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Abstract 

Background 

Current strategic plan for malaria control in Ghana includes the attainment of 80% of 

the general population sleeping under insecticide treated materials (ITM) by 2015. 

This coverage may not be attained if there is non-compliance in the use of bed nets. 

Failure of ITM to protect users from nuisance mosquitoes, particularly Culex 

mosquitoes has been cited as one of the major threats to the sustained use of ITM. A 

nationwide survey was therefore carried out to determine insecticide resistance 

status of Culex species and efficacy of ITM against them. 

Methods and materials 

Mosquito larvae were sampled from various land use and ecological settings and at 

different seasons. These were reared to adults and used for the various tests. In 

adults, insecticide susceptibility tests to eight insecticides as well as cone and tunnel 

bioassays were performed. Biochemical and molecular analyses were also 

conducted to determine the resistance mechanisms in the study populations. 

Results 

Culex quinquefasciatus and C. decens were the Culex species that were identified in 

the study area. DDT and deltamethrin resistances were evident across the country. A 
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strong relationship between resistance status and urban size was observed in the 

study population (Pearson χ2 =48.2; df = 1; P<0.0001). Not only kdr and ace1 

mutations but also elevated levels of three detoxifying enzymes were found in the 

study populations. New ITMs evaluated had reduced efficacy against pyrethroid-

resistant Culex mosquitoes. 

Conclusions 

Insecticide resistance status of Culex species in urban areas of Ghana was 

determined. Insecticide resistance level was high in large urban areas. Urbanization and its 

associated problems as well as ecology and different land use were observed to have some 

impact on level of insecticide resistance in the Culex population.  ITM with synergist and 

organophosphate insecticides were seen as a possible resistance management tool 

against pyrethroid-resistant Culex mosquitoes.  
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1) Introduction 

Over the past decade, estimated malaria morbidities and mortalities in many African 

countries are falling and this success has been linked to intense malaria control 

interventions, including the use of insecticide treated materials (ITM) supported by 

indoor residual spraying of insecticide (IRS) (WHO, 2013). Nevertheless, acceptance   

and utilization of ITM still remains a problem and if not properly addressed can 

jeopardize malaria control efforts and elimination in Africa. Among many factors, 

failure of ITM to protect users from the nuisance of Culex mosquitoes due to a lack of 

insecticide efficacy against them has been cited as one of the major threats to the 

sustained use of ITM (Samuelsen et al., 2004). In this regard, for local communities 

to accept and maintain ITM use, it must be able to protect its users from bites from 

both vector and nuisance mosquitoes.  

In Ghana, the main malaria vectors are Anopheles gambiae and A. funestus. The 

major nuisance mosquito is Culex mosquitoes, which are also vectors for different 

parasitic and viral anthroponoses. Occurrence and distribution of insecticide 

resistance and the mechanisms involved in the malaria vectors (Anopheles species) 

have been well investigated in the country (Yawson et al., 2004; Okoye et al., 2008; 

Boakye et al., 2009; Hunt et al., 2011; Kabula et al., 2011). Different insecticide-

resistance statuses have been observed across different ecological zones, seasons 

and even different breeding habitats among Anopheles species (Yawson et al., 2004; 

Anto et al., 2009; Kabula et al., 2011). However, not much of such information is 

available for Culex mosquitoes in Ghana.  
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Culex mosquitoes are the most widely distributed and abundant mosquito in Ghana 

and in order to improve and maintain the use of ITM, particularly in areas without a 

tradition of bed net use, there is a need to attain a better understanding of the impact 

of Culex mosquitoes on ITM usage. A key determinant is the resistance status of 

Culex and the efficacy of ITM against pyrethroid-resistant populations. Moreover, with 

growing pyrethroid resistance in West Africa (Chandre et al., 1998; Corbel et al., 

2007), the use of alternative classes of insecticides for vector control is becoming 

very popular. As a result, knowledge on the resistance status of vectors against 

insecticides found in the important classes of insecticides used in public health and 

the mechanisms involved as well as factors that influence the resistance has become 

important. 

This study was therefore carried out to assess insecticide resistance status of Culex 

in Ghana and determine its impact on the efficacy of ITM. It is anticipated that the 

results would give an insight into the potential role Culex mosquitoes in malaria 

control and the possible insecticide resistance management strategy against them. 
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2) Literature review 

2.1) Mosquitoes and human welfare 

2.1.1) Biology and behaviour of mosquitoes 

Knowledge of the life history of mosquitoes is as important as knowing that 

mosquitoes transmit diseases. Mosquitoes are among the best known groups of 

insects because of their role as vectors of some of the most serious human diseases. 

There are about 3400 species of mosquitoes, of which about 100 are vectors of 

human diseases. Mosquitoes are two-winged insects belonging to the family 

Culicidae of the order Diptera. They can be distinguished from most other diptera by 

a combination of the following characters: a long proboscis projecting forward from 

the head, the presence of scales on the thorax, legs, abdomen and wing veins, and a 

characteristic wing venation with the second, forth, and fifth longitudinal veins being 

branched (Service, 2008). 

Important mosquito vectors can be grouped into anophelines (Anopheles) and 

culicines (Aedes, Culex, Mansonia, Haemagogus and Sabethes). The following 

characteristics are mostly used to distinguish Anopheles, Culex and Aedes 

mosquitoes: 1) the resting position of the larvae, 2) the length of the palps to that of 

the proboscis, and 3) the angle to the resting surface of the adult mosquito (Figure 

2.1.1.1) 
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Figure 2.1.1.1: Characteristics for differentiating Anopheles, Aedes and Culex 

mosquitoes (Source: Rozendaal, 1997) 
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Mosquitoes undergo complete metamorphosis, passing through four distinct stages 

during their life cycle: the eggs, larva, pupa, and adult (Figure 2.1.1.2). Immature 

stages of mosquitoes require water to complete their life cycle. The growth period of 

the first three stages is dependent on the species and temperature. There are four 

larval instars and in tropical countries the development of juvenile stages may be as 

short as 5-7 days. Many species, however, require about 7-14 days. Female 

mosquitoes lay their eggs in various water habitats including natural and artificial, 

permanent and temporal water bodies with salinities varying from water produced 

from melting snow to salinities greater than sea water in evaporating tidal pools 

(Service, 2008; Kettle, 1995).   

 

 

Figure 2.1.1.2: The life cycle of mosquitoes showing the four stages (Source: 

Rozendaal, 1997) 

 

On average, females live approximately 2-3 weeks but the lifespan of males is 

generally shorter. Adult male and female mosquitoes feed on nectars and other 

naturally occurring sugary secretions to provide energy, but it is only the female that 

seeks a blood meal, a requirement to provide protein for egg development. Male 
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mosquitoes cannot bite and are unable to transmit diseases. During blood feeding 

many female mosquitoes can inject pathogenic micro-organisms into their host which 

can cause diseases such as malaria, yellow fever, Dengue, and filariasis.  

The source of the blood meal is a major factor in determining the potential of a 

species as a vector of disease. While many mosquitoes are generalist feeders, some 

specialize in feeding on certain animals. About nine basic feeding habits have been 

recognised in mosquitoes (Tempelis, 1975). However, the most important 

mosquitoes in terms of public health are the ones that readily feed on mammals. 

Mosquitoes that readily feed on mammals can be further subdivided into those which 

are anthropophilic, feeding on humans, and those which are zoophilic, feeding on 

animals (Service, 2008).  

The feeding and resting habits of mosquitoes are of great importance in disease 

control programmes. Most mosquito species bite immediately after sunset while 

others bite later, around midnight or early morning. Mosquitoes that prefer to enter 

houses to bite are described as being endophagic whereas mosquitoes that mostly 

bite outside are exophagic. After a blood meal, mosquitoes usually rest for a short 

period to digest the blood. During this period some mosquitoes that enter houses to 

bite remain indoor to rest; these are referred to as endophilic. Mosquitoes that rest 

outside after blood meal (e. g. on plants, in holes) are termed exophilic. The process 

of blood-feeding and egg maturation, followed by oviposition is repeated several 

times throughout the females’ life. This cycle is termed gonotrophic (Service, 2008). 
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2.1.2) Impact of mosquitoes on human welfare 

In general, mosquitoes may affect human welfare by direct annoyance and 

transmission of diseases. Mosquitoes are important vectors of several tropical 

diseases, including malaria, filariasis, and numerous viral diseases such as Dengue 

and yellow fever. Mosquito-borne diseases greatly affect public health and contribute 

significantly to disease burden, deaths, economical and developmental problems 

worldwide.  

Anopheles species are the only vectors of malaria. Besides malaria, they can also 

transmit filariasis and some arboviruses. Aedes mosquitoes are important vectors for 

Dengue, yellow fever and many other arboviruses while Culex mosquitoes also 

transmit several diseases such as filariasis and many arboviruses as well (Table 

2.1.2.1). 

 

 

 

 

 

 

 

 

 

 

 



19 

 

Table 2.1.2.1: Diseases transmitted by different genera of mosquitoes. 

Mosquito  Diseases 

Anopheles Malaria, lymphatic filariasis,O'nyong-

nyong (ONNV), other viral diseases 

Culex Lymphatic filariasis, St. Louis 

encephalitis, Japanese encephalitis, 

Eastern equine encephalitis, other viral 

diseases 

Aedes Yellow fever, Dengue, Dengue 

haemorrhagic 

fever, Chikungunya, other viral diseases, 

lymphatic filariasis

Mansonia Lymphatic filariasis 

 

Several mosquito species can also be a great nuisance without presenting a direct 

risk to health. Nuisance biting alone can have negative impact on the standard of 

living in the community (Webb and Russell, 2007). Halasa et al. (2014) quantified the 

impact of mosquito nuisance on quality of life and found out that mosquitoes 

prevented about 60% of residents in New Jersey, USA, from enjoying their outdoor 

activities, at least to some extent. Respondents rated the importance of enjoying 

outdoor activities without mosquitoes comparable to that of neighbourhood safety 

and higher than that of a clean neighbourhood. A considerable amount of money is 

spent on mosquito control, not because of their status as vectors of disease but 

because of their nuisance (Service, 2008). A study concluded that city residents in 

the USA were willing to pay an average of $147 per household per year to reduce 
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mosquito nuisance, compared to only $21 for programs targeting disease transmitting 

mosquitoes (Dickinson et al., 2012).  

There is not much information on positive impacts of mosquitoes on humans or on 

the ecosystem. However, like many other aquatic invertebrates, mosquito larvae 

provide food for predators while assisting in nutrient recycling. Adult mosquitoes 

provide food for several terrestrial invertebrates, birds, mammals, amphibians and 

reptiles. It was estimated that the number of migratory birds that nest in the Arctic 

tundra could drop by more than 50% without mosquitoes to eat (Fang, 2010). Many 

species of insects, spiders, salamanders, lizards and frogs would also lose a primary 

food source. Poulin et al. (2010) tracked insect-eating house martins (Delichon 

urbicum) at a park in the French Camargue region after the area was sprayed with a 

microbial mosquito-control agent. They found that the birds produced an average of 

two chicks per nest after spraying, compared with three for birds at control sites 

(Poulin et al., 2010). This shows the importance of mosquitoes as a food source to 

birds. In addition, mosquitoes play a role in the pollination of some plants. For 

example, Aedes communis is an important pollinator of Platanthera obtusata, the 

blunt-leaf orchid (USDA, 2014). 

 

 

2.1.3) Mosquito management strategies 

Mosquito control measures can be directed at either the immature aquatic stages or 

the adult stages or at both stages simultaneously. In extensive breeding sites, control 
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of the juvenile stages is exercised mostly through the application of larvicides 

(insecticides). Larval control through source reduction and routine application of 

larvicides was a key intervention in eradicating malaria in many parts of the world 

(Utzinger et al., 2001, Killeen et al., 2002).  

Apart from chemicals, living organisms or their products are also used to control 

mosquito juveniles, which is termed "biological control". The organisms used include 

viruses, bacteria, protozoa, fungi, plants, parasitic worms, predatory mosquitoes and 

fish. The aim is generally to kill larvae without polluting the environment. Physical 

control or environmental management methods such as land-fills, source reduction 

and environmental manipulation are also effective against mosquito larvae.  

Control directed at adults includes personal protection (mosquito nets, repellents), 

window and door screens, and use of insecticide in the form of aerosol, indoor house 

residual spraying (Ogoma et al., 2009). The choice of a particular control strategy 

depends on the knowledge of the habitat ecology of the mosquitoes and their 

behaviour. For example, understanding the choice of oviposition sites of mosquito 

species is important for the design of successful larval control strategies. Likewise, 

knowledge on adult mosquito behaviour may help to choose appropriate control 

methods. For example, effective indoor residual spraying against malaria vectors 

depends on whether mosquitoes rest indoors. Furthermore, the effectiveness of 

insecticide treated nets depends on vectors biting at hours when most people are in 

bed (Pates and Curtis, 2005). 
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2.2) Malaria and malaria control 

2.2.1) Global burden of malaria 

Of all the mosquito-borne diseases, malaria is by far the most important in terms of 

morbidity and mortality. Malaria is a disease known since ancient times and 

Hippocrates, about 400 BC, described the three characteristic stages of an attack: 

chilly rigor, high fever and profuse sweating (Kettle, 1995). As recent as 1900, 

malaria was widely distributed and more than 77% of the world population in 140 

countries was at risk, with more than 3.1 million deaths occurring among a total 

population of 1.6 billion (Carter and Mendis, 2002). 

Currently, between 2000 and 2012, estimated malaria mortality rates fell by 45% in 

all age groups and by 51% in children under 5 years of age. With such progress, it is 

projected that by 2015 malaria mortality rates would decrease by 56% in all ages, 

and by 63% in children under 5 years of age. Modelling suggests that an estimated 

3.3 million malaria deaths were averted between 2001 and 2012, and that 69% of 

these lives saved were in the 10 countries with the highest malaria burden in 2000. 

Malaria mortality rates among children in Africa have been reduced by an estimated 

54% since 2000. It is estimated that approximately 3 million (90%) of the deaths 

averted between 2001 and 2012 are children under 5 years of age in sub-Saharan 

Africa (WHO, 2013). 

The substantial reduction in malaria mortality rates have contributed significantly to 

progress towards achieving the target for Millennium Development Goal 4 (MDG 4), 

which is to reduce by two thirds the under-5 mortality rate between 1990 and 2015 

(WHO, 2013). Notwithstanding the achievements made in malaria control, an 
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estimated 207 million cases and 627000 malaria deaths are estimated to have 

occurred in 2012. It is estimated that malaria would be the 10th leading cause of 

death in low income countries by 2030, representing 1.8% of total deaths and total 

disability-adjusted life year (DALY) lost of 2.5% (Mathers and Loncar, 2006). 

Malaria is caused by protozoan parasites belonging to the genus Plasmodium. Five 

Plasmodium species are known to infect humans (P. falciparum, P. vivax, P. 

malariae, P. ovale and P. knowlesi). Tropical malaria is caused by P. falciparum, 

which is responsible for the most severe disease and the highest mortality in Africa. 

Tertian malaria is caused P. vivax and P. ovale and can form resting stages in the 

liver (hypnozoites). Once reactivated, it can cause a clinical relapse many months 

after the initial event (Greenwood et al., 2005). In recent years, some human cases of 

malaria have also occurred with P. knowlesi in Malaysian Borneo (Vythilingham et al., 

2006; WHO, 2014), a species that causes malaria among monkeys and occurs in 

certain areas of South-East Asia. It is reported that about 58% of cases diagnosed as 

P. malariae in Malaysian Borneo are P. knowlesi (Sign et al., 2004).  

 

 

2.2.2) Malaria control 

Malaria is a preventable and treatable disease, provided that current recommended 

interventions are properly implemented. The WHO recommends a combination to 

control and eliminate malaria, which includes vector control interventions, preventive 

therapies, diagnostic testing, artemisinin-based combination therapies (ACTs), and 
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an intensive malaria surveillance (WHO, 2013). Many factors affect the choice of 

malaria control methods in a region, including endemicity, vector species and 

behaviour, seasonality, disease patterns, health service factors, and many more 

(WHO, 2014). 

Vector control is the main way to reduce malaria transmission at the community level. 

It is the only intervention that can reduce malaria transmission from very high levels 

to close to zero (WHO, 2014). Malaria prevention through vector control seeks to 

reduce human-vector contact and by reducing the average lifespan of the local 

mosquito population at the community level. The major malaria prevention strategies 

recommended by WHO are the use of ITM and indoor residual spraying (IRS) which 

involves the application of residual insecticides to the inner surfaces of living places 

with the objective of targeting Anopheles mosquitoes that rest on walls after taking a 

blood meal (WHO, 2013). 

