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Summary 

Accurate target selection and proper synaptic connectivity are crucial for the 

functionality of neuronal circuits. In order to construct these networks, axons 

from developing neurons have to dynamically respond to complex guidance 

signals within the environment and from neighboring cells. These mechanisms 

have been intensily studied in the Drosophila embryonic midline, where several 

conserved families of guidance cues and receptors play a role in axon 

pathfinding. Here, signaling of Netrin and its receptor Frazzled (Net/Fra) is 

important for midline crossing of commissural axons, which sense the attractive 

cues NetA and NetB on the midline through the Fra receptor on their growth 

cones. Despite the importance of these molecular pathways, lack of Net or fra 

affects only some commissures, suggesting that other molecules are acting 

redundantly in order to fulfill this function. Such redundancy has been shown in 

vertebrates, where the morphogen Sonic Hedgehog (Shh) mediates midline 

attraction together with Netrin-1; however, no gene other than Net has been 

described to play such a role in Drosophila.  

Recently, molecules belonging to the “core” planar cell polarity (PCP) proteins 

have been implicated in axon guidance in both vertebrate and invertebrates 

systems; in particular, evidences about roles in midline crossing have been 

accumulating. This thesis work demonstrates that the atypical cadherin Flamingo 

(Fmi) plays a guidance role in the embryonic CNS. Fmi is one of the “core“ PCP 

genes in Drosophila, and is also involved in dendrite morphogenesis and 

sensory neuron pathfinding. In Net/fmi or fra/fmi double mutants the majority of 

commissures in the Drosophila embryonic CNS are affected. In particular, most 

of the posterior commissural axon tracts appear to be lost completely. Moreover, 

the longitudinal axon tracts show a strongly disorganized fasciculation. Notably, 

these defects are not observed in fmi single mutants, suggesting a partial 

redundancy between Net/Fra pathway and Flamingo. Rescue experiments 

indicate that Fmi is required in neurons, and exclude a possible function in glia or 

midline cells. In addition, protein domain analysis revealed that Fmi acts as 

signaling molecule in this system. Cell-autonomous intracellular signaling is also 

supported by the observation that overexpression of Fmi in longitudinal neurons 
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can elicit ectopic midline crossing, whereas overexpression in a specific subset 

of commissural neurons is sufficient to partially suppress the fra mutant 

phenotype, suggesting that Fmi and Fra might signal through the same 

downstream pathway. This study also investigates the possible molecular 

pathway required for Fmi function in midline pathfinding. First, the analysis rules 

out the involvement of known cytoplasmic interacting proteins, such as Espinas 

or the Net/Fra downstream effector Abl, Instead, implicates the RhoGTPase 

Rac1 as important effector of Fmi-mediated midline crossing. Together with the 

analysis of other “core” PCP genes and Wnt family members the present work 

proposed that Fmi acts through a novel PCP signaling-independent mechanism 

during the formation of the Drosophila midline. 

Taken together, the data presented in this work suggest that Fmi as a signaling 

molecule acts cooperatively with Fra signaling during specific aspects of 

Drosophila midline targeting, supporting the idea that polarity-regulating genes 

can play important roles not only in stationary systems such as epithelial sheets, 

but also in highly motile structures such as axonal growth cones. Moreover it 

reveals an important relationship between members of the PCP polarity system 

and other cardinal guidance systems. 
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1 INTRODUCTION 

What makes the nervous system such an astonishing structure and distinguishes 

the brain from the other organs is not only the tremendous number of cells, but 

also their capability of communication in a precisely structured manner within 

functional neuronal networks. The establishment of this complex connectivity can 

only be achieved when each neuron, during its development, finds and targets 

the appropriate post-synaptic cell, choosing it over many other similar ones. How 

can each neuronal cell accomplish this complicated task? Developing neurons 

are equipped at the tip of their axons with a highly specialized structure, the 

growth cone, which is capable of extending and exploring the surrounding 

environment, eventually finding the synaptic partner. During this targeting 

process, a specific repertoire of receptors located on the membrane of the 

growth cone allows them to sense guidance cues. Guidance cues are molecules 

presented by cells in the environment of a growing neurite. Understanding and 

elucidating the cellular strategies used during neuronal pathfinding, the 

mechanisms involved in axon guidance in vivo and in vitro as well as the 

underlying molecular pathways are central goals in neurobiology. Valuable 

information has been obtained in the last three decades, which will be briefly 

reviewed in the following paragraphs.  

1.1. Molecular and cellular mechanisms of axon guidance 

For most of the developing neurons, targeting means navigating over long 

distances, encountering along the path many different types of cells which, in 

turn, provide different kinds of signals. To “simplify” and guarantee precise 

axonal targeting, long distances are usually broken into shorter steps, normally 

defined by the presence of intermediate targets. Those intermediate targets are 

usually choice points where the axons have to turn or change their direction. 

These can be either neurons or glia cells. Interaction of an outgrowing axon with 

intermediate targets, neurons and glia is based on signaling pathways activated 

by guidance cues and their receptors. Guidance cues can be divided into four 

categories: chemo-attractants, chemo-repellents, contact-attractants and 

contact-repellents (Figure 1-1, Tessier-Lavigne & Goodman, 1996). Long-range 
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cues are usually secreted proteins that can diffuse over long distances; they can 

induce either attraction, like Netrins (Rajasekharan & Kennedy, 2009), or 

repulsion, like Slits (Rajagopalan et al., 2000). Short range cues normally act 

through contact-mediated mechanisms, and are usually membrane-bound 

proteins (for example Ephrins) or extracellular matrix (ECM) molecules, like 

Cadherins. These short range cues usually regulate axon-axon interactions, 

such as fasciculation/defasciculation processes. In the following paragraphs, I’ll 

describe the main axon guidance protein families. 

 

Figure 1-1 Axon guidance modalities elicited by guidance cues. 

Developing axons are guided during their targeting process by molecules acting through four 

different modalities: chemo-attraction, chemo-repulsion, contact attraction and contact repulsion. 

Axons usually extend toward a source of attractant cues (green), while avoiding the source of 

repellent cues (red). These long-distance mechanisms are usually mediated by molecules 

capable of diffusing far away from their origin, thus forming gradients. While extending, they 

encounter other cells (neurons, glia, etc.,) that can express contact-attractants (green +), 

favoring fasciculation, or contact-repellents (red -), causing defasciculation. Adapted from 

(Tessier-Lavigne & Goodman, 1996) 
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Netrins are a small family of secreted guidance cues. They were originally 

identified in C.elegans, where the Netrin homologue Unc-6 was shown to be 

required for guidance of migrating cells and pioneering axons along the dorso-

ventral axis of the epidermis (Hedgecock et al., 1990). Here, Netrin is located at 

the ventral midline (Wadsworth et al. 1996). However, the existence of a midline 

chemotropic axon guidance factor was already revealed thanks to pioneer 

experiments on explants of embryonic rat floor plate. In these studies, it was 

shown that ventral midline floor plate cells promote outgrowth of dorsal spinal 

commissural axons, when cultured at a distance (Tessier-lavigne et al., 1988). 

Shortly after, it was shown that the mammalian Netrin-1 mediates this process 

also in vivo (Kennedy et al., 1994; Serafini et al., 1994, Serafini et al., 1996). 

Analogous functions were shown for the Drosophila Netrins (Harris et al., 1996; 

Mitchell et al., 1996). Netrins can act as both long-range signals, diffusing far 

away from their source (Kennedy et al., 1994; Kennedy et al., 2006), but also as 

short-range permissive cues (Brankatschk & Dickson, 2006; Deiner et al., 1997). 

Netrins are bifunctional, capable of attracting some neurons and repelling others. 

Genes of the UNC5 family encode for Netrin receptors that mediate repulsion 

(Hong et al., 1999; Keleman & Dickson, 2001; Leonardo et al., 1997; Leung-

Hagesteijn et al., 1992), whereas attraction is mediated by receptors of the DCC 

family, including UNC-40 in C.elegans (Chan et al., 1996), DCC in vertebrates 

(Keino-Masu et al., 1996) and Frazzled in Drosophila (Kolodziej et al., 1996). 

Dscam has been proposed to also mediate Netrin-dependent attraction 

(Andrews et al., 2008; Ly et al., 2008). Apart from organizing midline crossing of 

several classes of neurons, Netrins are also required for targeting of neurons in 

other systems. For instance, Netrin-1 is required for the axons of retinal ganglion 

cells to exit the retina and enter the optic nerve (Deiner et al., 1997), for the 

projection of dopaminergic neurons in the ventral midbrain (Lin et al, 2005) as 

well as for the formation of thalamo-cortical projections (Braisted et al., 2000). 

Slits are large secreted proteins acting as repulsive guidance cues. They were 

initially identified as embryonic midline repellents in Drosophila and vertebrates 

(Kidd et al., 1999; Li et al., 1999). Receptors of the Robo family mediate Slit 

dependent repulsion (Kidd et al., 1998; Zallen et al., 1998). Slit/Robo signaling 

also controls midline crossing of olfactory sensory neurons in Drosophila 
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(Jhaveri et al., 2004) and, in vertebrates, of retinal axons (Hutson & Chien, 2002; 

Plump et al., 2002), olfactory bulb axons (Nguyen-Ba-Charvet et al., 2002) and 

cortical axons (Bagri et al., 2002). Additionally, Slit/Robo mediates topographic 

map formation in both visual and olfactory systems in Drosophila, regulating 

segregation of lamina cells and lobula cells (Tayler et al., 2004) and positioning 

of olfactory sensory axons within the antennal lobes (Jhaveri et al., 2004), 

respectively. Robo also mediates Slit-dependent axonal and dendritic branching 

(Ma & Tessier-Lavigne, 2007; Whitford et al., 2002).  

The Semaphorin protein family includes both secreted and transmembrane 

proteins. The first Semaphorin identified was the grasshopper transmembrane 

protein Semaphorin-1a which is required for correct pathfinding of pioneer 

sensory axons in the developing grasshopper limb (Kolodkin et al., 1992). 

Sema3A was the first vertebrate Semaphorin identified and was purified from 

brain extracts as a factor functioning as axonal repellent in vitro (Luo et al., 

1993). Around 20 different family members have been discovered in vertebrates, 

and all of them contain a common Semaphorin domain of 500 amino acids 

crucial for the association with their receptors, which belong to the Plexin family 

(Tamagnone & Comoglio, 2000). However, some secreted vertebrate 

Semaphorins do not bind directly to Plexins, but to their obligate co-receptors 

Neuropilin-1 and Neuropilin-2; Neuropilins then form an active holoreceptor 

complex with Plexin receptor (Kawasaki et al., 2002; Tran et al., 2007). Although 

Semaphorins usually have repulsive activity; some Semaphorins are also 

bifunctional, capable of mediating both attraction and repulsion. For instance, 

Sema3C promotes growth of cortical axons (Bagnard et al., 1998) and Sema3F 

stimulates growth in olfactory bulb axons (de Castro et al., 1999). Additionally, 

transmembrane Semaphorins can also act as receptors, for example regulating 

dendritic targeting in the Drosophila olfactory system (Komiyama et al., 2007) or 

guiding photoreceptors in the Drosophila visual system (Yu et al., 2010). 

Ephrins are the last family of classical guidance cues. Similarly to Semaphorins, 

ephrins are also membrane-bound ligands. There are two subfamilies: class A 

ephrins are tethered to cell surface via GPI linkage, whereas class B Ephrins are 

transmembrane proteins. They interact with Class A Eph receptors and Class B 

Eph receptors respectively (Gale et al., 1996). Eph receptors constitute the 
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largest family of receptor tyrosine kinases. In the inactive form, Eph kinase 

activity is auto-inhibited through binding to their juxtamembrane domain. Upon 

ephrin activation, two tyrosine residues in the same juxtamembrane domain are 

phosphorylated, relieving inhibition of the kinase domain and, consequently, 

causing a conformational change that allows initiation of the downstream 

signaling (Klein, 2012). Similarly to Semaphorins, Ephrins are also capable of 

eliciting bidirectional signaling, activating downstream pathways in both receptor 

and ligand cells (Kullander & Klein, 2002). Activation of both forward and reverse 

signaling requires formation of high order clusters of Eph/ephrin complexes 

(Himanen et al., 2010). They have been initially described as important 

regulators of topographic map organization in the vertebrate visual system 

(Brennan et al., 1997; Marcus et al., 1996), where it was shown that 

complementary gradients of ephrins and Eph receptors are established within 

the tectum and the retina, thus directing the targeting of RGC axons through a 

repulsive, gradient-dependent mechanism. In particular, ephrins A and EphA 

receptors elicit pure repulsive response, whereas ephrins B and EphB receptors 

can elicit either repulsion or attraction, depending on the reciprocal abundance 

(Klein, 2012). They play a similar role in guiding the formation of a topographic 

map in the olfactory bulb, but the mechanism here is concentration-dependent 

rather than gradient-dependent. Olfactory neurons and target cells express 

different ephrinA and different EphA receptors (Cutforth et al., 2003); 

additionally, olfactory neurons that express different olfactory receptors also 

present different ephrinA levels. These specific olfactory receptor classes 

combined with different ephrinA levels are important for specifying the identity of 

the glomeruli. Accordingly, alteration of the ephrinA levels causes errors in the 

glomerular map (Cutforth et al., 2003). The ephrinA/EphA system is also 

required for correct wiring within the accessory olfactory bulb (AOB). Here 

vomeronasal axons which express differential levels of EphrinA5, target within 

the AOB, which in turn expresses a gradient of Eph6 receptor. However in this 

case neurons expressing high levels of ligand, project to an AOB area where 

high levels of receptor are present, arguing against a repellent signaling 

mechanism (Knöll et al., 2001). Together with other observations, these results 

suggest that Ephs and ephrins act mostly as repulsive contact-dependent cues, 

but can in some cases also mediate adhesion. 



Introduction 

  

6 
 

 

Figure 1-2 Families of axon guidance molecules and receptors. 

Four major classes of conserved guidance cues depicted with their receptors. Arrow direction 

reflects the signaling direction (Semaphorins and ephrins elicit forward and reverse signaling). 

Main conserved domains are depicted. 
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Non-classical axon guidance factors. Apart from these classical axon 

guidance molecules, morphogens like some of the Wnts, Hedgehog (Hh) and 

bone morphogenetic protein (BMP) family members have been shown to act as 

axon guidance cues. Among the Wnt morphogen family, Wnt5 is important for 

selection of the appropriate commissure in the Drosophila embryonic CNS 

(Yoshikawa et al., 2003), whereas in mammals, spinal commissural axons are 

attracted by a decreasing anterior-to-posterior gradient of Wnt4 (Lyuksyutova et 

al., 2003). Sonic Hedgehog also plays an axon guidance role in vertebrates, 

acting as repellent for some retinal ganglion cells (Trousse et al., 2001) and as 

attractant for spinal cord commissural axons (Charron et al., 2003). TGFβ/BMP 

family members are also important for commissural axons guidance, repelling 

them away from the dorsal midline by activating canonical BMP receptors 

(Augsburger et al., 1999; Yamauchi et al., 2008). 

Besides their requirement for axon fasciculation, cell-adhesion molecules have 

been shown to play axon guidance roles. For example, DSCAM, a Ig CAM in 

Drosophila, plays a role in axonal and dendritic-self avoidance (Hattori et al., 

2009; Wojtowicz et al., 2007). L1, another member of Ig superfamily, acts as 

homophilic adhesion molecule, but stimulates axonal growth (Lemmon, Farr, & 

Lagenaur, 1989). Integrins, a family of heterodimeric receptors have been shown 

to be expressed in many types of developing neurons and to function as 

regulators of neuronal migration and axonal extension, thanks to the interaction 

with extracellular matrix molecules like laminin and fibronectin (Myers et al., 

2012).  

These complex molecular pathways ultimately exert their functions by changing 

the conformation of the navigating axons; to do so, they need to modulate 

neuronal cytoskeleton dynamics. In the following, I will briefly describe the 

signaling cascades connecting guidance molecules to the cytoskeleton. 
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1.2 Signal transduction on the growth cone cytoskeleton 

As explained above, the outgrowth of axons during development, essential for 

precise neuronal wiring, is orchestrated by a myriad of guidance cues. Thus, a 

critical task of the axon is to navigate within such an information-enriched 

environment. Axonal processes therefore have tips equipped with a peculiar 

motile structure, called growth cone, that not only serves as sensor for 

environmental cues, but also as signal transducer and motility device (Vitriol & 

Zheng, 2012). Growth cone movement is based on 

polymerization/depolymerization of cytoskeletal components, such as 

microtubules and actinfilaments (Lowery & Van Vactor, 2009). The growth cone 

is composed of three main domains: the peripheral domain (P-domain), the 

transition zone (T-zone) and the central domain (C-domain) (Figure 1-3) (Dent, 

Gupton, & Gertler, 2011; Lowery & Van Vactor, 2009). The P-domain is the most 

distal and most motile part of the growth cone, bearing actin-reach structures 

such as lamellipodia and filopodia. Lamellipodia are membranous veil-like 

protusions with actin filaments organized in a loose meshwork, from which thin 

finger-like structures, the filopodia extend. These contain mainly actin filament 

bundles that constantly undergo elogantion/depolymeritazion cycles, thus 

conferring growth cone mobility (Lowery & Van Vactor, 2009). The T-zone, 

enriched in myosin and thus capable of contracting the actin network, separates 

the P-domain from the C-domain, a domain enriched in microtubules (MT) 

filaments composed of α/β tubulin heterodimers. Both actin filaments and 

microtubules are polarized (Zou, 2012). Actin filaments have a “barbed” end, 

where addition of actin monomers is favored, and a “pointed” end, where 

dissociation of ADP-actin happens (Pollard & Borisy, 2003). Several proteins are 

known to be associated with and to regulate actin filaments. For example, actin 

nucleators such as the Arp2/3 complex promote branching and de novo 

polymerization of actin filaments, necessary for extension of lamellipodia (Millard 

et al., 2004). Members of the formin protein family also nucleate actin filaments; 

additionally, their association with the barbed end enhances the polymerization 

rate and prevents the binding of capping proteins (Kovar, 2006). Acting 

depolymerizing factors (ADFs) and cofilins bind to the pointed end of the 

filaments, generating free ADP-actin fragments and increasing the number of 
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filaments ends through fragmentation and severing (Gungabissoon & Bamburg, 

2003); both these functions ultimately promote actin polymerization. On the other 

hand, proteins such as gelsolin prevent actin polymerization by capping barbed 

ends, thus promoting depolymerization (McGough et al, 2003). MTs are also 

polarized, with a (+) and a (-) end. The (+) end, where tubulin subunits are added 

more rapidly, is usually oriented toward the tip of the growth cone, whereas 

depolymerization mainly occurs at the (-) end. MTs are more rigid compared to 

actin filaments and support the extension of axons and dendrites (Sakakibara et 

al., 2013); they also act as “rails” for the transport of organelles within the 

process (Hirokawa & Takemura, 2004).  

 

Figure 1-3 The growth cone cytoskeleton. 

The growth cone can be structurally divided into three domains. The peripheral (P) domain 

contains long bundles of actin filaments (F-actin), which form the filopodia as well as actin 

filaments organized in a loose meshwork, which form lamellipodia. Additionally, individual 

microtubules (MTs) extend along filopodia. In the central (C) domain, stable bundles of MTs 

enter in the growth cone from the axon shaft, together with many organelles, vescicles and 

central actin bundles. The transition (T) zone is the interface between C and P domains, where 

actomyosin contractile structures form a hemicircumferential ring. Adapter from (Lowery & Van 

Vactor, 2009). 
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1.2.1 Downstream molecular cascades transducing guidance 

signals. 

In order to direct growth or retraction of a developing axon, guidance cues and 

receptors must activate proper signaling pathways to steer the growth cone. The 

pathways act in a focal manner on actin cytoskeleton dynamics within the growth 

cone (O’Donnell et al, 2009). Activation of specific molecular pathways can 

promote attraction or repulsion, resulting in growth cone collapse or extension. 

Several molecules and second messengers act downstream of the major axon 

guidance receptors to regulate growth cone dynamics. Here I will present some 

of the most important, starting with Rho GTPases. Rho-family GTPases are a 

subgroup of the Ras superfamily of GTPases, and are known regulators of 

cytoskeletal structures (Hall, 1998). These proteins cycle between an inactive, 

GDP-bound state and an active, GTP-bound state, where they interact with 

specific effectors and transmit downstream signaling events (Hall & Lalli, 2010). 

Their activity is influenced by the GTP/GDP ratio present in the cell, as well as 

by different regulatory molecules. For example, Guanine nucleotide exchange 

factors (GEFs) are capable of activating GTPases by increasing the exchange of 

GDP for GTP. GAPs (GTPase activating proteins) act in opposite direction, and 

enhance the rate of GTP hydrolysis (Govek et al, 2005). Among the Rho 

GTPases family, Rac, Cdc42 and RhoA have been implicated downstream of 

many signaling receptors. In general, Rho appears to act antagonistically to 

Rac/Cdc42: RhoA is usually associated with repulsive cues and growth cone 

collapse, whereas Rac and Cdc42 are associated with attractive cues and 

growth cone extension. However, many exceptions have been found to this rule. 

Guidance receptors can regulate Rho GTPases directly; for example, Plexin-B 

was shown to bind Rac directly, probably sequestering Rac from its effector Pak, 

and thereby blocking the signaling cascade (Vikis et al. 2000; Vikis et al., 2002). 

However, in most of the cases, guidance receptors act indirectly on GTPases, 

through GEFs and GAPs. Identification of these specific regulatory molecules is 

challenging, due to redundancy or requirement of the same molecules 

downstream of different pathways. However, it was shown that α-chimaerin is an 

essential mediator of EphrinB3/EphA4 pathway in vivo (O’Donnell et al., 2009a). 

α-chimaerin mutants show a similar phenotype to ephrinB3-/- or EphA4-/- 
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mutants in spinal cord interneurons. Furthermore, it is necessary for 

EphrinB3/EphA4-induced growth cone collapse in cultured neurons (Beg et al., 

2007; Iwasato et al., 2007; Wegmeyer et al., 2007). α-chimaerin Rac-GAP 

activity increases upon EphA4 phosphorylation, leading to growth cone collapse 

(Shi et al., 2007). Another example of a GAP directly linked to a signaling is 

Vilse/crGAP, which was identified in Drosophila as a regulator of Slit-dependent 

guidance decisions in both CNS axons and tracheal cells (Hu et al., 2005; 

Lundström et al., 2004). Vilse/crGAP acts as positive regulator of Slit repulsion, 

since its loss of function enhances axon guidance defects in animals with partial 

loss of Slit or Robo. Vilse specifically antagonizes Rac function: its 

overexpression in the eye selectively suppresses the gain of function phenotype 

of Rac, but not of Rho, and enhances midline axon guidance defects caused by 

overexpression of a dominant-negative version of Rac, but leaves unaffected the 

phenotype cause by expression of dominant negative Cdc42 (Hu et al., 2005). 

Vilse/CrGAP can directly bind to Robo, supporting direct linking of the receptor 

with GAP regulation of Rac (Hu et al., 2005).  

Rho GTPase activity is also required for Netrin-mediated attraction: DCC-

dependent neurite outgrowth requires activity of both Rac and Cdc42 (Li et al., 

2002). The Trio GEF and the CZH family GEF DOCK180 have been both 

implicated in Netrin-mediated axon guidance. Trio positively contributes to 

midline attraction in the Drosophila embryonic CNS and can physically interact 

with Frazzled (Forsthoefel et al. 2005) and the mammalian DCC (Briançon-

Marjollet et al., 2008). Loss of Trio in cortical neurons prevent Netrin-dependent 

Rac activation (Briançon-Marjollet et al., 2008) and Trio-/- mice display similar 

axon guidance defects to DCC-/-, although in a milder version, indicating that 

additional factors must be present in order to elicit Netrin-dependent midline 

attraction. DOCK180 may fulfill this function, being required for cortical neuron 

outgrowth in response to Netrin as well as for commissural neurons turning in 

explant assays (Li et al., 2008). 
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Figure 1-4 Regulation of cytoskeleton dynamics by guidance cues. 

