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Zusammenfassung

Diese Doktorarbeit befasst sich mit der Erzeugung von künstlichen Magnetfeldern für
ultrakalte Atome in optischen Gittern mithilfe von Laser-induziertem Tunneln sowie
mit der ersten experimentellen Bestimmung der Chernzahl in einem nicht-elektroni-
schen System.
Kalte Atome in optischen Gittern lassen sich experimentell sehr gut kontrollieren, was
sie zu guten Modellsystemen für die Simulation von Festkörpern macht, wobei die
Atome die Rolle der Elektronen übernehmen. Allerdings können Magnetfeldeffekte
in diesen Systemen nicht direkt im Experiment simuliert werden, da die Atome elek-
trisch neutral sind, weshalb auf sie keine Lorentzkraft wirkt. Im Rahmen dieser Dok-
torarbeit wird eine neue Methode vorgestellt künstliche Magnetfelder basierend auf
Laser-induziertem Tunneln zu erzeugen um somit die Physik geladener Teilchen in
realen Magnetfeldern nachzuahmen. Dabei verursachen Laserstrahlen eine periodi-
sche Modulation der einzelnen Gitterplätze, deren Phase von der Gitterposition ab-
hängt und dadurch zu komplexen Tunnelkopplungen führt. Ein Atom, welches sich
entlang einer geschlossenen Bahn in diesem System bewegt, erfährt eine Phase, die
als Aharonov-Bohm-Phase eines geladenen Teilchens in einem Magnetfeld interpretiert
werden kann. Das modulierte Gitter wird durch einen zeitabhängigen Hamilton-Opera-
tor beschrieben, der typischerweise durch einen effektiven zeitunabhängigen Floquet
Hamilton-Operator genähert wird. Im Rahmen dieser Arbeit wird darüber hinaus die
vollständige Zeitabhängigkeit innerhalb einer Modulationsperiode beschrieben und mit
den experimentellen Daten verglichen. Mithilfe des Laser-induzierten Tunnelns wur-
den alternierende sowie gleichgerichtete Magnetfelder im Experiment erzeugt, wobei
letztere eine Realisierung des Harper-Hofstadter-Modells für einen Fluss Φ = π/2 pro
Gittereinheitszelle darstellen. Durch die Verwendung eines zusätzlichen Pseudospin-
Freiheitsgrades konnte zudem der Spin-Hall-Effekt in einem optischen Gitter beobachtet
werden. Unter Benutzung der einzigartigen Detektions- und Manipulationstechniken
eines zweidimensionalen Übergitters konnte die Stärke und Verteilung des künstlichen
Magnetfeldes auf lokaler Ebene durch die Beobachtung von Zyklotronorbits experi-
mentell bestimmt werden. Die Bandstruktur in einem periodischen Potential mit ex-
ternem Magnetfeld weist interessante topologische Eigenschafen auf, die durch Chern-
zahlen beschrieben werden, welche beispielsweise dem Quanten-Hall-Effekt zugrunde
liegen. Um topologische Bandeigenschaften mit kalten Atomen beobachten zu können,
wurden die genannten experimentellen Techniken weiterentwickelt. Mit einem neuen
Aufbau, der nur auf optischen Potentialen beruht, konnte erstmals die Chernzahl in
einem nicht-elektronischen System bestimmt werden.
Die vorgestellten experimentellen Methoden eröffnen einzigartige Möglichkeiten die
Eigenschaften von topologischen Materialien mit kalten Atomen in optischen Gittern
zu untersuchen. Die Techniken wurden mit bosonischen Atomen implementiert, sie
lassen sich allerdings ohne weiteres auch auf fermionische Systeme anwenden.
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Abstract

This thesis reports on the generation of artificial magnetic fields with ultracold atoms
in optical lattice potentials using laser-assisted tunneling, as well as on the first Chern-
number measurement in a non-electronic system.
The high experimental controllability of cold atoms in optical lattices makes them suit-
able candidates to study condensed matter Hamiltonians, where the atoms play the role
of the electrons. However, the observation of magnetic field effects in these systems is
challenging because the atoms are charge neutral and do not experience a Lorentz force.
In the context of this thesis a new experimental technique for the generation of effec-
tive magnetic fields with laser-assisted tunneling was demonstrated, which mimics the
physics of charged particles in real magnetic fields. The applied laser beams create a pe-
riodic on-site modulation whose phase depends on the position in the lattice and leads
to complex tunnel couplings. An atom that hops around a closed loop in this system
picks up a non-zero phase, which is reminiscent of the Aharonov-Bohm phase acquired
by a charged particle in a magnetic field. The corresponding time-dependent Hamilto-
nian is typically described in terms of an effective time-independent Floquet Hamilto-
nian. In this work a theoretical description of the underlying full-time dynamics that
occurs within one driving period and goes beyond the simple time-independent picture
is presented. In the experiment the laser-assisted-tunneling method was implemented
for staggered as well as uniform flux distributions, where the latter is a realization of
the Harper-Hofstadter model for a flux Φ = π/2 per lattice unit cell. By exploiting
an additional pseudo-spin degree of freedom the same experimental setup led to the
observation of the spin Hall effect in an optical lattice. Using the unique experimental
detection and manipulation techniques offered by a two-dimensional bichromatic super-
lattice potential the strength of the artificial magnetic field and its spatial distribution
could be determined through the observation of quantum cyclotron orbits on the level
of isolated four-site square plaquettes. The band structure in the presence of a uniform
magnetic field is topologically non-trivial and is characterized by the Chern number, a
2D topological invariant, which is at the origin of the quantized Hall conductance ob-
served in electronic systems. In order to probe the topology of the bands the techniques
mentioned above were refined by developing a new all-optical laser-assisted tunneling
setup, which enabled the first experimental determination of the Chern number in a
non-electronic system.
The presented measurements and techniques offer a unique setting to study the proper-
ties of topological systems with ultracold atoms. All experimental techniques that were
developed in the context of this thesis with bosonic atoms can be directly applied to
fermionic systems.
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Chapter 1

Introduction

Quantum states of matter have been successfully characterized by the concept of sponta-
neous symmetry breaking [1]. A descriptive example is the transition from a paramagnetic
to a ferromagnetic state of a metal. Above a critical temperature, known as the Curie
temperature, the direction of the spins in the material is random and the average mag-
netization 〈M〉 is zero. Below a critical temperature the system enters a ferromagnetic
phase, where the spins are at least partially aligned, such that the magnetization 〈M〉
takes a finite value. The ferromagnetic state is no longer invariant under spin rotation;
an additional symmetry is broken compared to the paramagnetic state. The transition
is characterized by the order parameter 〈M〉, which is zero for the symmetric state and
non-zero for the symmetry-breaking state.
With the discovery of the integer quantum Hall (QH) effect [2, 3] a new family of quan-
tum states was found which did not fit into this simple classification of condensed
matter systems described above [4–6]. In the QH effect electrons form a QH insula-
tor, that is insulating in the bulk but displays current-carrying states at its boundaries.
Each of these states contributes one quantum of conductance e2/h, which gives rise to
the perfectly quantized Hall conductance discovered in 1980 [2, 3]. Surprisingly, this
quantization was found independent of the microscopic details of the material [7, 8]. In
fact the number of edge states is mathematically determined by the value of an integer
topological invariant such that the quantization is topologically protected against small
perturbations of the system.
In mathematics the term topology was introduced by Johann Benedict Listing in the
19th century [9] to classify the shape of geometric objects. He started to establish a new
language to describe what one could call the qualitative shape of a geometric object without
making use of ordinary quantities that are usually employed to define the shape of an
object. Intuitively one would say that a sphere is intrinsically different from a torus
because they cannot be continuously transformed into each other. The torus belongs to a
class of objects with genus g = 1, that are characterized by a hole independent of the
specific details of its shape. In contrast a sphere belongs to a class with genus g = 0
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and does not exhibit a hole. In this sense a coffee cup is topologically equivalent to a
torus and the genus is a topological invariant. It was found that mathematically these
numbers can be described as integrals over the local curvature of a surface. Even though
the integrands locally depend on the details of the geometry, the integral itself however
does not.
In condensed matter systems the abstract concept of topology can be applied to deter-
mine the intrinsic properties of the corresponding energy bands. Two systems with a
gapped energy spectrum can only be continuously transformed into each other if they
belong to the same topological class. Otherwise the system undergoes a quantum phase
transition during the transformation where the energy spectrum becomes gapless. Ac-
cordingly, smooth deformations can be defined as transformations that do not close an
energy gap [4, 6]. It turns out that observables such as the quantized conductivity in
the integer QH effect, that arise due to the topological properties of the edge states,
are rooted in the topological properties of the bulk [10–12], which are described by the
Chern number, a topological invariant defined as an integral in momentum space [8].
Since the discovery of QH insulators the field of topological materials has been rapidly
growing [4, 6, 13]. Initially, it was believed that topological quantum states can only
exist in 2D and if time-reversal (TR) symmetry is broken by applying a magnetic field.
In 1988 Haldane [14] proposed a model Hamiltonian that supports QH states on a hon-
eycomb lattice without external magnetic field. Such insulators are generally known as
Chern insulators and even though these insulators are conceptually different from QH
systems they belong to the same class. A generalization of Haldane’s model was put
forward by Kane & Mele [15] and Bernevig & Zhang [16], who predicted TR-symmetric
topological insulators due to spin-orbit interaction. In 2D topological insulators are syn-
onymously called quantum spin Hall (QSH) insulators and were observed experimen-
tally in HgTe/CdTe quantum well structures [17–19]. QSH materials are closely related
to QH insulators; they are characterized by a charge excitation gap in the 2D bulk and
gapless helical edge states that lie in the bulk gap and are protected by TR symmetry.
The edge states appear in pairs at the surface and their propagation direction depends
on the spin of the particle. Soon after also topological insulators in 3D were predicted
[20–22] and observed in experiments [23, 24].
The origin of topological insulators can be understood in a single-particle framework.
However, the physics becomes even richer in the presence of interactions as was first
demonstrated with the discovery of the fractional quantum Hall (FQH) effect [25, 26].
In addition to the integer QH plateaus there exist plateaus at fractional values of e2/h,
which cannot be understood in a single-particle picture. FQH states are particularly in-
teresting because they can feature fractionally-charged excitations which obey unusual
statistics that are neither fermionic nor bosonic. In the laboratories FQH states only exist
under extreme conditions; very low temperatures and strong magnetic fields. Similar
states are predicted at zero magnetic fields in fractional Chern insulators (FQI), which
potentially exist even up to room temperatures [13, 27]. So far related experimental
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observations have not been reported, however, very recently a Chern insulator without
external magnetic field has been observed experimentally [28].

Ultracold atoms in optical lattices

Synthetic materials that consist of ultracold atoms in optical lattices have proven to be
very well suited to simulate and study condensed matter Hamiltonians [29, 30]. Neutral
atoms are routinely cooled and trapped in periodic potentials created by interfering laser
beams [31]. Using these techniques various lattice geometries can be engineered with a
high degree of experimental control [32–37]. The physics of interacting atoms in such
periodic potentials can be described by the Hubbard model [38], which is an essential
model Hamiltonian to describe strongly-correlated electrons in condensed matter sys-
tems. The characteristic parameters are the tunnel coupling between neighboring sites
and the on-site interaction [39–41]. For bosonic atoms with repulsive interactions the
system undergoes a quantum phase transition at a critical ratio of interaction to kinetic
energy [42, 43], which has been observed experimentally in 2001 [44]. With ultracold
atoms in optical lattices the Hubbard parameters can be tuned individually in a very
clean, defect-free realization by changing the lattice depth, which changes the kinetic
energy, or by controlling the interaction strength via Feshbach resonances [45].
Due to the high experimental controllability, these systems constitute promising candi-
dates to gain deeper insight into the rich physics of topological materials. In particular
they may provide access to physical observables typically not attainable in solid-state
experiments [29]. Ultracold quantum gases are commonly probed after time-of-flight to
obtain information about their momentum distribution and coherence properties [29].
New generation experiments have increased the number of accessible observables to a
great extent through high-resolution detection techniques [46–51]. Single-site and single-
atom resolved density distributions of atoms in optical lattices have become available
[49, 50]. This new imaging techniques provide access to complex spatial correlations
[52] and enabled single-site spin control of individual atoms in the lattice [53].
Cold-atom setups might further allow the generation of synthetic topological matter
without any counterpart in nature. The most recent example is the implementation of
the Haldane model [14] which was considered unlikely to be realized in condensed-
matter systems but was demonstrated in a cold-atom setup [54] by breaking TR symme-
try in a honeycomb lattice with circular modulation of the lattice position [55].
Typically QH states are associated with 2D electron gases confined in a two-dimensional
crystalline potential and subjected to a very large magnetic field. In cold-atom setups
related physical effects cannot be observed directly because the charge neutrality of the
atoms prevents a direct application of the Lorentz force. To overcome this limitation sev-
eral experimental techniques have been developed to engineer artificial magnetic fields
which mimic the effect of real magnetic fields and many of them were already suc-
cessfully demonstrated experimentally [56–59]. However, the realization of very strong
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synthetic magnetic fields has so far remained out of reach. It has been shown that atoms
in optical lattices might be well suited to enter this regime by coupling their motional
and internal degrees of freedom [60–62]. In this thesis, a similar method is discussed,
where artificial gauge fields are implemented in optical lattices using laser-assisted tun-
neling. This scheme has the advantage that it does not rely on the internal structure of
the atom but makes use of periodic on-site modulation of the lattice using far-detuned
running-wave beams [63–66]. Therefore it is less susceptible to heating due to spon-
taneous emission. This has lead to the successful implementation of staggered [67–69]
as well as uniform flux distributions [70–73] in the strong-field regime and enabled the
first experimental observation of a 2D topological invariant, the Chern number, in a
cold-atom setup [73].

Contents of this thesis

The energy spectrum of an electron moving in a periodic potential is altered due to the
presence of a magnetic field in a rather dramatic way even in a single-particle picture
[74–76]. Due to the magnetic field the discrete translational symmetry of the Hamilto-
nian is no longer determined by the symmetry of the underlying crystal structure but by
the magnetic translation symmetries which are related to the strength of the magnetic
field. A theoretical discussion of the properties of the single-particle Hamiltonian of a
square lattice in the presence of an external magnetic field is presented in chapter 2.
Amongst others, synthetic magnetic fields can be engineered with laser-assisted tunnel-
ing in cold-atom setups. The corresponding time-periodic Hamiltonian can be described
using the Floquet theorem, which is similar to Bloch’s theorem for spatially periodic
Hamiltonians. In chapter 3 the theoretical background of time-periodic Hamiltonians
and the generation of artificial gauge fields with laser-assisted tunneling is introduced.
All measurements presented in this thesis were performed with bosonic atoms. Each
experimental cycle started with the preparation of a Bose-Einstein condensate (BEC) of
Rubidium atoms (87Rb), which was then loaded into several optical lattice and superlat-
tice potentials. A description of the main underlying experimental setup can be found
in chapter 4.
The first successful implementations of artificial gauge fields in 2D optical lattices were
staggered flux distributions in triangular [67] and square lattices [68, 69]. In these con-
figurations the direction of the field alternates in sign across the lattice and exhibits a
zero mean value. An experimental realization of such a staggered flux distribution with
laser-assisted tunneling in a staggered superlattice potential is discussed in chapter 5.
The corresponding setup was modified in order to generate uniform flux configura-
tions [70, 71] by replacing the staggered potential with a linear one (chapter 6). This
constitutes a realization of the Harper-Hofstadter Hamiltonian [74–76] which describes
charged particles on a square lattice with uniform magnetic field; it breaks TR symmetry
and gives rise to topologically non-trivial bands. Moreover, using the exact same exper-
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imental setup a Hamiltonian [77] underlying the QSH effect [15, 16] was implemented
by making use of an additional pseudo-spin degree of freedom. This further led to the
observation of the spin Hall effect in an optical lattice (chapter 6).
The previously mentioned scheme, which is discussed in chapter 6, relies on a mag-
netic field gradient and did not allow for an observation of the dynamics in the fully
connected two-dimensional lattice but only on a local scale. The main limitation was to
find an adiabatic way to connect the topologically trivial 2D lattice without flux to the
topologically non-trivial one which exhibits a completely different energy spectrum. In
chapter 7 a new all-optical setup is introduced, which generates an effective uniform
magnetic field without the requirement of a magnetic field gradient. This greatly in-
creases the experimental flexibility and enabled an adiabatic loading of the atoms into
the topologically non-trivial energy bands.
It further provided the basis for the first measurement of a 2D topological invariant in
a cold-atom setup [73]. Due to the non-trivial topology of the energy bands the atoms
experience a transverse motion as a response to an applied force, which is proportional
to the Chern number. The experimental results are reported in chapter 8.
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Chapter 2

Square lattice with magnetic field

Electrons moving in a periodic potential experience a quantized energy spectrum, where
the discrete energy bands are known as Bloch bands. In a magnetic field the spectrum
further splits into highly degenerate Landau levels. The interplay between both effects
leads to a complex fractal energy spectrum known as Hofstadter’s butterfly [76]. In
order to observe related effects experimentally, magnetic fields on the order of one flux
quantum per lattice unit cell are required. In solid state setups the lattice constants are
rather small, i.e. on the order of a few angstroms. Consequently, unfeasible large mag-
netic fields would need to be applied to the material to enter this regime. To overcome
this limitation artificial materials with larger lattice constants can be designed. Recently
this was demonstrated by engineering superlattice structures with graphene placed on
hexagonal boron nitride [78–80]. Additionally the same experimental regimes became
accessible in photonics [81, 82] and with ultracold atoms [70, 71].
Already the single particle physics in a periodic potential with large magnetic field
shows very interesting phenomena. The motion of a charged particle in a magnetic field
is accompanied by a geometric phase, the Aharonov-Bohm phase [83]. On a lattice these
phases are introduced in the form of so-called Peierls phases that a particle picks up when
hopping in the lattice (Sect. 2.1). Unlike the zero-field case the magnetic Hamiltonian is
not invariant under the usual translation by a lattice unit vector. Instead one has to con-
sider the magnetic translation symmetries of the Hamiltonian which effectively enlarge
the usual lattice unit cell depending on the magnetic flux. The new unit cell is denoted
as magnetic unit cell. Its area is determined by the strength of the flux but its dimen-
sions are not unique (Sect. 2.2). The resulting single-particle energy spectrum shows
a fractal structure as a function of the magnetic flux per unit cell, which is known as
Hofstadter’s butterfly (Sect. 2.3). Depending on the flux the lowest tight-binding band
splits into several subbands, whose topological properties are characterized by topolog-
ical invariants called Chern numbers, which are directly related to the quantization of the
Hall conductivity in the integer QH effect (Sect. 2.4).
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2.1 Peierls phase-factors

The physics of electrons moving in a periodic potential can be described by the Hubbard
model, which was first introduced by John Hubbard in 1963 [38]. This model is a good
approximation for systems at low temperatures where all particles occupy the lowest
energy band [84, 85]. It is typically characterized by two terms: a kinetic term that
describes the hopping of particles between neighboring sites in the potential and an
on-site interaction term. For a single electron in a 2D lattice potential the Hamiltonian
consists only of the kinetic term and can be written in the following form

x

y

φm,n

φm,n+1

φm,n φm+1,n

ba

B

ey y

x

x

J

J

C

Φ
ΦAB

Figure 2.1: Equivalence between complex tunneling amplitudes on a square lattice and the
Aharonov-Bohm phase. a Schematic drawing of a 2D lattice with complex tunneling amplitudes
determined by the Peierls phases φi

m,n, i = {x, y}. The coupling strength along both directions
is given by J. An electron that tunnels around the borders of one lattice unit cell (gray shaded
area) picks up a phase Φ = φx

m,n + φ
y
m+1,n − φx

m,n+1 − φ
y
m,n due to the presence of the vector

potential A. b Illustration of an electron moving along a closed path C in an external magnetic
field B = ∇×A. The particle picks up a geometric phase ΦAB known as Aharonov-Bohm phase.

Ĥ0 = −J ∑
m,n

(
â†

m+1,n âm,n + â†
m,n+1 âm,n + h.c.

)
, (2.1)

where â†
m,n and âm,n are the creation and annihilation operators on site (m, n) respec-

tively, m is the site index along x and n the one along y. The model is based on the
tight-binding approximation where the electrons are assumed to occupy the standard or-
bitals of the atoms and the overlap between atomic wave functions on neighboring sites
is small. The tunneling amplitude for an electron to hop from one atom to the next is
determined by the coupling matrix element J.
In the presence of an external magnetic field B = ∇×A, where A is the vector potential,
Hamiltonian (2.1) is modified according to the Peierls substitution [86]. As a result the
tunneling matrix elements become complex and hopping in the lattice is accompanied
by a phase φi

m,n = −eAi
m,n/h̄, i = {x, y}, which is known as Peierls phase (Fig. 2.1a), e
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is the electron charge and h̄ = h/(2π) the reduced Planck constant. Accordingly, the
tight-binding Hamiltonian takes the following form

Ĥ = −J ∑
m,n

(
eiφx

m,n â†
m+1,n âm,n + eiφy

m,n â†
m,n+1 âm,n + h.c.

)
. (2.2)

The Peierls phases are a manifestation of the Aharonov-Bohm phase experienced by a
charged particle moving in a magnetic field (Fig. 2.1b)

ΦAB = − e
h̄

∮
C

A · dr = −2π ΦB/Φ0, (2.3)

where ΦB is the magnetic flux through the area enclosed by the contour C and Φ0 = h/e
is the magnetic flux quantum [83]. Equivalently one can define the magnetic flux per
lattice unit cell in units of the magnetic flux quantum as

α =
1

2π
Φ =

1
2π

(
φ

x
m,n + φ

y
m+1,n − φ

x
m,n+1 − φ

y
m,n

)
. (2.4)

In the following Φ will be denoted as the flux per unit cell of the underlying lattice or
simply the flux per plaquette.

2.2 Magnetic translation operators

In the zero-field case the lattice translation operators T̂0
i commute with Hamiltonian

(2.1) for all Bravais lattice vectors [84, 85],

T̂0
x = ∑

m,n
â†

m+1,n âm,n , T̂0
y = ∑

m,n
â†

m,n+1 âm,n ; (2.5)

they further commute with each other [T̂0
x , T̂0

y ] = 0, which allows us to apply the well-
known Bloch theorem [84, 85]. In the presence of a vector potential, however, the Hamil-
tonian is no longer invariant under the translation by one lattice unit vector because the
corresponding vector potential Am,n is not invariant under this discrete translation even
though the magnetic field B itself might be. Hence, the translation operators T̂0

i do not
commute with Hamiltonian (2.2). For the following discussion it is convenient to write
Hamiltonian (2.2) in the following form

Ĥ = T̂x + T̂y + h.c., (2.6)

where T̂x and T̂y describe the translation by one lattice constant along the x- and y-
direction in the presence of a vector potential Am,n:

T̂x = ∑
m,n

â†
m+1,n âm,neiφx

m,n , T̂y = ∑
m,n

â†
m,n+1 âm,neiφy

m,n . (2.7)

For simplicity the tunnel coupling is set to J = −1. It can be easily verified that in
general the operators T̂i do not commute with each other [T̂x, T̂y] 6= 0, thus, they neither
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φm,n+1
y φm+1,n

y

φm,n+1
x

φm,n
x

Φm,n

x

y
(m,n)

Figure 2.2: Effective magnetic flux Φm,n per plaquette. The vector potential Am,n gives rise to
and effective flux per plaquette (gray shaded area) as defined in Eq. (2.10), with the convention
that the magnetic field is pointing along the +êz-direction. The arrows illustrate the direction of
the tunneling.

commute with the Hamiltonian, [T̂x, Ĥ] 6= 0 and [T̂y, Ĥ] 6= 0. To find the new sym-
metries of the lattice Hamiltonian with flux and to recover translational invariance new
operators have to be constructed, which form a complete set of commuting operators
with Hamiltonian (2.6). These operators are a combination of translation and gauge
transformation

T̂M
x = ∑

m,n
â†

m+1,n âm,neiθx
m,n , T̂M

y = ∑
m,n

â†
m,n+1 âm,neiθy

m,n , (2.8)

and are called magnetic translations operators (MTOs) [87–89]. In general the new mag-
netic translation symmetry will differ from the one of the underlying lattice potential.
The phases θi

m,n are determined by the formal requirement that the MTOs have to com-
mute with the Hamiltonian, [T̂M

i , Ĥ] = 0, leading to

θx
m,n = φx

m,n + Φm,nn , θ
y
m,n = φ

y
m,n −Φm,nm . (2.9)

A detailed derivation of these expressions can be found in Appendix A, which closely
follows Ref. [90]. The flux per unit cell Φm,n is allowed to vary across the lattice and its
index is determined by the lattice site on the lower left corner (Fig. 2.2)

Φm,n = φ
x
m,n + φ

y
m+1,n − φ

x
m,n+1 − φ

y
m,n . (2.10)

Although the derivation of Eq. (2.9) was carried out for general flux distributions Φm,n,
it might not be directly applicable in the case of more complicated configurations such
as staggered flux distributions (chapter 5). In this case the corresponding MTOs can
still be derived using the methods described in Appendix A. The MTOs obtained in
this way do commute with the Hamiltonian by construction but they do not necessarily
commute with each other. The value of the commutator [T̂M

x , T̂M
y ] can be computed

using the single-particle state ψi,j = â†
i,j |0〉 on lattice site (i, j):
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T̂M
x T̂M

y ψi,j = T̂M
x eiθy

i,j ψi,j+1 = ei(θx
i,j+1+θ

y
i,j) ψi+1,j+1 (2.11)

T̂M
y T̂M

x ψi,j = T̂M
y eiθx

i,j ψi+1,j = ei(θx
i,j+θ

y
i+1,j) ψi+1,j+1. (2.12)

The specific form of the MTOs depends on the particular form of the vector potential
Am,n, which in turn depends on the choice of gauge. However, there is no fundamental
reason for the two magnetic translations operators T̂M

x and T̂M
y defined in Eq. (2.8) to

commute with each other.

2.2.1 Homogeneous magnetic fields

Let us consider a homogeneous magnetic field with Φm,n ≡ Φ = 2πα per plaquette
(Fig. 2.3a). Inserting Eq. (2.9) into the expressions given in Eq. (2.11) and (2.12) leads to
the following result

e−iΦ T̂M
x T̂M

y = T̂M
y T̂M

x . (2.13)

Consequently, the commutator vanishes only if Φ is an integer multiple of 2π. Such
a flux configuration is however gauge-equivalent to the trivial case of zero flux per
plaquette and does not correspond to the situation we are interested in. Nevertheless
equation (2.13) does provide us with an intuitive picture of the MTOs by acting with
them on a single-particle state ψi,j around the borders of one lattice unit cell that is
pierced by a flux Φ. Choosing the direction illustrated in Fig. 2.3b the single particle
state ψi,j picks up a phase −Φ, which corresponds to a flux pointing in the opposite
direction.
For flux values different from Φ = ν × 2π, ν ∈ Z, this intuitive picture suggests that
commuting magnetic translation operators can be constructed if they enclose a super-
cell on the lattice pierced by a magnetic flux equal to an integer multiple of 2π. For a
super-cell of dimension k× l one obtains

(
T̂M

x

)k (
T̂M

y

)l
ψi,j =

(
T̂M

x

)k
exp

(
i

l−1

∑
ν=0

θ
y
i,j+ν

)
ψi,j+l

= exp

(
i

k−1

∑
µ=0

θ
x
i+µ,j+l + i

l−1

∑
ν=0

θ
y
i,j+ν

)
ψi+k,j+l , (2.14)

(
T̂M

y

)l (
T̂M

x

)k
ψi,j =

(
T̂M

y

)l
exp

(
i

k−1

∑
µ=0

θx
i+µ,j

)
ψi+k,j

= exp

(
i

l−1

∑
ν=0

θ
y
i+k,j+ν + i

k−1

∑
µ=0

θ
x
i+µ,j

)
ψi+k,j+l . (2.15)
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Figure 2.3: Magnetic translation operators for a homogeneous magnetic field. a Schematic
drawing of a square lattice with lattice constant a and homogeneous flux Φ per plaquette. b
Action of the magnetic translation operators along a closed path around one lattice unit cell,
(T̂M

y )†(T̂M
x )† T̂M

y T̂M
x ψi,j = exp(−iΦ)ψij. c If the path shown in (b) is enlarged around a super-

cell of dimension k × l the action of the MTOs along that path corresponds to a phase shift of
−klΦ = −2πα · kl.

Hence, the phase acquired by the single-particle state ψi,j which was translated along
the borders of the super-cell by acting on it with the MTOs is simply given by the sum
of the corresponding phase terms θi

m,n along the borders of the super-cell. This sum can
be decomposed in k · l lattice unit cells, for which the phase term was determined in
Eq. (2.13), and one obtains

e−iklΦ
(

T̂M
x

)k (
T̂M

y

)l
=
(

T̂M
y

)l (
T̂M

x

)k
, (2.16)

as illustrated in Fig. 2.3c. For rational values of α = p/q (p, q ∈ Z) the commutator
vanishes if

klΦ = 2πp
kl
q

!
= 2π × ν, ν ∈ Z. (2.17)

The smallest possible super-cell for which [(T̂M
x )k, (T̂M

y )l ] = 0 is given by kl = q and is
called magnetic unit cell. The area of the magnetic unit cell AMU is q times larger than the
area of the normal lattice unit cell and contains q sites. The new operators (T̂M

x )k ≡ M̂k
x

and (T̂M
y )l ≡ M̂l

y together with Ĥ (2.6) form a complete set of commuting operators
such that one can find simultaneous eigenstates Ψm,n by formulating a generalized Bloch
theorem based on the magnetic translation symmetries:

M̂k
x Ψm,n = eiµx

m,n Ψm+k,n = eikxka Ψm,n ,

M̂l
y Ψm,n = eiµy

m,n Ψm,n+l = eiky la Ψm,n ,
(2.18)

with kl = q, a the lattice constant and k = (kx, ky) defined within the first magnetic
Brillouin zone (FBZ): −π/(ka) ≤ kx < π/(ka), −π/(la) ≤ ky < π/(la). An explicit form
of the eigenstates will be derived in the following section for α = 1/4. Note that the
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Figure 2.4: Magnetic unit cells of a square lattice with flux α = 1/4. Schematic drawing of
a square lattice with constant a. The area of the magnetic unit cell (blue shaded are) depends
on the magnetic flux; for α = 1/4 it contains q = 4 sites (black circles) and covers an area of
four lattice unit cells AMU = 4a2. There are three different possibilities to choose its shape: a
rectangular and oriented along y with AMU = 1a× 4a, b symmetric with AMU = 2a× 2a and c
rectangular and oriented along x with AMU = 4a× 1a.

area of the magnetic unit cell is fixed by the strength of the magnetic flux α = p/q, its
dimensions, however, are not.

2.2.2 Magnetic translation operators for α = 1/4

In this section the MTOs for α = 1/4 are introduced. According to Eq. (2.17) the mag-
netic unit cell consists of four lattice unit cells, such that its area is given by AMU = 4a2.
For this value of the flux there are three different possibilities to choose its dimensions
(Fig. 2.4). The specific form of the MTOs is gauge dependent, therefore the follow-
ing example is carried out choosing the Landau gauge φm,n = (−2παn, 0). The non-
commuting magnetic translation operators in this gauge are

T̂M
x = ∑

m,n
â†

m+1,n âm,n , T̂M
y = ∑

m,n
â†

m,n+1 âm,ne−i2παm , (2.19)

and the commuting ones are given by

M̂k
x = ∑

m,n
â†

m+k,n âm,n, M̂l
y = ∑

m,n
â†

m,n+l âm,ne−i2παml , (2.20)

with kl = 4. In the following explicit forms of the eigenfunctions for the different choices
of the magnetic unit cell are determined.

Rectangular magnetic unit cell oriented along y (Fig. 2.4a): In the literature this is the
most common choice for the magnetic unit cell in the Landau gauge because the MTOs
take the form of usual lattice translation operators

M̂1
x = ∑

m,n
â†

m+1,n âm,n , M̂4
y = ∑

m,n
â†

m,n+4 âm,n , (2.21)
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and the eigenfunctions satisfying the generalized Bloch’s theorem in Eq. (2.18) can be
written in the following form

Ψm,n = eikxmaeikynaψn, ψn+4 = ψn , (2.22)

where Ψm,n is expanded in single-particle on-site wave functions; ψi, i = {0, 1, 2, 3}, is
the complex amplitude of the wave function on the four sites of the magnetic unit cell
and k is defined within the FBZ: −π/a ≤ kx < π/a, −π/(4a) ≤ ky < π/(4a). One can
verify that this ansatz fulfills the generalized form of Bloch’s theorem (2.18)

M̂1
x Ψm,n = Ψm+1,n = eikxa Ψm,n ,

M̂4
y Ψm,n = Ψm,n+4 = e4ikya Ψm,n .

(2.23)

Symmetric magnetic unit cell (Fig. 2.4b): For the square symmetric magnetic unit cell
the MTO along y is slightly more complicated. It is a combination of a usual translation
by two lattice sites and an additional phase factor,

M̂2
x = ∑

m,n
â†

m+2,n âm,n , M̂2
y = ∑

m,n
â†

m,n+2 âm,ne−iπm . (2.24)

In this case the wave function has to fulfill the following relations

M̂2
x Ψm,n = Ψm+2,n = e2ikxa Ψm,n ,

M̂2
y Ψm,n = e−iπm Ψm,n+2 = e2ikya Ψm,n .

(2.25)

For m even the eigenfunctions take the usual form Bloch functions; for m odd, however,
additional phase terms have to be introduced. The combined solution can be written as

Ψm,n = eikxmaeikyna


ψ0 , for m, n even

ψ1 e−inπ/2 , for m odd, n even

ψ2 , for m even, n odd

ψ3 e−inπ/2 , for m, n odd

(2.26)

with k defined within the FBZ, −π/(2a) ≤ kx < π/(2a) and −π/(2a) ≤ ky < π/(2a).

Rectangular magnetic unit cell oriented along x (Fig. 2.4c): The third possible choice
is a rectangular magnetic unit cell oriented along x, where the corresponding MTOs are

M̂4
x = ∑

m,n
â†

m+4,n âm,n , M̂1
y = ∑

m,n
â†

m,n+1 âm,ne−iπm/2 . (2.27)
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For this choice of the magnetic unit cell, the translation along x is again of the usual
form but the one along y is not. For every site m an additional phase term has to be
introduced in Ψm,n to fulfill Bloch’s theorem (2.18)

M̂4
x Ψm,n = Ψm+4,n = e4ikxa Ψm,n ,

M̂1
y Ψm,n = e−iπm/2 Ψm,n+1 = eikya Ψm,n .

(2.28)

The form of the eigenfunctions involves an additional phase factor that depends on the
site index (m, n) and can be written as

Ψm,n = eikxma eikyna eiπmn/2 ψm , ψm+4 = ψm , (2.29)

where k is defined in the range −π/(4a) ≤ kx < π/(4a) and −π/a ≤ ky < π/a.

2.3 Harper-Hofstadter Hamiltonian

The theoretical description of a lattice Hamiltonian with flux depends on the choice of
the gauge since the explicit form of the MTOs depends on the particular form of the
vector potential as was shown above. The physical observables investigated in the fol-
lowing (energy spectrum, topological invariants) are gauge independent and one can
choose a vector potential where the calculations are particularly simple. As in the pre-
vious section the vector potential will be written in the Landau gauge φm,n = (−Φn, 0),
which corresponds to a uniform magnetic field with flux Φ = 2πα per plaquette

Ĥ = −J ∑
m,n

(
e−iΦn â†

m+1,n âm,n + â†
m,n+1 âm,n + h.c.

)
. (2.30)

In this gauge only tunneling along the x-direction is complex while tunneling along the
y-direction is real. This Hamiltonian is known as the famous Harper-Hofstadter Hamil-
tonian [74–76], whose single-particle energy spectrum exhibits a fractal self-similar struc-
ture as a function of the flux α, known as Hofstadter’s butterfly [76].

2.3.1 Single particle energy spectrum

In order to solve the Schrödinger equation first the commuting magnetic translation
operators need to be constructed using the MTOs given in Eq. (2.19), which were derived
in the same gauge. For rational values of the flux α = p/q one can always choose a
magnetic unit cell oriented along the y-direction with dimensions (1× q) · a2 (see also
Fig. 2.4a for α = 1/4). For this particular choice of the magnetic unit cell the commuting
MTOs can be written in the following form,

M̂1
x = ∑

m,n
â†

m+1,n âm,n , M̂q
y = ∑

m,n
â†

m,n+q âm,n . (2.31)
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Both operators are equivalent to the usual lattice translation operators as defined in
Eq. (2.5), where the one along x corresponds to a translation by one lattice constant and
the one along y by q lattice constants. The magnetic unit cell contains a flux ΦMU =

p× 2π. In order to solve the Schrödinger equation one can make the following ansatz
for the wave function

Ψm,n = eikxma eikyna ψn , ψn+q = ψn , (2.32)

where kx, ky are defined in the range −π/a ≤ kx < π/a and −π/(qa) ≤ ky < π/(qa).
As shown above, this ansatz fulfills the generalized Bloch theorem (2.18)

M̂1
x Ψm,n = Ψm+1,n = eikxa Ψm,n ,

M̂q
y Ψm,n = Ψm,n+q = eikyqa Ψm,n .

(2.33)

By inserting Eq. (2.32) into the Schrödinger equation associated with the Harper-Hofstadter
Hamiltonian (2.30)

EΨm,n = −J(e−iΦn Ψm+1,n + eiΦn Ψm−1,n + Ψm,n+1 + Ψm,n−1) (2.34)

one obtains the following simplified equation

Eψn = −J
[
2 cos(kxa−Φn)ψn + eikya ψn+1 + e−ikya ψn−1

]
. (2.35)

Consequently, the problem reduces to a q-dimensional eigenvalue equation

E(k)


ψ0

ψ1
...

ψq−1

 = H(k)


ψ0

ψ1
...

ψq−1

 , (2.36)

where the q× q matrix is defined as

H(k) = −J



h0 eikya 0 · · · e−ikya

e−ikya h1 eikya · · · 0

0 e−ikya h2 · · · 0

...
...

...
. . .

...

eikya 0 0 · · · hq−1


, (2.37)

with hq = 2 cos (kxa− qΦ). Without magnetic field, or more generally for α ∈ Z, one
obtains a single energy band with dispersion relation

E(k) = −2J cos(kxa)− 2J cos(kya), (2.38)
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Figure 2.5: Single-particle energy spectrum of an electron in a periodic potential exposed to
large magnetic fields, known as Hofstadter’s butterfly. Energy spectrum of the lowest tight-
binding band as a function of the flux per unit cell α = Φ/(2π) displaying a fractal, self-similar
structure. The number of energy bands depends crucially on the value of the flux per lattice unit
cell. (Data taken from Ref. [76])

where the corresponding bandwidth is given by Ebw = 2 × 4J. In the presence of a
rational flux per plaquette α = p/q this band splits into q subbands (Fig. 2.5) with
dispersion relations Eµ(k), µ = {1, . . . , q}. This leads to the famous fractal structure of
the Hofstadter butterfly which displays the single-particle energy as a function of the
magnetic flux α. In Figure 2.6 two examples of such a spectrum are shown for α = 1/5
and α = 1/6, which were computed using Eqs. (2.36)–(2.37).

For irrational values of the flux the spectrum splits into an infinite number of energy
levels forming a Cantor set [76]. Similar spectra were further computed for graphene-
type lattices [91, 92]. The nature of the single-particle energy spectrum is determined
by rational and irrational values of α respectively. In a Penrose lattice two kinds of ele-
mentary tilings may exist such that one of them is pierced by a rational flux α while the
second one is pierced by an irrational one. It has been shown that such a configuration
can lead to interesting electronic properties and the spectrum is butterfly-like with a
periodicity that is characteristic of the underlying quasicrystal [93].

2.3.2 Particle-hole symmetry

An important property of the Hofstadter model is the particle-hole symmetry, which
gives rise to certain symmetries in the energy spectrum and the Chern number distribu-
tion of the energy bands (Sect. 2.4). Let us consider the following transformation

Ψm,n → Ψ̃m,n = (−1)m+n Ψm,n. (2.39)

The new wave function Ψ̃m,n satisfies the Harper equation (2.34)
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Figure 2.6: Single-particle energy spectrum and Chern number distribution of the Hofstadter
model for α = 1/5 (a) and α = 1/6 (b). For α = 1/5 the spectrum splits into five subbands, while
for α = 1/6 it splits into six. The Hamiltonian is particle-hole symmetric, which manifests itself
in certain symmetries between the dispersion relations of the individual subbands (Sect. 2.3.2).
It further leads to a symmetric Chern number distribution around E = 0.

