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Summary

The ability of Magnetospirillum gryphiswaldense to orient along the earth’s magnetic field lines is based
on specific organelles, the magnetosomes, which are membrane-enveloped, nanometer-sized crystals
of magnetite (Fe;O,4). The biosynthesis of functional magnetosomes depends on several steps includ-
ing the (i) invagination of magnetosome vesicles, (ii) protein sorting, (iii) iron transport and crystallization
of magnetite minerals, (iv) crystal maturation, and (v) assembly into linear chains. Each step is under
strict genetic control, and genes encoding the magnetosome proteins were identified within the mmsé6,
mamGFDC, mamAB, and mamXY operons that are located within a conserved genomic region referred
to as magnetosome island (MAI). The MAI further contains a number of genes with unknown functions
and numerous transposase genes that account for more than 20% of the coding region. It has mostly
remained unknown, which genes within the MAI are important for magnetosome biomineralization and
resemble the minimal essential gene set for biosynthesis. In this thesis the MAI of M. gryphiswaldense
has been analyzed by mutagenesis to reveal the function and relevance for magnetosome biosynthe-
sis of encoded proteins. An improved Cre-lox-based technique was used for introducing several large
deletions covering the entire MAIL. While genes flanking the identified magnetosome operons have no
functional relevance for biosynthesis, less than 25% of the region comprising the mms6, mamGFDC,
mamAB, and mamXY operons could be associated with magnetite biomineralization. Whereas only
deletion of the mamAB operon resulted in the complete loss of magnetic particles, deletion of the mmsé,
mamGFDC, and mamXY operons led to severe defects in biomineralization. However, strains in which
these operons were eliminated together retained the ability to synthesize small, irregular crystallites,
demonstrating that the mamAB operon is the only region of the MAI, which is necessary and sufficient
for magnetosome biosynthesis in M. gryphiswaldense. The genetic dissection of the mamAB operon
revealed that while deletions of maml/, N, A, R, S, T, and mamU, which have functions in magnetite
crystal nucleation and crystal maturation, did not abolish magnetosome formation, elimination of mamk,
L, M, O, Q, and mamB fully inhibited magnetosome compartment and/or crystal formation and thus
are essential for magnetosome biosynthesis. Single gene deletion of the mms6 operon revealed two
further important regulators for magnetosome biomineralization, namely Mms36 and Mms48. Finally,
overexpression of the magnetosome operons alone or in various combinations was used to enhance
particle synthesis in M. gryphiswaldense. While overexpression of the mamGFDC and the mamAB
operon alone did not resulted in adequate improvements in magnetosome biomineralization, the overex-
pression of the mmsé6 operon significantly increased both the crystal size and the amount of crystals per
cell. The altogether insertions of the mms6, mamGFDC, mamAB, and mamXY operon further enhanced
magnetosome formation by increasing particle number about 117% compared to the wildtype. Based
on results obtained in this study, combined with previous investigations of magnetosome genes and

proteins, an extended model for magnetosome biomineralization in M. gryphiswaldense is proposed.
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Zusammenfassung

Magnetospirillum gryphiswaldense synthetisiert membranumschlossene Magnetitkristalle (Fe;04), so
genannte Magnetosomen. Der komplexe Prozess der Biosynthese von Magnetosomen umfasst ver-
schiedene Ablaufe: (i) die Biogenese von Magnetosomenvesikeln, (ii) das Proteinrekruitment, (iii) den
Eisentransport und die Kristallisation des Magnetits, (iv) die Kristallreifung sowie (v) die lineare Anord-
nung der Magnetosomen. Die Synthese von Magnetosomen ist genetisch determiniert und wichtige
Magnetosomengene wurden innerhalb der mms6, mamGFDC, mamAB und mamXY Operons detek-
tiert, welche in einer so genannten genomischen Magnetosomeninsel (MAI) konserviert vorliegen. Diese
beinhaltet weiterhin eine Vielzahl von Genen mit bisher unbekannter Funktion sowie Transposasengene,
welche Uber 20% der MAI ausmachen. Die Bedeutung der Magnetosomengene sowie der (brigen
Gene innerhalb der MAI speziell fiir die Biosynthese von magnetischen Partikeln und der minimale Gen-
satz zur Bildung von Magnetosomen ist weitestgehend unbekannt. In der vorliegenden Arbeit wurde
eine verbesserte Cre-lox-basierte Technik zur Deletion verschiedener Regionen der MAI eingesetzt.
Wahrend die Gene, welche die Magnetosomenoperons flankieren, keine entscheidenden Funktionen fir
die Biomineralisation besitzen, haben ausschlieB3lich die Magnetosomenoperons eine funktionale Rele-
vanz. Im Unterschied zur Deletion des mamAB Operons, welche einen vollstandigen Verlust der Mag-
netosomenbiomineralisation bewirkt, fihren die Deletionen des mms6, mamGFDC oder des mamXY
Operons zu verschiedenen Defekten in der Partikelsynthese. Zellen, in welchen diese drei Operons
gemeinsam deletiert wurden, sind weiterhin in der Lage, kleine, irreguldre Partikel zu synthetisieren.
Dies demonstriert, dass ausschlieBlich das mamAB Operon innerhalb der MAI in M. gryphiswaldense
essentiell und ausreichend zur Biosynthese von Magnetosomen ist. Die genetische Untersuchung des
mamAB Operons zeigt, dass die Gene maml, N, A, R, S, T und mamU, welche entscheidende Rollen in
der Kristallnukleation und -reifung haben, nicht essentiell fiir die Biosynthese von Magnetosomen sind.
AusschlieBlich die Deletionen der Gene mameE, L, M, O, Q und mamB inhibieren vollstédndig die Bildung
von Magnetosomenkompartimenten und/oder -kristallen und stellen somit den potentiellen, minimalen
Gensatz der Biomineralisation in M. gryphiswaldense dar. Durch Einzelgenanalysen des mms6 Oper-
ons wurden zwei weitere entscheidende Regulatoren der Biomineralisation von Magnetosomen, Mms36
und Mms48, identifiziert. Die Uberexpression der Magnetosomenoperons wurde verwendet um die Par-
tikelsynthese in M. gryphiswaldense zu optimieren. Wé&hrend kaum signifikante Verbesserung der Mag-
netosomenbildung durch die Uberexpression des mamGFDC oder des mamAB Operons beobachtet
werden konnte, ist die Anzahl und GréBe der Magnetosomen entscheidend durch die Uberexpression
des mms6 Operons erhdht wurden. Die Insertion aller Magnetosomenoperons fiihrte im Vergleich zum
Wildtyp zu einem Anstieg der Magnetosomenanzahl um 117%. Basierend auf den Ergebnissen dieser
Arbeit sowie vorhergehender Untersuchungen zu Magnetosomenproteinen ist ein umfassendes Model

der Magnetosomenbiosynthese in M. gryphiswaldense entworfen worden.
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Aims

Although the functional significance of the MAI in M. gryphiswaldense for magnetosome biomineraliza-
tion was predicted, the experimental evidence and characterization of most magnetosome genes as
well as regions flanking the magnetosome operons have been lacking behind. Thus, the first part of
this thesis includes a comprehensive bioinformatic, proteomic and genetic analysis of all MAI genes in
M. gryphiswaldense, to finally detect proteins involved in magnetosome formation. By modification of
the previously described Cre-loxP method all magnetosome operons independently or in various com-
binations as well as the remaining parts of the MAI were analyzed by deletion to confirm their functional
relevance for the biomineralization process. The stepwise removal of unnecessary or problematic ge-
nomic regions was realized to engineer strains of M. gryphiswaldense, which may exhibit increased
genetic stability due to the elimination of repeats and transposases, or might show improved growth as
well as increased magnetosome yields because of reduced gene content.

Whereas deletion of the mamGFDC operon led to severe defects in morphology, size and organiza-
tion of magnetite crystals, only loss of the mamAB operon resulted in cells entirely devoid of magnetite
crystals. This suggests that only the mamAB operon may contain genes that are absolutely essential
for magnetosome biosynthesis. However, only a minor number of genes within the highly conserved
mamAB operon (mamH, E, J, K, M, O, and mamB) was analyzed in detail so far and individual functions
of the mmsé6 operon genes in M. gryphiswaldense have remained unknown as well.

Therefore, the second part of this thesis is based on genetic dissection of the mms6 and mamAB
operons to reveal the importance of mgr4074, mms6, mmsF, mms36 (alias mgr4071) and mms48 (alias
mgr4070) as well as maml, L, N, P, A, Q, R, S, T, and mamU in magnetosome biosynthesis and to
analyze whether these genes have functions similar or distinct from those of their corresponding ortho-
logues in the related strain M. magneticum. Additionally, these results were crucial to determine the
potential minimal set of essential genes and proteins for magnetosome biomineralization.

As previously reported, the expression of the mamGFDC operon genes under control of the strong
P mampc promotor increased biomineralization even beyond wildtype levels resulting in cells synthesizing
larger and more magnetosomes. This prompted us within the third part of this thesis to systematically
investigate the effect of controlled overexpression of the mms6, mamGFDC, mamAB and mamXY oper-
ons in various combinations to potentially enhance magnetosome yields by modulating the magnetic

phenotype of M. gryphiswaldense.
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1 Chapter |

Introduction

1.1 Magnetotactic bacteria and magnetosome biosynthesis

The ability to sense and move along magnetic fields, referred to as magnetotaxis, is linked to the capabil-
ity of biomineralization of intracellular magnetic organelles termed magnetosomes [1]. It is assumed that
the combination of magneto-, aero-, chemo-, and probably phototaxis is employed to find the preferred
low-oxygen environment within the oxic-anoxic-transition zone (OATZ; Figure 1.1A) [1]. The biosynthesis
of magnetosomes is spread among a wide range of bacterial lineages with respect to phylogeny, physi-
ology, and morphology. First discovered by Salvatore Bellini in the late 1950s, the magnetic prokaryotes

are nowadays referred to as magnetotactic bacteria (MTB) [2].

-

FN

Figure 1.1: Magnetosome formation in magnetotactic bacteria (MTB). A: Magnetic alignment along the earth’s
magnetic field lines of MTB impaired by magnetosomes reduces a three-dimensional search problem
(a) to a one-dimensional search (b) to find the growth favoring oxic-anoxic-transition zone. B: TEM
micrographs reflecting the high morphological diversity of magnetotactic bacteria. Modified according
to [3,4,5]. C: Transmission electron micrographs (TEM) of the magnetosome diversity found in various
MTB. Modified according to [6]. Scale bar: 100 nm. D: Electron micrographs of a M. gryphiswaldense
cell and its magnetosome chain. The inset shows a micrograph of isolated magnetosomes enclosed by
the magnetosome membrane (arrow) [7].

All MTB analyzed so far belong to the a-, y- and 8- subgroups of Proteobacteria as well as the
deep branching Nitrospirae-phylum and the candidate division OP3 [8,9,10,11]. Beside magnetotac-
tic cocci, rods, spirilla, vibrios, and ovoid cells, even multicellular aggregates of MTB have been ob-
served (Figure 1.1B), synthesizing numerous crystalline structures composed of magnetite (Fe;Oy)

and/or greigite (Fe;S4; Figure 1.1C) [8,12,13,14,15].
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Therefore, a large quantity of iron is required and its intracellular accumulation leads to a tremendous
iron content of 2-4% (dry weight) in MTB in comparison to 0.027% in Escherichia coli [16,17,18].

Although the mechanism of iron accumulation in MTB is so far not completely understood in de-
tail, several recent studies revealed that the formation of functional magnetosomes depends on several
steps: the (i) magnetosome membrane formation [19], (ii) magnetosome protein sorting [20], (iii) iron
transport and crystallization [21], (iv) particle maturation [20] and (v) assembly as well as positioning of
mature crystals [22,23,24,25].

The magnetosome membrane, which envelops the magnetosome minerals (Figure 1.1D) is formed
prior to crystal formation. Based on biochemical analyses of isolated magnetosomes it was shown that
the magnetosome membrane originates as an invagination of the cytoplasmic membrane [25,26,27].

The biogenesis of the magnetosome vesicles occurs independently and before the targeting of at least
a subset of magnetosome proteins to this compartment begins. This was suggested to be important for
proper biomineralization of minerals and was detected by localization studies of various magnetosome
proteins [20,28].

Early studies of iron uptake within Magnetospirillum gryphiswaldense, the model organism of this the-
sis (Figure 1.1D), demonstrated that ferrous iron uptake proceeds at low rates by a diffusion-like process
and ferric iron is taken up by a fast, energy-dependent mechanism [17,29]. Within the draft genome as-
sembly of M. gryphiswaldense common iron uptake systems are encoded, including FeoB ferrous iron
uptake systems, a putative ATP-binding-cassette (ABC) ferric iron transporter and a putative ABC-type
ferric siderophore transporter. Whereas the ferrous iron transporters FeoB1 and FeoB2 play an acces-
sory role in magnetite biomineralization [30] or function in magnetosome biomineralization and oxidative
stress protection [31], no evidence for siderophores was found in M. gryphiswaldense as described for
the related strains M. magnetotacticum, M. magneticum and Magnetovibrio blakemorei [16,29,32,33,34].
The ferric uptake regulator Fur regulates global iron homeostasis in M. gryphiswaldense, which also af-
fects magnetite formation, probably by balancing the competing demand of biochemical iron supply and
magnetosome biomineralization [35,36].

Several hypotheses have been proposed for the nucleation process within magnetite-containing MTB.
Historically, based on Méssbauer spectroscopy on M. magnetotacticum cells, it was suggested that three
different phases in the magnetite crystallization process are involved: (i) low-density, non-magnetic hy-
drous ferric oxides followed by the (ii) high-density-hydrous ferric oxide (ferrihydrite), which is produced
by dehydration and then transformed by partial reduction to (iii) magnetite [37]. However, a Mdssbauer
study in M. gryphiswaldense, did not observe any precursors apart from ferritin, from which, in combi-
nation with ferrous iron, magnetite is supposed to be co-precipitated within the magnetosome compart-
ments [38,39]. In contrast, by X-ray circular magnetic dichroism in the same bacterial strain, hematite
(a-Fe,O3) is suggested as a precursor to magnetite and to form an outer layer around the nascent mag-
netite phase [40]. A more recent and detailed study of the related strain M. magneticum shows that

magnetite synthesis proceeds through phase transformation: a highly disordered phosphate-rich ferric

15



1 Chapter |

hydroxide phase, consistent with prokaryotic ferritin, is transfered via transient, short-lived and poorly
crystalline ferric (oxyhydr)oxide intermediates, such as ferrihydrite, poorly crystalline iron oxyhydroxydes
and nanometric hematite to magnetite. This partially combines and extents all previous described ob-
servations [41]. Subsequently, particle maturation leads to formation of 35 and 120 nm crystals, which is
for magnetite within a permanent, single magnetic domain size range and sufficient for a functioning in-
teraction with the weak geomagnetic field [42,43,44]. Finally, for the proper assembly of magnetosomes,
single crystals were aligned into linear chains along a filamentous cytoskeletal structure and positioned

at midcell [24].

1.2 Genetics of magnetosome biosynthesis

1.2.1 Magnetospirillum gryphiswaldense and identification of its magnetosome

genes

The model organism M. gryphiswaldense (Figure 1.1D) was isolated from sediments of the river Ryck
near Greifswald (Germany) and synthesizes cubooctahedral crystals composed of magnetite. The
3-5 um long and helically shaped gram-negative bacterium belongs to the «a-Proteobacteria and is
bipolar monotrichous flagellated. The microaerophilic strain is chemo-organoheterotroph utilizing dif-
ferent organic acids with oxygen or nitrogen as terminal electron acceptor [45]. Magnetosomes of
M. gryphiswaldense are commonly aligned in a chain-like structure containing up to 60 particles with
an average crystal diameter of 35 to 40 nm that are surrounded by the magnetosome membrane
[26,44,46,47]. Within the magnetosome membrane a specific set of more than 30 proteins direct the
biomineralization of highly crystalline particles with unique characteristics, which make them attractive
for use in a broad range of biomedical and biotechnological applications [48,49,50].

The biosynthesis of magnetosomes is not understood in detail, but it is known that both the biominer-
alization of inorganic magnetite crystals and their assembly into highly ordered chains are under strict
genetic control. However, the number and identity of magnetosome genes and their precise functions in
magnetosome biosynthesis have mostly remained unknown. Several methods were applied to identify
genes involved in this process, and the magnetosome genes were named "magnetosome membrane”
(mam), "magnetic particle membrane-specific’ (mms), "magnetotaxis” (mtx) or "magnetosome mem-
brane genes” (mme), respectively [51,52,53]. Historically, the first magnetosome-associated proteins
were detected by proteomic analysis using one or two dimensional gel electrophoresis of membrane
and soluble fractions of M. gryphiswaldense. By reverse genetics the corresponding genes mamaA, B,
C,D,E,F,G J MN,O,Q R,S T, WY, and mamX, mmsF, mms6, mme22, mmeA, as well as mixA
were revealed [46,51,54]. It was shown that the genes mamA and mamB as well as mamD and mamC

are located within two different clusters, termed as mamAB and mamDC clusters [51].
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First experimental indications for their functional significance in magnetosome formation came from
the isolation of a non-magnetic mutant strain, which had lost almost 80 kb by a spontaneous deletion
that included all known magnetosome genes as well as further unidentified genes [54,55]. It became
obvious that the magnetosome genes are located within a single genomic region, described as putative
magnetosome island (MAI) within M. gryphiswaldense and a further magnetosome cluster, termed as
mmsé6 cluster was detected [54,55]. The functional significance of the MAI was confirmed by a compar-
ative genomics approach based on the growing number of sequenced MTB genomes, which revealed
that magnetotaxis signature genes are predominantly located within this region. Furthermore, the highly
conserved mamXY cluster within the MAI of M. gryphiswaldense was identified [53]. Because of the
detection of the MAI genes also in other cultivated and uncultivated o-proteobacterial MTB (conserva-
tion) it has been suggested that the MAI was transferred horizontally [53,54,56,57]. This was further
corroborated by the discovery of homologous gene clusters in all tested MTB so far, such as the §-
Proteobacteria Desulfovibrio magneticus RS-1 [58] and the multicellular magnetotactic prokaryote [59],
as well as in the deep-branching Nitrospirae-phylum [56]. Alternatively, it was discussed that the origin
of magnetotaxis might be rather monophyletic, whereas magnetosome formation was developed in a
common ancestor of all MTB and horizontal gene transfer appears to play a role in their distribution
[59,60].

In M. gryphiswaldense, the MAI was shown to encompass 130 kb, comprising the mms6, mamGFDC,
mamAB, and mamXY operons (Figure 1.2) [54]. These operons are transcribed as single polycistronic
messengers under control of the P mss, Pmampes Pmami, and P pmamxy promoters [61,62]. In addition to
genes implicated in magnetosome biomineralization, the MAI contains a number of genes with unknown
functions and numerous transposase genes that account for more than 20% of the coding region (Figure
1.2.). Owing to frequent homologous recombinations between the numerous direct or inverted repeats
associated with transposase genes, the MAI is genetically unstable, resulting in frequent spontaneous
loss of the magnetic phenotype [54,63].

With the identification of the MAI, forward genetics based on mutagenesis by targeted or random
base pair substitution, insertion, or deletion became a powerful tool to reveal the genetic importance of
genes or regions for magnetosome biosynthesis by comparing phenotypic changes with the unmodified
wildtype. Beside MAI genes, also genes outside of the MAI became targets for mutational analyses.
For example, deletions of nap and nir genes, whose products catalyze the reduction of nitrate (NO; ™)
to nitrite (NO, ™) and nitrite to nitric oxide (NO), respectively, resulted in biomineralization defects. This
indicates that magnetite biomineralization is linked to dissimilatory nitrate reduction potentially by parti-
cipation of Nap and Nir in redox reactions required for magnetite biomineralization or even oxidize ferrous
iron directly for magnetosome formation [64,65]. Further, enzymes participating in denitrification (nitrite
reductase Cd;), and in aerobic respiration (cytochrome ¢ oxidase Cbbs), as well as the oxygen sensor
Fnr have been found to poise optimal redox conditions during magnetite biomineralization, as indicated

by mutagenesis and cultivation experiments [64,66]. Inactivation of the flagellin gene flaA caused non-
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magnetotactic cells lacking flagellar filaments [67] and deletion of the genes, encoding the iron uptake

regulator Fur [34] and the ferrous iron transporter FeoB1 and FeoB2 [30,31] (described above) leads to

reduction of magnetosome size and number, indicating their role in magnetosome biomineralization.

Molecular organization of the magnetosome island of M. gryphiswaldense
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Molecular organization and deletion analysis of the magnetosome island of M. gryphiswaldense.

Schematic representation of the magnetosome island of M. gryphiswaldense that contains several mam
and mms genes within the mms6, mamGFDC, mamAB and mamXY operons, several transposase
genes, genes encoding other assigned functions and a high number of hypothetical genes with unknown
functions indicated by different colors. Whereas the mamGFDC and mamAB operon were genetically
analyzed by targeted mutagenesis, functions of regions flanking the magnetosome clusters as well as of
the mms6 and mamXY operons have remained unknown (labeled by a question mark). Brighter colored
genes within the magnetosome operons were not investigated by single gene deletion so far. Transmis-
sion electron micrographs demonstrate phenotypes of previously generated deletion mutants. Whereas
AmamGFDC [69], AmamC [69], AmamH [62], AmamJ [23], AmamK [70], AftsZm [71], AmamZ [62],
AmamX and AmamHZ [62] display various biomineralization defects, mamE [72], mamM [35], mamO
[72] and mamB [35] were described to be essential for magnetosome biosynthesis, as indicated by
the absence of electron dense crystals. Cryo electron micrograms and Cryo-ultrathin sections demon-
strate the presence of magnetosome membranes in AmamE, AmamM, and AmamO (i-iii; arrows) or the
absence of compartments in AmamB (vi) [72,73]. The MAI is modified according to [53,54,68].

1.2.2 The genetic toolset for analysis of magnetosome biosynthesis in M.

gryphiswaldense

Magnetosome formation is one of the most structurally and genetically complex processes within prokary-

otic organism, including several proteins with so far unknown functions. Genetic analyses to study

underlying mechanisms have been hindered for a long time by the lack of appropriate methodologies
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and tools for genetic manipulation. Technical requirements, such as techniques for clonal selection on
agar plates [74], availability of suitable selection markers [74], gene transfer [74], GFP fusions [75,76]
as well as techniques for site-directed and random mutagenesis [67,68,69,77,78] became available for
M. gryphiswaldense only at the beginning of this work. Whereas techniques like the transfer of genes
through electroporation or by chemical methods are not efficient or applicable for M. gryphiswaldense,
plasmidal transfer became possible by conjugation [74]. Tools for site-directed mutagenesis, includ-
ing allelic replacement by double-cross-over or insertion-duplication mutagenesis mediated by RecA
were established [67,69,77]. This includes a counter-selection method based on SacB, which confers
sensitivity to sucrose, but was applied only in few cases for M. gryphiswaldense due to unstable sacB
expression [69]. Furthermore, a Cre-loxP mediated excision system was used to routinely mutate the
genome of M. gryphiswaldense for large-scale deletions up to 67 kb [68].

However, several rounds of screening for mutants are necessary, and especially methods based on
allelic replacement bear the high risk for detection of false positive deletions, which make the tools
inefficient and time-consuming. Only recently a more efficient counter-selection method mediated by
galactokinase (GalK), which induces sensitivity to galactose or 2-deoxygalactose in the absence of a
galactose metabolizing pathway, was established [79]. Furthermore, construction of transposable ex-
pression vectors comprising the MycoMar or Tn5 transposase genes enabled the single copy insertion
into random chromosomal sites for stable magnetosome gene expression and transfer into foreign hosts
[67,78]. New inducible and efficient vector systems based on optimization of the Tet-inducible system
and the previously identified P,,mpc promoter, enable high-level and tunable expression after induction
[76]. Although successful procedures became available, isolation of deletion mutants is still a highly
tedious and time-consuming task due to the slow growth of M. gryphiswaldense with its high doubling
time of three to seven hours and strategies depend on sequential rounds of insertions and excisions. As
a consequence, although several candidate magnetosome genes of the MAI were predicted, only few of
them (mamGFDC operon, mamC, mamJ, and mamAB operon) had been experimentally confirmed at

the beginning of this work (Figure 1.2).

1.2.3 Detailed genetic analyses of the magnetosome island in M.

gryphiswaldense

Deletion of the whole 2.071 kb mamGFDC operon of M. gryphiswaldense, which contains the genes
mamG@G, F, D, and mamC resulted in the formation of smaller and less regular magnetosomes, indi-
cating that the most abundant magnetosome proteins MamG, F, D, and MamC, with over 35% of all
magnetosome-associated proteins, did not inhibit crystal nucleation or prevented MM vesicle synthesis
and thus, are not essential for magnetosome biomineralization [69]. Loss of mamC only had a minor
impact on magnetite crystal formation and cells produce magnetosomes that were on average slightly

smaller than wildtype crystals (Figure 1.2) [69].
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The ~5 kb large mamXY operon is conserved in all cultivated magnetospirilla strains and encodes
MamY, MamX, MamZ (previously referred to as MamH-like) and the tubulin-like FtsZm protein (previ-
ously referred to as FtsZ-like) [80], for which a key role was predicted mainly based on comparative
genome analyses [81]. Previously, single gene deletions of mamX and mamZ resulted in very similar
mutant phenotypes and strains formed regularly shaped and sized magnetite particles flanked by a vari-
able number of small, irregularly shaped particles (Figure 1.2) [62]. Both proteins, MamX and MamZ are
likely involved in redox control to maintain optimal conditions for magnetite formation. These functions
depend on the two putative haem ¢ binding "magnetochrome” domains of MamX as well as the ferric
reductase-like transmembrane component of MamZ [62]. The mutant AftsZm of M. gryphiswaldense
only displayed a magnetosome phenotype, when the cells were grown in medium with ammonium in-
stead of nitrate, resulting in cells with many small, poorly crystalline needle-like crystals, which indicates
a functional link to denitrification, redox control, and magnetosomal iron homeostasis (Figure 1.2) [71].

The ~6.6 kb mms6 operon comprises the genes mgr4074, mms6, mmsF, mms36 (alias mgr4071)
and mms48 (alias mgr4070), but their individual functions remained unknown (Figure 1.2). In the highly
related strain M. magneticum, the mmsé cluster was described to comprise only amb0955 (mgr4074),
amb0956 (mms6), amb0967 (mmsF), but lacks homologues of mms36 and mms48 [82]. Whereas
deletion of amb0955 resulted in no obvious magnetosome phenotype, single gene deletions of mmsé6 in
M. magneticum performed by different research groups revealed inconsistent phenotypes. While Tanaka
et al. [83], reported an important regulatory function of Mms6 for magnetosome morphology, Murat et
al., only observed minor effects on magnetosome biosynthesis after deletion of mmsé in vivo in M. mag-
neticum [82]. In vitro, the small (12.76 kDa in M. gryphiswaldense and 14.69 kDa in M. magneticum)
Mms6 protein was shown to be tightly bound to isolated bacterial magnetite crystals as visualized by
atomic force microscopy and TEM [84,85]. In vitro crystallization experiments suggested that Mms6
and peptides mimicking it have iron-binding activity and affected the formation of cubo-octahedral crys-
tal morphologies [86,87]. However, it remains to be shown, if the mms6 operon genes have functions
similar or distinct from those of their corresponding orthologues in M. magneticum.

In contrast to the smaller operons, the large mamAB operon was found to contain genes absolutely
essential for magnetosome biosynthesis in M. gryphiswaldense and also M. magneticum, as its deletion
resulted in the complete loss of magnetic particles [20,68]. A recent comprehensive genetic dissection
of the mamAB operon in M. magneticum revealed that mamH, P, R, S, and mamT encode accessory
functions for magnetosome synthesis, since mutants display various biomineralization defects, whereas
mamU and mamV had no obvious magnetosome phenotype [20]. As in M. gryphiswaldense (see be-
low), mamK and mamdJ were implicated in magnetosome chain assembly, but their loss did not affect
biomineralization [25,88]. However, gene deletions of maml, E, L, M, N, O, and mamQ as well as mamB
(co-deleted with their respective orthologs) fully abolished magnetosome synthesis in M. magneticum
[20,28]. Whereas Maml, L, Q and MamB were suggested to be essential for vesicle genesis, MamE, O,

M, and MamN were classified to be mainly required for magnetite crystallization [20].
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The discovery of a small "magnetosome islet” in the genome of M. magneticum with further copies of
mamkE, J, K, L, M, F as well as mamD suggested genetic redundancy that remains to be clarified with
respect to determination of the minimal essential gene set [89].

In M. gryphiswaldense the ~16.4 kb mamAB operon contains 17 genes (mamH, I, E, J, K, L, M, N,
O, P A Q R B S T and mamU; Figure 1.2). Only a few genes of the mamAB operon were ana-
lyzed individually in this organism so far (Figure 1.3). Deletion of mamH caused a moderate decrease
of magnetosome number and size. Co-deletion with its partial homologue mamZ had a considerably
stronger effect with only very few or no regular crystals detectable in the cells, suggesting that MamH is
involved in redox control like its homologue MamZ (Figure 1.3) [62]. The actin-like protein MamK forms
a filamentous structure for magnetosome assembly and interacts with the acidic protein MamJ that is
involved in connecting magnetosomes to the filament (Figure 1.3). Both proteins, however, have no or
only minor effects on biomineralization, as deletion mutants AmamK formed shorter and fragmented
chains and deletion of mamJ led to detached particles of the magnetosome filament, resulting in parti-
cle agglomeration without any chain formation (Figure 1.2) [23,24]. Deletion of mamE, O, M and mamB
resulted in either a total inhibition of crystal nucleation or prevented MM vesicle synthesis, indicating that

these genes are essential for magnetosome biosynthesis [72,73,90].
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Figure 1.3: Overview about previously analyzed magnetosome proteins, encoded by the MAI of M.
gryphiswaldense. Corresponding genes were analyzed by mutagenesis in addition to further molecu-
lar analyses to determine protein functions. MamH, MamZ and MamX functionally interact to balance
the redox state of iron within the magnetosome compartment. FtsZm is likely involved in denitrification,
redox control, and/or magnetosomal iron homeostasis. The actin-like protein MamK interacts with the
acidic protein MamJ to align the magnetosomes into chain-like structures. MamC is important for crystal
maturation. Whereas MamB was suggested to be essential for vesicle genesis, MamE, MamO, and
MamM were classified to be mainly required for magnetite crystallization. Detailed genetic analyses
of remaining proteins, encoded by the mms6, mamGFDC, mamAB and mamXY operons as well as
flanking regions of the MAI were previously not implemented.
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Abstract

Bacterial magnetosomes are membrane-enveloped, nanometer-sized crystals of magnetite, which serve
for magnetotactic navigation. All genes implicated in the synthesis of these organelles are located in a
conserved genomic magnetosome island (MAI). We performed a comprehensive bioinformatic, pro-
teomic and genetic analysis of the MAI in Magnetospirillum gryphiswaldense. By the construction of
large deletion mutants we demonstrate that the entire region is dispensable for growth, and the majority
of MAI genes have no detectable function in magnetosome formation and could be eliminated without
any effect. Only <25% of the region comprising four major operons could be associated with mag-
netite biomineralization, which correlated with high expression of these genes and their conservation
among magnetotactic bacteria. Whereas only deletion of the mamAB operon resulted in the complete
loss of magnetic particles, deletion of the conserved mms6, mamGFDC, and mamXY operons led to
severe defects in morphology, size and organization of magnetite crystals. However, strains, in which
these operons were eliminated together retained the ability to synthesize small irregular crystallites, and
weakly aligned in magnetic fields. This demonstrates that whereas the mamGFDC, mms6 and mamXY
operons have crucial and partially overlapping functions for the formation of functional magnetosomes,
the mamAB operon is the only region of the MAI, which is necessary and sufficient for magnetite biomin-
eralization. Our data further reduce the known minimal gene set required for magnetosome formation

and will be useful for future genome engineering approaches.

Introduction

The ability of magnetotactic bacteria (MTB) to orient in the earth’s magnetic field is based on specific or-
ganelles, the magnetosomes. In the a-protecbacterium Magnetospirillum gryphiswaldense and related

MTB, magnetosomes consist of magnetite (Fe;0,) crystals enclosed by a phospholipid membrane.
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This magnetosome membrane (MM) contains a specific set of >20 proteins, which direct the biomin-
eralization of highly ordered crystals [1,2,3]. Synthesis of magnetosomes has recently emerged as a
model for prokaryotic organelle formation and biomineralization [4,5]. In addition, magnetosomes repre-
sent biogenic magnetic nanoparticles with unique characteristics, which make them attractive for use in
a wide range of biomedical and biotechnological applications [4,6,7].

Although the mechanism of magnetosome synthesis is not understood in detail, several recent studies
revealed that the formation of functional magnetosomes depends on several steps, which include the
invagination of MM vesicles from the inner membrane [8,9], the transport of iron and crystallization of
magnetite within these vesicles [10], and the assembly of mature crystals into a linear chain along a fil-
amentous cytoskeletal structure [9,11,12,13]. It has been also become clear that each of these steps is
under strict genetic control. By proteomic analysis of M. gryphiswaldense (in the following referred to as
MSR), genes encoding the MM-specific proteins were identified within a single genomic magnetosome
island (MAI) [14,15]. The functional significance of this region was confirmed by a comparative genomics
approach, which revealed that magnetotaxis signature genes are predominantly located within the MAI
[16]. Because of their general conservation in other cultivated and uncultivated a-proteobacterial MTB
[3,17,18,19] it has been suggested that the MAI was transferred horizontally [15,16,18,20,21]. This was
further corroborated by the recent discovery of homologous gene clusters in the d-proteobacteria Desul-
fovibrio magneticus RS-1 [22] and the multicellular magnetotactic prokaryote (MMP) [23], as well as in
the deep-branching Nitrospirae-phylum [21].

In addition to all genes, so far implicated in magnetosome biomineralization, the MAI of MSR contains
a number of genes with unknown functions and numerous transposase genes that account for >20%
of the coding region [14]. Owing to frequent homologous recombinations between the numerous direct
or inverted repeats associated with transposase genes, the MAI is genetically unstable, resulting in fre-
quent spontaneous loss of the magnetic phenotype [15,24]. In MSR all known magnetosome genes
are comprised within four gene clusters known as mms6, mamGFDC, mamAB, and mamXY operons.
First experimental indications for their functional significance in magnetosome formation came from the
isolation of a non-magnetic mutant strain, which had lost 80 kb of the MAI by a spontaneous deletion
that included the mamAB, mms6 and mamGFDC operons [25].

Targeted deletion of the entire mamGFDC operon revealed that the small MamGFDC proteins, which
account for >35% of all magnetosome-associated proteins, are not essential, but involved in size control,
since mutant cells formed smaller and less regular magnetite crystals [26]. In a recent study by Murat
et al. deletion analysis of the MAl in M. magneticum (referred to as AMB) revealed three regions, which
are crucial for magnetite crystal formation [27]. Whereas the deletion of the R2 and R3 regions including
parts of the mamGFDC and mmsé6 operons led to severe defects in the size and morphology of the
crystals, loss of the mamAB operon resulted in cells entirely devoid of magnetite crystals [27]. Only the
deletion of mameE, M, N, O, L, I, and also of mamQ and mamB, if co-deleted with their respective dupli-

cates outside the mamAB operon, entirely abolished magnetite synthesis. Non-magnetic cells were also
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observed upon deletion of this operon in MSR [25]. This suggested that only the mamAB operon may
contains genes that are absolutely essential [27]. However, it has remained unknown whether this region
is also sufficient for magnetosome biomineralization in the absence of other magnetosome genes, since
possible genetic redundancy was suggested by the identification of genes, which are identical or similar
to genes from mamAB operon and partially encoded within a "7magnetosome islet” located elsewhere in
the genome of AMB [28].

