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Summary

The ability of Magnetospirillum gryphiswaldense to orient along the earth’s magnetic field lines is based

on specific organelles, the magnetosomes, which are membrane-enveloped, nanometer-sized crystals

of magnetite (Fe3O4). The biosynthesis of functional magnetosomes depends on several steps includ-

ing the (i) invagination of magnetosome vesicles, (ii) protein sorting, (iii) iron transport and crystallization

of magnetite minerals, (iv) crystal maturation, and (v) assembly into linear chains. Each step is under

strict genetic control, and genes encoding the magnetosome proteins were identified within the mms6,

mamGFDC, mamAB, and mamXY operons that are located within a conserved genomic region referred

to as magnetosome island (MAI). The MAI further contains a number of genes with unknown functions

and numerous transposase genes that account for more than 20% of the coding region. It has mostly

remained unknown, which genes within the MAI are important for magnetosome biomineralization and

resemble the minimal essential gene set for biosynthesis. In this thesis the MAI of M. gryphiswaldense

has been analyzed by mutagenesis to reveal the function and relevance for magnetosome biosynthe-

sis of encoded proteins. An improved Cre-lox-based technique was used for introducing several large

deletions covering the entire MAI. While genes flanking the identified magnetosome operons have no

functional relevance for biosynthesis, less than 25% of the region comprising the mms6, mamGFDC,

mamAB, and mamXY operons could be associated with magnetite biomineralization. Whereas only

deletion of the mamAB operon resulted in the complete loss of magnetic particles, deletion of the mms6,

mamGFDC, and mamXY operons led to severe defects in biomineralization. However, strains in which

these operons were eliminated together retained the ability to synthesize small, irregular crystallites,

demonstrating that the mamAB operon is the only region of the MAI, which is necessary and sufficient

for magnetosome biosynthesis in M. gryphiswaldense. The genetic dissection of the mamAB operon

revealed that while deletions of mamI, N, A, R, S, T, and mamU, which have functions in magnetite

crystal nucleation and crystal maturation, did not abolish magnetosome formation, elimination of mamE,

L, M, O, Q, and mamB fully inhibited magnetosome compartment and/or crystal formation and thus

are essential for magnetosome biosynthesis. Single gene deletion of the mms6 operon revealed two

further important regulators for magnetosome biomineralization, namely Mms36 and Mms48. Finally,

overexpression of the magnetosome operons alone or in various combinations was used to enhance

particle synthesis in M. gryphiswaldense. While overexpression of the mamGFDC and the mamAB

operon alone did not resulted in adequate improvements in magnetosome biomineralization, the overex-

pression of the mms6 operon significantly increased both the crystal size and the amount of crystals per

cell. The altogether insertions of the mms6, mamGFDC, mamAB, and mamXY operon further enhanced

magnetosome formation by increasing particle number about 117% compared to the wildtype. Based

on results obtained in this study, combined with previous investigations of magnetosome genes and

proteins, an extended model for magnetosome biomineralization in M. gryphiswaldense is proposed.
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Zusammenfassung

Magnetospirillum gryphiswaldense synthetisiert membranumschlossene Magnetitkristalle (Fe3O4), so

genannte Magnetosomen. Der komplexe Prozess der Biosynthese von Magnetosomen umfasst ver-

schiedene Abläufe: (i) die Biogenese von Magnetosomenvesikeln, (ii) das Proteinrekruitment, (iii) den

Eisentransport und die Kristallisation des Magnetits, (iv) die Kristallreifung sowie (v) die lineare Anord-

nung der Magnetosomen. Die Synthese von Magnetosomen ist genetisch determiniert und wichtige

Magnetosomengene wurden innerhalb der mms6, mamGFDC, mamAB und mamXY Operons detek-

tiert, welche in einer so genannten genomischen Magnetosomeninsel (MAI) konserviert vorliegen. Diese

beinhaltet weiterhin eine Vielzahl von Genen mit bisher unbekannter Funktion sowie Transposasengene,

welche über 20% der MAI ausmachen. Die Bedeutung der Magnetosomengene sowie der übrigen

Gene innerhalb der MAI speziell für die Biosynthese von magnetischen Partikeln und der minimale Gen-

satz zur Bildung von Magnetosomen ist weitestgehend unbekannt. In der vorliegenden Arbeit wurde

eine verbesserte Cre-lox-basierte Technik zur Deletion verschiedener Regionen der MAI eingesetzt.

Während die Gene, welche die Magnetosomenoperons flankieren, keine entscheidenden Funktionen für

die Biomineralisation besitzen, haben ausschließlich die Magnetosomenoperons eine funktionale Rele-

vanz. Im Unterschied zur Deletion des mamAB Operons, welche einen vollständigen Verlust der Mag-

netosomenbiomineralisation bewirkt, führen die Deletionen des mms6, mamGFDC oder des mamXY

Operons zu verschiedenen Defekten in der Partikelsynthese. Zellen, in welchen diese drei Operons

gemeinsam deletiert wurden, sind weiterhin in der Lage, kleine, irreguläre Partikel zu synthetisieren.

Dies demonstriert, dass ausschließlich das mamAB Operon innerhalb der MAI in M. gryphiswaldense

essentiell und ausreichend zur Biosynthese von Magnetosomen ist. Die genetische Untersuchung des

mamAB Operons zeigt, dass die Gene mamI, N, A, R, S, T und mamU, welche entscheidende Rollen in

der Kristallnukleation und -reifung haben, nicht essentiell für die Biosynthese von Magnetosomen sind.

Ausschließlich die Deletionen der Gene mamE, L, M, O, Q und mamB inhibieren vollständig die Bildung

von Magnetosomenkompartimenten und/oder -kristallen und stellen somit den potentiellen, minimalen

Gensatz der Biomineralisation in M. gryphiswaldense dar. Durch Einzelgenanalysen des mms6 Oper-

ons wurden zwei weitere entscheidende Regulatoren der Biomineralisation von Magnetosomen, Mms36

und Mms48, identifiziert. Die Überexpression der Magnetosomenoperons wurde verwendet um die Par-

tikelsynthese in M. gryphiswaldense zu optimieren. Während kaum signifikante Verbesserung der Mag-

netosomenbildung durch die Überexpression des mamGFDC oder des mamAB Operons beobachtet

werden konnte, ist die Anzahl und Größe der Magnetosomen entscheidend durch die Überexpression

des mms6 Operons erhöht wurden. Die Insertion aller Magnetosomenoperons führte im Vergleich zum

Wildtyp zu einem Anstieg der Magnetosomenanzahl um 117%. Basierend auf den Ergebnissen dieser

Arbeit sowie vorhergehender Untersuchungen zu Magnetosomenproteinen ist ein umfassendes Model

der Magnetosomenbiosynthese in M. gryphiswaldense entworfen worden.
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Aims

Although the functional significance of the MAI in M. gryphiswaldense for magnetosome biomineraliza-

tion was predicted, the experimental evidence and characterization of most magnetosome genes as

well as regions flanking the magnetosome operons have been lacking behind. Thus, the first part of

this thesis includes a comprehensive bioinformatic, proteomic and genetic analysis of all MAI genes in

M. gryphiswaldense, to finally detect proteins involved in magnetosome formation. By modification of

the previously described Cre-loxP method all magnetosome operons independently or in various com-

binations as well as the remaining parts of the MAI were analyzed by deletion to confirm their functional

relevance for the biomineralization process. The stepwise removal of unnecessary or problematic ge-

nomic regions was realized to engineer strains of M. gryphiswaldense, which may exhibit increased

genetic stability due to the elimination of repeats and transposases, or might show improved growth as

well as increased magnetosome yields because of reduced gene content.

Whereas deletion of the mamGFDC operon led to severe defects in morphology, size and organiza-

tion of magnetite crystals, only loss of the mamAB operon resulted in cells entirely devoid of magnetite

crystals. This suggests that only the mamAB operon may contain genes that are absolutely essential

for magnetosome biosynthesis. However, only a minor number of genes within the highly conserved

mamAB operon (mamH, E, J, K, M, O, and mamB) was analyzed in detail so far and individual functions

of the mms6 operon genes in M. gryphiswaldense have remained unknown as well.

Therefore, the second part of this thesis is based on genetic dissection of the mms6 and mamAB

operons to reveal the importance of mgr4074, mms6, mmsF, mms36 (alias mgr4071) and mms48 (alias

mgr4070) as well as mamI, L, N, P, A, Q, R, S, T, and mamU in magnetosome biosynthesis and to

analyze whether these genes have functions similar or distinct from those of their corresponding ortho-

logues in the related strain M. magneticum. Additionally, these results were crucial to determine the

potential minimal set of essential genes and proteins for magnetosome biomineralization.

As previously reported, the expression of the mamGFDC operon genes under control of the strong

PmamDC promotor increased biomineralization even beyond wildtype levels resulting in cells synthesizing

larger and more magnetosomes. This prompted us within the third part of this thesis to systematically

investigate the effect of controlled overexpression of the mms6, mamGFDC, mamAB and mamXY oper-

ons in various combinations to potentially enhance magnetosome yields by modulating the magnetic

phenotype of M. gryphiswaldense.
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1 Chapter I

Introduction

1.1 Magnetotactic bacteria and magnetosome biosynthesis

The ability to sense and move along magnetic fields, referred to as magnetotaxis, is linked to the capabil-

ity of biomineralization of intracellular magnetic organelles termed magnetosomes [1]. It is assumed that

the combination of magneto-, aero-, chemo-, and probably phototaxis is employed to find the preferred

low-oxygen environment within the oxic-anoxic-transition zone (OATZ; Figure 1.1A) [1]. The biosynthesis

of magnetosomes is spread among a wide range of bacterial lineages with respect to phylogeny, physi-

ology, and morphology. First discovered by Salvatore Bellini in the late 1950s, the magnetic prokaryotes

are nowadays referred to as magnetotactic bacteria (MTB) [2].
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Figure 1.1: Magnetosome formation in magnetotactic bacteria (MTB). A: Magnetic alignment along the earth’s
magnetic field lines of MTB impaired by magnetosomes reduces a three-dimensional search problem
(a) to a one-dimensional search (b) to find the growth favoring oxic-anoxic-transition zone. B: TEM
micrographs reflecting the high morphological diversity of magnetotactic bacteria. Modified according
to [3,4,5]. C: Transmission electron micrographs (TEM) of the magnetosome diversity found in various
MTB. Modified according to [6]. Scale bar: 100 nm. D: Electron micrographs of a M. gryphiswaldense
cell and its magnetosome chain. The inset shows a micrograph of isolated magnetosomes enclosed by
the magnetosome membrane (arrow) [7].

All MTB analyzed so far belong to the α-, γ- and δ - subgroups of Proteobacteria as well as the

deep branching Nitrospirae-phylum and the candidate division OP3 [8,9,10,11]. Beside magnetotac-

tic cocci, rods, spirilla, vibrios, and ovoid cells, even multicellular aggregates of MTB have been ob-

served (Figure 1.1B), synthesizing numerous crystalline structures composed of magnetite (Fe3O4)

and/or greigite (Fe3S4; Figure 1.1C) [8,12,13,14,15].
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Therefore, a large quantity of iron is required and its intracellular accumulation leads to a tremendous

iron content of 2-4% (dry weight) in MTB in comparison to 0.027% in Escherichia coli [16,17,18].

Although the mechanism of iron accumulation in MTB is so far not completely understood in de-

tail, several recent studies revealed that the formation of functional magnetosomes depends on several

steps: the (i) magnetosome membrane formation [19], (ii) magnetosome protein sorting [20], (iii) iron

transport and crystallization [21], (iv) particle maturation [20] and (v) assembly as well as positioning of

mature crystals [22,23,24,25].

The magnetosome membrane, which envelops the magnetosome minerals (Figure 1.1D) is formed

prior to crystal formation. Based on biochemical analyses of isolated magnetosomes it was shown that

the magnetosome membrane originates as an invagination of the cytoplasmic membrane [25,26,27].

The biogenesis of the magnetosome vesicles occurs independently and before the targeting of at least

a subset of magnetosome proteins to this compartment begins. This was suggested to be important for

proper biomineralization of minerals and was detected by localization studies of various magnetosome

proteins [20,28].

Early studies of iron uptake within Magnetospirillum gryphiswaldense, the model organism of this the-

sis (Figure 1.1D), demonstrated that ferrous iron uptake proceeds at low rates by a diffusion-like process

and ferric iron is taken up by a fast, energy-dependent mechanism [17,29]. Within the draft genome as-

sembly of M. gryphiswaldense common iron uptake systems are encoded, including FeoB ferrous iron

uptake systems, a putative ATP-binding-cassette (ABC) ferric iron transporter and a putative ABC-type

ferric siderophore transporter. Whereas the ferrous iron transporters FeoB1 and FeoB2 play an acces-

sory role in magnetite biomineralization [30] or function in magnetosome biomineralization and oxidative

stress protection [31], no evidence for siderophores was found in M. gryphiswaldense as described for

the related strains M. magnetotacticum, M. magneticum and Magnetovibrio blakemorei [16,29,32,33,34].

The ferric uptake regulator Fur regulates global iron homeostasis in M. gryphiswaldense, which also af-

fects magnetite formation, probably by balancing the competing demand of biochemical iron supply and

magnetosome biomineralization [35,36].

Several hypotheses have been proposed for the nucleation process within magnetite-containing MTB.

Historically, based on Mössbauer spectroscopy on M. magnetotacticum cells, it was suggested that three

different phases in the magnetite crystallization process are involved: (i) low-density, non-magnetic hy-

drous ferric oxides followed by the (ii) high-density-hydrous ferric oxide (ferrihydrite), which is produced

by dehydration and then transformed by partial reduction to (iii) magnetite [37]. However, a Mössbauer

study in M. gryphiswaldense, did not observe any precursors apart from ferritin, from which, in combi-

nation with ferrous iron, magnetite is supposed to be co-precipitated within the magnetosome compart-

ments [38,39]. In contrast, by X-ray circular magnetic dichroism in the same bacterial strain, hematite

(α-Fe2O3) is suggested as a precursor to magnetite and to form an outer layer around the nascent mag-

netite phase [40]. A more recent and detailed study of the related strain M. magneticum shows that

magnetite synthesis proceeds through phase transformation: a highly disordered phosphate-rich ferric
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hydroxide phase, consistent with prokaryotic ferritin, is transfered via transient, short-lived and poorly

crystalline ferric (oxyhydr)oxide intermediates, such as ferrihydrite, poorly crystalline iron oxyhydroxydes

and nanometric hematite to magnetite. This partially combines and extents all previous described ob-

servations [41]. Subsequently, particle maturation leads to formation of 35 and 120 nm crystals, which is

for magnetite within a permanent, single magnetic domain size range and sufficient for a functioning in-

teraction with the weak geomagnetic field [42,43,44]. Finally, for the proper assembly of magnetosomes,

single crystals were aligned into linear chains along a filamentous cytoskeletal structure and positioned

at midcell [24].

1.2 Genetics of magnetosome biosynthesis

1.2.1 Magnetospirillum gryphiswaldense and identification of its magnetosome

genes

The model organism M. gryphiswaldense (Figure 1.1D) was isolated from sediments of the river Ryck

near Greifswald (Germany) and synthesizes cubooctahedral crystals composed of magnetite. The

3-5 µm long and helically shaped gram-negative bacterium belongs to the α-Proteobacteria and is

bipolar monotrichous flagellated. The microaerophilic strain is chemo-organoheterotroph utilizing dif-

ferent organic acids with oxygen or nitrogen as terminal electron acceptor [45]. Magnetosomes of

M. gryphiswaldense are commonly aligned in a chain-like structure containing up to 60 particles with

an average crystal diameter of 35 to 40 nm that are surrounded by the magnetosome membrane

[26,44,46,47]. Within the magnetosome membrane a specific set of more than 30 proteins direct the

biomineralization of highly crystalline particles with unique characteristics, which make them attractive

for use in a broad range of biomedical and biotechnological applications [48,49,50].

The biosynthesis of magnetosomes is not understood in detail, but it is known that both the biominer-

alization of inorganic magnetite crystals and their assembly into highly ordered chains are under strict

genetic control. However, the number and identity of magnetosome genes and their precise functions in

magnetosome biosynthesis have mostly remained unknown. Several methods were applied to identify

genes involved in this process, and the magnetosome genes were named ”magnetosome membrane”

(mam), ”magnetic particle membrane-specific” (mms), ”magnetotaxis” (mtx) or ”magnetosome mem-

brane genes” (mme), respectively [51,52,53]. Historically, the first magnetosome-associated proteins

were detected by proteomic analysis using one or two dimensional gel electrophoresis of membrane

and soluble fractions of M. gryphiswaldense. By reverse genetics the corresponding genes mamA, B,

C, D, E, F, G, J, M, N, O, Q, R, S, T, W, Y, and mamX, mmsF, mms6, mme22, mmeA, as well as mtxA

were revealed [46,51,54]. It was shown that the genes mamA and mamB as well as mamD and mamC

are located within two different clusters, termed as mamAB and mamDC clusters [51].
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First experimental indications for their functional significance in magnetosome formation came from

the isolation of a non-magnetic mutant strain, which had lost almost 80 kb by a spontaneous deletion

that included all known magnetosome genes as well as further unidentified genes [54,55]. It became

obvious that the magnetosome genes are located within a single genomic region, described as putative

magnetosome island (MAI) within M. gryphiswaldense and a further magnetosome cluster, termed as

mms6 cluster was detected [54,55]. The functional significance of the MAI was confirmed by a compar-

ative genomics approach based on the growing number of sequenced MTB genomes, which revealed

that magnetotaxis signature genes are predominantly located within this region. Furthermore, the highly

conserved mamXY cluster within the MAI of M. gryphiswaldense was identified [53]. Because of the

detection of the MAI genes also in other cultivated and uncultivated α-proteobacterial MTB (conserva-

tion) it has been suggested that the MAI was transferred horizontally [53,54,56,57]. This was further

corroborated by the discovery of homologous gene clusters in all tested MTB so far, such as the δ -

Proteobacteria Desulfovibrio magneticus RS-1 [58] and the multicellular magnetotactic prokaryote [59],

as well as in the deep-branching Nitrospirae-phylum [56]. Alternatively, it was discussed that the origin

of magnetotaxis might be rather monophyletic, whereas magnetosome formation was developed in a

common ancestor of all MTB and horizontal gene transfer appears to play a role in their distribution

[59,60].

In M. gryphiswaldense, the MAI was shown to encompass 130 kb, comprising the mms6, mamGFDC,

mamAB, and mamXY operons (Figure 1.2) [54]. These operons are transcribed as single polycistronic

messengers under control of the Pmms6, PmamDC, PmamH, and PmamXY promoters [61,62]. In addition to

genes implicated in magnetosome biomineralization, the MAI contains a number of genes with unknown

functions and numerous transposase genes that account for more than 20% of the coding region (Figure

1.2.). Owing to frequent homologous recombinations between the numerous direct or inverted repeats

associated with transposase genes, the MAI is genetically unstable, resulting in frequent spontaneous

loss of the magnetic phenotype [54,63].

With the identification of the MAI, forward genetics based on mutagenesis by targeted or random

base pair substitution, insertion, or deletion became a powerful tool to reveal the genetic importance of

genes or regions for magnetosome biosynthesis by comparing phenotypic changes with the unmodified

wildtype. Beside MAI genes, also genes outside of the MAI became targets for mutational analyses.

For example, deletions of nap and nir genes, whose products catalyze the reduction of nitrate (NO3
−)

to nitrite (NO2
−) and nitrite to nitric oxide (NO), respectively, resulted in biomineralization defects. This

indicates that magnetite biomineralization is linked to dissimilatory nitrate reduction potentially by parti-

cipation of Nap and Nir in redox reactions required for magnetite biomineralization or even oxidize ferrous

iron directly for magnetosome formation [64,65]. Further, enzymes participating in denitrification (nitrite

reductase Cd1), and in aerobic respiration (cytochrome c oxidase Cbb3), as well as the oxygen sensor

Fnr have been found to poise optimal redox conditions during magnetite biomineralization, as indicated

by mutagenesis and cultivation experiments [64,66]. Inactivation of the flagellin gene flaA caused non-
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magnetotactic cells lacking flagellar filaments [67] and deletion of the genes, encoding the iron uptake

regulator Fur [34] and the ferrous iron transporter FeoB1 and FeoB2 [30,31] (described above) leads to

reduction of magnetosome size and number, indicating their role in magnetosome biomineralization.
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Figure 1.2: Molecular organization and deletion analysis of the magnetosome island of M. gryphiswaldense.
Schematic representation of the magnetosome island of M. gryphiswaldense that contains several mam
and mms genes within the mms6, mamGFDC, mamAB and mamXY operons, several transposase
genes, genes encoding other assigned functions and a high number of hypothetical genes with unknown
functions indicated by different colors. Whereas the mamGFDC and mamAB operon were genetically
analyzed by targeted mutagenesis, functions of regions flanking the magnetosome clusters as well as of
the mms6 and mamXY operons have remained unknown (labeled by a question mark). Brighter colored
genes within the magnetosome operons were not investigated by single gene deletion so far. Transmis-
sion electron micrographs demonstrate phenotypes of previously generated deletion mutants. Whereas
∆mamGFDC [69], ∆mamC [69], ∆mamH [62], ∆mamJ [23], ∆mamK [70], ∆ftsZm [71], ∆mamZ [62],
∆mamX and ∆mamHZ [62] display various biomineralization defects, mamE [72], mamM [35], mamO
[72] and mamB [35] were described to be essential for magnetosome biosynthesis, as indicated by
the absence of electron dense crystals. Cryo electron micrograms and Cryo-ultrathin sections demon-
strate the presence of magnetosome membranes in ∆mamE, ∆mamM, and ∆mamO (i-iii; arrows) or the
absence of compartments in ∆mamB (vi) [72,73]. The MAI is modified according to [53,54,68].

1.2.2 The genetic toolset for analysis of magnetosome biosynthesis in M.

gryphiswaldense

Magnetosome formation is one of the most structurally and genetically complex processes within prokary-

otic organism, including several proteins with so far unknown functions. Genetic analyses to study

underlying mechanisms have been hindered for a long time by the lack of appropriate methodologies
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and tools for genetic manipulation. Technical requirements, such as techniques for clonal selection on

agar plates [74], availability of suitable selection markers [74], gene transfer [74], GFP fusions [75,76]

as well as techniques for site-directed and random mutagenesis [67,68,69,77,78] became available for

M. gryphiswaldense only at the beginning of this work. Whereas techniques like the transfer of genes

through electroporation or by chemical methods are not efficient or applicable for M. gryphiswaldense,

plasmidal transfer became possible by conjugation [74]. Tools for site-directed mutagenesis, includ-

ing allelic replacement by double-cross-over or insertion-duplication mutagenesis mediated by RecA

were established [67,69,77]. This includes a counter-selection method based on SacB, which confers

sensitivity to sucrose, but was applied only in few cases for M. gryphiswaldense due to unstable sacB

expression [69]. Furthermore, a Cre-loxP mediated excision system was used to routinely mutate the

genome of M. gryphiswaldense for large-scale deletions up to 67 kb [68].

However, several rounds of screening for mutants are necessary, and especially methods based on

allelic replacement bear the high risk for detection of false positive deletions, which make the tools

inefficient and time-consuming. Only recently a more efficient counter-selection method mediated by

galactokinase (GalK), which induces sensitivity to galactose or 2-deoxygalactose in the absence of a

galactose metabolizing pathway, was established [79]. Furthermore, construction of transposable ex-

pression vectors comprising the MycoMar or Tn5 transposase genes enabled the single copy insertion

into random chromosomal sites for stable magnetosome gene expression and transfer into foreign hosts

[67,78]. New inducible and efficient vector systems based on optimization of the Tet-inducible system

and the previously identified PmamDC promoter, enable high-level and tunable expression after induction

[76]. Although successful procedures became available, isolation of deletion mutants is still a highly

tedious and time-consuming task due to the slow growth of M. gryphiswaldense with its high doubling

time of three to seven hours and strategies depend on sequential rounds of insertions and excisions. As

a consequence, although several candidate magnetosome genes of the MAI were predicted, only few of

them (mamGFDC operon, mamC, mamJ, and mamAB operon) had been experimentally confirmed at

the beginning of this work (Figure 1.2).

1.2.3 Detailed genetic analyses of the magnetosome island in M.

gryphiswaldense

Deletion of the whole 2.071 kb mamGFDC operon of M. gryphiswaldense, which contains the genes

mamG, F, D, and mamC resulted in the formation of smaller and less regular magnetosomes, indi-

cating that the most abundant magnetosome proteins MamG, F, D, and MamC, with over 35% of all

magnetosome-associated proteins, did not inhibit crystal nucleation or prevented MM vesicle synthesis

and thus, are not essential for magnetosome biomineralization [69]. Loss of mamC only had a minor

impact on magnetite crystal formation and cells produce magnetosomes that were on average slightly

smaller than wildtype crystals (Figure 1.2) [69].
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The ~5 kb large mamXY operon is conserved in all cultivated magnetospirilla strains and encodes

MamY, MamX, MamZ (previously referred to as MamH-like) and the tubulin-like FtsZm protein (previ-

ously referred to as FtsZ-like) [80], for which a key role was predicted mainly based on comparative

genome analyses [81]. Previously, single gene deletions of mamX and mamZ resulted in very similar

mutant phenotypes and strains formed regularly shaped and sized magnetite particles flanked by a vari-

able number of small, irregularly shaped particles (Figure 1.2) [62]. Both proteins, MamX and MamZ are

likely involved in redox control to maintain optimal conditions for magnetite formation. These functions

depend on the two putative haem c binding ”magnetochrome” domains of MamX as well as the ferric

reductase-like transmembrane component of MamZ [62]. The mutant ∆ftsZm of M. gryphiswaldense

only displayed a magnetosome phenotype, when the cells were grown in medium with ammonium in-

stead of nitrate, resulting in cells with many small, poorly crystalline needle-like crystals, which indicates

a functional link to denitrification, redox control, and magnetosomal iron homeostasis (Figure 1.2) [71].

The ~6.6 kb mms6 operon comprises the genes mgr4074, mms6, mmsF, mms36 (alias mgr4071)

and mms48 (alias mgr4070), but their individual functions remained unknown (Figure 1.2). In the highly

related strain M. magneticum, the mms6 cluster was described to comprise only amb0955 (mgr4074),

amb0956 (mms6), amb0967 (mmsF ), but lacks homologues of mms36 and mms48 [82]. Whereas

deletion of amb0955 resulted in no obvious magnetosome phenotype, single gene deletions of mms6 in

M. magneticum performed by different research groups revealed inconsistent phenotypes. While Tanaka

et al. [83], reported an important regulatory function of Mms6 for magnetosome morphology, Murat et

al., only observed minor effects on magnetosome biosynthesis after deletion of mms6 in vivo in M. mag-

neticum [82]. In vitro, the small (12.76 kDa in M. gryphiswaldense and 14.69 kDa in M. magneticum)

Mms6 protein was shown to be tightly bound to isolated bacterial magnetite crystals as visualized by

atomic force microscopy and TEM [84,85]. In vitro crystallization experiments suggested that Mms6

and peptides mimicking it have iron-binding activity and affected the formation of cubo-octahedral crys-

tal morphologies [86,87]. However, it remains to be shown, if the mms6 operon genes have functions

similar or distinct from those of their corresponding orthologues in M. magneticum.

In contrast to the smaller operons, the large mamAB operon was found to contain genes absolutely

essential for magnetosome biosynthesis in M. gryphiswaldense and also M. magneticum, as its deletion

resulted in the complete loss of magnetic particles [20,68]. A recent comprehensive genetic dissection

of the mamAB operon in M. magneticum revealed that mamH, P, R, S, and mamT encode accessory

functions for magnetosome synthesis, since mutants display various biomineralization defects, whereas

mamU and mamV had no obvious magnetosome phenotype [20]. As in M. gryphiswaldense (see be-

low), mamK and mamJ were implicated in magnetosome chain assembly, but their loss did not affect

biomineralization [25,88]. However, gene deletions of mamI, E, L, M, N, O, and mamQ as well as mamB

(co-deleted with their respective orthologs) fully abolished magnetosome synthesis in M. magneticum

[20,28]. Whereas MamI, L, Q and MamB were suggested to be essential for vesicle genesis, MamE, O,

M, and MamN were classified to be mainly required for magnetite crystallization [20].
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The discovery of a small ”magnetosome islet” in the genome of M. magneticum with further copies of

mamE, J, K, L, M, F as well as mamD suggested genetic redundancy that remains to be clarified with

respect to determination of the minimal essential gene set [89].

In M. gryphiswaldense the ~16.4 kb mamAB operon contains 17 genes (mamH, I, E, J, K, L, M, N,

O, P, A, Q, R, B, S, T and mamU; Figure 1.2). Only a few genes of the mamAB operon were ana-

lyzed individually in this organism so far (Figure 1.3). Deletion of mamH caused a moderate decrease

of magnetosome number and size. Co-deletion with its partial homologue mamZ had a considerably

stronger effect with only very few or no regular crystals detectable in the cells, suggesting that MamH is

involved in redox control like its homologue MamZ (Figure 1.3) [62]. The actin-like protein MamK forms

a filamentous structure for magnetosome assembly and interacts with the acidic protein MamJ that is

involved in connecting magnetosomes to the filament (Figure 1.3). Both proteins, however, have no or

only minor effects on biomineralization, as deletion mutants ∆mamK formed shorter and fragmented

chains and deletion of mamJ led to detached particles of the magnetosome filament, resulting in parti-

cle agglomeration without any chain formation (Figure 1.2) [23,24]. Deletion of mamE, O, M and mamB

resulted in either a total inhibition of crystal nucleation or prevented MM vesicle synthesis, indicating that

these genes are essential for magnetosome biosynthesis [72,73,90].
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Figure 1.3: Overview about previously analyzed magnetosome proteins, encoded by the MAI of M.

gryphiswaldense. Corresponding genes were analyzed by mutagenesis in addition to further molecu-
lar analyses to determine protein functions. MamH, MamZ and MamX functionally interact to balance
the redox state of iron within the magnetosome compartment. FtsZm is likely involved in denitrification,
redox control, and/or magnetosomal iron homeostasis. The actin-like protein MamK interacts with the
acidic protein MamJ to align the magnetosomes into chain-like structures. MamC is important for crystal
maturation. Whereas MamB was suggested to be essential for vesicle genesis, MamE, MamO, and
MamM were classified to be mainly required for magnetite crystallization. Detailed genetic analyses
of remaining proteins, encoded by the mms6, mamGFDC, mamAB and mamXY operons as well as
flanking regions of the MAI were previously not implemented.
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Abstract

Bacterial magnetosomes are membrane-enveloped, nanometer-sized crystals of magnetite, which serve

for magnetotactic navigation. All genes implicated in the synthesis of these organelles are located in a

conserved genomic magnetosome island (MAI). We performed a comprehensive bioinformatic, pro-

teomic and genetic analysis of the MAI in Magnetospirillum gryphiswaldense. By the construction of

large deletion mutants we demonstrate that the entire region is dispensable for growth, and the majority

of MAI genes have no detectable function in magnetosome formation and could be eliminated without

any effect. Only <25% of the region comprising four major operons could be associated with mag-

netite biomineralization, which correlated with high expression of these genes and their conservation

among magnetotactic bacteria. Whereas only deletion of the mamAB operon resulted in the complete

loss of magnetic particles, deletion of the conserved mms6, mamGFDC, and mamXY operons led to

severe defects in morphology, size and organization of magnetite crystals. However, strains, in which

these operons were eliminated together retained the ability to synthesize small irregular crystallites, and

weakly aligned in magnetic fields. This demonstrates that whereas the mamGFDC, mms6 and mamXY

operons have crucial and partially overlapping functions for the formation of functional magnetosomes,

the mamAB operon is the only region of the MAI, which is necessary and sufficient for magnetite biomin-

eralization. Our data further reduce the known minimal gene set required for magnetosome formation

and will be useful for future genome engineering approaches.

Introduction

The ability of magnetotactic bacteria (MTB) to orient in the earth’s magnetic field is based on specific or-

ganelles, the magnetosomes. In the α-proteobacterium Magnetospirillum gryphiswaldense and related

MTB, magnetosomes consist of magnetite (Fe3O4) crystals enclosed by a phospholipid membrane.
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This magnetosome membrane (MM) contains a specific set of >20 proteins, which direct the biomin-

eralization of highly ordered crystals [1,2,3]. Synthesis of magnetosomes has recently emerged as a

model for prokaryotic organelle formation and biomineralization [4,5]. In addition, magnetosomes repre-

sent biogenic magnetic nanoparticles with unique characteristics, which make them attractive for use in

a wide range of biomedical and biotechnological applications [4,6,7].

Although the mechanism of magnetosome synthesis is not understood in detail, several recent studies

revealed that the formation of functional magnetosomes depends on several steps, which include the

invagination of MM vesicles from the inner membrane [8,9], the transport of iron and crystallization of

magnetite within these vesicles [10], and the assembly of mature crystals into a linear chain along a fil-

amentous cytoskeletal structure [9,11,12,13]. It has been also become clear that each of these steps is

under strict genetic control. By proteomic analysis of M. gryphiswaldense (in the following referred to as

MSR), genes encoding the MM-specific proteins were identified within a single genomic magnetosome

island (MAI) [14,15]. The functional significance of this region was confirmed by a comparative genomics

approach, which revealed that magnetotaxis signature genes are predominantly located within the MAI

[16]. Because of their general conservation in other cultivated and uncultivated α-proteobacterial MTB

[3,17,18,19] it has been suggested that the MAI was transferred horizontally [15,16,18,20,21]. This was

further corroborated by the recent discovery of homologous gene clusters in the δ -proteobacteria Desul-

fovibrio magneticus RS-1 [22] and the multicellular magnetotactic prokaryote (MMP) [23], as well as in

the deep-branching Nitrospirae-phylum [21].

In addition to all genes, so far implicated in magnetosome biomineralization, the MAI of MSR contains

a number of genes with unknown functions and numerous transposase genes that account for >20%

of the coding region [14]. Owing to frequent homologous recombinations between the numerous direct

or inverted repeats associated with transposase genes, the MAI is genetically unstable, resulting in fre-

quent spontaneous loss of the magnetic phenotype [15,24]. In MSR all known magnetosome genes

are comprised within four gene clusters known as mms6, mamGFDC, mamAB, and mamXY operons.

First experimental indications for their functional significance in magnetosome formation came from the

isolation of a non-magnetic mutant strain, which had lost 80 kb of the MAI by a spontaneous deletion

that included the mamAB, mms6 and mamGFDC operons [25].

Targeted deletion of the entire mamGFDC operon revealed that the small MamGFDC proteins, which

account for >35% of all magnetosome-associated proteins, are not essential, but involved in size control,

since mutant cells formed smaller and less regular magnetite crystals [26]. In a recent study by Murat

et al. deletion analysis of the MAI in M. magneticum (referred to as AMB) revealed three regions, which

are crucial for magnetite crystal formation [27]. Whereas the deletion of the R2 and R3 regions including

parts of the mamGFDC and mms6 operons led to severe defects in the size and morphology of the

crystals, loss of the mamAB operon resulted in cells entirely devoid of magnetite crystals [27]. Only the

deletion of mamE, M, N, O, L, I, and also of mamQ and mamB, if co-deleted with their respective dupli-

cates outside the mamAB operon, entirely abolished magnetite synthesis. Non-magnetic cells were also
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observed upon deletion of this operon in MSR [25]. This suggested that only the mamAB operon may

contains genes that are absolutely essential [27]. However, it has remained unknown whether this region

is also sufficient for magnetosome biomineralization in the absence of other magnetosome genes, since

possible genetic redundancy was suggested by the identification of genes, which are identical or similar

to genes from mamAB operon and partially encoded within a ”magnetosome islet” located elsewhere in

the genome of AMB [28].

Despite morphological similarities between the strains AMB and MSR, previous studies suggested

that function of orthologous genes might be somewhat distinct in these organisms depending on their

different genetic context [8], since only about 50% of all genes are shared by the genomes of these two

strains [16]. In particular, the MAI regions flanking the magnetosome operons show a divergent organi-

zation, gene content and were speculated to possibly harbor additional determinants for magnetosome

formation [16,18].

Here, we show that highly expressed and conserved genes within the MAI of MSR are mostly con-

fined to the mms6, mamGFDC, mamXY, and mamAB operons. By deletion of these operons, either

independently or in combination, we demonstrate that all four of them have crucial and partially over-

lapping functions in the synthesis of functional magnetosomes, whereas only the mamAB operon is

absolutely essential for magnetite biomineralization. Intriguingly, even in the absence of all other three

operons as well of further parts of the MAI, the mamAB operon proved sufficient to maintain synthesis

of small magnetite crystals. A further motivation for this study was to explore the potential for reduction

of dispensable or instable gene content from the residual MAI. By using an improved Cre-lox-based

technique, we demonstrate that 115 kb of the MAI can be deleted without any consequences for growth,

while 59 kb have no obvious function in magnetosome synthesis.

Results

Expression of MAI genes coincides with their conservation and operon

localization

Besides numerous (>50) transposase and phage related genes, the mam and mms operons within the

MAI are flanked by a number of ORFs, mostly annotated as hypothetical genes, which may represent

either unrecognized determinants for magnetosome formation, genes with unknown different functions,

or simply pseudogenes or misannotations. To tentatively distinguish between regions of predicted rel-

evance and those not likely involved in magnetotaxis, we reasoned that putative magnetosome genes

are expected (I) to lack strong prediction of other cellular functions, (II) to be highly conserved among

MTB, and (III) to be expressed during magnetosome synthesis. We therefore reassessed functional

annotation of the MAI against current databases. Only 12 of the MAI genes have functionally predicted

homologs outside MTB (Fig. 2.1), which encode three hemerythrin-like proteins, putative regulatory pro-
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teins, secretion components, a sensory transduction histidine kinase, a partition-related protein, and an

IdiA fragment (Tab. S1). To identify conserved genes, we tested by blastp analysis the presence of all

genes from the MAI of MSR against all genomic information available from cultivated MTB (Fig. 2.1, Tab.

S2.1). Genes that are highly conserved between several MTB were found mostly confined to the mam

and mms operons, where ten ORFs (mamE, K, M, O, A, Q, B, T, and with lower similarity mamI and

mamP) are conserved in all analyzed strains including MSR, AMB, Desulfovibrio magneticus RS-1, M.

magnetotacticum MS-1, Magnetococcus marinus MC-1, and Magnetovibrio blakemorei MV-1. MamE,

I, K, M, O, P, A, Q, B genes were also detected in the metagenomic MAI fragment Fos001, whereas a

second metagenomic clone Fos002 lacks mamI but contains mamT [20]. MamE, I, M, P, A, B, and two

mamQ homologs were also found in the incomplete MAI sequence of ”Candidatus Magnetobacterium

bavaricum” [21]. Nine ORFs have homologs in only one other MTB (Fig. 2.1), and 41 genes are shared

by at least all magnetospirilla (Fig. 2.1).

Figure 2.1: Molecular organization and characteristics of the MAI of M. gryphiswaldense. Extensions of dele-
tions are shown by bars of different colors indicating the general phenotype. For overview, strains
generated in previous studies are shown in semi-transparent color. The magnetite content of mutant
strains is illustrated by the color of corresponding cell pellet. Degree of gene conservation is highlighted
by different colors. Genes found expressed by proteomic analysis are indicated by ”+”.