− EΨ̃m,n = −J(e−iΦn Ψ̃m+1,n + eiΦn Ψ̃m−1,n + Ψ̃m,n+1 + Ψ̃m,n−1), (2.40)

which is similar to Eq. (2.34) but with different energy E→ −E. This means that if there
exists a state Ψm,n with energy E there necessarily also exists a state Ψ̃m,n with opposite
energy −E. This result illustrates the particle-hole symmetry present in the system. The
state can be also written in the following way

Ψ̃m,n = eikxmaeikynaψ̃n, ψ̃n+q = ψ̃n. (2.41)

Inserting this state into Eq. (2.40) leads to an eigenvalue equation for the new periodic
function ψ̃n, which can be written as follows

Eψ̃n = −J
[
2 cos (kxa + π −Φn) ψ̃n + ei(kya+π) ψ̃n+1 + e−i(kya+π) ψ̃n−1

]
. (2.42)

Comparing this result with Eq. (2.35) shows that the eigenstate associated with the band
E(k) located at positive energies is related to the state in the lower band at negative
energies through the relation

ψn(kx, ky) = ψ̃n(kx + π/a, ky + π/a). (2.43)

Consequently the particle-hole transformation (2.39) maps a state at energy +E to a state
at energy −E. Additionally this transformation corresponds to a shift in momentum
space (kx, ky)→ (kx + π/a, ky + π/a). Hence, the dispersion relation of a band µ which
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is located around a mean energy Ēµ > 0 is related to the dispersion relation of a band µ̃

located around a mean value Ēµ̃ < 0 according to

Eµ(kx, ky) = −Eµ̃(kx + π/a, ky + π/a). (2.44)

In addition the particle-hole symmetry has important consequences for the Chern num-
ber distribution as will be discussed in the following section.

2.4 Chern number

The topology of an energy band is robust against continuous deformations of the un-
derlying Hamiltonian and is characterized by topological invariants. These topological
properties can have important physical consequences. It has been shown that the quan-
tization of the Hall conductance discovered by Klaus von Klitzing et al. in 1980 [2] is
directly related to an integer topological invariant known as the Chern number [8].
In solid-state experiments the quantization of the Hall conductance σH is observed by
sending a constant current through the sample and measuring the voltage difference in
the transverse direction. At low temperatures all energy bands below the Fermi energy
EF are filled. If the Fermi energy lies within a spectral gap the Hall conductance is
determined by

σH =
e2

h ∑
Eµ<EF

νµ, (2.45)

where νµ is the Chern number of the µ-th band Eµ and the sum runs over all occupied
bands below the Fermi energy Eµ < EF.
A QH device is insulating in the bulk if the Fermi energy is located in an energy gap
and the value of the Hall conductivity is determined by the number of gapless chiral
edge states, that are contributing to the current. The existence of these modes can be
seen as a manifestation of the topological order of the bulk. The connection between the
topological properties of the bulk energy bands and the quantization of the Hall con-
ductance was first identified in the work by Thouless, Kohmoto, Nightingale, den Nijs
[8]. The corresponding topological invariant, the Chern number of the µ-th energy band
can be expressed in terms of the periodic eigenfunctions

∣∣uµ(k)
〉
, which are solutions of

the eigenvalue equation (2.36) given above,

νµ =
i

2π

∫
FBZ

(〈
∂uµ(k)

∂kx

∣∣∣∣ ∂uµ(k)
∂ky

〉
−
〈

∂uµ(k)
∂ky

∣∣∣∣ ∂uµ(k)
∂kx

〉)
︸ ︷︷ ︸

=−iΩµ(k)

d2k, (2.46)

where Ωµ(k) is know as the Berry curvature of the µ-th band [94] and the integral is
carried out over the first magnetic Brillouin zone. This invariant was derived for an infi-
nite system without edges. Using this expression the topological role of the edge states
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is not yet clear. The relation between the topological properties of the edge modes and
the bulk is commonly denoted as bulk-edge correspondence [10–12]. In particular, it was
shown by Hatsugai, that the topology of the edge states is characterized by an integer,
which is equal to the bulk topological invariant [10, 11].
In chapter 8 we are going to present an experimental observation of the Chern number
of the lowest Hofstadter band for α = 1/4 with bosonic atoms [73]. In these measure-
ments the topological properties of the bulk were probed through measurements of the
anomalous Hall velocity, which occurs transverse to an applied force and is proportional
to the Berry curvature defined above [94].

2.4.1 Distribution in the Hofstadter model

The particle-hole symmetry (Sect. 2.3.2) inherent to the Hofstadter model has important
consequences on the Chern number distribution νµ of the Hofstadter bands. Taking into
account the symmetry properties of the wave-function amplitudes ψn in equation (2.43)
leads to an equivalent relation for the eigenfunctions

∣∣uµ(kx, ky)
〉
=
∣∣uµ̃(kx + π/a, ky + π/a)

〉
. (2.47)

As a consequence the Berry curvature of the µ-the band is related the Berry curvature
of the opposite band µ̃ according to

Ωµ(kx, ky) = Ωµ̃(kx + π/a, ky + π/a). (2.48)

Hence, both bands share the same Berry curvature shifted in momentum space by
(δkx, δky) = (π/a, π/a). The characteristic Chern number νµ of the band defined in
Eq. (2.46) is obtained by integrating the Berry curvature over the first magnetic Brillouin
zone. As a result the two bands share the same Chern number νµ = νµ̃ and the distri-
bution is symmetric around E = 0 (Fig. 2.6). Note, that the Chern number of the total
tight-binding band necessarily vanishes, i.e.

∑
µ

νµ = 0 . (2.49)

2.4.2 Diophantine equation

It has been shown that the fractal structure of the Hofstadter butterfly follows a simply
relation, which allows for an analytical computation of the Chern number. For a rational
flux α = p/q the energy gaps are characterized by two integers sr and tr, which are
determined by a Diophantine equation [95, 96]

r = qsr + ptr, |tr| ≤
q
2

, sr, tr ∈ Z, (2.50)
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where r denotes the r-th energy gap of the Hofstadter spectrum. Since the spectrum is
split into q-subbands, r can only take values in the interval 0 ≤ r ≤ q. The solutions
of equation Eq. (2.50) are uniquely defined and the two numbers sr, tr are topological
numbers characterizing the gap, where the integer tr determines the value of the Hall
conductivity [8, 97, 98] according to

σH = − e2

h
tr. (2.51)

Thus, tr is given by the sum of the Chern numbers ∑r
1 νr of all occupied bands and the r-

th band, which lies between the rth and the (r− 1)st energy gap, carries an integral Hall
conductance determined by the Chern number of the r-th band νr which is a solution of
the following Diophantine equation

− 1 = q(sr−1 − sr) + p(tr−1 − tr) = qσr + pνr, σr ∈ Z. (2.52)

For generic values of the flux with p = 1 one can show that the bands with r < q/2
exhibit a Chern number νr = −1.
For r even, the middle two bands touch at q Dirac cones (Fig. 2.6b) and the Diophantine
equation above can only predict the sum of the two Chern numbers νr = q− 2. For r
odd, the middle band carries a Chern number νr = q− 1. These analytical results are in
agreement with the numerical calculations depicted in Fig. 2.6.
A Chern number of the lowest band larger than one |ν1| > 1 can be achieved e.g. with
a flux α = 4/9, where the Chern number of the lowest band is ν1 = 2.

2.4.3 Numerical calculation of the Chern number

An efficient way to calculate the Berry curvature and the Chern number of non-degenerate
bands was proposed by Fukui et al. [99] and will be briefly reviewed here. For the sake
of simplicity the band index µ is omitted in the following discussion. The fundamental
idea is to compute the Berry curvature numerically by discretizing the Brillouin zone
using a grid in momentum space defined according to

kα = (kx, ky), kx =
2πα1

N1
, (α1 = 0, . . . , N1 − 1),

ky =
2πα2

qN2
, (α2 = 0, . . . , N2 − 1),

(2.53)

where α = (1, . . . , N1N2) and N1, N2 define the size of the unit cell of the grid. The unit
vectors of the grid in momentum space along the two directions are

ê1 =
2π

N1
(1, 0) , ê2 =

2π

qN2
(0, 1) . (2.54)
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Using this notation the discrete distribution of the Berry curvature Ω̃12(kα) in the FBZ
is determined by

Ω̃12(kα) ≡ ln U1(kα) U2(kα + ê1) U1(kα + ê2)
−1 U2(kα)

−1, (2.55)

where U1,2 is defined as the link variable

U1(kα) =
〈u(kα) |u(kα + ê1)〉
|〈u(kα) |u(kα + ê1)〉|

, U2(kα) =
〈u(kα) |u(kα + ê2)〉
|〈u(kα) |u(kα + ê2)〉|

. (2.56)

From this distribution the Chern number can be simply computed by taking the sum
over all possible momenta kα

ν̃ =
1

2πi ∑
α

Ω̃12(kα). (2.57)

The numerical determination of the Chern number using the above equations is accurate
already for very coarse grids as demonstrated in Ref. [99]. The Chern numbers of the
different bands illustrated in Fig. 2.6 were evaluated using this method.

The case of band touching points

For bands that are not well separated as it is the case for the two middle bands in
Fig. 2.6b the method described above cannot be applied directly but it can be generalized
as shown in Ref. [99]. Assuming that there are M touching bands E1(k), E2(k), . . . , EM(k),
the link variables can be substituted by determinants of M×M matrices associated with
the multiplet ψ = (|u1〉 , |u2〉 , . . . , |uM〉)

Ũγ(kα) =
detUγ(kα)

|detUγ(kα)|
, γ = {1, 2}. (2.58)

The M-dimensional matrices Uγ(kα) are defined as

Uγ(kα) =


〈u1(kα) |u1(kα + êγ)〉 · · · 〈u1(kα) |uM(kα + êγ)〉

...
. . .

...
〈uM(kα) |u1(kα + êγ)〉 · · · 〈uM(kα) |uM(kα + êγ)〉

 . (2.59)

The corresponding field strength and Chern number of the multiband is defined ac-
cording to Eqs. (2.55) and (2.57). The Chern number of the middle band in Fig. 2.6b was
evaluated for α = 1/6 using this technique. The result is in agreement with the ana-
lytical solution obtained using the Diophantine equation given in the previous section:
ν3 + ν4 = q− 2 = 4.



Chapter 3

Artificial gauge fields with
laser-assisted tunneling

In ultracold-atom setups the physics of magnetic field effects cannot be simulated di-
rectly because of the charge neutrality of the atoms. Therefore new experimental meth-
ods had to be developed to circumvent this limitation by designing effective systems
whose dynamics are governed by a Hamiltonian analog to the one of a charged particle
in a magnetic field [58, 59]. One possibility is to exploit the equivalence between the
Lorentz force and the Coriolis force in rotating systems [56, 57], which was successfully
implemented in several experiments [100–102]. Other methods rely on the realization of
synthetic magnetic fields by engineering spatially dependent optical couplings [103, 104]
that lead to Berry phases [94, 105] which can be interpreted as the Aharonov-Bohm
phase [83] of a charged particle. It has been shown in several proposals that cold atoms
in optical lattices are well suited to reach the regime of large magnetic fields on the
order of one flux quantum per unit cell by engineering Peierls phases (Sect. 2.1) with
the help of laser-assisted tunneling [60, 61]. These methods intrinsically lead to effec-
tive magnetic fluxes on the order of one flux quantum per unit cell and hence provide
direct access to the physics of the Harper-Hofstadter model (Sect. 2.3). Similar ideas led
to the development of "optical flux lattices" based on optical dressing in weak periodic
potentials [106, 107]. Since then a number of experimental realizations were reported
regarding the observation of complex tunneling amplitudes in 1D [108, 109] and 2D
optical lattices [67, 68]. Many realizations are based on periodically driven systems that
can be mapped onto effective time-independent Hamiltonians (Sect. 3.1) which exhibit
the desired physical properties. In particular one can show that simple periodic on-
site modulations can give rise to complex tunneling amplitudes (Sect. 3.2). The effective
time-independent Hamiltonian however does not provide any information about the full
time evolution of the system (Sect. 3.3), which can be of importance for the experimental
implementation of artificial magnetic fields in 2D lattices (Sect. 3.4).
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3.1 Periodically driven quantum systems

Time-periodic Hamiltonians Ĥ(t + T) = Ĥ(t) can be treated using Floquet’s theorem,
which states that the evolution of the system after one period T = 2π/ω can be de-
scribed by an effective time-independent Hamiltonian. In most cases it is not possible
to find an analytic expression for the effective Floquet Hamiltonian. However, in the
high-frequency limit, where ω is much larger than all other energy scales in the sys-
tem the effective Hamiltonian can be derived perturbatively. After a short introduction
to Floquet theory (Sect. 3.1.1) two different approaches to derive the effective Hamilto-
nian are presented (Sect. 3.1.2 and 3.1.3), one of them based on the Magnus expansion
[110, 111] and a second one based on the formalism introduced by Rahav [112]. Eventu-
ally both methods are compared using the example of a simple driven two-level system
(Sect. 3.1.4).

3.1.1 Floquet formalism

According to Floquet theory [113–115] the solutions of the time-dependent Schrödinger
equation

ih̄
∂

∂t
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 (3.1)

associated with a time-periodic Hamiltonian can be written in the following form

|Ψα(t)〉 = exp [−iεαt/h̄] |Φα(t)〉 , (3.2)

where |Φα(t)〉 is the Floquet mode, which has the same periodicity as the Hamiltonian,
|Φα(t + T)〉 = |Φα(t)〉. In analogy to Bloch’s theorem, εα is called quasi-energy. By insert-
ing Eq. (3.2) into the time-dependent Schrödinger equation one obtains an eigenvalue
equation for the Floquet modes(

Ĥ(t)− ih̄
∂

∂t

)
|Φα(t)〉 = εα |Φα(t)〉 . (3.3)

One can show that by making the following Fourier expansion

|Φα(t)〉 = ∑
β

exp [iβωt]
∣∣∣nβ

α

〉
, (3.4)

the time-dependent problem (3.3) can be transformed into a time-independent one,
which involves an infinite matrix [113]. Due to the specific form of the Floquet states,
the quasi-energies εα are only defined up to a multiple of h̄ω. This can be readily seen
by looking at the following expression

|Ψα(t)〉 = exp [−i(εα + βh̄ω)t/h̄] exp [iβωt] |Φα(t)〉

= exp
[
−iεβ

α t/h̄
] ∣∣∣Φβ

α(t)
〉

.
(3.5)
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Evindently, |Φβ
α (t)〉 = exp [iβωt] |Φα(t)〉 is the same physical state as |Φα(t)〉, see also

Eq. (3.4). The corresponding quasi-energies are given by ε
β
α = εα + βh̄ω, where β is

an integer. Similar to spatially periodic systems, where the quasimomentum is defined
within the first Brillouin zone, the quasi-energy can be defined in the range −h̄ω/2 ≤
εα < h̄ω/2. The particular structure of the Floquet energy spectrum can have important
consequences for the scattering properties of the particles in periodically-driven systems
in the presence of interactions [116].

Evolution operator

Here, we are going to focus on the theoretical description in terms of the unitary time-
evolution operator Û(t, t0), which evolves a state |ψ(t0)〉 at time t = t0 to |ψ(t)〉 accord-
ing to

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 . (3.6)

The operator Û(t, t0) is a solution to the time-dependent Schrödinger equation

ih̄
∂

∂t
Û(t, t0) = Ĥ(t)Û(t, t0), Û(t0, t0) = 1. (3.7)

In general it can be written in the following form

Û(t, t0) = Tt exp
[
− i

h̄

∫ t

t0

Ĥ(t′)dt′
]

, (3.8)

where Tt is the time-ordering operator, which is a short notation of an infinite series of
commutator relations. One can show that for periodic systems the evolution operator
fulfills the following properties [117]

Û(t + T, 0) = Û(t, 0)Û(T, 0), Û(t + T, T) = Û(t, 0). (3.9)

Using these relations one obtains

Û(nT, 0) =
[
Û(T, 0)

]n
=
[
Û(T)

]n , with Û(T, 0) ≡ Û(T) and n ∈N, (3.10)

where Û(T) is the evolution operator over one period T. The long-time behavior of the
system can be described stroboscopically with Û(t) at times t = nT. This is an essential
part of Floquet’s theorem [113, 117–120], which tells us that the evolution of the system
after multiples of one driving period can be described by an effective time-independent
Floquet Hamiltonian ĤF

Û(nT) =
[
Û(T)

]n
= exp

[
− i

h̄
nTĤF

]
, Û(T) = exp

[
− i

h̄
TĤF

]
, (3.11)
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where ĤF is a Hermitian matrix. Note that there exists a whole family of effective
Hamiltonians which describe the long-time dynamics of the system. These Hamiltoni-
ans are related to each other via gauge transformations; they share the same spectrum
and the same topological properties. In general it is not possible to find an analytic ex-
pression for ĤF. However, in the high frequency limit, where the frequency ω = 2π/T
associated with one period T is much faster than all other time-scales of the system, the
effective Hamiltonian ĤF can be calculated perturbatively; two different approaches are
presented in the following two subsections. Having the Floquet Hamiltonian at hand
the theoretical discussion simplifies and the properties of the system can be easily stud-
ied with usual techniques that apply for time-independent Hamiltonians. Certainly, this
has the disadvantage that information about the evolution within one driving period
is lost; this is the so-called micro-motion, which can be important for experiments since
it might lead to large oscillations of experimental observables [66, 121, 122]. In a more
general form of Floquet’s theorem the evolution operator can be partitioned as [112]

Û(t f , ti) = P̂(t f )e−
i
h̄ ĤF(t f−ti)P̂†(ti) = e−iK̂(t f )e−

i
h̄ ĤF(t f−ti)eiK̂(ti) (3.12)

where P̂(t) = P̂(t + T) is a time-periodic unitary operator, which was identified in
Ref. [121] as initial and final kick-operators; ti is the initial time of the evolution and t f

the final one. The validity of Eq. (3.12) can be proven using general properties of the
evolution operator

Û(t f , ti) = Û(t f , 0)Û(0, ti) = Û(t f , 0)Û(ti, 0)−1 = Û(t f , 0)Û(ti, 0)†, (3.13)

together with the well known form of Floquet’s theorem [117, 123]

Û(t, 0) = P̂(t)e−
i
h̄ ĤFt, P̂(0) = 1. (3.14)

The proof for the time-periodicity of the propagation operator P̂(t) can be found in
Ref. [123] and Appendix B.
The general form of the evolution operator (3.12) motivates the following intuitive inter-
pretation. The eigenvalues and eigenstates of the effective time-independent Hamilto-
nian ĤF are denoted as ε and |v〉 respectively so that the eigenstates satisfy the following
equations

ih̄
∂

∂t
|v(t)〉 = ĤF |v(t)〉 , with |v(t)〉 = e−iεt/h̄ |v〉 . (3.15)

Let us further assume that we can find a unitary transformation eiK̂(t) which maps the
system described by the time-periodic Hamiltonian Ĥ(t) onto a time-independent one
governed by ĤF. Then the eigenfunctions of the original Hamiltonian are given by

|Ψ(t)〉 = e−iK̂(t) |v(t)〉 = e−iεt/h̄ e−iK̂(t) |v〉︸ ︷︷ ︸
=|Φ(t)〉

= e−iεt/h̄ |Φ(t)〉 . (3.16)
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Hence |Ψ(t)〉 is a solution of the time-periodic Hamiltonian Ĥ(t) with quasi-energy ε

and periodic eigenfunction |Φ(t + T)〉 = |Φ(t)〉, see also Eqs. (3.1)–(3.3). Consequently,
the evolution of the system can be computed by first making a unitary transformation to
the time-independent Hamiltonian using the kick-operator K̂(t), then evolving the state
according to ĤF for a time (t f − ti) and at the end transforming it back with K̂(t).

3.1.2 Mapping to time-independent Hamiltonian

Following the discussion in the previous section it becomes obvious that one way of
solving the time-dependent problem builds on the computation of the unitary transfor-
mation eiK̂(t) that maps the time-dependent Hamiltonian Ĥ(t) onto a time-independent
one ĤF [112, 121]. We start with the time-dependent Schrödinger equation (3.1). Ap-
plying the operator eiK̂(t) from the left and adding ih̄[(∂/∂t)eiK̂(t)] |ψ(t)〉 leads to the
following equation

ih̄
∂

∂t

(
eiK̂(t) |ψ(t)〉

)
= eiK̂(t)Ĥ(t) |ψ(t)〉+ ih̄

(
∂

∂t
eiK̂(t)

)
|ψ(t)〉 , (3.17)

and together with Eqs. (3.15) and (3.16) we can identify the time-independent Hamilto-
nian

ĤF = eiK̂(t)Ĥ(t)e−iK̂(t) + ih̄
(

∂

∂t
eiK̂(t)

)
e−iK̂(t). (3.18)

In the high-frequency limit the Hamiltonian ĤF and the operator K̂(t) can be expanded
in orders of 1/ω

ĤF =
∞

∑
n=0

1
ωn Ĥ(n)

F and K̂ =
∞

∑
n=1

1
ωn K̂(n) . (3.19)

The strategy is to compute Ĥ(n)
F as a function of K̂(1), . . . , K̂(n+1) and to choose K̂(n+1)

iteratively such that Ĥ(n)
F is time-independent. In this way one assures that ĤF is time-

independent in any order n. This is achieved using the following operator expansions
[112]

eiK̂(t)Ĥ(t)e−iK̂(t) = Ĥ + i[K̂, Ĥ]− 1
2!
[K̂, [K̂, Ĥ]]− i

3!
[K̂, [K̂, [K̂, Ĥ]]] + · · · , (3.20)(

∂

∂t
eiK̂(t)

)
e−iK̂(t) = i

∂K̂
∂t
− 1

2!

[
K̂,

∂K̂
∂t

]
− i

3!

[
K̂,
[

K̂,
∂K̂
∂t

]]
+ · · · . (3.21)

Application: Off-resonant driving

In Ref. [121] the above formalism was applied to periodic Hamiltonians of the following
form
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Ĥ(t) = Ĥ0 + V̂(t) = Ĥ0 +
∞

∑
j=1

(
V̂(j)eijωt + V̂(−j)e−ijωt

)
, (3.22)

where the driving frequency ω is much larger than all other energy scales of the system
ω → ∞. Making use of the operator expansions (3.20) and (3.21) one can derive general
expressions for the time-independent Hamiltonian ĤF and the kick-operator K̂(t)

ĤF =Ĥ0 +
1

h̄ω

∞

∑
j=1

1
j

[
V̂(j), V̂(−j)

]
+

1
2(h̄ω)2

∞

∑
j=1

1
j2
([[

V̂(j), Ĥ0

]
, V̂(−j)

]
+
[[

V̂(−j), Ĥ0

]
, V̂(j)

])
+O

(
1

ω3

) (3.23)

K̂(t) =
1
h̄

∫ t
V̂(τ)dτ +O

(
1

ω2

)
= ∑

j 6=0

1
ijh̄ω

V̂eijωt +O
(

1
ω2

)
. (3.24)

A more complete expression including higher order terms as well as second order terms
that mix different harmonics can be found in Ref. [121]. This formalism applies for
example to periodically shaken lattices as realized experimentally in Refs. [54, 67, 109,
124, 125].

Application: resonant driving

Recently, the formalism described above was extended to resonant driving [66], where
the driving frequency ω is still large but resonant with an energy scale of the static part
of the Hamiltonian Ĥ0, which is the case in the experimental setups of Refs. [68–73, 126].
The effective Hamiltonian in Eq. (3.23) was calculated using the perturbative expansion
in powers of 1/ω (3.19). This derivation is based on the assumption that the periodic
Hamiltonian Ĥ(t) remains finite in the limit ω → ∞. For the Hamiltonians considered
here, however, the static Hamiltonian contains a term which is proportional to h̄ω, hence
it diverges in the limit ω → ∞. We write the static Hamiltonian in the following form

Ĥ0 = ∑
αβ

P̂αĤ(0)
αβ P̂β + h̄ω ∑

α

αP̂α, α, β ∈ Z, (3.25)

where P̂α is a projection operator, which divides the full Hilbert space into a set of
orthogonal sectors (P̂αP̂β = δαβP̂α) labelled by the integer α, and ∑α P̂α = 1. The number
of sectors α depends on the specific problem. Later in this chapter we are going to
present simple examples such as the dynamics of a particle hopping on a superlattice
potential (Fig. 3.1a) in the presence of periodic driving (Sect. 3.3). In this example the
potential energy is increased on every other site by an amount h̄ω and the Hilbert space
separates into two parts α = {0, 1}. In general, terms of the form Ĥαβ (α 6= β) couple
different sectors, while the terms Ĥαα describe additional diagonal terms such as on-site
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interactions or on-site potentials. We assume that all divergent terms of the Hamiltonian
are contained in the term h̄ω ∑α αP̂α and all remaining components do not consist of
terms that diverge with ω. The time-periodic part is consistently written as

V̂(t) = ∑
j>0

[
V̂(j)eijωt + V̂(−j)e−ijωt

]
, V̂(j) = ∑

αβ

P̂αĤ(j)
αβ P̂β. (3.26)

We start by applying a time-dependent unitary transformation to the Hamiltonian Ĥ(t) =
Ĥ0 + V̂(t) according to

|ψ(t)〉 →
∣∣ψ′(t)〉 = R̂(t) |ψ(t)〉 , with R̂(t) = exp

[
i ∑

α

αωtP̂α

]
. (3.27)

Hence, the new Hamiltonian Ĥ(t) takes the following form

Ĥ(t) = R̂Ĥ(t)R̂† − ih̄R̂dtR̂† = ∑
j
Ĥ(j)eijωt, (3.28)

Ĥ(j) = ∑
αβ

P̂αĤ(j−α+β)
αβ P̂β. (3.29)

The transformed Hamiltonian does not contain any divergent terms proportional to ω

and is periodic in time. Moreover it can be recast into the form of Hamiltonian (3.22),
which was studied in Ref. [121], such that the formalism described above can be directly
applied. The time-evolution operator now reads

Û(t f , ti) = R̂†(t f )e−iK̂(t f )e−
i
h̄ ĤF(t f−ti)eiK̂(ti)R̂(ti), (3.30)

which is essentially the evolution operator given in Eq. (3.12) accompanied by the uni-
tary transformation used to treat the divergent terms of the static Hamiltonian Ĥ0 (3.25).
The effective time-independent Hamiltonian ĤF and the kick-operator K̂(t) can be com-
puted using analogue expressions as given in Eqs. (3.23) and (3.24)

ĤF = Ĥ(0) +
1

h̄ω ∑
j>0

1
j

[
Ĥ(+j), Ĥ(−j)

]
+O

(
1

ω2

)
, (3.31)

K̂(t) = 1
ih̄ω ∑

j>0

[
Ĥ(+j)eijωt − Ĥ(−j)e−ijωt

]
+O

(
1

ω2

)
. (3.32)

The full time-evolution operator can be written as

Û(t f , ti) = e−iM̂(t f )e−
i
h̄ ĤF(t f−ti)eiM̂(ti), eiM̂(t) ≡ eiK̂(t)R̂(t), (3.33)

where from now on we refer to M̂(t) as the micro-motion operator.
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3.1.3 Magnus-expansion approach

The perturbative approach presented above is very powerful in computing the full
time evolution of periodic Hamiltonians. In this section we are going to compare
this approach to a different perturbative treatment based on the Magnus expansion
[110, 111, 127]. This method is particularly useful for describing the stroboscopic long-
time evolution of the system at times t = nT, with n ∈ N. According to Floquet theory
this evolution can be described by an effective time-independent Floquet Hamiltonian
ĤF as given in Eq. (3.11). In the high-frequency limit ω → ∞ the Floquet Hamiltonian
can be computed in a perturbative manner using the Magnus expansion [110, 111]

ĤF =
∞

∑
n=0

Ĥ(n)
F , (3.34)

where the lowest two orders are given by

Ĥ(0)
F =

1
T

∫ T

0
Ĥ(t)dt, (3.35)

Ĥ(1)
F =

−i
2h̄T

∫ T

0

∫ t2

0

[
Ĥ(t2), Ĥ(t1)

]
dt1dt2. (3.36)

Higher orders of the Magnus expansion scale as 1/ωn, such that in the high frequency
limit the effective time-independent Hamiltonian is well approximated by the lowest or-
der of the expansion ĤF ' Ĥ(0)

F . The explicit form of the effective time-averaged Hamil-
tonian depends on the time interval chosen for the integration, [0, T] and [t0, t0 + T]
respectively. This gauge freedom is also known as Floquet gauge freedom [127]. In the fol-
lowing we consider Hamiltonians of the form Ĥ(t) = Ĥ0 + V̂(t) as defined in Eqs. (3.25)
and (3.26). The static term of the Hamiltonian contains diverging components propor-
tional to ω. Similar to the method described above we perform a unitary transformation.
However, this time it further involves the time-periodic part of the Hamiltonian V̂(t)
[127, 128] and is defined according to

|ψM(t)〉 = R̂M(t) |ψ(t)〉 , with R̂M(t) = exp

[
i ∑

α

αωtP̂α + i
1
h̄

∫ t
V̂(t′)dt′

]
. (3.37)

This transformation leads to the new Hamiltonian

ĤM(t) = R̂M Ĥ(t)R̂†
M − ih̄R̂MdtR̂†

M. (3.38)

The Hamiltonian in the rotating frame ĤM(t) is time-periodic so that in general the full
time-evolution operator can be partitioned as

Û(t f , ti) = R̂†
M(t f )e−iK̂M(t f )e−

i
h̄ Ĥ

M
F (t f−ti)eiK̂M(ti)R̂M(ti), (3.39)
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with the corresponding micro-motion operator

eiM̂M(t) ≡ eiK̂M(t)R̂M(t). (3.40)

In a stroboscopic analysis the lowest order of the Floquet Hamiltonian ĤM
F in the rotating

frame can be computed using the Magnus expansion in Eq. (3.35)

ĤM
F '

1
T

∫ T

0
ĤM(t)dt. (3.41)

In this case the stroboscopic evolution of the system in the lab-frame is determined by

Û(t, 0) = R̂†
M(t)e−

i
h̄ Ĥ

M
F tR̂M(0), (3.42)

where t = nT, n ∈N.

3.1.4 Comparison of the two methods: Two-level system

The two perturbative methods presented above are compared based on a two-level sys-
tem with levels |0〉 and |1〉, that are separated by a large energy offset ∆. The system is
described by the static Hamiltonian

Ĥ = J (|0〉 〈1|+ |1〉 〈0|) + ∆P̂1, P̂1 = |1〉 〈1| , (3.43)

where J is the coupling between the two levels. The energy difference between the two
eigenstates is given by

Egap =
√

∆2 + 4J2. (3.44)

This sets the exact value for the driving frequency to couple the two levels resonantly
h̄ω = Egap. In the limit of a large energy offset ∆ � J, this difference is approximately
given by Egap ' ∆ with the resonance condition h̄ω ' ∆. The dynamics of the system
in the presence of a resonant periodic modulation with frequency ω is described by the
following time-periodic Hamiltonian

Ĥ(t) = J (|0〉 〈1|+ |1〉 〈0|) + h̄ωP̂1 + V0 cos(ωt + ϕ)P̂0, P̂α = |α〉 〈α| , (3.45)

with P̂α the projectors on the two sectors α = {0, 1} and V0 the modulation amplitude.
Following the method presented in Sect. 3.1.3 we perform a unitary transformation into
the rotating frame [127, 128] as given in Eqs. (3.37) and (3.38) with

R̂M(t) = exp
[

iωtP̂1 + i
V0

h̄ω
sin(ωt + ϕ)P̂0

]
. (3.46)

The only component in the Hamiltonian which is affected by this transformation is the
coupling term proportional to J, which results in a time-dependent coupling
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ĤM(t) = J |0〉 〈1| eiη(t) + J |1〉 〈0| e−iη(t),

η(t) = −
[

ωt− V0

h̄ω
sin(ωt + ϕ)

]
.

(3.47)

The transformed Hamiltonian ĤM(t) is periodic in time without any static components.
To lowest order the effective Hamiltonian is determined by Eq. (3.41)

ĤM
F =

1
T

∫ T

0
ĤM(t)dt

=
1

2π

∫ 2π

0

[
J |0〉 〈1| e−i

[
τ− V0

h̄ω sin(τ+ϕ)
]
+ h.c.

]
dτ

= JJ1

(
V0

h̄ω

)
︸ ︷︷ ︸

=:Jeff

eiϕ |0〉 〈1|+ h.c., (3.48)

where τ = ωt and J1(x) = 1
2π

∫ 2π
0 e−i(τ−xsinτ)dτ is the first-order Bessel function of the

first kind. The coupling between the two levels |0〉 and |1〉 is restored in the presence
of resonant driving Jeff = JJ1(V0/[h̄ω]) ' JV0/(2h̄ω) and is accompanied by an addi-
tional complex term eiϕ, which can be used to generate artificial magnetic fields as will
be shown in the following sections.
The micro-motion operator K̂M(t) associated with the Hamiltonian ĤM(t) can be calcu-
lated perturbatively in the high-frequency limit h̄ω � J [110, 111, 129]. The two lowest
orders of the expansion are given by

e−iK̂M(t) = 1− i
h̄

∫ t

0
ĤM(t′)dt′ + · · ·

' 1− i J
h̄ω

∫ τ

0

[
|0〉 〈1| e−i

[
τ′− V0

h̄ω sin(τ′+ϕ)
]
+ h.c.

]
dτ′︸ ︷︷ ︸

→0 for ω→∞

. (3.49)

Consequently, in the limit of infinite driving frequencies ω → ∞ the full-time dynamics
associated with the time-periodic Hamiltonian ĤM(t) in the rotating frame (3.47) is
exactly described by the effective time-independent Hamiltonian ĤM

F (3.48). Hence, the
full time evolution of the driven two-level system is approximately given by Eq. (3.42)
for arbitrary times t 6= nT, with n ∈ N, and the micro-motion in the lab-frame is solely
determined by the unitary transformation R̂M(t) (3.46). Note, however, that this is not
true in general.
The same system is now analyzed again using the formalism developed in [66] as dis-
cussed in Sect. 3.1.2. The Hamiltonian describing the two-level system (3.45) is indeed of
the form (3.25)–(3.26) and we perform the unitary transformation to remove the diverg-
ing terms of the Hamiltonian as defined in Eqs. (3.27)–(3.29) using the unitary operator
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R̂(t) = exp
[
iωtP̂1

]
. (3.50)

Note that this operator differs from the transformation used for the Magnus-expansion
approach (3.46) and contains only the static diverging terms of Ĥ0. The new Hamiltonian
reads

Ĥ(t) = Ĥ(+1)eiωt + Ĥ(−1)e−iωt,

Ĥ(+1) = J |1〉 〈0|+ V0

2
P̂0eiϕ,

Ĥ(−1) = J |0〉 〈1|+ V0

2
P̂0e−iϕ.

(3.51)

Using Eq. (3.31) we can derive the effective time-independent Hamiltonian

ĤF =
1

h̄ω

[
Ĥ(+1), Ĥ(−1)

]
=
−1
h̄ω

[J |0〉 〈1| , J |1〉 〈0|]︸ ︷︷ ︸
=J2[P̂0−P̂1]

+

[
V0

2
P̂0e−iϕ, J |1〉 〈0|

]
+

[
J |0〉 〈1| , V0

2
P̂0eiϕ

]
' JV0

2h̄ω

(
|0〉 〈1| eiϕ + |1〉 〈0| e−iϕ

)
, (3.52)

where we have omitted the additional detuning term

Ĥdet = −
J2

h̄ω
[P̂0 − P̂1]. (3.53)

This term also appears in the second order of the Magnus expansion [127]. For typical
experimental parameters used for the measurements discussed in the context of this
thesis, h̄ω/J = ∆/J ' 30, and the detuning can be safely neglected. One exception
where this assumption does not hold anymore is presented in Sect. 5.7 where the ratio
is about one order of magnitude smaller ∆/J ' 3.56.
The effective Hamiltonian (3.52) is in agreement with the result obtained using the Mag-
nus expansion (3.48) in the limit V0/(h̄ω) � 1. The main contribution to the kick-
operator according to Eq. (3.32) is given by

K̂(t) = 1
ih̄ω

[
J |1〉 〈0|+ V0

2
P̂0eiϕ

]
eiωt − 1

ih̄ω

[
J |0〉 〈1|+ V0

2
P̂0e−iϕ

]
e−iωt

' V0

h̄ω
sin(ωt + ϕ)P̂0,

(3.54)

where we considered again the limit J � h̄ω. As a result the main contributions to the
micro-motion operator are

M̂(t) = ωtP̂1 +
V0

h̄ω
sin(ωt + ϕ)P̂0, (3.55)

which is in agreement with the Magnus-expansion approach discussed above.
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3.2 Peierls phases and multi-photon processes

For the remaining part of this chapter we restrict our discussion to the perturbative
treatment of time-periodic Hamiltonians based on the Magnus expansion. For simplicity
we omit the index M and denote the Floquet Hamiltonian in the rotating frame as
ĤM

F ≡ ĤF. The theoretical description of the two-level system can be easily extended
to more general situations sometimes called multi-photon processes where an integer
multiple of the driving frequency ω is used to restore resonant tunneling between the
two levels |0〉 and |1〉 [130, 131]. Let us consider the following periodically driven two-
level system described by the Hamiltonian

Ĥ(t) = J (|0〉 〈1|+ |1〉 〈0|) + ∆P̂1 + V0 cos(ωt + ϕ)P̂0, (3.56)

where ∆ is the energy difference between the two levels. For resonant driving ∆ = νh̄ω,
with ν ∈ Z, the effective time-independent Hamiltonian takes a very simple form
using the integral representation of the Bessel functions of the first kind Jν(x) =

1
2π

∫ 2π
0 ei(ντ−xsinτ)dτ,

ĤF = JJν

(
V0

h̄ω

) [
eiνϕ |0〉 〈1|+ e−iνϕ |1〉 〈0|

]
. (3.57)

In the limit ω → ∞ this Hamiltonian is exact for the dynamics described in the rotat-
ing frame as shown in Sect. 3.1.4. The phase factor νϕ scales with the order ν of the
multi-photon process. In the context of this thesis we consider zero-order ν = 0 as well
as first-order ν = ±1 processes. Zero-order processes do not lead to complex couplings
but the strength of the tunnel coupling is renormalized according to the zeroth order
Bessel function J0(V0/[h̄ω]), which was observed experimentally in Ref. [124]. First-
order processes on the other hand lead to complex tunneling matrix elements; these
processes are typically referred to as laser-assisted tunneling. Note that there is an impor-
tant difference regarding the sign of the energy offset ∆ or driving frequency ω, which
is summarized in the table below.

Resonance condition Effective coupling strength Phase factor
h̄ω = ∆ JJ1 (V0/[h̄ω]) ϕ

h̄ω = −∆ JJ1 (V0/[h̄ω]) −ϕ + π

The effective coupling strength induced by the laser-assisted tunneling is independent
of the sign in the resonance condition h̄ω = ±∆, the phase factor, however, does depend
on it. In particular, the sign of the phase changes, which will be important for the
experimental realization of different flux distributions as discussed in chapter 5–7.
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Figure 3.1: Schematic drawings of the periodically modulated one-dimensional lattice poten-
tials. a Superlattice potential with two non-equivalent sites (α = {0, 1}) with energy offsets
∆m = (−1)m∆/2. b Wannier-Stark ladder with linearly increasing on-site energy ∆m = m∆
(α = {0, 1, 2, 3, ...}). The different colors refer to different sectors α. In both cases the energy
offset between neighboring sites is ∆ which inhibits tunneling along the x-direction for ∆ � Jx,
with bare tunnel coupling Jx. Resonant tunneling can be restored in both cases with a single-
harmonic driving at frequency h̄ω = ∆. (Figure adapted from Ref. [66])

3.3 Periodically driven one-dimensional lattices

The description of a time-periodic system in terms of a time-independent Floquet Hamil-
tonian ĤF might not always be sufficient since the evolution within one period might
give rise to large oscillations of experimental observables. In this section we discuss
the micro-motion M̂(t) within one Floquet period for periodically modulated one-
dimensional lattice potentials using two examples, which are illustrated in Fig. 3.1. We
consider the dynamics of atoms in a one-dimensional lattice potential with additional
site-dependent energy offsets ∆m described by the following tight-binding Hamiltonian

Ĥ(t) = −Jx ∑
m

(
â†

m+1 âm + h.c.
)
+ ∑

m
(V0sin(ωt + ϕm) + ∆m) n̂m , (3.58)

where ϕm is the site-dependent phase of the driving. In the context of this thesis only
potentials of the form ∆m+1 − ∆m = ±∆ = ±h̄ω are considered but the model can be
extended to other potentials where the energy offset between neighboring sites is an
integer multiple of ∆ as demonstrated in Ref. [66]. The Hamiltonian in Eq. (3.58) is
periodic in time Ĥ(t + T) = Ĥ(t) and is indeed of the form given in Eqs. (3.25) and
(3.26). The static divergent term of the Hamiltonian can be written in the following
form

Ŝ = ∑
m

∆mn̂m = h̄ω ∑
α

αN̂α , N̂α = ∑
m∈α

n̂m, (3.59)

where N̂α is the number operator for the sector α and α ∈ Z. The sites m that belong
to one sector α are defined by the on-site potential ∆m. For the potential illustrated in
Fig. 3.1a there are two different sectors α = {0, 1}, where every other site belongs to the
same sector. In the case of the Wannier-Stark ladder depicted in Fig. 3.1b, the number
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of sectors is infinite and each site belongs to a different sector. The number operator N̂α

on the other hand can be written in terms of projectors

N̂α = ∑
nα

nαP̂nα , N̂α |nα〉 = nα |nα〉 . (3.60)

Using this expression together with Eq. (3.59) we obtain

Ŝ = h̄ω ∑
α,nα

(αnα)P̂nα . (3.61)

We start by performing a unitary transformation to the rotating frame as defined in
Eqs. (3.37)–(3.38) using the unitary operator

R̂(t) = exp

[
i ∑

m

(
− V0

h̄ω
cos(ωt + ϕm) +

∆mt
h̄

)
n̂m

]
= exp

[
i ∑

m
χm(t)n̂m

]
, (3.62)

which leads to the new transformed Hamiltonian

Ĥ(t) = −Jx ∑
m

(
eiηm(t) â†

m+1 âm + h.c.
)

, (3.63)

with ηm(t) = χm+1(t)− χm(t) determined by the following equations

ηm(t) = [−cos(ωt + ϕm+1) + cos(ωt + ϕm)]V0/(h̄ω) + (∆m+1 − ∆m)t/h̄

= −2V0

h̄ω
sin
(

ωt +
ϕm+1 + ϕm

2

)
sin
(

ϕm+1 − ϕm

2

)
+ (∆m+1 − ∆m)t/h̄

=: −η0 sin
(

ωt +
ϕm+1 + ϕm

2

)
+ (∆m+1 − ∆m)t/h̄. (3.64)

Using the equations above we study the micro-motion for different on-site potentials
∆m, which is fully determined by the unitary operator R̂(t) in Eq. (3.62) as shown above
(Sect. 3.1.4).