Despite morphological similarities between the strains AMB and MSR, previous studies suggested
that function of orthologous genes might be somewhat distinct in these organisms depending on their
different genetic context [8], since only about 50% of all genes are shared by the genomes of these two
strains [16]. In particular, the MAI regions flanking the magnetosome operons show a divergent organi-
zation, gene content and were speculated to possibly harbor additional determinants for magnetosome
formation [16,18].

Here, we show that highly expressed and conserved genes within the MAI of MSR are mostly con-
fined to the mms6, mamGFDC, mamXY, and mamAB operons. By deletion of these operons, either
independently or in combination, we demonstrate that all four of them have crucial and partially over-
lapping functions in the synthesis of functional magnetosomes, whereas only the mamAB operon is
absolutely essential for magnetite biomineralization. Intriguingly, even in the absence of all other three
operons as well of further parts of the MAI, the mamAB operon proved sufficient to maintain synthesis
of small magnetite crystals. A further motivation for this study was to explore the potential for reduction
of dispensable or instable gene content from the residual MAI. By using an improved Cre-lox-based
technique, we demonstrate that 115 kb of the MAI can be deleted without any consequences for growth,

while 59 kb have no obvious function in magnetosome synthesis.

Results

Expression of MAI genes coincides with their conservation and operon

localization

Besides numerous (>50) transposase and phage related genes, the mam and mms operons within the
MAI are flanked by a number of ORFs, mostly annotated as hypothetical genes, which may represent
either unrecognized determinants for magnetosome formation, genes with unknown different functions,
or simply pseudogenes or misannotations. To tentatively distinguish between regions of predicted rel-
evance and those not likely involved in magnetotaxis, we reasoned that putative magnetosome genes
are expected (I) to lack strong prediction of other cellular functions, (ll) to be highly conserved among
MTB, and (lll) to be expressed during magnetosome synthesis. We therefore reassessed functional
annotation of the MAI against current databases. Only 12 of the MAI genes have functionally predicted

homologs outside MTB (Fig. 2.1), which encode three hemerythrin-like proteins, putative regulatory pro-
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teins, secretion components, a sensory transduction histidine kinase, a partition-related protein, and an
IdiA fragment (Tab. S1). To identify conserved genes, we tested by blastp analysis the presence of all
genes from the MAI of MSR against all genomic information available from cultivated MTB (Fig. 2.1, Tab.
S2.1). Genes that are highly conserved between several MTB were found mostly confined to the mam
and mms operons, where ten ORFs (mamE, K, M, O, A, Q, B, T, and with lower similarity mam/ and
mamP) are conserved in all analyzed strains including MSR, AMB, Desulfovibrio magneticus RS-1, M.
magnetotacticum MS-1, Magnetococcus marinus MC-1, and Magnetovibrio blakemorei MV-1. MamE,
I, K, M, O, P, A, Q, B genes were also detected in the metagenomic MAI fragment Fos001, whereas a
second metagenomic clone Fos002 lacks maml but contains mamT [20]. MamE, I, M, P, A, B, and two
mamQ@ homologs were also found in the incomplete MAI sequence of ”Candidatus Magnetobacterium
bavaricum” [21]. Nine ORFs have homologs in only one other MTB (Fig. 2.1), and 41 genes are shared

by at least all magnetospirilla (Fig. 2.1).
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Figure 2.1: Molecular organization and characteristics of the MAI of M. gryphiswaldense. Extensions of dele-
tions are shown by bars of different colors indicating the general phenotype. For overview, strains
generated in previous studies are shown in semi-transparent color. The magnetite content of mutant
strains is illustrated by the color of corresponding cell pellet. Degree of gene conservation is highlighted
by different colors. Genes found expressed by proteomic analysis are indicated by "+”

However, only 7 of these genes show positional conservation within the MAI of AMB, whereas the rest

is located elsewhere in the genome in the latter strain. Twenty-two genes, which are mostly confined to
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larger regions close to the putative boundaries of the MAI, are specific for MSR (i. e., have no homolog
in any other organism), and appear less likely to represent determinants required for magnetosome
formation. Thus, hypothetical genes outside the mam and mms operons are poorly conserved, with
none of them found shared by all sequenced MTB. To identify expressed products of ORFs encoded
within the MAI, we performed proteomic analyses of magnetosomes, as well as intracellular soluble and
membrane-enriched protein fractions of cells grown under magnetite forming conditions. In total, 923
proteins were identified by 1D LC-MS/MS analysis, or from spots detected on 2D gels. In summary, only
33 proteins encoded within the MAI were found expressed in the membrane or magnetosome fraction of
MSR. These for instance include, with the exception of Mgr4074, Maml, MamL, and MamX, all proteins
encoded by the mamAB, mamGFDC, mms6, and mamXY operons, whereas only seven genes outside
the mam and mms operons were found expressed (mgr4041, mamW, mgr4067, mgr4106, mgr4109,
mgr4115; mgr4152, Fig. 2.1; Tab. S2.1) as well as one gene barely inside the boundaries of the 130 kb
region (mgr4022) [29]. With the exception of MamK, none of the MAI proteins was detected within the

soluble protein fraction among the analyzed spots.

Mutagenesis of MAI genes

By excluding putatively essential genes such as tRNA and rRNA genes, we predicted a core region
of 115 kb from mgr4026 to mgr4174, comprising 149 ORFs that are probably not important for cen-
tral metabolic functions and including all so far known magnetosome genes. According to bioinformatic
prediction and expression data, this region was divided into partially overlapping target regions for mu-
tagenesis (Fig. 2.1). We constructed 13 mutant strains, in which single or several of these targets were
excised, resulting in deletions between 400 bp and 61 kb. Shorter deletions (up to 7 kb) were gen-
erated by allelic replacement (double crossover mediated by homologous recombination, Fig. S2.1A)
[30], whereas Cre-lox excision (Fig. S2.1B; Fig. S2.2) [25,31], was used for the construction of larger
deletions between 5 and 53 kb.

We noticed that success of deletion mutagenesis was not fully predictable. For instance, whereas we
previously generated the AA17 deletion in the MSR-1B background [25], we failed to enforce deletion
of parts of that region (AA2) in the WT background despite of repeated attempts. With few exceptions
described below, all mutants including the longest deletion (AA14) extending over 58.9 kb exhibited WT-
like growth, indicating that no central metabolic functions are encoded by deleted MAI genes. However,
Cmag measurements and TEM of mutant strains revealed three different classes of phenotypes with
respect to magnetosome formation: () Mutants that were unaffected in magnetosome formation, i. e.
cells were virtually WT-like with respect to crystal appearance (shape, size, number per cell and align-
ment) including the long deletions AA3 (9.8 kb), AA4 (27.8 kb), and AA5 (19.7 kb), as well as AmamW
(411 bp), eliminating a protein that was previously identified as associated with magnetosomes in MSR
[15,16]. (ll) Mutants, in which magnetosome formation was entirely abolished, as indicated by a pale

pink to orange cell pellet (in contrast to the black appearance of the WT), lack of a magnetic response
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(Cmag=0) and the absence of any electron dense particles. The non-magnetic mutants AA19, in which
an additional 19.7 kb fragment was excised in the background of deletion mutant MSR-1B, and AA15
comprising the mamJKL genes, had in common a deletion of either the entire mamAB operon or parts
of it, similar to strains MSR-1B, AA16, AA17 and AA18, which had been generated in previous studies
[15,25]. (Il) A third class of mutant strains still exhibited a magnetic response, but cells were gradually
affected in magnetosome biomineralization or assembly, resulting in fewer, smaller and irregular crystals

or distorted chains (Fig. 2.2).

Figure 2.2: TEM micrographs of cells (A, D) and magnhetosome morphologies (B, C, E, F) observed within
the generated deletion mutants. Scale bar: 400 nm in A and D; 50 nmin B and C; 100 nmin E and F.

Mutants of this class could be recognized by variable intensities of brownish color of colonies and cell
pellets (Fig. 2.1). Single-operon deletions of mms6 (AA10) and mamXY (AA8) showed a significantly
reduced magnetic response, but still contained electron-dense particles with different sizes and shapes
(Tab. 2.1). Strain AA10 had smaller crystals (Tab. 2.1) that were scattered throughout the cell or aligned
in irregular, widely spaced "pseudo-chains” (i. e. with <10 crystals per chain; Fig. 2.2). Crystals between
25 and 30 nm were predominant, whereas particles larger than 50 nm were not observed, unlike WT
crystals that were most frequently between 40 and 50 nm with a maximum size up to 70 nm (data not
shown). Besides cubo-octahedral crystals also heterogeneous crystal shapes were observed (Fig. 2.2).
Complementation with fragments comprising genes mgr4072, mgr4073, and mgr4074 restored size,
shape and alignment of crystals to WT range within about one third of the cells (data not shown).

Strain AA8 had an inconsistent phenotype. TEM revealed a variety of magnetosome appearances
between different cells, including those lacking any electron-dense particles (Fig. 2.3 A), and those
with non-uniform, small crystals lacking any chain configuration (Fig. 2.3 B-F). Remarkably, many cells
contained two distinct types of crystals: short chains of almost regular (i.e. cubicle-shaped) crystals,

which were flanked by irregular particles with poorly defined morphologies (Fig. 2.3 G-K). Analysis of
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about 350 crystals from cells of the latter phenotype revealed that approximately 66% of the crystals
were irregular and less electron dense, slightly elongate and poorly crystalline particles (Fig. 2.2). The
different particles had distinct size distributions: Among irregular particles, sizes between 15 and 25 nm
were most abundant, whereas the regular-shaped crystals had a maximum size of 60 nm, and diameters

between 35 to 45 nm were most frequent among them (Fig. 2.3).
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Figure 2.3: Magnetosome size distributions of electron dense particles within the mutants AA8 and AA11.
Representative micrographs of corresponding crystal morphologies are shown. Scale bar: 100 nm.

The WT-like phenotype could be restored by transcomplementation with plasmid pmamXY containing
the entire mamXY cluster (mgr4147 to mgr4150; data not shown). A similar phenotype was observed
for the mutant AA7 (Fig. 2), in which the deletion included the regions A4 and A5 in addition to the
mamXY operon (Fig. 2.1; Tab. 2.1), resulting in an average crystal size of 23.5 nm. Crystal number per
cell was not significantly affected in comparison to WT (Tab. 2.1).

Operons whose single deletions had magnetosome phenotypes were also deleted in combination with
each other. This was also achieved by modification of the previously described Cre-lox method [25] by
using altered lox sequences [32] that enabled the construction of strains bearing multiple unmarked
deletions by sequential rounds of insertions and excisions (Fig. S2.1). In strain AA12 the entire mms6
operon was deleted in addition to the adjacent mamGFDC operon. This resulted in a stronger pheno-
type compared to its parent strain AGFDC [26], i. e. it formed even fewer and smaller magnetosomes
that were aberrantly shaped and less regularly aligned (Fig. 2.2). The deletion of both operons also

resulted in a particle size reduction of 52% compared to the WT, although crystals were only slightly
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smaller than in a deletion of mmsé6 operon alone (Tab. 2.1). While crystal numbers per cell were only
slightly reduced in comparison to the mms6 operon mutant, the magnetic response of AA12 culture was

markedly weaker (Cmaga,2=0.6; Tab. 2.1).

Figure 2.4: Comparison of magnetosome morphologies within several mutant strains of /M.
gryphiswaldense. lllustration of the combined effect on crystal morphology caused by stepwise
excision of mms6, mamGFDC and mamXY operons. Micrographs show various distinct crystal mor-
phologies within strains AA10 and AA12 (cubicle-shaped, black arrows) and AA8 and AA11 (elongate
shaped, white arrows) that are coexistent within the mutants AA13 and AA14. Scale bar: 100 nm.

The AA11 double deletion mutant of mamXY and mamGFDC operons showed a reduced Cmag
(Cmagiaa11=1.2; Tab. 2.1) and a phenotype as inconsistent as strain AA8 (Fig. 2.3). Compared to AAS8,
particles were smaller (Fig. 2.4), fewer per cell and less frequently aligned in chain-like structures (Fig.
2.2). Also, the number of crystals with regular morphology was reduced to 21.8%. We also eliminated
mms6, mamGFDC, and mamXY operons altogether using two approaches: While sequential triple dele-
tion by allelic replacement of the three regions resulted in strain AA13, deletion of the mamGFDC and
mms6 operons in a parental background (AA7) that already lacked the entire right arm of the MAI (about
53 kb) containing the mamXY operon resulted in strain AA14 (Fig. 2.1). Remarkably, both strains still
displayed a detectable, although weak magnetic response (Cmagjas:3=0.3; Cmagjs:4=0.5) and con-
tained tiny misshapen electron dense crystallites (Fig. 2.2; Tab. 2.1). Crystal sizes were decreased
to 54.8% of WT size and 84.8% of AA8 size, but were identical between AA13 and AA14 strains (Tab.
2.1). From all mutants, both strains AA13 and AA14 contained the fewest magnetosome number per cell
(12-13 in average) and crystal shapes resembled the irregular morphologies found in strains AA7, AA8,
AA10, AA11, and AA12. Thus, the phenotype of AA13 and AA14 is characterized by the coexistence of

distinct particle morphologies found in the respective single operon deletion mutants (Fig. 2.5).
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Table 2.1: Characteristics of MAI deletion mutants.

Phenotypic characteristics

Average Number of
Name of the Deleted Method of Extend of a
) ] ] Cmag magnetosome  magnetosomes
strain genes deletion deletion
size [nm] per cell
Wild type [53] / / / 2.0+0.1 47.8-35.6° 34.318.4
allelic WT
AA1 (AmamW) mgr4057 411 bp WT WT (28.844.3)
replacement (37.2£10.7)
mgr4026 to Cre-lox
AA2 28,728 bp / / /
mgr4069 two vectors
mgr4079 to Cre-lox WT
AA3 9,828 bp WT WT (27.814.7)
mgr4088 two vectors (41.2£13.7)
mgr4106 to Cre-lox WT
AA4 27,795 bp WT WT (28.518.2)
mgr4146 two vectors (39.7+£15.5)
mgr4151 to Cre-lox WT
AA5 19,651 bp WT WT (29.918.6)
mgr4174 two vectors (35.0£14.2)
mgr4106 to Cre-lox ) Intermediate
AA7 52,823 bp  Intermediate WT (35.048.2)
mgr4174 two vectors (23.5+£15.9)
mgr4147 to allelic Intermediate
AA8 (AmamXY) 5,077 bp Intermediate WT (32.2+11.4)
mgr4150 replacement (23.0+£11.5)
AA9 mgr4075 to allelic Intermediate Intermediate
2,071 bp WT [26]
(AGFDC) [26] mgr4078 replacement [26] [26]
AA10 mgr4070 to allelic Intermediate Intermediate
3,632 bp Intermediate
(Amms6 op) mgr4074 replacement (19.746.9) (16.8+6.2)
mgr4075 to
AA11
mgr4078; allelic Intermediate Intermediate
(AmamGFDC_ 7,148 bp Intermediate
mgr4147to  replacement (20.7+£10.3) (25.346.0)
AmamXY)
mgr4150
AA12
mgr4070 to allelic Intermediate Intermediate
(Amms6 op 6,070 bp Weak
N mgr4078 replacement (18.46.0) (15.345.6)
AmamGFDC)
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AA13
(Amms6 op_
AmamGFDC _
AmamXY)

AA14
(BAT7_
Amms6op_
AmamGFDC)

AA15
(AmamdJKL)

AA16
(mamAB#K7)
(25]

AA1T7
(MSR-1_SU12)
[25]

AA18
(MSR-1B
mgr4058 to
mgr4146)
[25]

AA19

mgr4070 to
mqgr4078,;

mgr4147 to
mgr4150

mgr4106 to
mgrd174;

mgr4070 to
mgr4078

mgr4092 to
mgr4094

mgr4089 to
mgr4105

mgr4029 to
mgr4105

mgr4058 to
mgr4146

mgr4058 to
mgr4105;

mgr4151 to
mgr4175

allelic

replacement

Cre-lox two
vectors and
allelic

replacement

allelic

replacement

Cre-loxP two

vectors

Cre-loxP two

vectors

Cre-loxP two

vectors

Cre-loxP two

vectors

11,050 bp

58,893 bp

2,656 bp

16,362 bp

61,000 bp

67,345 bp

60,033 bp

Intermediate

Weak
(19.318.1)
Intermediate
Weak
(19.747.7)
non
. 0
magnetic
non
. 0
magnetic
non
. 0
magnetic
non
0
magnetic
non
0
magnetic

Weak
(13.0+4.3)

Weak
(12.1+£3.4)

4 WT: no signiffcant difference to WT cells; Intermediate: 80-40% of WT characteristic; Weak: less than 40% of
WT characteristic
b Mean sizes were found slightly variable within a range between 48-35 nm due to minor variations of cultivation

conditions and growth phase
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Discussion

We performed a comprehensive investigation of the MAI in MSR by combined bioinformatic, proteomic
and genetic analysis. With the exception of mgr4041 and mgr4106, which are MSR-specific, all other
genes from the 115 kb core region that were found expressed are also highly conserved in magne-
tospirilla or even all MTB. The majority of expressed genes (26 of 33) were localized within the mmsé6,
mamGFDC, mamAB, and mamXY operons [25,27]. These were also the only regions, which displayed
a magnetosome phenotype upon their deletion. Thus, in contrast to previous observations in AMB [27],
conservation and expression of MAI genes showed a strong correlation with a function in magneto-
some formation. We used a Cre-/ox based method [25,31], which allows the efficient excision of large
fragments. The largest single deletion obtained by this method comprised 53 kb in strain AA7. Using
modified /lox-sites enabled multiple sequential rounds of marker-less deletions. This resulted in strains,
in which up to 59 kb were deleted, comprising about 50% of the MAI and encoding 78 ORFs.

Despite of repeated attempts, no deletion of the A2 region (Fig. 2.1) was obtained. Whereas the
AA17 (MSR_SU12) deletion was straightforwardly generated in the MSR-1B background in a previous
approach [25], we failed to partially delete this region (AA2) in the WT background. It remains to be
shown whether this was due to low efficiency, or if deletion of this region would be lethal only in the
presence of the residual MAI genes. The absence of detectable phenotypes apart from magnetosome
formation in the deletion strains indicates that the MAI encodes no important functions for growth under
laboratory conditions. Whereas less than 25% of the MAI region could be associated with magnetosome
formation, more than 50% of the MAI seems to have no obvious functions.

Remarkably, among the genes with no phenotype are several of the magnetospirilla-specific genes,
such as mgr4067, mgr4109, mgr4115, mgr4152, and mgr4057 (mamW), which had been previously
implicated in magnetite synthesis because of its magnetosome expression [16]. We also failed to detect
a phenotype for the two hemerythrin-like genes harbored within the deleted A3 region. Because of their
MAI localization and the known functions of hemerythrins from other organisms in the sensing or trans-
port of oxygen and iron, it was speculated that these proteins may play a role in magneto-aerotaxis and
magnetosome formation [33,34]. However, it cannot be excluded that their loss can be compensated by
the numerous (i. e. 23) homologs encoded elsewhere in the genome. Taken together, although it re-
mains possible that some deletion strains could show a phenotype under different growth conditions, or
only in combination with other deletions, most of the genes flanking the identified magnetosome operons
have no functional relevance and might just represent genetic “junk” or remnants from previous transfer
events of the MAL.

Our deletion analysis confirmed several results of previous studies, in which the functional significance
of several regions, such as mamAB, mms6, and mamGFDC were shown for AMB [27], and partially for
MSR [25,26]. However, despite of the high similarity of targeted genes, we also found several striking

differences between the two organisms. One example is the conserved mamXY operon, which contains
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several magnetotaxis signature genes, and for which a key role was predicted mostly based on compar-
ative genome analysis [16]. While MamY was recently implicated in MM biogenesis in AMB [35], MamX
has similarity to the serine like proteases MamE and MamS, whereas MamZ is an ortholog of MamH
and resembles permeases of the major facilitator superfamily. The FtsZ-like gene has homology to the
tubulin-like protein, which is involved in cell division in many bacteria [36]. In contrast to the mamXY
operon deletion in AMB, which did not show a strong effect [27], we found that mamXY genes have a
crucial function in magnetite biomineralization of MSR. This is consistent with the results obtained by
Ding et al., who reported that the deletion of the ftsZ-like gene alone already resulted in the synthesis of
smaller, predominantly superparamagnetic particles [37].

The deletion of all mamXY genes had an even stronger effect, which is different from all previously
reported magnetosome phenotypes. Strikingly, all deletions including this operon had an inconsistent
phenotype, which varied between different cells. In addition to size reduction, this was characterized by
the co-existence of various distinct magnetosome morphologies within many single cells.

The deletion of genes from the mmsé6 operon had slightly different effects in AMB and MSR too. Single
deletion of the mmsé6 gene in AMB already caused smaller and elongated crystals [38], thus resembling
the R3 mutant constructed by Murat et al. [27], which comprised deletion of genes from both the mms6
and mamGFDC operons. In contrast, 58% of crystals within cells of the single operon deletion mutant
in MSR (strain AA10) still had cubicle-shaped appearance, whereas elongate crystals were absent from
the mutants AA10 and AA12. Although the phenotypes cannot be directly compared, since the extents
of deletions are not fully congruent, this might point towards slightly distinct functions of the homolo-
gous regions in AMB and MSR. In MSR co-deletion of the mmsé operon together with mamGFDC in
strain AA12 resulted in a further reduction of shape regularity and alignment of crystals, but only in a
slight decrease of size, whereas the number of particles per cell was similar to strain AA10 (Ammsé6).
This argues for a certain functional overlap between the two operons, which is consistent with the high
similarity between some of the encoded proteins, such as MmsF and MamF, which share 61% identity,
and Mms6, which shares a conspicuous LG-rich motif with MamG and MamD [2,39]. However, single
operon mutant phenotypes suggest that genes of the mms6 operon have a more pronounced effect on
crystal size, number and alignment than mamGFDC, perhaps by direct binding to the surface of nascent
crystallites through hydrophilic domains [40], or by enlarging the surface and curvature of MM vesicles,
which spatially constrain the growth of magnetite crystals [26].

Intriguingly, even in the AA14 and AA13 strains, in which the mms6, mamGFDC, and mamXY oper-
ons were deleted in triple, magnetite formation was not entirely abolished and cells still weakly aligned
in magnetic fields, although crystal sizes were further decreased and elongate crystals were present.
Despite of a functional overlap in size control of magnetite crystals, the roles of the mms6, mamGFDC,
and mamXY genes are not fully redundant, as indicated by the distinct morphologies found in their re-
spective single operon deletions. While simultaneous excision of the mamGFDC and mmsé6 operon lead

to heterogeneous cubicle-shaped crystals, loss of mamXY operon lead to poorly crystalline and elon-

40



2 Chapter Il

gate crystals, which were also detected within the double deletion mutant of mamXY and mamGFDC.
Interestingly, these effects are superimposed in the mamGFDC, mms6, mamXY triple deletion strains
(AA13 and AA14), in which crystallites of both morphologies are present. Altogether, these observations
indicate that the mamGFDC, mms6 and mamXY operons have important and additive functions for the
formation of regularly shaped crystals that are sufficiently large to be functional for interaction with the
weak geomagnetic field [39,41].

Consistent with observations for AMB [27], only the mamAB operon contains genes, which are essen-
tial for magnetosome formation. However, our data for the first time demonstrate that the mamAB operon
is the only region of the MAI, which is necessary and sufficient to maintain magnetite biomineralization
even in the absence of the mamGFDC, mms6, and mamXY clusters. Although it cannot be precluded
that additional, so far unrecognized determinants might be encoded outside the MAI, this further reduces
the minimal gene set, which is likely required for biomineralization. As the MamJ and MamK proteins
were already shown to have roles in magnetosome chain assembly rather than in biomineralization
[8,42], the core set of MAI genes essential for magnetite biomineralization in MSR can be expected to
be less than 15, and according to the identification of further non-essential genes in the mamAB operon
of AMB (mamA, H, U, V, P, T, R, S) [27] this number is likely to shrink further.

Our results will be also useful for future genome reduction approaches. Comparable experiments
in other bacteria have shown that large-scale deletions of target sequences are extremely powerful in
engineering of strains optimized for biotechnological processes [43,44,45]. By stepwise removal of un-
necessary or problematic genomic regions, in future approaches also strains of MSR can be engineered
for the production of magnetosome particles, which may exhibit increased genetic stability due to the
elimination of repeats and transposases, or might show improved growth or increased magnetosome
yields because of reduced gene content. In summary, deletion analysis of MAI indicates that whereas
only the mamAB operon is essential, different regions have important functions in control of size and
morphology of magnetosomes. Thus, modular deletion or expression of various magnetosome genes
and operons could be used for the production of engineered magnetic nanoparticles with tailored prop-

erties.

Materials and Methods

Bacterial strains, plasmids, and culture conditions

Bacterial strains and plasmids used in this study are listed in Table S2.2. M. gryphiswaldense strains
were grown microaerobically in modified flask standard medium (FSM) at 30°C [46] and moderate
agitation (120 rpm). E. coli strains were cultivated as previously described [47] and 1 mM DL-«, &-
diaminopimelic acid (DAP) was added to lysogeny broth media growing E. coli BW29427 (K. Datsenko

and B. L. Wanner, unpublished data). Strains were routinely cultured on dishes with 1.5% (w/v) agar.
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For strains carrying recombinant plasmids, media were supplemented with 25 g/ml kanamycin (Km),
12 g/ml tetracycline (Tet), and 15 g/ml gentamicin (Gm) for E. coli strains, and 5 g/ml kanamycin, 5 g/ml
tetracycline, and 20 g/ml gentamicin for M. gryphiswaldense strains, respectively. Blue-white screening
was performed by adding 50 pug/ml X-Gluc (5-bromo-4-chloro-3-indoxyl-D-glucuronidase; AppliChem,
Darmstadt, Germany) to FSM.

Molecular and genetic techniques

The working draft of M. gryphiswaldense genome sequence (GenBank accession number No. CU459003)
was used for primer design. Oligonucleotids (Tab. S2.3) were purchased from Sigma-Aldrich (Steinheim,
Germany). Chromosomal DNA of M. gryphiswaldense was isolated as described previously [3]. Plas-
mids were constructed by standard recombinant techniques as described in detail in the supplemental
data. All constructs were sequenced on an ABI 3700 capillary sequencer (Applied Biosystems, Darm-
stadt, Germany), utilizing BigDye Terminator v3.1. Sequence data were analyzed with Software Vector

NTI Advance® 11.5 (Invitrogen, Darmstadt, Germany).

Analytical methods

Magnetic reaction of cells was checked by light microscopy applying a bar magnet. Optical density and
magnetic response (Cmag) of exponentially growing cells were measured photometrical at 565 nm as
previously reported [48]. For Cmag messurement a magnetic field of approximately 70 millitesla was
used [48]. As this field can possibly magnetize small magnetosomes in the superparamagnetic size
range and cause artificially high Cmag readings, all putative magnetosome phenotypes were verified by
transmission electron microscopy (TEM). For TEM analysis, exponential cells were 10-fold concentrated
and adsorbed onto carbon-coated copper grids. Samples were viewed and recorded with a TECNAI
FEI20 microscope (FEI, Eindhoven, Netherlands). Magnetosome crystals were analyzed with respect to
size, shape and numbers per cell. Magnetosome crystals were scored for chain formation as described
by [8]. For pictures of cell pellets, cells were cultivated anaerobic in FSM and 10° cells were concentrated

by centrifugation.

Cell fractionation, protein digestion, mass spectrometry, and data analysis

For proteomic analysis M. gryphiswaldense WT was grown in microaerobic 1-liter batch cultures and
cell fractions (membrane-enriched, soluble, and magnetosomes) were prepared as previously described
[2,29]. Soluble proteins were separated in 2D PAGE (pH 4-7 and 3-10). Analysis of 2D gels including
relative quantification was done with the Delta2D software (Decodon, Greifswald, Germany). Protein
spots were cut from 2D gels, transferred into microtiter plates, and tryptically digested using the Ettan
Spot Handling Workstation (GE Healthcare, Munich, Germany). Mass spectra of protein fragments

were measured by MALDI-TOF-MS/MS using a Proteome Analyzer 4800 (Applied Biosystems, Munich,
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Germany). The parameters for measurements were set as described in [49]. The spectra were searched
against the published genome sequence from M. gryphiswaldense by using the JCoast 1.6 software
[50], and proteins were identified using the Mascot search engine. For analysis of magnetosomes and
membrane proteins, gel lanes obtained from 1D-SDS-PAGE were cut into 10 equal slices. Gel slices
were digested manually with trypsin and analysed by LC coupled mass spectrometry performed as
described by [51]. Relative quantification of membrane proteins was based on spectral counting using
Scaffold [52].
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Biosynthesis of magnetic nanostructures in a foreign organism by
transfer of bacterial magnetosome gene clusters.

Publication state: published in Nature Nanotechnology. 2014 Mar;9(3):193-7.

Abstract

The synthetic production of monodisperse single magnetic domain nanoparticles at ambient temper-
ature is challenging!?. In nature, magnetosomes - membrane-bound magnetic nanocrystals with un-
precedented magnetic properties - can be biomineralized by magnetotactic bacteria®. However, these
microbes are difficult to handle. Expression of the underlying biosynthetic pathway from these fastidi-
ous microorganisms within other organisms could therefore greatly expand their nanotechnological and
biomedical applications*>. So far, this has been hindered by the structural and genetic complexity of
the magnetosome organelle and insufficient knowledge of the biosynthetic functions involved. Here,
we show that the ability to biomineralize highly ordered magnetic nanostructures can be transferred
to a foreign recipient. Expression of a minimal set of genes from the magnetotactic bacterium Mag-
netospirillum gryphiswaldense resulted in magnetosome biosynthesis within the photosynthetic model
organism Rhodospirillum rubrum. Our findings will enable the sustainable production of tailored mag-
netic nanostructures in biotechnologically relevant hosts and represent a step towards the endogenous

magnetization of various organisms by synthetic biology.

Results and Discussion

The alphaproteobacterium M. gryphiswaldense produces uniform nanosized crystals of magnetite (Fe;Oy,),
which can be engineered by genetic®’ and metabolic means® and are inherently biocompatible. The
stepwise biogenesis of magnetosomes involves the invagination of vesicles from the cytoplasmic mem-
brane, magnetosomal uptake of iron, and redox-controlled biomineralization of magnetite crystals, as
well as their self-assembly into nanochains along a dedicated cytoskeletal structure to achieve one of the
highest structural levels in a prokaryotic cell>®. We recently discovered genes controlling magnetosome
synthesis to be clustered within a larger (115 kb) genomic magnetosome island, in which they are inter-

spersed by numerous genes of unrelated or unknown functions®!?. Although the smaller mamGFDC,
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mms6 and mamXY operons have accessory roles in the biomineralization of properly sized and shaped
crystals®!!, only the large mamAB operon encodes factors essential for iron transport, magnetosome
membrane (MM) biogenesis, and crystallization of magnetite particles, as well as their chain-like orga-
nization and intracellular positioning®'%:12,

However, it has been unknown whether this gene set is sufficient for autonomous expression of mag-
netosome biosynthesis. Using recombineering (recombinogenic engineering) based on phage-derived
Red-ET homologous recombination, we stitched together several modular expression cassettes com-
prising all 29 genes (26 kb in total) of the four operons in various combinations (Supplementary Fig.
3.1), but lacking the tubulin-like ftsZm. This gene was omitted from its native mamXY operon because
of its known interference with cell division during cloning. Regions 200-400 bp upstream of all operons
were retained to ensure transcription from native promoters!3.

Transposable expression cassettes comprising the MycoMar (tps) or Tn5 transposase gene, two cor-
responding inverted repeats, the origin of transfer oriT, and an antibiotic resistance gene were utilized to
enable transfer and random chromosomal integration in single copy!*!3 (Supplementary Tables 3.3 and
3.4). Chromosomal reintegration of all cassettes into different non-magnetic single-gene and operon
deletion strains of M. gryphiswaldense resulted in stable wild type-like restoration of magnetosome
biomineralization, indicating that transferred operons maintained functionality upon cloning and trans-
fer (Supplementary Fig. 3.2). We next attempted the transfer of expression cassettes to a foreign

non-magnetic host organism (Fig. 3.1).

1

/ PmamDC Pmms Pcm R RPmamH Pkm 1kb \
<> < al aj P
R U7 ~ ¢ r SNk
SF >< ><
- — RO Y T e
R R mamH  tc
D F G mms6 cm W TS BRQAP o N M L K J E I _Hy km
G DFGmmss |

mamGFDC mms6 marvnAB l +
P P P P R
- =z N —_—

N

Figure 3.1: Schematic representation of molecular organization of gene cassettes inserted into the chromo-
some of R. rubrum in a stepwise manner. Broad arrows indicate the extensions and transcriptional
directions of individual genes. Different colours illustrate the cassettes inserted into the chromosome
(oval shape, not to scale) as indicated by their gene names in the figure. Shown in yellow are antibiotic
resistance genes (km®, kanamycin resistance; tc®, tetracycline resistance; ap®, ampicillin resistance;
gmR gentamicin resistance). Thin red arrows indicate different promoters (P) driving transcription of
inserted genes (Pxm, Pgm, P, promoters of antibiotic resistance cassettes; P promoter, lac re-
pressor; Pmms, Pmampcs Pmamts Pmamxy, native promoters of the respective gene clusters from M.
gryphiswaldense; P4, lac promoter). Crossed lines indicate sites of gene deletions of mam/ and mamJ
in strains R. rubrum_ABG6X_dl and R. rubrum_ABG6X_adJ, respectively. IR, inverted repeat defining
the boundaries of the sequence inserted by the transposase.
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We chose the photosynthetic alphaproteobacterium R. rubrum as a first model because of its biotech-
nological relevance and relatively close relationship to M. gryphiswaldense'®~'8 (16S rRNA similarity
to M. gryphiwaldense=90%). Although the mamAB operon alone has been shown to support some
rudimentary biomineralization in M. gryphiswaldense®, neither genomic insertion of the mamAB operon
alone (pTps_AB) nor in combination with the accessory mamGFDC genes (pTps_ABG) had any de-
tectable phenotypic effect (Supplementary Table 3.1). We also failed to detect a magnetic response
(Cuqg) inthe classical light scattering assay!? after insertion of pTps_ABG6 (mamAB+mamGFDC+mms6).
However, the cellular iron content of R. rubrum_ABGS6 increased 2.4-fold compared with the untrans-
formed wild type (Supplementary Table 3.1). Transmission electron microscopy (TEM) revealed a loose
chain of small (~12 nm) irregularly shaped electron-dense particles (Fig. 3.2a,ii), identified as poorly
crystalline hematite (Fe,O3) by analysis of the lattice spacings in high-resolution TEM images (Supple-
mentary Fig. 3.3), much as in the hematite particles previously identified in M. gryphiswaldense mutants
affected in crystal formation!!?°. To further enhance biomineralization, we next transferred pTps_XYZ,
an insertional plasmid harbouring mamX, Y and Z from the mamXY operon, into R. rubrum_ABG6

(Supplementary Fig. 3.1).

