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General introduction 

Sexual selection 

exual selection, as Darwin already stated in 1871 (p. 256), is “that kind of selection, 

which [...] depends on the advantage which certain individuals have over other 

individuals of the same sex and species in exclusive relation to reproduction.” This 

evolutionary force was proposed to explain the evolution of secondary sexual traits which 

deviate from their presumed naturally selected optimum, while allowing the bearer of those 

traits to leave more copies of its alleles in future generations.  

Typically, sexual selection is divided into intra- and inter-sexual selection (Danchin & 

Cézilly 2007; Brooks & Griffith 2010; Davies et al. 2012). Intra-sexual selection is the 

competition that occurs within one sex for access to the gametes of the other sex. This form 

of sexual selection has been put forward to explain the evolution of traits like armaments or 

traits involved in sperm competition. Inter-sexual selection is, respectively, a reduction of 

the set of potential mates imposed by one sex on the other according to certain traits. Such 

mating biases can result from passive processes where, for instance, individuals evolve traits 

that increase their likelihood of being detected by members of the other sex (Wiley & 

Poston 1996), but can also results from mate choice in the narrow sense, where mating 

preferences exerted by the choosing sex induce the non-random mating (Jennions & Petrie 

1997; Kokko et al. 2003). Inter-sexual selection has been suggested to promote the 

evolution of ornaments. 

The intensity of both intra- and inter-sexual selections can be quantified by 

measuring the variance in mating success within each sex. Usually, intra-sexual competition 

is most intense in males who show greater variance in reproductive success than females, as 

male (but not female) mean reproductive success increases with mating success (Bateman 

principle, Bateman 1948), while mate choice is expressed by females who also usually 

invests the most in each individual offspring  (Trivers 1972). This asymmetry has its origins in 

anisogamy and is preserved in amniotes where the certainty of paternity is obscured due to 

internal fertilization. However, this pattern can be modulated by a variety of factors, for 

instance by the sex-specific costs of breeding, mating, competing, and caring in terms of 

reproduction and survival (Kokko & Monaghan 2001; Kokko et al. 2006; Kokko et al. 2012), 

which may result in biases of the adult sex-ratio of the whole population (Kokko & Jennions 

2008), or the part of it that is available for mating (i.e. operational sex ratio, Emlen & Oring 

1977). For example, necessity of biparental care for offspring survival can constrain mating 

behaviour and lead to strict monogamy, a system where male and female sex roles are 

much more symmetrical. However, caring and mating are not mutually exclusive in many 

socially monogamous species, and extra-pair mating can reinstate a greater between 

individual variance in reproductive success in males via female extra-pair mate choice and 
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male-male competition (Westneat et al. 1990; Webster et al. 1995; but see Whittingham & 

Dunn 2005). 

Evolution of mate choice 

Direct selection 

Mating preferences allowing individuals to gain direct benefits from being choosy could 

logically evolve under direct selection (Kirkpatrick & Ryan 1991; Møller & Jennions 2001). 

Direct benefits associated to the quality of the partner include nuptial gifts (Vahed 1998), 

fertilization insurance (Arnqvist & Nilsson 2000; Hasson & Stone 2009), nest site and feeding 

territory (Alatalo et al. 1986), protection against harassment by other member of the 

opposite sex (Clutton-brock & Parker 1995), defence against predators (Rodriguez-Munoz et 

al. 2011), reproductive investments such as fecundity (Berglund et al. 1986), and parental 

care (Hill 1991). 

Preferences can also have been selected for directly by natural selection, rather than 

by sexual selection, shaping the sensory system of individuals, for instance to optimize their 

foraging success. Mating preferences can then result from such sensory biases which leaves 

the opportunity for the competing sex to exploit them (Ryan 1990; Endler & Basolo 1998; 

Ryan 1998; Ryan & Cummings 2013). For instance, guppies (Poecilia reticulata) may benefits 

from an increased sensitivity to orange to optimize foraging on orange items (Rodd et al. 

2002). This might have explained the evolution of male orange coloration whose intensity is 

subject to directional female choice (Rodd et al. 2002; but see Grether et al. 2005). 

Interestingly, pre-existing biases in the sensory system might be present in a species, like 

the preference for red in three and nine-spined stickleback (Gasterosteus aculeatus and 

Pungitius pungitius respectively), but might not (yet) be exploited by males in the context of 

mate choice: only males of three-spined stickleback have developed red throat and jaw, 

which females have been shown to prefer (Smith et al. 2004). 

Simultaneously, there could be direct sexual selection acting on mating preferences 

that diminish the direct cost of mating such as the transfer of diseases or parasites. Sexual 

conflict theory extends on this idea, by including all direct costs that one sex, usually males, 

can impose on the other sex while attempting to increase its own fitness. For instance, 

when sexes differ in their optimal mating rate, males could develop traits that exploit the 

sensory biases of females, who could then develop resistance in an antagonistic co-

evolutionary arm-race (chase-away hypothesis, Holland & Rice 1998; Arnqvist 2006) or 

become indifferent (Rowe et al. 2005). Interestingly, even if females lose the preference for 

an ornament, it could still persist in males only to reach a minimum threshold of stimulation 

for females (Holland & Rice 1998). 
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Indirect selection 

Indirect benefits associated with the quality of the partner include all the additive genetic 

effects that can be passed on to the offspring and confer them a higher relative fitness, 

either by increasing their viability or their mating success. Under the ‘good genes’ 

hypothesis, preferences are expected to target traits that are indicators of the heritable 

viability of the potential mate (Møller & Alatalo 1999). The honesty of the signal could be 

insured when only individuals of high quality can afford to develop or maintain the trait, i.e. 

whose expression is constituting a handicap (Zahavi 1975), or if the trait is condition-

dependent (e.g. immunocompetence hypothesis, Hamilton & Zuk 1982; Folstad & Karter 

1992), or, more generally, if the marginal improvement in fitness (benefits in terms of 

fecundity minus the costs in terms of viability) per unit of display is greater in high quality 

individuals (Getty 2006). 

Moreover, as soon as mating preferences exist for a trait that is genetically 

determined, either to obtain ‘good gene’ benefits, or due to sensory biases or even drift, the 

alleles for the mating preference and those for the display associate more often than 

expected by chance because choosy females mate more often with males with better 

displays (Kokko et al. 2006). This can result in a significant positive genetic covariance 

between the preference and the display. If this covariance is high, a rapid co-evolution of 

exaggerated display and preference can occur; this is known as the Fisherian runaway 

process (Lande 1981; Andersson 1994). In this situation the preference would be indirectly 

selected in a positive feedback loop, and when females do not gain any direct or ‘good gene’ 

benefits from having an even stronger preference, but only benefit from having attractive 

sons, this is referred to as the ‘sexy-son’ hypothesis (Lande 1981; Andersson 1994; Kokko et 

al. 2002). 

The lek paradox 

If females show consistent preferences to mate with one or few males, presumably only to 

acquire heritable genetic benefits for their offspring, directional selection is expected to 

lead to the depletion of additive genetic variation, yet this variation is a prerequisite for 

such benefits to occur (Kirkpatrick & Ryan 1991). This conundrum is known as the ‘lek 

paradox’. Some mechanisms (e.g. sexually selected mutation rates or modifiers, 

Pomiankowski & Moller 1995; Cotton & Pomiankowski 2007; Petrie & Roberts 2007), or 

specific situations (e.g. small or structured populations in which non-additive genetic 

variation can be inherited, Reid 2007; Neff & Pitcher 2008; Fromhage et al. 2009), have been 

suggested to maintain genetic variation despite such type of selection, but no consensus has 

emerged yet (Rowe & Houle 1996; Lehmann et al. 2007; Kokko & Heubel 2008; Kotiaho et 

al. 2008). However, if females varied in their choice, the lek paradox would not apply. 
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Relative mating preferences 

Variation in mate choice has often been seen as the result of individual variation in 

sensitivity to the costs of mate choice, arising from ontogeny, physical condition or 

environmental situation (Jennions & Petrie 1997; Hunt et al. 2005; Cotton et al. 2006). 

When the costs of mate choice cannot be afforded by certain individuals, their choosiness, 

that is to say their willingness to invest time and energy in assessing mates, is expected to 

be reduced, leading to a different outcome of mate choice for different individuals (Burley & 

Foster 2006). Alternatively, individuals of poor competitive abilities could evolve 

preferences for low-quality individuals, for example to avoid the costs of competition 

(Fawcett & Johnstone 2003; Härdling & Kokko 2005). In addition, if attractiveness is 

multidimensional because there are different benefits to be optimised (e.g. direct versus 

indirect benefits, Candolin 2003), and if there is condition or context-dependent variation in 

needs, this would also affect how individuals rank opposite-sex stimuli (Cotton et al. 2006). 

In all cases, if mate choice is condition dependent, the assumption is again that members of 

the choosing sex agree on who would be the ideal partner if they were not constrained in 

their choice. Simply, when the context (genetically or environmentally determined) does not 

allow them to afford the costs of searching for, mating with or maintaining a pair-bond with 

the ideal partner, they are expected to follow a best-of-a-bad-job strategy. 

Variation in mate choice between individuals could also be the result of adaptive 

variation in mating preferences, but this possibility has usually only been briefly mentioned 

in the major text books of the field (Krebs & Davies 1993; Andersson 1994; Ryan 1997; 

Danchin & Cézilly 2007; Brooks & Griffith 2010; Davies et al. 2012). Yet, studies looking 

specifically at the repeatability of choice actually show consistent differences between 

individuals (guppy (Poecilia reticulata), Godin & Dugatkin 1995; Brooks & Endler 2001; zebra 

finch (Taenopygia guttata), Forstmeier & Birkhead 2004; sand goby (Pomatoschistus 

minutus), Lehtonen & Lindstrom 2008). As most of these studies were carried out on 

individuals born in the laboratory in standardized conditions, it has been argued that these 

results suggest differences in mating preferences rather than a consistent non-heritable 

difference in individual condition (Widemo & Saether 1999). This interpretation gets further 

support from the fact that Forstmeier & Birkhead (2004) found no repeatability in female 

preferences with regard to male attractiveness. In other words, there was no evidence that 

some females (putatively in high condition) consistently preferred the males that were 

overall the most attractive, while others (putatively in poor condition) consistently preferred 

the less attractive males. This suggests that intrinsic mating biases could be different for 

each individual. Perhaps, individually-specific mating preferences have been somewhat 

overlooked because, unless they lead to disruptive selection and speciation in case of strong 

assortative mating (Butlin & Tregenza 1997), they would only reduce the strength of 

(directional) sexual selection. Moreover, this raises the important question of the origin and 

maintenance of such variation in mating biases. However, mate choice, whether leading to 
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directional sexual selection or not, should a priori evolve if discriminate mating increases 

mating rate with individuals that confer greater benefits per mating (Jennions & Kokko 

2010). As presented before, the benefits of mate choice can be direct, when offspring 

quality or quantity is increased due to the partner’s behaviour, or indirect, when offspring 

quality is improved by the genetic contribution of the partner. In the following, I will 

consider the benefits that arise from the compatibility of the two partners as opposed to 

the benefits linked to the absolute quality of the partner (Figure 1). 

Indirect compatibility benefits 

Several cases where the interaction between the parental genomes affects offspring 

fitness have been documented. For instance, non-additive genetic effects can occur from 

recessive deleterious alleles, selfish genetic elements, chromosome inversion 

polymorphisms, heterozygote advantages, and from complexes of co-adapted genes (Zeh 

1997; Tregenza & Wedell 2000; Neff & Pitcher 2005; Kempenaers 2007). The most often 

documented case of genetic incompatibility is the case of homozygote disadvantage which 

is more likely to occur in offspring of related individuals (inbreeding depression). This 

implies either that heterozygosity is advantageous per se (i.e. due to overdominance and 

heterosis) or that rare recessive deleterious alleles get expressed (Charlesworth & 

Charlesworth 1987). The potential mechanisms of inbreeding avoidance have been the 

subject of numerous studies (Pusey & Wolf 1996; Komdeur & Hatchwell 1999; Ward & Hart 

2003; Weddle et al. 2013), although important questions remain, especially in birds, as to 

whether individuals are able to recognize genetic similarity per se, for instance by self-

referent phenotype matching, or only recognize kin by direct familiarization (Nakagawa & 

Waas 2004). Chapter 2 of this thesis addresses the question of inbreeding avoidance and 

recognition mechanisms.  

In order to evolve, mate choice for genetic compatibility as such (including 

incompatibilities between unrelated individuals), requires the (in)compatibility causing loci 

to be tightly linked (e.g. via pleiotropy) to a detectable phenotype, and it further requires a 

mechanism ensuring the appropriate assortative or disassortative preference, which can 

happen for instance when recombination between the choice- and compatibility-causing 

alleles is suppressed (Tregenza & Wedell 2000). Potentially because of the complexity of 

such mechanism to occur, but, likely, also because the mechanisms that underlie genetic 

incompatibilities are difficult to study, only a handful of such cases have accumulated 

substantial evidence (reviewed in Butlin & Tregenza 1997; Tregenza & Wedell 2000; Neff & 

Pitcher 2005; Kempenaers 2007; Mays et al. 2008). 

For instance, in mice (Mus domesticus), a large chromosome segment known as the 

t-complex, contains both the major histocompatibility complex (MHC) - which plays a 

central role in immunological self/non-self-recognition and is thought to be associated with 

specific odours - and a lethal recessive mutation. The lethal t-allele persists because it 

causes segregation distortion in males, with heterozygous males passing on the t-allele to 
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more than 90% of their offspring. Heterozygote females show greater avoidance of 

heterozygous males than homozygous wild type females, indicating that genetic 

compatibility could influence mate choice, and might do so potentially via detection of 

odours (reviewed in Lindholm et al. 2013). Similarly, in mice and humans, MHC-

disassortative mating preferences are suspected to have evolved to confer resistance 

against infectious diseases in the progeny by increasing their MHC-heterozygosity 

(Wedekind et al. 1995; Penn & Potts 1998; Penn & Potts 1999; Tregenza & Wedell 2000; 

Penn 2002). The benefits associated to MHC heterozygosity could be due to overdominance 

effects, that is when heterozygotes are superior because they produce a greater variety of 

gene products, or due to rare allele advantages, such that MHC alleles are in a cyclical 

frequency-dependent coevolutionary arms race with pathogens (Penn & Potts 1999; 

Tregenza & Wedell 2000). Nevertheless, a recent meta-analysis only provides mixed support 

for the role of MHC dissimilarity in mate choice in vertebrates animals: no effect was found 

overall, but the hypothesis was supported when MHC dissimilarity was characterised at 

multiple loci (Kamiya et al. 2014).  

Finally, occasional observations that multiple or extra-pair mating improves embryo 

or offspring viability in polyandrous females are consistent with the genetic compatibility 

hypothesis. In such type of mating, males typically only transfer sperm and therefore, 

female can only obtain potential indirect genetic benefits that increase the fitness of the 

resulting offspring. In a study on the bluethroat (Luscinia svecica), extra-pair young showed 

a greater immune response than the maternal half-sibs, which suggests that female extra-

pair behaviour could have evolved to increase the overall genetic quality of offspring; but 

extra-pair young also showed a greater immune response than the paternal half-sibs, and 

this suggests that both the extra-pair males and the females gained genetic compatibility 

benefits (Johnsen et al. 2000). Extra-pair matings in birds have also been suggested to be a 

potential way of compensating for genetic similarity (i.e. overall similarity due to 

relatedness or MHC similarity specifically) between social partners (Blomqvist et al. 2002; 

Foerster et al. 2003; Freeman-Gallant et al. 2003; Freeman-Gallant et al. 2006). 

Nevertheless, overall, the evidence regarding female choice for genetic compatibility in 

avian species is mixed (Mays et al. 2008; Slatyer et al. 2012; Forstmeier et al. 2014), and 

experimental work demonstrating which factor reliably predicts extra-pair paternity is 

visibly lacking (Petrie & Kempenaers 1998; Griffith et al. 2002; Westneat & Stewart 2003; 

Arnqvist & Kirkpatrick 2005; Kempenaers & Schlicht 2010). Chapter 1 present an 

experimental test of the hypothesis under which females seek extra-pair copulations to 

compensate for their genetic incompatibility with their social partner. 

In those previous examples, the recognition mechanisms allowing compatible mating 

are still largely unknown and hence often remain hypothetical. In addition to precopulatory 

mate choice, postcopulatory prezygotic mechanisms, known as female cryptic choice, have 

been suggested as a potential way to bias egg fertilization by sperm of different individuals 

(Tregenza & Wedell 2000; Neff & Pitcher 2005; Kempenaers 2007; Mays et al. 2008). While 
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some behavioural postcopulatory mechanisms have been shown (e.g. ejection of the sperm 

of subdominant males in the feral fowl (Gallus gallus domesticus) (Pizzari & Birkhead 2000) 

and potentially of related males (Pizzari et al. 2004)), physiological mechanisms involving 

the interaction between sperm and female reproductive tract are still subject of debate 

(Kempenaers 2007; Bretman et al. 2009; Løvlie et al. 2013). For instance, since sperm 

express MHC proteins on their membranes, it has been suggested that the mechanism that 

ensures mate choice for dissimilar MHC could potentially occur at the gametic level. 

Nevertheless, in one study on mice, preferences were reversed in cross-fostered individuals, 

and therefore mating biases appear to be learned rather than physiological (Penn & Potts 

1998). Interestingly, existing studies that explicitly control for prefertilization behaviours 

through artificial insemination found no paternity bias toward non-related males or MHC 

dissimilar sires (mallard (Anas platyrhynchos), Denk et al. 2005; guppy, Evans et al. 2008; red 

junglefowl (Gallus gallus), Løvlie et al. 2013), which suggest that cell-cell interaction might 

not be the most common mechanism.  

Overall, there is a noticeable lack of studies designed to measure compatible genes 

benefits while fully controlling for ‘good genes’ effects and direct effects such as maternal 

investment (Tregenza & Wedell 2000; Neff & Pitcher 2005; Kempenaers 2007; Mays et al. 

2008). Variation in fitness can readily be partitioned into additive (male and female intrinsic 

quality) and non-additive (male x female interaction) genetic effects in breeding designs 

where all crosses between a set of males and a set of females are made (North Carolina 

Design II), but this has only typically been used in external fertilizers where perfectly 

balanced crossbreeding is more easily performed (e.g. Wedekind et al. 2001; Rodríguez-

Muñoz & Tregenza 2009; Johnson & Brockmann 2013). By extension, the percentage of 

variance in individual breeding success explained by female, male and pair identities can be 

obtain from repeated measurement of individual fitness reached with the same and with 

other partners, even in unbalanced designs, when analyzed by mixed effect models with 

those levels of replication entered as random effects (Lynch & Walsh 1998); but this, again, 

has been underexploited so far (but see animal models in e.g. Bolund et al. 2011; Reid & 

Sardell 2012). Chapter 1 and 3 of this thesis present such analyses to measure the effects of 

pair combination on the fate of fertilized eggs and offspring. 

Direct compatibility benefits 

Synergistic advantages could emerge from the combination of both parents’ behaviours. 

Mate choice for behavioural compatibility might be especially important in species with 

intense bi-parental brood care and with long-lasting monogamous pair bonds, like humans 

or most bird species. Indeed, historically, the first studies that suggested the existence of 

behavioural compatibility benefits are those that reported a positive correlation between 

breeding success and pair bond duration in long-lived socially monogamous birds (Black 

1996; Ens et al. 1996; Black 2001). The ‘mate familiarity’ hypothesis proposes that repeated 

breeding with the same mate allows fine tuning of behaviour between the male and female, 
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enhancing coordination in shared breeding activities such as territory acquisition, anti-

predator defence, breeding site preparation, and parental care, which could in turn 

translates into improved breeding success (Black 1996). This therefore refers to a long term 

adjustment of within-pair behaviour. Nevertheless, as those studies have been purely 

observational, this effect could not be disentangled from age, experience or quality.  More 

recent studies intended specifically to tackle this issue. In one study on a long-lived seabirds, 

the kittiwake (Rissa tridactyla), only specific samples were analysed where confounding 

factors were not applicable, and in this study, Naves et al. (2007) found no effect of 

familiarity per se on breeding success. Yet, in the blue-footed booby (Sula nebouxii), a 

separation of the different factors was possible and, there, a higher reproductive success 

with pair bond duration was found, independent of age or experience (Sánchez-Macouzet et 

al. 2014). Finally, two experiments where pair-bond duration was manipulated reported 

higher reproductive performance in more familiar pairs (van de Pol et al. 2006; Griggio & 

Hoi 2011). Therefore, altogether, it seems possible that mates could increase their 

behavioural compatibility over time, but it is not clear whether pairs could vary for instance 

in the speed of their improvement by picking a particularly compatible partner already 

during mate choice. 

More recently, with the increase of interest in consistent behavioural differences 

between individuals (Sih et al. 2004; Réale et al. 2007; Réale et al. 2010) - for which adaptive 

explanations have been proposed but are still subject of empirical and theoretical work (Dall 

et al. 2004; Dingemanse & Wolf 2010; Wolf & Weissing 2012; Dingemanse & Wolf 2013) - it 

has been suggested that individuals could readily choose each other based on their 

respective personality, which would determine their behavioural compatibility (Schuett et 

al. 2010). Possibly, individuals that show similar behavioural types, or otherwise similar 

plasticity (and therefore predictability), could be better at negotiating or coordinating their 

actions, and could therefore have reduced conflicts over parental care and an increase in 

reproductive success (Royle et al. 2010; Schuett et al. 2010). Indeed, it has sometimes been 

observed in great tits (Parus major) that pairs assortatively paired for exploration score had 

greater reproductive success (Dingemanse et al. 2004; Both et al. 2005; but see Mutzel et al. 

2013). However, in a year with low availability of food, individuals of intermediate 

behavioural phenotype produced more recruits, and in this population, the pattern of 

mating was disassortative (Dingemanse et al. 2004). Based on those findings, it has then 

been suggested that disassortative mating for behavioural type could instead be favoured in 

order to produce intermediate phenotypes that could have, overall, a lower variance in life-

time reproductive success (Dingemanse et al. 2004; Both et al. 2005). This interpretation has 

also been used for the observation that female great tits from assortative pairs were more 

likely to have extra-pair young (van Oers et al. 2008). Therefore, according to that 

hypothesis, disassortative mating for behavioural types is associated to genetic rather than 

behavioural compatibility benefits. Moreover, disassortative pairs for behavioural type 

could be better at sharing tasks and complement each other by having a larger behavioural 
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repertoire, for instance, to be able to ensure good foraging success in unpredictable 

environments, but this has not been proposed so far. Usually, assortative mating for 

personality is presented as the default expectation regarding behavioural compatibility 

(Dingemanse et al. 2004; Both et al. 2005; Schuett et al. 2010; Schuett et al. 2011a; Gabriel 

& Black 2012), maybe because it complements the hypothesis of mate familiarity provided 

that same behavioural tendencies lead to more time spent together and therefore more 

experience with each other (Gabriel & Black 2012).  

To a large extent, the hypotheses behind mate choice for compatible personality 

traits are still in the process of maturation and are not clearly defined, potentially also 

because the expectations could depend on environmental fluctuations (Dingemanse et al. 

2004). Moreover, if assortative pairing for behavioural type is found in the wild like in the 

Steller’s jays (Cyanocitta stelleri) (Gabriel & Black 2012), this does not necessarily mean that 

individuals expressed assortative preferences. This pattern could result from a passive 

process of mate choice, if individuals of same personality are more likely to encounter each 

other; or from temporal autocorrelation between the measurements of the personality of 

an individual and its mate; or from the convergence of behavioural tendencies of partners 

over time; or from shared environmental effects. In captivity, unpaired individuals can be 

evaluated for their behavioural profiles and then assessed for their mating preferences and 

their reproductive success. Interestingly, several studies performed in captivity found that 

only individuals of one extreme behavioural type (e.g. ‘fast’ explorer’) expressed assortative 

preferences while individuals of the other extreme behavioural type did not (convict cichlid 

(Cichlasoma nigrofasciata), Budaev et al. 1999; great tit, Groothuis & Carere 2005; zebra 

finch, Schuett et al. 2011b). Although this pattern has typically been presented as evidence 

for mate choice for compatible (i.e. similar) behavioural types (Groothuis & Carere 2005; 

Schuett et al. 2010), if one personality trait is an indicator of quality (as suggested for 

boldness in the guppy, Godin & Dugatkin 1996), this outcome could also be explained  by 

competition for the best quality individuals, and by the evolution of ‘prudent’ choice as 

mentioned earlier (Fawcett & Johnstone 2003; Härdling & Kokko 2005). Finally, two studies 

measured several personality traits of unpaired zebra finches before measuring their 

reproductive success with respect to the interaction between the personalities of the pair 

members (Schielzeth et al. 2011; Schuett et al. 2011a). In the study of Schuett et al. (2011a), 

where pairs were assigned randomly to each other, pair assortment for some of the 

personality traits measured (exploration tendencies) affected some measure of 

reproductive success (although with only 5 tests significant out of about 100), but this effect 

was not found in a subsequent replicate. In the study of Schielzeth et al. (2011), pairs freely 

chose each other, and the observed pairing was random with regard to the two personality 

traits measured (novelty-seeking and activity). Most importantly, there was no evidence for 

pair combination effects on rearing success with respect to those personality traits 

(Schielzeth et al. 2011). 
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To conclude about the studies relating behavioural compatibility with animal 

personality, there seems to be so far no clear hypothesis or consistent evidence on which 

pair combination of personality traits should affect reproductive success and how. The 

experimental approach where personality is measured before pair assignment and 

assessment of their reproductive success, especially associated to cross-fostering to 

disentangle genetic from rearing environment effects, is relevant to measure some of the 

potential behavioural compatibility benefits. Nevertheless, at the current stage, we do not 

know a priori what traits might be important, and this leaves the experimenter with the 

need of testing all independent personality axes, or ‘behavioural syndromes’ (which are, 

more precisely, suites of correlated personality traits (Sih et al. 2004)). 

