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Abstract

This thesis examines the tail behaviour of the maximum M@ of a random walk with
negative drift —a. It consists of four chapters.

Chapter [I] contains an introduction to heavy tailed and subexponential distributions.
It also comprises a brief introduction to the theory of random walks and a survey of some
known results concerning the maximum of a random walk S(®).

It is known that, for fixed z, the probability P (M @ >z /a) is exponential as a — 0
(heavy traffic asymptotics) and, for (strong) subexponential distributions, P(M(® > z)
decays according the the integrated tail as x — oo for fixed a (heavy tail asymptotics).
The second Chapter presents a link between these two asymptotics. In particular, the
behaviour of the probability P(M(®) > z) is studied as a — 0 for 2 such that z — oo as
a — 0 and the regions of x for which the heavy traffic asymptotics and the heavy tail
asymptotics hold are identified. Furthermore, the distributions for which an intermediate
zone between these two limits exists are identified and the exact limit in this zone is
provided. The approach in this chapter is not based on a representation via geometric
sums, like most of the results on the behaviour of P(M(®) > z) are. Instead, martingale
arguments and inequalities are used.

Chapter [3]contains non-asymptotic results on the maximum of a random walk. Namely,
it comprises computable upper bounds for the probability P (M @ > x) for fixed a and z
in different settings of power moment existences. As it is usual for deriving upper bounds,
these upper bounds are attained by truncation of summands. The approach used for the
truncation is to split the time axis by stopping times into intervals of random but finite
length and then choose a level of truncation on each interval. Hereby one can reduce
the problem of finding upper bounds for M(® to the problem of finding upper bounds
for MT(Z) = max,<r, SV(LG), where 7, = min{n > 1 : ST(LG) < —z}, z > 0. Additionally,
the obtained inequalities are tested in the heavy traffic and heavy tail regime for regular
varying tails and it is shown that they are asymptotically precise in this case.

The fourth Chapter deals with the case of a family of A(@-latticed random walks and
provides a local version of the heavy traffic asymptotics for the probability P (M (@) =
A@g) for 2 such that 2 — 0o and axz = O(1) as a — 0. This local limit theorem follows
from a representation of P(M(®) = A@z) via a geometric sum and a uniform renewal
theorem, which is also proved in this chapter.
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Zusammenfassung

Diese Dissertation untersucht das Tail-Verhalten des Maximums M (@ einer Irrfahrt
mit negativem Drift —a. Sie besteht aus vier Kapiteln.

Kapitel [T] gibt eine kurze Einfiihrung in die Theorie von Heavy Tail und subexponen-
tiellen Verteilungen. Es enthélt auch eine Einfithrung in die Theorie von Irrfahrten und
einen Uberblick iiber einige bekannte Resultate beziiglich dem Maximum einer Irrfahrt

Sla),

Es ist bekannt, dass die Wahrscheinlichkeit P(M(® > z/a) fiir @ — 0 exponentiell in
x ist (Heavy Traffic Asymptotik). Fiir £ — oo und festes a hingegen fillt P(M(®) > z)
im Fall von (stark) subexponentiellen Zuwéchsen geméfs dem integrierten Tail ab (Heavy
Tail Asymptotik). Das zweite Kapitel verbindet diese zwei Resultate. Darin wird das
asymptotische Verhalten der Wahrscheinlichkeit P (M (@ > x) fiir a — 0 untersucht, falls
x S0 ist, dass x — oo fiir a — 0. Des Weiteren werden die Regionen von x identifiziert,
fiir welche die Heavy Traffic Asymptotik bzw. die Heavy Tail Asymptotik gelten. Dar-
iiber hinaus wird hergeleitet, fiir welche Verteilungen eine weitere Region existiert, in
der weder die Heavy Traffic Asymptotik noch die Heavy Tail Asymptotik gilt und der
exakte Grenzwert in dieser Region wird aufgezeigt. Der Ansatz in diesem Kapitel ba-
siert nicht auf der Darstellung des Maximums durch eine geometrische Summe, wie die
meisten Resultate zum asymptotischen Verhalten von P (M (@ > x). Stattdessen werden
Martingalargumente und Ungleichungen benutzt.

Kapitel [3] enthéalt nicht-asymptotische Resultate beziiglich des Maximums einer Irr-
fahrt. Es beinhaltet konkrete obere Schranken fiir die Wahrscheinlichkeit P(M(®) > z)
fiir fixe @ und x unter verschiedenen Momentannahmen. Diese obere Schranken wer-
den durch Abschneiden von Summanden hergeleitet. Genauer wird die Zeitachse mittel
Stopp- zeiten in Intervalle von zufélliger aber endlicher Lénge zerlegt und dann auf jedem
Intervall ein Abschneidungsniveau gewéhlt. Dadurch kann man aus oberen Schranken fiir
MT(Z“) = max,<,, Sp, wobel 7, = min{n > 1: Sy(La) < —z}, z > 0, auch obere Schranken
fiir M@ herleiten. Zusétzlich werden die hergeleiteten Ungleichungen im Fall von regulir
variierenden Verteilungen in den Heavy Traffic und Heavy Tail Regionen getestet und es
wird gezeigt, dass diese dort asymptotisch prézise sind.

Das vierte Kapitel beschéftigt sich mit dem Fall von Irrfahrten auf einem Gitter mit
Gitterabstand A(®. Es wird eine lokale Version der Heavy Traffic Asymptotik fiir die
Wahrscheinlichkeit P(M(® = A(®)z) bewiesen, falls z so ist, dass  — oo und az = O(1)
fiir a — 0. Diese Asymptotik folgt aus einer Darstellung von P(M(® = Al®)z) mittels
einer geometrischen Summe und einem uniformen Erneuerungstheorem, welches auch
bewiesen wird.
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Preface

This thesis consists of an introduction and four closely related chapters which deal
with the study of the asymptotic and non-asymptotic behaviour of the maximum of a
random walk.

Chapter [T] serves as a joint introduction to the chapters[2]- @] In Chapter [2| the asym-
ptotical tail behaviour of the maximum of a random walk is fully described, Chapter
presents various upper bounds for the tail of the maximum and Chapter [d] comprises a
local limit theorem for the maximum of a random walk.
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Introduction

The total maximum M of a random walk S® with drift —a plays a crucial role
in a number of applications. For example, its distribution coincides with the stationary
distribution of the queue-length in a G/G/1 queue. Another important application comes

from insurance mathematics: Under some special restrictions on the increments Xl-(a) the
quantity P(M @ > x) is equal to the ruin probability in the so-called renewal arrivals
model.

The asymptotic tail behaviour of the maximum of a random walk has been studied
extensively in the literature. The first result goes back to Cramér and Lundberg (see, for
example, Asmussen [3]). They considered light-tailed increments Xi(a) with fixed a > 0

h()XYl)]

and showed that if the so-called Cramér condition E[e = 1 is fulfilled for some

ho > 0 and E[Xfa)ehox§a)] < 00, then there exists a constant ¢y € (0,1) such that
P(M@ > z) ~ coe ™" as 2 — oo. (0.1)

If the Cramér condition is not fulfilled, that means the distribution F' of the increments
X (@) ig heavy tailed, the most classical result for the asymptotics of M(® is due to
Veraverbeke [48] (see also Embrechts et al. [21]): Denote by F'(+) the distribution function
of Xl(a) and let F(-) =1 — F(-). Suppose the integrated tail F]() = min{1, [ F(u)du}
is subexponential. Then, for fixed a,

P(M©@ > ) ~ %FI(@’) as & — 00, 0.2)
The assumption of the integrated tail being subexponential is not equivalent to the
assumption that the tail distribution is subexponential, see Kliippelberg [34]. But Kliip-
pelberg [34] has shown that if F' is strong subexponential, then the integrated tail is
subexponential and it is known that strong subexponential distributions form a large
subclass of heavy tailed distributions.

Let us consider the case a — 0. For fixed a > 0 the random walk S(® drifts to —oco
and the total maximum M@ is finite almost surely. However, as a — 0, M (@) - o in
probability. From this fact arises the natural question how fast M(® grows as a — 0.
The studies on this question were initiated by Kingman [33|, who considered the case
when | X (@) | has an exponential moment, and proved that for fixed x,

P(M@ > z/a) ~ e 27" asq — 0, (0.3)

where 02 = Var(X(?)) denotes the variance of the increments in the case of zero drift.
Prohorov [45] extended this result to the case that the increments have finite variance.
Kingman and Prohorov had a motivation for examining M(® that comes from queueing
theory: As mentioned above, it is well known that the stationary distribution of the
waiting time of a customer in a single-server first-come-first-served queue coincides with
the distribution of the maximum of a corresponding random walk. In the context of
queueing theory, the limit ¢ — 0 means that the traffic load tends to 1. Thus, the



question on the distribution of M (@) may be seen as the question on the growth rate of a
stationary waiting-time distribution in a G/G/1 queue. This is one of the most important
questions in queueing theory and is usually referred to as heavy traffic analysis.

One can see that has a form similar to . Indeed, if the Cramér condition
holds, then, it is known that hg — 0 as a — 0 and in the limit becomes ,
see e.g Asmussen [2]. In the special case that the increments are normal distributed

a 22
A [th( )] e~ hath*e%/2 a1 d therefore

with expected value —a and variance o“, one has E =
immediately attains hg = 2a/0?.

Now suppose we let ¢ — 0 and © — oo simultaneously in the subexponential case. If
a — 0 much Rlower"than 2 — oo, the probability P(M (¥ > 1) should still behave like in
the integrated tail approximation . On the other hand, if ¢ — 0 much "faster"than
T — 00, the heavy traffic approximation from should still be precise. This fact raises
the interesting mathematical question what "fasteréind flower"mean in this context and
how the exponential asymptotics turns into the integrated tail asymptotics. In particular,
it is of interest whether there exists a transition point, at which the transition from
to takes place. Or, otherwise, whether there is a region in which neither the
heavy traffic nor the heavy tail asymptotics holds and what the asymptotical behaviour
of P(M(® > z) will be like in this region. As shown in this thesis, answers to these
questions depend on the distributions of the increments of the random walk.

Blanchet and Lam [7] (see also Blanchet and Glynn [6]) extended the heavy traffic
asymptotics to the case when x — oo. They have shown that if © — oo sufficiently
slow as a — 0,

P(M@ > )~ e %% asa -0, (0.4)

where 6, is the solution to the equation
E [eeax(“’;x(@ < 1/a] = 1. (0.5)

By the Taylor expansion one can see (also refer to Blanchet and Glynn [6]) that 6, allows
an expansion of the form 0, = 2a/0? 4+ Ca® + ... + Ciaf, where C;,i € 2,...,k, are
suitable constants. This expansion is valid up to the order of the moment existence of
X (@) and the constants C; can be defined using these moments.

Another remarkable result, which covers various subexponential distributions (inclu-
ding regular varying and Weibullian), is also contained in Blanchet and Lam [7]. They
have recently found a uniform, explicit representation for the probability P (M (@ > x),
which consists of the exponential term from Kingman’s asymptotics, the integrated tail
term and a convolution-type integral of a negative binomial sum.

The reason why all these results only work in the setting of an M/G/1 queue is that
their approach is based on the representation of M(®) as a geometric sum of independent
random variables:

PMW >2)=>"ql—"P(x{ +x3 - +x} >2), (0.6)

k=0
where {X;r} are independent random variables and ¢ = P(M (@) = 0). The main difficulty
in this approach is the fact that one has to know the distribution of X;r and the parameter



g. In the setting of a M/G/1 queue the value ¢ is known and it remains to find good
estimates for the probability P(x;" > ) and in the case of a M/M/1 queue both values,
q and P(X;r > ), can be calculated. However, in general one has to obtain appropriate
estimates for ¢ and P(xlJr > x). Therefore the approach via the representation as a
geometric sum may be unsuitable for general distributions of the increments (which
corresponds to the case of a G/G/1 queue).

Chapter ] of this thesis comprises a brief introduction to heavy tailed and subexponen-
tial distributions and states known results on the maximum of random walks. In Chapter
We show that for a subclass of heavy tailed distributions (which includes regular varying
and lognormal distributions) one has, uniform in z > 0,

1—
P(M@ > ) ~ e 20/ 4 EFI(x)l{x >ox(a)} asa—0, (0.7)
where z(a) denotes a value for which both terms on the right hand side of the latter rela-
tion are of the same order. For another subclass of heavy tailed distributions (including

Weibullian and semi-exponential distributions) one has, uniform in z > 0,

F'(2)1{z > z(a) — Cn(1/a)/0.}
a(l —~g(z)/(bax))?

with v € (0,1) and a large constant C. The exact value of v depends on the tail distri-
bution F(-) and the exact dependence of x and a. One has limsup,_,o g(z)/(0,7) = 0
for all x such that x > z(a) as a — 0 and liminf,_,0 g(x)/(f,x) > 0 for all x such that

x and z(a) are of the same order. To prove (0.7) and we do not use the approach
via geometric sums from , instead we use an approach which relies on martingale

methods. Appearance of martingales is due to the equation (M(“) + X(“))+ <y,
In [20], Denisov and Wachtel also used a martingale technique to reestablish for
long-tailed distributions. Another important contribution of Chapter [2f (see also Chapter
treats the case that the increments are regular varying of index r > 2. It is shown that
in this case there exists a sharp transition point

P(M@W > z) ~ el 4 asa — 0 (0.8)

_of(r=2)1. 1

zryv(a) ~ Taln = (0.9)
This means that, for values x above the critical value, the heavy tail approximation
holds and under this value the heavy traffic asymptotics is valid. Furthermore, xgy (a)
is a value for which the two terms on the right hand side of are of the same order.
This generalizes a result from Olvera-Cravioto, Blanchet and Glynn [43]|, who derived
this critical value in the setting of a M/G/1 queue. If the increments possess a Weibull
distribution, that is F(z) = e~*" with v € (0,1), one could believe that there is still a
sharp transition point. Equating the right hand sides of and , one guesses the
critical point would be

zw(a) ~

< ] >1/(1v) - 5 2/(0%)

B 1—7) 04



In [44], Olvera-Cravioto and Glynn conjectured that for Weibull type distributions there
is a third region in which neither the heavy traffic nor the integrated tail asymptotic is
valid only if 1/2 < v < 1. However, we show that this is not the case and in fact this
third region exists for a larger region, that is for all v € (0,1). This third region turns
out to be the region in which the integrated tail term is at least of the same order as the
exponential term on the right hand side of and in which z/zw (a) = O(1).

In and we fully describe the asymptotical behaviour of P(M (%) > ) asa — 0
uniform in x. However, for applications in insurance mathematics and queueing theory,
it is also of great interest to have non-asymptotical approximations for the distribution
of M@, Especially, it is important to have computable upper bounds for the probability
P(M@ > g) if a and x are fixed values and this is what Chapter 3] is about. The most
classical result in this field is the Lundberg inequality, which states that if the Cramér
condition holds for hg > 0, one has

P(M@ > z) < ¢~hor

for all fixed a,x > 0. Because of , the error in the latter inequality is only of constant
order and the Lundberg inequality is therefore quite precise.

If the Cramér condition is not fulfilled, upper bounds for P(M(® > z) have been
derived by Kalashnikov [31] and by Richards [46]. The approach in these papers is again
based on the representation of M@ as a geometric sum of independent random
variables. Our approach is different. We split the time axis into intervals of finite but
random length and choose a level of truncation on these intervals. This gives

oo

P(MW > 2) <Y P(MY > 2+ jz),

§=0
where 7, = min{k > 1: S < —z} with arbitrary 0 < z < z. This formula allows us to ob-
tain upper bounds for M(® from upper bounds for Mﬁf) In the case of finite and infinite
variance we get upper bounds for the probability P(Mg) > z) by a martingale construc-
tion and therefore by the latter formula upper bounds for the probability P(M(®) > x):
Fix some 6 € (0,1), ¢ > 0, a € (0,1) and let § = 1 — a. Define 4; := E[|X®|],
Ay = E[(X@)E x(@ > 0] > 0,

3Ai/997(t71)/9 3Ai/fg—(t—1)/9

T et BT (- 1)p/egl /e
agt—lxt—l ﬂet—laxt—l
Ps(x) = A, Py(x) = T

Assume that 4; < oo for some t € (1,2]. Then, for every a, x satisfying z/=1 > 17t (ef —

1)Aa=! and o > 2(t — 1)0~ !, we have

E[r.]

P(M@ > 1) < ¢ In (1 + g (x)) x~=D/0

+ (1 + wg(x)*l/e) E[r.] <91ZF1(91:) +P(X@ > eg;)) .



Assume that Var(X(®) < oo and 0 < A;, < oo for some t > 2. Then, for every
a,x, z satisfying the conditions 2ae~*fax > E[(X()?]In(1 + B0 taxt~1 /A, 4), 2t >
01 7t(e? —1)A; 7 a™ and x > 2(t — 1)07!, we have

E[r.]

P(MY > ) < e In (1 + thy(z)) x~-D/0

+ (1 + w4(x)‘1/9) E[r] <912Fl(t9x) +P(X@ > ea:)> .

In Chapter [3] we also test our inequalities in the heavy traffic and heavy tail regime and
show that they are asymptotically precise. Particularly we consider the case of regular
varying tail-distributions and reestablish the results for & under the critical value
from and above this critical value. This means we reestablish the result
in the case that z is not asymptotically equivalent to xgy (a). Furthermore, we use our
bounds on M;. to obtain a result on the asymptotics of M(® in the case of infinite
variance. Namely, we show that if E[(min{0, X(©})?] < oo, is still valid above some
critical value for regular varying distributions with index r € (1,2].

The fourth Chapter of this thesis deals with the question whether there exists a local
version of the heavy traffic asymptotics if the increments possess an aperiodic A(@)-
lattice distribution. We consider the case when x — oo with ax = O(1) as a — 0 and

show that
2aA ) 2axA)
P(M(a) - A(a)z:) ~ 2 5— exp {_a:v as a — 0.

o o2

This result follows from a representation of P (M (@ = Al@g) as a geometric sum and
the application of a uniform renewal theorem which is also derived in this chapter.



1 Preliminaries

1 Preliminaries

This chapter contains an overview of the used notation and a brief introduction to the
theory of random walks including a survey of some known results on the maximum of a
random walk.

1.1 Notation

In this thesis the following notation is used:

By \, and " we mean (weakly) decreasing and (weakly) increasing respectively.

The symbol ~ is used to denote dsymptotically equivalent". Thus, for two non-
negative functions f and g and a constant a € [—o0, 0],

f(x) ~ glx) as © > a <= lim f(2)/g(x) = 1.

The symbols o, O and =< are used to indicate "having smaller order", "not ha-
ving larger orderédnd "having the same order"respectively. That is for non-negative
functions f and g and a constant a € [—o0, 00],

=o(g(x)) asx — a im@:
(@) = olg(@)) as & = a & Jim 25 =0,
f(z)=0(g(z)) asx = a < hr;lj;lp g((z)) < 00,
<g(x)asx —a imin@ an imsu @ 00
flx) < g(x) — @lxaafg(x)>0 d lm%apg($)< .

The symbols > and < are used to indicate "having larger orderénd "having smaller
order'"respectively. For non-negative functions f and g and a constant a € [—o0, 00|,

f(x)>g(x) asx — a < g(z) = o(f(x)) asx—>a<:>%i_r>r(11§g;)):oo,
fz) < g(x)asz — a< f(x) =o0(g(x)) asx%a@iil)r}lzgfj)):()

The symbols > and < are used to refine the notation from > and <. In particular,
for two non-negative functions f and g and a constant a € [—o0, 0],

f(z) = g(x) asx — a < f(z) —g(x) — 00 as z — a,

flz) <gx)asxz — a < f(z)—g(x) > —c0 as x — a.

The sign 2 is used to denote "have the same distribution". That is for two random
variables X,Y on (Q, F,P),

XLy ePXecA)=P{YcA) forall Ac F.



1 Preliminaries

e For two non-negative functions f(x,y) and g(z,y) and a constant a € [—00, 0],

f (@, )]

f(z,y) = o(9(z,y)) as x — a uniform in y < lim sup ——== =
v=ay |g(x,y)]

e For a distribution function F denote by F the (right-)tail distribution function, i.e.
F(z)=1- F(x).

° fl() is the integrated tail defined by Fl(x) = min {1, f;o F(u)du}, x > 0, and
FI(.) is defined by F!(z) =1 —FI(:E), x> 0.

o [ stands for the n-fold convolution of F' with itself and the corresponding right
tail is defined as F*7(x) = 1 — F**(z).

e The indicator function is displayed by 1{A} and is 1 if A holds and 0 if it does not.

e For a random variable X and the expectation E, the expression E[X; A] is used to
abbreviate E[X1{A}].

e For and random variable X and a,b € R with a < b, we use the convention
E[X; X € [b,a]] = —E[X; X € [a,b]]

e The term M/G/1 queue is used to denote a first in first out (FIFO) queue with a
markovian (exponential) interarrival distribution, general but independent service
time distribution and 1 server. Accordingly, a G/G/1 queue is used to denote a
FIFO queue with a general but independent interarrival distribution.

e For a random variable X the positive part of X is defined as Xt := X1{X > 0}
and the negative part is defined as X~ := —X1{X < 0}.

Additional notation is introduced during the course of this chapter.

In the following, we give some definitions and state some well known results on heavy
tailed and subexponential distributions, mostly collected from [27]. For an extensive
introduction to heavy tailed distributions, see e.g. [11].

1.2 Heavy tailed distributions
Consider a random variable X on R with distribution F'.

Definition 1.1. The distribution F is said to have right-unbounded support if F(z) > 0
for all x > 0.

Definition 1.2. The distribution F' is called (right-)heavy tailed if

/ eMdF(x) = oo for all XA > 0,

— 00

that is, if and only if F' does not possess any positive exponential moment. Otherwise
the distribution F is called light-tailed.
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If the distribution F' is concentrated on the positive real axis Rg , the latter definition
immediately implies that for a light-tailed distribution all power moments are finite.

Definition 1.3. A function f(-) > 0 is called heavy tailed if

limsup e* f(x) = oo for all A > 0.
T—r00
It is known that a distribution F' is heavy tailed if and only if its tail distribution
function F(-) is heavy tailed. Hence, for a distribution F' to be heavy tailed is a tail-

property.

1.3 Subexponential distributions

For various results one requires stronger regularity conditions than the requirement that
the distribution is heavy tailed. Recall that for all independent, non-negative random
variables X1, Xo, ..., X, with distribution F'| as x — oo,

F(z) =P(Xy +...+ X, >2) > P(max{Xy,...,X,} > )
=1-(1-P(X;>2)" ~nP(X; >z) =nF(x). (1.1)

This motivates the definition of a so-called subexponential distribution.

Definition 1.4. We say a distribution F' on Rg with unbounded-support is subexponen-
tial, and write F' € S, if L
F*2(x) ~ 2F(z) asx — oo. (1.2)

Subexponential distributions were introduced independently in [I4] and [I5] and it is
known that all subexponential distributions are heavy tailed, see e.g. [23]. Embrechts and
Hawkes [22] have shown that the property can be generalized to an arbitrary number
n instead of 2. To be more specific, the following characterization of subexponential
distributions is valid.

Proposition 1.5. A distribution F on ]Rar with unbounded support is subexponential if
and only if, for an arbitrary n > 2,

F*(z) ~nF(x) asz — oc. (1.3)
Furthermore, ([1.1)) and (1.3 imply that F' is subexponential if and only if, for all n > 2,
P(Xi+...+ X, >2) ~P(max{Xy,...,Xp} >2) asz — oc. (1.4)

Relation can be interpreted as follows: if a random walk exceeds a large level x this
is with a probability close to 1 due to the fact that one increment of the random walk
exceeds this level. Therefore this result is usually referred to as the "principle of a single
big jump".

Subexponential distributions can also be defined on the whole real line. To do so let
us introduce another class of distribution functions.
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Definition 1.6. A distribution on R is said to be long-tailed if it has right-unbounded
support and, for every fixed value y > 0,

F(zx+vy)~ F(z) asz — oc. (1.5)

Every long-tailed distribution is also heavy tailed, see Lemma 2.17 and Theorem 2.6 in
[27]. However, implies a degree of smoothness and not all heavy tailed distribution
function possess this smoothness, see the example after Lemma 2.17 in [27]. It is known
that a distribution ' on R with unbounded support is long-tailed with F*2(z) ~ 2F(z)
as x — oo if and only if F'* := F(z)1{x > 0} is subexponential. This allows us to extend
the definition of subexponentiality to the whole real line.

Definition 1.7. We say a distribution F on R is called (whole-line) subexponential, and
write I’ € S, if F' is long-tailed and

F*2(x) ~ 2F(z) asx — oo. (1.6)

1.4 Strong subexponential distributions

Consider a random variable X with support R and distribution F. In applications like
random walk theory, queueing theory, risk theory and renewal theory, and especially in
the following chapters it is an important question whether F' € S implies that e €S.In
general this is not the case, see for example Chapter 3.8. in [27]. However, Kliippelberg
[34] has shown that those distribution functions for which the latter is true form a large
subclass of S, which we will call strong subexponential distributions.

Definition 1.8. Suppose p := E[X;X > 0] < oo. A distribution function F with
right-unbounded support belongs to the class S* of strong subexponential distribution
functions if

/Om F(z —y)F(y)dy ~2uF(x) asx — oo. (1.7)

This definition can be motivated as follows: For all distributions F' on R,
z L z/2 L
[ Fa-yFy= [ FFe-wde,
x/2 0

where we substituted w = x — y. Therefore,

r_ —_ /2 _ L x/2
/ Fla — y)F(y)dy =2 / Fla - y)F(y)dy > 2F(x) / F(y)dy
0 0 0

and consequently, for all distributions with right-unbounded support,

1 [T _
lim inf — Pz —y)F(y)dy > 2u.
= /0 (z —y)F(y)dy > 2u
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If F is heavy tailed, one can even show (see for example Lemma 4 in [26]) that

limniicgf F(lx) /Ox F(z—y)F(y)dy = 2pu. (1.8)

The observation (|1.8]) provides that a distribution is strong subexponential if it is heavy
tailed and sufficiently regular that the limit

exists.

As shown in Kliippelberg [34], every strong subexponential distribution on R is whole-
line subexponential and for every strong subexponential distribution the integrated tail
distribution is subexponential, that is

S* C Sr, (1.9)

FeS* = Fles. (1.10)

In the same paper (see also [27]) an example of a distribution for which F/ € S but
F ¢ §* is given. This means the converse of is not true. However, it is known that
all subexponential (or even heavy tailed) distributions that are likely to be encountered
in practice are strong subexponential.

1.5 An important subclass of subexponential distributions

In this chapter we will consider distributions with right-unbounded support and F(x) ~
e 9®) as  — oo, where g is a positive function. We assume the existence of values
0 <+ <1and x>0 (that may depend on ) such that

9()

x >z = xo(7). (1.11)

Let
v i=1inf{y > 0: Jxg = xo(7y) : g(x)/27 is decreasing for all x > xg}.

Furthermore, suppose that E[|X|!™¢] < oo for some € > 0 and if 4* > 0 also assume that
e%9(*) is integrable over RBL for all 6 > 0.

Let us show that this class of distributions is a subclass of the strong subexponential
distributions. In order to do so, we want to use a criterion from Theorem 3.30 of [27]:
Let F be a long-tailed distribution on R. Assume there exists some 7 < 1 and A < o
such that

9(x) —g(z —y) <7g(y) + A (1.12)
for all z > 0 and y € [0,2/2]. If the function e~(1=79(#) is integrable over R*, then
F € §*. First, consider v* = 0. Then, one can choose €2 > 0 arbitrary close to 0 such
that
AN

762 y T Z ro — 150(82).

10
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Hence, for x > 2xy,

o(@) _ glz—w)

ze2 = (z—w)=’ 0<w<z/2 (1.13)
and consequently
g(x(-)w) > <1 B E)EQ 0<w<z
g(z x
for x > 2x¢. By using
(1—2)%2>1—epz— (e2(1 —€9))21 79222 > 1 — 292, 0<2<1/2, (1.14)
one obtains, for z > 2x,
g(x) —glx —w) < 25211)@, 0<w<z/2. (1.15)
x
Since g(x)/x is decreasing for x > xg,
9o o) <, (1.16)
x w

and thus, for x > 2x,
g(z) — g(x —w) < 2e9g9(w), 0<w< /2.

As a consequence, ([1.12)) is fulfilled for A = sup,<s,, g(u) and ¥ = 2e5. On the other
side, (1.15]) implies that for all y > 0 fixed

F
M—)l as r — oo.
F(z)

The existence of a moment of order 1 + ¢ ensures g(z) > (1 + ¢)lnx for = large enough
and consequently, for eo sufficiently close to 0,

6—(1—252)9(:5) < x—(1—2€2)(1+5) — O($_1_€/2) as T — 00.

