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Zusammenfassung

Rydberg Atome sind auf Grund ihrer starken und kontrollierbaren Wechselwirkungen
gut geeignet zur Quantensimulation von lang-reichweitig wechelwirkenden Systemen
mit ultrakalten Atomen in optischen Gittern. In dieser Arbeit wird die Präparation
und hochauflösende Abbildung von Rydberg Vielteilchensystemen demonstriert und
die spontane Entstehung selbst-organisierter Ordnung beobachtet. In einer ersten Rei-
he von Experimenten wird die Ordnung in den post-selektierten Komponenten hoher
Anregungsdichte bei hoher Temperatur untersucht. Die räumliche Konfiguration der
Rydberg-Atome wird mit einer neuartigen Abbildungsmethode detektiert, die es er-
möglicht die Position der individuellen Rydberg-Atome im Gitter durch Fluoreszenz-
abbildung der ehemaligen Rydberg-Atome nach dem Umpumpen in der Grundzustand
zu bestimmen. Aus den gemessenen Rydberg-Positionen werden Korrelationsfunktio-
nen berechnet und der Blockaderadius bestimmt. Für eine zweite Experimentreihe
wird die Zeitabhängigkeit der optischen Kopplung an den Rydberg-Zustand kontrol-
liert. Zusammen mit der genauen Modellierung des Besetzungsmusters im optischen
Gitter erlaubt dies die adiabatische Präparation von Rydberg Kristallen. Das Sys-
tem kann auch durch einen Ising Hamiltonian mit polynomialen Wechselwirkungen
beschrieben werden, das diskutierte Szenario entspricht damit der Grundzustandsprä-
paration in einem Quantenmagnet. Es werden Eigenschaften des kristallinen Grund-
zustands wie seine verschwindende Suszeptibilität und lokale Magnetisierungsdichten
gemessen. Diese Arbeit stellt ein neue Stufe der Kontrolle über lang-reichweitig wech-
selwirkende Spin-Systeme dar und ebnet den Weg zur Quantensimulation mit Rydberg
Atomen.

Abstract

Rydberg atoms are well-suited for the quantum simulation of long-range interacting
Hamiltonians with ultracold atoms in optical lattices due to their strong and switch-
able interactions. In this thesis we demonstrate the preparation and high-resolution
imaging of Rydberg many-body systems and observe the spontaneous emergence of
self-organized ordering. In a first series of experiments we investigate the ordering in
the post-selected high-excitation-density components of high-temperature many-body
states. The spatial configuration of Rydberg atoms is imaged by a novel detection
technique, which allows to determine the position of individual Rydberg atoms in the
lattice by fluorescence imaging of the former Rydberg atoms after depumping them to
the ground state. From the measured Rydberg atom positions we calculate correlation
functions and determine the blockade radius. In a second set of experiments we imple-
ment time-dependent control of the optical coupling to the Rydberg state. Combined
with the precise shaping of the initial atom pattern in the lattice this allows for the
adiabatic preparation of Rydberg crystals. Via a mapping to an Ising Hamiltonian
with power-law interactions this scenario corresponds to the ground state preparation
in a quantum magnet. We measure properties of the crystalline ground state such as
its vanishing susceptibility and local magnetization densities. This work demonstrates
a new level of control over long-range interacting spin systems and paves the way for
Rydberg-based quantum simulation.
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1. Introduction

The strong interactions between Rydberg atoms make them unique for a variety of ap-
plications in the field of quantum optics, quantum information and strongly interacting
quantum many-body systems [1–4]. The investigation of ultracold Rydberg atoms in
optical lattices is motivated by the wide range of proposals to implement long-range
interacting many-body systems [5–7] as well as the perspectives for quantum informa-
tion processing [1]. The strong interactions between Rydberg atoms can bridge the gap
between neighbouring atoms in the lattice and allow for interactions on the quantum
level extending over many lattice sites and thereby enable the quantum simulation
of previously inaccessible Hamiltonians [8–10] . In contrast the ground state atom
interactions in lattice experiments are only relevant on the same lattice site and the
coupling to neighbouring lattice sites is exclusively through tunnelling. This leads
to the so-called Bose-Hubbard model including on-site interactions and tunnelling to
neighbouring sites. It allows to access a wide range of physics [11–16] and the related
techniques [17] serve as a starting point for the quantum simulation of more complex
condensed-matter systems [18].
The intensely studied superfluid-insulator quantum phase transition in the Bose-

Hubbard model [11, 12, 19] opens up the possibility to initialize an optical lattice with
unity filling. This is an outstanding tool for Rydberg experiments to prepare well-
controlled initial atom configurations with highly sub-Poissonian on-site atom number
fluctuations [20, 21]. In combination with single-site addressing techniques [22] the
preparation of arbitrary atom patterns in the lattice with high fidelity is realizable.
The addition of Rydberg atoms to a Bose-Hubbard system introduces strong interac-
tions and long-range correlations. One of the main problems in this combination is the
separation of timescales as the excitation dynamics of Rydberg atoms is typically a
factor of thousand faster than tunnelling dynamics in the optical lattice. This leads to
a decoupling of the time evolution in the electronic Rydberg sector and the motional
degrees of freedom of the atoms. The mismatch of timescales can be bridged by the
so-called Rydberg dressing [6, 7, 23–27], which is discussed in the outlook. The ex-
periments described in this thesis are carried out in the so-called frozen Rydberg gas
regime, where the atoms do not move during the excitation. The advantage of work-
ing in this regime is the strong interaction leading to fast dynamics and the relatively
weak influence of decoherence and loss processes. Interesting physics like spontaneous
ordering and emerging long-range correlations can be observed. Such a frozen system
resembles a quantum magnet when the atomic ground state is identified with |↓〉 and
the Rydberg state with |↑〉 and can be described by an Ising system with power-law
interactions in a transverse and longitudinal field [9, 28–32]. Power-law spin Hamilto-
nians recently attracted a lot of interest due to recent progress in the simulation of
quantum dynamics in ion chains with tunable long-range spin interactions [33, 34] and
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the observation of dipolar exchange interactions with ultracold polar molecules [35].
These long-range interacting systems open up a new field of ultracold quantum phys-
ics with a large variety of strongly correlated Hamiltonians waiting for experimental
implementation.
This thesis reports on the preparation and high-resolution imaging of Rydberg

many-body systems and the observation the emergence of self-organized ordering.
We facilitate well-controlled techniques for manipulation of ultracold atoms in optical
lattices to prepare initial ground state atom distributions for Rydberg experiments.
For the first time we combine the possibilities of Bose-Hubbard physics with Rydberg
excitation in a single experimental setup. The optical lattice is not only used for initial
state preparation but also for detection of the Rydberg atoms. They are stimulated
back to the ground state after excitation and are recaptured in the lattice for high-
resolution fluorescence imaging. This enables a new class of well-controlled Rydberg
experiments with adjustable initial atomic sample distribution and at the same time
high-fidelity imaging of single Rydberg atoms with single-site resolution in the lattice.
On the basis of these techniques we investigate the emergence of spatial order in a
system of ground state atoms coupled to a Rydberg state. The observation of spa-
tially ordered structures in the high-density components of excited many-body states
requires post-selection on high Rydberg atom numbers. For the realization of crys-
talline ground states adiabatic preparation schemes have been proposed [30, 36, 37].
We implement such a technique to deterministically prepare Rydberg crystals in the
strongly interacting Ising spin system by controlled coupling to the Rydberg state with
optimized time-dependent Rabi frequency and detuning. The demonstrated adiabatic
control over such a system constitutes a big step towards quantum simulation of a
wide range of long-range interacting many-body systems by ultracold atom systems
with tailored Rydberg-based interactions.

Outline

The thesis starts with a basic introduction on atoms in optical lattices and essential
techniques for single-site imaging in Chapter 2. After this chapter the focus is shifted
to Rydberg physics and an introduction to Rydberg atoms is given (Ch. 3), followed by
a technical part about the calculation of Rydberg atom properties (Ch. 4). Chapter 5
then introduces the experimental setup for Rydberg excitation and detection and ex-
plains calibration experiments in preparation of the following two chapters. The first
of these reports on the observation of spatially ordered structures of Rydberg atoms
excited using simple rectangular laser pulses by post-selecting on high-density com-
ponents of the highly excited many-body states (Ch. 6). In the next chapter we study
the dynamics of the formation of Rydberg crystals and their properties. Additionally,
the improvements of the control over the experimental system required for this adia-
batic preparation of ground states in the Rydberg Hamiltonian are described (Ch. 7).
The last chapter then concludes and gives an outlook over the wide range of possible
future experiments based on the combination of Rydberg atoms with optical lattices
(Ch. 8).
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2. Single-site- and single-atom-resolved
fluorescence imaging

The development of single-site fluorescence imaging techniques in optical lattices was
a breakthrough in the detection capabilities for ultracold atom systems. This imaging
technique has the outstanding capability to image from one to few thousands of atoms
simultaneously with single-site resolution in the optical lattice [20, 21]. The resulting
snapshots of the full lattice occupation give access to new observables like spatial cor-
relation functions [14, 15, 38] and high-resolution thermometry based on the detection
of single defects in the lattice occupation [16, 21].

2.1. Ultracold atoms in optical lattices

Bosons on a lattice are described by the Bose-Hubbard model, which takes into account
the tunnelling of the particles from one lattice site to neighbouring sites and on-site
interactions if a lattice site is more than singly occupied. The model can be nicely
implemented using rubidium-87 in an optical lattice [11–13, 39]. There is an on-site
interaction U for every pair of atoms on the same site, which is repulsive in the case
of rubidium-87, and the hopping J between lattice sites can be tuned by changing the
depth of the optical lattice. The Bose-Hubbard Hamiltonian is given by

ĤBH = −J
∑
〈i,j〉

b†ibj +
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i . (2.1)

Here
∑
〈i,j〉 denotes the sum over all neighbouring lattice sites, b†i and bi are the

creation and annihilation operators for a boson on lattice site i and n̂i = b†ibi is the
particle number operator for site i. The parameters J and U can be calculated from
the lattice and atom properties (Appendix G) and depend only on the scattering length
of the involved atoms, the lattice depth and geometry. These parameters can be also
measured directly in the experiment, U can be determined by lattice modulation or
microwave spectroscopy [40–43], J is often inferred from the measured lattice depth
by band spectroscopy, but can also be measured in a high-resolution imaging setup by
looking at the single particle tunnelling dynamics [22, 44].
The Bose-Hubbard model features a quantum phase transition from a superfluid to

a Mott-insulating state, which has been observed in momentum space [12] as well as
in real space with single-site resolution [20, 21]. The phase transition occurs when
changing J/U to small values, by either increasing the on-site repulsion or decreasing
the tunnelling. We use the lattice depth as control parameter, which predominantly
tunes the tunnelling J .



6 2. Single-site- and single-atom-resolved fluorescence imaging

Here we are mainly interested in the Mott-insulator limit, J/U → 0, where all lattice
sites in the lattice are decoupled and the physics of the system can be described exactly
by a classical theory with only on-site terms. This limit can be exploited to prepare
extended regions in the lattice with unity filling. The size of these regions is limited
by the harmonic confinement of the trap in the experiment which is typically taken
into account via a local density approximation. This assumes that every site in the
trapped system is equivalent to a site in an homogeneous system with a chemical
potential determined by the harmonic confinement at the considered position. The
classical description in the decoupled regime can be derived as the lowest order high-
temperature expansion (HTE0) [45]. The observable in the setup is the parity of the
number of atoms on every lattice site, i.e. we detect only one atom if the initial number
of atoms on that lattice site was odd, as light-induced collisions cause a pairwise
loss [20, 21, 46, 47]. The parity density, which is observed in our experiment, can then
be calculated by

np(µ,U,β,nmax) =

∑nmax
n mod(n,2)e−β(U

2
n(n−1)−µn)∑nmax

n e−β(U
2
n(n−1)−µn)

. (2.2)

Here β = 1
kBT

, nmax is the maximum on-site occupation number and mod(n,2) is
the parity of the on-site occupation number n. The number of neighbouring sites is
not relevant, as every site is considered to be decoupled. The model can be used to
calculate the in-trap parity density of atomic-limit Mott insulators by applying a local
density approximation with low calculation effort (Appendix A.2).

2.2. Setup for single-site fluorescence imaging

The imaging of ultracold quantum gases on a single-site and single-atom level opens
many new possibilities to investigate these system and measure previously inaccessible
observables, like spatially resolved correlation functions [38]. Our specialized single-
site setup with high-resolution objective has been described in detail in previous pub-
lications [21, 48, 49], and here we will only shortly summarize the most important
information about setup and experimental sequence.
The first cooling stages in the experiment are similar to other rubidium Bose-

Einstein condensate (BEC) machines, but the region of the vacuum chamber with best
vacuum conditions and the lattice setup ("science chamber") is optimized for high-
resolution imaging. In the following a short description of the experiment is given.
The atoms from a large reservoir of several grams of rubidium at room-temperature
are first cooled transversally in a 2D MOT and then loaded through a differential
pumping tube to a 3D magneto-optical trap (MOT). The 3D MOT is then, after a
compressed MOT stage, loaded into a unplugged quadrupole trap. In the magnetic
trap microwave evaporation is performed but stopped before strong Majorana losses
occur. The precooled atoms are then loaded into a single beam transport dipole trap
and moved via mechanically shifting the focus to the science chamber. There, we have
the setup for a three-dimensional lattice formed by retro-reflected beams. First the
retro-reflected beams of the two horizontal beams are blocked and the incoming beams
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Figure 2.1.: Central part of the singe-site setup. a, The schematic shows a
single plane of atoms in a vertical standing wave 1064 nm lattice. This 1D z-lattice is
created by a retro-reflection from the vacuum-window in front of the objective. This
window is coated as a mirror for 1064 nm and is transparent for 780 nm. For imaging
the atoms are pinned with the z-lattice and two horizontal lattices and illuminated
by red-detuned molasses light, which cools the atoms and scatters photons from the
atoms, that are imaged via the high-resolution objective to an EMCCD-camera, b,
typical image of a dilute cloud of atoms. The red dots are the atoms, their size is
determined by the point spread function of the imaging system. The white dots mark
the position of the lattice sites. Images adapted from [21].

are used as a crossed dipole trap. Here we evaporate further and can create a BEC.
Typically we stop before and load the cold atoms into the vertical z-lattice. This
lattice is formed by a beam incident from above and the retro-reflected beam from
the horizontal window before the objective, which sits below the vacuum chamber.
This window is coated as mirror for the lattice laser wavelength of 1064 nm and is
transparent for the imaging light at 780 nm.
At that stage we have the atoms distributed over several slices of the vertical stand-

ing wave lattice. We prepare a single slice of atoms by transferring all atoms to the
other hyperfine state (F = 2) using a microwave sweep and only a single slice back,
which we can separate in frequency by a strong magnetic field gradient along the
z-axis. Removing all the other atoms leaves us with around 1000 atoms in a single
slice of the vertical lattice. This is the starting point for further evaporation to the
target atom number. For the evaporation we use a horizontal gradient, implemented
by the superposition of a vertical gradient field and an horizontal offset field, and an
additional dimple to increase the trapping frequency. Typically we reduce the atom
number down to around 200 atoms and then increase the horizontal lattice depth to
drive the two-dimensional system over the superfluid-Mott-insulator transition. For
detection the atoms in the single slice of the vertical lattice are pinned in the 3D
optical lattice by increasing the lattice depth to 3000Er in all three directions, where
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Er = h2/(2mλ2) is the recoil energy of the lattice with λ = 1064 nm and m the mass
of rubidium-87. The magnetic fields are then switched to compensated zero-field and
red-detuned molasses light is used to scatter photons and simultaneously cool the
atoms in the lattice. The photons are collected via a high-resolution objective with a
numerical aperture of 0.68, which allows with a resolution of about 700 nm to determ-
ine which sites are occupied in the lattice with 532 nm spacing. The image is taken
using an EMCCD camera and an illumination time of typically one second.
For high densities in the lattice the extraction of the site occupation is challenging,

but can be calculated via a computer program ([21], Sec. 2.4). The calculation is
simplified by the fact that due to light-assisted collision the parity of the atom number
on each site is detected [20, 21], implying a occupation of either zero or one. A
typical image of a dilute cloud is shown in Fig. 2.1, where the single atoms are easily
distinguishable by eye as red dots using a dark-red (no light) to yellow (high light level)
colour map. The residual noise in the pictures is caused by background counts, readout
and shot noise of signal and background light (the background light is subtracted via
a reference image without atoms).
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2.3. Auto-focussing

Due to the high resolution required for single-site imaging the depth of focus of the
imaging system is rather small (approximately three sharp planes ≈ 1.5 µm), such that
active refocussing is already required for mechanical drifts of the apparatus of approx-
imately a micron. The drifts can be compensated by a high-precision regulated piezo
stack (PIFOC P-726) on which the high-resolution objective is mounted. Typically
a refocussing is required every 30min. Assuming a sequence with five images (each
takes 30 s) to find the optimal focus position, the refocussing would occupy around
10% of the measurement time. Additionally repeated non-automated calibrations can
easily distract scientists from the real measurement due to many interruptions.
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Figure 2.2.: Illustration of the auto focus process. First row: the seven pictures
with different PIFOC voltage of the same cloud. Second row: images after post-
processing. Graph below: extracted focus measure values (blue points) and Gaussian
fit (green line), giving an optimal focus position of 3.6V for this example data set of
a Mott insulator with doubly occupied shell in the centre.

This stability issue can be solved by automatic active feedback on the PIFOC to
compensate drifts of the addressed slice with respect to the focus of the high-resolution
objective. The idea is to take the seven pictures in a single run of the experiment of the
same cloud. If the requirements on the image quality are relaxed, the exposure time
can be reduced from 1 s to around 80ms, which allows for the imaging of the same cloud
in several pictures and changing the focusing of the objective in between within 50ms
using the PIFOC. A quite simple technique can be used to extract the focus position
automatically from several pictures of the same cloud and the corresponding voltages
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for the PIFOC. For the automatic determination of the focus an easily calculated
measure for the relative focus quality of the images is required. The following method
is used in our system: To improve speed, the images are first binned 4× 4 (this is still
≈ 500 nm per pixel). Then we effectively band-pass by applying a 7× 7 Laplacian of
Gaussian (LOG) filter on the image. This is essentially a numerical second derivative
smoothed with a Gaussian of σ = 2. The result is a 2D picture of the curvature of the
initial image, which is largest if the image has strong contrast (Fig. 2.2). To end up
with a single number as measure for the focussing quality we sum up the absolute value
of the curvature over the whole image. Plotting the focus measure for all images of
the series over the PIFOC voltage gives typically a Gaussian-like shape, which is fitted
and the position of the maximum is a very good approximation for the optimal focus
position. This calculation is included in the experimental control software, such that
the focusing is happening without further interaction. The images are taken in the so-
called "idle sequence", which is always started automatically if no other measurement
sequence is running to maintain thermal equilibrium of the experimental setup. At
the beginning of other sequences they are then evaluated to guarantee sharp images
of the ultracold atoms.

2.4. Reconstruction algorithm

The reconstruction algorithm is one of the main ingredients of data processing at
the experiment. Its main purpose is to detect the occupied lattice sites in fluorescence
images and extract a lattice occupation matrix from the image. This lattice occupation
matrix is the basis of all further evaluation of experimental data at our setup. The
image processing can, of course, only extract information which is in the original
picture, this is the parity projected density, and good reconstruction fidelities are only
achievable with good imaging quality and especially very low hopping rates during the
imaging. Hopping during the imaging is detrimental, as it can cause two signals of
the same atom at different positions, making it impossible to guess the initial atom
number distribution correctly. The algorithm was first implemented by Stefan Kuhr
for the first publication [21], and then further optimized and automated to handle the
larger amounts of data that had to be processed for later experimental studies (e.g.
[14]). One of the main challenges of such image processing algorithms is reasonable
performance without affecting the fidelity. Another important point is to reach a level
of reliability that the reconstruction can be run on all images taken at the experiment
essentially without interaction.
In the following the main ideas and techniques used in the reconstruction algorithm

are discussed. First we argue why the reconstruction is possible for our pictures.
The resolution is around 700nm, but the spacing between neighbouring lattice sites
is 532 nm. Because of that further information is required to determine the atom
positions. But for our system it is known that atoms can only sit on lattice sites.
This information improves the effective resolution, and allows to extract the lattice
occupation with high fidelity even in the presence of noise. To exploit the lattice
structure during the reconstruction, all its parameters have to be determined quite
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accurately. There are parameters that are fixed and others that drift from shot to shot.
The angles of both horizontal lattices with respect to the camera and the lattice spacing
in both directions belong to the first class. They only change during readjustments
of the setup. It turns out that small lattice adjustments have vanishing influence on
lattice angles, severe effects are only visible for adjustments of the imaging path. Also
the lattice spacing can vary slightly due to imaging distortions, but these effects are
negligible. These parameters are extracted in separate calibration measurements and
are kept fixed during the daily image reconstruction process. The lattice phases along
both lattice axes, which determine the absolute position of a lattice site in space, are
drifting slowly due to thermal effects. They can be determined using a single picture,
by shifting the known lattice structure to coincide with a single atom. All the other
atoms in the picture will then lie on this calculated lattice. For the calibration of
lattice angles and lattice constant we take images of dilute thermal clouds with lots of
isolated atoms, which can be easily individually identified. The position of the atoms
can be determined with sub-lattice-site precision by fitting the point spread function.
Projecting the positions of all atoms onto a line with certain direction in the plane
yields a histogram with a contrast, which is maximal for the line being parallel to one
of the lattice axes. The distance of the peaks in the comb structure yields the lattice
spacing [48].
In the following the algorithm performed for each image is shortly sketched. It

begins with loading the bitmap file. It is corrected for static intensity modulations
of the CCD, which are caused by interference on the CCD chip ("etaloning"). The
intensity modulation can be calibrated by averaging lots of images with large ran-
dom atom distributions, which averages out the atom distribution and leaves over the
spatial inhomogeneity of the effective sensitivity of the camera chip. Afterwards back-
ground level and signal level for single atoms are estimated. This helps to improve
the fidelity of the reconstruction for imperfect pictures with background light and
low fluorescence signals. Based on this information an algorithm is used to identify
isolated single atoms. These atoms are important to determine the phases of the lat-
tice and improve the estimated signal level per atom. Overlapping all of these single
atom accurately allows to determine the point spread function of the imaging system
with quite good signal-to-noise ratio (Fig. 2.5). For the following steps the coordinate
transformation from image coordinates to integer lattice coordinates and backwards
are precalculated. The known lattice structure allows for a first estimate of the lattice
occupation by just integrating a certain region around the centre of every lattice site
using a threshold technique. For higher resolution compared to the lattice spacing
this technique would be already sufficient to extract the lattice occupation with very
high fidelity. In our case this estimate is quite bad close to unity filling regions. To
improve this guess an iterative algorithm is used, which adds or removes occupation
or shifts occupation between neighbouring lattice sites. It locally tries to reduce the
difference of the real image with a convolution of the reconstructed occupation with
the point spread function. The amount of redistributed weight is reduced until con-
vergence. There are two good choices for the point spread function. One is to use a
Gaussian, the other possibility is an averaged point spread function determined from
isolated single atoms. It turns out that there is no significant difference in recon-
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struction fidelity for both techniques, but using the measured point spread function
leads to slightly improved convergence and lower residuals. The next step is to de-
termine whether a fitted occupation, which converged to a real number, is caused by
an atom on the lattice site or just by noise. To this end, we create a histogram of
all lattice occupations of the image. If the image quality was reasonable, this will
lead to a double-peak structure. One peak at zero for empty sites and another peak
corresponding to the singly occupied sites. Fitting Gaussians to both peaks leads to
an optimal threshold at the crossing point of both functions to decide between zero or
one atom. This threshold is used thereafter to round the occupation to integer values.
Sometimes the signal can be so high that it corresponds to two atoms, which is caused
in most cases by an atom in another site along the imaging direction. The resulting
matrix with integer entries is the main result of the reconstruction. There are some
add-ons integrated in the automatic evaluation for often used parameters. For ex-
ample a radius and position fit of the cloud, the evaluation of addressing coordinates
for addressing experiments or additional information about the fidelity of the recon-
struction. In the end the results are written to several result files, which are discussed
shortly in the following. The main file is in Matlab format ("*_reconstr.mat"), which
contains all the information about the reconstructed image, and is saved directly in the
folder of the image. For compatibility with older scripts there is also a file containing
only the matrix ("*_occ.mat") and one containing the pixel-coordinates of all atoms
("*_coord.mat"). Additionally there is an image overview of the reconstructed image
in PNG-format. The main advantage of this picture is that it can be opened with
standard image viewers and allows for a fast check of the reconstruction quality and
atom distribution in the lattice. For a good overview there is a summary file in ASCII
format for every sequence and a global one containing the main parameters for every
reconstructed image in a single line.
The following list summarizes the main tasks performed for each picture during the

reconstruction.

1 Load image from Andor sif file and apply etaloning correction

2 Determine background level and estimate signal level

3 Find single atoms and fit them for accurate position information

4 Lattice phase fitting using single atoms and determination of signal level, extract
point spread function

5 Precalculate coordinate transformation

6 First guess for the lattice occupation

7 Optimize lattice occupation with adaptive steps until convergence

8 Determine threshold signal level for 0/1-atom

9 Round occupation according to threshold to integer value

10 Other evaluation (fidelity estimate, addressing, . . . )

11 Write output
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Figure 2.3: Lattice parameter defini-
tions for reconstruction algorithm. The
lattice parameters are defined in the coordin-
ate system of the images taken by the fluor-
escence camera. To fix the geometry of the
lattice the two angles of the lattices θ1 and
θ2 are required. Additionally both lattices
shift in phase and the sign of the phases are
defined as shown. The grey box shows the
coordinate system of the spatial light modu-
lator (SLM) used for addressing (Sec. 7.4.1).
The writing "ABC" demonstrates how a text
shown upright on an image sent to the SLM
is projected onto the atoms as observed by
the camera.

2.4.1. Static lattice properties

The lattice angles and lattice constants were fitted the last time 22/11/2012. For
the lattice constant we obtain 4.273(3)px consistently for both lattice axes. There is
no measurable difference in both directions and over the whole field of view, which
demonstrates the high quality of the imaging system. As the lattice spacing is known to
be alat = 532 nm, this result yields also a calibration of the camera of 124.50(9) nm/px.
The lattice angles can be also determined with high precision. The values are currently
θ1 = −44.51(3)◦ for lattice 2 and θ2 = 45.71(1)◦ for lattice 1 with the definition of the
angles provided by Fig. 2.3.
For the reconstruction algorithm the coordinate transformations from image to lat-

tice coordinates and backwards are essential. In the following a = 4.273(3) is the
lattice constant in pixels.

Lattice to image coordinates The calculation of this transformation is directly de-
rived from the angle definition shown in Fig. 2.3. In the lattice coordinates we label
the sites with a pair of integers (i,j) and in the image coordinates the pixels (x,y) with
x,y ∈ [1; 532]. With these definitions the transformation is

x = ia cos θ1 + ja cos θ2 + x0

y = −ia sin θ1 − ja sin θ2 + y0 .
(2.3)

Here x0 and y0 are offsets, which can be chosen as the pixel coordinates of an arbitrary
atom in the lattice.

Image to lattice coordinates The transformation in the other direction can be de-
rived by just solving Eq. (2.4.1) for (i,j). As there are several pixels close to the centre
of the site the resulting index is determined by rounding towards the nearest integer
to get the closest site to the input pixel.
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Figure 2.4.: Histogram of single atom counts. The peak counts per lattice site
were determined by fitting the PSF per lattice site. Data for a single example picture
of a Mott insulator. The background peak (red) and the single atom peak (green)
are fitted with Gaussians. The threshold value between no atom and a single atom is
marked by the vertical grey line at the crossing point of both Gaussians. Peak counts
. 100 are directly discarded and do not appear in the histogram. This evaluation is
automatically performed by the reconstruction program for every single image without
user interaction.

i = round
(
−(x− x0) sin θ2 + (y − y0) cos θ2

a sin(θ1 − θ2)

)
j = round

(
(x− x0) sin θ1 + (y − y0) cos θ1

a sin(θ1 − θ2)

) (2.4)

2.4.2. Statistics on reconstructed files

In this section all images taken in 2013 (approximately 85000 reconstructed pictures)
are analysed to give some statistical information about the reconstruction.
About 97% of the pictures were reconstructed in less than 30 s, which is the typical

time per experimental cycle in our setup. This means that the reconstruction of the
pictures is essentially as fast as the data taking.
During the reconstruction single atom coordinates are determined. Averaging the

point spread function (PSF) of many of these single atoms leads to a high-quality
picture of the point spread function of the objective. The technique used is a super-
sampling of the single atom sub-pictures by a factor of 5 and then aligning the pictures
on this finer grid with respect to their fitted centre and then averaging (Fig. 2.5). The
point spread function shows a slight asymmetry of the first ring of the Airy-type
pattern (Fig. 2.5c). This asymmetry hints to a slight tilt of the objective, but this
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Figure 2.5.: Illustration of the point spread function. a-c, Pictures of the point
spread functions (PSF). Full width of the pictures is 20 px of the camera or 2.49 µm,
a, PSF of a single atom, b, PSF of about 1000 aligned and averaged single atoms,
c, same data as b, but focusing on the ring structure by adapted colour scale. d,
Azimuthal average of the experimental PSF from b (blue) and theoretically expected
ideal PSF for NA = 0.68 (green) [48], the difference multiplied by 10 is shown in grey.
Fitting the numerical aperture to the experimentally measured point spread function
yields NA = 0.63, which is a quite close to the expected NA although it contains all
dirt effects and the uncertainty in the atom position in a lattice site.

effect is hardly visible in a single picture. Otherwise the point spread function has no
further distortions. Neglecting the small ring the PSF can be modelled without further
information by a single Gaussian: P (x,y) = A exp

(
− (x−x0)2+(y−y0)2

2σ2

)
. The size of

the PSF can be extracted from pictures with lots of isolated atoms and one obtains
σ = 2.15(5) px = 267(6) nm, which leads to a minimum resolvable distance following
the Rayleigh criterion of dmin = 3.8317√

2
σ = 723 nm, where the numerical prefactor

comes from the relation of the first minimum in the Airy pattern to the Gauss curve
sigma. The amplitude in counts of the camera for a single atom is fluctuating a bit
and also depends strongly on the adjustment of the molasses. For every reconstructed
picture a histogram of the signal levels for every single atom is calculated. Typically
the peak of the single atom signal is clearly visible. This peak is fitted by a Gaussian
of type exp (−(x− µ)2/(2σ2)), which yields the mean signal per atom µ in a certain
picture. The mean of the peak relative to its width σ determines the signal-to-noise
ratio in our setup and can be determined to µ

σ = 4.4(1.2) (error is the s.d.). This ratio
is stable, while the absolute signal per atom is fluctuating.

Drift of lattice phases

The drift of the horizontal lattice phases depends mainly on thermal effects on the
experiment table. With a good climate control and a well-controlled sequence and
a matched idle sequence to maintain equilibrium, the lattice phase drift can be sup-
pressed to below 1 site/hour without active phase stabilization (Fig. 2.6a). For se-
quences with a very low number of sufficiently isolated atoms or even empty pictures
in between, the tracking of the phase becomes a bit more noisy, but an accuracy of
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Figure 2.6.: Analysing the lattice phase drifts. a, Lattice phase drift from
14/06/2013 over time. Blue dots, lattice 1 phases. Red dots, lattice 2 phases. Every
dot corresponds to one lattice phase determination of a single picture. The timing
is only correct on the level of a sequence (typically 5min). The small scatter of the
points demonstrates a phase determination error on the order of 0.1 alat (this is sub-
pixel precision, as 1 px on the image corresponds to 0.23 alat). There are only very
few outliers, e.g. top left, which are often due to a pair of neighbouring atoms being
interpreted as a single atom during the phase fit routine. b, Histogram of the phase
difference for lattice 1 of two consecutive images which were taken typically within
30 s. There is no significant difference for both lattice axes.

0.1 alat is still within reach. From an one day data set the distribution of the phase dif-
ference of consecutive pictures was evaluated, post-selecting on pictures with at least
three atoms used in the phase fitting process (Fig. 2.6b). In 96% the phase difference
between successive pictures is below 0.1 alat, and in 99% the phase difference is below
0.2 alat.

2.5. Outlook

Although the imaging of single atoms works nicely in the lattice there are some lim-
itations. Overcoming these would enhance the detection capabilities a lot. Currently
only one spin component can be imaged at the same time, as the molasses imaging
mixes all hyperfine ground states. In principle it is possible to work in a unity filling
Mott insulator [50, 51], which then allows to infer the occupation in the other spin
component by imaging one component due to the unity filling constraint. In theory
even more information can be extracted and even entanglement can be probed in this
way [52]. In practice such techniques have limited applicability, as a very good unity
filling preparation is required and no experiment with finite tunnelling in the lattice
can be performed with high fidelity in this way. A true two-component spin imaging
would enable the measurement of spin-spin correlations for a wider range of applic-
ations. Another open question is the detection of doubly occupied sites, especially
in combination with two-component spin imaging. The detection of doubly occupied
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site would be for example necessary to determine on-site correlations (Appendix H.2).
These problems can be partly solved by mapping a single slice cloud to two slices in the
z-lattice. This would require the imaging of two or more planes behind each other in
addition to a splitting operation. To this end, one needs to distinguish for example two
atoms in two neighbouring planes behind each other from a single atom. One problem
here is that the amplitude per single atom is rather noisy (Fig. 2.4). The dependence
of this width on the imaging parameters is not clear yet. In practice the signal turns
out to be not exactly twice the signal of a single atom and the signal-to-noise ratio
does not allow for a clear decision in this case.
Another challenge arises when trying to determine the lattice phase from very cold

clouds. Due to the lower temperatures reached lately, the number of isolated atoms,
which were used for the fit of the lattice phases, is rather low and often zero. A new
algorithm for extracting the lattice phase from pictures with several closely packed
atoms has been developed, but is not yet implemented for production.
Another very different limitations of the experiment turns out to be the cycle time,

which sets, although already relatively fast compared to many other experiments with
25 − 30 s, an upper limit of the amount of data that can be taken. This becomes in
particular a problem for experiments which require a lot of statistics, like correlation
measurements, especially in 2D. This is also true for Rydberg experiments as for many
of these the average number of detected Rydberg atoms per experimental cycle is below
one, as will become clear in the next chapter.





3. Introduction to Rydberg atoms

Rydberg atoms are highly excited atoms where one of the electrons is in an eigenstate
with large principal quantum number. The lifetime of these weakly bound states is
typically astonishingly long, as the lifetime is increased due to the very small overlap
with the ground state [53].

Rydberg states are available in every atom and molecule and lately even found in
excitons [54], so schemes which are based on Rydberg states are generic and applicable
in many systems. Additionally there is not only one Rydberg state, but always a bunch
of series of Rydberg states. Here we will focus on Rydberg states with exactly one
highly excited electron, which is the relevant case for alkali-metal Rydberg atoms.
In those atoms the Rydberg states are very close to hydrogen states, only some of
these states are shifted due to the overlap with the ionic core. One can account for
this shift by introducing an effective principal quantum number n∗, differing from the
actual principal quantum number by the quantum defect [55]. This trick is enough to
understand the spectrum of Rydberg states and the universal scaling of the Rydberg
state properties with effective principal quantum number near the ionization threshold
(Tab. 3.1).

The interesting range of Rydberg states typically extends from 30−200, because the
low states have short lifetime and the very high states become more and more difficult
to resolve and control in the laboratory, as they are extremely sensitive to electric
fields.

This sensitivity is caused by the fact that the electron is on average typically a factor
of 100 to 1000 further away from the core compared to a ground state atom, which
leads to a strongly enhanced polarizability by many orders of magnitude. This also
implies an increase of induced dipole moments and strong forces between the Rydberg
atoms due to the resulting van der Waals interaction, which is typically more then
ten orders of magnitude stronger than for ground state atoms. These forces can be
switched on and off coherently on timescales of less than a microsecond via optical
excitation and deexcitation of atoms to Rydberg states. Therefore Rydberg atoms
are interesting for quantum information processing and the realization of strongly
correlated many-body systems.

In the following sections we first look at the properties of isolated Rydberg atoms,
their interactions and then the influence of the interactions on laser excitation to
Rydberg states. In the last part we discuss the effects when coupling dense and
strongly interacting samples to Rydberg levels.
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3.1. Universal scaling of Rydberg atom properties

The main properties of Rydberg atoms can be understood quantitatively within quantum
defect theory [55]. The idea of the theory is to introduce quantum defects δ(n,l,j) for
every fine-structure state which correct the principal quantum number to an effective
principal quantum number n∗ = n− δ(n,l,j), which then fulfils the Rydberg formula
for the absolute transition energy Enlj to the Rydberg level [56–58].

Enlj = Eion −
R∗

(n− δ(n,l,j))2
= Eion −

R∗

(n∗)2
(3.1)

Here Eion is the ionization threshold, R∗ is the mass-dependent effective Rydberg
constant, R∗ = 1

1+me
m
R∞ for an atom with nuclear mass m, with R∞ the Rydberg

constant [53]. The quantum defect δ(n,l,j) depends mainly on principal quantum
number n and the azimuthal quantum number l and becomes close to zero for l > 2
due to the low core overlap of these states. There is also a slight dependency on the
orbital angular momentum quantum number j, which is often negligible.
In general all properties of Rydberg atoms show a characteristic scaling with n∗,

forming a nice tool to find the optimal range of n∗ for a certain experiment (Table 3.1).
Some of the scalings are extremely strong like the polarizability, while others are rather
weak like the dipole matrix elements for Rydberg excitation from the ground state. In
the following we will discuss some of the scalings. The radius of the Rydberg atoms
scales (n∗)2, as can be analytically calculated for hydrogen. This leads to extremely
large wavefunctions for the electron for high n∗ and a diameter of typical Rydberg
atoms from several hundred nanometres to few micrometres. The binding energy of
the Rydberg electron as given by the Rydberg formula decreases and becomes van-
ishingly small compared to typical binding energy of electrons in atoms. The level
separation of neighbouring Rydberg levels decreases with n∗ leading to difficulties to
resolve individual lines for very high n∗, but this happens in experiments with well-
compensated electro-magnetic fields only at n > 200 [59, 60]. The lifetime of the
Rydberg states increases, which leads to a reduction of the natural linewidth for the
high Rydberg states This is a bit counter-intuitive, but can be understood by invest-
igation of the decay channels. The radiative decay scales like the probability of the
Rydberg electron to be close to the nucleus, as the overlap to low-lying states, which
dominate the radiative decay, is highest there. The radiative lifetime scaling can there-
fore be estimated by 1/ |ψ(0)|2, leading to the scaling (n∗)3, which can be confirmed
by calculations. There is also depopulation by so-called blackbody radiation induced
transitions to neighbouring Rydberg levels. This is caused by the low transition fre-
quencies between Rydberg states, which have overlap with a blackbody spectrum at
typical temperatures, as well as the large dipole matrix elements between neighbour-
ing Rydberg levels. The scaling of the radial matrix element to neighbouring Rydberg
states can be derived by assuming that the radial wavefunction is approximately the
same for both states, which then leads to an overlap matrix element similar to the
one for the orbit radius. Therefore they scale equivalently with (n∗)2. Important for
experiments with optical excitation of Rydberg atoms is the scaling of the matrix ele-
ments from low-lying levels to Rydberg states. For otherwise constant parameters the
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Rabi frequency scales as the matrix element with (n∗)−3/2. Most modern Rydberg
experiments are performed to exploit the strong interactions between Rydberg atoms.
The interactions are in first approximation of van der Waals type and decay with one
over the sixth power of the distance between the atoms (Sec. 3.2). The C6 coefficient
scales extremely with a power of eleven with n∗ and can cause strong forces, if high-n
Rydberg atoms are excited at short distances. The relevant length scale determined by
van der Waals interaction and excitation bandwidth is the so-called blockade radius,
which is the minimum distance between Rydberg atoms when exciting them with a
laser of certain Rabi frequency on resonance (Sec. 3.2.2). Interestingly, the scaling of
the blockade radius is much weaker as the interaction strength falls off strongly with
distance. In the end it scales approximately as (n∗)2, similar to the orbit radius of the
Rydberg atom.

In the following the basic ideas of Rydberg-Rydberg interactions and coherent col-
lective excitation of Rydberg atoms in many-body system are discussed.

property derivation scaling (n∗)x reference

orbit radius 〈r〉 = a0
2 (3(n∗)2 − l(l + 1)) 2 [61, p. 419]

[62, p. 121]
binding energy En∗ = − R∗

(n∗)2 −2 [56–58]
level separation E(n+1)∗ − En∗ −3

electron probability at core |ψ(0)|2 ∝ 1/(n∗)3 −3 Sec. B.3
hyperfine structure splitting ∝ |ψ(0)|2 −3 [59]
radiative lifetime τ0 ∝ 1/ |ψ(0)|2 3 [63]
bbr lifetime τbbr = 3~(n∗)2

4α3kBT
2 [64]

effective lifetime τeff = (1/τ0 + 1/τbbr)
−1 2 [64]

radial matrix element 〈5P| er |nl〉 ∝ ψ(0) −3/2 [3]
radial matrix element neigh-
bouring level

µ = 〈nl| er |nl + 1〉 2

polarizability α = p/E ∝ µ2

En+1−En 2 + 2 + 3 = 7

van der Waals coefficient C6 ∝ (µ1µ2)2

En+1−En 2(2 + 2) + 3
= 11

[65]

Rabi frequency Ω = 〈5P | dE | nS〉 −3/2

blockade radius 6

√
C6
~Ω (11 + 3

2)/6
= 2 1

12

Table 3.1.: Scaling of properties of Rydberg atoms. For large principal quantum
number n Rydberg state properties follow universal scaling laws. See also [3, 66, 67].
The blackbody radiation lifetime is abbreviated as bbr lifetime.
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R

r2r1

atom 1 atom 2

Figure 3.1.: Definitions for Rydberg-Rydberg interaction Hamiltonian. R
is the distance vector between the nuclei of both atoms and r1,2 the relative position
of the electron with respect to the core of atom 1,2.

