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Abstract 

Music has been the subject of formal approaches for a long time, ranging from Pythagoras’ 

elementary research on tonal systems to J. S. Bach’s elaborate formal composition techniques. 

Especially in the 20th century, much music was composed based on formal techniques: 

Algorithmic approaches for composing music were developed by composers like A. Schoenberg 

as well as in the scientific area. So far, a variety of mathematical techniques have been 

employed for composing music, e.g. probability models, artificial neural networks or constraint-

based reasoning. In the recent time, interactive music systems have become popular: existing 

songs can be replayed with musical video games and original music can be interactively 

composed with easy-to-use applications running e.g. on mobile devices. However, applications 

which algorithmically generate music in real-time based on user interaction are mostly 

experimental and limited in either interactivity or musicality. There are many enjoyable 

applications but there are also many opportunities for improvements and novel approaches. 

The goal of this work is to provide a general and systematic approach for specifying and 

implementing interactive music systems. We introduce an algebraic framework for interactively 

composing music in real-time with a reasoning-technique called ‘soft constraints’: this technique 

allows modeling and solving a large range of problems and is suited particularly well for 

problems with soft and concurrent optimization goals. Our framework is based on well-known 

theories for music and soft constraints and allows specifying interactive music systems by 

declaratively defining ‘how the music should sound’ with respect to both user interaction and 

musical rules. Based on this core framework, we introduce an approach for interactively 

generating music similar to existing melodic material. With this approach, musical rules can be 

defined by playing notes (instead of writing code) in order to make interactively generated 

melodies comply with a certain musical style. We introduce an implementation of the algebraic 

framework in .NET and present several concrete applications: ‘The Planets’ is an application 

controlled by a table-based tangible interface where music can be interactively composed by 

arranging planet constellations. ‘Fluxus’ is an application geared towards musicians which allows 

training melodic material that can be used to define musical styles for applications geared 

towards non-musicians. Based on musical styles trained by the Fluxus sequencer, we introduce a 

general approach for transforming spatial movements to music and present two concrete 

applications: the first one is controlled by a touch display, the second one by a motion tracking 

system. At last, we investigate how interactive music systems can be used in the area of 

pervasive advertising in general and how our approach can be used to realize ‘interactive 

advertising jingles’.  



Zusammenfassung 

Musik ist seit langem Gegenstand formaler Untersuchungen, von Phytagoras‘ grundlegender 

Forschung zu tonalen Systemen bis hin zu J. S. Bachs aufwändigen formalen 

Kompositionstechniken. Vor allem im 20. Jahrhundert wurde vielfach Musik nach formalen 

Methoden komponiert: Algorithmische Ansätze zur Komposition von Musik wurden sowohl von 

Komponisten wie A. Schoenberg als auch im wissenschaftlichem Bereich entwickelt. Bislang 

wurde eine Vielzahl von mathematischen Methoden zur Komposition von Musik verwendet, z.B. 

statistische Modelle, künstliche neuronale Netze oder Constraint-Probleme. In der letzten Zeit 

sind interaktive Musiksysteme populär geworden: Bekannte Songs können mit Musikspielen 

nachgespielt werden, und mit einfach zu bedienenden Anwendungen kann man neue Musik 

interaktiv komponieren (z.B. auf mobilen Geräten). Allerdings sind die meisten Anwendungen, 

die basierend auf Benutzerinteraktion in Echtzeit algorithmisch Musik generieren, eher 

experimentell und in Interaktivität oder Musikalität limitiert. Es gibt viele unterhaltsame 

Anwendungen, aber ebenso viele Möglichkeiten für Verbesserungen und neue Ansätze. 

Das Ziel dieser Arbeit ist es, einen allgemeinen und systematischen Ansatz zur Spezifikation und 

Implementierung von interaktiven Musiksystemen zu entwickeln. Wir stellen ein algebraisches 

Framework zur interaktiven Komposition von Musik in Echtzeit vor welches auf sog. ‚Soft 

Constraints‘ basiert, einer Methode aus dem Bereich der künstlichen Intelligenz. Mit dieser 

Methode ist es möglich, eine große Anzahl von Problemen zu modellieren und zu lösen. Sie ist 

besonders gut geeignet für Probleme mit unklaren und widersprüchlichen Optimierungszielen. 

Unser Framework basiert auf gut erforschten Theorien zu Musik und Soft Constraints und 

ermöglicht es, interaktive Musiksysteme zu spezifizieren, indem man deklarativ angibt, ‚wie sich 

die Musik anhören soll‘ in Bezug auf sowohl Benutzerinteraktion als auch musikalische Regeln. 

Basierend auf diesem Framework stellen wir einen neuen Ansatz vor, um interaktiv Musik zu 

generieren, die ähnlich zu existierendem melodischen Material ist. Dieser Ansatz ermöglicht es, 

durch das Spielen von Noten (nicht durch das Schreiben von Programmcode) musikalische 

Regeln zu definieren, nach denen interaktiv generierte Melodien an einen bestimmten Musikstil 

angepasst werden. Wir präsentieren eine Implementierung des algebraischen Frameworks in 

.NET sowie mehrere konkrete Anwendungen: ‚The Planets‘ ist eine Anwendung für einen 

interaktiven Tisch mit der man Musik komponieren kann, indem man Planetenkonstellationen 

arrangiert. ‚Fluxus‘ ist eine Anwendung, die sich an Musiker richtet. Sie erlaubt es, melodisches 

Material zu trainieren, das wiederum als Musikstil in Anwendungen benutzt werden kann, die 

sich an Nicht-Musiker richten. Basierend auf diesen trainierten Musikstilen stellen wir einen 

generellen Ansatz vor, um räumliche Bewegungen in Musik umzusetzen und zwei konkrete 

Anwendungen basierend auf einem Touch-Display bzw. einem Motion-Tracking-System. 

Abschließend untersuchen wir, wie interaktive Musiksysteme im Bereich ‚Pervasive Advertising‘ 

eingesetzt werden können und wie unser Ansatz genutzt werden kann, um ‚interaktive 

Werbejingles‘ zu realisieren.  
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1 INTRODUCTION 

Typically, automata accomplish tasks which are considered as ‘useful’, for example selling 

beverages, washing dishes or building cars. However, automata have also been built to entertain 

people for a long time: In the first century A.D., the Greek inventor Heron of Alexandria 

designed a mechanical theatre where puppets are automatically moved by a complex 

mechanism of strings, weights and axes (1). Musical automatons belong to the earliest known 

designs of programmable machines (2): In a work attributed to Archimedes, an automatic flute 

player is described which is driven by air that is compressed by a complex hydraulic system and 

in the 9th century, long before programmable looms and calculation machines were invented, 

the brothers Mūsā in Baghdad described an automatic flute player which is controlled by pins on 

a rotating drum that open the holes of a flute via little levers. By using other configurations of 

pins, the automaton can be programmed to play different melodies (3). 

 

FIGURE 1 ARCHIMEDES AUTOMATIC FLUTE PLAYER (3) 

 

In the Renaissance, entertainment automata were popular at court: besides musical automata, 

many other kinds of mechanical devices were used to entertain and impress, for example trick 

fountains, artificial animals or other technical curiosa. Programmable carillons are known since 

the 13th century and are often combined with visual elements. For example, the ‘Strasbourg 

astronomical clock’ from 1354 had a gilded rooster which ‘opened its beak, stretched out its 

tongue, flapped its wings, spread out its feathers and crowed’ (4). Another famous example for 

such automaton is the ‘Rathaus-Glockenspiel’ in Munich. Musical automata have also been built 

based on a variety of other instruments, for example so-called ‘Orchestrions’ which 

automatically play music using e.g. pipe organs, pianos or percussion instruments. 
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Besides entertaining people, the development of entertainment automata can also drive 

technology in general: in the 18th century, Jacques de Vaucanson invented several 

programmable musical automata before he designed the first automatic loom based on 

punched cards (2). This design was later adapted and improved by Joseph-Marie Jacquard and 

played an important role in the development of computers. A more recent example for 

entertainment driving technology is the video game industry which has effects on various other 

areas like computer graphics or artificial intelligence (5). 

Today, there exist a variety of popular ‘musical automata’. With music video games, one can 

sing (‘Sing Star’), play instruments (‘Guitar Hero’) or dance (‘Dance Dance Revolution’) to 

popular songs. The goal of these games is to accomplish a set of predefined actions as accurate 

as possible in order to achieve a good score.  Besides games where music is the integral part, 

there are also games where dynamically generated music is used to enrich the gaming 

experience (6). It is already common to dynamically select longer pieces of music in order to 

create a certain mood (e.g. when the player gets involved in a fight), but there are also games 

where music is generated on a more fine-grained level, e.g. directly based on his actions like 

shooting. Besides music games where one has to achieve a certain goal, there are also plays (i.e. 

invitations to less structured activities) where music can be played without any additional goal. 

Targeted particularly at non-musicians, these applications allow intuitively playing music in a 

rather simple way. Typical application areas for interactive music systems are casual games (e.g. 

on mobile devices or in the Internet), public installations (e.g. at an art exhibition) or as part of a 

professional musical performance. Interactive music is an area of research at the moment and 

most existing systems are rather experimental: systems which generate well-sounding music are 

often limited in interactivity and mostly based on pre-recorded pieces of music which can be 

combined in different ways. Vice versa, highly interactive systems which provide more direct 

and immediate control over the shape of melodies are mostly limited in musicality. There exist 

many applications which are fun to play with and produce appealing sound, but there are also 

many opportunities for improvements. 

In the scientific area, a variety of approaches for algorithmically generating music have been 

investigated. Of particular relevance are systems based on so-called constraints, a technique 

that allows defining rules with logical formulas. Constraints have been employed for algorithmic 

composition of music since the late 1970’s to our knowledge (7) and have been widely used to 

generate musical scores that fit to an existing melody and follow several general musical rules 

(known as the ‘Automatic Harmonization Problem’). The actual rules for various musical eras are 

well-known, for example in the era of Baroque it is not allowed to keep the fifth interval in two 

successive notes (the so-called ‘parallel fifths’ rule). Most such rules state incompatibilities, so 

constraints are very adequate for formulating such music theories. These classical Boolean 

constraints come to their limits when there are rules that do not have to be satisfied in any case 

or which are hard to formulate. In the recent years, an improved technique called soft 

constraints has been of general interest that extends classical constraints and provides a far 
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more expressive framework for defining rules. Besides several weaker notions of soft 

constraints, a very general and expressive framework based on work from Stefano Bistarelli, Ugo 

Montanari and Francesca Rossi (8) is of particular relevance. Besides classical logical rules, this 

framework allows defining certain levels of acceptance for solutions and is suited well for 

solving problems with concurrent and contradictory optimization goals. Soft constraints with a 

comparable generality and expressiveness have never been used for composing music. To us, 

they seem very promising for algorithmically generating music, especially in interactive real-time 

systems with many soft and concurrent rules. Compared to classical constraints, additional types 

of rules can be defined with soft constraints, for example in order to maximize the harmony of 

musical intervals between several voices. In this work, we want to develop a general approach 

for generating music with soft constraints in interactive real-time systems. Another widely used 

technique in the area of algorithmic composition is machine learning: the rules for generating 

music are derived from existing music, e.g. by training a statistical model or learning 

grammatical rules. Machine learning techniques are often used to originally compose new music 

that is consistent with a previously trained musical style – whereas constraints are mostly used 

to generate harmonization voices to an existing melody. It would be desirable to have both 

(soft) constraints and machine learning techniques in one framework. 

The main goal of this work is to extend known approaches for composing music based on 

classical constraints with soft constraints and to provide a general and systematic approach for 

specifying and implementing interactive music systems. We present an algebraic framework for 

declaratively specifying systems which generate music in real-time based on user interaction. 

The desired musical output is described in a conceptual way with (soft) constraints that specify 

‘how the music should sound’. These constraints can be derived from multiple sources: general 

musical constraints can for example enforce all notes to be on a certain tonal scale or to follow 

certain harmonic progressions. The mapping between user interaction and desired musical 

result can also be expressed with constraints that are generated for example from the sensor 

readings of an accelerometer or motion tracker. These constraints express the user’s 

preferences for certain aspects of the music, e.g. ‘I want to play fast and high notes’. Multiple 

voices can be coordinated among each other by declaring soft constraints that express rules for 

the combination of voices and, for example, prefer harmonic intervals between them. Another 

typical kind of soft constraint defines rules for melodic progressions that are used to generate 

music similar to given melodic material in order to e.g. make it consistent with a certain musical 

style or an advertising jingle. These constraints are generated from a general musical transition 

model and can be defined by training this model with one or several existing melodies. 
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We implemented our framework in .NET based on four main components: Music models basic 

concepts of music theory (notes, intervals, scales…) and provides an infrastructure for sending 

and receiving notes and metric information. Soft Constraints allows modeling and solving 

problems with soft constraints. Based on the latter two, Musical Soft Constraints makes it 

possible to compose music with soft constraints. Using this component, Musical Model 

implements our approach for training melodic material. Besides the core functionality specified 

in the algebraic framework, there is also much additional functionality for conveniently 

developing applications with only few programming code. Much effort was spent on achieving a 

high level of software quality with high demands on non-functional requirements. 

 

       

FIGURE 2 LEFT: ‘THE PLANETS’, RIGHT: TRANSFORMING BODY MOVEMENTS TO MUSIC 

 

Based on the algebraic framework and its implementation, we introduce several applications: 

‘The Planets’ is an application for the Microsoft Surface table where music can be interactively 

composed by arranging planet constellations. Each planet represents a certain instrument which 

is controlled by its relative position towards the sun: moving it closer to the sun makes it play 

faster; rotating it around the sun changes its pitch. Furthermore, it is also possible to control 

global parameters with two special planets, e.g. the global harmony between all planets. 

‘Fluxus’ is a Windows desktop application which is geared towards musicians and makes it 

possible to improvise music and train melodic material which can be used in applications geared 

towards non-musicians. This application makes use of a pattern-based approach for training 

dynamic models (as well as recording static melodies) for several instruments and re-playing 

them in different combinations. Based on melodic material trained by the Fluxus sequencer, we 

present a general approach for transforming spatial movements to music and two concrete 

applications: the first one is controlled by two-dimensional movements on a touch display, the 

second one by three-dimensional movements of body parts detected by a motion tracking 

system (Microsoft Kinect). Intuitively, this approach is based on the following interaction 

paradigm: the faster one moves his fingers or body parts, the faster the resulting melodies – the 
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higher their position, the higher the notes. At last, we investigate how interactive music systems 

can be used in the area of pervasive advertising in general and how our framework can be used 

to realize ‘interactive advertising jingles’ which can be interactively played on the one hand but 

can still be recognized as a given brand melody on the other hand. We implemented a prototype 

where interactive advertising jingles can be played with hand movements in front of a public 

display and conducted a study in order to find out how novice users can interactively play music 

without any previous training period. 

This work is organized as follows: In chapter 2, we show how problems can be modeled and 

solved with soft constraints and introduce a general approach for specifying systems which have 

to deal with dynamically changing preferences. In chapter 3, we give a short introduction to 

music theory with a focus on aspects relevant for this work. In chapter 4, we give an overview 

over the area of algorithmic composition. In chapter 5, we introduce our algebraic framework 

for declaratively specifying interactive music systems with soft constraints and compare our 

approach with related ones. In chapter 6, we introduce the .NET implementation of the 

framework and assess its quality. In chapter 7, we introduce the applications that have been 

developed using the framework so far and present results of our investigations how interactive 

music systems can be used in the area of pervasive advertising.  
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2 SOFT CONSTRAINTS 

Constraint programming is very different from most generally known programming paradigms. 

Instead of specifying an algorithmic procedure which computes a desired result step-by-step, 

the result itself is specified in a conceptual ‘declarative’ way. An overly simplified analogy to this 

is two different ways of ordering a pizza in a restaurant. 

The procedural way would sound like this: 

‘Take 250g flour, 1 packet of dry yeast, 1 cup of warm water, some salt and mix it all together. 

Then put a sheet over the bowl, keep it in a warm place and wait for 30 minutes. Afterwards, 

roll everything out on a baking tray with a paper below and brush it with olive oil. Top it with 

tomato sauce, cheese and ham and put it in the oven at 200°C. After half an hour, bring it to me, 

please!’ 

The declarative way would sound like this: 

‘I want a Pizza Prosciutto, please.’ 

The second approach is not just shorter than the first one - it is also likely that the pizza will 

arrive earlier and taste better because the given recipe is very primitive and most chefs will have 

more sophisticated ways of making a pizza, since they typically have lots of experience with that. 

Similarly, declarative programming makes it easy to model and solve certain kinds of problems 

very efficiently by only describing the properties of a desired result and leaving the actual work 

of computing it to a universally applicable software component (a so-called solver). In many 

cases, it would also require much work to develop a problem-specific solver from scratch which 

could compete with a highly optimized solver for general problems. One approach to declarative 

programming is based on so-called constraints: In classical constraint programming, a desired 

result is specified with several conditions constraining its properties. These conditions are 

expressed as logical formulas which imply a hard border between correct and incorrect results. 

Constraint satisfaction problems (CSP) proved to be useful in a large field of applications ranging 

from cabin layout design for airplanes to proving correctness of software. Constraints are also 

often used for solving scheduling problems (e.g. creation of timetables, planning of production 

processes, logistical problems…). However, there are also many real-life problems where 

classical constraints come to their limits because the border between ‘good’ and ‘bad’ results is 

fuzzy or hard to formulate. A way to deal with such problems is soft constraints. Intuitively, a 

soft constraint represents a condition which does not have to be met in any case. There are 

numerous formalisms for modeling soft constraints, for example by extending classical 

constraints with a global cost function (constraint optimization problems, COP) or maximizing 

the number of satisfied constraints (Max-CSP). For detailed information about modeling and 



17 

 

solving problems with constraints we refer to Rina Dechter´s book ´Constraint Processing´ (9). 

There is also a survey of approaches for modeling soft constraints (10). Of particular relevance 

to us is the work of Stefano Bistarelli, Ugo Montanari and Francesca Rossi who developed a very 

elegant framework for soft constraints (8) which is general enough to model many of the other 

approaches. This framework is based on so-called ´semirings´; a detailed overview about it is 

given in Stefano Bistarelli´s book ´Semirings for Soft Constraint Solving and Programming´ (11). 

The formalism used in this work – monoidal soft constraints (12) - is a slightly modified version 

of this framework and will be introduced in the next section. Our contribution to this work is the 

extension of the existing soft constraint solver with Cartesian products of monoids and partial 

orders. 

 

2.1 MONOIDAL SOFT CONSTRAINTS 

A soft constraint rates different alternatives for solving a problem by assigning a certain grade to 

each possible option. This makes it possible to compare alternative solutions among each other 

and search for the best one. The framework introduced here is not restricted to a certain type of 

grades: instead, they are modeled in a very modular and versatile way with an abstract algebraic 

structure, i.e. an abstract description of a set of grades with associated operations for combining 

and comparing them. Many different types of concrete grades can be used, for example 

numbers (integer, real…) or Boolean values. The framework is originally based on work from 

Bistarelli et al. (8), who used so-called semirings for modeling grades and operations on them. 

This framework was modified and extended by Hölzl, Meier and Wirsing in (12): the semirings 

were replaced by ordered monoids in order to provide a more natural way for defining grades 

and being able to define certain kinds of ‘meta-preferences’ over the constraints itself. The 

formalism introduced here was again slightly modified in (13). 

Topping 1 Topping 2 Beverage

 

FIGURE 3 PIZZA TOPPINGS 

 

As a running example in this section, we model preferences for ordering a pizza with two 

toppings and a matching beverage. The first topping can be ham, pepperoni or tuna; the second 

one onions, pineapple or mushrooms. The corresponding beverage can be wine, beer or water. 

We want to express preferences for topping combinations (e.g. ‘I like ham together with 

onions’) as well as preferences for the beverage depending on the toppings (e.g. ‘ham and wine 

fits quite well’). 
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In general, possible solutions of a problem are modeled by assigning values to variables. 

         is a finite set of problem variables and       a finite set of problem values. Values 

can be assigned to variables with a          , a function from variables to values: 

                         

 

In our example, we define the sets of variables and values like this: 

                                      

                                                                     

 

We now want to define preferences which express the properties of desired variable 

assignments. In classical constraint programming, legal variable assignments are defined with 

Boolean expressions which draw a hard line between ‘good’ (true) and ‘bad’ (false) solutions. In 

our example, we define a constraint which restricts all variables to a certain domain: 

                              

             

                                   

                                            

                                  

 (constraint for variable domains) 

 

We could for example also define a constraint which requires the beverage to be wine when the 

first topping is ham: 

                                   

                                                         

(order wine to ham) 
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Boolean constraints come to their limits when we want to express a preference like ‘beer is ok, 

but wine is better’. In this case, we need to assign different levels of acceptance to a valuation. 

These different levels are modeled with an ordered monoid, an abstract definition of a set of 

grades with a binary operation and a relation. The operation combines grades; it has to be 

associative and commutative and requires an identity element from the set of grades. The 

relation has to be a partial order and is used for comparing grades, i.e. finding out if one grade is 

better than another. 

To sum it up, an ordered monoid is an algebra           with: 

 carrier set  , 

 an associative and commutative operation           

 a partial order             

 and an identity element   (          ) 

 

Examples for monoids are natural or real numbers (with addition or multiplication) or Boolean 

values (with conjunction): 

               

                

                             

 

These grades can now be used for rating variable assignments with a grade. A soft constraint 

over a monoid               is a function from valuations to grades: 

                               

 

Based on the order relation over grades, a soft constraint induces a partial order over 

valuations. This makes it possible to compare valuations and search for the best ones with the 

highest grades. There can be several best valuations having either the same grade or distinct 

grades which are incomparable among each other due to the partial order.   
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As an example, we define a soft constraint which expresses our preferences for topping 

combinations with natural numbers: 

1

2

3

2

1

0

3

4

1

 

FIGURE 4 TOPPING CONSTRAINT 

 

Valuations with a high grade are preferred to valuations with a lower grade, e.g. ‘pepperoni with 

onions (grade 2) is better than tuna with mushrooms (1) but not as good as ham with 

mushrooms (3)’. In this case, the best combination would be pepperoni with mushrooms. 

Constraints can be defined over an arbitrary number of variables - although in our example we 

only use constraints over two variables since these can easily be displayed with a matrix. 

Defining only a single soft constraint is rather senseless and makes it trivial to find the best 

valuation: soft constraints become expressive and complex when there are multiple constraints 

at the same time. Each constraint expresses a separate preference and several constraints can 

also be contradictory among each other, i.e. a valuation which is considered as good by one 

constraint can get a rather bad grade by another one.  