2a

. rubrum_ABG6X_feo,

M. gryphiswal-
dense

Figure 3.2: Phenotypes of R. rubrum strains expressing different magnetosome gene clusters and auxil-
iary genes. a, TEM images: R. rubrum wild type (i), containing a larger phosphate inclusion (P) and
some small, non-crystalline, electron-dense particles; R. rubrum_ABGS (ii); R. rubrum_ABG6X (iii); R.
rubrum_ABG6X_ftsZm (iv); R. rubrum_ABG6X_dJ (v); R. rubrum_ABG6X_feo (vi). Insets: Magnifica-
tions of non-crystalline electron-dense particles (i) or heterologously expressed nanocrystals (ii-vi). All
insets are of the same particles\crystals as in their respective main images, except for (v). For further
TEM micrographs see Supplementary Fig. 3.10. b, Unlike the untransformed R. rubrum wild type, cells
of R. rubrum_ABG6X accumulated as a visible red spot near the pole of a permanent magnet at the
edge of a culture flask. ¢, TEM micrograph of a mixed culture of the donor M. gryphiswaldense and the
recipient R. rubrum_ABG6X _feo, illustrating characteristic cell properties and magnetosome organiza-
tion. Insets: Magnifications of magnetosomes from M. gryphiswaldense and R. rubrum_ABG6X_feo. d,
High-resolution TEM lattice image of a twinned crystal from R. rubrum_ABG6X, with Fourier transforms
(i) and (ii) showing intensity maxima consistent with the structure of magnetite.
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The resulting strain ABG6X encompassed all 29 relevant genes of the magnetosome island except
ftsZm. Intriguingly, cells of ABG6X exhibited a significant magnetic response (Supplementary Table 3.1)
and were ‘'magnetotactic’, that is, within several hours accumulated as a visible pellet near a magnet
at the edge of a culture flask (Fig. 3.2b). TEM micrographs revealed the presence of electron dense
particles identified as magnetite (Fe;O4) (Fig. 3.2d, Supplementary Fig. 3.8 and Table 3.1), which were
aligned in short, fragmented chains loosely dispersed within the cell (Fig. 3.2a,iii). Despite their smaller
sizes (average, 24 nm) the particles strongly resembled the magnetosomes of the donor strain in terms
of their projected outlines and thickness contrast, suggestive of cubooctahedral or octahedral crystal
morphologies (Fig. 3.2d). Additional insertion of the ftsZm gene under control of the inducible /ac pro-
moter had no effect on the cellular iron content and the number and size of magnetite crystals in the
resulting R. rubrum_ABG6X_ftsZm (Fig. 3.2a,iv, Supplementary Table 3.1).

Magnetite biomineralization occurred during microoxic chemotrophic as well anoxic photoheterotrophic
cultivation. Medium light intensity, 50 uM iron and 23 °C supported the highest magnetic response (C,,.4¢)
and robust growth of the metabolically versatile R. rubrum_ABG6X, which was indistinguishable from the
untransformed wild type (Supplementary Figs 3.4 and 3.5). The magnetic phenotype remained stable
for at least 40 generations under non-selective conditions, with no obvious phenotypic changes. To test
whether known mutation phenotypes from M. gryphiswaldense could be replicated in R. rubrum, we con-
structed variants of expression cassettes in which single genes were omitted from the mamAB operon
by deletion within the cloning host Escherichia coli. The small (77 amino acids) Maml protein was previ-
ously implicated in MM vesicle formation and found to be essential for magnetosome synthesis!?.

R. rubrum_ABG6X-dl failed to express magnetosome particles (Supplementary Fig. 3.10), which
phenocopied a maml deletion in the related M. magneticum'?. Another tested example was MamJ,
which is assumed to connect magnetosome particles to the cytoskeletal magnetosome filament formed
by the actin-like MamK?!. Much as in M. gryphiswaldense, deletion of mamJ caused agglomeration of
magnetosome crystals in 65% of R. rubrum_ABG6X-dJ cells (Fig. 3.2a,v, Supplementary Fig. 3.10 and
Table 3.1). Together, these observations indicate that magnetosome biogenesis and assembly within
the foreign host are governed by very similar mechanisms and structures as in the donor, which are
conferred by the transferred genes. As magnetosomes in R. rubrum_ABG6X were still smaller than
those of M. gryphiswaldense, we wondered whether full expression of biomineralization may depend on
the presence of further auxiliary functions, possibly encoded outside the canonical magnetosome oper-
ons. For instance, deletion of feoB1 encoding a constituent of a ferrous iron transport system specific for
magnetotactic bacteria caused fewer and smaller magnetosomes in M. gryphiswaldense??. Strikingly,
insertion of feoAB1 into R. rubrum strain ABG6X resulted in even larger, single-crystalline and twinned
magnetosomes and longer chains (440 nm) (Fig. 3.2a,vi, Supplementary Table 3.1). The size (37 nm) of
the crystals approached that of the donor, and cellular iron content was substantially increased (0.28% of
dry weight) compared with R. rubrum_ABG6X (0.18%), although still lower than in M. gryphiswaldense

(3.5%), partly because of the considerably larger volume of R. rubrum cells (Fig. 3.2c).
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Figure 3.3: Ultrastructural analysis of R. rubrum_ABG6X and isolated crystals. a, Cryo-fixed, thin-sectioned
R. rubrum_ABG6X contained intracytoplasmic membranes (ICMs) (93+34 nm, n=95) and magnetic
particles (MP). Inset: Magnification of the magnetite crystals. b, Cryo-electron tomography of isolated
magnetic particles of R. rubrum_ABG6X: x-y slice of a reconstructed tomogram (i) and surface-rendered
three-dimensional representation (ii). A membrane-like structure (yellow, thickness 3.4+1.0 nm, n=6)
surrounds the magnetic particles (red). (Blue, empty vesicle.) c,d, TEM images of isolated magne-
tosomes from R. rubrum_ABG6X (c and d,ii, iii, iv) and M. gryphiswaldense (d,i) negatively stained
by uranyl acetate (c) or phosphotungstic acid (d). Insets: Higher-magnification images of magnetic
particles; these are of different particles to those shown in the main images, except for (iv). Scale
bars, 100 nm. Arrows indicate the magnetosome membrane, which encloses magnetic crystals of
M. gryphiswaldense (thickness 3.2+1.0 nm, n=103) and R. rubrum_ABG6X (thickness 3.6+£1.2 nm,
n=100). Organic material could be solubilized from magnetite crystals of R. rubrum_ABG6X with SDS
(sodium dodecyl sulfate, iv) and less effectively also with Triton X-100 (iii).

Magnetosome particles could be purified from disrupted cells by magnetic separation and centrifu-
gation?*. and formed stable suspensions (Fig. 3.3). Isolated crystals were clearly enclosed by a layer
of organic material resembling the MM attached to magnetosomes of M. gryphiswaldense. Smaller,
immature crystals were surrounded by partially empty vesicles (Fig. 3.3c, inset), which were also seen
in thin-sectioned cells (Supplementary Fig. 3.8) and on average were smaller (66+6 nm) than the abun-
dant photosynthetic intracytoplasmic membranes (ICMs) (93+34 nm; Fig. 3.3a, Supplementary Fig.
3.8). Organic material of the putative MM could be solubilized from isolated magnetite crystals of R.
rubrum_ABG6X by various detergents (Fig. 3.3d), in a similar manner to that reported for MM of M.
gryphiswaldense®®. Proteomic analysis of the SDS-solubilized MM revealed a complex composition
(Supplementary Fig. 3.6), and several genuine magnetosome proteins (MamKCJAFDMBYOE, Mms6,
MmsF) were detected among the most abundant polypeptides (Supplementary Table 3.2). An antibody

against MamC, the most abundant protein in the MM of M. gryphiswaldense®?, also recognized a promi-
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nent band with the expected mass (12.4 kDa) in the MM of R. rubrum_ABG6X (Supplementary Fig. 3.6).
The subcellular localization of selected magnetosome proteins in R. rubrum depended on the presence
of further determinants encoded by the transferred genes. For example, MamC tagged with a green
fluorescent protein, which is commonly used as magnetosome chain marker in M. gryphiswaldense®*
displayed a punctuate pattern in the R. rubrum wild type background. In contrast, a filamentous fluo-
rescent signal became apparent in the majority of cells (79%) of the R. rubrum_ABG6X background, in
which the full complement of magnetosome genes is present (Supplementary Fig. 3.7), reminiscent of
the magnetosome-chain localization of these proteins in M. gryphiswaldense**.

Our findings demonstrate that one of the most complex prokaryotic structures can be functionally re-
constituted within a foreign, hitherto non-magnetic host by balanced expression of a multitude of struc-
tural and catalytic membrane-associated factors. This also provides the first experimental evidence that
the magnetotactic trait can be disseminated to different species by only a single event, or a few events,
of transfer, which are likely to occur also under natural conditions by horizontal gene transfer as spec-
ulated before!®23:26. The precise functions of many of the transferred genes have remained elusive
in native magnetotactic bacteria, but our results will now enable the dissection and engineering of the
entire pathway in genetically more amenable hosts. The approximately 30 transferred magnetosome
genes constitute an autonomous expression unit that is sufficient to transplant controlled synthesis of
magnetite nanocrystals and their self-assembly within a foreign organism.

However, further auxiliary functions encoded outside the mam and mms operons are necessary for
biomineralization of donor-like magnetosomes. Nevertheless, this minimal gene set is likely to shrink
further as a result of systematic reduction approaches in different hosts. Importantly, the results are
promising for the sustainable production of magnetic nanoparticles in biotechnologically relevant photo-
synthetic hosts. Previous attempts to magnetize both prokaryotic and eukaryotic cells by genetic and
metabolic means (for example, refs 27,28) resulted in only irregular and poorly crystalline iron deposits.
This prompted ideas to borrow genetic parts of the bacterial magnetosome pathway for the synthesis of
magnetic nanoparticles within cells of other organisms*?°. Our results now set the stage for synthetic
biology approaches to genetically endow both uni- and multicellular organisms with magnetization by
biomineralization of tailored magnetic nanostructures. This might be exploited for instance in nanomag-
netic actuators or in situ heat generators in the emerging field of magnetogenetics®, or for endogenous

expression of magnetic reporters for bioimaging?!.
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Methods

Bacterial strains, media and cultivation.

The bacterial strains are described in Supplementary Table 3.4. E. coli strains were cultivated as pre-
viously described®?. A volume of 1 mM DL-a,e-diaminopimelic acid was added for the growth of aux-
otrophic strains BW29427 and WM3064. M. gryphiswaldense strains were cultivated in flask standard
medium (FSM), in liquid or on plates solidified by 1.5% agar, and incubated at 30 °C under microoxic

(1% 02) conditions*}. Cultures of R. rubrum strains were grown as specified (Supplementary Fig. 3.3).

Construction of magnetosome gene cluster plasmids and conjugative transfer.

The oligonucleotides and plasmids used in this study are listed in Supplementary Tables 3.4 and 3.5.
Red-ET (Lambda red and RecET) recombination was performed as described previously'#. Briefly, a
cloning cassette was amplified by polymerase chain reaction (PCR) and transferred into electrocompe-
tent E. coli cells (DH10b) expressing phage-derived recombinases from a circular plasmid (pSC101-
BADgbaA). After transfer of the cassette, recombination occurred between homologous regions on the
linear fragment and the plasmid. To stitch the magnetosome gene clusters together into a transposon
plasmid (Supplementary Fig. 3.1) we used triple recombination'* and co-transformed two linear frag-
ments, which recombined with a circular plasmid. Recombinants harbouring the correct plasmids were
selected by restriction analysis®?. Conjugations into M. gryphiswaldense were performed as described
before®3. For conjugation of R. rubrum, cultures were incubated in ATCC medium 112. Approximately
2x10° cells were mixed with 1x10° E. coli cells, spotted on American Type Culture Collection (ATCC)
112 agar medium and incubated for 15 h. Cells were flushed from the plates and incubated on ATCC
112 agar medium supplemented with appropriate antibiotics for 7-10 days (Tc=10 mg ml~!; Km=20 mg
ml~!; Gm=10 mg miI~!, where Tc, tetracycline; Km, kanamycin; Gm, gentamicin). Sequential transfer of
the plasmids resulted in 1x107® to 1x10~8 antibiotic-resistant insertants per recipient, respectively. Two
clones from each conjugation experiments were chosen for further analyses. Characterized insertants
were indistinguishable from wild type with respect to motility, cell morphology or growth (Supplementary

Fig. 3.5).

Analytical methods.

The optical density of M. gryphiswaldense cultures was measured turbidimetrically at 565 nm as de-
scribed previously'®. The optical density of R. rubrum cultures was measured at 660 nm and 880 nm.
The ratio of 880/660 nm was used to determine yields of chromatophores within intact cells (Supplemen-
tary Fig. 3.4). Furthermore, bacteriochlorophyll a was extracted from cultures with methanol. Absorption
spectra (measured in an Ultrospec 3000 photometer, GE Healthcare) of photoheterotrophically cultivated

R. rubrum_ABGE6X cells were indistinguishable from that of the wild type (Supplementary Fig. 3.4).
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The average magnetic orientation of cell suspensions (C,,,,) was assayed with a light scattering assay
as described previously'. Briefly, cells were aligned at different angles to a light beam by application of

an external magnetic field.

Microscopy.

For TEM of whole cells and isolated magnetosomes, specimens were directly deposited onto carbon-
coated copper grids. Magnetosomes were stained with 1% phosphotungstic acid or 2% uranyl acetate.
Samples were viewed and recorded with a Morgagni 268 microscope. Sizes of crystals and vesicles
were measured with Imaged software. Chemical fixation, high-pressure freezing and thin sectioning
of cells were performed as described previously!”. Processed samples were viewed with an EM 912
electron microscope (Zeiss) equipped with an integrated OMEGA energy filter operated at 80 kV in
the zero loss mode. Vesicle sizes were measured with Imaged software. High-resolution TEM was
performed with a JEOL 3010 microscope, operated at 297 kV and equipped with a Gatan Imaging Filter
for the acquisition of energy-filtered compositional maps. For TEM data processing and interpretation,
DigitalMicrograph and SingleCrystal software were used?’. Cryo-electron tomography was performed
as described previously?!. Fluorescence microscopy was performed with an Olympus IX81 microscope
equipped with a Hamamatsu Orca AG camera using exposure times of 0.12-0.25 s. Image rescaling

and cropping were performed with Photoshop 9.0 software.
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Abstract

Biosynthesis of bacterial magnetosomes, which are intracellular membrane-enclosed, nano-sized mag-
netic crystals, is controlled by a set of >30 specific genes. In Magnetospirillum gryphiswaldense these
are clustered mostly within a large conserved genomic magnetosome island (MAI) comprising the mmsé,
mamGFDC, mamAB and mamXY operons. Here, we demonstrate that the five previously uncharacter-
ized genes of the mmsé6 operon have crucial functions in the regulation of magnetosome biomineraliza-
tion that partially overlap with MamF and other proteins encoded by the adjacent mamGFDC operon.
While all other deletions resulted in size reduction, elimination of either mms36 or mms48 caused the
synthesis of magnetite crystals larger than those in the WT. Whereas the mmsé6 operon encodes acces-
sory factors for crystal maturation, the large mamAB operon contains several essential and non-essential
genes involved in various other steps of magnetosome biosynthesis, as shown by single deletions of all
mamAB genes. While single deletions of mamL, P, Q, R, B, S, T and mamU showed phenotypes sim-
ilar to those of their orthologs in a previous study in the related M. magneticum, we found maml and
mamN to be not required for at least rudimentary iron biomineralization in M. gryphiswaldense. Thus,
only mamek, L, M, O, Q, and mamB were essential for formation of magnetite, whereas a mam/ mutant
still biomineralized tiny particles which, however, consisted of the non-magnetic iron oxide hematite as
shown by HRTEM and XANES. Based on this and previous studies we propose an extended model for

magnetosome biosynthesis in MSR.

Introduction

Magnetotactic bacteria (MTB) orient along the Earth magnetic field lines to navigate to their growth-
favoring microoxic habitats within stratified aquatic sediments (1). This behavior is enabled by the syn-

thesis of ferrimagnetic intracellular organelles termed magnetosomes (2). In the a-proteobacterium
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Magnetospirillum gryphiswaldense (in the following referred to as MSR) and related MTB, magneto-
somes consist of crystals of the magnetic iron oxide magnetite (Fe;O,4) enclosed by the magnetosome
membrane (MM) that contains a specific set of about 30 proteins (3, 4). The biosynthesis of magneto-
somes is a complex process that comprises the (i) invagination of vesicles from the inner membrane (5,
6), (ii) sorting of magnetosome proteins to the MM (7), (iii) iron transport and crystallization of magnetite
crystals (8), (iv) crystal maturation (7) and (v) assembly as well as positioning of mature crystals into a
linear chain along a filamentous cytoskeletal structure (6, 9).

Each step is under strict genetic control and responsible genes were found to be located mostly within
a genomic magnetosome island (MAI) (10, 11), comprising the mmsé (in the following referred to as
mms6op), mamGFDC (mamGFDCop), mamAB (mamABop), and mamXY (mamXYop) operons (10-
12). These operons were found to be highly conserved also in the closely related M. magneticum (in the
following referred to as AMB) (13-17). It has been shown that the regions between and flanking the iden-
tified magnetosome operons have no functional relevance for magnetosome biosynthesis in MSR and
AMB (7, 18). In MSR the mms6, mamGFDC, mamAB and mamXY operons are transcribed as single
polycistronic messengers under control of the Pmmss; Pmampe, PmamH, and Pmamxy promoters, respec-
tively (19, 20). A deletion mutant of mamGFDCop encoding the most abundant magnetosome proteins
retained the ability to form magnetic, although smaller and less regular magnetosomes, while plasmidal
overexpression of the entire mamGFDCop yielded magnetite particles even larger than those produced
by the WT (21). Elimination of the corresponding region R3 in AMB, comprising in addition parts of
mms6op, caused a severe biomineralization defect, resulting in cells with reduced magnetosome sizes
and numbers (7). Deletion of the entire mamXYop resulted in smaller and misshaped magnetosome
particles in MSR (18), whereas no obvious phenotype was observed for AmamXYop in AMB (7).

The mms6op of MSR comprises the genes mgr4074, mms6, mmsF, mgr4071 (in the following re-
named into mms36) and mgr4070 (renamed into mms48; Fig. S4.1), which was previously predicted to
encode a TPR-like protein (18). A mutant, in which the entire mms6op was deleted (AA10), was also
severely impaired in the biomineralization of magnetite crystals, which exhibited defects in crystal mor-
phology, size and organization. However, the individual functions of mgr4074, mms6, mmsF, mms36
and mms48 as well as their contribution to the strong phenotype of Amms6op have remained unknown.
In AMB, the mms6 cluster was described to comprise only amb0955 (mgr4074), amb0956 (mmsé6),
amb0967 (mmsF), but to lack homologs of mms48 and mms36 (22). Single gene deletions of mmsé
in AMB by different groups revealed inconsistent phenotypes. Whereas Tanaka et al. (23), reported
an important regulatory function of Mms6 for magnetosome morphology, Murat et al. observed only
minor effects on magnetosome biosynthesis after deletion of mmsé in vivo (22, 24). In vitro, the small
(12.76 kDa in MSR and 14.69 in AMB) Mms6 protein was shown to be tightly bound to isolated bacterial
magnetite crystals as visualized by atomic force microscopy and TEM (25, 26). In vitro crystallization
experiments suggested that Mms6 and peptides mimicking it have iron-binding activity and affected the

formation of cubo-octahedral crystal morphologies (27, 28). In contrast to the smaller accessory oper-
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ons, mamABop was found to contain genes absolutely essential for magnetosome biosynthesis in MSR
and AMB (18, 22). Whereas mamABop was found to be sufficient to support at least some rudimentary
biomineralization of small magnetite crystals even in the absence of all other magnetosme operons in
both strains (18, 22), the mamXY, mamGFDC, mms6, and mamAB operons were required altogether
for magnetite biomineralization upon their transfer into the foreign host Rhodospirillum rubrum (29).

A recent comprehensive genetic dissection of mamABop in AMB revealed that mamH, P, R, S, and
mamT encode accessory functions for magnetosome synthesis, since mutants display various biomin-
eralization defects, whereas mamU and mamV had no obvious magnetosome phenotype (7). As in
MSR (see below), mamK and mamdJ were implicated in magnetosome chain assembly, but their loss
did not affect biomineralization (30, 31). However, gene deletions of maml, E, L, M, N, O, and mamQ
as well as mamB (co-deleted with their respective orthologs) fully abolished magnetosome synthesis
in AMB (7, 32). Whereas Maml, L, Q and MamB were suggested to be essential for vesicle genesis,
MamE, O, M, and MamN were classified to be mainly required only for magnetite crystallization (7). The
discovery of a small ’'magnetosome islet’ in the genome of AMB with further copies of mamek, J, K, L, M,
F as well as mamD suggested genetic redundancy that has to be clarified with respect to determination
of the minimal essential gene set (33). In MSR the 16.4 kb mamABop contains 17 genes (mamH, |, E,
JKLMN,O,P A Q R, B, S, T and mamU) (Fig. 4.3).

Only a few genes of mamABop so far were analyzed individually in this organism. The actin-like
protein MamK forms a filamentous structure for magnetosome assembly and interacts with the acidic
protein MamJ that is involved in connecting magnetosomes to the filament. Both proteins, however, have
no or only minor effects on biomineralization (9, 34). Deletion of mamH caused a moderate decrease of
magnetosome number and size, whereas co-deletion of mamH and its partial homologue mamZ had a
considerably stronger effect with only very few or no regular crystals detectable in the cells (20). Dele-
tion of mamE, O, M and mamB resulted in either a total inhibition of crystal nucleation or prevented MM
vesicle synthesis (18, 35, 36). However, maml, L, N, P, A, Q, R, S, T, and mamU were not yet analyzed
individually by mutagenesis, and it has remained unknown whether they have functions similar or distinct
from those of their corresponding orthologs in AMB. Finally, it is not clear, which genes constitute the
minimal set of essential determinants for magnetosome biomineralization in MSR.

Here, we analyzed the functional relevance of proteins encoded by mms6op and mamABop for the
biosynthesis of magnetic minerals in MSR. We demonstrate that besides Mms6 and MmsF, mms6op of
MSR encodes two further important regulators (Mms36 and Mms48) for magnetosome biomineraliza-
tion. Whereas deletions of mamA, R, S, T, and mamU resulted in similar phenotypes as those observed
for deletion of homologous genes in AMB, we show that other than in AMB, AmamN and Amaml/ still
synthesize particles in MSR, thus further shrinking the minimal gene set for iron biomineralization to

mamek, L, M, O, Q and mamB. Finally, we propose an extended model for magnetosome biosynthesis.
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Material and Methods

Bacterial strains, plasmids, and culture conditions

Bacterial strains and plasmids used in this study are listed in Table S4.1. WT and mutant strains of MSR
were grown in liquid modified flask standard medium (FSM) at 30 °C under microaerobic conditions
if not otherwise specified (37, 38). Therefore, cells were cultivated in flasks, closed with butyl-rubber
stoppers after incubation with a gas mixture of 2% O, and 98% N, or in purged jars. For anaerobic
requirements, O, was excluded from the gas mixture, while aerobic conditions were generated through
free gas exchange with air. Escherichia coli strains were cultivated as previously described (39) and
lysogeny broth medium was supplemented with 1 mM DL-«, e-diaminopimelic acid (DAP) for cultivation
of E. coli strain BW29427 as well as WM3064. For selection of antibiotic resistant cells, media were
supplemented with 25 g/ml kanamycin (Km), 12 g/ml tetracycline (Tet), and 15 g/ml gentamicin (Gm) for
E. coli strains, and 5 g/ml Km, 5 g/ml Tet, and 20 g/ml Gm for MSR strains, respectively.

Molecular and genetic techniques

Oligonucleotide sequences (Table S4.2) were deduced from the working draft genome sequence of
MSR (GenBank accession number No. CU459003) and purchased from Sigma-Aldrich (Steinheim,
Germany). Genetic fragments were amplified by standard polymerase chain reaction (PCR) procedures
with Phusion polymerase (NEB GmbH, Frankfurt am Main, Germany) and generated plasmids were
sequenced with an ABI 3700 capillary sequencer (Applied Biosystems, Darmstadt, Germany), utiliz-
ing BigDye Terminator v3.1. Data were analyzed with Software Vector NTI Advance 11.5 (Invitrogen,

Darmstadt, Germany) or MacVector 7.2.3 (Oxford Molecular, Oxford, UK).

Generation of unmarked deletion mutants

Markerless single gene deletions within the mamAB, mms6, and mamGFDC operon were partially re-
alized with the pORFM_galK plasmid. The vector was digested with BamHI and Kpnl to insert the
approximately 1 kb downstream and upstream fragments of maml, L, N, P, Q, R, S, T, U, mms36,
mms48, and mmsF_mms6. For integration of homologous regions of mamA and mamL the plasmid
was digested with BamHI/Notl and Nsi/Spel, respectivaly. Oligonucleotides, used to amplify the 5’ and 3’
flanking sequence from MSR by PCR are listed in Table S4.3. Both fragments were linked by an overlap
PCR with the first and last listed corresponding oligonucleotide, subcloned into pJet1.2/blunt, sequenced
and ligated into the digested pORFM_galK vectors. Generated plasmids were termed: pAL_ Amaml,
pORAmamL, pAL_ AmamN, pAL_ AmamP, pAL_ AmamA, pAL_ AmamQ, pAL_ AmamR, pAL_ Amams§,
pAL_ AmamT, pAL_ AmamU, pAL_ Amms36, pAL_ Amms48, and pAL_ AmmsF Ammsé. Deletion of
mms6, mmsF, mamF and double deletion of mmsF AmamF was accomplished by double cross over

method. Oligonucleotides for amplification of flanking sections are listed in Table S4.3.
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Regions were cloned into pJet1.2/blunt and sequenced. Plasmid pCM184 was digested with Apal/Sacl
and 3’ end regions were inserted for deletion of mms6, mmsF and mamF. Generated plasmids were
digested with EcoRI/Ndel and 5’ flanking sequence was inserted, resulting in pCM184_mmsé6 3'5’,
pCM184_mmsF 3’5’ and pCM184_mamF 3'5’. The generated plasmids were examined by restriction
analysis with a set of different enzymes or PCR and transferred into MSR WT by conjugation using E. coli
BW29427 as donor strain as described elsewhere (18). Genomic insertion mutants were selected on
Km plates, cultivated in 100 ul FSM medium over night at 30 °C and scaled up to 1 ml. Proper plasmid
integration was verified by PCR and if necessary counter selection was implemented. Positive excision
strains were verified by PCR and mutants were termed as: Amaml, AmamL, AmamN, AmamP, AmamaA,
AmamQ, AmamR, AmamS, AmamT, AmamU, Amms48, Amms36, and AmmsF Amms6. Mutants gen-
erated by double cross over were cultivated in 10 ml MSR medium and excision of the Km resistance
gene was induced after conjugation with the Cre expression plasmid pCM157. Generated strains were
termed: AmmsF and Ammsé6. For double deletion of mmsF and mamF, the plasmid pCM184_mamF
3’5’ was introduced into AmmsF, and deletion was verified as described above, resulting in strain AmmsF

AmamfF.

Complementation of generated mutants and GFP localization

For MamC-GFP localization experiments the plasmid pFM323 was integrated into the genome of Amaml,
AmamL, AmamN, AmamP, AmamA, AmamQ, AmamR, AmamS, and AmamT. For construction of pAL_
mamlg, maml was amplified with oligonucleotides AL394/AL395 and inserted into pCL6 after digestion
with Ndel/EcoRI. Plasmids for complementation of the other mutant strains were derivatives of pBAM1
and labeled pPBAM_mamL, P, S, T, R, A, N, mms48, mms36, and mgr4074 respectively. Oligonucleo-
tides for amplification of the genes are listed in Table S4.3. Genes were cloned between the Ndel/EcoRlI
or Ndel/Pacl sites (for mamN) of pBAM_GFDC under control of the P,,,mpc promoter. Plasmids pBam_
mms36 and pBam_mms48 were also used for overexpression studies in WT. For complementation of
AmmsF, Amms6, AmmsF AmamF, AmmsF Ammsé6, or AA10, corresponding genes were amplified with
oligonucleotides listed in Table S4.3. Genes were inserted into pAP150 after digestion with BamHI/Ndel,
resulting in pAL_mmsF, pAL_mms6, pAL_PmamDC_mms6op, and pAL_P ,,ampc mmsé,F 4074- The plas-
mid pPBBRMCS2 was digested with Nsil/EcoRI for integration of genes mms6, mmsF and mgr4074
after amplification with AL125/AL136, generating pAL_P mmss mmss.F 4074- FOr transcomplementation as-
says, the plasmids were transferred to the respective deletion mutant by conjugation. AmmsF_mmsé
and AmmsF_mamF were complemented with pAL_mms6 and pAL_mmsF, respectively. Plasmids

pBam_mgr4074; pAL_ P mampc_mmséops PAL_P mmss_mmss,F,40745 PAL_P mampc_mmse,F 4074 Were used for

complementation studies in AA10.
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Analytic methods

Optical density and magnetic response (C,.,;) were analyzed photometrically at 565 nm (40). The
applied magnetic field for C,,,, measurements was about 70 mT, which is able to magnetize very small
or irregular magnetosomes within the superparamagnetic state. Intracellular iron concentrations were

measured after incubation under anaerobic conditions as described (41).

Phase Contrast and Fluorescence Microscopy

MSR strains with genomic textitegfp were grown in 5 ml FSM in six-well plates for 16 h at 30 °C and 2%
O, without agitation. Cells were immobilized on agarose pads (FSM salts in H,O, supplemented with
1% agarose), and imaged with an Olympus BX81 microscope equipped with a 100 UPLSAPO100XO
objective (numerical aperture of 1.40) and a Hamamatsu Orca AG camera. The Olympus cell software

was used to capture and analyze images.

TEM and HRTEM

Magnetosome phenotypes of cells with respect to size, shape and number per cell were examined by
transmission electron microscopy (42), for which cells were concentrated and adsorbed onto carbon-
coated copper grids. Cells were imaged with a FEI Morgagni 268 (FEI, Eindhoven, Netherlands) elec-
tron microscope at an accelerating voltage of 80 kV. Bright-field TEM images and selected-area electron
diffraction (SAED) patterns were recorded on image plates, using a Philips CM20 microscope operated
at 200 kV and fitted with a Noran Voyager energy-dispersive X-ray detector. High-resolution transmis-
sion electron microscopy (HRTEM) was performed using a JEOL 3010 microscope, operated at 297
kV and equipped with a Gatan Imaging Filter (GIF) for the acquisition of electron energy-loss spec-
tra and energy-filtered compositional maps. For TEM data processing and interpretation the softwares

DigitalMicrograph and SingleCrystal were used.

X-ray Absorption Spectroscopy

Bacterial cultures (90-135 mL) were pelleted by centrifugation (5 min at 9,000 x g, 4 °C) and washed
3x by resuspension with 5 mL TBS (pH 7.6) and centrifugation. Pellets were then resuspended in 100
uL TBS + 25 uL glycerol and frozen in liquid nitrogen on sample holders with Kapton film support.
Samples were shipped to the European Synchrotron Radiation Facility (ESRF) on dry ice, where they
were stored at -80 °C until measurement. Fe K-edge X-ray absorption near edge structure (XANES)
spectra were recorded at the undulator beamline ID26 of the ESRF. We used a Si (311) double-crystal
monochromator and focusing mirrors giving a beam spot size of ~200x400 um? on the samples. Data
were recorded in fluorescence detection mode using a Rowland-type spectrometer equipped with 4 Ge

(440) analyzer crystals and a Si-photodiode. During all measurements, samples were cooled to around
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10 K using a liquid He cryostat. XANES spectra were recorded with 0.1 eV step from 7100 to 7200
eV. To improve data quality, 10 to 100 XANES scans were recorded for each sample. Samples were
moved of few hundreds of microns between each scan in order to minimize radiation damage. Data
were averaged using PyMca 4.6.2 after evaluation for iron photo-reduction. Averaged spectra were
normalized and fitted using Demeter 0.9.16. As reference materials we used spinach ferredoxin (Sigma
Aldrich), hematite (20-60 nm grain size, Alfa Aesar), magnetite, ferrihydrite and phosphate-enriched

ferric oxyhydroxides (described earlier in (43)).

Results

Deletion mutagenesis of the mms6 operon and mamF

After reassessment of annotation and correction of the MmsF N-terminus (Figure S4.1), we generated
various unmarked in frame single and double deletions of all mms6op genes as well as of mamF (lo-
calized in the adjacent mamGFDCop), which is highly similar (61% aa identity) to mmsF (see Table 1
and Figure 1 for overview over deletions and resulting phenotypes). We found the hypothetical mgr4074
to be poorly conserved, and its chromosomal reintegration into Amms6op (AA10) (18) did not alleviate
the severe biomineralization defects of the parent strain. We therefore consider mgr4074 a pseudogene
with no role in biomineralization, although further studies are needed to address the expression and
putative localization of its gene product.

Strain Amms6 had slightly smaller crystals (30 nm; Wild-type (WT): 36 nm) that were scattered
throughout the cell, either aligned in irregularly spaced "pseudo-chains” (i. e., with <10 crystals per
chain) or approximating WT-like chain configurations (Table 4.1; Figure 4.1). Crystals between 30 and
35 nm were predominant (WT: 40-45 nm), but particles larger than 60 nm were absent (WT: <70 nm;
Figure S2). The average crystal number per cell was reduced to 30 (WT: 34 particles per cell), and the
magnetic response of a Amms6 culture was slightly weaker than that of the WT (C,,,.¢(mmse): 1.7£0.1;
Coragwr): 2.0+0.1; Table 4.1). C,,, of AmmsF cells was similar to those of Ammsé. Magnetosomes
displayed variable intracellular arrangements, such as one or more short chains, partially scattered
crystals, or lacking any chain-like alignment (Figure 4.1). Mean crystal sizes were reduced to <30 nm,
whereas the particle number was only slightly lower than in the WT (Table 4.1; Figure S4.2). Since the
high similarity of 61% between MmsF and MamF suggested possible functional redundancy, mamF was
eliminated both alone and in combination with mmsF. In AmamF, MamC encoded downstream of mamF
in the same operon was found to be properly expressed by immunodetection, indicating that deletion of
mamF had no polar effect (data not shown). Mean crystal size (34 nm) and number (34 per cell) were
similar in AmamF to WT.

However, the combined excision of both genes within AmmsF AmamF resulted in a more drastic

decrease in size (25 nm) and number (27 crystals per cell, Figure 4.1; Table 4.1; Figure S4.2).
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Thus, loss of MmsF had a more pronounced effect on crystal size, number and alignment than MamF,
and the additive effect of their combined deletion suggested that both proteins are involved in size con-
trol. Double deletion of mmsF and mmsé6 reduced size to 24 nm and number to 24 crystals per cell
(Table 4.1). However, iron content, size and numbers of magnetite particles as well as C,,,; (1.6+0.1)
of AmmsF Amms6 were still higher than in the operon deletant AA10 (C,,¢ : 1.040.1), with particles of
20-25 nm prevailing in both strains (Figure 4.1; Table 4.1; Figure S4.2).

mms6 operon (3.6 kb) mamGFDC operon (2.1 kb)

mmsF- mms§ - 4074 ——— G mamf  mamD  mamC

0.5 kb

Figure 4.1: Molecular organization of the mms6 and mamGFDC operons in MSR and TEM micrographs of
generated deletion mutants. Scale bar: 1 um. Dark blue bars: Indicate extent of gene deletions
generated in this study. Light blue bars: Gene deletion mutants generated by (18, 21).