Alternatively to this approach, some studies have carried out behavioural 

observations to try to directly quantify pair compatibility as a composite of proximity, 

behavioural synchrony, allopreening, copulation frequency and aggression between 

partners (Spoon et al. 2004, 2006, 2007). In those studies on cockatiels (Nymphicus 

hollandicus), highly behaviourally compatible partners exhibited more coordinated 

incubation, had higher reproductive success (Spoon et al. 2006), and were less likely to 

engage in extra-pair copulation (Spoon et al. 2007) than individuals in disharmonious pairs. 

Overall, such type of observational data characterising concrete pair behaviours that could 

induce fitness differences is almost completely lacking. In the experiment presented in 

Chapter 3, such observations have been carried out with the purpose of directly evaluating 

pair compatibility. While pair compatibility, as measured above, could well be the result of 

combination of personality types, and pair incompatibility, the result of a lack of plasticity 

and possibility of adjustment, pair harmony could alternatively be the result of individual 

differences in  ‘motivation’ to breed with a particular partner. A higher individual 

commitment in a partnership and investment in reproduction could indeed result from a 

greater stimulation of the sensory system by the partner (for instance mediated by pair 

display, Bolund et al. 2012; Servedio et al. 2013). This phenomenon could be fully 

idiosyncratic, and potentially reciprocal, if there is 1) individual variation in sensory systems 

that is not strongly enough selected against (i.e. if optimal stimulation is reached, despite 

this variation, for the most common situation for which the sensory system had been 

designed, Arak & Enquist 1993), and 2) if the cost of choosiness for a fitting stimulus is low 

(e.g. if there is a large availability of partners and fast assessment). If certain combinations 

of pairs are more effective at stimulating one another’s reproductive investment, for 

instance in term of sperm allocation, maternal investment into the egg, and parental care, 

this would also lead to direct benefits in term of reproductive success. To the best of my 

knowledge, this hypothesis has not been suggested so far; but the evolutionary 

consequences of non-adaptive variation could well be next in the historical chronology of 

factors to be considered, that is, shared optimal behaviours (e.g. Charnov 1976), adaptive 

individual variation (e.g. Dingemanse & Wolf 2010), and non-adaptive behaviours resulting 

from evolutionary constraints (e.g. Forstmeier et al. 2014). 
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To date, the central debate on the benefits of mate choice has been 
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black arrow ; Møller & Jennions 2001; Maklakov & Arnqvist 2009)

recently about (ii) the relative importance of the two types of indirect benefits, 

 compatible genes (horizontal black arrow ; Mays & 

2004; Neff & Pitcher 2005; Kotiaho & Puurtinen 2007; Cutrera et al. 2012)

Contrastingly, the direct benefits arising from the compatibility between the two 

partners (bottom right), although suggested in species where breeding success 

air bond duration (Ens et al. 1996; Black 2001; van de Pol et al. 

2006; Griggio & Hoi 2011; Sánchez-Macouzet et al. 2014; but see Naves et al. 

, have only rarely been considered (Delesalle 1986; Spoon et al. 2006, 2007; 

Schuett et al. 2010; Fox & Millam 2014). The first chapter ❶ aims at testing 

-pair behaviour evolved to compensate against a low 

hatching success reached with their social partner, that is to say whether female 

pair mate choice target fertility benefits and/or compatible genes benefits. 

❷ tests whether siblings who grew up together avoid 

choosing each other as social partner; in other words, if they avoid inbreeding 

depression by choosing a genetically more compatible partner. The third chapte

aims at measuring the fitness consequence of mate choice for compatibility 

while experimentally controlling for effects of overall quality. Moreover, the study 

disentangles direct from indirect benefits of mate choice for compatibility (red 

The zebra finch mating preferences 

The zebra finch has been a model organism in studies on sexual selection for more than 30 

years, and it is the species that I used throughout my PhD research. The use of model 

ing the reliability and robustness of findings through replication, and 

therefore gives the opportunity of getting a realistic understanding of biological 

phenomena, at least for the species concerned. 

Zebra finches are small passerine birds from the dry biomes of central Australia. 

They are highly gregarious and mobile, forming large flocks all year round and constituting 
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To date, the central debate on the benefits of mate choice has been 

indirect fitness benefits arising from 

good genes, vertical 

black arrow ; Møller & Jennions 2001; Maklakov & Arnqvist 2009), and more 

recently about (ii) the relative importance of the two types of indirect benefits, 

(horizontal black arrow ; Mays & Hill 

2004; Neff & Pitcher 2005; Kotiaho & Puurtinen 2007; Cutrera et al. 2012). 

Contrastingly, the direct benefits arising from the compatibility between the two 

partners (bottom right), although suggested in species where breeding success 

(Ens et al. 1996; Black 2001; van de Pol et al. 

; but see Naves et al. 

(Delesalle 1986; Spoon et al. 2006, 2007; 

aims at testing 

against a low 

hatching success reached with their social partner, that is to say whether female 

compatible genes benefits. 

tests whether siblings who grew up together avoid 

choosing each other as social partner; in other words, if they avoid inbreeding 

depression by choosing a genetically more compatible partner. The third chapter 

aims at measuring the fitness consequence of mate choice for compatibility 

while experimentally controlling for effects of overall quality. Moreover, the study 

disentangles direct from indirect benefits of mate choice for compatibility (red 

The zebra finch has been a model organism in studies on sexual selection for more than 30 

years, and it is the species that I used throughout my PhD research. The use of model 

ing the reliability and robustness of findings through replication, and 

therefore gives the opportunity of getting a realistic understanding of biological 

iomes of central Australia. 

They are highly gregarious and mobile, forming large flocks all year round and constituting 
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an apparently panmictic population (Zann 1996; Forstmeier et al. 2007b). They are 

granivorous and they readily start breeding as soon as conditions are suitable, apparently 

when unpredictable rainfalls start up seed production (Zann 1996). In addition to being 

opportunistic and colonial breeders, zebra finches form life-long socially monogamous pair 

bonds. The species is sexually dimorphic regarding plumage and vocalizations. Males have 

colourful ornaments such as orange cheeks, brown flanks with white spots, a black breast 

band underneath a black-and-white striped breast, and a shiny red beak, while females only 

exhibit a plumage with different shades of grey, and an orange beak (Figure 2). Moreover, 

males, but not females, produce a courtship song that is highly consistent within an 

individual and highly variable between individuals (Vignal et al. 2008). 

 

Figure 2. Photograph of a male (left) courting a female (right) zebra finch.  

© W. Forstmeier. 

Zebra finches are easily held in captivity and have been domesticated in Europe for 

more than 100 years. It is possible that during the process of domestication, female 

choosiness has been selected against due to breeding designs that did not allow free choice. 

For my research, I had the opportunity of working with a population derived from wild-

caught zebra finches whose captive-bred offspring were imported to Germany in 1992, and 

had bred in outdoor aviaries for maximally 10 generations. This population (population #4 in 

Forstmeier et al. 2007b) is genetically still closely related to the wild Australian population, 

but has lost some of its genetic variability (heterozygosity at 10 microsatellite markers is 

83% compared to 93% in the wild, Forstmeier et al. 2007a). This low extent of 

domestication, combined with the fact that birds are held in large semi-outdoor aviaries 

allowing conspecific interactions, appears to be the best opportunity available in Europe to 

work in controlled conditions with the least compromise regarding the expression of natural 

behaviours. Although the life-history trade-offs that underlie the development of 

phenotypic traits may be fundamentally the same in wild, captive wild-caught, and 

domesticated populations, these populations seem to differ at least in some behavioural 

traits (Tschirren et al. 2009; Mainwaring et al. 2010; Gilby et al. 2011). For instance, the 
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different levels of extra-pair paternity in different populations suggest an effect of both 

domestication and captivity on extra-pair behaviour: 2% of extra-pair young (in 6% of the 

broods) were found in two wild populations (Birkhead et al. 1990; Griffith et al. 2010), 28-

29% of the offspring in two domesticated populations (Burley et al. 1996; Forstmeier et al. 

2011), 12% of the offspring in a captive population of wild-caught birds (Tschirren & Postma 

2010), and 9% of the offspring (in 18% of the broods) in our recently wild-derived 

population (Chapter 3). The potential impacts of the captive environment have therefore to 

be considered for the interpretation of my experiments. 

Interestingly, this species shows a mating system similar to that of humans: both 

species form relatively stable pairs bonds, often with life-long social monogamy, but both 

species also exhibit some unforced divorces as well as low, but significant levels of extra-pair 

paternity. Although one cannot easily extrapolate findings from zebra finches to humans, 

those similarities may elevate the interest one can have in understanding social and extra-

pair mate choice in the zebra finch. 

Social and extra-pair mate choice 

In socially monogamous species, individuals are believed to be not always able to express 

their preferences during social mate choice, especially if all females agree on which male is 

most attractive, and that is why extra-pair behaviour has mainly been seen as a way to 

compensate for their current, potentially constrained, situation (Petrie & Kempenaers 1998; 

Griffith et al. 2002; Westneat & Stewart 2003; Arnqvist & Kirkpatrick 2005; Kempenaers & 

Schlicht 2010; but see Forstmeier et al. 2014). Indeed, if extra-pair behaviour was a fixed 

behaviour shared by all females, all of them would pay the possible costs of extra-pair 

mating, while only a few would potentially gain benefits, and this should favour the 

evolution of a context-dependency of this behaviour. Moreover, as the social partner 

provides parental care, and extra-pair males only transfer sperm (besides potential costly 

diseases), females could seek different types of benefits in the two contexts (Candolin 

2003).  

In the zebra finch, where most of the siring success is reached with the social 

partner, we expect selection to act more strongly on social mate choice than on extra-pair 

mate choice. The experiments presented in Chapter 2 and Chapter 3 focus on free social 

mate choice but allow females to compensate, via extra-pair mating, for their potential 

incompatibility with their social partner. In the set-ups used, where several females and 

several males are simultaneously choosing a partner, mutual mate choice and male-male 

competition could potentially influence the outcome of mate choice. A pilot study was 

performed in 2011 to confirm that mutual allopreening strongly predicts which pairs will 

end up breeding together (Silcox & Evans 1982), and further, that allopreening is a more 

accurate assessment of mating preferences than mating patterns per se: two flocks of 20 

unpaired males and 20 unpaired females were first observed to identify allopreening pairs, 

and were then given access to nest material and nest boxes. In 90% of the cases (29 pairs 
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out of 32 pairs identified before breeding), allopreening predicted pairs that bred together. 

When nest boxes were added, three new pair bonds formed, which apparently resulted 

from intra-sex competition: when two females (or two males) preferred the same male 

(respectively, the same female), one of the two ended up breeding with a previously non-

chosen individual. We therefore concluded that the assessment of mating preferences in 

this somewhat natural setting could be best evaluated by the occurrence of allopreening in 

future studies (e.g. Chapter 3). 

Besides, in the zebra finch, as in most species, the within population variation in 

female extra-pair behaviour is still to be resolved (Petrie & Kempenaers 1998; Griffith et al. 

2002; Westneat & Stewart 2003; Arnqvist & Kirkpatrick 2005; Kempenaers & Schlicht 2010; 

Forstmeier et al. 2014). Therefore, an experimental test of an adaptive explanation for 

female extra-pair behaviour will be presented in Chapter 1. Interestingly, two recent studies 

suggest that at least some of the variation in female promiscuity could be an intrinsic rather 

than a context-dependent trait (Forstmeier 2007), which could result from a genetic 

constraint, because promiscuity is selected for in males and because male and female 

promiscuity are genetically correlated (Forstmeier et al. 2011). Dr. Wolfgang Forstmeier 

currently breeds selection lines for male courtship rate, trying to confirm that female 

promiscuity can be selected indirectly along with male sexual activity. 

Mating preferences for absolute quality 

Mating preferences of female zebra finches have mainly been studied in relation to male 

beak colour and song production (see below). The other sexually dichromatic plumage traits 

have also been studied in the context of mate choice (e.g. size of cheek patch, flank patch, 

bread band, Price & Burley 1994) and sometimes were found to be attractive to females 

(e.g. symmetry of breast ornamentation, Swaddle & Cuthill 1994; cheek patch color, Roberts 

et al. 2007), but these isolated positive findings were not supported further. Therefore, 

most of the sexual dichromatism observed in this species might partly be the result of past 

rather than current sexual selection (see Holland & Rice 1998). 

The redness of beaks has been shown to increase with the concentration of 

circulating carotenoids (Blount et al. 2003b). Carotenoids have to be acquired through the 

diet, they have antioxidant properties and are involved in immune functions (Blount et al. 

2003b). Males zebra finches with redder beak have been found to have better reproductive 

success (Price & Burley 1994), and while several studies attempted to explain this 

observation by the existence of female preference for redder beak, the original evidence for 

this has been mixed (e.g. preference for redder beak: Burley & Coopersmith 1987; Houtman 

1992; Blount et al. 2003b; no overall preferences: Burley et al. 1994; Collins et al. 1994; 

Roberts et al. 2007; Forstmeier & Birkhead 2004; preference for orange beak: Sullivan 

1994). In 1996, Collins & ten Cate reviewed the ambiguous support for beak-colour 

preferences, and suggested that beak colour could instead be used in the context of male-

male competition. Yet, this hypothesis was not verified when tested, as beak colour did not 
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correlate significantly with competitiveness in a following study (Bolund et al. 2007). Finally, 

a recent meta-analyses reported that overall, female zebra finches do seem to prefer males 

with redder beaks, but not when beak colour is experimentally manipulated (Simons & 

Verhulst 2011), which questions the causality of the overall effect. 

Male song rate has been found to be correlated with male attractiveness in several 

studies (e.g. Houtman 1992; Collins et al. 1994; Collins 1995; Forstmeier & Birkhead 2004). 

However, song is to a large degree a feedback to female approach (Collins 1994; Rutstein et 

al. 2007). Therefore, when song rate is measured during mate choice trials, high song rates 

of the preferred males are partly the outcome rather than the cause of the preference 

(Collins & ten Cate 1996). When measured independently of the mate choice trial, a high 

song rate does nevertheless appear to be effective in attracting female attention during 

mate choice tests (Houtman 1992; Collins 1994; Forstmeier & Birkhead 2004), but this does 

not translate into a preference in the sense of preferential copulation (Forstmeier 2007). 

Song characteristics per se have also been subject to a lot of investigations (Riebel 

2009). While consensus is reached about the trivial fact that males need to court females, 

and do so with a natural rather than an artificially altered song, in order to have access to 

any copulations (Tomaszycki & Adkins-Regan 2005; Forstmeier 2007; Riebel 2009), song 

characteristics, such as song duration, syntax, presence of special elements, etc., do not 

seem to influence mate choice (Riebel et al. 2009). However, one recent study found a 

preference for syllable repertoire size and for a lower proportion of between-syllable 

silences (Holveck & Riebel 2007; but see Forstmeier et al. 2009), and another one for higher 

amplitude (Ritschard et al. 2010). These studies are now pending for replication. 

Finally, some studies have manipulated early condition of nestlings and have found a 

preference for males from good early-rearing conditions and this has been suggested to act 

via beak colour (de Kogel & Prijs 1996), cheek patch sizes (Naguib & Nemitz 2007) or song 

complexity (Spencer et al. 2005; but see Naguib et al. 2008). However, other studies 

including those with the greatest statistical power, have failed to find effects of early-rearing 

conditions on male attractiveness (Blount et al. 2003a; Naguib et al. 2008; Bolund et al. 

2010b). 

Collectively, all the above positive findings indicate that females may prefer males in 

good condition. Nevertheless, there is no consensus on what particular trait makes males 

attractive to females or what constitutes a quality indicator. Therefore, another approach to 

study preferences for absolute quality would be to manipulate the overall genetic quality of 

individuals. Inbred birds, compared to outbred birds, show a much lower fitness (Forstmeier 

et al. 2012) and have altered condition-dependent phenotypic traits (Bolund et al. 2010a). 

Therefore, they appear to be of low genetic quality. Several experiments, originally 

conceived by Dr. Wolfgang Forstmeier, have been designed to measure to what extend 

female zebra finches discriminate against low quality (i.e. inbred) males in social pairing and 

courtships. Three of those experiments have been conducted by master students (Johannes 
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Schreiber and Thibaud Aronson) under my supervision, but the results will not be presented 

here, as they are still being compiled with results of previous experiments, and awaiting 

additional follow-up studies. 

Mating preference for relative compatibility 

In one study, Forstmeier & Birkhead (2004) conducted a large number of mate choice trials 

to investigate the variance in female preferences for unmanipulated males. They found low 

but significant consistency (repeatability of time allocation by a female tested twice with the 

same set of males R=0.29), and very low but significant between-female agreement 

(different females tested with the same set of males: R=0.11). Moreover, the generality vs 

female-specificity of male attractiveness has been assessed in communal breeding aviaries 

where the females willingness to engage in copulation when courted has been monitored 

extensively. Female responsiveness is then analysed with mixed effects models including the 

identity of the female, the male, and the combination of the interacting pair as random 

factors. Methods used for assessing and analysing female responsiveness in courtships are 

presented in more detail in Forstmeier et al. (2011) and Chapter 3. The important point here 

is that when females are still unpaired and in the process of freely choosing their social 

partner, the courting pair identity explain 6 times more variance in females responsiveness 

than the courting male identity alone, that is to say females express idiosyncratic rather 

than shared preferences regarding male attractiveness (analysis based on 7414 courtships 

involving 99 unpaired females with 128 males in 432 pair combinations). Similarly, when 

females are socially paired, the combination of the extra-pair courting male and female 

identities still explain more than twice as much variance in female responsiveness than the 

extra-pair male identity alone (analysis based on 7496 extra-pair courtships involving 142 

females and 166 males in 613 pair combinations). Interestingly, the random effect estimates 

of the interacting pair identities are correlated across contexts (i.e. female pairing status), 

that is when the female is still unpaired and courted by a male, versus when she is later 

paired and involved in an extra-pair courtship with the same male (R=0.42, 95% confidence 

interval: 0.30-0.52, N=205 interacting pair combinations observed in both contexts). This 

suggests that females have individually-specific preferences that are potentially influenced 

by similar factors in both contexts, when looking for a social male and when interacting with 

extra-pair males (either seeking the same type of benefits or, for instance, consistently 

sensory exploited by the same males). 

Thesis outline 

The overall aim of this thesis was to assess whether female zebra finches base their social 

mate choice on compatibility (genetic and/or behavioural, Chapters 2 and 3), and whether 

they engage in extra-pair copulations as an adjustment to genetic incompatibility with their 

social partner (Chapters 1 and 2). 
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Specifically, the purpose of the experiment presented in Chapter 3, which covered 

the entire duration of the thesis, was to quantify the potential fitness benefits of mate 

choice for any type of compatibility owing to an original design that excludes quality effects 

as a confounding factor (Fig. 1). As we do not know what trait is assessed during mate 

choice or if only one dimension is evaluated, this study allowing free mate choice has the 

advantage of not targeting a specific trait as a potential source of (in)compatibility, but 

enables the multidimensionality of mate choice to occur in a more ‘natural’ setting. 

Moreover, in this study, direct vs indirect compatibility benefits (Fig. 1) could be further 

disentangle based on the fact that, in this system, genetic incompatibility leads to embryo 

mortality, while behavioural incompatibility leads to offspring mortality (conclusions drawn 

from analyses on a previous dataset, presented in Chapter 3). This study is therefore of 

primary importance to the field to set whether or not, in the zebra finch, mate choice for 

genetic and/or behavioural compatibility occur and lead to fitness differences. 

The study presented in Chapter 1 is, to our knowledge, the first experimental test of 

the fertility insurance hypothesis under which female would seek extra-pair copulations to 

compensate for the ‘infertility’ of their social partner. Although fertility benefits of extra-

pair copulations have often been assumed trivial, a recent review specified the limited 

situations in which female extra-pair behaviour could readily evolve to counteract male 

infertility (Hasson & Stone 2009). One of these situations concerns species that repeatedly 

breed together, and where females could adjust their promiscuity to the hatching success 

reached with their social partner in the previous clutch (Rasmussen 1981). In our 

experiment, hatching success of pairs was manipulated and females monitored for their 

subsequent extra-pair behaviour. As, in the zebra finch, the relatively high rate of hatching 

failure mainly results from embryo mortality (analysis presented in Chapter 1), which 

presumably results from genetic incompatibility (analysis presented in Chapter 3), 

manipulating the hatching success of pairs is equivalent to manipulating the apparent 

genetic incompatibility between partners. Therefore, in this study, we fundamentally test 

whether female zebra finches seek compatible gene benefits by engaging in extra-pair 

copulations. 

Finally, the experiment presented in Chapter 2 aimed at assessing whether social 

and extra-pair mate choice in zebra finches is affected by genetic incompatibility associated 

with inbreeding depression. Studies on this question in this species have been numerous but 

the evidence has been particularly mixed. Therefore, we first present a meta-analysis of 

previous studies before performing the still lacking experiment. 

All mate choice experiments presented in Chapters 1, 2 and 3 were conducted with 

unpaired individuals at similar ages and with similar past experience. This was done to 

control for differences in context as far as possible. Although short-term effects might 

produce differences in state (like condition or motivation), this experimental standardisation 

helped avoiding possible biases that could arise from condition-dependent mate choice. 
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Chapter 1 Does hatching failure breed infidelity? 

 

 

 

Abstract 

In socially monogamous species, the reasons for female infidelity are still 

controversial. It has been suggested that females could seek extra-pair 

copulations as an insurance against hatching failure caused by male 

infertility or incompatibility. In species where couples breed repeatedly, 

females could use previous hatching success as a cue to assess their 

partner’s infertility (or incompatibility). Hence, it has been predicted that 

females should increase their infidelity after experiencing hatching 

failures, but to our knowledge this hypothesis has never been tested 

experimentally. We manipulated hatching success of pairs in a captive 

population of zebra finches (Taeniopygia guttata), a species that forms 

lifelong pair-bonds, and measured female willingness to engage in extra-

pair copulation. By experimentally cross-fostering fertile and infertile 

eggs, couples either experienced 100% or about 35% hatching success in 

each of three consecutive clutches. Contrary to our prediction, females 

that experienced repeated hatching failure did not increase their 

responsiveness towards extra-pair males relative to those females with 

100% hatching success. Moreover, there was no difference in female 

calling rate for the partner after male removal and no occurrence of 

divorce when the opportunity was given. These findings seem to 

contradict the common view that reproductive failure weakens the pair 

bond. Furthermore, a critical review of the literature suggests that there 

is no convincing evidence supporting this hypothesis in other species 

either. We therefore highlight that this fundamental area of behavioural 

ecology research is still much in need of specific experimental work that 

controls for confounding factors. 
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In socially monogamous species, the reasons for female infidelity are still controversial. It has been suggested that females 
could seek extra-pair copulations as an insurance against hatching failure caused by male infertility or incompatibility. In spe-
cies where couples breed repeatedly, females could use previous hatching success as a cue to assess their partner’s infertility (or 
incompatibility). Hence, it has been predicted that females should increase their infidelity after experiencing hatching failures, 
but to our knowledge this hypothesis has never been tested experimentally. We manipulated hatching success of pairs in a cap-
tive population of zebra finches (Taeniopygia guttata), a species that forms lifelong pair bonds, and measured female willingness 
to engage in extra-pair copulation. By experimentally cross-fostering fertile and infertile eggs, couples either experienced 100% 
or about 35% hatching success in each of three consecutive clutches. Contrary to our prediction, females that experienced 
repeated hatching failure did not increase their responsiveness toward extra-pair males relative to those females with 100% 
hatching success. Moreover, there was no difference in female calling rate for the partner after male removal and no occur-
rence of divorce when the opportunity was given. These findings seem to contradict the common view that reproductive failure 
weakens the pair bond. Furthermore, a critical review of the literature suggests that there is no convincing evidence supporting 
this hypothesis in other species either. We therefore highlight that this fundamental area of behavioral ecology research is still 
much in need of specific experimental work that controls for confounding factors. Key words: divorce, extra-pair mating, fertility 
insurance, hatching failure, pair bond, zebra finch [Behav Ecol] 

Introduction

Many studies have been aimed at understanding the adap-
tive function of female mating with multiple males 

(Tregenza and Wedell 1998; Jennions and Petrie 2000; Stockley 
2003; Avise and Liu 2011; Slatyer et  al. 2012), especially in 
socially monogamous species (Petrie and Kempenaers 1998; 
Griffith et  al. 2002; Westneat and Stewart 2003; Arnqvist and 
Kirkpatrick 2005; Cohas et al. 2006; Liebgold et al. 2006; Bryja 
et al. 2008; Sefc et al. 2008; Uller and Olsson 2008). A popular 
hypothesis is that extra-pair copulations act as a mechanism that 
gives direct benefits to females in terms of fertility (reviewed in 
Hasson and Stone 2009). In other words, females would engage 
in extra-pair copulations as insurance against the infertility of 
their social partner or against genetic incompatibility with their 
social partner (Hasson and Stone 2009). Indeed, substantial 
rates of hatching failure are remarkably common across species. 
On average, about 15% of the eggs do not hatch (Koenig 1982; 
Eberhard 1996; Morrow et al. 2002), often because eggs do not 
get fertilized or because of embryo mortality (e.g., Birkhead 
et al. 2008; Forstmeier and Ellegren 2010).