ITM works both on the individual level (personal protection) and the community level. 

It is expected that if used on a large scale, ITM can have a mass killing effect on 

vector populations which can benefit the whole community, even those without nets. 

A number of studies have demonstrated that the use of ITMs is effective in reducing 

malaria-related morbidity and mortality (Binka et al., 1996; Hill et al., 2006; 

D’Alessandro et al., 1995). Individuals not sleeping under an ITM, but living within an 

area with high ITM coverage, have also been shown to be at a decreased risk of 

infection due to the resulting reduction in overall malaria transmission (Howard et al., 

2000; Killeen et al., 2007).  
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Antimalarial medicines can also be used to prevent malaria, especially for travellers 

who go to malaria endemic areas. In addition, WHO recommends intermittent 

preventive treatment with sulfadoxine-pyrimethamine for pregnant women and infants 

living in high transmission areas (WHO, 2014). 

 

 

2.3) Culex species and public health 

2.3.1) Biology and behaviour of Culex species 

The genus Culex is made up of about 768 species (Harbach, 2011). The adult 

females bite people and animals throughout the night, indoors and outdoors. During 

the day, they are inactive and are often found resting in dark corners of rooms, 

shelters and culverts. They also rest outdoors on vegetation and in holes in trees in 

forest areas (Rozendaal, 1997).  

The sources of blood meals for Culex mosquitoes vary greatly among the various 

geographic populations. It may take blood meals from birds, livestock and humans 

but it is highly anthropophilic in some geographic areas. Culex mosquitoes are 

epidemiologically important vectors for a diverse array of pathogens, including many 

arboviruses, filarial worms, and protozoa, such as West Nile viruses (WNV), 

Wuchereria bancrofti, and Plasmodium relictum, an avian malaria parasite (Service, 

2008).  
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Culex mosquitoes breed in a large variety of still or very slow moving waters, ranging 

from artificial containers and catchment basins of drainage systems to large 

permanent water bodies. Most importantly, C. quinquefasciatus has the ability to 

breed in organically polluted water bodies such as choked gutters and septic tanks. 

In many developing countries these are common breeding places in rapidly 

expanding urban areas where drainage and sanitation are inadequate. Under these 

conditions the mosquito population can increase rapidly (Rozendaal, 1997; Service 

2004). Their ability of developing in organically highly polluted water bodies gives C. 

quinquefasciatus clear advantages over other species of mosquitoes, particularly in 

urban areas. 

The combination of high anthropophilic females with high tolerance to insecticides 

and the ability of the larvae to develop in polluted waters make C. quinquefasciatus a 

very important mosquito in public health and difficult to control (Vinogradova, 1966).  

 

 

2.3.2) Potential impact of Culex mosquitoes on malaria control 

Urban areas in Ghana as well as many developing countries are characterized by 

extensive networks of open gutters, several wetlands and water bodies. As a result of 

inadequate urban infrastructure, partly due to rapid population growth, garbage and 

other household waste products are often deposited in open gutters and water 

bodies (Boadi and Kuituman, 2005), thus creating numerous polluted habitats that 

are suitable for the breeding of Culex mosquitoes, particularly C. quinquefasciatus. 



27 

 

This problem has not been adequately addressed, partly because Culex mosquitoes 

are currently not an important disease vector in Ghana and many West African 

countries. However, they cause considerable nuisance to people through their bites 

and this might very well be a serious yet under recognized factor jeopardizing the use 

of ITM.  

ITM protection against a number of nuisance insects is cited as a reason for their 

popularity (Alaii et al., 2003). Most studies have suggested that if not for the 

protection given against Culex mosquitoes, the popularity and effectiveness of ITM 

would be hampered (Asidi et al., 2005). Therefore, it can be hypothesized that 

acceptability and utilization of ITM depends on the effectiveness of the net against 

nuisance mosquitoes, predominantly C. quinquefasciatus in urban areas. This 

suggestion is supported by the fact that people are more concerned about 

mosquitoes being a nuisance than a cause of malaria in many malaria endemic 

countries (Nganga et al., 2008).  

Effectiveness of ITM can be compromised when the efficacy of the net decreases as 

well as when users do not use the net at all because of perceived problems or 

improper use of the net. A strong level of pyrethroid-resistance in mosquitoes can 

reduce the efficacy of the net and as such, discourage the sustained use of ITM 

because people may not perceive the personal protective effect of ITMs if the 

mosquitoes are not killed. Due to the importance attached to mosquito nuisance and 

due to the inability of local inhabitants to distinguish between the genus of a 

mosquito, it is possible that people living in places with high man biting rates from 

Culex mosquitoes before bedtime might prefer anti-mosquito strategies such as use 

of mosquito coils and aerosol spray, which are more effective in inhibiting mosquito 
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nuisance rather than being effective in preventing malaria (Lawrance and Croft, 

2004).  

In summary, the abundance and resistance status of Culex coupled with the value 

attributed to their nuisance by local people and their level of knowledge on the life 

history of mosquitoes can threaten the effectiveness of ITM and ultimately malaria 

control. 

 

 

2.4) Insecticide use in public health and insecticide resistance 

2.4.1) Insecticide use in vector control 

Vector control with use of insecticide remains an important component of many 

vector-borne disease control programmes. Insecticidal properties of 

dichlorodiphenyltrichloroethane (DDT) were discovered around 1940 and its use in 

the global malaria eradication campaign led to the elimination of malaria in 37 of the 

143 malaria endemic countries between 1950 and 1978 (WHO, 2012).  

Presently, four classes of chemical insecticides consisting of the organochlorines 

(DDT exclusively), the organophosphates, the carbamates and the pyrethroids are 

the mainstay of vector control programmes. However, pyrethroids are the only 

recommended insecticide used in treating bed nets because of their relatively low 

toxicity to humans and rapid knock-down effect (Zaim et al., 2000). Other insecticide 
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groups, such as the benzyl phenyl urea as well as biological control agents such as 

Bacillus thuringiensis have been of limited use against mosquitoes. 

Pyrethroids have multiple modes of action on the mosquito vector. They open sodium 

channels, which leads to continuous nerve excitation, paralysis and death of the 

vector. They also have an irritant effect, resulting in hyperactivity, rapid knockdown, 

feeding inhibition, shorter landing times and undirected flight, all of which reduce the 

biting ability of mosquitoes (WHO, 2009). Pyrethroids can be classified into two types 

according to the absence (type 1) or presence (type 2) of an alpha-cyano group in 

the alcohol moiety. Also, due to a complex chemical structure, the individual 

pyrethroid substances are often composed of different bonds, structures or isomers. 

The level of activity or toxicity is determined by the structure of the molecule (DeVries 

and Georghiou, 1980; Weerasinghe et al., 2001). 

Organochlorines are used for IRS vector control in the form of DDT. The continued 

use of DDT for disease vector control is conditionally approved under the Stockholm 

Convention on Persistent Organic Pollutants in accordance with WHO 

recommendations and guidelines (WHO, 2006). DDT and pyrethroids have similar 

modes of action, and therefore cross resistance to these two classes of insecticide 

may occur (WHO, 2011). 

Organophosphates and carbamates are also used for IRS. They are highly effective, 

but have relatively short residual activity compared to pyrethroids and DDT. Currently 

however, encapsulation (CS) technology is used to extend the residual performance 

of some organophosphate and carbamate insecticides (Oxborough et al., 2014). 

Organophosphates and carbamates inhibit cholinesterase, thereby preventing 
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neurotransmitter acetylcholine breakdown, resulting in neuromuscular overstimulation 

and subsequent death of the vector (WHO, 2009). This mode of action on 

mosquitoes differs from that of pyrethroids and organochlorines 

 

 

2.4.2) Insecticide resistance in mosquitoes 

A small percentage of the overall amount of insecticides is used in public health. 

However, there is wide spread of resistance among many vector species of public 

health importance. The first report on insecticide resistance was published about 100 

years ago when Melander (1914) noticed that certain populations of scale insects 

were becoming less susceptible to sulphur-lime than they had been in the past, while 

the chemical was reported to be very effective at killing the insects in a previous 

experiment. The study found that 90% of the specimens that he had sprayed in 

Clarkston, USA, had survived. Even when he increased the amount of the active 

ingredient by ten times, 74% of them still survived (Melander, 1914).  

Resistance to insecticides is defined as the development of the ability to survive 

doses of insecticides that previously were lethal to the majority of individuals in a 

population (IRAC, 2011). The level of resistance in insect vector populations is 

dependent both on the volume and frequency of applications of insecticides used 

against them and the inherent characteristics of the insect species involved 

(Hemingway and Ranson, 2000). Resistance became a major obstacle to the global 

malaria eradication programme of the 1950s and 1960s and rendered some 
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insecticides, particularly dieldrin, useless (Busvine, 1969). Presently, insecticide 

resistance is widespread and it is reported in nearly two thirds of malaria endemic 

countries. It affects all major vector species and all classes of insecticides (WHO, 

2012). Insecticide resistance is expected to directly affect the re-emergence of vector 

borne diseases and threaten disease control in areas where vector borne diseases 

already exist (Brogdon and McAllister, 1998). There have been reported cases of 

failure of some malaria control strategies due to pyrethroid resistance (Hargreaves et 

al., 2000; N’Guessan et al., 2007). Therefore, it is very important to preserve useful 

insecticides by slowing and preventing the development of resistance in mosquitoes. 

To achieve this goal, it is necessary to understand and monitor the development of 

insecticide resistance and to find ways of preventing resistance development. In 

response to the spread of insecticide resistance in mosquito species, WHO has 

proposed various guidelines to encourage countries to plan and implement 

insecticide resistance management strategies (WHO, 2012). 

 

 

2.4.3) Insecticide resistance mechanisms 

Resistance mechanisms can be divided into major and minor groups. The major 

groups are metabolic resistance (alterations in the levels or activities of detoxification 

enzymes) and target-site resistance (i.e., insensitivity of the sodium channel, 

acetylcholinesterase and GABA receptor) whereas the minor group consists of 

reduced penetration and behavioural resistance (IRAC, 2011).  
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Metabolic resistance is the most common resistance mechanism that occurs in 

insects. It occurs due to changes in a mosquito’s enzyme systems that result in a 

more rapid detoxification of the insecticide than normal, preventing the insecticide 

from reaching the intended site of action. In mosquitoes, three enzyme systems are 

believed to be important: the esterases, the mono-oxygenases and the glutathione S-

transferases. Glutathione S-transferase is often involved in DDT resistance. Several 

reports have shown esterases to be involved in organophosphate, carbamate, and to 

a lesser extent, pyrethroid resistance. Similarly, mono-oxygenases have been 

associated with pyrethroid resistance, the activation and/or detoxication of 

organophosphates and, to a lesser extent, carbamate resistance. Most insects 

possess these enzyme systems to help them detoxify naturally occurring foreign 

materials. However, they are often enhanced in resistant insect strains enabling them 

to metabolise or degrade insecticides before they are able to exert a toxic effect. 

Metabolic resistance mechanisms have been identified in vector populations for all 

major classes of insecticides currently used for vector control, including 

organophosphates, carbamates, pyrethroids and DDT (Hemmingway and Ranson, 

2000; IRAC, 2011).  

In mosquitoes, the esterase-based resistance mechanisms have been well studied in 

Culex mosquitoes. Broad-spectrum organophosphate resistance is conferred by 

elevated levels of esterases in Culex, which in most cases as a result of 

sequestration (Hemingway and Ranson, 2000). That is, the esterases act by rapidly 

binding and slowly turning over the insecticide. Two common esterase loci, estα and 

estβ, are involved alone or in combination in this type of resistance in Culex 

(Hemingway and Karunaratne, 1998; Hemingway and Ranson, 2000). 
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Several studies have shown that insecticide-resistant insects have elevated levels of 

glutathione S-transferase (GST) activity (Grant, 1991). GSTs are dimeric 

multifunctional enzymes that play a role in the detoxification of a large range of 

xenobiotics (Prapanthadara et al., 1996). The enzymes catalyse the nucleophilic 

attack of reduced glutathione (GSH) on the electrophilic centres of lipophilic 

compounds. Two families of insect GST are recognized and both appear to have a 

role in insecticide resistance, particularly DDT resistance (Hemmingway and Ranson, 

2000). 

The monooxygenases are a complex family of enzymes found in most organisms, 

including insects. These enzymes are involved in the metabolism of xenobiotics and 

have a role in endogenous metabolism. The P450 monooxygenases are generally 

the rate-limiting enzyme step in the chain. These enzymes are important in the 

adaptation of insects to toxic chemicals in their host plants. P450 monooxygenases 

are involved in the metabolism of most insecticides (Feyereisen, 1999), leading to an 

activation of the molecule in the case of organophosphates insecticides, or more 

generally to detoxification. P450 enzymes bind molecular oxygen and receive 

electrons from NADPH to introduce an oxygen molecule into the substrate (IRAC, 

2011). 

Elevated monooxygenase activity is associated with pyrethroid resistance in several 

mosquito species. CYP6Z1, an adult-specific P450gene product, has been identified 

from A. gambiae associated with pyrethroid resistance (NiKou et al., 2003). An about 

2.5-fold elevated level of CYP6F1 has been documented in C. quinquefasciatus 

associated with insecticide resistance (Kasai et al., 2000). 
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The second most common resistance mechanism encountered in insects is target-

site resistance. Target-site resistance occurs due to the insensitivity of an active site 

to which an insecticide would normally bind and act.  This insensitivity is due to any 

change in the protein structure of the target site leading to a lesser affinity or lesser 

action upon the molecule. This results in the insects being unaffected or less affected 

by the insecticide, compared to susceptible insects. For the main insecticides used in 

public health, this type of resistance may occur in either the voltage sensitive sodium 

channel, causing DDT and pyrethroid resistance, or the acetyl cholinesterase 

(AChE), causing organophosphate and carbamate resistance.  

Knock down resistance (kdr) mutations, most commonly a substitution of leucine at 

codon 1014 in the S6 segment of domain II in the voltage gated sodium channels of 

nerve cell membranes (O'Reilly et al., 2006). Knockdown resistance was originally 

characterized in the house fly (Musca domestica) and it has been found that a 

leucine to phenylalanine substitution at amino acid residue 1014 in the S6 segment 

of domain II (IIS6) of the α-subunit is associated with moderate knockdown 

resistance of kdr strains. In super-kdr strains, a methionine to threonine replacement 

at residue 918 near the S4-S5linker in domain II is found along with a leucine to 

phenylalanine mutation, which results in much higher resistance. The third mutation 

at position 1014, leucine replaced by serine, has been reported in C. pipiens and A. 

gambiae (Martinez-Torres et al., 1999; Ranson et al., 2000). 

AChE insensitivity is commonly caused by a glycine to serine point mutation at codon 

119 (G119S) (Fournier and Mutero, 1994). The complete ace1 coding regions of 

susceptible and resistant C. pipiens strains were cloned and compared between 

insecticide resistant and susceptible mosquitoes. A single glycine to serine 
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substitution (G119S) was found (Weill et al., 2003). The same mutation has been 

identified in other AChE insensitive strains of A. gambiae and C. quinquefasciatus 

(Weill et al., 2003; 2004; Liu et al., 2005). As the G119S mutation creates an Alu 1 

restriction site in the ace1 of resistant individuals, a PCR/RFLP test was successfully 

used to detect its presence in single mosquitoes of both C. pipiens and A. gambiae 

(Weill et al., 2004). 

