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1 Einleitung 

Zahnfarbene Restaurationen haben in den letzten Jahren stark an Beliebtheit zuge-

nommen. Aufgrund der hohen ästhetischen Ansprüche, selbst im hinteren Seiten-

zahnbereich, rücken zahnfarbene Werkstoffe wie Kunststoff- und Keramikrestaurati-

onen immer weiter in den Vordergrund.  

Lange Zeit wurden dentale Keramiken aufgrund besserer mechanischer sowie bio-

kompatibler Eigenschaften den Kunststoffen vorgezogen. Polymethylmethacrylat 

(PMMA)-basierte Kunststoffrestaurationen wurden bisher nur als Langzeitprovisorien 

eingesetzt. Seit Einführung industriell gefertigter Kunststoffrohlinge rückt ihr Fokus 

jedoch weiter in den Vordergrund [1-3]. Durch die maschinell standardisierte Polyme-

risation werden stark quervernetzte Hochleistungskunststoffe mit hoher Dichte ge-

schaffen [4]. Dadurch erzielen die computer-aided-design/computer-aided-

manufacturing (CAD/CAM)-Kunststoff-Rohlinge signifikant höhere mechanische Ei-

genschaften als manuell polymerisierte Kunststoffe [3, 5, 6]. Dies wirkt sich unter an-

derem in einer gesteigerten Festigkeit sowie Abrasionsbeständigkeit als auch einer 

geringeren Verfärbungsrate aus [7-9]. Die Hochleistungskunststoffe werden bereits 

vermehrt in komplexen klinische Fällen verwendet [4, 10]. Während der Vorbehand-

lungszeit dienen sie vor dem definitiven Eingliedern der Erprobung neuer Keramik-

restaurationen auf Funktion, Phonetik und Ästhetik [10]. Da sich diese Kunststoffe in 

Hinsicht auf Funktion und Ästhetik den Keramikerstaurationen als ebenbürtig erwei-

sen, könnten sie als kostengünstige Alternative definitiv eingesetzt werden. Hierzu ist 

jedoch eine ausreichende Verbundfestigkeit insbesondere im Hinblick auf den Lang-

zeitverbund notwendig. Durch die industrielle Polymerisation ist die Konversionsrate 

so hoch, dass kaum noch Restmonomer vorhanden ist. Die geringe Anzahl der freien 

Kohlenstoff-Kohlenstoff-Doppelbindungen an der Oberfläche erschwert die chemi-

sche Bindung an die adhäsiven Befestigungsmaterialien [2]. Daher ist es zurzeit 

noch schwierig, einen dauerhaften Verbund zum Befestigungsmaterial zu erzielen. 

Für einen optimalen Verbund sind sowohl chemische, als auch mechanische Haft-

mechanismen notwendig [11]. Verschiedene Vorbehandlungsmethoden bezüglich 
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des mechanischen Verbundes für PMMA-basierte Kunststoffe, wurden bereits erfolg-

reich untersucht [2, 12]. Die Literatur weist bisher jedoch wenige Studien auf, welche 

den chemischen Langzeitverbund der Kunststoffrestauration zum 

Befestigungskomposit untersuchten. Ziel der vorliegenden Versuche war es daher, 

einen geeigneten Langzeitverbund der PMMA-basierten CAD/CAM-Kunststoffe zum 

Befestigungskomposit durch chemische Vorbehandlung zu erzielen. Dabei wurde der 

Einfluss verschiedener Adhäsivsysteme auf den Verbund PMMA-basierter 

CAD/CAM-Kunststoffe zu zwei unterschiedlich zusammengesetzten 

Befestigungskomposite, sowie die Verbundfestigkeit nach thermischer Alterung im 

Kronenabzugsversuch getestet.  
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2 Literaturübersicht 

2.1 CAD/CAM-Kunststoffe in der Zahnmedizin 

In den letzten Jahren wurden aufgrund der höheren ästhetischen [13] Anforderungen 

zunehmend mehr zahnfarbene Einzelzahnrestaurationen eingesetzt [14]. Durch die 

Möglichkeit der adhäsiven Befestigung kann substanzschonender präpariert wer-

den [15]. Die stetige Verbesserung der materiellen Eigenschaften dentaler Kunststof-

fe sowie des adhäsiven Verbundes zur Zahnhartsubstanz scheinen eine vielverspre-

chende Entwicklung der restaurativen Zahnmedizin zu sein [7]. Die vielen Vorteile 

der maschinell angefertigten Kunststoffe erklären, weshalb sich heutzutage 

CAD/CAM-Technologien und adhäsive Verfahrenstechniken in der Zahnmedizin so 

stark etablieren. Zahlreiche Dentalfirmen bieten mittlerweile ihre Kunststoffe auch als 

industriell polymerisierte CAD/CAM-Rohlinge an.  

Durch die industrielle Polymerisation unter hohem Druck und hohen Temperaturen 

können die mechanischen Eigenschaften der Kunststoffe verbessert werden [4-8, 

16], welche sich somit für das CAD/CAM-Verfahren eignen [7]. CAD/CAM-gefertigte 

Restaurationen erlangen bessere mechanische Eigenschaften als manuell herge-

stellte aus derselben Werkstoffklasse [3, 5, 6]. Dazu gehören Biegefestigkeit, Frak-

turstabilität und Abrasionsbeständigkeit. Die Biegefestigkeit hängt von dem verwen-

deten Werkstoff, Herstellungsprozess sowie den Lagerungsbedingungen ab [5]. Die 

Reproduzierbarkeit unter standardisierten Bedingungen beeinflusst die Qualität der 

industriellen Kunststoffe positiv im Vergleich zu konventionell hergestellten Restaura-

tionen [2, 17]. Dies macht sich in Hinsicht auf die ästhetischen und mechanischen 

Eigenschaften bemerkbar [17]. Die mechanischen Eigenschaften der manuell herge-

stellten Kunststoffe variieren unter anderem je nach Anwender, Mischverhältnis der 

Kunststoffkomponenten, Polymerisationsgerät und Polymerisationsdauer [3]. Laut 

Göncü Başaran et al. [16] resultiert die Polymerisation der CAD/CAM-Kunststoffe 

unter Vakuum und Druck in einer höheren Konversionsrate der Kohlenstoff-



 
Literaturübersicht 
 

 

 
 
 

 
 

Daliah Kohen  10 

Kohlenstoff-Doppelbindungen und gleichzeitig in eine geringere Porosität verglichen 

mit den manuell hergestellten Kunststoffen [16]. Durch die feine Mikrostruktur der 

Rohlinge wird die Abrasionsbeständigkeit optimiert [17]. Zudem weisen industriell 

polymerisierte CAD/CAM-Kunststoffe nach den Kausimulationen niedrigere Material-

verluste auf als die manuell polymerisierten [8]. Somit sind CAD/CAM-Rohlinge nicht 

nur aus wirtschaftlicher oder biologischer Sicht, sondern beispielsweise auch bezüg-

lich der Abrasionsbeständigkeit aus materialkundlicher Sicht zu empfehlen [8]. 

Kunststoffe, welche mittels CAD/CAM-Technologien verarbeitet werden, müssen 

schnell fräsbar und beständig gegen maschinelle Schäden sein [17]. Durch Dental-

firmen gelieferte CAD/CAM-Rohlinge erreichen den Anwender in bereits auspolyme-

risiertem Zustand [8]. In dieser Form enthalten die industriell polymerisierten Kunst-

stoffe, wie bereits oben erwähnt, geringere Mengen an nicht umgesetzten 

Monomeren als manuell hergestellte Kunststoffe [8, 16]. Der geringe Restmonomer-

gehalt minimiert das Allergiepotential für den damit in Kontakt kommenden Patienten, 

Zahntechniker und Zahnarzt [8]. Allerdings wirkt sich die geringe Anzahl freier Koh-

lenstoff-Kohlenstoff-Doppelbindungen an der Oberfläche negativ auf den adhäsiven 

Verbund aus. Die fehlenden freien Radikale können keine ausreichende Bindung 

zwischen Befestigungsmaterial und Restauration herstellen [2]. Ein Vorteil der indus-

triellen CAD/CAM-Kunststoffe gegenüber der manuell hergestellten bietet sich im 

Bereich der Abformung. Die für die CAD/CAM-Fertigung benötigten Daten können 

entweder intra- oder extraoral gewonnen werden [8]. Systeme mit Intraoralscannern 

machen eine konventionelle Abformung unnötig [8]. Dies spart nicht nur Zeit und Ma-

terialkosten, sondern ist auch für den Patienten von Vorteil, da die Abformnahme 

meist unangenehm und oft mit einem Würgereiz verbunden ist [8]. 

Im Bezug auf die Farbbeständigkeit können PMMA-basierte Kunststoffe mit Glaske-

ramiken gleichgesetzt werden [9], verglichen mit den Kompositen sind sie diesen so-

gar vorzuziehen [18]. Die meisten Dimethylacrylate besitzen eine stärkere Polarität 

und haben somit eine höhere Affinität zu Wasser und anderen hydrophilen Flüssig-

keiten als PMMA [18]. Dadurch kommt es zu einer stärkeren Verfärbung vieler Kom-

posite [18]. Mit Rücksicht auf bestimmte Materialeigenschaften lässt sich dennoch 

sagen, dass Komposite Vorteile gegenüber PMMA-basierten Kunststoffen aufwei-
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sen [5, 6]. Die rasante Weiterentwicklung der Matrix- und Füllereigenschaften haben 

zu einer Verbesserung der Eigenschaften wie Materialhärte und Abrasionsbestän-

digkeit geführt [14]. Durch eine äußerst komplexe Füllertechnologie konnten natürli-

che Farb- und Reflexionseigenschaften generiert werden [14].  

Sowohl aus ökonomischer Sicht mit geringerem Zeitaufwand und weniger Kosten [2], 

als auch aufgrund der mechanisch ähnlichen Eigenschaften stellen Kunststoffe eine 

geeignete Alternative gegenüber den beliebten Glaskeramikrestaurationen dar [1-3]. 

Zudem sind sie weniger abrasiv bezüglich des antagonistischen Schmelzes [19-21]. 

Die höhere Elastizität und die etwas weichere Konsistenz erlauben hier eine scho-

nungsvolle Adaption an die physiologischen Strukturen des funktionell geschädigten 

Kauorgans [14]. Sie erweitern das therapeutische Spektrum bezüglich der Korrektur 

von Bisshöhe und –lage [4, 14]. Auch im ästhetisch sensiblen Bereich liegen Kompo-

site unter dem Aspekt einer noninvasiven Präparationstechnik ganz vorne [14]. Oft-

mals wird die monochromatische Beschaffenheit der Blöcke kritisiert [17]. Obwohl es 

mittlerweile neue polychromatische Keramikblöcke auf dem Markt gibt, bleiben dieje-

nigen für Kunststoffe einfarbig [22]. Sie müssen nach dem Schleifprozess noch durch 

Anmalen ästhetisch optimiert werden [22]. Doch die Anwenderfreundlichkeit vor dem 

definitiven Einsetzen spricht für Kunststoffrestaurationen. Sie müssen im Gegensatz 

zu Glas- und Feldspatkeramiken nicht mittels hochaggressiver Flusssäure angeätzt 

werden [22], um durch die erlangte Oberflächenvergrößerung [23] einen ausreichen-

den Verbund herstellen zu können [24]. Dies ist vor allem bei intraoralen Reparatu-

ren ein wichtiger Aspekt [21, 22]. 

Aufgrund der vielen Vorteile stellt sich die Frage, ob industriell gefertigten CAD/CAM-

Kunststoffe nicht auch langfristig als definitive Versorgung eingesetzt werden kön-

nen. Dennoch ist die Verbundfestigkeit von Keramiken zum Zahn im Zugversuch 

stärker als die der Kunststoffe zum Zahn [2]. Um die Vorteile der heutigen CAD/CAM-

Kunststoffe auch für definitive Restaurationen nutzen zu können, untersuchte die vor-

liegende Studie verschiedene Vorbehandlungsmethoden von PMMA-basierten 

CAD/CAM-Kunststoffkronen zur Herstellung eines langfristigen Verbundes zu zwei 

unterschiedlichen Befestigungskompositen. 
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2.2 Befestigungskomposite 

Die Wahl des richtigen Befestigungsmaterials ist die letzte ausschlaggebende Ent-

scheidung zum Langzeiterfolg von festsitzenden Restaurationen [25-27], da die Ver-

bundfestigkeit stark von dem verwendeten Befestigungskomposit sowie den Vorbe-

handlungsmethoden abhängt [28]. Die Eingliederung von Kunststoff- oder 

vollkeramischen Restaurationen erfolgt durch adhäsive Befestigungskomposite oder 

teilweise auch mittels konventioneller Befestigungszemente. Dabei dienen die Befes-

tigungsmaterialien als Bindeglied zwischen Restauration und Zahnhartsubstanz [27]. 

Sie leiten die Kaukräfte, welche auf den festsitzenden Zahnersatz wirken, auf den 

Zahnstumpf weiter und sorgen für Stabilität [26] sowie Lagesicherung graziler Kom-

posit- oder Keramikrestauration [29]. 

Restaurationen mit mehr als 350 MPa Biegefestigkeit können sowohl konventionell 

zementiert als auch adhäsiv befestigt werden [30]. Die Befestigung mit konventionel-

len Zementen beruht auf ausreichenden Haftflächen durch die Präparationsarchitek-

tur [31]. Die mikroretentive Friktionswirkung der Phosphatzementpartikel im Fuge-

spalt bildet einen formschlüssigen Verbund. Die Klebekraft ist jedoch minimal. 

Phosphatzement hält nur geringen Abzugskräften stand [31]. Glasionomerzemente 

bieten zwar eine messbar höhere Haftwirkung an Schmelz und Dentin, für Aus-

wascheffekte, besonders in der Fugezone und am Kronenrand, sind beide Zement-

typen jedoch anfällig [31]. Adhäsive Befestigungskomposite dichten hingegen die 

dazwischen liegende Fuge fest ab [26, 32-34]. Durch den kraftschlüssigen Verbund 

wird der Restzahn stabilisiert, sofern eine Klebung im Schmelz erfolgt [30]. Durch 

den engen Klebeverbund der Befestigungskomposite zu Zahn und Restauration re-

sultiert eine hohe Randgüte [33, 34], was verhindert, dass Bakterien penetrieren 

können [29, 32]. Die vorliegende Studie hat PMMA-basierten Kunststoff untersucht, 

welcher geringere Biegefestigkeit als 350 MPa aufweist. Da somit nur adhäsive Be-

festigungskomposite zur Eingliederung in Erwägung kommen, soll hier nicht weiter 

auf die konventionellen Zemente eingegangen werden. 
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Mit Einführung der Säure-Ätz-Technik im Jahr 1955 legte Bruncore den Grundstein 

für die heutige Adhäsivtechnik in der Zahnmedizin [35]. Konventionelle Befesti-

gungskomposite werden je nach verwendetem Adhäsivsystem in „etch-and-rinse“ 

und „self-etch“-Systeme unterteilt. Erstere erfordern nach der Ätzung der Zahnhart-

substanz mit etwa 37%iger Phosphorsäure die Applikation von mehreren Agenzien 

zur Konditionierung von Zahnhartsubstanz und Restaurationsmaterial [32]. Bei den 

„self-etch“-Systemen kann auf die Verwendung von Phosphorsäure verzichtet wer-

den. Vor dem Einsetzen mit Befestigungskomposit ist nur noch die Applikation eines 

selbstätzenden Ein-Komponenten Adhäsivs notwendig [32].  

Die seit 2002 eingeführten selbstadhäsiven Befestigungskomposite benötigen laut 

Herstellerangaben sogar keinerlei Vorbehandlung auf der Zahnseite [32]. Aufgrund 

ihrer einfachen Verarbeitung und daraus resultierender Fehlerminimierung in der 

Anwendung [26] erfreuen sie sich immer größerer Beliebtheit [27, 32]. 