Thus, the distribution is strong subexponential due to the above mentioned criterion.
Now, suppose that v* > 0. Then, for all €5 > 0 such that 0 < v* + e5 < 1 there exists
some xg such that for x > 2z,

J— *+
Mz(l—g)v 62, 0<w<x/2
9() z

Furthermore, one sees by the Taylor expansion that for all 0 < z <1/2

(1=2)"F2 > 1— (v &)z — (7" +e2)(1 = (v +69))2' " 07H2)2
>1— (1= (1= (7" +e2))%)z

11
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Therefore, for x > 2xg,

g(z)

g(x) — gz — w) §aw7, 0<w<x/2, (1.17)

with @ =1 — (1 — (y* 4+ &2))? < 1. The latter inequality combined with (1.16)) gives
g(x) —g(r —w) < ag(w), 0<w<z/2, (1.18)

for all 2 > 2x¢. Hence, (1.12)) is fulfilled for ¥ = v* 4 e and A = sup,,<9,, g(u). Further-
more, by making use of (1.17) and the fact that g(z)/z is decreasing for x large enough,
we obtain

for all fixed y > 0. On the other side, e~*Y () is integrable over Rg due to our assumptions
and therefore the distribution is strong subexponential by the cited criterion.

1.6 Examples of heavy tailed and (strong) subexponential distributions

Let us discuss a number of examples of heavy tailed distributions. It is known that all
these distributions are also strong subexponential and one sees that all these distributions
are also contained in the class from Chapter In the following chapters we will only
be concerned about the subexponentiality of the right tail of the distributions. Therefore
we will mostly give examples of distributions on the positive half-line.

Example 1.9. Pareto distribution on R(}L . The tail distribution function of the Pareto

distribution is given by
— K
F(z) = 1.1
@ = () (1.19)

with some k > 0 and a > 0. Clearly, F(z) ~ k®z~% as x — oo For this reason the Pareto
distributions are also referred to as power law distributions. For Pareto distributions, all
moments of order § exist if and only if 5 < «a.

Example 1.10. Distributions with reqular varying tails. Consider a distribution on the
positive half-line and let xy > 0. A positive measurable function L(-) defined on [zg, c0)
is called slowly varying if
L(tx)
L(z)
Examples for slowly varying function are e.g. logarithm-type functions. The tail distri-
bution function of a distribution with regular varying tails is given by

— 1 forallt>0. (1.20)

F(z) = L(z)z™® (1.21)

with index o > 0. A distributions on Rar with regular varying tails possess moments of
order § if § < a. Whether the moments of order § = « exists, depends on the slowly
varying function and moments of order § > « do not exist.

12
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Example 1.11. Lognormal distribution on Rg . This distribution is given by the density

1 Inz — u)?
f(@) = e (—(202“)> (1.22)

with parameters 4 € R and 02 > 0. All power moments of the lognormal distribution are
finite and with the I'Hospital rule one sees that

— o? (Inz — p)?
F(z Nexp<—> as & — 00.
(@) V2ro?lnx 202

Example 1.12. Weibull distribution on IR{(J{. The tail function F has the form
F(z)=e™ (1.23)
with parameter 0 < v < 1. All power moments of the Weibull distribution are finite.

Example 1.13. Semi-exponential distribution on Rar. The tail function F has the form
F(z) =e@'L@ (1.24)

with parameter 0 < 7 < 1 and a slowly varying function L(z). All power moments of
Semi-exponential distributions are obviously finite. Semi-exponential distributions were
introduced in [9] and in the same article it was shown that all semi-exponential distribu-
tions are subexponential.

One can verify that all the distributions in the latter examples are in the subclass of
subexponential distributions from chapter and therefore also (strong) subexponential
and heavy tailed.

For further examples see [27].

1.7 Model and motivation for studying the maximum of a random walk

In this section we give a brief introduction to the model we use in this thesis and motivate
why it is important to study the maximum of a random walk.

Denote by {S,(la),n > 0},a € [0,a0] with ag > 0, a family of random walks with
increments X i(a) and starting point zero, that is,

Séa) =0, 51(1(1) = ZXi(a), n>1.
i=1

(a)

We shall assume that, for every fixed a, the random variables X ,X2(a), ... are indepen-
dent copies of a random variable X () with distribution function F' and negative drift
—a := E[X(@] < 0. Denote by M(® = sup,~, Sl(f) the maximum of the corresponding
random walk. The maximum plays an important role in a number of applications. For
example, its distribution coincides with the steady state waiting time of a G/G/1 queue
(see Chapter and can be interpreted as the ruin probability in the so-called renewal
arrivals model (see Chapter [1.7.2).

13
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1.7.1 Duality of random walks and queues

One of the main motivations for studying the random variable M(® originates from
queueing theory, since its distribution coincides with the stationary distribution of the
queue-length in a G/G/1 queue. This was first shown by Kiefer and Wolfowitz [32].

To explain this duality, let us introduce some notation and results collected from
Asmussen [2]. Consider a G/G/1 queue with customers numbered as n = 0,1,... and
assume that customer 0 arrives at time ¢t = 0, finds an empty queue, and his service
starts immediately. Let T;, be the interarrival time between the n-th customer and the
(n + 1)-th customer and denote the service time of the n-th customer by U,. W, is
used to denote the waiting time of the n-th customer, i.e. the time between his arrival
and beginning of service. Let A := E[T,] € (0,00), b := E[U,] € (0,00) and denote by
p := b/ the so-called traffic intensity.

Lemma 1.14. For p <1 there exists a limiting steady state waiting time Wy such that
the distribution of W, converges to that of Wy, in the total variation norm, that is

sup | P(W,, € A) —=P(Ws € A)| -0 asn — occ.
A

We want to show that the distribution of W, from the latter lemma coincides with the
maximum of a properly defined random walk and therefore assume p < 1 or equivalently
—a:=b—X<0O.

Beweis. The proof uses tightness arguments and can be found in Theorem 2.2 of Chapter

12.2 in [2]. O
Put Z,(f) := U,, — T),, where the superscript indicates E[Zj, (a)} —a < 0. Then, for all

n >0,
Wit = (W, + Z@)*. (1.25)

Define a random walk by Séa) := 0 and for n > 1, S,(f) =Y Z,ga). Denote by

nga) = maXo<i<n S,(ca) the maximum up to time n and by M := maxy>g S,(:) the total
maximum.

Lemma 1.15.

W, = max{S©@, s —gl®  gla)_ 0} £ M@, (1.26)

n 1’
Beweis. By ((1.25)), the increments of (W,,) are at least those of S,,:
Wy — Wy > 8@ -89 0<k<n

Choosing k = n and using Wy = 0 gives W, > Sq(f) and, by virtue of W,,_r > 0, we get
Wy, > S,(La) — Sq(gk for all K =0,1,...,n. Therefore,

W, > max{S® g Sia), S qua 1,0}

14
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For the converse, it is sufficient to show that W,, = 57({1) - 57(;1_) i for some k=0,1,...,n.
If S > 0 for all 0 < k < n, (T.25) gives W, = S{”. On the other side, if there exists
some 1 < k < n such that S,E:a) < 0, (1.25) implies that W; = 0 for some 0 < [ < n.

Letting k be the last such [ we conclude again by ((1.25)) that W,, = Sq(la) — 57(2 k-
The second equality of ([1.26]) is trivial. O

Lemma 1.16. M@ < 0o a.s. and

W, 2 M@ gsn — 0.

Beweis. From the law of large numbers, S,(Za) /n 2% _a and therefore S’,(Za) — —o0. This

ensures the finiteness of M(®). The random variable 6 := max{k > 0 : S,(ga) > 0} is

finite a.s. and P(M(® +# M,(La)) < P(# >n) - 0 as n — oo. Thus, Lemma m gives
Wy, = M@, m

Combining the latter results we see that
W 4 M(a)’

so the steady state waiting time can be interpreted as the maximum of an appropriately
defined random walk.

In queueing theory heavy tailed distributions appear for example in the modeling of
data traffic in communication networks. In this situation, statistical evidence has been
found that exponential tail decay is not compatible with the empirical observations, see
e.g. Adler et al. [I].

1.7.2 Duality of random walks and ruin probabilities

Another important application comes from insurance mathematics: Under some restric-
tions on X () the quantity P(M (@) > z) is equal to the ruin probability in the so-called
renewal arrivals model.

To outline this duality, let us introduce some notation taken from Asmussen [3]. A risk
reserve process (R¢)i>0 is a model for the time evolution of the reserves of an insurance
company. Denote by z = Ry the initial reserve and suppose the ruin probability ¥ (x) is
the probability that the reserve ever drops below zero:

U(z) =P (gg R < o> .

For mathematical purposes it is often more convenient to work with the claim surplus
process (W;)i>o defined by Wy = = — Ry.
Studying ruin probabilities, usually the following setup is used:

e There are only finitely many claims in finite time intervals, which means that
the number of arrivals N; in the time interval [0,¢] is finite for all ¢. Denote the
interarrival times by 15,73, ... and suppose 17 is the time of the first claim.

15
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e The size of the n-th claim is U,. The claims are independent of each other and
independent of the interarrival times.
e Premiums flow in at rate p, say, per unit time.

Summarizing, we have

Nt Nt
Ry=a+pt—>» U, Wi=)» Up—pt
k=1 k=1

and therefore for the ruin probability

Y(x) =P <%§£Rt < 0) =P <suth > :J:) .

>0

The case of interest is the nontrivial case of the ruin probability, that is —a := E[U; —
pTi] < 0. Put ") := U}, — pTy, k > 1, and

Séa) =0, S := Yk(a).
k=1

Due to our assumptions the family (Yk(a))kzo of random variables is 7id and since the
surplus process (W;)¢>0 is monotone decreasing between the claims, the ruin probability
is given by

Y(x) =P <SUth > x) =P <maXS,(€a) > x) - P(M(a) > 7).
>0 k>0

In actuarial mathematics, there is statistical evidence suggesting that most claim sizes
should be modeled as heavy tailed random variables. For a discussion and further refe-
rences on that see for example Chapter 1.2 of Embrechts, Kliippelberg and Mikosch [23]
or Kalashnikov [31].

1.8 Some known results on the maximum of a random walk

We use the setting introduced in chapter and state some classical results on the
maximum M (@),

The asymptotic tail behaviour of M(® has been studied extensively in the literature.
The first result goes back, apparently, to Cramér and Lundberg (see, for example, As-
mussen [2]). If a is fixed,

E[ehoX(a)] =1 for some hg > 0, (1.27)
and, in addition, E[X(“)ehOX(a)] < 00, then there exists a constant ¢y € (0, 1) such that

P(M@W > z) ~ cge™™%  as z — oco. (1.28)

16
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If is not fulfilled, in other words F' is heavy tailed, then one should assume that
the distribution of X (@ is regular in some sense. To be more specific, recall that
states that every strong subexponential distribution is whole-line subexponential and
therefore heavy tailed. On the other side, implies that the integrated tail FI(-) is
subexponential for every strong subexponential distribution function F'. In this case, for
fixed a, a classical result concerning the maximum of a random walk is the following: If
the integrated tail F s subexponential, then

P(M@ > ) ~ éfl(x) as & — 00. (1.29)
This result was proved for regular varying distributions by Callaert and Cohen in [13] and
by Cohen [17]. In the present form it was proved by Veraverbeke [48] (see also Embrechts
et al. [21]). It is known that is valid if and only if s subexponential, see e.g.
Corollary 6.1 in Embrechts and Veraverbeke [24].

Let us discuss the behaviour of the total maximum as a — 0. This case is interesting
in terms of queueing theory as it describes the behaviour of a system in heavy traffic.
For all @ > 0 the total maximum M@ is finite almost surely. However, M(® — oo in
probability as @ — 0. From this fact arises the natural question how fast M(®) grows as
a — 0. Studies on this question were initiated by Kingman [33], who considered the case
when | X (@] has an exponential moment with E[(X(®)?] — E[(X(©)2] > 0 as a — 0,
and proved that for fixed z,

P(M@ > z/a) ~ e 27" as a4 — 0, (1.30)

where 02 = Var(X(©) denotes the variance of the increments in the case of zero drift.
Prohorov [45] extended this result to the case that the increments have finite variance
and currently it is known that it is sufficient to assume the Lindeberg-type condition

lim E[(X®)%|X@| > K/a] =0 forall K >0
a—

to establish (L.30). For an extensive discussion, see e.g. Theorem X.7.1 of Asmussen [2]
or equation (21) of [49)].

Blanchet and Lam [7] (see also Blanchet and Glynn [6]) generalized to the case
where x depends on a. In particular, they have shown that if z = O(1) or z — oo
sufficiently slow as a — 0,

P(M@ > )~ e asa— 0. (1.31)
Here, 6, is the solution to the equation

E [eeax(”;x(a) < l/a] =1 (1.32)

By using the Taylor expansion (see also Blanchet and Glynn [6]) one sees that 0, allows
an expansion of the form 0, = 2a/0? + Coa® + ... + Cra®, where C;,i € 2,...,k are

17
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suitable constants. This expansion is valid up to the order of the moment existence of
X (@ and the constants C; can be defined using these moments.

The stated asymptotical results do not necessarily give a good approximation for the
probability P (M @ > x) for fixed values of a and x. For example, for fmall"values
of z and "large"values of a all the above mentioned approximations are imprecise (for
a discussion see Kalashnikov [31]). Therefore it is also of great interest to have non-
asymptotic properties of P(M @ > x). In the light-tailed case, the first non-asymptotic
results on M(® go back to Cramér and Lundberg (see, for example, Asmussen [3]): If the
Cramér condition is fulfilled for some hg > 0 one has for all x > 0 the so-called Lundberg
inequality

P(M@ > g) < e~hor, (1.33)
Because of the Lundberg inequality has optimal order and the error is only a con-
stant. The proof of the Lundberg inequality is based on the observation that E[e0X (a)] =

. . (a) . (a)
1 implies that the sequence ™5 is a martingale and therefore E[ehosn ] =1 for all

n € Ny. Applying Doob’s martingale inequality one obtains

(a) (a)
P(Méa) > :L’) - P sup ehoSk > 6hoac < e—homE[ehOSn ] — e—hox (1.34)
0<k<n

for all n € Ny. For A4,, = {MT(la) >z} and A = {M( > z} one has A4, 1 A as n — oo
and hence by the o-continuity of P,

P(M® > z) = lim P(M® > z) < e P07,

n—oo

The same martingale property allows one to make an exponential change of measure,

which is used in the proof of (|1.28)).
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2 Heavy traffic and heavy tails for subexponential
distributions

The ideas in this chapter were developed in cooperation with Dr. Denis Denisov during
a visit at the University of Manchester and a visit of Dr. Denisov at the University of
Munich. The results stated in this chapter mainly correspond to publication [19], only
Corollary is not contained in this general form in [19]. In the publication it is only
stated for the Weibull case and the proof is omitted since it uses similar methods as the
proof of Proposition [2.4]

2.1 Introduction and statement of the results

We use the notation and setting introduced in Chapter For reasons of simplicity we
also assume that X = X(©) — ¢ in this chapter. We will give a short discussion on
how this condition can be weakened in Remark after presenting the main results.
In Chapter we mentioned several important results on the asymptotical behaviour of
the maximum of a random walk: If a is fixed, the Cramér condition is fulfilled for some
ho > 0 and E[X(“)ehox(a)] < 00, then there exists some constant ¢y € (0,1) such that

P(M@ > z) ~ cpe ™ as 2 — co. (2.1)
Furthermore, if a is fixed and the integrated right tail Fl(a;) is subexponential, then

PM@ > 2) ~ 2F (2) as 2 — oc. (2.2)
a

If, on the other hand, | X(®)| has finite variance o2 and z is fixed,
P(M > z/a) ~ e 27" as a — oo. (2.3)

Furthermore, if x is in general not fixed, but x = O(1) or x — oo sufficiently slow as
a — 0, then
P(M@W > z) ~ e asa—0, (2.4)

where 6, is the solution to the equation
E [e"aX(“’;X@ < 1/a] =1 (2.5)

It is known that 6, allows a Taylor expansion of the form 6, = 2a/02 +Cha’+.. . +CaF
with C;,i € 2,...,k are suitable constants. This expansion is valid up to the order of the
moment existence of X(® and the constants C; can be defined using these moments.
One can see that has a form similar to (2.4)). Indeed, if the Cramér condition
holds then letting a — 0 one can see that hg — 0 and in the limit becomes 7
see for example Asmussen [2]. However it is not immediately clear what happens if one
lets @ — 0 and x — oo simultaneously when the Cramér condition does not hold and the
distribution of X (% is subexponential. The problem is the following: For z > 1 /a the
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heavy traffic theory predicts an exponential decay, whereas the heavy tail asymptotics
predicts a decay according to the integrated tail of the distribution. This fact raises an
interesting mathematical issue, how exponential asymptotics turn into the integrated tail
asymptotics in the subexponential case. On one hand, if a — 0 much faster than z — oo,
the probability P(M(® > z/a) still behaves like in the heavy traffic approximation
by virtue of . On the other hand, if @ — 0 much slower than z — oo, the heavy
tail approximation from should still be valid. In particular, the question is whether
there exists a transition point, at which the transition from to takes place.
Or, otherwise, whether there is a third region in which neither the heavy traffic nor the
heavy tail asymptotics holds and what the asymptotical behaviour of P(M (@) > x) will
be like in this region. This chapter deals with these questions and as it turns out answers
depend on the distribution of the increments of the random walk.

We will consider different distributions and examine whether there exists a sharp tran-
sition point for theses distributions. Namely, we will show that if the increments are
regular varying of index r > 2, then there exists a sharp transition point
o?(r—2)1. 1

5 " In o (2.6)
and this is a value for which the terms on the right hand side of and have
equal order. This generalizes a result from Olvera-Cravioto, Blanchet and Glynn [43],
who derived this critical value in the setting of a M/G/1 queue. In Chapter [3| we will
even show that if only E[(min{X (%) 0})?] < oo, but the variance is in general not finite,
i.e r € (1,2), then the heavy tail approximation holds above the boundary value
a'/(=") In the case of Weibull-like tails, that is F(z) = e=*", v € (0,1), one could still
believe there is a sharp transition point and try to find it by equating and .
Then, the critical point would be

/(1)
xw(a)~<1>1 o i 2 2007 (2.7)

b 1—7) Oa

There are some recent results that coped with the case of Weibull-type distributions, but
only in the case of a M/G/1 queue. In [44], Olvera-Cravioto and Glynn examine the case
of a M/G/1 queue and conjecture that for Weibull-type distributions there is a third
region in which neither the heavy traffic nor the integrated tail asymptotic is valid if and
only if 1/2 < 7 < 1. However, we show that this is not the case and surprisingly this
third region exists for a larger amount of v, that is for all v € (0,1), see examples below.
There is also a remarkable recent result by Blanchet and Lam, which covers various
subexponential distributions. To be more specific they consider distributions very similar
to the ones introduced in Chapter [I.5] and derive a uniform, explicit representation for
the probability P(M(® > z), which consists of the exponential term from heavy traffic
asymptotics , the integrated tail term and a convolution term. For further
discussion of this result see Remark 2.8 The reason why all these results only work in
the setting of a M/G/1 queue is that their approach is based on the representation of

rry(a) ~
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2 Heavy traffic and heavy tails for subexponential distributions

M@ as a geometric sum of independent random variables:
oo
P(MW >z)=>"q1—"P(x{ +x§ - +x} >2),
k=0

where {x;"} are independent random variables and ¢ = P(M(® = 0). The main difficulty
in this approach is the fact that one has to know the distribution of Xl+ and the parameter
q. However, ¢ and P()dr > z) are only known in some special cases. For example, if the
left tail of X(®) decays according to an exponential distribution, that is P(X (@) < —x) =
be 5% for some b € (0,1] and B > 0, the undershoot under 0 is also exponentially
distributed and hence one can verify

E[Sﬁ)] — —1/8, where 7 = min{k > 1: 5\ < 0}.

Consequently, the known formula P(M(®) =0) =1/ E[TSI)] and Wald’s identity give

1 a
P(MW=0)=—— = — = fa.
E[Y]  —E[S')]

This means the value ¢ is known in this case. However, the distribution of the overshoot
remains unknown and one has to obtain appropriate estimates for P(XiF > x). This
case corresponds to the case of a M/G/1 queue. If the right tail of X (@) also decays
exponentially (which corresponds to a M/M/1 queue) both values g and P(x;" > z) are
known and no estimates are required. However, in the general case (which corresponds to
the case of a G/G/1 queue) the value ¢ and the distribution of x;" remain unknown and,
using the approach via geometric sums, one has to find good estimates for both of them.
Therefore, an approach via geometric sums may be unsuitable for general distributions.
In the present work we use a different approach that relies on martingale methods.
Appearance of martingales is due to the equation (M(“) + X(“))+ 2 e,

Before we state our main result we introduce assumptions on the distribution of X (@),
If one writes

F(z) = e 9@, (2.8)
the function g(z) = In(—F(z)) is usually called hazard function of the distribution F.
Definition 2.1. Let v € [0, 1). The distribution F' belongs to the class K., v € (0, 1), if

g is positive, twice differentiable, concave and if for every €1 > 0 there exists z¢g = zo(e1)

such that
9(x)

el \17 €T Z xo, (29)
and (@)
x

L wza (2.10)

The distribution F' belongs to the class Ky, if g is positive, twice differentiable, concave,
if (2.9) holds for v = 0 and if there exists some value x; such that

ﬁ:;)/‘, x> . (2.11)
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2 Heavy traffic and heavy tails for subexponential distributions

By definition, for a distribution being in the class K is a tail property and, as shown
in Chapter all distributions F' € K, with v € [0,1) are strong subexponential.
The class K, contains the most popular strong subexponential distribution functions.
For example, distributions with regular varying and lognormal-type tails are in Ky and
distributions with Weibull-type tails or semi-exponential tails are in K, where the value
~ corresponds to the parameter v in and . An example of a subexponential
distribution that is not contained in any class K, v € [0, 1), is a distribution on R with
g(z)=xz/In’z, B >0.

Whenever we write F' € Ky, we will also assume ¢'(x)zlnz/g(z)  for x large enough
and if g(x) = O(In(z)) assume that (—g"(x))/(¢'(x))? converges as x — oo in this chap-
ter. On the other hand, if F' € K, with v € (0, 1), assume that z¢'(z)/((y —e1)g(x))
for all e > 0 if x is large enough. These assumptions are no big restriction and, in parti-
cular, the conditions can be verified for all strong subexponential distributions introduced
in Chapter We motivate the assumptions in the following lemma.

Lemma 2.2. Suppose F € K., for some v € [0,1) and E[| X |>7¢] < co. If v =0,

g(z)
zlnx

g'(z) > (2.12)

for z large enough. If ' (x)xInx/g(x) 7 for x large enough, there exists some b € [0,1/2)
such that
—9"(z)

—be|0,1/2) asxz — oc. 2.13
@) [0,1/2) (2.13)
On the other hand, if v > 0,
rg'(v) B
g(l’) 6 [’Y 517 ’Y + 51] (214)

for all e1 > 0 if x is large enough. Furthermore, if xg'(x)/((y—e1)g(x)) 2 for alle; > 0
if x 1s large enough,
9" ()

(¢'(x))?

The only reason we need the additional assumptions is to compare F' with F. If one

=o(l) asx — oo. (2.15)

assumes that FI(:L‘) = 79 instead of F(x) = e 9*), one can omit these additional
assumptions. In the following Lemma we introduce a boundary sequence x(a) that helps
to define transition zones from the heavy traffic and the heavy tail asymptotics. If there
exists a sharp transtion point, it will turn out that this value will coincides with the
transition value.

Lemma 2.3. Suppose F € K., v € [0,1) and that E[|X(®|>*] < co. Then, there exists
an increasing solution x(a) > 1/a to the equation

0oz — g(x) —In(ab,) = o(1) asa— 0. (2.16)

This solution is asymptotically unique in the sense that any other solution x(a) satisfies
Z(a) = z(a) +o(1/a) as a — 0.
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2 Heavy traffic and heavy tails for subexponential distributions

For ¢ > 0 define,

1 if x <0
Ge(z) ="’ 1 r=0 (2.17)
exp{—(0, +c)z}, ifx>0
and for § € (0,1) and ¢ > 0 let
Lil .
Go(z) = ot (x), ifx>dx(a), (2.18)
0, if x < dx(a).

Note that G(z) = 0 rather than 1 as in [20]. This is due to the fact that we are going
to consider the sum of two functions and 1 will come from another term as e~20/9” ig
approximately 1 for small a¢ and z in a fixed interval. Furthermore, define for o, ¢ > 0

~ o if z <
Go(z) = {e, if x <0,

' (2.19)
exp{—(6, + c)z}, ifz >0,

and put p, ;= inf{k > 1: Slia) > y}.
Proposition 2.4. Suppose F € Ky and E[| X **¢] < oo for some e > 0. Put ¢, :=
1/(z(a)In(1/a)) and

YV = G_o (= S%, )+ Gre(z — S ). (2.20)

NApha /\széz(a)

Then, (Yn(l)) is a non-negative supermartingale for all a > 0 and § € (0,1) small enough.
Define
Y = Gy (= Si,,) + Gl — Sin o )- (2.21)

Then, (Y,?)) is a non-negative submartingale for all a > 0 and 6 € (0,1) small enough.
Furthermore, for 6 € (0,1) and N > 1, define

o 2
L) () = (Z (%)ﬁ AN (2.22)

k=0
and ) (2]
L )= .
Gla)= F (z), if x> dx(a), (2.23)
0, if x < dz(a).

Proposition 2.5. Assume F € K., for some y € (0,1) and E[| min{0, X (@ }|1+1/0-9] <
oo for some 5 > ~y. Put cq :=1/(xz(a)In(1/a)) and

Y = Goo (@ = 833,) + G @ = S0, (224)

n/\uzféz(a)

Then, (}7,51)) is a non-negative supermartingale for all a > 0 and § € (0,1) small enough
and N large enough. Define

Y@ =G, (-S89, )+ Glye( — st

n NNz n/\uz,%z(a))' (225)
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2 Heavy traffic and heavy tails for subexponential distributions

Then, (}7752)) is a non-negative submartingale for all a > 0 and § € (0,1) small enough
and N large enough.

Lemma 2.6. Suppose F € K., for some v € (0,1) and E[| min{0, X (@} }+1/(0=7] < o0
for some 5 > ~. Then,

lim sup 22 < 1 (2.26)
a—0 Hax

for all x > §x(a) such that e~%* = O(Fl(x)/a) as a — 0.

With the super- and submartingales from Propositions [2.4] and [2.5 we can derive sub-
exponential asymptotics for the probability P(M(® > ).

Theorem 2.7. Suppose F € Ky and E[|X@|>*¢] < oo. Then, uniformly in x,

P(M® > ) ~ e %% 4+ 27 (2)1{z > d2(a)}
a
1

_ 2
~ e 2azx/o + =
a

Fl(m)l{x >ox(a)} asa— 0. (2.27)
On the other hand, if F € K., v € (0,1), and E[|min{0, X(@}['*1/(1=9)] < oo for some
~ >« one has, uniformly in x,

L&)

P(M@ > ) ~ el 4 a(x)FI(x)l{x > 6x(a)} (2.28)

F(2)1{z > z(a) — Cn(1/a)/0,}
a(l —vg(x)/(0.2))?

with sufficiently large constants C >0 and N > 1/(1 —7).

—0qx

~e asa — 0 (2.29)

Remark that due to Lemma the right hand side in is well defined. As shown
in the proof of Theorem the constant C' is such that, for dz(a) < z < z(a) —
Cln(1/a)/6,, one has e % > Fl(a:) /a. Theorem implies that the intermediate
region, in which neither the heavy traffic nor the heavy tail asymptotics is valid, appears
if and only if F' € K, v € (0,1). In this case the right tail of the increments decreases
at least as fast as it does for the Weibull distribution, that is

F(r)<e ™ asz— o0

for some g1 > 0. Consequently, there is no intermediate region for regular varying and
Lognormal-type tail distributions and there is one for Weibull-like and semi-exponential
distributions. However, for those x such that

1_
fFI(x) =e %% asa—0
a

there appears a mixing of the two terms in the regular varying and the lognormal case.
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2 Heavy traffic and heavy tails for subexponential distributions

Remark 2.8. In the case of a M/G/1 queue, which corresponds to the case that the left
tail of the increments are exponential, Blanchet and Lam [7] have shown that, as a — 0,

Pwﬂ®>x)~e9ﬁ+<Fﬂ¢W—zx<1+Q(x—w>e%@yupﬂw>1{le}.

a Ja\a 02 a

(2.30)

One can show with similar techniques as used in the proof of Proposition [2.4) and [2.5]
that under our assumptions on the distribution of the increments the integral term from

(2.30)) is approximately

1 —I
<a<l —9(@)/Gax)))? 1) F @) (2.31)

In particular, one can show the following corollary.

Corollary 2.9. Suppose that F' € K. for some ~y € [0,1). Then, the integral term in the
result is asymptotically negligible in the case v = 0 and is asymptotical equivalent
to the term from in the case vy € (0,1). That means the right hand side of
is the same as the right hand side of in the case v = 0 and in the case

v € (0,1).