Combining soft constraints over the same monoid can be done by combining their grades: 

                                                  

                       

(combine two constraints by combining their grades) 
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As an example, we define another soft constraint which expresses our preferences for a 

beverage depending on the pizza´s first topping: 

4

2

3

2

3

2

3

2

3

 

FIGURE 5 BEVERAGE CONSTRAINT 

 

We can now combine this constraint with the constraint for topping combinations defined 

above and each valuation is rated with a grade which reflects both preferences. For example, 

using the monoid of natural numbers with addition, the following valuation is rated like this: 

                  

                    

                   

                                                             

 

5

3

7

.

.

.  

FIGURE 6 SOME VALUATIONS AND THEIR GRADE 
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Typically, one is interested in the maximal valuations, i.e. the valuations with the highest grades: 

                                  

                                                  

 

In our example, there are two optimal valuations:  

7

7

 

FIGURE 7 VALUATIONS WITH THE HIGHEST GRADES 

 

Soft constraints can also be combined in a much more expressive way; (12) introduces a very 

general way for combining constraints along with additional meta-preferences rating the 

constraints itself. This is realized by embedding the grades of several constraints into a single 

ordered monoid             . For each constraint, an embedding function has to be defined 

which merges the constraint’s grade with the global rank. Embedding functions are defined with 

a function space       :  

                        

 

The order of embedding has to be irrelevant, i.e. for all embedding functions           , 

           and        the following has to hold: 

                                

 

Simple examples for embedding functions are injections into a Cartesian product of the single 

constraints’ grade sets. The order over the Cartesian product can for example be defined by 

component or lexicographically, which already allows defining simple meta-preferences. Many 

more complex combinations can be defined using this technique and various meta-preferences 

can be expressed in a uniform way. 
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2.2 APPROACH: COORDINATING DYNAMICALLY CHANGING PREFERENCES 

In our approach for composing music with soft constraints, we do not only want to solve a static 

constraint problem but rather want to coordinate system behavior with respect to preferences 

which are dynamically changing over time (e.g. based on user interaction). In general, we want 

to assign actions to actors (e.g. in our case notes to instruments): 

               

             

                       

(assign actions to actors) 

 

We use a discrete set of points in time at which an action should be assigned to each actor. We 

model this set with natural numbers which allows performing operations on times in a simple 

way (for example, given a time  , the preceding time is    ). 

       

 

The comparison relation has to be compatible with the occurrence of the points in time in real 

time, e.g.       implies that    has happened before   . The real duration between two points 

in time does not have to be constant; the assignment of actions to actors can also be triggered 

by some irregular event (e.g. user interaction).  A very elegant and general approach for dealing 

with time is introduced in Leslie Lamport’s well-known work on the ordering of events in a 

distributed system (14). 

Dynamically changing preferences over action assignments are modeled with a set of soft 

constraints. A dynamic preference defines a distinct soft constraint for each point in time 

(denoted with an index): 

                              

 (a dynamic preference) 
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At each time, several dynamic (as well as static) preferences are combined to a single constraint 

problem. This can be done in various ways as described in the last subsection. 

                           

 

Solving this problem yields one or several optimal solutions from which one has to be chosen 

(this can be done randomly since every solution has an optimal grade). This solution then 

assigns an action to each actor which satisfies the given preferences best: 

                                 

                                      

(action assignment with respect to preferences) 

 

As an example, we now want to define preferences for ordering several pizzas on successive 

days. Besides our general preferences as defined above, we define an additional preference 

which is dynamically changing over time based on the last day´s pizza. This preference prefers 

toppings and beverages which were not ordered the day before by adding a penalty of minus 

one for each action which was chosen on the last day: 

 

                     
                                  

      
 

             

 

 

We combine this dynamic preference with the static preferences from the last section: 

                                  

 

This dynamic constraint problem yields several optimal sequences; one of them is visualized in 

the picture below. In this example, we define a dynamic soft constraint depending on previous 

actions. In addition to that, dynamic constraints can also be defined based on current events, 

e.g. the sensor readings of a user interface or any other external information. 
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2.3 APPROACHES FOR SOLVING SOFT CONSTRAINTS 

There are several approaches and implementations for solving semiring-based soft constraints, 

which is an NP-hard problem. Discrete optimization problems have been intensely investigated 

since the 1950´s and several techniques are known for tackling them. Optimal solutions can be 

found or approximated for example with branch-and-bound algorithms, heuristics, dynamic 

programming approaches or greedy algorithms. In the area of constraint optimization, so-called 

consistency techniques have been investigated in the recent time. 

Local consistency techniques are widely used in classical constraint programming and have been 

generalized for semiring-based soft constraint problems with certain properties (8). The basic 

idea behind these techniques is to iteratively eliminate inconsistency in subproblems until 

consistency of the full problem is obtained. This is done by transforming sets of constraints such 

that redundancy is removed and the problem´s search space gets smaller. Such transformation 

of a set of constraints is called ´constraint propagation´ and has to assure that the solutions of 

the problem remain unchanged. In (15), the concept of local consistency for soft constraints is 

generalized and adapted to a general framework for constraint propagation. The work (16) 

introduces local consistency techniques making it possible to solve additional types of problems. 

Recently, the concept of local consistency for soft constraints has been adapted for so-called 

constraint hierarchies (17). Another approach for solving soft constraints is dynamic 

programming: Dynamic programming is a technique for solving a problem by separately solving 

subproblems of it and combining their solutions to a solution for the whole problem. Dynamic 

programming can always be used for solving soft constraints without any condition; they can 

even be solved in linear time in some cases (8). In the dissertation (18), an approach for relaxing 

soft constraints is presented (19) and several algorithms for solving them are introduced (20). In 

the recent time, the combination of algebraic structures with lexicographic orders has been 

investigated in general: the work (21) shows under which conditions two partially ordered 
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domains can be combined to a new one that corresponds to the lexicographic order of those 

two which allows modeling additional types of scenarios. 

 

 

FIGURE 9 SEARCH SPACE IN THE EXAMPLE 

 

Besides theoretical approaches for solving soft constraints, there are also several 

implementations. In (22), a local search framework is presented which adopts problem 

transformation and consistency techniques. Based on this framework, a prototype solver is 

implemented. The constraint programming system clp(FD) (23) for constraint problems with a 

finite domain has been extended by constraint semirings: clp(FD, S) (24) is based on a dedicated 

implementation resulting in good efficiency whereas softclp(FD) (25) is implemented on top of 

the mature clp(FD) library of SICStus Prolog. In (26), an implementation of semiring-based 

constraints is introduced for the concurrent constraint language Mozart. (27) presents a 

framework for designing soft constraint solvers with constraint handling rules (CHR). This 

language allows specifying constraint programming systems and propagation algorithms on a 

high level of abstraction. Constraint handling rules have been implemented in several 

programming languages, for example Prolog or C. In (28), Wirsing et al. present a framework for 

prototyping soft constraints in the rewriting logic language Maude. A branch-and-bound 

algorithm with several search optimizations is implemented and applied for optimizing 

parameters in software-defined radio networks. The solver used in the work at hand is based on 

this Maude prototype. It is realized in .NET with C# and directly implements the theory of 

monoidal soft constraints as defined above. The basic search algorithm and optimizations of this 

solver will be introduced in the next section; a short description of the .NET implementation can 

be found in section 6.2.2; for a more detailed description we refer to the original work (13). 

  



27 

 

2.4 A SOLVER FOR MONOIDAL SOFT CONSTRAINTS 

The .NET solver used in this work is based on a verified Maude prototype (28) and implements 

the theory of monoidal soft constraints (12). It is realized with a typical branch-and-bound 

backtracking algorithm which enumerates and rates possible variable valuations in order to find 

an optimal solution. Several search optimizations are employed for pruning search paths such 

that it is guaranteed that no optimal solutions are omitted. 

Soft constraints can be defined in two different ways: functional soft constraints are defined 

with an arbitrary function; explicit soft constraints with a discrete map from valuations to 

grades: 

                                                           

(maps which assign a unique grade to valuations) 

 

Such map         represents a soft constraint like this: 

      
            

     
  

 

The solver enumerates valuations by combining all explicit constraints’ map entries in a 

consistent way, i.e. such that every entry assigns the same value to a certain variable. Whenever 

a new constraint’s map entry could be combined, the constraint’s grade is embedded into an 

overall rank. Then, the solver compares this partial solution with existing total solutions: if it can 

be assured that all total solutions on this search path will always yield a lower grade, the path 

can be pruned. Typical embedding functions are for example injections into positions of a 

Cartesian product of grade sets                 which have the following form (      is 

the i-th injection into a Cartesian product,    the i-th projection): 
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The search algorithm iterates over all soft constraints and over all explicit constraints’ map 

entries like this: 

 

for each  soft constraint 

if  is explicit constraint 

for each  map entry 

if  is consistent with partial solution 

embed into partial solution 

if not  pruning possible  

store backtracking continuation 

continue with the next constraint 

// complete map processed 

backtrack 

else if   is functional constraint 

embed into partial solution  

if  pruning possible 

backtrack 

 

// all constraints processed, total solution found! 

delete other solutions with lower rank 

store solution 

backtrack 

    

At first, the solver initializes an empty partial solution with a minimal rank and no variables 

assigned. Then, all constraints are embedded into it like this: when processing an explicit 

constraint, the algorithm searches its map for the first valuation which is consistent with the 

current partial solution’s valuation and embeds its grade into the solution’s rank; a successive 

map entry (if existing) is stored as a backtracking continuation. Functional soft constraints 

compute their grade directly from the current partial solution’s valuation. This new rank can 

then be compared with all existing total solutions and the search path can be pruned under 

certain conditions (see below). It is required that all variables from a functional constraint’s 

domain have been assigned previously by an explicit constraint. In the simplest case, an explicit 

Boolean constraint enumerating only the variable’s domain can be defined. When all constraints 

have been processed, a new total solution has been found: it is stored in a global list and all 

other existing total solutions with a lower rank are deleted. Then, the solver starts searching 

from the next backtracking continuation. If there are no continuations left anymore, the search 

is finished.  
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FIGURE 10 SEARCH PATHS FOR EXPLICIT CONSTRAINTS (ARROWS INDICATE CONSISTENT VALUATIONS) 

 

The solver uses several search optimizations which are applicable under certain conditions. 

Proofs can be found in (13). A monoid           is called intensive if and only if       

                 , i.e. the monoid’s combination operation always yields a result 

which is not greater than its arguments. Let                       , i.e.      is a 

subproblem of  . Then the following holds for every             and    :           

      , i.e. the grade of a partial solution will never exceed that of a corresponding total 

solution. This allows pruning search paths with a grade that is already lower than any previously 

found total solution’s grade. When an explicit constraint’s map is in descendant order, it is then 

also possible to prune all remaining map entries (28). This can be extended for monoidal 

constraints with embedding functions: An embedding function is called intensive if it always 

computes a lower or equal rank:         . Let                       a problem with 

intensive embedding functions.  Then the following holds for every               and   

    :                 . 

The structure of hierarchical problem combinations can allow additional divide & conquer 

optimizations. Proofs can again be found in (13). A typical combination injects each constraint’s 

grade into a certain position of a Cartesian product of grade sets. The order over this Cartesian 

product can for example be defined by component or lexicographically. When intensive 

monoids are used, the corresponding embedding functions will also be intensive. When an order 

by component is used, it is possible to separately solve problems that do not share variables. 

When a lexicographic order is used, the top problem can be solved first. Then, the bottom 

problem can be solved with respect to the top problem’s solutions. These divide & conquer 

optimizations directly break into the problem’s exponential structure and can lead to highly 

reduced search times. 
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3 MUSIC THEORY 

In this section, a short introduction to acoustics is presented with a focus on musical aspects 

which are relevant for this work: 

 Sound 

 Tonal systems 

 Harmony 

A great resource for further and more detailed information is the ‘Springer Handbook of 

Acoustics’ (29). Sound is always transmitted over a medium (e.g. air or water). In case of silence, 

the medium’s particles are aligned rather homogenously. But whenever something moves 

within the medium it causes a disturbance in it. Like in a game of billiards, particles get 

accelerated and bump into other particles, which then again bump into others and so on. This 

way, the disturbance is propagated through the medium as a sound wave. From the point of 

view of an observer (e.g. an ear or a microphone), a sound wave is a change of pressure over 

time. The amount of pressure at a given time is called the amplitude; a sound wave can be 

represented as a function from time to amplitude. Sound waves are often illustrated as 

transverse waves with time being on the horizontal axis and amplitude on the vertical axis. 

          

FIGURE 11 A SOUND WAVE AND ITS FREQUENCY SPECTRUM 

 

It is difficult to imagine how such illustration of a wave actually sounds and indeed: the 

perception of sound is very different. Humans do not perceive sound directly as amplitude 

changes but rather on the more abstract level of ‘rate of amplitude changes’ (frequency, ‘high’ 

or ‘low’). Sound waves are called cyclic (or periodic) when they consist of an always repeating 

pattern; they are called acyclic when no such pattern can be found. Acyclic sounds are perceived 

as ‘noise’, whereas cyclic sounds are perceived as ‘tones’ having a certain frequency. In the 

beginning of the 19th century, Joseph Fourier found out that every cyclic function can be 

decomposed into several of the simplest cyclic functions: sine waves with different frequency, 

amplitude and phase. The individual frequencies of a complex sound wave can be visualized in a 
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diagram with time being on the horizontal axis and frequency on the vertical axis (low 

frequencies are at the bottom). Each frequency’s amplitude is indicated with a certain color 

(here, dark is low, red medium and yellow high). 

The problem of decomposing a sound wave into its basic frequencies is called Fourier analysis. 

The human ear acts as a ‘mechanical Fourier analyzer’ and directly senses a sound’s frequency 

structure: sound waves arrive at the ear, get bundled by the ear cup and arrive at the ear-drum. 

Then they are transmitted to the cochlea, a spiral structure which is filled with a fluid and has 

sensory hairs on it (it can be seen in the right of Figure 12). The spiral is very small in the center 

and becomes increasingly larger in the outer areas leading to different resonance properties: 

When a sound is transmitted to the cochlea, it gets in resonance on areas depending on the 

sound’s frequencies, which is detected by the sensory hairs. High frequencies lead to resonance 

on the smaller areas in the cochlea’s center, whereas low frequencies are located in the bigger 

outer areas. Thus, the nerve impulses arriving at the brain do already correspond to the sound’s 

frequency structure. 

 

FIGURE 12 HUMAN AUDITORY SYSTEM 

 

Many naturally generated periodic sounds consist of frequencies which have distinct ratios 

among each other. This is a result from the way many physical objects naturally oscillate: a 

sound source (e.g. a human’s vocal cord or a guitar string) has certain resonance frequencies in 

which it tends to oscillate. The lowest such frequency is called the fundamental frequency; all 

higher frequencies are called overtones. When an overtone has a frequency which is in an 

integer ratio to the fundamental frequency, it is called a harmonic - and in fact, harmonic 

frequency ratios sound pleasant. Most melodic instruments mainly have harmonic overtones 

(e.g. plucked strings or blown pipes), but there are also instruments with many disharmonic 

overtones (e.g. drums or bells). 
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An oscillating string serves as a good example for demonstrating why many objects tend to 

oscillate in harmonics. The simplest oscillation is spread over the whole string, making it going 

up and down over its full length. This is the string’s fundamental frequency: 

 

FIGURE 13 FUNDAMENTAL FREQUENCY 

 

The second simplest possible oscillation divides the string in two halves, thus doubling the 

frequency. This is the string’s first harmonic: 

 

FIGURE 14 FIRST HARMONIC 

 

There are infinitely many further harmonics, here are the next two: 

            

FIGURE 15 SECOND AND THIRD HARMONIC 

 

Although every cyclic sound not being a sine wave itself is composed of many frequencies, it is 

mostly perceived as having only one pitch (the fundamental frequency) and a certain timbre 

(the overtone structure). When pressing a single key on a piano, only a single pitch is perceived - 

although it actually consists of many different frequencies at the same time. A sound’s timbre is 

not perceived as several distinct frequencies but rather as the ‘color’ of the sound. The timbre 

can also evolve over time, for example a hammered string of a piano has many high frequencies 

in the beginning which decrease over time. 
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When several instruments play together, the problem of creating harmonic (and, if desired, 

disharmonic) frequency ratios comes up. Pythagoras was one of the first who experimented 

with harmonics and developed a tuning system for musical instruments. Unexpectedly, the 

problem turned out to be a very hard one which is still an area of research. A tuning system 

defines which frequencies (pitches) an instrument can play. Two goals are important: First, there 

should be many pitches which sound harmonic together and second, the number of pitches 

should be still manageable. Pythagoras developed a very natural way to construct pitches: He 

observed that there are certain pitch classes which are perceived somehow as ‘the same’. These 

can be constructed by doubling or halving frequencies. For example, a pitch with 200 Hz is in the 

same pitch class as 400 Hz, 800 Hz, 1600 Hz and also 100 Hz (these are called octaves). When 

women and men sing the same song together, they typically sing in different octaves, but still 

the same pitch classes. Given a certain pitch, a tuning system should include all other pitches 

having the same pitch class. Pythagoras started with a certain pitch (e.g. 200 Hz). The first 

harmonic (400 Hz) is already in the tuning system since it belongs to the same pitch class, so the 

second one (600 Hz) seems a good choice to add. This defines a new pitch class: 300 Hz, 600 Hz, 

1200 Hz and so on. By always taking the second harmonic (multiplying the frequency with 3), 

new pitch classes can be generated (the next would be 450 Hz, 900 Hz, 1800 Hz,...). 

Unfortunately, this construction does not terminate and creates infinitely many pitch classes; 

another problem is that the pitches are not separated by the same ratios. In so-called western 

music (which should not be confused with country music), 12 ordered pitch classes are used: C, 

C#, D,…, B which can be played in different octaves. The distance between pitches is called an 

interval; the interval with a distance of 7 steps corresponds to the second harmonic used in 

Pythagoras’ construction (commonly known as a fifth). When playing ascending fifths on a 

keyboard, the sequence C, G, D, A,…. is generated reaching all 12 pitch classes and finally 

returning at another C again (the well-known ‘circle of fifths’). Unfortunately, when constructing 

the pitches as Pythagoras, the frequency of the last ‘C’ ends up being slightly higher. This 

difference with a ratio of 1.01364 is known as the ‘Pythagorean comma’ and is a fundamental 

problem: It is inherently not possible to find a non-trivial tuning system where every fifth 

(exactly: the interval that should be a fifth) has a frequency ratio corresponding to the second 

harmonic (a pure fifth). Today, a system is commonly used which divides all pitches with the 

same ratio (equal temperament) and thus distributes the comma equally over all pitches. This 

makes it possible to play in every different tonal scale close to pure intervals but it is not 

possible to play an actually pure fifth or any other pure interval (except the octave). Many other 

tuning systems distribute the comma only over certain tonal scales, thus getting pure intervals 

on some scales but also very detuned intervals on others. Some instruments (e.g. bowed strings 

or electronic instruments) can play pitches with continuous frequency, and many string 

ensembles indeed dynamically adapt their tuning to get pure intervals. There are also automatic 

approaches for use in electronic music instruments (e.g. Hermode tuning (30)) which continually 

change the tuning system in order to tune intervals as pure as possible. This technology is 

already integrated in several products like Apple’s audio workstation software Logic and some 

synthesizers. A nice resource for further information on tuning systems is Ross W. Duffin’s book 
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‘How Equal Temperament Ruined Harmony’ (31). This book claims that much ‘older’ music 

heard today (e.g. Baroque music) is not being played as intended by the composer since 

different tuning systems were used at the time of composition. Duffin argues that many 

composers purposely used tonal scales which sound bad and disharmonic to create tension 

which is often later resolved by scales with pure intervals. 
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FIGURE 16 PITCH CLASSES IN WESTERN MUSIC (LEFT: SEQUENTIAL ORDER, RIGHT: CIRCLE OF FIFTHS) 

 

Tuning is difficult, but in practice equal temperament is good enough most of the time. As 

mentioned above, there are 12 different pitch classes in western music. The following table lists 

all possible intervals (distances) between pitches within one octave along with the frequency 

ratio of the corresponding pure interval: 

Distance Interval Ratio 

0 Unison 1:1 

1 Minor second 16:15 

2 Major second 9:8 

3 Minor third 6:5 

4 Major third 5:4 

5 Fourth 4:3 

6 Tritone 64:45 

7 Fifth 3:2 

8 Minor sixth 8:5 
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9 Major sixth 5:3 

10 Minor seventh 16:9 

11 Major seventh 15:8 

12 Octave 2:1 

 

TABLE 1 INTERVALS 

 

It can be observed that intervals with simple ratios sound more pleasant than those with 

complex ratios. Fifth have of ratio of 3:2 and are the most harmonic interval (besides the trivial 

intervals unison and octave), whereas the tritone is the most dissonant interval. 

Another important concept in music theory is tonal scales. A tonal scale is a subset of pitch 

classes in certain order and is defined with a starting pitch class (the tonic, e.g. C) and a list of 

intervals (the mode, e.g. major). The mode defines which other pitch classes beside the tonic 

belong to the scale. Each mode has a certain character; the most common modes in western 

music are major and minor but there are also many other modes (e.g. church or Jazz modes). As 

an example, the major mode is defined with the following intervals: 

Unison – Major second – Major third – Fourth – Fifth – Major sixth – Major seventh 

The C-major scale contains the following pitch classes: 

C – D – E – F –G –A – B 

Another example for a major scale is E-major which contains the following pitch classes: 

E - F# - G# - A – B – C# - D#  
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4 ALGORITHMIC COMPOSITION 

Composing music with formal rules has a long tradition. Although most composers do not 

explicitly use algorithms - the techniques they use can often be modeled with formal systems. 

Godfried Toussaint discovered that even many traditional ethnical rhythms are generated by the 

so-called ‘Euclidean Algorithm’ (32). It is very unlikely that the ‘composers’ of these rhythms 

knew about this algorithm – the more surprising is the large number of rhythms from all over 

the world generated by it. In the cited work, Toussaint lists over 100 traditional rhythms from 

e.g. India, Brazil, Greece or Turkey. In general, the Euclidean algorithm solves the problem of 

distributing a number of k units to a number of n intervals as even as possible; it is named after 

Euclid’s similar algorithm for computing the greatest common divisor of two integers. This 

algorithm can be found in Euclid’s Elements and was called by Donald Knuth the ‘granddaddy of 

all algorithms, because it is the oldest nontrivial algorithm that has survived to the present day’. 