3.2. Rydberg-Rydberg interactions and pair states

One of the main properties of Rydberg atoms is the interaction between them, which
is orders of magnitude stronger than ground state atom interactions [1]. While the
short-range interaction between ground state atoms can be typically approximated
by a zero-range (delta-function) potential, this is not possible any more for dipolar
interactions or interactions, which extend nearly over the whole system size. Here
we will discuss the basic ideas how the van der Waals interaction emerges from the
induced dipole-dipole interaction between neutral but strongly polarizable Rydberg
atoms (based on [68, 69]).
For Rydberg atoms with a single valence electron one can consider the following

interaction model. Two interacting Rydberg atoms can be described by two singly
positive charged ions and two surrounding electrons. The internal structure of the ionic
cores is assumed to be not influenced by the other atom. The spatial configuration
can be described by the relative position of the ions R, and the relative position of the
electron with respect to the corresponding ion r1,2 (Fig. 3.1) [68]. The Hamiltonian
is then given by Ĥdd = Ĥ1 + Ĥ2 + V (R) − V (R − r1) − V (R + r2) + V (R − r1 +

r2), where V (r) = e2

4πε0
1
|r| is the Coulomb potential. The terms in the Hamiltonian

are the Hamiltonians for the two isolated atoms, and then additional terms for the
interaction of both nuclei, the electron of atom 1 with the nucleus of atom 2 and
the other way around and also the interaction between the two outer electrons of
both atoms. Assuming R � r1,2 one can apply a multipole expansion in r1,2 ≈ 0
and keep only the first relevant term, which is the dipole-dipole interaction, as the
monopole term vanishes because each electron-ion system is neutral (see e.g. [69,
p. 25]). The Hamiltonian for the two-atom system is then approximately given by
Ĥdd = Ĥ1 + Ĥ2 + V̂dd(R,r1,r2), where the dipole-dipole interaction operator is given
by

V̂dd =
e2

4πε0

(
r̂1r̂2

R3
− 3(r̂1 · R̂)(r̂2 · R̂)

R5

)
=

e2

4πε0

r̂1r̂2 − 3(r̂1 · n̂)(r̂2 · n̂)

R3
, (3.2)

where n̂ = R̂/R and R =
∣∣∣R̂∣∣∣. The dipole-dipole interaction scales as 1/R3 with the
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atom 1 atom 2

1.

1. 2.

2.

1

2

0

E2 > 0

E0 = 0

E1 < 0

(E2-E1)/2

(E2-E1)/2

∆ = (E2+E1)/2 

Vdd

Figure 3.2.: Schematic of Förster exchange process. Rydberg-Rydberg inter-
action as second order perturbation of the dipole-dipole interaction. Atom 1 jumps
in a virtual process to state |1〉 while atom 2 goes to |2〉. Afterwards they both go
back to the initial state |0〉. The intermediate state is detuned by the Förster defect
∆F = (E1 + E2)/2.

distance of the two atoms. For the following arguments the angular dependence is
neglected to simplify the discussion.

3.2.1. Förster processes in a three-level atom example

In this section we discuss how the van der Waals interaction emerges in a three-
level atom model system. For this example we assume two atoms with three energy
levels each, which are coupled by a simplified dipole-dipole interaction V̂ds = e2

4πε0
r̂1r̂2
R3

(following [69, p.31]). The interaction arises due to virtual Förster processes, which
means that both atoms jump to other levels which have in total a similar energy
as the initial state, and then back to the original configuration. As both atoms are
coupled by interaction, we need to go to a pair state basis including all nine states |ij〉,
i,j ∈ [0,1,2]. With the assumption ∆F = (E1 + E2)/2 � 2E1, 2E2, or equivalently
E1 ≈ −E2, the states |11〉,|01〉,|10〉,|02〉,|20〉 and |22〉 are far off in energy (≥ |E1| , |E2|)
and can be neglected. The relevant states are now |00〉,|12〉,|21〉. |12〉 and |21〉 have
the same energy and it turns out that the "dark" state |d〉 = 1/

√
2(|12〉 − |21〉) does

not couple to |00〉 with the dipole operator, i.e.
〈
d
∣∣∣ V̂ds ∣∣∣ 00

〉
= 0, while the "bright"

state |b〉 = 1/
√

2(|12〉 + |21〉) couples with a factor
√

2 enhanced:
〈
b
∣∣∣ V̂ds ∣∣∣ 00

〉
=

e2

4πε0

√
2 〈1 | r̂1 | 0〉 〈2 | r̂2 | 0〉 /R3 = e2

4πε0

√
2d1d2/R

3 = C3/R
3. Both results are easily

obtained by direct calculation. Here we defined the dipole coupling matrix elements
di = 〈i | r̂j | 0〉 and the C3 coefficient C3 = e2

4πε0

√
2d1d2.

With these preparations the Hamiltonian in the basis {|00〉 , |b〉} can be written in
matrix form

Ĥ(R) =

(
0 C3

R3

C3
R3 ∆F

)
, (3.3)
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with the so-called Förster defect ∆F = (E1 + E2)/2. The relevant eigenenergy which
is adiabatically connected to energy of |00〉 in the limit R→∞ can be calculated to

E(R) = −∆F

2

(
−1 +

√
1 +

4C2
3

∆2
FR

6

)
. (3.4)

The energy of the incoming pair state |00〉 can be approximated in the two limiting
cases R → ∞ and R → 0. In the first case one obtains via a series expansion a van
der Waals 1/R6 potential and in the second case a dipolar 1/R3 potential.
The sign of the van der Waals potential is exclusively determined by the sign of the

Förster defect ∆F . For ∆F > 0 it is attractive and for ∆F < 0 repulsive. This also
leads to the observation that the van der Waals interaction is always attractive for
ground states, as the Förster defect will be always positive in this case as all other
energy levels have positive energy compared to the ground state and by that also
∆F > 0. A repulsive van der Waals interaction is therefore a property that can be
only found for excited states.
As discussed above there is a cross-over with distance between the Rydberg atoms

between a dipolar potential and a van der Waals potential. Their exact strength is
given below.

(a) R→∞:

E(R) ≈ − C2
3

∆F︸︷︷︸
=:C6

1

R6

(b) R→ 0:

E(R) ≈ − sign(∆F )
C3

R3

One can define a critical radius as the position where the two approximations yield

the same interaction energy Rc =
(
C3
∆F

)1/3
, which gives a coarse estimate up to which

distance the 1/R3 potential is relevant. At this position the interaction energy is ∆F .
A Förster resonance occurs, if the detuning ∆F becomes zero. Close to such a reson-
ance the critical radius diverges, which means that the R−3 term becomes dominant
and the interactions change from van der Waals to dipolar. At large distances beyond
Rc also the van der Waals interaction diverges close to the resonance, which allows to
tune van der Waals interactions by changing ∆F . This is possible in the experiment
by shifting the relevant energy levels differentially and is typically done via electric
fields, as only moderate electric fields are required due to the high polarizability of the
Rydberg levels.

3.2.2. Rydberg blockade

When optically exciting atoms to Rydberg states, the interactions influence the amount
of atoms that can be excited. If there are two close-by atoms in the ground-state and
one gets excited to the Rydberg state, the Rydberg level of the second atom will be
shifted due to the interaction with the first one [1, 2]. If this level shift is now larger
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Figure 3.3: Illustration of
Rydberg blockade. The pic-
ture shows the energy of the pair
states |gg〉, |rg〉 and |rr〉 as function
of the distance between the two
atoms. The doubly excited state |rr〉
shifts at the blockade radius out of
resonance of the Rydberg excitation
light.

than the bandwidth of the excitation, the excitation will be off-resonant and will not
occur. This leads to the effect that, in a certain range around a Rydberg atom, it is not
possible to excite another Rydberg atom without changing the excitation frequency.
Typically a stabilized narrow band laser is required for such an experiment.
The phenomenon of Rydberg blockade can be also understood in the pair-state

picture (Fig. 3.3). Here the energy shift for several states is shown versus distance
of the two atoms. For the state |gg〉, where both atoms are in the ground state, the
energy does not depend on distance. For the state |rg〉 there is a small dependence
if the ground state atom is within the wavefunction of the Rydberg atom, which is
negligible on the energy scale discussed here. The picture is very different for the
doubly excited state |rr〉. The energy of this state strongly depends on the distance
between the two states (here shown for repulsive interaction). Now it becomes obvious
that an excitation laser coupling the states |gg〉 and |rg〉 will be only resonant also for
the |rg〉 → |rr〉 transition, if the distance between both atoms is larger than a certain
distance. The blockaded volume around a Rydberg atom is given by the condition

C6

r6
> ~max(Γ,Ω) . (3.5)

For coherent excitation the Rabi frequency needs to be larger than any decay rate, such
that the Rabi frequency is typically adjusted to dominate the excitation bandwidth.
The distance where the excitation bandwidth equals the interaction shift and is called
the blockade radius Rb, which thereby only depends on C6 and Ω

Rb =
6

√
C6

~Ω
. (3.6)

The blockade radius is only well-defined in this simple form for an isotropic van
der Waals interaction, which is in general not the case (Sec. 4.7). The interaction
potential depends on the choice of the Rydberg state, electric and magnetic fields and
the relative orientation of the Rydberg atoms. For rubidium S-states the interaction
is in general isotropic and repulsive of van der Waals type.
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3.3. Coherent collective excitation

Up to now we discussed only effects which can be understood with only two interacting
Rydberg atoms. Here we look at a situation where a sample smaller than the blockade
radius is optically excited to a Rydberg state.
The relatively long lifetime of Rydberg atoms compared to lower lying electron-

ically excited states allows for the observation of coherent dynamics, in particular
Rabi oscillations, on the µs-timescale. The main decoherence sources for the Rydberg
states are the Rydberg decay, blackbody radiation, Rydberg-Rydberg interactions (for
more than one excited Rydberg atom), motion of the Rydberg atom during excita-
tion and fluctuating electric fields. In most experiments Rydberg atoms are excited
with two-photon schemes with off-resonant intermediate state. This leads to addi-
tional dephasing mechanisms like light shift noise caused by intensity fluctuations of
the two individual laser beams or incoherent scattering at the intermediate state (Ap-
pendix C.1). In practice these decoherence sources can be suppressed to allow for the
observation of many Rabi cycles [70–72].
The combination of the coherent excitation on the single-particle level with the in-

teractions discussed above, allows for the observation of interesting quantum effects.
In the simplest case the whole initial atomic sample is fully blockaded, which means
that all atoms are localized in a sphere with diameter much smaller than the blockade
radius. If we now excite Rydberg atoms resonantly in this system, we will get at
most one Rydberg excitation, as a Rydberg atom on the one edge of the system will
still block the excitation at the other end. How does the quantum state look like,
if we excite the system globally in a coherent way? As the state with two Rydberg
excitations is far off in energy, only basis states are accessible by the excitation which
contain exactly one Rydberg excitation at varying positions. As no position of the
excitation is energetically favoured, a highly symmetric state of the N atoms is ex-
pected. A more detailed investigation shows that only the fully symmetric state, also
calledW -state, is optically coupled to the ground state [73]. The coupling to this state
is enhanced by a factor of

√
N compared to the single atom Rydberg Rabi frequency

Ω =
〈
gi

∣∣∣ ĤI

∣∣∣ ri〉 /~, which is easily calculated.

~Ωcollective =
〈
G
∣∣∣ ĤI

∣∣∣W〉
= 〈g1g2...gN | ĤI

1√
N

N∑
i=1

|g1g2...ri...gN 〉

=
1√
N

N∑
i=1

〈
gi

∣∣∣ ĤI

∣∣∣ ri〉N−1∏
j=1

〈
gj

∣∣∣ ĤI

∣∣∣ gj〉
=
√
N~Ω

(3.7)

Here |g1g2...ri...gN 〉 is the basis state in the many-body system where only the atom
i is in the Rydberg state and all others in the ground state. The enhanced oscillation
frequency has been observed in experiments [72, 74–76]. The situation becomes more
complicated if the system is not fully blockaded any more as also basis states with
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more than one excitation become energetically accessible. One effect of the collective
enhancement is the reduction of the blockade radius to Rb

collective = 6

√
C6

~
√
NbΩ

=

(Nb)
−1/12Rb [77]. Here Nb is the number of atoms within the blockade radius. The

scaling looks rather weak, but a change of atom number per blockade radius of a
factor of 100 can reduce the blockade radius by around 30%. For partially blockaded
samples models can be found for a better intuitive understanding and approximate
calculations. The scaling of various quantities can be derived by a superatom model
[78, 79]. Another approach is to treat the system in a basis of Dicke states [80].

3.4. Experimental overview over the field of Rydberg
atoms

The field of Rydberg physics has a long history extending far beyond the time of
cold atom experiments [1–4, 53, 66, 81]. While the experiments in the beginning
were mainly focussed on investigation of Rydberg atom properties by spectroscopic
methods, the applications of Rydberg atoms in combination with cold atoms exploded
and led to a rapid expansion of the field of Rydberg physics in the last years.

Early experiments The field started with the observation of Rydberg that the lines in
atoms follow a scaling with the principal quantum number [56–58]. The large Rydberg
wavefunction overlapping with ground state atoms leads to line broadening and shifts,
which have been observed in spectroscopy [82, 83]. With dye lasers systematic spec-
troscopy of Rydberg states became possible [84].

Spectroscopy in glass cells Rydberg spectroscopy in glass cells was one of the
first techniques to measure properties of Rydberg atoms. But recently it turned out
that even (nearly) Doppler-free spectroscopy of Rydberg atoms is possible in room-
temperature glass cells and can be exploited without need for cooling the atoms.
A field that started with spectroscopy in glass cells is Rydberg electromagnetically

induced transparency (EIT). The employed two-photon scheme is an almost Doppler
free technique for high-resolution Rydberg spectroscopy at room temperature [85]. It
has been used to measure the absolute line position of Rydberg states [86] and the
hyperfine splitting [87]. Rydberg EIT-spectroscopy became widely used and also has
direct applications in electrometry [88]. Recently the technique was also applied in cold
atom clouds and has become a good candidate for photon-photon gates (Sec. 3.4.1).
The coherence time of Rydberg atoms in gases at or above room temperature is rather
short, but it is possible to reach high enough Rabi frequency with pulsed lasers to
even show coherent manipulation [89, 90].

Rydberg atoms for microwave photon manipulation and detection Rydberg atoms
also enabled the implementation of the challenging idea to employ circular Rydberg
states to implement non-demolition measurements of photons [91, 92]. The technique
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allowed preparation and non-destructive detection of photon states in microwave res-
onators and was awarded the 2012 Nobel price [93]. The high polarizability of Rydberg
atoms that allows to detect single photons can also be exploited to build highly sens-
itive detector for microwave radiation [94].

Evidence for Rydberg blockade Due to the low thermal movement and low Doppler
shift when using cold atoms, it becomes possible to investigate Rydberg blockade. The
experimental interest was triggered by proposals how to exploit the Rydberg blockade
for two-qubit quantum gates [73, 95], one of the main challenges for neutral atom
quantum information processing. First evidence for blockade physics was found by
line broadening and saturation of the number of excitations depending on interaction
strength [96, 97]. The same physics can be also probed by double-resonance spectro-
scopy [98, 99]. The very clean experiments with exactly two single atoms interacting
while being excited to the Rydberg state [74, 100] showed coherent manipulation of
qubits on the Rydberg transition and Rydberg blockade. A two-qubit quantum gate
as well as entanglement were demonstrated in the subsequent experiments [101, 102].
Recently also the strength of the van der Waals interaction was measured quantitat-
ively in dependence of the distance of two atoms [103, 104] as well as the anisotropic
interaction of D-states [105].

Sub-Poissonian statistics in the excitation Another evidence for Rydberg blockade
can be found by looking at the probability distribution of the number of Rydberg atoms
N̂e excited in a cloud. Historically the distribution function is often characterized by

the so-called Mandel Q factor [106, 107] defined as Q = 〈N̂e
2〉−〈N̂e〉2

〈N̂e〉
−1, which becomes

−1 for a Fock state and 0 for a Poissonian distribution. Due to the blockade radius the
number of excitations saturates to a value determined by the volume of the cloud and
the blockade radius, leading to a sub-Poissonian counting statistics [108–112]. More
systematic studies show the strong dependence of the counting statistics on detuning
and Rabi frequency [113, 114] and support the idea of locally ordered patterns in the
gas [115].

Microwave spectroscopy As the coupling between Rydberg states is very strong
due to their larger dipole moment, Rydberg-Rydberg level transitions are a promising
field of study. The transitions lie typically in the few to hundred GHz range and are
accessible for example by frequency multiplied microwave sources. There is a long
history of microwave spectroscopy on Rydberg atoms, as this type of spectroscopy
can be performed in thermal gases and does not require narrow-band Rydberg ex-
citation lasers, because the spectroscopy resolution is determined by the stability of
the microwave [59, 116–126]. At some point the observed linewidth is still limited
by excitation-scheme independent sources like electric and magnetic stray fields. Mi-
crowave fields can also be used to manipulate Rydberg polaritons [127] and could allow
for the implementation of a photon quantum gate based on Rydberg polaritons [128].
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Rydberg-state mixing by microwaves The possibility to strongly couple Rydberg
states via microwaves in absence of strong recoil effects, enables the implementation
of schemes which mix Rydberg states via electromagnetic coupling and tune their
properties [129–134]. This technique can be used, for example, to eliminate the Stark
effect of a certain level by mixing in properties of nearby states [134].

Förster resonances The already strong interactions between Rydberg atoms become
even larger nearby Förster resonances [135, 136]. They occur when the energy of a
pair of Rydberg states equals the energy of another pair that is coupled to the first
one, leading to a possible oscillation between the two coupled pairs. The existence
of such resonances at or close to electric zero-field depends on the element-dependent
quantum defects. The number of Rydberg states with Förster resonances at zero field
is rather low, but often they can be tuned into resonance via electric fields. Förster
resonances have been observed [137–139] and also coherence of the interaction has
been shown [140, 141]. Förster resonances lead to exchange processes between the two
Rydberg states in the two near-resonant pair states [142, 143]. Recently also coherent
oscillations caused by the Förster exchange processes have been observed with two
atoms [144]. These exchange processes can also lead to a spreading of the Rydberg
excitations in presence of other coupled Rydberg atoms [145]. As an extension to
the normal Förster process, which leads to a two-body interaction, also four-body
interactions have been observed [146].

Trapping of Rydberg atoms In most Rydberg experiments with cold atoms the
Rydberg atoms are not trapped. In many cases the movement of the Rydberg atoms
during the experiment is negligible and they are anyway ionized and detected after-
wards, such that trapping is not relevant. But in the quantum information experiments
[1] or experiments with optical detection of Rydberg atoms trapping would be advant-
ageous. Due to their vastly different properties than ground state atoms, it is hard
to trap Rydberg atoms in the same traps as ground state atoms. There have been
many proposals for Rydberg trapping [147–152]. Of special interest is magic optical
trapping, which means that the trapping potential is the same for ground state and
Rydberg state. This allows for Rydberg excitations in the trap without excess heating
or loss [150, 153]. Magnetic [154], electrostatic [155], optical [156, 157] and magic
optical [158] trapping have been successfully demonstrated. While magnetic and elec-
trostatic trapping require rather specialized setups, the optical trapping is generally
applicable in cold atom experiments. The absolute value of the so called ponderomot-
ive shift of Rydberg levels in presence of light fields was confirmed in experiments [159,
160].

Quantum information with Rydberg atoms Rydberg atoms offer strong and switch-
able interactions, which makes them good candidates to implement two-qubit quantum
gates [1, 73, 95, 161–163]. A digital quantum computer based on Rydberg atoms could
use single atoms in isolated micro traps [1, 164]. Single-qubit rotations can be im-
plemented by addressing the atoms with Raman lasers with a resolution better than
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the blockade radius [165]. The implementation of gates exploits the strong interaction
between Rydberg atoms, which is from a theoretical point of view ideally suited for this
purpose. The well-known CNOT-gate has been implemented with locally addressed
Rydberg lasers [101], the preparation of bell pairs also works with global excitation to
the Rydberg state [102]. Currently the main challenges are the improvement of fidelity
and the scalability of these systems. In the first experiments the fidelity is limited by
movement of the Rydberg atoms, which can be reduced by trapping of the Rydberg
atoms [158]. Other improvements are to reach high Rabi frequencies for faster gates,
or cool the atoms close to the ground state of the traps [166, 167]. Also a compensation
of light shifts caused by the trap is desirable. The scaling of the number of micro traps
is straightforward, but it becomes hard to reach uniform trapping conditions over the
array of traps and load exactly one atom into each trap. Arrays of micro traps for
neutral atoms have been implemented [168], also with equal trapping for ground and
Rydberg state [150, 158]. The sub-Poissonian loading of the traps in such arrays is
possible and a probability for a single atom of 50 − 80% has been reached [47, 168,
169], but deterministic loading has remained illusive up to now.

Many-body effects The strong interactions between Rydberg atoms lead to spatial
correlations in these many-body systems. In many experiments no spatial resolution
is available, but already the line shape of a resonance can give strong indications
of collective excitation effects [170–173]. Many-body effects were also found in the
Rydberg excitation of a BEC [174]. A striking signal for collective excitation are the√
N enhanced Rabi oscillations in fully blockaded clouds. They have been measured

via the extracted photons [75], but also directly by detection of the atoms [76]. For
two atoms the post-selection on exactly two atoms was performed [72, 74, 76], which
enables very good knowledge about the initial state. The observation of coherence
in not fully blockaded samples is difficult due to the strong dephasing, but has been
achieved [70, 175–179]. Another interesting direction is the spontaneous ordering
emerging in these system [115, 180–182] (see also Chapters 6, 7).

3.4.1. New directions

In the following an overview is given over recent developments in the field of Rydberg
physics, demonstrating the broad range of physics that can be accessed using Rydberg
atoms.

Alkaline earth atoms In alkaline earth-like atoms the Rydberg transitions for both
outer electrons are accessible to laser-excitation, which enables the investigation of
other interesting effects like auto-ionizing states. Another technique that becomes
available is the optical imaging of Rydberg atoms, where only one of the electrons is
in a Rydberg state, on the second transition [183, 184]. Another advantage are the
available narrow lines and meta-stable states, which allow for experiments involving
Rydberg atoms which are not possible with alkali atoms. A meta-stable state can be
used as a second optically resolved state to store information. This is not possible in
alkali atoms where all electronically excited states decay very fast and only Rydberg
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atoms allow for only short storage times. The advantage of narrow lines as intermediate
states for two-photon excitation schemes is the reduced intermediate state scattering
rate.

Rydberg molecules The interaction between the Rydberg electron and neutral ground
state atoms can lead to bound states of the ground state atoms in the Rydberg
wavefunction. These Rydberg molecules have very large binding length and exotic
properties [185]. They are typically detected as additional resonances close to the
non-interacting Rydberg resonance [186–190]. Further experiments even allowed to
measure coherence in the formation of these short-lived molecules [191] and their
properties [192, 193]. When going up in the principal quantum number the binding
energies of the Rydberg molecules decrease and in the limit of high quantum number
this leads to a mean field broadening and shift of the Rydberg line [194].

Rydberg electrons used for electron-atom scattering With the recent experiments
in mind looking at the interaction of a single ion with an ultracold cloud, a Rydberg
atom can be seen as an electron trapping an ion. The electron can be that far away
from the ion that one could look at an ion interacting with an ultracold atomic cloud
without actual ion trap. The other way around the heavy ion is trapping the electron,
which allows for the investigation of the interaction of an electron with a Bose-Einstein
condensate [60]. These ideas allow to probe low-energy electron-atom scattering and
might enable the imaging of the spatial wavefunction of the Rydberg electron [195].

Photon-photon interactions The development in the field of Rydberg-EIT led to
the conclusion that Rydberg system are close to ideal to create photon-photon inter-
actions mediated by Rydberg-Rydberg interactions [196]. A first step in this direction
was the implementation of a single photon source on the basis of Rydberg block-
ade [197]. Strong correlation between polaritons led to an anti-correlated photon
chain [198]. Such a system also allows for the engineering of effective attractive in-
teractions between photons travelling as polaritons through a Rydberg medium [199].
Rydberg atoms also allowed for the implementation of a switch, which can be flipped
with a single photon [200, 201]. Rydberg atoms can also act as an interface between
photon-encoded qubits and atomic storage qubits due to the large possible optical
depth [202, 203].

Optical Rydberg dressing One of the next big steps for ultracold quantum gases is
to control and study long-range interactions in these systems on motional timescales.
There are many proposals to admix Rydberg states to the ground state via off-resonant
optical coupling. Up to now there was no experimental evidence for the so-called
Rydberg dressing, due to limitations by scattering and light-shifts [160, 204]. A first
step might be to observe spin squeezing in a Rydberg-dressed sample [205]. Currently
the most promising routes are the one-photon dressing with UV-light for alkali atoms
or dressing of alkaline-earth atoms from meta-stable states or via narrow transitions.
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3.4.2. Summary

The first Rydberg experiments were mainly focussing on spectroscopy and the invest-
igation of the properties of Rydberg atoms. Based on this knowledge it turned out
later that interesting many-body physics, many-particle interactions and even photon-
photon interactions can be implemented with the help of Rydberg atoms. Rydberg
atoms can be used as a tool to implement fundamental Hamiltonians in quantum
many-body systems and have the potential to realize controlled long-range interac-
tions in many-body systems. Due to the variety of Rydberg states it is possible to
select the Rydberg state which is most suited for an experiment, but this requires the
detailed knowledge of their various properties, which are discussed in the next chapter.



4. Calculation of Rydberg atom
properties

Many properties of alkali-metal Rydberg atoms can be calculated in the framework
of quantum defect theory [206, 207]. Using the experimentally determined quantum
defects and a fitted model potential, it is possible the calculate most of the properties
of Rydberg atoms without big effort to a reasonable accuracy. There are, of course,
more involved schemes (e.g. [208–210]), but for our purposes the standard calculations
will be sufficient.
In this chapter we will calculate some of the interesting Rydberg properties based on

the Marinescu model potential [211] and experimentally determined quantum defects
([86] for S and D states and [119, 212] for nP states assuming that the difference
between 85Rb and 87Rb quantum defects is negligible). Although the calculations are
a bit technical, it is important to be sure about the values of the parameters, which
are not easily measured, but very important for design of experiments and choice
of Rydberg states. We will compare the obtained numbers to other calculations in
literature. Atomic units are used for the calculations if not stated otherwise (e =
me = ~ = 1

4πε0
= 1).

4.1. Wavefunctions and radial matrix elements

For alkali-metal Rydberg atoms, all interesting properties can be calculated, if the
wavefunction of the outer electron is known. The problem can be reduced to the cal-
culation of the radial wavefunction and is often treated by a semi-empirical approach
introducing an effective radial potential caused by the inner electrons and quantum
defects which determine the energy levels. Such a technique requires some spectro-
scopy input, but yields very good results with far less computational effort than other
techniques. Once the radial wavefunctions are known, all properties can be derived, in
particular the radial matrix elements which determine the coupling strength between
different energy levels. The spatial wavefunction of the Rydberg atoms is not sig-
nificantly different for varying isotopes. This leads to essentially indistinguishable
wavefunctions and quantum defects as well as radial matrix elements for both rubid-
ium isotopes. But there are small differences, mainly in the hyperfine structure and
small corrections due to the mass difference.

4.1.1. Quantum defects

The main idea of quantum defect theory is to predict properties of atoms by using
a semi-empirical approach and fitting the Rydberg formula to the energy levels by
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introducing a state-dependent correction to the principal quantum number, which
is known as quantum defect. This technique has been widely used to investigate
complicated level structures [213–215] and is in particular successful in the application
to Rydberg states, as the predictions are very precise in this case.
For the determination of quantum defects of Rydberg atoms the energy levels of

many Rydberg states are typically measured either via optical spectroscopy [86, 212,
216–218] or microwave spectroscopy [119, 123]. A collection of references to measure-
ments of quantum defects of rubidium is shown in Table 4.1. There are different model
functions to fit the quantum defects, typically the function δ(n) = δ0 + δ2/(n − δ0)2

with the free parameters δ0 and δ2 that only depend on l and j is sufficient to fit
the experimental data with good accuracy [86, 119]. It turns out that the quantum
defects depend strongly on the azimuthal quantum number l for l ≤ 2, at higher l the
overlap of the wavefunction with the core becomes negligible and the quantum defects
essentially vanish. The dependence on j is typically rather weak, but still relevant for
high-resolution spectroscopy.

4.1.2. Model potential

The radial wavefunctions of alkali-metal Rydberg atoms look like hydrogen wavefunc-
tions. For the outer electrons the positive ion constitutes a perturbation of the 1/r
potential. The perturbed potential is approximated by a model potential, which is
chosen in a way to reproduce the experimentally measured quantum defects. The
radial wavefunction is then determined via numerical integration from large r towards
r = 0 [219].
There are several approaches to find appropriate model potentials. The potential

by Marinescu et al. [211] is widely used. But also the potential [220] yields the same
matrix elements within error bars for the calculations in this thesis. Depending on
the targeted accuracy of the calculation various correction terms can be taken into
account. The spin-orbit coupling can be also considered explicitly [221], here we could
not see any effect of this correction on the order of the error bars based on the variation
of quantum defects from different sources.
The calculations here are based on Marinescu et al., [211, eq. (18)]. The potential

isotope states reference
87Rb S,D [86] (used here)
87Rb S,D [217]
85Rb P [212]

85Rb, 87Rb S,P,D [119]
85Rb S [216]
85Rb F,G [123]
85Rb G [121]
85Rb P3/2 [218]

Table 4.1.: Quantum defect measurements and calculations for rubidium.
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Figure 4.1.: Comparison of model potentials. The simplest correction of the
Coulomb potential (black line) is the inclusion of the core polarizability αc, which
corrects the potential at larger r. Shorter distance corrections are introduced by
model potentials.

is implemented as a modified Coulomb potential with additional free parameters to
fit it to experimental data.

−Z
r
→ −Zl(r)

r
− αc

2r4

(
1− exp

(
−r

6

r6
c

))
Zl(r) = 1 + (Z − 1) exp(−a1r)− r(a3 + a4r) exp(−a2r)

with αc = 9.0760 for 87Rb

(4.1)

The model potential deviates only for small distances from the Coulomb potential
and a comparison is shown in Fig. 4.1. For reference the normal 1/r potential is depic-
ted, then the first order correction which just takes into account the core polarization
and finally the two model potentials, which are quite similar and slightly depend on l.

l = 0 l = 1 l = 2 l ≥ 3

a1 3.69628474 4.44088978 3.78717363 2.39848933
a2 1.64915255 1.92828831 1.57027864 1.76810544
a3 -9.86069196 -16.79597770 -11.65588970 -12.07106780
a4 0.19579987 -0.81633314 0.52942835 0.77256589
rc 1.66242117 1.50195124 4.86851938 4.79831327

Table 4.2.: Model potential parameters by Marinescu et al. Parameters for
the model potential Eq. (4.1.2) for rubidium [211].
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4.1.3. Computation of radial wavefunctions using the Numerov
algorithm

The calculation of the radial wavefunctions requires the integration of the radial dif-
ferential equation [61]. A very efficient technique for this type of differential equation
is the Numerov algorithm [222, 223]. This technique is widely used for the calculation
of radial wavefunctions [224–230].
The Numerov method is an integration technique that is very efficient for differential

equations of the special second-order form

d2

dx2
φ = g(x)φ . (4.2)

The main problem using the Numerov algorithm is where to start with the integ-
ration. It turns out the best way is to begin at a large distance from the core where
the wavefunction is known to vanish and then integrate towards the centre. As the
wavefunctions drop exponentially for large distances, they are essentially zero at some
point, and it becomes possible to just start the integration with zero and a small value
(e.g. 1 · 10−10) as neighbouring value towards the centre. If the starting point is too
far out, it might happen that the exponential increase during the integration leads
to problems in the numerics if the values get too large. This problem can be solved
by rescaling the wavefunction during the integration. The absolute value gets lost
using this technique, but the scaling of the wavefunction is anyhow determined by the
normalization condition in the end.
The integration formula is then given by [224]

φn−1 =
2φn − φn+1 + h2

12 (10gnφn + gn+1φn+1)

1− h2

12gn−1

(4.3)

with

φend = 0

φend−1 = 10−10 .
(4.4)

Depending on the radial potential the calculated wavefunction will diverge close
the nucleus at r = 0. This can be avoided by just using some cut-off and ignore
the inner part of the wavefunction. As the wavefunction is oscillating fast in this
relatively small volume the contribution to the matrix element is negligible. This
has been also checked numerically [225]. The cut-off error is typically below the
systematic error of this approach. Here we use the square root scaling as used in [225],
which has the advantage to avoid numeric problems during integration due to fast
oscillating parts in the wavefunction and allows high accuracy already for quite large
step sizes. A detailed derivation of the radial differential equation as well as the
transformation of the wavefunctions can be found in the Appendix B.2. The numerical
integration was checked against the analytical hydrogen wavefunction (Fig. 4.2) and
within the numeric precision no deviation was found. In Fig. 4.3 we compare the scaled
wavefunction χ(u) of 87Rb with the hydrogen wavefunction. This directly shows the
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Figure 4.2.: Check of the numerical accuracy of the Numerov algorithm
with hydrogen. The analytic scaled wavefunction χ(u) of 43S hydrogen (green
dashed line) is compared with the Numerov result (blue line). The step size for the
Numerov calculation is 0.002 and the inner cut-off 0.02. The difference between both
curves multiplied by 109 (grey line) shows a starting divergence shortly before the
cut-off. The Numerov algorithm is performing very well for this differential equation
and also much faster than the direct evaluation of the analytical solution.

effects of the corrections of the quantum defects together with the model potential.
The main effect is a radial shift of the phase of the oscillation in the probability
density and a reduction of the most probable distance of the electron from the core.
By transformation of the wavefunction back to physical coordinates also the radial
probability distribution of the electron can be calculated which gives a more intuitive
view on the wavefunction (Fig. 4.4). The distribution shows that the electron in the
43S Rydberg state is most probably in a thin shell at a certain distance from the core
and only with very small probability near the nucleus.

4.1.4. Comparison of the calculated radial matrix elements with
literature

To check the calculation of the wavefunctions one can compare the resulting radial
matrix elements with measurements and other calculations. In contrast to wavefunc-
tions, numbers for radial matrix elements are given in many publications. There are
two regimes, which have to be checked. One is the overlap between Rydberg states,
where the quantum defect calculation is expected to be quite precise, and the other
the overlap between the ground or intermediate state of the excitation to the Rydberg
state. For the second case the quantum defect approach is not the optimal technique,
but in many cases reasonable results can be obtained.
The radial matrix elements are directly calculated from the radial wavefunctions

Rnl(r) by Rnln′l′ =
∫∞

0 R∗n′l′(r)rRnlr
2dr (Eq. (B.10) for k = 1). The calculation of

dipole matrix elements was also checked against hydrogen, where they can be com-
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Figure 4.3: Comparison of
scaled wavefunctions χ(u)
for the 43S state in hy-
drogen and rubidium. The
analytic hydrogen wavefunction
for 43S (green line) is shown
together with the 43S wave-
function of rubidium-87 (blue
line). The difference between
both wavefunctions (grey line)
shows that the corrections for
87Rb lead essentially to a radial
phase shift. Additionally there
is some radial shift of the max-
imum.

-0.004

-0.002

 0

 0.002

 0.004

 0  20  40  60  80

W
av

ef
un

ct
io

n 
am

pl
itu

de
, χ

(u
) (

a 0-¾
)  

Scaled position, u = r½ (a0
½)

 0

 0.0005

 0.001

 0.0015

 0  1000  2000  3000  4000

R
ad

ia
l p

ro
ba

bi
lit

y 
de

ns
ity

 (a
0-1

)

Radial position, r (a0)

Figure 4.4.: Comparison of the radial probability distribution of the elec-
tron for 43S in hydrogen and rubidium. Here we compare the analytical 43S
wavefunction for hydrogen (green line) with the numeric 43S rubidium-87 wavefunc-
tion calculated using the Numerov algorithm. The radial probability density r2R2

nl

directly shows the probability to find the electron at a certain distance r from the
core. The orbit radius 〈r〉 of the 43S state is 2384 a0 and 2774 a0 for rubidium and
hydrogen, respectively.
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puted analytically (e.g. [229, p.121][231]). The 1S → nS transitions show very good
agreement and only numerical deviations of < 10−9 in atomic units. The matrix ele-
ments are also compared to experimentally measured matrix elements [208, 232–234].
A comparison with selected matrix elements appearing in various publications shows
reasonable agreement of matrix elements of low-lying states to Rydberg states (upper
half of Table B.3) and good agreement for matrix elements between Rydberg levels
(lower part of Table B.3). There is also quite good agreement with measurements of
5P3/2 to nD5/2 transitions (Table B.2).
For future direct UV-excitation of Rydberg atoms also the calculation and measure-

ment of 5S to nP transitions was investigated (Table B.1). The calculations based on
quantum defect theory become by construction more and more inaccurate for lower
lying states and are worst for the ground state, but still provide a reasonable guess for
the matrix elements. To compare to experimental matrix elements in earlier publica-
tions, which are given as oscillator strength, we need to do a conversion. The radial
matrix elements can be calculated from the oscillator strengths between a lower level
i and an upper level k via fik = 2

3
∆E
gi
|〈nlj | er | n′l′j′〉|2 with the degeneracy of the

lower level of the atomic transition gi = 2j + 1 and ∆E measured in Hartree ener-
gies (Eh = ~2

mea20
) [235]. It turns out that the matrix elements from 5S to nP states

calculated here are about a factor of two larger than the ones calculated with more
sophisticated techniques, which is probably caused by the bad approximation of the
5S ground state by the quantum defect wavefunction.

4.1.5. Scaling of the radial matrix elements

For practical purposes the matrix elements can be approximated by fitting the scaling
law (Table 3.1) to the calculated matrix elements, which reduces the information about
the matrix elements of a whole series of Rydberg states to a single number.
The radial matrix elements of a low lying state to a series of Rydberg states scale

as (n∗)−3/2 (Sec. 3.1).
R|i〉nlj ≈ C

|i〉
lj (n∗)−3/2 (4.5)

The scaling coefficient C |i〉lj depends on the initial state |i〉 and the l and j quantum
number of the Rydberg target state. The scalings were fitted to calculations dis-
cussed in the previous sections for relevant transitions in 87Rb and are summarized in
Table B.4. The most relevant scaling coefficients 5P→ nS, nD could be checked to be
consistent with other calculations (Table B.5). The summary shows that the matrix
elements 5S→ nP are relatively small, but the matrix elements increase rapidly when
starting from excited states like 5P, 6P or 7P to a Rydberg state. Considering only the
upper transition in a two-photon excitation the 6P state becomes already favourable
as intermediate state due to the larger matrix element compared to the 5P state.

4.2. Static polarizability

Compared to ground state atoms, where the static polarizability is negligible for am-
bient electric fields for most purposes, the static polarizability of Rydberg atoms can



40 4. Calculation of Rydberg atom properties

be extremely high due to the scaling with (n∗)7 (Sec. 3.1). The level shift ∆E due to
static electric fields can be directly calculated from the radial matrix elements above
for non-degenerate states [236, p.213] and is given by:

∆E = −1

2
α · E2

z

α = 2 · e2
∑

n,l,m6=n′,l′,m′

|〈n′l′m′|z|nlm〉|2

En′,l′,m′ − En,l,m

(4.6)

Here E is the static electric field, which is supposed to be aligned with the z-
axis. If there is no other quantization axis like a magnetic field present this choice
is always possible. In general Rydberg states, which are isolated in frequency due to
a non-zero quantum defect, show a quadratic Stark effect, while (nearly) degenerate
levels like states with l > 2 in rubidium, shift linear with the electric field [224].
The polarizabilities have a simple scaling with n∗ for different states. This allows
to determine coefficients for the scaling laws, which has been done for all relevant
levels in rubidium [230, p.24]. For example the calculation for the S-states leads to
α0 = 2.188 · 10−9(n∗)6 + 5.486 · 10−11(n∗)7, which is close to the values obtained from
a fit to experimental data: α0 = 2.202 ·10−9(n∗)6 +5.53 ·10−11(n∗)7 [237]. This yields
−17.7MHz/(V/cm)2 for the n = 43 state (n∗ = 39.87) of 87Rb, which means that
already background electric fields on the order of 100mV/cm cause a measurable shift
of the Rydberg line.

4.3. Dynamical polarizability and trapping

The forces of Rydberg atoms in far-detuned light fields can be described by the so-
called ponderomotive potential of a free electron in a light field, which is a quite good
approximation for Rydberg states [147, 149, 238, 239]. The ponderomotive force on
electrons is always repulsive, independent of the properties of the laser field.

hνls =
e2I

2meε0c(2πνL)2
(4.7)

Here νls is the light shift measured in Hertz and I is the intensity of the laser field
of frequency νL. It has been confirmed in experiments [159, 160, 238] that this model
gives a good approximation for the forces on Rydberg atoms in laser fields. Due to
the large extent of Rydberg atoms, the ponderomotive force has to be averaged over
the wavefunction of the electron. This leads for Rydberg atoms to a state-dependence
of the ponderomotive potential [156]. Looking at the averaging effect, it turns out
that the effective force on Rydberg atoms can change sign in optical lattices for large
principal quantum number. This is discussed in the following.