Upon binding with their ligands, guidance receptors activate signaling pathways that ultimately 

results in cytoskeleton rearrengements. In particular, they activate GEFs (Guanine nucleotide 

exchange factors), which activate RhoGTPases by promoting the exchange of GDP to GTP, 

and/or GAPs (GTPases activity proteins), which act in the opposite direction. Rho GTPases in 

turn act directly or indirectly on cytoskeletal effectors, such as Cofilins, Formins etc, causing 

rearrengements on the actin cytoskeleton. Adapted from (Blakely et al., 2011) 

  

Rho GTPases–dependent cytoskeletal modulation usually requires effector 

proteins. For example, one of the best characterized is the dual Cdc42/Rac 

effector p21-activated kinase, PAK (Bokoch, 2003). PAK activation results in 

inhibition of the actin depolymerizing factor cofilin by activating its inhibitor, LIM 

kinase (Dan et al, 2001). PAK phosphorylation also inhibits the myosin activator 

myosin light chain kinase (MLCK) and the microtubule destabilizing protein, 

Op18/stathmin (Daub et al. 2001; Sanders, 1999). In vivo, PAK is required for 

Drosophila photoreceptor axon targeting (Hing et al. 1999; Newsome et al., 

2000) as well as in Drosophila olfactory neurons for proper glomerular axon 

targeting (Ang et al., 2003). Stimulation of RhoA results in activation of Rho 
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kinase (ROCK), serine-threonine kinases that regulate LIMK. Additionally, Rho 

kinases can regulate myosin activity through the phosphorylation of myosin light 

chain (MLC), which in turn increases actin-myosin contractility (O’Donnel et al., 

2009b). Sema3A dependent growth-cone collapse in mouse DRG neurons is 

correlated with a rapid increase of phosphorylated Cofilin, thus stimulating actin 

depolymerization (Aizawa et al., 2001). This effect is mediated by LIMK. 

Several in vivo and in vitro models have been employed to assess the molecular 

and cellular basis of axon guidance; among those, the Drosophila embryonic 

CNS has been particularly powerful, especially for the possibility of performing 

large scale genetic screenings. New genes involved in many aspects of axonal 

development have thus been identified and characterized (Seeger et al., 1993). 

 

1.3 The Drosophila CNS midline  

The switch from radial to bilateral symmetry in the nervous system was a key 

event in animal evolution: without such a divergence, the planet might be still 

populated by sea anemones, sponges and similar animals with rather simple 

nervous systems (Kidd, 2009). This bilateral symmetry created a distinct left and 

right side in the nervous system and in the whole body around its own axis of 

symmetry, the midline. In both vertebrates and invertebrates, the midline plays a 

fundamental role in wiring the nervous system, providing a variety of guidance 

cues essential for correct axonal growth and targeting of developing neurons 

(Dickson & Zou, 2010). Different types of neurons sense and interpret these 

signals in different ways and at different times, according to the different 

developmental stage. Both the vertebrate spinal cord and the invertebrate 

ventral nerve cord (VNC) are built up of an orthogonal array of axonal 

projections: commissural axons, the ones extending across the midline, are 

essential for communication and coordination between left and right side of the 

body; longitudinal axon tracts, running parallel to the midline, include axons that 

carry ascending and descending signals from and to the brain. For each class of 

neurons, the midline represents either an intermediate target, or a barrier that 

keep them on their own side of the CNS, or again a source of signals dictating 

specific anterior/posterior decisions as well as specific pathways selection. 
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The Drosophila embryonic CNS is a well-established tool for studying axon 

guidance: in particular, the stereotypy of projections and the availability of many 

genetic markers make it possible to study at cellular resolution the growth and 

targeting of identifiable neurons (Sánchez-Soriano et al., 2007). Here, 

commissural neurons grow toward the midline and cross it in one of the two main 

commissures in each segment. Once they cross, many of them turn anteriorly or 

posteriorly into a longitudinal pathway, where they join a smaller population of 

ipsilateral neurons. The next paragraphs will describe the molecular and cellular 

mechanisms important for correct embryonic CNS development. 

1.3.1  Early phases of Drosophila embryonic axonogenesis.  

Early development of commissural embryonic axons in the Drosophila ventral 

nerve cord is strictly dependent and related to migration and development of glial 

and neuronal midline cells (Jacobs & Goodman 1989; Klämbt et al. 1991). The 

pioneering of the two commissures takes place between 8 and 10 hours of 

embryonic development (stage 12, Figure 1-5A) (Klämbt et al., 1991). The first 

axons grow straight toward the pair of V cells, the most anterior of the ventral 

unpaired median (VUM) midline neurons. As they reach the midline, movements 

of the MP1 neurons create a space anteriorly to the V cells, which is soon 

occupied by the pioneer growth cones. They change direction growing anteriorly 

around the V cells, and once in contact, they fasciculate with their contralateral 

homologs at the midline (Klämbt et al., 1991). Although those pioneer neurons 

will later belong to the posterior commissures (PC), they transiently occupy at 

this stage the space of the future anterior commissure. Immediately after 

fasciculation, other neurons extend the growth cones and pioneer the future 

anterior commissures (AC). The commissures are now in contact, over the 

midline, with a straight AC and a V shapes PC. At the end of stage 12, MGM glia 

and MP1 neurons migrate and contribute to the separation of the commissures. 

During next embryonic stages, axonogenesis of follower neurons takes place. At 

the end of embryonic development, each abdominal neuromere contains a huge 

population of interneurons, estimated around 954 cells (Rickert et al., 2011), 36 

motor neurons innervating body wall muscles (Landgraf et al., 1997; Landgraf et 

al., 2003) and 32 longitudinal glia cells originating from the NB lineage 

(Beckervordersandforth et al. 2008). 
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Within each segment, longitudinal tracts are pioneered by four neurons, which 

extend in pairs in opposite directions: pCC and vMP2, projecting anteriorly, and 

MP1 and dMP2, projecting posteriorly (Hidalgo & Brand, 1997; Jacobs et al., 

1989; Lin et al., 1994) (Figure 1-5B). At the beginning of axonogenesis, their 

growth cones contact half way in the segment to establish a first single fascicle.  

 

Figure 1-5 Pioneering of the commissures and the longitudinal tracts in the 

Drosophila VNC. 

A. Extension of the first commissural axons happens during stage 12 of the embryonic 

development. Pioneer axons (depicted as black arrows) extend in the future PC toward the most 

anterior located VUM neuron. Movements of the MP1 midline neurons cause an anterior change 

in their direction, thus resulting in connection in the future AC. Axons of the future AC then 

extend and fasciculate, getting in contact with the PC. Finally, in stage 13, migration of glia cells 

causes separation of the commissures. B. Longitudinal tracts are pioneered by four neurons: at 

stage 13, MP1 and dMP2 extend posteriorly, whereas vMP2 and pCC extend anteriorly, 

contacting each other. During stage 14 and 15 axons defasciculate and fasciculate again, 

partially guided by longitudinal glia cells (grey circles). At final stages, vMP2, dMP2 and pCC 

axons are located in the innermost bundle, whereas MP1 traces the intermediate bundle. 
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Later, pioneer axons undergo a series of fasciculation and defasciculation 

events, that terminate with the formation of two fascicles at each sides of the 

midline: PCC fasciculate with dMP2 in a medial position, vMP2 runs also along 

this fascicle, but in a more ventral position, separated from pCC/dMP2 fascicles, 

and MP1 runs along a second fascicle, pioneering the intermediate of the three 

fascicles labeled with anti-FasII antibody (Hidalgo & Brand, 1997). The third 

most lateral fascicle establishes really late in development, and the neurons 

pioneering it are still not known. Importantly, longitudinal connectives do not form 

properly when pioneer neurons (Hidalgo & Brand, 1997) are ablated. Late-

developing neurons use the axonal scaffold established by the pioneer neurons 

as rails, transiently fasciculating/defasciculating with and from the pioneer 

bundles (Tessier-Lavigne & Goodman, 1996). Additionally, longitudinal glia plays 

an important role in orienting pioneer growth cones and in directing 

fasciculation/defasciculation events during their extension (Hidalgo & Booth, 

2000). Loss of longitudinal glia results as well in pathfinding defects of 

longitudinal tracts, leading to discontinuity in the bundle (Hidalgo & Brand, 1997). 

1.3.2 Molecular pathways involved in embryonic midline patterning 

Molecular pathways so far implicated in embryonic CNS patterning orchestrate 

different kinds of guidance decisions, such as midline crossing, anterior-posterior 

pathway and longitudinal bundle selection. Here, I will describe guidance cues 

playing a role at those choice points. 

Midline cells exert their fundamental role for the formation of the embryonic CNS 

secreting guidance cues that direct crucial steps of axonal development of both 

commissural and ipsilateral neurons. Among those, Netrins and Slits are the 

most conserved in different species, and the major midline attractants and 

repellents, respectively. As mentioned before, in Drosophila there are two 

members of the Netrin protein family: NetrinA and NetrinB. They have an 

overlapping and redundant function in promoting midline crossing of 

commissural axons, since only when both are deleted there is a significant 

reduction in the amount of axons that cross the midline (Brankatschk & Dickson, 

2006; Harris et al., 1996; Mitchell et al., 1996). Similar defects are observed in 

mutant for frazzled, which encodes for a Netrin receptor from the DCC family 
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(Kolodziej et al., 1996). Recently, Dscam was shown to contribute to Net-

dependent commissure formation, although it can also act in an independent 

manner (Andrews et al., 2008). In mice, netrin-1 is expressed in dorsal-ventral 

gradient in the spinal cord, and is thought to act as a long-range chemoattractant 

for commissural axons (Kennedy et al., 1994; Kennedy et al., 2006). However in 

flies there is evidence that Netrins act as short-range permissive cues, promoting 

growth across the midline once the axons get there, rather than attracting axons 

over long distances (Brankatschk & Dickson, 2006). In particular it was shown 

that a version of NetrinB thetered to the cell membrane is fully functional, 

suggesting that graded expression might not be required (Brankatschk & 

Dickson, 2006). Indeed, commissural axons orient normally toward the midline in 

NetA NetB mutants (Brankatschk & Dickson, 2006). It is important to notice that 

in Net/fra mutants, many commissures are still able to form (Brankatschk & 

Dickson, 2006), suggesting that other molecules might be acting as 

chemoattractants. In mice it was shown that Sonic Hedgehog plays this role in 

addition to Netrin-1 (Charron et al., 2003); however there is no evidence that 

hedgehog or other molecules act as attractant at the fly midline (Dickson & Zou, 

2010). 

As mentioned before, not all the axons cross the midline: some approach the 

midline but then turn and continue on an ipsilateral pathway. Also, commissural 

axons usually cross the midline only once. Thus, they need to gain repulsiveness 

against the midline that they just crossed. The Slit/Robo molecular pathway 

plays a crucial role in repelling axons from the midline (Kidd et al., 1999; Kidd et 

al., 1998). In Drosophila there is only one Slit, which is secreted from the midline 

cells, and three robo genes: robo, robo2 and robo3 (Battye et al., 1999; Kidd et 

al., 1998; Rajagopalan et al. 2000; Rothberg et al., 1988; Simpson et al., 2000).  
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Figure 1-6 Netrins and Slits regulate commissure formation in the Drosophila 

VNC. 

A. Midline cells secrete Netrins, major attractants midline guidance cues. Frazzled-expressing 

neurons (magenta) are attracted toward the midline by Netrins. Additionally, Netrin-independent 

Frazzled signaling suppresses responsiveness of neurons toward Slit, thus inhibiting repulsion. 

Frazzled acts in this context regulating expression of Commissureless. B. Commissureless 

regulates Robo expression by diverting it from the Golgi to the endosomes, thus impairing its 

membrane localization. Interestingly, Comm is expressed only in midline crossing neurons, 

whereas in ipsilateral or post-crossing neurons is not expressed, thus allowing Robo localization 

(green neurons) on the growth cone membrane and thus, repulsion toward Slit expressing 

midline (yellow).  

 

Loss of slit or robo results in excessive amount of neurons crossing the midline 

(Kidd et al., 1999; Kidd et al., 1998). Interestingly, robo seems to be pan-

neuronally expressed in the embryonic CNS (Kidd et al., 1998); moreover, in 

embryos mutants for either slit or robo all axons are capable of growing toward 

the midline (Battye et al., 1999; Kidd et al., 1999; Seeger et al., 1993). Both 

these data suggest that commissural axons have some specific capability of 

transiently overcome Slit-dependent repulsion. The most crucial regulator of 

Robo activity is Commissureless (Comm), a small transmembrane protein that is 

expressed in commissural but not in ipsilateral neurons (Georgiou & Tear, 2002; 

Keleman et al., 2002). Comm was shown to be both necessary and sufficient for 

midline crossing (Keleman et al., 2002; Keleman et al., 2005; McGovern & 

Seeger, 2003), and the resulting mutant phenotype is the loss of virtually all the 

commissures (Seeger et al., 1993; Tear et al., 1996). Since double mutants for 
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comm and robo have robo mutant phenotypes (Seeger et al., 1993), it was 

proposed that Comm regulates midline crossing by antagonizing Robo. In fact, 

Comm regulates intracellular trafficking of Robo, diverting it from the Golgi to the 

endosomes, thus preventing its expression on the growth cone membrane 

(Keleman et al., 2002; Keleman et al., 2005) (Figure1-6B). Transiently higher 

levels of Comm in crossing axons cause a reduction of Robo on the membrane, 

making them insensitive to Slit. Frazzled seems to be involved in regulating 

comm transcription in commissural axons in a Netrin-independent mechanism 

(Yang et al., 2009) )(Figure 1-6A). 

Formation of a correct orthogonal array of axonal tracts at the midline does not 

rely only on the decision whether to cross or not to cross the midline, but also on 

correct positioning along the anterior-posterior axis. For commissural axons, this 

involves making the correct anterior or posterior turn after crossing as well as 

choosing to cross the midline either in the anterior or the posterior commissure 

(Dickson & Zou, 2010). In flies, the choice between AC or PC is in part 

determined by the position of the cell body, with many axons simply crossing in 

the closest commissure (Rickert et al., 2011). However, for some commissural 

axons, this decision relies also on specific molecular signals that allow 

discrimination between the two bundles. It was shown that the secreted protein 

Wnt5 is predominantly expressed by cells near the PC, acting as a specific 

repellent signal for AC axons, thus keeping them from crossing in the PC 

(Yoshikawa et al., 2003). Absence of Wnt5 diverts some of the AC axons in the 

PC, whereas ectopic expression of Wnt5 in the entire midline prevents the 

formation of the AC (Yoshikawa et al., 2003). The selective effect of Wnt5 on AC 

axons relies on the specific expression of the Wnt5 receptor Derailed (Drl) on AC 

growth cones (Bonkowsky et al., 1999; Yoshikawa et al., 2003). Drl is a member 

of the Ryk family of atypical receptor tyrosine kinases. Drl mutant embryos have 

some AC axons crossing in the PC, and forced expression of Drl in the PC 

reroutes some of these axons in the AC (Bonkowsky et al., 1999), similarly to 

what was shown for wnt5 (Yoshikawa et al., 2003). Longitudinal axons face 

anterior-posterior decision too, and also this decision, as the AC/PC selection, 

seems to rely on local cues rather than on long-range gradients as for 

vertebrates (Lyuksyutova et al., 2003). In particular, longitudinal axons will 
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repeatedly encounter the same cues as they extend from one segment to the 

other, due to the segmentally-repeated expression of many proteins. Therefore, 

they need to adjust their response differently whether their growth cones extend 

in their own segment or in others. Such a guidance decision has been described 

for dMP2 axons, which, as mentioned above, extend posteriorly to pioneer the 

medial FasII positive longitudinal pathway (Hidalgo & Brand, 1997). dMP2 is an 

ipsilateral neuron and therefore expresses robo. However in these neurons Robo 

is required not only to prevent dMP2 from crossing the midline, but also for its 

proper longitudinal extension into the next segment (Hiramoto & Hiromi, 2006). 

Accordingly, in robo mutants dMP2 diverts medially from its longitudinal 

trajectory, because of an ectopic response to a lateral patch of Netrin-enriched 

neurons (Hiramoto & Hiromi, 2006). This specific Netrin localization is required 

for proper lateral turning and pathfinding behavior of dMP2 (Hiramoto et al., 

2000), but in order not to re-turn medially in the next segment, where the growth 

cone will encounter a similar Netrin-enriched axonal patch, dMP2 must become 

irresponsive to Netrin. Robo seems to mediate this suppression of Netrin 

attractiveness, being specifically expressed in dMP2 axons only after the Netrin-

dependent turn (Hiramoto & Hiromi, 2006). 

Lastly, during targeting the longitudinal axons have to select the proper 

fasciculation partners and the correct lateral position. Several molecules have 

been shown to act as markers for correct axon-axon interactions, such as typical 

cell adhesion molecules (CAMs) like Fasciclin II (Grenningloh et a.l, 1991; Lin et 

al., 1994), Fasciclin III (Snow et al., 1989), N-cadherin (Iwai et al., 1997), 

Neurotactin (Escalera et al., 1990; Hortsch et al., 1990) or axon guidance 

molecules, like Sema-1a (Yu et al., 1998). Lateral pathway selection has been 

shown to be Robo-dependent (Rajagopalan et al 2000b; Simpson et al., 2000): 

Robo, robo2 and robo3 are expressed in a specific pattern, defining three broad 

zones within the longitudinal connectives. Robo is expressed alone in the medial 

zone, Robo and Robo3 define the intermediate zone, whereas the lateral zone 

expresses all three robo genes (Rajagopalan et al., 2000b). This so-called Robo 

code is instructive for lateral positioning of axons, since loss of robo2 or robo3 

leads to shift of lateral axons close to the midline. Conversely, miserexpression 

of either of them in medial axons causes lateral displacement (Rajagopalan et 
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al., 2000; Simpson et al., 2000). Recently this code model has been disproved: 

“swapping” of each of the robo alleles with another one while keeping the 

temporal and spatial expression of the one that has been replaced showed that 

expression differences can account alone for lateral pathway selection, rather 

than differences in the structure of the three Robo receptors (Spitzweck et al. 

2010). Structural differences are rather important for midline crossing decisions, 

but not for lateral pathway selection (Spitzweck et al., 2010). 

1.4 Molecular mechanisms of Planar Cell Polarity  

Recently, unexpected axon guidance roles have been emerging for molecules 

previously implicated in other developmental processes, including morphogens 

belonging to the Wnt, Hedgehog and BMP families (Yam & Charron, 2013) and 

planar cell polarity (PCP) genes (Tissir & Goffinet, 2013). The latter seems to be 

a good candidate system for regulating midline guidance in Drosophila, 

especially considering the role of some of these genes in midline crossing in the 

vertebrate spinal cord and in the brain (Lyuksyutova et al., 2003; Tissir et al. , 

2005). In the following sections, molecular functions of these “core” PCP genes 

and, in particular, of the atypical cadherin Flamingo will be described in detail. 

Planar cell polarity (PCP) is the term describing the organization of cell sheets in 

the tangential plane, which reside on the orientation of cells along the proximal-

distal axis (Tissir & Goffinet, 2010). Such a polarity is established through 

asymmetrical localization of “core“ PCP genes on the proximal and distal parts of 

contiguous cells, thus ensuring transmission of these polarization along the 

epithelia (Paul N Adler, 2012). Pioneer analysis of orientation of sensory bristles 

and cellular hairs in the Drosophila wing led to the discovery of “core” 

components, which include Flamingo (Fmi) (Chae et al., 1999; Usui et al., 1999); 

Van Gogh/Strabismus (Vang/Stbm) (Taylor et al, 1998; Wolff & Rubin, 1998), 

Frizzled (Fz) (Adler et al., 1997; Vinson et al.,1989), Prickle (Pk) (Gubb et al., 

1999), Dishevelled (Dsh) (Theisen et al., 1994) and Diego (Dgo) (Feiguin et al., 

2001). Later on, similar role was shown for the polarization of abdominal and 

thorax epithelia, as well as for ommatidia organization in the eye (Das et al., 

2002). Fmi is proposed to have an instructive role in organizing proximal-distal 

asymmetric distribution of the other core PCP proteins, in a Fz activity-
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dependent manner (Chen et al., 2008; Lawrence et al. 2004; Strutt & Strutt, 

2008); this intracellular asymmetry is also fundamental for transmitting planar 

polarity signaling between neighboring cells (Strutt & Strutt, 2008; Wu & Mlodzik, 

2008). Homologous proteins are present in vertebrates, where they are 

important for establishing stereocilia polarity in the inner ear (Guo et al., 2004), 

follicle and hair shaft orientation in mouse (Wang et al., 2006) and gastrulation 

movements of convergence and extension in the frog, Xenopus Laevis, and 

zebrafish, Dario Rerio (Heisenberg et al. 2000; Wallingford et al., 2000). 

Unexpectedly, these proteins have been shown to play important roles during 

neuronal development, in particular in the context of axonal guidance. In the 

following paragraphs, these roles will be described in detail, starting from 

Flamingo, which was the first among these molecules to be implicated in axonal 

pathfinding and the one being more broadly required.  

1.5 Roles of PCP genes in axonal pathfinding 

1.5.1 Roles of atypical cadherins Flamingo/Celsr mediated signaling 

Flamingo/Celsr (Fmi) not only belongs to the PCP molecules but also to the 

Cadherin family (Halbleib & Nelson, 2006). The Cadherin family comprises more 

than 100 members involved in diverse developmental processes. The structural 

feature defining this protein class is the extracellular cadherin repeats domain 

(Nollet et al., 2000) that mediates homophilic and heterophilic interactions 

necessary for cell-cell adhesion and sorting (Halbleib & Nelson, 2006). From this 

basic role in mechanical cell-cell adhesion, cadherins have evolved to function in 

other aspects of morphogenesis, like cell recognition and sorting, coordinated 

cell movements, organization and maintenance of cell and tissue polarity and 

neural circuits formation (Halbleib & Nelson, 2006). This variety of roles and 

molecular mechanisms is reflected in the great number of family members, 

subdivided into three major classes: classical cadherins, protocadherins and 

atypical cadherins. Atypical cadherins present a unique structure among the 

cadherins, since they have a seven-pass transmembrane domain instead of a 

single one.  
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Flamingo (Fmi), also known as Starry Night (Stan) is a seven-pass 

transmembrane molecule bearing a big extracellular domain that is composed of 

nine cadherin domains, six epidermal growth factor-like (EGF-like) domains, two 

Laminin-G-like domains, one hormone receptor domain (HRM) and, next to the 

transmembrane domain, a GPS cleavage site characteristic of GPCR-adhesion 

molecules (Bockaet & Pin, 2000). The peculiar seven-pass transmembrane 

(7TM) is similar to G-protein-coupled receptors (GPCRs) of the secretin receptor 

family (Harmar, 2001). These structural features are common to the mammalian 

homologous of Fmi, Celsr1-3, and suggests that Fmi/Celrs can act as adhesion 

molecules, but also as signaling receptors (Figure1-7).  

Figure 1-7 Structure of Flamingo and of the homologous Celsr3 and FLAMINGO-1. 

Atypical cadherins family members have high conserved structures. The big extracellular domain 

presents nine cadherin domains, variable number of EGF-like domains, two Laminin-G-like 

domains, one hormone receptor domain (HRM) and, next to the transmembrane domain, a GPS 

cleavage site characteristic of GPCR-adhesion molecules. The intracellular domain is short and 

the 7TM is similar to G-protein-coupled receptors (GPCRs) of the secretin receptor family. 
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1.5.2 Roles of Flamingo/Celsr in dendritic morphogenesis 

In the Drosophila peripheral nervous system, Fmi regulates dendritic 

morphogenesis of sensory neurons in two distinct developmental stages. During 

late embryogenesis dendrites of dendritic arborisation (da) neurons in the 

abdominal dorsal body wall start growing toward the midline and pause before 

reaching it. Later, in early larvae stages, dendrites growth continues until 

dendrites of contralateral homologous da neurons meet at the midline and repeal 

each other. This interdendritic avoidance ensures the formation of non-

overlapping dendritic fields (Grueber et al., 2002). Loss of fmi results in 

precocious dendrite growth and consequent midline crossing already in 

embryonic stage (Gao et al., 2000). In fmi mutant larvae, dendritic terminals 

overgrow and invade the contralateral side, creating overlapping dendritic fields 

with dendrites from homologous contralateral neurons (Kimura et al., 2006). In 

addition, Fmi represses dendritic extension also in the CNS mushroom body 

neurons (Reuter et al., 2003), indicating that Fmi is a general negative regulator 

of dendritic growth in both peripheric and central nervous system in the fly. 

