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Zusammenfassung

In dieser Arbeit wird die Erzeugung und Untersuchung wechselwirkender Ytterbium-
Quantengase mit zwei elektronischen Orbitalen in optischen Gittern präsentiert. Entartete
Fermigase aus Ytterbium oder anderen erdalkaliähnlichen Elementen wurden in jüngster
Zeit als Modellsysteme für orbitale Phänomene in der Festkörperphysik herangezogen,
wie z.B. die Kondoabschirmung, schwere Fermionen und kolossalen magnetischen Wider-
stand. Für diese Gase wurde des Weiteren eine hohen SU(N) Symmetrie vorhergesagt, die
aus der starken Entkopplung des Kernspins resultiert, und die Erzeugung neuer exotischer
Aggregatzustände ermöglicht.
Das SU(N) Hubbard-Modell mit zwei Orbitalen sowie interorbitaler Spinaustauschwech-
selwirkung lässt sich mit Hilfe der beiden niedrigsten (meta-)stabilen elektronischen
Zustände realisieren, welche dabei die Rolle der Elektronen aus unterschiedlichen Or-
bitalen eines Festkörpers einnehmen. Die Wechselwirkungen in einer entarteten Mischung
verschiedener Spinzustände von 173Yb mit zwei Orbitalen werden durch die Anregung
in den metastabilen Zustand in einem zustandsunabhängigen Gitter untersucht. Alle
Streukanäle für die zwei Orbitale werden charakterisiert und die SU(N = 6)-Symmetrie
wird innerhalb der experimentellen Unsicherheiten nachgewiesen. Von herausragender
Bedeutung ist der Nachweis einer sehr starken Spinaustauschwechselwirkung zwischen
den zwei Orbitalen, wobei der dazugehörige Austauschprozess anhand dynamischen
Ausgleichs der Spinpolarizierung zwischen verschiedenen Orbitalen beobachtet wird.
Ermöglicht wird dies durch die Implementierung präzisionsspektroskopischer Verfahren
sowie die vollständige, kohärente Kontrolle der Besetzung des metasabilen Zustandes.
Die Verwirklichung eines SU(N)-symmetrischen Gases mit Spinaustauschwechselwirkung,
des grundlegenden Bausteins für orbitalen Quantenmagnetismus, ist ein entscheidender
Schritt in Richtung der Simulation von wichtigen Vielteilchenmodellen, wie dem Kondo-
Gittermodell.
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Abstract

This thesis reports on the creation and investigation of interacting two-orbital quantum
gases of ytterbium in optical lattices. Degenerate fermionic gases of ytterbium or other
alkaline-earth-like atoms have been recently proposed as model systems for orbital phe-
nomena in condensed matter, such as Kondo screening, heavy-Fermi behaviour and colos-
sal magnetoresistance. Such gases are moreover expected to obey a high SU(N) symmetry,
owing to their highly decoupled nuclear spin, for which the emergence of novel, exotic
phases of matter has been predicted.
With the two lowest (meta-) stable electronic states mimicking electrons in distinct or-
bitals of solid materials, the two-orbital SU(N) Hubbard model and its spin-exchange
inter-orbital interactions are realised. The interactions in two-orbital degenerate mix-
tures of different nuclear spin states of 173Yb are probed by addressing the transition to
the metastable state in a state-independent optical lattice. The complete characterisation
of the two-orbital scattering channels and the demonstration of the SU(N = 6) symme-
try within the experimental uncertainty are presented. Most importantly, a strong spin-
exchange coupling between the two orbitals is identified and the associated exchange pro-
cess is observed through the dynamic equilibration of spin imbalances between ensembles
in different orbitals. These findings are enabled by the implementation of high precision
spectroscopic techniques and of full coherent control of the metastable state population.
The realisation of SU(N)-symmetric gases with spin-exchange interactions, the elemen-
tary building block of orbital quantum magnetism, represents an important step towards
the simulation of paradigmatic many-body models, such as the Kondo lattice model.
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Introduction

In the early days of quantum mechanics, the efforts of many physicists were focused on
understanding the behaviour of the individual microscopic constituents of the world, such
as electrons, photons and atoms. Following the progress of quantum field theory and
catalysed by pioneering experimental observations, e.g. the discovery of superconduc-
tivity [1], an increasing interest has been directed towards the quantum description of
the condensed phases of matter, consisting of large collections of interacting atoms or
molecules. An accurate modelling of such quantum many-body systems is in general ex-
tremely challenging: including all degrees of freedom of the constituents and their rela-
tions is ineffective, owing to the high complexity of real materials. The typical approach
in condensed-matter physics is precisely the opposite: one attempts to simplify the system
as much as possible, formulating minimal models which include only few crucial degrees
of freedom necessary to recreate the observed physical behaviour. Yet such models are
the result of several assumptions and approximations; therefore, their ability to provide a
correct description of the system’s key properties needs to be verified. In many cases, the
inclusion of apparently unimportant aspects, such as the presence of anistropies, disorder
or impurities, can strongly influence the emerging physics.

The direct experimental investigation of real materials is the natural setting for val-
idating a certain model’s predictions. As an example, when the renowned BCS theory
of superconductivity was proposed [2], it was able to quantitatively reproduce the key
experimental evidences, establishing itself as the paradigmatic framework to describe su-
perconductivity phenomena. However, several systems exist for which the entirety of the
observations cannot yet be explained by an elementary model. The reasons are twofold:
first of all, even seemingly simple theoretical models are frequently not exactly solvable,
making it difficult to extract predictions about the macroscopic properties of materials
in certain parameter regimes; secondly, the intrinsic complexity and inaccessibility of
condensed-matter systems prevents a direct experimental validation of models at the mi-
croscopic scales.

Such a situation exists in the case of high-Tc cuprate superconductors [3, 4]: despite
already having technological applications, they lack a consistent theory describing all ob-
served features. The model believed to embrace the physics of high-Tc superconductiv-
ity within a minimal description, i.e. the repulsive Fermi-Hubbard model of electrons in
solids [5], has withstood the theorists’ persisting efforts for decades and its connection
to experimental signatures has been elusive. Likewise, many further unsolved puzzles in
condensed-matter physics still remain, e.g. concerning the existence of non-abelian any-
onic excitations in superconductors [6] and fractional quantum Hall systems [7].

A widening of perspectives has gradually occurred over the past two decades: matter
has no longer to be solely analysed by probing its intricate structure and by dissecting
it. Thanks to the development of extraordinary experimental techniques in the fields of
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atomic physics, photonics and nanotechnology, fully tailored quantum systems can be
created and their microscopic degrees of freedom can be controlled and probed to a great
extent. This new paradigm can be profitably exploited to engineer artificial matter with
disparate properties and applications, imitating nature to some degree, yet in principle
without any restriction. However, this is just one way of looking at the possibilities offered
by synthetic matter.

As Feynman first pointed out in 1981 [8], one could engineer a controllable quantum
system and use it to emulate another physical system by mimicking its evolution. In order
for this to work, the simulator must behave and evolve just like the original system that one
wishes to replicate. Feynman’s vision brought to light the concept of a quantum simulator
[9]. After more than 20 years, quantum simulators are now within experimental reach [9–
13] and can already be used to produce physical realisations of certain many-body models
that we are unable to solve or simulate with classical computers. Ideally, a quantum
simulator needs to be a fully controllable and accessible system, so that models can not
only be implemented, but accurately probed over a broad range of parameters. Quantum
simulators hold great promise for the investigation of the connection between the features
of real materials and the proposed models, and could provide in the near future significant
advances in condensed-matter physics and beyond. The gained knowledge may then in
turn be exploited to develop new synthetic materials, enhancing or suppressing specific
effects.

Quantum simulation with ultracold atomic gases

The greatest difficulties in condensed-matter theory arise from the inclusion of strong
inter-particle correlations, induced by interactions, and their interplay with quantum
statistics. In solid materials the correlations between electrons moving through a crystal
lattice are mediated by their Coulombian repulsion from one another and their attraction
to the negatively charged ions. Treating electrons as approximately non-interacting suc-
ceeds in describing many properties of solids, e.g. the conductivity and the specific heat
of metals in their normal phase. Yet it is really the correlated behaviour of interacting
electrons that gives rise to a whole lot of fascinating quantum phenomena, ranging from
magnetism to superconductivity.

It is largely owing to the simplicity and the tuneability of their interactions that ultra-
cold atomic gases recently emerged as a powerful system to simulate strongly-correlated
electron materials in a defect-free environment [12, 14]. In particular, ultracold atoms are
especially suited to investigate collective behaviour, such as quantum phase transitions and
critical phenomena, owing to the large number of particles that can be controlled in com-
parison to other quantum simulators [9]. In order to uncover the quantum nature of the
particles, extremely low temperatures close to a nanokelvin are required due the low den-
sity of dilute atomic gases produced in the laboratories, many orders of magnitude lower
than the typical electron density in solids. Decades of advances in laser cooling techniques
with alkali atoms [15] enabled the celebrated achievement in 1995 of Bose-Einstein con-
densation (BEC) [16, 17], where a macroscopic number of atoms occupy the same quan-
tum state, followed by Fermi degeneracy shortly after [18]. Such breakthroughs marked
the beginning of the thriving field of ultracold atom physics. Cold atom research aimed
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initially at revealing the single-particle coherence effects induced by quantum statistics,
but the field rapidly expanded and developed towards the investigation of atomic inter-
actions. A wealth of novel techniques were introduced, devoted to efficiently manipulate
and probe ultracold atomic ensembles [14]. Many experiments succeeded in observing
quantum effects induced by strong inter-atomic correlations, achieving for instance a de-
tailed understanding of the BEC-BCS crossover in Fermi gases [14, 19] (and references
therein).

At very cold temperatures, inter-atomic interactions that are typically moderate in bare
trapped gases can be made to dominate the equilibrium properties and the dynamics of
the system. Two possibilities exist to effectively tune interactions: Feshbach resonances
and optical lattice potentials. On the one hand, Feshbach resonances offer a method for
directly adjusting the strength of interactions [20]. Conversely, optical lattices enhance
interaction effects mainly through the reduction of kinetic energy: in a periodic potential,
the kinetic energy becomes bounded in distinct energy bands, which can be made arbitrar-
ily narrow by increasing the lattice potential depth. Hence, the dominating energy scale
is set by the interactions, increased on the contrary by the lattice confinement.

After Jaksch et al. pointed out in 1998 that ultracold atoms trapped in a lattice poten-
tial accurately implement the Hubbard model [21], the observation of the superfluid to
Mott insulator transition in the first experimental realisation of the Bose-Hubbard model
[22] demonstrated the ability of accessing the strongly-correlated regime through op-
tical lattices. Optical lattice potentials represent nowadays a fundamental tool in cold
atom physics [14, 23]. During the past decade, an exceptional variety of phenomena and
phases have been revealed in optical lattices, such as Tonks-Girardeau gases [24, 25],
correlated tunnelling and superexchange processes [26–28], fermionic superfluid pairing
[29], fermionic band insulators [30] and Mott insulators [31, 32], to mention but a few.
Lattice potentials can be further used to effectively alter the dimensionality of the system,
by confining atoms very tightly along one or more directions, and to emulate the diverse
crystal symmetries found in nature, which crucially influence the electronic properties of
solid-state materials [33–36].

The enormous capability of ultracold atoms as model systems to study condensed-
matter Hamiltonians has already been extensively demonstrated and further advances
could lead to quantum simulations addressing new open problems in condensed-matter
physics. On the one hand, large efforts are focused on developing innovative ways of
controlling many-body states and analysing their properties and correlations, often with
no analogues in condensed-matter experiments, e.g. spatial noise interferometry [37, 38],
high-precision spectroscopy [39–41] and lattice single-site-resolved imaging [42, 43] and
addressing [44]. In this respect, probing the out-of-equilibrium dynamics can also con-
tribute to the theoretical understanding of the realised models [45]. On the other hand,
the complexity of the attainable many-body models is rapidly increasing to include a larger
variety of quantum phenomena and regimes, for instance with the recent realisation of
strong artificial magnetic fields [46, 47]. In the same direction, the exploration of in-
novative quantum systems such as cold polar molecules, magnetic and Rydberg atoms
with their long-range dipolar interactions became a central subject, witnessing important
advances in the last years [48].

Taking advantage of atoms’ internal degrees of freedom also permits to expand the pos-
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sibilities for quantum simulation and stimulated recently a growing interest in several new
atomic species, alternative to the widely studied alkali elements. In addition, such richer
quantum systems may enable discoveries stretching beyond naturally occurring physical
behaviour, including the realisation of novel synthetic phases of matter. Amongst others,
the atomic species belonging to the class of so-called alkaline-earth-like atoms with two
valence electrons gained special attention, specifically with elements as calcium, stron-
tium and ytterbium. Such atoms internal structure does not only crucially determine the
laser cooling strategy required to bring the ensembles to the quantum degenerate regime,
but especially the kind of many-body models that can be implemented and the available
manipulation and investigation tools.

Alkaline-earth-like atoms

Alkaline-earth-like elements have been primarily employed in the recent past as powerful
frequency standards: their atomic structure includes low-lying metastable electronic levels
and the associated ultranarrow optical transitions posses a remarkable intrinsic precision
at the level of 10�18. Since the realisation of the first alkaline-earth-based optical lat-
tice atomic clock [49], many lattice clock systems around the world were assembled and
currently represent the most precise existing frequency standards, surpassing even the per-
formance of single-ion atomic clocks [50, 51]. Alongside their use in quantum metrology,
alkaline-earth-atoms were brought to the attention of the cold atom community already
more than 10 years ago, when the first bosonic isotope of ytterbium was cooled to degen-
eracy by the group of Y. Takahashi in Kyoto [52]. Their tremendous potential for quantum
simulation was then realised [53–55], shortly after they were proposed as a promising
system for quantum computation in optical lattices [56–59]. The more complex internal
structure of alkaline-earth-like atoms compared to alkali atoms could provide a platform
to implement so far inaccessible many-body phenomena, based on orbital interactions
[55, 60, 61], enlarged symmetries [55, 62, 63] and strong effective gauge fields [64].

In the last years, various isotopes of alkaline-earth-like species have been brought
to quantum degeneracy [65–71] and a fermionic Mott insulating state has already been
reported [72]. Such progress inspired in turn numerous theoretical proposals regarding
quantum simulation with these atoms. Amongst them, in particular the fermionic 87Sr and
173Yb are promising candidates for the quantum simulation of strongly-correlated phases,
owing to the strength of their interactions and their nuclear spin properties [55, 63].

The above-mentioned fermionic isotopes possess a high nuclear spin, which is strongly
decoupled from the electronic degrees of freedom due to the absence of electronic angular
momentum, and permits the emergence of a high, unique symmetry of interactions. This
enlarged symmetry, termed SU(N) from the mathematical group used to describe it, is pre-
dicted to have drastic effects on the properties of nearly any interacting fermionic many-
body state [63]; such effects have already been experimentally studied in one dimension
[73]. An assortment of states with fascinating properties, such as exotic spin liquids with
topological order [62, 63], could be realised using Mott insulators of alkaline-earth-like
atoms, having (yet) no known analogue in nature [53–55]. Moreover, the realisation of
a system exhibiting an enlarged SU(N > 2) symmetry is of interest outside the field of
many-body physics with cold atoms, e.g. in quantum chromodynamics, where the SU(3)
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group is central to describe the origin of forces between quarks [74].
The existence of long-lived metastable states is a unique feature of alkaline-earth-like

atoms and its applications stretch far beyond the use of the associated ultranarrow transi-
tions, which represent a very powerful spectroscopic tool in the context of ultracold gases.
Most importantly, the lowest-lying metastable state can be used as an effective second
ground state in the system, opening up unprecedented possibilities to realise condensed-
matter models based on the interaction of electrons in distinct orbitals [55, 60, 61]. These
models are used to describe a large class of materials, e.g. heavy-fermion compounds
[75–77], transition-metal oxides with orbital degeneracy [78] and manganese oxide per-
ovskites [79].

A fundamental ingredient for the establishment of a new many-body toolbox based
on ultracold alkaline-earth-like atoms is the possibility of implementing highly symmet-
ric spin interactions, which lead to strong many-body correlations between the particles.
In particular, by adopting two distinct electronic states in combination, a special type of
inter-atomic interactions can be realised, namely a direct spin exchange between atoms
in different electronic states – or different orbitals, how they are often called in analogy
to electrons in solids. Orbital spin-exchange interactions lie at the heart of various quan-
tum phenomena in condensed matter, ranging from Kondo screening and heavy-Fermi
behaviour to magnetism, colossal magnetoresistance and beyond [76, 79, 80]. Moreover,
they can give rise to unconventional superconductivity [81, 82]. Fermionic alkaline-earth-
like atoms could unquestionably contribute to the ongoing investigation of these phe-
nomena, specifically by realising the physics of the Kondo lattice model in a controllable
fashion [55, 60, 61] through the use of tuneable state-dependent optical lattice potentials
and of novel spectroscopic addressing and probing techniques.

This thesis

The main subject of this thesis is the experimental implementation of a controllable quan-
tum gas of fermionic ytterbium (173Yb) for the study of SU(N)-symmetric inter-orbital
interactions, and especially spin-exchanging interactions, in optical lattices. A Fermi gas
with adjustable spin and orbital degrees of freedom is obtained by optical manipulation
of the internal states of the atoms, achieving most importantly a full coherent control
of the lowest metastable state population. The implementation of specific experimental
techniques for cooling and trapping ytterbium atoms, through which the quantum degen-
erate regime of both bosonic and fermionic samples is reached, is an important part of
the work reported herein. This involves the conception and development of the entire ex-
perimental apparatus, including an ultrastable laser system for addressing the transition
to the metastable state. The elementary spin interactions between the two lowest elec-
tronic state of 173Yb were spectroscopically probed and characterised, also demonstrating
their SU(N = 6) symmetry within the experimental uncertainty. The real-time evolution
of the spin distribution of an initially imbalanced state, induced by a large spin-exchange
coupling strength, was directly observed. This in turn enabled a comparison between
the strength of the spin-exchange process and other unfavourable inelastic processes in
the system, strongly supporting the feasibility of many recent theoretical proposals for
the quantum simulation of orbital magnetism. Although a state-independent lattice has



6 Introduction

been adopted for all experiments presented in this work, the reported results become par-
ticularly relevant in relation to currently ongoing projects in our experiment, based on
many-body physics in state-dependent lattice potentials.

Outline

This thesis is organised as follows.
In Chapter 1, we review the general properties of alkaline-earth-like atoms, with par-

ticular emphasis on the peculiarities which made them recently object of a great attention.
We explain the basics of their internal structure and discuss their consequences in the con-
text of ultracold atomic gases in optical lattices. After recalling the theory of scattering at
low temperatures, we elaborate on the emergence of the SU(N) symmetry of atomic inter-
actions and present the SU(N) Fermi-Hubbard model. We furthermore introduce interac-
tions between different (meta-) stable electronic states, termed inter-orbital interactions,
and elucidate the mechanism behind the occurrence of inter-orbital spin-exchange inter-
actions. In the last part, after a short digest of orbital magnetism in condensed matter, we
illustrate a selection of prospects in quantum simulation with alkaline-earth-like atoms,
focusing particularly on the Kondo lattice model and the SU(N) Heisenberg model, which
are amongst the near-future goals of our experiment.

In Chapter 2, we summarise the atomic, nuclear and scattering properties of ytter-
bium, stressing the important effects of these on the cooling strategy towards degeneracy.
We successively present the implemented cooling procedure, which includes the Zeeman
slowing, the laser cooling in a narrow-line magneto-optical trap and the evaporation in a
crossed far off-resonant dipole trap. Finally, we report on the production of degenerate
bosonic (174Yb) and fermionic (173Yb) quantum gases and on their loading into a three-
dimensional optical lattice.

In Chapter 3, we present the experimental apparatus. We detail the vacuum assembly
and the optical setup surrounding the chamber where the atomic gases are trapped, ma-
nipulated and detected, reporting recent upgrades as well. We describe the cooling and
trapping laser systems and finally present in detail the clock laser system employed for the
excitation to the metastable electronic state.

Chapter 4 is devoted to the description of the experimental techniques which allow
the nuclear spin state control and detection with 173Yb, respectively obtained through a
narrow-line optical pumping scheme and an optical Stern-Gerlach separation method. We
briefly address the absence of spin relaxation in the ground state, thereby setting an upper
bound estimate for the SU(N) symmetry breaking of ground-state collisions.

Chapter 5 prepares the ground for the presentation of the main results on SU(N)
symmetric, spin-exchange interactions in Chapter 6. The excitation to the metastable
state through the associated ultranarrow optical clock transition in an optical lattice is
presented. Furthermore the effect of an external magnetic field are clarified and precision
spectroscopic measurements of the clock differential Zeeman shift in 173Yb are presented.
In the following part, a simple model for inter-orbital interactions in a three-dimensional
optical lattice is deduced and the relevance of a small SU(N) symmetry breaking for many-
body physics is discussed.

In Chapter 6, we present the detailed investigation of interactions in the two lowest
electronic states of 173Yb. We first describe our spectroscopic characterisation of inter-
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orbital interactions in the lattice and thereby report on the quantitative analysis of the
scattering properties of the two-orbital system consisting of the two electronic states. A
very strong on-site spin-exchange coupling is found, representing by far the dominant
energy scale in a deep three-dimensional lattice. We further address the demonstration
of the SU(N)-symmetric nature of all two-orbital interaction channels. We then proceed
by presenting the direct observation of spin-exchanging dynamics in an array of tightly-
confined two-orbital ensembles. The system is initialised in a strongly spin-imbalanced
state and a fast equilibration towards equilibrium is revealed, induced by the strong spin-
exchange coupling strength. We conclude by reportin our characterisation of the inelastic
losses and discuss the feasibility of recent experimental proposals based on the coexistence
of the two electronic states in a lattice.

In the final Chapter of this thesis we summarise the main results and provide an out-
look on possible near-future experiments, prevalently focused towards the exploration of
orbital many-body physics and quantum magnetism.
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CHAPTER 1

Alkaline-earth-like atoms: properties and
applications

The designation alkaline-earth-like (AEL) atoms includes all chemical elements in the sec-
ond group of the periodic table (Be, Mg, Ca, Sr, Ba, Ra), as well as those d-block (Zn, Cd,
Hg) and f -block (Yb, No) transition metals which have all complete internal shells and a
complete outer s-shell with two electrons. The atomic properties of AEL species are largely
determined by the two s-shell valence electrons, in a similar way as for Helium: the elec-
tronic states are separated into two manifolds with total electronic spin S = 0 and S = 1,
respectively. For symmetry reasons, the optical coupling between states belonging to the
two manifolds is to a first approximation forbidden. The internal structure and the optical
transitions that are available for cooling and manipulating trapped AEL atoms are radi-
cally different from the ones used for the more conventional alkali elements, and introduce
some new exciting possibilities. Owing to these, in the last few years, ultracold AEL atoms
have attracted considerable theoretical interest in the context of quantum information
processing [56, 58, 59, 83] and quantum many-body physics [53–55, 60, 61, 64, 84, 85].
In particular, ultracold ensembles of AEL atoms trapped in optical lattices hold promise for
the neutral-atom implementation of yet unexplored condensed-matter models of strongly
correlated quantum phenomena [55, 60, 61]. Alongside the intense theoretical efforts,
several research groups around the world1 have been setting up laboratory experiments
with very diverse goals, attempting to explore the novel applications and the fascinating
prospects that were devised.

In this Chapter, we will introduce the fundamental properties of AEL atoms, providing
the necessary notions for subsequently describing the main experimental applications of
cold atomic ensembles. We start here by reviewing the electronic and nuclear properties
of AEL atoms, which are responsible for the presence of long-lived metastable states and
for the angular momentum decoupling between the nucleus and electronic cloud. After
introducing the theory of ultracold collisions, we discuss the emergence of SU(N) sym-
metry in Fermi gases of AEL atoms. We also generalise the treatment of interactions to
an additional internal degree of freedom, represented by the presence of two (meta-) sta-

1At the moment of writing this manuscript, experiments adopting ultracold Yb have been assembled in Mu-
nich, Kyoto, Tokyo, Hamburg, Düsseldorf, Florence, Turin, Paris, Bangalore, Washington, Boulder and Seattle,
whereas experiments adopting ultracold Sr were realised by groups in Amsterdam, Innsbruck, Florence, Paris,
Tokyo, Houston and Boulder.
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ble electronic states, and derive the two-orbital SU(N)-symmetric Hubbard model, which
describes interacting AEL atoms in a periodic lattice potential. We then proceed by de-
scribing some proposed experimental applications for cold AEL atoms, stemming from the
above-mentioned uncommon features. The simultaneous control of the spin and the or-
bital degree of freedom of the atoms leads to very exciting possibilities for the simulation
of condensed-matter phenomena based on the interplay between the two analogous prop-
erties of strongly correlated electrons in solids. For instance, the implementation of the
Kondo lattice model, the Kugel-Khomskii model and the SU(N) Heisenberg model with
ultracold gases of AEL atoms have been proposed [54, 55, 60, 61]. We will illustrate
different prospects in the field of quantum simulation of orbital and SU(N) magnetism,
elaborating on the experimental feasibility of the proposed models and on the possibility
of accessing their intriguing regimes.

1.1 Distinctive features of alkaline-earth-like atoms

In this Section we will give a brief overview of the main distinctive properties and promi-
nent features which are common to all alkaline-earth-like atoms. We will specifically
describe the three crucial attributes which inspire novel research prospects with AEL
atoms, namely the existence of long-lived metastable states, the spin-independence of
inter-atomic collisions and the possibility of engineering versatile state-dependent optical
potentials.

1.1.1 Basic atomic properties

Most of the atomic properties of AEL atoms arise from their distinctive two-valence-
electron level structure [86]. The two outer electrons can arrange in a spin singlet (S = 0),
as in the ground state (1S0 ), or in a spin triplet (S = 1). All lower-lying electronic levels
can thus be separated in two manifolds, categorised by having either total electronic spin
S = 0 or S = 1. All transitions which couple electronic states in the singlet manifold to
states in the triplet manifold (or vice versa) are generally very narrow, owing to the fact
that in the dipole approximation spin-flipping transitions (�S 6= 0) are forbidden [86].
A finite dipole coupling between the ground state and the triplet states arises exclusively
from a small mixing between triplet and singlet electronic states, induced by spin-orbit
and hyperfine interactions [86]. One example of such narrow transitions is the 1S0!3P1

transition, which can be used for Doppler cooling the atomic samples down to very cold
temperatures on the order of 10µK or below, allowing the efficient direct loading of an
optical dipole trap. More complex all-optical schemes exploiting this narrow transition
were also devised, leading for instance to the improved rapid production of degenerate
AEL atomic gases [87]. Another peculiarity of AEL atoms is the wavelength range of the
optical transitions which are employed for laser cooling and manipulating the state of the
atoms: they all lie in the visible range of the electromagnetic spectrum, as opposed to the
transitions used in alkali atom experiments, which are typically found in the near-infrared
range. Designing and assembling stable high-power laser sources at visible wavelengths
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poses more difficulties compared to near-infrared sources, because of the lack of laser gain
media systematically covering the visible spectrum (although a rapid technological devel-
opment is gradually filling the gaps). On the other hand, visible light transitions present
some advantages, e.g. the reduced diffraction limit associated with lower wavelengths
used for imaging and the naked-eye visibility of coloured laser light which facilitates laser
alignment.

A striking peculiarity of AEL atoms is the presence of metastable, long-lived excited
electronic states in the triplet manifold, namely the 3P0 and the 3P2 states, which are very
weakly coupled to the ground state. The transitions connecting such states to the ground
state have extremely low linewidths of 10 mHz at most, associated with state lifetimes
of tens of seconds to even hundreds of seconds for the lightest AEL elements (see e.g.
Ref. [88] for a summary). Such transitions are often termed ultranarrow, as they are more
than a factor of 108 narrower than typical optical transitions with linewidths on the order
of 1 to 10 MHz. In particular, the 1S0!3P0 transition is usually denominated the clock
transition, for it is frequently used in single-ion and optical lattice atomic clocks [89, 90].
The tremendously high Q-factor above 1017 of the clock transition in fermionic AEL has
indeed empowered the implementation of the currently most stable and precise atomic
clocks in the world [50, 51, 90]. Such a narrow transition represents in itself a very pow-
erful experimental resource, since it can be used as a precise spectroscopic probe in the
study of ultracold gases. Spectroscopic investigation of many-body states based on nar-
row transitions has indeed been already applied to bosonic Mott insulators [39, 40, 91]
and tightly confined gases [92–95]. Furthermore, the existence of the metastable 3P0

state opens up unique possibilities for the investigation of complex or even novel strongly-
correlated quantum phases with cold atoms in optical lattices, as we will describe in the
last part of this Chapter. This long-lived state can be used as a second stable electronic
state and indeed represents a new precisely controllable degree of freedom for cold atomic
systems. More details about the metastable state and transition will be presented in Sec-
tion 1.1.2.
Another remarkable feature of AEL atoms is the strong decoupling between the nuclear
spin and the electronic angular momentum, which is expected for all states with J = 0
and assures the independence of collisional properties from the nuclear spin orientation
[55, 96] (see Section 1.1.4).

1.1.2 Metastable states and ultranarrow transitions

The very long lifetimes of the 3P0 and the 3P2 excited states is caused by the lack of a
strong dipole coupling to the ground state (or to any other state2). In particular, the
1S0!3P0 transition is doubly-forbidden in dipole approximation [97], as it connects two
states with zero total electronic angular momentum (J = 0) aside by requiring a spin flip
(S = 0! S = 1). However, in fermionic isotopes with non-zero nuclear spin (F= I 6=0), a
mixing between the 3P0 and the other triplet states 3P1 and 3P2 is induced by the hyperfine
interaction, which couples states with different total electronic angular momentum J but

2The 3P0 state is in fact the excited electronic state with the lowest energy.
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Figure 1.1 – An illustration of fermionic alkaline-earth-like atoms most remarkable features, through the exam-
ple of 173Yb. Two electronic states can be simultaneously used for experiments: the ground state |gi = 1S0

(blue) and the metastable state |ei = 3P0 (green) (see Section 2.1.2). They can be coherently coupled to each
other owing to an ultranarrow optical clock transition (see Chapter 5). Moreover, different nuclear spin states
are available (I=5/2 for 173Yb). The nuclear spin can be manipulated and detected (see Chapter 4), and most
importantly it is preserved throughout collisions, owing to the decoupling between nuclear spin and electronic
angular momentum.

same total atomic angular momentum F . The 3P1 state has in turn a small mixing with
the strongly dipole-allowed 1P1 state (see Section 2.1.2 for details concerning ytterbium)
and this results in a finite transition dipole element of the 1S0!3P0 transition [96]. A
finite dipole coupling can also be artificially created for the bosonic isotopes by quenching
the metastable state through a strong magnetic field [98, 99] or through high-intensity
�-polarised light [100], much like what the nuclear spin does in the case of fermionic
isotopes. In this way, the eigenstates are perturbed and a small admixture between the
3P0 and the 3P1 is generated.

In addition to the innovative prospect of using the 3P0 state for the quantum simulation
of orbital magnetism, which will be discussed in Section 1.3, several other applications of
the clock transition can be conceived. For example, owing to the long lifetime of the
metastable state, the proposed schemes for engineering a coherent coupling between two
or more internal states of alkali atoms via two-photon Raman dressing can be adapted to
the use of a direct single-photon dressing on the clock transition. As no spontaneous emis-
sion processes would occur during typical experimental time scales eliminating any heat-
ing mechanism, such a one-photon dressing would be extremely convenient when large
couplings are desirable, such as for spin-orbit coupling realisations [101, 102]. Moreover,
spatially varying couplings could be implemented by modulating the intensity profile of
the clock laser beam. Along this line, methods to generate strong artificial magnetic fields
and gauge fields with AEL atoms have been proposed [46, 64, 84].

We also note that the metastable state possesses a zero total electronic angular mo-
mentum (J = 0) and it is therefore fairly insensitive to external magnetic fields, which
couple only to its nuclear magnetic moment of the order of the nuclear magneton, yield-
ing a sensitivity below a kHz/G. This insensitivity to magnetic fields of both the ground
and the metastable states is a clear advantage over other atomic species in the context



1.1 Distinctive features of alkaline-earth-like atoms 13

of optical frequency standards [90] and atomic interferometry [103]. The insensitivity to
external field fluctuations is moreover beneficial when the two lowest electronic states of
AEL atoms and their nuclear spin states are used to implement qubit systems for quan-
tum information processing, as envisioned in several proposals [56, 59, 83, 104, 105] and
already exploited in CQED setups [106]. As we will explain later, the lack of electronic an-
gular momentum in this state is also important for quantum simulation, as it is responsible
for the decoupling of the nuclear spin from collisional processes.

1.1.3 State-dependent optical potentials

Dipole potentials

Optical potentials have become an absolutely central tool for the study of ultracold quan-
tum gases [107]. Optical trapping potentials are based on the almost purely dispersive
interaction between atoms and light detuned from the frequency of the atomic transi-
tions. An atomic dipole moment is induced by the interaction of atoms with a rapidly
oscillating electromagnetic radiation3, and this moment interacts in turn with the light
electric field [97]. By shaping the intensity profile of far off-resonant laser beams, optical
potentials for confining the atoms can be engineered. Such potentials are greatly flexible
and can be precisely tailored, in order to confine atomic samples on length scales ranging
from below a single wavelength of the trapping light to hundreds of micrometers.

The induced atomic dipole moment d is proportional to the dynamic polarisability of
the atom ↵(!), d = ↵(!)E, where E is the (complex) electric field with frequency !
and amplitude E0. By time-averaging the interaction energy between the radiation field
and the induced dipole moment �E/ �d · E over the fast oscillating terms, one obtains
the so-called AC-Stark shift (often simply named light shift). Treating this interaction
perturbatively to the lowest non-vanishing order (second order) results in the AC-Stark
shift [97, 107]:

V (r,!) = � 1
2✏0c

Re[↵(!)] I(r) (1.1)

where I(r) = 2/(✏0c)|E0(r)|2 and we have explicitly added the dependence on spatial co-
ordinates r = (x , y , z). The conservative dipole force results from the spatial variation of
the light shift:

F(r,!) = �rV (r) =
1

2✏0c
Re[↵(!)]rI(r) (1.2)

From Eq. (1.2), it can be understood how a suitably tailored intensity profile can be ex-
ploited to confine the atoms in a potential minimum or to exert a force on them.

The dynamic polarisability of a certain atomic state can be given explicitly considering
all other electronic levels of the atom [97]. We refrain from recalling this here, as a
two-level system approximation is sufficient in order to illustrate the working principle of
dipole traps and optical lattices. Nevertheless, all electronic levels have to be included for
a quantitatively accurate estimation of the state AC polarisability (see Appendix A). The

3If the wavelength of the radiation is comparable to the size of the atom, higher multipole moments need
to be included, however this is not the case for light fields.
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AC-Stark shift of the state |↵i can be given to a first approximation by considering the
contribution of a single excited state |↵0i [107]:

V↵(r,!) = �3⇡c2
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�

!0 �!
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ã
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where !0 is the |↵i ! |↵0i transition frequency and � is the transition linewidth. The
last approximate equality holds in the so-called rotating wave approximation, which is
accurate only for small detunings � = ! �!0 ⌧ !0. On the other hand, the two-level
system approximation is justified only when one transition is largely predominant, i.e.
when �/� is much larger for the |↵i ! |↵0i transition than for any other transition, which
is often not the case in typical experimental conditions (see Section 5.1.1). From Eq. (1.3)
one can see how the sign of the light detuning from the dominant transition frequency
determines the sign of the potential experienced by the atoms: a positive and a negative
detuning will generate a repulsive and an attractive dipole potential, and atoms will be
repelled by or attracted to the intensity maxima, respectively. Usually the Gaussian profile
of red-detuned laser beams is used to create approximately harmonic dipole traps [108,
109] (for more details see Appendix A). However blue-detuned beams are successfully
adopted as well to engineer specific potentials, e.g. quasi two-dimensional traps [110] or
“box” potentials [111, 112].

As atoms are exposed to a light field, also the dissipative process associated with light
absorption and spontaneous re-emission into dipole radiation needs to be considered.
Absorption is described by the imaginary part of the polarisability [97, 107]:

�sc(r,!) =
1
~h✏0c

Im[↵(!)] I(r) (1.4)

In the two-level and rotating wave approximations the scattering rate �sc for the state |↵i
is given as [107]:

�sc(r)'
3⇡c2

2~h!3
0

Å
�

�
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Photon scattering events described by Eq. (1.5) cause atoms to gain recoil-induced kinetic
energy, which is much larger than the typical thermal energy in the trap. Heating and
atom escape from the trap are induced, and photon scattering should thus be reduced as
much as possible.

When the trapping of atoms in a single electronic |↵i state is necessary, a large detuning
� from the dominant transition(s) can be adopted to minimise the photon scattering in
Eq. (1.5). A suitable potential depth can yet be achieved through high light intensity I (see
(1.3)), limited only by the availability of laser power. When the simultaneous trapping of
two distinct species is necessary, e.g. two electronic states of the same atom, the trapping
light should be far off-resonant while still producing a sufficiently large Stark shift for both
species, often making the choice of wavelength less straightforward. Before we address
the scenario of simultaneous trapping of two electronic states, let us specifically introduce
optical lattice potentials, which are a key ingredient for quantum many-body physics with
ultracold atomic gases [14, 23] and have many other applications, ranging from atomic
clocks [49, 89] and quantum information [113–116] to matter-wave diffraction [103].
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Optical lattices

Optical lattice potentials are of particular importance in the context of quantum simulation
of condensed-matter models [23], as they allow to access the strongly-correlated regime
by enhancing atomic interaction effects and to emulate the crystalline structure of solid
materials. Usually all potentials exhibiting a discrete translational symmetry or a set of
discrete translational symmetries are denoted as lattice potentials. The single-particle
physics of atoms trapped in such lattices can be described using the Bloch theorem, which
applies to any periodically-repeating structure [117, 118]. In addition to enabling the
study of lattice systems in an almost defect-free environment, deep optical lattices can be
used to probe physics in dimensions D < 3 by tightly confining atoms along one or more
directions [24, 42, 43, 119].

A one-dimensional periodic potential can be created by aligning two counter-
propagating laser beams at the same wavelength �, which interfere and create a si-
nusoidally modulated intensity pattern. Usually, this is practically realised by aligning a
single laser beam with its waist at the atoms position and retro-reflecting it off a mirror so
that it travels back on itself, generating a standing-wave pattern with a �/2-periodicity:
I(r) = 4I0(r) cos2(kx), where k = 2⇡

� x̂ is the laser wave vector and I0(r) is the intensity
profile of the beam.

For the models and the experiments presented in this thesis, a three-dimensional
square lattice potential is adopted. In order to produce this, three retro-reflected beams
at the same wavelength �, aligned in orthogonal directions, can be combined. The ad-
ditional interference terms in the crossing region are suppressed by using beams with
mutually orthogonal polarisations and by detuning them from one another by a frequency

a b
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y
V(x,y)

x

y
V(x,y)

Figure 1.2 – Optical lattice potentials for red-detuned laser beams (not to scale). (a) A single retro-reflected
beam along the x -axis interferes with itself and creates a one-dimensional array of potential wells. A con-
finement along the y -direction is also present owing to the Gaussian intensity profile of the lattice beam. (b)
A two-dimensional square lattice potential is generated by crossing two retro-reflected beams with the same
frequency and orthogonal polarisations. In real lattice potentials, a much greater number of lattice sites is avail-
able in the crossing region, as the size of the generating beams is much larger compared to their wavelength
than in the illustration.
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greater than the laser spectral width. More complex lattice geometries, i.e. characterised
by translational symmetries that differ from the simple cubic one, can be created by inter-
fering laser beams from different directions and possibly not orthogonally aligned to each
other [33, 35, 36]. The potential experienced by the atoms in a three-dimensional square
lattice can be written as:

Vlat(r) = Vx(r) cos2(kx) + Vy(r) cos2(k y) + Vz(r) cos2(kz) (1.6)

where Vµ(r) are given by the light shift in Eq. (1.3) with Iµ(r) = 4 I0µ(r). For red-detuned
light, the potential minima are located at the anti-nodes of the standing-wave intensity
pattern. By using laser beams with a Gaussian intensity profile, a spatial variation of the
lattice potential depths Vµ(r) is present. However, the variation is typically significative
only along the directions orthogonal to µ, e.g. Vx(r) ' V0x I0x(0, y , z)/I0 (see Fig. 1.2(a)).
The lattice depth V0µ along each direction is usually expressed in units of recoil energy
of the lattice laser Er =

~h2k2

2M , with M being the mass of the atom. The transversal vari-
ation of the potential is weak over the lattice wavelength scale (see Appendix A), yet it
is fundamental to confine samples in optical lattices without additional trapping beams
[107]. When distinct one-dimensional lattice potentials are combined in orthogonal di-
rections, the confining potential produced by the Gaussian profile of each beam is aligned
along the direction of propagation of another beam: the total potential along each direc-
tion is therefore given by the sum of a periodic lattice and a slowly-varying confinement
(see Fig. 1.2(b) and Fig. A.2), and the periodicity of the homogenous lattice potential is
removed.

Motion in a periodic potential: tight-binding Hamiltonian

Non-interacting, fermionic or bosonic atoms in a three-dimensional lattice potential are
described by the Hamiltonian Ĥ0 = p

2/(2M) + Vlat(r), which can be written in second
quantisation:

Ĥ0 =
Z

d3r  ̂†(r)
✓
� ~h

2

2M
r2 + Vlat(r)

◆
 ̂(r) (1.7)

where  ̂†(r) ( ̂(r)) is the field operator that creates (annihilates) a particle at position r.
For a homogenous lattice potential, this Hamiltonian can be diagonalised in the basis of
the so-called Bloch waves, obtained by applying the Bloch theorem for particles moving in
a periodic potential [117, 118]. Bloch waves are characterised by their crystal momentum
or quasimomentum q, which is restricted to the first Brillouin zone, i.e. �k < q  k [118].
The energies of Bloch waves are clustered in continuous energy bands called Bloch bands,
which are separated by energy gaps (see Fig. A.3). However, Bloch waves are strongly
delocalised and are not suited to describe local effects, such as inter-atomic short-range
interactions. A different basis can be constructed, composed by localised wave functions
within each Bloch band, called Wannier functions [118] (see Appendix A for an explicit
derivation). Wannier functions are as localised as possible around the positions of the
lattice potential minima, usually denoted as lattice sites. They form a suitable orthonormal
basis to treat contact interactions in a lattice, as we will see in the following Section, or to
account for an additional confinement underlying the lattice potential (see Appendix B).
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For typical experimental conditions, the Hamiltonian in Eq. (1.7) can be simplified by
restricting the description to the lowest Bloch band and by applying the so-called tight-
binding approximation, which can be done in the Wannier basis. To start with, in the
limit of sufficiently deep lattices and ultralow temperatures, all energy scales become
small compared to the energy gap to the first excited band, and only the lowest Bloch
band is occupied. Secondly, we can neglect the tunnel coupling between Wannier states
associated with non-neighbouring lattice sites, which is a good approximation for lattice
depths exceeding 5 Er [14, 21]. This approximation is justified as the overlap between
Wannier functions centred around non-neighbouring lattice sites becomes negligible for
increasing lattice depths4 (see Fig. A.4).
We now expand the field operators in Eq. (1.7) in terms of lowest-band Wannier operators:

 ̂(r) =
X

j

w j(r) ĉ j (1.8)

where wj(r) is the lowest-band Wannier function centred around lattice site j, and ĉ†
j (ĉ j)

creates (annihilates) an atom localised at site j. For identical fermions, (ĉ†
j )

2 = 0, which
ensures the application of the Pauli principle. Within the aforementioned approximations,
the Hamiltonian of non-interacting atoms in a lattice potential takes now a very simple
form:

Ĥ0 = �J
X

hi, ji
ĉ†

i ĉ j (1.9)

where the h i brackets indicate that the sum runs only over neighbouring lattice sites. The
tunnel coupling J is given by:

J ⌘ Jhi, ji =
Z

d3r w⇤i (r)
✓
� ~h

2

2M
r2 + Vlat(r)

◆
wj(r) (1.10)

and the value of J is independent of the specific pair of neighbouring lattice sites hi, ji in
an isotropic cubic lattice. For non-cubic lattices, the tunnelling is anisotropic and different
tunnelling coefficients must be specified for the different directions. J has an approxi-
mately exponential dependence on the lattice depth V0 [14] and can therefore be exper-
imentally varied over order of magnitudes by tuning the lattice beam intensities. In the
following Section, we will extend the Hamiltonian (1.9) to describe fermionic atoms in
different spins and electronic states, and especially to include interactions between them.

State-dependent potentials for alkaline-earth-like atoms

As already stated, the dipole potential experienced by an atom in the presence of detuned
light depends entirely on its internal state. Thanks to the presence of metastable states,
optical state-dependent potentials represent an exceptional tool in quantum gases exper-
iments with AEL atoms [56]. We will discuss now the essential aspects of such potentials
for AEL atoms and clarify the relevance of different alternative configurations for possible

4Similarly, in next Section, we will neglect off-site contact interactions, which depend on the absolute
square overlap of Wannier functions.
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Figure 1.3 – State-dependent optical lattices for |gi (blue) and |ei (green) states of AEL atoms. The solid
lines represent the light-induced potentials, whereas the coloured regions depict the atomic wave functions.
(a) A state-selective lattice induces different localisation for the two states. The |gi state has a large tunnelling
coupling and is therefore mobile, while the |ei state is localised in deep lattice sites. The minima of the
potentials coincide, and atoms in different states can therefore be found on the same lattice site. (b) An anti-
magic lattice generates two shifted but identical sub-lattices for the |gi and |ei states. Tunnelling between the
two sub-lattices can be coherently driven using the clock transition.

applications. State-dependent potentials for cold atoms are actually not a new concept:
spin state-dependent optical lattices based on polarisation schemes were already proposed
and implemented for quantum information processing purposes [113–116, 120]. Further-
more, one can create hyperfine state-dependent potential for alkali atoms simply by em-
ploying laser light close-detuned to the D1 and D2 transitions, which results in different
light shifts for the F = 1 and F = 2 ground states. However, substantial heating is caused
in this way by the photon scattering. Let us henceforth denote the two electronic states
1S0 and 3P0 respectively as |gi and |ei. One can already expect from Eq. (1.3) that the
light shift created by a beam at a certain frequency ! will in general be different for |gi
and |ei atoms, depending on the detuning from the relevant transitions for each of the
two states (for details about the frequency dependence of the light shifts in ytterbium see
Section 5.1.1). Using two (meta-) stable electronic states separated by an energy in the
optical range grants a considerable advantage: state-dependent light shifts can be gener-
ated by light that is far-detuned with regard to transitions from both states [56]. One can
therefore engineer state-specific optical potentials without sacrificing low photon scatter-
ing rates. Moreover, as the AC-Stark shift of the |gi and |ei states widely varies across the
range of optical frequencies (see e.g. Fig. 5.1), a multitude of different relative potential
depths can be tailored.

We will now summarise the most relevant of all possible relations between the two
state polarisabilities. The first special scenario is found when the two states experience
exactly the same AC-Stark shift, i.e. ↵g(!m) = ↵e(!m), experiencing thus identical light
potentials; the light frequencies (wavelengths) for which this is realised are called magic5.
Magic-wavelength lattices are a crucial tool for precision spectroscopy of cold gases and

5We actually mean only the real part of the polarisability ↵g,e(!). The associated imaginary parts follow a
completely different behaviour, with maxima at the respective electronic transition frequencies.
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for the operation of AEL-based optical lattice clocks, which represent a strong prospect for
new absolute frequency standards and for a re-definition of the SI second [49, 89, 90].
In general, optical potentials induce line shifts and broadening of optical ultranarrow
transitions like the clock transition in AEL atoms. However, at the magic wavelengths
the second-order differential light shift is exactly cancelled, increasing dramatically the
attainable precision of the clock frequency interrogation with trapped atoms [90, 121,
122]. Magic wavelengths between ground and short-lived excited states are also used in
cavity quantum electrodynamics to obtain long trap lifetimes of single atoms inside the
cavity, through preventing heating and decoherence caused by jumping between different
trapping potentials while the transition is probed [123]. A magic lattice for ytterbium
was used in the experiments presented in this thesis [124] and a detailed discussion of
precision spectroscopy in such a lattice is found in Chapter 5.

The opposite scenario, where the two polarisabilities are equal in magnitude but
have opposite signs, i.e. ↵g(!am) = �↵e(!am), happens at anti-magic frequencies (wave-
lengths). As illustrated in Fig. 1.3(b), anti-magic lattice potentials trap the |gi and |ei
atoms in separate sublattices, whose sites are located at the nodes and the anti-nodes of
the standing-wave intensity pattern. These lattices can find applications based on state-
selective forces, e.g. to spatially separate atoms in the two states [125]. Their use was
proposed in combination with dressing of the |gi and |ei states through near-resonant
clock light to implement sub-wavelength lattices [57] and as a key ingredient of optical
flux lattices [84]. Clock spectroscopy in an anti-magic lattice could also be employed
to study next-neighbour interactions between the two electronic states trapped in differ-
ent sub-lattices. Moreover, tunnelling between the adjacent sites of the two sub-lattices
can be coherently assisted by driving the clock transition, and this could be exploited for
engineering strong artificial magnetic fields and even non-abelian gauge fields for neu-
tral atoms [46, 64]. As another interesting prospect, spatially separate potentials for the
two electronic states would allow the implementation of photoemission spectroscopy on
the clock transition, in analogy to the radio-frequency photoemission spectroscopy im-
plemented in alkali atom ultracold gases [126]. A momentum-conserving transfer to the
metastable state trapped in a different location out of the ground state ensemble could be
employed just like the radio-frequency transfer to a weakly interacting spin state.

In general, state-selective lattices with largely dissimilar depth for the two states can
be realised, as depicted in Fig. 1.3(a), leading to state-dependent tunnelling amplitudes
and Hubbard interactions (see Section 1.3). Perfectly state-selective lattices, generating a
potential exclusively for one of the two electronic states, were initially suggested as trans-
port lattices in a quantum computation scheme with AEL atoms [56]. Such lattices have
been subsequently proposed for the study of renowned condensed-matter models based
on the interaction between electrons occupying orbitals with different degrees of mobility
or between electrons and localised impurities [55, 60, 61], e.g the Kondo lattice model
[127] and the Kugel-Khomskii model[128]. We will specifically address the realisation of
orbital magnetism with AEL atoms in state-dependent optical lattices in Section 1.3.
Moreover, lattices tuned to near-resonant frequencies to the clock transition were pro-
posed for novel quantum computing schemes with AEL atoms [104] and for the realisation
of optical flux lattices to generate strong effective magnetic fields [84]. As a final applica-
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tion, techniques which were proposed and demonstrated in species-dependent potentials
[129] could be extended to the case of state-dependent trapping, e.g. entropy exchange
between the two states [130].

1.1.4 Nuclear spin and angular momentum decoupling

We have already mentioned that fermionic AEL isotopes possess a non-zero nuclear spin
I , which is semi-integer owing to the odd-numbered atomic mass. On the contrary, all
bosonic AEL atom isotopes possess a zero nuclear spin (I = 0). The reason for this becomes
clear by considering that a total even number of electrons, given by the complete filling of
the electronic shells, forces the number of protons and neutrons as well to be even for a
bosonic atom. In nuclei with even number of protons and neutrons, usually named even-
even nuclei, the pairing interaction between identical nucleons induces them to anti-align
their spins, leading in this way to a zero nuclear spin.

Due to the absence of electronic angular momentum in the ground and in the lowest
metastable state, the nuclear spin degree of freedom is the only angular momentum degree
of freedom of the atom. For all states with J = 0 the total atomic angular momentum is
thus simply F = |J+ I|= I . This situation enables a strong decoupling between the nuclear
spin and the electronic cloud: the spin is protected inside the nucleus and to a large degree
it is not affected by the physics happening at the electronic cloud distance scale. This has a
striking consequence concerning the atomic collisional properties, since in general nuclei
can affect collisions only through hyperfine coupling to the electron angular momentum,
aside from Pauli exclusion [20].

During a collision, two atoms come to be at very short distance, where molecular elec-
tronic states are coupled to the independent states of the colliding atoms. Those molecular
states which dominate in collisions between atoms with J = 0 also have a zero projection
⌦ = 0 of the total electronic angular momentum along the molecular axis. As a con-
sequence, the nuclear spin is largely decoupled from the electronic state also during a
collision, and can only couple very weakly to molecular states with non-zero angular mo-
mentum, which could lead to spin-changing processes [55]. Spin-changing processes are
therefore expected to be completely suppressed over typical experimental time scales, with
the nuclear spin being substantially immune to collisions. In addition, direct magnetic
dipole-dipole coupling between the nuclear spins of two atoms is completely negligible
even for inter-particle distances as small as few nanometers.
In conclusion, all collisional properties between atoms in states with J = 0 are expected
to be largely independent of the nuclear spin. We will see in the following Section how
this leads to the emergence of a high and unusual SU(N) symmetry in the interaction
potential, where N  2F + 1.

1.2 Two-orbital SU(N)-symmetric Fermi gases

Interactions play a crucial role in experiments with ultracold gases: it is largely owing to
interactions that cold atoms emerged as quantum simulators of strongly-correlated phe-
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nomena. In addition, they are essential for the creation of quantum degenerate samples,
as they enable evaporative cooling. In dilute ultracold atomic ensembles, interactions
are predominantly mediated by binary inter-atomic collision processes. Two-body atomic
scattering processes are in general quite complicated, as the electronic wave functions
get massively distorted when the two atoms find themselves at short relative distances.
However, for the low temperatures T < 1µK which are typical in experiments, many
simplifications can be applied. In this Section we will first briefly recall the theoretical
description of scattering at low temperatures, focusing especially on the case of fermions
with a spin degree of freedom. We will thereby introduce the s-wave scattering length and
briefly discuss collisions between high-spin fermions, i.e. with spin higher than one-half.
We will then discuss the emergence of the SU(N) symmetry of collisions for AEL atoms
and derive the Hamiltonian for an interacting atomic ensemble trapped in an optical lat-
tice, i.e. the so-called SU(N) Fermi-Hubbard model. We will finally extend the treatment
of interactions to the presence of an additional internal degree of freedom, in order to
provide a Hamiltonian describing interactions in a two-orbital gas, i.e. a gas containing
atoms in both |gi and |ei states.

1.2.1 Interactions in an ultracold gas

In dilute atomic gases, i.e. with inter-particle spacing much larger than the inter-atomic
potential range, interactions result almost exclusively from elastic binary collisions. We
will initially neglect inelastic collisions, which can play a big role at high densities or
when internal state relaxation processes are available [131]. The precise character of the
binary interaction potentials critically depends on the inter-atomic distance r = |r|; when
two atoms come at short distance, several elastic and inelastic collision channels become
available, associated with the different molecular potentials, that depend on the states of
the two atoms and couple different incoming and outgoing states [20]. Nevertheless, in
order to describe elastic scattering at very low energies, it is not necessary to know the
precise shape of the molecular potentials.

Elastic scattering at low energies

Elastic collisions do not modify the relative kinetic energy of the colliding atoms, but can
redistribute momentum between the atoms. For a given inter-atomic scattering potential
V (r) with characteristic range r0, the relative asymptotic (r � r0) wave function after the
scattering can be written as [117]:

 (r) = ei k·r + f (k,k0)
eikr

r
(1.11)

where k and k

0 are respectively the wave vectors of the incoming and outgoing wave and
f (k,k0) is the scattering amplitude. Assuming the inter-atomic potential is spherically sym-
metric, which is in usual atomic gases a very good assumption, the scattering amplitude
can be expanded into spherical harmonics [117]:

f (k,k0) = f (✓ ) =
1X

l=0

(2l + 1) ei�l sin�l Pl(cos✓ ) (1.12)
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where ✓ is the scattering angle between k and k

0, �l is the phase shift acquired by the par-
tial wave with angular momentum l and Pl are the Legendre polynomials. By integrating
the square modulus of the scattering amplitude over solid angles, we can also obtain the
total scattering cross section [117]. For distinguishable particles we can write:

�el =
4⇡
k2

X

l

(2l + 1) sin2(�l) (1.13)

At the typical temperatures of ultracold atomic samples, where the low energy limit
applies (k! 0), only the spherical wave l = 0 (s-wave) contributes to the scattering. More
specifically, for potentials vanishing fast enough at large r, the phase shifts �l / k2l+1 as
k tends to 0 and it can be shown that the scattering amplitude is given by [117]:

f (✓ ) =
k!0
� 1

a�1 + ik
(1.14)

where a is called the the s-wave scattering length. In order to understand the physical
meaning of a, let us take r � r0 and write the asymptotic wave function:

 (r) /
k!0

r � a
r

(1.15)

The intercept of r (r) (the radial part of the wave function) equals �a at r = 0, i.e.
the asymptotic wave function intercept coincides with the s-wave scattering length. The
scattering potential shifts thus the asymptotic wave function: a positive scattering length
effectively corresponds to a repulsive interaction whereas a negative one reproduces an
attractive interaction.
In the s-wave regime, the scattering cross section is simply given by:

�el =
k!0

4⇡a2 (1.16)

We note finally that the spatial part of the two-body wave function is symmetric for even
l and antisymmetric for odd l, as a consequence of the Legendre polynomials parity. Two
identical fermions can therefore only interact via odd partial waves and do not interact in
the s-wave scattering regime, whereas fermions in distinct internal states are allowed to
interact via s-wave collisions.