Besides generating rhythms, it is also used for timing neutron accelerators or drawing straight 

lines in graphics software. When it comes to rhythm, we want to assign a number of notes (k) to 

a number of time units (n) as even as possible. The rhythms generated by the algorithm are 

called ‘Euclidean rhythms’ and are denoted with E(k,n). Rhythmic sequences can be represented 

as a binary sequence of notes (‘x’) and silence (‘.’), for example [ x . x . ] corresponding to the 

trivial Euclidean rhythm E(2,4). A very famous example for an Euclidean rhythm which is widely 

distributed is E(3,8) corresponding to [ x . . x . . x . ]. This rhythm is known as the ‘Tresillo’ in 

Cuba or as the ‘Habanero’ in the USA but it can also be found in West African music. The  

rhythms can start at any position; E(3,8) for example also generates the rhythms 

[ x . x . . x . . ] and [ x . . x . x . . ]. Many more - surprisingly complex – rhythms are presented in 

Toussaint’s work, e.g. E(7,12) =  [ x . x x . x . x x . x . ] from Ghana or E(15,34) = [ x . . x . x . x . x . . x 

. x . x . x . . x . x . x . x . . x . x . ] from Bulgaria. 

Many composition techniques in Western art music also make use of certain algorithmic rules. 

Especially music from the era of Baroque is written in a very formal way; the composition of 

many typical musical forms from that time is constrained by strict rules. Developing already 

during the Renaissance, a key element in Baroque music is the so-called ‘counterpoint’. Before 

that time, polyphonic music was typically composed with one leading voice and several 

accompanying voices which do not play any melodic role at all. In contrast to this, counterpoint 

means that every voice makes sense as an independent melody itself – nevertheless, they 

should also make sense as a whole when playing them together. A typical contrapuntal genre is 

a ‘fugue’ which was brought to a high level of perfection by Johann Sebastian Bach. When 

composing a fugue, many rules have to be applied: at first, a single voice starts playing and 

introduces the so-called ‘subject’. Then, while the first voice continues to play, a second voice 

repeats the subject transposed by a certain interval (often a fifth). This repetition is called the 

‘answer’ and can sometimes be slightly modified in order to e.g. stay within a certain tonal scale. 

In this way, all other voices start playing until all of them are playing simultaneously. This first 

part of a fugue is called ‘exposition’. As the fugue continues, the melodic material introduced in 
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the exposition is often used again either in its original form or in an altered version. There are 

many different ways of altering melodic material and most of them can be expressed in a 

procedural way. For example, the length of a melody is often modified by applying a certain 

constant factor to it, thus lengthening (augmentation) or shortening it (diminution). Typical 

alterations of a melody´s pitches are for example transposition, retrograde (playing it 

backwards) or inversion (ascending intervals become descending and vice versa). 

 

FIGURE 17 JOHANN SEBASTIAN BACH, ARNOLD SCHOENBERG 

 

After the era of Baroque (1600 – 1750), formal rules became less important but, nevertheless, 

music from the Classical (1750 – 1820) and Romantic period (1820 - 1900) was still composed 

with respect to a variety of rules and conventions regarding for example tonality or the 

structure of musical forms (e.g. the well-known ‘sonata form’). In the late 19th century, 

customary tonal conventions were questioned and more and more dissonant music was 

composed. At the turn of the 20th century, tonality was finally abandoned and the first 

completely atonal music was composed in the environment of the so-called ‘Second Viennese 

School’ around Arnold Schoenberg. Having broken with all tonal rules and conventions, 

Schoenberg surprisingly introduced a very strict formal method for composing music in 1921: 

the so-called ‘twelve-tone technique’ (also often referred to as ‘dodecaphony’). The basic idea 

behind this technique is to use every pitch class of the chromatic scale exactly once until it can 

be used again, which ensures equally frequent occurrence of each pitch class and avoids tonal 

centers like in a traditional tonal scale. Taking up typical composition techniques from the 

Baroque era, Schoenberg also often applied alterations (inversion, retrograde…) to the twelve-

tone series in his compositions. The twelve-tone technique was designed as a method for 

composing atonal music and is hence only concerned with tonal aspects; there are no rules 

dealing with all the other aspects in a composition (for example rhythm, dynamics or timbre). 

Throughout the 20th century, various approaches for composing both tonal and atonal music 

have been developed which are based on or inspired by Schoenberg´s technique. The common 
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idea behind these approaches is to divide certain musical aspects (e.g. tonality or rhythm) into a 

series of values (e.g. note pitches or rhythmic divisions) which serve as the most basic building 

blocks for a composition. These basic values are then subject to all different kinds of generative 

procedures or manipulations. Composition techniques which are based on this approach of 

working with one or several series of basic elements are subsumed under the term ‘Serialism’. 

The initial contributions to serial composition techniques beyond the twelve-tone technique 

were made by Olivier Messiaen in the late 1940´s. He did not only work with a series of note 

pitches (C, C#…) like Schoenberg but also used for example several series of rhythmic divisions 

(16th, 8th…), dynamic indications (piano, forte…) or articulations (staccato, legato…). Messiaen´s 

‘Mode de valeurs et d'intensités’ from 1949 is one of the key compositions in Serialism: it is 

based on several series of independent parameters which are connected among each other such 

that each note pitch is always played with the same duration and dynamic. ‘Mode de valeurs…’ 

is considered as the origin of serial composition techniques and served as inspiration for many 

others. Pierre Boulez, a student of Messiaen, became one of the central figures of contemporary 

music in the second half of the 20th century and wrote elaborate compositions based, amongst 

others, on the serial technique. Boulez is also known for his electronic compositions and as one 

of the leading conductors of the 20th century. 

 

FIGURE 18 JOHN CAGE, KARLHEINZ STOCKHAUSEN 

 

Another key person of music in the 20th century is John Cage, a student of Schoenberg, who is 

known for example for his aleatoric compositions, philosophical contributions or as a pioneer of 

so-called ‘Fluxus’ art. Cage used several algorithmic procedures for assembling some of his 

compositions (and even speeches). Above all, so-called chance operations are characteristic for 

Cage´s work. Besides several sources for pseudo-random events like star charts, Cage mainly 

used the Chinese ‘I Ching’ divination system for making decisions without his own influence. 
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Karlheinz Stockhausen was one of the most influential and controversial composers in the 20th 

century. Being a student of Messiaen, his way of composing was strongly influenced by serial 

techniques and most of his compositions are constructed in a very formal and precise way.  

Stockhausen was a pioneer in the composition of electronic music which enabled him to 

accurately control every parameter of his music. Iannis Xenakis, another student of Messiaen, 

composed music based on various existing mathematical models with no direct connection to 

music, for example from the areas of statistics or game theory. One of his most popular works is 

the piece ‘Metastasis’ based on a geometrical function called the ‘hyperbolic paraboloid’. He 

also worked as an architect (amongst others under Le Corbusier) and used the same function for 

designing the Philips pavilion at the World’s Fair 1958 in Brussels. In the 1960´s, Xenakis was one 

of the pioneers in computer-assisted composition techniques. As early as 1977, he designed an 

interactive computer composition tool called UPIC with a user interface based on a graphics 

tablet which allowed to compose music in real-time by drawing compositions on it. 

 

            

FIGURE 19 METASTASIS SCORE, PHILIPS PAVILLON (IANNIS XENAKIS) 

 

This chapter can of course only give a short und very incomplete overview of the history of 

formal composition techniques. Above all, we want to convey the idea that the composition of 

music can always be regarded as algorithmic up to a certain extent, ranging from traditional 

percussion music over the era of Baroque to the 20th century. Nevertheless, algorithmic 

composition has never been as significant and self-contained as in the 20th and 21st century. 

A great book about art music in the 20th century is ‘The Rest is Noise’ (33) from Alex Ross. Today, 

algorithmic composition techniques have become a common and popular method for 

contemporary composers; they are used in a variety of styles, especially in art music and 

experimental electronic music. 

Today, the variety of approaches which have been used for algorithmic composition reads like 

an overview of artificial intelligence techniques: music has been composed with probability 

models, generative grammars, artificial neural networks, transition networks (e.g. Petri nets), 

genetic algorithms, cellular automata, rule-based systems or reasoning techniques. 



40 

 

Furthermore, a variety of mathematical concepts with no direct connection to music have been 

used, for example self-similarity or chaos theory. The book ‘Algorithmic Composition: Paradigms 

of Automated Music Generation’ (34) from Gerhard Nierhaus gives a comprehensive and up-to-

date overview about this field. In the recent time, techniques subsumed under the term ‘live-

coding’ have been of interest: algorithms are written and modified ‘on-the-fly’ while they are 

running and generating music (e.g. in an improvisational performance). The audience is often 

able to observe the evolution of the programming code on a projector and some artists also use 

live-coding techniques to generate additional visual effects. The article (35) covers historical 

precedents, theoretical perspectives and recent practice of the live coding movement. The work 

(36) introduces a project focused on the design and development of tools to structure the 

communication between performer and musical process, e.g. by hardware controllers. In the 

work (37), a new visual language for live-coding is introduced based on the combination of so-

called ‘pattern generators’. Other interesting recent works related to algorithmic composition 

investigate for example topological representations of musical objects (38), the use of cloud 

computing techniques for distributed composition systems (39) (40) or concrete applications like 

automatic sonification of classical Chinese poetry (41). 

Electronic musical instruments play an important role in the history of algorithmic composition: 

originally built to be played like ‘real’ acoustic instruments, the border between sound design 

(i.e. shaping the timbre of a sound) and composition (i.e. assembling sounds to a piece of music) 

soon became fuzzy. Léon Theremin´s ‘Theremin’ from 1919 features a contactless user interface 

based on two proximity-sensing antennae: the distance of the player´s hand to the first antenna 

continually controls the pitch of an oscillator; the distance to the other antenna controls the 

amplitude. The Theremin was used for example in various film scores, in popular music (e.g. by 

the Beach Boys) or in art music (e.g. in compositions from Dmitri Shostakovich). Friedrich 

Trautwein´s ‘Trautonium’ from 1930 is played with a manual which is somehow similar to a 

keyboard but allows continuous control over pitch. A later version of the Trautonium, the so-

called ‘Mixtur Trautonium’ introduced a novel approach for sound synthesis which makes use of 

so-called ‘undertones’. The instrument´s manual controls the frequency of one master oscillator 

and several so-called ‘frequency dividers’ derive additional harmonic oscillations with a lower 

frequency (undertones or ‘subharmonics’). The divisor of each frequency divider can be 

adjusted by the player and the outputs of all dividers can be summed up in a variable mixture, 

making it possible to realize a large variety of different timbres. The Trautonium was used for 

example for the sound effects in Alfred Hitchcock´s ‘The Birds’ as well as in several compositions 

e.g. by Paul Hindemith. 
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FIGURE 20 EQUIPMENT FROM THE WDR STUDIO FÜR ELEKTRONISCHE MUSIK 

 

In 1951, the ‘Studio für elektronische Musik’ was founded in Köln by the Northwest German 

Broadcasting institution (today known as the WDR). This studio was the very first of its kind and 

served as an experimentation platform for composers such as Stockhausen or Boulez as well as 

technical pioneers such as Werner Meyer-Eppler. The studio was equipped with state-of-the-art 

devices like noise generators, oscillators, filters and various effect units; some of them were 

custom developments for the studio. Technical devices which are today common to every 

electronic musician were first used in a musical context at the ‘Studio für elektronische Musik’. 

At that time, there was no other place with a comparable technical and personal environment. 

In the 1960’s, synthesizers became commercially available from companies like Moog, Buchla or 

Roland. These early systems were designed based on an open modular architecture with several 

independent components that can be connected freely among each other, exchanging audio 

signals (e.g. generated by an oscillator) or control voltages. Technically, there is of course no 

difference if a synthesizer is controlled by a human performer playing on a keyboard or any 

other control voltage, e.g. a certain algorithmic procedure or a stochastic process. Especially the 

system developed by Don Buchla has many modules available which are suited well for 

algorithmic composition applications, for example random value generators. Buchla´s ‘Source of 

Uncertainty’ module provides several different sources for random voltages, from static white 

noise to a versatile voltage generator based on a probability distribution which offers a high 

level of control. It is not only possible to manually control the parameters of the distribution: the 

parameters themselves can also be automatically modulated with external control voltages. 
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FIGURE 21 BUCHLA SERIES 200E MODULAR SYNTHESIZER, RANDOM VOLTAGE GENERATOR 

 

Modular synthesizers based on dedicated hardware are still popular and valued for their unique 

sound and direct user interface. However, they do not offer the enormous amount of flexibility 

as provided by software solutions. Today, musical programming environments are very 

widespread among composers who work with algorithmic techniques. In 1957, Max Matthews 

developed the musical programming system MUSIC which provides functionality for sound 

synthesis on the one hand and the composition of sounds to a piece of music on the other hand. 

MUSIC can be seen as the ancestor of many other related musical programming environments 

which are introduced in section 5.4.3 as work related to our approach for interactively 

generating music. At the present time, the tools of choice for many composers are programming 

environments with a graphical user interface, making them also accessible to people without 

programming skills. These visual programming languages like Max/MSP (which is named after 

Max Matthews) are conceptually very similar to a modular synthesizer: several ‘objects’ can be 

connected to a ‘patch’ which realizes a certain functionality. Objects are the basic building 

blocks and can perform various tasks, from simple arithmetic operations to complex 

functionality like sound synthesis algorithms. The basic programming paradigm is based on 

dataflow: an object can have several inputs and outputs for processing respectively generating 

streams of data like audio or musical information (e.g. notes or rhythmic events). In addition to 

the standard library of objects, Max/MSP can be extended with custom objects written for 

example in C; there is also a large online community providing many objects, patches and 

tutorials. Max/MSP integrates with several hardware controllers as well as platforms for custom 

sensor devices, making it possible to develop interactive applications with a specialized user 

interface, for example custom tools for musical performance or interactive installations.  
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5 APPROACH: COMPOSING MUSIC WITH SOFT CONSTRAINTS 

In this section, we present our approach for interactively composing music in real-time with soft 

constraints (42). We provide a general framework which allows generating music by defining 

‘preferences’ that express how the music should sound. As an example, a preference for a single 

instrument could be ‘fast notes with a high pitch’. Besides preferences for single instruments, it 

is also possible to define preferences for the coordination of multiple instruments. Coordination 

preferences typically involve harmonic or rhythmic aspects, for example ‘play together in a 

similar rhythm in rather consonant intervals’. Most of these preferences are rather ‘soft’: they 

do not define an exact result and do not need to be strictly obeyed all of the time. In fact, there 

are often preferences which are even concurrent among each other; for example, a single 

instrument’s rhythmic preferences could be in conflict with global rhythmic preferences. A good 

technique to deal with such soft and concurrent problems is ‘soft constraints’. In previous work, 

we developed a first prototype for interactively composing music with soft constraints based on 

Nintendo Wii controllers (13) (43). We participated in conception, formal modeling, 

implementation and evaluation of this prototype system. We also ported the existing soft 

constraint solver from Maude to the .NET framework. In this work, we develop a general 

framework applicable to a variety of different applications. When experimenting with our 

previous system, it turned out to be hard to generate melodies fitting to a certain musical style 

(e.g. country music): Manually identifying and defining the preferences for a given style is a large 

amount of work and therefore not a very scalable approach for integrating many styles. To 

accommodate this, we now make use of a machine learning approach: musical styles can be 

defined by playing notes instead of writing code. We developed a general musical transition 

model which can be trained with existing melodies and ‘remembers’ the occurrence of notes in 

certain metric positions as well as transitions between notes. When such model has been 

trained, it can be used to generate additional preferences for an instrument which express ‘how 

well the music fits the training data’, thus making it generate melodies similar to the training 

melodies. Again, soft constraints showed up to be a very appropriate problem class here and 

make it possible to accommodate the concurrent preferences of the trained model, the user’s 

interaction and the coordination between multiple instruments. 

User
Interaction

Training
Data

Voice
Coordination

 

FIGURE 22 EXAMPLE FOR CONCURRENT PREFERENCES 
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In the next subsections, we introduce a formal model of our approach depending on the theory 

of monoidal soft constraints from section 2. At first, basic concepts of music theory are defined. 

In the subsequent section, we present our general approach for composing music with soft 

constraints. Then, we introduce the musical transition models which are used to train 

preferences in order to integrate several musical styles in our system. At last, we compare our 

approach to related ones. 

 

5.1 MUSIC THEORY 

A key concept in music theory is a sound’s pitch corresponding to its frequency. On this 

abstraction level, we are only interested in the fundamental frequency – although almost every 

sound is composed of multiple frequencies as indicated in section 3. Every pitch belongs to a 

certain pitch class: in so-called western music there are 12 different pitch classes (C,…,B), but 

the model presented here is not restricted to this and would also allow to work with different 

systems. 

                        

(pitch classes in western music) 

 

C D E

C# D#

F G A

F# G#

B

A#

 

FIGURE 23 PITCH CLASSES ON A KEYBOARD 

 

A pitch class can be played in different octaves, which are defined with integer numbers. 

Theoretically, there are infinitely many octaves - but the human auditory system can only 

perceive the octaves from 0 to 9 (in most cases, even less). Combining a pitch class with an 

octave number index defines a concrete pitch (e.g.    or   ). 
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(octave numbers) 

 

                           

(combine a pitch class and an octave to a pitch, e.g.     ) 

 

C2 C3 C4 C5  

FIGURE 24 PITCH CLASS C IN DIFFERENT OCTAVES 

 

Intervals between pitches are an important concept for dealing with melody and harmony; they 

represent the distance between pitches. Each interval has a certain grade of harmony, for 

example a fifth sounds very pleasant whereas a tritone is very disharmonic. Section 3 includes a 

list of the basic intervals used in western music.  

                                            

(intervals) 

 

                              

(interval between two note pitches, e.g.                    ) 

 

                                    

(compare intervals) 
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A tonal scale defines a subset of pitch classes in a certain order. Each scale has several stages 

defining this order, they are denoted with roman numbers (I, II,...). The most common scales in 

western music consist of seven stages (major, minor…) but there are also common scales with 

more (e.g. Jazz scales) or less stages (e.g. the pentatonic scale). In many cases, the restriction to 

a tonal scale is rather fuzzy and often pitch classes are being played which do not belong to the 

scale (sometimes referred to as ‘blue notes’). To deal with this, we make use of the concept of 

augmented or diminished stages. An augmented stage is one halftone higher than the original 

stage; e.g. I+ (the plus denotes augmentation) in C-major is C#.  

                      

(tonal stages in a scale) 

 

A scale is defined with a mode (major, minor…) and a tonic (the starting pitch class). A mode is 

defined as a function which associates an interval with each stage. For example, stage III is a 

major third in major scales and, vice versa, a minor third in minor scales.  

                                    

(musical modes, e.g.                   ) 

 

Each mode can be played starting from a different pitch class which is called the scale’s tonic: 

                          

(tonal scales with tonic and mode, e.g.        or        ) 

 

Given a tonal scale, each stage corresponds to a certain pitch class. The conversion between 

stages and pitch classes is done with the following two functions: 

                            

(interpret a stage in a scale, e.g.                ) 
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(interpret a pitch class in a scale, e.g.                 ) 

 

 

5.2 MUSICAL SOFT CONSTRAINTS 

This section introduces the core framework for composing music with soft constraints in real-

time based on several musical interfaces (which we often just call instruments). The constraints 

express ‘how the music should sound’ at a given time. We distinguish two kinds of constraints: 

 Constraints expressing user preferences for a single instrument (e.g. ‘play high notes’) 

 Constraints coordinating multiple instruments (e.g. ‘play harmonic intervals’) 

 

Both kinds of constraints can also be generated dynamically, typically based on user interaction. 

At certain times, each instrument is being asked to state its current preferences with one or 

several constraints. The constraints from all instruments are extended with global coordination 

constraints and combined to a single constraint problem. This problem is then being solved and 

the resulting notes are played. The time intervals at which this happens can either be fixed (e.g. 

every 16th note) or triggered by user interaction. In general, we define a discrete set of times 

with natural numbers such that sequential times are modeled with sequential numbers: 

       

The actual duration between two times can be variable; we are only interested in the correct 

order. Times can be compared with the common operators (       or modified with any 

other operator on natural numbers. For example, for a given time  , the preceding time is    . 

We model the task of generating music for several musical interfaces by assigning certain 

actions to them. In our current implementation, we use three kinds of actions: start a new note 

(with a given pitch), hold a note and pause. It is also possible to add more parameters to an 

action, for example a note’s velocity or aspects of its timbre – but this of course also increases 

the search space and could make it impossible to solve the resulting constraint problem in a 

real-time context. Actions can also consist of a sequence of several notes but this slows down 

the system’s reaction time to user interaction (the shorter the actions, the faster the reaction). 

However, it might make sense for some user interfaces or non-real-time systems. 
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Each instrument can have several voices which are used as the constraint problem’s variables. 

Polyphonic instruments (which can play several notes at the same time) need to have an 

according number of voices. 

                            

(voices from all instruments) 

The problem values are the actions which a musical interface can perform (e.g. play notes):  

                                

(voice actions) 

 

A certain type of actions is note actions, which are always associated with a pitch: 

                       

                         

                       

                       

                 

                 

(note actions) 

 

The preferences for the music are defined as soft constraints which rate action assignments for 

the voices with a grade: 

                                           

(expressing preferences over voice assignments with soft constraints) 

 

Dynamically changing preferences can be expressed as a set of constraints with one constraint 

corresponding to each time (denoted with an index): 
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(dynamically changing preference) 

 

Each instrument states its preferences based on the current user interaction. This is realized as a 

soft constraint which rates action assignments for the instrument’s voices. We call these 

constraints sensor constraints since they are typically based on the interface’s sensor readings. 

                                                 

(a constraint expressing preferences derived from user interaction) 

 

A sensor constraint controls certain aspects of an instrument’s pitch and rhythm. When it comes 

to pitch, we often take a certain tonal range around a given ‘mean pitch’ which is derived from 

user interaction. The pitches in this range can have the same grade but it is also possible to rate 

the pitches based on a radial function around the mean pitch (e.g. a Gaussian distribution). It is 

of course also possible to define any other preference for pitch, for example ‘pitch class c – no 

matter in which octave’. Generally, we define a constraint which rates actions (e.g. with a real 

number) based on their note pitch:                                              

Controlling the rhythm of an instrument is typically done by dynamically balancing the grades 

over time for the several types of actions. For example, if an instrument should rather do 

nothing at a given time, the pause-action will have a high grade compared to the note actions. It 

is also possible to define certain rhythmic patterns by shifting the grades in favor of starting 

notes at desired rhythmic positions. If there is no direct and deterministic connection between 

certain user actions and resulting notes, it proved to be useful to give an instrument an ‘energy-

account’ representing how many notes it still can play. When the instrument should play 

something, a certain amount of energy is added to its account. The grade of the instrument’s 

note actions is always defined based on the current amount of energy such that high energy 

yields high grades for note actions and, vice versa, low energy prefers pause actions. Whenever 

the instrument actually plays a note, its energy gets lower. This way, it is possible to continually 

control ‘how fast the instrument should play’. 
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(a constraint based on an ‘energy account’) 

 

A sensor constraint which we often use in our applications is a combination of the pitch 

constraint and the energy constraint defined above. Using these constraints, it is possible to 

generate music with only two parameters - ‘pitch’ and ‘energy’ - which proved to be simple to 

extract from user interaction on the one hand but also expressive on the other hand. Intuitively, 

these parameters continually control the note pitch (high/low) and the speed (fast/slow) at 

which an instrument should play. Interfaces based on these parameters are easy to play because 

they require only few musical skills (e.g. making exact rhythmic movements) – nevertheless, 

they provide much control over the music in a very direct way with immediate musical feedback. 