HRTEM images of particles from AA12, in which the entire mms6op and mamGFDCop were deleted
together (18), revealed fringes spacing corresponding to magnetite. This indicates that the deleted
genes alone do not have a critical role in magnetite formation (Figure 4.2). In contrast to the strong size
reduction observed in all other mutant strains, deletions of mgr4070 and mgr4071 (renamed into mms48
und mms36 according to their predicted protein masses of 48 and 36 kDa, respectively) unexpectedly
caused a substantial increase in mean crystal size. Particles synthesized by both strains resembled
WT crystals in shape, but were significantly larger in Amms36 (39 nm) and Amms48 (46 nm; Figure 1;
Table 4.1; Figure S4.2). This is equivalent to a mean size increase of about 30% compared to WT for
the latter strain, in which crystals between 50 and 60 nm were most abundant, with a maximum size of
up to 85 nm (Figure S4.2). However, both strains synthesized fewer particles than the WT (Amms36:
22; Amms48: 16 per cell), and whereas in WT magnetosome chains of larger particles at midchain are

usually flanked by numerous smaller crystals, those characteristic small crystals (15-25 nm) were less
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frequent at the chain ends in Amms36 and Amms48 (Figure 4.1; Table 4.1; Figure S4.2). Thus, the
predominance of larger (>30 nm) particles partly accounted for the substantially increased mean crystal
size. However, despite the reduced particle numbers per cell, overall magnetite biomineralization was
increased as evident by the increased iron content of both deletion strains (21% more iron compared to
WT).

Genomic expression of additional copies of mms48 and mms36 did not significantly change mean
particle size (WT::mms36: 35 nm; WT::mms48: 33 nm; Table 4.1) but the size distribution was shifted to-
wards smaller crystals for both strains. Crystals between 30 and 45 nm were predominant in WT::mms36
and WT::mms48, whereas particles larger than 60 nm were not observed, unlike WT crystals that were
most frequently between 40 and 45 nm with a maximum size up to 70 nm (data not shown). Whereas
particle number was WT-like for overexpression of Mms36 (32 per cell), crystal number was increased
for strain WT::mms48 (40 per cell; Table 4.1). Interestingly, cells containing double chains were more
abundant for WT::mms48 (WT::mms48: 67%; WT::mms36: 28%; WT: 32%; Figure S4.3).

In summary, all proteins encoded by mms6op are involved in control of magnetosome size or/and
number. The previously observed severe biomineralization defects in Amms6op are thus not due to loss
of a single, but several genes, which points towards a cumulative effect on magnetosome synthesis by

various proteins encoded by mmséop.

311

4220

M[114]

Figure 4.2: TEM and HRTEM micrographs and their corresponding Fourier transforms of electron dense
particles in various generated deletion strains of MSR. The Fourier transforms were obtained from
the images of entire particles or from the boxed areas in each corresponding HRTEM image. The lattice
fringe spacings correspond to the strucures of either magnetite (A, D, E, F, G) or hematite (B, C) in the
mutants AA12, Amaml, AmamN, and AmamP.
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Table 4.1: Characterization of the generated mutants.

Strain Deleted Magnetic Average Magnetosome Number of Maximum
Gene/s Response  Magnetosome Size Magnetosomes Size
(Crag)* Size [nm] [% WT] per Cell [nm]
WT - 2.040.1 35.6+£13.0 100 34.3+8.4 69.2
AA10 mms6  Intermediate 19.7£6.9 55.3 16.8+6.2 39.6
operon
Amms6 mms6 WT 30.449.0 854 29.746.2 57.3
AmmsF mmsF  Intermediate 28.618.0 80.3 30.417.4 60.9
Amms48 mms48 WT 46.4+14.8 130.3 16.0+5.6 82.8
Amms36 mms36 WT 39.1+12.9 109.8 22.2+7.3 67.6
AmamF mamF WT 33.61£10.4 94.4 33.6110.4 64.9
AmmsF mamF  mmsF, WT 25.0+7.4 70.2 26.6+9.3 47.4
mamF
AmmsF mms6 mmsF, Intermediate 24.1+6.4 67.7 24.1+6.8 44.8
mms6
WT::mms36 - WT 34.619.2 97.2 31.6+£10.1 57.2
WT::mms48 - WT 33.2+8.2 93.3 40.2+10.5 58.0
Amaml maml None 14.8+7 1 41.6 9.9+4.3 34.4
AmamL mamL None - - - -
AmamN mamN Weak 17.747 1 49.7 11.047.4 413
AmamP mamP  Intermediate 21.9+15.3 61.5 19.3£10.0 72.8
AmamA mamA WT 35.2+13.1 98.9 10.2+4.7 73.4
AmamQ mamQ None - - - -
AmamR mamR WT 29.0£11.0 81.5 33.5£10.5 70.2
Amam$S mamS WT 22.0+7.5 61.8 34.8+12.0 442
AmamT mamT WT 28.9£10.3 81.2 32.0+8.2 60.1
AmamU mamU WT 37.3%13.0 104.8 31.848.4 65.3

Deletion analysis of the mamAB operon: mamE, L, M, O, Q and mamB are

essential for iron biomineralization

First, annotations of all 17 mamABop genes were re-assessed. N-termini that were conserved between
all three closely related magnetospirilla MSR, AMB and M. magnetotacticum were considered the most
likely translation starts. Annotations were corrected accordingly for mam/ and mamL (Figure S4.4) and
experimentally confirmed by the ability of genes to complement their respective gene deletions. In ad-
dition to the previous deletions of the mamABop genes, we constructed ten single in frame deletions
comprising maml, L, N, P, A, Q, R, S, T, and mamU, respectively. As expected, all resulting deletion

strains displayed WT-like growth and morphologies. However, deletion mutants were impaired in mag-
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netosome biomineralization to variable extents. Based on their magnetic response mutants either were
i) magnetically responsive with variable but significant C,,. (AmamN, P, A, R, S, T, mamU) or ii) entirely
non-magnetic without any detectable C,.., (Amaml, mamQ, mamL; Table 4.1).

TEM analysis confirmed that group (i) strains were still able to synthesize magnetosome-like particles,
but displayed various distinct phenotypes with respect to crystal morphology, size, and number per cell
(Figure 4.3). AmamU was hardly distinguishable from WT cells and produced 32 cubo-octahedral crys-
tals per cell with a size of 37 nm. All other mutants showed a drastically decreased magnetosome size,
number and/or alignment. Magnetosomes of AmamA had a WT-like size of 35 nm, but their number was
substantially decreased to 10 per cell. AmamS particles exhibited a widely spaced linear chain-like ar-
rangement within the cell. Whereas the crystal size was strongly decreased (22 nm), they were present
in about same numbers as in the WT (35 particles per cell). AmamT also synthesized irregularly spaced
magnetosome chains, whereas in some cells larger magnetosomes appeared at the chain center and
formed condensed "pseudo-chains”. Due to the prevalence of smaller crystals, the mean particle size
was decreased to 29 nm, whereas their number was WT-like (32 particles per cell).

Several AmamR cells showed scattered magnetosomes lacking any chain-like alignment, or short,
densely spaced chains flanked by smaller particles with irregular morphologies, or WT chains (average
size: 29 nm; number per cell: 34). AmamP cells at first glance seemed to contain only few (i. e., not
more than six magnetosomes, mean three) larger than WT particles (59 nm on average). However,
at closer inspection numerous very small and irregularly shaped crystals flanking the larger crystals
became apparent with an average size of 16 nm (see arrows in Figure 4.3). In total, AmamP cells syn-
thesized on average only 19 crystals with a mean size of 22 nm. HRTEM of the two distinct particle
types revealed that the lattice fringes for the larger crystals corresponded clearly to magnetite, whereas
by contrast the smaller and poorly crystalline particles produced lattice fringes characteristic for hematite
(Figure 4.2). The AmamN mutant showed a very weak, but detectable magnetic response (C,yqe: 0.1).
TEM confirmed the presence of few (11 per cell) tiny, widely spaced crystals with a size of only 18 nm.
HRTEM images of these particles and their Fourier-transforms indicated that crystals have the structure
of magnetite.

Amaml, AmamL and AmamQ represent the second class of mutants with no detectable magnetic
response (C,.e: 0). AmamQ and AmamL were entirely devoid of any clearly recognizable crystalline
electron dense structures (Figure 4.2). In the AmamL mutant occasionally a few tiny (around 10 nm)
structures were observed (not shown), which however, were difficult to discern unambiguously from the
cellular body and the background. The relevance and identity of these structures remain to be verified in
future studies with higher resolution. Careful analysis of Amaml/ cells, however, revealed the presence
of a few (10 per cell) electron-dense particles with highly irregular or elongated morphologies and a size
of 15 nm (Figure 4.3). As shown by HRTEM, the nuclei within Amam/ were composed of several small
grains that formed thin aggregates (Figure 4.2). Lattice fringes were observed in only two particles, and

according to the Fourier transforms of the HRTEM images, the spacing between the fringes is very close
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to the d(012) and d(014) spacing in hematite. XANES (X-ray Absorption Near Edge Structure) spectra
obtained from whole Amaml and AmamN cells were clearly distinct from those of pure magnetite as
in the WT and suggest that the ferrous compounds are predominantly Fe-S clusters (proteins) that ac-
count for around 40% of the total iron content in the cells (Figure S4.5). Magnetite was clearly present
in AmamN cells (around 50% of total iron), whereas the low fit quality for Amaml did not allow us to
reliable determine the structure of the Fe present in the bacteria apart from Fe-S (see supplements for
more detailed information). However, the overall line shape appears most consistent with an amorphous

or only poorly ordered Fe compound as suggested by HRTEM.

mamAB (16.4 kb)

> D> ) 1) ED Ep>- I B B D> DB ) 1>

1kb

Figure 4.3: Molecular organization and deletion analysis of the mamAB operon of MSR as well as represen-
tative TEM micrographs of cells and magnetosome morphologies observed within the generated
excision mutants. The highly conserved mamAB operons encodes 17 magnetosome proteins (MamH,
I,E,J,K,L, M, N, O, P A, Q, R, B, S, T, and MamU) in MSR and was found to be essential and suffi-
cient to maintain magnetite biogenesis (18, 22). Red arrows: Genes essential for magnetosome crystal
formation. Blue arrows: Genes non-essential for particle formation. Grey bars: Non essential genes, for
which deletion strains were previously generated (6, 9, 20). Blue bars: Non-essential genes, (deletions
generated in this study). Dark red bars: Essential genes (deletions generated previously (35, 36)). Light
red bar: Essential genes (deletions generated in this study). White arrows: magnetosome chains or
particles; Black arrows: PHB granules.
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Intracellular localization of the magnetosome chain marker MamC-GFP

All mutant strains could be complemented by either genomic reintegration or plasmidal transfer (see
supplements). We studied the ability of all mutants to properly localize the abundant MamC magne-
tosome protein, which served as a marker for magnetosome chain localization in previous studies (6,
36, 44). To this end, MamC was tagged by a chromosomal in-frame EGFP insertion on pFM236 that
shows in WT cells a continuous straight-line fluorescence signal (Figure S4.6). Within AmamN, P, S,
and mamT MamC-GFP localized as shorter structures, but still showed a linear localization running
along the inner curvature of the cell. Within Amaml a short, but still elongated fluorescence signal at
midcell was observed. Thus Maml, N, P, R, S, and MamT are not required for proper MamC localization.
On the contrary, in AmamA, mamQ and mamdL cells, no defined position of the MamC-GFP signal was
detectable, but instead a diffuse spot like accumulation within the cell was predominant (Figure S4.6).
In the deletion mutant AmamA the magnetosome formation was not inhibited, even though MamC is

misplaced within this strain, which suggests that MamA may interact with MamC.

Discussion

The Mms6 operon encodes non-essential magnetosome proteins crucial for

proper crystal growth

As in AMB (size reduction of crystals by 19%) (22), we observed only minor biomineralization defects
upon deletion of mms6 in MSR (15% size reduction). Only 20% size reduction was also seen after
mmsF deletion in MSR, which, however, is weaker than its deletion phenotype in AMB (52% size re-
duction, (22)). However, double deletion of mms6 and mmsF resulted in an almost 32% size reduction,
which suggests a certain functional overlap between Mms6 and MmsF. We found functional redundancy
between mmsF and mamF (encoded by the adjacent mamGFDCop), since their double deletion ex-
acerbated defects in crystal maturation (30% size reduction). Hence, loss of several genes together
contributed to the strong magnetosome defect (45% size reduction) observed after deletion of the entire
mms6op (AA10), which indicates a cumulative regulation of magnetosome biomineralization.

Mms6op of MSR contains two additional genes named mms36 (mgr4071) and mms48 (mgr4070)
that are expressed under magnetosome forming conditions (18), but had not yet been studied by dele-
tion analysis in either MSR or AMB. Surprisingly, their deletion caused the synthesis of larger magnetite
crystals instead of size reduction. Since no conserved domains or motifs are present in Mms36 and
Mms48, apart from weak similarity to proteins involved in porphyrine synthesis (Mms36: 29% to uropor-
phyrinogen Il synthase of Rhodospirillum rubrum; Mms48: 28% to HemY-like proteins, possibly involved
in porphyrin biosynthesis (45, 46), their precise in vivo functions are difficult to infer. They might be itself
either inhibitors of crystal growth (32) or recruit other inhibitory proteins to the MM in order to prevent

excessive crystal growth.
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Genetic analyses of the mamAB operon: MamU, T, S, R, A, N and Maml are not

essential for iron biomineralization in MSR

We found that deletion of several genes (mamU, T, S, R, A, P Q, mamL) from mamABop of MSR es-
sentially phenocopied the deletions of their orthologs in AMB (7). Loss of mamU, T, S, R, A, P, and
mamN did not entirely abolish biomineralization of magnetite crystals. As in AMB, deletion of MamU did
not have any detectable magnetosome phenotype in MSR. MamT of AMB as well as of MSR contains a
double cytochrome ¢ motif (CXXCH) referred to as magnetochrome domain necessary for heme-binding
(47). It was speculated that MamT therefore transfers electrons to balance the ferric-to-ferrous iron ratio
form required for magnetite formation (47). Deletion of mamT in MSR resulted in smaller magnetosome
particles as in AMB, supporting its previously predicted function in crystal maturation.

As in AmamT, deletion of mamR in MSR resulted in smaller crystals and partially modified chain for-
mation similar to the phenotype observed for AmamR in AMB. Thus, MamR is involved in controlling
particle number and size as also suggested for MamR of AMB (7). We also confirmed a key role of
MamsS in MSR, which has similarity to the putative serine proteases and magnetochrome domain con-
taining proteins MamE and MamX (20, 32). However, MamS itself lacks a magnetochrome domain,
which argues against its direct participation in redox control. The TPR domain-containing protein MamA
was speculated to play a role in activation of biomineralization (5). It was suggested that MamA self-
assembles through its putative TPR domain and concave site to form a large homooligomeric scaffold
surrounding the magnetosomes (48, 49), whereas its convex site interacts with other magnetosome-
associated proteins like MamC and several unidentified proteins (48, 49). However, as in AMB the
deletion of mamA in MSR had only a weak effect (5), suggesting that these interactions are not essen-
tial or can be partly compensated by other proteins.

In AmamP of MSR, particles larger than those synthesized by the WT were flanked by smaller and
poorly crystalline particles similar to AMB (50). MamP contains two closely spaced magnetochrome
domains and was speculated to interact with MamE, MamX and MamT through its PDZ domain and to
somehow regulate the electron transport required for biomineralization of the mixed valence iron oxide
magnetite (20, 32, 50). Magnetosomes in AmamP of MSR show a similar crystallization defect (mag-
netite crystals flanked by flakes) like the mamX mutant of MSR (20) and thus might indicate the involv-
ment in the same step of magnetosome biosynthesis. In contrast, phenotypes of MSR AmamT (smaller
particles) and AmameE (total loss of electron dense particles) are distinct from the deletion phenotype of
AmamP, suggesting that some or all of the magnetochrome proteins have different or additional func-
tions. However, MamE also contains beside the magnetochrome domains, a protease and double PDZ
domains, which might cause the differences between the generated mutants upon their deletion (32).
Thus, further analyses are needed to explain the different observed mutant phenotypes, such as the
specific deletion of the different magnetochrome domains. MamP from AMB catalyzed the formation

of ferrihydrite and magnetite from iron solutions in vitro, indicating that MamP binds and oxidizes iron
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(50). However, this ability of MamP is not essential in vivo, as the AmamP mutant of MSR continued
to biomineralize particles of magnetite. Potentially this might be due to unchecked mineral growth after
deletion of a major redox regulator (51) or/and the ability of other magnetochrome proteins like MamX,
MamE and MamT to partially compensate the loss of MamP.

In addition to the strong similarities between several AMB and MSR mutants, we also found several
striking differences between the two species. MamN was described to be essential for magnetosome
biosynthesis, as indicated by the absence of electron dense crystals in AMB (7). However, our TEM,
HRTEM and XANES analyses revealed the presence of magnetite particles within AmamN of MSR.
Because of its similarity to the human Permease P that is predicted to regulate the intraorganelle pH
of melanosomes together with an ATP-driven proton pump (52), MamN was speculated to regulate pH
conditions within the magnetosome vesicles by export of protons released by the precipitation of mag-
netite (2Fe’++Fe?T+4H,0 — Fe;04+8H™) (38, 53), and thus the observed phenotype of AmamN might
be due to alteration of the intra-magnetosomal pH.

Another gene, which exhibited a strikingly distinct deletion phenotype between AMB and MSR is
maml, which encodes a small magnetospirilla-specific magnetosome protein (70 aa) with no significant
homology to already characterized proteins. In AMB, Maml was found to be essential for the biosynthe-
sis of both magnetosome membrane vesicles, and consequently, iron biomineralization (7). In contrast,
excision of maml in MSR did not entirely abolish the biomineralization of electron dense iron-rich parti-
cles, but the mutant still synthesized tiny and poorly crystalline non-magnetic particles, which in some
cases were shown to consist of hematite. Recent findings in MSR and AMB indicate that the observed
poorly ordered iron (oxyhydr)oxide phases are precursors to the magnetite phase in bacteria (43, 54). In
addition, the ability of MamP to precipitate ferrihydrite and magnetite in vitro suggests that magnetite may
be formed through a stepwise phase transformation process (50). Such a biosynthetic phase transfor-
mation requires a precise control of iron supersaturation, pH, and redox potential levels (55), suggesting
that Maml may be involved at an early stage of magnetite nucleation by regulation of proper conditions

within the vesicles.

Only MamE, L, M, O, B and MamQ are essential for iron biomineralization in MSR

In addition to the previously identified mamE (35), mamM (56), mamO (35) and mamB (56) we also
demonstrated mamQ and most probably mamL to be essential genes for magnetosome synthesis in
MSR, since their deletions abolished the biomineralization of clearly distinguishable electron dense par-
ticles. MamQ shares homology with the LemA protein, which is conserved in several bacteria but whose
function is uncertain (12, 57). MamQ has a high content of a-helices that are somewhat reminiscent to
the EFC/BAR domain of Formin Binding Protein 17 (7). BAR domains have the ability to sense and sta-
bilize membrane curvatures (58), and their weak similarity to MamQ might hint towards related functions
in MM vesicle genesis of the protein. The small protein MamL has no predicted function, but was shown

to be essential for magnetosome membrane genesis in AMB (7). Despite the metabolic and genetic
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similarities between AMB and MSR, previous studies already suggested that the function of orthologous
genes might be somewhat distinct in these organisms (6, 18, 59). Apart from the possibility that the
tiny magnetite and hematite particles in AmamN and Amaml of MSR simply had escaped detection in
the corresponding mutants of AMB (7), this might possibly due to the different genetic context, with only
about 50% of all genes shared by the genomes of these two strains (14). In fact, it can not be excluded
that further genes outside of the MAI partially compensate the loss of deleted genes as observed in a

recent study, in which a magnetosome islet outside the MAI compensated the deletion of mamK in AMB

(6, 33).
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Figure 4.4: Hypothetical model for magnetosome biosynthesis in MSR. Magnetosome biosynthesis depends on
various steps including various magnetosome proteins. Magnetosome vesicle formation (l) is induced
by the proteins MamQ, MamL, and MamB. MamY was found to regulate vesicle shape (23). MamA
forms a multiprotein complex surrounding the magnetosome membrane (49) and MameE is involved in
localization of magnetosome proteins by a protease independent process (32). The heterodimer of the
CDF transporters MamB and MamM transports ferrous iron into the magnetosome vesicles (56) and
ferric iron is taken up by MamH and MamZ (20) or formed by oxidation of ferrous iron within the vesicles.
Maml is involved in magnetite nucleation. MamO was speculated to be directly involved in precipitation of
iron oxide particles (32). The crystal growth is affected by several magnetosome proteins also including
MamE that proteolytically remove a/an growth inhibitor/s or activate growth promoting proteins (32).
Based on the conserved CXXCH heme-binding motifs within MamE, MamT, MamP and MamX it has
been speculated that the proteins form a complex for electron transport to regulate electron flow (20,
47). MamS and MamR control crystal size by an unknown mechanism. MamN exhibits similarity to H-
translocation proteins and might be involved in crystal growth by regulating intramagnetosomal pH (53).
Mms6 is tightly bound to the magnetosome crystals (26, 28) and assembles into coherent micelles for
templating crystal growth (60). Mms48 and Mms36 act as inhibitors of crystal growth or recruit inhibiting
proteins of particle growth by an unknown mechanism. The small, hydrophobic proteins MamG, MamF,
MamD, and MamC control in a cumulative manner the growth of magnetite crystals (21). Magnetosomes
were assembled into chains by the interaction of MamdJ with the actin-like MamK filament that is also
involved in chain positioning (6, 9, 61). OM: outer membrane; IM: inner membrane; MP: magnetosome
protein; underlined proteins: analyzed proteins in this study, by single gene deletion of encoding genes.
Proteins in brackets: non-essential proteins encoded by the textitmamXYop.
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In summary, whereas in AMB eight proteins (Maml, E, L, M, N, O, B, MamQ) were found to be essential
for magnetosome biomineralization, in MSR only six proteins (MamE, M, O, B, Q, and most probably
MamL) are essential for at least some rudimentary iron biomineralization and, if including Maml, seven
proteins for the biosynthesis of magnetite-containing magnetosomes. This leads to an expanded model
of magnetosome biosynthesis in MSR (Figure 4.4). However, it remains to be shown whether these
essential magnetosome proteins are also sufficient for vesicle formation and crystallization even in the

absence of the other factors encoded by the mamAB and other magnetosome operons.
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Introduction

The ability of magnetotactic bacteria (MTB) to orient along the earth’s magnetic field is based on spe-
cific organelles, the magnetosomes, which are membrane-enveloped crystals of an iron mineral [1]. The
model organism Magnetospirillum gryphiswaldense (in the following referred to as MSR) synthesizes
cuboctahedral magnetite (Fe;O,) particles, which are assembled to chain-like nanostructures within
the cell. Magnetosome crystals have uniform morphologies [2], a high chemical purity [3], and struc-
tural perfection [4], which are mostly unknown from inorganic systems. The unusual characteristics of
the crystals, as well as the inherent biocompatibility provided by the magnetosome membrane (MM),
inspired numerous ideas for their biotechnological application [5], such as magnetic drug targeting, im-
munoassays and magnetic resonance imaging [6,7,8,9,10,11].

The biomineralization of magnetite crystals in MTB proceeds in sequential steps including MM vesi-
cle formation, sorting of MM-specific proteins, magnetosomal iron uptake, magnetite crystallization and
chain assembly along a cytoskeletal filament [3,12,13,14,15]. We recently discovered genes controlling
magnetosome synthesis in MSR to be clustered within a larg (115 kb) genomic magnetosome island,
in which they are interspersed by numerous genes of unrelated or unknown functions [16,17]. While
the smaller mamGFDC, mms6 and mamXY operons have accessory roles in the biomineralization of
properly sized and shaped crystals [17,18,19], only the large mamAB operon is necessary and sufficient
for magnetite biomineralization [17]. In contrast, at least the mamGFDC, mms6, and mamAB operons
are needed for formation of poorly crystalline hematite particles in the heterologous host Rhodospirillum
rubrum, and all four major operons are required for biomineralization of magnetite crystals [20].

Previous studies in MSR and the genetically closely related M. magneticum AMB-1 (referred to as
AMB) so far focused on genetic dissection of the MAI and the mam and mms operons by deletion
mutagenesis. For instance, a comprehensive analysis of the mamAB operon recently revealed that
eight proteins (Maml, E, L, M, N, O, B, Q) are essential for magnetosome biomineralization in AMB,

whereas in MSR only six proteins (MamE, L, M, O, B, Q) are required for at least some rudimentary iron
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biomineralization and, if including Maml, seven proteins for the biosynthesis of magnetite-containing
magnetosomes [21,22]. The major magnetosome proteins MamG, F, D, and C, which account for over
35% of all magnetosome-associated proteins, were shown to be involved in size control, since mutant
cells formed smaller and less regular magnetite crystals [23,24]. Deletion of the 3.7 kb mms6 operon
resulted in significantly smaller crystals which are aligned in short chains or loosely scattered within
the cell [17]. Consistent with this finding, the MTB-specific MmsF and Mms6 proteins are predicted to
be major regulators of crystal size and shape in AMB [25,26]. In MSR Mms36 and Mms48 have been
shown to influence magnetosome biosynthesis, too and a cumulative effect on biomineralization by var-
ious proteins encoded by the mms6 operon has been suggested [22].

The proteins MamX and MamZ encoded by the mamXY operon were shown to be major redox regula-
tors for magnetite biomineralization in MSR [19]. Deletion of the whole operon resulted in size reduction
of the crystals as well as in the co-existence of various distinct magnetosome morphologies, including
cubo-octahedral magnetite particles flanked by flake-like hematite crystals [17,19].

However, while the impact of gene deletions on magnetosome biomineralization has been studied in
different approaches, the effect of overexpression of the mam and mms genes on magnetosome forma-
tion has been poorly investigated so far. This could provide insights in the impact of the mam and mms
protein level on the regulation of biomineralization, and potentially facilitate the genetically controlled
overproduction of magnetosomes for various biotechnological applications. For instance, Scheffel et
al. showed that in trans expression of additional copies of the entire mamGFDC operon in the wild
type caused the formation of enlarged magnetite particles compared to those produced by the wild type
without additional copies [18]. Recently, overexpression of mms48 resulted in a slight increase in the
particle numbers per cell, too [22]. However, due to the lack of an appropriate expression system these
first approaches were limited to a gene dosage increase of small operons or single genes. Both stud-
ies showed that selective overexpression of single or few magnetosome genes results the synthesis of
weakly larger crystals or increased magnetosome numbers in M gryphiswaldense. However, the effects
of a further gene dosage increase of single operons or even multiplication of all mam and mms genes
on magnetosome formation have not be systematically investigated so far.

Here, we demonstrate the feasibility to enhance magnetite biomineralization in M gryphiswaldense by
multiplication of single, as well as all major magnetosome operons via transposition. We show that a
higher gene dosage of the mms6 operon results in the formation of larger crystals as well as moderately
increased magnetosome numbers per cell. In contrast, overexpression of all major operons specifically
enhanced the number of particles by about 117%. This demonstrates that the expression level of differ-
ent mam and mms proteins seems to be an important factor in the regulation of crystal formation in M.
gryphiswaldense. Furthermore, the findings show that genetic engineering by a gene dosage increase
of the mam and mms genes provides a powerful strategy for the precise control of the particle size or

numbers.
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Results

Overexpression of mms6 and mamGFDC operons

For controlled overexpression of different magnetosome operons, MSR was engineered by mariner or
Tn5 transposon driven random chromosomal insertion. This technique has recently also been suc-
cessfully applied for genetic transfer of the magnetosome biosynthesis pathway into R. rubrum [20],
expression of recombinant proteins on the magnetosome surface [10], and chromosomal insertion of
single magnetosome genes [22]. Transconjugants were obtained at frequencies between 2-5x10~7 and
chromosomal insertions were stably inherited as indicated by the ability of transformed strains to grow in
the presence of kanamycin after 120 generations without antibiotic selection. All insertants essentially
displayed WT-like growth (Figure S5.1).

Chromosomal duplication of the mmsé6 operon resulted in strain ARecA+mms6 1x that possesses one
native and one inserted mmsé6 operon, and remarkably increased magnetosome biomineralization. The
merodiploid mutant strain synthesized 36% more crystals per cell (47 compared to 34 magnetosomes
per cell within ARecA (Table 5.1) with an increased size of 46 nm (ARecA=36 nm) and formed a high
proportion of multiple chains that were less frequently observed in ARecA. Intracellular iron content of
ARecA+mmsé6 1x was increased by about [14.9+2.9]% (Table S5.1). Insertion of two further mmsé oper-
ons (one native and two inserted mms6 operons) in strains ARecA+mms6 2x lead in average (n=1183)
to 54 magnetite particles per cell with a size of 48 nm that corresponds to an increase in number by
58%, size by 35%, and intracellular iron content of [34.842.5]% compared to ARecA (Figure 5.1; Ta-
ble S5.1). ARecA+mms6 3x carrying four copies of mms6 operon produced 58 magnetite crystals per
cell with a diameter of 44 nm and an intracellular iron content increased from 2.68% to 3.73% iron per
dry weight, which represents only a slight further increase compared to ARecA+mms6 2x (increase by
[38.8+2.5]% compared to ARecA (Figure 5.1; Table S5.1). Cultivation under anaerobic conditions with
50 uM or 500 uM iron did not significantly increase iron uptake of ARecA+mms6 3x compared to culti-
vation under microaerobic conditions with 50 uM iron (Figure S5.1). Insertion of four additional copies
of the mms6 operon in ARecA+mms6 4x (5 mms6 operons in total) did not further increase biominer-
alization, but on the contrary caused a size reduction of 13% and 6% compared to ARecA+mms6 2x
and ARecA+mmsé6 3x, respectively. Cultivation of overproducing strains ARecA+mms6 2x at higher iron
concentrations (250 uM iron) did not further increase magnetosome numbers, although size distribu-
tions were slightly shifted towards to larger crystals with maximum sizes up to 85 nm (Figure S5.1).

Within anarobically grown cells of ARecA+mms6 2x and ARecA+mms6 3x a variable proportion of
enlarged vesicle were visible in cryo electron tomograms (Figure 5.1). These "giant” vesicles appeared
as regularly shaped as in the WT, but their size was increased up to 119 nm (ARecA+mms6 2x) whereas
WT vesicles had a maximum size of 54 nm. However, the ratio between the size of the vesicle and the
particle sizes measured from CET tomograms was similar and not significantly increased (ARecA+mmsé

2x: 2.84+0.8, ARecA+mms6 3x: 2.3+0.9; WT: 2.14+1.4). As reported for the parental strain ARecA, all
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overexpression strains had a variable proportion of small vibrioid and elongated cells [27] and cells on
average became more elongated with increasing copy number of inserted mmsé6 operons ([4.53+1.59]
um, [4.56 £1.46 um], [5.10+£1.95] um, and [5.3£1.7] um for ARecA+mms6 1x, 2x, 3x, and 4x, respec-
tively versus [4.44+ 1.26] for ARecA (Figure 5.2). Shorter cells (<10 um) of ARecA+mms6 2x contained
fewer 43 and smaller 43 nm particles, whereas highly elongated cells (>10 um) had significantly more
(53-138 particles, mean: 104; n=572, equivalent to a 206% increase) and larger magnetite crystals (49

nm) with a maximum size of 80 nm.

2

Figure 5.1: Representative TEM micrographs of magnetosomes found in mms6 operon overexpression
strains and their parent strain ARecA. Whereas ARecA synthesizes mostly short and single stranded
magnetosome chains, the overexpression strains ARecA+mms6 2x and ARecA+mms6 3x produce dou-
ble chains with increased magnetosome sizes and numbers per cell. Scale bar: 1 um.
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As observed by TEM, in ARecA+mmsé6 2x, and 3x cells, the magnetosome chains were persistently
located at midcell and split into two subchains during cell division, similar as in the WT [28]. However,
we frequently observed that cells of ARecA+mms6 2x and 3x remained connected by tubular extensions
at advanced stages of constriction, which kept the daughter cells attached to each other and hampered
their separation immediately after septation before the cells eventually became disconnected. Within
these tubular extensions always few (2-10) magnetosome particles were encapsulated and separated

from daughter chains (Figure 5.2).
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Figure 5.2: Characterization of overexpression strains. A: Cell length measurement of overexpression strains.
All overexpression strains show an increase in cell length compared to ARecA. mmsé6 1x, 2x, 3x, 4x:
ARecA+mms6 1x, 2x, 3x, 4x; mamAB 1x, 2x: ARecA+mamAB 1x, 2x. C, D, F: Tubular extensions found
in overexpression strains ARecA+mms6 2x (C) ARecA+mmsé6 3x (D, F).

Next, we explored overexpression of the mamGFDC operon, which is adjacent to the mmsé operon
and was previously described to be involved in size control of magnetosomes [18]. While duplica-
tion of mamGFDC alone had only a weak effect on crystal number per cell (36; n=419), the duplica-
tion of both the mms6 and mamGFDC operons (ARecA+mms6/GFDC) caused the synthesis of 32%
more crystals per cell (45; n=483) (Table S5.1). Intracellular iron content of ARecA+mamGFDC was
increased by about 7.4%+1.1% and even further 14.1%+1.9% in ARecA+mms6/GFDC (Table S5.1).
ARecA+mamGFDC and ARecA+mms6/GFDC produced 26%, and 27% larger crystals, respectively,
compared to ARecA (Table S5.1).

In summary, the genomic insertion of up to additional three mmsé6 operons enhanced the biosynthe-
sis of magnetosomes with increased sizes and numbers. However, the introduction of either additional

mms6 operon copies or the combined overexpression of mamGFDC did not further increase biominer-

85



5 Chapter V

alization, suggesting that magnetosome synthesis was likely limited by different factors encoded else-
where, which control growth of magnetite particles other than by vesicle sizes, such as iron transport,
activation and nucleation of crystals. Therefore, we next attempted to overexpress the large mamAB

operon that encodes most magnetosome proteins essential and crucial for magnetosome formation.

Genomic multicopy insertion of the mamAB operon

Transfer and single-copy chromosomal insertion of the mamAB operon was achieved by mariner trans-
poson based gene delivery into random sites with a conjugational efficiency of 10~7-10~8 [20]. As with
the smaller mms6 and mamGFDC operons, also the mamAB operon was stable for 40 generations,
after repeated passaging under metabolic stress (cold storage, oxidative stress). ARecA+mamAB 1x
(one native and one inserted mamAB operon) showed a similar magnetic response like the parent strain
(Cinag=0.8£0.2) [27] and the iron content was not significantly increased (+0.440.5%; Table S5.1). Cells
were slightly elongated ([4.81+ 1.82] um; ARecA: [4.44+ 1.26] um; Figure 5.2A) and displayed no
obvious morphological abnormalities. However, TEM analyses revealed phenotypic heterogeneity with
respect to magnetosome formation with two distinct morphotypes present in variable proportions com-

prising i) about 47% cells in which the number of regular-sized magnetosomes was increased to 77, ii)

42% cells increased number of magnetosomes (68) with aberrant crystal sizes and intracellular local-

ization, and iii) 10% WT-like cells (Figure 5.3).

Figure 5.3: Representative TEM micrographs of mamAB overexpression strains. Phenotypic heterogeneity
with respect to magnetosome formation with two distinct morphotypes were found in variable proportions
in ARecA+mamAB 1x and 2x: i) cells with an increased number of regular-sized magnetosomes (A), and
ii) cells with aberrant crystal sizes and intracellular localization (B, black arrows) in ARecA+mamAB 1x.