Gamma amino butyric acid (GABA) is the major inhibitory neurotransmitter in nervous 

systems of both vertebrates and invertebrates (ffrench-Constant et al., 1993). Binding 

of GABA to its receptor activates chloride ion selective channels (Hemingway et al., 

2004). The GABA receptor is the target site of cyclodiene and phenylpyrazoles 

insecticides (ffrench-Constant et al., 2004). Resistance to dieldrin (rdl), a GABA 

receptor subunit gene, was cloned from a field-isolated Drosophila mutant, which was 

resistant to dieldrin, a cyclodiene insecticide (ffrench-Constant et al., 1993). Genetic 

mapping of dieldrin resistance in Drosophila melanogaster indicated that resistance 

was conferred by rdl on the left arm of chromosome III at map position 66F (ffrench-

Constant et al., 2004). A mutation at a single codon in the rdl gene, are placement of 

alanine at position 302 with a serine or a glycine, conferred dieldrin resistance in 

Drosophila (ffrench-Constant et al., 1993). Alanine at position 302, which lies within 

the second transmembrane region of the rdl subunit, is crucial for insecticide binding 

and mutation of this amino acid can cause resistance due to a unique dual effect on 

insecticide binding (Zhang et al., 1994). The mutation of alanine to serine or glycine 

has been documented in resistant strains of several insects, including mosquitoes 

(Thompson et al., 1993). 
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Modifications in the insect cuticle or digestive tract linings that prevent or slow the 

absorption or penetration of insecticides can be found in some strains of resistant 

insects. This resistance mechanism can affect a broad range of insecticides (IRAC, 

2011). Behavioural resistance describes any modification in insect behaviour that 

helps to avoid the lethal effects of insecticides. This normally occurs as a result of 

prolonged exposure of insects to an insecticide. Behavioural resistance does not 

have the same importance as physiological resistance but might be considered to be 

a contributing factor, leading to the avoidance of lethal doses of an insecticide (IRAC, 

2011). 

 

 

2.5) Factors that select for insecticide resistance 

2.5.1) The role of agriculture 

Agriculture is one of the most important economic sectors in Africa; however, 

exposure of mosquito vectors to agricultural insecticides has been implicated in the 

selection of resistance in mosquitoes (Diabate et al., 2002; Yadouleton et al., 2009, 

2011). Most chemical classes of insecticides are either used in both agricultural and 

public health or have similar targets and modes of action (Khambay and Jewess, 

2010). In West Africa, the increased rate of pyrethroid resistance and kdr mutation 

frequency were often attributed to the massive agricultural use of DDT and 

pyrethroids (Chandre et al., 1999; Diabate et al., 2002; Yadouleton et al., 2011). In 

Benin, it was reported that A. gambiae females frequently lay eggs in breeding sites 
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located around agricultural settings and that larvae from these sites underwent 

selection pressure from agricultural pesticides, favouring the emergence of 

resistance (Akogbeto et al., 2006).  

In addition to pesticides and insecticides, chemicals commonly used in agriculture 

also include fertilizers, herbicides and fungicides. Although these compounds are 

usually non-toxic to insects, their presence in breeding sites has been reported to 

affect insecticide tolerance through the modulation of their detoxification system. For 

instance, Aedes albopictus larvae exposed to some fungicides (e.g. copper sulphate, 

triadimefon) often used in agriculture showed an increased tolerance to carbaryl and 

permethrin (Suwanchaichinda and Brattsten, 2001; Poupardin et al., 2008). Similarly, 

exposure of Aedes aegypti larvae to the herbicide glyphosate led to a significant 

increase of their tolerance of permethrin (Riaz et al., 2009).  

 

 

2.5.2) The role of public health 

For public health, insecticides are used in highly targeted strategies and persist 

longer, which allow significant build-up of selection pressure over many generations 

of vectors. The massive scaling-up of the use of ITM and IRS for malaria control has 

resulted in an increased selection of pyrethroid resistance in malaria-endemic 

countries (Trape et al., 2009; WHO, 2012). Also, massive use of domestic 

insecticides such as mosquito coils or aerosol sprays in many households have been 

reported to represent an additional selective pressure favouring pyrethroid resistance 
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in urban areas (Elissa et al., 1993; Diabate et al. 2002; Boakye et al., 2009; Kudom 

et al., 2013). 

 

 

2.5.3) The role of urbanization 

Rapid urbanization is mostly associated with increased pollution. Pollutants 

generated by traffic, industries, and domestic wastes, mostly end up in various water 

bodies. Urban pollutants are generally not toxic individually at environmental doses 

but are generally found in mixtures and several of these chemicals have been shown 

to affect mosquito tolerance to insecticides. This is supported by Suwanchaichinda 

and Brattsten (2002), who reported that exposure of Aedes albopictus larvae to 

benzothiazole, a major leachate compound of automobile tires, led to an increase in 

their tolerance to various insecticides. Similarly, exposure of Aedes aegypti larvae for 

24 h to a sub-lethal dose of the fluoranthene increased their tolerance to permethrin 

and induced GST and P450 activities (Poupardin et al., 2008).  

 

 

2.5.4) The role of microbial flora 

Mosquitoes, like other insects, can harbour a wide range of microorganisms from 

pathogens to symbionts, which may have variable impacts on their life traits. 

Microbial flora that resides in the gut of mosquitoes is known to have significant 
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impacts on the biology and behaviour of the host. Nevertheless, there are not many 

studies on the relationship between the insecticide resistance status of mosquitoes 

and their microbial flora. Kikuchi et al. (2012) recently reported a novel insecticide 

resistance mechanism through the acquisition by the host of bacteria able to 

catabolise insecticides. They demonstrated that fenitrothion-degrading Burkholderia 

strains were able to establish a specific and beneficial symbiosis with Riptortus 

pedestris and confer resistance of the host insects against fenitrothion. Furthermore, 

experimental applications of fenitrothion to field soils massively enriched fenitrothion-

degrading bacteria from undetectable levels to over 80% of the total culturable 

bacterial counts in the field soils, and more than 90% of R. pedestris reared with the 

enriched soil favouring symbiosis with the insecticide-degrading Burkholderia and 

subsequent insecticide tolerance to occur in the host insects (Kikuchi et al., 2012).  

 

 

2.6) Insecticide resistance management 

The simplest form of resistance management is mostly insecticide based, and this 

could take several forms, such as rotation, combinations, mixtures or mosaic. 

Successful resistance management depends upon reducing the selection pressure 

exerted by a particular insecticide or a particular mode of action (IRAC, 2011). 

Combined pyrethroid and carbamate mixture or ’two-in-one’ treated mosquito nets 

have been proposed as resistance management tools (Guillet et al., 2001). 

Synergists have also been reported to be capable of delaying control failure, due to 
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insecticide resistance, in an agricultural setting. Synergists can be defined as 

compounds that enhance the toxicity of some insecticides, although they usually 

have limited toxicity themselves. Synergists, including piperonyl butoxide (PBO), 

S,S,S-tributyl phosphoro-trithioate (DEF), and N-Octyl bicycloheptene dicarboximide 

(MGK-264), enhance the effect of several classes of insecticide, including the 

pyrethroids, organophosphates and carbamates. This is achieved by inhibiting the 

enzymes that metabolise insecticides, P450s and esterases, within the insect. 

Currently, some ITM (e.g. Permanet® 3.0) contain a mixture of a pyrethroid 

insecticide and a synergist, PBO to fight pyrethroid resistant-mosquitoes. Permanet 

3.0 has been showed to be to more effective against malaria vectors with multiple 

resistance mechanisms that other ITM treated with single pyrethroid insecticide 

(Adeogun et al., 2012). 

 

 

2.7) Mosquito borne diseases in Ghana and control 

2.7.1) Burden of malaria and other mosquito-borne diseases in Ghana 

The major mosquito borne diseases in Ghana are malaria, filariasis and yellow fever. 

Malaria has been a major cause of poverty and low productivity and the leading 

cause of workdays lost due to illnesses. In addition, malaria impacts adversely on 

productivity in all sectors of the economy (MOH, 2008).  

Malaria is hyper-endemic in all parts of the country, with the entire population of 

about 24 million at risk. Transmission occurs all year round with slight seasonal 
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variations during the rainy season from April to July (MOH, 2008). The seasonal 

variation is marked in the northern parts of Ghana where there is a prolonged dry 

season from September to April. In 2006, outpatient malaria cases accounted for 

37.5% of all outpatient illnesses, 36% of all admissions and 33.4% of all deaths in 

children under five years. In that same year, amongst pregnant women it accounted 

for 13.8% of all OPD attendances, 10.6% of admissions and 9.4% deaths (MOH, 

2008). In 2012, over 11 million suspected cases of malaria were recorded and 2,855 

people died as result of the disease (WHO, 2013). 

The main parasite species causing malaria in Ghana are P. falciparum (80-90%), P. 

malariae (20-36%), and P. ovale (0.15%). For the past few years, however, malaria 

recorded was mainly caused by P. falciparum (WHO, 2011, 2013). The principal 

vectors are the A. gambiae complex and A. funestus (Afrane et al., 2004; Anto et al., 

2009). The groups affected most by malaria are children under five years of age and 

pregnant women who constitute 20% and 4% respectively of the general population 

(MOH, 2008). 

Yellow fever outbreaks normally recur every ten to twelve years in certain parts of 

Ghana. Aedes aegypti, Aedes luteocephalus and Aedes africanus have been 

implicated in the transmission of yellow fever in Ghana (Agdzi et al., 1984, Appawu et 

al., 2006). Bancroftian filariasis is also present in most parts of Ghana (Gyapong et 

al., 1996) with about 12 million people requiring preventive chemotherapy. The 

disease is transmitted by Mansonia species (Ughasi et al., 2011) and A. gambiae and 

A. funestus (Dunyo et al., 1996) which are also vectors of malaria. Unlike East Africa 

and many Asian countries, C. quinquefasciatus has not been implicated in the 

transmission of filariasis in Ghana (Dunyo et al., 1996, Dzodzomenyo et al., 1999). 
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2.7.2) Malaria control in Ghana 

Malaria control in Ghana dates back to the 1950s and the aim was to reduce malaria 

burden until it is no longer of public health significance. Interventions applied at the 

time included residual insecticide application against adult mosquitoes, mass 

chemoprophylaxis with pyrimethamine medicated salt and improvement of drainage 

systems (MOH, 2008). 

Since 1998, Ghana has been implementing the Roll Back Malaria Strategy (RBM). In 

the year 2000, a 2000-2010 strategic plan was drawn which gave strategic direction 

to the Malaria Control Programme. Overall, the Ghana RBM emphasizes the 

strengthening of health services through multi and inter-sectorial partnerships and 

making treatment and prevention strategies more widely available. The goal was to 

reduce malaria-specific morbidity and mortality by 50% by the year 2010. Though 

Ghana made some progress, there were still gaps in achieving the targets in the 

previous plan. Lessons learnt from the implementation of the previous strategic plan 

helped in developing another strategic plan known as 2008-2015 strategic plan for 

malaria control in Ghana. The aim of this new approach is to give strategic directions 

in order to attain the goal of reducing the current malaria disease burden by 75% by 

the year 2015 which is in line with the objectives of the MDG. The plan covers the 

areas of improving multiple prevention, improving access to prompt and effective 

treatment, strengthening health systems at all levels, and creating and sustaining 

partnership. The specific objectives include 1) in 100% of households ownership of at 

least one ITM, 2) 80% of the general population sleeping under ITMs, 3) the increase 

of the number of children under five and pregnant women sleeping under treated 

nets from current levels to 85% (MOH, 2008). 
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In order to achieve these objectives, access to ITM has been scaled up and as a 

result, there has been a tremendous increase in the number of households protected 

by ITM over the past decade. A model predicts that about 40% of the population has 

access to ITM (WHO 2013). Percentage of households owning at least one ITM 

increased from 2% in 2000 to 47% in 2010. Besides ITM, IRS is also gradually scaled 

up in many areas in Ghana and the preliminary result of its impact on malaria control 

is encouraging. A private mining company (AngloGold Ashanti) initiated IRS activities 

within its catchment area, the Obuasi Municipal assembly, as part of its 

comprehensive integrated malaria control program. It is reported that over 74% of 

malaria cases have been reduced within a period of 2 years in the intervention area 

which comprises urban and rural communities. The U.S. President's Malaria Initiative 

(PMI) in Ghana has also implemented IRS operations in five districts in the Northern 

Region of the country (MOH, 2008). 

Although much effort has been carried out to scale up ITM, acceptance and utilization 

of ITM use still remains a problem and if not properly addressed can jeopardize 

malaria control efforts in the country. Some reports have shown a significant gap 

between incidence of ITM use and ITM ownership (Eisele et al., 2009; Kudom and 

Mensah, 2010) and various reasons have been attributed to it. Kudom and Mensah 

(2010) observed that about 33% of students in the Cape Coast Metropolis that 

owned ITM did not use it. Few respondents knew or were able to describe different 

types of mosquitoes but to the majority, any mosquito bite can result in malaria. This 

implies a lack of understanding why sleeping under ITMs can prevent malaria. In 

addition, failure of ITM to protect users from nuisance from Culex mosquitoes due to 

a lack of insecticide efficacy against it has been cited as one of the major obstacles 
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to the sustained use of ITM (Samuelsen et al., 2004). In this regard, for local 

communities to accept and maintain ITM use, it must be able to protect its users from 

mosquito bites from both vector and nuisance mosquitoes. 

 

 

2.7.3) Insecticide resistance profile in Ghana 

Insecticide resistance status among malaria vectors is well documented in different 

parts of Ghana. Varied resistance levels have been observed across different 

ecological zones, seasons and even different breeding habitats among Anopheles 

species (Yawson et al., 2004; Anto et al., 2009; Kabula et al., 2011). More so, 

resistance has been spreading to areas that used to be susceptible. For instance, 

Kristan et al. (2003) found A. gambiae completely susceptible to deltamethrin  in 

Tarkwa in 2000, however, by 2010 A. gambiae has developed resistance to the 

insecticide and  mortality to deltamethrin was reduced from 100% to about 57% (Hunt 

et al. 2011). Resistance levels also varied between A. gambiae and A. funestus in 

places where they co-exist. A. gambiae appears to be more resistant to insecticides 

than A. funestus. For instance, in Obuasi mortality to DDT was 30.8 % in A. gambiae 

while A. funestus was 60.9%. A similar trend has been observed in different 

insecticides and different areas in Ghana (Hunt et al., 2011; Coetzee et al., 2006; 

Anto et al., 2009).  

The impact of ecology and seasons on insecticide resistance has also been 

assessed among Anopheles species. Anto et al. (2009) observed a significant 
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seasonal variation in susceptibility of Anopheles species to various insecticides. The 

study revealed a significant variation in susceptibility during rainy and dry season. For 

A. funestus, dry season susceptibility was 90.5% and that for the wet season was 

87.3%. In the case of A. gambiae, susceptibility during the dry season was 89.8% 

and the wet season was 91.4% (Anto et al. 2009). Different susceptibility levels 

according to ecological zones have been reported by different studies in Ghana. Anto 

et al. (2009) concluded that mosquitoes from the Kassena-Nankana District in the 

Savannah region were susceptible to pyrethroid insecticides (Anto et al. 2009) while 

in the forest and coastal savannah zones resistance seems to be high (Hunt et al., 

2011, Kudom et al., 2012). Occurrence and distribution of kdr mutations, which is a 

major mechanism responsible for pyrethroid and DDT resistance in the country, 

appears to support this observation. Different studies have found very low 

frequencies of kdr mutations in the savannah zones in Ghana while high frequencies 

have been observed in Southern Ghana (Anto et al., 2009; Yawson et al., 2004). For 

example, Yawson et al. (2004) reported a kdr mutation frequency of 0.58% in Bonia 

and 0% in Korania in the savannah zone in the Northern Region of Ghana whereas a 

frequency of 100% was recorded in Kumasi in the forest zone. 

Resistance levels of Anopheles species to different classes of insecticides vary. 

There is a widespread and relatively uniform distribution of DDT resistance among 

Anopheles species in Ghana. Resistance to pyrethroid, carbamate and 

organophosphate insecticides varies but Anopheles mosquitoes seem to be more 

susceptible to organophosphates (Hunt et al., 2011; Kudom et al., 2012).  

Furthermore, resistance to permethrin was more profound than to other pyrethroid 

insecticides (Anto et al., 2009; Adasi et al., 2008).  
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Excessive use of agricultural pesticides and household use of insecticides have been 

implicated as the main modifiers on selection pressure in the development of 

resistance in Anopheles species (Boakye et al., 2009) 

 

 

 

 

 

 

 

 

 

 

 

 



47 

 

3) Rationale and Objectives 

3.1) Rationale of the study 

The rationale behind the investigations carried out in this study was the observation 

made by different studies on the potential impact of Culex mosquitoes on malaria 

control strategies. Strong level of pyrethroid-resistance in Culex is reported to 

represent an obstacle to malaria prevention, as people may not perceive the 

personal protective effect of ITM if nuisance due to Culex is still high (Chandre et al., 

1997). Several experimental hut trials have shown near to complete failure of ITM 

against pyrethroid-resistant Culex populations in many African countries (Ngufor et 

al., 2014, Irish et al., 2008). However, there is little information on resistance status of 

Culex mosquitoes in Ghana. Few studies have reported varying resistance levels in 

Culex from Ghana’s capital city of Accra and its surrounding towns (Wilding et al., 

2012; Kudom et al., 2013) but the situation in the rest of the country remains largely 

unknown. Culex mosquitoes are the most widely distributed and abundant 

mosquitoes in Ghana and in order to improve and maintain the use of ITM, there is a 

need to attain a better understanding of their resistance profile and their impact on 

ITM usage.  
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3.2) Purpose of the study 

The main objectives of the study were to determine the resistance status of Culex 

mosquitoes to the four classes of insecticide (pyrethroid, organochlorines, 

organophophate and carbamates) mostly used in public health and evaluate the 

personal protective efficacy of insecticide treated nets against the pyrethroid-resistant 

mosquitoes with the following specific objectives: 

1. To determine spatial and temporal susceptibility status of Culex to the four 

classes of insecticides in urban towns in Ghana 

2. To determine resistance mechanisms among resistant populations of Culex, if 

any.  