3.3.1 Micro-motion staggered superlattice potential

The staggered superlattice potential illustrated in Fig. 3.1a consists of two non-equivalent
lattice sites (two sectors α) with on-site potential energies that alternate in sign along the
direction of the staggered potential ∆m = (−1)m∆/2. Hence, the micro-motion operator
is determined by

M̂stagg(t) = ∑
m

(
− V0

h̄ω
cos(ωt + ϕm) +

∆t
2h̄

(−1)m
)

n̂m. (3.65)

First of all we note that M̂(t) is proportional to the number operator n̂m. Consequently,
the density distribution of the wave function is not affected by the micro-motion contrary
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to the quasimomentum distribution. With non-interacting bosonic atoms this distribu-
tion can be probed using standard time-of-flight (TOF) imaging (see also Sect. 5.2) [29].
The micro-motion operator consists of two distinct parts:

M̂(t)mod = ∑
m

(
− V0

h̄ω
cos(ωt + ϕm)

)
n̂m, (3.66)

and

M̂(t)pot = ∑
m

(
∆t
2h̄

(−1)m
)

n̂m. (3.67)

The first one is associated with the periodic on-site modulation and is proportional to
γ = V0/(h̄ω). To gain more insight into the properties of this operator we study the
evolution of a state |GS〉 under the action of M̂(t)mod,

|ψ(t)〉 = exp[iM̂(t)mod] |GS〉 . (3.68)

The initial state at t = 0 is chosen as the ground state |GS〉 of the normal lattice without
periodic driving (V0 = 0) and without potential energy offset between neighboring sites
(∆ = 0). This state exhibits a single quasimomentum component at zero momentum
(black solid line in Fig. 3.2). For V0 > 0 the operator M̂(t)mod generally gives rise to
additional momentum components. For a linear phase distribution ϕm = 2παm these
components are separated by multiples of δk = 2πα/a, where a is the lattice constant
and the position in the lattice is defined as R = maêx, with êx the unit vector along
x [61]. In Figure 3.2 the quasimomentum distribution is plotted for α = 1/4, different
values of the modulation amplitude V0 and different evolution times t. As expected
additional momentum components appear in the distribution at period δk = π/(2a).
The amplitudes of the individual components oscillate periodically with period Tα, but
their positions remain unchanged.
The second part M̂(t)pot is determined by the potential which inhibits bare tunneling
for ∆� Jx. We perform similar calculations as before but this time we act with M̂(t)pot

on the ground state |GS〉 of the normal lattice

|ψ(t)〉 = exp[iM̂(t)pot] |GS〉 . (3.69)

The quasimomentum distribution of |ψ(t)〉 features oscillations between the momentum
components at zero and ±π/a with an oscillation period T = h/∆ (Fig. 3.3a). The
evolution starts at zero momentum for t = 0. After half an oscillation t = T/2 the
component at zero momentum disappears and the distribution shows only components
at the edge of the Brillouin zone (±π/a). For longer times the amplitudes of the different
momentum components oscillate but no additional components are populated.
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Figure 3.2: Typical momentum distribution after acting with the modulation-induced micro-
motion operator M̂(t)mod on an initial state with zero quasimomentum. The initial state is the
ground state of the unperturbed lattice potential with lattice constant a for V0 = 0 and ∆ = 0.
The momentum distribution was evaluated for various values of the modulation amplitude
γ = V0/(h̄ω) and ϕm = mπ/2 at time a t = 0 and b t = T/8. The distribution exhibits
additional momentum components separated by δk = π/(2a) whose amplitudes oscillate with
period T/4, T = 2π/ω.

3.3.2 Micro-motion Wannier-Stark ladder

The Wannier-Stark ladder denotes a periodic potential with linearly increasing on-site
potential along the direction of the lattice structure ∆m = m∆ as illustrated in Fig. 3.1b.
For this lattice potential the micro-motion operator is determined according to

M̂WS(t) = ∑
m

(
− V0

h̄ω
cos(ωt + ϕm) +

∆t
h̄

m
)

n̂m, (3.70)

which is very similar to the case of the staggered superlattice potential. The modulation-
induced component M̂(t)mod is again the same causing an equivalent micro-motion in
quasimomentum space as illustrated in Fig. 3.2. The second component however differs
from the two-site superlattice potential and is determined by

M̂(t)pot = ∑
m

(
∆t
h̄

m
)

n̂m. (3.71)

For a driving frequency ω = ∆/h̄ the micro-motion is associated with a constant drift
in momentum space with δk(t) = ωt/a. Hence, if the system is initially prepared in the
ground state of the unperturbed lattice with V0 = 0 and ∆ = 0, the momentum distri-
bution travels across the Brillouin zone while the corresponding amplitudes remain un-
changed. In Figure 3.3b we illustrate the evolution for a state |ψ(t)〉 using Eqs. (3.69) and
(3.71), where |GS〉 is again the ground state in the unperturbed lattice. After each period
of the driving T the momentum components travelled across the Brillouin zone once.
This contribution to the micro-motion operator is independent of the on-site modula-
tion. Consequently, all driving schemes based on the Wanner-Stark ladder will exhibit



3.4 Extension to two dimensions: artificial gauge fields 39

a b

-1 0 1
Momentum (π/a)

-1 0 1
0

0.5

1

0

0.5

1

Q
ua

si
m

om
en

tu
m

di
st

rib
ut

io
n 

(a
.u

.)

Q
ua

si
m

om
en

tu
m

di
st

rib
ut

io
n 

(a
.u

.)

Momentum (π/a)

t=T/8
t=0

t=T/4
t=T/2

t=T/8
t=0

t=T/4
t=T/2

Figure 3.3: Typical momentum distribution after acting with the on-site-potential induced
micro-motion operator M̂(t)pot on an initial state with zero quasimomentum. The initial
state is the ground state of the unperturbed lattice potential with lattice constant a for V0 = 0
and ∆ = 0. a The staggered on-site potential illustrated in Fig. 3.1a (∆ 6= 0) causes oscillations
between the quasimomentum components at zero and ±π/a with period T = h/∆. b In the case
of the Wannier-Stark ladder shown in Fig. 3.1b (∆ 6= 0) the micro-motion results in a constant
drift of the quasimomentum components with δk(t) = ∆t/h× 2π/a.

a drift of the momentum components in reciprocal space.

3.4 Extension to two dimensions: artificial gauge fields

In one dimension complex tunnel couplings can be engineered but they do not give
rise to a magnetic flux. The schemes presented above can be further extended to two
dimensions by introducing another lattice potential in the perpendicular direction. For
the 2D lattice the tight-binding Hamiltonian can be written as

Ĥ(t) = ∑
m,n

(
−Jx â†

m+1,n âm,n − Jy â†
m,n+1 âm,n + h.c.

)
+ ∑

m,n
(V0sin(ωt + ϕm,n) + ∆m) n̂m,n ,

(3.72)

where Jy is the tunneling amplitude along y. Note that tunneling is only inhibited along
the x-direction with the static potential ∆m. The modulation contains site-dependent
phases ϕm,n which depend both on the x- and y-coordinate and the position in the
lattice is defined as R = maêx + naêy, with êy the unit vector along y. The derivation
of the effective Hamiltonian discussed above also applies to modulated 2D lattices. We
perform the following unitary transformation as defined in Eqs. (3.37)–(3.38) using

R̂(t) = exp

[
i ∑

m,n

(
− V0

h̄ω
cos(ωt + ϕm,n) +

∆mt
h̄

)
n̂m,n

]
= exp

[
i ∑

m,n
χm,n(t)n̂m,n

]
. (3.73)
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Figure 3.4: Bessel functions J0(η0y) and J1(η0x) for the zero- and first-order process. a Tun-
neling along the y-direction is proportional to the zeroth order Bessel function of the first kind
J/Jy = J0(η0y) as given in Eq. (3.78), which depends on the driving amplitude γ = V0/(h̄ω)

and the phase difference δϕy = ϕm,n+1 − ϕm,n of the on-site modulation. b Restored effective
coupling along the x axis, which is proportional to the first order Bessel function of the first kind
K/Jx = J1(η0x). It also depends on the driving amplitude γ as well as the phase difference of
the modulation along the corresponding axis δϕx = ϕm+1,n − ϕm,n. The red dashed lines mark
the values used for the calculations depicted in the side panels.

The transformed Hamiltonian can be written in the following form, where we have to
take into account that the periodic modulation potentially affects the tunneling in both
directions

Ĥ(t) = −Jx ∑
m,n

(
eiηx

m,n(t) â†
m+1,n âm,n + h.c.

)
= −Jy ∑

m,n

(
eiηy

m,n(t) â†
m,n+1 âm,n + h.c.

)
, (3.74)

with the differential modulation amplitudes ηx
m,n(t) = χm+1,n(t)− χm,n(t) and η

y
m,n(t) =

χm,n+1(t)− χm,n(t) given by

ηx
m,n(t) = −η0x sin

(
ωt +

ϕm+1,n + ϕm,n

2

)
+ (∆m+1 − ∆m)t/h̄, (3.75)

η
y
m,n(t) = −η0y sin

(
ωt +

ϕm,n+1 + ϕm,n

2

)
, (3.76)

where
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Figure 3.5: Magnetic flux per plaquette generated by Hamiltonian (3.79). The artificial flux is
determined by the phase difference Φm,n = φm,n− φm,n+1 using the convention that the magnetic
field is pointing in the +êz-direction. Its value only depends on the y-coordinate of the phase
perpendicular to the direction of laser-assisted tunneling.

η0x =
2V0

h̄ω
sin
(

ϕm+1,n − ϕm,n

2

)
=: 2γsin (δϕx/2) , (3.77)

η0y =
2V0

h̄ω
sin
(

ϕm,n+1 − ϕm,n

2

)
=: 2γsin

(
δϕy/2

)
. (3.78)

In the following we consider only on-site potentials with |∆m+1 − ∆m| = ∆. Hence, for
resonant laser-assisted tunneling h̄ω = ∆, the effective time-independent Hamiltonian
can be written as

ĤF = − JxJ1 (η0x)︸ ︷︷ ︸
=:K

∑
m,n

eiφm,n â†
m+1,n âm,n − JyJ0

(
η0y
)︸ ︷︷ ︸

=:J

∑
m,n

â†
m,n+1 âm,n + h.c., (3.79)

where the phases φm,n ∝ (ϕm+1,n + ϕm,n)/2 depend on the phase distribution ϕm,n as
well as on the particular shape of the potential ∆m (Sect. 3.2). Along the x-direction
tunneling is restored by the periodic modulation resulting in an effective tunnel coupling
K accompanied by a complex phase φm,n. In the perpendicular direction tunneling is
potentially renormalized but real. In the limit V0 � h̄ω the effective coupling J is
determined by

J
Jy

= 1− 1
4

η2
0y +O(η4

0y) ' 1− γ2 sin2 (δϕy/2
)

. (3.80)

For small driving amplitudes the coupling is essentially given by the bare coupling Jy

and it decreases with increasing modulation strength γ. Additionally it also depends on
the phase difference between neighboring sites δϕy (Fig. 3.4a). If neighboring sites are
modulated in phase the differential modulation amplitude vanishes and the bare tun-
neling remains unchanged. The largest effect occurs for δϕy = π where the differential
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modulation amplitude is largest. A similar situation occurs along the x-direction with
the difference that without the driving, tunneling is inhibited by the potential energy
offset ∆. Its strength K depends on the phase difference δϕx and increases linearly with
the driving amplitude γ. In the limit V0 � h̄ω it is given by

K
Jx

=
1
2

η0x +O(η3
0x) ' γ sin (δϕx/2) . (3.81)

If the modulation is in phase (δϕx = 0) between neighboring sites tunneling cannot be
restored and the largest effect occurs once more for δϕx = π. This phase dependence
allows for a local control of the laser-assisted tunneling as discussed in chapter 7 and 8
[66, 73].
The Peierls phase-factors φm,n in the effective Hamiltonian (3.79) appear along the di-
rection of the laser-assisted tunneling and the flux per plaquette is defined according
to

Φm,n = φm,n − φm,n+1, (3.82)

where the direction of the magnetic field is defined along the +êz-direction. A schematic
drawing of the relevant tunnel couplings is shown in Fig. 3.5. Note that the value of the
flux only depends on the phase of the modulation along the y-axis δϕy. The evolution
of the phase along the x-axis δϕx only determines the strength of the effective coupling.
The model system presented in this chapter naturally gives rise to artificial fluxes that
are on the order of 2π and therefore constitute good candidates to enter the regime of
very strong magnetic fields on the order of one magnetic flux quantum. Similar methods
were developed for photonic crystals [82] and ion traps [65, 132].



Chapter 4

Overview of the experimental setup
and measurement techniques

The experiments presented in the context of this thesis were performed with bosonic
atoms (87Rb). For all measurements the atoms were first cooled below the critical tem-
perature for Bose-Einstein condensation (BEC) [133, 134], which for our experimental
parameters corresponds to about 100 nK. After that the atoms were loaded into optical
lattice potentials where the final measurements were carried out. The main experimen-
tal apparatus was designed about 15 years ago and is well described in Refs. [135, 136]
and a number of successive PhD theses [137–140]. During the past several modifications
have been made in particular regarding the final stage of the BEC preparation, which
takes place in a crossed optical dipole trap. The most recent description of the current
experimental setup can be found in Ref. [141].
The main apparatus consists of two vacuum chambers connected via a differential
pumping stage. This allows for a pressure gradient between the two chambers, such
that the pressure in the science chamber, where the experiments take place, can be a
few orders of magnitude smaller than the one in the chamber to which the Rubidium
reservoir is attached. In this first chamber the pressure p ≈ 10−8 − 10−9 mbar is dom-
inated by the partial pressure of Rubidium, which allows for an efficient loading into
a standard three-dimensional magneto-optical trap (MOT) [142]. After pre-cooling the
atoms in this configuration they are transported to an ultra-high vacuum (UHV) or sci-
ence chamber, with p ≈ 10−11 mbar, using a magnetic transportation scheme [135, 143].
There, the atoms are cooled further to reach quantum degeneracy via evaporative cool-
ing (Sect. 4.1). Subsequently they are loaded into optical lattice and superlattice po-
tentials (Sect. 4.2–4.3). Relevant experimental techniques for state manipulation and
detection are introduced at the end of this chapter (Sect. 4.4–4.6).
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4.1 Towards quantum degeneracy

The cooling sequence is carried out in three distinct sections of the main apparatus
(Fig. 4.1) and involves several stages: pre-cooling in a magneto-optical trap (red coils)
and optical molasses, magnetic transfer to the science chamber (green coils) and a two-
stage evaporative cooling in a magnetic quadrupole (yellow coils) and a crossed optical
dipole trap.

MOT coils

z

y
x

MOT section Transfer section UHV section

BEC coilsTransfer coils

10-8-10-9 mbar 10-11 mbar

Figure 4.1: Schematic drawing of the coil arrangement around the vacuum chamber. The
experimental apparatus is divided into three parts: the first chamber with a magneto-optical
trap (MOT, red coils) for initial trapping and cooling of the atoms, the transfer section (magnetic
transport using the green coils) with the differential pumping stage and the ultra-high vacuum
(UHV) or science chamber with a magnetic quadrupole trap (yellow coils), where the atoms
are further cooled evaporatively. The black lines show the equipotential lines of the trapping
potential at a certain time during the magnetic transfer. (Figure adapted from Ref. [136])

Magneto-optical trap and optical molasses Each experimental cycle starts by trap-
ping 87Rb atoms in a standard three-dimensional magneto-optical trap (3D-MOT) [142,
144, 145]. Cooling in such a trap is achieved via the combined effect of slowing down
the atoms due to absorption of photons and the spacial confinement of the underlying
magnetic trap (Fig. 4.1). In a 3D-MOT the atoms are typically cooled along all three
spatial directions using two counter-propagating laser beams along each direction. The
MOT is operated on the D2-line of Rubidium (λD2 = 780 nm)1, which corresponds to
the |S1/2〉 → |P3/2〉 transition as illustrated in Fig. 4.2a [146]. After 15 s operation time
about 109 atoms are obtained with final temperatures below 1 mK. In order to reach
higher densities the magnetic field gradients are increased at the end of the MOT phase
[147]; this causes additional heating which is subsequently compensated by cooling the
atoms in an optical molasses [148]. At the end final temperatures in the low µK-regime

1TOPTICA, DL-PRO 100 (output power: 80 mW); TOPTICA, DL-PRO 100 with an additional tapered
amplifier (output power: 1 W)
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Figure 4.2: Illustration of the atomic transitions and laser beams used in the experimental
setup. a Simplified level scheme of 87Rb with |S1/2〉 being the ground state and δν the detuning
relative to the atomic transition |S〉 → |P〉. Laser beams with negative frequency detuning δν < 0
are called red-detuned, while for positive detuning δν > 0 they are denoted as blue-detuned.
b Schematics of the laser-beam configuration involved in the two-stage evaporative cooling (see
main text). The optical plug (λplug = 767 nm) used to minimize Majorana losses during the rf-
evaporation is aligned along the vertical direction. The second evaporation step is performed in
a crossed optical dipole trap (λDT = 1064 nm), where the beams are aligned along the principal
axes in the horizontal plane. c Schematic drawing of the optical lattices, which are created by
retro-reflected laser beams. The corresponding mirrors are illustrated as gray plates. The vertical
lattice is red-detuned to the atomic transition with λz = 844 nm. In the horizontal plane there
are two lattice potentials along each axis, a long and a short one with wavelengths λs = 767 nm
and λl = 1534 nm respectively. The superposition of these two standing waves generates a
bichromatic superlattice potential. The atomic cloud is illustrated as a gray sphere.

are reached. As a last step, all atoms are optically pumped into to the |F = 1, mF = −1〉
state of the ground-state manifold |S1/2〉, which is a low field seeking state. To initialize
the magnetic transport the atoms are loaded into a magnetic quadrupole trap with effi-
ciencies up to 70%. The lifetime in this trap is about τ ' 8 s [141], where τ is defined as
the 1/e-decay of the atom number.

Magnetic transport Starting from the MOT-chamber the atoms are transferred mag-
netically across an "L-shaped" distance of about 33 cm to the science chamber; 20 cm
along the y-axis and 13 cm along x. The efficiency of the transfer can be up to 98% and
takes 4 s in the current setup. The coil configuration consists of nine pairs of overlapping
quadrupole coils (Fig. 4.1) that are designed such that the trap geometry stays constant
during the transport to minimize heating effects [143]. At the end of the transport the
atoms are loaded into a final magnetic quadrupole trap in the science chamber (large yel-
low coils in Fig. 4.1). There are two main advantages arising from the transport design.
First, it allows for a simple implementation of the MOT because it is efficiently loaded
from the background vapor at a relatively high pressure; there is no need for an addi-
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tional deceleration of the atoms by using a Zeeman slower [149] or a two-dimensional
MOT [150]. At the same time the pressure in the science chamber can be much lower
which increases the lifetime of the atoms by roughly one order of magnitude [141]. The
second advantage is the large optical access around the science chamber due to the spa-
tial separation of the MOT setup. This increases the experimental flexibility regarding
the implementation of additional laser beams for state preparation and manipulation.

Evaporative cooling The final cooling stage consists of a two-stage evaporative cooling
process [151–153]: Radio-frequency (rf) induced evaporation in an optically plugged
magnetic quadrupole trap and forced evaporation in a crossed optical dipole trap. The
general operation principle of evaporative cooling is to successively remove the hottest
atoms from the trap and letting the remaining atoms rethermalize while increasing the
phase-space density at the same time. Evaporative cooling with Alkali atoms was first
demonstrated in magnetic traps [154, 155]. Thereby rf-fields are used to transfer atoms
from a magnetically trappable to a magnetically untrappable state in an energy selective
manner. The trap configuration is kept constant during the evaporation, which allows
for an efficient rethermalization of the atoms by maintaining large collision rates.
During the rf-evaporation in the magnetic quadrupole trap atoms can undergo non-
adiabatic spin flips (Majorana losses) at the center of the trap where the magnetic field
vanishes. This potentially leads to undesired atom losses. To overcome this problem
various other types of traps could be used which do not exhibit a zero-crossing of the
magnetic field, such as TOP (time-averaged orbiting potential) [154], Ioffe [156] or Ioffe-
type traps [157]. In previous experiments the small yellow coil in Fig. 4.1 was used to
realize a Ioffe-type trap. In the current experimental setup we use a tightly focused
blue-detuned laser beam2 (λplug = 767 nm, δν > 0) along the z-direction (Fig. 4.2b),
which is focused at the atom position to a waist of about 20 µm with a typical power
of ∼ 500 mW. It creates a repulsive potential [158] at the point of zero-magnetic field
and prevents the atoms from reaching field regimes where the probability for Majorana
losses is high. The total rf-evaporation takes 8.5 s and the final cut-off frequency is
νrf = 2 MHz. After this pre-evaporation stage the atoms are loaded into a crossed optical
dipole trap3 with wavelength λDT = 1064 nm (Fig. 4.2b) and a maximum potential depth
of about U0 = kB × 40 µK, where kB is the Boltzmann constant.
In principle evaporation in an optical trap can be achieved by lowering the intensities
of the optical dipole trap beams, however, this leads to a decrease of the collision rate,
which may in turn cause inefficient rethermalization [159]. One possibility to overcome
this issue and to reach runaway evaporative cooling is to apply an external force during
the evaporation [160]. This causes only a weak deconfinement of the dipole trap and

2Chapter 5: Ti:sapphire laser Coherent, MBR-110 (output power: 4.5 W) pumped by Coherent Verdi V18
(output power: 18 W); chapter 6–8: Ti:sapphire laser M Squared, SolsTis (output power: 2.4 W) pumped by
Lighthouse Photonics Sprout-G V10 (output power: 10 W)

3YLR-20-LP IPG-Laser, output power: 20W
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forces the hottest atoms to leave the trap in the direction of the force. In our experiments
we use gravity as a force, which allows us to reach quantum degeneracy within an
additional evaporation time of 8 s.

4.2 Optical lattice potentials

All measurements presented in the scope of this thesis were carried out in periodic
optical potentials [158] of different dimensionality (1D-3D) by adiabatic loading of a BEC
into several standing waves of laser light [161]. Each standing-wave potential is created
by focusing a far-detuned laser beam onto the atom position with a waist of typically
∼ 125 µm and retro-reflecting it with a mirror (Fig. 4.2c). Depending on the sign of the
frequency detuning δν relative to the atomic transition (Fig. 4.2a) the atoms are either
located at the intensity maxima (red detuned, δν < 0) or minima (blue detuned, δν > 0).
These periodic structures are called optical lattice potentials. In the horizontal plane
there are two blue detuned lattices with wavelength λs = 767 nm for which we use the
same laser as for the optical plug described in the previous section. The vertical lattice4

is red detuned with wavelength λz = 844 nm (Fig. 4.2c). Each of these beams passes
through an acousto-optic modulator which is employed to stabilize the intensity of the
beams individually with a feedback loop [162] and to introduce a frequency offset of at
least 20 MHz between lattice beams, that are generated with the same laser, in order to
avoid cross-interference. Additionally the polarizations of the beams are chosen to be
orthogonal to further reduce possible cross-interference terms. Neglecting the overall
confinement due to the Gaussian beam profile the 3D potential can be described by the
following equation

VLat(r) = −Vx cos2(ksx)−Vy cos2(ksy)−Vz cos2(kzz), (4.1)

where Vi, i = {x, y, z} is the potential depth and ki = 2π/λi, i = {s, z} is the wave vector.
The typical energy scale of an optical lattice is determined by the corresponding photon
recoil energy Eri = h̄2k2

i /(2m), i = {s, z}, where m is the mass of the atom. The motion
of the atoms in such a periodic crystal-like structure mimics the behavior of electrons in
a solid state crystal, where the atoms play the role of the electrons [29, 44]. The typical
lattice constant ai = λi/2 of optical crystals is several orders of magnitude larger than
typical lattice spacings in a real solid, which are on the order of a few angstroms. This
opens up many new possibilities to study condensed matter Hamiltonians by looking at
observables not accessible in typical solid state experiments as demonstrated e.g. with
high-resolution quantum gas microscopes that can resolve single atoms on individual
lattice sites [49, 50, 163].
The Schrödinger equation of a particle in a periodic potential can be solved using Bloch’s

4Ti:sapphire laser Coherent, MBR-110 (output power: 1.5 W) pumped by Coherent Verdi V10 (output
power: 10 W)
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L≈20cmAtom cloud: d≈30μm Mirror

Figure 4.3: Illustration of the experimental setup of the bichromatic superlattice. The super-
lattice potential (black) consists of two standing waves with λs = 767 nm (blue) and λl = 2λs

(red). Due to a small frequency offset ∆ν between the two lasers the standing waves accumulate
a relative phase until they reach the atom position which is proportional to the distance L be-
tween the atoms and the mirror. The relative phase is approximately constant over the extent of
the cloud as d� L. Note that distances are not to scale.

theorem [84, 85], which is very similar to the more general Floquet’s theorem, that was
introduced in Sect. 3.1 for time-periodic Hamiltonians. For shallow lattices V < 5Er

the atoms are delocalized over several lattice sites and the system is well described in
terms of Bloch functions. For deeper lattice potentials the atomic wave functions become
more and more localized and it is convenient to choose a localized basis to describe the
dynamics. These are the so-called Wannier functions, which are a superposition of Bloch
functions. Considering only the lowest vibrational band the dynamics can be described
by the Bose-Hubbard Hamiltonian [43]

ĤBH = −J ∑
〈m,n〉

â†
m ân + ∑

m
∆mn̂m +

1
2

U ∑
m

n̂m(n̂m − 1), (4.2)

where â†
m and âm are the bosonic creation and annihilation operators on site m and

n̂m is the corresponding number operator. The Hubbard parameter J is the tunneling
matrix element between neighboring sites n and m, ∆m is the potential energy offset
on the corresponding site and U determines the on-site interaction of two atoms that
are located on the same lattice site. For the measurements described in the context of
this thesis the on-site interaction U is neglected, unless stated otherwise, because it is
either much smaller than all other energy scales of the system or the experiments were
performed with single particles in isolated few-site potentials.

4.3 Superlattice potential

Besides the dimensionality also the unit cell of the crystal can be modified. By imple-
menting superlattice potentials in the horizontal plane a periodic potential whose unit
cell contains two or four non-equivalent lattice sites can be realized. Along each of the
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two axes a bichromatic superlattice potential can be created by superimposing an ad-
ditional standing wave5 with wavelength λl = 2λs = 1534 nm (Fig. 4.2c). The phase of
each standing wave is fixed at the position of the retro-reflecting mirror, however, by
introducing a small frequency difference ∆ν = 2νl − νs, νl(s) = c/λl(s), between the two
lasers the two standing waves accumulate a relative phase until they reach the atom
position according to

ϕSL =
2π

c
∆νL, (4.3)

where c is the speed of light and L is the distance between the retro-reflecting mirror
and the position of the atomic cloud (Fig. 4.3). The variation of the phase over the extent
of the atomic cloud with a typical diameter of d ≈ 30µm can be safely neglected. For
our experimental parameters it varies by less than 1 mrad. A detailed description of the
setup and the frequency stabilization can be found in Ref. [139, 141, 164]. The resulting
superlattice potential along x can be written in the following form

V(x) = Vxl cos2(klx + ϕx
SL/2) + Vx cos2(ksx), (4.4)

where kl = 2π/λl = ks/2 and Vxl is the depth of the long lattice. The lattice depths
Vx and Vxl can be controlled independently. The superlattice potential along y is given
by an analog expression, where Vyl and Vy are the corresponding lattice depths along
y. The relative phases ϕx

SL and ϕ
y
SL can be adjusted individually for the two axes and

determine the shape of the superlattice potential as illustrated in Fig. 4.4a.

4.3.1 Phase calibration

To calibrate the phase of the superlattice potential [139] we typically load a BEC adia-
batically within 200 ms into the ground state of a three-dimensional optical lattice using
the following parameters: Vx = Vy = 5.0(2)Ers, Vz = 5.0(2)Ez and Vxl = 10.0(3)Erl,
with Erl = h̄2k2

l /(2m); the phase ϕx
SL is adjusted for each measurement by controlling

the frequency difference ∆νx as defined in Eq. (4.3). The lattices are shallow enough to
remain in the superfluid regime [44] where the atoms are delocalized over the lattice
and the phase of the ground-state wave function between different lattice sites is con-
stant. After releasing the atoms suddenly from the trap the corresponding momentum
distribution can be obtained after TOF [29] using standard absorption imaging [165].
For the symmetric double well configuration (ϕx

SL = 0) the periodicity of the superfluid
wave function is determined by the lattice constant of the short lattice a = λs/2. For
this reason we observe a distribution with momentum peaks separated by kx = ±2ks

(Fig. 4.4b), which is the reciprocal lattice vector of the periodic potential. The envelope

5Chapter 5–7: Two Erbium doped fiber amplifier from NP Photonics (output power: 5 W) one for each
axis; chapter 8: Laser for x-lattice was changed to: Seed laser RIO Orion Laser Source (output power:
5− 10 mW) with fiber amplifier Nufern NuAMP (output power: 6 W)
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Figure 4.4: Influence of the relative phase between the two standing waves used to create the
superlattice potential. a Illustration of the superlattice potential given in Eq. (4.4) for Vl = V
and different values of the relative phase ϕSL. For ϕSL = {0, π, . . .} we refer to the potential as
symmetric double-well configuration while for ϕSL = {π/2, 3π/2, . . .} we denote it as staggered
superlattice. Any value in between results in a tilted double-well configuration. b Phase cali-
bration of the superlattice potential along x. Fraction of atoms in the momentum components
kl = ±2kl = ±ks (dashed boxes in the inset) corresponding exclusively to the long lattice spac-
ing al = λl/2 as a function of the superlattice phase ϕx

SL, which is controlled by the frequency
difference ∆νx according to Eq. (4.3). The color code illustrates the connection between the shape
of the superlattice potential and the measured fraction. For the symmetric double-well config-
uration the lattice constant is given by the short lattice spacing as = λs/2 and the amplitude
of the momentum components at kx = ±2kl almost disappears. The separation between the
two minima ∆νx = 0.74(1)GHz corresponds to a phase shift δϕx

SL = π. The dashed lines are
guides to the eye. The inset shows a typical experimental image obtained after 10 ms TOF using
standard absorption imaging.

of the pattern is determined by the Fourier transform of the on-site wave function.
If the phase is increased away from the symmetric configuration the double-well po-
tential becomes more and more asymmetric and momentum components at kx = ±2kl

appear in the TOF images. The amplitude of the momentum components depends on
the relative population of the atoms on the two sites of the unit cell. Above a certain
value of the phase atoms only populate the sites with lower energy and the periodicity
is solely given by the long lattice constant al = λl/2. At this value of the phase the
fraction of atoms diffracted into the momentum peak at kx = ±2kl is largest. Increasing
the phase even further does not influence the distribution anymore since only the lower
energy sites are populated and the particular shape of the potential does not influence
the periodicity of the ground-state wave function.
For even larger values of the phase again a symmetric double-well configuration is
reached where the peaks at kx = ±2kl almost disappear. The fraction of atoms appear-
ing at kx = ±2kl is expected to change periodically as a function of the superlattice
phase in agreement with the experimental data depicted in Fig. 4.4. This calibration
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Figure 4.5: Calibration of the superlattice phase ϕx
SL using spectroscopy measurements. a

Schematic drawing of the superlattice potential with energy offset ∆, inner-well coupling Jx and
inter-well coupling J′x. b Typical experimental data obtained from a spectroscopy measurement
for ϕx

SL = 0.39(2)π. The fraction of atoms transferred to even sites is measured as a function
of the modulation frequency ω. The solid line shows the fit of a Lorentzian to determine the
resonance condition ω = ∆/h̄. c Measured energy offset ∆ obtained from spectroscopy measure-
ments as shown in (a) as a function of the superlattice phase ϕx

SL. The offset exhibits a maximum
for ϕx

SL = π/2, which corresponds to the staggered superlattice potential. The solid line is a
guide to the eye. (Figure adapted from Ref. [69])

method is very well suited for a first calibration of the superlattice phase [141, 164]. For
a more precise characterization of the superlattice potential spectroscopy measurements
can be performed as discussed in the following section.

4.3.2 Calibration of the staggered superlattice potential

Depending on the value of the superlattice phase ϕSL an energy offset ∆ is intro-
duced between neighboring sites (Fig. 4.5a), which exhibits a maximum for ϕSL = π/2
(Fig. 4.4a). This offset can be determined experimentally with spectroscopy measure-
ments using lattice modulation or laser-assisted tunneling [69–71, 126], see also chap-
ter 3. If the energy offset is much larger than the coupling between neighboring sites
∆� J, J′ tunneling is inhibited and all dynamics is frozen along the corresponding axis.
By applying a periodic driving with frequency h̄ω = ∆ tunneling can be restored reso-
nantly. In this section calibration measurements of the superlattice potential along x are
presented (Fig. 4.5).
The experimental sequence started by loading the atoms adiabatically within 200 ms
into a 3D optical potential. The lattice parameters were Vxl = 5.0(2)Erl, Vx = 9.0(3)Ers,
Vy = 20(1)Ers, Vz = 20(1)Ez and ϕx

SL > 0. The vertical lattice was used to isolate dif-
ferent planes but in general it has no influence on the calibration measurements. The
ground state in this superlattice potential corresponds to a state, where all atoms oc-
cupy the lower energy sites, which are denoted as odd sites (Fig. 4.5a). The energy
offset was chosen to be large ∆ � Jx, J′x compared to the bare hopping amplitudes
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in order to inhibit tunneling to even sites. After suddenly switching on the modula-
tion facilitated by the setup described in Sect. 5.3, the fraction of atoms transferred to
even sites neven = Neven/N was measured as a function of the modulation frequency ω

(Fig. 4.5b); here N is the total atom number and Neven the atom number on even sites,
which was evaluated using the site-resolved detection technique introduced in Sect. 4.6.
In all spectroscopy measurements the modulation was switched on for less than half a
Rabi oscillation, t < h/(4K), where K is the restored tunnel coupling given in Eq. (3.81)
for δϕx = π/2. The measured transfer exhibits a maximum if the frequency difference
is resonant with the energy offset ω = ∆/h̄.
Note that there can be corrections to the resonance frequency on the order of Jx/∆.
Related effects are discussed in Sect. 3.1.4 for the case of a two-level system. The reso-
nance frequency which is calibrated experimentally using spectroscopy measurements
always corresponds to the exact energy gap Egap between the energy levels as defined
in Eq. (3.44). For typical experimental parameters ∆/Jx ' 30 the resonance condition is
well approximated by ω = ∆/h̄ and corrections of order Jx/∆ can be safely neglected
in the theoretical discussion. In Sect. 5.7, however, we are going to discuss an exception,
where ∆/Jx ' 3.56 and this approximation is not valid anymore. In this case the exact
resonance condition has to be incorporated in the derivation of the effective Hamilto-
nian.
Beyond that the energy offset ∆ was measured as a function of the superlattice phase
ϕx

SL as illustrated in Fig. 4.5c. It exhibits a maximum at ϕx
SL = π/2, which corresponds

to the staggered superlattice configuration. For our parameters the maximum energy
offset was evaluated to be ∆/h = 4.4(1) kHz. The effective coupling strengths for all
measurements depicted in Fig. 4.5b and c were on the order of K/h = 30 Hz [69]. The
maximum amplitude of the resonance shown in Fig. 4.5a is neven = 0.5, which is a state
with equal population on all lattice sites.

4.4 Calibration of the tunnel coupling

The tunnel coupling between neighboring sites is determined experimentally by ob-
serving Josephson oscillations in isolated double well potentials, where the inner-well
coupling J is much larger than the inter double-well coupling J′, so that all dynamics
is restricted within the two sites of the double-well potential (Fig. 4.5a). The measure-
ments discussed in the following section were performed along the x-axis making use
of the laser-assisted tunneling method described in Sect. 5.3. We note however that this
scheme is very general and can be applied equally well to measure bare tunnel couplings
or renormalization of the tunneling in the presence of a periodic on-site modulation as
derived in Eq. (3.80). Here we apply a periodic driving with amplitude V0, frequency
h̄ω = ∆ and a phase difference δϕx = π/2 between neighboring sites, such that the
restored resonant tunnel coupling is given by K = JxJ1(

√
2V0/∆) as determined by
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Figure 4.6: Calibration of the effective tunnel coupling induced by the laser-assisted tunneling
method introduced in Sect. 5.3. a Rabi oscillations between odd and even sites triggered by the
lattice modulation as a function of the modulation time tmod for Jx/h = 0.77(4) kHz. The solid
line is a damped-sine fit to extract the oscillation frequency ωK = 2K/h̄ which corresponds to
K/h = 0.23(1) kHz. b Measured effective inner-well coupling K as a function of the bare tunnel
coupling Jx. The solid line is a linear fit to our data, where the offset was fixed to zero. The
horizontal error bars depict the uncertainty in the calibration of Jx, which is mainly determined
by the uncertainty of the lattice-depth calibration. The vertical error bars show the fit error
obtained from the damped-sine fits as depicted in (a). (Figure adapted from Ref. [69])

Eq. (3.81).
The experimental sequence started by loading a BEC within 200 ms into a 3D optical
lattice in the Mott-insulating (MI) regime [44] with Vxl = 35(1)Erl, Vy = 30(1)Ers and
Vz = 30(1)Ez. The atoms were then loaded into the odd sites of the double-well po-
tential by ramping up the short lattice along x within 10 ms to its final value, which
was varied in the range Vx = 8.5(1) − 13.5(1)Ers. The relative phase was chosen in
order to create a tilted double-well potential (Fig. 4.5a). The energy offset ∆/h ≈ 4.4kHz
was calibrated independently for each potential configuration Vx by performing spec-
troscopy measurements as described in the previous section. The energy offset between
neighboring sites was much larger than the coupling strength ∆ � Jx such that all
atoms initially populate odd sites and tunneling to even sites is inhibited. After in-
stantaneously switching on the resonant modulation, atoms undergo tunnel oscillations
between even and odd sites (Fig. 4.6a). To determine the effective coupling strength we
measured the fraction of atoms in even sites neven as a function of the modulation time
tmod. The populations oscillate with frequency ωK = 2K/h̄.
Ideally the oscillations would start at neven = 0 with an oscillation amplitude of one.
The reduced contrast is most likely due to an imperfect initial state preparation and dif-
ferent atom numbers inside the double-wells. The signal can be improved by applying
a filtering sequence as introduced in the following section, where all atoms on doubly
occupied sites are removed from the trap. The damping of the oscillations is most likely
due to inhomogeneities caused by the harmonic trap which leads to a dephasing of the
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Figure 4.7: Schematic drawing of the filtering sequence used to remove atoms on doubly
occupied sites. The filtering is applied on a MI state with at most two atoms per lattice site. The
sequence starts by transferring all atoms from the |F = 1, mF = −1〉 state to the |F = 2, mF = −1〉
state. In this state atoms on doubly occupied sites undergo spin relaxation collisions. After a
waiting time of typically 50 ms all double occupancies are removed from the trap. At the end
the atoms are transferred back to the |F = 1, mF = −1〉 state.

oscillations in the individual double-well potentials.
The induced inner-well coupling K was further measured as a function of the bare cou-
pling Jx (Fig. 4.6b). In agreement with theory, K = JxJ1(

√
2V0/∆), we found a linear

relation between the induced and the bare tunnel coupling, where the proportional-
ity constant K/Jx = 0.31(1) was evaluated from the linear fit depicted in (Fig. 4.6b).
The modulation amplitude V0 was additionally calibrated by loading the atoms into the
diagonal lattice created by the two running-wave beams for ω = 0 using parametric
heating [166]. The corresponding modulation amplitude was V0 = 2.1(1)Erl, which
results in J1(

√
2V0/∆) = 0.32(1) in agreement with the value extracted from the data

shown in (Fig. 4.6b). For very small coupling strengths the damping time is on the order
of the oscillation period, which is most likely the reason for the larger deviation of the
measured coupling strength at Jx/h = 0.20(1) kHz (Fig. 4.6b).