Adhäsive Befestigungssysteme lassen sich hinsichtlich der Polymerisationsart in 

lichthärtende (z.B. Kampherchinon/Amin und Licht), chemisch härtende (Benzoylpe-

roxid und Amin) [36] sowie dualhärtende Komposite unterteilen [26]. Lichthärtende 

Komposite werden beim Einsetzen dünner, einigermaßen transluzenter Restauratio-

nen empfohlen, welche die Lichttransmission bis zum Befestigungskomposit zulas-

sen. Ist dies aufgrund der Dicke und Opazität der Restauration nicht möglich, sind 

dualhärtende Komposite indiziert [26]. Da chemisch härtende Befestigungskomposite 

wenig Spielraum in Bezug auf Farbe und Transluzenz zulassen und ihre Scherfestig-

keit geringer ist [28], werden dualhärtende bevorzugt [26]. Bei den in dieser Studie 

verwendeten Befestigungsmaterialien handelt es sich ausschließlich um dualhärten-

de Komposite. 

2.2.1 Verbund zwischen Befestigungskomposit und Zah nhartsub-

stanz 

Wie bei jeder Art des Verbundes hängt die Verbundfestigkeit zweier haftender Mate-

rialien davon ab, ob sie im direkten Kontakt zueinander liegen. Des weiteren muss 
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ein physikalischer (elektrostatische Bindung), chemischer (atomare oder molekulare 

Bindung) oder mechanischer (Retention) Verbund an den Kontaktflächen gegeben 

sein [11]. Um einen dauerhaften Verbund zwischen Befestigungskomposit und Zahn 

zu erzielen, wird durch den Einsatz von Säuren eine mikroretentive Oberfläche ge-

schaffen [35]. Diese Säuren werden entweder in Form von 37%iger Phosphorsäure 

aufgetragen und wieder abgesprüht, wie es bei den konventionellen adhäsiven Be-

festigungen der Fall ist [32], oder als saure Monomere appliziert [35]. Dabei wird 

durch das Herauslösen von Kalzium und Phosphat sowohl im Schmelz als auch im 

Dentin eine Oberfläche geschaffen, in welche Monomere eindringen können, um sich 

dort mikromechanisch zu verankern [35]. Zusätzlich wird ein chemischer Klebever-

bund zum Dentin hergestellt [1, 26, 37]. Durch die Schmelzätzung mittels Phosphor-

säure entstehen eine Vielzahl kleiner Poren im interprismatischen Schmelz, in wel-

che das niedrigvisköse Adhäsiv infiltrieren und sich retentiv verankern kann [38]. 

Durch die Ätzung am Dentin wird die sogenannte Schmierschicht entfernt, Dentin 

demineralisiert und Kollagen freigelegt. Die Entfernung der Schmierschicht hat den 

Vorteil, dass die applizierten hydrophilen Monomere nach der Konditionierung in die 

Dentinkanälchen eindringen und bei der Polymerisation „retentive tags“ ausbilden, 

welche die Dentinkanälchen versiegeln [38]. Somit wird eine etwa 5-10 µm dicke 

Hybridschicht gebildet, die den ersten Schritt der Umwandlung des hydrophilen Den-

tins zu einer hydrophoberen Einheit darstellt [38]. Dabei ist abermals die Zusammen-

setzung des applizierten Adhäsivs entscheidend. Hydrophile Moleküle wie Hydroxy-

ethyl-methacrylat (HEMA) können in besonders tiefe Bereiche infiltrieren [39]. „Etch-

and-rinse“-Systeme gelten als Goldstandard bei der Konditionierung von Zahnhart-

substanzen [26]. Dennoch setzen sie, wie alle Systeme, welche die Vorbehandlung 

von Schmelz und Dentin beinhalten, stets eine absolut sichere Trockenlegung mittels 

Kofferdam voraus [32]. Sie erweisen sich als sehr techniksensitiv [2, 32]. Zudem be-

steht die Gefahr einer Überätzung und somit Hypersensibilisierung bei zu langem 

Verweilen der Phosphorsäure [32]. Auch bei der Verwendung von in Aceton gelösten 

Adhäsiven sollte ein exzessives Austrocknen des Dentins vermieden werden, da die 

freigelegten Kollagenfibrillen des Dentins sonst kollabieren und eine Adhäsion er-

schweren [32]. 
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Da die Vorbehandlung von Dentin und Schmelz bei selbstadhäsiven Befesti-

gungskompositen unnötig ist, genügt eine relative Trockenlegung ohne Koffer-

dam [32]. Auch die oben beschriebene Empfindlichkeit der Adhäsivsysteme entfällt 

und bringt somit weniger Misserfolg aufgrund von Anwenderfehlern mit sich. Das 

Einsetzmaterial selbst stellt den Verbund zum Zahn her [32] und ist somit Adhäsiv-

system und Befestigungskomposit in einem [26]. Der Anhaftungsmechanismus auf 

der Zahnoberfläche basiert, wie oben erwähnt, auf dem Vorhandensein von phos-

phorsaurem Methacrylat [40, 41] in Kombination mit z.B. Phosphorsäureestern, Car-

bonsäure- oder Aminosäurederivaten [37]. Diese können die Zahnhartsubstanz de-

mineralisieren [21, 40] und aufgrund ihrer negativen Ladung eine Bindung mit den 

positiv geladenen Kalziumionen der Zahnhartsubstanz eingehen [34, 42, 43]. Somit 

wird eine leicht retentive Oberfläche geschaffen [37]. Wichtig beim Einsetzen mit den 

selbstadhäsiven Befestigungskompositen ist, dass genügend Anpressdruck des Ma-

terials an den Zahn ausgeübt wird, damit die oben beschriebenen Wechselwirkungen 

zwischen Zahn und Komposit zustande kommen können [40]. Bei entsprechender 

Anwendung nach Herstellerangaben zeigten selbstadhäsive Befestigungskomposite 

ohne Konditionierung der Zahnhartsubstanz einen vergleichbaren Randschluss zum 

Dentin wie konventionelle Befestigungskomposite mit „etch-and-rinse“-

Adhäsivsystemen [41]. In-vitro-Versuche ergaben, dass die Haftung von selbstadhä-

siven Kompositen am unkonditionierten Schmelz etwa um die Hälfte niedriger ist, als 

an Schmelzoberflächen, welche vorher mit Phosphorsäure vorbehandelt wurden [21, 

40, 44]. Allerdings birgt die zusätzliche Schmelzätzung mit Phosphorsäure die Ge-

fahr, dass auch Dentinbereiche benetzt werden, was wiederum zur Verminderung 

der Dentinhaftung führen kann [21, 40]. Diese Studien wurden mit dem Befesti-

gungskomposite RelyX Unicem (3M Seefeld, Deutschland) durchgeführt, welcher 

das erste selbstadhäsive Befestigungsmaterial auf dem Markt war [32]. Aufgrund der 

einfachen Verarbeitung und des Verkaufserfolges gibt es mittlerweile eine Reihe von 

Mitbewerberprodukten [32], wie das in der vorliegenden Studie verwendete Clearfil 

SA Cement (Kuraray, Tokyo, Japan). 



 
Literaturübersicht 
 

 

 
 
 

 
 

Daliah Kohen  16 

2.2.2 Mechanischer Verbund zwischen Befestigungskom posit und 

PMMA-basierten Kunststoffkronen 

Eine optimale Verbindung zwischen Befestigungskomposit und PMMA-basierten 

Kunststoffkronen wird durch eine Vergrößerung der Kronenoberfläche erreicht [45]. 

Dies wird entweder durch Anrauen der Oberfläche mittels Diamanten [46] oder durch 

Korundstrahlen mittels 50 µm großer Aluminiumoxidpartikel erreicht [2]. Der Vorteil 

des Korundstrahlens besteht in der zusätzlichen Reinigung der zu benetzenden Flä-

che [2], wodurch eine höhere freie Oberflächenenergie erreicht wird [11, 45]. Die 

Anwesenheit eines Wasserfilms, organischer Überreste und/oder eines Biofilms be-

einflussen die Benetzbarkeit [45]. Nach Stawarczyk et al. [2] wird durch das alleinige 

Vorbehandeln mit Aluminiumoxidpartikeln ein mechanischer Verbund zwischen 

Kunststoffkronen und Befestigungskomposit erreicht. Dabei sollte nur geringer Druck 

(1-2 bar) und kleine Aluminiumoxidpartikel (50 µm) verwendet werden, um Schäden 

sowie Umwandlungen an der Oberfläche durch zu hohen Druck und große Teilchen 

zu vermeiden [47]. Die Studie testete industriell polymerisierte CAD/CAM-

Kunststoffrohlinge (artBloc Temp Merz Dental, Lütjenburg, Deutschland), wie in der 

vorliegenden Studie verwendet. Die im Vergleich zu den manuell polymerisierten 

Kunststoffen hohe Konversionsrate der Kohlenstoff-Kohlenstoff-Doppelbindungen 

wirkte sich negativ auf den adhäsiven Verbund aus. Prüfkörper ohne Vorbehandlung 

konnten in der Versuchsreihe von Stawarzcyk et al. [2] keinen Verbund erzielen. Es 

wird vermutet, dass es den wenigen freien Radikale nicht gelingt, eine ausreichende 

Bindung zwischen Befestigungskomposit und Restauration herzustellen [2]. Dieselbe 

Studie erzielte stärkere Verbundfestigkeiten für selbstadhäsive Befestigungskompo-

site nach Vorbehandlung der Restauration mit Aluminiumoxidpartikeln. Für Vario-

link II (Ivoclar Vivadent, Schaan, Liechtenstein), einen konventionellen Befesti-

gungskomposit, welcher auch in den vorliegenden Versuchen verwendet wurde, 

konnte dies hingegen nicht nachgewiesen werden. Die Autoren vermuten, dass der 

Grund dafür in der Zusammensetzung der einzelnen Befestigungskomposite liegt. 

Wie bereits erwähnt, enthalten selbstadhäsive Befestigungskomposite Methacrylate 

mit Säuregruppen, welche letztendlich mit dem industriell polymerisierten CAD/CAM-



 
Literaturübersicht 
 

 

 
 
 

 
 

Daliah Kohen  17 

Kunststoff kopolymerisieren [2, 21]. Konventionelle Befestigungskomposite wie Va-

riolink II hingegen basieren auf: Bisphenol-A-glycidylmethacrylat (Bis-GMA), Triethy-

lenglycol-dimethacrylat (TEGDMA) und Urethandimethacrylat (UDMA), die wahr-

scheinlich nicht an den industriell polymerisierten Kunststoffrohling andocken 

können [2]. 

2.2.3 Chemischer Verbund zwischen Befestigungskompo sit und 

PMMA-basierten Kunststoffkronen 

Wie im vorangehenden Kapitel dargestellt, ist die Zusammensetzung der verschie-

denen Werkstoffe ebenfalls ausschlaggebend und beeinflusst den chemischen Ver-

bund. Auch die Kombination aus mechanischer und chemischer Vorbehandlung soll 

eine stärkere Verbundfestigkeit ergeben [48, 49]. Dies belegten bereits Studien, wel-

che den Verbund stark vernetzter Kunststoffzähne zu Prothesenbasiskunststoff [50, 

51] sowie zwischen Keramik und Befestigungskompositen untersuchten [28]. Nied-

rigviskose Flüssigkeiten penetrieren tiefer in die korundgestrahlte Oberfläche des 

CAD/CAM-Werkstoffes und resultieren in einer besseren Haftung [39, 52]. Es muss 

jedoch beachtet werden, dass sich aufgrund verschiedener Zusammensetzungen 

nicht alle Werkstoffe zu einem starken chemischen Verbund eignen [53]. Um trotz 

der wenigen Kohlenstoff-Kohlenstoff-Doppelbindungen einen optimalen chemischen 

Verbund zu erzielen, wird die Oberfläche industriell polymerisierter Kunststoffzähne 

mittels Methylmethacrylat (MMA) vorbehandelt. Somit wird das PMMA teilweise auf-

gelöst, und es entstehen neue freie Doppelbindungen, welche mit dem Kunststoff 

kopolymerisieren können [54]. Die verwendeten chemischen Adhäsivsysteme in der 

vorliegenden Studie beinhalteten alle MMA, mit Ausnahme von Monobond Plus. Mo-

nobond Plus, welches in dieser Studie in Kombination mit Heliobond verwendet wird, 

gilt jedoch als Universalprimer für den Aufbau eines adhäsiven Verbunds von Be-

festigungskompositen zu allen indirekten Restaurationsmaterialien. Es beinhaltet drei 

Komponenten: eine alkoholische Lösung von Silanmethacrylat, Phosphorsäure-

methacrylat und Sulfidmethacrylat [55], welche jeweils mit den Restaurationsmateria-

lien sowie dem Befestigungskomposit eine Verbindung eingehen können.  
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2.3 Unterschiedliche Messmethoden 

Gemessene Werte für die Verbundfestigkeiten sind nicht nur von dem verwendeten 

Material abhängig, sondern unter anderem auch von der angewandten Messmetho-

de [56, 57]. Es wird davon ausgegangen, dass die Kräfte, welche zum Lösen des 

Verbundes zwischen Zahn und Restauration führen, unter klinischen Bedingungen 

eine Kombination aus Zug- und Scherkräften darstellen. Dies kann jedoch kaum in 

in-vitro Studien 1:1 simuliert werden. Da es in der Zahnmedizin keine einheitliche 

Prüfmethode gibt, sollten die Vor- und Nachteile der einzelnen Möglichkeiten bekannt 

sein und eine für die jeweilige Studie geeignete Methode gewählt werden. 

2.3.1 Vergleich Mikroversuche mit Makroversuche 

Verbundfestigkeit wird heutzutage bevorzugt mittels Zug- oder Scherversuchen ge-

messen [57, 58]. Diese können wiederum in „Mikro-“ und konventionelle „Makrover-

suche“ unterteilt werden. Trotz der steigenden Beliebtheit der Mikroverbundfestig-

keitsversuche und der Kritik an den konventionellen Zug- und Scherversuchen, bleibt 

die Anzahl der publizierten Studien, welche Makrotests verwenden, hoch [59]. Nach-

folgend werden Vor- und Nachteile der unterschiedlichen Messmethoden aufgelistet. 