3. To determine ecological and environmental determinants of resistance in 

Culex. 

4. To evaluate the efficacy of different ITM against local pyrethroid-resistant 

Culex. 
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4) Materials and methods 

4.1) Description of the study area  

For the investigation presented in this study, mosquitoes were collected from all of 

the three major ecological zones in Ghana, namely coastal savannah, forest, and 

Guinea savannah, and each ecological zone (Figure 4.1.1), three large urban areas 

(based on the size of human population) were selected. In each urban area, 

mosquito larvae were sampled from three different land use settings: urban 

agricultural area, residential area and marshy or swampy area.  

In an urban agricultural area, Culex larvae were sampled from water impoundments 

and other water bodies on vegetable farms, which are mostly used for irrigation. In 

the residential area category, Culex larvae were sampled exclusively from choked 

gutters, mostly found at the central part of the towns. The gutters were highly polluted 

with organic materials and surrounded by residential and commercial areas. Lastly, in 

the marshy or swampy areas, Culex larvae were sampled from low-lying waterlogged 

areas, often beside a water body that is poorly drained and liable to flood, or from 

slow-moving water bodies.  
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Figure 4.1.1: Map of Ghana showing the three ecological zones and urban towns 

where mosquitoes were collected. 
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4.2) Mosquito collection 

List of materials used for mosquito collection 

350 ml dipper 5000 ml plastic 
containers 

Plastic trays                          
(5 cm x 27 cm x 36 cm) 

 
150 ml plastic 

disposable cups 
 

25 cm2 plastic 
mosquito cages 

 

Pasteur pipettes 

 

 

Larval collections were carried out from February 2012 to December 2012 in 9 urban 

areas of Ghana in both dry and rainy seasons. Larvae were sent to the laboratory for 

emergence. In each town (Table 4.2.1), larval survey was carried out on foot to locate 

mosquito breeding sites under the three categories of land use settings (Figure 

4.2.1). Culex larvae were identified by their angular position on the surface of water 

(Figure 2.1.1.1). The larvae were collected with a 350 ml dipper and transferred into a 

5000 ml plastic container and sent to the laboratory for emergence.  

Once in the laboratory, the water with the mosquito juveniles was poured into plastic 

trays (5 cm x 27 cm x 36 cm) to a depth of 2 cm and each tray labelled according to 

the site and date of collection. The trays containing mosquito larvae were kept at 27-

30 ºC and 76 ± 5% relative humidity. The larvae were fed with ground “Nutrafin” 

goldfish food (Rolf Hagen, USA). The development of the larvae were monitored 

regularly and all those that pupated were collected into a 150 ml disposable plastic 

cups with water using Pasteur pipette and then placed in a labelled cage for adult 

emergence. All emerged mosquitoes were fed on 10% sugar solution imbibed in 

cotton wool. Only female mosquitoes were used for the experiments. The female 
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mosquitoes that were later used for biochemical and PCR assay were stored in 

freezer (- 80 ºC). 

In a single study site, about 50 female mosquitoes were used for the biochemical 

assay, 20 female mosquitoes for PCR assay and 150 female mosquitoes for 

susceptibility assay per insecticide per season (Figure 4.2.2). 
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A 

 
 
B 

 
C 

 
Figure 4.2.1: Pictures showing different land use settings where mosquito larvae 

were collected (A- residential area; B- swampy area; C- urban agricultural area) 
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Figure 4.2.2: A flow chart showing the study design in the assessment of resistance 

status of Culex mosquitoes from Ghana. (GST- Glutathione-S-Transferase, NSE – 

non- specific esterase, MFO – mixed function oxidase; per – permethrin, del – 

deltamethrin, ddt – dichlorodiphenyltrichloroethane, die – dieldrin, mal – malathion, 

fen – fenitrothion, pro – propoxur, ben – bendiocarb). 
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Table 4.2.1: Ecological zone, urban areas, land use settings and GPS location or 

names of places where mosquito larvae were collected 

Ecological 
zone 

City Residential area Swampy area Urban 
agricultural area 

Coastal 
savannah 

Accra 5.57473;             
-0.24994 

     - Korle Bu 

Cape 
Coast 

5.10234;             
-1.27883 

5.10743;                
-1.29711 

       - 

Sekondi-
Takoradi 

4.93477;             
-1.72299 

4.91309;               
-1.75322 

4.904518;             
-1.771765 

Forest 
zone 

Kumasi 6.77819;             
-1.60643 

6.71672;               
-1.65170 

6.68254;                 
-1.64022 

Sunyani 7.33680;             
-2.37097 

7.33547;                   
-2.37536 

     - 

Tarkwa 5.30246;             
-1.98793 

5.30993;               
-1.98271 

     - 

Savannah 
zone 

Techiman 7.58541;             
-1.93786 

      -     - 

Tamale 9.40901;             
-0.83981 

9.38657;               
-0.837096 

    - 

Bolgatanga     STC 10.76727;              
-0.85739 

    - 
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4.3) Susceptibility bioassay 

List of materials used for susceptibility assay 

 
 

WHO Insecticide 
impregnated 

papers 

Permethrin 
(0.75 %) 
 

Deltamethrin 
(0.05 %) 
 

DDT (4.0 %) 
 

Dieldrin (4.0 %) 
 

Bendiocarb (0.1 %) 
 

Propoxur (0.1 %) 
 

Fenitrothion 
(1.0 %)  
 

Malathion (5.0 %)  

WHO susceptibility 
test kit 

aspirator mosquito cages          
25 cm x 25 cm x 25 
cm 

 

 

The WHO insecticide susceptibility bioassay is a simple direct response-to-exposure 

test. Mosquitoes are exposed to known concentrations of an insecticide for a fixed 

period of time and at the end of which the number of fatalities is recorded. The test is 

designed to distinguish between baseline susceptibility and resistance to insecticides 

in adult mosquitoes.  

In the present study, adult susceptibility assay was performed according to WHO 

guidelines (WHO, 2012). A clean sheet of white paper (12 cm x 15 cm), rolled into a 

cylinder shape, was inserted into a holding tube (Figure 4.3.1) and fastened into 

position with a steel spring-wire clip. The tube was attached to a slide. About 20 - 25 

active female mosquitoes were aspirated in batches from the mosquito cage into the 

holding tube through the filling hole in the slide. Once the mosquitoes were 

transferred, the slide unit was closed and the holding tube set in an upright position 

for 30 minutes. At the end of this time, any damaged insects were removed. An 

exposure tube was prepared in much the same way. The exposure tube was lined 

with a sheet of insecticide-impregnated paper, which was fastened into position with 
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a copper spring-wire clip. The empty exposure tube was attached to the vacant 

position on the slide and with the slide unit mosquitoes were opened and blown 

gently into the exposure tube. Once all the mosquitoes were in the exposure tube, 

the slide unit was closed and the holding tube was detached and set to one side. 

Mosquitoes were kept in the exposure tube for a period of time recommended by 

WHO (Table 4.3.1). At the end of the recommended exposure period, the mosquitoes 

were transferred back to the holding tube. The exposure tube was detached from the 

slide unit. A pad of a cotton-wool soaked in sugar water (10 % sucrose) was placed 

on the mesh-screen end of the holding tube. Mosquitoes were maintained in the 

holding tube for 24 h (the recovery period). Temperature and humidity were recorded 

during the recovery period. 

Exposure tubes for both permethrin and deltamethrin were held flat so that 

mosquitoes that were knocked down remained in contact with the paper during the 

entire period. New insecticide paper was used for new locations and each paper was 

not used more than six times. Each test of a batch of 20 – 25 mosquitoes was 

replicated four to five times and tests with untreated paper were run in parallel as a 

control. All tests were done with two to four day old, not blood-fed, female 

mosquitoes.  

At the end of recovery period (i.e. 24 h post-exposure), the number of dead 

mosquitoes was counted and recorded. A mosquito was classified as dead if it was 

immobile or unable to stand or fly in a coordinated way. The mortality of test sample 

was calculated by summing the number of dead mosquitoes across all four exposure 

replicates and expressing this as a percentage of the total number of exposed 

mosquitoes: 
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Mortality = total number of dead mosquitoes x 100 % 

                                Total sample size 

 

 

 

Figure 4.3.1: WHO susceptibility testing tube with a red dot for use as exposure tubes 

(source: MR4) 
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Table 4.3.1: Different classes of insecticides used in the study and WHO 

recommended time of exposure of the mosquitoes to the insecticides 

Class of insecticide Insecticide  Exposure time (h) 

Pyrethroid  Permethrin 

deltamethrin 

2 

2 

Organochlorines  DDT 

Dieldrin 

4 

1 

Organophosphate  Malathion  

Fenitrothion 

1 

2 

Carbamates  Bendiocarb  

Propoxur  

1 

2 

 

 

4.4) Molecular analyses 

4.4.1) DNA extraction  

List of materials used for DNA extraction 

DNeasy® extraction kit vortex centrifuge 

pipettes and pipette tips thermo mixer pestle 

 

Genomic DNA was extracted with DNeasy extraction kit (Qiagen®), according to the 

protocol provided by the manufacturer (DNeasy handbook). A whole mosquito was 

placed in a 1.5ml micro centrifuge tube and 180 μl Buffer ATL was added. The 

mosquito was homogenized with plastic pestle and 20 μl proteinase K was added. 

The sample was incubated at 56 °C in a thermo mixer until the mosquito was 

completely lysed. The sample was vortexed for 15 seconds and about 200 μl buffer 
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AL was added to the sample and mixed thoroughly by vortexing. Then, 200 μl 

ethanol (98 %) was added and thoroughly mixed again by vortexing. The mixture was 

transferred into the DNeasy Mini spin column placed in a 2 ml collection tube with a 

pipette. The mixture was then centrifuged at 8000 rpm for 1 min. The flow-through 

and collection tube were discarded. The DNeasy Mini spin column was placed in a 

new 2 ml collection tube, 500 μl buffer AW1 was added, and centrifuged for 1 min at 

8000 rpm. The flow-through and collection tube were discarded. The DNeasy Mini 

spin column was placed in another new 2 ml collection tube, 500 μl buffer AW2 was 

added, and centrifuged for 3 min at 14,000 rpm to dry the DNeasy membrane. The 

flow-through and collection tube were discarded. The DNeasy Mini spin column was 

placed in a clean 2 ml micro centrifuge tube and 200 μl buffer AE pipetted directly 

onto the DNeasy membrane. It was then incubated at room temperature for 1 min, 

and then centrifuged for 1 min at 8000 rpm to elute. This procedure was repeated for 

about 20 mosquitoes each from the nine urban sites.   
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4.4.2) Species identification and detection of kdr and ace1 mutation  

List of materials used for PCR assay 

Thermo cycler (Takara®) 

Primers (Table 4.3.2.1) 

Mupid 2 plus® mini-gel system 

0.2 ml micro tubes 

Agarose powder 

TAE buffer {Tris base, acetic acid in EDTA (Ethylenediaminetetraacetic acid)} 

Double distilled water 

Ethidium bromide 

DNTP (deoxynucleoside triphosphate) 

Taq polymerase (HotstarTaq: Qiagen®) 

 

Molecular analysis was carried out in the laboratories of the Noguchi Memorial 

Institute for Medical Research (NMIMR). Mosquitoes for this study were mostly 

collected from polluted water bodies; hence C. quinquefasciatus was generally 

expected. Notwithstanding, there was a possibility of other Culex species existing 

alone or co-habiting with C. quinquefasciatus in the polluted breeding sites of which I 

was not able to distinguish morphologically. Therefore, PCR diagnostic assay were 

carried out targeting the two most populous Culex species in Ghana namely C. 

quinquefasciatus and C. decens.  

Firstly, two primers ("ACEquin"and"B1246s") (Table 4.4.2.1) were used to amplify a 

274 bp diagnostic fragment of the entire extracted DNAs and the procedure followed 

what was described by Smith & Fonseca (2004). This was done to identify C. 

quinquefasciatus. Another PCR assay was conducted with two primers (“F1457” and 
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“B1246”) on the DNAs that fail to amplify in the previous assay. This was also 

conducted as described in Smith & Fonseca (2004). This was conducted to identify a 

possible sibling species of C. quinquefasciatus and other species that belong to C. 

pipiens complex. 

Secondly, two primers (Cddir and Cdrev) (Table 4.4.2.1) were designed from C. 

decens cytochrome c oxidase subunit 1 (CO1). C. decens CO1 gene sequence was 

obtain from Genebank (Uniprot.org) with accession number Q5GCL4. The primer 

was design with Primer 3® software. PCR was conducted with Cddir and Cdrev on 

the DNAs that have failed to amplified in the previous two PCR assay. 

Fragment size analysis was done by electrophoresis on a 2 % agarose gel and 

visualised by ethidium bromide staining under UV light. PCR was conducted in 20 µL 

volumes containing 1× PCR buffer containing 1.5 mM MgCl2, 0.25 mM of each 

deoxynucleoside triphosphate (dNTP), 0.15 mg/mL of bovine serum albumin, 0.4 µM 

of each primers, one unit of Taq polymerase (HotstarTaq: Qiagen®), and 3 µl of 

genomic DNA. The amplification condition consisted of one cycle of denaturation at 

95 °C for 15 minutes, followed by 35 cycles at 94 °C for 30 seconds, 55 °C for 30 

seconds, and 72 °C for one minute each, and one cycle of final extension at 72°C for 

five minutes. 

Lastly, the universal DNA primers, LCO1490 and HCO2198 (Table 4.4.2.1) of Folmer 

et al. (1994) were used to amplified an 830 bp region of the mitochondrial 

cytochrome oxidase subunit I gene of four mosquitoes randomly selected from the 

mosquitoes that have not been amplified yet from the previous PCR assays. Each 

PCR contained 5 ml of 10 PCR buffer,  1.5 mM of MgCl2, 35 ml of distilled water, 200 
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mM of each dNTP, 1 unit of Taq polymerase, 0.3 mM of each primer and 3 µl of DNA 

template. The PCR thermal conditon consisted of one cycle of 1 min at 94 °C; five 

cycles of 1 min at 94 °C, 1.5 min at 45 °C and 1.5 min at 72 °C; 35 cycles of 1 min at 

94 °C, 1.5 min at 50 °C and 1 min at 72 °C and a final cycle of 5 min at 72 °C. To 

confirm a successful reaction, a 7 µl sample from each reaction was then run via 

electrophoresis through a 2 % agarose gel with ethidium bromide and visualized 

using ultraviolet (UV) light.   

The four PCR products amplified by the universal DNA primers and two  PCR 

products that were amplified by C. decens primers  were purified using a QIAGEN 

QIAquick® PCR purification kit according to the manufacturers protocol and 

sequenced in both forward and reverse  directions on an ABI 377 automated 

sequencer (Applied Biosystems) using the Big Dye v. 3 sequencing kit. 

Detection of kdr mutations was performed as described by Martinez-Torres et al. 

(1999). Four primers, “Cdg1”, “Cdg2”, “Cgd3” and “Cdg4” were used for the PCR 

assay (Table 4.4.2.1) and two PCR reactions were run in parallel. In one reaction, the 

primers Cgd1, Cgd2 and Cgd3 were combined and, the other one, Cgd3 was 

replaced by Cgd4. The PCR reactions was conducted in  a 20 µL volume containing 

1× PCR buffer containing 1.5 mM MgCl2, 0.2 mM of each dNTP, 0.4 µM of each 

primer, one unit of Taq polymerase (HotstarTaq: Qiagen®), and 3 µl of genomic DNA. 