Calculating the tune-out wavelength

In an optical lattice potential the size of the Rydberg atoms with respect to the lattice
spacing is typically not negligible and leads effectively to an averaging of the potential
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Figure 4.5.: Averaging of the polarizability in a 1064 nm lattice for 87Rb S-
states. Due to the large extent of Rydberg atoms compared to the lattice spacing, the
polarizability averages over the outer electron wavefunction. Shown here is the relative
polarizability of a Rydberg atom in the lattice compared to a homogeneous field. The
precise value for 43S is 0.648 . On the second axis the light shift of the Rydberg state
compared to the 5S1/2 ground state is depicted. There are zero-crossings in the relative
polarizability for n between 65/66,74/75,97/98,103/104,120/121 and the minima at
69,100,123,143,160, . . . . The inset shows a magnified view of the region of the first
zero crossings and extrema.

over the wavefunction of the Rydberg electron [152]. This averaging effect can be expli-
citly calculated from the calculated radial wavefunctions. For a retro-reflected lattice
with a laser of wavelength λ, the modulation factor is 〈cos (2kz)〉, where k = 2π

λ and z
is the linear position of the electron along the lattice. For S-states the angular integ-
ral can be evaluated analytically to

∫ π
0 R∗(r)R(r) cos (2kr) cos (θ)dθ = |R(r)|2 sin (2kr)

kr .
To evaluate the radial integral numerically using the previously determined scaled
wavefunctions χ(u) (Appendix B.2), the integral can be transformed to

〈cos (2kz)〉 =

∞∫
0

|χ(u)|2 sin (2ku2)

ku2
2u2du . (4.8)

In Fig. 4.5 we show the effect of the averaging for the relevant experimental para-
meters in our setup. As can be seen in the graph, the trapping force decreases for
S-states with larger principal quantum number and there are some oscillations around
zero. Interestingly, there are zero-crossings at which the Rydberg atom are nearly
not affected by the light field as well as minima. For example the 69S state would
be an interesting candidate for a state to look at in the experiment, as it experiences
the strongest trapping force, which should lead to an enhanced detection efficiency as
discussed in Sec. 5.6.5. The trapping force that can be reached in this way is very
small in comparison to typical trapping forces on the ground state.
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4.4. Calculation of Rabi frequencies

The calculation of Rabi frequencies often leads to confusion due to varying nota-
tion and lack of reliable reference values [240]. The calculations here follow the
derivation by King [241]. Depending on whether the Rabi frequency is needed in
fine or hyperfine coupling basis we use [241, eq. (49)] or [241, eq. (52)]. The ra-
dial integral Rnln′l′ =

∫
R∗n′l′(r)rRnl(r)r

2dr can be calculated directly from the ra-
dial wavefunction. There is also a small dependence on j here, which is omitted in
the notation. The radial wavefunction Rnl is defined via: Hψnlm = Enlψnlm with
ψnlm(r,θ,φ) = Rnl(r)Y

m
l (θ,φ), where Y m

l (θ,φ) are the spherical harmonics [61]. The
following formula demonstrates that the radial overlap integral is the only other atomic
parameter next to the quantum numbers required to directly calculate the Rabi fre-
quency [241, eq. (52)]:

Ωe←g =
eE0

~
(−1)2F ′+I′+2j+l>+s′−m′FRnln′l′

√
(l>)(2j′ + 1)(2j + 1)(2F ′ + 1)(2F + 1)·{

l′ 1 l
j s′ j′

}{
j′ 1 j
F I ′ F ′

}∑
q

εq
(

F ′ 1 F
−m′F q mF

)
(4.9)

with E0 =
√

2I
cε0

and l> = max(l,l′). This formula starts out directly with the radial

matrix elementRnln′l′ , which can be calculated as discussed above (Sec. 4.1.4). For some
states, there are also measured values for these radial matrix elements, for example
for the 5S ↔ 5P transition it can be extracted to R5S

5P = 5.181(4) (Sec. J.1).

Light shifts

The Rabi frequency calculation between all dipole transitions in an atom can be also
used to calculate the light shifts caused by laser fields. Assuming that all level shifts
are independent, one can calculate the light shift for every pair of states using the Rabi
frequency and then add up the shifts. A full diagonalization in a two-level system yields
sign(∆)

√
Ω2+∆2

2 −∆/2 ≈ Ω2

4∆ , where the approximation holds in the limit ∆� Ω. By
that light shifts are easily derived from the Rabi frequency calculation.

4.5. Calculation of the natural linewidth

The natural linewidth of a transition can be calculated conveniently using the formulas
[241, eq. (37) and (48)]. As a reminder we note that Ag←e = Γg←e = 2π · ∆ν =
1/τg←e, where τg←e is the lifetime and ∆ν the FWHM linewidth of the corresponding
transition. τg←e is the lifetime of the upper level, if there is only this one decay
channel.
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Γ = Ag←e = A|nlj〉←|n′l′j′m′〉 =
e2ω3

0

3πε0~c3
|〈e | r̂ | g〉|2

=
e2ω3

0

3πε0~c3
· 1

2j′ + 1

∣∣∣〈n′j′ ∣∣∣ r̂C(1)
∣∣∣ nj〉∣∣∣2

=
e2ω3

0

3πε0~c3
· (l>)(2j + 1)

∣∣∣∣Rn′l′nl

{
l′ 1 l
j s′ j′

}∣∣∣∣2
(4.10)

4.6. Rydberg lifetimes

Rydberg lifetimes for rubidium have been calculated [64, 221] and measured [244–
246]. The lifetimes can be calculated in good approximation via a scaling formula
for all alkali-metal atoms [64]. These values are in good agreement with the meas-
urements of Branden et al. [245]. The lifetime of Rydberg atoms is not exclusively
determined by the radiative decay of the state directly to lower states, but also limited
due to blackbody radiation induced transitions to nearby levels, which are temperat-
ure dependent [247]. The blackbody coupling to a neighbouring state is given by

Γg↔e,bbr =

(
e

~|ω|
kBT − 1

)−1

Ag←e. The precision of the blackbody induced transition

rates is controversial, because the wavelength of the relevant frequencies is on the
same length scales as the size of the vacuum chamber, which leads to slight geometry-
dependent modifications of the blackbody spectrum. These modifications were invest-
igated in the context of optical lattice clocks [248, 249], where their effect is rather low,
but for Rydberg atoms the situation could be different. In Fig. 4.6 the decay rates
from 43S and 35P to the various other levels are shown assuming an ideal blackbody
spectrum. In general the radiative decay is dominated by the decay rate directly to
one of the lowest states. The rate is still quite low due to limited wavefunction overlap
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Figure 4.6.: Decay channels of the rubidium 43S and 35P state. a, decay
rates from 43S state (see also [3] for 43S diagram), b, decay channels for 35P state.
There are two main decay types. One is direct radiative decay to lower lying states,
the other blackbody coupling to neighbouring Rydberg levels. The blackbody coupling
is calculated for T = 300K.
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reference 43S1/2 35P3/2 60D5/2 41D5/2

pure radiative decay, T = 0K

[242] (experiment) 99(15) - - -
[64, 243] (theory) 87 76 207 64
[244] (experiment, 85Rb) 99(6) 98(6) 271(16) 87(5)
this thesis (theory) 81 83 172 54

including blackbody depopulation, T = 300K

[64, 243] (theory) 44 36 102 39
[245] (experiment, 85Rb) 40(2) 34(2) - 37(2)
[246] (experiment, 85Rb) - - - 33(4)
this thesis (experiment) 38(12)† - - 46(17)†

this thesis (theory) 43 37 95 35

Table 4.3.: Comparison of lifetimes for selected states of rubidium. Lifetimes
in micro seconds for pure radiative decay in the upper half and including blackbody
depopulation rate in the lower half. The shown values from [244] are calculated from
the scaling fitted to the experimental data. There are also early calculations for lower
lying states [63, 221]. † only statistical error, for a discussion of systematic errors see
Sec. 5.7.5.

between the states. The other main contribution limiting the lifetime is blackbody
induced transitions to close-by Rydberg levels. Typically only the 5-10 nearest states
are relevant. The effective decay rate of a Rydberg state is given by summation over
all radiative decay channels to lower lying states and all blackbody coupling chan-
nels to nearby states (Sec. 4.5). The first contribution leads to the radiative lifetime
τ0, while the second to the blackbody lifetime τbbr. In total this yields the effective
lifetime of a Rydberg state 1

τeff
= 1

τ0
+ 1

τbbr
. For practical purposes one can use an

empirical scaling law for the zero-temperature lifetime τ0 = τs(n
∗)ε with constants τs

and ε, which depend on l and j of the Rydberg states. These scaling coefficients were
determined for 85Rb by Branden et al. experimentally and are shown in Table 4.4.

State τs(ns) ε

nS1/2 1.4(1) 2.99(3)
nP3/2 3.5(4) 2.90(3)
nD5/2 1.8(3) 2.84(4)

Table 4.4.: Experimental radiative lifetime scaling by Branden et al. [245].
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4.7. Calculation of the van der Waals coefficient

The van der Waals coefficient is one of the most important parameters, as it is the
measure of the interaction strength between Rydberg atoms. It is worth noting here
that the van der Waals coefficient is not only relevant for Rydberg atoms, but also
for ground state atoms, as it is directly connected to the scattering length [250, 251].
The van der Waals coefficient can be calculated from the radial matrix elements.
Calculations can be found in the literature [252–256] and the following discussion is
based on these references. For the rubidium S-states a simple scaling formula for
practical applications can be found in Singer et al. [253]: C6(87Rb,nS) = n11(11.97−
0.8486n + 0.003385n2), which yields the widely used value −1.697 · 1019 a u for the
43S state. In contrast to the simplified view of a spherically symmetric 1/r6 potential
the van der Waals interaction between rubidium S-states is nearly, but in theory not
perfectly isotropic (difference between θ = 0 and θ = π/2 is approximately 1%). This
asymmetry is caused by the fine structure splitting of the Rydberg states. When
calculating the couplings separately for all fine structure states there is always an
angular dependency. Due to these angular-dependent couplings and mixing between
several Zeeman states the C6 calculations can be quite involved. In the following the
main ideas of the calculation for a realistic situation will be discussed, which leads to
some complications compared to the three level atom model (Sec. 3.2.1). One effect in
real atoms is the possibility to change the interaction strength between Rydberg atoms
in an experiment by tuning the Förster defect through shifting the involved levels via
electric (or magnetic) fields. Another difference is that there are no three-level atoms in
reality. But the involved multi-level situation can be partitioned into a set of effective
three-level systems, the so-called collision channels, which can be treated separately.
For example, for S-states one channel would be n1S1/2 + n1S1/2 → n2P1/2 + n3P1/2,
with the Förster defect ∆F (n1,n2,n3) = E(n2P1/2) + E(n3P1/2) − 2E(n1S1/2). For
a polarized sample of Rydberg atoms in a magnetic field the mj quantum number is
well-defined and has to be taken into account.
For the discussion we adopt the following naming convention. We call the atoms

involved in the process a and b, their initial states ai and bi, the intermediate state am,
bm and the final states af , bf . The states are characterised by the quantum numbers
(n,l,j,mj). With this notation the van der Waals interaction energy is given by

〈
ai,bi

∣∣∣ V̂vdW ∣∣∣ af ,bf〉 =
∑
am,bm

〈
ai,bi

∣∣∣ V̂dd ∣∣∣ am,bm〉〈am,bm ∣∣∣ V̂dd ∣∣∣ af ,bf〉
δai,bi,am,bm

=
∑

ν=(am,bm)

Cν6

〈
ai,bi

∣∣∣ D̂ν(θ,φ)
∣∣∣ af ,bf〉 /r6

=
C6(θ,φ)

r6
.

(4.11)

The calculation is perturbation theory with virtual intermediate pair states with the
Förster detuning δai,bi,am,bm = E(am) + E(bm) − E(ai) − E(bi). Radial and angular
contribution separate for every collision channel ν = (am,bm) and one can define
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a mj-independent Cν6 coefficient and a matrix D̂ν(θ,φ), which contains the angular
couplings and selection rules [256, (C4)]. The Cν6 coefficient for every channel is
determined only by radial wavefunction overlap integrals and the Förster defect: Cν6 =∑

nam ,nbm

RaiamR
am
af
RbibmR

bm
bf

δai,bi,am,bm
. When adding up the interactions Cν6 for all channels, also

the angular-dependent coupling strengths in the matrix D̂ν(θ,φ) come into play, which
can lead to a complicated angular dependency of the total C6 coefficient.

4.8. Photo-ionization of Rydberg atoms

When exciting Rydberg atoms in optical dipole traps they can be ionized by the trap-
ping light. It turns out that the ionization rate is only relevant on typical experimental
timescales for Rydberg atoms in strong light fields [149, 257]. The ionization rate de-
pends on the orbital angular momentum l of the Rydberg state. While S-states are
quite robust against photo-ionization, the rates for P- and D-states are much higher
due to the larger overlap with continuum wavefunctions [149]. Neglecting this special
anomaly for low angular momentum states, the ionization rate goes down for Rydberg
states with increasing effective principal quantum number n∗ and with increasing l
for l > 2. This can be explained by the fact that ionization happens predominantly
when the electron is near the nucleus [258] and this probability becomes smaller for
high-angular momentum states. This can be understood in a classical picture as the
quasi-free electron far from the core cannot absorb a photon due to momentum conser-
vation. Only in the strong Coulomb potential this process is allowed when the excess
momentum is transferred to the nucleus. The ionization also scales with the trap-
ping wavelength. For infrared light the transition to the ionization threshold becomes
near-resonant and the ionization rate very high [257]. For example CO2 lasers photo-
ionize Rydberg states efficiently [159]. But the most often used trapping wavelength
of 1064 nm still causes reasonably low ionization rates for most experiments [259], for
the 43S states the ionization rate in a typical trap is � 1 · 103 1/s [257].

4.9. Hyperfine structure of Rydberg states

The hyperfine structure splitting is typically very small for Rydberg states, as it scales
with the amplitude of the electron wavefunction at the core. The splitting can be
extracted from millimetre-wave spectroscopy [59, 119] or optical high-resolution spec-
troscopy [86, 87]. The hyperfine structure constant scales as Ahfs,n∗,l =

A∗hfs,l
n∗3

and
for 87Rb the scaling factor is given by A∗hfs,S1/2 = 18.4(3)GHz (combined value with
s.e.m. from [87, 117, 119, 260]). Depending on the excitation scheme the hyperfine
structure splitting can lead to a broadening of the Rydberg excitation line, but this
can be avoided by using an excitation path which couples to only one hyperfine level
in the Rydberg state.
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4.10. Summary

In this chapter the calculation of various Rydberg atom parameters relevant for exper-
iments was discussed. For the following chapters, we mainly focus on the rubidium-87
43S-state, for which the numbers are summarized in Table 4.5. The calculated values
in this thesis were shown to agree generally quite well with the other values found
in literature. To demonstrate the extreme properties of Rydberg states, they are
compared to the numbers for the 5S state.
The collection of numbers also allows to justify the choice of the 43S state. It has

a reasonable lifetime of ∼ 40 µs, not too extreme polarizability and a blockade radius,
which is in a range that matches the typical system size in our experiment. The nearly
perfect isotropic interaction of the S-state and its simple structure avoid possible issues
in the excitation like Förster zero states, which break the blockade condition [255, 261].

property value 43 calc. this thesis value 5S

n∗ 39.8687 [86] 39.8687 (Sec. 4.1.1) 1.8048
gj 2.0023 2.0023
hyperfine structure splitting 582(8) kHz (Sec. 4.9) - ∼ 6.83GHz
lifetime τ at 300K 42 µs [3] 43 µs (Sec. 4.6) ∞
binding energy h · −2069.8GHz [3] h · −2069.703GHz (Sec. 3.1) 1010.024 893 3(3)THz [86]
orbit radius 2384.2 a0 [3] 2384.3 a0 (Sec. 3.1) 5.6 a0 [262]
natural linewidth Γ (incl bbr) 2π · 3.76 kHz [3] 2π · 3.72 kHz (Sec. 4.5) 2π · 6.0666(18)MHz [263]
polarizability α −17.7MHz/(V/cm)2 [237] −17.4MHz/(V/cm)2 (Sec. 4.2) 0.0794(16)Hz/(V/cm)2 [263]
transition dipole moment
(strongest line, σ, 5P3/2 → nS1/2)

0.0103 e a0 [3] 0.0101 e a0 (Sec. 4.1.4) 2.989 31(62) e a0 [263]

radial matrix element 5P3/2 → 43S1/2 0.017 86 e a0 [3] 0.0174 e a0 (Sec. 4.1.4) 5.181(4) e a0 (Sec. J.1)
van der Waals coefficient C6 −1.697 · 1019 a u [3, 253] −1.710 · 1019 a u (θ = π/2) (Sec. 4.7) 4.426 · 103 a u [211]
blockade radius ≈ 5 µm ≈ 5 nm

Table 4.5.: Collection of properties of the 43S state of rubidium-87. Liter-
ature values are given with references. For derived quantities also a value calculated
in this work is given. The properties of the 5S ground state are given for comparison.





5. Rydberg excitation and detection in
an optical lattice

5.1. State of the art – Experiments with spatial resolution

In spite of the long history of Rydberg experiments, the number of cold atom ex-
periments with high spatial resolution for Rydberg atoms is quite limited. On the
one hand, there are experiments with single atoms or small ensembles in a few well-
separated micro traps [70, 101, 102, 264, 265]. On the other hand experiments in
homogeneous cold gases allow by a variety of approaches to reach high-resolution im-
ages of the Rydberg atom distribution. The experiment in the Raithel-Group uses an
ion microscope [180] to image the Rydberg distribution in a volume limited by the
excitation beam size in a magneto-optical trap. A very different approach not feasible
with alkali atoms is the possibility with alkaline-earth-like atoms to image the Rydberg
atoms via a closed transition of the second outer-shell electron [183, 184]. Yet another
idea is the electron microscope [266, 267], which might enable to image the spatial
distribution of Rydberg atoms via local ionization with an electron beam. Another
promising scheme is to exploit the level shift of the ground to Rydberg transition of
atoms surrounding a Rydberg atom to enhance the signal. Proposed techniques are
based on conditional Raman transfer [268] or electromagnetically induced transpar-
ency [269]. The latter proposal has been implemented in experiment, but did not reach
the single-Rydberg-atom level yet [145]. The difficulty here is that the scheme requires
the coupling to two distinct Rydberg levels, one species which is detected and the other
is used as probe. For clean imaging of blockade spheres a two-dimensional arrange-
ment would be required, which makes this type of absorption imaging challenging due
to the low optical depth.
There were previous experiments combining Rydberg excitation with optical lattices

[110, 157, 197, 270], but they are so far working with 1D lattices and do not reach
direct high-resolution imaging of the Rydberg atom distribution.
In contrast to these experiments, we can initialize a near-uniform 2D sample of

atoms in the lattice via the superfluid-to-insulator transition, which allows for a more
controlled preparation of initial samples in the lattice, especially in combination with
local addressing. We then couple the samples to the Rydberg state, remove all ground
state atoms from the lattice and image the former Rydberg atoms as ground state
atoms via fluorescence imaging. In this way a resolution only limited by lattice dis-
cretisation can be reached, which is typically negligible compared to Rydberg blockade
length scales.
Our setup opens new possibilities in the field of Rydberg physics, as there is currently

no other experiment with degenerate quantum gases and single atom detection on
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ground state as well as on the Rydberg atom level.
In the following we first discuss possible issues for the experimental implementation

and give a general overview over Rydberg detection and excitation schemes to motivate
the choices for our experiment. Subsequently the experimental setup, details of the
optical detection scheme and first experiments are described.

5.2. Possible issues for a Rydberg lattice experiment

Although the optical excitation of Rydberg atoms was already investigated in some
detail, there are possible issues extending these schemes to the excitation in optical
lattices. In the following the specific problems encountering for our setup are discussed
and based on the introduction of the previous chapters we show that they are not
detrimental.

Anti-trapping of Rydberg atoms The excited Rydberg atoms are anti-trapped at
the trapping spots of the ground state atoms in red-detuned optical lattices. The
strength of the anti-trapping is calculated in Sec. 4.3. It turns out that the absolute
value of the shift is on the order of the light shift for the ground state atoms. But the
effects of the corresponding acceleration can be suppressed by keeping the time short
in which the atoms stay in the Rydberg state. The light shift also leads to a shift of
the Rydberg line. This shift is negligible compared to typical Rabi frequencies used
in the experiment and should be very stable due to the well-controlled lattice depth.

Detection scheme The molasses imaging at our setup was only tested with sub-
microkelvin initial temperature of the atoms before imaging. Optical molasses imaging
also works for hotter atoms in optical dipole traps, but it is not clear if the lattice
during imaging is deep enough to avoid tunnelling until the molasses cooled down
the atoms to a typical equilibrium temperature. For high-fidelity imaging of Rydberg
atoms a direct detection is required, as an indirect detection of Rydberg excitations
through loss is unfavourable due to the typically low number of Rydberg excitations
compared to ground state atoms. If the Rydberg atoms are too hot after the sequence,
a recapturing and imaging of the atoms will not work. A model of the detection process
shows that the atoms are mainly recaptured in bands with low tunnelling rates which
should allow for molasses cooling of the former Rydberg atoms (Sec. 5.6.5).

Photo-ionization For some Rydberg states the photo-ionization rate in the optical
lattice is quite high. As the atoms in our setup are typically very cold we need
only relatively shallow lattices. This reduces the photo-ionization a lot and leads to
negligible ionization rates, at least for S-states (Sec. 4.8).

Unknown electric fields As the setup was not optimized for Rydberg atoms, there
is no reliable estimate for electric fields in the setup and no electric field control. The
glass windows is about 5mm away from the atoms and in a symmetric configuration
with the opposing window, giving hope that the electric fields are small enough at
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Figure 5.1: Rydberg excitation scheme.
The 87Rb Rydberg atoms are excited via a two-
photon transition via the intermediate 5P3/2

state with a detuning δ ≈ 742MHz to the 43S1/2

state. Polarizations a chosen in a way to couple
a uniquely defined stretched state. For detection
the Rydberg atoms are pumped down resonantly
via the intermediate state 5P3/2, which decays
very fast due to its short lifetime of 26 ns [263].

least for Rydberg states around n = 50. During the experiments, it also turned out
that microwave fields at 6.3GHz which were side-products of our microwave setup
and have no effect on ground state atoms, can already create strong light shifts on the
order of several Megahertz on Rydberg states. Background electric fields will limit the
setup to a certain range of principal quantum numbers. But due the large blockade
radius compared to our resolution high Rydberg states are anyways not ideal for most
experiments at our setup.

5.3. Optical excitation schemes to Rydberg states

There are currently many schemes actively used for the optical excitation of Rydberg
atoms in different laboratories. Here, we will discuss various schemes for the coherent
excitation of Rydberg atoms using narrow lasers to selectively couple to a certain
Rydberg state.
There is the obvious approach to use only a single laser and couple the ground

state directly to a Rydberg state. For such a transition the required laser frequency
is typically in the ultraviolet, for 87Rb around 297 nm. Producing such a wavelength
requires some effort, as there is not even a high-power solid-state laser source available
which can be doubled. Another problem are the rather small matrix elements on these
transitions. In spite of all the difficulties the direct excitation to P-states is becoming
more popular with the advances in frequency doubling technology [72, 271, 272].
The most commonly used scheme is the two-photon excitation via a near-resonant

intermediate transition. Here the accessible states for alkali atoms are the S and D
Rydberg states, which offer quite a variety from the isotropic interaction of the S-states
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to various anisotropic interactions for D-states. For rubidium the required lasers with
reasonable power are commercially available.
There are also other schemes based on three or more lasers, but these schemes suffer

from low effective Rabi frequencies and intermediate state scattering and are typically
used for spectroscopy applications. The big advantage of three-photon-spectroscopy
for Rydberg atoms is the possibility to use Doppler-free techniques by designing the
laser configuration in a way that the vectorial sum of the recoil velocities of all excit-
ation lasers vanishes [273, 274].
The excitation scheme chosen in this thesis is the most commonly used two-photon

scheme for 87Rb with lasers at 780 nm ("red") and 480 nm ("blue"). Here the red laser
is slightly detuned from the standard laser cooling line of 87Rb. To reach a reasonable
effective Rabi frequency to the Rydberg state, considerable power is required on the
upper blue transition, as the power on the lower transition is limited due to strong
scattering at the intermediate state. At the first glance it looks like this can be
circumvented by a larger intermediate detuning. But a simple scaling argument shows
that for constant effective Rabi frequency and fixed coupling on the upper transition,
the scattering rate at the intermediate level is already uniquely determined by the
scalings Γsc ∝ Ω2

1/∆
2, Ω = Ω1Ω2

2∆ . In order to maintain the same two-photon coupling
for larger detuning, one needs to increase the Rabi frequency on the lower transition,
which in turn increases the scattering rate. This argument holds, as long as the
detuning is much larger than the natural linewidth of the transition and the involved
Rabi frequencies. In conclusion, the Rabi frequency is only limited by the available
power for the upper transition. To circumvent the power limitation at 480 nm other
groups either used pulsed lasers [89] or switched to the two-photon transition via the
6P state in rubidium (420 nm and ≈ 1016 nm), where high-power laser systems are
available for the upper transition [110, 275].
The two general problems of the two-photon schemes are the light scattering at the

intermediate level and light shifts. In the end, the light scattering limits the max-
imum Rabi frequency for a targeted coherence time. For some experiments, coherent
excitation is not necessary or only required for short timescales. In these cases the
power on the lower transition can be increased, but at some point the induced light
shift will fluctuate due to intensity noise and drifts. In principle it is possible to cancel
the light shifts on the two-photon transition by using the same Rabi frequency on the
lower and upper transition (Appendix C.1.2). But often it is not feasible to achieve
the desired two-photon Rabi frequencies while keeping the Rabi frequencies on lower
and upper transition equal.
In our experiment we choose a two-photon excitation starting from the 5S1/2, F =

2,mF = −2 via the 5P3/2, F = 3,mF = −3 intermediate state, which allows for the
selection of a well-defined Rydberg state (Fig. 5.1) [3]. With an appropriate choice
of polarization, a coupling to the nS,mj = 1/2 state is strongly suppressed. As the
scheme selects exactly one intermediate state leading to a uniquely defined excitation
path, such that interference between various possible excitation paths is avoided.
Due to the relatively large matrix element of the red transition the required power of

the red laser is rather low. This means that one can afford a rather large intermediate
detuning and we decided to go for the largest detuning easily reachable via a standard
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acousto-optical modulator in double pass. Another choice to be made is the sign of
the intermediate state detuning. In the experiment in a quite strong magnetic field of
around 30Gauss we saw considerably more scattering for the red-detuned than for the
blue-detuned case for the same absolute detuning to the F = 3,mF = −3 intermediate
state. We attribute this to a small fraction of wrong polarization, which scatters off
the F < 3 states, which are less off-resonant in the red-detuned case.

5.4. Detection techniques for Rydberg atoms

Rydberg atoms are often detected via field-ionization and then guiding the resulting
ions to an ion detector. This technique was already used in early experiments [53] and
later also with cold atoms [96, 97, 180, 276, 277]. The advantage of this scheme is the
possibility to detect very few Rydberg atoms created in a large cloud of neutral atoms,
essentially without background signal and with reasonable detection efficiency ≈ 40%
([114]: 40%, [110, 278]: 35(10)%, [4]: 40%, [228]: 2%, [279, 280]: 13.0(15)%, [281]:
47.8(26)%). In the case of a single ion detector there is no spatial information, but
some information can be calculated from the arrival times, as the timing resolution
can be very high. But there is also the possibility to use multi-channel plates to
gain spatial resolution [96, 180, 282]. Another way to obtain high resolution is to
only locally ionize (for example using focussed light beams [159, 257], or electron
beams [266, 267]). In our setup we want to exploit the advantages of optical detection
schemes and did not integrate an ion detector into the setup. An optical detection
via loss of Rydberg atoms from an optical tweezer was explored before with single
atoms [70, 74]. The loss occurs due to a combination of photo-ionization and anti-
trapping potential of the Rydberg state in the tightly focussed optical dipole trap
used there. In some experiments, a coherent deexcitation of the Rydberg atoms before
state-selective imaging is possible [76], which avoids the uncertainty in the Rydberg
atom loss. In contrast to that, we want to deexcite Rydberg atoms incoherently
to avoid detection problems in systems with several Rydberg excitations, where a
coherent deexcitation is almost impossible due to the interaction energies. The idea
is to couple the Rydberg state to a short-lived state, which then decays back to the
electronic ground state. Such a scheme has been already used before in a context with
focus on the retrieved photons [197]. Here we use a laser beam resonant with the
Rydberg state to 5P3/2 transition of rubidium to stimulate the Rydberg atoms back
down to the ground state (for details see Sec. 5.6.2). The resulting ground state atoms
are then imaged via fluorescence imaging.

5.5. Experimental setup

In the following the beam path as well as the laser setup for the Rydberg excitation in
the experiment are described. First we discuss the geometric beam configuration and
then the laser setup for the two-photon excitation of Rydberg states. This is followed
by a detailed discussion of the frequency offsets due to the frequency stabilization
scheme of the lasers. We also look into Rydberg spectroscopy in a glass cell, which



54 5. Rydberg atoms in an optical lattice

6 
m

m
5 

m
m

~ 10 µm

magnetic o�set �eld

vacuum window

high-resolution
objective

z-axis

Figure 5.2.: Rydberg excitation beam setup. The two Rydberg excitation laser
beams are sent counter-propagating along the z-axis to the atoms along the best-
controlled magnetic offset field. The blue beam goes through the objective from below
and the red beam in the opposite direction towards the camera. The waist of the
red beam was around 40 µm, the blue waist is on the order of 5 µm. The beams were
adjusted in a way that the atoms are in the focus of the red beam. The size of the
blue beam at the atom position is adjusted via a piezo stack (PIFOC P-726), which
can move the objective in z-direction over a range of 100 µm [48]. Sketch not to scale.

allows for fast and accurate checks of the absolute frequency of the lasers relative to
Rydberg lines.

5.5.1. Beam path and polarization of the two excitation beams

Depending on the intended Rydberg experiment there is a certain advantageous beam
configuration. For our excitation scheme we use the polarization to select a certain
Rydberg state. For a clean implementation of the scheme a σ+-σ− configuration is
necessary. To this end, it is required to send the beam along the magnetic field axis,
which is in our case typically perpendicular to the atom plane.
To reduce the recoil during Rydberg excitation a counter-propagating beam config-

uration is preferred. For the low temperature in our system the Doppler broadening is
negligible, but the heating due to the recoil of both excitation beams might be harmful.
Another problem is the limited optical access in the setup as the components required
for single-site imaging take already quite a lot of space. The only reasonable beam
configuration at our setup taking these constraints into account turned out to be the
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a b

Figure 5.3.: Alignment of Rydberg excitation beams. Our setup allows to
check the alignment of the Rydberg beam positions in a single experimental run.
a, red Rydberg beam imaged directly on the camera, b, the light shift of the blue
Rydberg beam creates a slightly repulsive potential, which leads to a hole in the atom
distribution for low z-lattice depth < 20Er (for a calculation of the expected light
shift see Table 5.3). For both images the field of view is 64× 64 µm2.

one shown in Fig. 5.2. With the help of dichroic mirrors the red beam was overlapped
with the z-lattice and the blue beam is going in reverse direction along the imaging
path. The big advantage of the scheme is also the possibility to check the alignment
of the excitation beams in a single shot, as the red beam can be imaged on the camera
and the blue beam can be detected by its repulsive potential on the atoms (Fig. 5.3).
The geometric beam configuration described above allows in principle to reach

a very good σ− polarization of the red beam. In order to align the polarization
we apply a magnetic offset field that points in the opposite direction as the off-
set field we want to use later in the experiment to split the magnetic hyperfine
states such that they are optically resolved. We set the red laser on the resonance
5S1/2, |2,− 2〉 → 5P3/2, |3,− 3〉 and minimize the absorption using a λ/2,λ/4 wave
plate combination. Another technique used is to minimize the absorption on the
resonance 5S1/2, |2,− 2〉 → 5P3/2, |1,− 1〉 in the final magnetic field, as there is no
π-polarization component expected if the beam is sent along the magnetic field direc-
tion. The polarization of the blue beam was tuned via preadjusted waveplates-cube
setups in the transmitted light through the vacuum chamber. The only problem of
this technique is to reach the opposite σ-polarization with respect to the red beam.
But this can be checked by spectroscopy on the atoms.

5.5.2. Laser system

The two-photon excitation to Rydberg states requires two laser systems, which are
for our choice at 780 nm ("red") and 480 nm ("blue"). The laser system is in some
aspect different from the typical laser system for D1 and D2 line of rubidium. As the
natural linewidth of the Rydberg transition is rather small on the order of few kHz, and
also the Rabi frequencies reachable are typically not above 1MHz for the excitation
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Figure 5.4.: Schematic of Rydberg laser setup. Not all essential components
are shown, e.g. λ/2 plates, lenses and mirrors are mostly left out. L1: f = 150mm,
L2: f = 140mm, focussing through small aperture AOM with small focus to increase
switching speed; L2 is large enough for the 0th and 1st diffraction order. L3 mode
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of extended ensembles, at least a factor of ten higher stability of the lasers than for
laser cooling of rubidium is desirable. Another requirement is some tunability of the
laser for the second step of the two-photon excitation, because the Rydberg levels are
spaced by around 50GHz in the range of interest.
The light at a wavelength of 780 nm is generated by a diode laser. Its frequency

is stabilised using a modulation transfer spectroscopy in a rubidium vapour cell (see
also Appendix C.4, Fig. 5.4). The big advantage of this direct spectroscopy lock is its
long-term stability. In contrast, an increase in short-term stability is rather hard to
reach in this way. Typically, an additional medium-finesse cavity would be required to
narrow down the laser line, but for simplification of the laser system we just used the
modulation transfer spectroscopy lock which could be optimized to reach a FWHM
linewidth of the red laser of about 50 kHz. This was checked using a beat with a
second laser stabilized to an ultra low expansion glass (ULE) cavity.
The stabilized light is then shifted to the blue side of the lock transition

∣∣5S1/2, F = 2
〉

→
∣∣5P3/2, F = 3

〉
by a double pass acousto-optic modulator (AOM) at 350MHz. To

further suppress stray light through this AOM we use two additional AOMs with
compensating shift frequencies for switching. One of them is also used for the sample-
and-hold pulse stabilization. Before we have cold atoms in the vacuum chamber in
the experimental sequence, we stabilize the red Rydberg light to a certain power level,
which is then reproduced during the pulse for the Rydberg excitation. This way,
long-term drifts, e.g. in fibre coupling efficiency, can be compensated.
The light at 480 nm is produced by frequency-doubling light at 960 nm, which is

emitted from a diode laser and amplified by a tapered amplifier (Fig. 5.4). This
laser is stabilised by a phase-lock to a master laser also operating at 960 nm. The
master laser at 960 nm is locked to a temperature stabilised ultra low expansion glass
(ULE) cavity in a vacuum chamber (Fig. 5.4). The described locking scheme allows for
tuning the frequency of the slave laser while transferring the narrow spectral linewidth
of the master laser (Fig. 5.5). This is only possible by using a high-bandwidth offset
lock (Fig. 5.6). To reach a high capture range of the lock one can nowadays use
a high-bandwidth phase-frequency detector chip. The described setup still uses a
chip with only 200MHz bandwidth (AD9901) in a configuration that limits it to
20MHz. To increase the capture range to ≈ 500MHz we use a two-step down-mixing
of the beat signal between the slave and master laser. The first signal in the range
0 − 680MHz is fed to a frequency-to-voltage converter and the second signal to a
phase-frequency-detector. A window comparator based on the ramp of the frequency-
to-voltage converter can now be adjusted to switch to constant output voltages outside
the capture range of the phase lock and to the phase-lock error signal in between. In
this way the step-like phase-frequency-detector error signal is simply extended in one
direction to the point of zero frequency at the frequency-to-voltage converter and in
the other direction essentially unlimited. The large capture range allows to stabilize
the laser by just flipping the lock switch. By construction, this phase lock stabilizes
the beat of both lasers to an offset frequency, which is the synthesizer frequency plus
an offset of 660MHz. The offset is caused by the two down-mixing steps with 680MHz
and 20MHz.
The short-term linewidth of the slave laser was measured to around 20 kHz using an
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Figure 5.7.: Long term drift of the ULE cavity. Collection of synthesizer fre-
quencies for the 43S Rydberg resonance on the cold atoms over more than two years.
Each blue dot corresponds to one resonance curve. Green line, linear fit. We observe
a linear drift which can explained by ageing of the ULE glass [284]. The linear drift
can be fitted as −0.010 58MHz/day · t+3017.57MHz, where t is the time in days since
23/01/2012 and the frequency is the synthesizer frequency. The drift corresponds
to 122mHz/s, which is on the same order of magnitude as in other setups ([284]:
63mHz/s, [285]: 56mHz/s)

independent resonator (EagleEye, Sirah Laser- und Plasmatechnik GmbH, Germany),
which can resolve a linewidth down to ∼ 20 kHz. The reference resonator is not long-
term stabilized and therefore does not allow any conclusions about long-term stability
of our laser. The best choice for long-term stability checks is the targeted Rydberg line
itself. We checked the long-term stability of the two-photon excitation to be 50 kHz
over several hours (FWHM of the centre of the line) using an EIT-spectroscopy in a
rubidium vapour cell (see also section 5.5.3) [85]. The very slow drift of the ULE cavity
due to ageing can be compensated by daily resonance scans or linear extrapolation
(Fig. 5.7)
More details on the laser setup can be found in the Masters thesis by Ahmed Om-

ran [283].

5.5.3. Rydberg-EIT spectroscopy in glass cell

In general, electromagnetically induced transparency (EIT) and also the special case
with a Rydberg level involved have been studied in depth experimentally [85, 286] as
well as theoretically [287]. In our setup we use the EIT-spectroscopy mainly to check
our laser system. We are working in a regime with rather high probe-power, such
that it is not clearly in the EIT-regime any more. At this point we want to skip the
debate about whether these experiments are really in the EIT-regime or not [288],
as this is not relevant here. The EIT-spectroscopy in rubidium allows to determine
the transitions to Rydberg levels with sub-Megahertz precision and is therefore more
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Figure 5.8.: EIT spectrum of the 44D state. a, Blue line, EIT spectrum in the
glass cell of the 44D state of 85Rb scanning the red probe laser. Grey line, same scan
but without the blue coupling laser. The wiggles on the left hand side in signal as well
as background trace are Lamb dips due to residual back-reflections in the tilted glass
cell. b, Same spectrum as in a, but scanning the blue coupling laser, which makes
the spectrum nearly background free. Outliers due to failure of the doubling cavity
following the frequency steps are removed. The peak of the 44D3/2 and 44D5/2 are
clearly visible using just a balanced amplified differential detector. For higher Rydberg
states an additional Lock-in detection could be helpful.

precise than a wavemeter. The typical width of the resonances is lower than the
natural linewidth of the D2 line [85] and in our setup typically 3-5MHz FWHM.
As an example we show here the EIT spectrum of the 44D state (Fig. 5.8), which

was taken by a scan of the blue coupling beam and by that avoiding the Doppler-
background of the D2 line. The fine structure splitting can be extracted quite accur-
ately to 138(1)MHz ([86]: 140.8(11)MHz). The deviation is most probably caused by
a residual drift of one of the laser locks during the scan, which were not checked to
below 1MHz during this measurement.
More details on the EIT measurements and further investigations on intensity and

magnetic field dependence can be found in the thesis by Ahmed Omran [283].

5.5.4. Calculation of the expected frequencies for the Rydberg
resonances

Due to the variety of locks and acousto-optic modulators, calculating the expected
frequency for the offset lock of the blue laser for the Rydberg resonance can be quite
confusing. The general scheme in our setup to shift the laser system to a certain
Rydberg level is the following. The red laser is always fixed in frequency. The master
laser for the blue laser has to be locked on a certain mode of the cavity, which is at a
convenient frequency offset for the phase lock of typically 2− 5GHz. Afterwards the
phase lock is used to fine-tune the blue laser to the Rydberg resonance. This is done
via tuning the frequency of the synthesizer, which is used in the first down-mixing
step.
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In the following a calculation example for 43S to determine the target beat frequency
is discussed. We used the cavity mode at a frequency of νmaster = 311.858 34(4)THz
(error is reproducibility of our wavemeter, but not the absolute accuracy). For the
following calculations we use the literature value for the absolute transition frequency
5P3/2, F = 3 → 43S1/2: ν43S = 623.724 510 7THz [86]. We consider the frequencies
before the second harmonic generation, so the offset frequency of the master laser
compared to the Rydberg transition is ν43S/2 − νmaster. The slave laser is shifted up
in addition to the synthesizer frequency by 660MHz due to the phase lock design.
After second harmonic generation there is a shift of +200MHz of the slave laser
by the switching and stabilization AOM. There is also a contribution caused by the
intermediate detuning introduced by the +350MHz double pass AOM of the red laser.
In total the AOMs cause therefore a frequency correction of (200MHz+700MHz)/2. In
general, also the differential Zeeman shift of the ground state ∆νZg and Rydberg state
∆νZr plays a role. For the Rydberg S-states this term cancels, as the magnetic shift
for both levels is the same. The two-photon resonance is magnetic field insensitive.
We attribute the deviations from the expected value to a wavemeter calibration error,
which we fit to the data for the 43S state. The determined value νwerror = 210(50)MHz
is not a surprisingly large error for the wavemeter at 960nm as it was calibrated for
the D2 line of rubidium.
With these considerations, the synthesizer frequency for the resonance to the 43S

state can be calculated to

ν43S/2−νmaster+νwerror−660MHz−(200MHz+700MHz)/2+(∆νZr −∆νZg )/2︸ ︷︷ ︸
=0 for S-states

= 3015MHz .

(5.1)
For the EIT spectroscopy the AOMs for red and blue laser are not in the relevant

beam path. The magnetic field in the glass cell is close to zero field and we can neglect
the magnetic field shifts. Therefore we get a 450MHz larger synthesizer frequency for
the EIT resonance.