Mikroversuche Makroversuche 

  
Vorteile 

  
• Ökonomischere Verwertung der Zäh-

ne, da mehrere Prüfkörper aus nur 
einem Zahn hergestellt werden kön-
nen [57, 60, 61] 

• einzelne Bestandteile des Zahns 
können getestet werden [46, 57, 61], 
z.B. separate Beurteilung der Haftung 
an Schmelz und Dentin 

• Einfach umsetzbar [56, 57, 59] 

• Wenig Equipment notwendig [56, 57, 
59] 

• Wenig Vorbereitung der 
Prüfkörper [56, 57, 59]  
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• höhere Messwerte (2-5 mal 
höher) [61], da sich weniger Defekte 
mit kritischer Größe auf der kleineren 
Verbundfläche befinden [46, 57, 59] 

• Mehr adhäsive, weniger kohäsive 
Brüche ab einer Fläche 
>0,02 cm² [46] 

• Standardisierte Größe der Klebeflä-
che 

• Auch bei groben Oberflächenvorbe-
handlungen anwendbar [50] (z.B. Ko-
rundstrahlen mittels 50 µm großer 
Aluminiumoxidpartikel) 

  
Nachteile 

 
• Technisch anspruchsvoll [46, 57] 

• Sehr schwierig, geringe Verbundfes-
tigkeiten zu messen (<5 MPa) [46, 
57] 

• Prüfkörper werden leicht beschä-
digt [57] 

• Schwierige Herstellung der Prüfkör-
per mit gleichmäßiger Geometrie, 
Oberflächenbeschaffenheit und Kon-
trolle der Fehlertypen ohne ent-
sprechendem Equipment [46, 57] 

• Sorgfältige Interpretation der Fehler-
typen, um falsche Schlussfolgerun-
gen zu vermeiden [60] 

• Schnelles Austrocknen der Prüfkör-
per aufgrund der sehr kleinen 
Größe [46] 

• Mehrere Zähne werden benötigt, da 
jeder Prüfkörper aus einem Zahn be-
steht [57] 

• Werte der gemessenen Verbundfes-
tigkeiten sind geringer [57, 61], da 
mehr Defekte auf einer größeren 
Verbundfläche auftreten, als bei klei-
neren Flächen [46, 57, 59] 

• Alle Bestandteile des Zahns werden 
zusammen geprüft [57] 

 

Der Nachweis rein adhäsiver Brüche der Werkstoffe im Mikroversuch bei Klebeflä-

chen unter 1 mm² ist ein bedeutender Vorteil der Testmethode [46]. Kohäsive Brüche 
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lassen darauf schließen, dass der Verbund der untersuchten Werkstoffe zueinander 

stärker ist als der einzelne Werkstoff [46]. Daher bricht dieser eher. Konventionelle 

Makroversuche wiesen in vergangenen Studien oftmals kohäsive Brüche innerhalb 

des Dentins auf [46]. Mikroversuche können im Gegensatz zu Makroversuchen ein-

zelne Zahnstrukturen untersuchen [46]. Dennoch bleiben Mikroversuche sehr tech-

niksensitiv. Bei der Untersuchung der Grenzflächen werden die Querschnitte mittels 

diamantbeschichtetem Trennscheibenblatt und ausreichend Wasser abgestimmt. 

Dabei löst zu hoher Anpressdruck den Verbund. Wird die Trennscheibe nicht kon-

zentrisch gehalten, werden Vibrationen erzeugt und schädigen die Verbundflä-

che [46]. Um ein Überhitzen beim Trennen der Prüfkörper zu vermeiden, wird ein 

langsam laufendes Sägeblatt mit Wasserkühlung benötigt. Spezielle Geräte sorgen 

dafür, dass die Prüfkörper gerade eingespannt werden und reine Zugspannungen 

ohne Biegespannungen entstehen [46]. 

2.3.2 Vergleich zwischen Scherversuch und Zugversuc h 

Der direkte Vergleich zwischen Scher- und Zugversuchen sollten mit Vorsicht be-

handelt werden. Zum einen sind die applizierten Scher- und Zugkräfte grundsätzlich 

in unterschiedliche Richtungen ausgerichtet [61, 62]. Bei Zugversuchen verteilt sich 

die Spannung homogen über die Verbundfläche [59]. Dies führt dazu, dass der Ma-

ximalwert der Hauptspannung nahe der Nennfestigkeit liegt [59]. Dabei liegen die 

applizierten Kräfte weiter von der Verbundfläche entfernt [59, 62]. Dahingegen wer-

den bei Scherversuchen hohe Spannungen nahe der Verbundfläche erzielt, welche 

wiederum inhomogen verteilt sind [62]. Des Weiteren werden oftmals verschieden 

große Verbundflächen getestet. So untersuchten El Zohairy et al. [62] beispielsweise 

Mikrozugversuche mit einer Querschnittsfläche von 0,7 mm² und Mikroscherversuche 

mit einer Querschnittsfläche von nur 0,5 mm². Wie oben schon erwähnt, nimmt die 

Verbundfestigkeit zu, je kleiner die Fläche ist. So zeigten hier die Mikroscherversu-

che, wie erwartet, höhere Werte als die Mikrozugversuche [62]. Auch Scherrer et 

al. [61] betrachten den Vergleich der verschiedenen Testmethoden kritisch. Selbst 

innerhalb der gleichen Testmethode weisen Studien eine große Streuung auf [61]. 
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Dabei beeinflussen sämtliche Variablen die Verbundfestigkeit der Werkstoffe. Unter-

schiedliche Geometrien, Art der Belastung, Dicke des Befestigungskomposits und 

verschiedene E-Module der verwendeten Werkstoffe sind nur ein paar beispielhafte 

Einflussgrößen, welche den hohen Variationskoeffizienten von 20 bis 53 % innerhalb 

einer Testmethode erklären [61]. Die Beurteilung der Fehlertypen beeinflusst eben-

falls die Ergebnisse. Kohäsive Brüche widerspiegeln nicht den Verbund der Restau-

ration zum Zahn. Daher sollten die ermittelten Werte gesondert in der Statistik zur 

Verbundfestigkeit berücksichtigt werden [61, 62]. Jedoch differenzieren hier laut 

Scherrer et al. nur 30 % der Studien. Auch die verschiedenen Vorschubgeschwindig-

keiten der Prüfmaschine (0,5 mm/min bis 5 mm/min) erschweren das Vergleichen der 

Studien miteinander [61]. Trotz der schwierigen Aufgabe des Gegenüberstellens der 

Testmethoden, erlauben sich dennoch manche Autoren gewisse Unterscheidungen 

zu treffen. So geht El Zohairy et al. davon aus, dass Mikroscherversuche besser für 

ein Ranking verschiedener Adhäsivsysteme geeignet sind [62]. Diese Behauptung 

wird dadurch begründet, dass bei den Mikrozugversuchen seiner Studie häufiger ko-

häsive Brüche beobachtet wurden. Die Werte der kohäsiven Brüche wurden dennoch 

mit in das Ranking aufgenommen. So ergab die Rangfolge der Haftwerte der ver-

schiedenen Adhäsivsysteme SEB=ASB=APL>HB (SEB: Clearfil SE Bond, APL: Ad-

per Prompt L-Pop; HB Hybrid Bond, ASB: AdperSingle Bond). Bei den Mirkoscher-

versuchen konnten hingegen überwiegend adhäsive Brüche ermittelt werden. Hierbei 

konnten die stärkeren Adhäsivsysteme nochmals genauer unterteilt werden 

ASB>SEB=APL>HB [62]. Demnach können durch Mirkoscherversuche präzisere 

Aussagen getroffen werden [62]. Laut Palitsch et al. [50] sollen grobe Oberflächen-

beschaffenheiten, wie es durch Korundstrahlen mittels 50 µm großer Aluminiumoxid-

partikel üblich ist, einen höheren Einfluss auf Scherversuche haben als auf Zugver-

suche. 

Eine Empfehlung für eine bestimmte Prüfmethode soll aufgrund der unterschiedli-

chen Vor- und Nachteile aller Methoden an dieser Stelle nicht gegeben werden. 

Dennoch sollten bei der Gegenüberstellung verschiedener Werkstoffe die einzelnen 

Testmethoden beachtet werden. Bestenfalls sollten die Studien dieselbe Testmetho-

de verwendet haben. Ebenso sollten die gleichen Bedingungen gegeben sein 
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(z.B. Größe/Geometrie der Verbundfläche, Art des Scher-/Zugversuches, Entfernung 

der applizierten Kraft, ggf. gleiche Oberflächenvorbehandlung wie z.B. Korundstrah-

len mittels 50 µm großer Aluminiumoxidpartikel). 

2.3.3 Kronenabzugsversuch 

Um in-vitro Studien möglichst realitätsnah zu gestalten, werden Kronenabzugsversu-

che durchgeführt [29, 63]. Diese berücksichtigen, im Gegensatz zu beispielsweise 

Mikrozugversuchen, unter anderem die komplexen Geometrien des präparierten 

Zahnstumpfes (horizontale und vertikale Flächen kombiniert) [63]. Dabei sollte die 

Ausführung dem klinischen Vorgehen weitestgehend entsprechen [63]. Heintze et 

al. [63] verglich 18 Studien miteinander, welche alle Vollgusskronen im Kronenab-

zugsversuche testeten. Es wurde festgestellt, dass sich die Studien bezüglich einzel-

ner Parameter sehr unterschieden. So variierten die verwendeten Zähne zwischen 

Molaren und Prämolaren, die Anzahl der Prüfkörper (9-25), Stumpfhöhe (3-6 mm), 

Konvergenzwinkel (4,8-33°), die Berechnung der Verbundfläche, applizierte Kräfte 

bei der Befestigung der Kronen (25-200 N), Art der künstlichen Alterung, Vorschub-

geschwindigkeit und statistische Auswertungen. Dabei üben laut Heintze et al. vor 

allem Parameter wie Präparationswinkel und Zahnstumpfhöhe einen starken Einfluss 

auf die Retention aus und sollten dem Klinikalltag entnommen werden. Je kleiner der 

Konvergenzwinkel, höher der Zahnstumpf und größer die Oberfläche des präparier-

ten Zahnes ist, desto stärker wird die makromechanische Retention sein [63]. Doch 

auch weitere Kriterien der Versuchsmethoden sollten beim Vergleich mehrerer Stu-

dien miteinander beachtet werden. Wurde die Oberfläche des Restaurationsmaterials 

vorbehandelt, wie und womit genau (Korundstrahlen, Partikelgröße, Diamantbohrer)? 

Wurde die Zahnhartsubstanz konditioniert und wie (separates Anätzen von 

Schmelz/Dentin, Adhäsive)? Welche Restaurationswerkstoffe wurden verwendet (Ke-

ramik, Kunststoff, Legierungen)? So zeigten beispielsweise Stawarczyk et al. [2], 

dass Korundstrahlen der Oberfläche mittels 50 µm großer Aluminiumoxidpartikel eine 

Verbundfestigkeit von 0 ± 0 bis 2,2 ± 0,15 MPa je nach Kunststoff erzielte. Dahinge-

gen kam es bei den unbehandelten Kunststoffkronen zu keinem Verbund unabhän-
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gig des Befestigungskomposits. Für die geätzten keramischen Restaurationen, wel-

che als Kontrollgruppe dienten, konnten hingegen die höchsten Verbundfestigkeiten 

(7,3 ± 2,2 MPa) ermittelt werden. 

Die Herstellung der Prüfkörper ist sehr aufwendig und zeitintensiv [29], sollte aber 

aufgrund der klinischen Relevanz nicht gescheut werden. 

Da extrahierte Zähne unterschiedliche Größen aufweisen, muss zur Bestimmung der 

Verbundfestigkeit die Klebefläche bei Kronenabzugsversuchen durch weitere Test-

methoden bestimmt werden. Dies entfällt bei standardisierter Prüfkörpergröße. Die 

vorliegende Studie berechnete die Klebefläche der vorher digital eingescannten 

Prüfkörper mit Hilfe eines Programms zur 3D-Messlösung und Automatisierungsplatt-

form (Geomagic Qualify 12.1.2, Geomagic GmbH, Morrisville, NC, US). Dies stellt, 

verglichen mit anderen publizierten Methoden, eine präzisere Vorgehensweise zur 

Oberflächenbestimmung dar [64]. Beispielsweise präparierten Palacios et al. [65] die 

Zähne in einem standardisierten Vorgehen und konnten somit die Oberfläche mittels 

einer geeigneten Formel berechnen. Andere Studien umhüllten die präparierten 

Prüfkörper mit einer Aluminiumfolie [13, 29, 66]. Die Oberfläche konnte berechnet 

werden, indem die individuellen Folien mit dem Gewicht einer 1 cm² Folie verglichen 

wurden [13, 29, 66]. 

Eine weitere Einschränkung stellen extrahierte Zähne dar. Trotz sorgfältiger Aufbe-

wahrung in geeigneten Medien kann nicht ausgeschlossen werden, dass es zu ei-

nem Verlust der Flüssigkeit aus den Dentinkanälchen kommt [37]. Dies kann Auswir-

kungen auf den adhäsiven Verbund und somit auf die Verbundfestigkeit haben. 

Meistens werden Weisheitszähne für die Kronenabzugsversuche verwendet, da die-

se in der Regel kariesfrei extrahiert werden und somit standardisierte Bedingungen 

gegeben sind. Noch nicht eruptierte Zähne, was bei den meisten extrahierten Weis-

heitszähnen der Fall ist, gelten als durchlässiger und feuchter als bereits durchge-

brochene Zähne [46]. Klinisch werden jedoch üblicherweise kariöse Zähne überkront, 

welche sklerosiertes Dentin aufweisen. Der Verbund zu sklerosiertem Dentin zeigte 

geringere Verbundfestigkeiten auf als zu gesundem Dentin [46]. Hier sollten die Vor- 
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und Nachteile zwischen klinischer Relevanz und standardisierter Versuchsdurchfüh-

rung abgewägt werden. 

In der Prothetik dienten Kunststoffe bisher nur dem provisorischen Ersatz oder fan-

den in komplexen klinischen Studien Verwendung, um die definitive Restauration in 

Hinsicht auf Funktion, Phonetik und Ästhetik zu erproben [4, 10]. Die optimierten Ei-

genschaften der industriell polymerisierten CAD/CAM-Kunststoffe machen sie zu ei-

ner kostengünstigen Alternative zu den Keramiken (vergl. Kapitel 2.1). Der ausrei-

chende Langzeitverbund wurde allerdings bisher kaum untersucht. Dabei ist der 

Verbund, sowohl zu Zahnhartsubstanz als auch Restauration, ausschlaggebend. Vie-

le Studien befassten sich bereits mit dem Thema der Verbundfestigkeit zum 

Zahn [21, 40, 44, 67, 68]. Auch wenn selbstadhäsive Befestigungskomposite eine 

gute Alternative darstellen, werden konventionelle Befestigungskomposite mit etch-

and-rinse Adhäsivsystem immer noch als Goldstandard gewertet [26]. Der Verbund 

des Befestigungsmaterials zu den industriell polymerisierten CAD/CAM-Kunststoffen 

wird durch die wenigen freien Kohlenstoff-Kohlenstoff-Doppelbindungen er-

schwert [2]. Korundstrahlen der Restaurationskunststoffe mittels 50 µm großer Alu-

miniumoxidpartikel, welches die Oberfläche reinigt und zugleich vergrößert, hat sich 

für den mechanischen Verbund bereits bewährt [2, 37]. Einen ausreichend chemi-

schen Verbund zu erzielen, bleibt bisher eine anspruchsvolle Aufgabe. In Scher- und 

Zugversuchen wurden die Verbundfestigkeiten der industriell polymerisierten PMMA-

basierten CAD/CAM-Kunststoffen sowie –Kompositen bereits untersucht [52, 69]. 

Dabei wurden MMA-basierende Adhäsivsysteme unterschiedlicher Zusammenset-

zungen untersucht, deren niedrige Viskosität zu höheren Haftwerten beisteuerte [52, 

69]. Insbesondere multifunktionelle Dimethacrylate in den Werkstoffen konnten einen 

chemischen Verbund zu den Restaurations- und Befestigungskompositen herstellen, 

wodurch wiederum die Verbundfestigkeit zunahm [69]. Auch im Bereich der künstli-

chen Alterung mittels 5000 Zyklen Thermolastwechsels (5/55 °C) konnte dieser posi-

tive Einfluss bei Zug- und Scherversuchen beobachtet werden [52, 69]. Bezüglich der 

Alterung konnte dies im Kronenabzugsversuch für CAD/CAM-Nano-Komposite je-

doch nicht bestätigt werden [64]. Im Kronenabzugsvesuch konnte experimenteller 

CAD/CAM-Nano-Komposit im Gegensatz zu PMMA-basiertem CAD/CAM-Kunststoff 
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auch ohne Adhäsivsystem durch reines Korundstrahlen eine Haftung 

(3,79 ± 1,5 MPa) erzielen [2, 64]. Zudem wies dieser im Zugversuch kombiniert mit 

selbstadhäsivem Befestigungskomposit überwiegend höhere Verbundfestigkeiten 

auf (13,1 ± 6,7  bis 31,2 ± 5,3 MPa) als PMMA-basierter Kunststoff (0 ± 0  bis 

25,9 ± 7,3 MPa) [69]. Da der chemische Verbund der PMMA-basierten Kunststoffe im 

Kronenabzugsversuch noch nicht untersucht wurde, sollte die vorliegende Versuchs-

reihe dies weiter ermitteln. Insbesondere sollte dabei auf den Langzeitverbund und 

die beobachteten Bruchbilder eingegangen werden. Zudem wurden die konventionel-

len und selbstadhäsiven Befestigungskomposite miteinander verglichen. 
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3 Fragestellungen 

Ziel der Arbeit war es, durch verschiedene chemische Oberflächenvorbehandlungen 

einen optimalen Verbund von PMMA-basierten CAD/CAM-Kunststoffkronen zu zwei 

unterschiedlich zusammengesetzten Befestigungskompositen zu erzielen. Um eine 

Aussage über den Langzeiterfolg machen zu können, wurde die Verbundfestigkeit, 

vor und nach künstlicher Alterung im Thermolastwechsel, im Kronenabzugsversuch 

ermittelt.  