Celsr2 and Celsr3, in the mammalian nervous system, also regulate dendritic 

arborization: silencing of Celsr2 in rat neuronal cultures causes retraction of 

dendrites, whereas Celsr3 silencing results in increased neurite growth (Shima 

et al., 2007; Shima et al., 2004). In both the fly and the mouse dendritic systems, 

several studies support a signaling role for Fmi/Celsr, rather than a more 

classical, cadherin-like adhesive function. First, the dendritic overgrowth 

phenotype of fmi mutant embryos can be partially rescued by expression of an 

Fmi construct lacking the cadherin repeats (indispensable for homophilic 

adhesion) and the EGF/Laminin-like domains, suggesting that Fmi can transmit 

a signal independently of homophilic cell adhesion. Second, Matsubara and 

colleagues showed that a LIM domain protein, Espinas, is capable of binding to 

an intracellular juxtamembrane domain of Flamingo, thus eliciting repulsion 

between dendritic branches of class IV sensory neurons (Matsubara et al., 

2011). Third, Celrs2 and Celsr3 are capable of triggering intracellular Ca2+ 

increase upon binding to their respective cadherin repeats (Shima et al., 2007), 

similarly to GPCRs family members.  
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1.5.3  Roles of Flamingo/Celsr in axon guidance 

Flamingo’s role in regulation of axonal growth and targeting was first uncovered 

in the fly visual system. Here, Fmi contributes to axon guidance and synaptic 

partner selection directing axon-axon and axon-target interactions in different 

developmental stages. In larval visual system, Fmi is required for maintaining 

proper distance between pioneer R8 photoreceptor axons, allowing the formation 

of a continuous topographic map (Lee et al., 2003; Senti et al., 2003). Later, 

during pupae stages, Fmi ensures proper target selection in both lamina, where 

it acts in a non-cell autonomous way (Chen et al., 2008) and medulla, where it is 

required in both photoreceptor axons and their medulla targets, acting via a 

homophilic axon-target mechanism (Hakeda-Suzuki et al., 2011) (Figure 1-8A 

and B). Flamingo is widely implicated in axon guidance in Drosophila: fmi 

mutants show an axon stalling phenotype in sensory neurons, perturbing the 

normal interaction between sensory neuron growth cones and their intermediate 

target cells (Steinel et al., 2009) (Figure 1-8C). Additionally, axon targeting and 

bifucartion of mushroom body neurons are impaired when Fmi is absent in these 

neurons (Shimizu et al., 2011) . 

Recently, it was shown that loss of fmi causes strong axon navigation defects in 

pioneer and follower axons in the ventral nerve cord of C. elegans, likely due to 

mis-regulating of both axon pathfinding and axon fasciculation (Steimel et al., 

2010) (Figure1-8D). Celsr3 mutant mice also display severe axon guidance 

defects in many axonal tracts, including the AC and the internal capsule (Tissir et 

al., 2005); in the latter, Celsr3 seems to be required in neurons but also in cells 

located in their trajectory, probably acting in both cell types via homophilic 

interaction (Zhou et al., 2008). Additional defects are observed in the spinal cord, 

where Celsr3 mutant commissural axons extend randomly along the anterior-

posterior axons instead of proceeding anteriorly (Price et al., 2006) (Figure 1-

8E). Similarly, anterior-posterior pathfinding errors are present in serotoninergic 

and dopaminergic tracts projections in the brainstem (Fenstermaker et al., 2010) 

(Figure1-8F). 
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Figure 1-8 Schematic of the major axon guidance phenotypes in fmi/Celsr3 
mutants. 

In Drosophila, loss of fmi causes aberrant synaptic partner selection of R1-R6 photoreceptor 

axons in the lamina (A) and of R8 in the medulla (B); in the latter, it also causes loss of spacing 

between R8 axons. Sensory neurons of fmi
-/-

 embryos show axon stalling phenotype, thus failing 

to reach their targets in the CNS (C). In C. elegans, pioneer neurons of FMI-1
-/-

 animals show 

irregular midline crossing (D). In Celsr-3
-/- 

mice, commissural axons fail to turn anteriorly after 

crossing the midline (E), whereas dopaminergic neurons fail to project anteriorly in the brainstem 

and project randomly, including posteriorly (F). WT animals or neurons are depicted in blue, fmi 
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or Celsr-3 mutants are depicted in red. M1/M3: medulla layers 1 and 3; CNS: central nervous 

system; FP: floor plate; MF: mesencephalic flexure; A-P: anterior-posterior. 

 

Contrary to what has been observed in dendritic morphogenesis, Fmi can act in 

axon pathfinding as adhesion molecules as well as receptor. For example, in the 

fly visual system, Flamingo, being expressed in both pre- and post-synaptic 

partners, allows recognition and adhesion of photoreceptor axons and their 

target cells in the medulla in a homophilic manner (Hakeda-Suzuki et al., 2011). 

Here, the Fmi intracellular domain is not required in photoreceptor axons, 

arguing against the requirement of an Fmi-mediated downstream signaling. 

Celsr3 seems to play a role in synaptic partners recognition in the internal 

capsule in mammals, being required in both navigating axons and guidepost 

cells (Zhou et al., 2008). Another compelling evidence of Flamingo acting as an 

adhesive factor in axon targeting comes from fmi-1 role in the VNC of C. 

elegans. Here follower axons, which exclusively depend on pioneer axons for 

correct navigation, show a defasciculation phenotype in fmi-1 mutant animals.  

Interestingly, this phenotype can be rescued by expressing versions of FMI-1 

lacking either the intracellular or the seven-pass transmembrane domain 

(Steimel et al., 2010), arguing for a pure adhesive function in follower axons. 

Additionally, the worm model offers a good example of Fmi receptor-like activity: 

opposite to follower axons, FMI-1 intracellular domain is crucial for guidance of 

pioneer axons, suggesting that axonal pathfinding depends in this case on 

interaction with intracellular components (Steimel et al., 2010). Thus, FMI-1 acts 

as cell-type dependent axon guidance factor, exerting its function in different 

neurons through different structural domains. This axonal cadherin independent 

activity of Fmi is conserved in Drosophila embryonic sensory neurons, where an 

Fmi construct lacking cadherin repeats and EGF/Laminin domains can partially 

rescue the stalling phenotype (Steinel & Whitington, 2009). 
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1.5.4 Involvement of other PCP genes in axon guidance. 

Given the fundamental role that Flamingo plays in PCP, a question that many 

researchers have tried to answer is whether these Fmi/Celsr neuronal functions 

are PCP-dependent or not. The easiest way to address this point is to analyze 

whether the other core PCP proteins are required in the same context. Again, a 

complex and ambiguous mechanism of action has been found, given multiple 

evidence for both PCP-dependent and –independent pathways. In mice, Fzd3 

(mouse homologous of Fz) have similar expression patterns and similar mutant 

phenotypes to Celsr3, showing defects in the anterior commissure and the 

internal capsule (Tissir et al., 2005; Wang et al., 2002; Zhou et al., 2008). 

Additional common defects have been shown in post-crossing commissural 

axons in the spinal cord, where Celrs3, Fzd3 and Vangl2 (homologous of the 

Drosophila Vang Gogh) mutants display aberrant anterior-posterior projections, 

in a Wnt4-dependent manner (Lyuksyutova et al., 2003; Shafer et al., 2011). The 

same genes are also required for anterior-posterior guidance of brainstem 

serotoninergic and dopaminergic axons, probably responding to a Wnt5 gradient 

(Fenstermaker et al., 2010; Shafer et al., 2011). Interestingly, a similar 

cooperative function of the PCP genes fz, dsh, vang and wnt5 was demonstrated 

for targeting and branching of Drosophila mushroom body neurons (Shimizu et 

al., 2011). Fmi knock-down in these neurons showed a similar phenotype, 

arguing for a function of core PCP genes in neuronal polarization. However in 

Drosophila and C. elegans, Fmi PCP-independent axon guidance pathways 

have been reported. Mutants for fz, vang, dsh and pk show normal 

photoreceptor targeting in the medulla (Hakeda-Suzuki et al., 2011); similarly, fz, 

vang and dsh mutants do not display a stalling phenotype in sensory neurons 

(Steinel & Whitington, 2009). Finally, no defects were detected in C. elegans for 

core PCP mutants (Steimel et al., 2010). An exception is lin-17/frizzled mutants, 

which display phenotypes in pioneer and follower axons. However, double 

mutants for frizzled and flamingo show enhanced phenotypes, arguing that they 

act in a parallel rather than identical pathway (Steimel et al., 2010). 

Taken together, these data suggest that genes regulating polarization of cells 

within epithelial sheets can also act in more dynamic systems, for instance 

directing growth cone orientation and guidance. Currently, it is not clear whether 
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the molecular repertoire and the interactions utilized in the two contexts overlap 

or differ. In other words, are PCP genes activating similar downstream cascades 

in the two systems? Is asymmetrical localization required for axonal pathfinding? 

Are the genes acting cooperatively or in a redundant manner with respect to 

each other? Another open question regards how this novel group of guidance 

molecules relates with the cardinal axon guidance systems described in 

paragraph 1.1.  
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2 AIM OF THIS THESIS 

As reviewed above, studies on the nerve cord midline have been particularly 

meaningful in revealing molecular and cellular pathways used by developing 

axons to navigate and connect to their targets. Several important regulators of 

axonal pathfinding have been identified up to now; however, it is important to 

keep in mind that most of those genes and their molecular pathways have only a 

partial phenotype, affecting a specific class of neurons and, even within a group 

of neurons, affecting only some of them, while leaving others unaffected. Thus, a 

full understanding of axonal guidance mechanisms requires additional studies in 

order to identify how this redundancy is achieved. In particular in Drosophila, 

loss of the midline attractant Netrin and its receptor Frazzled affects only part of 

the neuronal population, leaving open the question of how midline crossing of 

most of the commissural neurons is regulated. 

The aim of this study was to explore how different guidance systems 

cooperatively elicit axonal pathfinding by investigating the role of the PCP 

molecules and in particular, of the atypical cadherin Flamingo in the fly 

embryonic CNS. Specifically, this study addressed the following questions: 

1) Are PCP genes and in particular Fmi required for guiding neurons at the 

Drosophila midline? 

2) How does Fmi cooperate with known axon guidance systems such as 

Netrin/Frazzled? 

3) Where is Fmi required in this system? 

4) Is Fmi acting as adhesive factor or as signaling receptor?  

5) What is the molecular mechanism acting upstream and downstream of 

Fmi in this system? 
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3 RESULTS 

3.1 Analysis of PCP genes roles in midline guidance. 

 “Core” PCP molecules, such as Flamingo (Fmi) (Chae et al., 1999; Usui et al., 

1999), Van Gogh/Strabismus (Vang/Stbm) (Taylor et al, 1998; Wolff & Rubin, 

1998), Frizzled (Fz) (Adler et al., 1997; Vinson et al.,1989), Prickle (Pk) (Gubb et 

al., 1999), Dishevelled (Dsh) (Theisen et al., 1994) and Diego (Dgo) (Feiguin et 

al., 2001), have been recently implicated in important neurodevelopmental 

processes. For example, Celsr3, Frizzled3 and Vangl2 have been shown to 

direct anterior-posterior guidance of spinal cord commissural axons and of 

brainstem serotoninergic and dopaminergic axons (Lyuksyutova et al., 2003; 

Shafer et al., 2011). To address whether PCP genes play a similar role in the 

Drosophila ventral nerve cord (VNC), loss of function alleles for fmi, dsh, vang 

and fz were analyzed in order to identify possible defects in the formation of 

commissural or longitudinal axon bundles (Figure 3-1). To this aim, stage 16-17 

embryos were stained with HRP and FasII antibodies and filleted. HRP labels 

four axon bundles per segment: two midline crossing bundles, called anterior 

commissure (AC) and posterior commissure (PC) and two longitudinal tracts. 

FasII labels three axon bundles within the longitudinal tracts. Both HRP and 

FasII stainings in fmiE59-/-, dsh1-/-, vang153-/- and fzKD4-/-  embryos failed to reveal 

any kind of mutant phenotype: HRP positive midline crossing bundles thickness 

was comparable to WT embryos (Figure 3-1B, magenta), and FasII positive 

longitudinal axons (Figure 3-1C, green) bundled together forming three nicely 

separated fascicles on each side of the ventral nerve cord (VNC), as observed in 

wild-type (WT) embryos. 
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Figure 3-1 “Core” PCP genes and their phenotypes in the embryonic CNS 

A. Schematic of the “core” PCP genes, including their cellular localizations and their respective 

interactions. B. Representative stage 16 embryos of indicated genotypes stained with anti-HRP 

(magenta) to visualize the axon scaffold, or with anti–FasII (green) to label ipsilateral neurons. 

Anterior is up. N.d.: not determined. In wild-type embryos CNS axons are organized in two 

commissures (AC and PC) per segment and two longitudinal tracts that run along the anterior-

posterior axis of the embryo. Mutants for fmi, vang, dsh and fz do not show any relevant 

phenotype in commissures or longitudinal tracts C-D. Quantification of PC defects (C) and 
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longitudinal tracts (D) defects in fmi
E59-/- 

, vang
153-/-

, dsh
1-/- 

, and fz 
KD4-/-

 embryos. 10-20 embryos 

per genotype were analyzed. Values displayed in C are percentages of defective posterior 

commissure, and typical defective commissures are shown in the pictures with anti-HRP staining. 

Error bars indicate s.e.m. Values displayed in D are percentages of defective longitudinal tracts. 

Weak phenotype refers to loss of the lateral tract, strong phenotype refers to segments where 

one or none of the fascicles are formed. 

 

Next, these mutant alleles were analyzed again in a sensitized fra-/- background, 

because functional Net/Fra signaling could mask or compensate for the loss of a 

pathway playing an analogous guidance role. The analysis included double 

mutants fra, fmi , fra, vang , dsh, fra and fra, fz. The mutant alleles Vang153 and 

dsh1 did not enhance fra mutant phenotype, whereas both fmiE59 and fzKD4 

enhanced fra-/- phenotype (Figure 3-2). In both of the cases, strong axon 

pathfinding phenotypes were observed: commissures were significantly much 

thinner than in single mutants, and the number of segments affected in each 

embryo also increased (Figure 3-2). In particular, posterior commissures (PC) 

were almost entirely lost in fra, fmi and in fra, fz double mutants, whereas in fra 

mutants still 60% of posterior commissures were formed properly and the 

defective ones were usually thinner, but rarely totally missing. Analysis of FasII 

positive longitudinal bundles also revealed a highly disrupted axonal pattern 

(Figure 3-2A and C). In double mutant embryos, axons aberrantly bundle, losing 

proper separation and often forming only a single fascicle (Figure 3-2A, 

arrowheads, and 2C, strong phenotype) or stopping prematurely without 

connecting to the bundle in the next segment (Figure 3-2 asterisks). On the 

contrary, in fra mutants strong defects are only occasionally observed (8%), and 

mild defects, like presence of only two bundles (Figure 3-2A and C, weak 

phenotype), are confined to 30% of the segments analyzed. 
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Figure 3-2 Loss of flamingo or frizzled strongly enhances axonal defects in 

frazzled or Netrin mutants. 

A-C. Analysis of PCP core genes in axon targeting. A. Vang and Dsh mutations do not 

significantly enhance the fra
3
/fra

4
 single mutant phenotype, neither in commissures (anti-HRP, 

magenta, upper row) nor in longitudinal tracts (anti-FasII, green, bottom row), whereas in fra
3-/-

 

fmi
E59-/-

 and fra
3-/-

 fz 
KD4-/-

 strong phenotypes are observed: most of the PC are lost (arrows), and 

longitudinal fascicles are also disrupted, with loss of two or all the tracts in most of the segments 

B-C. Quantification of PC defects (B) and longitudinal tracts (C) defects in fra
3-/-

 vang
153-/-

, Dsh
1-/- 

fra
3-/- 

and fra
3-/-

 fz 
KD4-/-

 double mutants. 15-20 embryos per genotype were analyzed. Values 

displayed in B are percentages of defective posterior commissure. Error bars indicate s.e.m. 

***P<0.001. Arrows indicate strong commissure phenotype, arrowheads strong phenotype in 
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longitudinal tracts. n.s.: not significant. Values displayed in C are percentages of defective 

longitudinal tracts. Mild phenotype/strong phenotype categories are same as in figure 3-1B. 

 

Although, as mentioned before, loss of fz and fmi caused in different contexts 

overlapping mutant phenotypes and the two proteins could directly interact in 

vivo and in vitro, in order to transmit an instructive PCP signal among 

neighboring cells (Chen et al., 2008), the following analysis mainly focused on 

Fmi, because Fz is known to play a fundamental role in mediating Wnt 

morphogenic signaling (Charron & Tessier-Lavigne, 2005). Therefore, the 

phenotype observed upon loss of fra and fz might be related to loss of such a 

signaling, rather than being consequent to loss of a Fz-dependent axon 

guidance pathway. 

 

3.2 Flamingo enhances Netrin/frazzled mutant phenotype in midline  

Fra is known to mediate Netrin-attractive signaling (Harris et al., 1996; Mitchell et 

al., 1996); however, Fra was reported to be required for midline crossing in both 

ligand-dependent (Kolodziej et al., 1996) and – independent (Yang et al., 2009) 

ways. Thus, in order to clarify which of these pathways was enhanced by loss of 

fmi, embryos lacking fmi and both NetrinA and NetrinB, the two genes encoding 

for fra ligand in Drosophila (Harris et al., 1996), were analyzed (Figure 3-3). Male 

embryos hemizygous for NetABΔ and homozygous for fmiE59 also showed strong 

phenotypes in both commissural and longitudinal bundles, qualitatively and 

quantitatively similar to the ones observed in fra-/- fmi-/- embryos (Figure 3-1). 

In conclusion, loss of fmi strongly enhanced axonal pathfinding defects caused 

by loss of Netrin-dependent Frazzled signaling, leading to the loss of most of 

commissures and severe disruption of longitudinal projections. 
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Figure 3-3 Loss of flamingo strongly enhances axonal defects in frazzled or Netrin 

mutants. 

A. Embryos mutants for fra or Net-A and Net-B exhibit defects in commissure formation (anti-

HRP, magenta), with some of the PC thinner or missing (arrow).fra
3-/-

 fmi
E59-/-

 and NetABΔ
-/-

 fmi
 

E59-/-
 double mutants show strong enhancement of the commissural phenotype compared to 

single mutants, with loss of most of the PC. Additionally, breaks in the longitudinal tracts can be 

observed in double mutants (asterisk). In fra
3-/- 

or NetABΔ
-/- 

mutants, occasional breaks or loss of 

the most lateral longitudinal tract occur (arrowheads) (anti-FasII, green). fra
3-/-

 fmi
E59-/-

 and 

NetABΔ
-/-

 fmi
 E59-/- 

embryos show severe disruption of the fascicles, with loss of two or all the 

tracts in most of the segments (asterisks). Scale bar, 20 µm. B-C. Quantification of defective 

posterior commissures and defective longitudinal tracts in embryos of the indicated genotypes. 

15-20 embryos per genotype were analyzed. Values displayed in B are percentages of defective 

posterior commissure calculated in each embryo. Error bars indicate standard error and three 

asterisks (***) indicate statistical significance (P<0.001). Values displayed in C are percentages 

of defective longitudinal tracts calculated in each embryo. Mild phenotype/strong phenotype 

categories are same as in figure 3-1B. 

 

3.3 Flamingo and Frazzled have overlapping expression patterns. 

Flamingo was already shown to be expressed broadly in epithelia and nervous 

system in both embryos and imaginal tissues (Usui et al., 1999); however, 

detailed data about the precise temporal and spatial embryonic expression, as 
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well as a comparison with fra expression is not reported yet. Given the 

availability of a good monoclonal antibody against Fmi, analysis of its localization 

at the embryonic midline was performed (Figure 3-4). In WT embryos, fmi is 

expressed in virtually all the developing neurons, as revealed by co-staining with 

anti-Fmi and anti-HRP antibodies (Figure 3-4A). Fra was also shown to be 

expressed in the majority of commissural and longitudinal axons at the CNS 

(Kolodziej et al., 1996); thus, co-staining with anti-Fra and anti-Fmi antibodies 

confirmed that indeed the two transmembrane proteins have largely overlapping 

distribution throughout embryonic axonogenesis, and that it takes place from 

stage 11-12 to stage 16 (Figure 3-4B, representative images of stage 13 and 16 

WT embryos are shown). 

In conclusion, analysis of fmi expression revealed that fmi and fra are expressed 

in the same cells, thus suggesting they might act cooperatively during neuronal 

development. 

 

Figure 3-4 Flamingo and Frazzled have overlapping expression patterns. 

A. Flamingo (anti-fmi, red) is expressed in most of the axons (anti-HRP, green) in wild-type 

embryos. B. In wild-type embryos, anti-flamingo (red) and anti-frazzled (green) antibody staining 

reveals similar expression pattern for Frazzled and Flamingo from the beginning of axonal 

extension (stage13) to the end of embryonic development (stage 16). Scale bar, 10 µm. 

com 
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3.4 Pan-neuronal expression of Flamingo rescues axonal defects of 

both commissural and longitudinal projecting neurons. 

During axonal pathfinding, developing neurons receive and interpret signals 

coming from surrounding cells, such as other neurons or glia cells. Therefore, 

abnormal axon pathfinding can arise from aberrant neuron-neuron interactions, 

as observed in the case of loss of FasciclinII or N-cadherin (Iwai et al., 1997; M. 

Lin et al., 1994), from absence of midline secreted axon guidance cues, as for 

loss of Slit or Netrins (Harris et al., 1996; T Kidd et al., 1999; Mitchell et al., 1996; 

Rothberg et al., 1988), or from irregular glia-neuron interaction, as resulting from 

loss of Wrapper in midline glia (Noordermeer et al., 1998) or from removal of 

longitudinal glia during longitudinal pioneer neurons extension (Hidalgo & Booth, 

2000). Therefore, the phenotype observed in fmi mutants could be due to loss of 

fmi function in either one of the modalities described above. Thus, rescue 

experiments were conducted in order to determine in which cells Fmi was 

contributing to axonal outgrowth. To address this question, fmi was selectively 

re-expressed in specific subset of cells in fra-/- fmi-/- embryos, taking advantage of 

the Gal4-UAS system (Brand & Perrimon, 1993). Two different pan-neuronal 

drivers, 1407-Gal4 (Luo et al., 1994) and Elav-Gal4 (Hekmat-Scafe et al., 2005), 

one midline cells driver, Sim-Gal4 (Scholz et al., 1997) and two different glia 

cells drivers, Repo-Gal4 (Sepp et al., 2001) and Gcm-Gal4 (Sepp & Auld, 1999) 

were used. 

Expression of UAS-fmi construct in midline (with Sim-Gal4) or glia cells (Gcm-

Gal4) still resulted in a disrupted axonal scaffold (Figure 3-5A and B), where both 

phenotypes in PC and longitudinal tracts were quantitatively similar to control 

(fra, fmi double mutants with the Gal4 construct) embryos. However, neuronal 

expression of Fmi significantly reduced the number of defective commissures 

(Figure 3-5C), as well as number and severity of defective FasII positive bundles 

(Figure 3-5D). Interestingly, pan-neuronal re-expression of Fmi in fra, fmi mutant 

embryos reduced commissural defects at the extent of fra single mutant 

phenotype, thus rescuing all fmi contribution to the phenotype. 
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Figure 3-5 Flamingo is required in neurons, but not in midline or longitudinal glia cells, for 

proper axonal targeting of CNS axons. 

 



Results 

 

40 
 

A. Commissural defects in fra
3-/-

 fmi
E59-/- 

mutants are rescued at the level of fra
-/- 

single mutants 

when a wild-type fmi construct (UAS-fmi) is re-expressed in neurons with 1407-Gal4 or Elav-

Gal4. Re-expression of Fmi in midline cells with Sim-Gal4 or in longitudinal glia with Gcm-Gal4 

leads to similar defects as observed in fra, fmi double mutants. Re-expression of a wild-type fra 

construct (UAS-fra) with 1407-Gal4 fully rescues the commissural mistargeting. Magenta is anti-

HRP staining. Scale bar, 20 µm. B. Severity of the longitudinal tracts phenotype in fra
3-/-

 fmi
E59-/- 

mutants is reduced when Fmi is re-expressed in neurons with 1407-Gal4 or Elav-Gal4, but not 

when re-expressed in midline cells (Sim-Gal4) or longitudinal glia (Gcm-Gal4). Similar effects are 

observed with pan-neuronal expression of Fra. Green is anti-FasII staining. C-D. Quantification 

for the rescue of the PC defects (C) and of the longitudinal tracts (D) defects in fra, fmi double 

mutants. 15-20 embryos per genotype were analyzed. Values displayed in C are percentages of 

defective posterior commissure. Error bars indicate s.e.m. ***P<0.001. Values displayed in D are 

percentages of defective longitudinal tracts. Mild phenotype/strong phenotype categories are 

same as in figure 3-1D.  

