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Zusammenfassung:

Die Plasmamembran lebender Zellen stellt die Hauptbarriere für alle Arten von 

extrazellulären Signalen dar. Viele davon werden ins Innere der Zelle weitergeleitet, hier 

lösen sie im Kern transkiptionelle Veränderungen und damit die Anpassung der Zelle auf 

Proteinebene aus. Andere wiederum werden direkt erkannt und in unmittelbare molekulare 

Antworten umgewandelt, wie zum Beispiel die Sekretion von gespeicherten Stoffen oder 

Konformations-änderungen von Proteinen. Besonders in Pflanzen, welche durch ihre 

sesshafte Lebensweise  auf die rechtzeitige und spezifische Erkennung von 

Umweltveränderungen angewiesen sind, hat sich ein höchst diverses Rezeptorsystem 

entwickelt. In der Ackerschmalwand Arabidopsis thaliana, der in dieser Arbeit 

verwendeten Modellpflanze, wurden 610 verschiedene Rezeptorproteine identifiziert, 

welche wiederum von zahlreichen interagierenden, und bis jetzt weitestgehend 

unerforschten Proteinen reguliert werden. Als entscheidendes Prinzip, dieses Aufgebot an 

membran-gebundenen Komponenten von Signalkaskaden zu organisieren, gilt inzwischen 

die zeitliche und lokale Kompartimentierung der Plasmamembran. Durch Akkumulation 

relevanter Bestandteile von biologischen Prozessen in sogenannten Membrandomänen 

werden kurze Reaktionszeiten und die unmittelbare Signalweiterleitung garantiert. 

Besonders wichtig bei solchen Prozessen sind sogenannte Gerüstproteine, welche als 

Adaptoren zwischen anderen Komponenten fungieren. 

In dieser Arbeit wurden Remorine, eine Familie pflanzenspezifische Proteinen ohne bisher 

definierte Funktion, aufgrund ihrer Eigenschaft Membrandomänen zu markieren und ihrer 

mutmaßlichen Beteiligung an Pflanzen-Pathogen-Interaktionen, genauer untersucht. 

Eine systematische Expression von Remorinen als Fluorophor-Fusionen mit anschließender 

hochauflösender mikroskopischer und quantitativer Untersuchung offenbarte, dass die 

meisten Remorine sich in deutlich unterschiedlichen Mustern an der Membran verteilen. 

Untersucht wurden dabei Parameter wie die Größe der erkennbaren Domänen, die Form, 

die Helligkeit, aus welcher auf die Proteinkonzentration rückgeschlossen werden kann, 

sowie die Domänendichte an der Membran. Diese Ergebnisse wurden von 

Kolokalisationsanalysen unterstützt, welche die Lokalisation in unterschiedlichen, 

koexistierenden Membrankompartimenten erkennen ließen. Ferner wurden die 

Eigenschaften der von Remorinen markierten Membrandomänen, wie zum Beispiel der 

Austausch an Proteinen mit der umgebenden Membran, sowie lokale und zeitliche 

Dynamik und Stabilität untersucht. Dabei konnte eine hohe Fluktuation einzelner Proteine 

zwischen Domäne und umliegender Membran, jedoch eine klare laterale Immobilität der 

gesamten Domäne nachgewiesen werden. Zusätzlich zeichneten sich die untersuchten 
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Domänen teilweise durch eine außerordentlich große zeitliche Stabilität aus, andere 

wiederum scheinen abhängig von bestimmten Stimuli zu entstehen. 

Weitergehende Arbeiten dienten der Identifizierung der Funktion einzelner Bereiche der 

Proteine. Hierbei konnte die entscheidende Rolle des äußersten C-terminalen Bereichs, des 

so- genannten RemCAs (Perraki et al., 2012; Konrad et al., 2014) als Membrananker 

bestätigt werden. Zusätzlich wurden mit Hilfe eines Hefe-2-Hybrid Ansatzes zahlreiche 

neue Interaktoren für eine Auswahl von Remorinen identifiziert. Dabei wurde ein 

essentieller Rezeptor der basalen Immunantwort, BAK1 als Interaktor für Remorin 6.4 

gefunden. 

Zuletzt wurden einige wenige Remorine mit Hilfe von Mutantenlinien in einer genetischen 

Studie phänotypischen Analysen bezüglich ihrer Funktion bei Pflanzen-Pathogen 

Interaktionen unterzogen. Remorin 6.4 spielt hiernach eine Rolle bei der Immunantwort 

nach Befall mit virulenten Bakterien. 

Die grundlegende Erkenntnis, dass in lebenden Zellen zahlreiche klar unterscheidbare 

Arten an Membrandomänen koexistieren, ist ein Meilenstein auf dem Weg zur 

Anerkennung einer neuen Vorstellung vom Aufbau der Zytoplasmamembran. Diese wird 

häufig noch als undifferenzierte zweidimensionale Flüssigkeit beschrieben, in welcher 

stellenweise sogenannte Lipidflöße, festere Strukturen aus Cholesterin und Sphingolipiden, 

die auch bestimmte Proteine beherbergen können, auftreten. Anhand der in dieser Arbeit 

gewonnen Ergebnisse, sowie ähnlicher Studien in Hefe lässt sich nun folgendes Bild 

zeichnen: Es ist davon auszugehen, dass unterschiedliche Proteine, welche im selben 

biologischen Prozess involviert sind, in unmittelbarer Nachbarschaft oder sogar im selben 

Proteinkomplex in der Membran organisiert sind. Die Lipidzusammensetzung in der 

unmittelbaren Umgebung wird von diesen Proteinen bestimmt, bietet jedoch auch die 

Grundlage für die Bildung der Domäne, indem sie die Lokalisation der Komponenten in 

diesem Bereich fördert. Die zahlreichen an der Zellmembran gleichzeitig ablaufenden, 

unterschiedlichen Prozesse erfordern eine hochkomplexe, zeitlich und räumlich stark 

regulierte Kompartimentierung der Membran. Es kann vermutet werden, dass Remorine 

eine Rolle als Gerüstproteine bei der Ausbildung einer Auswahl dieser Domänen bilden. Im 

Fall von Remorin 6.4 ist das Protein für den Prozess der Flagellin-Erkennung und die 

unmittelbaren Abwehrantworten, welche nachweislich eine Präformierung der beteiligten 

Proteinkomplexe voraussetzen, notwendig. 
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 Introduction 

1. The role of receptor-like kinases in plant signalling 

As sessile organisms, plants have been challenged in evolution to survive in an ever-

changing environment. In order to adapt to environmental cues, both harmful and 

beneficial, they had to evolve mechanisms to detect a vast variety of external stimuli. 

Changes in physiology and development in response to stresses require high amounts of 

energy. Therefore the involved perception systems are both highly specialized as well as 

tightly regulated. 

Receptor-like kinases (RLKs) in plants and the Pelle-kinases in animals have evolved 

from a common eukaryotic ancestor. While three and four members of the RLK/Pelle 

superfamily are annotated in mice and humans, respectively, the receptor repertoire with 

over 600 members has massively diversified in Arabidopsis thaliana (Shiu and 

Bleecker, 2001a, b, 2003; Gish and Clark, 2011). Most of the RLKs in plants unite an 

extracellular N-terminal domain and a C-terminal intracellular kinase domain in one 

plasma membrane-spanning protein. Others do not harbour a transmembrane region, and 

are therefore predicted to be of cytoplasmic localisation (RLCKs = receptor-like 

cytoplasmic kinase). Additionally, there are receptor-like proteins (RLPs) without an 

intracellular kinase domain, but resembling the extracellular domains of RLKs (Shiu 

and Bleecker, 2001a, b, 2003).  

The general mechanisms, by which receptors perceive chemical signals and mediate the 

transduction from the outside of the cell to the intracellular lumen and the nucleus have 

been unravelled over the past decades both for animal as well as for plant receptor 

proteins (reviewed in Schlessinger, 2000; Pawson and Nash, 2000; Silverman and 

Maniatis, 2001; Imler and Hoffmann, 2001; Hoffmann and Reichhart, 2002; Gomez-

Gomez and Boller, 2002). Ligand binding induces receptor oligomerisation and 

structural changes, which lead to auto-phosphorylation and/or trans-phosphorylation of 

the intracellular domain or interacting kinase proteins. This results in another structural 

change usually exposing the active site of the kinase to bind t h e  substrate. The activated 

kinase then phosphorylates additional residues, usually within non-catalytic regions, 

which then provide binding sites for downstream targets (reviewed in Schlessinger, 

2000; Pawson and Nash, 2000). Both animal as well as plant kinases, including RLKs, 

can be subdivided into RD and non-RD kinases (RD = arginine and aspartate) 

depending on the conservation of the amino-acid residue preceding the highly conserved 
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aspartate in the catalytic loop of the kinase domain (Johnson et al., 1996; Nolen et al., 

2004). Most RD kinases require auto-phosphorylation of the activation loop for full 

kinase activity. In contrast, non-RD kinases are not dependent on activation-loop auto-

phosphorylation for kinase activation (Nolen et al., 2004). 

The largest group among the plant RLKs is constituted by leucine-rich-repeat-RLKs 

(LRR-RLKs) (Shiu and Bleecker, 2001a, b, 2003). By now, a number of individual 

examples as well as transcriptome analyses have shown roles for LRR-RLKs in plant 

growth and development as well as reactions to biotic and abiotic stresses (Shiu and 

Bleecker, 2001a, b, 2003; Diévart and Clark, 2004; Kilian et al., 2007; Chae et al., 

2009). 

Paradigm examples for plant LRR-RLKs are the brassinosteroid (BR) receptor 

BRASSINOSTEROID INSENSITIVE 1 (BRI1), which is involved in hormone 

signalling (He et al., 2000; Kinoshita et al., 2005), and the pattern recognition receptors 

(PRRs) FLAGELLIN SENSITIVE-2 (FLS2) and EF-TU RECEPTOR-1 (EFR). FLS2 

and EFR are involved in plant defence responses and are activated upon perception of 

segments of the bacterial flagellum and the elongation factor EF-Tu (Gómez-Gómez and 

Boller, 2000; Zipfel et al., 2006). Both ligands can be experimentally mimicked by the 

small peptides flg22 (Felix et al., 1999; Zipfel et al., 2004; Chinchilla et al., 2006) and 

elf18 (Kunze et al., 2004) respectively. Another LRR-RLK, BRI1-ASSOCIATED 

KINASE 1 (BAK1) was originally found in complex with BRI1 (Nam and Li, 2002; Li 

et al., 2002; Russinova, 2004), but has been shown to associate as a co-receptor with 

FLS2, EFR and supposedly additional PRRs (Heese et al., 2007b; Chinchilla et al., 

2009; Chinchilla et al., 2007b; Postel et al., 2010). BAK1 belongs to a family of closely 

related and putatively redundant receptor kinases called SOMATIC 

EMBRYOGENESIS RECEPTOR KINASES (SERKs) (Albrecht et al., 2005; Albrecht 

et al., 2008; Chinchilla et al., 2007a; Colcombet et al., 2005; He et al., 2007; Hecht et 

al., 2001; Heese et al., 2007a; Karlova et al., 2006; Kemmerling et al., 2007). Since 

bak1 knockout mutants display increased lesions upon pathogen infection and a 

premature senescence phenotype (Kemmerling et al., 2007; Jeong et al., 2010), 

additional roles for BAK1 in cell death control have been proposed (He et al., 2007, 

2008). 

BAK1 itself has not been shown to be involved in ligand recognition (Chinchilla et al., 

2007a; Kinoshita et al., 2005). It has therefore been considered to act as a central 

regulator with scaffold function of the corresponding RLKs (Chinchilla et al., 2009; 

Postel et al., 2010). Interestingly, major differences between the interaction of BAK1 

with the RD-kinase BRI1 and the non-RD-kinases FLS2 and EFR have been described 
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(Dardick and Ronald, 2006). While kinase activities of both proteins are required during 

BAK1-BRI1 interaction, this feature is dispensable for the association of BAK1 with the 

two PRRs (Schulze et al., 2010; reviewed in Clouse, 2011; Schwessinger et al., 2011). 

Recent analyses of two BAK1 alleles, bak1-5 (Schwessinger et al., 2011) and BAK1elg 

(Chung et al., 2012) as well as BAK1 phospho-sites (Oh et al., 2010; Wang et al., 2008) 

have shed light on the mechanistic specification of BAK1 signalling. Both mutants 

display only a single amino-acid exchange; yet, differential effects on plant defence, 

brassinosteroid (BR) responses and cell death control have been described. 

While the mechanisms of signal transduction and regulation beyond the receptor 

complex formation are still largely unknown, several direct regulators of few RLKs 

have been identified. One paradigm example is BKI1 (BRI1 KINASE INHIBITOR 1), a 

specific inhibitor of BR signalling and a direct target of BRI1. It has been found to limit 

the interaction of BRI1 and BAK1 in vitro, hypothetically via steric hindrance, but 

dissociates from the plasma membrane (PM) upon brassinolide (BL) binding (Wang and 

Chory, 2006). 

In plant immune signalling, FLS2, EFR and putatively BAK1 associate with the RLCK 

BOTRYTIS-INDUCED KINASE 1 (BIK1) and its paralogs PBS1, PBL1 and PBL2. 

BIK1 is phosphorylated by BAK1 after elicitation, and in return trans-phosphorylates 

both FLS2 and BAK1. Subsequently, it dissociates from the activated receptor complex 

(Lu et al., 2010; Zhang et al., 2010) (Fig. 1A). In line with this, bik1 and pbl mutants are 

impaired in a number of immune responses. Interestingly, BIK1 and PBLs are 

dispensable for downstream kinase activation (Feng et al., 2012a). These results indicate 

not only that BIK1 is a positive regulator of some plant defence responses, but also that 

branching of downstream signalling pathways occurs directly at the receptor complex. 

To complete the picture of differential regulation of signalling pathways, BIK1 has just 

recently been identified as an interactor of BRI1 as well. Here, it acts as a negative 

regulator, as bik1 mutants display BL hypersensitivity phenotypes (Lin et al., 2013). 

The role of phosphorylation in regulation of RLK-signalling has also been well studied 

for the rice pattern receptor kinase XANTHOMONAS RESISTANCE 21 (XA21). 

Although the bacterial elicitor that activates XA21 is still unknown (Lee et al., 2009; 

retracted), several constant interactors have been identified (Fig. 1B), including XB24. 

This kinase promotes phosphorylation at auto-regulatory residues, which keep XA21 

inactive. Upon XA21 activation, XB24 dissociates and allows signalling (Chen et al., 

2010a; Chen et al., 2010b). Association of XB15, leading to de-phosphorylation of the 

kinase domain, mediates receptor inactivation (Park et al., 2008). 
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Recent studies also demonstrated that ubiquitination is negatively regulating receptor 

mediated signalling at the example of FLS2. The two E3-ubiquitin ligases PUB12 and 

PUB 13 are recruited to the receptor complex by BAK1 post ligand perception. 

Subsequently, to terminate signalling, FLS2 is poly-ubiquitinated, leading to 

degradation (Lu et al., 2011). 

 

 

Fig. 1: Mechanisms of regulation of PRR complexes (modified from Monaghan and Zipfel, 
2012) 

In A. thaliana, FLS2 interacts constitutively with BIK1 and related PBLs (A). BAK1 interacts 
constitutively with the E3-ubiquitin ligases PUB12 and PUB13 and putatively also associates 
with BIK1. Upon flg22 binding, BAK1 interacts with FLS2 and trans-phosphorylates both BIK1 
and PUB12/13. BIK1 then trans-phosphorylates BAK1 and FLS2 leading to full activation of the 
receptor complex before it dissociates. For attenuation of signalling, PUB12 and PUB13 poly-
ubiquitinate FLS2, targeting it for degradation.  
In rice, XA21 has been shown to constitutively interact with XB24 (B). XB24 promotes auto-
phosphorylation at residues, which keep XA21 inactive. Ligand binding results in XB24 
dissociation, putative dimerization of XA21 with a SERK family protein, XA21 phosphorylation 
at distinct residues and the activation of immune signalling. XB15 then dephosphorylates XA21 
to attenuate signalling. Phosphorylation is annotated as black circles labelled ‘P’ and arrows 
indicate the direction of post-translational modifications. P = phosphorylation; PK = protein 
kinase 
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Additionally to the above-described mechanisms, endocytosis is a key process in 

regulation of receptor complexes. Both BRI1 and FLS2 are constitutively endocytosed 

(Russinova, 2004; Geldner et al., 2007). For the BRI1 receptor complex, the importance 

of internalisation for successful signalling has been a matter of debate for several years 

(Russinova, 2004; Geldner et al., 2007; Song et al., 2009). Recent studies showed that 

impairment of endosome formation enhanced BR signalling, indicating that indeed 

signalling takes place at the PM and endocytosis mediates receptor inactivation and 

subsequent degradation (Irani et al., 2012; Di Rubbo et al., 2013). For FLS2, 

internalisation has been studied in detail. Here, constitutive endocytosis is BAK1-

independent and sensitive to brefeldin A (BFA), a drug, which interferes with the 

endosomal recycling pathway. In contrast, ligand-induced FLS2 endocytosis is BAK1-

dependent and leads to BFA-insensitive endocytosis and subsequent degradation of the 

receptor (Robatzek and Saijo, 2008; Beck et al., 2012). These results show that FLS2 is 

both subject to a constant recycling process independent of activation, but also 

inactivated by endocytosis of the receptor complex to attenuate the signalling cascade. 

2. Receptor mediated immunity and effector triggered 

immunity in plant pathogen interactions 

Among the many dangers plants face in nature, infection by pathogens is one of the 

most challenging ones. Unlike animals, plants cannot rely on an adaptive immune 

system. Additionally, microbes evolve with unequally much higher rates, making it 

almost impossible for the plant to specifically recognize them and directly defend itself 

towards harmful microorganisms. 

At a first glace, plant immunity seems simple: At the frontier, plants rely on pre-existing 

barriers present on the leaf surface such as wax layers, the cell wall itself or secreted 

molecules like enzymes or secondary metabolites (Zipfel and Felix, 2005). Yet, more 

importantly, plants share with animals one fundamental defence system: The basal, 

innate immunity. Here both animals and plants rely on two kinds of receptors, which 

lead to two independent sets of immune response (reviewed in Faulkner and Robatzek, 

2012) (Fig. 2). The first step is mediated by the above described pattern recognition 

receptors at the PM. These receptors typically perceive conserved molecular patterns 

referred to as PAMPs or MAMPs (pathogen associated molecular patterns/microbe 

associated molecular patterns). These epitopes are invariant among whole classes of 

microbes, as they are part of molecules, which are fundamental to the pathogens fitness 

(Schwessinger and Zipfel, 2008). Receptor activation leads to active immune responses 

prior to host invasion (Boller and Felix, 2009). 
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Fig. 2: The two layers of perception in animal and plant innate immune system (adapted 
from Nurnberger and Kemmerling, 2006; Monaghan and Zipfel, 2012) 

Pattern recognition receptors at the plasma membrane bind conserved molecular patterns 
invariant among whole classes of microbes. Depicted examples are the TOLL-LIKE 
RECEPTOR 5 (TLR5) in mammals (Hayashi et al., 2001) as well as FLS2 and its co-receptor 
BAK1 in plants, which perceive flagellin. EIX1 and EIX2 are receptors for the fungal plant cell 
wall degradation enzyme xylanase tomato (Ron and Avni, 2004). Additionally to those LRR-
receptors, a number of lysine-motif (LYSM)-RLKs has been identified. CERK1 from A. thaliana 
binds both the fungal cell wall component chitin (Miya et al., 2007; Iizasa et al., 2010; 
Petutschnig et al., 2010) as well as has been proposed to act as a co-receptor for the LYSM-RLPs 
LYM1 and LYM3 after peptidoglycan recognition (Willmann et al., 2011). A second layer of 
pathogen perception consists of the cytoplasmic nucleotide-binding site (NBS)-LRR receptors. In 
mammals, NOD1 and NOD2 bind lipo-poly-saccharide (LPS) (Inohara and Nunez, 2001). In 
plant cells, direct PAMP recognition at this stage has not been shown so far. However, NBS-
LRR receptors act as so called resistance (R) proteins, indirectly sensing cell biological changes 
provoked by bacterial avirulence (Avr) factors. CC = coiled coil; TIR = toll and interleukin 
receptor motif; PK = protein kinase; CARD = caspase activation and recruitment domain. 

The second step involves cytoplasmic receptor proteins that indirectly perceive bacterial 

effector proteins inside the plant cell. The recognition ultimately leads to a 

hypersensitive response mediating resistance (Jones and Dangl, 2006; Chisholm et al., 

2005). 

FLS2 and EFR are model PAMP-receptors. Activation by pathogens or the respective 

elicitors flg22 and elf18 leads to a stereotypic set of downstream responses (Boller and 

Felix, 2009) (Fig. 3). Seconds after ligand perception, FLS2 and BAK1 form a 

heterodimer and phosphorylation takes place (Schulze et al., 2010). Subsequently, ion 

fluxes across the PM occur and intracellular Ca2+ concentration increases (Schwacke 

and Hager, 1992; Tavernier et al., 1995). After two minutes, the RESPIRATORY 
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BURST OXIDASE HOMOLOG D (RBOHD) mediated production of reactive oxygen 

species, the oxidative burst, can be measured at the leaf surface (Miller et al., 2009). 

 

Fig. 3: Illustration of PTI and ETI in plants after elicitor treatment or pathogen attack 
(adapted from Abramovitch et al., 2006; Panstruga et al., 2009) 

The A. thaliana PRR FLS2 recognises the flg22 peptide of flagellin. PRR activation leads to 
receptor heteromerisation, which triggers signalling events that lead to the upregulation of over 
300 plant genes (Asai et al., 2002; Navarro et al., 2004; Thilmony et al., 2006). A complete 
signal transduction cascade downstream of the receptor complex has been shown by Asai and 
colleagues. Activation of the mitogen-activated protein kinase (MAPK) pathway and several 
WRKY transcription factors leads to the expression of PAMP induced genes (Asai and 
Yoshioka, 2008; Asai et al., 2002). Phenotypes that are associated with activated basal defences 
include cell wall fortifications by callose deposition and the production of reactive oxygen 
species (ROS). Delivery of effector proteins through the type III secretion system into plant cells 
a strategy applied by pathogens, which have successfully entered the leaf to target PRR-mediated 
defences (He et al., 2006: Hauck et al., 2003; Li et al., 2005; Oh and Collmer, 2005; Metz et al., 
2005). Modifications on effector targets are recognized in resistant plant species by NB-LRR 
type receptors like the resistance against Pseudomonas syringae 4 (RPS4) protein. It perceives 
targeting of the enhanced disease resistance 1 (EDS1) complex by AvrRps4 and triggers a 
hypersensitive response via WRKY transcription factors (Bhattacharjee et al., 2011). TIR = toll 
and interleukin receptor motif, P = phosphorylation. 
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Reactive oxygen species (ROS) both acidify the leaf surface and serve as a signal 

accelerator for cell-to-cell communication (reviewed by Lamb and Dixon, 1997; Miller 

et al., 2009) (Fig. 3). Activation of the MAPK cascade leads to transcriptional changes 

(Asai et al., 2002; reviewed by Zhang and Klessig, 2001; reviewed by Tena et al., 2001) 

(Fig. 3). Ultimate plant defence responses are for example stomatal closure (Melotto et 

al., 2006) and callose deposition (Gomez-Gomez et al, 1999; Brown et a., 1998; Luna, 

et al., 2011). 

All those reactions can be seen as means to strengthen the pre-existing barriers on the 

plant surface (Zipfel and Felix, 2005). The goal is to successfully prevent the pathogen 

from entering the plant cell and/or proliferating in the intercellular space. Therefore, PTI 

only rarely leads to a hypersensitive response and ultimate death of the infected tissue. 

Yet, successful pathogens survive the initial pre-existing and inducible immune system 

and inject effector proteins via their type-III secretion system into the host cell 

(reviewed in Alfano and Collmer, 2004). Effector proteins can be enzymes or even 

transcription factors, which aim to alter cellular processes in favour of the pathogen. 

They also target essential components of the plant innate immune system, which, 

consequently, results in effector-triggered susceptibility (Gohre and Robatzek, 2008; 

Gohre et al., 2008). 

In response to effector injection, plants have added a second layer of plant innate 

immunity based on intracellular components, mostly nucleotide-binding (NB)-LRR-type 

proteins encoded by so-called resistance (R) genes (Meyers et al., 2003). These proteins 

indirectly recognize pathogen effectors delivered into host cells during infection by 

detection of modifications on typical effector targets. 

Effector targets, of which the plant cell recognizes modifications, have been termed 

“guardees”, the R proteins “guard proteins”. Activation of guard proteins lead to 

effector triggered immunity (ETI) (Fig. 4C). The effector perception mechanism 

postulated by the Guard Model proposes an explanation on how multiple effectors could 

be perceived indirectly if they target the same guardee. Thus a relatively small R gene 

repertoire would be able to recognize the broad diversity of pathogens that attack plants 

(Dangl and Jones, 2001). It has been proposed that the guardee is indispensible for the 

virulence function of the effector protein in the absence of the cognate R protein, 

consequently leading to effector-triggered susceptibility (ETS) (Fig. 4A). Supporting 

evidence for the Guard Model has accumulated over the past decade with the description 

of several classical guarded effector targets like A. thaliana RIN4 and PBS1 (Jones and 

Dangl, 2006)  
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New data on additional targets of Avr proteins suggested a modification to the Guard 

hypothesis, proposing that some host targets of effectors act as decoys to detect 

pathogen effectors via R proteins (Fig. 4D) but are dispensable for effector function 

(Zhou and Chai, 2008) (Fig. 4B). 

 

Fig. 4: Illustration of the Guard and the Decoy Model in recognition of effector proteins by 
the plant innate immune system (adapted from van der Hoorn and Kamoun, 2008) 

The Guard Model sees the guardee as one of many effector targets indispensible for pathogen 
virulence in susceptible hosts (A), which is monitored by the resistant plant to perceive infection 
(C). In the decoy model, plants provide a protein dispensable for pathogen fitness and therefore 
not underlying negative selective forces in susceptible genotypes (B). In resistant phenotypes, 
targeting of the decoy is perceived by the guard protein, leading to effector-triggered immunity. 
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Remorin proteins, a novel group of regulatory proteins in 

receptor-mediated signalling 

Remorins are plant-specific proteins comprising a multi-gene family in all land-plants 

with 16 different members in A. thaliana (Raffaele et al., 2007). Originally found to be 

differentially phosphorylated upon application of poly-galacturonoids (PGN) in potato 

(Farmer et al., 1989), remorins were suggested to play roles in cell-to-cell signalling and 

plant defence (Reymond et al., 1996). Remorins are PM associated (Farmer et al., 1989; 

Jacinto et al., 1993; Reymond et al., 1996; Marmagne et al., 2004; Mongrand et al., 

2004; Sazuka et al., 2004; Nelson et al., 2006; Valot et al., 2005; Valot et al., 2006) and 

phosphorylated by a PM-associated protein-kinase (E. Farmer, P. Bariola, pers. 

communication). Although they were demonstrated to bind a number of poly-anions 

including DNA, which led to an annotation as DNA-binding proteins (Alliotte et al., 

1989; Reymond et al., 1996), there is currently no in vivo evidence for a biological 

function related to these observations. 

Remorins have recently been phylogenetically investigated and divided into six 

subgroups based on their protein-structure. All members of the protein-family harbour the 

highly conserved C-terminal region with a canonical remorin-signature. This region 

contains both a number of highly conserved positively charged residues as well as a 

predicted coiled-coil domain (Reymond et al., 1996; Raffaele et al., 2007). It is the main 

contributor to protein-protein interactions (Tòth et al., 2012; Marin et al., 2012). Also, 

for StREM1.3 the far C-terminal region (remorin C-terminal anchor = REMCA) has 

been shown to mediate PM localisation (Perraki et al., 2012a). 

Additionally to this invariable part, most remorins feature a highly diverse N-terminal 

region (Raffaele et al., 2007). This part of the protein is mostly intrinsically disordered 

(Marin and Ott, 2012; Marin et al., 2012). It is subject to differential phosphorylation 

(Benschop et al., 2007; Keinath et al., 2010; Marin et al., 2012) and may serve 

regulatory functions during protein-protein interactions (Tòth et al., 2012; Marin et al., 

2012). 

Several studies have linked remorin proteins to plant-microbe interactions. Studies on 

StREM1.3 showed binding of the TRIPLE GENE BLOCK Protein1 (TBP1) of the 

Potato Virus X (PVX) and an influence on virus movement trough plasmodesmata 

(Raffaele et al., 2009). 
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Fig. 5: Simplified illustration of the remorin protein structure according to a 3D model of 
SYMREM1 

All remorin proteins harbour the highly conserved C-terminal region. This region contains a 
predicted coiled-coil domain (2) and the plasma membrane attachment site (3). The N-terminal 
region is highly variable in both length and amino-acid composition for most remorins, while it is 
completely absent in members of the phylogenetic group 3. This part of the protein is 
intrinsically disordered and can be phosphorylated in order to regulate protein-protein 
interactions (1) (modified from Konrad et al., 2014) 

SYMBIOTIC REMORIN 1 (SYMREM1), a remorin of the phylogenetic class 2, was 

found to be involved in the establishment of the symbiosis between rhizobia and 

legumes (Lefebvre et al., 2010; Tòth et al., 2012). SYMREM1 is strongly up-regulated 

in Medicago truncatula roots (Lefebvre et al., 2007; Lefebvre et al., 2010) after 

perception of the nodulation factors (Nod factors or NFs), strain-specific 

lipopolyoligosaccharide signalling molecules secreted by bacteria prior to root hair 

infection. A symrem1 knockout mutant in M. truncatula was shown to be impaired in 

the formation of nitrogen-fixing nodules (Lefebvre et al., 2010). In line with that, a 

microscopical analysis of fluorophore fusion constructs demonstrated SYMREM1 

localisation to the host derived membrane surrounding symbiosomes inside fully 

developed nodules of M. truncatula and Lotus japonicus (Lefebvre et al., 2010; Tòth et 

al., 2012). Additional immuno-labelling experiments with antibodies against the native 

SYMREM1 protein also confirmed its localisation to infection thread membranes in M. 

truncatula (Lefebvre et al., 2010). SYMREM1 was also shown to directly interact with 

the major RLKs required for rhizobial invasion, NOD FACTOR RECEPTOR 1 (NFR1), 

NOD FACTOR RECEPTOR 5 (NFR5) and SYMBIOSIS RECEPTOR-LIKE KINASE 

(SYMRK) in L. japonicus (Tòth et al., 2012) as well as with the respective putative 

orthologs RLKs in M. truncatula (Lefebvre et al., 2010). Both NFR1 and SYMRK 

kinase domains phosphorylate SYMREM1 in vitro (Tòth et al., 2012).  

There is further accumulating evidence that other members of the remorin protein 

family are involved in plant–microbe interactions (reviewed in Jarsch and Ott, 2011) as 
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several remorins are differentially regulated during host invasion by pathogenic bacteria. 

Primarily transcripts of group 1b remorins were reported to be altered in A. thaliana 

upon infection with Pseudomonas syringae (Nelson et al., 2006; Widjaja et al., 2009) 

and after inoculation of Lycopersicum hirsutum with Clavibacter michiganensis (Coaker 

et al., 2004). 

In a large-scale proteomic approach to identify differentially phosphorylated proteins 

involved in early plant defence signalling after elicitation with bacterial or fungal 

PAMPs, the A. thaliana remorin AtREM1.3 was found to be phosphorylated in a flg22-

dependent manner. Interestingly, phospho-peptides of remorins AtREM1.2, AtREM5.1, 

AtREM6.1, AtREM6.2, and AtREM6.4 were also detected. However, for the latter five 

proteins, the increase in phosphorylation status was not significant compared to mock 

treated samples (Benschop et al., 2007). 