However, only 7 of these genes show positional conservation within the MAI of AMB, whereas the rest

is located elsewhere in the genome in the latter strain. Twenty-two genes, which are mostly confined to
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larger regions close to the putative boundaries of the MAI, are specific for MSR (i. e., have no homolog

in any other organism), and appear less likely to represent determinants required for magnetosome

formation. Thus, hypothetical genes outside the mam and mms operons are poorly conserved, with

none of them found shared by all sequenced MTB. To identify expressed products of ORFs encoded

within the MAI, we performed proteomic analyses of magnetosomes, as well as intracellular soluble and

membrane-enriched protein fractions of cells grown under magnetite forming conditions. In total, 923

proteins were identified by 1D LC-MS/MS analysis, or from spots detected on 2D gels. In summary, only

33 proteins encoded within the MAI were found expressed in the membrane or magnetosome fraction of

MSR. These for instance include, with the exception of Mgr4074, MamI, MamL, and MamX, all proteins

encoded by the mamAB, mamGFDC, mms6, and mamXY operons, whereas only seven genes outside

the mam and mms operons were found expressed (mgr4041, mamW, mgr4067, mgr4106, mgr4109,

mgr4115; mgr4152, Fig. 2.1; Tab. S2.1) as well as one gene barely inside the boundaries of the 130 kb

region (mgr4022) [29]. With the exception of MamK, none of the MAI proteins was detected within the

soluble protein fraction among the analyzed spots.

Mutagenesis of MAI genes

By excluding putatively essential genes such as tRNA and rRNA genes, we predicted a core region

of 115 kb from mgr4026 to mgr4174, comprising 149 ORFs that are probably not important for cen-

tral metabolic functions and including all so far known magnetosome genes. According to bioinformatic

prediction and expression data, this region was divided into partially overlapping target regions for mu-

tagenesis (Fig. 2.1). We constructed 13 mutant strains, in which single or several of these targets were

excised, resulting in deletions between 400 bp and 61 kb. Shorter deletions (up to 7 kb) were gen-

erated by allelic replacement (double crossover mediated by homologous recombination, Fig. S2.1A)

[30], whereas Cre-lox excision (Fig. S2.1B; Fig. S2.2) [25,31], was used for the construction of larger

deletions between 5 and 53 kb.

We noticed that success of deletion mutagenesis was not fully predictable. For instance, whereas we

previously generated the ∆A17 deletion in the MSR-1B background [25], we failed to enforce deletion

of parts of that region (∆A2) in the WT background despite of repeated attempts. With few exceptions

described below, all mutants including the longest deletion (∆A14) extending over 58.9 kb exhibited WT-

like growth, indicating that no central metabolic functions are encoded by deleted MAI genes. However,

Cmag measurements and TEM of mutant strains revealed three different classes of phenotypes with

respect to magnetosome formation: (I) Mutants that were unaffected in magnetosome formation, i. e.

cells were virtually WT-like with respect to crystal appearance (shape, size, number per cell and align-

ment) including the long deletions ∆A3 (9.8 kb), ∆A4 (27.8 kb), and ∆A5 (19.7 kb), as well as ∆mamW

(411 bp), eliminating a protein that was previously identified as associated with magnetosomes in MSR

[15,16]. (II) Mutants, in which magnetosome formation was entirely abolished, as indicated by a pale

pink to orange cell pellet (in contrast to the black appearance of the WT), lack of a magnetic response
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(Cmag=0) and the absence of any electron dense particles. The non-magnetic mutants ∆A19, in which

an additional 19.7 kb fragment was excised in the background of deletion mutant MSR-1B, and ∆A15

comprising the mamJKL genes, had in common a deletion of either the entire mamAB operon or parts

of it, similar to strains MSR-1B, ∆A16, ∆A17 and ∆A18, which had been generated in previous studies

[15,25]. (III) A third class of mutant strains still exhibited a magnetic response, but cells were gradually

affected in magnetosome biomineralization or assembly, resulting in fewer, smaller and irregular crystals

or distorted chains (Fig. 2.2).

Figure 2.2: TEM micrographs of cells (A, D) and magnetosome morphologies (B, C, E, F) observed within
the generated deletion mutants. Scale bar: 400 nm in A and D; 50 nm in B and C; 100 nm in E and F.

Mutants of this class could be recognized by variable intensities of brownish color of colonies and cell

pellets (Fig. 2.1). Single-operon deletions of mms6 (∆A10) and mamXY (∆A8) showed a significantly

reduced magnetic response, but still contained electron-dense particles with different sizes and shapes

(Tab. 2.1). Strain ∆A10 had smaller crystals (Tab. 2.1) that were scattered throughout the cell or aligned

in irregular, widely spaced ”pseudo-chains” (i. e. with <10 crystals per chain; Fig. 2.2). Crystals between

25 and 30 nm were predominant, whereas particles larger than 50 nm were not observed, unlike WT

crystals that were most frequently between 40 and 50 nm with a maximum size up to 70 nm (data not

shown). Besides cubo-octahedral crystals also heterogeneous crystal shapes were observed (Fig. 2.2).

Complementation with fragments comprising genes mgr4072, mgr4073, and mgr4074 restored size,

shape and alignment of crystals to WT range within about one third of the cells (data not shown).

Strain ∆A8 had an inconsistent phenotype. TEM revealed a variety of magnetosome appearances

between different cells, including those lacking any electron-dense particles (Fig. 2.3 A), and those

with non-uniform, small crystals lacking any chain configuration (Fig. 2.3 B-F). Remarkably, many cells

contained two distinct types of crystals: short chains of almost regular (i.e. cubicle-shaped) crystals,

which were flanked by irregular particles with poorly defined morphologies (Fig. 2.3 G-K). Analysis of
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about 350 crystals from cells of the latter phenotype revealed that approximately 66% of the crystals

were irregular and less electron dense, slightly elongate and poorly crystalline particles (Fig. 2.2). The

different particles had distinct size distributions: Among irregular particles, sizes between 15 and 25 nm

were most abundant, whereas the regular-shaped crystals had a maximum size of 60 nm, and diameters

between 35 to 45 nm were most frequent among them (Fig. 2.3).

Figure 2.3: Magnetosome size distributions of electron dense particles within the mutants ∆A8 and ∆A11.
Representative micrographs of corresponding crystal morphologies are shown. Scale bar: 100 nm.

The WT-like phenotype could be restored by transcomplementation with plasmid pmamXY containing

the entire mamXY cluster (mgr4147 to mgr4150; data not shown). A similar phenotype was observed

for the mutant ∆A7 (Fig. 2), in which the deletion included the regions A4 and A5 in addition to the

mamXY operon (Fig. 2.1; Tab. 2.1), resulting in an average crystal size of 23.5 nm. Crystal number per

cell was not significantly affected in comparison to WT (Tab. 2.1).

Operons whose single deletions had magnetosome phenotypes were also deleted in combination with

each other. This was also achieved by modification of the previously described Cre-lox method [25] by

using altered lox sequences [32] that enabled the construction of strains bearing multiple unmarked

deletions by sequential rounds of insertions and excisions (Fig. S2.1). In strain ∆A12 the entire mms6

operon was deleted in addition to the adjacent mamGFDC operon. This resulted in a stronger pheno-

type compared to its parent strain ∆GFDC [26], i. e. it formed even fewer and smaller magnetosomes

that were aberrantly shaped and less regularly aligned (Fig. 2.2). The deletion of both operons also

resulted in a particle size reduction of 52% compared to the WT, although crystals were only slightly
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smaller than in a deletion of mms6 operon alone (Tab. 2.1). While crystal numbers per cell were only

slightly reduced in comparison to the mms6 operon mutant, the magnetic response of ∆A12 culture was

markedly weaker (Cmag[∆A12]=0.6; Tab. 2.1).

Figure 2.4: Comparison of magnetosome morphologies within several mutant strains of M.

gryphiswaldense. Illustration of the combined effect on crystal morphology caused by stepwise
excision of mms6, mamGFDC and mamXY operons. Micrographs show various distinct crystal mor-
phologies within strains ∆A10 and ∆A12 (cubicle-shaped, black arrows) and ∆A8 and ∆A11 (elongate
shaped, white arrows) that are coexistent within the mutants ∆A13 and ∆A14. Scale bar: 100 nm.

The ∆A11 double deletion mutant of mamXY and mamGFDC operons showed a reduced Cmag

(Cmag[∆A11]=1.2; Tab. 2.1) and a phenotype as inconsistent as strain ∆A8 (Fig. 2.3). Compared to ∆A8,

particles were smaller (Fig. 2.4), fewer per cell and less frequently aligned in chain-like structures (Fig.

2.2). Also, the number of crystals with regular morphology was reduced to 21.8%. We also eliminated

mms6, mamGFDC, and mamXY operons altogether using two approaches: While sequential triple dele-

tion by allelic replacement of the three regions resulted in strain ∆A13, deletion of the mamGFDC and

mms6 operons in a parental background (∆A7) that already lacked the entire right arm of the MAI (about

53 kb) containing the mamXY operon resulted in strain ∆A14 (Fig. 2.1). Remarkably, both strains still

displayed a detectable, although weak magnetic response (Cmag[∆A13]=0.3; Cmag[∆A14]=0.5) and con-

tained tiny misshapen electron dense crystallites (Fig. 2.2; Tab. 2.1). Crystal sizes were decreased

to 54.8% of WT size and 84.8% of ∆A8 size, but were identical between ∆A13 and ∆A14 strains (Tab.

2.1). From all mutants, both strains ∆A13 and ∆A14 contained the fewest magnetosome number per cell

(12-13 in average) and crystal shapes resembled the irregular morphologies found in strains ∆A7, ∆A8,

∆A10, ∆A11, and ∆A12. Thus, the phenotype of ∆A13 and ∆A14 is characterized by the coexistence of

distinct particle morphologies found in the respective single operon deletion mutants (Fig. 2.5).
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Table 2.1: Characteristics of MAI deletion mutants.

    Phenotypic characteristics 

Name of the 

strain 

Deleted 

genes 

Method of 

deletion 

Extend of 

deletion 
Cmaga 

Average 

magnetosome 

size [nm] 

Number of 

magnetosomes 

per cell 

Wild type [53] / / / 2.0±0.1 47.8-35.6b 34.3±8.4 

!A1 (!mamW) mgr4057 
allelic 

replacement 
411 bp WT 

WT 

(37.2±10.7) 
WT (28.8±4.3) 

!A2 
mgr4026 to 

mgr4069 

Cre-lox    

two vectors 
28,728 bp / / / 

!A3 
mgr4079 to 

mgr4088 

Cre-lox    

two vectors 
9,828 bp WT 

WT 

(41.2±13.7) 
WT (27.8±4.7) 

!A4 
mgr4106 to 

mgr4146 

Cre-lox    

two vectors 
27,795 bp WT 

WT 

(39.7±15.5) 
WT (28.5±8.2) 

!A5 
mgr4151 to 

mgr4174 

Cre-lox    

two vectors 
19,651 bp WT 

WT 

(35.0±14.2) 
WT (29.9±8.6) 

!A7 
mgr4106 to 

mgr4174 

Cre-lox    

two vectors 
52,823 bp Intermediate 

Intermediate 

(23.5±15.9) 
WT (35.0±8.2) 

!A8 (!mamXY) 
mgr4147 to 

mgr4150 

allelic 

replacement 
5,077 bp Intermediate 

Intermediate 

(23.0±11.5) 
WT (32.2±11.4) 

!A9     

(!GFDC) [26] 

mgr4075 to 

mgr4078 

allelic 

replacement 
2,071 bp 

Intermediate 

[26] 

Intermediate 

[26] 
WT [26] 

!A10     

(!mms6 op) 

mgr4070 to 

mgr4074 

allelic 

replacement 
3,632 bp Intermediate 

Intermediate 

(19.7±6.9) 

Intermediate 

(16.8±6.2) 

!A11 

(!mamGFDC_ 

!mamXY) 

mgr4075 to 

mgr4078; 

mgr4147 to 

mgr4150 

allelic 

replacement 
7,148 bp Intermediate 

Intermediate 

(20.7±10.3) 

Intermediate 

(25.3±6.0) 

!A12     

(!mms6 op_ 

!mamGFDC) 

mgr4070 to 

mgr4078 

allelic 

replacement 
6,070 bp Weak 

Intermediate 

(18.4±6.0) 

Intermediate 

(15.3±5.6) 
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!A13     

(!mms6 op_ 

!mamGFDC_ 

!mamXY) 

mgr4070 to 

mgr4078; 

mgr4147 to 

mgr4150 

allelic 

replacement 
11,050 bp Weak 

Intermediate 

(19.3±8.1) 

Weak 

(13.0±4.3) 

!A14        

(!A7_ 

!mms6op_ 

!mamGFDC) 

mgr4106 to 

mgr4174; 

mgr4070 to 

mgr4078 

Cre-lox two 

vectors and 

allelic 

replacement 

58,893 bp Weak 
Intermediate 

(19.7±7.7) 

Weak 

(12.1±3.4) 

!A15 

(!mamJKL) 

mgr4092 to 

mgr4094 

allelic 

replacement 
2,656 bp 

non 

magnetic 
0 0 

!A16 

(mamAB#K7) 

[25] 

mgr4089 to 

mgr4105 

Cre-loxP two 

vectors 
16,362 bp 

non 

magnetic 
0 0 

!A17        

(MSR-1_SU12) 

[25] 

mgr4029 to 

mgr4105 

Cre-loxP two 

vectors 
61,000 bp 

non 

magnetic 
0 0 

!A18        

(MSR-1B 

mgr4058 to 

mgr4146)     

[25] 

mgr4058 to 

mgr4146 

Cre-loxP two 

vectors 
67,345 bp 

non 

magnetic 
0 0 

!A19 

mgr4058 to 

mgr4105; 

mgr4151 to 

mgr4175 

Cre-loxP two 

vectors 
60,033 bp 

non 

magnetic 
0 0 

 1 

a WT: no signiffcant difference to WT cells; Intermediate: 80-40% of WT characteristic; Weak: less than 40% of
WT characteristic

b Mean sizes were found slightly variable within a range between 48-35 nm due to minor variations of cultivation
conditions and growth phase
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Discussion

We performed a comprehensive investigation of the MAI in MSR by combined bioinformatic, proteomic

and genetic analysis. With the exception of mgr4041 and mgr4106, which are MSR-specific, all other

genes from the 115 kb core region that were found expressed are also highly conserved in magne-

tospirilla or even all MTB. The majority of expressed genes (26 of 33) were localized within the mms6,

mamGFDC, mamAB, and mamXY operons [25,27]. These were also the only regions, which displayed

a magnetosome phenotype upon their deletion. Thus, in contrast to previous observations in AMB [27],

conservation and expression of MAI genes showed a strong correlation with a function in magneto-

some formation. We used a Cre-lox based method [25,31], which allows the efficient excision of large

fragments. The largest single deletion obtained by this method comprised 53 kb in strain ∆A7. Using

modified lox-sites enabled multiple sequential rounds of marker-less deletions. This resulted in strains,

in which up to 59 kb were deleted, comprising about 50% of the MAI and encoding 78 ORFs.

Despite of repeated attempts, no deletion of the A2 region (Fig. 2.1) was obtained. Whereas the

∆A17 (MSR_SU12) deletion was straightforwardly generated in the MSR-1B background in a previous

approach [25], we failed to partially delete this region (∆A2) in the WT background. It remains to be

shown whether this was due to low efficiency, or if deletion of this region would be lethal only in the

presence of the residual MAI genes. The absence of detectable phenotypes apart from magnetosome

formation in the deletion strains indicates that the MAI encodes no important functions for growth under

laboratory conditions. Whereas less than 25% of the MAI region could be associated with magnetosome

formation, more than 50% of the MAI seems to have no obvious functions.

Remarkably, among the genes with no phenotype are several of the magnetospirilla-specific genes,

such as mgr4067, mgr4109, mgr4115, mgr4152, and mgr4057 (mamW ), which had been previously

implicated in magnetite synthesis because of its magnetosome expression [16]. We also failed to detect

a phenotype for the two hemerythrin-like genes harbored within the deleted A3 region. Because of their

MAI localization and the known functions of hemerythrins from other organisms in the sensing or trans-

port of oxygen and iron, it was speculated that these proteins may play a role in magneto-aerotaxis and

magnetosome formation [33,34]. However, it cannot be excluded that their loss can be compensated by

the numerous (i. e. 23) homologs encoded elsewhere in the genome. Taken together, although it re-

mains possible that some deletion strains could show a phenotype under different growth conditions, or

only in combination with other deletions, most of the genes flanking the identified magnetosome operons

have no functional relevance and might just represent genetic ”junk” or remnants from previous transfer

events of the MAI.

Our deletion analysis confirmed several results of previous studies, in which the functional significance

of several regions, such as mamAB, mms6, and mamGFDC were shown for AMB [27], and partially for

MSR [25,26]. However, despite of the high similarity of targeted genes, we also found several striking

differences between the two organisms. One example is the conserved mamXY operon, which contains

39



2 Chapter II

several magnetotaxis signature genes, and for which a key role was predicted mostly based on compar-

ative genome analysis [16]. While MamY was recently implicated in MM biogenesis in AMB [35], MamX

has similarity to the serine like proteases MamE and MamS, whereas MamZ is an ortholog of MamH

and resembles permeases of the major facilitator superfamily. The FtsZ-like gene has homology to the

tubulin-like protein, which is involved in cell division in many bacteria [36]. In contrast to the mamXY

operon deletion in AMB, which did not show a strong effect [27], we found that mamXY genes have a

crucial function in magnetite biomineralization of MSR. This is consistent with the results obtained by

Ding et al., who reported that the deletion of the ftsZ-like gene alone already resulted in the synthesis of

smaller, predominantly superparamagnetic particles [37].

The deletion of all mamXY genes had an even stronger effect, which is different from all previously

reported magnetosome phenotypes. Strikingly, all deletions including this operon had an inconsistent

phenotype, which varied between different cells. In addition to size reduction, this was characterized by

the co-existence of various distinct magnetosome morphologies within many single cells.

The deletion of genes from the mms6 operon had slightly different effects in AMB and MSR too. Single

deletion of the mms6 gene in AMB already caused smaller and elongated crystals [38], thus resembling

the R3 mutant constructed by Murat et al. [27], which comprised deletion of genes from both the mms6

and mamGFDC operons. In contrast, 58% of crystals within cells of the single operon deletion mutant

in MSR (strain ∆A10) still had cubicle-shaped appearance, whereas elongate crystals were absent from

the mutants ∆A10 and ∆A12. Although the phenotypes cannot be directly compared, since the extents

of deletions are not fully congruent, this might point towards slightly distinct functions of the homolo-

gous regions in AMB and MSR. In MSR co-deletion of the mms6 operon together with mamGFDC in

strain ∆A12 resulted in a further reduction of shape regularity and alignment of crystals, but only in a

slight decrease of size, whereas the number of particles per cell was similar to strain ∆A10 (∆mms6).

This argues for a certain functional overlap between the two operons, which is consistent with the high

similarity between some of the encoded proteins, such as MmsF and MamF, which share 61% identity,

and Mms6, which shares a conspicuous LG-rich motif with MamG and MamD [2,39]. However, single

operon mutant phenotypes suggest that genes of the mms6 operon have a more pronounced effect on

crystal size, number and alignment than mamGFDC, perhaps by direct binding to the surface of nascent

crystallites through hydrophilic domains [40], or by enlarging the surface and curvature of MM vesicles,

which spatially constrain the growth of magnetite crystals [26].

Intriguingly, even in the ∆A14 and ∆A13 strains, in which the mms6, mamGFDC, and mamXY oper-

ons were deleted in triple, magnetite formation was not entirely abolished and cells still weakly aligned

in magnetic fields, although crystal sizes were further decreased and elongate crystals were present.

Despite of a functional overlap in size control of magnetite crystals, the roles of the mms6, mamGFDC,

and mamXY genes are not fully redundant, as indicated by the distinct morphologies found in their re-

spective single operon deletions. While simultaneous excision of the mamGFDC and mms6 operon lead

to heterogeneous cubicle-shaped crystals, loss of mamXY operon lead to poorly crystalline and elon-
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gate crystals, which were also detected within the double deletion mutant of mamXY and mamGFDC.

Interestingly, these effects are superimposed in the mamGFDC, mms6, mamXY triple deletion strains

(∆A13 and ∆A14), in which crystallites of both morphologies are present. Altogether, these observations

indicate that the mamGFDC, mms6 and mamXY operons have important and additive functions for the

formation of regularly shaped crystals that are sufficiently large to be functional for interaction with the

weak geomagnetic field [39,41].

Consistent with observations for AMB [27], only the mamAB operon contains genes, which are essen-

tial for magnetosome formation. However, our data for the first time demonstrate that the mamAB operon

is the only region of the MAI, which is necessary and sufficient to maintain magnetite biomineralization

even in the absence of the mamGFDC, mms6, and mamXY clusters. Although it cannot be precluded

that additional, so far unrecognized determinants might be encoded outside the MAI, this further reduces

the minimal gene set, which is likely required for biomineralization. As the MamJ and MamK proteins

were already shown to have roles in magnetosome chain assembly rather than in biomineralization

[8,42], the core set of MAI genes essential for magnetite biomineralization in MSR can be expected to

be less than 15, and according to the identification of further non-essential genes in the mamAB operon

of AMB (mamA, H, U, V, P, T, R, S) [27] this number is likely to shrink further.

Our results will be also useful for future genome reduction approaches. Comparable experiments

in other bacteria have shown that large-scale deletions of target sequences are extremely powerful in

engineering of strains optimized for biotechnological processes [43,44,45]. By stepwise removal of un-

necessary or problematic genomic regions, in future approaches also strains of MSR can be engineered

for the production of magnetosome particles, which may exhibit increased genetic stability due to the

elimination of repeats and transposases, or might show improved growth or increased magnetosome

yields because of reduced gene content. In summary, deletion analysis of MAI indicates that whereas

only the mamAB operon is essential, different regions have important functions in control of size and

morphology of magnetosomes. Thus, modular deletion or expression of various magnetosome genes

and operons could be used for the production of engineered magnetic nanoparticles with tailored prop-

erties.

Materials and Methods

Bacterial strains, plasmids, and culture conditions

Bacterial strains and plasmids used in this study are listed in Table S2.2. M. gryphiswaldense strains

were grown microaerobically in modified flask standard medium (FSM) at 30◦C [46] and moderate

agitation (120 rpm). E. coli strains were cultivated as previously described [47] and 1 mM DL-α, ε-

diaminopimelic acid (DAP) was added to lysogeny broth media growing E. coli BW29427 (K. Datsenko

and B. L. Wanner, unpublished data). Strains were routinely cultured on dishes with 1.5% (w/v) agar.
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For strains carrying recombinant plasmids, media were supplemented with 25 g/ml kanamycin (Km),

12 g/ml tetracycline (Tet), and 15 g/ml gentamicin (Gm) for E. coli strains, and 5 g/ml kanamycin, 5 g/ml

tetracycline, and 20 g/ml gentamicin for M. gryphiswaldense strains, respectively. Blue-white screening

was performed by adding 50 µg/ml X-Gluc (5-bromo-4-chloro-3-indoxyl-D-glucuronidase; AppliChem,

Darmstadt, Germany) to FSM.

Molecular and genetic techniques

The working draft of M. gryphiswaldense genome sequence (GenBank accession number No. CU459003)

was used for primer design. Oligonucleotids (Tab. S2.3) were purchased from Sigma-Aldrich (Steinheim,

Germany). Chromosomal DNA of M. gryphiswaldense was isolated as described previously [3]. Plas-

mids were constructed by standard recombinant techniques as described in detail in the supplemental

data. All constructs were sequenced on an ABI 3700 capillary sequencer (Applied Biosystems, Darm-

stadt, Germany), utilizing BigDye Terminator v3.1. Sequence data were analyzed with Software Vector

NTI Advance® 11.5 (Invitrogen, Darmstadt, Germany).

Analytical methods

Magnetic reaction of cells was checked by light microscopy applying a bar magnet. Optical density and

magnetic response (Cmag) of exponentially growing cells were measured photometrical at 565 nm as

previously reported [48]. For Cmag messurement a magnetic field of approximately 70 millitesla was

used [48]. As this field can possibly magnetize small magnetosomes in the superparamagnetic size

range and cause artificially high Cmag readings, all putative magnetosome phenotypes were verified by

transmission electron microscopy (TEM). For TEM analysis, exponential cells were 10-fold concentrated

and adsorbed onto carbon-coated copper grids. Samples were viewed and recorded with a TECNAI

FEI20 microscope (FEI, Eindhoven, Netherlands). Magnetosome crystals were analyzed with respect to

size, shape and numbers per cell. Magnetosome crystals were scored for chain formation as described

by [8]. For pictures of cell pellets, cells were cultivated anaerobic in FSM and 109 cells were concentrated

by centrifugation.

Cell fractionation, protein digestion, mass spectrometry, and data analysis

For proteomic analysis M. gryphiswaldense WT was grown in microaerobic 1-liter batch cultures and

cell fractions (membrane-enriched, soluble, and magnetosomes) were prepared as previously described

[2,29]. Soluble proteins were separated in 2D PAGE (pH 4-7 and 3-10). Analysis of 2D gels including

relative quantification was done with the Delta2D software (Decodon, Greifswald, Germany). Protein

spots were cut from 2D gels, transferred into microtiter plates, and tryptically digested using the Ettan

Spot Handling Workstation (GE Healthcare, Munich, Germany). Mass spectra of protein fragments

were measured by MALDI-TOF-MS/MS using a Proteome Analyzer 4800 (Applied Biosystems, Munich,
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Germany). The parameters for measurements were set as described in [49]. The spectra were searched

against the published genome sequence from M. gryphiswaldense by using the JCoast 1.6 software

[50], and proteins were identified using the Mascot search engine. For analysis of magnetosomes and

membrane proteins, gel lanes obtained from 1D-SDS-PAGE were cut into 10 equal slices. Gel slices

were digested manually with trypsin and analysed by LC coupled mass spectrometry performed as

described by [51]. Relative quantification of membrane proteins was based on spectral counting using

Scaffold [52].
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Abstract

The synthetic production of monodisperse single magnetic domain nanoparticles at ambient temper-

ature is challenging1,2. In nature, magnetosomes - membrane-bound magnetic nanocrystals with un-

precedented magnetic properties - can be biomineralized by magnetotactic bacteria3. However, these

microbes are difficult to handle. Expression of the underlying biosynthetic pathway from these fastidi-

ous microorganisms within other organisms could therefore greatly expand their nanotechnological and

biomedical applications4,5. So far, this has been hindered by the structural and genetic complexity of

the magnetosome organelle and insufficient knowledge of the biosynthetic functions involved. Here,

we show that the ability to biomineralize highly ordered magnetic nanostructures can be transferred

to a foreign recipient. Expression of a minimal set of genes from the magnetotactic bacterium Mag-

netospirillum gryphiswaldense resulted in magnetosome biosynthesis within the photosynthetic model

organism Rhodospirillum rubrum. Our findings will enable the sustainable production of tailored mag-

netic nanostructures in biotechnologically relevant hosts and represent a step towards the endogenous

magnetization of various organisms by synthetic biology.

Results and Discussion

The alphaproteobacterium M. gryphiswaldense produces uniform nanosized crystals of magnetite (Fe3O4),

which can be engineered by genetic6,7 and metabolic means8 and are inherently biocompatible. The

stepwise biogenesis of magnetosomes involves the invagination of vesicles from the cytoplasmic mem-

brane, magnetosomal uptake of iron, and redox-controlled biomineralization of magnetite crystals, as

well as their self-assembly into nanochains along a dedicated cytoskeletal structure to achieve one of the

highest structural levels in a prokaryotic cell3,9. We recently discovered genes controlling magnetosome

synthesis to be clustered within a larger (115 kb) genomic magnetosome island, in which they are inter-

spersed by numerous genes of unrelated or unknown functions6,10. Although the smaller mamGFDC,
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mms6 and mamXY operons have accessory roles in the biomineralization of properly sized and shaped

crystals6,11, only the large mamAB operon encodes factors essential for iron transport, magnetosome

membrane (MM) biogenesis, and crystallization of magnetite particles, as well as their chain-like orga-

nization and intracellular positioning6,10,12.

However, it has been unknown whether this gene set is sufficient for autonomous expression of mag-

netosome biosynthesis. Using recombineering (recombinogenic engineering) based on phage-derived

Red-ET homologous recombination, we stitched together several modular expression cassettes com-

prising all 29 genes (26 kb in total) of the four operons in various combinations (Supplementary Fig.

3.1), but lacking the tubulin-like ftsZm. This gene was omitted from its native mamXY operon because

of its known interference with cell division during cloning. Regions 200-400 bp upstream of all operons

were retained to ensure transcription from native promoters13.

Transposable expression cassettes comprising the MycoMar (tps) or Tn5 transposase gene, two cor-

responding inverted repeats, the origin of transfer oriT, and an antibiotic resistance gene were utilized to

enable transfer and random chromosomal integration in single copy14,15 (Supplementary Tables 3.3 and

3.4). Chromosomal reintegration of all cassettes into different non-magnetic single-gene and operon

deletion strains of M. gryphiswaldense resulted in stable wild type-like restoration of magnetosome

biomineralization, indicating that transferred operons maintained functionality upon cloning and trans-

fer (Supplementary Fig. 3.2). We next attempted the transfer of expression cassettes to a foreign

non-magnetic host organism (Fig. 3.1).
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Figure 3.1: Schematic representation of molecular organization of gene cassettes inserted into the chromo-
some of R. rubrum in a stepwise manner. Broad arrows indicate the extensions and transcriptional
directions of individual genes. Different colours illustrate the cassettes inserted into the chromosome
(oval shape, not to scale) as indicated by their gene names in the figure. Shown in yellow are antibiotic
resistance genes (kmR, kanamycin resistance; tcR, tetracycline resistance; apR, ampicillin resistance;
gmR, gentamicin resistance). Thin red arrows indicate different promoters (P) driving transcription of
inserted genes (Pkm, Pgm, Ptc, promoters of antibiotic resistance cassettes; PlacI promoter, lac re-
pressor; Pmms, PmamDC, PmamH, PmamXY, native promoters of the respective gene clusters from M.
gryphiswaldense; Plac, lac promoter). Crossed lines indicate sites of gene deletions of mamI and mamJ
in strains R. rubrum_ABG6X_dI and R. rubrum_ABG6X_dJ, respectively. IR, inverted repeat defining
the boundaries of the sequence inserted by the transposase.
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We chose the photosynthetic alphaproteobacterium R. rubrum as a first model because of its biotech-

nological relevance and relatively close relationship to M. gryphiswaldense16−18 (16S rRNA similarity

to M. gryphiwaldense=90%). Although the mamAB operon alone has been shown to support some

rudimentary biomineralization in M. gryphiswaldense6, neither genomic insertion of the mamAB operon

alone (pTps_AB) nor in combination with the accessory mamGFDC genes (pTps_ABG) had any de-

tectable phenotypic effect (Supplementary Table 3.1). We also failed to detect a magnetic response

(Cmag) in the classical light scattering assay19 after insertion of pTps_ABG6 (mamAB+mamGFDC+mms6).

However, the cellular iron content of R. rubrum_ABG6 increased 2.4-fold compared with the untrans-

formed wild type (Supplementary Table 3.1). Transmission electron microscopy (TEM) revealed a loose

chain of small (~12 nm) irregularly shaped electron-dense particles (Fig. 3.2a,ii), identified as poorly

crystalline hematite (Fe2O3) by analysis of the lattice spacings in high-resolution TEM images (Supple-

mentary Fig. 3.3), much as in the hematite particles previously identified in M. gryphiswaldense mutants

affected in crystal formation11,20. To further enhance biomineralization, we next transferred pTps_XYZ,

an insertional plasmid harbouring mamX, Y and Z from the mamXY operon, into R. rubrum_ABG6

(Supplementary Fig. 3.1).

!!
!

"#$%&

002220
220

002

!!!

'(

)

#*'$%&

+!

!"#$%&$%'()*+,-(./0

1"#2$3456789:;
</=7/

,

!!! !!! !+ +

-$

.

!

!!

#*'$%&

#*'$%&

#*/$%&

Figure 3.2: Phenotypes of R. rubrum strains expressing different magnetosome gene clusters and auxil-
iary genes. a, TEM images: R. rubrum wild type (i), containing a larger phosphate inclusion (P) and
some small, non-crystalline, electron-dense particles; R. rubrum_ABG6 (ii); R. rubrum_ABG6X (iii); R.
rubrum_ABG6X_ftsZm (iv); R. rubrum_ABG6X_dJ (v); R. rubrum_ABG6X_feo (vi). Insets: Magnifica-
tions of non-crystalline electron-dense particles (i) or heterologously expressed nanocrystals (ii-vi). All
insets are of the same particles\crystals as in their respective main images, except for (v). For further
TEM micrographs see Supplementary Fig. 3.10. b, Unlike the untransformed R. rubrum wild type, cells
of R. rubrum_ABG6X accumulated as a visible red spot near the pole of a permanent magnet at the
edge of a culture flask. c, TEM micrograph of a mixed culture of the donor M. gryphiswaldense and the
recipient R. rubrum_ABG6X_feo, illustrating characteristic cell properties and magnetosome organiza-
tion. Insets: Magnifications of magnetosomes from M. gryphiswaldense and R. rubrum_ABG6X_feo. d,
High-resolution TEM lattice image of a twinned crystal from R. rubrum_ABG6X, with Fourier transforms
(i) and (ii) showing intensity maxima consistent with the structure of magnetite.
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The resulting strain ABG6X encompassed all 29 relevant genes of the magnetosome island except

ftsZm. Intriguingly, cells of ABG6X exhibited a significant magnetic response (Supplementary Table 3.1)

and were ’magnetotactic’, that is, within several hours accumulated as a visible pellet near a magnet

at the edge of a culture flask (Fig. 3.2b). TEM micrographs revealed the presence of electron dense

particles identified as magnetite (Fe3O4) (Fig. 3.2d, Supplementary Fig. 3.8 and Table 3.1), which were

aligned in short, fragmented chains loosely dispersed within the cell (Fig. 3.2a,iii). Despite their smaller

sizes (average, 24 nm) the particles strongly resembled the magnetosomes of the donor strain in terms

of their projected outlines and thickness contrast, suggestive of cubooctahedral or octahedral crystal

morphologies (Fig. 3.2d). Additional insertion of the ftsZm gene under control of the inducible lac pro-

moter had no effect on the cellular iron content and the number and size of magnetite crystals in the

resulting R. rubrum_ABG6X_ftsZm (Fig. 3.2a,iv, Supplementary Table 3.1).

Magnetite biomineralization occurred during microoxic chemotrophic as well anoxic photoheterotrophic

cultivation. Medium light intensity, 50 µM iron and 23 ◦C supported the highest magnetic response (Cmag)

and robust growth of the metabolically versatile R. rubrum_ABG6X, which was indistinguishable from the

untransformed wild type (Supplementary Figs 3.4 and 3.5). The magnetic phenotype remained stable

for at least 40 generations under non-selective conditions, with no obvious phenotypic changes. To test

whether known mutation phenotypes from M. gryphiswaldense could be replicated in R. rubrum, we con-

structed variants of expression cassettes in which single genes were omitted from the mamAB operon

by deletion within the cloning host Escherichia coli. The small (77 amino acids) MamI protein was previ-

ously implicated in MM vesicle formation and found to be essential for magnetosome synthesis12.

R. rubrum_ABG6X -dI failed to express magnetosome particles (Supplementary Fig. 3.10), which

phenocopied a mamI deletion in the related M. magneticum12. Another tested example was MamJ,

which is assumed to connect magnetosome particles to the cytoskeletal magnetosome filament formed

by the actin-like MamK21. Much as in M. gryphiswaldense, deletion of mamJ caused agglomeration of

magnetosome crystals in 65% of R. rubrum_ABG6X -dJ cells (Fig. 3.2a,v, Supplementary Fig. 3.10 and

Table 3.1). Together, these observations indicate that magnetosome biogenesis and assembly within

the foreign host are governed by very similar mechanisms and structures as in the donor, which are

conferred by the transferred genes. As magnetosomes in R. rubrum_ABG6X were still smaller than

those of M. gryphiswaldense, we wondered whether full expression of biomineralization may depend on

the presence of further auxiliary functions, possibly encoded outside the canonical magnetosome oper-

ons. For instance, deletion of feoB1 encoding a constituent of a ferrous iron transport system specific for

magnetotactic bacteria caused fewer and smaller magnetosomes in M. gryphiswaldense22. Strikingly,

insertion of feoAB1 into R. rubrum strain ABG6X resulted in even larger, single-crystalline and twinned

magnetosomes and longer chains (440 nm) (Fig. 3.2a,vi, Supplementary Table 3.1). The size (37 nm) of

the crystals approached that of the donor, and cellular iron content was substantially increased (0.28% of

dry weight) compared with R. rubrum_ABG6X (0.18%), although still lower than in M. gryphiswaldense

(3.5%), partly because of the considerably larger volume of R. rubrum cells (Fig. 3.2c).
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Figure 3.3: Ultrastructural analysis of R. rubrum_ABG6X and isolated crystals. a, Cryo-fixed, thin-sectioned
R. rubrum_ABG6X contained intracytoplasmic membranes (ICMs) (93±34 nm, n=95) and magnetic
particles (MP). Inset: Magnification of the magnetite crystals. b, Cryo-electron tomography of isolated
magnetic particles of R. rubrum_ABG6X : x-y slice of a reconstructed tomogram (i) and surface-rendered
three-dimensional representation (ii). A membrane-like structure (yellow, thickness 3.4±1.0 nm, n=6)
surrounds the magnetic particles (red). (Blue, empty vesicle.) c,d, TEM images of isolated magne-
tosomes from R. rubrum_ABG6X (c and d,ii, iii, iv) and M. gryphiswaldense (d,i) negatively stained
by uranyl acetate (c) or phosphotungstic acid (d). Insets: Higher-magnification images of magnetic
particles; these are of different particles to those shown in the main images, except for (iv). Scale
bars, 100 nm. Arrows indicate the magnetosome membrane, which encloses magnetic crystals of
M. gryphiswaldense (thickness 3.2±1.0 nm, n=103) and R. rubrum_ABG6X (thickness 3.6±1.2 nm,
n=100). Organic material could be solubilized from magnetite crystals of R. rubrum_ABG6X with SDS
(sodium dodecyl sulfate, iv) and less effectively also with Triton X-100 (iii).

Magnetosome particles could be purified from disrupted cells by magnetic separation and centrifu-

gation23. and formed stable suspensions (Fig. 3.3). Isolated crystals were clearly enclosed by a layer

of organic material resembling the MM attached to magnetosomes of M. gryphiswaldense. Smaller,

immature crystals were surrounded by partially empty vesicles (Fig. 3.3c, inset), which were also seen

in thin-sectioned cells (Supplementary Fig. 3.8) and on average were smaller (66+6 nm) than the abun-

dant photosynthetic intracytoplasmic membranes (ICMs) (93+34 nm; Fig. 3.3a, Supplementary Fig.

3.8). Organic material of the putative MM could be solubilized from isolated magnetite crystals of R.

rubrum_ABG6X by various detergents (Fig. 3.3d), in a similar manner to that reported for MM of M.

gryphiswaldense23. Proteomic analysis of the SDS-solubilized MM revealed a complex composition

(Supplementary Fig. 3.6), and several genuine magnetosome proteins (MamKCJAFDMBYOE, Mms6,

MmsF) were detected among the most abundant polypeptides (Supplementary Table 3.2). An antibody

against MamC, the most abundant protein in the MM of M. gryphiswaldense23, also recognized a promi-
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nent band with the expected mass (12.4 kDa) in the MM of R. rubrum_ABG6X (Supplementary Fig. 3.6).