                                                  

                                                                               

(constraint for user interfaces based on ‘energy’ and ‘pitch’) 

 

The coordination preferences between multiple instruments are also expressed with soft 

constraints. There is no conceptual difference to the instruments’ constraints; anyhow, we 

distinguish them to make their special role clear and also keep our implementation modular to 

instruments and coordination preferences. We will now give several examples of typical 

constraints for coordinating instruments. If several voices should ‘play together’ in the same 

rhythm, we can define a constraint like this: 
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(voices should make the same type of actions) 

 

An often used constraint maximizes the amount of ‘harmony’ between several voices (but it is of 

course also possible to do the opposite and prefer disharmonic music). Intervals between two 

notes can be rated according to their harmony; if harmonic intervals are preferred, fifths or 

fourths get high ratings and the tritone interval gets the worst rating: 

                          

(harmony between two note pitches) 

 

This rating can be extended to a whole set of notes; it is then very easy to define a constraint 

which maximizes the number of harmonic intervals: 

                                        

                                                               

                  

 

(harmony in a set of note actions) 

 

Leonhard Euler developed a function called ‘gradus suavitatis’ with rates the harmony of 

musical intervals. Given an interval’s integer frequency ratio    , Euler’s function returns low 

values for simple and harmonic intervals and, vice versa, high values for complex and dissonant 

intervals. With    being the prime factors of the least common multiple of   and  , the gradus 

suavitatis is defined as: 

                 

(Euler’s gradus suavitatis) 
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The unison interval (1:1) has the best possible grade of 1; the tritone (45:32) a bad grade of 14. 

Extending an interval by one or several octaves changes the grade of an interval (for better or 

worse); e.g. a fifth (3:2) has a grade of 4 but playing a fifth plus one octave (3:1) has a better 

grade of 3. This is not desirable in every case since we often have other constraints for the pitch 

which we do not want to be in conflict with a harmony constraint. The gradus suavitatis is also 

not ‘commutative’ to pitch classes, e.g.         is a fifth (grade 4) but the interval         gets a 

worse grade of 5 since it is a fourth (4:3). 

Another harmony rating which proved to be useful in our applications depends on work from 

the composer Howard Hanson (44). Intervals between pitches (modulo octaves) are being 

assigned to classes with ‘equal’ harmony. These classes are then ordered according to their 

consonance as follows: 

P = Perfect fifth, perfect fourth 

M = Major third, minor sixth 

N = Minor third, major sixth 

S = Major second, minor seventh 

D = Minor second, major seventh 

T = Tritone 

When we assign a fixed grade to each class, we get a harmony rating which is very adequate for 

our needs: the rating does not depend on octave transpositions and is commutative to pitch 

classes in every case, because commutative intervals are always in the same class. 

Another useful constraint using Boolean values as grades restricts notes to a tonal scale. For 

example,                 
                   is false, since    does not belong to       . 

                                            

(only pitches in a tonal scale) 

 

Many more coordination preferences can be expressed with soft constraints, for example 

preferring certain global rhythmic accents or making notes fit to given harmonic progressions. 
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To sum it up, at each time         , a constraint problem is generated based on the single 

instruments’ constraints and the global constraints. These constraints can be combined in 

various ways to one single problem. This problem is then being solved and one solution is 

chosen which defines an action for each voice (                ). 

 

5.3 TRAINABLE MUSICAL MODELS 

As mentioned in the introduction of this section, it is hard to manually identify and define rules 

for certain musical styles like country music or hip-hop. Nevertheless, we want to be able to 

generate music fitting to lots of different styles. To achieve this, we use a machine learning 

technique which is a far more scalable approach for integrating many styles in an easy and fast 

way. There exist several related algorithmic composition techniques based on machine learning, 

but to our knowledge this is the first approach for training melodies which can be interactively 

‘played’ in real-time. Our approach is based on a custom transition model which represents 

sequences of events aligned upon a structured metric grid. Intuitively, the model represents: 

 how often an event occurs at a certain metric position and 

 how often other events follow this event at this position 

 

Following typical terms from the closely related area of probability models, the ‘events’ are 

called states. The discrete metric positions (representing ‘time’) are called steps: 

      

             

 (sets for states and steps) 

 

In each step, each state has a certain weight for a given voice. This weight represents how often 

the state occurs at the given step: 

                              

(timed state weights) 
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The transitions between states at a given step are represented with the following function. The 

first two arguments define the original step and state – the third argument defines the next 

state. Transition weights are always defined for subsequent steps; the state in the third 

argument is implicitly assumed to be on the next state. 

                                         

(timed transition weights) 

 

The following figure visualizes a timed transition model with three steps and states. State 

weights are visualized with black circles: the bigger the circle, the higher the weight. The 

transition weights are visualized with arrows (a thicker arrow indicates a higher weight). When 

the model is untrained, all weights are the same. Training the model modifies the weights; the 

right picture visualizes a trained model with shifted weights. 

State 1

State 2

State 3

Step 1 Step 2 Step 3

      

State 1

State 2

State 3

Step 1 Step 2 Step 3

 

FIGURE 25 TRANSITION MODEL VISUALIZATION (LEFT: EMPTY MODEL, RIGHT: TRAINED MODEL) 

 

When it comes to training melodies within our framework, it seems a good idea at first sight to 

directly use the existing actions as states. However, there would be a little disadvantage: if note 

pitches are directly used as states, it is not possible to play a model in another tonal scale. Thus, 

we do not use note pitches directly but rather use abstract stages in a tonal scale. States are 

then defined as follows: 
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(musical states) 

 

                                

                                     

                                 

(note states) 

 

When generating a constraint from our model, we need to convert an instrument’s action to the 

corresponding state used in the model. This is done with the following function which makes 

use of a global tonal scale (                    ): 

 

                       

             

                                                  

                                             
          

  

(get the model state corresponding to an action) 

 

Now, we define a constraint which expresses ‘how well an action matches the data represented 

in the model’. Given the last step and the last actually executed state (the state corresponding 

to the last action chosen by the constraint solver), we can compute a total weight for each state 

on the subsequent step. The simplest way to do this is by just summing up the transition weight 

and the step weight itself: 
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(total weight) 

 

The constraint itself for a certain voice         is constructed based on the last step, the last 

action and the current step. Given a valuation’s action for this voice, the constraint returns the 

total weight for this action’s corresponding state: 

                                                            

                                               

                                                                   

(construct the soft constraint) 

 

This constraint performs well when there is much training data available and when it is 

distributed over all steps. However, we sometimes also want to generate music with only few 

training data. For example, if we just use one single melody to train a model, we get steps with 

only one trained event and many steps without any trained note at all. This would lead to 

determinism on the one hand and pure randomness on the other hand. To accommodate this, 

we define an additional structure over the metric grid: Rhythmic structures in music are often 

composed of several ‘similar’ basic units (in many cases, these structures are also self-similar). 

Our basic idea is to not only consider the current step for generating a constraint but rather all 

steps with respect to a certain hierarchy. When there is no or only few training data at a certain 

step, similar steps can be taken into account for the constraint. The following illustration shows 

the typical structure of a 4/4 meter and indicates which metric positions are often considered as 

similar. The blue divisions indicate similarity for steps 1 and 3 (with decreasing hierarchy from ½ 

to 8th). Steps separated by an even and large note length (preferably a power of two) are more 

similar than others; for example 1 is very similar to 3 (this holds of course also for 2 and 4 or any 

other steps separated by a half note). Steps 1 and 2 are also similar – but not as much as 1 and 3 

since this similarity is lower in the hierarchy (4th). Similarity for other steps is defined the same 

way; e.g. the first 16th after 2 is very similar to the first 16th after 4. 
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1 2 43

4th

8th

1/2

 

FIGURE 26 EXAMPLE FOR METRIC SIMILARITY IN A 4/4 METER 

This is of course just an example of metric similarity – there are many other meters and possible 

ways for defining similarity (even for the same meter). In general, we define metric similarity as 

a function from two steps to their distance expressed in real numbers: 

                       

(similarity of metric positions) 

 

When generating a constraint with respect to metric similarity we now take all existing steps 

into account. Instead of using a state’s weight only at the current step, we sum up the state’s 

weight at all steps scaled by the corresponding similarity. This way, similar steps have a strong 

influence whereas, vice versa, dissimilar steps change only little. When a constraint should be 

generated for an untrained step, all states’ weights will be equal at this step – in this case, the 

similar steps will now make the difference and avoid total randomness. However, when 

generating a constraint for a trained step, the similar steps’ weights will only have little 

influence since they are scaled by lower values. This makes it possible to already play a model 

with only few training data and nevertheless generate melodies resembling the training data. 

The constraint is then defined just like above with this variant of            : 

                                           

                                            

                                            

                             

              

                                  

(total weight with respect to metric similarity) 
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5.4 RELATED WORK 

In this section, we discuss work related to our approach for algorithmically composing music. 

The main contribution of our approach is the employment of expressive soft constraints à la 

Bistarelli et al. (8). At first, we will take a look at the employment of constraint programming in 

musical applications. Then, we will introduce approaches for imitating musical styles. At last, we 

present general approaches for developing interactive music applications. 

 

5.4.1 CONSTRAINTS AND MUSIC 

Many approaches are known where classical constraint programming is employed in a musical 

context. Especially in the field of musical harmonization, constraints are widely used: automatic 

musical harmonization deals with the problem of creating arrangements from given melodies 

with respect to certain rules. For example, a typical automatic harmonization problem is to 

generate a four-part arrangement of a fixed melody based on several rules e.g. from the era of 

Baroque. Most such rules state incompatibilities (i.e. things that are not allowed), so constraints 

are a very appropriate and natural technique for dealing with this problem. Constraints allow 

defining vertical rules restricting simultaneous notes (e.g. ‘do not play the tritone interval’) as 

well as horizontal rules restricting successive notes (e.g. ‘do not play parallel fifths’). 

 

FIGURE 27 VIOLATION OF THE 'PARALLEL FIFTHS RULE' (45) 

 

The actual rules for various musical eras are well-known and have been described in detail by 

many music theorists, e.g. by J. J. Fux in 1725 who formulated precise rules for counterpoint (46) 

or by A. Schoenberg who wrote a treatise considering both tonal as well as atonal music (47). 

The automatic harmonization problem has been investigated in numerous works and to our 

knowledge constraints have been employed in this field since the late 1970’s. Early works in the 

area of constraint-based automatic harmonization are for example from L. Steels (7), B. 

Schottstaedt (48), K. Ebcioğlu (49) or C. P. Tsang (50). F. Pachet and P. Roy made a detailed 

survey on musical harmonization with constraints (45). This work gives a short introduction to 

the problem of automatic music harmonization and refers to relevant works in this area. In the 

recent time, the authors of this survey also made several contributions themselves: They 

developed a problem-solving technique for constraint problems which uses different hierarchy 

levels to efficiently solve problems (51). In (52), Pachet gives insight into his work at the Sony 

Computer Science Laboratory Paris and sketches out several scenarios where constraints are 

employed in multimedia systems. Besides automatic harmonization, constraints are also 
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explored to be used in other music-related areas: The MusicSpace project (53) gives listeners 

control over the spatial arrangement of sound sources. Constraints are employed to ensure 

several invariants, for example keeping a constant level of loudness. Another application of 

constraints is an approach for searching for songs in a large database and building playlists (54). 

Constraints are employed for modeling user preferences like ‘no slow tempos’ or ‘at least 30% 

female-type voice’. 

 

 

FIGURE 28 AUTOMATIC HARMONIZATION OF THE FRENCH NATIONAL ANTHEM (55) 

 

There is a survey (56) which compares generic constraint programming systems for modeling 

music theories. M. Laurson’s system PWConstraints (57) allows describing and solving musical 

problems based on PatchWork (58), a general-purpose visual language with an emphasis on 

producing and analyzing musical material. Arno (59) is a program for computer-assisted 

composition which extends the composition environment Common Music (60) by means of 

constraint programming. The Strasheela system from T. Anders (61) provides a general 

framework for composing music with constraints based on the Oz programming language. This 

language is also used in the experimentation platform COMPOzE (62). Strasheela has been 

extended with real-time capabilities (63) and was employed in a system which automatically 

generates a counterpoint to a melody played in real-time. Pazellian (64) provides an easy way to 

control musical performance aspects such as dynamics or pitches which are constrained such 

that users with no musical training are able to obtain musically sensible results. A method for 

creating a Markov process that generates sequences satisfying one or several constraints has 

been patented (65). These constrained Markov processes have been used to generate song 

lyrics that are consistent with a textual corpus while being constrained by rhythmic and metric 

aspects (66). Weaker notions of soft constraints have been employed in several systems: these 

approaches provide classical hard constraints as the basic paradigm and additional soft 

preferences can be added by some special extension, e.g. a global cost function. (67) introduces 

an environment for musical constraint solving adapted to contemporary composition in the 

visual programming language OpenMusic. This approach is based on constraints expressed in 
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logical form which can additionally be associated with a cost function. So-called ‘value ordering 

heuristics’ have been used to model soft rules, e.g. in PWConstraints (57) or Strasheela (61): this 

technique allows defining constraints in a certain order. Depending on this order, certain 

constraints can be omitted in order to avoid overconstrained situations. 

Our approach is the first to employ expressive soft constraints à la Bistarelli et al. for composing 

music. This elegant theory of soft constraints is based on abstract algebraic structures (semirings 

rsp. ordered monoids) and is general enough to model many other approaches. Many different 

types of preferences can be expressed in a uniform way, from simple Boolean constraints to 

complex concurrent optimization goals. This generality and expressiveness also extends to our 

framework for composing music based on soft constraints. 

 

5.4.2 STYLE IMITATION 

Approaches for imitating musical styles are also related to our work. Typical techniques for 

dealing with this problem are based on statistical models or musical grammars. The problem of 

imitating styles is also closely related to the problem of classifying styles since in many cases the 

same kind of model can be used. 

Statistical models have been used for modeling musical styles since the 1950´s, for example by 

R. Pinkerton who trained higher-order Markov models with a corpus of nursery rhymes and 

generated new melodies from them (68). To name a few more works out of many, Markov 

models have for example been employed for analyzing and synthesizing music in the 

contrapuntal style of the composer G. P. da Palestrina (69) and hidden Markov models were 

used to classify folk music from different countries based on a corpus of several hundred 

melodies from Ireland, Germany and Austria (70). A very general approach for representing a 

stochastic process is a technique called ‘universal prediction’ which does not depend on a 

specific model; it has been applied for learning musical styles in (71). There are numerous other 

works where statistical techniques are used for imitating musical styles. In (72), several basic 

techniques for generating music from statistical models are discussed and relevant works in this 

area are introduced. A general overview about musical applications of statistics is given in the 

book ‘Statistics in Musicology’ (73). 

‘Grammatical inference’ deals with the problem of finding the syntactic rules of an unknown 

language: In (74), grammatical inference algorithms are employed to learn stochastic grammars 

for musical styles. These grammars can be used to stochastically synthesize new melodies as 

well as to classify existing melodies. In (75), two methods for learning musical styles are 

described and compared. Both perform analyses of musical sequences and then compute a 

model from which new variations can be generated. The first approach computes a model based 

on ‘incremental parsing’, a method derived from compression theory. The second one uses 

‘prediction suffix trees’, a learning technique initially developed for statistical modeling of 
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complex sequences with applications in linguistics and biology. GenJam (76) uses a genetic 

algorithm to automatically generate Jazz solos. Several populations of ‘melodic ideas’ are used 

to play solos over the accompaniment of a standard rhythm section. While playing, a human 

mentor can give feedback to the system which is used to derive fitness values for the melodic 

ideas. Using these fitness values, GenJam applies genetic operations to its populations and tries 

to improve them. In a later version (77), GenJam was modified such that it does not require a 

human mentor giving feedback anymore. This is accomplished by seeding an initial population of 

melodic ideas from a database of published Jazz licks and employing an intelligent crossover 

operator to breed child licks that tend to preserve the musicality of their parents. Evolutionary 

music composition is discussed in (78): Several evolutionary algorithms for composing music are 

described and two distinct approaches to the evaluation of generated music are discussed: 

interactive evaluation based on a human mentor’s judgement and autonomous evaluation of 

generated musical material by the system itself. 

Our approach for modeling musical styles has its focus on interactivity. Other approaches 

employ more complex techniques based e.g. on higher-order models. We use a rather basic 

musical transition model, but are able to train and play it in real-time. We introduce a novel 

combination of musical transition models and constraint-based rules: to our knowledge, there is 

no other approach which uses transition models to generate soft constraints which can then 

again be combined with other constraints, reflecting e.g. user interaction or general musical 

rules. This way, training data can be integrated into constraint-based systems in a uniform way 

within a single framework. 

 

5.4.3 INTERACTIVE MUSIC SYSTEMS 

There are many systems for interactively generating music in real-time. Numerous performance 

devices and interaction paradigms have been explored, e.g. based on interactive tables, body 

movements or global positioning. In this section, we will focus on generic approaches; systems 

related to concrete applications of our framework will be introduced in the corresponding 

sections. 

Musical programming environments are very popular for developing interactive music systems; 

e.g. for live performances or public installations. Above all, Max/MSP (79) is very widespread. It 

is based on an object-oriented approach and provides many pre-defined modules for generating 

and processing audio streams and control data. These modules can be connected among each 

other with a graphical user interface which makes the system accessible to people without 

programming skills. However, it is also possible to integrate custom modules written in e.g. C, 

C++ or Java. Interactive systems can be realized with a large number of compatible hardware 

controllers or platforms for custom sensor devices. Very similar systems based on the same 

visual programming approach are Pure Data (80) and SuperCollider (81); both are published 

under an Open Source license. 
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FIGURE 29 MAX/MSP PATCH 

 

A slightly different approach is taken by modular software synthesizers such as Reaktor (82), 

Nord Modular (83) or Origin (84); the first one is a pure software product, the latter two are 

based on custom hardware with dedicated digital signal processors (DSP) and additional 

hardware controls. These systems also provide a graphical user interface running on a desktop 

computer which allows connecting modules, but – in contrast to low-level programming 

environments - their focus is more on sound synthesis rather than interaction or algorithmic 

composition. However, this is of course no inherent restriction; it is also possible to use modular 

software synthesizers for these kinds of application. Especially Reaktor is designed very open 

and allows integrating custom modules. 

There are also textual musical programming languages which can be used in interactive 

applications. In 1957, Max Matthews developed MUSIC at Bell Labs: MUSIC was one of the first 

programming environments for musical applications and can be seen as the ancestor of many 

others. There exist a large number of derivate environments which were developed for example 

at Princeton University, the IRCAM center or the MIT. CSound (85) is an indirect descendant of 

MUSIC which is widely used for composition and performance of music. It is capable of 

synthesizing and processing sound and can be used in real-time applications; however, CSound 

is primarily designed as a tool for sound synthesis and composition rather than interactive 

applications. ChucK (86) is a textual programming environment having its focus on real-time 

synthesis, composition and performance. It provides a new time-based, concurrent 

programming model and allows to program ‘on-the-fly’, i.e. a program can be altered or 

extended while it is being executed. This makes it possible to perform and improvise music by 

writing code on stage (‘live coding’). Impromptu (87) is another musical environment for 

programming on-the-fly; it is based on Scheme (a Lisp dialect). 
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The Continuator (88) from F. Pachet combines style imitation and interactivity. The purpose of 

this system is to allow musicians to extend their technical ability with stylistically consistent, 

automatically learnt material. Based on a statistical model, the system is able to learn and 

generate musical styles as continuations of a musician’s input, or as interactive improvisation 

backup which makes new modes of collaborative playing possible. In (89), several modes of 

interacting with the Continuator are discussed; experiences with children are presented in (90). 

Our framework provides the generality and expressiveness of soft constraints and allows 

specifying and implementing interactive music systems in a very declarative way. Many common 

techniques for algorithmic composition can be modeled respectively integrated, for example 

classical constraints, concurrent optimization goals or musical transition models. The framework 

is based on an algebraic model which provides insight into all relevant functionality on a high 

level of abstraction, including musical rules as well as user interaction and musical training data. 

There exist related interactive systems based on machine learning techniques, but to our 

knowledge our approach is the first which allows training melodies than can be interactively 

‘played’ in real-time, i.e. it is possible to generate melodies based on training data that can also 

be flexibly shaped based on user interaction. 
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6 FRAMEWORK DESIGN AND IMPLEMENTATION 

In this section, we introduce the design and implementation of our framework for composing 

music with soft constraints. It is designed very modular and allows integrating various musical 

interfaces and coordination preferences. The implementation was developed entirely in the 

.NET framework with C# which allows running it on target platforms like Windows (PC, 

embedded, mobile…) or the Xbox 360 gaming console. 

The framework is implemented in a straightforward way based on the theory introduced in the 

last section. It consists of four main components: Music models basic concepts of music theory 

(notes, intervals, scales…) and provides an infrastructure for sending and receiving notes and 

metric information (internally or using external MIDI connections). Soft Constraints allows 

modeling and solving problems with soft constraints; it is being described in detail in (13). Based 

on the latter two, Musical Soft Constraints makes it possible to compose music with soft 

constraints. Using this component, Musical Model implements our approach for training musical 

preferences. We will now define functional and non-functional requirements for the framework 

and then give a detailed insight into the design and implementation of each component along 

with many practical examples. At last, we evaluate the implementation: We assess its quality 

based on the non-functional requirements and present the results of performance tests. 

 

Soft ConstraintsMusic

Musical Soft Constraints

Musical Model

 

FIGURE 30 FRAMEWORK COMPONENTS 
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6.1 REQUIREMENTS 

The primary objective of this framework is to implement our approach for composing music 

with soft constraints. The core functional requirements are specified by the formal model from 

the previous section. To sum it up, the framework has to implement music theory, musical soft 

constraints and trainable musical models. An external component for modeling and solving 

problems with soft constraint (13) has to be integrated. A basic requirement is to provide a 

general infrastructure for communicating notes, controller data and metric information 

internally and with external MIDI equipment. Furthermore, the framework has to model high-

level concepts of music theory like note pitches, pitch classes and scales. Based on this, an 

infrastructure for defining, combining and solving musical soft constraints has to be provided. 

This infrastructure should be open and highly extensible on the one hand but, on the other 

hand, also implement often used functionality like optimization cycles or common constraints. 