There are two ways in which the benefits of fertility insur-
ance could favor promiscuous behavior.

1.	 If there is between-female genetic variation in promiscu-
ity (Forstmeier et  al. 2011; Reid et  al. 2011), the benefits 
of fertility insurance might favor promiscuous individuals. 
However, as explained in the recent review by Hasson and 
Stone (2009), intrinsically promiscuous females can increase 
fertility by mating multiply and randomly only if two con-
ditions are met simultaneously: There must not be fertile 
sperm precedence within ejaculates and there has to be fer-
tile sperm precedence among ejaculates. These conditions 

are met when some males in the population do not produce 
any sperm (or very few) or only immobile sperm (Hasson 
and Stone 2009). In contrast, many other common types of 
male infertility would not favor such promiscuous behavior 
(Hasson and Stone 2009). Empirical support for this scenario 
where promiscuous females obtain fertility benefits has been 
found, for instance, in bluethroats, Luscinia svecica. In this 
species, azoospermia occurs (i.e., some males do not produce 
any sperm) (Lifjeld et al. 2007), and almost all females en-
gage in extra-pair copulation (Fossøy et al. 2006). The occur-
rence of some broods where all eggs are fertilized by an extra-
pair male (Lifjeld et al. 1993; Krokene et al. 1998) at least 
suggests that females may obtain benefits in terms of fertility.

2.	 If there is within-individual flexibility in promiscuous be-
havior, individuals mated to an infertile or incompatible 
partner might benefit from seeking extra-pair copulations 
(adaptive phenotypic flexibility).

Observational studies have found all sorts of association 
(positive, null, and negative) between hatching success and 
levels of extra-pair paternity (e.g., Wetton and Parkin 1991; 
Kempenaers et al. 1999). Positive associations have been inter-
preted as the females succeeding in reducing hatching fail-
ure (Kempenaers et  al. 1999), whereas negative associations 
have been interpreted as the females unsuccessfully trying to 
reduce hatching failure (Wetton and Parkin 1991; Cordero 
et al. 1999). Comparative studies that related a species’ aver-
age hatching success to its level of extra-pair paternity have 
found no association (Morrow et al. 2002), but this does not 
rule out the existence of fertility insurance benefits at the indi-
vidual level. The question whether females adjust their pro-
miscuity to the perceived risk of encountering hatching failure 
(scenario 2 above) requires an experimental approach, but to 
our knowledge such experiments have not been conducted.

For females to adjust their promiscuity to the risk of hatch-
ing failure requires prior knowledge of male fertility or com-
patibility. The phenotype-linked fertility hypothesis suggests 
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that females might be able to assess male fertility before cop-
ulation (Sheldon 1994), but it is unclear whether a general 
phenotypic correlate of fertility (e.g., ornamentation) exists 
(Birkhead and Fletcher 1995; Birkhead et  al. 1997; Pizzari 
et al. 2004; but see Peters et al. 2004). To the contrary, orna-
mentation and fertility may be negatively correlated due to 
pleiotropic antagonism (see e.g., Bilde et al. 2009; Simmons 
et al. 2010; Preston et al. 2011). Hence, it seems unlikely that 
females can predict fertility from male phenotypes. However, 
in species where individuals breed repeatedly with the same 
partner, previous hatching success could be the most reliable 
cue to male fertility (or genetic compatibility). Females that 
experience low hatching success with their social partner, that 
is, those that have a greater than average probability to be 
mated to an infertile (or incompatible) male, can gain in fer-
tility by engaging in extra-pair copulation(s) during the next 
breeding attempts (Hasson and Stone 2009). We then expect 
that females increase their infidelity after experiencing hatch-
ing failure, but remain faithful when all their eggs hatch. This 
hypothesis was already proposed by Rasmussen (1981) long 
before the invention of molecular parentage assignment tech-
niques, and highlighted again by Hasson and Stone (2009), 
who noticed the lack of empirical tests.

We aimed to test this hypothesis by experimentally manipu-
lating the hatching success of breeding pairs of captive zebra 
finches (Taeniopygia guttata) and by measuring the resulting 
change in female extra-pair behavior. Rasmussen (1981) con-
vincingly argued that it would be adaptive if reproductive fail-
ure would weaken the pair bond and would thereby induce 
females to either seek extra-pair copulations or to divorce 
their partner. Therefore, we also recorded the females’ 
attachment to their social partner (contact calls uttered when 
the male is removed) and whether they divorced or not when 
given an opportunity.

Zebra finches form social pair bonds that typically last for 
a lifetime (Zann 1996), so females can assess the hatching 
success they reach with their social partner over consecutive 
clutches. Hatching failure is not uncommon in wild zebra 
finches (around 16% of eggs, Zann 1996; Griffith et al. 2008) 
and higher rates of hatching failure have been reported 
from some captive populations (e.g., 35%, Forstmeier and 
Ellegren 2010). In our domesticated population, when eggs 
are cross-fostered individually among clutches within 24 h of 
laying (see Forstmeier 2005) the identity of the genetic pair 
explains 4.8 times as much variance in hatching success than 
foster-pair identity (based on 1914 eggs, 283 genetic pairs, 
264 foster pairs; ΔAIC for foster pairs = 8.0, ΔAIC for genetic 
pair  =  112.6; our unpublished data). Therefore, incubation 
problems do not seem to be the main cause of hatching fail-
ure. Moreover, when females are allowed to breed with dif-
ferent partners in succession, rates of hatching failure vary 
dramatically within females, across pairs. Specifically, in a 
mixed-effect model with three random factors, pair identity 
accounts for 51%, male identity for 30%, and female identity 
for 19% of the total variance in hatching success that can be 
explained (based on 4386 eggs, 367 pairs; our unpublished 
data). Therefore, in this system, females could clearly benefit 
from avoiding an incompatible or infertile partner.

Although zebra finches have relatively low rates of extra-
pair paternity in the wild (2% of the offspring were extra-
pair young and 6% of the broods contained extra-pair young, 
Birkhead et  al. 1990; Griffith et  al. 2010), they have been 
used extensively as a model for the study of extra-pair mat-
ing behavior. Frequent extra-pair courtship behavior has 
been described both in the wild (Birkhead et  al. 1988) and 
in captivity (Burley et al. 1994; Forstmeier et al. 2011). Wild 
birds that were brought into captivity showed elevated levels 
of extra-pair paternity (12% of the offspring, Tschirren et al. 

2012), and even higher rates of extra-pair paternity were 
observed in domesticated populations (28–29% of the off-
spring, Burley et al. 1996; Forstmeier et al. 2011). In the cur-
rent study, we used a population derived from the wild only 
20 years ago, and we tentatively expected lower levels of extra-
pair mating compared with the much better studied domesti-
cated populations (Houtman 1992; Burley et  al. 1994, 1996; 
Forstmeier 2007; Rutstein et al. 2007; Forstmeier et al. 2011).

Studies on domesticated zebra finches showed that females 
are in control of extra-pair copulations (Forstmeier 2004) 
and that they seek copulations from specific individuals with 
which they had spent more time in previous mate choice tests 
(Houtman 1992; Forstmeier 2007). However, these experi-
ments did not rule out the possibility that these apparent 
extra-pair mating preferences resulted from simple effects of 
familiarity. Indeed, spending time near a male could increase 
the familiarity between the two individuals and therefore, 
potentially, the inclination of the female to respond posi-
tively to this male later on. We therefore use the current 
experiment also to clarify whether females preferentially have 
extra-pair copulations with males to which they are familiar 
through passive exposure (rather than through active choice 
as assessed in a four-way choice chamber).

Methods

Subjects and housing

The study subjects belong to a population of zebra finches 
maintained at the Max Planck Institute for Ornithology in 
Seewiesen, Germany. The population goes back to wild-
caught birds whose captive-bred offspring were imported from 
Australia to the University of Bielefeld (Germany) in 1992. 
This population (population #4 in Forstmeier et  al. 2007b) is 
genetically still closely related to the wild Australian population, 
but has lost some of its genetic variability (heterozygosity at 
10 microsatellite markers is 83% compared with 93% in the 
wild; Forstmeier et  al. 2007b). Individuals included in the 
present study consisted of a parental generation (29 males and 
17 females born in 2008)  and their offspring (23 males and 
21 females born in 2009). According to our four-generation 
pedigree, all the 90 individuals have an inbreeding coefficient 
of zero. Since their arrival at Seewiesen in August 2009, 
the birds were maintained on a diet of millet seed mixture, 
cuttlefish, grit, and water ad libitum. Water and food were 
changed daily, and once a week birds received salad and a 
vitamin supplement. They experienced natural ambient light 
in addition to a full spectrum artificial fluorescent light set 
to a 14:10 h light-dark cycle, and a temperature ranging from 
5 to 35  °C. During the time of the experiment, between 1 of 
April 2011 and mid November 2011, breeding pairs were kept 
separate from one another in 1 of 36 semi-outdoor aviaries 
(each measuring 2 m × 5 m and 2.5 m high) under similar 
light and temperature conditions. Subjects received additional 
egg food whenever they had chicks.

Experimental design

Assignment of social mate and extra-pair males
We paired 36 females (15 from the first generation that had 
one previous breeding experience, and 21 inexperienced 
from the second generation) by putting them in individual 
aviaries with a male from the same generation (never with 
the previous partner). Using our four-generation pedigree, 
partners were chosen so that the inbreeding coefficient of 
their offspring would be either 0 (24 pairs of unrelated indi-
viduals) or 0.25 (12 pairs of siblings that grew up together). 
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This difference in inbreeding served the purpose of another 
analysis (not shown) and did not affect the behavior we are 
interested in here (see “data analysis”). In total, eight pairs 
did not breed because of the death of one member (n  = 5) 
or because the female did not lay eggs (n  =  3). Two of the 
females that died without having laid eggs were replaced in 
early June; two widowed females were re-paired, before or 
after their first clutch, each with a male whose partner had 
never laid eggs. Thus, in total, 32 pairs (36 minus 8 plus 
4)  received the experimental treatment (see next section). 
Including or excluding the additional four females in the 
analyses or adding the date of pairing as a covariate did not 
change qualitatively any of the results. 

We allocated eight extra-pair males from a total pool of 
16 to each female so that the inbreeding coefficient of every 
potential extra-pair offspring would be zero. Two weeks 
before the start of the experiment, every female (except for 
the two replacement females) was familiarized with half of 
their extra-pair males. To do that, each female was put in an 
individual cage separated by mesh from one extra-pair male, 
which was exchanged after 2 h by another one. On a second 
day (within the following 5 days), two further extra-pair males 
were introduced to the female in the same way. This proce-
dure was used to mimic the familiarity that may arise from 
choice chamber tests (Houtman 1992; Forstmeier 2007).

Hatching success manipulation
During the time the pairs needed to complete four clutches, 
they had access to nest material (coco fibers, cotton fibers, 
and horsehairs), and to four nest boxes. Nests were checked 
every morning. On the day a nest was completed and on the 
day the first egg was laid, two extra-pair trials were executed 
(see next section). Once a nest was chosen for laying, the 
other three nests were removed from the aviary and only put 
back when the first chick was 15  days old (just before the 
time of fledging), allowing pairs to start a new clutch and be 
tested again for their response to an extra-pair male. Used 
nests were replaced with a fresh nest box when all young 
had fledged. Juveniles were removed from the natal aviary at 
45 days of age. On the day of the first egg of the first clutch, 
the pairs were assigned (in alternating order) to one of two 
treatment groups (16 pairs in each). Pairs stayed in their 
treatment group throughout the entire experiment (treat-
ments were not switched).

The treatment consisted of manipulating the hatching suc-
cess of three successive clutches, so that half of the couples 
experienced 100% hatching success, whereas the other half 
experienced ≤50% hatching success (median = 35% hatching 
success). For the reduced hatching success group, we ensured 
that at least one egg hatched in order to mimic the most com-
mon natural situation of hatching failure, that is, partial fail-
ure (Mariette and Griffith 2012). Moreover, this provided a 
signal to the parents that the end of the incubation period 
(which typically lasts 12–13 days) was reached. To manipulate 
hatching success, we labeled every egg on the day of laying, 
and checked its status (alive or dead) every day from the fifth 
day onwards by using a digital egg monitor (Buddy, Avian 
Biotech, Cornwall, United Kingdom). The original clutch size 
was not altered by egg cross-fostering, with the exception of 
eight clutches in the 100% treatment group, which received 
one additional hatching egg that we had in surplus. Most of 
the eggs (82.2%, n = 549 eggs) had been cross-fostered with 
eggs of the same age (±3  days maximum) to randomize, 
among the parents and treatment groups, the genetic quality 
of the chicks. The cross-fostering was done at approximately 
10 days of incubation to allow potential parent–embryo com-
munication before hatching (Evans 1992), even for those 
pairs that had originally only dead embryos or infertile eggs 

in their own clutch. Every day, adjustments were made if 
necessary to obtain the desired treatment, that is, in case of 
embryo mortality occurring during the last days of incuba-
tion. This was achieved by having an additional four breed-
ing pairs in small cages, which ensured the availability of live 
or infertile eggs (or eggs that contain embryos that died of 
natural causes). The rate of natural infertility or embryo mor-
tality was high enough to fulfill the treatment criteria with-
out having to kill any embryos. The focal 32 females laid a 
total of 682 eggs, of which 133 broke or disappeared due to 
thin shells. Of the remaining 549, 78 (14.2%) were judged as 
infertile (no visible embryo development, i.e., they might also 
have died at the start of development), 122 (22.3%) died dur-
ing embryo development, and 348 (63.5%) hatched.

Extra-pair trials
Before females started laying a clutch, their responsiveness 
toward two extra-pair males was assessed twice: once during 
the presumed fertile period (at nest completion) and once on 
the day the first egg was laid (day 0). Female zebra finches are 
technically fertile from day −11 to +3 (Birkhead et al. 1989) 
but are the most responsive from day −6 to −2 (Birkhead 
et al. 1989, this study). As the onset of egg-laying cannot be 
predicted in advance, the realized extra-pair trials took place 
over a wider range of days (days −12 to +2; 80% between 
days −6 and 0). For data analysis, the period of testing was 
categorized as either “peak fertility” when the test took place 
between days −6 and −2 or as “early fertility” and “late fer-
tility” otherwise. The social male was caught and replaced 
successively by one of two extra-pair males (the order did 
not matter, see below), one familiar and one unfamiliar, for 
5 min each. On removal of the social partner, females often 
uttered distance calls, which function to stay in acoustic con-
tact with the partner (Zann 1996). As a tentative measure of 
the strength of the pair bond, we recorded the number of 
distance calls uttered by the female during each extra-pair 
trial. Because females either did not call at all (68.4% of the 
494 trials) or called rather frequently (mean  ±  s.d.: 45  ±  50 
calls) we modeled this behavior as a binomial trait (absent or 
present). As a measure of sexual interest in extra-pair males, 
we scored the responsiveness of females on a five point scale 
following Forstmeier (2004, 2007), varying from a clear rejec-
tion of the male involving aggression (−1) to a clear solicita-
tion of copulation involving tail quivering (+1). Intermediate 
scores (−0.5, 0, +0.5) were given if both positive (approach-
ing, ritualized hopping, beak wiping) and negative (threat 
display, beak fencing, fleeing) cues occurred or if either posi-
tive or negative cues were only weakly expressed. Moreover, 
we measured the male song rate with a stopwatch as the total 
number of seconds of song directed toward the female. This 
parameter was used as a covariate in the analysis of extra-pair 
responsiveness, and for that purpose it was square-root trans-
formed and then centered and scaled.

Not all of the 32 females completed all the 16 tests: two 
females became widowed after 10 and 12 tests, and two 
others stopped laying after 14 tests. Trials without any cues 
of female responsiveness (n  =  195), mainly because the 
male did not start any courtship (95.5% of these tests), were 
treated as missing values. Giving these trials a responsiveness 
score of zero did not change qualitatively any of the results. 
Thus, responsiveness was scored on 299 trials (60% of the 
494 trials performed). We also recorded for every trial the 
occurrence of successful and unsuccessful copulations (see 
Forstmeier 2007). We assessed the outcome in terms of extra-
pair paternity using 10 highly polymorphic microsatellite 
markers (Forstmeier et al. 2007a). The latter two parameters 
(occurrence of extra-pair copulation and extra-pair offspring) 
seem less useful than our responsiveness scores for the 
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measurement of female willingness to copulate, firstly because 
they are binomial variables (yes/no) with low frequency 
of “yes,” and secondly because the outcome of extra-pair 
copulations also depends on male behavior and sperm 
competition (Fossøy et al. 2006; Forstmeier et al. 2011). The 
treatment did not significantly influence the frequencies of 
either extra-pair copulations (P = 0.39) or extra-pair offspring 
(P = 0.60, details not shown for brevity).

Divorce opportunity
For 24 couples (11 and 13 from the 35% and 100% treatment 
group, respectively), the manipulation of hatching success 
was extended to include the fourth clutch. After the young 
of this clutch fledged, these couples were released together in 
one of the aviaries (each individual with a unique combina-
tion of color rings) in order to give them the opportunity to 
change their social mate. After 6 months, we recorded during 
1  day all the pairs of individuals that engaged in clumping 
and allopreening, which is indicative of pair bonds (Silcox 
and Evans 1982).

Data analysis

We analyzed the responsiveness scores of the females and 
whether they called for their partner with linear mixed-
effect models using the lmer function from the lme4 package 
(Bates et  al. 2011) in R 2.14.0 (R Development Core Team 
2011). For the test of specific hypotheses, we calculated two-
tailed P values from the z-statistic of parameter estimates. 
With this approach, parameter estimates that are more than 
1.96 standard errors away from zero (|z| > 1.96) are regarded 
as significant (with α′ set to 0.05). Residuals from the mod-
els were explored graphically to check for normality. Male 
and female identities were included as random factors to 
control for pseudoreplication. The 95% confidence interval 
(CI) of the percentage of variance explained by these ran-
dom effects was obtained by parametric bootstrapping (with 
1000 simulations) using the function rpt.remlLMM.adj of the 
rptR package (Schielzeth and Nakagawa 2011). The level of 
inbreeding of pairs (see above) was excluded from the final 
model, because it had no main effect (females from inbred 
pairs were not more responsive (trend against the expecta-
tion): estimate = −0.093 ± 0.103 s.e., z  = −0.92, P  = 0.36) and 
no two or three-way interaction with the number of clutches 
manipulated and the treatment was significant (all P > 0.54). 
Similarly, the presentation order of the extra-pair males was 
excluded from the final model (first male tended to be pre-
ferred; z = −1.43, P = 0.15).

Results

In 291 out of 494 extra-pair trials (59%) males courted 
females, and in 88 trials (18%) males attempted to copu-
late. In 33 trials, females did not resist these attempts but 
in only 18 of them copulation attempts actually resulted in 
cloacal contact. In nine trials, the females actively solicited a 
successful extra-pair copulation, whereas in one trial female 
solicitation did not lead to copulation. Fifteen out of the 
16 extra-pair males (94%) courted at least 1 female, and 13 
males made at least one copulation attempt. Seventeen out 
of the 32 females (53%) engaged in one or more extra-pair 
copulation attempts, but for only 11 females this led to cloa-
cal contact. Overall, 20 out of 449 offspring (4.5%; including 
dead embryos and chicks) were sired by extra-pair males, and 
6 out of 32 females (19%) had at least one extra-pair off-
spring. In the model of female responsiveness to extra-pair 
males, female identity explained 17.5% (95% CI: 7–28%) of 

the total variance, whereas male identity explained only 4.0% 
(95% CI: 0.3–10%). In other words, females were not highly 
consistent over time and did not agree on the overall attrac-
tiveness of particular extra-pair males.

Contrary to our main prediction, females that experi-
enced repeated hatching failure did not increase their 
responsiveness toward extra-pair males (Figure  1). Instead, 
their responsiveness declined over consecutive clutches in 
the same way as in females that experienced 100% hatching 
success. Accordingly, the interaction between the number 
of clutches manipulated and the treatment group was not 
significant (P = 0.67; Table 1; Figure 1). If we removed the 
females that engaged in extra-pair copulations when starting 
their first clutch (i.e., females that were not able to judge 
their partner’s infertility), these results did not change 
qualitatively (interaction: P  =  0.40). The overall decline in 
female responsiveness over consecutive clutches was highly 
significant (after the removal of the interaction term: esti-
mate  =  −0.13 ± 0.03 s.e., z  =  −5.1, P  <  0.0001; Table  1). 
Allocation of females to treatment groups was done ran-
domly when the first egg was laid, but the females of the 
two treatment groups differed (nonsignificantly) in their 
extra-pair responsiveness when tested for the first time (esti-
mate = 0.32 ± 0.16 s.e., z = 1.9, P = 0.063; Figure 1). This ini-
tial difference was more or less maintained over the course 
of the entire experiment (Figure 1). Females were not more 
responsive toward extra-pair males they had been familiar-
ized with (P = 0.94; Table 1), but their responsiveness signifi-
cantly increased with extra-pair male song rate (P  =  0.004; 
Table 1).

Figure 1    
Female responsiveness toward extra-pair males (parameter 
estimates ± s.e.) over repeated hatching success manipulations. The 
first estimate (0 clutches manipulated) reflects the females’ baseline 
extra-pair responsiveness before any breeding experience with 
their partner. The following estimates refer to extra-pair behavior 
after 1, 2, or 3 experiences of either about 35% (open circles) or 
100% (filled circles) hatching success. Regression lines for the two 
treatment groups are shown (dashed and solid line for the group of 
35% and 100% hatching success, respectively). Responsiveness scores 
vary from −1 (aggression) to +1 (solicitation). Data were obtained 
from 32 females (16 in each treatment group) courted by extra-pair 
males before each clutch (299 observations). Estimates refer to the 
key fertile period (day −6 to −2); the responsiveness was lower when 
females were tested before or after that period (see Table 1).
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The attachment to the social partner, measured as the 
presence or absence of female calls when the partner was 
removed during the extra-pair trials, generally increased over 
the consecutive clutches (P  <  0.0001, after removal of the 
interaction term; Table 2; Figure 2), and did so in a similar 
way for females that either experienced repeated hatching 
failure or success (the interaction between the number of 
clutches manipulated and the treatment group was not sig-
nificant, P  =  0.13; Table  2). A  post hoc analysis of the data 
(details not shown) revealed that there was a peak of calling 
probability on the day before the first egg was laid (day −1). 
Moreover, females were more likely to call for their partner with increasing song rate of the extra-pair male (P < 0.0001; 

Table 2).
After being put in a communal aviary for 6 months, all 24 

females engaged in allopreening only with their former social 
partner, suggesting that divorce did not occur.

Discussion

Our empirical data (Figure  1) clearly refute the hypothesis 
that females increase their extra-pair mating behavior in 
response to increased hatching failure, at least for the 
given population and testing conditions. Firstly, the highly 
significant decline in extra-pair responsiveness over successive 
breeding attempts shows that our zebra finch females were 
most willing to engage in extra-pair copulation during their 
first breeding attempt with their social partner. Such behavior 
would not allow females to assess their partner’s fertility or 
compatibility, because hatching success would also depend 
on fertility of or compatibility with the extra-pair males. 
Secondly, repeated experiences of hatching failure and 
success, respectively, did not induce any differences in extra-
pair mating behavior. The statistical power of our experiment 
should be large enough (16 females in each group) to 
discount a biologically relevant effect size, especially when 
considering that in a natural situation breeding pairs would 
rarely experience such consistently discrepant hatching 
success. 

It can be argued that in wild zebra finches (in contrast 
to our domesticated population) hatching failure may be 

Table 1   
Parameter estimates, standard errors (SE), and z-values (z = estimate/
SE) of fixed effects on extra-pair responsiveness

Fixed effects on  
responsiveness score Reference Estimate SE z-value

Intercept   0.137 0.112   1.22
Clutches manipulated 
(C)a

Per clutch −0.126 0.035 −3.59

Song (C)b Per SDc   0.108 0.044   2.46
Familiarity yes (F) Familiarity no −0.008 0.060 −0.13
Treatment 100% (F) Treatment 35% −0.143 0.123 −1.16
Late fertility (F) Peak fertility −0.345 0.074 −4.69
Early fertility (F) Peak fertility −0.616 0.166 −3.71
Clutches manipulated * 
Treatment 100%

  −0.023 0.053 −0.43

For continuous predictors (C), we give the slope estimate as the 
change in responsiveness per unit of the predictor. For factors (F), 
we give estimates for each level relative to the first level. Values are 
obtained from a mixed-effect model performed in R (lmer). Bold 
print highlights the test of the main hypothesis (the interaction term). 
Underlined z-values are further discussed in the main text.
aNumber of clutches manipulated (0, 1, 2, or 3).
bSeconds of courtship song, square-root transformed and 
z-transformed.
cPer unit of standard deviation in the z-transformed predictor. Figure 2    

Probability of the female calling for her partner when he is 
experimentally removed during the extra-pair trials (parameter 
estimates ± s.e.) over four consecutive clutches. The first estimate 
(0 clutches manipulated) reflects the female’s behavior before any 
breeding experience. The following estimates refer to her behavior 
after 1, 2, or 3 experiences of either about 35% (open circles) or 
100% (filled circles) hatching success. Regression lines for the 
two treatment groups are shown (dashed and solid lines for the 
group of 35% and 100% hatching success, respectively). Data were 
obtained from 32 females (16 in each treatment group) deprived 
of their social male before each of four successive clutches (494 
observations). The y-axis is on a logit scale.