 

Pan-neuronal expression of UAS-fra efficiently restored PC bundles (Figure 3-

5C), and additionally reduced both the severity and the number of defects in 

longitudinal bundles, although in this case at a comparable effectiveness of 

UAS-fmi (Figure 3-5D). 

These data, together with the previously described neuronal expression pattern 

(Figure 3-4), suggest that Fmi, similar to Fra, contributes to normal axonal 

development in longitudinal and commissural neurons. 
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3.4 Role of apoptosis in fra, fmi double mutants. 

Recent reports suggested an anti-apoptotic role for Netrins. In mouse or chick 

primary embryonic neuronal culture, Netrin-1 inhibits the pro-apoptotic activity of 

DCC in developing commissural neurons, thus supporting the idea that Netrin-1 

acts in these neurons not only as guidance cue but also as pro-survival factor 

(Furne et al., 2008). In Drosophila such an anti-apoptotic function has been 

proposed for NetB. Connectivity defects observed in Net mutant embryos can be 

rescued by pan-neuronal expression of either NetB (but not NetA) or apoptosis 

inhibitor p35, suggesting that NetB does not only act as positional cue but also 

as anti-apoptotic factor. This hypothesis was further validated by the reduced 

natural cell death observed at the VNC when NetB was overexpressed in 

neurons (Newquist et al., 2013). Interestingly, apoptosis was found to be 

increased in Net-/- but not in fra-/- embryos, so that the neurotrophic activity of 

NetB can be mediated by an unidentified receptor (Newquist et al., 2013). All 

together those results suggested that defects observed in fra, fmi or Net, fmi 

double mutants could be a consequence of increased neuronal apoptosis rather 

than to pathfinding defects. Therefore, a similar approach was taken to evaluate 

the contribution of cell death to the strong fra, fmi double mutant phenotype. The 

caspase inhibitor p35 was pan-neuronally expressed in fra-/- fmi-/- embryos, but 

no rescue of the neuronal phenotype was observed (Figure 3-6). Although no 

direct analysis of neuronal cell death was performed, it is possible to conclude 

that Fmi does not exhibit anti-apoptotic activity, and that the phenotypes 

resulting from loss of fra and fmi are not due to death of the neuronal cells, but 

rather to defects in axonal outgrowth.   
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Figure 3-6 Block of apoptosis does not rescue fra, fmi double mutant neuronal 

phenotype. 

A Pan-neuronal expression of the anti-apoptotic factor p35 does not ameliorate the fra
3-/-

 fmi
E59-/- 

neuronal phenotype, neither in commissures (anti-HRP, magenta, upper row) nor in longitudinal 

tracts (anti-FasII, green, bottom row), Scale bar, 20 µm. B-C. Quantification of PC defects (B) 

and longitudinal tracts (C) defects in fra
3-/-

 fmi
E59-/- 

double mutants. 15-20 embryos per genotype 

were analyzed. Values displayed in B are percentages of defective posterior commissure. Error 

bars indicate s.e.m. n.s.: not significant. Values displayed in C are percentages of defective 

longitudinal tracts. Mild phenotype/strong phenotype categories are same as in figure 3-1B. 
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3.5 Flamingo can mediate midline crossing 

The analysis presented above showed that Flamingo collaborates with Net/Fra 

pathway to mediate axon targeting in developing axons; however the molecular 

and cellular mechanisms of Fmi function are still poorly understood, given that 

the analysis was performed with general neuronal markers and Gal4 lines. In 

particular, the poor temporal-spatial resolution of markers such as HRP and 

FasII could not give further information regarding the precise function of Fmi in 

different subtypes of neurons. One important question is whether Fmi can 

specifically mediate midline crossing, one of the prominent functions of Net/Fra 

signaling pathway (Harris et al., 1996; Kolodziej et al., 1996; Mitchell et al., 

1996). 

To address this question, Gal4 lines expressed in smaller subsets of neurons 

were used. The first one is the Eagle-Gal4 driver, which label a specific group of 

commissural neurons, the eagle (Egl) neurons (Dittrichet al., 1997; Higashijima 

et al., 1996). In WT embryos, expression of a membrane bound GFP (UAS-

mcd8-GFP) under the eagle promoter labels two clusters of neurons: one cluster 

(EG neurons) of 10-12 cells that have cell bodies located laterally to the 

longitudinal bundles, extending the axons in the AC, and a medial cluster (EW 

neurons) of 3-4 cells that extend their axons across the midline in the PC of the 

adjacent segments (Figure 3-7A). 
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Figure 3-7 Flamingo can elicit midline crossing. 

Analysis of commissural axon pathfinding in stage 16 embryos expressing UAS-mCD8-GFP in 

Eagle-positive commissural neurons (with Eg-Gal4). A. In WT embryos eg-positive commissural 

axons properly cross the midline in two distinct fascicles: the EG cluster crossing in the AC and 

the EW cluster crossing in the PC. B In fmi
E59-/- 

mutants no crossing defects are observed. In 

fra
3
/fra

4
 mutants and in NetABΔ/Y mutants some of the EW neurons fail to cross the midline 

(asterisks), but selective overexpression of Fmi (UAS-fmi) in eg-positive neurons specifically 

rescues the EW pathfinding errors in fra and Net mutant embryos. anti-GFP staining (green) 
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labels eg-positive neurons, anti-HRP staining (magenta) labels the axon scaffold. Scale bar, 20 

µm. C. Quantification of EW crossing defects. 15-20 embryos per genotype were analyzed. 

Values displayed are percentages of EW crossing defects. Error bars indicate s.e.m. ***P<0.001. 

 

Analysis of eagle-positive axons in embryos lacking Fmi revealed a few defects 

in the EW neurons, with around 4% of those not crossing the midline. This data 

is in line with the analysis performed with the HRP antibody, where virtually all 

the PC seemed to be properly formed. Mutants lacking fra or Net showed strong 

phenotypes in this subpopulation of neurons, with 45 and 48% of EW clusters 

not crossing the midline. Aberrant crossing was already shown in these mutants 

(Brankatschk & Dickson, 2006; Garbe et al. 2007); and selective expression of 

UAS-fra was sufficient to restore normal crossing behavior (Garbe et al., 2007), 

arguing a cell autonomous function of fra in these neurons. To test whether Fmi 

can also promote midline crossing, Fmi was expressed specifically in eagle-

positive neurons in otherwise fra mutant background. In these embryos, the EW 

neurons crossing behavior was significantly restored, with only 18% of EW 

axons failing to cross the midline. To further confirm that the capability of fra-

mutant and Fmi overexpressing neurons to cross the midline was Netrin 

independent, a similar experiment was performed in embryos lacking both NetA 

and NetB: also in this case, UAS-fmi could rescue the phenotype when 

selectively expressed in eagle-positive neurons. The ability of Fmi to restore 

axonal targeting of a subgroup of controlateral projecting neurons in Net/fra 

mutant embryos strongly suggest a role in mediating midline crossing, 

suggesting that particularly in these neurons Fmi might exploit the same 

molecular pathway activated by Net/Fra ligand-receptor complex.  

The role of Fz, the other PCP gene capable of enhancing fra mutant axonal 

phenotype was also analyzed for its ability of compensate for loss of fra in eagle-

positive neurons. However, no rescue of the commissural defects was observed 

upon Fz overexpression (Figure 3-8), suggesting that Fz is not mediating midline 

crossing and thus that Fmi acts independently of Fz in this context.  
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Figure 3-8 Role of Fz in commissural neurons. 

Analysis of commissural axon pathfinding in stage 16 embryos expressing UAS-mCD8-GFP in 

Eagle-positive commissural neurons (with Eg-Gal4). A In fra
3
/fra

4
 mutants some of the EW 

neurons fail to cross the midline (asterisks). Selective overexpression of Fz in eg-positive 

neurons does not ameliorate the EW pathfinding errors in fra mutant embryos, whereas 

overexpression of Fmi does. anti-GFP staining (green) labels eg-positive neurons, anti-HRP 

staining (magenta) labels the axon scaffold. Scale bar, 20 µm. B. Quantification of EW crossing 

defects. 15-20 embryos per genotype were analyzed. Values displayed are percentages of EW 

crossing defects. Error bars indicate s.e.m. ***P<0.001; n.s.:not significant. 

 

To further confirm that Fmi could mediate midline crossing, Fmi was 

overexpressed in neurons that normally do not cross the midline. For this 

purpose, the Ftzng-Gal4 driver was employed, which is expressed in longitudinal 

projecting axons that usually project ipsilaterally (Lin et al., 1994) and the 

behavior of those longitudinal axons was analyzed with the anti-FasII staining. 

For instance, overexpression of the Ig CAM Dscam in these neurons caused 

Netrin-independent ectopic crossing (Andrews et al., 2008). Overexpression of 

one copy of UAS-fmi was not sufficient to mediate ectopic crossing, similarly to 

what observed for UAS-fra (Dorsten et al., 2007; Kim et al., 2002). However, 

increasing the protein amount by adding another copy of either UAS-fmi or UAS-

fra caused some ipsilaterally axons to cross the midline (Figure 3-9).  

The ability to mediate ectopic midline crossing when overexpressed in 

ipsilaterally projecting neurons and to suppress midline crossing defects in fra 

mutant embryos strongly argue for a specific role of Fmi in promoting midline 

crossing. 
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Figure 3-9 Fmi can cause ectopic midline crossing. 

Effect of overexpression of Fmi or Fra in ipsilateral neurons. A. Stage 17 embryos 

overexpressing either Fmi (UAS-fmi) or Fra (UAS-fra) in a small population of Ftzng-Gal4 positive 

ipsilateral neurons exhibit ectopic midline crossing (arrowheads). Anti-FasII labels ipsilateral 

tracts (green). Scale bar, 20 µm. D. Quantification of ectopic midline crossing expressed as 

penetrance (percentage of embryos that display the phenotype) and as expressivity (average 

number of ectopic crossing per embryos that exhibit the phenotype). 
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3.6 Flamingo does not act cell-autonomously in eagle neurons 

It was shown that selective re-expression of Fra in the small eagle-positive 

population of commissural neurons in an otherwise fra mutant background was 

sufficient to restore normal crossing behavior, arguing for a cell-autonomous 

function of Fra in these neurons (Garbe et al., 2007). Similarly, selective 

overexpression of Fmi in eagle neurons in fra mutant background can also 

increase midline crossing (Section 3.5). These findings raise the question of 

whether Fmi could mediate midline crossing in a cell-autonomous way. 

Considering that loss of fmi does not cause appreciable defects in eagle 

neurons, the question was addressed by re-expressing Fmi or Fra in fra3-/- fmiE59-

/- embryos using the Eg-Gal4 driver. In fra, fmi double mutants, nearly all the EW 

axons fail to cross the midline in the PC (Figure 3-10A), but upon re-expression 

of Fra, only 24% of the EW neurons mis-projected. The rescue was particularly 

significant, considering that the number of EG bundles non-crossing was lower 

than the defects observed in fra single mutants. Conversely, re-expression of 

Fmi did not significantly rescue the midline crossing defects. This result was 

surprising, considering the rescue capability of Fmi when pan-neuronal re-

expressed in double mutants, as well as when compared to the effect seen in 

EW neurons of fra single mutant embryos. However, it is important to notice 

some differences between these experiments. In fra-/- embryos PCs, where EW 

axons project are usually thinner, but completely lost in very few cases, whereas 

in fra3-/- fmiE59-/- embryos PC are absent in the majority of segments. This could 

suggest that Fmi, in order to mediate crossing, needs contact with other axons. 

The possible mechanism underlying Fmi function in commissural neurons will be 

described in the discussion part; however, is possible to conclude that Fmi does 

not act cell-autonomously at least in this subset of commissural neurons.  
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Figure 3-10 Effect of selective Fra or Fmi overexpression in midline crossing 

neurons. 

A.In fra, fmi mutants, most of the EW axons fail to cross the midline in the PC. Specific re-

expression of Fmi in eagle-positive neurons does not ameliorate the crossing defects, whereas 

selective re-expression of fra significantly rescues the defects, reducing the number of non-

crossing bundles to less than what is observed in fra single mutants. Anti-GFP labels eagle 

neurons (green), anti-HRP (magenta) labels the axon scaffold. Scale bar, 20 µm. B. 

Quantification of EW crossing defects. 10-20 embryos per genotype were analyzed. Values 

displayed are percentages of EW crossing defects. Error bars indicate s.e.m. ***P<0.001, n.s.: 

not significant.  
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3.7 Role of Flamingo in longitudinal tracts 

The mutant analysis (Section 3.1), and the pan-neuronal rescue experiments 

(Section 3.4) showed that Fmi plays a role in both commissural and longitudinal 

projecting neurons. Given that this two macro-population of neurons have been 

frequently described as having a separated and independent development, as 

well as a different molecular requirement, a more detailed analysis in ipsilateral 

and, in general, longitudinal projecting neurons is required in order to clarify 

whether Fmi plays a common role in all the neurons, or its mechanism of action 

is more dynamic among different classes of neurons. 

To address this question, the behavior of some groups of neurons was analyzed, 

using specific genetic markers, such as Sema2b-Ƭmyc, 15J2-Gal4 and C544-

Gal4. 

3.7.1 Analysis of controlateral neurons. 

The phenotype resulting from loss of both fmi and fra appeared to apply to the 

majority of the neurons in the VNC; however, from the HRP and FasII staining it 

is really hard to distinguish which neurons are really affected. Controlateral 

neurons, for example, are a very heterogeneous class, since some of those 

neurons are interneurons, only crossing the midline and stopping immediately, 

and others extend their axons further along the anterior-posterior axis, reaching 

targets that sometimes can be located in the neighboring segments. To analyze 

in more detail axonal outgrowth, genetic markers that specifically labeled a small 

subset of neurons were employed. Sema2b-Ƭmyc was used to label a fraction of 

contralateral neurons (Rajagopalan et al., 2000). This marker labels cell bodies 

and axons of two to three neurons in each of the A4-A8 segments, as shown in 

figure 3-11A. The cell bodies are located close to the HRP/FasII positive 

neuropil, and the respective axons extend along the anterior commissure (AC). 

After crossing the midline, the axons further extend anteriorly, along the most 

lateral edge of the intermediate FasII positive fascicle. In fmi-/-, no defects are 

observed in the pathfinding of those neurons (Figure 3-11A). In fra mutants, very 

few defects were observed: around 10% of the neurons were crossing the 

midline properly, but then they failed to extend anteriorly, or they extended but 

stop prematurely. In fra-/- fmi-/- embryos, only 30% of the neurons displayed 
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normal extension. Most of them were not extending (29%) or stopping (24%) 

after crossing the midline. Some of the neurons were displaying very severe 

phenotypes, such as thinner commissural bundles (Figure 3-11 A-B, indicated by 

a (+)), presumably resulting from some of the axons not crossing the midline, 

and axons crossing the midline, but then extending into the wrong direction, 

usually posteriorly instead of anteriorly (Figure 3-11 A-B, indicated by an asterisk 

(*)). These severe phenotypes were observed in 18% of the axons analyzed in 

fra-/- fmi-/- embryos, but only in 2% of the fra-/- embryos. In some of the fra-/- fmi-/- 

neurons (30%) cell bodies were mis-localized in a medial position, closer to the 

midline, but still the number of cells seemed to be unaffected, and the majority of 

this mispositioned neurons extended their axons (only 9% did not cross the 

midline), suggesting that loss of fmi is affecting axonal outgrowth and not other 

neuronal properties. It would have been interesting to investigate whether those 

phenotypes could be rescued by re-expression of fmi in these neurons; 

unfortunately no Sema2b-Gal4 line is available, thus not enabling any further 

experiment.  
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Figure 3-11 Analysis of Sema2b- Ƭmyc contralateral neurons. 

A. In fmi mutants, no defects are observed, whereas in fra mutants 10% of axons do not extend 

after crossing the midline. In fra, fmi double mutants, most of the Sema2b-neurons show 

phenotypes, such as no crossing, no extension, extension in the wrong direction or premature 

stopping. Anti-myc labels Sema2b-Ƭmyc neurons (magenta), anti-FasII (green) labels 

longitudinal tracts. Scale bar, 20 µm. Arrows indicate axons that extend longitudinally but stop 

prematurely; dots indicate axons that cross the midline but do not extend anteriorly; plus (+) 

indicate axons that do not cross the midline; asterisks indicate axons that extend in the wrong 

direction after crossing the midline B. Quantification of Sema2b-Ƭmyc path finding defects. 15-20 

embryos per genotype were analyzed. Values displayed are percentages of Sema2b-Ƭmyc 

neurons showing the indicated phenotype; percentages were calculated on the total amount of 

axons per genotype, not the average defects per embryos.  
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3.7.2 Analysis of pioneer neurons 

Axonal outgrowth and pathfinding of longitudinal tracts seem to be particularly 

dependent on pioneer-follower interactions. In fact, ablation experiments 

revealed that removal of pioneer neurons impair the normal development of 

longitudinal tracts (Hidalgo & Brand, 1997). Thus, analysis at a cellular level 

might be helpful to get insights into the mechanism by which Fmi influences axon 

outgrowth. Two Gal4 lines are known to be selectively expressed in pioneer 

neurons: 15J2-Gal4 is expressed in both vMP2 and dMP2 neurons and c544-

Gal4 in MP1 neurons. dMP2 and MP1 neurons extend their axons posteriorly, 

whereas vMP2 project anteriorly, as represented in the schematic in figure 3-

12A. All of them are ipsilateral neurons, and shown to be important for 

subsequent axonal extension of neurons that form the most medial FasII-positive 

bundle (dMP2 and vMP2) and the intermediate fascicle (MP1) (Hidalgo & Brand, 

1997). 15J2-Gal4 was already used to analyze the role of fra in dMP2 pioneer 

neurons (Hiramoto et al., 2000). Here, fra plays a non-cell autonomous role for 

dMP2 axons, “presenting” Netrin to the extending neurons. In fact, selective re-

expression of Fra in dMP2 with 15J2-Gal4 in a fra-/- background is not sufficient 

to rescue defects in dMP2 neurons (Hiramoto et al., 2000). 15J2-Gal4 was 

therefore used to label dMP2 neurons in fmi, fra and fra fmi mutants at early 

developmental stage, such as stage 12.5-13 and 14, when axon extension takes 

place. In these mutants, two different phenotypes were observed. At early 

stages, some of the growth cones failed to track the boundary of HRP positive 

neurons, taking an external trajectory and “exiting” the midline (arrowhead in 

figure 3-12B); at later stages, axons failed to extend (asterisk in figure 3-12B). 

Those phenotypes were overall very mild in fra or fmi mutants and not 

significantly different from WT embryos (Figure 3-12C). In fra, fmi double 

mutants 16% of axons in stage 13 embryos showed a phenotype, and only 12% 

in stage 14. Given the weakness of the phenotype, the analysis with 15J2-Gal4 

was discontinued. 

C544-Gal4 labels mainly MP1 neurons and sometimes midline glia cell bodies. 

The line is expressed only in few segments in each embryo, causing a variable 

number of axons labeled across different animals. Thus, analysis was performed 

in a big number of embryos but only 30 to 50 neurons per genotype per 
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developmental stage were analyzed. The phenotypes observed in MP1 neurons 

are similar to the ones seen in dMP2 neurons, with axons exiting the midline 

(arrowheads), not extending (asterisks) or growing without tracing the HRP 

positive boundary (arrow) (Figure 3-12B). In fra or fmi mutants, those 

phenotypes appeared in 8 to 15% of the axons, whereas in double mutants the 

phenotypes were strongly enhanced, affecting the 37 to 40% of the axons. 

Selective re-expression in fra-/- fmi-/- background of either Fra or Fmi partially 

reduced the phenotypes, although in none of the cases the percentages of 

axons affected was reduced to the WT situation (Quantification in figure 3-12C). 

The strong phenotype present in double mutants as well as the partial rescues 

observed upon re-expression of either of the genes suggested that in MP1 

neurons fra and fmi are both required for axonal growth. The phenotype 

observed in fra and fmi mutants were very similar, arguing for a redundant 

function in these neurons. However, the not fully penetrant expression of c544-

Gal4 limited the possibility to strengthen the conclusions by further analysis, 

such as for example double re-expression of fra and fmi in double mutants. 

All together, the analysis in longitudinal neurons supported the idea that loss of 

Fmi affects axonal pathfinding rather than defects in axonal outgrowth, and that 

Fmi can mediate extension of ipsilateral pioneer neurons in a partially 

autonomous way.  
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Figure 3-12 Analysis of longitudinal pioneer neurons. 

A.Schematic depicting the pioneer neurons of the longitudinal tracts and the Gal4 lines used to 

selectively label them. 15J2-Gal4 labels dMP2 and vMP2, which extend posteriorly and 

anteriorly, respectively; c544-Gal4 labels MP1 neurons, which extend their axon posteriorly. B. 

Examples of wild-type (left) and mutants (right) phenotypes observed in pioneer neurons at early 

stages of axonogenesis when visualized with 15J2-Gal4 or c544-Gal4 driving the expression of 

UAS-mCD8-GFP (anti-GFP, green). Anti-HRP (magenta) labels the axon scaffold. Scale bar, 20 

µm. Arrowheads indicate axons extending laterally, asterisk indicates premature stop or not 

extension. C. Quantification of defects of MP1 or dMP2 pathfinding. 10-15 embryos per genotype 

were analyzed in case of 15J2-Gal4, whereas given the variable expression of c544-Gal4, 30-50 

axons per stage per genotype were analyzed. Values are percentages of axons showing the 

phenotype. n.d.: not determined.  
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3.8 Flamingo intracellular domain is required for its action. 

As non-classical cadherins, Fmi and its homologues contain domains giving 

them the capability of acting as cell-adhesion molecules (through the cadherin 

repeats), as well as receptors. Interestingly, both molecular mechanisms appear 

to be used. Fmi was found to mediate adhesion between photoreceptor axons 

and their targets in the medulla within the Drosophila visual system (Hakeda-

Suzuki et al., 2011), as well as adhesion between pioneer and follower axons in 

the VNC of nematodes (Steimel et al., 2010). Receptor-like functions were found 

in mammals, where Celrs2 and Celrs3 were proved to trigger intracellular 

calcium increase upon binding to their respective Cadherin repeats (Shima et al., 

2007) and in Drosophila, where Fmi extracellular domain was shown to be 

partially dispensable to mediate repulsion between dendritic branches of 

peripheral sensory neurons in larvae (Gao et al., 2000), whereas the intracellular 

domain was required, allowing interaction with the LIM domain protein Espinas 

(Esn) (Matsubara et al., 2011). In order to assess which domains and 

consequently, which molecular mechanisms are required in this neuronal 

context, a series of transgenic fly lines carrying versions of Fmi lacking either the 

extracellular of the intracellular domains were used (Kimura et al., 2006; H. Strutt 

& Strutt, 2008). These Fmi variants were specifically expressed in neurons of 

embryos mutants for both fra and fmi making it possible to analyze their ability of 

restoring normal axonal projections. Expression of UAS-fmiΔIntra, a version 

lacking the intracellular tail (schematic in Figure 3-13A), could not rescue the 

mutant phenotype in neither commissurally nor longitudinally projecting neurons 

(Figure 3-13B). Instead, expression of UAS-fmiΔN, lacking most of the 

extracellular domain (Cadherin repeats, EGF-like domains and laminin-G-like 

domains) could partially suppress both phenotypes (Figure 3-13B). In particular, 

compared to fra, fmi mutants, 20% more commissures were formed when the 

Fmi version with the intracellular domain was expressed. Moreover, a less 

severe phenotype was observed in longitudinal axons (Figure 3-13C and D). 
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These rescue experiments showed that the short intracellular tail is required for 

Fmi activity. The same domain requirement was confirmed for Fmi function in 

midline crossing by expression of UAS-fmiΔN or UAS-fmiΔIntra with EG-Gal4 in 

fra3-/- embryos. UAS-fmiΔIntra failed to restore midline crossing, whereas FmiΔN 

could reduce defects in eg-Gal4 neurons (Figure 3-13E-F) 

Therefore, Fmi seems to act in this context as a signaling molecule rather than 

as a pure adhesion molecule. 
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Figure 3-13 Flamingo requires the intracellular C-terminal domain, but not 

cadherin repeats. 