In conclusion, the low-energy scattering between two atoms can be entirely described
by the scattering length a, irrespective of how complicated the close-range potential might
be. However, calculating the scattering length from first principles is a very complicated
task and requires a detailed knowledge of the inter-atomic potentials. The scattering
length a needs therefore to be determined experimentally for each element and isotope.

Interaction pseudo-potential

Since the low-energy scattering of two atoms is just characterised by the scattering length
a, it is possible to model collisions by using any desired short-ranged potential yielding
that scattering length. The scattering amplitude in Eq. (1.14) is exactly reproduced by
constructing an s-wave pseudo-potential U(r), called the Fermi contact potential [132]:

V (r) =
4⇡~h2

M
a�(r) (1.17)
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When interactions are strong enough to significantly distort the relative two-particle wave
function at r ! 0 and produce some non-regular contribution at r = 0, the contact po-
tential needs to be regularised [133], replacing the Dirac delta with �(r) @@ r r. It should be
kept in mind that the pseudo-potential (1.17) is a zero-range potential, in the sense that
it does not account at all for the range r0 of the real inter-atomic potential, so it fails for
k > 1/r0.

We can now write the interaction Hamiltonian between fermionic atoms with different
spins, in second quantisation:

Û=
1
2

X

mm0

Z
d3r d3r 0  ̂†

m(r)  ̂
†
m0(r)V (r� r

0)  ̂m0(r
0)  ̂m(r

0)

=
4⇡~h2a

M
1
2

X

mm0

Z
d3r  ̂†

m(r)  ̂
†
m0(r)  ̂m0(r)  ̂m(r)

(1.18)

where  ̂†
m(r) ( ̂m(r)) creates (annihilates) an atom with spin projection m at position r,

and satisfies:
�
 ̂m(r),  ̂

†
m0(r
0)
 
= �mm0 �(r� r

0).
We will use this expression to later obtain the Hamiltonian of interacting fermionic AEL
atoms in a lattice potential.

Inelastic collisions

We have so far only addressed the elastic scattering of atoms. However, inelastic collisions
can also be significative, especially when internal state relaxation processes are available,
converting atoms’ internal energy into kinetic energy. The excess kinetic energy induces
heating of samples, and can moreover cause atom losses: atoms can escape the trap by
acquiring a kinetic energy larger than the trap depth. In the absence of internal relaxation
processes, only two inelastic processes are available: vacuum background collisions and
three-body recombinations. Vacuum background collisions, i.e. collisions with the back-
ground gas in the vacuum system, can be made insignificant by achieving a sufficiently
low background pressure, so that their contribution during time scales on the order of sec-
onds is negligible (see e.g. Fig. 3.4). On the other hand, three-body recombinations, i.e.
processes in which two atoms form a weakly-bound state and a third atom carries away
their binding energy, become relevant only for strongly interacting atoms and high den-
sities, since the induced density loss rate scales approximately as / n2 a4 [131, 134] in
comparison to/ n a2 for elastic scattering (see Eq. (1.22) below). Moreover, three-body
collisions in the s-wave scattering regime are completely suppressed in a two-component
Fermi gas, due to Pauli exclusion.

Most experiments in this thesis are performed using two-spin Fermi gases, yet includ-
ing an additional internal degree of freedom, namely the electronic state. Atoms may
then change their electronic state throughout a collision, in which case they escape the
trap pair-wise due to the large acquired energy. We will now briefly discuss such two-body
loss processes, which play an important role in the experiments presented in Section 6.2.
Let us consider fermionic atoms in different internal states |↵i and |↵0i, e.g. spin or elec-
tronic states, so that they are free to collide. Inelastic collisions causing atom losses can
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be described by a two-body loss rate coefficient �↵↵0 [135, 136]:

ṅ↵(t) = ��↵↵0 n↵(t)n↵0(t) (1.19)

where n↵ is the mean density of the ↵ component.
An imaginary part of the scattering length can be introduced by setting a = A� iB,

in order to account for two-body inelastic processes which reduce the elastic scattering
channel amplitude [137, 138]. The elastic and inelastic cross sections in the low-energy
limit are then given by:

�el = 4⇡(A2 + B2) , �inel =
4⇡
k

B (1.20)

The elastic and inelastic collision rate constants �el and �inel are related to the cross sec-
tions �el, inel by the thermal averages [131, 138]:

�el =
2~h
M
hk�elith , �inel =

2~h
M
hk�inelith (1.21)

By inserting Eqs. (1.20) into these, we obtain:

�el =
8⇡~h
M
(A2 + B2)hkith , �inel =

8⇡~h
M

B (1.22)

where kB is the Boltzmann constant. Assuming inelastic collisions directly lead to pair
losses, we can write the loss rate coefficient �↵↵0 introduced above as:

�↵↵0 = �
8⇡~h
M

Im[a↵↵0] (1.23)

where a↵↵0 is the scattering length between two atoms in internal state |↵i and |↵0i. As an
example, for a initial balanced density n↵ = n↵0 = 1014 atoms/cm3, a one-second lifetime
results from a two-body rate coefficient �↵↵0 = 10�14 cm3/s. We finally note in particular
that the inelastic scattering rate (in three dimensions) is independent of temperature. We
will use this results in the last part of Chapter 6, in the context of inelastic collisions
involving metastable state atoms.

Optical Feshbach resonances

Magnetic Feshbach resonances provide a powerful and widely used technique to tune
the scattering length over a large range of values in alkali atomic ensembles [20]. Un-
fortunately, magnetic Feshbach resonances cannot be used to tune the interactions in
atomic states lacking magnetic electronic structure, as it is the case for the ground and
the metastable state of AEL atoms with J = 0. Nevertheless, the use optically-tuned Fes-
hbach resonances (OFR) was proposed [138–140] and successfully demonstrated with
ytterbium [141] and strontium [142]. The principle of OFR is to induce a coupling be-
tween a colliding pair of atoms and an excited molecular bound state through laser light
tuned in the vicinity of a photoassociation resonance [139]. In AEL atoms, this comes
with the beneficial availability of narrow photoassociation transitions associated with the
singlet-triplet electronic transitions like the 1S0!3P1, which can be employed to minimise
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the photon scattering-induced heating and losses [140]. It should be noted, however, that
the induced coupling to an excited state with J 6= 0 breaks the decoupling of nuclear spin
and electronic angular momentum (see Section 1.1.4). p-Wave OFR were also suggested
and recently implemented, with possible future applications in probing unconventional
fermion superfluidity [143, 144]. An additional possibility with interesting prospects is
the engineering of a spatially-varying scattering length by tailoring the intensity profile of
the photoassociation laser beam [145].

1.2.2 SU(N) symmetry of interactions

We already anticipated that the decoupling between the nuclear spin and the electronic
angular momentum leads to the emergence of SU(N) symmetry. After recalling the usual
SU(2) symmetric description of systems with a spin degree of freedom associated with
three-dimensional spin rotations, we will analyse the description of interactions between
fermions with a spin higher than 1/2. Within this framework, we will then discuss the
extension to SU(N) symmetry.

A many-particle system is said to possess a symmetry if its observable behaviour is
invariable under certain transformations of a degree of freedom of its constituents. Sym-
metries can be continuous, such as the translational symmetry of a homogenous system in
free space, or discrete, such as the translational symmetry of a system trapped in a periodic
potential. Continuous symmetries are described by symmetry groups which in quantum
mechanics are unitary groups, i.e. groups of unitary operators which preserve the norm of
state vectors and therefore probabilities. A central example is the symmetry under three-
dimensional rotations, which is described by the different (irreducible) representations of
the rotation group R(3) and are identified by the integer (or half-integer) values of the
angular momentum (or spin) operator F [117, 146]. The half-integer spin representa-
tions of R(3), also called SO(3), are actually double-valued representations of the group:
to any rotation R correspond two distinct matrices differing by a sign. Strictly speaking
these are representations of the SU(2) group, which is a universal cover of R(3). Although
SU(2) and R(3) are therefore not isomorphic, we can safely consider the representations
of SU(2) as double-valued representations of R(3) [117]:

UR(n̂,✓ ) = exp (�i F · n̂✓ ) (1.24)

with F = 1/2, 1, 3/2, . . . .
For a system of non-interacting spin-F fermions6 (F is half-integer) the Hamiltonian

usually possesses a SU(2) symmetry, i.e. is invariant under three-dimensional rotations UR,
given that terms breaking the spherical symmetry are absent. Symmetry-breaking terms
include for instance couplings of the spin to an external magnetic field or vector AC-Stark
shifts in optical potentials [97]. The symmetry induces an energy level degeneracy of
order 2F + 1, because the Hamiltonian, F

2 and Fz commute with each other and can be
diagonalised simultaneously. States with different values of mF , the projection of the spin

6The notation is suggestive, i.e. the total atomic angular momentum plays for fermionic atoms the role of
the spin F . States with distinct F are eigenstates of the hyperfine interaction between the electronic angular
momentum and the nuclear spin.
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on the quantisation axis, have thus the same energy and we say that F and mF are good
quantum numbers7

Interactions between fermions with a spin degree of freedom

Let us now consider binary interactions between ultracold fermions, as they were intro-
duced in the previous Section. When an atomic spin degree of freedom is present, the
quantum mechanical exchange interaction causes the inter-atomic potential to depend
strongly on the total spin of the colliding atomic pair [20, 147]. This gives rise for exam-
ple to the splitting between the singlet and the triplet potentials for atoms with spin-1/2
electronic spin [20]. As atoms approach each other, the exchange interaction energy of
the overlapping electron clouds increases and it becomes comparable to the individual
atom hyperfine interaction energies. Therefore, the individual F and mF are no more
good quantum numbers at short inter-particle distances. However, another SU(2) symme-
try is present, associated with the rotational invariance of the inter-atomic potential. The
generators of this symmetry are the components of the total angular momentum of the
collision. In the ultracold s-wave scattering regime, where the orbital angular momentum
of the colliding pair is zero, the angular momentum of the collision is then equivalent to
the internal angular momentum of the pair Fpair

8. As a consequence, the internal angular
momentum of the pair and its projection on the quantisation axis are conserved through-
out collisions9.

The interaction pseudo-potential introduced in Eq. (1.17) applies to single-component
bosons and spin-1/2 fermions only, and has to be generalised for spinor condensates or
higher-spin fermionic gases [148, 149]. The pseudo-potential for a pair of spin-F fermions
can be written as:

V 0(r) =
4⇡~h2

M

2F�1X

Fpair=0
even

aFpair
PFpair

�(r) (1.25)

where Fpair = 0, 2, . . . , 2F � 1 is the modulus of the total spin of the pair, Fpair = 2F, and
PFpair

is the projection operator onto the states with total spin Fpair. Due to quantum
statistics, only even values of Fpair are allowed [147]. Under particle exchange, the two-
particle wave function of spin-F particles changes by a factor of (�1)2F and the spin wave
function changes by a factor (�1)2F+Fpair . For s-wave collisions the spatial wave function
is symmetric, and we must therefore have (�1)2F = (�1)2F+Fpair , so that Fpair must be
even10. From Eq. (1.25) it is clear that a total (2F + 1)/2 scattering lengths aFpair

are

7Strictly speaking, these are good quantum numbers only at zero magnetic field, but it is reasonable to use
them in the regime of weak fields as well (Zeeman regime), when the hyperfine interactions dominate over
the effect of the magnetic field. If F = I (hyperfine interaction is completely absent), F = I and mF = mI are
good quantum numbers at any magnetic field.

8The symmetry can thus be described by the (2Fpair + 1)-dimensional representations of SU(2), and the
total symmetry group is SU(2) ⌦ SU(2) ⌦ · · ·⌦ SU(2), for all allowed values of Fpair.

9We are neglecting here spin-orbit coupling through the short-range molecular potentials, which can in-
duce dipolar relaxation converting internal to orbital angular momentum. In that case, the atom pair can
leave the collision with e.g a d-wave outgoing wave function by changing its internal angular momentum.

10Note that this requirement holds for both bosons and fermions.
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in general necessary to describe all the available s-wave collision channels. The many
possible relations among the various scattering lengths lead to a variety of spin orderings
in the many-body ground state of such systems, even in bulk, yielding to very rich many-
body phase diagrams [74, 147, 150–152].

To clarify the effect of collisions on the spin degree of freedom of the separated atoms,
we may look at the coupling between different single-atom spin orientations caused by
the interaction. Let’s consider as an initial state of a separated atomic pair the factorised
state: |F , m1i ⌦ |F , m2i. The coupling to a different spin combination |F , m3i ⌦ |F , m4i
through the interaction potential can be written as:

hF , m3|hF , m4|V 0(r)|F , m1i|F , m2i=

=
2F�1X

Fpair=0

FpairX

MFpair=�Fpair

hF , m3 ; F , m4|V 0(r)|Fpair, MFpairi
⌦
Fpair, MFpair

�� F , m1 ; F , m2
↵

=
4⇡~h2

M
�(r)

X

Fpair

X

MFpair

aFpair

⌦
F , m3 ; F , m4

�� Fpair, MFpair
↵ ⌦

Fpair, MFpair
�� F , m1 ; F , m2

↵

(1.26)

From Eq.(1.26) one can see how all scattering channels Fpair with non-vanishing Clebsch-
Gordan coefficients

⌦
F , mF ; F , m0F

�� Fpair, MFpair
↵

on the initial and final states contribute to
this coupling. Therefore in general, when atoms with definite spin projections undergo
collisions, different spin states become populated owing to the interference of the different
scattering channels with coupled spin Fpair [153]. Most importantly, no spin combination
will then be stable during collisions, with the exception of the combinations of marginal
states |F , mF = ±F ; F , m0F = ±F ⌥ 1i.

Emergence of SU(N) symmetry

There is one very special case where the interactions described by the pseudo-potential in
Eq. (1.25) possess a symmetry that can be much higher than the ⌦(2F+1)/2 SU(2) discussed
above. We have already illustrated how fermionic AEL atoms in the ground state possess
only a nuclear spin degree of freedom, which is completely decoupled from the electronic
cloud owing to the absence of hyperfine interactions. Moreover, the metastable 3P0 state
also possess a vanishing hyperfine interaction to leading order [96], and has thus strongly
decoupled nuclear and electron degrees of freedom. As the spin dependence of inter-
atomic potentials arises from the quantum exchange interaction of the electron clouds,
interactions become largely spin-independent when no electronic angular momentum is
present [55]. The influence of nuclear spins on the scattering process is therefore reduced
simply to Pauli exclusion, and all the scattering lengths aFpair

are equal. Under such con-
ditions, the interaction Hamiltonian will be invariant under all transformations belonging
to the SU(N = 2F + 1) group. This means that not only the pair angular momentum Fpair

and its projection along the quantisation axis are conserved, but the spin projection of
each fermion is now individually conserved, so that mF becomes a good quantum number
at any inter-atomic distance. The most evident consequence of this fact is the absence of
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spin-changing collisions in a system with SU(N)-symmetric interactions.
SU(N) symmetry has consequences on the properties of practically every interacting

fermionic many-body system [63]; in the last part of this Chapter, for instance, the exis-
tence of SU(N) magnetic order in optical lattices will be discussed. Moreover, the conse-
quences of SU(N) symmetry are remarkable in many fields of physics beyond many-body
physics with ultracold gases, e.g in quantum chromodynamics, where quarks confined in
baryons and mesons interact by exchanging SU(3) gauge bosons known as gluons. The
similarities between SU(N)-symmetric atomic gases and gauge theories have indeed al-
ready stimulated several studies [53, 74, 85, 154]. Most importantly, we will describe in
detail in Section 4.3 and 6.1 how we could experimentally reveal this enlarged symmetry
in the 173Yb fermionic isotope.

In order to explain this scenario more precisely, let us write in the second quantisation
formalism the interaction part of the Hamiltonian, associated with the pseudo-potential in
Eq. (1.25). Setting aFpair

= a for Fpair = 0, 2, . . . , 2F � 1, we can write:

Û=
4⇡~h2a
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Z
d3r  ̂†
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†
m0(r)  ̂m0(r)  ̂m(r)

=
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d3r n̂m(r) n̂m0(r)

(1.27)

where we have used the fermionic anti-commutation relations and we have introduced
the density operators n̂m(r) =  ̂†

m(r) ̂m(r) of atoms with spin projection m. In Eq. (1.27)
it is explicit how the spin degree of freedom does not influence the interaction other than
via the Pauli exclusion principle, prohibiting contact interactions of identical fermions
with m = m0. This Hamiltonian commutes with any spin-permutation operator acting on
(2F + 1)-dimensional spinors [55]:

î
Û, Ŝs

q

ó
= 0 8 s, q = �F , . . . , F (1.28)

Ŝs
q =

Z
d3r  ̂†

q(r)  ̂s (r) (1.29)

If we consider now the full Hamiltonian H, including a kinetic energy term and any spin-
independent optical trapping potential (i.e. with negligible vector light shift), it does
also commute with all spin-permutation operators. As already noted, in particular this
implies that the total population Nm = Ŝm

m =
R

d3r n̂s(r) of each spin state is conserved,
as

⇥
H , Ŝs

s

⇤
= 0. Another important consequence is that by initially preparing a smaller

number of occupied spin states, i.e. Ŝm
m = 0 for some m, the system will effectively behave

like having a lower spin.
The spin-permutation operators defined above are the generators of the SU(N) group,

and as SU(N) is a Lie group, its irreducible representations can be obtained using the Lie
algebra of its generators [146]:

î
Ŝs

q , Ŝp
n

ó
= �snŜp

q ��pqŜs
n (1.30)

The Hamiltonian commutes with all generators of SU(N) and it is therefore SU(N) sym-
metric. Details about building the irreducible representations of the SU(N) group can be
found e.g. in the Appendix A of Ref. [63].
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In two and three dimensions, such a system is expected to behave as a SU(N) Lan-
dau Fermi liquid [53, 155, 156]. A significant deviation of the Fermi liquid properties
depending on N is theoretically predicted [53, 156], and could be experimentally probed
by measuring the equation of state [157], the quasi-particle excitation spectra and the ef-
fective mass [158] via Bragg scattering [73, 159] or relative spin population fluctuations
[156]. In one dimension, where the analogue of the Fermi liquid is the Luttinger liquid
[155] with its peculiar spin-charge separation [160], the SU(N) symmetry has already
proven to yield unusual static and dynamic non-Luttinger liquid properties [73]. On the
other hand, the Fermi liquid description holds only in the regime for which interactions
do not cause any symmetry-breaking phase transition. Any Fermi liquid is indeed no-
tably subject to a Fermi surface instability known as the Pomeranchuk instability, which
could possibly lead to SU(N) symmetry breaking [53, 63, 156], and to the BCS instability
[155, 161, 162]. Investigating such instabilities with SU(N) symmetric fermions is ex-
tremely appealing although it might not be currently within experimental reach, owing to
the required temperatures and strong interactions [53, 63, 154, 163, 164]. In this respect,
optical lattices can be conveniently used to enhance interaction effects and explore the
role of SU(N) symmetry in the strongly correlated regime.

Interactions in a lattice: the SU(N) Fermi-Hubbard model

We have seen above how elastic binary collisions between ultracold high-spin fermion
can be described by the generalised zero-range pseudo-potential (1.25), which reduces to
the usual Lee-Huang-Yang pseudo-potential (1.17) if collisions are SU(N)-symmetric. In
order to describe interactions between fermionic atoms in a periodic lattice potential, we
rewrite the interaction Hamiltonian (1.27) in the lowest-band Wannier state basis11, by
expressing the field operators as  ̂m(r) =

P
j w j(r) ĉ jm, where ĉ†

jm creates an atom with
spin m on the j-th site. The resulting interaction Hamiltonian is:

Û=
4⇡~h2a

M
1
2

X

mm0

X

i jkl

ĉ†
imĉ†

jm0 ĉkm0 ĉlm

Z
d3r w⇤i (r)w

⇤
j(r)wk(r)wl(r)

' 4⇡~h2a
M

1
2

X

imm0
ĉ†

imĉ†
im0 ĉim0 ĉim

Z
d3r |wi(r)|4

(1.31)

where the second equality holds in the tight-binding approximation, i.e. off-site interac-
tions are neglected as Wannier functions are exponentially localised around lattice sites
(see Fig. A.4). We define here the Hubbard interactions strength:

U =
4⇡~h2a

M

Z
d3r |w(r)|4 (1.32)

Using the fermionic operators anti-commutation relations, we can rewrite the Hamiltonian
(1.31) in a manifestly SU(N)-symmetric form:

Û=
U
2

X

i

n̂i(n̂i � 1) (1.33)

11There are situations in which a single-band description is not accurate. For example, very strong on-site
interactions can couple the lowest Bloch band to higher bands [165]. We will discuss this case in Chapter 6,
with regard to our interaction spectroscopic measurements.
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with n̂i =
P

m ĉ†
imĉim being the number operator of atoms on site i, irrespective of the spin.

We can now write the full Hamiltonian, including the kinetic energy and the lattice
potential obtained in Section 1.1.3:

ĤFH = � J
X

hi, ji, m

ĉ†
imĉ jm +

U
2

X

i

n̂i(n̂i � 1) (1.34)

This Hamiltonian is known as the SU(N) Fermi-Hubbard model [53, 55, 72, 166]. The
SU(N) symmetry is once again assured by the commutation with the SU(N) spin ladder
operators, which we can write in terms of lattice fermionic operators:

Ŝn
m =

X

i

Ŝn
im =

X

i

ĉ†
imĉin (1.35)

The SU(N) Fermi-Hubbard model in Eq.(1.34) looks at a first glance identical to the stan-
dard spin-1/2 Fermi-Hubbard model (for a review, see e.g. Refs. [167, 168]): the high
symmetry is hidden precisely in this simplicity, as opposed to the more complicated Hamil-
tonians describing high-spin fermions in optical lattices, due to the various interaction
channels (see above). A remarkable consequence of the high symmetry is the modifica-
tion of the finite-temperature properties of SU(N) Mott insulators in comparison to the
SU(2) Mott insulator [72, 169, 170]. Moreover, the higher spin symmetry has a decisive
effect on the phases of both the repulsive [163, 166, 170–173] and attractive Hubbard
model [63, 74, 151, 163, 164, 174], where BCS pairing is hindered with more than two
fermions required in order to form a singlet. However, the most striking consequences
of SU(N) symmetry emerge in the low-energy spin physics within the Mott insulating
regime. The resulting grounds states, ranging from valence-bond states to exotic spin
liquids, could be experimentally probed with Mott insulators of AEL atoms, having no
condensed-matter analogues; the quantum many-body phases expected to emerge from
the SU(N) Heisenberg model will be summarised in Section 1.3. Experimental schemes
exploiting the inherent SU(N) symmetry of AEL atoms interactions in a lattice have also
been suggested to simulate U(N) and SU(N) lattice gauge theories [85], and to realise
extra synthetic dimensions [175].

1.2.3 Inter-orbital interactions

The description of interactions in an ultracold ensemble was presented in Section 1.2.1.
The s-wave collision channel largely dominates, as higher partial waves are strongly sup-
pressed in the ultracold temperature regime, and a single s-wave scattering length ag g

is sufficient to characterise collisions between |gi atoms in any nuclear spin state, owing
to the their SU(N) symmetric nature. By extending the system to a second orbital, rep-
resented by the supplementary electronic state |ei, additional collision channels become
available. Thanks to the decoupling of the nuclear spin in the |ei state, also inter-orbital
and |ei state interactions are expected to exhibit SU(N) symmetry: only four s-wave scat-
tering lengths are required to fully describe collisions between all spin and orbital state
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combinations12. The scattering lengths ag g and aee characterise the interactions between
atoms in the same electronic orbital, respectively |gi and |ei. Furthermore, atoms in dif-
ferent electronic states can collide through two scattering channels, associated with two
possible electronic pair wave function: the scattering lengths a+eg and a�eg respectively de-
scribe collisions via the symmetric (|egi + |gei)/

p
2 and antisymmetric (|egi � |gei)/

p
2

channels. These are in general unequal due to the different molecular electronic states
which connect to different states of the separated atomic pair.

Two-orbital interaction Hamiltonian

Having defined the necessary scattering lengths for all interaction channels in a two orbital
ensemble, we can generalise the pseudo-potential (1.17) to:

V (r) =
4⇡~h2

M
�(r)

X

X

aXPX (1.36)

where X = g g, eg+, eg�, ee, and P↵↵ = |↵↵ih↵↵| with ↵ = g, e , while P±eg =
1
2(|egi ±

|gei)(heg| ± hge|). In order to write the corresponding interaction Hamiltonian through
the usual field operators, we need a little manipulation. The terms proportional to ag g

and aee in the sum represent the interaction between atoms in the same electronic state
with different spins, and lead therefore to two standard intra-orbital interaction terms like
Eq. (1.27) in the total Hamiltonian. To treat the two inter-orbital interaction terms, we
use the pseudo-spin-1/2 algebra of the two-level system formed by the states |gi and |ei
to rewrite the projectors P±eg . We introduce the pseudo-spin operators of the two atoms T̂1

and T̂2, such that T̂ z |gi = �1
2 |gi and T̂ z |ei = 1

2 |ei. The associated ladder operators switch
the electronic states, i.e. T̂+|gi = |ei and T̂�|ei = |gi. The projection operators on the
pseudo-spin triplet and singlet P±eg can be expressed as:

P+eg =
3
4
+ T̂1 · T̂2 (1.37)

P�eg =
1
4
� T̂1 · T̂2 (1.38)

We can now use the relation:

T̂1 · T̂2 =
1
2
(T̂+1 T̂�2 + T̂�1 T̂+2 ) + T̂ z

1 T̂ z
2 (1.39)

Noting that for both inter-orbital states we have

T̂ z
1 T̂ z

2
|egi± |geip

2
= �1

4
|egi± |geip

2
, (1.40)

we can write the two-atom inter-orbital interaction Hamiltonian:

V̂eg(r1 � r2) =
4⇡~h2

M
�(r1 � r2) (a+eg P

+
eg + a�eg P

�
eg)

=
4⇡~h2

M
�(r1 � r2)

Ç
a+eg + a�eg

2
+

a+eg � a�eg

2
(T̂+1 T̂�2 + T̂�1 T̂+2 )

å (1.41)

12The tiny admixture of the 3P0 with the 3P1 state, generated by the hyperfine interaction in the 3P0

metastable state [96], slightly breaks the angular momentum decoupling, leading however to a spin depen-
dence of the scattering lengths only below a percent level [55] (see Section 5.2.2).
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In second quantisation, the pseudo-spin operator is T̂ =
P

m↵�  ̂
†
↵m(r)�↵�  ̂�m(r), where

� is the vector of Pauli matrices and ↵,� = g, e , so that  ̂†
↵m(r) creates an atom in state |↵i

with spin m at position r. The associated ladder operators are T̂+ =
P

m  ̂
†
em(r) ̂gm(r) =

(T̂�)†. Through these substitutions and the fermionic anti-commutation relations, we can
obtain two inter-orbital interaction Hamiltonian terms, respectively denoted as direct and
exchange interaction [55]:

V̂d =
4⇡~h2

M

a+eg + a�eg

2

X

mm0

Z
d3r n̂gm(r) n̂em0(r) (1.42a)

V̂ex =
4⇡~h2

M

a+eg � a�eg

2

X

mm0

Z
d3r  ̂†

gm(r)  ̂
†
em0(r)  ̂gm0(r)  ̂em(r) (1.42b)

where constant terms proportional to the total number of atoms N =
P

m

R
d3r [n̂gm(r) +

n̂em(r)] have been dropped. The naming of the two interaction terms is suggestive of
the close analogy between the problem of two SU(N)-symmetric interacting atoms with a
pseudo-spin degree of freedom, represented here by the electronic state, and the problem
of interacting particles with spin-1/2, such as alkali atoms with one valence electron.

Let us now analyse how orbital interactions relate to the nuclear spin degree of free-
dom. In a binary collision the two-body wave function of fermionic atoms must be anti-
symmetric. Moreover, for zero-range interactions to occur, the spatial part of the two-body
wave function has to be symmetric, so we restrict ourselves to this case and omit the ex-
plicit expression of the spatial state. Within the SU(N) symmetry the nuclear spin can still
influence collisions through Pauli exclusion: two atoms in the same |gi or |ei state can only
collide if they are in a different nuclear spin state, and in the SU(N)-symmetric case, the
individual spins are preserved throughout the collision. Taking two spin states m, m0 =",#,
the pair-spin wave function must be a singlet: the interacting states are |g gi ⌦ |si and
|eei ⌦ |si, with |si= (|"#i � |#"i)/

p
2.

On the other hand, considering two atoms in different electronic and spin states, two
possible combinations are allowed to interact, respectively via the symmetric and anti-
symmetric channel:

|eg+i= (|egi+ |gei)/
p

2 ⌦ |si (1.43a)

|eg�i= (|egi � |gei)/
p

2 ⌦ |ti (1.43b)

with |ti = (|"#i + |#"i)/
p

2. Atoms in different electronic states but with identical spin
can also collide, but only via the anti-symmetric channel a�eg , associated with the two-
body states (|egi � |gei)/

p
2 ⌦ |""i and (|egi � |gei)/

p
2 ⌦ |##i. Therefore, inter-orbital

scattering happens via the symmetric channel a+eg in the spin singlet state and via the
anti-symmetric channel a�eg in the spin triplet states. The most important fact here is that
the exchange interaction in Eq. (1.42b) results in an energy difference between the spin
singlet and triplet, being effectively a spin-spin interaction13. This is the essential principle

13Whereas the direct interaction is only density-dependent, and therefore does not break the singlet-triplet
degeneracy.
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at the basis of simulating orbital magnetism with AEL atoms, as we will see explicitly in
the following Section.

Two-orbital SU(N ) Fermi-Hubbard model

As discussed in Section 1.1.3, it is possible to engineer lattice potentials with the same
periodicity but different depths for the |gi and |ei states, due to the distinct dynamic
polarisabilities of the two states, as depicted in Fig. 1.3. We will consider now therefore
AEL atoms in a state-dependent but spin-independent14 optical lattice potential.

Using the two states Wannier basis, we can rewrite the field operators as  ̂↵m(r) =P
j w j↵(r)ĉ j↵m, with ĉ†

j↵m creating an atom in state |↵i with spin m on site j. By applying
the tight-binding approximation and dropping constant terms, we obtain the so-called
two-orbital SU(N) Fermi-Hubbard model [59]:

Ĥ2FH =� Jg
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ĉ†
i gmĉ j gm � Je
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iemĉ jem +

1
2

X

i↵

U↵↵n̂i↵(n̂i↵ � 1)
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i

n̂i g n̂ie + Vex
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i gmĉ†
iem0 ĉi gm0 ĉiem

(1.44)

where n̂i↵m = ĉ†
i↵mĉi↵m and n̂i↵ =

P
m n̂i↵m. The different Hubbard interaction strengths

are defined as:

U↵↵ =
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M
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Z
d3r |w↵(r)|4 (1.45)

and

U±eg =
4⇡~h2

M
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Z
d3r |we(r)|2|wg(r)|2

V =
1
2
(U+eg + U�eg)

Vex =
1
2
(U+eg � U�eg)

(1.46)

The exchange term proportional to Vex is effectively an on-site inter-orbital spin interac-
tion: the difference in the symmetric and antisymmetric inter-orbital interactions U+eg and
U�eg , owing to fermionic anti-symmetrisation, lifts the interaction energy degeneracy be-
tween singlet and triplet spin states. Considering only two occupied spin states, we can
readily find how an energy offset is induced between the on-site spin singlet |eg+i and
triplet |eg�i states (see Fig.1.5):

V̂ex |eg±i= Vex

X

mm0
ĉ†

gmĉ†
em0 ĉgm0 ĉem|eg±i

= �Vex
�
n̂g"n̂e" + n̂g#n̂e# + Ŝ+g Ŝ�e + Ŝ�g Ŝ+e

�
|eg±i

= ±Vex |eg±i

(1.47)

14Vector and tensor light shifts can be made negligible by using linearly polarised light [96, 122].
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where Ŝ± are the spin ladder operators. We note also that for Vex > 0, the triplet has
the lowest energy indicating a ferromagnetic interaction, whereas for Vex < 0, the singlet
has the lowest energy indicating an anti-ferromagnetic interaction. Spin singlet and triplet
eigenstate superpositions, such as:

|eg "#i= |e "i|g #i � |g #i|e "i= 1p
2
(|eg�i+ |eg+i) (1.48a)

|eg #"i= |e #i|g "i � |g "i|e #i= 1p
2
(|eg�i � |eg+i) (1.48b)

are driven by the exchange interaction to oscillate between each other at a frequency
!ex/2⇡= |Vex|/h [176], exhibiting a so-called spin-exchange dynamics.

Furthermore, the two-orbital Hamiltonian (1.44) remains SU(N) symmetric, as it com-
mutes with the generalised spin-permutation operators defined by summing the operators
(1.35) over the electronic states:

Ŝn
m =

X

i

Ŝn
im =

X

i↵

Ŝn
i↵m =

X

i↵

ĉ†
i↵mĉi↵n (1.49)

which satisfy the SU(N) algebra in Eq. (1.30) and are therefore generators of SU(N).
Particular parameter regimes in the general Hamiltonian (1.44) produce simpler effective
Hamiltonians. Some of these reproduce well-known condensed-matter models, charac-
terised by a partial or complete localisation of one of the two orbitals, e.g. the SU(2)
Kondo lattice model [55, 60, 61, 76, 127, 177, 178] or the Kugel-Khomskii model [55,
128]. AEL atoms in optical lattices offer therefore new possibilities for the quantum simu-
lation of models which are the object of current research in condensed-matter, being still
far from well understood. Furthermore, the SU(N) symmetric extensions of such models
could be investigated, which have no realisation in nature and could represent a valuable
benchmark for large-N theoretical treatments [171, 179, 180].

1.3 Quantum simulation with AEL atoms

The quantum simulation of strongly-correlated electron materials with ultracold quan-
tum gases has already proven to be a successful and versatile approach for understanding
quantum many-body phenomena, complementing the direct probing of real condensed-
matter systems [12]. A large number of experiments with ultracold gases make use of
alkali atomic species, which are conveniently suited for laser cooling and magnetic trap-
ping. More recently, the development of all-optical cooling techniques has permitted to
cool alkaline-earth-like atomic gases as well to the degenerate regime [52, 65–71]. Such
experimental achievements have motivated several theoretical proposals, which exploit
the unique possibilities arising from the properties of AEL atoms and open the door to the
observation of yet unexplored quantum phenomena with ultracold gases.

Two essential aspects particularly stimulate the research in the field of quantum sim-
ulation with AEL: (i) SU(N > 2) symmetries can be implemented, owing to the highly
decoupled and large nuclear spin of fermionic AEL isotopes and (ii) an additional inter-
nal degree of freedom is provided through the existence of the metastable state, which
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may be used to emulate the orbital degree of freedom of electrons in solids and is more-
over expected to obey the same symmetry as the ground state. In contrast, alkali atomic
species were theoretically found to exhibit at most an exact SO(5) symmetry [150], that
is a lower symmetry group than SU(3), and the experimental realisation of symmetries
larger than SU(2) in alkali gases has so far been inaccessible. Furthermore, the possibil-
ities offered by employing different ground hyperfine states of alkali atoms or different
Bloch bands to mimic electrons in distinct orbitals of solid materials are quite restricted.
Many theoretical proposals exploiting multi-band lattice, superlattice or spin-dependent
lattice potentials have been put forward with the purpose of realising spin-exchange in-
teractions with alkali atoms [83, 115, 181, 182]. Onsite spin-exchange interactions be-
tween two vibrational states on a lattice site have been successfully implemented and
used for creating entangled bosonic atom pairs [116]. However, realisations of on-site
spin-exchange based on excited vibrational states or on effective low-energy Hamiltoni-
ans are generally not compatible with a strong tunnelling coupling. Conversely, a large
tuneability of the tunnelling is required to explore models relying primarily on the com-
petition between spin-exchange and tunnelling. Such models include the Kondo lattice
model [76, 127, 177, 178] and the Kugel-Khomskii model [79, 128, 183, 184], which
were formulated to explain condensed-matter phenomena resulting from the magnetic in-
teractions of electrons in different orbitals. Using the different stable electronic states of
AEL atoms represent a viable alternative for the implementation of such models [59–61].
As we have illustrated in Section 1.2.3, thanks to the fermionic exchange symmetry arising
from quantum statistics, spin-exchange interactions are inherently implemented through
the dependence of the scattering properties on the electronic wave function. Another
unique tool, yielding a novel degree of controllability for quantum simulation, is found in
far off-resonant, state-dependent optical potentials, which are exclusively available in AEL
species. The selective trapping of one of the two electronic states allows for the tuning of
the relative effective masses of the two states in a lattice potential, emulating conduction
electrons and localised electrons or impurities in real materials.

In this Section we will give an overview of the current prospects in quantum simulation
with ultracold AEL gases. In particular we will introduce the Kondo lattice model and
the SU(N) Heisenberg model [62, 166, 171], and focus the discussion on the theoretical
insights possibly provided by their realisation in atomic systems. We will elaborate on
the experimental implementation of the Kondo lattice model with AEL atoms trapped in
a state-dependent optical lattice, discussing its requirements and its feasibility in different
regimes. We will in particular describe which observables could be probed to reveal the
distinctive hallmarks of Kondo lattice many-body physics, and discuss the preparation of
the Hamiltonian through occupation number-selective clock excitation. We will conclude
by addressing SU(N) magnetism in optical lattices and related experimental prospects
with AEL atom Mott insulators.
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1.3.1 Orbital magnetism in condensed matter

Seminal models such as the Fermi-Hubbard model [118, 168] are able to incorporate
electron-electron correlations within a minimal description, and can be realised in a
defect-free and fully controllable fashion using ultracold fermionic atoms in optical lat-
tices. However, many interesting quantum phenomena arising in complex solid materials,
e.g. some instances of magnetic ordering or unconventional superconductivity, stem
from the interactions between electrons occupying distinct orbitals. Spin-spin interac-
tions between electrons occur as a consequence of the quantum exchange interaction
associated with Coulombian repulsion, and are usually termed spin-exchange interac-
tions. Inter-orbital spin exchange was first introduced by Kondo in 1964, in order to
explain what became later known as the Kondo effect, i.e. a logarithmic increase in the
electrical resistivity of a material as the temperature is lowered [185]. Since then, the
interplay of the electrons spin and orbital degrees of freedom was found to be central
for explaining the properties of various strongly-correlated electron materials, such as
heavy-Fermi materials, a class of inter-metallic compounds with 4f or 5f electrons (typi-
cally from Ce or U atoms) with extraordinarily massive quasiparticles [75, 76, 177], or
colossal-magnetoresistive transition-metal oxides [78, 79, 184].

An intense research in heavy-fermion (HF) physics has been especially catalysed by the
discovery of unconventional (i.e. non-BCS) superconductivity in HF compounds [186],
with the list of HF superconductors growing considerably in recent years [82]. In partic-
ular, superconducting rare-earth compounds have been found to possess intriguing prop-
erties, e.g. CeCoIn5 is a candidate realisation of the FFLO phase [187–189]. HF materials
have also emerged as prototype systems for the investigation of quantum critical phe-
nomena, due to the presence of a quantum critical point which separates a magnetically-
ordered phase from a Fermi liquid phase at zero temperature [77, 80, 190]. An enormous
theoretical effort has been devoted to the understanding of the physics in proximity of this
quantum critical point, where a breakdown of Fermi liquid behaviour has been observed
[191] and an exotic non-Fermi liquid (NFL) behaviour ensues from long-range, long-lived
quantum fluctuations of the magnetic order parameter [76, 80, 192]. Moreover, the con-
tiguity between anti-ferromagnetic ordering and superconductivity manifests itself in HF
in its most essential form [77, 81, 82, 193]. The microscopic pairing mechanism which
leads to HF superconductivity (the ’glue’) is not yet understood, and recent measurements
suggest that it could be of the same type of the one found in cuprates [194, 195], exhibit-
ing a nodal d-wave pairing gap symmetry and a gap in the non-superconductive state very
reminiscent of the mysterious pseudogap state of cuprates. New insights in HF physics,
especially regarding the interplay between quantum criticality and superconducting order
[77, 81, 193], would therefore provide an inestimable contribution to the understanding
of other types of unconventional superconductors.

The Kondo lattice model

The Kondo lattice model (KLM) [76, 177] has established itself as the prominent model
for explaining the physics of HF compounds and other magnetic materials, e.g. nickel
and manganese perovskites. It essentially depicts a lattice of localised magnetic moments
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interacting with a band of itinerant conduction electrons via spin-exchange (see Eq. 1.50).
The KLM was initially proposed by Doniach [127] as a lattice version of the single-impurity
Kondo model, and was first shown by Schrieffer and Wolff to emerge as an effective Hamil-
tonian in a certain limit (U � V ) of the periodic Anderson model [196, 197].

It is widely accepted that the low-energy physics of HF and other magnetic compounds
is based upon the competition between two types of interactions, the Kondo-exchange in-
teraction and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [198–200], which
are both incorporated in the KLM. Such interactions respectively promote a paramagnetic
and a magnetically ordered ground state (see Fig. 1.4), which have been extensively stud-
ied in HF materials, along with the tuneable quantum phase transition connecting them
[77, 193]. A detailed comprehension of those phases represent a major success of the
anti-ferromagnetic KLM, and several studies clarified how the competition between the
Kondo screening and the RKKY interaction accounts indeed for the emergence of very ex-
otic fermionic liquids near the quantum critical point [77, 80, 193, 201]. However, the
phase diagrams in dimensions D > 1, the associated phase transitions and especially the
role of Kondo exchange regarding the properties of HF superconductors are still far from
understood. Many open questions remain concerning HF physics in the regime where
RKKY and Kondo exchange interactions have comparable strength in the vicinity of the
quantum critical point [77, 81, 202, 203].

The ferromagnetic KLM has attracted considerable interest as well, owing to the dis-
covery of colossal magnetoresistance (CMR) in manganese oxides with perovskite struc-
ture [79, 204, 205], which is the subject of current experimental research and might lead
to novel technological applications in the field of spintronics. Interest in transition-metal
oxides with anisotropic d-orbital electrons also prompted renewed attention towards the
Kugel-Khomskii model [78, 128, 183], which is used to describe magnetic Mott insulators
of such compounds, exhibiting CMR and high-temperature superconductivity. The Kugel-
Khomskii model is a particular multi-band Hubbard model describing electrons in degen-
erate orbitals, and can be mapped in the strong-coupling limit (U � J) to a spin-orbital
Hamiltonian [55, 79, 128], formally equivalent to the superexchange-based Heisenberg
model [118, 206].

The fundamental physical process which gives rise to the Kondo effect and to RKKY
interactions is the scattering between conduction electrons and localised magnetic impuri-
ties, which can result in complete spin-screening of the impurities. In the KLM this process
is expressed as an on-site spin interaction [76, 177]. The KLM Hamiltonian describes a
tight-binding band of conduction electrons c†

gim interacting through direct spin-exchange
with a lattice of magnetic moments represented by localised spins S j:

ĤKLM = � Jg

X

hi, jim
ĉ†

gimĉg jm � 2Vex

X

j

Ŝ j · ŝ j (1.50)

where s j is the spin density of the conduction electrons on site j: ŝ j =
1
2

P
mm0 ĉ

†
g jm�mm0 ĉg jm0 .

Reminding that Ŝ j ·ŝ j =
1
2(Ŝ

+
j ŝ�j +Ŝ�j ŝ+j )+Ŝz

j ŝ
z
j , and by expressing also the localised moments
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Figure 1.4 – (a) Doniach phase diagram of the anti-ferromagnetic Kondo lattice model. The two important
temperature scales TRKKY and T

K

are respectively plotted as a dashed and solid line as a function of the
coupling |Vex|/Jg . A Fermi liquid with large effective mass quasiparticles (HFL) is obtained in the strong
coupling regime, where T

K

> TRKKY. Conversely, a phase with anti-ferromagnetic order of the localised spins
is obtained for T

K

< TRKKY. A quantum critical point (QCP) separates these two phases at zero temperature,
and non-Fermi liquid (NFL) behaviour is predicted to arise in the transition region. However, the physics close
to the QCP is still the object of theoretical debate. (b) Illustrative representation of the Kondo lattice HFL
and magnetically ordered states. In the HFL (i) conduction electrons bind to the localised moments, forming
isolated Kondo singlets. The HFL is distinguished by a large Fermi surface (ii) resulting from the hybridisation
between conduction electrons with the localised spins. In the weak exchange regime, the localised spins
magnetically order (iii) and the small Fermi surface (iv) of conduction electrons is restored.

Ŝ j in terms of fermionic operators ĉ†
e jm, we can rewrite Eq. (1.50) as:

ĤKLM = � Jg

X

hi, jim
ĉ†

gimĉg jm + Vex

X

jmm0
ĉ†

g jmĉ†
e jm0 ĉg jm0 ĉe jm (1.51)

where all constant terms were dropped. Even more than for the Hubbard model, the ap-
parent simplicity of the KLM is totally misleading15 and gives rise to a rich phase diagram,
being amongst the most studied ones in condensed-matter. The absence of small parame-
ters in the model makes perturbative approaches rather ineffective, and an extension from
the physical SU(2) symmetry of spin-1/2 electrons to a SU(N) symmetric description has
been used to introduce a perturbative parameter, namely 1/N [76, 179]. Strong corre-
lations between separated conduction electrons are generated by the spin-spin exchange
interaction: when an electron undergoes spin-exchange with one of the localised spins,
its spin becomes correlated with the spins of electrons which have previously interacted
with the same localised moment, as the state of this is determined by all the experienced
exchange processes. Therefore, both conduction electrons become spin-correlated with
one another (and so do localised moments), although they never interact directly.

15Quoting P.W. Anderson [207]: “I am indebted to a London Times article about Idi Amin for learning that
in Swahili “Kondoism” means “robbery with violence”. This is not a bad description of this mathematical
wilderness of models; H. Suhl has been heard to say that no Hamiltonian so incredibly simple has ever
previously done such violence to the literature and to national science budgets.”



1.3 Quantum simulation with AEL atoms 39

A useful understanding of the KLM physics is nevertheless provided by discussing the
two limits of weak and strong coupling. In the strong-coupling limit, |Vex| � Jg , the
conduction electrons become pinned to the localised spins via the so-called static Kondo
screening, i.e. by forming spin singlets or triplets to lower their energy, depending on the
sign of the spin-exchange coupling. In dimensions D > 1 and for anti-ferromagnetic cou-
pling, this results below the Kondo temperature TK in the formation of a heavy Fermi liq-
uid16 (HFL), namely a Fermi liquid possessing highly massive quasiparticles, arising from
the hybridisation of conduction electrons and localised moments. Such heavy quasiparti-
cles must be incorporated in the Fermi volume, as being part of the conduction-electron
excitation spectrum, and generate a large Fermi volume, with a “large Fermi surface” at
the quasiparticles location in momentum space [76, 210, 211]. In the anti-ferromagnetic
KLM, the energy scale TK associated with the Kondo singlet formation is given by, in anal-
ogy to the single-impurity Kondo temperature [76]:

kB TK ⇠ Jg exp
Å
�C

Jg

|Vex|

ã
(1.52)

where C is a constant of order 1 and TK is usually termed Kondo temperature.
By increasing the tunnelling Jg of the conduction electrons, an effective magnetic inter-

action between the localised moments is mediated by second-order exchange processes,
named Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [198–200]. According to its
second-order scattering character, the RKKY interaction typical energy scale is given by:

kB TRKKY ⇠
V 2

ex

Jg
(1.53)

RKKY interactions are responsible for the instability of the HFL state at intermediate
couplings Vex ⇠ Jg , when TRKKY ⇡ TK , and favour magnetic ordering in the weak cou-
pling regime Vex < Jg of the localised spins (see the Doniach phase-diagram in Fig. 1.4).
The HFL and the RKKY-induced magnetic ordered phases feature radically different con-
duction properties, which are brought to an extreme for half-filling of conduction elec-
trons, where the exchange-dominated state develops into the so-called Kondo insulator
[178, 212, 213].

1.3.2 The Kondo lattice with alkaline-earth-like atoms

The KLM in Eq. (1.51) is exactly reproduced by the two-orbital Fermi-Hubbard Hamilto-
nian (1.44) in the limit of Uee� Je and Ug g ⌧ Jg , and with only two spin states occupied,
as was first pointed out in Ref. [55]. The large interaction Uee guarantees a strong local-
isation of the |ei atoms in a half-filled insulating state as long T ⌧ Uee, whereas a large
tunnel coupling Jg ensures the mobility of the |gi atoms. In order to fulfil these demands,
independent lattice potentials for the two electronic states have to be engineered (see
Fig. 1.3(a)), so as to independently tune the tunnel coupling of each state. We will clarify

16The onset of local Kondo screening with decreasing temperature is found already at the single-impurity
Kondo temperature T (1)K [208], but the HFL state only ensues below the energy scale associated with the
Fermi-liquid coherence [209].
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Figure 1.5 – (a) The exchange coupling ensues as a consequence of the different inter-orbital interaction
energies in the spin singlet and triplet channels. Such coupling is responsible for the elementary spin-exchange
process of polarised two-particle states, which are superpositions of the spin singlet and triplet: an isolated
e-g atomic pair undergoes spin-exchange oscillations if prepared in a polarised spin state. (b) Illustration of
the Kondo lattice model (KLM) implementation with AEL atoms in a state-dependent optical lattice. The on-
site exchange interaction Vex between mobile particles and localised spins competes with the tunnelling J

g

of mobile particles. The SU(N) symmetry of interactions can be used to explore the physics of KLM beyond
spin-1/2, but is also vital for interactions not to populate spin states out of the desired subset, typically with
N = 2. The suppression of |ei state atoms tunnelling is essential to prevent strong on-site lossy collisions
between distinguishable |ei atoms. Ideally, the interaction U

gg

between |gi state atoms is much smaller than
both J

g

and Vex.

how such a state-dependent lattice can be realised for ytterbium in Section 5.1.1. Under
these conditions, we can neglect terms in Eq. (1.44) proportional to Ug g and Je and we
can moreover discard terms proportional to Uee and to the direct interaction V , which are
zero and constant, respectively, for a homogeneous half-filling of |ei atoms.

In practice, the filling of the |ei orbital can be fixed to to nje = 1 for all j by performing
an occupation number-selective clock excitation on a band insulator inside a sufficiently
deep state-dependent optical lattice (see Fig. 1.6 below), without the demand of T ⌧ Uee.
The |ei atoms must be selected to play the role of the localised magnetic moments in the
KLM, since they would otherwise suffer strong lossy collisions (see Section 6.3). A sketch
of the KLM Hamiltonian realisation with AEL atoms in a lattice is displayed in Fig. 1.5. An
optical lattice emulation of the KLM is therefore a concrete prospect, provided only that
a sufficiently large inherent exchange coupling Vex is found in the proposed AEL isotopes,
and could help addressing the notable theoretical challenges concerning the quantum
phase transition in the KLM. We also note that, by populating more than two spin states
at the same time, the SU(N > 2)-symmetric generalisation of the SU(2) KLM could be
realised [179, 180], i.e.:

Ĥ 0KLM = � Jg

X

hi, jim
ĉ†

gimĉg jm � Vex

X

jmn

Ŝn
jm ŝm

jn (1.54)

where the SU(N) spin-permutation operators were defined in Section 1.2, offering e.g. the
intriguing possibility of exploring HFL and Kondo insulator physics at varying N � 2. As we



1.3 Quantum simulation with AEL atoms 41

will see in Chapter 6, a large ferromagnetic SU(N)-symmetric spin-exchange strength was
measured in 173Yb [124, 176] making this isotope very attractive for the implementation
of exchange-based two-orbital models like the KLM. On the other hand, the exchange
strength in fermionic 171Yb still requires to be determined and might be revealed of anti-
ferromagnetic type. A weaker ferromagnetic exchange coupling was moreover found in
87Sr [214].

Phases and observables of the Kondo lattice model

Let us now discuss how the different predicted phases of the KLM could be prepared, ac-
cessed and observed. First of all, in order to prepare the required uniform half-filling of
|ei atoms, a number-selective state preparation is necessary. Atoms on doubly occupied
lattice sites can be separately addressed on the clock transition owing to their interac-
tion shift, which can be increased (if required) by applying a strong magnetic field up
to a value equal to the direct interaction strength V (see Section 5.2.1 and Fig 5.14).
The excitation light is shone along the direction of a deep magic lattice and the applied
Rabi frequency should be large compared to the tunnelling coupling in any direction, i.e.
⌦� Jg , so that atom pairs stay localised during the excitation. For a two-spin Fermi gas
of |gi atoms loaded into a combined lattice-harmonic potential with a chemical potential
above the upper edge of the first band (see Fig B.3), a central band-insulating core is
formed with ng = 2 [31]. After one |ei atom has been prepared on all doubly occupied
sites, a central region with ne = 1 is therefore created. For very cold temperatures, this
core can extend nearly to the edge of the cloud [31]. However, it is in general beneficial

( i ) ( ii )

( iii ) ( iv )

Figure 1.6 – Experimental sequence for the preparation of the KLM Hamiltonian in a state-dependent lattice.
(i) A band-insulating core with unit filling is created by loading ground state atoms in a sufficiently deep optical
lattice. (ii) One atom on each doubly occupied lattice site is excited by a clock ⇡-pulse resonant with the
interaction-shifted transition. (iii) Atoms on singly occupied lattice sites at the margins of the cloud are also
excited by a resonant clock ⇡-pulse. (iv) The state-dependent lattice potential is lowered to obtain the desired
tunnelling coupling J

g

.
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to also excite atoms on singly occupied sites located at the margin of the cloud. A uniform
lattice of localised impurities should indeed be present, entirely covering the density dis-
tribution of the mobile particles, considering that the Kondo physics reveals itself mostly
in a modification of the properties of the conduction particles, as compared to their nor-
mal free-Fermi or Fermi-liquid behaviour. Conduction particles which do not experience
the spin-exchange interaction at the edges would effectively hinder the observation of
exchange-induced effects, especially when the atomic ensemble is globally probed. After
the state preparation is complete, different J/Vex regimes of the KLM can be investigated
by adiabatically ramping down the state-dependent lattice to the desired value of Jg , yet
providing enough localisation of the |ei state (which might also be enhanced by interac-
tions). The harmonic confinement provides in this conditions an intrinsic variation of the
filling factor for the |gi atoms that are set free to tunnel. By varying the lattice depth and
consequently the |gi state bandwidth, or the harmonic confinement, the filling factor can
be adjusted [30, 31]. The proposed preparation sequence is summarised in Fig. 1.6.

The temperature requirements for observing different phases of the KLM seem in gen-
eral quite convenient, compared to their analogues in the case of magnetic super-exchange
interactions [27, 28]. The KLM is therefore a promising candidate for the observation of
long-range strongly correlated states with ultracold fermionic gases in optical lattices. We
will discuss here the example of the anti-ferromagnetic KLM, which is the most widely
studied in the condensed-matter community. The heavy-Fermi liquid phase predicted for
Jg < Vex should indeed be observed already at temperatures T < TK , where TK ⇠ Vex/kB

when Vex and Jg are of the same order (see Eq. (1.52)). On the other hand, lower tem-
peratures T < TRKKY / V 2

ex/Jg are necessary to access the magnetically ordered phase
predicted for Jg > Vex and governed by the RKKY interaction energy scale [55, 76]. With
realistic maximum allowed tunnelling rates e.g. for ytterbium of 300-400 Hz, we have
TRKKY ⇠ 10 nK, which should be experimentally accessible with T Æ 0.1 TF considering
typical Fermi temperatures before the loading to the lattice around TF ⇠ 50 � 100nK
[215, 216]. An efficient way to ensure tolerant temperature demands is to adopt the
largest allowed tunnelling Jg , providing however a sufficient |ei state localisation. The
maximum attainable Jg is given the by the ratio between the two state light shifts, which
should be as large as possible. The different phases of the KLM can then be accessed
by varying the exchange coupling Vex, which can be achieved by engineering a state-
dependent potential reducing the spatial overlap between the |gi and |ei states [56]. The
laser system for such a bi-chromatic lattice potential was already implemented in our lab-
oratory and will soon be applied to the atoms, also to prepare individual two-dimensional
tightly confined gases. Details about the laser system and the scheme for the state overlap
reduction can be found in Ref. [125].

In the HFL phase, many observables displaying the main hallmarks of the Kondo
screening physics are available. First of all, the effective mass of the |gi state atoms is
heavily enhanced and this could be detected by analysing the centre-of-mass motion of
the sample after a harmonic trap displacement [60, 61]. Similar measurements have been
already realised in Fermi one-dimensional atomic gases [217, 218]. A possible difficulty
could arise from a too small tunnelling coupling Jg as compared to the harmonic confine-
ment offset between neighbouring lattice sites, which would inhibit dipole oscillations in
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the harmonic trap by localising the states at the border of the cloud [92, 217]. Very low
confinement frequencies should therefore be preferred.

Another strong signature of Kondo physics is the appearance of a completely insulat-
ing phase for filling ng = 1, i.e. the so-called Kondo insulator. In this case, the harmonic
trapping typical of cold atom experiments is an advantage, much alike for the observation
of Mott insulator shells [40, 219], since the filling factor ng varies radially across the trap.
In the case of a two-dimensional system, high resolution imaging of local density in the
lattice would directly allow for the observation of an insulating density plateau. More-
over, the Kondo insulator possesses a vanishing compressibility, which could be probed by
trap compression measurements [31]. In addition, methods for probing or even directly
imaging the density plateau exploiting the occupation-number-dependent clock interac-
tion shifts are completely realistic [39], along the lines of the KLM state preparation. The
occupation-number selective and spin-state selective clock excitation of 173Yb atoms in a
magic three-dimensional lattice is an important result of this work and will be reported in
the Chapter 6.