ν43S/2− νmaster + νwerror − 660MHz = 3465MHz (5.2)

On 06/12/2012, the following beat frequencies for the resonance were obtained.
For the EIT spectroscopy it was 3465.0(3)MHz for the resonance of the cold atoms
3014.7(3)MHz. The frequency for the EIT should be always (700 + 200)/2 MHz =
450MHz higher, which is exactly the value observed in the experiment.
To check the values and confirm the wavemeter error we can look at the data for the

41D state (2012-12-03): The resonance of the state 41D3/2 was found in an EIT spec-
trum at 2616MHz synthesizer, 41D5/2 at 2701MHz synthesizer. With the literature
value ν41D3/2

= 623.701 857 8THz and ν41D5/2
= 623.702 029 5THz [86] and the mas-

ter frequency νmaster = 311.8479THz the calculation yields 2580MHz and 2670MHz
for 41D3/2 and 41D5/2, respectively.
The calculated values coincide within wavemeter reproducibility with the experi-

mentally determined position of the resonance. Based on the high-precision EIT data
in [86], all the accessible levels can be found without any search by calculation to
wavemeter precision.
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5.6. Optical detection of Rydberg atoms

In the following we describe the experimental sequence for excitation and detection of
Rydberg atoms in more detail and characterize the properties of the optical detection
technique. In particular, details of the depumping technique are explained and the
detection efficiency is estimated in several different ways.

5.6.1. Experimental sequence for Rydberg excitation and detection

Our experimental sequence begins with the preparation of a two-dimensional degener-
ate gas of a few hundred 87Rb atoms confined to a single antinode of a vertical (z-axis)
optical lattice [14]. The gas is then brought deep into the Mott-insulating phase by
adiabatically raising an additional square optical lattice with period alat = 532 nm in
the xy-plane. The atom number in the Mott insulator can be adjusted to a certain
system radius of typically up to R = 6 µm, within which more than 80% of the lattice
sites are singly occupied. The atoms start out in the state

∣∣5S1/2, F = 1,mF = −1
〉

and are transferred via a HS1 microwave sweep [289, 290] to the hyperfine state
|g〉 ≡

∣∣5S1/2, F = 2,mF = −2
〉
which is then coupled to the Rydberg state |e〉 ≡∣∣43S1/2,mj = −1/2

〉
(Fig. 5.1).

This is reached by two excitation laser beams counter-propagating along the z-
axis, with an intermediate-state detuning δ/(2π) = 742(2)MHz. During the sequence,
a magnetic offset field of B ' 30G in z-axis-direction defines the quantization axis.
The field is created by the same coil as the slicing gradient but approximately half
in magnitude ("half gradient"). The gradient of the magnetic field is aligned along
the z-direction and the magnetic field is homogeneous in the atom plane for exper-
iments in two dimensions. The excitation pulse was formed by switching the laser
at 780 nm while the laser at 480 nm was on (Fig. 5.9). The temporal resolution
of our measurement is therefore set by the rise time of the 780 nm light, which is
' 40 ns, limited by the focus size in the 350MHz AOM. Immediately after the ex-
citation pulse, we use near-resonant circularly polarized laser beams to drive the
closed cycling transition

∣∣5S1/2, F = 1
〉
→
∣∣5P3/2, F = 2

〉
and the repump transition∣∣5S1/2, F = 2

〉
→
∣∣5P3/2, F = 3

〉
to remove all ground state atoms, with a fidelity of

99.9% in a few µs. The repumper is required to remove very few atoms from the F = 1
state which for example stayed there because of the imperfect state preparation. It
turns out that all parameters for this ground state pushout have to be carefully optim-
ized to reach the required high fidelity. We aligned the polarization of both pushout
and repump beam on the atom cloud to σ−. The pushout Rabi frequency should be
not too large compared to the magnetic field splitting to avoid off-resonant saturation
of non-addressed transitions, which constitute a leak out of the cycling transition.
For the repumping transition we use as high power as available to repump also the
shifted states in the F = 1-manifold. When all the ground state atoms are gone,
the Rydberg atoms were pumped down to the ground state by resonantly driving the∣∣43S1/2,mj = −1/2

〉
→
∣∣5P3/2, F = 3,mF = −3

〉
transition for 2 µs (for details see

Sec. 5.6.2).
The former Rydberg atoms are then recaptured in a very deep three-dimensional
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Figure 5.9.: General sequence used for Rydberg excitation and detection.
a, The Rydberg sequence starts with few µs excitation pulses, followed by the ground
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Rydberg atoms shown in a white to blue colour map throughout this thesis.
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Figure 5.10: Depumping resonance
F = 1. Probability to detect Rydberg
atoms by depumping via the F = 1 in-
termediate state. The number of detec-
ted Rydberg atoms is enhanced by about
a factor of two around 1116(2)MHz. The
background is caused by recapture of spon-
taneously decayed Rydberg atoms.

lattice. The lattices are switched on within about 1 µs to about 3000Er each. Now
the atoms are back in the lattice configuration where we can perform fluorescence
imaging in an optical molasses, but the magnetic field needs to switched off slowly
within ∼ 50ms before switching on the molasses light. The imaging then takes place
as demonstrated earlier at the experiment [21].

5.6.2. Depumping Rydberg atoms to the ground state

Alkali Rydberg atoms themselves are not suited to direct imaging techniques that leave
them in the Rydberg state. Due to the decay from the Rydberg state and the fact
that they are not trapped in typical optical lattices, it is also desirable for detection
to transfer population from Rydberg states back to ground states. To improve the
detection we stimulated the Rydberg atoms down to the

∣∣5S1/2, F = 2,mF = −2
〉

ground state as fast as possible after a Rydberg experiment by resonantly driving
the

∣∣43S1/2,mj = −1/2
〉
→
∣∣5P3/2, F = 3,mF = −3

〉
transition. The Rabi frequency
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intermediate F state EOM frequency (MHz)

F = 3 740
F = 2 980
F = 1 1110
F = 0 1156

Table 5.1.: Depump resonances from the 43S state. Resonances were calculated
for the half gradient of about 28.6G. The depumping resonances via F = 3 and
F = 1 were observed, the transition via F = 2 has no obvious advantage. The F = 0
transition would have the wanted decay properties, as atoms would decay from there
with unity efficiency to F = 1, but a transition from the Rydberg state to the F = 0
intermediate state is forbidden.

associated with this resonant single-photon transition was typically several MHz. In
combination with the short lifetime of the 5P3/2 state of 26 ns, this allows for a very
efficient and fast pumping to the ground state within < 2 µs. The laser light resonant
with the transition between the Rydberg and the intermediate states is generated by a
resonant free-space electro-optical modulator (EOM) in the path of the blue Rydberg
laser at 480 nm, which creates a side-band at the desired intermediate-state detuning
∆/(2π) = 742MHz. The other side-band and the carrier have negligible influence on
the atoms in the de-excitation phase since they are off-resonant. The EOM also allows
for the required fast switching of the deexcitation light within < 1 µs.

We will discuss in the following, how the required frequency of the EOM is de-
termined and which intermediate states are accessible for this technique. The ap-
plied magnetic offset field causes a differential shift on the |F = 1,mF = −1〉 ↔
|F = 2,mF = −2〉 transition of −60.086MHz with respect to the zero-field transition.
This corresponds to B = −60.086MHz/(3 · 0.7MHz/G) = 28.6G magnetic field. The
expected resonance for the side-band of the EOM hitting the F = 3 line of the 5P3/2

state is therefore 700MHz + (−2 · 0.70MHz/G + 3 · 0.93MHz/G)B = 740MHz. For
the F = 1 line the calculation is 700MHz + (−2 · 0.70MHz/G + 1 · 0.93MHz/G)B +
266.650MHz + 156.947MHz = 1110MHz (Rubidium data from [263]). The depump-
ing via |F = 3,mF = −3〉 has the advantage that from there only the transition to
|F = 2,mF = −2〉 is allowed, which could make some mF dependent detection scheme
possible in the future. It would be desirable to pump down via a path that forces the
atoms to decay into the F = 1 ground state. It seems that this is impossible, as the
transition via the F = 0 state is forbidden. The next best way is the F = 1 inter-
mediate state, which gives a 83% probability. This number is given by the branching
ratio for the decay from the F = 1 intermediate state ( 5

24 + 5
24 = 5

12 to F = 1 and
1
20 + 1

40 + 1
120 = 1

12 to F = 2 =⇒ P (F = 1) = 10
12 = 83.3%). The was checked at the

experiment where the probability to end up in the F = 1 ground state was measured
as 80(4)%.
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5.6.3. Detection efficiency estimates

The detection efficiency for Rydberg atoms in our setup is limited by the lifetime of
the Rydberg state and by the anti-confining character of the optical lattice potential
for Rydberg atoms. If a Rydberg atom decays to the ground state during the push-out
pulse, it will be removed as well and not detected. The residual motion of the Rydberg
atoms in the lattice potential also leads to a reduction of the detection efficiency when
the atoms move away from the focal plane of the imaging system, which has a depth of
focus of order 1 µm. Both effects can be minimised by decreasing the time the atoms
spend in the Rydberg state after the excitation pulse. The most obvious way to do
that is by increasing the efficiency of the removal pulse for the ground state atoms
which allows for a reduction of this pulse time.
Determining the detection efficiency in a setup is quite difficult, as it is a parameter

intrinsically connected with the detection apparatus. There are many ways to estimate
the detection efficiency, but a fully independent check is not possible due to the lack
of a second detection technique. But the consistency of several estimates for our
detection allows to pin down the detection efficiency quite well. We will show in the
following that all detection efficiency estimates yield values consistent with 65(10)%.

Detection efficiency from lifetime measurement

A measurement of the effective lifetime of Rydberg atoms in the lattice allows to es-
timate the detection efficiency. We assume that at a vanishing delay the extrapolation
curve of the lifetime should start at 100% detection efficiency. For longer waiting times
the detection efficiency is assumed to go down (Sec. 5.6.5). We measured a lifetime of
τ = 25(5) µs [291] and later of 38(12) µs (Sec. 5.7.5). This corresponds to a detection
efficiency estimate of 65(5)% for the experimental sequence used in Ch. 6 and a detec-
tion efficiency of 77(8)% for Ch. 7. The problem of this technique is that it assumes
an exponential decay, which is not the expected shape from theory (Sec. 5.6.5). But
in practice the decay can be very well approximated by an exponential function.

Detection efficiency from time evolution

Another technique is to compare measurements with theoretically calculated time
evolutions for well-defined initial atom configurations. This was for example done
for Fig. 6.7. Here the theoretical prediction matched the data best when assuming a
detection efficiency of ∼ 75%.
A more direct check is to use the single-atom resonance and Rabi oscillation curves

(Sec. 5.7.3). The maximum probability to detect a Rydberg atom there was≈ 60(10)%.
Noting that the signal will be also reduced by failure of preparing any atom in this
sequence making this rather a lower bound on the detection efficiency.

Detection efficiency from Fock states

In section 7.5 we observed a staircase of Rydberg excitation number in the system.
Such a measurement allows to fit the detection efficiency to the average signal of the
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event seq. no. count

Ne = 7, perfect (256-1) 183-4 261-5 3(1)
Ne = 7, 1 missing 149-2 181-2 214-2 200-

3 206-3 (215-3) (149-4)
151-4 234-4 259-4 274-5

11(3)

Ne = 8, perfect 201-5 1(1)
Ne = 8, 1 missing 159-3 (222-3) 242-3 213-

4 175-5 179-5 (252-5)
7(3)

Table 5.2.: Estimating the detection efficiency by the occurrence of near-
perfect Rydberg crystals. The 413 pictures from 06/08/2013 were checked by
hand and the number of events with perfect Rydberg crystals and crystals with one
Rydberg atom missing were counted. For reference to the data sequence and picture
numbers are given. Error bars are estimated based on images which could not be
clearly assigned.

stairs with known excitation number and we obtained 62(5)% in this case.

Detection efficiency from crystal observation

Comparing the number of perfect crystals with the number of crystals with one atom
missing allows to estimate the detection efficiency from the dataset with Ne = 7 and
Ne = 8 crystals (Sec. 7.7).
The following formula allows to estimate the detection efficiency from the ratio of

crystals with one atom missing to the number of perfect detected crystals. For this
estimate we need to assume a high preparation fidelity and a detection efficiency that
does not depend on the crystal configuration.(

Ne
1

)
αNe−1(1− α)1

αNe
=

number of Ne-crystal events with one atom missing
number of perfect Ne-crystal events

(5.3)

With α the detection efficiency of a single Rydberg atom at the correct place and Ne
the number of atoms in the perfect crystal. The experimental numbers required for
this calculation are summarized in Table 5.2.
Solving the equation for both datasets we end up with a detection efficiency estimate

of about 60(10)%.

5.6.4. Spatial resolution of the detection

Due to the lattice geometry the detection resolution of Rydberg atoms is of course
limited by the lattice, which leads to discretisation of the possible positions of detec-
ted Rydberg atoms to the lattice spacing of 532 nm. Two effects reduce the spatial
resolution of our detection technique compared to this ideal case. The first one is the
residual hopping of the atoms during the fluorescence imaging phase. We found that
such an event can occur in our experiment with a probability of approximately 1%
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per particle. When this happens, the moving atom will yield a fluorescence signal on
two adjacent sites, which can be falsely attributed to two distinct atoms by the re-
construction algorithm. This detection artefact results in a correlation signal at short
distances r < 1 µm (Fig. 6.6a). However, due to their rarity these events have negli-
gible influence on the spatial resolution. The second effect is the possible motion of the
Rydberg atoms in the optical lattice potential before imaging. For Rydberg atoms,
the lattice potential has similar amplitude but opposite sign compared to ground state
atoms (Sec. 4.3). An excited atom therefore finds itself at a maximum of the periodic
potential and can move in the xy-plane with an average velocity of ∼ 30 nm/µs, for
a typical depth of the optical lattice potential of Vlat = 40Er. Both effects lead to a
possible motion of the Rydberg atoms by about one lattice site during the ≤ 10 µs of
the removal pulse. The recoil velocity acquired in the two-photon excitation process
is insignificant in comparison as it is oriented along z-direction and only of smaller
magnitude ' 4 nm/µs.
The spatial resolution can be also checked experimentally based on the single atom

Rabi oscillation data (Sec. 5.7.3). As the position of the single initial atom is known,
a measurement of the positions of Rydberg atoms allows to infer the movement of the
atom from excitation to detection. For the preparation of a single atom via the spatial
light modulator [50] the position is due to the phase drifts of the lattice only known
to be in a 2× 2 lattice site region. A measurement shows that about 5% of the single
atom events for the normal addressing are outside this region, for the distribution
of the Rydberg atoms afterwards we measure about 20%. This suggests that the
Rydberg excitation causes some broadening, but consistent with the estimation above
only on the order of one lattice site.
The tunnelling rate of an atom in the lattice depends exponentially on the band

index, which leads to the expectation that it is either tunnelling around or fixed in
position. A slowly moving atom in a deep lattice is quite unlikely. This means that
the average movement of a particle is not the best measure for the spatial resolution
of the Rydberg detection. A better view is that many atoms are detected more or
less exactly at the initial position, while for few atoms recaptured in higher bands,
the detected position is probably totally uncorrelated with the initial position. From
the measurement discussed above, we can conclude that this fraction is . 15% of the
detected Rydberg atoms. Recent experiments indicate that this fraction is lower for
the 68S state [292].

5.6.5. Simplified theoretical model for the detection efficiency

In this section we will look at a very simplified model as an upper theoretical bound
for the detection efficiency. We do a 1D calculation and assume that the atoms start in
the lowest band Wannier function, which then expands in a repulsive lattice potential
for some time t and is then recaptured in a deep optical lattice. In our setup there is
some hold time for ramping magnetic fields in the deep lattice before molasses cooling
sets in. Hence we assume that only atoms in states with a maximum tunnelling rate
of 10Hz are detected. This number comes from the fact that the Rydberg experiment
is performed in a magnetic field, but the imaging requires zero field. In practice we
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have to wait for ∼ 50ms before switching on the optical molasses for the fluorescence
imaging to make sure that the absolute value of the magnetic field is below 100mG,
which is required for the molasses to work properly. During this time, the population in
higher bands tunnels through the lattice. As the tunnelling rate depends exponentially
on the band index, the results only slightly depend on the exact tunnelling rate used
as cut-off. The calculation of tunnelling matrix elements for very deep lattices is
numerically unstable using the standard techniques. To avoid problems we use an
extrapolation to determine the number of bands with tunnelling rates smaller than
10Hz. A fit yields for the number of these bands floor(0.24866·V 0.60853

recapture), as a function
of the recapture lattice depth Vrecapture in recoil energies. For 3000Er this gives 32
bands.
The calculation is done as follows: The Wannier functions are determined in a stand-

ard way by summing up all Bloch functions in a certain band [293]. They are then
time-evolved using a matrix exponential taking into account the ponderomotive poten-
tial seen by the Rydberg atoms in the 1064nm lattice (Sec. 4.3). The ponderomotive
potential used here for 43S1/2 is VRydberg = −0.6Vlatt (where 0.600 = 0.925 · 0.648,
the first factor is the free electron ponderomotive potential, the second one due to
averaging in the lattice). Afterwards the overlaps to all Wannier functions on-site and
off-site in all bands of interest are calculated. These calculations were checked using
a full lattice diagonalization and overlaps with Bloch functions. In the end, the sum
of all overlap probabilities with all Wannier functions in a band has to equal the sum
of the overlap probabilities with all Bloch functions with varying q in a band, which
can be used as consistency check.
Figure 5.11a shows a 1D calculation for typical parameters. The on-site recapture

probability of Rydberg atoms decreases strongly for expansion times longer than 10 µs.
Surprisingly, the full recapture rate goes up again for longer times, as the Rydberg
atoms can also be recaptured in neighbouring sites. The dependency on the initial
lattice depth is illustrated in Fig. 5.11b. There is some effect of the initial lattice
depth, but it is mainly negligible for relevant lattice depths and times below 10 µs.
The effect of the slightly changing shape of the initial ground state wavefunction is
below 1% and barely visible in the figure. The basic calculation has been also checked
in an experiment with ground state atoms in the lattice using a release-and-recapture
experiment and can reproduce the correct timescale of atom loss (Appendix G.8).
The 1D calculation allows to determine the 3D recapture probabilities by assuming

separability of x/y/z directions. For the around 10 µs evolution time of the Rydberg
state in the experiment we calculate a recapture probability of 0.76 (Fig. 5.11c), which
is close to the experimentally determined values of 0.75(10) [291] and 0.62(5) [294].
Although the detection efficiency fits quite well the experimentally determined val-

ues, the calculations have to be taken with care, as some effects have been neglected
here. In the following we list some of these in descending order of estimated relevance
for our specific experiment:

1. molasses might not cool atoms in high lying bands efficiently
2. interaction between Rydberg atoms
3. decay of Rydberg atoms
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4. recoil due to Rydberg excitation

5. forces due to electric field gradients

6. calculation only 1D (assumes separability of x/y/z and perfectly isotropic Rydberg
state)

7. gravity

The dependency of the molasses detection efficiency on band index is very hard
to estimate and to measure. It would be interesting to know the detection efficiency
in molasses imaging in dependence of the initial band index, but such measurements
would require a lot of effort. The interactions between Rydberg atoms can vary by or-
ders of magnitude depending on the exact distance between the atoms. As the Rydberg
atoms can typically only be excited with interaction energies within the effective ex-
citation bandwidth, one can estimate the acceleration at the blockade distance, where

it is largest, by: a ≈ 6
m

(
(~Ω)7

C6

)1/6
, which leads to movements of less than 100 nm

within 10 µs for our parameters. As the forces depend on the actual configuration of
Rydberg excitations, the effect on the detection is not easily estimated and depends
on the performed experiment, in particular on the detuning (Sec. 5.7.1).
If the Rydberg atoms decay during the expansion in the lattice, the resulting effect

on the recapture probability is not clear, as this depends on the current position in
the lattice potential. Probably this leads to an averaging of the depump detection
efficiency and the spontaneous-decay detection efficiency. The recoil of the Rydberg
excitation for the counter-propagating configuration is negligible, as it should cause
movement of less than 40 nm in 10 µs. The neutral Rydberg atoms are in first order
not affected by electric fields and electric field gradients over the size of the Rydberg
atom are probably small. The movement due to gravity is negligible compared to
the error sources above and can be estimated to less than 1 nm in 10 µs. From the
calculations it seems desirable to go to a Rydberg state around 70S, as the effect of the
lattice potential is reduced and a detection efficiency of > 0.9 is expected (Fig. 5.11d).
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Figure 5.11.: Recapture probability calculations. a, Probability to recapture
in neighbouring lattice sites in 1D. The atoms are released from a 80Er lattice and
recaptured in a 3000Er lattice. The effect of recapturing atoms on neighbouring sites
is negligible for t < 10 µs. b, Probability to recapture versus initial lattice depth in
1D. The recapture efficiency increases for lower initial lattice depth, as the spreading
of the wave packet becomes slower. But the effect is not very big and is probably
screened in the experiment due to other effects at lower lattice depth. The revival of
recapture probability around 30 µs will be strongly suppressed in the experiment due
to the lifetime of the Rydberg states, which is on the same timescale. c, Probability
to recapture Rydberg atoms in a 3D lattice for the experimentally used configuration
from 40/40/80 Er to 3000Er. Shown is the total recapture probability in any Wannier
state on nearest and next nearest neighbour sites (sites further away are not occupied
significantly in the given time). d, Probability to recapture versus Rydberg state. This
graph shows directly the effect of the ponderomotive force on the recapture probability
from a 40/40/80 Er lattice in a 3000Er lattice after an expansion time of the Rydberg
atom of 10 µs. The calculations predict that the recapture probability increases tre-
mendously when changing to a Rydberg state around 70S, which resembles the sign
change of the Rydberg trapping potential in the lattice for these states (Sec. 4.3). For
reference also the 1D recapture probabilities for initial lattice depth 40Er and 80Er
are shown. These were used to calculate the 3D recapture probability.



5.7. Rydberg experiments with ultracold atoms 71

5.7. Rydberg experiments with ultracold atoms

In this section experiments involving the Rydberg excitation of ultracold atoms are
discussed. These experiments contribute to the understanding of our system, but are
also required to determine important parameters for the following experiments, in
particular the Rydberg resonance position and Rabi frequency.

5.7.1. Rydberg resonance determination

As the Rydberg atoms are interacting, the measurement of the isolated atom resonance
to the Rydberg level is not as straightforward as for non-interacting systems. Our
detection scheme for the Rydberg atoms does not allow for very thin large-volume
clouds, as the detection volume is limited by the field of view of ≈ 64 × 64 µm2, the
depth of focus as well as the volume of sufficient lattice depth for molasses imaging.
For a typical blockade radius on the order of 5 µm, the maximum number of Rydberg
atoms that can be detected is limited by the maximum area of the 2D system that
can be prepared. For a dilute cloud with ≈ 40 µm diameter, a maximum of around 50
Rydberg atoms is expected. In practice, the maximum observed is on the order of 20,
due to detection efficiency and other imperfections. But this can only be achieved for
very dense clouds, which is not favourable for resonance scans, as the resonance line
is strongly broadened due to density-dependent interaction effects. For the optimal
signal-to-noise ratio and low interaction broadening of the resonance, we use large and
dilute clouds of atoms. In the optimal case the atoms should all have a distance a bit
larger than the blockade radius. A resonance curve which is taken in this regime is
shown in Fig. 5.12, where the linewidth of the resonance is only slightly broader than
expected from the Fourier limit.
In practice it is hard to control the density of the dilute clouds accurately, especially

there will be always a non-zero probability that two atoms are closer than the blockade
radius. Already preparing a dilute and cold cloud is kind of a contradiction, as a cold
cloud will always get dense at the centre of the harmonic confinement. We aim for a
cold cloud here, as band excitations in the system can easily lead to tunnelling before
or during imaging and thereby can cause uncontrolled detection errors.
In Fig. 5.13 we investigate the broadening of the Rydberg resonance for systems

with varying density, comparing clouds that are diluted on purpose with a unity filling
Mott insulator. We observe an increasing blue shift of the resonance with increasing
density starting from the dilute cloud to the cloud with higher density and the Mott
insulator. But the shift is always on the order of the width of the resonances. We
note that the shape of the resonances depends on the pulse parameters, which are
chosen similar for the presented curves. For the dense large clouds (purple curve),
the resonance looks slightly bimodal with one peak coinciding with the low density
thermal cloud resonance and one with the high-density MI resonance, which indicates
that there are high- and low-density regions in the large clouds. This is one of the
main issues while working with dense large clouds, as the effects of the high-density
regions are always smeared out by excitations in the larger low density regions. This
can be circumvented by using a Mott insulator, as we get a very homogeneous density
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Figure 5.12: Narrow Rydberg res-
onance in dilute cloud. Blue points,
experimental data, averaged over 12
scans. Green line, Gaussian fit. The
Rydberg line is still broader than expec-
ted from the laser linewidth and Rabi
frequency. The width is still broadened
due to interactions and the Fourier limit
of the pulse, as it does not make sense
to use too long excitation pulses as
this decreases detection efficiency (Sec-
tion 5.6.3). Also the offset is most prob-
ably caused by the interaction broad-
ening in the dense centre of the cloud.
On the x-axis twice the synthesizer fre-
quency is shown. The fitted FWHM is
390 kHz. Pulse length for the excitation
was 2 µs, which leads to a Fourier lim-
ited FWHM of 302 kHz.
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of one atom per lattice site. Also the resonance line is less broadened compared
to the high-density cloud due to the more controlled initial state with lower atom
number fluctuations. This controlled initial state then also allows to observe sub-
Poissonian fluctuations in the number of excited Rydberg atoms (Fig. 5.13b). Sub-
Poissonian fluctuations in Rydberg excitation numbers have been measured before
[108–110, 114, 115] and were typically characterized by the Mandel Q parameter,
which is defined as Q = var(Ne)/mean(Ne) − 1. It becomes −1 for a Fock state and
0 for a Poissonian distribution. The Q factor cannot be lower than −α, where α is
the detection efficiency for a single Rydberg atom (Appendix C.3). We observe clearly
sub-Poissonian excitation number fluctuations of Q = −0.38(12) (Fig. 5.13b), but they
are not saturating the bound set by the detection efficiency. This is not surprising, as
we do not use pulses optimized for this purpose. The data indicates that the minimum
Q factor arises not at the resonance of a single atom but at the interaction shifted
resonance position in the Mott insulator. We compare the resonance data as well as the
Mandel Q data with theory calculations. To make calculations feasible, typically the
basis set is reduced to states where all Rydberg excitation have a minimum distance,
the cut-off radiusRc (Appendix D). For resonant excitation of Rydberg atoms, a cut-off
radius below the blockade radius gives already good results. Due to the blue-detuned
excitation in the resonance curve, the situation is different here, as interaction shifted
pair states become resonant on the blue side of the resonance. A simple estimate
shows that Rc �

(
C6
~∆
)1/6 is required for accurate results. This shows that Rc should

be smaller than 5.5 sites for ∆ = 2π · 4MHz in our experiment for the 43S state.
As a calculation with Rc < 5.0 sites is challenging, we show data for varying Rc.
While the calculation on the red side shows no effect on varying cut-off radius, a much
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Figure 5.13.: Rydberg resonance scan in Mott insulator. a, Comparison of res-
onance scans with rectangular pulses with varying initial atom conditions. Blue points,
resonance scan in Mott insulator of 192(12) atoms and radius 8.1(8) sites. The blue
line is a Gaussian with centre 6023.9MHz and sigma 0.37MHz. The dataset consists
of around 70 pictures per frequency and the excitation used the same 4 µs amplitude
modulation as the sweep in Fig. 7.6a but without frequency chirp. For reference we
show also two resonance curves taken with simple pulsed excitation in thermal clouds
and because the Rydberg atom number is much higher here, the data is scaled down
a factor of 10. Orange points, resonance curve in dilute thermal cloud, orange line,
Gaussian fit (µ = 6023.2MHz, σ = 0.59MHz). Purple points, resonance curve in a
more dense cloud, purple line, Gaussian fit (µ = 6023.6MHz, σ = 1.11MHz). For
this resonance curve the line shape is asymmetrically broadened. We note that the
used synthesizer frequency is half the frequency shown on the x-axis. The vertical
grey bar marks the resonance position determined by the yellow data. b, Blue points,
Mott insulator resonance curve from a. Red points, Mandel Q factor for the same
data (slightly offset to avoid overlapping error bars). The minimum Q value for the
non-optimized excitation pulse here is −0.38(12). We compared these data with the-
oretical calculations for an ideal disc-shaped system with 197 atoms (8 sites radius)
with varying cut-off radius Rc of 6.0, 5.5 and 5.0 sites (lines, light to dark colour).
The theory calculations take into account a detection efficiency of 62%.
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smaller Rc is required for convergence on the blue side. For more than 2MHz blue
detuning, it is not clear that the calculation is well-converged, but the interaction
energy for two Rydberg atoms at 5 sites distance is already 6.9MHz, such that it
should not be possible to excite these pairs. A comparison of the calculation with
Rc = 5 with the experimental data shows reasonable agreement. For the resonance
curve the theory fits very well on the red side, while a higher signal is expected
compared to the experiment on the blue side of the resonance. For a blue-detuning of
more than 1MHz the detection efficiency in the experiment is probably reduced, as the
interaction energy between the excited Rydberg atoms in this regime is high enough to
cause motion of the atoms and a reduced recapture efficiency of the atoms (Sec. 5.6.5).
Interestingly, the unexpectedly high signal at the rightmost experimental point of the
resonance curve in Fig. 5.12b is reproduced in the theory. This is probably related to
a pair excitation resonance of Rydberg atoms at a certain distance in the lattice. The
Mandel Q parameter obtained by theory matches quantitatively quite well over the full
detuning range. In the theory as well as the experiment we see a shift of the strongest
sub-Poissonian counting statistics to the blue side of the single-atom resonance. There
is also a region with significant super-Poissonian statistics but only on the blue side
of the resonance in accordance with theory. Similar asymmetric behaviour in the
Rydberg resonances and the Mandel Q factor has been recently observed by Schempp
et al. [115].

5.7.2. Light shift calibration of the red Rydberg beam

The two-photon excitation scheme to the Rydberg state can be mapped to a two-
level system by adiabatically eliminating the intermediate state as shown in the Ap-
pendix C.1.2. This model is good to calculate the Rabi frequency. But there are
additional effects, which are often not considered in this simplification. The main
effects in our system are the light shifts of the two individual laser beams. The blue
power in our system is not big enough to create considerable light shifts (Table 5.3).
Most of the expected light shifts are only one the order of a few ten Kilohertz and
typically sufficiently stable that they can be neglected. The one light shift that ex-
ceeds all others by orders of magnitude is the light shift of the red Rydberg beam. It
shifts the intermediate state and the ground state. Only the strong light shift on the
ground state is relevant, as the magnitude of the light shift is small compared to the
intermediate state detuning of > 700MHz. The light shift does not cause any trouble
if it is stable and calibrated. During the experiments, it turned out that there is a
slight back-reflection of a few percent of the red beam from the window in front of
the objective, which creates a modulation of the light-shift depending on the exact
slicing position in the vertical standing wave. This is caused by the incommensurate
wavelength of 780 nm of the Rydberg beam and 1064nm of the lattice beam. By chan-
ging the adjustment of the beam we could reduce this effect to a tolerable intensity
modulation of < 10%. To allow for the compensation of the light shift, a calibration
is required. For this purpose a measurement of the Rydberg resonance for various red
power would do the job, but that would be rather tedious. A more effective way is to
use microwave spectroscopy on the transition |F = 1,mF = −1〉 → |F = 2,mF = −2〉
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light shift on ground state

light light shift scaling typical light shift

red Rydberg 371.4Hz/(W/m2) 1.66MHz for P = 22.8 µW and w0 = 57 µm
blue Rydberg 1.10mHz/(W/m2) 17.6 kHz for P = 10mW and w0 = 20 µm
lattice (1D) −2.762mHz/(W/m2) −143.5 kHz for P = 100mW and w0 = 70 µm
lattice (1D) −1Er/Er 40Er → −81 kHz

light shift on 43S state

light light shift scaling typical light shift

red Rydberg 0.52mHz/(W/m2) 2.3Hz for P = 22.8 µW and w0 = 57 µm
blue Rydberg 4.2mHz/(W/m2) 67 kHz for P = 10mW and w0 = 20 µm
lattice (1D) 2.556mHz/(W/m2) 86.1 kHz for P = 100mW and w0 = 70 µm
lattice (1D) 0.600Er/Er 40Er → 48.6 kHz

Table 5.3.: Summary of light shifts of required laser beams on ground state
and 43S Rydberg state. The red Rydberg beam is 742(2)MHz blue-detuned with
respect to the 5P3/2, |F = 3,mF = −2〉-line, the blue Rydberg the same amount red-
detuned with respect to the 5P3/2, F = 3 → 43S1/2, F = 2 transition. The retro-
reflected lattice beam has a wavelength of 1064nm and the intensity given is the
incoming beam intensity. One important result here is that the lattice for the Rydberg
states has a factor of −0.6 compared to the ground state, which means it is weaker
in magnitude but repulsive. The most relevant light shift is the red light shift on the
ground state. The light shifts of blue beam and lattice are constant as the intensity
of these beams is actively stabilized. The red light shift on the Rydberg state is
negligible.

(Fig. 5.14). The differential light shift equals essentially the absolute light shift of the
|F = 2,mF = −2〉 state as the detuning of the red beam is only ≈ 740(2)MHz and is
6GHz farther detuned for the F = 1 ground state. As the scattering on the transition
is too strong to perform a microwave sweep of several milliseconds for spectroscopy,
we use a π-pulse. The main practical problem for the measurement is now to find
the resonance, as the width of the resonance given by the microwave Rabi frequency
of around 2π · 8.9(3) kHz is much smaller than the light shift. In the end this limits
the maximum light shift that can be measured to the point where the shot-to-shot
fluctuations of the light become larger than the width of the resonance.
It would be nice to measure the intensity of the blue beam the same way as the calib-

ration of the red beam, but the far detuning of the beam leads to extremely low differ-
ential light shifts, which are below the typical microwave spectroscopy resolution. The
differential light shift of the blue beam on the |F = 1,mF = −1〉 ↔ |F = 2,mF = −2〉
transition for σ− polarization is 0.012mHz/(W/m2), which leads to a 193Hz shift for
P = 10mW and w0 = 20 µm, which is impossible to detect for realistic magnetic field
stabilities. On the field insensitive transition |F = 1,mF = 0〉 ↔ |F = 2,mF = 0〉 the
expected differential light shift for the parameters above is 0.5Hz, which is also hard
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Figure 5.14.: Measured light shift of the red Rydberg beam. Blue dots,
experimentally determined resonance using microwave spectroscopy. Green line, fit to
the data. Grey line, theoretically expected light shift for a perfectly centred beam with
the independently measured beam waist of 44(1) µm. We see a ≈ 20% reduced light
shift compared to the expectation which is probably caused by a slight misalignment.
A stability measurement shows that there are about 10% fluctuations on the light shift
which are possibly caused by interference of back-reflections from the lower vacuum-
window.

to measure.

5.7.3. Single-atom Rabi oscillation

The most clean technique to determine the unshifted Rydberg resonance is to prepare
an isolated single atom. This is quite challenging in our setup, but using the single-site
addressing techniques [22] we can prepare a single atom with about 80% fidelity at
a certain lattice site. One can then use the single atom as initial configuration for
the Rydberg excitation. This method comes with the huge disadvantage of quite low
signal of less than one atom per experimental run. This low signal makes the whole
measurement process very time-consuming, as the maximum information per minute
is 2 bit. Also the preparation of the single atom has to be checked regularly as it is
expected to see no atom in most of the pictures in such an experiment. Nevertheless
it is still possible to calibrate the Rabi frequency in this way, as shown in Fig. 5.15.
It turns out that it is also crucial to determine the resonance position accurately
enough because typical interaction effects (as discussed in Sec. 5.7.1) cause shifts of
the line which are too large to measure the correct Rabi frequency. In the end the
optimal way is to also check the Rydberg resonance on a single atom. An exponentially
decaying oscillation is fitted to the data and yields a 1/e-decay constant of about
3 µs (Fig. 5.15). This quite fast decay of the Rabi oscillation can be explained by
modelling the dephasing and decay (Appendix C.1.2). The expected 1/e-decay time
of the oscillation is τ = 1/Γd =

(
1
2(γ1 + γ2 + γi) + 3

4Γr
)−1 ≈ 4 µs for the parameters

of this experiment (Red Rabi frequency Ω1 = 2π · 35MHz, blue Rabi frequency Ω2 =
2π · 13MHz, intermediate detuning ∆ = 2π · 742MHz, red laser linewidth γ1 = 2π ·
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Figure 5.15.: Single atom Rydberg resonance and Rabi oscillation to the 43S
state. a, single atom Rydberg resonance. On the y-axis the uncorrected probability to
detect a Rydberg atom per shot is shown. The maximum signal on resonance is around
0.6, limited by detection efficiency, preparation fidelity and not perfectly optimized
π-pulse for the scan. Fitted FWHM-width is 820 kHz. b, single atom Rydberg Rabi
oscillation. Blue points, experimental data averaged over about 10 measurements per
point. Green line, damped sine fit. Resulting parameters are: Ω ≈ 320 kHz and
1/e-decay time τ ≈ 3 µs.

50 kHz, blue laser linewidth γ2 = 2π · 20 kHz, effective dephasing due to intermediate
state γi = 2π · 3 kHz, Rydberg depopulation rate γr = 2π · 4 kHz, for details see
Appendix C.1.2). Other effects leading to a loss of visibility in the Rabi oscillation,
that are not included in the model discussed above, are the finite number of two-atom
events in the preparation and a drop in the detection efficiency due to the longer pulse
time. In conclusion it becomes obvious from the calculation that the dephasing is
dominated here by the linewidth of the red laser with FWHM-linewidth γ1. Recent
measurements with an improved locking to a cavity show nearly no decay over the
first oscillation [292], confirming the findings above.

5.7.4. Investigation of 41D states

Besides the Rydberg 43S state, we also had a look at the resonances of a D-state in
the experiments with cold atoms. We decided for the 41D state, as it is closest to the
43S state. As described in section 5.5.4, one can calculate the position of the expected
resonances quite accurately. For the experiment the start state 5S1/2, F = 2,mF = −2
and the σ−-polarization of the red beam were kept fixed while the blue polarization
was set to an equal σ+-σ−-mixture. For this configuration we expect to see three
resonances: 41D3/2,mj = −1/2, 41D5/2,mj = −1/2 and 41D5/2,mj = −5/2. The
following table summarizes the resonance frequencies for the experiment at about
28.6G and for the EIT spectroscopy in zero-field.
From the Rydberg EIT data we get a fine-structure splitting of 171.2(12)MHz for the
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state gj magnetic shift synth. freq. synth. freq. calc. EIT synth. freq.

41D3/2,mj = −1/2 0.8 −16.0MHz 2174.7(8)MHz 2141MHz 2615.5(5)MHz
41D5/2,mj = −5/2 1.2 −120.3MHz 2209.7(3)MHz 2175MHz 2701.1(3)MHz
41D5/2,mj = −1/2 1.2 −24.1MHz 2259.95(10)MHz 2223MHz 2701.1(3)MHz
43S1/2,mj = −1/2 2.0 −40.1MHz 3014.8(3)MHz 3015MHz 3465.0(3)MHz

Table 5.4.: Spectroscopy data for 41D states. The magnetic field shift is given
for the offset field in the experiment of 28.6G. The expected synthesizer frequency
is calculated using the formulas in Sec. 5.5.4. They are consistent with the measured
values within the wavemeter calibration uncertainty of 40MHz. 43S data for reference.

41D state, which is consistent with literature (from [86]: D5/2: 623.702 029 5(8)THz
and 41D3/2: 623.701 857 8(8)THz, this gives a splitting of 171.7(11)MHz). The differ-
ence frequency of the magnetic sub-levels of the 41D5/2 state of 100.5(3)MHz, which
is close to the expected differential magnetic shift of 96MHz at 28.6G. The reason for
this slight deviation is unclear, it might be due to electric fields or non-linear magnetic
shifts. Assuming an electric field and fitting the position of all three measured reson-
ances yields a rather uncontrolled electric field estimate of roughly 400mV/cm, which
would be rather large (Table I.1). A much better way to check the electric field is to go
to higher n Rydberg states as the polarizability scales with (n∗)7 (Table 3.1). Disreg-
arding the minor quantitative deviations on the order of a few percent the spectroscopy
is well-controlled and all Rydberg levels were found at the expected frequencies.

5.7.5. Rydberg lifetime measurement

As the optical lattice might have an influence on the lifetime of Rydberg atoms, we
checked the lifetime in a 3D lattice with depths 20/20/40 Er. This is half the lattice
depth we used for the 43S state measurements, but there is no influence within this
factor of two in lattice depth on the lifetime of the 43S state. In contrast to that, we
observed a slight reduction in detection efficiency of the 41D state for the higher lattice
depth. For the following measurements we used the standard sequence described in
Sec. 5.6.1 and varied the length of the push-out. This will kick out all atoms that
decay back to the ground state while the push light is on. A problem of lifetime meas-
urements with our detection scheme is that the time the Rydberg atoms are repelled
by the lattice is also increased. This effect leads to a reduced detection efficiency for
atoms that stayed longer in the Rydberg state. This looks like a reduced lifetime of
the Rydberg state in the data which means that we can only measure an effective
lifetime including detection efficiency, which, however, is the relevant timescale for
our experiments. There is another systematic effect in the measurement, which can
lead to higher lifetimes. In principal, we measure the room-temperature lifetime of
the Rydberg atoms, as the deexcitation laser is state-sensitive. But atoms in other
Rydberg states can also decay down to the ground state and get captured in the lattice,
which mixes in a bit of zero-temperature lifetime into the measured value. The fitted
lifetimes are both about 40 µs and within error bars compatible with the theoretical
expectations for the lifetime at 300K. The rather large error bars do not allow any
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detailed conclusion about the effects of the recapture efficiency, which should lead to
oscillations on the decay curve (Sec. 5.6.5). Maybe the poor convergence of the points
at certain times hints towards effects of the lattice. To conclude, we observed lifetimes
of the Rydberg atoms significantly longer than the typical timescales the atoms are in
the Rydberg state in our experiment and we find no clear effect on the lifetime that
can be uniquely attributed to the lattice.
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Figure 5.16: Rydberg lifetime
measurement in the lattice. Blue
points, average number of detected
Rydberg atoms over push-out time
for 43S1/2,mj = −1/2. Red points,
same for 41D5/2,mj = −1/2. The
fitted lifetimes (1/e-decay times) are
38(12) µs and 46(17) µs, respectively.
The red points are slightly shifted in
time to avoid overlapping error bars.
For interpretation of the measurement
and systematic errors see text.

