energy loss in alu-

minum, representing the bulk metal’s plasma frequency [178], is clearly distinguish-

able from the zero-loss peak in both cases, despite the significant spectral broadening

due to microwave compression. This suggests time-resolved electron spectroscopy as

another promising method for investigating matter transformations with the un-

precedented temporal resolution offered by the compression technique developed in

the course of this work.

In conclusion, this work presents ultrashort electron pulses for UED, capable

of resolving the fastest atomic and molecular motion in space and time. Although

spatial and temporal resolution are demonstrated separately, the implementation

of this electron source into an actual UED experiment is straightforward and the

subject of current research. These results pave the way for future applications of

UED as a tool for observing charge densities in motion on an atomic length scale

and an electronic time scale.





Chapter 8
Towards attosecond electron diffraction:

Route and caveats

In summary, this work conclusively demonstrates record-short single-electron pulses

for UED at a de Broglie wavelength of 0.08 Å, or a kinetic energy of 25 keV, with

a duration of (28± 5) fs FWHM or (12± 2) fs rms. This duration is measured with

respect to the timing of femtosecond laser pulses, denoting the realistically achievable

effective temporal resolution of UED pump-probe experiments employing ultrashort

laser pump pulses and single-electron probe pulses. The transverse coherence is

suitable for diffraction from complex molecular crystals. The temporal resolution is

already sufficient for 4D imaging of the fastest known atomic motion in chemical

reactions, such as intra-molecular proton transfer, occurring on a time scale of 30 fs–

100 fs [11]. Currently, only large-scale X-ray FEL facilities offer slightly shorter pulses

capable of atomic-scale imaging, but with reduced spatial resolution (cf. fig. 1.2).

Essentially, the unprecedented electron pulse duration reported here is due to

the combination of four concepts: single-electron pulses (cf. chapter 2), a microwave

compression technique (cf. chapter 3), superior temporal synchronization of the mi-

crowave source to a femtosecond mode-locked laser (cf. chapter 4), and temporal

characterization by optical field streaking offering potentially attosecond resolution

(cf. chapter 7).

Fundamentally, at kinetic energies of tens of keV, the shortest duration of single-

electron pulses allowed by the uncertainty principle is on the order of zeptoseconds

(10−21 s) at accordingly high bandwidths. The nearly linear phase space transfor-

mation afforded by the microwave cavity (cf. section 7.2) demonstrates that the

microwave compression technique can confine single-electron wave packets almost ar-

bitrarily in time, limited only by the acceptable energy bandwidth (see section 8.4).

Thus, the temporal resolution of single-electron UED can potentially compete with

107
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or even surpass the resolution of attosecond laser spectroscopy (cf. section 1.3). The

results and concepts of this work mark an important first milestone towards this

goal and motivate further improvement. The unfolding perspectives and remaining

challenges of advancing UED into the few-femtosecond or attosecond domain are

discussed in the following.

8.1 Promising first sample systems for attosecond

dynamics

Several fundamental processes driven by few-femtosecond and attosecond electronic

motion are pointed out in chapter 1, such as Auger relaxation after atomic inner-

shell excitation, electron tunneling in atoms, collective electron motion (plasmons

and polaritons), and the polarization response of a material to external electric

fields [5, 179]. Many of these processes have been studied via spectroscopy with

attosecond optical pulses. This requires excitation of suitable transitions by the

probe pulse and a subsequent change of transition probability during the course of

the dynamics. The large photon energy and bandwidth of attosecond optical pulses

(typically XUV or soft X-ray radiation) in comparison to atomic potential energies

of valence electrons or chemical bonds thus limits attosecond spectroscopy to quite

specific sample systems. In addition, spectroscopy only provides access to energy

levels without direct structural information.

In contrast, UED potentially offers direct visualization of charge densities in-

dependent of internal energy levels and transitions. The concepts described here

indicate the possibility to eventually reach electron pulse durations of few femtosec-

onds or below. At these time scales, motion of electron densities in matter can be

observed, while nuclei are almost stationary [5].

Fig. 8.1 illustrates two proposed applications for studying attosecond electronic

dynamics by UED, using crystalline molecular iodine as a model system [5]. The

crystal structure consists of diatomic molecules, two electrons contributing to an

intramolecular σ bond for each molecule with a length of ∼2.7 Å. Fig. 8.1 (a) depicts

the first potential application which is an anti-bonding excitation of the system.

The redistribution of electron density during the transition from covalently bound

molecules into a (transient) crystal of isolated atoms is accompanied by a signif-

icant change in the Bragg spot intensities, on the order of 10 %–30 %, before any

nuclear motion takes place [5]. The temporal resolution available for mapping out

this process is limited by the duration of the laser pump pulses used for excitation.