The subcellular localization of selected magnetosome proteins in R. rubrum depended on the presence

of further determinants encoded by the transferred genes. For example, MamC tagged with a green

fluorescent protein, which is commonly used as magnetosome chain marker in M. gryphiswaldense24

displayed a punctuate pattern in the R. rubrum wild type background. In contrast, a filamentous fluo-

rescent signal became apparent in the majority of cells (79%) of the R. rubrum_ABG6X background, in

which the full complement of magnetosome genes is present (Supplementary Fig. 3.7), reminiscent of

the magnetosome-chain localization of these proteins in M. gryphiswaldense24.

Our findings demonstrate that one of the most complex prokaryotic structures can be functionally re-

constituted within a foreign, hitherto non-magnetic host by balanced expression of a multitude of struc-

tural and catalytic membrane-associated factors. This also provides the first experimental evidence that

the magnetotactic trait can be disseminated to different species by only a single event, or a few events,

of transfer, which are likely to occur also under natural conditions by horizontal gene transfer as spec-

ulated before18,25,26. The precise functions of many of the transferred genes have remained elusive

in native magnetotactic bacteria, but our results will now enable the dissection and engineering of the

entire pathway in genetically more amenable hosts. The approximately 30 transferred magnetosome

genes constitute an autonomous expression unit that is sufficient to transplant controlled synthesis of

magnetite nanocrystals and their self-assembly within a foreign organism.

However, further auxiliary functions encoded outside the mam and mms operons are necessary for

biomineralization of donor-like magnetosomes. Nevertheless, this minimal gene set is likely to shrink

further as a result of systematic reduction approaches in different hosts. Importantly, the results are

promising for the sustainable production of magnetic nanoparticles in biotechnologically relevant photo-

synthetic hosts. Previous attempts to magnetize both prokaryotic and eukaryotic cells by genetic and

metabolic means (for example, refs 27,28) resulted in only irregular and poorly crystalline iron deposits.

This prompted ideas to borrow genetic parts of the bacterial magnetosome pathway for the synthesis of

magnetic nanoparticles within cells of other organisms4,29. Our results now set the stage for synthetic

biology approaches to genetically endow both uni- and multicellular organisms with magnetization by

biomineralization of tailored magnetic nanostructures. This might be exploited for instance in nanomag-

netic actuators or in situ heat generators in the emerging field of magnetogenetics30, or for endogenous

expression of magnetic reporters for bioimaging31.
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Methods

Bacterial strains, media and cultivation.

The bacterial strains are described in Supplementary Table 3.4. E. coli strains were cultivated as pre-

viously described32. A volume of 1 mM DL-a,e-diaminopimelic acid was added for the growth of aux-

otrophic strains BW29427 and WM3064. M. gryphiswaldense strains were cultivated in flask standard

medium (FSM), in liquid or on plates solidified by 1.5% agar, and incubated at 30 ◦C under microoxic

(1% O2) conditions33. Cultures of R. rubrum strains were grown as specified (Supplementary Fig. 3.3).

Construction of magnetosome gene cluster plasmids and conjugative transfer.

The oligonucleotides and plasmids used in this study are listed in Supplementary Tables 3.4 and 3.5.

Red-ET (Lambda red and RecET) recombination was performed as described previously14. Briefly, a

cloning cassette was amplified by polymerase chain reaction (PCR) and transferred into electrocompe-

tent E. coli cells (DH10b) expressing phage-derived recombinases from a circular plasmid (pSC101-

BADgbaA). After transfer of the cassette, recombination occurred between homologous regions on the

linear fragment and the plasmid. To stitch the magnetosome gene clusters together into a transposon

plasmid (Supplementary Fig. 3.1) we used triple recombination14 and co-transformed two linear frag-

ments, which recombined with a circular plasmid. Recombinants harbouring the correct plasmids were

selected by restriction analysis32. Conjugations into M. gryphiswaldense were performed as described

before33. For conjugation of R. rubrum, cultures were incubated in ATCC medium 112. Approximately

2x109 cells were mixed with 1x109 E. coli cells, spotted on American Type Culture Collection (ATCC)

112 agar medium and incubated for 15 h. Cells were flushed from the plates and incubated on ATCC

112 agar medium supplemented with appropriate antibiotics for 7-10 days (Tc=10 mg ml−1; Km=20 mg

ml−1; Gm=10 mg ml−1, where Tc, tetracycline; Km, kanamycin; Gm, gentamicin). Sequential transfer of

the plasmids resulted in 1x10−6 to 1x10−8 antibiotic-resistant insertants per recipient, respectively. Two

clones from each conjugation experiments were chosen for further analyses. Characterized insertants

were indistinguishable from wild type with respect to motility, cell morphology or growth (Supplementary

Fig. 3.5).

Analytical methods.

The optical density of M. gryphiswaldense cultures was measured turbidimetrically at 565 nm as de-

scribed previously19. The optical density of R. rubrum cultures was measured at 660 nm and 880 nm.

The ratio of 880/660 nm was used to determine yields of chromatophores within intact cells (Supplemen-

tary Fig. 3.4). Furthermore, bacteriochlorophyll a was extracted from cultures with methanol. Absorption

spectra (measured in an Ultrospec 3000 photometer, GE Healthcare) of photoheterotrophically cultivated

R. rubrum_ABG6X cells were indistinguishable from that of the wild type (Supplementary Fig. 3.4).
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The average magnetic orientation of cell suspensions (Cmag) was assayed with a light scattering assay

as described previously19. Briefly, cells were aligned at different angles to a light beam by application of

an external magnetic field.

Microscopy.

For TEM of whole cells and isolated magnetosomes, specimens were directly deposited onto carbon-

coated copper grids. Magnetosomes were stained with 1% phosphotungstic acid or 2% uranyl acetate.

Samples were viewed and recorded with a Morgagni 268 microscope. Sizes of crystals and vesicles

were measured with ImageJ software. Chemical fixation, high-pressure freezing and thin sectioning

of cells were performed as described previously17. Processed samples were viewed with an EM 912

electron microscope (Zeiss) equipped with an integrated OMEGA energy filter operated at 80 kV in

the zero loss mode. Vesicle sizes were measured with ImageJ software. High-resolution TEM was

performed with a JEOL 3010 microscope, operated at 297 kV and equipped with a Gatan Imaging Filter

for the acquisition of energy-filtered compositional maps. For TEM data processing and interpretation,

DigitalMicrograph and SingleCrystal software were used20. Cryo-electron tomography was performed

as described previously21. Fluorescence microscopy was performed with an Olympus IX81 microscope

equipped with a Hamamatsu Orca AG camera using exposure times of 0.12-0.25 s. Image rescaling

and cropping were performed with Photoshop 9.0 software.

Acknowledgements

This work was supported by the Human Frontier Science Foundation (grant RGP0052\2012), the Deutsche

Forschungsgemeinschaft (grants SCHU 1080\12-1 and 15-1) and the European Union (Bio2MaN4MRI).

The authors thank F. Kiemer for expert help with iron measurements and cultivation experiments.

Competing financial interests

I.K. and D.S. (LMU Munich) have filed a patent application on the process described in this work (Pro-

duction of magnetic nanoparticles in recombinant host cells, EP13193478).

Additional information

Supplementary information is available in the online version of the paper. Reprints and permissions

information is available online at www.nature.com\reprints. Correspondence and requests for materials

should be addressed to Y.Z. and D.S.

55



3 Chapter III

References

1. Prozorov, T., Bazylinski, D. A., Mallapragada, S. K. & Prozorov, R. Novel magnetic nanoma-

terials inspired by magnetotactic bacteria: topical review. Mater. Sci. Eng. R 74, 133-172

(2013).

2. Baumgartner, J., Bertinetti, L., Widdrat, M., Hirt, A. M. & Faivre, D. Formation of magnetite

nanoparticles at low temperature: from superparamagnetic to stable single domain particles.

PLoS ONE 8, e57070 (2013).

3. Bazylinski, D. A. & Frankel, R. B. Magnetosome formation in prokaryotes. Nature Rev. Micro-

biol. 2, 217-230 (2004).

4. Goldhawk, D. E., Rohani, R., Sengupta, A., Gelman, N. & Prato, F. S. Using the magnetosome

to model effective gene-based contrast for magnetic resonance imaging. Wiley Interdiscip.

Rev. Nanomed. Nanobiotechnol. 4, 378-388 (2012).

5. Murat, D. Magnetosomes: how do they stay in shape? J. Mol. Microbiol. Biotechnol. 23,

81-94 (2013).

6. Lohße, A. et al. Functional analysis of the magnetosome island in Magnetospirillum

gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. PLoS ONE

6, e25561 (2011).

7. Pollithy, A. et al. Magnetosome expression of functional camelid antibody fragments

(nanobodies) in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 77, 6165-6171

(2011).

8. Staniland, S. et al. Controlled cobalt doping of magnetosomes in vivo. Nature Nanotech. 3,

158-162 (2008).

9. Jogler, C. & Schüler, D. Genomics, genetics, and cell biology of magnetosome formation.

Annu. Rev. Microbiol. 63, 501-521 (2009).

10. Ullrich, S., Kube, M., Schübbe, S., Reinhardt, R. & Schüler, D. A hypervariable 130-kilobase

genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island

which undergoes frequent rearrangements during stationary growth. J. Bacteriol. 187, 7176-

7184 (2005).

11. Raschdorf, O., Müller, F. D., Pósfai, M., Plitzko, J. M. & Schüler, D. The magnetosome pro-

teins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in

Magnetospirillum gryphiswaldense. Mol. Microbiol. 89, 872-886 (2013).

12. Murat, D., Quinlan, A., Vali, H. & Komeili, A. Comprehensive genetic dissection of the mag-

netosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc. Natl

Acad. Sci. USA 107, 5593-5598 (2010).

13. Schübbe, S. et al. Transcriptional organization and regulation of magnetosome operons in

Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 72, 5757-5765 (2006).

56



3 Chapter III

14. Fu, J. et al. Efficient transfer of two large secondary metabolite pathway gene clusters into

heterologous hosts by transposition. Nucleic Acids Res. 36, e113 (2008).

15. Martinez-Garcia, E., Calles, B., Arevalo-Rodriguez, M. & de Lorenzo, V. pBAM1: an all-

synthetic genetic tool for analysis and construction of complex bacterial phenotypes. BMC

Microbiol. 11, 38 (2011).

16. Richter, M. et al. Comparative genome analysis of four magnetotactic bacteria reveals a com-

plex set of group-specific genes implicated in magnetosome biomineralization and function.

J. Bacteriol. 189, 4899-4910 (2007).

17. Jogler, C. et al. Conservation of proteobacterial magnetosome genes and structures in an

uncultivated member of the deep-branching Nitrospira phylum. Proc. Natl Acad. Sci. USA

108, 1134-1139 (2011).

18. Lefèvre, C. T. et al. Monophyletic origin of magnetotaxis and the first magnetosomes. Environ.

Microbiol. 15, 2267-2274 (2013).

19. Schüler, D. R., Uhl, R. & Bäuerlein, E. A simple light scattering method to assay magnetism

in Magnetospirillum gryphiswaldense. FEMS Microbiol. Ecol. 132, 139-145 (1995).

20. Uebe, R. et al. The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum

gryphiswaldense have distinct and complex functions, and are involved in magnetite biomin-

eralization and magnetosome membrane assembly. Mol. Microbiol. 82, 818-835 (2011).

21. Scheffel, A. et al. An acidic protein aligns magnetosomes along a filamentous structure in

magnetotactic bacteria. Nature 440, 110-114 (2006).

22. Rong, C. et al. Ferrous iron transport protein B gene (feoB1) plays an accessory role in

magnetosome formation in Magnetospirillum gryphiswaldense strain MSR-1. Res. Microbiol.

159, 530-536 (2008).

23. Grünberg, K. et al. Biochemical and proteomic analysis of the magnetosome membrane in

Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 70, 1040-1050 (2004).

24. Lang, C. & Schüler, D. Expression of green fluorescent protein fused to magnetosome pro-

teins in microaerophilic magnetotactic bacteria. Appl. Environ. Microbiol. 74, 4944-4953

(2008).

25. Jogler, C. et al. Comparative analysis of magnetosome gene clusters in magnetotactic bacte-

ria provides further evidence for horizontal gene transfer. Environ. Microbiol. 11, 1267-1277

(2009).

26. Jogler, C. et al. Toward cloning of the magnetotactic metagenome: identification of mag-

netosome island gene clusters in uncultivated magnetotactic bacteria from different aquatic

sediments. Appl. Environ. Microbiol. 75, 3972-3979 (2009).

27. Nishida, K. & Silver, P. A. Induction of biogenic magnetization and redox control by a com-

ponent of the target of rapamycin complex 1 signaling pathway. PLoS Biol. 10, e1001269

(2012).

57



3 Chapter III

28. Kim, T., Moore, D. & Fussenegger, M. Genetically programmed superparamagnetic behavior

of mammalian cells. J. Biotechnol. 162, 237-245 (2012).

29. Murat, D. et al. The magnetosome membrane protein, MmsF, is a major regulator of mag-

netite biomineralization in Magnetospirillum magneticum AMB-1. Mol. Microbiol. 85, 684-699

(2012).

30. Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M. & Pralle, A. Remote control of ion channels

and neurons through magnetic-field heating of nanoparticles. Nature Nanotech. 5, 602-606

(2010).

31. Westmeyer, G. G. & Jasanoff, A. Genetically controlled MRI contrast mechanisms and their

prospects in systems neuroscience research. Magn. Reson. Imaging 25, 1004-1010 (2007).

32. Sambrook, J. & Russell, D. Molecular Cloning: A Laboratory Manual Vol. 3 (Cold Spring

Harbor Laboratory Press, 2001).

33. Kolinko, I., Jogler, C., Katzmann, E. & Schüler, D. Frequent mutations within the genomic

magnetosome island of Magnetospirillum gryphiswaldense are mediated by RecA. J. Bacte-

riol. 193, 5328-5334 (2011).

58



4 Chapter IV

3rd Publication

Genetic dissection of the mamAB and mms6 operons reveals
a gene set essential for magnetosome biogenesis
in Magnetospirillum gryphiswaldense.

Publication state: Published ahead of print 9 May 2014 in Journal of Bacteriology.

Abstract

Biosynthesis of bacterial magnetosomes, which are intracellular membrane-enclosed, nano-sized mag-

netic crystals, is controlled by a set of >30 specific genes. In Magnetospirillum gryphiswaldense these

are clustered mostly within a large conserved genomic magnetosome island (MAI) comprising the mms6,

mamGFDC, mamAB and mamXY operons. Here, we demonstrate that the five previously uncharacter-

ized genes of the mms6 operon have crucial functions in the regulation of magnetosome biomineraliza-

tion that partially overlap with MamF and other proteins encoded by the adjacent mamGFDC operon.

While all other deletions resulted in size reduction, elimination of either mms36 or mms48 caused the

synthesis of magnetite crystals larger than those in the WT. Whereas the mms6 operon encodes acces-

sory factors for crystal maturation, the large mamAB operon contains several essential and non-essential

genes involved in various other steps of magnetosome biosynthesis, as shown by single deletions of all

mamAB genes. While single deletions of mamL, P, Q, R, B, S, T and mamU showed phenotypes sim-

ilar to those of their orthologs in a previous study in the related M. magneticum, we found mamI and

mamN to be not required for at least rudimentary iron biomineralization in M. gryphiswaldense. Thus,

only mamE, L, M, O, Q, and mamB were essential for formation of magnetite, whereas a mamI mutant

still biomineralized tiny particles which, however, consisted of the non-magnetic iron oxide hematite as

shown by HRTEM and XANES. Based on this and previous studies we propose an extended model for

magnetosome biosynthesis in MSR.

Introduction

Magnetotactic bacteria (MTB) orient along the Earth magnetic field lines to navigate to their growth-

favoring microoxic habitats within stratified aquatic sediments (1). This behavior is enabled by the syn-

thesis of ferrimagnetic intracellular organelles termed magnetosomes (2). In the α-proteobacterium
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Magnetospirillum gryphiswaldense (in the following referred to as MSR) and related MTB, magneto-

somes consist of crystals of the magnetic iron oxide magnetite (Fe3O4) enclosed by the magnetosome

membrane (MM) that contains a specific set of about 30 proteins (3, 4). The biosynthesis of magneto-

somes is a complex process that comprises the (i) invagination of vesicles from the inner membrane (5,

6), (ii) sorting of magnetosome proteins to the MM (7), (iii) iron transport and crystallization of magnetite

crystals (8), (iv) crystal maturation (7) and (v) assembly as well as positioning of mature crystals into a

linear chain along a filamentous cytoskeletal structure (6, 9).

Each step is under strict genetic control and responsible genes were found to be located mostly within

a genomic magnetosome island (MAI) (10, 11), comprising the mms6 (in the following referred to as

mms6op), mamGFDC (mamGFDCop), mamAB (mamABop), and mamXY (mamXYop) operons (10-

12). These operons were found to be highly conserved also in the closely related M. magneticum (in the

following referred to as AMB) (13-17). It has been shown that the regions between and flanking the iden-

tified magnetosome operons have no functional relevance for magnetosome biosynthesis in MSR and

AMB (7, 18). In MSR the mms6, mamGFDC, mamAB and mamXY operons are transcribed as single

polycistronic messengers under control of the Pmms6, PmamDC, PmamH, and PmamXY promoters, respec-

tively (19, 20). A deletion mutant of mamGFDCop encoding the most abundant magnetosome proteins

retained the ability to form magnetic, although smaller and less regular magnetosomes, while plasmidal

overexpression of the entire mamGFDCop yielded magnetite particles even larger than those produced

by the WT (21). Elimination of the corresponding region R3 in AMB, comprising in addition parts of

mms6op, caused a severe biomineralization defect, resulting in cells with reduced magnetosome sizes

and numbers (7). Deletion of the entire mamXYop resulted in smaller and misshaped magnetosome

particles in MSR (18), whereas no obvious phenotype was observed for ∆mamXYop in AMB (7).

The mms6op of MSR comprises the genes mgr4074, mms6, mmsF, mgr4071 (in the following re-

named into mms36) and mgr4070 (renamed into mms48; Fig. S4.1), which was previously predicted to

encode a TPR-like protein (18). A mutant, in which the entire mms6op was deleted (∆A10), was also

severely impaired in the biomineralization of magnetite crystals, which exhibited defects in crystal mor-

phology, size and organization. However, the individual functions of mgr4074, mms6, mmsF, mms36

and mms48 as well as their contribution to the strong phenotype of ∆mms6op have remained unknown.

In AMB, the mms6 cluster was described to comprise only amb0955 (mgr4074), amb0956 (mms6),

amb0967 (mmsF ), but to lack homologs of mms48 and mms36 (22). Single gene deletions of mms6

in AMB by different groups revealed inconsistent phenotypes. Whereas Tanaka et al. (23), reported

an important regulatory function of Mms6 for magnetosome morphology, Murat et al. observed only

minor effects on magnetosome biosynthesis after deletion of mms6 in vivo (22, 24). In vitro, the small

(12.76 kDa in MSR and 14.69 in AMB) Mms6 protein was shown to be tightly bound to isolated bacterial

magnetite crystals as visualized by atomic force microscopy and TEM (25, 26). In vitro crystallization

experiments suggested that Mms6 and peptides mimicking it have iron-binding activity and affected the

formation of cubo-octahedral crystal morphologies (27, 28). In contrast to the smaller accessory oper-
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ons, mamABop was found to contain genes absolutely essential for magnetosome biosynthesis in MSR

and AMB (18, 22). Whereas mamABop was found to be sufficient to support at least some rudimentary

biomineralization of small magnetite crystals even in the absence of all other magnetosme operons in

both strains (18, 22), the mamXY, mamGFDC, mms6, and mamAB operons were required altogether

for magnetite biomineralization upon their transfer into the foreign host Rhodospirillum rubrum (29).

A recent comprehensive genetic dissection of mamABop in AMB revealed that mamH, P, R, S, and

mamT encode accessory functions for magnetosome synthesis, since mutants display various biomin-

eralization defects, whereas mamU and mamV had no obvious magnetosome phenotype (7). As in

MSR (see below), mamK and mamJ were implicated in magnetosome chain assembly, but their loss

did not affect biomineralization (30, 31). However, gene deletions of mamI, E, L, M, N, O, and mamQ

as well as mamB (co-deleted with their respective orthologs) fully abolished magnetosome synthesis

in AMB (7, 32). Whereas MamI, L, Q and MamB were suggested to be essential for vesicle genesis,

MamE, O, M, and MamN were classified to be mainly required only for magnetite crystallization (7). The

discovery of a small ’magnetosome islet’ in the genome of AMB with further copies of mamE, J, K, L, M,

F as well as mamD suggested genetic redundancy that has to be clarified with respect to determination

of the minimal essential gene set (33). In MSR the 16.4 kb mamABop contains 17 genes (mamH, I, E,

J, K, L, M, N, O, P, A, Q, R, B, S, T and mamU) (Fig. 4.3).

Only a few genes of mamABop so far were analyzed individually in this organism. The actin-like

protein MamK forms a filamentous structure for magnetosome assembly and interacts with the acidic

protein MamJ that is involved in connecting magnetosomes to the filament. Both proteins, however, have

no or only minor effects on biomineralization (9, 34). Deletion of mamH caused a moderate decrease of

magnetosome number and size, whereas co-deletion of mamH and its partial homologue mamZ had a

considerably stronger effect with only very few or no regular crystals detectable in the cells (20). Dele-

tion of mamE, O, M and mamB resulted in either a total inhibition of crystal nucleation or prevented MM

vesicle synthesis (18, 35, 36). However, mamI, L, N, P, A, Q, R, S, T, and mamU were not yet analyzed

individually by mutagenesis, and it has remained unknown whether they have functions similar or distinct

from those of their corresponding orthologs in AMB. Finally, it is not clear, which genes constitute the

minimal set of essential determinants for magnetosome biomineralization in MSR.

Here, we analyzed the functional relevance of proteins encoded by mms6op and mamABop for the

biosynthesis of magnetic minerals in MSR. We demonstrate that besides Mms6 and MmsF, mms6op of

MSR encodes two further important regulators (Mms36 and Mms48) for magnetosome biomineraliza-

tion. Whereas deletions of mamA, R, S, T, and mamU resulted in similar phenotypes as those observed

for deletion of homologous genes in AMB, we show that other than in AMB, ∆mamN and ∆mamI still

synthesize particles in MSR, thus further shrinking the minimal gene set for iron biomineralization to

mamE, L, M, O, Q and mamB. Finally, we propose an extended model for magnetosome biosynthesis.
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Material and Methods

Bacterial strains, plasmids, and culture conditions

Bacterial strains and plasmids used in this study are listed in Table S4.1. WT and mutant strains of MSR

were grown in liquid modified flask standard medium (FSM) at 30 ◦C under microaerobic conditions

if not otherwise specified (37, 38). Therefore, cells were cultivated in flasks, closed with butyl-rubber

stoppers after incubation with a gas mixture of 2% O2 and 98% N2 or in purged jars. For anaerobic

requirements, O2 was excluded from the gas mixture, while aerobic conditions were generated through

free gas exchange with air. Escherichia coli strains were cultivated as previously described (39) and

lysogeny broth medium was supplemented with 1 mM DL-α, ε-diaminopimelic acid (DAP) for cultivation

of E. coli strain BW29427 as well as WM3064. For selection of antibiotic resistant cells, media were

supplemented with 25 g/ml kanamycin (Km), 12 g/ml tetracycline (Tet), and 15 g/ml gentamicin (Gm) for

E. coli strains, and 5 g/ml Km, 5 g/ml Tet, and 20 g/ml Gm for MSR strains, respectively.

Molecular and genetic techniques

Oligonucleotide sequences (Table S4.2) were deduced from the working draft genome sequence of

MSR (GenBank accession number No. CU459003) and purchased from Sigma-Aldrich (Steinheim,

Germany). Genetic fragments were amplified by standard polymerase chain reaction (PCR) procedures

with Phusion polymerase (NEB GmbH, Frankfurt am Main, Germany) and generated plasmids were

sequenced with an ABI 3700 capillary sequencer (Applied Biosystems, Darmstadt, Germany), utiliz-

ing BigDye Terminator v3.1. Data were analyzed with Software Vector NTI Advance 11.5 (Invitrogen,

Darmstadt, Germany) or MacVector 7.2.3 (Oxford Molecular, Oxford, UK).

Generation of unmarked deletion mutants

Markerless single gene deletions within the mamAB, mms6, and mamGFDC operon were partially re-

alized with the pORFM_galK plasmid. The vector was digested with BamHI and KpnI to insert the

approximately 1 kb downstream and upstream fragments of mamI, L, N, P, Q, R, S, T, U, mms36,

mms48, and mmsF_mms6. For integration of homologous regions of mamA and mamL the plasmid

was digested with BamHI/NotI and Nsi/SpeI, respectivaly. Oligonucleotides, used to amplify the 5’ and 3’

flanking sequence from MSR by PCR are listed in Table S4.3. Both fragments were linked by an overlap

PCR with the first and last listed corresponding oligonucleotide, subcloned into pJet1.2/blunt, sequenced

and ligated into the digested pORFM_galK vectors. Generated plasmids were termed: pAL_ ∆mamI,

pOR∆mamL, pAL_ ∆mamN, pAL_ ∆mamP, pAL_ ∆mamA, pAL_ ∆mamQ, pAL_ ∆mamR, pAL_ ∆mamS,

pAL_ ∆mamT, pAL_ ∆mamU, pAL_ ∆mms36, pAL_ ∆mms48, and pAL_ ∆mmsF ∆mms6. Deletion of

mms6, mmsF, mamF and double deletion of mmsF ∆mamF was accomplished by double cross over

method. Oligonucleotides for amplification of flanking sections are listed in Table S4.3.
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Regions were cloned into pJet1.2/blunt and sequenced. Plasmid pCM184 was digested with ApaI/SacI

and 3’ end regions were inserted for deletion of mms6, mmsF and mamF. Generated plasmids were

digested with EcoRI/NdeI and 5’ flanking sequence was inserted, resulting in pCM184_mms6 3’5’,

pCM184_mmsF 3’5’ and pCM184_mamF 3’5’. The generated plasmids were examined by restriction

analysis with a set of different enzymes or PCR and transferred into MSR WT by conjugation using E. coli

BW29427 as donor strain as described elsewhere (18). Genomic insertion mutants were selected on

Km plates, cultivated in 100 µ l FSM medium over night at 30 ◦C and scaled up to 1 ml. Proper plasmid

integration was verified by PCR and if necessary counter selection was implemented. Positive excision

strains were verified by PCR and mutants were termed as: ∆mamI, ∆mamL, ∆mamN, ∆mamP, ∆mamA,

∆mamQ, ∆mamR, ∆mamS, ∆mamT, ∆mamU, ∆mms48, ∆mms36, and ∆mmsF ∆mms6. Mutants gen-

erated by double cross over were cultivated in 10 ml MSR medium and excision of the Km resistance

gene was induced after conjugation with the Cre expression plasmid pCM157. Generated strains were

termed: ∆mmsF and ∆mms6. For double deletion of mmsF and mamF, the plasmid pCM184_mamF

3’5’ was introduced into ∆mmsF, and deletion was verified as described above, resulting in strain ∆mmsF

∆mamF.

Complementation of generated mutants and GFP localization

For MamC-GFP localization experiments the plasmid pFM323 was integrated into the genome of ∆mamI,

∆mamL, ∆mamN, ∆mamP, ∆mamA, ∆mamQ, ∆mamR, ∆mamS, and ∆mamT. For construction of pAL_

mamIg, mamI was amplified with oligonucleotides AL394/AL395 and inserted into pCL6 after digestion

with NdeI/EcoRI. Plasmids for complementation of the other mutant strains were derivatives of pBAM1

and labeled pBAM_mamL, P, S, T, R, A, N, mms48, mms36, and mgr4074 respectively. Oligonucleo-

tides for amplification of the genes are listed in Table S4.3. Genes were cloned between the NdeI/EcoRI

or NdeI/PacI sites (for mamN) of pBAM_GFDC under control of the PmamDC promoter. Plasmids pBam_

mms36 and pBam_mms48 were also used for overexpression studies in WT. For complementation of

∆mmsF, ∆mms6, ∆mmsF ∆mamF, ∆mmsF ∆mms6, or ∆A10, corresponding genes were amplified with

oligonucleotides listed in Table S4.3. Genes were inserted into pAP150 after digestion with BamHI/NdeI,

resulting in pAL_mmsF, pAL_mms6, pAL_PmamDC_mms6op, and pAL_PmamDC_mms6,F,4074. The plas-

mid pBBRMCS2 was digested with NsiI/EcoRI for integration of genes mms6, mmsF and mgr4074

after amplification with AL125/AL136, generating pAL_Pmms6_mms6,F,4074. For transcomplementation as-

says, the plasmids were transferred to the respective deletion mutant by conjugation. ∆mmsF_mms6

and ∆mmsF_mamF were complemented with pAL_mms6 and pAL_mmsF, respectively. Plasmids

pBam_mgr4074; pAL_ PmamDC_mms6op; pAL_Pmms6_mms6,F,4074; pAL_PmamDC_mms6,F,4074 were used for

complementation studies in ∆A10.

63



4 Chapter IV

Analytic methods

Optical density and magnetic response (Cmag) were analyzed photometrically at 565 nm (40). The

applied magnetic field for Cmag measurements was about 70 mT, which is able to magnetize very small

or irregular magnetosomes within the superparamagnetic state. Intracellular iron concentrations were

measured after incubation under anaerobic conditions as described (41).

Phase Contrast and Fluorescence Microscopy

MSR strains with genomic textitegfp were grown in 5 ml FSM in six-well plates for 16 h at 30 ◦C and 2%

O2 without agitation. Cells were immobilized on agarose pads (FSM salts in H2O, supplemented with

1% agarose), and imaged with an Olympus BX81 microscope equipped with a 100 UPLSAPO100XO

objective (numerical aperture of 1.40) and a Hamamatsu Orca AG camera. The Olympus cell software

was used to capture and analyze images.

TEM and HRTEM

Magnetosome phenotypes of cells with respect to size, shape and number per cell were examined by

transmission electron microscopy (42), for which cells were concentrated and adsorbed onto carbon-

coated copper grids. Cells were imaged with a FEI Morgagni 268 (FEI, Eindhoven, Netherlands) elec-

tron microscope at an accelerating voltage of 80 kV. Bright-field TEM images and selected-area electron

diffraction (SAED) patterns were recorded on image plates, using a Philips CM20 microscope operated

at 200 kV and fitted with a Noran Voyager energy-dispersive X-ray detector. High-resolution transmis-

sion electron microscopy (HRTEM) was performed using a JEOL 3010 microscope, operated at 297

kV and equipped with a Gatan Imaging Filter (GIF) for the acquisition of electron energy-loss spec-

tra and energy-filtered compositional maps. For TEM data processing and interpretation the softwares

DigitalMicrograph and SingleCrystal were used.

X-ray Absorption Spectroscopy

Bacterial cultures (90-135 mL) were pelleted by centrifugation (5 min at 9,000 x g, 4 ◦C) and washed

3x by resuspension with 5 mL TBS (pH 7.6) and centrifugation. Pellets were then resuspended in 100

µL TBS + 25 µL glycerol and frozen in liquid nitrogen on sample holders with Kapton film support.

Samples were shipped to the European Synchrotron Radiation Facility (ESRF) on dry ice, where they

were stored at -80 ◦C until measurement. Fe K-edge X-ray absorption near edge structure (XANES)

spectra were recorded at the undulator beamline ID26 of the ESRF. We used a Si (311) double-crystal

monochromator and focusing mirrors giving a beam spot size of ~200x400 µm2 on the samples. Data

were recorded in fluorescence detection mode using a Rowland-type spectrometer equipped with 4 Ge

(440) analyzer crystals and a Si-photodiode. During all measurements, samples were cooled to around

64



4 Chapter IV

10 K using a liquid He cryostat. XANES spectra were recorded with 0.1 eV step from 7100 to 7200

eV. To improve data quality, 10 to 100 XANES scans were recorded for each sample. Samples were

moved of few hundreds of microns between each scan in order to minimize radiation damage. Data

were averaged using PyMca 4.6.2 after evaluation for iron photo-reduction. Averaged spectra were

normalized and fitted using Demeter 0.9.16. As reference materials we used spinach ferredoxin (Sigma

Aldrich), hematite (20-60 nm grain size, Alfa Aesar), magnetite, ferrihydrite and phosphate-enriched

ferric oxyhydroxides (described earlier in (43)).

Results

Deletion mutagenesis of the mms6 operon and mamF

After reassessment of annotation and correction of the MmsF N-terminus (Figure S4.1), we generated

various unmarked in frame single and double deletions of all mms6op genes as well as of mamF (lo-

calized in the adjacent mamGFDCop), which is highly similar (61% aa identity) to mmsF (see Table 1

and Figure 1 for overview over deletions and resulting phenotypes). We found the hypothetical mgr4074

to be poorly conserved, and its chromosomal reintegration into ∆mms6op (∆A10) (18) did not alleviate

the severe biomineralization defects of the parent strain. We therefore consider mgr4074 a pseudogene

with no role in biomineralization, although further studies are needed to address the expression and

putative localization of its gene product.

Strain ∆mms6 had slightly smaller crystals (30 nm; Wild-type (WT): 36 nm) that were scattered

throughout the cell, either aligned in irregularly spaced ”pseudo-chains” (i. e., with <10 crystals per

chain) or approximating WT-like chain configurations (Table 4.1; Figure 4.1). Crystals between 30 and

35 nm were predominant (WT: 40-45 nm), but particles larger than 60 nm were absent (WT: <70 nm;

Figure S2). The average crystal number per cell was reduced to 30 (WT: 34 particles per cell), and the

magnetic response of a ∆mms6 culture was slightly weaker than that of the WT (Cmag(mms6): 1.7±0.1;

Cmag(WT ): 2.0±0.1; Table 4.1). Cmag of ∆mmsF cells was similar to those of ∆mms6. Magnetosomes

displayed variable intracellular arrangements, such as one or more short chains, partially scattered

crystals, or lacking any chain-like alignment (Figure 4.1). Mean crystal sizes were reduced to <30 nm,

whereas the particle number was only slightly lower than in the WT (Table 4.1; Figure S4.2). Since the

high similarity of 61% between MmsF and MamF suggested possible functional redundancy, mamF was

eliminated both alone and in combination with mmsF. In ∆mamF, MamC encoded downstream of mamF

in the same operon was found to be properly expressed by immunodetection, indicating that deletion of

mamF had no polar effect (data not shown). Mean crystal size (34 nm) and number (34 per cell) were

similar in ∆mamF to WT.

However, the combined excision of both genes within ∆mmsF ∆mamF resulted in a more drastic

decrease in size (25 nm) and number (27 crystals per cell, Figure 4.1; Table 4.1; Figure S4.2).
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Thus, loss of MmsF had a more pronounced effect on crystal size, number and alignment than MamF,

and the additive effect of their combined deletion suggested that both proteins are involved in size con-

trol. Double deletion of mmsF and mms6 reduced size to 24 nm and number to 24 crystals per cell

(Table 4.1). However, iron content, size and numbers of magnetite particles as well as Cmag (1.6±0.1)

of ∆mmsF ∆mms6 were still higher than in the operon deletant ∆A10 (Cmag : 1.0±0.1), with particles of

20-25 nm prevailing in both strains (Figure 4.1; Table 4.1; Figure S4.2).

mamGFDC operon (2.1 kb) mms6 operon (3.6 kb) 

mms48 (mgr4070) mms36 (mgr4071) mmsF mms6 4074 G mamF mamC mamD 

WT! !mms6 operon! !mms48!

!mms6!!mms36! !mmsF!

!mmsF_mamF!!mmsF_mms6!!mamF!

0.5 kb 

Figure 4.1: Molecular organization of the mms6 and mamGFDC operons in MSR and TEM micrographs of
generated deletion mutants. Scale bar: 1 µm. Dark blue bars: Indicate extent of gene deletions
generated in this study. Light blue bars: Gene deletion mutants generated by (18, 21).

HRTEM images of particles from ∆A12, in which the entire mms6op and mamGFDCop were deleted

together (18), revealed fringes spacing corresponding to magnetite. This indicates that the deleted

genes alone do not have a critical role in magnetite formation (Figure 4.2). In contrast to the strong size

reduction observed in all other mutant strains, deletions of mgr4070 and mgr4071 (renamed into mms48

und mms36 according to their predicted protein masses of 48 and 36 kDa, respectively) unexpectedly

caused a substantial increase in mean crystal size. Particles synthesized by both strains resembled

WT crystals in shape, but were significantly larger in ∆mms36 (39 nm) and ∆mms48 (46 nm; Figure 1;

Table 4.1; Figure S4.2). This is equivalent to a mean size increase of about 30% compared to WT for

the latter strain, in which crystals between 50 and 60 nm were most abundant, with a maximum size of

up to 85 nm (Figure S4.2). However, both strains synthesized fewer particles than the WT (∆mms36:

22; ∆mms48: 16 per cell), and whereas in WT magnetosome chains of larger particles at midchain are

usually flanked by numerous smaller crystals, those characteristic small crystals (15-25 nm) were less
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frequent at the chain ends in ∆mms36 and ∆mms48 (Figure 4.1; Table 4.1; Figure S4.2). Thus, the

predominance of larger (>30 nm) particles partly accounted for the substantially increased mean crystal

size. However, despite the reduced particle numbers per cell, overall magnetite biomineralization was

increased as evident by the increased iron content of both deletion strains (21% more iron compared to

WT).

Genomic expression of additional copies of mms48 and mms36 did not significantly change mean

particle size (WT::mms36: 35 nm; WT::mms48: 33 nm; Table 4.1) but the size distribution was shifted to-

wards smaller crystals for both strains. Crystals between 30 and 45 nm were predominant in WT::mms36

and WT::mms48, whereas particles larger than 60 nm were not observed, unlike WT crystals that were

most frequently between 40 and 45 nm with a maximum size up to 70 nm (data not shown). Whereas

particle number was WT-like for overexpression of Mms36 (32 per cell), crystal number was increased

for strain WT::mms48 (40 per cell; Table 4.1). Interestingly, cells containing double chains were more

abundant for WT::mms48 (WT::mms48: 67%; WT::mms36: 28%; WT: 32%; Figure S4.3).

In summary, all proteins encoded by mms6op are involved in control of magnetosome size or/and

number. The previously observed severe biomineralization defects in ∆mms6op are thus not due to loss

of a single, but several genes, which points towards a cumulative effect on magnetosome synthesis by

various proteins encoded by mms6op.
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Figure 4.2: TEM and HRTEM micrographs and their corresponding Fourier transforms of electron dense
particles in various generated deletion strains of MSR. The Fourier transforms were obtained from
the images of entire particles or from the boxed areas in each corresponding HRTEM image. The lattice
fringe spacings correspond to the strucures of either magnetite (A, D, E, F, G) or hematite (B, C) in the
mutants ∆A12, ∆mamI, ∆mamN, and ∆mamP.
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Table 4.1: Characterization of the generated mutants.