We next constructed the merotriploid insertion mutant ARecA+mamAB 2x by transfer of pTps-mamAB-
Gm into the insertion mutant ARecA+mamAB 1x. The mutant showed a similar phenotype as observed
for ARecA+mamAB 1x, and the number of magnetosomes did not further increase (68), despite of a
slightly increased (by 9.4+0.5%) intracellular iron content. The C,,,, value of ARecA+mamAB 2x was

even lower than that of the parent strain (C,,,,= 0.5+0.2), possibly caused by altered cell dimensions
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([5.98+ 2.58] um compared to [4.44+4 1.26] um of ARecA (Table S5.1; Figure 5.2)). The magnetosome
membrane of magnetosome particles isolated from strain ARecA+mamAB 1x had the same appear-
ance and thickness of (5.4+1.8) nm as ARecA (5.2+1.9) nm. Coomassie-stained SDS-PAGE profiles
of MM from strains ARecA+mamAB 1x revealed similar patterns compared to ARecA. However in strain
ARecA+mamAB 1x several bands including magnetosome proteins MamA, and MamM, showed higher
intensities between 51% and 145%. Western Blot analysis of selected proteins confirmed that MamM
and MamA were more abundant within ARecA+mamAB 1x by about 128% and 145%, respectively,
whereas the abundance of MamC was not significantly increased (9%), although the Coomassie-stained
MamC band appeared more intense in ARecA (Figure S5.2).

In summary, the overexpression of all magnetosome proteins, encoded by the mamAB operon, alone
did not consistently enhance magnetosome formation and therefore we suggested that further regulators

for biogenesis are needed to increase magnetosome yield.

Overexpression of the mamGFDC, mms6, mamAB, and mamXY operon

Since all individual four major operons (mms6, mamGFDC, mamAB and mamXY) were shown to be
implicated in regulation of magnetosome size and number, we next tested whether their combined over-
expression may enhance biomineralization even further. Therefore, the mamAB, mms6, and mamGFDC
operon were simultaneously integrated into the genome of ARecA that was further modified by insertion
of the mamXY operon using mariner transposon based gene delivery, resulting in strain RecA+AB6GX
(Figure 5.4).

The intracellular iron content was enormously increased to 3.77% iron per dry weight, which is an
increase of about 140.7%+2.4% compared to ARecA. TEM revealed that the number of magnetosomes
per cell was increased by 117% compared to the parental strain (Table S5.1; Figure 5.4A). About 28%
of the cells contained more than 100 magnetosomes whereas ARecA did not produce more than 58 par-
ticles per cell within the analyzed TEM micrographs. Most cells formed multiple magnetosome chains
(2-4), whereas the WT exhibits not more than 2 chains per cell. Beside cells with proper (WT-like) chains
localized at the inner convex curvature of the cell, we frequently observed cells with one chain located at
the inner convex cell curvature and up to three magnetosome chains at the concave curvature (Figure
5.4B). Additionally, the plentiful particles in some cells lacked a clearly ordered chain-like alignment, but
were “stuffed” into compact bundles or clusters (Figure 5.4C). Interestingly, the mean size of crystals
was only slightly increased to 39 nm.

Whereas cells, which were merodiploid for mamAB (strain ARecA+mamAB 1x), showed two dis-
tinct magnetosome morphotypes, within strain ARecA+ABG6X only 12% cells had scattered magne-
tosomes and aberrant crystal sizes (ARecA+mamAB 1x: 42%; Figure 5.4D). The magnetic response
of ARecA+AB6GX was not affected by the altered biomineralization phenotype and consistent with
the G, of the parent strain ARecA (C,,,,a8G66x=0.7). In dividing cells we did observe tubular exten-

sions during or after cell division. In contrast to the "giant" MM vesicles observed by CET in strain
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ARecA+mms6 2x and ARecA+mms6 3x, MM vesicles were not significantly enlarged (Fig. 5.4E-F).

The expression of the FeoAB proteins increased particle size in a heterologous host [20], suggest-
ing that overexpression of these proteins also enhances particle synthesis in MSR. Therefore, the genes
feoA and feoB were inserted into ARecA+AB6GX by Tnb5 transposition. However, crystal sizes were only
slightly increased (41 nm instead of 39 nm in ARecA+AB6GX) in strain ARecA+ABG6X+feo, whereas
crystal numbers per cell even slightly decreased (69 particles instead of 74 in strain for ARecA+AB6GX)
(Figure 5.5).

Figure 5.4: TEM, Cryo-electron micrographs and tomograms of ARecA+ABG6X. A, B, C: TEM micrographs of
ARecA+ABG6X. Most cells form multiple magnetosome chains (2-4). Beside cells with proper (WT-like)
chains localized at the inner convex curvature of the cell (A), we frequently observed cells with one chain
located at the inner convex cell curvature and up to three magnetosome chains at the concave curvature
(B). Additionally, the plentiful particles in some cells lack a clearly ordered chain-like alignment, but were
"stuffed" into compact bundles or clusters (C). Only few cells contain no or small magnetosomes (D). E,
F: Surface rendered volume of ARecA+ABG6X cells. Depicted are the cell membrane (blue), electron
dense particles (red), and magnetosome vesicles (yellow). Insert in E: Cryo-electron micrograph of
ARecA+ABG6X.

Discussion

In this work, we investigated ARecA as potential chassis for the construction of various overexpression
strains to investigated if magnetosome production in MSR can be enhanced by a gene dosage increase
of the mam and mms operons. In general, overexpression of genes is achieved by placing the target
sequence under control of strong promoters for efficient RNA polymerase binding [29]. No stronger

promoters than the native magnetosome operon promoters have been identified for M. gryphiswaldense
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so far [10]. To achieve high product yields, gene cluster amplification via chromosomal insertion has
been applied in several studies. For instance, Tang et al. recently increased production of the sec-
ondary metabolite spinosyn in the native host by partial gene cluster duplication [30]. Using a chem-
ically inducible chromosomal evolution approach, 40 consecutive copies of a poly-3-hydroxybutyrate
gene cluster were inserted into the chromosome of E. coli, thereby causing a significant increase in the
productivity of this biopolymer [31]. In our approach, we inserted additional copies of single, as well as

all major magnetosome operons into the chromosome of strain ARecA by transposition (Figure 5.5).
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Figure 5.5: Construction and phenotype of overexpression strains. A. Strategy for construction of overexpres-
sion strains by amplification of different magnetosome operons. Insertional plasmids were constructed
based on genomic DNA from M. gryphiswaldense. Plasmids contain the magnetosome operons mamAB
(blue, AB), mamGFDC (green, GFDC), mms6 (brown) and the mamXY operon lacking ftsZm (pale blue,
XYZ). The vector backbone (genes are indicated in red) contains transposase gene (ips), inverted re-
peats (IR), origin of transfer (oriT), an R6K or p15A origin of replication (ori) and antibiotic resistance
cassette (abR). After conjugative transfer of the plasmids, the transposase recognizes IR sequences and
catalyzes chromosomal insertion of the target sequence. Additional copies of respective magnetosome
operons in the chromosome (oval shape) are marked with asterisks. B. TEM analysis of overexpression
strains compared to the parental strain ARecA. 1 and 2 illustrate the different morphotypes found for
ARecA+AB 1x.

As expected, insertions were stable for at least 40 generations without selection pressure, and no
recombination events were observed after serial passaging under physiological stress conditions. Con-
sistent with the finding that the mms6 operon plays a major role during crystal maturation in M. gryphis-
waldense [22], its duplication or triplication (strains ARecA+mms6 2x and 3x) caused magnetosome
overproduction of up to 68%. Remarkably, also the mean crystal size was significantly increased (up to

35%). Further copies of the mms6 operon alone or in combination with the mamGFDC operon did not
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further augment the overexpression phenotype. Therefore, we speculated that magnetosome biominer-
alization was limited by the lack of accessory factors encoded in the non-amplified magnetosome oper-
ons. Consistent with this hypothesis, overexpression of the large mamAB operon alone had pleiotropic
phenotypic effects: While some cells contained increased numbers of regularly sized magnetosomes
(by 50% compared to ARecA), we also detected a morphotype haboring small, aberrantly shaped mag-
netic nanoparticles. In contrast, overexpression of all magnetosome operons (ARecA+ABG6X) strongly
enhanced magnetosome numbers per cell by 117%, and no heterogeneity among different cells was
visible. Altogether, these findings demonstrate that a gene dosage increase of the mam and mms oper-
ons provides an efficient strategy for magnetosome overexpression in M. gryphiswaldense.

However, several questions regarding the regulation of magnetosome numbers as well as size in the
different overexpression strains still remain elusive. For instance it is unknown, how overexpression of
the mms6 operon alone causes formation of larger crystals. One important factor constraining growth
of crystals is the size of magnetosome vesicles. We sometimes found significantly enlarged vesicles in
the mmsé6 insertion strains by CET. This finding indicates that overexpression of a set of genes might
also directly influence the vesicle diameter prior to crystallization, thereby defining the increase in crys-
tal size. This could be caused by accumulation of proteins encoded by the mms6 operon in the MM,
thereby having a marked effect on the vesicle size. In strain ARecA+AB 1x, we observed that MamM
and MamA were enriched in the MM compared to that of strain ARecA (by 128% and 125%, respec-
tively). As expected, no changes in the expression level of MamC were detectable in ARecA+AB 1x.
This finding demonstrates that the protein composition of the MM changes by overexpression of only a
set of genes.

Besides vesicle biogenesis, also magnetosomal iron uptake into the vesicles plays an essential role in
crystal growth. However, none of the proteins encoded by the mms6 operon shares similarity to known
iron transport proteins. Furthermore, overexpression of the mms6 operon not only resulted in formation
of larger crystals, but also the numbers of magnetosomes were increased. These observations suggest
that overexpression of a set of magnetosome genes influences the expression or the recruitment of
accessory proteins controlling other processes during magnetosome formation, such as magnetosomal
iron transport, vesicle biogenesis, or magnetosome chain assembly. In contrast, additional copies of all
mam and mms genes caused the strongest increase in crystal numbers per cell, while the size of the
magnetosomes did not change.

Our findings indicate that expression levels of magnetosome proteins seem to be one important factor
determining the number and size of magnetite crystals. However, we did not compare the transcript or
protein levels of all expressed magnetosome genes in the insertional mutants with that of the ARecA
control. Therefore, it is unknown whether a gene dosage increase of the mam and mms operons results
in uniform overexpression of all amplified magnetosome genes. Our findings also raise the question,
which accessory factors encoded outside the mam and mms operons might limit the number or size of

magnetosomes in the overexpression strains as well as in the WT. For instance, the extracellular iron
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concentration is known to be linked to crystal formation in M. gryphiswaldense [32]. In the WT, iron
concentrations of 100 uM have been shown to support highest cell yield and magnetism [32]. Since the
intracellular iron content was enhanced in overexpression strains (by up to 141%) magnetosome biosyn-
thesis might be further increased by higher iron concentrations in the medium. However, incubation of
insertion mutants in medium supplemented with 250 uM ferric citrate (instead of 50 uM) did not result in
a further increase in magnetosome numbers or size. This might indicate that the intracellular iron supply
was already saturated for lower iron concentrations in the medium. This finding could hint towards an
insufficient expression of additional iron transport proteins, which might limit further magnetosomal iron
uptake.

The feoAB1 operon encoding a ferrous uptake system has been found to play a role in magnetosome
formation in M. gryphiswaldense [33]. However, its chromosomal duplication in ARecA+ABG6X had only
minor effects on the crystal size. Insufficient expression of non- amplified genes encoding components of
other iron uptake systems, such as the ferrous uptake protein FeoB2 [34], might prevent further accumu-
lation of iron in the cell. Furthermore, the regulator protein Fur is involved in global iron homeostasis in
M. gryphiswaldense [35], and has been found to control expression of all identified iron uptake proteins,
such as components of ferrous (FeoAB) and ABC ferric ion transport systems. Therefore, this protein
could also be indirectly involved in limiting the numbers and size of magnetosomes by regulating the
transcription of genes encoding components of iron uptake systems. However, deletion of fur had only
minor effects on biomineralization in M. gryphiswaldense [35]. Therefore, this protein likely plays only
a minor role in controlling magnetosome formation in the WT as well as in the overexpression strains.
Besides the intracellular iron supply, which constrains magnetosome formation, other factors encoded
outside the mam and mms operons might limit magnetosome biosynthesis in M. gryphiswaldense. Sev-
eral enzymes participating in denitrification (nitrate reductase Nap, nitrite reductase Cd,) [36,37], aerobic
respiration (cytochrome c oxidase Cbbs) [38], and the oxygen sensor Fnr [39] have been found to poise
optimal redox conditions during magnetite biomineralization. Consequently, the corresponding proteins
could also indirectly limit the number or size of magnetite crystals by regulation of the intracellular redox
balance. However, a more comprehensive genetic analysis will be necessary in the future to elucidate
whether accessory, yet-unknown factors control magnetosome formation in the WT as well as in the
overexpression strains.

In summary, our approach demonstrates that it is possible to specifically engineer M. gryphiswaldense
for enhanced magnetosome production. The constructed strains could be used for the high and stabi-
lized production of magnetosomes, which are functionalized by genetic fusion with fluorescent markers
or other recombinant proteins [40,41]. Furthermore, overexpression of selected magnetosome genes
by chromosomal engineering might be exploited for the design of size-controlled nanocrystals that dis-
play altered magnetic properties. This could be of particular interest in applications, which depend on
specific magnetic properties of the particles such as magnetic resonance imaging [42] or hyperthermal

treatment of tumors [43].
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Material and Methods

Bacterial strains, plasmids, and culture conditions

MSR and its mutant strains (Table S5.1) were grown in liquid modified flask standard medium (FSM) or
low iron medium (LIM) at 30 °C under microaerobic condition if not otherwise specified [2,44]. Therefore,
cells were cultivated in gased flasks with a mixture of 2% O, and 98% N, or in purged jars. For anaerobic
cultivation, O, was excluded from the gas mixture, while aerobic conditions were generated through free
gas exchange to air. Single colonies, were transferred into 100 ul FSM medium in 96-deep-well plates
(Eppendorf, Hamburg, Germany) and incubated in anaerobic jars for 5 to 6 days. The liquid cultures
were scaled up to an final volume of 10 ml. Culture conditions for Escherichia coli strains (Table S5.2)
were as previously described [45] and for strains BW29427 and WM3064 lysogeny broth medium was
supplemented with 1 mM DL-«, e-diaminopimelic acid (DAP). For selection of antibiotic resistant strains
the following antibiotics concentrations were used: 25 g/ml kanamycin (Km), 12 g/ml tetracycline (Tet),
and 15 g/ml gentamicin (Gm) for E. coli strains, and 5 g/ml (Km), 5 g/ml (Tet), and 20 g/ml (Gm) for
MSR strains, respectively. Magnetosomes were isolated as previously after microaerobic cultivation of 5

L cultures. Optical density and magnetic response (C,..,) were analyzed photometrical at 565 nm [46].

Molecular and genetic techniques

Total DNA from all strains were isolated as described previously [47,48]. Oligonucleotide sequences for
Amplification of DNA fragments (Tabel S5.3) were deduced from the working draft genome sequence
of M. gryphiswaldense (GenBank accession number No. CU459003) and were purchased from Sigma-
Aldrich (Steinheim, Germany). Standard polymerase chain reaction (PCR) procedures were used to
amplify genetic fragments and plasmids were sequenced using BigDye Terminator v3.1 chemistry on
an in-house ABI 3700 capillary sequencer (Applied Biosystems, Darmstadt, Germany). Sequences
were analyzed with Software Vector NTI Advance 11.5 (Invitrogen, Darmstadt, Germany). For genomic
sequencing of over expression strains tagged libraries (about 200-300 bp insert size) were constructed
from 1 ng of genomic DNA with the Nextera XT DNA kit (lllumina) according to the manufacturer’s
protocol. The eight libraries were sequenced in multiplex format using the lllumina MiSeq technology and
2x 150 nt paired-end reads with an error rate of 0.47%, as determined by an internal phiX control. The
obtained sequences were assembled de novo as well as to the reference genome with the commercial

software, CLC Genomics Workbench 5.5.

Analytical methods

Iron content of magnetosomes or whole cells was measured three times in triplicates by ferrozine assay
[49]. After 16 hours of cultivation cells were washed with 20 mM Tris-HCI, 5 mM EDTA, pH 7.4 to remove

extracellular iron. 1 ml cultures were centrifuged for 1 min at 11,000 rpm and resuspended in 90 ul
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HNO; (65%) for 3 h at 99 °C. Afterwards, the lysate was cleared by centrifugation and resuspended in 1

ml H,O and ferrozine assay was performed as previously described [44].

Construction of plasmids for overexpression

Plasmids pTps-AB and pTps-XYZ were constructed in a previous study by Kolinko et al., 2014 [20].
For cloning of plasmid Gm-pTps-AB, the Km resistance gene on plasmid pTps-AB was exchanged by
gentamicin via recombinogenic cloning. To this end a cloning cassette comprising the gentamicin gene
and the respective promoter was PCR-amplified (oligonucleotides 1B173/IB174) and transferred into
electrocompetent E. coli cells (DH10b+pTps-AB) expressing phage derived recombinases from a cir-
cular plasmid (pSC101-BAD-gbaA). After transfer of the cassette, recombination between homologous
regions on the linear fragment and the plasmid pTps-AB occurred. For overexpression of the mmsé6
and mamGFDC operons, a modified pBam-1 vector was designed. To this end gfp was integrated into
pBam-1 after digestion with Kpnl and EcoRl, resulting in pBam-gfpo. The mamGFDC and mmsé6 oper-
ons were amplified by PCR from the genome of MSR (mamGFDC operon: IKa/IKb; mms6 operon:
AL179/AL301) and were inserted into the Xbal-Kpnl digested pBam-gfp, resulting in pBam-mamGFDC
and pBam-mmsé6 1x, respectively with a C-terminal fusion to mamC or mgr4070 of gfp. For generation
of pBam-mms6 2x and pBam-GFDC/mms6, the mms6 operon of pBam-mms6 1x was amplified with
oligonucleotides AL377/AL379 and integrated into pBam-mamGFDC as well as pBam-mms6 1x after
digestion with EcoRI. Gentamycin gene, flanked by a lox71 and lox66 sequence was generated by am-
plification with oligonucleotides AL300/AL303 from pBBR-MCS5 and cloned into the SanDlI/Aatll side
of pBam-mamGFDC, resulting in pBam-GFDC/Gm. The mms6 operon was inserted after digestion of
pBam-GFDC/Gm with Xbal/Kpnl, generating pBam-mms6/Gm. Generated plasmids were examined by
restriction analysis with a set of different enzymes or PCR and transferred into different recipients via

conjugation as described elsewhere [16].

Fluorescence microscopy

For localization studies with GFP and cell length measurement, generated mutant strains of M. gryphis-
waldense were immobilized on agarose pads (FSM salts in H,O, supplemented with 1% agarose), and
analysed with an Olympus BX81 microscope provided with a 100 UPLSAPO100XO objective (numerical
aperture of 1.40) and a Hamamatsu Orca AG camera. Data were evaluated with the Olympus cell

software.

TEM and CET

Cells or magnetosomes were concentrated and adsorbed onto carbon-coated copper grids for TEM
analyses. Isolated magnetosomes were treated with 1% v/v uranylacetat for staining of magnetosome

membrane. Cells and vesicles were imaged with a FEI Morgagni 268 (FEI, Eindhoven, Netherlands)
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at an accelerating voltage of 200 kV. For CET analysis, cell were cultivated anaerobically in FSM or
aerobically in LIM and treated with formaldehyde (Fluka, Switzerland) to a final concentration of 0.1%
v/v after 16 h of cultivation. A FEI Tecnai F30 Polara transmission electron microscope (FEI; Eindhoven,
the Netherlands), equipped with a 300 kV field emission gun, a Gatan GIF 2002 Post-Column Energy
Filter, and a 2048 pixel Gatan CCD Camera (Gatan; Pleasanton, CA) was used for data generation,
whereby all measurements were performed at 300 kV, with the energy filter operated in the zero-loss
mode (slit width of 20 eV) and tilt series were processed with the Serial EM (Mastronarde, 2005) and
FEI's Explore 3D software. Sample preparation and tilt record was implemented as described previously

[50].

Cell fractionation

Mutant strain ARecA, ARecA+mamAB 1x and ARecA+mms6 3x were grown in 5 L FSM under mi-
croaerobic conditions. After centrifugation at 9,200 g, cells were resuspended in 20 mM Tris-HCI, pH
7.4, 5 mMEDTA and stored at 4 °C. Procedures for cell fractionation and magnetosomes isolation was

executed as described elsewhere [8,24].

Gel electrophoresis and Western blot experiments

The BCA-Protein Micro assay kit (Pierce) was used for determination of protein concentrations, accord-
ing to the manufacturer’'s recommendation. Either whole cells or the magnetosome membrane fraction
was used for one-dimensional SDS-PAGE based on procedure of Laemmli [51]. To this end an OD of 10
was adjusted for whole cell preparation or 6.5 mg of protein was suspended in electrophoresis sample
buffer supplemented with 2% (wt/wt) SDS and 5% (wt/vol) 2-mercaptoethanol. Samples were incubated
for 5 min at 98 °C and loaded onto polyacrylamide gels containing 15% polyacrylamid. After 1.5 h at 100
V the gel was stained with Coomassie, whereby unstained gels were used for Western blot experiments,

which were performed as explained previously [52].
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Discussion

Magnetosome biomineralization within magnetotactic bacteria (MTB) is a complex process under con-
trol of a specific set of proteins, which direct the formation of highly ordered crystals enclosed by a
phospholipid membrane. These proteins were found to be encoded within a conserved genomic region,
known as magnetosome island (MAI). In this doctoral thesis, deletion mutagenesis was combined with
analyses of protein expression profiles and bioinformatic predictions to identify, which genes within the
MAI are important for magnetite biosynthesis in M. gryphiswaldense. The phenotypic characterization
of generated mutants was used to elucidate the encoded protein functions and to determine the minimal
essential gene set for magnetosome formation. Finally, overexpression of the most important regulators

was successfully applied to enhance magnetosome production.

6.1 Only less than 25% of MAI genes are associated with

magnetosome biomineralization

The comprehensive investigation of the MAI of M. gryphiswaldense (mgr4026 to mgr4174) by combined
bioinformatic and proteomic analysis revealed that with the exception of mgr4041 and mgr4106, which
are M. gryphiswaldense-specific, all other genes from the 115 kb core region, which were found ex-
pressed are also highly conserved in magnetospirilla or even all MTB (Figure 6.1). Most expressed pro-
teins (26 of 33) were found to be encoded by the magnetosome operons mms6, mamGFDC, mamAB,
and mamXY that were also the only regions, which displayed a magnetosome phenotype upon their
deletion. Using a modified Cre-lox method, which allows the efficient excision of large fragments, it was
observed that all other regions have no functional relevance for biomineralization under analyzed condi-
tions and corresponding genes might just represent genetic “junk”, or remnants from previous transfer
events of the MAL. It remains possible that some deletion strains could show a phenotype under different
growth conditions, or at least only in combination with other deletions.

The largest single deletion strain AA7 comprised 53 kb (deletion of mgr4106 to mgr4174 including
the mamXY operon) that resembled the phenotype of the AmamXY operon mutant (Figure 6.1). The
modified Cre-lox method further enabled the construction of strains bearing multiple unmarked deletions
by sequential rounds of insertions and excisions. The combined deletion of all regions without obvious
effects on magnetosome formation upon their excisions resulted in strain AA345 (deletion of mgr4079
to mgr4088, mgr4106 to mgr4146, and mgr4151 to mgr4174; 81 ORFs; 50% of the MAI). About 78%
of all transposase genes of the MAI were eliminated in this strain and cells were able to synthesize

wildtype-like magnetic particles (Figure 6.1).
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Figure 6.1: Molecular organization and characteristics of the MAI of M. gryphiswaldense. Extensions of dele-
tions are shown by bars of different colors indicating the general phenotype. For an overview, strains
generated in previous studies are shown in transparent. Degree of gene conservation is highlighted by
different colors. Genes found expressed by proteomic analysis are indicated with "+". A misassembly
(grew block) of the A2 region was detected by lllumina sequencing (MiSeq) and a region of uncertain
length, including the feoAB contig was detected.

However, genetic stability of the MAI within strain AA345 was not increased compared to the wildtype
and prolonged cultivation, induced by several rounds of excision, rather resulted in more unmagnetic
cells. This is also seen in the wildtype during subcultivation in the laboratory after several rounds of
passaging, cold storage or oxidative stress, as the MAI undergoes frequent rearrangements [1,2].

Targeted deletion of the 28.7 kb large A2 region (mgr4026 to mgr4069; 44 ORFs) either alone or in
various combinations with other regions of the MAI as well as excision of the whole MAI (mgr4026 to
mgr4174) failed upon numerous altering sequences within the genome of M. gryphiswaldense. It was
revealed that the organization of the MAI between mgr4030 (hypothetical gene) and mgr4056 (hypotheti-
cal gene) is deviating from the original assembly and a region of uncertain length interrupts the A2 region
(for details see Figure 6.1). In addition, this lead to the discovery of a so far unidentified gene cluster, re-
ferred to as feoAB contig, which encodes a second copy of the Feo iron uptake system FeoAB1 (Figure
6.1). This contig also comprises a further copy of the magnetosome genes mambD (namely mamDZ2) and
mamF (namely mamF2), which were shown to be involved in magnetosome formation by their deletion
with the homologues of mamF2, mmsF and mamF located within the mms6 and mamGFDC operon,
respectively but are not essential for magnetosome biosynthesis (Uebe et al., in preperation). However,

these genes are not existing within the official working draft sequence of M. gryphiswaldense, but were
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described to be located upstream of the mamXY operon in the previously completed genome sequence,
in which several rearrangements were identified compared to the draft sequence, indicating the high ge-
nomic flexibility of the MAI [3,4]. The region contains further genes, which are available within the official
working draft sequence of M. gryphiswaldense, but were not aligned as one single contig, including
mgr4043-4050, mgr0907-0890, and mgr1471 as well as mgr0242. Since proper assembly of the MAl is
complicated by the presence of numerous identical repeats, it has to be determined whether the insert
sequence (i) interrupts the A2 region, which increases the size of the MAI of M. gryphiswaldense or (ii)
is located elsewhere within the genome.

Among the deleted regions of the MAI with no obvious phenotype are several of the magnetospirilla-
specific genes, such as mgr4067, mgr4109, mgr4115, mgr4152, and mgr4057 (mamW), which had
been previously implicated in magnetosome biosynthesis because of its magnetosome expression. No
phenotypes were detected for the two hemerythrin-like genes harbored within the deleted A3 region, too
(Figure 6.1). Because of their MAI localization and the known functions of hemerythrins from other or-
ganisms in sensing or transport of oxygen and iron, it was speculated that these proteins may play a role
in magneto-aerotaxis and magnetosome formation. However, it cannot be excluded that their loss can
be compensated by numerous homologues (e.g. 23 further hemerythrin-like genes) encoded elsewhere
in the genome. Altogether, whereas more than 50% of the MAI seems to have no obvious functions for
magnetosome biosynthesis, less than 25% of the MAI regions could be associated with magnetosome

formation, which are confined to the mms6, mamGFDC, mamAB, and mamXY operons as predicted.

6.2 The mms6, mamGFDC and mamXY operons encode several
important regulators with accessory functions for

magnetosome biosynthesis

Single-operon deletion of the mms6 operon (AA10) comprising mgr4074, mms6, mmsF, mms36 and
mms48 significantly decreased magnetic response due to defects in crystal morphology, size and orga-
nization (Figure 6.1). Mms6 and MmsF were suggested to be major regulators for magnetosome crystal
biomineralization in M. magneticum in several studies [5,6,7,8,9]. However, gene deletion of mmsé or
mmsF in M. gryphiswaldense caused minor biomineralization defects and only double deletion of both
genes resulted in an almost 32% size reduction, which suggests a certain functional overlap between
Mms6 and MmsF. While most deletions resulted in size reduction, elimination of either mms36 or mms48
caused the synthesis of magnetite crystals larger than those in the wildtype. Since no conserved do-
mains or motifs are present in Mms36 and Mms48 their precise in vivo functions are difficult to predict.
Mms36 and Mms48 might be itself either inhibitors of crystal growth [10] or recruit other inhibitory pro-
teins to the MM in order to prevent excessive crystal growth. In conclusion, only the loss of several

genes of the mms6 operon together contributed to the strong magnetosome defect (45% size reduc-

101



6 Chapter VI

tion) observed after deletion of the entire mms6 operon, which indicates a cumulative regulation of all
encoded proteins for magnetosome biomineralization.

Co-deletion of the mms6 operon together with the mamGFDC operon in strain AA12 resulted in a fur-
ther reduction of shape regularity and alignment of crystals, but only in a slight decrease of size, whereas
the number of particles per cell was similar to strain AA10 (Figure 6.1). This argues for a certain func-
tional overlap between the two operons, which is consistent with the high similarity between some of the
encoded proteins: such as MmsF and MamF, which share a 61% identity, and Mms6, which contains
a conspicuous LG-rich motif like in MamG and MamD. A redundant function for MmsF and MamF was
revealed, as deletion of mmsF in the AmamF background had a stronger effect on magnetosome size
(30% reduction of the wildtype crystal size) as described for single gene deletions.

Deletion of the mamXY operon, which contains several magnetotaxis signature genes, and for which
a key role in magnetosome biosynthesis was predicted mainly based on comparative genome analysis,
had a crucial influence on magnetite biomineralization in M. gryphiswaldense. Within AmamXY cells the
co-existence of various distinct magnetosome morphologies was observed with regular crystals flanked
by poorly crystalline and elongate particles (Figure 6.1). These findings were consistent with the re-
sults of the previously reported single gene deletions of mamX and mamZ in M. gryphiswaldense with
mutants producing tiny misshaped hematite particles flanking regular magnetite crystals as shown by
HRTEM. However, a delocalization of magnetosome chains was observed in AmamXY cells. In contrast
to the wildtype, in which crystals form a straight line located at the convex side of the cell, the mutants
formed chains at the outer concave site, caused by mamY deletion. Hence MamY is likely to be impor-
tant for chain localization (Raschdorf et al., in preparation).

In summary, it was demonstrated that proteins encoded by the mamGFDC, mms6 and mamXY oper-
ons of M. gryphiswaldense have important and additive functions for the maturation of functional mag-
netite crystals that are large enough to interact with the weak geomagnetic field but are not essential for

biosynthesis of magnetosomes.

6.3 The mamAB operon is sufficient for magnetite
biomineralization in M. gryphiswaldense and encodes the
minimal essential gene set of MamE, L, M, O, B and MamQ for

iron biomineralization

Intriguingly, even in mutants, in which the mms6, mamGFDC, and mamXY operons were deleted in
triple (AA14 and AA13; Figure 6.1), magnetite formation was not entirely abolished and cells still weakly
aligned in magnetic fields. Crystal sizes were further decreased and both strains only synthesized tiny
misshapen electron dense crystallites. Hence the mamAB operon is the only region of the MAI, which

is necessary and sufficient to maintain magnetite biomineralization in M. gryphiswaldense even in the
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absence of the mamGFDC, mms6, and mamXY clusters. Whereas the mamAB operon is sufficient to
support at least some rudimentary biomineralization of small magnetite crystals even in the absence
of all other magnetosme operons, the mamXY, mamGFDC, mms6, and mamAB operons are required
altogether for magnetite biomineralization upon their transfer into the foreign host Rhodospirillum rubrum
[11]. However, consistent with observations for M. magneticum, only the mamAB operon contains both
non-essential and essential genes for magnetosome formation in M. gryphiswaldense (Figure 6.2). Be-
sides the genes mamH, mamd, and mamK, which were previously shown to be not essential for particle
synthesis, single gene deletions of mamU, mamT, mamS, mamR, mamA, mamP, mamN, and mam|
generated in this study, did not entirely inhibit particle synthesis and mutants still formed electron dense
particles. Whereas, MamN and Maml are described to be essential for both crystal formation and vesicle
synthesis in M. magneticum [12], MamN and Maml are not required for at least rudimentary iron biomin-
eralization in M. gryphiswaldense. TEM, HRTEM and XANES revealed the presence of tiny magnetite
crystals within AmamN and the synthesis of poorly crystalline unmagnetic hematite particles in Amaml.
In addition to the previously identified mamE, mamO [13], mamM and mamB [14] we also found mamQ
and mamL to be essential genes for magnetosome synthesis in M. gryphiswaldense, since their dele-
tions abolished the biomineralization of electron dense particles (Figure 6.2). However, previously in
AmamL mutant occasionally a few tiny (around 10 nm) structures were observed, which however, were
difficult to discern unambiguously from the cellular body and the background. The relevance and identity

of these structures remain to be verified in future studies with higher resolution.

mms6 operon mamGFDC op mamAB operon
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Figure 6.2: Molecular organization and deletion analysis of the mms6, mamGFDC and mamAB operons of
M. gryphiswaldense. Gene deletion within the mms6 operon (mms48, mms36, mmsF, mms6) and
mamGFDC operon (mamG, mamF, mamD, mamC) led to severe defects in morphology, size and or-
ganization of magnetite crystals without abolishing magnetosome biosynthesis. The highly conserved
mamAB operon encodes non-essential (MamH, |, J, K, N, P, A, R, S, T, and MamU) and essential
(MamE, M, O, Q, B and most probably MamL) magnetosome proteins for magnetite biosynthesis in M.
gryphiswaldense. Bars, indicate extent of gene deletions. Transparent bars: strains were previously
generated [13,15,16,17,18].

To confirm their essential role for particle synthesis in M. gryphiswaldense, the genes were cloned
together on different synthetic operons. However, chromosomal reintegration of neither mamk, L, M, O,
Q, and mamB, nor in combinations with mam/ or with maml and mamN had any detectable phenotypic

effect on the non-magnetic AmamAB operon mutant. Genomic insertion of all cassettes into the un-
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magnetic single gene deletion strains fully or partially restored magnetosome biomineralization in nearly
all strains except of Amaml and AmameE, indicating that MamL, M, N, Q, and MamB were properly ex-
pressed from the synthetic operons. As no mutations within the plasmids were observed by sequencing,
the failed restoration within Amam/ and AmamE might be due to the exchange of the native ribosomal
binding sites (RBS) that cause diminished gene and protein expression.

In summary, whereas in M. magneticum eight proteins (Maml, E, M, N, O, B, Q, and most proba-
bly MamL) were found to be essential for magnetosome biomineralization, in M. gryphiswaldense only
six proteins (MamE, M, O, B, Q, and most probably MamL) are essential for at least some rudimen-
tary iron biomineralization and, if including Maml, seven proteins are necessary for the biosynthesis of
magnetite-containing magnetosomes. Further studies are necessary to show whether these essential
magnetosome proteins are also sufficient for vesicle formation and crystallization even in the absence

of other factors encoded by the mamAB and other magnetsome operons.

6.4 The controlled overexpression of the mms6, mamGFDC,
mamAB and mamXY magnetosome operons enhance

magnetosome formation in M. gryphiswaldense

In this work, mutagenesis has proven to be an effective tool not only to identify underlying mechanisms
of magnetosome biosynthesis, but also to engineer modified magnetosome features, i.e. for generating
variable particle sizes. Comparable experiments in other bacteria have shown that both deletion and
overexpression of gene clusters are extremely powerful tools in genome engineering, mainly applied
in optimized biotechnological processes or for elucidation of protein functions [19,20,21,22]. Whereas
deletion of the mms6 operon resulted in magnetosomes size and number reduction of 45% and 51%,
respectively, the expression of the mms6 operon genes within AA10 from the stronger P,.mpc promoter
restored biomineralization even beyond the wildtype level resulting in cells synthesizing larger and more
magnetosomes. This prompted us to study the effect of controlled overexpression of all magnetosome
operons either alone or in various combinations. In a joined study conducted together with Isabel Kolinko
(LMU Munich), we systematically i) investigated effects of overproducing strains and deduced potential
functions of overexpressed proteins and ii) analyzed whether overexpression results in magnetosome
overproduction by increasing magnetosome size and number. To reduce the risk of homologous re-
combination, an isogenic RecA deficient strain of M. gryphiswaldense [2] served as a chassis, which
produces similar magnetosome sizes and nhumbers compared to the wildtype.