4.5 Filtering sequence

For some of the experiments it is required to prepare the atoms in a three dimensional
optical lattice with at most one atom per lattice site. This can be achieved by loading
a MI state where the inner-most shell has a density of n = 1 atoms per lattice site.
However, this regime crucially depends on the atom number and the external trapping
potential. In order to be more flexible regarding the experimental parameters we apply
a filtering sequence which allows us to remove possible double occupancies from the
trap (Fig. 4.7).
The experimental sequence starts by loading a MI state within 100− 200 ms in a pa-
rameter regime with at most two atoms per lattice site. The final lattice depths are
typically about 20− 30 Eri, i = {z, s, l}. After that the potential depths are ramped up
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Figure 4.8: Schematic drawing of the site-resolved detection sequence in an isolated double-
well potential. Initially the atoms are located in even and odd sites of the double-well potential.
Tunnel between neighboring sites is inhibited due to large potential barriers. As a first step
the atoms in odd sites are transferred non-adiabatically to the third energy level of the double-
well potential by rapidly increasing the energy offset between neighboring sites. Then, the short
lattice is removed adiabatically thereby preserving the band populations. Atoms initially located
in odd sites are transferred to the third Bloch band in the long lattice and atoms initially in even
sites stay in the lowest Bloch band.

to about 70− 120 Eri within 1 ms in order to increase the confinement and enhance the
collision rate. At this point the atoms are transferred from the |F = 1, mF = −1〉 state
to the |F = 2, mF = −1〉 state using a rapid adiabatic passage: In the presence of a mi-
crowave field at νMW ≈ 6.8 GHz, which corresponds to the hyperfine-splitting of the
ground state, a homogeneous offset magnetic field is swept across the resonance con-
dition. The sweep rate is small enough to stay adiabatic and allows us to achieve an
almost complete transfer to the |F = 2, mF = −1〉 state. In the F = 2 manifold atoms can
undergo hyperfine-changing collisions |F = 2〉 → |F = 1〉 leading to a decreased life-
time of atoms in the upper hyperfine manifold [167–169]. If two atoms collide at least
one of them falls down to the F = 1 manifold and an excess energy of about h× 6.8 GHz
is released. This is enough to expel both atoms from the trap. After a waiting time of
50 ms all atoms on doubly occupied sites are removed from the trap. The remaining
atoms are transferred back to the |F = 1, mF = −1〉 state and we are left with at most
one atom per lattice site.

4.6 Site-resolved detection

The superlattice potential offers a variety of manipulation and detection techniques
[33, 34]. Here, we discuss the site-resolved detection technique which is used for many
experiments presented in the context of this thesis. It relies on the transfer of atoms that
are located in certain sites of the lattice to higher Bloch bands and performing a subse-
quent band-mapping sequence [32], which allows us to determine the band occupations
after TOF.
The detection sequence starts by ramping up all lattices rapidly within 1 ms in order
to freeze out all dynamics; the long lattices are typically increased to about Vl = 70 Erl

and the short lattices to about V = 40 Ers. Subsequently the tilt between neighboring
sites is increased non-adiabatically such that atoms located on odd sites are transferred
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to the third energy level (Fig. 4.8). As a second step the barrier of the double-well po-
tential is ramped down adiabatically to Vs = 0 Erl. Hence, atoms initially located in
even sites stay in the lowest Bloch band of the long lattice and atoms initially in odd
sites end up in the third Bloch band. The higher-band occupations can be detected by
applying a subsequent band-mapping, where atoms in the n-th Bloch band are mapped
to the n-th Brillouin zone, n ∈ N. Figure 4.9 illustrates the connection between the site-
populations and higher band-occupations if the sequence is applied along x (Fig. 4.9a),
along y (Fig. 4.9b) or along both directions (Fig. 4.9c). This technique is applicable for a
single superlattice potential along x or y as well as a 2D superlattice potential. If both
superlattices are used at the same time a lattice potential with a unit cell that contains
four non-equivalent sites is formed. The new unit cell is typically denoted as plaque-
tte. In this potential configuration the detection sequence applied along the x-axis gives
access to the populations on the left and right bond in the plaquette,

nleft =
NA + ND

N
, nright =

NB + NC

N
, (4.5)

while along y it determines the populations on the upper and lower bond,

ndown =
NA + NB

N
, nup =

NC + ND

N
. (4.6)

By performing the site-resolved detection along both axes simultaneously (Fig. 4.9c) all
site occupations

nR =
NR
N

, R = {A, B, C, D}, (4.7)

can be determined; here N is the total atom number and NR is defined as the atom
number on site R in the plaquette [170].
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Figure 4.9: Schematic illustration of the connection between the site occupations and the
corresponding Brillouin zones. i Illustration of the four non-equivalent lattice sites in the unit-
cell of a two-dimensional superlattice (plaquette). ii Schematic drawing of the Brillouin zones
after applying the site-resolved detection technique a along x, b along y or c along both directions
simultaneously. iii Typical experimental images after applying the site-resolved detection along
the corresponding directions measured after 10 ms TOF; atoms are shown in black. Applying the
sequence along x allows us to evaluate nleft and nright and along y to obtain ndown and nup. All
site-populations nR, R = {A, B, C, D}, can be detected simultaneously by applying the sequence
along both directions at the same time. (Data in (a) and (b) taken from Ref. [70], data in (c) taken
from Ref. [73])
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Chapter 5

Staggered magnetic flux

The most straightforward implementation of artificial magnetic fields with laser-assisted
tunneling (chapter 3) using the experimental apparatus described in the previous chap-
ter is based on a staggered optical superlattice potential, which leads to a staggered
effective flux distribution with zero mean [68, 69]. The setup was inspired by the pro-
posals of Jaksch & Zoller [60] and subsequent work [61, 62], where complex hoppings
arise due to coupling of the motional and internal degrees of freedom of the atoms.
In contrast laser-assisted tunneling based on far-detuned running-wave beams does not
rely on the internal structure of the atoms [63–65], which makes it applicable to a large
variety of different systems. The resulting flux distribution alternates in sign along one
of the lattice axis and is uniform along the other. It has been shown that such sys-
tems can feature interesting strongly-correlated phases as discussed in Ref. [171]. Other
staggered flux distributions, arranged in a chequerboard-like pattern, were proposed
using a time-dependent bichromatic optical potential [172]. These systems were studied
theoretically in detail for Fermions, Bosons as well as Bose-Fermi mixtures [173–175].
Experimentally staggered fluxes were realized in triangular lattices, which served for
simulations of magnetic systems [67, 125].
Here, we start with a theoretical analysis of the ground-state properties of the single-
particle Hamiltonian of a square lattice with staggered flux (Sect. 5.1). The degeneracy
of the ground state depends on the field strength [171] as well as the tunnel couplings
and can be probed experimentally by measuring the momentum distribution (Sect. 5.5).
This experimental observable is indeed gauge-dependent (Sect. 5.2). In the experiment,
the gauge is determined by the phases that are imprinted by the laser-assisted tunnel-
ing scheme. The configuration chosen in our setup [68, 69] and a detailed derivation
of the corresponding Floquet Hamiltonian is given in Sect. 5.3 and 5.4, respectively. In
addition, direct measurements of the flux are presented, which were obtained by parti-
tioning the lattice into isolated four-site square plaquettes and detecting the evolution of
single atoms in these plaquettes (Sect. 5.6). A theoretical discussion of the corresponding
full-time dynamics can be found in Sect. 5.7.
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5.1 Single-particle Hamiltonian

The single-particle energy spectrum of a square lattice with staggered magnetic flux is
studied as a function of the anisotropy in the tunnel couplings along x and y and the
strength of the magnetic flux α. The generating vector potential can be chosen similar
to the usual Landau gauge (Sect. 2.3), such that the phase increases linearly along y and
alternates in sign along x. This system can be described by the following tight-binding
Hamiltonian

Ĥstagg = −K ∑
m,n

eiφm,n â†
m+1,n âm,n − J ∑

m,n
â†

m,n+1 âm,n + h.c. , (5.1)

φm,n = 2παn(−1)(m+1), (5.2)

where K and J are the coupling strengths along x and y respectively and tunneling along
x further involves the spatially-dependent phase factors φm,n (Fig. 5.1a). These phases
give rise to a staggered magnetic field Φm,n = 2πα(−1)m which is uniform along y and
staggered along x with zero mean (Fig. 5.1b) according to the definition in Eq. (3.82).
The presence of the Peierls phase-factors breaks the translation symmetry of the un-
derlying lattice and one needs to find the new magnetic translation symmetries of the
Hamiltonian. As shown in Sect. 2.2 the flux through one magnetic unit cell equals an
integer multiple of 2π. Hence, for the staggered flux lattice the smallest possible mag-
netic unit cell consists of two lattice unit cells, one with flux Φm,n = +2πα and one with
Φm,n = −2πα (gray shaded area in Fig. 5.1b); it encloses an area that is pierced by a
total flux ΦMU = 0. The magnetic unit cell is two times larger than the normal lattice
unit cell irrespective of the value of α and contains two non-equivalent sites, which we
denote as odd and even.
The magnetic translation operators can be found in a similar way as described in Sect. 2.2.
Note, however, that the phases θi

m,n are not directly determined by Eq. (2.9). Instead
they can be derived following the calculations in Appendix A, Eqs. (A.1)–(A.4), by
incorporating a priori the knowledge about the dimensions of the magnetic unit cell
AMU = 2a× 1a. As a result one obtains

θx
m,n = 0, θ

y
m,n =

−2πα , for m odd

0 , for m even
(5.3)

and

M̂2
x = ∑

m,n
â†

m+2,n âm,n, M̂1
y = ∑

m,n
â†

m,n+1 âm,n

e−i2πα , for m odd

1 , for m even
, (5.4)

where M̂2
x describes a translation by two lattice constants along x and M̂1

y a translation
of one lattice constant along y. Both operators commute with the Hamiltonian as well
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Figure 5.1: Peierls phase-factors φm,n and corresponding flux distribution Φm,n for a square
lattice with staggered flux. a Phase distribution in units of 2π as defined in Eq. (5.2). Along y
atoms can tunnel with amplitude J, while along x the coupling strength is complex Keiφm,n and
depends on the position in the lattice. The lattice constant is denoted by a. b Illustration of the
flux distribution Φm,n = 2πα(−1)m associated with Hamiltonian (5.1). The magnetic unit cell
(gray shaded area) is twice as large as the normal lattice unit cell independent of α and contains
two non-equivalent sites (odd and even).

as with each other. The simultaneous eigenstates which fulfill the generalized Bloch
theorem in Eq. (2.18) can be written in the following form

Ψm,n = eikxmaeikyna

ψo ei2παn, for m odd

ψe , for m even
(5.5)

where kx and ky are defined within the first magnetic Brillouin zone (FBZ), −ks/2 ≤
kx < ks/2 and −ks ≤ ky < ks and ks = π/a. Inserting this ansatz into the Schrödinger
equation associated with Hamiltonian (5.1)

EΨm,n = −K(eiφm,n Ψm+1,n + e−iφm−1,n Ψm−1,n)− J (Ψm,n+1 + Ψm,n−1) , (5.6)

the problem reduces to a two-dimensional eigenvalue equation

H(k)

(
ψe

ψo

)
= E

(
ψe

ψo

)
, (5.7)

with

H(k) = −2

(
J cos(kya) K cos(kxa)
K cos(kxa) J cos(kya + 2πα)

)
. (5.8)

Energy spectrum

Due to the larger size of the magnetic unit cell, the unperturbed tight-binding band
splits into two subbands (Fig. 5.2a). The bands touch at two Dirac cones in the FBZ
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Figure 5.2: Single-particle energy spectrum and ground states. a Energy spectrum for J/K = 1
and α = 1/4. The spectrum displays two subbands, that touch at the two Dirac cones at the
border of the magnetic Brillouin zone. b Number of ground states as a function of the flux
per plaquette α and coupling ratio J/K. Below a critical value of the flux, that depends on the
coupling ratio, there is a single minimum in the lowest band (gray shaded area). Above that
value the minimum splits into two and the spectrum exhibits two degenerate ground states. The
lower panel shows the momentum component along y of the lowest energy state for J/K = 1
and the panel on the right for α = 1/4.

located at (kx, ky) = (0.5,−α)π/a and (kx, ky) = (0.5, 1− α)π/a. Their positions only
depend on α but not on the coupling ratio J/K.
The lowest energy band exhibits either one or two minima within the FBZ depending
on the flux α and J/K (Fig. 5.2b). The momentum component along x of the lowest
energy state is always located at kx = 0, independent of J/K or α. Along y, however, the
spectrum exhibits either a single or a two-fold degenerate minimum.
For isotropic coupling J/K = 1 and below a critical value of the flux α < αc ' 0.29 the
lowest band exhibits a single minimum at ky = −πα/a. For larger values α > αc the
minimum splits and there are two degenerate ground states in the system (lower panel
in Fig. 5.2b). The critical value of the flux at which the bifurcation point occurs depends
on the coupling ratio. The function αc(J/K) is depicted with the solid black line in the
upper left panel of Fig. 5.2b.
The right panel in Fig. 5.2b shows the momentum components of the ground state for
constant flux α = 1/4. This situation was further studied experimentally in Sect. 5.5. Be-
low a critical value (J/K)c ' 1.41 the band exhibits a single minimum at ky = −π/(4a),
while above that value the minimum splits into two. In the limit J � K the momenta
approach the values ky = 0 and ky = −π/(2a).
The absolute positions of the ground-state momentum components (kx, ky) and the po-
sition of the Dirac cones are in general gauge-dependent. This has to be considered in
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cold-atom experiments, where the momentum distribution can be observed in TOF ex-
periments [29]. The ground-state properties in the presence of interactions are discussed
in Ref. [171] for isotropic couplings J/K = 1.

5.2 Gauge-dependence of expansion images

In classical electromagnetism a gauge transformation is of the form A→ A′ = A−∇ f ,
where A is the vector potential generating a magnetic field B = ∇ × A and f is a
scalar field that depends on time and position. This transformation leaves all fields and
therefore the Maxwell’s equations invariant

B′ = ∇×A′ = ∇×A−∇×∇ f︸ ︷︷ ︸
=0

= B. (5.9)

On a lattice with vector potential Am,n = (Ax
m,n, Ay

m,n) a discrete version of the gauge
transformation can be defined [171, 176, 177]

Ax
m,n → A′xm,n = Ax

m,n − ∆x fm,n

Ay
m,n → A′ym,n = Ay

m,n − ∆y fm,n,
(5.10)

where ∆i, i = {x, y} is the discrete form of the derivative

∆x fm,n = fm+1,n − fm,n, ∆y fm,n = fm,n+1 − fm,n, (5.11)

and fm,n is a scalar function. The vector potential Am,n gives rise to complex tunnel
couplings as discussed in Sect. 2.1. For the sake of simplicity all pre-factors such as the
electric charge q as well as h̄ are set to one such that the tight-binding Hamiltonian is
given by the following expression

Ĥ = −J ∑
m,n

(
eiAx

m,n â†
m+1,n âm,n + eiAy

m,n â†
m,n+1 âm,n + h.c.

)
, (5.12)

and the flux per unit cell is determined by

Φm,n = Ax
m,n + Ay

m+1,n − Ax
m,n+1 − Ay

m,n. (5.13)

The explicit form of Hamiltonian (5.12) depends on the gauge. The flux per unit cell,
however, is gauge independent. For the transformed vector potential A′m,n it is given by

Φ′m,n =Ax
m,n + Ay

m+1,n − Ax
m,n+1 − Ay

m,n (5.14)

−( fm+1,n − fm,n)− ( fm+1,n+1 − fm+1,n) + ( fm+1,n+1 − fm,n+1) + ( fm,n+1 − fm,n)︸ ︷︷ ︸
=0

.
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Figure 5.3: Momentum distribution in the FBZ of the ground state of Hamiltonian (5.1) for
two different gauge fields that result in the same flux distribution. The distributions were
calculated for isotropic coupling J/K = 1 and two different phase distributions for fixed Wannier
functions: a φm,n = (−1)m+1nπ/2 and b φm,n = (−1)m+1(n + m/2)π/2. Both distributions give
rise to the same flux distribution Φm,n = (−1)mπ/2 but the momentum distribution obtained
in a TOF experiment differs due to the gauge-dependence of the corresponding observable.
In both cases there are two momentum components in the FBZ at non-zero momentum and
δky = π/(2a) (red arrows). The red crosses mark the center of the FBZ at zero momentum.
The phases φm,n associated with the momentum distribution shown in (a) do not depend on the
site index m. Therefore there is no displacement of the momentum components along x so that
δkx = 0. In contrast, the one associated with (b) does depend on m, which is the reason why
the momenta additionally split along x with δkx = π/(4a). The ratio of the shift in momentum
space δkx/δky = 1/2 is consistent with the spatial dependence of the phase φm,n. The momentum
distribution was obtained by exact diagonalization of a 31× 31 matrix.

This proves the gauge invariance of the flux distribution Φm,n = Φ′m,n. Hamiltonian
(5.12) can be brought back to its original form by redefining the creation and annihilation
operators according to

âm,n → â′m,n = ei fm,n âm,n, â†
m,n → â′†m,n = e−i fm,n â†

m,n, (5.15)

Note that additional terms in the Hamiltonian that are proportional to the number oper-
ator n̂m,n = â†

m,n âm,n, such as on-site interactions or on-site potentials, are not affected by
this transformation. All physical observables that depend only on the flux distribution
Φm,n are gauge invariant and cannot distinguish between âm,n and â′m,n. This is true for
example for the density of the wave function or the energy spectrum, which is gauge
invariant up to a global shift in momentum space.
In cold-atom experiments the ground state can be probed through expansion imaging,
where the momentum distribution is measured after TOF. This quantity, in contrast,
depends on the choice of the gauge as will be shown in the following. In such experi-
ments a BEC is typically prepared in the lowest energy state of a certain Hamiltonian.
After switching off all fields abruptly (lattice potentials, trapping potential, gauge fields)
and if interactions between the atoms can be neglected, the atoms expand ballistically
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for a period tTOF. The density distribution obtained after this time corresponds to the
momentum distribution of the particles in the lattice and is given by

n(r) =
(

mat

h̄tTOF

)3

|ω̃(k)|2G(k),

G(k) = ∑
m,n,m′,n′

ei(kxa(m−m′)+kya(n−n′))
〈

â†
m,n âm′,n′

〉 (5.16)

where mat is the mass of the particle, ω̃(k) is the Fourier transform of the on-site or
Wannier function and G(k) is the Fourier transform of the single-particle density matrix〈

â†
m,n âm′,n′

〉
[29, 178, 179]. The momentum k is related to the position r according to

k = matr/(h̄tTOF). Applying the gauge transformation as defined in Eq. (5.15) the
single-particle density matrix becomes〈

â†
m,n âm′,n′

〉
→

〈
â′†m,n â′m′,n′

〉
= ei( fm′ ,n′− fm,n)

〈
â†

m,n âm′,n′

〉
. (5.17)

The gauge transformation affects the single-particle density matrix and therefore also
the momentum distribution, which is obtained experimentally using expansion imaging
[171]. Figure 5.3 depicts the momentum distribution in the FBZ for two different vector
potentials which give rise to the same staggered flux distribution Φm,n = (−1)mπ/2.

5.3 Experimental setup

The experimental setup consists of a two-dimensional lattice potential created by two
orthogonal standing waves of wavelength λs = 767 nm. Along the x-direction an addi-
tional standing wave with twice the wavelength λl = 2λs is superimposed to introduce
a staggered energy offset ±∆/2 (Fig. 5.4a), where the convention is used that odd lattice
sites have lower on-site energy than even lattice sites.
For ∆ � Jx tunneling is inhibited along the x-direction, while bare tunneling occurs
along y. A pair of running-wave beams1 with electric fields Ei(r, t), i = {1, 2}, wave vec-
tors |k1| ' |k2| ≡ kR and frequencies ωi, is then used to periodically drive the system
and restore resonant tunneling for ω = ω1 − ω2 = ±∆/h̄. Each of the two beams is
aligned along one of the two lattice axis

E1(r, t) = Ex
0 ei(k1x+ω1t+φ1) , E2(r, t) = Ey

0 ei(k2y+ω2t+φ2) , (5.18)

as illustrated in Fig. 5.4b. The corresponding local optical potential is of the following
form

V(r, t) = |Vx
0 |2 + |V

y
0 |

2︸ ︷︷ ︸
constant

+V0cos (δk · r + ωt + φ0)︸ ︷︷ ︸
=VK(t)

, (5.19)

1Erbium doped fiber amplifier from NP Photonics (output power: 5 W)
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Figure 5.4: Experimental setup for the realization of a staggered artificial magnetic field. a
Schematic drawing of the staggered lattice potential along the x-direction with energy offset
∆ and tunnel coupling Jx between neighboring sites. It consists of two standing waves with
wavelength λs = 767 nm (blue) and λl = 2λs (red). Odd lattice sites (black circles) denote sites
of low on-site energy and even lattice sites (white circles) the ones of high energy. b Illustration
of the full two-dimensional lattice with lattice constant a = λs/2 and tunnel coupling Jy along
y. An additional pair of running-wave beams (red arrows) with wave vectors ki, i ∈ {1, 2} and
frequencies ωi are used to periodically modulate the lattice potential. c Local optical potential
created by the interference between the two running-wave beams for a fixed time t. The phase
fronts determine the site-dependent phases ϕm,n of the time-dependent on-site potential.

with δk = k1 − k2, φ0 = φ1 − φ2 and the potential depth is proportional to the ampli-
tude of the electric fields Vi

0 ∝ |Ei
0|2 and V0 ∝ 2Ex

0 Ey
0 [158]. The static term leads to a

global shift of the potential energy and can be neglected. Only the time-periodic on-site
modulation VK(t) is relevant. The site-dependent phases of this modulation are given
by δk · R, where R defines the position in the lattice, R = maêx + naêy. This expression
can be recast into the form

δk · R = kRa(m− n), (5.20)

For our experimental parameters kR = π/(2a) such that the phases are determined by

δk · R =
π

2
(m− n). (5.21)

The phase difference of the modulation between neighboring sites along the two direc-
tions is given by δϕx = −δϕy = π/2 (Fig. 5.4c). By choosing a different geometry or
a different wave vector kR, in principle any other phase difference can be engineered.
The additional phase φ0 in Eq. (5.19) is given by the relative phase between the two
running-wave beams, which is not actively stabilized and differs between individual
experimental realizations.
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5.4 Effective Floquet Hamiltonian and micro-motion

The dynamics of the system described in the previous section is governed by an explic-
itly time-dependent Hamiltonian

Ĥ(t) = ∑
m,n

(
−Jx â†

m+1,n âm,n − Jy â†
m,n+1 âm,n + h.c.

)
+ ∑

m,n

(
V0 sin(ωt + ϕm,n) + (−1)m ∆

2

)
n̂m,n ,

(5.22)

with ϕm,n = π
2 (m− n + 1) + φ0 being the site-dependent phase generated through the

application of the running-wave beams depicted in Fig. 5.4b. Since the Hamiltonian is
periodic in time Ĥ(t + T) = Ĥ(t), with T = 2π/ω, Floquet’s theorem applies. As dis-
cussed in Sect. 3.1 the evolution of the system over one period T can be described by an
effective time-independent Hamiltonian. The Hamiltonian above is of the form studied
in Sect. 3.4 so that in the high frequency limit h̄ω � Jx, Jy the formalism can be applied
directly. The static terms, that are proportional to h̄ω = ∆, diverge in the limit ω → ∞.
Therefore a transformation into the rotating frame is performed as demonstrated in
Sect. 3.4 using the unitary operator defined in Eq. (3.73) for ∆m = (−1)m∆/2,

R̂stagg(t) = exp

[
i ∑

m,n

(
− V0

h̄ω
cos(ωt + ϕm,n) + (−1)m ∆t

2h̄

)
n̂m,n

]
. (5.23)

This leads to the following transformed Hamiltonian, where the time-dependence ap-
pears in the tunnel couplings

Ĥstagg(t) =− Jx ∑
m,n

(
eiηx

m,n(t) â†
m+1,n âm,n + h.c.

)
− Jy ∑

m,n

(
eiηy

m,n(t) â†
m,n+1 âm,n + h.c.

)
,

(5.24)

with

ηx
m,n(t) = −η0 sin

(
ωt +

ϕm+1,n + ϕm,n

2

)
+ (−1)m+1∆t/h̄, (5.25)

η
y
m,n(t) = η0 sin

(
ωt +

ϕm,n+1 + ϕm,n

2

)
. (5.26)

Since the phase difference of the modulation between neighboring sites along both di-
rections is equal |δϕx| = |δϕy| =: δϕ = π/2, the differential modulation amplitude η0 is
also the same,

η0 = 2γsin (δϕ) =

√
2V0

h̄ω
. (5.27)
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For resonant driving h̄ω = ∆ and h̄ω � Jx, Jy the effective Floquet Hamiltonian in
the rotating frame is well approximated by the lowest order of the Magnus expansion
(Sect. 3.1.3), which results in the following Hamiltonian

Ĥstagg
F = −K ∑

m,n
eiφm,n â†

m+1,n âm,n − J ∑
m,n

â†
m,n+1 âm,n + h.c. , (5.28)

with K = JxJ1(η0) and J = JyJ0(η0). Due to the staggered energy offset ∆m =

(−1)m∆/2 the phases vary non-uniformly across the lattice (Sect. 3.2) and are deter-
mined by

φm,n =

−(ϕm+1,n + ϕm,n)/2, for m odd

+(ϕm+1,n + ϕm,n)/2 + π, for m even
(5.29)

General form of the flux distribution

The lattice contains two different kinds of plaquettes with fluxes Φo
m,n and Φe

m,n respec-
tively (Fig. 5.5). For a positive energy offset between neighboring sites ∆m+1 − ∆m = ∆
(m odd), the Peierls phase-factor is given by φ̃m,n := −(ϕm+1,n + ϕm,n)/2. The corre-
sponding flux through the lattice unit cell is defined as

Φo
m,n = φ̃m,n − φ̃m,n+1. (5.30)

For those plaquettes where the energy offset between neighboring sites is negative
∆m+1−∆m = −∆ the Peierls phases change sign and are shifted by π, φ̃m,n → −φ̃m,n +π.
This is the case for m even such that the corresponding flux is given by

Φe
m,n = −φ̃m,n + φ̃m,n+1 = −Φo

m,n. (5.31)

This shows that laser-assisted tunneling using a staggered superlattice potential natu-
rally gives rise to a staggered flux distribution.

Gauge realized in the experiment

For the laser-beam configuration depicted in Fig. 5.4b the phases of the on-site modu-
lation are determined by ϕm,n = π

2 (m − n + 1) + φ0 so that the corresponding Peierls
phases φm,n are given by

φm,n =

−π
2 (m− n + 3/2)− φ0, for m odd

+π
2 (m− n + 7/2) + φ0, for m even

(5.32)

This precise form of the gauge will be important for the experiments where the mo-
mentum distribution is measured using expansion imaging (Sect. 5.5). As discussed in
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Figure 5.5: Schematic drawing of the two different plaquettes with fluxes Φo
m,n = −Φe

m,n
realized using a staggered superlattice potential. a For m odd the energy offset between
neighboring sites is positive +∆ and the flux through the plaquette is determined by Φo

m,n =

φ̃m,n − φ̃m,n+1. b For m even the offset is negative −∆ and the Peierls phases change sign
φ̃m,n → −φ̃m,n + π. The constant shift by π does not depend on the site, hence, it cannot in-
fluence the value of the flux. As a result the flux per plaquette changes sign Φe

m,n = −Φo
m,n

compared to the one for m odd.

Sect. 5.2 the particular choice of gauge manifests itself in the position of the momentum
components. Since the experimental gauge is determined by the laser-beam configura-
tion it is necessary to derive the effective Hamiltonian taking into account all relevant
phase factor that might appear in the setup. Fortunately for the case of a staggered
flux distribution the relative phase φ0 between the two running-wave beams, which is
not stabilized in the experiment, has no impact on the momentum distribution (Ap-
pendix C). For the sake of simplicity we choose φ0 = −3π/4 and rewrite the expression
for the phases given in Eq. (5.32) as follows

φm,n =
π

2
(m + n)(−1)m+1. (5.33)

The two expressions are equivalent as illustrated in Fig. 5.6 except that they appear
to be shifted by two lattice constants along y relative to each other. For the following
discussion we are going to use the convention that the effective magnetic field is pointing
along the −êz direction such that the flux per lattice unit cell is given by

Φm,n =
π

2
(−1)m+1, (5.34)

which is uniform along y and staggered along x [68, 69]. An equivalent derivation of
the effective Hamiltonian using the formalism developed in Sect. 3.1.2 can be found in
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Figure 5.6: Schematic drawing of the vector potential realized in the experiment. a Phase
distribution of the complex hopping as given in Eq. (5.32) for φ0 = −3π/4. b The experi-
mentally realized phase distribution can be represented by the equivalent expression φm,n =
π
2 (m + n)(−1)m+1.

Ref. [66], which is in agreement with the results obtained using the Magnus expansion
approach discussed above.

Micro-motion operator

Following the discussion of the micro-motion in 1D lattice geometries in Sect. 3.3 it
is expected that the micro-motion also influences the momentum distribution in the
staggered flux lattice. The full-time evolution according to Eqs. (3.39)–(3.40) is given by

Û(t) = exp
[
iM̂†

stagg(t)
]

exp
[
− i

h̄
Ĥstagg

F t
]

exp
[
iM̂†

stagg(0)
]

, (5.35)

where the micro-motion operator is determined be the unitary operator R̂stagg(t) =

exp[iM̂stagg(t)] given in Eq. (5.23) such that

M̂stagg(t) = ∑
m,n

(
− V0

h̄ω
cos(ωt + ϕm,n) + (−1)m ∆

2h̄
t
)

n̂m,n , (5.36)

The micro-motion associated with this operator is very similar to the case of a peri-
odically modulated 1D staggered superlattice potential. The part that is related to the
staggered offset potential ∆m = (−1)m∆/2 is trivial and only leads to oscillations in
the amplitudes of the different momentum components. The modulation-induced term,
however, can lead to additional momentum components shifted by integer multiples
of δk = (π/(2a), π/(2a)). In the following section experimental signatures of these
additional components will be revealed.
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Figure 5.7: Schematic drawing of the experimental sequence. The atoms were loaded adia-
batically within 160 ms into a two-dimensional lattice with isotropic tunnel coupling along both
directions Jx/h = Jy/h = 31(2)Hz as illustrated by the schematic drawing in (i). After switch-
ing on the staggered tilt Vxl and decreasing the short lattice along x, spontaneous tunneling was
inhibited by the staggered superlattice potential shown in (ii). Coupling was then restored by
switching on the modulation V0 (red arrows in ii). The modulation amplitude and lattice depths
were chosen such that the final effective coupling strengths K/h = J/h = 30(2)Hz matched the
ones of the initial state. After an additional holding time of 10 ms coherence was restored and
the momentum distribution was measured after 20 ms TOF.

5.5 Ground state of the staggered flux lattice

The ground state of the staggered flux lattice is studied experimentally for a fixed value
of the flux Φm,n = ±2πα, with α = 1/4, as a function of the coupling ratio J/K using
expansion imaging (Sect. 5.2). The properties of the ground state were studied theoreti-
cally at the beginning of this chapter. For α = 1/4 it was found that there is a bifurcation
point at (J/K)c ' 1.41, where the ground state of the system becomes two-fold degen-
erate. The staggered-flux Hamiltonian in the experimental gauge was derived in the
previous section and can be written in the following form

Ĥstagg
F = −K ∑

m,n
eiφm,n â†

m+1,n âm,n − J ∑
m,n

â†
m,n+1 âm,n + h.c.

φm,n =
π

2
(m + n) (−1)m+1 ,

(5.37)

with K = JxJ1(η0), J = JyJ0(η0) and η0 =
√

2V0/(h̄ω).

5.5.1 Isotropic coupling J = K

In order to prepare the ground state of the staggered-flux Hamiltonian we used the
experimental sequence illustrated in Fig. 5.7. It started by loading a BEC of about 5× 104
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Figure 5.8: Momentum distribution measured after tTOF = 20 ms for a simple cubic lattice and
the staggered flux lattice with isotropic coupling. a The distribution was obtained by loading
the atoms into the ground state of a simple cubic lattice with lattice constant a = λs/2 without
modulation V0 = 0 and flux Φ = 0. b For the measured momentum distribution (left panel) the
atoms were loaded into a staggered flux lattice with Φ = (−1)m+1π/2 and J/K = 1.0(1). The
theoretical momentum distribution (right panel) was obtained by an exact diagonalization of a
31× 31 lattice with a harmonic confinement of ωx/(2π) = ωy/(2π) = 20 Hz. The red rectangle
marks the dimensions of the magnetic Brillouin zone and the cross marks the center position
at zero momentum. There are two momentum components in the FBZ which are shifted by δk
(red arrow). Each image was normalized to its maximum intensity. (Data taken from Ref. [68])

atoms without any discernible fraction of thermal atoms into a 2D optical lattice, which
results in a 2D array of coupled 1D Bose gases. Perpendicular to the lattice the atoms
were confined by a crossed dipole trap with a harmonic trapping potential of frequency
ωz/(2π) ' 30 Hz. The atoms were loaded adiabatically within 160 ms into the lattice
with final depths Vx = Vy = 14(1)Ers (see Sects. 4.2–4.3 for an overview of the lattice and
superlattice potentials). The bare tunnel couplings along both directions correspond to
Jx/h = Jy/h = 31(2)Hz and were chosen to match the final effective coupling strengths
K and J at the end of the sequence. After the initial loading the long lattice along
x was ramped up within 0.7 ms to Vxl = 5.0(2)Erl in order to introduce a staggered
energy offset between neighboring sites of ∆/h = 4.4(1) kHz. This value was calibrated
independently as described in Sect. 4.3.2. Subsequently the short lattice along x was
decreased to Vx = 9.0(3)Ers, which corresponds to a bare coupling strength Jx/h =

94(4)Hz. Since ∆ was much larger than the tunnel coupling Jx all dynamics was frozen
along x, while the atoms were free to tunnel along y. By switching on the modulation on
resonance with amplitude V0 = 2.10(5)Erl and frequency ω = 2π × 4.4 kHz tunneling
along x was restored. In the limit η0 � 1 the effective couplings can be approximated
by K ' JxV0/(

√
2∆) and J ' Jy such that the effective coupling strength is given by

K/h = 30(2)Hz and the final coupling ratio is J/K = 1.0(1).

After holding the atoms in this configuration for 10 ms we observed a restored phase co-
herence (Fig. 5.8b) most likely due to a redistribution of entropy, which was introduced
by the random phases between the one-dimensional condensates, along the longitudinal
modes. For comparison the momentum distribution of a simple cubic lattice is depicted
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Figure 5.9: Dispersion relation and ground-state wave function for J/K = 1. a The dispersion
relation of the lowest band was calculated using Eq. (5.39). It exhibits a single minimum, which
appears as two momentum components (red crosses) in the first magnetic Brillouin zone. b
Spatial distribution of the phase of the ground-state wave function encoded in the direction of
the black arrows. Their length illustrates the spatial distribution of the density, which is uniform.
The background color further depicts the values of the phase interpolated between neighboring
lattice sites. The position and chirality of the phase-vortices are illustrated with white arrows.
(Data taken from Ref. [68])

in Fig. 5.8a. For this case a single momentum component appears in the FBZ at zero
momentum kx = ky = 0 together with additional momentum components separated by
the reciprocal lattice vectors (2ks, 0) and (0, 2ks), with ks = π/a. In contrast to that there
are four momentum components per cubic lattice Brillouin zone in the presence of the
staggered magnetic flux (Fig. 5.8b). In order to understand this momentum distribution
the Schrödinger equation has to be solved in the experimentally realized gauge since
the position of the momentum components is gauge-dependent (Sect. 5.2). A detailed
derivation can be found in Appendix C, where it is shown that the eigenstates can be
written in the following form

Ψm,n = eikxmaeikyna

ψo ei π
2 (m+n), for m odd

ψe , for m even
. (5.38)

Inserting this ansatz into the Schrödinger equation associated with Hamiltonian (5.37)
the problem reduces to the following two-dimensional eigenvalue equation

(
−2J cos(kya) −K (ieikxa + e−ikxa)

−K (−ie−ikxa + eikxa) 2J sin(kya)

)(
ψe

ψo

)
= E(k)

(
ψe

ψo

)
, (5.39)

where kx, ky are defined within the FBZ, −ks/2 ≤ kx < ks/2 and −ks ≤ ky < ks, and ψe,o

are the amplitudes on even and odd lattice sites respectively. The dispersion relation of
the lowest band for J/K = 1 is depicted in Fig. 5.9a. It exhibits a single minimum at ke =

(−ks/4,−ks/4) and the corresponding ground state has an equal weight on even and
odd sites, |ψe| = |ψo|. According to the intrinsic structure of the eigenstates we expect
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Figure 5.10: Momentum distribution after TOF for the staggered flux lattice with anisotropic
coupling strength J/K = 2.5(2). The momentum distribution depicted in the left panel was
measured after tTOF = 20 ms using the sequence illustrated in Fig. 5.7 for Vy = 10.0(3)Ers. The
theoretical momentum distribution (right panel) was calculated by exact diagonalization of a
31 × 31 lattice with harmonic confinement ωx/(2π) = ωy/(2π) = 20 Hz. The red rectangle
marks the dimensions of the FBZ and the cross marks its center position at zero momentum.
The distribution exhibits four momentum components within the FBZ. The components that
correspond to odd sites are shifted by δk = (ks/2, ks/2) relative to the momentum components
of even sites. Each of the two images was normalized to its maximum intensity. (Data taken
from Ref. [68])

to obtain a momentum component at ke and an additional one at ko = ke + δk shifted
by δk = (ks/2, ks/2) due to the additional phase factor corresponding to the wave-
function amplitude on odd sites (red crosses in Fig. 5.9a). In the measured TOF images
additional momentum components appear at multiples of the reciprocal magnetic lattice
vectors (ks, 0) and (0, 2ks) as shown in Fig. 5.8b, in agreement with theory.
The spatial distribution of the ground-state wave function is illustrated in Fig. 5.9b.
The artificial gauge field causes the phase distribution of the atomic wave function to
be non-uniform across the lattice. The value of the phase on each site is encoded in
the direction of the black arrows in the figure. In order to make the appearance of
phase vortices more clear these values were further interpolated for positions between
neighboring lattice sites (background color in Fig. 5.9b). There is one vortex whenever
there is a phase-winding of 2π, as depicted in the legend of Fig. 5.9b. The winding can
be clockwise or anti-clockwise (white arrows), which is referred to as the chirality of
the vortex. For our value of the flux α = 1/4, there is one vortex every four plaquettes
if one follows one row along y in the lattice and the chirality of the vortex alternates
between neighboring rows along x, which coincides with the direction where the flux
is alternating in sign. The atomic density of the ground state is uniform (length of the
arrows in Fig. 5.9b), which is consistent with equal amplitudes on even and odd sites
|ψe| = |ψo|.
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Figure 5.11: Ground-state properties for an anisotropic coupling strength J/K = 2.5(2). a The
dispersion relation of the lowest band features two degenerate minima at ke

L (lower momentum
state) and ke

U (upper momentum state). This leads to four momentum components within the
FBZ (red crosses), where the two additional ones are located at ko

i = ke
i + δk, i = {L, U}. b

Spatial distribution of the phase (direction of the arrows) and amplitude (length of the arrows)
for one of the two ground states ΨL. The other ground state ΨU shows a similar distribution
shifted by one lattice constant. The background color represents the values of the phase which
were interpolated between neighboring lattice sites. c Measured atom fraction in the momen-
tum components corresponding to the ground state ΨL. The histogram was obtained from 172
identical measurements. (Data taken from Ref. [68])

5.5.2 Dependence on the coupling ratio J/K

To study the ground state for different coupling ratios J/K the depth of the lattice along
y was varied between 9.5 Ers and 16.5 Ers, which corresponds to the range 0.6 ≤ J/K ≤
2.8. The bifurcation point where the single minimum splits into two degenerate ones is
expected to occur at (J/K)c =

√
2 (Sect. 5.1). We start by studying the ground state for

J/K = 2.5(2) above the critical point using the same sequence as illustrated in Fig. 5.7.
The only difference was that the y-lattice was ramped to Vy = 10.0(3)Ers during the first
ramp. This corresponds to the bare tunnel coupling Jy/h = 75(3)Hz. After the first
ramp the y-lattice depth was kept constant until it was switched off for TOF imaging.
As displayed in the left panel of Fig. 5.10 we observed four momentum components
within the first magnetic Brillouin zone in agreement with an exact diagonalization
study as depicted in the right panel of the same figure. Due to the two-fold degeneracy
of the ground state Ψi, i = {L, U}, we obtain twice as many momentum components
compared to the situation of isotropic coupling J/K = 1 studied in the previous sec-
tion. Here, the index L denotes the state with lower momentum components and U the
one with the upper components (Fig. 5.11a). Each of these two states Ψi features two
momentum components ke

i and ko
i = ke

i + δk, δk = (ks/2, ks/2), associated with even
and odd lattice sites according to Eq. (5.38). For J/K = 2.5, the dispersion relation of
the lowest band displays one minimum at ke

L ' (−0.25ks,−0.45ks) and a second one
at ke

U ' (−0.25ks,−0.052ks) as shown in Fig. 5.11a. The two momenta are split around
−ks/4 by ∆ky ' 0.40ks. The relative weight between the components ke

i and ko
i deter-
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Figure 5.12: Spatial density of the ground-state wave function defined in Eq. 5.40 for J/K =

2.5. For weakly interacting systems the ground state can be written as a superposition of the
two degenerate states ΨL and ΨU . The relative phase χ between them translates the density
wave along y. For J/K = 2.5 the density wave has a periodicity of five lattice constants. The
distribution was calculated using the eigenvalue equation given in Eq. (5.39).

mines the spatial distribution of the ground-state wave function. In Fig. 5.11b we show
the local density for one of the two ground states ΨL (length of the arrows). It exhibits a
charge density wave with larger amplitudes on odd sites. Using the eigenvalue equation
(5.39) we computed the relative weight between even and odd sites |ψo

L|2/|ψe
L|2 ' 6.1.