For the proof of Proposition Proposition [2.5] and Theorem [2.7] it turns out that it
is not necessary to have an exact solution in , but it is sufficient to have an equation
of the form

E%%thﬂ®§1m}:1+om%y (2.32)

where ¢, = o(a) reflects the required precision and depends on the distribution of the
right tail. A suitable choice will be ¢, = 1/(z(a)In(1/a)). Then, the definition of x(a)
implies that c, > a* for k large enough, that means k* := max{k € {1,2,...} : ¢, < a"}
is well defined. Then, by considering an asymptotic equation of the form , one can
pick a solution 6, of the form

2 *
%=£+@¥+m+@wV (2.33)

The expansion is valid up to the order of the moment existence of X(®) and the constants
C5,Cs, ..., Cx can be defined by expansion and using these moments. For Weibulls with
parameter strictly less than 1/2, one has §,2(a) = 2az(a)/0? + o(1), see example 4 in

Chapter , so the result from ([2.29) simplifies to

a(l —~g(x)/(0az))

For even lighter tails one needs more moments to expand 6, like in (2.33)).

P(M@ > 1) ~ e2ax/0” 4 as a — 0.
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2 Heavy traffic and heavy tails for subexponential distributions

Remark 2.10. The assumption X(® = X —q is needed only for the expansion of 6, and
can be generalized to the assumption that the moment equivalence lim,_,o E[(X(®)F] =
E[(X )] is valid for all 2 < k < 1+ 1/(1 — 7). In particular, if the tails decay slower
than e~ V* we only need to assume lim,_,o E[(X(¥)?] = 62 and SUP 4 <4, E[|X(@**] < 0o
for some €, ag > 0. For increments of type X(®) = X(©) — ¢ we always have an expansion
in powers, so the coefficient will change but still depend only on first cumulants.

2.2 Examples

Let us consider different kinds of distribution functions and outline the result for these
distributions given by Theorem Especially, we shall see that, depending on the dis-
tribution, there may be a mixing area around the transition zone, in which the order of
the exponential term and the order of the integrated tail term are the same.

Example 1: distributions with reqular varying tails. Suppose the right tail of X(@ is
regular varying with index r > 2, that is g(z) = rlnxz — In Ly (z), where L; is some
slowly varying function. Then, equating the two terms on the right hand side of
one can see that the transition point coincides with the critical value from Lemma [2.3

In particular, this value is

— 22 1
(r—2)o°, 1

rry(a) ~ 0 "

On the other side, it is known that fj(ac) ~ 27" Ly(x)/(r —1) for all z such that x — co
as a — 0 and obviously fl(x)/a > e7202/9° for all 2 > xpy(a). Hence, Theorem

can be rewritten as

1-r
P(M(a) > .’L') ~ e—an/o-2 + T LI(Z)l{x Z (S.CL'(G)} (234)

(r—1)

One can see that e~207/" > Fl(x)/a if 0x(a) <z < cxry(a)(1+o(1)) with ¢ < 1 and

that e—200/7" <« FI(az)/a if # > cxpy(a)(l + o(1)) with ¢ > 1. In the case ¢ = 1, it
depends on the exact dependence of x and a and the order of the slowly varying function
L1, whether the exponential term or the integrated tail term dominates or if they even
have the same order. Hence, Theorem states that

e—an/UQ, if lim,0x/7Rrv(a) <1,
e~2aw/0% | %Fl(m), if limg—o2/zRv(a) =1
Let us discuss the region lim, ,oz/xry(a) = 1 a little bit more. It is easy to see

that Fl(x) ~ Fl(x'Rv(CL)) in this region and for z = zry(a) + O(1/a), e—2az/o?
e~20wrv(9)/7®  On the other side, FI(xRV(a))/a > e~ 20wrv(a)/0? for Li(z) > (In(z))"~
and FI(fURV(a))/a < e~2awrv(a)/o? for Li(z) < (Inz)""!. Hence, if 2 = zgy(a) +
O(1/a), follows FI(:U)/& > e—20w/0% for Li(x) > (Inz)"~! and Fl(x)/a < e—2ax/0? for
Li(z) < (Inz) 1

X

—_
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2 Heavy traffic and heavy tails for subexponential distributions

Example 2: distributions with Pareto-like tails. Suppose the right tail of X (@) is Pareto
distributed with index r > 2, that is g(x) = rInz. This is the same as in Example 1, but
with L1(z) = 1. One can refine the region x ~ zgy(a) from Example 1 and show that
the critical value is

zp(a) =~ (7,_22)021n(1/a) + (7'_261)02 In(In(1/a)) =: zp1(a) + zp2(a).
Hence, Theorem [2.7] states that
¢~2az/o? if Timg_so x;ﬁj(lcff) <1,
P(M® > z) ~{ 1F (2), if Jimg o 2280 > 1, (2.36)
e~2az/o® | %FI(ZC), if lim, o 790;125(1;;1) =1

In the last case of the latter result there may occur some mixing between the two terms,

for example if x = % In(1/a) + % In(In(1/a)) 4+ o(1/a), then
_9 2\ 71 1_
P(M@ > ) ~ (1 +(r—1) <(T2)0> ) aFI(;;;)

Ezample 3: distributions with lognormal-type tails. Let g(x) = r1n® z with 6 > 1 and
r > 0 such that E[|X(®|>7¢] < co for some € > 0. Then, one can verify

-1 x
P By

—rlnfz

and by equating the integrated tail term and the exponential term one can calculate the

critical value

7“0'2

xpn(a) = Elnﬁ(l/ea).

Hence, Theorem [2.7] states that

€—2ax/02’ if limgox/zrn(a) <1,
P(M® > 2) ~ { 1T (1), if limgsow/ery(a) > 1, (237)
6—2(1:8/02 + %Fl(gj), if lima_>o 35/$LN(Q) =1

In the region = ~ z7x(a), one can see that for z = r1n®(1/6,)/60, , FI(I)/Q > e 0aT if
Be(1,2), and F' (2)/a < e~ if B> 2.

Example 4: distributions with Weibull-like tails. Suppose the right tail of X (@) possesses
a Weibull distribution, that is g(x) = ¥ with v € (0,1). Then, one can easily see for
example by substitution and using asymptotical properties of the incomplete gamma

function, that
_ 1 _
Fl(x) ~ 2T F(z
Y

~—
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2 Heavy traffic and heavy tails for subexponential distributions

By equating the exponential and the integrated tail term, a critical value is

1 1/(1=7) 2 2/(,70.2)
zw(a) = <9a> T o= In R (2.38)

By the definition of zy (a),

1—g 1 2

e~ farw (@) 5F (xw(a)) ~ 537W(a)1*767‘x""(“)w ~ ﬁe*xW(a)v (2.39)
and for z < xw(a)!~7/? one has
e~ (w(@)—2)" _ j—aw(a) +yz/zw(a)' ™7 (2.40)
With these results, one can easily see that
e et s 2?1 (z) (2.41)
for all x < zw(a) — z with 1/6, < z < zw(a) and
el & %F"(m) (2.42)

for all z > zw(a) + z with 1/0, < z < zw(a). The relations (2.39)) and (2.40) imply
that for x = zw(a) + K/0, + o(1/a), where K is a fixed constant,

-K —K(1—7)
0z —I e —I
e 0% v —F (xw(a)) ~ ——F (). (2.43)
Analogously, for z = zy(a) — K/0, + o(1/a),
o (z) ~ e KU1 e0az, (2.44)

a

Furthermore, g(z)/(0,x) ~ 1 for z > xw(a) and g(z)/(0.x) ~ 1/(1 — ) for z ~ zw(a).
Combining all the results from above, we arrive at

g 0am if v < xw(a) —1/0,,
(1 + 6(;‘1;;;)) e—9a$’ lfl’ = xw(a) — K/Ga =+ 0(1/&),K > O,
—I
P(M@ > z) ~ (e‘K(l_“’) + (1_17)2) Fa(z), if v =xw(a)+ K/0,+0(1/a), K >0,
—I
=) ) iz - ow(a) +1/00, 2 % ow(a),
L %Fl(x% if z > xw(a)

(2.45)
Ezample 5: Semi-exponential distributions. Semiexponential distributions are distribu-
tions for which the right tail F(z) has the form

F(z) = e @) (2.46)
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2 Heavy traffic and heavy tails for subexponential distributions

where v € (0,1) and L; is a slowly varying function. Assume that L; is differentiable.
The rule of ’'Hospital gives

(z) F()
(@) " 7 La(a) + o I ()

in this case. From this, one can see that for all L; such that L;(z) — oo as x — o0,

F' ()

F

1_
e 0t > fFI(x)
a
for z such that z = O((1/6,)"/1=)) and
1—
el & 5Fl(x>

for x > (1/6,)¢ with C > 1/(1 — 7). The latter can be verified by use of the so called
Potter bounds (see e.g. Theorem 1.5.6 in [5]), which state the regular varying functions
grow slower than any power. Hence, the critical value is (1/6,)*/(1=7) and Theorem
states that

e laz if 2 = O((1/6,)Y 0=,

P(M@ > 2) ~ { 1F' (@), if @ > (1/0,)° /0=, (2.47)
—I
—0, F (») o
e x + W, OtherWlbe,
for an arbitrary ¢ > 0.
With the latter examples we perform comparison between the distributions for which
a transition zone exists with the ones from large deviations. For a good survey of the
results in large deviations, see for example [39]. The probability P(S, > x) behaves as
the tail of the normal distribution ®(x/4/n) below some threshold series (¢,) and as
nF(x) above another threshold series (d,).

Remark 2.11. Just like in large deviation theory, there is no transition zone for regular
varying distribution functions and for lognormal-type distribution functions with index
B < 2. However, unlike in large deviations, there is still no transition zone for lognormal-
type distribution functions with index 8 > 2. If the tail possesses a Weibull-type distri-
bution with index v € (0,1) there is a transition zone just like in large deviations, but
the value v = 1/2 is not a threshold in the result (2.29) as it is in large deviations.

2.3 Proofs

2.3.1 Proof of Lemma 2.2]

Let us first consider the case v = 0. The assumption (2.11)) implies
/
(9(%)) -0
Inz / —
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2 Heavy traffic and heavy tails for subexponential distributions

and an easy calculation shows that this is equivalent to

g(z)

!
> .
g(x) = rlnx

Furthermore, by virtue of ¢’(x)zInz/g(x) /7,

<g’(m)xlnx>/ _ g"(@)zlnz  g'(x)(1+Inz) (¢'(z))?xrInx -0
9(x) '

@ g (g@)? -

The concavity implies ¢”(z) < 0, therefore the latter inequality gives ¢'(x)(1 + Inx) >
—¢"(x)zInz and consequently we obtain by regarding (2.12) that

—g"(x) l+Inz l+Inz
@@ = 2@ = ()

Due to the term on the right hand side of the latter inequality is decreasing.
Because of E[|X(9)|>*¢] < 00, one has g(z) > (2 +¢) Inz and therefore the term on the
right hand side of the latter inequality is bounded by 1/2. Due to the term is also
decreasing. This immediately implies with b = 0 for all g such that g(z) > In(z)
as ¢ — oo. In the case g(z) = O(In(z)) as x — oo, the relation follows directly
from our asssumptions.

Now, consider the case v > 0. The condition ({2.9)) gives

(2 <o

for all g1 > 0 if x is large enough and an easy calculation shows that this is equivalent to

J@ < (4 el

Using ([2.10)) instead of (2.9)), one can show in the same way that, for all 1 > 0 such that
v —e1 > 0, one has

~—

(z

g'(x) > (v - 51)7

if x is large enough. The condition xg'(x)/((y — €1)g(x)) * implies that, for all &1 > 0
and z large enough,

< zg'(z) )': vg"(x) 9@ (g'(2))?

(v —e1)g(z) (y—engl@)  (v—egl@) (v —e1)(g(@))? =0

Thus, the concavity of g gives ¢'(x) > —z¢”(x) and consequently, by (2.14)),

79//('1:) 1 1 =0 as T (0. @]
G@ S 9@ = (=gl oW T
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2 Heavy traffic and heavy tails for subexponential distributions

2.3.2 Proof of Lemma 2.3

We will prove that there exists an z(a) such that we have exact equality 0,z — g(z) —
In(ab,) = 0. The latter follows from the continuity of g(x). Indeed, on one hand for

z=1/0a, (2.33) gives

O,z — g(x) — In(aby) = 2In(1/a) — g(1/a) + O(1)
<2In(l/a) — (2+¢)In(1/a) + O(1) <0

for a small enough. Here we used that the existence of E[|X(®)|2*¢] implies g(z) > (2 +
¢)Inz for x large enough. On the other hand, (2.9) implies that we have g(z) = o(z7"1)
for all 1 such that 0 < v < v+ &1 < 1. Hence, for x = (1/9(1)0,

0oz — g(z) — In(ab,) ~ 6}1—0 _ 9;C(V+61) >0

provided C > (1 —~y —e1) L.

Moreover, the function z(a) is monotone increasing in a. Indeed, using 8, = 2a/0? +
o(a), we attain
(Oux — g(x) +Ina), = (2/0* +o(1))z + 1/a > 0.

This means that as a decreases, 0,2 — g(x) + Ina decreases. Since = > g(x) as x — o
this implies that the solution z(a) to 6,2 — g(x) + Ina = 0 increases.
Suppose that Z(a) is another solution to (2.16)). One can easily see that, for g(z) =

(2+¢)In(z), (2.16) implies
.. Oqz(a)
lim inf >
a—0 ln(l/a)
and since g(x) > (2 + ¢) Inz the latter holds for all g such that F' € K, v € [0,1). By
regarding ([2.48)) and the definition of x(a) from (2.16)),

9(z(a)) _, , In(1/(aba))
Ox(a) =1+ Oyx(a) +oll).

e>0 (2.48)

(2.49)

This means that there exists a constant C; such that g(z(a))/(0sz(a)) < Ci. To show
that T(a) = x(a)+0(1/a) let us first consider the case v = 0. For v = 0, inequality (|1.15))
states that, for all &1 > 0,

g(z) —glx —w) < 261wg(;), 0<w<x/2 (2.50)

Furthermore, g(x) < z implies xz(a) ~ Z(a) and therefore |z(a) — Z(a)| < x(a). Hence,
(2.50]) gives that for all &1 > 0,

F(a) — 2(a)| = g(f(a))e—ag(:v(a)) +o(1/6,)

< 2¢1|7(a) — x(a)ygoiz((acz)) +0(1/0,) < 26101 |7 (a) — z(a)] + 0(1/6,)
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2 Heavy traffic and heavy tails for subexponential distributions

and for 1 < 1/(2C4) this implies Z(a) = x(a) + o(1/a).
Now suppose v € (0,1). In this case, (2.10)) ensures the existence of €5 > 0 such that
g(x) > x°2. By the definition of x(a),

xm%—ﬂﬁﬁ)—ign;¢+o(é). (2.51)

Therefore, there exists some €9 > 0 such that

1+4-e2
z(a) > <91a> (2.52)
and hence, by ,
§§2;=1+4D- (2.53)

Combining this result with (1.17) and |z(a) — Z(a)| < z(a), we see that one can choose
0 <a <1 with

g(z(a))
Oaz(a)

0) — (o)) = |2 ZID) o175, < afia) - ola)

< afz(a) — z(a)] + o(1/64) + of|z(a) — 2(a)]).

+0(1/60,)

Consequently, we obtain z(a) = z(a) + o(1/a).

2.3.3 Proof of Proposition

During the whole proof we assume a to be sufficiently small, even if not explicitly men-
tioned. The supermartingale property for (Y,gl)) is equivalent to the following two ine-
qualities:

E[G ¢, (z—y— XN+ E[G c(z—y— X))
<G_e(x—y)+GCGic(z—y), y<z-—dz(a), (2.54)

and
E[G ., (z—y— XN <G, (x—y), ye (z—iz(a),xz] (2.55)

Put ¢t := x — y and remark that z(a) does not depend on x, but only on a. Then, ([2.54)
is equivalent to

E[G7Ca (t - X(a))] + E[élfs(t - X(a))] < cha (t) + élfs(t)v > 5t(a)v (2'56)

where we wrote ¢(a) instead of z(a) due to the change of variables. In addition, (2.55) is
equivalent to

E[G_,(t — X)) < G_., (1), tel0,6t(a)). (2.57)
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2 Heavy traffic and heavy tails for subexponential distributions

Let us bound the expectation on the left side of the latter inequality. Put x, = 0, — ¢,
for brevity, then

E[G_, (t — X®)]
< e tP(X(W < —1/k,) + e 'R [e"ax(a);X(“) € (—1/Ka, 1/%@
e tB [ X X € (1mg, ] + F(1)
=:G1 4+ G2+ G3 + Gy. (2.58)

By virtue of (2.48)), z(a) > 1/a and therefore

‘@ = n(i/a)

=o(a) asa—0. (2.59)

Recalling that 6, = 2a/0? + o(a) and using the estimate e® < 1 + z + 22, which is valid
for |z| < 1, one obtains

eraX () = X —eaX(®) o faX(® (1 — X @ 4 (CaX(a))Q) '
for X(®) € [~1/kq,1/k4). Using ¢, = o(a) again, we get
Gy < e "R [egaX(a) (1 — o X W 4 (ca X ()2 ) X € (=1/k,, 1/I~£a]}

P {egdxm) <1 — caX(a)> X e (=1/k,, l/ma]} + o2e2lerat,

Furthermore, since 6, = 2a/0% + o(a) and E[|X () [>*¢] < oo,
E [X< ) 0a X, x(0) ¢ [ /g, 1/,%]}
=B [X X € [~1/kg, /]| + 0. [(X@)% X € [<1/k0, 1/1]] + o(a)
= —a+0%0, +o(a) = a+o(a).

One can easily see that (2.9) implies g(t) < t*2 as t — oo for all e > 0, and for this

reason ([2.51)) gives

1 1+e2
t(a) = z(a) < <9> (2.60)
and hence
ca>a'™2 asa—0 (2.61)

for each £ > 0. Therefore, by the assumption E[|X(®)]>*¢] < oo,
P(|X @] > 1/kq) = o(acy). (2.62)
and, as a consequence,

E eeax<a>;X(a) € (1/kq,1/a]| = o(acy).
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2 Heavy traffic and heavy tails for subexponential distributions

Combining the latter calculations with the definition of 6, from (2.5) and the relation
(2.59), we obtain

Gy < e fal — c e MR [X(a)ee“x(a);X(a) € [-1/Raq, 1//1(1]] + o(acqe” " t)

—Kqgt

=e ~Hal),

— acge "t + oacqe

Next, integrating by parts,

t
Gs = e_nat/ e”ayP(X(“) € dy)
1/Ka
t

— () + e (1 k) + gl ! / 5T (y)dy. (2.63)
1/Ka

By plugging the latter results into (2.58)) and using (2.62)) to bound G4 and F(1/k,), we
get

E[G_c,(t = X)) = G_c,(t)
t
< —acge” ot 4 e el / eV (y)dy + o(acqe ") (2.64)
1/Ka

for all t > 0. If 0 < ¢t < 1/K,, the integral term does not give any positive contribution,

we attain
E[G_., (t — X @) = G_., (t) < —acqe " + o(acqe "at) (2.65)

and the right hand side is negative for a small enough. If, on the other hand, ¢t > 1/k,,
we calculate the integral in and in order to do so we consider different cases. First,
consider 1/k, < t < t(a) — Cln(1/a)/0, with a positive constant C' such that C' < /4,
which is possible because of . We have

t . t(a)—Cln(1/a)/0q
/ " YF(y)dy < / loy=9W)—cay gy
l/Ha 1/5(1
t(a)

< (o) =C 11/ 0)~g(Ke)-C1/0)/00) 1 /=10 / eCaldy.  (2.66)
1/ka

Here we used the fact that 6,y — g(y) is convex and takes its maximum at one of the
edges of the interval [1/kq,t(a) —C'ln(1/a)/0,]. This is true since 0,y — g(y) is increasing
for y such that ¢'(y) < 6, and decreasing for y such that ¢'(y) > 6, and g is concave.
Furthermore,
t(a) 1 1
/ e “Ydy = — (e_C“/"““ - e_c“t(“)) < —. (2.67)
1

/ka Cq T Cq
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2 Heavy traffic and heavy tails for subexponential distributions

Let us calculate the first term on the right hand side of (2.66[). Recall that our choice of
C and (12.48) give t(a)/2 > C'In(1/a)/6,. Hence, due to (2.50) and the definition of ¢(a),

(Pa(t(@)~C'In(1/a)/6a) ~g(t(a)~C'In(1/a) /6a)

< eOGt(a)—C'1n(1/a)—g(t(a))+2alc’ln(l/a)g(t(a))/(eat(a))

_ (Pat(a)=g(t(a)) —~C In(1/a)(1-2¢19(t(a))/ (Bat(a)))

~ af,e~C1n(1/a)(1=2219(t(@)/(at(@) (2.68)

By virtue of (2.48)) and (2.49) there exists a constant C” such that

9(t(a))/(0at(a)) < C". (2.69)

Plugging this result into (2.68)), we attain

eea(t(a)—Cln(l/a)/Ga)—g(t(a)—Cln(l/a)/ea) < (1 +O(1))9aa1+0(1—2510’)' (270>

Since €1 was arbitrary one can choose 1 < 1/(2C") and thus, the relations (2.61) and
[2.70) combined with 6, = 2a/0? + o(a) imply

¢Pa(t(@)=Cn(1/a)/0a)=g(t(a)=Cn(1/a)/0a) — ()(2+CA=21C")y — o((2). (2.71)
On the other hand, from E[|X(|2+¢] < 0o, K, = 2a/0? + o(a) and (2.61) follows that
~9(/ka) = F(1/ky) = 0(a®*%) = o(c2). (2.72)

Plugging the results from (2.67)), (2.71)) and (2.72)) into (2.66)), we finally obtain

t
Kqe ot /1/ "V (y)dy = o(ac,e™ ") (2.73)
Ra

for t <t(a) — Cln(1/a)/b,.
Next, consider the case t > t(a) — C'In(1/a)/6,. In this case we split the integral from

(2.64) into two parts:
t—C1Int/kq t
/ / / . (2.74)
1/Ka 1/ka t—C11lnt/kq

with a constant C7 to be chosen later. The first integral can be estimated similar to the

case t < t(a) — C'ln(1/a)/b,. By (2-67) and (2.72),

t—C1nt/ka o t—CiInt/kq
/ " VE (y)dy = / era¥=9W) gy
1/Ha 1/5a
t

< tena(thl Int/ka)—g(t—C1lnt/ka) + e9a/ﬁa*g(1/lﬁa) / efcaydy
o 1/Ka
< tLCOrgrat=g(t=Cilnt/ka) | o(c Y, (2.75)
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2 Heavy traffic and heavy tails for subexponential distributions

Here we used that k,y — g(y) = y(ka — g(y)/y) is convex and takes its maximum at one
of the edges. By virtue of g(t)/t \, and C'In(1/a)/0, < t(a)/2,

9(t) _ g(t(a) = Cn(1/a)/b) _ ,9(t(a))
t = tla)—ClIn(1/a)/0, t(a)

uniform in t > t(a) — C'In(1/a)/0,. The latter result plus (2.69) gives

<2

=0(1) (2.76)

uniform in ¢ > ¢(a) — C'ln(1/a)/0,. Let us consider ¢t such that t(a) — C'ln(1/a)/0, <
t < 4t(a)/e. In this case, for C; sufficiently small one has CInt/k, < t/2 and therefore
(2.50) and ([2.76]) imply that there exists a constant Cy such that

g9(t)

g(t) —g(t — Ci1Int/k,) < 2¢:C1Int :‘it

< 2e1C1Csy Int.
Consequently,
e~ 9(t=Clnt/ka) < t2€1ClCQF(t). (2.77)

Since €1 > 0 can be chosen arbitrary small, one can choose 1 such that 2¢:Cy < 1.

Furthermore, by ([2.60)),

,{atl—Cl(l—Qeng) _ O(nat(a)l_cl(l_%l@)) _ 0(1)

and consequently, by plugging (2.77)) into (2.75]), we obtain

t—C1lnt/kq L L

ﬁae““t/ eV E(y)dy < /ﬁ;atlfcl(l*%lc‘?)F(t) + o(acq,e”"t)
1/Ka

=0 (F(t)) + o(acee""). (2.78)

Now, suppose ¢ is such that ¢ > 4t(a)/e. In this case, by virtue of (2.48) and 6, =
2a/0? + o(a),
In(4t(a)/e)

% e (1+0(1))<

21n(1/a) In(41n(1/a)/0,)
b, O )

— 1+ 0(1))111(61/‘1)(2 _ ) >0

for all Cy < 2. Therefore, by proceeding analogously to the latter calculations, we obtain

for t > 4t(a)/e, 1 < C; < 2 and €; small enough

t—C11lnt/kq L L

ﬁae““t/ e"YE(y)dy < ﬁatlfcl(k%lc?)F(t) + o(acq,e”"t)
1/Ka

=0 (F(t)) + o(acse""). (2.79)
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2 Heavy traffic and heavy tails for subexponential distributions

Let us examine the second integral from the right hand side of (2.74). For 1 small
enough, 2¢19(t)/(0,t) < 1. Hence, by applying (2.50) with C; defined as above and £;
small enough, we attain

! — C1In(1/a) /ka
Raeﬂat/ e'fayF(y)dy = Ha/ e*lfawfg(tfw)dw
t—C1 In(1/a)/ka 0
Ci1n(1/a)/ka _
< kge 9 t vin1/a)/ e Faw(1=2e19(t)/(rat)) g,y < E(t)
) 0 = T 22090/ (ral)
F(t)

T 1= 2e19(t)/(6a1) (2.80)

for all ¢ > t(a) — C'ln(1/a)/6,. By plugging (2.73)), (2.78)), (2.79) and (2.80) into (2.64)

we obtain

E[G—Ca (t - X(a))] - G—Ca (t)
F(#)1{t > t(a) — Cln(1/a)/ba)
1—2e19(t)/(bat)

+o(F(t))1{t > t(a) — C'In(1/a))/0,}. (2.81)

< —acge et 4

+ o(acqge™"t)

The indicator function after the o-term shall mean that this o-term only appears if the
condition of the indicator function is fulfilled.

Let us show that the latter inequality implies . One easily sees that and
the fact that ¢(a) increases with the order of g imply that for all 0 < § < 1 and our choice
of C,

0t(a) < t(a) —Cln(l/a)/b,.

Consequently, for 0 < ¢ < dt(a) and a small enough,
E[cha(t — X(a))] -G, (t) < _acae—nat + O(GCae_Hat) <0.

It remains to show ([2.56)) and to do so we need to examine @1_5. By the definition of
Gl—aa

o(1 =BGt - X)) = | T a2

—0o0

_ ( /O e /_ ;) F(d2)F (t - 2).
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2 Heavy traffic and heavy tails for subexponential distributions

Integrating the first integral by parts, we obtain

t—ot(a) I
/O Fld)F (¢ - 2)

1

— F(0)F' (t) — F(t - 6t(a))F' (6t(a)) +

1

= FO)F' (t) = F(t — 5t(a)F' (5t(a)) +

/ " P F (=) = FOF (1) / " F(t ) F(2)de.

—00 —00

Combining the above identities, we get

a(l — €)E[G_(t — X(@)]

_ _ tz_
=F' (t) — F(t — 6t(a))F ((5t( ) —i—/o F(z)F(t — z)dz
t/2 F(t—z)dz — /0 F(t—2)F(2)dz.
Hence, for every t > 6t(a),
E[Gy(t - X)) = G1(t)
E(t) <_F(t_ OUD) B (51(a)) + / P2,
0

~a(l—¢) F(t) 0
t/2 F(t—z) 0 F(t—z)
+ /&(a) F(Z)Wdz — /_OO F(Z)F(t)dz> (2.82)

Consider v = v(t) such that (t/g(t))'™% < v < t/g(t) with a small constant d; > 0.
We will see later what small means in this context. By (2.50)),

v F(-2), [ (1)
/OF(,Z)F(t)dzg ; F(z)exp{%lzt}dz

_ /0 ")z + 2519(5) /0 " F(2)dz+ 0 (f@) L (2.83)

where we used Taylor approximation and the assumption E[|X(®|?*¢] < 0o with & > 0
in the last equation. Due to our assumptions the function ¢ is concave and increasing,
consequently we have

9(2) —g(v) = g(t —v) —g(t — 2)
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2 Heavy traffic and heavy tails for subexponential distributions

for all z € (v,t/2]. Hence,

Y2 P
/ F(z)F(;(t))dz < texplg(t) — g(v) — glt — )

<texp{—g(v) +e1vg(t)/t} ~ texp{—g(v)},

(2.84)

where we again used (2.50) and that v < ¢/g(t). Furthermore, we have g(t) > (24¢)Int
because of E[|X (@ |>*¢] < co. Hence, by (2.84) and recalling g(t) < t°* for all £ > 0,

P FE=2) e (9)
/V F(Z>Wdz < (A +o())tr~ ) = <t>

for v > (t/g(t))' =% with 6; small enough. In the case t/2 < 6t(a) one has

t/2 _ F(t—=2)
/ét(a) F(z)if(t) dz <0

and if 0t(a) < t/2 one can show in analogy to (2.83) that

F(z)udz < / F(z)dz + 2€1g(t)/ 2F(z)dz
5t(a) F(t) 5t(a) t Jsta)

for 6t(a) < v. Furthermore, because of t(a) > 1/a and E[|X (@ >¢] < oo,

v v

F(2)dz = o(a) and 2F(2)dz = o(1).
BRCIEET /&(a) (2)dz = o(1)

Consequently, [Z57), [Z38) and (2:83) give

[ RO i ot 0 (20,

On the other hand, (2.50) implies
g(t)

t —_
g(t —2) < 2,220

gt —2) = g(t) < —2e127,

for all z < 0 such that —z < v. Thus, since v < t/g(t) and E[|X(®)>+¢] < o,

° F(t—2) O Ft—2) ’ 9(t)
/OO F(Z)Wdz > /,,F(Z)F(t)dz > /VF(z)exp{%lzt

= /0 F(z)dz + Qelg(tt) ' 2F(z)dz+ o <g(tt)> .