In addition to that, the framework has to implement musical models and basic functionality for 

training and playing them. 

Of equal importance are non-functional requirements: As a matter of course, the framework has 

to be reliable and all specified functionality should be implemented accurately and correct. 

Above all, total system crashes have to be avoided in any case. The efficiency of the 

implementation is also of high importance: It should be possible to generate music for several 

musical interfaces simultaneously and devices with limited computing power (e.g. mobile 

phones) should suffice to run applications built on the framework. Besides the overall 

consumption of resources (processing power, memory etc.), the timing of events has to be 

accurate and tight. We make high demands on usability: The framework should have a clear 

structure and there should be a straightforward and documented process for developing 

applications with it. The framework should also be maintainable, making it easy to integrate 

new functionality. Portability is also desirable: the framework should not be limited to only a 

single platform. Instead, it should be possible to develop applications for a large range of 

platforms, for example gaming consoles, mobile devices or embedded devices. 
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6.2 FRAMEWORK COMPONENTS 

We will now introduce the implementation of each component in detail. 

 

6.2.1 MUSIC THEORY 

This component implements basic concepts of music theory. The classes Pitch, 

PitchClass, Octave and Interval are implemented as described in the theory along 

with many helper functions. 

              

+TransposeUp(in interval : Interval) : Pitch

+TransposeDown(in interval : Interval) : Pitch

+Pitch(in number : int)

+Number : int

+PitchClass : PitchClass

+Octave : Octave

Pitch

+Interpret(in octave : Octave) : Pitch

+PitchClass(in number : int)

+Number : int

PitchClass

+Interpret(in pitchClass : PitchClass) : Pitch

+Octave(in number : int)

+Number : int

Octave

+Interval(in number : int)

+Interval(in pitch1 : Pitch, in pitch2 : Pitch)

+Number : int

Interval

 

FIGURE 31 PITCHES, PITCH CLASSES, OCTAVES AND INTERVALS 

 

Each of these classes is defined with an integer number which uniquely identifies it. It is possible 

to instantiate them with this number but there are also various other ways (for example by 

getting an octave from a pitch). Many static variables are provided in order to be able to obtain 

for example common pitch classes or intervals by their name instead of their number (e.g. 

PitchClass.C or Interval.MINOR_THIRD). As an example, we show how to combine a 

pitch class with an octave and get the interval between two pitches: 

     

    // combine a pitch class and an octave to a concrete pitch 

    Pitch p1 = PitchClass.C.Interpret(Octave.OCTAVE_3); 

 

    // instantiate another pitch (with its MIDI note number) 

    Pitch p2 = new Pitch(56); 

 

    // get the interval between these pitches 

    Interval i = new Interval(p1, p2); 
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The classes Stage, Mode and Scale allow dealing with tonal scales. Stages are defined with a 

number and can furthermore be regular, augmented or diminished. Modes define a sequence of 

intervals associated with stages which makes it possible to convert stages to intervals and the 

other way round. Scales can be constructed with a starting pitch class (the tonic) and a mode. 

Their main purpose is to convert stages and pitch classes in both directions. There are also many 

helper functions, for example for checking if a pitch class belongs to a tonal scale. 

     

+CombineWith(in otherStage : Stage) : Stage

+Stage(in Number : int)

+Stage(in number : int, in variant : Variant)

+Number : int

+Variant : Variant

Stage

+Regular

+Augmented

+Diminished

«enumeration»

Variant

Interval +GetInterval(in stage : Stage) : Interval

+GetStage(in interval : Interval) : Stage

+InMode(in interval : Interval) : bool

+Mode(in stageIntervals : Interval[])

Mode

PitchClass

+GetPitchClass(in stage : Stage) : PitchClass

+GetStage(in pitchClass : PitchClass) : Stage

+InScale(in pitchClass : PitchClass) : bool

+Scale(in tonic : PitchClass, in mode : Mode)

Scale

+Tonic 1

1

*

 
 

FIGURE 32 TONAL SCALES 

 

Here is a small example for dealing with tonal scales: 

    // instantiate a c major scale 

    Scale scale = new Scale(PitchClass.C, Mode.MAJOR); 

 

    // get the third stage in c major (e) 

    PitchClass pitchClass = scale.GetPitchClass(Stage.III); 

 

    // check if 'e' belongs to c major (yes) 

    bool b = scale.InScale(pitchClass); 

 

    // get the stage of c# in c major (I+) 

    Stage stage = scale.GetStage(PitchClass.C_SHARP); 

 

    // check if this stage is augmented (yes) 

    b = (stage.Variant == Variant.Augmented); 

 

    // check if c# belongs to c major (no) 

    b = scale.InScale(PitchClass.C_SHARP); 
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When it comes to sending and receiving notes, we decided to use an event-based infrastructure. 

There are two types of note events: Note-on events start a note with a given pitch and velocity 

(representing the note’s loudness) and note-off events stop a note. 

         

+NoteEventArgs(in pitch : Pitch)

+Pitch : Pitch

NoteEventArgs

+NoteOnEventArgs(in velocity : Velocity)

+Velocity : Velocity

NoteOnEventArgs

+NoteOffEventArgs(in pitch : Pitch)

NoteOffEventArgs

 

FIGURE 33 NOTE EVENTS 

 

Using .NET’s elegant event handling concept, we define interfaces for classes which send and 

receive notes. Note that it is possible to connect multiple event handlers to one source as well 

as to connect multiple sources to one event handler. 

    public interface NoteSender 

    { 

 

        event EventHandler<NoteEventArgs> SendNote; 

 

    } 

    public interface NoteReceiver 

    { 

 

        void ReceiveNote(object sender, NoteEventArgs e); 

 

    } 

 

For convenience, there is a class Instrument (implementing NoteSender) which provides 

functions for directly starting or stopping individual notes without having to manually 

instantiate and send note events every time. Furthermore, Instrument also keeps track of all 

currently playing notes and allows to for example stopping all of them at once. 
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«interface»

NoteSender

+StartNote(in pitch : Pitch, in velocity : Velocity)

+StopNote(in pitch : Pitch)

+StopAllNotes()

+PlayingPitches : List<Pitch>

Instrument

 

FIGURE 34 INSTRUMENT 

 

Communication with external MIDI devices is realized using the C# MIDI Toolkit (91). This library 

is encapsulated in our framework using two classes, MIDIIn and MIDIOut,which can be 

instantiated with a device number and a channel number. There is also a class 

MIDIDeviceHelper with several helper functions (for example for enumerating all available 

MIDI devices). 

         

«interface»

NoteReceiver

«interface»

NoteSender

+MIDIIn(in device : int, in channel : int)

+Device : int

+Channel : int

MIDIIn

+MIDIOut(in device : int, in channel : int)

+Device : int

+Channel : int

MIDIOut

 

FIGURE 35 MIDI INPUT/OUTPUT 

 

As an example, we show how to instantiate MIDI devices and pass incoming notes to an output: 

    // instantiate a MIDI input (device 0, channel 0) 

    MIDIIn midiIn = new MIDIIn(0, 0); 

 

    // MIDI output 

    MIDIOut midiOut = new MIDIOut(0, 0); 

 

    // connect input to output 

    midiIn.SendNote += midiOut.ReceiveNote; 
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Similar to sending notes, we also use an event-based system for sending clock information. 

Clock events provide global metric information making it possibe to for example determine if an 

event corresponds to a 16th note or if it is an ‘off-beat’. A class Length represents the length 

of a note; common note lengths are again provided as static variables (e.g. Length.QUARTER). 

The smallest possible length corresponds to the time interval between clock events and is called 

a ‘tick’; we currently use a resolution of 96 ticks per bar in all of our applications. 

            

+Length(in ticks : int)

+Ticks : int

Length

+IsBeat(in length : Length)

+IsOnBeat(in length : Length)

+IsOffBeat(in length : Length)

+ClockEventArgs(in barPosition : int)

+BarPosition : int

ClockEventArgs

 

FIGURE 36 NOTE LENGTHS AND CLOCK EVENTS 

 

Clocks are defined with an interface Clock and provide an event for sending ticks (the common 

periodic clock events) as well as events which occur when the clock is being started or stopped. 

The interface ClockReceiver defines the corresponding functions for receiving and 

processing these events: 

 

    public interface Clock 

    { 

 

        event EventHandler<ClockEventArgs> SendTick; 

 

        event EventHandler SendStart; 

         

        event EventHandler SendStop; 

 

    } 

    public interface ClockReveiver 

    { 

 

        void ReceiveTick(object sender, ClockEventArgs e); 

 

        void ReceiveStart(object sender, EventArgs e); 

 

        void ReceiveStop(object sender, EventArgs e); 

    } 

 



71 

 

There are two implementations of Clock: An InternalClock uses an internal timer for 

which the tempo can be defined in ‘quarter notes per minute’ (beats per minute, BPM). An 

ExternalClock allows synchronization to external MIDI equipment; this class can be 

instantiated with a MIDI device number which should be used to receive MIDI synchronization 

messages. It is also possible to synchronize external equipment to an internal clock; this is 

realized with a class ClockOut implementing ClockReceiver. Similar to 

ExternalClock, a MIDI device number defines the target device for synchronization. 

       

+ExternalClock(in device : int)

ExternalClock

+InternalClock()

+BPM : int

+BarLength : int

+BarPosition : int

InternalClock

+ClockOut(in device : int)

ClockOut

«interface»

ClockReceiver

«interface»

Clock

 

FIGURE 37 CLOCKS 

 

6.2.2 SOFT CONSTRAINTS 

This component provides data structures for modeling problems with monoidal soft constraints 

as well as a solver with several problem-specific performance optimizations. It is based on a 

formal model with all optimizations proven correct. In this work, we will introduce this 

component from a user’s point of view. We refer to (13) and (28) for a more detailed insight on 

how it works internally. 

Variables and values are defined by implementing the corresponding interfaces and defining 

equality. Furthermore, each variable has to be associated with a unique number. The classes 

NumberedVariable and NumberedValue provide a simple way to obtain 

variables/values; both have an empty constructor which successively creates distinct instances. 

+Equals(in otherValue : Value) : bool

«interface»

Value
+Equals(in otherVariable : Variable) : bool

+Number() : int

«interface»

Variable

 

FIGURE 38 VARIABLES AND VALUES 
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Variables can be grouped to a domain; values to a valuation: 

«interface»

Variable

Domain

*

«interface»

Value

Valuation

*

 

FIGURE 39 DOMAINS AND VALUATIONS 

 

The ordered monoids for rating valuations are defined by implementing the interface Grade. 

Functions have to be provided for comparing and combining grades and checking for equality. 

Many common monoids are already integrated, for example Boolean values or numbers 

(integer/float) along with several combination operations (addition/multiplication/minimum…). 

+IsGreaterThan(in otherGrade : Grade) : bool

+Equals(in otherGrade : Grade) : bool

+CombineWith(in otherGrade : Grade) : Grade

«interface»

Grade

 

FIGURE 40 MONOIDS 

 

There are two types of constraints: Functional soft constraints are defined by subclassing 

FunctionalSoftConstraint and overriding the abstract function ComputeGrade. The 

constraint’s domain is defined in the constructor and the order of values in a valuation passed to 

ComputeGrade is always consistent with the domain’s order. 

    public abstract class FunctionalSoftConstraint : SoftConstraint 

    { 

        public abstract Grade ComputeGrade(Valuation valuation); 

 

        public FunctionalSoftConstraint(Domain domain) 

            : base(domain) 

        {…} 

 

    } 
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Explicit soft constraints are defined with a discrete map which assigns grades to valuations. For 

each variable, there has to be at least one explicit constraint enumerating its domain. A factory 

class makes it easy to define explicit constraints: 

    public class ExplicitSoftConstraintFactory 

    { 

        public void AddVariable(Variable variable) {…} 

 

        public void AddMapEntry(Value[] values, Grade grade) {…} 

 

        public ExplicitSoftConstraint GenerateConstraint() {…} 

        … 

    } 

First, all variables must be added with the function AddVariable. Then, the map entries can 

be added with the according function. The number and order of values must match the number 

and order of variables in the constraint’s domain. When all map entries have been added, the 

constraint can be generated. 

«interface»

Grade

Domain

Valuation

SoftConstraint

ExplicitSoftConstraint
+ComputeGrade(in valuation : Valuation) : Grade

FunctionalSoftConstraint

1

Map

MapEntry

*
1

1

1

 

FIGURE 41 SOFT CONSTRAINTS 
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When no preferences over the constraints itself are needed, a list of soft constraints using the 

same monoid can be directly solved like this: 

    List<SoftConstraint> constraints = …; 

    SingleProblem problem = new SingleProblem(constraints); 

    List<Solution> solutions = problem.Solve();  

 

Single problems can also be combined to more complex problems as described in (12). There are 

two very basic types of combinations: An Indifference combines problems using an order 

by component; a Preference combines problems using a lexicographic order: 

       SingleProblem problem1 = …; 

   SingleProblem problem2 = …; 

   SingleProblem problem3 = …; 

   SoftConstraintCombination c1 = new Indifference(problem1, problem2); 

   SoftConstraintCombination problem = new Preference(c1, problem2); 

   List<Solution> solutions = problem.Solve();  

 

It is also possible to define other preferences over constraints by defining embedding functions. 

Embedding functions are instances of this delegate: 

    public delegate Rank Embed(Grade grade, Rank rank); 

 

The problem can then be defined with an instance of SoftConstraintProblem. Each soft 

constraint has to be added to this problem together with its embedding function using the 

function AddSoftConstraint. These problems can be solved with an instance of the class 

Solver. 
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+IsGreaterThan(in otherRank : Rank) : bool

+Equals(in otherRank : Rank) : bool

+CombineWith(in otherRank : Rank)

«interface»

Rank

SoftConstraint

SoftConstraintProblem

SoftConstraintContainer

1

*

1

1

+Embed(in grade : Grade, in rank : Rank) : Rank

«delegate»

Embed

 

FIGURE 42 SOFT CONSTRAINT PROBLEMS 

 

 

 

6.2.3 MUSICAL SOFT CONSTRAINTS 

This component makes it possible to compose music with soft constraints; it depends on the 

components described above: Music and SoftConstraints. The problem of generating music for 

several musical interfaces is modeled by assigning Actions to Voices. Each voice can play one 

note at a time - if an interface should be polyphonic (i.e. it can play multiple notes at a time) it 

has to have an according number of voices. As described in the theory, we currently use three 

types of actions: 

 Start a note with a given pitch (NoteOn) 

 Hold a note (Hold) 

 Do nothing (Pause) 

 

We use soft constraints for assigning actions (values) to voices (variables). A Voice implements 

Variable and always stores the last action it performed. The abstract class Action inherits 

from the interface Value; Pause directly inherits from Action and NoteOn and Hold 

inherit from another abstract class NoteAction which holds a note pitch. 
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SoftConstraints.Variable

SoftConstraints.Value

+CurrentAction : Action

Voice

Action

+Pitch : Pitch

NoteAction
Pause

HoldNoteOn
       

FIGURE 43 VARIABLES AND VALUES 

 

The component uses the following operation cycle: first, each musical interface states its current 

preferences with one or several soft constraints (typically based on sensor data). Then, these 

soft constraints are combined among each other and extended with global preferences 

coordinating the interplay between the interfaces. The complete problem is solved and the 

resulting solution defines an action for each voice. These actions are passed to the 

corresponding musical interfaces which execute it. After a certain time, the cycle is repeated. 

    

+Reason() : Solution

+MakeActions(in solution : Solution)

Reasoner

+StatePreferences(in reasoner : Reasoner) : List<SoftConstraint>

+MakeAction(in solution : Solution)

CoordinatedInstrument

*

Music.Instrument

Music.ClockReceiver

Voice

*

 

FIGURE 44 INSTRUMENT COORDINATION 
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The class Reasoner is the component’s central controller. The operation cycle is triggered 

when the method Reason is called: this can be done at fixed time intervals by a clock or 

manually, for example initiated by user interaction. Musical interfaces are instances of 

CoordinatedInstrument, which is a subclass of Instrument. Each coordinated 

instrument holds one or several voices. The method StatePreferences is called when the 

instrument should state its preferences with soft constraints. Both Reasoner and 

CoordinatedInstrument are abstract classes: when implementing a concrete application, 

the abstract methods Reason and StatePreferences have to be implemented. A typical 

implementation of Reason first collects all instruments’ preferences by calling 

StatePreferences. Then, global constraints can be added. The final problem is then passed 

to the constraint solver which returns one or several optimal solutions and one of these has to 

be chosen (since all solutions are optimal, one can be randomized). This solution just has to be 

returned and the framework will do the rest by calling MakeAction in Reasoner which 

passes it to each instrument by calling MakeAction in CoordinatedInstrument. This 

function finally executes the actions by sending note events. 

            

 : Reasoner  : CoordinatedInstrument

StatePreferences(this)

MakeAction(solution)

Reason()

 : NoteReceiver

ReceiveNote

 : Problem

Solve

solution

Combine with

global preferences

MakeActions(solution)

 

FIGURE 45 OPERATION CYCLE 
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There is a factory class MusicConstraintFactory which makes it easy to define explicit 

musical soft constraints. First, all voices have to be added by calling AddVoice. Then, the 

actions can be added with a grade. For constraints over multiple voices, the method 

AddActions has to be called with a list of actions and a grade. Constraints over a single voice 

can also be generated by calling functions which directly add an action with a certain grade (e.g. 

AddPause). When all actions for a constraint have been added, the function 

GenerateConstraint has to be called. This generates the constraint and adds it to the list 

of constraints SoftConstraints. Then, a new constraint over the same voices can be 

generated. There are also several subclasses of the factory which directly generate constraints 

over a certain monoid (for example MusicConstraintFloadAddFactory). 

     

    public class MusicConstraintFactory 

    { 

 

 

        public List<SoftConstraint> SoftConstraints; 

 

 

        public void AddVoice(Voice voice); 

 

 

        public void AddActions(List<Action> actions, Grade grade); 

 

 

        public void AddAction(Action action, Grade grade); 

 

 

        public void AddNoteOn(Pitch pitch, Grade grade); 

 

        public void AddHold(Pitch pitch, Grade grade); 

 

        public void AddPause(Grade grade); 

 

 

        public void GenerateConstraint(); 

 

        public void Reset(); 

 

    } 

 

We will now sketch out an example for implementing a very simple music application with 

several constraints. First, we implement a subclass of CoordinatedInstrument and 

override StatePreferences such that it returns five random note-on actions and a pause 

action with a random grade from the monoid of real numbers with addition: 
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    public override List<SoftConstraint> StatePreferences(Reasoner r) 

    { 

        MusicConstraintFactory factory = new MusicConstraintFactory(); 

 

        factory.AddVoice(Voices[0]); 

 

        for (int n = 0; n < 5; n++) 

        { 

            factory.AddNoteOn( 

                new Pitch(random.Next(40, 80)), 

                new FloatAdd((float)random.NextDouble()) 

                ); 

        } 

 

        factory.AddPause(new FloatAdd((float)random.NextDouble())); 

 

        factory.GenerateConstraint(); 

 

        return factory.SoftConstraints; 

    } 

 

We implement a simple reasoner and override Reason. This method collects all instrument 

constraints and generates an additional harmony constraint with a random weight (we will take 

a closer look at this afterwards). All constraints are combined, solved and the first solution is 

returned: 

    public override Solution Reason() 

    { 

        List<SoftConstraint> constraints = new List<SoftConstraint>(); 

 

        foreach (CoordinatedInstrument i in Instruments) 

        { 

            constraints.AddRange(i.StatePreferences(this)); 

        } 

 

        HarmonyConstraint harmony = new HarmonyConstraint( 

                Instruments, 

                (float)random.NextDouble() 

                ); 

 

        constraints.Add(harmony); 

 

        SingleProblem problem = new SingleProblem(constraints); 

 

        return problem.Solve()[0]; 

    } 

This is pretty much it – the framework will do the rest. We just need to connect some 

instruments and a clock to the reasoner and the application is complete. In this example, we 
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make use of a predefined functional soft constraint, the HarmonyConstraint. We will now 

take a look at the implementation of this constraint. For realizing the harmony constraint, we 

need a function which rates the harmony between two actions. In general, we define an 

interface HarmonyRating which rates the harmony between two actions with an integer 

number. The default harmony rating is based on the theory of harmony from Howard Hanson 

(44) as described in section 5.2. 

    public interface HarmonyRating 

    { 

 

        int Harmony(Action action1, Action action2); 

 

    } 

In contrast to explicit soft constraints, functional soft constraints are defined with an arbitrary 

function from valuations to grades. The HarmonyConstraint sums up the harmony 

between all pairs of actions in a valuation and multiplies this sum with a constant factor 

weight which is defined in the constructor. The task of optimizing this value is done by the 

constraint solver. Besides a few more technical lines of code (class declaration, constructor etc.) 

the harmony constraint can be defined as short as this: 

    public override Grade ComputeGrade(Valuation valuation) 

    { 

        int totalHarmony = 0; 

 

        for (int v = 0; v < valuation.Values.Length; v++) 

        { 

            for (int w = (v + 1); w < valuation.Values.Length; w++) 

            { 

                totalHarmony += harmonyRating.Harmony( 

                    valuation.Values[v] as Action, 

                    valuation.Values[w] as Action  

                    ); 

            } 

        } 

 

        return new FloatAdd(totalHarmony * weight);            

    } 
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6.2.4 TRAINABLE MUSICAL MODELS 

Musical models allow training melodic preferences in order to make the generated music 

consistent with a certain musical style. These models are used for automatically computing soft 

constraints expressing how well the melodies generated by an instrument comply with the 

training data. We want to be able to use musical models in real-time: it should be possible to 

both play and train a model in a real-time application. As defined in section 5.3, a musical model 

has several States corresponding to the actions an instrument can perform and several Steps 

representing rhythmic divisions. At each step, each state has a certain weight. Furthermore, for 

each step and state, there are transition weights to the states on the next step. Both kinds of 

weights are modeled with floating-point numbers. Playing and training musical models requires 

frequent access to these weights and hence, the implementation of musical models should 

allow reading and modifying weights in an efficient way. We decided to implement an abstract 

musical model which does not depend on a certain type of states. Based on this general model, 

we developed two concrete models specialized for rhythmic respectively tonal sequences. 