A very notable feature which could be observed in atomic systems in a relatively sim-
ple way is the large Fermi surface in the HFL phase [61]. The momentum distribution
and the Fermi surface in the lattice can be readily probed by the band mapping technique
[30]. Strong fluctuations of the Fermi surface are expected when crossing the Kondo
temperature TK , due to the transition from a normal Fermi liquid to the HFL. Such an ob-
servation would establish a connection between the ideal Kondo lattice realised in atomic
systems and heavy-fermion materials which are actively studied in condensed matter, for
which large Fermi surfaces and their temperature-induced collapse were already observed
[194, 220].

In the magnetically ordered phase, the detection of spin correlations is necessary. For
this purpose, local [221] or global spin fluctuation measurements, and spatial noise in-
terferometry [37] are the most powerful available tools. Moreover, proof-of-principle ex-
periments of RKKY interaction-induced spin dynamics in isolated double-well potentials
can be envisioned by employing optical superlattice potentials [27, 55]. We have briefly
discussed how the crossover between the Kondo and the RKKY-dominated regimes is es-
pecially interesting, as the competition between these two type of interactions is expected
to give rise to non-Fermi-liquid behaviour; accessing this regime with ultracold AEL atoms
seems feasible.

We want to stress again the importance of a strong |ei state localisation, in order to
prevent otherwise large two-body inelastic losses between distinguishable excited atoms
(see measurements in Section 6.3), and the importance of a high-fidelity preparation of
the |ei state ensemble in the lattice. A vital condition for probing both HFL behaviour
and magnetic ordering is indeed the half-filling of the localised impurities. Only few the-
oretical studies exist of the so-called depleted KLM [222, 223], i.e. a KLM where some of
the magnetic moments are randomly replaced by non-magnetic inactive impurities. The
general indication is that a crossover from the HFL behaviour to a single-impurity Fermi
liquid can occur already at very low impurities depletion, depending on the delocalised
particles filling factor ng . Such a crossover may hinder the observation of the typical sig-
natures of local Kondo screening, such as the effective mass enhancement or the presence
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of a Kondo insulator plateau in the in-situ density profile. The presence of a small number
of holes in the localised particle density would also have consequences on the emergence
of magnetic order. For a large number of holes, global magnetic ordering is primarily sup-
pressed by the lack of (second-order) RKKY interactions. Preliminary theoretical studies
indicate however that magnetic ordering in smaller domains could survive for a sizeable
parameter range, as long as TRKKY > TK [223].

An additional complication might arise due to the finite interaction strength between
|gi state atoms, which is significant also in very shallow lattices. A scenario with significant
Ug g would be described by the so-called Kondo-Hubbard model [224, 225], which inherits
features of both underlying models. Considering the case of ytterbium, if the ground state
interactions in 173Yb prove to be excessively strong, precluding the observation of KLM
phases, the near absence of interactions in the ground state of the fermionic isotope 171Yb
[226] could be exploited to realise a fully exchange-dominated system. This isotope could
moreover be interesting with regard to a possibly opposite sign of the exchange coupling.

We conclude this discussion by noting that, although not mentioned explicitly, the
SU(N) symmetry of interactions is essential for the simulation of the spin-1/2 KLM, main-
taining the system confined in a two-component subset of the spin manifold. Furthermore,
by increasing the number of populated spin states above two, the experimentally unex-
plored SU(N) KLM may be investigated. The properties of the novel SU(N) HFL could
be studied experimentally and further compared with large-N limit studies of the KLM
[76, 179].

Direct optical hybridisation of orbital bands

A completely different possibility for delving into the physics of hybridisation between mo-
bile and localised particles is the optical dressing of |gi and |ei states in a state-dependent
lattice, which can be obtained by coherent coupling of the two electronic states. By tuning
the clock light intensity and its detuning from resonance, one could freely control the cou-
pling between a strongly dispersive energy band for the |gi state and a flat energy band
for the |ei state, and their relative energy. A quasimomentum-dependent hybridisation of
the two bands would be possible by choosing a Rabi frequency smaller than the |gi state
bandwidth. Such a system would be of high interest for the study of impurity physics, as
it realises a particular regime of the periodic Anderson model17 [196]. Using Rabi fre-
quencies well below the interaction clock shift and spin-polarised Fermi gases would be
necessary in order to minimise the strong |ei state losses, which could however limit the
attainable hybridisation strength.

1.3.3 SU(N) magnetism

A particularly interesting regime of the (single-orbital) SU(N) Hubbard model in
Eq. (1.34) is the limit of large repulsive interaction, U � J . Deep in the Mott insu-
lating phase at half-filling [31, 168], that model can be mapped at lowest perturbative

17Specifically, the high Coulomb-repulsion limit of the Anderson model is realised, where the on-site inter-
action term constrains the filling of the localised particles to ne = 1.
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Figure 1.7 – (a) An illustration of the magnetically ordered state predicted for N = k = 4 and m = 1. Such
a state spontaneously breaks translational and SU(4) symmetry, with a Néel-like order of spin dimers [227].
(b) The phase diagram of the square-lattice SU(N) Heisenberg model as a function of the inverse filling factor
k and of the number of fermions per site m. Many different regimes are accessible using AEL atoms in two-
dimensional optical lattices, and the m = 1, k > 2 Mott insulators are of particular interest. Magnetic order
(red dots) is expected to persist up to k = 4 and m = 2, whereas for k = 1 and m > 2 valence bond states
(VBS) are predicted (orange squares). For k > 4 and small m, no theoretical prediction is available and the
possible existence of an abelian chiral spin liquid (ACSL) suggested by large-N studies provides an exciting
prospect. The regions of the phase diagram accessible with 173Yb and 87Sr are shaded in different colours.
The figure is an update of the one given in Ref. [62].

order (second order) to an effective SU(N) Heisenberg model [62, 166, 171], analogously
to the SU(2) case [118, 206]:

ĤH =
2J2

U

X

hi, ji

X

mn
Ŝn

im Ŝm
jn (1.55)

where the on-site SU(N) spin operators were defined through Eq. (1.35).
The consequences of SU(N) symmetry are drastic, as spontaneous SU(N > 2) sym-

metry breaking is in general less energetically favourable than SU(2) symmetry break-
ing. This is manifest in the extensive degree of degeneracy of the SU(N) classical ground
states [54], in a similar way to what happens in frustrated magnets where magnetic or-
der is unstable and spin liquids are favoured [228]. In the context of condensed-matter
physics, almost only the SU(4)-symmetric Kugel-Khomskii spin-orbital model has been
studied [78, 229, 230]. With the prospect of implementing higher symmetries through
ultracold high-spin fermionic gases, SU(N > 2) Heisenberg models have attracted much
attention in the theoretical physics community and many studies were recently published
[53–55, 62, 63, 163, 173, 227, 231–238]. A suppression of magnetic order at large N
is predicted, accompanied by the emergence of exotic phases such as valence-bond and
valence-cluster states, and even completely novel spin liquids with no analogues in na-
ture [53–55, 62, 227, 233, 238]. Moreover, correlated magnetic states are expected
to arise already at temperatures scales comparable to the super-exchange energy J2/U
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[55, 239, 240], which are under reach in ongoing experiments [63, 72, 73, 87, 124].
The crucial difference between SU(2) and SU(N) lattice spin models lies in the fact

that more than two spins and thus more than two lattice sites are generally necessary to
form a SU(N) singlet. Let us denote with k the minimum number of sites required to form
a singlet, i.e. the inverse filling factor, and with m the number of fermions per lattice site,
so that N = m⇥ k. m is in principle experimentally not restricted, however it is clear how
m= 1,2 represent the most feasible cases, as they can be realised by up to two-shells Mott
insulators while avoiding three-body losses. k is restricted by k  N/m where N  2F+1 is
the number of available nuclear spin states, with N  6 for 173Yb and N  10 for 87Sr (see
Fig. 1.7(b)). Strong numerical evidences of ordered states on square lattices have been
found for SU(3) [232] and SU(4) [227] Mott insulators, as represented in Fig. 1.7(a). On
the other hand, it has been numerically shown that weak Neél order survives for m = 2
and k = 2 [173] and valence bond state (VBS) order appears for m = 3,4 and k = 2 on
a square lattice [173, 241] (see Fig. 1.7(b)). Large-N treatments of the 2D-Heisenberg
model [54, 62] established the existence of Abelian chiral spin liquids (ACSL) and valence
cluster states (VCS). Although the separation at k > 4 between those two phases has been
determined [62], it is unknown to which value of m the chiral spin liquid phase extends.
This is particularly exciting as the ACSL region may stretch as far as m = 1 and k > 4,
which is experimentally accessible with AEL atoms (see Fig. 1.7(b)). The observation of
the ACSL would be an extraordinary fulfilment, as such a state exhibits fractional statistics
and topological order [54, 62], with spin-carrying gapless chiral edge states18. Topological
order is so far exclusively realised in fractional quantum Hall liquids [242] and, very
recently, in a kagome-lattice antiferromagnetic material [243]; no other known material
is at present foreseen to possess a topologically ordered spin liquid ground state. The
experimental realisation of AEL atom two-dimensional Mott insulators with T Æ J2/U is
therefore of extreme interest for the observation of exotic spin states, which may have
similarities to spin liquids in frustrated magnets [244] or possess no natural counterpart.

18By extending the model to include a second orbital, spin liquids with non-Abelian anyonic excitations are
further predicted at large N [62].



CHAPTER 2

Creation of degenerate gases of ytterbium

In this Chapter, we present the fundamental properties of ytterbium and we give an
overview of the experimental techniques which led to the production of ytterbium degen-
erate gases. Similar techniques have been successfully implemented in the last years by
different research groups, leading to the production of degenerate gases of AEL atoms in
several laboratories [52, 65–71, 87, 245–248]. After briefly introducing the physical and
chemical properties of ytterbium, the electronic level structure with the experimentally
relevant optical transitions is presented and the most important aspects of each transition
are elucidated. The scattering properties in the ultracold regime are also summarised,
with regard to both the ground and metastable states. We then address the typical cooling
procedure employed to prepare ultracold gases of ytterbium, which are used to perform
the experiments reported later in this work. The cooling strategy involves three distinct
steps: Zeeman slowing of an atomic beam leaving the source, magneto-optical trapping of
slowed atoms and successive evaporation in an optical crossed dipole trap. Depending on
the choice of the isotope, Bose-Einstein condensation and Fermi degeneracy are achieved
and some details are reported here. As a final part of this Chapter, the loading of such ul-
tracold gases in a three-dimensional optical lattice and their characterisation with typical
experimental techniques are presented.

2.1 Ytterbium essentials

Ytterbium (Yb) is is the fourteenth element in the lanthanide series with atomic number
Z = 70. It is the last element in the f-block of the periodic table, meaning the 4f-shell
is complete with 14 electrons. The full electronic configuration is thus [Xe] 4f14 6s2.
Owing to this complete f-shell, its electronic structure is mostly determined by the two
valence electrons in the 6s-shell and its properties are therefore very similar to alkaline-
earth atoms of the second group rather than to other rare-earth elements like erbium and
dysprosium.

The discovery of ytterbium dates back to 1878, when the Swiss chemist Jean Charles
Galissard de Marignac, while examining samples of gadolinite, found a new component
in the earth then known as erbia, and he named it ytterbia [249]. The name was chosen
due to Ytterby, the Swedish village close to where de Marignac found the new component
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of erbium1. Marignac foresaw that ytterbia was a compound of a new element that he
called ytterbium and in 1907 the chemists Georges Urbain, Carl Auer von Welsbach and
Charles James independently separated ytterbia into two components: neoytterbia and
lutecia [250]. Neoytterbia would finally become known as the element ytterbium, and
lutecia would finally be known as the element lutetium. Nevertheless, the chemical and
physical properties of ytterbium could not be determined with any precision until 1953,
when the first almost pure sample of ytterbium metal was obtained.

2.1.1 Physical and chemical properties

Ytterbium is a rare-earth element. It is soft, malleable and ductile, and when pure it
appears bright and silvery. Ytterbium metal slowly tarnishes, reacting with moisture in
air, and it quickly oxidizes when dispersed in air and under oxygen. It has a density of
6.90g/cm3 near room temperature [251]. With a melting point of 824 �C and a boiling
point of 1196 �C, it has the smallest liquid range of all metals [250]. The melting and
boiling points are significantly lower than those of the neighbouring elements in the pe-
riodic table (thulium and lutetium), mainly owing the closed-shell electron configuration
of ytterbium, which causes only the two 6s electrons to be available for metallic bonding
[251]. The temperatures required to produce a sufficient vapour pressure ¶ 10�3 mbar, in
order to provide the necessary atomic flux for experiments with degenerate gases, are very
well below the melting point but however still quite high [252]. Temperatures between
400 �C and 500 �C are typical, and are fortunately still reachable by means of relatively
uncomplicated oven setups (see Section 3.1.1). Ytterbium metal becomes highly reactive
when brought into this temperature range and rapid chemical deterioration of silica glass
has been reported [253]. Ytterbium is known to chemically bond to silica glass and (more
weakly) to sapphire also at room temperature, so particular care has to be taken with
vacuum viewports, which should not be exposed to the atomic vapour or to a direct flux
without being heated.

Isotopes

Ytterbium is present in nature with seven stable isotopes: 168Yb, 170Yb, 171Yb, 172Yb,
173Yb,174Yb and 176Yb [254]. The relative abundances and some fundamental properties
of the different isotopes are summarised in Table 2.1. One exceptional feature of ytter-
bium, as opposed to many alkali and alkaline-earth-like atoms, is the presence of many
isotopes with relatively high natural abundance. The two isotopes with non-zero nuclear
spin, 171Yb(I = 1/2) and 173Yb(I = 5/2), are fermionic, whereas all other isotopes, includ-
ing the most abundant 174Yb, are bosonic and have zero nuclear spin (I = 0).

Ytterbium offers an extraordinary versatility, due to the wide choice of collisional prop-
erties (see Section 2.1.3) and of bosonic or fermionic statistics of the different isotopes.
This is very attractive both for the production of quantum gases of a single isotope and
for the study of ultracold interacting Bose-Bose, Bose-Fermi and Fermi-Fermi mixtures
[66, 71, 255, 256]. The results which will be presented later in this work are almost

1In total, four elements were named after the village: ytterbium, yttrium, terbium and erbium
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exclusively obtained by employing the fermionic 173Yb isotope, which has the peculiar-
ity of a nuclear spin larger than 1/2, strong repulsive interactions in the ground state
(see Section 2.1.3) and the possibility of directly exciting the ground state to the lower
3P0 metastable state owing to a weak intrinsic hyperfine interaction (see Section 2.1.2).

Isotope Mass (u) Abundance (%) Nuclear spin I Statistics µI (µN )
168Yb 167.933894 0.12 0 bosonic
170Yb 169.934759 2.98 0 bosonic
171Yb 170.936323 14.09 1/2 fermionic +0.4919
172Yb 171.936378 21.68 0 bosonic
173Yb 172.938208 16.10 5/2 fermionic �0.6776
174Yb 173.938859 32.03 0 bosonic
176Yb 175.942564 13.00 0 bosonic

Table 2.1 – Nuclear properties of the seven stable isotopes of ytterbium. Naturally occurring abundances are
taken from [254], while the atomic mass and the nuclear magnetic moment µ

I

(incorporating the diamagnetic
correction) are taken from [257].

2.1.2 Electronic properties

The electronic level structure of ytterbium reproduces the typical structure of alkaline-
earth elements, which in turn partially resembles the one of Helium. This structure can
be well described by the LS-coupling (Russell-Saunders coupling) scheme, where the total
electronic spin angular momentum S and the total electronic orbital angular momentum L

couple together to form the total electronic angular momentum J= S+ L. Each electronic
level is then denoted by a term symbol 2S+1 LJ [86]. As already mentioned in Chapter 1,
the two valence electrons can arrange in a spin singlet with total spin S = 0 or a spin
triplet with S = 1, forming two separate level manifolds which are connected only by
narrow optical transitions, usually termed intercombination transitions. These transitions
would be completely forbidden as electric dipole (E1) transitions in the pure LS-coupling
picture, owing to the spin selection rule �S = 0; however, a significant mixing between
the 1P1 and the 3P1 states is generated by spin-orbit interaction, as described later in more
detail. This is a direct manifestation of the high Z of ytterbium, for which the LS-coupling
scheme is a reasonably good approximation but not as good as for lighter alkaline-earth
atoms as magnesium or calcium. This spin-orbit coupling indirectly enables in turn a decay
channel from the 3P0 to the ground state for the fermionic isotopes, due to the hyperfine
interaction between the 3P states originating from the non-zero nuclear magnetic moment.
On the other hand, transitions within each of the two spin manifolds are broad and all the
main transitions connecting the low-lying states to each other are in the visible region
of the electromagnetic spectrum, which is typical of all AEL atoms. As we will describe
in the following part of this Section, both type of transitions can be used for a number
of applications, including laser cooling, state preparation, detection and repumping. A
detailed scheme of the electronic level structure is shown in Fig. 2.1, where the most
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Figure 2.1 – Term diagram for the ytterbium electronic level structure. Optical transitions are illustrated as solid
arrows connecting the different levels, with the corresponding wavelength indicated. Dashed lines indicate
multi-photon decay channels. Lifetimes ⌧ and radiative decay rates � (s) of the most relevant states are noted.
For the closed transitions, natural linewidths � = �/(2⇡) are provided. The hyperfine structure of fermionic
isotopes is omitted (see below for hyperfine splitting diagrams). State lifetimes are taken from Refs. [258]
(1P1), [259] (3P1 and 3D1), [260] (3P0) and [261] (3S1). The decay rate of the 1P1 state to the triplet states is
taken from Ref. [262], whereas other radiative decay rates are calculated from the transition dipole elements
given in Ref. [261].

relevant states and transitions are indicated. A few essential parameters of the three most
important transitions in ytterbium are summarised in Table 2.2.

One remarkable difference between ytterbium and alkaline-earth atoms is the presence
of states with an electronic excitation from the 4f-shell of the core, which have to be
described in the j j-coupling scheme. All these transitions should be taken into account for
a correct theoretical prediction of the AC polarisability of each particular electronic state,
although it complicates the calculation [263]. However, in practice, the ultimate option
for safely ascertaining the differential polarisability between two states at a particular
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Parameter 1S0!1P1
1S0!3P1

1S0!3P0

� 398.9 nm 555.8 nm 578.4 nm
⌧ 5.464 ns 866.1 ns ¶ 20 s (I 6= 0)
�/(2⇡) = 1/(2⇡⌧) 29.1 MHz 182.4 kHz Æ 10 mHz
gJ 1.035 1.493 (J = 0)
Isat = ⇡hc/(3�3⌧) 59.97 mW/cm2 0.139 mW/cm2 Æ 10 pW/cm2

TD = ~h�/(2kB) 699µK 4.4µK –

Table 2.2 – A summary of some relevant parameters for the 1S0!1P1, 1S0!3P1 and 1S0!3P0 transitions
in ytterbium. � and � denote the wavelength and the natural linewidth of the optical transition, ⌧ and g

J

are
the lifetime and the Landé g -factor of the excited states. Is is the saturation intensity of the transition and TD is
the transition associated Doppler temperature. Data for the three excited state lifetimes are respectively from
Refs. [258–260].

wavelength is the experimental measurement of transition shifts [121]. Many of the f-
shell excited states are found at large energies which are not accessible via single-photon
excitations. Nevertheless, two-photon transition could still be troublesome in some cases,
when choice of the wavelength is very limited or obligated (see Section 1.1.3). Some of
the associated electronic transitions are in fact strongly coupled to the ground state [264],
so particular care has to be taken with applications involving detuned high-power light,
as these could cause substantial scattering. For example, considerable efforts have been
devoted to measuring the influence of particular two-photon f-shell transitions which are
found in proximity of the 1S0 -3P0 magic wavelength at 759.35 nm [121, 265].

The ground state

The ground state is the spin-singlet state 1S0 . Owing to the antiparallel alignment of the
two s-shell valence-electron spins, it possesses zero total electronic angular momentum,
J = 0. This in turn implies that, even for the fermionic isotopes with non-zero nuclear
spin, no hyperfine structure is present in the ground state. The total angular momentum
F is therefore entirely determined by the nuclear spin I , namely F = I . Bosonic isotopes
have thus zero total atomic angular momentum and are entirely insensitive to magnetic
fields. Amongst other consequences, the absence of any substructure in the ground state
prohibits any sub-Doppler cooling mechanism [266]. On the other hand, for the fermionic
isotopes, the Zeeman energy shift of the ground state sublevels in an external magnetic
field B is simply given by:

�Z(B) = gF mFµBB (2.1)

where mF is the nuclear spin projection along the field direction in units of ~h. The Landé
g-factor can be written as:

gF = gJ
F(F + 1)� I(I + 1) + J(J + 1)

2F(F + 1)
+ gI

F(F + 1) + I(I + 1)� J(J + 1)
2F(F + 1)

(2.2)
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and the first term vanishes for J = 0. The total g-factor of the ground state is therefore
given by the nuclear g-factor:

gI =
µI

µB |I |
(2.3)

where µI is the nuclear magnetic moment2 and |µI | ⇠ |µN | (see Table 2.1). As already
mentioned in Section 1.1.4, due to µN being weaker then the Bohr magneton by a factor
of ⇡ 2000, the ground state of fermionic isotopes has a drastically reduced magnetic sen-
sitivity as well, compared to atoms whose ground state has J 6= 0 (see inset of Fig. 2.5(b)).

The complete lack of hyperfine structure in the ground state manifold precludes the
decay to different lower hyperfine states during the cooling. Consequently, a smaller num-
ber of lasers is required to carry out the cooling procedure, compared to alkalis which
typically need repumping light during all stages of the laser cooling sequence. This char-
acteristic of AEL species is moreover very desirable for a number of metrological applica-
tions [90, 96, 267], yet it has also some rather unfavourable consequences. First of all,
magnetic trapping of ground-state atoms is extremely impractical, as magnetic gradients
on a scale of 104 G/mm would be necessary, making all-optical methods the only viable
solution for trapping and cooling to degeneracy. Magnetic Stern-Gerlach separation of the
different nuclear spin states would also require enormously large field gradients and it is
therefore not realistic: we will see in Chapter 4 how it is possible to achieve a nuclear
spin-dependent and nearly uniform force by optical means.

The blue 1S0!1P1 cooling transition

The dipole-allowed 1S0 !1P1 transition has a wavelength of 398.9 nm i.e. in the blue-
violet visible range of the optical spectrum. Owing to its large linewidth it is mostly
employed for initial slowing and magneto-optical trapping of atoms, and for absorption
imaging as well (see Section 4.1). Its natural linewidth was measured with high precision
[258] to equal �blue = 2⇡ ·29.13(3) MHz. This strong transition is almost closed, but a
very weak radiative decay channel from the 1P1 to the 3P0,1,2 states is present. Atoms
in the 1P1 state decay to the triplet 5d6s 3D1,2 states, which in turn decay to the 3P0,1,2

states3(see Fig. 2.1), respectively with lifetimes of 329 ns and 460 ns [259, 268]. Atoms in
the 3P1 state decay quickly back to the ground state, whereas the 3P0,2 states are metastable
(see below for more details). Atoms trapped in a MOT operating on the blue transition
can therefore be lost when they get shelved in those states. This loss process can establish
the ultimate limit on the number and the lifetime of trapped atoms in such a MOT [262,
269, 270]. In order to bring atoms back to the blue cooling cycle, optical repumping of
the 3P0,2 states to the 6s7s 3S1 state can be used [262] (see also below for more details on
these repumping transitions). Such a repumping scheme can improve the lifetime and the
maximum attainable number of atoms in a blue MOT by respectively 100% and 30%, but
efficient cooling is still possible without any repumping light. For Zeeman slowing on the
blue transition, the very weak decay path to the 3P states poses no concern at all.

2The diamagnetic correction �d , accounting for shielding of external magnetic fields by the electronic
cloud, is included in the values of µI given in Table 2.1.

3For details on each of the decay channels see Ref. [262].
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Figure 2.2 – Line structure of the 1S0!1P1 and 1S0!3P1 transitions for the bosonic isotopes of ytterbium.
The lack of hyperfine interaction arises from the zero magnetic moment of the nucleus (I = 0).
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Figure 2.3 – Line structure of the 1S0 !1P1 transition for the fermionic isotopes of ytterbium: (a) 171Yb and
(b) 173Yb. Hyperfine shifts are on the order of several hundreds of MHz. Shifts are relative to the respective
transition centroids (see Table 2.3).

While only a single transition F = 0 ! F 0 = 1 is available for the bosonic isotopes,
the hyperfine interaction in the fermionic isotopes with non-zero nuclear magnetic mo-
ment generates additional structure in the 1P1 state. As the resulting hyperfine energy
shifts (see Fig. 2.3) are comparable to the isotope shifts of the blue transition, the spec-
trum shows a succession of intertwined resonances from different isotopes. A precision
measurement of the transition frequencies was reported in Ref. [271], where a complete
characterisation of the spectrum is given. Isotope shifts are summarised in Table 2.3, given
with respect to the transition frequency in 174Yb : ⌫174

blue = 751 525 987.761(60) MHz. Hy-
perfine splittings relative to transition centroids are indicated in the diagram in Fig. 2.3.
Isotope and hyperfine shifts are significantly larger than the natural linewidth of the blue
transition and addressing of individual isotopes or hyperfine states is therefore feasible.
Selective slowing of different isotopes to load them in succession into a multi-frequency
MOT is the most practical scheme for the production of cold isotope mixtures [66]. Ad-
dressing different hyperfine blue transitions with a suitable light polarisation can be em-
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Isotope 1S0!1P1 shift (MHz) 1S0!3P1 shift (MHz) 1S0!3P0 shift (MHz)
168Yb 1887.40 3655.13 n/a
170Yb 1192.39 2286.35 n/a
171Yb (centroid) 939.52 1825.72 1811.28164
172Yb 533.31 1000.02 n/a
173Yb (centroid) 291.52 555.78 551.53839
174Yb 0 0 0
176Yb �509.31 �954.83 n/a

Table 2.3 – Isotope shifts of the 1S0!1P1, 1S0!3P1 and 1S0!3P0 transitions in ytterbium. Shifts are taken
respectively from Ref. [271], Ref. [272], and Refs. [122, 273, 274], and are relative to the 174Yb absolute
transition frequencies given in the text.

ployed to optically pump atoms into a subset of the nuclear spin states [71] (see also
Section 4.2).

The green 1S0!3P1 cooling transition

The 1S0!1P1 transition wavelength is 555.8 nm, corresponding to a pale green colour, to
whom the eye is extremely sensitive. It is essentially a closed transition and its natural
linewidth is �green = 2⇡ ·182.4(4) MHz (deduced from Ref. [259]). The only decay path
in addition to the one to the ground state is an extremely weak magnetic dipole (M1)
transition to the 3P0 state [275], which is entirely negligible for any of the applications
reported in this work. A detailed characterisation of this transition for all isotopes was
reported in Ref. [272]. Isotope shifts are summarised in Table 2.3, given with respect to
the transition frequency in 174Yb. The absolute transition frequency in 174Yb is ⌫174

green =
539 386 561(10) MHz. Hyperfine splittings relative to transition centroids are indicated
in the diagram in Fig. 2.4. All the different resonances are well separated owing to the
narrow natural linewidth of the transition.

This intercombination transition is strictly forbidden in the LS-coupling scheme. The
reason why the 3P1 state is in reality coupled to the ground state by a weak dipole transi-
tion lies in the magnitude of the spin-orbit interaction, which is not a small perturbation of
the residual electrostatic interaction and mixes therefore the pure LS-coupling eigenstates
[86]. Labelling the pure LS eigenstates as |1P0

1i and |3P0
1i, one can write the eigenstates in

the intermediate coupling regime by introducing a mixing4 as (see e.g. [96]):

|1P1 i = ↵|1P0
1i+ � |3P0

1i (2.4)

|3P1 i = ↵|3P0
1i � � |1P0

1i (2.5)

Only the pure LS eigenstate |1P0
1i is coupled to the ground state by an electric dipole

transition, and therefore the |3P1 i state inherits a dipole coupling because of � 6= 0. The

4The J operator commutes with the spin-orbit interaction operator Hso; the spin-orbit interaction generates
thus a mixing only between states with the same J .
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Figure 2.4 – Line structure of the 1S0 !3P1 transition for the fermionic isotopes of ytterbium: (a) 171Yb and
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coefficients ↵ and � can be calculated through the measured lifetimes, since ⌧= C/(⌫3d2),
where d is the dipole matrix element of the transition [86]:

|↵|2
|� |2 =

⌧
�

3P1
�
⌫3

green

⌧ (1P1 )⌫3
blue

(2.6)

and by the normalisation relation |↵|2 + |� |2 = 1. Using the data given in Table 2.3, we
obtain |↵|2 = 0.9834 and |� |2 = 0.0166.

Few fundamental parameters of the transition are reported in Table 2.2. A very low
Doppler temperature TD = 4.4µK sets the minimum achievable temperature when laser
cooling is performed on this narrow-line transition. The Doppler temperature is however
still very well above the photon recoil temperature Tr =0.36µK, which is not the case for
lighter AEL species with even narrower intercombination transitions.

In the same way as for the blue transition, the hyperfine structure of the 3P1 state is
absent for the bosonic isotopes where only the transition F = 0 ! F 0 = 1 is available
to use for optical cooling. For both fermionic isotopes on the other hand, the F = I !
F 0 = F + 1 transitions are used for MOTs and optical pumping (see Section 4.2), and
they are sufficiently separated from other hyperfine transitions to be the dominant photon
scattering channel even for a detuning of thousands of �green.

The magnetic substructure of this transition also becomes important for magneto-
optical trapping and optical pumping. The Landé factor gF of an atom in the 3P1 state
depends of course on the total angular momentum F of the state under consideration (see
Eq. (2.2)), and it is directly equal to the electronic Landé factor gJ for the bosonic iso-
topes; however, for any isotope, it is larger than the ground state gF factor by about three
orders of magnitude. The magnetic shift of the transition frequency is therefore essen-
tially determined by the Zeeman shift of the excited state (see Fig. 2.5). In the case of
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the bosonic isotopes, the standard MOT textbook configuration applies, with operation on
a J = 0 ! J 0 = 1 transition. On the other hand, when hyperfine structure exists, a very
unusual regime of MOT operation is established, where the magnetic shift of the transition
goes from negative to positive for different mF states (see Fig. 2.5(b)). This is the case
for Yb fermionic MOTs and will be briefly discussed later in Section 2.2.2 (for a detailed
explanation see e.g. Ref. [276]).
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The yellow clock transition and the 3P0 metastable state

The doubly-forbidden 1S0!3P0 transition has a wavelength of 578.4 nm, corresponding
to an orange-yellow colour. The direct excitation of the clock transition has so far been
achieved in three isotopes [122, 273, 274]. The absolute clock frequency transition in
174Yb is 518294 025.309217 8(9)MHz [273] and the known isotope shifts are reported in
Table 2.3. For fermionic isotopes, the tiny but non-zero dipole matrix element of the clock
transition arises from the hyperfine interaction which couples states with the same F and
causes thus a mixing between the 3P0 state with the 3P1 (F=I) state. This mixing and the
consequent matrix element of the transition can be accurately estimated by relativistic
many-body calculations [260, 265], yielding values for the natural linewidths of the clock
transition �clock = 2⇡ · 7 mHz in 173Yb and �clock = 2⇡ · 6 mHz in 171Yb. Assuming a
reasonable light intensity I0 = 4 W/cm2, obtained for example by a beam waist w0 =
200µm and a power P0 = 5mW, clock Rabi frequencies on the order of ⌦ ' 2⇡ · 2kHz are
obtained.
In the bosonic isotopes, the metastable state decays to the ground state only via E1-M1
two-photon processes, and consequently its lifetime is much longer than in the fermionic
isotopes, although exact values are not known. A finite dipole matrix element can be
nevertheless induced by quenching the metastable state through a strong static magnetic
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field [98, 99] or a strong laser field at the magic wavelength [100]. Through the magnetic
field-induced coupling technique, Rabi frequencies on the order of ⌦ ' 2⇡ · 100Hz can be
obtained with a field of 100 G and the same light intensity assumed above [98].

The 3P0 metastable state has zero electronic angular momentum J = 0, like the ground
state, and therefore no hyperfine structure is present either. In the fermionic isotopes,
where a magnetic substructure is present, the Zeeman shift associated with each mF state
is given by Eqs. (2.1)-(2.3). However, due to the nuclear spin-induced mixing with the
3P1 state, the nuclear g-factor gI of the metastable state is different from the one of the
ground state. As a consequence, the various transitions 1S0 (F = 5/2, mF ) ! 3P0 (F 0 =
5/2, m0F ) experience a Zeeman shift�Z = µBB (gI (m0F�mF )+�g m0F )where the differential
g-factor was measured as �g = h/µB · 112(1)Hz/G (see Section 5.1.3). With typical clock
Rabi frequencies on the order of 100 Hz, each nuclear spin state can thus be separately
addressed in a magnetic field of just a few Gauss. We also note that the individual line
strengths of the 1S0(F = 5/2, mF ) ! 3P0(F 0 = 5/2, m0F ) transitions are directly inherited
from the 1S0(F = 5/2, mF )! 3P1(F 0 = 5/2, m0F ) transitions (see Appendix A).

As we will see in the last part of this thesis, addressing the clock transition of 173Yb in
a three-dimensional optical lattice allows for occupation-number-selective and spin state-
selective excitation, owing to the interaction and the Zeeman clock shifts. This has im-
portant applications related to the preparation and the detection of many-body states in
optical lattices. Atoms on singly or doubly occupied lattice sites can be made selectively
and non-destructively dark to the imaging light and, with a sufficient optical resolution,
could be imaged independently in-situ. Moreover, inter-orbital spin singlet and triplet
can be distinguished from each other owing to their distinct interaction shifts (see Sec-
tion 1.2.3), and on-site inter-orbital spin correlations could therefore be locally probed,
with great use in the characterisation of orbital magnetic phases.

The 3P2 metastable state

The 3P2 state is also metastable, with a theoretical predicted lifetime ⇠ 10 s, which yet
varies over the different hyperfine states with F 0 = 1/2, 3/2, 5/2 and 7/2 due to the vary-
ing hyperfine mixing with the 3P1 state sublevels [260]. The dominant radiative decay
channel in ytterbium is a magnetic dipole (M1) transition to the 3P1 state. Additional
weak decay channels to other lower-lying 3P0 and 1S0 states are present, respectively of
electric quadrupole (E2) and magnetic quadrupole (M2) type [260, 261]. In strong con-
trast to the 3P0 state, the 3P2 state exhibits a strong magnetic field sensitivity with a mag-
netic moment of 3µB, which is undesirable for optical frequency standards and precision
spectroscopy. On the other hand, it represents a valuable resource as a readout state for
quantum information processing with AEL atoms [105], since it could e.g. enable single-
site-resolved addressing of atoms in an optical lattice in combination with a magnetic
gradient [56, 58]. Indeed, spatially-resolved magnetic resonance imaging in an optical
lattice using the 1S0! 3P2 transition has already been demonstrated [277].
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The 3P0!3S1 and 3P2!3S1 repumping transitions

Several higher-lying states are available for the repumping of metastable state atoms to the
ground state. Successive atom counting can then be achieved by means of either absorp-
tion imaging or MOT recapture followed by fluorescence detection. The strongly allowed
3P0! 3S1 and 3P2! 3S1 transitions (see Fig. 2.1) represent the most natural alternative,
with their respective wavelengths 649.1 nm and 770.2 nm, conveniently located in a diode
laser range, and their broad linewidth of approximately 12 MHz [278]. Both transitions
have to be driven at the same time to achieve efficient repumping to the ground state
via an intermediate decay to the 3P1 state, owing to a branching ratio of the 3S1 state of
approximately 1:3:4 to the 3P0,1,2 states [261]. The two repumping transition absolute fre-
quencies in 174Yb are ⌫174

rp0 = 461 868 855(37) MHz and ⌫174
rp2 = 389 260 412(24) MHz, and

the isotope shifts are reported in Table 2.4 [278]. Two-photon Raman schemes exploiting
these two transitions have also been suggested to coherently couple the two metastable
states [56]. Another possibility for the detection of atoms in the 3P0 state is the use of the
3P0! 3D1 transition at 1388.8 nm (see Fig. 2.1). With a branching ratio of approximately
60:3:1 of the 3D1 state into the 3P0,1,2 states [261, 262], this transition allows for ⇡ 20
absorption cycles before the state become dark and could be used for direct absorption
imaging. Alternatively, efficient repumping to the ground state by this transition can be
attained via the intermediate decay to the 3P1 state [122]. In our experiment, repumping
of the metastable state of 173Yb with an efficiency around 50% has been already achieved
by driving the 3P0 (F = 5/2) ! 3S1 (F 0 = 7/2) and 3P2 (F = 9/2) ! 3S1 (F 0 = 7/2) transi-
tions and will be presented in Ref. [279].

Isotope 3P0!3S1 shift (MHz) 3P2!3S1 shift (MHz)
170Yb �937 �968.3
171Yb �758 �751.6
172Yb �413 �425.3
173Yb �228 �229.3
174Yb 0 0
176Yb 392 425.7

Table 2.4 – Isotope shifts of the 3P0!3S1 and 3P2!3S1 transitions from Ref. [278]. Shifts are relative to the
transition frequencies in 174Yb given in the text.

2.1.3 Scattering properties

A complete characterisation of the scattering processes between ground state atoms in the
s-wave regime has been reported in Ref. [226]. As we already discussed in Chapter 1,
the collisional properties are independent of the nuclear spin, which is decoupled from
the electronic degrees of freedom. The scattering lengths for all isotope combinations
have been determined with great precision by means of two-colour photoassociation spec-
troscopy on the 1S0!3P1 transition, which is particularly accurate owing to the absence of
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Isotope 168Yb 170Yb 171Yb 172Yb 173Yb 174Yb 176Yb
168Yb 252.0(34) 117.0(15) 89.2(17) 65.0(19) 38.6(25) 2.5(34) 359.2(30)
170Yb 63.9(21) 36.5(25) -2.1(36) -81.3(68) -518.0(51) -209.5(23)
171Yb -2.8(36) -84.3(68) -578(60) -429(13) 141.6(15)
172Yb -599(64) 418(13) 200.6(23) 106.2(15)
173Yb 199.4(21) 138.8(15) 79.8(19)
174Yb 104.9(15) 54.4(23)
176Yb -24.2(43)

Table 2.5 – Scattering lengths (s-wave) in units of a0 for ground state atoms of all ytterbium isotope combina-
tions. Intra-isotope scattering lengths are highlighted in bold. Data are taken from Ref. [226].

hyperfine structure in the ground state. The measured s-wave scattering lengths are sum-
marised in Table 2.5, and they can be seen to vary from large negative to large positive
values with a wide choice of intermediate conditions. In the context of ultracold fermionic
gases, we note especially the strong interactions between 173Yb atoms, the almost van-
ishing interactions between 171Yb atoms and the extremely strong interactions between
atoms of the two isotopes, which can be exploited for the preparation of a Fermi-Fermi
mixture via sympathetic cooling of 171Yb atoms with 173Yb atoms [71]. Furthermore, the
two bosonic isotopes 174Yb and 170Yb are well suited for independent evaporative cooling.
Thanks to the large variety of abundant isotopes and available interaction strengths, yt-
terbium is particularly suitable for the investigation of many-body physics with ultracold
mixtures [66, 255].

Scattering between ground and metastable atoms

More recently, also the scattering properties between the two lower-lying 1S0 and 3P0

states in the fermionic isotopes5 have been studied [124, 176, 280, 281]. Such studies are
motivated on one hand by the strong interest in the 3P0 metastable state as a resource for
quantum simulation prospects, and on the other hand by the demand of collision shifts
characterisation in optical lattice clocks [90]. The characterisation of the inter-orbital
collisions in 173Yb is an important part of this work and a detailed discussion on the deter-
mination of the scattering parameters is found in Chapter 6, together with the verification
of their nuclear spin independence. We report here only the results for 173Yb and 171Yb,
summarised in Table 2.6, extracted from the references indicated next to each value.
A very large symmetric-antisymmetric scattering length difference �aeg = a+eg � a�eg ⇡
3000 a0 in 173Yb has been confirmed by two independent studies [124, 176], indicating
in turn a large exchange coupling between the two lower-lying electronic states of this
isotope (see Eqs. (1.42b) and following). An evaluation of the exchange coupling in 171Yb
is unfortunately not yet available, as measurements on this isotope were so far performed
in very low-density spin-polarised samples where only two s-wave scattering channels are

5In addition, the elastic and inelastic collisions between the ground state and the 3P2 state have been
studied in bosonic isotopes and the elastic interaction strengths were found to be magnetically tuneable [91].
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Isotope 173Yb 171Yb

ag g 199.4(21) [226] �2.8(36) [226]
a+eg 3300(300) [176] n/a
a�eg 219.5(29) [124] �25(25) [281]
aee 306.2(106) [124] n/a

�+eg 3.9(16)⇥ 10�13 [124]
��eg < 3⇥ 10�15 [124]

3(2)⇥ 10�11 [280]

�ee 2.2(6)⇥ 10�11 [124] 5(3)⇥ 10�11 [280]

Table 2.6 – Scattering lengths (s-wave) in units of a0 and inelastic loss rates in cm3/s for the 1S0 and 3P0 states
of the fermionic ytterbium isotopes. The reported inelastic rate coefficients �+

eg

and �
ee

for 173Yb were mea-
sured in quasi-2D ensembles (see Section 6.3 for more details). The inelastic rate coefficients �

eg

and �
ee

measured in 171Yb contain also the contribution of p-wave collisions.

available [280, 281]. Given that interactions between ground state atoms of 171Yb are
practically absent, an experimental evaluation of the exchange process strength is of high
interest, as 171Yb could represent a completely exchange-dominated system.
Inelastic collisions were investigated as well in both isotopes (see the bottom rows of Ta-
ble 2.6). In 173Yb, as long as metastable atoms are kept isolated from each other, the
system was found to be stable over the experimental time scales [124] (see Section 6.3).
Similar studies have been also performed on 87Sr [214, 282, 283], revealing a much
smaller exchange coupling with �aeg ⇠ 100 a0 ⇠ ag g , which makes this element rather
unsuitable for realising exchange-dominated many-body systems, such as the Kondo lat-
tice model.

2.2 All-optical cooling to degeneracy

In order to produce quantum degenerate gases of Yb, a procedure involving at least three
stages of slowing-cooling is necessary. First, atoms out of a thermal beam are decelerated
inside a Zeeman slower (ZS) working on the strong dipole-allowed 1S0!1P1 transition,
which is designed to slow them down to velocities of only a few m/s. Subsequently, the
cooling starts by capturing the slow atoms in a magneto-optical trap (MOT) working on
the narrow 1S0!3P1 intercombination transition. After loading the MOT for a sufficient
time, a suitable smooth variation of the different MOT parameters yields a sample with
N ⇡ 5⇥107 atoms at T ' 20µK, although the final density and temperature are dependent
upon the chosen isotope. The third stage of cooling starts after loading the laser-cooled
sample to a crossed optical dipole trap (ODT), where evaporative cooling is performed
leading to quantum degeneracy. The different stages of the cooling procedure will be
described in this Section, whereas technical details about the laser system and the optical
setup can be found in Chapter 3. An illustration of the laser configuration used to cool
and trap the atomic samples in the centre of the vacuum chamber is given in Fig. 3.6.
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2.2.1 Zeeman slowing

Unlike many alkali atomic species, alkaline-earth-like (AEL) elements generally have a
high melting point and a low vapour pressure and ytterbium is not an exception (see
Fig. 3.3). High temperatures are therefore needed to produce a thermal atomic beam
with sufficient flux, and Zeeman slowing is the usual approach to bring a large portion
of atoms inside the capture velocity range of a MOT [15]. A clear advantage of AEL
atoms over alkali species is the much lower Doppler temperature which can be achieved
in MOTs thanks to narrow-line cooling on the intercombination line. This benefit however
comes at a price: owing to the small natural linewidth of the intercombination transitions,
such MOTs have very low capture velocities and appropriate measures have to be taken
in order to provide efficient loading. The direct loading of an intercombination MOT is
very desirable, in comparison to schemes with a first cooling stage in a MOT operating
on the strong 1S0!1P1 transition followed by a transfer to a narrow-line MOT. For some
AEL atomic species, e.g. strontium, the latter strategy is the only practicable option, as
the 1S0!3P1 intercombination transition is simply too narrow for any other approach to
work. For ytterbium on the other hand, direct loading of a green intercombination MOT
can be implemented by a careful design of the ZS and considerable line broadening of the
intercombination transition during the initial loading stage.

The ytterbium broad blue transition is very effective for slowing, offering a high scat-
tering rate with consequently very short ZS setups (L ⇠ 30 cm) and relatively large capture
velocity, in comparison to standard alkali atom slowers with typical lengths L ⇠ 1m. Al-
ternative approaches have been pursued as well, involving the use of dispenser sources in
combination with a two-dimensional MOT, which make a ZS unnecessary [248]. However,
we have chosen to implement a conventional atomic oven and a ZS, which can provide
a sufficient flux of slow atoms to directly load a green intercombination MOT. In gen-
eral, heated reservoir atomic sources have a longer lifetime in comparison to dispenser
sources. Moreover, a ZS provides a rather isotope-independent performance by working
on the stretched 1S0!1P1 transition, with the only demand of requiring a rather large
light intensity Is ¶ Isat = 60 mW/cm2 to saturate such a broad transition (see Table 2.2).
Although the ZS increases the longitudinal size of the vacuum system, the length of the
narrow ZS tube is conveniently exploited to maintain a large pressure difference between
the main vacuum chamber and the oven vacuum section (see Section 3.1 for more details).

We have opted for an increasing field ZS design. This configuration presents a key
advantage compared to a decreasing field design due to the sudden change of the field
at the end of the solenoid: the ZS light detuning to the resonance for atoms at rest is
maximum for zero magnetic field. Consequently, a large detuning is present at the MOT
location, which minimises the losses due to the ZS light radiation pressure on the cloud
trapped in the intercombination MOT during the loading. Furthermore, atoms go quickly
out of resonance at the exit of the slower; hence the radiation force abruptly decreases
and the exit velocity of the atoms can be cleanly tuned by the ZS light detuning. An
increasing field configuration is additionally less sensitive to laser frequency and intensity
fluctuations, as the exit velocity is intrinsically less dependent on the ZS light parameters
than for the decreasing field variant [284].
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The ZS operates on a so-called stretched state transition: 1S0 (F , mF = ±F) ! 1P1 (F 0 =
F+1, mF 0 = mF ±1). The slowing light is circularly polarised and the excited state can only
decay back to the original mF state by emitting a circularly polarised photon. In the case
of an increasing-field ZS, a negative (red) light detuning �s is necessary to compensate
the positive Doppler shift �!D = ksv of the atomic transition at the beginning of the
slower (ks = 2⇡/�s is the wave vector of the ZS laser light, with �s = 398.9 nm, and v is
the atom velocity). A negative Zeeman shift is therefore needed to bring into resonance
the red detuned slower light, which must hence be ��-polarised. The lack of hyperfine
structure in the ground state of ytterbium is beneficial in this context: a single transition
is available at any magnetic field, as no level crossings between different hyperfine level
manifolds exist. No additional radiative decay channel is therefore present, except the
extremely weak above-mentioned decay path from the 1P1 state to the triplet states (see
Section 2.1.2). The transition frequency Zeeman shift in a field with magnitude B is given
by:

�!(B) = (gF 0 mF 0 � gF mF )
µB

~h B ' gF 0 mF 0
µB

~h B , (2.7)

where the approximation holds as gF 0
�

1P1
�
� gF

�
1S0

�
(see Eq. (2.2)). For the stretched

transitions, gF 0 = gJ 0/(I + 1) and |gF 0 mF 0 | ' 1 for all isotopes up to corrections of order
10�2 (see Table 2.2 and Eq. (2.2)), and for the ��-transition we can therefore write:

�!�(B)' �µB

~h B (2.8)

The maximum Zeeman shift in the slower determines the minimum required light
detuning �s:

Min |�s|=
���!�(Bmax)

�� (2.9)

which can be increased (in absolute value) to yield a positive exit velocity. The capture
velocity vc and the exit velocity vf follow from the light detuning:

ksvc = ��s (2.10)

ksvf = �!�(Bmax)��s (2.11)

The ZS beam detuning �s can thus be used for the fine tuning of the atom exit velocity
from the ZS, which is approximately their velocity when they reach the MOT location.

The coils in our ZS setup are designed to deliver a maximum magnetic field Bmax '
650 G, which corresponds to vc ' 360 m/s and a light detuning �s ' �2⇡ · 900 MHz (for
details on the slower solenoid see Section 3.1.3). The ZS solenoid is 35 cm long, which is
substantially longer than the minimum length Ls ⇡ 25 cm required for operation at a light
intensity Is = Isat. The design is thus rather conservative: operation with a light power
Ps ⇡ 100mW (corresponding to Is ⇡ 2Isat for a beam waist of ws = 5mm) is optimal but the
performance is sufficient also at considerably lower light powers down to 60 mW, below
which the loading rate of our MOT rapidly drops. The ZS beam size is decreasing along
its path towards the oven source collimation section, in order to match the divergence of
the atomic beam, and has a waist ws0 ' 4mm at the ZS input position and ws1 ' 7mm at
the ZS output position.
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Thermal beam velocity

In our experimental setup, an atomic beam of ytterbium is produced by heating atoms
out of a reservoir through an array of collimation tubes (for details on the atomic oven
system see Section 3.1.1). Additional transverse velocity selection is provided by a differ-
ential pumping tube section placed ahead of the ZS entrance flange, where by geometrical
constraints the beam has a maximum full divergence of approximately 10 mrad. The dis-
tribution of velocities in the atomic beam along the direction of propagation must be taken
into account, in order to design a ZS with an appropriate maximum capture velocity vc

and efficiently decelerate a significant portion of the velocity distribution. For a colli-
mated atomic beam, the velocity along the beam axis is much larger than the transverse
velocity. The distribution Pv(T ) of longitudinal velocities v as a function of the reservoir
temperature T can then be written as [285]:

Pv(T )'
1
2

Å
M

T kB

ã2
v3 exp

✓
�M v2

kB T

◆
(2.12)

where M is the atomic mass of ytterbium and kB is the Boltzmann constant. The typical
temperature of operation of our atom source T ⇠ 400 �C leads to an average longitudinal
velocity v̄ ⇡ 340m/s. By integrating Pv(T ) up to our design capture velocity vc = 360 m/s,
we estimate that ⇠ 60% of the beam velocity distribution is captured in the slower.

Slower magnetic-field design

In order to directly load the narrow-line green MOT, a very small exit velocity vf from
the ZS is necessary, due to the small capture velocity vMOT of such a MOT. For very small
final velocities, the transverse heating of the decelerated atoms due to the spontaneous
re-emission of the blue ZS photons becomes important. The longitudinal and the trans-
verse velocities become comparable at the end of the ZS, i.e. the slow atom beam acquires
a large divergence angle when exiting the ZS. When leaving the ZS, the slowed atomic
beam consequently expands very quickly to a size larger than the MOT capture region,
determined by the MOT beam waist size.
In order to minimise the detrimental effect of a large beam divergence on the loading
of the MOT, the distance between the exit location of the ZS and the centre of the MOT
quadrupole B-field should be kept as short as possible. In our setup this is achieved by
means of a specific design of the ZS last solenoid coil section and of the vacuum flange
connecting the ZS tube to the main vacuum chamber (see Section 3.1 for the design de-
tails). A distance of just approximately 6 cm has to be traversed by the atoms to reach the
centre of the MOT region. Additionally, the last ZS coil has a small diameter of just 18 mm
and a thickness of 7 mm, in order to generate a very abrupt decay of the B-field magnitude
in the direction of the MOT location. A semi-classical numerical simulation was performed
to verify the effect of the transverse heating during the slowing, and theoretically estimate
the loading rate of the MOT. We estimate a mean final transverse velocity v̄T

f ' 1.8m/s
and expect that approximately 1% of the atoms entering the ZS tube are decelerated be-
low a MOT capture velocity vMOT = 8 m/s and reach the MOT centre within a region of
radius rMOT = 7 mm. The observed loading rate of the MOT (see below) roughly matches
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the expected values from the simulation, assuming an atomic flux � ⇡ 1 ⇥ 1010 atoms/s
entering the ZS for 174Yb (see Eq. (3.2) and measured values).

Zeeman slowing of 173Yb

An unfortunate coincidence leads to some complications when the ZS is tuned to oper-
ate on the 173Yb isotope: the hyperfine transition F = 5/2 ! F 0 = 5/2 has a shift of
�840MHz from the ZS transition F = 5/2! F 0 = 7/2 (see Fig. 2.3). The design ZS detun-
ing �s = �2⇡ · 900 MHz therefore tunes the light into near-resonance with the unwanted
hyperfine transition for all atoms with a low velocity. When atoms leave the slower, they
occupy the 1S0 (F = 5/2, mF = �5/2) state and they are dark to ��-polarised light reso-
nant to the F = 5/2! F 0 = 5/2 transition. On the other hand, as soon as they are captured
in the MOT, cycling on the 1S0!3P1 transition pumps them to different mF states. The
ZS light then pushes them away from the MOT region by driving the F = 5/2! F 0 = 5/2
transition and all atoms are rapidly lost from the MOT.
As the ZS transition linewidth is power broadened by a factor of 1.5, one must neces-
sarily increase or decrease the detuning substantially, to have several �blue between the
ZS light frequency and the F = 5/2 ! F 0 = 5/2 resonant frequency. In our setup, the
solution which produced the best performance is a reduction of the light detuning to
�s = �2⇡ · 650 MHz, equivalent to �(F = 5/2! F 0 = 5/2) ' 7 �blue. This detuning corre-
sponds to a reduced capture velocity vc ' 260 m/s and a B-field maximum Bmax ' 450 G.
The performance of the ZS is obviously worsened compared to other isotopes because of
the lower ZS capture velocity, but still fully sufficient for loading the intercombination
MOT to approximately a third of the maximum atom number attainable with 174Yb (see
Section 2.2.2). However, atoms trapped in the MOT experience a significant radiation
force by the ZS light, owing to the reduced detuning from the main ZS transition and
from the supplementary hyperfine transition. A considerable improvement in the oper-
ation of the MOT is obtained by blocking the top part of the slower laser beam with a
metal blade and by displacing the centre of the quadrupole B-field up by few millimetres,
in order to minimise the overlap between the blue beam and the atomic cloud trapped in
the MOT. The geometric shape of the 173Yb cloud during the MOT loading is nonetheless
largely influenced by the blue light beam.

2.2.2 Magneto-optical trapping on the intercombination transition

The green intercombination transition in ytterbium is almost perfectly closed and therefore
well suited for magneto-optical trapping. Its natural linewidth is small, yet sufficiently
strong to support an atomic cloud against gravity. The maximum achievable acceleration
through photon scattering equals �green~hk/2M ⇡ 2⇥103 m/s2, which is indeed much larger
than the gravitational acceleration. For lighter AEL atoms with narrower intercombination
lines, gravity can play a big role in MOTs, e.g. in strontium [276, 286, 287], or even
preclude the possibility of narrow-line MOT. In the latter case, the only method to cool
on the intercombination line is quenching the 3P1 state with other shorter-lived states to
increase the photon scattering rate, e.g. in calcium [288]. The first intercombination MOT
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Cooling stage Duration (s) Detuning (� ) Intensity (Isat) Gradient (G/cm)

Zeeman slowing 8
174Yb: �31 ⇠ 2 n/a173Yb: �22

MOT (loading) 8.25 �35 400 2.0
MOT (compression) 0.16 �7 0.1 9.5

Table 2.7 – A summary of the experimental parameters used for the different stages of the laser cooling.

for ytterbium was reported in 1999 by the Kyoto group [289] with direct loading from a
ZS. Narrow-line laser cooling represents an interesting subject in its own right and has
been extensively studied with strontium atoms [287, 290]; we will limit ourselves to a
brief description and report our experimental conditions. The operation parameters for
our MOT on the 1S0 (F = I)! 3P1(F 0 = F + 1) transition are summarised in Table 2.7.

Capture velocity

An especially important parameter for the efficient loading of a narrow-line MOT is the
capture velocity vMOT, i.e. the highest velocity for which an incoming atom will be cap-
tured inside the MOT region. In order to estimate the actual capture velocity of the MOT,
two trap parameters need to be specified: the size of the MOT region, determined by
the laser beam waists wMOT, and the quadrupole field gradient6 A. The waist size of the
MOT beams in our setup is wMOT ' 6mm, that was chosen as a trade-off between a high
intensity and a sufficient trap volume. Six independent MOT beams are used, with a
power PMOT ' 60mW in each beam during the loading phase, equivalent to an intensity
IMOT ' 400 Isat.

The highest attainable MOT capture velocity is given by assuming that the light is
constantly tuned to resonance while an atom traverses the entire MOT region. As IMOT�
Isat, the radiation force at resonance is Fmax ' �green~hkMOT/2, with kMOT = 2⇡/�green. By
energy conservation we can write:

vMOT, max =
Å

2~hkMOT

M
�green wMOT

ã1/2

' 8m/s (2.13)

Such a moderate capture velocity is still compatible with the performance of our ZS, as
for vf = 8 m/s the slowed atom beam has a radius of approximately 1.4 cm at the MOT
position, and a large portion of atoms is therefore hitting the MOT region. On the other
hand, a capture velocity close to this upper limit needs to be achieved, by adopting a
large MOT light detuning �MOT and by power broadening the laser spectrum7. The power
broadening assures that the cooling light is absorbed by the atoms located across the entire
MOT region, as long as |�MOT|⇠ �E = �green

p
1+ IMOT/Isat.