Consequently, the momentum component at ko
L (odd sites) is more intense than the one

at ke
L (even sites). For the state ΨU the situation is reversed |ψo

U |2/|ψe
U |2 ' 1/6.1 and the

state features a charge density wave with larger population on even sites. Hence, the
component ke

U (even sites) has a higher intensity compared to the ko
L-component (odd

sites). This is in qualitative agreement with the data shown in the left panel of Fig. 5.10.
The spatial distribution of one of the two degenerate ground states ΨL is illustrated in
Fig. 5.11b. It shows that the phase of the wave function tends to align along the direc-
tion of larger coupling strength J, thereby frustrating the phase relation imprinted by
the modulation. As a result the density is suppressed on every second stripe along x.
The distribution for ΨU exhibits a similar behavior but shifted by one lattice constant.
We further measured the relative population of the two ground states as depicted in
Fig. 5.11c. Contrary to the triangular lattice with frustrated hopping studied in Ref. [67],
where spontaneous symmetry breaking was observed, we do not see strong fluctuations
in the measured atom fraction but observe an equal population in both states. Since
there is a two-fold degeneracy in the system, the question arises if the atoms condense
into the same single-particle state or if the ground state is fragmented [180]. In the
presence of weak repulsive interactions it has been shown that fragmentation is in gen-
eral unfavorable [181]. Following this result, it has been shown in Ref. [171], that the
condensate ground state can be written in the following form

Ψc =
1√
2

(
ΨL + eiχ ΨU

)
. (5.40)

This state breaks the translation invariance along y. For J/K = 2.5 the difference be-
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Figure 5.13: Density distribution and splitting of the momentum components along y as a
function of J/K. a The density distribution of the ground state was obtained by exact diago-
nalization of a finite lattice of dimension 39× 39. The periodicity of the density wave increases
with ∆ky and approaches a maximum value of four lattice constants in the limit J � K where
the splitting approaches the value ∆ky = ks/2. Each image was normalized to to the maximum
density. b Measured ground-state momentum components ky as a function of J/K associated
with odd lattice sites. For J/K <

√
2 we observe a single momentum component at ky = ks/4.

Above that value the momentum components split around this position. In the limit J � K the
two momentum components tend to ky = 0 and ky = ks/2. The solid lines are calculated using
the two-dimensional eigenvalue Eq. (5.39) in agreement with our data. The horizontal error bars
depict the experimental uncertainty in the coupling ratio J/K and the vertical error bars display
the fitting error in the determination of the peak positions. The insets show the calculated mo-
mentum distribution in the FBZ and the red cross marks the position of zero momentum. (Data
shown in (b) taken from Ref. [68])

tween the two momentum components kL and kU along y is ∆ky ' 0.40ks. As a result
the state Ψc features a density wave, which is commensurate with the lattice spacing and
exhibits a periodicity of five lattice constants (Fig. 5.12). For weak interactions compared
to the kinetic energy, it was found that the system possesses an infinite degeneracy in
χ, because the interaction energy does not depend on this phase [171]. For stronger in-
teractions this degeneracy is reduced and the density "locks" to the lattice sites and the
remaining degree of degeneracy is determined by the periodicity of the density pattern
in units of the lattice constant [171]. For J/K = 2.5 this would correspond to a five-fold
degeneracy. Intuitively this can be seen by looking at the action of χ, which corresponds
to a translation of the density distribution along y (Fig. 5.12).
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The splitting of the momentum components along y increases monotonically with J/K
for values larger than the critical ratio (J/K)c =

√
2. For very large couplings J � K it

approaches a maximum splitting of ∆ky = ks/2, which corresponds to a density wave
of the ground state in the lattice with a period of four lattice constants (Fig. 5.13a).
We measured the projection of the momentum components on the y-axis as a function
of J/K using the same experimental sequence as described in the previous section. The
depth of the y-lattice was set during the first ramp to its final value, while the effec-
tive coupling along x remained unchanged K = 30(2)Hz. As shown in Fig. 5.13b the
measured momenta are in quantitative agreement with analytical calculations using the
eigenvalue equation (5.39). The small panels above the data depict the density of the
ground state on a finite lattice, which was computed with exact diagonalization. These
results are in agreement with the previous discussion based on weak interactions. The
period of the density wave decreases with the splitting of momentum components ∆ky

along y.
For certain values ∆ky the corresponding periodicity of the density wave is incommensu-
rate with the lattice spacing. It was demonstrated that in this regime an incommensurate-
commensurate phase transition is expected to occur with increasing interactions, where
above a critical value of the interaction, the periodicity of the density wave locks to the
one of the underlying lattice [171].

5.5.3 Micro-motion in the staggered flux lattice

So far we were discussing the experimental results in terms of the Floquet Hamiltonian
(5.37) which was derived in the rotating frame. We know, however, that the micro-
motion potentially influences TOF experiments. For large driving frequencies compared
to the bare tunnel coupling the micro-motion essentially corresponds to the transforma-
tion from the lab frame to the rotating frame and is determined by Eqs. (5.35) and
(5.36). This leads to the appearance of additional momentum components whose am-
plitudes scale with the ratio V0/(h̄ω). For very small driving amplitudes V0/(h̄ω) � 1
we do not expect to observe additional momentum components other than the ones
discussed in the previous section (see also Sect. 5.4). For our experimental parameters
V0/(h̄ω) ' 0.48, however, the micro-motion might play a role. In the experiments de-
scribed above the modulation was switched on abruptly and after a waiting time of
10 ms (44 driving periods) coherence was restored. The relaxation process after switch-
ing on the periodic modulation which led to a restored phase coherence is not yet well
understood. However, the data can be compared with the full-time evolution under the
assumption that the system did relax to the ground state Ψrot of the Floquet Hamiltonian
(5.37) after the coherence was restored. The measured momentum components depicted
in Fig. 5.8b, 5.10 and 5.13b support this assumption. In this case the corresponding state
in the lab frame is determined by
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components in the FBZ (black frame). The panel in the middle focuses on the structure within
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theoretical calculations based on Eq. (5.41) for V0/(h̄ω) ' 0.48.

Ψlab(T) = exp
[
iM̂†

stagg(T)
]

Ψrot,

M̂stagg(T) = ∑
m,n

(
− V0

h̄ω
cos[ϕm,n]

)
n̂m,n ,

(5.41)

with ϕm,n = π
2 (m − n + 1) + φ0 as derived in Sect. 5.3 and 5.4. Figure 5.14 depicts

the calculated momentum distribution in the lab frame for isotropic coupling J/K = 1
in comparison with the experimental data, which was already shown in Fig. 5.8b. We
observe two weak additional momentum components in the FBZ compared to the distri-
bution obtained in the rotating frame (right panel Fig. 5.8b), whose amplitude depends
on V0/(h̄ω). They are located at (−ks/4, 3ks/4) and (ks/4,−3ks/4) in agreement with
our experimental data. Note that the position and weight of the additional peaks do not
depend on the relative phase φ0 between the two running-wave beams, which sets the
initial phase of the modulation (Sect. 5.3). The full-time dynamics within one Floquet
period leads to small oscillations in the weight of the different momentum components
but the positions remain constant.

5.6 Local probe of the artificial gauge field

The effect of the artificial gauge field can be probed locally by making use of the two-
dimensional superlattice potential (Sect. 4.3). This allows us to study the dynamics of
single atoms on the level of four-site square plaquettes (Fig. 5.15a) and enables an ex-
perimental determination of the flux Φ per plaquette.
The setup consists of a tilted double-well potential along x and a symmetric one along y.
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Tunneling between neighboring double wells is suppressed due to high potential bar-
riers, so that all dynamics is restricted to the four sites of one plaquette. The sites are
denoted by R = {A, B, C, D} as depicted in Fig. 5.15a. All observables measured in the
experiment are averaged over a 3D array of individual plaquette realizations. The flux
through each plaquette exhibits the same sign for all realizations because only every
other plaquette participates in the measurement and all of them exhibit an energy offset
between neighboring sites with the same sign.

Experimental sequence

The experimental sequence (Fig. 5.15b) started by loading a BEC into a 3D optical lattice
in the Mott-insulating regime with at most two atoms per lattice site [44]. The potential
was created using the two long lattices in the horizontal plane and the vertical lattice
with depths Vxl = Vyl = 35(1)Erl and Vz = 30(1)Ez. To remove all atoms on doubly
occupied sites a filtering sequence was applied as described in Sect. 4.5 and Ref. [34].
Subsequently the short lattice along x was ramped up within 10 ms to Vx = 5.0(2)Ers

with ϕx
SL = 0.20(1) rad in order to load the atoms into the ground state of the tilted

double-well potential. This corresponds to an energy offset ∆/h = 6.0(1) kHz, which
was calibrated independently using spectroscopy measurements (Sect. 4.3.2). As a last
step the short lattice along y was switched on within 1 ms to Vy = 14(1)Ers in or-
der to create an initial state where each atom is delocalized over the left bond in the
plaquette |ψ1〉 = (|A〉 + |D〉)/

√
2. The corresponding bare tunneling amplitudes are

Jx/h = 2.0(1) kHz and Jy/h = 0.17(2) kHz. To initiate the dynamics the modulation
was suddenly switched on. This induced resonant tunneling to the B and C sites for
h̄ω = ∆. The effective coupling strength K/h = 0.32(1) kHz was calibrated indepen-
dently as explained in Sect. 4.4. In the weak driving limit V0/(h̄ω) � 1 the effective
coupling along y is approximately given by the bare coupling strength, J ' Jy. For
our parameters V0/(h̄ω) ' 0.23. The dynamics of a single atom in the plaquette can be
described by the effective 4× 4 Hamiltonian ĤP, written in the basis {|A〉 , |B〉 , |C〉 , |D〉}

ĤP = −


0 K 0 J
K 0 J 0
0 J 0 Ke∓iΦ

J 0 Ke±iΦ 0

 , (5.42)

with Φ = π/2. The sign of the complex tunneling amplitude depends on the direction
of the flux and can be controlled by changing the sign of the modulation frequency
h̄ω = ±∆.

5.6.1 Phase evolution

We made use of two different detection techniques to study the dynamics within the
plaquettes, i.e. phase and density evolution. Using expansion imaging we can access
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Figure 5.15: Schematic drawing of the setup and the experimental sequence. a Making use of
two superlattice potentials along x and y the lattice is partitioned into four-site square plaquettes
where tunneling between the plaquettes is suppressed by a high potential barrier. Tunneling
along x is further inhibited by the tilt ∆ and later restored with the running-wave beams depicted
in Fig. 5.4. The flux Φ exhibits the same sign for each plaquette potential that contributes to the
signal. The dynamics within one plaquette can be described by the Hamiltonian in (5.42), where
the sites are labeled as R = {A, B, C, D}. The gray shaded area illustrates the initial state
|ψ1〉 = (|A〉+ |D〉)/

√
2. b Experimental sequence used to probe the artificial magnetic field in a

local manner for the two detection methods described in the main text, i.e. phase evolution and
real space evolution. The filtering sequence is used to remove double occupancies from the trap
as described in Sect. 4.5.

information about the phase distribution of the single-particle state in the plaquette. The
evolution can be rather complex but to get an intuitive understanding of it we consider
the limit J � K, where the dynamics along y is suppressed. As discussed above, we
quench the system from the initially tilted plaquette without flux where tunneling is
inhibited, to a symmetric one with flux Φ = π/2. In this configuration the initial state
|ψ1〉 = (|A〉+ |D〉)/

√
2 on the left bond couples to the one on the right bond |ψ2〉 =

(|B〉+ i |C〉)/
√

2. Note that this state involves a phase difference between neighboring
sites which is a manifestation of the flux through the plaquette. By suddenly switching
off all fields this value can be evaluated from the interference pattern recorded after
TOF. As an example we consider the single-particle state |ψ〉 = (|A〉+ eiγ |D〉)/

√
2, with

arbitrary phase γ. The density distribution after TOF is a double-slit interference pattern
along y proportional to cos (kty + γ) times an envelope determined by the Wannier
function, where kt = mata/(h̄tTOF) [33, 34]. For the initial state |ψ1〉 one expects a
symmetric double-slit pattern as shown in Fig. 5.16a, while for the state |ψ2〉 one would
expect to observe a pattern that is shifted due to the relative phase between the B and C
site.

For our experimental parameters J/K ≈ 0.5 the evolution is expected to be more com-
plex. To access information about the phase between the lower and the upper bond we
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Figure 5.16: Phase evolution in isolated four-site square plaquettes. a Double-slit interfer-
ence pattern for the initial state |ψ1〉 = (|A〉+ |D〉)/

√
2 obtained after tTOF. (Data taken from

Ref. [69]) b Phase evolution obtained from the double-slit patterns after integrating the density
distributions along x for h̄ω = ∆ (blue) and h̄ω = −∆ (gray). The inset shows the Fourier trans-
formation for h̄ω = ∆ revealing two frequency components at 0.24(6) kHz and 0.62(13) kHz in
agreement with theory (gray vertical lines). The theoretical evolution was obtained by solving
the time-dependent Schrödinger equation associated with Hamiltonian (5.42) numerically. (Data
taken from Ref. [68])

first integrated the momentum distribution along x and then fitted the relative phase
γ of the double-slit interference pattern. The measured evolution γ(t) is depicted in
Fig. 5.16b. The blue data points show the evolution for h̄ω = ∆ and the gray data points
depict the evolution for h̄ω = −∆. The fact that the values of the phases differ only by
a sign is a manifestation of the broken time-reversal symmetry in the system.

5.6.2 Quantum cyclotron orbit

Complementary to the measurement above is the observation of the density evolution
in real space. The experimental sequence used for these measurements was the same
as described above (Fig. 5.15). However, the final lattice parameters of the short lattices
were changed in order to obtain different tunneling amplitudes: Vx = 7.0(2)Ers and
Vy = 10.0(2)Ers, corresponding to the coupling strengths Jx/h = 1.2(1) kHz and Jy/h =

0.50(2) kHz. The effective coupling K/h = 0.28(1) kHz and the resonance condition
∆/h = 4.9(1) kHz were calibrated independently as described in Sect. 4.4. The effective
coupling along y is approximately given by J ' Jy and the modulation amplitude was
V0/(h̄ω) ≈ 0.34.
The sequence started by preparing single atoms per plaquette in the initial state |ψ1〉,
which is a superposition on A and D sites. The following real-space evolution after
suddenly switching on the modulation was measured by performing a site-resolved
detection as described in Sect. 4.6, which enabled us to determine the number of atoms
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NR on each site in the plaquette. Note that contrary to the site-resolved measurements
with high-resolution detection techniques [50, 163], here, we measure the number of
atoms on each site of the plaquette averaged over a 3D array of local copies of the
same system. For the detection atoms located on different sites in the plaquette are
transferred to higher Bloch bands and a subsequent band-mapping sequence allows for
a determination of the corresponding band occupations. The mean positions along x
and y in the plaquette are defined according to

〈X〉 = (−NA + NB + NC − ND)
a

2N
, (5.43)

〈Y〉 = (−NA − NB + NC + ND)
a

2N
, (5.44)

where N is the total atom number (Fig. 5.17a). Initially all atoms are located on the left
bond in the plaquette with 〈X〉 (t = 0) = −0.5 and 〈Y〉 (t = 0) = 0. After switching
on the modulation the atoms start to tunnel towards the right bond (B- and C-sites).
Without magnetic field the atoms would simply undergo Rabi oscillations between the
left and right bond, while no dynamics would occur along y, i.e. 〈Y〉 (t) = 0 for all
times. Instead we observe that the particles are deflected along y, perpendicular to the
initial direction of the motion, which is reminiscent of the Lorentz force acting on a
charged particle in a magnetic field. The evolution follows a small-scale cyclotron orbit
as depicted in Fig. 5.17b analog to the classical cyclotron orbit of a charged particle in a
magnetic field. The theoretical evolution was calculated numerically with Hamiltonian
(5.42), where we used the independently calibrated values of J and K. Leaving the



84 5. Staggered magnetic flux

adw a adw

ϕ2

ϕ1
x

y y

a b

Figure 5.18: Reduced flux in isolated plaquette potentials. a Schematic drawing of the usual
lattice potential with lattice constant a (blue) and the double-well potential used to restrict the
dynamics within two sites (black). The distance between the two wells is slightly smaller than
the usual lattice constant adw < a. b Complex phase factors imprinted by the modulation in the
plaquettes. The reduced distance adw also reduces the flux per plaquette ϕ1 − ϕ2 = Φadw/a.

flux Φ as a free fit parameter we obtained an experimental value for the flux Φexp =

0.73(5) × π/2. The deviation from Φ = π/2 for a homogeneous lattice is due to a
reduced distance between lattice sites adw < a when partitioning the lattice into isolated
four-site square plaquettes (Fig. 5.18). In this case the flux per plaquette is Φadw/a. For
our experimental parameters this corresponds to adw/a ≈ 0.78(1), which qualitatively
explains the reduced value of the flux. Residual deviations might be due to an angle
mismatch between the running-wave beams and the lattice axes.

5.7 Full-time dynamics of the cyclotron orbits

In the previous section we discussed the cyclotron orbits based on the effective Floquet
Hamiltonian in the rotating frame given in Eq. (5.42). This Hamiltonian was derived
in the high-frequency limit h̄ω ' ∆ � Jx. For our experimental parameters ∆/Jx '
3.56, however, this assumption is not well fulfilled and corrections on the order of Jx/∆
(Sect. 3.1.4) might have to be taken into account. In addition the evolution depicted in
Fig. 5.17 was measured non-stroboscopically, which is only valid in the high-frequency
limit (Sect. 3.1.4), and the initial phase of the driving was neglected. In this section we
are going to present a detailed discussion of the full-time dynamics, thereby verifying
the description in terms of the simple effective Hamiltonian given in Eq. (5.42).
The complete time-dependent Hamiltonian without any approximations written in the
basis {|A〉 , |B〉 , |C〉 , |D〉} is given by

Ĥ(t) = −


∆/2 Jx 0 Jy

Jx −∆/2 Jy 0
0 Jy −∆/2 Jx

Jy 0 Jx ∆/2

+


∆A(t) 0 0 0

0 ∆B(t) 0 0
0 0 ∆C(t) 0
0 0 0 ∆D(t)

 , (5.45)
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∆A(t) = V0 cos (ωt + φ0), ∆B(t) = V0 cos (ωt + φ0 + π/2),

∆C(t) = V0 cos (ωt + φ0 + π), ∆D(t) = V0 cos (ωt + φ0 + π/2).

All numerical calculations presented in this section are obtained by solving the time-
dependent Schrödinger equation associated with this Hamiltonian.

5.7.1 Off-resonant driving

We have seen in Sect. 3.1.4 that for arbitrarily large energy offsets ∆� Jx periodic mod-
ulation at the approximate resonance frequency h̄ω = ∆ leads to the desired effective
Floquet Hamiltonian. However, if ∆ is on the order of the tunnel coupling Jx, additional
detuning terms in the effective Hamiltonian as given in Eq. (3.53) will become important.
This term causes a residual energy offset between neighboring sites J2

x/(h̄ω) along the
x-direction in the plaquette, which suppresses tunneling between the left and right side.
In Figure 5.19a we show the numerical evolution for our experimental parameters if the
periodic modulation is performed with the approximate resonance frequency h̄ω = ∆.
As in the experiment we start the evolution with an initial state that is delocalized on
the left bond in the plaquette |ψ1〉 = (|A〉 + |D〉)/

√
2, see Fig. 5.15a. However, after

switching on the modulation with the approximate resonance frequency atoms cannot
tunnel resonantly to the B and C sites due to the additional detuning term. This leads to
off-resonant Rabi oscillations between the left and right bond with reduced amplitude
and increased frequency (lower panels in Fig. 5.19a). The squeezing of the off-resonant
cyclotron orbit is dramatic even though the detuning is only on the order of 0.1∆. Simi-
lar effects were observed in Ref. [122] and with interacting particles [182].
The exact resonance condition

h̄ωres =
√

∆2 + 4J2
x (5.46)

is determined by the energy difference between the two eigenstates of the static Hamil-
tonian as defined in Sect. 3.1.4, Eq. (3.44). In our experiments the resonance condition
is calibrated through spectroscopy measurements (Sect. 4.3.2), hence, the resonance fre-
quency is automatically set to the exact one as defined in Eq. (5.46).
Let us consider periodic modulation of the double-well along x with the exact resonance
condition. The dynamics can be described by the following two-level Hamiltonian

Ĥ(t) = −Jx (|0〉 〈1|+ |1〉 〈0|) + ∆P̂1 + V0 cos(ωrest + ϕ)P̂0 , (5.47)

P̂α = |α〉 〈α| , α = {0, 1} ,

where h̄ωres =
√

∆2 + 4J2
x ' ∆ + 2J2

x/∆ and the two levels correspond to the two sites
of the double-well. After performing a unitary transformation according to Eqs. (3.27)–
(3.29) with
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Figure 5.19: Calculated cyclotron orbits for off-resonant and resonant modulation in the pla-
quettes. The numerical evolutions (black) were obtained with the exact time-dependent Hamil-
tonian defined in Eq. (5.45). The corresponding full-time evolution is depicted with the dashed
line in the lower panels and the dots highlight the dynamics at stroboscopic times. The evolution
obtained using the effective Floquet Hamiltonian in Eq. (5.42) is shown in blue. a Periodic driv-
ing at the approximate resonance condition h̄ω ' ∆ = 4.3 kHz×h causes a dramatic shrinking of
the cyclotron orbit (black) for our experimental parameters ∆/Jx = 3.56 compared to the evolu-
tion governed by the effective Hamiltonian (blue). b Numerical evolution of the cyclotron orbit
for the exact resonance condition h̄ωres = 4.9 kHz×h (black) as defined in Eq. (5.46). Contrary
to (a) the amplitude of the orbit is comparable to the one obtained using the effective Floquet
Hamiltonian (blue). The numerical results shown in black were obtained by averaging over the
different individual plaquettes realized in the experiment, which will be discussed in Sect. 5.7.2.
All evolutions were computed for the experimental parameters K/h = 0.28 kHz, J/h = 0.47 kHz
and t ≤ 2.5 ms, which correspond to the measurements depicted in Fig. 5.17.

R̂(t) = exp
[
iωrestP̂1

]
(5.48)

the transformed Hamiltonian takes the following form

Ĥ(t) = Ĥ(0) + Ĥ(+1)eiωrest + Ĥ(−1)e−iωrest,

Ĥ(0) = −2J2
x

∆
P̂1,

Ĥ(+1) = −Jx |1〉 〈0|+
V0

2
P̂0eiϕ,

Ĥ(−1) = −Jx |0〉 〈1|+
V0

2
P̂0e−iϕ.

(5.49)
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It contains an additional static term Ĥ(0) which tends to zero in the limit Jx/∆→ 0. The
effective Floquet Hamiltonian can be derived according to Eq. (3.31)

ĤF = Ĥ(0) +
1

h̄ωres

[
Ĥ(+1), Ĥ(−1)

]
= −2J2

x
∆

P̂1 − J2
x

h̄ωres︸ ︷︷ ︸
≈J2

x /∆

(
P̂0 − P̂1

)
− JxV0

2h̄ωres

(
|0〉 〈1| eiϕ + |1〉 〈0| e−iϕ

)
(5.50)

= − J2
x

∆

(
P̂0 + P̂1

)
︸ ︷︷ ︸

global offset

− JxV0

2h̄ωres

(
|0〉 〈1| eiϕ + |1〉 〈0| e−iϕ

)
(5.51)

= − JxV0

2h̄ωres

(
|0〉 〈1| eiϕ + |1〉 〈0| e−iϕ

)
+ cst. (5.52)

This precisely corresponds to the Hamiltonian (5.42), which was considered in the dis-
cussion of the experimental data in the previous section, because the two detuning terms
compensate each other. This is in agreement with the numerical simulations depicted in
Fig. 5.19b, where the exact time-evolution governed by Hamiltonian (5.45) is compared
with the one predicted by the effective Floquet Hamiltonian (5.42). The evolutions were
calculated for our experimental parameters using the exact resonance frequency, which
was obtained experimentally through spectroscopy measurements.

5.7.2 Initial kick-operator and micro-motion

The cyclotron orbits were measured experimentally at non-stroboscopic times during
the evolution. It is not obvious that the experimental results obtained in this way simply
match the evolution predicted by the effective Floquet Hamiltonian (5.42). In this section
we discuss the complete full-time evolution determined by Eq. (3.33)

ÛP(t) = e−iM̂P(t)e−
i
h̄ ĤPteiM̂P(0), (5.53)

where in the high-frequency limit h̄ω � Jx, Jy the micro-motion operator is given by

M̂P(t) = ∑
R

[
V0

h̄ω
sin(ωt + ϕR) +

∆R
h̄

t
]

n̂R, (5.54)

and ĤP is the effective plaquette Hamiltonian defined in Eq. (5.42). Here ϕR denotes
the phase of the driving on site R, ∆R is the energy offset on each site and n̂R is the
corresponding number operator. The phases ϕR and energy offsets ∆R are determined
by Eq. (5.45).
There are two separate effects related to the full-time evolution which are discussed in
this section. The first one is due to the initial phase of the driving. This effect is governed
by the initial kick at t = 0 described by M̂P(0). The second one concerns the micro-
motion within one Floquet period according to M̂P(t), which may lead to additional
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Figure 5.20: Impact of the initial kick introduced by the operator M̂P(0) on the mean atom po-
sition 〈Y〉 /a and the corresponding cyclotron orbit. The numerical evolutions were calculated
according to the effective Hamiltonian (5.42) for an initial state |ψ̃1〉 as defined in Eq. (5.56) and
two different values of the initial phase: a φ0 = −π/4 and b φ0 = 3π/4. c Schematic drawing
of the 2D array of isolated plaquettes. The phase of the on-site modulation ϕR is shifted by π

between adjacent plaquettes. In this figure the phase on the lower left corner of each plaquette is
shown. d The dashed line depicts the average evolution of (a) and (b) and the solid line the one
governed by the effective Hamiltonian (5.42) using the initial state |ψ1〉 = (|A〉+ |D〉)/

√
2, which

is the initial state prepared in the experiment. The parameters for the numerical simulations were
chosen to match the ones for the measurements depicted in Fig. 5.17: V0/(h̄ω) ' V0/∆ = 0.39,
K/h = 0.28 kHz, J/h = 0.47 kHz and t ≤ 3 ms.

oscillations of the experimental observables. In the high-frequency limit the operator
M̂P(t) is proportional to the number operator n̂R. Hence, it does not affect the shape
of the cyclotron-orbits since we are measuring on-site densities and the micro-motion
operator commutes with the number operator n̂R.

Initial kick introduced by the modulation

In the high-frequency limit the density evolution can only deviate from the one pre-
dicted by the effective Floquet Hamiltonian (5.42) due to the initial kick at t = 0 which
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is governed by the operator

MP(0) = ∑
R

V0

h̄ω
sin(ϕR)n̂R. (5.55)

Note that strictly speaking the Floquet Hamiltonian (5.42) depends on the initial phase
of the driving φ0. This term, however, has no impact on the dynamics as was verified
numerically. For the sake of simplicity we have omitted related terms in the following
discussion.
Acting with the operator MP(0) on the initial state |ψ1〉 = (|A〉+ |D〉)/

√
2 illustrated

in Fig. 5.15 leads to the transformed initial state

|ψ̃1〉 =
1√
2

(
exp

[
i

V0

h̄ω
sin(ϕA)

]
|A〉+ exp

[
i

V0

h̄ω
sin(ϕD)

]
|D〉
)

, (5.56)

with ϕA = φ0 and ϕD = φ0 + π/2. This transformed initial state causes a modified
evolution of the mean atom position 〈Y〉 /a along the y-direction, while the evolution
along x remains unaffected. In Figure 5.20a,b the mean atom position 〈Y〉 /a and the
corresponding cyclotron orbit are displayed for two different values of the initial phase
φ0 = −π/4 (Fig. 5.20a) and φ0 = 3π/4 (Fig. 5.20b). The evolution was calculated using
|ψ̃1〉 as an initial state and evolving it numerically with the effective Floquet Hamiltonian
(5.42) for Φ = π/2,

|ψ̃P〉 (t) = e−
i
h̄ ĤPt |ψ̃1〉 , |ψ̃1〉 = eiM̂P(0) |ψ1〉 . (5.57)

The initial phase φ0 has a large influence on the shape of the cyclotron orbit and is not
actively stabilized in the experiment. As a result we should not be able to observe any
kind of orbit in the experiment. However, as mentioned above the measured quantities
are averaged over the 3D array of individual plaquette realizations. The configuration
in the 2D plane is depicted in Fig. 5.20c, which reveals that there are only two different
kinds of plaquettes. The phase of the on-site modulation is either ϕR or ϕR+π. Averag-
ing the numerical evolution over these two plaquette realizations leads to an evolution
that matches almost exactly the one governed by the effective Floquet Hamiltonian us-
ing an initial state |ψ1〉 (Fig. 5.20d). We verified that this is the case for any value of
φ0.

Micro-motion

What remains to be discussed are finite frequency corrections to the micro-motion de-
termined by M̂P(t). We assume that the system is modulated with the exact resonance
frequency ωres as defined in Eq. (5.46), which is the case for the measurements discussed
in the previous section. As mentioned above, in the high frequency limit Jx/(h̄ωres)→ 0
the micro-motion operator defined in Eq. (5.54) is proportional to n̂R and does not in-
fluence the shape of the cyclotron orbits. In order to understand the corrections arising



90 5. Staggered magnetic flux

〈Y〉/a〈X〉/a

〈Y〉/a〈X〉/a

-0.5

0

0.5

-0.5

0

0.5

3210
Time (ms)

3210
Time (ms)

3210
Time (ms)

3210
Time (ms)

c

b

a

〈 Y
〉 /a

〈X〉/a
0.50-0.5

-0.2

0

0.2

Figure 5.21: Comparison of the ideal cyclotron evolution 〈X〉 /a, 〈Y〉 /a governed by the effec-
tive Floquet Hamiltonian with the exact full-time evolution and the impact of the initial kick
of the modulation for ∆/Jx = 3.56. The exact time evolution (dashed line) was calculated using
the time-dependent Hamiltonian (5.45), where the dots highlight the dynamics at stroboscopic
times. The blue line depicts the ideal evolution governed by the effective Floquet Hamiltonian
(5.42) using the initial state |ψ1〉 and the green and orange lines illustrate the evolutions if the
initial kick is taken into account as defined in Eqs. (5.55)–(5.56). The dynamics were calculated
for the experimental parameters V0/∆ = 0.39, K/h = 0.28 kHz, J/h = 0.47 kHz and t ≤ 3 ms
used for the measurements shown in Fig. 5.17. The ratio between the bare coupling and the
modulation frequency is Jx/(h̄ωres) = 0.24. a, b Calculated dynamics for the two kinds of pla-
quettes illustrated in Fig. 5.20c, which are realized simultaneously in the experiment. The initial
phase was set to φ0 = −π/4. c Evolution averaged over the two realizations depicted in (a) and
(b).

from a finite ratio Jx/∆ we consider again the evolution in the double-well potential
along x. The first order corrections to the micro-motion operator M̂P(t) are of the form
(Sect. 3.1.4)

Mc
P(t) = −

Jx

ih̄ωres

(
|1〉 〈0| eiωrest − |0〉 〈1| e−iωrest

)
. (5.58)

This term couples the two sites or levels of the double-well (|0〉 and |1〉) and gives rise
to fast oscillations with period T = 2π/ωres, whose amplitude scales with Jx/(h̄ωres).
In Figure 5.21 and 5.22 we show the full-time evolution of the cyclotron orbits according
to Hamiltonian (5.45) for ∆/Jx = 3.56 and ∆/Jx = 12 respectively. To maintain the same
effective coupling strengths J and K the modulation amplitude V0 was increased accord-
ingly for the calculations depicted in Fig. 5.22. The simulations reveal fast oscillations
with frequency ωres, which are suppressed with increasing driving frequency. The ini-
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Figure 5.22: Comparison of the ideal cyclotron evolution 〈X〉 /a, 〈Y〉 /a governed by the ef-
fective Floquet Hamiltonian with the exact full-time evolution and the impact of the initial
kick for ∆/Jx = 12. The exact time evolution (dashed line) was calculated using Hamiltonian
(5.45), where the dots highlight the dynamics at stroboscopic times. The blue line depicts the
ideal evolution governed by the effective Floquet Hamiltonian (5.42) using the initial state |ψ1〉
and the green and orange lines illustrate the corresponding evolutions taking into account the
initial kick as defined in Eqs. (5.55)–(5.56). The parameters for the calculations were the same
as in Fig. 5.21, only the ratio ∆/Jx = 12 was changed. The corresponding ratio between the
bare coupling and the modulation frequency is Jx/(h̄ωres) = 0.08. a, b Calculated dynamics for
the two kinds of plaquettes illustrated in Fig. 5.20c, which are realized simultaneously in the
experiment. c Evolution averaged over the two realizations depicted in (a) and (b).

tial phase of the driving φ0 influences the evolution even in the infinite frequency limit
because it scales with the ratio V0/(h̄ωres), which was kept constant.
In the experiment we are able to observe the cyclotron orbits because we averaged over
the two plaquette realizations illustrated in Fig. 5.20c. The simulations show, that the
individual evolutions in the plaquettes are considerably different from the ideal evolu-
tion as depicted in Fig. 5.21a and b for φ0 = −π/4. Fortunately, the averaged evolutions
(Fig. 5.21c and 5.22c) agree well with the effective Hamiltonian (5.42) even for the rather
small ratio ∆/Jx ' 3.56 as it was chosen for the measurements depicted in Fig. 5.17.
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Chapter 6

Harper-Hofstadter model and spin
Hall effect

In the previous chapter it was shown both theoretically and experimentally that laser-
assisted tunneling based on a staggered superlattice potential allows for the realization
of a staggered flux distribution [68]. Here we demonstrate a natural extension of the
previously described method by replacing the staggered potential with a linear one; this
gives rise to a uniform flux distribution Φ = π/2 [70], which is described by the famous
Harper-Hofstadter Hamiltonian [74–76]. In general the strength of the flux Φ is fully
tunable by changing the geometry of the laser-assisted tunneling scheme. Similar work
was performed at MIT with a uniform flux Φ = π per plaquette [71]. By exploiting
an additional pseudo-spin degree of freedom our setup further implements the time-
reversal symmetric Hamiltonian underlying the quantum spin Hall effect [15, 16]. The
pseudo-spins are realized with two Zeeman states of opposite magnetic moment. Both
spin states experience the same strength of the effective magnetic field but its direction
is spin-dependent [70]. The derivation of the effective Hamiltonian for our experimental
setup is demonstrated in Sect. 6.1. Using the previously developed technique of local
cyclotron orbits [68] we were able to probe the spatial distribution of the artificial gauge
field and to demonstrate the uniform nature of the flux (Sect. 6.3). The spin-dependent
chirality of the observed cyclotron orbits verifies the spin-dependence of the artificial
flux, which exhibits the same strength but points in opposite directions [77]. This further
enabled us to observe the spin Hall effect in an optical lattice (Sect. 6.4). Recently, the
free-space spin Hall effect was observed in quantum gases using Raman dressing [183].
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6.1 Experimental setup

The laser-assisted tunneling setup used to generate a uniform flux distribution is very
similar to the one described in Sect. 5.3. The only difference is, that tunneling along the
x-direction is inhibited by a linear potential (Fig. 6.1a). This configuration will naturally
lead to a uniform flux distribution if the phase of the on-site modulation increases lin-
early along the two axes of the 2D lattice potential. This is the case for the previous
scheme, where two running-wave beams were applied as illustrated in Fig. 5.4. Each
of the two beams was aligned along on of the principal axes of the 2D lattice thereby
creating a running-wave interference term which exhibits phase fronts that are diagonal
relative to the underlying lattice (Fig. 5.4c).
There are two possibilities for the implementation of a linear potential. The first one
builds on optical dipole forces [158]: A Gaussian laser beam that is focused on the atom
position such that the atoms are located at the maximum slope of the beam profile along
x, while being centered along y, introduces an approximately linear potential along x
if the waist of the beam is large compared to the extent of the atomic cloud. The use
of optical potentials has the advantage that they can be easily controlled experimentally
and therefore offer a large experimental flexibility. The laser-assisted tunneling method,
however, requires large energy offsets ∆ between neighboring sites. Thus, large optical
powers or near-resonant laser beams have to be employed. Both options increase heat-
ing in the system due to spontaneous emission of photons.
The second possibility is to use magnetic field gradients, which allow for a tuning of the
energy offset ∆ over a wide range without having to deal with increased heating due to
spontaneous emission and maintaining the homogeneity of the linear potential across
the atomic cloud. One possible disadvantage is the reduced experimental flexibility
regarding the experimental controllability compared to optical fields. In the following
discussion we are going to present an experimental setup based on a linear potential
created using a magnetic field gradient, which offers an additional advantage, namely
it naturally allows for the realization of a time-reversal symmetric Hamiltonian which
underlies the quantum spin Hall effect [15, 16, 77].

6.1.1 Harper-Hofstadter model

The experimental setup consists of a two-dimensional lattice created by two orthogonal
standing waves with wavelength λs = 767 nm (Fig. 6.1). Along the x-direction a mag-
netic field gradient B′ is applied to generate a linear potential ∆m = ∆m, which inhibits
tunneling along the corresponding direction for ∆ � Jx. Resonant tunneling is then
restored with the setup discussed in detail in the previous chapter using two running-
wave beams as defined in Eq. (5.18) and illustrated with the red arrows in Fig. 6.1a. The
corresponding local optical potential can be written in the following form
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Figure 6.1: Experimental setup to generate a uniform flux distribution in a 2D square lattice
and spatial distribution of the Peierls phase-factors. a The setup consists of a 2D lattice with
constant a = λs/2 and bare tunneling couplings Jx and Jy. A magnetic field gradient B′ along x
is used to introduce an energy offset between neighboring sites. Tunneling along x is inhibited
for ∆ � Jx. An additional pair of far-detuned running-wave beams (red arrows) with wave
vectors |k1| ' |k2| ' kl = π/(2a) restores resonant tunneling for ω = ω1 −ω2 = ∆/h̄. b Phase
distribution φm,n of the effective Hamiltonian (6.4). The induced coupling strengths are denoted
as K and J respectively.

VK(r, t) = V0 cos (δk · r + ωt + φ0) , (6.1)

with δk = k1 − k2 and ω = ω1 − ω2; the constant global energy shift was neglected.
The site-dependent phase of the modulation is determined by

δk · R =
π

2
(m− n), R = maêx + naêy . (6.2)

and the time-dependent Hamiltonian of the system can be written as

Ĥ(t) = ∑
m,n

(
−Jx â†

m+1,n âm,n − Jy â†
m,n+1 âm,n + h.c.

)
+ ∑

m,n
(V0sin(ωt + ϕm,n) + ∆m) n̂m,n ,

(6.3)

with ϕm,n = π
2 (m−n+ 1)+φ0. This Hamiltonian is time-periodic Ĥ(t+T) = Ĥ(t), with

T = 2π/ω, such that in the high-frequency limit h̄ω � Jx, Jy the formalism discussed in
Sect. 3.4 can be directly applied. The corresponding effective time-independent Hamil-
tonian is written as
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ĤF = −K ∑
m,n

eiφm,n â†
m+1,n âm,n − J ∑

m,n
â†

m,n+1 âm,n + h.c. , (6.4)

φm,n =
π

2
(n−m), (6.5)

with K = JxJ1(η0), J = JyJ0(η0) and η0 =
√

2V0/(h̄ω). The spatial distribution of
the Peierls phase-factors are illustrated in Fig. 6.1b. For the sake of simplicity we set
φ0 = −3π/4. This Hamiltonian is equivalent to the Hofstadter model for Φ = π/2. For
the following discussion we are going to use the convention that the magnetic field is
pointing in the -êz direction.