The amplification condition consisted of one cycle of denaturation at 95°C for 15 

minutes, followed by 29 cycles at 94 °C for one minute, 49 °C for two minutes, 72 °C 

for two minutes each, and one cycle of final extension at 72 °C for 10 minutes 

according to Sarkar et al. (2009). Fragment size analysis was done by 
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electrophoresis on a 2 % agarose gel and visualised by ethidium bromide staining 

under UV light. 

For detection of ace1 mutation in this study, 3 µl of genomic DNA was amplified with 

the primers “Moustidir1” and “Moustrev1” (Table 4.4.2.1). The primers generate a 194 

bp fragment by PCR on genomic DNA, which is cut by them Alu1 restriction enzyme 

only in resistant mosquitoes (Weill et al., 2004) 

PCR was conducted in 25µL volumes containing 1× PCR buffer containing 1.5 mM 

MgCl2, 0.2 mM of each dNTP, 3.1 µL of each of the primers, one unit of Taq 

polymerase (HotstarTaq: Qiagen®) (Table 4.4.2.2). The PCR conditions included an 

initial denaturation step at 95 °C for 15 min followed by thirty five cycles of 94 °C for 

30 seconds, 54 °C for 30 seconds, and 72 °C for 30 seconds, and a final extension at 

72 °C for 5 minutes.  

Fifteen µL of the PCR product were digested with 5 units of Alu1 restriction enzyme 

in the final volume of 25 µL and incubated at 37 °C for 16 h. The restriction products 

were fractionated on a 2 % agarose gel and visualised by ethidium bromide staining 

under UV light. 
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Table 4.4.2.1: Oligonucleotides (primers) used in the molecular analysis 

Type of PRC assay Primers 

Species identification ACEquin 5’-CCTTCTTGAATGGCTGTGGCA-3’ 

 B1246s 5’-TGGAGCCTCCTCTTCACGG-3’ 

F1457 5’-GAGGAGATGTGGAATCCCAA-3’ 

B1246 5’-TGGAGCCTCCTCTTCACGGC-3’ 

Cddir 5’-ACCTCGACGATACTCCGATTT-3’ 

Cdrev 5’-TGTGTTCTGCAGGAGGAAGA-3’ 

LCO1490 5’-GGTCAACAAATCATAAAGATATTGG-3’ 

HCO2198 5’-TAAACTTCAGGGTGACCAAAAAATCA-3’ 

Detection of kdr mutation Cdg1 5’-GTGGAACTTCACCGACTTC-3’ 

 Cdg2 5’-GCAAGGCTAAGAAAAGGTTAAG-3’ 

 Cgd3 5’-CCACCGTAGTGATAGGAAATTTA-3’ 

 Cdg4 5’-CCACCGTAGTGATAGGAAATTTT-3’ 

Detection of ace1 mutation Moustdir1 5′-CCGGGNGCSACYATGTGGAA-3′ 

 Moustrev1 5′-ACGATMACGTTCTCYTCCGA-3′ 

 

 

 

 

 

 

 

 

 



66 

 

Table 4.4.2.2: Preparation of the master mix for the different PCR assay 

 

Reagents  

 Volume of reagents used for the PCR assay 

(µl) 

Species 

identification 

kdr detection ace1 detection 

Double distilled H2O 13.2 12.8 12.9 

10xPCR buffer 2 2 2.5 

dNTP (10mM) 0.5 0.8 0.2 

Primer (10mM) 0.4 each 0.4 each 3.1 each 

Bovine serum 

albumin 

0.3 - - 

Taq polymerase 

(5U/µL) 

0.2 0.2 0.2 

Genomic DNA 3 3 3 

Total volume 20 20 25 
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4.5) Biochemical assays 

List of materials used for biochemical assay 

1.5 ml tubes  Micro plate-reading spectrophotometer 

Plastic reusable pestles  Analytical balance 

Pipettes and tips Bottles of various sizes  

Multichannel pipettes Graduated cylinders 

Forceps pH meter 

Timer  Laboratory stirrer 

Micro plates  

Dibasic potassium phosphate 3,3',5,5'-Tetramethyl-Benzidine 
Dihydronchloride 

Monobasic potassium 
phosphate 

Methanol 

Sodium acetate (NaOAc) Cytochrome-C 

α-naphthyl acetate Reduced glutathione 

ß-naphthyl acetate 1-chloro-2,4'-dinitrobenzene 

Acetone 3% hydrogen peroxide 

α-naphtol Protein dye concentrate (Bio-rad) 

ß-naphtol Bovine serum albumin 

Dianisidine  

 

The presence of enzyme activities relevant to insecticide-resistance is often 

performed using micro plate assays. This method is used to sample populations to 

determine if a specific mechanism is present and at what frequency it occurs. In the 

present study, Mixed Function Oxidase (MFO), Non-Specific Esterase (NSE), 

Glutathione-S-Transferase (GST) and protein were assayed in individuals 2–4 days 

old frozen adults (-80oC) that had been reared from larvae and not previously 
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exposed to insecticides in the laboratory, according to the method described by 

Hemingway (1998). A total of about 450 mosquitoes, comprising 50 female 

individuals from each of the nine study sites were used for the biochemical assay.  

Reagent preparation: 

0.25 M Potassium Phosphate Buffer [KPO4] 

A glass beaker with 800 ml distilled water was placed on a laboratory stirrer and 6.6 g 

dibasic potassium phosphate was added.Then,1.7 g monobasic potassium 

phosphate was also added and the pH was adjusted to 7.2 with one of the potassium 

phosphates. The final volume was adjusted to 1000ml with addition of distilled water. 

The solution was stored at room temperature 

Sodium Acetate Buffer [NaOAc] 

A glass beaker with 900 ml of distilled water was placed on a laboratory stirrer and 83 

ml 3M sodium acetate added. The pH was adjusted to 5 with glacial acetic acid. The 

final volume was also adjusted to 1000ml with addition of distilled water. The solution 

was stored at room temperature. 

α- or ß-naphthyl acetate 

 56 mg α- or ß-naphthyl acetate was dissolved in 20 ml acetone 

 80 ml KPO4 was then added to the solution 

Dianisidine 

 100 mg 0-dianisidine tetrazotized was weighed and added to 100 ml distilled H2O. 

The solution was immediately used 
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TMBZ solution 

 Dissolve 20 mg 3, 3’, 5, 5'-Tetramethyl-Benzidine Dihydronchloride was dissolved 

in 25 ml methanol. 

 75 ml 0.25 M Sodium Acetate, (pH 5.0) buffer. 

GST solution 

 61 mg reduced glutathione was dissolved in 100 ml KPO4 buffer. 

 20 mg 1-chloro-2, 4'-dinitrobenzene (cDNB) was dissolved in 10 ml acetone. 

 90 ml 0.25 M KPO4 buffer was added to the solution 

Protein dye reagent 

 20 ml protein dye concentrate (Bio Rad) was added to 80 ml dH2O 
 
 

Mosquito preparation: 

A single mosquito was placed in 1.5 ml tube and 100µl of KPO4 was added. The 

mosquito was homogenized with a plastic pestle. The final volume of the solution was 

adjusted to 1500 µl by the addition of KPO4. The solution was then centrifuged at 

13,000 rpm (4 oC) for 30 seconds and place on ice for the tests (assays). This was 

repeated for all the individual mosquitoes used for the assay. The test was conducted 

at room temperature. 

Each mosquito extract was loaded into micro plate wells in duplicate on the same 

plate for each enzyme assay. A new pipette tip was used for each sample. The micro 

plate consisted of 96 wells. Thus, 40 samples were loaded on each plate and the 

remaining 16 wells were loaded with both positive and negative controls. A plate-
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reading spectrophotometer was used to collect data at the appropriate absorbing 

wavelength (nm). 

 

 

4.5.1) Non-Specific Esterase microplate assay  

Exactly, 100 µl mosquito homogenate was loaded in a micro plate wells and 100 µl α- 

or β-naphthyl acetate added to it.  The mixture was incubated at room temperature 

for 10 minutes. Then, 100 µl dianisidine (dissolved in water) was added to the 

mixture and incubated for 2 minutes. The plate was then read using 620 nm filter for 

α-naphthyl and 540 nm filter for β-naphthyl. 

 

 

4.5.2) Mixed Function Oxidase micro plate assay  

In a micro plate well, 100 µl mosquito homogenate was loaded in duplicate and 200 

µl of Tetramethyl-Benzidine (dissolved in sodium acetate buffer) added. A drop 

(approximately 25 µl) of 3% hydrogen peroxide was added and incubated for 5 

minutes. The plate was then read using a 620 nm filter. 
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4.5.3) Glutathione S-Transferase microplate assay  

Mosquito homogenate measuring, 100 µl mosquito homogenate was loaded in micro 

plate wells in duplicate and 100 µl of reduced glutathione added. Then, 100 µl 1-

chloro-2, 4’-dinitrobenzenewas added. Plate was read immediately (T0) and again at 

5 minutes (T5) using 340 nm filters. Final absorbance was determined by subtracting 

the T0 reading from the T5 reading. Glutathione S-Transferase in nmol of the 

mosquito samples was determined using Beer’s law. 

 

 

4.5.4) Protein assay 

Mosquito homogenate measuring, 20 µl was loaded in micro plate wells in duplicate 

and 80µl of potassium phosphate buffer added. Then, 200 µl of protein dye reagent 

(bio rad) added and plate was read immediately using 620 nm filter. 
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4.6) Evaluation of insecticide treated nets against different 

pyrethroid-resistant mosquitoes 

List of materials used for cone and tunnel bioassay 

WHO cone Glass tunnel aspirator 

Permanet 3.0® LifeNet®  

 

Mosquito strains: 

A. gambiae VKPER is a laboratory pyrethroid resistant strain, originally from the Kou 

Valley in Burkina Faso which has been selected for permethrin resistance and kdr 

mutation is exclusively responsible for the resistance. 

C. quinquefasciatus were collected as larvae from polluted gutters in two suburban of 

Accra (Kaneshie and East Legon) and reared to adult stage in the laboratory. These 

mosquito populations are resistant to permethrin and deltamethrin.  

C. decens were also collected as larvae from Cape Coast and reared to adult stage 

in the laboratory. This mosquito population is completely susceptible to permethrin 

but reduced susceptibility to deltamethrin 

 

 

4.6.1) WHO cone test bioassay  

Residual effect of an insecticide is an important characteristic to be considered when 

evaluating the efficacy of ITM. It is determined by placing a WHO plastic cone to an 
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insecticide-treated substrate (Figure 4.6.1.1), inserting mosquitoes through the hole 

at the top of the cone and closing the hole with a polyethylene plug (mosquitoes do 

not normally rest on the plastic cone or polyethylene plug and therefore mostly 

remain in contact with the treated substrate (WHO, 2006). 

In this study, WHO cone bioassay test was carried out at NMIMR to evaluate efficacy 

of two new ITM, Permanet® 3.0, and LifeNet®. These two nets are among the popular 

brands in Ghana. Three field populations of Culex mosquitoes and a laboratory strain 

of A. gambiae VKPER were used for the experiment. Permanet 3.0 and LifeNet are 

deltamethrin-treated ITMs; however Permanet 3.0® had an additional synergist (PBO) 

on the roof of the net. A piece of netting measuring about 55 cm by 21 cm was  cut 

from three parts of each of the nets; roof top, upper part of the side net and lower part 

of the side net. Four WHO cones were attached to each of the cut portions and about 

5 mosquitoes exposed to the net for 3 minutes. Knockdown and final mortality was 

recorded at 1 h and 24 h respectively after exposure and the bioassay was repeated 

once. 
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Figure 4.6.1.1: WHO cone fixed on insecticide treated netting to determine the 

residual activity of the formulated insecticide on the net 

 

 

4.6.2) Tunnel test bioassay 

The tunnel test is a laboratory system designed to allow mosquitoes to freely express 

behavioural responses to insecticide that would occur when encountering ITMs under 

field conditions. Tunnel tests are used as a forerunner to experimental hut trials, and 

provide useful information on repellency, blood-feeding inhibition and mortality 

(WHO, 2006). The equipment consists of a 4-sided glass cylinder (25 cm high, 25 cm 

wide, 60 cm long) which is divided into two chambers by a netting insert which slots 

across the tunnel (Figure 4.6.2.1). In one of the chambers, an animal bait (usually 

Guinea pig or pigeon) is housed unconstrained in an open meshed cage and in the 
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other chamber about 100 unfed female mosquitoes aged 2-5 days are released at 

dusk and left overnight. The netting is deliberately holed with nine 1cm holes to give 

mosquitoes opportunity to penetrate into the baited chamber. The following morning, 

the number of mosquitoes alive or dead, fed or unfed in each chamber is scored. 

Three indicators are used to assess the efficacy of a netting material in a tunnel test: 

passage, inhibition of blood-feeding and mortality. These indicators are calculated 

relative to the untreated netting (control) with respect to the three criteria; 1) passage 

(entry rate) - is the total number of female mosquitoes that are able to cross the 

netting material to the chamber that contains the animal bait. 2) The blood-feeding 

rate - is the proportion of blood fed female mosquitoes compared with the total 

number released into the tunnel. The reduction in the number of blood fed 

mosquitoes between a treatment tunnel (tunnel with treated netting) and a control 

tunnel (the tunnel with untreated netting) allows an assessment of the blood-feeding 

inhibition caused by the insecticide.3) The mortality rate - is the proportion of female 

mosquitoes found dead in the tunnel after and 24 h later. The difference in mortality 

between a control tunnel (natural mortality) and a treated tunnel allows assessment 

of the insecticide-induced mortality rate. If a treatment deters a significant number of 

mosquitoes from entering the baited chamber, the values given by proportions blood-

feeding or killed in the treatment tunnel may underestimate the full personal 

protective effect. The personal protective effect of an ITM in a tunnel test study is 

determined by the reduction in the number of blood-fed mosquitoes in the treatment 

tunnel relative to the number blood fed in the control tunnel. It may be estimated 

using the following formula and expressed as a percentage: 100 x (Bc – Bt)/Bc, 

where Bc is the total number blood-fed in the control tunnel and Bt is the total number 
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blood-fed in the treatment tunnels. The overall insecticidal effect of an ITM in a tunnel 

test needs to take into account that significant numbers which were deterred and not 

killed by the treatment (WHO, 2006). 

In this study tunnel test, a piece of netting measuring about 25cm2 was cut from three 

parts of each of the nets; roof top, upper part of the side net and lower part of the 

side net. Nine holes of 1cm2 each were deliberately made in the nettings to give 

mosquitoes opportunity to penetrate into the baited chamber. In one of the chambers, 

a Guinea pig was housed unconstrained in an open meshed cage and in the other 

chamber 100 unfed female mosquitoes aged 3-5 days were released at dusk and left 

overnight (6pm to 6am).The following morning, the number of mosquitoes alive or 

dead, fed or unfed in each chamber was scored. Live mosquitoes were given access 

to sugar solution and kept up to 24 h for final mortality. 
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Figure 4.6.2.1: Glass tunnel use in tunnel bioassay to evaluate insecticide treated net 

in the laboratory  

 

 

 

4.7) Statistical analyses  

Percentage mortality was calculated from the results of the susceptibility assays. 

Percentage mortalities from different land use and ecological zones and seasons 

were compared using a non-parametric test (Kruskal-Wallis and Mann Whitney test). 

Study sites were categorized into large urban area (metropolitan area with several 

sub-metro and human population over one million) and small urban area (a 



78 

 

metropolitan or municipal area with human population less than one million) as well 

as percentage mortality into resistant (mortality over 98 %) and susceptible (mortality 

less than 98 %) based on WHO criteria (WHO, 2012). Correlation was used to test 

the association between percentage mortality and results from biochemical assay or 

resistance status and urban size. Results from the esterase assay were compared 

between study sites with ANOVA and post hoc test using Fisher’s Least Significant 

Difference. A binary logistic regression analysis was carried out to determine 

environmental factors that influence resistance status of Culex mosquitoes in urban 

areas of Ghana using the environmental factors ecology, seasons, urban size, land 

use and type of pyrethroid insecticide as predictors. Data from tunnel tests were 

compared between the two ITM, using Chi-square test. All the tests were done with 

SPSS® (version 20) and Stalcac, EpiInfoTM. 
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5) Results 

5.1) Insecticide susceptibility of Culex mosquitoes to different 

insecticides  

A total of 21,396 mosquitoes from nine urban towns were tested for resistance 

against the eight insecticides (DDT, dieldrin, permethrin, deltamethrin, propoxur, 

bendiocarb, fenitrothion and malathion). Insecticide resistance status of Culex was 

successfully determined in 19 study sites comprising nine residential areas, seven 

swampy areas and three urban agricultural areas across the country.  