It has also been suggested that remorin proteins are involved in ETI (reviewed in Jarsch 

and Ott, 2011). AtREM1.2 is significantly up-regulated in an RPM1-dependent manner 

in plants overexpressing the bacterial effector AvrRPM1. RPM1 is the (NB)-LRR type 

receptor recognising AvrRPM1-mediated hyper-phosphorylation of the classical effector 

target RPM1 INTERACTING PROTEIN 4 (RIN4) (Mackey et al., 2002). Additional 

isoforms of AtREM1.2 were found in the infection-mimicking overexpression state, 

indicating that differential phosphorylation of AtREM1.2 is dependent on AvrRPM1 

(Widjaja et al., 2009). Furthermore, it was reported that AtREM1.2 interacts with RIN4 

itself (Liu et al., 2009). Being targeted by several P. syringae effector proteins, RIN4 is 

the paradigmatic example for a host target that is guarded by NB-LRR resistance 

proteins. Two different type III effectors, AvrRpm1 and AvrB (Boyes et al., 1998), 

interact with RIN4 and induce hyper-phosphorylation, which leads to RPM1-mediated 

resistance (Mackey et al., 2002). A third effector, AvrRpt2, a cysteine protease (Axtell 

et al., 2003; Kim et al., 2005) that is activated inside the host cell (Coaker et al., 2005), 

directly targets and cleaves RIN4. AvrRpt2 triggered resistance is dependent on another 

NB-LRR type receptor, RPS2. It is possible that remorins are targets of bacterial 

effectors themselves, as a putative cleavage sequence of AvrRpt2 in AtREM6.1 has 

already been published (Chisholm et al., 2005). However, this in silico prediction is not 

yet proven experimentally. 

Several group 1 remorin proteins as well as SYMREM1 are described as membrane 

domain marker proteins. Proteomic analyses after extraction of detergent resistant 

membrane (DRM) fractions from A. thaliana and M. truncatula (Kierszniowska et al., 

2009; Laloi et al., 2007; Lefebvre et al., 2007; Mongrand et al., 2004; Morel et al., 2006; 

Raffaele et al., 2009) or extraction of plasmodesmata membranes, which are defined by 
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a very specific membrane compartment (Salmon and Bayer, 2012), have shown 

remorins to be enriched in those samples. Additionally to that, the localisation of 

remorin proteins to membrane domains has been shown microscopically for StREM1.3 

as a fluorophore fusion in Nicotiana benthamiana (Raffaele et al., 2009) as well as for 

SYMREM1 after immune-gold labelling in M. truncatula (Lefebvre et al., 2010). 

3. Membrane compartmentalisation 

3.1. The concept of membrane domain formation 

The interest in membrane compartmentalisation has been rising over the past decades, as 

our understanding of molecular processes has led to an increasingly complex and 

detailed picture of biological systems. It is by now accepted that efficient and specific 

reactivity within biological pathways requires highly specialised environments, 

accumulation of certain molecules, and small distances. 

In their discussion on the structure of cell membranes, Singer and Nicolson 1972 

presented a model of the physical generalities of membrane organisation, which is still 

valid for many aspects. Any known membrane in living organisms can be described as a 

two-dimensional liquid. This liquid is composed of both proteins and lipids. Yet, while 

proteins had obvious roles in cell biological processes as transport and signalling, the 

latter were believed to play no more than a passive role as structural elements - acting as 

framework and solvent for the functional components. Moreover, in this fluid mosaic 

model, the membrane was believed to be essentially homogeneous (Singer and 

Nicolson, 1972). 

This view was subject to a revolutionary change, when in 1997 Simons and Ikonen 

critically discussed the dramatic impact of lipid clustering and targeted trafficking on 

protein localisation and phenomena as cell polarity and caveolae formation (Harder and 

Simons, 1997). In their model, called the “lipid raft hypothesis”, glycosphingolipids 

laterally associate with each other by interaction of their carbohydrate head groups. The 

space between the larger molecules is filled with stabilizing cholesterol. As a 

consequence, membrane phases separate into co-existing liquid ordered and liquid 

disordered areas (Hancock et al., 2006). This leads to tightly packed clusters of lipids 

(the so-called rafts) surrounded by the less tighter and more fluid environment of 

unsaturated sphingolipids and phospholipids (Simons and Ikonen, 1997). It was 

proposed that proteins are either included or excluded from either of the two phases, 

providing a mechanism of spatial separation of distinct protein populations (Ikonen et 

al., 2008). Again, this model provides mechanistic explanations for cell biological 
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phenomena, which are still as relevant as back then. Yet, it also has its drawbacks and 

does not fill the blanks for several questions directly arising. First of all, it is restricted 

to the extracellular leaflet of the bilayer, as glycosphingolipids as well as the proteins 

discussed are not found in the intracellular part of the membrane. Secondly, it does not 

consider an active role for proteins in membrane compartmentalisation but elevates 

lipids to the role of the determining agent of membrane domain formation. 

The lipid raft model gave rise to new approaches on how to study the described 

membrane compartments. Based on the assumption that lipid rafts were more stable than 

disordered regions in the membrane, a method to extract detergent resistant membrane 

(DRM) fractions was established. It was used as a approach to investigate lipid and 

protein content of extracted ordered membrane compartments. Yet, a number of 

scientists not only convincingly demonstrated that the method per se might be 

inadequate to differentiate between ordered and disordered membrane areas due to 

artificial lipid and protein clustering (Heerklotz et al., 2002, Munro et al, 2003). 

Additionally, the understanding of membrane compartments has changed, moving 

towards the idea that indeed there may be a multitude of coexisting membrane domains 

with divers biological functions in signalling, membrane trafficking and endocytosis 

(Jacobson et al., 2007). Smaller membrane domains are able to cluster into more stable 

(signalling) platforms upon the perception of certain stimuli and crosslinking (Kusumi et 

al., 2005; Kusumi et al., 2004; Kusumi and Suzuki, 2005; Hammond et al., 2005; 

Lingwood et al., 2008; Hogue et al., 2011).  

By now, the definition of membrane rafts is as follows: Rafts are “small (10–200 nm), 

heterogeneous, highly dynamic, sterol-enriched and sphingolipid-enriched domains that 

compartmentalize cellular processes. Small rafts can sometimes be stabilized to form 

larger platforms through protein-protein and protein-lipid interactions” (Pike, 2006). 

It was shown that, due to their specific properties such as lipid composition, rigidity and 

thickness, a number of transmembrane and membrane-associated proteins preferentially 

localise to those rafts. Post-translational modifications like S-acylation and 

myristoylation target proteins to sterol-rich membrane compartments at the inner leaflet 

of the PM. Fusion with a glycosylphosphatidylinositol (GPI) – anchor fosters protein 

association with membrane rafts at the outer leaflet of the PM (Schroeder et al., 1994, 

Varma and Mayor, 1998, Zacharias et al., 2002). Transmembrane proteins themselves 

then massively influence dynamics and rigidity of an emerging domain by slowing 

down diffusion, inhibiting lateral movement of smaller proteins and interactions with 

the cell wall and the cytoskeleton (reviewed in Kusumi et al., 2012). 



Introduction 

 31 

Next to membrane-internal forces, external factors influence membrane composition 

and structure as well as protein localisation and mobility. One major factor of course is 

targeted protein trafficking, which has been thoroughly researched in animal epithelial 

cells as a model system. Here, the PM forms two major distinct compartments, the 

apical and the baso-lateral domain (Mostov et al, 2003; Janssens and Chavrier, 2004). 

This polar differentiation is achieved by targeted recruitment of different cargos to these 

domains. Newly synthesized proteins are sorted into vesicles that discriminate between 

apical and basal domains. Furthermore, proteins are selectively retained at their position 

or, in case of mis-localisation, endocytosed, respectively (Rodriguez-Boulan et al., 

2005). In plants, those processes are directly connected to an auxin gradient, which is 

both dependent on as well as a prerequisite for cell polarity (Went et al, 1974; Friml et 

al., 2003). Regulation of cell polarity is therefore achieved by the asymmetric 

localisation of auxin efflux carriers (Galweiler et al., 1998; Wisniewska et al., 2006; 

Petrasek et al., 2006). Key components here are the polarly distributed PINFORMED 

(PIN) proteins, which were identified as auxin-regulators involved in a variety of 

developmental processes (Chen et al., 1998, Luschnig et al., 1998, Muller et al., 1998, 

Utsuno et al., 1998; Friml et al., 2002a, 2002b, 2003; Benkova et al., 2003; Reinhardt et 

al., 2003; Blilou et al., 2005; Sauer et al., 2006; Scarpella et al., 2006)  

Several models propose roles for the cytoskeleton in membrane compartmentalisation. 

Interaction between membrane proteins and the cytoskeleton laterally immobilize 

protein complexes. Furthermore, larger proteins and protein clusters, which are 

prevented in diffusion by the actin/microtubule network are lining up to it. In this way, 

they act themselves as fences and (temporarily) prevent diffusion of other membrane 

localised proteins and rafts (membrane-skeleton fence and anchored-protein picket 

model) (Kusumi and Sako, 1996; Sako et al., 1998; Kusumi et al., 1998; Fujiwara et al., 

2002; Kusumi et al., 2004). The different layers of cell–internal mechanisms for 

membrane compartmentalisation have recently been reviewed by Kusumi and 

colleagues. They coupled raft formation, protein-complex establishment and 

compartmentalisation by the membrane cytoskeleton to a three-tired architecture of the 

PM (Kusumi et al., 2012) (Fig. 6). The so-called “hop-diffusion”, the specific movement 

pattern proteins would adopt when being temporarily confined in cytoskeleton-bordered 

membrane compartments has already been experimentally demonstrated for a number of 

proteins (Sako and Kusumi, 1995; Kusumi et al., 2005, reviewed in Urbanus and Ott, 

2012) 
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Fig. 6: The three mechanisms of dynamic membrane compartmentalisation coexisting in 
the plasma membrane (Kusumi, 2012). 

As membrane compartments formed by the cytoskeleton can be as large as several hundred nm, 
single proteins, protein clusters as well as several single rafts can be accommodated in them. 
Single molecules can dynamically associate with rafts, which slows down their diffusion speed. 
Hop-diffusion occurs between cytoskeleton-bordered compartments. Both kinds of protein 
dynamics are decreased upon protein oligomerisation and multi-complex formation. 

 

An additional, external factor for membrane compartmentalisation specific for plants 

and fungi is the cell wall. Recent studies with fluorescently tagged PM localised 

proteins showed a significant influence of the cell wall on protein mobility even if there 

was no extracellular protein domain which could interact with the latter. Interestingly, 

the pattern of cellulose deposition could be directly linked to protein dynamics in the 

PM. These data indicate that membrane compartmentalisation can actively be regulated 

by localisation-specific cell wall synthesis (Martiniere et al., 2012). Two other studies 

describe the targeted trafficking of the cellulose synthase along the microtubule network 

(Gutierrez et al., 2009, Crowell et al., 2009). Also, mobility of membrane compartments 

containing active cellulose synthase is directly dependent on microtubule dynamics and 

is increased during different kinds of stresses (Gutierrez et al., 2009). The manipulation 

of PM protein mobility by a specific cell wall pattern is reminiscent of the Casparian 

strip, a band of very specifically produced cell wall material found by Robert Caspary in 

the 19th century. The Casparian strip is characteristic for the root epidermis and 

functions as a barrier for water and ions (Enstone et al., 2002). The so-called 

CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are a set of novel 

proteins which were found to specifically localise beneath this cell wall structure, where 

they immobilise. These data indicate the formation of a specific membrane domain 

underlying this cell wall accumulation. Different casp mutants also display defects in 

Casparian strip formation (Roppolo et al., 2011). 
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Fig. 1. Three major types of dynamic meso-scale domains coexist in the plasma membrane, forming a hierarchical architecture. Since raft domains (2–20 nm in diameter)
are  generally much smaller than membrane-skeleton-induced compartments, they could readily be accommodated in a compartment (40–300 nm in diameter). In addition,
each  individual molecule associates with the raft domains transiently, and undergoes hop diffusion between the compartments (left). When membrane-associated molecules
form  dimers and greater oligomers, their hop frequency is greatly reduced, which is called “oligomerization-induced trapping” (right and middle). Oligomerization alone
(without fences and pickets) only slightly decreases the diffusion coefficient.

Hence, the compartments compose the first tier in the hierarchical
architecture of the plasma membrane. Various popular concepts
on molecular interactions, movements, and recruitment in the
plasma membrane are incorrect often for only one critical reason:
the neglect or ignorance of the membrane compartmentalization
by the actin-based membrane skeleton.

2.2. Second tier: raft domains

“Raft domains” are membrane domains enriched in cholesterol,
glycosphingolipids, and GPI-anchored proteins, and are generally
on the scale of 2–20 nm in diameter, but could be as large as the
entire apical membrane of epithelial cells [3].

To begin our raft domain discussion, we would first like to clearly
state that most conventional concepts of raft domains, as under-
stood by scientists who are not raft specialists, are now entirely out-
dated, and most of the interpretations of the results based on those
concepts are likely to be incorrect. However, a specter is haunting
the research fields of signal transduction, molecular trafficking, and
membrane organization – the specter of the initial raft hypothesis.
The initial raft hypothesis, which we think even the godfathers of
this field had abandoned long ago, is so influential that it is still
widely accepted by many biochemists, molecular biologists, and
even chemists and physicists (some of whom might have never read
any article written by Kai Simons). The initial raft hypothesis can be
summarized in the following way: many large, stable raft domains,
with a size on the order of a micron, exist even in resting cells
before extracellular stimulation, and various raft-associated signal-
ing molecules, including GPI-anchored receptors and cytoplasmic
saturated-lipid-anchored signaling molecules, are concentrated
within them. When raft-associated receptors, such as GPI-anchored
receptors, are engaged, they become trapped in such pre-existing
large, stable rafts (or the receptors already pre-resided in these
rafts, and then engaged), and the engaged receptors interact with
the preassembled signaling molecules quite readily, initiating cyto-
plasmic signaling right there. In the early era of raft research, this
attractive hypothesis was  extremely powerful for enhancing the
research on the membrane mechanisms for signal transduction and

membrane trafficking (for the history of the changes of the raft con-
cept, see [3,4]). However, researchers have encountered difficulties
in finding micron-sized large, stable rafts in resting cells. Instead,
these days, they have been detecting much smaller rafts, ranging
mostly between 5 and 20 nm [5–12], meanwhile, somewhat larger
domains of 50–80 nm [13–15], <120 nm [16,17] and <140 nm [18]
have also been reported. We  think all the powers of raft researchers
should enter into a holy alliance to exorcise this specter.

The better or at least more recent view of the raft domain is
described in Section 6. Briefly, the raft domain is the membrane
domain, the formation of which involves the interaction between
cholesterol and saturated alkyl chains (including those covalently
linked to proteins) as well as lateral non-conformability of choles-
terol and unsaturated alkyl chains (partial exclusion of cholesterol
from the bulk membrane) (see Fig. 6). Note that protein–protein
interaction is not excluded from this definition. Rather, it often
plays critical roles in determining the properties of the raft domains
(see Section 6).

The properties of raft domains are dramatically different before
and after stimulation. They will be described in detail in Section
6, but we  give a simple summary here. The critical feature of
the raft–lipid interaction is that, since although such interactions
work collectively, the interactions and their cooperativity are both
weak, without the support of the protein-protein interaction (often
by stimulation-induced receptor clustering or lowered tempera-
ture), these domains are extremely dynamic and their lifetimes
are short (certainly less than a second and could be on the order
of 1 ns). Upon physiological stimulation, engaged raft-associable
receptors form stable clusters (protein–protein interaction), lead-
ing to generation of stable, larger rafts by assembling cholesterol
and saturated lipids in and possibly around the engaged recep-
tor clusters. Here, the receptor cluster works like a condensation
nucleus in the metastable mixture of molecules in the plasma mem-
brane, and therefore such induced rafts are called receptor-cluster
rafts. The sizes of these induced (or coalesced) raft domains often
range between 10 and 20 nm.  Namely, such stable raft domains are
formed on demand by stimulation, rather than pre-existing. While the
lifetimes of these induced, stabilized receptor-cluster raft domains
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3.2. Functional relevance of membrane compartmentalisation 

There are several examples of well-documented functional importance of membrane 

domains by now. One of them revolves around the Chlorella kessleri hexose-proton 

symporter HEXOSE UPTAKE 1 (HUP1). HUP1 shows a dot-like distribution in the PM 

in the homologous system as well as upon heterologous expression in yeast. Mutant 

yeast strains lacking ergosterol (erg6) or sphingolipids (lcb1-100), however, show a 

homogeneous distribution of HUP1 (Grossmann et al., 2006). Moreover, correlating 

with loss of membrane domain localisation, the catalytic activity of HUP1 is impaired in 

erg6 cells. These results indicate that localisation of HUP1 to membrane clusters is 

important for protein function. In earlier experiments, it had already been demonstrated 

that membrane domain association is decreased for a number of microdomain associated 

proteins in ergosterol and sphingolipid yeast mutant strains (Bagnat and Simons, 

2002b). Consequently, these strains are also impaired in membrane polarisation at the 

mating projection (Bagnat and Simons, 2002a, 2002b). 

Profound alterations in cell polarity and protein localisation were also obtained with A. 

thaliana sterol biosynthesis mutants, leading to severe developmental phenotypes. The 

ergosterol biosynthesis mutants smt1 and smt1orc, which lack the enzyme STEROL 

METHYLTRANSFERASE 1, accumulate abnormal amounts of cholesterol (Diener, 

2000, Willemsen 2003). As a result, these mutant lines show defects in the 

establishment of proper cell polarity, leading to a mislocalisation of the previously 

mentioned auxin efflux carrier-proteins PIN1 and PIN3 but also AUX1. The latter is an 

auxin influx carrier, which is also usually asymmetrically localised in specific cell types 

and serves as a cell polarity marker protein (Friml et al., 2002a; Friml et al., 2002b; 

Galweiler et al., 1998; Muller et al., 1998; Swarup et al., 2001). As a consequence of the 

cellular alterations in smt1orc, polar auxin transport is reduced leading to defects in 

growth and development (Willemsen et al., 2003). 

Similar results were obtained with the so-called hydra mutants. HYDRA1 and HYDRA2 

encode enzymes essential for sterol biosynthesis. These mutant lines exhibit altered 

concentrations of sitosterol, campesterol and stigmasterol and are hypersenstitive to 

auxin. Also here, the authors provide a model, in which membrane function influences 

protein localisation to correctly regulate hormone signalling (Souter et al., 2002) 

A well-elaborated example linking directed vesicle transport and protein localisation in 

membrane domains is the inward-rectifying K+ channel KAT1. When being expressed 

in the heterologous N. benthamiana system, KAT1 is distributed in immobile membrane 

domains in the PM and exhibits a distinct radial pattern in turgid guard cells in Vicia 
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faba (Sutter et al., 2006; Homann et al., 2007). While the described distinct pattern of 

KAT1 in guard cells could be attributed to interactions with the plant cell wall, the 

association of KAT1 with membrane domains seems to depend on other factors. It was 

demonstrated that both localisation as well al lateral mobility of the protein were 

profoundly changed upon overexpression of a dominant-negative fragment (Sp2) of the 

SOLUBLE N-ETHYLMALEIMIDE-SENSITIVE FACTOR ATTACHMENT 

RECEPTOR (SNARE) protein, SYP121. SNARE proteins occur at vesicle and target 

membranes and maintain mechanisms for targeted trafficking, recognition, docking and 

fusion (Pratelli et al., 2004). KAT1 was shown to be homogeneously distributed and 

highly mobile in the respective cells (Sutter et al., 2006). These data implicate a role for 

SNAREs in the distribution and dynamics of KAT1 at the PM. 

Furthermore, it was shown that the phytohormone abscisic acid selectively triggers 

KAT1 endocytosis in specialized vesicles excluding other proteins. This indicates 

inducible membrane compartmentalisation upon stress signals (Sutter et al., 2007).  

3.3. Membrane compartmentalisation in plant biotic interactions 

The establishment of specialised membrane compartments is a specific response to 

pathogens in plants defence. A number of proteins localise in focal accumulations 

beneath fungal appressoria. Fluorophore-tagged versions of the SNARE-proteins 

SYP121 (PEN1), SYP122 and ROR2 are homogeneously distributed at the PM prior to 

fungal attack, but accumulate in circular domains of several µm beneath fungal entry 

points (Assaad et al., 2004, Bhat et al., 2005). Similar observations have been made for 

the heptahelical defence modulator MLO (Bhat et al., 2005) as well as for the cell death 

regulator BAX Inhibitor-1 (Eichmann et al., 2006). Interestingly, the reverse 

observation can be made for several PM localised proteins after infection on A. thaliana 

or N. benthamiana by the oomyceetes Hyaloperonospora parasitica or Phytophtora 

infestans. While FLS2 or PEN1 label both H. parasitica haustoria-surrounding plant PM 

as well as peripheral PM, PIP1 and ACA8 are depleted from the haustorial entry sites. 

As partially reverse observations were made at P. infestans haustoria, it can be 

concluded that specialised membrane microdomains are formed at oomycete entry sites 

in a pathogen-species dependent manner (Lu et al., 2012). 

A striking example for dynamic membrane domain localisation of a plant protein has 

recently been published. In analogy to SYMREM1, the M. truncatula membrane 

resident flotillin FLOT4 is required for root nodule symbiosis (Haney and Long 2010). 

A fluorophore-tagged version of the protein was coexpressed with a fluorophore fusion 

of the predicted Nod factor receptor LYSINE MOTIF RECEPTOR KINASE 3 (LYK3), 
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the putative homolog of NFR1 (Haney et al., 2011). Both proteins localise to diverse

membrane domains in the PM of M. truncatula roots. Interestingly, the proteins did not 

co-localise until stimulation of the roots with Sinorhizobium meliloti. In stimulated 

roots, stable, immobile membrane domains formed, which contained both previously 

separated proteins (Haney et al., 2011).  

In human cells, membrane rafts have been shown to play crucial roles in pathogenic 

interactions. They are essential for the signalling processes in B-cell and T-cell 

activation (reviewed in Alonso and Millan, 2001). Nevertheless, they can also be 

hijacked by a number of pathogens. Both microbes and viruses use raft-mediated 

endocytotic machineries as entry sites into the cell (reviewed in Rosenberger et al., 

2000; Pelkmans et al., 2005 and Hartlova et al., 2010). The accumulation of important 

signalling molecules such as components being required for cytoskeleton reorganisation 

in membrane domains is likely to be attractive for invading microbes. 

Being non-plant specific, the above-mentioned reggie/flotillin proteins have already 

been extensively studied in mammalian cells. Both in plants and in animals, members of 

the reggie/flotillin protein family have been shown to play a role in clathrin-independent 

endocytosis. Interestingly they were also shown to be localised on host-derived 

membranes surrounding intracellular microorganisms. These data gave first indications 

for raft-mediated endocytosis as a possible entry point for microorganisms (Panter et al., 

2000; Dermine et al., 2001; Saalbach et al., 2002; Glebov et al., 2006; Murphy et al., 

2007; Li et al., 2008; Korhonen et al., 2012; reviewed in Urbanus and Ott, 2012). 

A number of viruses, bacteria and protozoans have been shown to display a specific set 

of surface proteins, which enable them to directly interact with membrane rafts. One 

example is the omnipresent uropathogen Escherichia coli, which has been demonstrated 

to bind CD48, a GPI-anchored raft-localised surface molecule, via the bacterial adhesion 

molecule FimH prior to invasion of macrophages and mast cells (Baorto et al., 1997; 

Shin et al., 2000; Parton and Richards, 2003). Similar observations have been made for 

Salmonella enteritica, which induces the accumulation of cholesterol and the GPI-

anchored raft-localised surface molecule CD55 at its entry site. Inside the cell, this 

pathogen replicates in cholesterol-rich vacuoles, indicating further implications of 

membrane rafts in pathogen survival (Catron et al., 2002; Knodler and Steele-Mortimer, 

2003; Knodler et al., 2003). It seems that most pathogens utilize host mechanisms 

involved in phagocytosis and bacterial transport to lysosomes but evade degradation 

once inside the cell (reviewed in Hartlova et al., 2010). 
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4. Aims of this work 

The presented work aimed to take a substantial approach on the function and 

mechanisms of remorin proteins in planta. Most functional analyses on these proteins 

have so far been performed on rather difficult model organisms. Consequently we chose 

to address those fundamental questions in the most established and best investigated 

plant model organism – Arabidopsis thaliana. 

Three different approaches were taken: 

A thorough cell biological investigation concentrated on the subcellular localisation of 

each single member of the protein family. In the frame of this approach, we also aimed 

to explore the potential of Arabidopsis thaliana remorin proteins as markers to 

investigate the dynamic diversity of the living plant plasma membrane microscopically. 

Systematic co-expression and subsequent co-localisation experiments were performed to 

reveal the range of different membrane domains labelled by remorin proteins. 

Additionally this thesis aimed to investigate the different characteristics of membrane 

microdomains such as lateral stability and protein dynamics within the domains. 

Secondly, in a more biochemical line of attack, a directed Y2H screen aimed to identify 

interacting receptor-like kinases. Further, truncations and mutations on the protein level 

were performed to elaborate functions of the different protein regions including 

phosphorylation of the N-terminal domain. 

Finally, we aimed to address the role of remorin proteins from a genetic side of view. A 

phenotypic analysis of selected homozygous knockout mutants focused on different 

biological situations the proteins might be involved in, namely treatments with 

microbial elicitors or with actual plant pathogens. 
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 Material and Methods  

1. Methods 

1.1. Recombinant DNA Methods 

1.1.1. DNA amplification via polymerase chain reaction (PCR) 

1.1.1.1. Analytical PCR 

Standard PCR for verification of constructs or bacterial strains (colony PCR) was 

performed with TAQ polymerase. 20 µl of PCR reaction mix (2.4.2.4) were incubated in 

a Thermo-Cycler using the following program: 

Step Temperature Time 

1. Initial denaturation/bacterial 
lysis 

95°C 2 min 

2. Denaturation 95°C 10 - 30 s 

3. Primer annealing 2°C below melting 
temperature of the primer 

10 - 30 s 

4. Elongation 72°C 1 min/1 kb length of the 
template 

5. Final Elongation 72°C 5 min 

Steps 2-4 were repeated 34 times. Modifications for non-standard templates included 

additives as CES enhancer or variations of the MgCl2 concentration. 

1.1.1.2. Preparative PCR 

Standard PCR for preparative amplification of sequences from cDNA or genomic DNA 

was performed with Phusion HF polymerase. 20 µl of PCR reaction mix (2.4.2.5) were 

incubated in a Thermo-Cycler using the following program: 

Step Temperature Time 

1. Initial denaturation/bacterial 
lysis 

95°C 2 min 

2. Denaturation 95°C 10 - 30 s 

3. Primer annealing 2°C below melting 
temperature of the primer 

10 - 30 s 

4. Elongation 72°C 15 s/1 kb length of the 
template 
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5. Final Elongation 72°C 2 min 

Steps 2-4 were repeated 34 times. Modifications for non-standard templates included 

variations of the annealing temperature, gradient PCRs and touchdown PCRs 

1.1.2. Fusion of DNA fragments via cut-ligation 

DNA fragments were fused via a cut-ligation reaction into a modified pENTR/D entry 

vector suitable for restriction with the type II restriction enzyme BsaI (pENTR/D-BsaI) 

(Morbitzer et al., 2011). Primers for amplification included matching individual 

overlaps and the BsaI recognition site. The reaction solution (2.4.2.6) was mixed in 

PCR-reaction tubes and incubated in a Thermo-Cycler according to the following 

program: 

Step Temperature Time 

1. Restriction 37°C 2 min 

2. Ligation 20°C 5 min 

 

3. Restriction 37°C 10 min 

4. Enhanced restriction step at 
optimal temp. for BsaI 

50°C 10 min 

5. Enzyme denaturation 80°C 10 min 

Steps 1-2 were repeated 30 times. Subsequently the reaction solution was transformed 

into TOP10 chemo-competent cells 

1.1.3. Cloning of entry vectors  

For ectopic expression 10 of the 16 AtREMs were obtained as cDNA clones from 

RIKEN (https://www.brc.riken.jp/lab/epd/catalog/cdnaclone.html). AtREM1.4, 

AtREM3.1 and AtREM6.7 were amplified from A. thaliana cDNA generated by reverse 

transcription of RNA extracted from N. benthamiana expressing the genomic constructs 

(Macarena Marin, Munich, unpublished). AtREM6.5 was amplified from A. thaliana 

cDNA generated generated by reverse transcription of RNA from two weeks old 

seedlings. AtREM6.6 was amplified from A. thaliana genomic DNA. No functional 

clone of AtREM1.1 was obtained. Constructs for expression of C-terminally tagged 

fusions under control of their putative endogenous promoter were amplified from 

genomic DNA as one consecutive sequence. For the respective N-terminally tagged 

versions, a 2kb promoter fragment, YFP and the coding region were amplified 
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separately with BsaI restriction site containing primers and combined into a modified 

pENTR-D via a cut-ligation reaction (see chapter 1.1.2, Jarsch et al., 2014). 

Gateway-compatible entry vectors were created both with and without stop codon via 

TOPO cloning (Invitrogen) or BP reaction (Invitrogen) according to the respective 

manual. As modifications, volumes of expensive components of the kits were cut down 

to the minimum (see 2.4.2.1 and 0).  

1.1.4. Creation of expression vectors 

As destination vectors for overexpression in A. thaliana or N. benthamiana vectors from 

the pAM-PAT series (Lefebvre et al., 2010) and pUbi-YFP:GW (Konrad et al., 2014) 

were used, respectively. For expression of C-terminally tagged constructs under control 

of the putative endogenous promoter a modified (promoter-less) pH7YGW2 (GENT) 

was used. N-terminally tagged constructs under control of the endogenous promoter 

were expressed in the pGWB1 (Nakagawa et al., 2007). 

For the GAL4 yeast 2 hybrid (Y2H) assays, gateway-compatible versions of the 

matchmaker (Invitrogen), pGADT7 and pGBKT7 were used. Both vectors are suitable 

for N-terminal fusions. Constructs of A. thaliana soluble kinases (ASKs) in pBT9 were 

obtained from Claudia Jonak (Vienna). 

1.2. Protein expression for fluorescence microscopy 

1.2.1. A. tumefaciens mediated transient transformation of N. benthamiana 

For in planta localisation of fluorophore-tagged fusion proteins and protein-protein 

interaction studies in N. benthamiana, A. tumefaciens mediated transient transformation 

was performed as described earlier (Tòth et al., 2012). Two strains were used: GV3101 

C58 mp90RK for constructs in pAM-PAT:35S and pH7YGW2, and Agl1 for constructs 

in pUbi and pGWB1-based vectors. Briefly, bacterial strains carrying the constructs of 

choice were cultured in liquid LB under appropriate antibiotic selection over night 

(ON). Bacteria were harvested by centrifugation at 6,500 x g and resuspended in 

infiltration solution (2.4.4.1). For pUbi-YFP constructs a final OD600 of 0.01 and for 

pAM-PAT-35SSCFP/YFP constructs a final OD600 of 0.2-0.4 was used. An A. 

tumefaciens Agl1 strain containing a construct mediating expression of the viral 

silencing inhibitor P19 (Koncz et al., 1989; Voinnet et al., 2003) was added to each 

sample at a final OD600 of 0.1. The solution was incubated for 2 h in the dark, 

subsequently plants were syringe-infiltrated at the youngest fully expanded leaves. 
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1.2.2. A. tumefaciens mediated transient transformation of A. thaliana 

A. tumefaciens mediated transient transformation of A. thaliana was performed in stable 

transgenic lines expressing AvrPto under control of a dexamethasone (DEX)-inducible 

promoter as described previously (Hauck et al., 2003; Tsuda et al., 2012). Five to six 

weeks old plants grown under short-day conditions were sprayed with a 2 µM DEX-

solution containing 0.04% Silwett-77 24 h prior to transformation (2.4.4.2). Preparation 

of the infiltration solution and infiltration of leaves was performed as described for A. 

tumefaciens mediated transformation of N. benthamiana in chapter 1.2.1. 

1.3. Plant work 

1.3.1. Sterilization of A. thaliana seeds 

Seeds were incubated in 70% ethanol with 0.5 % Tween 20 in a 1.5 ml reaction tube for 

10 – 15 min and occasionally vortexed. The supernatant was replaced twice with 96% 

Ethanol for 2 min. Subsequently the seeds were transferred onto sterile Whatman paper 

and dried under a sterile fume hood. 

1.3.2. Plant growth conditions 

A. thaliana seeds for all experiments were ethanol-sterilized, sawn on ½ MS plates 

containing 1 % sugar (2.5.1) and vernalised for two days at 4°C in the dark. 

Subsequently, plates were transferred for germination to long-day conditions (16h 

light/8h dark) at 22°C/18°C for day/night cycles. Seedlings designated for transfer to 

earth were picked two days post germination. Plants required for bacterial infection, 

oxidative burst assays or AvrPto-DEX inducible A. thaliana lines (Tsuda et al., 2012) 

used for transient protein expression were grown in a climate chamber five to six weeks 

under short-day conditions (16h dark/8h light) with 18°C/75% humidity and 20°C/60% 

humidity for night/day cycles, respectively. A. thaliana plants used for the production of 

synchronized seed batches were grown under long-day conditions (16h light/8h dark) in 

the greenhouse for 8 weeks, then dried for 2 more weeks prior to seed harvest. 