 

 

Strain Deleted 

Gene/s 

 

Magnetic  

Response 

(Cmag)* 

Average  

Magnetosome  

Size [nm] 

 

Magnetosome 

Size 

[% WT] 

Number of 

Magnetosomes 

per Cell 

 

Maximum 

Size 

[nm] 

 

WT - 2.0±0.1 35.6±13.0 

 

100 34.3±8.4 

 

69.2 

!A10 

 

mms6 

operon 

Intermediate 

 

19.7±6.9 

 

55.3 16.8±6.2 

 

39.6 

!mms6 mms6 WT 30.4±9.0 85.4 29.7±6.2 57.3 

!mmsF mmsF Intermediate 28.6±8.0 80.3 30.4±7.4 60.9 

!mms48 mms48 WT 46.4±14.8 130.3 16.0±5.6 82.8 

!mms36 mms36 WT 39.1±12.9 109.8 22.2±7.3  67.6 

!mamF mamF WT 33.6±10.4 94.4 33.6±10.4 64.9 

!mmsF mamF 

 

mmsF, 

mamF 

 

WT 25.0±7.4 

 

 

70.2 

 

26.6±9.3 

 

 

47.4 

!mmsF mms6 

 

mmsF, 

mms6 

 

Intermediate 24.1±6.4 

 

 

67.7 

 

24.1±6.8 

 

 

44.8 

WT::mms36 - WT 34.6±9.2 97.2 31.6±10.1 57.2 

WT::mms48 - WT 33.2±8.2 93.3 40.2±10.5 58.0 

!mamI mamI None 14.8±7.1 41.6 9.9±4.3  34.4 

!mamL mamL None - - - - 

!mamN mamN Weak 17.7±7.1 49.7 11.0±7.4 41.3 

!mamP mamP Intermediate 21.9±15.3 61.5 19.3±10.0  72.8 

!mamA mamA WT 35.2±13.1 98.9 10.2±4.7 73.4 

!mamQ mamQ None - - - - 

!mamR mamR WT 29.0±11.0 81.5 33.5±10.5 70.2 

!mamS mamS WT 22.0±7.5 61.8 34.8±12.0 44.2 

!mamT mamT WT 28.9±10.3 81.2 32.0±8.2 60.1 

!mamU mamU WT 37.3±13.0 104.8 31.8±8.4 65.3 

Deletion analysis of the mamAB operon: mamE, L, M, O, Q and mamB are

essential for iron biomineralization

First, annotations of all 17 mamABop genes were re-assessed. N-termini that were conserved between

all three closely related magnetospirilla MSR, AMB and M. magnetotacticum were considered the most

likely translation starts. Annotations were corrected accordingly for mamI and mamL (Figure S4.4) and

experimentally confirmed by the ability of genes to complement their respective gene deletions. In ad-

dition to the previous deletions of the mamABop genes, we constructed ten single in frame deletions

comprising mamI, L, N, P, A, Q, R, S, T, and mamU, respectively. As expected, all resulting deletion

strains displayed WT-like growth and morphologies. However, deletion mutants were impaired in mag-
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netosome biomineralization to variable extents. Based on their magnetic response mutants either were

i) magnetically responsive with variable but significant Cmag (∆mamN, P, A, R, S, T, mamU) or ii) entirely

non-magnetic without any detectable Cmag (∆mamI, mamQ, mamL; Table 4.1).

TEM analysis confirmed that group (i) strains were still able to synthesize magnetosome-like particles,

but displayed various distinct phenotypes with respect to crystal morphology, size, and number per cell

(Figure 4.3). ∆mamU was hardly distinguishable from WT cells and produced 32 cubo-octahedral crys-

tals per cell with a size of 37 nm. All other mutants showed a drastically decreased magnetosome size,

number and/or alignment. Magnetosomes of ∆mamA had a WT-like size of 35 nm, but their number was

substantially decreased to 10 per cell. ∆mamS particles exhibited a widely spaced linear chain-like ar-

rangement within the cell. Whereas the crystal size was strongly decreased (22 nm), they were present

in about same numbers as in the WT (35 particles per cell). ∆mamT also synthesized irregularly spaced

magnetosome chains, whereas in some cells larger magnetosomes appeared at the chain center and

formed condensed ”pseudo-chains”. Due to the prevalence of smaller crystals, the mean particle size

was decreased to 29 nm, whereas their number was WT-like (32 particles per cell).

Several ∆mamR cells showed scattered magnetosomes lacking any chain-like alignment, or short,

densely spaced chains flanked by smaller particles with irregular morphologies, or WT chains (average

size: 29 nm; number per cell: 34). ∆mamP cells at first glance seemed to contain only few (i. e., not

more than six magnetosomes, mean three) larger than WT particles (59 nm on average). However,

at closer inspection numerous very small and irregularly shaped crystals flanking the larger crystals

became apparent with an average size of 16 nm (see arrows in Figure 4.3). In total, ∆mamP cells syn-

thesized on average only 19 crystals with a mean size of 22 nm. HRTEM of the two distinct particle

types revealed that the lattice fringes for the larger crystals corresponded clearly to magnetite, whereas

by contrast the smaller and poorly crystalline particles produced lattice fringes characteristic for hematite

(Figure 4.2). The ∆mamN mutant showed a very weak, but detectable magnetic response (Cmag: 0.1).

TEM confirmed the presence of few (11 per cell) tiny, widely spaced crystals with a size of only 18 nm.

HRTEM images of these particles and their Fourier-transforms indicated that crystals have the structure

of magnetite.

∆mamI, ∆mamL and ∆mamQ represent the second class of mutants with no detectable magnetic

response (Cmag: 0). ∆mamQ and ∆mamL were entirely devoid of any clearly recognizable crystalline

electron dense structures (Figure 4.2). In the ∆mamL mutant occasionally a few tiny (around 10 nm)

structures were observed (not shown), which however, were difficult to discern unambiguously from the

cellular body and the background. The relevance and identity of these structures remain to be verified in

future studies with higher resolution. Careful analysis of ∆mamI cells, however, revealed the presence

of a few (10 per cell) electron-dense particles with highly irregular or elongated morphologies and a size

of 15 nm (Figure 4.3). As shown by HRTEM, the nuclei within ∆mamI were composed of several small

grains that formed thin aggregates (Figure 4.2). Lattice fringes were observed in only two particles, and

according to the Fourier transforms of the HRTEM images, the spacing between the fringes is very close
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to the d(012) and d(014) spacing in hematite. XANES (X-ray Absorption Near Edge Structure) spectra

obtained from whole ∆mamI and ∆mamN cells were clearly distinct from those of pure magnetite as

in the WT and suggest that the ferrous compounds are predominantly Fe-S clusters (proteins) that ac-

count for around 40% of the total iron content in the cells (Figure S4.5). Magnetite was clearly present

in ∆mamN cells (around 50% of total iron), whereas the low fit quality for ∆mamI did not allow us to

reliable determine the structure of the Fe present in the bacteria apart from Fe-S (see supplements for

more detailed information). However, the overall line shape appears most consistent with an amorphous

or only poorly ordered Fe compound as suggested by HRTEM.
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Figure 4.3: Molecular organization and deletion analysis of the mamAB operon of MSR as well as represen-
tative TEM micrographs of cells and magnetosome morphologies observed within the generated
excision mutants. The highly conserved mamAB operons encodes 17 magnetosome proteins (MamH,
I, E, J, K, L, M, N, O, P, A, Q, R, B, S, T, and MamU) in MSR and was found to be essential and suffi-
cient to maintain magnetite biogenesis (18, 22). Red arrows: Genes essential for magnetosome crystal
formation. Blue arrows: Genes non-essential for particle formation. Grey bars: Non essential genes, for
which deletion strains were previously generated (6, 9, 20). Blue bars: Non-essential genes, (deletions
generated in this study). Dark red bars: Essential genes (deletions generated previously (35, 36)). Light
red bar: Essential genes (deletions generated in this study). White arrows: magnetosome chains or
particles; Black arrows: PHB granules.

70



4 Chapter IV

Intracellular localization of the magnetosome chain marker MamC-GFP

All mutant strains could be complemented by either genomic reintegration or plasmidal transfer (see

supplements). We studied the ability of all mutants to properly localize the abundant MamC magne-

tosome protein, which served as a marker for magnetosome chain localization in previous studies (6,

36, 44). To this end, MamC was tagged by a chromosomal in-frame EGFP insertion on pFM236 that

shows in WT cells a continuous straight-line fluorescence signal (Figure S4.6). Within ∆mamN, P, S,

and mamT MamC-GFP localized as shorter structures, but still showed a linear localization running

along the inner curvature of the cell. Within ∆mamI a short, but still elongated fluorescence signal at

midcell was observed. Thus MamI, N, P, R, S, and MamT are not required for proper MamC localization.

On the contrary, in ∆mamA, mamQ and mamL cells, no defined position of the MamC-GFP signal was

detectable, but instead a diffuse spot like accumulation within the cell was predominant (Figure S4.6).

In the deletion mutant ∆mamA the magnetosome formation was not inhibited, even though MamC is

misplaced within this strain, which suggests that MamA may interact with MamC.

Discussion

The Mms6 operon encodes non-essential magnetosome proteins crucial for

proper crystal growth

As in AMB (size reduction of crystals by 19%) (22), we observed only minor biomineralization defects

upon deletion of mms6 in MSR (15% size reduction). Only 20% size reduction was also seen after

mmsF deletion in MSR, which, however, is weaker than its deletion phenotype in AMB (52% size re-

duction, (22)). However, double deletion of mms6 and mmsF resulted in an almost 32% size reduction,

which suggests a certain functional overlap between Mms6 and MmsF. We found functional redundancy

between mmsF and mamF (encoded by the adjacent mamGFDCop), since their double deletion ex-

acerbated defects in crystal maturation (30% size reduction). Hence, loss of several genes together

contributed to the strong magnetosome defect (45% size reduction) observed after deletion of the entire

mms6op (∆A10), which indicates a cumulative regulation of magnetosome biomineralization.

Mms6op of MSR contains two additional genes named mms36 (mgr4071) and mms48 (mgr4070)

that are expressed under magnetosome forming conditions (18), but had not yet been studied by dele-

tion analysis in either MSR or AMB. Surprisingly, their deletion caused the synthesis of larger magnetite

crystals instead of size reduction. Since no conserved domains or motifs are present in Mms36 and

Mms48, apart from weak similarity to proteins involved in porphyrine synthesis (Mms36: 29% to uropor-

phyrinogen III synthase of Rhodospirillum rubrum; Mms48: 28% to HemY-like proteins, possibly involved

in porphyrin biosynthesis (45, 46), their precise in vivo functions are difficult to infer. They might be itself

either inhibitors of crystal growth (32) or recruit other inhibitory proteins to the MM in order to prevent

excessive crystal growth.

71



4 Chapter IV

Genetic analyses of the mamAB operon: MamU, T, S, R, A, N and MamI are not

essential for iron biomineralization in MSR

We found that deletion of several genes (mamU, T, S, R, A, P, Q, mamL) from mamABop of MSR es-

sentially phenocopied the deletions of their orthologs in AMB (7). Loss of mamU, T, S, R, A, P, and

mamN did not entirely abolish biomineralization of magnetite crystals. As in AMB, deletion of MamU did

not have any detectable magnetosome phenotype in MSR. MamT of AMB as well as of MSR contains a

double cytochrome c motif (CXXCH) referred to as magnetochrome domain necessary for heme-binding

(47). It was speculated that MamT therefore transfers electrons to balance the ferric-to-ferrous iron ratio

form required for magnetite formation (47). Deletion of mamT in MSR resulted in smaller magnetosome

particles as in AMB, supporting its previously predicted function in crystal maturation.

As in ∆mamT, deletion of mamR in MSR resulted in smaller crystals and partially modified chain for-

mation similar to the phenotype observed for ∆mamR in AMB. Thus, MamR is involved in controlling

particle number and size as also suggested for MamR of AMB (7). We also confirmed a key role of

MamS in MSR, which has similarity to the putative serine proteases and magnetochrome domain con-

taining proteins MamE and MamX (20, 32). However, MamS itself lacks a magnetochrome domain,

which argues against its direct participation in redox control. The TPR domain-containing protein MamA

was speculated to play a role in activation of biomineralization (5). It was suggested that MamA self-

assembles through its putative TPR domain and concave site to form a large homooligomeric scaffold

surrounding the magnetosomes (48, 49), whereas its convex site interacts with other magnetosome-

associated proteins like MamC and several unidentified proteins (48, 49). However, as in AMB the

deletion of mamA in MSR had only a weak effect (5), suggesting that these interactions are not essen-

tial or can be partly compensated by other proteins.

In ∆mamP of MSR, particles larger than those synthesized by the WT were flanked by smaller and

poorly crystalline particles similar to AMB (50). MamP contains two closely spaced magnetochrome

domains and was speculated to interact with MamE, MamX and MamT through its PDZ domain and to

somehow regulate the electron transport required for biomineralization of the mixed valence iron oxide

magnetite (20, 32, 50). Magnetosomes in ∆mamP of MSR show a similar crystallization defect (mag-

netite crystals flanked by flakes) like the mamX mutant of MSR (20) and thus might indicate the involv-

ment in the same step of magnetosome biosynthesis. In contrast, phenotypes of MSR ∆mamT (smaller

particles) and ∆mamE (total loss of electron dense particles) are distinct from the deletion phenotype of

∆mamP, suggesting that some or all of the magnetochrome proteins have different or additional func-

tions. However, MamE also contains beside the magnetochrome domains, a protease and double PDZ

domains, which might cause the differences between the generated mutants upon their deletion (32).

Thus, further analyses are needed to explain the different observed mutant phenotypes, such as the

specific deletion of the different magnetochrome domains. MamP from AMB catalyzed the formation

of ferrihydrite and magnetite from iron solutions in vitro, indicating that MamP binds and oxidizes iron
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(50). However, this ability of MamP is not essential in vivo, as the ∆mamP mutant of MSR continued

to biomineralize particles of magnetite. Potentially this might be due to unchecked mineral growth after

deletion of a major redox regulator (51) or/and the ability of other magnetochrome proteins like MamX,

MamE and MamT to partially compensate the loss of MamP.

In addition to the strong similarities between several AMB and MSR mutants, we also found several

striking differences between the two species. MamN was described to be essential for magnetosome

biosynthesis, as indicated by the absence of electron dense crystals in AMB (7). However, our TEM,

HRTEM and XANES analyses revealed the presence of magnetite particles within ∆mamN of MSR.

Because of its similarity to the human Permease P that is predicted to regulate the intraorganelle pH

of melanosomes together with an ATP-driven proton pump (52), MamN was speculated to regulate pH

conditions within the magnetosome vesicles by export of protons released by the precipitation of mag-

netite (2Fe3++Fe2++4H2O → Fe3O4+8H+) (38, 53), and thus the observed phenotype of ∆mamN might

be due to alteration of the intra-magnetosomal pH.

Another gene, which exhibited a strikingly distinct deletion phenotype between AMB and MSR is

mamI, which encodes a small magnetospirilla-specific magnetosome protein (70 aa) with no significant

homology to already characterized proteins. In AMB, MamI was found to be essential for the biosynthe-

sis of both magnetosome membrane vesicles, and consequently, iron biomineralization (7). In contrast,

excision of mamI in MSR did not entirely abolish the biomineralization of electron dense iron-rich parti-

cles, but the mutant still synthesized tiny and poorly crystalline non-magnetic particles, which in some

cases were shown to consist of hematite. Recent findings in MSR and AMB indicate that the observed

poorly ordered iron (oxyhydr)oxide phases are precursors to the magnetite phase in bacteria (43, 54). In

addition, the ability of MamP to precipitate ferrihydrite and magnetite in vitro suggests that magnetite may

be formed through a stepwise phase transformation process (50). Such a biosynthetic phase transfor-

mation requires a precise control of iron supersaturation, pH, and redox potential levels (55), suggesting

that MamI may be involved at an early stage of magnetite nucleation by regulation of proper conditions

within the vesicles.

Only MamE, L, M, O, B and MamQ are essential for iron biomineralization in MSR

In addition to the previously identified mamE (35), mamM (56), mamO (35) and mamB (56) we also

demonstrated mamQ and most probably mamL to be essential genes for magnetosome synthesis in

MSR, since their deletions abolished the biomineralization of clearly distinguishable electron dense par-

ticles. MamQ shares homology with the LemA protein, which is conserved in several bacteria but whose

function is uncertain (12, 57). MamQ has a high content of α-helices that are somewhat reminiscent to

the EFC/BAR domain of Formin Binding Protein 17 (7). BAR domains have the ability to sense and sta-

bilize membrane curvatures (58), and their weak similarity to MamQ might hint towards related functions

in MM vesicle genesis of the protein. The small protein MamL has no predicted function, but was shown

to be essential for magnetosome membrane genesis in AMB (7). Despite the metabolic and genetic
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similarities between AMB and MSR, previous studies already suggested that the function of orthologous

genes might be somewhat distinct in these organisms (6, 18, 59). Apart from the possibility that the

tiny magnetite and hematite particles in ∆mamN and ∆mamI of MSR simply had escaped detection in

the corresponding mutants of AMB (7), this might possibly due to the different genetic context, with only

about 50% of all genes shared by the genomes of these two strains (14). In fact, it can not be excluded

that further genes outside of the MAI partially compensate the loss of deleted genes as observed in a

recent study, in which a magnetosome islet outside the MAI compensated the deletion of mamK in AMB

(6, 33).
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Figure 4.4: Hypothetical model for magnetosome biosynthesis in MSR. Magnetosome biosynthesis depends on
various steps including various magnetosome proteins. Magnetosome vesicle formation (I) is induced
by the proteins MamQ, MamL, and MamB. MamY was found to regulate vesicle shape (23). MamA
forms a multiprotein complex surrounding the magnetosome membrane (49) and MamE is involved in
localization of magnetosome proteins by a protease independent process (32). The heterodimer of the
CDF transporters MamB and MamM transports ferrous iron into the magnetosome vesicles (56) and
ferric iron is taken up by MamH and MamZ (20) or formed by oxidation of ferrous iron within the vesicles.
MamI is involved in magnetite nucleation. MamO was speculated to be directly involved in precipitation of
iron oxide particles (32). The crystal growth is affected by several magnetosome proteins also including
MamE that proteolytically remove a/an growth inhibitor/s or activate growth promoting proteins (32).
Based on the conserved CXXCH heme-binding motifs within MamE, MamT, MamP and MamX it has
been speculated that the proteins form a complex for electron transport to regulate electron flow (20,
47). MamS and MamR control crystal size by an unknown mechanism. MamN exhibits similarity to H+-
translocation proteins and might be involved in crystal growth by regulating intramagnetosomal pH (53).
Mms6 is tightly bound to the magnetosome crystals (26, 28) and assembles into coherent micelles for
templating crystal growth (60). Mms48 and Mms36 act as inhibitors of crystal growth or recruit inhibiting
proteins of particle growth by an unknown mechanism. The small, hydrophobic proteins MamG, MamF,
MamD, and MamC control in a cumulative manner the growth of magnetite crystals (21). Magnetosomes
were assembled into chains by the interaction of MamJ with the actin-like MamK filament that is also
involved in chain positioning (6, 9, 61). OM: outer membrane; IM: inner membrane; MP: magnetosome
protein; underlined proteins: analyzed proteins in this study, by single gene deletion of encoding genes.
Proteins in brackets: non-essential proteins encoded by the textitmamXYop.
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In summary, whereas in AMB eight proteins (MamI, E, L, M, N, O, B, MamQ) were found to be essential

for magnetosome biomineralization, in MSR only six proteins (MamE, M, O, B, Q, and most probably

MamL) are essential for at least some rudimentary iron biomineralization and, if including MamI, seven

proteins for the biosynthesis of magnetite-containing magnetosomes. This leads to an expanded model

of magnetosome biosynthesis in MSR (Figure 4.4). However, it remains to be shown whether these

essential magnetosome proteins are also sufficient for vesicle formation and crystallization even in the

absence of the other factors encoded by the mamAB and other magnetosome operons.
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Introduction

The ability of magnetotactic bacteria (MTB) to orient along the earth’s magnetic field is based on spe-

cific organelles, the magnetosomes, which are membrane-enveloped crystals of an iron mineral [1]. The

model organism Magnetospirillum gryphiswaldense (in the following referred to as MSR) synthesizes

cuboctahedral magnetite (Fe3O4) particles, which are assembled to chain-like nanostructures within

the cell. Magnetosome crystals have uniform morphologies [2], a high chemical purity [3], and struc-

tural perfection [4], which are mostly unknown from inorganic systems. The unusual characteristics of

the crystals, as well as the inherent biocompatibility provided by the magnetosome membrane (MM),

inspired numerous ideas for their biotechnological application [5], such as magnetic drug targeting, im-

munoassays and magnetic resonance imaging [6,7,8,9,10,11].

The biomineralization of magnetite crystals in MTB proceeds in sequential steps including MM vesi-

cle formation, sorting of MM-specific proteins, magnetosomal iron uptake, magnetite crystallization and

chain assembly along a cytoskeletal filament [3,12,13,14,15]. We recently discovered genes controlling

magnetosome synthesis in MSR to be clustered within a larg (115 kb) genomic magnetosome island,

in which they are interspersed by numerous genes of unrelated or unknown functions [16,17]. While

the smaller mamGFDC, mms6 and mamXY operons have accessory roles in the biomineralization of

properly sized and shaped crystals [17,18,19], only the large mamAB operon is necessary and sufficient

for magnetite biomineralization [17]. In contrast, at least the mamGFDC, mms6, and mamAB operons

are needed for formation of poorly crystalline hematite particles in the heterologous host Rhodospirillum

rubrum, and all four major operons are required for biomineralization of magnetite crystals [20].

Previous studies in MSR and the genetically closely related M. magneticum AMB-1 (referred to as

AMB) so far focused on genetic dissection of the MAI and the mam and mms operons by deletion

mutagenesis. For instance, a comprehensive analysis of the mamAB operon recently revealed that

eight proteins (MamI, E, L, M, N, O, B, Q) are essential for magnetosome biomineralization in AMB,

whereas in MSR only six proteins (MamE, L, M, O, B, Q) are required for at least some rudimentary iron
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biomineralization and, if including MamI, seven proteins for the biosynthesis of magnetite-containing

magnetosomes [21,22]. The major magnetosome proteins MamG, F, D, and C, which account for over

35% of all magnetosome-associated proteins, were shown to be involved in size control, since mutant

cells formed smaller and less regular magnetite crystals [23,24]. Deletion of the 3.7 kb mms6 operon

resulted in significantly smaller crystals which are aligned in short chains or loosely scattered within

the cell [17]. Consistent with this finding, the MTB-specific MmsF and Mms6 proteins are predicted to

be major regulators of crystal size and shape in AMB [25,26]. In MSR Mms36 and Mms48 have been

shown to influence magnetosome biosynthesis, too and a cumulative effect on biomineralization by var-

ious proteins encoded by the mms6 operon has been suggested [22].

The proteins MamX and MamZ encoded by the mamXY operon were shown to be major redox regula-

tors for magnetite biomineralization in MSR [19]. Deletion of the whole operon resulted in size reduction

of the crystals as well as in the co-existence of various distinct magnetosome morphologies, including

cubo-octahedral magnetite particles flanked by flake-like hematite crystals [17,19].

However, while the impact of gene deletions on magnetosome biomineralization has been studied in

different approaches, the effect of overexpression of the mam and mms genes on magnetosome forma-

tion has been poorly investigated so far. This could provide insights in the impact of the mam and mms

protein level on the regulation of biomineralization, and potentially facilitate the genetically controlled

overproduction of magnetosomes for various biotechnological applications. For instance, Scheffel et

al. showed that in trans expression of additional copies of the entire mamGFDC operon in the wild

type caused the formation of enlarged magnetite particles compared to those produced by the wild type

without additional copies [18]. Recently, overexpression of mms48 resulted in a slight increase in the

particle numbers per cell, too [22]. However, due to the lack of an appropriate expression system these

first approaches were limited to a gene dosage increase of small operons or single genes. Both stud-

ies showed that selective overexpression of single or few magnetosome genes results the synthesis of

weakly larger crystals or increased magnetosome numbers in M gryphiswaldense. However, the effects

of a further gene dosage increase of single operons or even multiplication of all mam and mms genes

on magnetosome formation have not be systematically investigated so far.

Here, we demonstrate the feasibility to enhance magnetite biomineralization in M gryphiswaldense by

multiplication of single, as well as all major magnetosome operons via transposition. We show that a

higher gene dosage of the mms6 operon results in the formation of larger crystals as well as moderately

increased magnetosome numbers per cell. In contrast, overexpression of all major operons specifically

enhanced the number of particles by about 117%. This demonstrates that the expression level of differ-

ent mam and mms proteins seems to be an important factor in the regulation of crystal formation in M.

gryphiswaldense. Furthermore, the findings show that genetic engineering by a gene dosage increase

of the mam and mms genes provides a powerful strategy for the precise control of the particle size or

numbers.
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Results

Overexpression of mms6 and mamGFDC operons

For controlled overexpression of different magnetosome operons, MSR was engineered by mariner or

Tn5 transposon driven random chromosomal insertion. This technique has recently also been suc-

cessfully applied for genetic transfer of the magnetosome biosynthesis pathway into R. rubrum [20],

expression of recombinant proteins on the magnetosome surface [10], and chromosomal insertion of

single magnetosome genes [22]. Transconjugants were obtained at frequencies between 2-5x10−7 and

chromosomal insertions were stably inherited as indicated by the ability of transformed strains to grow in

the presence of kanamycin after 120 generations without antibiotic selection. All insertants essentially

displayed WT-like growth (Figure S5.1).

Chromosomal duplication of the mms6 operon resulted in strain ∆RecA+mms6 1x that possesses one

native and one inserted mms6 operon, and remarkably increased magnetosome biomineralization. The

merodiploid mutant strain synthesized 36% more crystals per cell (47 compared to 34 magnetosomes

per cell within ∆RecA (Table 5.1) with an increased size of 46 nm (∆RecA=36 nm) and formed a high

proportion of multiple chains that were less frequently observed in ∆RecA. Intracellular iron content of

∆RecA+mms6 1x was increased by about [14.9±2.9]% (Table S5.1). Insertion of two further mms6 oper-

ons (one native and two inserted mms6 operons) in strains ∆RecA+mms6 2x lead in average (n=1183)

to 54 magnetite particles per cell with a size of 48 nm that corresponds to an increase in number by

58%, size by 35%, and intracellular iron content of [34.8±2.5]% compared to ∆RecA (Figure 5.1; Ta-

ble S5.1). ∆RecA+mms6 3x carrying four copies of mms6 operon produced 58 magnetite crystals per

cell with a diameter of 44 nm and an intracellular iron content increased from 2.68% to 3.73% iron per

dry weight, which represents only a slight further increase compared to ∆RecA+mms6 2x (increase by

[38.8±2.5]% compared to ∆RecA (Figure 5.1; Table S5.1). Cultivation under anaerobic conditions with

50 µM or 500 µM iron did not significantly increase iron uptake of ∆RecA+mms6 3x compared to culti-

vation under microaerobic conditions with 50 µM iron (Figure S5.1). Insertion of four additional copies

of the mms6 operon in ∆RecA+mms6 4x (5 mms6 operons in total) did not further increase biominer-

alization, but on the contrary caused a size reduction of 13% and 6% compared to ∆RecA+mms6 2x

and ∆RecA+mms6 3x, respectively. Cultivation of overproducing strains ∆RecA+mms6 2x at higher iron

concentrations (250 µM iron) did not further increase magnetosome numbers, although size distribu-

tions were slightly shifted towards to larger crystals with maximum sizes up to 85 nm (Figure S5.1).

Within anarobically grown cells of ∆RecA+mms6 2x and ∆RecA+mms6 3x a variable proportion of

enlarged vesicle were visible in cryo electron tomograms (Figure 5.1). These ”giant” vesicles appeared

as regularly shaped as in the WT, but their size was increased up to 119 nm (∆RecA+mms6 2x) whereas

WT vesicles had a maximum size of 54 nm. However, the ratio between the size of the vesicle and the

particle sizes measured from CET tomograms was similar and not significantly increased (∆RecA+mms6

2x: 2.8±0.8, ∆RecA+mms6 3x: 2.3±0.9; WT: 2.1±1.4). As reported for the parental strain ∆RecA, all
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overexpression strains had a variable proportion of small vibrioid and elongated cells [27] and cells on

average became more elongated with increasing copy number of inserted mms6 operons ([4.53±1.59]

µm, [4.56 ±1.46 µm], [5.10±1.95] µm, and [5.3±1.7] µm for ∆RecA+mms6 1x, 2x, 3x, and 4x, respec-

tively versus [4.44± 1.26] for ∆RecA (Figure 5.2). Shorter cells (<10 µm) of ∆RecA+mms6 2x contained

fewer 43 and smaller 43 nm particles, whereas highly elongated cells (>10 µm) had significantly more

(53-138 particles, mean: 104; n=572, equivalent to a 206% increase) and larger magnetite crystals (49

nm) with a maximum size of 80 nm.

!RecA!

"#$%&'!!"#!()!

"#$%&'!!"#!*)!

Figure 5.1: Representative TEM micrographs of magnetosomes found in mms6 operon overexpression
strains and their parent strain ∆RecA. Whereas ∆RecA synthesizes mostly short and single stranded
magnetosome chains, the overexpression strains ∆RecA+mms6 2x and ∆RecA+mms6 3x produce dou-
ble chains with increased magnetosome sizes and numbers per cell. Scale bar: 1 µm.
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As observed by TEM, in ∆RecA+mms6 2x, and 3x cells, the magnetosome chains were persistently

located at midcell and split into two subchains during cell division, similar as in the WT [28]. However,

we frequently observed that cells of ∆RecA+mms6 2x and 3x remained connected by tubular extensions

at advanced stages of constriction, which kept the daughter cells attached to each other and hampered

their separation immediately after septation before the cells eventually became disconnected. Within

these tubular extensions always few (2-10) magnetosome particles were encapsulated and separated

from daughter chains (Figure 5.2).
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Figure 5.2: Characterization of overexpression strains. A: Cell length measurement of overexpression strains.
All overexpression strains show an increase in cell length compared to ∆RecA. mms6 1x, 2x, 3x, 4x:
∆RecA+mms6 1x, 2x, 3x, 4x; mamAB 1x, 2x: ∆RecA+mamAB 1x, 2x. C, D, F: Tubular extensions found
in overexpression strains ∆RecA+mms6 2x (C) ∆RecA+mms6 3x (D, F).

Next, we explored overexpression of the mamGFDC operon, which is adjacent to the mms6 operon

and was previously described to be involved in size control of magnetosomes [18]. While duplica-

tion of mamGFDC alone had only a weak effect on crystal number per cell (36; n=419), the duplica-

tion of both the mms6 and mamGFDC operons (∆RecA+mms6/GFDC) caused the synthesis of 32%

more crystals per cell (45; n=483) (Table S5.1). Intracellular iron content of ∆RecA+mamGFDC was

increased by about 7.4%±1.1% and even further 14.1%±1.9% in ∆RecA+mms6/GFDC (Table S5.1).

∆RecA+mamGFDC and ∆RecA+mms6/GFDC produced 26%, and 27% larger crystals, respectively,

compared to ∆RecA (Table S5.1).

In summary, the genomic insertion of up to additional three mms6 operons enhanced the biosynthe-

sis of magnetosomes with increased sizes and numbers. However, the introduction of either additional

mms6 operon copies or the combined overexpression of mamGFDC did not further increase biominer-
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alization, suggesting that magnetosome synthesis was likely limited by different factors encoded else-

where, which control growth of magnetite particles other than by vesicle sizes, such as iron transport,

activation and nucleation of crystals. Therefore, we next attempted to overexpress the large mamAB

operon that encodes most magnetosome proteins essential and crucial for magnetosome formation.

Genomic multicopy insertion of the mamAB operon

Transfer and single-copy chromosomal insertion of the mamAB operon was achieved by mariner trans-

poson based gene delivery into random sites with a conjugational efficiency of 10−7-10−8 [20]. As with

the smaller mms6 and mamGFDC operons, also the mamAB operon was stable for 40 generations,

after repeated passaging under metabolic stress (cold storage, oxidative stress). ∆RecA+mamAB 1x

(one native and one inserted mamAB operon) showed a similar magnetic response like the parent strain

(Cmag=0.8±0.2) [27] and the iron content was not significantly increased (+0.4±0.5%; Table S5.1). Cells

were slightly elongated ([4.81± 1.82] µm; ∆RecA: [4.44± 1.26] µm; Figure 5.2A) and displayed no

obvious morphological abnormalities. However, TEM analyses revealed phenotypic heterogeneity with

respect to magnetosome formation with two distinct morphotypes present in variable proportions com-

prising i) about 47% cells in which the number of regular-sized magnetosomes was increased to 77, ii)

42% cells increased number of magnetosomes (68) with aberrant crystal sizes and intracellular local-

ization, and iii) 10% WT-like cells (Figure 5.3).

1 !m 1 !m 

A B 

Figure 5.3: Representative TEM micrographs of mamAB overexpression strains. Phenotypic heterogeneity
with respect to magnetosome formation with two distinct morphotypes were found in variable proportions
in ∆RecA+mamAB 1x and 2x: i) cells with an increased number of regular-sized magnetosomes (A), and
ii) cells with aberrant crystal sizes and intracellular localization (B, black arrows) in ∆RecA+mamAB 1x.

We next constructed the merotriploid insertion mutant ∆RecA+mamAB 2x by transfer of pTps-mamAB-

Gm into the insertion mutant ∆RecA+mamAB 1x. The mutant showed a similar phenotype as observed

for ∆RecA+mamAB 1x, and the number of magnetosomes did not further increase (68), despite of a

slightly increased (by 9.4±0.5%) intracellular iron content. The Cmag value of ∆RecA+mamAB 2x was

even lower than that of the parent strain (Cmag= 0.5±0.2), possibly caused by altered cell dimensions
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([5.98± 2.58] µm compared to [4.44± 1.26] µm of ∆RecA (Table S5.1; Figure 5.2)). The magnetosome

membrane of magnetosome particles isolated from strain ∆RecA+mamAB 1x had the same appear-

ance and thickness of (5.4±1.8) nm as ∆RecA (5.2±1.9) nm. Coomassie-stained SDS-PAGE profiles

of MM from strains ∆RecA+mamAB 1x revealed similar patterns compared to ∆RecA. However in strain

∆RecA+mamAB 1x several bands including magnetosome proteins MamA, and MamM, showed higher

intensities between 51% and 145%. Western Blot analysis of selected proteins confirmed that MamM

and MamA were more abundant within ∆RecA+mamAB 1x by about 128% and 145%, respectively,

whereas the abundance of MamC was not significantly increased (9%), although the Coomassie-stained

MamC band appeared more intense in ∆RecA (Figure S5.2).

In summary, the overexpression of all magnetosome proteins, encoded by the mamAB operon, alone

did not consistently enhance magnetosome formation and therefore we suggested that further regulators

for biogenesis are needed to increase magnetosome yield.

Overexpression of the mamGFDC, mms6, mamAB, and mamXY operon

Since all individual four major operons (mms6, mamGFDC, mamAB and mamXY ) were shown to be

implicated in regulation of magnetosome size and number, we next tested whether their combined over-

expression may enhance biomineralization even further. Therefore, the mamAB, mms6, and mamGFDC

operon were simultaneously integrated into the genome of ∆RecA that was further modified by insertion

of the mamXY operon using mariner transposon based gene delivery, resulting in strain RecA+AB6GX

(Figure 5.4).

The intracellular iron content was enormously increased to 3.77% iron per dry weight, which is an

increase of about 140.7%±2.4% compared to ∆RecA. TEM revealed that the number of magnetosomes

per cell was increased by 117% compared to the parental strain (Table S5.1; Figure 5.4A). About 28%

of the cells contained more than 100 magnetosomes whereas ∆RecA did not produce more than 58 par-

ticles per cell within the analyzed TEM micrographs. Most cells formed multiple magnetosome chains

(2-4), whereas the WT exhibits not more than 2 chains per cell. Beside cells with proper (WT-like) chains

localized at the inner convex curvature of the cell, we frequently observed cells with one chain located at

the inner convex cell curvature and up to three magnetosome chains at the concave curvature (Figure

5.4B). Additionally, the plentiful particles in some cells lacked a clearly ordered chain-like alignment, but

were ”stuffed” into compact bundles or clusters (Figure 5.4C). Interestingly, the mean size of crystals

was only slightly increased to 39 nm.

Whereas cells, which were merodiploid for mamAB (strain ∆RecA+mamAB 1x), showed two dis-

tinct magnetosome morphotypes, within strain ∆RecA+ABG6X only 12% cells had scattered magne-

tosomes and aberrant crystal sizes (∆RecA+mamAB 1x: 42%; Figure 5.4D). The magnetic response

of ∆RecA+AB6GX was not affected by the altered biomineralization phenotype and consistent with

the Cmag of the parent strain ∆RecA (CmagABG6X=0.7). In dividing cells we did observe tubular exten-

sions during or after cell division. In contrast to the "giant" MM vesicles observed by CET in strain
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∆RecA+mms6 2x and ∆RecA+mms6 3x, MM vesicles were not significantly enlarged (Fig. 5.4E-F).

The expression of the FeoAB proteins increased particle size in a heterologous host [20], suggest-

ing that overexpression of these proteins also enhances particle synthesis in MSR. Therefore, the genes

feoA and feoB were inserted into ∆RecA+AB6GX by Tn5 transposition. However, crystal sizes were only

slightly increased (41 nm instead of 39 nm in ∆RecA+AB6GX ) in strain ∆RecA+ABG6X+feo, whereas

crystal numbers per cell even slightly decreased (69 particles instead of 74 in strain for ∆RecA+AB6GX )

(Figure 5.5).

A B 

C 

D 
E 

F 

Figure 5.4: TEM, Cryo-electron micrographs and tomograms of ∆RecA+ABG6X. A, B, C: TEM micrographs of
∆RecA+ABG6X. Most cells form multiple magnetosome chains (2-4). Beside cells with proper (WT-like)
chains localized at the inner convex curvature of the cell (A), we frequently observed cells with one chain
located at the inner convex cell curvature and up to three magnetosome chains at the concave curvature
(B). Additionally, the plentiful particles in some cells lack a clearly ordered chain-like alignment, but were
"stuffed" into compact bundles or clusters (C). Only few cells contain no or small magnetosomes (D). E,
F: Surface rendered volume of ∆RecA+ABG6X cells. Depicted are the cell membrane (blue), electron
dense particles (red), and magnetosome vesicles (yellow). Insert in E: Cryo-electron micrograph of
∆RecA+ABG6X.