A-F.Analysis of Fmi domain requirement. A. Schematic of Fmi structural domains with domains 

retained in different UAS constructs. UAS-fmiΔN lacks cadherin repeats, EGF-like domains and 
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LamininG-like domains, but retains hormone binding domain and GPS domain, as well as the 

whole 7-TM and intracellular domain. UAS-fmiΔIntra lacks the intracellular domain, except the 

first 30 amino acids after the last transmembrane domain. In both cases, black line indicates the 

parts included in the construct. B. Neuronal expression (1407-Gal4) of UAS-fmiΔN in fra
3-/-

 fmi
E59-

/- 
mutants partially rescues commissural axon defects (anti-HRP staining, upper row) and the 

severity of the longitudinal tracts defects (anti-FasII staining in green, bottom row), whereas 

expression of UAS-fmiΔIntra in fra
3-/-

 fmi
E59-/- 

mutants still resembles fra, fmi double mutants. 

Scale bar, 20 µm. C-D. Quantification for the rescue of the PC defects (C) and of the longitudinal 

tracts defects (D) in fra, fmi double mutants. 15-20 embryos per genotype were analyzed. Values 

displayed in C are percentages of defective posterior commissure. Error bars indicate s.e.m. 

***P<0.001; **P<0.01, n.s.: not significant. Values displayed in D are percentages of defective 

longitudinal tracts. Mild phenotype/strong phenotype categories are same as in figure 3-1. E. 

Additionally, selective overexpression of UAS-fmiΔN in eg-positive neurons specifically rescues 

the EW pathfinding errors in fra mutant embryos, whereas overexpression of UAS-fmiΔIntra fails 

to reduce crossing defects. Anti-GFP staining (green) labels eg-positive neurons, anti-HRP 

staining (magenta) labels the axon scaffold. Scale bar, 20 µm. F. Quantification of EW crossing 

defects. 15-20 embryos per genotype were analyzed. Values displayed are percentages of EW 

crossing defects. Error bars indicate s.e.m. ***P<0.001; **P<0.01, n.s.:not significant.  

 

3.9 Analysis of potential downstream effectors of Fmi signaling. 

3.9.1 Role of Rho GTPases in Fmi-mediated midline crossing. 

Guidance cues and receptors direct growth cone steering by activating signaling 

pathways that ultimately change actin cytoskeleton dynamics. Among the 

molecules eliciting cytoskeleton rearrengements, Rho GTPases play 

fundamental roles at all stages of axonogenesis (Hall & Lalli, 2010). Among the 

RhoGTPases members, Rac, Cdc42 and RhoA have been shown to act 

downstream of many guidance receptors. Usually, Rac and Cdc42 associate 

with attractive signaling pathway, stimulating growth cone extension, whereas 

RhoA acts antagonistically downstream of repulsive cues, promoting growth 

cone collapse. This is not true for all the signaling, since many exceptions have 

been observed (Vikis et al., 2000; Vikis et al., 2002). In processes involving 

Netrin mediated attraction, it has been shown that Rac and Cdc42 but not RhoA 

are required for neurite outgrowth of DCC-positive neurons (Li et al., 2002). In 

the context of the fly embryonic CNS, positive genetic interaction was shown 

between Fra and Cdc42 and Rac, whereas negative interaction was reported for 
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RhoA. In fact, overexpression of dominant active (DA) versions of either Cdc42 

(UAS-cdc42V12) or Rac (UAS-rac1V12) in ipsilateral neurons with Ftzng-Gal4 

causes ectopic midline crossing of ipsilateral axons, but heterozygous loss of fra 

reduces the strength of this phenotype, suggesting that this ectopic crossing 

might be at least partially depending on Fra signaling (Dorsten et al., 2007). 

Conversely, overexpression of a constitutively active version of RhoA caused 

very few midline errors, and those were unaffected by partial loss of fra (Dorsten 

et al., 2007). Considering that a similar phenotype was observed in this study 

upon overexpression of Fmi (Section 3.5), it is possible that also Fmi and Rac or 

Cdc42 interact in the context of midline crossing. To test this hypothesis, 

constitutively active versions of Rac1 and Cdc42 were overexpressed in 

ipsilateral neurons and one copy of fmi was removed in order to see whether it 

has any effect on the number of ectopic midline crossing observed. 

Heterozygous loss of fmi affects the number of ectopic crossing caused by 

overexpression of UAS-rac1V12 by reducing both the number of embryos 

showing the phenotype and the number of midline crossings (Figure 3-14A-C). 

Conversely, partial removal of fmi did not affect the phenotype observed upon 

overexpression of Cdc42V12 (Figure 3-14 A-C), suggesting that in the context of 

midline crossing Fmi acts through a signaling pathway that activates Rac1 but 

not Cdc42. In order to confirm that Rac can cause midline crossing of 

commissural neurons, a WT version of it was overexpressed in Eagle neurons in 

fra-/- embryos. Additionally, WT versions of Cdc42 and RhoA were 

overexpressed, in order to clarify their involvement in midline crossing (Figure 3-

14 D). Only Rac was capable of increasing the number of EW neurons properly 

crossing the midline (Figure 3-14 E), suggesting that indeed Rac plays an 

important role for midline crossing, and that it can be activated from a signaling 

mechanism independent of Fra. Taken together, those results suggest that at 

least in the context of midline crossing, Fmi interacts with the GTPase Rac to 

promote growth cone extension across the midline. 
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Figure 3-14 Roles of Rho GTPases in Fmi-mediated midline crossing. 

A. Stage 17 embryos overexpressing dominant active versions of either Rac1 (UAS-rac1V12, 

upper row) or Cdc42 (UAS-cdc42V12, bottom row) in a small population of Ftzng-Gal4 positive 

ipsilateral neurons exhibit ectopic midline crossing (asterisks). Removal of one copy of fmi 

reduces the strength of the phenotype of RacV12 overexpression but not of Cdc42V12 

overexpression. Anti-FasII labels ipsilateral tracts (green). Scale bar, 20 µm. B-C. Quantification 

of ectopic midline crossing expressed as penetrance (B, percentage of embryos that display the 

phenotype) and as expressivity (C, average number of ectopic crossing per embryos that exhibit 

the phenotype). 
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D. Effect of selective overexpression of either Rac1 Cdc42 or RhoA in eg-positive neurons 

(labeled with Eg-Gal4 UAS-mCD8-GFP) in fra mutant embryos. Only overexpression of Rac 

rescues the EW pathfinding errors. anti-GFP staining (green) labels eg-positive neurons, anti-

HRP staining (magenta) labels the axon scaffold. E. Quantification of EW crossing defects. 15-20 

embryos per genotype were analyzed. Values displayed are percentages of EW crossing 

defects. Error bars indicate s.e.m. **P<0.01. n.s.: not significant. 

 

3.9.2 Espinas mediates Fmi signaling in sensory neuron dendrites 

but not in midline axons.  

The domain analysis reported in chapter 3.8 suggested that Fmi acts as a 

signaling receptor, mediating an axon guidance signal through its short 

intracellular domain. Up to now, only one study reported data on potential Fmi 

binding partners acting as downstream signaling components. Matsubara and 

colleagues (2011) performed a yeast two-hybrid screening using Fmi C-terminal 

cytoplasmic tail and found that some members of the Drosophila PET-LIM 

domain family can bind to Fmi: Prickle (Pk), Espinas (Esn) and Testin. Among 

those, they found that Esn could physiologically bind to the C-terminal tail of Fmi, 

thus mediating Fmi interaction with intracellular pathways required to transduce 

a dendritic self-avoidance signal (Matsubara et al., 2011). Some evidence 

suggests that Fmi-Esn signaling complex could likely play a role in the CNS 

system. In fact, in both class IV sensory neurons and embryonic CNS neurons 

Fmi C-terminal intracellular tail is required, suggesting a common activity 

mechanism. Moreover, Esn is broadly expressed in the embryonic CNS and, as 

observed for fmi mutants, no significant axon guidance phenotype was detected 

in esn-/-embryos (Matsubara et al., 2011). To assess whether Fmi signals via 

Esn, animals carrying the protein-null mutation esnKO6 in combination with fra3, 

fmiE59 or NetABΔ mutant alleles were analyzed. None of these double mutant 

animals showed enhancement of the phenotype compared to their respective 

single mutant animals (Figure 3-15). Therefore, it was concluded that Esn is not 

required in this system, and that Fmi exploited a different intracellular signaling 

pathway such as Rac GTPase mediated signaling to elicit its function during 

embryonic axonal development. 
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Figure 3-15 Espinas does not mediate Fmi intracellular signaling. 

A. Analysis of espinas null allele esn
KO6-/- 

in either fmi
E59-/-

,
 
fra

3-/-
 or NetABΔ

-/-
 mutant background 

does not show enhancement of the single mutants phenotypes, neither in midline crossing 

neurons (magenta, anti-HRP staining) nor in longitudinal projecting neurons (green, anti-FasII 

staining). Scale bar, 20 µm. B-C Quantification of PC defects (B) and longitudinal tracts (C) 

defects in esn
KO6-/-

 fmi
E59-/- 

, esn
KO6-/- 

fra
3-/- 

and NetABΔ
-/-

esn
KO6-/-

double mutants. 15-20 embryos 

per genotype were analyzed. Values displayed in B are percentages of defective posterior 

commissure. Error bars indicate s.e.m. n.s.: not significant. Values displayed in C are 

percentages of defective longitudinal tracts. Mild phenotype/strong phenotype categories are 

same as in figure 3-1. 
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3.9.3 Abl mediates Frazzled but not Flamingo dependent midline 

crossing. 

Effective responses to extracellular guidance cues rely on downstream 

molecules that transduce the signal to the cytoskeleton, ultimately resulting in 

alterations in growth cone mobility. Among the cytoplasmic proteins that have 

been implicated in axon guidance, the Abelson tyrosine kinase (Abl) plays a 

particularly complex role. Analysis of the role of Abl in embryonic CNS 

development has been particularly challenging because of maternal contribution. 

In zygotic mutants the strong neuronal phenotype is masked by the maternally 

produced protein (Grevengoed et al., 2001). In fact removal of both maternal and 

zygotic Abl resulted in severely disrupted axonal scaffold, with loss of most of the 

commissural and longitudinal tracts (Grevengoed et al., 2001). In zygotic 

mutants, few defects were observed (Forsthoefel et al., 2005; Gertler et al., 

1989). Additionally, Abl has been implicated in both repulsive and attractive 

signaling. Abl was shown to antagonize Robo signaling by binding directly to 

Robo and modulating its phosphorylation state (Bashaw et al., 2000). However 

another study (Wills et al., 2002) implicated Abl as positive effector of Slit-Robo 

signaling, arguing that Abl restricts midline crossing. Data seem to be more 

consistent for AbI as effector of Netrin-midline attractive signaling. It was shown 

that zygotic mutation of abl strongly enhanced fra and Net mutant phenotypes, 

suggesting that Abl promotes midline attraction as Net/Fra effector (Forsthoefel 

et al., 2005). Additionally Fra and Abl were found to physically interact 

(Forsthoefel et al., 2005). Those physical and genetic interactions have been 

confirmed in another study, where the function of Abl was analyzed in detail in 

the context of midline crossing neurons (O’Donnell & Bashaw, 2013). Abl was 

suggested to act cell-autonomously in commissural neurons, promoting Netrin-

dependent midline crossing through its C-terminal F-actin binding domain in a 

partially kinase-independent fashion (O’Donnell & Bashaw, 2013). The reduction 

of the crossing defects observed in fra mutants when fmi was specifically 

overexpressed in commissural neurons (section 3.5) suggested that Fmi might 

be activating, in this context, an overlapping molecular repertoire with Fra. Thus, 

Abl seemed to be a good candidate. Particularly interesting was the fra, abl 

double mutant phenotype, very reminiscent of fra, fmi double mutants. In order to 
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investigate a possible role of Abl as common mediator of Fmi and Fra signaling, 

several experiments were performed. First, the Abl/Fra physical interaction was 

validated by testing their ability of binding in vitro in co-immunoprecipitation 

assays. A version of Abl tagged at the C-terminal with 2 copies of c-myc was 

cloned in a pUAS-vector and co-overexpressed in S2 cells together with a 

version of GFP C-terminal tagged Fra (UAS-Fra-GFP). The pull-down of Abl 

using an anti-myc antibody resulted in co-immunoprecipitation of Fra-GFP 

(Figure 3-16A), confirming the already reported interaction between Abl and Fra. 

Unfortunately, a similar experiment addressing the interaction between Abl and 

Fmi failed likely because of the large size of Fmi (data not shown).  

 

Figure 3-16 Evidences suggesting Abl as common effector of Fra and Fmi 

signaling. 

A.UAS-frazzled-GFP and UAS-abl-myc were expressed in S2 cells under the control of Actin-

Gal4. Immunoprecipitation (IP) of Abl with anti-myc antibody also pulled down Fra. B. Abl zygotic 

mutant embryos show very little neuronal defects, whereas fmi, abl double mutants show 

disrupted commissures (anti-HRP, magenta) and longitudinal tracts (anti-FasII, green), similar to 

what is observed in fra, fmi double mutants. Scale bar, 20 µm. 
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This evidence still leaves open the possibility that Abl only works downstream of 

Fra, and that the fmi abl double mutant phenotype results from the loss of two 

parallel pathways: Fra/Abl in one pathway and Fmi in another. To validate the 

hypothesis that Abl can be activated independently of Net/Fra, its function in 

commissural eagle-positive neurons was analyzed in a fra-/- background. Again, 

similarly to what had been observed in fra-/- embryos overexpressing Fmi, Abl 

overexpression led to a significant reduction of the midline crossing defects, thus 

supporting the hypothesis that Abl can be activated independently of Fra in 

commissural axons (Figure 3-17). Yet, strong evidence for Abl-Fmi interaction in 

the system was missing. In most of the cases, Abl requires its catalytic activity to 

function. Yet, some kinase independent functions have been described for Abl 

(Henkemeyer et al., 1990; Lapetina et al., 2009); additionally, in eg-positive 

neurons Abl activity was reported to be kinase-independent, although a minimal 

level of WT Abl was required (O’Donnell & Bashaw, 2013). Thus, given the 

controversial data on kinase requirement for Abl in commissural neurons, a 

version of Abl carrying an amino acid mutation causing loss of kinase activity 

(AblKD) was assessed for its ability of rescue fra-/- commissural phenotype. AblKD 

could not restore midline crossing, hinting that tyrosine kinase activity is required 

for commissural Fra-independent function of Abl (Figure 3-17). In some systems, 

AblKD  was suggested to act as dominant negative (Hsouna et al., 2003; Sawyers 

et al., 1994); instead in commissural eg-positive neurons, a version of Abl 

lacking the C-terminal but retaining the kinase domain was reported to act as a 

dominant negative, likely competing with endogenous Abl for interaction with Fra 

(O’Donnell & Bashaw, 2013). AblKD was anyway tested for its capability of 

interfering with Fmi-mediated midline crossing. Eagle-specific co-overexpression 

of Fmi and AblKD in fra-/- background resulted in a rescue of the crossing defects 

similar to the one resulting from single Fmi overexpression (Figure 3-17B). 

Although it not possible to rule out the possibility that AblKD is not acting as 

dominant negative, the experiment suggested that blocking Abl kinase activity 

does not result in inhibition of Fmi-mediated axonal extension. Therefore, Abl is 

not a good candidate for a joint molecular mechanism between Fra and Fmi. 
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Figure 3-17 Analysis of Fmi/ Abl interaction in commissural axons. 

A-B. Effect of selective Abl overexpression in eg-positive commissural neurons in fra mutant 

background. Eg-positive neurons are labeled with Eg-Gal4 UAS-mCD8-GFP A. Similarly to Fmi, 

overexpression of Abl (UAS-Abl) in a subset of commissural neurons with Eg-Gal4 rescues the 

fra
3
/fra

4
 mutant defects in EW neurons. A kinase dead version of Abl (UAS-Abl

KD
) does not 

ameliorate EW pathfinding defects neither interferes with Fmi ability to rescue midline crossing in 

Eg- neurons when both are co-overexpressed. Anti-GFP labels eagle neurons (green), anti-HRP 

(magenta) labels the axon scaffold. Scale bar, 20 µm. n.d.: not determined. B. Quantification of 
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EW crossing defects. 15-20 embryos per genotype were analyzed. Values displayed are 

percentages of EW crossing defects. Error bars indicate s.e.m. ***P<0.001, n.s.: not significant.  

 

In addition, analysis of Abl, Fra and Fmi overexpression in ipsilateral neurons, 

with the previously described Ftzng-Gal4 driver, supported a common pathway 

between Abl and Fra (Figure 3-9). Overexpression of Abl alone did not cause 

midline crossing, but co-overexpression with Fra resulted in ectopic crossings in 

35% of the embryos analyzed (Figure 3-18), suggesting that ectopic midline 

crossings observed when Fra levels were increased (with 2 copies of UAS-fra, 

figure 3-9) could be mediated by increase Abl Fra-dependent activity. However, 

co-overexpression of Fmi and Abl did not result in a phenotype, thus suggesting 

that the ectopic crossings caused by increased Fmi levels could be Abl-

independent. This discrepancy between Fra, Abl and Fmi, Abl overexpressions 

could as well be due to different levels of expression achieved. However, 

together with the aforementioned data, these results suggest that Abl, although 

capable of eliciting midline crossing in a Fra-independent fashion, could as well 

work independently of Fmi.

 

Figure 3-18 Effect of abl overexpression in ipsilateral neurons. 

A. Stage 17 embryos overexpressing Abl (UAS-abl) in Ftzng-Gal4 positive ipsilateral neurons do 

not exhibit ectopic midline crossing. When Fra (UAS-fra) is co-overexpressed together with Abl, 

ipsilateral neurons cross the midline (arrowheads), whereas co-overexpression of Abl and Fmi 

(UAS-fmi) does not result in any phenotype. Anti-FasII labels ipsilateral tracts (green). Scale bar, 

20 µm. B. Quantification of ectopic midline crossing expressed as penetrance (percentage of 

embryos that display the phenotype) and as expressivity (average number of ectopic crossing 

per embryos that exhibit the phenotype). 
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3.10 Analysis of Wnt family members as midline guidance cues. 

The data collected till now suggested that Fmi acts as signaling receptor, as it 

was shown in other biological contexts (Berger-Müller & Suzuki, 2011). However, 

no candidates acting as ligands, capable of eliciting intracellular signaling have 

been identified yet. In vertebrates, the Wnt family of morphogens has been 

shown to act cooperatively with Fz and other PCP proteins in order to direct 

axonal pathfinding. For example, Wnt4 was shown to be expressed in anterior-

high to posterior-low gradient at the vertebrate midline, directing the post-

crossing anterior turning of commissural neurons. The effect is mediated by the 

receptors Fzd3, Celrs3 and Vangl2 expressed on the neurons (Lyuksyutova et 

al., 2003; Shafer et al., 2011; Tissir et al., 2005). The same molecular repertoire 

is present in serotoninergic and dopaminergic axons in the hindbrain and 

midbrain, where Wnt5 directs their extension along the anterior-posterior axis 

(Blakely et al., 2011; Fenstermaker et al., 2010). Wnt signaling has been shown 

to regulate axon guidance also in other system, such as olfactory sensory 

neurons (Rodriguez-Gil & Greer, 2008) and cortical neurons (L. Li, Hutchins, & 

Kalil, 2009). Also in Drosophila, evidence for Wnt-PCP dependent axon 

guidance mechanisms emerged. Wnt5 directs AC selection of commissural 

axons expressing the receptor Derailed (Drl), repelling them from the PC 

(Yoshikawa et al., 2003) and directs mushroom body neurons targeting and 

branching through Fz, Dsh and Vang (Shimizu et al., 2011). It is important to 

mention that although in vertebrates Wnts family members have been known to 

regulate PCP establishment (Gao et al., 2011; Vivancos et al., 2009), such a 

mechanism has been described in Drosophila only recently (Wu et al., 2013). 

Nevertheless, Wnts family members seem to be good candidates as midline 

attractants. In Drosophila, seven family members have been identified till now; 

however, some of them, namely Wnt6, Wnt10 and Wnt8 are not expressed at 

the VNC during embryonic development (Janson et al., 2001). Therefore the 

analysis was focused on Wg, Wnt2, Wnt4 and Wnt5.  

Mutants for any of these genes were never reported to show a phenotype in the 

embryonic CNS. Given that the phenotype of other genes required in Fmi-

signaling was revealed in fra or Net mutant background, loss of function alleles 

for the wg, wnt2, wnt4 and wnt5 were analyzed in combination with Net or fra 
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mutation. It was already known that wnt5 mutants have fused commissures, due 

to the switch of some axons from the AC to the PC when they lose repulsiveness 

towards the wnt5 expressing PC (example shown in figure 3-17A). In wnt5D7-/- 

fra3-/- embryos the AC defects are not enhanced (Figure 3-19B), but Fra-

dependent PC crossing defects observed in fra single mutants are partially 

suppressed (Figure 3-19C). This compensation could be explained by an 

increased number of axons aberrantly crossing in the PC, thus resulting in a 

wild-type size bundle. In other double mutant combinations, only Net/fra loss of 

function phenotypes were observed, with no enhancement upon loss of Wnt 

genes (Figure 3-19C). To ensure that effects on midline crossing were not 

obscured because of redundancy among the family members, overexpression 

analysis was performed. In fact, it was shown that midline expression of Wnt5 

with the Sim-Gal4 driver caused loss of AC, because Wnt5 was not restrained 

anymore to the PC, thus repelling Drl-positive axons from the AC (Yoshikawa et 

al., 2003). Therefore, functions of other Wnts family members could have also 

been revealed by ectopic expression.  
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Figure 3-19 Analysis of Wnts family members. 

A.Examples of the phenotypes observed in case of loss or overexpression of Wnts family 

members. Fused commissures results from loss of Wnt5 or pan-neuronal overexpression of Wg 

or Wnt5. ectopic midline crossings of ipsilateral axons are present in embryos overexpressing 

Wg with Sca-Gal4, whereas loss or reduction of AC happens when Wnt5 is miserexpressed at 

the midline with Sim-Gal4.Commissures are visualized through HRP staining (Magenta), 

ipsilateral axons through anti-FasII staining (green). Scale bar, 20 µm. Arrow indicates fused 

commissures, asterisk indicates ectopic midline crossing and arrowhead indicates missing AC. 

B-C. Quantification of defects observed in embryos lacking Net/fra in combination with either wg, 

wnt2, wnt4 or wnt5. B is the quantification of the Wnt5 mutants-like defects as shown in A, 

consisting in axons occupying the area between the two commissures, thus causing fusion of the 

commissures. C is the quantification of the number of PC missing or reduced. Both the 

quantification are based on HRP staining . 
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Wg, Wnt2, Wnt4 and Wnt5 were expressed under the control of different 

promoters: Ftzng-Gal4 was used for expressing ipsilateral neurons, Elav-Gal4 for 

expression in post-mitotic neurons, Sim-Gal4 for expression at the midline and 

Sca-Gal4 for a strong expression in neurons, starting from early neuroblast 

stages, in epidermal precursor cells and in midline cells precursors (Bossing & 

Brand, 2006; Mlodzik et al., 1990). Only in few combinations a phenotype was 

observed, as reported in Table1. Mild loss of AC was observed upon Sim-Gal4 

dependent overexpression of Wnt4, reminiscent of the phenotype caused by 

midline overexpression of Wnt5. The phenotype is almost negligible, and would 

support the idea that wnt4 acts, similarly to wnt5, in AC-PC selection and not in 

midline crossing. Elav-Gal4 and Sca-Gal4 overexpression of Wnt5 gave rise to 

fused commissures. This phenotype could be caused by loss of specific PC 

localization of Wnt5, thus leading to repulsion of Drl-positive axons from the AC 

now expressing Wnt5. Overexpression of Wg with Sca-Gal4 caused fused 

commissures, but also ectopic crossing of ipsilateral neurons and reduced AC 

(Figure 3-19A, Table 1). This phenotype was unexpected, especially considering 

that no effect was observed upon overexpression of Wg in post-mitotic neurons 

(with Elav-Gal4) or at the midline (with Sim-Gal4). Wg is required for correct 

neuroblast specification and formation during embryonic development (Chu-

LaGraff & Doe, 1993) and overexpression of Wg with the early onset driver Sca-

Gal4 might interfere with this process. Taken together, these results suggest that 

Wnt family members do not act as axon guidance cues in this context, although 

the possibility that they have overlapping phenotypes as it was shown for wg and 

wnt4 in PCP has not completely been ruled out(Wu et al., 2013). Analysis of 

triple mutants might reveal the phenotype, but was technically too difficult to 

perform. 
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Table 1 Phenotypes caused by overexpression of Wnts family members. 