6.1.2 Spin-dependent Harper-Hofstadter model

The simplest setting where quantum spin Hall physics can be observed consists of two
independent copies of a quantum Hall system, one for each spin state, |↑〉 and |↓〉, where
the strength of the magnetic field is spin-independent but the direction of the field "is
opposite" for the two states.
Such as system can be realized by introducing a pseudo-spin degree of freedom into
the model described above. For the following experiments we use two different Zeeman
states of 87Rb with opposite magnetic moments to encode the pseudo-spin. The two
hyperfine states are denoted as

|↑〉 ≡ |F = 1, mF = −1〉 |↓〉 ≡ |F = 2, mF = −1〉 . (6.6)

The linear potential ∆m = ±∆m implemented with a magnetic field gradient is now
spin-dependent; the plus-sign corresponds to |↑〉 particles (Fig. 6.2a) and the minus-sign
to |↓〉 particles (Fig. 6.2b). In Sect. 3.2 and 5.4 it was shown that the Peierls phase-factors
±φm,n engineered with laser-assisted tunneling depend on the sign of the energy offset
±∆ between neighboring sites. The total Hamiltonian for the two spin components can
be written in the following form

Ĥspin = ∑
m,n

(
−Keiφ̂m,n â†

m+1,n âm,n − Jâ†
m,n+1 âm,n + h.c.

)
, (6.7)

where φ̂m,n = φm,nσ̂z and σ̂z is the z-component of the Pauli spin matrix~σ. Strictly speak-
ing there is an additional phase shift of π between the two spin-components (Sect. 3.2).
However, since the two spin-states are not coupled it has no influence on the dynamics
of the system and can be safely neglected. Hamiltonian (6.7) describes two independent
copies of the Harper-Hofstadter model for Φ = π/2, where the two spin components
experience a magnetic field of the same strength but opposite direction: Φ↑ = π/2 for
the |↑〉 state and Φ↓ = −π/2 for |↓〉. In contrast to the Harper-Hofstadter Hamiltonian,
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Figure 6.2: Implementation of the spin-dependent Harper-Hofstadter model using the setup
illustrated in Fig. 6.1. Schematic drawing of the experimental setup for a |↑〉 particles and
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opposite magnetic moment. Hence, the magnetic field gradient B′ gives rise to a linear potential
∆m = ±∆m, where the sign depends on the spin of the particle. As a result the direction of the
effective magnetic field is spin-dependent: Φ↑ = π/2 for |↑〉 particles (a) and Φ↓ = π/2 for |↓〉
particles (b). (Figure adapted from [70])

which breaks time-reversal symmetry, this Hamiltonian is time-reversal symmetric. In-
cluding additional terms in the Hamiltonian which couple the two spin components
would allow for the realization of non-Abelian gauge fields [184, 185].

6.2 Laser-assisted tunneling in a tilted lattice potential

In order to investigate the global properties of the system described above we studied
laser-assisted tunneling in the presence of a magnetic field gradient B′ in the 2D lat-
tice by performing spectroscopy measurements (Sect. 4.3.2). The measured spectra are
independent of the spin state because only the absolute value of the energy offset |∆|
determines if atoms can tunnel resonantly to the neighboring sites (inset in Fig. 6.3b).
All measurements presented in the following section were performed with |↑〉 particles.
The experimental sequence started with an initial state where all atoms populated even
sites along the x direction of the lattice with at most one atom per lattice site and odd
sites were left empty (Fig. 6.3a). The final lattice depths were Vx = 5.0(1)Ers and
Vy = 40(1)Ers. Due to the deep lattice along y, tunneling is inhibited along that di-
rection on the timescales of the experiment, while bare tunneling along x occurs with
strength Jx/h = 0.26(1) kHz. Additionally a magnetic field gradient was applied, which
inhibited tunneling along x, such that all dynamics was frozen and atoms stayed in even
lattice sites. Perpendicular to the 2D plane an additional lattice potential was used with
wavelength λz = 844 nm in order to isolate individual planes from each other. The final
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Figure 6.3: Laser-assisted tunneling in a tilted optical lattice. a Illustration of the initial state,
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sites are left empty. b Measured resonance frequency ω = ω1 −ω2 obtained from spectroscopy
measurements (blue vertical line in the inset) as a function of the magnetic field gradient B′.
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(see main text). The solid line is a linear fit to the data. The inset shows a typical spectroscopy
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solid line depicts the fit of a Lorentzian to the data used to extract the resonance frequency.
(Data taken from Ref. [70])

lattice depth was Vz = 30(1)Erz. After switching on the modulation abruptly for a du-
ration of t = 4 ms with strength V0 = 2.48(5)Erl the fraction of atoms transferred to odd
sites nodd = Nodd/N was measured as a function of the modulation frequency ω; here N
denotes the total atom number. The even-odd resolved detection was achieved by apply-
ing the site-resolved detection technique along x as discussed in Sect. 4.6 (nodd =̂ nright).
If the frequency of the modulation ω is resonant with the energy offset between neigh-
boring sites ω = ∆/h̄ the transferred fraction nodd exhibits a maximum (inset Fig. 6.3b),
which allows us to determine the energy offset ∆ between neighboring sites produced
by the magnetic field gradient. Figure 6.3b displays the measured resonance frequency
ω as a function of the magnetic field gradient B′. It shows that the energy offset ∆ can
be adjusted over a large range of values up to ∆/h ∼ 10 kHz.

Initial state preparation: Patterned loading

The initial state illustrated in Fig. 6.3a was prepared with the help of an additional su-
perlattice potential along x. The sequence started by loading a BEC into a 3D lattice in
the MI regime with at most two atoms per lattice site [44]. The potential was created
by the long lattice along x, Vxl = 30(1)Erl, the short lattice along y, Vy = 20.0(6)Ers,
and the vertical lattice with depth Vz = 20.0(6)Erz. In order to empty all doubly oc-
cupied sites a filtering sequence was applied (Sect. 4.5), for which the lattice depths
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were increased to Vxl = 104(3)Erl, Vy = 100(3)Ers and Vz = 120(3)Erz. After all dou-
bly occupied sites were removed from the trap the lattices were ramped down again
to Vxl = 52(2)Erl, Vy = 40(1)Ers and Vz = 30(1)Erz. Subsequently, the magnetic field
gradient was switched on within 200 ms. The ramping time was chosen large enough
to assure that the gradient has reached its final value. As a last step the short lattice
along x was ramped up within 20 ms to Vx = 40(1)Ers with ϕx

SL = 0 (Sect. 4.3) in the
symmetric double-well configuration in order to load all atoms into the lower energy
sites of the tilted double-well potential; the energy offset between neighboring sites in
the double-well is introduced by the magnetic field gradient. After switching off the
long lattice within 2 ms and lowering the short lattice to its final value Vx = 5.0(1)Ers

the initial state for the measurements depicted in Fig. 6.3b was obtained.

Realization of the magnetic field gradient

The magnetic field gradient B′ was created using a quadrupole magnetic field in com-
bination with an additional homogeneous offset field. In our experimental setup the
quadrupole field is typically used to compensate gravity along the z-direction. In the
horizontal plane the quadrupole field is aligned on the atom position in order to avoid
possible magnetic field gradients along the x and y directions. To displace the minimum
of the quadrupole magnetic field an additional offset field B0 was applied. This induced
a magnetic field gradient B′quad(I) whose strength could be controlled with the current I
in the quadrupole coils. The offset field along x, however, is not entirely homogeneous
but further involves a small magnetic field gradient B′0. Thus, the total gradient is given
by the sum of the two: B′ = B′quad(I) + B′0. From the data shown in Fig. 6.3b the offset
gradient B′0 could be evaluated, which corresponds to ∆/h = 1.30(4) kHz.

6.3 Probing the magnetic flux distribution

The local structure of the artificial magnetic field can be examined on the level of iso-
lated four-site square plaquettes by tracking the evolution of single atoms inside these
plaquettes. This technique has been developed previously to probe the strength of the
magnetic field for the staggered flux distribution studied in Sect. 5.6 and Ref. [68, 69].
The evolution after quenching the system from a plaquette with zero flux to Φ = π/2
is reminiscent of a cyclotron orbit a charged particle would follow in the presence of
a magnetic field. The full-time dynamics of the real-space dynamics was discussed in
detail in Sect. 5.7. In conclusion it was found that the cyclotron dynamics can be de-
scribed with the effective time-independent Hamiltonian in the rotating frame and the
micro-motion can be safely neglected for our parameter regime. In the following mea-
surements the same method will be applied to explore the spatial distribution of the
artificial magnetic field in the 2D lattice.
The experiments were performed in a 3D optical lattice. In the horizontal plane two su-
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perlattice potentials were employed in the symmetric double-well configuration, ϕx
SL =

ϕ
y
SL = 0 (Sect. 4.3), in order to inhibit tunneling on every other bond along both direc-

tions such that all dynamics is restricted to the four sites of a plaquette potential. The
final lattice depths were Vx = 7.0(2)Ers, Vy = 10.0(3)Ers and Vxl = Vyl = 35(1)Erl.
Along the vertical axis an additional lattice was used to isolate individual planes; the
corresponding lattice depth was Vz = 30(1)Erz. Furthermore tunneling along x in the
plaquette was inhibited by the magnetic field gradient ∆ � Jx, where Jx denotes the
bare inner-well coupling of the double-well potential along x.
As an initial state we prepared single atoms in the ground state of the tilted plaquettes
as illustrated by the gray shaded area in Fig. 6.4i. Due to the spin-dependency of the en-
ergy offset ±∆ between neighboring sites along x, the ground states are spin-dependent
as well:

∣∣Ψ↑〉 = (|A〉+ |D〉) /
√

2 for |↑〉 particles (Fig. 6.4a) and
∣∣Ψ↓〉 = (|B〉+ |C〉) /

√
2

for |↓〉 particles (Fig. 6.4b). The evolution was then triggered by switching on the mod-
ulation instantaneously with ω = ∆/h̄ and thereby quenching the system from tilted
plaquette potentials with Φ = 0 to symmetric ones with Φ = ±π/2. The energy offset
∆ was calibrated independently through spectroscopy measurements (Sect. 4.3.2). The
dynamics of a single atom in the plaquette is governed by the following effective 4× 4
Hamiltonian written in the basis {|A〉 , |B〉 , |C〉 , |D〉}

ĤP
↑,↓ = −


0 K 0 J
K 0 J 0
0 J 0 Kexp

[
−iΦ↑,↓

]
J 0 Kexp

[
iΦ↑,↓

]
0

 . (6.8)

Using the site-resolved detection techniques introduced in Sect. 4.6 we evaluated the
mean atom positions 〈X〉, 〈Y〉 within the plaquettes,

〈X〉 =
(Nright − Nleft)a

2N
, 〈Y〉 =

(Nup − Ndown)a
2N

, (6.9)

where Nleft = NA + ND, Nright = NB + NC, Nup = NC + ND, Ndown = NA + NB and NR
is the atom number on each site R of the plaquette.
Without the magnetic field the atoms would start to undergo Rabi oscillations between
left (A and D) and right (B and C) sites, however, due the the artificial gauge field the
atoms get deflected perpendicular to their direction of motion, which is reminiscent of
the Lorentz force acting on a charged particle in a magnetic field (Fig. 6.4). We observe
that |↑〉 particles start to to tunnel to the right and get deflected to the lower bond while
|↓〉 particles first tunnel to the left and get deflected to the same bond as |↑〉 particles.
Hence, the two orbits exhibit opposite chirality, which is a manifestation of the spin-
dependent direction of the flux Φ = ±π/2.
The observation of local cyclotron orbits is equivalent to the results obtained in a lattice
with staggered flux Φ = (−1)mπ/2 because in these measurements only plaquettes
with equal sign of the flux contributed (Sect. 5.6). In order to probe the uniform nature



6.3 Probing the magnetic flux distribution 101

b i ii

iiia

x

y

A

D C

B

v

A

D C

B

v

-0.4 -0.2 0 0.1-0.1-0.3

0.1

0

-0.1

-0.2

〈X〉/a

〈Y
〉/

a

Time (ms)0 2.1

⎥↑〉

0.1

0

-0.1

-0.2
-0.1 0.1 0.3 0.40.20

〈X〉/a

〈Y
〉/

a

Time (ms)0 2.1

⎥↓〉

Δ/h=4.56(2) kHz
K/h=0.28(1) kHz
J/h=0.53(1) kHz

Δ/h=4.23(3) kHz
K/h=0.27(1) kHz
J/h=0.53(1) kHz

Figure 6.4: Probing the spin-dependence of the artificial gauge field with local cyclotron orbits
for J/K ≈ 2. i The setup consists of a 2D superlattice that consists of symmetric double-well
potentials along x and y. The high potential barrier on every other bond suppresses inter-
double-well tunneling so that all dynamics is restricted to the four sites of each plaquette. The
corresponding lattice sites are denoted as R = {A, B, C, D}. The initial state is a single atom
in the ground state of the tilted plaquette (gray shaded area):

∣∣Ψ↑〉 = (|A〉+ |D〉) /
√

2 for |↑〉
(a) and

∣∣Ψ↓〉 = (|B〉+ |C〉) /
√

2 for |↓〉 particles (b). ii Evolution of the mean atom position
in the plaquette for |↑〉 (a) and |↓〉 particles (b). The solid gray line is a fit to our data of the
numerically calculated dynamics fX(t) and fY(t) defined in Eq. (6.10), which were obtained with
Hamiltonian (6.8). The time offset and the flux were set to τ = 0.12(5)ms and Φ = 0.73(5)×π/2
respectively; X0, Y0, A〈X〉 and A〈Y〉 were free fit parameters. Each data point is an average over
three individual measurements. The opposite chirality of the orbits is a manifestation of the
spin-dependent direction of the flux Φ = ±π/2. (Data taken from Ref. [70])

of the artificial gauge field the superlattice potential along x was shifted by one lattice
constant (Fig. 6.5i). This was achieved by changing the relative phase between the short
and the long lattice from ϕx

SL = 0 to ϕx
SL = π (Sect. 4.3). The measurements were

performed in exactly the same way as described above but this time the neighboring
plaquettes along x participated in the measurements; these are the plaquettes which did
not contribute to the experimental results shown in Fig. 6.4. Again we observe orbits
with opposite chirality for the two spin states (Fig. 6.5) and moreover the chirality is the
same as in the measurements depicted in Fig. 6.4. This shows that the direction of the
flux is unchanged between adjacent plaquettes, which is consistent with a uniform flux
distribution.
The experimental data was fitted with the theoretical evolution discussed below, which
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Figure 6.5: Flux distribution obtained from local cyclotron orbits in adjacent plaquettes for
J/K ≈ 2. i Schematic drawing of the setup for |↑〉 particles (a) an |↓〉 particles (b) as in Fig. 6.4.
The superlattice potential along x is shifted by one lattice constant such that all dynamics is
now restricted to the neighboring plaquettes which did not participate in the measurements
presented in Fig. 6.4. ii Measured mean atom positions 〈X〉 and 〈Y〉 versus modulation time.
The solid gray line is a fit to our data of the numerical evolutions fX(t) and fY(t) defined in
Eq. (6.10), which were obtained with Hamiltonian (6.8). The time offset was τ = 0.12(5)ms, the
flux Φ = 0.73(5)π/2 and X0, Y0, A〈X〉 and A〈Y〉 were free fit parameters. Every data point is
an average over three individual measurements. The orbits exhibit opposite chirality depending
on the spin but they are the same compared to the ones displayed in Fig. 6.4. (Data taken from
Ref. [70])

was obtained by solving the Schrödinger equation associated with Hamiltonian (6.8)
numerically using the previously determined value of the magnetic flux per plaquette
Φ = 0.73(5) × π/2 (Sect. 5.6 and [68, 69]). The smaller amplitude of the cyclotron
orbits compared to the theoretical prediction is most likely due to inhomogeneities in
the system caused by the external harmonic confinement. The reduced value of the flux
Φ = 0.73(5)× π/2 stems from the smaller distance between lattice sites along y when
the lattice is partitioned into an array of isolated plaquette potentials (Fig. 5.18).

6.3.1 Experimental sequence

The experimental sequence was similar to the one illustrated in Fig. 5.15. It started by
loading a BEC into a 3D lattice potential with depths Vxl = Vyl = 20.0(6)Erl and Vz =

20.0(6)Ez in the Mott-insulating regime with at most two atoms per lattice site. Then, a
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filtering sequence (Sect. 4.5) was applied to remove all atoms on doubly-occupied sites
from the trap. At this point of the sequence all atoms were in the |↑〉 = |F = 1, mF = −1〉
state and all lattice sites were populated with at most one atom. By removing the
last Landau-Zener sweep from the filtering sequence, after all double occupancies were
removed, all atoms remain in the |↓〉 = |F = 2, mF = −1〉 state with at most one atom
per lattice site. During the filtering sequence the lattices were increased to much larger
values typically around V = 100 Er in order to enhance the scattering rate. After that
we lowered them again to Vxl = Vyl = 35(1)Erl and Vz = 30(1)Erz within 1 ms. In
previous experiments the tilt was introduced by the superlattice phase ϕx

SL (Sect. 5.6).
For the measurement presented in this chapter a magnetic field gradient was applied
along x. It was switched on in 250 ms together with the offset field B0, which shifts
the position of the quadrupole trap relative to the atom position (see discussion above).
By ramping up the short lattice along x within 15 ms the long-lattice sites were split
into tilted double-well potentials with Vx = 40(1)Ers and all particles occupied the
sites with lower energy. Subsequently, the long lattice along y was split within 0.1 ms
by ramping up the short lattice to Vy = 10.0(3)Ers. Simultaneously the barrier of the
double-well potential along x was lowered to Vx = 7.0(2)Ers. The evolution started by
switching on the modulation instantaneously on resonance. The final trap parameters
J, K and ∆ were calibrated independently for each measurement (Sect. 4.3.2 and 4.4). The
corresponding values are displayed in Fig. 6.4 and 6.5 respectively. For the calibration
of the renormalized coupling J = JxJ0(

√
2V0/∆) a similar method was used as for the

calibration of the induced tunneling coupling K. We measured Rabi oscillations between
the left and right side of a symmetric isolated double-well potential in the presence of
the modulation with driving frequency ω = ∆/h̄.

6.3.2 Numerical simulations

We simulated the dynamics of the mean atom positions 〈X〉 and 〈Y〉 within the plaque-
ttes by solving the time-dependent Schrödinger equation associated with Hamiltonian
(6.8) numerically with Φ = 0.73(5)× π/2 (Sect. 5.6 and [68, 69]). The numerical evolu-
tions were fitted to our data using the following functions

fX(t) = X0 + A〈X〉 · X(t + τ), fY(t) = Y0 + A〈Y〉 ·Y(t + τ), (6.10)

where the offsets X0/Y0 and oscillations amplitudes A〈X〉/A〈Y〉 were free fit variables.
The time offset τ was introduced to account for the finite ramping times that occur dur-
ing the last ramps before the detection where we increased all lattice depths in order
to freeze the dynamics. The ramping times are typically around 0.1 − 0.2 ms, which
prevents us from an exact determination of the t = 0 point a priori. The offset τ was de-
termined by fitting the numerical evolution for each data set individually and including
τ as a fitting variable. We obtained an average value τ = 0.12(5)ms from the evolutions
depicted in Fig. 6.4 and 6.5.
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Figure 6.6: Numerical simulations based on statistical sampling of the parameter space. Com-
parison between the 1000 trajectories obtained from the Monte-Carlo samples described in the
text and the measured cyclotron orbits (blue and green) displayed in Fig. 6.4 (a) and 6.5 (b). The
black (left panels) and gray (right panels) solid lines show the fit to our experimental data using
Eq. (6.10). The panels on the right depict the same data together with the error bars, which
illustrate the standard deviation obtained from the individual measurements. (Data taken from
Ref. [70])
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Figure 6.7: Initial state and spin-dependent oscillations transverse to the initial motion of the
atoms. a Schematic drawing of the setup, which is an array of isolated plaquette potentials.
The atoms were prepared in a spin-superposition state |ψ〉spin = α |↑〉+ β |↓〉 before they were
loaded into the ground state of the lower bond in the plaquette. b Mean atom position 〈X〉
for a spin-polarized sample with β = 1 (left panel) and α = 1 (right panel) respectively. The
experimental parameters were J/h = 0.69(1) kHz, K/h = 0.38(1) kHz and ∆/h = 5.31(5) kHz.
The blue and green solid lines are a fit of the numerically determined evolution fX(t) defined in
Eq. (6.10) to our data, the time offset was τ = 0.18(3)ms. (Data taken from Ref. [70])

To gain better insight into the agreement between our experimental data and the nu-
merical predictions we performed additional simulations taking into account the ex-
perimental uncertainties in the independently calibrated values J, K and Φ. We also
considered possible detunings δx = δy = 0(30)Hz along the x and y directions, which
might be caused by an imperfect experimental control over the relative phase between
the short and the long lattices ϕx

SL and ϕ
y
SL. We assumed a normal distribution for each

parameter J, K, Φ and δx/δy with the mean and standard deviation values stated above.
From these distributions a sample of random parameters is generated, which is then
used to model the dynamics according to the following Hamiltonian

ĤP
↑,↓ = −


0 K 0 J
K −δx J 0
0 J −(δx + δy) K exp

[
−iΦ↑,↓

]
J 0 K exp

[
iΦ↑,↓

]
−δy

 , (6.11)

written in the basis {|A〉 , |B〉 , |C〉 , |D〉}, where the sites of the plaquette are labeled
as illustrated in Fig. 6.4 and 6.5. Such a sampling procedure is sometimes referred to
as Monte-Carlo sampling. This procedure was repeated for 1000 samples and plotted
together with our experimental data (left panels in Fig. 6.6). The amplitudes A〈X〉/A〈Y〉,
offsets X0/Y0 and time delay τ were set to the values obtained from the fitting functions
given above. For a better comparison with the data we further show the statistical
uncertainties obtained from the individual measurements (right panels in Fig. 6.6).
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the spin-imbalance n↑ − n↓. The total oscillation amplitude A〈X〉 = A↓〈X〉 + A↑〈X〉 was fitted
according to the numerical evolution fX(t) defined in Eq. (6.10) with τ = 0.18(3)ms. Every data
point is an average over two individual measurements. The schematic drawings illustrate the
initial state and the direction of the flux for fully polarized samples, |ψ〉spin = |↓〉 (blue) and
|ψ〉spin = |↑〉 (green). The solid line is a linear fit to the data, where the offset was set to zero.
The error bars depict the standard deviation obtained from the individual measurements. (Data
taken from Ref. [70])

6.4 Spin Hall effect in an optical lattice

The spin Hall effect refers to a situation where a transverse spin current develops as a
response to an electric field. It can be thought of as spin-up electrons moving transverse
to the electric field in one direction and spin-down electrons moving in the opposite
direction. In this case no net charge current flows but a spin imbalance builds up at the
edges of the sample similar to the Hall voltage in the conventional Hall effect. This ef-
fect has been observed in thin-film semiconductor devices [186, 187] and with ultracold
atoms in a harmonic trap using Raman dressing [183].
In this section related experimental results are presented which were obtained for the
first time with ultracold bosonic atoms in optical lattices [70]. We determine the oscilla-
tion of single atoms in isolated plaquettes transverse to their initial motion as a function
of the spin imbalance n↑ − n↓, where n↑ = N↑/N is the fraction of atoms with spin-up
and n↓ = N↓/N the one with spin-down.

The experimental setup was similar to the one described above, which consisted of a 3D
optical lattice that was partitioned into isolated plaquettes in the horizontal plane using
superlattice potentials (Fig. 6.7a). Contrary to the previous sequence we prepared the
atoms in a spin-superposition state |ψ〉spin = α |↑〉+ β |↓〉 before we loaded them into the
ground state of the lower bond in the plaquette potential. This state has equal weight on
A and B sites independent of the spin state |ψ〉spin. We measured the mean atom position
in the non-trivial direction 〈X〉 /a and observed almost perfectly mirrored oscillations
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for the two spin states (Fig. 6.7b). We obtained A〈X〉 = −0.28(2) for |ψ〉spin = |↓〉
(blue) and A〈X〉 = 0.26(4) for |ψ〉spin = |↑〉 (green). The measured oscillation amplitude

A〈X〉 = A↓〈X〉 + A↑〈X〉 was found to depend linearly on the spin imbalance n↑ − n↓ and it
reversed the sign when the spin was flipped (Fig. 6.8).

Experimental sequence

The sequence started by loading a BEC into a deep 3D optical lattice in the MI-regime
created by the two long lattices and the vertical one. The final depths were Vxl =

30(1)Erl, Vyl = 20.0(6)Erl and Vz = 20.0(6)Ez. For the filtering sequence (Sect. 4.5)
all lattices were ramped up to Vxl = 104(3)Erl, Vyl = 70.0(2)Erl and Vz = 120.0(4)Ez

in order to increase the scattering rate. At the end of the filtering sequence the atoms
are prepared in a spin-superposition state |ψ〉spin as described below. Subsequently the
lattices were decreased to Vxl = 52(2)Erl, Vyl = 35(2)Erl and Vz = 30(1)Ez. In order to
load the atoms into the lower bond of the plaquette the short lattice along y was switched
on within 20 ms to Vy = 40(2)Ers with ϕ

y
SL 6= 0 (Sect. 4.3), which corresponds to a

tilted double-well potential along y. Due to the tilt all atoms occupied the lower energy
sites of the double-well (lower bond). In addition, the high potential barrier inhibited
tunneling such that the relative phase could be changed adiabatically to ϕ

y
SL = 0 within

40 ms resulting in a symmetric double-well configuration. Subsequently the magnetic
field gradient was ramped up in 250 ms and after that the short lattice along x was
ramped up in 2 ms to its final value Vx = 6.0(2)Ers. In the presence of the magnetic
field gradient |↑〉 atoms are preferentially located on A sites and |↓〉 atoms on B sites.
Tunneling was inhibited along both directions due to the magnetic field gradient along
x and the high potential barrier along y. At this point the running-wave beams were
switched on adiabatically within 7 ms to couple A and B sites. The potential barrier
along y remained high and the atoms where loaded into the ground state of the lower
bond in the plaquette with equal weight on A and B sites. The cyclotron motion was
then initiated by decreasing the short lattice along y within 100 µs to Vy = 9.0(3)Ers.
The final plaquette parameters K, J and ∆ were calibrated independently (Sect. 4.3.2
and 4.4).

Spin state preparation

Different spin-superposition states were prepared by modifying the final ramp of the
filtering sequence (Fig. 6.9 and Sect. 4.5), which was used to remove double occupan-
cies from the trap. Changing the duration of the microwave-pulse (MW-pulse) during
the last Landau-Zener sweep (LZ sweep) results in different spin-superposition states
|ψ〉spin = α |↑〉+ β |↓〉. If the MW-pulse is applied during the total time of the 2nd LZ
sweep a fully polarized sample will be obtained with all atoms in the |↑〉 state, while if
the pulse is removed completely during that sweep all atoms will remain in the |↓〉 state.
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1st LZ sweep 2nd LZ sweep

MW-pulse

B-field
⏐↑〉⏐↑〉 ⏐↓〉⏐↓〉

t
Spin relaxation collisions

Figure 6.9: Preparation of different spin-superposition states. Schematic drawing of the filter-
ing sequence (Sect. 4.5) used to remove double occupancies from the trap through spin-relaxation
collisions. During this sequence the atoms are first transferred to the upper hyperfine-manifold
|↓〉 = |F = 2, mF = −1〉 using a Landau-Zener (LZ) sweep (magnetic field ramp). After a cer-
tain hold time during which atoms on doubly-occupied sites are lost from the trap the atoms
are typically transferred back to the |↑〉 = |F = 1, mF = −1〉 by applying a 2nd LZ sweep. The
gray shaded area illustrates the duration of the MW-pulse driving the hyperfine transition at
∼ 6.8 GHz. By changing the duration of the pulse during the 2nd LZ sweep the atoms end up in
a spin-superposition state |ψ〉spin = α |↑〉+ β |↓〉.

Choosing any duration in between those two values will lead to a superposition state
|ψ〉spin. The probability of finding an atom in a particular spin state was calibrated inde-
pendently for each pulse duration by releasing the atoms from the trap and applying a
Stern-Gerlach pulse at the beginning of TOF. Using usual absorption imaging techniques
the fraction of atoms in each spin state: n↑ = |α|2 and n↓ = |β|2, was evaluated.



Chapter 7

All-optical setup for flux rectification

In the previous chapter a new experimental technique for the realization of uniform ar-
tificial gauge fields in optical square lattices was demonstrated. It has been shown that
the flux distributions can be probed with local cyclotron orbits [68, 70]. The same tech-
nique further enabled the observation of chiral currents in optical ladder potentials [72].
However, observing the global properties of the system in a full 2D lattice remained out
of reach with current setups [70, 71].
The main limitation is rooted in the lack of an adiabatic loading procedure that con-
nects the lattice with trivial topology to the one with non-trivial topology. Starting from
a normal square lattice and simply turning on the flux would lead to a splitting of
the spectrum into several subbands and the atoms would potentially redistribute over
the magnetic subbands in a non-trivial manner. The use of a magnetic field gradient
(chapter 6) further limits the experimental flexibility in the design of possible loading
procedures.
In this chapter a new experimental setup is introduced which relies solely on far-
detuned laser beams and offers the possibility of addressing neighboring bonds in the
lattice individually [66, 73]. In a staggered superlattice potential there are two kinds of
bonds with positive and negative energy offset between neighboring sites, which will
naturally lead to staggered flux distributions if tunneling is restored on all bonds with
the same laser beams (chapter 5). The topology of this system is trivial and the en-
ergy bands exhibit a Chern number of zero. With the new scheme tunneling along the
two kinds of bonds can be controlled individually. In particular, the sign of the Peierls
phases φm,n can be adjusted experimentally, which in turn facilitates flux rectification in
a square optical lattice with staggered energy offset. In the next chapter (chapter 8) this
setup serves as the starting point for an adiabatic loading of the atoms into the Hofs-
tadter bands for Φ = π/2 and it further enabled the first Chern-number measurement
in a non-electronic system [73].
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7.1 Laser-assisted tunneling on every other bond

The main ingredient to achieve flux rectification with a staggered superlattice potential
is the ability to control tunneling on neighboring bonds in the lattice individually. This
is achieved by performing a slight modification to the setup introduced in Sect. 5.3. The
new beam configuration is illustrated in Fig. 7.1a. In this setup the running-wave beam
along the x-direction is retro-reflected, creates a standing wave and interferes with the
running wave along y. The corresponding electric fields are defined according to

E1(r, t) = 2E1 ei(ω1t+φ1) cos(klx + ϕ), E2(r, t) = E2 ei(−kly+ω2t+φ2), (7.1)

where the phase ϕ determines the position of the modulation relative to the underlying
staggered superlattice potential (Sect. 4.3)

VSL(x) = Vxl cos2(klx) + Vx cos2(ksx + π/2), (7.2)

with kl = ks/2 and ks = 2π/λs. For technical reasons the direction of the laser beam
along y (dark red arrow in Fig. 7.1a) was changed compared to the previous setup. The
phase ϕ can be adjusted by changing the frequency of the laser beam similar to the
phase of the superlattice potential ϕSL as discussed in Sect. 4.3.
The time-dependent optical potential created by the two beams in Eq. (7.1) can be written
in the following form

V(x, y, t) = 4V1 cos2(klx + ϕ)︸ ︷︷ ︸
standing wave Vsw

+ V2︸︷︷︸
cst.

+ V0 cos(klx + ϕ) cos(−kly + ωt + φ), (7.3)

where ω = ω2 − ω1 and φ = φ2 − φ1. The potential amplitudes are proportional to
the corresponding field amplitudes V1 ∝ E2

1, V2 ∝ E2
2 and V0 ∝ 4E1E2 [158]. For an

appropriate choice of the relative phase ϕ = ±π/4 the modulation induces tunneling
only on every other bond. On the remaining bonds the modulation between neighboring
sites is in phase (Fig. 7.1b) and does not induce tunneling as discussed in Sect. 3.4. To
simplify notations the time-dependent potential V(x, y, t) is written as

Vm,n(t) = Vsw + V0 cos(m π/2 + ϕ) cos(−n π/2 + ωt + φ), (7.4)

where R = maêx + naêy denotes the position in the lattice. The constant part of the
potential was neglected since it only adds a global energy offset.
In the experiment the applicability of this method was tested in isolated double-well
potentials, where tunneling on every other bond is suppressed by a high potential bar-
rier (gray bonds in Fig. 7.2a) and all dynamics is restricted to two sites only. Tunneling
within each double-well is initially inhibited by a potential energy offset ∆ and is then
restored resonantly with ω = ∆/h̄ using the laser beam configuration explained above.
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Figure 7.1: Experimental setup for laser-assisted tunneling on every other bond. a Schematic
drawing of the experimental setup. Along the x-direction of a 2D lattice with lattice constant
a = λs/2 a staggered superlattice potential with ∆ � Jx is used to inhibit tunneling. The bare
tunnel couplings are denoted as Jx and Jy. An additional pair of far-detuned laser beams with
|ω2 − ω1| = ∆/h̄ and wave vector kl = π/(2a) restores resonant tunneling along that axis in
order to create complex tunnel couplings. The pair consists of a running wave along y and
a standing wave along x. The corresponding optical potential Eq. (7.3) is adjusted such that
tunneling is induced on every other bond; for ϕ = −π/4 on red bonds and for ϕ = +π/4
on gray bonds. b Time-dependent on-site modulation V(x, y, t) for y = 0 as a function of time
for ϕ = −π/4 as defined in Eq. (7.3). Neighboring sites with negative energy offset −∆ are
modulated in phase therefore no tunneling is induced. It is only induced on bonds with positive
energy offset +∆. (Figure adapted from Ref. [73])

The differential modulation amplitude between neighboring sites in the double-well is
given by

δV = Vm+1,n −Vm,n =
√

2V0| sin(ϕ)|, (7.5)

which results in an effective tunnel coupling K = JxJ1(δV/∆). For ϕ = 0 the long
lattice and the on-site modulation are in phase. Hence, the two sites of the double-
well potential are modulated in phase and the relative modulation amplitude vanishes.
Ideally, this results in a vanishing effective coupling K = 0. For ϕ = π/2 the relative
modulation amplitude reaches its maximum value such that K = JxJ1(

√
2V0/∆).

The tunnel couplings K were measured for different values of the phase ϕ using a
similar sequence as described in Sect. 4.4, where possible doubly occupied sites were
emptied by applying a filtering sequence (Sect. 4.5). The final lattice parameters were
Vx = 7.0(2)Ers, Vxl = 35(1)Erl, ϕx

SL = 0.073(2)π, Vy = 30(1)Ers and Vz = 30(1)Erz. This
corresponds to a tilted double-well potential (Sect. 4.3) with energy offset ∆/h̄ ≈ 4.5 kHz
between the two sites, which was calibrated independently by performing spectroscopy
measurements for each value of the phase ϕ (Sect. 4.3.2). Note that due to the additional
standing-wave term in Eq. (7.4) the tilted double-well potential is slightly modified. This
leads to a dependence of the resonance frequency on the relative phase ϕ on the order
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Figure 7.2: Suppression of tunneling on every other bond in isolated double-well potentials.
a Schematic drawing of the experimental setup. Along x a tilted double-well potential with
energy offset ∆ � Jx is used to inhibit tunneling; Jx is the bare inner-well coupling. Resonant
tunneling is then restored using a pair of laser beams (red arrows) that creates a time-dependent
potential V(x, y, t) as defined in Eq. (7.4). The potential is illustrated with the red solid line for
y = 0 and t = 0. Depending on the relative phase ϕ, the effective tunnel coupling K varies
between zero and K = JxJ1(

√
2V0/∆). b Measured effective coupling strength as a function of

the phase ϕ. The solid line is a fit to our data using f (ϕ) = A0| sin(ϕ+ ϕ0)|, where the amplitude
A0 = 0.287(6) kHz and the phase offset ϕ0 = 0.008(5)π were free fit variables. (Figure adapted
from Ref. [73])

of 20%.
Using the measured coupling strengths displayed in Fig. 7.2b an upper limit for the
suppression of tunneling on every other bond was obtained, Kmin/Kmax < 0.13. A
residual non-zero coupling obtained when the modulation between neighboring sites is
in phase, is most likely due to an imperfect back-reflection of the running-wave beam
along x (light red arrow in Fig. 7.2a).

7.2 Uniform flux in a staggered potential

With the experimental setup described in the previous section tunneling could be re-
stored on every other bond (red bonds in Fig. 7.1a). This is the starting point for the
flux-rectification scheme. In the following two pairs of beams are applied in the same
configuration as described above (red and blue arrows in Fig. 7.3a)

Vi
m,n(t) = Vi

sw + Vi
0 cos(m π/2 + ϕi) cos(−n π/2 + ωit + φi), (7.6)

where ωi = ωi2 − ωi1, i = {r, b}. For ϕr = −π/4 and ϕb = π/4 two independent
on-site modulation potentials are obtained (Fig. 7.3b,c), which are spatially separated by
one lattice constant, so that the two kinds of bonds in the lattice (red and blue) can be
addressed individually. As a side effect the two standing-wave terms Vi

sw cancel each
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Figure 7.3: All-optical flux-rectification scheme for laser-assisted tunneling in a staggered
superlattice potential. a Schematics of the all-optical setup. A staggered superlattice potential
with offset ∆� Jx inhibits tunneling between neighboring sites (gray and white). Two additional
pairs of beams (red and blue arrows) restore resonant tunneling with ωi = ωi2 − ωi1 = ±∆/h̄
and wave vectors |kij| ' kl = π/(2a), with i = {r, b} and j = {1, 2}. Each pair is composed
of one running wave along y and one standing wave along x (arrows with lighter shading).
Tunneling on different bonds with opposite sign of the energy offset ±∆ (red and blue) is con-
trolled independently with the red and blue beams, which results in a uniform flux distribution
Φ = π/2 per plaquette (aligned along -êz). b,c Total time-dependent potentials Vi(x, 0, t) as a
function of time for the red (b) and blue (c) beams. The differential modulation amplitude be-
tween neighboring sites Vi

m+1,n −Vi
m,n vanishes on every other bond (gray bonds) and tunneling

is restored on red bonds (b) and blue bonds (c) independently. (Figure adapted from Ref. [73])

other. The modulation amplitudes Vr
0 = Vb

0 ≡ V0 are the same for both pairs by con-
struction as will be demonstrated in Sect. 7.3.
The system can be described using the following time-dependent tight-binding Hamil-
tonian

Ĥ(t) = ∑
m,n

(
−Jx â†

m+1,n âm,n − Jy â†
m,n+1 âm,n + h.c.

)
+ ∑

m,n
(−1)m ∆

2
n̂m,n

+ ∑
m,n

[
V0 cos

(
m

π

2
− π

4

)
cos

(
−n

π

2
+ ωrt + φr

)]
n̂m,n

+ ∑
m,n

[
V0 cos

(
m

π

2
+

π

4

)
cos

(
−n

π

2
+ ωbt + φb

)]
n̂m,n .

(7.7)

In the high-frequency limit h̄ω � Jx, Jy, where ω := |ωr| = |ωb| = ∆/h̄, the correspond-
ing effective Floquet Hamiltonian can be derived in the rotating frame as discussed in
Sect. 3.4. The unitary transformation is defined in Eq. (3.73) with

χm,n(t) =
V0

h̄ωr
cos

(
m

π

2
− π

4

)
sin
(
−n

π

2
+ ωrt + φr

)
+

V0

h̄ωb
cos

(
m

π

2
+

π

4

)
sin
(
−n

π

2
+ ωbt + φb

)
+ (−1)m ∆t

2h̄
.

(7.8)
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The transformed Hamiltonian Ĥ(t) defined in Eq. (3.74) involves time-dependent com-
plex tunnel couplings with phase factors ηx

m,n(t) = χm+1,n(t)−χm,n(t) for hopping along
the x-direction. For the experimental setup these phases can be expressed in the follow-
ing form

ηx
m,n(t) =


−
√

2V0
h̄ωr

sin
(
−n π

2 + ωrt + φr − (m− 1)π
2

)
+ ∆t

h̄ for m odd

−
√

2V0
h̄ωb

sin
(
−n π

2 + ωbt + φb −m π
2

)
− ∆t

h̄ for m even .
(7.9)

Taking the time average over one driving period T = 2π/ω according to Eq. (3.35)
results in the effective time-independent Hamiltonian given by

ĤF = ∑
m,n

(
−Keiφm,n â†

m+1,n âm,n − Jâ†
m,n+1 âm,n + h.c.

)
, (7.10)

where K = JxJ1(
√

2V0/∆). For ωr = −ωb = ±∆/h̄ the corresponding Peierls phase-
factors are determined by

φm,n =

±
π
2 (m + n− 1)∓ φr, for m odd

±π
2 (m + n)∓ φb, for m even ,

(7.11)

which gives rise to a uniform flux distribution with Φ = φm,n+1− φm,n = ±π/2 per pla-
quette. Note that by choosing ωr = ωb = ±∆/h̄ a staggered flux distribution is obtained
(Sect. 7.4).
In order to derive the effective coupling strength J perpendicular to the complex tunnel-
ing direction the time-dependent phases-factors η

y
m,n(t) = χm,n+1(t)− χm,n(t) have to be

considered

η
y
m,n(t) = −

√
2V0

h̄ωr
cos

(
m

π

2
− π

4

)
cos

(
−n

π

2
+ ωrt + φr −

π

4

)
−
√

2V0

h̄ωb
cos

(
m

π

2
+

π

4

)
cos

(
−n

π

2
+ ωbt + φb −

π

4

)
.