5.8. Conclusion and Outlook

In this chapter we showed that the imaging of single Rydberg atoms can be imple-
mented with the help of an optical lattice. We did spectroscopy of the Rydberg lines
and see strong density-dependent effects on the line shape that can be explained by
pair excitations at distances shorter than the blockade radius, which become resonant
due to the van der Waals interaction.
The demonstrated technique to image Rydberg atoms is very promising for future

experiments, as it allows on the one hand single-site imaging of Rydberg atoms and on
the other hand leaves the former Rydberg atoms in the lattice, which could be used for
further experiments. The optical lattice allows to scale up experiments performed in
few optical dipole traps to hundreds of atoms and also allows for the implementation
of techniques to map the Rydberg population back to another spin state in the ground
state manifold.
The technique of exciting and imaging Rydberg atoms in an optical lattice is new

and not exhaustively investigated yet. For example the effects limiting the detection
efficiency are not fully understood and require further studies. Theoretically it should
be possible to reach very high detection efficiencies around 90%. There are several
ideas that could improve the detection efficiency. Many variations of the detection
sequence have been already tried, but up to now only a reduction of the time from
excitation to recapture of the Rydberg atoms after depumping improved the detection
considerably. A further decrease in time could be reached by either reducing the push-
out time by applying more advanced push techniques (Appendix F) or by depumping
the Rydberg atoms to another ground state and then detect only one of the ground
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state spin states. The problem with the spin-selective methods is that high-fidelity
ground state manipulation techniques are required, caused by the huge imbalance
in the number of ground state atoms and Rydberg atoms of more than a factor of
hundred. This asks for ground state spin-flip or spin-selective imaging (Appendix G.3)
with > 99% fidelity, which is probably feasible, but demanding. For example, we
implemented a push-out for the F = 1 ground state on the 5S1/2, F = 1→ 5P3/2, F =
0 transition using light with mixed σ+,−,π polarization, but the fidelity of this pushing
technique is limited due to low hyperfine splitting of 87Rb in the upper state. Maybe
it is possible to increase the pushing on this line by using very low saturation of the
transition, but then the pushing would become very slow. Another way to improve
detection efficiency would be to find some scheme to trap the Rydberg atoms in the
optical lattice. The only practical idea up to now is to go to a Rydberg state where
the ponderomotive potential of the lattice averaged over the Rydberg wavefunction is
slightly attractive (Sec. 4.3). But this is far from a real trap for the Rydberg atoms or
magic trapping. Other techniques typically rely on special trapping laser frequencies,
but in our setup there is no alternative for the lattice laser wavelength of 1064 nm.
One can think about two-photon schemes involving one lattice photon for trapping,
but from the numbers these ideas seem to create far too low trapping forces.
Another uncertainty in our setup is the lack of knowledge about electric stray fields.

We have no electric field plates in vacuum to measure Stark shifts and the stainless steel
chamber prohibits the installation of electric field plates outside the vacuum. This will
limit the setup at some point to medium high Rydberg states. Recent measurements
with the state 68S still show no strong electric field effects and coherence times of
several microseconds [292]. From that we can conclude that the electric fields, or at
least the fluctuations of the electric field are negligible for the 43S state. In principal
it is also possible to reduce the electric field sensitivity of the targeted Rydberg states
by mixing them with neighbouring states using off-resonant microwave fields [134],
which could make the compensation of electric fields unnecessary.



6. Observation of spatially ordered
structures using pulsed excitation

This chapter is based on the publication [291].

6.1. Introduction

For long times spontaneous appearance of ordering during the excitation of Rydberg
atoms in ultracold atomic systems has been expected, but experimental confirmation
turned out to be challenging [28, 295–304]. Observables without spatial resolution
provide only indirect access to ordering and can be also misleading as they rely on
the validity of the theoretical model. Nevertheless, many experiments found indirect
evidence for spatial correlations [110, 115, 182, 270]. But the used detection techniques
can hardly provide any detailed information about the shape of the correlation function
between Rydberg atoms. The most convincing evidence is still direct imaging, even
if spatial correlations can be theoretically extracted from a measurement of the full
counting statistics [305].
First spatial correlations were observed by Schwarzkopf et al. using an field-ion-

microscope, which allows for very large magnification and is not subject to the optical
diffraction limit [180, 306]. This experiment resolved the blockade radius, but the
effective resolution obscured information about the correlation function on distances
on the order of the blockade radius. The resolution was limited due to the point spread
function of the ion imaging system. Elaborate evaluation allows to model the influence
of their point spread function, which reaches an extension of up to 50% of the blockade
radius, on the correlation function. In contrast, we have very precise knowledge about
the point spread function in our experiment and also space is discretized by the lattice.
This leads to a resolution of about the lattice spacing of 532 nm, which is approximately
a factor of ten smaller than the typical blockade radius for the 43S Rydberg state
used throughout this chapter. Thereby the influence of the point spread function is
negligible in our setup.
One of the main new features of our experimental setup for imaging of Rydberg

atoms is the very high resolution and at the same time good detection efficiency. In
a series of experiments we demonstrate the possibility to excite and image Rydberg
atoms in spatially ordered configurations with high resolution and extract correlation
functions with high precision. The single-site resolved imaging directly allows for the
determination of arbitrary spatial correlation functions [38]. This enables us to probe
the spatial order of the high-density components of the excited correlated Rydberg
many-body states.
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6.2. Modelling of the experimental system

The physical system under study is a two-dimensional lattice of ultracold alkali atoms.
The gas is prepared deep in the Mott-insulating phase, ensuring uniform filling with
one atom per site within a disc of radius R '

√
Nata2

lat/π, where Nat is the total num-
ber of atoms and alat the lattice spacing. The atoms were initially in their electronic
ground state, |g〉, and then resonantly coupled to a Rydberg state |e〉. The internal
dynamics of the atoms is governed by the many-body Hamiltonian:

Ĥ =
~Ω
2

∑
i

(
σ̂(i)
eg + σ̂(i)

ge

)
+
∑
i 6=j

Vij
2
σ̂(i)
ee σ̂

(j)
ee . (6.1)

Here, the vectors i = (ix, iy) label the lattice sites in the plane. The first term in this
Hamiltonian describes the coherent coupling with Rabi frequency Ω of the ground
state to the excited state on every lattice site, where σ̂(i)

ge = |ei〉 〈gi| and σ̂
(i)
eg = |gi〉 〈ei|

are the local transition operators. The second term is the van der Waals interaction
potential between two atoms in the Rydberg state. In our case it is repulsive with
the asymptotic form: Vij = −C6/r

6
ij , with the van der Waals coefficient C6 < 0 and

rij = alat|i− j| the distance between the two atoms at sites i and j. The projection
operator σ̂(i)

ee = |ei〉 〈ei| measures the population of the Rydberg state at site i. This
model is valid as long as the mechanical motion of the atoms and all decoherence
effects can be neglected [170, 171]. We will show in the following that this assumption
is justified in our setup.

6.2.1. Validity of the model

The validity of the Hamiltonian in Eq. (6.1) for our experimental system relies on two
main assumptions, which are discussed in this section: the positions of the atoms is
frozen during the dynamics and all decoherence sources can be neglected.

Movement of the atoms during the dynamics

The ground state atoms were confined in a three-dimensional optical lattice of depth
Vx = Vy = 40(3)Er in the xy-plane and Vz = 75(5)Er along the z-axis, where Er =
(2π~)2/(8ma2

lat) denotes the recoil energy of the lattice, and m the atomic mass of
87Rb. For the minimum lattice depth used in the experiment of Vlat = 40Er, the time
associated to the inverse of the tunnelling matrix element was ~/J ' 700ms, and
therefore negligible compared to the timescale of the internal dynamics. The Rydberg
atoms move in the lattice potential with a typical velocity of 30 nm/µs (see discussion
in Section 5.6.4), which can also be neglected. The acceleration of the Rydberg atoms
due to their interactions is in general relevant [307]. In our case the effect is rather
small with around 100nm movement within 10 µs for typical experimental parameters
(Sec. 5.6.5).
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Light scattering from the intermediate state

The main source of decoherence when exciting Rydberg atoms via two-photon excita-
tion schemes is typically light scattering from the intermediate state. The laser beam
off-resonantly driving the ground-to-intermediate-state transition had a detuning of
742MHz and an intensity of ∼ 450mW/cm2, yielding a scattering rate of 9 · 104 s−1.
This corresponds to a coherence time of 11 µs, which is a factor of ten longer than the
typical timescale of the many-body dynamics.

Laser linewidth

The finite spectral width of the optical radiation driving the transition to the Rydberg
state acts as a decoherence source and was reduced by carefully stabilising the fre-
quency of the excitation lasers with high bandwidth. We could achieve a two-photon
linewidth of ≈ 70 kHz on a 1 s timescale, leading to a coherence time of ∼ 3 µs
(Sec. 5.7.3). Technical details on the laser setup can be found in Section 5.5.2.

6.2.2. Properties of the frozen Rydberg gas Hamiltonian

The dynamics of the strongly correlated system governed by the frozen Rydberg gas
Hamiltonian can be understood intuitively from its energy spectrum in the absence of
optical driving. It is instructive to group the large number of many-body states, 2Nat ,
according to the number of Rydberg excitations, Ne, contained in each state (Fig. 6.1).
All singly excited states (Ne = 1) with different positions of the Rydberg atom have
identical energies and form a Nat-fold degenerate manifold. For multiply excited states
(Ne > 1), this degeneracy is lifted by the strong van der Waals interaction, giving rise
to a broad energy band (Fig. 6.1). On the lattice the spectrum is in principle discrete,
but due to the strong scaling of the 1/r6-potential there are extremely small as well as
very large level shifts. For typical Rabi frequencies the spectrum is unresolved, but it
might be possible to resolve discrete states by detuning the excitation from resonance
and probing distances smaller than the on-resonance blockade radius. Starting from
the ground state, the creation of the first excitation is resonant, while the sequential
coupling to many-body states with larger number of excitations is rapidly detuned
by the interactions. In fact, the rapid variation of the van der Waals potential with
distance prevents the excitation of all those states where Rydberg atoms are separated
by less than the blockade radius, Rb, defined by ~Ω = −C6/R

6
b (Sec. 3.2.2). The

existence of this exclusion radius has a striking consequence: while the total many-
body state exhibits long-range correlations on a scale of Rb [28], its high-density
components with a Rydberg atom density approaching the one of a closest packing of
hard spheres with radius Rb/2 should display an ordered structure, in the sense that
the position of the Rydberg atoms is correlated over the whole system size.
The excitation dynamics of all configurations should occur in a coherent fashion,

resulting in highly non-classical many-body states. First, the approximate rotational
symmetry of our system leads to symmetric superpositions of all microscopic con-
figurations with different orientation but identical relative positions of the Rydberg
atoms. Second, since the coupling addresses all states within an energy range ∼ ~Ω,
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Figure 6.1.: Schematic many-body spectrum. Energy spectrum in the absence of
optical driving. States with more than one excitation form a broad energy band (grey
shading) above the degenerate manifold containing the ground state and all singly
excited states. For each excitation number Ne > 1, the states with lowest energy cor-
respond to spatially ordered configurations, which maximize the separation between
the Rydberg excitations. The minimal interaction energy for each excitation number
(black arrows) is determined by the finite system size and increases with Ne. Possible
spatial configurations of the excitations (blue dots) in the initial Mott-insulating state
(black dots) are shown schematically as circular insets next to their respective inter-
action energy. The blockade radius is depicted by the blue shaded disc around the
excitation.

it produces a coherent superposition of many-body states with different number of ex-
citations and slightly different separation between the Rydberg atoms (Fig. 6.1). This
collective nature of the excited many-body states dramatically changes the timescale
on which their dynamics occurs. The coupling strength to the state with a single ex-
citation is enhanced by a factor

√
Nat � 1 [73] and the coupling to states with Ne > 1

is similarly enhanced, with Nat replaced by the number of energetically accessible
configurations in each Ne-manifold [36].

6.3. Experimental sequence

Our experiments begin with a Mott-insulator in a two-dimensional plane of about 150-
390 87Rb atoms [14]. These atom numbers yield a system radius R = 3.5-5 µm, within
which typically 80% of the lattice sites are singly occupied. The atoms are prepared
in the state |g〉 ≡

∣∣5S1/2, F = 2,mF = −2
〉
, which is then coupled to the Rydberg

state |e〉 ≡
∣∣43S1/2,mj = −1/2

〉
(Sec. 5.6.1). The coupling is achieved via a two-
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Figure 6.2.: Pulsed excitation and detection sequence. The excitation and
detection sequence used throughout this chapter. A general description can be found
in Sec. 5.6.1. For the excitation we used an up to 4 µs long rectangular excitation pulse,
where the exact timing is done via the red beam. This is followed by the ground state
push-out which takes 10 µs followed by a waiting time of 2 µs and the depump pulse of
2 µs. The purpose of the wait time is to exclude any overlap of the pump down pulse
with the push-out pulse.

photon process using lasers of wavelengths 780 nm and 480 nm as described in detail
in Sec. 5.3. The two-photon Rabi frequency is determined as Ω/(2π) = 170(20) kHz by
a Rabi-frequency measurement using the method described in Sec. 5.7.3, leading to a
theoretically expected blockade radius of Rb = 4.9(1) µm. For all measurements in this
chapter the waists of the red and blue laser are 57(2) µm and 17(5) µm, respectively
(Sec. 5.3). The largest systems studied here have a radius of 5.4 µm, causing a variation
in the coupling strength to the Rydberg state by < 20% over the whole system. From
the waists, the power calibration of the red Rydberg beam and the two-photon Rabi
frequency we extract the individual Rabi frequencies of ∼ 70MHz for the red and
∼ 4MHz for the blue Rydberg beam.
Following the initial preparation, the laser coupling to the Rydberg state is suddenly

switched on for a variable duration t. After the excitation pulse the Rydberg atoms are
detected by removing the ground state atoms from the trap, depumping the Rydberg
atoms to the ground state and finally determining their position using high-resolution
fluorescence imaging (Sec. 5.6.1).
The accuracy of the measurement is limited by the probability of 75(10)% to detect

a Rydberg atom and by a background signal due to on average 0.2(1) non-removed
ground state atoms per picture (Sec. 5.4). The spatial resolution of our detection
technique is limited to about one lattice site by the residual motion of the atoms in the
Rydberg state before deexcitation (Sec. 5.6.4). Repeating the experiment many times
allows for sampling the different spatial configurations of Rydberg atoms constituting
the many-body state and to measure their relative statistical weight.

6.4. Ordered structures in the excitation pattern

The experimental sequence described above allows to image many microscopic config-
urations with Ne = 2-5 Rydberg excitations and we show typical images in Fig. 6.4. In
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Figure 6.3: Spatial distribution of ex-
citations before rotation. a, Histograms
constructed from the experimental data for
a number of excitations of Ne = 2-5 (top to
bottom row). The resulting ring-shaped ex-
citation region is clearly visible for Ne = 2
and 3. The contrast decreases for Ne = 4
and 5 due to the lower number of occurrences
in the experiment and the stronger influence
of the detection efficiency. The initial atom
distribution had a diameter of 7.2(8) µm and
10.8(8) µm for Ne = 2-3 and Ne = 4-5, re-
spectively. b, Theoretical predictions for the
excitation from initial clouds of same tem-
perature and atom number as in the experi-
ment.
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order to analyse the structure of the many-body state, we group the individual images
according to their number of excitations and determine the density of the excitations,
ρe(i) =

〈
σ̂

(i)
ee

〉
, where 〈 · 〉 denotes the average over repeated measurements. These

distributions display a typical ring-shaped profile (Fig. 6.3a), which results from the
blockade effect and the rotational symmetry of the system. For the larger initial atom
samples states with a Rydberg atom in the centre become energetically accessible, lead-
ing also in the theory to finite densities in the middle of the ring. Spatially ordered
structures become evident once each microscopic configuration has been centred and
aligned to a fixed reference axis (Fig. 6.4b).
The centring and alignment procedure is based on the digitised atom distribution re-

constructed from the raw fluorescence images (Sec. 2.4, [21]). They reflect the Rydberg
atom distribution in a circular region of interest with radius Rmax = 1.5 × R to re-
duce the effect of tunnelled atoms. Each individual image was aligned in the following
way. First, we set the origin of the coordinate system to the centre of mass of the
Rydberg atom configuration. Then, we determined for each atom the angle between
its position vector and a reference axis, and rotated the images about the origin by
the mean value of these angles (repeating this operation would leave the configuration
unchanged). The histograms contain accumulated data taken at different evolution
times up to 4 µs, as we found no significant temporal dependence of the excitation
patterns. The theoretical calculations use the same parameters as in the experiment
(including temperature and atom number distribution of the initial state) and follow
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the same procedure to determine the Rydberg atom densities. Both the experimental
and theoretical histograms are normalised such that the value at each bin represents
the probability to observe a microscopic configuration with a Rydberg atom located
at this position.
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Figure 6.4.: Spatially ordered components of the many-body states. Spatial
distribution of excitations for the observed microscopic configurations sorted according
to their number of excitations Ne = 2-5 (top to bottom row). a, Examples of false-
colour fluorescence images in which deexcited Rydberg atoms are directly visible as
dark-blue spots. b, Histograms of the spatial distribution of Rydberg atoms obtained
after centring and aligning the individual microscopic configurations to a reference
axis. c, Theoretical prediction from numerical simulations of the excitation dynamics
governed by the many-body Hamiltonian of Eq. (6.1) for the same conditions as in
the experiment (see Fig. 6.3).

For our smallest sample with radius R ≈ 3.5 µm we observe strong correlations
between Ne = 2 excitations that are localized at a distance ∼ 6 µm. This directly
resembles the interaction blockade. In the same dataset, configurations with Ne =
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Figure 6.5.: Calculated interaction energy of crystalline configurations.
From the theoretical value for the C6 coefficient of the 43S state we obtain the in-
teraction energy of the symmetric configurations with 2 to 6 excitations (dark red to
yellow) on the border of a disc-shaped sample. The horizontal dashed grey line marks
the Rabi frequency as the relevant energy scale.

3 Rydberg atoms show an arrangement on an equilateral triangle, revealing both
strong radial and azimuthal ordering. These correlations persist for larger numbers
of Rydberg excitations, which we can prepare in larger atomic samples with a radius
R ≈ 5 µm. They form quadratic and pentagonal configurations for Ne = 4 and Ne = 5,
respectively. However, since their interaction energy is larger and the coupling to states
with higher Ne weaker, these states are populated only with low probability, leading
to a reduced signal-to-noise ratio. At which radii a certain number of excitations can
occur, becomes clear by calculating the interaction energy of the symmetric crystalline
states with all atoms on the border of a disc-shaped sample (Fig. 6.5). A comparison
of the interaction energy with the Rabi frequency of the excitation demonstrates that
no more than 3 and 5 excitations are energetically accessible for the initial samples
size of 7.2(8) µm and 10.8(8) µm, respectively (Figs. 6.3, 6.4).

Our experimental data is in good agreement with numerical simulations of the
many-body dynamics according to the Hamiltonian of Eq. (6.1). The calculations
use the same atom numbers, temperature and laser parameters as in the experiment
(Figs. 6.3b, 6.4c) and are based on a truncation of the underlying Hilbert space, ex-
ploiting the dipole blockade, and neglect any dissipative effects ([36] and Sec. D.2).
The spatial distributions of excitations provided by the simulation reproduce all the
features observed in the experiment. The only apparent discrepancy is the overall
slightly larger size of the measured structures, which can be attributed to the spatial
resolution of our detection method, as discussed below.
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6.5. Spatial correlation functions

For a more quantitative analysis of spatial correlations, we also measured the pair
correlation function (Fig. 6.6a)

g(2)(r) =

∑
i 6=j δr,rij 〈σ̂

(i)
ee σ̂

(j)
ee 〉∑

i 6=j δr,rij 〈σ̂
(i)
ee 〉〈σ̂(j)

ee 〉
, (6.2)

which characterizes the occurrence of two excitations at a distance r from each other
(see also Appendix H.3). Similar correlation functions have been investigated theor-
etically [28, 299, 308] and experimentally [180] in the context of Rydberg systems.
Here δr,rij is the Kronecker symbol that restricts the sum to sites i,j with a distance
rij = r. For the numerical evaluation we use a bin width of 0.5 µm. In contrast to the
spatial distributions presented above, the average includes now data with all values of
Ne.
The pair correlation function g(2)(r) shows a strong suppression at distances smal-

ler than r = 4.8(2) µm, which coincides with the expected blockade radius Rb =
4.9(1) µm. Moreover, we find a clear peak at r = 5.6(2) µm and evidence for weak
oscillations extending to the boundaries of our system. Such a correlation function is
expected for a gas of quantum hard spheres [309], but the peak could be also caused
by finite size effects. The fast decay of oscillations in the correlation function indicates
that the overall many-body state only exhibits finite-range correlations, but without
data in larger systems this is undecidable. Our theoretical calculation of g(2)(r) (grey
line in Fig. 6.6a) exhibits similar features, but shows more pronounced oscillations and
vanishes perfectly within the blockade radius. These discrepancies can be attributed
to several imperfections of the detection technique. The sharp peak at short distances
r . 1 µm results from hopping of single atoms to adjacent sites during fluorescence
imaging with a small probability of approximately 1%, which is falsely detected as
two neighbouring excitations. The non-zero value of g(2)(r) for distances r . 3 µm
arises from the imperfect removal of the ground state atoms. Finally, the shift and
slight broadening of the peak in the correlation function is attributed to the resid-
ual motion of the Rydberg atoms before imaging (Sec. 6.2.1). When accounting for
these independently characterized effects in the theoretical calculations (green line in
Fig. 6.6a), we obtain excellent agreement with the measurements.
Since our system size is comparable to the blockade radius, the excitations in states

with Ne > 1 are localised along the circumference of the system. This essentially
freezes out the radial degree of freedom leading approximately to an effective 1D
system in the angular variable of the system with periodic boundary conditions. We
characterize the angular order by introducing an azimuthal correlation function that
reflects the probability to find two excitations with a relative angle ∆φ measured with
respect to the centre of mass of the distribution of excitations:

g̃(2)(∆φ) =

∫
dφ
2π

〈n̂(φ)n̂(φ+∆φ)〉
〈n̂(φ)〉 〈n̂(φ+∆φ)〉

. (6.3)

Here n̂(φ) =
∑

i δφ,φi σ̂
(i)
ee is the azimuthal distribution of excitations, with (ri, φi)

the polar coordinates of the site i. As can be seen in Fig. 6.6b, the spatially ordered
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Figure 6.6.: Spatial correlation functions of Rydberg excitations. a, Pair
correlation function. The blockade effect results in a strong suppression of the prob-
ability to find two excitations separated by a distance less than the blockade radius
Rb = 4.9(1) µm. Moreover, we observe a peak at r ' 5.6 µm and a weak oscilla-
tion at larger distances. The initial atom distribution had a diameter of 10.8(8) µm.
The experimental data (blue circles) are compared to the theoretical prediction both
taking into account the independently characterized imperfections of our detection
method (green line) and disregarding these imperfections (grey line). The dashed
line marks the value of g(2) in the absence of correlations. The error bars represent
the standard error of the mean (s.e.m.) of g(2)(r) determined from the variance of
random sub-samples. b, Azimuthal correlation function. The spatially ordered struc-
ture of the high-density components is best visible in the angular correlations around
the centre of mass of the distribution of excitations, characterized by the correlation
function g̃(2)(∆φ) defined in Eq. (6.3). By construction, this function is symmetric
around 180◦. Correlations are observed at the angles expected for the respective con-
figurations shown in the insets. The peaks close to 180◦ are more pronounced since
the centre of mass of a configuration is likely to lie close to the intersections of the
diagonals, due to the blockade effect. Error bars, s.e.m.

structure is clearly visible as correlations at relative angles ∆φ = ν × 360◦/Ne, with
ν = 1, 2, . . . , Ne, even for the largest excitation numbers.

6.6. Excitation dynamics

We finally analyse the many-body excitation dynamics of the system. In Fig. 6.7a
we show the time evolution of the average number of Rydberg excitations, N̄e =∑

i

〈
σ̂

(i)
ee

〉
, which quickly saturates to a small value N̄e ' 1.5, much smaller than the
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Figure 6.7.: Time evolution of the number of Rydberg excitations. a, Aver-
age number of detected Rydberg atoms as a function of the excitation pulse duration.
Error bars, s.e.m. b-d, Time evolution of the probability to observe Ne = 1 (b),
Ne = 2 (c) and Ne = 3 (d) Rydberg excitations. The experimental data (blue circles)
are compared to the theoretical prediction (green line), which is based on initial ground
state atom distributions observed in the experiment and neglects all decoherence ef-
fects. It takes into account the finite detection efficiency as a free parameter (75%).
Error bars, s.e.m.

total number of atoms in the system, Nat = 150(30). This low value already shows
that our system is strongly dominated by the blockade. The saturation is reached
in ∼ 500 ns, a factor of ten faster than the Rabi period 2π/Ω, due to the collective
enhancement of the optical coupling strength. The probability to observe Ne Rydberg
excitations shows a similar saturation profile for each excitation number Ne (Fig. 6.7b-
d), but on a timescale that increases with Ne, from about 200 ns for Ne = 1 to about
600 ns forNe = 3. This can be attributed to the variation of the collective enhancement
factor associated with the number of energetically accessible microscopic configura-
tions for a given Ne (Sec. 3.3). The theoretical excitation dynamics corresponding to
the Hamiltonian (6.1) shows remarkable agreement with the experimental data when
including the finite detection efficiency (Appendix C.2). This provides evidence that
the dynamics observed in the experiment is coherent on the observed timescales, which
is expected, as the dynamics proceeds on a timescale much shorter than the lifetime
of the Rydberg state of 25(5) µs in the lattice and the decoherence time due to other
effects discussed in Sec. 6.2.1. The absence of high-contrast Rabi oscillations in the
time evolution of the average number of Rydberg excitations is caused by the strong
dephasing between many-body states with different interaction energies arising from
the different spatial distribution of excitations. However, remnant signatures of Rabi
oscillations can still be observed, as predicted [310]. In particular, the population of
the singly excited states shows a peak around t = 200(50) ns (Fig. 6.7b), which matches
the π-pulse time of the enhanced Rabi frequency π/

(√
NatΩ

)
= 240(40) ns. Although

the dynamics does not look coherent, observations indicate that time evolution is co-
herent, but the measurement basis is highly unsuited to uncover the coherence. To
provide further evidence for the coherence of the dynamics we took additional data to
look at the spatially resolved dynamics of the excitation.
For this purpose, we focus on the subset of microscopic configurations with only

one excitation. Because the blockade radius is only slightly smaller than the system
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Figure 6.8.: Excitation dynamics at the centre of the system. Relative number
of excitations in the central nine sites as a function of the excitation pulse duration for
microscopic configurations with a single excitation Ne = 1. The theoretical calculation
(green line, inset) reveals the coherent evolution, which is hardly visible in the time
evolution of the total excitation number. Two experimental points (blue circles) were
obtained from an additional dataset containing about 800 images per pulse duration.
It was characterized by the temperature of the initial state T = 9(2) nK, the atom
number Nat = 210(30) and the radius R = 4.2(5) µm. These experimental paramet-
ers were included in the numerical simulation. The error bars denote one standard
deviation of the mean (s.e.m.).

diameter, only those configurations in which the excitation is located close to the edge
of the system are significantly coupled to configurations with two excitations. This
results in unequal time constants for the dynamics at different distances r from the
centre and leads to a strong spatial dependence of the dynamics. We have investigated
this effect theoretically by calculating the time evolution of the relative probability for
the excitation close to the centre of the system (green line in Fig. 6.8). In contrast
to Fig. 6.7, we now observe Rabi-like oscillations with notable amplitude over much
longer timescales. We performed the corresponding measurement in the experiment
for two pulse durations (blue circles) and find reasonable agreement. This kind of
measurement requires a huge amount of statistics as most of the observed events show
more than one excitation but we postselect for the evaluation on single atom events.
But already the two data points show that the dynamics is not consistent with a simple
saturation curve and the consistency with theory indicates coherence in the collective
excitation.

6.7. Summary and Outlook

In conclusion, we demonstrated the techniques to optically detect Rydberg atoms with
unprecedented spatial resolution and good detection efficiency by recapturing them
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in an optical lattice. The strongly correlated excitation dynamics of a resonantly
driven frozen Rydberg gas was characterized, indications for coherent dynamics were
found and we observed ordered Rydberg configurations of the excited many-body
states by post-selecting to the components with highest Rydberg atom numbers. Our
measurements triggered further theoretical work [302], confirming the distribution of
Rydberg atoms and the spatial correlation function using a semi-classical approach.
The demonstrated excitation of ordered states is not deterministic and only visible due
to the post-selection on fixed excitation numbers. We will show in the next chapter,
how ordered Rydberg crystals can be prepared deterministically by using an adiabatic
scheme, which involves laser sweeps with amplitude and frequency modulation.





7. Crystallization in Ising quantum
magnets with power-law interactions

This chapter is based on the publication [294].

7.1. Introduction

While the non-deterministic preparation of ordered Rydberg atom configurations in
the last chapter required post-selection and the observed many-body state did not show
crystalline order, the main goal of this chapter is to show how to obtain crystalline
states in a Rydberg system using an adiabatic preparation scheme. The preparation
of crystalline structures corresponds to the preparation of the ground state of the
system and not a highly excited state as in the last chapter. This asks for advanced
control techniques, as the long-range interactions couple all parts of the system, such
that not only local but also global adiabaticity is required to prepare ground states
in such a many-body system with long-range correlations. We consider both the
detuning from resonance and the Rabi frequency as time-dependent control parameters
of the Hamiltonian to drive the system to the targeted crystalline state. Two major
advances form the basis of our measurement. First, we use an improved initial state
preparation, which starts from a Mott insulator with unity filling, that is then cut
to the desired pattern using the single-site addressing technique (Sec. 7.4.1). Second,
we implemented excitation pulses with amplitude and frequency modulation, given
by theoretically calculated waveforms, to transfer the system to a crystalline state as
adiabatically as possible.
The Hamiltonian describing our system maps to a quantum Ising model with power-

law interactions, as demonstrated in the next section, and the preparation therefore
corresponds to the realisation of magnetic states with long-range correlations. The van
der Waals interaction potential between the Rydberg atoms is not long-range in the
strict sense [311], but it spans nearly the whole finite system size and therefore couples
the system over long distances in relation to the system diameter. Ising spin models
with power-law interactions have been investigated theoretically as tractable model
systems [252, 312–317]. Recently there has been an increasing interest in long-range
interacting quantum spin systems [9], especially in the propagation dynamics of spin
Hamiltonians with long-range interactions [33, 34]. This also is caused by the recent
success of the first spin-exchange experiments with ultracold molecules in an optical
lattice [35]. Rydberg atoms offer stronger interactions leading to orders of magnitude
faster timescales in the dynamics and making the Rydberg approach to spin physics
complementary to these systems.
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7.2. Mapping the Rydberg Hamiltonian to a quantum
Ising model

In comparison with the Hamiltonian used in Chapter 6 the excitation to the Rydberg
states has to be modelled here including the time-dependent Rabi frequency and de-
tuning. The system is then described by the following Hamiltonian:

Ĥ =
~Ω(t)

2

∑
i

(
σ̂(i)
eg + σ̂(i)

ge

)
+
∑

i,j,i 6=j

Vij
2
σ̂(i)
ee σ̂

(j)
ee − ~∆(t)

∑
i

σ̂(i)
ee . (7.1)

Here, the vectors i = (ix, iy) label the position of the atoms on the lattice and
we use the same definitions for the operators as in the Hamiltonian Eq. (6.1). The
difference to the Hamiltonian discussed in the previous chapter is the time-dependence
of the Rabi frequency and the additional term taking into account a time-varying
detuning ∆(t) = ωl(t) − ω0 of the laser frequency ωl from the atomic resonance ω0.
The Hamiltonian Eq. (7.1) can be rewritten as a quantum Ising spin model with van
der Waals interactions. To that end, we identify the two spin-states as |↓〉 ≡ |gi〉
and |↑〉 ≡ |ei〉. Here we omit the site label in the spin description to simplify the
notation. With this definition the operators |↑〉 〈↓| and |↓〉 〈↑| describe a spin flip
from the ground state |↓〉 to the Rydberg state |↑〉 and vice versa, while the operators
|↑〉 〈↑| = n̂↑ and |↓〉 〈↓| = n̂↓ represent the local Rydberg and ground state population.
We identify the coherent coupling in the first term 1

2

(
σ̂

(i)
eg + σ̂

(i)
ge

)
with the σ̂x spin-1/2

operator, defined as σ̂x = (|↑〉 〈↓|+ |↓〉 〈↑|)/2. The other terms are rewritten by noting
that σ̂(i)

ee = 1
2 + σ̂z, where 1 is the identity operator and σ̂z = (|↑〉 〈↑| − |↓〉 〈↓|)/2.

Neglecting constant offset energies this leads to the second and third term in the spin
Hamiltonian (7.2), where we defined Ii =

∑
j,i 6=j

Vij
2 . Finally we obtain the following

spin Hamiltonian

Ĥ = ~Ω(t)
∑
i

σ̂(i)
x +

∑
i

[Ii − ~∆(t)]σ̂(i)
z +

∑
i,j,i 6=j

Vij
2
σ̂(i)
z σ̂(j)

z . (7.2)

The first two terms of the Hamiltonian describe a transverse and longitudinal magnetic
field. The former is controlled by the coherent coupling between ground and Rydberg
state with the time-dependent Rabi frequency Ω(t). The detuning ∆(t) determines
the longitudinal field and can be used to counteract the here positive energy offset Ii.
The offset Ii is spatially dependent and causes a pinning of the first two excitations
for Ne > 1 to the boundary. It becomes homogeneous and therefore irrelevant for
infinite systems. The third term, a σzσz interaction, arises due to the van der Waals
interaction potential between two atoms in the Rydberg state.
This Hamiltonian has been at the focus of theoretical and experimental interest due

to its rich variety of strongly correlated magnetic phases [29, 31, 33, 34, 110, 318,
319]. By varying Rabi frequency and detuning the different phases can be explored.
In contrast to typical cold atomic models like the Bose-Hubbard model, here all states
with Ω > 0 only exist in the presence of continuous optical driving. This will of course
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limit the lifetime of the system, but dynamics can be much faster than dissipation and
allows for the study of these phases.

In the following we discuss the phase diagram in more detail. In the classical limit
(Ω = 0) and for ∆ > 0, the many-body ground states are crystalline states with van-
ishing fluctuations in the total magnetization M . For fixed total atom number N , the
magnetization M = 2N↑ −N is determined by the spin-↑ component N↑ =

∑
i〈n̂

(i)
↑ 〉

up to the constant offset given by N . The magnetization density m = M/N grows in
steps with increasing ∆. The stability range of a state with a certain magnetization
density depends on the change in interaction energy with a spin flip. In the thermo-
dynamic limit the magnetization density m forms a complete devil’s staircase [320] as
a function of ∆. Due to the large blockade radius compared to the distance between
neighbouring atoms, we are limited in the experiment to a low magnetization N↑ � `,
corresponding to the regular part of the devil’s staircase with magnetization densities
1/`, 2/`, . . . . In a one-dimensional chain in this regime, the number of spin-↑ atoms
increases by one at the critical detunings `6~∆c ≈ 7 |C6|N6

↑ /a
6
lat separating successive

crystal states with a lattice spacing alat`/(N↑ − 1) [36]. In practice the experimental
parameters do not allow to observe this staircase in ∆, as the required accuracy and
range for the detuning are illusive to reach in an experiment. There might be a
parameter range that allows for the observation of parts of the devil’s staircase, but
this requires a blockade radius on the order of the lattice spacing. For our system
extreme detunings of hundreds of Megahertz would be required, but already simple
estimations show that such high-density excited configurations cannot be stable on a
timescale required for detection (Sec. 5.6.5).

Non-vanishing laser coupling introduces quantum fluctuations that first cause de-
fects in the crystal and for strong coupling destroy the order [29, 31, 318, 321]. The
corresponding scenario is shown schematically in Fig. 7.1a. Due to the finite size of the
system the transitions are slightly broadened in the (Ω,∆) parameter space (the figure
was calculated for N = 7), but extended lobes corresponding to crystalline states can
still be well identified. The scaling of the axes in Fig. 7.1a is chosen such that several
crystalline phases for one system size are visible. Due to the strong scaling of the van
der Waals interaction with distance, typically maximally two lobes are experimentally
accessible for a fixed system size.

The deterministic preparation of crystalline states requires fast dynamical control
due to the short lifetime of the Rydberg states of typically several tens of microseconds
compared to the gaps in the many-body spectrum. Our initial state with all atoms in
their electronic ground state (N↑ = 0) coincides with the many-body ground state of
the system for negative detuning and Ω = 0. Since for small coupling strength Ω the
energy gap to the first excited state closes at the transition points ∆c between suc-
cessive N↑-manifolds, Ω and ∆ have to be varied simultaneously in order to maximize
the adiabaticity of the preparation scheme. An intuitive and simple choice of the path
(Ω(t), ∆(t)) starts by slowly switching on the coupling Ω(t) at a large negative detun-
ing ∆(t) = ∆min [30, 36, 37]. This brings the system into the disordered phase, where
the change of N↑ can be adiabatic. Next, the detuning is increased to the desired final
blue-detuned value ∆max > 0, followed by a gradual reduction of the coupling strength
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Figure 7.1.: Schematic illustrating the phase diagram, energy spectrum and
experimental sequence. a. Schematic phase diagram. The colour scale indicates
the number of spin-↑ atoms N↑ in the many-body ground state of a one-dimensional
system. N↑ is also visualized in the crystalline phase by the small spheres. For
illustration, the detuning ∆ and Rabi frequency Ω axes are rescaled by their sixth
root. b, Schematic illustrating the evolution of the many-body spectrum during a
sweep, where coupling strength Ω(t) and detuning ∆(t) are controlled. The spectrum
was calculated for an exemplary 1D system of five atoms, where the individual states
can be still distinguished in the graph. First, the detuning is changed from ∆min to
∆max at constant Rabi frequency Ωmax, with ∆max chosen to prepare N↑ = 2 (left
panel). Subsequently, the Rabi frequency is reduced linearly from Ωmax to 0 (right
panel). The inset is a zoom into the end of the sweep focussing on the shrinking
gap between the energy levels. The colour of each line indicates the mean number of
spin-↑ atoms in the many-body state. For large negative detuning the four different
manifolds correspond to the crystalline states with fixed magnetization given by N↑ as
indicated in the figure. In three limiting cases in which the states become classical the
spatial distribution is shown schematically (blue circles: Rydberg atoms, grey circles:
ground state atoms). c-e, Exemplary fluorescence pictures from different times in the
experimental cycle. c, Mott insulator with lattice sites (white dots) and spatial light
modulator pattern (semi-transparent overlay). d, Initial atom configuration, e, Single
shot Rydberg or spin-↑ pattern. f, Spatial Rydberg density or magnetization density
after averaging 40 experimental runs (darker colour corresponds to more detected
atoms).
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Ω to zero. Choosing ∆max between the critical detunings ∆c of adjacent N↑-manifolds,
thereby yields a crystalline state with a well-defined and controllable magnetization.
In the final stage of this last step the energy of several many-body states becomes
nearly degenerate, as illustrated in Fig. 7.1b for an exemplary system of five atoms.
These lowest many-body excited states all belong to the same N↑-manifold but show
a finite density of dislocations with respect to the perfectly ordered classical ground
state. In practice this leads to unavoidable non-adiabatic transitions at the end of
the laser pulse, resulting in non-classical crystalline states composed of spatially loc-
alized collective magnetic excitations [36]. For states with Rydberg atoms spaced by
approximately the blockade radius the interaction energy changes strongly for large
dislocations, and only states with very small spatial deviations from the ground state
are contained in the superposition. If the magnetization density is lower, also states
with more and larger dislocations are energetically close-by.