Chromosomal duplication or triplication of the mms6 operon increased magnetosome number up to
69% and yielded magnetite particles even larger than those produced by the wildtype (35%), confirming
the role of all proteins encoded by the mms6 operon for regulation of crystal growth. Integration of a

fourth mmsé6 operon into ARecA (in total five mms6 operons) or combined expression with the adjacent
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mamGFDC operon that was previously reported to affect magnetosome size [23] did not further enhance
particle formation. Overexpression of Mms48 alone highly increased magnetosome number and cells
frequently contained multiple chains, which were also observed within the mms6 operon overexpression
strains (Figure 6.3). Thus, Mms48 may interact or recruit other magnetosome proteins important for
vesicle biogenesis and/or iron uptake. Genomic expression of additional copies of mms48 and mms36
did not further decrease mean particle size (as suggested from deletion analyses described above) but
size distributions were slightly shifted towards smaller particles. This might indicate that inhibition of par-
ticle growth is not directly caused by Mms48 and Mms36 and might depend on further recruited proteins,
which interact with Mms48 and Mms36.

Overexpression of the large mamAB operon alone had pleiotropic phenotypic effects, and while some
cells contained increased numbers of regularly sized magnetosomes, also a morphotype habouring
small, aberrantly shaped magnetic nanoparticles was observed. The two distinct morphotypes might
be due to the lack of accessory factors encoded in the mms6, mamGFDC and mamXY operons. Con-
sistent with this hypothesis, the overexpression of all magnetosome operons in ARecA+ABG6X highly
enhanced magnetosome production by increasing the number of particles about 117% compared to the
wildtype.

We found that cells were longer in all overexpression strains, potentially related to a minor cell division
phenotype of the mutants: cells often remained connected by tubular extensions at advanced stages
of constriction, which kept the daughter cells attached to each other. During cell division, the magneto-
some chain has to be split and separated from the cohesive forces caused by magnetostatic interactions
within the chains. A physical model demonstrated that the magnetic attraction significantly increases in
a two-stranded chain [24]. This was frequently observed in the overexpression strains of the mmsé6 or
mamAB operon and even increased to three or more chains within the ARecA+ABG6X strain (Figure
6.3).

Whereas the mutant ARecA+mamAB 1x showed no significant increase in intracellular iron content,
mutants ARecA+mms6 3x and ARecA+ABG6X produced 39% and 141% more iron compared to ARecA,
respectively. Several questions regarding the regulation of magnetosome numbers as well as size in the
different overexpression strains still remain unknown. For instance it is unknown, how overexpression of
the mms6 operon alone causes formation of larger crystals. One important factor constraining growth
of crystals is the size of magnetosome vesicles. In some cases we found significantly enlarged vesicles
in the mmsé6 insertion strains by CET. This finding indicates that overexpression of a set of genes might
also directly influence the vesicle diameter prior to crystallization and defines the increase in crystal size.
This could be caused by accumulation of proteins encoded by the mms6 operon in the magnetosome
membrane, thereby having a marked effect on vesicle size.

Overexpression of the mms6 operon not only resulted in formation of larger crystals, but also the
number of magnetosomes was increased, which suggests that proteins encoded by the mms6 operon

might be itself involved in vesicle biogenesis and/or magnetosomal iron transport or recruit accessory
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proteins controlling those processes during magnetosome formation. However, whereas none of the
mms6 operon encoded proteins shares similarity to known iron transports or were shown to be in-
volved in vesicle genesis by deletion analyses, the mamAB operon encodes several factors involved in
vesicle biogenesis (MamL, MamB and MamQ) and iron transport (MamB and MamM). Thus, observa-
tions might hint towards interactions and/or recruitment between/of proteins encoded by the mmsé and

mamAB operons.
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Figure 6.3: Construction and phenotype of overexpression strains. A. Strategy for construction of overexpres-
sion strains by amplification of different magnetosome operons. Insertional plasmids were constructed
based on genomic DNA from M. gryphiswaldense. Plasmids contain the magnetosome operons mamAB
(blue, AB), mamGFDC (green, GFDC), mmsé6 (brown) and the mamXY operon lacking ftsZm (pale blue,
XYZ). The vector backbone (genes are indicated in red) contains transposase gene (ips), inverted re-
peats (IR), origin of transfer (oriT), an R6K or p15A origin of replication (ori) and antibiotic resistance
cassette (abR). After conjugative transfer of the plasmids, the transposase recognizes IR sequences and
catalyzes chromosomal insertion of the target sequence. Additional copies of respective magnetosome
operons in the chromosome (oval shape) are marked with asterisks. B. TEM analysis of overexpression
strains compared to the parental strain ARecA. 1 and 2 illustrate the different morphotypes found for
ARecA+AB 1x.

Our findings also raise the question, which accessory factors encoded outside the mam and mms
operons might limit the number or size of magnetosomes in the overexpression strains as well as in the

wildtype. The feoAB1 operon encoding a ferrous uptake system has been found to play a role in magne-
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tosome formation in M. gryphiswaldense [33]. However, its chromosomal duplication in ARecA+ABG6X
had only minor effects on the crystal size. Insufficient expression of non- amplified genes encoding
components of other iron uptake systems, such as the ferrous uptake protein FeoB2 [34], might prevent
further accumulation of iron in the cell. Furthermore, the regulator protein Fur is involved in global iron
homeostasis in M. gryphiswaldense [35], and has been found to control expression of all identified iron
uptake proteins, such as components of ferrous (FeoAB) and ABC ferric ion transport systems. There-
fore, this protein could also be indirectly involved in limiting the numbers and size of magnetosomes by
regulating the transcription of genes encoding components of iron uptake systems.

Besides the intracellular iron supply, which constrains magnetosome formation, further factors might
limit magnetosome biosynthesis in M. gryphiswaldense. Several enzymes participating in denitrification
(nitrate reductase Nap, nitrite reductase Cd;) [36,37], aerobic respiration (cytochrome ¢ oxidase Cbbj)
[38], and the oxygen sensor Fnr [39] have been found to poise optimal redox conditions during mag-
netite biomineralization. Consequently, the corresponding proteins could also indirectly limit the number
or size of magnetite crystals by regulation of the intracellular redox balance. However, a more compre-
hensive genetic analysis will be necessary in the future to elucidate whether accessory, yet-unknown
factors control magnetosome formation in the wildtype as well as in the overexpression strains.

In summary, higher gene dosage of the magnetosome operons induces an increase in crystal produc-
tion within the native hosts by unknown mechanism. While duplication or triplication of the mmsé operon
alone caused formation of larger crystals and a moderate increase in crystal numbers, amplification of

all mam- and mms gene clusters specifically enhanced magnetosome numbers per cell.

6.5 Model for magnetosome biosynthesis: The step-wise

formation of magnetic organelles

Based on results obtained by this thesis and all other previous studies of magnetosome proteins an ex-
tended model for magnetosome biosynthesis in M. gryphiswaldense was finally proposed (Figure 6.3).
Within the last years it became clear that magnetosome biogenesis relies on five major steps: (i) vesi-
cle biogenesis, (ii) magnetosome protein sorting, (iii) iron uptake and magnetite crystal nucleation, (iv)
crystal maturation and (v) chain assembly as well as positioning [12]. To generate intracellular magnetic
mineral phases, cells must create and maintain a highly curved membrane compartment [25] that in-
cludes MamB, MamQ, and most propably MamL.

Both MamB (described below) and the small protein MamL, which has no predicted function, were
shown to be essential for magnetosome membrane genesis in M. magneticum [12] and M. gryphis-
waldense by a so far unknown mechanism [Raschdorf et al., in preparation; 14]. However, the relevance
and identity of magnetosome-like structures within AmamL remain to be verified in future studies with

higher resolution. MamQ shares homology with the LemA protein, which is conserved in several bacte-
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ria but whose function is uncertain [26,27]. MamQ has a high content of a-helices that are somewhat
reminiscent to the EFC/BAR (Fes-CIP4-homology/Bin-Amphiphysin-Rvs) domain of the Formin Binding
Protein 17 [12]. BAR domains have the ability to sense and stabilize membrane curvatures [28,29], and
their weak similarity to MamQ might hint towards related functions in MM vesicle genesis of the pro-
tein. However, we revealed a minor number of empty vesicles by CET within AmamQ cells, which were
randomly organized. Previously, it was suggested that some magnetosome proteins are sorted prior
to the vesicle formation and accumulate on the inner membrane as protein-protein-lipid complexes that
leads to a natural invagination without a special protein support and might explain random formation of
vesicles within AmamQ cells [30].

A further important step for magnetosome formation is the sorting of magnetosome proteins, which
was shown to be regulated by MamA and MamE, whereas MamA, a TPR (tetratricopeptide repeat)
domain-containing protein was speculated to play a role in activation of biomineralization [29]. MamA
self-assembles through its putative TPR domain and concave site to form a large homooligomeric scaf-
fold surrounding the magnetosomes [31,32], while its convex site interacts with other magnetosome-
associated proteins like MamC and several unidentified proteins [31,32]. The HtrA/DegP family pro-
tease MamE is involved in magnetosome protein localization by a protease independent process since
the proteins MamA and MamJ are delocalized within AmamE of M. magneticum and a protease-deficient
variant of MamE still supports the formation of small magnetite crystals [10].

MamO, a further magnetosome-associated protease, probably acts as localization determinant for
magnetosome proteins, as anion transporter or is directly involved in precipitation of iron oxide par-
ticles [10]. MamB and MamM were implicated in magnetosome-directed iron transport according to
their similarity to members of the cation diffusion facilitator (CDF) family [27,33,34]. Additionally, MamB
and MamM are involved in magnetite nucleation, and establishment of proper environments for mag-
netite synthesis [13,14]. Further proteins involved in iron uptake and magnetite nucleation are MamZ,
MamX and MamH that were proposed to form an iron oxidoreductase and transport complex in M.
gryphiswaldense [15]. The small magnetosome protein Maml (70 aa) has no significant homology to
already characterized proteins. Amaml still synthesized tiny and poorly crystalline non-magnetic parti-
cles, which consist of hematite. Recent findings in M. gryphiswaldense and M. magneticum indicate that
the observed poorly ordered iron (oxyhydr)oxide phases are precursors to the magnetite phase in bac-
teria [35,36]. In addition, the ability of MamP to precipitate ferrihydrite and magnetite in vitro (discussed
below) suggests that magnetite may be formed through a stepwise phase transformation process [37].
Such a biosynthetic phase transformation requires a precise control of iron supersaturation, pH, and
redox potential levels [38]. Hence Maml may be involved in an early stage of magnetite nucleation by
regulation of proper conditions within the vesicles.

The proteins MamN, P, S, T, and MamR are most likely involved in maturation of magnetosomes, since
deletion of corresponding genes resulted in defects in crystal size, number and morphology. Due to sim-

ilarity of MamN to the human Permease P that regulates the intraorganelle pH of melanosomes together
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with an ATP-driven proton pump [39], MamN presumably regulates pH conditions within the magneto-
some vesicles by export of protons released by the precipitation of magnetite (2Fe3t + Fe?>™ + 4H,0
— Fe;0,4 +8H™) [40,41]. Thus the observed phenotype of AmamN might be due to alteration of the
intra-magnetosomal pH. MamP contains a double cytochrome ¢ motif (CXXCH), referred to as magne-
tochrome domain that is necessary for heme-binding [42] and seems to interact with the magnetochrome
domain containing proteins MamE, MamX and MamT through its PDZ domain to somehow regulate the
electron transport required for biomineralization of the mixed valence iron oxide magnetite [10,15,37].
Magnetosomes in AmamP of M. gryphiswaldense show a similar crystallization defect (magnetite crys-
tals flanked by flakes) like the mamX mutant of M. gryphiswaldense [15] and thus might indicate the
involvment in same steps of magnetosome biosynthesis. In contrast, phenotypes of M. gryphiswaldense
AmamT (smaller particles) and AmamE (total loss of electron dense particles) are distinct from the dele-
tion phenotype of AmamP, suggesting that some or all of the magnetochrome proteins have different or
additional functions. Isolated MamP from M. magneticum catalyzed the formation of ferrihydrite and
magnetite from iron solutions in vitro, indicating that MamP binds and oxidizes iron [37].

MamR contains a HTH-17 domain mainly occurring in excisionases (Xis) that is known to interact
through its a-helix with integrases and promotes recombination by helping integrases to bind dsDNA
[43]. MamR also contains two a-helices that might evoke interactions with other crucial magnetosome
proteins and thus, controlling particle number and size as suggested for MamR of M. magneticum [12].
Mams§, which has similarity to the putative serine proteases and magnetochrome domain containing pro-
teins MamE and MamX, plays a key role for crystal maturation, too [10,15]. However, MamS itself lacks
a magnetochrome domain, which argues against its direct participation in redox control. The protease
activity of MamE and MamO is assumedly important for crystal growth, too, and MamE presumably
removes growth inhibitors proteolytically or activates growth promoting proteins to regulate crystal size
[10]. Furthermore, proteins encoded by the mms6 and mamGFDC operons [23] are key regulators for
magnetite crystal growth (as discussed above). Finally, the assembly and midcell positioning of nascent

magnetosome chains is coordinated by the actin-like MamK and the acidic Mamd protein [16,17,44,45].
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Figure 6.4: Hypothetical model for magnetosome biosynthesis in M. gryphiswaldense. Magnetosome biosyn-
thesis depends on various steps including various magnetosome proteins. (I) Magnetosome vesicle
formation is induced by the proteins MamQ, MamL, and MamB. MamY regulates vesicle shape [46].
(1) MamA forms a multiprotein complex surrounding the magnetosome membrane [32] and MamE is
involved in localization of magnetosome proteins by a protease independent process [10]. (lll) The
heterodimer of the CDF transporters MamB and MamM transport ferrous iron into the magnetosome
vesicles [14] and ferric iron is taken up by MamH and MamZ [15] or formed by oxidation of ferrous iron
within the vesicles. Maml is involved in magnetite nucleation. MamO most likely is involved in pre-
cipitation of iron oxide particles [10]. (IV) Crystal growth is affected by several magnetosome proteins
also including MamE that removes growth inhibitors proteolytically or activates growth promoting pro-
teins [10]. Based on the conserved CXXCH heme-binding motif within MamE, MamT, MamP and MamX
proteins presumably form a complex for electron transport to regulate electron flow [15,42]. MamS and
MamR control crystal size by an unknown mechanism. MamN exhibits similarity to H*-translocation pro-
teins and might be involved in crystal growth by regulating intramagnetosomal pH [39]. Mms6 is tightly
bound to the magnetosome crystals [7,47] and assembles into coherent micelles for templating crystal
growth [48]. Mms48 and Mms36 act as inhibitors of crystal growth or recruit inhibiting proteins of particle
growth by an unknown mechanism. The small, hydrophobic proteins MamG, F, D, and MamC control in
a cumulative manner the growth of magnetite crystals [23]. Magnetosomes are assembled into chains
by the interaction of MamJ with the actin-like MamK filament that is also involved in chain positioning
[16,17,24]. MamY plays a crucial role in proper magnetosome chain localization [Raschdorf et al., in
preparation]. OM: outer membrane; IM: inner membrane. Underlined proteins: analyzed proteins in this
study, by single gene deletion of encoding genes. Proteins in brackets: non-essential proteins encoded
by the mamXY operon.
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Future directions

The complex process of magnetosome formation requires a high number of different magnetosome pro-
teins to form highly crystalline magnetite particles in M. gryphiswaldense. Results of this work provide
new insights into the functional diversity of magnetosome proteins encoded by the mms6, mamGFDC,
mamAB and mamXY operons and how these operons can be used to enhance magnetosome forma-
tion.

This will be, for example useful for future genome reduction approaches in MTB. By removal of un-
necessary or problematic genomic regions, strains of M. gryphiswaldense can be engineered for the
production of magnetosome particles with increased genetic stability due to the elimination of repeats
and transposases. Instead of repeated, deletion of MAI regions that led to highly instable phenotypes
the deletion of the entire MAI and reintegration of important magnetosome genes is a promising method.
However, it will be indispensable to obtain a complete and gap-free closed M. gryphiswaldense genome,
especially to identify the real organization of the A2 region within the MAL.

Despite the identification of essential and non-essential proteins for magnetite formation as well as
their importance for the various steps of magnetosome biosynthesis, the functions of most MM pro-
teins still remain unknown and several detailed analyses are required. It remains to be shown whether
the identified essential magnetosome proteins are also sufficient for magnetosome biosynthesis in M.
gryphiswaldense in the absence of other factors encoded by the mamAB operon and other magneto-
some operons. Therefore, a synthetic construct encoding MamE, L, M, O, Q and MamB (and Maml)
should be expressed in the absence of mms6, mamGFDC, mamAB and mamXY operon to verify the
minimal essential gene set.

The transfer of modified magnetosome operons based on results obtained from this thesis will be
useful to genetically endow unicellular and multicellular organisms with magnetization by biosynthesis
of tailored magnetic nanoparticles.

Additionally, the modular expression or overexpression of various magnetosome genes and oper-
ons can be used for the production of engineered magnetic nanoparticles with tailored properties in M.
gryphiswaldense. For example elimination of Mms48 and Mms36 from the overexpression strains might
further enhance particle size, since both proteins seem to be involved in crystal growth inhibition.

Overexpression of a selected set of magnetosome genes could be exploited for the design of size-
controlled nanoparticles that display altered magnetic features or display various functionalized magne-
tosome proteins. The constructed strains will be useful for high and steady magnetosome production for

several nanotechnological and biotechnological applications.
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Supplement: Chapter II

Functional analysis of the magnetosome island in
Magnetospirillum gryphiswaldense: The mamAB operon is

sufficient for magnetite biomineralization.

Publication state: published in PLoS One. 2011;6(10):e25561.

Materials and Methods

Construction of integrative plasmids and deletion mutagenesis

Downstream and upstream sequences of the deletion targets (ALO1-ALO3; ALO5-AL08; AL11;
Fig. S2.2) were amplified by PCR using M. gryphiswaldense chromosomal DNA and
oligonucleotides listed in Table S2.3. PCR products were subcloned into pJet1.2 vector,
sequenced and finally ligated into the mobilizable suicide plasmids. The basic suicide vector,
pALO1 was constructed by amplifying homologous region ALO1 by PCR using the primer pair
AL33/AL34, containing the lox71 sequence. ALO1 was digested with EcoRI-Sall and inserted
into the corresponding site of pK19mobGllI [1], resulting in pALO1. After digestion with EcoRl
and Notl the plasmid was used for constructing vectors pAL05 and pALO7. The homologous
regions were amplified with primers AL42/AL43 and AL48/AL49, respectively. Moreover, the
multiple cloning site (MCS) from pBBR-MCS5 plasmid was amplified by PCR with
AL115/AL116 primers. The fragment was digested with EcoRI-Notl and ligated into the same
position of pALO1, creating pALO1_MCS1. Consequently, the homologous region ALO3,
amplified with primers AL107/AL108, was integrated after digestion with Clal and Notl,
resulting in pAL03. The basic vector pAL02/2 was constructed amplifying the homologous
sequence AL02/2 by PCR using the primer pair AL19/AL20, containing the lox66 site. The
2148-bp fragment was cut with Sall-Hindlll and cloned into pT18mob2. The resulting plasmid
was designated pT18mob2_AL02/2. Gene for gentamicin resistance (Gm) was amplified by
PCR from pBBR-MCS5 plasmid with primers AL81/AL82, and was inserted after digestion

with EcoRI-Sall, resulting in pAL02/2_Tet. Tetracycline resistance gene was destructed by
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digestion with Pstl and the blunted and self-ligated vector was named pAL02/2. The MCS
from pBBR-MSC5 was amplified with primers AL113/AL114 and the fragment was cut with
Hindlll-BamHI. Thus, the following plasmids were generated by using the following primer
pairs and restriction endonucleases: pAL06 (AL121/AL122; Xhol-Pvul) as well as pALO8
(AL92/93; BamHI- Notl). Due to plasmid instability a terminator sequence was inserted into
pAL02/2_MCS2 after amplification with primers AL152/AL153 from plasmid pAP150 and
digestion with Kspl, resulting in pAL02/2_term. The plasmid was used to construct
pAL11_term, whereby homologous sequences were amplified with primer pair AL94/95 and
digested with BamHI-Notl. Excisions of the mms6 operon and mamXY operon were
conducted by double cross-over mutagenesis as described previously [2,3]. Consequently,
pCM184 [4] derivate were generated, whereby following oligonucleotides and restriction
endonucleases were used to amplify and insert corresponding downstream and upstream
fragments: pCM184_mms6_5'3" WT ([AL352/AL353; Mfel-Ndel], [AL354/AL355; Apal-Sacl]);
pCM184_mms6_5'3' GFDC ([AL352/AL353; Mfel-Ndel], [AL132/AL133; Mlul-Sacl]);
pCM184_mamXY _5'3" ([AL190/AL191; Mfel-Ncol], [AL188/AL189; Apal-Sacl]) and
pCM184_mamXY_53'SU ([SU88/Su89; EcoRI-Smal], [SU422/423; Apal-Clal]). While
pCM184_mamXY_5'3' was used in the AA12 background, pCM184_mamXY _53'SU was
employed in wildtype and AGFDC [2]. For Single gene excision of the mamW gene, upstream
fragment was PCR amplified using primer pairs SU304/SU305 and SU306/SU307 for
downstream region. Constructs were digested with MunI-Ndel or Apal-Sacl and ligated into
pCM184, resulting in pCM184_mamW _3'5’. After conjugation of the final integrative plasmids
into M. gryphiswaldense strains, single or double insertion mutants were selected with
corresponding antibiotics and verified by direct cell PCR. The excision of large genomic
segments was induced after conjugation with the Cre expression plasmid pCM157 [4].
Original lac promotor was exchanged by a native M. gryphiswaldense promotor (generated by
Y. Le, unpublished data). To obtain marker-less mutants after double crossover occurred, the
vector was also used for deletion of the inserted Km gene from pCM184. Specific gene
replacements were verified by PCR and sequencing. AA19 was designed as previously

reported [5] using MSR-1B as parent strain and the plasmids pSUMAI13_5’ (pK19mobGilI
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derivate) and pSUMAI13_3’ (pAS200 derivate) generated with following primer pairs and
matching restriction endonucleases: [SU510/SU511; BamHI/Xbal] and [SU488/SU489;
Sall/Hindlll]. Plasmid pK19mobGll_mamJKL_3'5’ for deletion of genes mamJ, mamK, mamL
was generated by inserting 1 kb fragments upstream and downstream of mamJ and mamK
(amplified with primer pairs EK1_JKL u_f/ EK1_JKL u_r and EK_JKL d_f/ EK_JKL d_r) into

pK19mobGlI after digestion with Xmal-Spel and Smal, respectively.

Conjugation experiments

Plasmid transfer via conjugation was performed with E. coli BW29427 as donor strain and
M. gryphiswaldense R3/S1 or its descendants as acceptor strains. Conjugation procedure
was performed as described previously [3,5] with following modifications for genomic plasmid
insertion: After the first plasmid transfer and 2h cultivation in liquid media, cells of single
insertion mutants were grown in 100 ml FSM under selective conditions. E. coli BW29427
containing the second insertion plasmid, was added after 32h of incubation. The concentrated
suspension was spotted onto FSM agar dishes containing DAP, incubated for 8h and flushed
from agar surface. After incubation of 2h in liquid FSM, cells were grown on selective agar
plates containing X-Gluc. Blue colonies were transferred in 100 yl FSM as well as scaled up
to 10 ml after positive testing for plasmid integration via PCR. Double integration mutants
were subjected to excision by conjugation with pCM157 [5].

For trans-complementation, plasmid pCDS52_mms6_mmsF containing mmsF, mmsé,
mgr4074 and the native mms6 promoter (Pnmss) Was constructed. The 1,448 bp fragment was
digested with Nsil-EcoRI, and inserted into the same sites of pBBR-MCS2. Plasmid
pmamXYop was constructed by PCR amplification of the mamXY operon with primer pairs
AL200/AL201, which was inserted into pPBBR-MCS2 after digestion with Ndel and Xbal. Other

mutants could not be complemented because of their large sizes between 6 and 68 kb.
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Supplementary tables

Table S1. Strains and plasmids used in this study.

Strains and plasmids Description References

M. gryphiswaldense strains

MSR-1 R3/S1 Rif' Sm', spontaneous mutant [3]

MSR-1B Spontaneous mutant, lacking [6]
40,385 kb genomic region

AmamAB#K7 AmamAB [5]

MSR-1B mgr4058tomgr4146 MSR-1B range of excision from [5]
mgr4058 to mgr4146

MSR_SU12 AmamAB with deletion to mgr4029 [5]

AGFDC AmamGFDC [2]

AmamJKL AmamJKL this study

MSR+pALO1 MSR-1 R3/S1 (pALO1), Km' this study

MSR+pALO1+pAL02/2 MSR-1 R3/S1 (pALO1, pAL02/2), Km', this study
Gm'

MSR+pALO1+pAL11_term MSR-1 R3/S1 (pALO1, pAL11_term), this study
Km', Gm'

MSR+pALO3 MSR-1 R3/S1 (pAL03), Km' this study

MSR+pALO3+pAL06 MSR-1 R3/S1 (pAL03, pAL06), Km', this study
Gm'

MSR+pALO3+pALO8 MSR-1 R3/S1 (pAL03, pAL08), Km', this study
Gm'

MSR+pALO5 MSR-1 R3/S1 (pAL05), Km' this study

MSR+pALO5+pAL02/2 MSR-1 R3/S1 (pAL02/2, pALO5), Km', this study
Gm'

MSR+pALO7 MSR-1 R3/S1 (pAL07), Km' this study

MSR+pALO7+pALO8 MSR-1 R3/S1 (pALO7, pAL08), Km', this study
Gm'

AA2 MSR-1 R3/S1 range of excision from this study
mgr4026 to mgr4069

AA3 MSR-1 R3/S1 range of excision from this study
mgr4079 to mgr4088

AA4 MSR-1 R3/S1 range of excision from this study
mgr4106 to mgr4146

AA5 MSR-1 R3/S1 range of excision from this study

mgr4151 to mgr4174
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AA7

AA8

AA10
AA11
AA12
AA13
AA14

AA19

AA10_pCDS52 mms6_mmsF

AA10_pBBR-MCS2
AA8 pmamXY
MSR-1_pmamXY
E. coli strain

E. coli BW29427

E. coli DH5a

Plasmids
pJet1.2
pT18mob2
pK19mobGlI
pCM184
pCM157
pBBR-MCS2
pBBR-MCS5
pAP150

pAS200
pALO1

pALO1_MCS1

MSR-1 R3/S1 range of excision from
mgr4106 to mgr4174

AmamXyY

Amms6 operon

AmamXY, AmamGFDC

Amms6 operon, AmamGFDC

Amms6 operon, AmamGFDC, AmamXY
AA7 with deletion of mms6 and
mamGFDC operon

MSR-1B with deletion from mgr4151 to
mgr4175

Amms6 operon
(pCDS52_mms6_mmsF), Km'

Amms6 operon (pBBR-MCS2), Km'
AmamXY (pmamXY), Km'

MSR-1 R3/S1 (pmamXY), Km'

thrB1004 pro thi rpsL hsdS lacZDM15
RP4-1360D(araBAD)567DdapA

1341::[erm
pir(wildtype)JtrahsdR17recA1-
endA1gyrA96thi-1relA1

Ap', eco47IR, rep (pMB-1)

Tet', pK18mob2 derivate

Km', pMB-1 replicon, gusA, lacZa

Km', Ap', Tet'

Tet', Cre expression vector

Km', lacZa

Gm', lacZa

pBBR-MCS2, Prampcas, 9fp2, terminator
sequence from pUC18R6K

Gm', ColE1 ori, sacB of Bacillus subtilis
pK19mobGll digested with Sall and
EcoRl, insertion of lox71 and
homologous sequence ALO1

pALO1, digested with EcoRI and Notl,
insertion of MCS from pBBR-MCS5

II

this study

this study
this study
this study
this study
this study
this study

this study

this study

this study
this study
this study

Datsenko and
Wanner
(unpublished)

Invitrogen

Fermentas
[7]
[1]
[4]
[4]
(8]
(8]
[l

[4]
this study

this study
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pT18mob2_AL02/2

pALO02/2_Tet

pAL02/2

pAL02/2_MCS2

pAL02/2_term

pALO3

pALO5

pALO6

pALO7

pALO8

pAL11_term

pCM184_mms6_5'WT

pCM184_mms6_5'3" WT

pCM184_mms6_5'3' GFDC

pCM184_mamXY_5'

pCM184_mamXY_5'3'

pT18mob2 digested with Sall and Hindl,
insertion of the lox66 and homologous
sequence AL02/2

pT18mob2_AL02/2 digested with Sall
and EcoRl, insertion of gentamicin gene
from pBBR-MCS5

pAL02/2_Tet digested with Pstl, blunted
and self-ligated

pAL02/2 digested with Hindlll and
BamHl, insertion of MCS from pBBR-
MCS5

pAL02/2_MCS2 digested with Kspl,
insertion of terminator sequence
pALO1_MCS1 digested with Clal and
Notl, insertion of homologous sequence
ALO3

pALO1 digested with EcoRI and Notl,
insertion of homologous sequence AL05
pAL02/2_MCS2 digested with Pvul and
Xhol, insertion of homologous sequnce
ALO6

pALO1 digested with EcoRI and Notl,
insertion of homologous sequence ALO7
pAL02/2 digested with BamHI and Notl,
insertion of homologous sequence ALO8
pAL02/2_term digested with BamHI and
Notl, insertion of homologous sequence
AL11

pCM184 digested with Mfel and Ndel,
insertion downstream fragment of
mgr4070

pCM184_mms6_5"' WT digested with
Apal and Sacl, insertion upstream
fragment of mgr4074
pCM184_mms6_5"' WT digested with
Mlul and Sacl, insertion downstream
fragment of mamC

pCM184 digested with Mfel and Ncol,
insertion downstream fragment of fisZm
pCM184_mamXY_5' digested with Apal

II

this study

this study

this study

this study

this study

this study

this study

this study

this study

this study

this study

this study

this study

this study

this study

this study
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pCM184_mamXY_5'3' pCM184_mamXY_5' digested with Apal this study
and Sacl, insertion upstream fragment
of mamX
pCM184_mamXY_5'SU pCM184 digested with EcoRI and Smal, this study
insertion downstream fragment of fisZm
pCM184_mamXY _5'3'SU pCM184 digested with Apal and Clal, this study
insertion upstream fragment of mamX
pCM184_mamW _5' pCM184 digested with Mnul and Ndel, this study
insertion upstream fragment of mamw
pCM184_mamW _5'3' pCM184_mamW _5' gigested with Apal this study

and Sacl, insertion downstream
fragment of mamW

pSUMAI13_3' pAS200 digested with Sall and Hindlll, this study
insertion upstream fragment of mgr4174

pSUMAI13_5' pKmobGll digested with BamHI and this study
Xbal, insertion upstream fragment of
mgr4151

pK19mobGII_mamJKL_3' pK19mobGlI digested with Xbal and this study
Spel, insertion of upstream fragment of
mamJ

pK19mobGIl_mamJKL_3'5' pK19mobGII_mamdJKL_3' digested with  this study
Smal, insertion of downstream fragment
of mamL

pCDS52_mms6_mmsF pBBR-MCS2 digested with Nsil and this study
EcoRl, insertion mmsF, mms6 and
mgr4074

pmamXY pBBR-MCS2 digested with Nsil and this study
EcoRl, insertion of mamXY operon,

II
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Table S2. DNA oligonucleotides used in this work.

Name Sequence

ALO19 5'-ATTGTCGACATAACTTCGTATAGCATACATTATACGAACGG
TAGGATCCGGCATCCTGATCGGTAGGCGAT

ALO20 5'-AAGCTTAGAAGGGTTACGACGCCGGT

ALO33 5-GAATTCGGCTGTTCGGCACCTCTGTT

ALO034 5-AATGTCGACTCTAGACTCGAGATAACTTCGTATAATGTATG
CTATACGAACGGTAGCGGCCGCTGATCTCGGGATCACTCGGT

ALO42 5'-GAATTCGCCACCTTGACAGAAATTGATATC

AL043 5'-GCGGCCGCTCTTCCAACGAAATTGTGCG

ALO48 5'-GAATTCTTACCGCTCTTCGGCATCCACGCC

AL049 5'-GCGGCCGCGGCAGCCTCATTTAAACATTCAGG

ALO81 5'-GAATTCACACCGTGGAAACGGATGAAGGCAC

AL082 5'-GTCGACGCGCCTGAAGCCCGTTCTGG

AL092 5'-GGATCCATGCCGGCGGACAGCAGATGCT

AL093 5'-GCGGCCGCGCACGGAGACTCTCATAGTG

AL094 5-GGATCCACGCCTTCATCCTTGAACCA

AL095 5-GCGGCCGCTGGACATCAACGAAAAGGCA

AL107 5'-ATCGATGTTCGATATCCGTCTGCGC

AL108 5'- GCGGCCGCCTCTTCGGGGCAACGTGAA

AL113 5'-GGATCCATAAGAATGCGGCCGCCCGCTCGAGCCCGGGCT
GCAGGAATTCGA

AL114 5'-AAGCTTTGGGTTCGTGCCTTCATCCG

AL115 5'-GAATTCGGATCCGATATCAAGCTTATCGATACCGTCGACC

AL116 5'-GCGGCCGCTGGGTTCGTGCCTTCATCCGTT

AL121 5'-CTCGAGTATCGCCACCTTATGGGGAG

AL122 5'-CGATCGATGCTGTCGGCCATCATCAT

AL125 5'-GAATTCCTGATCTCCGGCAAGTGTAT

AL132 5'-ACGCGTTGAAATATTGGGCTGGTTCACG

AL133 5'-GAGCTCTGCTGCTGCCAATATCGTCG

AL136 5'-ATGCATTCACCCGAGGCCGAACCTCA

AL152 5'-TATACCGCGGGGCGGATTTGTCCTACTCAGG

AL153 5'-GACTCCGCGGGACTCCTGTTGATAGATCCAGTAATGAC

AL178 5'-GGATCCTTCATGTACTGCGGAACAGTCG

AL179 5'-CATATGTTGGGCTTGTGGTTTTGGCGG

AL188 5'-GGGCCCAAGGGCTGCTCCCGTGGTGG

AL189 5'-GAGCTCCCCACGCATGTACACAGCCATA

AL190 5'-CAATTGCTCGCTAAAAATGTGGGTTTCCG

AL191 5'-CCATGGGCCGCTCCGGAAGAATCAAGC

AL352 5'-CAATTGTGGCCCCGGTCAAGTCAACT

AL353 5'-CATATGTACATGAGGGCATCGCGTTG

AL354 5'-GGGCCCAATTGTCGACAAATCCCAAAGA

AL355 5'-GAGCTCCCAAAGCAAAGGACTCCG

Su88

5-GAATTCTAAAAATGTGGGTTTCCG
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SU89
SU304
SU305
SU306
SU307
SuU422
SU423
Su488
SU489
SU510
SU511
EK1 JKL u_f
EK_JKL u_r
EK_JKL d_f
EK2_JKLd_r

5'-CCCGGGTGAGCCGCTCCGGAAGAAT
5'-CAATTGATTGCCAGATGATCTTGATCATGTC
5'-CATATGCATGGCCGCTTTCCAAACAGGTGA
5'-GGGCCCTGAGGGAGTGGGGACTGCGAAGTA
5'-GAGCTCAGCCGAACCGACCAAATACTGG
5-ATCGATCACAAGGGATAGATATGGC
5'-GGGCCCCTAACCTTGATCCCCG
5'-GTCGACATGCCGGCGGACAGCAGATGCT
5-AAGCTTGCACGGAGACTCTCATAGTG
5'-GGATCCTTACCGCTCTTCGGCATCCACGCC
5-TCTAGACAAGGCAGCCTCATTTAAACATTCAGG
5-TCTAGAGCAGCCGGTCCGATCGCCTTTGG
5'-CCCGGGATTGCTAACTAGTTATCCCGCTCCACCCTCAAAGAA
5-ACTAGTCGCATTCCATGCTCCGTCGGAGC
5'-CCCGGGGGATCCCCGACGAAAATGGTTACGCCCG

II




Supplements Chapter 11

Supplementary figures

PpCM184 derivate

lox71  KmR  lox66

KmR GmR®
PALO1 derivate PAL02/2 derivate
gusA
lox 71 lox 66

> >

" > >

genomic target
H H ::> ————————————— genomic target = —————————————-] :>—
homologous recombination
ﬂ ﬂ homologous recombination homologous recombination
Iox71 Km?_ lox66 lox 71 ﬂ lox 66
—Ea - genomic target  ———=——— >
PpCM157 derivate PCM157 derivate

. cre cre

lox*
— > vl

Figure S1. Schematic illustration of methods for generation of deletions within the MAI.
(A) Allelic replacement of target genes using double cross-over followed by removal of
selection marker with Cre-lox mediated excision. (B) Cre-lox recombination using the
modified sequences lox71 and lox66 for specific excision of large chromosomal regions and
construction of marker-less mutant strains. After excision the modified lox* sequence remains
in the genome, but is poorly recognized by Cre recombinase making multiple recombination
events possible.
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MSR + pALO1 + pAL11_term MSR + pALO3 + pALO6

\ Awwv b AL

ALO5 AL02/2
>< AA2 ><_ A3 e AA4 ¥ AA5 ALO8
ALO1 AL11 >< >< ALO3

MSR + pALO5 + pAL02/2 MSR + pALO7 + pALO8

4,053,403 4,084,649 4,088,632 4,100,562 4,115,331 4,145,634 4,148,503 4,170,671

L l Il l 1 l 1 l 1 l 1. |l | 1. l
I T 1 T I T I T II T 1
4,051,404 4,082,133 4,086,128 4,098,461 4,112,810 4,143,127 4,146,131 4,168,155

nucleotide position [kb] within the MAI

Figure S2. Constructed suicide plasmids (pALO01 to pAL11_term) for integration of
modified lox sequences. Regions (ALO1 to AL11) within the MAI of M. gryphiswaldense
used for site-specific plasmid insertion via homologous recombination to enable subsequent

excision between lox sites of double insertions.
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Table S3. Annotation and characteristics of MAI genes of M. gryphiswaldense.