6Here, A denotes the gradient in the plane orthogonal to the MOT coils axis; in the usual anti-Helmholtz
configuration, the axial gradient is simply twice as large.

7In our experiment, the transition power broadening provided by the high laser intensity turns out to
be sufficient. In other experimental setups, the required broadening is realised by means of a frequency
modulation of the MOT light (see e.g. [88, 289]).
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In a one-dimensional configuration with a single beam directed against the incoming
atom direction8, we can write the resonance condition for an atom in the MOT at position
x with velocity v:

kMOT v +
µ0

~h A x +�MOT = 0 (2.14)

where µ0 is the magnetic moment of the excited state. kMOT v and µ0 A x/~h= gF 0 mF 0µB A x/~h
are the Doppler and the Zeeman shifts of the cooling transition respectively (see Eq. (2.7)).
For the stretched MOT transitions 1S0 (F , mF ) ! 3P1(F + 1, m0F = mF ± 1), |µ0| ' 1.5µB

for both bosonic and fermionic isotopes (see Eq. 2.2 and Fig. 2.5). With a detuning
�MOT ' �1.7 �E = �35 �green and a gradient of 2 G/cm (see Table 2.7), atoms entering the
MOT are captured when their velocity is below9 vMOT = 5 m/s, found by setting x=�wMOT

in Eq. (2.14). For an atom with velocity v < vMOT, the Doppler shift is exactly compen-
sated by the light detuning and the Zeeman shift at some position �wMOT < x < wMOT

where the atom tunes into resonance with the cooling light and is then eventually decel-
erated to zero velocity. In order for the light to slow the atoms to rest, the field gradient A
cannot be arbitrarily large: the decelerating radiation force of the MOT beams can never
overcome its resonant value Fmax. From Eq. (2.14) we can write:

����
dv
dx

����=
µ0A
~hkMOT

,
dv
dx
=

1
v

dv
dt
 Fmax

M v
(2.15)

From this we obtain the maximum quadrupole gradient which can be used in order to
capture atoms up to vMOT:

Amax =
~h2k2

MOT

2M

�green

µ0 vMOT
' 3.7G/cm (2.16)

Using a gradient A < Amax leads to a smaller capture velocity (see Eq. (2.14)), but it
allows a larger trap volume, which is desirable to minimise light-induced atom losses and
heating, and to maximise the overlap with the divergent ZS atom beam.

Loading of the bosonic MOT

The bosonic isotopes do not possess any magnetic substructure in the ground state and the
MOT operates therefore on the two F = 0! F 0 = 1 stretched transitions with �mF = ±1.
Due to the large detuning |�MOT| > �E , the cooling light is resonant with the atomic
transition only in an ellipsoidal shell where the Zeeman shift balances the detuning, and
atoms at the centre of the MOT are tuned out of resonance. The radius of the shell is
given by ~h|�MOT|/(µF 0A) and its thickness by ~h�E/(µF 0A). For our parameters A= 2.0G/cm
(axial) and |�MOT|= 35 �green, the shell has a radius of 2.5 mm and a thickness of 1.5 mm,

8The usual experimental configuration involves two beams with an angle of 45� each to the direction
of the incoming atoms velocity. The radiation forces from the two beams simply add up to

p
2 times the

radiation force of each single beam. We moreover neglect the radiation force of the beams propagating in the
same direction as the atoms, since their detuning adds up to the negative Doppler shift, tuning them out of
resonance.

9In reality, the capture velocity is expected to be close to 7m/s, as a considerable radiation pressure is
provided also out of resonance owing to power broadening, down to a detuning of �45�green.
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Figure 2.6 – (a) A photo of the bosonic MOT during the loading in a field gradient A = 1.3G/cm with |�MOT| =
35�green. A dark region is clearly visible in the centre. (b) Loading and discharge of the bosonic MOT with
A = 2.0G/cm, |�MOT| = 35�green and IMOT ' 400 Isat. After 15 s of loading, the atom number in the
MOT reaches its steady-state value. A loading time of 8 s is used for the experiments reported in this thesis,
marked by a red line. After turning off the ZS, the lifetime of the MOT is measured. Even at a low gradient,
density-induced atom losses in addition to the exponential background losses are visible. The dashed line
is an exponential fit for t > 25 s to the detected fluorescence, yielding a lifetime of 12 s (at the date of this
measurement, the vacuum background was P ' 5⇥ 10�10 mbar).

and the MOT characteristic hollow ellipsoid shape is visible by eye in 174Yb (see Fig.
2.6(a)). The atom fluorescence detected during the loading and the successive discharge
of the the 174Yb MOT is shown in Fig. 2.6(b). A loading time of 8 s is used in typical
experimental sequences, which allows to trap more than 70% of the steady-state MOT
atom number10 N ⇡ 1⇥ 109, with a loading rate �MOT ⇡ 1⇥ 108 atoms/s.

Loading of the fermionic MOT

In 173Yb, although the Zeeman splitting of the MOT transition is dominated by the Zeeman
shift of the 3P1 state, a nuclear substructure is present in the ground state (see Eq. (2.7)
and Fig. 2.5(b)). Due to the lower substructure, a fundamentally different operation of the
MOT is realised for 173Yb. First of all, the orientation of the field gradient in the MOT needs
to match the orientation of the gradient in the ZS: atoms exit the �� slower in the mF =
�5/2 state and, in order to be decelerated and captured, they must absorb ��-polarised
light from the MOT beams countering their motion, resonant with the stretched transition
[289]. Another consequence of the mF 0-dependent Zeeman shift is that the strength and
even the orientation of the radiation forces in the MOT become mF -dependent. Let us
briefly explain why this is the case (a complete discussion can be found e.g. in Ref. [276]).
With all lower mF states populated, the light of one MOT beam at a given B-field strength
can be seen by the atoms as resonant, red-detuned, or blue-detuned depending on the

10The loaded atom number is calibrated via MOT fluorescence detection with a small NA and the given
value N should therefore be taken only as a rough estimate.
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value of mF and on the light polarisation (see Fig. 2.5(b)). For a given light detuning,
the different mF states are therefore tuned to resonance by the Zeeman shift at different
locations. Along the x direction, for B = A x , each state with mF > 0 (mF < 0) is tuned to
resonance with the �+-polarised and ��-polarised MOT beams at two locations x > 0 (x <
0). The �+-polarised (��-polarised) beam coming from x < 0 (x > 0) pushes the atoms
towards x = 0 only when they are located at x < 0 (x > 0), and pushes them otherwise
outwards11. A stable steady-state operation of the MOT is nevertheless guaranteed by
the favourable transition strength difference between the �±-polarised transitions (see
Appendix A). An average restoring force is generated in this way over many absorption
processes, yet the force in the fermionic MOT is reduced compared to the bosonic MOT.
Furthermore, as every mF state is resonant at a different distance from the MOT centre,
the characteristic geometric shell-like structure of the 174Yb MOT is not observed in the
173Yb MOT.

The optimal loading performance of the 173Yb MOT is obtained by displacing the
quadrupole field centre and the beam centres by ⇡ 4 mm above the ZS beam. A maxi-
mum atom number N ⇡ 3⇥ 108 can be loaded in t ' 20 s, corresponding to about a third
of the bosonic MOT steady-state atom number. The MOT alignment and loading parame-
ters are however optimised to achieve the largest atom number after a time of 8 s, and
further fine-tuned to yield the highest transfer efficiency to the dipole trap.

Compression and cooling of the MOT

After the loading is completed, the ZS light and all magnetic coils except the MOT
quadrupole coils are turned off. At the same time, the current in the MOT coils is changed
to compensate for the switch-off of the ZS compensation coils and ensure a sufficient field
gradient. The MOT is held in this configuration for 200 ms in order for all parasitic fields
to have completely decayed, before the compression phase is started so as to complete the
transfer into the dipole trap.

The compression phase is aimed at greatly increasing the density of the MOT while
drastically reducing its temperature, in order to achieve the highest possible transfer effi-
ciency to the optical dipole trap. The field gradient, the light detuning and the light power
are varied in 60 ms to reach their respective final values A = 9.5 G/cm, |�MOT| ' 7 �green

and IMOT ' 0.1Isat. Simultaneously, the dipole trap beams are turned on, so that atoms
are cooled into and inside the trap. The MOT light is eventually turned off after 100 ms
of additional cooling in these conditions. We note here that the MOT parameters in this
last cooling stage are optimised exclusively to maximise the number of atoms loaded into
the dipole trap after the MOT has been turned off. At the end of the cooling stage, our
typical 173Yb samples contain N ' 5⇥107 atoms at a temperature of T ' 20µK, measured
by time-of-flight absorption imaging. The final temperatures are slightly higher in 174Yb
samples with T ' 30µK, which matches the expected Doppler temperature at a detuning
|�MOT|' 7 �green, consistently with the absence of Sisyphus cooling in the bosonic isotopes
[266]. The sample size is narrower in the vertical direction, with an aspect ratio around

11In conventional MOTs, like the bosonic ytterbium MOT or alkali atom MOTs, only the �+-polarised (��-
polarised) beam is tuned to resonance by the field gradient for x < 0 (x > 0).
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3:1, due to the MOT quadrupole field anisotropy as well as to the effect of gravity, which
becomes important when the light intensity is drastically decreased at the end of the cool-
ing. A compressed MOT volume on the order of 5 ⇥ 10�4 cm3 leads to a mean density
n ⇡ 1011 atoms/cm3. The final attainable temperature in the high-density regime is very
likely limited by heating due to the reabsorption of photons and by inelastic light-induced
collisions [131]. Lower temperatures, down to T ' 15µK, can indeed be reached using
smaller samples and a smaller detuning, resulting however in an overall reduction of the
atom number loaded into the dipole trap.

In order to transfer the atoms from the compressed MOT into the dipole trap, the
spatial overlap in the vertical direction must be maximised. For this purpose, the vertical
position of the compressed MOT is adjusted to exactly match the position of the dipole
trap beam via an additional homogenous B-field. This vertical offset field can be finely
regulated by changing the current in a thin coil, wound concentrically to one of the MOT
coils.

2.2.3 Optical crossed dipole trap

Due to the unfeasibility of magnetic trapping of ytterbium, the optical dipole trap has to be
directly loaded from the MOT. It is preferable in this condition to use a crossed dipole trap,
consisting of one very intense horizontal beam and a weaker vertical beam intersecting at
the position of the potential minimum. The main contribution to the trapping potential is
given by the horizontal beam, which supports the atoms against gravity and largely dom-
inates the trap depth. The vertical beam increases the confinement along the horizontal
beam propagation axis, which would be otherwise too weak to sustain the evaporative
cooling to degeneracy.

In our setup, the crossed optical dipole trap (ODT) is formed by two laser beams at
a wavelength �DT = 1064 nm. The first beam (HDT beam) is aligned horizontally and
travels at a small angle from one of the MOT beams. The second beam is instead nearly
vertically aligned, with an angle of approximately 20� to the z-axis (see Fig. 3.6). The
geometric configuration of our crossed ODT is shown in Fig. 2.7. The HDT beam has an
elliptic profile, and it is focused onto the atoms with a horizontal waist size wHDT h = 17µm
and a vertical waist size wHDT v = 90µm. Differently, the VDT has a circular profile, with a
waist size of wVDT = 190µm. Both ODT beams are turned on at the beginning of the MOT
compression stage, and atoms are therefore continuously loaded into the trap, as soon
as a good spatial overlap is attained and their temperature drops below the trap depth
threshold. With a HDT beam power PHDT ' 11W and VDT beam power of PVDT ' 1W, we
obtain an initial trap depth V0 ' 170µK. We achieve a transfer efficiency from the MOT
of approximately 20%, corresponding to N ' 107 atoms remaining in the ODT after 1 s of
hold time at the initial trap depth.

Before describing the evaporation sequence, we briefly explain the main reasons for
the use of a horizontal elliptic beam instead of a circular one, especially since the ODT is
directly loaded from the MOT. First of all, as the shape of the MOT is anisotropic, a good
spatial overlap is obtained by using a beam with a similar aspect ratio. Moreover, during
the evaporation atoms leave the trap predominantly along the vertical direction assisted
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Figure 2.7 – Dipole trap potential profiles along the three spatial directions with PHDT = 0.5W and PVDT =
7W (gravity is not included). Here, x 0 and y 0 indicate respectively the axis of propagation of the HDT beam and
the horizontal axis orthogonal to x

0. (a) Trap potential generated by the HDT beam alone. (b) Trap potential
generated by both beams crossed at the origin.

by gravity, and a tight vertical confinement is beneficial. Once an atom leaves a collision
with a large kinetic energy, a high vertical trap frequency helps expelling it as quickly as
possible, before it can release its energy again to the rest of the gas via further collisions.
Therefore, the vertical trap frequency should ideally be large compared to the gas mean
collision rate.
On the other hand, a very tight vertical confinement produces an increase of the sample
density, and should be counterbalanced by a looser transverse confinement to avoid three-
body losses. Since the elastic collision rate scales as/ n a2 with the density n, while the
three-body loss rate scales as/ n2 a4 [131, 134], the optimal initial density depends on
the scattering properties of the atoms. With our large initial atom numbers N ⇠ 107 and
the rather strong interactions of 173Yb (see Table 2.5), it is desirable to start with a large
trap volume and a moderate mean trap frequency [87, 276]. The density (and therefore
the collision rate) can eventually be enhanced during the evaporation under the influence
of the VDT beam, in order to enhance the evaporation. For a given power and trap depth,
an elliptic beam represents the best trade-off between a large initial trap volume and
sufficiently high trap frequencies.

Evaporation in the crossed dipole trap

With our trap geometry and the beam powers reported above, we obtain the trap frequen-
cies !v = 2⇡ · 1.67kHz in the vertical, !t = 2⇡ · 315Hz in the transversal (horizontal)
and !a = 2⇡ · 19Hz in the axial (horizontal) direction, corresponding to a mean trap
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frequency !̄ = (!v!t!a)1/3 = 2⇡ · 215 Hz. The naming refers to the HDT beam direc-
tions. The evaporation starts with a hold time of 1 s in the ODT after the MOT has been
turned off, during which the density in the central region increases considerably due to
damping of the in-trap collective motion. Subsequently, the power of the HDT beam is
exponentially decreased in approximately 14 s to a value of PHDT ' 350mW, which can be
adjusted to vary the final atom number. At the same time, the power in the VDT beam
is increased up to PVDT ' 3W to partially compensate the rapid decrease in the axial trap
frequency and maintain an adequate collision rate. Owing to the effect of the VDT beam,
the horizontal trapping geometry becomes more and more isotropic as long as the evap-
oration progresses. During the last 5 s of evaporation, the VDT beam power is ramped
to reach its final value, producing the desired final axial trap frequency !a. The redis-
tribution of power between the two dipole beams during the evaporation is achieved by
means of a rotating motorised wave-plate, which varies the power splitting between the
two beams at the laser source. A smaller VDT beam would allow to speed the evapora-
tion by increasing the collision rate, but would reduce the trap volume and the trappable
atom number N . We recently reduced the VDT beam size to wVDT = 130µm with the goal
of producing smaller but colder degenerate samples, exploiting the considerably larger
attainable trap frequencies, especially in the last part of the evaporation. Typical trap fre-
quencies after the evaporation are (!a, !t , !v) = 2⇡ · (8(1), 27(1), 220(5))Hz, obtained
with PHDT ' 0.5W and PVDT ' 1W, or (!a, !t , !v) = 2⇡ · (10(2), 41(3), 375(10))Hz, ob-
tained with PHDT ' 1W and PVDT ' 1.5W (see Fig. 2.7 and measurement in Fig. 2.8). The
final gas can be made almost completely isotropic by using a final PVDT ' 7W, which yields
an axial frequency !a ' 23Hz. Such a pancake-shaped trap geometry is optimal to load
only a small number of sites in the vertical optical lattice (see below).

2.2.4 Degenerate gases of ytterbium

By means of the evaporation sequence described above, quantum degenerate gases of
both 174Yb and 173Yb can be produced. These two isotopes are the most practical for the
production of Bose-Einstein condensates and degenerate Fermi gases respectively, owing
to their large natural abundances and their large positive ground state scattering lengths
(see Table 2.5). The atom number N in the final degenerate gas can be tuned by slightly
changing the final HDT beam power and by decreasing the initial HDT beam power, in
order to initially load a smaller sample into the ODT. In the following, a brief summary of
typical parameters of our Bose-Einstein condensates (BEC) of 174Yb and degenerate Fermi
gases (DFG) of 173Yb are presented. To conclude this Chapter, we illustrate the loading of
the degenerate gases into a three-dimensional magic optical lattice.

Bose-Einstein condensation

The first condensation of 174Yb in our experimental setup has been achieved with a differ-
ent trap geometry from the one described above. The trap geometry has been subsequently
adapted to the production of Fermi gases and to the use of the VDT beam as an additional
variable confinement applied while atoms are trapped into the optical lattice. For this
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. The measured position along the x -axis in (a) and (c) is
affected by both the axial and the transverse motion (see optical setup in Fig. 3.6).

reason, the ODT volume and the evaporation ramp are not optimised for the production
of BECs of 174Yb and by adjusting it larger BECs could be attainable.

The last stage of the transition from a thermal gas of 174Yb to a nearly pure BEC is dis-
played in Fig. 2.9. The condensate fraction in the gas is estimated by a two-dimensional
combined Gaussian-parabolic fit. A final atom number just below N ' 2 ⇥ 105 in the
condensate is reached, clearly exhibiting the characteristic parabolic Thomas-Fermi den-
sity distribution and anisotropic expansion behaviour. The ODT trap frequencies at the
moment of the release are as in Fig. 2.8(a), implying a much tighter confinement in the
vertical direction than in the horizontal ones. This leads to the observed broader momen-
tum distribution along the vertical axis. The observed aspect ratio is further explained by
the presence of strong interactions with a ' 105 a0 during the expansion, which broaden
the cloud especially along the x-direction, i.e. the one characterised by the narrow mo-
mentum distribution.
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Figure 2.9 – Bose-Einstein condensation of 174Yb. (a)-(c) Time-of-flight absorption images for different values
of the final HDT beam power when the gas is released. (c) The condensate fraction N

c

/N reaches nearly
unity below N ' 2⇥ 105 atoms, with no thermal component visible.

Degenerate Fermi gases

Efficient evaporative cooling to degeneracy of individual fermionic atomic species is only
possible by using a mixture of internal states (without resourcing to sympathetic cooling
with another isotope or species). In this respect, 173Yb is well suited for direct evaporation
in a spin mixture, with a total of six nuclear spin states and a large scattering length
a ' 200 a0.

The final attainable temperature is nevertheless limited by the so-called Pauli blocking
of evaporation. At temperatures well below degeneracy T Æ 0.5TF , with TF being the
Fermi temperature of the gas (see Appendix B for an expression of TF and more details
on Fermi gases), the occupation of trap states becomes dense below the Fermi energy. As
atoms can only scatter into unoccupied final states due to Pauli exclusion, the scattering
rate is gradually reduced when the gas temperature decreases below TF . Evaporative cool-
ing is based on the continuous thermalisation of the gas while the trap depth is lowered,
and becomes very inefficient below Fermi degeneracy. In order to compensate the lack of
thermalisation in the last stage of the evaporation to Fermi degeneracy, the trap depth re-
duction needs to be slowed down. However, technical heating effects, background losses
or three-body losses12 eventually limit the minimum evaporation speed. Due to Pauli
blocking, when the regime of insufficient thermalisation is reached, one observes a char-
acteristic halt in the cooling, and the reduced temperature T/TF remains constant even if
the trap depth and the atom number are further reduced. A larger number of spin states
is beneficial in this respect, providing a higher collision rate due to the larger number of
available scattering channels.

Time-of-flight (TOF) absorption images (see Section 4.1.1 for a description of the imag-
ing process) of 173Yb gases below Fermi degeneracy are displayed in Fig. 2.10, together
with Thomas-Fermi fits to their momentum distribution. The momentum distribution of
an ideal Fermi gas in a harmonic trap is isotropic, independent of the trap geometry, and
this is reflected in the free expansion [19]: for long expansion times t � 1/!̄ the cloud
exhibits an aspect ratio approaching unity. This is however true only in the collisionless

12Three-body loss processes in a Fermi gas are possible only if a number of spin components larger than 2
is used, due to Pauli exclusion.
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Figure 2.10 – Degenerate Fermi gases of 173Yb with six spin states. (a)-(c) The momentum distribution is
detected after a 30 ms time of flight by absorption imaging. The azimuthally integrated momentum distribution
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denotes the total atom number in the cloud. For the lowest temperatures T < 0.2T
F

(b) and (c), the deviation
of the data from the Gaussian profile is clearly noticeable.

expansion regime, whereas with strong interactions and a collision rate ⌦coll > !̄ the
expansion is anisotropic, due to kinetic energy redistribution between the different direc-
tions of propagation [19]. With our final trap geometry !̄ ¶ 2⇡·35Hz and typical densities
n⇡ 5⇥ 1012 atoms/cm3, the expansion is expected to be approximately collisionless, with
⌦coll = n�el ⇡ 2⇡ · 6Hz < !̄, calculated using Eq. (1.22). For low final VDT power how-
ever, the axial trap frequency !a is smaller than the collision rate and slight expansion
anisotropies are observed.

In order to determine T/TF from the detected momentum distributions, a two-
dimensional fit to the column density of the gas with a Thomas-Fermi density function
is performed and the gas fugacity is extracted (see Appendix B). Large gases with up
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to N ' 2 ⇥ 105 atoms at a minimum of T/TF ' 0.16 can be attained by evaporating a
six-spin mixture, whereas slightly higher temperatures are obtained if optical pumping is
performed early in the evaporation to only populate two of the spin states (for spin-state
preparation via optical pumping see Section 4.2).

Loading into an optical lattice

All experiments presented in the last Chapters of this thesis were performed with
fermionic atomic samples trapped in an optical lattice tuned to the magic wavelength
�m = 759.35 nm between the 1S0 and the 3P0 states (see Section 5.1.1). A three-
dimensional cubic lattice is generated by retro-reflecting three laser beams. The vertical
lattice beam is aligned to the z axis, whereas the two horizontal lattice beams are aligned
at ±45� from the atomic beam propagation axis. For consistency with the labelling of
the ODT axes, we will label here the two horizontal lattice axes as x 0 = (x � y)/

p
2 and

y 0 = (x + y)/
p

2. A clear illustration of the beam orientation around the main vacuum
chamber is given in Fig. 3.6. The horizontal lattice beams have an elliptic intensity
profile with a horizontal waist size wL1 h = wL2 h = 190µm and a vertical waist size
wL1 v = wL2 v = 40µm, while the vertical lattice beam has a circular profile with a waist
size of wL3 = 130µm. In order to avoid unwanted interference in the intersection region,
the horizontal lattice beams are frequency detuned from each other by 160 MHz, whereas
the vertical lattice beam is detuned by 190 MHz and 30 MHz from the two horizontal
beams.

The atoms are usually first loaded into the vertical lattice with a depth Vz ⇠ 50 Er ,
which is done by smoothly ramping up the power of the vertical lattice beam in 200 ms
and at the same time decreasing the VDT and the HDT beam powers to zero. This proce-
dure minimises the extension of the gas in the vertical direction, by reducing the number
of occupied vertical lattice sites compared to a direct three-dimensional lattice loading.
Details about the density distribution after the loading to the vertical lattice can be found
in Appendix B. The delay time between the ramp-up of the vertical lattice beam and the
ramp-down of the HDT beam is adjusted to minimise the cloud motion and the heat-
ing during the loading procedure. The heating produced by a not fully adiabatic lattice
transfer can be characterised by reloading the atoms into the ODT and performing a TOF
imaging of their momentum distribution. After optimising the beam alignment, the ramp
durations and the delay times, we attain a minimum increase in temperature T ⇡ 0.1TF

after the double transfer procedure with 173Yb. The main source of such heating is to date
still unclear, but the final temperature does not depend on the hold time inside the lattice
and we can therefore exclude technical heating from the lattice laser beams.

Subsequently, the two horizontal lattices are ramped up in 200 ms and the desired
final lattice depth configuration is reached. The depth of the lattice potential along each
direction can be independently calibrated by the standard parametric heating technique.
The lattice beam intensity is modulated and the frequency of the parametric excitation to
second excited Bloch band is determined by detecting the associated heating through TOF
imaging directly out of the lattice. By comparing the measured resonance frequency to
the calculated band structure one can deduce the actual lattice depth. Additionally, the
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along the horizontal directions. For N = 6⇥ 104 atoms (b) only very
small higher band occupations are visible, whereas for a higher atom number (c) more than 10% of the atoms
occupy excited bands.

confinement given by the Gaussian intensity profile of the red-detuned lattice beams is
characterised by means of centre-of-mass oscillations, as in the case of the dipole trap (see
Fig. 2.8(c)). For vertical lattice depths Vz = 35 Er , 42 Er and 50 Er , isotropic horizontal
confinements with respectively !x = !y = 2⇡ · 33.5(10)Hz, 2⇡ · 35.5(10)Hz and 2⇡ ·
37.5(5)Hz are measured. The geometry of the lattice beams is such that the confinement
in the horizontal plane is entirely dominated by the vertical lattice potential depth, owing
to the smaller waist size of the vertical lattice beam in the horizontal direction and to the
small vertical waist size wL1 v, wL2 v of the horizontal lattice beams. As a result of their
elliptic profile, the horizontal beams require a much lower power to generate a certain
potential depth, compared to the vertical beam, and do not contribute substantially to the
confinement in typical configurations with depths Vx 0 ⇠ Vy 0  Vz.

Absorption images collected after a TOF out of the three-dimensional lattice are shown
in Fig. 2.11, with an abrupt release of a 174Yb condensate in panel (a) and a band mapping
release of 173Yb Fermi gases in panels (b)-(c). The BEC exhibits the characteristic diffrac-
tion pattern owing to phase coherence in the horizontal lattice with depth Vh = 9 Er , with
diffraction peaks spaced by 2~hk. For deeper lattices the superfluid to Mott transition can
be observed, marked by the disappearance of the off-site coherence of the BEC [22]. Con-
versely, as Fermi gases do not exhibit any off-site phase coherence at any lattice depth, a
band mapping technique is used to inspect the state of the gas in the lattice. With two
populated spin states and total atom numbers N ¶ 6⇥ 104, atoms start occupying higher
bands (see Section 4.1.1 for a description of the band mapping technique).

We will now briefly address the reason why higher-band occupation are indeed ex-
pected already at low atom numbers for a Fermi gas of heavy atoms such as ytterbium.
Let us initially consider the loading of a free-space Fermi gas into a homogenous lattice
potential. When the loading procedure starts, the free-particle parabolic dispersion re-
lation starts developing energy gaps. In one dimension, the first band gap immediately
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opens up around an energy equal to Er . In two and three dimensions, energy gaps open
up only at finite depth and the energy along the edges of the first Brillouin zone is no
longer constant, yet the situation is qualitatively similar: the free-momentum states with
an energy below Er occupy a central circular (2D) or spherical (3D) region of the first
Brillouin zone with diameter 2~hk, filling a large part of its volume.

As the lattice depth is gradually increased, the state energies adiabatically transform
and cluster into energy bands. All free-momentum states with an energy below Er even-
tually finish up in the first Bloch band, whereas states with a higher energy transform into
higher band states. The scenario is approximately equivalent when the lattice potential is
combined with an underlying harmonic confinement. While the lattice depth is increased,
the reduction of the bandwidths gradually localises the higher-energy eigenstates in each
band at the edges of the cloud [92, 291, 292] (see also Appendix B). The states with
an initial energy above Er transform into lowest-band states localised at the wings of the
cloud only for a close to perfect adiabatic transfer. In practice, a large portion of states
with an energy above Er finish up occupying higher-band states located in the centre of
the harmonic potential, which have an energy as large as the lowest-band states located at
the wings [291]. Therefore, in order not to generate any higher bands population during
the loading within a finite loading time, the initial gas Fermi energy EF must not exceed
Er ' h · 2 kHz. Moreover, the finite gas temperature T generates finite state occupations
even above EF , with an energy width ⇠ kB T . The onset of higher band occupations is thus
expected at EF + kB T ' Er . With our mean ODT frequency !̄ ' 2⇡ · 40 Hz at the moment
of the lattice transfer and a temperature T = 0.2 TF , EF +kB T = Er for Ns ' 1.5⇥104 atoms
per spin component.

The onset of higher-band occupations is therefore expected at a total atom number N =
1.5⇥ 104 or N = 3⇥ 104 for a spin-polarised and a two-spin Fermi gas, respectively. While
the observations are in fair agreement with this estimate in the spin-polarised case (see
Fig. 5.7), for two-spin gases higher bands are nearly unpopulated below approximately 5⇥
104 atoms (see Fig. 2.11(b)). This discrepancy can be attributed to the role of interactions
during the loading, which reduce double occupancies in the trap centre as long as the
interaction energy U is larger than the thermal energy in the lattice13 [31, 167]. More
accurate theoretical estimates would require a full numerical treatment of the loading
procedure in the Fermi-Hubbard model. Moreover, the 200 ms lattice ramp time allows a
portion of the ODT states above Er to transform into lowest-band states during the first
stage of the loading. We conclude this discussion by noting that, as the recoil energy
scales like Er / 1/M , very low trapping frequencies are desirable for heavy species such
as ytterbium14. In this way the Fermi energy EF / !̄N1/3 can be kept well below Er

for large atom numbers. Optical lattices with a short periodicity e.g. � = 532nm are a
possible alternative to increase Er , however not in the presence of specific wavelength
constraints related to the simultaneous trapping of the metastable state.

13The interaction between atoms in the lowest band equals U ' h · 1kHz at Vx 0 = Vy 0 = 4 Er and Vz = 50 Er .
The interaction between atoms in different bands is lower, yet on the same order of magnitude.

14The trapping frequencies scale with !/ 1/
p

M and a heavy mass is therefore convenient to generate
low trapping frequencies with a given trap depth.
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CHAPTER 3

Experimental Setup

Since ytterbium atomic gases were initially brought to quantum degeneracy a decade ago
[52], highly diverse machines have been assembled in several laboratories. Our experi-
mental sequence is based on three stages of slowing and cooling, and was described in the
previous Chapter. In this Chapter we will present the details of the experimental appara-
tus used to produce and study degenerate gases of ytterbium, which has been originally
developed in the framework of this thesis. First, the vacuum and magnetic coil setups
are described, followed by details about the optical setup of all laser beams sent through
the main vacuum chamber. Subsequently, the laser system used to generate the necessary
light beams at various wavelengths is delineated. In particular, special attention is devoted
in the final Section to the description of the laser system for addressing the 1S0!3P0 clock
transition.

3.1 Vacuum system and magnetic field coils

The complete vacuum system is illustrated through the model given in Fig. 3.1. The
mechanical design of the system itself, its supporting structure and the laser routing as-
semblies are optimised to be as stable as possible, while maintaining a sufficient degree of
flexibility to align the different sections with each other and to avoid mechanical strains.
The main vacuum chamber represent the central part of the experimental setup: atoms
are cooled, trapped and detected inside the same octagonal steel chamber. For this reason,
nearly every laser beam in our setup is pointed and focused to the centre of that chamber.
Three optical tables are positioned at a short distance from one another in the laboratory:
the vacuum vessel is supported by the central table (termed from now on the experiment
table), while all laser systems are located on the two tables on its sides. Each optical table
is isolated inside a temperature-stabilised enclosure (⇠ 0.1�C stability), also providing a
constant downward air flow to maintain the surfaces free of dust.

The vacuum system is divided into three sections, characterised by different vacuum
pressures: (i) the oven section, where the pressure reaches P1 ' 5⇥ 10�9 mbar when the
atomic source is set to the operation temperature, (ii) the second pumping chamber sec-
tion with an intermediate UHV pressure P2 ' 3⇥10�10 mbar and (iii) the UHV main cham-
ber section with a pressure P3 ' 1⇥ 10�11 mbar. The pressure in section (i) is dominated
by the oven emission; a differential pumping tube of 11 cm length and 8 mm diameter is
used to almost fully decouple the pressure of section (ii) from section (i). The three sec-
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Figure 3.1 – CAD model of the experiment vacuum system. The entire vacuum vessel and its support structure
are displayed, while all protective enclosures and optical assemblies are omitted. The three principal vacuum
sections are labeled. The main octagonal UHV chamber provides good optical access by means of two large
CF100 silica viewports on top and bottom and six CF40 silica viewports on the sides. The magneto-optical
trap (MOT) coils are aligned along the z -axis, while the transverse (TV) coils are aligned along the y -axis. The
Zeeman slower (ZS) residual field at the centre of the main chamber is canceled by the ZS compensation coil.

tions are equipped with independent 65 l/s ion pumps1; two titanium sublimation pumps2

(TSP) are additionally installed in the UHV sections (ii) and (iii). A first pneumatic gate
valve3 separates sections (i) and (ii) from section (iii), and a second pneumatic gate valve
separates the octagon chamber from the Zeeman slower viewport subsection. Such valves
can be used to independently vent the single sections in order to perform maintenance
operations, such as replenishing the atomic source reservoir, and can be electronically
controlled in order to automatically close in case a vacuum leak is detected.

3.1.1 Atomic source and oven section

The vapour pressure of ytterbium is rather low, similarly to other AEL species, and high
temperatures are required to provide the necessary vapour density for efficient operation
of the Zeeman slower and the MOT. Our main oven is composed by a steel reservoir and
a collimation section, as displayed in Fig. 3.2. The reservoir was filled with approximately

1Agilent Varian VacIon Plus 75 StarCell Ion Pump.
2Agilent Varian TSP Cartridge
3VAT all-metal CF40 gate valve Series 48
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Figure 3.2 – Ytterbium atomic oven section. (a) A model of the oven section of the experiment. While the
ytterbium reservoir flange is heated, a copper collar provides cooling to avoid large temperatures at the CF40
flange connection. The copper collar is placed just after the collimation tube array. Three alignment screws are
used for pointing the atomic beam along the Zeeman slower axis, tilting the oven section around a non-rigid
bellow connection. (b) A section of the collimation setup. Two screw holes allow for the filling of the reservoir
and are during in-vacuum operation are plugged by two screws. (c) An illustration of the hexagonal array of
collimation channels.

50 g of 99.99% pure ytterbium metal flakes and small pieces4, which should suffice for
several years of operation. The collimation section consists of an array of approximately
300 cylindrical channels with a length of 10 mm and a diameter of 200µm, clamped with
a hexagonal arrangement (see Fig. 3.2(c)). Employing such an array of channels, instead
of a conventional set of two apertures, determines a considerable reduction of the amount
of source material that is simply deposited in the first vacuum section, never returning
to the source and never reaching the Zeeman slower [285]. Atoms exiting the oven with
an excessive angle strike the channel walls and can leave again by either returning to the
source or escaping along the channel direction. The longitudinal and transverse velocity
distribution of atoms emerging from the collimation section is plotted in Fig. 3.3(b).

The reservoir can be heated by means of three separate sections of a coaxial resistive
heater wire5 wound around the elbow tube. N-type thermocouples are installed in each
section, and three PID controllers regulate the current to each heater section to keep
the temperature constant at the set value. The three sections are heated to different
temperatures, differing by 20�C from one another, and the hottest temperature is reached
just ahead of a circular copper heat sink, where the collimation section is located. In this
way, permanent accumulation of solid ytterbium metal inside the collimation channels
or nearby their entrance is avoided. The assembly is thermally insulated by means of
several layers of a high-temperature insulation mat and enclosed inside an aluminium
case, reaching up to the heat sink location.

In order to produce a sufficient flux, the ytterbium reservoir is heated to a temperature

4Chempur 903073 and 009508
5Thermocoax 2ZEI20/HT
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Figure 3.3 – (a) Ytterbium vapour pressure as a function of temperature. The temperatures of operation of
our main ytterbium oven and spectroscopic cell are indicated by dashed lines. (b) Longitudinal and transverse
velocity distribution for the thermal atomic beam collimated out of the oven. The distribution is obtained by ran-
dom sampling of an initial Maxwell-Boltzmann distribution in combination with the divergence constraints given
by the collimation channel array. Collisions and re-emission from the channel walls are neglected and they
only contribute to the peripheral part of the atomic beam, which is blocked by subsequent physical constraints
downstream in the vacuum system.

of 400 �C, yielding an average thermal velocity of ' 290m/s. The regular temperatures of
operation for the three heater sections are T1 = 400�C at the reservoir, T2 = 420�C at the
the elbow and T3 = 440�C at the collimation segment. The usual stand-by temperatures
are 100�C lower. The expected atomic beam flux � out of the collimation channel array
for a reservoir temperature T can be written as (see e.g. [285]):

�(T )' Nc
⇡d3

12l
n(T ) v̄(T ) (3.1)

where Nc is the total number of collimation channels, n(T ) is the Yb vapour density and
v̄(T ) is the thermal mean velocity inside the atomic source reservoir, l and d are respec-
tively the length and the diameter of the cylindrical channels. For temperatures between
400 �C and 450 �C, the expected flux directly out of the collimation section is approxi-
mately between 2 ⇥ 1014 and 1 ⇥ 1015 atoms/s. The flux at the entrance of the Zeeman
slower is reduced by a large factor, owing to additional physical constraints, namely a
differential pumping tube with an aspect ratio of 4:100 and a subsequent 9 mm diameter
bellow section close to the slower starting point. The expected flux �0 at the entrance of
the slower is given by [285]:

�0(T )' ⇡d2

16
n(T ) v̄(T )Nc

A0

⇡L2
' 2⇥ 10�3�(T ) (3.2)

where A0 and L are the section and the distance from the oven of the limiting aperture.
Light absorption measurements, performed using a beam resonant with the 1S0 !1P1

transition and directed orthogonally to the atomic beam, were used to estimate the flux
ahead of the Zeeman slower, yielding values of �0 ⇡ 2⇥ 1011 atoms/s at 450 �C and �0 ⇡
8⇥ 1010 atoms/s at 430 �C for 174Yb, in good agreement with the design expectations.

Following the atomic beam after the collimation section, an atomic shutter is operated
to interrupt the atomic flux after the MOT has been fully loaded. The vacuum lifetime
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Figure 3.4 – Vacuum lifetime of a spin-polarised Fermi gas loaded into a 40E
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deep three-dimensional optical
lattice at 759 nm. The atom number N is monitored after a varying hold time in the lattice potential. The
displayed data sets were collected respectively with the atomic beam shutter in close position (blue) and in
open position (green) during the hold time. A difference in the gas lifetime is evident; a very long 1/e decay
time of approximately 90 s is measured with the shutter blocking the atomic beam during the hold.

of degenerate gases is strongly affected by the presence of the atom beam (see Fig. 3.4),
and it is therefore necessary to block the flux during every experimental cycle. For this
purpose, a steel U-shaped blade is switched between the open and the closed position. A
servo motor acts on the shaft holding the shutter blade, which is fixed to a magnetic rotary
feedthrough.

3.1.2 UHV section

Zeeman slower section

The UHV section begins with the Zeeman slower (ZS) tube, which is approximately 45 cm
long. The ZS solenoid has a length of 35 cm and it is wound around a 28 mm diameter
steel tube. It is concentrically aligned with the ZS vacuum tube, yet in no direct contact to
the vacuum vessel, in order to prevent the heat dissipated during operation from affecting
the vacuum system temperature. The ZS section vacuum tube is rather narrow and acts
as a differential pumping stage. Its inner section is tapered, with an opening angle of
' 10 mrad matching the atomic beam divergence from the oven collimation section; the

a b
ZS solenoid

ZS last coil
 tapered tube

6 cm

Figure 3.5 – (a) A half-section view of the Zeeman slower (ZS) assembly. The ZS solenoid consists of separate
coils, grouped in three segments, marked with different colours. The last high-current coil (green) is partially
inserted into the flange connecting the ZS vacuum tube to the main chamber. The inner section of the ZS tube
is conical and its opening angle is roughly equal to the divergence angle of the atomic beam. (b) A photo of the
main chamber seen from the side, with one of the transverse (TV) coil mounts in the front. The green ytterbium
MOT fluorescence is clearly visible in the centre of the chamber.
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diameters at the ZS input and output are 9 mm and 14 mm, respectively. A narrow bellow
with 9 mm diameter and a CF10 flange connect the ZS tube to a gate valve, neutralising the
mechanical stress at this narrow conjunction. On the other side, the ZS tube is attached
to the main chamber through a custom-made CF40 flange, which is recessed into the
chamber itself: the last coil of the ZS solenoid is placed at a distance of just 6 cm from
the centre of the main chamber (see 3.5(a)). Such a short distance between the ZS exit
position and the MOT position allows the ZS to operate with an estimated exit velocity of
only approximately 7 m/s.

Main chamber

The vacuum chamber where all experiments take place is a stainless steel spherical-
octagon chamber by Kimball Physics, with eight CF40 flange connections on the sides
and two CF100 connections on top and bottom (see Fig. 3.7 for a close-up section view).
The inner surface of the chamber has been additionally treated with a non-evaporable
getter (NEG) coating with an activation temperature around 80�C, in order to increase the
vacuum pumping rate around the most critical locations in the apparatus. Two large-area
silica CF100 viewports are installed on the top and on the bottom of the chamber; the
bottom viewport is tilted by a few degrees to prevent laser reflections between the two
viewports from interfering. The main chamber is connected to the rest of the vacuum
vessel through two CF40 flange connections: on one side the ZS tube is attached, while
on the other side a large pumping chamber, equipped with a TSP and an ion pump, al-
lows to reach a UHV pressure of 1⇥ 10�11 mbar. Six silica CF40 viewports are installed on
the chamber sides, providing a good optical access in the horizontal plane as well. The
chamber is independently supported from stainless steel pillars from the bottom and is the
only part of the vacuum system which is rigidly connected to the optical table without any
tuneable degree of freedom.

Zeeman slower viewport

During the MOT loading, the atomic beam impinges on a sapphire CF40 viewport, through
which the ZS beam is aligned to counter the atomic beam. In order to avoid deposition of
an ytterbium reflective layer on the inner sapphire surface after long periods of operation,
the entire viewport assembly is stabilised to a temperature of 150�C. Such a temperature
was verified to be sufficient for the deposited layer to evaporate again during the overnight
oven stand-by. Sapphire was chosen as it is less sensitive to etching of aggressive mate-
rials in comparison to silica glass. A gate valve is nonetheless placed in between the ZS
viewport subsection and the UHV pumping chamber, in order to allow the replacement of
the viewport in case it becomes compromised by a permanent ytterbium coating.

3.1.3 Magnetic field coils

Uniform magnetic fields and gradients about the centre of the main chamber are gener-
ated by means of two pairs of coils: the magneto-optical trap (MOT) coils, aligned along
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Coil pair Windings B/I (G A�1) @B/(@z I) (G cm�1 A�1) Imax (A)

MOT 12 1.74 0.81 20
TV 13 0.25 0.059 100
MOT (new design) 43 6.22 2.56 250

Table 3.1 – Magnetic field coils: summary of the attainable fields and gradients. The number of windings and
the magnetic-field amplitude per unit of current are provided in the first two columns. Additionally, the gradient
@B/@z refers to the gradient along the axial direction of the coil pair set to the anti-Helmholtz configuration,
whereas Imax is the maximum design current for continuous operation.

the z-axis, and the transverse (TV) coils, aligned along the y-axis. Both coil pairs can
be switched between the Helmholtz and the anti-Helmholtz configuration by means of
MOSFET-based H bridges. The attainable field and gradients are summarised in Table 3.1.
The TV coils are water-cooled through a circular copper mount to which they are glued
with thermally conductive epoxy. Additional lower-current coils are used to produce offset
fields, or to compensate the earth magnetic field and other stray fields. A typical magnetic
field stability on the order of mG is achieved by using the current-regulated outputs of DC
power supplies6 with a relative stability below 10�4. All coils can be quickly turned off by
means of MOSFET switches, however eddy currents in the vacuum copper gaskets limit
the effective field extinction time to a millisecond scale. Recently, we have replaced the
MOT coils in our setup with a higher-current water-cooled coil pair capable of generating
magnetic fields with an amplitude of more than 1 kGauss, while providing at the same
time an improved optical access (see Section 3.2).

Zeeman slower coils

The ZS solenoid assembly consists of four independent coil segments. The first segment is
composed by four layers of flat copper wire loops, that are wound in series around the ZS
carrier tube with a progressively decreasing number of loops and are operated at a current
of 5.4 A. Four additional layers of hollow core copper wire are superimposed on the first
segment, forming a tapered second segment, and are operated at a current of 16.1 A. The
hollow core wire is actively cooled by a constant water flow of ⇠ 0.5 l/min. To produce the
required final peak field along with a steep cut-off, two adjacent higher-current cylindrical
coils are placed nearby the main chamber. A first cylindrical coil with an inner diameter of
36 mm and a thickness of 21 mm is located just next to the main chamber. The last cylin-
drical coil has a small inner diameter of just 18 mm and a thickness of 7 mm and is almost
fully inserted into a recessed custom-made CF40 flange (see Fig.3.5). Both coils are made
of the same hollow core water-cooled wire and they are usually operated at a current of
36.0 A and 68.0 A, respectively, generating a field peak amplitude of approximately 450 G.
Higher currents of up to 100 A in the last coil can be employed; however, a larger B-field
results in a decrease of the MOT loading rate for 173Yb, due to a supplementary hyperfine
transition being tuned to resonance with atoms at zero velocity (see Section 2.2.1). The

6Delta Elektronika SM800-SM1500
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solenoid operation currents are normally not changed when switching to 174Yb, as the
performance of the ZS with a maximum B-field of 450 G is amply sufficient. The residual
Zeeman slower field at the position of the MOT is canceled by a ZS compensation coil,
placed at the opposite side of the chamber, which is operated at a current of 37.5 A during
the MOT loading and subsequently turned off. The TV coils are also used during the MOT
loading in an anti-Helmholtz configuration to cancel the residual gradients generated by
the ZS last coil and by the ZS compensation coil at the MOT location.

3.2 Optical setup

Experiments on the atomic samples take place only in the octagonal UHV chamber, and
therefore all laser beams for cooling, trapping, manipulating and detecting the atoms are
sent towards the centre of it. Three large non-magnetic honeycomb optical breadboards
are installed on the sides of the chamber assembly, hosting the optical elements for the
horizontal beam paths. Additional mounts for routing the laser beams along the vertical
axis are placed under and over the chamber. A layout of the optical setup surrounding the
main chamber is displayed in Fig. 3.6.

Horizontal setup

The majority of the beams propagate within the horizontal x-y plane. The four hori-
zontal MOT beams (1-4) at 556 nm are transported to the experiment table by distinct
single-mode polarisation-maintaining (PM) fibre. The fibre output beams are travelling
through orientable compact assemblies of optical elements for beam shaping and polar-
isation alignment (denoted as MOT guns). They are collimated and aligned at an angle
of 90� from one another; the counter-propagating beams are superimposed having the
appropriate circular polarisation.
Three beams at 399 nm are aligned along the y-axis and at ±45� from it (along the lattice
axes), and each of them impinges on a CCD camera for absorption imaging measurements.
Dichroic mirrors are used to superimpose them on other beams and separate them again.
A blue-light optimised Andor iXon and two AVT Manta G-046 cameras are used along the
y-axis and the two lattice axes, respectively. The CCDs on the lattice axes can be used for
imaging the atoms or inspecting the alignment of the horizontal lattice beams, while the
Andor CCD is predominantly used for TOF imaging.
The horizontal dipole trap (HDT) beam at 1064 nm, emerging from a PM crystal fibre and
collimated using an air-spaced triplet lens, is sent through spherical and cylindrical tele-
scopes for elliptic beam shaping and through an achromatic doublet lens, which focuses it
to the MOT location. The horizontal lattice beams (L1 and L2) at 759 nm are out-coupled
from single-mode PM fibres through aspheric collimators and are similarly aligned through
cylindrical telescopes and achromatic doublets, focusing them to the same position as the
HDT beam. The lattice beams are retro-reflected by means of identical short-pass dichroic
mirrors with an edge wavelength of 650 nm. The L2 beam is first superimposed to and
then separated from the HDT beam through a long-pass and a short-pass dichroic beam-
splitter respectively, with edge wavelengths around 900 nm. Finally, the Zeeman slower
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Figure 3.6 – Illustration of the optical setup: (a) the x -y plane and (b) the x -z plane (see the text for a brief
description of the beam paths). The various colours denote the following wavelengths: 399 nm (blue), 556 nm
(green), 578 nm (yellow), 759 nm (magenta) and 1064 nm (red). Nearly all optical elements are omitted for
clarity; the dichroic combiners used to superimpose different laser beams on the same path are shown for
clarity.

(ZS) beam at 399 nm, the optical Stern-Gerlach (OSG) beam at 556 nm and the clock ex-
citation beam at 578 nm emerging from single-mode PM fibres are aligned through beam-
shaping and polarisation-adjusting optical elements and they are focused using standard
spherical lenses. Prior to entering the vacuum chamber, the clock beam is overlapped with
the L1 beam path by means of a dichroic combiner.
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Vertical setup

Nearly all laser beams entering the vacuum chamber from above or below propagate along
the vertical axis, with the only exception of the vertical dipole trap (VDT) beam which
crosses the HDT beam with an angle of approximately 20� to the vertical axis. The counter-
propagating vertical MOT beams (5-6) are shaped and steered by MOT guns identical
to the horizontal MOT guns, which are supported by independent mounts fixed to the
horizontal breadboards. The VDT beam, emerging from a PM crystal fibre and collimated
by a triplet lens, is sent through shaping optics mounted on the bottom face of one of the
horizontal breadboards and is focused to the atom position by means of an achromatic
doublet. The vertical lattice beam (L3) is travelling from the output of a single-mode
PM fibre through an aspheric collimator and a spherical telescope, before being focused
to the atoms position through an achromatic doublet. It is retro-reflected by a dichroic
filter placed inside a vertical linear assembly of optical elements mounted on top of the
vacuum chamber, which includes an achromatic doublet with a focal length f = 75mm for
absorption imaging. The upward propagating MOT beam, an imaging beam and a clock
laser beam are superimposed to each other by dichroic mirrors and are deflected up by an
additional dichroic combiner placed below the UHV chamber, where they are overlapped
to the L3 beam. The imaging beam is split off by a dichroic mirror and impinges on a
Manta G-145 CCD camera, typically used for in-situ and band mapping images. The focus
positions of the HDT, the VDT and the L3 beams can be very precisely aligned by means
of motorised mirror mounts 7 with an angular resolution below 1µrad.

The dipole trap, the lattice and the clock excitation beam intensities are actively sta-
bilised with a bandwidth around 100 kHz by monitoring a small portion of the light on the
experiment table and regulating the RF driving power to AOMs placed on the laser tables
ahead of the fibre in-coupling.

Recent upgrades

All experiments described in this thesis have been performed using the optical setup sum-
marised above. Very recently, we have installed a new optical assembly above the UHV
chamber. It consists of a high-resolution imaging lens quadruplet8 with a focal length
f = 67mm, a retro-reflecting dichroic mirror for the L3 beam, a dichroic beam-splitter
for diverting off the vertical imaging beam and a compensation lens for the downward-
propagating MOT beam. The objective position along the z-axis can be precisely adjusted
by means of a translational stage, whereas the retro-reflecting dichroic can be aligned
using a motorised custom-made mirror mount. This vertical optical setup has been in-
stalled in conjunction with new high-current z-axis coils, capable of delivering large B-
fields above kG. The new coils are designed to be operated with a constant maximum
current of 250 A, owing to the large cooling power provided by a constant water flow in-
side the copper mounts to which they are glued. The attainable fields and gradients are

7New Focus 8821 and 8816.
8The quadruplet objective was designed by Lens Optics with a numerical aperture NA' 0.37 and a nominal

resolution of approximately 0.8µm at 399 nm. The lenses design includes a compensation of the spherical
aberrations caused by the 8 mm thick viewport glass substrate.



3.3 Laser system 89

imaging
objective

imaging
dichroic
lattice
reflector

large-field
coils

cooling
mounts

shimming
coils

y x
z

Figure 3.7 – An illustration of the newly installed vertical optical setup together with the z -axis large-field coil
pair. A half-section along the x -z plane is displayed, where the essential optical elements are visible along the
supporting structure fixed to the upper surface of the UHV chamber. New rectangular shimming coils for earth
field compensation and offset fields generation are also shown.

given in Table 3.1. A section view of the newly installed setup is sketched in Fig. 3.7.

3.3 Laser system

In this Section we will summarise the technical aspects of the various laser setups, which
were developed in the context of this thesis and are used to perform the experiments
presented therein. First, the two laser systems generating the light for laser cooling and
resonant manipulation or detection of the atoms, namely the blue and the green laser
systems, are described. Secondly, the two infrared laser sources providing high-power
outputs for the optical dipole trap and the magic-wavelength lattice are briefly illustrated.
Finally, the clock excitation laser system is presented in some detail in a dedicated Section.
Additional laser sources for generating a state-dependent bi-chromatic lattice potential
and for the repumping of metastable state atoms have also been already implemented and
are described in Refs. [125, 293]. Supplementary details about the stability of the clock
laser can be found in Appendix C.

3.3.1 Blue laser system

The blue laser system produces the necessary light power at 399 nm for the operation of
the Zeeman slower and for the imaging beams. A schematic of this laser system is dis-
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played in Fig. 3.8. The primary laser source is an external-cavity diode laser (ECDL)9

at 798 nm, emitting 60 mW of light power and seeding a tapered amplifier (TA) chip10,
housed in a custom-made cooling mount. The TA amplifies the infrared light power to
approximately 1 W. The beam is then sent through a short optical fibre, in order to de-
couple the alignment of the first part of the laser setup from the one of the following
second-harmonic generation (SHG) cavity. The output of the fibre is polarisation aligned

9The ECDL setup is custom-built using an Eagleyard EYP-RWE-0840 diode in a linear cavity, formed by the
diode emitting surface and a semi-transparent mirror. The frequency selectivity is provided by a tilted thin
etalon.

10Eagleyard EYP-TPA-0795.
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and in-coupled into a bow-tie SHG cavity with a finesse around 100. The light is frequency
up-converted to 399 nm with an efficiency around 40% using a 10 mm long, angle phase-
matched non-linear BiBO crystal, generating approximately 250 mW of blue light. The
cavity length is locked to resonance by means of the Hänsch-Couillaud technique [294],
mainly acting on a piezoelectric stack mounted behind one of the cavity mirrors. Addi-
tionally, the short-term cavity fluctuations are tracked by regulating the ECDL frequency
through a fast small-amplitude diode current modulation11.
Light at the output of the cavity is shaped by cylindrical and spherical telescopes and di-
vided into several paths for different applications. The largest portion of the light power is
polarisation-aligned, mode-cleaned and coupled to a high-power optical fibre12 with core-
less end caps, preventing power-induced long-term damage of the fibre surfaces (which
is a common issue with short ultraviolet-visible wavelengths already above 100 mW). An-
other smaller portion of the power is frequency shifted by +480 MHz using AOMs13 and
used for absorption imaging or ground state atom removal. The AOMs do not need to
entirely produce the required detuning between the ZS light and the 1S0!1P1 resonance,
as the ECDL frequency can be rapidly varied during the experimental cycle by means of
an offset frequency lock (see below). A small fraction of the light is in-coupled to a fi-
bre, which transports it to a separate breadboard, where the frequency offset lock setup is
located.

Offset frequency lock to the atomic reference

In order to lock the frequency of the diode laser at 798 nm to the atomic transition
frequency, an offset lock scheme was implemented. A second ECDL emitting directly
at 399 nm, based on a low-power laser diode14, is frequency locked to the ytterbium
atomic transition by means of FM saturation spectroscopy in an ytterbium vapour cell.
A schematic of the frequency lock setup is shown in Fig. 3.9, while a detailed descrip-
tion of the spectroscopic cell and of the FM spectroscopy lock to the atomic reference
can be found in Ref. [295]. Part of the stabilised 399 nm low-power ECDL light is made
to interfere with frequency-doubled light from the main blue laser breadboard. The two
beams impinge on a 1.5 GHz fast AC coupled photodiode15, which detects their beat note
frequency. The fast photodiode signal is amplified and sent to a PLL circuit, where it is
divided to lower frequencies and compared to a stable RF source. The PLL output signal is
then fed as an error signal to a PID controller, which adjusts the frequency of the 798 nm
ECDL by regulating the voltage to a piezoelectric element varying the laser cavity length.
In this way, the beat note is stabilised to the RF source and the main ECDL absolute fre-
quency is locked to the atomic resonance with an adjustable offset. A PLL capture range
exceeding a GHz allows for large sudden variations of the beat lock frequency with rapid
re-locking during the experimental cycle. When working with 173Yb, we typically lock the
399 nm ECDL frequency to the 1S0!1P1 transition of 176Yb. At the beginning of the cycle,

11The gate voltage of a JFET in parallel to the laser diode is adjusted within its linear response range.
12AMS Technologies QPMJ-A3HPC-400-3
13Gooch&Housego 47400-.3-.4-LTD-XQ (quartz - 400 MHz) and Crystal Tech. 3080-125 (TeO2 - 80 MHz)
14Nichia NDV1413
15Newport 818-BB-20
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Figure 3.9 – A schematic of the blue laser lock system. A low-power ECDL at 399 nm is locked to the atomic
transition frequency using FM spectroscopy. The frequency stabilised light is made to interfere with a small
portion of light from the frequency-doubled blue primary source. The frequency of the primary ECDL at 798 nm
source is regulated to produce a constant beat note with the low-power blue ECDL. The frequency offset
between the two laser can be externally controlled.

the beat note is stabilised to the frequency difference of approximately 450 MHz between
the 173Yb ZS operation frequency and the 176Yb resonance16. As soon as the ZS light is
shuttered off, after the MOT loading, the beat set frequency is changed to bring the imag-
ing beams into resonance with the 173Yb transition. As a frequency shift of +480 MHz is
produced by AOMs, the offset frequency is tuned to approximately 620 MHz to cover the
total 1.1 GHz shift between the 176Yb and 173Yb transitions. The offset locking method
is very versatile, as in principle it allows to tune the laser to any desired frequency dur-
ing the experimental cycle, with a switching speed currently limited by the ECDL piezo
bandwidth.