Folgende Hypothese wurde zu Beginn der Studie aufgestellt: 

Die Verbundfestigkeit des Verbundes zwischen PMMA-basierten CAD/CAM-

Kunststoffen und präparierten Zahn wird durch zusätzliche chemische Vorbehand-

lung verstärkt.  

Folgende Fragestellungen wurden dabei ermittelt: 

• Welchen Unterschied hinsichtlich der Verbundfestigkeit machen die 4 ver-

schiedenen Adhäsivsysteme gegenüber nicht konditionierten Kronen? 

• Welchen Einfluss hat thermische künstliche Alterung auf die Verbundfestigkeit? 

• Unterscheiden sich konventionelle zu selbstadhäsiven Befestigungskomposi-

ten bezüglich der Verbundfestigkeit? 

• Welche Art des Versagens liegt an dem Verbund Zahn-Befestigungskomposit-

Krone nach dem Kronenabzugsversuch vor? (adhäsiv, kohäsiv oder Misch-

bruch)
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4 Material und Methode 

4.1 Übersicht 

 

Abb. 1:   Prüfkörperverteilung  
CSA:  Clearfil SA Cement; VAR:  Variolink II;  
MH: Monobond Plus mit Heliobond; VL:  visio.link; AM:  Ambarino P60; VP: VP-Connect; 
CG: Kontrollgruppe (keine Vorbehandlung); 
Initial:  Ohne Alterung;  
5000 TZ: nach 5000 Thermolastwechselzyklen (5 °C/55 °C) Alterung 

 
Eine Übersicht über die verwendeten Werkstoffe, sowie deren Aufteilung im Versuch 

kann Abbildung 1 entnommen werden. Für den Kronenabzugsversuch wurden 

200 Prüfkörper hergestellt. Die PMMA-basierten CAD/CAM-Kunststoffkronen (artBloc 

Temp Merz Dental, Lütjenburg, Deutschland) wurden mittels Computer konstruiert 

und formgeschliffen. 40 Kronen wurden jeweils mit demselben Adhäsivsystem vor-

behandelt. 
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Tabelle 1 zeigt die einzelnen Zusammensetzungen der verwendeten 

Adhäsivsysteme:  

Tab. 1: Zusammensetzung und LOT Nr. der verwendeten  Adhäsivsysteme 

Adhäsivsystem Zusammensetzung

Monobond Plus/Heliobond MH
Monobond Plus Ethanol, Silanmethacrylat, 
LOT Nr. P20536 Phosphorsäuremethacrylat, Sulfidmethacrylat
(Ivoclar Vivadent, Schaan, Liechtenstein)

Heliobond Bis-GMA, TEGDMA
LOT Nr. P00865 Stabilisatoren, Katalysatoren
(Ivoclar Vivadent, Schaan, Liechtenstein)

visio.link VL MMA, PETIA, Dimethacrylate
LOT Nr. 114784
(bredent, Senden, Deutschland

Ambarino P60 AM MMA, Phosphorsäureester
LOT Nr. 2011002057
(Creamed, Marburg, Deutschland)

VP Connect VP MMA
LOT Nr. 22912
(Merz Dental, Lütjenburg, Deutschland)

Kontrollgruppe CG
 

Bis-GMA: Bisphenol-A-glycidylmethacrylat, TEGDMA: Triethylenglycoldimethacrylat, MMA: Methyl-
methacrylat, PETIA: Pentaerythritoltriacrylat 

 
Im Anschluss wurde jede Vorbehandlungsmethode zur Hälfte aufgeteilt. Mit den Be-

festigungskompositen 

• CSA: Clearfil SA Cement (Kuraray, Tokyo, Japan) 

• VAR: Variolink II (Ivoclar Vivadent, Schaan, Liechtenstein) 

wurden die PMMA-basierten Kunststoffkronen analog dem klinischen Vorgehen mit 

Daumendruck platziert und dann zur Standardisierung mittels 100 g Gewicht in Posi-

tion gehalten. Nachdem alle hergestellten Prüfkörper für 24 h bei 37 °C in destillier-

tem Wasser lagerten, wurde die Hälfte mittels Thermolastwechsel gealtert. Anschlie-

ßend wurden alle Gruppen im Kronenabzugsversuch bis zum Debonding gezogen 
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und mit Hilfe eines Lichtmikroskops die Bruchfläche analysiert. Die Zusammenset-

zungen der Befestigungskomposite werden in Tabelle 2 aufgelistet. 

Tab. 2: Zusammensetzungen und LOT Nr. der Befestigu ngskomposite 

Befestigungskomposit Zusammensetzung

Clearfil SA Cement CSA MDP, Bis-GMA,TEGDMA, 
LOT Nr. 058AAA hydrophobes aromatisches Dimethacylat,
(Kuraray, Tokyo, Japan) hydrophobes aliphatisches Dimethacylat,

silanisierte Bariumglas-Füller, silanisierte 
und kolloidale Kieselerde, dl-Kampferchinon
Benzoylperoxid, Initiator,
oberflächenbehandeltes Natriumfluorid,
Beschleuniger, Pigmente

Variolink II VAR Bis-GMA,UDMA, TEGDMA 
Basis Bariumglas, Ytterbiumtrifluorid,
LOT Nr. R35481 Ba-Al-Fluorsilikatglas, sphäroides Mischoxid,
Katalysator Katalysatoren, Stabilisatoren, Pigmente
LOT Nr. P84939
(Ivoclar Vivadent, Schaan, Liechtenstein)

Syntac Classic
Primer TEGDMA, Polyethylenglycoldimethacrylat,
LOT Nr. R35489 Maleinsäure, Aceton in wässriger Lösung
Adhäsiv Polyethylenglycoldimethacrylat,
LOT Nr.  R27600 Glutaraldehyd in wässriger Lösung
Heliobond Bis-GMA, TEGDMA,
LOT Nr.  R28391 Stabilisatoren, Katalysatoren
(Ivoclar Vivadent, Schaan, Liechtenstein)

 
MDP: 10-Methacryloyloxydecyl-dihydrogenphosphat, Bis-GMA: Bisphenol-A-glycidylmethacrylat, 
TEGDMA: Triethylenglycoldimethacrylat, UDMA: Urethan-di-methacrylat 
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4.2 Herstellung der Prüfkörper 

4.2.1 Einbetten der Zähne 

Für die in-vitro Studie wurden 200 frisch extrahierte karies- und füllungsfreie mensch-

liche Molaren für maximal 7 Tage in 0,5 %igem Chloramin T (Sigma-Aldrich Labor-

chemikalien, Seelze, Deutschland, LOT Nr. 53110, CAS Nr. 7080-50-4) gelagert [70]. 

Bis zur weiteren Verarbeitung, aber nicht länger als 6 Monate, wurden die Zähne bei 

5 °C in verschließbaren Behältern, gefüllt mit destilliertem Wasser, aufbewahrt. 

Vor dem Einbetten wurden die vorhandene Gewebereste an den Zähne gründlich mit 

einem Einmalskalpell (FEATHER Safety Razor Co. Ltd., Osaka, Japan) entfernt. Um 

eine sichere Retention in der Einbettmasse zu gewährleisten, wurden in regelmäßi-

gen Abständen Retentionen mit einem Rosenbohrer (GEBR. BRASSELER GmbH & 

Co. CG, Lemgo, Deutschland) in die Wurzeln der Zähne gefräst. Dabei wurde darauf 

geachtet, die Wurzeln nicht zu stark zu schwächen, um eine mögliche Sollbruchstelle 

beim späteren Kronenabzugsversuch zu vermeiden. Anschließend wurden die Wur-

zeln soweit getrimmt, dass sich die Schmelz-Zement-Grenze des Zahnes auf selber 

Höhe mit der Kante des Aluminiumförmchens befand. 

Die verwendeten Aluminiumförmchen weisen eine runde Form mit einem Innen-

durchmesser von 16 mm und einer Dicke des Aluminiums von etwa 9 mm auf. Die 

Innenwände sind leicht konische zueinander, um die Verankerung des Befestigungs-

kunststoffes zu gewährleisten. Im Boden befindet sich eine Öffnung mit Gewinde, um 

den Prüfkörper über eine Schraube in die Universal Testabzugsmaschine 

(Zwick 1445, Zwick, Ulm, Deutschland) einzuspannen. Vor dem Einbetten der Zähne 

mussten die Gewinde der Förmchen mit Silikon ausgeblockt werden (Optosil, He-

raeus Kulzer, Dormagen, Deutschland), um ein Einfließen des Einbettkunststoffes zu 

verhindern (Abb. 2a). Überschüssige Flüssigkeit auf den Zähnen wurde vorsichtig mit 

einem Papiertuch entfernt. Um die Zähne achsengerecht und auf die, wie oben er-

wähnt, richtige Höhe zu positionieren, wurde ebenfalls etwas Silikon verwendet. Das 

Einbetten der Zähne erfolgte mit einem selbsthärtenden Kunststoff (ScandiQuick, 
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SCAN-DIA Hans P. Tempelmann GmbH & Co. CG, Hagen, Deutschland). Dieser 

wurde nach Herstellerangaben angemischt und mittels dünnen Abformmasse-

Spritzen (Euronda Spa, Montecchio Precalcino, Italien) bis zum Rand der Förmchen 

gefüllt (Abb. 2b). Die Polymerisation des Kunststoffes erfolgte im Drucktopf (30 min., 

45 °C, 2,5 bar, Palamat thermic, Heraeus Kulzer, Hanau, Deutschland).  

Nach dem Aushärten wurden die Zähne erneut in destilliertem Wasser bei 5 °C bis 

zur weiteren Verarbeitung, aber nicht länger als 6 Monate, gelagert, um ein Aus-

trocknen zu vermeiden. 

       

Abb. 2:   Einbetten der Zähne 
a) Aluminiumförmchen ausgeblockt, b) Einbetten eines Zahnes mit Kunststoff 
 
 

4.2.2 Präparation der Zähne 

Das Präparieren der Zähne erfolgte mittels einem Parallelometer (F4 basic, Degu-

Dent GmbH, Hanau, Deutschland) und einer wassergekühlten Turbine (Perfecta 900, 

W&H, Laufen, Deutschland) (Abb. 3a). In den Parallelometertisch wurde ein Schlitten 

mit 10° Neigung eingespannt, um einen standardisierten Präparationswinkel von 10° 

bei allen Kronen zu gewährleisten. Es wurde nach den Richtlinien der Poliklinik für 

Zahnärztliche Prothetik der LMU präpariert. Hierbei wurde mittels einem gerundeten 

Stufendiamantschleifkörper (GEBR. BRASSELER GmbH & Co. CG) mit Durchmes-

ser 1,8 mm präpariert, um einen zirkulären Substanzabtrag von 1,0 mm anzustreben. 

Die Präparationsgrenze wurde etwa 1 mm oberhalb der Schmelz-Zement-Grenze 
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gesetzt. Mit Hilfe einer Trennmaschine (Secotom-50, Struers, Ballerup, Dänemark) 

und einer Trennscheibe (50A20, Struers) wurden die Zähne anschließend unter 

Wasserkühlung auf eine standardisierte Stumpfhöhe von 3 mm reduziert (Abb. 3b). 

Die scharfen Kanten am Übergang von Okklusalfläche nach zirkulär wurden mit Fi-

nierscheiben (Sof-Lex 1982C/ 1982M, 3M ESPE, Seefeld, Deutschland) abgerundet. 

In Abbildung 3c ist der fertig präparierte Zahn abgebildet. 

             

Abb. 3:   Präparation der Zähne 
a) Zirkuläre Präparation im Parallelometer mit 10° Schlitten, b) Okklusaler Abtrag mit 
Trennmaschine, c) fertig präparierter Zahn 
 

Bis zur weiteren Verarbeitung, aber nicht länger als 6 Monate, wurden die Zähne in 

wieder verschließbaren Behältern mit destilliertem Wasser bei 5 °C gelagert. 

 

4.2.3 Scannen und Oberflächenberechnung 

Da es sich bei den ermittelten Werten des Kronenabzugsversuches um reine Ab-

zugskräfte unterschiedlich großer Prüfkörper handelte, musste die zu beklebende 

Oberfläche der einzelnen präparierten Stümpfe im Vorfeld berechnet werden.  

Mittels eines Scanners (KaVo Everest Scan, KaVo, Biberbach, Deutschland) wurde 

die Oberfläche des Stumpfes digital aufgenommen und anschließend mit Hilfe eines 

Programms zur 3D-Messlösung und Automatisierungsplattform (Geoma-

gic Qualify 12.1.2, Geomagic GmbH, Morrisville, NC, US) berechnet. 
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Vor dem Einscannen wurde Okklusions-Spray (Arti-Spray grün, Dr. Jean 

Bausch GmbH & Co. CG, Köln, Deutschland) in etwa 15 cm Entfernung auf den 

Stumpf aufgetragen. Dabei erfolgte 1 Sprühstoß von okklusal und 3 zirkulär je 1 s 

lang, um die ganze zu scannende Fläche zu benetzen. Der Prüfkörper wurde in eine 

mit Silikon (Optosil, Heraeus Kulzer) vorgefertigte Halterung eingesetzt, damit sie in 

den Objektträger platziert werden konnte, welcher auf einem Drehteller fixiert wurde. 

In ungefähr 3 Minuten erfasste eine CCD-Kamera (Charge-coupled Device) alle Kon-

turen des Stumpfes im Streifenlichtmessverfahren in 3D im Verhältnis 1:1 (Abb. 4a). 

Dabei kippte sich der Messteller während des Scannvorganges um seine Vertikal- 

und Horizontalachse, um alle Bereiche zu erfassen. Das digital entstandene Mo-

dell (Abb. 4b) wurde auf das notwendigste Datenmaterial verkleinert und in das Pro-

gramm Geomagic Qualify übertragen. 

       

Abb. 4:   Einscannen mittels KaVo Everest  
a) Prüfkörper wird eingescannt, b) fertiges, digitales Modell
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Vorerst wurde die Oberfläche des Stumpfes in Polygone überführt, über welche das 

Programm die Oberfläche berechnen konnte. Die Verbundfläche des Stumpfes wur-

de manuell markiert und anschließend über Geomagic Qualify 12.1.2 berechnet und 

in mm² angegeben (Abb. 5). 

 

Abb. 5:   Oberflächenberechnung mittels Geomagic Qualify 12.1.2 
Verbundfläche markiert und berechnet  
 
 

4.2.4 Kronenherstellung 

Für die Herstellung der PMMA-basierten Kunststoffkronen (artBloc Temp Merz Den-

tal, Lütjenburg, Deutschland) wurde eine CAD/CAM-Schleifmaschine (inLab MC XL, 

Sirona Dental Systems Inc., Bensheim, Deutschland) verwendet.  