CoordinatedInstrument TrainableInstrument

+Weight : float

+TransitionWeights : float[]

Node

*

+StartTraining()

+TrainState(in step : int, in state : State, in weight : float)

+GetStateWeight(in step : int, in state : State) : float

+SetStateWeight(in step : int, in state : State, in weight : float)

+GetTransitionWeight(in step : int, in from : State, in to : State)

+SetTransitionWeight(in step : int, in from : State, in to : State, in weight : float)

+States : State[]

+Nodes : Node[,]

+Length : int

MusicalModel

1

+MakeAction(in solution : Solution)

+Energy : float

+MeanPitch : Pitch

EnergyPitchInstrument

+Number : int

State

*

 

FIGURE 46 MUSICAL MODEL 

 

A musical model holds an array of states: State is an interface which requires a unique integer 

number that has to correspond with the state´s index in the array. A class Node is used for 

storing the states´ weights. A two-dimensional array of nodes holds one node for each step and 

state: a node´s first index corresponds to the step, the second one to the state´s unique number. 
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A node stores a single state weight as well as transition weights to the states on the subsequent 

step. These transition weights are stored in an array of floating-point numbers such that a 

state´s transition weight can be accessed by the state´s unique number. This way, it is possible 

to get and set all weights in constant time: 

    public float GetStateWeight(int step, State state) 

    { 

        return nodes[step, state.Number].Weight; 

    } 

    public float GetTransitionWeight(int step, State from, State to) 

    { 

        return nodes[step, from.Number].TransitionWeights[to.Number]; 

    } 

 

TrainableInstrument is an abstract subclass of CoordinatedInstrument which 

already holds a reference to a musical model and can serve as a base class for own 

implementations of generating soft constraints from a musical model. 

EnergyPitchInstrument is an abstract subclass extending TrainableInstrument 

and allows playing a musical model by deriving values for ‘energy’ and ‘pitch’ from user 

interaction. Based on this class, there are two classes for playing rhythmic respectively tonal 

sequences with energy and pitch; each depends on a corresponding specialized musical model: 

             

MusicalModel

EnergyPitchInstrument

RhythmicModelInstrument TonalModelInstrument

RhythmicModel TonalModel

11

 

FIGURE 47 TONAL AND RHYTHMIC MODELS 
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Each model uses a distinct set of states: A rhythmic model contains only two states representing 

notes (HitState) and silence (PauseRhythmic). Similarly, a tonal model contains a state 

for silence (PauseTonal) as well as states representing notes which are based on an abstract 

class StageState. This state holds a reference to a stage in a tonal scale and has two 

subclasses: NoteOnState represents a starting note and HoldState represents a note 

which was started before and is still being held. 

       

State

RhythmicModelState

HitState PauseRhythmic

TonalModelState

+Stage : Stage

StageState

NoteOnState HoldState

PauseTonal

 

FIGURE 48 TONAL AND RHYTHMIC STATES 

 

As mentioned above, each state has to have a unique number which makes it possible to get 

and set weights in constant time. Assigning this number to rhythmic states is easy since there 

are only two states; it becomes a bit more complicated for tonal states: we want to be able to 

use models with a variable number of stages which can also be augmented. Furthermore, there 

are two subclasses of StageState which need to have a unique number for each stage. Each 

stage has a unique number which is computed based on its position in the tonal scale (Number) 

and whether it is regular or augmented (IsRegular): 

    public int GetID() 
    { 
        if (IsRegular) // regular stage 

        { 

            return Number * 2; 

        } 

        else // stage is augmented  

        { 

            return (Number * 2) + 1; 

        } 

    } 
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Based on a stage´s number, we assign unique numbers to all tonal states: PauseTonal has a 

static number of 0; the two subclasses of StageState get alternating numbers: a 

NoteOnState with a given Stage has a number of (Stage.GetID() * 2) + 1; the 

corresponding HoldState gets a number which is one higher: (Stage.GetID() * 2) + 2. 

This way, the number of a state can be computed in constant time without any additional data. 

Hold I

On I

I+

I

II

0

1

2

Pause0
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4
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6 Hold

On II
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FIGURE 49 UNIQUE STATE NUMBERS 

 

We will now take a closer look at how models can be trained with note pitches and then show 

how soft constraints can be constructed from a model. Both kinds of weights can be trained 

with a single function TrainState. Calling this function modifies the state weight as well as the 

transition weight from the last step to the current step using a member variable lastState 

which stores the last trained state: 

    public void TrainState(int step, State state, float weight) 

    { 

        // modify state weight 

        nodes[step, state.Number].Weight += weight; 

 

        // compute the last step number 

        int lastStep = step - 1; 

        if (lastStep < 0) lastStep = Length - 1; 

 

        // modify transition weight 

        nodes[lastStep, lastState.Number]. 

        TransitionWeights[state.Number] += weight; 

 

        // remember last training state 

        lastState = state; 

    } 
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Given a step s, a tonal scale scale and a weight w, a tonal model m can be trained with a 

certain pitch p like this: 

    m.TrainState(s, new NoteOnState(scale.GetStage(p)), w); 

    m.TrainState(s, new HoldState(scale.GetStage(p)), w); 

 

When a NoteOn message is received, a NoteOnState has to be trained on the current step. 

Until the NoteOff message arrives, a HoldState has to be trained at every passing step. 

When no notes are received, pauses have to be trained like this: 

    m.TrainState(s, new PauseState(), w); 

 

Rhythmic models are trained the same way: 

    m.TrainState(s, new HitState(), w); 

    m.TrainState(s, new PauseRhythmic(), w); 

 

Playing a musical model can be done in several ways. The framework directly implements the 

approach based on ‘energy’ and ‘pitch’, but it is of course also possible to implement custom 

approaches. Independently from a concrete approach, we will now present several code 

examples showing the most basic steps for generating soft constraints from a musical model. In 

these examples, we make use of the following variables: We keep track of the current rhythmic 

position with two integer numbers, currentStep and lastStep. The last actually executed 

state lastState is required for computing transition weights. When generating soft 

constraints from a tonal model, a StageState has to be reconstructed from the the last 

action´s pitch (Voices[0].Pitch) and the current tonal scale (reasoner.CurrentScale). 

The actual task of generating constraints is done with a factory for constraints over a monoid 

based on floating-point numbers  (factory).  Generating a soft constraint from a musical 

model is based on three types of actions respectively states for pausing, starting and holding. 

The grade of an action is derived from the corresponding state´s weights. Depending on the 

concrete implementation, a StageState can also have multiple actions corresponding to it, 

because it can be played in different octaves and tonal scales. 
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The Pause action directly corresponds to a state (pauseState); its grade can be computed by 

summing up the pause´s current state weight and its transition weight: 

    float weight = 0; 

    // add the state weight 

    weight += TonalModel.GetStateWeight(currentStep, pauseState); 

    // add the transition weight 

    weight += TonalModel.GetTransitionWeight(lastStep, lastState,    

        pauseState); 

 

    // add pause action to the constraint factory 

    factory.AddPause(weight); 

 

The grade of a rhythmic action (HitState) can be computed the same way. When it comes to 

tonal models, pitch classes and stages in a tonal scale can be converted among each other based 

on the current tonal scale. A pitch class can correspond to a single note pitch in a certain octave 

as well as to multiple pitches in different octaves. NoteOn actions can then (for example) be 

added to a constraint like this: 

    foreach (NoteOnState state in TonalModel.NoteOnStates) 

    { 

        float weight = 0; 

 

        // add the state weight 

        weight += TonalModel.GetStateWeight(currentStep, state); 

 

        // add the transition weight 

        weight += TonalModel.GetTransitionWeight(lastStep, lastState,   

            state); 

 

        // get the stage´s pitch class w.r.t. the current tonal scale 

        PitchClass pitchClass = reasoner.CurrentScale.GetPitchClass(   

            state.Stage); 

   

        // convert the pitch class to a concrete note pitch 

        Pitch pitch = DoSomethingWith(pitchClass) 

         

        // add note on action to the constraint factory 

        factory.AddNoteOn(pitch, weight); 

    } 
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When an instrument is currently playing a note, it is possible to hold this note in the next step. 

The stage corresponding to this note has to be reconstructed w.r.t. the current tonal scale. 

Then, a weight can be computed for a HoldState based on this stage: 

    if (Voices[0].IsPlaying) 

    { 

        // reconstruct playing stage w.r.t. the current tonal scale 

        Pitch pitch = Voices[0].Pitch; 

        Stage stage = reasoner.CurrentScale.GetStage(pitch); 

 

        // instantiate a hold state with this stage 

        HoldState holdState = new HoldState(stage); 

 

        float weight = 0; 

 

        // add the state weight 

        weight += TonalModel.GetStateWeight(currentStep, holdState); 

 

        // add the transition weight 

        weight += TonalModel.GetTransitionWeight(lastStep, lastState,  

            holdState); 

 

        // add hold action to the constraint factory 

        factory.AddHold(pitch, weight); 

    } 

 

The framework includes implementations of EnergyPitchInstrument which allow 

playing tonal and rhythmic models with only two parameters. For efficiency reasons, these 

implementations do not generate separate constraints for the model and the user interaction. 

Instead, both constraints are already merged into a single constraint which reduces the 

constraint problem´s complexity. 
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6.3 EVALUATION 

Based on the non-functional requirements, we will now asses the quality of our framework and 

then present the results of performance tests. 

 

6.3.1  QUALITY ANALYSIS 

The first prototypes for implementing musical soft constraints have been developed in 2008; the 

first version of the current framework was developed in early 2009. Until now (2014), we used 

the framework in a variety of applications and continually improved it. The framework is built 

based on a formal model which depends on well-known theories for music and soft constraints 

and the constraint solver is based on a verified prototype in Maude (28). In the current 

implementation, all search optimizations are verified. These are all factors which contribute to 

the system´s quality and stability. Our personal impression is in accordance with this: the 

framework works as intended and has a high reliability. 

The efficiency of the framework suffices in all of our applications. When the number of voices 

does not exceed about four (which is reasonable for most applications), even devices with low 

computing power suffice to run the framework. When a higher number of voices are required, 

the performance can be greatly improved by using problems where search optimizations are 

applicable. The memory usage of the core framework is rather low (typically less than a 

megabyte) which is unlikely to be a limiting factor on devices running the .NET framework. In 

addition to the core framework, musical models also require a constant amount of memory 

depending on the model´s complexity and length. In most cases, memory usage will not be the 

limiting factor. The timing of events is good in most cases. Garbage collection can often be a 

problem in real-time applications but the garbage collector of the .NET framework is 

implemented very efficiently and did not audible affect the timing. When the CPU has usage 

peaks from other processes, the timing can get irregular for a short amount of time. Detailed 

results of performance tests can be found in the next section. 

The usability of the framework is hard to assess, because so far no person worked with it which 

was not involved in its development and thus has knowledge of the internal structure. 

Nevertheless, we think that there is a clear structure and a straightforward and documented 

process for developing applications. The applications based on the framework did only require 

few programming code related to generating music: defining musical soft constraints can be 

done very fast but requires knowledge of the underlying theory. When there is no knowledge 

about soft constraints or music theory, the initial learning curve will have a rather low slope in 

most cases. Nevertheless, applications based on musical models and predefined constraints can 

be developed without having to deal with soft constraints. Musical models can be trained 
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without having any programming skills at all; developing interactive applications based on 

musical models can be done by only deriving two parameters from user interaction. 

In order to achieve maintainability, the framework is implemented in a very modular way with 

high cohesion within a single component and low coupling among multiple components. The 

framework has been developed in an agile process with incremental integration of functionality 

and much effort was spent for keeping a clear structure by constant refactoring. All relevant 

parts of the framework are documented textually and with class diagrams. All programming 

code is written with respect to a consistent coding style. The code is documented well; complex 

functionality is described in natural language with one comment for every line of code. 

The framework´s portability is not satisfying at the moment. Since it is developed with 

Microsoft´s .NET framework, it will only run on Windows platforms (Desktop, Surface, 

embedded, mobile, Xbox360 etc.). There are several approaches for running .NET applications 

on other platforms (e.g. the Mono project), but – from our personal experiences - they do not 

have a good quality when it comes to efficiency and ease of development. In order to achieve a 

good portability, the framework has to be converted to a commonly accepted programming 

language like C++. This can partially be done with automatic code converters but also requires a 

large amount of manual work. 

 

6.3.2 PERFORMANCE TESTS 

All tests were performed on a laptop with a 1.67 GHz CPU and 2 GB RAM. 

We consider problems where no search optimizations are applicable, i.e. the whole search space 

has to be examined in order to get an optimal solution. In any case, such problems will be at 

least as complex to solve as any other problem with the same dimensions. We generated 

random problems with a variable number of voices and actions per voice and measured the 

time for finding the best solution. As long as this time is below the time between two steps, it is 

possible to achieve a constant latency (which is hardly audible thanks to its constancy). 

Otherwise, the problem is too complex and has to be reduced or optimized. In our applications, 

we use a resolution of 16th notes which leads to upper bounds for search times from about 

250ms (60 bpm) to 83ms (180 bpm). 
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FIGURE 50 LEFT: APPLICABLE SEARCH TIME, RIGHT: SEARCH TIME IS TOO HIGH 

 

The following diagram visualizes the computation times of random problems with 3 – 6 voices, 

each having 1 – 10 actions. Furthermore, a HarmonyConstraint is defined over all voices. 

Since no optimizations are used, all problems having the same dimensions take about the same 

time to solve. The horizontal line marks the time between two 16th notes at 120 bpm (125ms): 

 

FIGURE 51 TIME TO SOLVE A MUSICAL SOFT CONSTRAINT PROBLEM 

 

When experimenting with the framework, we had the personal impression that the generated 

music begins to sound unorganized when the number of voices exceeds about four. We also 

made the observation that it is sufficient in all of our applications to consider only the about five 

best actions for each voice. This type of problems (four voices, five actions per voice and a 

harmony constraint) takes about 15ms to compute (without any optimization), which is clearly 

below the time between two steps at common tempos. The cost of a functional constraint can 

vary strongly from case to case. The harmony constraint is rather expensive to compute because 
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it needs to consider all pairs of variables. The next figure compares the computation times of 

problems over four voices with and without the harmony constraint: 

 

FIGURE 52 COST OF THE HARMONY CONSTRAINT (FOUR VOICES) 

 

For some types of problems, search optimizations can be employed which lead to drastic 

reductions of search times under certain conditions. The solver used in this framework supports 

several search optimizations (see (13)). The following diagram shows the distribution of 

computation times for general soft constraint problems with 10 constraints. Without 

optimization, these problems take several minutes to compute. When using an optimized 

branch and bound algorithm which is applicable to a certain type of problem, efficiency is 

greatly improved: The average computation time is 5.2s with most problems taking clearly 

below one second. There was one heavy outlier taking nearly one and a half minute and several 

outliers in the other direction which took nearly no computation time at all. 

 

 

FIGURE 53 SOME OPTIMIZED COMPUTATION TIMES IN MILLISECONDS (LOGARITHMIC SCALE) 
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The memory usage of the framework is unlikely to be a limiting factor since it is rather low 

compared to the processor usage. The following figure shows the memory usage of an 

application based on problems with 5 voices and 6 actions per voice. While the program is 

running, data is generated; for example, the constraint solver stores backtracking continuations 

and the communication of notes and metric information is done with events. At certain time 

intervals, the garbage collector releases obsolete data: 

 

FIGURE 54 MEMORY USAGE IN KILOBYTE OVER 10 SECONDS 

 

The memory usage of the core framework can be kept rather small since only few data needs to 

be stored for a longer time. Even for larger problems where the CPU comes to its limits, the 

maximum memory usage is less than 200 Kilobyte. Besides the data used by the basic 

infrastructure, musical models also have to be kept in the memory because fast access to them 

is required. At least all currently active musical models have to be available; new models can 

also be loaded from permanent storage in the background while the system is playing. The size 

of a musical model depends on its type and number of steps: a tonal model with seven stages in 

a tonal scale (15 states) needs about 0.54 kB memory per step. Using a resolution of 16th notes, 

a model with one bar requires for example about 9 kB; a model with 16 bars about 138 kB. 

Rhythmic models have only two states and require only 0.01 kB per step. 
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7 APPLICATIONS 

This section presents the applications built upon our framework so far: ‘The Planets’ is an 

interactive music system controlled by a table-based tangible interface where music can be 

interactively composed by arranging planet constellations. Then, we present a pattern-based 

step sequencer called ‘Fluxus’ which allows training and interactively playing musical models. In 

the subsequent section, we present a general approach for transforming spatial movements into 

music and two concrete applications of it: the first one is based on two-dimensional movements 

on a touch screen; the second one uses markerless motion-tracking to generate music from 

three-dimensional body movements. At last, we will present research on how interactive music 

systems can be employed in the area of pervasive advertising. 

 

7.1 ‘THE PLANETS’ FOR MICROSOFT SURFACE 

‘The Planets’ (92) was developed in cooperation with Max Schranner from the Academy of Fine 

Arts in Munich and combines our approach for algorithmic composition with new human-

computer interaction paradigms and realistic painting techniques. In this work, we contributed 

to the concept, implemented the application and participated in creating the tangibles. It was 

exhibited at the ‘night of science (Senses09)’ in Munich and was a finalist in the ‘Ferchau Art of 

Engineering (2010)’ contest. The main inspiration for it was the composition ‘The Planets’ from 

Gustav Holst who portrayed each planet in our solar system with music. Our application allows 

to interactively compose music in real-time by arranging planet constellations on an interactive 

table. The music generation is controlled by painted miniatures of the planets and the sun which 

are detected by the table and supplemented with an additional graphical visualization, creating 

a unique audio-visual experience. 

 

 

FIGURE 55 THE PLANETS AT SENSES09 IN MUNICH 
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7.1.1 CONCEPT 

The Planet’s user interface is entirely based on miniatures of the sun and the planets in our solar 

system which can be arranged on an interactive table and generate music depending on their 

current constellation. A planet’s absolute position on the table does not play a role – only its 

relative position towards the sun is of importance. There are five smaller planets (Mercury, 

Venus, Mars, Neptune and Uranus) each representing an instrument with a different sound. 

Moving an instrument planet towards the sun makes it play faster (more and shorter notes); a 

planet which is far away from the sun plays only few notes. 

fast

slow

medium

 

FIGURE 56 SPEED 

 

The instrument’s pitch is controlled by the planet’s relative angle to the sun: rotating it 

clockwise around the sun increases its pitch, rotating it counter-clockwise decreases it such that 

a full rotation corresponds to one octave. The pitch is not controlled deterministically; there are 

always a larger number of possible pitches corresponding to a certain angle. Whenever a planet 

plays a note, a supplementing visualization is displayed on the table: at the position where the 

note was started, a sphere appears which becomes bigger and fades out over time. The 

visualization does not follow the planet but rather stays where the planet was when the note 

was started. This way, a planet being moved on the table leaves a trace of spheres behind it 

representing the notes it recently played. 

lower

higher

 

FIGURE 57 PITCH 
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Jupiter and Saturn do not play notes – instead, they control global parameters affecting the 

interplay between the instrument planets; they are also bigger than the other planets in order 

to make their special role clear. Jupiter controls the global ‘harmony’ between all instrument 

planets: the closer it is to the sun, the more harmonic intervals between the instrument planets 

are played (like fifths, fourths or thirds). This is also being reflected in its visualization on the 

table: when there is high harmony (Jupiter is near the sun), its visualization is green – moving it 

away fades its color to brown (‘medium harmony’) and, finally, to red (‘no harmony at all’). 

Rotating Jupiter around the sun changes the global tonal scale. This is done in steps of fifths in 

order to create natural harmonic modulations around the ‘circle of fifths’. For example, when 

the current tonal scale is c-major (also corresponding to a-minor since there is no fixed tonic 

pitch class), a clockwise rotation modulates to g-major (and then to d-major, a-major and so on). 

Playing just notes from a given tonal scale is only enabled when Jupiter is within a certain range 

around the sun – if it is out of this range, there is no restriction to a scale anymore and any note 

can be played. 

harmony

tonal scale
 

FIGURE 58 JUPITER (‘HARMONY’) 

 

Saturn controls global rhythmic parameters. When Saturn is near the sun, the global rhythmic 

accuracy is high and every metric time interval has a constant length (e.g. any 16th is as long as 

any other 16th). Moving it away from the sun leads to a more loose and imprecise rhythm with 

random tempo variations. The global tempo can be controlled by moving Saturn clockwise 

(faster) or counter-clockwise (slower) around the sun. Saturn’s visualization on the table reflects 

both parameters it controls: Every 8th note, it emits a circle which becomes bigger and fades out. 

This visualizes both the tempo and the rhythmic accuracy: the faster the tempo, the smaller the 

distance between the circles; a high rhythmic accuracy leads to circles with equal distance. 

rhythmic
accuracy

faster

slower

 

FIGURE 59 SATURN ('TIME') 
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7.1.2 REALIZATION 

We implemented our application for the Microsoft Surface table which recognizes fingers and 

objects put upon its display. This makes it possible to use new interaction paradigms based on 

multiple fingers (multitouch) or dedicated physical control objects (tangibles) which are 

detected either by their form or by a visual tag. The Surface SDK is fully integrated in .NET and 

provides a core library for all basic functions (like registering for user events) as well as a very 

high-level library based on WPF (Windows presentation foundation). Many table-specific 

functions (like tag visualizations or dedicated layout managers) are included and can also be 

used in Microsoft’s WPF editor Expression Blend. 

              

FIGURE 60 MICROSOFT SURFACE TAGS (ORIGINAL SIZE) 

 

Before implementing the system on the table, we have built a prototype with a drag-and-drop 

mouse interface in order to get a proof-of-concept for the music generation and early feedback 

from other people. Then, we decided to develop a user interface for the Surface based on 

tagged physical objects (the planets and the sun) and an additional graphical visualization on the 

table. Much effort was spent for designing the visual and haptical appearance of the application: 

before the final design was established, we developed and discussed many alternative versions 

based on design sketches and prototypes of the tangibles. 

 

7.1.2.1 TANGIBLES 

The planet miniatures are realized as half-spheres made of aluminum. We decided to use this 

material because it is very robust and has a good haptic quality on the one hand (in contrast to 

e.g. wood) but still is not too heavy on the other hand (in contrast to e.g. steel). We wanted the 

tangibles to look like the real planets in our solar system; they are painted using techniques 

from the area of ‘trompe l’oeil’-painting. ‘Trompe l’oeil’ can be translated as ‘trick the eye’ and 

tries to make a painting look like a real thing. It can often be found on the facades of buildings, 

adding e.g. fake windows or pretending the use of expensive material (like marble). Our 

tangibles are painted precisely based on satellite images of the real planets. Although being 

relatively small with diameters of only 5 and 6 cm, many realistic details are captured on them. 

Since the tangibles are meant to be touched and played with, they are covered with an 

additional protective layer on top of the painting. 
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For realizing the sun, we wanted to make use of a transparent material in order to illuminate it 

using the table’s display. Real glass has a very good haptic quality – but it is not robust enough 

and would also be too heavy for a half-sphere with a diameter of 8.5 cm. We finally decided to 

use acryl glass which is sandblasted on the spherical side, thus creating a diffuse texture. The 

sun’s flat bottom side is not sandblasted in order to let as much light as possible pass through it. 