(7.12)

In contrast to the restored tunneling along the x-axis, tunneling along y is affected by
both modulation potentials simultaneously for each bond and the differential modu-
lation amplitude between neighboring sites cannot be evaluated by treating the two
modulations separately.
The combined on-site modulation is characterized by two distinct phases, i.e. the relative
phase of the modulation δφ = φr − φb and the initial phase of the modulation φ0 := φr.
The relative phase δφ can be controlled experimentally as will be shown in Sect. 7.3.1 but
the initial phase of the driving is not stabilized. For the sake of simplicity the relative
phase is set to δφ = −π/2 for the following discussion. Together with ω := ωr = −ωb

the equations above simplify to
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Figure 7.4: Relative modulation amplitudes Vy and effective coupling strengths J along the y-
direction. a The lattice modulation (red and blue arrows in Fig. 7.3b) leads to a renormalization
of the tunneling along y. The differential modulation amplitude between neighboring sites Vy

depends on the initial phase φ0 and is potentially inhomogeneous over the 2D lattice determined
by the two values Vy1 and Vy2 (green and purple). For a special choice of the phase φ0 =

(ν± 1/4)π, ν ∈ Z, the differential modulation amplitude is homogeneous (gray vertical lines). b
Possible values of the effective coupling J for different phases φ0 as a function of the modulation
amplitude V0. The minimum value of J is determined by the maximum modulation amplitude
Vmax

y = V0 and the maximum value is equal to the bare tunnel coupling Jy for Vmin
y = 0. The

inhomogeneity in the coupling strength increases with increasing modulation amplitude V0. The
gray vertical line marks the value V0/(h̄ω) ≈ 0.58 used for the experiments presented in the next
chapter (chapter 8), for which the couplings vary between Jmax = Jy and Jmin = 0.7Jy.

η
y
m,n(t) = ±

2V0

h̄ω


cos (φ0) sin

(
ωt± π

4

)
, for (m + n) odd

sin (φ0) sin
(
ωt± π

4

)
, for (m + n) even .

(7.13)

Along y the effective tunnel coupling is renormalized according to the zeroth-order
Bessel function of the first kind J = JyJ0(2Vy/∆) but it does not involve any Peierls
phase-factors (Sect. 3.2 and 3.4). Therefore only the oscillation amplitude of η

y
m,n(t) is of

interest but not its phase. According to the Eq. (7.13) the amplitude can take two differ-
ent values Vy1 = V0 sin(φ0) and Vy2 = V0 cos(φ0) depending on φ0 (Fig. 7.4a). Intuitively,
this phase determines the position of the modulation relative to the underlying lattice
along y. For each experimental realization a different value of the phase φ0 is obtained,
which potentially leads to inhomogeneous couplings along the y-direction. However, in
the limit V0/(h̄ω)� 1, the effective coupling can be very well approximated by the bare
tunnel coupling J ' Jy, such that it is approximately homogeneous over the 2D lattice
(Fig. 7.4b).
Note that stabilizing the value to φ0 = (ν± 1/4)π, ν ∈ Z, would result in homogeneous
couplings independent of the driving amplitude V0 (gray vertical lines in Fig. 7.4a) and
the corresponding effective coupling would be given by J = JyJ0(

√
2V0/∆).

If this is not the case and V0 is on the order of the driving frequency than the effec-



116 7. All-optical setup for flux rectification

tive couplings J can be approximated up to second order in V0/(h̄ω) using the series
expansion of the zeroth order Bessel function of the first kind J0(x) ≈ 1− x2/4+O(x4)

J = Jy


J0

(
2V0
h̄ω cos (φ0)

)
≈ 1− V2

0
2(h̄ω)2 (1 + cos(2φ0)), for (m + n) odd

J0

(
2V0
h̄ω sin (φ0)

)
≈ 1− V2

0
2(h̄ω)2 (1− cos(2φ0)), for (m + n) even .

(7.14)

Finally this expressions can be combined into a single equation

J ' Jy(1 + fm,n), fm,n = −1
2

(
V0

h̄ω

)2 [
1− (−1)m+n cos(2φ0)

]
. (7.15)

An equivalent derivation of the effective Hamiltonian using the formalism discussed in
Sect. 3.1.2 can be found in Refs. [66, 73].

7.3 Experimental setup

The two pairs of beams (red and blue arrows in Fig. 7.3a) are generated using a single
laser1 (Fig. 7.5a) with wavelength λl = 1534 nm, which is locked to the short lattice
λs = 767 nm via a frequency offset lock. This is similar to the frequency control of
the two long lattices which participate in the generation of the bichromatic superlattice
potentials (Sect. 4.3). The laser beam is first split into two parts, each of them is passing
through an acousto-optic modulator (AOM) with frequency ωA = 2π× 80 MHz in order
to stabilize the intensity of each beam individually with a feedback loop [162]. Then each
beam is sent through a fiber coupled intensity modulator2 (IM) to generate sidebands
at frequencies ±Ωj, j = {1, 2}. At the same time the carrier frequency at ωc + ωA,
where ωc denotes the laser frequency, is suppressed by the IM. By choosing Ω2 −Ω1 =

±∆/h̄ the condition required for the uniform flux configuration ωr = −ωb = ±∆/h̄ is
automatically fulfilled (Fig. 7.5b).

Relative position between the modulation and the superlattice potential: For the
local addressing to work the on-site modulation has to be further adjusted spatially,
relative to the underlying superlattice potential, which consists of a short and a long
lattice. The relative position is determined by the phases ϕr and ϕb respectively. Analog
to the phase of the superlattice potential the standing wave along x (light arrows in
Fig. 7.3) accumulates a phase until it reaches the atom position (Fig. 4.3), hence, it can
be adjusted by controlling its frequency relative to the one associated with the short
lattice using a frequency offset lock (Sect. 4.3).

1Erbium doped fiber amplifier from NP Photonics (output power: 5 W)
2EOSPACE Lithium Niobate Modulator AX-0K5-00-PFA-PFA-NT-UL
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Figure 7.5: Schematics of the experimental setup for flux rectification. a A fiber amplifier
with frequency ωc is used to generate all four beams for the modulation scheme illustrated
in Fig. 7.3a. The main beam is split into two parts: Beam 1 and 2 (gray and black solid line).
Each of them passes through an AOM with frequency ωA and a fiber coupled IM that creates
sidebands at ±Ωj, j = {1, 2} and suppresses the carrier frequency at ωc + ωA. Thus, Beam 1
is split into two beams with frequencies ωr1,b1 = ωc + ωA ±Ω1 (light red and light blue) and
realizes the standing waves along x. Beam 2 is the source for the two running waves along y
with frequencies ωr2,b2 = ωc + ωA ±Ω2 (dark red and dark blue). b Illustration of the different
frequencies generated in the experimental setup. The dashed black line indicates that the carrier
frequency at ωc + ωA is suppressed after the IM. The solid lines (red and blue) indicate the
frequencies ωi,j, i = {r, b}, which are used for the modulation. Note that the distances are not
to scale, 2Ω1,2 � |Ω2 −Ω1| so that inference between the sidebands (red and blue beams) can
be neglected.

Alignment procedure: First, the phase ϕ is calibrated for Ωj = 0 by creating a bichro-
matic superlattice potential which consists of the short lattice and the standing wave
along x (Beam 1 in Fig. 7.5a). The relevant techniques are described in Sect. 4.3. This
will determine the position of the modulation relative to the superlattice potential. In
addition the phase between the long lattice and the standing-wave along x (Beam 1) can
be inferred by applying both potentials simultaneously (Ωj = 0). If the two beams are
in phase, the corresponding potentials will add up, but if they are out of phase, they
will cancel each other.
As a second step the frequencies of the sidebands ±Ωj need to be adjusted. The fre-
quency difference δνa required to shift the long-lattice standing wave by one lattice
constant a = λl/4 is known from the calibration measurements depicted in Fig. 4.4,
δνa = 740(10)MHz = 2δνl , with νl = c/λl . By choosing the frequencies 2Ω1 ' 2Ω2 =

2π × 370(5)MHz for the generation of the sidebands a relative shift of one lattice con-
stant between the two modulations is ensured, which corresponds to ϕb− ϕr = π/2. All
relevant phase relations between the superlattice potential and the lattice-modulation
beams are very stable by construction since the phases are determined by the position
of the mirror, which is used to retro-reflect all beams.

Interference between the four frequency components: The interference terms be-
tween the sidebands at ±Ωj can be safely neglected since the two timescales are well
separated 2Ωj/|Ω2 −Ω1| = 2Ωj/∆ ' 105. Only interference of the laser beams along x
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with the ones along y are considered in the following description. Since the sidebands
are created symmetrically using intensity modulation, the corresponding amplitudes
are equal, |Er1| = |Eb1| and |Er2| = |Eb2|, which in turn results in equal modulation
amplitudes of the two pairs, Vr

0 ∝ Er1Er2, Vb
0 ∝ Eb1Eb2 and Vr

0 = Vb
0 = V0.

7.3.1 Intensity modulation

The fiber coupled intensity modulator consists of two interferometer arms (Fig. 7.6).
In each arm there is a Pockels cell to modulate the phase of the incoming wave. It
is built such that an externally applied voltage is connected to both Pockels cells with
opposite polarity, which results in phase modulations with opposite sign for the two
interferometer arms ±VM sin(Ωt + φIM)± Vbias. Note that VM and Vbias are dimension-
less quantities. Let us consider the spectrum at the output of the intensity modulator
for an incoming wave E0 exp(iωt). The incoming wave is split into equal parts at the
beginning of the interferometer Er,b = E0 exp(iωt)/2. After the Pockels cells the field is
modified according to

Er,b(t) =
E0

2
exp [i(ωt± VM sin(Ωt + φIM)± Vbias)] . (7.16)

Without modulation (VM = 0) the modulator can be used as a simple switch. The bias
voltage introduces a constant phase shift Vbias between the two arms of the interferom-
eter which allows one to adjust the transmitted intensity Iout ideally between zero and
I0 = |E0|2 if additional losses are neglected, such that Iout = I0 cos2(Vbias), see Fig. 7.7a.
For the device used in the experiment the maximum transmission is typically limited to
about 0.5I0 because of the specified insertion loss of ∼ 3 dBm. For non-zero modulation
amplitude (VM 6= 0) the spectrum contains multiple frequency components at ω + kΩ,
k ∈ Z. This can be seen by rewriting Eq. (7.16) in terms of the Bessel functions of the
first kind

Er,b(t) =
E0

2
ei(ωt±Vbias)

[
J0(±VM) +

∞

∑
k=1
Jk(±VM)eik(Ωt+φIM)

+
∞

∑
k=1

(−1)kJk(±VM)e−ik(Ωt+φIM)

]
.

(7.17)

The interference between both arms at the output of the IM exhibits the following spec-
tral components
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Figure 7.6: Schematic drawing of the intensity modulator that generates the sidebands for
the laser-assisted tunneling setup. a The intensity modulator is a Mach-Zehnder interferom-
eter with integrated phase modulators. The input and output optical fibers are polarization-
maintaining. By applying a constant voltage (bias voltage) to the electrodes without modulation
(VM = 0) the relative phase Vbias between the two interferometer arms is modified and the
transmission at the output of the device can be tuned as shown in Fig. 7.7a. By applying a
time-dependent voltage to the electrodes (VM(t)), the spectrum exhibits additional frequency
components at ω + kΩ, k ∈ Z. The spectral density of the individual components depends on
the modulation amplitude and offset. (Figure adapted from Jenoptik [188]) b Illustration of the
spectrum at the output of the device for Vbias = π/4 and VM = 1 as defined in Eq. (7.18).

Eout = Er(t) + Eb(t) = E0 eiωt

[
∞

∑
2k=−∞

Jk(VM)eik(Ωt+φIM) cos(Vbias)

+ i
∞

∑
2k−1=1

Jk(VM)eik(Ωt+φIM) sin(Vbias)

− i
∞

∑
2k−1=1

Jk(VM)e−ik(Ωt+φIM) sin(Vbias)

]
.

(7.18)

Depending on the bias voltage, that determines the phase offset Vbias, the spectrum ei-
ther consists of all frequency components ω + kΩ (Fig. 7.6b) or only even and odd ones
respectively (Fig. 7.7b). The phase Vbias can be calibrated by measuring the transmitted
intensity Iout = |Eout|2 as a function of the bias voltage as shown in Fig. 7.7a. Using this
knowledge together with Eq. (7.18) determines the spectral density of the transmitted
light Eout.
For Vbias = π/2 the carrier frequency is fully suppressed and the spectrum consists of
odd frequency components only. Consequently, the spectrum of the output intensity
Iout, which was measured in the experiment (Fig. 7.7b), contains only spectral com-
ponents at multiples of 2Ω. The same is true for Vbias = 0 even though the spectral
decomposition of the transmitted field Eout is very different (Fig. 7.7b). As an example
the spectral weight of the frequency component at 2Ω of the transmitted intensity Iout is
computed
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Figure 7.7: Intensity and spectrum of the light at the output of the intensity modulator as a
function of the bias voltage. a Measured transmitted intensity Iout versus bias voltage without
modulation (VM = 0). The data depicted in (a) was normalized to its minimum (green vertical
lines, Vbias = π/2) and maximum (blue vertical line, Vbias = 0) value. The solid line is a fit of a
cosine to our data. For this device a phase shift of π corresponds to 9.96(2)V. b Spectrum of the
transmitted intensity Iout = |Eout|2 at the output of the IM for VM ≈ 0.45 as a function of the bias
voltage. The upper panels depict the spectral density of the corresponding spectral decomposi-
tion of the transmitted field Eout. For Vbias = 0 the spectrum consists of even components (blue),
while for Vbias = π/2 it consists of odd ones (green). These two spectra cannot be distinguished
by measuring the spectrum of the transmitted intensity Iout, but in combination with (a) they
can be reconstructed according to Eq. (7.18). For Vbias = π/4 the spectrum consists of even as
well as odd frequency components as shown in Fig. 7.6b.

I2Ω(VM) =


2 ∑∞

k=0 J2k(VM)J2k+2(VM) for Vbias = 0

J1(VM)2 − 2 ∑∞
k=1 J2k−1(VM)J2k+1(VM) for Vbias = π/2 .

(7.19)

One can show that both infinite series converge to the same value J2(2VM)/2.
For Vbias = π/4 the spectrum of the transmitted light Eout contains all even and odd
frequency components but the Fourier transform of Iout only consists of components
at odd multiples of Ω. Again one may compute the spectral weight of the frequency
component at 2Ω

I2Ω(VM) = J1(VM)2 − 2
∞

∑
k=0
Jk(VM)Jk+2(VM) =

J2(2VM)

2
− J2(2VM)

2
= 0 . (7.20)

It is determined by the difference between the two infinite series given in Eq. (7.19).
For our experiments the phase offset between the two interferometer arms was set to
Vbias = π/2, where the carrier frequency is fully suppressed (Fig. 7.8). The maximum
intensity for the two sidebands at ±Ω is obtained for VM = 1.8 and corresponds to
∼ 0.34I0, where I0 is the maximum transmitted intensity, which is possibly reduced
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Figure 7.8: Spectral composition of the transmitted light Iout for Vbias = π/2 as a function of
the modulation amplitude VM. a Intensity Ik = I0(Jk(VM))2 of the odd frequency components
k = {±1,±3,±5} as a function of VM. All even frequencies as well as the carrier frequency
are suppressed for Vbias = π/2. The gray shaded area marks the regime typically used in the
experiment. b Spectrum for Vbias = π/2 and VM = 1.

due to the insertion loss at the input of the IM. For the measurements presented in this
chapter and the following one (chapter 8) the modulation amplitudes were chosen such
that the phase modulation was well below VM = π/2. This sets an upper limit for the
suppression of higher frequency components I3/I1 < 0.015, where Ik = I0(Jk(VM))2.
Consequently, all frequency components with |k| > 2 can be neglected and the trans-
mitted field can be written as

Er(t) + Eb(t) ' iE0eiωt

J1(VM)ei(Ωt+φIM)︸ ︷︷ ︸
→ red beam

−J1(VM)e−i(Ωt+φIM)︸ ︷︷ ︸
→ blue beam

 . (7.21)

To generate the four beams illustrated as blue and red arrows in Fig. 7.3a two intensity
modulators are used in the experimental setup (Fig. 7.5), one for each axes. The beam
sent along the x-axis (Beam 1) is characterized by the electric field E1(t) = Er1(t) + Eb1(t)
and the one along y (Beam 2) is given by an analog expression. Using relation (7.21) the
phase between the two modulations δφ = φr − φb can be inferred according to

φr = φr2 − φr1 = φIM2 − φIM1 , φb = φb2 − φb1 = −φIM2 + φIM1 . (7.22)

This allows for an experimental control of the relative phase by adjusting the phase of
the modulation applied to one of the intensity modulators

δφ = 2(φIM2 − φIM1) . (7.23)

7.3.2 Controlling the relative phase of the modulation

Static potential: One possibility to verify the experimental control over the relative
phase δφ, is to study the static potential created by the two pairs of beams (red and blue
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Figure 7.9: Static potential generated by the four beams illustrated as blue and red arrows
in Fig. 7.3a for ωr = ωb = 0. a The shape of the potential V(x, y) depends on the relative
phase δφ between the two pairs of beams. For δφ = ±π/2 one expects a one-dimensional
lattice structure diagonal to the underlying lattice potential with lattice constant (2a,±2a). b
Momentum distribution obtained by loading the atoms into the potentials V(x, y) depicted in
(a) measured after 10 ms TOF. For δφ = ±π/2 momentum components at (h̄kl ,±h̄kl) appear in
agreement with a 1D diagonal lattice.

arrows in Fig. 7.3a), if the frequency differences are set to zero, ωr = ωb = 0. For two
particular values of the phase δφ = ±π/2 the resulting static potential corresponds to a
one-dimensional lattice, which is diagonal to the normal square lattice (Fig. 7.9a)

V(x, y) =


V0 cos

(√
2kl [êx + êy]

)
for δφ = π/2

V0 cos
(√

2kl [êx − êy]
)

for δφ = −π/2 .
(7.24)

For the experimental results depicted in Fig. 7.9b a BEC was loaded within 100 ms into
the static potential and the corresponding momentum distribution was measured after
10 ms TOF. The relative phase δφ can be reconstructed from these images by comparing
them with the calculated lattice potentials depicted in Fig. 7.9a.

Suppression of tunneling in isolated double-wells: To further test the experimental
controllability of the setup additional measurements were performed in isolated double-
well potentials similar to the ones described in Sect. 7.1. This time both pairs were ap-
plied (Fig. 7.10a) and the two independent modulation potentials were adjusted such
that each pair induced resonant tunneling with the same differential modulation ampli-
tude between neighboring sites δVr = δVb = V0. If both of them are applied at the same
time, the modulation amplitude between neighboring sites will depend on their relative
phase δφ and can be written in the following form
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Figure 7.10: Suppression of tunneling in double-well potentials with all four lattice-
modulation beams. a Schematic drawing of the experimental setup, which consist of a tilted
double-well potential along x with energy offset ∆ � Jx to inhibit tunneling. Resonant tun-
neling is restored using two pairs of laser beams (red and blue arrows), which create the time-
dependent potentials Vr,b(x, y, t) given in Eq. (7.6). Depending on the relative phase δφ, the
amplitude of the effective tunnel coupling K varies between zero and K = JxJ1(2V0/∆). b Mea-
sured coupling strength K as a function of the relative phase δφ. The solid line is a fit to our
data using Eq. (7.26), where the amplitude and phase offset were free fit variables. The absolute
value of δφ was not calibrated, which explains the non-zero phase offset.

V0 [cos(ωrt) + cos(ωbt + δφ)] = 2V0 cos
(

δφ

2

)
cos

(
ωt +

δφ

2

)
, (7.25)

where we have chosen ω = ωr = ωb = ∆/h̄, which is achieved using the setup illus-
trated in Fig. 7.11. In the limit V0/∆ � 1 the amplitude of the induced tunnel coupling
is determined by (Sect. 3.2)

K ' Jx
V0

∆

∣∣∣∣cos
(

δφ

2

)∣∣∣∣ . (7.26)

The coupling was measured using the same sequence as described in Sect. 7.1 with the
final lattice parameters: Vx = 7.0(2)Ers, Vxl = 35(1)Erl, ϕx

SL = 0.073(2)π, Vy = 30(1)Ers

and Vz = 30(1)Erz. The energy offset between neighboring sites ∆/h̄ ≈ 4.43(2) kHz
was calibrated independently by performing spectroscopy measurements. Note that
for these measurements there is no additional standing wave that might influence the
resonance condition because the two terms Vr

sw and Vb
sw cancel each other for ϕb − ϕr =

±π/2. The experimental results are displayed in Fig. 7.10b and we obtain an upper
limit for the suppression of tunneling Kmin/Kmax < 0.1. A residual induced coupling is
most likely due to an imperfect back-reflection of the beam along x.
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Figure 7.11: Experimental setup for realizing a staggered flux distribution with the beam
configuration shown in Fig. 7.3a. a Schematic drawing of the laser setup. The beam is split into
two parts (Beam 1 and 2). Each of them passes through an AOM with frequency ωA1/ωA2, and a
fiber-coupled IM with frequency Ω. At the output of the IM each beam consists of two frequency
components (red and blue). Beam 1 is aligned along the x-axis to create the two standing waves
and Beam 2 along the y-direction to realize the running waves. b Schematic drawing of the
frequencies generated in the laser setup shown in (a). Note that the distances are not to scale,
Ω� |ωi2 −ωi1|.

7.4 Staggered flux distribution

The all-optical laser-assited tunneling scheme introduced in this chapter can be fur-
ther used to realize a staggered flux distribution by performing a slight modification
to the experimental setup (Sect. 7.3). The frequencies for the intensity modulation are
set equal Ω1 = Ω2 = Ω and instead the frequency difference ∆/h̄ is introduced in the
AOM-frequencies ωA2 − ωA1 = ±∆/h̄. As a result we obtain ωr = ωb = ±∆/h̄ and
all bonds are modulated with the same frequency (Fig. 7.11). Together with the fact
that the energy offset between neighboring sites alternates in sign the corresponding
flux distribution is also alternating in sign Φ = ±(−1)mπ/2. This configuration is very
similar to the one discussed in chapter 5.
Another difference compared to the setup for the uniform flux configuration is the ef-
fective coupling J along the perpendicular direction (y-axis). In contrast to Eq. (7.13) it
can be written in the following form

η
y
m,n(t) = −

2V0

h̄ω
cos

(
−(m + n)

π

2
+ ωt

)sin (δφ/2) , for m odd

cos (δφ/2) , for m even .
(7.27)

The extreme values are the same Jmax = Jy and Jmin = JyJ1(2V0/∆) as shown in Fig. 7.4b.
The important difference however is that in this case the inhomogeneity depends on the
relative phase δφ, which can be controlled experimentally as discussed in the previous
section. By setting δφ = π/2 the effective coupling is homogeneous independent of
the modulation amplitude V0. The corresponding value of the renormalized coupling
strength would be J = JyJ1(

√
2V0/∆).



Chapter 8

Chern-number measurement of
Hofstadter bands

Bloch bands with non-trivial topology have become available in cold-atom setups with
the realization of the Harper-Hofstadter Hamiltonian [70, 71] and the Haldane model
[54]. The local structure of the artificial gauge field has been observed previously with
local cyclotron orbits [68, 70], however, a direct detection of 2D topological invariants
remained out of reach.
A first direct detection of a 1D topological invariant has been reported in Ref. [189] using
interferometric techniques. This method allows for an extension to 2D as demonstrated
theoretically and experimentally [190, 191]. Several other proposals were developed to
directly probe the topology of the system [59] from density plateaus [192], time-of-flight
images [193, 194], through semiclassical dynamics [195, 196], hybrid time-of-flight mea-
surements [197] or direct imaging of topological edge states [198].
In this chapter the first measurement of a 2D topological invariant – the Chern number
– in a non-electronic system is presented. These observations are based on transport
experiments [195, 199] using bosonic atoms. The atomic cloud experiences a trans-
verse motion in response to an externally applied force which is proportional to the
Chern number of the band that was populated homogeneously (Sect. 8.2 and Ref. [199]).
Through direct imaging of the in-situ center-of-mass position of the cloud in combina-
tion with band-population measurements we obtain an experimental value for the Chern
number of the lowest band νexp = 0.99(5) (Sect. 8.4). These measurements were facil-
itated by a newly developed all-optical setup, which was introduced in chapter 7 and
realizes the Hofstadter model for a flux Φ = π/2 (Sect. 8.1). The increased experimen-
tal flexibility provided by this setup enabled an adiabatic loading of the atoms into the
lowest Hofstadter band (Sect. 8.3).
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8.1 Hofstadter model for a flux Φ = π/2

The experimental setup for the implementation of the Hofstadter model is illustrated in
Fig 8.1a and was described in detail in the previous chapter. Using this scheme laser-
assisted tunneling on adjacent bonds in the lattice can be controlled individually, which
in turn enables flux rectification in a staggered superlattice potential. The method only
relies on optical potentials, which are created by far-detuned laser beams.
The basic operation principle can be summarized as follows: Along x bare tunnel-
ing is inhibited by a staggered superlattice potential, which introduces an energy off-
set on every other site. Resonant tunneling is then restored using two pairs of far-
detunend beams (red and blue arrows in Fig. 8.1a), with frequency difference |ωi| =
∆/h̄, i = {r, b}. Both pairs create a time-dependent potential of the following form
Vi(x, y, t) = V0 cos(klx ± π/4) cos(−kly + ωit), where kl = π/(2a) and V0 is the mod-
ulation amplitude. This special configuration allows for an independent control of the
tunnel coupling on the two kinds of bonds with energy offset ±∆ between neighboring
sites (red and blue bonds in Fig. 8.1a). For ω := ωr = −ωb a uniform flux Φ = ±π/2
per plaquette is realized.
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Figure 8.1: Hofstadter model for a flux Φ = ±π/2 per plaquette. a Schematic drawing of
the experimental setup. It consists of a 2D lattice with lattice constant a = λs/2, bare tunnel
couplings Jx, Jy and a staggered potential with energy offset ∆� Jx to inhibit tunneling along x.
The two pairs of beams (red and blue arrows) are used to restore resonant tunneling ωi = ωi2 −
ωi1 = ±∆/h̄. b Schematics of the effective time-independent Hamiltonian describing the system
shown in (a). The experimental parameters were adjusted such that the effective tunneling along
both directions occurs with the same strength J. Along x tunneling is additionally accompanied
by complex phase factors that lead to a uniform flux Φ = ±π/2 per plaquette (aligned along the
-êz direction). The green shaded area illustrates the magnetic unit cell AMU = 2a× 2a, where
the four sites are denoted as A, B, C, D. c Energy spectrum in the FBZ for a lattice with flux
Φ = π/2. The lowest tight-binding band splits into four subbands; Egap ' 1.5J denotes the
bandgap to the second band and Ebw ' 0.2J the bandwidth. The Chern numbers of the three
well-separated bands are νµ = {1,−2, 1} and were calculated using the methods described in
Sect. 2.4. (Figure adapted from Ref. [73])
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In the high-frequency limit h̄ω � Jx,y the system can be described by the following
tight-binding Hamiltonian

Ĥ = −J ∑
m,n

(
einΦ â†

m+1,n âm,n + â†
m,n+1 âm,n + h.c.

)
, Φ = π/2, (8.1)

where the Peierls phases are introduced in the Landau gauge and the position in the
lattice is defined as R = maêx + naêy. A detailed derivation of the effective Hamiltonian
in the experimental gauge can be found in Sect. 7.2. The experimental parameters were
adjusted such that the effective coupling strengths along x and y are equal. Note, how-
ever, that for the experimental parameters V0/(h̄ω) = 0.58(2) used for the following
measurements, the effective coupling along y can be inhomogeneous with variations up
to 30% depending on the initial phase of the modulation φ0 (Sect. 7.2).
Due to the presence of the gauge field the system is no longer invariant under the trans-
lation by multiples of the lattice unit vectors. In order to find the new symmetries of
the Hamiltonian the magnetic translation symmetries have to be considered (Sect. 2.2).
It can be shown that the smallest possible magnetic unit cell contains a magnetic flux of
2π. For the Hofstadter model with Φ = π/2 this corresponds to a unit cell which is four
times larger than the lattice unit cell. Here we have chosen to describe the system using
the symmetric magnetic unit cell AMU = 2a× 2a (Fig. 8.1b). This choice is not unique
and an equivalent description using different unit cells was presented in Sect. 2.2.2. The
discrete Schrödinger equation associated with Hamiltonian (8.1) is given by

EΨm,n = −J
(

einπ/2Ψm+1,n + e−inπ/2Ψm−1,n

)
− J (Ψm,n+1 + Ψm,n−1) . (8.2)

As discussed in Sect. 2.2 one can make the following ansatz for the wave function

Ψm,n = eikxmeikyn


ψA einπ/2 for m, n odd

ψB for m even, n odd

ψC einπ/2 for m odd, n even

ψD for m, n even

(8.3)

where kx, ky are defined within the FBZ (kx ∈ [−π/(2a), π/(2a)[, ky ∈ [−π/(2a), π/(2a)[)
and the four sites of the unit cell are denoted as A, B, C, D (Fig. 8.1b). Inserting this
ansatz into the Schrödinger equation above reduces the problem to a four-dimensional
eigenvalue equation

Ĥ


ψA

ψB

ψC

ψD

 = E(k)


ψA

ψB

ψC

ψD

 , (8.4)

with
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Ĥ = −2J


0 i sin(kxa) − sin(kya) 0

−i sin(kxa) 0 0 cos(kya)
− sin(kya) 0 0 cos(kxa)

0 cos(kya) cos(kxa) 0

 . (8.5)

The corresponding energy spectrum consists of four subbands, where the two middle
bands touch at four Dirac cones (Fig. 8.1c). Hence, the spectrum is decomposed into
three well separated Hofstadter bands. The lowest band exhibits a Chern number ν1 =

+1 and is topologically equivalent to the lowest Landau level. Moreover it exhibits a
large flatness ratio of Egap/Ebw ' 7, which makes this system a promising candidate to
realize fractional Chern insulators [27].

8.2 Anomalous Hall velocity and Chern-number measurement

In Sect. 2.4 the connection between the quantized Hall conductance and the topological
invariants characterizing the energy gaps were established for electronic systems. If the
Fermi energy lies in a spectral gap, the bulk is insulating and the quantized values of
the Hall conductivity are directly related to the number of metallic edge states. In a
sense these measurements probe the topological properties of the edge states, which are
related to the bulk via the bulk-edge correspondence [10, 11].
Cold atoms in optical lattices may offer new possibilities to directly probe the topological
properties of the bulk energy bands. It has been shown that transport measurements
could allow for the observation of the anomalous Hall velocity, which is proportional to
the Berry curvature [94], and might be used to determine the Chern number of the
corresponding energy band [59, 195, 199]. In the presence of a constant external force
F = Fêy the atoms undergo Bloch oscillations in the direction of the force [200], which is
captured by the band velocity vband

µ = ∂kEµ/h̄, µ being the band index. If additionally
the band exhibits a non-zero Berry curvature Ωµ(k) as defined in Eq. (2.46), the atoms
will experience a perpendicular Hall drift vx

µ (Fig. 8.2a). For a particle in a state
∣∣uµ(k)

〉
of the µth band the velocity is given by [94]

vy
µ(k) =

1
h̄

∂ky Eµ

vx
µ(k) =

1
h̄

∂kx Eµ −F
h̄

Ωµ(k)︸ ︷︷ ︸
anomalous velocity

. (8.6)

Recently, the anomalous Hall velocity was observed experimentally with ultracold atoms
in a modulated honeycomb lattice [54] and in an electronic system using graphene su-
perlattices [201].
For the following measurements we make use of this anomalous velocity to determine
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Figure 8.2: Schematic drawing of the Chern-number measurement. a In the presence of an
external force the atoms experience a net perpendicular Hall drift, determined by the anomalous
velocity vx

µ(k) in Eq. (8.6). For a filled band the mean displacement is proportional to the Chern
number νµ of the occupied band µ, which can be determined by measuring the transverse center-
of-mass motion of the atomic cloud. (Figure adapted from Ref. [73]) b Transverse motion as a
function of the Bloch oscillation (BO) time. For the Hofstadter model for Φ = π/2 the transverse
deflection x(t) in Eq. (8.14) is only determined by the Chern number of the lowest band ν1 and
the band filling factor γ0. If only the lowest band is filled it takes a maximum value γ0 = 1 and
it decreases to zero with increasing higher-band population. For a homogeneous filling of all the
bands γ0 = 0 the cloud is not deflected in the transverse direction, consistent with an effective
Chern number of zero.

the Chern number of the lowest Hofstadter band experimentally with bosonic atoms. In
order to isolate the anomalous velocity from the trivial effects associated with the band
velocity vband

µ = ∂kEµ/h̄ we consider a uniformly filled band, where ρµ(k) ≡ ρµ is the
particle density per momentum k and thus per state

∣∣uµ(k)
〉
. Due to the symmetry of

the dispersion relation the contributions from the band velocity identically vanish. For
an infinite system the mean band velocity per particle of a uniformly filled µth band can
be computed according to

〈
vband

µ

〉
x
=

ρµ

h̄

∫
FBZ

∂kx Eµd2k = 0,
〈

vband
µ

〉
y
=

ρµ

h̄

∫
FBZ

∂ky Eµd2k = 0, (8.7)

where the integration is performed over all momenta in the first magnetic Brillouin zone
(FBZ). The expressions vanish because for every velocity v there exists a counterpart
with opposite velocity −v. For Fermions filled bands can be obtained by setting the
Fermi energy within a spectral gap [199]. Here we consider an incoherent distribution
of bosonic atoms which populate the band homogeneously in k-space. This was verified
independently in the experiment as will be shown in the following section. Similarly,
the mean anomalous velocity of the µth band is determined by
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〈
vx

µ(k)
〉
= −

ρµF
h̄

∫
FBZ

Ωµ(k)d2k︸ ︷︷ ︸
→ 2πνµ

, (8.8)

where νµ is the Chern number of the µth band. For well separated non-degenerate
energy bands the particle density in each band µ is given by

ρµ =
Nµ

N
1

AFBZ
= ηµ

a2

π2 , ηµ :=
Nµ

N
(8.9)

where Nµ is the particle number in each band, N = ∑µ Nµ is the total atom number and
AFBZ = π2/a2 is the area of the first magnetic Brillouin zone. Assuming that the band
populations remain constant during the dynamics ηµ ≡ η0

µ the contribution of the µth
band to the center-of-mass displacement (COM) of the atomic cloud perpendicular to
the force follows the relation

xµ(t) = η0
µ

4a2F
h

νµ t = −4a η0
µνµ

t
τB

, (8.10)

where τB = h/(Fa) is the characteristic timescale for Bloch oscillations. If only the lowest
band is filled η1 = 1 and ηµ>1 = 0 we expect a deflection of 4aν1 per Bloch oscillation
period (Fig. 8.2b)

x1(t) = −4aν1
t

τB
(8.11)

and the Chern number of the lowest band ν1 can be simply extracted from the slope of
the linear displacement perpendicular to the force. The displacement after one Bloch
oscillation period is expected to be on the order of four lattice constants, which is large
enough to be detectable with conventional imaging systems. In our experiment the
magnification of the imaging system is chosen such that one pixel corresponds to about
four lattice constants. The imaging resolution is not very important since we are only
interested in the COM motion.
For the particular case of the Hofstadter model for Φ = π/2 the spectrum is split into
three well separated bands where the middle "super"-band consists of two subbands
(Fig. 8.1c). This middle super-band contains twice as many states because there are two
available states for each momentum k and the particle density in this band is given
by ρ2 = η2/(2AFBZ). Taking into account the contribution of all bands the resulting
COM-motion can be written as

x(t) = ∑
µ

xµ(t) = −4a
t

τB

(
η0

1 ν1 +
η0

2
2

ν2 + η0
3 ν3

)
. (8.12)

Using the fact that the Chern number associated with the total tight-binding band nec-
essarily vanishes, ∑µ νµ = 0, the equation above simplifies
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x(t) = −4a
t

τB

[(
η0

1 − η0
3
)

ν1 +
(
η0

2 − 2η0
3
) ν2

2

]
. (8.13)

We can further make use of the particle-hole symmetry inherent to the Hofstadter model
as discussed in Section 2.3.2, which tells us, that the Chern number distribution is sym-
metric around E = 0 such that the Chern number of the lowest band is equal to the
one of the highest band ν1 = ν3 = −ν1 − ν2 (Sect. 2.4). This allows us to write the
COM-motion as a function of the Chern number of the lowest band only

x(t) = −4a
t

τB
γ0 ν1, γ0 = η0

1 − η0
2 + η0

3 , (8.14)

where we have introduced the filling factor γ0. The maximum value of the filling factor
equals one, if all atoms populate the lowest or highest Hofstadter band respectively and
equals zero if all the bands are occupied homogeneously. In this case the atomic cloud
would not experience a transverse COM displacement (Fig. 8.2b).

8.3 Adiabatic loading into the Hofstadter bands

Loading the atoms into the lowest Hofstadter band is a highly non-trivial task by it-
self. Let us consider that the experimental sequence starts by loading the atoms in a
normal, topologically trivial square lattice with lattice constant a. By simply turning
on the flux lattice, the lowest band splits into four subbands and the atoms might be
transferred to higher Hofstadter bands. To overcome this issue a loading sequence was
developed based on additional staggered potentials along the two directions in the hor-
izontal plane, which connects the band population of a topologically trivial band to the
one of a topologically non-trivial band in a controlled way. Here we benefit from the
increased experimental control facilitated by the all-optical setup (chapter 7) compared
to the one where a magnetic field gradient was used (chapter 6).

8.3.1 Loading sequence: general idea

The underlying idea is to first load the atoms into a lattice which has a unit cell that
is equivalent to the magnetic unit cell depicted in Fig. 8.1b. This can be done by in-
troducing an additional term Ĥd in the Hamiltonian, which corresponds to a staggered
detuning δ along both directions (Fig. 8.3a)

Ĥd = ∑
m,n

[
(−1)m δx

2
+ (−1)n δy

2

]
n̂m,n, (8.15)

with δ := δx = δy. Along x the additional detuning increases the potential away from
the resonance condition to ∆ + δ, while along y it is simply given by δ. In the limit
∆� δ this results in the following modified Hamiltonian
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numbers are zero. At δ = 2J there is a topological phase transition, where the gaps in the
spectrum close and the system enters the topologically non-trivial regime. In this regime the
Chern number of the lowest band is ν1 = +1 for Φ = π/2. For vanishing detuning δ = 0 the
system realizes the Hofstadter model with flux Φ = π/2. Note that the energy axis is rescaled
for each spectrum. (Figure adapted from Ref. [73])

Ĥ → Ĥ = −2J


δ/(2J) i sin(kxa) − sin(kya) 0
−i sin(kxa) 0 0 cos(kya)
− sin(kya) 0 0 cos(kxa)

0 cos(kya) cos(kxa) −δ/(2J)

 . (8.16)

During the loading sequence the detuning is decreased to zero, δ→ 0. The correspond-
ing energy spectra are displayed in Fig. 8.3b. Since the unit cells are equivalent, the
number of bands is preserved during the loading sequence. For δ > 2J the topology of
the bands is trivial and all Chern numbers are zero. At δ = 2J a topological phase tran-
sition occurs and the gaps in the spectrum close. For δ < 2J the topologically non-trivial
regime is reached, where the lowest band has a Chern number of ν1 = +1, and at the
end of the sequence (δ = 0) the Harper-Hofstadter Hamiltonian for Φ = π/2 is realized.
Note that the horizontal axes of the energy spectra in Fig. 8.3 are different compared to
the ones shown in Ref. [73]. Depending on the definition of the gauge and the detuning
term given in Eq. (8.15) the dispersion relation might be shifted in momentum space but
this has no impact on the general loading scheme.
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8.3.2 Experimental sequence

The experimental sequence is illustrated in Fig. 8.4. It started by loading a Bose-Einstein
condensate of 87Rb atoms within 150 ms into a two-dimensional optical superlattice of
depths Vx = 6.0(2)Ers, Vxl = 5.25(16)Erl, Vy = 10(1)Ers and Vyl = 1.75(5)Erl. The
phases between the short- and long-lattice standing waves, ϕx

SL = ϕ
y
SL = π/2 (Sect. 4.3),

where chosen so as to create a staggered potential with energy offset ∆ + δx along x and
δy along y. Along the z-direction the atoms were confined by a weak harmonic potential
generated by a crossed optical dipole trap in the horizontal plane, ωz/(2π) ≈ 20 Hz.
Initially tunneling was inhibited along both directions due to the potential detuning
(∆ + δx) � Jx and δy � Jy and all atoms occupied the low-energy sites, denoted as
A-sites (Fig. 8.3a). Then, the modulation was switched on off-resonant within 30 ms
with V0 ' 1.6 Erl and ω/(2π) = ±∆/h ' ±2.7 kHz. The resonance condition was
calibrated independently for the final lattice parameters along x, Vx = 6.0(2)Ers and
Vxl = 3.25(10)Erl, by performing spectroscopy measurements as discussed in Sect. 4.3.2.
The detuning was chosen larger than the effective coupling strength on resonance δx � J
such that tunneling remained suppressed along this direction. Additionally along the y-
direction the condition δy � ∆ was fulfilled in order to assure that the modulation with
frequency h̄ω = ∆ did not induce tunneling in the perpendicular direction (Fig. 8.4b).
In these limits tunneling was suppressed in both directions and atoms stayed in A-sites.
The values for δx and δy were optimized experimentally such that less than 10% of the
atoms were transferred to higher bands after switching on the modulation.
The loading into the Hofstadter bands was achieved by ramping down the detunings
to zero within 30 ms, by changing the long lattice depth along x to Vxl = 3.25(10)Erl

and the long lattice along y to Vyl = 0 Erl. For these values resonant tunneling occurred
along both directions and the parameters were chosen such that the effective coupling
strengths along both directions were the same, J = 75(3)Hz. This lattice configuration
realizes a lattice with uniform flux Φ = ±π/2 per plaquette, where the direction of the
flux depends on the sign of the frequency ω.