N. benthamiana plants used for transient expression of proteins were grown 4-5 weeks 

in the greenhouse prior to transformation. 

1.3.3. Genotyping procedure for SALK T-DNA insertion lines 

Seeds of lines heterozygous for an annotated T-DNA insertion in or close to the coding 

sequence of remorin genes were ordered from ABRC and grown in the greenhouse. Leaf 
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material was harvested from 3 weeks old plants for DNA extraction (1.3.5) and 

subsequent genotyping analysis via analytical PCR (1.1.1.1). Depending on the 

annotated location of the insertion, either primers for the coding region or the promoter 

were used. In total, 4 PCRs were performed for each sample: One to amplify the wt 

allele with gene or promoter specific primers, two more to amplify the T-DNA insertion 

region and one control PCR. Depending on the insertion direction an amplicon for the 

T-DNA was obtained with a T-DNA specific primer and either the gene or promoter 

specific forward or the reverse primer, respectively. If possible, T-DNA amplicons were 

extracted from gel and sequenced to verify or, if necessary, re-annotate the insertion 

position. Homozygous plants were then processed for seed harvest and approximately 

50 seeds were subjected to a selection on kanamycin containing plates to verify 

homozygosity of the insertion. Heterozygous plants were self-crossed, grown for seed 

production and re-entered into the screening pipeline. 

1.3.4. Generation of stable transgenic A. thaliana 

A. thaliana lines for stable transformation with A. tumefaciens were grown for 4 weeks 

under long-day conditions (8h dark/16h light) in the greenhouse. Shoots were cut back 

and plants were regrown for one more week prior to floral dipping (Clough et al., 1998). 

In brief, buds and floral meristems were dipped in infection solution (2.4.4.3) containing 

the A. tumefaciens strain of choice. Plants were laid horizontally in a tray, then covered 

with foil and incubated in dark over night. Selection of stable transformants was 

performed according to Harrison et al., 2006. Seeds were ethanol sterilized, sown on ½ 

MS plates (1 % sugar) containing 15 µg/ml hygromycin B and vernalised for 2 days in 

the dark at 4°C. Subsequently, the seeds were subjected to 6 h light at 22°C, 48 h dark 

and 24-48 h light at 18-22°C for night-day conditions. Etiolated, greening seedlings 

were picked for further processing. 

1.3.5. DNA extraction from A. thaliana leaf material (short protocol) 

For extraction of DNA from A. thaliana leaves, one leaf per plant was harvested, ground 

in liquid nitrogen and solubilized in 500 µl A. thaliana DNA extraction buffer (2.4.3). 

After centrifugation at 14,000 x g for 10 min, 350 µl of the supernatant were transferred 

to a fresh 1.5 ml reaction tube containing 350 µl isopropanol. The solution was mixed 

by inversion and spun down for 15 min at 14,000 x g. The supernatant was discarded 

and the pellet dried for 30 min on bench-top. Subsequently the pellet was resolubilized 

in H2O and vortexed for 30 min for resolubilization. To remove any debris, the sample 



Material and Methods 

 42 

was centrifuged one more time for 10 min at 14,000 x g and the supernatant transferred 

to a fresh reaction tube. 

1.3.6. ROS burst assay 

The measurement of oxidative bust was performed on 5 weeks old A. thaliana plants 

according to Schwessinger et al., 2011. Seedlings were grown under short-day 

conditions (16h dark/8h light) with 18°C/75% humidity and 20°C/60% humidity for 

night and day rhythm. For biological replicates, 24 leaf discs were analysed per line, 

harvested 24 h prior to the experiments and kept in water over night. To trigger the 

oxidative burst, 100 µl of reaction mix (2.4.6) were applied. Luminescence was detected 

using a 96-well plate reader over a 30 min time-period. 

1.3.7. Seedling growth inhibition assay 

Analysis of seedling growth inhibition by PAMP treatment was performed according to 

Schwessinger et al., 2011. As a modification, seedlings were transferred from solid to 

liquid medium seven days after germination and grown for 14 more days prior to fresh 

weight measurement. Shortly, 12 replicates per line and treatment were analysed, with 

three seedlings per well in a 12-well plate. For treatment, 2 ml of MS medium 

containing concentrations of flg22 or elf18 in the range of 10 nM to 1 µM, respectively, 

were used in one well. 

1.3.8. MAPK activation assay 

Seedlings were germinated for seven days on MS plates prior to transfer to liquid MS 

and grown for 7 more days. For treatment with water, 100 nM elf18 or 100 nM flg22, 

six replicates of two seedlings each were taken. Samples for 0, 5, 10 and 30 min after 

treatment were pooled and frozen in liquid nitrogen. Plant material was ground and 

solubilized in Lacus buffer (2.4.7.1). After centrifugation at 16,000 x g at 4°C, the 

supernatant was syringe-filtered and SDS-loading buffer was added. Western blot 

analysis was performed after semi-dry transfer. Blocking was performed with TBS-T 

(5% milk) before the membrane was washed vigorously with TBS with 0.05 % 

Tween20 (TBS-T) and the α-P p42/44 MAPK primary antibody was incubated with 

TBS-T (5% BSA). Again the membrane was washed before incubation with α-rabbit-

HRP trueblot secondary antibody in TBS-T (5% milk). 
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1.3.9. Infection with P. syringae 

Infection with bacterial pathogens was performed according to Schwessinger et al., 

2011. Plants were grown for 5 weeks under short-day conditions (see 1.3.2). Wildtype 

Pseudomonas syringae DC3000 was sprayed with an OD600 of 0.02, while the P. 

syringae DC3000 COR- mutant was sprayed with an OD600 of 0.2. Two days after 

infection three leaf discs of 4 mm diameter were harvested per plant and pooled. For 

each treatment and line, four plants were used. Samples were ground in 10 mM MgCl2, 

subjected to serial dilutions and plated on Kings B Medium (2.5.3) containing the 

respective antibiotics. Colonies were counted two days after infection. 

1.3.10. Root growth inhibition assay with brassinolides 

A. thaliana seedlings were ethanol sterilized and sown on ½ MS solid medium 

containing 1ng brassinolide or mock, respectively. Seeds were then stratified in the dark 

at 4 °C for 2 days and subsequently grown vertically for 7 days under long-day 

conditions. Seedlings were transferred to a new plate to stretch roots. Images were taken 

from whole plates and root length was measured using the ImageJ software. 

1.4. Yeast work 

1.4.1. Yeast transformation 

Yeast transformation was performed according to Tòth et al., 2012. In brief, an over 

night culture was started in 20 ml YPAD (2.5.2.1). The next day, the culture was 

refreshed and diluted to an OD600 of 0.2, calculating 20 ml for 10 transformations. After 

reaching an OD600 of 0.6 - 0.8, the culture was centrifuged at 700 x g for 5 min and the 

pellet kept on ice. For each transformation, 300 µl of the yeast transformation master 

mix (2.4.5.1) were combined with the purified plasmids (approximately 200 ng each). 

Subsequently, each yeast pellet was dissolved in 1 ml ice-cold water and 100 µl of the 

solution were added to the master mix. After vigorous vortexing and 45 min heat-shock 

at 42°C, the transformation-mix was centrifuged at 700 x g for 5 min and the 

supernatant removed. The pellet was dissolved in 100 µl 0.9 % NaCl2 and plated on SD 

medium (2.5.2.2) containing the respective amino acid combination for selection. 

1.4.2. GAL4 yeast-2-hybrid drop assay 

For interaction tests between soluble proteins in yeast, both constructs of interest were 

cloned into the matchmaker vector pair and co-transformed into the pJ69-4a strain. At 
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least 10 colonies from the transformed yeast were pooled and grown over night in 100 

µl of liquid SD –LW medium (2.5.2.2) in a 96-well plate. Subsequently a dilution series 

of 10-1, 10-2, 10-3, 10-4 and 10-5 was performed. For the drop test, a set of selective media 

consisting of SD –LW, SD –LWH and SD –LWH containing 5–30 mM 3-Aminotriazol 

(3-AT) were used. 

1.5. Protein work 

1.5.1. Protein separation via SDS-PAGE 

SDS-gels for acrylamide-gel-electrophoresis were cast and run with a vertical BioRad 

system. For protein separation, a discontinuous buffer system was used, combining a 

standard acrylamide-electrophoresis gel (2.4.9.2) for protein separation with an 

acrylamide-isotachphoresis gel (2.4.9.1) for protein stacking on top. Acrylamide 

concentrations varied depending on the type of experiment and the size of the proteins 

of interest. 

SDS-gels with separated proteins were either stained with Coomassie Brilliant Blue 

(2.4.9.8) and destained (2.4.9.9) for visualisation of total protein content or processed 

for Western blot analysis (1.5.2). 

1.5.2. Western blot analysis 

For wet transfer, the PVDF membrane was hydrated first in 100% EtOH and then 

soaked in 1 x wet transfer buffer (0) together with Whatman paper, sponges and the gel. 

The transfer was performed either for two hours at 120 V or over night at 40 V. 

For semi-dry transfer, the gel was first incubated in semi-dry transfer buffer for at least 

15 min to exchange contained water by glycerol. Then the membrane was hydrated in 

EtOH and together with Whatman paper soaked in semi-dry transfer buffer. The transfer 

was performed for 1 h at 25 V. 

Membranes were blocked for 1 h in TBS-T supplemented with 5% milk powder. The 

primary antibody was incubated over night in TBS-T (5% milk) at 4°C while gently 

shaking. Subsequently the membrane was washed 3 times quickly, then 3 times 10 min 

with TBS-T. In the following, the membrane was incubated 2 h with the secondary 

antibody in TBS-T with 5% milk. The membrane was washed 3 times quickly and 3 

times 10 min with TBS-T. Protein detection was performed using chemiluminescent 

reagent (Luminogen, GE Healthcare) on a Fusion detection camera (Peqlab). 
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1.5.3. Protein extraction from plant material and cell fractionation 

Leaf material expressing the proteins of interest was harvested, frozen in liquid nitrogen, 

and ground thoroughly. 2 ml of fine plant tissue powder was solubilized in 3 ml of 

extraction buffer (2.4.7.2). After 15 min centrifugation at 3500 rpm (4°C) and 

subsequent Miracloth filtration, the supernatant was centrifuged at 100,000 x g for 1h. 

Microsomal pellets were resolubilized in extraction buffer. Protein content of samples 

from crude extract, soluble fraction and microsomal fraction were measured in 

replicates using a Bradford assay. Samples were adjusted to equal protein concentrations 

with extraction buffer and subsequently mixed with 5 x SDS loading buffer. Western 

blot analysis was performed after SDS-PAGE and wet transfer as described before 

(1.5.2). 

1.5.4. Co-immunoprecipitation from A. thaliana an N. benthamiana leaf 

material 

A. thaliana seedlings were grown on plate for 5 days, then transferred to liquid MS 

medium for 7-10 more days. Before freezing in liquid nitrogen, plantlets were treated 

for 5 min with 100 nM of flg22 or mock, respectively. The leaf material was ground and 

at least 5 ml of fine tissue powder was solubilized in 3 ml of extraction buffer (2.4.7.3). 

After 15 min centrifugation at 3500 rpm (4°C) the samples were filtered through 

Miracloth. 

In the meantime, 25 l per reaction of magnetic GFP-trap® (Chromotek) or anti-rabbit 

agars beads (trueblot eBioscience) were equilibrated by sedimentation of the beads and 

replacement of the supernatant by 1 ml extraction buffer. After vortexing, another 

sedimentation step and discarding of the supernatant, agarose beads were coated with 15 

l rabbit antibody by incubation for 10 min on ice. 

Protein samples were incubated for 2 h in the cold with antibody-coated agarose-beads 

or magnetic GFP-trap®, respectively. Beads were washed 3 times with extraction buffer 

and subsequently taken up in 1x SDS-loading buffer. Elution was performed at 52°C for 

10 min. Protein separation was carried out via SDS-PAGE using an 8 % acrylamide gel. 

Western blot analysis was performed after wet transfer as described before (1.5.2). 

1.5.5. Protein extraction from yeast 

For whole protein extraction from yeast, single colonies of the strains of interest were 

inoculated in 10 ml SD-LW medium (2.5.2.2) and grown over night at 28-30°C. The 

cultures were harvested by centrifugation at 700 x g for 5 min at room temperature 
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(RT). The pellet was dissolved 1 ml of 1mM EDTA, transferred into a fresh 1.5 ml 

reaction tube and centrifuged again at 11,000 x g for 1 min. The pellet was overlaid with 

200 µl of 2 M NaOH, then incubated on ice for 10 min. 200 µl of 50 % TCA were 

added, the sample mixed thoroughly and then incubated for 2 h on ice. Subsequently, 

the sample was subjected to centrifugation for 20 min with 14,000 x g (4°C). The 

supernatant was discarded, the pellet washed with 200 µl ice-cold acetone and 

sedimented again at 14,000 x g (4°C) for 20 min. The pellet was then resuspended in 

200 µl 5% SDS by vortexing, then mixed with an equal volume of 2x SDS sample 

buffer for yeast. After incubation at 37°C with shaking for 15 min, the sample was 

centrifuged once more at 14,000 x g for 5 min and the supernatant transferred to a fresh 

tube. Western blotting was performed after SDS-PAGE and wet transfer as described 

before (1.5.2) 

1.5.6. Expression and purification of recombinant proteins from E. coli 

All proteins purified for this work were expressed as HIS-tagged versions in the 

bacterial expression vector pET42. Single colonies of E. coli Rosetta strains carrying the 

respective constructs were inoculated in 20 ml LB with antibiotics and grown over night 

at 37°C shaking. The culture was refreshed in 200 ml with an OD600 of 0.18. Induction 

was performed with 0.2 mM IPTG when OD600 had reached 0.6. Subsequently, the 

culture was incubated for 2 hours at 21°C. Cells were harvested by centrifugation for 15 

min at 4,000 rpm and 4°C. The pellet was washed once with 0.9% NaCl for storage at -

20°C. To proceed, pellets were defrosted on ice and resuspended in 10 ml binding buffer 

(2.4.8.1). Cells were broken up by three times transfer trough a french press at 1260 PSI. 

The now clear lysate was centrifuged for 15 min at 13,000 rpm and 4°C to remove cell 

debris and non-lysed cells. The supernatant was mixed with 300 µl equilibrated Metal 

Talon Affinity Matrix and incubated for 30 min –1h at 4°C on a rotor. Subsequently, the 

solution was transferred onto a column and the flow-through discarded. The beads were 

washed 3 times with 5 ml washing buffer (2.4.8.2). Elution was performed by 5 times 

incubation with 500 µl elution buffer (2.4.8.3) for 5 min. Flow-trough was collected in 

separate reaction tubes and stored at 4°C. 

Samples for analytical SDS-PAGE were taken before induction, before harvesting, from 

the first flow-through, from the first and third washing step and from each elution. 

1.5.7. In vitro phosphorylation assay 

For in vitro phosphorylation assays, proteins were either purified from bacteria (1.5.6) 

or immuno-precipitated from plant material (1.5.4). Recombinant proteins were used in 
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an amount of 2 ng, while proteins extracted from plants where not eluted but taken 

bound to the beads. The proteins of interest and 0.5 -1 l of radioactive ATP (containing 
32P) were filled up with kinase buffer (0) to a reaction volume of 20 l and incubated for 

1 h. The sample was supplemented with 5 l of 5 x SDS-sample buffer and heated to 

95°C for 5 min. Proteins were then subjected to standard SDS-gel electrophoresis (1.5.1) 

and stained with Coomassie Brilliant. After destaining, the gel was spread on Whatman 

paper, covered with foil, vacuum dried for 2 h at 80°C and exposed to a phosphor-screen 

over night. Image acquisition was performed on a Typhoon Trio Variable Mode Imager. 

1.6. Plant treatment for imaging, image acquisition and processing 

1.6.1. Sample preparation and confocal microscopy 

For microscopical analysis, leaf discs were cut from the plant, mounted on glass slides 

and imaged directly. Standard confocal microscopy was performed with a Leica TCS 

SP5 CLSM using an Argon-Laser. Images were taken with a Leica DFC350FX digital 

camera. For single pictures of PM surfaces, 2 line averages were used. Pictures for co-

localisation analysis were captured using sequential scans between lines. 

CFP was excited with a wavelength of 456 nm. Emission was detected for 475 to 520 nm. 

 YFP was excited with 514 nm wavelength and emission was detected from 525 to 

580 nm. 

1.6.2. PM counterstaining with FM® 4-64 

The styryl dye FM® 4-64 was solubilized in water to a stock concentration of 100 M. 

For sample staining, the leaf disc was syringe infiltrated with a working solution of 10 µm,

mounted on a glass slide and imaged right away. Excitation was performed at 565 nm 

and emission was detected from 650 - 750 nm  to exclude chloroplast auto-

fluorescence. 

1.6.3. Plasmolysis 

Plasmolysis of leaf epidermal cells in N. benthamiana was performed to visually 

differentiate between apoplast and PM localisation. Leaf discs were syringe infiltrated 

with 300 mM mannitol, mounted on glass slides in the same solution and imaged after 

5-10 min incubation time. 
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1.6.4. Image processing 

Image processing was performed with ImageJ or Fiji. For membrane close-ups, pictures 

of single infiltrations were subjected to background subtraction with a rolling ball radius 

of 100 pixels and subsequent auto-adjusting of brightness and contrast.  

1.6.5. Quantitative analysis of single domains 

For quantitative image analysis of individually expressed proteins, 10 images were 

segmented to differentiate between background and domains using a Macro including 

background subtraction and thresholding (see appendix). The Fiji plugin Watershed was 

applied to separate overlapping intensities. The resulting image was used as a mask for 

an overlay on the original image. All quantitative measurements were then performed on 

the unprocessed image. Average values for domain size, mean domain intensity, 

circularity, and density were depicted as box plots using R. Statistical analysis was 

performed in R using ANOVA and Tukey’s honestly significant difference.  

1.6.6. Fluorescent recovery after photo bleaching (FRAP) 

For FRAP analysis, samples were prepared for standard confocal microscopy 

(1.6.11.6.1) but imaged with lowest laser intensities to avoid overall sample bleaching. 

The analysis was performed using FRAP Wizard implemented in the Leica LAS AF 

software. One frame was scanned prior to bleaching. Bleaching was performed on a 

circular ROI of 5 µm in diameter in 10 frames with 100% laser intensity (approximately 

15 s). For single-domain bleaching, this ROI was decreased to 2 µm. Fluorescence 

recovery was imaged in 30-s intervals over 10 frames. FRAP values were fitted as de- 

scribed previously (Spira et al., 2012) using a simple exponential fit of 

y=a*(1.0*exp(bx)). Half times [t1/2=ln(0.5)/b] and mobile fractions [Mf=(a*100)/Iinorm] 

were calculated for all FRAP experiments with a coefficient of determination higher 

than 0.97. Surface plots were calculated from single ROIs in ImageJ. 

1.6.7. Kymographs 

For kymographs, films were acquired over a timeframe of at least 20 min. Z-stacks with 

15-18 slices of 1 µm thickness were taken every 2 min. 

Single images from Z-stacks of each time-point were combined into stacks and 

transformed into Z-projects with maximal intensities in Fiji (see appendix). All ten Z-

project images were then again combined into a stack and corrected for eventual lateral 
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shift of the sample via the Fiji Plugin StackReg (see appendix). A line of 20 µm was 

drawn and the kymograph created via the Reslice [/] tool of Fiji. 

1.6.8. Co-localisation analysis 

For co-localisation analysis, single images were subjected to a Mean Blur Filter of 2 

pixels and a background subtraction with a rolling ball radius of 20 pixels. Intensity 

correlation analysis was performed on selected areas excluding regions without signal, 

with auto-fluorescence or cell wall reflections. Both the Pearson co-localisation 

coefficient (Rr) (Manders et al., 1992) and the squared overlap coefficient (R2) 

(Manders et al., 1993) were calculated using the respective Plugin from WCIF for 

ImageJ. 
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2. Material 

2.1. Antibodies, antibody coated products 

Antibody Dilution Company 

α-GFP rabbit polyclonal 1:5000 Rockland 

α-P-p44/42 MAPK rabbit 
(T202/Y204) 

1:3000 Cell Signaling Technologies 

α-FLS2 rabbit 1:2000 Self-raised by C. Zipfel, TSL 

α-BAK1 rabbit 1:5000 Self-raised by C. Zipfel, TSL 

α-HA-HRP rat 1:2000 Roche 

α-myc mouse 1:3000 Roche 

α-rabbit HRP trueblot rabbit 1:10000 eBioscience 

α-mouse HRP  Biomol 

GFP-Trap® magnetic beads 25 µl per reaction Chromotek 

GFP-Trap® agarose beads 25 µl per reaction Chromotek 

2.2. Chemicals 

This table list a set of chemicals and reagents acquired specifically for a number of plant 

treatments and microscopical analyses performed in this work: 

Product Company 

Luminol Sigma Aldrich 

flg22 Genscript 

K-252-α Biomol 

FM® 4-64 Invitrogen 

Oryzalin Sigma Aldrich 

Paclitaxel Sigma Aldrich 

Protease inhibitor for bacterial 
proteins 

Roche 

2.3. Enzymes and kits 

This table list a set of enzymes and enzyme containing kits acquired specifically the 

reactive oxygen burst assay as well as recombinant DNA methods. Standard restriction 

enzymes for classical cloning steps were obtained from New England Biolabs and are 

not listed here. 
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Product Company 

Horseradish peroxidase (HRP) Fluka 

Topo clonase kit Invitrogen 

LR clonase mix II Invitrogen 

BP clonase mix II Invitrogen 

2.4. Buffers and solutions 

All buffers and solutions were prepared with water as a solvent unless stated otherwise. 

2.4.1. Antibiotic stock solutions 

Antibiotic Stock concentration 

Ampicillin 100 mg/ml  

Carbenicillin 50 mg/ml 

Chloramphenicol 34 mg/ml 

Gentamicin 25 mg/ml 

Hygromycin 50 mg/ml 

Kanamycin 50 mg/ml 

Rifampicin 50 mg/ml 

Spectinomycin 100 mg/ml 

Streptomycin 200 mg/ml 

Zeocin 25 mg/ml 

Rifampicin was diluted in methanol as a solvent. All other antibiotics were dissolved in 

H2O. All stocks were sterile filtrated with 0.45 µm disposable filters and diluted 1000x 

before use. 

2.4.2. Solutions for recombinant DNA techniques 

2.4.2.1. TOPO cloning reaction mix 

Component Amount 

PCR product 1 µl  

Salt stock solution 0.5 µl 

Topo vector 0.5 µl 
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2.4.2.2. BP reaction mix 

Component Amount 

PCR product 150 ng (or 3 µl max.)  

Entry vector 150 ng (or 1 µl max.) 

BP clonase 0.75 µl 

TE buffer pH 8.0 2.25 µl 

2.4.2.3. LR reaction mix 

Component Amount 

Entry vector 150 ng (or 1 µl max.) 

Destination vector 150 ng (or 1 µl max.) 

LP clonase 0.75 µl 

TE buffer pH 8.0 2.25 µl 

2.4.2.4. Reaction mix for analytical polymerase chain reaction (PCR) 

Component Amount 

TAQ polymerase (5 U/µl) 0.05 µl 

dNTPs (10 mM each) 0.2 µl 

MgCl2 (50 mM) 0.2 µl 

Forward primer (10 pmol/µl) 0.4 µl 

Reverse primer (10 pmol/µl) 0.4 µl 

10 x Standard TAQ buffer 2 µl 

Template 5-10 ng (1 µl max.) 

Sterile MQ-H2O add. 20 µl 

The reaction mix was prepared on ice. For colony PCR, a single colony was picked with 

a sterile 10µl tip and dipped into the reaction solution instead of adding template. 

2.4.2.5. Reaction mix for preparative PCR 

Component Amount 

Phusion polymerase (2 U/µl) 0.2 µl 

dNTPs (10 mM each) 0.2 µl 

MgCl2 (50 mM) 0.2 µl 

Forward primer (10 pmol/µl) 0.4 µl 
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Reverse primer (10 pmol/µl) 0.4 µl 

5 x HF phusion buffer 4 µl 

Template 5-10 ng (1 µl max.) 

Sterile MQ-H2O add. 20 µl 

The reaction mix was prepared on ice. 

2.4.2.6. Reaction mix for cut-ligations in pENTR/D-BsaI 

Component Amount 

pENTR/D-BsaI 1 µl (50 ng/µl) 

pCR-product 1-3 µl (50 – 150 ng/µl) 

BsaI 1 µl 

10 x T4 DNA –ligase buffer 1.5 µl 

T4 DNA ligase 2 µl 

Sterile MQ-H2O add. 15 µl 

The reaction mix was prepared on ice. 

2.4.3. DNA extraction buffer for A. thaliana leaf material (short protocol) 

Component Amount 

Tris/HCl pH 9.0 200 mM 

LiOAc 400 mM 

EDTA 25 mM 

SDS 1 % (w/v) 

2.4.4. Solutions for Agrobacterium mediated transformation of plant material 

2.4.4.1. Infiltration solution for A. tumefaciens mediated transient 

transformation of N. benthamiana or A. thaliana 

Component Amount 

MgCl2 10 mM  

MES KOH pH 5.6 10 mM 

Acetosyringone 150 µM 

Agrobacteria Appropriate OD 
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2.4.4.2. DEX-solution for pre-treatment of AvrPto-DEX inducible A. thaliana 

Component Amount 

DEX 2 µM  

EtOH 1 % 

Silwett-77 0.04 % 

2.4.4.3. Dipping solution for stable transformation of A. thaliana 

Component Amount 

Sucrose 5 %  

Silwett-77 0.05 % 

Agrobacteria Pellet from overnight culture 

2.4.5. Buffers and solutions for yeast work 

2.4.5.1. Yeast transformation master mix 

Component Amount 

PEG 3350 50% 240 µl  

LiOAc (1M) 36 µl 

ss-DNA (2mg/ml) 27 µl 

PEG 3350 was sterilized using a 0.45 µm disposable filter. LiAc was autoclaved at 120 

°C for 20 min. ss-DNA was dissolved in sterile MQ-H2O and incubated at 95°C for 10 

min prior use. 

2.4.5.2. 10 x amino acid (AA) -stock solution  

Component Amount 

L-arginine HCl 200 mg/l  

L-isoleucine 300 mg/l 

L-lysine HCl 300 mg/l 

L-methionine 200 mg/l 

L-phenylalanine 500 mg/l 

L-threonine 2000 mg/l 

L-tyrosine 300 mg/l 

L-uracil 200 mg/l 

L-valine 1500 mg/l 
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Combined ingredients were autoclaved for 20 min at 120°C. 

2.4.6. ROS reaction buffer 

Component Amount 

Luminol 100 µM = 17 µg/ml  

HRP 10 µg/ml 

PAMP 100 mM 

2.4.7. Buffers and Solutions for plant protein work 

2.4.7.1. Lacus buffer for MAPK assay 

Component Amount 

Tris HCl pH 7.5 50 mM  

NaCl2 100 mM 

MgCl2 10 mM 

EGTA 15 mM 

Na2MoO4 (add fresh before use) 1 mM 

NaF (add fresh before use) 1 mM 

Na3VO4 (add fresh before use) 0.5 mM 

β-glycerol-phosphate 30 mM 

IGEPAL (=NP-40) 0.1 % 

PMSF(add fresh before use) 0.5 mM 

Proteinase inhibitor cocktail (add fresh 
before use) 

1 % 

Calculin A (add fresh before use) 100 nM 

DTT (add fresh before use) 2 mM 

2.4.7.2. N. benthamiana protein extraction buffer 

Component Amount 

Tris/MES pH 8 50 mM 

EDTA 20 mM 

Sucrose 0.5 M 

DTT (add fresh before use) 5 mM 

Plant proteinase inhibitor cocktail (add 
fresh before use) 

1% 
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PMSF (add fresh before use) 0.5 mM 

Na2MoO4 (add fresh before use) 1 mM 

NaF (add fresh before use) 1 mM 

Na3VO4 (add fresh before use) 0.5 mM 

2.4.7.3. Extraction buffer for co-immunoprecipitation from N. benthamiana and 

A. thaliana 

Component Amount 

Tris HCl pH 7.5 50 mM  

NaCl2 150 mM 

Glycerol 10% 

EDTA 2 mM 

DTT (add fresh before use) 5 mM 

Plant proteinase inhibitor cocktail (add 
fresh before use) 

1% 

IGEPAL (NP-40) 1 % 

PMSF (add fresh before use) 0.5 mM 

Na2MoO4 (add fresh before use) 1 mM 

NaF (add fresh before use) 1 mM 

Na3VO4 (add fresh before use) 0.5 mM 

2.4.7.4. Plant proteinase inhibitor cocktail 

Component Amount 

AEBSF (4-2-Aminoethyl Benzene 
Sulfonyl Fluoride) 

20 mM  

Bestatin Hydrochloride 70 µM 

Pepstatin A 70 µM 

Leupeptin Hydrochloride 1 mM 

E-64 (Trans-Epoxysuccinyl-L-
Leucylamido-(4-Guanidino)Butane) 

140 µM 

Phenathroline (1-10-Phenanthroline 
Monohydrate) 

140 µM 
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2.4.7.5. Kinase buffer for in vitro protein phosphorylation assays 

Component Amount 

HEPES pH7.5 100 mM  

MgCl2 10 mM 

β-mercaptoethanol 0.1 % 

2.4.8. Buffers for purification of His-tagged proteins from bacteria 

2.4.8.1. Binding buffer 

Component Amount 

Tris HCl 10 mM  

NaCl 150 mM 

Protease inhibitors 1 tablet/100 ml 

à adjust to pH 8.0 

2.4.8.2. Washing buffer 

Component Amount 

Tris HCl 10 mM  

NaCl 300 mM 

Imidazole 10 mM 

Protease inhibitors 1 tablet/100 ml 

à adjust to pH 8.0 

2.4.8.3. Elution buffer 

Component Amount 

Tris HCl  10 mM  

NaCl 400 mM 

Imidazole 150 mM 

Protease Inhibitors 1 tablet/100 ml 

à adjust to pH 8.0 
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2.4.9. Buffers and Solutions for SDS-PAGE and Western Blotting 

2.4.9.1. Solution for acrylamide – isotachophoresis gel (“stacking“ gel) 

Component Amount 

Tris HCl pH 6.8 0.18 M  

Acrylamide 5 % 

SDS 0.1 % 

APS 0.1 % 

TEMED 0.1 % 

2.4.9.2. Solution for acrylamide – electrophoresis gel (“resolving” gel) 

Component Amount 

Tris HCl pH 8.8 0.36 M  

Acrylamide 8 – 15% 

SDS 0.1% 

APS 0.1% 

TEMED 0.04% 

2.4.9.3. 6 x SDS loading dye 

Component Amount 

Tris HCl pH 6.8 120 mM  

Glycerol 50% 

SDS 6% 

Bromophenol blue 0.05% 

2.4.9.4. 10 x SDS running buffer 

Component Amount 

Tris  30 g/l = 3% (w/v)  

Glycine 144 g/l = 14.4% (w/v) 

SDS 10 g/l = 1% (w/v) 
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2.4.9.5. 10 x Transfer buffer for wet transfer 

Component Amount 

Tris 30 g/l = 3% (w/v) 

Glycine 144 g/l = 14.4% (w/v) 

HCl add. pH 8.3 

2.4.9.6. 10 x TBS 

Component Amount 

Tris 24 g/l = 3% (w/v) 

NaCl 80 g/l = 8% (w/v) 

HCl add. pH 7.6 

2.4.9.7. 10 x Semi-dry transfer buffer 

Component Amount 

Tris 116.4 g 

Glycerol 58.6 g (=25%) 

SDS 7.5 g 

H2O add 2 l 

2.4.9.8. Coomassie staining solution 

Component Amount 

EtOH 10% (v/v) 

Acidic acid 10% (v/v) 

Coomassie 0.25% (w/v) 

2.4.9.9. Destaining solution 

Component Amount 

EtOH 30% (v/v) 

Acidic acid 10% (v/v) 
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2.5. Media 

2.5.1. Plant media MS solid/liquid medium for A. thaliana seedlings 

Component Amount 

Basal Salt Mixture Murashige & 
Skoog Medium 

2.2 g/l = 0.22 % (w/v)  

Sucrose 10 g/l = 1% (w/v) 

Bacto-agar (for solid medium) 8 g/l = 0.8 % (w/v) 

Combined ingredients were autoclaved for 20 min at 120°C. 