Table 2   
Parameter estimates, standard errors (SE), and z-values (z = estimate/
SE) of fixed effects on the probability of females calling for their 
partner (binomial model)

Fixed effects on  
female calls Reference Estimate SE z-value

Intercept −3.892 0.711 −5.47
Clutches manipulated 
(C)a

Per clutch   1.176 0.197   5.96

Song (C)b Per SDc   1.066 0.167   6.38
Familiarity yes (F) Familiarity no −0.270 0.281 −0.96
Treatment 100% (F) Treatment 35% −0.601 0.873 −0.69
Late fertility (F) Peak fertility   1.033 0.359   2.87
Early fertility (F) Peak fertility   1.949 0.819   2.38
Clutches manipulated * 
Treatment 100%

    0.439 0.291   1.51

For continuous predictors (C), we give the slope estimate as the 
change in female calls per unit of the predictor. For factors (F), 
we give estimates for each level relative to the first level. Values are 
obtained from a mixed-effect model performed in R (lmer). Bold 
print highlights the test of the main hypothesis (the interaction term). 
Underlined z-values are further discussed in the main text.
aNumber of clutches manipulated (0, 1, 2, or 3).
bSeconds of courtship song, square-root transformed and 
z-transformed.
cPer unit of standard deviation in the z-transformed predictor.
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mostly due to incubation problems rather than to genetic 
incompatibility or infertility. In that case, engaging in extra-
pair copulations would not increase egg hatchability, so that 
selection favoring the flexible promiscuous behavior that we 
predicted might have been absent. Therefore, future studies 
should clarify whether poor incubation can account for the 
high frequency of partial hatching failure in the wild (see 
Mariette and Griffith 2012), or whether these cases are better 
explained by genetic incompatibility, as seems to be the case 
in our domesticated population.

At the proximate level, hatching failure could have 
reduced the strength of the pair bond which might have 
led, if not to an elevated interest in extra-pair mates, to a 
higher probability of divorce [as suggested by Rasmussen 
(1981)]. Nevertheless, the repeated experience of hatch-
ing failure did not seem to alter females’ attachment to 
their partner (in terms of calling for the partner when he is 
experimentally removed). Rather the data suggest that the 
strength of the pair bond increased with pair bond dura-
tion, regardless of the hatching success treatment (Figure 2). 
Moreover, females called more frequently when the extra-
pair male courted them more intensively (effect of song rate 
in Table 2), suggesting a response to increased male harass-
ment and an overall unwillingness to engage in extra-pair 
copulation. Given this apparent lack of effect of hatching 
failure on female fidelity in our study (no increased inter-
est in extra-pair male or new partner), we briefly review the 
related literature on the effects of reproductive failure on 
the pair bond strength in other species.

Is there a link between reproductive failure and strength 
of the pair bond in other species?

It has been argued that divorce and extra-pair mating are 
related phenomena, because they both might represent 
extended mate choice, where the current breeding situation 
is assessed in comparison to potentially better options (Cézilly 
and Nager 1995). Divorce and extra-pair mating might there-
fore share proximate mechanisms, that is, psychological states 
of satisfaction with the partner or the strength of the pair 
bond (Rasmussen 1981; Spoon et al. 2007).

Observational studies have found a small but robust effect 
that divorce is most likely to occur after reproductive fail-
ure (Choudhury 1995; Dubois and Cézilly 2002). However, 
such observational studies can be misleading in several ways. 
First, confounding factors such as variation in age may cause 
or inflate the association between reproductive failure and 
divorce, because first-time breeders could have simultane-
ously a lower reproductive success and a higher probability 
of divorce (Ens et  al. 1996; McNamara and Forslund 1996; 
Mills et  al. 1996). Such confounding factors were not taken 
into account in the meta-analysis that showed a weak but 
significant association (Dubois and Cézilly 2002; effect size 
r = 0.11). Second, even when reproductive failure and divorce 
are associated in a well-controlled analysis (e.g., Naves et  al. 
2007), the underlying mechanism remains obscure. In migra-
tory species, reproductive failure may alter the birds’ sched-
ule of departure and arrival, which may result in divorce 
as a by-product (e.g., Olsson 1998). In species with marked 
site-tenacity, reproductive failure may trigger the search for 
a better territory or nesting site, which also might result in 
divorce. Indeed, in a well-studied species, the kittiwake (Rissa 
tridactyla), it appears that reproductive failure triggers dis-
persal rather than divorce per se (see Table 6 in Fairweather 
and Coulson 1995). This pathway was further confirmed 
in the recent study of Bai and Severinghaus (2012) aiming 
specifically at disentangling site from mate fidelity in the 
Lanyy scops owl (Otus elegans botelensis). Finally, in some study 

systems, lower quality individuals might both have reduced 
breeding success and a higher probability of being evicted 
from the territory (Valcu and Kempenaers 2008). These 
mechanisms could work independently of any effect of repro-
ductive success on pair-bond strength.

There have been remarkably few experimental studies on 
divorce. Several studies on tits (Paridae) tested the effect of 
brood-size manipulation on the probability of divorce (Lindén 
1991; Orell et al. 1994; Blondel et al. 2000). The findings of 
these studies have been mixed, and when pooling the sample 
sizes across the three studies, divorce rates were 21% for pairs 
with enlarged broods (n = 71) and 22% for pairs with reduced 
broods (n = 68; Fischer’s exact test, P = 1). This might indicate 
that, among successful breeders, the actual number of 
offspring fledged is not a factor that would directly influence 
the probability of divorce in these species. Two experimental 
studies have examined how complete reproductive failure 
(egg removal or replacement with infertile eggs) affected a 
female’s interest in a potential new partner (using choice 
chamber tests in the laboratory). Both studies produced 
nonsignificant trends in the expected direction, yet both 
studies focus on bird species in which divorce does not seem to 
occur in the wild. A study on captive pigeons (Wosegien 1997) 
found that, after failure, 54% of the females preferred the 
potential new male, whereas after breeding successfully, 45% 
did so (Fischer’s exact test, P = 0.62). A study on domesticated 
zebra finches (Drullion and Dubois 2011) found that, after 
a single breeding failure, female zebra finches spent more 
time close to a neighboring male that had bred successfully 
and less time close to the social partner, when compared with 
females that bred successfully. However, due to small sample 
sizes (n  =  6 females per treatment group) these results did 
not reach statistical significance. A more extensive replication 
of that experiment would be needed to assess whether those 
results are in conflict with our findings, and whether the 
potential discrepancy arises from differences in experimental 
design or from differences in study populations (recently wild-
derived vs. domesticated). In the study of Drullion and Dubois 
(2011), a treatment of 0% hatching success was used, which 
could mimic a complete infertility of the partner. Future 
studies could explore whether this treatment is more efficient 
in weakening the pair bond than our 35% hatching success 
treatment.

In summary, neither observational nor experimental studies 
have produced convincing evidence that reproductive failure is 
causally related to the occurrence of divorce. Moreover, these 
studies have not clarified whether divorce proximately results 
from avoidance of the partner or of the territory where repro-
ductive failure occurred (Lindén 1991; Valcu and Kempenaers 
2008). It is conceivable that reproductive failure due to envi-
ronmental factors (e.g., nest predation, food shortage, intra-
specific competition) might increase the propensity of birds to 
disperse to another breeding area. Divorce might result from 
such increased dispersal tendencies without requiring any 
effect of reproductive failure on the strength of the pair bond 
(Bai and Severinghaus 2012). Therefore, there is no conclusive 
evidence for the hypothesis proposed by Rasmussen (1981) 
that reproductive failure reduces the strength of the pair bond 
and leads to infidelity.

Pair-bond strength and extra-pair behavior  
in the zebra finch

Zebra finches maintain strong pair bonds all year round, 
whereas many other study species engage in seasonal partner-
ships. Because of the characteristics of our model species, our 
negative result may not apply to other species with weaker 
pair bonds (e.g., Saitou 2002).
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Pair-bond strength is typically considered to increase with 
pair-bond duration. In most species, this has been inferred 
from the probability of divorce decreasing with time (Ens 
et al. 1996; Naves et al. 2007). In zebra finches, this can also 
be observed in terms of increased calling for the partner 
(Figure  2), decreased responsiveness to extra-pair males 
(Figure 1, see also Forstmeier 2007; Forstmeier et  al. 2011), 
and increased responsiveness to the partner (Forstmeier 
et  al. 2011). Moreover, we have regularly observed that pair 
bonds can break up within 2–3 weeks of pair formation in 
communal breeding aviaries, but this rarely happens at later 
stages (unpublished data). Likewise, extended periods of 
force-pairing seem to always result in strong and lasting pair 
bonds (this study, Forstmeier 2007). Therefore, the strength 
of the pair bond in zebra finches seems to have been under 
selective pressures at the expense of its adaptive weakening, 
for instance, in response to hatching failure.

In line with our expectations, we found that our wild-
derived population showed lower levels of promiscuity than 
the previously studied domesticated population (Forstmeier 
2007). Males were less likely to court extra-pair females (59% 
vs. 85% of the trials) but then did so with similar intensity 
(mean of 32 s vs. 37 s of courtship song). Among the trials 
with courtship, successful extra-pair copulation was less fre-
quent in the present study (6.2% of trials) than in the previ-
ous study of the domesticated population (21.1% of trials). 
Despite this lower readiness to engage in extra-pair copula-
tions, we still observed that throughout the 494 trials of 5 min 
performed on the 32 females, 17 females (53%) engaged in 
at least one extra-pair copulation attempt (which they did not 
resist, but some of which failed due to the male’s behavior, 
e.g., losing his balance). 

Some females were more promiscuous than others, 
although the individual repeatability of extra-pair respon-
siveness was somewhat lower than previously found in the 
domesticated population (Forstmeier 2007). The ultimate 
reasons for the occurrence of more promiscuous individu-
als, however, need not lie with potential benefits (e.g., fer-
tility insurance) arising to females. Instead it might be that 
alleles for increased promiscuity are favored in males and 
these alleles may exert pleiotropic effects on behavior in 
females (Forstmeier et al. 2011). More precisely, if alleles that 
increase sex drive in males also cause females to engage more 
actively in extra-pair courtships, the promiscuous behavior 
of females carrying these alleles could be regarded simply as 
a genetic side-effect of these alleles having been favored in 
male carriers.

The present study does not support the idea that females 
obtain good-gene benefits from engaging in extra-pair copula-
tions, as we did not find a substantial effect of extra-pair male 
identity on responsiveness. This either means that females 
do not seek good-gene benefits (but potentially compatible-
gene benefits) or that they have difficulties assessing male 
genetic quality in the given experimental context (lack of 
social interactions, eavesdropping, mate-choice copying). It is 
noteworthy that stronger effects of extra-pair male identity on 
female responsiveness have been found in our domesticated 
population (Forstmeier 2007) which contradicts the idea that 
domestication has reduced variation in male attractiveness or 
reduced female choosiness or ability to discriminate (Griffith 
et al. 2010).

It appears that the female extra-pair mating preferences 
that were previously found in domesticated birds (Houtman 
1992; Forstmeier 2007) reflect true sexual preferences and 
cannot solely be explained by effects of familiarity, because 
we here found no effect of experimental familiarization on 
extra-pair responsiveness (Table 1). Finally, it should be men-
tioned that this and an earlier study (Forstmeier 2007) are 

fully consistent regarding the relationship between male song 
rate and female extra-pair responsiveness. Both studies show 
a positive association between male song and female respon-
siveness (Table 1; see also Pariser et al. 2010). This does not 
necessarily imply a female preference for males that sing a 
lot, because males might be stimulated to sing more when a 
female reacts positively. When aggregating the data for each 
male, both studies failed to find a relationship between a 
male’s average song rate and its average received responsive-
ness (here n = 16, r = −0.1, P = 0.72).

Conclusion

More than three decades ago, Rasmussen (1981) comprehen-
sively proposed how to experimentally test the hypothesis that 
reproductive failure leads to a weakening of the pair bond 
and hence to either divorce or extra-pair mating or both. 
Despite the plausibility of all the adaptive scenarios that link 
reproductive success with continued mate choice decisions 
(by means of divorce or extra-pair mating), there are still no 
convincing experimental studies supporting that view (and 
very few studies that seem to reject it). We therefore reiterate 
Rasmussen’s call for well-designed experiments in this fun-
damental area of behavioral ecology research. These experi-
ments should not only establish whether there is a causal 
relationship between reproductive failure and divorce, but 
they should also identify the relevant cues and proximate 
mechanisms. Reproductive failure might be due to partner 
traits (e.g., infertility, incompatibility, low parental quality) or 
environmental factors (e.g., predation, food shortage, compe-
tition over mates). An adaptive view on extra-pair mating and 
divorce might predict that the former factors should influ-
ence pair-bond strength, whereas the latter factors should 
influence habitat and nest-site choice.
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in the zebra finch 

 

 

 

Abstract 

Mating between close relatives nearly always leads to inbreeding depression, which 

should promote the evolution of inbreeding avoidance mechanisms, especially in 

sexually monogamous species. The zebra finch, a predominantly monogamous 

species, has been shown to suffer strongly from inbreeding depression, and this 

species has been used repeatedly in studies of inbreeding avoidance. However, no 

conclusive evidence for such avoidance has emerged. Here we summarize the 

previous research in a small meta-analysis showing that zebra finches appear to 

mate randomly with regard to relatedness (odds ratio for full-sibling mating = 0.96). 

Nevertheless, we notice that kin recognition by direct familiarization might have 

been prevented in all the previous studies, because siblings had always been 

experimentally separated before puberty and only re-united during adulthood. 

Recognizing individuals across different life stages may be cognitively demanding; 

therefore, in this species, it may require that siblings stay in contact throughout 

development. We conducted an experiment where birds were given the choice 

between a full sibling that stayed with them without interruption from hatching 

until adulthood and an unrelated bird familiar from independence (35 days of age) 

to adulthood. In contrast to all earlier studies we found a significant avoidance of 

inbreeding (odds ratio = 0.50). Although other mechanisms cannot be excluded, we 

suggest that zebra finches avoid inbreeding only if birds can keep track of their kin, 

and we discuss implications for the design of follow-up studies. 
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Mating between close relatives nearly always leads to inbreeding depression, which should promote the evolution of inbreeding avoid-
ance mechanisms, especially in sexually monogamous species. The zebra finch, a predominantly monogamous species, has been 
shown to suffer strongly from inbreeding depression, and this species has been used repeatedly in studies of inbreeding avoidance. 
However, no conclusive evidence for such avoidance has emerged. Here, we summarize the previous research in a small meta-
analysis showing that zebra finches appear to mate randomly with regard to relatedness (odds ratio for full-sibling mating  =  0.96). 
Nevertheless, we notice that kin recognition by direct familiarization might have been prevented in all the previous studies because 
siblings had always been experimentally separated before puberty and only reunited during adulthood. Recognizing individuals across 
different life stages may be cognitively demanding; therefore, in this species, it may require that siblings stay in contact throughout 
development. We conducted an experiment where birds were given the choice between a full sibling that stayed with them without 
interruption from hatching until adulthood and an unrelated bird familiar from independence (35  days of age) to adulthood. In con-
trast to all earlier studies, we found a significant avoidance of inbreeding (odds ratio = 0.50). Although other mechanisms cannot be 
excluded, we suggest that zebra finches avoid inbreeding only if birds can keep track of their kin, and we discuss implications for the 
design of follow-up studies.

Key words:  inbreeding avoidance, kin recognition, mate choice, zebra finch.

Introduction
Selection should promote inbreeding avoidance behaviors because 
inbred individuals suffer from reduced fitness (Blouin and Blouin 
1988; Pusey and Wolf  1996). Although this seems straightforward, 
theoretical models (e.g., Kokko and Ots 2006) that take inclusive 
fitness into account predict cases of  inbreeding tolerance or even 
preference in promiscuous systems where a male does not lose 
other mating opportunities by mating also with kin. In contrast, 
close relatives should always be avoided in the context of  social 
mate choice in monogamous species where the partner typically 
also sires the majority of  the offspring (Waser et al. 1986; Lehmann 
and Perrin 2003; Kokko and Ots 2006; Szulkin et al. 2013).

The mechanisms that would allow kin recognition have received 
considerable attention in a wide range of  species (see e.g., reviews 
on fish, birds and rodents, and arthropods, respectively, Ward and 
Hart 2003; Nakagawa and Waas 2004; Weddle et  al. 2013). Two 
main forms of  kin recognition are usually distinguished: recognition 
by association, when direct familiarization with the related individ-
ual is necessary for later discrimination; and “true” kin recognition, 
or phenotype matching, when the subject can discriminate a newly 

introduced related individual based solely on its knowledge of  itself  
(self-referent phenotype matching) or of  other familiar kin (family 
phenotype matching). If  kin recognition is due to direct associa-
tion, the timing of  its ontogeny and the capacity of  remembering 
after a period of  separation are then crucial (Nakagawa and Waas 
2004).

In birds, kin recognition has mainly been studied in 
cooperatively breeding species where it has been found to 
work via associative learning (Komdeur and Hatchwell 1999; 
Nakagawa and Waas 2004). For instance, in the Seychelles 
warbler, Acrocephalus sechellensis, cross-fostered female offspring 
became subordinate helpers of  the primary female that fed them 
(Komdeur 1994; Komdeur et  al. 2004); whereas in the long-
tailed tit, Aegithalos caudatus, young birds learn the vocalizations of  
foster kin and use these cues to discriminate potential recipients 
of  help in the case they experience breeding failure in adulthood 
(Hatchwell et al. 2001; Russell and Hatchwell 2001; Sharp et al. 
2005). Moreover, in birds, the onset of  sibling recognition has 
often been assumed to occur during the dependency period 
in order to allow chicks to relocate their nest. This was shown 
for instance in the common tern (Palestis and Burger 2001a, 
2001b). Therefore, dependent young have usually been used in 
studies of  sibling recognition and only a few have studied if  the Address correspondence to M. Ihle. E-mail: mihle@orn.mpg.de.
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discrimination extends beyond infancy (reviewed in Nakagawa 
and Waas 2004). Finally, kin recognition by phenotype matching 
has only been suggested in a few avian species including the 
zebra finch, Taenopygia guttata, but the evidence remains scarce 
and controversial (Bateson 1982; Burley and Bartels 1990; 
Fetherston and Burley 1990; Petrie et  al. 1999; Schielzeth et  al. 
2008a, 2008b; Arct et al. 2010).

The zebra finch is a monogamous species with little extrapair 
paternity (around 2% of  the young in the wild; Birkhead et al. 1990; 
Griffith et  al. 2010) and life-long pair-bonds (Zann 1996). In this 
species, inbreeding leads to drastic fitness reduction (Bolund et al. 
2010; Forstmeier et  al. 2012; Hemmings et  al. 2012). Wild zebra 
finches are highly nomadic and live in a very large and apparently 
panmictic population (Forstmeier et  al. 2007b; Balakrishnan and 
Edwards 2009). This implies that the probability of  meeting close 
kin after juvenile dispersal may be exceedingly small. However, 
some birds remain close to their natal area until they reach sex-
ual maturity (the first breeding attempts can occur at day 80 post-
hatch, Zann 1996), and recent work in a wild population shows 
that they can stay spatially associated with their siblings up to that 
age (Mariette M, unpublished data). During this period, individuals 
develop their adult characteristics, including adult plumage and, in 
males, learnt vocalizations that seem likely to function in individual 
recognition (Miller 1979; Zann 1984; Forstmeier et al. 2009).

The zebra finch has been repeatedly used as a model species in 
studies of  inbreeding avoidance. However, the current evidence for 
kin recognition and inbreeding avoidance in this species is incon-
clusive. None of  the mate choice experiments involving a choice 
between full siblings versus unrelated individuals have shown sig-
nificant avoidance of  siblings (Slater and Clements 1981; Schubert 
et  al. 1989; Burley et  al. 1990; Fetherston and Burley 1990; 
Schielzeth et  al. 2008a, 2008b). Also, the validity of  the various 
experimental setups is debatable. For instance, in most of  these 
studies (Slater and Clements 1981; Burley et  al. 1990; Schielzeth 
et  al. 2008a, 2008b), it remains unclear whether the measured 
preferences are indeed of  sexual nature (mate choice) or rather 
reflect gregariousness toward a particular individual (for instance 
in order to forage in a group). And, importantly, in all these earlier 
studies, siblings were separated for at least 50 days between inde-
pendence from parents and the mate choice experiment (Slater 
and Clements 1981; Schubert et  al. 1989; Burley et  al. 1990; 
Fetherston and Burley 1990; Schielzeth et al. 2008a, 2008b). The 
separation of  siblings at that age, when they are in juvenile plum-
age and when males are in the phase of  song production learning 
(day 50–80; Zann 1990) in which the adult songs gradually “crys-
tallize,” might prevent them from recognizing each other at adult-
hood. Indeed, recognizing an adult from memories of  its juvenile 
features may be cognitively challenging, leading to the failure of  
kin recognition, as has been suggested for the Savannah sparrow 
(Wheelwright et  al. 2006). Individual recognition by associative 
learning is probably much easier if  siblings stay associated dur-
ing puberty because the phenotypic changes happen progressively. 
A final criticism is that some past experimental designs have cho-
sen siblings merely from the same parents but not necessarily from 
the same brood, which does not allow them to be familiar to one 
another from preindependence (allowing family phenotype match-
ing but not direct familiarization). We hypothesized that, in order 
to discriminate each other, zebra finch siblings might need to stay 
in contact from hatching to mate choice, the very situation where 
inbreeding avoidance would be most crucial to happen for this 
species in the wild.

In this study, we start by summarizing earlier mate choice experi-
ments involving siblings in the zebra finch with a formal meta-anal-
ysis. This method might reveal a weak general effect that cannot be 
detected by individual studies because of  a lack of  power. Moreover, 
the overview of  all experimental designs and effect sizes gives us the 
opportunity to compare effect sizes between the different experi-
mental approaches that allow a different set of  kin recognition 
mechanisms to operate (direct familiarization vs. phenotype match-
ing). Finally, we conducted a simple experiment where, in contrast 
to all previous studies, siblings were kept together until they were 
given the opportunity to breed with either their sibling or an unre-
lated bird to which they were familiar from independence onwards. 
This experimental set-up does not allow us to distinguish between 
the various recognition mechanisms. However, given the apparent 
lack of  sibling avoidance in the zebra finch literature, we wanted to 
test whether any inbreeding avoidance can be found in the situation 
where it would be most needed in the wild. Specifically, this is when 
genetic siblings grow up together and, instead of  dispersing away 
from all their relatives, remain in contact with siblings until pair-
bonding takes place.

Methods
All statistical analyses were performed in R 2.15.1 (R Core Team 
2012).

Meta-analysis

We searched for published mate choice experiments on sibling 
avoidance in zebra finches via ISI Web of  Science®. For each study, 
we calculated the observed odds of  preferring (time spent in choice 
chamber) or mating (social pairing in aviaries) with a sibling relative 
to the random expectation (odds ratio). To summarize those odds, 
we used the R package “rmeta” version 2.16 (Lumley 2012) where 
we entered the logarithms of  the odds (to normalize them) and their 
mean standard errors calculated from their asymmetrical confidence 
intervals (obtained from the binom.test function of  R). Our literature 
search also yielded 2 experiments that studied mate choice between 
other types of  kin, more precisely between fathers and daughters as 
well as between mothers and sons (Slater and Clements 1981), and 
between cousins (Burley et al. 1990). Therefore, for the sake of  com-
prehensiveness of  our review, we also ran another version of  meta-
analysis where these 2 experiments were analyzed together with the 
previous studies to get the odds of  mating with any type of  kin.

Experimental study

The study subjects belong to a recently wild-derived population 
of  zebra finches (population #4 in Forstmeier et  al. 2007b) 
kept at the Max Planck Institute for Ornithology in Seewiesen, 
Germany. The birds were maintained on a diet of  millet seed 
mixture, cuttlefish, grit, and drinking and bathing water ad 
libitum. Water and food were changed daily, and once a week 
birds received lettuce and a vitamin supplement. During the 
summer 2012, birds were set up for breeding in 16 semi-outdoor 
aviaries (2 × 5 m and 2.5 m high). They experienced natural 
ambient light in addition to a full spectrum artificial fluorescent 
light set to a 14:10 h light:dark cycle, and natural short-term 
fluctuations of  temperature ranging from about 10 to 45  °C. 
Each aviary contained 6 breeding pairs whose eggs were not 
cross-fostered. Chicks reared in these breeding aviaries were 
blood sampled (10 μL) from the brachial vein of  their left wing 
on day 8 posthatch to determine their sex by polymerase chain 
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reaction amplification of  the CHD-W and CHD-Z genes using 
the primers 3007 and 3112 (Ellegren and Fridolfsson 1997) 
and their parentage using 10 highly polymorphic microsatellite 
markers (Forstmeier et al. 2007a; Forstmeier et al. 2010).