Discussion

In this work, we investigated ∆RecA as potential chassis for the construction of various overexpression

strains to investigated if magnetosome production in MSR can be enhanced by a gene dosage increase

of the mam and mms operons. In general, overexpression of genes is achieved by placing the target

sequence under control of strong promoters for efficient RNA polymerase binding [29]. No stronger

promoters than the native magnetosome operon promoters have been identified for M. gryphiswaldense
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so far [10]. To achieve high product yields, gene cluster amplification via chromosomal insertion has

been applied in several studies. For instance, Tang et al. recently increased production of the sec-

ondary metabolite spinosyn in the native host by partial gene cluster duplication [30]. Using a chem-

ically inducible chromosomal evolution approach, 40 consecutive copies of a poly-3-hydroxybutyrate

gene cluster were inserted into the chromosome of E. coli, thereby causing a significant increase in the

productivity of this biopolymer [31]. In our approach, we inserted additional copies of single, as well as

all major magnetosome operons into the chromosome of strain ∆RecA by transposition (Figure 5.5).
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Figure 5.5: Construction and phenotype of overexpression strains. A. Strategy for construction of overexpres-
sion strains by amplification of different magnetosome operons. Insertional plasmids were constructed
based on genomic DNA from M. gryphiswaldense. Plasmids contain the magnetosome operons mamAB
(blue, AB), mamGFDC (green, GFDC), mms6 (brown) and the mamXY operon lacking ftsZm (pale blue,
XYZ ). The vector backbone (genes are indicated in red) contains transposase gene (tps), inverted re-
peats (IR), origin of transfer (oriT ), an R6K or p15A origin of replication (ori) and antibiotic resistance
cassette (abR). After conjugative transfer of the plasmids, the transposase recognizes IR sequences and
catalyzes chromosomal insertion of the target sequence. Additional copies of respective magnetosome
operons in the chromosome (oval shape) are marked with asterisks. B. TEM analysis of overexpression
strains compared to the parental strain ∆RecA. 1 and 2 illustrate the different morphotypes found for
∆RecA+AB 1x.

As expected, insertions were stable for at least 40 generations without selection pressure, and no

recombination events were observed after serial passaging under physiological stress conditions. Con-

sistent with the finding that the mms6 operon plays a major role during crystal maturation in M. gryphis-

waldense [22], its duplication or triplication (strains ∆RecA+mms6 2x and 3x) caused magnetosome

overproduction of up to 68%. Remarkably, also the mean crystal size was significantly increased (up to

35%). Further copies of the mms6 operon alone or in combination with the mamGFDC operon did not
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further augment the overexpression phenotype. Therefore, we speculated that magnetosome biominer-

alization was limited by the lack of accessory factors encoded in the non-amplified magnetosome oper-

ons. Consistent with this hypothesis, overexpression of the large mamAB operon alone had pleiotropic

phenotypic effects: While some cells contained increased numbers of regularly sized magnetosomes

(by 50% compared to ∆RecA), we also detected a morphotype haboring small, aberrantly shaped mag-

netic nanoparticles. In contrast, overexpression of all magnetosome operons (∆RecA+ABG6X ) strongly

enhanced magnetosome numbers per cell by 117%, and no heterogeneity among different cells was

visible. Altogether, these findings demonstrate that a gene dosage increase of the mam and mms oper-

ons provides an efficient strategy for magnetosome overexpression in M. gryphiswaldense.

However, several questions regarding the regulation of magnetosome numbers as well as size in the

different overexpression strains still remain elusive. For instance it is unknown, how overexpression of

the mms6 operon alone causes formation of larger crystals. One important factor constraining growth

of crystals is the size of magnetosome vesicles. We sometimes found significantly enlarged vesicles in

the mms6 insertion strains by CET. This finding indicates that overexpression of a set of genes might

also directly influence the vesicle diameter prior to crystallization, thereby defining the increase in crys-

tal size. This could be caused by accumulation of proteins encoded by the mms6 operon in the MM,

thereby having a marked effect on the vesicle size. In strain ∆RecA+AB 1x, we observed that MamM

and MamA were enriched in the MM compared to that of strain ∆RecA (by 128% and 125%, respec-

tively). As expected, no changes in the expression level of MamC were detectable in ∆RecA+AB 1x.

This finding demonstrates that the protein composition of the MM changes by overexpression of only a

set of genes.

Besides vesicle biogenesis, also magnetosomal iron uptake into the vesicles plays an essential role in

crystal growth. However, none of the proteins encoded by the mms6 operon shares similarity to known

iron transport proteins. Furthermore, overexpression of the mms6 operon not only resulted in formation

of larger crystals, but also the numbers of magnetosomes were increased. These observations suggest

that overexpression of a set of magnetosome genes influences the expression or the recruitment of

accessory proteins controlling other processes during magnetosome formation, such as magnetosomal

iron transport, vesicle biogenesis, or magnetosome chain assembly. In contrast, additional copies of all

mam and mms genes caused the strongest increase in crystal numbers per cell, while the size of the

magnetosomes did not change.

Our findings indicate that expression levels of magnetosome proteins seem to be one important factor

determining the number and size of magnetite crystals. However, we did not compare the transcript or

protein levels of all expressed magnetosome genes in the insertional mutants with that of the ∆RecA

control. Therefore, it is unknown whether a gene dosage increase of the mam and mms operons results

in uniform overexpression of all amplified magnetosome genes. Our findings also raise the question,

which accessory factors encoded outside the mam and mms operons might limit the number or size of

magnetosomes in the overexpression strains as well as in the WT. For instance, the extracellular iron
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concentration is known to be linked to crystal formation in M. gryphiswaldense [32]. In the WT, iron

concentrations of 100 µM have been shown to support highest cell yield and magnetism [32]. Since the

intracellular iron content was enhanced in overexpression strains (by up to 141%) magnetosome biosyn-

thesis might be further increased by higher iron concentrations in the medium. However, incubation of

insertion mutants in medium supplemented with 250 µM ferric citrate (instead of 50 µM) did not result in

a further increase in magnetosome numbers or size. This might indicate that the intracellular iron supply

was already saturated for lower iron concentrations in the medium. This finding could hint towards an

insufficient expression of additional iron transport proteins, which might limit further magnetosomal iron

uptake.

The feoAB1 operon encoding a ferrous uptake system has been found to play a role in magnetosome

formation in M. gryphiswaldense [33]. However, its chromosomal duplication in ∆RecA+ABG6X had only

minor effects on the crystal size. Insufficient expression of non- amplified genes encoding components of

other iron uptake systems, such as the ferrous uptake protein FeoB2 [34], might prevent further accumu-

lation of iron in the cell. Furthermore, the regulator protein Fur is involved in global iron homeostasis in

M. gryphiswaldense [35], and has been found to control expression of all identified iron uptake proteins,

such as components of ferrous (FeoAB) and ABC ferric ion transport systems. Therefore, this protein

could also be indirectly involved in limiting the numbers and size of magnetosomes by regulating the

transcription of genes encoding components of iron uptake systems. However, deletion of fur had only

minor effects on biomineralization in M. gryphiswaldense [35]. Therefore, this protein likely plays only

a minor role in controlling magnetosome formation in the WT as well as in the overexpression strains.

Besides the intracellular iron supply, which constrains magnetosome formation, other factors encoded

outside the mam and mms operons might limit magnetosome biosynthesis in M. gryphiswaldense. Sev-

eral enzymes participating in denitrification (nitrate reductase Nap, nitrite reductase Cd1) [36,37], aerobic

respiration (cytochrome c oxidase Cbb3) [38], and the oxygen sensor Fnr [39] have been found to poise

optimal redox conditions during magnetite biomineralization. Consequently, the corresponding proteins

could also indirectly limit the number or size of magnetite crystals by regulation of the intracellular redox

balance. However, a more comprehensive genetic analysis will be necessary in the future to elucidate

whether accessory, yet-unknown factors control magnetosome formation in the WT as well as in the

overexpression strains.

In summary, our approach demonstrates that it is possible to specifically engineer M. gryphiswaldense

for enhanced magnetosome production. The constructed strains could be used for the high and stabi-

lized production of magnetosomes, which are functionalized by genetic fusion with fluorescent markers

or other recombinant proteins [40,41]. Furthermore, overexpression of selected magnetosome genes

by chromosomal engineering might be exploited for the design of size-controlled nanocrystals that dis-

play altered magnetic properties. This could be of particular interest in applications, which depend on

specific magnetic properties of the particles such as magnetic resonance imaging [42] or hyperthermal

treatment of tumors [43].
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Material and Methods

Bacterial strains, plasmids, and culture conditions

MSR and its mutant strains (Table S5.1) were grown in liquid modified flask standard medium (FSM) or

low iron medium (LIM) at 30 ◦C under microaerobic condition if not otherwise specified [2,44]. Therefore,

cells were cultivated in gased flasks with a mixture of 2% O2 and 98% N2 or in purged jars. For anaerobic

cultivation, O2 was excluded from the gas mixture, while aerobic conditions were generated through free

gas exchange to air. Single colonies, were transferred into 100 µ l FSM medium in 96-deep-well plates

(Eppendorf, Hamburg, Germany) and incubated in anaerobic jars for 5 to 6 days. The liquid cultures

were scaled up to an final volume of 10 ml. Culture conditions for Escherichia coli strains (Table S5.2)

were as previously described [45] and for strains BW29427 and WM3064 lysogeny broth medium was

supplemented with 1 mM DL-α, ε-diaminopimelic acid (DAP). For selection of antibiotic resistant strains

the following antibiotics concentrations were used: 25 g/ml kanamycin (Km), 12 g/ml tetracycline (Tet),

and 15 g/ml gentamicin (Gm) for E. coli strains, and 5 g/ml (Km), 5 g/ml (Tet), and 20 g/ml (Gm) for

MSR strains, respectively. Magnetosomes were isolated as previously after microaerobic cultivation of 5

L cultures. Optical density and magnetic response (Cmag) were analyzed photometrical at 565 nm [46].

Molecular and genetic techniques

Total DNA from all strains were isolated as described previously [47,48]. Oligonucleotide sequences for

Amplification of DNA fragments (Tabel S5.3) were deduced from the working draft genome sequence

of M. gryphiswaldense (GenBank accession number No. CU459003) and were purchased from Sigma-

Aldrich (Steinheim, Germany). Standard polymerase chain reaction (PCR) procedures were used to

amplify genetic fragments and plasmids were sequenced using BigDye Terminator v3.1 chemistry on

an in-house ABI 3700 capillary sequencer (Applied Biosystems, Darmstadt, Germany). Sequences

were analyzed with Software Vector NTI Advance 11.5 (Invitrogen, Darmstadt, Germany). For genomic

sequencing of over expression strains tagged libraries (about 200-300 bp insert size) were constructed

from 1 ng of genomic DNA with the Nextera XT DNA kit (Illumina) according to the manufacturer’s

protocol. The eight libraries were sequenced in multiplex format using the Illumina MiSeq technology and

2x 150 nt paired-end reads with an error rate of 0.47%, as determined by an internal phiX control. The

obtained sequences were assembled de novo as well as to the reference genome with the commercial

software, CLC Genomics Workbench 5.5.

Analytical methods

Iron content of magnetosomes or whole cells was measured three times in triplicates by ferrozine assay

[49]. After 16 hours of cultivation cells were washed with 20 mM Tris-HCl, 5 mM EDTA, pH 7.4 to remove

extracellular iron. 1 ml cultures were centrifuged for 1 min at 11,000 rpm and resuspended in 90 µ l
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HNO3 (65%) for 3 h at 99 ◦C. Afterwards, the lysate was cleared by centrifugation and resuspended in 1

ml H2O and ferrozine assay was performed as previously described [44].

Construction of plasmids for overexpression

Plasmids pTps-AB and pTps-XYZ were constructed in a previous study by Kolinko et al., 2014 [20].

For cloning of plasmid Gm-pTps-AB, the Km resistance gene on plasmid pTps-AB was exchanged by

gentamicin via recombinogenic cloning. To this end a cloning cassette comprising the gentamicin gene

and the respective promoter was PCR-amplified (oligonucleotides IB173/IB174) and transferred into

electrocompetent E. coli cells (DH10b+pTps-AB) expressing phage derived recombinases from a cir-

cular plasmid (pSC101-BAD-gbaA). After transfer of the cassette, recombination between homologous

regions on the linear fragment and the plasmid pTps-AB occurred. For overexpression of the mms6

and mamGFDC operons, a modified pBam-1 vector was designed. To this end gfp was integrated into

pBam-1 after digestion with KpnI and EcoRI, resulting in pBam-gfp. The mamGFDC and mms6 oper-

ons were amplified by PCR from the genome of MSR (mamGFDC operon: IKa/IKb; mms6 operon:

AL179/AL301) and were inserted into the XbaI-KpnI digested pBam-gfp, resulting in pBam-mamGFDC

and pBam-mms6 1x, respectively with a C-terminal fusion to mamC or mgr4070 of gfp. For generation

of pBam-mms6 2x and pBam-GFDC/mms6, the mms6 operon of pBam-mms6 1x was amplified with

oligonucleotides AL377/AL379 and integrated into pBam-mamGFDC as well as pBam-mms6 1x after

digestion with EcoRI. Gentamycin gene, flanked by a lox71 and lox66 sequence was generated by am-

plification with oligonucleotides AL300/AL303 from pBBR-MCS5 and cloned into the SanDI/AatII side

of pBam-mamGFDC, resulting in pBam-GFDC/Gm. The mms6 operon was inserted after digestion of

pBam-GFDC/Gm with XbaI/KpnI, generating pBam-mms6/Gm. Generated plasmids were examined by

restriction analysis with a set of different enzymes or PCR and transferred into different recipients via

conjugation as described elsewhere [16].

Fluorescence microscopy

For localization studies with GFP and cell length measurement, generated mutant strains of M. gryphis-

waldense were immobilized on agarose pads (FSM salts in H2O, supplemented with 1% agarose), and

analysed with an Olympus BX81 microscope provided with a 100 UPLSAPO100XO objective (numerical

aperture of 1.40) and a Hamamatsu Orca AG camera. Data were evaluated with the Olympus cell

software.

TEM and CET

Cells or magnetosomes were concentrated and adsorbed onto carbon-coated copper grids for TEM

analyses. Isolated magnetosomes were treated with 1% v/v uranylacetat for staining of magnetosome

membrane. Cells and vesicles were imaged with a FEI Morgagni 268 (FEI, Eindhoven, Netherlands)
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at an accelerating voltage of 200 kV. For CET analysis, cell were cultivated anaerobically in FSM or

aerobically in LIM and treated with formaldehyde (Fluka, Switzerland) to a final concentration of 0.1%

v/v after 16 h of cultivation. A FEI Tecnai F30 Polara transmission electron microscope (FEI; Eindhoven,

the Netherlands), equipped with a 300 kV field emission gun, a Gatan GIF 2002 Post-Column Energy

Filter, and a 2048 pixel Gatan CCD Camera (Gatan; Pleasanton, CA) was used for data generation,

whereby all measurements were performed at 300 kV, with the energy filter operated in the zero-loss

mode (slit width of 20 eV) and tilt series were processed with the Serial EM (Mastronarde, 2005) and

FEI’s Explore 3D software. Sample preparation and tilt record was implemented as described previously

[50].

Cell fractionation

Mutant strain ∆RecA, ∆RecA+mamAB 1x and ∆RecA+mms6 3x were grown in 5 L FSM under mi-

croaerobic conditions. After centrifugation at 9,200 g, cells were resuspended in 20 mM Tris-HCl, pH

7.4, 5 mMEDTA and stored at 4 ◦C. Procedures for cell fractionation and magnetosomes isolation was

executed as described elsewhere [8,24].

Gel electrophoresis and Western blot experiments

The BCA-Protein Micro assay kit (Pierce) was used for determination of protein concentrations, accord-

ing to the manufacturer’s recommendation. Either whole cells or the magnetosome membrane fraction

was used for one-dimensional SDS-PAGE based on procedure of Laemmli [51]. To this end an OD of 10

was adjusted for whole cell preparation or 6.5 mg of protein was suspended in electrophoresis sample

buffer supplemented with 2% (wt/wt) SDS and 5% (wt/vol) 2-mercaptoethanol. Samples were incubated

for 5 min at 98 ◦C and loaded onto polyacrylamide gels containing 15% polyacrylamid. After 1.5 h at 100

V the gel was stained with Coomassie, whereby unstained gels were used for Western blot experiments,

which were performed as explained previously [52].
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Discussion

Magnetosome biomineralization within magnetotactic bacteria (MTB) is a complex process under con-

trol of a specific set of proteins, which direct the formation of highly ordered crystals enclosed by a

phospholipid membrane. These proteins were found to be encoded within a conserved genomic region,

known as magnetosome island (MAI). In this doctoral thesis, deletion mutagenesis was combined with

analyses of protein expression profiles and bioinformatic predictions to identify, which genes within the

MAI are important for magnetite biosynthesis in M. gryphiswaldense. The phenotypic characterization

of generated mutants was used to elucidate the encoded protein functions and to determine the minimal

essential gene set for magnetosome formation. Finally, overexpression of the most important regulators

was successfully applied to enhance magnetosome production.

6.1 Only less than 25% of MAI genes are associated with

magnetosome biomineralization

The comprehensive investigation of the MAI of M. gryphiswaldense (mgr4026 to mgr4174) by combined

bioinformatic and proteomic analysis revealed that with the exception of mgr4041 and mgr4106, which

are M. gryphiswaldense-specific, all other genes from the 115 kb core region, which were found ex-

pressed are also highly conserved in magnetospirilla or even all MTB (Figure 6.1). Most expressed pro-

teins (26 of 33) were found to be encoded by the magnetosome operons mms6, mamGFDC, mamAB,

and mamXY that were also the only regions, which displayed a magnetosome phenotype upon their

deletion. Using a modified Cre-lox method, which allows the efficient excision of large fragments, it was

observed that all other regions have no functional relevance for biomineralization under analyzed condi-

tions and corresponding genes might just represent genetic ”junk”, or remnants from previous transfer

events of the MAI. It remains possible that some deletion strains could show a phenotype under different

growth conditions, or at least only in combination with other deletions.

The largest single deletion strain ∆A7 comprised 53 kb (deletion of mgr4106 to mgr4174 including

the mamXY operon) that resembled the phenotype of the ∆mamXY operon mutant (Figure 6.1). The

modified Cre-lox method further enabled the construction of strains bearing multiple unmarked deletions

by sequential rounds of insertions and excisions. The combined deletion of all regions without obvious

effects on magnetosome formation upon their excisions resulted in strain ∆A345 (deletion of mgr4079

to mgr4088, mgr4106 to mgr4146, and mgr4151 to mgr4174; 81 ORFs; 50% of the MAI). About 78%

of all transposase genes of the MAI were eliminated in this strain and cells were able to synthesize

wildtype-like magnetic particles (Figure 6.1).
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Figure 6.1: Molecular organization and characteristics of the MAI of M. gryphiswaldense. Extensions of dele-
tions are shown by bars of different colors indicating the general phenotype. For an overview, strains
generated in previous studies are shown in transparent. Degree of gene conservation is highlighted by
different colors. Genes found expressed by proteomic analysis are indicated with "+". A misassembly
(grew block) of the A2 region was detected by Illumina sequencing (MiSeq) and a region of uncertain
length, including the feoAB contig was detected.

However, genetic stability of the MAI within strain ∆A345 was not increased compared to the wildtype

and prolonged cultivation, induced by several rounds of excision, rather resulted in more unmagnetic

cells. This is also seen in the wildtype during subcultivation in the laboratory after several rounds of

passaging, cold storage or oxidative stress, as the MAI undergoes frequent rearrangements [1,2].

Targeted deletion of the 28.7 kb large A2 region (mgr4026 to mgr4069; 44 ORFs) either alone or in

various combinations with other regions of the MAI as well as excision of the whole MAI (mgr4026 to

mgr4174) failed upon numerous altering sequences within the genome of M. gryphiswaldense. It was

revealed that the organization of the MAI between mgr4030 (hypothetical gene) and mgr4056 (hypotheti-

cal gene) is deviating from the original assembly and a region of uncertain length interrupts the A2 region

(for details see Figure 6.1). In addition, this lead to the discovery of a so far unidentified gene cluster, re-

ferred to as feoAB contig, which encodes a second copy of the Feo iron uptake system FeoAB1 (Figure

6.1). This contig also comprises a further copy of the magnetosome genes mamD (namely mamD2) and

mamF (namely mamF2), which were shown to be involved in magnetosome formation by their deletion

with the homologues of mamF2, mmsF and mamF located within the mms6 and mamGFDC operon,

respectively but are not essential for magnetosome biosynthesis (Uebe et al., in preperation). However,

these genes are not existing within the official working draft sequence of M. gryphiswaldense, but were
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described to be located upstream of the mamXY operon in the previously completed genome sequence,

in which several rearrangements were identified compared to the draft sequence, indicating the high ge-

nomic flexibility of the MAI [3,4]. The region contains further genes, which are available within the official

working draft sequence of M. gryphiswaldense, but were not aligned as one single contig, including

mgr4043-4050, mgr0907 -0890, and mgr1471 as well as mgr0242. Since proper assembly of the MAI is

complicated by the presence of numerous identical repeats, it has to be determined whether the insert

sequence (i) interrupts the A2 region, which increases the size of the MAI of M. gryphiswaldense or (ii)

is located elsewhere within the genome.

Among the deleted regions of the MAI with no obvious phenotype are several of the magnetospirilla-

specific genes, such as mgr4067, mgr4109, mgr4115, mgr4152, and mgr4057 (mamW ), which had

been previously implicated in magnetosome biosynthesis because of its magnetosome expression. No

phenotypes were detected for the two hemerythrin-like genes harbored within the deleted A3 region, too

(Figure 6.1). Because of their MAI localization and the known functions of hemerythrins from other or-

ganisms in sensing or transport of oxygen and iron, it was speculated that these proteins may play a role

in magneto-aerotaxis and magnetosome formation. However, it cannot be excluded that their loss can

be compensated by numerous homologues (e.g. 23 further hemerythrin-like genes) encoded elsewhere

in the genome. Altogether, whereas more than 50% of the MAI seems to have no obvious functions for

magnetosome biosynthesis, less than 25% of the MAI regions could be associated with magnetosome

formation, which are confined to the mms6, mamGFDC, mamAB, and mamXY operons as predicted.

6.2 The mms6, mamGFDC and mamXY operons encode several

important regulators with accessory functions for

magnetosome biosynthesis

Single-operon deletion of the mms6 operon (∆A10) comprising mgr4074, mms6, mmsF, mms36 and

mms48 significantly decreased magnetic response due to defects in crystal morphology, size and orga-

nization (Figure 6.1). Mms6 and MmsF were suggested to be major regulators for magnetosome crystal

biomineralization in M. magneticum in several studies [5,6,7,8,9]. However, gene deletion of mms6 or

mmsF in M. gryphiswaldense caused minor biomineralization defects and only double deletion of both

genes resulted in an almost 32% size reduction, which suggests a certain functional overlap between

Mms6 and MmsF. While most deletions resulted in size reduction, elimination of either mms36 or mms48

caused the synthesis of magnetite crystals larger than those in the wildtype. Since no conserved do-

mains or motifs are present in Mms36 and Mms48 their precise in vivo functions are difficult to predict.

Mms36 and Mms48 might be itself either inhibitors of crystal growth [10] or recruit other inhibitory pro-

teins to the MM in order to prevent excessive crystal growth. In conclusion, only the loss of several

genes of the mms6 operon together contributed to the strong magnetosome defect (45% size reduc-
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tion) observed after deletion of the entire mms6 operon, which indicates a cumulative regulation of all

encoded proteins for magnetosome biomineralization.

Co-deletion of the mms6 operon together with the mamGFDC operon in strain ∆A12 resulted in a fur-

ther reduction of shape regularity and alignment of crystals, but only in a slight decrease of size, whereas

the number of particles per cell was similar to strain ∆A10 (Figure 6.1). This argues for a certain func-

tional overlap between the two operons, which is consistent with the high similarity between some of the

encoded proteins: such as MmsF and MamF, which share a 61% identity, and Mms6, which contains

a conspicuous LG-rich motif like in MamG and MamD. A redundant function for MmsF and MamF was

revealed, as deletion of mmsF in the ∆mamF background had a stronger effect on magnetosome size

(30% reduction of the wildtype crystal size) as described for single gene deletions.

Deletion of the mamXY operon, which contains several magnetotaxis signature genes, and for which

a key role in magnetosome biosynthesis was predicted mainly based on comparative genome analysis,

had a crucial influence on magnetite biomineralization in M. gryphiswaldense. Within ∆mamXY cells the

co-existence of various distinct magnetosome morphologies was observed with regular crystals flanked

by poorly crystalline and elongate particles (Figure 6.1). These findings were consistent with the re-

sults of the previously reported single gene deletions of mamX and mamZ in M. gryphiswaldense with

mutants producing tiny misshaped hematite particles flanking regular magnetite crystals as shown by

HRTEM. However, a delocalization of magnetosome chains was observed in ∆mamXY cells. In contrast

to the wildtype, in which crystals form a straight line located at the convex side of the cell, the mutants

formed chains at the outer concave site, caused by mamY deletion. Hence MamY is likely to be impor-

tant for chain localization (Raschdorf et al., in preparation).

In summary, it was demonstrated that proteins encoded by the mamGFDC, mms6 and mamXY oper-

ons of M. gryphiswaldense have important and additive functions for the maturation of functional mag-

netite crystals that are large enough to interact with the weak geomagnetic field but are not essential for

biosynthesis of magnetosomes.

6.3 The mamAB operon is sufficient for magnetite

biomineralization in M. gryphiswaldense and encodes the

minimal essential gene set of MamE, L, M, O, B and MamQ for

iron biomineralization

Intriguingly, even in mutants, in which the mms6, mamGFDC, and mamXY operons were deleted in

triple (∆A14 and ∆A13; Figure 6.1), magnetite formation was not entirely abolished and cells still weakly

aligned in magnetic fields. Crystal sizes were further decreased and both strains only synthesized tiny

misshapen electron dense crystallites. Hence the mamAB operon is the only region of the MAI, which

is necessary and sufficient to maintain magnetite biomineralization in M. gryphiswaldense even in the
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absence of the mamGFDC, mms6, and mamXY clusters. Whereas the mamAB operon is sufficient to

support at least some rudimentary biomineralization of small magnetite crystals even in the absence

of all other magnetosme operons, the mamXY, mamGFDC, mms6, and mamAB operons are required

altogether for magnetite biomineralization upon their transfer into the foreign host Rhodospirillum rubrum

[11]. However, consistent with observations for M. magneticum, only the mamAB operon contains both

non-essential and essential genes for magnetosome formation in M. gryphiswaldense (Figure 6.2). Be-

sides the genes mamH, mamJ, and mamK, which were previously shown to be not essential for particle

synthesis, single gene deletions of mamU, mamT, mamS, mamR, mamA, mamP, mamN, and mamI

generated in this study, did not entirely inhibit particle synthesis and mutants still formed electron dense

particles. Whereas, MamN and MamI are described to be essential for both crystal formation and vesicle

synthesis in M. magneticum [12], MamN and MamI are not required for at least rudimentary iron biomin-

eralization in M. gryphiswaldense. TEM, HRTEM and XANES revealed the presence of tiny magnetite

crystals within ∆mamN and the synthesis of poorly crystalline unmagnetic hematite particles in ∆mamI.

In addition to the previously identified mamE, mamO [13], mamM and mamB [14] we also found mamQ

and mamL to be essential genes for magnetosome synthesis in M. gryphiswaldense, since their dele-

tions abolished the biomineralization of electron dense particles (Figure 6.2). However, previously in

∆mamL mutant occasionally a few tiny (around 10 nm) structures were observed, which however, were

difficult to discern unambiguously from the cellular body and the background. The relevance and identity

of these structures remain to be verified in future studies with higher resolution.
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Figure 6.2: Molecular organization and deletion analysis of the mms6, mamGFDC and mamAB operons of
M. gryphiswaldense. Gene deletion within the mms6 operon (mms48, mms36, mmsF, mms6) and
mamGFDC operon (mamG, mamF, mamD, mamC) led to severe defects in morphology, size and or-
ganization of magnetite crystals without abolishing magnetosome biosynthesis. The highly conserved
mamAB operon encodes non-essential (MamH, I, J, K, N, P, A, R, S, T, and MamU) and essential
(MamE, M, O, Q, B and most probably MamL) magnetosome proteins for magnetite biosynthesis in M.
gryphiswaldense. Bars, indicate extent of gene deletions. Transparent bars: strains were previously
generated [13,15,16,17,18].

To confirm their essential role for particle synthesis in M. gryphiswaldense, the genes were cloned

together on different synthetic operons. However, chromosomal reintegration of neither mamE, L, M, O,

Q, and mamB, nor in combinations with mamI or with mamI and mamN had any detectable phenotypic

effect on the non-magnetic ∆mamAB operon mutant. Genomic insertion of all cassettes into the un-
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magnetic single gene deletion strains fully or partially restored magnetosome biomineralization in nearly

all strains except of ∆mamI and ∆mamE, indicating that MamL, M, N, Q, and MamB were properly ex-

pressed from the synthetic operons. As no mutations within the plasmids were observed by sequencing,

the failed restoration within ∆mamI and ∆mamE might be due to the exchange of the native ribosomal

binding sites (RBS) that cause diminished gene and protein expression.

In summary, whereas in M. magneticum eight proteins (MamI, E, M, N, O, B, Q, and most proba-

bly MamL) were found to be essential for magnetosome biomineralization, in M. gryphiswaldense only

six proteins (MamE, M, O, B, Q, and most probably MamL) are essential for at least some rudimen-

tary iron biomineralization and, if including MamI, seven proteins are necessary for the biosynthesis of

magnetite-containing magnetosomes. Further studies are necessary to show whether these essential

magnetosome proteins are also sufficient for vesicle formation and crystallization even in the absence

of other factors encoded by the mamAB and other magnetsome operons.

6.4 The controlled overexpression of the mms6, mamGFDC,

mamAB and mamXY magnetosome operons enhance

magnetosome formation in M. gryphiswaldense

In this work, mutagenesis has proven to be an effective tool not only to identify underlying mechanisms

of magnetosome biosynthesis, but also to engineer modified magnetosome features, i.e. for generating

variable particle sizes. Comparable experiments in other bacteria have shown that both deletion and

overexpression of gene clusters are extremely powerful tools in genome engineering, mainly applied

in optimized biotechnological processes or for elucidation of protein functions [19,20,21,22]. Whereas

deletion of the mms6 operon resulted in magnetosomes size and number reduction of 45% and 51%,

respectively, the expression of the mms6 operon genes within ∆A10 from the stronger PmamDC promoter

restored biomineralization even beyond the wildtype level resulting in cells synthesizing larger and more

magnetosomes. This prompted us to study the effect of controlled overexpression of all magnetosome

operons either alone or in various combinations. In a joined study conducted together with Isabel Kolinko

(LMU Munich), we systematically i) investigated effects of overproducing strains and deduced potential

functions of overexpressed proteins and ii) analyzed whether overexpression results in magnetosome

overproduction by increasing magnetosome size and number. To reduce the risk of homologous re-

combination, an isogenic RecA deficient strain of M. gryphiswaldense [2] served as a chassis, which

produces similar magnetosome sizes and numbers compared to the wildtype.

Chromosomal duplication or triplication of the mms6 operon increased magnetosome number up to

69% and yielded magnetite particles even larger than those produced by the wildtype (35%), confirming

the role of all proteins encoded by the mms6 operon for regulation of crystal growth. Integration of a

fourth mms6 operon into ∆RecA (in total five mms6 operons) or combined expression with the adjacent
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mamGFDC operon that was previously reported to affect magnetosome size [23] did not further enhance

particle formation. Overexpression of Mms48 alone highly increased magnetosome number and cells

frequently contained multiple chains, which were also observed within the mms6 operon overexpression

strains (Figure 6.3). Thus, Mms48 may interact or recruit other magnetosome proteins important for

vesicle biogenesis and/or iron uptake. Genomic expression of additional copies of mms48 and mms36

did not further decrease mean particle size (as suggested from deletion analyses described above) but

size distributions were slightly shifted towards smaller particles. This might indicate that inhibition of par-

ticle growth is not directly caused by Mms48 and Mms36 and might depend on further recruited proteins,

which interact with Mms48 and Mms36.

Overexpression of the large mamAB operon alone had pleiotropic phenotypic effects, and while some

cells contained increased numbers of regularly sized magnetosomes, also a morphotype habouring

small, aberrantly shaped magnetic nanoparticles was observed. The two distinct morphotypes might

be due to the lack of accessory factors encoded in the mms6, mamGFDC and mamXY operons. Con-

sistent with this hypothesis, the overexpression of all magnetosome operons in ∆RecA+ABG6X highly

enhanced magnetosome production by increasing the number of particles about 117% compared to the

wildtype.

We found that cells were longer in all overexpression strains, potentially related to a minor cell division

phenotype of the mutants: cells often remained connected by tubular extensions at advanced stages

of constriction, which kept the daughter cells attached to each other. During cell division, the magneto-

some chain has to be split and separated from the cohesive forces caused by magnetostatic interactions

within the chains. A physical model demonstrated that the magnetic attraction significantly increases in

a two-stranded chain [24]. This was frequently observed in the overexpression strains of the mms6 or

mamAB operon and even increased to three or more chains within the ∆RecA+ABG6X strain (Figure

6.3).

Whereas the mutant ∆RecA+mamAB 1x showed no significant increase in intracellular iron content,

mutants ∆RecA+mms6 3x and ∆RecA+ABG6X produced 39% and 141% more iron compared to ∆RecA,

respectively. Several questions regarding the regulation of magnetosome numbers as well as size in the

different overexpression strains still remain unknown. For instance it is unknown, how overexpression of

the mms6 operon alone causes formation of larger crystals. One important factor constraining growth

of crystals is the size of magnetosome vesicles. In some cases we found significantly enlarged vesicles

in the mms6 insertion strains by CET. This finding indicates that overexpression of a set of genes might

also directly influence the vesicle diameter prior to crystallization and defines the increase in crystal size.

This could be caused by accumulation of proteins encoded by the mms6 operon in the magnetosome

membrane, thereby having a marked effect on vesicle size.

Overexpression of the mms6 operon not only resulted in formation of larger crystals, but also the

number of magnetosomes was increased, which suggests that proteins encoded by the mms6 operon

might be itself involved in vesicle biogenesis and/or magnetosomal iron transport or recruit accessory
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proteins controlling those processes during magnetosome formation. However, whereas none of the

mms6 operon encoded proteins shares similarity to known iron transports or were shown to be in-

volved in vesicle genesis by deletion analyses, the mamAB operon encodes several factors involved in

vesicle biogenesis (MamL, MamB and MamQ) and iron transport (MamB and MamM). Thus, observa-

tions might hint towards interactions and/or recruitment between/of proteins encoded by the mms6 and

mamAB operons.
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Figure 6.3: Construction and phenotype of overexpression strains. A. Strategy for construction of overexpres-
sion strains by amplification of different magnetosome operons. Insertional plasmids were constructed
based on genomic DNA from M. gryphiswaldense. Plasmids contain the magnetosome operons mamAB
(blue, AB), mamGFDC (green, GFDC), mms6 (brown) and the mamXY operon lacking ftsZm (pale blue,
XYZ ). The vector backbone (genes are indicated in red) contains transposase gene (tps), inverted re-
peats (IR), origin of transfer (oriT ), an R6K or p15A origin of replication (ori) and antibiotic resistance
cassette (abR). After conjugative transfer of the plasmids, the transposase recognizes IR sequences and
catalyzes chromosomal insertion of the target sequence. Additional copies of respective magnetosome
operons in the chromosome (oval shape) are marked with asterisks. B. TEM analysis of overexpression
strains compared to the parental strain ∆RecA. 1 and 2 illustrate the different morphotypes found for
∆RecA+AB 1x.

Our findings also raise the question, which accessory factors encoded outside the mam and mms

operons might limit the number or size of magnetosomes in the overexpression strains as well as in the

wildtype. The feoAB1 operon encoding a ferrous uptake system has been found to play a role in magne-
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tosome formation in M. gryphiswaldense [33]. However, its chromosomal duplication in ∆RecA+ABG6X

had only minor effects on the crystal size. Insufficient expression of non- amplified genes encoding

components of other iron uptake systems, such as the ferrous uptake protein FeoB2 [34], might prevent

further accumulation of iron in the cell. Furthermore, the regulator protein Fur is involved in global iron

homeostasis in M. gryphiswaldense [35], and has been found to control expression of all identified iron

uptake proteins, such as components of ferrous (FeoAB) and ABC ferric ion transport systems. There-

fore, this protein could also be indirectly involved in limiting the numbers and size of magnetosomes by

regulating the transcription of genes encoding components of iron uptake systems.

Besides the intracellular iron supply, which constrains magnetosome formation, further factors might

limit magnetosome biosynthesis in M. gryphiswaldense. Several enzymes participating in denitrification

(nitrate reductase Nap, nitrite reductase Cd1) [36,37], aerobic respiration (cytochrome c oxidase Cbb3)

[38], and the oxygen sensor Fnr [39] have been found to poise optimal redox conditions during mag-

netite biomineralization. Consequently, the corresponding proteins could also indirectly limit the number

or size of magnetite crystals by regulation of the intracellular redox balance. However, a more compre-

hensive genetic analysis will be necessary in the future to elucidate whether accessory, yet-unknown

factors control magnetosome formation in the wildtype as well as in the overexpression strains.

In summary, higher gene dosage of the magnetosome operons induces an increase in crystal produc-

tion within the native hosts by unknown mechanism. While duplication or triplication of the mms6 operon

alone caused formation of larger crystals and a moderate increase in crystal numbers, amplification of

all mam- and mms gene clusters specifically enhanced magnetosome numbers per cell.

6.5 Model for magnetosome biosynthesis: The step-wise

formation of magnetic organelles

Based on results obtained by this thesis and all other previous studies of magnetosome proteins an ex-

tended model for magnetosome biosynthesis in M. gryphiswaldense was finally proposed (Figure 6.3).

Within the last years it became clear that magnetosome biogenesis relies on five major steps: (i) vesi-

cle biogenesis, (ii) magnetosome protein sorting, (iii) iron uptake and magnetite crystal nucleation, (iv)

crystal maturation and (v) chain assembly as well as positioning [12]. To generate intracellular magnetic

mineral phases, cells must create and maintain a highly curved membrane compartment [25] that in-

cludes MamB, MamQ, and most propably MamL.

Both MamB (described below) and the small protein MamL, which has no predicted function, were

shown to be essential for magnetosome membrane genesis in M. magneticum [12] and M. gryphis-

waldense by a so far unknown mechanism [Raschdorf et al., in preparation; 14]. However, the relevance

and identity of magnetosome-like structures within ∆mamL remain to be verified in future studies with

higher resolution. MamQ shares homology with the LemA protein, which is conserved in several bacte-
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ria but whose function is uncertain [26,27]. MamQ has a high content of α-helices that are somewhat

reminiscent to the EFC/BAR (Fes-CIP4-homology/Bin-Amphiphysin-Rvs) domain of the Formin Binding

Protein 17 [12]. BAR domains have the ability to sense and stabilize membrane curvatures [28,29], and

their weak similarity to MamQ might hint towards related functions in MM vesicle genesis of the pro-

tein. However, we revealed a minor number of empty vesicles by CET within ∆mamQ cells, which were

randomly organized. Previously, it was suggested that some magnetosome proteins are sorted prior

to the vesicle formation and accumulate on the inner membrane as protein-protein-lipid complexes that

leads to a natural invagination without a special protein support and might explain random formation of

vesicles within ∆mamQ cells [30].

A further important step for magnetosome formation is the sorting of magnetosome proteins, which

was shown to be regulated by MamA and MamE, whereas MamA, a TPR (tetratricopeptide repeat)

domain-containing protein was speculated to play a role in activation of biomineralization [29]. MamA

self-assembles through its putative TPR domain and concave site to form a large homooligomeric scaf-

fold surrounding the magnetosomes [31,32], while its convex site interacts with other magnetosome-

associated proteins like MamC and several unidentified proteins [31,32]. The HtrA/DegP family pro-

tease MamE is involved in magnetosome protein localization by a protease independent process since

the proteins MamA and MamJ are delocalized within ∆mamE of M. magneticum and a protease-deficient

variant of MamE still supports the formation of small magnetite crystals [10].