Iodine atoms, due to their large mass, do not move significantly within the first

tens of femtoseconds. The electron pulses achieved in this work are short enough
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Figure 8.1: Schematic of proposed attosecond UED applications for studying electronic dy-
namics, using crystalline molecular iodine as a model system; figure adapted from [5]. (a)
Transition of molecular bonding order upon excitation from a bonding (upper panel) into an
anti-bonding state (lower panel). (b) Displacement of electron density, mainly intramolecular
bonding electrons, in a non-resonant external laser field, constituting the material’s polarization
response.

to potentially visualize the electron density of the S1 excited state prior to any

atomic motion, hence providing information on the photophysical forces responsible

for photochemical reactions. Challenges for realizing this experiment are preparation

of an iodine crystal for diffraction in transmission and investigation of thermal stress

(see section 8.2). One of the central difficulties, the electron pulse’s duration, is now

solved in this case.

The second proposed application, as shown in fig. 8.1 (b), is the displacement of

electron densities in the presence of an external electric field, such as a laser field at

optical frequencies. Depending on the local atomic or molecular potential, electron

densities follow the external field with a phase delay, constituting the material’s

polarization response and refractive index, which is in general nonlinear at high

external field strengths. Non-uniform displacement of the charge densities can be

visualized by means of electron diffraction without the need for the (slower) nuclei

to move, provided sufficiently short electron pulses capable of resolving the optical

field oscillations. At non-resonant frequencies of the external field, little energy is

transferred to the system – in contrast to resonant excitation of electronic transi-

tions in the case of spectroscopy – which minimizes thermal stress of the sample,

especially since single-electron UED requires a large number of pump-probe cycles

(see section 8.2).

In fig. 8.1 (b), an external electric field is applied along the b axis, which is the

axis of least symmetry. A field amplitude of about 1 GV/m, readily provided by a

femtosecond laser pulse, is below the damage threshold of the sample and causes

a charge displacement of the intramolecular bond of ∼0.08 Å. The corresponding
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changes in the intensities of some Bragg spots are on the order of ±15 %, allowing

visualization of sub-̊angström displacement of charge densities [5].

First studies of electronic polarization response upon non-resonant optical ex-

citation have been experimentally conducted by time-resolved hard-X-ray diffrac-

tion [179], albeit without sub-optical-cycle temporal resolution yet. This shows that

4D imaging of electronic processes is possible by diffraction. Here, electron diffrac-

tion offers the possibility of attosecond temporal resolution, enabling investigation

of fundamental light-matter interaction in the time domain.

8.2 Stability, thermal stress, and reversibility

Dense electron bunches are widely used for UED, since they allow acquisition of

high-quality diffraction snapshots of the specimen’s transient structure during a sin-

gle pump-probe cycle (single-shot UED), providing a temporal resolution of several

100 fs after microwave compression [70, 96]. Only few pump-probe cycles are required

to map out the entire dynamics of the system under investigation when using single-

shot UED. A low repetition rate in the kHz range or below is therefore sufficient

for reasonable acquisition times. This also minimizes the thermal energy transferred

to the sample by the excitation, avoiding thermal damage of the sample. More-

over, investigation of irreversible processes is facilitated. However, approaching sub-

femtosecond temporal resolution with UED necessitates single-electron pulses, since

Coulomb repulsion within a dense electron bunch substantially limits the achievable

electron pulse’s duration after microwave compression (cf. section 7.3).

In contrast to dense electron bunches, using single-electron pulses requires av-

eraging over many pump-probe cycles (roughly 105–106) for a single pump-probe

delay step in order to obtain a diffraction image with a sufficient signal-to-noise

ratio for detecting small changes in the positions and intensities of the Bragg spots.

This restricts the application of single-electron UED to highly reversible processes,

unless the specimen is rapidly and reproducibly replaced. Furthermore, the repeti-

tion rate of single-electron UED has to be ideally in the 100 kHz to MHz range in

order to maintain a reasonable acquisition time. Thus, thermal energy deposited by

the optical pump pulses can accumulate and damage a thin-film crystalline sample

(cf. section 1.3). This constraint is significantly relaxed when studying dynamics

of electron densities which are non-resonantly driven by external fields, avoiding

deposition of thermal energy inside the specimen by absorption (cf. section 8.1).

Higher kinetic energies of the electrons than reported here allow using thicker

specimens for UED, which are less susceptible to thermal damage. The microwave

power required for electron pulse compression scales with the cube of the kinetic

energy. Therefore, increasing the kinetic energy from 25 keV to 100 keV requires in-
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creasing the microwave power inside the compression cavity used in this work from

∼100 mW to about 6.4 W at a frequency of ∼6.2 GHz for a distance to the temporal

focus of about 24 cm. Although this increase in power demand is substantial, such

a power level can be readily provided with little technical effort by solid-state mi-

crowave amplifiers. The available microwave power gives rise to a trade-off between

the maximum achievable ratio of temporal compression (see section 8.4) and the

maximum usable kinetic energy of the electrons.