For the experiment, we picked all 58 available brother–sister 
pairs (genetic r  =  0.5) from the same brood, originating from a 
total of  42 different breeding pairs (30 breeding pairs produced 
1 brother–sister pair, 9 produced 2, 2 produced 3, and 1 pro-
duced 4). A  chi-square test for independence did not indicate 
that the family of  origin affected the behavior (inbreeding vs. 
outbreeding, see Results) of  the offspring (exact test for the 12 
families with multiple brother–sister pairs: P = 0.73). We, there-
fore, consider all brother–sister pairs as independent data points. 
When offspring reached independence (day 35 posthatch), each 
brother–sister pair was joined with a brother–sister pair of  
similar age (maximally 4  days age difference), originating from 
a different natal aviary. The 4 birds were housed together in a 
“double-cage” (120 × 40 cm and 45 cm high) until day 100 post-
hatch, when they all had reached sexual maturity (November–
December 2012). Then, the 4 birds were individually color 
banded and moved to 1 of  8 available indoor aviaries (2 × 2 m 
and 2.5 m high) furnished with 2 nest-boxes and nest material. 
There they experienced only the artificial light described above 
and a temperature stabilized at 20 ± 1  °C. The 29 groups were 
observed each day for 5–15 min, and the identity of  individuals 
that showed signs of  pair formation were recorded. This included 
clumping (i.e., sitting in body contact), allopreening, visiting 
a nest-box together, or incubating together. All eggs laid were 
collected (replaced by plastic eggs) and placed in an incubator 
for 5  days, when embryos were collected for parentage analysis 
(Forstmeier et al. 2007a). Parentage analysis was done in order to 
check whether females that were socially paired to their brother 
were more likely to produce extrapair young. Female promiscu-
ity as a mechanism of  inbreeding avoidance has been suggested 
in numerous studies. For instance, in the cooperatively breeding 
red-backed fairy wrens, females breeding with their son after the 
experimental removal of  their partner produced more extra-
pair young than females breeding with an unrelated new male 
(Varian-Ramos and Webster 2012). In our experiment, once the 
social pairing was established from behavioral observations, and 
as soon as a few eggs were laid, the aviaries were made available 
(on average after 17  days, range: 8–30  days) for the next set of  
birds that had reached maturity.

Because the choice of  1 female within a group constrains the 
choice of  the other female in that group, we considered the groups 
rather than the females as independent data points for statistical 
tests. The package “lme4” version 0.999999-0 (Bates et  al. 2012) 
was used to run generalized linear mixed model (glmer) in analyses 
based on eggs with a binomial distribution to include the identity 
of  the mother as random factor.

Ethical note

All described procedures are covered by the permit #311.4-si, by 
Landratsamt Starnberg, Germany.

Results
Meta-analysis

The meta-analytic odds ratio of  preferring or mating with a 
sibling relative to the random expectation from all published mate 

choice experiments (Table 1) is 0.96 (95% confidence interval [CI]: 
0.86–1.07). In other words, the number of  sibling pairs observed 
equals quite precisely the number of  sibling pairs expected under 
random mating. It is worth noticing that mate choice was evaluated 
differently in these studies: choice chamber tests were done in 5 
studies on 2 different populations (meta-analytic odds ratio 0.94, 
95% CI: 0.84–1.05), whereas a breeding set up similar to this study 
was used in 3 studies on 2 different populations (meta-analytic odds 
ratio 1.35, 95% CI: 0.91–2.01), although in only 2 of  the latter 3 
studies actual breeding was used as criteria for mate choice. Further 
differences in experimental design are shown in Table  1. Finally, 
when studies on mate choice involving kin other than siblings are 
added to the meta-analysis, the odds of  mating with kin increases 
(odds ratio  =  1.16, 95% CI: 0.96–1.41). However, this overall 
tendency toward inbreeding preference is not significant.

Experimental study

In 25 out of  the 29 groups, pair identification based on behav-
ioral observations was unambiguous. Of  these, 19 pairings (76%) 
occurred between unrelated individuals, significantly more than 
expected by chance (exact binomial test against 50%, P = 0.014). 
In 3 cases, the behavioral observations showed a switch of  partners 
over the course of  the observation period: 2 cases from inbred to 
outbred mating and 1 case in the reverse direction (exact binomial 
test against 50%, P = 0.012, when including these 3 cases in their 
final mating constellation, Table  2). In a 4th ambiguous case, a 
female paired up first with her brother and then with the unrelated 
male without a complete cessation of  pair bonding behavior with 
the initial male, leaving the final mate assignment equivocal (assign-
ing the pairing as inbred or noninbred does not change the conclu-
sions, the P-values equal 0.02 and 0.008, respectively).

One female died before any egg was laid in the aviary, but 
multiple behavioral observations had confirmed pair formation. 
Therefore, this case was included in the above analyses, but exclud-
ing it did not change the conclusion (P = 0.036). In the other 28 
aviaries, eggs were found on average after 7.7 days (range: 2–15). 
In total, 160 eggs were collected (on average 5.6 eggs per aviary, 
range: 2–13 eggs), and these had apparently been laid by 50 out 
of  56 females (observational assignment, see Table 2). Of  all eggs, 
121 (76%) could be used for parentage analysis; the remaining eggs 
either appeared infertile (89% of  37)  or did not allow embryonic 
development due to egg shell problems (drying out or breaking). 
Based on observational assignment of  eggs, these eggs without 
embryos were not more frequent in inbreeding pairs (17% of  36 
eggs) than in outbreeding pairs (28% of  118 eggs; glmer: P = 0.47). 
For the developing eggs, parentage assignment in most of  the cases 
confirmed the identification of  pairs via observations. Only 4 out 
of  121 embryos (3%) were sired by the other male than the social 
partner (Table  2). Females that chose their brother as social part-
ner did not have more extrapair young (3 out of  30, 10%) than 
the females that chose the unrelated male (1 out of  85, 1%; glmer: 
P  =  0.82). If  the 6 inbred offspring of  the female with equivocal 
social mate assignment are included as extrapair young or within-
pair young (see Table  2), the results do not change qualitatively. 
Twenty-one eggs (17%) were dumped by females in another nest 
than the one they attended, a behavior commonly observed in this 
species (Schielzeth and Bolund 2010). A  generalized linear model 
on the status (inbred or outbred) of  the counts of  the embryos of  
each group, with a quasi-binomial distribution, shows that the over-
all proportion of  outbred embryos (72%, Table 2) was significantly 
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higher than 50% (P = 0.03). Hence, extrapair fertilization neither 
enhanced nor blurred the inbreeding avoidance observed in terms 
of  social pairing.

Discussion
Our meta-analysis of  all published mate choice experiments on sib-
ling avoidance in zebra finches reveals no overall effect, although 
zebra finch studies are commonly cited as evidence for either kin 
avoidance (e.g., Arct et al. 2010) or kin preference (e.g., Slater and 
Clements 1981). In the study of  Arct et  al. (2010), females that 
were force-paired with an unknown brother were less likely to 
breed and invested less in egg production than those force-paired 
to an unrelated male, a finding that was interpreted as evidence 
for inbreeding avoidance (Arct et  al. 2010; Szulkin et  al. 2013). 
This result, however, is at odds with the outcome of  our meta-anal-
ysis, where inbreeding avoidance via phenotype matching should 
have produced at least a small effect in every single study, if  true 

kin recognition existed in this species. Moreover, one may ques-
tion whether differential allocation experiments are relevant for 
understanding mating preferences in a life-time monogamous spe-
cies where the scope for obtaining a better partner in the future is 
rather low (Bolund et al. 2009). In the study of  Slater and Clements 
(1981), mothers and sons visited nest-boxes together more fre-
quently than unrelated birds, which was interpreted as evidence for 
inbreeding preference. However, this behavior might reflect filial 
attachment rather than sexual interest because the study did not 
look at actual reproduction. Zebra finches have also been regarded 
as being able to exert family or self-referent phenotype matching 
to recognize and prefer their cousins (Burley and Bartels 1990; 
Burley et al. 1990). The adaptive value of  such preferences would 
be questionable because cousin mating should produce still about 
a quarter of  the amount of  inbreeding depression seen in full-
sibling mating, which is quite considerable (Bittles and Neel 1994; 
Alvarez et al. 2009; Forstmeier et al. 2012). Also, in the same study 
using the same design, siblings did not discriminate between each 

Table 2 
Number of  groups where inbreeding or outbreeding social pairing was established in this experiment (1 case was ambiguous, see 
main text). The respective numbers of  females with eggs are based on observational assignment, whereas the numbers of  females 
with fertile eggs and extrapair young are based on genetic assignment. The resulting numbers of  eggs (total and with DNA samples), 
extrapair young, and outbred embryos are also given. A range of  values is shown for the case with ambiguous social pairing. 
Statistical tests corresponding to the indicated percentages are presented in the main text

Social pairing Groups
Females with  
eggs

Females laying 
fertile eggs

Females with  
extrapair young Eggs laid Fertile eggs Extrapair young

Outbred 
embryos

Outbreeding 21 (75%) 35 28 1 118 85 (72%) 1 (1%) 84
Inbreeding 7 (25%) 13 10 2 36 30 (83%) 3 (10%) 3
Ambiguous 1 2 1 0–1 6 6 0–6 0
Total 29 50 39 3–4 160 121 4–10 87 (72%)

Table 1 
Overview of  zebra finches mate choice studies testing inbreeding avoidance among siblings. Sample sizes n1 and n2 refer to the 
number of  different choosing individuals and the assumed number of  independent mate choice decisions, respectively. Odds 
ratios (number of  sibling pairs observed/number of  sibling pairs expected) are given with their 95% confidence intervals and 
their P-values (based on n2). For each study, the main characteristics regarding sibling rearing and the potential kin avoidance 
mechanism(s) that were tested are indicated

Study n1 (n2) Odds ratio P

Sibling rearing

Potential mechanismSeparated at puberty From same brood only

Slater and Clements 1981a <18 (9) 1.33 (0.60–1.85) 0.5 Yes Yes All
Schubert et al. 1989b 18 (18) 1.17 (0.52–1.93) 0.62 Yes Yes All
Burley et al. 1990c 56 (56) 0.96 (0.69–1.24) 0.89 Yes No All but direct 

familiarization
Fetherston and Burley 1990b 28 (28) 2.1 (0.59–4.81) 0.12 Yes No All
Schielzeth et al. 2008ad 90 (206) 0.9 (0.76–1.04) 0.18 Yes Cross-fostered Self-referent 

phenotype matching
Schielzeth et al. 2008ae 109 (109) 0.81 (0.52–1.16) 0.27 Yes Cross-fostered Self-referent 

phenotype matching
Schielzeth et al. 2008bd,f 50 (77) 0.99 (0.76–1.22) 0.38 Yes Cross-fostered Family phenotype 

matching
Schielzeth et al. 2008be,f 63 (63) 1.21 (0.77–1.72) 1 Yes Cross-fostered Family phenotype 

matching
This study 56 (28) 0.5 (0.21–0.90) 0.01 No Yes All

aAn unknown number of  individuals were used several times. 
bMate choice in communal aviaries, n2 was assumed to be equal to n1.
cTime spent in 2-ways choice chambers, males and females’ tests pooled.
dTime spent in 2-ways choice chambers, only females tested.
eTime spent in 4-ways choice chambers, only females tested.
fChoice for a genetic son of  foster father.

Page 4 of 7

 at M
PI O

rnithology on A
ugust 26, 2013

http://beheco.oxfordjournals.org/
D

ow
nloaded from

 

http://beheco.oxfordjournals.org/


Ihle and Forstmeier • Evidence for inbreeding avoidance 

other (Burley et  al. 1990), which clearly would be a maladaptive 
choice. Hence, these isolated findings of  significant kin preferences 
(which would be maladaptive) or avoidance (based on a complex 
phenotype-matching recognition mechanism that does not seem 
to have evolved) might be interpreted as the result of  many years 
of  research combined with publication bias in favor of  studies that 
reject the null hypothesis (Jennions and Møller 2002a, 2002b).

In our experimental study, pair formation and reproduction were 
significantly biased toward the avoidance of  inbreeding, a result 
that would be predicted given the important fitness declines due 
to inbreeding in this species (Bolund et  al. 2010; Forstmeier et  al. 
2012; Hemmings et  al. 2012). Although the outcome of  this study 
would need to be replicated in order to make sure this is not a false-
positive result (see above), we suggest that zebra finches are able to 
discriminate close kin based on recognition of  familiar individuals to 
whom they were exposed from hatching to sexual maturity, a behavior 
that appears adaptive in the light of  their natural history.  The studies 
presented in Table 1 that were most similar to this study in terms of  
1)  assessing mate choice in a breeding set up rather than in choice 
chamber tests and 2)  allowing all potential recognition mechanisms 
to work (including direct familiarization before independence), 
but differed from this study in 3)  the separation of  the juveniles at 
puberty, produced the most contrasting odds ratios (meta-analytic 
odds ratio  =  1.35) compared with the present experimental study 
(odds = 0.50). We, therefore, consider it most likely that the separation 
of  juveniles between independence and testing is the decisive factor 
that explains these divergent results. In earlier studies, the separation 
of  birds when they reached independence could have prevented 
mutual recognition at adulthood due to a lack of  familiarity with 
the sibling in its adult characteristics (see Wheelwright et  al. 2006). 
This could be especially true for females because male zebra finches 
develop several distinctive visual and vocal features when they reach 
sexual maturity. In cases where zebra finches remain in daily contact 
with a sibling throughout puberty and up to the time where they 
choose a partner, kin recognition and inbreeding avoidance might be 
easily accomplished. In contrast, if  siblings lose track of  each other for 
several days, not only does recognition become more challenging due 
to rapid phenotypic change during puberty but also the probability of  
encounter should be rapidly declining in this highly nomadic species 
with large population size. We, therefore, suggest that elaborate 
cognitive capacities for recognizing siblings in adulthood after having 
lost track of  them as juveniles might not have evolved. Similarly, 
Jamieson et  al. (2009) have suggested that a low encounter rate of  
siblings is the most likely explanation for the absence of  kin avoidance 
in the New Zealand robin, Petroica australis, and saddleback, Philesturnus 
carunculatus.

This study shows that siblings familiar with each other from pre-
independence to sexual maturity do avoid to some extent forming 
a pair-bond with each other. It is nonetheless noteworthy that the 
avoidance was not complete: sibling mating occurred in 7 out of  28 
groups, a behavior that likely is maladaptive. A possible explanation 
for the lack of  inbreeding avoidance in some individuals might be 
that they vary in their sensitive phase during which they form a 
mating aversion against associated individuals. For instance, a later 
joining of  the 2 sibling pairs (e.g., day 40 instead of  day 35) might 
have led to stronger inbreeding avoidance.

Although suggestive, the separation of  siblings during puberty is 
not necessarily the relevant factor that explains the difference between 
this and previous studies because studies differ in many arbitrary ways. 
Notably, this study is also the first one conducted on a population of  
recently wild-derived zebra finches, whereas all previous studies in 

Table  1 were conducted with more domesticated birds (Forstmeier 
et al. 2007b). Most importantly, this experiment varied only the pre-
independence familiarity while keeping the familiarity during puberty 
constant. A better design would be to vary both these factors and to 
show that sibling discrimination happens only under the condition 
of  familiarity during both periods. Such an experiment could also be 
done with cross-fostered individuals to confirm that self-referent phe-
notype matching is not the underlying mechanism. Testing familiar 
sibling versus nonfamiliar sibling has been widely done in mammals 
(reviewed in Nakagawa and Waas 2004), but rarely in birds (but see 
e.g., Pierotti et al. 1988; Hatchwell et al. 2001; Komdeur et al. 2004; 
Schielzeth et al. 2008a, 2008b for exceptions). Finally, it would also be 
interesting to assess whether the discrimination concerns nest mates 
specifically or extends to other individuals growing up in close associa-
tion, for example, in the same natal group (aviary).

Cues involved in sibling recognition are typically discussed in the 
context of  phenotype matching. Nevertheless, the question of  how 
familiar individuals are recognized is also of  interest. In both con-
texts, animals could use different sensory modalities. In their review, 
Nakagawa and Waas (2004) report that not only auditory but also 
visual cues have been shown to be used by birds, and odors by mam-
mals, respectively. Female zebra finches might learn to recognize their 
brother by their contact call or by their song learned from a tutor at 
puberty. Moreover, they could recognize their appearance, also distin-
guishable for a human observer (Burley and Bartels 1990). Finally, they 
might also be able to distinguish individuals from their odor because 
dependent young zebra finches have been shown to relocate their natal 
nest by its smell alone (Krause et al. 2012). In a variety of  species, odors 
seem to be involved in mate choice targeting the compatibility or the 
heterozygosity of  the major histocompatibility complex (see e.g., Penn 
and Potts 1999; Zelano and Edwards 2002; Bernatchez and Landry 
2003 for reviews), and it has often been assumed that individuals use 
self-reference for comparison (e.g., Wedekind et al. 1995). Nevertheless, 
chemical cues associated to a foster family can also imprint on individ-
uals later using family phenotype matching to discriminate kin (Penn 
and Potts 1998; Hesse et al. 2012). If  zebra finches can recognize their 
natal nest by its smell, it might be that they could also learn how to rec-
ognize associated siblings by their odor. However, if  this would be the 
case, it seems that the lack of  exposure to the smell of  their sibling, at 
least during puberty, prevents them from recognizing them afterwards, 
either because zebra finches have a short memory of  smell or because 
their smell changes during puberty like plumage and vocalizations.

Conclusion
To conclude, it is still debated whether birds have evolved any more 
sophisticated mechanisms of  kin recognition than direct familiariza-
tion (Komdeur and Hatchwell 1999; Nakagawa and Waas 2004; this 
study). Alleged cases of  phenotype matching would be worth follow-
ing up by rigorous study designs. As to this simplest mechanism (direct 
familiarity), we are still far from knowing how many species might be 
able to recognize kin when these have undergone major phenotypic 
changes like in puberty and whether those changes are more drastic in 
males than in females (Wheelwright et al. 2006).
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Chapter 3 Fitness consequences of mate choice for 

compatibility in a socially monogamous species 

 

 

 

Abstract 

For many decades research on mate choice has focused on preferences for quality 

indicators, yet in some species mating preferences are largely idiosyncratic (with 

little consensus about attractiveness), suggesting that such preferences might target 

genetic or behavioural compatibility. Few studies have quantified the fitness 

consequences of allowing versus preventing such idiosyncratic mate choice. In our 

captive populations of zebra finches, when freshly laid eggs are individually cross-

fostered for incubation and rearing, embryo mortality (before hatching) primarily 

depends on the identity of the genetic parents, while offspring mortality during the 

rearing period depends on foster-parent identity. Therefore, preventing mate choice 

should lead to an increase in embryo mortality if mate choice targets genetic 

compatibility (for embryo viability), and to an increase in offspring mortality if mate 

choice is aiming at behavioural compatibility (for better rearing). In communal 

breeding aviaries, we monitored the fitness and behaviour of recently wild-derived 

zebra finch pairs resulting from either free mate choice or forced pairings, using a 

design where variation in overall partner quality is not a confounding factor. 

Contrary to the genetic compatibility hypothesis, pairs from both treatments 

showed equal rates of embryo mortality. Yet, in line with the behavioural 

compatibility hypothesis, chosen pairs were better at raising offspring and overall 

achieved a 37% higher fitness. Further exploratory analyses reveal several 

interesting differences in behaviour and fitness components between such ‘love’ and 

‘arranged marriages’. 
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decades, but only a few studies have attempted to measure experimentally the fitness 

benefits gained by choosy individuals 
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increased due to the partner’s behaviour (including reproductive investment), or indirect, 

when offspring quality is improved by the genetic co

central debate has been about (i) the relative importance of direct 

benefits arising from the overall quality of the chosen partner (i.e. good parent 

genes, Fig. 1 vertical black arrow) 

about (ii) the relative importance of the two types of indirect benefits, namely good genes 

vs compatible genes (Mays & Hill 2004; Neff & Pitcher 2005; Kotiaho & Puurtinen 2007; 

Cutrera et al. 2012, Fig. 1 horizontal black arrow). In contrast, the direct benefits arising 

from the compatibility between the two partners (bottom right in Fig. 1) have received only 

little attention (Delesalle 1986; Spoon

2014). Synergistic advantages could indeed emerge from the combination of both parents’ 

behaviours. Compatible partners could for instance be better at coordinating tasks, at 

sharing them or at complementing each other 

Griggio & Hoi 2011; Fox & Millam 2014; Sánchez

be more effective at stimulating one another’s reproductive investment 

1993; Bolund et al. 2012; Servedio

compatibility might be especially important in species with intense bi

and with long-lasting monogamous pair bonds, like humans or many bird species. 

Alternatively, idiosyncratic mate preferences may function to maximize offspr

bringing together compatible combinations of genes (top right in Fig. 1).

Figure 1. Schematic overview of four types of potential fitness benefits of mate 

choice. This study aims at separating direct from indirect benefits of mate choice

for compatibility (red arrow), while experimentally controlling for effects of 

overall quality (red parentheses).
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et al. 2007; Lehtonen & Lindstrom 2007; Raveh et al. 2014), or vs a random male (Simmons 

1987; Bottoni et al. 1993; Massa et al. 1996). Problematically, with these procedures, the 

effects of quality and compatibility are confounded, because only force-paired pairs include 

males that would never have been chosen (i.e. most likely low quality males). This issue has 

been addressed in some studies by presenting evidence that the rejection of non-preferred 

partners was idiosyncratic (Ryan & Altmann 2001; Bluhm & Gowaty 2004b) or that non-

preferred and preferred individuals did not differ in morphological traits (Drickamer et al. 

2003). Yet, to clearly eliminate the effect of mate choice for quality, we propose a different 

experimental design, namely to compare the fitness effects of getting one’s preferred 

partner versus of getting the preferred partner of someone else. Furthermore, only few 

studies looked at monogamous species with bi-parental care (Ryan & Altmann 2001; Spoon 

et al. 2006; Schuett et al. 2010; Gleason et al. 2012), and these studies were not able to 

tease apart genetic from behavioural compatibility advantages (right side in Fig. 1). The aim 

of this study was to quantify the benefits of mate choice that arise from the compatibility 

between partners, while circumventing quality as a confounding factor, in a species where 

genetic and behavioural compatibility can be disentangled. 

The zebra finch (Taeniopygia guttata) is a life-time monogamous species with bi-

parental care, and it is one of the species where female mate preferences are 

predominantly idiosyncratic (i.e. there is little consensus regarding male attractiveness) 

(Forstmeier & Birkhead 2004; Forstmeier et al. 2011), suggesting that these preferences 

target some kind of genetic or behavioural compatibility. The species further shows high 

rates of embryo and offspring mortality, and these phenomena beg explanation. In our 

domesticated population (population #18 in Forstmeier et al. 2007b), when eggs are 

individually cross-fostered (see Schielzeth et al. 2008a; b and SI Text), the identity of the 

genetic parents explains more than twice as much variance in embryo mortality than the 

foster-parents identity (N=1529 fertilized eggs, 28% mortality, see Table S1), while the 

foster-parents identity explains almost five times more variance in offspring mortality than 

the genetic parents identity (N=1106 offspring, 26% mortality, see Table S1). Results are 

qualitatively similar in our wild-derived population (#4 in Forstmeier et al. 2007b), where 

cross-fostering has been carried out at a smaller scale (see Ihle et al. 2013). We therefore 

assume that embryo mortality in zebra finches primarily reflects genetic incompatibility (like 

it does in other species, Dziminski et al. 2008; Rodríguez-Muñoz & Tregenza 2009), while 

offspring mortality primarily results from a failure of the parents (behavioural 

incompatibility). Consequently, when mate choice is prevented, we expect an increase in 

embryo mortality if mate choice is targeting genetic compatibility, and an increase in 

offspring mortality if mate choice is targeting behavioural compatibility. Alternatively, 

idiosyncratic mate preferences may only reflect indecision by the animal or measurement 

error by the experimenter (Forstmeier & Birkhead 2004). In this case, experimental 

treatments of allowing versus preventing idiosyncratic mate choice would have no fitness 

consequences. 
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We studied 160 bachelor birds from a wild-derived population of zebra finches (#4 in 

Forstmeier et al. 2007b), where each individual could freely choose a partner among 20 

individuals of the opposite sex during a long non-breeding season (zebra finches are 

opportunistic breeders and do not reproduce if the environment is not suitable). This setup 

gave individuals a large number of potential partners to choose from, as likely is the case in 

the wild in this gregarious species. Pairs were identified by the occurrence of allopreening, a 

clear indicator of future breeding pairs (Silcox & Evans 1982), and sorted by their frequency 

of allopreening, which could be an indicator of the strength of their pair bond. Females that 

had chosen a partner were alternately assigned to one of two treatments: half of the 

females were allowed to stay with their chosen partner, while the other half of the choosy 

females were paired with the chosen partner of another female from the same aviary. This 

ensured that, on average, individuals of both treatments were of the same quality, even if 

assortative pairing for quality had happened due to intra-sexual competition. After this 

period of free choice, all pairs spent a few months in individual cages in order to enforce 

pair-bonding in the non-chosen pairs. Indeed, force-pairing is effective in this species if 

assigned mates are co-housed in a cage for long enough. Finally, pairs were given the 

opportunity to breed for one season (which allowed for about three successful broods) in 

communal aviaries, each containing three pairs from each treatment. This entire procedure 

was then repeated with the same birds for a second breeding season. This was planned a 

priori to get repeated measurements on individuals under different pairing conditions and a 

large enough sample size, to make possible the detection of weak effects. For the second 

year, two thirds of the pairs from the first breeding season were broken up; individuals 

chose a new partner and were either assigned to the same or the other treatment. The 

other third of the pairs were allowed to keep their partner (chosen or non-chosen) from the 

first breeding season. This was done to be able to better control for pair bond duration in 

statistical models comparing chosen and non-chosen pairs, as pair-bond formation in 

chosen pairs systematically started earlier (during the free choice period) than in non-

chosen pairs (in cage). In total, 46 chosen pairs (C) and 38 non-chosen pairs (NC) were 

monitored extensively, and blindly with regard to their treatment, for both their 

reproductive success (paternity analyses were done for dead embryos, dead chicks, and 

surviving offspring), and their behaviour via both live observations (285 hours) and video 

recordings (1424 hours). 