Genomic Length [bp] Annotation Blastp hits for Hits outside MTB Protein
Location AMB/MS/MC/RS/MV* (E-value / Organism)* expression/
Reference

mgr4024 496 hypothetical -/-/-/-/nf / -
protein

mgr4025 266 hypothetical -/-/-/-Inf / -
protein

mgr4029 170 hypothetical -/-/-1-Inf / -
protein

mgr4030 283 hypothetical -/7e-09/1e-153 / 5e-39 7e-09 / Thermomicrobium roseum DSM 5159 -
protein

mgr4033 77 hypothetical -/-/-/-/nf / -
protein

mgr4034 71 hypothetical -/-/-1-Inf / -
protein

mgr4035 163 two- 4e-23 / 1e-19/ 3e-09 / 7e-09 / nf 1e-15 / Caulobacter crescentus NA1000 -

component
response
regulator

mgr4036 106 hypothetical 1e-08 / 2e-15/-/ -/ nf 2e-20 / Pseudomonas putida BIRD-1 -
protein

mgr4037 199 hypothetical 3e-77 / 4e-75/-/ -/ 5e-92 2e-9 / Polaromonas sp. JS666 -
protein

mgr4038 145 structural 7e-77/8e-76/-/-/nf 5e-34 | Desulfovibrio vulgaris str. -
protein Hildenborough

mgr4039 766 phage-related 0.0/0.0/-/1e-34/0.0 2e-164 | Methylobacillus flagellatus KT -

mgr4040 144 hypothetical 6e-74 / 3e-74 | -/ - | 2e-41 4e-38 / Burkholderia vietnamiensis G4 -
protein

mgr4041 82 hypothetical -/-/-/-Inf 2e-18 / Candidatus Accumulibacter +¢
protein phosphatis clade IIA str. UW-1

mgr4042 137 plasmid -/3e-6/-/-/nf 8e-41/ Polaromonas sp. JS666 -



mgr4043
mgr4044
mgr4045
mgr4046
mgr4047
mgr4048
mgr4049

mgr4050
mgr4052

mgr4053

mgr4054

mgr4056

mgr4057
mgr4061

mgr4062

mgr4063

mgr4064

200

72

136

270

102

67

138

186
116

410

340

378

138
342

421

161

159

stability like
hypothetical
protein
hypothetical
protein
hypothetical
protein
hypothetical
protein
hypothetical
protein
hypothetical
protein
hypothetical
protein

phage-related

hypothetical
protein

hypothetical
protein
sensory

transduction

histdine kinase

hypothetical
protein
MamwW
hypothetical
protein
two-
component
response
regulator
hypothetical
protein
hemerythrin-

5e-97 / 4e-96 / - / - | 4e-47

1e-14 /3e-15/- /- I nf

6e-73/2e-71/-/-/nf

9e-27 / 3e-25/ 3e-15/-/ nf

4e-13/9e-19/-/-/ nf

-/4e-17/-/-/nf

-/-1-/-Inf

-/1e-35/5e-14 /- / nf
3e-51/2e-51/-/-/nf

-/-1-/-Inf

1e-75/3e-73 /- /- I nf

-1-1-/-Inf

1e-44 /| 7e-45/ -/ -/ nf
-/-/-/-Inf

e-122/2e-63/-/-/nf

2e-30/4e-31/-/-/nf

5e-58 / 8e-59/ 1e-10 / 1e-8 / nf

8e-58 / Burkholderia vietnamiensis G4
/
/
3e-31/ a-proteobacterium BAL199
1e-08 / Rhodospirillum centenum SW
2e-21 / a-proteobacterium BAL199
/

9e-64 / a-proteobacterium BAL199
/

3e-140 / Mesorhizobium loti MAFF303099

7e-61 / d-proteobacterium MLMS-1

1e-13 / Asticcacaulis excentricus CB 48

/

3e-12 / Candidatus Methanoregula boonei



mgr4064
mgr4065
mgr4066

mgr4067

mgr4069
mgr4070
mgr4071

mgr4072
mgr4073
mgr4074

mgr4075
mgr4076
mgrd4077
mgr4078
mgr4079
mgr4082

mgr4083
mgr4088

mgr4089
mgr4090

159

55

109

503

85

449

347

124
136
90

111
111
314
125
278
524

150

415

428
77

hemerythrin-
like
hypothetical
protein
hypothetical
protein
pentapeptide
repeat
containing
protein
hypothetical
protein
TPR-like
protein
hypothetical
protein
MmsF
Mms6
hypothetical
protein
MamG
MamF
MamD
MamC
IdiA-fragment
hemerythrin-
like
hemerythrin-
like
hypothetical
protein
MamH
Maml

5e-58 / 8e-59/ 1e-10 / 1e-8 / nf
-/-1-1-Inf
7e-13/5e-13/-/-/nf

1e-172/1e-173 /- /- I nf

-/-1-/-Inf
1e-136/1e-135/-/-/nf
1e-86/2e-10/-/-/nf

7e-44 | 1e-44 |/ 4e-21/ - /8e-27
2e-16/ 2e-16/-/-/>1e-5
-/-1-1-Inf

6e-9/1e-7/-/-/nf
1e-42 / 1e-42 / 8e-20/ -/ 9e-25
2e-89/5e-90/7e-14 /-/7e-5
5e-21/5e-21/3e-07 / -/ 1e-6

1e-82/1e-82/-/-Inf
6e-83/ e-105/ 7e-09 / 3e-10/ nf

2e-83/ 1e-83 / 1e-11 / 2e-10/ nf
0.0/0.0/-/-/nf

0.0/3e-87/1e-116/ - /1e-141

3e-15/3e-15/3e-11/- [ 2e-09

3e-12 / Candidatus Methanoregula boonei
6A8
/

/

5e-27 | Anaerotruncus colihominis DSM
17241S101

/
2e-22 | Rhodospirillum rubrum ATCC 11170
4e-5 | Starkeya novella DSM 506

1e-5 / Clostridium scindens ATCC 35704
/
/

/
1e-5 / Blautia hydrogenotrophica DSM 10507
/
/
1e-87 / Synechococcus sp. JA-2-3B'a(2-13)
8e-13 / Colwellia psychrerythraea 34H

3e-14 / Candidatus Koribacter versatilis
Ellin345
2e-64 |/ Bradyrhizobium sp. BTAI1

1e-36 / Chlorobium luteolum DSM 273
/

b, d



mgr4092

mgr4093
mgr4094
mgr4095
mgr4096
mgr4097

mgr4098
mgr4099
mgr4100
mgr4101
mgr4102

mgr4103
mgr4104
mgr4105
mgr4106

mgr4108
mgr4109

mgr4110
mgrd111

mgr4114
mgr4115
mgr4116

mgrd117

426

360
123
318
437
632

270
217
272
72
297

180
174
297
411

458

738

168
161

69

115

250

216

MamJ

MamK
MamL
MamM
MamN
MamO

MamP
MamA
MamQ
MamR
MamB

MamS
MamT
MamU
hypothetical
protein
HlyD secretion
protein
HlyB secretion
protein
Gp28
hypothetical
protein
hypothetical
protein
hypothetical
protein
partition-
related protein
hypothetical
protein

2e-74 [ 2e-74/ -/ -/ nf

0.0/0.0/3e-99/ 1e-65/ 1e-101
8e-32 /1e-19/-/-/nf
1e-173 / 1e-173 / 1e-75/ 3e-35 / 1e-95
0.0/0.0/-/-/4e-99
0.0/0.0/1e-78/3e-13/ e-148

1e-108 / 1e-108 / 8e-34 /- / 2e-57
1e-113/ 1e-113 / 3e-37 / 1e-09 / 2e-49
1e-111/1e-110/ 1e-37 / 2e-53 / 2e-48
1e-30/6e-31/-/-/3e-07
e-159 / e-159 / 2e-79 / 2e-36 / 2e-92

4e-60/ 2e-60 / 5e-13 / - | 5e-27
2e-86/ 2e-82 /4e-26 / 9e-05 / 1e-40
1e-114 / 1e-116/-/- I nf
-/-1-/-Inf

4e-38 / 1e-44 | 5e-67 / 5e-32 / 7e-60

1e-72/e-133/0.0/ e-128

8e-04/2e-04 /- /- / nf
-/-1-1-Inf

-/7e-10/-/-/nf

2e-09/ 2e-08 /- / -/ nf

2e-13/1e-15/ 2e-06 / 5e-06 / nf

-/-1-/-Inf

/

3e-92 / Desulfurivibrio alkaliphilus AHT2
/
7e-33 | Thermoanaerobacter sp. X514

4e-46 / Clostridium botulinum H04402 065
4e-13 / Acidimicrobium ferrooxidans DSM

10331

3e-4 | Legionella pneumophila str. Corby

2e-15 / Microscilla marina ATCC 23134
1e-17 / Bacillus sp. NRRL B-14911
/

8e-44 |/ Natranaerobius thermophilus JW/NM-

WN-LF
/
/
2e-36 /| Azospirillum sp. B510
/

1e-77 | Bradyrhizobium japonicum USDA 110

0.0 / Pseudomonas aeruginosa

4e-14 | Polaromonas sp. JS666
/

/
/
1e-82 / Azospirillum sp. B510

9e-50 / Azospirillum sp. B510

+ + 4+ + +

+ + + +

a,b,d

a,b,d

b, d
b, d



mgrd121
mgr4122
mgr4123
mgr4124
mgr4125
mgr4131
mgr4132
mgr4140
mgr4146
mgrd147

mgr4148
mgr4149
mgr4150
mgr4152

mgr4153
mgr4154
mgr4160
mgr4161

mgr4165

58

140

74

130

155

77

398

93

98

323

661
269
371
326

308

299

115

87

58

hypothetical
protein
hypothetical
protein
hypothetical
protein
hypothetical
protein
hypothetical
protein
hypothetical
protein
regulator
protein
hypothetical
protein
hypothetical
protein
FtsZm

MamZ
MamX
MamY
hypothetical
protein
hypothetical
protein
hypothetical
protein
hypothetical
protein
hypothetical
protein
hypothetical
protein

-/-1-/-Inf

-/-[2e-43 /- /nf

-/-/4e-25/-/nf

2e-50/3e-51/1e-40/ -/ nf

-/-1-/-Inf

-/-1-/-Inf

1e-130/e-132/-/-/nf

-/-1-/-Inf

-/-1-/-Inf

e-124 [ e-124 | 6e-82 / 2e-79 / nf

0.0/0.0/1e-163/-/1e-128
1e-117 / 1e-117 / 3e-34 / - | 3e-14

1e-139/e-140/-/-/ 2e-17

1e-154 / 1e-156 /- / - | 2e-111

1e-141/1e-143/-/-/ 7e-63

1e-140/ 1e-139/ 5e-134 / - / 9e-76

3e-17/-/-/-/nf

-/6e-47 [ -/-/nf

3e-10/-/-/-/nf

/
1e-37 / Aromatoleum aromaticum EbN1
8e-22 /| Chlorobium phaeobacteroides DSM
3e-28/ Pseudomozngi fluorescens WH6
/
1e-20 / Rhodoferax ferrireducens T118
2e-07 / Hirschia baltica ATCC 49814
/
/
1e-119 / Candidatus Puniceispirillum
marinum IMCC1322
4e-35 / Variovorax paradoxus EPS
/

/
7e-51 | Chthoniobacter flavus Ellin428

1e-19/ Spirosoma linguale DSM 74
/

/



mgr4166
mgr4167
mgr4169
mgr4170
mgrd171
mgr4173

mgrd174

422

165

699

133

112

273

190

hypothetical
protein
sensor (PAS)
domain
hypothetical
protein
hypothetical
protein
hypothetical
protein
hypothetical
protein
phage-related
protein

2e-74/2e-63/-/-/nf
4e-58 / 3e-43 / 4e-12 / 7e-07 / nf
1e-112/-/-/- Inf
-/-/-1-Inf
-/-/-1-Inf
-/-/-1-Inf

1e-21/5e-30/ 6e-07 / 6e-17 / nf

5e-14 | a-proteobacterium BAL199
2e-45 / Roseibium sp. TrichSKD4
3e-58 / Cellvibrio japonicus Ueda107
/
2e-15 / Hoeflea phototrophica DFL-43
/

8e-37 / Paracoccus denitrificans PD1222

*Homologs in magnetotactic or non magnetotactic bacteria were identified by NCBI database search engine with an e-value
threshold of <1e-05.

21101, °[11], °[12], * [13]
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Supplement: Chapter Ill

Biosynthesis of magnetic nanostructures in a foreign organism by

transfer of bacterial magnetosome gene clusters.

Publication state: published in Nature Nanotechnology. 2014 Mar;9(3):193-7.

Supplementary methods

Construction of Tn5 transposon plasmids

For construction of translational (C-terminal) gene fusions, the mamDC promoter (Xbal, BamHI
restriction sites added) was cloned in front of either the mamGFDC operon or the mamJ gene (Ndel,
Kpnl), which were followed by the egfp gene (Kpnl, EcoRI). The resulting construct was cloned into
pBAM11 modified by a tetracycline resistance cassette (exchange of km~ against tc™ with SanDI and
Aatll). The replicative plasmid pFM211 (Frank Mdller, unpublished) harboring ftsZm with a mCherry
fusion under control of an inducible lac promoter was recombined with pBAM1 to construct pBAM-
ftsZm_mcherry. The resident km" was replaced by tc® using ET-recombination. For construction of
pBAM_feoAB1, a fragment with P,y and feoAB71 was amplified by PCR from pRU1feoAB (Xbal,
EcoRl) and cloned into Tet-pBAM1.

Intracellular iron measurements

Cellular iron contents were determined after incubation under photoheterotrophic conditions in 10 ml
Hungate tubes using a modified version of the ferrozine assay”. To this end, 4 ml cultures were
centrifuged for 1 min at 11.000 rpm, resuspended in 90 yl HNO3 (65%) and incubated for 3 h at 99 °C.

Sequencing

For whole genome sequencing of strain R. rubrum_ABG6X a genomic DNA library was generated with
the Nextera Kit (lllumina). Sequencing (1.25 Mio clusters, 2x 250 bp) was performed with a MiSeq
sequencer (lllumina). Data analysis with CLC Genomics Workbench (CLCbio) confirmed single-site
integration of both expression cassettes without mutations, except for a spontaneous deletion (aa 169-
247) within the hypervariable non-essential CAR domain of mamdJ which was shown to be irrelevant
for protein function®.

Magnetosome isolation, electrophoresis and immuno-chemical detection

For magnetosome isolation and expression analysis, cultures of R. rubrum were grown
photoheterotrophically in sealed 5 liter flasks illuminated by white light, 1000 lux intensity. Cells were

harvested, washed and resuspended into HEPES buffer®. Cell suspensions were lysed by sonication

I
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and cellular debris was removed by low-speed centrifugation. Magnetic separation of magnetosome
particles, solubilization of the enclosing organic layer and fractionation of non-magnetic membrane
fraction and soluble proteins were performed as previously described®®. Polyacrylamide gels were
prepared according to the procedure of Laemmli’. Protein samples from different cellular fractions
(magnetosome membrane, soluble fraction, non-magnetic membrane fraction) were resuspended in
electrophoresis sample buffer and denatured at 98 °C for 5 min®. 10 ug of protein extracts were
separated on a 15% SDS-polyacrylamide gel. Protein bands were visualized by Coomassie brilliant

blue staining. Western blot analysis for detection of MamC was performed as previously described®.

Mass spectrometry

For mass spectrometry 25 ug solubilised proteins were tryptically in-gel digested as described
previouslyg. The resulting fragments were separated on a C18 reversed-phase column and analyzed
by nano-electrospray ionization-LC tandem MS (ESI-LC-MS/MS), recorded on an Orbitrap mass
spectrometerg. Spectra were analyzed via Mascot™ software using the NCBI nr Protein Database and
a database from M. gryphiswaldense.
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Supplementary tables

Table S1: Summary of magnetic responses (“Cnag”), intracellular iron content and crystal size
and number of various strains (median values, * = standard deviation). If not indicated otherwise,
cells were grown in the presence of 50 uM ferric citrate. Magnetic response and total iron content
measurements were performed with (n) biological replicates under identical conditions (see also
material & methods). For determination of crystal size and number per cell, cells of one clone were
analyzed by TEM (n=sample size). The Mann-Whitney test
(http://elegans.som.vcu.edu/~leon/stats/utest.html) was performed for crystal size comparison of R.
rubrum_ABG6X and R. rubrum_ABG6X_feo: the difference was highly significant (p<0.001, two tailed
test). Crystal size comparison of R. rubrum_ABG6X_feo and M. gryphiswaldense revealed no

significant difference (p=0.05, two tailed test).

Strain 'I}gzggﬁtsig Iron content Crystal size (nm) Crystal number per
(“é’ n (% dry weight) Y cell
mag
) 14+0.2 3.5 369 24+8
M. gryphiswaldense MSR-1 (n=3) (n=3) (n=310) (n=52)
M. gryphiswaldense 1.2+£0.2 nd 37+£10 2317
AmamAB_AB (n=3) h (n=112) (n=24)
M. gryphiswaldense MSR- 0.2 nd 17+6 16+ 6
1B_AB (n=3) h (n=112) (n=20)
M. gryphiswaldense MSR- 0.6 £ 0.1, n.d 25+6 13+6
1B_ABG (n=3) h (n=104) (n=20)
M. gryphiswaldense MSR- 0.9+ 0.2 n.d 358 18+8
1B_ABG6 (n=3) h (n=103) (n=22)
R. rubrum ATCC 11170 - 0.07 £ 0.04 - -
(n=3)
0.08
R. rubrum_AB - (n=3) - -
0.10 £ 0.01
R. rubrum_ABG - (n=3) - -
0.17 12+6 26+10
R. rubrum_ABG6 - (n=4) (n=304) (n=50)
0.3+0.2 0.17 £0.02 24 +7 10+4
R. rubrum_ABG6X (n=3) (n=4) (n=307) (n=50)
R. rubrum_ABG6X 500 yM 0.3 n d 25+7 115
ferric citrate (n=4) T (n=301) (n=51)
R. rubrum_ABG6X 0.2 nd 24 +8 105
100 uM ferrous sulfate (n=4) o (n=312) (n=52)
0.6+0.1* 0.18 £ 0.03 269 11+4
R. rubrum_ABG6X_ftsZm (n=3) (n=3) (n=300) (n=51)
0.2 0.18 £ 0.01 279 9+4
R. rubrum_ABG6X_dJ (n=3) (n=3) (n=300) (n=50)*"*
R. rubrum_ABG6X_dl - O'O?ni30)'07 - -
0.8+0.1 0.28 £ 0.07 3710 10+4
R. rubrum_ABG6X_feo (n=3) (n=3) (n=300) (n=52)

*The slightly increased Cnmag is likely due to effects of the genuine cell division protein FtsZm on
cell morphology, as no difference in iron content and crystal size or number per cell was
detectable.

**64% of mutant cells (n=32) harbored clustered magnetosomes, whereas 36% still showed a

chain-like alignment of magnetosomes (n=18).
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Table S3: Strains and plasmids used in this study. Km"= kanamycin resistance, Tc"=
tetracycline resistance, ApR= ampicillin resistance, BSDR= blasticidin S resistance, CmR=

chloramphenicol resistance, GmR= gentamicin resistance, SpecR= spectinomycin resistance.

Strain or plasmid Characteristics Reference(s) or source

Magnetospirillum gryphiswaldense

strains
M. gryphiswaldense MSR-1 Wild-type (wt) DSM-6361,"
spontaneous unmagnetic
M. gryphiswaldense MSR-1B mutant lacking parts of the 1
MAI
M. gryphiswaldense AmamAB mamAB deletion mutant v
KmR, transposon mutant
M. gryphiswaldense AmamAB _AB with inserted mamAB This study
operon
KmR, transposon mutant
M. gryphiswaldense MSR-1B_AB with inserted mamAB This study
operon

Km~, Spec®, transposon
mutant with inserted

M. gryphiswaldense MSR-1B_ABG mamAB and mamGFDC This study
operon
KmR, Cm~, transposon
. mutant with inserted .
M. gryphiswaldense MSR-1B_ABG6 mamAB, mamGFDC and This study
mms6 operon
Rhodospirillum rubrum strains
18
R. rubrum ATCC 11170 wt (kindly provided by H.

Grammel, Magdeburg)

KmR, transposon mutant
R. rubrum_AB with inserted mamAB This study
operon
Km~, Spec®, transposon
mutant with inserted
mamAB and mamGFDC
operon
KmR, Cm~, transposon
mutant with inserted
mamAB, mamGFDC and
mms6 operon
Km®, Cm~, Gm®
transposon mutant with
inserted mamAB,
mamGFDC, mms6 and
mamXY operon (without
ftsZm)

Km®, Cm®, GmR, ApR
transposon mutant with
inserted mamAB (mamJ

deletion), mamGFDC,

mms6 and mamXY operon
&without ftsZm)
, CmR, GmR, ApR This study

R. rubrum_ABG This study

R. rubrum _ABG6 This study

R. rubrum_ABG6X This study

R. rubrum_ABG6X_dJ This study

R. rubrum_ABG6X_dI Km

II1
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R. rubrum_ABG6X_ftsZm

R. rubrum_ABG6X_feo

R.rubrum_GFDC-EGFP

R.rubrum_ABG6X_GFDC-EGFP

R. rubrum_J-EGFP

R. rubrum_ABG6X_J-EGFP

Escherichia coli strains

DH10b

BW29427

WM3064

Plasmids

pSC101-BAD-gbaA

p15A-Tps-oriT-Km

pSSK18 (BAC_mamAB)

transposon mutant with
inserted mamAB (maml
deletion), mamGFDC,
mms6 and mamXY operon
(without ftsZm)

Km~, Cm®, Gm®, TcR
transposon mutant with
inserted mamAB,
mamGFDC, mms6 and
mamXY operon (without
ftsZm) and ftsZm under
control of an inducible lac
promoter
KmR, CmR, GmR, TR
transposon mutant with
inserted with inserted
mamAB, mamGFDC,
mms6, mamXY and
feoAB1 operon
TcR transposon mutant with
inserted mamGFDC-EGFP
KmR, CmR, GmR, TR
transposon mutant with
inserted mamAB,
mamGFDC, mms6 and
mamXY operon (without
ftsZm) and mamGFDC-
EGFP
TcR transposon mutant with
inserted mamGFDC-EGFP
KmR, CmR, GmR, TR
transposon mutant with
inserted mamAB,
mamGFDC, mms6 and
mamXY operon (without
ftsZm) and mamJ-EGFP

F— mcrA A(mrr-hsdRMS-
mcrBC) ®80lacZAM15
AlacX74 recA1 endA1

araD139 A(ara leu) 7697

galU galK rpsL nupG A—

dap auxotroph derivative of
E. coli strain B2155
thrB1004 pro thi rpsL hsdS
lacZAM15 RP4-1360
A(araBAD)567
AdapA1341::[erm pir]

TcR, replicative plasmid
containing reda/redf
recombinases under the
control of a L-Arabinose
inducible promoter,
temperature sensitive origin
of replication
KmR, BSDR, oriT, p15A
origin of replication,
mariner tps, cloning
cassette
BAC containing the

II1

This study

This study

This study

This study

This study

This study

Invitrogen

K. Datsenko and B. L.
Wanner, unpublished

W. Metcalf, kindly
provided by J. Gescher,
KIT Karlsruhe

19

20

16
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pTps_AB

pTps_ABG

pTps_ABG6

pTps_XYZ

pTps_ABG6_dJ

pTps_ABG6_dI

pBAM1

Tet-pBAM1

Tet-pBam_mamGFDC-EGFP

Tet-pBam_MamJ-EGFP

pRU-1fecAB

Tet-pBam_feoAB1

Tet-pBam-ftsZm_mCherry

pFM211

mamAB operon from M.
gryphiswaldense
Km", BSDR, mariner tps
vector containing mamAB
operon
Spec®, Km®, BSD®, mariner
tps vector with mamAB and
mamGFDC operon
Ccm®, KmR, BSDR, mariner
tps vector with mamAB,
mamGFDC, and mms6
operon
Gm®, BSDR, mariner Tps
vector with mamyY, mamX
and mamZ
cm®, KmR, BSDR, Ap®,
mariner tps vector with
mamAB, mamGFDC, and
mmsé6 operon, (mamJ
deletion)
cm®, KmR, BSDR, Ap®,
mariner tps vector with
mamAB, mamGFDC, and
mms6 operon, (maml
deletion)

KmR, Ap®, yR6K origin of
replication, oriT, Tn5 vector
TcR, Ap®, YR6K origin of
replication, oriT, Tn5 vector
TcR, Ap®, mamGFDC
operon under control of
P mampcwith a C-terminal
EGFP fusion, Tn5 vector
TcR, Ap®, mamdJ under
control of P,,.mpc with a C-
terminal EGFP fusion, Tn5
vector
KmR, broad host range
pBBRMCS2, feoAB1
operon under the control of
I:)mamH
TcR, ApR, feoAB1 operon
under the control of P,
Tn5 vector
TcR, ApR, ftsZm, lacl with a
C-terminal mCherry fusion
under control of inducible
Pac, TN5 vector
KmR, broad host range
pBBRMCS2, lacl, ftsZm
with C-terminal mCherry
fusion, mamK with N-
terminal EGFP fusion

This study

This study

This study

This study

This study

This study

21

This study

This study

This study

R. Uebe, unpublished

This study

This study

F. Muller, unpublished
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Table S4: Oligonucleotides used in this study.

Primer Nucleotide sequence (5'-3')? Product
Mam-tps5 AATTCGCACGGACTATAGCAACGAATCGAGGTCGGTTGAC  p15A-Tps-oriT-Km,
AAGCCATAAATCAGAAGAACTCGTCAAGAAGGC ET-recombination
Mam-tps3 GAACGAAGATGAGACAGAAATCCGTGGCGCCGAGCGTAA  with BAC_mamAB,
GCATCCGGTGAGAACCTCATTCCCTCATGATACAG pTps_AB
mamGFC3 TATCATGAGGGAATGAGGTTCTCACCGGATGCTTACGCTC  mamGFDC operon,
GGCGCCAGAGCACATCGGGGTGAATGACGAC ET-recombination
mamGFC5 CGCTAGCTGCGGGTTATTCGCATTTGC with pTps_AB
spectMam3 TCAAAACCCGCGCAGAGGCAAATGCGAATAACCCGCAGCT  Spectinomycin
AGCGTTATAATTTTTTTAATCTGTTATT resistance cassette,
spectMams TGATCCGCTATGGTAAGCGCATCATGTCCGGATCCCATGG  ET-recombination
CGTTCCGCTCGTAACGTGACTGGCAAGAGATATT with pTps_AB
mms6cm5 TACTGCGATGAGTGGCAGGGCGGGGCGTAAGCTTACAATT mms6 operon, ET-
TCCATTCGCCATTC recombination with
mms6mam3 GTGCTTCGCTGTGTCCACAAGAACC pTps_ABG
TGGCGAATGGAAATTGTAAGCTTACGCCCCGCCCTGCCAC  Chloramphenicol
cm-mms6-3 :
TC resistance cassette,
cm-mms6-5 TGATCCGCTATGGTAAGCGCATCATGTCCGGATCCCATGG  ET-recombination
CGTTCCGCTCGTCCTGGTGTCCCTGTTGATACC with pTps_ABG
IK097 TCTAGAGGGCCCCAACTTTTTCGCTTTACTAGCTCTTAGTT
CTCCAATAAATTCCCTGCGTCGA p in pBAM1
IK098 CATATGCTGATCTCCGGCAAGTGTATGCACGATTCCCTCTC mamDC
TGCCCCTTAAAATCGACGCAGGGAAT
IK107 CATATGATCAAGGGCATCGCGGG mamGFDC operon
IK101 GGTACCGGCCAATTCTTCCCTCAGAA in pPBAM1
IK102 GGTACCGGAGGCGGAGGCGGT egfo in pBAM1
IK103 GAATTCTTACTTGTACAGCTCGTCCATG
IK163 GAATTCTTAGCCGATTCGCAG mamXY-operon
(without ftsZm), ET-
IK164 GAGCTCGGCAGCCTCATTTAAA recombination with
p15A-Tps-oriT-Gm
K173 CCGGAATTGCCAGCTGGGGCGCCCTCTGGTAAGGTTGGG Geptamicin
AAGCCCTGCAACGTATAATATTTGCCCATG resistance cassette,
ET-Recombination
K174 AGGCGATAGAAGGCGATGCGCTGCGAATCGGGAGCGGCG with p15A-Tps-oriT-
ATACCGTAAAGCGATCTCGGCTTGAA Km
CCCGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTG .
K208 CGCGCTTGGCCTCATTCCCTCATGATACAGAGAC pioA-TbstonT S,
IK209 GGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTT with mamxy
CGCCAGCTGTCTCGGCTTGAACGAATTG
IK213 GACGTCGAGCCACGGCGG Tetracycline
K214 GGGTCCCTCAGGTCGAGGTGGC ﬁ?gﬁﬁfcaﬁmm
IK215 TCTAGACTACAAGAATGTCCCGC feoAB1
IK216 GAATTCGGCATCCTGATCGGT ggﬂﬁﬂ*ﬁmmHm
IK217 CATATGATGGCAAAAAACCGG .
IK218 GGCGGTACCTTTATTCTTATCTTCAGCATCAC mam.J in pBAM1
IK235 GGGTGGAGCGGGATAATGGCAAAAAACCGGCGTGATCGC  Ampicillin resistance
GGCACGGCTAAATACATTCAAATATGTATCC cassette insertion
IK236 CTATTTATTCTTATCTTCAGCATCACATTTCGGCGATGAACA into mamdJ of
ACTACCTTACCAATGCTTAATCAGTG pTps_ABG6
IK239 CGCCGCTTGTGTTCTGTATCAAGACTGGAGAACGTTTATG Ampicillin resistance
CCAACTAAATACATTCAAATATGTATCC cassette Insertion
IK240 TCAACCATCGATGTTAGGGTCTGAGTTCGCCCTCTTACCG into maml of
GCAGGTTACCAATGCTTAATCAGTG pTps_ABG6
IK251 AAACCGCCCAGTCTAGCTATCGCCATGTAAGCCCACTGCA  Tet-pBAM1, ET-
AGCTACCTGCCCTCATTCCCTCATGATACA recombination with
IK252 CAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAA  recombination with

GAGGCCCGCACCGGATTTTGAGACACAAGACGTC

pFM211
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Supplementary figures
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Fig. S1: Construction scheme of insertion cassettes for modular expression of the
mam and mms operons. (a) Recombineering of a BAC containing the mamAB operon (blue)
and a vector backbone (Km-p15A-Tps-oriT-Km, orange) harboring a MycoMar transposase
gene (tps), inverted repeats (IR), origin of transfer (oriT), p15A origin of replication (p75A) and
a kanamycin® cassette (km”, orange). (b) Insertion of a spectinomycin” cassette (spec”, pink)
and the mamGFDC operon (green) into pTps_AB by triple recombination. (¢ & d) Stitching of
pTps_ABG by insertion of the mms6 operon and a chIoramphenicoIR cassette. (e) pTps_XYZ
consisting of a Tps vector backbone (orange), mamXYZ (pale blue) and a gentamicinR gene
(ng, purple) was constructed. (f) Plasmids were transferred by conjugation into R. rubrum.
Transposition of the DNA-fragments within the IR sequences occurred at random positions at
TA dinucleotide insertion sites by a “cut and paste” mechanism’. (g) Chromosomal insertion
sites of the transposed constructs in R. rubrum_ABG6X are shown with adjacent genes (red)
as revealed by whole genome sequencing performed with a MiSeq sequencer (lllumina)
(accession number of R. rubrum ATCC 11170: NC_007643). pTps_ABGS6 inserted within a
gene encoding a putative aldehyd dehydrogenase (YP_426002), and pTps_XYZ inserted
within rru_A2927, encoding a putative acriflavin resistance protein (protein accession number
YP_428011). Sequences of inserted magnetosome operons matched those of the donor

(M. gryphiswaldense) with no detectable mutations, except for a deletion (aa 169-247) within
the hypervariable non-essential CAR domain of mamdJ, which was shown to be irrelevant for

protein function?
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S2  AmamAB AmamAB_AB MSR-1B_AB MSR-1B_ABG MSR-1B_ABG6

1um

Fig. S2: Transmission electron micrographs of MSR mutants expressing various
insertional transposon constructs. The plasmids pTps_AB, pTps_ABG and pTps_ABG6
were transferred into the non-magnetic M. gryphiswaldense mutants AmamAB?® and MSR-1B,
the latter lacking most of the magnetosome genes except of the mamXY operon3'4. After
transfer of pTps_AB, a wt-like phenotype was restored in AmamAB_AB as revealed by Cag
(1.2 £ 0.2) and measured crystal sizes (37 £ 10 nm) in comparison with M. gryphiswaldense
wt (36 £ 9 nm, Cag=1.4 + 0.2) (see also Table S1). Mutant MSR-1B was only partly
complemented after insertion of pTps_AB and pTps_ABG, that is, Cmag and crystal sizes were
still lower than in the wt (Table S1). Transfer of pTps_ABGS6 restored nearly wt-like
magnetosome formation in MSR-1B (35 + 8 nm, C5g=0.9+ 0.1). = s.d. Scale bar: 1 ym,

insets: 0.2 um.
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Fig. S3: HRTEM lattice image of a crystal from R. rubrum_ABG6 with the
corresponding Fourier transform (i) that shows intensity maxima consistent with the

structures of hematite.
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Fig. S4: Growth, magnetic response and ICM/Bchl a production of R. rubrum_AGB6X.
(a & b) Cells were grown in ATCC 112 (chemotrophic, 20% O), Sistrom A (phototrophic,
anoxygenic) and M2SF (chemotrophic, 1%0,) medium for 3 (30 °C), 4 (23 °C) or 10 (18 °C)

days. Optical density at 660 nm (black diamonds) and 880 nm and magnetic response (grey

diamonds) were measured. The ratio ODggo/ODggo (White diamonds) correlates with the

amount of chromatophores produced in the cells (median values n=3, error bars indicate

s.d.). No Cnag Was detectable under aerobic and microaerobic conditions at 30 °C. (¢ & d)

Absorption spectra of extracted bacteriochlorophylls from R. rubrum wt (¢) and R.
rubrum_ABG6X (d) (phototrophic growth, 30 °C).
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S5
e R. rubrum wt
=C= R. rubrum_ABG6X
0.5 4
D%
@)
005 I 1 1 I I 1 1 1
10 20 30 40 50 60 70 80
hours (h)

Fig. S5: Growth of R. rubrum wt and R. rubrum_ABGG6X (ODgep). Cells of R. rubrum were
incubated in Sistrom A medium (1000 lux) for 3 days at 23 °C under anaerobic conditions. No
growth defects of mutant strain ABG6X (median values n=3, error bars indicate s.d.) were

detectable compared to the untransformed wt (n=3).