Scan-Spray (Arti- Spray weiß, Dr. Jean Bausch GmbH & Co. CG) wurde analog dem 

Vorgehen wie in Kapitel 4.2.3 beschrieben auf die Stümpfe aufgetragen. Somit konn-

te der Scanner (Cerec inEos Blue, Sirona Dental Systems Inc.) die Konturen genau 

erfassen. Dafür wurde eine okklusale Aufnahme erstellt, der Prüfkörper um 45° ge-

kippt und während sich dieser um 360° drehte, weitere Aufnahmen von allen Seiten 

gemacht. Im Anschluss fügte das Programm (Cerec Software inLab SW4, Sirona 

Dental Systems Inc.) alle Daten zusammen, um ein virtuelles Modell zu erstellen. 

Nach der Erfassung des Modells mittels Kamera, konnte für jeden Stumpf eine indi-

viduelle Krone angefertigt werden. Nach dem manuellen Anzeichnen der Präparati-

onsgrenze und dem Festlegen der Einschubachse erhielten alle Kronen einen stan-

dardisierten Spacer von 60 µm und eine radiale Schichtdicke von 2000 µm. Zudem 

wurden 4-6 Retentionsarme mit standardisierter Dicke von 1,5 mm angebracht, um 
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der Krone im späteren Kronenabzugsversuch genügend Halt im Einbettkunststoff 

des Konters zu verschaffen (Abb. 6a,b). Nach der Konstruktion der einzelnen Kro-

nen, konnten diese jeweils mittels einer Schleifmaschine (inLab MC XL; Sirona Den-

tal Systems Inc.) in Form geschliffen werden. 

       

Abb. 6:   Cerec Software inLab 
a) Modell eingescannt, Präparationsgrenze und Einschubachse definiert, b) fertig kon-
struierte Krone 
 
 

4.2.5 Befestigung der PMMA-basierten Kunststoffkron en 

Vor dem Befestigen der PMMA-basierten Kunststoffkronen wurden diese 10 s lang in 

einem Abstand von 1 cm, mit 0,1 MPa und im 45° Winkel mit 50 µm großen Alumini-

umoxidpartikel (basic Quattro IS, Renfert, Hilzingen, Deutschland) standardisiert ko-

rundgestrahlt (Abb. 7a). Anschießend wurden die Kronen 5 min im Ultraschallbad mit 

destilliertem Wasser gereinigt und auf einem sauberen Papiertuch bei Raumtempe-

ratur getrocknet. 

Die verschiedenen Adhäsivsysteme wurden mit Microbrushes und Mikro-

Applizierpinseln sorgfältig auf die Kronen aufgetragen, um diese vollständig zu be-

netzen. Eine Übersicht zur Applikation der verschiedenen Adhäsivsysteme, sowie 

der beiden Befestigungskomposite kann Tabelle 3 entnommen werden. Die Vorbe-

handlung wurde jeweils nach Herstellerangaben folgendermaßen durchgeführt: 
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Vorbehandlung mit Monobond Plus und Heliobond  

Bei der Vorbehandlung mit Monobond Plus (Ivoclar Vivadent, Schaan, Liechtenstein) 

und Heliobond (Ivoclar Vivadent) wurde die Krone gemäß der Vorlagen des Herstel-

lers erst 60 s mittels Microbrush mit Monobond Plus benetzt. Anschließend wurde 

Heliobond mit einem weiteren Microbrush aufgetragen und direkt aufliegend für 10 s 

mithilfe einer Polymerisationslampe (Elipar S10, 3M ESPE, Seefeld, Deutschland) 

polymerisiert. Die verwendete LED-Lampe besaß eine Intensitätsstärke von 

1200 mW/cm2, welche mit einem speziellen Messgerät (Marc V3, BlueLight analytics 

Inc., Halifax, NS, Canada) gemessen wurde. Im Anschluss konnte das jeweilige Be-

festigungskomposit aufgetragen werden. 

Vorbehandlung mit visio.link 

Zur Vorbehandlung mit visio.link (bredent, Senden, Deutschland) wurden die PMMA-

basierten Kunststoffkronen nach dem Reinigen und Trocknen mit Hilfe eines Appli-

zierpinsels mit visio.link benetzt. Die Polymerisation erfolgte nach Herstellerangaben 

für 90 s im bre.Lux Power Unit (bredent, Senden, Deutschland). Anschließend konn-

te das jeweilige Befestigungskomposit eingefüllt werden. 

Vorbehandlung mit Ambarino P60 

Die Krone wurde 2 min lang mit Ambarino P60 (Creamed, Marburg, Deutschland) 

benetzt, ohne es im Anschluss mit Licht zu polymerisieren. Nach der angegebenen 

Zeit wurde der jeweilige Befestigungswerkstoff appliziert. 

Vorbehandlung mit VP-Connect 

VP-Connect (Merz Dental, Lütjenburg, Deutschland) wurde ebenfalls ohne Lichtpo-

lymerisation für 3 min auf die Krone aufgetragen. Anschließend erfolgte das Auftra-

gen des jeweiligen Befestigungskomposits. 
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Zur Befestigung der Kronen wurden folgende Befestigungskomposite verwendet: 

Befestigung mit Clearfil SA Cement 

Bei der Befestigung der PMMA-basierten Kunststoffkronen mit dem selbstadhäsiven 

Clearfil SA Cement (Kuraray, Tokyo, Japan) entfiel die Dentinvorbehandlung. Der 

präparierte Zahn wurde zunächst lediglich vorsichtig mit Hilfe eines Papiertuchs von 

überschüssigem Wasser befreit. Der Befestigungskunststoff wurde mit Hilfe der 

Mischkanüle des Clearfil Dispenser in die Innenseite der Krone appliziert. Die Krone 

wurde mit Daumendruck auf dem Zahn platziert. Überschüsse wurden mit einem Pa-

piertuch entfernt, bevor die Krone mittels 100 g schweren Gewichts in Position gehal-

ten und von 3 Seiten im direkten Kontakt zur Krone für jeweils 20 s mit der Polymeri-

sationslampe Elipar S10 (3M ESPE) polymerisiert wurde (Abb. 7d). 

Befestigung mit Variolink II 

Bei der Verwendung des dualhärtenden Komposits Variolink II (Ivoclar Vivadent) 

wurde der im Voraus präparierte Stumpf vorerst nach Herstellerangaben konditio-

niert. Dafür wurde der Zahn zunächst vorsichtig mit Hilfe eines Papiertuchs von über-

schüssigem Wasser befreit. Mittels einer Applikationsspritze wurde die 37% ige 

Phosphorsäure Total Etch (Ivoclar Vivadent) für 15 s aufgetragen (Abb. 7b) und an-

schließend sorgfältig für mindestens 5 s abgespült. Überschüssige Feuchtigkeit wur-

de mit Hilfe eines Pinsels entfernt, wobei darauf geachtet wurde, das Dentin nicht zu 

übertrocknen. Mit Hilfe eines Microbrushes wurde Syntac Primer (Ivoclar Vivadent) 

auf den Zahn aufgetragen, 15 s lang eingerieben (Abb. 7c) und vorsichtig verblasen. 

Anschließend wurde Syntac Adhäsiv (Ivoclar Vivadent) mit einem weiteren Mi-

crobrush appliziert, 10 s einwirken lassen und nach erneutem vorsichtigen Verblasen 

Heliobond (Ivoclar Vivadent) appliziert. Heliobond wurde ebenfalls sorgfältig verbla-

sen und dann 10 s mit der Polymerisationslampe Elipar S10 (3M ESPE) von okklusal 

direkt auf dem Zahn aufliegend polymerisiert. Variolink II Katalysator und Base wur-

den auf einem Anmischblock 1:1 aufgetragen und mit einem Spatel 10 s vorsichtig 
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vermischt. Anschließend wurde das Befestigungskomposit mit dem Spatel in die vor-

behandelte Krone appliziert. Das Eingliedern der Krone auf dem Zahn erfolgte ana-

log dem Vorgehen von Clearfil SA Cement. 

       

       

Abb. 7:   Befestigung der Krone 
a) Sandstrahlen der Krone mit 50 µm Aluminiumoxidpartikel, b) Dentinkonditionierung mit 
Total Etch, c) Applikation von Syntac Classic auf den Zahn mit Microbrushes, 
d) Positionierung der befestigten Krone mit Gewicht und Polymerisation 
 

Nach dem Befestigen der Kronen wurden alle Prüfkörper für 24 Stunden im Inkubator 

(Heraeus Kulzer, Hanau, Deutschland) bei 37 °C in Wasser gelagert. Bei der einen 

Hälfte der Prüfkörper fand anschließend der Kronenabzugsversuch statt, die andere 

wurde einem Alterungsprozess von 5000 Zyklen (5 °C/55 °C mit der Verweildauer 

von je 20 s) im Thermolastwechsler (Thermocycler THE-1100, SD Mechatronik, 

Feldkirchen-Westerham, Deutschland) unterworfen. 
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Tab. 3: Applikation der verschiedenen Adhäsivsystem e und Befestigungskomposite 

Adhäsivsystem Applikation

MH Applikation Monobond Plus, 60 s lufttrocknen 
Applikation Heliobond, 10 s Lichtpolymerisation
Polymerisationslampe : Elipar S10

VL Applikation, 90 s Lichtpolymerisation
Polymerisationslampe : bre.Lux Power Unit

AM Applikation, 2 min lufttrocknen

VP Applikation, 3 min lufttrocknen

Befestigungskomposit Applikation

CSA Befüllen der Krone, 60 s. Lichtpolymerisation nach Platzierung
Polymerisationslampe : Elipar S10

VAR Konditionierung der Zahnhartsubstanz mit Syntac Classic:
37%ige Phosphorsäure Total Etch für 15 s, 
Reinigung mittels Luft-Wasser-Spray
Primer: dünn auftragen, 15 s einmassieren, vorsichtig verblasen
Adhäsiv: dünn auftragen, 10 s einmassieren, vorsichtig verblasen
Heliobond: dünn auftragen, verblasen, 10 s Lichtpolymerisation
Befestigungskunststoff:
Befüllen der Krone, 60 s Lichtpolymerisation nach Platzierung
Polymerisationslampe : Elipar S10

 
 
 

4.2.6 Kronenabzugsversuch 

Vor dem Kronenabzugsversuch wurden die Konter für jeden Stumpf mit befestigter 

Krone erstellt. Zunächst wurde Silikon (Optosil, Heraeus) rund um die Krone unter-

halb der Retentionen angebracht und somit die gesamte Kunststofffläche verdeckt. 

Dadurch sollte vermieden werden, dass sich der Kunststoff des Konters mit dem des 

eingebetteten Zahnstumpfes verbindet, da hierbei ein falsches Ergebnis der Ver-

bundfestigkeit entstehen könnte. Noch in weichem Zustand wurde ein leeres Alu-

förmchen als Konter angedrückt. Überschüsse am Rand sowie unterhalb der Reten-

tionen wurden mit einem Skalpell (FEATHER Safety Razor Co. Ltd., Osaka, Japan) 

entfernt. Mit Hilfe von Einmalspritzen (Euronda Spa, Montecchio Precalcino, Italien) 
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wurde der Einbettkunststoff (ScandiQuick, SCAN-DIA, Hagen, Deutschland) durch 

das Loch des Gewindes und bis dessen Anfang eingefüllt. Anschließend wurden die-

se in verschließbaren Behältern destilliertem Wasser für 24 h gelagert. 

Die Prüfkörper wurden in eine Universal Testabzugsmaschine (Zwick 1445, Zwick) 

eingespannt. Dabei wurde der untere Teil des Prüfkörpers fest über sein Gewinde 

mit der Prüfmaschine verschraubt. Eine freibewegliche Schraube an der Abzugsma-

schine verband diese mit dem oberen Teil des Prüfkörpers. Abbildung 8a demonst-

riert den in der Universal Testabzugsmaschine eingespannten Prüfkörper. Mit einer 

Vorschubgeschwindigkeit von 1 mm/min wurden die Prüfkörper auseinandergezogen 

bis der Verbund nachgab (Abb. 8b). Dabei wirkte die Abzugskraft senkrecht auf den 

Prüfkörper. Ein Verkeilen der auseinandergezogenen Prüfkörper wurde durch die 

freibewegliche und somit selbstzentrierende Schraube am oberen Teil des Prüfkör-

pers vermieden. Zur Ermittlung der Verbundfestigkeit wurde folgende Formel ver-

wendet: Verbundfestigkeit = Abzugskraft/Verbundoberfläche [MPa = N/mm²]. Prüf-

körper, welche bereits vor dem Testen der Verbundfestigkeit auseinander gingen, 

erhielten einen Wert von 0 MPa. 

       

Abb. 8:   Kronenabzugsversuch 
a) Prüfkörper eingespannt, b) Prüfkörper nach dem Debonding 
 

Abschließend wurde jeder Prüfkörper mithilfe eines Lichtmikroskops mit 20-facher 

Vergrößerung (Mikroskop: Stemi 2000-C, Lichtquelle: CL 6000 LED Zeiss, Oberko-

chen, Deutschland) analysiert und dessen Bruchstelle definiert. Dabei wurde zwi-

schen verschiedenen Bruchbildern unterschieden: 
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• Adhäsiver Bruch – Befestigungskomposit haftet am Dentin (Abb. 9a) 

• Mischbruch – Befestigungskomposit haftet am Dentin und CAD/CAM-Kunst-

stoff (Abb. 9b) 

• Adhäsiver Bruch - Befestigungskomposit haftet am CAD/CAM-Kunststoff 

(Abb. 9c) 

• Kohäsiver Bruch im Dentin oder CAD/CAM-Kunststoff (Abb. 9d) 

 

       

       

Abb. 9:   Bruchbilder 
a) Adhäsiver Bruch - Befestigungskomposit haftet am Dentin,  
b) Mischbruch - Befestigungskomposit haftet am Dentin und CAD/CAM-Kunststoff 
c) Adhäsiver Bruch - Befestigungskomposit haftet am CAD/CAM-Kunststoff 
d) Kohäsiver Bruch im Dentin oder CAD/CAM-Kunststoff 
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4.3 Statistische Auswertung 

Zur Planung dieser Studie wurde im Vorfeld die Berechnung der optimalen Stichpro-

bengröße durchgeführt (R, R Development Core Team, The R Foundation for Sta-

tistical Computing). Dazu wurden Daten aus einer früheren Studie [2] von adhäsiv 

befestigten korundgestrahlten artBloc Temp Kronen verwendet. Ziel war es, den Ein-

fluss zusätzlichen Vorbehandlung mit Adhäsiven zu beurteilen. Die Berechnung der 

optimalen Stichprobengröße hat ergeben, dass eine Stichprobengröße von 

10 Prüfkörpern pro Gruppe zu einer Studienpower von 99,9% führt. Für diese Be-

rechnung wurde der Unterschied von 0,44 MPa (angenommene Steigerung der Ver-

bundfestigkeit um 20%) zwischen zwei beliebigen Testgruppen bei der Anwendung 

des Zweistichproben-T-Tests auf dem gemäß Bonferroni korrigierten Signifikanzni-

veau von 0,0083 als relevant angenommen. Ferner wurde die Standardabweichung 

in allen Test-Gruppen gleich 0,15 MPa gesetzt. 

Nach den Kronenabzugsversuchen wurden die erzielten Ergebnisse mittels eines 

Statistik-Programms (Statistical Package for the Social Science Version 20, SPSS 

Inc., Chicago, US) ausgewertet. Das Signifikanzniveau wurde für alle angewandten 

statistischen Tests auf 5% (p<0,05) festgelegt. Zur Erfassung der Normalverteilung 

wurden Kolomogorov-Smirnov und Shapiro-Wilk Tests durchgeführt. Es wurden so-

wohl parametrische als auch nicht parametrische deskriptive Statistiken berechnet. 