Examples of the three categories (fused commissures, ectopic crossing and defective AC) are 

shown in Figure 3-19.
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4 DISCUSSION 

The processes of axonal navigation and target selection are crucial for building 

neural circuits and, consequently, for correct functioning of nervous systems. 

Thus, molecular and cellular mechanisms involved in axon guidance have been 

of central interest in neuroscience for the last few decades. Studies performed 

with different model organisms and systems revealed the fundamental role of 

four conserved families of guidance cues and their receptors: Netrins, Slits, 

ephrins and Semaphorins (Kolodkin & Tessier-Lavigne, 2011; Tessier-Lavigne & 

Goodman, 1996). However, soon other studies started to reveal axon guidance 

functions for molecules implicated in very different developmental processes. For 

example, members of the Hedgehog, TGF-β/BMP, and Wnt families of 

morphogens have been shown to direct growth cone turning via alternative 

pathways to the one employed for cell fate specification (Yam & Charron, 2013). 

Other molecules that surprisingly emerged for their roles in axonal development 

are Planar Cell Polarity (PCP) proteins (Tissir & Goffinet, 2013). They were 

originally identified for their function in organizing and regulating the coordinated 

orientation of cells along a particular axis within the plane of a tissue in 

Drosophila (Chae et al., 1999; Feiguin et al., 2001; Usui et al., 1999; Vinson et 

al., 1989; Wolff & Rubin, 1998). Similarly, their homologs in vertebrates have 

conserved functions for the polarization of the inner ear epithelium (Ezan & 

Montcouquiol, 2013), convergent extension during gastrulation (Gray et al., 

2011) and patterning of hair follicles (Chang & Nathans, 2013; Devenport & 

Fuchs, 2008). However, growing evidence supports roles for “core” PCP genes 

in neuronal development, especially in axon guidance and dendritic growth, but 

also in polarization of ependymal cells or neural tube closure (Tissir & Goffinet, 

2010). 

In this study, the role of the PCP protein and atypical cadherin Flamingo (Fmi) 

was analyzed in the context of Drosophila embryonic CNS guidance. Here, Fmi 

was shown to cooperatively act with Net/Fra signaling in guiding both 

commissural and longitudinal axons. In fact, loss of fmi and either Net or fra 

results in loss of most of the posterior commissures as well as defects in 
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ipsilateral axons fasciculation and extension. Consistent with its expression 

pattern, Fmi is required in neurons; in particular, Fmi is capable of mediating 

midline crossing of commissural neurons and is important for correct axonal 

directionality in some ipsilateral pioneer neurons. Interestingly, Fmi acts through 

a largely adhesion-independent mechanism and signals instead via its 

intracellular domain, to elicit an in part Rac1-mediated signaling. Together with 

the analysis of other possible interacting partners presented in this thesis, the 

present data suggest that Fmi acts in this context through a novel Wnt and PCP 

independent mechanism.  

In conclusion, this study proposes a model where axonal extension towards and 

along the midline cooperatively require two different signaling pathways, which 

converge at the level of the Rac1 GTPase to influence the cytoskeleton 

dynamics: a Fra-dependent signaling, responsive to the midline attractant Net, 

and a Fmi-dependent signaling, responsive to a yet unidentified, likely 

membrane bound, guidance cue. 

 

4.1 Roles of Flamingo in different neuronal types. 

This study revealed a new role for Fmi in directing axonal pathfinding. 

Previously, two receptor systems were shown to regulate the formation of the 

embryonic CNS midline in Drosophila: Slit/Robo and Net/Fra. Slit is the major 

midline repellent, and it is acting through the Robo family of receptors (Kidd et 

al., 1999; Rothberg et al., 1988; Seeger et al., 1993). They are required for 

preventing ipsilateral and contralateral neurons from crossing or re-crossing the 

midline, respectively (Battye et al., 1999; Simpson et al., 2000). Additionally, this 

signaling is important for lateral pathway selection of ipsilateral axons 

(Rajagopalan et al., 2000b; Spitzweck et al., 2010) . Netrins and their receptor 

Fra act instead as midline attractants, guiding commissural axons across the 

midline (Brankatschk & Dickson, 2006; Harris et al., 1996; Kolodziej et al., 1996; 

Mitchell et al., 1996). Although Net/Fra signaling was revealed as major 

attractant signaling at the midline, loss of function phenotypes of receptor or 

ligand lead to only partially penetrant phenotypes (Harris et al., 1996; Mitchell et 

al., 1996). By analyzing the Drosophila midline, the present work has shown that 
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Fmi acts together with Fra during the formation of the central nervous system 

midline. Severe axonal phenotypes were observed in both commissural and 

longitudinal neurons through analysis of loss of function alleles of fmi in the 

absence of either fra or Net. Hence, Fmi represents another important attractive 

mechanism at the embryonic midline that functions redundantly to the Net/Fra 

system. This finding could thus explain the discrepancy between Fmi broad 

expression pattern in the embryonic CNS and the absence of a neuronal 

phenotype in fmi mutants (Usui et al., 1999 and figure 3-2). 

The mutant phenotype and the expression pattern suggested a neuronal role for 

Fmi, but rescue experiments were performed in order to determine in which kind 

of cells Fmi was required. These experiments revealed that in the context of 

Drosophila midline CNS Fmi is required neither at the midline nor in intermediate 

targets such as longitudinal glia (Hidalgo & Booth, 2000; Learte & Hidalgo, 

2007). Instead, pan-neuronal re-expression of Fmi in fmi-/- fra-/- embryos reduced 

significantly both commissural and longitudinal neuron phenotypes. The cell-

autonomous requirement of Fmi in targeting neurons contrasts in part with recent 

work in mice. Here, it was shown that the Fmi homolog Celsr-3 acts non-cell 

autonomously during the development of corticothalamic projections. In fact, 

conditional removal of Celsr3 in the mouse basal forebrain and diencephalon, 

but not in the thalamus or the cortex causes loss of the internal capsule by 

preventing the entry of those tracts into the basal telencephalic corridor (Zhou et 

al., 2008). However, migration of facial branchiomotor (FBM) neurons in the fish 

brainstem is regulated by celsr2 and other PCP genes such as vangl2, fzd3a, 

prickle1a and 1b in both cell-autonomous and non-cell autonomous manners 

(Bingham et al., 2002; Rohrschneider et al., 2007; Wada et al., 2006).  

Furthermore, rescue of both commissural and longitudinal phenotypes indicates 

that Fmi plays a role in most of the neuronal types. In fact, double mutant 

embryos for fmi and fra are characterized by almost complete loss of posterior 

commissures (PC), mild thinning of anterior commissures (data not quantified) 

and strong defects in ipsilateral neuron pathfinding and fasciculation, as 

observed with HRP and anti-FasII staining (Figure 3-3). Analysis performed with 

Gal4 lines labeling subsets of those neurons confirmed these observations. For 

instance, Sema2b-Ƭmyc positive contralateral neurons of fra, fmi mutants exhibit 
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defects in both midline crossing neurons, with some commissural bundles 

appearing very thin, and longitudinal projections, with many axons stopping or 

failing to extend anteriorly after crossing the midline or extending in the wrong 

direction. This last phenotype, although observed only in 10% of the Sema2b-

Ƭmyc axons, is reminiscent of the role of Celsr3 in the mouse in post-crossing 

commissural axons, were loss of the gene results in mistargeting along the 

anterior-posterior axis (Tissir et al., 2005; Zhou et al., 2008). Conversely, in fra 

single mutants only a low percentage of the axons shows pathfinding errors, with 

axons stopping before reaching the next segment. The fra-/- phenotype is 

consistent with observations that Net/Fra signaling affects only the crossing of 

posterior commissures (Brankatschk & Dickson, 2006; Garbe et al., 2007; 

Kolodziej et al., 1996; Mitchell et al., 1996). However, it is important to notice that 

even in fra, fmi double mutants, only few of the anterior crossing neurons are 

affected. In fact, analysis of Eagle-Gal4 positive commissural interneurons 

showed that the EG cluster, which extends across the AC, is not affected by loss 

of both Fmi and Fra signaling, whereas in the same embryos the EW cluster, 

which extend across the PC, is unable to cross the midline in virtually all the 

segments.  

Why are posterior crossing axons more sensitive than anterior crossing axons to 

loss of fmi and fra? Firstly, not all the neurons face the same kind of guidance 

decision during pathfinding. For instance, some axons may be more sensitive to 

guidance cues secreted from the midline, thus extending in a cell-autonomous 

way, whereas some others might rely on contact mediated signaling or being 

more dependent on pioneer-follower interactions. It is known since long time 

which neurons extend early across the midline (Jacobs et al., 1989; Klämbt et 

al., 1991); however, a true pioneer role has yet to be assigned for commissural 

axons. In the context of posteriorly crossing neurons however, Fra was shown to 

direct midline crossing in a cell autonomous way (Garbe et al., 2007), whereas 

this study suggests that Fmi in this context acts in a non-cell autonomous way. 

Nevertheless, overexpression of Fmi in eagle axons was sufficient to significantly 

reduce midline crossing defects in fra mutants, but not in fra, fmi double mutants. 

Two not mutually exclusive mechanisms can be envisioned. First, a “community 

effect” might contribute to the growth of individual axons within a bundle. 
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Considering that in fra-/- the PC bundle in which eagle neurons extend is thinner, 

but not yet missing as observed in fra-/- fmi-/- embryos, Fmi might strengthen 

axon-axon interactions. Those interactions are lost or weakened either as a 

cause or as consequence of mistargeting, as observed in double mutants. 

Second, extending axons might actively signal to each other. For instance, Fmi 

might require a neuronally localized, contact-mediated binding partner in order to 

be activated and transmit an intracellular signaling. Given that the cadherin 

domain is less important, Fmi does not rely on homotypic interactions with Fmi 

expressed on surrounding posterior commissural neurons. Instead, it might 

interact with this unidentified ligand mostly through the hormone binding domain 

or the seven pass-transmembrane domain. This second scenario is particularly 

intriguing since it might also explain why pan-neuronal expression of Fmi can 

rescue PC bundle targeting.  

In the context of ipsilateral neurons, genetic ablation experiments showed that 

four cells play a pioneer role (Hidalgo & Brand, 1997). Therefore, analysis of 

pioneer axon pathfinding has been performed by taking advantage of two Gal4 

lines, 15J2-Gal4 and c544-Gal4 (figure 3-12). Analysis of c544-Gal4 positive 

MP1 neurons, although partially compromised by the low amount of neurons 

labeled in each embryo, revealed a fully cooperative effect of Fmi and Fra. Here, 

absence of either of the proteins caused guidance defects in a low number of the 

neurons, whereas in double mutants those defects appeared significantly 

enhanced (40%), arguing for a cooperative role of the two signaling pathways. 

Selective re-expression of either one of the two genes reduced the number of 

defective axons only partially, suggesting that both are equally required at least 

in this class of pioneer neurons. The fact that mild defects are observed in fmi 

mutants MP1 neurons at this early stages of axonogenesis, whereas no 

significant defects are observed in follower axons at stage 16 support the finding 

that removal of only one of the pioneer neurons is not sufficient to cause mis-

targeting of follower neurons (Hidalgo & Brand, 1997).  

Taken together, a model can be envisioned in which Fmi and Fra cooperatively 

contribute to axonal targeting of both commissural and ipsilateral neurons. 

However, whereas Fra seems to be acting cell-autonomously in both neuronal 

types, Fmi displays two different molecular mechanisms: in pioneer ipsilateral 
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neurons it acts cell-autonomously, whereas in commissural axons it acts non-cell 

autonomously, probably mediating an important axon-axon signaling. 

 

4.2 Does Flamingo have a real axon guidance phenotype? 

Given the recently discovered role of Netrin-B as anti-apoptotic factor for 

Drosophila embryonic neurons (Newquist et al., 2013), it is possible that the 

strong axonal phenotype observed in Net-/- fmi-/- embryos results from increased 

apoptosis rather than from abnormalities in axonal pathfinding. In fact, HRP and 

FasII staining only label axonal projections, but fail to mark cell bodies. 

Therefore, the evaluation of the number of neurons present in the different kinds 

of mutants is difficult. However, at least three lines of evidence suggest that Fmi 

does not increase or cause apoptosis. Firstly, in animals mutant for fmi no 

difference on the thickness of axonal bundles was observed, suggesting that the 

number of axons and thus the number of neuronal cells are unchanged. Second, 

pan-neuronal expression of p35, a potent caspase inhibitor, was not sufficient to 

rescue the defects observed in fra-/- fmi-/- embryos, whereas it was shown to be 

sufficient for rescuing defects in Netrin mutants. Lastly, labeling subsets of 

neurons such as pioneer neurons (with 15J2-Gal4 or c544-Gal4, figure 3-12), 

contralateral neurons (with Sema2b-Ƭmyc, figure 3-11) or interneurons (with 

Eagle-Gal4, figure 3-10) in fmi single mutants or fra, fmi double mutants, failed to 

show any difference in the number of cell bodies. Taken together, these results 

argue against a function of Fmi in neuronal survival, and support the idea that 

the defects observed in commissural and longitudinal neurons are due to 

disturbed axonal growth and/or guidance. However, the present data shows that 

axonal growth is also not impaired by loss of fmi. While in fra, fmi mutant 

embryos EW neurons fail in almost every segment to cross the midline, they are 

capable of extending an axon. Nevertheless, these axons then fail to cross the 

midline and either stop prematurely or extend anteriorly toward the next 

segment. Similar effects are observed in longitudinal pioneer neurons, where the 

phenotypes observed in MP1 neurons depend on axonal pathfinding, with axons 

growing laterally exiting the CNS instead of following a more intermediate path 

(Figure 3-12). Thus in fra, fmi mutant embryos neuronal cells are initially capable 
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of growing an axon, but then the axon is misguided toward a wrong 

target/direction. These results are in line with data in vertebrates, where loss of 

Celsr3 does not affect axonal growth per se but alters guidance, resulting in 

stalling at intermediate targets or misrouting of axons (Tissir et al., 2005). 

 

4.3 Atypical cadherins: adhesive molecules or signaling receptors? 

It has been known since a long time that cadherins play a role in neuronal 

development. In particular, their capability of mediating homophilic and 

heterophilic cell-cell interactions is fundamental in many processes such as 

axonal fasciculation or synapse formation (Halbleib & Nelson, 2006). For 

example, N-cadherin mediates axon-axon interactions in ipsilateral neurons in 

the Drosophila embryonic CNS (Iwai et al., 1997), whereas Cadherin-13 inhibits 

axon extension of spinal motor neurons (Fredette et al., 1996). Notably, most of 

the known neuronal functions of cadherins depend on their capability of 

mediating adhesion through homophilic cell-cell interactions. However, atypical 

cadherins have been reported to be both structurally and functionally different 

from the rest of the cadherin family members (Berger-Müller & Suzuki, 2011; 

Bockaet & Pin, 2000). In fact, they possess a peculiar structure, in which a 

seven-pass transmembrane domain is present, thus hinting that they could act 

either as a classical cadherin-like adhesion factor or as a signaling receptor, 

potentially through the G-protein coupled receptors (GPCRs) like 

transmembrane domain (Harmar, 2001). In neuronal contexts, Fmi-mediated 

homophilic cell-cell interactions have been reported to be important for i) correct 

internal capsule formation, where Celsr3 plays a role in both neurons and in cells 

located on their trajectory, probably directing axonal pathfinding in a homophilic 

manner (Zhou et al., 2008), ii) photoreceptor targeting at the medulla in the 

Drosophila visual system, where Fmi mediates axon-target recognition through 

its extracellular domain (Hakeda-Suzuki et al., 2011) and iii) pioneer-follower 

interaction in the C.elegans VNC, where expression of a version of fmi-1 lacking 

either the intracellular or the seven-pass transmembrane domain in follower 

neurons is sufficient to rescue the defasciculation phenotype (Steimel et al., 

2010). In the context of embryonic CNS, rescue experiments performed with 
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truncated versions of Fmi demonstrated that the extracellular domain is partially 

dispensable for mediating Fmi function, thus arguing for a non-adhesive, 

cadherin-independent activity. In fact, FmiΔN, a version of Fmi lacking Cadherin 

repeats, EGF-like domains and laminin-G-like domains, was capable of partially 

restoring crossing defects of commissural axons as well as reducing the severity 

of the longitudinal axons phenotype. In particular in the context of ipsilateral 

neurons, the strong fasciculation phenotype observed upon loss of fra and fmi, 

could be easily related to loss of adhesion among axons belonging to the same 

bundle. However, the result that cadherin domain is partially not required for Fmi 

activity supports the idea that axon-axon interactions in longitudinal tracts are 

regulated not only by purely adhesive factors. Similar cadherin-independent 

functions have been reported for Fmi in other contexts, such as dendritic 

arborization field formation in Drosophila larvae (Kimura et al., 2006), advance of 

Drosophila embryonic sensory axons (Steinel & Whitington, 2009) and guidance 

of pioneer neurons in the C.elegans VNC (Steimel et al., 2010).  

The confirmation that Fmi can act in the CNS context as signaling receptor by 

activating an intracellular signaling pathway came from the rescue experiment 

performed with a version of Fmi lacking a very short intracellular tail. Pan-

neuronal expression of this construct completely failed to restore Fmi-dependent 

axonal defects observed in fra, fmi double mutants embryos. Notably, the 

intracellular tail of Fmi was shown to be important for its interaction with proximal 

polarity proteins (Strutt & Strutt, 2008), although some capability of transmitting 

intercellular PCP signaling seems to be retained by FmiΔIntra (Chen et al., 2008; 

Strutt & Strutt, 2008). 

Two important aspects emerged from this domain study in the context of CNS 

axon guidance: first, Fmi does not bind to itself, but to a yet unidentified ligand 

and, second, Fmi mediates intracellular signaling. Thus, two important questions 

are opened: 1) what’s the intracellular signaling activated in this context? And 2) 

what is the possible ligand/ receptor complex utilized? 
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4.3.1 Signaling pathways activated by Fmi. 

Little is known about how Fmi mediates intracellular signaling. In fact, only one 

study tried to address this question up to now: Matsubara and colleagues 

performed a yeast-two hybrid screening and found that some members of the 

Drosophila PET-LIM domain family can bind to Fmi: Prickle (Pk), Espinas (Esn) 

and Testin. They confirmed that Esn-Fmi interaction is required for transducing a 

dendritic self-avoidance signal (Matsubara et al., 2011). The LIM domain is 

recognized as a modular protein-binding domain (Kadrmas & Beckerle, 2004), 

therefore Esn might as well work downstream of Fmi for axonal targeting, 

especially considering its expression in the embryonic VNC (Matsubara et al., 

2011). However, double mutants for esn and fra or esn and Net looked similar to 

single fra or Net mutants, thus suggesting that Esn does not mediate Fmi 

signaling in the context of axonal pathfinding. It is likely that, given the role of 

Esn in mediating a repulsive signal among dendrites, a positive/attractive 

neuronal signal is transduced by a completely separate pathway, starting from 

the direct cytoplasmic binding partner for Fmi. This idea, together with the 

redundancy of Fmi when Fra is present, led to the hypothesis that Fmi, at least in 

the context of midline crossing, might exploit a common pathway activated by 

Net/Fra-dependent signaling. This is also supported by the finding that Fmi can 

mediate midline crossing in absence of either fra or Net. The best candidate for 

such a role was the Abelson Tyrosine Kinase (Abl), because it was already 

shown to bind to Fra and to mediate midline crossing through its C-terminal F-

actin binding domain in a cell-autonomous way (O’Donnell & Bashaw, 2013). 

The analysis performed in this study revealed unclear results regarding a 

possible role of Abl downstream of Fmi. On the one hand, fmi, abl double 

mutants display neuronal phenotypes very similar to fra, abl and fra, fmi double 

mutants (figure 3-16b). Additionally, selective overexpression of Abl in fra-/- 

embryos rescued midline crossing defects, suggesting that Abl can be activated 

independently of Fra. However, overexpression of a kinase-dead Abl did not 

abolish the capability of Fmi to rescue crossing defects in fra-/- embryos (figure 3-

17) nor did it interfere with the gain-of-function phenotype caused by Fmi 

overexpression in ipsilateral neurons (figure 3-18). This suggests that Abl is not 

essential downstream of Fmi-mediated midline crossing. However, the kinase-
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dead version of Abl was shown to act as a dominant negative in some contexts 

(Hsouna et al., 2003; Sawyers et al., 1994) but not in commissural axons, where 

instead the loss of the C-terminal domain interferes dominantly with midline 

crossing (O’Donnell & Bashaw, 2013). Even though there is a possibility that Abl 

kinase dead does not act as dominant negative, the presented evidence does 

not serve as a strong support for a genetic interaction between Abl and Fmi. 

Moreover, a direct physical interaction is also unlikely to be found, given the 

difficulties reported in other studies on performing co-immunoprecipitation 

experiments with Fmi (Hakeda-Suzuki et al., 2011; Matsubara et al., 2011).  

In addition to the results obtained from Esn and Abl, analysis of Rho GTPases 

revealed important insights on how Fmi might act on cytoskeleton dynamics. In 

fact partial removal of Fmi, similarly to published experiments carried out for Fra 

(Dorsten et al., 2007), reduced ectopic midline crossings caused by ipsilateral 

overexpression of a constitutively active version of Rac1. This result can be 

explained by the fact that a constitutively active version of Rac might be acting 

by sequestering all the GAPs that would be switching Rac from an active to an 

inactive state, thus increasing the levels of active Rac. Therefore, Fmi’s ability to 

reduce the phenotype suggests that there is less active endogenous Rac 

produced. However the same kind of interaction was not observed for the other 

GTPase implicated in Fra signaling, Cdc42. This suggests that Fmi can only 

partially compensate for loss of Fra signaling, but not substitute it completely. 

Conversely, Fra signaling presumably would be able to compensate for loss of 

Fmi, which is well in line with the fact that single fmi mutants do not show 

guidance phenotypes. Also Rho1 GTPase was analyzed in midline guidance, 

because in the context of dendrite morphogenesis, genetic interaction was 

observed between Rho1 and Fmi in class IV neurons (Matsubara et al., 2011). 

However, Rho1 seems to not play a role in midline crossing (figure 3-14). Thus, 

this is the first reported interaction between Fmi and Rac (Figure 4-1). An 

attractive explanation for the differential requirement of GTPases downstream of 

Fmi would be that in contexts where Fmi mediates a repulsive signal, such as 

among dendrites, Rho1 is activated, whereas in cases where Fmi mediates 

axonal extension, Rac is activated. Additional data would be required to prove 

this model. 
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Figure 4-1 Targeting of commissural axons requires Fra and Fmi signaling 

pathways. 

In the Drosophila embryonic CNS commissural neuron midline crossing relies on two signaling: 

Net/Fra signaling, and a novel Fmi-dependent signaling, which likely is activated by a membrane 

bound unknown ligand. The two signaling act on the cytoskeleton dynamics by activating Rac1 

GTPase. Fra further influences actin remodeling by activating Cdc42. 

 

Cytoskeleton dynamics have to be regulated not only in the case of growth cone 

steering, but also in the context of epithelial cell polarity. For example, actin 

cytoskeleton activity seems to be fundamental for the correct position, size and 

number of wing hairs at the distal edge of wing cells. In this context, the signal 

arising from asymmetrical localization of PCP proteins in cells is transmitted 

intracellularly through planar cell polarity effector proteins (PPE proteins): 

inturned (in), fritz (frtz), fuzzy (fy), and the most downstream effector multiple 

wing hairs (mwh) (Adler, 2012); notably, they also localize asymmetrically. Mwh 

seems to be directly modulating the actin cytoskeleton. In fact, it contains a G-

protein binding domain and it has sequence similarity to the Diaphanous family 

of formins (Strutt & Warrington, 2008; Yan et al., 2008), which are known to act 

as actin nucleators by promoting the formation of long actin filaments in a Rho1 

dependent manner (Wallar & Alberts, 2003). Genetic interaction and co-

immunoprecipitation experiments revealed that Mwh is activated by Rho1 (Yan 

et al., 2009). However, Mwh lacks the actin nucleator activity, and given its ability 
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of inhibiting actin filament formation in vitro, is thought to have a dominant 

negative effect on the activity of other actin nucleators to inhibit actin 

cytoskeleton (Strutt & Warrington, 2008). Several reports support the idea that 

also distally-enriched proteins such as Dsh and Fz are responsible for actin 

cytoskeleton regulation, although no evidence has been found for a putative 

candidate. It is known however, that Dsh functions in a PPE independent 

manner when controlling the number of hairs (Lee & Adler, 2002). This suggests 

the existence of a yet unidentified molecule linking to actin regulation, maybe a 

formin or another cytoskeleton regulators. Additionally, in the context of 

ommatidia polarity Fz and Dsh genetically interacts with Rho1 (Strutt et al., 

1997), suggesting that tight regulation of RhoA GTPase activity is important to 

achieve correct epithelia polarity.  