-V —v

39

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)



2 Heavy traffic and heavy tails for subexponential distributions

Plugging (2.83)), (2.85), (2.86), (2.89) and (2.90) into (2.82) with (t/g(t))' % < v <«
t/g(t), where d; is small enough, we obtain

E[Gi_.(t — X@)] = G1_.(¢t)

< - (f(_t)s) ( /0 "Flo)dz — /_ 0 F(z)dz>
+ 2519?) </0 JF(2)dz — /0 zF(z)dz> +o(a)+o <9(f)> ] . (2.91)

Choose 07 so small that

[ oo (22) wma [ =o(22)

/0 "F(2)ds — /_ 0 F(2)dz = —a+ o (9:)) (2.92)

and, by Fubini’s theorem,

Then,

v 0 0_2
/0 2F(2)dz — / 2F(z)dz = > +o(1). (2.93)

bt 4

Hence, for ¢t > dt(a),

E[G1 o(t— X)) = G1 (1) < "o (_a + 251029(t) +o(a) + o (g(tt)>>

a(l—2) ot
_ 1F£t)€ <—1 + 251‘(]01? +o(l)+o (%i?)) :

where we used 6, ~ 2a/c?. Since g is increasing and g(t)/t is decreasing, the relation

(2.76) implies that for all ¢ > dt(a)

9(t) _ g(dt(a)) _ g(t(a))
ot = Boot(a) = uot(a) OV (2.94)

and we finally obtain

Bt~ X)) - Grc) < 12 (142250 o)) 99)

[a—

for t > 6t(a) and an arbitrary small £ > 0.

With the results from (2.81]) and (2.95) we can show (2.56). For dt(a) < t < t(a) —
C'ln(1/a)/0,, (2.81) and (2.95) give

E[G ¢, (t = X+ E[G1o(t — X)) = G, (1) = Grc(t)

99(;)) + o(acqee™ ") 4 o(F(t)).

F(t
< —acge et 4 1()8 (—1 + 2¢e1

40
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For 1 small enough, ([2.94) ensures that

2e19(t)
0,1t

uniform in 6t(a) <t < t(a) — C'ln(1/a)/0,. Hence,

<1 (2.96)

E[G_,(t = X))+ E[G1-o(t = X)) = G, (1) = G1=(t) <0

uniform in §t(a) < ¢t < t(a) —Cln(1l/a)/0,. Now, consider t > t(a) — C'In(1/a)/0,. Then,
again by virtue of (2.81)) and (2.95),

BIG -, (t — X)] + BIG1 ot - X))~ G_e, (t) — Gro(0)

F(t) g(t) (1—-¢) S
T_¢ <_1 T T Io 2slg(t)/(0at)> +olacee™™) + o

< —acge et 4

|
~

~
N—
SN—

One can easily infer from ([2.94]) that
2
t
l-e< <1—2519( >>

Oat

for e1 > 0 sufficiently small and by plugging this result into (2.97)), we obtain
E[G ¢, (t— X))+ E[G (t - X@)] = G, () = G1=(t) 0

uniform in ¢t > t(a) — C'ln(1/a)/0,. Summing up all the above results this means that
Yn(l) is a non-negative supermartingale.
Now, let us show that (Yéz)) is a submartingale. Therefore it is sufficient to show that

E[G., (t — X)) + E[G1ic(t — XD)] > Ge, (t) + G1ie(t), t > 26t(a), (2.98)
and B B
E[G,, (t — X)) > G, (t), te][0,20t(a)). (2.99)
Let us first examine @1+e for t > 26t(a). Due to ,
E[@1+€(t - X(a))] - al+z—:(t)

F(t) F(t —6t(a)) =1 v F(t—2) 0 F(t—2)
2 Ji+e) (— 70) F (6t(a)) +/0 F(z)ﬁdz — /OO F(Z)F(t)dz>

(2.100)

for v = v(t) such that (t/g(t))'™ < v < t/g(t) where &; is small. By using that
E[|X(®)]>*¢] < 00 and choosing §; > 0 sufficiently small, we attain

- zmz _sz V_(e)_yzszz
/—ooF() F(t) d S/_OOF( Jdz < i /—oo [eR()d

=o(r 1)) =0 (9&’5)) : (2.101)

41



2 Heavy traffic and heavy tails for subexponential distributions

For ¢ > 20t(a), the inequalities (2.50) and (1.16)) give

F(t - 6t(a))

< 62516t(a)g(t)/t < eQag(&t(a))
F@) -

for every €1 > 0. Furthermore, I'Hospital’s rule and (2.13) give

(1/9'(®))F () g"(t)

o BRrIO)E

~1—b ast— oo.

with 1 —b € (1/2, 1]. Hence,

F(t)
(1—b)g'(t)
Combining the latter results with (2.12]), one attains

—I

F(t) ~ as t — o0. (2.102)

F(t = dt(a)) w1 " o1 2H@ In(0t(@)) 1 _221)g(6t(a))
— T F(6t(a)) < (1+ (1))—(1—b)g(5t(a)) 12

and, by using g(0t(a)) > (24 ¢)In(dt(a)) and t(a) > 1/a,

F(t— (5t(a))F1

) (3t(a)) < (14 o(1))(dt(a)) =120 = 5(q) (2.103)

for £1 small enough. Furthermore, since F(t—z) > F(t) for all z > 0 and F(t—2) < F(t)
for all z <0,

v F(t—2) 0 F(t—2) g(t)
/0 F(z)ﬁdz — /V F(z)ﬁdz > —a+o <t> , (2.104)

where we used (2.88) and (2.92). Plugging the results from (2.101)), (2.103) and (2.104)
into ([2.100)), we obtain

E[Grie(t — X @) = Grie(t) 2 a(lf(j)g (—a Tola)+o (gg)»

O (oo (1)) = T 4 o 2109

~—

where we used (2.94) in the last equality.
Now, let us examine G,,. Put A\, = 0, + ¢4, then

E[G., (t — X)]
= (B[N X @ < 10| + B XX X € (1/a,4]) + e F(1). (2106)
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In the case t < 1/a the expectation on the interval (1/a,t] is used to denote the negative
expectation on the interval [t,1/a). Using the bound e* > 1 + z, the definition of 6,,
E[| X (®)]**¢] < 00 and the relation 6, = 2a/0? + o(a), we obtain

E [eAaX(a);X(a) < 1/4

>E [eo‘lX(a>;X(a) < 1/a] 4+ c, E [X(a)ee‘lX(a>;X(“) < 1/a}
> 1+ ¢,E [X(“);X(“) < 1/4 + fucoE [(X(“))Q;X(“) < 1/a}
>1— acy + O4cq0® + o(acg) =1+ acq + o(acy).

Plugging this result into (2.106f), one attains
E[Ge, (t — X )] = G, (1)
> acge Mt 4 e E [eAaX(a);X(a) € (1/a,t]| + e“F(t) + o(acqe o) (2.107)

for all ¢ > 0. Hence, (2.99) holds for 1/a < t < 2t(a). In the case 0 < t < 1/a, the

Taylor expansion gives

E [eAaX(a);X(a) € (t, l/a]]

< F() + AE [X@; X > ¢] + X2 [(X0)% X > ¢

+MNIE (X)X € (t,1/a]) .
Using A\y/a = O(1) and E[|X(®)|?*¢] < oo, one can easily verify
alog [(X<a>)3;x<a> € (t1 /a]] = O(a=+9)

and thus, by ,

E [eAaX“";X@ e (t,1 /a]}

< F(t) + AE [X(“% Xx@ > t} +\2E [(X<“))2; Xx@ > t} + olacy). (2.108)
Suppose that ¢ > 0 is such that ¢ = O(1) as a — 0. Then, the latter inequality gives

E [e’\“X@;X(“) e (t1 /a]} < F(t) + o(1)

and by plugging this into (2.107)) we attain (2.99)). Now suppose ¢t — oo as a — 0. Since

the second moment is finite, integrating by parts gives

E [(X(a))k;X(“) > t} = t*F(t) + k/ uP TV (u)du
t
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2 Heavy traffic and heavy tails for subexponential distributions
for k € {1,2}. Therefore, by ,
E [eAaX(a);X(a) € (t, l/a]]
< (14 Mot + N2 F(t) + A F () + 202 /OO uF(u)du + o(acy), 0<t<1/a.
t

Using ([2.13) and the I’'Hospital rule, we conclude

1 1/g'(t)  —¢"(x)
= ~ —b€10,1/2) ast— oo.
wo ot @ep 0
Consequently, the I’'Hospital rule gives
t/g' (t)F(t (¢ 1
7(5099) ()Nl—i— g,()Q_ —~~1-2b ast— o0
[ uF (u)du (g'()*  tg'(t)

with 1 —2b € (0,1] and hence

R tF(t)
uF(u)du ~ ——— ast— oo. 2.109
f R 2109
On the other hand, (2.12) and g(¢) > Int give
t) 1
') > & >
g(t) = Int — ¢
and therefore we obtain by regarding (2.102)) that
I tF(t) t2F(t)

F(t) < (1+0(1))

and /too uF (u)du < (14 0(1)) =20

Consequently, because of ¢, = o(a),
E [eAaX(a);X(a) € (t, 1/a]}

< <1 + <1 + (1ib)> b+ <1 + (1_2%)> Ath) F(#) + o(aca) + o(F().  (2.110)

Now suppose that ¢ < 1/a. Then, 6,t = o(1) and hence

E [e)‘“X(a> L X@ e (2,1 /a]] < F(t) + oace) + o(F (1)), (2.111)

which, combined with (2.107), immediately implies (2.99). If ¢ is such that ¢t < 1/a
with ¢ < 1/a, relation (2.62) gives F(t) = o(ac,) and consequently by virtue of A, =
2a/0% + o(a)

E [eAaX“”;XW e (t, 1/a]} = o(acy). (2.112)
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2 Heavy traffic and heavy tails for subexponential distributions

That means (2.99)) is also true for ¢ < 1/a with ¢ < 1/a. Combining the latter results,
we conclude that (2.99)) is true for all t < 1/a.
Now, let us consider t such that ¢ > 2§t(a). In analogy to (2.64)) one can derive the

following inequality from (2.107)) by integration by parts:

E[G,(t — X)) - Ge, (1)
¢
> acqe et + )\ae/\"t/ e F (u)du + o(acge ). (2.113)
1/Ma

Consider t such that 26t(a) < t < t(a) — C'ln(1/a)/6,. In this case we infer from the
latter inequality and (2.105]) that

E[Ge, (t = X)) + E[Grie(t = X)] = G, (1) = G4 (1)

F(t —
> _1J(r) + acqe 2t + o(F(t)) + o(acqe ).
£

To infer from the latter result that (2.98]) holds in this case it is sufficient to show that
F(t) < acee™ asa—0 (2.114)
for 20t(a) <t < t(a) — Cln(1/a)/0,. To do so let us first show that the latter holds for
t =t(a) — Cln(1l/a)/b,. By (2.70),
e—g(t(a)—Cln(l/a)/Ga) < (1 + 0(1))0aa1+0(1—2520’)6_0a(t(a)—Cln(l/a)/@a)
for £9,C" > 0. Hence, by ([2.61) and 0, = 2a/0? + o(a),
e—g(t(a)—Cln(l/a)/Ga) < acae—éa(t(a)—cln(l/a)/Qa)’ (2115)
which is exactly (2.114)) for ¢t = t(a) — C'In(1/a)/6,. Let us show that
g(t) — Aat Ny for 26t(a) <t <t(a) — Cln(1/a)/0,, (2.116)

which is equivalent to ¢'(t) < A, for 26t(a) < t < t(a) — Cln(1/a)/0,. By (2.9),
g(x)/xf1 \ for all £; > 0 or equivalently

e

Using ([2.94) and that g(z)/x is decreasing in x, we obtain

g (z) <e

J @) <e? (f) <e? fit((a‘;)) <00 < Aa

for 1 small enough. Finally, by virtue of (2.116)), the definition of ¢, (2.48]) and (2.115])
we see that (2.114)) is true: For 20t(a) <t < t(a) — C'ln(1/a)/04,

F(t)e)\at — e)\at—g(t) < 6)\a(t(a)—C’ln(l/a)/Ga)—g(t(a,)—Cln(l/a)/Ba)

~ Pat(@)=C'ln(1/a)/00)~g(t(@)~Cn(1/0)/00) g0 (2.117)
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2 Heavy traffic and heavy tails for subexponential distributions

It remains to consider t > t(a) — C'In(1/a)f,. In this case, (2.113)) gives
E[éca (t - X(a))] - éca (t)

¢
> acqe Mt + /\ae_A“t/ eV F (u)du + o(acqe ) (2.118)
Ciln(1/a)/

with C7 > 0 defined like in the proof that (Yn(l)) is a supermartingale. By the monotoni-
city of g,

t Ciln(1/a)/
Age Nt / " F (u)du = Aq / " e Aot gy
C11n(1/a)/04 0

o C11n(1/a) /64 o o
> A\ JF (1) / e MWy = (1 —Clw/f’a)ln(l/a)) = F(t) + o(F(t))
0

and therefore
E[C., (t = X'V)] = G, (¢)
> acqe et + F(H)1{t > t(a) — CIn(1/a)/b.} + olacse ) 4 o(F(t)).
Combining this result with (2.105), we attain
E[Ge,(t — X)) + E[G14c(t — X)) = G, (t) — G14<(t)
> 1F_(:) + acee” M+ F(t)1{t > t(a) — CIn(1/a)/0,} + o(acae™!) + o(F(1)).
Hence, is also true for t > t(a) — C'ln(1/a)/0,

2.3.4 Proof of Proposition

The proof goes along the same line as the proof of Proposition 2.4 However, for reasons
of completeness, we give the whole proof. During the whole proof we assume a to be
sufficiently small, even if not explicitly mentioned.

In analogy to (2.56) and (2.57)), one sees that the supermartingale property for (17,51))
is equivalent to
E[G_,(t— X))+ B[G_(t— X)) <G o, () + G (1), t>6ta), (2119)

and
E[G . (t— XD <G ., (1), telo,dt(a)). (2.120)

To examine G_., we start from the bound (2.58), which states
E[G—Ca (t - X(a))]
—Kat (a) —Kaqt ko X (@ 3 (a)
< e mtP(X@) < 1 /ky) + e "ol [e . X(@ ¢ (—1/@,1/%}}
4 e rlE {e“ﬂX(”;X(“) € (1/%,75]} +F(t)
=: G1 +G2+G3+G4. (2.121)
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2 Heavy traffic and heavy tails for subexponential distributions

Regarding ([2.53)) we can infer from (2.9) that, for all 1 > 0 with v+ &1 < 1, there exists
a positive constant C; such that 0,t(a) < Cyt(a)’1 or, equivalently,

t(a) < Cll/(l—(’Hfl))9;1/(1—(7+€1)). (2'122)

Consequently, s
1 ga —(r+e1
In(1/a)t(a) — ln(l/a)C'll/(l_('”El)) (2.123)

Suppose without loss of generality that 7 < 1. Then, for e; = (7 —7)/2, one has y+¢; <
~4 < 1 and therefore, as a — 0,

Ca

1+1/(1-(v+21))
RH1/0-7) | gre1/a-7) o ba '

In(1/a)

Hence, the Markov inequality and the assumption E[| min{0, X (@ }|'*1/0=7] < oc imply
that (2.62) is also valid in the case v > 0 and one can proceed like in the proof of
Proposition [2.4] to verify

G1+ Go < e "t —acse " + o(acye™ ).

Therefore, (2.62)) and (2.63) give
E[G_Ca (t - X(a))] - G_Ca (t)

¢
< —acqe” "t 4 gae et / "V (y)dy + o(acge™ ") (2.124)
1/Ka

for all t > 0. If 0 <t < 1/K,, the integral term is non-positive, we attain
E[G_., (t — X)) = G_, (t) < —acqe™ " + o(ac,e™t), (2.125)

and this means the right hand side of the latter inequality is negative for 0 < ¢ < 1/k,
and a small enough. Now, consider 1/k, < t < t(a)—C'In(1/a)/0, with a constant C' > 0
to be chosen later. One of the main differences of this proof compared to the proof of
Proposition [2.4] is that C' has to be chosen large in this proof while C' was small in the
proof of Proposition [2.4] By (2.66) and (2.67),

t o t(a)—Cln(1/a)/0q
/ eV (y)dy < / elay=9(W)=cay gy
1

/Ka 1/Ka
< leea(t(a)fcln(l/a)/Ga)*g(t(a)*Cln(l/a)/9a) + leea/ﬂafg(l/ﬂa), (2.126)
Cq Ca
Because of ([2.9)),
w\ Yt+eL
g(t—w)Zg(t)(l—?) , 0<w<t.
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2 Heavy traffic and heavy tails for subexponential distributions

Furthermore, for w < t as t — oo, one has
W\ Ytel w w
) e ()
( ; (v+e), +oly

and consequently

g(t) —g(t —w) < (v+ 61)wg(tt) +o (wgit)> < ﬁwgit), w < t, (2.127)

for all 0 < v+ &1 <7 < 1. Regarding (2.51)) and that g(u) > u®2 as u — oo for some
€9 > 0, one obtains

Oa
and therefore, by applying the inequality (2.127) and the definition of ¢(a), one gets

1/(1—-e2)
t(a) > <1> > In(1/a)/0, (2.128)

(Pa(t(a)~C'In(1/a) /04)—g(t(a)~C'In(1/a) /0a)
< Pat(@)=Cln(1/a)~g(#(@) +7C In(1/a)g(t(a))/ (But(a))
_ obat(a)—g(t(a) ,~C'In(1/a) (1-Fg(t(a))/(6at(a))

~ af e C1/a)(1-Ag(t(a))/(Bat(a)) (2.129)
By ([2.53]), we conclude that there exists €3 > 0 such that 7(1 4 e3) < 1 with

g(t(a))
Out(a)

¥ =7+o(1) <75(1+es3)

and, plugging the latter result into (2.129)), we attain

e (@) =CIn(1/a)/00)~g(t(a)=CIn(1/)/00) < (1 4 o(1))fua HCOT(1Fe8)). (2.130)

Consequently, we infer from (2.123)), (2.130) and 6, = 2a/0? + o(a) that, for C large

enough,

ela(t(a)=Cn(1/a)/0a)—g(t(a)=C1n(1/a)/0a) _ O(Cg)_ (2.131)

On the other hand, by (2.123)),
ey )

F(l/kg) < e fe ™ =o(c). (2.132)

Plugging the results from (2.131)) and (2.132)) into (2.126)), we obtain

t
/ﬁae_““t/ "V (y)dy = o(ac,e” ") (2.133)
1/Ka

for t <t(a) — Cln(1/a)/0, if C is large enough.
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2 Heavy traffic and heavy tails for subexponential distributions

Next, consider the case t > t(a) — C'ln(1/a)/6,. We split the integral from (2.124)) into

two parts
t t—C11nt/ka t
/ = / + / (2.134)
1/Ka 1/Ka t—C1lnt/ka

with a large constant C7 to be defined later. Note that because of (2.128)) we have

t(a) > C11n(1/a)/0, for any constant C > 0. By virtue of (2.132)), the inequality (2.75))
is also valid in the case v > 0 and therefore

t—C1Int/kq o
/ e VE (y)dy < t'C1erat=9(t=Cilnt/ra) 4 o(c,). (2.135)
1/Ka

Regarding ([2.128]), one has CiInt/k, < t for all C; > 0 and t > t(a) — C'ln(1/a)/b,.
Hence, inequality (2.127)) gives

g(t) — g(t = Cilnt/re) <3C e (tt) (2.136)
with 4 < 1. Let us show that, uniform in ¢t > t(a) — C'In(1/a)/0,,
gg(tt) <1+o(1). (2.137)
By using (2.128)), and that g(t)/t is decreasing for ¢ large enough,
9(t) _ 9(t(a) —Cn(1/a)/ba) _ g(t(a)) 9(tl@) 4 (2.138)

Oat ~ 0a(t(a) — CIn(1/a)/0s) ~ Oa(t(a) — CIn(1/a)/0s)  6at(a)
uniform in ¢t > t(a) — C'ln(1/a)/0,. Combining this result with (2.136)), we conclude that
there exists some g4 > 0 such that 7(1 +&4) < 1 and
g(t) —g(t— Cilnt/kq) <H(1 4 ¢e4)C1 Int.

Therefore, by plugging the latter result into ([2.135]),

t—C1Int/kq o ~ _
/iae_““t/ eV (y)dy < natl_cl(1_7(1+54))F(t) + o(acqee” " t)
1/Ka

and the latter inequality implies that, for C; large enough,

t—Ch11Int/kaq o o
e T (w)dy = oF(1) + ofacee ™). (2.130)
1/ka

Let us examine the second integral from the right hand side of (2.134)). Due to ([2.127]),
(2.137) and ¢, = o(a),

t . Cilnt/kq
/iae_”“t/ etV (y)dy = Ka/ e Haw=9(t=w) gy
t—C1Int/kq 0

Cilnt/kq
< keI / g—raw(1=(1+2e0)9(0)/(5at)) gy
0

F(t) F(t)

< 1-— (’Y + 281)g(t)/(liat) ~ 1-— (fy + 281)g(t)/(«9at) (2140)
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2 Heavy traffic and heavy tails for subexponential distributions

for all ¢ > t(a) — C'In(1/a)/6, and £; such that v+ 2e; < 1. By plugging (2.133)),
and into (2.124)), we attain
E[G_c,(t = X)) = G, (t)
F(t)1{t > t(a) — CIn(1/a)/0,}
1= (v +2e1)g(t)/(0at)
+o(F(t)1{t > t(a) — C'ln(1/a))/b,}. (2.141)

S _acae—mat 4 —nat)

+ o(acqe

The indicator function after the o-term is used to denote that this o-term only appears if
the condition of the indicator function is fulfilled. Let us show that the latter inequality

implies (2.120]). By virtue of (2.128)), one has t(a) — C'In(1/a)/b, ~ t(a) > dt(a) and

consequently
E[G_., (t — X)) — G_, (t) < —ac,e™ " + o(acse ™ at) < 0

for 0 <t < dt(a). R
It remains to show (2.119)) for ¢ > d§t(a) and therefore we need to examine G__. By
the definition of G __,

a(1— )BT, (t— X)] = ( / - /O t&(a)) Fa) LM (= 2)F (¢ — 2). (2.142)

To examine the integral terms from suppose v = v(t) is such that (t/g(t))' % <
v < t/g(t) with a small constant §; € (0,1). We will see later what small means in this
context. Note that L(V)(.) is differentiable for N large enough since L(®)(t) < oo for
t > 0t(a) due to (2.94). For the rest of the proof assume without loss of generality that
N sufﬁciently large. By integration by parts,

F(dz) LM (t — 2)F (¢ — 2)

\

(t) + VF(Z)LUV) (t —2)F(t — 2)dz
0

<FO)LM@)F
+ / F(2) 0. LM (t — 2))F' (t — 2)dz. (2.143)
0
Since g(u) is increasing, (2.94) ensures that, for z € [0, ],

and from this one can easily infer that
LNt —2) < LN(t) + o(1) (2.145)
By additionally regarding , an easy calculation gives
0< —8,LMN () =0(1/t) (2.146)
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2 Heavy traffic and heavy tails for subexponential distributions

and, for z € [0,v],

A, LM (t — 2) < =8, LM (¢) + o(=8, LN (t)). (2.147)
Hence,
F(dz) LM () (t - 2)
0
<FOLMOF () + (1 + o(1) < / F(2)F(t—z2)d

—9,L / F(z t—z)d). (2.148)

On the other hand, integrating by parts gives

0
/ Pld=) L™t — )F (¢ - 2)

< FO)LMWOF (t) — / F(2)LM(t — 2)F(t — 2)dz

— 00

- / " F(2)(0.LM(t — 2)F (t — 2)dz.  (2.149)

The inequalities (2.145) and (2.147)) imply that, for z € [—v, 0],
LNt —2) > LM t) 4+ o LM (1)) and 8.LN(t — 2) > =8, LN (t) 4 o(—=0,LM(2)).