7.3. Adiabatic transfer – From qubits to many-body
systems

Adiabatic state preparation is most often considered in two-level systems. A basic
example is the adiabatic transfer of the state |0〉 to |1〉 in a qubit. When the qubit is
implemented by the two hyperfine states |F = 1,mF = −1〉 and |2,−2〉 in rubidium,
this can be accomplished by an HS1 sweep, as used in our experiment [290]. The
gap is large in the beginning and the end of the sweep and in between the avoided
crossing exhibits a gap determined by the Rabi coupling. By that the timescale for an
adiabatic transition is only limited by Rabi frequency and the transition probability
can be approximated by the Landau-Zener formula [322].
One can look at the intermediate regime between a single qubit adiabatic transfer

and a transfer in a many-body system by investigating a system of many qubits with
variable interaction [323]. In systems with power-law interactions, many excited states
have very low interaction energies. This comes with the existence of low excitations
gaps, which limit the timescale for the adiabatic transition. In the Rydberg system
discussed here, the Rabi frequency is typically not limiting the speed of the preparation
but the small excitation gaps in the absence of optical driving. This leads to the general
difficulty to stay adiabatic in the end of a sweep, as one is typically interested in the
preparation of states which survive after the laser is switched off. While the timescale
for the sweep at strong optical driving is determined by the Rabi frequency, during the
switch-off process the Rabi frequency has to be reduced. At some point the intrinsic
gaps of the many-body system determine the required timescale of the sweep.
In conclusion, the minimum time for adiabatic transfers in many-body systems is

theoretically limited by the gaps in the spectrum in absence of optical driving, whereas
in a two-level system very high speeds can be reached by just increasing the Rabi
frequency. This already suggests that the last part of the adiabatic sweep needs to be
rather long for our system. For the search of a good choice for an adiabatic sweep we
use optimizations based on numerical simulation of the Hamiltonian (Appendix E).
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7.4. Experimental sequence

The basic experimental sequence is similar to the one used in Chapter 6. For our
measurements we chose line- or disc-shaped atomic samples of well-controlled length
or radius. The line had a width of three lattice sites and a variable length `. Since
this width was much smaller than the blockade radius of approximately nine sites, this
geometry can theoretically be described by an effective one-dimensional chain with a
collectively enhanced Rabi frequency

√
3Ω. We checked this equivalence explicitly by

a numerical calculation for a system length of 23 sites and both results coincide to a
precision of 1%.
To minimize fluctuations in cloud size and position, we prepared the initial atomic

density distribution precisely by cutting out the desired cloud shape from the initial
Mott insulator using a spatial light modulator (Sec. 7.4.1). The final preparation step
was to transfer the remaining atoms via a microwave sweep to the |2,− 2〉 state. The
average filling was 0.8 atoms/site and at the edge it dropped to below 0.1 atoms/site
within one lattice site.
The coupling to the Rydberg state was realized as described before (Chapter 6) [291].

Detailed coupling beam parameters are summarized in Table 7.1. Fast control of the
Rabi frequency Ω(t) and the detuning ∆(t) was implemented by tuning intensity
and frequency of the red coupling laser (Sec. 7.4.2). Finally, the Rydberg atoms
were detected with high spatial resolution by fluorescence imaging after removing the
ground state atoms from the trap and depumping the Rydberg state back to the ground
state (Fig. 7.1e and Sec. 5.6). The excitation and detection sequence was shortened
compared to previous measurements by optimizing the push-out pulse (Fig. 7.2). The
spatial distribution of Rydberg atoms and, therefore, the magnetization profile was
measured by averaging over at least 40 realizations (Fig. 7.1f).
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Figure 7.2.: Excitation and detection sequence for sweeps. The excitation and
detection sequence used throughout this chapter. A general description can be found
in Sec. 5.6.1. For the excitation we use a 4 µs long sweep, where the timing, the Rabi
frequency and the detuning are adjusted via the red beam. This is followed by the
ground state push-out which takes 6 µs, where the push beam itself is only switched
on the last 4 µs. Directly afterwards the depump pulse of 2 µs is applied.
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red laser 1D red laser 2D blue

max. Rabi freq 2photon (2π · kHz) 250(25) 420(42) -
max. Rabi frequency (2π ·MHz) 29(2) 49(3) 13(2)
max. intensity (mW/cm2) 76(5) 215(14) 1.4(3) · 106

beam waist (µm) 44(2) 44(2) 17(5)
max. light shift (2π · kHz) 236(35) 670(100) 57(9)

Table 7.1.: Parameters of the Rydberg laser beams for sweep experiments.
The red laser parameters for the 1D experiments are shown in the first column, for 2D
in the second column. The blue laser has the same parameters in 1D and 2D (third
column). Errors, s.d.

7.4.1. Initial atom preparation via single-site addressing

The idea of our initial state preparation is to produce a large unity filling region in
the optical lattice and cut out the wanted atom pattern for the experiment. For
the realization of large systems we used a deconfining beam to reduce the harmonic
potential induced by the lattice beams and thereby enlarged the spatial extension of
a single occupancy Mott insulating state [51] (Fig. 7.1c). The light at 670 nm for this
deconfinement beam was generated using a super-luminescent diode with a linewidth of
≈ 5 nm to reduce interferences on this beam. It is amplified in two consecutive tapered
amplifiers to reach the required power level. This technique allows to reach unity filling
regions of a diameter of up to 15 µm. Only for very large systems (cf. Fig. 7.7a, ` > 27
and Fig. 7.12c, rightmost panel) we had to allow for double occupancy in the central
part.
We prepared the targeted initial atom distribution by the single-site addressing tech-

nique, first demonstrated with a single beam [22] and later optimized with a spatial
light modulator [50]. We start from a Mott insulator with unity filling over a region
larger than the target pattern and prepare the atoms in the state |F = 1,mF = −1〉.
Then we use a light pattern of the shape of the target pattern to create a spatially
dependent light shift. The light pattern is created in real space with a digital mirror
device (DMD) [324]. The DMD consists of nearly a million micromirrors, which can
be switch between two stable positions. To allow for high resolution and even local
intensity control, we image 350(50) pixels to the area of one point spread function of
the objective (60(10) pixels for 532 × 532 nm2). Intensity, polarization and detuning
of the light pattern were chosen to create a differential light shift on the transition
|1,−1〉 ↔ |2,−2〉 of approximately 50 kHz, but nearly no absolute shift of the |1,−1〉
state. To this end, we use σ−-polarized light at 787.555(1) nm between D1 and D2

line [48]. As we cannot optimize the polarization perfectly due to technical reasons,
we adjusted the wavelength slightly compared to the theoretical optimum to minimize
the light shift on the |2,−2〉 state. Then we apply a microwave sweep to transfer all
non-addressed atoms to |2,−2〉 on the bare resonance. All the atoms in the addressing
light will stay in the state |1,−1〉. A subsequent push beam on the cycling transition
5S1/2 , |2,−2〉 ↔ 5P3/2 , |3,−3〉 can efficiently remove the atoms in |2,−2〉 without
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Figure 7.3.: Schematic illustrating the addressing. An addressing pattern is
used to shift all atoms in the targeted pattern out of resonance, then the non-shifted
atoms are transferred to the other spin state and removed from the lattice. a, Schem-
atic showing the beam and the spin states of the atoms after the transfer. The blue
atoms stay in state |0〉 = |F = 1,mF = −1〉, while the red atoms were flipped by a
microwave sweep to |1〉 = |2,− 2〉. b, light shifts of the atoms when addressing one
atom out of four. Only the addressed atoms are not transferred due to the strong light
shift ∆LS, the others experience a small light shift, but their resonance frequency is
still within the bandwidth of the microwave sweep σMW. Image adapted from [22].
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Figure 7.4.: Sub-Poissonian atom number fluctuations by addressing. a,
Deconfined initial cloud, here with 421 atoms. b, Clouds after cut-out with addressing
for three circular addressing patterns with varying radius. The prepared configurations
shown have 256, 209, 128 atoms. c, Distribution of atom numbers for the medium
sized pattern in b. Dataset contains 75 images taken as reference interlaced with
a Rydberg measurement over one day. The atom number was 202(8) (mean and
standard deviation) and the radius 8.4(1) sites.
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Figure 7.5.: Length fluctuations of prepared 1D systems. Probability distri-
bution of the length deviation extracted from experimental reference images compared
to the target length. These distributions were taken into account for the theory cal-
culations in Fig. 7.10.

heating the addressed atoms. Afterwards we are left with an atom pattern reflect-
ing directly the light distribution (Fig. 7.1d and 7.4b).
For this scheme to perform well we work typically in a deep lattice of 40Er, as

residual imperfections can easily induce tunnelling at lower lattice depths. We observe
sub-Poissonian atom number fluctuations of the resulting atom pattern (Fig. 7.4c).
The filling factor of the pattern is typically above 0.8 atoms/site, limited mainly by
the initial Mott insulator and heating during the hold time of the addressing sequence.
For the 1D systems the fluctuations in the length are most relevant for Rydberg

experiments. We measured the length fluctuations, which are in absolute values similar
for all 1D systems, independent of their absolute length (Fig. 7.5). There is a slight
tendency to prepare lines with a length one site shorter than targeted, which is mainly
caused by errors in the sub-lattice-site positioning of the addressing pattern with
respect to the lattice phase. But also residual light shifts of the addressing pattern can
cause tunnelling of atoms especially at the edges of the addressing pattern. The slightly
worse length fluctuations for the longest 1D systems are caused by atom number
fluctuations in the initial Mott insulator, as we could not prepare initial atom numbers
which were large enough that the Mott insulator size was always larger than the
addressing pattern within atom number fluctuations. Therefore the addressing pattern
was with a small probability not fully overlapping with the initial atom distribution.

7.4.2. Implementation of the laser sweeps

For the implementation of the sweeps a fast frequency and amplitude modulation of
the two-photon coupling is required. This is realized in the experiment by changing the
parameters of the red beam (780 nm), while the parameters for the blue beam (480 nm)
are held constant. Fast amplitude and frequency modulations are implemented using
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a single acousto-optical modulator in double-pass configuration at a centre frequency
of 350MHz. For the frequency sweep a synthesizer with large frequency modulation
bandwidth is used to drive the acousto-optical modulator. The amplitude is shaped
using a fast, calibrated variable attenuator after the synthesizer. Long-term drifts are
minimized by a sample-and-hold intensity stabilization technique.
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Figure 7.6.: Frequency and amplitude modulation of the sweeps in 1D and
2D. Time dependence of Rabi frequency and detuning during the sweep used in the
experiments with 1D systems (a) and 2D systems (b). Green line, targeted two-photon
Rabi frequency. Red line, targeted detuning. Blue line, two-photon Rabi frequency
obtained by a calibrated photo diode. The noise is due to the low light level on
the high-bandwidth photo diode. For the 2D systems the sweep was not optimized
using the full procedure discussed in Appendix E, since the limiting factor here were
fluctuations of the cloud shape. For the largest 2D systems (Fig. 7.12, rightmost
column) the Rabi frequency was scaled up by a factor of 1.9(1) compared to b.

To assure the absolute frequency stability of the two-photon excitation with respect
to the Rydberg resonance we took a Rydberg resonance curve on every measurement
day. To avoid interaction induced broadening and shifts we use a very dilute cloud.
Over consecutive days the line centre was reproducible within about 200 kHz, limited
by a combination of Fourier width and interaction broadening. The linewidth of the
Rydberg lasers is 50 kHz for the red laser and . 20 kHz for the blue laser. To measure
the Rabi frequency Ω of the two-photon coupling we prepared a single atom using our
addressing technique and observed its Rabi oscillations as discussed in Sec. 5.7.3.
The use of the red laser to implement the amplitude modulation leads to a time-

dependent ac Stark shift on the ground state, which causes an additional detuning of
the transition to the Rydberg state. This effect has to be compensated during the
sweep, as it can easily exceed the two-photon Rabi frequency. For this purpose we
modify the time-dependent detuning correspondingly. The ac Stark shifts of the inter-
mediate and Rydberg states are negligible, the former due to the vanishing influence
of the level shift compared to the intermediate state detuning of ∆ = 2π ·742MHz, the
latter due to the weak coupling. The amplitude and frequency modulation throughout
the sweeps are shown in Fig. 7.6.
The relatively small beam waist of the coupling laser beams (Table 7.1) leads to a
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spatial variation of the Rabi frequency Ω across the system. For most of the meas-
urements the difference in coupling strength was less than 30%, but for the largest
one-dimensional systems with ` > 26 up to 40%. We checked theoretically that the
influence of such variations on the adiabatic sweep is on the order of the experimental
error bars.

7.5. Staircase in 1D

In this section we demonstrate the adiabatic preparation of crystalline states in an
elongated quasi-one-dimensional geometry. The experimentally realizable number of
spin-↑ atoms N↑ is limited for fixed system size by the interaction energy due to the
weak scaling of the longitudinal magnetic field with ∆. Large detunings lead to a
reduction in detection efficiency due to extremely strong interactions and sweeps into
small crystalline lobes pose extreme stability demands on the atom number distribu-
tion and frequency. Hence, instead of varying the detuning, we changed the length
` of the initial system to explore the characteristics of the Rydberg crystals [36]. In
this way the interaction energy scales approximately linearly with N↑ and not with
the sixth power. We measured the mean number of Rydberg atoms N↑ for varying
length ` using a numerically optimized sweep (Sec. 7.6, Appendix E). In the optimiz-
ation the sweep duration was set to 4 µs, which is a reasonable compromise between
the decreasing detection efficiency for longer sweeps and adiabaticity. The results for
the sweep to a final detuning of ∆max = 2π · 700(200) kHz shown in Fig. 7.7a exhibit
clear plateaus in N↑ and agree well with numerical predictions which take into account
the measured initial atomic density, the actual sweep and as the only free parameter
the detection efficiency α = 0.62(5). The value of the detection efficiency determined
in this way is consistent with independent measurements in Fig. 7.10c and Fig. 7.12
(see also Sec. 5.6.3). On the plateaus the theory predicts strong overlap with states
of fixed total magnetization (Fig. 7.8). Exploiting that varying the system size ` is
approximately equivalent to varying the detuning ∆max, we extract the susceptibility
χ ≡ ∂N↑

∂∆max
≈ `

6∆max

∂N↑
∂` from our data (Appendix E). As shown in Fig. 7.7b, χ is found

to vanish in the plateau regions, as expected for crystalline magnetic states. The fi-
nite values in between result from the small energy gaps between crystalline states of
slightly different magnetization around ∆c, leading to the preparation of compressible
superposition states.
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Figure 7.7.: Identification of the crystalline phase. a, Mean spin-↑ number
N↑ versus system length ` for an elongated system. Blue circles correspond to the
experimental mean number of Rydberg atoms N↑ after the optimized sweep, which
is kept the same for all `. The green line is the result of the numerical simulation
for the experimental initial states, taking into account an initial state filling of 0.8
and length fluctuations of the order of one site as shown in Fig. 7.5. The grey line
is the classical (Ω = 0) prediction. The only free parameter used to fit the theory
to the experimental data is the detection efficiency α = 0.62. Insets: Measured
spatial distribution of the magnetization (left) and corresponding theory (right) for
system lengths ` of 12, 23 and 35 sites. The brightness (light to dark) translates to
the normalized number of spin-↑ atoms. b, Susceptibility χ of the prepared states.
Blue circles are derived from the experimental data shown in a using a numerical
symmetric second-order approximation of the derivative (Appendix E). The green line
is a numerical calculation of χ = dN↑/d∆|∆max

for each system size `. All error bars
s.e.m.
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Figure 7.8: Population of many-
body states with fixed Rydberg
atom number after the sweep for
varying system length. a, Calcu-
lated energy of crystalline configura-
tions in 1D. For the theoretical value of
the C6 coefficient of the 43S state the
interaction energy of the classical lin-
ear crystalline configurations with 2 to
4 excitations (red to yellow) is calcu-
lated. The horizontal grey line marks
the final detuning of the sweep as the
most relevant energy scale. The posi-
tions of the crystal interaction energies
crossing the final detuning line determ-
ine approximately at which length ` the
Rydberg number after the sweep steps
up by one. b, Calculated dependence
of the population of many-body states
with fixed Rydberg atom number after
the sweep on the system length. The
calculation was done for an ideal 3 × `
system with unity filling. Curves for the
number of spin-↑ atoms N↑ = 0 . . . 4 are
shown. For N↑ ≥ 4 the efficiency of
the preparation drops significantly due
to smaller gaps on the trajectory of the
sweep.
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7.6. Dynamical crystallization in 1D

The adiabatic preparation requires the crossing of a phase boundary [29, 31, 318],
which becomes possible in our system due to its finite-size gap, and during transit the
system undergoes complex correlated quantum dynamics. To study the crystallization
process along the sweep trajectory (Ω(t), ∆(t)) we abruptly switch off the coupling
at different times, thereby projecting the many-body state onto the eigenstates of the
uncoupled system (Ω = 0). For the measurement we choose the optimized sweep for
the N↑ = 3 crystalline manifold in a system of 3 × 23 sites. In Fig. 7.9 we show the
theoretical prediction for the time evolution during this sweep for an ideal system. The
small amount of oscillations in the occupations of the different Fock states of Rydberg
atom numbers during the sweep indicate adiabaticity of the sweep. Oscillations are
typically caused by coherences between two states with different energy, which do
not occur in adiabatic sweeps as all amplitude should stay in the ground state. This
optimized sweep can reach approximately 90% fidelity for the N↑ = 3 state. The
corresponding path through the phase diagram is shown in Fig. 7.10a as black line
with markers 1–7 for the times where measurements were performed. The implemented
sweep crosses the boundary to the crystalline lobe with N↑ = 3 between point 5 and
6 at a blue-detuning of approximately 2π · 700 kHz. The linear scale of the axis shows
the dramatically different scale of the phases for varying Rydberg atom number. The
region with N↑ = 4 is already out of scale and the phase with N↑ = 2 is barely visible
and limited to a very small region around ∆ = 2π · 100 kHz and Ω < 2π · 10 kHz.
For each evolution time along the sweep trajectory we measured the Rydberg num-

ber histogram, from which we extracted the mean N↑ and the normalized variance

Q =
〈(
∑

i n̂
(i)
↑ )2〉−N2

↑
N↑

−1 (Fig. 7.10b). During the sweep N↑ increases until we observe a
saturation behaviour which we interpret as the onset of crystallization (Fig. 7.9). Sim-
ultaneously, the Q factor decreases from the Poissonian value Q ≈ 0 to Q ≈ −0.5(1),
which reflects the approach to the crystalline state. Due to our detection efficiency
we cannot measure the ideal value Q ≈ −1. The lowest value that can be expected is
Q ≈ −α (for a derivation see Appendix C.3). This bound is nearly saturated by the
obtained experimental value. The measurement of the full counting statistics along the
sweep trajectory allows for a more quantitative comparison with theory (Fig. 7.10c).
However, the finite detection efficiency strongly affects the observed histograms and
leads to a tail of the distributions towards lower spin-↑ atom numbers (Appendix C.2).
Nevertheless, when taking α = 0.62 into account in the theoretical prediction, we find
very good agreement with the experimental observations. We observe notable features
for times 6 and 7. At time 6 the observed probability for events without Rydberg atoms
is astonishingly low, which provides a lower bound for the detection efficiency and at
time 7 the distribution looks cut above N↑ = 3, which confirms that we do not have
more than three Rydberg atoms in the system.
The high-resolution detection scheme allows for an even more detailed study of the

dynamics via the spatial magnetization density, which is largely unaffected by the
detection efficiency, which mainly reduces the amplitude of the signal here. For our
quasi-one-dimensional systems, crystallization becomes directly visible in the magnet-
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Figure 7.9: Calculated
time-evolution of the popu-
lation of many-body states
with fixed N↑ during the
optimized sweep in 1D. The
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the sweep in Fig. 7.6a. Curves
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ization density, where it provides here similar information as the correlation function
〈n̂(i)
↑ n̂

(j)
↑ 〉 due to a breakdown of translational symmetry. The high interaction energy

required to compress crystals with N↑ > 1 leads to an effective pinning of the two
outer N↑-spins to the edges of the system. All other states with same N↑ and no spin-
↑ at the edge lie higher in energy. We look at the magnetization density as for the
measurements above at several times during the sweep. At the beginning of the pulse
we observe delocalized Rydberg atoms throughout the system (Fig. 7.10d), character-
istic for the magnetically disordered phase in this parameter regime. For longer times
spin-↑ atoms start to accumulate at both ends of the line-shaped cloud and finally the
full Rydberg atom density crystallizes to the expected triple-peak configuration. The
dynamics of this crystallization process matches well with the theoretical expectations.
The slight broadening of the observed peaks could be caused by slightly non-adiabatic
transitions during the sweep, but it is also still compatible with the spatial resolution
of the detection of one lattice site (Sec. 5.6.4)
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Figure 7.10.: Dynamical crystallization in 1D. a, Illustration of the laser sweep.
The black line shows the path of the sweep through the phase diagram, the numbered
positions mark the measurements (cf. c). The colour scale indicates the number of
spin-↑ atoms N↑ of the ground state for every pair (Ω,∆). The grey line indicates the
boundary of the crystalline lobes, where the Q factor drops below −0.9. The phase
diagram was calculated for the experimental parameters. b, Mean number of Rydberg
atoms (blue circles) and Q factor (red circles) for the seven times marked in a together
with the theoretical prediction. Each of the seven data points is based on at least 65
independent experimental repetitions. c, Experimental and theoretical probability
distributions of the number of Rydberg atoms along the sweep (cf. a). Blue boxes
show experimental data and the dashed and solid lines represent the theoretical result
for detection efficiencies of α = 1 and α = 0.62, respectively. d, Transversally averaged
distributions (probability per site) of the spin-↑ atoms for the same times as in c with
a binning of two sites (blue circles). The slight asymmetry towards the right might be
due to a gradient in the Rabi frequency (Sec. 7.4.2). The green line is the numerical
result. All error bars s.e.m.
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7.7. Adiabatic preparation in 2D

In a different set of experiments we investigate the adiabatic preparation in a disc-
shaped spin system of up to 400 spins. We use the spatial light modulator to prepare
the initial distribution with a controlled radius. The preparation can be optimized
to allow for radius fluctuations of less than one lattice site (Sec. 7.4.1). Here, the
dynamical preparation turns out to be more challenging, since effects of the fluctuating
boundary are much more pronounced in two dimensions than in the effective one-
dimensional geometry discussed above. Nevertheless, a proper frequency chirp of
the coupling laser provides substantial control of the many-body dynamics and the
preparation of energetically low-lying many-body states. This is demonstrated in
Fig. 7.12 where we compare the magnetization density at constant detuning to the
result of a chirped coupling from ∆min < 0 to ∆max (Fig. 7.6b). In the former case
the magnetization is almost uniformly distributed across the atomic sample, while in
the latter low energy states with a localized magnetization density are prepared. The
initial system size permits to control the number of spin-↑ atoms. With increasing N↑
the configuration with all Rydberg atoms located along the circumference becomes
energetically unfavourable compared to configurations with an extra Rydberg atom
in the centre. Fig. 7.11 shows the corresponding crystal configurations explicitly and
their theoretical interaction for the 43S state.
The series of configurations with one Rydberg atom in the centre becomes lowest

in energy between N↑ = 6 and N↑ = 7. The very small separation of the two config-
urations with N↑ = 6 might lead to an instability and could explain why we did not
observe many of these configurations in the experiment. The structural change from
N↑ = 6 to N↑ = 7 is directly visible in the observed patterns shown in Fig. 7.12. The
occurrence of the other respective configurations is strongly suppressed, though it can
happen that a N↑ = 8 configuration can be observed as a N↑ = 7 ring configuration
due to detection efficiency. But this detection problem can be avoided by looking at
the magnetization density (Fig. 7.12b), where we see in the middle panel of the right
grey box no peak in the centre, while the peak appears for the initial atom distribution
size of the rightmost panel.
To show the existence of resolvable crystalline phases we tried to observe a staircase

of excitations as in 1D (Sec. 7.5). The definition of a staircase in 2D with respect to
system size is not well-defined because of the discretisation of the lattice, which leads
to irregular 2D shapes when increasing the radius by steps of one or less and leads
to a non-uniform increase of the atom number. We performed a measurement of the
number of Rydberg atoms versus frequency offset of the sweep in 2D, but the result
does not deviate significantly from a linear increase with atom number (Fig. 7.13). We
compare data from three separate data sets, which are consistent within error bars,
but show stronger fluctuations than expected. It might be that the used sweep here
was not as adiabatic as thought such that it caused strong fluctuations and showed
extreme sensitivity to all parameters. Possible other reasons for the failure to resolve
the staircase in 2D is the much smaller width of the stairs with respect to system size
and smaller spacing of crystal configurations in energy due to the additional degree of
freedom. Nevertheless the data shows a negative Q factor for all configurations, down
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Figure 7.11: Cross-over in
the crystal structure. For
circular initial atom distribu-
tions there is a cross-over in
the structure of the crystals
between six and seven ex-
citations, which is illustrated
here by the calculation of
static crystal energies. a,
crystal configuration with 3-8
Rydberg atoms on a ring. b,
Crystal configuration with one
Rydberg atom in the centre
and the rest on a ring. c, Com-
parison of the interaction ener-
gies of the configurations in a
and b. Here the interactions
energies were calculated for a
cloud with radius 11 sites and
the theoretical C6 coefficient of
the 43S state.
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to about Q = −0.5(1), probably limited by detection efficiency. The average number
of excitations seems to saturate around 2.5, corresponding to αNe for α = 0.62 and
Ne = 4, which is the expected maximum Rydberg atom number for a cloud with
radius around seven sites.
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Figure 7.12.: Preparation of low-energy states in disc-shaped samples. a,
Unprocessed experimental single shot pictures with 6, 7 and 8 Rydberg atoms from
the rightmost data set. Each blue point corresponds to a single atom. The low prob-
ability to observe these perfect crystal events is consistent with the detection efficiency
(Sec. 5.6.3) b, c, Magnetization densities for pulsed (left grey box) and sweeped laser
coupling with increasing system size from left to right are shown in the right grey box.
The pulsed coupling was done with the same amplitude modulation as for the sweep
(Fig. 7.6b), but the detuning ∆ was held constant (averaged data for ∆ = 2π ·260 kHz
and ∆ = 2π · 760 kHz is shown). The system radius was 8.2(2), 8.3(1), 10.0(3), 11.8(2)
lattice sites (left to right). b, Measured two-dimensional distribution of the magnet-
ization. The colour scale represents the normalized counts per site. c, Azimuthally
averaged density distribution (probability per site) of the data shown in b (blue dots),
and comparison with theory (green line). The theoretical calculation was only feasible
for small clouds and is based on representative experimental initial atomic samples.
The average density of the initial systems is shown in grey on the right axis. The
density dip in the centre for the largest radius is caused by the vicinity to the doubly
occupied Mott lobe. Error bars s.e.m.
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Figure 7.13.: Attempt to resolve the staircase in 2D. The curves in dark-blue,
blue, purple show the mean detected Rydberg atom number, and the ones in red,
orange, yellow the corresponding Q factor of three datasets. The staircase is not
resolved and we see strong fluctuations in the data maybe caused by non-adiabaticity
of the sweep. It looks like we see a step in the dark-blue dataset, but this is not
reproduced in the other curves. We used a 6 µs sweep with start at a detuning ∆ =
−1.5MHz and end at 1.5MHz with respect to the centre frequency, which is reached
at 1 µs. The centre frequency of the sweep with respect to the Rydberg resonance is
shown on the x-axis. The initial atom distribution is a Mott insulator with 150(8)
atoms and radius 7.1(1) sites. The grey lines marks the expected levels of the plateaus
of the staircase for a detection efficiency of 62%. There is a systematic uncertainty of
up to 200 kHz in the global offset of the x-axis. Every data point shown is based on
an average over 40-65 experimental images.

7.7.1. Radial correlation function

For comparison with the correlation function shown with pulsed excitation (Fig. 6.6),
we also calculated the radial ↑-↑-correlation function (Fig. 7.14) for the rightmost
dataset in Fig. 7.12. Without the azimuthal averaging one obtains the full 2D correl-
ation function (Fig. 7.14a). The circular anti-correlation region corresponding to the
blockade sphere is clearly visible, while further details are hardly observable due to
the noise. No azimuthal dependency is visible, which confirms the expectation of an
isotropic interaction of the 43S state and justifies averaging along this dimension. The
averaging helps to suppress the noise and in the resulting data (Fig. 7.14b) and even a
second correlation peak becomes visible. It shows up at a distance which corresponds
to the diameter of the cloud and mainly events with three Rydberg atoms on a line
contribute to this correlation. As the observed crystal structures are still finite-size
dominated, the distances between Rydberg atoms depend slightly on the number of
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Figure 7.14.: Correlation function in 2D. a, two-dimensional spatial correlation
function for the largest disc-shaped initial system, shown in Fig. 7.12. There is a
clear circular anti-correlation region in the centre with a ring around. A second ring
is barely visible due to the noise caused by limited statistics. Due to the symmetry
in the correlation function the graph is point symmetric around the centre. b, Blue
points show the radial correlation function calculated as defined in Eq. (6.2) and used
in Fig. 6.6. The red line marks the diameter of the system and the grey line is a guide
to the eye.

Rydberg atoms in the state. This effect will wash out the contrast of the spatial
correlation function for larger distances and also causes the reduced anti-correlation
between the first and second correlation peak around r = 8 µm. To observe correla-
tion functions with several clear peaks much larger initial atom distributions would
be required or Rydberg states with much smaller blockade radius in order to increase
N↑. In principle we could reduce the blockade radius by using Rydberg atoms with
weaker interactions or going to much higher Rabi frequency, but this would require
some changes at the experiment which are discussed in the outlook (Ch. 8).

7.7.2. Dynamics in 2D

The study of the dynamics during the adiabatic preparation, as shown for one-dimensional
systems in Sec. 7.6 can be also extended to two-dimensional disc-shape ensembles. In
Fig. 7.15 we show the full counting statistics of the Rydberg atom number as well
as the spin-↑ density for five times during the sweep. Theory predicts predominantly
events with four spin-↑ atoms. The experimental results are well described by the-
ory assuming the detection efficiency of α = 0.62 as above. In the spin-↑ density we
observe the transition of a nearly homogeneous density to the appearance of a hole
in the centre of the system, which becomes most prominent for the full sweep of 4 µs
(Fig. 7.15b, rightmost graph). A comparison of the initial atom density with the ob-
served ring in the spin-↑ density demonstrates that the Rydberg atoms appear at the
border of the system. The build-up of the hole can be also investigated by determin-
ing the relative number of spin-↑ atoms in the centre of system (Fig. 7.16). We see a
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Figure 7.15.: Dynamical crystallization in disc-shaped samples. a,
Histograms of N↑ for the adiabatic sweep shown in Fig. 7.6 cut at times
0.44, 0.94, 1.14, 2.14, 3.94 µs (from left to right, pulse length was read off from oscil-
loscope to reduce influence of AOM rise time). The experimental data is shown as
bar histogram, the theory taking into account the detection efficiency of α = 0.62 as
continuous line. The theory with α = 1 is shown as dashed line. Calculations take
into account the experimental scatter of initial atom densities by averaging over the
dynamics of 57 experimental atom configurations with a radius of 8.24(13) sites and
a mean atom number of 192(10). b, Blue points, experimental azimuthally averaged
spin-↑-density for the same times as in a. Green line, theory including α = 0.62. For
reference the initial atom density is shown as grey line on the right axis. The insets
show the full 2D density of the Rydberg atoms.

Figure 7.16: Central density during
dynamical crystallization in 2D. Blue
points, experimentally determined relative
density in the central circle with radius
6.5 sites of the system over the length of
the cut sweep. Green line, central density
extracted from the theory results shown in
Fig. 7.15.
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strong drop in the beginning of the sweep and then a saturation which sets in around
the middle of the sweep. This behaviour indicates a phase transition to the crystalline
phase. The theory calculation shows good agreement with the experimental data.

7.8. Summary and outlook

The measurements in this chapter demonstrated the possibility to achieve the required
amount of control over a many-body system with power-law interactions to determin-
istically prepare ordered magnetic states. We showed evidence for Rydberg crystals by
direct imaging of the magnetization density as well as a staircase in the total magnet-
ization when changing the length of a quasi-one-dimensional system (Sec. 7.5). By a
time-dependent measurement we traced the evolution of the many-body system when
crossing the phase transition to the ordered phase, showing directly how the order
builds up. The adiabatic preparation technique was also demonstrated in 2D, but
here already small fluctuations in the atom number washed out the staircase. But
still it was possible to show that states with much lower energy compared to a pulsed
excitation can be prepared. A more detailed study of the phase transition might en-
able to observe the two-stage melting of the crystalline states via a floating crystal
phase [31, 318]. By implementing additional controlled dissipation to our system, the
investigation of long-range quantum correlations and dissipative quantum magnets in
strongly interacting Ising-type spin systems would become possible [325–327]. Similar
studies are also possible with anisotropic Rydberg-Rydberg interactions, leading to a
richer structure of the crystalline phases [328].





8. Conclusion and outlook

In this thesis the high-resolution and single Rydberg atom sensitive imaging of Rydberg
many-body systems has been demonstrated, which allowed for the direct observation
of ordering. We reach unprecedented resolution for the imaging of Rydberg atoms
and have unmatched control over the preparation of arbitrary ultracold initial atom
configurations in the lattice for Rydberg experiments. In contrast to previous exper-
iments our detection technique allows to image many ground state atoms as well as
many Rydberg atoms with single-particle sensitivity.
Using pulsed Rydberg excitation we observed spatially ordered structures by post-

selection on the high-density components of the many-body states. The imaging tech-
nique and in particular the detection efficiency and resolution were investigated in
detail. The high-quality imaging allowed to sort images of Rydberg atom configura-
tions by the number of Rydberg atoms. In this way we directly revealed the ordered
structures by alignment of the Rydberg atom configurations. A more quantitative
analysis has been performed by calculation of the azimuthal and radial correlation
function between Rydberg atoms, which also allows to extract the blockade radius.
Measurements focussing on the dynamics of close to fully blockaded samples hint to-
wards coherent dynamics with strong dephasing due to a wide energy spread of the
excited states.
With the implementation of more advanced excitation techniques a quantum sim-

ulation of a quantum Ising model with power-law interactions in a transverse and
longitudinal field became feasible. The adiabatic control technique for this strongly
interacting Hamiltonian allowed to realize Rydberg crystals and measure their correl-
ations which extend over the whole system size. In contrast to the first measurements
of ordered structures the Rydberg crystals are close to the ground state of the many-
body Hamiltonian and show ordering without post-selection. To make these exper-
iments possible, we improved the initial state preparation in the lattice by applying
a single-site addressing technique. In addition we implemented full control over the
time-dependent Rabi frequency and detuning of the adiabatic sweeps to realize theor-
etically optimized trajectories through the phase diagram. This adiabatic preparation
technique enabled us to measure properties of the many-body ground state like its
vanishing susceptibility or local magnetization densities.

Outlook

The amount of control reached over Rydberg systems allows for the quantum simula-
tion of long-range interacting many-body systems. The approach to many-body phys-
ics using Rydberg atoms is very different from other techniques starting from more
complex particles like magnetic atoms or molecules. The big advantage of Rydberg
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atoms is the high control over ground state atoms, which can be exploited before
Rydberg excitation for cooling and state preparation and afterwards for imaging. Also
the type of interactions can be selected by the choice of the Rydberg state, which has
yet to be explored for the other systems. While the production of ultracold polar
ground-state molecules [329–331] and magnetic atoms [332–334] has been successfully
demonstrated, the stability of these systems with respect to collisions is still a field of
active study [335–337]. In contrast, the essential single atom physics as well as bin-
ary interactions for alkali-metal Rydberg atoms can be calculated with high precision.
Rydberg atoms allow to access much of the physics targeted by molecules and magnetic
atoms, while avoiding much of the complexity of these systems. Although Rydberg
atoms are not stable on motional timescales, many experiments can be performed in
the frozen gas regime where the whole experiment can be extremely fast due to the
strong Rydberg-Rydberg interaction. An even more powerful technique is Rydberg
dressing, which would extend ultracold Rydberg physics to motional timescales.

Frozen Rydberg gas The current Rydberg setup allows for many more interesting
experiments even without further additions. A recent project is the investigation of
collective excitation in fully blockaded clouds using the 68S state [292]. With the help
of the addressing technique atomic samples with sub-Poissonian atom number fluctu-
ations can be prepared, which allow for the observation of collective Rabi oscillations
with better contrast than measured so far [75, 76].
Another interesting perspective is to go for a nearly vanishing intermediate state

detuning in the two-photon excitation and monitor the distribution of Rydberg atoms
in such an electromagnetically-induced transparency scheme. A system like this allows
future studies of magnetic Hamiltonians with tunable dissipation [325–327, 338].
With additional coupling to a second Rydberg state, either by microwave or a

second Rydberg laser, coherent exchange processes between Rydberg atoms could
be observed [339]. These can form the basis for the simulation of novel long-range
interacting spin models [9].
The investigated system of a unity filling lattice combined with the possibility of

Rydberg excitation is also very promising for quantum information processing [1],
as there are good perspectives to fulfil all DiVincenzo criteria [340]. The high-fidelity
initialization of the lattice with atoms in a certain hyperfine state has been realized [21].
Every atom on a lattice site can be used as a single qubit. The manipulation of single
qubits on the lattice is possible via the single-site addressing technique [22]. Here single
qubit flips at arbitrary positions have been demonstrated, but no full local single-qubit
control yet. In combination with site-selective excitation of Rydberg atoms in the
lattice, which could be implemented with similar effort as the single-site addressing,
two-qubit gates between many pairs of atoms in the lattice would become possible.
The high-resolution imaging then in the end allows for the detection of all atoms in
the lattice simultaneously.

Rydberg dressing One of the big open challenges in the field of many-body Rydberg
physics is the demonstration of Rydberg dressing [6, 7, 23–27]. The idea is to couple
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off-resonantly with a laser to a Rydberg state and by that admix a bit of the Rydberg
state, in particular its long-range interaction, to the ground state. The implementation
of these ideas would enable the investigation of quantum many-body systems with
tunable long-range interactions and would allow Rydberg systems to directly compete
with ultracold molecules and magnetic atoms in the field of long-range interacting
many-body systems.
One might consider to implement Rydberg dressing using the two-photon scheme

described in this thesis, but the numbers looked hopeless (Table 8.1). This estimation
was also confirmed by up to now unsuccessful tries in other groups [160, 204]. It turns
out that alkaline-earth-like atoms might allow for better excitation schemes due to the
existence of long-lived intermediate states [205, 341]. For 87Rb it turned out that the
only realistic implementation of Rydberg dressing with relevant interaction strength
requires a direct coupling with a single ultraviolet laser to the Rydberg state. This
laser system is currently being built into our setup by Johannes Zeiher [342].

Single-photon Rydberg P-state excitation In this section we discuss the possibilities
of using a single ultraviolet laser for the coupling to the Rydberg state instead of
a two-photon excitation. A first observation is that the set of accessible Rydberg
states changes from S- and D-states to P-states, as they are the only dipole-allowed
transitions directly from the ground state in rubidium. The main reason why this
direct excitation scheme is not widely used is the necessity of an ultraviolet laser
with sufficient power and stability and the larger Doppler broadening in the case of
thermal atoms. With the availability of better laser technology an increasing number
of experimental groups started to work on single-laser excitation schemes [72, 271,
272, 343, 344]. The big advantage of direct coupling is the possibility to reach higher
Rabi frequencies with lower light shifts and excess scattering rates than for the two-
photon schemes in rubidium. Higher Rabi frequencies allow for a smaller blockade
radius, which can be further reduced in a 1D geometry due to the angular dependence
of the interaction. This might allow for the observation of larger Rydberg crystals.
The higher Rabi frequency relative to scattering rates makes the ultraviolet excitation
scheme much better suited for Rydberg dressing than the two-photon setup, as will
be discussed in the next section.

Advantages of single-photon Rydberg dressing In the following we will discuss
the differences between two-photon Rydberg dressing schemes and a direct single-
photon scheme. To this end, we first have to consider the underlying physics. The
general idea of optical Rydberg dressing is to couple the ground state to a Rydberg
state off-resonantly with detuning ∆ by a laser of Rabi frequency Ω [6, 7, 23–27].
Similar to what happens in a typical dipole trap, the upper state is admixed to the
ground state. To avoid strong scattering at the upper state the coupling has to be
off-resonant |Ω/∆| � 1. The resulting admixture of the Rydberg state to the ground
state corresponds to a probability to find the atom in the Rydberg state of β =

(
Ω
2∆

)2.
The very large C6 coefficient of a Rydberg atom is reduced to C̃6 =

(
Ω
2∆

)4
C6. Due to

the Rydberg blockade, the dressing becomes less efficient for atoms too close together
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Parameter value 36P3/2 value 43S1/2

τeff [64] 38 µs 44 µs
β 7.6 · 10−4 8.8 · 10−4

Ωred - 1MHz
Ωblue - 140MHz
∆i - 700MHz
Ω 13MHz 0.1MHz
∆ 230MHz 1.7MHz
Ṽ 270Hz 3Hz
C6 −2 · 10−60 Jm2 −1.6 · 10−60 Jm2

Rc 1.4 µm 3.0 µm

Table 8.1.: Parameter comparison for Rydberg dressing. Approximate para-
meters for realistic laser power for Rydberg dressing with rubidium via the direct
single-photon dressing or the two-photon scheme for a targeted lifetime of 50ms.

and the dressed-atom interaction potential becomes constant for distances lower than

Rc =
(

C6
2~|∆|

)1/6
. Effectively the potential is of soft-core type U(r) = C̃6

r6+R6
c
. The

relevant energy scale to observe this potential is the height of the soft core Ṽ = C̃6
R6
c

=

~ Ω4

(2|∆|)3 = ~Ωβ3/2, which interestingly is independent of C6 and depends only on laser
parameters.
To check if the dressing is realistic we compare the parameters for dressing via the

two-photon excitation and the direct ultraviolet transition to a P-state. We require
a lifetime of the dressed-atom state of 50ms, which is the typical motional timescale
of the atoms. The effective lifetime of a Rydberg-dressed atom is τdress = β−1τeff,
which directly determines the maximum allowed scattering rate. To observe interesting
effects via Rydberg dressing it is required to look at systems which are larger than
the range of the the soft core Rc. Therefore we assume a beam waist of 20 µm.
For the direct comparison we have to assume available Rabi frequencies and consider
realistic laser powers in the UV and at 480 nm of 100mW and 1W, respectively. By
fixing these parameters and the Rydberg states 36P3/2 and 43S1/2, all other quantities
follow. In the case of the UV light the detuning ∆ is determined via the definition
of β by ∆ = Ω

2
√
β
. In the two-photon case the scattering rate is limited by the

intermediate state scattering. This then determines the maximum tolerable red Rabi
frequency and together with the available blue power the two-photon Rabi frequency
via Ω = ΩredΩblue

2∆i
= Ωblue√

τdressΓ
. Here the intermediate detuning of the two-photon

transition is not relevant in the limit of far detuning.
The values in Table 8.1 show that only a very small Rabi frequency is available

for dressing to avoid too much scattering in the case of the two-photon scheme. The
interaction potential height of ∼ 3Hz is smaller than all typical energy scales in the
system and probably impossible to observe. The reason behind this low effect is the
scattering rate at the intermediate state, which renders high Rabi frequencies on the
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lower transition impossible. For the UV dressing the potential height is a factor of
about hundred higher, but still much smaller than the typical interaction energy U
of ∼ 1 kHz for rubidium-87. As the total interaction energy in the system increases
with the number of atoms, an interaction energy of this magnitude could probably be
observed.