 

FIGURE 61 JUPITER TANGIBLE 

 

7.1.2.2 VISUALIZATION 

The visualization on the table is designed to look appealing but also to help in understanding 

how the system works and give additional visual feedback to acoustic events. We implemented 

it in .NET using WPF (Windows Presentation Foundation) and the Microsoft Surface SDK which 

provides several table-specific WPF controls. 

 

FIGURE 62 TABLE DISPLAY 

 

The main design elements are spheres. The sun is the only tangible object with has a static 

sphere being constantly displayed below it, filled with a radial gradient fading out to 

transparency. All other objects (the planets) only emit spheres which stay at their original 

position. An instrument planet does not have a constant visualization: only when it plays a note, 

it leaves a sphere at the position where the note was started which becomes bigger and fades 
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out over time. The sphere does not follow the planet but rather stays in its initial position. This 

way, a planet being moved on the table leaves a trace of spheres behind it, visualizing the notes 

it recently played. Jupiter, controlling the global harmony between the planets, emits a filled 

sphere every 8th note. The sphere’s color visualizes the current harmony: when there is high 

harmony, its color is green. With decreasing harmony, the color continually fades to brown 

representing ‘medium harmony’ and then to red, representing ‘no harmony at all’. Similarly, 

Saturn (controlling rhythm) also emits a sphere every 8th note. These spheres are not filled and 

should resemble Saturn’s rings. The distance between these rings visualizes the global tempo 

(small vs. large distance) and the rhythmic accuracy (equal vs. irregular distance). 

 

7.1.2.3 MUSIC GENERATION 

Based on our framework, the music generation was easy to realize. The concept is very minimal 

and makes only use of the framework’s most basic features. Thus, it serves as a good example 

for understanding how music can be composed with soft constraints. We will now introduce a 

formal model of the music generation. 

We have a set of stellar objects and a subset of instrument planets (the voices). At each 

reasoning time, each stellar object has a certain position on the table: 

                                                                     

                                          

 

                              

              

(stellar objects) 

 

The generation of constraints is based on the Euclidean distance between objects: 

                       

                          
               

  

(Euclidean distance) 
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The maximum distance between any two objects on the table is defined with this constant: 

          

(greatest possible distance between objects) 

 

We also need to keep track of an object’s rotations around the sun. Computing only the angle 

between the object and the sun is not sufficient: we also need to detect multiple rotations. For 

example, rotating an instrument planet around the sun once changes its pitch by one octave – 

rotating it again changes it by another octave and so on. Tracking rotations around the sun is not 

complicated, but very technical. To simplify things here, we define a function which computes 

values from 0 to 1 for each object. This interval already represents multiple rotations: 

                                 

(rotation around the sun) 

 

Based on an instrument planet’s relative position to the sun, a constraint is generated reflecting 

its preferences for pitch and ‘rate of notes’. We use the                       as defined in 

section 5.2: 

                                             

 

A planet’s energy at a given reasoning time is based on its energy at the preceding reasoning 

time, the last action, the distance to the sun and a constant experimental factor   : 
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The pitch constraint is based on the planet’s rotation around the sun. The rotation value is 

mapped to a certain pitch (the ‘mean pitch’): 

                     

(convert rotations to pitch values) 

 

Besides this mean pitch, all pitches within a fifth around it can also be played. When Jupiter’s 

distance to the sun is smaller than a constant value               , the restriction to a tonal 

scale derived from Jupiter’s rotation around the sun is enabled. 

                     

 

                               

             
                                                        

                                      
  

 

                                 

                                                                             

 

The pitch constraint is then defined as follows: 
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We use the                   defined in section 5.2 for optimizing the harmony between 

the instrument planets. This constraint is weighted with an experimental factor    and Jupiter’s 

inverse distance to the sun: 

                                   

                   

                                           

                        

(harmony between the planets) 

 

The final constraint problem is then defined by summing up the harmony constraint and all 

planet constraints using the monoid of real numbers with addition          : 

                                 

                                                              

       

 

(the final constraint problem) 

 

The implementation is realized in a straightforward way based on this formal model. The central 

classes are PlanetInstrument subclassing CoordinatedInstrument and Planets 

subclassing Reasoner. The communication between the user interface and the music 

generation is bidirectional: the positions of the tangibles are passed to the music generation and 

playing notes are passed to the user interface. This is realized with the interface 

StellarObject and its subclasses Planet and Sun. These interfaces are implemented by 

the user interface which keeps a stellar object’s position and state up to date. This data is 

processed by the music generation. Playing notes are communicated to the corresponding 

planet by calling the method Blink. This way, the bidirectional communication between user 

interface and music generation is realized in a simple way with shared communication objects 

and the music generation has no dependency to the user interface. 
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Reasoner

CoordinatedInstrument

+StatePreferences(in reasoner : Reasoner) : List<SoftConstraint>

+Energy : float

+Pitch : Pitch

PlanetInstrument

+Reason() : Solution

+Planets(in sun : Sun, in planets : List<Planet>, in jupiter : Planet, in saturn : Planet)

Planets

+Active() : bool

+X() : float

+Y() : float

+DistanceTo(in otherObject : StellarObject) : float

+AngleTo(in otherObject : StellarObject) : float

«interface»

StellarObject

+Blink()

«interface»

Planet

«interface»

Sun

-planets

*

-sun

1

-instruments *

 

FIGURE 63 THE PLANETS CLASS DIAGRAM 

 

7.1.3 THE PLANETS FOR WINDOWS PHONE 7 

We recently implemented The Planets for Windows Phone 7. In this application, the planets can 

now be moved on the phone’s display with multitouch interaction (i.e. several planets can be 

moved at the same time with multiple fingers). When porting the application, the following 

design constraints showed up: First, the available space on the display is very small – especially 

compared to the surface table. Second, we want the planets to move in a natural way with no 

objects being at the same place at any time (which is an inherent restriction for tangibles). Third, 

there is no standard software synthesizer available for generating audio from note information. 

We could re-use the existing music generation component without any change. However, we 

decided to implement a new user interface based on Microsoft’s .NET game engine XNA (93). 

We made much use of so-called particle effects for creating visualizations of e.g. playing notes 

or the constantly changing stars in the background (based on the Mecury Particle Engine (94)). 

In order to save space on the display, we decided to omit the two control planets Jupiter and 

Saturn. Saturn’s functionality for controlling the tempo has been completely omitted. Jupiter’s 

functionality for controlling tonal scales has also been removed, but we definitely wanted to 
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keep the possibility to control the harmony of the music. We decided to use the phone’s 

accelerometer for controlling this parameter: the harder one shakes the phone, the more 

dissonant notes are played. This is also accompanied by a matching visualization (see Figure 64). 

 

FIGURE 64 LEFT: REGULAR SCREEN, MIDDLE: DISSONANCE, RIGHT: SOUND SELECTION 

 

In order to create a natural behavior of the planets and to keep them separated, we decided to 

use the Farseer physics engine (95). All planets and the sun are controlled by a realistic physical 

simulation: it is possible to push them around on the display and they also bump into each 

other. For creating audio from notes, we have built a simple sound generator based on pre-

recorded audio files (a so-called ‘sampler’). These short audio files (‘samples’) cover individual 

notes from a certain instrument which are transposed to a desired note pitch and written to a 

buffered audio stream. For each planet, three different sounds can be selected: Bell, Piano and 

Guitar. 
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7.1.4 RELATED WORK 

There is much related work where musical applications are controlled by tangible user 

interfaces: for example, the famous reacTable (96) provides a completely new paradigm for 

interacting with a modular synthesizer, Audiopad (97) is based on arranging samples and 

Xenakis (98) allows composing music with probability models (to name just a few). Above all, 

the work of Toshio Iwai was a great inspiration: Elektroplankton (99) for the Nintendo DS 

handheld gaming console offers a collection of several musical mini-games and allows creating 

music in a very playful way. Another system designed by T. Iwai is Yamaha’s Tenori-On (100) 

which provides a matrix of 16x16 lighted buttons that control several intuitive music generation 

applications. The employment of planets (which have no direct connection to music) was 

inspired by the orchestral suite ‘The Planets’ from Gustav Holst: every planet in our solar system 

is portrayed with a musical piece which reflects its special astrological character. The earth is not 

included in Holst’s composition so we also decided to omit it. 

‘The Planets’ provides direct control over the shape of melodies and is based on high-level 

concepts of music theory like tonal scales or the harmony between notes. To our knowledge, 

there is no other system where the amount of harmony between several simultaneously playing 

voices can be controlled in a continuous way. 
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7.2 FLUXUS PATTERN SEQUENCER 

In contrast to the other applications presented in this work, the Fluxus pattern sequencer is an 

application geared towards musicians. It was designed to provide a convenient interface to the 

musical framework’s basic features like training musical models. Besides this, it also provides 

additional functionality like recording of static sequences. The two main areas of application are: 

 Creating musical ‘styles’ for applications geared towards non-musicians 

 Live performance of music with a focus on improvisation 

 

Interactive applications for non-musicians based on the Fluxus sequencer were exhibited at the 

‘Komma’ trade fair for communication and marketing in Munich and at the concert series 

‘Zukunft(s)musik’ in Augsburg (both in 2011). 

 

 

FIGURE 65 FLUXUS PATTERN SEQUENCER 

 

The Fluxus sequencer is based on so-called patterns: A pattern is a rather short snippet of music 

which has a length of only few bars (for example 4 bars). A pattern sequencer allows creating, 

organizing and playing back these patterns for one or several instruments. Fluxus provides the 

novel possibility to also train musical models that can be interactively ‘played’, i.e. varied in both 

rhythm and pitch. It soon turned out that a key requirement for this system would be a seamless 

integration with all the conventional things a typical pattern-based MIDI sequencer provides. 

Playing only trained models sounds much too unorganized in most cases: it should also be 
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possible to record static sequences and switch between them and interactive models at any 

time. Much effort was spent for designing the system’s user interface since we wanted to build 

a system with short and direct control that can also be used in an improvisational performance. 

The system can be controlled with a mouse or a touch screen. Furthermore, it is also possible to 

control most functions with generic hardware MIDI controllers. The pattern sequencer allows 

creating musical styles that can be used in other applications. A whole set of patterns, including 

static background music as well as training data for several players, can be exported to a single 

file and imported by another application, for example a casual game based on motion tracking. 

In the next subsection, we will introduce the pattern sequencer from a user’s point of view. 

Then, we will take a closer look at the system architecture and its implementation. At last, we 

will give a short overview on the history of music sequencers and introduce related approaches. 

 

7.2.1 CONCEPT 

The Pattern Sequencer has four rhythmic tracks and four tonal tracks. Each track can hold 

several patterns, each consisting of a loop holding static sequence data and a model holding 

dynamic training data. Loops and models can be recorded respectively trained by playing notes 

on an external keyboard (or any other MIDI device). Trained models can be used to interactively 

generate new melodies from them: the playback speed (rate of notes) can be controlled with a 

parameter energy; the desired note height can be controlled with a second parameter pitch. The 

music is then generated according to these parameters such that it also sounds similar to the 

training melodies. 

 

Training Weight

TempoTrain Track

Record Track

Start / Stop

Swing factor

Length of
added patterns

Add patterns

Clear patterns

 

FIGURE 66 TOOLBAR 

 

At the top, the toolbar can be found. It provides global controls for starting and stopping the 

sequencer, recording loops and training models. The tempo can be set in BPM (beats per 

minute) and a swing factor can be set (deferring every odd 16th note by a certain amount). At 

the right, there are controls for adding and removing patterns. Below, there are additional 
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controls for saving or loading the sequencer’s state as well as several helpers (e.g. a metronome 

and optional buttons for launching external controllers). 

Select this Track

Playing Pattern

Play Loop (static notes)

Play Model (dynamic notes)

Patterns

 

FIGURE 67 TRACK VIEW 

 

Below the toolbar, four rhythmic and four tonal tracks can be found. The button at the top 

selects a track: all MIDI input (e.g. from a connected keyboard) is routed to the selected track 

and can be used for recording and training patterns. The rhythmic tracks are always selected 

altogether in order to be able to record or train all of them at once; tonal tracks are selected 

individually. Each track can hold up to eight patterns of variable length. Adding new patterns is 

done by selecting Add and setting the desired length in the toolbar. Then, clicking an empty 

pattern slot will insert a new pattern. Vice versa, existing patterns can be removed by selecting 

Clear and clicking on the patterns to remove. The currently playing pattern is marked in green; 

clicking on another pattern starts it at the next bar change. On the right, there are buttons 

which allow starting a complete row of patterns for all tracks at the same time. Below the 

patterns, there is a button which allows turning playback of the static loop on or off. At the 

bottom, playback of the model can be controlled: a rhythmic model’s energy is controlled with a 

regular fader. Tonal models are controlled with a two-dimensional pad: the vertical position 

controls the energy, the horizontal position the pitch. This way, both parameters can be 

controlled fast und intuitively with a single finger. Recording loops is done in the obvious way by 

pressing the Record button. Similarly, training a model is done by pressing the Train button. This 

is always done with a certain weight (controlled by a fader): Using a high weight makes training 

notes have a strong influence on existing training data. Vice versa, low weights do only slightly 

change an existing model. Note that there are no separate controls for switching between a 
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loop, a model and live input, e.g. from a MIDI keyboard. Instead, we use a hierarchical ‘Barge-

In’-system for intuitively switching between them: Playing a model by increasing its energy 

mutes the loop. Both model and loop are being muted when a track is played using live input. 

 

Live Input
(e.g. Keyboard

Loop Model

Energy

Pitch

Barge In Barge In

 

FIGURE 68 BARGE-IN HIERARCHY 

 

7.2.2 REALIZATION 

Like the musical framework itself, the Fluxus sequencer is also written in .NET with C#. It was 

developed in an iterative process with continuous evaluation, improvement and refactoring.  

 

Musical Framework

Pattern Sequencer

Fluxus

Other Interactive Application

 

FIGURE 69 PATTERN SEQUENCER ARCHITECTURE 
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Based directly on the musical framework, a component Pattern Sequencer implements the 

application logic, i.e. the whole musical functionality: patterns, tracks, loops and models, train 

and record, playback, save and load data and so on. The component Fluxus provides a user 

interface to the sequencer. The pattern sequencer component can also be used by another 

application, e.g. geared towards non-musicians. This way, musical models and loops can be 

created by musicians using Fluxus and then used by non-musicians in another application. 

 

7.2.2.1  MUSIC GENERATION 

In this section we will introduce the general architecture of the pattern sequencer component 

and take a closer look at how trainable musical models are employed. 

Reasoner

Track

*

PatternSequencer

Pattern

1

RhythmicTrack TonalTrack

RhythmicLooper RhythmicModelInstrument

RhythmicModelRhythmicLoop TonalLoop

TonalLooper

TonalModel

TonalModelInstrument

TonalPatternRhythmicPattern

1111

1 1 1

1 1 11

*

*

*

 

FIGURE 70 PATTERN SEQUENCER ARCHITECTURE 

 

PatternSequencer is a subclass of Reasoner. This class holds references to Tracks, 

which can be either rhythmic or tonal. Each track has a looper for static sequence data and a 

trainable instrument; these can also be rhythmic or tonal: TonalModelInstrument and 

RhythmicModelInstrument are presented in detail in section 6.2.4. A Track holds 
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several Patterns which consist of a loop as well as a model having the same length. The 

Track classes handle all functionality related to playback, recording and training. The barge-in 

system is also implemented in tracks. 

The generation of music from trainable models is based on the                       as 

introduced in section 5.2. At each step, a certain amount of energy is added to a track, 

controlled by the Fluxus user interface’s faders or any other interaction paradigm in another 

application (e.g. the speed of hand movement detected by a motion tracking system): 

                        

 

Whenever a note is started or being held, a certain amount of energy is subtracted (‘consumed’) 

from the track like this: 

                           

                   

                     

                     

      

  

 

The track’s current energy is computed from the energy at the last step, the amount of 

consumed energy and the amount of added energy: 

                                                         

 

The pitch constraint for tonal tracks is generated from a single number which can be set with 

the two-dimensional pad or by a different interaction paradigm in another application, e.g. the 

current height of a user’s hands: 

                     

 

This number is converted to a note pitch e.g. such that all possible pitches can be reached or, if 

desired, such that the pitches remain in a desired range: 
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A set of all possible pitches is computed by taking all pitches within a certain interval around the 

root pitch (we use a fifth): 

                                

                                                                   

 

This set is used to define the pitch constraint: 

                                       

                         

                  

                                       
      

  

 

The constraint for a track is defined as a combination of the                       and the 

                as defined in section 5.3: 

                                            

                                                     

                                                                   

 

The final constraint problem is a combination of all track constraints and an optional harmony 

constraint: 
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7.2.2.2  USER INTERFACE 

The User Interface was developed with WPF based on the Model-View-ViewModel (MVVM) 

pattern, which allows a very clear separation between visual elements and presentation logic. 

Like most user interface design patterns, MVVM also consists of three layers: the application 

logic and data (here: the pattern sequencer component) is called the Model. The ViewModel 

encapsulates the Model and (re-)organizes it such that it represents the application’s conceptual 

model from the point of view of a user. The View defines the visual appearance of the 

application. It consists of visual elements (e.g. buttons) and user interface logic which has 

nothing to do with the application itself (e.g. mouse-over effects or animations). In WPF, the 

View is usually written in the declarative language XAML (which supports graphical editors) and 

additional programming code (C#). In contrast to other common user interface patterns (e.g. 

Model-View-Controller or Model-View-Presenter), the layer between View and Model has no 

dependency to the View. Instead, controls in the View are only loosely coupled to the 

ViewModel via the Command pattern and data bindings. This results in a very clear conceptual 

model of the user interface and the presentation logic which is easy to maintain because it is 

completely separated from graphical programming code. The following UML diagram shows 

how the Fluxus user interface is implemented based on the MVVM pattern. For simplicity, the 

distinction between rhythmic and tonal has been omitted: 

        

MainViewModel

Track

PatternSequencer

PatternPatternViewModel

1

1
*

TrackViewModel

1

*

*

*

MainWindow

TrackView

PatternView

*

*

 

FIGURE 71 FLUXUS USER INTERFACE (MVVM PATTERN) 

Each ViewModel class encapsulates the corresponding Model class and exposes only properties 

and commands which are relevant for the user interface. As an example, the MainWindow 

class is loosely coupled to the MainViewModel. The MainViewModel exposes a property 

Play which gets or sets the playback state: 

    public bool Play 

    { 

        get { … } 

        set { … } 

    } 
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The actual control for the playback state is defined in the MainWindow (using the XAML 

markup language) and loosely references the property Play in the corresponding ViewModel: 

    <ToggleButton IsChecked="{Binding Play}" … >Play</ToggleButton> 
 
 

The user interface can be controlled by a mouse as well as a touch screen. Furthermore, it is also 

possible to use external MIDI hardware controllers in order to achieve a more direct and tactile 

user experience.  

Currently, two controllers are directly supported: Novation launchpad and Korg Nano control. 

The selection of patterns can be controlled with the Novation launchpad which also supports 

visual feedback from the application. With a matrix of 8 x 8 multi-color LEDs, patterns can be 

selected for each track. The color of the LEDs are the same as in the application: ‘off’ visualizes 

an empty pattern slot, ‘yellow’ an existing pattern and ‘green’ a currently playing pattern. The 

Nano control provides transport buttons which are used to control the playback state (play, 

record, train, set tempo). Furthermore, it provides eight groups each having a fader, a dial and 

two buttons. Each group corresponds to a track: the fader controls ‘energy’, the dial ‘pitch’ (for 

tonal tracks) and the two buttons ‘track selection’ and ‘loop playback’.  

The MVVM pattern makes it easy to integrate external controllers and maintain a consistent 

state between the controller and the regular user interface. This is achieved by connecting a 

single ViewModel to the regular control in the application as well as to the external control. This 

way, changes in the ViewModel are automatically kept consistent for both interfaces. 

 

7.2.3 RELATED WORK 

Musical automata were among the first programmable systems ever (2), using e.g. pin rollers or 

punch cards to store note information. These mechanical machines can be seen as the first 

sequencers and were capable of controlling for example flutes, bells or percussion instruments. 

In the 19th century, Thomas Alva Edison was one of the first to record and reproduce sounds. 

However, recording sound is not a matter of concern here: we are rather interested in ways of 

recording and editing abstract note information. 

The first electronic sequencers came up in the 1960’s along with commercially available 

synthesizer systems (e.g. from Moog, Buchla or Roland). These early sequencers were so-called 

step sequencers which have a series of columns (typically 8 or 16), each representing a certain 

metric position in a bar (a step). Each row provides a control element for every step: switches 

for binary information (e.g. note on/off) and dials for continuous information (e.g. note pitch). 

These sequencers are often components of modular synthesizer systems and as such not 
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restricted to control only notes. Instead, they can rhythmically change any available parameter 

in the system, for example aspects of a sound’s timbre. Early popular electronic music was 

strongly influenced by step sequencers: the sound of bands like Kraftwerk or Tangerine Dream is 

above all characterized by frequently repeating sequences. Today, these simple step sequencers 

are still very popular and there are lots of new systems available (despite or even because of 

their restrictions and simplicity). The first systems which could store several patterns in a digital 

memory were simple drum machines. In the early 1970’s, drum machines came up which had a 

set of predefined rhythms that could only be selected but not edited. A few years later, it 

became possible to store and recall user-defined rhythms. Above all, the Roland TR-series of 

rhythm machines was (and still is) very popular. A set of 16 buttons represents the metric 

positions in a bar: pushing a button makes the selected instrument play a note at this position. 

There are also similar concepts for monophonic tonal instruments like the Roland TB-303 

synthesizer. 

In the early 1980’s, when personal computers became available, the first software sequencers 

for standard hardware came up (e.g. by Karl Steinberg who later developed Cubase which is still 

one of the most popular software sequencers in its current version). Arbitrary sound generators 

can now be connected over the MIDI protocol (Musical Instrument Digital Interface) which 

became a widespread standard. These sequencers are based on a very different approach: 

instead of patterns, they use a linear timeline along which a whole song can be arranged. The 

raw division into rather big steps (e.g. 16th notes) of early systems was improved with a far more 

precise resolution. With increasing computing power, software sequencers also became very 

powerful: today, digital audio workstation software contains the functionality of a whole 

recording studio – it is possible to record multiple audio tracks at the same time, apply effects or 

play complex software-synthesizers in real-time. Besides Steinberg Cubase, there are many 

other sequencers available (for example Apple Logic, Cakewalk Sonar or Cockos Reaper to name 

just a few). Another recent sequencer is Ableton Live which returned to the pattern-based 

concept of early systems and has its focus on arranging and mixing patterns in a live 

performance. In our application, the organization of patterns in a matrix of tracks and patterns is 

inspired by Ableton Live.  