Therefore,
0

/ " F(z) LWt — 2)F(t — 2)dz > / F(z) LN (t — 2)F(t — 2)dz

. )
> (14 o(1)) LM (1) / F)F(t—2)ds  (2.150)

-V

and

/ ' F(2)(0,LM(t — 2)F' (t — 2)dz > " F(2)(0.LN(t — 2))F (t — 2)dz

—00 —v

—(1+0(1))2, LM ¢ )/0 F(2)F'(t — 2)dz. (2.151)

By combining the results | m and (2.151)) with (| , one attains
| Fasror -2
—0o0
<IMHF'

() + (1 + o(1)) <L(N)()[/O F(z )F(t—z)dz—/ F(z) (t—z)dz]

7
_o L™ (1) [/OF( VEL( — 2)dz — Tt - z)dzD L (2152)
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By (120,
v F(t—2) Y q(t) s
/OF(z))sz/O F(z)exp{(’y—i—%l)z . }d

= /Oy F(z2)dz + (v + 251)@ /OV 2F(2)dz + 0 <g(tt)> , (2.153)

t

where we used Taylor approximation and the assumption E[|X(®|?*¢] < 0o with & > 0
in the last equation. Furthermore, ([2.127)) implies that, for all z < 0 such that —z < v,

gt —2)—g(t) < —(v+ 81)2‘(]?__;) +o0 (—zg(tt__;)>

< —(y+ 251)29535). (2.154)

Thus, since v < t/g(t) and E[|X(®)|>*¢] < oo,
0 Tt — » 0
/ F(Z)Mdzz / F(z)exp{(7+251)zgit)}dz

— F(t) v
0
= /_(1 F(z)dz+ (v + 251)9? /_V 2F(z)dz+ o (ggf)) . (2.155)

Combining the results from (2.153) and (2.155)), we attain

/V F(2)F(t — 2)dz — ’ F()F(t—2)dz
0

t - 0 t
+(v + 261)g(t) {/ 2F(z)dz — / zF(z)dz} +o (g(t)>> (2.156)
0 —v
and, by virtue of (2.92)), (2.93), 0, = 2a/0? + o(a) and (2.94)), the latter implies

0

"F)F( - 2ds— [ F()F(t - 2)dz
0

4

< F(t) (—a + (7 +2¢1) 9t) <g(t)>>

2t t

— _aF () <1 — (v + 251)%it2 + 0(1)> . (2.157)

. I . . .
Moreover, remark that since F' (u) is decreasing in u,

/ "F)F (- 2)ds — / " F(2)F (t — 2)dz
0

<F'(t-v) /OVF(z)dz ~Fl(t+v) /0 F(z)dz. (2.158)

-V
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2 Heavy traffic and heavy tails for subexponential distributions

By using ([2.15)) instead of (2.13)), one can show similar to (2.102]) that

(2.159)

I F(t) tF(t)
ONET0} (2.160)

Using the inequality (2.127) and v < t/g(t), one sees that

F(t—v) < Ft)eIW/t L F(t) (2.161)

and consequently, by using that u/g(u) is increasing,

—=I (t—v)F(t—v) tE(t —v) tE(t)
F(t—v)~ <(1+o01)—/————==(1+0(1)—= 2.162
t=v) Yg(t —v) (L+o(1)) Y9(t) (1+o(l)) v9(t) (2.162)
In analogy to the latter inequality one can show by using ([2.154]) instead of (2.127)) that
—I tE(t)
F{t+v)>(14o0(1)—= 2.163
(t+v)=(1+0(1)) ~o(t) (2.163)

and, by plugging (2.162) and (2.163|) into (2.158) and regarding (2.94)), one obtains

0
/ t — z)dz — F(Z)Fl(t — z)dz
tF(t) [ Y 0 _atF(t) . atF(t)
< @+ gm (/ Fl)dz - /_V F(Z)dz) R ( g(t) ) - (216

This means the right hand side of the latter inequality is negative and, by regarding

(2.94)) and combining the latter results, (2.152)) and (2.157)), we conclude
v —=I
/ F(dz) LM () F (t — 2)

< LMWOF (t) — LY ()aF (1) <1 — (v + 251)90(? + 0(1)) : (2.165)
Suppose v < t — dt(a). Then, by the definition of LV)(.),
t—5t(a) — t—ot —
/ P LM (¢t — ) F (t— 2) < N / F(d)F' (¢ - 2) (2.166)

and, by integration by parts,
t—dt(a)

/ T PP - 2) < Fo)F (- v) + / F(2)F(t —z)dz.  (2.167)

v
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2 Heavy traffic and heavy tails for subexponential distributions

Let us mention that v < ¢/2 due to the definition of v. We split the integral on right
hand side of the latter inequality as follows:

t)2

t—o0t(a) -
/ F(2)F(t—2)dz = F(2)F(t — 2z)dz + /
v v t/2

t—ot(a)

F(2)F(t —2)dz
t2 t2
= F(z)F(t—z)dz + /&( ) F(2)F(t — z)dz. (2.168)

Due to our assumptions, the function g is concave and increasing. Consequently, one has

9(2) —g(v) =2 g(t —v) —g(t — 2)
for all z € (v,t/2] and hence

2 F(t—z
F(o) "Dz < tesplo(t) — o) — o(t )
v F(t)
< texp{—g(v) +qvg(t)/t} ~ texp{—g(v)},
where we used (2.127) and v < t/g(t). Since g(v) > v°2 for some g9 > 0 and ¢(t) =
o(t721) for all 1 > 0 such that v + 2e; < 1, we obtain

t/2 Fal F(t — Z) €
F(z)ﬁdz < (1+o(1))texp{—g(v)} < (1+ o(1))texp{—r?}
—0 (t exp{—(t/g(t))@(l*él)}) _ <g(tt)> . (2.169)

If t/2 > t(a) and 6t(a) < v, one sees similar to (2.153)) that

t/2 (4 _ t/2 t/2
/ F(z)udz < / F(z)dz + (’y+2€1)g(t)/ zF(z)dz+ o <g(t))
5t(a) F(t) st(a) t Jsta) t
t

=o(a)+o <g(t)> , (2.170)
where we used ([2.88) in the last equality. Plugging (2.169) and (2.170) into (2.168)), we

get
t—dt(a) . L
/ F(2)F(t — 2z)dz = o(aF(t)) + o <gS§)F(t)> . (2.171)

and finally, by combining the latter result, (2.166|) and (2.165)) with (2.142)), we obtain
by regarding (2.94) that

_ _ () F .
E[G]__(t - X)) — G\_.(t) < = 1(?5@) (1 _Oo+ Za;)g(t) + 0(1)> . (2172)
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2 Heavy traffic and heavy tails for subexponential distributions

Combining this bound with the bound from (2.141]), we can show (2.119). For ét(a) <
t < t(a) — Cn(1/a)/6,, (EI2T) and (E172) give
E[G-,(t = X))+ E[G_.(t = X@)] = G, (1) = G1_.(1)

e IM®EQ) < (3 + 2e0)9()
< —acgqe — 1-—
1—¢ 0.t

+ 0(1)> + o(acge™ ") (2.173)

with 0 < v < v+ 27 < 1. In analogy to (2.114)), one can show by using (2.130) and
(12.137)) instead of (2.70) and (2.96) respectively, that

F(t) < acge ™! asa—0 (2.174)

for 6t(a) <t < t(a) — Cln(1/a)/0, with C large enough. Hence, (2.94)) and (2.173) give

I~

E[G_c,(t — X+ E[G]_.(t - X9)] = G_, () = G_.() <0

for 0t(a) <t <t(a)—Cln(l/a)/04. If t > t(a) — Cln(1l/a)/b,, (2.141) and (2.172) imply

=l

E[G_,(t - X“)] + E[G_.(t - X)) - G, (1) - G} _.(t)

et LVOF() (1- CoEalt) )

< —acqe
- l-e¢ Oat
F(t) —Kat 0 Snl
e 2¢1)g(t)/(0at) +o(acee™™") + o(F(1)).

Due to (2.137)), one has

O A 1
0 = <Z< ) ) M= T gwmreane MY

k=0

and therefore, for N large enough and €; > 0 small enough,

LMy 1 - 1
I—e  (1-e)(1—g(t)/(6at))* ~ (1— (v +2e1)g(t)/(at))*’
We finally obtain

I~

E[G_c,(t — X+ E[G]_.(t— X9)] - G_, () - G_.() <0

in the case t > t(a) — C'In(1/a)/6,. Summing up all the above results this means that

YTEI) is a non-negative supermartingale.
g

Let us show that (17752)) is a submartingale, which is equivalent to
E[G.,(t — XD+ E[G,.(t — X)) > G, (t) + Gii(t), t>20t(a),  (2.175)

and
E[G,, (t — X@)] > G, (t), 0<t<26t(a). (2.176)



2 Heavy traffic and heavy tails for subexponential distributions

Let us first examine @’HE for t > 260t(a). Using that t — dt(a) > v for t > 20t(a), the
definition of G |, gives

t 6t
a(1+)B[G] . (t — X)) LMt - 2)F' (t - )

/m
7

> [ Fd)L™(t - )F (t - 2). (2.177)
oo
Integrating by parts we get
/Fdz Wt —2)F (t—z)
— FOLDOF () = Fo) L™ (t — ) F (t - v) / ()L (- 2)F(t — 2)d=

+/ F()@. LMt — 2)F' (t — 2)dz.  (2.178)
0

Since g(u)/u is decreasing,
LNt —z) > LWN(1) (2.179)

for all z € [0,v]. Using that g(u)/u is decreasing in u and regarding (2.14)), one sees by
a straightforward calculation that, for z € [0, v],

. LM (t — 2) > =8, LM (¢) + o(=8, LN (t)). (2.180)

Furthermore, since there exists some €2 > 0 such that g(u) > u®? as u — oo,

2
Fv) < eV < e~ Wa@)=070) 0< (g(f)) )

and consequently (2.162)) implies that

F) LMt - F (t—v) < NFW)F' (t—v) =0 <g(tt)F(t)> . (2.181)

Plugging (2.179), (2.180)) and (2.181) into (2.178]), we attain

/ P LN (= F (- 2)
0

— FO) LM () F” / F()F(t — 2)dz — 9L )()/VF(z)FI(t—z)dz
0
9(
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2 Heavy traffic and heavy tails for subexponential distributions

On the other side, again by integration by parts,

0
/ Fld=) L™t — F (¢ - 2)

—00

= F(O)LM®)F (1) - / ’ F(2) LM (t — 2)F(t — 2)dz

_ / " FO@OLM ¢ ) F e (2183)

—00

In analogy to (2.161]) one can show by using (2.154)) instead of (2.127)) that F(t+v) ~ F(t)

and hence, by virtue of B[|X(®|?+¢] < oo,

-V

/ TR LD (= ) F(t - 2)dx < NF(L+ ) / F(2)dz

—00

~ NF(t) /_V F(2)dz=o <g(t)F(t)> (2.184)

—00

for §; small enough. One has

and consequently
0 o 0 .
F(2) LWt = 2)F(t — 2)dz < LN (t) | F(2)F(t — 2)dz. (2.185)

—v —v

An easy calculation shows that there exists a constant C’ > 0 such that, for z € [v, 00),

/ /
9. LM (t — 2) < ¢ Ng
t—v t
and, by virtue of (2.160)), B
=T —=I tF(t
Ft+v)<F (t)~—+=.
(4] ©) v9(t)

Therefore, E[| X (®|2+¢] < oo implies

v anid —v
/ F)@.LMN (¢t — 2)F (¢ = 2)dz < (1 + 0(1))0”’5*”)/ F(2)dz

o t —o0

C'F(t) [~ _, 9(t) =
< /oo F(2)dz = < t F(t)). (2.186)

Using that g(u)/u is decreasing in u, a straightforward calculation gives

0, LN (t — z) < =9, LM (1)
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2 Heavy traffic and heavy tails for subexponential distributions

for z € [—v,0] and thus,

0 0
/ F(2)(0, LM (t — 2))F' (t — 2)dz < =8, L™ (1) / F(2)F (t—2)dz.  (2.187)

—v —v

Plugging (2.184)), (2.185)), (2.186| and (2.187)) into (2.183]), we attain

0
/ Fld) LN (t — HF (¢ - 2)

> FO) LM @OF (t) — LM (1) / ’ F(2)F(t — 2)dz
+ 0,LN (1) " F(Z)Fl(t —z)dz+o0 <g(tt)F(t)> .

bt 2

The latter inequality combined with (2.182)) implies

/V F(dz)LW) (¢ — z)fl(t —z)

—00

> L(N) (t)ﬁl(t) + L(N) (t) (/Oy F(Z)F(t — z)dz — ’ F(Z)F(t — Z)dZ)

—v

— o, L™M(1) </OV F(z)FI(t —2)dz — ' F(2)F'(t - z)dz> +o0 (g(tt)F(t)> . (2.188)

-V

Using ([2.10]) instead of ([2.9)), one can show similar to (2.127) that, for all 1 > 0 such
that v —2¢e; > 0,
g(t)

g(t) —g(t —w) > (v — 261)wT’ w <L t. (2.189)

Hence, in analogy to (2.83) and (2.90), one can show by regarding (2.92)), (2.93) and
(2.94) that,

Y, (F(t—2) 0 F(t—2) (v —2e1)g(t)
/O Fe) g e - /_VF(z)F(t)dz > _q (1 =l 0(1)> - (2.190)

The relation combined with and gives
v 0
— 9, LM (#) ( / F(2)F (t — 2)dz — / F(2)F (t — z)dz)
0 —v
—0 ( aF(t)) =0 (git)F(t)) (2.191)

(8
and by plugging (2.190) and (2.191)) into (2.188) one obtains

/ ) LY — ) F (- 2)

— 00

1

> LN@)F (t) — aLN (£)F () <1 — + 0(1)) : (2.192)

o8



2 Heavy traffic and heavy tails for subexponential distributions

where we used 0, = 2a/0? + o(a) and (2.94)) in the last equality. Combining the latter
inequality with (2.177)), one attains

i

E(G), (t— X -G\ (t) > -

L) F() (1 (v = 220900

it + 0(1)) . (2.193)

Now, let us examine éca. The result (2.107) proves that (2.176]) is valid for 1/a <

t < 20t(a) and (2.111)) and (2.112)) together with (2.107)) show that (2.176) is valid for
t < 1/a. It remains to show (2.175) for ¢ > 2dt(a). Put A\, = 6, + ¢, and consider

20t(a) <t < t(a) — Cln(1/a)/6, with a large constant C'. We will see later what large
means in this context. Then, (2.113)) implies

E[G,, (t — X®)] = Gq, (t) > acse * + o(acee )
and by combining the latter result with (2.193)) we obtain
E[Gie, (t = X))+ E[G1o(t = X)) = Ge, (1) = LG (1)

MAOFE _ .
> acge et - L 0T <1 - ”Zi)g(” + 0(1)> T o(F (1)) + o(acae).

Due to (2.94), the latter implies (2.175)) if one can show that
F(t) < acee ™ asa—0 (2.194)

for 20t(a) < t < t(a) — Cln(1/a)/b,. Since N\gy — g(y) = y(Aa — 9(y)/y) is convex
and takes its maximum at one of the edges, it is sufficient to consider ¢ = 26t(a) and
t =t(a) — Cln(1/a)/0,. First, we show that the latter holds for ¢t = 2dt(a). By (2.9)) and

g(t(a)) ~ bat(a),

9(5t(a)) > <5t<a>>”+“m — §7%%1g(t(a)) ~ 57 At (a)

for all 1 > 0 and therefore

F((St(a))e)\a&(a) — e)\atst(a)fg((St(a)) < e/\at(a)((sfé“”'sl)‘

Choosing €1 so small that v+ 1 < 1, we conclude by virtue of (2.52)) and the definition
of ¢, that
F(5t(a))era™@) < Aat(@O=07T1) — 506.). (2.195)

On the other hand, by virtue of (2.130]), there exist constants ¥ and €3 with 0 < 7 <
~ + e3 < 1 such that

¢~9(H@)=CMn(1/a)/02) < (1 4 o(1))fyaltCO—T(1H8)) o ~0a(t(@)=Cn(1/a) /6a) (2.196)

For C large enough, (2.122), the definition of ¢, and the relation 6, = 2a/0? + o(a) give
aC(1-70+€3)) « ¢ and we attain

e~ 9(t(a)=Cn(1/a)/ba) o ¢ o=ba(t(a)=Cln(1/a)/fa) (2.197)
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2 Heavy traffic and heavy tails for subexponential distributions

This means (2.194)) is true for ¢ = 26t(a) and t = t(a) — C'In(1/a)/6, and therefore
(2.175)) holds for 26t(a) <t < t(a) — ClIn(1/a)/0,.
Now, consider t > t(a) — C'In(1/a)/60,. Then, (2.118)) gives

E[éCa (t - X(a))} - éCa (t)

t
> acqe Ml + )\ae_A“t/ e U F(u)du + o(acqe™eb). (2.198)
CiIn(1/a)/

Using ([2.189) one can show similar to (2.140) that, for ¢ > t(a) — C'ln(1/a)/8,,

! e o ) +oF()
hac /tCln(l/a)/ea = e g(0)) O

for all &1 > 0 such that v — 27 > 0 and by plugging this result into (2.198)),

E[G,, (t — X®)] = G,, (1)

> acqe et + + o(F(t)) + olace ). (2.199)

1 —(y—2e1)g(t)/(0at)
Combining (2.193) and (2.199)), we attain
E[G,, (t — X)) + E[G), . (t — X)) — Ge, (t) — G, (1)

e E@F®) (1 (= 21)g(0) (1)
= acac T+e (1 fut ) TG = 2090/ 6u)
+ o(F(t)) + o(acae ).

For N large enough and £, > 0 small enough, the definition of L(™)(t) gives

LMy 1 _ 1
I+e  (1+e) 1 =79(t)/(0at)? = (1= (y+2e1)g(t)/(0at))?’

which immediately implies

E[Ge, (t — X)) + E[G) . (t — XW)] = Ge, (1) — Glye(t) > 0

for t > t(a) — C'ln(1/a)/0,. Summing up all the above results this means that (17752)) is
a non-negative submartingale.

2.3.5 Proof of Lemma [2.6]
By virtue of z > dz(a), (2.159), ([2.14) and e % = O(F (x)/a),

e %t =0 < x eg(‘r)> .
ag(x)
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2 Heavy traffic and heavy tails for subexponential distributions

Equivalently, one has

tim sup (g(ac) — Oz —In <agm(x)>> < 0.

Since g(z) — o0 as  — oo and x > 1/a, we can infer from the latter that

limsup (g(z) — 0,z — 2Inx) < oo. (2.200)

a—0

Because of v > 0, it is Inz = o(g(z)) as © — oo and hence the latter is equivalent to

limsup(g(x) — O,2) < 00
a—0

and therefore
. g(x)
im sup

a—0 al

<1

2.3.6 Proof of Theorem 2.7]
Let us first consider the case F' € K, v € (0,1). Fix some § € (0,1) and N > 1/(1 —~)

such that (}771(1)) is a non-negative supermartingale for all a small enough. This is possible
due to Proposition [2.5] Then,

L) () - -
e~ Camer ¢ L@ 00> ta)y = vV > By
a(l —e)
—E |G (=S py <oo| +E |G (=59 Vit sa@ <oo|. (2.201)
Ca Le )y M 1—e Ba—sa(a) i Mg —dz(a)

Furthermore, by the definition of G_., and @’1_ o
E[G_c,(z — S); pta < 00] = Pt < 00) = P(MV) > 1)

and R
E[ /1—5(1' - S(a) )); Ha—52(a) < OO] =0.

Hz—5z(a

Plugging these results into (2.201f), we attain

L) ()
a(l —¢)

P(M® > z) < e~ amca)r 4 F'(2)1{z > oz(a)}.

In analogy to one can show that (l/a)FI(a:) > e (Oa=ca)r for all x > x(a) +
C'ln(1/a)/0, for C large enough and, by the definition of ¢4, coz — 0 as a — 0 for all
x such that z < z(a) + C'ln(1/a)/6,. Furthermore, since € > 0 is arbitrary, one can let
€ — 0 and we conclude that, uniformly in x > 0,

L) ()
a

P(M(“) >1x) < (1+0(1)) (e_eam + Fl(m)l{:z‘ > 5:U(a)}> . (2.202)
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2 Heavy traffic and heavy tails for subexponential distributions

By regarding (2.160)) and (2.94)), one sees similar to (2.174)) that, for a large enough

constant C' > 0,

Fl(2) < ae™%*, §z(a) <z < z(a) — Cln(1/a)/b, (2.203)
Furthermore, for > z(a) — C'ln(1/a)/0, the bound from gives
i ('yg(iv))k _ 1 .

O 1 —vg(x)/(0az)

k=0

and since N > 1/(1 — ~) one has

1
(1 =g(2)/(0az))*’
Consequently, (2.94)), (2.202) and (2.204)) give that, uniformly in x > 0,

LW (z) = x> z(a) — Cln(1/a)/b,. (2.204)

F'(2)1{z > z(a) — Cn(1/a)/0.}
a(l —vg(x)/(0a))?

On the other hand, by virtue of Proposition one can choose § € (0,1/2) arbitrary
small and N > 1/(1 — ) such that Y, is a non-negative submartingale. Hence,

P(M@ > z) < (1+0(1)) <69”” + ) . (2.205)

e mﬂ@ﬂ{x > 5x(a)} = Vi < BT
=B [Ge, (v = S(9)i e < 00| + B [Ghi(w = S )it asua) < 00| (2:206)
By definition of éca,
E [éca (x — S;(Z))3 o < oo} = ®P(M@ > z) (2.207)

(N)

and, since é’l 4e(u) is decreasing in u, the definition of L") implies that

E | Ghie(o = S50 )i He-2ia(a) < 00| < Ghy(02(a) P(M® > & — 262(a))
N I

_ z(a @ > 2 —252(a)). )
< a(l—l—s)F (6z(a))P(M'Y > 20x(a)). (2.208)

Let us bound the term on the right hand side of the latter inequality and to do so
we consider different regions of x separately. First, consider z < k,dx(a), where ky :=
min{k > 4 : k'~7 > 2}. In this case, one sees similar to ([2.174) that, for § small enough,

F(x) < acge ™% 6x(a) < x < k,0x(a). (2.209)

From this, we infer from (2.160) and the definition of ¢,

1Ff(asc(a)) < @F(&g(a)) < z(a)cge 0k 07(@) « omlakrdz(a) < g=baz (9 910)
a a
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2 Heavy traffic and heavy tails for subexponential distributions
for all < k,dx(a). This gives
“F (62(a))P(M@ > 2 — 26x(a)) = o(e %), =z < kyda(a). (2.211)
a

Next, consider z > k,dz(a). Using the definition of L(™) and the bound from (2.207)),
one obtains

P () P(M > &~ 262(a))

< (1+40(1)) <1FI(5:E(a))e_6a($_25$(“))

a
-1

F'(32(a))F' (z - 262(a))1{z — 20x(a) > 2(a) — C'In(1/a)/0} (2.212)
a2(1— g — 262(a))/(Bu(x — 202(a)))? o

Let us examine the first term of the right hand side of (2.212]). The result from ([2.210))
implies that, for all x,

_l’_

ff(ax(a))e—ea(x—%x(a)) = o(e%e7) (2.213)

and it remains to bound the second term on the right hand side of ([2.212)) for = > k,0z(a).

Due to (2.94),
1

(1 =gz — 262(a))/ (fa(x — 262(a))))?
for  — 26x(a) > dz(a) and since k, > 3 the latter relation especially holds for = >
kox(a). Since g is concave, ¢'(z — 26z(a)) > ¢'(z) and therefore, by using (2.159) and
([.17),

= 0(1) (2.214)

I N F(m —26z(a)) _ F(x — 20x(a))
F(z — 20x(a)) g (x —20x(a)) = g'(z)
F(ﬁ) 25azx(a)g(z)/z 7

~F (x)e26az(a)g(x)/z

= g (x)

for some 0 < o < 1. The definition of k. implies that k:,lfﬁ >2ify withy <5y <1is
sufficiently close to . Then, using (2.9) and = > k,dz(a), we obtain

1-5 -
s < (MDY o(a) < 1 g(dn(0) < glba(a) 2

T T

and consequently

Fl(z — 20x(a)) < (14 0(1))F"

Combining the latter result with (2.160)), one gets

(2)e2900(a))

%Fl(éx(a))Fl(x — 26z(a)) < i;‘)ﬁf(x)e—ﬂ—a)g@x(a)).
a a
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2 Heavy traffic and heavy tails for subexponential distributions

From the latter we infer by using g(u) > u®? as u — oo for some €3 > 0 and z(a) > 1/a

that
a%Fl(éw(a))Fl(m ~ %2(a)) = o (iF’@)) 2> ko). (2.215)

Plugging the results from (2.213)), (2.214)) and (2.215]) into (2.212]), we get
171 (a) —0.x 1—7
—F (0x(a)P(M'Y > 2 —26x(a)) =o(e ") +o | —F (z) |, z>k,0x(a),
a a

and, by additionally regarding (2.211f), we obtain that, uniformly in =z,

2?1(5m(a))P(M(“) >z — 252(a)) = o(e %) + o <1F1(a:)> .

a

Combining the latter relation with the results from ([2.206)), (2.207)) and (2.208) gives

e~ LN (z)

P(M@ > (14 0(1)) | e ¥ (Gatea)e
( >zx) > (14 o ))<e e + o5 2)

Fl(2)1{z > (53:(@)}) .

Consequently, by letting ¢, — 0 and since ¢,z — 0 as a — 0 for x such that x <
2(a) + Cln(1/a) /0, and (1/a)F' (z) > e~ for all z > z(a) + C'ln(1/a)/0, with C
sufficiently large, we obtain that, uniformly in z,

LMV (z)

P(M@ > z) > (1+o0(1)) (Mam + F(2)1{z > (53:(@)}) .

Hence, (2.203)) and ([2.204) give

P(M®@ > 2) > (1+0(1)) (9 p Tlatle > alo) Cln(l/awa})

a(l —yg(x)/(0ax))?

in the case F € K, with v € (0, 1).
Now, consider F' € Ky. By Proposition [2.4] one can choose § > 0 arbitrary small such
that (ngl)) is a non-negative supermartingale and proceeding like in the case v € (0, 1),

one can show by using (2.114]) instead of (2.194)) that

POLO > 0) < (4 o) (7 4 T L 2 asl)}). (2216)

In analogy to (2.114) one can show that (l/a)fl(:l:) > e %% for all z > z(a) +
C'n(1/a)/0, with C > 0 suitable. On the other hand, (2.60]) implies z(a)+C'In(1/a)/0 =
o(a™2) and therefore 6, = 2a/0? + O(a?) gives

P(M@ > z) < (1+0(1)) (e—2afv/02 + %fl(:r)l{x > 5:;;(@}) . (2.217)
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2 Heavy traffic and heavy tails for subexponential distributions

To establish the lower bound choose § > 0 small enough such that (Yn(z)) is a non-negative
submartingale. Then, proceeding like in ([2.206), (2.207)) and (2.208)), one obtains

eP(M@ > z) + 2?1(6x(a))P(M(a) > x — 2dz(a))

1 —r
> e Oatea)z 1~ P (x)1{x > 2.21
>e +a(1+5) ()1{z > 0x(a)} (2.218)
and, exactly like in (2.211]), one shows
1—
EFI((SI‘((I))P(M(G) >z —20x(a)) = o(e7 %), x < 46z(a). (2.219)

On the other hand, in the case z > 40x(a), using (2.102)), (2.50)), (1.16)) and the concavity
of g, we get

F(x —26z(a)) F(x —26z(a))
(1 =b)g'(x = 20x(a)) = (1 —0)g'(x)
F(LE) de16z(a)g(z)/x < F l‘) 6451g(6:p(a)) ~ Ff(x)ellslg(éx(a))

(
< . —
~ (1=0b)g'(x) (1-0)g'(x)
for all £; > 0. On the other side, by (2.102)), and g(x(a)) > (2+¢)In(x(a)),

F(5(a)) ~ F(0z(a)) z(a)Inz(a)
B 0m@) ~ T g a(a)) = T b)g(a(a))

Combining the latter results and using g(z(a)) > (2 + ¢) Inz(a) once more, we attain

FI(JT — 20z(a)) ~

IN

F(0x(a)) < z(a)F(6x(a)).

%F1(6$(G))Fl<x —20z(a)) < (1+ 0(1))x(a>e—g(5I(a))(l—4al)F1(m)
1 _
< (14 0(1))5~ I g (a) = (2,

Since x(a) > 1/a, we infer from the latter that for £; > 0 small enough

%FI(M:(Q))FI(JJ _ 2%5w(a)) = o <1Ff(x)> o> dda(a), (2.220)

a

and, by plugging the results from (2.219) and (2.220)) into (2.218]), we conclude

a(11+ 5)?(3@)1{:5 > 5$(a)}> .

eaP(M(a) > I’) > (1 + 0(1)) (e—(9a+ca)z +

By the same reasons as in the case v € (0,1), we obtain from the latter that

1—
P(M@ > z) > (1+0(1)) (e"w + aF](gc)1{g: > 5x(a)}>
and, like in (2.217)), one sees that this is the same as

P(M > z) > (1+0(1)) <e_2‘“/‘72 + éfl(x)l{x > 5:6((1)}) .
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2 Heavy traffic and heavy tails for subexponential distributions

2.3.7 Proof of Corollary

Since we use similar techniques as the proof of Propositions[2.4]and we will sometimes
refer to these proofs and not go into details in every aspect. During the whole proof we
assume without loss of generality that a is sufficiently small.

One has " N

/ e @Rl (y) = 6_9‘””/ P VE (y)dy. (2.221)
1/a 1/a

First, let us consider = such that 1/a < z < x(a) — C'ln(1/a)/0, with z(a) defined in

Lemma and a constant C' > 0 small enough in the case v = 0 and C' large enough in

the case v > 0. For a further discussion what small enough and large enough means see

the proof of Proposition and The results (2.73)) and (2.133) imply

/w P YF (y)dy = o(a).
1/a

Furthermore,
| @ By < a@e e [ SFGay. (222
1/a 1/a
Since ¢, = o(1/z(a)), the relations ) and (2.133) give
r(a) / @y = ol
and hence,

/z <1 + %(m — y)> efeﬂ(m*y)F(y)dy — 0(679,13:) (2.223)

1/a \@

for 1/a <z < z(a) — ClIn(1/a)/f, with C > 0 as mentioned before.
Now, suppose = > z(a) — C'ln(1/a)/6,. In this case we split the integral like in the
proof of Propositions [2.4] and [2.5

z—C1lnz/0, T
/ / / . (2.224)
1/a —Ci1lnz/0,

The results from (2.78)), (2.79) and (2.139) give

e 0a z—C1lnz/0, P ) 1 —
/ ¢V F(y)dy = o(e™"") + o < F ()

a 1/a

for C; > 0 small enough in the case v = 0 and (7 large enough in the case v > 0. On
the other side, one has the inequality

z—Cilnz/0, L z—Cilnz/0, o
/ (@~ )"y <o [ "VF(y)dy
1/a 1/a
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2 Heavy traffic and heavy tails for subexponential distributions

and therefore one can show like in (2.78)), (2.79) and (2.139)) that

z—C1lnz/0, . 1 _
6_0‘”’/ (z — y)e’YF(y)dy = o(e %% + o <azF(az)> (2.225)
1/a

for the same choice of C; and = > z(a) —C'In(1/a)/6,. The only difference here is that we
have the term x in front of the integral. However this makes no difference if x = O(z(a))
and one can proceed like in (2.78), (2.79) and ([2.139). If 2 > 2(a), one can show similar
to ([2.114) and (2.174)) that re=%* <« FI(SU) and therefore the proof also goes along the
same line in this case.