One-way ANOVA mit anschließendem Scheffé post-hoc Test wurde verwendet, um 

signifikante Unterschiede zwischen den verschiedenen Vorbehandlungsmethoden 

der initial geprüften Prüfkörper zu ermitteln. Um den Einfluss des verwendeten Be-

festigungskomposits zu prüfen, wurde der ungepaarte Zweistichproben-T-Test an-

gewandt. Da die gealterten Gruppen nicht normalverteilt waren, wurden sie mittels 

Mann-Withney-U und Kruska-Wallis-H Tests auf Unterschiede verglichen, wobei auf 

die unterschiedlichen Vorbehandlungen, Befestigungskomposite oder Alterung ge-

achtet wurde. Die relative Häufigkeit der Bruchbilder, sowie das dazugehörige 95% 

Konfidenzintervall, wurden mittels Ciba Geigy Tabellen ermittelt. Unterschiede zwi-

schen den Gruppen in Bezug auf die Bruchbilder wurden im Chi²-Test ausgewertet. 
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5 Ergebnisse 

5.1 Verbundfestigkeit 

Tabelle 4 und 5 listen die Ergebnisse der einzelnen Testgruppen auf mit den Werten: 

Darunter aufgelistet sind: Mittelwert, Standardabweichung (SD), 

95% Konfidenzintervall (95% KI), Minimum (Min), Median und Maximum (Max). Initia-

le Testgruppen wurden mittels Komlogotov-Smirnow und Shapiro-Wilk Tests auf 

Übereinstimmung der Nullhypothese überprüft. Dagegen zeigten gealterte, vorbe-

handelte Gruppen mit MH und VL mit VAR befestigt deutlich andere Werte als ange-

nommen. 

Tab. 4: Selbstadhäsives Befestigungskomposit Clearf il SA Cement 

Vorbehandlung Mittelwert (SD) 95% KI Min/Median/Max

24 h H20
MH 2,30 (0,68)b (1,80;2,80) 1,54/2,07/3,31
VL 2,22 (0,69)b (1,71;2,80) 1,02/2,10/3,52
AM 0,99 (0,55)a (0,58;1,39) 0,30/1,08/1,68
VP 2,07 (0,84)ab (1,46;2,68) 0,94/2,20/3,25
CG 1,56 (1,08)ab (0,77;2,34) 0E-11/1,51/3,14

24 h H2O + 5000 TZ
MH 0,65 (0,69)a (0,14;1,14) 0E-11/0,39/1,71
VL 0,49 (0,52) a (0,10;0,87) 0E-11/0,37/1,49
AM 0,08 (0,26)*a (-0,1/0,27) 0E-11/0E-13/0,82
VP 0,51 (0,65)*a (0,03;0,98) 4E-5/0,37/1,71
CG 0 (0)a –

Clearfil SA Cement (CSA)

 
Mittelwert Verbundfestigkeit, Standardabweichung (SD), 95% Konfidenzintervall (KI), Minimum (Min), 
Median und Maximum (Max) der Befestigungskomposite auf unterschiedlich konditionierten 
CAD/CAM-Kunststoffoberflächen. Alle Werte sind in MPa. 

* nicht normal verteilt  
ab verschiedene Buchstaben zeigen signifikante Unterschiede zwischen den Vorbehand-
lungsmethoden eines Befestigungskomposits 
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Tab. 5: Konventionelles Befestigungskomposit Variol ink II 

Vorbehandlung Mittelwert (SD) 95% KI Min/Median/Max

24 h H20
MH 1,20 (0,49)a (0,83;1,56) 0,32/1,32/1,91
VL 1,67 (0,62)a (1,21;2,12) 0,91/1,53/3,09
AM 0,96 (0,82)a (0,36;1,54) 0,12/0,66/2,83
VP 1,04 (0,71)a (0,52;1,55) 0E-11/0,95/2,69
CG 1,63 (0,93)a (0,95;2,30) 0E-11/1,63/3,04

24 h H2O + 5000 TZ
MH 1,51 (0,87)a (0,87;2,14) 0E-11/1,68/2,43
VL 1,96 (1,83)a (0,63;3,27) 0E-11/1,77/6,19
AM 0,69 (0,89)*a (0,03;1,33) 0E-11/0,12/2,25
VP 0,91 (0,87)a (0,27;1,53) 9E-5/0,64/2,54
CG 0,03 (0,04)a (-0,37;0,44) 0E-11/0,03/0,06

Variolink II (VAR)

 
Mittelwert Verbundfestigkeit, Standardabweichung (SD), 95% Konfidenzintervall (KI), Minimum (Min), 
Median und Maximum (Max) der Befestigungskomposite auf unterschiedlich konditionierten 
CAD/CAM-Kunststoffoberflächen. Alle Werte sind in MPa. 

* nicht normal verteilt  
ab verschiedene Buchstaben zeigen signifikante Unterschiede zwischen den Vorbehand-
lungsmethoden eines Befestigungskomposits 

5.1.1 Einfluss der Adhäsivsysteme auf die Verbundfe stigkeiten 

des selbstadhäsiven Komposits Clearfil SA Cement 

5.1.1.1 Einfluss auf die initialen Verbundfestigkei ten 

Beim Vergleich innerhalb des Befestigungskomposits CSA der initial gemessenen 

Werte erwiesen MH (2,3 ± 0,68 MPa) und VL (2,22 ± 0,69 MPa) signifikant höhere, 

AM (0,99 ± 0,55 MPa) hingegen signifikant niedrigere Verbundfestigkeiten als die 

Kontrollgruppe CG (1,56 ± 1,08 MPa) (p=0,002). VP (2,07 ± 0,84 MPa) lag im glei-

chen Wertebereich wie die Kontrollgruppe (p>0,05). 
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5.1.1.2 Einfluss auf die Verbundfestigkeiten nach A lterung 

Nach künstlicher Alterung konnte die Gruppe CG (0 MPa) keinen Verbund erzielen. 

Die Werte aller Gruppen mit Vorbehandlung wiesen nur geringe Verbundfestigkeit 

auf (0,08 ± 0,26 bis 0,65 ± 0,69 MPa) und lagen im gleichen Wertebereich wie CG 

(p>0,05). 

5.1.1.3 Initiale Verbundfestigkeiten im Vergleich z u Verbundfestigkeiten 

nach Alterung 

Im Vergleich konnten nach künstlicher Alterung signifikant kleinere Verbundfestigkei-

ten für die Gruppen MH, VL, AM und VP (p<0,001) beobachtet werden als initial. Das 

Diagramm in Abbildung 10 veranschaulicht den Einfluss der verschiedenen Adhäsiv-

systeme auf die Verbundfestigkeiten des selbstadhäsiven Befestigungskomposits 

CSA. Der Einfluss der künstlichen Alterung durch Thermolastwechsel kann ebenfalls 

der Abbildung entnommen werden. 

Verbundfestigkeiten CSA initial vs 5000 TZ
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Abb. 10:   Verbundfestigkeiten CSA initial vs. 5000  TZ 

Verbundfestigkeiten der verschiedenen Adhäsivsysteme und Befestigung der Kronen mit 
dem selbstadhäsiven Befestigungskomposit CSA vor und nach Alterung 
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5.1.2 Einfluss der Adhäsivsysteme auf die Verbundfe stigkeiten 

des konventionellen Komposits Variolink II 

5.1.2.1 Einfluss auf die initiale Verbundfestigkeit en 

Innerhalb des konventionellen Befestigungskomposits VAR lagen die Gruppen 

MH (1,20 ± 0,49 MPa); VL (1,67 ± 0,62 MPa), AM (0,96 ± 0,82 MPa), 

VP (1,04 ± 0,71 MPa) im gleichen Wertebereich wie die Kontrollgruppe 

CG (1,63 ± 0,93MPa) (Tabelle 5, Abb. 11) (p>0,05). 

5.1.2.2 Einfluss auf die Verbundfestigkeiten nach A lterung 

Ähnlich wie beim selbstadhäsiven Befestigungskomposit konnte CG mit konventio-

nellem Befestigungskomposit VAR befestigt nach Alterung annähernd keine Ver-

bundfestigkeit aufweisen (0,03 ± 0,04 MPa). Alle gealterten Gruppen 

MH (1,51 ± 0,87 MPa), VL (1,96 ± 1,83 MPa), (0,69 ± 0,89 MPa), 

VP (0,91 ± 0,87 MPa) lagen im gleichen Wertebereich wie CG (p>0,05) (Tabelle 5, 

Abb. 11). 
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5.1.2.3 Initiale Verbundfestigkeiten im Vergleich z u Verbundfestigkeiten 

nach Alterung 

Künstliche Alterung hatte keinen Einfluss auf die Verbundfestigkeit der Kronen, wel-

che mit dem jeweils selben Adhäsivsystem vorbehandelt und dem konventionellen 

Befestigungskomposit VAR befestigt wurden (p=0,341-0,720). Innerhalb der Kon-

trollgruppe konnten nach der künstlichen Alterung signifikant niedrigere Verbundfes-

tigkeiten beobachtet werden (p=0,041) (Abb. 11). 
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Abb. 11:   Verbundfestigkeiten VAR initial vs. 5000  TZ 

Verbundfestigkeiten der verschiedenen Adhäsivsysteme und der Befestigung der Kronen 
mit dem konventionellen Befestigungskomposit VAR vor und nach Alterung 
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5.1.3 Einfluss der Befestigungskomposite Clearfil S A Cement und 

Variolink II auf die Verbundfestigkeit 

5.1.3.1 Initiale Verbundfestigkeiten 

Nach der Vorbehandlung mit den Gruppen MH (p=0,001) und VP (p=0,008) konnten 

mit dem selbstadhäsiven Befestigungskomposit CSA initial signifikant höhere Werte 

gemessen werden als mit dem konventionellen Befestigungskomposit VAR. In Abbil-

dung 12 können die initialen Verbundfestigkeiten der beiden Befestigungskomposite 

miteinander verglichen werden. 
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Abb. 12:   Verbundfestigkeiten CSA vs. VAR initial 

Vergleich der initialen Verbundfestigkeiten beider Befestigungskomposite miteinander 
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5.1.3.2 Verbundfestigkeiten nach Alterung 

Im Gegensatz zu den initialen Messergebnissen, erwiesen die Gruppen 

MH (p=0,025) und VL (0,034) nach Alterung signifikant höhere Verbundfestigkeiten, 

wenn sie mit dem konventionellen Befestigungskomposit VAR befestigt wurden als 

mit dem selbstadhäsiven Komposit CSA. Abbildung 13 stellt die Verbundfestigkeiten 

der beiden Befestigungskomposite nach künstlicher Alterung gegenüber. 
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Abb. 13:   Verbundfestigkeiten CSA vs. VAR 5000 TZ 

Vergleich der Verbundfestigkeiten beider Befestigungskomposite miteinander nach Alte-
rung 
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5.2 Bruchbildanalyse 

Tabelle 6 und 7 zeigen die relative Häufigkeit der beobachteten Bruchbilder aller ge-

testeten Gruppen. Bei allen Testgruppen konnten signifikant unterschiedliche Bruch-

bilder beobachtet werden (p=0,012). Es waren keine kohäsiven Brüche im Dentin 

oder CAD/CAM-Kunststoff nachweisbar. Ebenso konnte kein rein adhäsiver Bruch 

am Verbund Befestigungskomposit zu Dentin festgestellt werden. Mit Ausnahme von 

VL konnten für alle anderen Gruppen vorwiegend adhäsive Brüche (50 – 100 %) am 

Verbund zwischen Befestigungskomposit zu CAD/CAM-Kunststoff beobachtet wer-

den, unabhängig vom verwendeten Befestigungskomposit oder Alterungsgrad. Test-

gruppen, welche mit VL vorbehandelt wurden, wiesen überwiegend Mischbrüche 

(60 – 90 %) auf. Dies galt für beide Befestigungskomposite sowie Alterungsgrade. 

Die Diagramme der Abbildungen 14 und 15 veranschaulichen die Relation der 

Bruchbilder aller Prüfkörper zueinander, welche mit dem selbstadhäsiven Befesti-

gungskomposit CSA hergestellt wurden. Dies wird für das konventionelle Befesti-

gungskomposit VAR in den Abbildungen 16 und 17 dargestellt. 

Tab. 6: Relative Häufigkeit der Bruchbildertypen de s selbstadhäsiven Befestigungskom-
posits Clearfil SA Cement 

Vorbehandlung

[%]  95 % KI [%]  95 % KI [%]  95 % KI [%]  95 % KI

MH 90  (56;100) 10  (0;45) 0  (0;31) 0  (0;31)

VL 40  (12;74) 60  (26;88) 0  (0;31) 0  (0;31)

AM 80  (44;97) 20  (3;56) 0  (0;31) 0  (0;31)

VP 90  (56;100) 10  (0;45) 0  (0;31) 0  (0;31)

CG 100  (69;100) 0  (0;31) 0  (0;31) 0  (0;31)

MH 90  (56;100) 10  (0;45) 0  (0;31) 0  (0;31)

VL 10  (0;45) 90  (56;100) 0  (0;31) 0  (0;31)

AM 90  (56;100) 10  (0;45) 0  (0;31) 0  (0;31)

VP 90  (56;100) 10  (0;45) 0  (0;31) 0  (0;31)

CG 100  (69;100) 0  (0;31) 0  (0;31) 0  (0;31)

Clearfil SA Cement

Kohäsiver Bruch        
im Dentin oder 
CAD/CAM-Kunststoff

24 h H2O + 5000 TZ

24 h H2O

Adhäsiver Bruch 
Befestigungskomposit 
haftet am Dentin                    

Mischbruch 
Befestigungskomposit 
haftet am Dentin und  
CAD/CAM-Kunststoff

Adhäsiver Bruch 
Befestigungskomposit 
haftet am CAD/CAM-
Kunststoff

 
Relative Häufigkeit der adhäsiven, kohäsiven und Mischbrüche in % des selbstadhäsiven Befesti-
gungskomposits Clearfil SA Cement mit 95% Konfidenzintervall (KI) 
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Relative Häufigkeit der Bruchbildertypen -
 CSA initial
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Abb. 14:   Bruchbilder CSA initial 

Anzahl adhäsiver Brüche in % mit Befestigungskomposit am Dentin haftend und Mischbrü-
che in % beim selbstätzenden Befestigungskomposit CSA nach initialem Kronenabzugs-
versuch 
 
 
 

Relative Häufigkeit der Bruchbildertypen -
 CSA 5000 TZ
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Abb. 15:   Bruchbilder CSA 5000 TZ 

Anzahl adhäsiver Brüche in % mit Befestigungskomposit am Dentin haftend und Mischbrü-
che in % beim selbstätzenden Befestigungskomposit CSA nach Alterung und Kronenab-
zugsversuch 
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Tab. 7: Relative Häufigkeit der Bruchbildertypen de s konventionellen Befestigungskompo-
sits Variolink II 

Vorbehandlung

[%]  95 % KI [%]  95 % KI [%]  95 % KI [%]  95 % KI

MH 50  (19;81) 50  (19;81) 0  (0;31) 0  (0;31)

VL 10  (0;45) 90  (56;100) 0  (0;31) 0  (0;31)

AM 100  (69;100) 0  (0;31) 0  (0;31) 0  (0;31)

VP 80  (44;97) 20  (3;56) 0  (0;31) 0  (0;31)

CG 70  (35;93) 30  (35;93) 0  (0;31) 0  (0;31)

MH 90  (56;100) 10  (0;45) 0  (0;31) 0  (0;31)

VL 40  (12;74) 60  (26;88) 0  (0;31) 0  (0;31)