3.3.2 Green laser system

The green laser systems generate the light required for the operation of the MOT, of the
optical pumping sequence and of the OSG spin separation. An overview of this laser setup
is given in Fig. 3.10. The primary laser source is an Yb-doped fibre laser17 emitting at
1112 nm, with an intrinsic linewidth around 100 kHz and an output power around 2 W.
The output of the fibre laser is polarisation-aligned and injected into an bow-tie SHG cavity

16The ZS detuning is �s ' �650 MHz from the 1S0 (F = 5/2)!1 P1 (F 0 = 7/2) resonance in 173Yb
17Menlo Systems Orange One
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Figure 3.10 – A schematic of the green laser system. The infrared laser source output at 1112 nm is injected
into the SHG bow-tie cavity for frequency doubling to 556 nm, followed by various optical elements used to
distribute the light for the MOT and the OSG beams. The fibres are labeled by their final destination on
the experiment table (see Fig. 3.6). Dashed lines denote the control signals from PID controllers in the lock
feedback loops.

with a finesse of approximately 20, relying on a 20 mm long PPSLT crystal for frequency
up-conversion to 556 nm. As for any other doubling cavity in our laser system, the cavity
length is locked to resonance using the Hänsch-Couillaud technique, just by regulating in
this case the voltage to a piezoelectric element that displaces one of the cavity mirrors.
An SHG efficiency exceeding 50% is achieved, yielding a green output power around 1 W.
The green beam travels then through beam-shaping optics and through a 80 MHz AOM18,
which is used to switch the MOT beams and regulate their intensity. Six independent PM
single-mode fibres are used to transfer the MOT light to the experiment table. A portion of

18Crystal Tech. 3080-125
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Figure 3.11 – Generation of double laser sidebands by a fibre-coupled EOM for PDH lock with a frequency
offset. High-frequency sidebands with ⌦1 > 100MHz (orange) are created, in order to serve as carriers for
lower-frequency PDH lock sidebands with ⌦2 < 50MHz (yellow). One of the high-frequency sidebands is
locked to a resonance of the ULE cavity, so that the laser carrier (red) is stabilised and its absolute frequency
remains close to the atomic resonance. The frequency ⌦1 can be varied, in order to accurately tune the laser
detuning to the atomic resonance. This scheme is adopted for the stabilisation of both the green and the clock
lasers.

the AOM zero-order beam is exploited for producing the OSG beam, which is detuned by
+850 MHz with a double passage through a high-frequency AOM19, resulting in a power
of approximately 40 mW coupled into a PM single-mode fibre.

Cavity reference lock

The frequency of the green light is frequency stabilised by locking the fibre laser to a cavity
reference with a finesse F = 1.08(8)⇥ 104 at 1112 nm, exhibiting a linewidth of 140 kHz
and a day-scale frequency stability around 4 kHz (see Fig. 3.16). This ultrastable ULE
resonator is briefly described below in the context of the clock laser stabilisation and pre-
sented in more detail in Ref. [296]. In order to lock the fibre laser to the cavity reference, a
small amount of infrared light is collected and transferred to a separate breadboard where
the resonator is placed (see Fig. 3.16). The light addressed to the resonator is sent through
a custom-made fibre-coupled EOM from Jenoptik with a 5 GHz bandwidth, which is driven
by two stable RF sources to generate a double set of sidebands (see Fig. 3.11). One of the
high-frequency sidebands is locked to the resonator by means of the Pound-Drever-Hall
(PDH) technique (see Fig. 3.16), with a PID controller regulating the voltage to a piezo-
electric element installed in the fibre laser, so as to tune its frequency (the PDH lock
system is fully described in the above-mentioned Ref. [296]). The fibre laser frequency
is therefore stabilised to the resonator with an adjustable frequency offset, which can be
electronically set during each experimental cycle. By suitably adjusting the sideband spac-
ing, the laser carrier detuning from the resonance can be varied. Moreover, controlled
frequency sweeps can be carried out, with a speed limited only by the servo bandwidth of
the PDH lock. The dynamic frequency adjustment is exploited both for the compression

19Brimrose TEF-500-100-399
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Figure 3.12 – (a) A schematic of the ODT laser source. Two high-power beams are shaped, frequency-shifted
and coupled into large mode-area fibres carrying the light to the experiment. The power distribution between
the HDT and VDT beams can be varied by remotely controlling the servo motor rotating a half wave-plate in
the beam path ahead of the splitting PBS. (b) A schematic of the optical lattice laser source. Three beams are
coupled into different fibres after being frequency-shifted for avoiding undesired interference between distinct
lattice beams. The shifting AOMs are also used for power control and stabilisation of the lattice beams.

stage in the MOT and for multi-pulses optical pumping sequences (see Section 4.2).

3.3.3 Dipole trap and optical lattice laser sources

An overview of the optical dipole trap (ODT) and lattice laser setups is given in Fig. 3.12.
The source producing the high-power ODT beams is a 25 W Nd:YAG laser20. The output
of the laser is polarisation filtered, resized with a spherical telescope and subsequently
split into separate paths corresponding to the two ODT beams. The power ratio between
the beams can be remotely controlled by means of a motorised rotating half wave-plate,
allowing a continuous power re-distribution during the evaporation, which increases the
power of the VDT beam while the HDT beam power is decreased. Both beam paths are

20Innolight Mephisto
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equipped with high-power laser shutters21 and large-crystal quartz AOMs22. The two
AOMs deflect the respective beams in opposite directions and are thus used both for pre-
venting unwanted interferences at the ODT crossing region and for power stabilisation
and regulation of the two ODT beams. The beams are coupled into high-power large
mode-area fibres23 with a length of 5 m, which are capable of transmitting optical powers
of approximately 13 W at most before Brillouin scattering sets in.

The source for the creation of the three-dimensional optical lattice is a Ti:Sapph ring
laser24, capable of delivering approximately 5 W of power at 759 nm. The laser resonator
has an intrinsic long-term frequency stability of 1 GHz, which is amply sufficient for our
current experiments. A setup for locking the laser to a cavity reference has been never-
theless implemented, and will be exploited in the future for bi-chromatic lattice setups
requiring higher stability [125]. Similarly to the ODT laser system, the main laser output
is divided into three beams and sent through AOMs25 for preventing interference between
distinct lattice beams and for their power control and stabilisation. The beams are then
coupled into three PM single-mode pure silica fibres. The alignment of the lattice retro-
reflection on the experiment table can be optimised by maximising the amount of light
which is back-coupled to the optical fibre. For this purpose, this light is collected by a
photodetector placed on the side port of the optical isolator input PBS, where the back-
propagating light is diverted off the principal beam path.

3.4 Clock excitation laser system

The laser system for the excitation of the ultranarrow 1S0 !3P0 clock transition is one
of the crucial parts of the entire experimental setup. In order to manipulate the popu-
lation of the metastable state in a coherent fashion and with a high degree of control, a
laser with an adequately long coherence time and sufficient power is essential. This is
necessary for realising and probing the two-orbital many-body Hamiltonians described in
Chapter 1. In particular, a very high frequency resolution is necessary for probing interac-
tion clock shifts and exploiting such shifts for occupation number-selective excitation in a
three-dimensional lattice.
However, prior to the measurements presented in Chapter 6, the interaction properties
of the metastable state were still largely unknown along with the exact magnitude of the
associated clock shifts. At the time of designing and assembling the clock laser setup, typ-
ical interaction shifts were expected to be on the order of kHz. Consequently, we initially
constructed a laser system capable of delivering a sub-kHz narrow output with a relatively
high power of approximately 20 mW at the clock wavelength 578 nm, corresponding to
attainable clock Rabi frequencies above 10 kHz for a waist of ⇠ 100µm. We subsequently
discovered through our early clock shift measurements that a higher resolution close to
10 Hz would be highly desirable, owing to clock shifts between different interaction chan-

21NMLaser LST4WBK2
22Crystal Tech. 3080-198
23NKT Photonics LMA-PM-15
24Sirah-Spectra Physics Matisse TS
25Crystal Tech. 3080-125 and 3110-120
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nels being on the order of only few hundreds of Hz. The clock laser system underwent
thus a continuous improvement process, which is still ongoing. The setup presented here
is the one used for the measurements reported in this thesis and is capable of achieving
an atomic absorption linewidth as low as approximately 40 Hz, corresponding to a rela-
tive short-term stability below 10�13. The laser system consists of two main blocks: (i)
the laser source and (ii) the ultrastable high-finesse cavity reference. In the following we
will describe these parts, with particular focus on the locking system which stabilises the
frequency of the laser source to the cavity reference. When the laser source is locked to
the cavity reference, the long-term resonator stability is transferred to the laser and the
linewidth of the laser is narrowed. Details about the short-term and long-term stability of
the clock laser can be found in Appendix C. A detailed treatment of our ultralow-expansion
(ULE) cavity design, of its mechanical and thermal properties, and of a large part of the
frequency lock setup can be found in Ref. [296].

3.4.1 Laser source

As the only available laser sources emitting at 578.4 nm are dye lasers, which are expensive
and troublesome to maintain, we opted to frequency double an infrared laser source at
1156.8 nm in a dedicated second-harmonic generation cavity. A high-power laser diode26,
delivering a 200 mW single-mode output, represented the most flexible and cost-effective
solution. In this respect, narrow-line (sub-Hz) diode-based laser sources have already
been implemented (see e.g. [297]). The diode is assembled in a standard ECDL (External-
Cavity Diode Laser) Littrow configuration [298]. Its main distinctive characteristic is the
long (⇠ 10 cm) external cavity (see Fig. 3.13(a)), which reduces the linewidth of the ECDL
cavity and leads to a rather narrow output linewidth well below 100 kHz before the laser
is locked to any reference. The initial linewidth of the laser output is estimated through a
frequency noise measurement in a diagnostic Fabry-Perot cavity with a linewidth of 2 MHz.
The power spectral density (PSD) linewidth can be deduced from the frequency spectral
noise density through integration below the so-called �-separation line [299]. An earlier
version of the laser source in our setup adopted a standard cm-long external cavity setup
and is described in [296]. While the initial laser linewidth and the thermal stability were
improved from one revision to the next, the power output and the characteristic frequency
response to current modulation are largely equivalent. Furthermore, the new laser source
is insulated from external sound and thermal fluctuations by a sealed case, whose sides
consist of 3 mm lead-rubber layers glued to steel plates.

By locking to the ultrastable cavity reference, the infrared laser linewidth is narrowed
down to a 20 Hz level and its absolute frequency is stabilised against long-term drifts. This
is achieved by means of a fast Pound-Drever-Hall lock system, which will be presented
below. The laser frequency is stabilised with a 800 kHz-high servo bandwidth through
an AOM operating at a central frequency of 120 MHz (see also Appendix C). A slower
laser frequency compensation is actuated by a piezo element adjusting the ECDL cavity
length, which can easily counteract frequency deviations as large as several tens of MHz
and allows the AOM to operate around its central frequency.

26Innolume GC-1156-TO-200
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Figure 3.13 – (a) A photo of the ECDL laser source, with the long cavity formed between the diode emitting
surface and the ruled diffraction grating. The cavity elements are fixed to a brass plate, which is temperature
stabilised by two thermo-electric elements exchanging heat with a large aluminium base block. A piezoelectric
actuator can finely tune the cavity length by tilting the grating mount. (b) A photo of the horizontal-design ULE
cavity before its placement into the vacuum vessel. Two ULE glass mirrors are optically contacted on a 10 cm
long ULE glass spacer. The spacer shape is optimised for minimising the effect of mechanical solicitations on
the cavity length [296].

The stabilised infrared laser output at 1156.8 nm is then frequency doubled to
578.4 nm through a SHG bow-tie cavity analogous to the one adopted in the 556 nm
laser setup, based on a PPSLT non-linear crystal. The cavity SHG efficiency is approx-
imately 25% when optimally aligned, yielding a typical output yellow light power of
20 mW. Like the other SHG cavities in our experiment, this cavity is locked to the laser
frequency by means of the Hänsch-Couillaud technique. An important difference however
is the presence of an additional fast piezo-electric transducer mounted behind one of the
SHG cavity mirrors, which allows for cavity lock bandwidths of several tens of kHz with-
out resorting to any laser-diode current fast regulation, as opposed to the case of the blue
SHG cavity setup (see above). Modulation of the laser diode current compensating the
short-term SHG cavity length fluctuations must necessarily be excluded in this case, as it
would harmfully affect the laser frequency noise and compromise its short-term stability.
The implementation of the SHG cavity and its locking scheme are described in detail in
Refs. [296, 300]. The alignment of the SHG cavity is decoupled from the alignment of
the first part of the infrared laser path by a short optical fibre (see Fig. 3.14). Prior to
in-coupling into this fibre, a small portion of the light is collected for use in the ULE cavity
lock section and for frequency monitoring via a wavemeter.

After the doubling, the beam travels through an AOM operating at 100 MHz, which is
mainly used for stabilising the light intensity and shaping the clock light pulses applied
to the atoms. The light is then transferred to the experiment table through a several
meters-long optical fibre. The light intensity is actively stabilised by controlling the AOM
driving power through a PID controller, using the signal from a photodiode that collects
a small portion of the clock light at the fiber output. The noise introduced by vibrations
and thermal fluctuations of the fibre can be eliminated through a standard fibre-noise
cancellation system based on a beat-note stabilisation scheme. This noise canceller is
shortly illustrated below and uses the same 100 MHz AOM as a transducer to correct the
light frequency before the fiber (more details on its performance are given in Appendix C).
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Figure 3.14 – A schematic of the clock laser source setup. The long-cavity ECDL at 1156.8 nm is frequency
stabilised to a ULE reference resonator by acting on a piezo element mounted on the laser-cavity diffraction
grating (slow feedback) and on a 120 MHz AOM placed downstream the laser beam (fast feedback). After
beam shaping optics, two Faraday isolators are providing a large extinction ratio of unwanted feedback from
the ULE cavity setup (see below). A beam sampler collects a small portion of the light for use in the ULE cavity
lock section. The stabilised infrared light is injected into an PPSLT-based SHG bow-tie cavity, which converts
up to 25% of the power to 578.4 nm, and is frequency locked to the laser by the Hänsch-Couillaud technique.
After the frequency doubling, the light is transferred to the atoms after passing through a 100 MHz AOM, which
is used for both fibre-noise cancellation and actively controlled pulse shaping (see text).

3.4.2 Ultrastable cavity setup

The ultrastable cavity used in our setup was designed by Advanced Thin Films and a
suited vacuum vessel was provided by Stable Laser Systems, already equipped with the
temperature sensors and foil heaters required for temperature stabilisation. The cavity
assembly consists of two ultralow-expansion glass27 (ULE) mirrors optically contacted to
a 10 cm ULE spacer. The resonator has a plano-convex geometry, with the curved mirror
radius of curvature Rc = 50 mm, and has a free spectral range of 1.5 GHz. The finesse
of the resonator at 1156.8 nm was measured through a ring-down measurement to equal
F = 8.46(6)⇥ 104 [296], corresponding to a linewidth of 17.7(1) kHz.

27Corning Code 7972
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Figure 3.15 – An illustration of the ULE cavity setup with the various parts used to decouple the resonator
mechanically and thermally from the surrounding environment (see text for details).

The spacer has a hollow cylindrical shape with two large rectangular cutouts on the
bottom and a ventilation channel on the top (see Fig. 3.13(b)). The spacer shape is de-
signed for operation of the resonator in a horizontal alignment. The resonator is placed on
a rectangular holder28 and is supported by Viton spheres placed at four points exactly lo-
cated in order to minimise the effect of gravity and other mechanical perturbations which
modify the resonator length l (and therefore the resonance frequency ⌫ of its eigenmodes,
as �⌫/⌫ = �l/l) [296]. To give an idea of the required length stability corresponding
to a relative frequency stability of 10�14, the distance between the mirrors is not allowed
to vary by more than approximately a proton radius. It is therefore fundamental to iso-
late the cavity from any external effect which cause a resonator length variation. We will
hereafter refer to short-term and long-term stability of the resonator, respectively denoting
the frequency stability within the time scale of a single experimental cycle (Æ 1 min) and
extending over several experimental cycles (¶ 1 min).

Resonator frequency fluctuations

Given the geometrical optimisation of the spacer, mechanical solicitations can nonetheless
play a big role in both the short and long-term stability of the ULE cavity, depending
on their characteristic frequency. For this reason, thorough countermeasures have to be
taken to mechanically decouple the cavity from the surroundings. First of all, vacuum
is used to largely insulate the cavity acoustically and thermally. Furthermore, the cavity
vacuum-assembly, along with all injection and detection optics for the Pound-Drever-Hall
scheme, are placed on an aluminium breadboard, positioned in turn on top of a high-
performance passive vibration isolation platform29, with a noise suppression of more than
50 dB above 20 Hz in all directions. A 8 mm layer of Sorbothane rubber is additionally
placed between the platform and the breadboard. A sound and thermal insulation box

28The holder itself is made of Zerodur (Schott AG) glass, a glass ceramic with very low thermal expansion
and high three-dimensional homogeneity.

29Minus K 100BM-1
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enclosing the entire breadbord-platform apparatus is installed, whose aluminium walls are
covered by an EPDM rubber-based foam30, which suppresses sound waves above 500 Hz
and reaches a damping factor of 30 dB at 5 kHz. The box and the vibration isolation
platform are directly sitting on the air-floated laser optical table. In this way, dynamic
mechanical perturbations are prevented as much as possible from reaching the cavity by
either air or rigid connections.

Another source of short-term fluctuations is the variation of the refractive index inside
the resonator, due to background pressure fluctuations. The vacuum vessel is kept at
a pressure of 10�6 mbar by continuous operation of a compact 3 l/s ion pump31. The
specified residual pressure fluctuations are of 10�7 mbar, which induce a variation of the
refractive index and an associated frequency shift below the sought linewidth of 10 Hz.

The resonator stability is also affected by environment temperature variations, which
cause its length to vary typically over temperature fluctuation time scales of several sec-
onds. The effect of temperature fluctuations can be minimised by adopting thermally
insensitive materials such as ULE and additionally implementing an accurate temperature
regulation of the cavity. ULE is a titania-doped silicate glass with an extremely low thermal
expansion minimum at a temperature T0 which is close to room temperature. The exact
value of T0 depends on the concentration of titanium and is determined experimentally for
our spacer to equal T0 = 26.3(1)�C (see Appendix C). When the spacer is operated at the
thermal expansion minimum T0, the linear coefficient of thermal expansion vanishes and
the temperature-induced relative variation of the cavity frequency retain only a quadratic
dependence on T :

�⌫

⌫
= ↵(2) (T � T0)2 Æ 10�9 K�2 (T � T0)2 (3.3)

It is therefore essential to regulate the temperature of the cavity as close as possible to T0

with high long-term stability to prevent drifts of the resonator frequency. For this reason,
the temperature of the entire vacuum vessel is stabilised to T0 = 26.3�C with fluctuations
below 5 mK using a digital PID temperature controller32, yielding a frequency stability at
the CTE minimum of 5 Hz (see Appendix C). Two large-area resistive foil heaters regu-
late the temperature of the two vacuum viewport sides of the chamber and two 10 k⌦-
thermistors sense the temperature in the centre of the chamber. As the electronic board of
the temperature controller needs to drive a constant current above 1 A to the foil heaters
and its equilibrium temperature differs by some degrees from room temperature, it is
stabilised itself by means of an identical temperature controller, to prevent thermoelec-
tric voltage fluctuations affecting the regulation. As already mentioned, the apparatus
including the resonator assembly and the necessary optical and electro-optical elements
are isolated from the surrounding environment by an insulating box, which also substan-
tially contributes in stabilising the air temperature around the vacuum vessel owing to the
presence of a thick rubber-based foam layer. In addition, the two EOMs used to modu-
late the 1156.8 nm and 1111.6 nm beams in-coupled to the ULE cavity are placed inside
this box. The temperature of a thick aluminium plate to which they are fixed is stabilised

30Paulstra Strasonic - 22 mm thickness
31Gamma Vacuum 3S
32Ing. Büro R. Tschaggelar (http://www.ibrtses.com/products/tec.html)
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close to the equilibrium air temperature inside the box (⇠ 28�C) with fluctuations lower
than 0.1�C; therefore, this also partly contributes to maintain the box inner temperature
constant and independent from the outer temperature (22�C).

Temperature regulation of the resonator within 0.1�C from T0 and with a stability be-
low 5mK allows for a long-term33 frequency stability below 100 Hz (see Appendix C),
which is sufficient for our requirements yet could be improved using a superior PID con-
troller. In addition to the ULE spacer, also the ULE mirror substrates and their optical
coating can expand or contract due to temperature variations. The mirrors expansion is
included in our characterisation of the cavity thermal frequency shift, and their expansion
is anyhow expected to partially compensate the expansion of the ULE spacer, i.e. when
the mirror substrates expand the resonator length decreases and vice versa. On the other
hand, the temperature of the optical coatings is mainly dominated by absorption of the
light present in the cavity, which should be kept low in order to minimise the frequency
offset between the "bright" and the "dark" cavity. Typical power dependent shifts for res-
onators with a finesse comparable to ours are on the order of 10 Hz/µW [301]. We inject
approximately 10µW into the resonator and the light power fluctuations are very well be-
low µW: we expect therefore a steady-state absorption-induced constant shift on the order
of 100 Hz and fluctuations well below 10 Hz. For lasers with sub-Hz short-term stability,
the intensity-induced thermal noise of the mirrors becomes important as well [302, 303];
however it has a negligible contribution in our system with 10 Hz short-term stability.
Even for a perfectly mechanically and thermally insulated resonator, a linear frequency
drift caused by the ageing of the ULE spacer is present, which in our setup is measured to
be 40 mHz/s (resulting in 80 mHz/s on the clock frequency-doubled light). Fortunately,
this drift is constant in time and can be compensated with a feed-forward correction of
the clock laser frequency, i.e. by shifting the frequency offset between the laser and the
resonator linearly in time with the appropriate slope. In the following we will explain
how the laser can be locked with an adjustable frequency offset to the cavity, inheriting its
stability and reducing its linewidth.

3.4.3 Laser linewidth narrowing and absolute frequency stabilisation

Our infrared ECDL laser is locked to the ULE cavity by means of the Pound-Drever-Hall
(PDH) technique [304, 305]. In atomic physics experiments, the PDH technique is or-
dinarily used to lock the average frequency of a laser to a cavity reference, in order to
compensate for the drifts of the laser without affecting its linewidth. In order to shrink
the laser linewidth, the phase of the laser needs to be locked: this can also be achieved
using the PDH technique (in reflection) to lock the laser to a narrow reference cavity. A
narrow cavity filters all the incoming laser high-frequency phase fluctuations thanks to
its low-pass characteristic behaviour, acting as a flywheel. The PDH technique works in
this regime prevalently as a phase lock between the laser light directed to the cavity and
the light already stored in the cavity [304], effectively comparing the instantaneous laser

33The short-term (⇠ 10 s) stability of the temperature regulation is only known to be smaller than 5 mK,
but it is plausibly below a mK.
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phase with its historical average. In this way, laser linewidth reduction to values much
smaller than the cavity linewidth itself becomes possible [306].

When implementing a tight PDH lock with the goal of narrowing the laser linewidth
by several orders of magnitude, the demands on the control loop gain and bandwidth
are quite exceptional. Ideally, one would like to reduce the frequency noise of the laser
across the whole spectrum; practically, this is obviously impossible, owing to the finite
bandwidth of the feedback loop. However, the frequency noise in different regions of the
spectrum contributes very differently to the linewidth of a laser. It can be shown that only
the high modulation index part of the frequency noise spectral density, i.e. the portion
of spectrum where the amplitude of the noise is larger than its frequency, contributes
substantially to the width of the power spectral distribution [299]. This has the important
implication that, in order to shrink the laser linewidth, it is sufficient to suppress the laser
frequency noise up to a frequency on the order of its initial linewidth [299], in our case
100 kHz34. The laser frequency noise can be maximally reduced to the lock detector noise
level, and starting from 100 kHz, a very high gain of more than 80 dB is required to bring
the linewidth below 10 Hz. On the other hand, for some high frequency the closed-loop
transfer function will have a pole, i.e. the phase of the loop transfer function reaches 180�,
making the loop unstable if the gain at this frequency is larger than unity. The bandwidth
of the control loop needs therefore to be large enough for the gain to decrease from its
high low-frequency value to 0 dB before the location of the pole. That explains the reason
for implementing as fast as possible feedback loops for linewidth shrinking applications
of the PDH technique: the bandwidth is not needed to compensate very high frequency
noise components, which are rather unimportant, but mainly to push the position of the
closed-loop pole as far as possible towards high frequencies and leave sufficient room for
the closed-loop gain to decrease to 0 dB.

An implementation of the PDH lock to the ULE cavity of both our green and clock
laser sources has been already described in Ref. [296]. However, important changes were
subsequently implemented to improve the performance of the lock, mainly concerning the
actuators which convert the PDH lock signals into a laser frequency correction. In partic-
ular, we initially attempted to exploit the ECDL current modulation as a fast regulation of
the laser frequency, but this approach has shown itself to be ineffective to reach a laser
linewidth below kHz. The frequency response of the laser diode to current modulation
was found to be much slower than expected [296] and, although attempts were made to
overcome such an issue by additional electronics, a different better-performing alternative
was found, namely frequency regulation by a AOM with a sufficiently high modulation
bandwidth. We will not describe the details of the control loop design and characteristics,
which can be found in the above mentioned reference. The current optical setup in the
vicinity of the ULE cavity is displayed in Fig. 3.16(a).

Our feedback loop comprises the standard four main blocks: the frequency detector,
the controller, the transducers and the laser. The phase/frequency deviation detector con-
sist of the ULE resonator along with the lock photodiode35, detecting the modulated PDH

34A much lower frequency threshold in the order of a few kHz should actually suffice, considering that the
laser noise spectral density decays with a characteristic 1/f dependence.

35Thorlabs PDA10CF
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Figure 3.16 – (a) A schematic of the ULE resonator section of the laser system. Low-power beams at
1111.6 nm and 1156.8 nm are injected to the resonator, after being modulated in high-bandwidth fibre-coupled
EOMs. These EOMs generate the high-frequency sidebands which are locked to the ULE cavity, allowing the
laser carriers frequency to match the position of the atomic resonances; they moreover create the sidebands
required for the operation of the PDH lock, at 40 MHz and 47 MHz respectively. Using a quarter wave-plate in
front of the cavity input, the light reflected back from the cavity is diverted off the incoming beam path by a PBS
and directed onto two fast photodetectors. The two laser wavelengths are combined and separated through
angle-tuned dichroic beamsplitters. The detected signals are down-mixed and fed to PID controllers which
regulate the respective laser frequencies via different transducers (see text and panel (b)). (b) Pound-Drever-
Hall (PDH) frequency lock scheme for the 1111.6 nm clock laser. A power splitter (C) combines two stable
RF-signals at 47MHz and approximately 582MHz to create a double set of sidebands, driving a fibre-coupled
EOM placed in between the laser source and the ULE resonator setups. One of the high-frequency sidebands
is locked to the ULE cavity thanks to its lower-frequency sidebands. Part of the 47 MHz RF-signal is sent to a
mixer, in order to down-convert to lower frequencies the photodetector signal, carrying the information about
the frequency deviation of the relevant laser sideband from the cavity resonance. The down-converted error
signal, i.e. the PDH error signal, is fed to a fast PID controller (FALC). On one branch, this directly drives a
VCO controlling an AOM which can implement fast laser frequency corrections. On another branch, the error
signal is low-passed and fed to a slower PID controller which drives the piezo adjusting the ECDL cavity length.

error signal at 47 MHz, which is subsequently band-pass filtered, down-mixed to low fre-
quencies, low-pass filtered and fed to the controller. The main controller is a commercial
fast PID controller with a bandwidth of 10 MHz36 and a maximum DC gain of 80dB; three
separate integrator gain stages, acting on different frequency ranges, can be individually
adjusted to produce the desired transfer function. An additional house-built PID controller
with a low bandwidth of 30 kHz is placed in a cascade configuration after the fast PID
controller, providing the necessary additional low-frequency gain. The ECDL frequency is
regulated by two voltage-to-frequency transducers: (i) the piezo element varying the cav-
ity length of the ECDL, by displacement of the diffraction grating and (ii) the AOM placed
directly after the Faraday isolators on the infrared beam path (see Fig. 3.14), driven by

36Toptica FALC 110 - High-speed output



3.4 Clock excitation laser system 105

a in-house custom-made VCO with a modulation bandwidth exceeding 5 MHz. The high
low-frequency gain provided by the two PID controllers in series allows the piezo actuator
to compensate the largest frequency deviations, making the lock quite stable to external
disturbances and letting the AOM operate around its central frequency of 120 MHz with
maximum deviations on a MHz scale. A diagram of the PDH control loop is shown in
Fig. 3.16(b).
As the frequency of the cavity resonances is fixed, the laser needs to be independently
adjusted to the desired frequency while locked to the stability of the ULE cavity. To this
end, it is not the laser carrier which is directly locked to the ULE resonator but a high-
frequency sideband generated by a custom-made fibre-coupled EOM from Jenoptik with
a bandwidth of 5 GHz, as depicted in Fig. 3.16 (see also Fig. 3.11. This EOM is used to
create the offset sideband (located at approximately +582 MHz for 173Yb), as well as the
sidebands at ±47 MHz required for the PDH locking technique.

The position of the closed-loop pole, i.e. the lower bound for the time response of
the circuit, is determined by the delay accumulated by the driving signal before reaching
the light inside the AOM: the RF signal needs to travel to a transducer and subsequently
propagate as a sound wave inside the crystal to finally reach the laser beam. We chose
an AOM37 with a 0.8 mm small crystal, to be able to efficiently act on a small beam, min-
imising the distance to the electrode; a beam waist of approximately 100µm is adopted
and the AOM is mounted on a translational stage to be able to displace it and precisely
minimise the delay.
A servo bandwidth of approximately 800 kHz is achieved; this value is reached after the
gain settings and the different integrator corner frequencies of the fast PID controller are
optimised, by analysing the noise spectral density suppression with a network analyser
(see Appendix C). Increasing the light power injected into the ULE cavity does not im-
prove significantly the noise suppression, as an indication that the lock is not currently
limited by the noise of the PDH photodiode.

The only way to directly characterise both the short-term and the long-term stability of
the laser locked to the ULE cavity is to analyse its beat note with a laser possessing a com-
parable or superior stability38. Since neither a comparable laser or a frequency comb are
provided in our laboratory, the laser performance is directly tested by atomic spectroscopy
on the clock transition (see Chapter 5). It should be stressed that the important figure of
merit for our experiments is indeed the atomic spectroscopy linewidth; a stability evalua-
tion of the laser alone should only be considered as a way to address specific issues or test
ongoing technical developments. A minimum spectroscopy linewidth of approximately
40 Hz was observed, indicating a stability of the infrared laser on the order of 20 Hz over
several minutes, which is the time scale required to execute a complete spectroscopic mea-
surement. The detuning of the laser can be varied only between one experimental cycle
and the next, by varying the driving frequency to the fibre-coupled EOM; a single spec-
troscopy data point is then collected after each cycle by measuring the residual ground
state atomic population.

37Crystal Tech. 3120-190
38Self-heterodyning is not a viable option as it would require thousands of kilometres of optical fibre delay

line
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This laser linewidth is most likely currently limited by sources of resonator frequency fluc-
tuations which are not actively compensated, e.g. residual mechanical vibrations, or other
optical effects such as etaloning between elements in the PDH lock beam path. Further-
more, the optical fibre carrying the light to the experiment table is a possible source of
noise, which can deteriorate the short-term frequency stability at the atoms position. For
this reason, a fibre-noise cancellation system is already implemented and is briefly illus-
trated below.
The long-term stability of the laser is satisfactory as well, and after compensation of the
dominant frequency drift caused by ULE ageing, the resonance position does not shift by
more than a kHz over a time span of several days. However, occasional shifts on the order
of 100 Hz can be observed during the day, probably due to slow environment temper-
ature and pressure variations, which influence the temperature regulation of the cavity
assembly.

3.4.4 Excitation pulse shaping and fibre-noise cancellation

Clock excitation pulses for spectroscopy and coherent population transfer are created by
regulating the RF power driving the 100 MHz AOM39, acting on the frequency-doubled
light (see Fig. 3.14). The pulse light intensity is monitored by a photodiode on the ex-
periment table in the vicinity of the main chamber and is stabilised by a 100 kHz-fast PID
controller, and square pulses as short as 10µs can be reliably produced. A fibre-noise can-
cellation system (analogous to the one presented in Ref. [301]) has been implemented to
suppress the light frequency fluctuations introduced by vibrations and temperature fluctu-
ations while the light traverses the optical fibre to the experiment table. As illustrated in
Fig. 3.14 (see also Appendix C), the light from of a retro-reflecting beam sampler placed
before the AOM and the light from a retro-reflecting beam sampler placed on the other
side of the fibre can be diverted off the forward light path by means of a Faraday rotator
and a PBS. The two combined retro-reflections are made to interfere on a fast photodiode,
which detects thus their beat note, centred around twice the AOM frequency. The fre-
quency noise resulting from propagating back and forth through the fibre is consequently
detected at 200 MHz as well. The beat signal can be locked to a stable RF source by a fast
regulation of the driving frequency to the 100 MHz AOM. To this end, the beat signal is
down-converted to low frequencies using a stable RF source into to a PLL circuit, which in
combination with a PI controller regulates the frequency of a high-bandwidth VCO, driv-
ing the AOM. For details about the design of our PLL circuit, see e.g. [125]. This noise
canceller is capable of eliminating the largest part of the fibre-introduced frequency fluctu-
ations (see Appendix C). However, preliminary spectroscopic measurements indicate that
this noise is currently not the limiting factor for the final linewidth of the clock laser, and
simple open-loop operation with a 100 MHz stable RF source directly driving the AOM is
presently preferred. The noise cancellation is expected nonetheless to become essential if
laser linewidths closer to Hz-level are achieved in the future.

39Crystal Tech. 3100-125



CHAPTER 4

A SU(N)-symmetric Fermi gas with
tuneable spin

As discussed already in Chapter 1, one main long-term purpose of the experiments pre-
sented in this work is the study of orbital and SU(N) quantum magnetism employing a
Fermi gas of 173Yb trapped in an optical lattice. With a total of six nuclear spin states, 173Yb
allows for the exploration of intriguing quantum many-body phases beyond the standard
SU(2)-symmetric scenario. An essential requirement is however the ability of controlling
the number of spin states that are present within the fermionic gas, in order to study the
effect of varying N from 1 to a maximum of 2F + 1 = 6, where F = I = 5/2 is the total
atomic angular momentum of 173Yb (for details about the atomic properties of ytterbium
see Chapter 2). Moreover, for many applications related to the simulation of condensed-
matter models which describe the behaviour of (spin-1/2) electrons, only two spin states
in total need to be used. The flexible production of different single- and two-component
Fermi gases is also beneficial for the investigation of two-orbital physics within minimal
spin configurations, which result in a simpler description of the system with respect to the
many-spin gas case.

For these reasons, the experimental techniques that lead to the manipulation and de-
tection of the nuclear spin degree of freedom are of central importance in the context of
quantum simulation with 173Yb. In this Chapter, we will show how the different nuclear
spin states of 173Yb can be separately imaged and how arbitrary mixtures of spin states can
be prepared by means of optical techniques. The consequent control over the spin degree
of freedom in the ground state can also be extended through the coherent coupling to
the metastable 3P0 state, achieving control over a total of 2(2F + 1) = 12 states (see next
Chapter). Another important aspect in view of quantum simulation of SU(N)-symmetric
models is the experimental demonstration of the SU(N) symmetry of atomic interactions
in 173Yb, which was so far only theoretically predicted. In particular, as we will see, SU(N)
symmetry in the ground state results in the collisional stability of any arbitrary spin-state
mixture over long time scales. This system is especially suited for the comparison between
theory and experiment, since any isolated many-body state with N spin states occupied
remains confined within the N -dimensional spin subspace.
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4.1 Nuclear spin detection and manipulation

In this Section we will present the experimental technique for the detection of the spin de-
gree of freedom in a fermionic ultracold gas of ytterbium. All techniques presented in this
and the next Sections were obtained adopting 173Yb, but could be directly implemented
with an ultracold gas of 171Yb. We start by briefly recalling the absorption imaging tech-
nique to then explain in detail the optical Stern-Gerlach nuclear spin detection scheme
and the preparation of arbitrary spin-state mixtures through optical pumping on the green
intercombination transition.

4.1.1 Absorption imaging

Absorption imaging is the most consolidated experimental technique for detecting the
density distribution of cold atomic ensembles [14]. The concept behind this method is
very simple: atoms absorb resonant laser light and their shadow can therefore be imaged
on a CCD sensor array. A collimated beam resonant with a strong dipole transition, in our
case the 1S0!1P1 (F = 5/2! F 0 = 7/2) transition, is directed on the atomic sample, with
a waist size much larger than the cloud extension. For low-intensity light, the beam is
attenuated by the atomic sample following the Lambert-Beer law, as photons get absorbed
and re-emitted in a random spatial direction. The reduction in the initial intensity profile
I0(x , y) of a beam propagating along the z-axis through the atomic density distribution is
given by:

I(x , y) = I0(x , y)exp

✓
��0

Z
dz n(x , y , z)

◆
(4.1)

where �0 is the scattering cross section1 of the atomic transition, which characterises the
probability of absorption of a photon by an atom. The intensity therefore decreases expo-
nentially as a function of the local density n(x , y , z) of the atomic distribution integrated
along the beam propagation direction, i.e. the column density of atoms. A CCD camera can
be used to detect the imaged intensity profile of a beam at the location of the atomic sam-
ple. In a typical experimental sequence, two separate images are consecutively collected:
a first image with the atoms present and absorbing the light, and a second reference image
with no atoms present. Each pixel of the CCD camera, labeled by its coordinates in the
(x , y)-plane, is therefore used to detect both the attenuated light intensity I(x , y) and the
initial light intensity I0(x , y). By combining these two signals, the column atomic density
for each pixel can be retrieved:

ncol(x , y) = � 1
�0

ln
Å

I(x , y)
I0(x , y)

ã
(4.2)

A strong transition is preferably used for imaging as a high photon scattering rate is
favourable: shorter light pulses give a superior performance with respect to time accuracy,
provided that a sufficient signal to noise ratio is achieved by the CCD sensor. Absorption
imaging can be used to obtain both the in situ density distribution, i.e. the density distri-
bution of the atoms while trapped either in a crossed dipole trap or in an optical lattice,

1For low light intensity (I ⌧ Isat) and a closed stretched transition, �0 = 3�2
0/2⇡ [86, 97].
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and their momentum distribution, by allowing them to freely expand for an adequate time
of flight before the image is taken. A time-of-flight measurement is initiated by simulta-
neously switching off all trapping potentials and letting the cloud move only under the
influence of gravity. In the absence of other potentials, the atomic distribution evolves
according to its initial momentum distribution, and for a sufficiently long expansion time
the initial size of the cloud can be neglected, so that the observed density distribution
is directly representing the momentum distribution of the atoms. Momentum distribu-
tions obtained in this way are shown in Section 2.2.4, in the context of the production of
degenerate gases of ytterbium.

Band mapping

The quasimomentum distribution of atoms trapped in an optical lattice can also be ob-
tained by time-of-flight imaging, through the so-called band mapping technique [14, 30,
307, 308]. Atoms are released from the optical lattice by smoothly turning off the light
potentials in order to avoid excitations to higher Bloch bands, however still quickly com-
pared to the tunnelling dynamics in the lattice. All atoms follow therefore adiabatically
the band structure during the lattice ramp-down, and the quasimomentum distribution of
the desired initial state is mapped onto free-space momentum in an unambiguous way.
The population of each Bloch band is mapped into the population of separate free-space
Brillouin zones, as sketched in Fig. 4.1(a). In Fig. 4.1(b) the momentum distribution ob-
tained by applying the band mapping technique on a very large gas of spin-polarised 173Yb
is shown, and atoms occupying several Brillouin zones are visible. Another image obtained
by band mapping with a smaller two-spin degenerate Fermi gas of 173Yb out of a lattice
is shown in Fig. 4.2, where sections of the density distribution along the two horizontal
directions are also shown.

In-situ imaging

In situ density profiles can be obtained through absorption imaging with a resolution lim-
ited only by the optical system used to carry the atoms image onto the CCD sensor. A
high-resolution density detection constitutes a useful tool for probing local observables of
atomic samples, such as local density fluctuations, which can reveal characteristic signa-
tures of correlated many-body phases [219]. For that purpose, an imaging system with a
resolution well below the typical cloud sizes of 10-100µm is needed, and was recently im-
plemented in our experimental setup. With an imaging wavelength of 399 nm, an imaging
system with a numerical aperture NA ⇡ 0.35 is sufficient for a resolution r Æ 1µm (see
Section 3.2).

4.1.2 Nuclear spin state-sensitive imaging

Optical Stern-Gerlach scheme

The usual experimental technique for spatially separating atoms in different spin states
is to apply a magnetic field gradient and let the atomic cloud fall under the influence of
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the resulting state-dependent magnetic force. This technique exploits the Stern-Gerlach
effect: when moving into a linearly varying magnetic field, atoms in different internal
states will experience a constant force proportional to their magnetic moment [309]. After
some time of flight, the atomic density distribution is divided in regions corresponding to
the different states, which can then be imaged and counted independently. This scheme
works quite simply for alkali atomic species and it is widely used to separate the different
mF states [109]. The mF -dependent magnetic moment of the electronic ground state is
large enough to obtain sufficient spacial separation with magnetic field gradients of a few
G/cm, which are easily attainable. On the other hand, AEL atoms as ytterbium possess a
nearly zero magnetic moment both in the ground and in the metastable state owing to the
lack of electronic angular momentum, J = 0. In order for only the weak nuclear magnetic
moment to provide a sufficient spatial separation, extremely large and hardly achievable
magnetic field gradients would be required.

For this reason another method to implement an mF dependent separation is used, so
that a state-dependent force can instead be produced by optical means. One usually refers
to such an implementation as optical Stern-Gerlach (OSG) scheme [71, 310, 311]. We
first discuss the general operation principle of the OSG scheme on fermionic AEL atoms
and subsequently describe our specific experimental implementation, which is illustrated
in Fig. 4.4. The key ingredient for the OSG separation of an atomic cloud released from
a trap is the application of a state-dependent optical dipole force. One way to generate a
sufficiently strong force is shining a circularly polarised light beam closely detuned with
respect to a dipole optical transition. The reason why the magnitude of such a dipole force
is dependent upon the mF state of the atoms is found in the nuclear spin and polarisation-
dependent line strength of each transition within the magnetic substructure of any dipole
transition. Details on how to calculate the line strengths are given in Appendix A.

In 173Yb, the 1S0 (F , mF )! 3P1 (F 0, mF ± 1) transition strengths vary by a large factor
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Figure 4.3 – Line strengths for the 1S0 (F = 5/2) ! 3P1 (F 0 = 7/2) transitions with �m

F

= +1
(�+-polarised light). The strengths are normalised to the weakest allowed transition. A significant nuclear
spin state-dependent force can be created by shining a circularly-polarised beam closely detuned to these
transitions, as the dipole force experienced by each state depends on the line strength of the corresponding
transition.
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across the different mF states, as displayed in Fig. 4.3 for the F = 5/2! F 0 = 7/2 hyperfine
transition with �+-polarised light (all line strengths of the different hyperfine transitions
are given in Appendix A). As a consequence, the magnitude of the dipole potential ob-
tained by shining on the atoms a circularly-polarised light beam closely detuned to this
transition is monotonically dependent upon the mF state (see Eq. (A.8)). The generated
force is proportional to the optical intensity gradient applied to the atoms; it can be made
approximately uniform by aligning the beam so as to present a linearly varying intensity
over the atomic cloud, as depicted in Fig. 4.4(b). A blue detuning and a red detuning are
suited for �+ and ��-polarised light, respectively, so that the detuning is the smallest for
the strongest mF transition. In this way the force reduction due to the increasing detuning
adds up to the effect of the decreasing line strengths, as visible from Fig. 4.3.
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Experimental aspects

In our experimental setup, a gaussian circular beam with 40 mW of power at 556 nm
is directed along the y-axis and is right-circular polarised (see Fig. 4.4(a)). A uniform
magnetic field of 4 G is applied also along the y-axis, in order to provide a quantisation
axis such that the light only couples to the �+ transitions. The OSG beam is focused at
the atomic cloud position with a waist w0 ' 75µm, with its centre displaced above the
cloud by approximately half a waist size. The frequency detuning of the beam from the
1S0 (F = 5/2) ! 3P1 (F 0 = 7/2) is positive: �5/2 ' 2⇡ · 840 MHz. On the other hand,
the detuning from the 1S0 (F = 5/2)! 3P1 (F 0 = 5/2) and 1S0 (F = 5/2)! 3P1 (F 0 = 3/2)
hyperfine transitions is negative and respectively equal to�5/2 ' �2⇡·3.9 GHz and�3/2 '
�2⇡ · 5.4 GHz. The influence of the two further red-detuned transitions is not negligible
and it actually gives a favourable contribution, as it generates a significant up-pushing
force on the mF = �5/2 state which helps in separating it entirely from the mF = �3/2
state. All the resulting forces in such a configuration are depicted in Fig. 4.4(c), calculated
taking into account the line strengths of the three different hyperfine transitions in 173Yb
for �+-polarised light (see Appendix A). The forces have a very weak dependence upon
the applied magnetic field, as the corresponding Zeeman shifts are small (see Fig. 4.6(b)
below) compared to the light detuning from resonance.

The OSG separation sequence starts by switching off the optical dipole trap and simul-
taneously switching on the OSG beam, after adiabatically ramping the magnetic field to
the desired value. The cloud needs approximately 3 ms to fall out of the OSG beam waist;
the OSG light is on for a duration of typically 4 ms, and longer pulses do not increase
the state separation. Atoms are then falling under the influence of gravity alone for a
time of flight of 10 ms to 14 ms, which is appropriate in order for the states to be well
distinguishable. Absorption images are taken using linearly polarised light resonant with
the 1S0!1P1 transition with a weak external magnetic field of 2 G applied. Experimental
images of mixtures of all six spin states are shown in Fig. 4.5. The atoms in different mF

states are counted trough six integration regions, each suitably defined to include only
atoms of an individual spin state, as depicted in Fig. 4.5(b).

As the waist size of the OSG beam in the horizontal direction is larger than but com-
parable to the horizontal atomic cloud size, the dipole force generated by the intensity
gradient is not exactly vertical across the entire sample. This explains the evident cur-
vature in some of the mF states imaged after time of flight, as shown in Fig. 4.5. The
curvature is more visible on the states which experience the largest downward force.
The choice of blue detuned OSG beam has another consequence, which is an advantage
compared to a red detuned beam. While the atoms are pushed down by the light force, the
vertical extension of the each cloud corresponding to the various spin states is reduced,
compared to a free time of flight, and this of course improves the state separation. As
atoms are accelerated away from the region of highest light intensity, they get "jammed"
together, resulting in more compact distributions in the direction of the force. In order to
obtain a sufficient separation of the spin states, the beam vertical alignment and the timing
of the OSG sequence need to be carefully adjusted. Depending on the vertical alignment
and the power of the OSG beam, either the separation or the distortion of the different
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Figure 4.5 – Optical Stern-Gerlach separation of the nuclear spin states. A 3.5 ms OSG light pulse is applied at
the release of the gas from the dipole trap and absorption imaging is performed after a time-of-flight expansion
of 12 ms. (a) A close alignment of the OSG laser beam to the atomic cloud position in the trap produces a
superior spin-state separation but a large deformation of the density distribution as well (b) Suitable integration
regions are defined to determine the absolute population of each spin state. As the spatial separation is large
enough to have a negligible overlap between different spin-state distributions, no further analysis is necessary.
(c) With the OSG beam aligned further away from the atomic cloud centre, both the state separation and the
deformation are reduced.

density distributions can be optimised, as visible in the comparison between Fig. 4.5(a)
and (c). The OSG method provides a good state distinguishability only for very cold en-
sembles: when the temperature is too high, atoms expand too fast and the different state
distributions start overlapping. All the images displayed in this and the next Section are
taken for a 173Yb gas at a temperature well below Fermi degeneracy.

One great disadvantage of the OSG technique compared to a standard Stern-Gerlach
method is the nearly complete loss of information about the momentum distribution of
the various spin states. All the spin states are in thermal equilibrium before releasing the
gas from the trap, so that simultaneous time of flight expansion followed by absorption
imaging is sufficient to estimate the global temperature of the Fermi gas. Nevertheless, the
spin state number distribution cannot be measured at the same time as the temperature,
since the spin state momentum distributions are largely deformed by the OSG force during
the initial part of the expansion. The decision of exploiting the 1S0!3P1 transition for
OSG as opposed to the 1S0!1P1 transition is motivated by its narrow linewidth: only a
relatively small detuning is required to prevent excessive heating of the atomic cloud by
photon scattering. The OSG light can thus be supplied by the same laser source that is
tuned into resonance with the green MOT transition. The required detuning is produced
through an acousto-optic modulator in a double-pass configuration (see Section 3.3.2).

State-dependent detection efficiency

In order to correctly determine the integrated atom number in each nuclear spin state,
or at least to correctly estimate the relative population of each state, the influence of the
imaging light polarisation has to be considered. When an internal magnetic substruc-
ture is present in the electronic states connected by the transition used for absorption
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imaging, the choice of polarisation of the imaging beam becomes indeed very important.
The conventional approach is to maximise the absorption cross section by using circu-
larly polarised light, driving a strong �mF = ±1 stretched transition [86]. In the case
of 173Yb, this would correspond to using a �±-polarised imaging beam resonant with the
1S0 (F = 5/2, mF = ±5/2)! 1P1 (F 0 = 7/2, m0F = ±7/2) transition. However, in some cir-
cumstances this is not the most appropriate option, in particular when an equal detection
efficiency for all mF states is desirable. In our system, approximately 100 photons are scat-
tered within the typical imaging pulse duration of 80µs, and optical pumping processes,
namely cycles of absorption and emission that drive the atomic population towards the
stretched states, have a non-negligible effect. The total absolute number of scattered pho-
tons has a dependence on the initial population distribution over the different nuclear spin
states, essentially owing to the mF -state dependent line strengths of the imaging transi-
tion (see Fig. A.1), which cause states with weaker line strengths to scatter comparatively
fewer photons before being finally pumped to a stretched state. In order to minimise the
effect of the initial spin state on the detection efficiency, we opted for employing linearly
polarised light propagating along the quantisation axis defined by the weak external mag-
netic field. In this way, the imaging light couples equally to both �± transitions, and the
spin-state dependence is almost completely suppressed2. As a drawback, the atoms spend
more cycles populating the spin states with the weaker line strengths, and therefore the
overall detection efficiency is slightly lower than the one obtained with circularly polarised
imaging light. A calibration of this reduction gives a correction factor on the measured
atom number Nlin in a six-component 173Yb gas3: Ncirc ' 1.4 Nlin.

4.2 Nuclear spin state preparation

In this Section we will present the experimental technique for the preparation of arbi-
trary spin mixtures with 173Yb. Our implementation is based on multiple-pulse optical
pumping on the green intercombination transition. The protocol exploits the individual
nuclear spin-state addressability obtained by tuning the frequency and the polarisation
of the pumping laser light, when a sufficiently strong external magnetic field is applied.
Thanks to the collisional stability of any spin mixture stemming from the SU(N) sym-
metry of the interactions, the number of participating spin states in the system can be
tuned to explore SU(N)-symmetric models with dimension N varying from 1 to 6. We will
first summarise the operating scheme of the spin mixture preparation to then discuss the
experimental details of our implementation.

4.2.1 Spin state-resolved addressing of the intercombination transition

There exists a variety of optical pumping scheme implementations devoted to the prepa-
ration of specific or arbitrary mixtures of the nuclear spin states of 173Yb or of other

2In particular, the bias is completely absent for spin-mixture preparations including only two opposite-mF

spin states.
3The correction factor is different for mixtures with a smaller subset of populated spin states, e.g. it is close

to 1 for a symmetric mixture of the stretched states only.
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fermionic AEL atoms [71–73, 311]. The most simple implementations are based on op-
tical pumping to stretched (possibly dark) states through the application of light pulses
resonant with the 1S0!1P1 or 1S0!3P1 transitions and circularly/linearly polarised along
a weak magnetic field, which serves exclusively to set the angular momentum quanti-
sation direction. Although the simplicity of such schemes is a clear advantage, a very
limited variety of balanced spin state combinations is attainable in this way. Only spin-
polarised samples of one stretched state (mF = +5/2 or mF = �5/2) and few balanced
two-component mixtures of the stretched states were thus implemented [71, 72]. By
applying a stronger magnetic field, all mF states of the of the 3P1 state can readily be
split with a shift between neighbouring spin states that is larger than the linewidth of
the 1S0!3P1 transition and of the green laser source (see Fig. 2.5). All transitions con-
necting different mF states can therefore be separately addressed simply by tuning the
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Figure 4.6 – (a) Spectroscopy of the 1S0(F = 5/2) ! 3P1(F 0 = 7/2) transition with ��-polarised light in
a magnetic field B ' 18 G. (b) The measurement is used for the calibration of the magnetic coils and for the
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frequency and the polarisation of the excitation laser. In Fig. 4.6 the spectroscopy of the
1S0 (F = 5/2, mF )! 3P1 (F 0 = 7/2, m0F = mF � 1) transitions in a magnetic field of 18 G is
shown. By means of subsequent multiple �±-polarised light pulses, individually resonant
with the various 1S0 (F = 5/2, mF )! 3P1 (F 0 = 7/2, m0F = mF ± 1) lines, any combination
of spin states can be prepared, as exemplified in Fig. 4.7 for different target spin combina-
tions.

4.2.2 Optical pumping on the intercombination transition

The same light beams used for cooling in the green MOT are used for the implementation
of the optical pumping sequence. A uniform magnetic field of 18 G is produced by the MOT
coil pair, which is rapidly switched from an anti-Helmholtz to a Helmholtz configuration
after the atoms have been loaded from the MOT to the optical dipole trap. The pumping
light is applied shortly after the atoms have been transferred to the dipole trap, in the
very initial stage of the evaporation. The two vertical MOT beams, which are circularly
polarised and couple only to the required �± transitions, are sequentially pulsed according
to the desired preparation protocol.

The near-abrupt switching of the magnetic field substantially contributes in depolaris-
ing the atomic sample after cooling in the MOT. In the last stage of the cooling at low light
intensity, the atoms preferentially absorb photons from the MOT beam propagating against
gravity; this uneven absorption effectively results in some degree of spin polarisation, i.e.
imbalance between different mF states. For the preparation of balanced few-component
mixtures, it is highly desirable to start from a balanced six-component ensemble, as an
initial spin imbalance may propagate to the final distribution. The diabatic field switching
projects the ensuing spin mixture at the end of the optical cooling into position-dependent
coherent superpositions of spin states, which then dephase during the evaporation due to
magnetic field inhomogeneities or optical pumping photon scattering. The measured rela-
tive spin distribution at the end of the evaporation (without any optical pumping sequence
applied) is found to be pmF

=
�
0.18(1), 0.14(1), 0.15(1), 0.15(1), 0.18(1), 0.20(1)

�
for

mF = �5/2, . . . ,+5/2. Part of the residual imbalance could be due to the linear polarisa-
tion of the imaging light beam (see previous Section). It is important to point out that only
statistical mixtures of different spin states can be engineered by optical pumping schemes
based on cycles of photon absorption and spontaneous emission, as the emission obviously
destroys any coherent superposition between spin states. One way to engineer coherent
spin-state superpositions exploits schemes based on off-resonant two-photon Raman pro-
cesses, by which two ground state spin states at a time are coherently coupled by two laser
fields, equivalently to optical Raman coherent coupling of internal states of alkali atoms
[101, 312]. Nevertheless, the preparation of arbitrary nuclear spin superpositions is more
desirably achieved through the coherent coupling to the different magnetic sub-levels of
the metastable 3P0 state [59], which completely eliminates the problem of spontaneous
photon emission. Such couplings can be implemented by using �-polarised clock exci-
tation light and magnetic fields of just a few Gauss, as it will become clear in the next
Chapter.
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Figure 4.7 – Optical pumping on the 1S0(F = 5/2) ! 3P1(F 0 = 7/2) lines. The sequences for achieving
balanced two-component nuclear spin mixtures (a)-(c) or spin-polarised samples (d) are illustrated. Target
spin states are depicted in red. The respective polarisation and sequential order of each light pulse are also
indicated. In case (d), an auxiliary stretched spin state is populated in order to provide a coolant for the
evaporation of the target spin state to degeneracy.

Spin mixtures experimental preparation

For the experiments presented in the following part of this thesis, mixtures of two spin
states are predominantly employed. Typical images resulting from OSG separation of two-
component samples after evaporation are displayed in Fig. 4.8. The samples are prepared
according to the pulse sequences illustrated in Fig. 4.7, using 100 ms light pulses with a
weak intensity I ' 0.05Isat in an external magnetic field B ' 18 G. However, spin mixtures
with any other number of occupied spin states have also been realised. For instance, three,
four and five-component gases were generated by leaving the appropriate pulses out of
the sequences in Fig. 4.7(a)-(c), where the number imbalance between spin states tends
to be neutralised through the evaporation.