MamO, a further magnetosome-associated protease, probably acts as localization determinant for

magnetosome proteins, as anion transporter or is directly involved in precipitation of iron oxide par-

ticles [10]. MamB and MamM were implicated in magnetosome-directed iron transport according to

their similarity to members of the cation diffusion facilitator (CDF) family [27,33,34]. Additionally, MamB

and MamM are involved in magnetite nucleation, and establishment of proper environments for mag-

netite synthesis [13,14]. Further proteins involved in iron uptake and magnetite nucleation are MamZ,

MamX and MamH that were proposed to form an iron oxidoreductase and transport complex in M.

gryphiswaldense [15]. The small magnetosome protein MamI (70 aa) has no significant homology to

already characterized proteins. ∆mamI still synthesized tiny and poorly crystalline non-magnetic parti-

cles, which consist of hematite. Recent findings in M. gryphiswaldense and M. magneticum indicate that

the observed poorly ordered iron (oxyhydr)oxide phases are precursors to the magnetite phase in bac-

teria [35,36]. In addition, the ability of MamP to precipitate ferrihydrite and magnetite in vitro (discussed

below) suggests that magnetite may be formed through a stepwise phase transformation process [37].

Such a biosynthetic phase transformation requires a precise control of iron supersaturation, pH, and

redox potential levels [38]. Hence MamI may be involved in an early stage of magnetite nucleation by

regulation of proper conditions within the vesicles.

The proteins MamN, P, S, T, and MamR are most likely involved in maturation of magnetosomes, since

deletion of corresponding genes resulted in defects in crystal size, number and morphology. Due to sim-

ilarity of MamN to the human Permease P that regulates the intraorganelle pH of melanosomes together
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with an ATP-driven proton pump [39], MamN presumably regulates pH conditions within the magneto-

some vesicles by export of protons released by the precipitation of magnetite (2Fe3+ + Fe2+ + 4H2O

→ Fe3O4 +8H+) [40,41]. Thus the observed phenotype of ∆mamN might be due to alteration of the

intra-magnetosomal pH. MamP contains a double cytochrome c motif (CXXCH), referred to as magne-

tochrome domain that is necessary for heme-binding [42] and seems to interact with the magnetochrome

domain containing proteins MamE, MamX and MamT through its PDZ domain to somehow regulate the

electron transport required for biomineralization of the mixed valence iron oxide magnetite [10,15,37].

Magnetosomes in ∆mamP of M. gryphiswaldense show a similar crystallization defect (magnetite crys-

tals flanked by flakes) like the mamX mutant of M. gryphiswaldense [15] and thus might indicate the

involvment in same steps of magnetosome biosynthesis. In contrast, phenotypes of M. gryphiswaldense

∆mamT (smaller particles) and ∆mamE (total loss of electron dense particles) are distinct from the dele-

tion phenotype of ∆mamP, suggesting that some or all of the magnetochrome proteins have different or

additional functions. Isolated MamP from M. magneticum catalyzed the formation of ferrihydrite and

magnetite from iron solutions in vitro, indicating that MamP binds and oxidizes iron [37].

MamR contains a HTH-17 domain mainly occurring in excisionases (Xis) that is known to interact

through its α-helix with integrases and promotes recombination by helping integrases to bind dsDNA

[43]. MamR also contains two α-helices that might evoke interactions with other crucial magnetosome

proteins and thus, controlling particle number and size as suggested for MamR of M. magneticum [12].

MamS, which has similarity to the putative serine proteases and magnetochrome domain containing pro-

teins MamE and MamX, plays a key role for crystal maturation, too [10,15]. However, MamS itself lacks

a magnetochrome domain, which argues against its direct participation in redox control. The protease

activity of MamE and MamO is assumedly important for crystal growth, too, and MamE presumably

removes growth inhibitors proteolytically or activates growth promoting proteins to regulate crystal size

[10]. Furthermore, proteins encoded by the mms6 and mamGFDC operons [23] are key regulators for

magnetite crystal growth (as discussed above). Finally, the assembly and midcell positioning of nascent

magnetosome chains is coordinated by the actin-like MamK and the acidic MamJ protein [16,17,44,45].
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Figure 6.4: Hypothetical model for magnetosome biosynthesis in M. gryphiswaldense. Magnetosome biosyn-
thesis depends on various steps including various magnetosome proteins. (I) Magnetosome vesicle
formation is induced by the proteins MamQ, MamL, and MamB. MamY regulates vesicle shape [46].
(II) MamA forms a multiprotein complex surrounding the magnetosome membrane [32] and MamE is
involved in localization of magnetosome proteins by a protease independent process [10]. (III) The
heterodimer of the CDF transporters MamB and MamM transport ferrous iron into the magnetosome
vesicles [14] and ferric iron is taken up by MamH and MamZ [15] or formed by oxidation of ferrous iron
within the vesicles. MamI is involved in magnetite nucleation. MamO most likely is involved in pre-
cipitation of iron oxide particles [10]. (IV) Crystal growth is affected by several magnetosome proteins
also including MamE that removes growth inhibitors proteolytically or activates growth promoting pro-
teins [10]. Based on the conserved CXXCH heme-binding motif within MamE, MamT, MamP and MamX
proteins presumably form a complex for electron transport to regulate electron flow [15,42]. MamS and
MamR control crystal size by an unknown mechanism. MamN exhibits similarity to H+-translocation pro-
teins and might be involved in crystal growth by regulating intramagnetosomal pH [39]. Mms6 is tightly
bound to the magnetosome crystals [7,47] and assembles into coherent micelles for templating crystal
growth [48]. Mms48 and Mms36 act as inhibitors of crystal growth or recruit inhibiting proteins of particle
growth by an unknown mechanism. The small, hydrophobic proteins MamG, F, D, and MamC control in
a cumulative manner the growth of magnetite crystals [23]. Magnetosomes are assembled into chains
by the interaction of MamJ with the actin-like MamK filament that is also involved in chain positioning
[16,17,24]. MamY plays a crucial role in proper magnetosome chain localization [Raschdorf et al., in
preparation]. OM: outer membrane; IM: inner membrane. Underlined proteins: analyzed proteins in this
study, by single gene deletion of encoding genes. Proteins in brackets: non-essential proteins encoded
by the mamXY operon.
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Future directions

The complex process of magnetosome formation requires a high number of different magnetosome pro-

teins to form highly crystalline magnetite particles in M. gryphiswaldense. Results of this work provide

new insights into the functional diversity of magnetosome proteins encoded by the mms6, mamGFDC,

mamAB and mamXY operons and how these operons can be used to enhance magnetosome forma-

tion.

This will be, for example useful for future genome reduction approaches in MTB. By removal of un-

necessary or problematic genomic regions, strains of M. gryphiswaldense can be engineered for the

production of magnetosome particles with increased genetic stability due to the elimination of repeats

and transposases. Instead of repeated, deletion of MAI regions that led to highly instable phenotypes

the deletion of the entire MAI and reintegration of important magnetosome genes is a promising method.

However, it will be indispensable to obtain a complete and gap-free closed M. gryphiswaldense genome,

especially to identify the real organization of the A2 region within the MAI.

Despite the identification of essential and non-essential proteins for magnetite formation as well as

their importance for the various steps of magnetosome biosynthesis, the functions of most MM pro-

teins still remain unknown and several detailed analyses are required. It remains to be shown whether

the identified essential magnetosome proteins are also sufficient for magnetosome biosynthesis in M.

gryphiswaldense in the absence of other factors encoded by the mamAB operon and other magneto-

some operons. Therefore, a synthetic construct encoding MamE, L, M, O, Q and MamB (and MamI)

should be expressed in the absence of mms6, mamGFDC, mamAB and mamXY operon to verify the

minimal essential gene set.

The transfer of modified magnetosome operons based on results obtained from this thesis will be

useful to genetically endow unicellular and multicellular organisms with magnetization by biosynthesis

of tailored magnetic nanoparticles.

Additionally, the modular expression or overexpression of various magnetosome genes and oper-

ons can be used for the production of engineered magnetic nanoparticles with tailored properties in M.

gryphiswaldense. For example elimination of Mms48 and Mms36 from the overexpression strains might

further enhance particle size, since both proteins seem to be involved in crystal growth inhibition.

Overexpression of a selected set of magnetosome genes could be exploited for the design of size-

controlled nanoparticles that display altered magnetic features or display various functionalized magne-

tosome proteins. The constructed strains will be useful for high and steady magnetosome production for

several nanotechnological and biotechnological applications.
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Materials and Methods 

Construction of integrative plasmids and deletion mutagenesis 

Downstream and upstream sequences of the deletion targets (AL01-AL03; AL05-AL08; AL11; 

Fig. S2.2) were amplified by PCR using M. gryphiswaldense chromosomal DNA and 

oligonucleotides listed in Table S2.3. PCR products were subcloned into pJet1.2 vector, 

sequenced and finally ligated into the mobilizable suicide plasmids. The basic suicide vector, 

pAL01 was constructed by amplifying homologous region AL01 by PCR using the primer pair 

AL33/AL34, containing the lox71 sequence. AL01 was digested with EcoRI-SalI and inserted 

into the corresponding site of pK19mobGII [1], resulting in pAL01. After digestion with EcoRI 

and NotI the plasmid was used for constructing vectors pAL05 and pAL07. The homologous 

regions were amplified with primers AL42/AL43 and AL48/AL49, respectively. Moreover, the 

multiple cloning site (MCS) from pBBR-MCS5 plasmid was amplified by PCR with 

AL115/AL116 primers. The fragment was digested with EcoRI-NotI and ligated into the same 

position of pAL01, creating pAL01_MCS1. Consequently, the homologous region AL03, 

amplified with primers AL107/AL108, was integrated after digestion with ClaI and NotI, 

resulting in pAL03.  The basic vector pAL02/2 was constructed amplifying the homologous 

sequence AL02/2 by PCR using the primer pair AL19/AL20, containing the lox66 site. The 

2148-bp fragment was cut with SalI-HindIII and cloned into pT18mob2. The resulting plasmid 

was designated pT18mob2_AL02/2. Gene for gentamicin resistance (Gm) was amplified by 

PCR from pBBR-MCS5 plasmid with primers AL81/AL82, and was inserted after digestion 

with EcoRI-SalI, resulting in pAL02/2_Tet. Tetracycline resistance gene was destructed by  
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digestion with PstI and the blunted and self-ligated vector was named pAL02/2. The MCS 

from pBBR-MSC5 was amplified with primers AL113/AL114 and the fragment was cut with 

HindIII-BamHI. Thus, the following plasmids were generated by using the following primer 

pairs and restriction endonucleases: pAL06 (AL121/AL122; XhoI-PvuI) as well as pAL08 

(AL92/93; BamHI- NotI). Due to plasmid instability a terminator sequence was inserted into 

pAL02/2_MCS2 after amplification with primers AL152/AL153 from plasmid pAP150 and 

digestion with KspI, resulting in pAL02/2_term. The plasmid was used to construct 

pAL11_term, whereby homologous sequences were amplified with primer pair AL94/95 and 

digested with BamHI-NotI. Excisions of the mms6 operon and mamXY operon were 

conducted by double cross-over mutagenesis as described previously [2,3]. Consequently, 

pCM184 [4] derivate were generated, whereby following oligonucleotides and restriction 

endonucleases were used to amplify and insert corresponding downstream and upstream 

fragments: pCM184_mms6_5'3' WT ([AL352/AL353; MfeI-NdeI], [AL354/AL355; ApaI-SacI]); 

pCM184_mms6_5'3' GFDC ([AL352/AL353; MfeI-NdeI], [AL132/AL133; MluI-SacI]); 

pCM184_mamXY_5'3' ([AL190/AL191; MfeI-NcoI], [AL188/AL189; ApaI-SacI]) and 

pCM184_mamXY_5’3’SU ([SU88/Su89; EcoRI-SmaI], [SU422/423; ApaI-ClaI]). While 

pCM184_mamXY_5'3' was used in the !A12 background, pCM184_mamXY_5’3’SU was 

employed in wildtype and !GFDC [2]. For Single gene excision of the mamW gene, upstream 

fragment was PCR amplified using primer pairs SU304/SU305 and SU306/SU307 for 

downstream region. Constructs were digested with MunI-NdeI or ApaI-SacI and ligated into 

pCM184, resulting in pCM184_mamW_3’5’. After conjugation of the final integrative plasmids 

into M. gryphiswaldense strains, single or double insertion mutants were selected with 

corresponding antibiotics and verified by direct cell PCR. The excision of large genomic 

segments was induced after conjugation with the Cre expression plasmid pCM157 [4]. 

Original lac promotor was exchanged by a native M. gryphiswaldense promotor (generated by 

Y. Le, unpublished data). To obtain marker-less mutants after double crossover occurred, the 

vector was also used for deletion of the inserted Km gene from pCM184. Specific gene 

replacements were verified by PCR and sequencing. !A19 was designed as previously 

reported [5] using MSR-1B as parent strain and the plasmids pSUMAI13_5’ (pK19mobGII  
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derivate) and pSUMAI13_3’ (pAS200 derivate) generated with following primer pairs and 

matching restriction endonucleases: [SU510/SU511; BamHI/XbaI] and [SU488/SU489; 

SalI/HindIII]. Plasmid pK19mobGII_mamJKL_3’5’ for deletion of genes mamJ, mamK, mamL 

was generated by inserting 1 kb fragments upstream and downstream of mamJ and mamK 

(amplified with primer pairs EK1_JKL u_f/ EK1_JKL u_r and EK_JKL d_f/ EK_JKL d_r) into 

pK19mobGII after digestion with XmaI-SpeI and SmaI, respectively. 

 

Conjugation experiments 

Plasmid transfer via conjugation was performed with E. coli BW29427 as donor strain and 

M. gryphiswaldense R3/S1 or its descendants as acceptor strains. Conjugation procedure 

was performed as described previously [3,5] with following modifications for genomic plasmid 

insertion: After the first plasmid transfer and 2h cultivation in liquid media, cells of single 

insertion mutants were grown in 100 ml FSM under selective conditions. E. coli BW29427 

containing the second insertion plasmid, was added after 32h of incubation. The concentrated 

suspension was spotted onto FSM agar dishes containing DAP, incubated for 8h and flushed 

from agar surface. After incubation of 2h in liquid FSM, cells were grown on selective agar 

plates containing X-Gluc. Blue colonies were transferred in 100 "l FSM as well as scaled up 

to 10 ml after positive testing for plasmid integration via PCR. Double integration mutants 

were subjected to excision by conjugation with pCM157 [5]. 

For trans-complementation, plasmid pCDS52_mms6_mmsF containing mmsF, mms6, 

mgr4074 and the native mms6 promoter (Pmms6) was constructed. The 1,448 bp fragment was 

digested with NsiI-EcoRI, and inserted into the same sites of pBBR-MCS2. Plasmid 

pmamXYop was constructed by PCR amplification of the mamXY operon with primer pairs 

AL200/AL201, which was inserted into pBBR-MCS2 after digestion with NdeI and XbaI. Other 

mutants could not be complemented because of their large sizes between 6 and 68 kb. 
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Supplementary tables 

Table S1. Strains and plasmids used in this study. 
 

Strains and plasmids Description References 
M. gryphiswaldense strains   

MSR-1 R3/S1 Rifr Smr, spontaneous mutant [3] 

MSR-1B Spontaneous mutant, lacking  

40,385 kb genomic region 

[6] 

!mamAB#K7 !mamAB [5] 

MSR-1B mgr4058tomgr4146 MSR-1B range of excision from 

mgr4058 to mgr4146 

[5] 

MSR_SU12 !mamAB with deletion to mgr4029 [5] 

!GFDC !mamGFDC [2] 

!mamJKL !mamJKL this study 

MSR+pAL01 MSR-1 R3/S1 (pAL01), Kmr this study 

MSR+pAL01+pAL02/2 MSR-1 R3/S1 (pAL01, pAL02/2), Kmr, 

Gmr 

this study 

MSR+pAL01+pAL11_term MSR-1 R3/S1 (pAL01, pAL11_term), 

Kmr, Gmr 

this study 

MSR+pAL03 MSR-1 R3/S1 (pAL03), Kmr this study 

MSR+pAL03+pAL06 MSR-1 R3/S1 (pAL03, pAL06), Kmr, 

Gmr 

this study 

MSR+pAL03+pAL08 MSR-1 R3/S1 (pAL03, pAL08), Kmr, 

Gmr 

this study 

MSR+pAL05 MSR-1 R3/S1 (pAL05), Kmr this study 

MSR+pAL05+pAL02/2 MSR-1 R3/S1 (pAL02/2, pAL05), Kmr, 

Gmr 

this study 

MSR+pAL07 MSR-1 R3/S1 (pAL07), Kmr this study 

MSR+pAL07+pAL08 MSR-1 R3/S1 (pAL07, pAL08),  Kmr, 

Gmr 

this study 

!A2 MSR-1 R3/S1 range of excision from 

mgr4026 to mgr4069 

this study 

!A3 MSR-1 R3/S1 range of excision from 

mgr4079 to mgr4088 

this study 

!A4 MSR-1 R3/S1 range of excision from 

mgr4106 to mgr4146 

this study 

!A5 MSR-1 R3/S1 range of excision from 

mgr4151 to mgr4174 

this study 
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!A7 MSR-1 R3/S1 range of excision from 

mgr4106 to mgr4174 

this study 

!A8 !mamXY this study 

!A10 !mms6 operon this study 

!A11 !mamXY, !mamGFDC this study 

!A12 !mms6 operon, !mamGFDC this study 

!A13 !mms6 operon, !mamGFDC, !mamXY this study 

!A14 !A7 with deletion of mms6 and 

mamGFDC operon 

this study 

!A19 MSR-1B with deletion from mgr4151 to 

mgr4175 

this study 

!A10_pCDS52_mms6_mmsF !mms6 operon 

(pCDS52_mms6_mmsF), Kmr 

this study 

!A10_pBBR-MCS2 !mms6 operon (pBBR-MCS2), Kmr this study 

!A8_pmamXY !mamXY (pmamXY), Kmr this study 

MSR-1_pmamXY MSR-1 R3/S1 (pmamXY), Kmr this study 

E. coli strain    

E. coli BW29427 thrB1004 pro thi rpsL hsdS lacZDM15 

RP4-1360D(araBAD)567DdapA 

Datsenko and 

Wanner 

(unpublished) 

E. coli DH5a 1341::[erm 

pir(wildtype)]trahsdR17recA1-

endA1gyrA96thi-1relA1 

Invitrogen 

Plasmids   

pJet1.2 Apr, eco47IR, rep (pMB-1) Fermentas 

pT18mob2 Tetr, pK18mob2 derivate [7] 

pK19mobGII Kmr, pMB-1 replicon, gusA, lacZ! [1] 

pCM184 Kmr, Apr, Tetr [4] 

pCM157 Tetr, Cre expression vector [4] 

pBBR-MCS2 Kmr, lacZa [8] 

pBBR-MCS5 Gmr, lacZa [8] 

pAP150 pBBR-MCS2, PmamDC45, gfp2, terminator 

sequence from pUC18R6K 

[9] 

pAS200 Gmr, ColE1 ori, sacB of Bacillus subtilis [4] 

pAL01 pK19mobGII digested with SalI and 

EcoRI, insertion of lox71 and  

homologous sequence AL01 

this study 

pAL01_MCS1 pAL01, digested with EcoRI and NotI, 

insertion of MCS from pBBR-MCS5 

this study 
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pT18mob2_AL02/2 pT18mob2 digested with SalI and HindI, 

insertion of the lox66 and  homologous 

sequence AL02/2 

this study 

pAL02/2_Tet pT18mob2_AL02/2 digested with SalI 

and EcoRI, insertion of gentamicin gene 

from pBBR-MCS5 

this study 

pAL02/2 pAL02/2_Tet digested with PstI, blunted 

and self-ligated 

this study 

pAL02/2_MCS2 pAL02/2 digested with HindIII and 

BamHI, insertion of MCS from pBBR-

MCS5 

this study 

pAL02/2_term pAL02/2_MCS2 digested with KspI, 

insertion of terminator sequence 

this study 

pAL03 pAL01_MCS1 digested with ClaI and 

NotI, insertion of homologous sequence 

AL03 

this study 

pAL05 pAL01 digested with EcoRI and NotI, 

insertion of homologous sequence AL05 

this study 

pAL06 pAL02/2_MCS2 digested with PvuI and 

XhoI, insertion of homologous sequnce 

AL06 

this study 

pAL07 pAL01 digested with EcoRI and NotI, 

insertion of homologous sequence AL07 

this study 

pAL08 pAL02/2 digested with BamHI and NotI, 

insertion of homologous sequence AL08 

this study 

pAL11_term pAL02/2_term digested with BamHI and 

NotI, insertion of homologous sequence 

AL11 

this study 

pCM184_mms6_5' WT pCM184 digested with MfeI and NdeI, 

insertion downstream fragment of 

mgr4070 

this study 

pCM184_mms6_5'3' WT pCM184_mms6_5' WT digested with 

ApaI and SacI, insertion upstream 

fragment of mgr4074 

this study 

pCM184_mms6_5'3' GFDC pCM184_mms6_5' WT digested with 

MluI and SacI, insertion downstream 

fragment of mamC 

this study 

pCM184_mamXY_5' pCM184 digested with MfeI and NcoI, 

insertion downstream fragment of ftsZm 

this study 

pCM184_mamXY_5'3' pCM184_mamXY_5' digested with ApaI this study 
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pCM184_mamXY_5'3' pCM184_mamXY_5' digested with ApaI 

and SacI, insertion upstream fragment  

of mamX 

this study 

pCM184_mamXY_5'SU pCM184 digested with EcoRI and SmaI, 

insertion downstream fragment of ftsZm 

this study 

pCM184_mamXY_5'3'SU pCM184 digested with ApaI and ClaI, 

insertion upstream fragment of mamX 

this study 

pCM184_mamW_5' pCM184 digested with MnuI and NdeI, 

insertion upstream fragment of mamW 

this study 

pCM184_mamW_5'3' pCM184_mamW_5' gigested with ApaI 

and SacI, insertion downstream 

fragment of mamW 

this study 

pSUMAI13_3' pAS200 digested with SalI and HindIII, 

insertion upstream fragment of mgr4174 

this study 

pSUMAI13_5' pKmobGII digested with BamHI and 

XbaI, insertion upstream fragment of 

mgr4151 

this study 

pK19mobGII_mamJKL_3' pK19mobGII digested with XbaI and 

SpeI, insertion of upstream fragment of 

mamJ 

this study 

pK19mobGII_mamJKL_3'5' pK19mobGII_mamJKL_3' digested with 

SmaI, insertion of downstream fragment 

of mamL  

this study 

pCDS52_mms6_mmsF pBBR-MCS2 digested with NsiI and 

EcoRI, insertion mmsF, mms6 and 

mgr4074  

this study 

pmamXY pBBR-MCS2 digested with NsiI and 

EcoRI, insertion of mamXY operon, 

native promotor 

this study 
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Table S2.  DNA oligonucleotides used in this work. 

Name Sequence 

AL019 5'-ATTGTCGACATAACTTCGTATAGCATACATTATACGAACGG 

TAGGATCCGGCATCCTGATCGGTAGGCGAT 

AL020 5'-AAGCTTAGAAGGGTTACGACGCCGGT 

AL033 5’-GAATTCGGCTGTTCGGCACCTCTGTT 

AL034 5’-AATGTCGACTCTAGACTCGAGATAACTTCGTATAATGTATG 

CTATACGAACGGTAGCGGCCGCTGATCTCGGGATCACTCGGT 

AL042 5'-GAATTCGCCACCTTGACAGAAATTGATATC 

AL043 5'-GCGGCCGCTCTTCCAACGAAATTGTGCG 

AL048  5'-GAATTCTTACCGCTCTTCGGCATCCACGCC 

AL049 5'-GCGGCCGCGGCAGCCTCATTTAAACATTCAGG 

AL081 5'-GAATTCACACCGTGGAAACGGATGAAGGCAC 
AL082 5'-GTCGACGCGCCTGAAGCCCGTTCTGG 
AL092 5'-GGATCCATGCCGGCGGACAGCAGATGCT 
AL093 5'-GCGGCCGCGCACGGAGACTCTCATAGTG  
AL094 5’-GGATCCACGCCTTCATCCTTGAACCA 
AL095 5’-GCGGCCGCTGGACATCAACGAAAAGGCA 
AL107 5'-ATCGATGTTCGATATCCGTCTGCGC  
AL108 5' - GCGGCCGCCTCTTCGGGGCAACGTGAA 
AL113 5'-GGATCCATAAGAATGCGGCCGCCCGCTCGAGCCCGGGCT 

GCAGGAATTCGA 
AL114 5'-AAGCTTTGGGTTCGTGCCTTCATCCG 
AL115 5'-GAATTCGGATCCGATATCAAGCTTATCGATACCGTCGACC 
AL116 5'-GCGGCCGCTGGGTTCGTGCCTTCATCCGTT 
AL121 5'-CTCGAGTATCGCCACCTTATGGGGAG 
AL122 5'-CGATCGATGCTGTCGGCCATCATCAT  
AL125 5'-GAATTCCTGATCTCCGGCAAGTGTAT 
AL132 5'-ACGCGTTGAAATATTGGGCTGGTTCACG 
AL133 5'-GAGCTCTGCTGCTGCCAATATCGTCG 
AL136  5'-ATGCATTCACCCGAGGCCGAACCTCA 
AL152 5'-TATACCGCGGGGCGGATTTGTCCTACTCAGG 
AL153 5'-GACTCCGCGGGACTCCTGTTGATAGATCCAGTAATGAC 
AL178 5'-GGATCCTTCATGTACTGCGGAACAGTCG 
AL179 5'-CATATGTTGGGCTTGTGGTTTTGGCGG 
AL188 5'-GGGCCCAAGGGCTGCTCCCGTGGTGG 
AL189 5'-GAGCTCCCCACGCATGTACACAGCCATA 
AL190 5'-CAATTGCTCGCTAAAAATGTGGGTTTCCG 
AL191 5'-CCATGGGCCGCTCCGGAAGAATCAAGC 
AL352 5'-CAATTGTGGCCCCGGTCAAGTCAACT 
AL353 5'-CATATGTACATGAGGGCATCGCGTTG ' 
AL354 5'-GGGCCCAATTGTCGACAAATCCCAAAGA 
AL355 5'-GAGCTCCCAAAGCAAAGGACTCCG  
SU88 5'-GAATTCTAAAAATGTGGGTTTCCG 
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SU89 5'-CCCGGGTGAGCCGCTCCGGAAGAAT 
SU304 5'-CAATTGATTGCCAGATGATCTTGATCATGTC 
SU305 5'-CATATGCATGGCCGCTTTCCAAACAGGTGA 
SU306 5'-GGGCCCTGAGGGAGTGGGGACTGCGAAGTA 
SU307 5'-GAGCTCAGCCGAACCGACCAAATACTGG 
SU422 5'-ATCGATCACAAGGGATAGATATGGC 
SU423 5'-GGGCCCCTAACCTTGATCCCCG 
SU488 5'-GTCGACATGCCGGCGGACAGCAGATGCT 
SU489 5'-AAGCTTGCACGGAGACTCTCATAGTG 
SU510 5'-GGATCCTTACCGCTCTTCGGCATCCACGCC 
SU511 5'-TCTAGACAAGGCAGCCTCATTTAAACATTCAGG 
EK1 JKL u_f  5'-TCTAGAGCAGCCGGTCCGATCGCCTTTGG 
EK_JKL u_r  5'-CCCGGGATTGCTAACTAGTTATCCCGCTCCACCCTCAAAGAA 
EK_JKL d_f  5'-ACTAGTCGCATTCCATGCTCCGTCGGAGC 
EK2_JKL d_r  5'-CCCGGGGGATCCCCGACGAAAATGGTTACGCCCG 
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Figure S1. Schematic illustration of methods for generation of deletions within the MAI.  

 (A) Allelic replacement of target genes using double cross-over followed by removal of 

selection marker with Cre-lox mediated excision. (B) Cre-lox recombination using the 

modified sequences lox71 and lox66 for specific excision of large chromosomal regions and 

construction of marker-less mutant strains. After excision the modified lox* sequence remains 

in the genome, but is poorly recognized by Cre recombinase making multiple recombination 

events possible. 
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Figure S2. Constructed suicide plasmids (pAL01 to pAL11_term) for integration of 

modified lox sequences. Regions (AL01 to AL11) within the MAI of M. gryphiswaldense 

used for site-specific plasmid insertion via homologous recombination to enable subsequent 

excision between lox sites of double insertions.  

MSR + pAL01 + pAL11_term MSR + pAL03 + pAL06 
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Table S3. Annotation and characteristics of MAI genes of M. gryphiswaldense.  

Genomic 
Location 

Length [bp] Annotation Blastp hits for                                 
AMB/MS/MC/RS/MV* 

Hits outside MTB                                                                                          
(E-value / Organism)* 

Protein 
expression/ 
Reference 

mgr4024 496 hypothetical 
protein 

- / - / - / - / nf / - 

mgr4025 266 hypothetical 
protein 

- / - / - / - / nf / - 

mgr4029 170 hypothetical 
protein 

- / - / - / - / nf / - 

mgr4030 283 hypothetical 
protein 

- / 7e-09 / 1e-153 / 5e-39 7e-09 / Thermomicrobium roseum DSM 5159 - 

mgr4033 77 hypothetical 
protein 

- / - / - / - / nf / - 

mgr4034 71 hypothetical 
protein 

- / - / - / - / nf / - 

mgr4035 163 two-
component 
response 
regulator 

4e-23 / 1e-19 / 3e-09 / 7e-09 / nf 1e-15 / Caulobacter crescentus NA1000 - 

mgr4036 106 hypothetical 
protein 

1e-08 / 2e-15 / - / - / nf 2e-20 / Pseudomonas putida BIRD-1 - 

mgr4037 199 hypothetical 
protein 

3e-77 / 4e-75 / - / - / 5e-92 2e-9 / Polaromonas sp. JS666 - 

mgr4038 145 structural 
protein 

7e-77 / 8e-76 / - / - / nf 5e-34 / Desulfovibrio vulgaris str. 
Hildenborough 

- 

mgr4039 766 phage-related 0.0 / 0.0 / - / 1e-34 / 0.0 2e-164 / Methylobacillus flagellatus KT - 
mgr4040 144 hypothetical 

protein 
6e-74 / 3e-74  / -/ - / 2e-41 4e-38 / Burkholderia vietnamiensis G4 - 

mgr4041 82 hypothetical 
protein 

- / - / - / - / nf 2e-18 / Candidatus Accumulibacter 
phosphatis clade IIA str. UW-1 

+ d 

mgr4042 137 plasmid - / 3e-6 / - / - / nf 8e-41/ Polaromonas sp. JS666 - 



stability like 
mgr4043 200 hypothetical 

protein 
5e-97 / 4e-96 / - / - / 4e-47 8e-58 / Burkholderia vietnamiensis G4 - 

mgr4044 72 hypothetical 
protein 

1e-14 / 3e-15 / - /- / nf / - 

mgr4045 136 hypothetical 
protein 

6e-73 / 2e-71 / - / - / nf / - 

mgr4046 270 hypothetical 
protein 

9e-27 / 3e-25 / 3e-15 / - / nf 3e-31 / !-proteobacterium BAL199 - 

mgr4047 102 hypothetical 
protein 

4e-13/ 9e-19 / - / - /  nf 1e-08 / Rhodospirillum centenum SW - 

mgr4048 67 hypothetical 
protein 

- / 4e-17 / - / - / nf 2e-21 / !-proteobacterium BAL199 - 

mgr4049 138 hypothetical 
protein 

- / - / - / - / nf / - 

mgr4050 186 phage-related - / 1e-35 / 5e-14 / - / nf 9e-64 / !-proteobacterium BAL199 - 
mgr4052 116 hypothetical 

protein 
3e-51 / 2e-51 / - / - / nf / - 

mgr4053 410 hypothetical 
protein 

- / - / - / - / nf 3e-140 / Mesorhizobium loti MAFF303099 - 

mgr4054 340 sensory 
transduction 

histdine kinase 

1e-75 / 3e-73 /- / - / nf 7e-61 / "-proteobacterium MLMS-1 - 

mgr4056 378 hypothetical 
protein 

- / - / - / - / nf / - 

mgr4057 138 MamW 1e-44 / 7e-45 / - / - / nf /  + b, c, d 

mgr4061 342 hypothetical 
protein 

- / - / - / - / nf / - 

mgr4062 421 two-
component 
response 
regulator 

e-122 / 2e-63 / - / - / nf 1e-13 / Asticcacaulis excentricus CB 48 - 

mgr4063 161 hypothetical 
protein 

2e-30 / 4e-31 / - / - / nf / - 

mgr4064 159 hemerythrin- 5e-58 / 8e-59/ 1e-10 / 1e-8 / nf 3e-12 / Candidatus Methanoregula boonei - 



mgr4064 159 hemerythrin-
like 

5e-58 / 8e-59/ 1e-10 / 1e-8 / nf 3e-12 / Candidatus Methanoregula boonei 
6A8 

- 

mgr4065 55 hypothetical 
protein 

- / - / - / - / nf / - 

mgr4066 109 hypothetical 
protein 

7e-13 / 5e-13 / - / - / nf / - 

mgr4067 503 pentapeptide 
repeat 

containing 
protein 

1e-172 / 1e-173 / - /- / nf 5e-27 / Anaerotruncus colihominis DSM 
17241S101 

+  

mgr4069 85 hypothetical 
protein 

- / - / - / - / nf / - 

mgr4070 449 TPR-like 
protein 

1e-136 / 1e-135 / - / - / nf 2e-22 / Rhodospirillum rubrum ATCC 11170 + 

mgr4071 347 hypothetical 
protein 

1e-86 / 2e-10 / - / - / nf 4e-5 / Starkeya novella DSM 506 + 

mgr4072 124 MmsF 7e-44 / 1e-44 / 4e-21 / - /8e-27 1e-5 / Clostridium scindens ATCC 35704      + b, d 
mgr4073 136 Mms6 2e-16/ 2e-16/ - / - / >1e-5 /      + b, d 

mgr4074 90 hypothetical 
protein 

- / - / - / - / nf / - 

mgr4075 111 MamG 6e-9 / 1e-7 / - / - / nf / + b 
mgr4076 111 MamF 1e-42 /  1e-42 / 8e-20 / - / 9e-25 1e-5 / Blautia hydrogenotrophica DSM 10507      + b, d 
mgr4077 314 MamD 2e-89 / 5e-90 / 7e-14  / - / 7e-5 /        + a, b, d 
mgr4078 125 MamC 5e-21 / 5e-21 / 3e-07 / - / 1e-6 /        + a, b, d 
mgr4079 278 IdiA-fragment 1e-82 / 1e-82 / - / - /nf 1e-87 / Synechococcus sp. JA-2-3B'a(2-13) - 
mgr4082 524 hemerythrin-

like 
6e-83/ e-105/ 7e-09 / 3e-10/ nf 8e-13 / Colwellia psychrerythraea 34H - 

mgr4083 150 hemerythrin-
like 

2e-83/ 1e-83 / 1e-11 / 2e-10/ nf 3e-14 / Candidatus Koribacter versatilis 
Ellin345 

- 

mgr4088 415 hypothetical 
protein 

0.0 / 0.0 / - / - / nf 2e-64 / Bradyrhizobium sp. BTAi1 - 

mgr4089 428 MamH 0.0 / 3e-87 / 1e-116 /  - /1e-141 1e-36 / Chlorobium luteolum DSM 273 + 
mgr4090 77 MamI 3e-15 / 3e-15 /3e-11 / -  / 2e-09 / - 
mgr4091 772 MamE 0.0 / 0.0 / 7e-57 / 1e-34 / 3e-119 1e-37 / Rhodopirellula baltica SH 1      + a, b, d 



mgr4092 426 MamJ 2e-74 / 2e-74 / - / - / nf /      + b, d 

mgr4093 360 MamK 0.0 / 0.0 / 3e-99 / 1e-65 / 1e-101 3e-92 / Desulfurivibrio alkaliphilus AHT2   + d 

mgr4094 123 MamL 8e-32  / 1e-19 /- / - / nf / - 
mgr4095 318 MamM 1e-173 / 1e-173 / 1e-75 / 3e-35 / 1e-95 7e-33 / Thermoanaerobacter sp. X514     + b, d 
mgr4096 437 MamN 0.0 / 0.0 / - / - / 4e-99 4e-46 / Clostridium botulinum H04402 065   + b 
mgr4097 632 MamO 0.0 / 0.0 / 1e-78 / 3e-13 / e-148 4e-13 / Acidimicrobium ferrooxidans DSM 

10331 
    + b, d 

mgr4098 270 MamP 1e-108 / 1e-108 / 8e-34  / - / 2e-57 3e-4 / Legionella pneumophila str. Corby + 
mgr4099 217 MamA 1e-113 / 1e-113 / 3e-37 / 1e-09 / 2e-49 2e-15 / Microscilla marina ATCC 23134        + a, b, d 
mgr4100 272 MamQ 1e-111 / 1e-110 / 1e-37 / 2e-53 / 2e-48 1e-17 / Bacillus sp. NRRL B-14911      + b, d 
mgr4101 72 MamR 1e-30 / 6e-31 / - / - / 3e-07 /      + b, d 
mgr4102 297 MamB e-159 / e-159 / 2e-79 / 2e-36 / 2e-92 8e-44 / Natranaerobius thermophilus JW/NM-

WN-LF 
       + a, b, d 

mgr4103 180 MamS 4e-60 / 2e-60 / 5e-13 / - / 5e-27 /      + b, d 
mgr4104 174 MamT 2e-86/ 2e-82 /4e-26 / 9e-05 / 1e-40 /      + b, d 
mgr4105 297 MamU 1e-114 / 1e-116 / - / -  / nf 2e-36 / Azospirillum sp. B510 + 
mgr4106 411 hypothetical 

protein 
- / - / - / - / nf / + 

mgr4108 458 HlyD secretion 
protein 

4e-38 / 1e-44 / 5e-67 / 5e-32 / 7e-60 1e-77 / Bradyrhizobium japonicum USDA 110 - 

mgr4109 738 HlyB secretion 
protein 

1e-72 / e-133 / 0.0 / e-128 0.0 / Pseudomonas aeruginosa     + d 

mgr4110 168 Gp28 8e-04/ 2e-04 / - / - / nf 4e-14 / Polaromonas sp. JS666 - 
mgr4111 161 hypothetical 

protein 
- / - / - / - / nf / - 

mgr4114 69 hypothetical 
protein 

- / 7e-10 / - / - / nf / - 

mgr4115 115 hypothetical 
protein 

2e-09/ 2e-08 / - / - / nf /   + d 

mgr4116 250 partition-
related protein 

2e-13 / 1e-15 / 2e-06 / 5e-06 / nf 1e-82 / Azospirillum sp. B510 - 

mgr4117 216 hypothetical 
protein 

- / - / - / - / nf 9e-50 / Azospirillum sp. B510 - 



mgr4121 58 hypothetical 
protein 

- / - / - / - / nf / - 

mgr4122 140 hypothetical 
protein 

- / -  / 2e-43 / - / nf 1e-37 / Aromatoleum aromaticum EbN1 - 

mgr4123 74 hypothetical 
protein 

- / - / 4e-25 / - / nf 8e-22 / Chlorobium phaeobacteroides DSM 
266 

- 

mgr4124 130 hypothetical 
protein 

2e-50 / 3e-51 / 1e-40 / - / nf 3e-28 / Pseudomonas fluorescens WH6 - 

mgr4125 155 hypothetical 
protein 

- / - / - / - / nf / - 

mgr4131 77 hypothetical 
protein 

- / - / - / - / nf 1e-20 / Rhodoferax ferrireducens T118 - 

mgr4132 398 regulator 
protein 

1e-130 / e-132 / - / - / nf 2e-07 / Hirschia baltica ATCC 49814 - 

mgr4140 93 hypothetical 
protein 

- / - / - / - / nf / - 

mgr4146 98 hypothetical 
protein 

- / - / - / - / nf / - 

mgr4147 323 FtsZm e-124 / e-124 / 6e-82 / 2e-79 / nf 1e-119 / Candidatus Puniceispirillum 
marinum IMCC1322 

+ d 

mgr4148 661 MamZ 0.0 / 0.0 / 1e-163 / - / 1e-128 4e-35 / Variovorax paradoxus EPS +  
mgr4149 269 MamX 1e-117 / 1e-117 / 3e-34 / - / 3e-14 / - 
mgr4150 371 MamY 1e-139 / e-140 / - / - / 2e-17 /    + d 
mgr4152 326 hypothetical 

protein 
1e-154 / 1e-156 / - / - / 2e-111 7e-51 / Chthoniobacter flavus Ellin428  +  

mgr4153 308 hypothetical 
protein 

1e-141 / 1e-143 / - / - / 7e-63 1e-19 / Spirosoma linguale DSM 74 - 

mgr4154 299 hypothetical 
protein 

1e-140 / 1e-139 / 5e-134 / - / 9e-76 / - 

mgr4160 115 hypothetical 
protein 

3e-17 / - / - / - / nf / - 

mgr4161 87 hypothetical 
protein 

- / 6e-47 / - / - / nf / - 

mgr4165 58 hypothetical 
protein 

3e-10 / - / - / - / nf / - 



*Homologs in magnetotactic or non magnetotactic bacteria were identified by NCBI database search engine with an e-value  

  threshold of <1e-05.  
a [10], b [11], c [12], d [13] 
 

 
 
!

mgr4166 422 hypothetical 
protein 

2e-74 / 2e-63 / - / - / nf 5e-14 / !-proteobacterium BAL199 - 

mgr4167 165 sensor (PAS) 
domain 

4e-58 / 3e-43 / 4e-12 / 7e-07 / nf 2e-45 / Roseibium sp. TrichSKD4 - 

mgr4169 699 hypothetical 
protein 

1e-112 / - / - / - /nf 3e-58 / Cellvibrio japonicus Ueda107 - 

mgr4170 133 hypothetical 
protein 

- / - / - / - / nf / - 

mgr4171 112 hypothetical 
protein 

- / - / - / - / nf 2e-15 / Hoeflea phototrophica DFL-43 - 

mgr4173 273 hypothetical 
protein 

- / - / - / - / nf / - 

mgr4174 190 phage-related 
protein 

1e-21 / 5e-30 / 6e-07 / 6e-17 / nf 8e-37 / Paracoccus denitrificans PD1222 - 
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Supplementary methods 

Construction of Tn5 transposon plasmids  

For construction of translational (C-terminal) gene fusions, the mamDC promoter (XbaI, BamHI 

restriction sites added) was cloned in front of either the mamGFDC operon or the mamJ gene (NdeI, 

KpnI), which were followed by the egfp gene (KpnI, EcoRI). The resulting construct was cloned into 

pBAM11 modified by a tetracycline resistance cassette (exchange of kmR against tcR with SanDI and 

AatII). The replicative plasmid pFM211 (Frank Müller, unpublished) harboring ftsZm with a mCherry 

fusion under control of an inducible lac promoter was recombined with pBAM1 to construct pBAM-

ftsZm_mcherry. The resident kmR was replaced by tcR using ET-recombination. For construction of 

pBAM_feoAB1, a fragment with PmamH and feoAB1 was amplified by PCR from pRU1feoAB (XbaI, 

EcoRI) and cloned into Tet-pBAM1.  