To calculate the second integral from we consider two cases. First let v > 0. In
this case, one can show like in that for arbitrary e; > 0

- x _ F(x)
Oux Oy
e e’V F(y)dy < (1+o(1 . 2.226
Lo, T < Qo Sy (20
Furthermore, by (2.52)) and (2.127)),
T L Cilnz/6,
6_0‘”/ (z —y)e’VF (y)dy = / wefa=9(z=w) gy,
z—C1lnz/0, 0

Cilnz/0,
< F) / we—W0a(1-(r+e1)g(2)/(6a2)) g
0
for sufficiently large z and by integration by parts,

_ Cilnz/6,
F(fc)/ we~Wa(1=(v+e1)g(x)/(0a)) 10,y
0

Clx_cl(1_(’7"'51)9(33)/(6@33)) Inr—

T TRt ee@) ) L@

F(a) /C“”/e” o (1 (r+1)9(2)/ (Oar))
wbq T al d . 2227
T 0= (v +e0)9(@)/(0a)) Jo ‘ v e

For all €1 > 0 such that v 4+ €1 < 1 one can easily see by regarding (2.137]) that

el pu(1=(r+er)g(a) (Bu)) 1
e~ wla(1—(y+e1)g(z a®)) dap = +0(1/6,).
/ = =+ eng@)/Gaay) |0

Because of (2.159)), (2.14) and ([2.137)),

2T ~ 5 @F @) < (2050 F ) =0 (17 w)

for x > z(a) — C11n(1/a)/0,. We sum up the latter results and conclude

: 1 1 T — 6*941(1* \¥nl
/$C1 Inz/6, <6L + 0’2( y)> Y F(y)dy
(0a/a)(1 — (v +e1)9(2)/(042)) + 2/0? g(x)—=1 S 1 i
= < 02(1 — (v 4 €1)g(x)/(0a1))? )(’7+51) - F(z) + <aF ( ()) |
2.228
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2 Heavy traffic and heavy tails for subexponential distributions

and by plugging the results from (2.223)), (2.225) and (2.228)) into (2.221) and using

Oy ~ 2a/0?,

[ G+ e =) etearty
(2oL Y 1) ey o ().

a(l — (v +e1)g(@)/(0az))? ot a -
2.229
A straightforward calculation gives
15, 2 — (v +e1)g(x)/(0az) 9@) 5
T (o) 0T
_ F'(x)
—a(l— (v +e1)g(x)/(0ax))?
and therefore
1— T /1 2
EFI(LE) + /1/a <a + ?(x - y)> e bal@= gl (y)
() ey (150,
< ar=ms e e o ((Fw). e

Since this bound is valid for arbitrary €1 > 0 one can let e; — 0 and thus we get by

regarding ([2.203)) that (2.30) implies

—I
P 50) (1ot (-0 T 2] SO

with a sufficiently large constant C' > 0.
It remains to show that the term on the right hand side of the latter inequality is also
a asymptotical lower bound. Recall that for all £ > 0 such that v + e; < 1 inequality

(2.137) gives

—Ci(1=(y+e2)g(x)/(6az)) |
G S = o(1/62)
0201 — (7 + 22)9(@)/(0a))

for z > x(a) — C'lnx/0,. Then, following the same line, one can show similar to (2.230)
by using ¢'(x) > (v — €1)g(x)/x instead of ¢'(z) < (v + £1)g(z)/x that

lfl(x) + /j <1 + %(w - y)) Py i ()

a /aa

F(x)

Z = (y — e)g(@)/(Bar)

5 +o(e%%) 1o <iF’($)) :
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2 Heavy traffic and heavy tails for subexponential distributions

Hence, by plugging this into (2.30)) and regarding (2.203) and x(a) > 1/a,

F(2)1{z > 2(a) — C’ln(l/a)/Qa}>

@ < o 0 ¢~ 0o
P(M'Y > z) > (1+ (1))< - a(l — (v —e1)g(x)/(02))?

and, since €1 > 0 can be chosen arbitrary small,

F'(2)1{z > 2(a) — Cln(l/a)/ﬁa}> |

(@) 5 4 0 e fat
P(M@ >z) > (14 (1))< + a(1 —yg(x)/(0ax))?

Finally, this means that the result from Blanchet and Lam from (2.30) states that, in

the special case of a M/G/1 queue,

Fl(2)1{z > 2(a) — CIn(1/a)/0,}
a(l —yg(z)/(0a))?

P(M@ > g) ~ e 0o 4 asa— 0
if v > 0.

Let us consider the case ¥ = 0. One can show similar to (2.226)) by using (2.50)) instead
of (2.127)) that for an arbitrary €; > 0 and C} small enough,

oz [ PV 0 F(z)
T g O S ol @)

Using ([2.13)) and proceeding like in (2.229)), we get

[ (54 Ze-n)eneart)
1/a a g

2 —¢e19(x)/(0ux ) Y -
(At ) ey v ()

By regarding g(z)/(0,2) < Co with Cy large enough, we conclude that

z 1 2 —0 (:C—y) I ElC3*I
_ i —_ a < .
/1/a (a +3 (x y)> e dF* (y) < " F (z) (2.232)

with a suitable constant C5. Since €; was arbitrary, we let €1 — 0 and by plugging the
latter inequality into (2.30]) one obtains by regarding ([2.223]) that

PO > ) < (14 o(1) (7 + TP ()1 2 2(a) - Cha(1/0)/0,}).

Since C' can be chosen arbitrary small in the latter inequality, (2.48]) implies dz(a) <
z(a) — Cln(1/a)/8, and therefore the latter inequality is equivalent to

P(M@ > ) < (1+0(1)) <e—9aw + 2?1(33)1{:6 > 51‘((1)}) .
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2 Heavy traffic and heavy tails for subexponential distributions

On the other side,

T /12
/ ( + (- y)> e PTG (y) > 0
1/a a g

and due to z(a) > 1/a we infer from the latter and (2.30) that

1

P(M@ > z) > (1+o0(1)) (Mﬂ + f*’(m{x > 6:1:(a)}> .

By combining the latter results, we restate our result in the case v = 0 in the special
case of a M/G/1 queue:

P(M@W > z) ~ et lfl(x)l{w > bx(a)}.
a
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3 Upper bounds for the maximum of a random walk with negative drift

3 Upper bounds for the maximum of a random walk with
negative drift

The results in this chapter mostly arose from joint work with Dr. Vitali Wachtel and are
mainly from the paper [36]. However, there are also results which I produced indepen-
dently - like Theorem [3.11] - and which have not been published yet. Theorem [3.9) has
been published in a weaker form, namely there was a supplementary factor e on the
right hand side of condition , so Theorem stated here holds for a wider range
of values x.

3.1 Introduction, motivation and description of the method

We use the notation introduced in Chapter and since we will only consider fixed
expectation —a we will omit the superscript (*) everywhere.

In this chapter again the tail distribution of M is the object of interest. Since the exact
form of the distribution of the maximum of this random walk is known in some special
cases only, good estimates are required. In the literature, the tail of M is usually appro-
ximated by it’s asymptotic form (see (1.28)), (1.30]) and (1.31)) in the light-tailed case and
, and in the heavy tailed case). However this is not necessarily a good
approximation, for a discussion and numerical results on the accuracy see for example
Kalashnikov [31]. Therefore it is of great interest to have non-asymptotic properties of
the distribution of M.

In the light-tailed case, the first result goes back, apparently, to Cramér and Lundberg
(see Chapter [L.8)): If

E[¢"X] =1 for some hg > 0, (3.1)
one has for all > 0 the so-called Lundberg inequality
P(M > z) < e Mo, (3.2)

It is known that if (3.1)) holds and, in addition, E[Xe"X] < oo, then there exists a
constant ¢y € (0, 1) such that

P(M > x) ~ coe ™ asz — oo. (3.3)

This means that has optimal order and the error of the Lundberg inequality is only
a constant.

In the case when is not fulfilled, upper bounds for P(M > x) have been derived
by Kalashnikov [31] and by Richards [46]. The approach in these papers is based on the
representation of M as a geometric sum of independent random variables:

[e.e]
P(M > x) Zq kle +xq .. .+XZF>3:), (3.4)
k=0

where {X } are independent random variables and ¢ = P(M = 0). The main difficulty in
this approach is the fact that one has to know the distribution of X; and the parameter
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3 Upper bounds for the maximum of a random walk with negative drift

q. In some special cases this information can be obtained from the initial data. But
in general one has to obtain appropriate estimates for ¢ and P()dr > x). Bounds for
P(x{ > ) are given, for example, in Chapter 4 of [§].

The main purpose of the present chapter is to derive good upper bounds for P(M > x)
if the Cramér-Lundberg condition does not hold. Therefore, we will assume the existence
of power moments of X only, avoid the representation via geometric sum and use a
supermartingale-construction instead. The most important advantage of this method is
that it will give specific upper bounds without any unknown factors like ¢ and P(x{ > )
in the bounds of Kalashnikov [3I] and Richards [46]. As it is usual for deriving upper
bounds, we are going to truncate summands and to use inequalities, which are based on
truncated exponential moments. But the problem is that we have infinitely many random
variables X;’s, so we can not truncate all of them at the same level. Thus, we have to
split the time axis into intervals of finite length and then choose a level of truncation
on each of these intervals. One can take, for example, a deterministic strictly increasing
sequence (k) with kg = 0 and consider the intervals I, := (kp, kn+1]:

P(M>z)= <U{Sk>x}>§ZP U {5k = 2}

k>0 n=0 keln

<ZP<max Sk—ka)>x—ka}> (3.5)

n+1

Now, one can apply the Fuk-Nagaev inequalities, see [42], to every probability in the last
line. It is clear that replacing supycy, (Sk — ka) by supy<y, ., (Sk — ka) is not too rough if
and only if k, 41 and k41 — k,, are comparable. Thus, one has to take k, exponentially
growing. Using this approach with k, = 22", Borovkov [I0] obtained a version of the
Markov inequality for M.

Our strategy is quite different and consists in splitting [0,00) into random intervals
defined by a sequence of stopping times. More precisely, we introduce the stopping time

T, :=min{k >0: S, < -z}, z2>0.

Let M., = maxi<i<s, Si. We split the tail probability

PM>z)<P(M., >z)+P (max Sk > x) (3.6)

=Tz

and consider the continuation of the process (S;) beyond 7, as a probabilistic replica of
the entire process. By 5;, < —z follows

P(maxSk>x> <P(M>xz+2z).

>Tz

As a result, we have

P(M>z)<P(M;, >z)+P(M>z+2),
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3 Upper bounds for the maximum of a random walk with negative drift

and inductively we conclude
P(M>z)<> P(M. >z+j2). (3.7)
§=0

It is worth mentioning that the difference between and is the same as between
Riemann and Lebesgue integrals: We do not fit the random walk S, into a fixed splitting
of the time, but choose the splitting depending on the paths of the random walk.

A decomposition similar to has been used by Denisov [18] for deriving the asym-
ptotics of P(M,, > z) from that of P(M € [,z — S;,)). In the present chapter we use
the opposite approach: We obtain estimates for P(M > x) from the ones for P(M,, > x)
and the estimates for P(M,, > z) are derived by using a martingale construction similar

to the one used in (|1.34])

3.2 Upper bounds for P(M,, > z) and P(M > z)
We first state our results on M, .

Theorem 3.1. Assume that Ay := E[|X|'] < oo for some t € (1,2]. For all y satisfying
y' =1 > (e — 1)Asa™! we have the following inequality:

z/y
P(M,, >z)< az/tyil E[Tz]y_l_(t_l)x/y In (1 + ayt_l/At)
Ax/y 1
+ 1+ my—(t— )z /y E[TZ]P<X > y). (3.8)

Remark 3.2. We show in the proof that remains true, if one replaces a and Ay
by —E[X;|X]| < y] and Ai(y) = E[|X|;|X| < y] respectively. In this case the restriction
y'=1 > (e — 1)a~' A4; should be replaced by E[X;|X| < y] < 0. The use of truncated mo-
ments is more convenient in theoretical applications, but for deriving concrete estimates
for M it is easier to use full moments. o

Let us turn to the case t > 2. Fix ¢ > 0, « € (0,1) and put 8 = 1 — a. Assume
P(X > 0) > 0. We use the notation

2aax Ba
A =E[XL X = — ] -1 =
t7+ [ ) > 0]7 ¢1 (x) eXp <€EE[X2]> b 1/]2 At;;’_
Theorem 3.3. Assume 0? = Var(X) < oo and A; 4 < 0o for some t > 2.
(i) If y satisfies the condition
2 1 Ba 4
——<-In|1+— .
e <y () >

then
20a°E[T,]
e BX?]yy (z)

P (M, >zx)< (1 + > E[r]P(X >y)+ (3.10)

1
P1()
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(ii) If y satisfies the condition
2aa 1 Ba
———— > "In {14 41 11
cE[X?2] ~ y n< +At,+y )7 (3.11)
then
P (M, > 2) < ;" /VElr-]ay™ =002/ n (14 oy’ ?)

+ (14w ™y~ BInP(X > ). (3.12)

Remark 3.4. Analogously to Theorem one can replace E[X?] and A+ by the corre-
sponding truncated expectations B%(—o0,y) = E[X?; X < y] and A, (y) = E[X}; X €
(0, y]] respectively. o

Corollary 3.5. Assume that P(|X| > z) = L(z)x™" for some r > 1 and
P(X >2)/P(|X|>z) —-pe(0,1) asz— 0.
Then, it follows from (@ and that
. P (M., >zx)
1 ———= " - <E[,
M BX gy -
for every z > 0.

But it follows from the results of Asmussen [4] (see also Denisov [18] and Foss, Zachary
[29]), that
. P (M, >z
lim ———————=
z—oo P(X > )
under the condition that the tail of F'is regular varying. This means that the inequalities
and are asymptotically precise in the case of regular varying tails.
In all these inequalities we have E[r,] on the right hand side. It is really hard to get
an exact expression for this value via initial data, but there are good upper bounds in
the literature: Since E[7,] < oo (see, for example, Feller [25]) Wald’s identity gives

= E[r.]

E[r.] = Mj[RZ], (3.13)
where R, = —z — S;, denotes the overshoot in 7,. Hence, we get upper bounds for E[r,]
by the inequality of Lorden (see [38]): If E[X] < 0 and E[(X)?] < oo,
E[R,| < E[()Z_)Q] (3.14)
and the one from Mogul’skii [40]: If E[X] < 0 and E[|X ]3] < oo,
3
E[R.] < Ag EE“@}] , (3.15)

where A is a certain constant, A < 2. The disadvantage of these bounds is, that we have
to assume the existence of the second or even the third moment. We give another bound,
which only requires the finiteness of the moment of order ¢, t € (1,2].
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Proposition 3.6. Assume that A;— = E[(X7)!] < oo for some t € (1,2], then, for
every z > 0,
tt/(t—l)A%/(t—l) 52—t
< - v _ Y- <
E[R,] < DD <E[ X; X <0]+ ; At,—) . (3.16)

Combining with (3.14]), (3.15) or (3.16) we obtain upper bounds for E[r.].
Plugging these bounds into the inequalities in Theorems [3.1] and [3:3] we get bounds
for P(M,, > x), which contain information on X only. So, they can be used for concrete
calculations.

We come back to the global maximum. The results in this section follow from the
results on M, via the formula we attained through the random time splitting.

Theorem 3.7. Fiz some 6 € (0,1) and define

34109110 34}/Po--1)/0

€= (t— 1)al/o—1° €2 = (t — 1)3H/0q1/0-17
a@t_ll't_l Ba@t_lxt_l
P3(x) := Ty Ya(x) := T

(i) Assume that Ay < oo for some t € (1,2]. Then, for every x satisfying x'~' >
01t (e? —1)Aa™" and x> 2(t — 1)07, we have

E[r.]

P(M>z)<a In (1 + () 2~ -1/

+ (1 + wg(:c)*l/‘)) E[r.] <91ZFI(990) T P(X > 9x)> . (3.17)

(i1) Assume that Var(X) < oo and A;y < oo for some t > 2. Then, for every x
satisfying fory = 0z and the conditions v~ > 017t (e? —1)A; . B 1a™t and
x> 2(t—1)071, we have

E[r,]

P(M >z) <c In (1 + pa()) z~ D/

+ (1 + w4(:c>—1/9) E[r.] <91zFI(9x) FP(X > 9x)> . (3.18)

Corollary 3.8. If the assumptions of Corollary[3.9 hold, then it follows from Theorem
(3.7 that
. P(M >z) E[r]
limsup —— <

T—+00 Ia (x) z

0"

Since the left-hand side does not depend on 6 and z, we can let 6 — 1 and z — oo.

Noting that each of (3.14)) and (3.15)) combined with (3.13)) yields

E 1
Elr] 1 s
zZ

S|
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we conclude
) P(M > x)
lim sup 7
Comparing this with (0.2]), we see that the inequalities in Theorem are asymptotically
precise. This even remains valid, if we bound E[7,] in the inequalities of Theorem [3.7) by
combining (3.14)) or (3.15) with (3.13).

The reason why we are able to obtain asymptotically precise bounds is, that we may
choose z arbitrary large. That possibility seems to be a quite important advantage of our
method compared to geometric sums. If the distribution of Xf is subexponential, then it

follows easily from (3.4) that

1
<=
a

1
P(M>:c)~(—1>P(XT>a;) as T — 00.
q

Therefore, in order to obtain an upper bound for the maximum we need to control
the quantity 1/q¢. It is well known that 1/q = E[-S;] = E[Rp]. Thus, we may apply
(3.14), (3.15) or (3.16) with z = 0. But corresponding inequalities for M will not be
asymptotically precise. Summarizing, the approach via geometric sums can only lead to
asymptotically precise bounds if g is known.

3.3 Asymptotic implications of the bounds from chapter

In this section we test our inequalities in the heavy traffic and heavy tail regimes. Consider
a family of random walks {S(®), a > 0} with E[X(®] = —a and consider z depending on a.
We shall assume that X(@ = X©) — ¢ for all @ > 0. Let M@ denote the corresponding
maximum. It is known that if X(© belongs to the domain of attraction of a stable
law, then there exists a regular varying function g(a) such that g(a)M® converges
weakly as a — 0. It turns out that our inequalities may be applied to large deviation
problems in the heavy traffic convergence mentioned above. More precisely, they give
asymptotically precise bounds for the probabilities P(M(®) > ) if z > 1/g(a). In the
case of 02 := Var(X(©) being finite, one has g(a) = a and the weak limit of aM(® is
the exponential distribution with parameter 2/02.

Theorem 3.9. Assume that 0> < oo and the right tail of the distribution function of
XO) s regular varying with index v > 2, that is, P(X© > u) = u"L(u), where L is
slowly varying. If

o z (r—2) ,
hznﬁl(r)lf atlna=t 2 7 (3.19)
then
" L(x)

P(M@ > z) ~ as a — 0. (3.20)

(r—1a
Theorem 3.10. Assume that E[(min{0, X(©})?] < 0o and P(X©) > u) = u™"L(u) with
re(1,2). If

liminf g(a)x = oo, (3.21)

a—0
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then
x—r—i—lL(x)

P(M@ > z) ~ Ta

as a — 0. (3.22)

We have imposed the condition E[(min{0, X(®1)2] < oo just to use the Lorden ine-
quality for the overshoot. If one replaces that condition by E[|min{0, X(V}|*] < oo with
t € (1,2), then, using Proposition one can show that li holds for z > = t/(t=1)?
only. The reason is the roughness of Proposition for small values of a. Indeed, if we
use (3.16) even with ¢ = 2, we get the bound E[R,] < Ca~2, which is much worse then
the Lorden inequality.

Theorem 3.11. Assume that E[|XO)|"] < co with r > 2. If

. x (r—2) ,
hlgljcl)lp e R R (3.23)
then ,
P(M@ > z) ~ e7292/7" 4540 — 0. (3.24)

This result generalizes a result from Olvera-Cravioto, Blanchet and Glynn [43] (see
also Blanchet and Lam [7]). They have shown in the setting of a M/G/1 queue with
regular varying processing time distribution, that there exists some critical value

under which the heavy traffic approximation and above which the heavy tail asym-
ptotic holds. However, our results correspond to the more general case of a G/G/1
queue with regular varying processing times in which the arrivals don’t have to be ex-
ponential, but only independent of each other. Furthermore, in contrast to Theorem
3.10, Olvera-Cravioto, Blanchet and Glynn [43] only consider the case r > 2 with finite
variance.

Remark 3.12. Theorems and are special cases of Theorem see Example
1 in chapter 2] In the present chapter, the asymptotical results were derived using
the computable inequalities. As shown in Theorems and these inequalities are
asymptotically precise and serve well to attain asymptotical results in the case of regular
varying distributions. However, it turned out that our inequalities do not seem to give
precise asymptotics in the Weibull-case. It seems the overshoot plays a more important
role in this case and the bound E[e"S7:] > 1 4 hE[S,.] used in the proof of Theorem 3.1
seems to be too rough.

3.4 Proofs
3.4.1 Proofs of Theorems [3.1] and 3.3

We set for brevity 7 = 7,.
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3 Upper bounds for the maximum of a random walk with negative drift

Lemma 3.13. For all h satisfying
Ele"*; X <y <1 (3.25)
we have the inequality

ah

P(M, > =) < (1+ 55— ElrP(X > y) + Elr] . (3.26)
Beweis. Our strategy is to truncate the random variables X; in the level y:
P(M7>x)§P<MT>a:, max Xk§y> +P<max Xk>y>
1<k<rt 1<k<rt
= < . .
P (MTl {lrélggTXk < y} > :):) +P <1I£I?§7Xk > y) (3.27)
From the Wald identity follows
-
P < 1 = P . 2
(jmx x> ) < D1} <BRIP(C0). (29

To examine the first term on the right-hand-side of (3.27)) we introduce the process {W}}

defined by
k

Wo:=1, Wj:= Hthil{Xi <y}, k>1.
i=1
It is clear that if h satisfies (3.25)), {W}} is a positive supermartingale. Define

oy :=min{k > 1: X}, >y}, t; :=min{k > 1: 5, >z} and T := min{oy, t,, T}
Applying the Optional Stopping Theorem to the supermartingale {Wysr} gives us
1=Wy > E[Wr] =E[Wr;it, <7,ty <oyl +E[Wpr; T <tp,7 < y].
We analyze the two terms on the right-hand-side separately:
E[Wpity < 1,t, <oyl > ehmP(tI <T<o0y) = p (MTI {lrgkai( X, < y} > :U)
SKRST
and
E[Wprt <ty,7<o0y=E [ehsf} -E [ehsf; {M; >z}U {1121,?2( Xk > y}]
SKRST
>E [ehST} —ehz <P (MTl{ max Xj < y} > :r) —|—P< max Xj > y)) .
1<k<r 1<k<r
Consequently,

1-E [ ]+P (max Xk >y>
1<k<rt
P<MT1{1I£1?%{TXkSy} >=T> < ehe _ 1
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3 Upper bounds for the maximum of a random walk with negative drift

and hence by applying (3.28)),

P (MTl{ max X <y

1<k<r

— ehSr T
o) < LB BP

It is easy to see that
E [ehsf] > E[l+hS,] =1+ hE[S,]
and as a result we have
ah+P (X >y)

< <
P <MT1 {113]?22}(;6 < y} > x> < EI7] e 1 . (3.29)
Applying (3.28]) and (3.29) to the summands in (3.27)) finishes the proof. O

To prove Theorems and we need to choose a specific h for which holds.
The optimal choice would be the positive solution of the equation E[e"; X < y] = 1,
which is in the spirit of the Cramér-Lundberg condition. But it is not clear how to solve
this equation. For this reason we replace E[e"X; X < y] = 1 by the equation ¢(h,y) = 1,
where ¢(h,y) is an appropriate upper bound for E[e"¥; X < y].

If A; < 0o, we may use a bound from the proof of Theorem 2 from [30], which says

by —1—h
E["¥; X <y] < 1+ hE[X;|X| <y + ——— 4, (3.30)
Y
Using the Markov inequality we also obtain
A
EX;|X| <y <-a—-E[X; X <—y|] < _‘H’Ttp
)

and therefore
ey — 1

E[e"*; X <y] <1—ha+ ) Ay

Put hg := %ln (1 + ayt_l/At). It is easy to see that

hoy_l
€ A, <0

—h0a+ - ~
Y

for all y such that y*~! > (e — 1)A;a~! and this implies that hg satisfies (3.25)). Using
(3.26) with h = hg and applying the inequality

(1+u)*Y >14+uY, 2>y,

we obtain

z/y

P(M, > ) < 2 Bfrly DI (14 0y /A
az/yfl

Ax/y
+(1+ my—(t—”x/y E[r|P(X > y).
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3 Upper bounds for the maximum of a random walk with negative drift

Thus, the proof of Theorem [3.1]is complete.
In order to show that one can replace E[X] and A; by the corresponding truncated
moments, see Remark we first note that analogously to (3.30) and by additionally

using e* — 1 < xe”,

ey —1
tf

E[e" X < y] < 1+ RBX;|X| < y] + h— i BIIX[5 IX] < y).

If E[X;|X]| <y] <0, then

1 [ELX | X] < y]lyt‘l)
ho == —1In <1 +
y E[[ X% [X] <]

is strictly positive and solves

e —1 .
hE[X; | X]| Sy]+hFE[!X\ | X <yl =0.

Therefore, we may use Lemma with h = hg and get an inequality with truncated
moments.

To proof Theorem we want to apply Lemma again and therefore need to
bound E[e"¥; X < y] under the conditions of Theorem We proceed similar to the

proof of Theorem 3 from [42] and get
E[e"Y; X <y] < 1—ha+E[e" —1-hX; X < ¢/h+E[e"X —1—hX; X € (¢/h,y]]. (3.31)
We consider the last two terms of this inequality separately. As you can easily see,

e“h2o2

E[e —1-hX;X <¢/h] < 5

(3.32)

and to bound the second term we distinguish two cases.
At first, let y < t/h. Then,

E["Y —1— hX; X € (¢/h,y]] < etQhQE[X%X € (¢/h, t/R]]

and if y > t/h, we obtain

E[¢"* —1—hX;X € (¢/h, Y]]

< eth[XZ;X € (¢/ht/h] + E[" =1 —hX; X € (t/h,y]].

The function (e — 1 — hu)/u! is increasing for u > t/h, hence,
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3 Upper bounds for the maximum of a random walk with negative drift

and thereby,

th2 hy _ 1—h
E["X —1-hX;X € (¢/h,y]] < eTE[XQ;X e (e/h,t/h]] + eyity

As 4. (3.33)
As a consequence the second bound holds for all values of y and combining ,
and gives us the following bound:

6€h2202 +et2h2E[X2; X € (¢/h, t/h]]+€@_y1t_hyAt,+. (3.34)
Following further the method of the proof of Theorem 3 from [42] we split the right hand

side of (3.34]) into three parts:

E[e"; X <y] <1-ha+

2
fi(h) := —aha + efo?—,

h
fo(h) :== —Bha + TyAt .

th2
falh) == —ha + “~E[X* X € (¢/h.t/h]},
where v € (0,1) withy=1—a — .
We consider fi, fo and f3 separately. It is clear that
2aa
hi = ——=
LT e R[X7]

is the positive solution of the equation f;(h) = 0. Moreover, fi(h) < 0 for all h € (0, hy).
Furthermore, it is easy to see that fo takes it’s unique minimum in

1
hy = ~In <1 + Bayt—1> ‘
Yy At,+

Since fs is convex, one has
fa(h) <0 for all h € (0, ha. (3.35)

Obviously, E[X?; X € (e/h,t/h]] — 0 as a — 0 for all h = o(1) as a — 0. Hence,
fa(h) < 0 for all h such that h/a = O(1) as a — 0.
The assumption in Theorem [3.3)(i) means that k1 < ho. In this case, taking into account

and hy/a = O(1), we obtain
fi(h1) + fa(h1) + f3(h1) < 0.

From the latter inequality we conclude that h; satisfies (3.25) and by applying ([3.26)
with A = h; we obtain (3.10)).
Under the conditions of Theorem (ii) we have hy < hy. By the same arguments we
get
f1(h2) + fa(ha) + f3(h2) <O.
Then, applying (3.26) with A = hy and using the inequality (14 u)*/¥ —1 > u*/¥ 4 >0,
we obtain ((3.12]).
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3 Upper bounds for the maximum of a random walk with negative drift

3.4.2 Proof of Proposition (3.6

We want to use Theorem 2.1 from [12]. If we put F':= F_x the conditions (G1)-(G3) of
this theorem are fulfilled in our setting. Hence we get

ER,] < C/OOP(—X > u)du + c/oo /u+zP(—X > v)dvdu, (3.36)
0 0 U
where b (ca)
e (3.37)

with b*(u) = min{v : —E[X; X < —v] < wu} and € € (0,1) arbitrary. Clearly,
/ P(—X > u)du = E[-X; X <0]. (3.38)
0
Changing the order of integration gives us

00 u+z z 00
/ / P(-X > v)dvdu:/ vP(—X > v)dv+z/ P(—X > v)dv
0 u 0 z

o) 2—t
<2t [ WP X >u)dv= A, . (3.39)
0 to

As you can easily see,

1/(t-1)
b (u) < (‘4) ,

U

therefore by (3.37))
A;/_(t—n

< at/(tfl)el/(lft)(l _ 6)’

C

and by minimization over € € (0,1)

tt/(t—1)At1/£tfl)

c< = 1t/ (3.40)

Finally, combining (3.36)), (3.38), (3.39)) and (3.40) gives us the desired result.