Owing to the reduction of the number of spin states which are populated, the total
collision rate per spin state during the evaporation is reduced, as collisions in the s-wave
regime are only possible between atoms with different nuclear spin. On the other hand,
when only two spin states are present, each of them has a population that is three times
larger compared to the six-spin scenario. By using the same evaporation sequence, we
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Figure 4.8 – Absorption images of different two-component spin mixtures obtained by employing the optical
pumping schemes illustrated in Fig. 4.7(a)-(c). Unwanted spin states are typically kept below 3% of the total
atom number and the balancing between the two target spin states is usually better than 5%. These specific
spin-state combinations are used for the experimental demonstration of the SU(N) symmetry of two-orbital
interactions presented in Section 6.1.2.

achieve a final T/TF which is up to approximately 20% larger than the one of a six-
component gas with a similar final total atom number N , so that typically 0.2  T/TF 
0.25. It is essential to apply the resonant optical pumping light at the very early stage
of the evaporation, when the temperature of the cloud of few µK is still above the recoil
temperature. The heating caused by photon scattering is otherwise too severe and results
in significantly increased final temperatures after evaporation. In order to characterise
the excitation to the metastable state and to perform reference measurements, it is very
convenient to employ a clean and non-interacting system represented by a spin-polarised
gas. Degenerate spin-polarised samples with atom number N < 105 can be prepared
by evaporating an imbalanced two-component spin-mixture. The minority component is
completely removed during the evaporation, allowing the remaining spin state to reach
degeneracy with a final T/TF ' 0.35 (see e.g. Fig. 5.7). We typically initialise the gas for
the evaporation into a spin-polarised sample by pumping three spin states to the target
stretched state (mF = ±5/2) and only one spin state to the auxiliary stretched state (mF 0 =
⌥5/2), achieving a ratio of approximately 2:1 (see Fig. 4.7(d)).

4.3 SU(N)-symmetric ground state interactions

As discussed in Chapter 1, the decoupling between nuclear and electronic angular momen-
tum is expected to make the s-wave scattering length ag g between atoms in the ground
state largely independent of the nuclear spin. We have seen also how this spin invariance
gives rise to an underlying SU(N) symmetry of the interactions [53, 55, 63]. In this Sec-
tion, we report on the verification of the SU(N)-symmetric nature of the interactions in
the ground state of 173Yb.

One clear manifestation of the extended symmetry is the conservation of the popula-
tion of each nuclear spin state separately, i.e. the absence of spin-changing collisions. The
residual nuclear spin-dependent variation of ag g can be expressed by �ag g/ag g , i.e. the
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relative deviation of the scattering lengths corresponding to different spin configurations.
The order of magnitude of such deviation can be estimated by considering the change in
the scattering phase shift associated with different nuclear spin states [55]. The scattering
length is in fact a measure of the phase � accumulated by the colliding atoms relative
wave function when moving through the inter-atomic potential from the turning point to
infinity (computed at zero energy). The spin-dependent variation of the phase is propor-
tional to the relative variation of the scattering length: �ag g/ag g / �� = �tcoll�V/~h,
where �tcoll is the typical time spent by the atoms in the short-range part of the inter-
atomic potential and �V is the typical inter-atomic potential energy difference between
different spin configurations at short range [55]. �� can be estimated through the hyper-
fine interaction strength [55], resulting for ytterbium in �ag g/ag g ⇡ 10�8. Such a small
deviation requires incredibly long time scales to play a role in the spin dynamics of a cold
gas, and in practice the SU(N) symmetry of interactions is satisfied for every measurement
time scale typically used in our experiment.
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Figure 4.9 – Absence of spin relaxation in a two-component Fermi gas held in a harmonic trap. An almost
pure two-spin mixture of the m

F ,F 0 = ±5/2 states of 173Yb is prepared by optical pumping, evaporated to
degeneracy and held in the dipole trap. The time evolution of the relative spin-state populations is monitored
by spin-resolved imaging. Populations are normalised to the total number of atoms, in order to compensate a
global atom number decay caused by imperfect vacuum losses. Solid lines indicate the mean value of different
spin-state populations. Experimental images corresponding to different hold times are also displayed. No
detectable population of additional spin states is appearing during the hold time, demonstrating the absence
of spin-relaxation processes and verifying the SU(N) symmetric nature of atomic interactions. In the inset, a
zoom on the population evolution of the m

F

= ±3/2, ±1/2 is shown.
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4.3.1 Absence of spin relaxation

The absence of spin relaxation in the ground state can be directly experimentally verified
with a simple measurement. By preparing a degenerate gas having only two populated
spin states, and by monitoring the population of the empty spin states over time, we
can determine an upper limit for the spin-changing collision rate [311]. We initialise the
system in a mixture of the mF ,F 0 = ±5/2 states, as described in the previous Section. After
degeneracy is reached, we increase the height of the optical potential again to prevent
further evaporation and hold the gas in the trap for a variable amount of time. During
15 s of hold time, no detectable population of additional spin states is revealed, indicating
an extremely low spin-relaxation rate (see Fig. 4.9).

Due to the conservation of coupled angular momentum throughout atomic collisions
(see Section 1.2), associated with the SU(2) symmetry of contact interactions, the sum of
the nuclear spin projections of two atoms is conserved after a collision even in the pres-
ence of spin-changing collisions. Therefore, only pairs of atoms with opposite mF -states
can appear during the hold time. The linear Zeeman effect does not lift the degeneracy
between all pair states with the same total nuclear spin projection, associated with the
conservation of coupled angular momentum. A weak external magnetic field B ' 3 G,
which is used to keep a stable quantisation axis during the evaporation and the final hold,
does consequently not inhibit spin-changing collisions. A quadratic Zeeman effect could
actually lift the degeneracy and suppress spin-changing collisions as long as the Zeeman
shift is larger than the coupling of states with different spin orientations (see Section 1.2).
However, the quadratic Zeeman shift of the ground state can be estimated to be smaller
than 1mHz/G2⇥mF B2, and it is then negligible with respect to couplings ⌦sc which could
generate any spin dynamics during the 15 s long hold (⌦sc � 2⇡·65 mHz).

The initial spin state |m1 = �5/2; m2 = +5/2i can only be coupled by the interaction
to the states4

��m3 = �3/2,�1/2; m4 = +3/2,+1/2
↵
. The variation of total population Nsc

of these four nuclear spin states can be expressed as:

Ṅsc = Ni n̄ · 2�sc (4.3)

where Ni is the initial atom number in each of the mF = ±5/2 states, n̄ is the mean density
of the gas and �sc is the spin-changing collision rate coefficient. The factor of 2 here ac-
counts for the fact that two atoms are changing their spin throughout each collision. Given
that the increase in Nsc is below our detection limit of approximately 103 atoms along 15 s
of hold time, as visible in Fig. 4.9, and the density in the optical trap during the hold is
n̄' 4⇥ 1012 atoms/cm3, an upper limit �sc < 8⇥ 10�16 cm3/s can be established. This rate
coefficient is about 104 times smaller than the total elastic collision rate coefficient �el,
estimated by setting a = ag g in Eq. (1.22).

As written in Eq. (1.26), the elementary spin-changing collision process amplitude
depends on the spatial overlap between the interacting pair wave functions. Assuming
the spin-changing process is mode-conserving, due to the associated small energy scales
compared to any other relevant energy scale of the system in the harmonic trap, the spin-

4An expression of the couplings can be obtained by using Eq. 1.26 with |m1 = �5/2; m2 = +5/2i as the
initial state.
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changing collision rate can then be seen in a single-mode approximation as an ensemble
average of the microscopic couplings plus additional incoherent spin-relaxation processes
[313, 314]. It is difficult to directly provide a relation between �sc/�el and �ag g/ag g . Due
to the absence of any spin dynamics, it is unclear if an incoherent spin-relaxation5 is the
dominant contribution at the measurement timescale. Only coherent spin dynamics could
be directly related to �ag g , and we may estimate an order-of-magnitude experimental up-
per bound of �ag g/ag g ⇡ �sc/�el < 10�4.
The measurement itself provides nonetheless the experimental evidence of the complete
spin-state collisional stability, during a time scale that is long compared to typical experi-
mental time scales, verifying indirectly the SU(N) symmetry of interactions in the ground
state of 173Yb. In Section 6.1.2, the direct spectroscopic demonstration of the SU(N)
symmetry of interactions in the two orbital system formed by the 1S0 and 3P0 states of
173Yb is presented. For a discussion on the significance and the implications for quantum
simulation of the measurement uncertainty in the experimental demonstration of SU(N)
symmetry of interactions, the reader can refer to Section 5.2.2.

5An incoherent spin relaxation dynamics could be caused by a slight breaking of the smaller SU(2) sym-
metry of collisions or by dipolar relaxation in the applied magnetic field.



CHAPTER 5

The second orbital: optical coherent control
of the electronic state

One of the remarkable features of ytterbium and other alkaline-earth-like atoms is the
existence of metastable excited states in the triplet manifold (S = 1) of the electronic
level structure (see Section 2.1.2). The 3P0 state is especially interesting with a zero
electronic angular momentum J = 0, like the ground state 1S0 : a strong independence
of scattering properties from the nuclear spin orientation has been theoretically predicted
within the entire set of collision processes involving atoms in either state. We have already
seen in Chapter 1 how a two-orbital SU(N)-symmetric description of interactions is thus
suitable, where the two orbitals are represented by the two (meta-) stable electronic states.
173Yb is one of the most attractive candidates for the investigation of SU(N)-symmetric
models, owing to the possibility of tuning N from 1 to 6. At the same time, gaining control
over its orbital degree of freedom through the coherent coupling to the 3P0 state, via the
associated ultranarrow optical clock transition, provides exciting possibilities for quantum
simulations of orbital magnetism and spin-orbital interactions in solid materials.

In this Chapter, we will illustrate the essential experimental aspects of optical preci-
sion spectroscopy in a state-independent optical lattice, which represents a powerful and
versatile tool for probing the energy spectrum of lattice gases. We will moreover describe
how coherent control of the metastable state population is experimentally achieved in a
spin-state-resolved fashion, by means of the optical excitation of ground state atoms in
the presence of an external magnetic field. In the second part of the Chapter, we will
introduce a simple model of two-orbital Hubbard interactions between fermionic atoms
and we will specifically explain how they can be directly probed by precision spectroscopy,
in preparation of the experimental results reported in Chapter 6. We will conclude by
briefly addressing the relevance of a small SU(N) symmetry breaking for experimental
many-body physics observations.

5.1 Excitation to the metastable state

This Section is devoted to the description of the experimental techniques for the coherent
excitation of ground state atoms to the 3P0 state and the spectroscopic probing of lattice
states. We will start by providing some details about state-dependent optical potentials for
ytterbium atoms, including an experimental characterisation of the wavelength dependent
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differential AC-Stark shift in our setup. We will then proceed by illustrating how the clock
transition is addressed in a three-dimensional magic optical lattice, by either incoherent
spectroscopy or Rabi driving. We will focus especially on the excitation of spin-polarised
samples in the presence of a magnetic field. The accurate evaluation of the clock transition
Zeeman shifts provides a useful reference for the cancellation of otherwise uncontrolled
frequency shifts, greatly enhancing our relative frequency precision. The achieved level
of spectral precision and the high degree of control presented here are crucial for the
successful investigation of two-orbital spin-exchange interactions reported in the following
Chapter.

5.1.1 State-dependent optical potentials for ytterbium

In Section 1.1.3 we have recalled how light potentials are intrinsically state-dependent, as
they arise from the distinct AC-Stark shifts of each electronic level, which depend on the
available transitions energy and strength [97]. The wavelength dependence of the AC-
Stark shift for the two lowest (meta-) stable states of ytterbium, which we always denote
as 1S0 = |gi and 3P0 = |ei, can be theoretically calculated by including contributions from
all available transitions starting from the two states respectively (see Eq. (A.1)). In order
to obtain accurate results, dipole matrix elements and state energies need to be evaluated
using relativistic many-body calculations [263, 315]. The calculation by Dzuba et al [263]
includes also an empirical correction, in order to incorporate the result of an accurate
experimental determination of the magic wavelength for 174Yb [121].

In Fig. 5.1 the calculated AC-Stark shifts for the |gi and |ei states are plotted as a
function of frequency1: spectral intervals where the two Stark shifts are either very similar
or very dissimilar (in magnitude or sign) can be recognised, so that a variety of possible
relative potential depths may be implemented by an appropriate choice of the wavelength.
The Stark shift of the ground state is dominated by the contribution of the broad 1S0!1P1

transition at 399 nm, and the 1S0!3P1 resonance at 556 nm appears as a narrow pole-like
feature but has a very limited contribution to the Stark shift at large detunings. On the
other hand, the contributions of the 3P0! 3S1 transition at 649 nm and of the 3P0! 3D1

transition at 1389 nm are dominant in the visible to near-infrared range Stark shift of the
metastable state.

For the spectral region shown in Fig. 5.1, two magic wavelengths, i.e. wavelengths
where the two Stark shifts are identical, can be found: �m ' 759.4 nm and �0m ' 551.5 nm.
Moreover, three anti-magic wavelengths are present, for which the Stark shifts are equal
in magnitude but opposite in sign: �am ' 1115 nm, �0am ' 635 nm and �00am ' 553 nm (not
marked in Fig. 5.1). Other peculiar wavelengths are the state-selective ones, for which the
polarisability of one state vanishes: �zc ' 552 nm (|gi state zero-crossing), �0zc ' 590 nm
and �00zc ' 980 nm (|ei state zero-crossings).
As a general consideration, only wavelengths which are sufficiently far from an atomic res-
onance can be safely employed for optical trapping without resulting in excessive photon
scattering of atoms in either state. Consequently, the preferable choices of a magic and

1For values of the polarisabilities across a broader spectral region, see the original reference [263].
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Figure 5.1 – AC-Stark shift of the ground (red) and clock (blue) states of ytterbium as a function of wavelength
in the visible/near-infrared region. Values of the state polarisabilities are taken from Ref. [263]. The Stark
shifts have poles at the wavelengths associated with the electronic transitions for the two states, respectively
the 1S0 !3P1 transition at 556 nm for the |gi state and the 3P0 ! 3S1 at 649 nm for the |ei state. Magic
(anti-magic) wavelengths are indicated by green (grey) circles and vertical dotted (dash-dotted) lines, whereas
Stark shift zero-crossing points are marked with a cross.

an anti-magic wavelength are �m ' 759.4 nm and �am ' 1115 nm, and such wavelengths
are currently used respectively in optical lattice clocks [51, 122] and artificial gauge field
generation schemes [64]. Moreover, narrow-line high-power laser sources are commonly
available at such wavelengths, namely Ti:Sapph and Yb-doped fiber lasers.

Magic wavelength optical lattices are the ideal choice for AEL-based optical lattice
clocks [49, 90] and in general for cold atom precision spectroscopy. On the one hand,
deep lattice potentials bring many advantages to optical precision spectroscopy as they
enable Doppler-free, recoil-free interrogation of the clock transition. On the other hand,
optical potentials normally induce differential light shifts on atom internal states that need
to be cancelled, compromising otherwise the attainable spectral precision and accuracy.
Lattices tuned at the magic wavelength represent a neat solution to this issue, providing
an electronic state-independent trapping potential, where the differential AC-Stark shift
is cancelled to leading order. Other systematic shifts are introduced by the lattice light,
namely due to higher-order AC-Stark shift, usually termed hyperpolarisability [121, 316],
and for odd isotopes due to vector and tensor Stark shifts [90, 96, 122]. Stabilising these
shifts is a primary concern in state-of-the-art lattice clocks [90]. However, provided that
linearly polarised light is used to implement the magic lattice, light-induced effects just
give rise to sub-Hz frequency shifts. As we will see in the following Section and in Chap-
ter 6, a resolution of 10 Hz is widely sufficient for detecting the typical magnetic and
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interaction frequency shifts in ultracold gases. In this context, every lattice light-induced
shift is therefore negligible as long as the lattice laser operates at the magic wavelength.

The magic wavelength shows a weak isotope dependence, and experimental values
with a relative precision of more than 10�7 obtained in lattice clock setups have been
reported for 174Yb [121] and 171Yb [122], yielding respectively �m ' 759.353740(67) nm
and �m ' 759.355944(19) nm. The frequency dependence of the differential Stark shift
Vd(!) in the vicinity of the magic wavelength was also measured, resulting in a shift slope
�Vd(!) = �22(2)mHz/(GHz Er) for both isotopes. This value indicates a considerable
robustness, as a detuning of 1 GHz of the lattice light from the magic wavelength leads
only to a differential shift of approximately 1 Hz for a depth of 50 Er . For this reason, the
standard scheme for the creation of separable three-dimensional optical lattice potentials
by employing three linearly polarised retro-reflected laser beams detuned from each other
by ⇠ 100MHz (see Section 3.3.3) does not pose any problem for precision spectroscopy
above Hz level. A relative stability of the lattice laser source wavelength of ⇠ 10�5 is
sufficient (corresponding to an absolute stability of ⇠ 5GHz).

For all experiments presented in the following part of this work, we adopted a lattice
tuned to the magic wavelength. In the following Section, we introduce precision spec-
troscopy in such a lattice and show measurements that were performed to ascertain the
"magicness" of the optical lattice for 173Yb. Before then, we briefly consider here a state-
dependent optical lattice tuned away from the magic wavelength, in connection to the
planned experimental implementation of the Kondo lattice model.

A state-dependent lattice for the Kondo lattice model

We have seen in Chapter 1 how the exchange coupling Vex emerges as an intrinsic con-
sequence of the on-site interaction energy difference between the singlet and triplet state
of two atoms in the |gi and |ei states, and we will see in Chapter 6 how the exchange
interaction was directly observed and characterised in 173Yb. This provides one of the
essential ingredients for the implementation of the Kondo lattice model (KLM), which we
have presented in Section 1.3. The other essential ingredient is a mobile band of ground
state atoms, which mimics the conduction band of electrons in a solid material. Simulta-
neously, atoms in the |ei state must be localised, in order to play the part of the magnetic
impurities in the KLM. It is therefore necessary to create independent lattice potentials for
the two electronic states, in order to be able to appropriately tune the tunnelling of each
state. For this purpose, a state-dependent optical lattice needs to be employed, similar to
the one depicted in Fig. 1.3(a).

A suitable wavelength for the lattice has to be found, which generates a potential depth
as low as possible for the ground state atoms while still keeping excited atoms completely
isolated from each other. By looking at the states Stark shift plotted as function of wave-
length in Fig. 5.1, we can select two ranges of wavelengths which could in principle be
appropriate for the purpose. One broad range can be found in the vicinity of the 3P0! 3S1

transition wavelength: a factor-of-3 difference in the Stark shifts is achieved at approxi-
mately 670 nm, and the factor increases towards the resonance to arbitrarily high values.
Another very small usable range can be found in the vicinity of the 1S0!3P1 transition:
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around 552 nm the polarisability of the ground state vanishes. The former alternative
presents two advantages in comparison to the latter: (i) the |ei state polarisability is con-
siderably larger, so that a lower laser power is required to generate a given lattice poten-
tial depth, and (ii) the wavelength sensitivity of the Stark shift is much smaller, implying
a coarser frequency stabilisation of the lattice wavelength is required. The detuning to the
respective transitions, which is relevant concerning the heating caused by lattice photon
scattering, is comparable between the two options, with �/� ⇡ 1 ⇥ 10�7. For these rea-
sons, we are currently implementing a state-dependent lattice potential at approximately
670 nm, which will be described in Ref. [279], along with a spectroscopic characterisation
of the associated state-dependent Stark shifts.

In order to implement the KLM in two or one dimensions, deep magic lattices on one
or two axes can be used to isolate different copies of the lower-dimensional system and
provide a state-independent harmonic confinement. This is particularly convenient as it
permits to perform clock spectroscopy and coherent excitation in the Lamb-Dicke regime
(see below). However, the light shifts produced by the non-magic lattice potential in
orthogonal directions broaden the resonances and give rise to an inhomogeneous Rabi
coupling, and might therefore have to be compensated by additional laser beams in order
to attain a sufficient degree of spectral precision.

5.1.2 Addressing the clock transition in a magic optical lattice

First spectroscopy of the clock transition

In order to initially locate the 1S0!3P0 clock transition of 173Yb, we calibrated our wave-
length meter2 by using the measured frequency of the green MOT transition, reaching an
absolute precision close to 60 MHz, limited by the resolution of the wavelength meter it-
self. We then proceeded by shining 5 mW of clock excitation light on a cold sample of 173Yb
in the dipole trap and varying the laser frequency3 over a range of 40 MHz around the lo-
cation where the resonance was reported [274]. By monitoring the number of ground
state atoms after the clock light had been applied, we could observe a deep absorption
feature in the vicinity of the expected resonance frequency. After the clock line was thus
found, we performed higher-resolution spectroscopy on free-falling atoms, in order to ex-
clude the light-induced clock shift on the resonance position. Although the free-space
resonance does not suffer any light-shift, it is still Doppler-broadened to approximately
2 kHz and is shifted by the clock photon recoil energy.

Spectroscopy in the optical lattice

In order to achieve sideband-resolved excitation, we adiabatically load a 173Yb Fermi gas
into a deep three-dimensional lattice tuned to the magic wavelength reported in Ref. [121]
for 174Yb (see Section 2.2.4 for details on the lattice implementation and the loading pro-
cedure). The clock excitation laser beam is ⇡-polarised and aligned along one of the

2HighFinesse/Ångstrom WS7
3In order to speed up the line search, a chirped clock light pulse with a duration of 20 s was applied during

each experimental cycle, for a resulting frequency sweep of 1 MHz/cycle.
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Figure 5.2 – Rabi ⇡-pulse clock spectroscopy of a two-component Fermi gas (m
F ,F 0 = ±5/2) in a three-

dimensional magic optical lattice. The lattice depth in the direction of the clock excitation beam is 45E
r

. (a) A
Rabi oscillation with ⌦ = 2⇡ ·1.96 kHz is observed by driving the transition with an intensity of 2.7 W/cm2. The
resulting ⇡-pulse duration is ⌧⇡ = ⇡/⌦ = 0.255ms. The expected Rabi frequency obtained for the estimated
intensity of the clock laser at the atom position equals ⌦ = 2⇡ · 1.82(15) kHz. The fitted coherence time is
tcoh = 2.98ms (see also Fig. 5.12). (b) A Fourier-limited spectrum is obtained by applying a clock ⇡-pulse and
varying the clock laser detuning while the gas is held in a deep lattice. The solid line is a fit of a sinc2 function
to the data points. The dashed line is the expected spectrum calculated through the Rabi frequency ⌦ and the
amplitude obtained by the sinusoidal fit in the (a) panel. (c) Line-shapes for different pulse durations. The ratio
between the coherence time tcoh and the ⇡-pulse duration ⇡/⌦ is taken equal to 11.8, resulting from fitting the
data in panel (a). For pulse durations tpulse � tcoh, an excitation fraction of 0.5 is observed and the line-shape
is a Lorentzian with Fourier-limited width.

lattice axes by overlapping it with the corresponding lattice beam (see Fig. 5.4), in order
to satisfy the Lamb-Dicke condition for quasimomentum-independent coupling [49, 317]
(see below for more details on sideband-resolved spectroscopy). Incoherent spectroscopy
is implemented by illuminating the trapped atoms with a 100 ms clock excitation pulse,
having a light intensity typically between 0.2 mW/cm2 and 20 mW/cm2. Provided the
pulse duration is longer than the typical system’s coherence time and its area covers sev-
eral ⇡, an excitation fraction of 0.5 should result, independently of the Rabi coupling, as
displayed in Fig. 5.2(c). The Rabi coupling for a given light intensity is given in the usual
way as [97]:

~h⌦ = �deg E0 = �deg

vt2I0

c✏0
(5.1)

where deg is the dipole matrix element of the transition, E0 and I0 are respectively
the amplitude and the intensity of the light field. For fermionic isotopes, the finite
coupling is a consequence of the hyperfine interaction (HFI) (see Section 2.1.2 for de-
tails) and is proportional to the nuclear spin state-dependent dipole matrix element,
which can be determined through the Clebsch-Gordan coefficients inherited from the
1S0 (F = 5/2) ! 3P1(F 0 = 5/2) transition (see Appendix A). The expected Rabi coupling
for a given mF state can be thus calculated by inferring the reduced dipole matrix element
from the natural linewidth of the clock transition, which was theoretically calculated to
equal 7 mHz in 173Yb [260]. We find excellent agreement between the measured Rabi
frequencies ⌦ and the expected values computed using Eq. (5.1). The typical clock light
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) of the light-shift cancellation around the magic wavelength is estimated.

intensities used for incoherent spectroscopy4 yield Rabi frequencies ⌦ comprised between
2⇡ · 15Hz and 2⇡ · 150Hz for the mF = ±5/2 states. Clock transition spectra are obtained
by detecting the ground state population as the clock pulse detuning is varied. Incoherent
precision spectroscopy measurements for different spin and magnetic field configurations
will be displayed later in this Section.

Another possibility is Rabi spectroscopy, where a single Rabi ⇡-pulse is applied to the
atoms and therefore an excitation fraction close to 1 is expected (see Fig. 5.2). However,
incoherent spectroscopy is the preferable option when spectra including various transi-
tions with different Rabi couplings need to be measured using the same light intensity,
and especially when the desired information resides mainly in the position of the different
resonances. As we will see later, the width of resonances measured with either methods
in the magic lattice is Fourier-limited to values as low as approximately 40 Hz; our clock
laser absolute short-term frequency stability prevents the possibility of observing narrower
resonances.

Validation of lattice "magicness"

Although our wavelength meter is re-calibrated by the position of the free-space clock
resonance and our lattice wavelength assessment should therefore be rather accurate,
we further experimentally ascertain the magic wavelength value5 and its robustness for
173Yb, by proceeding as follows: we measure the differential light-shift of the clock tran-
sition for three different wavelengths of the lattice laser near 759.35 nm, as displayed in

4A beam waist of approximately w0 ' 150µm and a power between P ' 0.1µW and P ' 10µW are
typically employed.

5From to the small isotope shift of the clock transition between 173Yb and 174Yb (see Table 2.3), it is
reasonable to assume that the magic wavelength of 173Yb is located close to the one already measured for
174Yb [121]. However, due the presence of HFI interactions in the fermionic isotopes, different transition
coupling strengths could lead in principle to a non-negligible shift of the magic wavelength.
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Fig. 5.3(a), by performing clock spectroscopy at different lattice depths. By determining
the lattice frequency-dependent slope of the differential light-shift relative to the lattice
depth, we can estimate the sensitivity �Vd(⌫) = @ Vd/@ ⌫ of the differential-shift cancella-
tion around the magic wavelength (see Fig. 5.3(b)), and we found good agreement with
Refs. [121, 122]. By the zero-crossing of the differential shift, we also obtain a working
value of the magic wavelength for our setup �m ' 759.30(4) nm. This should not be taken
as an accurate measurement of the magic wavelength in 173Yb, as the determination of
the resonance centres is affected by severe line-shape deformations away from the magic
wavelength, owing to the inhomogeneity of the light-shift caused by the Gaussian lattice
beam profiles.

Experimental configuration

As already mentioned earlier, the clock excitation light is linearly polarised along the di-
rection of an external uniform magnetic field in order to couple only to the ⇡-transitions
(�mF = 0), as sketched in Fig. 5.4(a). The magnetic field can be used to split transi-
tions corresponding to different nuclear spin states (see Section 5.1.3) or can be tuned to
sufficiently low strength to only provide a stable quantisation axis, when the associated
Zeeman splitting is lower than the Fourier-limited linewidth.

The clock laser is frequency stabilised to an ultralow-expansion (ULE) glass cavity ref-
erence (see Section 3.4 and Appendix C) with a finesse F ' 105. A drift of the cavity
reference, due to the age-related mechanical flow of the glass spacer, needs to be com-
pensated (see Appendix C). For this reason, a linearly time-varying frequency offset of
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Figure 5.4 – (a) Experimental configuration for the addressing of the clock transition in a three-dimensional
optical lattice. The yellow excitation light is directed along one of the lattice axes, in this case the y -axis. The
quantisation axis of the nuclear spin is provided by an external magnetic field with a minimum value of 0.3 G.
The excitation light is linearly polarised along the magnetic field direction, so that it couples only to the ⇡-
transitions. (b) Experimental sequence used for the measurement displayed in Fig. 5.5. After a clock ⇡-pulse
at variable detuning � from the clock resonance (located at � = 0) is applied, the relative |ei state population
is mapped to the |gi state population. First, a cleaning pulse resonant to blue transition is used to remove
residual |gi state atoms, and secondly, a long clock pulse is used to bring half of the |ei state population back
to |gi.
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approximately 80 mHz/s is applied in a feed-forward scheme to the clock laser frequency
set value. Reference spectroscopic measurements are performed to calibrate the absolute
frequency of the clock laser, using spin-polarised gases with low-atom number N ' 3⇥104

in order to exclude any interaction-induced frequency shifts. Typical conditions of spin-
polarised and two-component Fermi gases of 173Yb used for precision spectroscopy are
described later in this Section and summarised in Figs. 5.7-5.8.

Lattice sideband spectroscopy

When the Lamb-Dicke condition is satisfied in a deep lattice [317], i.e. when each atom
is confined to a space smaller than the clock wavelength, transitions between Bloch bands
with indices differing by more than 1 are suppressed. In a lattice potential, the Lamb-Dicke
regime coincides to the regime of quasimomentum-independent Rabi couplings: when
the lattice depth is increased, the quasimomentum dispersion relation of the Bloch bands
gradually flattens; in the large depth limit each lattice site can be approximately treated
as an individual isolated harmonic trap with a large oscillator level spacing ~h!ho � Er .
The clock light field can couple Bloch bands with different band indices only along the
direction of kl , the clock laser wave vector, and couples quasimomenta differing by kl

inside the first Brillouin zone. The quasimomentum-dependent coupling between the |gi
state in the n-th Bloch band and the |ei state in the m-th Bloch band can be written as:

⌦n,m(q1, q2) = ⌦
Z

dy (m)⇤q2
(y) (n)q1

(y) exp(ikl y) (5.2)

where the clock laser propagates along the y-axis and  (n)q (y) is the Bloch wave function
in the n-th band at quasimomentum q = q · ŷ. For a sufficiently deep lattice the ⌦n,m coef-
ficients become substantially independent of quasimomentum, as the Bloch band widths
become smaller than the clock laser linewidth, so that all quasimomenta are equally cou-
pled. This is equivalent to saying that the associated resonances do not suffer any Doppler
broadening and become Fourier limited. As the Bloch bandwidths are very different for
different band indices, quasimomentum-independent excitation is achieved at different
lattice depths for the different bands (see Fig. A.3). For a typical value of the bare Rabi
coupling ⌦ = 2⇡·100Hz used in our spectroscopy measurements, such a regime is reached
for lattice depths above 11 Er for the lowest band carrier resonance (n= 1! m= 1), above
32 Er for the first excited band carrier resonance (n = 2! m = 2) and above 28 Er for the
lowest blue sideband (n= 1! m= 2), which are the only relevant resonances when an ul-
tracold gas is loaded into the lattice. For the lattice depths between 25 and 50 Er which are
normally used in our precision spectroscopy experiments, the ratio ⌦1,2/⌦1,1 is constant
and approximately equal to 0.37 (see Fig. 5.5). For more details on clock spectroscopy in
the presence of confining potentials, Refs. [318, 319] are suggested.

In order to experimentally characterise the clock excitation within the band structure
of the lattice potential, we perform incoherent spectroscopy with a two-spin Fermi gas and
reveal the relevant resonances, as displayed in Fig. 5.5. A pulse duration corresponding to
a ⇡-pulse area on the lowest band carrier is chosen and a second long pulse is applied to
map the |ei state population to the |gi state one (see Fig. 5.4(b)). This technique is well
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Figure 5.5 – Spectroscopy of the lattice structure using a two-component (m
F ,F 0 = ±5/2) Fermi gas of 173Yb

with T/T
F

' 0.25 and N ' 5 ⇥ 104 atoms. Distinct resonances reveal the motional structure of the lattice
potential: as the population of the first excited band in the clock-laser propagation direction is small, the first
red sideband lies below the detection limit. In agreement with a lattice depth of 29E

r

, a lattice first band-gap
of 18.7 kHz is observed. Only a weak external magnetic field of 0.3 G is used for this measurement, which is
not sufficient to resolve the two m

F

state transitions with a Rabi frequency ⌦ ' 2⇡ · 350Hz. The sequence
represented in Fig. 5.4(b) is adopted to map the relative |ei state population to the |gi state population,
subsequently detected by absorption imaging. The ratio between the amplitude of the first blue sideband and
of the carrier resonance matches the theory ratio ⌦1,2/⌦1,1 ' 0.35 of the corresponding Rabi couplings.

suited to the detection of resonant features with small amplitudes, as a positive signal over
the zero-atom noise level maximises the signal-to-noise ratio, and is also used for |ei state
loss measurements that will be reported in the last part of Chapter 6. In the remainder of
this thesis, we will refer to the lattice carrier transition simply as the clock transition, as
other lattice inter-band transitions are avoided.

The spectroscopic measurements presented so far are realised through two-component
spin mixtures formed by opposite mF states. This is motivated by the spin-dependent
dipole matrix element of the clock transition, whose magnitude is symmetric with re-
spect to mF . We were able to experimentally detect the relative strength of the Rabi
couplings for different clock ⇡-transitions by coherently driving the carrier transition of
a six-spin Fermi gas loaded into the optical lattice in a 0.3 G B-field. The observed co-
herent dynamics is displayed in Fig. 5.6: an oscillation with three distinct Rabi frequency
components is clearly visible and the fitted ratios between them match remarkably well
the ratios 5:3:1 between the dipole matrix elements of the associated ⇡-transitions, i.e.
mF = ±5/2,±3/2,±1/2! m0F = ±5/2,±3/2,±1/2 (see Appendix A). In the remainder of
this Section, we will describe experiments making use of spin-polarised or two-spin gases
within the two states mF ,F 0 = ±5/2, which were chosen since they posses the largest Rabi
coupling on the ⇡-transition, and will be often labeled for brevity as |"i and |#i.
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|
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functions with identical amplitude and zero-phase to the data. The relative ratio of the couplings from Eq. (A.5)
is 5:3:1 and is well matched by the fitted Rabi frequencies.

Fermi gas preparation for precision spectroscopy

The typical conditions of ultracold gases of 173Yb that are used for spectroscopy experi-
ments are summarised here and displayed in Figs. 5.7-5.8. Spin-polarised gases are mostly
used for calibration measurements, e.g. for the evaluation of the magnetic field sensitivity
of the clock transition or of the ULE frequency reference linear drift, and further as an
absolute reference of the clock laser frequency.
Ultracold spin-polarised samples do not suffer any interaction-induced clock shift in a
three-dimensional lattice. First of all, multiple site occupancies are prohibited by Pauli
blocking as long as higher Bloch bands are unoccupied. Even in the presence of a sig-
nificant excited-band population, the spatial pair wave function of identical fermions on
the same lattice site must be antisymmetric; contact interactions in the s-wave regime are
therefore completely suppressed and only p-wave interactions could lead to measurable
effects [280, 281]. Nevertheless, a small difference between the Rabi couplings of the
different intra-band transitions, due to the finite lattice depth, can cause two fermions to
become distinguishable while the clock transition is coherently driven [281, 320–322].
This mechanism may enable on-site s-wave interactions, possibly leading to inelastic col-
lisions as well. Unwanted interactions might also be caused by spatial inhomogeneity
of the Rabi couplings, with the higher-band population tunnelling over lattice sites in a
time scale comparable to the measurement duration and possibly experiencing inelastic
collisions with other distinguishable atoms. As long as relatively small atom numbers
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. With N = 2 ⇥ 104, a fraction of approximately
10% of the entire population is distributed over the second and third Brillouin zones, indicating a 5% population
of the first excited band in the x and in the y direction. (c) Azimuthally integrated column density after TOF. A
Thomas-Fermi fit (solid blue line) yielding T/T

F

= 0.32 and a gaussian fit (red dashed line) to the data are
displayed. (d) An OSG absorption image is used to inspect the purity of the spin mixture. Only the m

F

= +5/2
state is populated above our detection limit.

N Æ 3⇥104 are adopted, only a small first excited-band population is present and such ef-
fects are modest. Spectra acquired with spin-polarised samples like the one from Fig. 5.7
indeed display the narrowest and most symmetric resonant line-shapes and the longest
Rabi coherence time (see Fig. 5.11 and Fig. 5.12).

On the other hand, a two-component Fermi gas with two coherently coupled elec-
tronic orbitals |gi and |ei represents the prototypical system to investigate two-orbital
interactions between fermions. For the experimental validation of SU(N) symmetry of
two-orbital interactions, it is sufficient to prove that interactions are identical in few bi-
nary combinations of spin states, without the necessity of employing multi-spin mixtures
(see also next Section). Fig. 5.8 shows the characteristic state of a Fermi gas used for pre-
cision interaction spectroscopy experiments described in Chapter 6. For atom numbers up
to N ' 6⇥ 105 no significant higher-band population is present. However, a larger atom
number is desirable to increase the number of doubly occupied lattice sites, which are
necessary for revealing on-site interactions, and we thus typically work with N ' 1⇥ 105

atoms. A degeneracy T/TF between 0.2 and 0.25 can still consistently be achieved at such
high atom numbers, owing to our relatively large volume dipole trap (see Section 2.2.3).
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Figure 5.8 – A two-component Fermi gas in the |"i and |#i states (m
F ,F 0 = ±5/2) with T/T

F

= 0.22. (a)
TOF image of a Fermi gas with total atom number N = 1.2 ⇥ 105 released from the dipole trap. (b) Band-
mapping in the x � y plane: the gas is released from a 3D-lattice with a depth of V

x

= V

y

= 35E
r

. With
N = 1⇥ 105, a fraction of approximately 10% of the entire population is distributed over the second and third
Brillouin zones, indicating a 5% population of the first excited band along each of the horizontal directions. (c)
Azimuthally integrated column density after TOF. A Thomas-Fermi fit (solid blue line) yielding T/T

F

= 0.22
and a gaussian fit (red dashed line) to the data are displayed. (d) An OSG absorption image is used to inspect
the purity of the spin mixture. No state except the m

F ,F 0 = ±5/2 is populated with more than 3%.

5.1.3 Addressing the clock transition in a magnetic field

Differential Zeeman shift

An external magnetic field generates a nuclear Zeeman shift of both the |gi and |ei states,
owing to the finite nuclear Landé g-factor gI (see Table 2.1). On the other hand, clock
⇡-transitions are only sensitive to the difference �g between the two g-factors, and not
to the individual gI factors which generate a shift �NZ = gI mF µBB on both states (see
Fig. 5.9 for 173Yb). Owing to the non-zero differential Landé g-factor between the |gi and
|ei states [96], the clock ⇡-transition frequency associated with each nuclear spin sublevel
shifts as:

�B = �g mF µBB (5.3)

The nuclear g-factor of the |gi state can be determined from Eq. (2.3). Without the
nuclear spin-induced HFI generating a mixing with the 3P1 state, the |ei state would share
the same g-factor. Since the |ei state electronic wave function is distorted by the mixing,
�g 6= 0. The consequent differential Zeeman shift in 173Yb was theoretically estimated by
HFI theory [265] to equal �B = h mF B · 113Hz/G and our measurements yield a highly
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Figure 5.9 – Differential Zeeman shift between the |gi and the |ei state. A non-zero differential g -factor �g
between the two electronic states gives rise to a positive linear Zeeman shift �

B

of the clock ⇡-transitions,
which are not sensitive to �NZ, the individual state nuclear Zeeman shift. We experimentally measure this shift
with high precision for 173Yb, as shown in Fig. 5.10. Due to the Clebsch-Gordan coefficients having opposite
signs for opposite m

F

-states ⇡-transitions, the Rabi couplings are equal in magnitude but opposite in sign (see
Section 6.1).

consistent value of �B = h mF B · 112(1)Hz/G, as displayed in Fig. 5.10.
The nuclear spin-independent quadratic Zeeman shift of the |ei state [96] was experi-

mentally quantified as �(2)B ' �h · 6.2⇥ 10�2 B2 Hz/G2 [122, 273], and it starts to become
relevant with our resolution only at fields B ¶ 30G, where �(2)B ¶ h · 50Hz. A precision
measurement of this shift could also be recently achieved in our setup, owing to newly
upgraded magnetic field coils (see Section 3.2), and specifically in connection with mag-
netically induced spectroscopy of bosonic 174Yb [279].

Magnetic field spectroscopy

A measurement scheme which takes advantage of the linear Zeeman shift of fermionic
isotopes consists of measuring the average frequency between the ⇡-transitions associated
with opposite mF states, in the presence of an adequate bias field. Each spin state can
be spectroscopically resolved and, for weak fields (�(2)B ⌧ �B) the zero-field position of
the clock resonance is located at the centre between the two resonances. This scheme
is used to reference the absolute frequency of the clock transition, and particularly to
characterise the linear frequency drift of the ULE cavity reference and other possible slow
drifts. Spectroscopy runs at varying B-field in a spin-polarised sample are displayed in
Fig. 5.10. In addition to characterisation of systematic frequency shifts, such spectra are
used to reference in real time each interaction shift measurement, as presented in the
following Chapter.

The Zeeman separation of clock transitions associated with each spin state permits
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to remove residual-field broadening of resonant line-shapes, when multiple-spin mixtures
are employed or unwanted residual spin states are present due to imperfect optical pump-
ing. The best suited spectroscopy scheme for observing absorption spectra with linewidths
limited only by laser stability is to probe a spin-polarised gas with a low atom number in a
three-dimensional lattice. A spectrum is displayed in Fig. 5.11, obtained by exciting either
the |"i or |#i state with a Rabi frequency ⌦ ' 2⇡ · 20 Hz. Using lower Rabi frequencies re-
duces the resonance relative amplitudes below 0.5, indicating that the measured linewidth
is ultimately limited by the laser stability over the measurement time scale.

Rabi oscillations in spin-polarised gases

The degree of coherence of the |ei-state coupling can be further investigated by Rabi oscil-
lation measurements. In order to limit interaction effects and excited band occupations,
Rabi oscillations are performed using spin-polarised samples in the same conditions as
for B-field precision spectroscopy. Rabi oscillations with three different frequencies are
shown in Fig. 5.12. The transfer efficiency of a single ⇡-pulse is typically above 90%, but
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a clear damping of the oscillation is visible and after some time the excited population
stabilises at approximately 50%. The visibility decay depends on the Rabi frequency, yet
the product of the fitted coherence time tcoh and Rabi frequency is approximately con-
stant, with ⇠ 6 full oscillations within t = tcoh. This is an indication that the coherence
is limited by dephasing between atoms in singly occupied sites. Spatial inhomogeneities
in the Rabi coupling would explain this effect, and could be caused for instance by clock
light intensity modulation due to etaloning inside the silica viewports or dichroic beam
splitters, as well as by a slight interference of the excitation beam with its reflection off
the internal surface of the viewport. The size of the excitation beam at the atoms posi-
tion and its alignment were varied and revealed to have little influence on the coherence
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Figure 5.12 – Rabi oscillations in a spin-|"i polarised Fermi gas of 173Yb with varying clock light intensities. A
lattice depth of 30E

r

in the horizontal plane and a B-field of 10 G were adopted. A light-intensity-dependent
damping of the oscillations is clearly visible. The 1/e time of the decay is roughly constant at tcoh ' 6·2⇡⌦�1,
i.e. ⇠ 6 oscillation periods are completed before the contrast is reduced by a factor e. The single ⇡-pulse
efficiency is typically close to 100%, with the exception of measurement (c) where a small detuning from
resonance causes a reduced contrast. A weak overall atom number decay is visible, most likely due to inelastic
collisions involving highly mobile atoms in excited Bloch bands.
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time of the oscillation, supporting the hypothesis that residual spatial inhomogeneities are
mainly responsible for the dephasing. On the other hand, the atom dephasing mechanism
dominates the coherence time of the system only until the laser-limited coherence time
tcoh,las ' 28 ms is reached, estimated by the measurement in Fig. 5.11. The damping time
due to atom dephasing approaches tcoh,las for ⌦ ' 2⇡ · 210Hz.
A weak decay of the offset level of the oscillation is also visible, which indicates atom
losses caused by the driving. The 1/e time of this loss process is approximately 100 ms
and is compatible with the tunnelling time scale of atoms in the first excited band for the
30 Er deep lattice that was used. Losses may therefore be caused by p-wave inelastic colli-
sions between |ei state atoms [280] or s-wave inelastic collisions between distinguishable
atoms [124, 280, 282].

5.2 SU(N)-symmetric inter-orbital interactions

In this Section, starting from two-orbital interactions introduced in Section 1.2, we will
develop a simple model of SU(N)-symmetric interactions between two fermionic atoms in
the |gi and |ei states trapped in a site of the optical lattice. As we will see, the external
magnetic field plays an important role as well, generating a mixing between the two-
orbital interaction eigenstates, which allows to spectroscopically characterise the inter-
orbital scattering channels at once and to directly observe inter-orbital spin-exchanging
collisions. Concluding the Chapter, we will argue that a small experimental uncertainty on
the demonstration of the collisional spin independence does not raise concerns regarding
quantum simulations of SU(N)-symmetric models.

5.2.1 Inter-orbital interactions in a magic lattice

Two-orbital Hubbard interactions

In Section 1.2 we have already described interactions between fermionic ultracold AEL
atoms including the orbital degree of freedom, represented by the electronic states |gi
and |ei. We have shown how two parameters V and Vex are characterising the Hubbard
on-site interactions for atoms trapped in an optical lattice potential with a single occupied
Bloch band. Let us now consider more specifically the case of experimental interest for
interaction spectroscopy, namely a pair of atoms confined to a single site of a deep three-
dimensional magic lattice. The interaction energy of a single atomic pair depends upon the
on-site wave function overlap (see Eq (1.46)). When both atoms occupy the lowest Bloch
band of a state-independent lattice, the Hubbard interaction strengths can be written as:

UX =
4⇡~h2

M
aX

Z
d3r |w(r)|4 , (5.4)

where X = g g, ee, eg+, eg� and w(r) is the Wannier function shared by both atoms in the
lattice6. We remind here that the scattering lengths a±eg are respectively associated with

6We assume here negligible contributions of inelastic collision channels to the interaction strength, so aX

is taken as real-valued.
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the symmetric and antisymmetric two-particle electronic states (|egi± |gei)/
p

2, whereas
ag g and aee correspond to two atoms colliding in the same electronic state.
The above expression is valid in the regime of sufficiently weak interactions, i.e. aX ⌧ aho,
with aho =

p
~h/(M!lat) being the on-site harmonic oscillator length. In such regime,

the on-site interaction does not couple different Bloch bands and the two-particle wave
function is factorised into single-particle Wannier functions: in other words the interac-
tion Hamiltonian is assumed diagonal in the on-site Wannier basis. We will separately
discuss the case of strong on-site interactions in the following Chapter, in the context of
the evaluation of inter-orbital scattering lengths from clock spectroscopy measurements.
When a non-negligible excited band population is present, we can immediately generalise
Eq. (5.4) for atoms occupying arbitrary bands a and b:

Uab
X =

4⇡~h2

M
aX

Z
d3r |wa(r)|2|wb(r)|2 , (5.5)

where wa,b(r) are the on-site Wannier functions of the two atoms.
The four different Hubbard interaction strengths are obviously a direct manifestation

of the four scattering channels included in the Hamiltonian (1.44), which only depend
on the electronic state. However, we have already argued that in order for atoms to
experience s-wave contact interactions the spatial part of the two-particle relative wave
function must be symmetric7 (see Section 1.2.3). Owing to this, a direct correspondence
between the spin state of the atomic pair and the applicable scattering channel also exist.
As a result, inter-orbital scattering is described by the symmetric channel a+eg in the spin
singlet state and by the anti-symmetric channel a�eg in the spin triplet states. All two-
particle states relevant for interaction spectroscopy and the associated interaction energies
are illustrated in Fig. 5.13(b). We will explain in the following the idea behind direct
spectroscopical probing of all Hubbard interaction strengths represented in Fig. 5.13(b).

Onsite Hamiltonian in a magnetic field

We have just seen how Hubbard interactions are diagonal in the spin singlet-triplet basis,
owing to the anti-symmetrisation of the two-particle states. We will now include an ad-
ditional energy contribution resulting from the application of an external magnetic field
B, which also sets the nuclear spin quantisation axis. As described in the previous Section
(see Fig. 5.9), the single-particle |g, mF i and |e, mF i states experience an individual linear
nuclear Zeeman shift �NZ and a linear differential Zeeman shift �B, given by Eq. (5.3).
We now want to specify the influence of a magnetic field on the on-site singlet-triplet two-
particle states, which form a basis of the Hilbert space spanned by the electronic and the
spin degree of freedom of two-fermions. Let us assume for simplicity that the spin states
|"i and |#i represent nuclear spin states with opposite mF . In this case, only the differen-
tial Zeeman shift becomes relevant for two-particle states with one atom in |gi and one
in |ei, as the individual state nuclear Zeeman shifts �NZ cancel each other. In addition,
when the two atoms are in the same electronic state, the total Zeeman shift is canceled as

7Note that this is necessary but not sufficient: symmetric wave functions with a zero at zero inter-atomic
distance also lead to vanishing interactions; such wave functions are usually termed "fermionised".
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of the polarised states |eg "#i and |eg #"i (see
Eqs. (5.6) and (5.8)). The figure is adapted from [124].
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well. Only the two-particle "polarised" states |eg "#i and |eg #"i experience a differential
Zeeman shift, and they form the symmetric and antisymmetric superpositions of the |eg+i
and |eg�i states. We can directly write the Zeeman Hamiltonian as:

Ĥ(2)B =�B
�
|eg "#iheg "#|� |eg #"iheg #"|

�
(5.6)

where |eg "#i= (|e,"i|g,#i � |g,#i|e,"i)/
p

2 and |eg #"i= (|e,#i|g,"i � |g,"i|e,#i)/
p

2.
We can now write the total two-particle Hamiltonian in the singlet-triplet basis8

�
|g gi ⌦

|si, |eg+i, |eg�i, |eei ⌦ |si
 

in a matrix representation:

Ĥeg =

0
BBB@

Ug g 0 0 0
0 U+eg �B 0
0 �B U�eg 0
0 0 0 Uee

1
CCCA (5.7)

This Hamiltonian is nothing else than the projection of the two-orbital on-site interaction
in Eqs. (1.41)-(1.46) and of the differential Zeeman effect on the subspace spanned by
the two-particle states which were defined in Section 1.2.3 (see Eq. (1.43)). The central
block can be readily diagonalised, resulting into two eigenenergy branches:

Eu,d = V ±
q

V 2
ex +�

2
B , (5.8)

where V = 1
2

Ä
U+eg + U�eg

ä
and Vex =

1
2

Ä
U+eg � U�eg

ä
. The eigenenergy dependence on the

B-field amplitude for the two-orbital states is illustrated in Fig. 5.14, along with the en-
ergy dependence of single-particle excited states given as a reference. The parameters V
and Vex defined here are precisely the magic-lattice version of the parameters defined in
Eq. (1.46) for an arbitrary lattice potential. The important fact needs to be emphasised:
the magnetic field generates a coupling between the inter-orbital interaction eigenstates,
|eg+i and |eg�i. Owing to this coupling, the energy of a single eigenstate of Eq. (5.7) de-
pends on both U+eg and U�eg at once. By analysing the frequency shift of the clock transition
which connects the |g gi state to the lowest-energy eigenstate of Eq. (5.7) through preci-
sion spectroscopy at varying B-field, the interaction strength in both the symmetric and
the antisymmetric channel can be determined [124]. The spectroscopic measurements of
such interaction shifts in 173Yb and the consequent determination of the so far unknown
scattering lengths a+eg , a�eg and aee is reported in Section 6.1. The influence of atomic col-
lisions on to the clock transition energy, which in optical lattice clocks represent a source
of unwanted systematic shifts and needs to be canceled [280–282, 320, 323], turns in this
context into a resource for the precise characterisation of inter-orbital interactions.

Furthermore, we note that at zero-field the polarised states |eg "#i and |eg #"i are
coupled by the on-site interactions, through the exchange coupling Vex. When only two
spin states are populated, the exchange term in Hamiltonian (1.44) has indeed the form
V̂ex/ Ŝ+g Ŝ�e + Ŝ�g Ŝ+e . The difference between the energies of the singlet and triplet states

8The aligned triplet states (|egi� |gei)/
p

2 ⌦ |""i and (|egi� |gei)/
p

2 ⌦ |##i were left out of the discussion
for simplicity, since they anyway cannot be coupled through ⇡-polarised clock light to our experimental initial
state, i.e. |g gi ⌦ |si.
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leads therefore to spin exchange between the two orbitals at zero-field, as was shown in
Section 1.2.3. The spin dynamics generated by this mechanism can be directly observed
experimentally [124, 176]: such observations will be presented in Section 6.2.

5.2.2 Two-orbital SU(N) symmetry

So far we have assumed completely nuclear spin-independent interactions involving the
|ei state. We will now shortly elaborate on the extension of the SU(N) symmetry to the
second electronic orbital. We explained in Chapter 1 how the decoupling between nuclear
and total electronic angular momentum for all states with J = 0 guarantees the indepen-
dence of short-range molecular potentials from the nuclear spin orientation. However, the
small admixture of the |ei state with higher-lying 3P states caused by hyperfine interaction
(HFI) slightly breaks the decoupling [96]. The relative deviation of the scattering lengths
associated with different nuclear spin combinations can be estimated in a similar way as
described for the ground state in Section 4.3, yet accounting for the HFI strength in the 3P
manifold of the electronic level structure [55]. For ytterbium, this yields a conservative es-
timate of �aee/aee ⇠ �a±eg/a

±
eg < 10�2, somewhat larger than for strontium. We were able

to experimentally verify the SU(N) symmetry in all collision channels of the two-orbital
system by direct spectroscopic investigation of interactions in different spin mixtures, and
found no violation down to our experimental uncertainty of a few percent (see the mea-
surements in Section 6.1.2). It is clear from Eq. (1.26) that, if the SU(N) symmetry were
broken, any colliding pair of spin states within the six-spin manifold of 173Yb would cor-
relate to various coupled spin collision channels9. In order to experimentally demonstrate
the two-orbital SU(N) symmetry, it is therefore sufficient to verify the equivalence of two-
orbital interactions amongst distinct two-spin mixtures, without the necessity of adopting
a six-spin mixture.

Wether the measured degree of fulfilment of SU(N) symmetry is sufficient or not to ob-
serve SU(N)-symmetric many-body phenomena clearly depends on the particular physical
system of interest. As a general conservative condition, the system will behave symmet-
rically as long as all relevant energy scales are much larger than the energy deviations
associated with different spin configurations. Let us briefly elucidate this criterion with
regard to the lattice models which we plan to implement (see Section 1.3).
For the KLM the relevant energy scales are |Vex| and V 2

ex/Jg , in the strong and weak
exchange coupling regime, respectively [55] (see Section 1.3.1). The SU(N) symmetry
breaking is at most �Vex, which we can estimate as: �Vex/|Vex|⇠�U±eg/|Vex|= �a±eg/|a+eg �
a�eg | Æ 10�2. The condition in the two regimes is given as �Vex ⌧ |Vex| or �(V 2

ex/Jg) =
2�Vex Vex/Jg ⌧ V 2

ex/Jg , and they are both satisfied as long as �Vex ⌧ |Vex|, which is di-
rectly checked experimentally.
On the other hand, the relevant energy scale for SU(N)-symmetric Heisenberg spin models
is the super-exchange coupling J2/U . In a similar way, the SU(N) symmetry breaking �U
yields a deviation�

�
J2/U

�
= (J/U)2�U . The condition�

�
J2/U

�
⌧ J2/U is then satisfied

for �U ⌧ U , and again this is experimentally confirmed to a few percent level. Conse-
9The only exception is a mixture of two marginal states e.g. mF = 5/2 and m0F = 3/2, which is collisionally

stable in SU(2) symmetric systems as well.
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quently, our precision in the determination of the two-orbital SU(N) symmetry in 173Yb
can be considered sufficient in relation to quantum simulation of these SU(N)-symmetric
models.



CHAPTER 6

Two-orbital SU(N)-symmetric
spin-exchange interactions

Spin-exchange interactions between ultracold alkaline-earth-like atoms in the two lowest
electronic states are well suited to realise the elementary building block of orbital quantum
magnetism, as discussed in Chapter 1. This type of interaction gives rise to many strongly-
correlated quantum phenomena in condensed matter, from heavy-Fermi behaviour [75–
77] and Kondo effect [127, 177, 185] to magnetic ordering [198–200, 205] and non-Fermi
liquid behaviour [191, 192, 201]. Ultracold gases of ytterbium and other alkaline-earth-
like atoms in optical lattices could shed light on the long-standing open issues related to
the modelling of such phenomena, implementing defect-free and controlled realisations
of models such as the Kondo lattice model [127, 177] or the Kugel-Khomskii model [128,
183], which were formulated to explain the role of orbital spin-spin interactions between
electrons in solid materials.