Long-term stability is essential for single-electron UED, which typically requires

measurement times on the order of hours for mapping out structural dynamics via

diffraction with a sufficient signal-to-noise ratio. A drift of the microwave signal’s

phase with respect to the laser’s repetition rate on the order of 100 fs peak-to-

peak on a half-hour time scale is evident for the passive synchronization scheme

presented in this work (cf. section 6.3). Moreover, residual high-frequency phase noise

of the microwave signal contributes to the limit of the achievable compressed electron

pulse’s duration in this work (cf. section 4.5). Both issues can be addressed by an

improved active laser-microwave synchronization based on optical interferometric

laser-microwave phase detection, promising sub-femtosecond stability with regard

to timing drift and jitter [136, 137].

8.3 Isochronic electron beams

Spatial distortions of the electron beam in electron-optical elements, such as the

anode hole, magnetic lenses, or the compression cavity, lead to a curved pulse front

and thus temporal broadening. In this work, the magnitude of this broadening is

comparable to the residual timing jitter of the microwave source (cf. sections 3.3

and 4.5) and constitutes another significant contribution to the limit of the achiev-

able compressed electron pulse’s duration. Therefore, avoiding transverse distortions

of the beam profile is crucial for achieving electron pulse durations on the order of

few femtoseconds and below.

Fig. 8.2 (a) schematically shows an isochronic beam geometry for minimizing spa-

tial distortions [105], consisting of a magnetic lens after the compression cavity.

This geometry ensures a constant timing over the entire transverse beam profile

at a simultaneous spatial and temporal focus. Particle tracking simulations of the

beam diameter and the electron pulse’s duration during propagation are depicted in

fig. 8.2 (b) for different values of the cavity’s compression strength. The spatial focus

is set via the current through the magnetic lens to coincide with the cavity’s tem-

poral focus. Further details can be found in [105]. Although a simultaneous spatial

and temporal focus is evident for all compression strengths, there is a clear mini-

mum of the achievable electron pulse’s duration at the focus for a magnification by
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Figure 8.2: Avoiding transverse distortions in electron-optical elements; data and figure taken
from [105]. (a) Schematic of an isochronic beam geometry with a magnetic lens (g = 6 cm) af-
ter a compressing microwave cavity (d = 4 cm), providing a simultaneous spatial and temporal
focus for a magnification by the magnetic lens of about 1:2. (b) Particle tracking simulations
showing the beam diameter and electron pulse’s duration (all values denote FWHM) for dif-
ferent values of the microwave cavity’s compression strength, setting the temporal focus at
a propagation distance of 9 cm (red), 12 cm (purple), 17 cm (green), and 19.5 cm (blue). In
each case, the current of the magnetic lens is chosen to produce a spatial focus at the same
distance as the cavity’s temporal focus. Focusing in space and time is evident for all cases;
however, spatiotemporal distortions are minimized for a magnification of about 1:2 (green),
yielding a beam diameter of ∼20 µm and a pulse duration of ∼1.4 fs at the focus.

the magnetic lens of about 1:2. For typical electron beam parameters similar to the

experimental parameters in this work and a distance to the temporal focus of about

13 cm after the microwave cavity, the electron pulse is compressed to a FWHM du-

ration of ∼1.4 fs, while the FWHM beam diameter at the focus is ∼20 µm [105].

An isochronic beam geometry using other magnification ratios than 1:2 requires an

additional magnetic lens [105].

8.4 Duration and bandwidth of electron pulses

There is a fundamental limit for the duration of electron pulses and thus the temporal

resolution of UED. In analogy to optical pulses, the intrinsic duration of a single-

electron wave packet is limited to roughly one de Broglie period. At kinetic energies

suitable for diffraction – on the order of 10 keV to 1 MeV – this single-cycle limit is

in the zeptosecond range, which is far below any current technological constraint.

However, the sharpness of the Bragg spots is limited by the bandwidth of the electron

pulses, the spread of the diffraction angles being given by the relative energy spread

for small angles and small relative bandwidths.

The microwave compression technique presented in this work squeezes the elec-

tron pulse’s phase space distribution in the temporal domain at the expense of an
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according increase in bandwidth. Thus, according to eqn 3.2, any compression ratio

is in principle achievable, provided a sufficiently strong linear temporal gradient of

the microwave field (i.e. compression strength) and as long as the imprinted energy

spread is tolerable by the UED application. For example, using 50 fs UV laser pulses

for photoemission, the electron pulses can be compressed to 50 as, while the energy

spread increases from typically 0.2 eV–0.3 eV to about 200 eV–300 eV, which is still

acceptable for diffraction at a central energy of tens of keV. Here, the distance to

the temporal focus is on the order of millimeters (cf. eqn 7.6). It can be increased to

more practical lengths by allowing the electron pulse to disperse before entering the

compression cavity, e.g. by using a smaller static acceleration field, thus requiring a

smaller compression strength to gain the same amount of energy spread. Moreover,

the initial bandwidth can be minimized by tuning the laser’s photon energy close to

the photocathode’s work function [82] or by using an ultracold electron source [84].