3.4.3 Proof of Theorem 3.7]

We prove ([3.17)) only. The proof of the second bound goes along the same line.
Using Theorem with y = 0(z + jz), we obtain

ASOTCDOE] () 0 e )
al/0= Nz + jz)t+t-1)/0 A

A;/egf(tfl)/ﬁ

P(M; >z +jz) <

(z +jz)—<t—1>/9> E[r.|P(X > 0(x + jz)),
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3 Upper bounds for the maximum of a random walk with negative drift

and in view of (3.7)),

A§/99—1—(t—1)/9

P(M >zx) < Ry

E[r.|%1(z, 2)

Atl/egf(tfl)/G 16
n ”Tx_(_)/ E[r.] (P(X > 6z) 4+ Xo(z,2)), (3.41)

where

e gt—1 o \t—1
Yi(z,2) = Zln <1 + a (xA‘:]Z) ) ( +jz)—1—(t—1)/0
Jj=0

and
o

So(x, 2) = ZP(X > 0(z + jz2)).

Define

~ e ot—1 . NE—1
Ei(@,2) =) In (1 + (wAt]Z) ) (2 +j2) 7700
j=1

The summands in this sum are strictly decreasing, so we conclude by the integral criteria
for sums:

~ O t—1 t—1
Di(z,2) < Z/ In <1 + ab” (@ +uz) > (x + uz)’lf(tfl)/edu
-1

‘ A
j=1"J t

00 t—1,, . t—1
_1/ n 1+a97w Wl =1/0 g,
Z Jr At

and further by integration by parts,

00 t—1,,t—1
1/ (149 0y,
2 Jr At

aetflxtfl 02
1 1 weeeeer~ —(t—1)/0 v —(t—l)/G'
n< + A, )l‘ +z(t—1)x

Therefore, for all = sufficing =1 > 017 (e? — 1)Asa™" and = > 2(t — 1)671,

30 aft~ gttt
D <Y (14T e
ore) < g (14 5 )

= z(t—1)

Furthermore, it is easy to see that

Sz, 2) < 2/]

and Theorem [3.7)(i) is proved.
The proof of Theorem [.7{ii) goes along the same line with using Theorem ii)
instead of Theorem B.1]

! P(X > 6(x 4 uz))du = eifl(ﬁx). (3.42)
1 z
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3 Upper bounds for the maximum of a random walk with negative drift

3.4.4 Proof of Theorem 3.9

Foss, Korshunov and Zachary have shown, see Theorem 5.1 in [27], that for any random
walk with the drift —a and = with £ — oo as a — 0 one has the following lower bound:

Pmﬂ®>x)>1

lim inf — (3.43)
a—0 a-lF (x)
It follows from the regular variation of P(X(® > u), that
71(1’) ~——z " L(z) asa— oo, (3.44)

therefore
" L(2)

(r—1a
Thus, we only have to derive an upper bound.

During the rest of this proof we assume a to be sufficiently small in every inequality.
We want to apply Theorem (ii) with 2 <t < r and arbitrary € > 0. It is clear that

P(M@ > z) > (1+0(1)) as a — 0.

AEZ)_ = E[(X(a))t;X(a) > 0] < E[(X(()))t;X(O) > 0] = AE?_?_,

therefore Agfﬂ)r is finite for ¢ < r and

lim A\ = A > 0.

a—0

Furthermore, we have to show that (3.11)) is fulfilled for y = fx and e > 0 sufficiently
small under our assumptions. Since the function y~!In(1 + Bay'™* /Agal) is decreasing

for y > a1 we have the following bound for > ca™!lna~:

t—1  .t—1 t—1 t—1
(12 i (14 2 )
t,+ t,+
(t—2)
Oc

This implies that if we choose ¢ > (r — 2)0?/2 and 0 = (1 — 6)(t — 2)/(r — 2) , we can
choose av < 1 s0 close to 1 and d,¢,a > 0 so close to 0 that

a(1+ o(1)). (3.45)

t—2 r—2 2

bc  (1+0)c = <EXY

and consequently x satisfies (3.11]) for a small enough.
We take z = z(a) satisfying ™! < 2 < 2. Then, combining (3.13)) and (3.14)), we get

E[r] 1
L N (3.46)
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3 Upper bounds for the maximum of a random walk with negative drift

Sincea ! < zand (t—1)/0 — (r—1) > 1/ —1for 0 < (t —2)/(r — 2),

t—1,,..t—1
- 1/6+1 E[ZTZ] In (1 n ﬂ@(a;”) V0 = o (a7l (). (3.47)
Al

Furthermore, it follows from the condition z = o(x) and the regular variation of P(X(©® >
x) that

P(X@ >z =0 (27" L()). (3.48)
By combining (3.46|) with (3.48) and (3.44)) and regarding L(fz) ~ L(x), we conclude
(a) 1/6
1+ L E[7] iFI(Gx) +P(X@ > 62)
Bot—1lazt—1 0z

~ O (r = 1) taT e (). (3.49)
Plugging (3.47)) and (3.49) into (3.18]) gives us

PM@ >z) 477
li < .
llzljélp alz=™tL(z) —r—1

To complete the proof it suffices to note, that we can choose 0 arbitrary close to 1 by
choosing t close to r. This implies that the previous inequality is valid even with 6 = 1.

3.4.5 Proof of Theorem [3.10

Since is valid for all distributions with negative expectation, we again need an
upper bound only. Let a be sufficiently small during this proof.

It follows from the assumptions in the theorem that 5’7(10) /cn converges weakly to a
stable law of index r. The sequence ¢, can be taken from the equation ¢;" L(c,) = 1/n.
It is known that the function g(a) in the heavy traffic approximation can be defined by
the relations

g(a) =1/cy, and ang ~ ¢,

a*

The latter can be rewritten as

(C”a)r
Cna aL(cna)
From this we infer that (3.21)) is equivalent to
r—1
agc(x) — o0 asa— 0. (3.50)

We want to apply Theorem for t = 2 and y = fz with —E[X();|X(@)| < gz] and
Ay(0z) instead of a and Aj respectively. According to Remark [3.2| we have to show that
E[X(@);|X (9| < fz] is negative. Using the Markov inequality, we have

E[X@;|X@)| < 2] < —a + (02) " E[(min{0, X©})?].
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3 Upper bounds for the maximum of a random walk with negative drift

In view of (3.50|), az — oo. Therefore,
E[X@;|X@| < 2] < —a(1 + o(1)).
Furthermore,
Ao (0z) ~ %(93:)2*’"[/(93:) (3.51)

and consequently by —E[X(®);|X(@)| < #z] ~ a,

Ay (62)E[r]

(—E[X@);|x ()] < gx])1_1/91 . 02E[X@; | X (@] < gz
1+1/02:1+1/6 ST Az(b)

al,'r—l axr—l —(1/6-1)
< (14 0(1)kE[r]P(X@ > z)In <1 + ko o) ) ( e > (3.52)

with appropriate constants k1 and ko. Then, (3.50) implies that

In <1 + e ‘f(;;) (“LI(Z; ) e o(1). (3.53)

Furthermore,

1/6 1N —1/0
Ay (O) g-1/0, 170 _ 1. (9% N
al/? S\ L(x)

with ks suitable and hence by (3.50)),

A (0 _ _
<1+2al§6)9 10, 1/9> —1+0(1). (3.54)

Then, combining (3.52)), (3.53) and (3.54]), Theorem with ¢ = 2 and y = Oz gives us

P(M@ > z) < (1+0(1))0"E[r.]P(X@ > 1),

where 6§ € (0,1) is arbitrary. By the summation formula (3.7) we get a bound for the
total maximum:
P(M@ > z) < (1+0(1))0"E[r.] Y _P(X >+ jz). (3.55)

J=0

Combining (3.42)) and (3.44) with ™! < z < x gives us

. "
> P(X@ >+ jz) < (140(1)) (xTL(x) * z(r—Ll())>
=0
P 1 €T
~(1+ 0(1))2(:_L1())'

Regarding (3.46)) and letting § — 1 completes the proof.
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3.4.6 Proof of Theorem [3.11]

We write 7 instead of 7, for brevity. To derive the lower bound we use the following

Lemma 3.14. If E[|X©|"] < oo for some r > 2, then
P (MT(“) > q:) > (1 — e ha?)ehalath/a) (3.56)

where k > 0 is an arbitrary constant and

2a
.= —
o2

h:=h + O(a'™?). (3.57)

Beweis. We omit the superscript (@) during this proof. To derive the bound 1) we
introduce the process {Wj}r>o defined by

k
Wo:=1, Wj:= Hthil{Xi <y}, k>1.
=1

It is clear, that for every h sufficing
E["; X <y =1 (3.58)

{W}} is a martingale. To find a suitable choice of h we put y := k/a with a constant
k > 0 and split the expected value on the left hand side of (3.58|) as follows:

h2
Ee"Y, X <k/a) =1—ha+ (0" +a*) = P(X > k/a) — hE[X; X > k/d]

h? h?
~ —E[X% X >k/a] +E [ —1 - hX — ?XQ;X <k/al.

2
(3.59)

By restricting ourselves to such A that satisfy h < ca, ¢ > 0, for a small enough we
conclude by the Markov inequality:

h2
P(X > k/a) + hE[X; X > k/a] + ?E[XQ;X > k/a] = O(a"). (3.60)
If » > 3, one can easily infer from the Taylor formula that
h2
E [th —1-hX - ?X2;X < k/a} = 0(a®) (3.61)
and if r € (2,3), one can show with the Taylor formula that

h? ~
E [th —1—-hX - ?XQ; | X| < k/a] < Gd’E[| X3 |X| < —k/d]
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3 Upper bounds for the maximum of a random walk with negative drift
with a suitable constant ¢; > 0. Furthermore,
E[| X% |X| < k/a] < k*7Ta" PE[X]"].

Thus,
2
E [th —1—-hX — %X2; |X| < k:/a] =0(a").

On the other side, [¢"* — 1| < 1 for X < —k/a and thus

2
‘E [th —1—-hX — %XQ;X < —k/a}

<P(X < —k/a) + hE[|X|; X < —k/a] + W*E[|X|*; X < —k/d]

By the Markov inequality and the existence of a power moment of order r we infer from
the latter inequality that

E {th —1—-hX - h22X2;X < —k:/a] = o(a").
Hence, we have for all r € (2, 3)
2
E [th —1-hX+ ?XZ;X < k:/a} = O(a"). (3.62)
Combining and we obtain for all r € (2, 3),
E[e"™ —1 - hX + h22X2; X < k/a] = O(a™"3r})
and, using once again, one can rewrite as
E[th; X <k/a]=1—ha+ h;(a2 + a?) 4+ O(a**?)
with 6 = min{1,r — 2} > 0. Thereby,
h=he == +0(a'") (3.63)
solves the equation and {Wy} with h = h, is a martingale.

We want to use this result to prove Lemma [3.14] and therefore introduce the stopping
times

o:=min{k >1: Xy > k/a}, ty :=min{k > 1: S >z} and T := min{o, t,, 7}.

Applying the Optional Stopping Theorem to the martingale {W;} and the stopping time
T leads

1=Wy=E[Wr]=E [WT;tw < Tt < Uk/a] + E [WT;T <tp, T < ak/a] ) (3.64)
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3 Upper bounds for the maximum of a random walk with negative drift

We consider the two terms on the right-hand-side separately:
E [WT;tx < Tty < O'k/a} < eh“(‘”+k/a)P(t$ < Tyt < Okja)

< eha@HR/OP (M > )

and
E (Wi T < te, T < 00] < E[ele57] < ¢ hez,

If we plug the last two results into , we obtain the stated result:
P(M, > ) > (1 — e Me®)ehaletk/a)
O]
To establish the lower bound in we apply Lemma with z > a~! and get
P(M@ > ) > (14 o(1))e 2@ +h)/o*,
This inequality holds for all k > 0, hence by k — 0,
P(M™ > ) > (1 + o(1))e 24/’

and we get the desired lower bound for the total maximum by stopping the total maxi-
mum in 7:

P(M@ > z) > P(MY > ).
To get an upper bound we need another

Lemma 3.15. For all h > 0 satisfying (3.25) we have the inequality
P(M@ > z) < (1 —e ") L E[P(1X@] > y). (3.65)

Beweis. Let us again omit the superscript () for reasons of clarity. By truncating the
random variables |X;| in the level y follows

<k <k<

P(M:,>z)<P (MTl {lmaé( | X% < y} > x) +P <1max | X% > y) (3.66)
ST T

and due to Wald’s Identity,

T

ZlﬂXk’ >y}

k=1

P<max | Xk| >y> <E =E[7]P(|X]|>y). (3.67)

1<k<rt

To bound the first term on the right hand side of (3.66)) we define
oy :=min{k > 1:|Xy| >y} and T := min{a,, t,;, 7}

Applying the Optional Stopping Theorem to the martingale {Wy} from the proof of
Lemma and the stopping time 7" yields

1=Wy=E[Wz] >E [Wzl{t, < 7.t <7,}| + E [Wzl{r <t,,7 <7,}].
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We bound these two terms as follows:
E [Wgity < 7.ty < Gy] > e"P(t, <7 <5y)

= chep <M71{ max | Xj| < y} > 33)
T

1<k<
and
E [Wf; T <ty, T < &'y] > ¢~ hl=ty)
Therefore,
P <M71 {&1}2{7 | Xi| < y} > 37) < (1 — e MEtw)ye=ha, (3.68)
and by combining , and we attain . O

To get a bound for the total maximum from this lemma we split the tail probability

P(MY > z) <P(MY > z)+P <sup S,ia) > x) .
k>T

Since we can consider the continuation of the process (Sk) beyond 7 as a probabilistic
replica of the entire process with starting point S; it follows by S, < —z, that

P (sup S,ga) > :1:) <P(MW >z 4 2)
k>1

and hence,
P(M@ > 2) <P(MY > 2) + P(M™W > 2+ 2). (3.69)

Let
jo=min{j EN:z+jz> (r—2)0*In(l/a)/a},
then we conclude inductively from (3.52)), that
Jo—1
P(M > 2) < Y P(MYW > 2+ jz) + P(M >z + joz). (3.70)
§=0

We consider the two terms on the right hand side of (3.70) separately. To bound the first
term we use Lemma with h = hy and z =y = k/a.

Jo—1 Jo—1
S PMEW >zt jz) <Y (1— e eV halmti2) 4 GiB[AP(IX@)] > y). (3.71)
j=0 Jj=0

As you can easily see, jo < ¢lna~! with a positive constant ¢. Therefore our choice of
y, z and h, includes

Jo—1 —ha 2]
.1 — 70 1
_ha j—
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3 Upper bounds for the maximum of a random walk with negative drift

We recall z = y and conclude

1— e_ha(z+y)

W - ]. + eihay ~ 1 + 672]6/0-2 (373)
and, by combining (3.72)) and (3.73]),
Jo—1 ' 5
D (1 — ezt mhaletiz) | gmher(q 4 o 2k/oT) (3.74)
§=0

On the other hand, Wald’s identity and the inequality of Lorden (see (3.14))) give

_ kA E((X) )]

E[r] < e (3.75)
Hence, we can follow by using jo < ¢lna~! and the Markov inequality that
JOBIFP(X] > y) < #A,(k + B[(X®)")2)k~"a"2Ina~!
and by plugging the latter results into we attain
jo—1
Z P(MY >z +jz) < (1+ e 2K/ 4 o(1))e " 4 %a"2Ina™t. (3.76)
j=0

with a suitable constant ¢3. To bound the second term in (3.70)) denote by ¢ a constant
with (r — 2)0?/2 < ¢ < (r — 2)o?. The definition of jy gives

P(MY >z + joz) <P (M(a) >ca 'ln a_l) . (3.77)

Let us apply Theorem ii) to the probability on the right hand side of the latter
inequality. Put = ca 'Ina~! and y = fx with § = (t — 2)/(r — 2), where 2 < t < 7.
Then, one can see similar to (3.45)) that (3.11)) is fulfilled for v < 1 close enough to 1 and
a, € close enough to 0. As one can easily see, the other two conditions of Theorem ii)
are also fulfilled for a small enough if one chooses z = 1/a. Therefore we may apply
Theorem (ii) with these values of ¢, 8, € and z for a small enough. Consequently,

P(M@ > ca ' Ina™t) < Pi(a) + Py(a) (3.78)

with
Pi(a) = GE[r]ln (1 +¢a* 'In"ta™1) a(t=1)/0+ 1 =(=1)/6 ~1 (3.79)

and
Py(a) = <1 + Ezl/ea(t_2)/9 In— (=170 a_l) E[7]-

: (a@flfl(ﬁcafl Ina™) +P(X@ > fca'In cfl)) (3.80)
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3 Upper bounds for the maximum of a random walk with negative drift

where ¢3 and ¢, are positive constants that are independent of a. Since § = (t—2)/(r —2)
with 2 < t < r we obtain by regarding (3.75)),

Pi(a) < E5at=1/0-1p1=(t=0/0 =1 (3.81)
with and an appropriate constant ¢5. On the other hand, the Markov inequality gives

a9_1fl(90a_1 Ina™!) <&a"In' a7t

and
P(X@ >f0ca ' Ina™) <&a"In""a"?

with ¢g and ¢y appropriate and obviously, for every 2 < ¢ < r,
1 +'c~zl/9a(t—2)/0 =070 ;-1 1.
Consequently, by additionally considering ,
Py(a) < &a"2In' " a7} (3.82)
with ¢g suitable. By 2 <t < r,
(r=2)0=t—2<t—1-86.

Therefore the combination of (3.78)), (3.81) and (3.82) gives Pi(a) = o(P2(a)) and con-

sequently
P(M@ > ca ' Ina™") < (14 o(1))ega’ 2" " a~". (3.83)

By plugging the latter result and (3.76) into (3.70), we get the following asymptotic
bound:

P(M@ > 2) <(1+ o(1)) (e*haw +&%a 2 Ina"! + Eam 2 ! -1/ cfl)
=(1+o0(1)) (e_h“x + &a"%1n a_l)

By virtue of the relation (3.23)),

r<ca 'lna!

with some ¢ < (r — 2)0?/2 for a small enough, therefore
e—haac > (1 _1_0(1))@20/02’

and consequently

1 —hax).

a"?Ina"! =o(e

Finally,
P(M@ > z) < (14 o(1))e ",

and the proof is complete.
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4 A local limit theorem for the maximum of a random walk in the heavy traffic regime

4 A local limit theorem for the maximum of a random walk
in the heavy traffic regime

This chapter contains results from the publication [37]. To the knowledge of the author
there are no known local limit theorems concerning the heavy traffic regime and the
results attained in this chapter are totally new.

4.1 Introduction and statement of results

We again use the notation from Chapter and again consider a random walk with
negative drift —a. In the case a = 0 write S, X; and X instead of S(©, XZ-(O) and X (©
respectively. As stated in Chapter the random walk drifts to —oo for all ¢ > 0 and
as a — 0 the so-called heavy traffic asymptotics (see (1.30))) holds for every fixed value
of x:

P(M@ > 2) ~ e 2/7°  a5a — 0. (4.1)

In interesting mathematical question is whether there also a local version of this result
and this is what this chapter is about.

We assume that X (@) possesses a A(®-lattice distribution with zero shift, that means
there exists some A(® > 0 such that P(X(® € A®Z) = 1 and A®@ is the maximal
positive number with this property. Assume that A@ — A© > 0 as ¢ — 0 and in
the case a = 0 write A instead of A, Due to rescaling we can assume without loss of
generality that A(® = A = 1. Suppose that

X@ 2 X asa—0 (4.2)
and
sup E[XW]2 <00 and sup E[(max{0, X@})?*] < oo (4.3)
a€l0,a0] a€l0,a0)

for some ag, e > 0.

Our main result is a local limit theorem for the probability P(M(® = ) as a — 0 for y
such that y — oo and ay = O(1). The main idea for our proof is to find a a representation
of the probability P(M (@) = y) as a geometric sum and to derive and apply a uniform
renewal theorem to find the asymptotic behaviour of this sum. This uniform renewal
theorem will be a generalization of a result attained by Nagaev [41].

It is worth mentioning that the approach used in this chapter is similar to the method
used in [7], where the authors use the well-known representation of P(M(®) > y) as
a geometric sum of independent random variables (see for example [3]) and a uniform
renewal theorem from [6] to establish the asymptotic behaviour of P(M(® > y) as a — 0
and y — oo for subexponential distributions. In [6] there is also a uniform renewal
theorem used to develop asymptotic expansions of the distribution of a geometric sum.
Let us also mention that the local behaviour of the probability P(M(® = z) as  — oo is
known in the sense that there exists a local limit theorem for  — co. Namely, Theorem
5.13 in [27] states that for a random walk with negative drift whose increments are long
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4 A local limit theorem for the maximum of a random walk in the heavy traffic regime

tailed and strong subexponential,

T __
P(MW € (z,2+T]) ~ —F(z) asz — oo.
a
In the lattice case x and T should be restricted to the lattice and for a 1-lattice with zero

shift we attain 1
P(M® =g)~ =F(z) asz — oco.
a

We now state our main result.

Theorem 4.1. Assume that [£2) and [.3) hold and suppose that X(®) possesses an

aperiodic 1-lattice distribution with zero shift for a small enough. Then, as a — 0,

P(M@ =y) ~ = exp {—2} (4.4)

uniformly for all y such that y — oo and ay = O(1) as a — 0.

Remark that our model excludes the case SYL) = S§O) — a. Examining this case
would be desireable, however this would be a different problem. In the non-local case
it is known (see for example Wachtel and Shneer [49]) that one only needs to assume
limg_,o VarX(@ = 52 ¢ (0,00) and a Lindeberg-type condition

lim B[(X ) 1X9> K/a]=0 forall K >0
a—

to establish . This means that we must make stronger assumptions to establish our
local result than it is needed in the non-local case.

Remark that it seems likely that one can get a non-lattice version of Theorem with
similar methods used here. The reason is the following: The proof of the uniform renewal
Theorem which we need for the proof of Theorem is based on results from Nagaev
[41]. The results in [4I] are derived under the assumption that the increments posess a
absolutely continuous component and the proof should work similar in our case. The rest
of the proof of a non-lattice analogy of Theorem should work similar to the approach
used in chapter [1.4]

It is also worth mentioning that Theorem restates the heavy traffic asymptotics

(4.1): As a — oo,

o0 oo
P(M@ > y) = S P(M@ = ) ~ 223 (~20a/o”
=y o =y
_ %ﬂ " o—2ay/o?

021 — e—2ay/o?

for all y such that y — oo and ay = o(1) as a — 0.
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4 A local limit theorem for the maximum of a random walk in the heavy traffic regime

4.2 Uniform renewal theorem

In this section we prove a modification of Theorem 1 in Nagaev [4I] which is, unlike the
uniform renewal theorem from Nagaev, even uniform in the expected value. This renewal
theorem is the key to the proof of our main result.

Consider a family of non-negative 1-latticed and aperiodic random variables {Z ®) b e
I} with E[Z®)] = 4 a non-empty set I C R that contains at least one accumulation

point and infye; £ > 0. Denote by F(® the distribution function of Z® and by F,gb)
the k-fold convolution of F®) with itself. Let

H(z,b, A) ZAk )(z), A>0.

In renewal theory one usually studies the asymptotic behavior of H(z+h,b,1)—H (z,b,1),
h > 0. However, the case A # 1 is also of great interest. In [41], Nagaev’s motivation for
studying the case A # 1 comes from branching processes, since there arises a need for
an asymptotic representation for H(x + h,b, A) — H(z,b, A) as & — oo with an estimate
for the remainder term which is uniform in A. For our purposes we seek a representation
for H(x + h,b,A) — H(x,b,A) as © — oo and the estimate for the remainder shall be
uniform in A and b. Assume that there exists some s > 1 such that

sup E[(Z")*] < o0 (4.5)
bel
and that
z® 2y 70), (4.6)
Put

Y = FO@®) - FO(k - 1)), O Z

WD) = £ () = Y kgD
k=1

Proposition 4.2. Let /\?(Jb) (A) be the real non-negative root of the equation Afgsb)(z)
= 1. Assume that (4.5)) holds for some s > 1. For every accumulation point by of I, there
exists a positive constant o such that

>4 (B ) - Oy - 1))
k=1

()

S v O(y_ min{1l,s—1} lny) (47)
b) (b
Ay (" (4))
uniformly inbe IN{bel:|b—by| <a} and Ay < A <1, where
Ay =1-Cly (4.8)

with a fized positive number C.
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4 A local limit theorem for the maximum of a random walk in the heavy traffic regime

4.3 Proof of the uniform renewal theorem

Although the uniform renewal theorem is a generalization of Theorem 1 in Nagaev [41],
the main idea of the proof is the same. However, for reasons of completeness, we give the
whole proof.

Let us assume without loss of generality I = [0,b1] with b; > 0. Suppose that y is
sufficiently large in this section, even if it is not explicitly mentioned and throughout the
following fabg(a;)dF(b) (x) is to be interpreted as f;: g(x)dF®) (z).

Lemma 4.3. Assume that (4.5)) holds for some s > 1. Put Uy(d) = {z : 1 < |z| <
ehv | arg 2| < 8§} for some h, = O(1/y). Then,

lim lim sup ,u(b) z —p(b) =0. 4.9
5—>09_’°°belzeUy(6)| v (2) | (4.9)

y oo
/ 225 tqF®) / zdF®)
0 0

Yt ) 2dF®)
g/o 271 1|dF ()+/ dF®) (). (4.10)

Beweis. First of all,

1 () — | =

When z, |z| > 1, one can easily see by Taylor’s approximation that
12770 — 1| < |z — 1]|2)%
Using this estimate we obtain for all z € Uy(0) and N <y,
N N
/ 2271~ 1)dFO (@) < |2 — 1\/ 22|2[FdF® (z)
0 0
N
<|z-— 1|ehyy/ 22dF®) (z) < N?|z — 1]evv.
0

Furthermore, a straightforward trigonometric calculation shows that for § sufficiently
small,

|z — 1] < |z — €887 4 |1 — ™87 = |2] — 14+ /2(1 — cos(arg 2)) < e — 1+ 2§
for all z € Uy(d) and hence, as y — o0,
N
/ 2|22 = 1|dF® (z) < (" — 14 26)N2e™Y = (26 + hy + o(hy))N2ev¥
0

uniformly in b € I. At the same time, for z € Uy(6), assumption (4.5) and hyy = O(1)
imply that there exists an absolute number K > 0 such that for all N <y,

Yy Yy
/ 2271 = 1|dF®) (z) < (1 + M) / 2dF® (z)
N N

1+ efwy

> s b 1-s
SNS1/N 2*dF®(z) < KN
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and by setting N = (2§ + hy)*l/?‘ and choosing K such that e"¥ < K, we attain

)
/ 2|27 — 1JdF® (@) < (26 + hy) 3 1+ K (26 + hy) D3 + oh,)
0

< V3§34 K2~ D/35(s=D/3 4 5(1) (4.11)

uniformly in b € I as y — oo. Plugging (4.11]) into (4.10) and using (4.5 once more, we
conclude

|M§/b)(z) . M(b)’ < 21/3K1(51/3 + Kz(sfl)/Sé(sfl)/S +0(1)

uniformly in b € I as y — oc. O

Lemma 4.4. Assume that (4.5) holds for some s > 1. Then, for large enough y,
)\éb)(A) < e for all Ay < A<1andb € I, where Ay = 1 — C/y with some con-
stant C' > 0 and hy = C1/(Oy) with Cy > Cu® /infye; p®.

Beweis. We want to estimate the difference )\Z(,b) (A)—1. First of all, by using the definition
of AP (4),

[ (09 - 1) ar¥e) = ;P op) - [ artw
0—

0—
1 > 1-A4A >
== 14+ ®)(p) = (b)
1 / dF'\% (x) —i—/y dF\% (z).

y
Furthermore, /\Z(,b)(A) > 1 for A <1 and therefore by the binomial formula,
AP (A)" 1> 2P (4) 1), z>0.
Thus, (4.5)) gives that uniformly in b € I,

0P -1 [ sarO@) < [T (0P -1) a0

0— 0—
1-A

A
The condition A, < A <1 implies that 1 — A < C/y, hence

Loy 4, 0(
A A Y

+[CarOw = R o). )

and consequently

1-A C C 1
< — = — — |- .
A Say Ty +O<y2> (4.13)

From the inequalities (4.12)), ([4.13)) and (4.5) we conclude that

Cly+O0y ) +0y*) _ C/(u"y)
WO = [F2dFO(@)  1-0( )
C1

Oy

AP(A) —1 < +0(y™*) +0(y™)

c - —s
) +O(y 2) +0(y™7) <
Y
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uniformly in b € I for all y large enough. Therefore, since ¢ — 1 > z for all z > 0,
)\@(,b) (A) < e uniformly in 4, < A <1 and b€ I, if y is sufficiently large. O

Lemma 4.5. Assume that (4.5) and (4.6) hold for some s > 1. Put hy, = C1/(uOy)
with a constant C7 > Cu(o)/infbg p®) . Then, there exists some by > 0 such that for y

large enough, Af;b) (2) — 1 has no other zeros in the disc |z| < €™ apart from )\éb) (A)
and this holds uniform in Ay <A <1 and 0 <b < bs.