Applications of Rydberg dressing The successful implementation of Rydberg dress-
ing would be a milestone towards the quantum simulation of long-range interacting
Hamiltonians with motional degree of freedom. With standard absorption imaging the
effect of Rydberg dressing can be rather hard to detect [23]. One clear signature would
be spin-squeezing due to the strong non-linear interactions [205, 345]. If strong enough
Rydberg dressing can be reached, in principle the mysterious supersolid state could
be realized [6, 7, 346–348]. This is a crystalline phase, which simultaneously shows
superfluidity. Its existence and the interpretation of experiments that claimed the ob-
servation of supersolidity in 4He are still controversial [349–351]. An implementation
with cold atoms, which is based on microscopically different physics, might allow for
a larger superfluid fraction and more convincing evidence [348]. Another interesting
regime is Rydberg dressing in an optical lattice [27], which also has the experimental
advantage that possible collisions at short distance between Rydberg-dressed atoms
should be suppressed. Rydberg dressing in optical lattices could clear the path to-
wards implementing the extended Bose-Hubbard model, which is a generalization of
the Bose-Hubbard model with additional beyond on-site interactions. A very inter-
esting phase featured by the extended Bose-Hubbard model is the so-called Haldane
insulator with hidden string-order [352–356], which could be detected the same way
as already demonstrated for string order in a Mott insulator [14]. Rydberg dressing
to anisotropic P-states is also a path towards simulation of the dynamical gauge field
emerging in a quantum spin ice [256].





Appendix A.

Supplementary material for Chapter 2

A.1. Parity projection

The effect that we detect only an atom on a lattice site if the initial occupation was
odd is an intrinsic property of the single-site fluorescence imaging in our setup. The
main disadvantage is the loss of information about the initial absolute density. Under
certain assumptions the density can be reconstructed for rather low densities. The
typical assumption is a Poissonian distribution of the on-site occupation before parity
projection, which is expected for a Bose-Einstein condensate and thermal gases. In
this case some information about the average of the Poissonian distribution can be
extracted from the parity projected density. The main limit here is the signal-to-noise
ratio in the experiment, as the uncertainty in the estimation of parameters of the
Poissonian distribution from parity-projected densities grows exponentially with the
error on the measured parity density.
We assume Poissonian atom number distribution pλ(k) = λk e

−λ

k on-site with average
occupation λ. The probabilities to detect even parity p0,λ and to detect odd parity
p1,λ can be calculated analytically:

p0,λ =
∑
k even

pλ(k) = e−λ cosh(λ) =
1 + e−2λ

2

p1,λ =
∑
k odd

pλ(k) = e−λ sinh(λ) =
1− e−2λ

2
.

(A.1)

This can be solved for λ to extract the mean density before parity projection λ =
−1

2 ln(p0,λ − p1,λ). Calculating the error on the determined value yields

∆λ =

√(
∆p0,λ

2(p0,λ−p1,λ)

)2
+
(

∆p1,λ
2(p0,λ−p1,λ)

)2
= e2λ

2

√
∆p2

0,λ +∆p2
1,λ, which obviously in-

creases exponentially with λ.
As an example the loss of signal due to parity projection of a density wave around

a mean density of λ is given by the derivative e−2λ. The signal decays exponentially
and already at a mean density of 0.5 the signal is decreased to 37%. This leads to
the observation that density modulations in Bose-Einstein condensates can be only
detected with reasonable fidelity in a low-density regime in the presence of parity
projection.
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A.2. HTE0 on arduino

In the following a HTE0 implementation to simulate Mott insulator occupations. The
code below is numerically stable also for floating point arithmetic, which allows to run
it on an arduino uno.

#define N_SITES 16
float meannmod2HTE0_ext(float mu,float U,float B,int Zorder) {

float expSubtract = 0;
start:
float Z = 0;
float meann=0;

for (int myn=0; myn<=Zorder; myn++) {
float arg = -B*(U/2.*myn*(myn-1)-mu*myn)+expSubtract;
float tmp;
if (arg < -10) {

tmp = 0;
} else {

tmp = exp(arg);
}

if (isinf(tmp)) {
expSubtract -= arg;
goto start;

}
Z = Z + tmp;
meann=meann + (myn % 2)*tmp;

}
return meann/Z;

}
void calculateDistribution(int localGrid[N_SITES][N_SITES],

float T, float mu0, float r0) {
int center = N_SITES/2.;
int Zorder = 3;
float U = 1; // all other values in units of U
float B = 1/T;
for (int i = 0; i < N_SITES; i++) {

for (int j=0; j < N_SITES; j++) {
float distGridVal = sqrt((i-center)*(i-center)+(j-center)*(j-center));
float muGridVal = mu0-(distGridVal/r0)*(distGridVal/r0);
localGrid[i][j] =

meannmod2HTE0_ext(muGridVal, U, B, Zorder)>random(1000)/2000.0;
}

}
}
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B.1. Analytic hydrogen wavefunctions

A simple reference for the calculation of the radial wavefunctions of the Rydberg atoms
are the hydrogen wavefunctions. For reference we write down here the analytical
results explicitly [61], which were used for comparison with the calculated Rydberg
wavefunctions. The version below uses the same definition as Mathematica for the
Laguerre polynomials.
The normalized hydrogen wavefunction in spherical coordinates is given by

ψnlm(r,θ,φ) = Rnl(r) · Y m
l (θ,φ)

=

√(
2

na0

)3 (n− l − 1)!

2n(n+ l)!
e−ρ/2ρlL2l+1

n−l−1(ρ)Y m
l (θ,φ)

with ρ =
2r

na0
and the normalization

∞∫
0

dr

π∫
0

dθ

2π∫
0

dφψnlm(r,θ,φ)∗ · ψn′l′m′(r,θ,φ)r2 = δnn′δll′δmm′ .

(B.1)

Here, a0 is the Bohr radius, L2l+1
n−l−1 the generalized Laguerre polynomials and Y m

l (θ,φ)
the spherical harmonics.
The normalized radial part of the hydrogen wavefunction is:

Rnl(r) =

√(
2

na0

)3 (n− l − 1)!

2n(n+ l)!
e−ρ/2ρlL2l+1

n−l−1(ρ)

with normalization
∞∫

0

R∗nl ·Rn′l′(r)r2dr = δnn′δll′ .

(B.2)

B.2. Derivation of the radial differential equation for
Rydberg atoms

Here we derive the radial wavefunction in scaled coordinates, optimized for numerical
integration via the Numerov algorithm. The whole calculation is done in atomic units.
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Analogous derivations can be found in [228, pp 33–35][175, pp.6–11] [230, pp. 15–17].
We start from the Schrödinger equation with spherically symmetric potential(

−∆

2µ
+ V (r)

)
Ψ = EΨ

µ =
(
m−1
e +m−1

p

)−1
.

(B.3)

For the following we use ∆ in spherical coordinates, given as

∆ =
∂

∂r2
+

2

r

∂

∂r
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
. (B.4)

The difference between hydrogen and rubidium is due to the quantum defects and
the effective potential seen by the outer electron. The potential used for rubidium is
given in Section 4.1.2. For hydrogen the potential is just the Coulomb potential V (r) =
−1
r . For alkali-metal Rydberg atoms there are various approximations possible. A

simple approximation taking into account the basic effect of the other electrons leads
to the following potential [207].

V (r) = −Z
r

+ Vp(r)

with

Vp(r) ≈ −
αd
2r4

(B.5)

One can apply the standard separation ansatz to split off the radial part of the
wavefunction.

Ψ = Rnl(r)Ylm(θ,φ) =
1

r
Unl(r)Ylm(θ,φ) (B.6)

With Ylm(θ,φ) the spherical harmonics the radial Schrödinger equation reduces to:(
− 1

2µ

d

dr2
+ V (r) +

l(l + 1)

2r2µ

)
Unl(r) = EUnl(r) . (B.7)

For numeric integration it is favourable to use scaled coordinates [225],[226, p.36],
which lead to a nearly constant oscillation period of the wavefunction in space. These
wavefunctions can then be integrated numerically without loss in precision with fixed
step size methods. The spatial coordinate and the wavefunction are rescaled as u =

√
r

and χ(u) = u−
1
2Unl(u

2) or equivalent χ = r3/4R(r) with R(r) = U(r)
r [225].

To apply this transformation of the radial Schrödinger equation (B.7) one first needs
to transform the second derivative

d2

dr2
U(r) =

1

4
u−

3
2
d2

du2
χ(u)− 3

16
u−

7
2χ(u) , (B.8)

where U(r) = r1/4χ(
√
r).
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We plug in the result above into the radial Schrödinger equation and obtain a scaled
radial differential equation for χ(u).

(
− 1

2µ

(
1

4
u−

3
2
d2

du2
− 3

16
u−

7
2

)
+ V (u2)

√
u+

l(l + 1)

2u4µ

√
u

)
χ(u) = E

√
uχ(u)(

− 1

8µu2

d2

du2
+

3
16 + l(l + 1)

2µu4
+ V (u2)

)
χ(u) = Eχ(u)

using
3

16
+ l(l + 1) =

1

4

(
1

2
+ 2l

)(
3

2
+ 2l

)
(
− 1

8µu2

d2

du2
+

(1
2 + 2l)(3

2 + 2l)

8µu4
+ V (u2)

)
χ(u) = Eχ(u)

d2

du2
χ =

(
(1

2 + 2l)(3
2 + 2l)

u2
+ 8µu2V (u2)− 8µu2E

)
χ(u)

and when using Eq. (B.5)

d2

du2
χ =

(
(1

2 + 2l)(3
2 + 2l)

u2
− 8µ− 4αdµ

u2
− 8µu2E

)
χ(u)

(B.9)

Here E = − 1
2(n∗)2 is the binding energy of the electron. The reduced mass in atomic

units is about one and can be neglected compared to other error sources, especially
for a heavy element as rubidium.
To avoid reverse transformations of the numerically obtained scaled wavefunctions

for the calculation of matrix elements, we determine the radial overlap integral directly
for the scaled wavefunctions χ(u).

Rn′l′nl =

∞∫
0

R∗nl(r)r
kRn′l′r

2dr

=

∞∫
0

Unl(r)

r
rk
Un′l′(r)

r
r2dr

=

∞∫
0

Unl(r)r
kUn′l′(r)dr

=

∞∫
0

√
uχnl(u)u2k√uχn′l′(u)2udu

= 2

∞∫
0

χnl(u)u2kχn′l′(u)u2du

(B.10)



130 Appendix B. Supplementary material for Chapter 4

B.3. Scaling of the wavefunction at the nucleus with the
effective principal quantum number

Assuming that the scaling (see Appendix B.2) transforms the hydrogen wavefunctions
in nearly constant amplitude functions, the scaling of ψ(0) with the effective principal
quantum number n∗ can be derived. We start with χ(r) = ζθ(r − r1), with r1 the
orbit radius of the Rydberg state. Normalizing this wavefunction and transforming to
R(r) leads to R(r) =

√
3
2 (rr1)−3/4 θ(r − r1). To determine the wavefunction at the

origin, we integrate the wavefunction up to a small radius r0 < r1:∫ r0
0 |R(r)|2 r2dr =

∫ r0
0

(
r
r1

)−3/2
θ(r−r1)r2dr =

(
r0
r1

)3/2
. By definition r0 is independ-

ent of n∗ and r1 scales as (n∗)2, so |ψ(0)|2 scales as (n∗)−3. Another more technical
way to derive this scaling is to look directly at the analytic hydrogen wavefunctions
and their behaviour for r → 0 using Lkm(0) = (m+k)!

m!k! .

B.4. Comparison of radial matrix elements with literature

In the tables in this section calculated radial matrix elements are compared to various
values in literature. The comparisons show that for most transitions the values are
consistent. Only for transitions from the electronic ground state to Rydberg P-states
significant deviations become apparent, which are attributed to the poor approxima-
tion of the ground state by the model potential.



B.4. Comparison of radial matrix elements with literature 131

transition this work,
radial m. el. [a0]

calc. from
quoted f-value,
radial m. el. [a0]

this work,
osc. strength

quoted value,
osc. strength

〈
5S1/2

∣∣ r ∣∣ 6P3/2

〉
5.69 · 10−1 4.41 · 10−1 1.56 · 10−2 9.37 · 10−3〈

5S1/2

∣∣ r ∣∣ 7P3/2

〉
2.37 · 10−1 1.65 · 10−1 3.17 · 10−3 1.53 · 10−3〈

5S1/2

∣∣ r ∣∣ 8P3/2

〉
1.39 · 10−1 8.72 · 10−2 1.17 · 10−3 4.60 · 10−4〈

5S1/2

∣∣ r ∣∣ 9P3/2

〉
9.55 · 10−2 5.65 · 10−2 5.72 · 10−4 2.00 · 10−4〈

5S1/2

∣∣ r ∣∣ 10P3/2

〉
7.13 · 10−2 3.97 · 10−2 3.26 · 10−4 1.01 · 10−4〈

5S1/2

∣∣ r ∣∣ 11P3/2

〉
5.61 · 10−2 3.35 · 10−2 2.05 · 10−4 7.30 · 10−5〈

5S1/2

∣∣ r ∣∣ 12P3/2

〉
4.59 · 10−2 2.54 · 10−2 1.38 · 10−4 4.25 · 10−5〈

5S1/2

∣∣ r ∣∣ 13P3/2

〉
3.85 · 10−2 2.11 · 10−2 9.79 · 10−5 2.95 · 10−5〈

5S1/2

∣∣ r ∣∣ 14P3/2

〉
3.29 · 10−2 1.85 · 10−2 7.21 · 10−5 2.28 · 10−5〈

5S1/2

∣∣ r ∣∣ 15P3/2

〉
2.86 · 10−2 1.43 · 10−2 5.48 · 10−5 1.36 · 10−5〈

5S1/2

∣∣ r ∣∣ 16P3/2

〉
2.52 · 10−2 1.30 · 10−2 4.26 · 10−5 1.13 · 10−5〈

5S1/2

∣∣ r ∣∣ 17P3/2

〉
2.24 · 10−2 1.15 · 10−2 3.38 · 10−5 8.89 · 10−6〈

5S1/2

∣∣ r ∣∣ 18P3/2

〉
2.02 · 10−2 1.03 · 10−2 2.73 · 10−5 7.16 · 10−6〈

5S1/2

∣∣ r ∣∣ 19P3/2

〉
1.82 · 10−2 9.08 · 10−3 2.24 · 10−5 5.56 · 10−6〈

5S1/2

∣∣ r ∣∣ 20P3/2

〉
1.66 · 10−2 7.54 · 10−3 1.86 · 10−5 3.84 · 10−6

Table B.1.: Comparison of oscillator strengths for 87Rb with experimental
data by Caliebe & Niemax [208]. The measurements fit quite well with relativ-
istic calculations [210, 357, 358]. The table shows that the simple quantum defect
calculation is not accurate for these transitions and leads to deviations of around a
factor of two in the matrix elements for 5S1/2 to nP3/2 transitions.

matrix element this work [a0] quoted value exp [a0] quoted value th [a0]√
2/3
〈
5P3/2

∣∣ r ∣∣ 20D5/2

〉
0.0873 0.084(6) 0.085√

2/3
〈
5P3/2

∣∣ r ∣∣ 22D5/2

〉
0.0748 0.071(6) 0.073√

2/3
〈
5P3/2

∣∣ r ∣∣ 26D5/2

〉
0.0572 0.058(6) 0.056√

2/3
〈
5P3/2

∣∣ r ∣∣ 28D5/2

〉
0.0508 0.050(5) 0.049√

2/3
〈
5P3/2

∣∣ r ∣∣ 30D5/2

〉
0.0456 0.044(4) 0.044√

2/3
〈
5P3/2

∣∣ r ∣∣ 35D5/2

〉
0.0357 0.032(4) 0.035√

2/3
〈
5P3/2

∣∣ r ∣∣ 37D5/2

〉
0.0328 0.031(3) 0.032√

2/3
〈
5P3/2

∣∣ r ∣∣ 40D5/2

〉
0.0290 0.030(3) 0.028√

2/3
〈
5P3/2

∣∣ r ∣∣ 42D5/2

〉
0.0269 0.024(3) 0.026√

2/3
〈
5P3/2

∣∣ r ∣∣ 44D5/2

〉
0.0250 0.023(3) 0.024√

2/3
〈
5P3/2

∣∣ r ∣∣ 48D5/2

〉
0.0219 0.021(3) 0.021

Table B.2.: Comparison of radial matrix elements for 87Rb with experiment
and theory from [234, 359]. In the measurements by Piotrowicz et al. the matrix
elements are given including the angular factor

√
2/3 [359, p.78]. The experimental

values are consistent with the values in [233], a comparison can be found in [360].
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matrix element this work (a0) quoted value (a0) reference deviation (%)〈
5S1/2

∣∣r∣∣5P1/2

〉
5.46 5.1842 [263] 5.5〈

5S1/2

∣∣r∣∣5P3/2

〉
5.44 5.1776 [263] 5.1〈

5S1/2

∣∣r∣∣5P3/2

〉
5.44 5.14 [100] 5.9〈

5P3/2

∣∣r∣∣79D5/2

〉
0.0125 0.012 [100] 3.8〈

5P3/2

∣∣r∣∣43D5/2

〉
0.031 75 0.029 [70, p.4] 9.5〈

5P3/2

∣∣r∣∣43D5/2

〉
0.031 75 0.031 60 [78, p.30] 0.47〈

5P1/2

∣∣r∣∣43S1/2

〉
−0.017 601 −0.017 600 [78, p.30] 0.01〈

5P3/2

∣∣r∣∣43S1/2

〉
0.017 48 0.017 86 [3, p.6] 2.1〈

5P3/2

∣∣r∣∣44D5/2

〉
−0.0306 0.03 [276, p.3] 2.1〈

56F5/2

∣∣r∣∣58D3/2

〉
2596.0 2594 [74, SI] 0.08〈

58D3/2

∣∣r∣∣60P1/2

〉
2563.3 2563 [74, SI] 0.01〈

46S1/2

∣∣r∣∣45P1/2

〉
1924.5 1924 [132] 0.03〈

50D5/2

∣∣r∣∣52P3/2

〉
1842.7 1840 [361] 0.15〈

48F7/2

∣∣r∣∣50D5/2

〉
1892.8 1893 [361] 0.01〈

35D5/2

∣∣r∣∣37P3/2

〉
876.3 875 [361] 0.15〈

33F7/2

∣∣r∣∣35D5/2

〉
881.6 882 [361] 0.04〈

46D5/2

∣∣r∣∣48P3/2

〉
1550.3 1548 [307] 0.15〈

44F7/2

∣∣r∣∣46D5/2

〉
1585.9 1587 [307] 0.07〈

46D5/2

∣∣r∣∣47P3/2

〉
2708.6 2709 [307] 0.01〈

45F7/2

∣∣r∣∣46D5/2

〉
2694.3 2694 [307] 0.01

Table B.3.: Comparison of radial matrix elements for 87Rb and 85Rb with
literature. The pure radial matrix elements from [263] are extracted as described
in Sec. J.1. The precision of calculated matrix elements between two Rydberg states
(lower half of the table) is much higher than the quality of the matrix elements from
the ground state or first excited state to Rydberg states (upper half) due to larger
influence of the imperfect model potential on low-lying states.
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nS1/2 nP1/2 nP3/2

5S1/2 - 0.9223(11)[0.7%] 1.1689(8)[0.7%]

nS1/2 nD3/2 nD5/2

5P1/2 4.4362(5)[0.5%] 8.2650(3)[0.2%] -
5P3/2 4.4052(5)[0.6%] 8.5730(3)[0.2%] 8.5389(3)[0.2%]

6P1/2 8.7444(18)[1.2%] 12.5363(9)[0.5%] -
6P3/2 8.5770(17)[1.2%] 13.1678(60)[0.5%] 13.0956(61)[0.5%]

7P1/2 14.2235(10)[2.1%] 17.4035(61)[0.9%] -
7P3/2 13.9598(18)[2.1%] 18.1369(63)[1.0%] 18.0152(63)[1.0%]

Table B.4.: Scaling of radial matrix elements of 87Rb. The scaling coefficients
are fitted to the calculated values of matrix elements for n = 30 to n = 100 (for
details see Sec. 4.1.5). The notation is a(b)[c] where a is the scaling coefficient, b the
fitting error of the last digit and c the maximum deviation of the fit function from
the individual calculated values. As the quantum defect calculation is not the optimal
approach to calculate matrix elements involving a low-lying level, systematic errors
on the order of 10% are not surprising. In particular the matrix elements 5S → nP
have to be taken with care, as the quantum defect calculation for the ground state
wavefunction might be quite inaccurate (Table B.1).

matrix element this work (a0) quoted value (a0) reference deviation (%)

5P3/2 → nS1/2 4.405 4.508 [227, p.296] [175, p.13] 2%

4.502 [230, p.21] 2%
5P3/2 → nD5/2 8.539 8.475 [227, p.296] [175, p.13] 1%

8.457 [230, p.21] 1%

Table B.5.: Comparison of fitted scaling coefficients with literature. For
details see Sec. 4.1.5.
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Supplementary material for Chapter 5

C.1. Three-level system with dissipation

To establish conventions we repeat the basic physics of three-level systems in ladder
configurations and the reduction to an effective two-level system. For a comparison
with experiment it is interesting to understand the influence of the various decay chan-
nels in the system. As application we will discuss the prerequisites on the parameters
to observe Rabi oscillations in such a system. A good overview on the inclusion of
decay in the three-level system can be found in [230, p.39]. The following treatment
is based on the derivations and results there (similar discussions can be found also
for example in [71, 78, 287, 362–366]). For simplification of the treatment we only
consider real Rabi frequencies.

C.1.1. Three-level system

The excitation of Rydberg atoms via a two-photon transition is described by a three-
level system with two laser couplings. The Hamiltonian can be written in Matrix form
in the basis (|g〉 , |e〉 , |r〉), where |g〉 is the ground state, |e〉 the intermediate state and
|r〉 the Rydberg state.

Ĥ = ~

 0 Ω1
2 0

Ω1
2 ∆ Ω2

2

0 Ω2
2 δ

 (C.1)

Here ∆ is the intermediate state detuning and δ is the two-photon detuning as defined
in Fig. C.1.
Decay due to the natural linewidth of excited levels is given by the following Liouville

operator.

L̂(ρ) =

 Γeρee −1
2Γeρge −1

2Γrρgr
−1

2Γeρeg −Γeρee + Γrρrr −1
2(Γe + Γr)ρer

−1
2Γrρrg −

1
2(Γe + Γr)ρre −Γrρrr

 (C.2)

Where the density matrix is parametrized as

ρ̂ =

 ρgg ρge ρgr
ρeg ρee ρer
ρrg ρre ρrr

 . (C.3)
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Here the direct decay from the Rydberg state to the ground-state is neglected, as the
transition is typically forbidden due to parity conservation and therefore the transition
rate very small. We take into account the decay from the Rydberg state to the
intermediate state Γr and the decay from the intermediate to the ground state Γe.
The off-diagonal terms model the dephasing between the corresponding levels caused
by decay events. Additionally there is dephasing for imperfect laser stability, which
can be taken into account by the following operator [230]:

L̂d(ρ) =

 0 −γ1ρge −(γ1 + γ2)ρgr
−γ1ρeg 0 −γ2ρer

−(γ1 + γ2)ρrg −γ2ρre 0

 . (C.4)

Here γ1,2 denote the FWHM linewidth of the laser on the lower transition and upper
transition, respectively (Fig. C.1).
The dynamics including dissipation is then given by the master equation

˙̂ρ = − i
~

[
Ĥ, ρ̂

]
+ L̂(ρ) + L̂d(ρ) . (C.5)

C.1.2. Reduction to two-level system

In many cases it is not necessary to do calculations in the three-level system as the
physics can be also calculated in an effective two-level description [362, 363]. Many
experiments are easier to interpret in the resulting two-level model. The reduction
scheme is somewhat tricky in the details [367], but the simple adiabatic elimina-
tion scheme leads to the correct result. The prerequisite for the adiabatic elimin-
ation of the intermediate level is a large intermediate state detuning, i.e. |∆| �
max(|δ| , |Ω1| , |Ω2|) [367, 368]. These conditions can be somewhat relaxed using a bit
more complex treatment [369]. The adiabatic elimination scheme can be generalized
to many levels and higher order approximations [370].
To simplify the calculation of light shifts, one can typically assume |ω1 − ω2| �
|∆|, which allows to neglect the light shift of laser 1 on transition 2 and laser 2 on
transition 1. As written above, we assume |∆| � |Ω1,2|, allowing to approximate the
light shifts of laser 1,2 on transition 1,2 as ∆LS

g =
Ω2

1
4∆1

=
Ω2

1
4∆ and ∆LS

r = − Ω2
2

4∆2
=

Ω2
2

4(∆−δ) . The effective light shift on the reduced two-level system is thereby ∆LS
eff =

∆LS
r −∆LS

g =
Ω2

2
4(∆−δ) −

Ω2
1

4∆ .
Finally we end up with an effective two-level description with effective detuning

and Rabi frequency. The effective Rabi frequency is Ωeff = Ω1Ω2
2∆ , and the effective

detuning ∆eff = δ +∆LS
eff = δ +

Ω2
2

4(∆−δ) −
Ω2

1
4∆ . Within this thesis the effective resonant

Rabi frequency Ωeff is often simply referred to as Ω. For off-resonant driving the Rabi
frequency becomes Ωdetuned =

√
Ω2
eff +∆2

eff.
Without dissipation the effective description of the three-level system is the well-

known two-level system Hamiltonian, where Ω and ∆ are replaced by the effective
quantities discussed above.

H = ~
(

0 Ωeff
2

Ωeff
2 ∆eff

)
(C.6)
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e
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δ

∆
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ω1
γ1

Ω2
ω2
γ2

Ωeff

e
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∆effΓr

Γe

∼ Γeff

Figure C.1.: Reduction of three level system. By adiabatic elimination of the
intermediate state a three-level system (left) can be described in the limit of large
intermediate detuning ∆ by a two-level system (right). The detuning of the laser 1 on
transition 1 is ∆1 = ∆ = ω1 − ωeg, where ωeg is the atomic transition frequency. The
detuning of laser 2 on transition 2 is ∆2 = ω2 − ωre = δ −∆.

Taking into account the decay and dephasing terms during reduction is tricky, here
we use a semi-empirical approach and checked the following Liouville operators nu-
merically against the full three-level calculation.

L̂(ρ) =

(
Γrρrr −1

2Γrρgr
−1

2Γrρrg −Γrρrr

)
(C.7)

L̂d(ρ) =

(
0 −(γ1 + γ2 + γi)ρgr

−(γ1 + γ2 + γi)ρrg 0

)
(C.8)

Here γi =
ΓeΩ2

1

Γ 2
e+2Ω2

1+4∆2 ≈
ΓeΩ2

1
4∆2 is a reasonable approximation for the dephasing due

to the decay at the intermediate level. For the further calculation we define γ = γ1 +
γ2 + γi. The time evolution for ∆eff = 0 can be solved analytically by transformation
of the complex differential equation system to a standard real linear form

d

dt


ρgg

Re(ρgr)
Im(ρgr)
ρrr

 =


0 0 −Ωeff Γr
0 −γ − Γr/2 −∆eff 0

Ωeff/2 ∆eff −γ − Γr/2 −Ωeff/2
0 0 Ωeff −Γr




ρgg
Re(ρgr)
Im(ρgr)
ρrr

 .

(C.9)
The result for the Rydberg state population for an initial state with all population in
the ground state is then

ρrr(t) = −
Ω2e−Γefft

(
Γeff sin(Ωdt) +Ωd cos(Ωdt)−ΩdeΓefft

)
Ωd (2γΓr + Γ 2

r + 2Ω2)
. (C.10)

To simplify the notation we use Ω = Ωeff and define Ωd = 1
4

√
16Ω2 − (Γr − 2γ)2,

Γeff = 2γ+3Γr
4 , where Ωd becomes real for the oscillatory case Ω � γ,Γr and represents
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a slightly modified oscillation frequency. In the case of weak dephasing and weak decay
we can approximate the time evolution above, by noting that Ωd ≈ Ω and Γeff � Ωd.
This leads to:

ρrr(t) ≈
Ω2
(
1− e−Γefft cos(Ωt)

)
2γΓr + Γ 2

r + 2Ω2
≈ 1− e−Γefft cos(Ωt)

2
. (C.11)

The last result shows directly that the effective decay of the Rabi oscillation is given
by the time constant Γeff = 2γ+3Γr

4 = 1
2(γ1 + γ2 + γi) + 3

4Γr. The requirement to
observe Rabi oscillations is therefore Ω > Γeff. The linewidths of the lasers can be
reduced by a good stabilization, but Γr, which is approximately 2π · 4 kHz for the 43S
state, cannot be changed. The dephasing γi caused by decay from the intermediate
state is directly determined by the laser intensity for the lower transition. It is clearly
desirable to rather increase the Rabi frequency on the upper transition, which has
no negative effect on the dephasing. By maximizing Ω

Γeff
, it is possible to calculate

the optimal detuning to observe a maximum number of Rabi cycles, which is given
by ∆opt =

√
Γe

4γ1+4γ2+3Γr
Ω1. This suggest we should use ∆

Ω1
≈ 5 for our parameters

(Γe = 2π·6MHz, γ1 = 2π·50 kHz, γ2 = 2π·20 kHz, Γr = 2π·4 kHz). But this calculation
does not take into account dephasing due to light shift variations caused by intensity
noise, which limits the intensity on the lower transition. In the end the best way to
observe Rabi oscillations is to aim for the highest reachable Rabi frequency on the
upper transition, while the optimal Rabi frequency on the lower transition depends
on the detuning ∆ and the combination of many dephasing and decoherence sources.

C.2. Detection efficiency correction for Rydberg
histograms

In an experiment where we detect a certain number of atoms in every picture and every
atom is detected with a probability η, we can correct the full counting statistics of the
distribution of detected atom numbers p(n) using a linear transformation. The main
assumption here is a detection efficiency for a single atom that is constant over time
and does not depend on the number of atoms in the picture. We denote the probability
to detect n atoms with pη(n) and the underlying real distribution p(n) ≡ p1(n). nmax
is the maximum number of atom that occurs. With these definitions we obtain the
following transformations

pη(n) =

nmax∑
m=n

ηn(1− η)m−n
(
m

n

)
p(m) (C.12)

p(n) =

nmax∑
m=n

(
1

η

)n(
1− 1

η

)m−n(m
n

)
pη(m) . (C.13)

The sum can also start at zero as the binomial coefficients are anyway zero in the
added range.
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To demonstrate consistency of both transformation we show that the second equa-
tion is the inverse transformation of the first (the identity used in here can be verified
using e.g. Mathematica):

p(n) =
∑
m

(
1

η

)n(
1− 1

η

)m−n(m
n

)∑
m′

ηm(1− η)m
′−m
(
m′

m

)
p(m′)

= (η − 1)−n
∑
m,m′

(−1)m(1− η)m
′
(
m

n

)(
m′

m

)
p(m′)

= (η − 1)−n
∑
m′

(1− η)m
′
p(m′)

∑
m

(−1)m
(
m

n

)(
m′

m

)
︸ ︷︷ ︸

=(−1)nδm′,n

= (η − 1)−n (1− η)n p(n)(−1)n

= p(n) .

(C.14)

C.3. Mandel Q parameter

The Mandel Q parameter, introduced by Mandel in the 70ths [107], is a normalized
factorial moment.
There are some special properties of this parameter: It is 0 for a Poissonian distribu-

tion and takes a minimal value of −1 for a Fock state. For a parameter Qη measured
with a detection efficiency η in an experiment, the relation Qη = ηQ holds (Appendix
of [106], see also [107]). In the following the proof of this relation is reproduced.
We start from the known mean value and standard deviation of the binomial dis-

tribution p(k) =
(
n
k

)
pk (1− p)n−k (e.g. [371]) and calculate mean and variance:

〈x〉 =
∑
k

kp(k) =
∑
k

k

(
n

k

)
pk (1− p)n−k = np (C.15)〈

x2
〉
− 〈x〉2 = np(1− p) (C.16)〈

x2
〉

= np(1− p) + n2p2 =
∑

k2

(
n

k

)
pk (1− p)n−k (C.17)

We define 〈x〉η as the average value of the probability distribution x with distribution
function pη(x) as used in Appendix C.2. The goal is now to calculate the relation
between 〈.〉η and 〈.〉 for x and x2. We use the relations shown above.

〈x〉η =
∑
n

npη(n) =
∑
n

∑
m

nηn (1− η)m−n
(
m

n

)
p(m) =

∑
m

ηmp(m) = η 〈x〉

(C.18)

〈
x2
〉
η

=
∑
n

n2pη(n) =
∑
n

n2
∑
m

ηn (1− η)m−n
(
m

n

)
p(m) =

∑
m

(
m2η2 +mη(1− η)

)
p(m)

= η2
〈
x2
〉

+ η(1− η) 〈x〉



140 Appendix C. Supplementary material for Chapter 5

E
rr

or
 s

ig
na

l v
ol

ta
ge

 (
ar

b.
 u

ni
ts

)

Relative frequency (MHz)
-500  0  500  1000  1500

Figure C.2.: Modulation transfer error signal. Modulation transfer error signal
for 87Rb (left) and 85Rb (right). The spectroscopy is nearly free of systematic offsets
and the residual offset is about 1% of the peak signal. It is probably caused by
electronic offsets and does not depend on laser power. The x-axis is calibrated by
the known isotope shift of the line of 1126.5MHz. The wiggles on the left side of
the error signals are probably caused by interference effects due to the other atomic
transition nearby. The two large error signals are both around 40MHz wide with a
signal-to-noise ratio of around > 200, allowing to lock to 50 kHz.

Now we calculate Qη measured in the experiment in terms of the ideal Q parameter.

Qη =
〈x(x− 1)〉η − 〈x〉

2
η

〈x〉η
=

〈
x2
〉
η
− 〈x〉2η
〈x〉η

− 1

=
η2
〈
x2
〉

+ η(1− η) 〈x〉 − η2 〈x〉2

η 〈x〉
− 1

=
η
〈
x2
〉
− η 〈x〉2

〈x〉
+ (1− η)− 1

= η

(〈
x2
〉
− 〈x〉2

〈x〉
− 1

)
= ηQ

(C.19)

If the experiment exhibits a well-defined detection efficiency η the minimum Q that
can be measured is then −η.

C.4. Modulation transfer spectroscopy

Many often used spectroscopy techniques like saturated absorption spectroscopy, mod-
ulation or polarization spectroscopy are quite sensitive to offset drifts, leading easily
to drifts of the laser frequency on the order of 10% of the natural linewidth. For the
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so-called modulation transfer spectroscopy this problem is strongly reduced. The basic
technique is quite an old concept [372–374] and there is even a patent on that [375]. It
got broad interest only much later [175, 376–384] and is still actively studied due to its
special properties. The idea is to phase-modulate only the saturation beam and detect
the transfer of the modulation to the probe beam. After down-mixing this leads to a
vanishing error signal far from resonance and a strong dispersive signal on resonance.
Compared to other spectroscopy techniques only closed transition cause a strong er-
ror signal, but some other lines are also accessible by using different polarizations.
Another interesting effect is the low susceptibility to power broadening for this tech-
nique. For the typical power of diode lasers we could not observe power broadening,
while for normal saturated absorption spectroscopy the Doppler free lines are easily
broadened to a degree that they vanish in the noise floor. The main disadvantage of
the modulation transfer spectroscopy is that a strongly driven resonant electro-optic
modulator is required to reach a reasonably strong error signal. It turns out that the
optimal modulation frequency is typically slightly below the natural linewidth of the
transition, for higher modulation frequencies several zero crossings of the error signal
are observed.
In our setup we were able to reach a linewidth and stability of the laser lock by

a modulation transfer spectroscopy of about 50 kHz (Sec. 5.5.2). The corresponding
error signal is shown in Fig. C.2. As demonstrated in high-precision spectroscopy
[385], locking to ±3 kHz on the D2-line is possible by using pre-stabilization cavities
and advanced lock-in schemes.





Appendix D.

Supplementary material for Chapter 6

The following supplementary material is reproduced from [291].

D.1. Additional information on the datasets

The experimental data results from three different datasets (A, B and C). Each dataset
was characterized by a temperature, T , atom number, Nat, and diameter, 2R, which
we extracted from a fit to the ground state atom distribution in the initial state [21]
(Table D.1). The datasets A and B were used for Fig. 6.4 and 6.6, while the dataset
C was used for Fig. 6.7. The distribution of the number of excitations in the datasets
A and B is detailed in Table D.2, where we also indicated which subset of images was
used for which figures. The dataset C consisted of 54 images per pulse duration and
the relative distribution of excitations is directly visible in Fig. 6.7.

dataset A dataset B dataset C

T (nK) 8(4) 13(2) 9(4)
Nat 150(30) 390(30) 150(30)
R (µm) 3.6(4) 5.4(4) 3.6(4)

Table D.1.: Temperature T , atom number Nat and radius R for the pulsed
excitation datasets A, B and C. Errors, s.d.

D.2. Numerical calculations

In order to determine the dynamics governed by the Hamiltonian in Eq. (6.1), we
expand the many-body wavefunction, |ψ〉, of the Nat-atom system in terms of Fock-
states

|ψ〉 = c(0)|0〉+
∑
i1

c
(1)
i1
|i1〉+

∑
i1,i2

c
(2)
i1,i2
|i1, i2〉+ . . .+

∑
i1,...,iNat

c
(Nat)
i1,...,iNat

|i1, . . . , iNat〉 , (D.1)
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dataset A dataset B

number of
excitations

number of
images figures number of

images figures

0 177 – 321 –
1 235 – 375 6.6a
2 191 6.4a, 6.6b 390 6.6a
3 65 6.4a, 6.6b 308 6.6a
4 7 – 177 6.4a, 6.6a, 6.6b
5 1 – 64 6.4a, 6.6a, 6.6b
6 0 – 14 –
7 0 – 5 –

Table D.2.: Distribution of the number of excitations in the pulsed excita-
tion datasets A and B. For each subset of images we have also indicated in which
figure it has been used.

where |i1, . . . , iNe〉 corresponds to a state with Ne Rydberg excitations located at
lattice sites i1 to iNe , and c

(Ne)
i1,...,iNe

denotes the respective time dependent amplitude.
The basis states are eigenfunctions of the Hamiltonian (6.1) in the absence of laser
driving, with energy eigenvalues E(Ne)

i1,...,iNe
=
∑Ne

α<β Viαiβ . For a system of Nat atoms,
this basis set expansion yields a set of 2Nat coupled differential equations (Fig. D.1).
Due to the exponential growth of the number of many-body states with Nat, a dir-

ect numerical propagation is practically impossible for the large number of atoms in
our experiments, Nat ∼ 100. In order to make the calculations feasible, we exploit
the blockade effect and discard all many-body states containing Rydberg atom pairs
separated by less than a critical distance Rc. For the present simulations, we obtain
well-converged results for Rc ' Rb/2, where Rb is the blockade radius. The resulting
geometric constraint not only reduces the number of relevant many-body states within
a given Ne-manifold, but, due to the finite system size, also restricts the total number
of excitations Ne necessary to obtain converged results. For the parameters considered
in this work, a maximum number of Rydberg excitations of Ne

(max) = 6 was found
sufficient. This procedure allows to significantly mitigate the otherwise strong ex-
ponential scaling of the underlying Hilbert space dimension, and yields a power-law
dependence ∼ Nat

Ne
(max)

of the number of relevant basis states on the total number
of atoms. This makes the computations feasible, albeit still demanding, for such large
systems as in our experiment.
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V(a)

V(a)

2V(a)

Ne = 0

Ne = 1

Ne = 2

Ne = 3

Figure D.1.: Schematic illustrating the Hilbert space truncation for nu-
merical calculations. The underlying many-body level structure is shown for the
example of a one-dimensional chain of five atoms. The atomic states are symbolised by
effective spins, with spin-down (blue arrows) and spin-up (red arrows) corresponding
to the atomic ground and Rydberg state, respectively. In the displayed example, we
consider strong interactions V (a)� ~Ω between adjacent Rydberg excitations, while
next-nearest neighbour interactions V (2a) = V (a)/64 < ~Ω are assumed to be smaller
than the laser coupling strength. Consequently, the dynamics of near resonant basis
states (orange boxes) is explicitly calculated in the simulations, while strongly shifted
states (grey boxes) do not participate in the excitation dynamics and are discarded
(see text for further details). The near-resonant laser coupling between relevant many-
body states is indicated by the green arrows. Due to the strong geometrical constraint
imposed by the interaction blockade combined with the finite system size, many-body
states containing more than Ne = 3 Rydberg excitations do not need to be considered.
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Supplementary material for Chapter 7

The following supplementary material is reproduced from [294].