Results 

When released into communal breeding aviaries, each of which contained three chosen and 

three arranged pairs, the majority of individuals stayed with their chosen or assigned 

partner (C: 46 out of 50 pairs did not divorce, NC: 38 out of 50 pairs; Fisher’s exact test 

P=0.05). Only those pairs that stayed together were considered for analyses. Parameter 

estimates of dependent traits under the two treatments (C vs NC) are given for each general 

and generalized linear mixed-effect model. Other relevant statistics, as well as the structure 
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of the models, are given in Table S2 of the Supplemental information (referred to as ‘TS2-

test #’). 

Fitness differences 

Relative fitness of individuals was calculated as annual reproductive success relative to the 

other individuals in the same aviary. The fitness proxy used was the number of genetic 

offspring that reached independence (35 days old). Males of chosen pairs had a higher 

relative fitness than males of non-chosen pairs (C=1.16, NC=0.80, P=0.03, N=84 male 

breeding seasons, see TS2-1 for model details, Fig.2). Females of chosen pairs also had a 

higher relative fitness than those in non-chosen pairs, but the difference was not significant 

(C=1.09, NC=0.84, P=0.12, N=84, TS2-2, Fig.2). The difference between the sexes was not 

significant (interaction between treatment and sex, P=0.36), and arises from extra-pair 

young sired during the experiment (discussed below). On average, individuals from the 

chosen pairs had a 37% higher fitness. This effect was not due to differential investment by 

the females of the two treatments in terms of the total number of eggs laid (C=13.5, 

NC=14.4, P=0.56, N=84, TS2-3). 

   

Figure 2. Relative fitness estimates (±SEM) of males (N=84) and females (N=84) 

from chosen and non-chosen pairs, as given by the general linear mixed-effect 

models TS2-1 and TS2-2. 

Hypothesis testing: Genetic vs behavioural compatibility 

To test the genetic incompatibility hypothesis, the proportions of dead embryos from all 

fertilized eggs were analyzed. Data only include the genetic eggs of each pair, that is, it does 

not include extra-pair young (9% of the eggs), but does include eggs of a pair that were 
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dumped into others nests (in this experiment egg-dumping accounted for 13% of the 

genotyped eggs that were laid). Moreover, it only includes eggs that were fully incubated, 

and not those that were buried before incubation was completed. There was no significant 

difference in embryo mortality rate between the chosen and non-chosen pairs (C=20%, 

NC=22%, P=0.68, N=707 fertilized eggs, TS2-5, Fig.3A). 

To test the behavioural compatibility hypothesis, the proportions of dead offspring 

from all hatched eggs were analyzed. In this analysis, all offspring were assigned to the 

owner of the nest in which they hatched. Offspring mortality was significantly higher when 

chicks were reared by non-chosen pairs (C=32%, NC=52%, P=0.03, N=594 hatched eggs, TS2-

6, Fig.3B). 

  

Figure 3. Embryo (A) and offspring (B) mortality rates (parameter estimates 

(±SEM)) in chosen and non-chosen pairs, as given by the generalized linear mixed-

effect models TS2-5 and TS2-6 conducted on N=707 fertilized eggs and N=594 

hatched eggs, respectively. 

Exploratory analyses: ‘individual commitment’ and ‘pair harmony’ 

Within-pair courtship behaviour: Females were significantly less responsive to their partner 

during courtship if they were paired to a male they had not chosen themselves (C=0.20, 

NC=0.05, P=0.01, N=2503 courtships scored, TS2-15). This is interesting because it might 

explain why infertile eggs were more often present in nests attended by non-chosen pairs 

(C=8%, NC=23%, P=0.01, N=216 clutches, TS2-8). However, males from both treatments 

courted their partner equally often (C=0.48, NC=0.52 courtships per hour, P=0.46, N=84 

male breeding seasons, TS2-20), and although within-pair courtships in non-chosen pairs 
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were less likely to lead to copulation, this was not significant (C=20%, NC=16%, P=0.28, 

N=2555 courtships, TS2-17). 

Extra-pair courtship behaviour: Females of both treatments were courted by extra-pair 

males equally often (C=0.20, NC=0.25 courtships per hour, P=0.36, N=84, TS2-21). 

Moreover, female responsiveness towards a courting extra-pair male was mostly negative, 

independent of the treatment group (C=-0.53, NC=-0.51, P=0.39, N=2752 extra-pair 

courtships, TS2-16). However, non-chosen pairs were significantly more likely to have 

clutches that contained eggs sired by an extra-pair male (C=6%, NC=17%, P=0.04, N=245 

clutches, TS2-9). While this could be due to the lower within-pair responsiveness of females 

in non-chosen pairs (see above), it could also be explained by the (non-significant) tendency 

that females of non-chosen pairs were more likely to engage in extra-pair copulations 

(C=6%, NC=16%, P=0.13, N=84 females, TS2-18). 

Nest attendance: Once per day we recorded the identity of individuals attending nests as 

well as the fate of eggs and offspring. Male nest attendance showed a pronounced peak 

when eggs hatched (Fig. S1). Most of the offspring that died (58%), died within 24-48h after 

hatching (i.e. maximally seen once alive on daily nest checks). Thus, we considered nest 

attendance during the entire offspring rearing period, and also specifically on those days 

during which one or more offspring hatched in a given nest. Males of non-chosen pairs 

attended their nest less than those of chosen pairs during the days of hatching (C=42%, 

NC=30%, P=0.04, N=556 days of hatching, TS2-14), but not during the entire offspring 

rearing period (C=22%, NC=18%, P=0.24, N=2081 days with nestlings, TS2-13). 

‘Pair harmony’: Every pair was observed daily during their first week in the communal 

aviaries, and before they received nest boxes and nest material, following a protocol 

inspired by a study on cockatiels, Nymphicus hollandicus (Spoon et al. 2007, see Methods). 

The occurrences of affiliative vs agonistic behaviour, the propensity of individuals to follow 

their partner, and the distance and synchrony in activity between the members of a pair 

were recorded. All those measures, as well as courtship rates and female responsiveness to 

courtships, were entered into a principal component analysis (PCA). Chosen and non-chosen 

pairs differed significantly in their PC1 score (C=0.24, NC=-0.29, P=0.01, N=84, Table S4), 

with individuals of chosen pairs mainly staying closer together and behaving more 

synchronously than those of non-chosen pairs (Table S3 and S4). This score of ‘pair 

harmony’ only weakly predicted pair fitness, though the trend was in the expected direction 

(r=0.18, P=0.11, Table S5). Observations were also carried out during the entire breeding 

season (every other day in 2012 and every day in 2013), but the PCA scores obtained for 

each pair during this period were neither significantly affected by treatment nor related to 

fitness. More details are presented in Table S4 and S5. 
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Discussion 

Only a few studies have attempted to quantify the benefits of mate choice (Simmons 1987; 

Bottoni et al. 1993; Massa et al. 1996; Drickamer et al. 2000; Sandvik et al. 2000; Moore et 

al. 2001; Ryan & Altmann 2001; Drickamer et al. 2003; Gowaty et al. 2003; Moore et al. 

2003; Bluhm & Gowaty 2004b, a; Anderson et al. 2007; Raveh et al. 2014), and to our 

knowledge, none so far have quantified the fitness benefits of idiosyncratic mate choice 

while excluding quality benefits (Fig. 1). We experimentally circumvented the effect of mate 

quality by comparing pairings of individuals who chose each other, with pairings we forced 

between random individuals who did not choose each other, but had both been chosen by 

another individual. Pairs allowed to choose their partner had a 37% higher fitness than pairs 

where mate choice was prevented experimentally (Fig. 2). This suggests that the between-

individual disagreement about mate attractiveness does not just reflect indecision or 

measurement error, but rather reflects true preferences that lead to significant differences 

in fitness between ‘arranged’ and ‘love marriages’. 

Our study system further allowed us to disentangle direct (behavioural) benefits of 

mate choice from indirect (genetic) benefits (Fig. 1, see Introduction and SI Text). Chosen 

pairs, compared to arranged ones, had an equal rate of embryo mortality (Fig. 3A), but a 

38% lower rate of offspring mortality (Fig. 3B). These observations support the hypothesis of 

mate choice for behavioural compatibility, but reject the idea of mate choice for genetic 

compatibility to reduce embryo mortality due to inbreeding or incompatibility loci. 

Previous experimental studies did not differentiate between genetic quality or 

compatibility effects, or favoured the genetic compatibility hypothesis based on the 

observation that preferred matings led to higher offspring viability than non-preferred 

matings (Drickamer et al. 2000; Drickamer et al. 2003; Gowaty et al. 2003; Bluhm & Gowaty 

2004b, a; Anderson et al. 2007; Raveh et al. 2014). However, in most of these experiments 

females were forced to mate with random males, some of which may not have been 

preferred by any female because they were of low absolute quality. Hence, the previously 

observed effects may be explained by both genetic quality and incompatibility. 

Furthermore, one could argue that mate choice for genetic compatibility cannot easily 

evolve because it requires that the incompatibility causing loci are tightly linked (e.g. via 

pleiotropy) to a detectable phenotype, as well as a mechanism ensuring the appropriate 

assortative or disassortative preference (Tregenza & Wedell 2000). At least in zebra finches, 

such a complex mechanism might not have evolved. For instance, inbreeding avoidance in 

this species is not expressed if it can only be based on genetic similarity (Schielzeth et al. 

2008a), but does take place when siblings are familiar with each other (Ihle & Forstmeier 

2013). 

In contrast, direct compatibility benefits of mate choice could come about through 

different mechanisms: the emerging behaviours of a pair in terms of coordination or 
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complementarity (Spoon et al. 2006; van de Pol et al. 2006; Griggio & Hoi 2011; Fox & 

Millam 2014; Sánchez-Macouzet et al. 2014), and/or the idiosyncratic stimulation of a 

partner’s sensory system leading to a greater investment in reproduction (Arak & Enquist 

1993; Bolund et al. 2012; Servedio et al. 2013). In the following we discuss our exploratory 

analyses on fitness components and behaviours, to tentatively favour one mechanism over 

another. 

We found that non-chosen pairs (1) more often had clutches with infertile eggs, (2) 

had more offspring dying, presumably from starvation, and (3) tended to have more eggs 

that disappeared, supposedly due to poorer care and nest defence (see SI Text). 

Furthermore, (4) males from non-chosen pairs were more likely to lose paternity, reducing 

their (but not their mate’s) fitness, which explains the larger effect on male fitness (Fig. 2). 

These effects on components of fitness may be explained by differences in behaviour of 

chosen and non-chosen pairs. The most prominent behavioural differences were that (a) 

females with assigned partners responded less positively to within-pair courtship and they 

tended to copulate less frequently with their partner, and (b) males with assigned partners 

showed poorer nest attendance during the egg hatching period.  

It seems plausible that the reduced tendency of the female with a non-chosen 

partner to actively participate in within-pair courtship and copulation is responsible for the 

observed increased incidence of infertile eggs and the higher probability of having extra-pair 

young. The latter may also be due to force-paired females performing more extra-pair 

copulations, although this effect was not significant. Likewise, the lower nest attendance by 

the male during hatching could indicate a reduced motivation to care for the young when in 

a forced partnership, leading to greater offspring mortality and egg loss. 

Our scores of ‘pair harmony’, which included interactive behaviours like affiliative 

and sexual behaviours, but also behavioural synchrony and the tendency to get reunited, 

did not significantly correlate with pair fitness. Therefore, it remains unclear what specific 

behaviours emerging from the pair would translate into fitness differences. In the literature, 

the evidence supporting the idea that pair coordination could give a selective advantage to 

certain pairs is indirect, and mainly comes from studies showing an increase in breeding 

success with pair bond duration (Ens et al. 1996; Black 2001; van de Pol et al. 2006; Griggio 

& Hoi 2011; Sánchez-Macouzet et al. 2014; but see Naves et al. 2007). We specifically 

designed our experiment with some pairs staying together for two seasons to be better able 

to control for possible effects of pair-bond duration. Unexpectedly, this covariate did not 

have an effect on fitness components (mostly showing non-significant trends opposite to 

expectation) and was therefore removed from those models. Moreover, in the second 

breeding season, pairs already established from the first year (N=14) did not have a higher 

fitness than newly formed pairs (N=28, P>0.80 for both sexes). This suggests that 

behavioural compatibility (with synergistic effects on fitness) did not increase with pair bond 
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duration, but rather might have been determined by factors already present at the time of 

mating. 

To summarize, although an effect of lack of coordination between pair members 

cannot be excluded, our exploratory analyses suggest a reduced commitment in individuals 

of arranged pairs. This could be explained by a mismatch in sensory systems and stimuli 

leading to a lower investment in reproduction. Previous experimental work on zebra finches 

shows that the amount of stimulation from the partner (which may be higher for a 

preferred mating) affects egg quality (Bolund et al. 2012). In our study, the viability of the 

offspring could have been enhanced by a stronger maternal (or paternal, in this species with 

bi-parental care) investment, mechanistically triggered by some form of stimulation (e.g. see 

Erickson & Lehrman 1964; Arak & Enquist 1993; Wachtmeister 2001; Bolund et al. 2012; 

Servedio et al. 2013). Similarly, earlier studies favouring the compatible gene hypothesis 

cannot rule out, even in species without parental care, that the type of pairing (preferred vs 

non-preferred) affected maternal investment (e.g. into the quality of eggs) with potential 

effects on offspring viability (Drickamer et al. 2000; Drickamer et al. 2003; Gowaty et al. 

2003; Bluhm & Gowaty 2004b; Anderson et al. 2007). There, artificial insemination would be 

needed to experimentally demonstrate that higher offspring viability arises from genetic 

compatibility and not simply from maternal (e.g. egg nutrients) or paternal effects (e.g. 

sperm allocation) following greater stimulation by the partner. 

If arranged pairs show a reduced investment in breeding, as our analyses suggest, 

the question is whether this behaviour is adaptive. Reduced investment in current 

reproduction could be adaptive, if it saves resources for future reproduction with a more 

preferred partner. This explanation seems unlikely for a species such as the zebra finch, 

because life-long monogamy largely precludes breeding with a different partner in the 

future (Zann 1996). Moreover, in a follow-up experiment consisting of a third breeding 

season where free choice was fully allowed, individuals could not compensate for the lower 

fitness previously obtained with a non-chosen partner (see SI Text). Therefore, the reduced 

commitment in non-chosen pairs could be maladaptive, either because it never or rarely 

occurs under natural conditions (for example, because suitable, i.e. compatible, partners are 

always available) or because a strong selective pressure on choosiness constrains the 

physiology and psychology of the animals. 

To conclude, chosen pairs, compared to arranged ones, had a higher fitness 

presumably due to behavioural rather than genetic compatibility. Behavioural compatibility 

in terms of willingness or ability to cooperate with certain individuals and in terms of 

coordination between partners both need to be further investigated, specifically in a 

provisioning context. In humans, some evidence suggests that individuals are more satisfied, 

more committed and less likely to engage in domestic violence, when involved in a love-

based rather than an arranged marriage (Xu & Whyte 1990; Sahin et al. 2010; but see Regan 

et al. 2012). The challenge there is also to comprehend whether stable and happy marriages 
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result from idiosyncratic motivation to cooperate (and to identify what stimulates such 

feelings, see Honekopp 2006; Todd et al. 2007; Asendorpf et al. 2011; Meltzer & McNulty 

2014), or, for instance, from congruence in terms of partners’ intrinsic behavioural types 

(Rammstedt et al. 2013). 

Methods 

Design 

All birds of the experiment hatched in the summer of 2011 in large semi-outdoor aviaries. 

The origin of the birds, and rearing and housing conditions have been described in detail 

elsewhere (Ihle et al. 2013). Shortly after independence (when birds were 45 days old), they 

were put into 8 mixed-sex peer-groups of 10 males and 10 females. As soon as birds 

reached sexual maturity (100 days old) they were colour-banded, and peer-groups were 

joined two by two (yielding four groups, each allowing for 20 possible pairs to form). Sixty-

six pairs were identified during ad libitum watches in the winter of 2011/2012. In April 2012, 

after assignment to treatments, pairs (half force-paired, half chosen) were put into separate 

cages for two months and allowed to lay one clutch. On the 21
st

 of May, three pairs of each 

treatment (chosen randomly but by making sure the initial chosen partners of individuals of 

non-chosen pairs were not included) were put into a breeding aviary (10 replicates, 60 pairs 

in total). Both members of each pair had been previously colour-banded on both legs with 

one random color out of six (dark blue, light blue, black, yellow, orange, white), so that a 

pair would be unmistakably identifiable in its aviary. Forty-five out of 60 pairs (26 C, 19 NC) 

did not divorce and were considered for the analyses. Pairs that divorced might represent 

the most incompatible ones, and therefore, results obtained from the 19 forced pairs that 

did not divorce may underestimate the effects of incompatibility. After one week of 

conducting intensive focal pair observations, nest material was introduced, and nests were 

checked daily until 21 August (see next section). After this date, the experiment was 

stopped and newly laid eggs were replaced by dummy eggs. In October 2012, once all 

offspring had reached independence, all adults were joined to form two big flocks. Each 

group contained 20 newly single males (i.e. with their former breeding partner being in the 

other group), 20 newly single females, and 8 pairs that were allowed to stay together. Each 

newly single female could choose a new partner among a set of males that did not include 

her previous breeding partner, and in half of the cases not her initial chosen mate (for 

females coming from non-chosen pairs). In December 2012, after pair identification and 

treatment assignment (without regard to previous treatment), pairs were put into cages for 

six months and allowed to lay two clutches. The elongation of the period of force-pairing in 

cages resulted in a much lower rate of divorce than in the previous season (only one pair of 

each treatment divorced). On 21 May 2013, pairs were put again into breeding aviaries and 

allowed to breed as in the previous year. Only 42 pairs (21 of each treatment, across 7 

aviaries) could be used for the second breeding season out of the 52 pairs identified in the 

winter groups, because 12 birds died accidentally (food dispensers were blocked for two 
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days in early March 2013). The selection of the best quality individuals, both by the design 

itself and by this accidental food shortage, does not induce a bias in one or the other 

treatment, but can result in an underestimation of the real fitness benefits of mate choice. 

Finally, one member of a pair died (and its partner was removed) within the first week of 

each breeding season (1 C in 2012 and 1 NC in 2013), and these two pairs were excluded 

from the analyses. 

Breeding monitoring 

Each aviary was furnished with 7 nest boxes. Every morning, nests were checked, the 

individual(s) attending the nest identified, and the fate of each egg and each offspring 

noted. Unhatched eggs were opened when neglected by the parents (for instance after 

offspring had fledged) and embryos were collected for parentage analysis performed with 

11 microsatellite markers following (Forstmeier et al. 2007a) and (Forstmeier et al. 2010). 

For the same purpose, we took small (~10μl) blood samples from offspring on day 8-10 post-

hatch or tissue samples if they died earlier. Eggs that could not be assigned by parentage 

analysis (28% of 1434 eggs laid by all birds including divorcees) were assigned to the social 

pair that attended the nest. These eggs comprise apparently infertile eggs (5.6% of all eggs) 

and those that were buried in the nest and did not develop (typically after a nest take-over 

by another pair) or disappeared (presumably they broke and were eaten by the birds) 

(22.4%). The relative fitness of an individual was calculated as the annual number of its 

genetic offspring that reached independence (day 35 post hatch) divided by the average 

number of offspring produced by all same-sex individuals of the same aviary that did not 

divorce. 

Video surveillance and live observations 

Each aviary was equipped with a dome camera set to record an artificial tree on which 69% 

of all courtships took place (calculated from the live observations described below). On 

some days of the week, in a regular and predefined manner, we also recorded a set of 

perches on which individuals like to allopreen, and the nest boxes. We analyzed the first 

hour of each day, when copulations are most frequent (Forstmeier et al. 2011). In pairs 

considered for the analyses (those that did not divorce), we recorded 1942 within-pair (WP) 

courtships, and 2999 extra-pair (EP) courtships (in the latter, a divorced female or male may 

have been the extra-pair partner). For each courtship, we scored female responsiveness 

(threat or aggression toward the male (−1), flying away (−0.5), mixed or ambiguous signs (0), 

courtship hopping and beak wiping (+0.5), and copulation solicitation (+1)) and noted 

whether it led to a successful copulation.  

We also conducted focal-pair watches by monitoring a pair for three minutes, while 

standing behind a one-way glass built into aviary doors. During these watches we observed 

613 WP and 800 EP courtships. We noted their location and whether they led to a successful 

copulation. For a subset of 561 WP and 782 EP courtships we also scored female 

responsiveness, as described above. During focal-pair watches, we also recorded whether 
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within-pair allopreening or aggression occurred during the 3 min period (‘yes’ or ‘no’). Every 

30 seconds, we recorded the distance between the partners and their synchrony in activity. 

Distance was averaged for each 3 min focal pair watch. Activities were split into 9 

categories: feeding, cleaning, nesting or parental behaviour (nest building or attendance, 

and feeding of fledglings), sleeping, sitting, involved in aggression, involved in courtship, 

flying, and ‘other’. Synchrony was simply the sum of the observations where both partner 

engaged in the same activity (range 0-6). Finally, we counted for each pair member all 

occurrences of an individual flying away from or back towards (<50cm) its partner (e.g. 

female flying away: Faway, male flying back: Mback). From those counts, we calculated the 

pair tendency to get reunited: (Σ Fback + Σ Mback) / (Σ Faway + Σ Maway); and a mate 

guarding index: (Σ Faway – Σ Fback) – (Σ Maway – Σ Mback). The latter is positive in case of 

male mate guarding, and negative for female mate guarding. The six pairs in an aviary were 

watched successively in a randomized predetermined order, and the time of observation of 

each aviary was randomized over the course of each day. In 2012, pairs were watched 9 to 

13 times (median=11) during the first week, and 37 to 39 times (median=38) during the 

breeding period. In 2013, 16 to 21 focal watches (median=21) per pair were performed 

during the first week, and 68 to 70 (median=69) during the breeding period. All measures 

were averaged for all focal watches of a pair that were made during the first week (before 

breeding), as well as during the breeding period. Male courtship rates (WP and EP 

courtships per hour) and best linear unbiased predictors (BLUPs) of female responsiveness 

(to WP and EP courtships) were also calculated (see SI Text) for both periods and included in 

a principal component analysis (PCA). 

All observations, live or from video, were done blind to the treatment of the birds. 

All analyses of behaviours and reproductive data comprise only pairs that ‘accepted’ the 

treatment (i.e. that did not divorce).  

Data analysis 

All statistical tests were conducted in R (R Core Team 2013). General and generalized mixed-

effect models were performed with the ‘lmer’ and ‘glmer’ function of the lme4 package 

(Bates 2014) and the PCAs with the ‘principal’ function of the psych package (Revelle 2014). 
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Supplemental information 

SI Text 

Causes of offspring and embryo mortality in cross-fostered eggs 

To understand to what extent embryo mortality and offspring mortality depend on the 

parents who produce the eggs versus the parents that care for the eggs, we analyzed the 

fate of eggs that had been cross-fostered individually within 24h of egg laying. Such cross-

fostering had been carried out extensively in our domesticated population of zebra finches 

over the course of two generations (F1 and F2) as previously described (Forstmeier 2005; 

Schielzeth et al. 2008a, b). The experimental fostering design was ideal for separating 

genetic from rearing effects, because a genetic clutch of e.g. five eggs would get spread 

among five foster nests, and each foster clutch of e.g. five eggs would be composed of eggs 

from five different genetic pairs. From a total of 2128 eggs that were fostered between 

2004 and 2006, there were 1529 eggs that had been incubated through the whole 

incubation period and that were not infertile, dried out or broken but rather contained at 

least an embryo that we genotyped for genetic parentage (Schielzeth & Bolund 2010). Those 

1529 eggs originated from 280 different combinations of genetic parents and were cared for 

by 260 different combinations of foster parents. Of those eggs, 423 (28%) died before 

hatching, leading to 1106 offspring, 283 (26%) of which died during offspring rearing (i.e. 

before reaching independence at 35 days of age). For each egg and offspring we coded 

mortality as yes or no, and extracted the variance component estimates for the two random 

effects of genetic pair identity and foster pair identity from mixed-effect models with 

binomial error structure using the lme4 package (Bates 2014) from R (R Core Team 2013) 

and without specifying any fixed effects besides the intercept (see Table S1). 