Culex from two out of the three urban agricultural areas was completely susceptible 

to permethrin. Similarly, Culex populations that were collected in swampy areas were 

all completely susceptible to permethrin except swampy areas in Kumasi and 

Sunyani, which both recorded a mortality of 97 % (Table 5.1.1). With regards to the 

residential area category, permethrin-resistant populations were observed in five out 

of the nine urban towns where Culex were collected. Very low percentage mortality of 

the mosquito populations against permethrin were observed in residential area 

category in Kumasi (40 %), Accra (47 %), and Tamale (54 %) whereas complete 

mortality (100 %) was observed in the Cape Coast, Tarkwa and Bolgatanga.  

Out of the 19 study sites, deltamethrin resistant populations were observed in 17 

study sites. Mosquito population from swampy area in Sekondi was completely 

susceptible to deltamethrin and the population from residential area in Bolgatanga 

also recorded a mortality of 98 %. 
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In total, mortality caused by permethrin, 91.83 % ± 18.35 was significantly different 

from the mortality caused by deltamethrin, 68.76 % ± 28.01 S.D. (Mann Whitney U: 

p< 0.0001). Furthermore, percentage knockdown (90.7 %) and final mortality (91.4 %) 

were similar in mosquitoes exposed to permethrin while percentage knockdown 

(83.1 %) was significantly different from the final mortality (68.76 %) in mosquitoes 

exposed to deltamethrin (Figure 5.1.1) 

Culex also displayed large variation in resistance to organophosphates and 

carbamates across the country and even in the same urban area; however the total 

mosquito populations that were exposed to carbamates had a mortality of 94.1 % ± 

15.4 whereas mortality cause by organophosphates was 99.5 % ± 2.2 and the 

difference in the two mortalities was significant (Mann Whitney U: p < 0.0001). 

Besides Accra and Kumasi, which recorded a mortality of 99 % and 98 % 

respectively, the rest of the study sites were completely susceptible (100 % mortality) 

to malathion and fenitrothion. Unlike the pyrethroid insecticides, differential resistance 

was neither observed between propoxur and bendiocarb (carbamates) nor malathion 

and fenitrothion (organophosphates) (Figure 5.1.2).  

Besides Tarkwa where complete mortality (100 %) to DDT was observed in the 

population from swampy area and 98 % in residential area, the rest of the study sites 

in the entire country recorded mortalities less than 98 % (Table 5.1.2). In addition, 

only Accra, Kumasi and Tamale recorded less than 98 % mortality against dieldrin, 

the rest of the study recorded 100 % mortality (Figure 5.1.2). 
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Table 5.1.1: Percentage mortality ± SD of Culex mosquitoes to permethrin (0.75 %) 

and deltamethrin (0.05 %) at different ecological and land use settings in urban areas 

in Ghana (exposure time: 2 h). 

 
Ecologica
l 
Zone 

 
Urban 
town 

% Mortality: Permethrin* % Mortality: Deltamethrin* 

Residenti
al 
Area 

Swamp
y 
Area 

Urban 
farm 

Residenti
al 
Area 

Swamp
y 
area 

Urban 
farm 

Coastal 
savannah 

Accra 47 ± 5 
(86) 

- 100 
(98) 

56 ± 29      
(90) 

- 79 ± 13 
(74) 

Cape 
Coast 

100 
(121) 

100 
(114) 

- 67 ± 25    
(110) 

89 ± 5   
(83) 

- 

Sekondi 84 ± 3 
(98) 

100 (84) 100 
(100) 

60 ± 13    
(108) 

100 
(78) 

57 ± 23 
(96) 

Forest Kumasi 40 ± 21 
(97) 

97 ± 3    
(95) 

89 ± 9    
(94) 

11 ± 19    
(112) 

37 ± 9   
(85) 

58 ± 17 
(84) 

Sunyani 96 ± 6 
(98) 

97 ± 2 
(97) 

- 49 ± 26      
(95) 

44 ± 17 
(92) 

- 

Tarkwa 100 
(64) 

100 
(86) 

- 91 ± 4        
(64) 

95 ± 8    
(71) 

- 

Guinea 
Savanna

h 

Techiman 100 
(100) 

- - 91 ± 8      
(100) 

- - 

Tamale 54 ± 5 
(70) 

100 
(100) 

- 41 ± 4                                                                                                                                                                                                                                               
(88) 

84 ± 6 
(96) 

- 

Bolgatang
a 

100 
(74) 

100 
(100) 

- 98 ± 3        
(63) 

89 ± 5   
(98) 

- 

*Values in bracket represent sample size.  
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Table 5.1.2: Percentage mortality of Culex mosquitoes to DDT (4 %) at different 

ecological and land use settings in urban areas in Ghana (exposure time: 4 h). 

 

Ecological 

zone 

% mortality after exposure to DDT* 

Urban 

town 

Residential 

area  

Swampy area 

 

Urban farm 

Coastal 

savannah 

Accra 6 (100) - 73 (82) 

Cape 

Coast 

91 (105) 95 (117) - 

Sekondi 88 (79) 90 (64) 88 (95) 

Forest Kumasi 25 (90) 77 (86) 75 (104) 

Sunyani 81 (96) 75 (88) - 

Tarkwa 98 (94) 100 (96) - 

Guinea 

savannah 

Techiman 94 (100) - - 

Tamale 56 (86) 82 (100) - 

Bolgatanga 87 (72) 84 (63) - 

*Values in bracket represent sample size.  
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Figure 5.1.1: Percentage knock down at 1 h and 2 h and final mortality (24 h) of 

Culex mosquitoes in urban areas in Ghana after exposure to permethrin and 

deltamethrin insecticides (exposure time: 2 h) (Error bar: 95 % CI). 
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a. 

 

b. 
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c. 

 

d. 
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e. 

 

f. 

 

Figure 5.1.2: Resistance status of Culex mosquitoes to organochlorine, 

organophosphate and carbamate insecticides in urban areas in Ghana, a) DDT b) 

dieldrin c) malathion d) fenitrothion e) propoxur f) bendiocarb 
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5.2) Impact of environmental factors on insecticide resistance 

5.2.1) Insecticide susceptibility status of Culex mosquitoes according to 

urbanization and land use settings  

Different insecticide resistance status were observed in different urban areas 

(Kruskal-Wallis: χ2 = 75.1, df =8, P < 0.0001). However, percentage mortality to all 

the insecticides that were tested was similar in Accra and Kumasi (Mann Whitney U: 

p = 0.49). Mortality caused by DDT was similar in Accra (32 %) and Kumasi (51 %) 

(Mann Whitney U: p < 0.355) but significantly different from the rest of the study sites 

(Kruskal-Wallis: χ2 = 29.5; df = 8; P < 0.0001).  

In addition, Pearson Chi-square test showed a strong relationship between 

resistance status and urban size (Pearson χ2 = 48.2; df = 1; P < 0.0001). This was 

more evident in the resistance status of the mosquitoes to carbamates and 

organophosphates, which was 61 times more likely to be found in large urban areas 

than in smaller urban areas (Pearson χ2 = 77.8, df = 1, P < 0.0001). In the case of 

pyrethroids, resistance to permethrin was 16 times more likely to be found in large 

urban areas than in small urban areas (Pearson χ2 = 26.5; df = 1; P < 0.0001) 

whereas resistance to deltamethrin appears to be uniformly distributed across the 

country. Thus, no significant correlation was found between deltamethrin resistance 

and urban size (Pearson χ2 = 3.9; df = 1; P = 0.05) 

 

Furthermore, different levels of susceptibility were observed in different land use 

settings (Table 5.1.1, 5.2.1.1). The percentage mortality was lower in mosquitoes 

sampled from residential areas than from swampy or urban agricultural areas. This 
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was profound in pyrethroids and DDT insecticides. For instance, in Kumasi (forest 

zone) combined % mortality (data from pyrethroids, DDT and the two seasons) in 

residential area was 18.8 %, which was significantly lower than what was recorded in 

swampy area, 65.4 % or urban agricultural area, 79.9 % (Kruskal-Wallis: χ2 = 39.2; df 

= 2; p < 0.0001). A similar result was also observed in Sekondi-Takoradi (coastal 

savannah) where combined mean % mortality in residential area, 68.5 % was 

significant lower than mean % mortality in swampy area which is 91.8 % and urban 

agricultural area, 81.3 % (Kruskal-Wallis: χ2 = 10.2; df = 2; p < 0.006) (Figure 

5.2.1.1). Nevertheless, there was no significant association between land use 

settings and resistance status to pyrethroids and DDT insecticides (Pearson χ2 = 

2.223; df = 2; P < 0.328). Unexpectedly, mosquitoes from Korle Bu, a major urban 

agricultural area was susceptible to permethrin. A similar result was also observed in 

Sekondi (Table 5.1.1). For carbamate and organophosphate insecticides, ecology, 

seasons, and land use settings were marginally or non-significantly associated with 

resistance (Table 5.2.1.1). 
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Table 5.2.1.1: Percentage mortality (95 % CI) of Culex mosquitoes to 

organochlorines, organophosphate and carbamate insecticides, and different 

environmental factors associated with the distribution 

 

Environmental 
factors 

Mean mortality (%) 

Organochlorines Carbamate Organophosphate 

DDT Die Ben Prop Fen Mal 

Land 
use 

Residenti
al 

64 % a 

(52-76) 

75 % a 

(62-88) 

87 % a 

(78-95) 

93% a 

(86-99) 

99 % a 

(98-100) 

99 % a 

(98-100) 

 Urban 
farm 

80 % a 

(68-91) 

88 % a 

(79-97) 

98 % a 

(95-101) 

99 % a 

(99-101) 

99 % a 

(99-100) 

100 % b 

(100-
100) 

 swampy 82 % a 

(75-89) 

98 % b 

(95-
101) 

98 % a 

(94-101) 

97 % a 

(94-100) 

99 % a 

(99-100) 

100 % b 

(100-
100) 

Season rainy 64 % a 

(52-77) 

80 % a 

(69-92) 

89 % a 

(80-97) 

96 % a 

(93-99) 

99 % a 

(98-100) 

99% a 

(98-100) 

 dry 78 % a 

(71-86) 

89 % b 

(82-97) 

95.7 % a 

(92-99) 

96 % a 

(90-101) 

99 % a 

(99-100) 

100 % a 

(99-100) 

Ecology Coastal 
savannah 

77 % a 

(67-87) 

83 % a 

(72-95) 

94 % a,b 

(89-100) 

97 % a,b 

(95-100) 

99 % a 

(99-100) 

100 % a 

(99-100) 

 Forest 66 % a 

(54-78) 

83 % a 

(73-94) 

88 % b 

(80-97) 

93 % b 

(86-99) 

99 % a 

(98-100) 

99 % a 

(98-100) 

 Guinea 
savannah 

80 % a 

(70-91) 

98 % a 

(93-
103) 

100 % a 

(100-100) 

100 % a 

(100-
100) 

100 % a 

(100-100) 

100 % a 

(100-
100) 

*Values in columns for each environmental factor sharing same letter are not 

significantly different. (DDT – dichlorodiphenyltrichloroethane, ben – bendiocarb, pro 

– propoxur, fen – fenitrothion, mal – malathion) 
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Figure 5.2.1.1: Means and 95 % confidence intervals of combined percentage 

mortality of Culex mosquitoes against pyrethroid and DDT insecticides at different 

land settings in Kumasi and Sekondi-Takoradi. 
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5.2.2) Insecticide susceptibility status of Culex mosquitoes according to 

ecology and seasons 

Insecticide susceptibility was successfully determined in three ecological zones in 

Ghana. Different levels of susceptibility of Culex mosquitoes to all the insecticides 

that were tested were observed within the same ecological zone. Mosquitoes 

collected from study sites in Cape Coast were completely susceptible (100 % 

mortality) to permethrin while reduced mortality to permethrin was observed in Accra 

(47 %) and Sekondi (84 %), which are in the same ecological zone as Cape Coast. A 

similar trend was observed from study sites in the forest and Guinea savannah zones 

(Tables 5.1.1, 5.2.1.1). 

There was a significant association between ecological zone and pyrethroid 

resistance status of Culex populations (Pearson χ2 = 13.589; df = 2; P = 0.0001). 

However, it was not entirely consistent throughout the three ecological zones. 

Mosquitoes from the forest zone were nearly 2 times more likely to be resistant to 

pyrethroid insecticide than those in the coastal savannah zone, but the difference 

was not significant (p = 0.103). Significant difference was observed between forest 

and Guinea savannah zones (p < 0.0001).  

In total, lower mortality (%) ± SD was recorded during the rainy season (77.8 ± 31.3) 

than during the dry season (85.1 ± 25.1) (Table 5.2.1.1; Figure 5.2.2.1). However, the 

difference was not significant (Mann Whitney U: 0.065). 
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Figure 5.2.2.1:  Percentage mortality of Culex mosquitoes to DDT, permethrin and 

deltamethrin in different seasons and ecological zones.  
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5.2.3) Modelling of environmental factors on pyrethroid resistance  

In the binary logistic regression analysis, a test of full model against a constant only 

model was statistically significant (χ2 = 121.78, df = 7, p < 0.001). Nagelkerke’s R2 

was 0.64 and the model was able to correctly classify 90.5 % pyrethroid-resistant 

mosquitoes and 79.7 % not resistant mosquitoes (susceptible to pyrethroid). 

The odds ratio for type of pyrethroid insecticide indicated that when holding all other 

variables constant, occurrence of deltamethrin resistance is about 55 times more 

likely than the occurrence of permethrin resistance in urban populations of Culex 

mosquitoes (Table 5.2.3.1). Inverting the odds ratio for size of urban area revealed 

that a pyrethroid-resistant population is 26 times more likely to be sampled from large 

urban areas than from small urban areas. Ecology and land use settings were 

dummy coded using forest and residential area as the reference group respectively. 

Inverted odds ratios for these dummy variables indicated that pyrethroid-resistant 

Culex mosquitoes were 7.4 times more likely to be sampled from residential areas 

than from urban agricultural areas whilst the same resistant mosquito was 3.3 times 

more likely to be sampled from the forest zone than from the coastal savannah zone 

or 7.6 times more likely to be sampled from the forest zone than from the Guinea 

savannah zone. 

 
 

 

 

 

 

 

 



94 

 

Table 5.2.3.1: Logistic regression predicting resistance status from environmental 

factors – ecology, season, land use settings and type of pyrethroid in Culex 

mosquitoes in urban areas in Ghana. 

  Predictor* B Wald P-value Odds Ratio 

Season -0.739 2.434 0.119 0.478 

Insecticide (deltamethrin) 4.016 50.939 < 0.001 55.487 

Urban size (small ) -2.432 12.851 < 0.001 0.088 

Ecology     

Coastal savannah -1.158 4.296 0.038 0.314 

Guinea savannah -2.023 7.786 0.005 0.132 

Land use     

Swampy area 1.038 3.870 0.049 0.354 

Agricultural area 1.998 7.743 0.005 0.136 

*rainy season, permethrin, large urban area, forest, residential area were used as 

reference for season, type of insecticide, urban size, ecology and land use settings 

respectively for the regression analysis. 
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5.3) Enzyme activity in Culex mosquitoes  

Among the four enzymes that were assayed, β-esterase recorded the highest 

absorbance whereas oxidase recorded the least absorbance (Figure 5.3.1, 5.3.2). A 

significant relationship was only found between β- esterase and the susceptibility 

level of Culex mosquitoes to all the insecticides tested (Pearson r = - 0.885; P = 

0.002). Linear regression showed a stronger relationship between β- esterase and 

carbamates and organophosphate insecticides (regression r2 = 0.71; p = 0.004) than 

pyrethroid insecticides (regression r2 = 0.49; p = 0.037). Strong negative correlation 

was also observed between DDT induced mortality and the mean absorbance of 

GST (r = -0.856, P = 0.003).High absorbance from all the enzymes assayed were 

observed in Accra and Kumasi, which was significantly different from the rest of the 

study sites (Table 5.3.1). 
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Table 5.3.1: Mean absorbance (95 % CI) of α- esterase and β- esterase of Culex 
mosquitoes from different urban areas in Ghana 

Urban size Study sites Mean absorbance (95 % CI) 

α- esterase* β- esterase* 

Large urban areas 
(population > one 
million) 

Accra 0.545a  

(0.493-0.597)           

1.028a  

(0.932-1.125) 

Kumasi 0.528a,b  

(0.483-0.573) 

0.912b 

(0.835-0.988) 

 

 

Small urban areas 
(population < one 
million) 

Cape Coast 0.328c  

(0.304-0.351) 

0.700c  

(0.607-0.792) 

Sekondi 0.395c,d  

(0.373-0.417) 

0.712c  

(0.679-0.744) 

Sunyani 0.474b,e  

(0.408-0.573) 

0.811b,c  

(0.693-0.930) 

Tarkwa 0.409d,f  

(0.371-0.447) 

0.735c  

(0.675-0.794) 

Techiman 0.398c,d  

(0.374-0.422) 

0.733c  

(0.689-0.777) 

Tamale 0.452e,f  

(0.416-0.487) 

0.808c  

(0.721-0.894) 

Bolgatanga 0.448e,d  

(0.404-0.492) 

0.784c  

(0.712-0.857) 

 
*Values in columns sharing the same letter (a, b or c) are not significantly different. 
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Figure 5.3.1: The mean absorbance of α- esterase (esterase A), β- esterase 

(esterase B) and oxidase in Culex mosquitoes from different urban areas in Ghana. 