II1




Supplements Chapter III

S 6 M. R.
a gryphiswal-  rubrum_AB
dense G6X M

o e

'-*
- -
> — 15
T

M. gryphiswaldense R. rubrum_ABG6X M
b 1 2 3 4 5 6 e 5,D,
e

10 kDa

Fig. S6: Proteomic analysis of magnetosomes from R. rubrum_ABG6X. (a) 1D SDS-
PAGE of Coomassie blue stained proteins solubilized from isolated magnetosome particles of
M. gryphiswaldense and R. rubrum_ABGG6X. Bands of the same size are indicated
(arrowheads). (b) Immunodetection of MamC (12.4 kDa) in blotted fractions of

M. gryphiswaldense and R. rubrum_ABG6X using an anti-MamC antibody5. A signal for
MamC was detectable in the magnetic membrane fraction of R. rubrum_ABG6X (6), which
was absent from the soluble fraction, but faintly present also in the non-magnetic membrane
fraction (5), possibly originating from empty membrane vesicles or incomplete magnetic
separation during isolation. Protein extracts from M. gryphiswaldense: 1. soluble fraction, 2.
non-magnetic membrane fraction, 3. magnetosome membrane. Protein extracts from R.
rubrum_ABG6X: 4. soluble fraction, 5. non-magnetic membrane fraction, 6. magnetic

(“magnetosome”) membrane fraction. M: Marker.
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S7 mamC-EGFP mamJ-EGFP

Fig. S7: Fluorescence microscopy of R. rubrum wt and R. rubrum_ABG6X cells
expressing different EGFP-tagged magnetosome proteins. For localization studies of
fluorescently labeled magnetosome proteins, strains were cultivated in ATCC medium
overnight at 30 °C with appropriate antibiotics (Table S3). (a & b) MamGFDC with a C-
terminal MamC-EGFP fusion expressed in R. rubrum wt (n=151) (a), and R. rubrum_ABG6X
(n=112) (b). In the transformed strain, a filamentous structure is visible for 79% of the cells
(n=89). ¢ & d, MamJ-EGFP expressed in R. rubrum wt (n=109) (¢), and in R. rubrum_ABG6X

(n=89) displaying a chain-like fluorescence signal in 63% of the cells (n=56) (d). Scale bar:
2um.
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S8 R. rubrum wt R. rubrum_ABG6X
Cryo fixation Cryo fixation

R. rubrum wt R. rubrum ABG6X
Chemical fixation Chemical fixation

Fig. S8: TEM of cryo- or chemically fixed, thin sectioned R. rubrum strains. Cells were
cultivated under photoheterotrophic conditions. ICM sizes of cryo fixed R. rubrum wt
(93 + 34 nm, n=95) and vesicles surrounding immature magnetosomes of cryo fixed R.

rubrum_ABG6X (66 + 6 nm, n=6) were measured.
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Fig. S9: Size distribution of magnetosome crystals in M. gryphiswaldense and different
R. rubrum strains. Whereas crystals of R. rubrum_ABG6 (n=303) and R. rubrum_ABG6X
(n=306) were smaller than those of the donor M. gryphiswaldense (n=310), crystal sizes of
R. rubrum_ABG6X_feo (n=301) were significantly larger, approaching those of the donor

strain (see also Table S1).
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Figure S10: Transmission electron micrographs of whole cells of different R. rubrum
strains expressing magnetosome gene clusters. Scale bar: 1 ym, inset: 0.2 ym.

I1I




Supplements Chapter III

References

1 Rubin, E. J. et al. In vivo transposition of mariner-based elements in enteric bacteria
and mycobacteria. Proc. Natl. Acad. Sci. U S A 96, 1645-1650 (1999).

2 Scheffel, A. & Schiiler, D. The acidic repetitive domain of the Magnetospirillum

gryphiswaldense MamJ protein displays hypervariability but is not required for
magnetosome chain assembly. J. Bacteriol. 189, 6437-6446 (2007).

3 Lohsse, A. et al. Functional analysis of the magnetosome island in Magnetospirillum
gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization.
PLoS One 6, €25561 (2011).

4 Schibbe, S. et al. Characterization of a spontaneous nonmagnetic mutant of
Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative
magnetosome island. J. Bacteriol. 185, 5779-5790 (2003).

5 Lang, C. & Schiler, D. Expression of green fluorescent protein fused to
magnetosome proteins in microaerophilic magnetotactic bacteria. Appl. Environ.
Microbiol. 74, 4944-4953 (2008).

II1




Table S2: Magnetosome proteins identified in the MM of strain R. rubrum_ABG6X by nano-electrospray ionization-LC tandem MS (ESI-LC-MS/MS).
Spectra were analyzed via Mascot™ software using the NCBI nr Protein Database and a database from M. gryphiswaldense1 (asterisks). Proteins are listed
in the order of their exponentially modified protein abundance index (emPAl). The data have been deposited to ProteomeXchange with identifier PXD000348
(DOI 10.6019/PXD000348).

Accession Coverage No. of No. of Molecular Calculated
Protein number (%) spectrum  sequence weight | emPAl Putative function
° matches peptides (kDa) P
MamK MGR_4093 57 9 9 396 54 151 Magnetosome chain
assembly/positioning
MamC MGR_4078 32 4 3 12.4 5.1 1.01 Crystal size and shape
control
MamyJ MGR_4092 32 10 6 48.6 4.0 0.76 Magnetosome chain
assembly
TPR-like protein
MamA MGR_4099 37 1 1 23.9 57 0.65 associated with the
magnetosome membrane
MamF MGR_4076 17 1 1 12.4 9.1 0.60 Magnetosome size and
shape control
Mms6 MGR_4073 19 1 1 12.7 9.5 0.58 Magnetosome
crystallization
MamD MGR_4077 20 3 3 30.2 9.8 0.49 CrySta';';et rglnf shape
MamM* MGR_4095 15 3 3 34.7 5.8 0.42 Iron transport/lMM
assembly
MmsF* MGR_4072 8 2 1 13.9 9.3 0.23 Crystal size and shape
control
MamB* MGR_4102 7 1 1 32.1 54 0.21 Iron transport/MM
assembly
Tubulation and
MamY* MGR_4150 18 2 2 40.9 4.8 0.16 magnetosome membrane
formation '
MamO* MGR_4097 6 3 3 65.3 6.5 0.15 Magnetosome |
crystallization
MamE MGR_4091 4 2 2 78.3 8.1 0.08 Magnetosome |

crystallization !
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Supplement: Chapter IV

Genetic dissection of the mamAB and mms6 operons reveals a
gene set essential for magnetosome biogenesis in

Magnetospirillum gryphiswaldense.

Publication state: published in Journal of Bacteriology. Ahead of print 9 May 2014

Materials and Methods

HRTEM of mutants Amaml and AmamN

As shown by HRTEM, the nuclei within Amaml were composed of several small grains that
formed thin aggregates (Figure 4.2). In most particles, the incipient nuclei did not show lattice
fringes in HRTEM images and lacked a visible crystalline structure. This might be caused by
either (i) no close orientation of these particles to a crystallographic zone axis, or (ii) an
amorphous structure, which seems more likely because of the weak diffraction contrast of the
nuclei. Lattice fringes were observed in only two particles, and according to the Fourier
transforms of the HRTEM images, the spacing between the fringes was ~3.71 A (Figure
4.2B), which is very close to the d(012) spacing in hematite, whereas no other iron oxide has
a d-spacing close to this value. For a second highly elongated particle only part of the crystal
produced fringes with a distance of 2.72 A, and showed again a value very close to that of
hematite (d(014) = 2.70 A) (Figure 4.2C). Thus, the few tiny electron dense particles seem to

consist of hematite.

Complementation of mutant strains

Mutants carrying the respective insertion plasmids showed WT-like magnetosome
biomineralization (Figure S4.3). Expression of WT alleles of mms6 and mmsF from replicative
plasmids pAL_mms6 and pAL_mmsF was sufficient to restore phenotypes of Amms6 and
AmmsF at least in a significant fraction of cells (Figure S4.3). Complementation of AA10 with

mms6, mmsF and mgr4074 together (pmmsF_mms6_4074) led to crystals with 37 nm and 38
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nm in size, but only 23 and 18 crystals per cell under control of the P,mss and Ppampc
promoter, respectively. Only the entire mms6 operon was able to fully restore both numbers
and crystal size back to WT dimensions (Figure S4.3). Conjugative transfer of pAL_mamlg
and pORO086 into mutants Amaml and AmamQ resulted in restoration of particle synthesis in
83% and 66% of cells, respectively. However, strain AmamQ_ pOR086 synthesized fewer

particles than WT.
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Table S1. Strains and plasmids used in this study.

Strains and plasmids Description References
MSR strains
MSR-1 R3/S1 Rif’ Sm', spontaneous mutant )
AmamAB AmamAB (2)
AA13 Amms6 operon, AmamGFDC, (3)
AmamXY
AA12 Amms6 operon, AmamGFDC, (3)
AA10 Amms6 operon (3)
Amaml deletion of mgr4090 this study
AmamL deletion of mgr4094 this study
AmamN deletion of mgr4096 this study
AmamP deletion of mgr4098 this study
AmamA deletion of mgr4099 this study
AmamQ deletion of mgr4100 this study
AmamR deletion of mgr4101 this study
AmamS$S deletion of mgr4103 this study
AmamT deletion of mgr4104 this study
AmamU deletion of mgr4105 this study
Amms48 deletion of mgr4070 this study
Amms36 deletion of mgr4071 this study
AmmsF deletion of mgr4072 this study
Amms6 deletion of mgr4073 this study
AmmsF_mms6 deletion of mgr4072 and mgr4073 this study
AmmsF_mamF deletion of mgr4072 and mgr4076 this study
Amaml::maml Amaml+pAL_mamlg, Km' this study
AmamL::mamL AmamL+pORmamL this study
AmamN::mamN AmamN+pBam_mamN, Km' this study
AmamP::mamP AmamP+pBam_mamP, Km' this study
AmamA::mamA AmamA+pBam_mamA, Km' this study
AmamQ::mamQ AmamQ+pOR86, Km' this study
AmamR::mamR AmamR+pBam_mamR, Km' this study
AmamS::mamS AmamS+pBam_mamS, Km' this study
AmamT::mamT AmamT+pBam_mamT, Km' this study
Amms48::mms48 Amms48+pBam_mms48, Km' this study
Amms36::mms36 Amms36+pBam_mms36, Km' this study
AmmsF::mmsF AmmsF+pAL_mmsF, Km' this study
Amms6::mms6 Amms6+pAL_mms6, Km' this study
AmmsF_mms6::mms6 AmmsF_mms6+pAL_mms6, Km this study
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AmmsF_mamF::mmsF AmmsF_mamF+pAL_mmsF, Km'
AA10::Pymse_mmsF,6,4074 AA10+P pymse_mmsF,6,4074+
PAL_Pmss.mmsF,6,4074, Km'
AA10::P mampc_mmsF,6,4074 AA10+P ampc_mmsF,6,4074+
PAL_P,.ampc_mmsF,6,4074, Km'
AA10::mms6op AA10+pAL_Pampc._mms6op, Km'
Amaml::mamCgfp Amaml, gfp fused to the
chromosomal mamC
AmamN::mamCgfp AmamN, gfp fused to the
chromosomal mamC
AmamP::mamCgfp AmamP, gfp fused to the
chromosomal mamC
AmamA::mamCgfp AmamA, gfp fused to the
chromosomal mamC
AmamQ::mamCgfp AmamQ, gfp fused to the
chromosomal mamC
AmamR::mamCgfp AmamR, gfp fused to the
chromosomal mamC
AmamS::mamCgfp AmamS, gfp fused to the
chromosomal mamC
AmamT::mamCgfp AmamT, gfp fused to the
chromosomal mamC
WT::mms36 MSR-1, chromosomal integration of
mms36
WT::mms48 MSR-1, chromosomal integration of
mms48

E. coli strains

BW29427 thrB1004 pro thi rpsL hsdS
lacZDM15 RP4-
1360D(araBAD)567DdapA

DHb5a 1341::[erm pir(WT)JtrahsdR17 recA1-
endA1gyrA96thi-1relA1

S17-1Apir RPA-2, Tc::Mu-Km::Tn7 ( Apir)

WM3064 thrB1004 pro thi rpsL hsdS

lacZDM15 RP4-1360D(araBAD)
567DdapA::[erm pir]

Plasmids

pJet1.2 Ap', eco47IR, rep (pMB-1)

v

this study
this study

this study

this study
this study

this study

this study

this study

this study

this study

this study

this study

this study

this study

Datsenko and

Wanner,

unpublished

data

Invitrogen

(4)

®)

Fermentas
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pCM184
pBam1
pBam_mamGFDC

pBBR1MCS2
pCL6

pAP150

pORFM_galK

pFM236

pAL_maml 3’5’

pOR_AmamL

pAL_mamN 3’5’

pAL_mamP 3’5’

pAL_mamA 3’5’

pAL_mamQ 3’5’

pAL_mamR 3’5’

pAL_mamS 3’5’

pAL_mamT 3’5’

pAL_mamU 3’5’

Km', Ap', Tet'
oriR6K, Km', Ap'

pBam1, inserted mamGFDC operon

Mobilizable broad-host-range vector,
Km'
pBBR1MCS2, 10-glycine linker, egfp,
Km'
pBBR1MCS2, 10-glycine linker, egfp,
Km'

suicide vector, Km"

integrative plasmid, gfp, Km'

pORFM_galK, upstream and
downstream fragments of mam/, Km'
pORFM_galK, upstream and
downstream fragments of mamL, Km'
pORFM_galK, upstream and
downstream fragments of mamN,
Km'

pORFM_galK, upstream and
downstream fragments of mampP,
Km'

pORFM_galK, fragments of mamaA,
Km'

pORFM_galK, insertion of upstream
and downstream fragments of
mamQ@, Km'

pORFM_galK, upstream and
downstream fragments of mamR,
Km'

pORFM_galK, upstream and
downstream fragment of mamS, Km'
pORFM_galK, upstream and
downstream fragments of mamT,
Km'

pORFM_galK, upstream and

v

(6)

(7)

LohRe, Kolinko
etal,in

preparation

(8)

9)

(10)
Raschdorf et
al., submitted
for publication
Raschdorf et
al., submitted
for publication
this study

this study

this study

this study

this study

this study

this study

this study

this study

this study
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pAL_mamU 3’5’

pAL_mamAB 3’5’

pAL_mmsF_mms6 3’5

pCM184_mmsF 3’5’

pCM184_mms6 3’5’

pCM184_mamF 3’5’

pAl_mamlg

pBam_mamN
pBam_mamP
pBam_mamA
pBam_mamR

pBam_mamS

pBam_mamT
pORO086
pBam_mgr4074
PALg
pAL_mmsF
pAL_mms6

PAL_Pmampc_mms6op

pAL_ Pmmsb‘_mm36, F,4074

pAL_ PmamDC_mmSG,F,4O74

pORFM_galK, upstream and
downstream fragments of mamU,

Km'

pORFM_galK, upstream fragments of

mamH and downstream fragment of
mamU, Km'

pORFM_galK, downstream
fragments of mmsF and upstream
fragment of mms6, Km'

pCM184, downstream and upstream
fragment of mmsF, Km'

pCM184, downstream and upstream
fragments of mms6, Km'

pCM184, downstream and upstream
fragments of mamF, Km'

pCL6, maml, Km'

pBam_GFDC, mamN, Km'
pBam_GFDC, mamP, Km'
pBam_GFDC, mamA, Km'
pBam_GFDC, mamR, Km'
pBam_GFDC, mamS, Km'

pBam_GFDC, mamT, Km'
pBBR1MCS2, mamQ, Km'
pBam_GFDC, mgr4074, Km'
pAP150, 10-glycine linker, egfp, Km"
pAP150, mmsF, Km'

pAP150, mms6, Km'

pAP150, mms6 operon, Pmampc, Km'
pAP150, mms6, mmsF, mgr4074,
Prnmss, Km'

pAP150, mms6, mmsF, mgr4074,

this study

this study

this study

this study

this study

this study

this study
this study
this study
this study
this study
this study

this study
this study
this study
this study
this study
this study
this study
this study

this study
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Table S2. DNA oligonucleotides used in this work.

Name Sequence

AL251 GGATCCGGTTGGCGGAGCCTCCATT

AL252 CATAAACGTTCTCCAGTCTTGAT

AL253 ATCAAGACTGGAGAACGTTTATGCCTAACATCGATGGTTGATGAC
AL254 GGTACCACTTCATCCAGTGCGAAAAGG

AL255 GGATCCATTAAGCGCTGACATTCCATGC

AL256 CACCTAGTTATCCACCTTGGA

AL257 CCAAGGTGGATAACTAGGTGATCGCCGTTCTCGCAGGATG
AL258 GGTACCCATGGCCACAGTTTGGGCCG

AL259 GGATCCGGGCATGAATGTGGTGCAAG

AL260 CATTCCCGGCTAATCCCAAAAC

AL261 GTTTTGGGATTAGCCGGGAATGGAAGCTTGCCACGTGATAAATT
AL262 GGTACCGGGCATCCTCGTACATGGTG

AL263 GGATCCGGTGCTTATGTTGGCGGCAT

AL264 CATACTGTTCTCCAAAATCCCA

AL265 TGGGATTTTGGAGAACAGTATGGATGAACGTTCGGCCGTCTA
AL266 GCGGCCGCGCTATAGATGCGGTGCGGCAG

AL267 GGATCCTAAGGACAACCGTCCCGGCA

AL268 CATATCCGCCTCGTTGCTATC

AL269 ATAGCAACGAGGCGGATATGCATTCGCAGGAATCCAAGAATTG
AL270 GGTACCTATCGAACTGCACGTCCTCG

AL271 GGATCCGCAATCGCGTACAGCTACGA

AL272 GGTCATCAAGGCACTTCCCT

AL273 AGGGAAGTGCCTTGATGACCTGGAATACATGAACCGATGAAG
AL274 GGTACCCAGAATCAAGACTAGAGCGCC

AL275 GGATCCTGCAGGTGCTTGAGATGGTC

AL276 CATGATTCCCCTCTCCTGATC

AL277 ATCAGGAGAGGGGAATCATGTGGATGACCGTGCAGTGAG
AL278 GGTACCAACGATCATTGACCCGTCCC

AL279 GGATCCCGAGGACGTGCAGTTCGATA

AL280 CATGTTCACCCTCTCTGTCC

AL281 GGACAGAGAGGGTGAACATGGGCATTAAATGGCTGTTGTAAGC
AL282 GGTACCGCCATCCATCCGTTCACG

AL283 GGATCCTACCCGTGGGGAAGGCAAGA

AL284 CATCTTCCACACAGCCCCTG

AL285 CAGGGGCTGTGTGGAAGATGTCCATACTGGTTCCGAAATACG
AL286 GGTACCCGAGGCTACGGGCTTTTTCC
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AL287
AL288
AL289
AL364
AL365
AL366
AL367
AL368
AL369
AL370
AL371
AL372
AL373
AL374
AL375
AL202
AL203
AL204
AL205
AL208
AL209
AL210
AL211
AL240
AL241
AL242
AL243
AL244

AL245
AL236
AL250
AL398

AL464
AL402
AL465
AL404
AL466
AL406

GGATCCCCGTCAATGGTTTCGTGAAGG
CATTCCCGTCACAATTCACCT
AGGTGAATTGTGACGGGAATGTCCATACTGGTTCCGAAATACG
GGATCCATTTCTGAACGGCAAAGGCA
TGATCCATGCTATTACGCCT
AGGCGTAATAGCATGGATCACGGTGCCTTTTCGTTGATGT
GGTACCACTACTTGATTGCTAAGGAGAA
GGATCCTAGCGCGCAGCAAAGTTGC
TGAGGGCATCGCGTTGTTTG
CAAACAACGCGATGCCCTCACAGGACGATCAGGCGTAATA
GGTACCGGTCCTGGTTCTGTATCTGG
GGATCCCTCGGTGCGTCTGATCAATA
TGAGGTTCGGCCTCGGGTGA
TCACCCGAGGCCGAACCTCAGGTTCCGACCGGAACCC
GGTACCCAAAATAGTCTCGGCCATTG
GAATTCCCATCGCCGACAATTCAGAC
CATATGCTGAGGTTCGGCCTCGGGTGATT
GGGCCCTTCATGTCCCCCCCCCCCCGTTCA
GAGCTCGCCTCAGCCTGCGCTTTGCG
GAATTCCGCGTTCCATTTCACCCAGG
CATATGTGCTTTGCCCTCGCTTAAGC
GGGCCCCGGCGAGCGATCTAACGGAC
GAGCTCAAACATCGGGAGCGCCATGG
GAATTCGCCTCCAGCCAGGGTTGGA
CATATGGCGACGCGCTGTCCTGAAC
GGGCCCCATTCCGTTGGCGATCTGAG
GAGCTCACTGACGAGACCGTCGCCGT
ATATGGAATTCGGAGGCGGAGGCGGTGGCGGAGGTGGCGGAGTGAGCAAGG
GCGAGGAG
GGATCCTTACTTGTACAGCTCGTC

CATATGATGGTTTGCCCCCCTGGGGT
GAATTCGGACAGCGCGTCGCGCAG
CATATGATGAATAGCAAACTCGTCCT

GAATTCCTAATTTATCACGTGGCAAG
CATATGATGGACTTTCGGCCTGATCA
GAATTCTCACTGCACGGTCATCCAC
CATATGATGGGTACGCCAGGGGG
GAATTCTTACAACAGCCATTTAATGCC
CATATGATGACCTTTGTTCAGGGCG
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AL467 GAATTCTCATCGGTTCATGTATTCCA

IB302 GGCGGTACCATGTCTAGCAAGCCG

IB303 GGCTCTAGATTAGACGGCCGAAC

AL414 CATATGGTGGTTGGATTTATCACCCT

AL469 TTAATTAATCATCCTGCGAGAACGGC

AL417 CATATGATGCTATTACGCCTGATCGT

AL487 GAATTCTCATGTACTGCGGAACAGTC

AL488 GAATTCTCACTCGTCTCGAGACGA

AL489 CATATGATGGACATCAACGAAAAGGC

AL499 GAATTCTCAAGTAGTGCGGGACTGAA

AL500 CATATGTTGGGCTTGTGGTTTTGGCG

AL220 GGATCCTCAGATCCGGTCGGCCACC

AL221 CATATGATGGTTGAAGCAATCCTTCGGA
AL134 GGATCCTCAGGACAGCGCGTCGCG

AL135 CATATGATGGTTTGCCCCCCTGGGGT

AL178 GGATCCTTCATGTACTGCGGAACAGTCG
AL179 CATATGTTGGGCTTGTGGTTTTGGCGG
AL234 GGATCCTCACCCGAGGCCGAACCTCA

AL394 CATATGATGCCAAGCGTGATTTTCGG

AL395 GAATTCACCATCGATGTTAGGGTCTG

OR252 GACAATGCATTGCTCAGCGAGATCAGTGACC
OR253 GTCAGCGCTTAATGACGATGTTTCCGATCACTCTTACCATACCAATG
OR254 CATTGGTATGGTAAGAGTGATCGGAAACATCGTCATTAAGCGCTGAC
OR255 ACTCACTAGTGTTCTGCACCGCCTCACC
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Table S3. Oligonucleotides for amplification of sequences and genes important for gene

deletions or complementation experiments.

Amplified region Oligonucleotides
5’ flanking sequence of mam/ AL251/AL252
3’ flanking sequence of mam/ AL253/AL254
5’ flanking sequence of mamL OR252/0R253
3’ flanking sequence of mamL OR254/0OR255
5’ flanking sequence of mamN AL255/AL256
3’ flanking sequence of mamN AL257/AL258
5’ flanking sequence of mamP AL259/AL260
3’ flanking sequence of mamP AL261/AL262
5’ flanking sequence of mamA AL263/AL264
3’ flanking sequence of mamA AL265/AL266
5’ flanking sequence of mamQ AL267/A1268
3’ flanking sequence of mamQ AL269/A1270
5’ flanking sequence of mamR AL271/AL272
3’ flanking sequence of mamR AL273/AL274
5’ flanking sequence of mamS AL275/AL276
3’ flanking sequence of mamS AL277/AL278
5’ flanking sequence of mamT AL279/AL280
3’ flanking sequence of mamT AL281/AL282
5’ flanking sequence of mamU AL283/AL284
3’ flanking sequence of mamU AL285/AL286
5’ flanking sequence of mms36 AL364/AL365
3’ flanking sequence of mms36 AL366/AL367
5’ flanking sequence of mms48 AL368/AL369
3’ flanking sequence of mms48 AL370/AL371
5’ flanking sequence of mmsF_mms6 AL372/AL373
3’ flanking sequence of mmsF_mms6 AL374/AL375
5’ flanking sequence of mmsF AL202/AL203

v




Supplements Chapter IV

3’ flanking sequence of mmsF AL204/AL205
5’ flanking sequence of mamF AL208/AL209
3’ flanking sequence of mamF AL210/AI1211

5’ flanking sequence of mms6 AL240/AL241
3’ flanking sequence of mms6 AL374/AL375
mamP AL398/AL464
mamS AL402/AL465
mamT AL404/AL466
mamR AL406/AL467
mamA IB302/IB303

mamN AL414/AL469
mms36 AL488/Al489
mms48 AL417/AL487
mgr4074 AL499/AL500
mmsF AL220/AL221
mms6 AL134/AL135
mms6 operon AL178/AL179
mms6, mmsF, mgr4074 AL179/AL234

v
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Supplementary figures
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MSR MKKSNCATRC --PERGGGDM VEAILRSTLG ARTTVMAALS YLSVLCFVPL LVDRDDEFVY ..
AMB M TEAILRSTLG ARTTVMAALS YLSVLCFVPL LVDRDDEFVY ..
MS MAALS YLSVLCFVPL LVDRDDEFVY ..
Mms36

MSR MDINEKAPGP SGRRPARRRD GGGQVLVLYL AIAVVVAVLA WPWLAPRLGS FPGSLLSWIG ..
AMB MDSNEKEQPL GGRRPARRRD GGGQVVVLYL AVILVGGVLA WPLLAPRLGG LPGPWAKWLG ..
MS VVVLYL AVILVGGVLA WPLLAPRLGG LPGPWAKWLG ..

Mms48
MSR MLLRLIVL LIFMSPVVFA TLWFSDNVGS VQVEWLGWHV DSNMPVLLAV ILVVFLIFSA ..
AMB VT MLLRLIVL LIFMSPVVLA TLWFSDNAGT VQVEWLGWHV DTNVPVLLGI LLAVFMLFSG ..
MS MTMLLRLIVL LIFMSPVVLA TLWFSDNAGT VQVEWLGWHV DTNIPVLLGI LLAVFMLFSG ..

Figure S4.1. Domain structures and protein sequence analysis of proteins encoded by
the mms6 operon of MSR.

A: Predicted domain structure of Mms6, MmsF, Mms36 and Mms48 (11, 12). All
proteins contain transmembrane domains (13), and except for MmsF the
proteins have predicted regions of low complexity (red). Mms48 has a predicted
C-terminal TPR-HemY domain (yellow), and a PEP-TPR domain (orange).

B: Protein sequence comparison of magnetosome proteins encoded by the
mms6 operon of MSR, AMB, and MS. Black letters correspond to previous
protein annotations; Bold letters mark the supposed start sequence; Grey letters
illustrate sequences in front of previously annotated proteins; Underlined amino
acids demonstrate potential false annotated sequences within the previous
annotations of MSR.
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Figure S4.2. Magnetosome size distribution of various generated deletion strains of
MSR. Magnetosome size distributions of electron dense particles within the mutants AA10,
Amms6, AmmsF, AmmsF_mms6, AmamF, AmmsF_mamF, AA12, Amms36, Amms48, and
WT.
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AmmsF_mamF::

AmmsF_mms6:mms6
A

Amms6::mms6

Figure S4.3. Overview about complementation experiments of various generated
deletion strains of MSR and overexpression strains. TEM micrographs of AA10, Amms6,
AmmsF, Amms36, Amms48, AmmsF_mamF, and AmmsF_mmsé6 cells with indicated gene

complementations and overexpression strains WT::mms36 and WT::mms48. Scale bars: 500

nm.
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Figure S4.4. Protein sequence alignments of magnetosome proteins encoded by the

mamAB operon of M. gryphiswaldense (MSR), M. magneticum (AMB), and M.

magnetotacticum (MS). Asterisks mark amino acids that not part of the published geneome

sequence; Black letters correspond to previous protein annotations; Bold letters mark the

likely start codon; Grey letters indicate amino acids in front of previous protein annotations;

Underlined amino acids demonstrate false sequences within the previous annotations of
MSR.
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Figure S4.5: XANES (X-ray Absorption Near Edge Structure) analysis of
mutants Amaml and AmamN. XANES spectra obtained from Amaml (A) and
AmamN (B) are clearly distinct from those of pure magnetite as in the WT or
phosphate-rich ferric hydroxides as observed in the early mineralization stages
in induction experiments with MSR or AMB (14, 15). For both mutants the pre-
edge peak and the low energy part of the edge are shifted towards lower
energies with respect to a magnetite reference spectrum, which indicates the
presence of higher ratios of ferrous iron in the cells than in the WT (33% Fe(ll),
67% Fe(lll)). Linear combination fitting with reference compounds (magnetite,
hematite, ferrihydrite, phosphate-enriched ferric hydroxides, ferrous
hexaphosphate, spinach ferredoxin) suggest that the ferrous compounds are
predominantly Fe-S clusters (proteins) and account for around 40% of the total
iron content in the cells. Magnetite is clearly present in the AmamN mutant
(around 50% of total iron), whereas the low fit quality for Amaml (large residue)
does not allow us to reliable determine the structure of the Fe present in the
bacteria apart from Fe-S. However, the overall line shape appears most
consistent with an amorphous or only poorly ordered Fe compound as
suggested by HRTEM.
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MamC-GFP

DIC GFP Fusion

Figure S4.6. Fluorescence micrographs of MSR WT and various deletion

strains expressing different MamC-GFP fusions. Scale bar: 1
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Supplementary table

Table S5.1: Characteristic of generated overexpression strain.

Strain Genotype Crystal Increased Crystal Increased Iron content Cell
Size size [%] number per number [%] compared length
compared cell [%] to ARecA [um]
to WT compared
to WT
WT 1x MAI 35.6+13.0 - 34.318.4 - - -
ARecA 1x MAI 36.2+11.0 1.7 33.9+10.3 -1.2 100 4.44+1.26
ARecA+ 2x mamGFDC 44 9+13.5 26.1 36.3112.4 5.8 7.4+1.1 -
mamGFDC operon
ARecA+ 2x mms6 operon 45.7+14.2 28.4 46.5+14.3 35.6 14.9+2.9 4.53+1.59
mms6 1x
ARecA+ 2x mms6 45.1+12.2 26.7 45.1+14.3 31.5 14.1+1.9 -
GFDC/mms6 2x mamGFDC
operon
ARecA+ 3x mms6 operon 47.9+12.8 34.6 54.3429.9 58.3 34.842.5 4.56 £1.46
mms6 2x
ARecA+
mms6 3x 4x mms6 operon 44 4+13.2 24.7 57.8426.9 68.5 38.842.5 5.10 £1.95
ARecA+
mms6 4x 5x mms6 operon 41.9+12.0 17.7 46.0+14.8 34.1 - 5.30+1.70
ARecA+ 2x mamAB 34.0£17.6 -4.5 73.4+43 1 114.0 0.4+0.5 4.81+1.82
mamAB 1x operon
ARecA+ 2x mamGFDC 38.7+11.9 8.7 74.5+34.9 117.2 140.7+2.4
ABG6X 2x mms6
2x mamAB
2x mamXY
operon
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Supplementary figures
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Figure S1: Characterization of mms6 operon overexpression strains. A: Cultivation of
overproducing strain ARecA+mmsé6 2x at higher iron concentrations (250 uM iron) did not further
increase magnetosome numbers, although size distribution were slightly shifted towards to larger
crystals with maximum sizes up to 85 nm compared to ARecA. B: Growth curve and Crg
measurements of ARecA and ARecA+mmsé6 2x. C: Cultivation under anaerobic conditions with
50 uM or 500 uM iron did not significantly increase iron uptake of ARecA+mms6 3x compared to

cultivation under microaerobic conditions with 50 uM iron.
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Figure S2: Proteomic characterization of the mamAB overexpression mutants.

A: SDS-PAGE of the magnetosome membrane of ARecA and RecA+mamAB 1x. Comassie-
stained SDS-PAGE profiles of MM from strains ARecA+mamAB 1x revealed similar patterns
compared to ARecA.

B: Image J analysis was performed to quantitatively compare band intensities correlating with
different proteins. In strain ARecA+mamAB 1x several bands including magnetosome proteins
MamM (a), and MamA (b), showed higher intensities. MamC showed a higher intensity within the
membrane of ARecA (c).

C: Quantitative protein analysis was performed for the magnetosome membrane of ARecA and
ARecA+mamAB 1x. Western Blot analysis of selected proteins confirmed that MamM and MamA
were more abundant within ARecA+mamAB 1x by about 128% and 125%, respectively, whereas

the abundance of MamC was not significantly increased (9%), although the Coomassie-stained
MamC band appeared more intense in ARecA.