2.5.2. Media for Yeast 

2.5.2.1. YPAD solid/liquid 

Component Amount 

Bacto yeast extract 10 g/l = 1% (w/v) 

Bacto peptone 20 g/l = 1% (w/v) 

Glucose monohydrate (add after 
autoclaving) 

20 g/l = 1% (w/v) 

Adenine sulphate 10 g/l = 1% (w/v) 

Bacto agar (for solid media) 20 g/l = 2% (w/v) 

Combined ingredients were autoclaved for 20 min at 120°C. Glucose was autoclaved 

separately as a 20% stock solution for 15 min at 115°C and added before use. 

2.5.2.2. Selective dropout (SD) medium solid/liquid 

Component Amount 

10 x YNB stock solution 10% (v/v) = 0.67 g final 

10 x AA stock solution 10% (v/v) 

Glucose 20 g/l = 2 % (w/v) 

Bacto agar (for solid medium) 20 g/l = 2% (w/v) 

YNB was sterilized using a 0.22 µm steritop filter. Glucose was autoclaved as a 40% 

stock solution for 15 min at 115°C All other components were autoclaved for 20 min at 

120°C before use. 
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2.5.3. Kings B medium for P. syringae 

Component Amount 

Bacto peptone 20 g/l = 2% (w/v) 

K2HPO4 1.5 g/l = 0.15% (w/v) 

MgSO4 1.5 g/l = 0.15% (w/v) 

Bacto Agar 10 g/l = 1% (w/v) 

à adjust to pH 7.2 

Combined ingredients were autoclaved for 20 min at 120°C. 
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 Results 

1. Cell biological characterisation of the remorin protein 

family 

Recent data from microscopical and biochemical approaches confirmed the association 

of remorin proteins with the PM. SYMREM1 was found on infection thread membranes 

and surrounding symbiosomes in legumes (Lefebvre et al., 2010). StREM1.3 was 

localised in plasmodesmata controlling viral movement in tobacco (Raffaele et al., 2009, 

Perraki et al., 2012a). While remorin proteins were found to be enriched in DRM 

fractions before (Mongrand et al., 2004), membrane domain localisation of SYMREM1 

was shown via electron microscopy after immuno-gold labelling (M. truncatula) 

(Lefebvre et al., 2010) and expression of StREM1.3 as fluorophore fusions (N. 

benthamiana) ((Raffaele et al., 2009, Perraki et al., 2012a). Furthermore, remorins 

interact with a very specific set of proteins found at the above mentioned locations: The 

RLKs important for establishment of the root nodule symbiosis in M. truncatula 

(Lefebvre et al., 2010) and TBP, which is important for spreading of the virus from cell 

to cell in N. benthamiana ((Raffaele et al., 2009).  

However, no systematic evaluation of remorin localisation has been conducted, although 

this protein family displays great sequence diversity. To assess membrane localisation 

patterns throughout the remorin protein family and to address the question of an overall 

domain co-existence in living plant cells, a systematic survey of A. thaliana remorin 

proteins was initiated.  

1.1. Subcellular localisation 

In a recent study, ten out of the 16 A. thaliana remorin family members were cloned and 

expressed as C-terminally tagged fluorophore fusion proteins in N. benthamiana. These 

experiments revealed an association with the PM for the majority of the proteins, but a 

number of additional subcellular compartments were also labelled (Jarsch, 2009). 

Results from microscopical analyses on truncation constructs indicated that few residues 

within the C-terminus of remorins are required for membrane binding (Konrad et al., 

2014). In contrast, the N-terminal region was dispensable for PM attachment even 

though it was important for interaction with downstream signalling components 

(Sylvain Raffaele, Katalin Tóth, Thomas Ott, personal communication). In both cases, 

the attachment of a large tag such as GFP and its derivatives potentially alters 

functionality or subcellular localisation of the proteins. To test whether the fusion 
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direction influences remorin function and localisation, N-terminal fusions were created 

for all proteins. 

1.1.1. The N-terminal fusion of the proteins compared to a C-terminal fusion 

does not impair membrane localisation 

To compare C-terminally and N-terminally tagged constructs, 15 out of 16 members of 

the family were cloned and heterologously expressed via A. tumefaciens mediated 

transient transformation of N. benthamiana leaf epidermal cells. AtREM1.1 was not 

included, as both Genenvestigator data as well as q-PCR experiments did not indicate 

significant expression in planta (Jarsch et al., 2014). 

 

Table 1: Changes in subcellular localisation pattern with N-terminal protein fusions 

Comparison of the subcellular localisation of C-terminally and N-terminally tagged constructs of 
remorin family members when being ectopically expressed in N. benthamiana. 

 Gene ID Protein Localisation with C-
term. Tag 

Localisation with N-
term. tag 

At3g61260 AtREM1.2 Cytoplasmic, PM PM 

At2g45820 AtREM1.3 Cytoplasmic, PM PM 

At5g23750 AtREM1.4 Cytoplasmic, PM PM 

At1g69325 AtREM3.1 Cytoplasmic, nuclear, 
nucleolar 

PM, slightly cytoplasmic, 
nuclear, nucleolar 

At4g00670 AtREM3.2 PM, nuclear, nucleolar PM 

At3g57540 AtREM4.1 PM, slightly cytoplasmic PM 

At2g41870 AtREM4.2 PM, slightly cytoplasmic PM 

At1g45207 AtREM5.1 PM PM 

At2g02170 AtREM6.1 PM PM 

At1g30320 AtREM6.2 PM PM 

At1g53860 AtREM6.3 Aggregations at the PM PM 

At4g36970 AtREM6.4 PM PM 

At1g67590 AtREM6.5 PM PM 

At1g13920 AtREM6.6 PM, nuclear, nucleolar PM, nuclear, nucleolar 

At5g61280 AtREM6.7 Cytoplasmic aggregations, 
nuclear, nucleolar 

PM, cytoplasmic, nuclear, 
nucleolar 
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As expected, a clear shift towards a tighter membrane localisation was observed for N-

terminally tagged constructs. Group 1 remorins, which showed both cytoplasmic and 

PM localisation when being tagged C-terminally (Fig. 7A, Table 1), exclusively labelled 

the membrane when being expressed as N-terminally tagged versions (Fig. 7E, Table 1). 

These data are in agreement with data from several proteomic approaches on PM 

preparations from N. benthamiana and A. thaliana plant material where these remorins 

were exclusively associated with the membrane fraction (Marmagne et al., 2004; 

Mongrand et al., 2004; Nelson et al., 2006; Sazuka et al., 2004; Valot et al., 2006; 

Watson et al., 2003). 

Similar observations were made for AtREM3.2 (Fig. 7F, Table 1), which displayed 

fluorescent signal both at the PM and in the nucleus (Fig. 7B) when being expressed 

with a C-terminal tag. Additionally, some remorin proteins showed the tendency to form 

aggregations when being tagged C-terminally (AtREM6.3, AtREM6.7) (Fig. 7C, Table 

1). This effect was not observed when expressing them N-terminally fused to the 

fluorophore (Fig. 7G, Table 1). Nevertheless, the majority of the remorin family 

members were not affected in membrane attachment by a C-terminal fusion (Fig. 7D, 

Table 1) (AtREM4.1, AtREM4.2, AtREM5.1, AtREM6.1, AtREM6.2, AtREM6.4, 

AtREM6.5). 

Strikingly, in addition to the above-described change in stringency of membrane 

attachment, an alteration in localisation within the membrane was observed. When 

analysing the samples via high-resolution confocal laser-scanning microscopy most C-

terminally tagged constructs were homogeneously distributed. In contrast, the majority 

of N-terminally tagged versions of remorin proteins displayed a specific pattern in the 

PM. While AtREM1.2 was more diffusely, yet non-homogeneously distributed (Fig. 7I), 

other family members exhibited spherical and laterally immobile domains in between a 

non-domain-localised, diffuse protein fraction (Fig. 7J-L). Although the C-terminal tag 

did not inhibit membrane binding for most remorin proteins, it was concluded that it did 

alter sub-membranous targeting to membrane domains. 
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Fig. 7: The N-terminal tag does not hinder membrane attachment of remorin proteins and 
leads to localisation in membrane domains 

When being expressed as C-terminal fluorophore fusion proteins (A-D), remorin proteins often 
displayed subcellular localisations additional to membrane binding such as cytosolic localisations 
(A), nuclear and nucleolar labelling (B) or aggregations at the plasma membrane (C). N-
terminally tagged, all of them exhibited exclusive labelling of the plasma membrane (E-H). A 
top view onto the upper plane of the plasma membrane revealed localisation in distinct, spherical 
membrane domains for AtREM3.2 (J), AtREM6.3 (K) and AtREM6.4 (L), while AtREM1.2 
displayed a more diffuse distribution (I). All constructs were expressed as CFP/YFP fusions in N. 
benthamiana under control of the CaMV 35S promoter. Images are either combined Z-stacks (A-
H) or single planes (I-L); Scale bars represent 15 µm (A-H) and 5 µm (I-L). 

 

To ultimately test whether C- or N-terminally tagged constructs are impaired in 

localisation, folding or interaction with other proteins, a comparison between both 

fusion directions for functional complementation of the mutant phenotype was 

performed for AtREM6.4. An Atrem6.4 T-DNA knockout line, which did no longer 

express AtREM6.4 was transformed with either a C-terminally or a N-terminally tagged 

fluorophore fusion and subjected to phenotypic analysis. It clearly demonstrated that 

only the N-terminally fused version was able to restore the wildtype phenotype (for 

details, see chapter 2.3.2.3). 

As a consequence of these observations, N-terminal fusion constructs were preferably 

used for all future cell biological approaches. 
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1.1.2. Localisation of remorin proteins to membrane domains is independent 

of the plant expression system or the promoter 

To verify that the localisation of N-terminally tagged remorin fusions to membrane 

domains was not caused by overexpression or the use of the heterologous N. 

benthamiana system, two control experiments were performed. 

In the most elaborate approach, three transgenic lines were created. T-DNA insertion 

lines (see chapt. 2.1). ) for AtREM1.2, AtREM1.3 and AtREM6.4 were transformed 

with N-terminally tagged YFP fusions under control ofa 2 kb fragment of the endoge- 

nous promoter (2.2). All three lines were shown to be knockout mutants prior to use (for more

details see chapters 2.3.2.1 and 2.3.3.1). Special focus was put on group 1, as the 

localisation pattern of AtREM1.2 significantly differed from that of other remorin 

proteins (Fig. 7). While both AtREM1.2 and AtREM1.3 were expressed in all tissues in 

levels microscopically comparable to CaMV-35S-driven constructs, AtREM6.4 was 

significantly lower expressed. No YFP-fluorescence was detectable in 5-7 days old 

seedlings, but could be microscopically analysed in 3-4 week old plants in rosette leaves 

and in cauline leaves of older plants. These expression patterns resemble transcript 

levels of these genes in wildtype plants, where AtREM1.2 and AtREM1.3 were found to 

be highly expressed, while levels of AtREM6.4 were found to be about 40 fold lower 

(Fig. 8). 

In all investigated tissues, AtREM1.2 and AtREM1.3 showed a diffuse but 

inhomogeneous distribution (Fig. 9A-B). By contrast, AtREM6.4 displayed a 

localisation in clear dot-like, laterally immobile membrane domains (Fig. 9C). 

In a second approach, the influence of overexpression on membrane domain formation 

was tested. A subset of proteins was expressed under control of the constitutively active 

CaMV-35S promoter in an A. thaliana line carrying a proDEX:AvrPto construct (Fig. 

9D-L). After dexamethasone (DEX) treatment, this line expresses the bacterial effector 

AvrPto, which targets and degrades FLS2 and EFR (Xiang et al., 2008) but not BAK1 

(Xiang et al., 2011). As a consequence, these plants can be easily used for A. 

tumefaciens mediated transient transformation. 

Independent of expression strength, AtREM1.2, AtREM1.3 and AtREM6.4 displayed 

the same membrane localisation pattern as seen in N. benthamiana or the A. thaliana 

mutant background (Fig. 9D-F). 
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Fig. 8: Remorin expression patterns according to Genevestigator database 

Data were obtained from the publically available Genevestigator database 
(https://www.genevestigator.com/gv/plant.jsp). Expression patterns were determined in Col-0 
seedlings by Leivar and colleagues and deposited in the repository with the identifiers 
GSM768250, GSM768251, GSM768252. Error bars represent standard errors of three 
independent biological experiments. ATH chip = A. thaliana Affymetrix chip. 

Group 1 remorin proteins did not label distinct domains but showed an diffuse, irregular 

distribution while AtREM6.4 localised to clear, immobile domains. To further verify 

that domain formation was also visible in A. thaliana an additional set of six proteins 

from different subgroups of the protein family were subjected to expression and 

microscopical analysis. Encouragingly also all additionally tested constructs from 

groups  3, 4, 5 and 6 showed clear labelling of spherical membrane compartments in 

proDEX:AvrPto A. thaliana plants (Fig. 9G-L). 

No differences in localisation patterns were observed when comparing all tested 

systems. These results indicated that indeed the N. benthamiana system was suitable for 

transient expression and subcellular investigation of A. thaliana remorin proteins. 

Consequently, the latter was chosen for all future cell biological investigations, as it is 

the most convenient to transiently express proteins and also co-express several construct 

in a reproducible manner. 
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Fig. 9: Variation in expression strength or system does not alter localisation of AtREMs in 
membrane domains 

Expression of AtREM1.2, AtREM1.3 and AtREM6.4 constructs under the control of their 
endogenous promoters (A-C) in the respective mutant backgrounds or under control of the 
CaMV 35S promoter in A. thaliana proDEX:AvrPto (D-F) does not change localisation patterns 
compared to N. benthamiana (Fig. 7). Additionally tested remorin proteins from group 3, 4, 5 
and 6 also show labelling of distinct immobile spherical domains when expressed under control 
of the CaMV 35S promoter in A. thaliana proDEX:AvrPto (G-L) All constructs were N-
terminally tagged to YFP. Scale bars indicate 5 µm.  
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1.1.3. Remorin proteins label a variety of coexisting distinct membrane 

compartments 

As shown above remorin proteins label distinct membrane compartments in living plant 

cells. Therefore, the question was raised, whether the whole remorin family in its 

manifoldness could be reflective of the diversification of the domain landscape of the 

plant PM. Consequently, the next goal was, to assess the whole range of membrane 

compartments being labelled by remorin proteins. 

Extensive optimization of the expression conditions revealed that the use of low optical 

densities (ODs) of A. tumefaciens cultures for infiltration as well as the selection of 

lowly expressing cells for confocal microscopy provided the most native conditions. In 

highly expressing cells, domains became less clear as non-domain-bound protein 

fraction accumulated within the inter-domain space. Otto and colleagues, when 

microscopically analysing flotillin micro-domains in the plasma membrane of 

mammalian cells made similar experiences. Here, they demonstrated rapid saturation of 

flotillin membrane domains and an accumulation of fluorescence in the surrounding 

membrane area, resulting in significantly deteriorated imaging conditions (Otto and 

Nichols, 2011). 

Interestingly, remorin proteins showed similar domain patterns among members within 

the same phylogenetic group. The remaining group 1 remorin, AtREM1.4 was diffusely 

distributed over the PM, similar to AtREM1.2 and AtREM1.3 (Fig. 10A). Also 

AtREM3.1 showed a more homogeneous distribution (Fig. 10B). In contrast, 

AtREM3.2, another remorin protein lacking the non-structured, variable N-terminal 

region, often formed clear dot-like domains (Fig. 7J). All other proteins from group 4, 5 

and 6 show a variety of spherical, immobile domains (Fig. 10C-J). Two additionally 

expressed proteins, KAT1 (Sutter et al., 2006) and FLOT1A (Borner et al., 2005; Li et 

al., 2012), chosen for their published accumulation in membrane domains, also localised 

to the membrane in the previously observed patterns (Fig. 10K, L). 



Results 

 70 

 

Fig. 10: Remorin proteins label a variety of distinct membrane domains 

Confocal imaging of 10 remorin proteins and two additional membrane microdomain marker 
proteins (A-L). While no distinct foci could be resolved for AtREM1.4 (A) and AtREM3.1 (B), 
all other proteins labelled distinct and immobile membrane domains when being ectopically 
expressed in N. benthamiana leaf epidermal cells. Scale bars indicate 5 µm. 

To define the observed patterns more precisely, quantitative image analysis was 

performed on all investigated proteins. The aim was to determine a set of parameters in 

order to be able to assess similarities and differences between the observed domains in a 

quantitative way. Mean domain size in square µm, the average domain circularity on a 

scale between 0 and 1 (with 1 representing a perfect circle), average domain density as 

well as mean domain intensity were addressed using ImageJ. Is has to be kept in mind 
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that no statistical investigation on how different expression levels might influence any 

of the above mentioned parameters has been performed. 

Both mean domain size (Fig. 11A) and domain density (Fig. 11B) varied significantly 

between the different constructs, and confirmed the observed diverse patterns. For 

example AtREM3.2 forms fewer, but larger domains, while group four and five remorin 

proteins localize to smaller, numerous domains. A similar observation was made for 

FLOT1A, which displays a localisation in bigger, brighter and less densely packed 

membrane compartments, in contrast to which the closely related, newly cloned 

FLOT1B (Jarsch et al., 2014) exhibits more domains per square micrometre, but they 

are significantly less bright and significantly smaller. 

 

Fig. 11: Quantitative analysis of domain patterns. 

Domains labelled by the investigated marker proteins were analysed for average size (A), mean 
average intensity (B), their average circularity (C) and the average domain density. While no 
distinct foci could be resolved for AtREMAtREM1.2, AtREM1.3 and AtREM3.1 all other 
proteins labelled distinct membrane domains, which were encompassed by the segmentation 
procedure. Significant differences were determines with a one-way ANOVA and Tukey’sHSD in 
R. 
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Interestingly, while neither AtREM1.2 nor AtREM1.3 structures were encompassed 

using the standard procedure for the image segmentation due to their diffuse nature, 

AtREM1.4 localisation obviously was containing elements, which were captured during 

the process. The membrane compartments, which were distinguishable here, were of 

larger nature and significantly less circular then others (Fig. 11C). 

On average, domain shape did not vary significantly, as most of the remorin proteins 

labelled roundish compartments. Also, most of them had similar intensities, indicating a 

similar protein concentration inside the domains. Here, AtREM3.2 stood out with 

significantly higher mean domain intensity, a feature, which was also obvious in the 

microscopy images. 

To further assess domain diversity and to define domain heterogeneity in a comparative 

manner, an extensive cross-comparison between single remorin proteins was performed. 

For each single experiment, a pair of proteins with different fluorophore fusions (one 

tagged to CFP, one to YFP) was co-expressed. This approach aimed to understand, 

whether the labelled domains co-localised with each other or whether the proteins 

localised to independent sites at the PM. A total number of 524 co-localisations were 

successfully performed for 45 protein pairs, with at least 8 repetitions each. Single 

images were subjected to a background subtraction using a rolling ball radius of 20 

pixels, as background has drastic influence on the calculation of the co-localisation 

coefficients. 

For calculations, regions of interest were chosen, where both channels showed 

fluorescent signal and the membrane domains were in focus, excluding part of the 

picture with no signal, auto-fluorescence or cell wall reflections. Both standard Pearson 

correlation coefficient Rr (Manders et al., 1992) as well as the squared overlap 

coefficient R2 (Manders et al., 1993) were calculated. The Pearson correlation 

coefficient has a theoretical range from -1 to 1. Negative values describe exclusion of 

measured intensities, while values around 0 are obtained by samples that display random 

distribution. Values above 0 can be considered as positive correlation, meaning co-

localisation. This way to assess co-localisation in fluorescent probes has been critically 

discussed, as negative and very low Pearson values are often difficult to interpret and 

sometimes vary depending on intensity differences between both channels (Zinchuk et 

al., 2007). Consequently, the squared overlap coefficient (also used in recent co-

localisation studies (Spira et al., 2012) was included. Here, values range from 0 for low 

co-localisation to 1 for perfect co-localisation. It has to be considered that the strength of 

the Manders overlap coefficient, which makes it superior to the Pearson correlation 

coefficient for some purposes (namely its insensitivity to intensity differences) also 
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makes it extremely sensitive for background noise, a reason why some researchers still 

prefer the Pearson coefficient (Adler and Parmryd, 2010). 

Simulations to assess expected values for randomly distributed protein patterns were 

performed for each investigated protein pair individually by horizontally or vertically 

flipping one of the two images (Fig. 12). In cases where intensities did not overlap to 

larger extents after reflection, images were additionally rotated (Fig. 12K). Again, only 

areas in focus, with signal in both channels and without auto-fluorescence or cell wall 

reflections were chosen for calculations. 

As expected, values for randomized samples ranged between 0.2-0.4 for the squared 

Manders overlap coefficient, and perfectly around 0 for the Pearson correlation 

coefficient (Fig. 12F, L, R, X, Table 2). For statistic analyses the Student Ttest was 

performed to assess significance of positive or negative correlation of protein pairs 

compared to the simulated random patterns (Table 2). 

 

 

Fig. 12 Choice of regions of interest for calculation of the co-localisation coefficients 

Four examples of remorin protein pairs investigated for their co-localisation patterns ranging 
from positive correlation (G-L) over random distribution (M-R) to negative correlation. Average 
Pearson correlation coefficients (Rr) as well as squared correlation coefficients (R2) for this 
protein pair (Table 2) are provided in the top right corner of the merged images. Identical 
proteins were used as control (A-F). White borders represent regions of interest used for 
calculation. Scale bar = 10 m. 



Results 

 74 

To assess the maximum values that could be expected in our experimental settings, nine 

different protein pairs were tested, where the same remorin was expressed as two 

different fluorophore fusions (e.g. YFP:AtREM6.4 and CFP:AtREM6.4). Pearson 

values of 0.5 to 0.6 as well as R2 values of 0.6 to 0.7 were obtained (Fig. 13A-F, Table 

2). An exception is AtREM1.2, the values of which are (although significantly different 

from the randomized samples) clearly lower than for other identical pairs. This is due to 

the diffuse distribution, where the algorithms used in this study cannot make a clear 

difference between random localisation and positive correlation. 

Several protein pairs displayed similarly high degrees of co-localisation (AtREM6.2 

with AtREM6.5, AtREM6.4 with AtREM6.3, AtREM6.2 with AtREM6.1, AtREM4.1 

with AtREM4.2 and AtREM5.1 with AtREM6.4) (Fig. 13G-L; Table 2). Notably, 

positive correlation of distribution seems more likely to occur between proteins of close 

phylogenetic proximity, namely between proteins of the same or of neighbouring groups 

(Fig. 13; Table 2). 

 

Fig. 13: The plant plasma membrane displays a wide spectrum of distinguishable coexisting 
microdomains. 

Co-localisation analysis was performed by co-expression of two proteins fused to YFP and CFP 
respectively. Presented are representative images of proteins showing positively correlated 
distribution patterns (G-L), random distribution (M-R) or negatively correlated distribution 
patterns (S-X). Average Pearson correlation coefficients (Rr) as well as squared correlation 
coefficients (R2) for this protein pair (Table 2) are provided in the top right corner of the images. 
As a proof of principle, co-expression of the same protein fused to different fluorophores resulted 
in highest correlation coefficients (A- F). Scale bars indicate 2 m. 
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While a number of protein pairs displayed non-correlated distribution patterns (Fig. 

13M-R; Table 2), several investigated remorin proteins obviously localised to domains, 

which excluded other remorin proteins (Fig. 13S-X; Table 2). This was most 

prominently the case for AtREM1.2, which was clearly excluded from all group 6 

remorin labelled membrane compartments (Fig. 13T, U, V, X; Table 2). Also 

AtREM3.2 did not show a positively correlated distribution pattern with any of the 

tested other proteins (Fig. 13N, W, X; Table 2).  

Notably, both correlation coefficients indicated the same kind of distribution relation for 

most of the tested proteins. Exceptions are cases, with range minimally above 0 for the 

Pearson co-localisation coefficient, and between 0.2 and 0.4 for the squared Manders 

overlap coefficient. While statistics did not indicate a significant difference to the 

randomized samples for the latter and therefore pointed towards a non-correlated 

distribution, the Pearson values were significantly divers (Table 2). This was the case 

with samples that displayed rather low intensities in one channel, showing the weakness 

of the Pearson correlation coefficient for pairs with larger intensity differences between 

both images. 

To illustrate the diversity of the membrane domains labelled by remorin proteins, the 

results were additionally combined in a diagram, which shows the level of overlap of 

each single remorin protein with the other tested proteins. Again it is illustrated that both 

AtREM1.2 and AtREM3.2 either exclude or are excluded from the domains labelled by 

other tested remorins. In contrast, both group 4 and group 5 remorins localised to less 

exclusive domains, as other proteins are either included into those domains in a non-

correlated way, or actively accumulate together in the respective compartments. 

Interestingly, group 6 remorin proteins showed the broadest range of correlation patterns 

with other family members.  

Table 2: Co-localisation analysis of co-expressed protein pairs 

Data points were obtained from co-expression and image acquisition of two remorin proteins 
fused to CFP and YFP, respectively. Images were processed using the Intensity Correlation 
Analysis plugin of WCIF ImageJ. Squared Manders Overlap Coefficient (R2) (Spira et al., 2012) 
as well as Pearson Correlation Coefficient (Rr) values were calculated both for directly merged 
images as well as for randomized image pairs. Average values for at least 8 repetitions are 
displayed, with protein pairs were sorted into groups according to their significant difference to 
randomizing simulations; std. err. = standard error; rd = randomized. Groups are sorted according 
to the R2 values from highest to lowest. 
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Fig. 14 Range of correlation between domains labelled by remorin proteins 

Data points from Table 2 were sorted for each single investigated protein from lowest to highest. 
Presented are values for the Squared Manders Overlap Coefficient (R2) (Spira et al., 2012) (A) as 
well as Pearson Correlation Coefficient (Rr) values (B). According to statistics for each protein 
pair, data points are presented as circles with black filling (positive correlation), circled with 
white filling (no correlation) and triangles with grey filling (negative correlation). 
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1.1.4. AtREM1.2 and AtREM1.3 are organised in structures below the 

resolution limit of standard confocal microscopy 

In all assays performed so far, group 1 remorin proteins and AtREM3.1 displayed 

clearly different localisation patterns compared to any other member of the family. As 

described above, group 1 remorin proteins were not targeted into distinct membrane 

domains in N. benthamiana leaves. Also, no micro-domains were observed in mature 

rosette leaves in stable transgenic A. thaliana lines where AtREM1.2 and AtREM1.3 

were expressed under the control of their own promoters. As previously published 

localisation data of group 1 remorins from other species (Perraki et al., 2012b; Raffaele 

et al., 2009) show clear labelling of domains, AtREM1.2 and AtREM1.3 were 

investigated in more detail. This approach followed the hypothesis that those proteins 

were organized in domains of a size below resolution of confocal microscopy. 

Fluorescence recovery after photo-bleaching (FRAP) experiments were performed on 

AtREM1.2 (Fig. 15A) and AtREM1.3 (Fig. 15B) expressed under control of their 

endogenous promoters in the respective mutant backgrounds (2.2). Centripetal recovery 

of bleached areas was observed within a timeframe of 150 s. 

These data suggest that the diffuse structures labelled by A. thaliana group 1 remorins 

are mobile within the PM under the used experimental conditions. These results were 

confirmed in parallel by total internal reflection fluorescence microscopy (TIRFM) 

analysis of the same genetic material by Sebastian Konrad (Jarsch et al., 2014). Due to 

the higher spatiotemporal resolution, AtREM1.2 and AtREM1.3 were found to label 

small, highly mobile domains. This supports the described findings from the FRAP 

experiments, which show recovery of the bleached areas in a timeframe close to 

recovery rates reported for single S-acylated proteins in the PM (Martiniere et al., 2012). 
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Fig. 15: FRAP experiments on AtREM1.2 and AtREM1.3 reveal lateral mobility in the 
plasma membrane 

FRAP experiments on complemented mutants expressing AtREM1.2 (A) and AtREM1.3 (B) 
under control of their native promoters as YFP fusion proteins. Images were taken prior to 
bleaching (pre-bleach) and post bleaching fluorescence recovery was monitored in 30 s intervals. 
Concentric fluorescence recovery was monitored 150 s after bleaching indicating lateral recovery 
at a speed close to free diffusion. Scale bars indicate 2 µm. 

 

1.1.5. Tissue- or stimulus-specific labelling of membrane domains 

The question was raised, whether domain formation of group 1 remorin proteins would 

occur only under certain biological conditions. Thus it was tested whether membrane 

domains may be labelled in a tissue-specific manner. For this, different tissues were 

imaged in five days old seedlings that were grown under sterile conditions. In both 

cases, no distinct membrane domains could be observed when imaging cells of the leaf 

and root epidermis (Fig. 16A, B, top and bottom). By contrast occasionally, the proteins 

were targeted to distinct membrane domains in elongating hypocotyl cells (Fig. 16A, B, 

middle lane). There, they labelled immobile foci in the plasma membrane that were 

similar in distribution and pattern as observed for other remorin proteins. These data 

suggest that membrane domains are dynamically formed or disintegrated under different 

environmental conditions or developmental stages. 
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Fig. 16: AtREM1.2 and AtREM1.3 localise to membrane microdomains in a tissue-specific 
manner 

AtREM1.2 (A) and AtREM1.3 (B) were expressed under the control of their endogenous 
promoters in the respective mutant backgrounds. Upper planes of leaf epidermal cells (upper 
panels), elongating hypocotyl cells (middle panels) and root epidermal cells (lower panels) were 
imaged in five days old seedlings the proteins as N-terminally tagged YFP fusion proteins. Scale 
bars indicate 10 µm (left columns) and 5 µm (right columns). 

1.1.6. Remorin-labelled membrane compartments exhibit lateral stability 

Lateral mobility has been greatly discussed for membrane domains. Current definitions 

describe membrane rafts as small, highly mobile domains (Pike, 2006). In human and 

mammalian cells it is now well accepted that raft clusters can be laterally immobile 

within the membrane. Several factors contribute to domain immobility: (i) Simple 

oligomerisation reduces movement of protein complexes in the plasma membrane; (ii) 

Membrane domains can contain a proportion of proteins with extracellular protein parts 

interacting with the cell wall; (iii) Intracellular protein domains can be connected to the 

cytoskeleton where the microtubule and the actin network act as barriers that prevent 

lateral movement of larger clusters (picket fence theory) (reviewed by Kusumi et al., 

2012). 

As the observed remorin labelled domains were found to be stationary, at least in the 

timeframe of minutes, long-time imaging was performed to investigate whether those 

membrane compartments display slow dynamics over time (e.g. expansion, reduction, 

etc.). Time-lapse imaging was performed over a timeframe of 20 min, with single z-

stacks containing 15-18 slices of 1 µm thickness acquired every 2 min. Kymographs 

were created from shift-corrected stacks (see material and methods) over a length of 20 

µm (Fig. 18). All remorin proteins were investigated. As controls, again the two proteins 

published to form domains in the plasma membrane, FLOT1A and KAT1, as well as the 

newly cloned FLOT1B (Jarsch et al., 2014) were co-investigated. 
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As expected, AtREM1.2, AtREM1.3 and AtREM3.1 did not show formation of stable 

membrane compartments over time. The kymographs showed a completely 

homogeneous distribution of the first two proteins, whereas AtREM3.1 displayed 

moving stretches of additional cytoplasmic fluorescence. Interestingly, AtREM1.4 

showed a tendency to form membrane areas where protein concentration was slightly 

increased, and therefore fluorescence was accumulating. Those compartments were 

stable for a fraction of the investigated timeframe, but they did not persist throughout 

the whole 20 min. 

AtREM3.2, AtREM4.1, AtREM4.2, AtREM5.1, AtREM6.1, AStREM6.2, AtREM6.3, 

AtREM6.4, AtREM6.5, AtREM6.7, FLOT1A, FLOT1 and KAT1 all formed clear, 

laterally immobile membrane compartments of highly increased protein content which 

persist over the investigated 20 min timeframe. Additionally to that, in several cases, 

areas of increased fluorescence could be observed, which did not display homogeneous 

persistence in the kymographs. Here bright pixels alternate with darker pixels, indicating 

minimal lateral movement to the sides. This behaviour of domains is reminiscent of the 

previously observed movement patterns for rafts and domains within cytoskeletal 

compartments in the plasma membrane (Sako and Kusumi, 1995, Kusumi et al., 2005, 

reviewed in Urbanus and Ott, 2012). 