(Error bar: 95 % CI). 
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Figure 5.3.2: A combined line (mean absorbance of GST) and bar chart (mean % 

mortality) showing the relationship between GST and susceptibility level of Culex 

mosquitoes to DDT. 
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5.4) Species identification and distribution of kdr and ace1 

mutation  

Culex species from Accra, and Kumasi were all identified as C. quinquefasciatus 

whereas species C. decens were found in the rest of the study sites. The sequence 

blast search of the DNAs that were amplified by the universal primers did not match 

any distinct species. They were 93 % similar to C. fuscocephala, a Culex species 

found in Asia. 

In the case of kdr mutation, out of 68 mosquitoes, 71 % did not have kdr mutation. 

The mutation was present in two (Accra and Kumasi) out of the five urban towns in 

which their mosquitoes were analysed. In Accra, 50 % (12/24) of the mosquitoes had 

kdr mutation whereas in Kumasi about 64 % (7/11) had the mutation (Table 5.4.1). 

Yet still, in Accra, 100 % of the kdr mutation was heterozygotes whereas in Kumasi 

70 % of the kdr mutation was heterozygotes and 30 % being homozygotes. 

Concerning ace1 mutation, out of 76 mosquitoes, about 70 % did not have the 

mutation. However, ace1 mutation was found in 4 out of 5 towns in which their 

mosquitoes were analysed (Table 5.4.2). 
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Table 5.4.1: Frequencies of susceptible and resistant genotypes of Culex mosquitoes 

from Ghana (N = sample size). 

Study sites* N kdr negative kdr positive 

   Heterozygote Homozygote 

Accra 24 50 % (12/24) 50 % (12/24) - 

Cape Coast 26 100 % (26/26) - - 

Sekondi-
Takoradi 

4 75 % (3/4) 25 % (1/4) - 

Kumasi 11 36.4 % (4/11) 45.5 % (5/11) 18.2 % (2/11) 

Techiman 3 100 % (3/3) - - 

Total 68 70.6 % (48/68) 26.5 % (18/68) 2.9 % (2/68) 

*Mosquitoes from residential area category. 
 

 

 

Table 5.4.2: Distribution of ace1 mutations (G119S) in Culex mosquitoes from 

different urban areas in Ghana (N = sample size) 

Study sites* N ace1 negative ace1 positive 

   heterozygote Homozygote 

Accra 25 48% (12) 40% (10) 12%(3) 

Cape Coast 20 100% (20) 0% 0% 

Kumasi 16 81.3% (13) 12.5(2) 6.2%(1) 

Sunyani 9 36.4% (4) 45.5% (5) 18.2% (2) 

Techiman 5 80% (4) 20%(1) 0% 

Total 76 69.7% (53) 23.6% (18) 7.8% (6) 

*Mosquitoes from residential area category 
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5.5) Efficacy of long lasting insecticide treated net against 

pyrethroid-resistant Culex mosquitoes 

A complete (100 %) mortality (258/258) was observed in pyrethroid-resistant 

Anopheles gambiae VKPER exposed to the nets in the cone bioassay while low 

mortality was observed in pyrethroid-resistant Culex mosquitoes (Figure 5.5.1). The 

roof of Permanet 3.0, which had additional synergist, PBO, recorded the highest 

mortality in all the three Culex mosquito populations: Kaneshie, 58.5 % (24/41), East 

Legon, 95.2 % (40/42) and Cape Coast, 92.9 % (26/28). Excluding the roofs of both 

nets, Permanet 3.0 and LifeNet caused similar mortality (Permanet 3.0, 12.1 % 

(29/240), LifeNet, 20.8 % (47/225), Mann Whitney U: p = 0.43). In total, the mortality 

caused by the two ITMs was highest in C. decens from Cape Coast 56.3 % (90/160), 

followed by C. quinquefasciatus from East Legon 19.2 % (52/271) and C. 

quinquefasciatus from Kaneshie recorded the least mortality 10.9 % (32/293) 

(Kruskal-Wallis: χ2 = 24.35, df = 2, p < 0.001). Mosquitoes exposed to untreated net 

showed 0 % mortality. 

In the tunnel test bioassay, the roof of the Permanet 3.0 caused high mortality in both 

East Legon, 90.9 % (90/99) and Kaneshie 80 % (76/95) populations. Excluding the 

roof of both nets, LifeNet caused higher mortality than Permanet 3.0 to the East 

Legon population (LifeNet, 77.6 % (156/201); Permanet 3.0, 66.8 % (145/217); χ2 = 

6.03, p = 0.014) but both ITM caused similar mortality to the Kaneshie population 

{LifeNet, 11.3 % (16/141); Permanet 3.0, 12.4 % (25/201); χ 2= 0.09, p = 0.76}. 

Percentage blood feeding and passage were lower in both treated nets than the 

untreated control (Table 5.5.1).  
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Table 5.5.1: Percentage mortality, blood feeding and passage on netting materials 

cut from Permanet 3.0 and LifeNet in a tunnel test bioassay against Culex 

mosquitoes sampled from East Legon and Kaneshie, Accra. 

 

parameter 

Source of mosquito* 

East Legon Kaneshie 

Control Permanet 

3.0 

LifeNet Control Permanet LifeNet 

% Mortality 10a 

(9/90) 

74.4b 

(235/316) 

76b 

(237/312) 

5.1a 

(6/118) 

34.1b 

(101/296) 

12.1c 

(29/240) 

% Blood 

feeding 

6.7a 

(6/90) 

1.3b     

(4/316) 

0b  

(0/312) 

37.3a 

(44/118) 

3.4b 

(10/296) 

5b 

(12/240) 

% Passage 20a 

(18/90) 

10.4b 

(46/312) 

14.7a,b 

(46/312) 

41.5a 

(49/118) 

26.7b 

(79/296) 

22.1b 

(53/240) 

*Values with same letter in a row are not significantly different for a population. 
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Figure 5.5.1: Efficacy of Permanet 3.0 and LifeNet against pyrethroid-resistant Culex 

mosquitoes (field strain) and Anopheles gambiae (laboratory strain: VKPER) 

assessed by WHO cone bioassay (Error bar: 95 % CI) 
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6) Discussion 

6.1) Distribution of pyrethroid-resistant Culex mosquitoes in 

Ghana  

Toxicological results from this study showed that urban populations of Culex 

mosquito in Ghana have varied susceptibilities to pyrethroid insecticides. Resistance 

to deltamethrin was evident across the country; however the mosquitoes were 

relatively susceptible to permethrin. There may be three or more Culex species 

involved in this study, but, interestingly resistance pattern to pyrethroid insecticides 

were similar. Mosquitoes were more resistant to deltamethrin than permethrin across 

the different species. Notwithstanding, higher resistance level was observed in C. 

quinquefasciatus than in C. decens or the unknown Culex species. 

 As expected, high frequency of kdr mutation was observed in the C. 

quinquefasciatus populations. This was understandable since kdr mutation is a major 

mechanism responsible for pyrethroid resistance. Similar finding has been reported 

by Wilding et al. (2012) among C. quinquefasciatus mosquitoes from Accra.  

The significant difference in susceptibility levels between permethrin and deltamethrin 

found in the study was unexpected; however, it may indicate the existence of one or 

more additional resistance mechanisms. To my knowledge, there were no previous 

data on differential pyrethroid resistance in Culex species from Ghana. On the 

contrary, existing data on pyrethroid susceptibility pattern of Anopheles species in 

Ghana shows that they are relatively more resistant to permethrin than deltamethrin 

(Okoye et al., 2008; Boakye et al., 2009; Hunt et al., 2011; Kabula et al., 2011) 
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In principle, resistance to pyrethroids can be due to detoxification of the insecticide by 

metabolic enzymes (metabolic resistance mechanism) or decreased sensitivity of the 

target site of the insecticide (target site mutation). Pyrethroids are classified into two 

groups depending on the absence (type 1, e.g. permethrin) or presence (type 2, e.g. 

deltamethrin) of an α-cyano group in the alcohol moiety (Gammon et al., 1981; 

Weerasinghe et al., 2001). The high resistance levels observed for deltamethrin in 

this study may therefore be the result of an additionally enhanced activity of 

metabolic enzymes which have high substrate specificity to the α-cyno group of 

pyrethroid insecticides. This suggestion is supported by several studies that have 

observed similar differential resistance between the two groups of pyrethroids in 

Culex mosquitoes and other insects groups (Weerasinghe et al., 2001; Hama, 1987; 

DeVries and Georghiou, 1980).  

Although the results from the biochemical assays show evidence of esterase, 

monoxygenase and GST elevation in highly pyrethroid-resistant areas, there was no 

clear association between enzyme levels and pyrethroid resistance phenotypes 

across study sites from which can be concluded that biochemical mechanisms were 

in involved. However, Permanet® 3.0 had an additional synergist (PBO) on the roof 

top of the net and the high mortality of the mosquitoes after exposure to the roof 

presents further evidence for the existence of a biochemical resistance mechanism. 

While resistance has been associated with both agricultural and domestic use of 

insecticide (Diabate et al., 2002; Boakye et al., 2009), I suspect the latter to be the 

major cause of pyrethroid resistance in the study population investigated here. This is 

supported by the low resistance level observed in the mosquito populations sampled 

from urban agricultural farms. Increased use of aerosol sprays and mosquito coils in 
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urban households have been reported by different studies in Ghana (Afrane et al., 

2004; Boakye et al., 2009; Kudom et al., 2013) and it is suspected to be the major 

selection pressure responsible for the pyrethroid resistance of Culex species in this 

study.  

 

 

6.2) Multiple insecticide resistance mechanisms are responsible 

for carbamates and organophosphate resistance in Culex 

mosquitoes from Ghana  

Culex mosquitoes from the study population displayed large variation in resistance to 

organophosphates (malathion, fenitrothion) and carbamates (propoxur, bendiocarb) 

across the country and even in the same urban area. The study populations were 

more resistant to carbamates than organophosphates. Similar variation of resistance 

to these insecticides has also been observed in Culex mosquitoes from Ghana’s 

neighbouring countries (Chandre et al., 1997) and in Anopheles species from Ghana 

(Achondoh et al. 2008; Anto et al. 2009; Kudom et al., 2012). The resistance pattern 

in the two major mosquito species in Ghana to carbamate insecticides may offer 

some challenges to insecticide resistance management strategies in the country that 

include employment of carbamate insecticides. 
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The PCR diagnostic assay that was performed in the present study detected ace1 

mutations (G119S) in some of the mosquito populations. Nevertheless, very low 

frequencies of homozygote resistance were found. Expectedly, high frequencies of 

ace1 mutations were found in mosquitoes in areas where the bioassay test showed 

the mosquitoes to be resistant to organophosphate and carbamate insecticides, 

suggesting the involvement of the mutation in the resistance of the mosquito 

population to the insecticides. Acetyl cholinesterase, the target site for 

organophosphates and carbamates, is a synaptic enzyme that hydrolyzes the 

neurotransmitter acetylcholine to terminate nerve impulses, thereby blocking nervous 

transmission and leading to the death of the insect. Selection of a modified acetyl 

cholinesterase less sensitive to these insecticides has been shown to be a common 

resistance mechanism in mosquitoes (Alout et al., 2008). The low frequency of 

homozygote resistance can be explained by the high fitness cost that is associated 

with ace1 mutation, such as long development time and decreased male reproductive 

success (Raymond et al., 2001). Despite ace1 mutations being reported to provide 

cross resistance to organophosphates and carbamates (Alout et al., 2008), the 

resistance level greatly varied between the two classes of insecticides. However, 

some studies have suggested that ace1 mutations have a greater impact on 

carbamate than organophosphate resistance (Djobenou et al., 2007).The reason for 

this is unclear at this time. 

Results from the biochemical analysis in the present study showed a strong negative 

correlation between percentage mortality from the bioassay and mean absorbance of 

β-esterase. However, such significant association was not observed in oxidase. This 

may suggest the involvement of esterase activity in the resistance of the mosquitoes 
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to organophosphate and carbamate insecticides. Enhanced levels or modified 

activities of esterases and other detoxifying enzymes have been reported to prevent 

some insecticides from reaching their site of action (Hemmingway and Ranson, 

2000). Meanwhile, several studies have shown close association between 

organophosphate and carbamate resistance and high levels of esterases (Georghiou 

and Pasteur, 1980; Alout et al., 2011). 

There are strong arguments in favour of agricultural and domestic use of insecticides 

as the major cause of resistance in urban areas (Diabate et al., 2002) but these 

factors cannot fully explain the cause of resistance in the present study. Despite the 

use of organophosphates in urban farms, mosquitoes collected from those areas 

were susceptible to the insecticides. Moreover, the history of the domestic use of 

carbamates and organophosphates in urban areas is not well known for Ghana. In a 

related study, Anopheles species that were sampled from an urban vegetable farm in 

Accra were susceptible to organophosphate, though several organophosphate 

insecticides were detected in the water in which the mosquito was breeding 

(Achondoh et al., 2008). Chandre and colleagues (1997) were also not able to relate 

carbamate and organophosphate resistance in C. quinquefasciatus in Ivory Coast 

and Burkina Faso to the use of agricultural pesticides but rather implicated domestic 

use of insecticides to be associated with corresponding resistances. Other 

environmental variables such as ecology, seasons and land use settings were 

marginally or non-significantly associated with carbamate or organophosphate 

resistance in the present study, suggesting that these environmental factors do not 

have a clear impact on the resistance. 
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6.3) Insecticide resistance status of Culex mosquitoes from 

Ghana in relation to DDT and dieldrin insecticide use  

Resistance to DDT was evident across the country and it appears to be uniformly 

distributed among the Culex species involved in this study. Similar levels of 

resistances were observed in different ecological zones, seasons and various land 

use settings. However, resistance to dieldrin was most profound in C. 

quinquefasciatus. The presence of kdr mutation leads to a reduction in the sensitivity 

of both DDT and pyrethroid insecticides. However the presence of kdr mutations 

alone in some of the mosquito population in this study cannot fully explain the cause 

of DDT resistance in the study area. That is, the pattern of DDT resistance in the 

country suggests the presence of an additional resistance mechanism in the present 

study. 

Metabolic resistance is the most common resistance mechanism that occurs in 

insects. It occurs due to changes in a mosquito’s enzyme systems that result in a 

more rapid detoxification of the insecticide than what is normal, preventing the 

insecticide from reaching the intended site of action (Hemmingway and Ranson, 

2000). Several studies have shown that insecticide-resistant insects have elevated 

levels of Glutathione S-Transferase (GST) activity in crude homogenates, which 

suggests a role for GSTs in resistance (Grant, 1991), particularly to DDT 

(Hemmingway and Ranson, 2000). Strong negative correlation was observed 

between percentage mortality caused by DDT and mean absorbance of GST in this 

study. This presents evidence of the involvement of GST activity in DDT resistance in 

the Culex mosquitoes from Ghana. However, elevated GST activities have also been 
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detected in some insects species resistant to organophosphates (Fournier et al., 

1992), other organochlorines (Grant et al., 1992) and implicated in resistance to 

pyrethroid insecticides (Kostaropoulos et al., 2001). 

Resistance to dieldrin has been associated with mutations occurring in amino butyric 

acid (GABA), namely an alanine-296 substitution to glycine. Another mutation of the 

same codon conferring the substitution alanine to serine has also been shown to be 

associated with dieldrin resistance (ffrench-Constant et al., 2000; Du et al., 2005). 