In this Chapter we present how spin-exchange interactions between the two (meta-)
stable states of 173Yb are experimentally revealed and quantitatively characterised, repre-
senting an important step towards the realisation of orbital magnetism in atomic systems.
Using a Fermi gas of 173Yb loaded into a state-independent optical lattice, the contact inter-
actions in the two-orbital system are spectroscopically probed exploiting the high measure-
ment precision obtained by addressing the clock transition. The resonance frequency shifts
caused by the different collision channels between atoms in different electronic states are
detected and related to the associated scattering lengths. The SU(N) symmetry of the
two-orbital collisions, arising from the strong decoupling between nuclear and electronic
spin, is experimentally demonstrated by analysing different spin ensembles. Furthermore,
we directly observe the real-time evolution of the spin distribution of an initially out-of-
equilibrium sample, induced by the spin-exchanging magnetic interactions between the
two atomic orbitals. Finally, we address the role of inelastic collisions in two-orbital en-
sembles in order to support the feasibility of quantum simulation with the two lowest
electronic states of 173Yb atoms in optical lattices.

6.1 Interaction spectroscopy in the magic optical lattice

A fundamental quantity, in order to determine whether 173Yb is a well-suited candidate
for the quantum simulation of orbital magnetism, is the strength of the spin-exchange
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coupling between the electronic ground state 1S0 and the metastable excited state 3P0 .
Interactions between ultracold ytterbium atoms in the ground state have already been
characterised for all isotopes by two-colour photoassociation spectroscopy [226]. Those
(p-wave) scattering parameters which are relevant for interaction processes occurring in
optical lattice atomic clocks with 171Yb have also recently been estimated [280, 281].
Yet the strength of the interactions between the 1S0 and the 3P0 state in 173Yb, and es-
pecially of the spin-exchange coupling and of the different inelastic collision channels,
has previously been unknown. In this Section, we will present a complete spectroscopic
characterisation of the elastic scattering channels in the two-orbital system. The minimal
system suitable to investigate contact interactions is represented by an isolated atom pair,
which is also the cleanest system in the case of pairwise interactions. A large number of
copies of such an elementary system are prepared by loading a two-spin Fermi gas into
a three-dimensional magic optical lattice, using samples with an atom number approx-
imately suited to reach the band-insulating regime. By successively probing the lattice
gas with clock excitation light, we directly detect the transition energy shifts caused by
the atomic interactions in the two-particle final states. By this method we provide more-
over an experimental demonstration of occupation number-selective clock excitation in
a three-dimensional lattice, which represent in itself a powerful resource for probing the
density of many-body states in the lattice. We will conclude this Section by showing how
the SU(N = 6)-symmetric nature of the interactions was directly revealed by performing
spectroscopy on different preparations of the nuclear spin degree of freedom.

6.1.1 Spectroscopic determination of the scattering parameters

Two-particle state Rabi couplings

We start by analysing the coupling induced by ⇡-polarised clock light between the two-
particle interacting states that we have discussed in Section 5.2.1. This will allow us to
understand in detail in which way their interaction energies can be measured through
clock excitation spectroscopy. Again let us consider atoms occupying two nuclear spin
states with opposite mF : "= mF and #= �mF . The single-particle Hamiltonian describing
the coherent atom-light interaction for ⇡-polarised light is given by:

Ĥ(1)⇡ =
~h⌦
2
(|e "ihg "|� |e #ihg #|) + h.c.

=
~h⌦
2
� x

eg ⌦� z
"#

(6.1)

where �µeg and �µ"# are the Pauli matrices respectively in the {|ei, |gi} and {|"i, |#i} ba-
sis. The minus sign between the two Rabi frequencies for spin-up and spin-down arises
from the sign difference of the Clebsch-Gordan coefficient between the two ⇡-transitions
|±mF i ! |±mF i (see Appendix A). We can now write the two-particle atom-light Hamilto-
nian:

Ĥ(2)⇡ =
~h⌦
2

Ä
� x

eg ⌦� z
"#
ä

1
⌦
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1eg ⌦ 1"#

ä
2
+
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2
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(6.2)
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Considering the two-particle set of states
�
|g gi ⌦ |si, |eg+i, |eg�i, |eei ⌦ |si

 
, we find only

two non-vanishing couplings:

~h
2
⌦�D = heg�|H(2)⇡ |g gi ⌦ |si=

p
2
~h⌦
2

(6.3a)

~h
2
⌦ee

D = heg�|H(2)⇡ |eei ⌦ |si= �
p

2
~h⌦
2

(6.3b)

We note here that for two nuclear spin states with non-opposite mF , both couplings be-
tween the |g gi state and the |eg±i states are finite1, since the associated single-particle
Rabi couplings are not opposite as we have assumed in Eq. (6.1).

The Rabi couplings of the |g gi state can be generalised to the case of an applied
external magnetic field where the interaction eigenstates |eg±i are mixed, yielding the two
eigenstates |eg ui and |eg di, respectively associated with the two eigenenergies Eu and Ed

given in Eq. (5.8). The explicit form of |eg ui and |eg di results from diagonalisation of
Eq. (5.7):

|eg ui= c1(�B)|eg+i+ c2(�B)|eg�i (6.4a)

|eg di= c1(�B)|eg�i � c2(�B)|eg+i (6.4b)

with

c1(�B) =
Vex +

q
V 2

ex +�
2
Br

2V 2
ex + 2�2

B + 2Vex

q
V 2

ex +�
2
B

(6.5a)

c2(�B) =
�Br

2V 2
ex + 2�2

B + 2Vex

q
V 2

ex +�
2
B

(6.5b)

The limiting cases are retrieved for �B ⌧ Vex, with c1 ' 1 and c2 ' 0, and for �B � Vex,
with c1,2 ' 1/

p
2 (see also Fig. 5.14). The Rabi couplings can then be written as:

~h
2
⌦u

D(�B) = heg u|H(2)⇡ |g gi ⌦ |si=
p

2
~h⌦
2

c2(�B)

~h
2
⌦ d

D(�B) = heg d |H(2)⇡ |g gi ⌦ |si=
p

2
~h⌦
2

c1(�B)
(6.6)

Interaction clock shifts in a magnetic field

Having clarified the Rabi couplings between the relevant two-particle states in our system,
we present here the spectra obtained by incoherent clock spectroscopy in the magic lat-
tice. The experimental sequence for precision spectroscopy was described in Section 5.1.2,
and consists of loading a two-spin Fermi gas of 173Yb into a deep three-dimensional lat-
tice in 200 ms and applying a 100 ms ⇡-polarised clock pulse2, with a single-particle Rabi

1The two-particle Rabi frequencies associated with the |eg±i states are in general ⌦±D = (⌦mF
⌥ ⌦m0F

)/
p

2,
where ⌦mF

is the Rabi frequency of a particular mF state on the ⇡-transition.
2As the adopted lattice depths are always above 30 Er and the measurement time scale is around 100 ms,

tunnelling processes in the lattice having a rate J/hÆ 1Hz can be neglected.
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frequency ⌦ ' 2⇡ · 200 Hz. The detuning of the clock laser is varied from one experi-
mental cycle to the next and the ground state atom number after the application of the
spectroscopy pulse is detected by means of TOF absorption imaging, releasing the cloud
directly out of the lattice.

Instead of simply varying the clock laser detuning monotonically, the spectra are col-
lected using an alternating frequency sampling: resonances related to singly occupied
lattice sites, equivalent to the ones observed using spin-polarised samples, are probed si-
multaneously with other spectral features stemming from interactions. In this way, the
influence of uncontrolled frequency drifts of the clock laser occurring in the course of a
single spectroscopy run can be minimised. Moreover, the known linear Zeeman shift of
the single-particle states can be used as an absolute frequency reference among measure-
ments at different B-field amplitudes. When employing symmetric spin mixtures, the clock
frequency offset is calibrated to 0 at the centre between the two observed single-particle
resonances, separately for each spectroscopy run. The atom number after the applica-
tion of the spectroscopy pulse is detected by means of time-of-flight absorption imaging,
releasing the cloud directly out of the optical lattice.
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Figure 6.1 – Clock transition spectra for a two-spin Fermi gas (m
F ,F 0 = ±5/2) with a total atom number

N ' 1⇥ 105 in a 3D magic optical lattice. Spectroscopy runs at different magnetic field strengths are shown.
Solid lines are multiple-Lorentzian fits to determine the resonance positions. The figure is adapted from [124].

Without any magnetic field and using a symmetric spin mixture, with two states mF

and mF 0 = �mF , the clock light only couples to the |eg�i state and the coupling is given
in Eq. (6.3a). At zero-field, the frequency shift between the clock resonance associated
with singly occupied lattice sites and the one associated with doubly occupied lattice sites
is therefore a direct measurement of the energy difference U�eg � Ug g , as illustrated in
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Fig. 5.13(b). At increasing magnetic field, the |eg di state, which coincides with |eg�i at
zero-field, decreases its energy due to the differential Zeeman shift and the associated
clock shift changes accordingly, as sketched in Fig. 5.14. A measurement of the B-field
dependence of the eigenenergy Ed allows for the experimental determination of the two
Hubbard parameters V and Vex through Eq. (5.8). Typical spectra in a mF ,F 0 = ±5/2 mix-
ture are displayed in Fig. 6.1, where runs performed at various magnetic field amplitudes
are plotted together with multiple-Lorentz fits to the observed resonant features. The
spectra are found to exhibit multiple absorption features, which will be individually eluci-
dated in the following.
First of all, the resonances associated with singly occupied sites can be clearly identi-
fied as the two lines shifting linearly outwards for increasing B-field, with a slope of
�B/h= mF · 112(1)Hz/G (see Section 5.1.3).
Three additional absorption lines are clearly visible, with increasing relative shifts from
one another at larger magnetic fields. The fitted centre positions of the observed reso-
nances in a mF ,F 0 = ±5/2 mixture are plotted in Fig. 6.2(a). Two resonances shift quadrat-
ically with the magnetic field and we identify them with the transition from the |g gi to
the |eg di state and from the |g gi⇤ to the |eg di⇤ state, respectively. The states |g gi⇤ and
|eg di⇤ are simply the analogue of the |g gi and |eg di states with one of the two atoms
occupying the first excited Bloch band. We denote the associated Hubbard interaction
strengths by U⇤g g and U�⇤eg , which are given by Eq. (5.5) with a = 1, b = 2. By fitting the
field-dependent shift of the |eg di resonance with the lower eigenenergy Ed in Eq. (5.8),
we can obtain V � Ug g and Vex, or equivalently U�eg � Ug g and U+eg � Ug g . Likewise, we can
obtain the values for the states with one band excitation. Fits to the measured |eg di state
resonance shifts are shown Fig. 6.2(b) for different mean lattice depths Ṽ = (Vx Vy Vz)1/3,
and the fit results are summarised in Table 6.1. Spectroscopy was performed on a total
of five different two-spin mixtures, namely mF ,F 0 = ±5/2,±3/2,±1/2, mF ,F 0 = +5/2,�3/2
and mF ,F 0 = +5/2,�1/2 (see Section 4.2 for details on the spin state preparation). Spectra
acquired with the various spin mixtures are displayed in Fig. 6.4.

The zero-field shifts are the interaction shifts of the |eg�i and |eg�i⇤ states, and
represent directly U�eg � Ug g and U�⇤eg � U⇤g g . The scattering length a�eg can then be de-
duced through Eq. (5.4), using the computed lowest-band Wannier functions for each
adopted lattice depth. Zero-field spectroscopy was additionally carried out in a balanced
six-spin mixture, where doubly occupied sites with every allowed spin combination are

Lattice depth Ṽ Vex (h· kHz) U�eg � Ug g (h· kHz) U+eg � Ug g (h· kHz)

30 Er 14.73± 2.40 0.28± 0.14 29.75± 4.80
33 Er 16.16± 0.83 0.33± 0.05 32.65± 1.65
43 Er 22.25± 0.95 0.37± 0.05 44.87± 1.89

Table 6.1 – Inter-orbital Hubbard interaction strengths for different lattice depths. The parameter values are
obtained through fitting the clock spectra from a m

F ,F 0 = ±5/2 spin mixture with the lower eigenenergy of
the single-band Hamiltonian in Eq. (5.8).
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Figure 6.2 – Magnetic-field dependence of clock transition frequencies with two-orbital on-site interactions. (a)
Resonance positions in an m

F ,F 0 = ±5/2 spin mixture are shown for a lattice depth ˜
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indicate transitions to the |eei, circles to |eg d i, triangles to |eg d i⇤ and diamonds to |e "i and |e #i states.
The solid blue lines are fits to the |eg d i and |eg d i⇤ data with Eq. (5.8). Error bars represent the 95%
confidence interval of resonance position Lorentzian fits. (b) The |eg d i resonance shifts are plotted at varying
magnetic field for different lattice depths. The figure is adapted from [124].
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present (see the last panel in Fig. 6.4). By averaging more than 20 spectroscopy measure-
ments with different lattice depths and spin combinations, we obtain �a�eg = a�eg � ag g =
20.1(20) a0, and consequently an estimate of the scattering length a�eg = 219.5(29) a0,
where we included the experimental uncertainty of the measurement of ag g from Ref.
[226].

Furthermore, fitting the shift of the |eg�i⇤ resonances and using Eq. (5.4) with differ-
ent Wannier functions for the two atoms yields �a�eg = 22.7(73) a0, which is consistent
with the more precise value obtained from the measurement of the |eg�i resonance shifts.
We find the |eg di⇤ state absorption line to be more pronounced for large samples with
N ¶ 105, indicating a significant population of the excited band, as expected by band
mapping measurements (see Section 2.2.4).

On the other hand, the fits with Eq. (5.8) yield extremely large estimates of U+eg , ex-
ceeding the energy of the first excited band in the lattice. Such values are unphysical: the
Hubbard interaction strength can only grow until it saturates the first lattice band gap.
For increasing interaction strength, the wave function overlap between the two atoms
decreases compared to the lowest-band Wannier absolute square overlap, and the two-
particle wave function cannot any longer be expressed in terms of lowest-band Wannier
functions [165, 324]. The two atoms gradually separate, and for infinite s-wave scattering
length the two atoms cannot be found at same position at all. The complete vanishing of
the pair spatial overlap is usually denoted as "fermionisation" and leads to the total sup-
pression of contact interaction [24, 325]. It has been shown that for two atoms confined
to a harmonic potential well, in the limit of strong repulsive interactions a � aho, the
ground state energy saturates at the energy of the first excited motional state [133, 325].
In other words the interaction is completely suppressed at the cost of a motional exci-
tation with energy ~h!ho. The situation is analogous with on-site interactions in a deep
lattice potential: for strong interactions the absolute square of the two-particle relative
wave function approximately approaches the absolute square of the first-excited Wannier
function, which has a zero at r = r1 � r2 = 0 (see Fig. A.4). Therefore, the Hubbard
interaction strength saturates approximately at the energy gap ~h!lat between the lowest
and the first excited band [176, 326, 327]. Nevertheless, an important difference is the
anharmonicity of the lattice potential, which couples the centre-of-mass and the relative
motion and has to be taken into account to compute the correct dependence of the in-
teraction energy upon the scattering length even for very deep lattices [176, 327, 328].
In the regime of strong interactions, it is therefore clear how the single-band Hubbard
formula in Eq. (5.4) is completely inaccurate for quantifying the interaction strength and
relating it to the associated scattering length. However, we can already safely state that
the U+eg interaction strength is on the order of the first lattice band gap, which reaches
up to approximately ~h!lat ' h · 25 kHz for the employed lattice depths. This implies a
surprisingly strong exchange interaction Vex ⇡ h · 10 kHz for lattice depths close to 40 Er .
Later we will discuss the implications of such a large exchange coupling and how more
accurate estimates of the scattering length a+eg could be obtained by taking into account
the lattice band structure and the regularisation of the interaction pseudo-potential.

A last distinct absorption line is found in the clock spectra, located nearby the |eg�i
state resonance at zero B-field. Yet its position is independent of the field strength and we
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identify this resonance with the detuned two-photon transition to the |eei⌦|si state, which
experiences no field shift for symmetric spin mixtures as the differential Zeeman shifts of
the two atoms cancel each other. The resonance shift is thus given by Eee =

1
2(Uee � Ug g),

where the factor 1/2 accounts for the two-photon character of the excitation. This two-
photon excitation relies upon |eg di as an intermediate detuned state and the detuning
varies with the B-field owing to the Zeeman shift of the |eg di state. The two-photon
coupling is given by:

⌦ee
2 (�B)'

⌦�D⌦
ee
D

2�eg
(6.7)

where ~h�eg =
1
2(Uee � Ug g) � Ed(�B). The strength of this line decreases therefore with

the B-field amplitude3 and the resonance should completely disappear for high fields.
The line shape is moreover affected by the strong |ei state two-body inelastic collisions
(see Section 6.3). By fitting for its centre position in all spectroscopy runs and using
Eq. (5.4) to compute aee, we obtain �aee = aee � ag g = 106.8(104) a0, which in turn yields
aee = 306.2(106) a0. This value is computed including all adopted spin combinations as
well.

A clear resonance corresponding to the excitation to the |eg ui state has not been ob-
served to date. When using symmetric spin mixtures the Rabi coupling to the |eg ui state is
very small for the magnetic fields within reach of our experimental setup, with �B ⌧ Vex

(see Eq. (6.6)). The coupling is moreover affected by the reduced spatial wave function
overlap due to the strong interaction that was found. Thanks to the larger magnetic-field
capability achieved through recent upgrades of the experimental setup, this transition
could be directly probed in the near future.

Two-particle Rabi oscillations

The indistinguishable two-particle nature of the |eg�i state can be confirmed by driving
Rabi oscillations with the excitation light tuned at the resonant frequency of the |g gi ⌦
|si ! |eg�i transition. Since the final state is a two-particle spin superposition, one expects
a Rabi frequency which is a factor of

p
2 larger than the Rabi frequency obtained by

driving the single-atom transition with an equal light intensity (see Eq. (6.3a)). This
factor is experimentally detected by comparing separate Rabi oscillation measurements
where the clock laser is respectively tuned into resonance with the single-atom or the
two-atom transition at a low magnetic field. A non-zero field is used to increase the
spectral separation of the two resonances, in order to allow a Rabi driving with a frequency
larger than the zero-field interaction shift between the two states. As the two-particle
state coupled at such weak B-fields is nearly equal to |eg�i, no detectable deviation from
⌦�D/⌦ =

p
2 is expected4. Such measurements are displayed in Fig. 6.3, along with fits of

the Rabi frequencies, showing excellent agreement with the expected ratio. Additionally,
an atom loss is clearly visible, next to the Rabi flopping of the |eg�i state. Inelastic e-g

3We are neglecting the effect of the admixture of the |eg+i state into the |eg di state, as it is very small at
the B-field strengths employed for the reported measurements.

4The two-particle coupling is only affected at a 2% level by the reduced spatial wave function overlap due
to the interactions with a�eg = 219.5 a0 [176].
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2.

losses caused by the simultaneous excitation of the mobile |eg �i⇤ state could be partially
responsible for the observed underlying atom number decay. A detailed investigation of
inelastic losses will be presented in Section 6.3.

This measurements clearly illustrate how the selective coherent driving of the clock
transition on singly and doubly occupied lattice sites constitutes a quantitative probe of
particle pairs: the high-efficiency transfer of doubly occupied sites to the |eg�i state by a
clock ⇡-pulse allows to determine the total number of on-site pairs in the 3D lattice. Such
probe is moreover non-destructive, and the initial |gi pair state can be approximately
restored by applying a second ⇡-pulse. An appealing application of this probing method
is the spatially-resolved detection of single and double site occupations in the lattice. By
combining the coherent driving of the clock transition with very high B-field gradients
⇠ 103 G/cm, a spatial resolution of few micrometers in the detection of doubly occupied
sites could be achieved, in a similar way as done in Refs. [40, 277]. Alternatively, atoms in
singly or doubly occupied sites could be selectively darkened (also depending on their spin
state) and high-resolution absorption imaging could provide an accurate reconstruction of
the density distribution in the lattice.

6.1.2 Demonstration of two-orbital SU(N) symmetry

We have already explained how the scattering lengths a�eg = 219.5(29) a0 and aee =
306.2(106) a0 are obtained by including data from various spin state preparations. In
Fig. 6.4 the B-field resonance shifts of the |eg di and |eei states for different preparations
are plotted, together with the linear Zeeman shifts of the single-particle states as a refer-
ence. The B-field dependence of the Ed eigenenergy needs to be modified for two-particle
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Figure 6.4 – Resonance position shifts at varying B-field strength in different spin mixtures. Diamonds denote
singly occupied site resonances, circles denote the |eg d i state resonances, and squares mark |eei state
resonances. A lattice depth ˜

V = 43.0(5)E
r

is adopted. The blue solid lines reproduce Eq. (6.8) with values
of V and Vex obtained from fitting only the m

F ,F 0 = ±5/2 mixture spectroscopy data (see text). The red
solid lines reproduce Eq. (6.9) evaluated with our estimation of a

ee

reported in the text. Shaded regions
correspond to 95% confidence intervals of the fits. Data point error bars represent the confidence intervals of
the resonance position fits. The figure is taken from [124].

states formed by non-opposite nuclear spin states mF , m0F :

Ed(B, mF , m0F ) =
1
2
(mF +m0F )�g µBB +

�
V � Ug g

�

�

vut
V 2

ex +
Å

1
2

�
mF �m0F

�
�g µBB

ã2
(6.8)
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)B . The linear Zeeman term in Eq. (6.8) is also subtracted. A lattice depth of ˜V = 42(1)E
r

is
adopted. The solid line is obtained through a common fit of all shown data points with Eq. (6.8). The shaded
area corresponds to the fit 95% confidence interval and data points error bars denote the confidence interval
of the resonance position fits. The dotted line is a fit to only the m

F ,F 0 = ±5/2 mixture data points. The figure
is adapted from [124].

In addition, the |eei resonance retains in general a magnetic-field dependence:

Eee(B, mF , m0F ) =
1
2
(mF +m0F )�g µBB +

1
2
(Uee � Ug g) (6.9)

Independently of the accuracy of the model for estimating the precise values of U+eg and
Vex, which are known to be respectively close to ~h!lat and 1

2(~h!lat � U�eg), we can directly
check if the values of U�eg , U+eg and Uee for different spin mixtures are consistent with one
another. As the B-field linear term in Eqs. (6.8)-(6.9) can be subtracted using our precise
knowledge of the differential Zeeman shift (see Section 5.1.3), data for each mixture can
be separately fitted with U�eg , U+eg and Uee as the only free parameters. In the case of U�eg
and Uee, all fits yield consistent estimates with comparable precision, and the deduced re-
ported values of a�eg and aee result from the mean of all fitted values (including a six-spin
measurement at zero-field for U�eg). On the other hand, owing to the decreasing magnetic
sensitivity associated with lower mF states, the fit with the smallest uncertainty on the
value of U+eg (and therefore of Vex) is the fit to the mF ,F 0 = ±5/2 mixture data, with an
uncertainty below 5% for Ṽ = 43 Er (see Table 6.1). Nonetheless, the estimates of U+eg are
highly consistent, with a spread below 10% between the fitted values (excluding the mix-
tures containing the most magnetically insensitive mF = ±1/2 states). As larger magnetic
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field amplitudes have recently become attainable in our upgraded setup, the precision of
the U+eg fits could likely be increased by an order of magnitude. Different mixture data can
also be compared more directly by rescaling the magnetic field strength in each dataset
as Bresc =

1
5(mF �m0F )B and subtracting the linear Zeeman term in Eqs. (6.8)-(6.9). Such

rescaled data sets are shown in Fig. 6.5 together with a common fit, with V and Vex as free
parameters. The obtained values are consistent with the mF ,F 0 = ±5/2 result within the
respective uncertainties.

In conclusion, we are able to directly demonstrate the SU(N) symmetry of a�eg and aee,
respectively with 1% and 3% uncertainty. The SU(N) symmetry of a+eg is probed only at a
10% level, due to the low available B-field strength which substantially limits the precision
of our interaction shift estimation. A direct excitation of the |eg ui state transition in a
strong field would also provide a robust alternative for refining the evidence of SU(N)
symmetry of a+eg . On the other hand, the SU(N) symmetry of a�eg and aee is strongly
supporting the overall symmetric nature of two-orbital interaction channels. In addition,
we will see in Section 6.2 how the absence of spin-changing collisions in a two-orbital
bulk ensemble was observed, over a much larger time scale than the one associated with
elastic scattering processes.

6.1.3 Estimation of the inter-orbital singlet scattering length

In order to correctly express the large U+eg interaction strength in terms of the a+eg scattering
length, it is necessary to take higher lattice bands into consideration. As both the real value
of interaction strength and of the scattering length are unknown, we must include higher
bands in the initial two-particle Hamiltonian describing the the on-site interactions, which
is then numerically diagonalised. The total Hamiltonian can be written as5:

Ĥ = Ĥ(2)at ⌦ 1lat + 1at ⌦ Ĥ(2)lat + Û (6.10)

where the first Hilbert subspace refers to the internal degrees of freedom of the atoms,
whereas the second Hilbert subspace refers to their motional degree of freedom in the
lattice potential. Without a magnetic field, the interaction term U would only couple
different motional states in the lattice but different internal states would be uncoupled,
i.e. U would be block-diagonal in the singlet-triplet basis. Including only states with one
|gi and one |ei atom, and in the presence of a magnetic field we have Ĥ(2)at = Ĥ(2)B (see
Eq. (5.6)). In addition, using the on-site Wannier state basis we define:

Ĥ(2)lat = Ĥ(1)lat ⌦ 1+ 1⌦ Ĥ(1)lat

Ĥ(1)lat =
X

nx ,ny ,nz

(Enx
+Eny

+Enz
)P(nx , ny , nz)

(6.11)

where Enµ are the band mean energies, with nµ being the band indices in the three direc-
tions, and P(nx , ny , nz) is the projector on the three-dimensional Wannier state wnx ,ny ,nz

.

5We omit the atom-light Hamiltonian as we are only interested in the two-particle eigenenergies. The
dominant spin-triplet Rabi coupling is anyway substantially unaltered by strong interactions in the spin-singlet
channel.
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For a Fermi contact pseudo-potential, all matrix elements of Û can be computed through
the Wannier function overlaps

Ũ pq ±
nm =

4⇡~h2

M
a±eg

Z
d3r w⇤n(r)w

⇤
m(r)wp(r)wq(r) (6.12)

For our numerical computation, only higher bands in the shallowest lattice direction were
included. In this case the indices n, m, p and q, which are in principle three-component
vectors, can be interpreted as the band indices along the shallowest lattice axis. In order
to ensure the complete state anti-symmetrisation, the motional and interaction terms in
the Hamiltonian need to be transformed to the symmetrised/anti-symmetrised Wannier
state basis, which is achieved through a matrix transformation. Additionally, in order to
remove the influence of the bosonic states on the numerically computed lowest eigenen-
ergy, an artificial large energy offset is added to all completely symmetric states. In order
to perform the diagonalisation, we fix the value of a�eg to the value reported above and
we adjust a+eg to best reproduce the data in the mF ,F 0 = ±5/2 mixture. Unfortunately,
the resulting eigenenergy is quite insensitive to the exact value of the scattering length,
especially at our relatively low B-field amplitudes. Including four excited bands in the
numerical diagonalisation, we find a+eg ⇡ 4000 a0 to give the B-field dependence closest to
the data. However, even assuming an exceedingly large scattering length, the computed
magnetic-field dependence of the lower eigenenergy remains fairly close to the data (see
Fig. 6.6). Moreover, a non-regularised contact pseudo-potential was assumed to compute
the interaction matrix elements, which is expected to significantly underestimate the
eigenenergies for large interactions in three dimensions [324].
Our simple numerical method is therefore not sufficiently accurate to give a reliable



158 Chapter 6. Two-orbital SU(N)-symmetric spin-exchange interactions

estimate in such a regime of large interactions. However, recently another experimental
research group could directly measure Vex in 173Yb, without resorting to any model-
dependent estimation, and report an estimated scattering length a+eg = 3300(300) a0

[176]. This estimate is based on a perturbative approach to include anharmonic cor-
rections in the so-called Busch model of two interacting atoms in a harmonic trap
[133, 176, 327, 328]. A remarkably large singlet-triplet scattering length difference
�aeg = a+eg � a�eg is therefore uncovered (confirmed by two completely independent
experimental studies), making 173Yb in optical lattices an exemplary system for the sim-
ulation of exchange-based many-body models. In addition, such a large value of the a+eg
scattering length suggests that the associated scattering potential possesses a molecular
bound state in proximity of the dissociation energy threshold [20]. For this reason, a pho-
toassociation resonance at close red-detuning from the frequency of the single-atom clock
resonance is expected. Such a transition could represent a valuable tool to selectively
associate atoms on doubly occupied sites in a lattice, improving existing schemes based on
photoassociation on the 1S0!3P1 transition [72]. Moreover, it would have interesting ap-
plications with regard to optical Feshbach resonances with low associated heating rates6

[140]. It was unfortunately not yet possible to locate the molecular photoassociation
resonance in our experiment. Additional efforts are ongoing, taking advantage of the
increased Rabi coupling of the |eg ui state to non-opposite spin state singlets mF 0 6= �mF

(see Section 6.1.1).

6.2 Direct observation of spin-exchange interactions

The interaction energy difference between the singlet and the triplet states, |eg+i and
|eg�i, drives spin-exchange processes when an atomic pair is found in a superposition
between the two states (see also Section 1.2.3). For an isolated pair at zero magnetic
field, the state oscillates between the two polarised states |eg "#i and |eg #"i at a fre-
quency !ex = |Vex|/~h, similarly to what was already observed using different Bloch bands
[116]. For non-zero magnetic fields, the oscillation frequency increases due to the larger
energy separation between the eigenstates |eg di and |eg ui. On the other hand, the spin-
exchange amplitude is gradually suppressed by tuning the magnetic field to the regime
where Vex ⌧ �B [176]. In order to directly observe the spin-exchanging dynamics at a
single atomic pair level, one needs to generate a superposition of |eg+i and |eg�i at a
low magnetic field, which can be achieved either by a Rabi coupling comparable to the
states energy difference (⌦ ⇠ |Vex|), or by preparing the |eg di eigenstate in a high B-field
and subsequently quenching the field to zero. Unfortunately, neither of the two possibil-
ities can be realised with our experimental setup7, due to the very large measured Vex.
The coherent spin-exchange oscillation of single atomic pairs could recently be observed

6We note that the optical coupling of a colliding pair to a weakly bound molecule formed by J = 0
states breaks the nuclear spin decoupling only as a consequence of the photoassociation transition Clebsch-
Gordan coefficients. An OFR working on this photoassociation transition could be made approximately SU(N)
symmetry-conserving by engineering the intensity distribution of the coupling light among different polarisa-
tions and the magnetic field.

7A magnetic field-switching time scale well below 100µs (⇠ h/Vex) is technically infeasible, due to eddy
currents developing in the vacuum copper gaskets of our main chamber viewports.
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Figure 6.7 – (a) Experimental configuration for the observation of spin-exchange dynamics in two-dimensional
gases. A two-component Fermi gas (m

F ,F 0 = ±5/2) is loaded into a 1D vertical optical lattice; ⇡-polarised
clock excitation light is vertically directed as well. (b) Experimental sequence: after loading into the 50E

r

deep
lattice, an approximately equal mixture of |g "i and |e #i atoms is created by means of a clock ⇡-pulse. The
spin-imbalanced ensemble is let free to evolve in a 1 G magnetic field and the spin populations are detected
after a variable hold time by means of OSG imaging. The figure is adapted from [124].

with 173Yb atoms by another experimental group, thanks to a very short attainable field-
switching time [176], confirming our estimation of Vex and increasing the precision on the
determination of the a+eg scattering length (see above).

6.2.1 Spin-exchange dynamics in imbalanced bulk ensembles

Experimental sequence and spin imbalance preparation

In order to observe the spin dynamics induced by the exchange interactions, we employ a
different experimental configuration than the one used for interaction spectroscopy (see
Fig. 6.7(a)). A two-spin Fermi gas (mF ,F 0 = ±5/2) is loaded into a vertical one-dimensional
deep lattice potential at the magic wavelength. The initial gas is therefore distributed into
several quasi two-dimensional ensembles localised within separate sites of the vertical
lattice. In this way, the pair density and thus the effective ensemble exchange coupling
can be considerably reduced compared to a three-dimensional lattice configuration. A
strongly spin-imbalanced state is prepared by exciting all spin-down atoms, so that an
almost completely polarised mixture of the |g "i and |e#i states is created, with a small
residual number of |g #i atoms. In order to perform the excitation, a ⇡-pulse solely reso-
nant with the |g #i ! |e#i transition is applied in a 20 G magnetic field. Such a resonance
is blue-shifted owing to interactions in the bulk ensemble by approximately 0.5 kHz for
N0 ' 105 atoms, compared to the same resonance in a spin-polarised two-dimensional
ensemble. In order to achieve a high ⇡-pulse efficiency, a large ⌦ = 2⇡ · 3.56 kHz is used,
corresponding to a ⇡-pulse duration ⇡/⌦ = 140µs. In order to initiate the spin-exchange



160 Chapter 6. Two-orbital SU(N)-symmetric spin-exchange interactions

dynamics, the magnetic field is ramped to a value of 1 G in 200µs, for which the Zeeman
energy becomes smaller than the exchange coupling. Atoms are then held in the lattice for
a variable time and the spin population evolution is monitored; the spin state populations
are detected by releasing the atoms from the lattice and performing optical Stern-Gerlach
separation along with absorption imaging. The experimental sequence is illustrated in
Fig. 6.7(b).

Evolution of the spin imbalance

As soon as the B-field strength is lowered, a fast equilibration of the |gi state spin pop-
ulations is observed, as expected due to the large exchange coupling. We do not detect
any emerging population of initially unoccupied spin states during the spin redistribution,
confirming the SU(N)-symmetric character of the spin-exchanging process by the absence
of spin-changing collisions. The |gi state spin distribution approaches, for long holding
times, a stationary ratio, in agreement with the spin distribution that is detected before-
hand the clock excitation pulse. The time scale over which the spin distribution reaches
the equilibrium value is found to clearly depend on the initial density of the atomic sam-
ples. In Fig. 6.8, the evolution of the relative |gi state spin populations is displayed for
three different initial densities, varied by tuning the atom number N0 of the Fermi gas
loaded into the lattice.

Collective coherent dynamics is expected to be completely inhibited in such a bulk
system, owing to the presence of strong |ei state pair losses that completely suppress the
build-up of coherence between the |eg "#i and |eg #"i states. However, even in the absence
of losses, collective coherent spin dynamics in a Fermi sea is observed only under particular
initial conditions [313, 314]: in order to initiate the spin dynamics, small but non-zero
single-particle coherences between the internal states coupled by the exchange process
are required, as observed in spinor Bose gases [147, 329]. Moreover, in a Fermi system,
the time scale of the atomic motion in the trap needs to be short compared to the spin-
dynamics time scale. Under these conditions, the spatial dependence of the interactions
due to the trapped state wave functions gives rise to an effective long-range spin coupling,
inducing a single-mode-like spin dynamics which disregards the spatial structure of single-
particle states [330]. On one hand, it is difficult to engineer state coherences between the
|g "i and |g #i states in a bulk ensemble, which could only be realised by creating spin
coherences before the excitation8. On the other hand, due to the large exchange coupling,
the fast spin-exchanging dynamics takes place on a time scale much smaller than the in-
trap motion, with an observed spin-exchange rate ⌦ex ¶ 2⇡ · 500Hz much larger than
the in-plane trap frequencies !x ,y ' 2⇡ · 37Hz (see below for the determination of the
spin-exchange rate). In such conditions, collective coherent dynamics in the Fermi sea is
therefore excluded already without considering atom pair losses, and we may use a simple
approximate model to describe the uncorrelated spin-exchanging dynamics, which will be
illustrated in the following part of this Section.

8Quenching the orientation of the magnetic field generates spin superpositions, however it populates un-
wanted spin states. Two-photon coherent spin transfer represents the only viable alternative to create con-
trolled spin superposition states.
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Figure 6.8 – Inter-orbital spin-exchange dynamics in two-dimensional ensembles. (a) Evolution of the relative
populations of the |g "i and |g #i states in a 1 G magnetic field. The fitted curves are obtained using the
two-body rate equation model in Eqs. (6.13), which includes e-g and e-e state inelastic losses. The OSG
absorption images displayed below the curves correspond respectively to a hold time of 0.4 ms and 14 ms with
N = 0.85⇥ 105 atoms. The integration regions associated with different spin states are also shown: the red
rectangles delimit atoms in the m

F ,F 0 = ±5/2 states, whereas the grey rectangle delimits atoms occupying
other intermediate spin states. (b) Long-time evolution of the ground state spin populations. A slow atom loss
process is visible, caused by inelastic collisions between |gi and |ei atoms. The population of intermediate
spin states is also plotted for N = 0.85⇥ 105 atoms, marked by filled diamonds; the initially unoccupied spin
state populations remain below our detection limit N ⇠ 103 during the entire hold time, verifying the absence
of spin-changing collisions. Error bars mark the standard deviation of the mean of 2-3 measured points. The
figure is adapted from [124].
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6.2.2 Rate equation dynamics description

The spin distribution evolution is fitted using a two-body collisional rate equation model.
Three different collision channels are described by just as many two-body collision rate
coefficients: the elastic spin-exchange rate coefficient �ex, the inelastic e-g collision rate
coefficient �eg and the inelastic e-e collision rate coefficient �ee. Inelastic collisions involv-
ing the |ei state lead with very high probability to pair losses from the trap, and atom
number losses can therefore be directly described in terms of the inelastic collision rate
coefficients (see Section 1.2.1).

The spin-exchange process depletes the initially balanced states |g "i and |e#i, and
transfers atoms to the initially unpopulated |g #i and |e"i states until equilibrium is
reached. The strong e-e pair-lossy collisions are initially suppressed by Pauli blocking, as
only the |e#i state is prepared through the applied clock ⇡-pulse. However, the |e"i state
becomes populated as soon as the spin-exchange process flips atoms from the |e#i state
via collisions with the |g "i state, and inelastic collisions can then occur. As a consequence
of strong e-e inelastic collisions, the |e"i state remains scarcely occupied throughout the
entire evolution. The build-up of coherence between inter-orbital pair states is strongly
suppressed by this loss mechanism, justifying further the use of a classical rate equation
description of the spin-exchanging binary collisions, which can be expressed in analogy
to the description of inelastic binary collisions in terms of rate coefficients [135, 136]
(see also Section 1.2.1). Only the evolution of the state mean densities is considered
by such a description, and quantum many-body effects in the Fermi seas are entirely
disregarded 9. The spin-exchange is moreover off-resonant, due to a differential Zeeman
shift between the |eg "#i and |eg #"i states of 2�B ' +h · 500Hz in the 1 G B-field. This
causes a slight reduction of the exchange rate in conjunction with the initial |g "i-|e#i
mixture, as the exchange process is energetically costly, and larger fields can indeed be
used to completely inhibit the dynamics10. Conversely, by preparing an initial |g #i -|e"i
mixture, an enhancement of the exchange rate with increasing magnetic field is observed.

Four coupled two-body rate equations are used to describe the evolution of the density
in the states |g "i, |e#i, and in the initially unoccupied |g #i and |e"i states. Denoting
the relative state populations as P↵m(t) = n↵m(t)/n0, where n0 is the density of the initial
Fermi gas, their evolution is described by:

Ṗg"(t) = n0�ex
�
Pe"(t)Pg#(t)� Pe#(t)Pg"(t)

�
� n0�eg Pg"(t)

�
Pe"(t) + Pe#(t)

�

Ṗg#(t) = n0�ex
�
Pe#(t)Pg"(t)� Pe"(t)Pg#(t)

�
� n0�eg Pg#(t)

�
Pe"(t) + Pe#(t)

�

Ṗe"(t) = n0�ex
�
Pe#(t)Pg"(t)� Pe"(t)Pg#(t)

�
� n0�eg Pe"(t)

�
Pg"(t) + Pg#(t)

�
� n0�eePe"(t)Pe#(t)

Ṗe#(t) = n0�ex
�
Pe"(t)Pg#(t)� Pe#(t)Pg"(t)

�
� n0�eg Pe#(t)

�
Pg"(t) + Pg#(t)

�
� n0�eePe"(t)Pe#(t)

(6.13)

9We neglect for instance the hole-heating effect in the |g "i and |e#i Fermi seas due to atom losses, which
causes a decrease of the sample density beyond the simple linear decrease due to the atom number loss.

10Measurements with B = 0.3 G have also been performed, but an imperfect compensation of the earth
magnetic field results in OSG detection artefacts due to field switching; such low fields are therefore avoided.
The observed short-time spin evolution is anyhow barely distinguishable from the one observed with B = 1 G.
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The three rate coefficients are independent of the considered spin states, due to the
collisional SU(N) symmetry. In order to estimate the initial mean density n0, a finite-
temperature model for the adiabatic transfer from the dipole trap to the one-dimensional
lattice is used (see Appendix B), where n0 is taken as a number-weighted mean of the
computed in-plane densities in each vertical lattice site. We fit this model to the measured
spin populations with �ex, �eg and Pg#(0) as free parameters. The sum Pe#(0) + Pg#(0) is
fixed to the fraction of |g #i atoms detected before the application of the excitation pulse,
and is monitored to be constant during the experimental run. Pg#(0) takes into account
the non-unity efficiency of the clock ⇡-pulse, with ⇠ 5� 10% of the |#i atoms left in the
|g #i state. Similarly, Pg"(0) is constrained to the relative population of |g "i atoms in the
gas before the application of the excitation pulse. A two-dimensional fitting procedure is
adopted: the measured relative spin state population is fitted with Pg"(t)/(Pg"(t)+Pg#(t)),
and the total detected |gi state atom number is fitted with N0g

�
Pg"(t) + Pg#(t)

�
, where N0g

is the number of |gi state state atoms detected before the dynamics is initiated.

The fits to a set of three different initial gas densities yield a spin-exchange rate coeffi-
cient �ex = 1.2(2)⇥10�11 cm3/s, showing good agreement between the three independent
fits. The e-g inelastic rate is estimated as �eg = 3.9(16)⇥ 10�13 cm3/s, including both re-
sults from fitting the spin-exchange evolution measurements displayed in this Section with
Eqs. (6.13) and from separate e-g inelastic loss measurements (see next Section). This
value of the rate coefficient includes symmetric (|eg+i pair) and antisymmetric (|eg�i pair)
inelastic collisions, which both contribute to atom losses in the quasi-2D bulk ensembles.
The strong e-e losses lead to a large inelastic rate coefficient �ee = 2.2(6) ⇥ 10�11 cm3/s,
which is determined by separate measurements devoted to the independent characteri-
sation of this inelastic channel (see next Section), and is taken as a fixed parameter in
Eqs. (6.13). The uncertainties on the rate coefficients reported here are obtained by com-
bining the uncertainties on the determination of the in-plane density n0 and the errors on
the fit results themselves. The evolution of the spin populations resulting from Eqs. (6.13)
is displayed in Fig. 6.8 for three different total atom numbers N0, where the same rate
coefficient values are used for all curves. The associated in-plane mean densities vary be-
tween11 4 · 1013 and 8 · 1013 atoms/cm3. The fitted evolution shows very good agreement
with the measured data and exhibits the expected dependence for two-body processes on
the in-plane density, both for the exchange-dominated short-time dynamics and for the
long-time dynamics, where the e-g losses become important as well.

An accurate modelling of the in-trap dynamics, including many-body correlations of
the motional and internal degrees of freedom, would be required to quantitatively relate
the measured exchange rate to the microscopic interaction processes and ultimately to
the scattering length difference �aeg = a+eg � a�eg . Such a modelling is quite complicated,
and two-orbital interacting quasi-2D ensembles have to date only been treated at a mean-
field level by means of the truncated Wigner approximation (see Ref. [214] and attached
supplementary materials). Such a treatment is valid however only in the case of mode-
conserving interactions, i.e. with an associated energy much smaller than the trap-level

11As a reference, these correspond in turn to mean in-plane Fermi energies between EF = h · 2.1 kHz and
EF = h · 3.7 kHz.
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spacing12 ⌦ex ⇠ n0�ex ⌧ !x ,y . Nevertheless, from the evolution shown in Fig. 6.8(b), it
is evident how the spin-exchange is found to be the strongest process in the two-orbital
system, provided that pair |ei losses are avoided, e.g. by isolating the |ei atoms from
one another in a state-dependent three-dimensional lattice. A quantitative comparison
between the various elastic and inelastic collision rates, with regard to the stability of the
two-orbital system for quantum simulation of orbital magnetism, will follow in the next
Section.

6.3 Two-orbital inelastic collisions

A careful evaluation of the inelastic collision channel strengths is very important for sup-
porting the feasibility and understanding the restrictions on quantum simulation with the
two electronic states of 173Yb. We already emphasised how strong |ei state pair losses are
detrimental for the stability of bulk atomic ensembles where |ei atoms are free to inelas-
tically collide with each other. On the other hand, a rather weak |gi state loss process
was observed, caused by inelastic collisions between |gi and |ei atoms. Throughout |gi-|ei
and |ei-|ei state atomic collisions, several orbital molecular states connect to the single-
particle states of the approaching atoms. The couplings between the various molecular
orbitals lead to inelastic collisions which can change the internal state of the colliding
atoms. Atoms in the |ei state may therefore decay to the |gi state, in which case the
atomic pair gains a large kinetic energy equal to the optical excitation energy causing
both atoms to leave the trap [283]. Inelastic collisions involving ytterbium metastable
|ei atoms have so far only been studied at very low densities in two-dimensional en-
sembles of 171Yb [280], and rather large two-body loss rate coefficients have been re-
ported: �ee = 5(3)⇥10�11 cm3/s and �eg = 3(2)⇥10�11 cm3/s. However, no measurements
have been published for 173Yb. We will present in the following our characterisation of
metastable state inelastic losses both in two-dimensional ensembles and isolated pairs of
173Yb atoms.

6.3.1 Inelastic collisions in two-dimensional ensembles

In order to better isolate the role of inelastic e-e and e-g collisions in the atom number
evolution shown in Fig. 6.8, we employed different experimental procedures.

Inelastic collisions between excited atoms

Inelastic e-e losses are measured by creating a balanced |e"i-|e#imixture and successively
monitoring the atom number evolution. The |ei atom ensemble is prepared by applying a
resonant clock ⇡-pulse in a nearly zero magnetic field to a two-spin Fermi gas loaded into
a 50 Er deep vertical lattice. An equal portion of the two spin states is excited to the |ei
state and a blast pulse resonant with the strong 1S0!1P1 transition is used to remove the

12This is the applicable regime in optical lattice atomic clocks, as extremely low in-plane densities are
employed, yielding correspondingly low interaction strengths on the order of 1 Hz.
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Figure 6.9 – Experimental sequences for the characterisation of |ei state inelastic losses in two-dimensional
ensembles. (a) Pulse sequence for the measurement of e-e atom losses. The residual |gi atoms after a first
clock pulse are removed by a blue cleaning pulse. The |ei state population is mapped back to the |gi state
using a second clock pulse. (b) Pulse sequence for the measurement of e-g atom losses. Applying a single
clock pulse, the |gi state population is detected as a function of hold time. Alternatively, by applying a cleaning
pulse and a second clock pulse the |ei state population can be measured.

residual |gi atoms. The |ei atom ensemble is held inside the optical lattice for a variable
time, at the end of which the population is mapped back to the |gi state by the application
of a second ⇡-pulse. The experimental sequence is illustrated in Fig. 6.9(a).

A fast decay of the |ei state population on a few milliseconds scale is detected, and
a two-body loss rate coefficient �ee = 2.2(6) ⇥ 10�11 cm3/s is obtained. The loss rate
coefficient is determined by fitting the data with N0e

�
Pe"(t) + Pe#(t)

�
, obtained by solving

Eqs. (6.13) with the Pg" and Pg# set to zero. N0e is the number of atoms present at hold
time t = 0 after the double pulse sequence, which takes into account the efficiency of the
double ⇡-pulse and is fitted as a free parameter, as a minimum experimental hold time
t > 0.5 ms is necessary for the cleaning pulse to be applied. The initial density n0 was
computed through the number of |ei atoms after a single ⇡-pulse, estimated through the
⇡-pulse efficiency. The result of such a measurement and the corresponding fit are shown
in Fig. 6.10(a).

Inter-orbital inelastic collisions

In order to address e-g atom losses, a nearly balanced mixture of |g "i and |e#i atoms is
prepared by applying a ⇡-pulse in a 20 G magnetic field. Without lowering the magnetic
field, unlike the spin-exchange dynamics measurements presented in the previous Section,
the population evolution is dominated by two-body losses caused by inelastic inter-orbital
collisions. The spin-exchange is strongly suppressed due to the large associated Zeeman
energy cost of 2�B ' h · 10kHz. The population of both the |gi and |ei states are mon-
itored in separate experimental runs as a function of the hold time after the excitation
clock pulse. The |ei state population can be mapped back to the |gi state in the same
way as described above (see Fig. 6.9(b)). The same decay on a 100 ms typical time scale
is observed in both the |gi and the |ei state populations, indicating the presence of e-g
pair losses. The two-body loss rate coefficient �eg is determined by fitting in combination
N0g

�
Pe"(t) + Pe#(t)

�
and N0e

�
Pe"(t) + Pe#(t)

�
to the measured |ei and the |gi state popula-

tions respectively, again using the numerical solution of Eqs. (6.13). The fitted value of
�eg is found in good agreement with the fit results from the measurements in Fig. 6.8(b)
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Figure 6.10 – Metastable state inelastic loss measurements in two-dimensional ensembles. The decay of the
|ei state population associated with e-e (a) and e-g (b) inelastic collisions. The solid line in (a) is a fit to the
data with the |ei state population evolution resulting from Eqs. (6.13) (rescaled by the second clock pulse
efficiency). The solid line in (b) represents the total |ei state population evolution resulting from a combined fit
of the |ei and the |gi state population evolutions with the relative evolutions from Eqs. (6.13).

and a combined estimate �eg = 3.9(16)⇥ 10�13 cm3/s is obtained. We note again that e-g
pair losses measured in a bulk ensemble involve collision processes in both the symmetric
and anti-symmetric inter-orbital channels, and �eg should therefore be interpreted as an
effective in-trap loss rate coefficient.

Influence of tight confinement

Spin-exchange and inelastic loss rates which were measured in ensembles trapped in a
vertical optical lattice can be influenced by the the tight confinement in the vertical di-
rection [331, 332]. Both the elastic and the inelastic scattering properties of the gas in
a tight confined geometry are found to depend exclusively on the dimensionless para-
meters E/(~h!0) and a/aho [331], where !0 and aho are the confinement frequency and
harmonic oscillator length in the tightly confined direction, and E = ~h2k2/m is the kinetic
energy of relative motion of the colliding atoms (which is on the order of EF at ultra-
cold temperatures). For our vertical lattice potential, !0 ⌘ !z,lat = 2⇡ · 28.1(3)kHz for a
depth Vz = 50 Er and aho =

∆
~h/(m!z,lat) ' 870 a0. For our temperatures well below the

tight confinement frequency kB T Æ 0.1~h!z,lat, the gas enters a regime usually termed as
quasi-two-dimensional (quasi-2D), where amongst the available states along the tightly
confined direction only the harmonic oscillator ground state is significantly occupied.

The elastic and inelastic collision rates in the quasi-2D regime significantly deviate
from their 3D counterparts when the associated scattering length is large, i.e. a ¶ aho

[331]. We are interested in estimating the effect of the lattice confinement on the mea-
sured inelastic rates, and in particular on the ratio between the inelastic rates and the
elastic spin-exchange rate. On one hand, the relevant scattering length in the case of �ee

is aee < aho; we therefore expect nearly no influence of the tight confinement on the mea-
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Figure 6.11 – Effects of tight axial confinement on elastic and inelastic atomic collisions: comparison between
quasi-2D and 3D collision rates. (a)-(b) The ratio between the quasi-2D and the 3D elastic-inelastic collision
rate is plotted as a function of the scattering length a and the average relative momentum k . (c) A comparison
among the expected enhancement of inelastic and elastic scattering rates from quasi-2D to 3D.

sured inelastic e-e loss rate. On the other hand, for e-g collisions, we expect a consistent
influence of the axial confinement, since a+eg > aho. Let us then determine the expected
e-g collision rates in 3D from the ones measured in quasi-2D ensembles, and we assume
for the spin-exchange rate coefficient �ex ⇠ �+eg .

The ratio between the e-g elastic collision rate in the tight confined geometry ⌦2D
el and

its 3D analogue ⌦3D
el can be written as [331]

⌦2D
el

⌦3D
el

=
n2D �2D

n3D �3D
' h| f00(k)|2i

8
p

2⇡ k a

aho

a
(6.14)

where h. . .i stands for a Fermi-Dirac average, k is the the relative momentum of colliding
particles and

| f00(k)|2 =
16⇡2

(
p

2⇡aho/a� log( k2 a2
ho))

2 +⇡2
(6.15)

is the quasi-2D scattering amplitude [331, 332], with  ⇡ 3.5. Furthermore, n2D (n3D)
is the two-dimensional (three-dimensional) gas mean density and �2D (�3D) is the elastic
collision rate coefficient in two (three) dimensions. A plot of this ratio as a function of
k and a is given in Fig. 6.11(a). For a temperature T = 0.25 TF , hki ' kF , and setting
a = a+eg ' 3300 a0 yields ⌦2D

el /⌦
3D
el ' 0.1.

Moreover, the ratio between the e-g inelastic quasi-2D collision rate ⌦2D
inel and the 3D

rate ⌦3D
inel is given by [331]:

⌦2D
inel

⌦3D
inel

=
n2D �2D

n3D �3D
' h| f00(k)|2i
(4⇡ a)2

p
2⇡ a2

ho (6.16)

where �2D (�3D) is the inelastic collision rate coefficient in two (three) dimensions.
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This ratio is plotted in Fig. 6.11(b) as a function of k and a, and for hki ' kF and
a = a+eg ' 3300 a0 we obtain ⌦2D

inel/⌦
3D
inel ' 0.04. We can therefore expect a 10-fold and

a 25-fold increase of the e-g elastic and inelastic collision rates, respectively, for a 3D
ensemble compared to a quasi-2D ensemble at the same density. In Fig. 6.11(c), the ra-
tio between relative enhancement of the inelastic and elastic rate in 3D is plotted, namely:

Rinel

Rel
=
⌦3D

inel

⌦2D
inel

⌦2D
el

⌦3D
el

(6.17)

We can conclude therefore that, although the e-g rate coefficients for a tightly confined
gas need to be corrected in order to obtain their 3D analogues, the elastic to inelastic co-
efficient ratio is approximately preserved over a wide range of scattering lengths and gas
temperatures. The measured ratio �ex/�eg ⇠ 30 is not reduced to less than 10, indepen-
dently of the effective dimensionality of the system.

6.3.2 On-site atom losses

As the ensemble measurements of e-g inelastic losses are not able to distinguish between
the symmetric and the antisymmetric collision channels, we further characterise atom
losses of isolated inter-orbital pairs trapped on the sites of a three-dimensional lattice. In
this way, the pair can be approximately excited to a pure |eg�i state and the stability of
this can be individually verified. An mF ,F 0 = ±5/2 mixture is loaded into a lattice with
Ṽ ' 37 Er and the isolated pairs are selectively excited with a ⇡-pulse resonant to the
|g gi ! |eg di transition in a 7 G magnetic field (see also Fig. 6.3). The ground state atom
number is monitored at varying hold time after the excitation, as displayed in Fig. 6.12.
A lifetime ⌧�eg ' 0.78(2) s is determined by an exponential fit to the |gi state population
evolution, corresponding to an on-site loss rate (⌧�eg)

�1 = 1.28(3)Hz.
Moreover, this measurement represents an example of the direct detection of the num-

ber ND of doubly occupied sites in the lattice. After the decay process has completely
depleted the population of doubly occupied sites, the residual atom number reaches a
stationary value NS. As the e-g decay process only pertains doubly occupied sites, one
expects the atoms on singly occupied sites to be left after the decay has stopped. As visible
in Fig. 6.12, NS ' 3.1⇥104 is found to approximately match N �2ND, where N ' 4.7⇥104

is the total atom number prior to the excitation and ND ' 0.85 ⇥ 104 is the number of
atoms excited by the initial clock ⇡-pulse. This clearly indicates that the initial ⇡-pulse
and the loss mechanism apply to a similar number of lattice sites, further demonstrating
the ability of performing site occupation-selective coherent population transfer in a 3D
optical lattice. The on-site pair lifetime can be directly related to the to a two-body loss
rate coefficient ��eg by means of the relation [333]:

(⌧�eg)
�1 = ��eg

Z
d3r |w(r)|4 (6.18)

A loss rate coefficient ��eg = 3.0(1)⇥ 10�15 cm3/s is consequently obtained, which can be
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Figure 6.12 – On-site atom losses after the excitation to the |eg d i ' |eg�i state in a 7 G B-field with a mean
lattice depth ˜

V ' 37E
r

. The ground state atom number prior to the excitation pulse is N ' 4.7 ⇥ 104, i.e.
N

D

' 0.85⇥ 104 atoms on doubly occupied sites are excited by the ⇡-pulse. A slow exponential decay with
a 1/e time of ⌧�

eg

' 0.78(2) s is detected (solid line), corresponding in turn to a two-body loss rate coefficient
��
eg

' 3.0(1) ⇥ 10�15 cm3/s. The decay stops when nearly all atoms on doubly occupied sites have been
lost. The figure is adapted from Ref. [124].

in turn related to the imaginary part of the a�eg scattering length ⌘�eg by Eq. (1.22):

��eg = �
8⇡~h
M
⌘�eg (6.19)

yielding ⌘�eg ' �0.006 a0. The residual |gi state stationary population corresponds to the
estimated population of the singly occupied sites: the total atom number loss is in fact
equal to the population which is initially excited by the clock ⇡-pulse, evidencing an e-
g pair loss process. Furthermore, the reported loss rate coefficient should be seen only
as an upper bound, as tunnelling processes are not negligible throughout the long hold
time with a lattice depth of 35 Er in the horizontal directions, and enable additional lossy
collision channels such as |eei state losses.