We concluded from this analysis that – at least in zebra finches – embryo mortality is 

primarily a trait of the genetic pair, while offspring mortality primarily depends on the 

rearing parents. To formally disentangle genetic and rearing effects on embryo and offspring 

mortality, cross-fostering eggs individually within this experiment on the benefits of mate 

choice would have been necessary. However, this was not done here, because we would not 

have been able to quantify fitness without confounding effects of the cross-fostering. 

Treatment effects on other fitness-related traits  

Further exploratory analyses were conducted on breeding characteristics. Details are 

presented in Table S2. We tested whether disappeared or buried eggs were more common 

in nests of non-chosen pairs, for example due to higher within-pair conflict or to lower nest 

defence against other pairs trying to take over their nest, resulting in breaking or burying of 

eggs. Similarly, we tested whether egg-dumping rates were higher in nests of non-chosen 

pairs potentially less well defended against conspecific parasitism. The proportion of 

disappeared or buried eggs tended to be higher in non-chosen pairs (C=12%, NC=19%, 
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P=0.07, N=1172 eggs laid, TS2-4), while both types of pairs were equally likely to attend 

clutches that contained dumped eggs (C=26%, NC=21%, P=0.41, N=209 clutches, TS2-10). 

The cumulative effect of having slightly more disappeared or buried eggs and dead 

offspring, despite starting from a similar clutch size and having a similar rate of embryo 

mortality, resulted in a tendency for non-chosen pairs to have a lower brood size (count of 

offspring that reached 8 days of age, C=2.59, NC=2.03, P=0.07, N=181 broods, TS2-11). If 

non-chosen pairs are behaviourally less compatible, as we suggest (see main text), then one 

could hypothesize that they should also have offspring of lower body mass. However, 

offspring of both type of pairs did not differ in mass at day 8 post-hatch (C=6.18g, NC=6.00g, 

P=0.51, N=421, TS2-7). This is perhaps because non-chosen pairs tended to have fewer 

offspring to feed (as shown above). 

We also tested whether chosen pairs had a higher breeding rate, that is, a shorter 

interval between clutches. This might for instance be the case if the male would take care of 

the fledglings while the female would start incubating a new clutch. However, chosen and 

non-chosen pairs took equally long before starting another clutch (C=34.2 days, NC=33.1 

days, P=0.57, N=135 intervals between clutches, TS2-12). 

Finally, we hypothesized that males of chosen pairs could have additional time to 

invest in extra-pair behaviour, for instance if they needed less time for mate guarding or for 

solving conflict over nest care. However, males of both treatments had identical extra-pair 

courtship rates (C= 0.51, NC=0.52 courtships per hour, P=0.92, N=84, TS2-22) and similar 

success in obtaining at least one extra-pair copulation (C= 17%, NC= 13%, P=0.64, N=84 

courting extra-pair males, TS2-19) or siring at least one extra-pair young (C=32%, NC=17%, 

P=0.16, N=84, TS2-23). 

Details on behavioural variables used in the PCA 

Courtship rates were first calculated for video and live observations separately before 

combining them (see below). For the videos, the number of courtships (within-pair, WP, and 

extra-pair, EP) by a male observed from a certain camera position was divided by the 

number of hours of video watched from this position. The courtship rates obtained for a 

male were then summed across all camera positions. This avoids creating a bias for 

individuals with a preference for a certain courting location. Courtship rates calculated from 

live observations were simply the number of courtships (WP and EP) observed in the entire 

aviary for a male, divided by the number of hours the aviary was monitored (focal pair 

watches). Courtships observed both live and on video were only considered once. To reach 

normality, all courtship rates were square-root transformed. 

Synchrony (as defined in Methods) was significantly lower and courtship rates were 

higher in the second year, possibly also due to different observers or to slightly different 

protocols. Hence, synchrony scores and live and video courtship rates were standardized (z-

transformed) within years. The standardized live and video courtship rates were then 
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averaged. Because of this complexity introduced to give a fair weight to each observation, it 

is not possible to back-transform model estimates into meaningful courtship rates, i.e. into 

number of courtships per hour. This is why analyses concerning courtship rates presented in 

the main text (and Table S2) were on videotaped courtships only. Nevertheless, all tests 

were also done on courtship rates calculated as above for the PCA, which includes all 

courtships observed, and the results obtained were similar. 

Female responsiveness to male courtship depends on time of day and on the 

duration of the pair bond (see (Forstmeier et al. 2011) and Table S2). Therefore, the random 

effect estimates of each female (BLUPs) were obtained for each observation period (first 

week and breeding period) from linear mixed-effect models consistently structured as in 

(Forstmeier et al. 2011) and Table S2 (e.g. TS2-15 and TS2-16). Within and extra-pair 

responsiveness BLUPs of each female-season were used in the PCAs. 

Follow-up experiment: Opportunity to compensate later in life. 

We designed a follow-up experiment to examine whether individuals of the non-chosen 

pairs were adaptively reducing their brood size by saving energy for potential future 

reproduction with a chosen partner. In order to give every individual a maximum of free 

choice and an opportunity to form a new pair bond, all existing pairs were split up after the 

second breeding season, and all birds stayed in large unisex groups for six months. After this 

period, all adults whose previous breeding partner was still alive (N=35 pairs, 17 C and 18 

NC) were placed together in a large breeding aviary for one month. This was done to 

investigate how many pairs of each treatment would re-unite after the artificial 6-months 

separation. Birds had unique combinations of colour-bands, and pairs were identified by the 

occurrence of affiliative and nesting behaviour. All observations were done blind to previous 

pair bonds and treatments. Eggs were replaced by dummy eggs and put in an incubator for 

5 days after which developing embryos (N=114) were collected for parentage analysis (using 

19 microsatellite markers). Relative fitness was calculated as the number of eggs an 

individual had sired (male) or laid (female) divided by the average number of eggs sired or 

laid by individuals of the same sex. To take into account the previous treatments of each 

individual, a score was given to each of them as follows: 0 for individuals that had bred with 

a chosen partner in both breeding seasons (C-C), 1 for individuals that had bred twice with a 

non-chosen partner (NC-NC), and 0.5 for individuals that had undergone one of each 

treatment (C-NC or NC-C). One female with score 0 died after two weeks in the experiment, 

without having formed a pair bond. 

Results: Relative fitness under free choice in the follow-up experiment was not affected by 

previous treatments. The regression slopes of relative fitness over previous treatment score 

(coded as indicated above) were not greater than zero as would have been expected under 

the hypothesis of compensation later in life (female slope=-0.19, P=0.59; male slope=-0.19, 

P=0.66). These slopes correspond to relative fitness values of C-C=1.08 and NC-NC=0.88 for 

females and C-C=1.10 and NC-NC=0.90 for males. In total, 26 heterosexual pairs, one 
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female-female pair, one polygynous trio and one polyandrous trio showed strong affiliative 

behaviours. Three chosen and two non-chosen pairs reunited out of 5 chosen and 6 non-

chosen pairs that had been allowed to breed together for both experimental breeding 

seasons. In addition, 4 pairs reunited out of 11 chosen pairs from the second experimental 

breeding season, as well as 1 pair out of 12 non-chosen pairs. Thus, although chosen pairs 

were more likely to reunite, this effect is not significant (Mantel-Haenszel chi-squared test 

with continuity correction, P=0.17; controlling for status of 1 vs 2 year-lasting pair bonds). 

Interestingly, two females reunited with their chosen partner of the second breeding season 

with whom they had not been allowed to breed (out of 8 possible such cases), and were 

involved in one of the two trios. Finally, one female bonded with her chosen breeding 

partner of the first season (out of 6 possible such cases). The 18 other pairs were new 

combinations of partners. 

To summarize, individuals in a third breeding season where free choice was fully 

allowed could not compensate for the lower fitness previously obtained with a non-chosen 

partner. This suggests that the reduction in investment by forced pairs is non-adaptive in 

this species. Additionally, we show that chosen pairs were not significantly more likely to 

reunite than non-chosen pairs.  

 



 

 
 

Table S1: Causes of embryo and offspring mortality in cross-fostered eggs shown as variance component estimates (Varcomp). 

Test Unit N Nyes Mortality Dependent variable N genetic pairs N foster pairs 

Varcomp  

genetic pair 

Varcomp  

foster pair % genetic % foster 

1 Egg 1529 423 28% Dead embryo 280 260 0.6569 0.2896 69.4% 30.6% 

2 Offspring 1106 283 26% Dead offspring 243 252 0.2079 0.9966 17.3% 82.7% 

 

Column clarification and abbreviations: 

Unit: unit of analysis for which sample sizes are given. 

Nyes: numbers of yeses for binomial dependent variable 

  



 

Table S2: Model structures of tests investigating the effect of the treatment on breeding parameters and sexual behaviours. 

            Random effects  

# Unit N Nyes Dependent variable P z C ±SEM NC ±SEM Fixed effects FID MID PID CID Level 

1 MID-yr 84  Male relative fitness 0.03 -2.24 1.16 0.11 0.80 0.12  55 54 70   

2 FID-yr 84  Female relative fitness 0.12 -1.59 1.09 0.11 0.84 0.12  55 54 70   

3 FID-yr 84  Number of eggs laid 0.56 0.58 13.5 1.12 14.4 1.18 A 55 54 70  Ass 

4 Egg 1172 320 Disappeared egg 0.07 1.83 12% 2% 19% 3% A+B 55 54 69 222 Soc 

5 Egg 707 167 Dead embryo 0.68 0.42 20% 4% 22% 4% A+B 52 53 64 205 Gen 

6 Offspring 594 245 Dead offspring 0.03 2.18 32% 5% 52% 7% A+C
2
 53 54 65 181 Soc 

7 Offspring 421  Mass at 8 days old 0.51 -0.68 6.18 0.13 6.00 0.16 A+D
2
 49 51 59 149 Soc 

8 Clutch 216 39 Infertile egg 0.01 2.62 8% 3% 23% 5% A+E 52 53 65  Ass 

9 Clutch 245 44 Female EPY 0.04 2.04 6% 2% 17% 6% A+E 53    Gen 

10 Clutch 209 55 Dumped egg 0.41 -0.82 26% 5% 21% 5% A 54    Soc 

11 Brood 181  Brood size 0.07 -1.82 2.59 0.21 2.03 0.23 A 53 54 65  Soc 

12 Clutch 135  Clutch interval 0.57 -0.55 34.2 1.36 33.1 1.45 A+F+G   60  Soc 

13 Day 2081 532 Male attendance 0.24 -1.16 22% 2% 18% 3% H+I 52 53 63 172  

14 Day 556 215 Male attendance 0.04 -2.11 42% 4% 30% 4% H 52 53 63 170  

15 Courtship 2503  WP responsiveness 0.01 -2.56 0.20 0.04 0.05 0.04 A+J+K+L+M 55 54 70   

16 Courtship 2752  EP responsiveness 0.39 0.88 -0.53 0.02 -0.51 0.02 A+J+K+L+M 55 59 322   

17 Courtship 2555 492 WP copulation 0.28 -1.09 20% 3% 16% 2% A+J+K+L+M 55 54 70   

18 FID-yr 84 11 EP copulation 0.13 1.50 6% 4% 16% 6% A+N 55     

19 MID-yr 84 15 EP copulation 0.64 -0.47 17% 6% 13% 6% A+N  54    

20 MID-yr 84  WP courtship rate 0.46 0.74 0.48 0.04 0.52 0.05 A  54    

21 FID-yr 84  EP courtship rate 0.36 0.93 0.20 0.04 0.25 0.04 A 55     

22 MID-yr 84  EP courtship rate 0.91 0.11 0.51 0.06 0.52 0.07 A  54    

23 MID-yr 84 25 EPY 0.16 -1.39 32% 8% 17% 7% A  54    

Column clarification and abbreviations: 

#:test number given in the main text or SI Text as TS2-#. 

Unit: unit of analysis for which sample sizes are given. ‘MID-yr’ (or ‘FID-yr’) stands for the combination of the male (or female) unique identity number and the year (2012 

or 2013). 



 

 
 

Nyes: the number of yeses for binomial dependent variables. 

Dependent variables: WP and EP stand for within and extra-pair, and EPY for extra-pair young. ‘Disappeared eggs’: eggs that were either buried in the nest material or 

broken before the end of incubation, or eggs that completely disappeared from the aviary ; ‘Female EPY’ is whether or not in a given clutch the female had any extra-

pair young ; ‘Brood size’ is the number of offspring in a clutch that reached 8 days of age; ‘Male attendance’ is whether or not the male attended its nest on a given day 

; ‘WP or EP copulation’ are behaviourally successful copulations as opposed to unsuccessful courtships or copulation attempts. 

P and z: p-value and z-value for the treatment. 

C and NC (±SEM): parameter estimates for chosen and non-chosen pairs and their respective standard errors. For tests with binomial dependent variables, the average of 

the asymmetrical back-transformed standard errors is given. 

Fixed effect: A: year ; B: egg number in the laying sequence ; C: hatching order (coded 1-8) ; D: the hatching order of the offspring among those that reached 8 days of age ; 

E: clutch size ; F: clutch number for the pair within a year (coded 1-6) ; G: brood size reached in the previous clutch of the same pair ; H: number of offspring in the nest ; 

I: a continuous variable counting up the days from the first day with offspring in that brood, reflecting the average age of the offspring ; J: the number of days between 

the courtship and the day that is three days before the start of egg laying (with values ≥5 coded as 5), which means that 0 stands for the peak of fertility of that female ; 

K: pair-bond duration (in days) ; L: the number of eggs the female laid in the last 5 days ; M: the number of minutes after the light went on in the aviary on that day 

(artificial lights were set to turn on around  40 minutes before sunrise) ; N: number of courtships received, for females, or performed, for males. 
2
 indicates that a linear 

and a polynomial term were included using the function ‘poly’ in R. All fixed effects where centered. 

Random effects: FID, MID, PID and CID: the number of levels of random effects; female, male, pair and clutch identity numbers (where applicable). 

Level: level at which the analyses was performed, i.e. how the units were allocated to individuals. Gen stands for genetic parents, Soc for social parents, and Ass for 

assigned parents, which are genetic when parentage analysis was possible, and social parents when it was not (infertile and disappeared eggs). 

 

Test #20, 21, and 22 are based on videotaped courtships only to obtain meaningful courtship rates as number of courtships per hour. Nevertheless, those tests were also 

done on all courtships observed (live and videotaped), and gave similar results (see ‘Details on behavioural variables used in the PCA’).  

 

Bold characters in the table emphasize significance (P < 0.05); italic characters indicate trends (P < 0.10). 
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Table S3: Loadings of behavioural variables on PC1 for the 1
st

 week in communal aviary 

(A), and the breeding period (B). 

A. 1
st

 week in communal aviary 

Variable Loading 

Mean distance -0.74 

EP courtship rate* -0.48 

Female EP responsiveness
†
 -0.20 

Female WP responsiveness
 †
 -0.17 

Male aggression -0.09 

Female aggression -0.03 

Female allopreening 0.28 

WP courtship rate* 0.39 

Male allopreening 0.41 

Mate guarding 0.48 

Synchrony
‡
 0.57 

Proportion of flight back
§
 0.61 

 

B. breeding period 

Variable Loading 

Mean distance -0.86 

Female WP responsiveness
 †
 -0.28 

Female EP responsiveness
†
 -0.09 

EP courtship rate* 0.04 

Female aggression 0.11 

Male aggression 0.15 

Proportion of flight back
§
 0.22 

Mate guarding 0.36 

Female allopreening 0.66 

Male allopreening 0.70 

WP courtship rate* 0.74 

Synchrony
‡
 0.79 

*Courtship rates (within-pair (WP), and extra-pair (EP)) were calculated from both videotaped courtships and 

courtships observed live, see SI Text. 

†
BLUPs of female responsiveness in WP or EP courtships, obtained from linear mixed-effect models with the 

same structure as TS2-15 and TS2-16, see SI Text. 

‡
Synchrony was z-transformed within year, see SI Text. 

§
Pair tendency of getting reunited, see Methods. 

 

 



 

 
 

Table S4: Results of linear models investigating the effect of the treatment on PC1 scores and on each variable included in the PCA 

separately, for the 1
st

 week in communal aviary (A) and the breeding period (B). For all tests, N=84 pairs. 

A. 1
st

 week in communal aviary 

Dependent Variable P z C ±SEM NC ±SEM 

PC1 0.01 -2.50 0.24 0.14 -0.29 0.21 

Mean distance <0.00 3.20 40 3.0 54 3.3 

EP courtship rate <0.05 2.02 -0.17 0.13 0.21 0.14 

Female EP responsiveness 0.91 0.12 0.00 0.01 0.00 0.01 

Female WP responsiveness
 
 0.30 -1.04 0.02 0.02 -0.02 0.03 

Male aggression 0.28 1.08 0.01 0.00 0.02 0.01 

Female aggression 0.75 -0.31 0.01 0.00 0.01 0.00 

Female allopreening 0.46 -0.75 0.14 0.02 0.12 0.02 

WP courtship rate 0.97 0.05 0.00 0.12 0.00 0.13 

Male allopreening 0.16 -1.41 0.25 0.02 0.20 0.02 

Mate guarding 0.97 -0.04 0.65 0.13 0.65 0.14 

Synchrony 0.02 -2.35 0.23 0.14 -0.27 0.16 

Proportion of flight back 0.87 -0.16 0.89 0.01 0.88 0.02 

 

B. breeding period 

Dependent Variable P z C ±SEM NC ±SEM 

PC1 0.91 -0.12 0.01 0.15 -0.01 0.22 

Mean distance 0.34 0.97 120 4.1 126 4.5 

Female WP responsiveness
 
 0.14 -1.50 0.03 0.03 -0.03 0.03 

Female EP responsiveness 0.35 0.94 0.00 0.01 0.00 0.01 

EP courtship rate 0.41 0.83 -0.07 0.13 0.09 0.14 

Female aggression 0.22 1.24 0.00 0.00 0.00 0.00 

Male aggression 0.31 1.03 0.00 0.00 0.00 0.00 

Proportion of flight back 0.99 0.01 0.82 0.01 0.82 0.01 

Mate guarding 0.76 -0.31 0.15 0.06 0.13 0.06 

Female allopreening 0.22 -1.24 0.06 0.01 0.04 0.01 

Male allopreening 0.74 -0.33 0.08 0.01 0.08 0.01 

WP courtship rate 0.21 1.27 -0.11 0.13 0.13 0.14 

Synchrony 0.98 0.03 0.00 0.15 0.00 0.16 

 

More information on the dependent variables is given in the footnotes of Table S3. Bold characters emphasize significance.  



 

Table S5: Results of linear models investigating the effect of PC1, and each variable included in the PCA separately, on the relative fitness 

achieved by the pairs. Analyses for the 1
st

 week in communal aviary (A) and the breeding period (B) are shown. For all tests, N=84 pairs. 

A. 1
st

 week in communal aviary 

explanatory variable P z r 

PC1 

Mean distance 

0.11 

0.06 

1.62 

-1.88 

0.18 

0.20 

EP courtship rate 0.64 -0.47 0.05 

Female EP responsiveness 0.90 -0.13 0.01 

Female WP responsiveness
 
 0.18 1.37 0.15 

Male aggression 0.06 1.92 0.21 

Female aggression 0.36 0.92 0.10 

Female allopreening 0.60 0.53 0.06 

WP courtship rate 0.32 1.00 0.11 

Male allopreening 0.63 0.49 0.05 

Mate guarding 0.46 0.74 0.08 

Synchrony 0.84 0.20 0.02 

Proportion of flight back 0.07 1.85 0.20 

 

B. breeding period 

explanatory variable P z β 

PC1  

Mean distance 

0.93 

0.43 

-0.12 

-0.80 

0.01 

-0.10 

Female WP responsiveness
 
 0.59 0.54 0.05 

Female EP responsiveness 0.01 -2.83 -0.27 

EP courtship rate 0.18 -1.35 -0.13 

Female aggression 0.02 -2.38 -0.23 

Male aggression 0.10 -1.65 -0.16 

Proportion of flight back 0.88 0.15 0.01 

Mate guarding 0.85 -0.19 -0.02 

Female allopreening 0.87 -0.17 -0.02 

Male allopreening 0.87 -0.17 -0.02 

WP courtship rate 0.81 -0.24 -0.03 

Synchrony 0.45 0.76 0.09 

 

More information on the explanatory variables is given in the footnotes of Table S3. The number of days the pair was actively breeding (incubating eggs or rearing 

offspring) during the breeding period (B) was including as covariate for all tests. If this covariate is not included, male and female allopreening, as well as synchrony, within-

pair courtship rate, and the overall PC1, are significantly negatively related to pair fitness because individuals that are not engaged in breeding activities (e.g. because their 

brood failed) spent more time on non-reproductive activities. Hence, this highly significant covariate of fitness is always controlled for. The coefficient of correlation r, or 

the standardized regression coefficient β are given to estimate the correlations between the relative fitness of pairs and the explanatory variables. β was obtained with the 

function ‘lm.beta’ from the package QuantPsyc (Fletcher 2012), in R (R Core Team 2013).Bold characters emphasize significance, italic characters indicate trends. 

 



 

C h a p t e r 3  | 77 

 

 

 

Figure S1. Proportion of days when the female, the male, or both pair members 

simultaneously attended their nest while having an active clutch or a brood. The 

values for joint nest attendance are included in the values for females and males. 

Day 1 is the start of incubation. In zebra finches, incubation lasts on average 12 

days, and offspring fledge 15-20 days after hatching. 
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General discussion 

n this thesis, I investigated whether female zebra finches preferentially select compatible 

social mates and if they increase their extra-pair mating behaviour when paired to an 

incompatible male. In this system, apparent genetic incompatibility results in embryo 

mortality and therefore hatching failure (analyses presented in Chapters 1 and 3), while 

apparent behavioural incompatibility results in offspring mortality (analysis presented in 

Chapter 3). We therefore expected social mate choice for genetic and/or behavioural 

compatibility to optimise embryo and offspring survival, and an increase in female extra-pair 

behaviour to get compatible genes benefits when socially paired with a genetically 

incompatible male. 

Lack of mate choice for genetic compatibility 

Social mate choice 

In the experiment presented in Chapter 3, females could initially choose freely a social mate 

among a large pool of males. They were then either allowed to stay with their chosen 

partner and profit from compatibility benefits, or force-paired to a male that was initially 

chosen by another female. In such force-paired females, the potential compatibility of their 

initial pair was disrupted, while, on average, the quality of their partners (initially chosen vs 

newly assigned male chosen by another female) was kept constant. Forced pairs from this 

experiment were thus deprived (only) from compatibility benefits. In this study, the 

hypothesis of social mate choice for genetic compatibility in order to reduce embryo 

mortality was not supported, as both chosen and forced-pairs obtained similar embryo 

mortality rates. The result of our test is surprisingly at odds with the conclusion of previous 

studies whose aim was also to quantify the benefits of mate choice. These studies found 

higher offspring viability in chosen pairings and interpreted this as evidence for the 

compatible gene hypothesis, although the experimental design did not control for ‘good 

gene’ effects (Drickamer et al. 2000; Drickamer et al. 2003; Gowaty et al. 2003; Bluhm & 

Gowaty 2004b, a; Anderson et al. 2007; Raveh et al. 2014). Also, these studies cannot rule 

out that the type of pairing (chosen vs non-chosen) affected maternal investment into the 

quality of eggs with potential effects on offspring viability. For instance, experimental work 

on zebra finches shows that the amount of stimulation from the partner (which may be 

higher for a preferred mating) affects egg quality (Bolund et al. 2012). Such synergistic 

effects, that in preferred pairings, the two partners might be more efficient in stimulating 

one another (for male sperm allocation and female investment in egg nutrients), may be an 

alternative explanation that was not regarded in earlier studies. Hence, to validate the 

conclusions of previous studies, artificial insemination would be needed to experimentally 

demonstrate that higher offspring viability arises from genetic compatibility and not simply 

from maternal or paternal effects following greater stimulation by the partner.  

I 
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The meta-analysis presented in Chapter 2 shows no support for the idea that zebra 

finches are able to recognize genetic similarity per se (for instance by self-referent 

phenotype matching) to avoid genetic incompatibility associated with inbreeding 

depression. To the contrary, the experiment presented in the same chapter suggest that 

inbreeding avoidance occurs in zebra finches only when the mechanisms that are 

experimentally allowed for are relatively simple, that is when kin can be recognized by 

direct familiarisation. More precisely, the discrimination seems only possible if sibling can 

maintain social contact from hatching to sexual maturity, and particularly without 

interruption during the puberty period, where the phenotypes of individuals change 

drastically (Zann 1996). These conclusions are nevertheless still pending for confirmation: 

follow-up studies should involve 1) testing the avoidance of foster-siblings, to definitively 

exclude mechanisms of true kin recognition, and 2) the manipulation of the period of 

familiarisation, to determine precisely what degree of acquaintance is necessary for 

avoidance to take place and during which stage of ontogeny familiarisation is effective. 