However the present study failed to determine such mutations in the mosquito 

population studied here. The results from biochemical assays revealed high 

absorbance of the three detoxifying enzymes in the C. quinquefasciatus populations 

from Accra and Kumasi where mosquitoes were highly resistant to dieldrin. It is 

possible that metabolic resistance mechanisms are involved in the dieldrin resistance 

observed in the present study. This observation was made based on a related study 

that found no association between dieldrin resistance phenotype and the GABA 

mutation (alanine-296 to glycine substitution) in A. gambiae from Obuasi, Ghana 

(Brooke et al., 2006). The study, however, implicated metabolic resistance 

mechanisms as an additional cause of dieldrin resistance in the A. gambiae 

population based on the results of biochemical and synergist assays (Brooke et al., 

2006). 

Although no formal survey of general use of organochlorine insecticides was 

undertaken during larval collections, it is likely that dieldrin and DDT are still used in 

urban agricultural activities. Several studies have found traces of organochlorines in 

water, sediment, vegetables, fruits, meat, human blood, and even mothers' breast 

milk in different urban areas in Ghana (Ntow, 2001; Darko and Aquaah, 2007; 
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Bempah and Donkor, 2011). In an experiment to determine organochlorine residues 

in vegetables found in Accra, Bempah et al. (2012) reported that the most frequently 

found and abundant pesticide was DDT and traces of dieldrin were also found 

particularly on tomatoes. Therefore, the current use of organochlorine in agriculture 

coupled with the past use in vector control may be the main cause of DDT and 

dieldrin resistance observed in this study.  

The use of DDT in public health still remains controversial (Walker et al., 2003). 

However, it is currently used in a number of countries for vector control and is still 

one of the insecticides recommended by WHO for indoor residual spraying 

(Sadasivaiah et al., 2007). Widespread distribution of DDT resistance as shown in 

the present study and other works among major mosquitoes in Ghana (Kudom et al., 

2012; Hunt et al., 2011; Okoye et al., 2008; Achonduh et al., 2008) suggest, 

however, that the use of DDT for vector control in the country is most likely to be 

counterproductive.  
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6.4) Impact of urbanization on insecticide resistance status of 

Culex mosquitoes  

The present study revealed a strong relationship between resistance status and the 

degree of urbanization. Resistance to carbamates and organophosphates was 61 

times more likely to be found in large urban areas than in smaller urban areas. 

Likewise, resistance to permethrin was 16 times more likely to be found in large 

urban areas than in small urban areas. Incidentally, Culex mosquitoes in large urban 

areas were identified as C. quinquefasciatus whereas the rest of the study sites were 

made up of C. decens and other unknown Culex species. Therefore, the different 

distribution of Culex species across the study sites may have accounted for the 

differential insecticide resistance status between the different urban areas. 

Although the level of pollution was not quantified in the breeding sites in the study 

areas, it was nevertheless observed that Kumasi and Accra had more extensive 

networks of open gutters and the choked gutters where mosquitoes were collected 

from were also more polluted than those in other urban areas. It is therefore not 

surprising that the Culex species found in these areas were C. quinquefasciatus.  

Thus far, little attention has been paid to numerous polluted breeding sites scattered 

in urban areas in Ghana. However, urban pollutants have been shown to increase 

mosquito tolerance to insecticides (Poupardin et al., 2008; Riaz et al., 2009). In the 

present study, polluted breeding habitats are suspected to have played a role in 

insecticide resistance in the mosquito species. This suspicion stems from the 

significant difference in resistance level observed within the pyrethroid insecticides. 

Similar result was observed in A. gambiae and it was attributed to pollution in the 
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breeding habitats of the mosquitoes (Kabula et al., 2011). The conclusion was made 

based on ammonium level (an indicator of how polluted a breeding site is) in the 

breeding sites which was positively associated with occurrence of deltamethrin 

resistance and negatively associated with permethrin resistance in A. gambiae 

(Kabula et al., 2011). However, there is not much evidence from the present and the 

previous study (Kabula et al., 2011) to explain the cause of high levels of 

deltamethrin resistance in mosquitoes that breed in polluted water. 

Although, there is not much evidence from this study in support of the role of pollution 

on insecticide resistance, there are conclusive evidences from different studies in 

support of this ascension (Poupardin et al., 2008; Nkya et al., 2013). The presence of 

C. decens in polluted breeding sites, which is not known to breed in such habitats 

couple with various reports that have observed A. gambae, a major malaria vector 

also breeding in polluted habitats (Keating et al., 2003; Kudom et al., 2012) reinforce 

the need to take a critical look at the numerous polluted breeding sites scattered in 

the country. Both solid and liquid waste are poorly managed in urban areas in Ghana 

and what enters into gutters or water bodies from commercial and domestic activities 

is not much regulated. This presents a situation where apart from pesticides officially 

sanctioned for public use, mosquitoes could also be exposed to unknown chemicals 

or insecticides in polluted breeding habitats, which can select for resistance 

mechanisms that can confer high level of resistance to new insecticides that officially 

have not been recognized to be used in the country before.  
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6.5) Efficacy of long lasting insecticide treated nets against 

pyrethroid-resistant Culex mosquitoes from Ghana 

Complete mortality was observed in pyrethroid-resistant A. gambiae VKPER exposed 

to the nets in the cone bioassay while low mortality was observed in pyrethroid-

resistant Culex mosquitoes. This result indicates that ITM can be effective against 

pyrethroid-resistant A. gambiae but not pyrethroid resistant Culex species. This 

finding is in consistent with several experimental hut trials, which have shown 

reduced efficacy of ITM against pyrethroid resistant Culex species in many African 

countries (Ngufor et al., 2014, Irish et al., 2008). The roof of Permanet 3.0®, which 

had additional synergist, PBO recorded the highest mortality in all the three Culex 

populations. The result may suggest that ITM with synergist can be an effective 

resistant management tool against pyrethroid-resistant Culex mosquitoes.  

Reduced efficacy of ITM against pyrethroid-resistant mosquitoes and its implication 

for malaria control are well known (Strode et al., 2014). However, the impact of 

reduced efficacy of ITM on attitude of local people towards the use, acceptability or 

sustained use of ITM has not received much attention. Most studies have suggested 

that if not for the protection given against Culex mosquitoes, the popularity and 

effectiveness of ITM would be hampered (Asidi et al., 2005). Hence, the question as 

to what happens to the popularity and effectiveness of ITM if the net fails to protect 

users from Culex mosquitoes is critical and needs to be explored.  

 
Furthermore, partly due to the importance of mosquito nuisance and, to a lesser 

degree, due to the inability of local inhabitants to distinguish between the genera of 

mosquitoes, it is possible that reduced protective efficacy of ITM against pyrethroid-
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resistant Culex mosquitoes can encourage people to use other anti mosquito 

strategies (e.g. mosquito coil, aerosol spray), that may prevent nuisance but not 

necessarily effective against malaria. This may lead to an increase in malaria cases. 

Also, it may lead to excessive use of domestic insecticide as reported in many urban 

areas in Ghana (Afrane et al., 2004; Coetzee et al., 2006; Boakye et al., 2009; 

Kudom et al., 2013), which may in turn cause resistance in both Anopheles and 

Culex species (Elisa et al., 1996; Diabate et al., 2002; Boakye et al., 2009; Kudom et 

al., 2013).  

The 2008-2015 strategic plan for malaria control in Ghana involves 100% coverage 

of household’s ownership of at least one ITM and 80% incidence of ITM use. With the 

high level of resistance in Culex mosquitoes observed in the present study, it would 

be difficult to achieve this target without supplementing the ITM component of malaria 

control with an effective management of anthropogenic habitats and educating the 

general public about the biology and behaviour of mosquitoes. Informal interaction 

during larval collection among inhabitants from various parts of Ghana showed that 

they were oblivious about the life stages of mosquitoes and surprisingly, most people 

could not identify mosquito larvae. Thus, the abundance and resistance status of 

Culex mosquitoes coupled with the value attached to their nuisance by local people 

and their level of knowledge on the life history of mosquitoes can threaten the 

effectiveness of ITM and ultimately malaria control (Figure 6.5.1). 
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Figure: 6.5.1: A diagram showing a relationship between Culex mosquitoes and 

malaria control in urban areas in Ghana. 
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7) Conclusion 

In this study, insecticide resistance status of Culex species in urban areas of Ghana 

was determined. C. quinquefasciatus, C. decens and other unknown Culex species 

(unidentified) were found inhabiting in organic polluted habitats in urban areas of the 

country. The pattern of resistance to insecticides within a class of insecticide was 

similar across different species, ecological zones, seasons and land use settings. 

This was more evident in pyrethroid insecticides where mosquitoes were found to be 

more resistant to deltamethrin than permethrin irrespective of the species or 

environmental factors. Notwithstanding, resistance level was higher in C. 

quinquefasciatus than in C. decens or the unknown Culex species 

Environmental factors such as ecology and land use were observed to be influential 

on level of insecticide resistance of Culex species. However, the role of urbanization 

and its associated problems such as pollution were more profound and it appears to 

have contributed to pattern of distribution of C. quinquefasciatus and C. decens 

observed in the study. 

Results from the biochemical assay showed an association between enzyme levels 

and the degree of insecticide resistance among the Culex mosquitoes. This may 

suggest the involvement of metabolic resistance mechanism in the study populations. 

In addition, target site mutations (kdr and ace1) were also observed particularly in C. 

quinquefasciatus from the study populations. This is the first description showing 

evidence of the existence of multiple insecticide resistance mechanisms in C. 

quinquefasciatus. The pattern of resistance and the mechanisms involved can be 

expected to have a number of implications on resistance management strategies. 
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Due to low levels of resistance to organophosphates, resistance management 

strategies comprising the use of organophosphates may be successful against 

pyrethroid-resistant Culex mosquitoes. However, such strategies must be carried out 

with caution since populations with ace1 mutations and high levels of esterases, 

which can confer high resistance to organophosphate, already exist.  

Various insecticide selection pressures particularly from agriculture and domestic use 

of insecticides were suspected to be the cause of resistance to the insecticides. It 

also appears that the presence of urban pollutants in mosquito breeding sites 

probably has a direct or indirect impact on mosquito resistance. For this reason, 

proper management of waste, particularly in urban areas, and effective regulation of 

use of pesticides appear to be critical in resistance management programs.  

The results also show that ITM has lost its efficacy against pyrethroid-resistant Culex 

mosquitoes and this has the potential to affect acceptance and utilization of the use 

of ITM among the local people. ITM with synergist was seen as a possible tool that 

could be used to manage pyrethroid-resistant Culex populations. In order not to 

jeopardize the efficacy of ITM through insecticide resistance, there is also the need to 

reduce insecticide use, especially at the household level. One way is to reduce the 

mosquito population, especially in urban areas where most of the important larval 

habitats have been shown to be anthropogenic (Keating et al., 2003, Klinkenberg et 

al. 2008; Kudom et al., 2012). Such habitats can easily be managed through proper 

waste management, proper construction of drains and the change of the inhabitants’ 

behaviour through proper education. 
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The study came with some limitations. It was difficult to distinguish morphologically 

the Culex species that were involved in this study. The safest way to collect a single 

species particularly C. quinqefasciatus was to have sampled resting adults from 

inside homes. However, factors such as age of the mosquitoes, previous exposure to 

insecticide may not be known when adults are collected from houses and this can 

affect the quality of results from the susceptibility assay. Detections of target site 

mutations were mostly successful in C. quinqefasciatus but not other Culex species 

found in the study area and this was understandable because primers available for 

the PCR assay were purposely designed and optimised for C. quinqefasciatus. 

Further research is needed particularly in the area of urbanization and mosquito 

control, taxonomy of Culex species inhabiting in urban areas in Ghana and 

development of molecular tools for easy identification of Culex species. 
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Appendices 

Appendix 1: Pictures of different mosquito breeding habitats where larvae were 

collected. a)Accra residential area category (Kaneshie), b) Kumasi swampy area 

category (Bohyen) c) Sunyani residential area category (Penkwasi) 
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Appendix 2: The output of Primer 3 software showing the sequence of Cytochrome c 

oxidase of Culex decens and the position where primer was design from.   

OLIGO             startlen     tmgc%  any  3'seq 

LEFT PRIMER        684   21   59.15   50.00  5.00  1.00 

ACCTCGACGATACTCCGATTT 

RIGHT PRIMER       886   20   59.55   50.00  6.00  3.00 

TGTGTTCTGCAGGAGGAAGA 

SEQUENCE SIZE: 887 

 

PRODUCT SIZE: 203, PAIR ANY COMPL: 4.00, PAIR 3' COMPL: 1.00 

 

    1 TTATTAACTGATCGAAATTTAAATACTTCATTTTTTGACCCAATTGGAGGAGGAGATCCT 

 

 

   61 ATTTTATATCAACATTTATTTTGATTTTTTGGTCACCCAGAAGTATACATTTTAATTTTA 

 

 

  121 CCAGGATTTGGAATAATTTCTCACATTATTTCTCAAGAAAGAGGTAAAAAGGAAACATTT 

 

 

  181 GGAACATTAGGAATAATTTATGCAATATTAGCAATTGGTTTATTAGGATTTATTGTATGA 

 

 

  241 GCTCATCATATATTTACAGTTGGTATAGATGTTGATACTCGAGCTTATTTTACTTCAGCT 

 

 

  301 ACAATAATTATTGCCGTTCCTACAGGAATTAAAATTTTTAGTTGATTAGCTACTCTTCAT 

 

 

  361 GGAACACAATTAAATTATACTCCAGCATTATTATGATCACTAGGATTTGTATTTTTATTT 

 

 

  421 ACAGTAGGAGGATTAACTGGAGTWGTATTAGCTAATTCATCTATTGATATTGTTCTTCAT 

 

 

  481 GATACTTACTATGTAGTTGCTCATTTTCATTATGTATTATCAATAGGGGCTGTATTTGCT 

 

 

  541 ATTATAGCAGGATTTGTTCATTGATATCCTTTATTAACAGGATTAGTAATAAATCCAACA 

 

 

  601 TGATTAAAAATTCAATTTACTATTATATTTATTGGAGTAAATTTAACATTCTTTCCTCAA 

 

 

  661 CATTTCTTAGGATTAGCAGGAATACCTCGACGATACTCCGATTTTCCAGATAGTTACCTA 

                               >>>>>>>>>>>>>>>>>>>> 

 

  721 ACATGAAATATTGTATCATCATTAGGAAGTACAATTTCAWTATTTGCTATTATTTTCTTT 

 

 

  781 TTATTTATTATTTGAGAAAGTATAATTTCTCAACGAACACCTTCATTCCCTATACAATTA 

 

 

  841 TCTTCATCAATTGAAYGATATCATACTCTTCCTCCTGCAGAACACAA 

                                <<<<<<<<<<<<<<<<<<<< 

 

http://biotools.umassmed.edu/bioapps/primer3_www_results_help.html#PRIMER_START
http://biotools.umassmed.edu/bioapps/primer3_www_results_help.html#PRIMER_START
http://biotools.umassmed.edu/bioapps/primer3_www_results_help.html#PRIMER_TM
http://biotools.umassmed.edu/bioapps/primer3_www_results_help.html#PRIMER_TM
http://biotools.umassmed.edu/bioapps/primer3_www_results_help.html#PRIMER_ANY
http://biotools.umassmed.edu/bioapps/primer3_www_results_help.html#PRIMER_ANY
http://biotools.umassmed.edu/bioapps/primer3_www_results_help.html#PRIMER_OLIGO_SEQ
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Appendix 3: Species identification (A) and detection of kdr assays (B).  Lane 1 1kb 

ladder, (A) lanes 2-6 Culex quinquefasciatus species, (B) lanes 2-10 heterozygote 

resistance, lane 11-12 susceptible  

 

A 

 

B 
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Appendix 4: Multiple comparisons of the mean absorbance from α-esterase, β-

esterase and oxidase using ANOVA 

(I) enzyme (J) enzyme Mean 

Difference (I-

J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

α-esterase  

esterase B -0.3594458* 0.0132870 0.000 -0.385528 -0.333363 

oxidase 0.2962227* 0.0131703 0.000 0.270370 0.322076 

β-esterase  

esterase A 0.3594458* 0.0132870 0.000 0.333363 0.385528 

oxidase 0.6556685* 0.0133481 0.000 0.629466 0.681871 

oxidase 

esterase A -0.2962227* 0.0131703 0.000 -0.322076 -0.270370 

esterase B -0.6556685* 0.0133481 0.000 -0.681871 -0.629466 

*. The mean difference is significant at the 0.05 level. 
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