AtREM6.7, FLOT1A and KAT1 clearly exhibit a second population of compartments 

with high protein content, which are laterally mobile and showed up as single dots in the 

kymographs. From these data alone, it cannot be excluded that the observed structures 

are cytoplasmic. 

AtREM6.6 is a special case, as it both displayed stable domains in the plasma 

membrane as well as filamentous structures, which moved marginally throughout the 

investigated 20 min timeframe (Fig. 17A-D). 

 

Fig. 17 AtREM6.6 filamentous structures are stable over time 

When expressed in N. benthamiana, AtREM6.6 forms both membrane domains as well as long, 
filamentous structures additionally to some cytoplasmic fluorescence (A-D). Those structures, 
reminiscent of cytoskeleton show only slow dynamics. Confocal z-stacks with 1 µm slice-
thickness were auqired over 20 min; scalebar = 10 µm 
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Fig. 18: Membrane domains are laterally immobile 

Kymographs for 15 remorin proteins as well as FLOT1A, FLOT1B and KAT1 expressed in N. 
benthamiana. Three random examples for each construct are shown. Films were recorded over 
20 min, with one pixel line representing a z-stack of 15-18 slices of 1 µm thickness. Scale bar 
indicates 20 µm. 
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1.1.7. Immobile and mobile fraction of the protein population undergo 

dynamic exchange 

In all investigated cases the membrane regions between the observed stable membrane 

domains were decorated by an additional, diffusely distributed, non-domain bound 

protein fraction (Fig. 7I-L, Fig. 9C,F-L, Fig. 10C-I, Fig. 18A-F). This raised the 

question, whether these two protein populations, the domain-bound and the “free” 

fraction, were excluding each other, or whether there was continuous exchange between 

the two compartments. To characterise the lateral mobility of remorin proteins in more 

detail, extensive fluorescence recovery after photobleaching (FRAP) analysis was 

performed on a subset of seven proteins (Fig. 19). For this, a circular region of interest 

(ROI) was bleached by high-intensity laser emission for 10 frames (15 s) (Image 

acquisition was performed by Thomas Ott). Fluorescence recovery on membrane 

surface areas was assessed over 5 min in 30-s intervals, and data were normalized to a 

reference ROI of equal size that was placed in close proximity to the bleached one. To 

compare these data with a cytosolic protein, a soluble YFP was expressed in addition. In 

all samples, fluorescence recovered mono-exponentially with coefficient of 

determination (R2) > 0.97 (Fig. 19A). Both recovery half time (Fig. 19B) as well as the 

mobile fraction (Fig. 19C), meaning the percentage of total protein, which is diffusing 

within the membrane, were calculated. In general, membrane surfaces labelled by 

remorin proteins recovered within short timeframes, yet significantly slower compared 

with the cytosolic YFP control. Half-times of 24.3 +/- 1.4 s for AtREM6.6 filaments to 

47.7 +/- 1.9 s for AtREM6.2 and 12.4 +/- 2.6 s for free YFP, respectively (Fig. 19B), 

were calculated. However, significant differences were observed between the proteins, 

with AtREM6.2 being the most slowly diffusing protein. In the case of AtREM3.2, no 

difference in fluorescence recovery between the domain-associated fraction and the 

homogenously PM-labelling fraction was observed (Fig. 19A, B). Moreover, when 

bleaching single membrane domains labeled by AtREM3.2, proteins accumulated in the 

same position (Fig. 19D) while non-domain-labeled PM segments recovered homo- 

genously (Fig. 19E). This indicates a physical structure underlying protein accumulation 

in these distinct positions. Interestingly, AtREM6.6 again showed a significantly 

different pattern. While the domain-localized protein fraction overall recovered slowly, 

the halftime of filament-associated AtREM6.6 was significantly lower (Fig. 19B). This 

was also reflected in the mobile fraction, which was significantly increased for filament- 

associated AtREM6.6, while no differences were observed between the other Remorin 

proteins (Fig. 19B). 
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These results indicate that laterally immobile membrane domains like the ones labelled 

by remorin proteins are in constant, dynamic exchange with the surrounding membrane 

area and recruit proteins from a non-domain bound mobile fraction. Lateral dynamic of 

all tested proteins was comparable to the diffusion speed of typical plasma membrane-

bound proteins. 

 
Fig. 19: FRAP experiments on remorin proteins reveal dynamic and constant recruitment 
of proteins into immobile membrane domains 

FRAP experiments were performed on membrane domains labelled by a subset of remorin 
proteins in N. benthamiana leaf epidermal cells to visualize protein dynamics over time. 
Fluorescence was measured in a minimum of 12 independently bleached ROIs and standardized 
to a control ROI in the visinity (A). Recovery half-times (B) as well as mobile fractions (C) were 
calculated and significances in differences were assessed by a one-way ANOVA followed by a 
Tukey’s HSD test in R. Bleaching of a single domain of AtREM3.2 illustrated recovery of micro-
domains (D). Images were taken prior to bleaching (pre-bleach) and post bleaching fluorescence 
recovery was monitored over time. Dashed circles indicate halo-like photo-bleached areas. 
Plasma membrane segments without any immobile membrane domains centripetally recovered 
within 90 s indicating replenishment by lateral diffusion (E). Fluorescence recovery of 
membrane domains occurred at a laterally fixed position (D). Intensity plots are provided for 
three time points below the images. Scale bars indicate 2 µm.  
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1.1.8. The far C-terminal region of remorin proteins is necessary but not 

entirely sufficient for membrane binding 

In order to identify the functions of the different regions of remorin proteins a number of 

truncation constructs were assembled for expression as fluorophore fusions in N. 

benthamiana (Fig. 20). Recent experiments from our lab had shown that the conserved 

C-terminal region not only harbours a putative coiled-coil region important for protein-

protein interactions (Raffaele et al., 2007) but also the membrane attachment site 

(Konrad et al., 2014). 

A first set of constructs was used to determine, whether the far C-terminal part of the 

protein (REMCA = remorin C-terminal anchor) was indeed responsible for PM binding 

throughout the protein family. Deletion mutants of AtREM1.2, AtREM1.3, AtREM4.2, 

AtREM6.1 and AtREM6.4, lacking the REMCA (AtREM1.21-183, AtREM1.31-161, 

AtREM4.21-243, AtREM6.11-1453, and AtREM6.41-384) (Fig. 20) were expressed in N. 

benthamiana for microscopical analysis. Indeed, membrane localisation was lost, and 

most of the signal was cytoplasmic, with additional nuclear localisations (Fig. 21A-D, I-

J) in these mutant variants. To further verify loss of membrane attachment, PM 

counterstaining with the styryl dye FM® 4-64 was performed for both full length 

AtREM1.3 and AtREM6.1 as well as for AtREM1.31-161 and AtREM6.11-453. FM® 4-64 

signal did clearly co-localise with the signal from the full-length constructs both before 

(Fig. 21E-F) and after plasmolysis (Fig. 21G-H). These data confirmed membrane 

binding of wildtype remorin proteins. In contrast, no co-localisation was observed for 

FM® 4-64 and AtREM1.31-161 or AtREM6.11-453 (Fig. 21I-J), indicating full loss of 

membrane localisation by removal of the REMCA region. 

For AtREM6.4 additional constructs were created: The N-terminal region alone 

(AtREM6.41-299), the C-terminal region alone (AtREM6.4300-427), the C-terminal region 

lacking the REMCA (AtREM6.4300-384) and the REMCA alone (AtREM6.4385-427). As 

expected, AtREM6.41-299 did not bind to the plasma membrane but displayed 

cytoplasmic localisation as it lacked the REMCA peptide (Fig. 21K). AtREM6.4300-427 

associated with the plasma membrane, where it was homogeneously distributed (Fig. 

21L). AtREM6.4300-384 formed long, filamentous bundles, matching with the predictions 

of the C-terminal region consisting to large parts of a coiled coil region functioning in 

protein-protein interactions and oligomerisation (Raffaele et al., 2007, Tòth et al., 2012) 

(Fig. 21M). The AtREM6.4385-427 construct bound almost completely to the PM, but 

showed additional aggregates or vesicles in the cytoplasm as well as nuclear 

fluorescence (Fig. 21N), indicating a less stringent binding as AtREM6.4300-427. 
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Fig. 20: Truncation constructs of remorin proteins used for cell biological approaches to 
determine the function of the different protein regions 
Schematic representation of several YFP:AtREM fusion constructs. REMCA-devoid variants 
AtREM1.21-183, AtREM1.31-161, AtREM4.21-243, AtREM6.11-1453, and AtREM6.41-384 were created to 
investigate the role of the far C-terminal part of the protein in membrane binding. Additional deletion 
constructs of AtREM6.4 as well as the SYMREM1 REMCA construct (AtREM6.41-299, AtREM6.4300-

427, AtREM6.4300-384, AtREM6.4385-427 and SYMREM171-205) were employed to assess contributions of 
other protein regions to membrane attachment. Yellow bars = YFP tag; grey bars = variable N-
terminal region; blue bars = conserved C-terminal region without REMCA, including putative coiled 
coil-region; green bars = REMCA 
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In previous experiments together with Sebastian Konrad (LMU), a set of transgenic A. 

thaliana lines had been created, carrying CaMV 35S driven constructs of all cloned full-

length remorin proteins as well as a set of REMCA constructs both in WT and, if 

available, in the respective mutant backgrounds (described in 2.1). At least 20 

transformed seedlings per construct were microscopically investigated for fluorescence. 

However, in all of the transformed WT lines the transgenes were silenced. Interestingly, 

some REMCA constructs were successfully expressed in their respective mutant 

backgrounds (data not shown). These results raised the question, whether REMCA can 

interfere with the native proteins. To investigate, whether REMCA can be driven to the 

plasma membrane by oligomerisation with the wildtype protein, a C-terminally tagged 

AtREM6.4385-427 construct, which had completely lost plasma membrane localisation 

(see appendix) was co-expressed with the full-length protein. Indeed, the construct was 

recruited to the plasma membrane (Fig. 21O), and co-localised with the membrane 

domains labelled by the full-length protein (Fig. 21P). 

To confirm these results, the SYMREM1 REMCA (SYMREM171-205) which is 

completely membrane localised in wildtype M. truncatula (Konrad et al., 2014), was 

expressed both transiently in AvrPto-DEX inducible A. thaliana (Fig. 21Q-R) as well as 

in a stable transgenic A. thaliana line with wildtype background (Fig. 21S-T) under 

control of the pUbi promoter. In both cases, the protein showed membrane localisation. 

Nevertheless additional cytoplasmic and nuclear localisation was visible. These data 

confirm the hypothesis that remorin proteins are targeted to the PM primarily via the 

REMCA. Nevertheless, additional regions in the C-terminal part of the protein support 

this localisation, probably via protein-protein interactions. In expression systems lacking 

the full-length protein, complete membrane attachment of a REMCA-only construct is 

obviously not achieved (Fig. 21N, S-T). 
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Fig. 21: Investigation of truncation constructs to determine the role of the different remorin 
protein regions 
REMCA-devoid variants AtREM1.21-183, AtREM4.21-243 , AtREM6.11-1453, and AtREM6.41-384 
localise to the cytoplasm when being expressed under control of the CaMV 35S in leaf epidermal 
cells of N. benthamiana (A-D). Full-length AtREM1.3 (E, G) and AtREM6.1 (F, H) co-localises 
with PM counterstaining with the styryl dye FM® 4-64 both before (E-F) as well as after 
induction of plasmolysis (G-H). No co-localisation was observed between FM® 4-64 and the 
truncated variants AtREM1.31-161 (I) and AtREM6.11-458 (J). 
Additional truncation constructs of AtREM6.4 reveal more details about the functions of the 
protein regions: AtREM6.41-299 localises to the cytoplasm and the nucleus (K) while 
AtREM6.4300-427 is homogeneously distributed over the plasma membrane (L). AREM6.4300-384 
forms long, flexible bundles of filaments (merged with bright field image to show cell boarders) 
(M). AtREM6.4385-427 localises to the plasma membrane but additionally to the cytoplasm and the 
nucleus (N). 
A non-membrane-bound REMCA-construct, AtREM6.4385-427 (C terminally tagged) can be 
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recruited to the PM (O) and even into domains (P) by co-expression with the full-length protein. 
Transient (Q-R) and stable expression (S-T) of the SYMREM-REMCA under control of the 
pUbi promoter in A. thaliana reveals targeting to the membrane (Q-T) but also to the nucleus (S-
T). 
Nuclei are highlighted by red circles (K, N, U). Scale bars indicate 15 µm (A-D, M, O-Q, T) and 
10µm (E-J, K-L, N, R-S). 

1.1.9. Relocalisation 

For most remorin proteins, the localisation pattern in the PM did not change 

significantly over time during microscopy (Fig. 18). Interestingly, for a small number of 

remorins, a significant change in domain size could be observed in a timeframe of 30 

min to one hour after sample preparation (e.g. leaf disc excision and submersion in 

water between object plate and cover slide). Most prominently, this was the case for 

AtREM6.4. Being initially distributed over the membrane in small, distinct, spherical 

domains (Fig. 22A, C), it often relocalised to larger domain clusters (Fig. 22B, D). 

Interestingly, during this process, the membrane area surrounding the domains was 

depleted of the freely diffusing protein fraction, indicating an active recruitment into the 

growing domains over time. Larger domains disintegrated over 4-6 hours. This 

behaviour was independent of the fusion direction, as both C-terminally (Fig. 22A-B) as 

well as N-terminally tagged constructs (Fig. 22C-D) showed this characteristic change 

in localisation. 

Often the C-terminally tagged construct of AtREM6.4 relocalised not only to the above-

mentioned larger domains, but additionally filamentous, network-like structures, which 

appeared similar to cytoskeleton (Fig. 22B). In rare cases, this was also observed with 

the N-terminally tagged construct (Fig. 22D). This indicates either a less stringent 

binding to the PM favours relocalisation to the observed structures, or that the N-

terminal tag is interfering with such attachment. Co-localisation experiments with the 

microtubule marker MAP4 unfortunately remained inconclusive due to aggregation of 

MAP4 upon co-expression with AtREM6.4 (data not shown). 

To investigate, which region of the protein was important for this relocalisation 

behaviour, a truncation construct lacking the N-terminal region of the protein, both 

tagged C- and N-terminally was investigated. These experiments were performed by 

Christina Weiß during a laboratory rotation in frame of her Master studies under my 

supervision. In both cases, no relocalisation was observed, indicating that the N-terminal 

region is essential for protein relocalisation (Weiß, 2013, LMU, Munich).  
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Fig. 22: Relocalisation of C-terminally and N-terminally tagged AtREM6.4 
Relocalisation of C-terminally (A-B) and N-terminally (C-D) tagged AtREM6.4 into bigger 
domains was observed after a timeframe of 30 min to 2 hours of microscopy. pre = before 
relocalisation; post = after relocalisation; Scale bars indicate 10 µm. 

To assess whether stress responses during these experiments caused the relocalisation of 

the AtREM6.4 protein, a number of abiotic stimuli such as wounding, heat, light and 

osmotic stresses were tested. Leaf discs were imaged after cutting or squeezing the leaf 

1 hour prior to microscopy, incubation of the whole plant at 37°C for 30° min, transfer 

to a 300 mol/m2 light chamber for 30 min or water infiltration 1 hour prior to imaging. 

None of the tested treatments yielded in relocalisation prior to microscopy (data not 

shown). Merely the combination of the excision of the leaf disc as well as infiltration 

with water for microscopy resulted in the characteristic change in membrane patterning. 

1.2. Interactions with other proteins 

1.2.1. Remorin proteins are able to both homo- and hetero-oligomerise 

It has been shown before that remorin proteins can form homo-oligomers when being 

purified from plant material or recombinantly expressed in bacteria (Bariola et al., 2004; 

 

 

previously published BiFC data showing both homo and hetero

Reymond et al., 1996). This is supported by results from a yeast-2-hybrid (Y2H) screen,

where remorin hetero- and homo-oligomers were detected (Yamada et al., 1998) as well as

-oligomerisation of the 

SYMREM1 orthologs from M. truncatula and L. japonicus when being ectopically 

expressed in N. benthamiana (Tòth et al., 2012). In previous work (Jarsch, 2009) the 

ability of A. thaliana remorin proteins to form homo- and heterooligomers throughout 

the whole family had already been tested using Bimolecular Fluorescence 

Complementation (BiFC). In this system, interactions between all tested proteins were 

found, indicating a general possibility of hetero-oligomerisation, but also raising doubts 

concerning the specificity of the experimental setup due to the lack of appropriate 

negative controls. To address this question more stringently, a small set of proteins was 

cloned into vectors for a GAL4 Y2H interaction assay. Interestingly, AtREM1.2 and 

AtREM1.3 both formed homo-oligomers, but also interacted with each other (Fig. 23A-

D). Nevertheless, none of the two proteins was able to interact with AtREM3.1 (Fig. 
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23E-F). AtREM3.1 can form homo-oligomers (Fig. 23G), indicating also the 

functionality of the construct. These results show that remorin proteins are able to form 

homo-oligomers as well as hetero-oligomers with closely but not distantly related family 

members. Together with the data obtained from the co-localisation experiments they 

also indicate functional redundancy between similar remorin proteins. 

 

 

Fig. 23: Homo- and heterooligomerisation of AtREMs in yeast 
Remorin proteins are able to form homooligomers in yeast two hybrid assays (A-C, G). Closely 
related remorins hetero-oligomerise (B, D), while interaction between phylogenetically distinct 
proteins could not be seen (E, F). –LW = transformation control on selective dropout medium 
without leucine and tryptophan; –LWH 10 mM 3-aminotriazol = interaction test on selective 
dropout medium without leucine, tryptophan and histidine but supplemented with 10 mM 3-
aminotriazol. 
 

1.2.2. A. thaliana  remorin proteins interact with different receptor kinases  

One of the goals of this work was to identify new interaction partners for A. thaliana 

remorins proteins. Here, remorin proteins were used as tools to identify new players in 

plant–pathogen interaction pathways that act together in signalling complexes at the 

PM. 

In the frame of the presented work, the identification of interaction partners at the PM 

was addressed using a library of GAL4 Y2H clones containing the cytoplasmic domains 

of 55 receptor kinases from A. thaliana that were preselected for putative involvement 

in plant defence (Birgit Kemmerling, University of Tübingen). A targeted screen was 

performed for AtREM1.2, AtREM1.3, AtREM3.1, AtREM3.2, AtREM4.1, AtREM4.2 

and an AtREM6.41-384 construct. The REMCA-devoid construct of AtREM6.4 was 

chosen to increase the fraction of soluble protein in the yeast cytoplasm. Each putative 

interactor was directly co-transformed with the respective remorin construct into the 

yeast strain pJ69-4a by a single transformation reaction. For drop-out selection SD-LW, 

SD-LWH 10 mM 3-AT and SD-LWH 20 mM 3-AT solid media were used. As a 

consequence of the stringent selection conditions, few but strong interactors were 
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identified. All of them were independently confirmed and also tested for putative auto-

activity. Table 3 shows the combined results. 

 

Table 3: Results of a targeted Y2H Gal4 screen for RLKs interacting with AtREMs 
A. thaliana remorin coding sequences (CDS) were fused to the GAL4 activation domain in the 
pGADT7 vector and subjected to a one-to-one screen with 55 RLKs putatively involved in plant 
defence (Birgit Kemmerling). Rows with red background indicate constructs that were found to 
be auto-active in the used experimental conditions; cells marked with 1 indicated the 
combination was successfully tested. Cells with grey background represent weak interactions or 
interactions, which have not been confirmed. Cells in yellow indicate strong interactions, which 
were confirmed in independent repetitions. KDSC = Kinase domain soluble construct 

pGBKT7	   pGADT7	  
	   	   	   	   	   	  

	  
AtREM1.2	  

CDS	  
AtREM1.3	  

CDS	  
AtREM3.1	  

CDS	  
AtREM3.2	  

CDS	  
AtREM4.1	  

CDS	  
AtREM4.2	  

CDS	  
AtREM6.41-‐299	  

CDS	  
At1g51820KDSC	   1	   1	   1	   1	   1	  

	  
1	  

At4g28490KDSC	   1	   1	   1	   1	   1	   1	   1	  

At3g28450KDSC	   1	   1	   1	   1	   1	   	   1	  

At2g13790KDSC	   1	   1	   1	  
	  

1	  
	  

1	  

At5g48380KDSC	   1	   1	   1	   1	   1	   1	   1	  

At1g51860KDSC	   1	   1	   1	   1	   1	   1	   1	  

At1g56140KDSC	   1	   1	   1	   1	   1	   	   1	  

At3g02880KDSC	   1	   1	   1	   1	   1	   	   1	  

At1g51790KDSC	   1	   1	   1	   1	   1	   1	   1	  

At1g09970KDSC	   1	   1	   1	   	   	   	   1	  

At1g17750KDSC	   1	   1	   1	  
	  

1	  
	  

1	  

At5g53320KDSC	   1	   1	   1	   1	   1	   1	   1	  

At1g17230KDSC	   1	   1	   1	   1	   1	  
	  

1	  

At1g34420KDSC	   1	   1	   1	   1	   1	   1	   1	  

At1g55610KDSC	   1	   1	   1	   1	   1	   	   1	  

At1g56130KDSC	   1	   1	   1	   1	   1	  
	  

1	  

At2g13800KDSC	   1	   1	   1	   	   1	   1	   1	  

At1g53420KDSC	   1	   1	   1	   1	   1	  
	  

1	  

At2g41820KDSC	   1	   1	   1	   1	   1	   	   1	  

At2g24130KDSC	   1	   	   1	   1	   1	   	   1	  

At1g67510KDSC	   1	   1	   1	   1	   1	   	   1	  

At1g66830KDSC	   1	   1	   1	   1	   1	   	   1	  

At1g73080KDSC	   1	   1	   1	   1	   1	  
	  

1	  

At1g56120KDSC	   1	   1	   1	   1	   1	   	   1	  

At1g71830KDSC	   1	   1	   1	  
	  

1	   1	   1	  

At1g24650KDSC	   1	   1	   	   	   1	   	   1	  

At5g25930KDSC	   1	   1	   1	   	   1	   	   1	  

At2g25790KDSC	   1	   1	   1	   1	   1	  
	  

1	  

At1g53440KDSC	   1	   1	   1	   1	   1	   	   1	  

At1g51870KDSC	   1	   1	   1	   1	   1	   1	   1	  

At1g51800KDSC	   1	   1	   1	   	   1	   	   1	  

At1g53430KDSC	   1	   1	   1	   1	   1	   1	   1	  

At3g14840KDSC	   1	   1	   1	   1	   1	   	   1	  

At1g12460KDSC	   1	   1	   1	   1	   1	   1	   1	  
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pGBKT7	   pGADT7	   	   	   	   	   	   	  

	  
AtREM1.2	  

CDS	  
AtREM1.3	  

CDS	  
AtREM3.1	  

CDS	  
AtREM3.2	  

CDS	  
AtREM4.1	  

CDS	  
AtREM4.2	  

CDS	  
AtREM6.41-‐299	  

CDS	  
At4g33430KDSC	   1	   1	   1	   1	   1	   	   1	  

At1g69270KDSC	   1	   1	   1	   1	   1	  
	  

1	  

At4g03390KDSC	   1	   1	   	   1	   	   	   1	  

At1g69990KDSC	   1	   1	   	   1	   	   	   1	  

At2g23300KDSC	   1	   1	  
	  

1	   1	   1	   1	  

At3g13380KDSC	   1	   1	   1	   1	   	   	   1	  

At3g56100KDSC	   1	   1	   1	   1	   1	  
	  

1	  

At5g07280KDSC	   1	   1	   1	   1	   1	   	   1	  

At3g25560KDSC	   1	   1	   1	   1	   1	   	   1	  

At1g34210KDSC	   1	   1	   1	   1	   1	   	   1	  

At1g75640KDSC	   1	   1	   1	   1	   1	   	   1	  

At5g59670KDSC	   1	   1	   1	   1	   1	  
	  

1	  

At1g51880KDSC	   1	   1	   1	   	   1	   	   1	  

At3g46370KDSC	   1	   1	   1	   1	   1	  
	  

1	  

At2g31880KDSC	   1	   1	   1	   1	   1	   	   1	  

At3g47580KDSC	   1	   1	   1	   1	   1	   	   1	  

At1g51830KDSC	   1	   1	   1	   1	   1	  
	  

1	  

At1g35710KDSC	   1	   1	   1	   1	   1	   1	   1	  

At3g02130KDSC	   1	   1	   1	   1	   1	   1	   1	  

At5g46330KDSC	   1	   1	   	   1	   	   1	   1	  

At1g51850KDSC	   1	   1	   	   	   1	   1	   1	  

 

Reproducible interactions with RLKs were found for AtREM1.2, AtREM3.1, 

AtREM3.2 and AtREM6.4. Two of these interactors were investigated in more detail. 

One of the most interesting interactions was observed between AtREM1.2 and the LRR-

RLK, At1g53440 (Table 3), which has been shown to be unregulated upon flg22 

treatment (Zipfel, Tübingen, 2006). A T-DNA insertion mutant (Salk_130548.42.45.x) 
was obtained for this gene and preliminary experiments showed a strong insensitivity 

phenotype in seedling growth inhibition assays with flg22. Strikingly, an almost 

identical kinase, At1g53430 was included in the screen, but did not interact with 

AtREM1.2. Additionally both kinases did not interact with AtREM1.3. The further 

phenotypical characterization of both kinases and the investigation of their interaction 

with remorins were carried out by Corinna Hofer in her Master thesis project under my 

supervision (Hofer, 2012). 

Among the eight putative interaction partners found for AtREM6.4, BAK1 (At3g33430) 

was the so far most intensively researched one. This receptor had been independently 

tested for interaction with AtREM6.4 in a Bimolecular Fluorescence Complementation 

(BIFC) approach. Here, four of the most prominent RLKs from A. thaliana, BRI1, 
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BAK1, EFR and FLS2 had been investigated in respect for complex formation with 

remorin proteins in N. benthamiana. While a homogeneously distributed fluorescence 

was observed for BRI1, EFR and FLS2, which eventually represented background 

signal, BAK1 was the only protein interacting in specific laterally stable domains in the 

membrane with AtREM6.4 (Fig. 24A). While testing different truncation constructs 

(Fig. 20) to evaluate the regions of AtREM6.4 essential for interaction with BAK1, even 

an AtREM6.41-384 construct lacking the REMCA showed complex formation in the 

BIFC system. Also here, labelling of laterally immobile membrane domains was visible 

(Fig. 24E), indicating recruitment of the proteins into a BAK1-AtREM6.4 complex in 

specific immobile membrane compartments even independent of membrane binding by 

the remorin protein. 

As a third independent approach, a co-immunoprecipitation experiment was performed 

to verify the interaction of AtREM6.4 and BAK1 in planta. In this case, C-terminally 

tagged remorin constructs were used, as these experiments were performed prior to the 

decision to preferably work with N-terminally tagged constructs. AtREM6.4 C-

terminally fused to YFP was co-expressed with BAK1 fused to a His-HA tag.  

The AtREM6.4-YFP fusion protein was immunoprecipitated using magnetic GFP-

Trap®, and the samples were analysed via Western-Blot for co-bound His-HA-tagged 

BAK1. While AtREM6.4 was generally well detectable after protein-extraction 

procedures where the membrane was kept intact (e.g. in microsomal fractions), 

AtREM6.4 was not detected in crude extracts after procedures using detergents. It was 

concluded that AtREM6.4 aggregated and probably precipitated, as soon as it was 

depleted of its hydrophobic environment. This may be predominantly caused by the 

large intrinsically disordered N-terminal region of the AtREM6.4 protein (Marin and 

Ott, 2012). 

In experiments where AtREM6.4 was successfully immunoprecipitated, co-bound 

BAK1 was visualised via Western blot analysis (Fig. 24F). 

So far, attempts using material from a complemented mutant expressing AtREM6.4 

under control of the endogenous promoter and trying to detect BAK1 with a native 

antibody were not successful, as AtREM6.4 was not detectable in the IP fraction (data 

not shown). 
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Fig. 24: AtREM6.4 interacts with BAK1 in planta 
AtREM6.4 interacted with BAK1 in distinct domains in the plasma membrane when being tested 
in the BiFC system (A). BiFC signal with other receptors displayed a homogeneous distribution 
pattern (B-D). Also an AtREM6.41-384 construct shows interaction with BAK1 in membrane 
domains (E). Full length AtREM6.4-YFP was immunoprecipitated using GFP®-Trap and blotted 
using an α-GFP antibody (F). Bound BAK1-HIS-HA was detected using an α-HA antibody. All 
constructs were expressed in N. benthamiana. Scale bars represent 10 µm. 
 

1.3. Phosphorylation 

1.3.1. Remorins can be directly phosphorylated by receptor kinases 

Remorin proteins interact with receptor kinases at the PM and are differentially 

phosphorylated upon external stimuli (Lefebvre et al., 2010, Tòth et al., 2012, reviewed 

in Jarsch and Ott, 2011, Marin and Ott, 2012). Therefore, the direct phosphorylation of 

remorins by the kinase domain (KD) of BAK1 was tested in an in vitro kinase assay 

(experiments were performed together with Macarena Marín, LMU; purification of 

AtREM6.4 from inclusion bodies as well as refolding was carried out by Macarena 

Marín). BAK1 KD as well as AtREM1.3 and AtREM6.4 were purified from bacteria 

and subjected to in vitro phosphorylation. BAK1 KD showed strong auto-

phosphorylation as well as a weak trans-phosphorylation of AtREM1.3 (Fig. 25). 

Interestingly, although added in amounts almost not visible in the Coomassie Brilliant 

Blue stained SDS-PAGE, AtREM6.4 showed strong integration of radioactivity, 

indicating hyper-phosphorylation by the BAK1 KD (Fig. 25).  
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Fig. 25: In vitro phosphorylation of AtREM6.4 by the BAK1 KD 
BAK1 KD displays strong auto-phosphorylation (lane 1). While AtREM1.3 (lane 2) is only 
weakly phosphorylated, AtREM6.4 shows very strong integration of radioactivity (lane 3). 
Coomassie Brilliant Blue staining shows that equal amounts of BAK1KD have been used. 
 

1.3.2. Investigation of the role of phosphorylation on interaction with RLKs 

AtREM6.4 harbours one annotated in vivo phosphorylation site, threonine 215 (T215), 

which resides in the middle of the intrinsically disordered N-terminal region of the 

protein. Phosphorylated peptides were found both in untreated plants as well as after 

flg22 application (Benschop et al., 2007), indicating a constitutive phosphorylation of 

this residue. Mutations of T215 to glutamate (T215D) and alanine (T215A) were 

performed to create both a phosphomimic as well as a phosphoablative variant of 

AtREM6.4, respectively. Both mutant constructs were overexpressed in N. benthamiana 

to assess, whether subcellular localisation or relocalisation of the proteins was altered. 

These experiments were performed by Christina Weiß during a laboratory rotation in 

frame of her Masters studies under my supervision. 

As no differences in localisation or relocalisation compared to the wildtype protein were 

observed (Weiß, 2013, LMU, Munich), interaction patterns of the mutant proteins with 

BAK1 using the BiFC system were investigated. 

Indeed, when BAK1 was fused to the N-terminal and the AtREM6.4T215A to the C-

terminal half of YFP, interaction did no longer occur in the previously seen laterally 

stable domains, but appeared homogeneously distributed over the PM. By contrast, an 

increase in domains was observed when using the AtREM6.4T215D version. These 

results are to be considered preliminary, as experiments were performed only twice. 
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Fig. 26: Mutations of the annotated phosphorylation site of AtREM6.4, T215, have an 
impact on interaction with BAK1 in membrane domains 
Representative images showing interaction of AtREM6.4 wt and mutant constructs in the BiFC 
system. While the wt (E-H) often displayed interaction with BAK1 in a dotted pattern, this was 
dramatically reduced with the AtREM6.4T215A construct (A-D). AtREM6.4T215D displayed 
even stronger dot-formation than the wildtype construct (I-L). Scale bar = 10 nm. 
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In this part of the study, I was able to show that N-terminally tagged fluorophore fusions 

constructs of remorin proteins label microdomains in the plasma membrane of 0.1 – 0.4 

µm2 size. By quantitative image analysis, I determined differences between these 

domains using domains size, mean domain intensity, circularity and density as 

parameters. I further verified the labelling of diverse membrane domains by remorin 

proteins by a large-scale co-expression analysis, showing that the plasma membrane of 

plants displays a plethora of coexisting membrane compartments. The observed domains 

were laterally immobile and showed dynamic exchange of proteins with the surrounding 

membrane as demonstrated with FRAP experiments. For group 1 remorin proteins, 

domains formation in a tissue-specific manner was shown.  