8.3.3 Momentum distribution and initial band population

The Chern-number measurement as sketched in Sect. 8.2 is based on the assumption that
the atoms in each Hofstadter band populate the corresponding band homogeneously in
k-space. This assumption was verified experimentally by measuring the momentum
distribution in the different bands.
For this purpose the loading sequence described above (Fig. 8.3) was reversed. The se-
quence started by ramping up the staggered detunings δx and δy within 30 ms in order to
suppress tunneling along both directions. The final lattice depths were Vx = 6.0(2)Ers,
Vxl = 5.25(16)Erl, Vy = 10(1)Ers and Vyl = 1.75(5)Erl. The number of energy bands is
preserved during this ramp and the populations of the topological Hofstadter bands are
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Figure 8.4: Schematic drawing of the experimental sequence. a Lattice depths as a function
of time. Note that the distances on the time-axis are not to scale. After loading the atoms into
the Hofstadter bands as described in the main text the transport measurements were performed
for a certain Bloch oscillation time tBO before several detection techniques were applied: in-situ
position of the cloud, band-population measurements, momentum distribution (Sect. 8.3.3). b
Staggered energy offsets along x and y as they evolve during the sequence (green). For compar-
ison the modulation frequency h̄ω is shown in red.

mapped onto the topologically trivial Hofstadter-like bands.
Due to the detuning tunneling was suppressed and the modulation could be switched
off instantaneously to map the populations of the explicitly time-dependent Hamilto-
nian onto the ones of the static superlattice potential with staggered offsets ∆ + δx and
δy. The size of the Brillouin zone is unchanged during the whole mapping sequence,
hence, the population of different k-states is preserved if scattering processes and heat-
ing effects during the ramp are neglected. Consequently the momentum distribution
of the Hofstadter bands is reflected in the momentum distribution of the static two-
dimensional superlattice potential.
All lattice potentials are subsequently ramped down adiabatically to map the momen-
tum distribution in the lattice onto the real-space momentum distribution. Then the
atoms were released from the trap and detected via absorption imaging after 10 ms TOF
(Fig. 8.5a). The connection between the different Brillouin zones and the corresponding
Hofstadter bands is illustrated in Fig. 8.5b and c. There are two informations we obtain
from these images: (a) we achieve typically a population of about 60% in the lowest
Hofstadter band; (b) the distribution is homogeneous in each of the individual bands.
This data is consistent with the assumption of homogeneous band populations.
In principle the band populations can be inferred by counting the atom numbers in the
different Brillouin zones. However, the zones are connected, thus, to ease the counting
of the occupations we apply a slightly different sequence that separates the different
Brillouin zones from each other (Sect. 8.4.2).
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a Measured momentum distribution after loading the atoms into the Hofstadter bands using
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between the Brillouin zones and the associated Hofstadter bands. (Figure adapted from Ref. [73])

8.4 Transport measurements

In the following section direct measurements of the anomalous velocity as a response
to an optical force are presented. The evolution was tracked by taking in-situ images
of the atomic cloud. We observe that for short times the deflection of the atomic cloud
is indeed linear in time in agreement with Eq. (8.14) and exact diagonalization studies
[195, 199]. For longer times the transverse motion saturates due to a repopulation of
the atoms between different Hofstadter bands, which leads to a time-dependent filling
factor γ0 → γ(t). In combination with independent band-population measurements we
were able to extract an experimental value for the Chern number of the lowest band
νexp = 0.99(5) from from this long-time dynamics.

Optical force: The Bloch oscillations along y were induced using an optical gradient.
It was realized with an additional laser beam with wavelength λz = 844 nm, which
was focused at the atom position to a waist of about 125 µm. The beam was aligned
relative to the position of the atomic cloud along y such that the cloud was located at
the maximum slope of the Gaussian beam profile. Along x the beam was centered on
the atom position in order not to induce Bloch oscillations along that axis. The strength
of the optical gradient was calibrated independently through Bloch oscillations in a one-
dimensional optical lattice with Vy = 10(1)Ers.

Experimental observable: After applying the optical force, the COM evolution of the
cloud was measured in-situ for opposite directions of the flux Φ = ±π/2. These posi-
tions were then subtracted to obtain the differential shift
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x(t, π/2)− x(t,−π/2) = 2x(t). (8.17)

This quantity is less susceptible to systematic errors and experimental uncertainties of
the absolute position of the atomic cloud caused by slow drifts. For each dataset we
averaged ten in-situ images of the atomic cloud for each direction of the flux Φ and
evaluated the corresponding COM positions x(t,±π/2). The images were taken alter-
nating for the two directions. A typical result after subtracting the averaged images is
shown in Fig. 8.6a.

8.4.1 Short-time dynamics

For short times, where inter-band transitions are negligible, we observe an almost linear
evolution of the differential shift Fig. 8.6b. Taking into account the measured filling fac-
tor γ0 and using the assumption that the band populations η0

µ remain constant for short
times we can compare the short-time trajectories with the equation-of-motion (8.14) to
extract a first experimental value of the Chern number of the lowest band. Fitting a
linear function to our data we obtain νexp = 0.9(2). As shown in Fig. 8.6b deviations
from the ideal evolution are partially captured by the numerical simulations which also
account for Landau-Zener transitions to higher Hofstadter bands during the dynamics.

Numerical simulations

The ideal evolution governed by Eq. (8.14) is valid for weak forces and short times,
where the band populations can be assumed to remain constant ηµ(t) = η0

µ. In order to
gain more inside into the dynamics we simulated the full non-interacting problem using
the effective Hamiltonian which can be written in the following form

Ĥeff = −J ∑
m,n

{
â†

m+1,n âm,nei[π/2(m+n)−φ0] + (1 + fm,n)â†
m,n+1 âm,n + h.c.

}
+ V̂conf , (8.18)

where the experimental gauge was introduced as derived in Sect. 7.2 for a relative phase
δφ = −π/2. The initial phase of the modulation φ0 appears in the Peierls phases as well
as in the coupling terms along y as defined in Eq. (7.15). In addition the harmonic
confinement V̂conf, which is present in the experiment, is taken into account

V̂conf = ∑
m,n

= Vm,nn̂m,n, Vm,n = κ(0.5m2 + n2), (8.19)

where κ = 10−3 J. The trap frequencies were calibrated independently and are given by
ωx ≈ 2π × 7.5 Hz and ωy ≈ 2π × 10.5 Hz.
The numerical simulations were performed similar to the ones described in Ref. [199].
The initial conditions are first established by confining the system within a certain ra-
dius r0 ∼ 10− 30a using a potential V̂initial ∝ (r/r0)ζ , with ζ � 10. Using an abrupt
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Figure 8.6: Differential COM displacement of the atomic cloud versus Bloch oscillation time.
The optical gradient was aligned along y, F = +Fêy, with Fa/h = 38.4(8)Hz. a Typical ex-
perimental image obtained after subtracting the averaged in-situ images of the atomic cloud for
opposite directions of the flux ±Φ of one dataset as defined in the main text. All images were
taken at t = 35 ms. b The gray data points depict the measured differential COM displacement.
Each data point is an average of five datasets and the error bars depict the standard error of
the mean. The black solid line is a linear fit to the data for t ≤ 35 ms. Taking into account the
measured initial band populations η0

µ = {0.55(6), 0.31(3), 0.13(3)} and using Eq. (8.14) yields
νexp = 0.9(2). The dashed line shows the ideal evolution for the measured initial band popula-
tions and ν1 = 1. The green shaded area depicts numerical simulations taking into account the
inhomogeneities in the coupling along y according to Hamiltonian (8.18) for the initial phase of
the driving φ0 ∈ [0, π] as introduced in Sect. 7.2. (Figure adapted from Ref. [73])

circular potential simplifies the analysis, however, as shown in Ref. [199] smoother po-
tentials could be also considered for the initial state preparation. First the Hamiltonian
Ĥeff + V̂initial is diagonalized on a finite size system with radius r > r0. The band struc-
ture of the Harper-Hofstadter Hamiltonian is clearly visible in the density of states and
the eigenstates can be classified in terms of these bulk bands. After setting the initial
band populations (here η1 = 1 and ηµ>1 = 0) the time evolution of the states is calcu-
lated according to Ĥeff + V̂force, where V̂force describes the force F = +Fêy acting on the
particles along the y-direction according to

V̂force = −Fa ∑
m,n

n n̂m,n. (8.20)

The COM deflection x(t) is then obtained by computing the spatial density for each
evolved state.
The numerical results are plotted in Fig. 8.7 for two different values of the force Fexp =

0.52J/a (dark green) and Fweak = 0.25J/a (light green). For the weaker force the evo-
lution follows the linear behavior predicted by Eq. (8.14) and the band populations
ηµ(t) = η0

µ remain approximately constant during the evolution. For the larger force Fexp
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Figure 8.7: Numerical simulations of the transverse COM motion x(t) for F = +Fêy, Φ = π/2
and γ0 = 1. The dynamics is governed by the Hamiltonian (8.18). The numerical calculations
were performed for φ0 = π/4 and the experimental parameter V0/(h̄ω) = 0.58. For this value
of the phase the effective coupling along y is uniform given by J ≈ 0.83Jy (Sect. 7.2) and the
effective coupling along x was set to K = Jy. The solid green lines show the results for the
force Fexp = 0.52J/a (dark green) used for the experiments shown in Fig. 8.6 and for a weaker
force Fweak = 0.25J/a (light green). The dashed lines show the corresponding ideal evolutions
according to the equation-of-motion (8.14). (Figure adapted from Ref. [73])

as used for the measurements presented above, the numerical simulations show a clear
deviation from the ideal evolution due to Landau-Zener transitions to higher bands.
Such effects are neglected in the simple equation-of-motion (8.14) and lead to band re-
population ηµ(t) during the dynamics. The simulations shown in Fig. 8.6b additionally
take into account the measured initial filling factor γ0 ≈ 0.36, which leads to a further
reduction of the transverse motion because atoms that populate the middle band with
Chern number ν2 = −2ν1 experience a drift opposite to those that populate the lowest
Hofstadter band. For short times the numerical simulations, which consider both, the
initial band population and the Landau-Zener transitions, are in agreement with the
experimental data for times t ≤ 35 ms (Fig. 8.6b). The trajectories for different values of
the phase φ0 are found to be similar for our experimental values V0/(h̄ω) = 0.58(2). In
conclusion the reduced value of the experimental Chern number νexp = 0.9(2) can be
partially attributed to Landau-Zener transitions as they are not captured by the simple
model given in Eq. (8.14).

8.4.2 Long-time dynamics and band populations

In the following section we present a more precise determination of the Chern num-
ber based on the long-time dynamics combined with independent band-population
measurements. We observe that the transverse motion saturates already after about
2τb ≈ 50 ms and is symmetric with respect to the direction of the force F = ±Fêy (black
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Figure 8.8: Differential COM displacement transverse to the applied force F = ±Fêy as a
function of the Bloch oscillation time. The black and gray data points show the long-time
evolution of the transverse motion for opposite directions of the force ±Fêy (Fa/h = 38.4(8)Hz)
for atoms loaded into the Hofstadter bands for Φ = π/2. The blue data points were taken in
lattice configurations with trivial topology, Φ = 0 (light blue) and Φ = (−1)mπ/2 (dark blue).
Each data point is an average of five datasets and the error bars show the standard error of the
mean obtained from these measurements. The solid black and gray lines show a fit to our data
using Eq. (8.21) taking into account the measured filling factor γ(t) obtained from the measured
band populations ηµ(t) depicted in Fig. 8.10. This provides an experimental value for the Chern
number νexp = 1.05(12) (black) and νexp = 0.98(12) (gray). The blue solid lines are guides to
the eye. The black and gray dashed lines depict the ideal evolution according to Eq. (8.14) using
the measured initial band populations η0

µ = {0.63(6), 0.27(9), 0.11(4)} (average of 24 individual
measurements). The green shaded areas illustrate the numerical simulations based on the same
initial filling factor for φ0 ∈ [0, π] (Sect. 7.2). The images on the right show typical experimental
images obtained after subtracting the averaged in-situ images of one dataset. (Figure adapted
from Ref. [73])

and gray data points in Fig. 8.8). The saturation effect is not captured anymore by the
numerical simulations (green shaded are in Fig. 8.8). This suggests that additional ef-
fects associated with heating due to the modulation or due to interaction between the
particles lead to additional inter-band transitions [116].

Further the COM-motion for a lattice without flux Φ = 0 (light blue data points in
Fig. 8.8) and a staggered flux lattice Φ = ±(−1)mπ/2 (dark blue data points in Fig. 8.8)
was measured. In both cases no significant displacement of the atomic cloud trans-
verse to the applied force was observed which is expected for lattice configurations with
trivial topology where all the bands have zero Chern numbers νµ = 0. The loading
sequences were chosen similar to the one described above. For the lattice without flux
the atoms were loaded within 150 ms into a two-dimensional staggered superlattice po-
tential with Vx = Vy = 10(1)Ers and Vxl = Vyl = 1.75(5)Erl. After ramping down
the long lattices Vxl = Vyl = 0 Erl resonant tunneling occurred along both directions
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Figure 8.9: Schematic illustration of the connection between the measured atom population
in the Brillouin zones and the corresponding Hofstadter bands. a Typical experimental image
obtained after applying the band-mapping sequence measured after 10 ms TOF. b Brillouin zones
of the static two-dimensional superlattice. c Labeling of the four non-equivalent sites in the unit
cell of the superlattice potential. d Energy spectrum of the Hofstadter model for Φ = π/2. The
color code illustrates the connection between the Brillouin zones, lattice sites and energy bands.
(Figure adapted from Ref. [73])

with J/h = 75(3)Hz. For the staggered flux lattice we used the experimental setup
described in Sect. 7.4 with ωr = ωb = ±∆/h̄. The experimental sequence was the same
as described above for the uniform flux lattice.

Evolution of the band populations

Making use of independent band population measurements the band repopulation ηµ(t)
and associated time-dependent filling factor γ(t) could be quantified experimentally and
included into our theoretical model by making a simple extension to Eq. (8.14).

x(t) = −4a
τB

ν1

∫ t

0
γ(t′)dt′, γ(t) = [η1(t)− η2(t) + η3(t)] . (8.21)

The evolution of the band populations was measured by reversing the loading sequence
as described above, similar to the momentum distribution measurements shown in
Fig. 8.5. To ease the counting of the atoms in different Brillouin zones the sequence is
slightly modified to separate the Brillouin zones from each other. After having switched
of the modulation the system consists of a two-dimensional staggered superlattice po-
tential with offset ∆ + δx along x and δy along y with (∆ + δx) � Jx and δy � Jy.
Tunneling is suppressed along both directions, hence, the band occupations correspond
to populations in different lattice sites: N1 = NA, N2 = NB + NC and N3 = ND. By
transferring the populations on different sites to even higher Bloch bands and applying
a subsequent band-mapping technique we are able to determine the Hofstadter-band
populations Nµ by counting the number of atoms in different well-separated Brillouin
zones. The connection between Brillouin zones and Hofstadter bands is illustrated in
Fig. 8.9. The sequence for the site-resolved detection technique is explained in Sect. 4.6.
The experimental results are shown in Fig. 8.10. We find that the timescale for the re-
population between the Hofstadter bands is in agreement with the saturation timescale
of the transverse atomic motion. By fitting Eq. (8.21) to our data, where ν1 is the only
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Figure 8.10: Measured band populations ηµ(t) and corresponding filling factor γ(t). The color
code used to depict the data in the upper panel illustrates the connection to the Hofstadter bands.
The solid line in the lower panel is an exponential fit to our data, which was used to extract the
Chern number according to Eq. (8.21). The insets in the lower panel show typical experimental
images obtained after applying the band-mapping sequence. All measurements were performed
for Fa/h = 38.4(8)Hz. Each data point is an average of two individual measurements and the
error bars denote the standard deviation of the data points. (Figure adapted from Ref. [73])

free fit parameter we obtain an experimental value of the Chern number of the lowest
band

νexp = 0.99(5). (8.22)

This value was obtained by averaging over four independent Chern-number measure-
ments, two for each direction of the force (see inset of Fig. 8.11). The stated uncertainty
is the standard deviation obtained from these measurements. This shows that including
the time-resolved band-population measurements in our analysis leads to a quantitate
understanding of the transverse motion. To gain more insight into the band repop-
ulation dynamics future studies of heating rates induced by the modulation and the
interaction between the particles are necessary [116].
We also applied a complementary analysis of our data based on a more general equation-
of-motion that does not invoke the particle-hole symmetry (Sect. 2.3.2) and constitutes
an extension of Eq. (8.13)

x(t) = −4a
τB

(
ν1

∫ t

0

[
η1(t′)− η3(t′)

]
dt′ + ν2

∫ t

0

[
η2(t′)

2
− η3(t′)

])
. (8.23)

This allows us to determine the Chern numbers ν1 and ν2 of the lowest two Hofstadter
bands simultaneously. We interpolated the measured populations ηµ(t) depicted in
Fig. 8.10 and fitted the equation to the data shown in Fig. 8.8 with the two free fit
variables ν1 and ν2. We obtain ν1 = 1.21(14), ν2 = −2.7(5) (black data points) and
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Figure 8.11: Measured Chern number as a function of the gradient strength Fa. The exper-
imental Chern number was determined for each value of the force by measuring the full time
evolution of the differential shift 2x(t) and the band populations ηµ(t), similar to the data shown
in Fig. 8.8 and Fig. 8.10. The solid black line is a guide to the eye to highlight the saturation at
νexp ≈ 1 for weak forces Fa < Egap. The green data point depicts the measured Chern number
νexp = 0.99(5) for Fa/h = 38.4(8)Hz, which was obtained from the four individual measure-
ments displayed in the inset. Each black data point is an average of five dataset for the differential
shift and two measurements for γ(t). The vertical error bars display the uncertainty determined
by the fit error of γ(t). (Figure adapted from Ref. [73])

ν1 = 1.04(10), ν2 = −2.2(3) (gray data points), which are compatible with the theoretical
values ν1 = +1 and ν2 = −2.

Chern-number measurement for different gradients

The measurements presented above were carried out using an optical gradient with
strength Fa/h = 38.4(8)Hz. This value was chosen as a compromise between two
competing effects. On the one hand the force should be small in order to limit Landau-
Zener transitions and non-linear effects. On the other hand the gradient has to be
strong enough so that the displacement of the atomic cloud can be detected reliably.
For gradients that are small compared to the bandgap Fa < Egap band-repopulation
timescales are similar. Therefore the measurements for small forces are more strongly
affected by the repopulation since the characteristic timescales given by the Bloch period
τB are naturally larger.
The dependence of the Chern-number measurement on the applied force was studied
in more detail as depicted in Fig. 8.11. For gradient strengths smaller than the bandgap,
Fa < Egap ' 1.5J the measured Chern number saturates to νexp ≈ 1. This indicates that it
can be extracted reliably for small forces. For larger forces Fa > Egap the experimentally
determined Chern number decreases to zero, signaling a break down of our model.
We note that each data point depicted in Fig. 8.11 consists of a single Chern-number
measurement (average of five individual dataset) for only one direction of the gradient,
which explains the larger spread around νexp = 1 for small forces. However, we also
note that if we take into account all Chern-number measurements for gradient strengths
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smaller than the bandgap we obtain an experimental value for the Chern number νexp =

0.97(4), where the stated uncertainty is the standard error of the mean. This value is
fully compatible with νexp = 0.99(2), obtained from the measurements depicted in the
inset of Fig. 8.11, where the stated uncertainty is the standard error of the mean. In
(8.22) we have chosen to give a more conservative value of the uncertainty which is the
normal standard deviation obtained from the individual measurements.

8.4.3 Characterization of the topological phase transition

The following measurements were again performed with Fa/h = 38.4(8)Hz, which is
well below the bandgap for δ = 0. We used the Chern-number measurements presented
above to study the phase transition triggered by the staggered detuning δ, which is ex-
pected to occur at δ = 2J for the Hamiltonian (8.16). The experimental results are shown
in Fig. 8.12c. In agreement with the theoretical expectations we observe a decrease of
the experimental Chern number to zero across the phase transition. Landau-Zener tran-
sitions during the Bloch oscillations are expected to become more important close to the
phase transition point where the gaps in the energy spectrum close. However, due to
our independent band-population measurements this should not affect the experimental
results.
The smoothening of the transition is most likely due to experimental uncertainties in the
resonance condition. Possible drifts and fluctuations were recorded by calibrating the
resonance frequency several times over the course of one day and evaluating the corre-
sponding standard deviation σδ = 0.4J. This was included in the model by convoluting
the ideal transition at δ = 2J with a normal distribution at the mean detuning δ and the
standard deviation σδ (green solid line in Fig. 8.12c). This qualitatively agrees with the
data.
In Figure 8.12a,b numerical calculations of the Berry curvature are shown for two dif-
ferent values of the detuning, one on either side of the topological phase transition. The
calculations were performed according to the method described in Ref. [99] and Sect. 2.4.
The Berry curvature is a local property that is defined for each state

∣∣uµ(k)
〉

at momen-
tum k within the FBZ according to Eq. (2.46). For the topologically non-trivial band the
sign of Ω1(k) is uniform across the first Brillouin zone such that the integral over the
full FBZ does not vanish; in particular for the lowest Hofstadter band with Φ = π/2
it results in ν1 = +1 (Fig. 8.12a). For the topologically trivial situation, however, we
see that the Berry curvature changes sign within the FBZ. This leads to a vanishing
Chern number ν1 = 0 for the lowest band of the Hofstadter-like lattice with δ > 2J
when integrating the curvature over the whole FBZ (Fig. 8.12a). Note that similar to the
energy spectrum the Berry curvature distribution might be shifted in momentum space
depending on the choice of gauge.
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Figure 8.12: Berry curvature and Chern number as a function of the staggered detuning δ. a
Berry curvature Ω1(k) of the lowest Hofstadter band (δ = 0). It exhibits only positive contri-
butions which leads to a non-zero Chern number ν1 = 1. b Berry curvature of the lowest band
of the Hofstadter-like lattice for δ = 4J. Contrary to the topologically non-trivial case the Berry
curvature exhibits positive and negative values resulting in ν1 = 0. c Measured Chern number
versus detuning for Fa/h = 38.4(8)Hz. For each value of the detuning the differential shift 2x(t)
was measured at four different times t = (20, 50, 100, 150)ms, averaged over five dataset. The
corresponding band populations ηµ(t) were measured as depicted in Fig. 8.10, averaged over
two individual measurements. To extract the Chern number we fit Eq. (8.21) using the measured
filling factor γ(t); ν1 was the only free fit variable. The green data point is the averaged value
of the Chern number νexp = 0.99(5) for δ = 0 as given in (8.22). The topological phase transi-
tions occurs at δ = 2J for Hamiltonian (8.16). As explained in the main text, the transition is
smoothened due to experimental uncertainties σδ = 0.4J (horizontal error bars) in the determi-
nation of the resonance condition (green solid curve). The blue shaded area illustrates the range
of transition points δ ≈ 1.77(14)J governed by the Hamiltonian (8.25), which includes higher
order corrections due to the initial phase of the modulation φ0 (see Fig. 8.14). The vertical error
bars show the uncertainty of the experimental value for the Chern number resulting from the fit
errors related to γ(t). (Figure adapted from Ref. [73])

Higher-order corrections

So far we have neglected the corrections that arise due to the initial phase of the modu-
lation φ0. This phase can lead to small modifications of the coupling strength J along y
as discussed in Sect. 7.2. For our experimental parameters V0/(h̄ω) = 0.58(2) the initial
phase φ0 can cause an inhomogeneity in the coupling along y up to 30% (Fig. 7.4b). We
further incorporate the corrections given in Eq. (7.15) into the derivation of the effective
Hamiltonian. The modified Schrödinger equation now reads

EΨm,n =− J
[
einπ/2Ψm+1,n + e−inπ/2Ψm−1,n

]
− J [(1 + fm,n)Ψm,n+1 + (1 + fm,n−1)Ψm,n−1] .

(8.24)

Using the same ansatz for the wave function as given above, Eq. (8.3), we obtain the
following modified Hamiltonian Ĥ → Ĥc (see also Eq. (8.16)),
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Figure 8.13: Energy spectrum of the Hofstadter model for δ = 0 in the presence of small
higher-order corrections. The corrections are determined by the phase of the modulation φ0,
which can lead to inhomogeneous couplings along y. For φ0 = 0 and φ0 = π/2 the inho-
mogeneity is maximal, with Jmin = 0.69(2)J and Jmax = Jy. For φ0 = ±π/4 the coupling is
homogeneous with Jmin = Jmax = 0.84(1)J. The topology of the bands is robust against these
corrections independent of the value of φ0.

Ĥc = −2J


δ/(2J) i sin(kxa) − sin(kya) + h1 0
−i sin(kxa) 0 0 cos(kya) + h∗2
− sin(kya) + h∗1 0 0 cos(kxa)

0 cos(kya) + h2 cos(kxa) −δ/(2J)

 , (8.25)

where the small higher-order corrections are determined by φ0 and V0/(h̄ω)

h1 = +
1
2

(
V0

h̄ω

)2 [
sin(kya) + i cos(2φ0) cos(kya)

]
(8.26)

h2 = −1
2

(
V0

h̄ω

)2 [
cos(kya)− i cos(2φ0) sin(kya)

]
. (8.27)

Figure 8.13 illustrates the energy spectrum for the Hofstadter model δ = 0 for four
different values of the phase. The largest deviations are obtained for φ0 = 0 and φ0 =

π/2, where the inhomogeneity in the coupling is maximal. For φ0 = (k± 1/4)π, with
k integer, the coupling along y is homogeneous and the spectrum is very similar to the
ideal Hofstadter bands. In this section we studied the topology of the bands across
the phase transition, which ideally occurs at δ = 2J. Using Hamiltonian (8.25) we
find that the phase transition point depends weakly on the value of the phase φ0. The
corrections mainly shift the transition point to lower detunings δ ≈ 1.77J (Fig. 8.14). The
blue shaded area in Fig. 8.12c illustrates the different transition points for δ = 1.77(14),
where we defined the transition region in the interval Egap ∈ [0, 0.1]J. We observe that
the corrections are within our experimental error bars.
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Figure 8.14: Numerical calculations of the energy gap Egap and the topological phase transi-
tion point using Hamiltonian (8.25). Energy gap as a function of the phase φ0 and the staggered
detuning δ. In general the gap-closing point appears to be shifted to δ ≈ 1.77J compared to the
ideal value of δ = 2J.



Chapter 9

Conclusions and Outlook

The main topic of this thesis was the implementation of artificial magnetic fields with
ultracold atoms in optical lattices. A new experimental technique based on laser-assisted
tunneling was successfully demonstrated, that led to the generation of synthetic mag-
netic fields on the order of one flux quantum per lattice unit cell. In chapter 5 it was
shown that laser-assisted tunneling in a staggered superlattice potential in its simplest
form, where tunneling on each bond is triggered simultaneously with the same pair of
laser beams, naturally leads to a staggered flux distribution with zero mean. In these
systems the momentum distribution of the ground state was studied in time-of-flight
experiments. The corresponding experimental results were shown to be in agreement
with a theoretical description in terms of the effective time-independent Floquet Hamil-
tonian. The underlying theoretical framework was summarized in chapter 3, which also
included a detailed discussion of the full-time dynamics that occur within one driving
period. Experimental signatures of these additional dynamics were observed, support-
ing its relevance for experimental realizations. The structure of the artificial magnetic
field was further examined on the level of isolated four-site square plaquettes, which
enabled a direct experimental determination of the strength of the artificial flux per unit
cell through the observation of local cyclotron orbits. The experimental results were
shown to be in agreement with the theoretically predicted full-time dynamics.
In chapter 6 and 7 two modifications of the initial laser-assisted tunneling scheme, that
was presented in chapter 5, were studied, which led to the realization of a uniform flux
configuration. In the first scheme (chapter 6) the flux was rectified by replacing the stag-
gered potential with a linear one that was realized with a magnetic field gradient. By
including an additional pseudo-spin degree of freedom into the same system a Hamilto-
nian was implemented, that underlies the quantum spin Hall effect. A first signature of
this was the observation of the spin Hall effect in an optical lattice using cyclotron-orbit
measurements. The second scheme (chapter 7) was again based on a staggered super-
lattice potential. This time the laser-beam configuration for the laser-assisted tunneling
scheme was modified such that tunneling was restored only on every other bond with
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a single pair of beams. By making use of two spatially separated pairs, tunneling was
independently restored on the two kinds of bonds, thus enabling flux rectification. This
scheme only relies on optical potentials which increases the experimental flexibility in
comparison with the use of magnetic field gradients and was the starting point for the
achievement of an adiabatic loading of the atoms into the topological bands of the Hof-
stadter model.
In chapter 8 the new all-optical scheme was eventually employed to determine the topo-
logical invariant, the Chern number, of the lowest Hofstadter band. In these experiments
the transverse deflection of an atomic cloud was observed as a response to an applied
force through in-situ imaging. For a filled energy band, the center-of-mass evolution
of the cloud is expected to be proportional to the Chern number of the corresponding
band. In our experiment this has been realized with bosonic atoms populating the low-
est Hofstadter band homogeneously both through interactions and finite temperature.
This experiment constitutes the first Chern-number measurement in a non-electronic
system. Furthermore the techniques which were developed in this work with bosonic
atoms are applicable to a wide range of other non-electronic systems [65, 82, 202].

Outlook

In the context of this thesis interactions between the atoms were typically very small and
could be neglected compared to the other energy scales in the system. For the Chern-
number measurement presented in chapter 8, however, the situation might be different.
In the presence of a uniform magnetic field the lowest tight-binding band splits into sev-
eral subbands, which naturally decreases the relevant energy scales in the system. For
our experimental parameters the interaction energies are on the order of the energy gap
between the lowest two Hofstadter bands. This could be a reason for the repopulation
between the Hofstadter bands which was observed during the dynamics. The Floquet
energy in periodically driven systems is only defined up to integer multiples of the mod-
ulation frequency ω (chapter 3). In many cases the theoretical discussion is restricted to
one Floquet band only. Scattering between the particles, however, can lead to a coupling
between different Floquet modes, which may in turn lead to a transfer of the atoms
into higher bands under the absorption of one or several "Floquet-photons" with energy
h̄ω. Time-dependent Hamiltonians without interactions were extensively studied in the
literature, however, a detailed understanding of scattering effects just started to be put
forward [116, 203–206]. Thermodynamic properties of periodically driven quantum sys-
tems were studied in Refs. [207–209]. Future experiments could reveal new insights by
measuring heating rates in the presence of a periodic modulation for different parame-
ter regimes. In 3D lattice systems, e.g. stability islands are predicted where the coupling
between different Floquet modes is suppressed [116]. Using Feshbach resonances [45]
heating rates could be further studied as a function of the interaction strength.
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The realization of artificial magnetic fields using laser-assisted tunneling is commonly
described in terms of the effective time-independent Floquet Hamiltonian. In chapter 3
the corresponding micro-motion was discussed using the example of one-dimensional
driven lattices. This micro-motion can be very different for driving schemes that result
in the same effective flux distribution but are based on different experimental setups
[66]. This suggests that some schemes might be more susceptible to modulation-induced
heating than others. In a theoretical study about the orbital-driven melting of a bosonic
Mott insulator [210] it was found that a periodic shaking of the lattice potential back
and forth limits the transfer into higher bands compared to other driving schemes that
rely on on-site modulations. Future experiments could clarify related questions.
Once a better understanding of interaction effects and modulation-induced heating is
achieved, the inclusion of interactions could lead to the observation of strongly corre-
lated states in flat topological bands, such as fractional Chern insulators [13, 27]. The
Hofstadter bands realized with our current setup (chapter 7–8) with flux Φ = 2πα =

π/2 exhibit a flatness ratio of Egap/Ebw ' 7 and are therefore promising candidates to
realize such systems. For bosonic atoms there exists a bosonic Laughlin state for filling
1/2, which means that the number of flux quanta NΦ = 2N is twice the number of
particles N. However, the regime of strong interactions was initially only studied for
α � 1 since large field strengths, with α on the order of one, were not achievable in
early experiments. For larger fluxes, effects related to the presence of the lattice be-
come important. It has been shown that the ground state of hard-core bosons in the
Hofstadter bands has a very large overlap with the Laughlin wave function for fluxes
α < 0.3 [211]. In this regime the lowest Hofstadter band is very flat and the Laughlin
wave function is a good description. Experimental evidence of this state might be even
observable by measuring the momentum distribution of the atoms after time-of-flight
[211]. This study was extended to the regime of finite interactions in Ref. [212], where
in addition the topological nature of the ground state was explored in regimes where
the overlap with the Laughlin states is reduced. Filling factors different from 1/2 for
bosonic systems were studied in Ref. [213] also beyond a simple comparison to the con-
tinuum limit [214].
A first step regarding the experimental realization of strongly-correlated states in the
presence of artificial gauge fields might be achieved with optical ladder systems. This
quasi one-dimensional geometry is the minimal lattice system where the effect of artifi-
cial gauge fields can be studied. Previously, this has led to the observation of a transition
between a phase with Meissner-like chiral currents and a vortex phase [72]. Several the-
oretical studies discussed the different strongly-correlated phases that occur in these
systems [215–222]. In combination with recently developed high-resolution detection
techniques [50, 163] the chiral currents could be measured in a spatially-resolved man-
ner [223]. Possibly this might also allow for an experimental study of the connection
between the chiral Meissner currents and the edge states of an integer quantum Hall
insulator [224, 225].
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Appendix A

Magnetic translation operators

Derivation

The derivation of the phases θi
m,n, i = {x, y}, in the definition of the magnetic translation

operators, Eq. (2.8), follows closely the calculations presented in Ref. [90]. We require
that all commutators between the MTOs and the Hamiltonian Ĥ as defined in Eqs. (2.6)-
(2.7) vanish, [T̂M

x , Ĥ] = 0 and [T̂M
y , Ĥ] = 0. This imposes several constraints on the

phases

[
T̂M

x , T̂x

]
= ei(φx

m,n+θx
m+1,n)

[
1− ei(θx

m,n+φx
m+1,n−φx

m,n−θx
m+1,n)

]
!
= 0

⇒ ∆x θx
m,n = ∆x φx

m,n , (A.1)

[
T̂M

x , T̂y

]
= ei(φy

m,n+θx
m,n+1)

[
1− ei(θx

m,n+φ
y
m+1,n−φ

y
m,n−θx

m,n+1)
]

!
= 0

⇒ ∆y θx
m,n = ∆x φ

y
m,n = ∆y φx

m,n + Φm,n , (A.2)

where we have used the definition for the derivative on a discrete lattice as given in
Eq. (5.11), together with Eq. (2.10). The remaining commutator [T̂M

y , Ĥ] = 0 imposes
analog constraints on the phases

[
T̂M

y , T̂x

]
= ei(φx

m,n+θ
y
m+1,n)

[
1− ei(θy

m,n+φx
m,n+1−φx

m,n−θ
y
m+1,n)

]
!
= 0

⇒ ∆xθ
y
m,n = ∆yφx

m,n = ∆xφ
y
m,n −Φm,n , (A.3)
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[
T̂M

y , T̂y

]
= ei(φy

m,n+θ
y
m,n+1)

[
1− ei(θy

m,n+φ
y
m,n+1−φ

y
m,n−θ

y
m,n+1)

]
!
= 0

⇒ ∆y θ
y
m,n = ∆y φ

y
m,n . (A.4)

The conditions imposed by equations A.1–A.4 can be solved by

θx
m,n = φx

m,n + Φm,nn θ
y
m,n = φ

y
m,n −Φm,nm , (A.5)

which matches the definition in Eq. (2.9) of Sect. 2.2.



Appendix B

Propagation operator

For time-periodic Hamiltonians Ĥ(t + T) = Ĥ(t) Floquet’s theorem states that the solu-
tion of the time-dependent Schrödinger equation

ih̄
∂

∂t
Û(t) = Ĥ(t)Û(t) (B.1)

can be written in the following form

Û(t) = P̂(t)e−
i
h̄ ĤFt, (B.2)

where the propagation operator P̂(t + T) = P̂(t) is a unitary operator which is periodic
in time [117, 123] and ĤF is a time-independent hermitian operator. Proving the time-
periodicity of P̂(t) is rather straightforward. If Û(t) is a solution of the time-dependent
Schrödinger equation so is V̂(t) = Û(t + T), with V̂(0) = Û(T). By applying the
operator Û(T) from the right side to the Schrödinger equation one obtains

ih̄ ∂tÛ(t)Û(T)︸ ︷︷ ︸
∂tŴ(t)

= Ĥ(t) Û(t)Û(T)︸ ︷︷ ︸
Ŵ(t)

, (B.3)

which means that Ŵ(t) is also a solution to the Schrödinger equation with Ŵ(0) = Û(T).
Since the solution to the Schrödinger equation is unique it follows that V̂(t) = Ŵ(t) or
Û(t + T) = Û(t)Û(T) and moreover

P̂(t + T) = Û(t + T)e
i
h̄ ĤF(t+T) = U(t) Û(T)e

i
h̄ ĤF(t+T)︸ ︷︷ ︸

e−
i
h̄ ĤF Te

i
h̄ ĤF(t+T)=e

i
h̄ ĤF t

= Û(t)e
i
h̄ ĤFt = P̂(t). (B.4)
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Appendix C

Staggered flux distribution

Experimental gauge

It was shown in Sect. 5.2 that the momentum distribution measured in cold-atom ex-
periments using expansion imaging is a gauge-dependent quantity. Because of that the
effective Floquet Hamiltonian needs to be derived in the experimental gauge which is
determined by the laser-beam configuration chosen for the realization of the on-site
modulation. In Sect. 5.4 it was mentioned that the measured momentum distributions
are independent of the initial phase of the driving φ0. This was verified numerically by
exact diagonalization. An equivalent result can be obtained analytically by solving the
Schrödinger equation associated with the effective Floquet Hamiltonian (5.28) as will be
demonstrated in the following.
The magnetic translation operators cannot be found easily by direct application of
Eq. (2.9), which was derived in Appendix A. However, using the knowledge about the
dimensions of the magnetic unit cell AMU = 2a × 1a they can be derived following
the general strategy presented in Appendix A. The Peierls phase-factors realized in the
experiment (5.32) are given by

φm,n =

−π
2 (m− n + 3/2)− φ0, for m odd

+π
2 (m− n + 7/2) + φ0, for m even

We find that the MTOs can be written in the following form

M̂2
x = ∑

m,n
â†

m+2,n âm,n

ei4πα , for m odd

1 , for m even

M̂1
y = ∑

m,n
â†

m,n+1 âm,n

e−i2πα , for m odd

1 , for m even

(C.1)
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Fulfilling Bloch’s theorem defined in Eq. (2.18) we can make the following ansatz for the
wave function

Ψm,n = eikxmaeikyna

ψo e−i2πα(m−n), for m odd

ψe , for m even
, (C.2)

where kx and ky are defined within the first magnetic Brillouin zone, −π/(2a) ≤ kx <

π/(2a) and −π/a ≤ ky < π/a. Plugging this ansatz into the Schrödingern equation
(5.6) results in a two-dimensional eigenvalue equation

Ĥ

(
ψe

ψo

)
= E(k)

(
ψe

ψo

)
, (C.3)

Ĥ =

(
−2Jcos(kya) −K(ei(−2πα+φeven+kxa) + e−i(φodd+kxa))

−K(e−i(−2πα+φeven+kxa) + ei(φodd+kxa)) −2J cos(kya + 2πα)

)
,

with φeven = 7π/4 + φ0 and φodd = −3π/4− φ0. The dispersion relation determined
by (C.3) does not depend on φ0, which means that the momentum distributions neither
depend on it. Therefore we choose without loss of generality φ0 = −3π/4.

Simplified form of the gauge field as defined in Eq. (5.37): In this section we are going
to present the solutions to the Schrödinger equation associated with the Hamiltonian
(5.37) for a more general form of the gauge field φm,n = 2πα(m + n)(−1)(m+1). The
MTOs can be written in the following form

M̂2
x = ∑

m,n
â†

m+2,n âm,n

e−i4πα , for m odd

1 , for m even
,

M̂1
y = ∑

m,n
â†

m,n+1 âm,n

e−2iπα , for m odd

1 , for m even
,

(C.4)

such that the ansatz for the wave function can be written in the following form

Ψm,n = eikxmaeikyna

ψo ei2πα(m+n), for m odd

ψe , for m even
, (C.5)

where kx and ky are defined within the FBZ defined above. Inserting this ansatz into the
Schrödinger equation (5.6) leads to the two-dimensional eigenvalue equation

(
−2Jcos(kya) −K(ei2παeikxa + e−ikxa)

−K(e−i2παe−ikxa + eikxa) −2J cos(kya + 2πα)

)(
ψe

ψo

)
= E(k)

(
ψe

ψo

)
. (C.6)

For α = 1/4 we recover the solutions presented in Sect. 5.5.
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