AM 100  (69;100) 0  (0;31) 0  (0;31) 0  (0;31)

VP 70  (35;93) 30  (35;93) 0  (0;31) 0  (0;31)

CG 100  (69;100) 0  (0;31) 0  (0;31) 0  (0;31)

Kohäsiver Bruch        
im Dentin oder 
CAD/CAM-Kunststoff

Variolink II

24 h H2O + 5000 TZ

24 h H2O

Adhäsiver Bruch 
Befestigungskomposit 
haftet am Dentin                    

Mischbruch 
Befestigungskomposit 
haftet am Dentin und  
CAD/CAM-Kunststoff

Adhäsiver Bruch 
Befestigungskomposit 
haftet am CAD/CAM-
Kunststoff

 
Relative Häufigkeit der adhäsiven, kohäsiven und Mischbrüche in % des konventionellen Befesti-
gungskomposits Variolink II mit 95% Konfidenzintervall (KI) 

 
 
 

Relative Häufigkeit der Bruchbildertypen - 
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Abb. 16:   Bruchbilder VAR initial 

Anzahl adhäsiver Brüche in % mit Befestigungskomposit am Dentin haftend und Mischbrü-
che in % beim konventionellem Befestigungskomposit VAR nach initialem Kronenabzugs-
versuch 
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Relative Häufigkeit der Bruchbildertypen -  
VAR 5000 TZ
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Abb. 17:   Bruchbilder VAR 5000 TZ 

Anzahl adhäsiver Brüche in % mit Befestigungskomposit am Dentin haftend und Mischbrü-
che in % beim konventionellem Befestigungskomposit VAR nach Alterung und Kronenab-
zugsversuch 
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6 Diskussion 

Ein zuverlässiger Langzeitverbund ist eines der Hauptkriterien, welches es zu beach-

ten gilt, um industriell polymerisierte CAD/CAM-Kunststoffe als definitive Restaurati-

on nutzen zu können. Die vorliegende Versuchsreihe untersuchte den Einfluss unter-

schiedlicher Adhäsivsysteme auf den Verbund PMMA-basierter CAD/CAM-

Kunststoffe zu zwei unterschiedlichen Befestigungskompositen vor und nach thermi-

scher Alterung im Kronenabzugsversuch. Lediglich mit Mono-

bond Plus/Heliobond (2,3 ± 0,68 MPa) und visio.link (2,22 ± 0,69 MPa) vorbehandel-

te CAD/CAM-Kunststoffe in Kombination mit Clearfil SA Cement konnten signifikant 

höhere Verbundfestigkeiten erzielen als die unvorbehandelte Kontrollgruppe. Keine 

der anderen Gruppen zeigte unabhängig des verwendeten Befestigungskomposits 

oder Alterungsgrades einen stärkeren Verbund. Die Bruchbilder aller Gruppen erga-

ben überwiegend adhäsive Brüche mit an Dentin haftendem Befestigungskomposit. 

Lediglich mit visio.link vorbehandelte Gruppen zeigten vorwiegend Mischbrüche. Die 

gemessenen Verbundfestigkeiten waren geringer als im Vergleich zu anderen Res-

taurationswerkstoffen, welche in verschiedenen Studien unter denselben Bedingun-

gen untersucht wurden. Glaskeramikkronen, welche mit Variolink II befestigt wurden, 

erzielten initiale Verbundfestigkeiten von 7,3 ± 2,2 MPa und nach künstlicher Alte-

rung 6,4 ± 0,9 MPa mittels kombinierter thermischer sowie mechanischer Beanspru-

chung (1 200 000 Zyklen, 49 N, 5/50 °C) [2]. Für die Befestigung von Zirkoniumoxid-

keramikkronen mit dem konventionellen Befestigungskomposit Panavia21 (Kuraray 

Dental Co Ltd., Osaka, Japan) und dem selbstadhäsiven Befestigungskomposit Re-

lyX Unicem, konnten Verbundfestigkeiten von 7,3 ± 1,7 bis 14,1 ± 3,5 MPa beobach-

tet werden [37]. Jedoch zeigten die Ergebnisse einer weiteren Publikation, welche 

die selben Vorbehandlungsmethoden und Befestigungskomposite wie die vorliegen-

de Versuchsreihe untersuchte, dass der Verbund zu experimentellem CAD/CAM-

Nano-Komposit, verglichen mit den oben erwähnten Werten für Keramiken, im Kro-

nenabzugsversuch ebenfalls gering ist [64]. Die Verbundfestigkeit lag hier im Bereich 

von 1,93 ± 0,48 MPa bis 3,79 ± 1,50 MPa für initial gemessene Werte und 0 ± 0 MPa 
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bis 4,06 ± 1,4 MPa nach thermozyklischer Alterung [64]. Die zu prüfende Hypothese 

der vorliegenden Studie, dass die Verbundfestigkeit des Verbundes zwischen 

PMMA-basierten CAD/CAM-Kunststoffen und präparierten Zahn durch zusätzliche 

chemische Vorbehandlung verstärkt wird, muss aufgrund der Ergebnisse abgelehnt 

werden. 

6.1 Kritik an der Methodik 

6.1.1 Anzahl der Prüfkörper 

Die vorliegende Studie verwendete Kronenabzugsversuche als Testmethode. Dabei 

wurden menschliche, extrahierte Zähne präpariert und darauf PMMA-basierte Kunst-

stoffkronen dem klinischen Vorgehen entsprechend befestigt. Vor Ausübung der 

Studie wurde eine Poweranalyse durchgeführt, um die optimale Anzahl der Prüfkör-

per zu ermitteln. Die Verwendung der Daten einer älteren Studie ergab, dass eine 

Stichprobengröße von 10 Prüfkörpern pro Gruppe zu einer Studienpower von 99.9% 

führt [2]. Nach Abschluss der vorliegenden Studie kann davon ausgegangen werden, 

dass die Annahmen während der Planungsphase etwas zu optimistisch waren. Es 

wurden höhere Werte der Standardabweichungen, sowie größere Unterschiede zwi-

schen den Gruppen erzielt als erwartet. Um festzustellen, ob eine Gruppenanzahl 

von n=10 für die vorliegende Untersuchung ausreichend war, wurde daraufhin die-

selbe Poweranalyse unter der Verwendung der Ergebnisse dieser Untersuchung 

nochmals durchgeführt. Diesmal führte die Stichprobengröße von n=10 zu einer Stu-

dienpower von 21-84 %. Dabei konnte für initiale Messwerte mit Variolink II und Mes-

sungen nach Alterung mit Clearfil SA Cement festgestellt werden, dass die Test-

gruppen möglicherweise zu klein waren, um signifikante Ergebnisse zu erzielen. Dies 

spiegelt sich in der Verteilung der Ergebnisse sowie den Unterschieden der Gruppen 

wieder. Dahingegen zeigten die Resultate für Clearfil SA Cement-initial und Vario-

link II-nach Alterung eine annehmbare Aussagekraft für eine Gruppengröße mit 

n=10. Heintze et al. [63] verglich die wichtigsten Einflussfaktoren mehrerer Studien 
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im Kronenabzugsversuch miteinander. Hierfür wurden verschiedene Parameter defi-

niert, um ein standardisiertes Vorgehen für diese Art der Testmethode festzulegen. 

Heintze et al. empfiehlt für das Erlangen signifikanter Ergebnisse unter anderem eine 

Stichprobengröße von n=20. Allerdings ist aufgrund der unterschiedlichen Vorbe-

handlungsmethoden und Befestigungsmaterialien eine so pauschale Aussage nicht 

möglich; die Angaben sind mit Vorsicht zu behandeln. 

6.1.2 Einfluss anwenderspezifischer Parameter und n atürlicher 

Zähne 

Bei der Verwendung natürlicher Zähne müssen mögliche Strukturveränderungen 

während der Bearbeitung beachtet werden. Das Beschleifen der Zähne erfolgte ma-

nuell, wodurch Anpressdruck des Bohrers und Wasserkühlung anwenderspezifisch 

waren und variieren konnten. Die Wasserkühlung hing in der vorliegenden Studie 

vom verwendeten Druck der Turbine sowie der separaten Einstellung des Wasserzu-

flusses ab. Das Gerät besaß für beide Parameter jeweils einen Regler, wobei Maß-

einheiten nur für Druck vorhanden waren. Wurde die ursprüngliche Einstellung des 

Wasserreglers verstellt, konnte die alte Position nur nach Gefühl wieder hergestellt 

werden. Hierbei können Variationen aufgetreten sein. Andere Studien konnten eben-

falls die Wasserzufuhr nicht standardisieren [2, 37, 64]. Teilweise wurde in den Ver-

suchsbeschreibungen nicht weiter auf diesen Faktor eingegangen [13, 29]. Die sorg-

fältige Reinigung der Turbine ist für eine suffiziente Wasserzufuhr wichtig. Späne der 

Zahnhartsubstanz, sogenannter Schleifdebris, welche durch das Beschleifen des 

Zahnes entstehen, können die Öffnungen der feinen Düsen blockieren und somit zu 

geringeren Wassermengen führen. Ein zu hoher Anpressdruck des Bohrers oder 

Wasserkühlung von weniger als etwa 50 ml/min können die Flüssigkeit in den Den-

tinkanälchen verändern [37]. Doch auch weitere Faktoren können die Zahnstruktur 

der extrahierten Zähne beeinflussen und somit Auswirkungen auf den adhäsiven 

Verbund haben. Hierbei spielt die extraorale Verweildauer sowie die Lagerung der 

Zähne im geeigneten Medium bei konstanter Temperatur eine ausschlaggebende 

Rolle. Ebenso ändert Karies die Zusammensetzung der Zähne. Die vorliegende Stu-
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die verwendete daher nur karies- und füllungsfreie menschliche Molaren. Diese wur-

den direkt nach Extraktion nach ISO-Norm [70] für maximal 7 Tage in 0,5 %igem 

Chloramin T gelagert. Bis zur weiteren Verarbeitung, aber nicht länger als 6 Monate, 

wurden die Zähne bei 5 °C in destilliertem Wasser aufbewahrt, um ein Austrocknen 

zu vermeiden. Ernst et al. [29] desinfizierten beispielsweise die extrahierten Zähne 

für 7 Tage in einer wässrigen 1%igen Chloramin-B-Lösung und lagerte die Zähne bis 

zur weiteren Verarbeitung in einer isotonischen Kochsalzlösung oder in einem ande-

ren Versuch in Leitungswasser [13]. 

Die Applikation der Befestigungsmaterialien erfolgte ebenfalls manuell. Variationen 

bezüglich aufgetragener Adhäsivdicke können nicht ausgeschlossen werden. Die 

Dicke des Befestigungskomposits konnte durch die Fixierung der Kronen in einem 

speziellen Apparat und einer Last von 100 N von okklusal während des Befesti-

gungsprozesses standardisiert werden. Wimmer et al. [71] untersuchten die Belas-

tung an den Verbundflächen in Abhängigkeit unterschiedlicher Schichtdicken sowie 

E-Module. Dabei steigerte eine dünnere Schichtdicke Befestigungskomposit und ein 

geringeres E-Modul die klinische Überlebensrate. 

Ein optimaler Verbund zum Zahn wird unter anderem dadurch erzielt, dass der Zahn 

vor der Applikation des Befestigungsmaterials von überschüssiger Flüssigkeit befreit 

wird. Wird der Zahn allerdings zu stark ausgetrocknet oder nicht genügend vom be-

netzenden Wasser befreit, wird der adhäsive Verbund dadurch negativ beeinflusst. In 

der vorliegenden Studie wurden die Zähne manuell mittels Papiertuch vorsichtig ab-

getupft. Dieses Vorgehen ist allerdings nicht standardisiert, und es bestand keine 

Möglichkeit zu überprüfen, wie stark hydriert der Zahn war. Den Bruchbildern ent-

sprechen bestand jedoch kein Defizit im Verbund zum Zahn. Im klinischen Alltag ent-

sprechen diese Schritte zwar den allgemeinen Bedingungen, im Labor sollten jedoch 

für eine bessere Vergleichbarkeit ein standardisiertes Vorgehen angestrebt werden. 
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6.1.3 Einfluss des Einbettkunststoffes 

Auch der Polymerisationsvorgang des Kunststoffes zum Einbetten der Zähne muss 

berücksichtigt werden. In den verschiedenen Vorversuchen wurden mögliche Ein-

flüsse wie beispielsweise die Wärmeentstehung während der Polymerisation analy-

siert. Es kann ausgeschlossen werden, dass die Zahnstruktur und somit die Ver-

bundeigenschaften zwischen Zahn und Befestigungskomposit durch die 

Polymerisation manipuliert wurden. Entsprechend der Bruchtypen kann diese Aus-

sage bestätigt werden. 

6.2 Diskussion der Ergebnisse 

6.2.1 Vergleich mit anderen Studienergebnissen 

Eine vorangehende Publikation kam zu dem Ergebnis, dass PMMA-basierte 

CAD/CAM-Kunststoffe höhere Scherfestigkeiten mit PMMA-basierten Verblendkunst-

stoffen erzielten als mit Komposit-Verblendkunststoffen [72]. Komposite konnten im 

Gegensatz zu PMMA-basierten Verblendkunststoffen ohne jegliche Vorbehandlung 

keinen Verbund erzielen. Die Scherfestigkeit wurde jedoch durch Korundstrahlen mit 

50 µm Aluminiumoxidpartikel gesteigert. Eine weitere Arbeit [64] ermittelte die Ver-

bundfestigkeit von experimentellen CAD/CAM-Nano-Kompositkronen im Kronenab-

zugsversuch und erzielte höhere Werte (1,07 ± 0,64 bis 4,06 ± 1,40 MPa) für die mit 

Variolink II befestigten Kronen unabhängig der verwendeten Vorbehandlung. Die 

nicht vorbehandelte Kontrollgruppe zeigte sogar die höchsten Werte. Aufgrund dieser 

Ergebnisse kann davon ausgegangen werden, dass der Verbund mit Variolink II zu 

Nano-Kompositen besser ist als zu PMMA-basiertem Kunststoff. Vermutlich beruht 

dies auf den unterschiedlichen Zusammensetzungen von PMMA und Kompositen. 

Die in Nano-Kompositen enthaltenen Dimethacrylate sind dafür bekannt, dass sie 

aufgrund von zwei Kohlenstoff-Kohlenstoff-Doppelbindungen stärker reagieren kön-

nen als Monomethacrylate in PMMA mit nur einer Kohlenstoff-Kohlenstoff-

Doppelbindung. Eine weitere Veröffentlichung untersuchte die Verbundfestigkeiten 
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derselben Werkstoffe wie in der vorliegenden Studie mittels Scherversuchen [52]. 

Die Autoren gaben an, dass chemische Vorbehandlung für einen ausreichenden 

Langzeitverbund notwendig sei. Als Kontrollgruppe dienten PMMA-basierte Kunst-

stoffe, welche mittels Korundstrahlen ohne Adhäsiv vorbehandelt wurden. Vorbehan-

delte Gruppen mit Monobond Plus/Heliobond, visio.link und VP-Connect (initial: 

11,1 ± 5,1 bis 15,8 ± 4,2 MPa; 5000 Thermolastwechsel: 14,2±4,8 bis 27,0±4,6 MPa) 

erzielten unabhängig vom verwendeten Befestigungskomposit höhere Scherkräfte 

als die Kontrollgruppe. Im Gegensatz zu den Ergebnissen der vorliegenden Untersu-

chung für die Kontrollgruppe (CSA: 1,56 ± 1,08 MPa; VAR 1,63 ± 0,93 MPa), konnte 

die Kontrollgruppe der vorangehenden Publikation auch initial keinerlei Verbundfes-

tigkeiten erzielen. Die Ergebnisse derselben Werkstoffe in unterschiedlichen Studien 

variieren häufiger. So zeigte eine Versuchsreihe, welche ebenso die Methode des 

Kronenabzugsversuchs nutzte, ebenfalls keinerlei Verbundfestigkeiten der korund-

gestrahlten PMMA-basierten Kunststoffkronen [2]. Im Abzugsversuch einer weiteren 

Arbeit konnten wiederum initial Verbundfestigkeiten gemessen werden (Clearfil SA 

Cement: 5,3 ± 6,2; VAR: 7,7 ± 6,8 MPa), auch wenn diese, wie in der vorliegenden 

Studie, gering waren [69]. Eine, wie bereits weiter oben diskutierte, geringe Stichpro-

benanzahl sowie die teils manuelle und somit anwenderspezifische Herstellung der 

Prüfkörper vermag in unterschiedliche Ergebnisse derselben Testmethode zu resul-

tieren. Des Weiteren stellt die Verwendung natürlicher Zähne eine besondere Situa-

tion dar, welche ein rein standardisiertes Verfahren unmöglich machen.  