E.1. Numerical sweep optimization

Our theoretical calculations are based on a numerical solution of the Schrödinger
equation for the Hamiltonian (7.2) in a truncated Hilbert space. To this end, we
expand the wave function |ψ〉 of the N -atom system in terms of states with fixed
Rydberg numberN↑, which are eigenstates of the classical Hamiltonian (i.e. for Ω = 0)

|ψ〉 = c(0) |0〉+
∑
i1

c
(1)
i1
|i1〉+

∑
i1,i2

c
(2)
i1,i2
|i1, i2〉+ . . .+

∑
i1,...,iN

c
(N)
i1,...,iNat

|i1, . . . , iN 〉 , (E.1)

where
∣∣i1, . . . , iN↑

〉
corresponds to a state with N↑ Rydberg atoms located at lattice

sites i1 to iN↑ , and c
(N↑)
i1,...,iN↑

denotes the corresponding time-dependent amplitude.
In order to truncate the otherwise exponentially large Hilbert space we only include
Rydberg numbers ofN↑ ≤ N↑c and introduce a cut-off distance Rc, discarding all states
that contain Rydberg atoms closer than Rc [291]. The presented results were obtained
for N↑c = 5 and we verified directly that the inclusion of states with N↑ = 6,7 did
not contribute to the many-body dynamics. In addition Rc was reduced progressively
until convergence of the simulated dynamics was achieved [291].
In order to optimize the coupling laser sweep we monitor the fidelity

F(|ψ(t)〉 , |ψGS(t)〉) = |〈ψGS(t)|ψ(t)〉|2 , (E.2)

i.e., the overlap between the time-evolving wavefunction |ψ(t)〉 and the many-body
ground state |ψGS(t)〉 at time t determined by the actual set of laser parameters Ω(t)
and ∆(t). First we choose a given trajectory (Ω(t), ∆(t)) that connects the initial
ground state containing no Rydberg atom with the targeted crystalline ground state.
The actual path chosen for our experiments is shown in Fig. 7.10a. Next we discretize
the path into a large number of sampling points, forming equal linear segments, along
which we propagate the Schrödinger equation as described above. A suitable sweep
for high-fidelity generation of states with fixed Rydberg number was then obtained by
optimizing the local ramp speed for each segment with respect to the decrease of F(t)
between successive sampling points, with the constraint T = 4 µs for the total sweep
duration, T . As described in Chapter 7, non-adiabatic transitions between closely
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lying states with equal N↑ but finite dislocations are unavoidable in the final stage
of the sweep. Hence, for the chosen path, we stop the optimization and fixed the
ramp speed once the Rabi frequency drops below 60 kHz. Since the experimentally
prepared atomic lattice has a finite filling fraction of ≈ 0.8, this procedure is repeated
for several random configurations producing slightly different optimal sweeps. The
sweep shown in Figure 7.6a was constructed as a simple and simultaneously good
compromise between those numerically obtained sweeps for ` = 23. As demonstrated
in Fig. 7.8, this sweep indeed yields a high total fidelity of 0.99, 0.97 and 0.91 for the
preparation of many-body states with fixed Rydberg number of N↑ = 1, N↑ = 2 and
N↑ = 3, respectively. In our experiments, this sweep was used to obtain the Rydberg
blockade staircase shown in Fig. 7.7.

E.2. Estimating the compressibility

In the dilute limit, N↑ � `, the Hamiltonian Eq. (7.2) for a 1D chain can be reformu-
lated in a continuous form. To this end, we scale lengths and energies by L = `alat
and C6/L

6, and introduce dimensionless operators

ψ̂(xi) =

√
L

alat

∣∣∣g(i)
〉〈

e(i)
∣∣∣ =
√
`
∣∣∣g(i)

〉〈
e(i)
∣∣∣ , ψ̂†(xi) =

√
`
∣∣∣e(i)

〉〈
g(i)
∣∣∣ , (E.3)

where xi = ialat/L. Taking the continuum limit, this permits to write the lattice
Hamiltonian as

Ĥ = B⊥

1∫
0

(ψ̂†(x)+ψ̂(x)) dx+B‖

1∫
0

ψ̂†(x)ψ̂(x) dx+
1

2

1∫
0

1∫
0

ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)

|x− x′|6
dx dx′

(E.4)
with the dimensionless, effective magnetic fields B⊥ =

√
`~Ω2

L6

C6
and B‖ = −~∆L6

C6
.

The quantum fields ψ̂† and ψ̂ describe the creation and annihilation of hard-core
bosons, where the hard-core constraint is naturally ensured by the Rydberg-Rydberg
atom interaction. The Rydberg number, and, hence, the density increases linearly
with L, such that L→∞ defines the thermodynamic limit.
Consequently the Rydberg atom number N↑ = N↑(B‖,B⊥) depends on only two

parameters and we can re-express the susceptibility χ ≡ ∂N↑
∂∆ in terms of the derivative

of N↑ with respect to `. Neglecting the weak dependence on B⊥, thus, yields

χ =
`

6∆

∂N↑
∂`

, (E.5)

which we used to calculate the susceptibility χ from the measured dipole-blockade
staircase shown in Fig. 7.7. The required `-derivative was obtained from the ex-
perimental data, N (i)

↑ and `(i), by using a second-order symmetric formula [386]:
∂N↑
∂`

∣∣∣
`=¯̀(i)

≈ N
(i+1)
↑ −N(i−1)

↑
`(i+1)−`(i−1) with ¯̀(i) = 1

2(`(i+1) + `(i−1)).
In order to verify the quality of the employed approximations, we also determined

χ numerically directly from its definition. To this end, we recorded the staircase in
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the Rydberg atom number using the sweep (Ω(t), ∆(t)) shown in the Figure 7.6a and
for a reference sweep with a small global frequency shift δ, i.e. for (Ω(t), ∆(t) + δ).
Within the studied range |δ/(2π)| < 10 kHz the number of Rydberg atoms N↑ was
found to vary linearly with δ such that the susceptibility can be evaluated directly via
χ = (N↑(δ) − N↑(δ = 0))/δ. This susceptibility χ is shown in Fig. 7.7b and agrees
well with the experimental results obtained from equation (E.5).





Appendix F.

Coherent pushing

One of the limitations in the Rydberg detection technique used is the minimum time
required to remove all ground state atoms from the lattice (Sec. 5.4). The limitation
is due to the scattering rate on the D2 line of rubidium, the maximum scattering
rate achievable is Rsc = Γ

2 = π · 6.0666(18)MHz = 19.06(1) · 106 s−1. As the D2

line is the strongest line in rubidium it is also not possible to improve by choosing
another transition to scatter photons. The maximum force that than be reached by
this incoherent scattering is Fmax,incoh. = ~kΓ/2.

Coherent pushing beams

80 MHz

200 MHz

+0

+200

+200 & -200

+0/+400

RF

~30 cm travel on cage system

from 
2D MOT
laser

ca

ω0 + ∆

ω0 − ∆ ω0 − ∆

ω0 + ∆

beam 1, σ− beam 2, σ−

beam 1

beam 2
∆

∆
ω0 + ∆

ω0 − ∆

5P3/2, F = 3, mF = -3

5S1/2, F = 2, mF = -2

b

movable retro-re�ector

λ/2

λ/4 λ/2 

Figure F.1.: Coherent pushing schematic. a, Properties of the two beams with
two frequencies each sent counter-propagating onto the atoms. b, The two frequency
components in the beams shown in a simplified level scheme. Due to the symmetry
most of the light shifts on the transition are compensated. c, Laser setup for the
preparation of the two bichromatic beams. The 80MHz AOM is required to improve
the switching, as the suppression is not good enough with only one AOM. The 200MHz
AOM is operated at a RF power to reach a 50:50 splitting of the light in 0st and 1st
order, which also leads to a 50:50 power ratio of the ±200MHz frequency components
in the used output port. Half of the total power is lost in the beam dump at the
other output port. The delay of one of the output beams is adjustable by a movable
retro-reflector (Thorlabs PS971M-B) on a cage system. The retro-reflector distorts
the polarization, but this can be compensated by a λ/2,λ/4 wave plate combination.
For the setup the same symbols are used as in Fig. 5.4.
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There are other techniques that can break the limit of incoherent scattering with
the help of coherent two-photon transitions [387–396] or dispersive forces [397, 398]. A
realistic technique for our setup is the so-called stimulated bichromatic force (BCF),
which uses two bichromatic counter-propagating beams, each with the two frequency
components ω0±∆ where ω0 is the transition frequency of the atomic line (Fig. F.1a).
∆ can be chosen in the experiment, but it needs to be in a certain relation to the Rabi
frequency Ω of all the monochromatic frequency components, which all need to have
the same intensity. The force is maximized for Ω = π

4∆, which leads to a theoretical
maximum of the stimulated force of Fmax,bcf = ~k∆/π [390]. In practice the range of
∆ is limited, one the one hand by the achievable Rabi frequency, on the other hand
by other levels nearby, as the calculation assumes a clean two-level system.
We tried a configuration with ∆ = 200MHz on the |F = 2,mF = −2〉 ↔ |3,−3〉

transition of the rubidium-87 D2 line in our setup (Fig. F.1b). The frequency shift is
still easily implemented with an acousto-optic modulator. The required Rabi frequency
is then 157MHz, which corresponds to 60 µW at a waist of 40 µm. We branched off
some light of the 2D MOT laser using a flip mount to have enough power without the
requirement for an additional laser. The centre frequency of the laser is already close
to the target frequency and we could tune the offset lock to the desired frequency.
The two frequency components are then produced by a tricky double pass through
a 200MHz AOM [391]. The next problem is how to send the light to the atoms.
For one of the beams we used the same path as for the red Rydberg beam, for the
other the one of the z-molasses beam [22]. Both beams have few 10 µm waist. The
polarization of the red Rydberg beam was already adjusted to σ−. The other beam
was adjusted the same way as described in Sec. 5.5.1. The Rabi frequency can be
measured indirectly via the light shift, which can be determined quite precisely using
microwave spectroscopy (Sec. 5.7.2). The light shift in combination with the adjusted
detuning yields the Rabi frequency. The last free parameter is the relative phase
of the two beat notes in the two counter-propagating beams. Luckily the beat note
wavelength is large λbeat = c

2∆ = 0.749m. We use a double-pass through a retro-
reflector delay line which allows to reduce the required mechanical travel to 18.7 cm
and at the same time make the setup insensitive to tilts of the retro-reflector. The
setup allows to change the phase over the full range with a change in fibre coupling
efficiency without readjustment of less than 30% (Fig. F.1c). In theory this setup
should be able to create a force on the atoms which is 4∆

πΓ = 42 times larger than
the maximum incoherent force. But in practice it did not work as expected. It was
only possible to push parts of the atoms within few microseconds, but only with very
bad fidelity of < 90%. Typical other experiments on stimulated light forces focus on
the accelerated atoms and do not investigate the remaining atoms, which are crucial
in our case. We think that the main problem is the pumping effect of the coherent
pushing beam from the ground state |F = 2,mF = −2〉 to |F = 1〉. As the experiment
is performed in an magnetic offset field, the |F = 1〉 levels are strongly split and not all
easily repumped. In the end we were probably limited by the incoherent scattering on
other hyperfine levels in the 5P3/2 manifold which are one the one hand compromising
the coherence and on the other hand lead to a loss out of the cycling transition, which
we could not compensate by the available repump power.
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Lattice calculation

This chapter summarizes some calculations of cubic lattice parameters required to
check the applicability of lattice modulation techniques to coherently transfer atoms to
excited bands in the optical lattice in our setup [399, 400]. Especially the combination
of these ideas with Bose-Hubbard physics are interesting for our experiment, as they
allow for algorithmic cooling and the preparation of larger regions with constant atom
number per lattice site [43]. We set up a calculation and checked the parameters in
our setup with some calibration measurement described in the following section. We
focus mainly on photon-assisted tunnelling in tilted lattices [401–403], as this could
allow for spin-dependent transfer of atoms into neighbouring lattice sites.

G.1. Amplitude modulation in a tilted optical lattice

The typical optical lattice configuration in our setup is a 3D configuration with lattice
depths of 10 − 80Er for all of the three lattice axes. In most of the experiments we
work in a vertical gradient field with an offset of 28.6G and a gradient corresponding
to a shift of ∼ 4/3 kHz of the |F = 1,mF = −1〉 state per site. This typically used
gradient is about a factor of 2 smaller than the gradient used for slicing, which corres-
ponds to a shift of 4.0(2) kHz on the transition |1,−1〉 → |2,−2〉 per slice. The half
gradient exerts a force on the atoms in our standard starting state |1,−1〉 which is
weaker than gravity and points in the same direction. Gravity causes an energy offset
between neighbouring sites in the z-lattice of mgalat/h = 1.13 kHz. We measure these
shifts by lattice amplitude modulation in the z-lattice at 20Er without xy-lattices
with a modulation time of 50 − 150ms and an amplitude ∼ 0.5%. We expect three
resonances, one going to the second band on-site, one to the second band in the up-
per site and one to the second band in the lower site. Transitions to the first band
are not coupled due to the symmetric amplitude modulation. Without gradient we
measure resonances at 25.5(1) kHz, 26.6(1) kHz and 27.75(3) , confirming the expected
splitting between neighbouring resonances due to gravity of 1.1(1) kHz. For the half
gradient we expect an additional shift of 4/3 kHz · 4.1/9.7 = 0.56 kHz per site. This is
confirmed with resonances at 25.2(1) kHz, 26.6(1) kHz and 28.25(10) kHz and obtain a
splitting of 1.5(1) kHz. The same measurement with the full gradient leads to an even
larger splitting of 2.6 kHz (resonances 23.95(10) kHz, 26.6(1) kHz and 29.15(10) kHz).
Higher modulation frequencies than ∼ 30 kHz are problematic via our intensity stabil-
ization. For frequencies of 50 kHz and higher we can use a mixer to add the amplitude
modulation and we checked that the stabilization is not considerably disturbed by the
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modulation as the servo bandwidth is . 30 kHz. To see coherence in this kind of lattice
modulation, a coupling to a band with negligible tunnelling is required to avoid loss
in the upper band. In a 20Er lattice the second band is tunnelling strongly. We went
to a 80/80/70Er lattice to check that and observe Rabi oscillation for a modulation
frequency of 57 kHz and amplitude modulation of ±5%. We observe Rabi oscillations
to the second band with a T1-time of ∼ 9ms and a Rabi frequency of 2π · 564Hz,
which matches very well the theoretical expectation of 2π · 566.85Hz.

G.2. Spin-dependent photon-assisted tunnelling by
modulation of a tilted lattice

One idea to apply these lattice modulation techniques is to implement a spin-dependent
transfer of atoms from one lattice site to a neighbouring one. The two resonances can
be split in frequency by a magnetic gradient, and also the direction of movement of
the atoms can be selected. The main question is the transition matrix element with
respect to the driving for the required coupling to neighbouring lattice sites.
To model the system theoretically one first needs to calculate the Wannier func-

tions as quasi-stationary local wavefunctions of the atoms (Appendix G.4). The Rabi
frequencies due to lattice amplitude modulation can then be calculated by overlap
matrix elements of Wannier functions via

Ω = ∆V
〈
w1

∣∣ cos(kx)2
∣∣ w2

〉
/~ . (G.1)

Where ∆V is the amplitude of the time-dependent lattice potential VA(x,t) = (V0 +
∆V sin(ωt)) cos(kx)2.
Similarly the coupling for phase modulation can be calculated [400]

Ω = 2k∆xV0 〈w1 | cos(kx) sin(kx) | w2〉 /~ = k∆xV0 〈w1 | sin(2kx) | w2〉 /~ , (G.2)

where the phase modulated lattice potential is defined by Vφ(x,t) = V0 cos(k(x +
∆x sin(ωt)))2.
It turns out that neither amplitude nor phase modulation couples atoms in the

lowest band to the neighbouring site in the lowest band. So one has to consider the
higher tunnelling rates in the target band. We choose the Rabi frequency reachable
on such a transition relative to the tunnelling rate in the upper band as a figure of
merit. Fig. G.1 shows these fractions as a function of lattice depth for an amplitude
modulation of ∆V/V = 0.2 and a phase modulation of ∆x/alat = 0.2. The situation
looks challenging for the amplitude modulation, as a reasonable coherence time is
only possible for very strong driving and only at quite low lattice depth. An intrinsic
problem of the amplitude modulation is that the modulation is limited by lattice depth.
For phase modulation the situation looks much better. But it is important to note that
the phase modulation couples very strongly to the first excited band on-site, such that
the resonances are only resolved for quite a strong tilt of the lattice. In contrast to that
the phase modulation does not couple to the second band on-site and one could use the
transition to the second band on the neighbouring site. At our experiment amplitude
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Figure G.1.: Lattice modulation coupling strength to neighbouring sites.
Shown is the coupling Rabi frequency from the ground state to a neighbouring site
relative to the tunnelling in the target band for the first (blue) and second (red) band
for various lattice depths. a, for amplitude modulation of the lattice with ∆V/V = 0.2
and b phase modulation with ∆x/alat = 0.2.

modulation is directly possible via the intensity stabilization of the lattices. Phase
modulation is more involved, especially for the vertical lattice, which is retro-reflected
in vacuum and the distance from the atoms to the retro-mirror is only ∼ 5mm. A
reasonable phase modulation would require a frequency modulation of the lattice laser
of tens of GHz with several ten Kilohertz, which is practically challenging.

G.3. Proposal for detection of spin-spin correlations

If the lattice modulation ideas discussed in the last section would work, then one could
use this technique to implement the splitting of two spin components in one slice into
two slices with in principle arbitrary distance. A possible protocol is described in the
following. Starting with a spin mixture of two spin states ↑, ↓ with different magnetic
moment, one can freeze the distribution and apply a magnetic gradient along the z-
axis. Then it should be possible to selectively drive the transition of the e.g. ↑-spin
component to next slice in z-direction by applying a lattice modulation corresponding
to a π-pulse. The ↑ atoms are then in the second band of the next slice. To iterate the
sequence a π-pulse on the 0th ↔ 1st band on-site transition is required. As this will
be possibly not spin-selective, the ↓ atoms will be afterwards in the second band and
the ↑-atoms in the lowest band again. In principle this could be repeated a few times
until a separation is reached, which is optically resolved. The imaging can be then
performed by just freezing the atoms and imaging half of the time focussed on the one
slice and the other half on the other slice. The would then allow to obtain a single-shot
distribution of both spin-components and full access to spin-spin-correlations.
In practice this will be quite hard due to the weak coupling of the lattice modulation

off-site compared to the timescales of on-site excitations and intra-band tunnelling.
Already a few tunnelling events would compromise the detection efficiency strongly
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and it might be easier to reach higher detection efficiencies by doing spin physics
in unity-filling Mott insulators and just image one spin-component and extract the
other one from the slightly imperfect unity-filling restriction. For 1D systems these
rather complicated schemes are not required, as on can let the atoms expand in the
second dimension in presence of a gradient, leading to a clear splitting of both spin
components, which can then be easily distinguished in a single image.

G.4. Calculation of Wannier functions

While the calculation of Wannier function is in general not an easy problem [404], it
is straightforward for the separable cubic 3D lattice, where the calculation simplifies
to a 1D calculation. Calculations and formulas for parameters J and U of the Bose-
Hubbard model can be found for example in [13, 19, 293, 405, 406]. It is important to
note that many calculations focus on the lowest band and for higher bands it becomes
important to have the correct sign convention for the Bloch functions to apply the
standard formula Eq. G.3 [293].
The Wannier function at position Ri in band n is given by:

wn(r −Ri) =
1√
N

∑
q

e−iqRiψnq(r) (G.3)

With the Bloch functions ψnq(r) = unq(r)e
iqr, which are the eigen functions of the

lattice Hamiltonian in k-space.

Ĥ0ψnq(r) = ~ωnqψnq(r) (G.4)

G.5. Tunnelling from Wannier functions

Starting from the definition of the tunnelling matrix element, we show that the tun-
nelling matrix element is the Fourier transform of the spectrum.

JRi−Rj =

∫
drwn(r −Ri)Ĥ0wn(r −Rj)

=
1

N

∫
dr
∑
q

∑
q′

eiqRiψ∗nq(r)Ĥ0ψnq′(r)e
−iq′Rj

=
1

N

∫
dr
∑
q

∑
q′

ei(qRi−q
′Rj)ψ∗nq(r)~ωnq′ψnq′(r)

=
1

N

∑
q

∑
q′

~ωnq′ei(qRi−q
′Rj)

∫
drψ∗nq(r)ψnq′(r)

=
1

N

∑
q

∑
q′

~ωnq′ei(qRi−q
′Rj)δq,q′

=
1

N

∑
q

eiq(Ri−Rj)~ωnq

(G.5)
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G.6. Harmonic approximation for U

While it is possible to obtain the interaction energy U in the lattice from direct integra-
tion of Wannier function overlaps, the calculation based on a harmonic approximation
is still reasonably precise and a good check for the numerics. The harmonic oscillator
approximation for the interaction energy (e.g. [13, p.899], [293, (2.59)]) can be exten-
ded to the case where the atom is in different bands in every dimension. The harmonic
approximation gives an upper bound on U , as the harmonic oscillator wavefunction is
more localized than the Wannier state.

The harmonic oscillator frequency of a lattice site is given by ω =

√
2(V Er)k2

m with

V the lattice depth in units of Er, where Er = ~2k2
2m . We call the 3D harmonic

oscillator wavefunction approximating the Wannier function of a lattice site ψho,n(x) =∏3
i=1 ψho,ni(xi). Here ni is the band-index of the wavefunction in dimension i. To

evaluate the interaction energy U , approximated by the integral Uho = g
∫
d3x |ψho,n|4

with g = 4π~2as
m , it is reasonable to first integrate the 1D harmonic oscillator functions.

∫
d3x |ψho,ni |

4 =

√
mωi
2π~

Cni (G.6)

The band-index dependent constants Cn can be calculated exactly using e.g. Math-
ematica and are shown in the Table below for n = 0 . . . 4.

n Cn

0 1
1 3/4
2 41/64
3 147/256
4 8649/16384

With these preparations the calculation of the generalized harmonic approximation
for U is straightforward.
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Uho = g

∫
d3x |ψho,n|4

= g

3∏
i

√
mωi
2π~

Cni

= g
( m

2π~

)3/2
(

2

m

)3/4 3∏
i

(
ViE

i
rk

2
i

)1/4
Cni

= g
( m

2π2~2

)3/4
3∏
i

(
ViE

i
rk

2
i

)1/4
Cni

= g

(
m

2π2~2

~2

2m

)3/4 3∏
i

V
1/4
i kiCni

= g(2π)−3/2(2π)3
3∏
i

V
1/4
i

λi
Cni

= g(2π)3/2
∏
i

V
1/4
i

λi
Cni

=
4π~2as
m

(2π)3/2
3∏
i

V
1/4
i

λi
Cni

=
2~2(2π)5/2as

m

3∏
i

V
1/4
i

λi
Cni

(G.7)

This result can be further simplified for the symmetric ground state case Cni = 1 and
Vi = V and λi = λ:

=
2~2(2π)5/2as

m

2m

~2k2

V 3/4

λ3
Er

= 4(2π)1/2as
V 3/4

λ
Er

=

√
8

π
2πas

V 3/4

λ
Er

(G.8)

G.7. Analytic formula for expansion of a Gaussian wave
packet

For the calculation of the detection efficiency in Sec. 5.6.5 the free expansion of a
Wannier function has to be calculated. In many cases it is accurate enough to use the
expansion dynamics of a Gaussian wave packet as approximation.
The release and recapture of a single atom in an optical lattice can be modelled

using a harmonic oscillator approximation for the Wannier function of the ground
state, which is then time-evolved analytically and then projected back to a basis of
lattice states. The trap frequency of a lattice site in a standard retro-reflected lattice
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Figure G.2: Mott insulator
recapture. Shown is the re-
captured fraction of atoms over
the time of flight (for details
see text). Blue points, exper-
imental data in a Mott insu-
lator. Green and orange curves
are theory calculations. The
green curves form dark to light
assume that atoms in the low-
est 32,31,30,29 bands of the
lattice are imaged, including
atoms that are recaptured in
neighbouring sites. The orange
curve assumes 32 bands and
neglects the probability to re-
capture atoms in neighbouring
sites.

is given by ω =
√

2V Erk2

m with the recoil Er = ~2k2
2m and k = 2π

λ with λ the wavelength
of the lattice laser.
With this trapping frequency the expansion dynamics of the local harmonic oscil-

lator ground state after lattice switch off is given by: ΨHO(t) =
(
α(t)2

π

)1/4
exp−

1
2
α(t)2x2

with the definitions α(t) =
(

1
α2
0

+ α2
0~2t2/m2

)−1/2
and α0 =

√
mω
~ .

G.8. Check of the recapture calculation with ground state
atoms

To check the calculation of the recapture calculation used for the detection efficiency
estimation (Sec. 5.6.5), we took a test data set with a Mott insulator where we switched
off the lattice at 40/40/80Er and recaptured the atoms in a 3D lattice of ∼ 3000Er
in all directions. The switch-off was performed by fast RF switches for the AOMs of
all three lattice axes to avoid limitations by the lattice stabilization. We measured
the number of atoms that stayed in a radius of 1.3 times the Mott insulator radius
(defined as the radius where the centre density dropped to 0.5) after the free time of
flight. The atoms had ∼ 50ms to tunnel away between recapture and imaging, which
is approximately the time we need to ramp the field for the fluorescence imaging.
Fig. G.2 shows a comparison of the experimental data with various theory calculations.
The orange theory curves shows that after 10 µs the probability to recapture atoms in
the initial site drops significantly. The experimental data is consistent with the green
theory calculations that assume that all atoms in the lowest 30-32 bands are detected.
All of the lowest 32 bands have a tunnelling rate of < 10Hz and are expected not
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to tunnel within the time before imaging. Because the orange curve, that neglects
recapture in neighbouring sites, is strictly below the data, the deviation of the data
from the green curve for 32 sites can be explained by effects due to nearest neighbour
recapture. Maybe some of the atoms recaptured on neighbouring sites are not detected
as they lead to doubly occupied sites in the Mott insulator, which are imaged as empty
sites after parity projection. But they could also tunnel and then are detected on
different sites. In summary the recapture data can be quite well explained by the
theory calculations.



Appendix H.

Spatial correlation functions

This chapter will look at some correlation functions, their properties, and some ex-
amples, to illustrate what is measured by certain spatial correlation functions.

H.1. Pair correlation in 1D

Here we look at some basic properties of a pair correlation function. We use a simple
system as an example here: A 1D lattice of length ` with constant atomic density.
A correlation is introduced by emptying two sites at a distance d and repeating this
N times (it does not matter if the sites were empty before or not). To calculate
correlation functions we then look at an ensemble of these 1D systems. The question
to answer using the correlation function is: How many pairs are hidden in the data?
The model discussed above is implemented by the following ensemble of densities,

where we use the definitions listed in Table H.1.

n(x) = (rand() < n0)

N∏
i=1

(1− δ(x− xi))(1− δ(x− xi + randdir())) (H.1)

For a low density of pairs the mean resulting density can be calculated by assuming
non-overlapping pairs, if the background density is known (each emptied position
removes n0/` from the density): 〈n〉 = n0 − 2Nn0/`

If the background density is unknown the number of pairs can still be extracted
in this system via the normalized pair correlation function C = 〈n(x)n(x+1)〉

〈n(x)〉〈n(x+1)〉 . It
measures essentially the number of pairs in the system, which we will show in the

d distance of pair (1 for neighbouring atoms)
randdir() ∈ {−d,d} random number d · (2 · (rand() > 0.5)− 1)
rand() ∈ [0,1[ random number
n0 background density
N number of pairs
` length of the system
xi random position of a pair [−d+ 1,`+ d]

Table H.1.: Definitions for correlation example. The random position of the
pairs is chosen to give a flat density distribution in the range [1..`].
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Figure H.1.: Reconstructing the number of pairs from pair correlations. a,
Pair number determined from correlation versus inserted pair count. For pair densities
> 10% we see a systematic error due to overlapping pairs. b, Extracted pair count
versus background density at a fixed number of inserted pairs of 6. At lower density the
statistics gets worse, but there is no systematic shift. This shows that an extraction of
the number of pairs is in principle also possible for densities below 1, where the pairs
cannot be identified by eye. For all calculations a 1D chain of length 100 was used
and 50000 random samples. These configurations were grouped in 50 sub-samples of
1000 samples each to calculate error bars.

following. A simple consideration ignoring edge effects and overlapping pairs leads to

C =
(`−3N)·n20

`(
(`−2N)·n0

`

)2 = (`−3N)`

(`−2N)2
(only valid in the limit of low density of pairs). Solving this

for the number of pairs N yields N =
`(4C(`−1)−3`−

√
9`2−8C(`2+`−2))

8C(`−1) ≈ (C − 1)(`+ 3),
where the assumptions for the approximation are `� 1 and C ≈ 1.
There is also the other definition of a pair correlation as 〈n(x)n(x+ 1)〉−〈n(x)〉 〈n(x+ 1)〉

[14], which has the disadvantage that the resulting numbers still depend on the abso-
lute density. But the big advantage of this correlation function are the almost constant
error bars for varying density, as the division in the definition before leads to diverging
error bars for low densities.

H.2. Spatial correlation at zero distance

The spatial on-site correlation is in principle an interesting observable. Here we show
that the on-site correlation vanishes always in presence of parity projection. With the
definitions

n̂(x) ≡ a†(x)a(x)

n(x) ≡ 〈n̂(x)〉
(H.2)

the correlation can be directly calculated:
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g(2)(x) =

〈
a†(0)a†(x)a(x)a(0)

〉
〈a†(x)a(x)〉 〈a†(0)a(0)〉

=

〈
a†(0)a†(x)a(x)a(0)

〉
n(x)n(0)

=

〈
a†(0)a(0)a†(x)a(x)− a†(0)

[
a(0), a†(x)

]
a(x)

〉
n(x)n(0)

=
〈n̂(0)n̂(x)− n̂(0)δx,0〉

n(x)n(0)

=
〈n̂(0)n̂(x)〉 − n(0)

n(x)n(0)

=


〈n̂(0)n̂(x)〉
n(0)n(x) if x 6= 0

〈n̂(0)2〉−n(0)

n(0)2
if x = 0

(H.3)

Here we used
[
a(x), a†(y)

]
= δx,y. For a measurement of the density with parity

projection the only possible results for the local density in a single shot are 0 and 1.
This leads to the fact that

〈
n̂(x)2

〉
= 〈n̂(x)〉. We conclude that parity projection in a

lattice boson system leads to g(2)(x = 0) = 0 without further assumptions.

H.3. Density-density correlation function definition and
examples

The g2 density-density correlation function is usually defined as

g2(x,y) =
〈n(x)n(y)〉
〈n(x)〉 〈n(y)〉

. (H.4)

Where 〈.〉 is the ensemble average. In 2D this function has still 4 parameters, which
makes it nearly impossible to reach suitable statistics. Especially at cold atom experi-
ments the cycle time is not as fast to easily get several thousand images. As the system
is typically symmetric in some of the parameters, it is possible to average without los-
ing considerably in accuracy. In practice, typically a g2(r) function is used, which
only depends on the difference vector r = x − y. In many cases g2(r) only depends
on the length of r and makes it possible to also perform an azimuthal average. This
reduces the correlation function to g2(r) with a single parameter.
There are essentially two ways to perform the reduction to a radial g2 function,

either to divide first and then average spatially (g(a)
2 ) or the other way around (g(b)

2 ).
The results are in general not the same as division and averaging do not commute.

g
(a)
2 (r) =

∫
dx
〈n(x)n(x + r)〉
〈n(x)〉 〈n(x + r)〉

/

∫
dx (H.5)

g
(b)
2 (r) =

∫
dx 〈n(x)n(x + r)〉∫
dx 〈n(x)〉 〈n(x + r)〉

(H.6)
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Figure H.2.: Radial correlation function for different averaging. Comparison
of the radial correlation function for the two different averaging techniques g(a)

2 (a)
and g(b)

2 (b) for the largest initial clouds investigated in Fig. 7.12. The differences are
within error bars. For both curves there is a second maximum visible, corresponding
to the position of the next-nearest neighbour in the crystal.

Here we implicitly include the average over the angular degree of freedom of the
difference vector r in the spatial averaging, as it seems reasonable to perform all spatial
averages in one step. It turns out that both definitions are present in publications.
The type (a) averaging was for example used in [407], while other publications apply
type (b) averaging, e.g. [269, 408]. The correlation function defined in [14] corresponds
to g(b)

2 − 1. Although both definitions yield nearly the same results for most practical
purposes, they are different and in certain cases one or the other can produce a larger
correlation signal. Examples for these cases are presented in the next section. There
is another definition in words by [28]: "The correlation function is defined to be the
probability that two atoms separated by a distance R are both excited divided by the
square of the probability an individual atom is excited." At this position we note that
the probability to excite a Rydberg atom is about the same as the Rydberg density
in our experiment, if we excite from a Mott insulator with unity filling. There might
be still some correction due to some defects of the Mott insulator, but the correlation
function is anyway insensitive to uncorrelated density offsets. Therefore g(a)

2 and g(b)
2

can also be calculated with n(x) replaced by p(x). Where p(x) is the probability to
excite an atom p(x) =

nRydberg(x)
ninitial(x) .

Correlation examples 1D

To understand the properties of the correlation function defined in Eq. (H.5), the
best is to look at some examples. For simplicity we choose a 1D system, as the main
properties can be explained already in 1D. For the examples (Fig. H.3) we consider
the following situation: We create 10000 samples of a 1D system of length ` = 100
with 0 or 1 atom on each place. To generate correlations we use a probability function
P ({αi},{βj},x) which depends on random variables αi, fixed parameters βj and the
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spatial position x. For every sample we get a different probability function from which
we get the probability for each position x to place an atom.
For the discussions of the differences between the two correlation definitions (Eq. (H.5)),

we consider the following examples.

P1({},{λ},x) = sin
(π
λ
x
)2

(H.7)

Constants: λ = 40

P2({φ},{λ},x) = sin
(π
λ

+ φ
)2

, (H.8)

where φ is a uniformly distributed random variable in the range [0; 2π].
Constants: λ = 40

P3({x0},{n0,σ,d},x) =

(
n0 + exp

(
−(x− x0)2

2σ2

)
+ exp

(
−(x− x0 − d)2

2σ2

))
/2 ,

(H.9)

where x0 is a uniformly distributed random variable in the range [1; `] .
Constants: σ = 2, d = 50, n0 = 0.1

P4({x0},{n0,σ,x1,d},x) =

(
n0 + 4 exp

(
−(x− x1)2

2σ2

)
+ 4 exp

(
−(x− x1 − d)2

2σ2

)
(H.10)

+ exp

(
−(x− x0)2

2σ2

)
+ exp

(
−(x− x0 − d)2

2σ2

))
/10 ,

where x0 is a uniformly distributed random variable in the range [1; `].
Constants: n0 = 0.1, σ = 2, d = 50, x1 = 30

P5({X0},{n0},x) =

(
n0 + 2 exp

(
−(x−X0)2

2σ2

)
+ 2 exp

(
−(x−X0 − d)2

2σ2

))
/(4 + n0) ,

(H.11)

where X0 is a Gaussian distributed random variable
with mean 20 and standard deviation 3.
Constants: n0 = 0.3, σ = 2, d = 50, x1 = 30

There first example Eq. (H.7) shows that a sample derived from a single probability
distribution is not correlated, the correlation is 1, independent of the density. Here the
first difference between g(a)

2 and g(b)
2 shows up. The function g(a)

2 becomes unstable for
low densities and is much more noisy in low density regions due to the low statistics
in the denominator. The second example Eq. (H.8) shows the typical correlation by a
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sine-pattern with shot-to-shot phase fluctuation. This resembles directly the situation
encountered for a spin spiral [409]. Here the mean density becomes flat and the cor-
relation signal is strongly modulated with alternating correlation and anti-correlation.
To show effects of localized functions, example three models two Gaussians, with fixed
distance but random offset (Eq. (H.9)). The density is flat neglecting finite size effects.
The correlation function shows a signal at zero distance, which is an autocorrelation
of each of the Gaussians and at the distance of the two Gaussians the desired peak.
As directly visible in the figure, the difference of the two variations of the correlation
function is negligible for these two examples. To focus more on the differences we
will now give one example where g(a)

2 yields a stronger correlation signal (Eq. (H.10))
and another one where g(b)

2 dominates (Eq. (H.11)). For the first one we look at two
Gaussians as in Eq. (H.9), but here we consider two additional Gaussians, which are
fixed in space but higher in probability and have accidentally the same distance as the
first ones. In this case there should be intuitively a correlation, as adding uncorrelated
atoms to a correlated system does not destroy the correlation. As visible in Fig. H.3,
g

(a)
2 still finds a strong correlation at the expected distance, while g(b)

2 is blinded by the
density modulation and is totally flat within error bars. This example directly demon-
strates the weakness introduced in g(b)

2 by only using the globally averaged density in
the calculation. To show that also g(b)

2 can show stronger correlation signals, a bit
more fine-tuned example is required. We use a similar configuration as in Eq. (H.9),
but now the absolute position of the pairs of Gaussians is normally distributed. For
this example also a constant background density with a certain value is necessary. In
this situation g(b)

2 can create an overshooting correlation signal, which exceeds the one
seen by g(a)

2 .
In conclusion, the difference between these two correlation definitions (Eq. (H.5))

arises in special situations involving spatially inhomogeneous density. If the density
is perfectly homogeneous, 〈n(x)〉 is constant in space and both definition are exactly
the same. g(a)

2 has the intrinsic problem that the denominator is quite noisy unless
there is a lot of statistics for every point in space. In particular in low density regions
the probability to find positions in space with zero average density is non-zero for a
finite number of samples. This leads to a division by zero, which than can be handled
in various ways, e.g. by ignoring these points in the calculation. The definition g(b)

2

avoids these problems, but the result is not properly normalized, if correlation and
density are spatially varying and correlated in a strange way. For all normal cases g(b)

2

is totally fine and gives the same correlation function in the limit of large data sets.
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Appendix I.

Overview of parameters in other
experiments

In Table I.1 we summarize typical parameters for Rydberg atom excitation in other
experiments. The experiments with few atoms [74, 100] reach quite high Rabi fre-
quency by strongly focussed beams. The large detuning in the case of [100] helps to
get long coherence times. In the experiment [74] the intensity on the lower transition
is chosen so high that the scattering rate on the intermediate state starts to saturate,
which helps in this case to increase the number of observable Rabi cycles. All exper-
iments use intensities above the saturation intensity (for the D2 line and σ-polarized
light on cycling transition this is 1.669mW/cm2 [263]). But what is relevant here is
the off-resonant scattering rate, which is given by Γsc(I) = Γ

2
I/Isat

1+I/Isat+(2∆/Γ )2
[410].

An interesting regime is when this scattering rate starts to saturate as the ratio Ω/Γsc
will increase then. The only problem of this approach is the strong light shifts and
the very fast timescales of the Rabi oscillations on the order of Γ . To estimate the
theoretical number of observable Rabi cycles also Ω/Γsc is shown in the table for the
theoretical value of the scattering rate Γsc of the scattering rate. Obviously these
values are much larger than the number of cycles observed in the experiment caused
by additional decoherence effects in the experiment as for example increased scatter-
ing due to laser linewidth, amplified spontaneous emission background of the diode
lasers and the lifetime of the Rydberg states. The Rabi frequencies of other Rydberg
experiments given in Table I.1 were checked to be consistent with calculations. Only
for the publication [110] the expected Rabi frequency was not reproduced, maybe due
to a misinterpretation of the numbers given there.
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Appendix J.
87Rb properties

J.1. Radial matrix element of the rubidium D2 line

In [263] only the rubidium matrix elements 〈j = 1/2 | r | j′ = 1/2〉 = 2.989318(20) and
〈j = 1/2 | r | j′ = 3/2〉 = 4.22752(87) are given. For comparison with the matrix ele-
ments calculated using the radial wavefunction, these matrix elements need further
reduction. This can be done using [263, eq. (37)]〈

j
∣∣ r ∣∣ j′〉 =

〈
lsj
∣∣ r ∣∣ l′s′j′〉

=
〈
j
∣∣ r ∣∣ j′〉 (−1)J

′+L+1+S
√

(2j′ + 1)(2l + 1)

{
l l′ 1
j′ j s

} (J.1)

and leads to a matrix element R5P
5S = 〈l = 0 | r | l′ = 1〉 = 5.181(4) (

√
2l + 1 = 1 here).

J.2. Collection of references for rubidium properties

isotope states reference
85Rb F7/2 [413]
85Rb S,D [217]

85Rb and 87Rb S [216]
87Rb S,D [86]

Table J.1.: References for absolute transition frequencies to Rydberg states
of rubidium
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data states reference

Laser cooling properties 5S → 5P [263]
Polarizability / dipole matrix element 5S → 5P1/2 [414]
Dipole matrix elements and polarizability 5S and 5P (theory) [358]
Hyperfine structure 6P3/2 [415]
Hyperfine structure, nuclear moments S,P3/2 [416]
Spectroscopy 5S → P1/2 [417]
Oscillator strengths 5S → nP (theory) [210]
Radial matrix element / oscillator strength 5S → nP (theory) [357]
Oscillator strengths 5S → nP [208]
Single-photon spectroscopy 5S → nS, nP, nD [418]

Spectroscopy 5S1/2 → 5D5/2 [419]
Polarizability 5D [420]
Dipole matrix element 5S → 4D [421]
Hyperfine structure, energy level 4D, 5P3/2 → 4D [422, 423]
Dipole matrix elements 5P3/2 → nD5/2 [234]
Oscillator strengths 5P3/2 → nD5/2 [233]

Spectroscopy data 5S → 7S [424]
Transition frequency 5P3/2 → 7S [425]
Anti-relaxation coating 5S [426]

Review hyperfine structure [427]
Compilation of energy levels [428, 429]
Nuclear moments [430]
Quasi-metastable levels [431]

Table J.2.: Collection of publications with precision data of 87Rb properties
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