In conclusion, the data collected in this thesis, together with previous work, 

support the idea that Rho GTPases activity is required for processes involving 

polarity genes in both epithelia and neuronal cells, although the molecular 

requirement to elicit cytoskeletal regulation in the two systems is likely to diverge 

at the level of GTPases and probably at the level of effectors as well. 

4.3.2 Roles of Wnt/PCP molecules in Fmi-mediated guidance/ 

Concept of planar cell polarity in axon guidance. 

To identify the molecular mechanism underlying Fmi function in CNS neurons, 

analysis of other “core” PCP molecules has been performed. In fact, in some 

neuronal contexts more than one PCP gene was implicated, although is not clear 

whether the genes act in a cooperative manner. For example, guidance of post-

commissural axons along the anterior-posterior axis in the spinal cord is affected 

by loss of either Celsr3, Fzd3, or Vangl2 (Fenstermaker et al., 2010; Tissir et al., 

2005; Wang et al., 2002; Zhou et al., 2008). Additionally, axonal branching and 

extension of mushroom body neurons are defective in fz, dsh, or vang mutants 

(Shimizu et al., 2011). Moreover, a possible role of other PCP genes in CNS 

neurons was justified by the finding that, similarly to fmi, loss of function alleles 

for fz, dsh or vang did not display phenotypes in the embryonic CNS (Figure 3-

1). However, analysis of double mutants for fra, vang and dsh, fra displayed a 

phenotype identical to fra single mutants. Combined loss of fra and fz instead 
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caused a phenotype indistinguishable from fra, fmi double mutants, suggesting 

that fz could cooperate with fmi, likely acting in a signaling complex. This 

hypothesis is supported by the fact that Fmi and Fz can physically interact, as it 

was shown in the context of epithelial cell polarity (Chen et al., 2008). To further 

investigate Fz’s role in midline crossing and to verify whether it could restore 

midline crossing at similar extent of Fmi, Fz was selectively expressed in eagle-

positive commissural neurons in fra-/- animals. No reduction of crossing defects 

was observed, suggesting that either Fmi and Fz do not act together or, if they 

do interact, they do it in trans, for example mediating glia-neuron interaction or 

axon-axon interaction. Such a mechanism would be really different from what is 

observed in epithelial cells, where the two molecules interact in cis (Chen et al., 

2008; Strutt & Strutt, 2008). To address this point, either rescue experiments in 

which Fz is re-expressed in different kinds of cells or the analysis of fmi, fz 

double mutants should give important insights. However, these experiments 

proved difficult to be carried out, because of technical difficulties related to the 

low number of embryos with the right genotype obtained. Thus, in order to clarify 

whether the phenotype observed in fra-/- fz-/- embryos is due to interference with 

a putative fz-fmi signaling or with a Fmi-independent Fz signaling, such as the 

Wnt morphogenic signaling (Yam & Charron, 2013), analysis of members of the 

Wnt family has been performed. Axon guidance roles for Wnt morphogens have 

been reported in different systems, such as spinal cord, brainstem, olfactory 

system in vertebrates (Blakely et al., 2011; Fenstermaker et al., 2010; 

Lyuksyutova et al., 2003; Rodriguez-Gil & Greer, 2008) and mushroom body 

neurons and VNC in Drosophila (Shimizu et al., 2011; Yoshikawa et al., 2003). 

Additionally, PCP signaling seems to be directed by Wnt gradient in some 

systems (B. Gao et al., 2011; Vivancos et al., 2009; Wu et al., 2013), suggesting 

that Fmi positive neurons might be responsive to a Wnt gradient at the midline. 

Loss of function alleles for members of the Wnt family known to be expressed at 

the midline, namely wg, wnt2, wnt4, and wnt5 were analyzed in either Net-/- or 

fra-/- backgrounds. Additionally, they were overexpressed in different kinds of cell 

types, in order to evaluate effects of ectopic expression or overexpression. 

However, none of these genetic manipulations resulted in a phenotype that could 

be linked to Fmi activity in these neurons, thus arguing against a role of a single 

Wnt protein as Fmi-ligand. This analysis however could not rule out the 
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possibility that some of the Wnt genes have overlapping and redundant 

functions, as it was shown for wg and wnt4 in PCP (Wu et al., 2013). Analysis of 

triple mutants might reveal the phenotype, but because of the complexity of the 

genetics and the weakness of the resulting flies, these experiments were not 

performed. 

Taken together, analysis of PCP genes and Wnts morphogens suggest that Fmi 

acts in the context of axonal pathfinding across and along the midline through a 

novel molecular mechanism, which might require an interaction with Fz in trans. 

Moreover, comparison of the role of Fmi between single and groups of neurons 

suggests that the Fmi ligand is likely to be a localized cue rather than a 

diffusible, gradient-distributed cue (see Paragraph 4.1). 

Although Fmi in the context of the Drosophila embryonic midline seems to act 

largely in a PCP- and Wnt-independent manner, it is interesting that in many 

other neuronal contexts more than one PCP gene is usually required for correct 

axon targeting. PCP signaling playing a role in the neuroepithelium is expected, 

given that the nervous system originates from a epithelial neural plate. However, 

less predictable was the involvement of PCP molecules in axon guidance, 

dendrite maturation, neural migration and maturation (Tissir & Goffinet, 2010). 

Given that the growth cone is a high motile structure and epithelial sheets are a 

stationary system, it is hard to explain how PCP like mechanisms can affect 

axonal pathfinding. How can cell polarity signaling be utilized by axons during 

their targeting? The growth cone is per se a polarized structure, given that 

microtubules point their (+) growing end toward the tip of the growth cone and 

actin filaments also possess (+) barbed ends pointing toward the tip of the 

filopodia. Additionally, endo- and exocytosis are also polarized in the growth 

cones (Itofusa & Kamiguchi, 2011), suggesting that one of the mechanisms to 

convey polarity in the growth cone is asymmetric localization of proteins on their 

membrane. Such model is supported by the observation that in live growth 

cones, Vangl2 protein is highly enriched on the tips of extending filopodia but not 

on the shrinking filopodia (Shafer et al., 2011). Moreover, Vangl2 seems to be 

required for regulating membrane localization of Fzd that in the context of 

commissural axons senses a Wnt5 gradient along the anterior-posterior axis. 

This interaction leads to anterior turning of post-commissural axons. Thus, 
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asymmetrical localization of polarity proteins on filopodia might influence the 

recruitment or the localization of transmembrane proteins. In turn these proteins, 

acting as guidance receptors, might locally activate the actin cytoskeleton 

machinery, causing directional extension of the growth cone. This mechanism 

can be important not only for polarity genes that act as receptors, but might also 

be a general mechanism for mediating directional control by many axon 

guidance molecules. It is possible that Fmi is localized asymmetrically in the 

growth cone in the embryonic midline. At this point, however, no direct evidence 

is available. 

 

4.4 Roles of Fmi and Fra signaling during development of the 

Drosophila and the mouse midline systems. 

Consistent with the overlapping expression pattern in the embryonic CNS 

observed for Fmi and Fra in this study, the mouse Celsr-3 was also shown to be 

abundant in commissural neurons that express DCC in the spinal cord (Shafer et 

al., 2011). This finding supports the idea that most of the guidance cues and 

their signaling mechanisms are conserved from flies to mice (Kolodkin & Tessier-

Lavigne, 2011). However, floor plate and invertebrate midline present some 

functional and structural differences that may account for differential molecular 

requirements or diverse mechanism of action of the same molecules (Arendt & 

Nübler-Jung, 1999). For example, structural differences can be observed: in the 

vertebrate spinal cord, the dorsal spinal cord commissural neurons extend their 

axons over a long distance, finally reaching the floor plate after growing along a 

circumferential route and turning medially when reaching the ventral side, where 

the floor plate resides (Kolodkin & Tessier-Lavigne, 2011). In the fly nerve cord, 

commissural neuron cell bodies are located laterally to the midline, and project 

their axons medially, crossing in either one of the two main commissural bundles 

(Dickson & Zou, 2010). Additionally they are intermingled with other types of 

neurons, such as ipsilateral interneurons and motor neurons, whereas vertebrate 

commissural neurons are segregated in the dorsal half of the spinal cord. These 

structural differences suggest that guidance systems, even though conserved 

between the two animal species, might slightly differ in their mechanisms of 
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action. This is true in the case of Netrin: given the long distance that 

commissural axons have to cover before reaching the floor plate, Netrin-1 acts 

as long range attractant, distributed in a gradient over long distances (Kennedy 

et al., 1994). In the fly midline, no such gradient has been observed for NetA or 

NetB; instead, it has been shown that Netrins act as short range guidance cues, 

given that replacement of secreted Netrins with a version tethered to the 

membrane is sufficient to mediate midline crossing (Brankatschk & Dickson, 

2006). This local function of Netrin is in line with the fact that commissural 

neurons have cell bodies located in close proximity to the midline, thus 

suggesting that a localized signal is sufficient to drive axonal pathfinding. 

Another big difference between the two systems is the fact that the floor plate 

provides not only secreted guidance cues, but it is also an important source of 

morphogens, which in turn specify neuronal cell fates along the dorsal-ventral 

axis. Additionally, those morphogens are important later in development as axon 

guidance signals (Sánchez-Camacho et al., 2005; Yam & Charron, 2013). For 

example, members of the BMP, hedgehog and Wnt families of morphogens have 

been described to perform such a role (Yam & Charron, 2013). In particular, 

Wnts play an important axonal guidance role in relationship to PCP proteins, 

considering that Fzd3, Celsr3, and Vangl2 are responsive to the gradient of 

some of these morphogens, conferring commissural axons the ability to turn 

anteriorly after crossing the midline (Lyuksyutova et al., 2003; Shafer et al., 

2011). The midline of the fly embryo is not a major source of morphogens, 

sharing only the axonal pathfinding role with the vertebrate counterpart (Dickson 

& Zou, 2010). In fact, even though some of the Wnt family members are 

expressed at the Drosophila midline, loss-of-function and gain-of-function 

experiments conducted in this study failed to reveal any neuronal phenotype, 

suggesting that Fmi capability of mediating midline crossing is not related to its 

responsiveness to a Wnt gradient. Interestingly, Fmi seems to be responding to 

a rather short range, local cue rather than to a global cue. In fact, when 

overexpressed in eagle-commissural axons, it can elicit midline crossing only 

when some surrounding axons target correctly, suggesting that contact-mediated 

interaction is needed.  
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Thus, Fra and Fmi signaling seem to be short range signaling mechanisms in the 

Drosophila nerve cord, whereas in vertebrates evidence are present for a long 

distance signal in response to diffusible molecular gradients. These data suggest 

that the distance travelled by axons in order to reach their targets might also 

influence the type of guidance cue required. 

 

4.5 Similarities and divergences of Fra and Fmi signaling in other 

axon guidance systems. 

Fmi and Fra signaling act in a cooperatively way to ensure proper midline 

crossing of commissural axons, and also for correct pathfinding of ipsilateral 

neurons. These partially redundant mechanisms confer robustness to the 

system, by ensuring that at least some neurons can target correctly even in 

absence of one of the molecular pathways. The nerve cord and spinal cord 

systems are not unique for the cooperative function of Fmi and Fra signaling in 

axonal targeting. In fact, Fra and Fmi have been shown to play a common role in 

midline crossing in the vertebrate brain and also in the Drosophila visual system. 

In mice, Net/DCC signaling is important not only for guiding commissural axons 

towards the midline and direct crossing, but also for the development of other 

axonal tracts in the brain (Fazeli et al., 1997; Serafini et al., 1996). Indeed, in 

Net-1-/- and DCC-/- mice the corpus callosum, which joins the left and right 

cerebral cortices, and the hippocampal commissure, which joins left and right 

hippocampi, are completely absent. Additionally the anterior commissure is 

severely affected, with only a small bundle of crossing axons remaining 

commissure (Fazeli et al., 1997; Serafini et al., 1996). Notably, loss of Net/DCC 

signaling does not affect all the commissures, since the habenular and the 

posterior commissure appear intact. Interestingly, the anterior commissure is 

absent also in Celsr-3-/- mice (Tissir et al., 2005; Zhou et al., 2008). Moreover, 

loss of either Celsr-3 or Net-1 affects guidance of the thalamocortical tracts 

extending into the internal capsule (Braisted et al., 2000; Finger et al., 2002; 

Molnár et al., 2012; Powell et al., 2008; Zhou et al., 2008). In the Drosophila 

visual system, both Fmi and Fra are required for the correct targeting of R8 

photoreceptor axons at the M3 layer in the medulla. Here, removal of either of 
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the genes specifically in the eye causes mistargeting of R8 axons in other 

medulla layers, such as M1-M2 (Lee et al., 2003; Senti et al., 2003; Timofeev et 

al., 2012). Fmi regulation of axon-target recognition is mediated through 

interaction with the transmembrane molecule Golden Goal (Gogo), which 

displays a similar mutant phenotype in R8 (Hakeda-Suzuki et al., 2011; Mann et 

al., 2012; Tomasi et al., 2008). In particular, Fmi seems to be required in both 

photoreceptor axons and medulla target cells, increasing axon-target 

adhesiveness through homotypic interaction (Hakeda-Suzuki et al., 2011). Fra is 

also required in both photoreceptors and target cells, but target selection is 

achieved through a different mechanism. In fact, Fra is expressed both at the 

target region in the medulla and in photoreceptor axons. In the medulla M3 layer 

Fra acts by capturing and localizing Netrin, in order to present it to the Fra-

positive R8 axons seeking for the correct layer in the medulla (Timofeev et al., 

2012). The selective expression of Net/Fra at the M3 layer, compared to the 

broad expression of Fmi in many medulla layers nicely fits the hypothesis that 

Fmi promotes release of the R8 axons from their temporal M1-M2 layers and, 

after Net/Fra system has elicited target selection, stabilizes axon-target 

interaction via homophilic binding between photoreceptor axon and medulla. The 

roles of Net and Fmi signaling in the visual system support the idea that the two 

systems are mediating axonal targeting in Drosophila by mediating short range 

interactions; however, Fmi does not elicit intracellular signaling per se as is 

observed in the nerve cord.  
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4.6 Conclusive remarks. 

The work presented in this dissertation reveals a novel role of the PCP molecule 

Fmi during axon targeting of commissural and longitudinal axons at the 

Drosophila midline. In this context, Fmi works in a cooperative way with Net/Fra 

signaling. In particular, Fmi transmits a short-range guidance information, acting 

together with Fra upstream of the Rac1 GTPase. This new role for Fmi 

reinforces the idea that molecular pathways utilized to confer polarity in epithelia 

cells are also involved in directed growth of axons, possibly by regulating 

regional responsiveness of growth cones. Additionally, this work demonstrates 

that correct axonal pathfinding does not rely only on classical attractant and 

repulsive signaling, but also on local signals, that might influence axon-axon 

interactions and therefore affect axonal targeting. 

This work could be further validated and expanded by analyzing in more detail 

the interaction between Fmi and Rac1 GTPase, for instance by biochemically 

validating the role of Fmi as activator of Rac. Moreover, it would be interesting to 

understand the molecular pathway connecting the two proteins, starting with the 

identification of the GEF upstream of Rac in this context. Given the lack of 

knowledge regarding signaling pathways elicited by Fmi in most contexts in both 

invertebrates and mammals, it would be interesting to verify whether the very 

same molecular pathway is utilized in contexts such as dendritic morphogenesis 

and PCP in epithelia. Another interesting point would be to verify whether Fmi is 

indeed preferentially localized on growth cones at filopodia tips and whether its 

overexpression or loss is sufficient to mediate growth cone extension/ retraction 

in embryonic primary neuron cultures. This approach could also help in 

understanding whether Fz is important in the context of Fmi mediated signaling. 

Lastly, an important contribution would be to find a possible ligand/interacting 

partner for Fmi, especially screening for molecules capable of interacting with 

the hormone-binding domain and the 7-pass transmembrane domain that are 

shown to be required for many cadherin independent roles of Fmi. 
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5 MATERIALS AND METHODS 

5.1 Materials 

5.1.1 Chemicals 

Table 2 List of chemicals used and their sources. 

CHEMICAL SOURCE 

Agarose, high electro endosmosis 

Agar-Agar danish 

Ethanol absolute 

Glycerol 

Methanol 

Isopropanol (2-Propanol) 

Tween 20 

EDTA 

Formaldeyde (10%) 

Heptane 

Phenol-chloroform 

Triton X-100 

Tris Base 

Sodium Lauryl Sulfate (SDS) 

Biomol 

Roth 

Sigma-Aldrich 

Merck 

Sigma-Aldrich 

Sigma Aldrich 

Sigma Aldrich 

Sigma Aldrich 

Polyscience 

Fluka 

Amresco 

Roth 

Sigma Aldrich 

Roth 
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5.1.2 Consumables and Kits 

Table 3 List of consumables and their manufacture companies. 

DEVICE MANIFACTURER 

Fly Work and Embryos Collection  

Blue fly food Fisher Scientific 

Apple juice Aldi 

Sodium Hypochlorite solution Sigma-Aldrich 

Cell culture  

Schneider Media PromoCell GmbH 

Fetal Bovine Serum (FBS) PromoCell GmbH 

Penicillin/ Streptomycin 100X PAA Laboratories 

Effectene Transfection Reagent Qiagen 

Molecular biology  

iProof High Fidelity DNA Polymerase BioRad 

Steril Surgical Blades Bayha 

Gel loading dye blue (6X) New England Biolabs 

Ampicillin  

1kb DNA ladder New England Biolabs 

QIAprep Spin Miniprep Kit Qiagen 

Plasmid Maxi Kit Qiagen 

QIAquick Gel Extraction Kit Qiagen 

QIAquick PCR Purification Kit Qiagen 

Immunoblotting  

Transfer Buffer Pierce 

APS Biorad 

Poliacrilamide Biorad 

Milk powder Roth 

Nitrocellulose membrane Whatman 

ECL solution GE Healthcare 

Protein marker New England Biolabs 

Complete Mini Protease Inhibitors Roche 
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5.1.3 Buffers and solutions 

Phosphate buffered saline (PBS): 0.2 g KCl, 0.2 g KH2PO4, 1.15 g Na2 HPO4, 

8g NaCl in 1 l H2O at pH 7.4 

PBT (0.1%): 0.1% (v/v) Triton X-100 in PBS 

Solution A: 0.1M Tris HCl pH 9.0, 0.1M EDTA pH 8.0, 1% SDS in water. 

TAE (50X) (2000 l): 484 g Tris base, 50 mM EDTA (pH 8.0), and 114.20 ml 

glacial acetic acid (pH 8.5).  

Fly water: 8 ml Propionic acid in tap water.  

Luria Bertani Medium (LB medium) (1000 ml): 10 g NaCl, 10 g Bacto - 

tryptone, 5 g yeast extract, 20 g agar (pH 7.5). 1.5% Agar added for making LB 

plates. Desired antibiotics were added after autoclaving and cooling down the 

media. 

Lysis buffer: 50 mM Tris, 150 mM NaCl, 2 mM EDTA, 1% Triton, protease inhibitor 

(Sigma) 

TBST: 24.23 g/l Tris base HCl, 80.06 g/l NaCl, pH 7.6 0.1% (v/v) Tween 20 

 

5.1.4 Drosophila media 

 Standard Drosophila medium  

For preparing 50 l of Standard Drosophila medium, 585 g of agar were dissolved 

in 30 l of water by heating the mixture to the boiling point. 5 kg corn flour, 925 g 

yeast, 500 g soy flour, 4 kg molasses were mixed with water and added into the 

dissolved agar. The volume was filled up to 50 l and cooked at 96°C for 1.5 h. 

After cooling down the mixture to 60°C, 315 ml of propionic acid, 120 g of 

methykparaben, 125 g niparsin/methylparaben, 1 l of 20% Ethanol and 500 ml of 

10% phosphatidic acid were added to the mixture. 
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Blue yeast paste  

Blue yeast paste, added to weak stocks or crossed, was prepared mixing instant 

dry yeast (Femipan Inc.), Instant blue Drosophila medium (Fisher Scientific) and 

water. 

Apple juice agar plates 

500 ml of apple juice were mixed with 14 g of agar and melted in a microwave. 
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5.1.5 Equipment 

Table 4 List of Equipment. 

DEVICE MANIFACTURER 

Fly Maintenance  

Incubators Percival 

Microscopy and Immunohistochemistry 

Confocal microscope Olympus FV-

1000 

Olympus 

Fluorescence microscope M205 FA Leica 

Cover glasses for microscopy 

(18x18mm)   

Thermo Scientific 

Microscope slides with frosted ends Menzel-Gläser 

Light microscope stemi 2000 Zeiss 

Forceps Inox 

Vectashield fluorescence H-1000 

mounting media Vector laboratories Inc. 

Type F Immersion Liquid Leica Microsystems CMS Gmbh 

Cell culture  

Incubator FTC90i Uniequ. 

Laminar air flow hoods Heraeus 

Cell culture flasks BD Falcon BD Biosciences 

Cell culture wells, 60 mm BD Biosciences 

Molecular biology  

Spectrophotometer NanoDrop 1000 PeqLab 

Thermocycler DNA engine tetrad MJ Research 

Bacterial Incubator Heraeus 

Culture shaker incubator Unitron 

Immunoblotting  

Running  

Blotter  
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5.1.6 Antibodies 

Table 5 List of primary antibodies for immunohistochemistry and immunoblotting 

ANTIGEN HOST DILUTION SUPPLIER 

 

Primary antibodies for immunofluorescence 

Anti-GFP (Living colors) rabbit 1:1000 Clonetech 

Anti-HRP conjugated-Dylight 567 goat 1:250 Jackson 

Anti-Fasciclin II (1D4) mouse 1:100 DSHB 

Anti-sex lethal (M18) mouse 1:100 DSHB 

Anti-β-Galactosidase chicken 1:1000 Abcam 

Anti-Futsch (22C10) mouse 1:100 DSHB 

Anti-Flamingo  mouse 1:20 DSHB 

Anti-Frazzled rabbit 1:100 from Y.N.Jan 

Anti-myc-TRICT conjugated 

 

mouse 1:200 Santa Cruz 

Primary antibodies for western blot 

Anti-myc mouse 1:2000 Santa Cruz 

Anti-GFP mouse 1:2000 Clonetech 

 

Table 6 List of secondary antibodies for immunohistochemistry and 
immunoblotting 

ANTIGEN HOST DILUTION SUPPLIER 

Secondary antibodies for immunofluorescence 

Rabbit IgG Alexa Fluor 488 donkey 1:250 Invitrogen 

Rabbit IgG Alexa Flour 568 goat 1:250 Invitrogen 

Mouse IgG Cy3) donkey 1:250 Jackson 

Mouse IgG Alexa Flour 488 goat 1:250 Invitrogen 

Chicken IgG Alexa Fluor 568  goat 1:250 invitrogen 

Secondary antibodies for western blot 

Anti-rabbit HRP conjugated  1:2000 Jackson  

Anti-mouse HRP conjugated  1:2000 Jackson  
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5.1.7 Fly stocks 

Table 7 Fly stocks and their origin. 