More generally, in birds, both these points should be further investigated, as experimental 

work on this subject is still lacking in avian research in comparison to the mammalian 

literature (Komdeur & Hatchwell 1999; Nakagawa & Waas 2004). 

Extra-pair mate choice 

Fertility benefits have been widely mentioned in the list of reasons why extra-pair behaviour 

could be advantageous to females (Petrie & Kempenaers 1998; Griffith et al. 2002; Arnqvist 

& Kirkpatrick 2005; Kempenaers & Schlicht 2010), but after careful consideration, the 

conditions under which female extra-pair behaviour could indeed evolve for fertility benefits 

are rather limited (see Hasson & Stone 2009). The experiment presented in Chapter 1 was 

the first of its kind to test a specific case of the fertility insurance hypothesis under which 

females that repeatedly breed with the same social partner could adaptively adjust their 

promiscuous behaviour to the outcome of previous breeding events (Rasmussen 1981; 

Hasson & Stone 2009). Hatching failure, in the zebra finch, is a repeatable characteristic of 

the genetic parents (analysis presented in Chapter 1), and is mostly caused by embryo 

mortality (in the communal breeding aviaries in the experiment presented in Chapter 3, 

21% of the eggs contained a dead embryo while only 9% of the eggs were categorized as 

infertile). In the experiment presented in Chapter 1, females that experienced repeated 

hatching failure with their social partner did not increase their responsiveness towards 

extra-pair males in comparison to females that obtained 100% of hatching success. Instead 

of compensating for an apparent genetic incompatibility with their mate, female became 

more and more faithful to their partner as pair-bond duration increased; and, in addition, 

they did not divorce when the opportunity was given. Therefore, these experimental results 

did not show any support for the idea that females would seek compatible gene benefits 

through extra-pair copulations. Nevertheless, the lack of social interaction between our 

experimental breeding pairs (each pair breeding in a separate aviary) could have affected 

the results. Potentially, a different outcome could have emerged if individuals had been 
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allowed to compare their own breeding success to the one of others (see e.g. Forsman et al. 

2012 for an example of an effect of public information use on breeding decision). 

In the experiment testing the existence of inbreeding avoidance in the zebra finch 

(Chapter 2), 25% of females chose their familiar brother as social partner. Potentially, in 

some species, pairing between siblings could be advantageous if, for instance, it eases 

cooperation over parental care. Nevertheless, females in such a system could still mate with 

unrelated individuals to avoid inbreeding depression in their offspring. In our experiment, 

females who choose to socially pair with their brother did not have more extra-pair young 

than females that paired with unrelated males, and they therefore did not compensate for 

the genetic incompatibility with their partner. In the zebra finch, where most of the 

reproductive success is reached with the social partner, inbreeding avoidance is strongly 

expected during social mate choice. It is therefore more likely that social pairing between 

siblings in this experiment resulted from assessment error, or from individual variation in 

the sensitive phase during which mating aversion for associated individuals is formed. 

In the experiment presented in Chapter 3, females of arranged pairs were 

significantly more likely to have clutches with extra-pair young. This could be explained by 

their slightly lower rate of within-pair copulation but also by their slightly higher rate of 

extra-pair copulation. In this experiment, females did not seek compatible gene benefits 

during free social mate choice (see above). Therefore, the arguably higher promiscuity of 

force-paired females cannot be explained by a female compensation for a lack of genetic 

compatibility with their assigned partner. Instead, the relatively more pronounced extra-

pair behaviour in females of non-chosen pairs might represent a ‘by-product’ of their social 

mating preferences, which are not satisfied with their non-chosen partner. Indeed, in free 

choice experiments, female-specific preferences seem to target the same particular males 

irrespective of whether the females are still socially unpaired (i.e. searching for a partner) or 

already paired (i.e. judging extra-pair males that court them; see General Introduction). As 

those idiosyncratic social mating preferences did not aim at optimising genetic compatibility 

(see above), these can be based on criteria related to behavioural compatibility, such as 

individually specific sensory exploitation (see below). 

It is often suggested that females seek direct benefits during social mate choice and 

indirect benefits during extra-pair mate choice (Jennions & Petrie 1997, 2000; Candolin 

2003; Kempenaers 2007). In this scenario, females could for instance recognise genetically 

compatible males but would preferentially mate with them in the extra-pair context (similar 

to the phenotype-linked fertility hypothesis, Sheldon 1994). This does not seem highly likely 

since no effect of genetic similarity per se was found in the context of inbreeding avoidance 

(meta-analysis in Chapter 2). Alternatively, females could perceive their genetic 

incompatibility with their social partner and consequently engage in extra-pair copulation, 

although such effect was not found in the experiment presented in Chapter 1. Finally, all 

females could randomly engage in extra-pair copulation if a post-copulatory mechanism 
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allows the discrimination of genetically incompatible sperm. This mechanism  has been 

often suggested (e.g. see Tregenza & Wedell 2002; Foerster et al. 2003) but, to my 

knowledge, only confirmed in a single study on guppies so far (Gasparini & Pilastro 2011). In 

any case, provided that, in this system, embryo mortality is the main consequence of 

genetic incompatibility, if promiscuous females gain compatible genes benefits, extra-pair 

young should be less likely to die during embryo development than their respective within-

pair maternal half-sib. This was not the case with the data collected in communal breeding 

aviaries for the experiment presented in Chapter 3 (embryo mortality rate of within-pair 

young=19±3%, versus extra-pair young=20±6%, P=0.83, N=842 genotyped eggs, from 68 

social pairs, 240 clutches, 56 genetic mothers and fathers; model otherwise built as TS2#5 in 

Chapter 3). Nevertheless, this test has a limited power (with only 19 extra-pair dead 

embryos) and could be confounded with several other factors such as good gene effects or 

female differential investment (although those factors are often thought to lead to an over- 

rather than under-estimation of the effect of compatible genes). To directly test the 

existence of a post-copulatory mechanism allowing the selection of compatible sperm (i.e. 

female cryptic choice), artificial insemination of a mix of sperm from related and unrelated 

male should be performed (see for instance Denk et al. 2005). This was done for the first 

time in the mallard, a duck species where females are not in control over copulations, and 

where therefore such post-copulatory mechanism could have evolved (Denk et al. 2005). 

Nevertheless, no fertilization bias toward the unrelated male was found (Denk et al. 2005). 

In the zebra finch, sperm competition is rather limited (with females being rarely 

promiscuous, and where no forced-copulation occurs), and therefore such post-copulatory 

mechanism seem even less likely to have evolved. 

On the same note, if we consider that life-long social monogamy is the default in the 

zebra finch (although, it is still not understood why they exhibit such a mating system), and 

that the strength of social pair-bonding may share proximate mechanisms with the 

phenomenon of high sexual fidelity (Rasmussen 1981), then there is possibly not much 

scope for extra-pair behaviour to evolve as an adaptive response to a certain context. Such 

psychological constraint might also explain the negative correlation between pair tenacity 

(which is likely to be higher in long-lived species) and extra-pair paternity rate across species 

(Wink & Dyrcz 1999). Nevertheless, species showing both low divorce rate and high extra-

pair paternity rate also exist (e.g. European nuthatch (Sitta europaea), Segelbacher et al. 

2005; and wandering albatross (Diomedea exulans), although in this species, extra-pair 

behaviour has apparently no benefits for females, Jouventin et al. 2007). In the zebra finch, 

one could still have thought that the high rate of embryo mortality occurring specifically in 

certain pairs could have been a strong selective pressure favouring adaptive promiscuous 

behaviour, even if only resulting in the low rate of extra-pair paternity observed in the wild. 
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To recapitulate, in the zebra finch, there is so far no evidence that females gain 

indirect genetic benefits from extra-pair copulations, while there is some evidence that this 

behaviour is partly intrinsic (Forstmeier 2007), and heritable, potentially resulting from an 

indirect selection on alleles that increase male promiscuity (Forstmeier et al. 2011). 

Moreover, the repeatability of female-specific preferences in both the context of social and 

extra-pair mate choice suggest that female extra-pair mate choice could simply be a by-

product of social mate choice (General Introduction) rather than an adaptation. 

Overall support for the hypothesis of mate choice for genetic compatibility 

To summarize, this thesis comprises three studies specifically testing whether female zebra 

finches would choose mates according to compatible gene benefits, and this hypothesis was 

three times not supported (Chapter 1, meta-analysis of Chapter 2, Chapter 3). The 

hypothesis only held in the context of inbreeding avoidance between siblings when 

complete knowledge of kinship was made possible (experiment of Chapter 2). This suggests 

that, most likely, zebra finches have not evolved any ability to judge genetic compatibility of 

any kind, neither able to assess genetic similarity per se, nor able to assess other specific loci 

that are thought to cause embryo mortality. As this hypothesis has been suggested 

repeatedly (e.g. Jennions & Petrie 2000; Johnsen et al. 2000; Tregenza & Wedell 2000; 

Foerster et al. 2003; Neff & Pitcher 2005; Kempenaers 2007; Puurtinen et al. 2009), the 

present experimental work constitutes a clear progress in the field. 

If zebra finches did not evolve mate choice for genetic compatibility, more 

experimental work should still be carried out on species where fertilization bias against 

unfamiliar siblings or in favour of MHC-dissimilar males has already been found. In such 

species, like the field mouse (Lindholm et al. 2013), the field cricket (Gryllus bimaculatus, 

Bretman et al. 2009), the red junglefowl (Pizzari et al. 2004; Løvlie et al. 2013), and the 

guppy (Gasparini & Pilastro 2011; but see Evans et al. 2008), where female choice for 

genetically compatible partner seems to occur without requiring familiarity as a cue to 

kinship, careful experiments and/or replicates should be performed. Subsequent follow-up 

studies should then investigate meticulously the proximate mechanism allowing such 

astonishing adaptive behaviour. 

For instance, in the field cricket and red junglefowl, differential retention of sperm 

has been found following controlled natural copulations with males of different relatedness 

(Pizzari et al. 2004; Bretman et al. 2009), while no fertilization bias was found in the guppy, 

mallard, and red junglefowl following artificial insemination (Denk et al. 2005; Evans et al. 

2008; Løvlie et al. 2013; but see Gasparini & Pilastro 2011). This suggests that contact with 

males might be necessary for females to discriminate against related ones. Interestingly, in 

an experiment on the Australian field cricket (Teleogryllus oceanicus), where females were 

shortly mated with a male of known relatedness, and subsequently guarded for a longer 

period by a related or unrelated males, it was found that the extent of sperm storage by the 

female was influenced by the relatedness of the guarding male rather than the mating male 
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(Tuni et al. 2013). Some lines of evidence indeed suggest that, in crickets, the mechanism of 

kin recognition could be based on the detection of cuticular pheromones following physical 

contact (e.g. see Simmons 1990), and this could lead to higher discrimination the longer the 

encounter. Similarly, the manipulation of female perception of which male she is mating 

with could maybe be implemented in species where artificial insemination can also be 

performed. For instance, males, both related and unrelated to focal females, could be 

sterilized, and providing that this does not alter their sexual behaviour, could be allowed to 

mate with females which subsequently could be artificially inseminated with sperm of a 

related or an unrelated male. This type of design could help quantifying the relative 

importance of pre- and post-copulatory processes. The guppy could potentially be an 

adequate species to carry out such an experiment, as the evidence for both pre- and post-

copulatory mate choice regarding relatedness have been mixed (see Evans et al. 2008; 

Gasparini & Pilastro 2011 and references therein). 

If discrimination against unfamiliar siblings is repeatedly confirmed in a species, and 

shown to be based either on a pre-copulatory mate choice mechanism (e.g. involving 

cuticular pheromones) or a post-copulatory mechanism (e.g. involving the interaction 

between the ovarian fluid and the sperm (Gasparini & Pilastro 2011)), the crucial and 

exciting research will then be to unravel the precise nature of this mechanism. Indeed, to be 

evolutionary stable, this mechanism would need to be sophisticated enough to prevent 

males (who are expected to be in sexual conflict with females) from overriding the system, 

and to allow females to both identify and discriminate against genetically closely related 

males without leading to a preference for heterospecific males. This particular question of 

mate choice for genetic compatibility highlights the importance of integrating the 

mechanistic and evolutionary fields of research. Robust evidence of an adaptive behaviour 

can set the arena for a mechanism to be discovered; and, reciprocally, comprehending the 

mechanisms and the constraints they can impose on evolutionary pathways could help 

distinguishing what constitutes a true adaptation from what is arguably more likely to be a 

false-positive result (Ioannidis 2005; Simmons et al. 2011). 

Signs of mate choice for behavioural compatibility 

In the experiment presented in Chapter 3, chosen pairs, who could benefit from 

compatibility advantages, achieved higher offspring survival than forced pairs (whose pair 

members were on average of same quality as in chosen pairs). As variance in nestling 

mortality in cross-fostered eggs is mainly explained by the rearing pair identity rather than 

the genetic pair identity (analyses presented in Chapter 3), higher offspring survival in 

compatible pairs supports the hypothesis of mate choice for behavioural rather than genetic 

compatibility. This study not only considered the largely neglected direct benefits of mate 

choice for compatibility, but also constitutes the first empirical evidence of fitness 

consequences of mate choice for behavioural compatibility.  
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First of all, to confirm our results, one might consider repeating the experiment 

presented in Chapter 3 while cross-fostering the eggs before measuring the rearing success 

of chosen and non-chosen pairs, arguably under standardized conditions (e.g. same brood 

size, with offspring of a same genetic diversity, etc).  If such mate choice for behavioural 

compatibility is found to be replicable, the criteria for mate choice and the actual male by 

female phenotypic interactions leading to fitness differences should then be carefully 

investigated. The benefits associated to behavioural compatibility could come from a range 

of different phenomena. In our study, we did not find evidence that pair bond duration or 

pair harmony was correlated with fitness, as it was found elsewhere (e.g. Spoon et al. 2006; 

Sánchez-Macouzet et al. 2014). For instance, in a study on cockatiels, coordination during 

incubation was important in determining hatching success (Spoon et al. 2006). In zebra 

finches, hatching success is more strongly dependent on the genetic parents rather than the 

foster parents (analyses presented in Chapter 1) and therefore, coordination during 

incubation seems not to be as crucial, or at least do not seem to vary much between pairs. 

Nevertheless, coordination in provisioning as observed in wild zebra finches (Mariette & 

Griffith 2012) could potentially be of importance if it ensures an equal distribution of food 

among siblings and thereby limits sibling competition (Shen et al. 2010; Gilby et al. 2011); 

but this specific type of coordination was not examined in our study. More details on 

provisioning behaviour could be obtained in further studies, notably by integrating cameras 

inside nest boxes, to be able to count the number of seeds delivered to specific offspring. 

Indeed, other measurements such as visit rate or visit duration are poor indicators of 

feeding rates (Gilby et al. 2011). Measures of food delivery per chick would give an 

indication on whether certain offspring reared by non-chosen pairs die from starvation 

because they do not get fed regularly enough due to a lack of complementarity in male and 

female parental care. 

In addition, it has been suggested that certain combination of personality types 

could reduce conflict over parental care and that two individuals of similar personality could 

make better parents (Both et al. 2005; Schuett et al. 2011; but see Schielzeth et al. 2011). 

We did not measure any personality traits of individuals prior to the experiment, notably 

because we did not have strong a priori predictions on what the specific advantages of 

being behaviourally similar (for a certain aspect) would be. As the experiment was taking 

place in aviaries with ad libitum food in a known location, personality traits that relate to 

complementarity in foraging behaviour (e.g. exploratory tendencies) did not likely lead to 

the fitness differences observed. Potentially, personality traits influencing the capacity of 

individuals to communicate efficiently with each other could be involved, but to my 

knowledge, such type of between-individual variation has not been characterised so far. 

Several earlier experimental studies of the benefits of mate choice found increased 

offspring viability in chosen pairs, and interpreted this as evidence for genetic compatibility 

benefits rather than for behavioural compatibility benefits because these species do not 

show bi-parental care (Drickamer et al. 2000; Drickamer et al. 2003; Gowaty et al. 2003; 
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Bluhm & Gowaty 2004b, a; Anderson et al. 2007; Raveh et al. 2014). However, the viability 

of the offspring could also have been enhanced by a stronger maternal investment 

mechanistically triggered by some kind of proximate stimulation (e.g. see Erickson & 

Lehrman 1964; Arak & Enquist 1993; Wachtmeister 2001; Bolund et al. 2012; Servedio et al. 

2013). The results of our exploratory analyses on individual commitment to their 

relationship suggest that individuals of non-chosen pairs were indeed less motivated to 

breed with each other. A reduction of reproductive investment is likely maladaptive in zebra 

finches as they are a life-long monogamous and short-lived species (see also the follow-up 

experiment presented in the supplemental information of Chapter 3). Such lack of 

motivation could reflect a psychological constraint resulting, for instance, from general 

choosiness, irrespective of whether choosiness is directly selected for in another context, or 

simply not selected against.  Indeed, the inherent propensity of an individual to mate more 

readily with certain phenotypes of the opposite sex (i.e. mating preference) leading to 

different ranking of males, might easily arise from inevitable variation (due to random 

mutation) in sensory systems leading to variation in sensory biases (Arak & Enquist 1993; 

Jennions & Petrie 1997; Kokko et al. 2006). Whether these preferences translate into mate-

choice decisions depends crucially on whether there is also selection for female choosiness, 

as choosiness (i.e. the extent to which an individual is willing to sample mates before 

deciding to mate) is likely to bear some costs (Jennions & Petrie 1997; Kokko et al. 2006). 

Nevertheless, if the costs of choosiness are low, which is possibly the case in a gregarious 

species forming large flocks, then choosiness and variation in preferences could be 

maintained and lead to significant evolutionary consequences. 

Testing such a hypothesis appears challenging. An original design could nevertheless 

be conceived from the combination of the results of this thesis: if zebra finches do avoid 

inbreeding only by association learning, and if there was assortative pairing for any traits 

that would lead to direct compatibility benefits (e.g. due to personality or sensory system 

matching), assortative pairing should be found among unfamiliar siblings who are more 

likely to share such traits. Nevertheless, with the likely low values of repeatability and 

heritability of those potentially important traits and preferences thereof, sample sizes for 

such an experiment would need to be extremely large. Such a holistic approach has 

nevertheless the merit of not being restricted to a putative trait of importance (e.g. 

exploratory behaviour) in order to confirm that mate choice for behavioural compatibility 

occurs based on genetically heritable traits already present at the time of mating. 

Alternatively, the repeatability of idiosyncratic preferences could be studied for particular 

traits. Song characteristics are potentially easy to evaluate by females during their first 

encounter with a male, and are likely candidates to the stimulation of the female’s sensory 

system (Bolund et al. 2012). Although the repeatability of a female’s preference for a certain 

song belonging to a given male stimulus within a given dyad of males has been shown across 

different choice devices (operant test, phonotaxis test and live male test, Holveck & Riebel 

2007), the repeatability of female preferences for a certain type of song, independently of 
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the identity of the male, has, to my knowledge, not been studied so far. Directed song of 

males could be characterised for hundreds of individuals in sound boxes following the 

methods of Forstmeier et al. (2009) to get information on structural characteristics (e.g. 

syllable durations, number of syllables) and voice characteristics (e.g. distribution of sound 

amplitudes over the frequency spectrum, i.e. timbre). In male zebra finches, variation in 

song structure shows a low heritability because these characteristics are mostly learned 

from a tutor, while voice characteristics show significant heritable variation (Forstmeier et 

al. 2009). Sets of males with identical song structure (but different voices) could therefore 

be relatively easily formed. Females could then be assessed repeatedly for their preferences 

for a particular song structure in choice chamber devices where different males singing a 

same ‘text’ could be successively presented in pairs of stimulus males of dissimilar ‘texts’. 

Likewise, this could also be done to study idiosyncratic preferences for voice characteristics 

by using males of same families (or with similar voice characteristics) having learned their 

text from different tutors.  

To conclude, the experiment presented in Chapter 3 supports the hypothesis of 

mate choice for behavioural compatibility. It might be that chosen pairs were better at 

coordinating parental care and at resolving conflicts, or, alternatively, that certain 

combinations of partners could be better at stimulating each other to reproduce. To fully 

comprehend mate choice for behavioural compatibility and to be able to establish links of 

causality, more experimental work should be carried out in the same species, and the 

proximate mechanisms underlying this behaviour should be investigated. 

General conclusion 

Generally, this study questions the adaptiveness of social and extra-pair mate choice 

that is always assumed by default. Zebra finches were unable to identify partners with 

whom they would maximise their hatching success, and did not adjust their extra-pair 

mating behaviour in response to experiences in hatching success. Allowing free social mate 

choice did enhance pair fitness, but the adaptive significance of the underlying choosiness 

remains speculative. A null model consisting of random non-adaptive genetic variation in 

sensory systems and variation in phenotypes that are better at stimulating some sensory 

systems than others might well account for the observed fitness differences between 

chosen and non-chosen pairs.  
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Future avenues of research related to sexual selection theory:  

an integrative evolutionary behavioural ecology? 

‘In general, better understanding of female neurobiology and sensory capabilities is a 

prerequisite for any real advance in our understanding of mate choice.’ 

Jennions & Petrie (1997) 

 ‘The field of behavioural ecology should make better use of model organism to be able to 

test the underlying assumption of the hypothesis of sexual selection, quantitative genetic of 

the traits and preferences, and also to allow replication without which the field lack of 

robust scrutiny.’ 

Owens (2006) 
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Summary 

ehavioural ecologists aim at providing insights into the evolutionary and ecological 

processes that shape animal behaviour. Mate choice is a decision faced by most 

animals that can strongly affect an individual’s reproductive success, an important fitness 

component. This behaviour has therefore the potential to show many adaptations which 

have been the subject of a vivid research interest over the last decades.  

Studies on mate choice have typically focused on female preferences for traits that 

increase a male's overall attractiveness, which supposedly reflects the male’s absolute 

quality. Preferences for such traits are expected to provide females with benefits such as 

good paternal care or ‘good genes’ for their offspring. Nevertheless, in some species, 

individuals actually show little consensus on what represents a high-quality partner. Such 

individually-specific preferences are poorly understood, but it has been hypothesized that 

they have evolved to optimise genetic compatibility (to increase offspring viability) or, 

although rarely mentioned, to optimise behavioural compatibility (to facilitate joint parental 

care). The zebra finch is a life-time monogamous passerine whose mating preferences for 

putative quality traits have been widely studied but where no such quality indicator has 

been repeatedly shown to influence mating decisions. In this species, preferences seem 

instead largely idiosyncratic. 

In this thesis, I investigated whether female zebra finches choose genetically and/or 

behaviourally compatible social mates (Chapters 2 and 3). More precisely, I measured, in a 

large-scale breeding design, the fitness consequences of free mate choice for compatibility 

while experimentally controlling for effects of overall quality (Chapter 3). In this system, 

genetic incompatibility results in embryo mortality and therefore hatching failure, while 

behavioural incompatibility results in offspring mortality. I therefore expected social mate 

choice for genetic and/or behavioural compatibility to optimise embryo and offspring 

survival (Chapter 3). Moreover, I tested whether siblings who grew up together avoid 

choosing each other as social partner; in other words, if they avoid inbreeding depression by 

choosing a genetically more compatible partner (Chapter 2). In addition, I performed a 

meta-analysis of published experiments on zebra finches that allow for different 

mechanisms of kin discrimination to take place (Chapter 2). Finally, I investigated whether 

females enhance their extra-pair behaviour when paired to an apparently genetically 

incompatible male to obtain compatible genes benefits (Chapter 1). Indeed, extra-pair 

behaviour is largely hypothesized to be an adaptive response that would allow females to 

compensate for a potentially sub-optimal social mate choice. Specifically, I tested whether 

female extra-pair mating evolved as a counter strategy when females experience low 

hatching success with their social partner, that is to say whether female extra-pair mate 

choice targets fertility benefits and/or compatible genes benefits (Chapter 1). 
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Contrary to all expectations derived from optimality, zebra finches were unable to 

identify partners with whom they would minimise embryo mortality (Chapter 3), or to 

recognize unfamiliar kin on the basis of genetic similarity per se to minimize inbreeding 

depression (meta-analysis of Chapter 2), and did not adjust their extra-pair mating 

behaviour in response to repeated hatching failure (Chapter 1). This suggests that, in zebra 

finches, individuals have not evolved any ability (other than avoiding familiar kin, 

experiment of Chapter 2) to judge genetic compatibility of any kind, despite the adaptive 

value of such behaviour. 

Finally, allowing free social mate choice did enhance pair fitness due to direct 

compatibility benefits (Chapter 3). This thesis provides therefore the first evidence of mate 

choice for behavioural compatibility. Nevertheless, the adaptive significance of the 

underlying choosiness remains speculative (Chapter 3). A null model consisting of random 

non-adaptive genetic variation in sensory systems and variation in phenotypes that are 

better at stimulating some sensory systems than others might well account for the observed 

fitness differences between compatible and incompatible pairs.  

This study highlights that there are limits to adaptation.    
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