In the frame of a project in the laboratory to investigate the determinant for membrane 

localisation of remorin proteins I demonstrated that the REMCA region is indeed 

necessary for association of the protein to the PM throughout the whole family. 

Nevertheless, additional factors like protein-protein-interactions are likely to contribute 

to this process. 

Finally, a targeted yeast to hybrid screen yielded several putatively interacting RLKs for 

a subset of the remorin protein family. Two of them were pursued for further 

characterisation, At1g53440 for AtREM1.2 and BAK1 for AtREM6.4. The first one was 

successfully taken up as a separate project by Corinna Hofer. The interaction between 

AtREM6.4 and BAK1 was independently confirmed by BIFC and Co-IP in planta as 

well as by an in vitro kinase assay. 

In remains to be confirmed, whether this interaction as well as the accumulation of the 

protein complex in membrane microdomains is indeed dependent on a phosphorylation 

at residue T215 of AtREM6.4. 
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2. Towards the role of remorin proteins in plant pathogen 

interactions 

The second major part of the here presented work aimed to assess the biological 

function of A. thaliana remorin proteins during plant-microbe interactions. For this, 

mutant lines for a number of the investigated proteins were identified. A subset was 

selected for further phenotypic investigations under different experimental conditions 

focusing on plant-pathogen interactions. 

2.1. Creation of a T-DNA insertion line collection for Arabidopsis 

thaliana remorin proteins 

Designated to provide a broad basis for future systematic genetic approaches on A. 

thaliana remorin proteins, a library of T-DNA insertion lines was created, including 

mutant lines for 11 of the 16 A. thaliana remorin family members. With technical 

assistance by Jessica Folgmann a common workflow for the screening of segregating T-

DNA insertion lines was established. Available T-DNA insertion lines for remorin 

genes provided by the SALK institute were obtained. Plants were grown for seed-

production and subjected to a PCR-based genotyping procedure to identify homozygous 

individuals. A subset of T-DNA-derived PCR-amplicons was sequenced to verify the 

annotated T-DNA insertion site. In total, 13 independent mutant alleles for 11 different 

remorin proteins were identified and brought to homozygosity. SALK insertion lines all 

derive from a Col-0 background. Additionally, one Flag-T-DNA insertion line in the 

Wassilevskija ecotype background for AtREM3.2, Atrem3.2-4, was ordered and brought 

to homozygosity. This ecotype does not harbour a functional FLS2 receptor, 

consequently it is not suitable for flg22-based defence experiments. 

Double mutants were created from Atrem1.2-1 and Atrem1.3-2 as well as from 

Atrem6.4-1 and Atrem6.7-1 by crossing. Additionally, a triple mutant from Atrem1.2-

1/Atrem1.3-2 with Atrem1.4-3 was initiated (now continued by Macarena Marin). 
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Fig. 27: Homozygous T-DNA insertion lines identified for several AtREMs 
Illustration of the structures of the genomic regions of 11 remorin alleles and the sites of the T-
DNA insertion. Blue bars indicate exons, topped space in between introns. The length of the 
different sequences is indicated in number of nucleotides below. Red arrows = insertion sites of 
the T-DNA for given alleles as annotated by the SALK institute. Green arrows = insertion sites 
of the T-DNA for given alleles as identified via sequencing of PCR amplicons derived from the 
T-DNA-border. 

 

2.2. Generation of complemented mutant lines. 

It is crucial to confirm that phenotypes of the identified T-DNA insertion lines were 

caused indeed by a disruption of the respective remorin gene. Therefore, a subset of the 

identified mutant lines, chosen for further phenotypic investigations, were transformed 

with genomic versions of the respective genes fused to YFP to be expressed under 

control of their endogenous promoters. Additionally, these lines were used to verify the 

functionality of fluorophore-tagged fusion constructs. Atrem1.2-2, Atrem1.3-2 and 

Atrem6.4-1 were stably transformed with constructs expressing the protein both with N- 

terminal (e.g. proAtREM:YFP:AtREM) as well as with C-terminal tags (e.g. 

proAtREM:AtREM:YFP). 
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2.3. Phenotypical analysis of remorin mutants 

2.3.1. Experimental approaches 

Defence responses to the model PAMP flg22 are among the best-dissected pathways in 

plant signalling. In the respective mutant lines, each single step of the signalling cascade 

can be experimentally assessed by a variety of well-established assays, in order to 

investigate the position of a protein in the signalling pathway. 

In this study, early responses after PAMP treatment including receptor oligomerisation, 

ROS production and MAPK activation were assessed. 

Additionally, long time responses to PAMPs were tested in a so-called seedling growth 

inhibition (SGI) assay. The SGI assay makes use of the fact that seedlings concentrate 

their resources on growth and development in the absence of pathogens, while the 

perception of a biotic threat causes a reprogramming of their cellular processes. The 

plant ceases to grow but invests in defence. This reaction can be easily assessed by 

measuring fresh weight after incubation with a bacterial elicitor. 

In this part of the project, the focus was put on three specific remorin proteins in two 

independent approaches. AtREM1.2 and AtREM1.3 were chosen, as both proteins or 

their orthologs are transcriptionally regulated during pathogen attack or application of 

bacterial elicitors such as flg22 (Navarro et al., 2004, Coaker et al., 2004). Also, both 

are differentially phosphorylated in an elicitor- or R-gene dependent manner (Benschop 

et al., 2007, Keinath et al., 2010, Widjaja et al., 2009). 

AtREM6.4 was chosen due to its interesting cell biological aspects like domain 

formation and relocalisation and the physical interaction with BAK1. 

None of the plants with mutant alleles associated with AtREM1.2, AtREM1.3 and 

AtREM6.4 had shown a visible growth-related or developmental phenotype. 

2.3.2. Phenotypic analysis of AtREM1.2 and AtREM1.3 during plant-

pathogen interactions 

2.3.2.1. Atrem1.2-1, Atrem1.2-2 and Atrem1.3-2 are knockout mutant lines 

To phenotypically analyse mutant lines of AtREM1.2 and AtREM1.3, each two 

different alleles from the previously created library of T-DNA insertion lines were 

chosen (see chapter 2.1). All four lines were subjected to additional analyses to ensure 

that the plants were true knockout mutants and did not express the native protein. Seeds 
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were germinated on plates and grown for 10 days. For each assay, five whole seedlings 

were pooled and processed for protein separation via SDS-PAGE. Western Blot analysis 

using a group 1 remorin specific, polyclonal antibody (Sylvain Raffaele, LIPM, 

Toulouse) was performed. While no expression of the respective native proteins could 

be detected in Atrem1.2-1, Atrem1.2-2 and Atrem1.3-2, full protein amounts were 

visible in Atrem1.3-1. This line was excluded from further experiments. 

 

 

Fig. 28: Identification of knockout mutants using Western Blot analysis 

Western Blot analysis was performed on crude extracts of 7 days old seedlings using a group 1 
remorin specific antibody. Both in Atrem1.2-1 as well as in Atrem1.2-2, expression of the protein 
is completely abolished compared to the wildtype (lanes 1-3). While this is also the case in 
Atrem1.3-2, full protein amounts are still detectable in Atrem1.3-1 (lanes 4-5). Remorin proteins 
were detected via a group 1 specific, polyclonal antibody (Sylvain Raffaele, Bordeaux). 

2.3.2.2. FLS2 and BAK1 form an intact receptor complex after flg22 elicitation 

AtREM1.2 and AtREM1.3 are among the 10 % highest expressed genes in A. thaliana 

(Raffaele et al., 2007). One idea on the role of AtREM1.2 and AtREM1.3 was, that both 

proteins are essential for membrane compartmentalisation in general, and therefore 

crucial for correct localisation and recruitment of receptor proteins with in the PM. 

Establishment of receptor oligomers is the first known output of ligand perception by 

the plant and can be easily assessed by immunoprecipitation of one player and 

investigation of bound co-receptors by Western-Blot analysis. Consequently, the 

formation of an intact FLS2-BAK1 complex after elicitor treatment was tested in Col-0 

wt, Atrem1.2-1, Atrem1.2-2, Atrem1.3-2 and the Atrem1.2-1/Atrem1.3-2 double mutant 

(Fig. 29A-B). Seedlings were treated with flg22 for 5 min and then subjected to IP of 

either FLS2 (Fig. 29A) or BAK1 (Fig. 29B). Both receptors were detected in high 

amounts in the IP fraction by Western Blot analysis. While co-immunoprecipitation of 

the respective co-receptor was not visible before flg22 treatment, dimerization was 

shown after elicitation for all lines. No difference in receptor complex formation was 

detected between wt and mutant lines. These results indicate that FLS2-BAK1-

dimerisation upon flg22 perception is independent on group 1 remorin proteins. 
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Fig. 29 The FLS2-BAK1 receptor complex forms normally in group 1 mutant lines after 
flg22 treatment 
Immunoprecipitation of FLS2 (A) and BAK1 (B) from A. thaliana seedlings treated with H2O (-) 
or 100 nM flg22 (+) for 5 min. Both receptors can be detected in high amounts in the IP fraction. 
No co-immunoprecipitation of the respective partner for the receptor complex can be detected in 
water treated samples. After flg22 treatment, both FLS2 and BAK1 are co- immunoprecipitated. 
No difference to Col-0 wt was determined for group1 mutants (A-B). dm1.2/1.3 = double mutant 
Atrem1.2-1/Atrem1.3-2. 

2.3.2.3. The production of reactive oxygen species is unaltered in group 1 

mutant lines 

After receptor dimerization, another ultimate early response of the plant immune system 

is the production of reactive oxygen species on the leaf surface. Acidification of the 

extracellular space is both a direct measure of pathogen elimination as well as a signal 

for further downstream responses of the plant cell (Miller et al., 2009). The occurrence 

of the oxidative burst upon flg22 treatment can be measured using an HRP/luminol 

assay. H2O2 production is detectable about 2 min after elicitation with a maximum at 10 

min after a rather steep rise. The response curve then decreases in a gentle slope and 

reaches background level after 30 min. Total photon counts are calculated over the 

whole time of the measurement, ranging from 0 to 30 min after elicitation. 
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Fig. 30: Reactive oxygen production is not altered in group1 mutant lines after elicitor 
treatment 
Total photon counts from ROS burst measurements. Atrem1.2-1 and Atrem1.2-2 (A, C, E) as 
well as in Atrem1.3-2 and the Atrem1.2-1/Atrem1.3-2 double mutant (B, D, F) were compared to 
Col-0 wt both with (+) and without (-) elicitor treatment. Tree different elicitors were tested; 
flg22 (A-B), elf18 (C-D) and chitin (E-F). No difference between the different lines was 
detected. n = 32; error bars represent standard error between biological replicates. 



Results 

 106 

 

Col-0 wt, Atrem1.2-1, Atrem1.2-2, Atrem1.3-2 and the Atrem1.2-1/Atrem1.3-2 double 

mutant were investigated in collaboration with the lab of Cyril Zipfel, Norwich. Here, 

three different elicitors were tested, namely flg22 (Fig. 30A-B), elf18 (Fig. 30C-D) and 

chitin (Fig. 30E-F). All experiments were repeated four times independently. No 

significant difference between the mutant lines and the wildtype were observed. 

2.3.2.4. MAP kinase activation 

The activation of the MAPK cascade after flg22 and elf18 treatment was tested for 

Atrem1.2-1, Atrem1.2-2, Atrem1.3-2 and the Atrem1.2-1/Atrem1.3-2 double mutant in 

comparison to Col-0 wild type. Phosphorylation status of the proteins was investigated 

0, 5, 10 and 30 min after application of the elicitor. In the wildtype plants, little 

phosphorylation was detectable at time-point 0. The phosphorylation status increased 

after 5 min and reached its maximum 10 min after elicitation. After 30 min, the 

activation started to decrease. So far, no clear defect in activation of this signalling 

pathway was detected in the tested remorin mutants (Fig. 31). Yet, the Atrem1.2-

1/Atrem1.3-2 double mutant showed a slightly increased phosphorylation after 30 min in 

both treatments. To closer investigate a possible deregulation, repetitions of this 

experiment will be performed with samples from more time points and including the 

Atrem1.2-1/Atrem1.3-2/Atrem1.4-3 triple mutant. 

 

 

Fig. 31: MAPK activation is not reduced in group 1 mutant lines 
Western Blot analysis to detect MAPK phosphorylation in group1 mutant lines compared to 
wildtype after flg22 and elf18 treatment. Samples were harvested 0, 5, 10 and 30 min after 
elicitation. Phosphorylation of proteins was visualized using an α-P-p44/42 MAPK rabbit 
(T202/Y204) antibody. n = 12. 
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2.3.2.5. Seedling growth inhibition 

Seedling growth inhibition assays were carried out with Atrem1.2-1, Atrem1.2-2, 

Atrem1.3-2 and the Atrem1.2-/Atrem1.3-2 double mutant in comparison to Col-0 

wildtype. Flg22 concentrations of 10 nM, 100 nM and 1 M were used. While growth 

of the flg22-insensitive fls2 mutant was unaltered, wt and group 1 mutant lines showed 

similarly strong growth inhibition correlating with elicitor concentrations.  

 

Fig. 32: Seedling growth inhibition is unaltered in group 1 mutant lines after flg22 
treatment 
Seedlings were transferred to liquid MS containing different concentrations of flg22 7 days post 
germination. After two weeks of incubation, fresh weight was determined. No significant 
differences between rem lines and wt were determined. n = 18. Red stars indicate significant    
differences fls2 compared to the wt with p<0.01; error bars represent standard error between
biological replicates. 
 

2.3.2.6. Investigation of remorin mutant lines for phenotypes after infection 

with Pseudomonas syringae 

After the evaluation of several specific cellular outputs of elicitor recognition by the 

plant through RLKs in remorin mutant plants, the overall susceptibility towards plant 

pathogens was tested by infection with P. syringae DC3000 strains. By application of 

the wildtype bacterial strain and subsequent analysis of infection success by assessment 

of bacterial proliferation, the combined effects of PTI and ETI can be investigated. By 

using mutant strains of the bacterial pathogen, again a differentiation in defence 

processes coinciding with the different steps of the infection can be archived. In this 

study, a P. syringae strain lacking the bacterial effector molecule coronatin (PtoDC3000 
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Cor-) was used. This substance is produced by the microorganism to trigger the 

reopening of plant stomata, a step essential to invade the intercellular space (Melotto et 

al., 2006). While Atrem1.2-1, Atrem1.2-2 and Atrem1.3-2 did not show a significant 

difference in infection strength by the pathogen, the Atrem1.2-1/Atrem1.3-2 double 

mutant displayed a weakly but significantly higher susceptibility compared to the 

wildtype. Due to the weak phenotype, it was decided to include the Atrem1.2-

1/Atrem1.3-2/Atrem1.4-3 triple mutant, which is currently in segregating T1, before 

investing further in group 1 phenotyping. The lack of differences after PtoDC3000 Cor- 

infection indicated that any differences observed with the virulent stains are depending 

on processes happening independent of stomatal closure and eventually after the 

pathogen enters the leaf. 

 

Fig. 33: The Atrem1.2-1/Atrem1.3-2 double mutant (dm) shows a moderate but significantly  
increased susceptibility towards infection with P. syringae pv. PtoDC3000 
The Atrem1.2-1/Atrem1.3-2 dm displays higher bacterial infection after spay-inocculation with  
PtoDC3000 (A). The phenotype is not visible after infection with PtoDC3000 Cor- (B). n = 4, p 
= 0.05; error bars represent standard error between biological replicates. 
 

2.3.3. Investigation of AtREM6.4 function in BAK1-related biological 

processes 

2.3.3.1. Atrem6.4-1 is a knockout mutant line 

Similar to the above-described analysis of the group1 remorin mutant lines for native 

gene expression prior to phenotypical investigations, Atrem6.4-1 was tested for 

expression of AtREM6.4. As no antibody was available for AtREM6.4, transcript levels 

were determined in seedlings in collaboration with Susan Urbanus (LMU Munich). 

Primers for a 70 bp sequence spanning the junction of the fist and the second exon were 

used for q-RCR. Expression was normalized to transcript levels of ubiquitin. While 
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AtREM6.4 transcript was detected in whole Col-0 adult rosette leaf material, no 

expression was quantified in the same tissue of the Atrem6.4-1 line. These data show 

that these plants are indeed knockout mutants. 

 

Fig. 34: AtREM6.4 transcript is not detectable in Atrem6.4-1 mutants 

AtREM6.4 transcript levels were determined in wildtype and Atrem6.4-1 whole leaf tissue of 3 
week old plants. No AtREM6.4 transcripts were detected in the mutant line. n = 2; error bars 
represent standard error between biological replicates. 

2.3.3.2. FLS2-BAK1 interaction after flg22 elicitation is unaltered in Atrem6.4-1 

It was shown previously that BAK1 forms an interaction with AtREM6.4 in planta (Fig. 

24), which may be dependent on the phosphorylation of a specific residue in the N-

terminal region of the remorin (Fig. 26). As a co-receptor of several known RLKs, 

BAK1 is heavily regulated by co-bound proteins (see introduction). As it was likely that 

the interaction of the remorin protein with BAK1 is constitutive, it was of interest, 

whether AtREM6.4 is modulating BAK1 recruitment to the FLS2 complex. Similar to 

the group 1 mutant lines, this was tested via a co-immunoprecipitation approach. 

Atrem6.4-1 as well as the putatively complemented line carrying the 

proAtREM6.4:YFP:AtREM6.4 construct were tested for alterations in BAK1-FLS2 

receptor complex formation after flg22 treatment (Fig. 29C). BAK1 was 

immunoprecipitated from flg22 treated 2 weeks old seedlings. Co-immunoprecipitation 

of FLS2 was analysed by Western Blot. No changes between wildtype and mutants 

could be detected. These results indicate that receptor-interaction upon flg22 perception 

is unaltered in the Atrem6.4-1 line and therefore independent of AtREM6.4. A second 

possibility would be redundancy between related remorin proteins and AtREM6.4. 
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Fig. 35 The FLS2-BAK1 receptor complex forms normally in Atrem6.4-1 after flg22 
treatment 
Immunoprecipitation of BAK1 from A. thaliana seedlings treated with H2O (-) or 100 nM flg22 
(+) for 5 min. BAK1 can be detected in high amounts in the IP fraction. No co-
immunoprecipitation of FLS2 can be detected in water treated samples. After flg22 treatment, 
both FLS2 is co- immunoprecipitated. No difference to Col-0 wt could be determined for 
Atrem6.4-1 or proAtREM6.4:YFP:AtREM6.4/Atrem6.4-1. Atrem6.4-1 compl. = 
proAtREM6.4:YFP:AtREM6.4/Atrem6.4-1. 

 

2.3.3.3. The production of ROS after flg22 treatment is reduced in Atrem6.4-1 

plants 

Similarly to the group 1 mutant lines, Atrem6.4-1 was subjected to a ROS burst assay to 

assess immediate downstream signalling events after receptor dimerization. Col-0 wt, 

fls2, Atrem6.4-1 as well as both a proAtREM6.4:AtREM6.4:YFP/Atrem6.4-1 line and a 

proAtREM6.4:YFP:AtREM6.4/Atrem6.4-1 were tested. 

Atrem6.4-1 shows a significant reduction in ROS production (Fig. 36A-B), which could 

not be complemented by the C-terminally tagged AtREM6.4 construct in 

proAtREM6.4:AtREM6.4:YFP/Atrem6.4-1 (Fig. 36A). 

In contrast, the proAtREM6.4:YFP:AtREM6.4/Atrem6.4-1 line expressing the N-

terminally tagged version of AtREM6.4 showed recovery of the wildtype phenotype 

(Fig. 36B), indicating complementation and therefore biological functionality of this 

construct. These results indicate that ROS production upon flg22 elicitation is dependent 

on AtREM6.4. 
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Fig. 36: Atrem6.4-1 is impaired in ROS burst after flg22 elicitation 
Measurements of oxidative burst after flg22 elicitation over a timeframe of 30 min. Atrem6.4-1 
shows a clear decrease in H2O2 production (A-B). While the homozygous 
proAtREM6.4:AtREM6.4:YFP/Atrem6.4-1 line does not display a difference to the 
mutant line (A), the segregating proAtREM6.4:YFP:AtREM6.4/Atrem6.4-1line shows 
partial complementation (B). These results indicate functionality of the N-terminally 
tagged construct. n = 24; error bars indicate standard error between biological replicates, 
 

2.3.3.4. Atrem6.4-1 displays higher susceptibility towards infection with P. 

syringae pv. Pto DC3000 compared to Col-0 wt 

Experiments carried out with isolated PAMPs indicated a defect of Atrem6.4-1 knockout 

mutants in ROS production after elicitation, but not for other investigated early defence 

responses. To confirm these data, also Atrem6.4-1 were infected with P. syringae to 

assess a putative phenotype of the plants during a challenge by a true plant pathogen. 

Here, only the virulent strain P. syringae pv. PtoDC3000 was used.  
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Atrem6.4-1 reproducibly showed a significant difference compared to the wildtype after 

infection with P. syringae. In all repetitions, the mutant was more susceptible and 

showed higher growth rates of the bacteria. The phenotype could be described as 

intermediate to the one of the fls2 receptor mutant. 

Also, two homozygous proAtREM6.4:YFP:AtREM6.4/Atrem6.4-1 lines showed a 

phenotype comparable to the wildtype. These results show that the observed differences 

are caused by the knockout of the AtREM6.4 gene as well as prove the functionality of 

the N-terminally tagged fluorophore fusion of the AtREM6.4 protein. 

 

 

Fig. 37: Atrem6.4-1 is more susceptible to infection with P. syringae pv. PtoDC3000 

Atrem6.4-1 displays higher bacterial infection after were spay-inoculation with PtoDC3000. The 
phenotype is intermediate to the one of the fls2 receptor mutant in comparison to Col-0 wt (A). 
Two homozygous proAtREM6.4:YFP:AtREM6.4/Atrem6.4-1lines (Atrem6.4-1 compl.) 
complement the phenotype (B). n = 8, p = 0.05; error bars represent standard error between 
biological replicates. 

 

2.3.3.5. Investigation of Atrem6.4-1 for defects in brassinolide signalling 

BAK1 is a co-receptor of both BRI1 and different pattern recognition receptors 

including FLS2 (reviewed in Chinchilla et al., 2009). Therefore it is involved in plant 

defence as well as in growth and development. As AtREM6.4 is interacting with BAK1 

and the Atrem6.4-1 knockout mutant shows a higher susceptibility towards plant 

pathogens, it was of major interest, whether an additional alteration in brassinolide 

perception could be observed. Atrem6.4-1, proAtREM6.4:YFP:AtREM6.4/Atrem6.4-1 
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and wildtype plants were subjected to a root growth inhibition assay using 1nM 

brassinolide. Perception of externally applied brassinolide leads to growth inhibition in 

young seedlings. Root length was measured in seven days old seedlings. No significant 

difference between the tested lines were observed comparing non-treated to treated 

plants (Fig. 38). So far obtained data indicates that AtREM6.4 is involved plant defence 

specific processes involving BAK1. 

 

 

Fig. 38: Atrem6.4-1 does not display altered reactions to brassinolide treatment 
Atrem6.4-1 seedlings do not show alterations in reaction to treatment with brassinolides 
compared to Col-0 wt. Root length was measured 7 days post germination on brassinolide 
containing medium. n = 30; error bars represent standard error between biological replicates. 
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A phenotypic investigation of remorin mutants from group one revealed that Atrem1.2 

and Atrem1.3 single knockout mutants as well as a Atrem1.2/Atrem1.3 double mutant do 

not show a specific phenotype for several early steps of PTI after flg22 and/or elf18 or 

chitin elicitation. The dimerization of FLS2 and BAK1 as well as the ROS burst and 

MAPK activation are likely to be independent of group 1 remorin proteins. 

Nevertheless, a slightly but significantly increased susceptibility towards the virulent 

form of the plant pathogen P. syringae was observed. 

While receptor dimerization upon flg22 application seems to be also independent of 

AtREM6.4, the Atrem6.4-1 mutant line showed a significantly reduced production of 

reactive oxygen species upon elicitation. Also, the infection with P. syringae pv. 

PtoDC3000 resulted in a significantly higher bacterial proliferation on the mutant line 

compared to the Col-0 wt.  

A stable transgenic line expressing AtREM6.4 C-terminally fused to YFP under control 

of its putative native promoter in the Atrem6.4-1 mutant background did not display the 

wildtype phenotype. Yet, a similar construct with AtREM6.4 tagged N-terminally was 

able to complement both the ROS as well as the infection phenotype. 

Referring to the previously shown interaction of AtREM6.4 with BAK1, the 

involvement of AtREM6.4 in brassinolide signalling was investigated. No difference 

between the mutant line and Col-0 wildtype was found. 
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 Discussion 

1. A global approach to investigate the cell biological 

aspects of remorin proteins provides insights into their 

possible biological function 

1.1. Remorins are marker proteins for a multitude of coexisting, 

laterally stable membrane domains 

As the critical view on investigation of membrane compartmentalisation by biochemical 

methods such as DRM extraction has been rising over the recent years, life cell imaging 

based approaches turned out to be methods of choice to assess membrane domain 

diversity in living cells. A number of cell biological studies revealed domain 

localization of PM-associated proteins such as Remorins (Lefebvre et al., 2010; Raffaele 

et al., 2009), Flotillins (Haney and Long, 2010; Li et al., 2012), the potassium channel 

KAT1 (Sutter et al., 2006; Reuff et al., 2010), the anion channel SLAC1 HOMOLOG3 

(SLAH3) (Demir et al., 2013), the LysM receptor LYK3 (Haney et al., 2011) the 

NADPH oxidase RBOHD (Lherminier et al., 2009), and the exocyst protein SECA3 

(Zhang et al., 2013). So far, all studies in plants were restricted to the analysis of in- 

dividual proteins or a single protein pair. The co-existence of domains with diverse 

protein populations was first shown with the LYK3 – FLOT4 pair in M. truncatula, 

which localises to different membrane compartments prior to ligand binding (Haney et 

al., 2011). In agreement with its proposed function as a scaffold protein, the flotillin 

then co-localises with the previously mobile domains of the receptor, putatively acting 

as a enhancer of domain platform assembly and mediating anchoring of membrane 

domains to the cytoskeleton (Langhorst et al., 2007). 

Recently, a broad approach using 49 membrane-localised proteins in yeast has 

demonstrated the dynamic and diverse membrane domain landscape in single cell 

organisms (Spira et al., 2012). Also, the tendency of proteins with similar structure and 

putatively related functions in overlapping domains was shown, indicating that certain 

types of membrane domains may serve in specific biological processes. 

During my doctorate, I demonstrated the co-existence of different membrane 

compartments in living plant tissue for the first time (Fig. 13, Fig. 14, Table 2). Taking 

advantage of the diversification of remorin proteins in A. thaliana, a number of 

constructs were created, which can serve a as marker-set for diverse membrane 
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compartments. Quantitative image analysis allowed the specific characterisation of 

theses domains, defining parameters like size, shape and even extent of protein 

accumulation (Fig. 11). Kymographs showed both that these domains are mostly 

laterally immobile, but also that they persist at least over a timeframe of 20 min (Fig. 

18). Nevertheless, dynamic changes in size and shape as well as domain clearance and 

constitution of new domains were observed (Fig. 18). It can be concluded that the 

observed membrane compartments are not equal to the previously described membrane 

rafts in mammalian cells. The latter are by now considered to be only a few nm large 

and highly mobile, coming down to single protein complexes surrounded by a specific 

lipid shell (Anderson and Jacobson, 2002; Edidin et al., 2003; Simons and Gerl, 2010; 

Spira et al., 2012). In contrast, the domains observed for remorin proteins rather fit to 

what is commonly described as a “raft cluster”, where single rafts connect via protein-

protein interactions and association to the cytoskeleton (Lingwood and Simons, 2010; 

Tanner et al., 2011). Consequently, it can be hypothesized that also in plants smaller 

rafts in sizes below the resolution of confocal imaging may exist. Indications for that are 

provided by the data obtained for AtREM1.2 and AtREM1.3 via FRAP (Fig. 15) and 

TIRFM (Jarsch et al., 2014). It remains to be determined, whether the non-domain-

bound, freely diffusing protein fraction of other remorin proteins is also organized in 

similar, small, highly mobile domains. If this were the case, those smaller domains 

would be dynamically recruited to structures providing lateral immobility for the 

development of microdomain clusters as described for several plant and fungal proteins 

(reviewed by Tanner 2011). This hypothesis is supported by results from this work 

showing dynamic exchange of proteins between the membrane domain and the 

surrounding non-bound protein fraction (Fig. 19). 

It can be assumed that the diverse membrane domains labelled by remorin proteins 

indeed contain a specific set of proteins required for different cell biological processes at 

the PM. In this case, remorins represent a unique marker-set for the purpose of 

investigating the events in individual membrane compartments connected to specific 

cellular functions. Recent results by Demir and colleagues, who showed that the slow 

anion channel 1 homolog 3 (SLAH3) is recruited to domains labelled by AtREM1.3 by 

the calcium-dependent protein kinase 21 (CPK21), support this hypothesis (Demir et al., 

2013). Even more interestingly, the function of the channel is impaired when being 

localised to membrane areas apart from the described AtREM1.3 labelled domains. 

These experiments are a first step into an effective use of remorin proteins as markers 

for distinct membrane domains in planta. 
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Interestingly, the observed membrane domain localisation for AtREM1.2 and 

AtREM1.3 in A. thaliana leafs shown by Demir and colleagues could not be seen in the 

here presented study. This may be the case due to the different treatment of plants (e.g. 

cell bombardment with gold-particles in the described case) (Demir et al., 2013). 

It can be taken for certain that the diversity in membrane compartmentalisation observed 

with remorin proteins as markers is only a tiny proportion of the diversity of domains 

that may actually exit in plant plasma membranes. The true situation is bound to be 

tremendously more complex! 

1.2. Remorin proteins attach to the membrane via two mechanisms 

It has been a long lasting debate, whether and if so, how remorin proteins bind to the 

membrane and if this is taking place via direct interaction with lipids or protein-protein 

interactions. Recent results from experiments performed mutant version of StREM1.3 in 

N. benthamiana showed that both a deletion as well as heavy mutations in the last 35 

amino acids lead to the loss of membrane attachment, indicating that this far C-terminal 

region of the remorin is essential for membrane localisation (Perraki et al., 2012a). It 

was hypothesised, that remorin proteins bind to the membrane in a two-step process, 

establishing a first association via a stretch of amino acids forming an amphipatic-like 

helix when being exposed to lipid environment. This stretch lies just in front of the last 

few hydrophobic aminoacids, which consequently insert directly into the lipid bilayer, 

stabilizing the interaction and binding the protein strongly to the membrane (Perraki et 

al., 2012a). To confirm these results, truncated versions of several remorin proteins from 

the different phylogenetic groups have been analysed in this study, demonstrating that 

indeed the REMCA is the main determinant for membrane localisation of remorin 

proteins (Fig. 21). The expression of the REMCA N-terminally fused to fluorophores 

showed also that this part of the protein conducts their localisation to the PM (Fig. 21). 

Yet, the model presented by Perraki and colleagues was inconsistent with recent studies 

on S-acylation (formerly palmitoylation), showing that at least AtREM1.2 and 

AtREM1.3 bear this post-translational lipid-modification at the very last cysteine 

residues, suggesting a additional, if not controversial mechanism of the REMCA 

function (Hemsley et al., 2013). A profound investigation into S-acylation in remorin 

proteins from our lab demonstrated now, that this mechanism is indeed a common 

means of remorin membrane association. Probably it is even the main means of the 

plasma membrane specificity of their localisation, as S-acylation is likely to be 

conferred after initial membrane association by a plasma membrane resident PROTEIN 

ACYL TRANSFERASE (PAT) (Konrad et al., 2014). This reversible modification may 
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also provide the necessary dynamic needed for signalling at the plasma membrane but 

also for a putative role in the nucleus (Marin et al., 2012). 

A prominent example for S-acylated proteins involved in signalling at the plasma 

membrane are small GTPases of the Rho of plants (ROP) family. Rho6, which plays a 

role in abscisic acid signalling, is rapidly S-acylated upon stimulation and is enriched in 

DRM fractions upon activation (Sorek et al., 2010). 

Still, the observation has been made that the REMCA does not entirely bind to the PM 

when being expressed in a background lacking the respective full-length protein (Fig. 