 

Intracellular iron measurements 
Cellular iron contents were determined after incubation under photoheterotrophic conditions in 10 ml 

Hungate tubes using a modified version of the ferrozine assay2. To this end, 4 ml cultures were 

centrifuged for 1 min at 11.000 rpm, resuspended in 90 !l HNO3 (65%) and incubated for 3 h at 99 °C. 

 

Sequencing 

For whole genome sequencing of strain R. rubrum_ABG6X a genomic DNA library was generated with 

the Nextera Kit (Illumina). Sequencing (1.25 Mio clusters, 2x 250 bp) was performed with a MiSeq 

sequencer (Illumina). Data analysis with CLC Genomics Workbench (CLCbio) confirmed single-site 

integration of both expression cassettes without mutations, except for a spontaneous deletion (aa 169-

247) within the hypervariable non-essential CAR domain of mamJ which was shown to be irrelevant 

for protein function3. 

Magnetosome isolation, electrophoresis and immuno-chemical detection 

For magnetosome isolation and expression analysis, cultures of R. rubrum were grown 

photoheterotrophically in sealed 5 liter flasks illuminated by white light, 1000 lux intensity. Cells were 

harvested, washed and resuspended into HEPES buffer4. Cell suspensions were lysed by sonication  
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and cellular debris was removed by low-speed centrifugation. Magnetic separation of magnetosome 

particles, solubilization of the enclosing organic layer and fractionation of non-magnetic membrane 

fraction and soluble proteins were performed as previously described5,6. Polyacrylamide gels were 

prepared according to the procedure of Laemmli7. Protein samples from different cellular fractions 

(magnetosome membrane, soluble fraction, non-magnetic membrane fraction) were resuspended in 

electrophoresis sample buffer and denatured at 98 °C for 5 min8. 10 !g of protein extracts were 

separated on a 15% SDS-polyacrylamide gel. Protein bands were visualized by Coomassie brilliant 

blue staining. Western blot analysis for detection of MamC was performed as previously described6. 

 

Mass spectrometry 

For mass spectrometry 25 !g solubilised proteins were tryptically in-gel digested as described 

previously9. The resulting fragments were separated on a C18 reversed-phase column and analyzed 

by nano-electrospray ionization-LC tandem MS (ESI-LC-MS/MS), recorded on an Orbitrap mass 

spectrometer9. Spectra were analyzed via MascotTM software using the NCBI nr Protein Database and 

a database from M. gryphiswaldense10.  
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Supplementary tables 

Table S1: Summary of magnetic responses (“Cmag”), intracellular iron content and crystal size 

and number of various strains (median values, ± = standard deviation). If not indicated otherwise, 

cells were grown in the presence of 50 !M ferric citrate. Magnetic response and total iron content 

measurements were performed with (n) biological replicates under identical conditions (see also 

material & methods). For determination of crystal size and number per cell, cells of one clone were 

analyzed by TEM (n=sample size). The Mann-Whitney test 

(http://elegans.som.vcu.edu/~leon/stats/utest.html) was performed for crystal size comparison of R. 

rubrum_ABG6X and R. rubrum_ABG6X_feo: the difference was highly significant (p<0.001, two tailed 

test). Crystal size comparison of R. rubrum_ABG6X_feo and M. gryphiswaldense revealed no 

significant difference (p"0.05, two tailed test).  

Strain 
Magnetic 
response  
(“Cmag”) 

Iron content 
(% dry weight) Crystal size (nm) Crystal number per 

cell 

M. gryphiswaldense MSR-1 1.4 ± 0.2 
(n=3) 

3.5  
(n=3) 

36 ± 9 
(n=310) 

24 ± 8 
(n=52) 

M. gryphiswaldense 
!mamAB_AB 

1.2 ± 0.2 
(n=3) n.d. 37 ± 10  

 (n=112) 
23 ± 7 
(n=24) 

M. gryphiswaldense MSR-
1B_AB 

0.2 
(n=3) n.d. 17 ± 6  

(n=112) 
16 ± 6 
(n=20) 

M. gryphiswaldense MSR-
1B_ABG 

0.6 ± 0.1, 
(n=3) n.d. 25 ± 6  

(n=104) 
13 ± 6 
(n=20) 

M. gryphiswaldense MSR-
1B_ABG6 

0.9± 0.2 
(n=3) n.d. 35 ± 8  

(n=103) 
18 ± 8 
(n=22) 

R. rubrum ATCC 11170 - 0.07 ± 0.04 
(n=3) - - 

R. rubrum_AB - 0.08 
(n=3) - - 

R. rubrum_ABG - 0.10 ± 0.01 
(n=3) - - 

R. rubrum_ABG6 - 0.17 
(n=4) 

12 ± 6 
(n=304) 

26 ± 10 
(n=50) 

R. rubrum_ABG6X 0.3 ± 0.2 
(n=3) 

0.17 ± 0.02 
(n=4) 

24 ± 7 
(n=307) 

10 ± 4 
(n=50) 

R. rubrum_ABG6X 500 !M 
ferric citrate 

0.3 
(n=4) n. d. 25 ± 7 

(n=301) 
11 ± 5 
(n=51) 

R. rubrum_ABG6X  
100 !M ferrous sulfate 

0.2 
(n=4) n.d. 24 ± 8 

(n=312) 
10 ± 5 
(n=52) 

R. rubrum_ABG6X_ftsZm 0.6 ± 0.1* 
(n=3) 

0.18 ± 0.03 
(n=3) 

26 ± 9 
(n=300) 

11 ± 4 
(n=51) 

R. rubrum_ABG6X_dJ 0.2 
(n=3) 

0.18 ± 0.01 
(n=3) 

27 ± 9 
(n=300) 

9 ± 4 
(n=50)** 

R. rubrum_ABG6X_dI - 0.09 ± 0.07 
(n=3) - - 

R. rubrum_ABG6X_feo 0.8 ± 0.1 
(n=3) 

0.28 ± 0.07 
(n=3) 

37 ± 10 
(n=300) 

10 ± 4 
(n=52) 

 
*The slightly increased Cmag is likely due to effects of the genuine cell division protein FtsZm on 

cell morphology, as no difference in iron content and crystal size or number per cell was 
detectable. 

**64% of mutant cells (n=32) harbored clustered magnetosomes, whereas 36% still showed a 
chain-like alignment of magnetosomes (n=18).
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Table S3: Strains and plasmids used in this study. KmR= kanamycin resistance, TcR= 

tetracycline resistance, ApR= ampicillin resistance, BSDR= blasticidin S resistance, CmR= 

chloramphenicol resistance, GmR= gentamicin resistance, SpecR= spectinomycin resistance. 

Strain or plasmid Characteristics Reference(s) or source 

Magnetospirillum gryphiswaldense 
strains  

 
M. gryphiswaldense MSR-1 

 
Wild-type (wt) DSM-6361,15 

M. gryphiswaldense MSR-1B 
spontaneous unmagnetic 

mutant lacking parts of the 
MAI 

16 

M. gryphiswaldense !mamAB mamAB deletion mutant 17 

M. gryphiswaldense !mamAB _AB 
KmR, transposon mutant 

with inserted mamAB 
operon 

This study 

M. gryphiswaldense MSR-1B_AB 
KmR, transposon mutant 

with inserted mamAB 
operon 

This study 

M. gryphiswaldense MSR-1B_ABG 

KmR, SpecR, transposon 
mutant with inserted 

mamAB and mamGFDC 
operon 

This study 

M. gryphiswaldense MSR-1B_ABG6 

KmR, CmR, transposon 
mutant with inserted 

mamAB, mamGFDC and 
mms6 operon 

This study 

Rhodospirillum rubrum strains  

R. rubrum ATCC 11170 wt 

18 

(kindly provided by H. 
Grammel, Magdeburg) 

R. rubrum_AB 
KmR, transposon mutant 

with inserted mamAB 
operon 

This study 

R. rubrum_ABG 

KmR, SpecR, transposon 
mutant with inserted 

mamAB and mamGFDC 
operon 

This study 

R. rubrum _ABG6 

KmR, CmR, transposon 
mutant with inserted 

mamAB, mamGFDC and 
mms6 operon 

This study 

R. rubrum_ABG6X 

KmR, CmR, GmR 
transposon mutant with 

inserted mamAB, 
mamGFDC, mms6 and 
mamXY operon (without 

ftsZm) 

This study 

R. rubrum_ABG6X_dJ 

KmR, CmR, GmR, ApR 

transposon mutant with 
inserted mamAB (mamJ 
deletion), mamGFDC, 

mms6 and mamXY operon 
(without ftsZm) 

This study 

R. rubrum_ABG6X_dI KmR, CmR, GmR, ApR This study 
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transposon mutant with 
inserted mamAB (mamI 
deletion), mamGFDC, 

mms6 and mamXY operon 
(without ftsZm) 

R. rubrum_ABG6X_ftsZm 

KmR, CmR, GmR, TcR 

transposon mutant with 
inserted mamAB, 

mamGFDC, mms6 and 
mamXY operon (without 
ftsZm) and ftsZm under 

control of an inducible lac 
promoter 

This study 

R. rubrum_ABG6X_feo 

KmR, CmR, GmR, TcR 

transposon mutant with 
inserted with inserted 
mamAB, mamGFDC, 
mms6, mamXY and 

feoAB1 operon 

This study 

R.rubrum_GFDC-EGFP TcR transposon mutant with 
inserted mamGFDC-EGFP This study 

R.rubrum_ABG6X_GFDC-EGFP 

KmR, CmR, GmR, TcR 

transposon mutant with 
inserted mamAB, 

mamGFDC, mms6 and 
mamXY operon (without 
ftsZm) and mamGFDC-

EGFP 

This study 

R. rubrum_J-EGFP TcR transposon mutant with 
inserted mamGFDC-EGFP This study 

R. rubrum_ABG6X_J-EGFP 

KmR, CmR, GmR, TcR 

transposon mutant with 
inserted mamAB, 

mamGFDC, mms6 and 
mamXY operon (without 
ftsZm) and mamJ-EGFP 

This study 

Escherichia coli strains  

DH10b 

F– mcrA "(mrr-hsdRMS-
mcrBC) #80lacZ"M15 
"lacX74 recA1 endA1 

araD139 "(ara leu) 7697 
galU galK rpsL nupG $– 

Invitrogen 

BW29427 dap auxotroph derivative of 
E. coli strain B2155 

K. Datsenko and B. L. 
Wanner, unpublished 

WM3064 

thrB1004 pro thi rpsL hsdS 
lacZ"M15 RP4-1360 
"(araBAD)567 

"dapA1341::[erm pir] 

W. Metcalf, kindly 
provided by J. Gescher, 

KIT Karlsruhe 

Plasmids  

pSC101-BAD-gbaA 

TcR, replicative plasmid 
containing red#/red$ 

recombinases under the 
control of a L-Arabinose 

inducible promoter, 
temperature sensitive origin 

of replication 

19  

p15A-Tps-oriT-Km 

KmR, BSDR, oriT, p15A 
origin of replication, 
mariner tps, cloning 

cassette 

20 

pSSK18 (BAC_mamAB) BAC containing the 16 
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mamAB operon from M. 
gryphiswaldense 

pTps_AB 
KmR, BSDR, mariner tps 

vector containing mamAB 
operon 

This study 

pTps_ABG 
SpecR, KmR, BSDR, mariner 
tps vector with mamAB and 

mamGFDC operon 
This study 

pTps_ABG6 

CmR, KmR, BSDR, mariner 
tps vector with mamAB, 
mamGFDC, and mms6 

operon 

This study 

pTps_XYZ 
GmR, BSDR, mariner Tps 
vector with mamY, mamX 

and mamZ 
This study 

pTps_ABG6_dJ 

CmR, KmR, BSDR, ApR, 
mariner tps vector with 

mamAB, mamGFDC, and 
mms6 operon, (mamJ 

deletion) 

This study 

pTps_ABG6_dI 

CmR, KmR, BSDR, ApR, 
mariner tps vector with 

mamAB, mamGFDC, and 
mms6 operon, (mamI 

deletion) 

This study 

pBAM1 KmR, ApR, %R6K origin of 
replication, oriT, Tn5 vector 

21 

Tet-pBAM1 TcR, ApR, %R6K origin of 
replication, oriT, Tn5 vector This study 

Tet-pBam_mamGFDC-EGFP 

TcR, ApR, mamGFDC 
operon under control of 
PmamDCwith a C-terminal 
EGFP fusion, Tn5 vector 

This study 

Tet-pBam_MamJ-EGFP 

TcR, ApR, mamJ under 
control of PmamDC with a C-
terminal EGFP fusion, Tn5 

vector 

This study 

pRU-1feoAB 

KmR, broad host range 
pBBRMCS2, feoAB1 

operon under the control of 
PmamH 

R. Uebe, unpublished 

Tet-pBam_feoAB1 
TcR, ApR, feoAB1 operon 

under the control of PmamH, 
Tn5 vector 

This study 

Tet-pBam-ftsZm_mCherry 

TcR, ApR, ftsZm, lacI with a 
C-terminal mCherry fusion 
under control of inducible 

Plac, Tn5 vector 

This study 

pFM211 

KmR, broad host range 
pBBRMCS2, lacI, ftsZm 
with C-terminal mCherry 

fusion, mamK with N-
terminal EGFP fusion 

F. Müller, unpublished 
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Table S4: Oligonucleotides used in this study. 

Primer Nucleotide sequence (5'-3')a Product 

Mam-tps5 AATTCGCACGGACTATAGCAACGAATCGAGGTCGGTTGAC
AAGCCATAAATCAGAAGAACTCGTCAAGAAGGC 

Mam-tps3 GAACGAAGATGAGACAGAAATCCGTGGCGCCGAGCGTAA
GCATCCGGTGAGAACCTCATTCCCTCATGATACAG 

p15A-Tps-oriT-Km, 
ET-recombination 
with BAC_mamAB, 
pTps_AB 

mamGFC3 TATCATGAGGGAATGAGGTTCTCACCGGATGCTTACGCTC
GGCGCCAGAGCACATCGGGGTGAATGACGAC 

mamGFC5 CGCTAGCTGCGGGTTATTCGCATTTGC 

mamGFDC operon, 
ET-recombination 
with pTps_AB 

spectMam3 TCAAAACCCGCGCAGAGGCAAATGCGAATAACCCGCAGCT
AGCGTTATAATTTTTTTAATCTGTTATT 

spectMam5 TGATCCGCTATGGTAAGCGCATCATGTCCGGATCCCATGG
CGTTCCGCTCGTAACGTGACTGGCAAGAGATATT 

Spectinomycin 
resistance cassette, 
ET-recombination 
with pTps_AB 

mms6cm5 TACTGCGATGAGTGGCAGGGCGGGGCGTAAGCTTACAATT
TCCATTCGCCATTC 

mms6mam3 GTGCTTCGCTGTGTCCACAAGAACC 

mms6 operon, ET-
recombination with 
pTps_ABG 

cm-mms6-3 TGGCGAATGGAAATTGTAAGCTTACGCCCCGCCCTGCCAC
TC 

cm-mms6-5 TGATCCGCTATGGTAAGCGCATCATGTCCGGATCCCATGG
CGTTCCGCTCGTCCTGGTGTCCCTGTTGATACC 

Chloramphenicol 
resistance cassette, 
ET-recombination 
with pTps_ABG 

IK097 TCTAGAGGGCCCCAACTTTTTCGCTTTACTAGCTCTTAGTT
CTCCAATAAATTCCCTGCGTCGA 

IK098 CATATGCTGATCTCCGGCAAGTGTATGCACGATTCCCTCTC
TGCCCCTTAAAATCGACGCAGGGAAT 

PmamDC in pBAM1 

IK107 CATATGATCAAGGGCATCGCGGG 
IK101 GGTACCGGCCAATTCTTCCCTCAGAA 

mamGFDC operon 
in pBAM1 

IK102 GGTACCGGAGGCGGAGGCGGT 
IK103 GAATTCTTACTTGTACAGCTCGTCCATG egfp in pBAM1 

IK163 GAATTCTTAGCCGATTCGCAG 

IK164 GAGCTCGGCAGCCTCATTTAAA 

mamXY-operon 
(without ftsZm), ET-
recombination with 
p15A-Tps-oriT-Gm 

IK173 CCGGAATTGCCAGCTGGGGCGCCCTCTGGTAAGGTTGGG
AAGCCCTGCAACGTATAATATTTGCCCATG 

IK174 AGGCGATAGAAGGCGATGCGCTGCGAATCGGGAGCGGCG
ATACCGTAAAGCGATCTCGGCTTGAA 

Gentamicin 
resistance cassette, 
ET-Recombination 
with p15A-Tps-oriT-
Km 

IK208 CCCGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTG
CGCGCTTGGCCTCATTCCCTCATGATACAGAGAC 

IK209 GGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTT
CGCCAGCTGTCTCGGCTTGAACGAATTG 

p15A-Tps-oriT-Gm, 
ET-recombination 
with mamXY 

IK213 GACGTCGAGCCACGGCGG 

IK214 GGGTCCCTCAGGTCGAGGTGGC 

Tetracycline 
resistance cassette 
in pBAM1 

IK215 TCTAGACTACAAGAATGTCCCGC 

IK216 GAATTCGGCATCCTGATCGGT 

feoAB1 
operon+PmamH in 
pBAM1 

IK217 CATATGATGGCAAAAAACCGG 
IK218 GGCGGTACCTTTATTCTTATCTTCAGCATCAC mamJ in pBAM1 

IK235 GGGTGGAGCGGGATAATGGCAAAAAACCGGCGTGATCGC
GGCACGGCTAAATACATTCAAATATGTATCC 

IK236 CTATTTATTCTTATCTTCAGCATCACATTTCGGCGATGAACA
ACTACCTTACCAATGCTTAATCAGTG 

Ampicillin resistance 
cassette insertion 
into mamJ of 
pTps_ABG6 

IK239 CGCCGCTTGTGTTCTGTATCAAGACTGGAGAACGTTTATG
CCAACTAAATACATTCAAATATGTATCC 

IK240 TCAACCATCGATGTTAGGGTCTGAGTTCGCCCTCTTACCG
GCAGGTTACCAATGCTTAATCAGTG 

Ampicillin resistance 
cassette Insertion 
into mamI of 
pTps_ABG6 

IK251 AAACCGCCCAGTCTAGCTATCGCCATGTAAGCCCACTGCA
AGCTACCTGCCCTCATTCCCTCATGATACA 

IK252 CAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAA
GAGGCCCGCACCGGATTTTGAGACACAAGACGTC 

Tet-pBAM1, ET- 
recombination with 
recombination with 
pFM211 



!"##$%&%'()*+,-#(%.*///*
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000*

///*
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000*

 
References 

1* 234,(%.5*67!"#!$%&*+8&#-.-(39%*:%'8&%*-'-$;)3)*8<*<8".*&-:'%(8(-4(34*=-4(%.3-*.%9%-$)*-*

48&#$%>*)%(*8<*:.8"#?)#%43<34*:%'%)*3&#$34-(%@*3'*&-:'%(8)8&%*=38&3'%.-$3A-(38'*-'@*

<"'4(38'7*'&!($)#"*+,%&*!"#5*BCDD?BD1E*FGEEHI7*

G* J-(A&-''5*K7!"#!$%&*6-:'%(8)8&%*4,-3')*-.%*.%4."3(%@*(8*4%$$"$-.*@393)38'*)3(%)*-'@*)#$3(*

=;*-);&&%(.34*)%#(-(38'7*-,%&!-+)*,.+,%&*"$5*1L1M?1LGD*FGE11I7*

L* N.-#%.5*O7!"#!$%&*6-&J5*-*=-4(%.3-$*-4(3'5*<8.&)*@;'-&34*<3$-&%'()*+/!0+0,*(,-(*-.%*

.%:"$-(%@*=;*(,%*-43@34*#.8(%3')*6-&P*-'@*Q3&P7*-,%&!-+)*,.+,%&*"$5*LBG?LRB*FGE11I7*

B* !4,%<<%$5*S75*T-.@%)5*S75*T.U'=%.:5*J75*V-''%.5*T7*W*!4,U$%.5*N7*X,%*&-Y8.*&-:'%(8)8&%*

#.8(%3')*6-&TZN+*-.%*'8(*%))%'(3-$*<8.*&-:'%(3(%*=38&3'%.-$3A-(38'*3'*

-$1/"#,23+*+%%45!1*637+28$%9"/2"*="(*.%:"$-(%*(,%*)3A%*8<*&-:'%(8)8&%*4.;)(-$)7*'&!

($)#"*+,%&*!#%5*LHH?LCM*FGEECI7*

R* !4,%<<%$5*S7!"#!$%&*S'*-43@34*#.8(%3'*-$3:')*&-:'%(8)8&%)*-$8':*-*<3$-&%'(8")*)(."4(".%*3'*

&-:'%(8(-4(34*=-4(%.3-7*:$#4*"*&&%5*11E?11B*FGEEMI7*

M* [%;("'35*\7!"#!$%&*!%$<?.%48:'3(38'*&%4,-'3)&*8<*6-&S5*-*&-:'%(8)8&%?-))843-(%@*X]2?

48'(-3'3':*#.8(%3'5*#.8&8(%)*48&#$%>*-))%&=$;7*;*,)&!:$#%&!<)$9&!=)+&!>!=!<*!%"5*KBCE?

BCH*FGE11I7*

H* J8&%3$35*S75*^-$35*_75*`%9%.3@:%5*X7*P7*W*\%a&-'5*N7*J7*6-:'%(8)8&%*9%)34$%)*-.%*#.%)%'(*

=%<8.%*&-:'%(3(%*<8.&-(38'5*-'@*6-&S*3)*.%b"3.%@*<8.*(,%3.*-4(39-(38'7*;*,)&!:$#%&!<)$9&!

=)+&!>!=!<*!%!5*LCLD?LCBB5*@83c1E71EHLd#'-)7EBEELD11E1*FGEEBI7*

C* S.-e-e35*S75*V%==5*P7*W*6-()"'-:-5*X7*S*'89%$*#.8(%3'*(3:,($;*=8"'@*(8*=-4(%.3-$*&-:'%(34*

#-.(34$%)*3'*-$1/"#,23+*+%%45!5$1/"#+)45*)(.-3'*S6`?17*'&!(+,%&!?7"5&*$'"5*CHBR?CHRE*

FGEELI7*

D* ].8A8.895*X7!"#!$%&*].8(%3'?6%@3-(%@*!;'(,%)3)*8<*f'3<8.&*!"#%.#-.-&-:'%(34*6-:'%(3(%*

\-'84.;)(-$)7*<90&!@4/)#&!-$#"*&*!'5*DR1gDRH*FGEEHI7*

1E* f%=%5*27!"#!$%&*X,%*4-(38'*@3<<")38'*<-43$3(-(8.*#.8(%3')*6-&`*-'@*6-&6*8<*

-$1/"#,23+*+%%45!1*637+28$%9"/2"*,-9%*@3)(3'4(*-'@*48&#$%>*<"'4(38')5*-'@*-.%*3'98$9%@*

3'*&-:'%(3(%*=38&3'%.-$3A-(38'*-'@*&-:'%(8)8&%*&%&=.-'%*-))%&=$;7*-,%&!-+)*,.+,%&*

"$5*C1C?CLR*FGE11I7*

11* 6".-(5*N7!"#!$%&*X,%*&-:'%(8)8&%*&%&=.-'%*#.8(%3'5*6&)Z5*3)*-*&-Y8.*.%:"$-(8.*8<*

&-:'%(3(%*=38&3'%.-$3A-(38'*3'*-$1/"#,23+*+%%45!5$1/"#+)45*S6`?17*-,%&!-+)*,.+,%&*

FGE1GI7*

1G* X-'-e-5*675*S.-e-e35*S7*W*6-()"'-:-5*X7*/@%'(3<34-(38'*-'@*<"'4(38'-$*4,-.-4(%.3A-(38'*8<*

$3#8)8&%*("="$-(38'*#.8(%3'*<.8&*&-:'%(8(-4(34*=-4(%.3-7*-,%&!-+)*,.+,%&*'(5*BCE?BCC*

FGE1EI7*

1L* h-':5*V7!"#!$%&*5$5A*-'@*5$5B*:%'%)*-.%*%))%'(3-$*<8.*&-:'%(8)8&%*4.;)(-$*

=38&3'%.-$3A-(38'*3'*-$1/"#,23+*+%%45!1*637+28$%9"/2"*6!2?17*C"2&!-+)*,.+,%&*!(!5*HE1?

HER*FGE1EI7*



!"##$%&%'()*+,-#(%.*///*
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000*

///*
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000*

1B* i"3'$-'5*S75*6".-(5*N75*^-$35*_7*W*J8&%3$35*S7*X,%*_(.SdN%:]*<-&3$;*#.8(%-)%*6-&K*3)*-*

=3<"'4(38'-$*#.8(%3'*a3(,*.8$%)*3'*&-:'%(8)8&%*#.8(%3'*$84-$3A-(38'*-'@*&-:'%(3(%*

=38&3'%.-$3A-(38'7*-,%&!-+)*,.+,%&*"%5*1EHR?1ECH*FGE11I7*

1R* !4,$%3<%.5*J7!"#!$%&*X,%*:%'")*-$1/"#,23+*+%%45*:%'7*'8975*@%)4.3#(38'*8<*-$1/"#,23+*+%%45!

1*637+28$%9"/2"*)#7*'897*-'@*(.-')<%.*8<*<D4$23+*+%%45!5$1/"#,#$)#+)45*(8*

-$1/"#,23+*+%%45!5$1/"#,#$)#+)45!)8&=7*'897*=62#&!<33%&!-+)*,.+,%&*!&5*LHDgLCR*F1DD1I7*

1M* !4,U==%5*!7!"#!$%&*+,-.-4(%.3A-(38'*8<*-*)#8'(-'%8")*'8'&-:'%(34*&"(-'(*8<*

-$1/"#,23+*+%%45!1*637+28$%9"/2"*.%9%-$)*-*$-.:%*@%$%(38'*48&#.3)3':*-*#"(-(39%*

&-:'%(8)8&%*3)$-'@7*'&!($)#"*+,%&*!")5*RHHD?RHDE*FGEELI7*

1H* Q8,))%5*S7!"#!$%&*Z"'4(38'-$*-'-$;)3)*8<*(,%*&-:'%(8)8&%*3)$-'@*3'*-$1/"#,23+*+%%45!

1*637+28$%9"/2"c*(,%*5$5<(*8#%.8'*3)*)"<<343%'(*<8.*&-:'%(3(%*=38&3'%.-$3A-(38'7*;E,=!

A/"*(5*%GRRM1*FGE11I7*

1C* ]<%''3':5*\7*W*X.U#%.5*_7*T7*X;#%*-'@*\%8(;#%*!(.-3')*8<*(,%*!#%43%)*8<*],8(8(.8#,34*

`-4(%.3-*6-3'(-3'%@*3'*]".%*+"$(".%7*F/#&!'&!=62#&!($)#"*+,%&!$!5*1D?GB*F1DH1I7*

1D* V-':5*P7!"#!$%&*S'*3&#.89%@*.%48&=3'%%.3':*-##.8-4,*=;*-@@3':*2%4S*(8*$-&=@-*2%@*

.%48&=3'-(38'7*-,%!(+,#")7/,%**$5*BL?RL*FGEEMI7*

GE* Z"5*P7!"#!$%&*K<<343%'(*(.-')<%.*8<*(a8*$-.:%*)%48'@-.;*&%(-=8$3(%*#-(,a-;*:%'%*4$")(%.)*

3'(8*,%(%.8$8:8")*,8)()*=;*(.-')#8)3(38'7*:4)%"+)!<)+92!C"2&**(5*%11L*FGEECI7*

G1* 6-.(3'%A?T-.43-5*K75*+-$$%)5*`75*S.%9-$8?28@.3:"%A5*67*W*@%*Q8.%'A85*^7*#`S61c*-'*-$$?

);'(,%(34*:%'%(34*(88$*<8.*-'-$;)3)*-'@*48')(."4(38'*8<*48&#$%>*=-4(%.3-$*#,%'8(;#%)7*

(-?!-+)*,.+,%&*!!5*LC*FGE11I7 
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Supplementary figures 
 
 

 
Fig. S1: Construction scheme of insertion cassettes for modular expression of the 
mam and mms operons. (a) Recombineering of a BAC containing the mamAB operon (blue) 

and a vector backbone (Km-p15A-Tps-oriT-Km, orange) harboring a MycoMar transposase 

gene (tps), inverted repeats (IR), origin of transfer (oriT), p15A origin of replication (p15A) and 

a kanamycinR cassette (kmR, orange). (b) Insertion of a spectinomycinR cassette (specR, pink) 

and the mamGFDC operon (green) into pTps_AB by triple recombination. (c & d) Stitching of 

pTps_ABG by insertion of the mms6 operon and a chloramphenicolR cassette. (e) pTps_XYZ 

consisting of a Tps vector backbone (orange), mamXYZ (pale blue) and a gentamicinR gene 

(gmR, purple) was constructed. (f) Plasmids were transferred by conjugation into R. rubrum. 

Transposition of the DNA-fragments within the IR sequences occurred at random positions at 

TA dinucleotide insertion sites by a “cut and paste” mechanism1. (g) Chromosomal insertion 

sites of the transposed constructs in R.*rubrum_ABG6X are shown with adjacent genes (red) 

as revealed by whole genome sequencing performed with a MiSeq sequencer (Illumina) 

(accession number of R. rubrum ATCC 11170: NC_007643). pTps_ABG6 inserted within a 

gene encoding a putative aldehyd dehydrogenase (YP_426002), and pTps_XYZ inserted 

within rru_A2927, encoding a putative acriflavin resistance protein (protein accession number 

YP_428011). Sequences of inserted magnetosome operons matched those of the donor 

(M. gryphiswaldense) with no detectable mutations, except for a deletion (aa 169-247) within 

the hypervariable non-essential CAR domain of mamJ, which was shown to be irrelevant for 

protein function2 
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Fig. S2: Transmission electron micrographs of MSR mutants expressing various 

insertional transposon constructs. The plasmids pTps_AB, pTps_ABG and pTps_ABG6 

were transferred into the non-magnetic M. gryphiswaldense mutants &mamAB3 and MSR-1B, 

the latter lacking most of the magnetosome genes except of the mamXY operon3,4. After 

transfer of pTps_AB, a wt-like phenotype was restored in "mamAB_AB as revealed by Cmag 

(1.2 ± 0.2) and measured crystal sizes (37 ± 10 nm) in comparison with M. gryphiswaldense 

wt (36 ± 9 nm, Cmag=1.4 ± 0.2) (see also Table S1). Mutant MSR-1B was only partly 

complemented after insertion of pTps_AB and pTps_ABG, that is, Cmag and crystal sizes were 

still lower than in the wt (Table S1). Transfer of pTps_ABG6 restored nearly wt-like 

magnetosome formation in MSR-1B (35 ± 8 nm, Cmag=0.9± 0.1). ±= s.d. Scale bar: 1 µm, 

insets: 0.2 !m. 
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Fig. S3: HRTEM lattice image of a crystal from R. rubrum_ABG6 with the 

corresponding Fourier transform (i) that shows intensity maxima consistent with the 

structures of hematite. 
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Fig. S4: Growth, magnetic response and ICM/Bchl a production of R. rubrum_AGB6X. 

(a & b) Cells were grown in ATCC 112 (chemotrophic, 20% O2), Sistrom A (phototrophic, 

anoxygenic) and M2SF (chemotrophic, 1%O2) medium for 3 (30 °C), 4 (23 °C) or 10 (18 °C) 

days. Optical density at 660 nm (black diamonds) and 880 nm and magnetic response (grey 

diamonds) were measured. The ratio OD880/OD660 (white diamonds) correlates with the 

amount of chromatophores produced in the cells (median values n=3, error bars indicate 

s.d.). No Cmag was detectable under aerobic and microaerobic conditions at 30 °C. (c & d) 

Absorption spectra of extracted bacteriochlorophylls from R. rubrum wt (c) and R. 

rubrum_ABG6X (d) (phototrophic growth, 30 °C).  
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Fig. S5: Growth of R. rubrum wt and R. rubrum_ABG6X (OD660). Cells of R. rubrum were 

incubated in Sistrom A medium (1000 lux) for 3 days at 23 °C under anaerobic conditions. No 

growth defects of mutant strain ABG6X (median values n=3, error bars indicate s.d.) were 

detectable compared to the untransformed wt (n=3).  
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Fig. S6: Proteomic analysis of magnetosomes from R. rubrum_ABG6X. (a) 1D SDS-

PAGE of Coomassie blue stained proteins solubilized from isolated magnetosome particles of 

M. gryphiswaldense and R. rubrum_ABG6X. Bands of the same size are indicated 

(arrowheads). (b) Immunodetection of MamC (12.4 kDa) in blotted fractions of 

M. gryphiswaldense and R. rubrum_ABG6X using an anti-MamC antibody5. A signal for 

MamC was detectable in the magnetic membrane fraction of R. rubrum_ABG6X (6), which 

was absent from the soluble fraction, but faintly present also in the non-magnetic membrane 

fraction (5), possibly originating from empty membrane vesicles or incomplete magnetic 

separation during isolation. Protein extracts from M. gryphiswaldense: 1. soluble fraction, 2. 

non-magnetic membrane fraction, 3. magnetosome membrane. Protein extracts from R. 

rubrum_ABG6X: 4. soluble fraction, 5. non-magnetic membrane fraction, 6. magnetic 

(“magnetosome”) membrane fraction. M: Marker. 
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Fig. S7: Fluorescence microscopy of R. rubrum wt and R. rubrum_ABG6X cells 
expressing different EGFP-tagged magnetosome proteins. For localization studies of 

fluorescently labeled magnetosome proteins, strains were cultivated in ATCC medium 

overnight at 30 °C with appropriate antibiotics (Table S3). (a & b) MamGFDC with a C-

terminal MamC-EGFP fusion expressed in R. rubrum wt (n=151) (a), and R. rubrum_ABG6X 

(n=112) (b). In the transformed strain, a filamentous structure is visible for 79% of the cells 

(n=89). c & d, MamJ-EGFP expressed in R. rubrum wt (n=109) (c), and in R. rubrum_ABG6X 

(n=89) displaying a chain-like fluorescence signal in 63% of the cells (n=56) (d). Scale bar: 

2!m. 
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Fig. S8: TEM of cryo- or chemically fixed, thin sectioned R. rubrum strains. Cells were 

cultivated under photoheterotrophic conditions. ICM sizes of cryo fixed R. rubrum wt 

(93 ± 34 nm, n=95) and vesicles surrounding immature magnetosomes of cryo fixed R. 

rubrum_ABG6X (66 ± 6 nm, n=6) were measured.  
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Fig. S9: Size distribution of magnetosome crystals in M. gryphiswaldense and different 
R. rubrum strains. Whereas crystals of R. rubrum_ABG6 (n=303) and R. rubrum_ABG6X 

(n=306) were smaller than those of the donor M. gryphiswaldense (n=310), crystal sizes of 

R. rubrum_ABG6X_feo (n=301) were significantly larger, approaching those of the donor 

strain (see also Table S1).  
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Figure S10: Transmission electron micrographs of whole cells of different R. rubrum 
strains expressing magnetosome gene clusters. Scale bar: 1 !m, inset: 0.2 !m. 
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Table S2: Magnetosome proteins identified in the MM of strain R. rubrum_ABG6X by nano-electrospray ionization-LC tandem MS (ESI-LC-MS/MS). 