The direct comparison between the spin-exchange coupling strength Vex and the |eg�i
state on-site decay rate confirms further how spin-exchange interactions are by far the
dominating process in a three-dimensional lattice, as long as on-site |eei state losses are
prevented by isolating |ei atoms from one another. The remaining inelastic dynamics is
thus limited to pair collisions occurring in the nuclear spin singlet state, which was found
anyhow to lie at a large energy offset above the ground state of the two-particle system
and will then be suppressed in many-body experiments with orbital spin exchange.

The large ratio of elastic to inelastic inter-orbital scattering length is encouraging
with regard to the proposed implementation of the Kondo lattice model and its SU(N)-
symmetric extension. The large exchange coupling strength Vex found in 173Yb is indeed
very desirable. First of all, a strong exchange interaction dominates over the |gi state pair



170 Chapter 6. Two-orbital SU(N)-symmetric spin-exchange interactions

interaction Ug g , characterised by a smaller scattering length. In addition, the exchange
coupling and the inelastic collision rates can be reduced by decreasing the spatial overlap
between |gi and |ei state wave functions in the lattice, e.g. by means of a state-dependent
bi-chromatic lattice along one direction [56, 125]. A large region of the phase diagram
of the ferromagnetic Kondo lattice, used for instance to describe colossal magnetoresistive
compounds, seems accessible.



Conclusions and outlook

In this thesis, we have shown that quantum gases of fermionic ytterbium in optical lattices
are a powerful and versatile system for the investigation of many-body physics with or-
bital interactions and enlarged symmetries. Owing to a precise control of the nuclear spin
and of a novel orbital degree of freedom, obtained by extending the system to include the
lowest metastable electronic state besides the ground state, we were able to prepare and
study two-orbital degenerate mixtures of different nuclear spin states of 173Yb. Spectro-
scopic techniques in optical lattices were specifically developed, enabling direct probing
of the interactions between different combinations of orbital and spin states.

Our newly developed experimental apparatus for the production, the manipulation
and the detection of lattice ultracold gases of ytterbium was described. An all-optical
cooling procedure allows to reach degeneracy with both bosonic and fermionic isotopes.
By loading the quantum gases into the lowest band of an optical lattice potential, the
interaction-dominated regime is accessed. For the experiments presented in this thesis, a
state-independent optical lattice was realised by using laser light at the magic wavelength.
In addition, state-selective optical potentials can be tailored, exploiting the different dy-
namic polarisability of the two lowest electronic states of ytterbium. A stable laser setup
for addressing the clock transition, connecting the two lowest electronic states of 173Yb,
was implemented, empowering the spin-selective, site occupation-selective coherent con-
trol of the metastable state population in the optical lattice.

We have shown how the two-orbital SU(N)-symmetric Hubbard model describes the
physics of ultracold fermionic alkaline-earth-like gases in optical lattices. It includes an
inter-orbital spin-exchange interaction term, providing a key ingredient for the quantum
simulation of orbital magnetism phenomena [55]. In particular, by localising one of the
two orbital states in a deep optical lattice, the renowned Kondo lattice model can be im-
plemented. Secondly, the strong-coupling limit of the SU(N)-symmetric Hubbard model,
namely the SU(N) Heisenberg model, can be realised using ground-state Mott insulators
of alkaline-earth-like atoms [54].

We have reported on the discovery of a surprisingly strong spin-exchange coupling be-
tween the two orbital states of 173Yb, which nearly saturates the energy gap to the first
excited band in the lattice. Exploiting the interaction shift and the differential Zeeman
shift of two-particle states on doubly occupied sites of a three-dimensional optical lat-
tice, we were able to spectroscopically investigate the two-orbital interactions in both spin
singlet and triplet channels, thereby characterising their scattering properties. We have
moreover directly observed the inter-orbital spin-exchange dynamics in a one-dimensional
optical lattice, initiated by preparing out-of-equilibrium spin distributions between ensem-
bles in different orbitals. The SU(N) symmetry of all orbital interactions, until now only
theoretically predicted, has been directly demonstrated by spectroscopic probing of sev-
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eral distinct mixtures of nuclear spin states, and further verified by the observed absence
of spin relaxation processes accompanying the spin-exchange dynamics. Finally, inelas-
tic collisions have been investigated, revealing a favourable, large ratio of the elastic to
inelastic scattering lengths in each channel.

Outlook

Our findings represent an important step towards the exploration of the two-orbital
SU(N)-symmetric Hubbard model and open the route to the cold atom implementation
of orbital magnetism and the Kondo lattice model. The realisation of states with strong
orbital spin correlations seems within reach, in light of the observed preponderance of
elastic interactions over inelastic interactions between the two orbital states and of the
versatile state-preparation techniques demonstrated in this thesis. Furthermore, the first
direct demonstration of SU(N) symmetry in 173Yb provides exciting prospects for the in-
vestigation of SU(N)-symmetric fermionic systems confined to different dimensionalities
[53, 73, 156]. SU(N > 2)-symmetric spin models in optical lattices [55] could also be
realised in the future, with the goal of observing the intriguing phases that have been
theoretically predicted at varying values of N [54, 62, 163, 227, 232, 239], ranging from
magnetically ordered states to spin liquids with long-range correlations.

The deviation of several observables in SU(N)-symmetric Fermi liquids from the spin-
1/2 Landau-Fermi liquid behaviour was anticipated [53, 156], due to the enhancement of
the repulsion between identical fermions with increasing N , mediated by density fluctua-
tions of atoms in other spin states. Beyond mean-field effects revealing these deviations,
e.g. a suppression of the spin susceptibility, could be already measurable in our current ex-
perimental conditions [63, 156], with an attainable interaction parameter of 173Yb ground
state atoms of kF a ' 0.15. In addition, recent numerical calculations suggest that a shal-
low lattice potential significantly promotes ferromagnetism and phase separation in SU(2)
[334, 335] and SU(3) [172] fermionic systems. Our low interaction strengths, compared
to kF a ⇡ 1 for which the SU(2) ferromagnetic instability is predicted in a homogenous
system [336], may thus be sufficient for observing a partially polarised state. Investigat-
ing experimentally the ferromagnetic tendency of SU(N) fermionic systems at varying N
could contribute to advances in the study of the ferromagnetic behaviour of the Hubbard
model, considering in particular that the first order character of the ferromagnetic phase
transition is expected to be enhanced by a larger N [53, 156]. However, low tempera-
tures well below the tunnel coupling J are necessary to access the strongly correlated spin
regime of the Hubbard model. In this respect, alkaline-earth-specific cooling techniques
are promising for reaching such temperature regimes in the future [87]. The identifica-
tion of a clock transition photoassociation resonance and its possible application to tune
the ground state scattering length through an optical Feshbach resonance would more-
over represent a powerful tool to further explore the physics of SU(N) interacting Fermi
systems.

The studies of orbital interactions presented in this work are mostly focused on probing
the properties of isolated fermionic atom pairs. Increasing the tunnel coupling of ground
state atoms in a state-selective potential will enable the implementation of the Kondo
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lattice Hamiltonian. With a view to a high-fidelity preparation of the Kondo lattice, the
independent coherent excitation of atoms in the singly and doubly occupied sites of a
lattice potential was already shown in this thesis. The separate addressing of the clock
transition for the nuclear spin singlet and triplet states will moreover allow to detect
on-site spin correlations, with great use for the investigation of many-body states with
Kondo screening. Interaction clock spectroscopy could even be used for probing many-
body phases of isotope mixtures in optical lattices, owing to the different intra- and inter-
species scattering properties. The potential of such probes is currently being extended with
the development of high-resolution imaging techniques and of a single two-dimensional
gas preparation scheme. By these upgrades, the detection of site occupations and two-
body spin states in a spatially resolved fashion will become possible.

Orbital interactions could also be exploited to produce highly-entangled many-body
states, which are valuable for measurement-based quantum computation and for atom in-
terferometry. It was recently shown theoretically that highly-entangled multi-particle spin
states, namely Dicke states, are generated in alkaline-earth-like fermionic gases as a result
of the dissipative evolution driven by strong inelastic s-wave collisions between metastable
state atoms [337]. Dicke states possess a completely symmetric spin wave function, whose
entanglement could be revealed by Ramsey clock spectroscopy [337]. On the other hand,
they possess a completely anti-symmetric spatial wave function and do not therefore ex-
perience any s-wave collision, resulting in a suppression of inelastic losses.
Spin-exchanging processes have been also notably suggested for engineering entangling
gates on atomic pairs [83, 115]. SWAP gates have been already implemented using the ex-
change coupling between distinct vibrational states in a lattice [116] or the superexchange
coupling in a superlattice [338]. A precise dynamic control of inter-orbital spin-exchange,
attainable by an abrupt B-field switching to initiate and freeze out the spin-exchanging
dynamics [176], could be used to prepare on-site two-particle entanglement in both the
spin and orbital degrees of freedom. By optical coherent manipulation of atom internal
states, in combination with a superlattice potential for the merging and splitting of atom
pairs [116, 338], maximally-entangled many-body states could then be created.

As another concrete prospect for quantum simulation, the coherent coupling between
the ground and the metastable state in an anti-magic optical lattice can be exploited for
realising strong effective magnetic fields and even non-Abelian gauge fields [64]. In such
a lattice potential, the two states are confined to the nodes and the anti-nodes of the
standing-wave intensity pattern and occupy thus spatially separated lattice sites. Laser-
assisted tunnelling between these two sub-lattices can be driven by coherent clock excita-
tion and complex tunnelling phases can be engineered in the process. These phases im-
plement the so-called Peierls phases, analogous to the Aharonov-Bohm phase experienced
by a charged particle moving in a magnetic field, and allow to create effective magnetic
fluxes on the order of one flux quantum per unit cell [46, 47, 64]. The system can then
be described by the famous Harper-Hofstadter Hamiltonian, used to describe the integer
quantum Hall effect and chiral edge states. In a similar way, artificial gauge fields in syn-
thetic dimensions could also be engineered by taking advantage of the clock transition for
coupling different nuclear spin states [102].

We can also envision applications of the tuneable coherent coupling between delo-
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calised and localised states, obtained through occupation-dependent addressing of the
clock transition in a state-selective lattice. Sparse or disordered immobile atoms in
the metastable state could be prepared in order to explore the physics of single- and
multi-component Fermi systems with interacting impurities, in equilibrium and out-
of-equilibrium settings [339, 340]. Furthermore, the analogy between localised and
delocalised atoms in a lattice with radiation emitters and the radiation field continuum,
respectively, could be exploited to simulate and tailor quantum-optical phenomena like
superradiance [341]. In conclusion, both the demonstrated coherent control of the elec-
tronic degree of freedom and the realisation of inter-orbital spin exchange offer many
new possibilities for stimulating experiments.



APPENDIX A

Light shifts and optical potentials

Polarisability of a state and AC-Stark shift

Neutral atoms become polarised in the presence of an oscillating electric field, such as
the one generated by a laser beam. The effect of the atom-light interaction leads to the
AC-Stark shift of atomic states, which depends on the state-specific dynamic polarisability
↵(!), introduced in Eq. (1.1). The polarisability of an electronic state |�i is given to
lowest order by summing the contributions of the second-order AC-Stark shift from all
other electronic states [97]:

↵(� ;!) =
X

� 0 6=�

2!� 0�
~h (!� 0� �!)2

��h� |✏̂ · d|� 0i
��2 (A.1)

where d = e r is the atomic dipole operator, ✏̂ is the field polarisation vector and !� 0�
are the frequencies of the atomic transitions, taken with positive (negative) sign for final
states with higher (lower) energy than |�i.

In the presence of state internal substructure, such as with the Zeeman mF sublevels
of a hyperfine state |�J Fi, the atomic polarisability is generalised to a tensor [97]:

↵µ⌫ (�J F mF ;!) =
X

�J 0F 0m0F

2!F 0F

~h (!F 0F �!)2
h�J F mF |dµ|�J 0 F 0m0F ih�J 0 F 0m0F |d⌫|�J F mF i (A.2)

The AC-Stark shift for an electric field E is given by:

�V (�J F mF ;!) = �
X

µ⌫

Re
⇥
↵µ⌫(�J F mF ;!)

⇤
EµE⌫ (A.3)

The polarisability tensor ↵µ⌫ can be written as the sum of three irreducible spherical ten-
sors of ranks 0, 1 and 2, termed scalar, vector and tensor polarisability, respectively [97].
Since the vector light shift is nulled for a linearly polarised light field and the tensor light
shift is orders of magnitude smaller [90], only the scalar light shift is usually relevant for
the dipole potentials adopted in this thesis, e.g. the magic optical lattice.

Let us now clarify in more detail the role of state magnetic substructure on dipole
potentials and dipole forces. Thanks to the Wigner-Eckart theorem, the dipole matrix
element of a given transition |si ⌘ |�J F mF i ! |s0i ⌘ |�J 0 F 0m0F i can be broken up into two
factors:

ds0s = h�0||d||�iAs0s (A.4)
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The first factor is independent of the state hyperfine and magnetic substructures and is
usually called the reduced dipole matrix element, whereas the second factor As0s is depen-
dent on all quantum numbers, and is related to the Clebsch-Gordan coefficients [15, 117].
Considering for simplicity only linearly or circularly polarised light, As0s is given by:

As0s(mF , q) = (�1)1+L0+S+J+J 0+I�m0F

⇥
∆
(2J + 1)(2J 0 + 1)(2F + 1)(2F 0 + 1)

⇥
⇢

L0 J 0 S
J L 1

�⇢
J 0 F 0 I
F J 1

�✓
F 1 F 0

mF q � (mF + q)

◆ (A.5)

where the curly brackets and round brackets arrays denote respectively the 6 j-symbol and
the 3 j-symbol [15], and q represents the polarisation of the light so that m0F = mF + q
(q = 0 for linear polarisation aligned to the quantisation axis and q = ±1 for right- and
left-circular polarisations propagating along the quantisation axis). The dependence of
As0s on mF and q results in different line strengths characterising each of the transitions
within the magnetic substructure of a dipole transition (see Fig. A.1).

An explicit form of the total light shift as a function of the quantum numbers of a state
|si ⌘ |�J F mF i and the light polarisation q is derived:

�V (�J F mF ;!, q, r) = � I(r)
✏0 c

X

s0 6=s

!s0s

~h (!s0s �!)2
|ds0s|2 (A.6)

where ds0s is given by Eqs. (A.4)-(A.5). The light shift depends therefore on the polarisa-
tion of the light through |As0s|2 for each transition.

In order to compute the light shift of a state |si, the reduced dipole matrix elements of
the |si ! |s0i transitions can be directly related to the decay rates of the states |s0i state to
the state |si:

� (s0 ! s) =
!3

s0s

3⇡~h c3 ✏0

��h�0||d||�i
��2

2J 0 + 1
(A.7)

The state labels s and s0 need to be switched for states |s0i that are lower in energy than
|si, causing a sign flip of !s0s. Using this relation to rewrite Eq. (A.6), we obtain:

�V (�J F mF ;!, q, r) = �I(r)
X

s0 6=s

3⇡ c2

2!3
s0s

|As0s(mF , q)|2
Å
� (s0 ! s)
!s0s �!

+
� (s0 ! s)
!s0s +!

ã
(A.8)

This formula can be used to estimate the light shift of an arbitrary state for any light
frequency, provided that the decay channels of the state and to the state are known to
some precision (see Fig. 2.1 concerning the most relevant states in ytterbium). Eq. (A.8)
yields Eq. (1.3) in the limit of a two-level atom.

Transition strengths of the hyperfine transitions in ytterbium

The transition strengths are defined as the absolute square of the Clebsch-Gordan co-
efficients |As0s(mF , q)|2. All line strengths associated with the hyperfine and magnetic
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Figure A.1 – Line strengths |A
s

0
s

|2 for the different hyperfine 1S0 !1P1 and 1S0 !3P1 transitions. The
strengths are normalised to the weakest allowed transition. The line strengths of the 1S0!3P1 transitions are
identical to the ones of the 1S0 !1P1 transitions, since the finite dipole matrix element of the former is en-
tirely induced by the spin-orbit interaction, which mixes the two pure LS-coupling eigenstates (see Eq. (2.4)).
Similarly, the line strengths of the 1S0(F = 5/2) ! 3P0(F 0 = 5/2) transition are equal to the ones of the
1S0(F = 5/2) ! 3P1(F 0 = 5/2) transition.

substructure of a dipole transition can be computed through Eq. (A.5). The obtained
values for the relevant transitions of ytterbium are reported in Fig. A.1. We note here
that the non-squared Clebsch-Gordan coefficient As0s can be positive or negative, yielding
an according transition dipole matrix element. The transition Rabi frequency in Eq. (5.1)
can therefore be positive or negative, besides being affected by the magnitude of the
coefficient. For instance, opposite Rabi frequencies are found on the clock 1S0!3P0 ⇡-
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transitions for opposite mF states: Aclock(mF , q = 0) = �Aclock(�mF , q = 0).

Dipole traps with Gaussian beams

Optical dipole traps are usually created using Gaussian laser beams. For such a beam
propagating along the z-direction, the intensity profile is given by:

I(r) = I0

Å
w0

w(z)

ã2
e�2r2/w2(z) (A.9)

where w0 is the beam waist and w(z) = w0

q
1+ z2/z2

R, with zR = ⇡w2
0/� being the Rayleigh

range of the beam. Inserting this intensity profile in Eq. (1.3), the potential minimum for
a red-detuned beam is found at r = 0, where the intensity equals I0. The dipole potential
in the vicinity of r = 0 is approximately harmonic. Atoms usually occupy only a small
region of the trap, experiencing a harmonic potential with frequencies given by:

!x ,y =

vut 4V0

M w2
0

, !z =

vut 2V0

M z2
R

(A.10)

where V0 is the magnitude of the potential depth at the peak intensity I0, and the transver-
sal x , y-frequencies are usually on the order of 10 to 100 Hz. The potential is significantly
weaker in the axial direction of the laser beam, and single-beam optical traps yield there-
fore atomic samples with a characteristic cigar shape. In situations where a more isotropic
confinement is desirable, two Gaussian beams can be intersected at r = 0. The beams
are usually frequency-shifted from each other to prevent unwanted interference at the
crossing. Optical traps realised in this way are usually named crossed dipole traps. El-
liptic Gaussian beams can also be employed, i.e. beams described by different waists
w0x , w0y in the x , y-directions. In this case the resulting harmonic confinement can be
made anisotropic, with different frequencies !x ,!y in the two directions. One impor-
tant effect to consider is gravitational sagging, namely the shift of the potential minimum
along the vertical direction due to gravitational force. The influence of gravity increases
for weaker dipole traps, and atoms above a certain energy can spill out towards the bot-
tom. This effect is used for evaporative cooling, where the hotter atoms escape the trap
by spilling away while the power of the dipole beam providing the vertical confinement is
decreased.

Optical lattice potentials with Gaussian beams

In red-detuned lattices, where potential minima coincide with intensity minima, trapped
atoms experience a Gaussian confinement potential in the directions orthogonal to the
propagation direction of the lattice beam (see Fig. A.2). This confinement potential has
the same total depth V0 as the lattice potential itself and its frequency is given by the beam
waist using Eq. (A.10). When multiple lattice beams are crossed, a three-dimensional
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Figure A.2 – Optical lattice potential in the x -y plane. The underlying confining potential results from the
Gaussian profile of three retro-reflected orthogonal beams with the same waist size (not to scale).

confining potential is present, which close to its minimum is characterised by the harmonic
frequencies:

!µ,lat =

vuut4V0

M

Ç
1

w2
1,lat

+
1

w2
2,lat

å
(A.11)

where w1,lat and w2,lat are the waists of the lattice beams propagating orthogonally to the
µ-axis, and we assume for simplicity that all beams have equal intensities. An additional
anti-confinement, which however does not compensate the Gaussian confinement, is in-
duced by the the varying lattice depth perpendicular to the propagation direction due
to the decrease of the lowest vibrational state energy at each lattice site. In harmonic
approximation, its (imaginary) frequency is given by:

!µ,ac =
2⇡~h
M �

vut 1
w2

1,lat

+
1

w2
2,lat

Å
V0

Er

ã1/4
(A.12)

By summing this two contribution in quadrature one obtains the total confining potential
frequency in the µ-direction: !µ,c =

«
!2
µ,lat �!2

µ,ac, which in usual experimental config-
urations is similar to !µ,lat. For blue-detuned lattices, the situation is radically different
due to the near absence of the Gaussian confinement (see e.g. [167]).

Motion in a homogenous lattice potential

Let us consider a cubic homogeneous lattice potential, i.e. Vx(r) = Vy(r) = Vz(r) = V0 in
Eq. (1.6), consisting of three independent potentials along each direction. The Hamilto-
nians corresponding to the motion in each spatial direction can be treated separately. For
simplicity we will consider here a lattice potential along the x-direction, and the Hamilto-
nian is given by:

Ĥ0x =
Z

d x  ̂†(x)
✓
� ~h

2

2M
@ 2

@x2
+ Vlat(x)

◆
 ̂(x) (A.13)
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where  ̂†(x) ( ̂(x)) is the field operator that creates (annihilates) a particle at position x .
The motion in a combined sinusoidal and harmonic potential which results from crossing
Gaussian lattice beams (see Fig. A.2) is briefly discussed in Appendix B.

For a particle moving in a potential with a discrete translational symmetry, the Bloch
theorem ensures the possibility of constructing a set of wave functions which are the
analogues of plane waves in free space, denominated Bloch states. The energies of Bloch
states are grouped in bands separated by band gaps, whose width and separation depend
on the lattice depth [117, 118]. Bloch states  (`)q (x) are labeled by their quasimomentum
q (restricted to the first Brillouin zone, i.e. �k < q  k) and band-index `. A plot of the
Bloch energy bands in one dimension is shown in Fig. A.3, where the width of each band
and the gaps between different bands are given as a function of the lattice depth.

As explained in Chapter 5, the bandwidth of the lowest Bloch band and the gap to the
first excited band are important in the context of the excitation to the metastable state in
an optical lattice. When the clock excitation laser is propagating along the direction of one
of the lattice axes, only the corresponding one-dimensional lattice structure is relevant. As
quasimomentum is conserved in the directions orthogonal to the clock laser wave vector
(it is completely conserved in the Lamb-Dicke regime), only the lattice structure in the
wave vector direction counts.

In the Bloch-wave basis, the one-dimensional Hamiltonian takes a diagonal form, and
one can write:

Ĥ0x =
X

q `

E`(q)  ̂(`)†q  ̂(`)q (A.14)

where the Bloch states annihilation and creation operators are defined by

 ̂(`)q =
Z

d x  ̂(x) (`)q (x) (A.15)

and E`(q) is the dispersion relation of the `-th Bloch band. We refrained here from working
out the details of the derivation, that can be readily found in the existing literature (e.g.
[117, 118]) and in several doctoral thesis.

As in free space maximally localised wave functions can be constructed by Fourier-
transform of plane waves, the same procedure can be followed in the presence of the
lattice: a basis of maximally localised wave functions within a certain energy band, called
Wannier functions, can be constructed by Fourier-transform of Bloch waves. The Wannier
function localised around the position x j of the j-th lattice site can be obtained as [118]:

w` j(x)⌘ w`(x � x j) =
1p
L

X

q
e�iqx j  (`)q (x j) (A.16)

where L is the number of lattice sites1,2. Wannier functions are as localised as possible
around the individual lattice sites position and are a suitable orthonormal basis to treat

1Bloch waves are defined up to an overall phase; however Wannier functions clearly depend on the choice
of the phase for each quasimomentum q in the sum. In one dimension, it is known that a certain choice of
the phases leads to exponentially localised Wannier functions [342].

2Here, we implicitly assumed a system with a finite number of lattice site and quasimomenta; for an
infinite system, the sum turns into an integral.
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Figure A.3 – Bloch band energies as a function of the lattice potential depth in one dimension. In dimensions
D > 1, different energy bands overlap at small lattice depth and band gaps open up only at a finite depth.
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local effects such as contact interactions in a lattice. Plots of of the probability distribu-
tions of lowest and first excited Wannier states as a function of position in the lattice are
displayed in Fig. A.4. In the Wannier basis, the kinetic energy of the particles is asso-
ciated with the tunnelling process of a particle from one Wannier state to another. The
tunnelling amplitude between two Wannier states is described by the Hamiltonian matrix
element between the two states. We can expand the field operators in Eq. (A.13) in terms
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of Wannier state operators:

 ̂(x) =
X

j

w` j(x) ĉ` j (A.17)

where ĉ†
` j creates an atom in the Wannier function w` j(x). The Hamiltonian in Eq. (A.13)

can then be written in the Wannier basis:

Ĥ0x = �
X

`

X

i j

J`i j ĉ†
`i ĉ` j (A.18)

The tunnel coupling J`i j between the i-th and the j-th lattice sites in the `-th band is given
by:

J`i j =
Z

d x w⇤`i(x)
✓
� ~h

2

2M
@ 2

@x2
+ Vlat(x)

◆
w` j(x) (A.19)

We note here that Wannier functions in different bands along each direction can be com-
posed to give the three-dimensional Wannier functions:

w`n

(r) = w`x i(x)w`y j(y)w`z k(z) (A.20)

with n= (i, j, k), and the above discussion can thus be readily generalised to three dimen-
sions. The Hamiltonian in Eq. (A.18) is simplified in the tight-binding limit, where the
description is restricted to the lowest Bloch band (`= 1) and only the tunnelling between
neighbouring lattice sites hi, ji is retained:

Ĥ0x = �J
X

hi, ji
ĉ†

i ĉ j (A.21)

where ĉ†
j creates an atom in the Wannier function wj(x)⌘ w1 j(x).

In the tight binding regime, the dispersion relation of the first energy band takes a
simple cosinusoidal form: E(q) = 2J cos(qd), where d = ⇡/k is the lattice period [14].
The bandwidth can therefore be expressed with respect to J: �E = 4J (12J in a cubic
three-dimensional lattice). For any given quasimomentum q, the dispersion relation can
be locally approximated to a parabolic one. In this way one can define an effective mass
M⇤, which helps describing the single-particle dynamics:

1
M⇤
=

1
~h2
@ 2

@q2
E(q) (A.22)



APPENDIX B

Fundamentals of trapped Fermi gases

Thermodynamic quantities

Fermionic atoms, i.e. atoms with an uneven number of neutrons, in the absence of interac-
tions exhibit an ideal Fermi gas behaviour. The occupation of a single-particle eigenstate
of the Hamiltonian with energy E at an equilibrium temperature T is described by the
Fermi-Dirac distribution:

F(E) =
1

e
E�µ
kB T + 1

(B.1)

where kB is the Boltzmann constant and µ is the chemical potential of the gas, fixed by the
atom number N (see below). We have assumed here that a single component, e.g. spin
state, is present in the gas, but all formulas can be generalised to s-component fermions by
accounting for multiple state occupation with a factor s in front of F(E). The Fermi energy
is defined as the chemical potential at zero temperature, EF = µ(T = 0). The Fermi wave
number is kF =

p
2 M EF/~h and the Fermi temperature is TF = EF �E0/kB, where E0 is the

energy of the lowest eigenstate. The fugacity z = exp( µkB T ) is often used to parametrise
the degree of quantum degeneracy of the gas: for T � TF , z ' 0 and the Fermi-Dirac
distribution approaches the Boltzmann distribution, whereas for T ⌧ TF , z ! +1 and
F(E) = ⇥(E� EF ).

For a gas in a three-dimensional (3D) harmonic trap with a potential

V3D(r) =
1
2

M
Ä
!2

x x2 +!2
y y2 +!2

z z2
ä

(B.2)

the density of states at energy E equals

g3D(E) =
E2

2~h3!̄3
(B.3)

where !̄ = (!x !y!z)1/3 is the mean trap frequency. The Fermi energy in a the harmonic
trap can be obtained by fixing the atom number N :

N =
Z 1

0
dE g(E) F(E) =

T=0

Z 1

0
dE g(E)⇥(E� EF ) (B.4)

and setting g(E) = g3D(E) the Fermi energy equals then EF = ~h!̄ (6N)1/3.
Using the Fermi-Dirac distribution F(E) and the density of states g(E), several thermo-

dynamic quantities X (N , T ) can be readily obtained analytically by performing integrals
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Figure B.1 – Thermodynamic quantities of a spin-polarised (non-interacting) Fermi gas confined in a 2D or 3D
harmonic trap, as a function of temperature. (a) Chemical potential. (b) Mean energy per particle. (c) Mean
entropy per particle.

with the form:

X (N , T ) =
Z 1

0
dECE⌘F(E) = �C (kB T )1+⌘ � (1+⌘)Li1+⌘

�
� z(N , T )

�
(B.5)

where Lin(x) are the polylogarithmic function of order n and � (n) is the Euler gamma
function. In order to compute the quantities X , the fugacity z(N , T ) can be obtained by
inverting the following relation numerically:

N =
Z 1

0
dE g3D(E) F(E) = �

k3
B T3 Li3(�z)

~h3!̄3
(B.6)

The chemical potential is then:

µ(N , T ) = kB T log
�
z(N , T )

�
'

T!0
EF

✓
1� ⇡

2

3
T2

T2
F

◆
(B.7)

where the low-temperature limit is obtained through a Sommerfeld expansion of the inte-
gral. Using Eq. (B.5), the total energy E in a 3D harmonic trap can be obtained:

E(N , T ) = �
3k4

B T4 Li4(�z)

~h3!̄3
'

T!0

3
4

N EF

✓
1+

2⇡2

3
T2

T2
F

◆
(B.8)

Using the previous results, the total entropy can be obtained as well [215]:

S(N , T ) =
E �µN

kB T
+
Z 1

0
dE g3D(E) log

Å
1+ z exp

Å
� E

kB T

ãã
(B.9)

Such quantities can also be computed for a 2D harmonic trap by simply replacing the 3D
trap potential and the density of states with their 2D analogues:

V2D(r) =
1
2

M
Ä
!2

x x2 +!2
y y2

ä

g2D(E) =
E

~h2!̄2

(B.10)

Plots of µ, E and S as a function of T in a two- and three-dimensional harmonic trap are
displayed in Fig. B.1.
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Density and momentum distribution

The real space and momentum distribution of an ideal Fermi gas in a harmonic trap can
be obtained exactly by summing over all eigenstate wave functions weighted by the Fermi-
Dirac distribution. However, a semi-classical approximation, usually termed Thomas-
Fermi approximation or local-density approximation (LDA), is typically used, as it is quite
accurate in the limit of large atom number N where many single-particle states are occu-
pied [19, 343]. The number density in phase space is given in LDA by:

f (r,p) =
1

(2⇡)3
1

e
1

kB T (
p2
2M +Vtrap(r)�µ) + 1

(B.11)

The Thomas-Fermi density and momentum distributions are then obtained by integration
in momentum space and position space, respectively [343]:

n(r) =
Z

dp f (r,p)

ñ(p) =
Z

dr f (r,p)
(B.12)

In a 3D harmonic trap one obtains:

n(r) = �
Å

M kB T
2⇡~h2

ã3/2

Li3/2
Å
�z exp

Å
�V3D(r)

kB T

ãã

ñ(p) = �
Å

kB T
2⇡M ~h2 !̄2

ã3/2

Li3/2

✓
�z exp

✓
� p2

2 M kB T

◆◆ (B.13)

whereas in 2D:

n(r) =
M kB T
2⇡~h2 log

Å
1+ z exp

Å
�V2D(r)

kB T

ãã

ñ(p) =
kB T

2⇡M ~h2 !̄2
log

✓
1+ z exp

✓
� p2

2 M kB T

◆◆ (B.14)

We note here that the Thomas-Fermi momentum distribution of an ideal Fermi gas is
isotropic, leading to a correspondingly isotropic expansion when the gas is released from
a harmonic trap. The column-integrated 3D Thomas-Fermi momentum distribution is
used to fit the column density in time-of-flight absorption images, in order to determine
the fugacity z of the experimental samples. The associated T/TF is obtained through the
relation in Eq. (B.6): T/TF = (�6Li3(�z))�1/3.

Interactions

All results given so far hold for non-interacting Fermi gases. However, in the absence of a
Feshbach resonance to tune the scattering length to zero, the density and momentum dis-
tributions and the thermodynamic quantities of our (multi-spin) experimental samples are
always affected by interactions. The relevance of the interactions is determined by the di-
mensionless interaction parameter kF a [19]. For ground state 173Yb atoms, the scattering
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length is a ' 195 a0, and for typical trapping frequencies in our setup after the evapora-
tion (see Section 2.2.4) and N ⇠ 105, the interaction parameter is rather small: kF a ' 0.1.
For weak repulsive interactions kF a ⌧ 1, a zero-temperature first-order perturbative ex-
pansion in kF a using a contact potential yields a correction to the energy per particle
of approximately 0.3 kF a [19], which is thus fairly small in our experimental conditions.
Moreover, the momentum and density distributions are expected to be very similar to
the semi-classical ones [344]. In general, interacting fermions are described by Landau’s
Fermi-liquid theory [80, 155], as long as no symmetry-breaking phase transition occurs
under the influence of interactions. Within Fermi-liquid theory, the low-energy excitation
spectrum of the interacting gas is in one-to-one correspondence with the spectrum of an
ideal Fermi gas. Although collective modes appear due to interactions, distribution func-
tions and thermodynamic quantities retain a similar shape, since the density of states and
the state occupation distribution have the same form as for the ideal Fermi gas [80, 155].

Adiabatic loading from a harmonic dipole trap into a 1D lattice

In order to estimate the density of the 2D gases trapped in each of the vertical optical
lattice sites after the adiabatic loading from a harmonic trap (see Section 6.2), we use a
model which assumes conservation of total entropy and thermal equilibrium during the
transfer. The spatial profile of the Fermi gas in the dipole trap before the loading into
the lattice is modelled by the Thomas-Fermi density distribution in Eq. (B.13). After the
transfer, the vertical degree of freedom is effectively frozen out by the lattice potential.
The sum of entropies and atom numbers of the 2D gases in the vertical lattice are fitted
to give the total entropy S0 and atom number N0 in the dipole trap, with the chemical
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Figure B.2 – Adiabatic transfer of a Fermi gas from the dipole trap into the vertical lattice potential. (a) x -y
integrated density profile n
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along the lattice direction, calculated for N = 2 ⇥ 104 atoms per spin state and
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(before the transfer). The blue bars show the reduced temperature in each vertical lattice site
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dipole trap before the transfer. (b) Number of vertical lattice sites (planes) populated by more than 5% of the
atom number N as a function of N (per spin state). The temperature in the dipole trap is set to T = 0.2T
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potential µ0 and the temperature T as free parameters:
(

S0 =
P

j S2D
j (µ j , T )

N0 =
P

j N2D
j (µ j , T )

(B.15)

where µ j = µ0 � 1
2 M!2

z z2
j is the local chemical potential, !z is the dipole trap vertical

frequency at the moment of the transfer and zj is the z-coordinate of the centre of the j-th
vertical lattice site. The density profile in each lattice site is modelled as a 2D Thomas-
Fermi density distribution in the horizontal plane (see Eq. (B.14)) and as the approxi-
mately Gaussian vibrational ground state in the lattice direction z:

nj(x , y , z) = s
MkB T
2⇡~h2 log

Å
1+ exp

Å µ j

kB T

ã
exp

Å
� M
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⇥
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⇡~h

ã1/2

exp
Å
�

M!z,lat

~h
�
z � zj

�2
ã

(B.16)

where s is the number of spin components and!µ,lat are the trap frequencies in the vertical
lattice. By inserting the measured trap frequencies in the dipole trap and in a vertical
lattice depth Vz = 50 Er , we determine in-plane mean densities between 4·1013 and 8·1013

atoms/cm3, corresponding to mean in-plane Fermi energies between EF = h · 2.1kHz and
EF = h · 3.7kHz. The atom distribution among different planes as a function of the total
atom number N is displayed in Fig. B.2. The gas temperature in the dipole trap does not
significantly affect the number of occupied planes and only produces sizeable difference
on the edges of the final density distribution.

Motion in a combined harmonic and lattice potential

It was shown in Chapter 1 how local interactions in a lattice can be conveniently repre-
sented in the Wannier basis, and for sufficiently deep lattices the tight-binding approx-
imation simplifies the Hamiltonian to the single-band Hubbard model in Eq. 1.34. The
Wannier basis is also well-suited to treat the case of a lattice potential with an underly-
ing confinement potential, and we will discuss here the case of harmonic confinement.
The harmonic potential (usually resulting from the Gaussian intensity profile of the lat-
tice beams as explained above) breaks the translational symmetry of the periodic lattice
potential. However, the spatial variation of the lattice depth is typically very small for the
atomic cloud sizes R < 50� used in experiments. Neglecting this variation, the tunnelling
coupling is assumed homogenous and equal to J for any pair of neighbouring lattice sites.
The tight-binding Hamiltonian for the motion in a one-dimensional combined potential is
given by:

H0 = �J
X

hi, ji
ĉ†

i ĉ j +
X

i

⌦i n̂i (B.17)

where ⌦i =
1
2 M!2

c d2 i2, with d = �/2 being the lattice spacing, and the trap centre is
located at i = 0. The lowest eigenstates of this Hamiltonian are well approximated by
harmonic oscillator eigenstates, and the effect of the lattice potential can be included by
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replacing the mass M with the effective mass M⇤ (see Eq. (A.22)). However, the situa-
tion is completely different in proximity of the band edge. The level of the band edge is
position dependent, due to the onsite offset energies ⌦i, and is therefore reached first in
the centre of the trap; the energy bands are effectively curved by the harmonic confine-
ment (see Fig. B.3). Eigenstates with an energy above the central band edge are therefore
spatially confined to the sides of the trap, because of Bragg reflection at the upper band
edge. In contrast to the case of a translationally invariant potential, where localisation
can only be induced by interactions or disorder, atoms in a combined potential become
localised on lattice sites k for which the harmonic energy offset exceeds the tunnel cou-
pling ⌦k �⌦k�1 > J . The number of localised atoms increases both with the lattice depth
and with the strength of the confinement. In the extreme regime of very deep lattices,
with an effectively flat dispersion relation, all eigenstates are completely localised. The
experimental consequences of this lattice-induced localisation mechanism in a harmonic
trap for fermionic atoms have been the object of several studies [92, 215–217, 291, 292].
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Figure B.3 – Illustration of the energy bands as a function of position for a combined harmonic and sinusoidal
potential. The lattice energy bands are curved by the harmonic confinement, leading to a position-dependent
filling factor for fermionic atoms.

As the variation of the confinement potential is very small on a lattice spacing scale,
the system can be still regarded as locally homogenous. However, the filling factor of the
energy bands becomes position-dependent, decreasing towards the trap edges as sketched
in Fig. B.3. In the tight-biding limit, the fermion density and the momentum distribution
can be expressed in terms of characteristic lengths ⇣µ in each direction, defined through
J = 1

2 M!2
µ⇣

2
µ, such that the filling factor for a given atom number N exclusively depends

on ⇣x ⇣y ⇣z [292]. The filling factor can thus be varied by tuning the atom number N , the
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tunnel coupling J and the trap frequencies!µ. When fermions interact in such a combined
potential, different phases can coexist in the trap due to the radially varying filling factor
[31]. Moreover, thermodynamical quantities are different from both their analogues in a
homogenous lattice or in a purely harmonic potential [215, 216].
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APPENDIX C

Clock laser stability

Short-term laser stability

The clock laser short-term stability could only be characterised by direct precision spec-
troscopy on cold atomic samples, since laser sources of similar stability were not available
for heterodyne detection. As already mentioned in Section 3.4 and 5.1, an (infrared) laser
frequency stability of around 20 Hz could be achieved over a time scale of several min-
utes, most likely not limited by the rigidity of the PDH phase lock but rather by short-term
fluctuations of the ULE resonator and of the lock error signal offset, due for instance to
light power fluctuations in the lock branch or etaloning. We can evaluate the performance
of the lock by analysing the suppression of externally generated perturbations fed into
the closed-loop circuit. Such a measurement is shown in Fig. C.1 and can be used to
optimise the gain and the corner frequencies of the different integrator stages of the fast
PID controller (Toptica FALC 110), used to regulate the laser frequency. For the measure-
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Figure C.1 – Closed-loop frequency noise suppression of the PDH lock to the ULE resonator. The measure-
ment is performed using a network analyser, which injects a small disturbance in the closed loop through a
power splitter, and analyses the response of the system in the PDH error signal. A region with large noise
suppression extends to approximately 30 kHz, where the noise starts growing to reach the closed-loop pole
located for this measurement at approximately 600 KHz. This frequency corresponds to the location of the
phase roll-off of the closed-loop transfer function.
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ment shown here, a servo bandwidth of above 600 kHz is realised; servo bandwidths as
high as 1.1 MHz can be achieved by adjusting the PID fast integrator corner frequency,
but a reduced noise suppression is obtained for such high-bandwidth settings. We instead
optimised the settings of the feedback loop only to achieve the highest possible noise sup-
pression below 100 kHz, which is the most relevant part of the spectrum affecting the laser
linewidth [299].

Fiber-noise cancellation

An additional source of frequency noise are the mechanical and thermal disturbances
which couple to the laser in the optical fiber, guiding the light from the laser optical table
to the experiment one. A beat note measurement between two light beams following dif-
ferent paths, one of which includes a double passage in the 100 MHz AOM (see Fig. 3.14)
and a back-and-forth passage in the optical fiber, is measured by a fast photodiode; the
noise spectrum of the beat signal can therefore be analysed, as shown in Fig. C.3. A stable
RF source (Abracon AOCJY-A-100MHz-SW OCXO with 1 Hz stability) is used to drive the
AOM, preventing long term drifts. In addition, the beat signal may be locked to the stable
RF source at double the AOM frequency, in order to narrow its linewidth by cancelling
the fiber-induced noise. This is done by means of a phase-locked loop (PLL) and a PI
controller; the spectrum of stabilised beat signal, shown in Fig. C.3, is clearly narrower.
However, both the free-running and the locked beat signals FWHM are below the 10 Hz
resolution of our spectrum analyser. One complication arises considering that the PLL
error signal is generated only when the AOM is already powered, deflecting the light on
the beam path aligned to the fiber input. The regulation has therefore a lag time before
the lock point is found by the PI controller, but the use of a very high proportional gain
guarantees a sufficiently quick engagement of the regulation. As the phase lock is properly
functioning, it is highly likely that the actual stabilised beat linewidth is at the 1 Hz stabil-
ity level of the RF source. With the 20 Hz laser stability currently achieved, unfortunately
the noise canceller cannot be fully exploited but it could become a necessary resource if
lower laser linewidths are achieved in the future.

100 MHz stabilized
AOM

Faraday
rotator

BS
PLL

~
OCXO

100 MHz

× 2

PI90 µW

0...15 mW

VCO

From SHG cavity

Atoms
BS

Figure C.2 – A schematic of the fiber-noise canceller. The frequency noise introduced in the optical fiber is
detected through the beat note at twice the AOM frequency. The beat signal is stabilised to an 100 MHz OCXO
source by means of a PLL circuit and a PI controller regulating a VCO with high modulation bandwidth, which
drives then the AOM.
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Figure C.3 – Beat signal between the two laser beam paths in the fiber-noise cancellation system. The
measurement of the unstabilised beat signal (blue) FWHM is limited by the spectrum analyser resolution (the
minimum resolution bandwidth of 10 Hz and a 40 s sweep time are used). A rather broad noise pedestal is
however clearly present, extending over 1 kHz in each direction. The stabilised beat signal (red) is evidently
narrower, but the dominant low-frequency noise could not be observed using the provided spectrum analyser.
For both signals, the FWHM is smaller than 10 Hz and the fiber noise does therefore currently not limit the
attainable short-term frequency stability of the clock light.

Long-term laser stability

The long-term stability of the clock laser frequency is dominated by ULE cavity drifts and
possibly by PDH error signal drifts. Let us start by discussing possible sources of error
signal drifts. Residual amplitude modulation (AM) by the fiber-coupled EOM, generating
the PDH sidebands, is affecting the error signal offset and is caused by imperfect polar-
isation alignment to the EOM crystal axis [297]. It is well-known that birefringence in
the crystal varies with temperature, and residual AM can therefore cause a temperature-
dependent error signal offset fluctuation. For this reason, the EOM temperature is actively
stabilised to 0.1�C, maintaining the residual AM as constant as possible over time. Other
sources of unwanted PDH error signal offsets can be present, e.g. amplifiers introducing
DC offsets or non-linearities in the feedback loop but they should be negligible compared
to other effects. Etaloning between optical elements in the beam path to the ULE res-
onator can also cause error signal drifts, and could be minimised by replacing the PBS and
quarter-wave plate arrangement with a Faraday isolator (see Fig. 3.16). Slow drifts of the
resonator length are already stabilised to a high level, with uncontrolled drifts being on
the order of only 100 Hz over a day scale. The drift of our cavity is regularly inspected
by taking reference spectroscopic measurements. Such measurements are executed using
very low-atom number samples of spin-polarised 173Yb, minimising the effect of interac-
tions and residual light shifts in the optical trap. Furthermore, two opposite spin states
are probed in an alternated fashion while an external magnetic field is applied, and the
centre between the two measured resonances is used as the zero-field transition frequency
calibration. A typical several-day drift measurement is displayed in Fig. C.4. The drift is
largely dominated by the ageing-related cavity length variation, which produces a linear
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Figure C.4 – Linear drift of the ULE cavity frequency. Since the measured clock atomic resonance shifts
linearly up in time, we can conclude that the cavity resonance is drifting up in frequency space, i.e. the
resonator is shortening over time. The measured drift rate is +80 mHz/s, corresponding to approximately
2.5 Hz during a full experimental cycle.

and positive cavity frequency shift. This drift rate is constant at approximately 40 mHz/s
over several-month scale, although seldom variations on the order of 10% were observed.
Any shift of the infrared laser frequency doubles its value when observed as an atomic
transition shift, probed by the frequency-doubled light, and we thus observe a resonance
shift of approximately 80 mHz/s or 7.1 kHz/day. As the shift accumulated during a single
experimental cycle equals roughly 2.5 Hz, it is very important to compensate it in order
not to overestimate or underestimate the absorption lines position and widths. We do this
by updating the frequency offset between our clock laser and the cavity reference during
each experimental cycle, just before the spectroscopy pulse is applied. This offset is gener-
ated by the fiber-coupled EOM used for the PDH lock (see Fig. 3.11) and can be remotely
controlled through the digital interface of a RF signal generator.

In order to suppress all other thermal and mechanical shifts of the ULE resonator
length, the system is thoroughly isolated from the environment. Most importantly, the
zero-crossing temperature of the linear thermal expansion coefficient (CTE) was experi-
mentally determined by clock transition spectroscopy. Several measurements were per-
formed at different resonator temperatures, letting the cavity settle during a certain equi-
libration time (typically a few days) after any regulation temperature change. The results
are shown in Fig. C.5: the zero-crossing point of the CTE is found at T0 = 26.3(1)�C, and
a very low residual temperature sensitivity at the minimum is fitted

�⌫(T )
⌫
'= �4⇥ 10�10 (T � T0)2 K�2. (C.1)
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Figure C.5 – Characterization of the ULE cavity thermal expansion. The zero-linear expansion temperature
T0 = 26.3(1)�C is found by spectroscopic characterisation of the thermal frequency shifts. (a) A plot of the
measured steady-state frequency shifts at different resonator temperatures. A very low residual temperature
sensitivity �⌫(T )/⌫ around the zero-crossing temperature of the CTE was measured. (b) Direct estimation
of the linear CTE dependence upon temperature. Data points represent the measured frequency shift slopes
across several applied temperature steps. A linear fit to the measured frequency sensitivity is used as an
alternative way to determine the zero-crossing of the linear CTE.

To give an idea of the realistic frequency stability of the resonator, the CTE equals 2 Hz/mK
if the cavity is tuned 0.01�C away from T0 and 25 Hz/mK if it is tuned 0.1�C away from T0,
which is fairly good in comparison to similar cavities [297]. We can therefore explain the
observed 100 Hz absolute long-term stability, given the 5 mK resolution of our temperature
controller. A higher-precision controller could improve the long-term stability, although
environment temperature fluctuations might then become the dominant cause of slow
drifts. In this case, temperature stabilisation of the entire ULE setup enclosure would be
beneficial.



196 Appendix C. Clock laser stability



Bibliography

[1] H. K. Onnes. Nobel Lecture: Investigations into the Properties of Substances at Low
Temperatures, which Have Led, amongst Other Things, to the Preparation of Liquid
Helium (1913). See page: 1

[2] J. Bardeen, L. Cooper, and J. Schrieffer. Theory of Superconductivity. Phys. Rev.
108, 1175–1204 (1957). See page: 1

[3] A. Damascelli, Z. Hussain, and Z.-X. Shen. Angle-resolved photoemission studies of
the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003). See page: 1

[4] P. Lee, N. Nagaosa, and X.-G. Wen. Doping a Mott insulator: Physics of high-
temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006). See page: 1

[5] J. Hubbard. Electron Correlations in Narrow Energy Bands. Proc. R. Soc. A 276,
238–257 (1963). See page: 1

[6] C. Beenakker. Search for Majorana Fermions in Superconductors. Ann. Rev. Cond.
Mat. Phys. 4, 113–136 (2013). See page: 1

[7] A. Stern. Anyons and the quantum Hall effect - A pedagogical review. Ann. Phys.
323, 204–249 (2008). See page: 1

[8] R. P. Feynman. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488
(1982). See page: 2

[9] I. Buluta and F. Nori. Quantum Simulators. Science 326, 108–111 (2009). See
page: 2

[10] A. Aspuru-Guzik and P. Walther. Photonic quantum simulators. Nature Phys. 8,
285–291 (2012).

[11] R. Blatt and C. F. Roos. Quantum simulations with trapped ions. Nature Phys. 8,
277–284 (2012).

[12] I. Bloch, J. Dalibard, and S. Nascimbène. Quantum simulations with ultracold quan-
tum gases. Nature Phys. 8, 267–276 (2012). See pages: 2, 34

[13] A. A. Houck, H. E. Tureci, and J. Koch. On-chip quantum simulation with supercon-
ducting circuits. Nature Phys. 8, 292–299 (2012). See page: 2

[14] I. Bloch, J. Dalibard, and W. Zwerger. Many-body physics with ultracold gases. Rev.
Mod. Phys. 80, 885–964 (2008). See pages: 2, 3, 14, 17, 108, 109, 182

http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/RevModPhys.75.473
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2007.10.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2007.10.008
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1126/science.1177838
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885


198 BIBLIOGRAPHY

[15] H. J. Metcalf and P. Van der Straten. Laser cooling and trapping. Springer, New York
(1999). See pages: 2, 61, 176

[16] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell.
Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science 269,
198–201 (1995). See page: 2

[17] K. Davis, M. Mewes, M. Andrews, N. van Druten, D. Durfee, D. Kurn, and W. Ket-
terle. Bose-Einstein Condensation in a Gas of Sodium Atoms. Phys. Rev. Lett. 75,
3969–3973 (1995). See page: 2

[18] B. DeMarco and D. S. Jin. Onset of Fermi Degeneracy in a Trapped Atomic Gas.
Science 285, 1703–1706 (1999). See page: 2

[19] S. Giorgini, L. P. Pitaevskii, and S. Stringari. Theory of ultracold atomic Fermi gases.
Rev. Mod. Phys. 80, 1215–1274 (2008). See pages: 3, 73, 74, 185, 186

[20] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga. Feshbach resonances in ultracold
gases. Rev. Mod. Phys. 82, 1225–1286 (2010). See pages: 3, 20, 21, 24, 26, 158

[21] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. Cold Bosonic Atoms
in Optical Lattices. Phys. Rev. Lett. 81, 3108–3111 (1998). See pages: 3, 17

[22] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch. Quantum phase
transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature
415, 39–44 (2002). See pages: 3, 76

[23] M. Greiner and S. Fölling. Condensed-matter physics: Optical lattices. Nature 453,
736–738 (2008). See pages: 3, 14, 15

[24] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov,
T. W. Hänsch, and I. Bloch. Tonks-Girardeau gas of ultracold atoms in an optical
lattice. Nature 429, 277–281 (2004). See pages: 3, 15, 151

[25] T. Kinoshita, T. Wenger, and D. S. Weiss. Observation of a One-Dimensional Tonks-
Girardeau Gas. Science 305, 1125–1128 (2004). See page: 3

[26] S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and
I. Bloch. Direct observation of second-order atom tunnelling. Nature 448, 1029–
1032 (2007). See page: 3

[27] S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger, A. M. Rey,
A. Polkovnikov, E. A. Demler, M. D. Lukin, and I. Bloch. Time-Resolved Observation
and Control of Superexchange Interactions with Ultracold Atoms in Optical Lattices.
Science 319, 295–299 (2008). See pages: 42, 43

[28] D. Greif, T. Uehlinger, G. Jotzu, L. Tarruell, and T. Esslinger. Short-Range Quantum
Magnetism of Ultracold Fermions in an Optical Lattice. Science 340, 1307–1310
(2013). See pages: 3, 42

http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1103/PhysRevLett.75.3969
http://dx.doi.org/10.1103/PhysRevLett.75.3969
http://dx.doi.org/10.1126/science.285.5434.1703
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1126/science.1150841
http://dx.doi.org/10.1126/science.1236362
http://dx.doi.org/10.1126/science.1236362


BIBLIOGRAPHY 199

[29] J. K. Chin, D. E. Miller, Y. Liu, C. Stan, W. Setiawan, C. Sanner, K. Xu, and W. Ket-
terle. Evidence for superfluidity of ultracold fermions in an optical lattice. Nature
443, 961–964 (2006). See page: 3

[30] M. Köhl, H. Moritz, T. Stöferle, K. Günter, and T. Esslinger. Fermionic Atoms in a
Three Dimensional Optical Lattice: Observing Fermi Surfaces, Dynamics, and Interac-
tions. Phys. Rev. Lett. 94, 080403 (2005). See pages: 3, 42, 43, 109

[31] U. Schneider, L. Hackermüller, S. Will, T. Best, I. Bloch, T. A. Costi, R. W. Helmes,
D. Rasch, and A. Rosch. Metallic and Insulating Phases of Repulsively Interacting
Fermions in a 3D Optical Lattice. Science 322, 1520–1525 (2008). See pages: 3,
41, 42, 43, 44, 77, 189

[32] R. Jördens, N. Strohmaier, K. Günter, H. Moritz, and T. Esslinger. A Mott insulator
of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008). See page: 3

[33] C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K. Bongs, and K. Sengstock.
Ultracold quantum gases in triangular optical lattices. New J. Phys. 12, 065025
(2010). See pages: 3, 16

[34] P. Soltan-Panahi, J. Struck, P. Hauke, A. Bick, W. Plenkers, G. Meineke, C. Becker,
P. Windpassinger, M. Lewenstein, and K. Sengstock. Multi-component quantum
gases in spin-dependent hexagonal lattices. Nature Phys. 7, 434–440 (2011).

[35] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger. Creating, moving and
merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 483,
302–305 (2012). See page: 16

[36] G.-B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and D. M. Stamper-
Kurn. Ultracold Atoms in a Tunable Optical Kagome Lattice. Phys. Rev. Lett. 108,
045305 (2012). See pages: 3, 16

[37] S. Fölling, F. Gerbier, A. Widera, O. Mandel, T. Gericke, and I. Bloch. Spatial quan-
tum noise interferometry in expanding ultracold atom clouds. Nature 434, 481–484
(2005). See pages: 3, 43

[38] T. Rom, T. Best, D. van Oosten, U. Schneider, S. Fölling, B. Paredes, and I. Bloch.
Free fermion antibunching in a degenerate atomic Fermi gas released from an optical
lattice. Nature 444, 733–736 (2006). See page: 3

[39] G. K. Campbell, J. Mun, M. Boyd, P. Medley, A. E. Leanhardt, L. G. Marcassa, D. E.
Pritchard, and W. Ketterle. Imaging the Mott Insulator Shells by Using Atomic Clock
Shifts. Science 313, 649–652 (2006). See pages: 3, 11, 43

[40] S. Fölling, A. Widera, T. Müller, F. Gerbier, and I. Bloch. Formation of Spatial Shell
Structure in the Superfluid to Mott Insulator Transition. Phys. Rev. Lett. 97, 060403
(2006). See pages: 11, 43, 153

http://dx.doi.org/10.1103/PhysRevLett.94.080403
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1103/PhysRevLett.108.045305
http://dx.doi.org/10.1103/PhysRevLett.108.045305
http://dx.doi.org/10.1126/science.1130365
http://dx.doi.org/10.1103/PhysRevLett.97.060403
http://dx.doi.org/10.1103/PhysRevLett.97.060403


200 BIBLIOGRAPHY

[41] P. T. Ernst, S. Gotze, J. S. Krauser, K. Pyka, D.-S. Luhmann, D. Pfannkuche, and
K. Sengstock. Probing superfluids in optical lattices by momentum-resolved Bragg
spectroscopy. Nature Phys. 6, 56–61 (2010). See page: 3

[42] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr. Single-
atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72
(2010). See pages: 3, 15

[43] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet, and
M. Greiner. Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom
Level. Science 329, 547–550 (2010). See pages: 3, 15

[44] C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara,
I. Bloch, and S. Kuhr. Single-spin addressing in an atomic Mott insulator. Nature
471, 319–324 (2011). See page: 3

[45] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore. Colloquium : Nonequi-
librium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–
883 (2011). See page: 3
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