STOCK SOURCE 

NetABΔ/FM7, lacZ Barry Dickson 

w; FRTG13 fra3 /CyO, lacZ Bloomington Stock Center 

w; FRTG13 fra4 /CyO, lacZ Bloomington Stock Center 

yw; frt42B fmi[E59]/CyO.y+ Kirsten Senti 

yw;UAS-fra Bloomington Stock Center 

yw; UAS-fmi Tadashi Uemura 

yw; UAS-fmiΔN-EYFP Tadashi Uemura 

UAS-fmiΔIntra-GFP David Strutt 

Elav-Gal4(III) Bloomigton Stock Center 

w;Mz1407-Gal4 Bloomigton Stock Center 

w;Sim-Gal4/CyO y+ 
Bloomigton Stock Center 

w; Repo-Gal4/TM3, Sb Gaia Tavosanis 

Gcm-Gal4 Bloomigton Stock Center 

Eagle-Gal4(Eg-Gal4) Bloomigton Stock Center 

yw;Pin/Cyo;UAS-mcd8-GFP Bloomigton Stock Center 

yw Baz4FRT9-2/FM7a,GMR-nvYFP Bloomigton Stock Center 

w; Sco/CyO, GMR-nvYFP Bloomigton Stock Center 

w; Dr1/TM3, GMR-nvYFP , Sb Bloomigton Stock Center 

fmi[E59] fra3 / CyO, GMR-nvYFP 
This study 

UAS-Abl/TM3, Sb Bloomigton Stock Center 

Sema2b-Ƭau myc Bloomigton Stock Center 

c-544-Gal4 Alicia Hidalgo 

Fz KD4 Takashi Suzuki 

UAS-Fz Takashi Suzuki 

vangstbm153/CyO Bloomigton Stock Center 

vangstbm6 Bloomigton Stock Center 

dsh1 Bloomigton Stock Center 

dsh3FRT19A/FM7a Bloomigton Stock Center 
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Wg Bloomigton Stock Center 

Wnt2O/CyO Bloomigton Stock Center 

Wnt4EMS23/CyO Bloomigton Stock Center 

Wn5 Bloomigton Stock Center 

Uas-wg Bloomigton Stock Center 

UAS-Wnt2.5- Bloomigton Stock Center 

uas-wnt4 Bloomigton Stock Center 

uas-wnt5 Bloomigton Stock Center 

UAS-AblK417N;Abl1/TM6B, Tb Bloomigton Stock Center 

UAS-Rac1.W Bloomigton Stock Center 

UAS-Rac1N17 Bloomigton Stock Center 

UAS-Rac1V12 Bloomigton Stock Center 

UAS-Cdc42.W Bloomigton Stock Center 

UAS-Cdc42N17 Bloomigton Stock Center 

UAS-Cdc42V12 Bloomigton Stock Center 

UAS-Rho1 Bloomigton Stock Center 

Abl1/TM6B, Tb Bloomigton Stock Center 

Abl4/TM6B, Tb Bloomigton Stock Center 

esnKO6 Tadashi Uemura 

w1118 Bloomigton Stock Center 

Gal4-Ftzng/TM3, act-LacZ Bloomigton Stock Center 

UAS-p35.H Bloomigton Stock Center 

5.1.8 Plasmids 

Table 8 List of Plasmids used for CoIP experiments. 

PLASMID ANTIBIOTIC RESISTANCE 

pUAST Amp 

Actin-Gal4 Amp 

pUAS-Frazzled-GFP Amp 

pUAS-Abl-myc Amp 

pBluescript Abl cDNA GH09917 Amp 
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5.1.9 Oligonucleotides 

Table 9 Primers for cloning and sequencing 

PRIMERS SEQUENCE 

Primer for cloning of Abl cDNA in the pUAS vector and for tagging it 

Fwd 1st PCR ABL 5’ CAAATGGGGGCTCAGCAg 3’ 
 

Rev 1st PCR ABL  
 

5’CAGATCTTCTTCAGAAATAAGTTTTTGTTC 

CCTGTTAAGCGCATTGGAGAT 3’ 

Fwd 2nd PCR ABL NotI 

 

5’CACCGCGGCCGCCAAATGGGGGCTCAG 3’ 

 

Rev 2nd PCR ABL XBaI 

 

5’GCGCTCTAGACTACAGATCTTCTTCAGAAA 

TAAGTTTTTGTTCAGGCAACAGATCTTCTTCAGAA

AT 3’ 

Primer for sequencing 

Abl seq primer_1:  5’GAACTCTGAATAGGGAATTGGGA 3’ 

Abl seq primer_2: 5’GCGTCGGGAATGAGCTACC 3’ 

Abl seq primer_3: 5’GAGCACATCGGGCGTGG 3’ 

Abl seq primer_4: 5’ATGCAGCATTCTCTTCACAGC 3’ 

Abl seq primer_5: 5’CAGTAGCTCACCCAAGCGGA 3’ 

Abl seq primer_6: 5’AAAGCTGACCAACGGCAATA 3’ 

Abl seq primer_7: 5’GGGGGCCATCAATACGGTT 3’ 

Abl seq primer_8: 5’GTACGAGCAGAAGCCACAGA 3’ 
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5.2 Methods 

5.2.1 Molecular cloning 

DNA gel electrophoresis 

1% agarose gels were prepared in TAE buffer, and 2µl of Ethidium Bromide 

were added to the melted agarose before puring into the cast. Samples were 

prepared adding 6X DNA loading buffer to the DNA. TAE was also used as 

running buffer. 

Abl cloning strategy 

In order to express Abl in S2 cells, the coding sequence (CDS) was cloned into a 

pUAS-attB vector. The final construct was designed in order to have a C-

terminus 2Xc-myc tag. Abl CDS was amplified through PCR from a cDNA clone 

(clone GH09917, DGRC). This first PCR also removed the stop codon, adding in 

frame the c-myc coding sequence. After purification, the PCR product was used 

as a template for a second PCR, in which a restriction site for NotI was added at 

the 5’, whereas at the 3’ a second c-myc coding sequence, a STOP codon and a 

XbaI restriction site were added. 

The purified PCR product and the pUASattB vector were digested with NotI and 

XbaI. The reaction was: 

NotI 1 µl 

XbaI 1 µl 

Buffer 2(10X) 5 µl 

DNA (300 ng-1 µg) 

H2O up tp 50 µl 

The reaction was performed at 37ºC for 2 hours. 

The digested products were separated on agarose gel. Bands corresponding to 

the desired DNA fragments were cut out with a sterile razor blade and purified 

using Qiagen Gel Extraction Kit. The DNA was the eluted in 30 µl of ddH2O. 
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The ligation reaction was conducted at 16ºC o/n using T4 DNA ligase. 

Insert/vector molar ratio was 1:1 

T4 DNA ligase buffer (10X):2 µl 

T4 DNA ligase: 1 µl 

Vector: 50 ng 

Insert:25 ng 

Water up to 20 µl 

Ligation reaction was transformed into bacteria cells (see below) 

Polymerase Chain Reaction (PCR) 

I-Proof polymerase mix was used for cloning Abl cDNA, and was used according 

to manufacture specifications; a final volume of 50 µl was prepared for each 

reaction.  

 

5.2.2 Fly mantainance 

Flies were raised and cultured in plastic bottles containing Drosophila standard 

medium. For crosses and weak stocks blue yeast paste was added to the media. 

Vials (diameter 25mm) were used for normal stock keeping and crosses; bottles 

(diameter 50mm) were used for expansion and virgins collection. Flies were kept 

in incubators with controlled temperature and humidity (60-70%). Fly stocks were 

kept at 18°C, whereas flies kept for expansion, crosses and embryos collection 

were kept at 25°C unless otherwise stated. For selection and collection, flies 

were anesthetized with CO2 and observed with stereomicroscopes. 
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5.2.3 Drosophila genetics 

Balancer chromosomes 

 Embryonic specific marked balancer chromosomes were exploited in order to 

select embryos with the wanted genotypes after collection, fixation and staining. 

The balancers used for this purpose were: 

yw Baz4FRT9-2/FM7a,GMR-nvYFP  

w; Sco/CyO, GMR-nvYFP 

w; Dr1/TM3, GMR-nvYFP , Sb 

The GMR enhancer is composed of five copies of a Glass response element 

from the Rh1 gene. It drives expression in all cells behind the morphogenetic 

furrow (Hay, Wolff, & Rubin, 1994) . Therefore, embryos could be easily selected 

screening for the YFP fluorescence in the anterior part of the embryo (Le et al., 

2006) 

Gal4/UAS system 

Gal4/UAS system allows spatio-temporal control of gene expression (Brand & 

Perrimon, 1993), and was used in this study for overexpression of specific gene 

or for performing rescue experiment. Gal4 encodes in yeast for a transcription 

activator protein that can bind to the UAS (Upstream Activation Sequence) 

promoter and activate gene transcription. The cDNA of the gene of interest is 

generally fused to a UAS sequence, and the expression can be driven in a 

spatio-temporal controlled manner by a Gal4 element fused to specific promoter. 

The result is the expression of the gene of interest only in the promoter specific 

fashion. In this study, the system was exploited for performing rescue 

experiments, for overexpression or ectopic expression of genes, or in 

combination with a reporter gene (usually mcd8-GFP) for selectively 

label/visualize specific populations of neurons. 
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Figure 5-1: Schematic of the Gal4/UAS system in flies. 

Spatio-temporal controlled gene expression is achieved in flies crossing transgenic flies carrying 

the Gal4 transcription activating protein under the control of a specific promoter for transgenic 

flies carrying the UAS sequence upstream of the gene of interest. The progeny carrying both of 

the transgenes will be expressing the gene of interest in a specific subset of cells. 

5.2.4 Embryo collection 

Embryos were collected on apple juice agar plates after the parental cross was 

kept in vials for at least 3 days. Flies were then transferred in collection cages 

closed with apple juice agar plates covered with dry yeast (to maximize the egg 

laying) and let laying eggs at 25°C. The plate was exchanged twice per day, 

once in the morning and once in the evening. The evening plate was then kept at 

18°C to slow down development and embryos were then collected and fixed 

together with the overnight collection the following morning.  

5.2.5  Embryo fixation 

Embryos were fixed as described in (REF). Plates were treated with 10% bleach 

for 3 min at room temperature in order to dechorionate the embryos. The 
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embryos were then collected in a sieve and rinsed with tab water in order to 

remove all the bleach. They were subsequently transferred in Eppendorf tubes 

and fixed under vigorous shaking for 30 min at rt. The fixative used was a 50% 

Heptane, 45%PBS, 5% Formaldehyde mixture. After fixation, the lower phase of 

the fixative (PBS/Formaldehyde solution) was replaced with Methanol, the tube 

vortexed and the bottom phase removed again. This sequence was repeated 

until the embryos were all sinking at the bottom of the tube, meaning that the 

vitelline membrane was removed. The whole fixative was then removed and 

exchanged with Methanol, and the embryos were washed for 10 min on rotatory 

shaker. Embryos could be then directly stained or stored at -20°C after 

exchanging methanol with Ethanol in order to avoid bleaching of GFP. 

5.2.6 Immunohistochemistry 

Embryos were rinsed with 0.1% PBT in order to remove any trace of Methanol or 

Ethanol, and then washed three times with 0.1% PBT for permeabilization. 

Blocking solution consisting of 5% of Donkey or Calf serum in 0.1% PBT was 

then applied for 1 hour. Primary antibodies dilutions were prepared in Blocking 

solution and applied to embryos overnight at 4°C or at least 4 hours at r.t. 

Embryos were then washed three times for 10 min with PBT and proper 

secondary antibodies diluted in 0.1% PBT were applied for at least 2 hours at r.t. 

Embryos were washed 3 x 10 min with 0.1% PBT and Vectashield Mounting 

media was applied. Embryos of the desired stage were then selected according 

to anatomical features (Bownes, 1975; Campos-Ortega & Hartenstein, 1985) 

and filetted, exposing the ventral midline. Imaging was done using the Olympus 

FV-1000 confocal microscope; images were processed with Adobe Photoshop 

Image J and Adobe Illustrator. 

5.2.7 Genomic DNA isolation 

For genomic DNA isolation 2-3 adult flies were collected in Eppendorf tube and 

kept on ice. 250 µl of Solution A was added to the flies and they were 

homogenized using plastic homogenizer. Flies were then incubated for 30 min at 

70°C. 28 µl of 8M  Potassium Acetate solution was added and samples 

incubated on ice for 30 min. Samples were centrifuged for 30 minutes at 13.000 

rpm and the resulting supernatant was transferred to a new tube and mixed with. 
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250 µl of Phenol-Chloroform. After 5 min centrifugation at 13.000 rpm the upper 

fraction was collected and transferred to a new tube, where DNA was 

precipitated by adding 125 µl of Isopropanol. The DNA was spun down by 15 

min centrifugation at 13.000 rpm, and the supernatant removed. After washing 

the pellet with 125 µl of 70% Ethanol, DNA was again centrifuge and let dry at 

room temperature in order to get rid of all the Ethanol. DNA was diluted in 30 µl 

of distilled water and concentration determined with NanoDrop.  

5.2.8 Transformation and plasmid preparation 

One Shot Top10 chemical competent cells (Invitrogen) were used for 

transformation of ligation products, due to their high efficiency. Cells were thaw 

from -80ºC on ice, and 5 µl of the ligation reaction were added; cells were kept 

for 30 minutes on ice. Bacteria were then heat-shocked at 42ºC for 1 minute ad 

immediately returned on ice for 2 minutes. 250µl of LB media were added and 

the cells were incubated at 37ºC for 1h with shaking (300rpm).20-50 µl of the 

cells were plated on LB plates containing the selective antibiotic and incubated 

at 37ºC overnight. The following day, single colonies were picked up and grown 

in LB media containing the selective antibiotic. The plasmids were extracted 

using Qiagen Kits according to manufacture protocols. 

For routine DNA amplification, DH5α Electro competent cells were thaw on ice, 

inoculated with 2-3 µl of DNA and transferred in electroporation cuvettes. After 

electroporation, 200 µl of LB media was added and cells were incubated at 37ºC 

for 1h with shaking (300rpm). 10µl of cells were plated on LB plates and 

containing the selective antibiotic and incubated at 37ºC overnight. Single 

colonies were then treated as described before for chemical competent cells. 

5.2.9 Cell culture and transfection 

Schneider S2 cells were initially derived from a primary culture of late stage 

Drosophila Melanogaster embryos (20 hr) (Schneider, 1972). 

Cells were maintained in a 28°C incubator without CO2 in complete Schneider’s 

medium supplemented with 10% heat-inactivated FBS, 100 units/ml penicillin, 

and 100 μg/ml streptomycin. Cells were passaged every 3-4 days at a 1:2.5 

dilution. 
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S2 were transfected using the Effectene Kit according to manifacture manual 

(Qiagen). Briefly, cells were seeded the day before transfection in 60mm petri 

dishes in 4 ml of media containing both serum and antibiotics at the density of 

0.5 to 2.0 x 106
 

cells/ml. The day after, 1 µg of DNA was mixed with 150ul of the 

supplied buffer EC and 8µl of Enhancer, and incubated at r.t. for 2-5 minutes. 25µl 

of Effectene Reagent was added to the DNA mixture, and incubated for 10 minutes 

to allow transfection-complex formation. After the incubation, the 1ml of medium was 

added and the the final mixture added drop-wise to the cells. The cells were 

incubated 48-72 cells before harvesting them.  

5.2.10  Co-immunoprecipitation 

S2 cells were harvested 2-3 days after transfection, centrifuged for 5min at 3400 

rpm and washed twice with PBS. The cells were resuspended in 300 μl of lysis 

buffer and lysed using a homogenizer for 1 min at full speed. The pellet was 

incubated at 4°C for 30 min, then centrifuged at 3400 rpm for 5 min. 

Supernatants were transferred to a new tube and diluted in lysis buffer. Solutions 

were incubated with the anti-myc antibody for 2 hours at 4°C. Afterwards 40 μl of 

beads (slurry 50% (v/v), were added and the mixture incubated for 2 hours at 

4°C. The beads were washed with 500 μl of ice-cold lysis buffer, then once with 

500 μl of 50 % v/v lysis buffer in PBS, and once with 500 μl of PBS. The beads 

were removed by centrifugation and the samples were boiled in 6 μl SDS buffer 

(6x) for 10 minutes and loaded onto a protein gel.  

5.2.11  Immunoblotting  

Samples (20 μl) were separated by SDS-PAGE on 5 % bis/tris polyacrylamide 

gels. Gel electrophoresis was performed in 1x SDS running buffer at 140 V and 

75 mA for 1 h. Gels were blotted on Whatmann nitrocellulose membrane for 45 

min at 25 V and 200 mA with a semi-dry apparatus (Thermo Scientific), after that 

membrane and filter paper were soaked in Fast Semi-Dry Transfer Buffer (1x) for 

15 min. Afterwards the blots were blocked in a TBST solution with 5 % w/v non-

fat for 30 min. The membranes were incubated with the primary antibody diluted 

in blocking solution o/n. The next day, the blots were rinsed and washed 3x with 

TBST (1x), for 15 min each time and then incubated for 2 h with the secondary 

antibody diluted in blocking solution. After being washed three times with TBST, 
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the membranes were developed in the 1:1 mixture of the Amersham ECL 

Western Blot Detection Reagents from GE Healthcare. Images at different 

exposure times were taken in a dark room with Amersham Hyperfilm ECL or 

using the Fusion Fx7 video camera system. 

5.2.12  Summary of the experimental genotypes 

Table 10 Detailed genotypes of the embryos per figure relative to the results 
section. 

FIGURE EXPERIMENT GENOTYPE 

3-1 Mutant analysis w- 

fmiE59/fmiE59 

dsh1/ dsh1 

vang153/ vang153 

fzKD4/ fzKD4 

3-2 Mutant analysis fra3 fmiE59/ fra3 fmiE59 

fra3 vang153/ fra3 vang153 

dsh1/ dsh1; fra3/ fra3 

fra3/ fra3; fzKD4/ fzKD4 

3-3 Mutant analysis fra3/fra4 

fmiE59/fmiE59 

NetABΔ/Y 

fra3 fmiE59/ fra3 fmiE59 

NetABΔ/Y; fmiE59/fmiE5  

3-4 Expression 
9w- 

3-5 Rescue 
9w-1407-Gal4 fra3 fmiE59/ fra3 fmiE59 

1407-Gal4 fra3 fmiE59/ fra3 fmiE59;UAS-fmi/+ 

1407-Gal4 fra3 fmiE59/ fra3 fmiE59;UAS-fra/+ 

fra3 fmiE59/ fra3 fmiE59;Elav-Gal4/+ 

fra3 fmiE59/ fra3 fmiE59;Elav-Gal4/UAS-fmi 

Sim-Gal4 fra3 fmiE59/ fra3 fmiE59 

Sim-Gal4 fra3 fmiE59/ fra3 fmiE59;UAS-fmi/+ 

Gcm-Gal4 fra3 fmiE59/ fra3 fmiE59 

Gcm-Gal4 fra3 fmiE59/ fra3 fmiE59;UAS-fmi/+ 

3-6 Rescue fra3 fmiE59/ fra3 fmiE59;Elav-Gal4/+ 

UAS-p35 fra3 fmiE59/ fra3 fmiE59;Elav-Gal4/+ 
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3-7 Mutant analysis 

 

 

Rescue 

Eg-Gal4 UAS-mcd8-GFP/ UAS-mcd8-GFP 

fmiE59/fmiE59; Eg-Gal4 UAS-mcd8-GFP/UAS-mcd8-GFP 

fra3/fra4; Eg-Gal4 UAS-mcd8-GFP/UAS-mcd8-GFP 

NetABΔ/Y; Eg-Gal4 UAS-mcd8-GFP/UAS-mcd8-GFP 

fra3UAS-mcd8-GFP/fra4;Eg-Gal4 UAS-mcd8-GFP/UAS-fmi 

NetABΔ/Y;Eg-Gal4 UAS-mcd8-GFP/ UAS-mcd8-GFP 

UAS-fmi 

3-8 Rescue fra3/fra4; Eg-Gal4 UAS-mcd8-GFP/UAS-mcd8-GFP 

fra3 UAS-mcd8-GFP /fra4; Eg-Gal4 UAS-mcd8-GFP/ UAS-

fz 

3-9 Overexpression Ftzng-Gal4/+ 

Ftzng-Gal4/UAS-fmi 

Ftzng-Gal4/UAS-fra 

Ftzng-Gal4 UAS-fmi /UAS-fmi 

Ftzng-Gal4 UAS-fra/UAS-fra 

3-10 Rescue fra3 fmiE59/ fra3 fmiE59; Eg-Gal4 UAS-mcd8-GFP/UAS-mcd8-

GFP 

fra3 fmiE59/ fra3 fmiE59; Eg-Gal4 UAS-mcd8-GFP/UAS-mcd8-

GFP UAS-fmi 

fra3 fmiE59/ fra3 fmiE59; Eg-Gal4 UAS-mcd8-GFP/UAS-mcd8-

GFP UAS-fra 

3-11 Mutant analysis fmiE59/fmiE59;Sema2b-Ƭ-myc 

fra3/fra4; Sema2b-Ƭ-myc 

fra3 fmiE59/ fra3 fmiE59; Sema2b-Ƭ-myc 

3-12 Mutants 

 

 

 

 

 

Rescue 

fmiE59/fmiE59;15J2-Gal4/ UAS-mcd8-GFP 

fra3/fra4; 15J2-Gal4/ UAS-mcd8-GFP 

fra3 fmiE59/ fra3 fmiE59; 15J2-Gal4/ UAS-mcd8-GFP 

c-544-Gal4 fmiE59/fmiE59; UAS-mcd8-GFP 

c-544-Gal4 fra3/fra4; UAS-mcd8-GFP 

c-544-Gal4 fra3 fmiE59/ fra3 fmiE59; UAS-mcd8-GFP 

c-544-Gal4 fra3 fmiE59/ fra3 fmiE59; UAS-mcd8-GFP/UAS-

mcd8-GFP UAS-fmi 

c-544-Gal4 fra3 fmiE59/ fra3 fmiE59; UAS-mcd8-GFP/UAS-

mcd8-GFP UAS-fra 

3-13 Domain 

Analysis 

1407-Gal4 fra3 fmiE59/ fra3 fmiE59 

1407-Gal4 fra3 fmiE59/ fra3 fmiE59;UAS-fmiΔN/+ 
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1407-Gal4 fra3 fmiE59/ fra3 fmiE59;UAS-fmiΔIntra/+ 

fra3 UAS-mcd8-GFP/fra4; Eg-Gal4 UAS-mcd8-GFP/UAS-

fmiΔN 

fra3 UAS-mcd8-GFP/fra4; Eg-Gal4 UAS-mcd8-GFP/UAS-

fmiΔIntra 

3-14 Overexpression 

 

 

 

Rescue 

Ftzng-Gal4 /UAS-racV12 

fmiE59/+; Ftzng-Gal4 /UAS-racV12 

Ftzng-Gal4 /UAS-Cdc42V12 

fmiE59/+; Ftzng-Gal4 /UAS-Cdc42V12 

fra3 UAS-mcd8-GFP/fra4; Eg-Gal4 UAS-mcd8-GFP/UAS-

rac1 

fra3 UAS-mcd8-GFP/fra4; Eg-Gal4 UAS-mcd8-GFP/UAS-

cdc42 

fra3 UAS-mcd8-GFP/fra4; Eg-Gal4 UAS-mcd8-GFP/UAS-

Rho1 

3-15 Mutant analysis esnKO6 fmiE59/ esnKO6 fmiE59 

esnKO6 fra3/ esnKO6 fra3 

NetABΔ/Y; esnKO6 

3-16 Mutant analysis  Abl1/abl1 

fmiE59/  fmiE59/ abl1/abl1 

3-17 Rescue fra3 /fra4; Eg-Gal4 UAS-mcd8-GFP/ UAS-mcd8-GFP 

fra3 UAS-mcd8-GFP /fra4; Eg-Gal4 UAS-mcd8-GFP/ UAS-

fmi  

fra3 UAS-mcd8-GFP /fra4; Eg-Gal4 UAS-mcd8-GFP/ UAS-

abl 

fra3 UAS-mcd8-GFP /fra4 UAS-ablK417N; Eg-Gal4 UAS-

mcd8-GFP/+ 

fra3 UAS-mcd8-GFP /fra4 UAS-ablK417N; Eg-Gal4 UAS-fmi/ 

UAS-mcd8-GFP 

3-18 Overexpression Ftzng-Gal4 /UAS-abl 

Ftzng-Gal4 UAS-fmi /UAS-abl 

Ftzng-Gal4 UAS-fra/UAS-abl 

3-19 Mutants 

 

 

 

wnt5D7/Y 

wnt5D7/Y; fra3/ fra3 

wgI-17/ wgI-17 

NetABΔ/Y; wgI-17/ wgI-17 
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Overexpression 

wnt20/ wnt20 

NetABΔ/Y; wnt20/ wnt20 

wnt423/ wnt423 

NetABΔ/Y; wnt423/ wnt423 

Sca-Gal4/UAS-wg 

Sca-Gal4/UAS-wnt2 

Sca-Gal4/UAS-wnt4 

Sca-Gal4/UAS-wnt5 

Sim-Gal4/UAS-wg 

Sim-Gal4/UAS-wnt2 

Sim-Gal4/UAS-wnt4 

Sim-Gal4/UAS-wnt5 

Elav-Gal4/UAS-wg 

Elav-Gal4/UAS-wnt2 

Elav-Gal4/UAS-wnt4 

Elav-Gal4/UAS-wnt5 

Ftzng-Gal4/UAS-wg 

Ftzng-Gal4/UAS-wnt2 

Ftzng-Gal4/UAS-wnt4 

Ftzng-Gal4/UAS-wnt5 
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