Beweis. First of all, for all |z| < ehv,
y

PG < [l tapO ) < o).
0

Using in addition hyy = O(1) and (4.5), we conclude

sup \ul(/b)(z)] < 0. (4.14)
yvbgbla"z'Sehy

Since the convergence radius of the derivative of a power series is the same as the con-
vergence radius of the power series, we attain

lim sup sup }f;b) (re¥) — f;b)(ei“")‘

_>
YrO0b<by 1<pcehy

0<p<2r
= lim sup sup }uéb)(ei“’)‘ |r—1|=0. (4.15)
Y7O0b<br 1<y hy
0<p<2m

On the other hand,

oo
lmeMMthwumme/W%Wm
Y00 p<p; 0<p<2m Y00 p<y 0<p<2m Jy

= lim sup 7 (y) =0. (4.16)
Y—00 bgbl

Asb — 0, F® 2 FO) due to (4.6) and F () is not defective because of (4.5). Obviously,
uy(-) = €% is equicontinuous with |uy| = 1 < occ. Hence, by a corollary in Chapter
VIII.1 in Feller [25],

/ ¢t 4B 0) () / 9 PO (z) (4.17)
0 0

uniformly in 0 < ¢ <7 as b — 0.

Now, let us first consider values of z in the circle |z| < e that are not in the vicinity
of )\?(Jb) (A). Due to Lemma these values can be characterized as those values that
satisfy |z| < e and § < |argz| < 7, § > 0. We have

0 .
/ e dFO) (z)
0

sup £ ()] = sup
d<ep<m d<p<m

[e.e]
< sup/ |e“"x’dF(0)(x):1.
0<ep<mJ0
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Combining the latter inequality with (4.17)), we conclude that for by > 0 sufficiently small

sup sup |f (") <1
b<bs 6<p<m

and since this inequality is strict,

— inf i ' (b) (iry —
m(d) : blélbi fllr%fl 5glgfg7r |AfSD (e%) — 1] > 0. (4.18)

By combining (4.15)), (4.16) and (4.18), we conclude that for y large enough and A €
Ay = {A:1-Cly= A, <A<},

: : ®) o iy m(é)
blélbi 1<1Tr<1£hy |Af (re'?) — 1| > 5 > 0. (4.19)
§<p<ar

On the basis of we can assert that if A fy(b)(z) — 1 has a zero Xg(,b) (A) in the disc
|z| < el differing from Aéb)(A), then Xéb) (A) will lie outside the region {z : 1 < |z] <
ehv,|arg z| > §} Note that the region {z : 1 < |z| < ", |arg z| > 6} does not depend on
b and A, so the latter holds for all values of b € I and A € ,,.

Next, consider the region Uy(§) = {z : 1 < |z| < €M, |arg 2| < 6}. The equicontinuity
of the family {fy(b)(-) :be I, Ae,} implies the existence of a d1(b, A) > 0 such that
\Afgsb) (z) — 1] has no other zeros in the disc |z — /\éb)(A)| < 61(b, A) apart from )\éb)(A).
Therefore,

m(6y) := inf inf inf  JAfP(z) - 1] > 0.

bsbr AUy 1A (a)i<oy
2N (A)
where 2 = infy<y, inf 4eq, 01(b, A) > 0. This implies that for 6 small enough, say ¢ < d3,
X?(Jb)(A) cannot lie in the region {z : 1 < |z| < e/, |arg 2| < d3} and this holds uniform
in b < by and A € %, with y large enough. Setting ¢ = d3 in (4.19) we conclude that
X;b)(A) cannot lie in the annulus 1 < |z| < ef». Since ]Xéb)(Aﬂ > 1forall A <1, we
finally obtain that X?(/b)(A) does not lie in the disc |z| < e, so )\?(/b)(A) is the only root of

the equation A fzsb) (A) = 1 in the disc |z| < e and this holds uniformly in b < by and
A, <A<, O

Proof of Proposition . Let v, be a circle of radius r, = e with h, = Cy/ 1 Oy),
cy > p0 4+ Cu(o)/infb§b1 p® and C from (4.8). Then, according to Lemma and
Lemma there exists some by > 0 such that for all 0 < b < by and A € 2, the

function 1 — Afy(b)(z) is zero in the disc |z| < e’v, if and only if z = )\g,b) (A). Hence, the
Residue theorem states that

1 zy1 2yl

—y—1
LY R S = B (1 R Lﬁ .
i ), 1- AL () %<L4%Wa y(0+ %Q—A#W)>
(4.20)
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for 0 <b<byand A€,
In the following denote by C,(f(z)), n > 1, the coefficient of z™ in the Taylor series of
the function f(z). An easy calculation shows that

[e o]

A = A3 (FOG) - B - 1)) 2

j=1
and consequently, by changing the order of summation, it is not hard to see that
- 1
A (F<b> (n) — FY(n — 1)) =Cp [ ———— .
2 ' 1-4f0(2)

On the other hand, when n <y,

1 1
1-Afs (2) 1-Afy"(2)
and thus, for n <y,

; AF (F,gb><n> PP (n - 1)) = C, (1_/1;5")(2)) . (4.21)

Using (4.21)) with n = y, one can easily verify

P >
Res| ————— 0| =S4 (FYu - FYy - 1)) .
es (1 - Afy(b)(z) ) ; ( k (y) k (y ))

The pole of the function z=¥~1/(1 — Afzsb)(z)) inz= )\:(yb) (A) is of order 1. Therefore, it
is not hard to see that

Res (”Z_y_l’)\(b)(A)> - _M
1-Af (=) " Ay (g (4))
and by combining the latter results we obtain
S 4 (RO - F9 - 1) = Cr @)L |l
k=1 Apy” (Ay”(A)) TSy 1= Afy”(2)
It remains to show that under the conditions of Proposition [4.2]
1 P
uniformly in b < bp and A, < A < 1. Let

0y (2) = AUSP(2) = [P (ry)) = A (ry) (= = 1y),
w;sb)(z) =1- Af;gb) (ry) — Aﬂg(/b) (ry)(z —ry).

dz=o0 (y_ min{l,s=1} 1y y) (4.22)
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Then, the following identity holds:
11 @1+ ARG soé><> |
1-417G) e Q=A@ 0= AR @)W ()
Let € > 0, y,(e) = 7, N Uy(e) and let 7, (g) be the complement of v, (¢) with respect to

vy- By (4.23),

27yt z7y1 z7v! (b (Z)
T dr= Z___d dz
/ AP / P (2) ”/w <1—Afy*’>< >>w<b>< )

Y

(4.23)

—y— 1
+ / — (Z<)b> dz.
o) (L= Ay (2))¢y” ()
Using (4.23)) once again, the last integral of the latter identity can be rewritten as

—y—1 (b) —y—1 —y—1
/ i (sz dz = / " +/ e
Ty (1= Afy " (2))¢y " (2) 7y (€) ¢y (2) Tye) 1= Afy 7 (2)

Y

Hence,
Z_y_1 4 (b)
[ o= 1w+ 1w, (424
7 Jj=

where

s o0 (2) 1= AR @)y (2)
—y—1 —y-1
W= o 1P e
s e = iy W)= / D1-AfD()

©

To calculate I} ) let us examine integrals of the form

an
d 4.25
/MCQ ket h (4.25)

where n > 0, k,h € C and |h| < c2|k|. For |h| < c?|k|, the function 27" /(kz + h) has
exactly two singularities in the disc |z| < ¢2, one in 0 and the other in —h/k. Consequently
the Residue theorem states that

z " z " z " h
dz=Res [ —— ~2).
/Zl:cz kz+h" Reb(kz+h’0>+Res<kz+h’ k:>

The pole in z = 0 has order n, hence

z " _ (_1\n—1lgn—-1p—n
Res (k:z+h’0> =(-1D)"k""h
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and the pole in z = —h/k is of order 1, thus

z " h
) =(-1 nkn—lh—n.
Res(kz+h’ k‘) (=1)

Therefore,

/|: ) kj:hdz =D ()RR = 0. (4.26)

By the equicontinuity of ugsb)(-), the result from (4.14), Lemma and Lemma as
Yy — 00,

£P(ry) = £P OGP (A)) = (ry = AP (A) P AP (A) + o(ry — AP (4))
= (ry = AP (A" + o(ry = AP (4)) (4.27)

uniformly in b < by and A € 2. By virtue of Lemma [.4] and the definition of Cf,
|)\£,b) (A)] < e~/ and consequently
ry — AP (A) > e (1 — e71/Y)
=L +hy+oly Ny +oly ) =y +oly™)
uniformly in b < by and A € 2. By plugging these results into (4.27]),

+o (1> <0 (4.28)

Y

Apu®
1—Af®P(r,) < -2£

for y large enough. Now put h =1 — Aflsb) (ry) + Aul(/b) (ry)ry and k = —Auéb) (ry). Then,
since A,uéb) (ry)ry > Auz(,b)(l) # o(1), we obtain by virtue of (4.28),
|h| < Auéb)(ry)ry = |k[ry

and consequently by (4.26)),

z7y~1
19(y) = / —g—dz=0. (4.29)
v Py (2)
Let us consider Iéb). Clearly,
e (b)(T eit) '
Iéb)(y,&t) = iry/ Py Y : e~ Wt
Yo S e (1= AP (ryet)) P (ryeit)

To bound this integral we use a method similar to the method Taibleson [47] used to
bound Fourier coefficients. Denote by g a continuous function with bounded variation
on an interval [01,0s] with 61,0, € R and 6; < 603. Let nfy/(27),nb2/(27) € Z and
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4 A local limit theorem for the maximum of a random walk in the heavy traffic regime

ay = 2nk/n for k = nby/(27),n01/(2w) + 1,...,n03/(27). Then, ay — ax—_1 = 27 /n for
all £ and consequently

ak . 1 . ;
/ efztndt — _ — pinay (1 o 627”) =0
@ m

k—1

for all k. Hence,

02 . .
/ g(t)e ™dt = / e Mt
o1 k= n91/ 27)41 Y Fk—1

nba/(2) ag . ar .
g </ (9(t) — glax))e™™"dt + g(ax) / e‘“ndt>

n92/ (2m)

k=nb1/(2m)+ k-1 Fo—
n92/ (2m)
/ — g(ag))e ™t
k= n@l/(27r Gk—1

For a < b, a,b € R denote by Vp(g(u)) the total variation of g on D. Then, for ¢ €
[akfla ak]a
19(t) = g(ar-1)| < Vi a0 (9(w))-

and by recalling ang, /2r) = 61 and ayg, /(2r) = 02,

05 n@g/ (2m)
/ g(t)e_mtdt‘ / olap))dt
01 k= n91/ (27) 417 k-1
or nfa/(2m) or
< ; Z V[ak,l,ak}(g(u)) < ;V[Eh,@g](g(u))' (430)

k=nb: /(2m)+1

To use the latter inequality to bound 1. (b), remark that since we want to consider the case
y — 0o we can always assume ye/(27) € N without loss of generality. Consequently, by
using (4.30) with n = y and —0; = 0 = ¢ one attains for every fixed ¢ and vy,

o ey (2)
B 0e)l < 5 Vot (( gy <z>>w£f’><z>> | .

The variation of w (2) = ¢ (2)/((1 — Af{P(2))1h,(2)) on ~,(e) can be rewritten as
follows:

Voo \@ ( V(2 )) =V (R (w ()( ))) + Vo (Im(wéb)(z))>
:Ly (‘ ”)<z)>‘ jl (w <b>(z))D dl,

103



4 A local limit theorem for the maximum of a random walk in the heavy traffic regime

where dl is the differential of the arc along 7, (¢). Due to the binomial formula,

d 2 d 2
<‘dl ‘ ‘Im > <2 ( aRe ‘Im )
d
=2 awl(/b)(z)
and thus,
(b) (b)
\" vy (2) ><\/§ i wy (2) d
e ((1—Af§b)(z))¢§b)(z) - /ms) dz (1 - AR (P ()|
o (2)p(2) Au(b)(Z)so(b)(Z)
sﬁ(/ I dz+/ yb) v dz
w© | (1= AP )@ (2))2 we | (1= AfP (2200 (2)
(b’
o (2) )
+ dz
/ma) (1— AP (2w (2)
=21 + 1) + 1)), (4.32)

Let us bound the terms appearing in the integrands of the integrals from the latter
inequality. Using the definition of the complex absolute value, an easy calculation shows
that

|AfP(z) = 12 = A2 fP(z) = £SO )P + (AFP (ry) — 1)
— 2A(AfP (ry) — DRe(£7 (ry) — £37(2)).

By the equicontinuity of the family { féb) :bel,Ac,} and Lemma with § = ¢
small enough, as y — oo,

£ (ry) = 1P @ = Iy = 2u® (2) - olry = 2) 2 A= )u®|z =] (4.33)

and
£ (ry) = £ ()] = Iy = 2l (2) + o(ry — 2) < (1 +)uP |z — 1y (4.34)

uniformly in b < by and z € Uy(b) (¢). Furthermore, for all z € Uy(e) with e sufficiently
small,
Re(ry — z) =sin(arg z)|z — ry| < elz — 1yl

By virtue of (4.28)), (4.33) and (4.34),
[AfP(2) = 1P = (AfP(ry) = 1)* + (1= &) (") 42|z — |2
—2e(1+ )uDAASP (ry) = 1)z — 7
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4 A local limit theorem for the maximum of a random walk in the heavy traffic regime

and by the binomial formula,
26D A(AFD (1) = D)z = 1y < (UO)2A2)2 = 1y [2 4+ (AP (1) — 1)2
Using the binomial formula once again, we obtain

ASP () = 1R 2 (1= = (1 + ) [[1 = AFP ()2 + (®)2 A7)z — 1y ]

- l—e—e(1+¢)
- 2
Choose € so small that 1 —e —e(1 +¢) > 1/2. Then,

2
(11— A7 ()] + Ap®]z = 1|

b
AR (ry) =1, A0z — |

b
[AfP () = 1] > 5 5

(4.35)

uniformly in b < by and z € U?Sb) (). We proceed analogously to bound |1j)75b) (z)| for
z € Uy(e) from below. One has Re(r, — z) < |z — ry| and by virtue of Lemma

uz(/b)(ry) € [(1 = 6)pu®, (1 4 6,)u®] for arbitrary &, if y is large enough and € is small

enough. Consequently, one can easily see that for §; small enough,

WPEP = 1 - 7P00)P + 42 (1) |2 =7,
—24(f{(r,) — D (r, Rer, — 2)
1— 6,
2

2
> =2 11— £ )] + Au®z =y | (4.36)

for all 55 < 1/2. Hence,

L= AR )] Az -y
— 2 .

RIC] : (4.37)

On the other hand, one can easily see that for every z on ~,(e) with e sufficiently small,

|2 —ry| > |e"8% — 1| = \/sinz(arg 2) 4 (1 — cos(arg 2))?

= /2 — 2cos(arg z) > |ar2g,z]7

where we used cos ¢ < 1 —¢?/8 in the last inequality. Combining inequalities (4.28]) and

(4.38) with (4.35]), we obtain
1

(d)
1= AP 2 2 (3 fargal) (439)

(4.38)

for b<by and z € Uéb) (€). The inequalities (4.28]), (4.38) and (4.37)) provide

Ap® 71
P12 2 (4 fargz)) (4.40)
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4 A local limit theorem for the maximum of a random walk in the heavy traffic regime

and, moreover, an easy calculation shows

[ ()] = A (ry) < v 4O, (4.41)
For z € Uy(e),
hyy (0))2 15> 2
W< [ PUBEORE s
‘fy (Z)’ — { ehyyy2_5E(Z(b))8 l<s<?2

and, consequently,
b b)! b)!!
ey (2) e AR e
‘Z _ ry’2ymax{0,2—s} 2‘2 _ ry’ymax{O,Z—s} Qymax{O,Z—s}

as y — oo. By virtue of (4.38]),

2 —1y| = |2||€"®8% — 1| = /2 — 2cos(arg z) < arg z,
y

for all z € v,(e) if € is sufficiently small. Hence, if € is is sufficiently small,

o (2) = O(y™™>(02=}z — ry [2) = O(y™ 102~} arg?(2)) (4.42)
and .
e (2) = O(ym@>(02=d )z —py|) = O(y™>{02=} arg(2))) (4.43)

uniformly in b < by and A € 2. Considering (4.39)), (4.40), (4.41), (4.42) and hyy = O(1)
provides

e ®) ity |, . it . 5
—e | fy 7 (rye®t) = [y (ryet) |2 o (¥ t+1)

uniformly in b < by and A € 2. Moreover,

€ 2 e+1/y =12
[ [
o (¥ t+1) 1/y w

~In(e 4y —In(y™!) =In(1 +ey) ~ In(y) (4.44)

as y — oo and therefore, uniformly in b < by and A € A,
15| = O(y™=402=Hn ). (4.45)

In analogy, by additionally taking into account that ;Lg/b)(z) < 2u® due to Lemma
for y large enough, one can easily see that

I§) = O(y™>{02= I y) (4.46)
and furthermore, by regarding (4.43),
(b) _ max{0,2—s} /6 t > _ max{0,2—s}
157 =0 dt | =0 Iny). 4.47
23 (y 0 (y,l +75)2 (y Ily) ( )
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4 A local limit theorem for the maximum of a random walk in the heavy traffic regime

Finally, plugging (4.45)), (4.46|) and (4.47) into (4.32)) we attain

%(/b) (2) {0,2—s}
Ve @) =O(y T Iny)
( (2)

1= Af ()
and hence by (4.31]),

1L (.2)| = Oy ny) (4.48)

uniformly in b < by and the admissible values of A. Next, we draw our attention to the

integral I éb).

®) e—iyt
I3 (y,E) = —iryy/ (17)7dt (449)
e<lti<n ) (ryet)
To bound this integral we use the bound from (4.30) again:
et 27 1
——dt < —V5 — . (4.50)
/5§|tS7r @Z)?(jb) (ryett) y e < éb)(z)>

In analogy to (4.32)), one can show that

1 d 1 W (2)]
Voo | —— | < V2 ———|dz =" .
”“( S”(z)) /vym dz () (2) /w) WP ()2

For all z € 7,(¢) the inequality (4.37) gives

2(,.(b)\2 2(0,,(b)\2
PP > AU s AT

where we used that [z — ry| > € for all z € ¥,(¢). Therefore, by virtue of (4.41)) and

hyy = 0(1)7
1
e (u);”’(z)) ow

and consequently by combining this result with (4.49), (4.50) and h,y = O(1),

10,5 = 0 (;) (451)

uniform in b < by and A € 2. It remains to consider I ib). Due to (4.30)),

(). e

11 (y, )] =
! y 1 AfP(2)

efiyt
iry_y/ © —dt
e<|t|<m 1 — Afy (’I“yelt)
Furthermore, by (4.14]) and (4.19),
/ a1
7,0 |42 1 - AfP(2)

1
s <1—Af;b><z>>§
/ A’ o)
el

L@ 11— AP (2)P2

S

dz

I
S
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4 A local limit theorem for the maximum of a random walk in the heavy traffic regime

and consequently
1
Jf%wg):()<y>. (4.53)

Finally, by plugging the results attained in (4.29), (4.48)), (4.51]) and (4.53) into (4.24),
we get

—y—1 .
/ z . dz — O(ymax{fl,f(sfl)} In y) + O(yil) _ O(y* min{l,s—1} In y)
wl—Afy (2 )

uniformly in 0 < b <by and A, <A< 1.

4.4 Proof of the local limit theorem

Put T_&_a()) =

the random walk S(®) and its corresponding ladder height by

0 and define recursively for ¢ > 1 the i-th strict ascending ladder epoch of

T_E_sz := min{k > TJ(:z_l : S(a) > S .} and Xga) = S((3> S((z)
Ty T4i—1
In the case i = 1 we write Tia) and (@ instead of TJ(ra)l and Xga) respectively and,

if additionally a = 0, we write 7 and x instead of TJ(FO) and x(©) respectively. Define

(a)

random variables Z; " as iid copies of a random variable Z (@) with

P(Z@ e ) =P\ e 71" < x0).

Denote by 6 := min{k > 0 : S,(Ca) = M@} the first time the random walk reaches its
maximum. Then,
P(MW =y) =Y P(MY =y,0=n).
n=1

We further define M,(La) ‘= MaxXj<p S(a) and 6, ;= min{k < n : S,(j) = M,Sa)}. By the
Markov property,
P(M@ = y,0 =n) = P(S{ = 4,0, = n)P(r'") = o0).

Hence the following representation holds for the maximum:

P(M =y) = P(r}") = 00) Y P(S\V = y.0, = n). (4.54)

n=1

Clearly,

P(S\ = y, 0, =n) = P(S'9 = y,n is a strict ascending ladder epoch)

_ZP +X2 ++X}(€a) :y’TJ(rcf)1+TJ(ra)2 —|—T_$_(T;€:n) (455)
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4 A local limit theorem for the maximum of a random walk in the heavy traffic regime

Denote the distribution function of Z(® by G and denote the expectation by pu(® :=
E[Z(@)]. Let G** be the k-fold convolution of G with itself. Then, by using (4.55)), changing
the order of summation and using the Markov property,

Z P(5 =y.0, =n)
(a) (a) (a)

P(X§Q)+X§a)+---+x§€)*y,7+1+7+2+ Ty k—n)

o8
NE

i
—
B
Il

1

PO + 8 + - =yl < 00)P(r7), < 00)

o

i
I

o

A (G ) - Gy - ) (4.56)

b
Il
—

with A = P(T_(:L) < 00). Combining results and - we attain
P(M©® =) =P(+|V) = ZAk (G*k — Gy - 1)) . (4.57)

Next, we want to use Proposition to determine the asymptotic behaviour of the sum
on the right hand side of the latter equality. Therefore, let us first show that under the
assumptions of Theorem

Z@ 2 7O asa — 0. (4.58)
It is known that
P(7\” < 00) ~ P14 < 00) = 1. (4.59)

Thus, as a — 0,

P(X(a) > x, TJ(ra)

P(T_s_a) < 00)

< 00)

P(Z > z) = ~ P > :B,TJ(FG) < 00)

and, on the other hand, (4.2)) and (4.59) imply that for every R > 0, as a — 0,

P(x\“ >z R < Tfra) <) <P(R< TJ(ra) < )
=P(r\” < 00) = P(7\”) < R) ~ P(r} > R).
Furthermore, by using (4.2)) and the continuous mapping theorem,
R-1

(a) (@) ~ py — (a) (a) ~
P(x'" > z,7" <R) k_OP(SkH >z, 1mla<>§€S 0)

S
L

~ P(S S <0)=P <R
. (lc+1>96,112la§>§C 1 <0) (x >z, 7+ <R)

b
Il
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4 A local limit theorem for the maximum of a random walk in the heavy traffic regime

as a — 0. Thus,

limsup P(Z@ > z) < P(x > z,7, < R)+P(ry > R)

a—0

and by letting R — oo we conclude

limsup P(Z@ > z) < P(x >z, 74 < 00) = P(Z0) > 2).

a—0

On the other side, the above calculations give

lim %lfP(Z(a) > z) > liminf P(x® > :E,T_s_a) <R)=P(x>z,7 <R)
a—

a—0

and by letting R — oo,
limiélfP<Z(a) >2)>P(x > 2,7 <o0)=P(ZO) > 1)
a—

This means that (4.58) holds under our assumptions.
Due to relation (16) of Chow [16] there exists a constant C; > 0 such that

u2+€

B(S) il <o < [ [ dP(max{0, X} < u),
T o E

+ |S£0(L2) | A u]

where 7 = min{k > 1: S](Ca) < 0} is the first weak descending ladder epoch. Obviously,

E[|S£‘(13>| Au] > E[|si‘3>| A1) > P(S\Y <0)>0

for all © > 1 and therefore

(a) \14+€. (a) C(1 24¢e (a)
E ol < ———— P(m X .
[(STf)) Ty < oo] < P(S; < 0) /0 u*"dP (max{0, <)

Hence, by virtue of (4.3)),
sup E[(Z(M)17¢] < co. (4.60)

a<ag
The convergence from (4.58) combined with (4.60|) implies
@ = 4O asa—0 (4.61)
(a)

by dominated convergence. It is known that for all ¢ > 0 the stopping time 7 +a is infinite
with positive probability and that

P(rl? = o0) = 1/E[+"]. (4.62)

Totally analogously to (4.60)), one can use (15) from Chow [16] to show that the existence
of the second moment in assumption (4.3) implies sup,<,, E[S (@) | < c0. Hence, one can

ue

use dominated convergence to show that

E[Sf(l«z)] — E[S 0] asa—0.
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4 A local limit theorem for the maximum of a random walk in the heavy traffic regime

Thus, using (4.62)), the known identity

o
? = —u(O)E[ST(_o)] (4.63)
and Wald’s identity imply that
(a) 1 a 2au(0)
(7-+ OO) E[TEG')] —E[ST(O)] o2 ( )

The assumption ay = O(1) implies the existence of a constant C' such that a < C/y.

Therefore, by (4.64]),
3Cu©

o2y
for a small enough. Summing up the results from (4.60) and (4.65)), this means that
we can apply Proposition for I = {,u(“) :0 < a < ap} with ap > 0 small enough,
Ay =1-30u0/(c%y), A= P(T_(f) < 00) and s = 1 + €. Hence,

P(r\" < o0) > 1—

(4.65)

- k *k vk, _ ()\?(/a) (A)) o — min{l,e} n
YA (0w -Gt -n) = S O ny)  (466)

and consequently, by combining equations (4.57)), (4.66|) and the fact that 1 — A = O(a),

we attain

(a) —y—1
PO = g = (1 - 420 (2)

S 4 o(ay” (b Iny). (4.67)
A (A (4))

Let us determine )\?(Ja) (A) and M?(/a)()\g,a)(A)). Write A, and py(Ay) instead of )\ga)(A) and
u?(f)(/\g(,a) (A)) respectively for abbreviation and put A\, = e?. According to the definition
of Ay, we want to find 6, such that

Elexp{0,2®}; Zz(8) < y] = L (4.68)
Y A

It turns out we don’t need an exact solution for this equation and it is sufficient to
determine ¢, such that
(@)y. 7(a) 1 ~1-e
Elexp{6,2'"}; 21 <yl = 2+ 0y ). (4.69)
By Taylor’s formula,

Elexp{0,2¥/}; 2@ <y
=1+460,u9 —P(Z@ > y) - 4,E[Z(@; 2@ >y

92
+ gyE[(Z(“)V exp{0,2\V}; 29 < y]
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4 A local limit theorem for the maximum of a random walk in the heavy traffic regime

with some random 7 € (—o0, 1]. We restrict ourselves to 6, such that 6, = O(1/y). Then,

(4.60]) implies
P(Z9 > y) + 0,E[ZW; 20 > y] = O(y~179)

and

92
ZE((Z)? exp{10,2}; 2 < y] = O (B2E[(2)% 2 <)) = (™).
This means that to find 6, that satisfies (4.69), it is sufficient to choose 6, such that

L 6, = 5+ Oy™')

A
or _
_ - —1—¢
by = A,U,(a) +O(y )-
Consequently,
_ 1-A —1—¢
Ay = €xp { A + O(y )} . (4.70)
Furthermore,

Yy

a)y\k— 1 a a a

pD ) =Y kN = )\—yE[Z( ) expl{8,2@}; 2@ <y
k=1

= 3, {12 20 < 4] + 6,E[(29)? exp (70,2} 29 <4}
for some random ¥ € (—o0, 1]. For all §, = O(1/y) the result (4.60) gives

E[(Z@)? exp{76,2@}; 2@ < y] = O(y'~°)

and
E[Z; 2 < y] = 4 + Oy~
Consequently,
(@ p .
w0 Oy) = £+ 007, (4.71)

Y

Plugging the results from (4.70) and (4.71)) into the right hand side of (4.67)), we obtain
by regarding 1 — A = O(a),

P(M@ =)

_ 1-A (1-Ay . — min{1.}

T A4@ 1 0@y P {AM@ +O0(y™°) ¢ + olay Iny)

1-4 (1—A)y

= X o\ I
Apl®) +O(y—) Ap@)
L {0

_ pl_

A —min{l,e} —c
= Ao Ap@ }+O(G?J Iny) + O(ay™*) (4.72)

} + o(ay™ min{le} 1y Y)
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4 A local limit theorem for the maximum of a random walk in the heavy traffic regime

uniformly for all y such that ay = as a — 0. Here, we applied Taylor’s formula in
the last line. As a consequence of - - and -,

1-A 2a + o(a)

4@ o2 o(a

and hence, by plugging this result into (4.72), we finally obtain

2aA
P(M(a) =y) ~ —5 ¢ XP{—

2ayA }

o o2

uniformly for all y such that y — oo and ya = O(1) as a — 0.
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