6.2.2 Diskussion der Bruchbilder 

Ziel des Kronenabzugsversuches ist es, eine angemessene Aussage über die Ver-

bundqualität treffen zu können. Dabei ist es nicht ausreichend, die Kraft zu bestim-

men, welche benötigt wird, bis sich der Verbund zwischen Restauration und Zahn-

stumpf löst. Zusätzlich sollten die Bruchbilder betrachtet werden. So kann festgestellt 

werden, ob der Verbund des Befestigungskomposits zur Zahnhartsubstanz oder zum 

Restaurationsmaterial stärker oder in etwa gleich ist. Der schwächere Verbund sollte 

demnach weiter untersucht werden. Kohäsive Brüche im Zahn oder Kronenwerkstoff 
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lassen hingegen auf eine ausreichende Verbundfestigkeit schließen. Allerdings darf 

bei kohäsiven Brüchen im Material nicht ausgeschlossen werden, dass das Restau-

rationsmaterial zum Beispiel aufgrund von unzureichender Polymerisation während 

der Herstellung Fehler aufweist. 

In der vorliegenden Versuchsreihe wurden überwiegend adhäsive Brüche zwischen 

Befestigungskomposit und CAD/CAM-Kunststoff beobachtet. Kohäsive Brüche in der 

Zahnhartsubstanz oder dem CAD/CAM-Kunststoff sowie adhäsive Brüche zwischen 

Dentin und Befestigungskomposit kamen nicht vor. Diese Ergebnisse der Bruchbilder 

stimmen mit anderen Versuchen überein [2, 64]. Folglich kann die Aussage getroffen 

werden, dass der Verbund zwischen Dentin und Befestigungskomposit stärker ist als 

zwischen Befestigungskomposit und CAD/CAM-Kunststoff. Der Verbund zwischen 

Dentin und Variolink II zusammen mit Syntac Classic zur Konditionierung der Zahn-

hartsubstanz und selbstadhäsiven Befestigungskompositen wurde in unterschiedli-

chen Studien ausreichend untersucht [21, 44, 68, 73]. Scherversuche konnten nach 

24 Stunden Wasserlagerung Werte im Bereich von 39,2 ± 8,9 MPa für Vario-

link II/Syntac Classic und 7,8 ± 3,9 MPa bis 23,4 ± 6,5 MPa für selbstadhäsive Be-

festigungskomposite erzielen [68]. Mikroverbundversuche ergaben nach 6 Monaten 

Wassereinlagerung Werte von 8,6 ± 7,4 MPa für Variolink II/Excite DSC und 

9,8 ± 3,8 MPa für Clearfil SA Cement [73]. Die vorliegende Versuchsreihe konnte 

hingegen nur sehr geringe Verbundfestigkeiten (0,0 ± 0,0 bis 2,3 ± 0,68 MPa) auf-

weisen. Die Verbundfestigkeiten korrespondieren mit denen vorheriger Studien. Auf-

grund der Bruchbilder muss jedoch davon ausgegangen werden, dass der stärkere 

Verbund vermutlich über die Haftung zum Dentin erreicht wurde anstatt über die Haf-

tung zu den PMMA-basierten Kunststoffkronen. Widersprüchlich zeigten sich jedoch 

in der vorliegenden Studie alle mit visio.link vorbehandelten Testgruppen. Es wurden 

vornehmlich Mischbrüche festgestellt, was darauf schließen lässt, dass der Verbund 

zu den PMMA-basierten Kunststoffkronen mit dieser Vorbehandlung stärker ist, als 

bei allen anderen getesteten Gruppen. Es wird vermutet, dass hierbei die Verbund-

festigkeit an den einzelnen Grenzflächen etwa gleich groß ist. Visio.link beinhaltet 

neben dem üblichen MMA auch Dimethacrylate mit Photoinitiatoren. Durch die obli-

gate Lichtpolymerisation entsteht eine weitere Verbundschicht. Die stärkere Polarität 
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der Dimethacrylate führt zu einer höheren Wasserabsorption und folglich expandiert 

der Werkstoff. Auf diese Weise kann sich das Adhäsiv besser in den Poren des 

CAD/CAM-Werkstoffs verankern und gleichzeitig den Verbund stärken [18]. Somit 

kann angenommen werden, dass die Verbundfestigkeit durch die Vorbehandlung des 

PMMA-basierten CAD/CAM-Kunststoffes mittels visio.link ausreichend ist. Dies 

stimmt mit den Ergebnissen vorangegangener Studien überein [52, 69]. 

6.2.3 Diskussion der künstlichen Alterung mittels T hermolast-

wechsel 

Im Alltag werden Zähne und ihre restaurativen Versorgungen täglich mehrmals ver-

schiedensten thermischen Belastungen ausgesetzt. Verantwortlich dafür sind warme 

und kalte Lebensmittel, sowie die Mundatmung [74]. Um die Langzeitprognose un-

tersuchter Werkstoffe in-vitro beurteilen zu können, verwendete die vorliegende Stu-

die Thermolastwechsel zur künstlichen Alterung. Auf diese Weise können alle Prüf-

körper einer standarisierten und reproduzierbaren Belastung im Labor unterzogen 

werden. Hancox et al. [75] beschrieb die thermische Wechselbeanspruchung als wie-

derholten Wechsel eines Prüfkörpers zwischen zwei extremen Temperaturen. Dabei 

dient eine angemessene Verweildauer in jedem Wasserbad der thermischen Anpas-

sung des Werkstoffs. In der vorliegenden Studie vollzogen die Prüfkörper 

5000 Zyklen in Wasserbädern zwischen 5 °C und 55 °C mit einer Verweildauer von 

je 20 s. Nach dieser Alterung sanken die Verbundfestigkeiten signifikant für alle vor-

behandelten Gruppen, welche mittels Clearfil SA Cement befestigt wurden. Die Kon-

trollgruppe zeigte sowohl vor als auch nach der Alterung unbeständige Werte. Es 

kann angenommen werden, dass künstliche Alterung einen negativen Einfluss auf 

den Verbund des selbstadhäsiven Befestigungskomposits zum CAD/CAM-Kunststoff 

ausübte. Mit Ausnahme der Kontrollgruppe ergaben sich für alle vorbehandelten 

Gruppen mit dem konventionellen Befestigungskomposit Variolink II keine signifikan-

ten Unterschiede nach Alterung. Dennoch konnten mit Monobond Plus/Heliobond 

sowie visio.link vorbehandelte Prüfkörper und dann mit Variolink II eingesetzt nach 

5000 Zyklen thermischer Wechselbeanspruchung leicht erhöhte Werte im Vergleich 
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zu initial erzielen. Dennoch lagen diese im gleichen Wertebereich mit den initial ge-

messenen Ergebnissen. 

Thermolastwechsel kann die Verbundfestigkeit auf unterschiedliche Weise beeinflus-

sen. Während der Polymerisation entstehen freie Radikale, welche an die Doppel-

bindung der Methacrylatgruppen binden können und wiederum neue Radikale bil-

den [36]. Diese Reaktion wird so lange fortgeführt, bis keine Monomere mehr zur 

Verfügung stehen [36]. Der Vorgang der Nachpolymerisation beruht jedoch nicht auf 

dem Vorhandensein der freien Doppelbindungen der Monomere, da sich die Anzahl 

der Monomere bei Umgebungstemperatur nicht mehr stark ändert [36]. Vielmehr 

spielt hier die Anzahl der freien Radikale und deren Zerfall eine Rolle, welche laut 

Burtscher et al. logarithmisch von der Temperatur abhängen [36]. So beträgt die 

Halbwertszeit freier Radikale etwa 2400 Stunden bei 6 °C und nur noch 4,80 h bei 

50 °C [36]. Die Nachpolymerisation der Befestigungsmaterialien wirkt sich positiv auf 

den Verbund an den Grenzflächen von CAD/CAM-Kunststoff, Adhäsiv und Befesti-

gungskomposit aus [3, 76]. Die lange Lagerung in Wasser führt zu einer hygroskopi-

sche Expansion der Materialien [77, 78]. Die Wasseraufnahme variiert jedoch zwi-

schen den unterschiedlichen Befestigungskompositen. Je hydrophiler die 

enthaltenen Monomere sind, desto mehr Wasser absorbieren sie [77, 78]. Dimeth-

acrylate wie TEGDMA, UDMA und Bis-GMA sind dafür bekannt, je nach Polarität 

mehr Wasser anzuziehen [77, 78]. Durch die Wassereinlagerung werden Biegefes-

tigkeit sowie E-Modul reduziert und somit die mechanischen Eigenschaften der 

Komposite verändert [77, 78]. Sowohl hygroskopische als auch thermische Expansi-

on wirkt der Polymerisationsschrumpfung des Befestigungskomposits entgegen [78, 

79] und ermöglicht bis zu einem gewissen Grad eine bessere mechanische Veranke-

rung der Werkstoffe miteinander. Dehnt sich der Werkstoff hingegen zu stark oder 

expandieren die einzelnen Komponenten sehr unterschiedlich, können zu hohe 

Spannungen an den Befestigungsflächen auftreten. Dabei können Risse entstehen, 

welche sich negativ auf die Verbundqualität auswirken [76]. 
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7 Zusammenfassung 

Ein zuverlässiger Langzeitverbund zwischen industriell polymerisierter CAD/CAM-

Kunststoffkrone, Befestigungsmaterial und Zahn lässt sich unter anderem durch eine 

ausreichende Verbundfestigkeit bestimmen. Ziel der Studie war es, den Einfluss un-

terschiedlicher Adhäsivsysteme auf den Verbund PMMA-basierter CAD/CAM-

Kunststoffe zu zwei unterschiedlichen Befestigungskompositen vor und nach Alte-

rung im Kronenabzugsversuch zu ermitteln. Dabei galt es zu beweisen, dass die 

Verbundfestigkeit der Kunststoffkronen durch zusätzliche chemische Vorbehandlung 

mittels Adhäsiven stärker ist also ohne. 

Es wurden 200 menschliche Molaren nach den Richtlinien der Poliklinik für Zahnärzt-

liche Prothetik präpariert und in 20 Gruppen aufgeteilt. Somit enthielt jede Gruppe 

eine Stichprobengröße von n=10. Die PMMA-basierten CAD/CAM-Kunststoffkronen 

wurden mittels Computer konstruiert und anschließend in Form geschliffen. Die Kro-

nen wurden vor dem Befestigen mit folgenden Adhäsivsystemen vorbehandelt: Mo-

nobond Plus/Heliobond, visio.link, Ambarino 60  und VP-Connect. Kronen ohne 

chemische Vorbehandlung dienten als Kontrollgruppe. Zur Befestigung der Kronen 

wurde zum einen das selbstadhäsive Komposit Clearfil SA Cement  und zum ande-

ren das konventionelle Befestigungskomposit Variolink II  verwendet. Die PMMA-

basierten Kunststoffkronen wurden in einem speziellen Apparat fixiert und von okklu-

sal durch 100 g Gewicht in Position gehalten. Nachdem alle hergestellten Prüfkörper 

für 24 h bei 37 °C in destilliertem Wasser lagerten, wurde die Hälfte aller Prüfkörper 

mittels 5000 Zyklen Thermolastwechsel (5 °C/55 °C) künstlich gealtert. Im Kronenab-

zugsversuch wurden die initialen sowie gealterten Prüfkörper bis zum Debonding 

gezogen. Abschließend wurde mit Hilfe eines Lichtmikroskops die Bruchfläche an 

Zahn und Krone ermittelt. Die Auswertung der Ergebnisse erfolgte mittels One-way 

ANOVA mit anschließendem Scheffé post-hoc Test, ungepaartem Zweistichproben-

T-, Mann-Withney-U-, Kruska-Wallis-H- und Chi²-Tests. 
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Innerhalb des selbstadhäsiven Befestigungskomposits Clearfil SA Cement zeigten 

die vorbehandelten Gruppen mit Monobond Plus/Heliobond und visio.link initial signi-

fikant höhere Verbundfestigkeiten als die Kontrollgruppe. Alle anderen lagen im glei-

chen Wertebereich. Künstliche Alterung hatte in Kombination mit Clearfil SA Cement 

einen negativen Einfluss auf die Gruppen Monobond Plus/Heliobond, visio.link, Am-

barino 60 und VP-Connect (p<0,001). Dahingegen konnte für Variolink II, mit Aus-

nahme der Kontrollgruppe, kein Einfluss durch künstliche Alterung festgestellt wer-

den. Gruppen, welche mit Monobond Plus/Heliobond, visio.link und VP-Connect 

vorbehandelt wurden, erzielten initial mit Clearfil SA Cement höhere Werte als mit 

Variolink II. Im Gegensatz zu den initialen Messergebnissen erwiesen alle Gruppen 

nach Alterung jedoch eine höhere Verbundfestigkeit, wenn sie mit dem konventionel-

len Befestigungskomposit Variolink II befestigt wurden. Zudem zeigten die vorbehan-

delten Gruppen mittels Monobond Plus/Heliobond und visio.link in Kombination mit 

Variolink II die höchsten Werte nach Alterung. Mit Ausnahme von visio.link konnten 

für alle anderen Gruppen vorwiegend adhäsive Brüche (50 – 100 %) am Verbund 

zwischen Befestigungskomposit zu CAD/CAM-Kunststoff beobachtet werden. Test-

gruppen, welche mit visio.link vorbehandelt wurden, wiesen überwiegend Mischbrü-

che (60 – 90 %) auf. Dies galt für beide Befestigungskomposite sowie Alterungsgra-

de. 

Zusammenfassend kann die Aussage getroffen werden, dass im Vergleich zur Kon-

trollgruppe, keines der verwendeten Adhäsivsysteme höhere oder dauerhafte Ver-

bundfestigkeiten aufweisen konnte. 

Weiterführende Studien sollten durchgeführt werden, um einen höheren und länge-

ren Verbund des Befestigungskomposits zu PMMA-basierten Kronen zu erzielen. Da 

für Gruppen, welche mit visio.link vorbehandelt wurden, vorwiegend Mischbrüche 

beobachtet wurden, könnten hier weitere Versuche anknüpfen. Ob Dimethacrylate 

dabei tatsächlich der entscheidende Faktor sind, sollte ebenfalls überprüft werden. 

Befestigungskomposite mit anderen Zusammensetzungen stellen ein weiteres For-

schungsgebiet dar. Die Verwendung natürlicher Zähne im Kronenabzugsversuch ist 

bereits eine gute Möglichkeit, Verbundfestigkeiten im Labor zu simulieren. Dennoch 
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geben in-vitro Versuche nur einen kleinen Einblick in die Erfolgschancen eines zuver-

lässigen Verbundes zu PMMA-basierten Kunststoffkronen. Zur Verifizierung der Er-

gebnisse werden klinische Studien notwendig sein. 
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