Spectra were analyzed via MascotTM software using the NCBI nr Protein Database and a database from M. gryphiswaldense1 (asterisks). Proteins are listed 

in the order of their exponentially modified protein abundance index (emPAI). The data have been deposited to ProteomeXchange with identifier PXD000348 

(DOI 10.6019/PXD000348). 

Protein Accession 
number 

Coverage 
(%) 

No. of 
spectrum 
matches 

No. of 
sequence 
peptides 

Molecular 
weight 
(kDa) 

Calculated 
pI emPAI Putative function 

MamK MGR_4093 57 9 9 39.6 5.4 1.51 Magnetosome chain 
assembly/positioning 2,3 

MamC MGR_4078 32 4 3 12.4 5.1 1.01 Crystal size and shape 
control 4 

MamJ MGR_4092 32 10 6 48.6 4.0 0.76 Magnetosome chain 
assembly 5 

MamA MGR_4099 37 1 1 23.9 5.7 0.65 

TPR-like protein 
associated with the 

magnetosome membrane 
6,7 

MamF MGR_4076 17 1 1 12.4 9.1 0.60 Magnetosome size and 
shape control 4 

Mms6 MGR_4073 19 1 1 12.7 9.5 0.58 Magnetosome 
crystallization 8,9 

MamD MGR_4077 20 3 3 30.2 9.8 0.49 Crystal size and shape 
control 4 

MamM* MGR_4095 15 3 3 34.7 5.8 0.42 Iron transport/MM 
assembly 10 

MmsF* MGR_4072 8 2 1 13.9 9.3 0.23 Crystal size and shape 
control 11 

MamB* MGR_4102 7 1 1 32.1 5.4 0.21 Iron transport/MM 
assembly 10 

MamY* MGR_4150 18 2 2 40.9 4.8 0.16 
Tubulation and 

magnetosome membrane 
formation 12 

MamO* MGR_4097 6 3 3 65.3 6.5 0.15 Magnetosome 
crystallization 13,14 

MamE MGR_4091 4 2 2 78.3 8.1 0.08 Magnetosome 
crystallization 13,14 
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Genetic dissection of the mamAB and mms6 operons reveals a 

gene set essential for magnetosome biogenesis in 

Magnetospirillum gryphiswaldense. 

 
  Publication state: published in Journal of Bacteriology. Ahead of print 9 May 2014 
 
 

Materials and Methods 

HRTEM of mutants !mamI and !mamN 

As shown by HRTEM, the nuclei within !mamI were composed of several small grains that 

formed thin aggregates (Figure 4.2). In most particles, the incipient nuclei did not show lattice 

fringes in HRTEM images and lacked a visible crystalline structure. This might be caused by 

either (i) no close orientation of these particles to a crystallographic zone axis, or (ii) an 

amorphous structure, which seems more likely because of the weak diffraction contrast of the 

nuclei. Lattice fringes were observed in only two particles, and according to the Fourier 

transforms of the HRTEM images, the spacing between the fringes was ~3.71 Å (Figure 

4.2B), which is very close to the d(012) spacing in hematite, whereas no other iron oxide has 

a d-spacing close to this value. For a second highly elongated particle only part of the crystal 

produced fringes with a distance of 2.72 Å, and showed again a value very close to that of 

hematite (d(014) = 2.70 Å) (Figure 4.2C). Thus, the few tiny electron dense particles seem to 

consist of hematite.  

 

Complementation of mutant strains 

Mutants carrying the respective insertion plasmids showed WT-like magnetosome 

biomineralization (Figure S4.3). Expression of WT alleles of mms6 and mmsF from replicative 

plasmids pAL_mms6 and pAL_mmsF was sufficient to restore phenotypes of !mms6 and 

!mmsF at least in a significant fraction of cells (Figure S4.3). Complementation of !A10 with 

mms6, mmsF and mgr4074 together (pmmsF_mms6_4074) led to crystals with 37 nm and 38  
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nm in size, but only 23 and 18 crystals per cell under control of the Pmms6  and PmamDC 

promoter, respectively. Only the entire mms6 operon was able to fully restore both numbers 

and crystal size back to WT dimensions (Figure S4.3). Conjugative transfer of pAL_mamIg 

and pOR086 into mutants !mamI and !mamQ resulted in restoration of particle synthesis in 

83% and 66% of cells, respectively. However, strain !mamQ_ pOR086 synthesized fewer 

particles than WT. 
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Table S1. Strains and plasmids used in this study. 
Strains and plasmids Description References 
MSR strains   

MSR-1 R3/S1 Rifr Smr, spontaneous mutant (1) 

!mamAB !mamAB (2) 

!A13 !mms6 operon, !mamGFDC, 

!mamXY 

(3) 

!A12 !mms6 operon, !mamGFDC, (3) 

!A10 !mms6 operon (3) 

!mamI deletion of mgr4090 this study 

!mamL deletion of mgr4094 this study 

!mamN deletion of mgr4096 this study 

!mamP deletion of mgr4098 this study 

!mamA deletion of mgr4099 this study 

!mamQ deletion of mgr4100 this study 

!mamR deletion of mgr4101 this study 

!mamS deletion of mgr4103 this study 

!mamT deletion of mgr4104 this study 

!mamU deletion of mgr4105 this study 

!mms48 deletion of mgr4070 this study 

!mms36 deletion of mgr4071 this study 

!mmsF deletion of mgr4072 this study 

!mms6 deletion of mgr4073 this study 

!mmsF_mms6 deletion of mgr4072 and  mgr4073 this study 

!mmsF_mamF deletion of mgr4072 and mgr4076 this study 

!mamI::mamI !mamI+pAL_mamIg, Kmr this study 

!mamL::mamL !mamL+pORmamL this study 

!mamN::mamN !mamN+pBam_mamN, Kmr this study 

!mamP::mamP !mamP+pBam_mamP, Kmr this study 

!mamA::mamA !mamA+pBam_mamA, Kmr this study 

!mamQ::mamQ !mamQ+pOR86, Kmr this study 

!mamR::mamR !mamR+pBam_mamR, Kmr this study 

!mamS::mamS !mamS+pBam_mamS, Kmr this study 

!mamT::mamT !mamT+pBam_mamT, Kmr this study 

!mms48::mms48 !mms48+pBam_mms48, Kmr this study 

!mms36::mms36 !mms36+pBam_mms36, Kmr this study 

!mmsF::mmsF !mmsF+pAL_mmsF, Kmr this study 

!mms6::mms6 !mms6+pAL_mms6, Kmr this study 

!mmsF_mms6::mms6 !mmsF_mms6+pAL_mms6, Kmr this study 



Supplements Chapter IV 
 

 
IV 

_____________________________________________________________________ 

!mmsF_mamF::mmsF !mmsF_mamF+pAL_mmsF, Kmr this study 

!A10::Pmms6_mmsF,6,4074  !A10+Pmms6_mmsF,6,4074+ 

pAL_Pmms6_mmsF,6,4074, Kmr 

this study 

!A10::PmamDC_mmsF,6,4074 !A10+PmamDC_mmsF,6,4074+ 

pAL_PmamDC_mmsF,6,4074, Kmr 

this study 

!A10::mms6op !A10+pAL_PmamDC_mms6op, Kmr this study 

!mamI::mamCgfp !mamI, gfp fused to the 

chromosomal mamC 

this study 

!mamN::mamCgfp !mamN, gfp fused to the 

chromosomal mamC 

this study 

!mamP::mamCgfp !mamP, gfp fused to the  

chromosomal mamC 

this study 

!mamA::mamCgfp !mamA, gfp fused to the  

chromosomal mamC 

this study 

!mamQ::mamCgfp !mamQ, gfp fused to the  

chromosomal mamC 

this study 

!mamR::mamCgfp !mamR, gfp fused to the  

chromosomal mamC 

this study 

!mamS::mamCgfp !mamS, gfp fused to the  

chromosomal mamC 

this study 

!mamT::mamCgfp !mamT, gfp fused to the  

chromosomal mamC 

this study 

WT::mms36 MSR-1, chromosomal integration of 

mms36 

this study 

WT::mms48 MSR-1, chromosomal integration of 

mms48 

this study 

E. coli strains    

BW29427 thrB1004 pro thi rpsL hsdS 

lacZDM15 RP4-

1360D(araBAD)567DdapA 

Datsenko and 

Wanner,  

unpublished 

data 

DH5a 1341::[erm pir(WT)]trahsdR17 recA1-

endA1gyrA96thi-1relA1 

Invitrogen 

S17-1!pir RPA-2, Tc::Mu-Km::Tn7 ( pir) (4) 

WM3064 thrB1004 pro thi rpsL hsdS 

lacZDM15 RP4-1360D(araBAD) 

567DdapA::[erm pir] 

(5) 

Plasmids   

pJet1.2 Apr, eco47IR, rep (pMB-1) Fermentas 
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pCM184 Kmr, Apr, Tetr (6) 

pBam1 oriR6K, Kmr, Apr (7) 

pBam_mamGFDC pBam1, inserted mamGFDC operon Lohße, Kolinko 

et al., in 

preparation 

pBBR1MCS2 Mobilizable broad-host-range vector, 
Kmr 

(8) 

pCL6 pBBR1MCS2, 10-glycine linker, egfp, 
Kmr 

(9) 

pAP150 pBBR1MCS2, 10-glycine linker, egfp, 
Kmr 

(10) 

pORFM_galK suicide vector, Kmr Raschdorf et 

al., submitted 

for publication 

pFM236 integrative plasmid, gfp, Kmr Raschdorf et 

al., submitted 

for publication 

pAL_mamI 3’5’ pORFM_galK, upstream and 

downstream fragments of mamI, Kmr 

this study 

pOR_!mamL pORFM_galK, upstream and 

downstream fragments of mamL, Kmr 

this study 

pAL_mamN 3’5’ pORFM_galK, upstream and 

downstream fragments of mamN, 

Kmr 

this study 

pAL_mamP 3’5’ pORFM_galK, upstream and 

downstream fragments of mamP, 

Kmr 

this study 

pAL_mamA 3’5’ pORFM_galK, fragments of mamA, 

Kmr 

this study 

pAL_mamQ 3’5’ pORFM_galK, insertion of upstream 

and downstream fragments of 

mamQ, Kmr 

this study 

pAL_mamR 3’5’ pORFM_galK, upstream and 

downstream fragments of mamR, 

Kmr 

this study 

pAL_mamS 3’5’ pORFM_galK, upstream and 

downstream fragment of mamS, Kmr 

this study 

pAL_mamT 3’5’ pORFM_galK, upstream and 

downstream fragments of mamT, 

Kmr 

this study 

pAL_mamU 3’5’ pORFM_galK, upstream and this study 
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pAL_mamU 3’5’ pORFM_galK, upstream and 

downstream fragments of mamU, 

Kmr 

this study 

pAL_mamAB 3’5’ pORFM_galK, upstream fragments of 

mamH and downstream fragment of 

mamU,  Kmr 

this study 

pAL_mmsF_mms6 3’5’ pORFM_galK, downstream 

fragments of mmsF and upstream 

fragment of mms6, Kmr 

this study 

pCM184_mmsF 3’5’ pCM184, downstream and upstream 

fragment of mmsF, Kmr 

this study 

pCM184_mms6 3’5’ pCM184, downstream and upstream 

fragments of mms6, Kmr 

this study 

pCM184_mamF 3’5’ pCM184, downstream and upstream 

fragments of mamF,  Kmr 

this study 

pAl_mamIg pCL6, mamI,  Kmr this study 

pBam_mamN pBam_GFDC, mamN, Kmr this study 

pBam_mamP pBam_GFDC, mamP, Kmr this study 

pBam_mamA pBam_GFDC, mamA, Kmr this study 

pBam_mamR pBam_GFDC, mamR, Kmr this study 

pBam_mamS pBam_GFDC, mamS, Kmr this study 

pBam_mamT pBam_GFDC, mamT,  Kmr this study 

pOR086 pBBR1MCS2, mamQ, Kmr this study 

pBam_mgr4074 pBam_GFDC, mgr4074,  Kmr this study 

pALg pAP150, 10-glycine linker, egfp, Kmr this study 

pAL_mmsF pAP150, mmsF, Kmr this study 

pAL_mms6 pAP150, mms6, Kmr this study 

pAL_PmamDC_mms6op pAP150, mms6 operon, PmamDC, Kmr this study 

pAL_ Pmms6_mms6,F,4074 pAP150, mms6, mmsF, mgr4074, 

Pmms6, Kmr 

this study 

pAL_ PmamDC_mms6,F,4074 pAP150, mms6, mmsF, mgr4074, 

PmamDC, Kmr 

this study 
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Table S2. DNA oligonucleotides used in this work. 

Name Sequence 

AL251 GGATCCGGTTGGCGGAGCCTCCATT 

AL252 CATAAACGTTCTCCAGTCTTGAT 

AL253 ATCAAGACTGGAGAACGTTTATGCCTAACATCGATGGTTGATGAC 

AL254 GGTACCACTTCATCCAGTGCGAAAAGG 

AL255 GGATCCATTAAGCGCTGACATTCCATGC 

AL256 CACCTAGTTATCCACCTTGGA 

AL257 CCAAGGTGGATAACTAGGTGATCGCCGTTCTCGCAGGATG 

AL258 GGTACCCATGGCCACAGTTTGGGCCG 

AL259 GGATCCGGGCATGAATGTGGTGCAAG 

AL260 CATTCCCGGCTAATCCCAAAAC 

AL261 GTTTTGGGATTAGCCGGGAATGGAAGCTTGCCACGTGATAAATT 

AL262 GGTACCGGGCATCCTCGTACATGGTG 

AL263 GGATCCGGTGCTTATGTTGGCGGCAT 

AL264 CATACTGTTCTCCAAAATCCCA 

AL265 TGGGATTTTGGAGAACAGTATGGATGAACGTTCGGCCGTCTA 

AL266 GCGGCCGCGCTATAGATGCGGTGCGGCAG 

AL267 GGATCCTAAGGACAACCGTCCCGGCA 

AL268 CATATCCGCCTCGTTGCTATC 

AL269 ATAGCAACGAGGCGGATATGCATTCGCAGGAATCCAAGAATTG 

AL270 GGTACCTATCGAACTGCACGTCCTCG 

AL271 GGATCCGCAATCGCGTACAGCTACGA 

AL272 GGTCATCAAGGCACTTCCCT 

AL273 AGGGAAGTGCCTTGATGACCTGGAATACATGAACCGATGAAG 

AL274 GGTACCCAGAATCAAGACTAGAGCGCC 

AL275 GGATCCTGCAGGTGCTTGAGATGGTC 

AL276 CATGATTCCCCTCTCCTGATC 

AL277 ATCAGGAGAGGGGAATCATGTGGATGACCGTGCAGTGAG 

AL278 GGTACCAACGATCATTGACCCGTCCC 

AL279 GGATCCCGAGGACGTGCAGTTCGATA 

AL280 CATGTTCACCCTCTCTGTCC 

AL281 GGACAGAGAGGGTGAACATGGGCATTAAATGGCTGTTGTAAGC 

AL282 GGTACCGCCATCCATCCGTTCACG 

AL283 GGATCCTACCCGTGGGGAAGGCAAGA 

AL284 CATCTTCCACACAGCCCCTG 

AL285 CAGGGGCTGTGTGGAAGATGTCCATACTGGTTCCGAAATACG 

AL286 GGTACCCGAGGCTACGGGCTTTTTCC 
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AL287 GGATCCCCGTCAATGGTTTCGTGAAGG 

AL288 CATTCCCGTCACAATTCACCT 

AL289 AGGTGAATTGTGACGGGAATGTCCATACTGGTTCCGAAATACG 

AL364 GGATCCATTTCTGAACGGCAAAGGCA 

AL365 TGATCCATGCTATTACGCCT 

AL366 AGGCGTAATAGCATGGATCACGGTGCCTTTTCGTTGATGT 

AL367 GGTACCACTACTTGATTGCTAAGGAGAA 

AL368 GGATCCTAGCGCGCAGCAAAGTTGC 

AL369 TGAGGGCATCGCGTTGTTTG 

AL370 CAAACAACGCGATGCCCTCACAGGACGATCAGGCGTAATA 

AL371 GGTACCGGTCCTGGTTCTGTATCTGG 

AL372 GGATCCCTCGGTGCGTCTGATCAATA 

AL373 TGAGGTTCGGCCTCGGGTGA 

AL374  TCACCCGAGGCCGAACCTCAGGTTCCGACCGGAACCC  

AL375 GGTACCCAAAATAGTCTCGGCCATTG 

AL202 GAATTCCCATCGCCGACAATTCAGAC 

AL203 CATATGCTGAGGTTCGGCCTCGGGTGATT 

AL204 GGGCCCTTCATGTCCCCCCCCCCCCGTTCA 

AL205 GAGCTCGCCTCAGCCTGCGCTTTGCG 

AL208 GAATTCCGCGTTCCATTTCACCCAGG  

AL209 CATATGTGCTTTGCCCTCGCTTAAGC 

AL210 GGGCCCCGGCGAGCGATCTAACGGAC  

AL211 GAGCTCAAACATCGGGAGCGCCATGG 

AL240 GAATTCGCCTCCAGCCAGGGTTGGA 

AL241 CATATGGCGACGCGCTGTCCTGAAC 

AL242 GGGCCCCATTCCGTTGGCGATCTGAG 

AL243 GAGCTCACTGACGAGACCGTCGCCGT 

AL244 

 

ATATGGAATTCGGAGGCGGAGGCGGTGGCGGAGGTGGCGGAGTGAGCAAGG

GCGAGGAG 

AL245 GGATCCTTACTTGTACAGCTCGTC 

AL236 CATATGATGGTTTGCCCCCCTGGGGT 

AL250 GAATTCGGACAGCGCGTCGCGCAG 

AL398 CATATGATGAATAGCAAACTCGTCCT 

AL464 GAATTCCTAATTTATCACGTGGCAAG 

AL402 CATATGATGGACTTTCGGCCTGATCA 

AL465 GAATTCTCACTGCACGGTCATCCAC 

AL404 CATATGATGGGTACGCCAGGGGG 

AL466 GAATTCTTACAACAGCCATTTAATGCC 

AL406 CATATGATGACCTTTGTTCAGGGCG 
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AL467 GAATTCTCATCGGTTCATGTATTCCA 

IB302 GGCGGTACCATGTCTAGCAAGCCG 

IB303 GGCTCTAGATTAGACGGCCGAAC 

AL414 CATATGGTGGTTGGATTTATCACCCT 

AL469 TTAATTAATCATCCTGCGAGAACGGC 

AL417 CATATGATGCTATTACGCCTGATCGT 

AL487 GAATTCTCATGTACTGCGGAACAGTC 

AL488 GAATTCTCACTCGTCTCGAGACGA 

AL489 CATATGATGGACATCAACGAAAAGGC 

AL499 GAATTCTCAAGTAGTGCGGGACTGAA 

AL500 CATATGTTGGGCTTGTGGTTTTGGCG 

AL220 GGATCCTCAGATCCGGTCGGCCACC 

AL221 CATATGATGGTTGAAGCAATCCTTCGGA 

AL134 GGATCCTCAGGACAGCGCGTCGCG  

AL135 CATATGATGGTTTGCCCCCCTGGGGT 

AL178 GGATCCTTCATGTACTGCGGAACAGTCG 

AL179 CATATGTTGGGCTTGTGGTTTTGGCGG 

AL234 GGATCCTCACCCGAGGCCGAACCTCA 

AL394 CATATGATGCCAAGCGTGATTTTCGG 

AL395 GAATTCACCATCGATGTTAGGGTCTG 

OR252 GACAATGCATTGCTCAGCGAGATCAGTGACC 

OR253 GTCAGCGCTTAATGACGATGTTTCCGATCACTCTTACCATACCAATG 

OR254 CATTGGTATGGTAAGAGTGATCGGAAACATCGTCATTAAGCGCTGAC 

OR255 ACTCACTAGTGTTCTGCACCGCCTCACC 
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Table S3. Oligonucleotides for amplification of sequences and genes important for gene 

deletions or complementation experiments. 

Amplified region Oligonucleotides 

5’ flanking sequence of mamI AL251/AL252 

3’ flanking sequence of mamI AL253/AL254 

5’ flanking sequence of mamL OR252/OR253 

3’ flanking sequence of mamL OR254/OR255 

5’ flanking sequence of mamN AL255/AL256 

3’ flanking sequence of mamN AL257/AL258 

5’ flanking sequence of mamP AL259/AL260 

3’ flanking sequence of mamP AL261/AL262 

5’ flanking sequence of mamA AL263/AL264 

3’ flanking sequence of mamA AL265/AL266 

5’ flanking sequence of mamQ AL267/Al268 

3’ flanking sequence of mamQ AL269/Al270 

5’ flanking sequence of mamR AL271/AL272 

3’ flanking sequence of mamR AL273/AL274 

5’ flanking sequence of mamS AL275/AL276 

3’ flanking sequence of mamS AL277/AL278 

5’ flanking sequence of mamT AL279/AL280 

3’ flanking sequence of mamT AL281/AL282 

5’ flanking sequence of mamU AL283/AL284 

3’ flanking sequence of mamU AL285/AL286 

5’ flanking sequence of mms36 AL364/AL365 

3’ flanking sequence of mms36 AL366/AL367 

5’ flanking sequence of mms48 AL368/AL369 

3’ flanking sequence of mms48 AL370/AL371 

5’ flanking sequence of mmsF_mms6 AL372/AL373 

3’ flanking sequence of mmsF_mms6 AL374/AL375 

5’ flanking sequence of mmsF AL202/AL203 
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3’ flanking sequence of mmsF AL204/AL205 

5’ flanking sequence of mamF AL208/AL209 

3’ flanking sequence of mamF AL210/Al211 

5’ flanking sequence of mms6 AL240/AL241 

3’ flanking sequence of mms6 AL374/AL375 

mamP AL398/AL464 

mamS AL402/AL465 

mamT AL404/AL466 

mamR AL406/AL467 

mamA IB302/IB303 

mamN AL414/AL469 

mms36 AL488/Al489 

mms48 AL417/AL487 

mgr4074 AL499/AL500 

mmsF AL220/AL221 

mms6 AL134/AL135 

mms6 operon AL178/AL179 

mms6, mmsF, mgr4074 AL179/AL234 
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Supplementary figures 

 

 

 

 

 

 

 

Figure S4.1. Domain structures and protein sequence analysis of proteins encoded by 

the mms6 operon of MSR. 

A: Predicted domain structure of Mms6, MmsF, Mms36 and Mms48 (11, 12). All 

proteins contain transmembrane domains (13), and except for MmsF the 

proteins have predicted regions of low complexity (red). Mms48 has a predicted 

C-terminal TPR-HemY domain (yellow), and a PEP-TPR domain (orange).    

B: Protein sequence comparison of magnetosome proteins encoded by the 

mms6 operon of MSR, AMB, and MS. Black letters correspond to previous 

protein annotations; Bold letters mark the supposed start sequence; Grey letters 

illustrate sequences in front of previously annotated proteins; Underlined amino 

acids demonstrate potential false annotated sequences within the previous 

annotations of MSR.   

 

 

 

 

 

Mms6!
VPAQIANGMV CPPGVPVGTK –AAALGEMER EGATAKVGAG KVGAAKAG-- ---------- … !
MPAQIANGVI CPPGAPAGTK AAAAMGEMER EGAAAKAGAA KTGAAKTGTV AKTGIAAKTG …!
MPAQIANGVI CPPGAPAGTK AAAAMGEMER EGAAAKAGAA KTG-AAAKTG AVAKTGIAAK …  !

MmsF!
MKKSNCATRC --PERGGGDM VEAILRSTLG ARTTVMAALS YLSVLCFVPL LVDRDDEFVY …  !
-RGSRTARRA GLNEEEGG-M TEAILRSTLG ARTTVMAALS YLSVLCFVPL LVDRDDEFVY …!
-RGSRTARRA GLNEEEGG-M TEAILRSTLG ARTTVMAALS YLSVLCFVPL LVDRDDEFVY …!

Mms36!
MDINEKAPGP SGRRPARRRD GGGQVLVLYL AIAVVVAVLA WPWLAPRLGS FPGSLLSWIG …!
MDSNEKEQPL GGRRPARRRD GGGQVVVLYL AVILVGGVLA WPLLAPRLGG LPGPWAKWLG …!
MDSNEKEQPL GGRRPARRRD GGGQVVVLYL AVILVGGVLA WPLLAPRLGG LPGPWAKWLG …!

Mms48!
.SMLLRLIVL LIFMSPVVFA TLWFSDNVGS VQVEWLGWHV DSNMPVLLAV ILVVFLIFSA …!
VTMLLRLIVL LIFMSPVVLA TLWFSDNAGT VQVEWLGWHV DTNVPVLLGI LLAVFMLFSG … !
MTMLLRLIVL LIFMSPVVLA TLWFSDNAGT VQVEWLGWHV DTNIPVLLGI LLAVFMLFSG …!
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MS!
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Figure S4.2. Magnetosome size distribution of various generated deletion strains of 

MSR. Magnetosome size distributions of electron dense particles within the mutants !A10, 

!mms6, !mmsF, !mmsF_mms6, !mamF, !mmsF_mamF, !A12, !mms36, !mms48, and 

WT. 
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Figure S4.3. Overview about complementation experiments of various generated 

deletion strains of MSR and overexpression strains. TEM micrographs of !A10, !mms6, 

!mmsF, !mms36, !mms48, !mmsF_mamF, and !mmsF_mms6 cells with indicated gene 

complementations and overexpression strains WT::mms36 and WT::mms48. Scale bars: 500 

nm. 
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Figure S4.4. Protein sequence alignments of magnetosome proteins encoded by the 

mamAB operon of M. gryphiswaldense (MSR), M. magneticum (AMB), and M. 

magnetotacticum (MS). Asterisks mark amino acids that not part of the published geneome 

sequence; Black letters correspond to previous protein annotations; Bold letters mark the 

likely start codon; Grey letters indicate amino acids in front of previous protein annotations; 

Underlined amino acids demonstrate false sequences within the previous annotations of 

MSR.   

 

 

 

 

 

 

 

 

MNSKLVLLVV GVVFALVLVI GRQGGVVAPQ SISVSPQMST AAPVAAPIAF PQ-----ATN…!
MNSKVALLVV GLAVVLALVI GRQG-PVAPQ ATNTQSQAVA AGPVAAPVAF PQPLYPQAAN…!
MNSKVALLVV GLAVVLALVI GRQG-PVAPQ ATNTQSQAVA AGPVAAPVAF PQPLYPQAAN…!

LENSMSSKPS NMLDEVTLYT HYGLSVAKKL GANMVDAFRS AFSVNDDIRQ VYYRDKGISH…!
LENTMSSKPS DILDEVTLYA HYGLSVAKKL GMNMVDAFRA AFSVNDDIRQ VYYRDKGISH…!
LENTMSSKPS DILDEVTLYA HYGLSVAKKL GMNMVDAFRA AFSVNDDIRQ VYYRDKGISH…!

R.TFGRLSSR CRRSH.DDDS NEADMAVSDA DASSVDKVES /..../FITT LLMRYNAFVT…!
LTKGPRSEAV CGAFPSYDEL READMALGDA NVGSAPGVDF /..../FIAT LLMRYNTFVT… !
LTKGPRSEAV .GAFPSYDEL READMALGDA NVGSAPGVDF /..../FIAT LLMRYNTFVT…!

LIWTAVIKGS ALMTFVQGAM ALVDKVFGEE ILPHRIYSSG EAAQLLGMER LQVLEMVRAG…!
MIWTAVIKGS ALVTFVQGAM VLVDKIFGEE ILPHRIYSSA EASQLLGMDR LEVLGLIRSG…!
MIWTAVIKGS ALVTFVQGAM VLVDKIFGEE ILPHRIYSSA EAAQLLGMDR LEVLGLIRSG…!

MKFENCRDCR EEVVWWAFTA DICMTLFKGI LGLMSGSVAL VADSLHSGAD VVASGVTQLS…!
MKFENCRDCR EEVVWWAFTA DICMTLFKGV LGLMSGSVAL VADSLHSGAD VVASGVTQLS…!
MKFENCRDCR EEVVWWAFTA DICMTLFKGV LGLMSGSVAL VADSLHSGAD VVASGVTQLS…!

MDFRPDQVVA RIRGAVEGAL TAQSVLGIGG ALVLILVVIA LLPDRFTRGE GKTATAVSSG…!
MDIRPERMLS RIRQMAEGAV SPQLVLGLGV VLILGLVVSA MLPDRFTGGG KTGGGVTAQS…!
MDFRPEHVLS RIRQMAGGAV SPQLVLGLGA VLILGLVVSA MLPDRFTGGG KTGGGVTAQS…!

VNMGTPGGGR RWMTLISITL LMVVGLGLYW DKLSLSAGIS PATSPRRAEG LLLGRLPLPM…!
VSMEAPRRGR RWVSLGMIAL LAAIGLGLYW DQLSTPSGIT PATSPRRAEG LLLGRLPLPM…!
VSMEAPRRGR RWVSLGMIAL LAAIGLGLYW DQLSTPSGIT PATSPRRAEG LLLGRLPLPM…!

MRIAAIINAR AGTVLRMSPS AVTERLSVVW GSLGHDAAII LAEGKDMGRM VRKACRDPDI…!
MRIAAIINER AGTVACLSPP VVAARLSAIW TSLGHQAHVT LAEGKDMGRA IRKACRDPAV…!
MRIAAIINER AGTVARLSPP VVAARLSAIW TSLGHQAHVT LAEGKDMGRA IRKACRDPAV…!

MamH!

MamL!

MamI!

MamE!

MamJ!

MamK!

MSR!
AMB!
MS!

MSR!
AMB!
MS!

MSR!
AMB!
MS!

MSR!
AMB!
MS!

MamM!

MamN!

MamO!

MSR!
AMB!
MS!

MSR!
AMB!
MS!

MSR!
AMB!
MS!

MSR!
AMB!
MS!

MSR!
AMB!
MS!

VTGMEPGRSE VEGHQRNALY LLSALCMVFM TLVVAIQPLF LRNVLNIPFE TAGAVNANVQ…!
VSRVEAAAAE VKVRQHNALY LLSALCMVFM TLVVAIQPLF LRNVLNISFE TAGAVNANVQ…!
********** **MRQHNALY LLSALCMVFM TLVVAIQPLF LRNVLNISFE TAGAVNANVQ…!

LYQDWRTFMP SVIFGLLALA IGLLGLTAWW WSVTEFLRGA VPVALIIFGL VALAAGVQSV…   !
CIKTGVTFMP SVIFGLLALA LGLLGLTAWW WSVTEFLRGA VPVALLILGL VALASGVQSV…!
CIKTGVTFMP SVIFGLLALA LGLLGLTAWW WSVTEFLRGA VPVALLILGL VALASGVQSV…!

MTMFNGDVED GGRSNVSCGK DLKRYLMLMG VVALVVLFGA FIYRQSSGGL RLGAMMEQMT…!
MAMFNGDVED GGRGDASCGK DLKRYLMLMG VVALVVLFGA FIYRQSSGGL RLGAMLEQMG…!
MAMFNGDVED GGRGDASCGK DLKRYLMLMG VVALVVLFGA FIYRQSSGGL RLGAMLEQMG…!

MAKNRRDRGT DLPGDGDQK- ----ISTGPE IVSVTVHPSP NLAAAAKPVQ -GDIWASLLE…  
MANNRRDRDK GDGSQGEGLS AGGGMPSEPE IVSVTVHPTP TLAVSLKPAQ QGDIWASLLE…!
MANNRRDRDK GDGSQGEGLS AGGGMPSEPE IVSVTVHPTP TLAVSLKPAQ QGDIWASLLE…!

MWIDLLARER SDKMSEGEGQ AKNRLFLGID LGTSHTAVMT SRGKKFLLKS VVGYPKDVIG… !
RQLVI.HANG VTKMSEGEGQ AKNRLFLGID LGTSHTAVMS SRGKKFLLKS VVGYPKDVIG…!
MWIDLLARER SDKMSEGEGQ AKNRLFLGID LGTSHTAVMT SRGKKFLLKS VVGYPKDVIG…!

MVAGALCGWQ KNFRPSIGVS LVTFPVSDGG CHFGWRRCVA VQDI-GMVRV IGSLVFGGLI… !
TVAGAPCVWR KSFRRSIGVS LETSPARDGG RVRYAGRGYA AV.DSGMVRL IGSLVFGGLI…!
TVAGAPCVWR KSFRRSIGVS LETSPARDGG RVRYAGRGYA AV.DSGMVRL IGSLVFGGLI…!

MRKSGCAVCS RSIGWVGLAV STVLMVMKAF VGLIGGSQAM LADAMYSLKD MLNALMVIIG…!
MRKSGCTVCS RSIGWVGLAV NTVLMVMKAF VGLIGGSQAM LADAMYSLKD MLNALMVVIG…!
MRKSGCTVCS RSIGWVGLAV NTVLMVMKAF VGLIGGSQAM LADAMYSLKD MLNALMVVIG…!

MVGFITLAVF IATFAVIYRW AEGSHLAVLA GAAVLVVIGT ISGTYTPRMA VQSIYFETLA… !
MIGLLTLAVF VATFAVIYRW AEGSHLAVLA GAAALVVIGT ISGSYTPVMA LRSVYFETLA…!
MIGLLTLAVF VATFAVIYRW AEGSHLAVLA GAAALVMIGT ISGSYTPVMA LRSVYFETLA…!

MIEIGETMGD QPTNKIVFCE RSWKAPVSIL AFLILVTFAW GAYLLDNYDE DDYFRGSDDM…!
MIEVGETMGE LPTNKIVFCE RSWKTPVSIL AFLIFVTFAW GIYLLDHYDE DDNFHGADDL…!
MIEVGETMGE LPTNKIVFCE RSWKTPVSIL AFLIFVTFAW GIYLLDHYDE DDNFHGADDL…!

MamS!

MamA!

MamQ!

MamR!

MamB!

MSR!
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MS!
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Figure S4.5: XANES (X-ray Absorption Near Edge Structure) analysis of 

mutants !mamI and !mamN. XANES spectra obtained from !mamI (A) and 

!mamN (B) are clearly distinct from those of pure magnetite as in the WT or 

phosphate-rich ferric hydroxides as observed in the early mineralization stages 

in induction experiments with MSR or AMB (14, 15). For both mutants the pre-

edge peak and the low energy part of the edge are shifted towards lower 

energies with respect to a magnetite reference spectrum, which indicates the 

presence of higher ratios of ferrous iron in the cells than in the WT (33% Fe(II), 

67% Fe(III)). Linear combination fitting with reference compounds (magnetite, 

hematite, ferrihydrite, phosphate-enriched ferric hydroxides, ferrous 

hexaphosphate, spinach ferredoxin) suggest that the ferrous compounds are 

predominantly Fe-S clusters (proteins) and account for around 40% of the total 

iron content in the cells. Magnetite is clearly present in the !mamN mutant 

(around 50% of total iron), whereas the low fit quality for !mamI (large residue) 

does not allow us to reliable determine the structure of the Fe present in the 

bacteria apart from Fe-S. However, the overall line shape appears most 

consistent with an amorphous or only poorly ordered Fe compound as 

suggested by HRTEM. 
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Figure S4.6. Fluorescence micrographs of MSR WT and various deletion 

strains expressing different MamC-GFP fusions. Scale bar: 1 

!
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Supplementary table 

Table S5.1: Characteristic of generated overexpression strain. 

 

 

 

 

Strain Genotype Crystal 

Size 

Increased 

size [%] 

compared 

to WT 

Crystal 

number per 

cell 

Increased 

number 

[%] 

compared 

to WT 

Iron content 

[%] compared 

to !RecA 

Cell 

length 

 ["m] 

WT 1x MAI 35.6±13.0 - 34.3±8.4 - - - 

 

!RecA 

 

 

1x MAI 

 

36.2±11.0 

 

1.7 

 

33.9±10.3 

 

-1.2 

 

100 

 

4.44± 1.26 

 

!RecA+ 

mamGFDC 

 

 

2x mamGFDC 

operon 

 

44.9±13.5 

 

26.1 

 

36.3±12.4 

 

5.8 

 

7.4±1.1 

 

- 

 

!RecA+ 

mms6 1x 

 

 

2x mms6 operon 

 

45.7±14.2 

 

28.4 

 

46.5±14.3 

 

35.6 

 

14.9±2.9 

 

4.53±1.59 

 

!RecA+ 

GFDC/mms6 

 

2x mms6  

2x mamGFDC 

operon 

 

45.1±12.2 

 

26.7 

 

45.1±14.3 

 

31.5 

 

14.1±1.9 

 

- 

 

!RecA+ 

mms6 2x 

 

 

3x mms6 operon 

 

47.9±12.8 

 

34.6 

 

54.3±29.9 

 

58.3 

 

34.8±2.5 

 

4.56 ±1.46 

!RecA+ 

mms6 3x 

 

 

4x mms6 operon 

 

44.4±13.2 

 

24.7 

 

57.8±26.9 

 

68.5 

 

38.8±2.5 

 

5.10 ±1.95 

!RecA+ 

mms6 4x 

 

 

5x mms6 operon 

 

41.9±12.0 

 

17.7 

 

46.0±14.8 

 

34.1 

 

- 

 

5.30±1.70 

!RecA+ 

mamAB 1x 

 

2x mamAB 

operon 

34.0±17.6 -4.5 73.4±43.1 114.0 0.4±0.5 4.81± 1.82 

!RecA+ 

ABG6X 

 

2x mamGFDC 

2x mms6 

2x mamAB  

2x mamXY 

operon 

38.7±11.9 8.7 74.5±34.9 117.2 140.7±2.4  
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Figure S1: Characterization of mms6 operon overexpression strains. A: Cultivation of 

overproducing strain ∆RecA+mms6 2x at higher iron concentrations (250 μM iron) did not further 

increase magnetosome numbers, although size distribution were slightly shifted towards to larger 

crystals with maximum sizes up to 85 nm compared to ΔRecA. B: Growth curve and Cmag 

measurements of ΔRecA and ΔRecA+mms6 2x. C: Cultivation under anaerobic conditions with  

50 μM or 500 μM iron did not significantly increase iron uptake of ∆RecA+mms6 3x compared to 

cultivation under microaerobic conditions with 50 μM iron. 
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Figure S2: Proteomic characterization of the mamAB overexpression mutants.  
A: SDS-PAGE of the magnetosome membrane of ΔRecA and RecA+mamAB 1x. Comassie-
stained SDS-PAGE profiles of MM from strains ∆RecA+mamAB 1x revealed similar patterns 
compared to ∆RecA.  
B: Image J analysis was performed to quantitatively compare band intensities correlating with 
different proteins. In strain ∆RecA+mamAB 1x several bands including magnetosome proteins 
MamM (a), and MamA (b), showed higher intensities. MamC showed a higher intensity within the 
membrane of ∆RecA (c). 
C: Quantitative protein analysis was performed for the magnetosome membrane of ΔRecA and 
ΔRecA+mamAB 1x. Western Blot analysis of selected proteins confirmed that MamM and MamA 
were more abundant within ∆RecA+mamAB 1x by about 128% and 125%, respectively, whereas 
the abundance of MamC was not significantly increased (9%), although the Coomassie-stained 
MamC band appeared more intense in ∆RecA. 
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