21). This indicates that an initial contact to the PM via protein-protein interactions may 

be necessary for the S-acylation event performed by membrane resident enzymes 

(Bharadwaj and Bizzozero, 1995). This hypothesis has been strengthened by the 

demonstration that an AtREM6.4 REMCA construct, which had lost membrane 

association due to a C-terminal tag, could be fully relocalised to the PM and even into 

domains by coexpression with the full length protein (Fig. 21). Additionally, an 

AtREM6.4 construct lacking the REMCA could be observed to associate with an 

interacting receptor kinase in membrane domains in the BiFC system despite the 

deletion of the membrane attachment region (Fig. 24). So far obtained data indicate that 

remorin proteins connect to the PM both via S-acylation and protein-protein 

interactions, explaining that their binding strength in washing experiments was close to 

transmembrane proteins (Perraki et al., 2012a). Yet, the membrane attachment 

mechanism is not sufficient to confer membrane domain specificity, as the REMCA 

alone does not localize to defined membrane compartments (Konrad et al., 2014). 

1.3. The N-terminal region of the protein plays a role in formation 

of membrane domains and relocalisation 

While the terminal amino acids of remorin proteins are indispensible for tight membrane 

attachment via S-acylation, it is quite obvious that such a specific modification cannot 

be the causative principle for localisation into distinguishable domains. Here, truncation 

constructs of SYMREM1 and AtREM6.4 have shed light on the role of the different 

protein regions. While the REMCAs of SYMREM1 or AtREM6.4 does not localise to 

visible domains, also the C-terminal region alone does not label any membrane 

compartments above confocal resolution. It seems that the N-terminal region is required 

for domain formation in this case (Fig. 21). Also, relocalisation into larger 

compartments as observed for full length AtREM6.4 seems to be dependent on the 

presence of the N-terminal region (Christina Weiß, 2012). This is in agreement with 

results for AtREM3.1, one of the two remorin proteins which do not contain a protein 
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region comparable to the N-termini of the other family members, and which does also 

not form visible domains. These results stand in contrast to the domain formation 

observed for the other remorin protein lacking a N-terminal region, AtREM3.2. Still, 

considering that AtREM3.2 labelled domains do not co-localise with any other domain 

containing remorin proteins, it may well be that AtREM3.2 forms those domains 

interacting with a completely unrelated membrane domain protein via its coiled-coil. 

It has recently been demonstrated that the N-terminal region of AtREM1.3 plays a role 

in regulating protein-protein interactions (Marin et al., 2012). The hypothesis that it 

functions as a regulatory domain is strengthened by the findings that it includes many 

post-translational modifications and molecular recognition features (MoRFs) (Marin and 

Ott, 2012; Marin et al., 2012). Data obtained in the here presented study is not sufficient 

to show which of the two following hypothesis may be correct: 

1. The N-terminal region is essential for correct localisation to membrane domains 

via protein-protein interactions. 

2. 2. The N-terminal region also regulates domain constitution and clustering in a 

stimulus-dependent manner. Its intrinsic disorder and its flexible nature can 

confer dynamism to protein-protein interactions and therefore to domain 

formation itself. 

1.4. Remorin proteins – phosphorylation dependent scaffold 

proteins for RLKs 

The importance of phosphorylation for remorin signalling has been postulated for long. 

It has been described that remorins are differentially phosphorylated upon external 

stimuli in potato (Farmer et al., 1989; Reymond et al., 1996) and A. thaliana (Benschop 

et al., 2007; Widjaja et al., 2009). Furthermore, it was shown in L. japonicus that 

SYMREM1 can be phosphorylated in vitro by the kinases it interacts with in vitro (Tóth 

et al., 2012). Yet, it has not been experimentally proven that phosphorylation of certain 

residues has a biological function, until recent works showed that phosphorylation of 

S66 in the otherwise intrinsically disordered N-terminal region of AtREM1.3 decreases 

the interaction with importin α proteins (Marin et al., 2012). 

Additionally to those sites mapped after external stimulation, a great number of 

phosphorylated residues have been found in the control (non-stimulated) condition, 

indicating constitutive phosphorylation of large stretches in the N-terminal region of 

remorin proteins (reviewed in Marin and Ott, 2012). 
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In independent studies, AtREM1.2 and AtREM1.3 have been demonstrated to be 

phosphorylated upon flg22 application (Benschop et al., 2007) as well as to be recruited 

to DRM fractions, similar to the flg22 receptor FLS2 itself (Keinath et al., 2010). In 

another study, flg22 application has been shown to induce decreased mobility of the 

FLS2 receptor, suggesting a change in submembraneous localisation and protein-protein 

or protein-lipid interactions upon receptor activation (Ali et al., 2007, Ali and Reddy, 

2008). This behaviour is reminiscent of observations made for the already introduced 

flotillin proteins and the putative Nod factor receptor LYK3 in M. truncatula. Both 

proteins localise in mobile punctate structures in the PM when being co-expressed as 

fluorophore tagged constructs in M. truncatula roots. Interestingly, the proteins do not 

co-localise until stimulation of the root with NF or Sinorhizobium meliloti. While the 

full-length fusion proteins then label co-localising immobile domains, FLOT4 mis-

localisation is observed in a LYK3 kinase-dead mutant line. These results indicate that 

the observed relocalisation process is dependent on phosphorylation events downstream 

of LYK3 and has been interpreted to serve regulatory functions during signalling 

(Haney et al., 2011). Nevertheless, experiments, which show whether a tagged version 

of the kinase dead protein would still co-localise with FLOT4, or whether FLOT4 is 

directly phosphorylated by LYK3 have not been performed. 

In this study, direct phosphorylation of AtREM6.4 but not AtREM1.3 by the BAK1 

kinase domain has been demonstrated in vitro (Fig. 25). Also, both proteins interact 

(directly or indirectly) in planta, as shown by BIFC and Co-IP experiments (Fig. 24). 

Interestingly, the BiFC signal for the AtREM6.4 – BAK1 protein complex was 

concentrated in membrane microdomains (Fig. 24). Moreover, a decrease in domain 

formation in BiFC has been observed, when using a phosphoablative mutant construct 

of AtREM6.4 (Fig. 26). Consistently, the reverse effect was seen when performing the 

same experiment with a phosphomimic mutant version of AtREM6.4, where more 

domains were observed (Fig. 26). 

It can be hypothesized that phosphorylation at certain residues of remorin proteins 

regulates interaction with other proteins. The phosphorylation at T215 of AtREM6.4 

may be a positive regulator of the complex-formation with BAK1. Data obtained from 

phosphoproteomic analyses before and after flg22 elicitation suggest this 

phosphorylation is constitutive. It remains to be analysed, which additional residues are 

phosphorylated by BAK1 after stimulation. Current working models are that these 

modifications result in conformational changes either providing further interactions sites 

to recruit downstream signalling components or stabilizing existing complexes and the 

subcellular localisation in microdomains. 
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Interestingly, the above-mentioned works from Demir and colleagues described group 1 

remorins in distinct, completely immobile domains that also did not recover after FRAP 

treatment in N. benthamiana (Demir et al., 2013). In this study, a localisation of 

AtREM1.2 and AtREM1.3 in small, highly mobile domains below confocal resolution 

was observed (Fig. 15). Domain formation was shown to occur occasionally in a 

putatively tissue or stimulus-dependent manner in the hypocotyl of six days old 

seedlings. Also, for many other remorin protein investigated for domain persistence, 

domains appearance, changes in size and form as well as domain clearance were 

demonstrated (Fig. 18). Additionally, dynamic exchange of proteins between domains 

and the surrounding membrane was observed in FRAP experiments, as well as 

additional relocalisation for AtREM6.4 (Fig. 22). These findings fortify the idea, that 

labelling of membrane microdomains by remorin proteins is stimulus-dependent. In 

cases where these membrane compartments are always visible, these stimuli may be 

constitutively present. In the case of group 1, the biological processes requiring domain 

formations seem to be more dynamic, and the constitution of membrane compartments 

is restricted to specific tissues under certain conditions. 

Dynamic rearrangements in the plasma membrane under certain biological conditions 

have not only be shown for the already mentioned case of FLOT4 and LYK3 in M. 

truncatula which label a shared, laterally immobile membrane compartment after NF 

treatment (Haney et al., 2011). Also PIN3, one of the previously mentioned auxin efflux 

carriers with a role in tropism was observed to relocalised to a different subcellular 

membrane domain in response to changes in gravity (Friml et al., 2002b). Recent studies 

demonstrated the alteration of the localisation of the RESPIRATORY BURST 

OXIDASE HOMOLOG D (RBOHD) in membrane domains upon different treatments 

(Hao et al., 2014). Being initially distributed in small, dynamic spots with 

heterogeneous diffusion coefficients addition of a NADPH inhibitor caused a significant 

reduction in mobility coinciding with reduced oligomerisation state. By contrast, an 

activation of RBOHD by Ca2+ addition or phosphorylation increased both the diffusion 

coefficient as well as the dimerization state, an observation which could be repeated by 

treatment with salt. Here, RBOHD also visibly accumulated in larger membrane 

compartments prior to endocytosis (Hao et al., 2014). 

As discussed before, the question of the influence of remorin proteins on domain 

constitution and/or maintenance has not been solved in this study. The direct role of 

several lipid species (mainly sterols) in membrane compartmentalisation and especially 

localisation of certain proteins in their specific submembranous location has been 

demonstrated impressively with mutant strains both in yeast (Grossmann et al., 2006; 



Discussion 

 122 

Bagnat and Simons 2002a, 2002b) and in plants (Diener et al., 1000; Willemsen et al., 

2003; Souter et al., 2002; Sutter et al., 2006). By contrast, scientific evidence of the 

determinating role of the presence of one specific protein in the formation of a specific 

domain is still missing. The best means to addressing the function of a protein in 

membrane compartmentalisation so far is the investigation of lipid organization by 

Laurdan (6-Dodecanoyl-2-Dimethylaminonaphthalene) – staining. Laurdan integrates 

specifically in membrane areas of increased order, providing the possibility to 

investigate differences in lipid order between samples by 2-photon microscopy 

(Bagatolli and Gratton, 2000; Gaus et al., 2003). Laurdan staining has been used 

successfully in a recent study to visually investigate lipid packing and dynamics in the 

oligodendroglial plasma membrane (Fitzner et al., 2006). Here, it was shown that 

neurons induce a dramatic lipid condensation at the oligodedroglial membrane, forming 

a domain which is enriched both in cholesterol as well as in galactosylceramide. This 

change in lipid organisation was not observed in mice mutants lacking the myelin basic 

protein, indicating a role of the latter in this type of plasma membrane rearrangement. 

Yet, the function may be a indirect one, similar to the PINs which mediate the 

establishment of an auxin gradient and therefore cell polarity and the formation of the 

apical and basolateral domains (Went et al., 1974; Friml et al., 2003). 

It may be of interest to test the influence of remorin proteins on membrane domain 

formation in a similar manner, using both mutant lines as well as overexpression in N. 

benthamiana. 

2. A phenotypical assessment of remorin mutants 

2.1. The genetic approach to investigate the biological role of group 

one remorin proteins 

AtREM1.2 and AtREM1.3 had been chosen as priority candidates for closer phenotypic 

investigations due to their rich history in literature and the clear links to plant defence 

(reviewed in Jarsch and Ott, 2010) compared to other members of the protein family. 

Most highly expressed of all remorins, AtREM1.2 and AtREM1.3 are ubiquitously 

present throughout the whole plant life in all tissues. Numerous broadly based analyses 

of group 1 remorin proteins after elicitor or pathogen treatment like transcriptomics 

(Navarro et al., 2004, Journot-Catalino et al., 2006, Coaker et al., 2004), 

phosphoproteomics (Benschop et al., 2007) and proteomics on DRM fractions (Keinath 

et al., 2010; Kierszniowska et al., 2009) associate them with early steps in PTI. 

Additionally, the interaction of AtREM1.2 with the RIN4 complex (Liu et al., 2009) and 
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the AvrRPM1 dependent differential phosphorylation indicate a putative involvement in 

ETI (Widjaja et al., 2009). 

In this study, the first of the two possibilities was assessed. The chosen mutant alleles 

were tested for the establishment of a receptor-hetero-complex after ligand binding (Fig. 

29), the production of reactive oxygen species at the leaf surface (Fig. 30), and the 

activation of the MAPK-signalling cascade (Fig. 31). Yet, neither the single knock-out 

mutants of AtREM1.2 and AtREM1.3, nor a double mutant of both proteins showed a 

significant difference compared to the wildtype in one of the investigated processes in 

early plant defence. 

Nevertheless, a small but significant increase in susceptibility upon infection with P. 

syringae pv. PtoDC3000 could be observed with the AtREM1.2/AtREM1.3 double 

mutant (Fig. 33). 

Both AtREM1.1 and AtREM1.4 are significantly lower expressed than AtREM1.2 and 

AtREM1.3. Also, the Western Blot analyses with a group 1 specific antibody did not 

show a visible upregulation of both proteins in the mutant backgrounds. Therefore the 

increase in significance for the observed phenotypes using a triple or even quadruple 

mutant is expected to be rather low compared to the existing double mutant line. 

In fact, the obtained results point towards a role of AtREM1.2 and AtREM1.3 in a so far 

not investigated component of plant defence. This could be a directly connected process 

like callose deposition or defence gene regulation. The severe defect in callose 

deposition of ricky-1 (Hofer, LMU, 2012), the mutant line of the RLK interacting with 

AtREM1.2 in yeast (Table 3), speaks for the former. The mutant lines created in this 

study are currently investigated for phenotypes in this aspect of PTI. Callose deposition 

is no longer defined as an early process in plant defence responses. Its regulation 

requires both changes in ion fluxes across the membrane directly after elicitation as well 

as transcriptional regulation and changes in hormone status (Gómez-Gómez et al., 1999; 

Brown et al., 1998; Luna et al., 2011). 

With increasing refinement of forward and reverse genetics, recent publications have 

shown that PTI indeed employs specific regulators that play a role in distinct processes 

of the different responses. One example is the already introduced BIK1 protein, which 

positively regulates various immune responses following BAK1 activation, but does not 

seem to be involved in MAPK phosphorylation (Feng et al., 2012b). Another example is 

the lectin receptor kinase VI.2. This RLK is transcriptionally up-regulated upon 

pathogen attack or PAMP treatment (Singh et al., 2012). Mutants are impaired in 
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MAPK signalling and subsequent defence gene upregulation, but not in BIK1 

phosphorylation or ROS production (Singh et al., 2012). 

A role for remorin proteins further downstream in signalling pathways beneath the 

membrane was initially proposed by Alliotte and colleagues. They characterised 

AtREM1.3 as an unspecific DNA-binding protein (ADbp) with biochemical similarities 

to histone H1 in humans and pea (Alliotte et al., 1989). AtREM1.3 transcript was 

significantly increased in an auxin-dependent manner. Interestingly, both AtREM1.2 

and AtREM1.3 were found as interactors of the cytokinin-dependent Arabidopsis 

response regulator 4 (ARR4) several years later in a yeast-two-hybrid screen (Yamada 

et al., 1998). This cytoplasmic and nuclear protein is expressed in all aerial parts of the 

plant upon perception of white or red light (Sweere et al., 2001). Interestingly, the 

ARR4 induction can be reversed by pulses of far-red light and is reduced in mutants of 

the red/far-red reversible photoreceptor phytochrome B (phyB) (Sweere et al., 2001). 

Phytochromes are synthesized in the cytoplasm as a red light photoreceptor (Pr) in dark 

periods. Upon absorption of light, a conversion to the active, far-red light absorbing 

form (Pfr) takes place. Subsequently, the protein trans-locates to the nucleus (Neff and 

Chory, 1998; Nagy and Schafer, 2000). Phytochrome B specifically is involved in seed 

germination and seedling de-etiolation under continuous red light, as well as in the 

shade avoidance response. ARR4 was shown to physically interact with phyB 

specifically and is believed to stabilize the active form in the nucleus (Sweere et al., 

2001). Also cyanobacterial phytochrome has been demonstrated to exhibit light-

regulated histidine kinase activity (Yeh et al., 1997), only weak serine-threonine kinase 

activity could be associated with plant phytochromes (Schneider-Poetsch, 1992; Yeh et 

al., 1997). The link to remorin proteins cannot only be drawn via the interaction with 

ARR4, but also via the association of AtREM1.3 with importin proteins. Coexpression 

of the remorin with Importin α3 resulted in co-localisation in the nucleus. Furthermore, 

the physical interaction of both proteins is regulated by the differential phosphorylation 

of the N-terminal region of AtREM1.3 (Marin et al., 2012). 

These data may suggest that the role of group 1 remorin proteins in plant microbe 

interactions is rather an indirect one. If the proteins were involved in regulation of 

growth and development of the plant, mutants of AtREM1.2 and AtREM1.3 may be 

deregulated in reorganization processes of the plant development program after 

pathogen attack. Also, the phosphorylation of AtREM1.2 in AvrRPM1 overexpression 

lines does not necessarily imply an active role in ETI. The hypothesis, that remorin 

proteins are indeed effector targets has been raised before (Chisholm et al., 2005) and is 

fed by the idea, that the large intrinsically disordered stretches and the low conservation 
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between family members in the N-terminal region are both a consequence of effector 

recognition as well as a way to evade it (Tòth et al., 2012; reviewed in Marin and Ott, 

2012). The crosstalk between hormonal pathways and plant immunity has been 

extensively researched and is an inevitable consequence of plants lacking specialized 

cells to carry out immune functions (reviewed in Spoel and Dong, 2012). Therefore, 

reprogramming of growth and development processes aim to prioritise defence 

pathways for the time of an attack. On the other hand, pathogens employ hormone 

mimicry as a virulence strategy. The most prominent example is the already mentioned 

bacterial phytotoxin coronatin (Bender et al., 1999, Melotto et al., 2006). It structurally 

resembles jasmonic acid (JA) (Staswick et al. 2008). Additionally to mimicking JA 

signalling and supressing salicylic acid (SA)- mediated defence responses (Koornneef 

and Pieterse, 2008), coronatin induces transcriptional and physiological changes related 

to auxin (Uppalapati et al., 2005). A similar strategy is pursued by P. syringae when 

injecting the effector AvrRpt2, which promotes auxin biosynthesis. Interestingly, 

exogeneous application of auxin increased plant susceptibility, while auxin biosynthesis 

mutants displayed higher resistance to P. syringae (Chen et al., 2007; Navarro et al., 

2006; Wang et al., 2007), indicating a negative role of auxin in plant immunity.  

2.2. AtREM6.4 is involved in flg22 induced ROS production but not 

in other BAK1-dependent processes as BR signalling 

Although AtREM6.4 is differentially phosphorylated upon elicitor treatment (Benschop 

et al., 2007), this protein has never been investiagted in more detail and does not have a 

history in scientific literature.  

In this study, AtREM6.4 has drawn attention due to its remarkable cell biological 

characteristics. Apart from the localisation in laterally immobile microdomains, a 

relocalisation into enlarged membrane compartments as well as occasional filament 

formation was observed (Fig. 9, Fig. 18, Fig. 22).  

The putative phosphorylation-dependent interaction with BAK1 in vivo in 

microdomains in the plasma membrane (Fig. 26) led to the conclusion, that AtREM6.4 

is involved in BAK1-dependent signalling processes in planta. Here the best-studied 

examples are basal plant defence triggered by a selection of microbial elicitors as well 

as brassinolide signalling. While no defect of the respective remorin mutant line in 

oligomerisation of FLS2 and BAK1 after flg22 treatment was observed (Fig. 35), a 

decrease in the following ROS bust was shown (Fig. 36). Consequently, Atrem6.4-1 

mutant plants display higher sensitivity to infection with the virulent plant pathogen P. 
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syringae Pto DC3000 (Fig. 37). Interestingly, an altered reaction of the mutant to 

external BL treatment was not detectable (Fig. 38). 

The current working model places AtREM6.4 as a constitutive interactor of BAK1 in 

the preformed receptor-complex. The existence of such a receptor pre-complex has been 

postulated after recent studies had shown, that trans-phosphorylation of FLS2 by BAK1 

can already be detected after a timeframe as short as 5 s (Schulze et al., 2010). As even 

faster measurements were not possible due to experimental limitations, it can be 

hypothesized, that the first signalling processes happen directly after ligand binding. The 

prerequisite for that, of course, is a preformed protein complex at the plasma membrane 

(Schulze et al., 2010, reviewed Monaghan and Zipfel, 2012) 

Additional evidence supporting the pre-existence of receptor-oligomers has been shown 

in BR signalling. It was recently demonstrated, that, while BR application significantly 

increases receptor-dimer-formation, a good proportion of BRI1 and BAK1 molecules 

heterooligomerise without the presence of the ligand. It was proposed, that preassembly 

of the proteins is essential for signalling (Bucherl et al., 2013). 

Also, while it was formerly believed that BAK1 is not involved in direct recognition of 

brassinolide or flg22, crystal structures of the respective protein-peptide trimers have 

revealed at least physical contact between the ligand and the extracellular LRR domains 

of the so called co-receptor (Sun et al., 2013a, 2013b). Finally, RBOHD has just 

recently been found to co-immunoprecipitate with the members of the hypothesized pre-

complex prior to elicitation (Kadota et al., 2014). There is no indication so for 

involvement of RBOHD in brassinolide signalling.  

It remains still to be investigated, to which extent additional, BAK1-involving plant 

defence processes are affected in the Atrem6.4-1 mutant line. Additionally, a 

complementation assay with the introduced phosphorylation-site mutant constructs (Fig. 

26) will be performed to verify the importance of AtREM6.4-BAK1 interaction for PTI. 

Here we propose, that AtREM6.4 interacts in a preassembled receptor-complex 

exclusively with BAK1 molecules that have formed heterooligomers with FLS2 and 

putatively other BAK1 dependent PAMP-receptors. Upon stimulation, AtREM6.4 may 

be further phosphorylated at additional residues and mediates/stabilizes interactions with 

downstream targets like RBOHD. The hypothesis would state also, that such 

preassembled receptor complexes accumulate in specific membrane environments, 

forming large, laterally stable microdomains, which are microscopically visible when 

using fluorescently labelled proteins. The latter may happen constitutively, or in a 

stimulus-dependent manner. 
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As remorin proteins seemingly do not stabilize the receptor-complex itself, their 

function is most likely either: 

1. The promotion of membrane compartmentalisation and the formation of raft 

clusters via protein protein-interactions, or 

2. the provision of interaction hubs for downstream signalling components, or 

3. a dual role combining both functions. 

In either way, the long proposed role of remorin proteins acting as scaffold proteins in 

signalling at the plant plasma membrane would still be consistent with current data. 

While the divers patterns of remorin proteins may be of great value for future 

microscopical analysis of membrane compartmentalisation, the evaluation of the co-

localisation data will also be of help for further phenotyping investigations of the 

different family members. Most likely, those proteins sharing their positions in the same 

domains in the plasma membrane are involved in closely related biological processes. 
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 Abbreviations 
3-AT 3-Aminotriazol 

35S Promoter of the 35S RNA of the Cauliflower mosaic 
virus 

α- Anti- (for antibodys) 

A. thaliana Arabidopsis thaliana 

ABRC Arabidopsis Biological Resource Center 

ACA8 ARABIDOPSIS AUTOINHIBITED Ca2+-ATPase 

AEBSF 4-(2-Aminoethyl) benzenesulfonyl fluoride 
hydrochloride 

APS Ammoniumperoxodisulphate 

ARR4 ARABIDOPSIS RESPONSE REGULATOR 4 

ASK ARABIDOPSIS SOLUBLE KINASE 

AUX1 AUXIN TRANSPORTER PROTEIN 1 

Avr Avirulence factor 

AtREM ARABIDOPSIS THALIANA REMORIN 

BAK1 BRI1 ASSOCIATED KINASE 1 

BFA Brefeldin A 

BiFC Bimolecular fluorescence complementation 

BIK1 BOTRYTIS-INDUCED KINASE 1 

BKI1 BRI1 INHIBITOR KINASE 1 

BL Brassinolide 

BR Brassinosteroide 

BRI1 BRASSINOLIDE INSENSITIVE 1 

BSA Bovine serum albumin 

BsaI Bacillus stearothermophilus 20241 I 
 

C-terminus Carboxy-terminus 

Ca2+ Calcium 

CaMV Cauliflower mosaic virus 

CARD Caspase activation and recruitment domain 

CASP CASPARIAN STRIP PROTEIN 

CD48/55 CLUSTER OF DIFFERENTIATION 48/55 

cDNA Coding DNA 

cds Coding sequence 

CERK1 CHITIN ELICITOR RECEPTOR KINASE 1 
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CES Combinatorial enhancer solution 

CFP Cyan fluorescent protein 

CLSM Confocal laser scanning microscopy 

Co-IP Co-immunoprecipitation 

Cor- Coronatin deficient mutant 

CPK21 CALCIUM DEPENDENT PROTEIN KINASE 21 

DEX Dexamethasone 

dm Double mutant 

DNA Deoxyribonucleic acid 

dNTP di-nucleotide triphosphate 

DRM Detergent resistant membrane 

DTT dithiothreitol 

E-64 (1S,2S)-2-(((S)-1-((4-guanidinobutyl)amino)-4-
methyl-1-oxopentan-2-
yl)carbamoyl)cyclopropanecarboxylic acid 

EDTA Ethylene diamide tetraacetic acid 

EFR EF-Tu receptor 

EF-Tu Elongation factor thermo unstable 

EGTA Ethylene glycol tetraacetic acid 

EIX1/2 Ethylene-inducing xylanase receptor 1/2 

elf18 EF-Tu-like factor 18 

erg6 Ergosterol deficient mutant 6 

ETI Effector triggered immunity 

EtOH Ethanol 

ETS Effector triggered susceptibility 

flg22 flagellin 22 

FLOT FLOTILLIN 

FLS2 FLAGELLIN SENSITIVE 2 

FRAP Fluorescence recovery after photo-bleaching 

GAL4 Transcription factor 4 for the galactosidase operon 

GFP Green fluorescent protein 

GPI Glycosyl-Phosphatidyl-Inositol 

GSL5 Glycan synthase-like 5 

GW Gateway 

H Histidine 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HF High fidelity 

His Histidine 
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HRP Horse radish peroxidase 

HUP1 HEXOSE UPTAKE 1 

IP Immunoprecipitation 

IRAK INTERLEUCIN RECEPTOR-ASSOCIATED 
KINASE 

K+ Potassium 

KAT1 ARABIDOPSIS THALIANA K+ CHANNEL 

kb Kilobase 

KD Kinase domain 

KDSC Kinase domain soluble construct 

K2HPO4 Potassium phosphate 

L Leucine 

LB Lysogeny broth 

lcb1-100 Long chain base biosynthesis protein1-100 deficient 
mutant 

LioAc Lithium acetate 

LP Lipopolysaccharides 

LRR Leucine-Rich-Repeat 

LWHA Leucine-Tryptophan-Histidine-Adenine 

LYM1/2 LYSINE MOTIF PROTEIN 1/2 

LYK3 LYSINE MOTIF KINASE 3 

LYSM Lysine motif 

M Molar 

mg Milligramm 

ml Millilitre 

µm Micrometre 

mM Millimolar 

M. truncatula Medicago truncatula 

MAMP Microbe associated molecular pattern 

MAP4 MICROTUBULE ASSOCIATED PROTEIN 4 

MAPK MITOGEN ACTIVATED PROTEIN KINASE 

MES 2-(N-morpholino)ethanesulfonic acid 

MgCl2 Magnesium chloride 

MgSO4 Magesium sulphate 

min Minute(s) 

MLO MILDEW RESISTANCE LOCUS O 

MoRF Molecular recognition factor 

MQ Milli-Q 
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M. truncatula Medicago truncatula 

MtSYMREM1 MEDICAGO TRUNCATULA SYMBIOTIC 
REMORIN 1 

MS Murashige&Skoog 

N. benthamiana Nicotiana benthamiana 

N-terminus Amino-terminus 

NaCl Sodium chloride 

NaF Sodium fluoride 

Na2MoO4 Sodium molybdate 

Na3VO4 Sodium orthovanadate 

ng Nanogramm 

NBS-LRR Nucleotide-binding-site leucine-rich-repeat 

NF Nodulation factor 

NFR1/5 NOD FACTOR RECEPTOR 1/5 

nM Nanomolar 

nm Nanometre 

Nod Nodulation 

NOD1/2 NUCLEOTIDE BINDING OLOGOMERIZATION 
DOMAIN 1/2 

OD Optical density 

P19 Tomato bush stunt virus protein with 19kDa 

PAGE Polyacrylamide gel electrophoresis 

PAMP Pathogen associated molecular pattern 

PAT PROTEIN FATTY ACYLTRANSFERASE 

PBL1/2 PBS1-LIKE 1/2 

PBS1 AvrPBHB SUSCEPTIBLE 1 

PCR Polymerase chain reaction 

PEG Polyethylene glycol 

PEN1 PENETRATION 1 

Pfr Photoreceptor for far-red light 

PGN Peptidoglycan 

PIN PINFORMED 

PIP1 PLASMA MEMBRANE INTRINSIC PROTEIN 1 

PK Protein kinase 

PM Plasma membrane 

PMR4 POWDERY MILDEW RESISTANT 4 

PMSF Phenylmethanesulfonylfluoride  

Pr Photoreceptor for red light 
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proAtREM Promotor sequence of an Arabidopsis thaliana 
remorin 

PUB12/13 PLANT U-BOX 12/13 

PTI PAMP-triggered immunity 

PtoDC3000 Pathovar tomato DC3000 

PVC Polyvinyl chloride 

PVX Potato virus X 

q-PCR Quantitative PCR 

R2 Overlap coefficient 

R gene Resistance gene 

RBOHD RESPIRATORY BURST OXIDASE HOMOLOG 
D 

RD Arginine-glutamate 

rd random 

REMCA Remorin C-terminal anchor 

RIN4 RPM1 INTERACTING PROTEIN 4 

RLCK Receptor-like cytosolic kinase 

RLK Receptor-like kinase 

RLP Receptor-like protein 

ROI Region of interest 

ROR2 REQUIRED FOR MILDEW RESISTANCE 
LOCUS O-SPECIFIED RESISTANCE 

ROS Reactive oxygen species 

rpm Rounds per minute 

RPM1 RESISTANCE TO PSEUDOMONAS 
MACULICOLA 1 

RPS2/4/5 RESISTANCE TO PSEUDOMONAS SYRINGAE 
2/4/5 

Rr Pearson co-localisation coefficient 

RT Room temperature 

s Second(s) 

SD medium Selective dropout medium 

SDS Sodium dodecyl-sulphate 

SERK SOMATIC EMBRYOGENESIS RECEPTOR 
KINASE 

SGI Seedling growth inhibition 

SLAH3 SLAC1 HOMOLOG 3 

smt1 Sterolmethyltransferase deficient mutant 1 

SNARE SOLUBLE N-ETHYLMALEIMIDE-SENSITIVE 
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FACTOR ATTACHMENT RECEPTOR 

ssDNA Single stranded DNA 

std. err. Standard error 

StREM1.3 SOLANUM TUBEROSUM REMORIN 1.3 

SYMREM1 SYMBIOTIC REMORIN 1 

SYMRK SYMBIOTIC RECEPTOR KINASE 

SYP121/122 SYNTAXIN RELATED PROTEIN 121/122 

T Threonine 

T-DNA Transposable DNA 

TAQ – Polymerase Thermus aquaticus polymerase 

TBP1 TRIPLE GENE BLOCK PROTEIN 1 

TBS Tris buffered saline 

TBS-T Tris buffered saline with 0.05% TWEEN 20 

TCA Trichloracetic acid 

TE Tris-EDTA buffer 

TEMED Tetramethylethylenendiamine 

TIR Toll and interleukin receptor motif 

TIRFM Total internal reflection fluorescence microscopy 

TLR5 TOLL-LIKE RECEPTOR 5 

TWEEN 20 Polyoxyethylene (20) sorbitan monolaurate 

V Volt 

W Tryptophan 

WCIF Wright Cell Imaging Facility 

WT wildtype 

XA21 XANTHOMONAS RESISTANCE 1 

XB15/24 XA21 BINDING PROTEIN 15/21 

Y2H Yeast-2-hybrid 

YFP Yellow fluorescent protein 

YNB Yeast nitrogen base 

YPAD Yeast extract peptone adenine dextrose 
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 Appendix 
List of constructs 