This increases the maximum compression ratio for a given maximum acceptable

energy spread.

8.5 Characterization of ultrashort electron pulses

Notably, the compressed electron pulses demonstrated in this work are shorter than

the laser pulses involved in their generation and characterization. Ultrashort electron

pulses with durations well below the period of an optical cycle facilitate applying

transients of optical fields for both interaction with charge densities in suitable

samples on attosecond time scales (cf. section 8.1) as well as in-situ characterization

via optical field streaking (cf. section 7.1).

Fig. 8.3 depicts simulated streaking spectrograms of the laser-electron cross-

correlation described in section 7.1 [93]; durations denote FWHM. Fig. 8.3 (a) qual-

itatively reproduces the measurement in fig. 7.2 (a), assuming a 50 fs laser pulse and

a 300 fs chirped electron pulse which coherently extends over several laser cycles,

approximately reflecting the experimental conditions. When using few-cycle laser

pulses (5 fs duration) with stabilized carrier-envelope phase for streaking and re-

ducing the electron pulse’s duration close to the period of an optical cycle (3 fs),

depicted in fig. 8.3 (b), the spectrogram shows a transition from the regime of cycle-

averaged coherent interference to field-resolved sampling [13]. Further reducing the

electron pulse’s duration well below the period of an optical cycle (1 fs), as shown in

fig. 8.3 (c), yields a spectrogram very similar to attosecond XUV streaking spectro-

grams [31], accurately mapping the laser pulse’s vector potential and thus its electric

field. Therefore, few-femtosecond and sub-femtosecond electron pulses offer the po-

tential of probing optical-field-induced dynamics of charge densities in matter by

UED, combining the superior temporal resolution of attosecond XUV spectroscopy



114 Chapter 8. Towards attosecond electron diffraction

-300 -150 0 150 300

24990

25000

25010

 

K
in

e
tic

 e
n

e
rg

y 
(e

V
)

Delay time (fs)
-8 -4 0 4 8

 

Delay time (fs)
-8 -4 0 4 8

Delay time (fs)
0 1

(a) (b) (c)

300 fs 3 fs 1 fs

Figure 8.3: Simulated streaking spectrograms of the laser-electron cross-correlation described
in section 7.1 (durations denote FWHM); data and figure taken from [93]. (a) A 50 fs laser pulse
at a wavelength of 800 nm and a 300 fs chirped electron pulse at a central energy of 25 keV
coherently extending over several laser cycles qualitatively reproduce the tilted interference
pattern in fig. 7.2 (a). (b) A transition between the coherent interference regime and field-
resolved sampling is visible for a 5 fs laser pulse with stabilized carrier-envelope phase (black
dashed line) and a 3 fs electron pulse. (c) Direct sampling of the 5 fs laser field is evident when
using a 1 fs electron pulse.

with atomic spatial resolution of electron diffraction. In addition, the simulations

demonstrate the possibility of achieving attosecond temporal resolution with the

characterization technique applied in this work, which is a crucial requirement for

advancing the temporal resolution of UED into the few-femtosecond or attosecond

regime.

8.6 Conclusions

The implementation of a UED experiment with few-femtosecond or attosecond tem-

poral resolution requires combining a stable single-electron source [87] and the micro-

wave compression technique presented in this work with the concepts for improving

the temporal resolution discussed in this chapter. Despite the remaining challenges

and requirements for a future UED beam line with sub-femtosecond stability and

temporal resolution, all necessary technologies and improvements are either already

available or plausible through simulations.

The results of this work as well as the concepts and methods presented here lay

the groundwork for accessing the interesting new regime of electronic dynamics by

attosecond electron diffraction, promising to elucidate some of the most fundamental

physics of light-matter interaction.
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Data archiving

The experimental raw data, evaluation files, and original figures can be found on the

Data Archive Server of the Laboratory for Attosecond Physics at the Max Planck

Institute of Quantum Optics: /afs/rzg/mpq/lap/publication archive

The source data of all figures is organized relative to the root folder of the data

archive for the thesis within subfolders inside the /figures directory, using the

same figure numbers as in the thesis. A text file within each figure’s folder named

fig X.X.txt (X.X being the figure’s number) gives detailed information about the

organization and format of the raw data, as well as the processing performed in

order to obtain the final figure. Further experimental and simulation details are

given where applicable, in addition to the main text.
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