Insert Vector Resistance Origin 

AtREM1.2 – stop cds pENTR-D® Kan Jarsch 2009 

AtREM1.2 + stop cds pKSi Gent Karl-Heinz 
Braun 

AtREM1.2ΔREMCA -stop cds pDONR207 Gent this study 

proAtREM1.2:AtREM1.2 – stop 
gDNA 

pDONR207 Gent this study 

AtREM1.2:CFP cds pAM-PAT-
35S:GW:CFP 

Carb Jarsch 2009 

AtREM1.2ΔREMCA:CFP cds pAM-PAT-
35S:GW:CFP 

Carb this study 

CFP:AtREM1.2 cds pAM-PAT-
35S:CFP:GW 

Carb this study 

YFP:AtREM1.2 cds pAM-PAT-
35S:YFP:GW 

Carb this study 

YFP:AtREM1.2 cds pUbi:YFP:GW Kan/Hyg this study 

GAL4 AD:AtREM1.2 cds pGADT7 carb this study 

proAtREM1.2:AtREM1.2 gDNA pH7YGW2 Spec/Hyg this study 

proAtREM1.2:YFP:AtREM1.2 gDNA pGWB1 Kan/Hyg Sebastian 
Konrad 

AtREM1.3 – stop cds  pENTR-D® Kan Jarsch 2009 

AtREM1.3 + stop cds pKSi Gent Karl-Heinz 
Braun 

AtREM1.3ΔREMCA -stop cds pDONR207 Gent this study 

proAtREM1.3:AtREM1.3 – stop 
gDNA 

pDONR207 Gent this study 

AtREM1.3:CFP cds pAM-PAT-
35S:GW:CFP 

Carb Jarsch 2009 

CFP:AtREM1.3 cds pAM-PAT-
35S:CFP:GW 

Carb this study 

YFP:AtREM1.3 cds pAM-PAT-
35S:YFP:GW 

Carb Seeholzer, 
2012 

GAL4 AD:AtREM1.3 cds pGADT7 carb this study 

AtREM1.3ΔREMCA:CFP cds pAM-PAT-
35S:GW:CFP 

Carb this study 
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proAtREM1.3:AtREM1.3 gDNA pH7YGW2 Spec/Hyg this study 

proAtREM1.3:YFP:AtREM1.3 gDNA pGWB1 Kan/Hyg Sebastian 
Konrad 

AtREM1.4 – stop cds pDONR207 Gent Macarena 
Marin 

AtREM1.4 + stop cds pDONR207 Gent this study 

AtREM1.4:CFP cds pAM-PAT-
35S:GW:CFP 

Carb this study 

CFP:AtREM1.4 cds pAM-PAT-
35S:CFP:GW 

Carb this study 

AtREM3.1 – stop cds pDONR207 Gent Macarena 
Marin 

AtREM3.1 + stop cds pKSi Gent Karl-Heinz 
Braun 

proAtREM3.1:AtREM3.1 – stop 
gDNA 

pDONR207 Gent this study 

AtREM3.1:CFP cds pAM-PAT-
35S:GW:CFP 

Carb this study 

CFP:AtREM3.1 cds pAM-PAT-
35S:CFP:GW 

Carb this study 

GAL4 AD:AtREM3.1 cds pGADT7 carb this study 

proAtREM3.1:AtREM3.1 gDNA pH7YGW2 Spec/Hyg this study 

AtREM3.2 – stop cds pENTR-D® Kan Jarsch 2009 

AtREM3.2 + stop cds pKSi Gent Karl-Heinz 
Braun 

proAtREM3.2:AtREM3.2 – stop 
gDNA 

pDONR207 Gent this study 

AtREM3.2:CFP cds pAM-PAT-
35S:GW:CFP 

Carb Jarsch 2009 

CFP:AtREM3.2 cds pAM-PAT-
35S:CFP:GW 

Carb this study 

YFP:AtREM3.2 CDS pAM-PAT-
35S:YFP:GW 

Carb this study 

YFP:AtREM3.2 cds pUbi:YFP:GW Kan/Hyg this study 

GAL4 AD:AtREM3.2 cds pGADT7 carb this study 

proAtREM3.2:AtREM3.2 gDNA pH7YGW2 Spec/Hyg this study 

AtREM4.1 – stop cds pENTR-D® Kan Jarsch 2009 

AtREM4.1 + stop cds pKSi Gent Karl-Heinz 
Braun 

AtREM4.1:CFP cds pAM-PAT-
35S:GW:CFP 

Carb Jarsch 2009 
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CFP:AtREM4.1cds pAM-PAT-
35S:CFP:GW 

Carb this study 

YFP:AtREM4.1 cds pAM-PAT-
35S:YFP:GW 

Carb this study 

YFP:AtREM4.1 cds pUbi:YFP:GW Kan/Hyg this study 

GAL4 AD:AtREM4.1 cds pGADT7 carb this study 

AtREM4.2 – stop cds pENTR-D® Kan Jarsch 2009 

AtREM4.2 + stop cds pKSi Gent Karl-Heinz 
Braun 

AtREM4.2ΔREMCA -stop cds pDONR207 Gent this study 

AtREM4.2:CFP cds pAM-PAT-
35S:GW:CFP 

Carb Jarsch 2009 

CFP:AtREM4.2cds pAM-PAT-
35S:CFP:GW 

Carb this study 

YFP:AtREM4.2 cds pAM-PAT-
35S:YFP:GW 

Carb this study 

YFP:AtREM4.2 cds pUbi:YFP:GW Kan/Hyg this study 

AtREM4.2ΔREMCA:CFP cds pAM-PAT-
35S:GW:CFP 

Carb this study 

GAL4 AD:AtREM4.2 cds pGADT7 carb this study 

AtREM5.1 – stop cds pENTR-D® Kan Jarsch 2009 

AtREM5.1 + stop cds pENTR-D® Kan this study 

AtREM5.1:CFP cds pAM-PAT-
35S:GW:CFP 

Carb Jarsch 2009 

CFP:AtREM5.1cds pAM-PAT-
35S:CFP:GW 

Carb this study 

YFP:AtREM5.1 cds pAM-PAT-
35S:YFP:GW 

Carb this study 

YFP:AtREM5.1 cds pUbi:YFP:GW Kan/Hyg this study 

AtREM6.1 – stop cds pENTR-D® Kan Jarsch 2009 

AtREM6.1 + stop cds pKSi Gent Karl-Heinz 
Braun 

AtREM6.1ΔREMCA -stop cds pDONR207 Gent this study 

AtREM6.1:CFP cds pAM-PAT-
35S:GW:CFP 

Carb Jarsch 2009 

CFP:AtREM6.1cds pAM-PAT-
35S:CFP:GW 

Carb this study 

YFP:AtREM6.1 cds pAM-PAT-
35S:YFP:GW 

Carb this study 

YFP:AtREM6.1 cds pUbi:YFP:GW Kan/Hyg this study 
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AtREM6.1ΔREMCA:CFP cds pAM-PAT-
35S:GW:CFP 

Carb this study 

AtREM6.2 – stop cds pENTR-D® Kan Jarsch 2009 

AtREM6.2 + stop cds pENTR-D® Kan this study 

AtREM6.2:CFP cds pAM-PAT-
35S:GW:CFP 

Carb Jarsch 2009 

CFP:AtREM6.2cds pAM-PAT-
35S:CFP:GW 

Carb this study 

YFP:AtREM6.2 cds pAM-PAT-
35S:YFP:GW 

Carb this study 

YFP:AtREM6.2 cds pUbi:YFP:GW Kan/Hyg this study 

AtREM6.3 – stop cds pENTR-D® Kan Jarsch 2009 

AtREM6.3 + stop cds pENTR-D® Kan this study 

AtREM6.3:CFP cds pAM-PAT-
35S:GW:CFP 

Carb Jarsch 2009 

CFP:AtREM6.3cds pAM-PAT-
35S:CFP:GW 

Carb this study 

YFP:AtREM6.3 cds pAM-PAT-
35S:YFP:GW 

Carb this study 

YFP:AtREM6.3 cds pUbi:YFP:GW Kan/Hyg this study 

AtREM6.4 – stop cds pENTR-D® Kan Jarsch 2009 

AtREM6.4 + stop cds pDONR207 Gent this study 

AtREM6.4ΔREMCA -stop cds pDONR207 Gent this study 

AtREM6.4ΔREMCA +stop cds pDONR207 Gent this study 

AtREM6.4REMCA -stop cds pDONR207 Gent this study 

AtREM6.4ΔC-term -stop cds pDONR207 Gent this study 

AtREM6.4ΔN-term -stop cds pDONR207 Gent this study 

AtREM6.4ΔN-term +stop cds pDONR207 Gent this study 

AtREM6.4ΔN-termΔREMCA -stop cds pDONR207 Gent this study 

AtREM6.4T215A + stop cds pDONR207 Gent this study 

AtREM6.4T215D + stop cds pDONR207 Gent this study 

proAtREM6.4:AtREM6.4 – stop 
gDNA 

pDONR207 Gent this study 

AtREM6.4:CFP cds pAM-PAT-
35S:GW:CFP 

Carb Jarsch 2009 

AtREM6.4ΔREMCA:CFP cds pAM-PAT-
35S:GW:CFP 

Carb this study 

CFP:AtREM6.4 cds pAM-PAT- Carb this study 
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35S:CFP:GW 

YFP:AtREM6.4 cds pAM-PAT-
35S:YFP:GW 

Carb this study 

YFP:AtREM6.4 cds pUbi:YFP:GW Carb this study 

AtREM6.4ΔREMCA +stop cds pDONR207 Carb this study 

AtREM6.4REMCA:CFP pAM-PAT-
35S:GW:CFP 

Carb this study 

YFP:AtREM6.4REMCA pAM-PAT-
35S:YFP:GW 

Carb Sebastian 
Konrad 

AtREM6.4ΔC-term:CFP cds pAM-PAT-
35S:GW:CFP 

Carb this study 

AtREM6.4ΔN-term:CFP cds pAM-PAT-
35S:GW:CFP 

Carb this study 

YFP:AtREM6.4ΔN-term cds pAM-PAT-
35S:YFP:GW 

Carb this study 

AtREM6.4ΔN-termΔREMCA:YFP cds pAM-PAT-
35S:GW:YFP 

Carb this study 

YFP:AtREM6.4T215A cds pAM-PAT-
35S:YFP:GW 

Carb this study 

YFP:AtREM6.4T215D cds pAM-PAT-
35S:YFP:GW 

Carb this study 

YFPc:AtREM6.4T215A cds pAM-PAT-
35S:YFPc:GW 

Carb this study 

YFPc:AtREM6.4T215D cds pAM-PAT-
35S:YFPc:GW 

Carb this study 

YFPn:AtREM6.4T215A cds pAM-PAT-
35S:YFPn:GW 

Carb this study 

YFPn:AtREM6.4T215D cds pAM-PAT-
35S:YFPn:GW 

Carb this study 

GAL4 AD:AtREM6.4ΔREMCA cds pGADT7 carb this study 

proAtREM6.4:AtREM6.4 gDNA pH7YGW2 Spec/Hyg this study 

proAtREM6.4:YFP:AtREM6.4 gDNA pGWB1 Kan/Hyg Sebastian 
Konrad 

AtREM6.5 – stop cds pENTR-D® Kan this study 

AtREM6.5 + stop cds pENTR-D® Kan this study 

AtREM6.6:YFP cds pAM-PAT-
35S:GW:YFP 

Carb this study 

YFP:AtREM6.5 cds pAM-PAT-
35S:YFP:GW 

Carb this study 

YFP:AtREM6.5 cds pUbi:YFP:GW Kan/Hyg this study 

AtREM6.6 – stop genomic pDONR207 Gent this study 
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AtREM6.6 + stop genomic pDONR207 Gent this study 

AtREM6.6:CFP genomic pAM-PAT-
35S:GW:CFP 

Carb this study 

YFP:AtREM6.6 genomic pAM-PAT-
35S:YFP:GW 

Carb this study 

YFP:AtREM6.6 genomic pUbi:YFP:GW Kan/Hyg this study 

AtREM6.7 – stop cds pENTR-D® Kan Jarsch 2009 

AtREM6.7 + stop cds pDONR207 Gent Macarena 
Marin 

AtREM6.7:CFP cds pAM-PAT-
35S:GW:CFP 

Carb Jarsch 2009 

CFP:AtREM6.7 cds pAM-PAT-
35S:CFP:GW 

Carb this study 

YFP:AtREM6.7 cds pAM-PAT-
35S:YFP:GW 

Carb this study 

YFP:AtREM6.7 cds pUbi:YFP:GW Kan/Hyg this study 

BAK1 –stop genomic pDONR201 Kan Jarsch 2009 

BAK1:YFPc genomic pAM-PAT-
35S:GW:YFPc 

Carb Jarsch 2009 

BAK1:YFPn genomic pAM-PAT-
35S:GW:YFPn 

Carb Jarsch 2009 

BRI1 –stop cds pENTR-D® Kan Jarsch 2009 

BRI1:YFPc pAM-PAT-
35S:GW:YFPc 

Carb Jarsch 2009 

BRI1:YFPc pAM-PAT-
35S:GW:YFPn 

Carb Jarsch 2009 

FLS2 –stop cds pENTR-D® Kan Jarsch 2009 

FLS2:YFPc pAM-PAT-
35S:GW:YFPc 

Carb Jarsch 2009 

FLS2:YFPc pAM-PAT-
35S:GW:YFPn 

Carb Jarsch 2009 

EFR –stop cds pENTR-D® Kan Jarsch 2009 

EFR:YFPc pAM-PAT-
35S:GW:YFPc 

Carb Jarsch 2009 

EFR:YFPc pAM-PAT-
35S:GW:YFPn 

Carb Jarsch 2009 

KAT1-CFP genomic pAM-PAT-
35S:GW:CFP 

Carb Sebastian 
Konrad 

KAT1-YFP genomic pAM-PAT-
35S:GW:YFP 

Carb Sebastian 
Konrad 

FLOT1A-CFP genomic pAM-PAT- Carb Sebastian 
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35S:GW:CFP Konrad 

FLOT1A-YFP genomic pAM-PAT-
35S:GW:YFP 

Carb Sebastian 
Konrad 

FLOT1B-CFP genomic pAM-PAT-
35S:GW:CFP 

Carb Sebastian 
Konrad 

FLOT1B-YFP genomic pAM-PAT-
35S:GW:YFP 

Carb Sebastian 
Konrad 

Free YFP + stop pAM-PAT-35S:YFP 
w/o GW 

Carb Sebastian 
Konrad 

YFP:SYMREM1REMCA cds pUbi:YFP:GW Kan/Hyg Claudia Popp 

GAL4 BD:At1g51820KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At4g28490KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At3g28450KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At2g13790KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At5g48380KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g51860KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g56140KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At3g02880KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g51790KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g09970KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g17750KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At5g53320KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g17230KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g34420KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g55610KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g56130KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At2g13800KDSC pGBKT7 Kan B. Kemmer-
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ling, Tübingen 

GAL4 BD:At1g53420KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At2g41820KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At2g24130KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g67510KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g66830KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g73080KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g56120KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g71830KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g24650KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At5g25930KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At2g25790KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g53440KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g51870KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g51800KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g53430KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At3g14840KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g12460KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At4g33430KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g69270KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At4g03390KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g69990KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 
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GAL4 BD:At2g23300KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At3g13380KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At3g56100KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At5g07280KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At3g25560KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g34210KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g75640KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At5g59670KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g51880KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At3g46370KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At2g31880KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At3g47580KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g51830KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g35710KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At3g02130KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At5g46330KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

GAL4 BD:At1g51850KDSC pGBKT7 Kan B. Kemmer-
ling, Tübingen 

  



Appendix 

 165 

List of primers 

cloning	  of	  overexpression	  constructs	   	  

	   F	   R	   	  

AtREM1.2	   CACCATGGCGGAGGAACAGAAGA	   TTAGAAACATCCACAAGTTGCCTT	   2	  

atREM1.3	   CACCATGGCGGAGGAGCAAAAGAC	   TTAGAAACATCCACACGTTGCCTT	   2	  

AtREM1.4	   GGGGACAAGTTTGTACAAAAAAGCAGGCTC
CATGGCTGAAGAGGAACCG	  

GGGGACCACTTTGTACAAGAAAGCTGGGTTTT
ACATGCATCCGAAAAGC	  

3	  

AtREM3.1	   GGGGACAAGTTTGTACAAAAAAGCAGGCTC
CATGAACGAATCCACAGTGC	  

GGGGACCACTTTGTACAAGAAAGCTGGGTTTC
AGAGGCATGTAGAGGGTTTCC	  

3	  

AtREM3.2	   GGCGCGCCTACCATGGAGCCAAATATTCCG
ATCC	  

CGTTTAAACCTTAGAAGCAGCTCAAAGATGA	   1	  

AtREM4.1	   GGCGCGCCTACCATGTTGACTTTGTACGGTC
A	  

CGTTTAAACCTTAGGAAAGAGAGAAGAATGAT
C	  

1	  

AtREM4.2	   GGCGCGCCTACCATGCTGACTCTTTACCATC
AAG	  

CGTTTAAACCTTAGGAGAAAGAGAAGAAGGA
GC	  

1	  

AtREM5.1	   GGCGCGCCTACCATGCCGTCGGAGTCATCG
TAC	  

CGTTTAAACCTTAGAATACATGGCAGGTGAAG
C	  

1	  

AtREM6.1	   GGCGCGCCTACCATGGATTACGAACGAATC
GG	  

GGCGCGCCTTAAGAACAAAAGCTAAAGC	   1	  

AtREM6.2	   GGCGCGCCTACCATGGATTACGAGAGGATA
CAG	  

CGTTTAAACCTTATGAGAACCAACCACAACA	   1	  

ATREM6.3	   GGCGCGCCTACCATGGACTTCACAAGAAAC
AG	  

CGTTTAAACCTTAATGACAAGTATTATTGC	   1	  

AtREM6.4	   GGGGACAAGTTTGTACAAAAAAGCAGGCTC
CATGAGAAAGACTTCTGTTTC	  

GGGGACCACTTTGTACAAGAAAGCTGGGTTTC
AGAGAGCAGAAGAAGATTTTC	  

3	  

AtREM6.5	   CACCATGAGATCTAGTGTAGAAG	   TTATTGACACCAACAACGAG	   2	  

AtREM6.6	   GGGGACAAGTTTGTACAAAAAAGCAGGCTC
CATGGATACCTTAATCAAGC	  

GGGGACCACTTTGTACAAGAAAGCTGGGTTTC
AGAAACAGCATGCATTTC	  

3	  

AtREM6.7	   GGGGACAAGTTTGTACAAAAAAGCAGGCTC
CATGGATAATTTGGTTAAGC	  

GGGGACCACTTTGTACAAGAAAGCTGGGTTTC
AGTAACACCGAAAGCAGAAA	  

3	  

KAT1	   GGGGACAAGTTTGTACAAAAAAGCAGGCTT
AATGTCGATCTCTTGGACTCG	  

GGGGACCACTTTGTACAAGAAAGCTGGGTTAT
TTGATGAAAAATACAAATGATCACC	  

3	  

FLOT1A	   TTTGGTCTCTCACCATGTTCAAAGTTGCAAG
AGC	  

AAAGGTCTCACCTTGCTGCGAGTCACTTGC	   4	  

FLOT1B	   TTTGGTCTCTCACCATGTTCAAGGTTGCAAG
AGC	  

AAAGGTCTCACCTTCTTGCTTAGAGTACCGATC
C	  

4	  

	   	   	   	  

cloning	  of	  truncation	  constructs	   	  

AtREM1.2ΔREMCA	   GGGGACAAGTTTGTACAAAAAAGCAGGC
TCCATGGCGGAGGAACAGAAG 

GGGGACCACTTTGTACAAGAAAGCTGGGTT
TTACTTAGCTTCAATCATTGCTCTTCTC 

3	  

AtREM1.3ΔREMCA	   GGGGACAAGTTTGTACAAAAAAGCAGGC
TCCATGGCGGAGGAGCAAAAG 

GGGGACCACTTTGTACAAGAAAGCTGGGTT
TTATTTAGCTTCAACCATTGCTCTC 

3	  

AtREM4.2ΔREMCA	   GGGGACAAGTTTGTACAAAAAAGCAGGC
TCCATGCTGACTCTTTACCATCAAG 

GGGGACCACTTTGTACAAGAAAGCTGGGTT
TTACTTTGCCTCTGCCGTCGCTC 

3	  

AtREM6.1ΔREMCA	   GGGGACAAGTTTGTACAAAAAAGCAGGC
TCCATGGATTACGAACGAATCGG 

GGGGACCACTTTGTACAAGAAAGCTGGGTT
TTACTTTGCTTCAGCCGCTGCT 

3	  

AtREM6.4ΔREMCA	   GGGGACAAGTTTGTACAAAAAAGCAGGC
TCCATGAGAAAGACTTCTGTTTC 

GGGGACCACTTTGTACAAGAAAGCTGGGTT
TCATTGTTGTTCATGTTCACTGGATACT 

3	  

AtREM6.4ΔC-‐term	   GGGGACAAGTTTGTACAAAAAAGCAGGC
TCCATGAGAAAGACTTCTGTTTC 

GGGGACCACTTTGTACAAGAAAGCTGGGTT
TCAAGCTTCAGAATTGTCTTCAACC 

3	  

AtREM6.4ΔNterm	   GGGGACAAGTTTGTACAAAAAAGCAGGC
TCCATGTCTGCTTCTTCTTCTTCTTGGG 

GGGGACCACTTTGTACAAGAAAGCTGGGTT
TCAGAGAGCAGAAGAAGATTTTC 

3	  

AtREM6.4ΔNtermΔR
EMCA	  

GGGGACAAGTTTGTACAAAAAAGCAGGC
TCCATGTCTGCTTCTTCTTCTTCTTGGG 

GGGGACCACTTTGTACAAGAAAGCTGGGTT
TCATTGTTGTTCATGTTCACTGGATACT 

3	  

	     	  

cloning	  of	  pro:YFP:ORF	  constructs	   	  

	   	   	   	  

proAtREM1.2	   TTTGGTCTCTCACCGTTGGCCGTCGTTG	   AAAGGTCTCTTGTCAGTCGCCGCCTCTCAGCC	   4	  

AtREM1.2	   TTTGGTCTCGAATATGGCGGAGGAACAG	   AAAGGTCTCACCTTTTAGAAACATCCACAAGTT
GC	  

4	  

proAtREM1.3	   TTTGGTCTCTCACCGGTATTCCTATGCTCAA
ATC	  

AAAGGTCTCTTGTCTGTCTCTCAGCCGAAGAA
GAAG	  

4	  

AtREM1.3	   TTTGGTCTCAGAATATGGCGGAGGAGCAAA
AG	  

AAAGGTCTCACCTTTTAGAAACATCCACACGTT
GC	  

4	  
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proAtREM6.4	   TTTGGTCTCTCACCTGCGTTGCATCGTTCGT
GA	  

AAAGGTCTCTTGTCTGTTGGTTTCTCAAAGAAC
AAAATC	  

4	  

AtREM6.4	   TTTGGTCTCAGAATATGAGAAAGACTTCTGT
TTC	  

AAAGGTCTCACCTTACTGAGAGCAGAAGAAGA
TTTTC	  

4	  

YFP	   TTTGGTCTCTGACAATGGTGAGCAAGGGCG
AGG	  

AAAGGTCTCTATTCCTTGTACAGCTCGTCCATG
C	  

4	  

	  
	  
1=	  for	  cloning	  into	  pksi	  
2=	  for	  cloning	  into	  pENTR-‐D 
3=	  for	  cloning	  into	  pDONR207 
4=	  for	  cloning	  into	  pENTR-‐D	  BsaI 
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Biological material: 

bacterial	  and	  yeast	  strains	   	   	   	  

species	   strain	   Marker	   growth	  
cond.	  

purpose	  of	  use	   	  

Agrobacterium	  
tumefaciens	  

Agl1	   Rif,	  Carb	   28°C	   transient	   and	   stable	  
transformation	   of	   A.	  
thaliana	   and	   N.	  
benthamiana	  

Agrobacterium	  
tumefaciens	  

GV3101	  
mp90RT	  

Rif,	   Kan,	  
Gent	  

28°C	   transient	  
transformation	  

	  

Agrobacterium	  
tumefaciens	  

UJA143	   Rif,	   Kan,	  
Gent	  

28°C	   stable	   transformation	  
of	  A.	  thaliana	  

	  

Escherichia	  coli	   DH5a	   -‐	   37°C	   plasmid	  multiplication	  
and	  maintenace	  

	  

Escherichia	  coli	   TOP10	   -‐	   37°C	   plasmid	  multiplication	  
and	  maintenace	  

	  

Escherichia	  coli	   DB3.1	   -‐	   37°C	   plasmid	  multiplication	  
and	  maintenace	  

	  

Saccharomy-‐
ces	  cerevisiae	  

pJ69-‐4a	   Leu,	   Trp,	  
His,	  Ala	  

30°C	   interaction	  studies	   	  

plant	  lines	   	   	   	   	   	  

species	   Ecotype	   Background	   marker	   Transgene	   Id.	  

A.	  thaliana	   Col-‐0	   Wildtype	   -‐	   -‐	   -‐	  

A.	  thaliana	   Col-‐0	   Atrem1.2-‐1	   Kan	  	   SALK-‐TDNA	   SALK_117637.50.50.x	  	  

A.	  thaliana	   Col-‐0	   Atrem1.2-‐2	   Kan	  	   SALK-‐TDNA	   SALK_117639.51.85.x	  	  

A.	  thaliana	   Col-‐0	   Atrem1.3-‐2	   Kan	  	   SALK-‐TDNA	   SALK_117448.53.95.x	  

A.	  thaliana	   Col-‐0	   Atrem1.4-‐3	   Kan	  	   SALK-‐TDNA	   SALK_063841.47.35.x	  

A.	  thaliana	   Col-‐0	   Atrem3.1-‐2	   Kan	  	   SALK-‐TDNA	   SALK_038891	  	  

A.	  thaliana	   Col-‐0	   Atrem3.2-‐1	   Kan	  	   FLAG-‐TDNA	   SALK_045695	  	  

A.	  thaliana	   Ws-‐0	   Atrem3.2-‐4	   Kan	  	   SALK-‐TDNA	   FLAG275H05	  

A.	  thaliana	   Col-‐0	   Atrem4.1-‐1	   Kan	  	   SALK-‐TDNA	   SALK_043600.49.90.x	  	  

A.	  thaliana	   Col-‐0	   Atrem4.2-‐2	   Kan	  	   SALK-‐TDNA	   SALK_064620.54.00.x	  	  

A.	  thaliana	   Col-‐0	   Atrem6.3-‐2	   Kan	  	   SALK-‐TDNA	   SALK_017747	  	  

A.	  thaliana	   Col-‐0	   Atrem6.4-‐1	   Kan	  	   SALK-‐TDNA	   SALK_037050.55.00.x	  	  

A.	  thaliana	   Col-‐0	   Atrem6.6-‐1	   Kan	  	   SALK-‐TDNA	   SALK_039171	  

A.	  thaliana	   Col-‐0	   Atrem6.7-‐1	   Kan	  	   SALK-‐TDNA	   SALK_059946	  

A.	  thaliana	   Col-‐0	   Atrem1.2-‐2	   Kan,	  Hyg	   SALK-‐TDNA,	  
proAt3g61260:YFP:At
3g61260	  

SALK_117639.51.85.x;	  
proAtREM1.2:YFP:AtR
EM1.2	  

A.	  thaliana	   Col-‐0	   Atrem1.3-‐2	   Kan,	  Hyg	   SALK-‐TDNA,	  
proAt2g45820:YFP:At
2g45820	  

SALK_117448.53.95.x;	  
proAtREM1.3:YFP:AtR
EM1.3	  

A.	  thaliana	   Col-‐0	   Atrem6.4-‐1	   Kan,	  Hyg	   SALK-‐TDNA,	  
proAt4g36970:YFP:At
4g36970	  

SALK_037050.55.00.x;	  
proAtREM6.4:YFP:AtR
EM6.4	  

A.	  thaliana	   Col-‐0	   Atrem1.2-‐ Kan	  	   SALK-‐TDNAs	   SALK_117637.50.50.x;	  
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1/Atrem1.3-‐
2	  

SALK_117448.53.95.x	  

A.	  thaliana	   Col-‐0	   Atrem1.2-‐
1/Atrem1.3-‐
2/Atrem1.4-‐
3	  

Kan	  	   SALK-‐TDNAs	   SALK_117637.50.50.x;	  
SALK_117448.53.95.x;	  
SALK_063841.47.35.x	  

A.	  thaliana	   Col-‐0	   fls2	   kan	   SAIL-‐TDNA	   SAIL-‐691C04	  

N.	  
benthamiana	  	  

-‐	   wildtype	   -‐	   -‐	   -‐	  
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Macros created for Fiji 

Quantitative analysis of single domains: Creation of masks for segmentation: 

run("Mean...", "radius=2"); 
run("Subtract Background...", "rolling=20"); 
setAuTòthreshold("Default"); 
//run("Threshold..."); 
setThreshold(0, 22); 
setOption("BlackBackground", false); 
run("Convert to Mask"); 
run("Make Binary"); 
run("Erode"); 
run("Erode"); 
run("Dilate"); 
run("Dilate"); 
run("Watershed"); 
run("Save"); 
run("Close"); 
 

Kymographs: Creation of stacks for each time-point: 

run("Images to Stack", "name=Stack title=[] use"); 
run("Z Project...", "start=1 stop=14 projection=[Max Intensity]"); 
saveAs("Tiff", "/Users/ijarsch/Desktop/paper die zweite/kymographs/1.2/MAX_Stack 
t09.tif"); 
close(); 
selectWindow("Stack"); 
close(); 
 

Kymographs: Combination of timepoints and shift correction between time-points: 

run("Images to Stack", "name=Stack title=[] use"); 
run("StackReg", "transformation=[Rigid Body]"); 
run("Properties...", "channels=1 slices=10 frames=1 unit=µm pixel_width=0.15 
pixel_height=0.15 voxel_depth=10000.0000000 frame=[0 sec] origin=0,0"); 
saveAs("Tiff", "/Users/ijarsch/Desktop/paper die zweite/kymographs/1.3/StackReg 
t00t09.tif"); 
close(); 
 

Kymographs: Creation of kymographs from shift-corrected stacks: 

run("Reslice [/]...", "output=10000.000 slice_count=1 avoid"); 
saveAs("Jpeg", "/Users/ijarsch/Desktop/paper die zweite/kymographs/1.2/Reslice of 
StackReg.jpg"); 
close(); 
selectWindow("StackReg t00t09.tif"); 
close(); 
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27. – 30.11: Dijon Domain Meeting; Dijon, France (poster) 

02. – 05.09: 10th European Nitrogen fixation conference, 
Ludwig-Maximilians-Universität, München, Germany 

29.07. – 02.08.: XV International Congress of Molecular Plant-
Microbe Interactions, Kyoto, Japan (poster) 

2011 14. – 16.09: 12th International Symposium on Plant Protein 
Phosphorylation (talk) 

2010 14. – 19.03: Keystone Symposium on Receptors and Signaling 
in Plant Development and Biotic Interactions, Tahoe, USA 
(poster) 

 

FELLOWSHIPS AND PRIZES 

2014 Short-term fellowship by the Centre for Advanced Studies 
(CAS), LMU 

2012 EMBO Short-Term Fellowship for a research stay at the group 
of Dr. Cyril Zipfel, The Sainsbury Laboratory, Norwich, UK 

DAAD travel stipend for the flight to the XV International 
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Congress of Plant-Microbe Interactions, Kyoto, Japan 

2011 Prize for best poster at PHD seminar of the SFB924 student 
initiative “Molecular mechanisms regulating yield and yield 
stability in plants“, Königsdorf, Germany  

2009-2012 PhD fellowship: University of Bavaria: Graduiertenförderung 
nach dem Eliteförderungsgesetz der Universität Bayern e.V 

2004-2006 E-fellows Stipendium 

2004 Apollinaire-Prize for extraordinary achievements in the subject 
French (Abitur) 

 

HONORARY ENGAGEMENTS 

2011-2012 1st elected president of the student initiative of the SFB924 
“Molecular mechanisms regulating yield and yield stability in 
plants“ 

2010-2011 Mentoring with the non-profit organization “Die Komplizen: 
Mentoring für Schüler GmbH” 

SS2008 Mentoring for the first Bachelor year at the Faculty for Biology, 
LMU 

2005-2009 Active engagement at the student representative of the 
Faculty for Biology, LMU, 2007 – 2008 elected member of the 
student board 

08-09/2005 “Green Volunteer” with the Hebridian Whale and Dolphin Trust 
(“Cetacean Reseach Project”), Tobermory, Scotland, UK 

 

 