The Fluxus pattern sequencer is based on a novel and unique concept: it integrates static 

sequences and dynamic models which can be recorded respectively trained while the system is 

running. This makes it possible to interactively generate variations of melodic material, for 

example in an improvisational performance. Models trained with the Fluxus sequencer can also 

be used in other interactive applications, e.g. targeted at non-musicians. 
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7.3 TRANSFORMING SPATIAL MOVEMENTS TO MUSIC 

In this section, we describe a general approach for transforming spatial movements into music. 

Based on this general approach, we implemented two concrete applications: The first one is 

controlled with a touch display, the second one with body movements. The application based on 

touch interaction was exhibited at the ‘Komma’ trade fair for communication and marketing in 

Munich and at the concert series ‘Zukunft(s)musik’ in Augsburg (both 2011). 

 

 

FIGURE 72 CONTROL MUSIC WITH BODY MOVEMENTS 

 

7.3.1 APPROACH: GENERATING MUSIC BASED ON SPATIAL MOVEMENTS 

In general, we have a set of moving ‘objects’ which control the music. Adopting terminology 

from the area of computer vision, we call these objects features. Typical features are a user’s 

body parts, for example a finger moving on a display or a whole hand moving in three-

dimensional space. A single interactive voice can be controlled by a single feature as well as by 

multiple features at the same time. Furthermore, a single person can also control multiple 

voices simultaneously by multiple (typically distinct) sets of features. In general, we have a set of 

features for each voice corresponding to the spatial objects which are used to control it: 

                     

 

These features are tracked with a certain sampling rate. Just like the set of reasoning times 

    , the tracking samples are also modeled with natural numbers:  
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There is no quantitative correspondence between these sets, but we nevertheless want to 

compare elements of      with elements of       . We hence define the comparison 

operators (     ) such that they compare with respect to the elements’ actual time of 

occurrence – regardless of their discrete sequential numbers. The tracking of features is typically 

done with a much higher sampling rate than the reasoning, i.e. in most cases there will be 

several tracking samples between two reasoning times. For a given reasoning time, the 

following function returns all samples since the last reasoning time: 

                       

                                  

(samples between   and    ) 

 

For each sample, we can determine the position of each feature as a vector. Without loss of 

generality, we use a three-dimensional vector space here: 

                           

                

(position of a feature at a given sample) 

 

We compute distances between points with the Euclidean distance: 

                       

                          
               

               
  

(Euclidean distance) 

 

For each voice, we compute the amount of movement between two sequential samples. This is 

done by summing up all distances between the old and new positions for each of the voice’s 

features: 
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(movement of all features between two samples) 

 

Given a voice and a reasoning time, we sum up the movement for all samples since the last 

reasoning time: 

                            

                             
              

 

(movement of all samples between two reasoning times) 

 

We generate music based on the                       as introduced in section 5.2. Given a 

voice and a reasoning time, the energy for this time is computed based on the preceding energy, 

the amount of energy consumed by the preceding action and the sum of all movements since 

the last reasoning time (scaled by an experimental factor): 

                    

            

                     

                     

      

  

                                                       

 

The voice’s pitch is controlled similarly by averaging over all samples and features: 
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The resulting number is converted to an actual pitch such that it gets in the desired range: 

                  

 

We define a constraint that restricts pitch to be within e.g. a fifth around this mean pitch: 

                                 

                                                                   

 

                                       

                         

                   

                                       
      

  

 

The complete constraint for one voice is a combination of the                        and the 

                as defined in section 5.3: 
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The final constraint problem is a combination of all motion constraints with an optional 

harmony constraint: 

                                    

                                                                    

       

 

 

7.3.2 APPLICATIONS: TOUCH DISPLAY AND MOTION TRACKING 

We implemented our approach for transforming spatial movements to music based on two 

different interaction paradigms: First, we implemented a user interface based on a touchscreen 

where the user can play music by moving his finger: the faster he moves, the more notes are 

being played; the notes’ pitches depend on the finger’s vertical position. Then, we implemented 

a user interface based on a motion tracking system where the music is controlled by body 

movements (we use Microsoft’s markerless tracking system Kinect). The music can be controlled 

with a set of body features: The faster these features are moving, the more notes are being 

played; their average vertical position controls pitch. 

 

Musical Framework

Pattern Sequencer

Fluxus Display UI Body Tracking UI

 

FIGURE 73 SYSTEM ARCHITECTURE 
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Both applications use the Pattern Sequencer component as described in the previous section 

and generate music based on models which can be trained with the Fluxus application. Only few 

lines of code were required for the music generation: both touchscreen and Kinect provide a 

callback function which updates (among other things) the current position of all features. We 

just sum up the distances for all relevant features’ positions to the last update and use this to 

set the ‘energy’. The average vertical position of all features is used to set ‘pitch’. For both 

applications, the code dealing with music generation is less than 10 lines.  

 

 

FIGURE 74 PARTICLE EFFECTS 

 

The most code was required for realizing the graphical part of the user interface. We considered 

it very important to provide a visualization fitting to the music which helps understanding how 

the system behaves and creates an appealing audio-visual experience. Our visualization is 

mainly based on so-called ‘particle effects’ which are often used in video games to create 

‘blurry’ effects (for example fire, smoke or blood). We use these effects (created by the 

‘Mercury Particle Engine’ (94)) to visualize the user’s movements as well as notes resulting from 

interaction. For example, the user’s movements can be followed by a rather subtle and slowly 

moving trail of particles whereas playing notes can be visualized with a fast moving and rather 

drastic effect (similar to an explosion). Besides an appealing look which is easy to achieve, 

particle effects also partially compensate the latency of a touch display and – even more – body 

tracking because of their blurry nature. 
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7.3.3 RELATED WORK 

Several related approaches and systems have been described where music is generated based 

on spatial movements of body parts or the general physical body state. In (101), a system is 

described which allows users to use their full body for controlling the generation of an audio-

visual feedback in real-time. The system extracts motion features from the user’s body 

movements and maps them to acoustic parameters for rendering a piece of music as well as 

additional visual feedback projected on a screen in front of the user. The Impromptu Conductor 

(102) is a system for mapping hand movements to music based on a supervised learning method 

called 'pattern-recognition'. The Cyber Composer (103) generates music according to hand 

motions and gestures. Musical expressions like the pitch, rhythm and volume of a melody can be 

controlled and generated in real-time by wearing a pair of motion-sensing gloves. In (104), a 

system for musical performance is patented based on user input and stored original music data 

representing a music piece. A user’s physical actions and physiological state are acquired and 

used to alter the stored tones. Similarly, in the patent (105), sensors are used to assess a user’s 

physical condition which alters a stored piece of music. This gives constant acoustic feedback to 

the user and helps him to achieve a certain desired behavior in a training or therapy context. 

Another tool targeting the same application context is described in (106): pressure-sensitive 

controls allow even people with severe disabilities to control the generation of music. The 

system introduced in (107) uses a performance device (e.g. based on hand-proximity) to 

interactively control several aspects of a composition algorithm. When no input is provided, the 

system proceeds automatically to compose music and produce sound. A general-purpose 

position-based controller for electronic musical instruments is described in (108). The position 

signal may be used for generating music or for applying effects to the output of another 

instrument. 

Our approach for generating music from spatial movements is mainly based on the location and 

velocity of body features. Other approaches provide control on a higher level of abstraction 

based e.g. on gesture recognition – it would be interesting to investigate how this could be 

integrated in our framework. We introduce a general and modular way for transforming spatial 

movements to music within our framework for composing music with soft constraints: the user 

interaction paradigm, i.e. the mapping of raw sensor readings to musical preferences is specified 

in a declarative way and does not depend on other preferences. General musical preferences 

can be specified with additional constraints optimizing e.g. the similarity to a musical model or 

the harmony between several voices. This way, applications which generate music based on 

spatial movements can be composed in a very modular way with loose coupling between 

functionality dealing with user interaction and functionality dealing with other musical rules. 
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7.4 INTERACTIVE ADVERTISING JINGLES 

This chapter is based on joint research with Gilbert Beyer from LMU Munich on how interactive 

music can be used within the area of pervasive advertising (109) (110) (111) (112). In these 

works, we participated in developing basic requirements and design constraints for interactive 

music systems for advertising purposes and contributed to the conception of the described 

prototype systems. We realized these systems based on our framework for composing music 

with soft constraints and trainable transition models. 

Music has been used for advertising purposes for a long time, e.g. in the form of advertising 

jingles or background music in shopping malls. Nowadays, sounds are also used within 

interactive media in the internet and in digital signage. Yet, there have only been limited 

attempts to include sound itself to the interactive experience. In this chapter, we present an 

approach that enables users to interactively play advertising music. This approach meets two 

important requirements: First, the user should have control over the music. Second, the music 

should still be recognizable as a given brand melody. To our knowledge, there is currently no 

related work describing the combination of music generation and interactive advertisements.  

There exist many articles on specific sound branding issues in classical and digital media, but 

they do not cover the field of user-controllable brand music. No work so far focused on how to 

control the brand music itself within the interactive experience, while the same is often done 

with visual elements of the brand identity. For a general survey on the topic of sound branding 

we refer to (113) and (114). At first, we assess requirements and design issues for several 

potential application areas for interactive advertising music. Then, we present our general 

approach for realizing interactive advertising jingles that can be interactively played on the one 

hand but still remain recognizable on the other hand. We present a prototype based on public 

displays and close with results from a user study. 

 

7.4.1 REQUIREMENTS AND APPLICATION AREAS 

Along with the emergence of interactivity in common media, advertising has also become 

interactive, for example within interactive internet banners, advertisements in video games or 

public installations. Today, there exist a variety of platforms which are potentially suitable for 

advertising involving user-controllable music. In general, we see two different approaches for 

using interactive music in advertising: On the one hand, it can supplement other content, e.g. as 

part of a company´s web page or an interactive application running on a public display. In this 

case, interactive music has the function to enhance the overall experience. On the other hand, 

an interactive music application can also be the primary part of an advertisement, for example 

in the form of a free application for mobile phones which is fun to play with and hence will be 

used voluntarily by people. We see a variety of application areas where interactive music can be 

employed for advertising: 
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Online Advertising: In online advertising, the enrichment of ads by sound and interactivity is 

already common. In general, all kinds of rich media advertisements can be used to integrate 

interactive music, e.g. banners, skyscrapers or floating ads. Microsites can also be an 

appropriate platform for interactive music since they are self-contained areas within a larger 

web presence which are typically used for advertising particular products, sweepstakes or 

promotional events. There are also modes of application where interactive music might be 

inappropriate: in general, online advertisements should only include sound which is triggered by 

user interaction, i.e. they should be silent unless being explicitly started. Advertisements which 

can be closed by the user (e.g. peel backs or interstitial ads) might also be unsuitable because 

they might be clicked away before the user understands that he can interact with the music. 

Mobile Advertising: Interactive music applications can be used well on mobile devices which 

typically provide many possibilities for designing user interaction: from common controls like 

buttons or touch displays to specialized functionality like acceleration sensors or global 

positioning. Musical applications are very popular on such devices and there exist a large 

number of applications for all common platforms. On the one hand, there are professional 

applications designed for musicians and on the other hand - much more interesting for 

advertising - simple applications targeted at non-musicians. Musical applications on mobile 

phones have already been used for advertising purposes: for example, Audi gives away an app 

for the iPhone which is a combination of car racing and a rhythmic game. With another app 

from Procter and Gamble, one can play drums on Pringles chips cans. 

In-Game Advertising: Advertisements in video games are an expanding market. Common 

formats of in-game advertisements are virtual billboards in sports games and product 

placements (e.g. car brands in racing games (115)). While these classical forms of in-game 

advertisements might provide possibilities for interactive music, a more obvious field of 

application are video game soundtracks which contribute considerably to the gaming 

experience: background music is often dynamically adapted to the player’s current situation in 

order to create a certain mood, for example if he gets involved in a fight. This can be used to 

integrate brand sounds and associate them with a certain mood. Besides background music 

playing for a rather long time, there are also often very short sounds which are directly 

connected to certain events (e.g. jumping or collecting items).  These game events could also be 

used to generate interactive advertising music based on a player’s actions in order to associate 

them with a given brand.  

Out-of-Home Advertising: Besides applications for devices which are typically owned by the 

user, interactive music could also be used in the area of out-of-home advertising (e.g. on public 

displays). Especially in this area, the interaction paradigm has to be designed such that it 

requires no or only very few training. Furthermore, the system’s location has to be chosen such 

that sound pollution is avoided: it should not be installed at a place where other people could be 

disturbed while being e.g. at work or shopping. We developed a prototype for a system where 
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users can interactively play music with hand movements in front of a public display and 

conducted a user study on how untrained users interact with it (see section 7.4.3). 

This list of application areas can only cover a part of advertising opportunities for interactive 

music systems and may be completed with many others. There might be types of advertising or 

sites where interactive music or music at all do not make sense or are inappropriate. Many 

people have fun with musical applications, but they can also be annoying in some situations. It is 

much harder to ignore sounds than visual stimuli and hence, one has to take care of maintaining 

a moderate level of loudness and avoiding sound pollution, especially in out-of-home 

applications. Interactive music applications should not be misplaced and should only be 

employed where entertaining content is appropriate. 

 

7.4.2 APPROACH: INTERACTIVE ADVERTISING JINGLES 

In this section, we show how it is possible to generate music which is controlled by user 

interaction on the hand but which is still recognizable as a certain brand melody on the other 

hand. Our general approach for interactively generating music makes use of declarative 

preferences that express ‘how the music should sound’. These preferences are expressed as soft 

constraints, a technique which is suited well for tackling concurrent problems. With our 

approach, it is possible to automatically derive preferences from existing melodies: this way, 

well-known melodies can be used in interactive applications and their characteristic properties 

can be preserved up to a certain extent. With this kind of preferences, it is possible to flexibly 

alter given melodies based on user interaction: the melodic material can be subject to dynamic 

changes while still remaining recognizable. 

We make use of three basic kinds of preferences: First, we use preferences that are derived 

from user interaction, e.g. a touch display or a motion tracking system. These preferences 

reflect how the user wants the music to sound, for example ´I want to play fast notes with a high 

pitch´. The actual transformation of raw sensor readings to preferences depends strongly on the 

chosen user interface and interaction paradigm. The second type of preferences expresses 

general melodic rules: With this kind of preferences, it is possible to make the music consistent 

with a certain musical style. Furthermore, it is also possible to make the resulting melodies 

comply with a brand´s distinct acoustic identity, e.g. a certain advertising jingle. In most cases, 

the preferences derived from user interaction will be concurrent to an advertising jingle, i.e. the 

user interaction does not fit to the jingle with respect to both tonality and rhythmics. Since a 

certain amount of control over the music is assigned to the user, it is inherently not possible to 

exactly play a given melody note by note. Nevertheless, it is possible to generate melodies 

which are similar to it by using note pitches as well as tonal and rhythmic patterns appearing in 

the brand’s distinct melody. This way, melodies can be generated considering both interactivity 

and brand recognition. At last, we use preferences that coordinate several instruments playing 
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simultaneously, for example a single player with static background music or multiple players 

among each other. This coordination can be made by preferring harmonic intervals between 

different instruments. Furthermore, it is also possible to coordinate multiple instruments such 

that they play similar rhythmic patterns. 

User
Interaction

Jingle

Voice
Coordination

 

FIGURE 75 CONCURRENT PREFERENCES FOR INTERACTIVE ADVERTISING JINGLES 

 

For developing applications which allow interactively playing with advertising jingles, the Fluxus 

sequencer can be used to train musical models as described in section 7.2. Based on these 

musical models, constraints can be generated which express ‘how close a certain action is to a 

given advertising jingle’. This dynamic constraint is dependent on the current time and models 

the tonal as well as the rhythmic structure of the jingle: 

                                             

(constraint expressing similarity to an advertising jingle) 

 

For each player, a                 is defined as a combination of the jingle constraint and one 

or several other constraints reflecting user interaction, for example the 

                      (see section 5.2.): 

                                                                

(constraint for a single player) 
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The final constraint problem is then a combination of all players’ constraints and, for example, 

an additional harmony constraint: 

                                   

                                                

       

 

(final constraint problem for interactive advertising jingles) 

 

In order to achieve a good result, a lot of fine tuning is required: Just training the jingle’s melody 

will not suffice in most cases because there will not be enough possibilities for varying the jingle 

based on user interaction. Consider for example the case that one wants to play a note when 

there is a pause in the jingle: one can use the concept of metric similarity as described in section 

5.3, but the best musical results are obtained when there is explicit training data for all metric 

positions. Thus, the musical model should not only include the jingle itself but also several 

explicit variations of it. We achieved good results by training the jingle itself with a high training 

weight and several variations of it with a lower training weight. This way, the jingle itself will be 

the most dominant source for melodic material and the variations of it will be used if there is no 

other training data available. The challenge in training a jingle is to achieve a good balance 

between a high level of recognition on the one hand and a high level of control on the other 

hand. This depends of course also strongly on the given melody: a long advertising jingle will per 

se provide more tonal and rhythmic material than a short sound logo. 

 

7.4.3 STUDY: INTERACTIVE MUSIC ON PUBLIC DISPLAYS 

To investigate how people can interact with brand music in a public setting, we developed a 

prototype system in the area of digital signage. We wanted to find out how novice users with no 

previous training period or musical expertise would use such system and which gestures they 

would use. Our prototype is based on a large display where users are able to interactively play 

music with hand movements based on our approach for transforming spatial movements to 

music as described in section 7.3. At the time of the study, we have not integrated markerless 

tracking into our system yet. Instead, we used the marker-based vision framework Touchless 

SDK (116) for tracking hand movements with markers. We used a wall of luminous plasma 

displays (four 42” seamless displays arranged to a 16:9 screen of 1.85 meters width and 1.05 

meters height with a resolution of 1706 to 960 pixels) and a high resolution camera attached 

above the screens. 
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We developed several variations of the system based on different interaction paradigms and 

conducted a user study (117). First of all, we wanted to figure out if users understand that they 

have control over the music, and second, in which way people would interact with the display. 

In general, interactive applications on public displays can be controlled for example with finger 

touch, hand gestures or body movements in a simple and unobtrusive way. Based on informal 

observations of colleagues, we already knew that hand movements are understood and 

accepted quite quickly if there is additional visual feedback. We developed several paradigms 

for interacting with the system based on hand movements and compared three paradigms that 

had shown promise in pretests. All paradigms are based on two continuous parameters: ‘pitch’ 

controls the note height (high or low); ‘energy’ the rate of played notes (slow or fast). There is 

always an additional visualization of the hand movements as well as the resulting notes (as 

described in section 7.3.2). The first paradigm uses only one hand at a time: The pitch of the 

music is controlled by the hand’s vertical position (up or down); the rate of played notes is 

controlled by the velocity of the movements. The second paradigm allows the user to control 

the music with both hands: for computing the note pitch and the rate of played notes, the mean 

value of both hands’ vertical position and velocity is taken. The third interaction paradigm 

extends the second one by allowing the user to control both parameters with separate hands, 

i.e. one hand controls the note pitch and the other hand controls the rate. To assess these 

variations, we conducted the following user study at our lab over the course of three days: we 

prepared a room which contained the system and installed 4 cameras around it in order to be 

able to observe the users’ behavior from different angles. We recorded all cameras to a 

synchronized and time-stamped video file. In total, 21 people participated in the study (12 

males, 9 females). The average age was 30 years; participants were students, employees, 

technicians, web designers, marketing managers, assistants and housewives. We started with an 

initial briefing where we explained the setting of the study: participants were told that there 

was a room containing a public display, but we did not tell if or how they could interact with the 

display. To be able to track hand movements with our marker-based system, we asked them to 

put on colored gloves (after the study we surveyed if participants felt constricted by the gloves 

in any way). After the initial briefing we guided the participants to the room where our sample 

music content with one of the three described interaction paradigms was running. We surveyed 

the people with the cameras and did not interrupt them. When they came out, we conducted a 

semi-structured interview with them. For all 21 subjects synchronized and time-stamped videos 

were recorded and predefined user behavior regarding hand movements and gestures was 

transcribed. 

Even without any previous instructions, most users were aware that they have control over the 

music. Only 2 out of 21 people did not recognize the connection between their hand 

movements and the music they heard. No user stopped interacting while standing in front of the 

system for longer periods. The average user made hand gestures for over 90% of the time which 

gives us confidence that people understood the basic interaction paradigm. Based on the videos, 

we analyzed how long it took until people interacted in the way we intended, i.e. when they 
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started to primarily make hand gestures which are relevant for the music generation. The 

variant based on only one hand took 132 seconds on average, the variant based on the mean 

value of both hands took 118 seconds and the third variant (separate hands for both 

parameters) took 92 seconds. Most users seemed to interact in a rather intuitive way but 

interviews revealed that not everybody did consciously identify the variable parameters (‘pitch’ 

and ‘energy’, i.e. ‘rate of played notes’) and how they can be controlled: 12 out of 21 people 

stated that they used up-and-down movements to control the music and only 10 out of 21 

people could tell how note pitches can be controlled; only 2 users understood how they can vary 

the rate of notes. Nevertheless, the results of this study make us confident that public displays 

are an appropriate platform for advertising based on interactive music and that hand gestures 

can be used for interacting with music without any previous training. We are confident that 

additional visual clues or context-sensitive help instructions can greatly help in understanding 

how the system works: we observed that users were able to understand the system very fast if 

we gave them only few initial instructions.  

 

7.4.4 RELATED WORK 

In the recent time, both interactive advertisements and interactive music systems have become 

increasingly popular. There exist advertisements including interactive music, but to our 

knowledge there are no approaches which enable customers not only to play with, but also 

manipulate and shape well-known brand melodies by means of interactive control mechanisms.  

Advertisements make use of sound in various form and function. Today, sound is employed in 

traditional media like television or radio as well as in new media like the Internet. Regardless of 

the medium, it is possible to distinguish between several types of advertising sounds: A sound 

logo is a short, distinctive melody or tone sequence with a length from one to three seconds. It 

can be seen as the acoustic equivalent to a visual logo and, in the ideal case, establishes a 

symbiosis with it. It is mostly played along with the visual logo at the beginning or ending of a 

commercial (114). Well-known examples for sound logos are the Intel ‘Bong’ or the famous 

sequence of five tones from Deutsche Telekom. Advertising Jingles are short songs that are 

often played along with lyrics to convey an advertising slogan. They distinguish themselves from 

sound logos by not only transporting associations but also functioning as a mnemonic for the 

slogan. Thus, they often follow known and memorable folk songs in melody, rhythm and tone 

and integrate other brand elements like the brand name (114). A well-known example is the 

Haribo jingle which has been translated to many different languages. Background Music is 

mostly purely instrumental. Its purpose is to create a certain atmosphere, thus functioning just 

as a supplement to other stimuli such as narrated text or images. An example is accordion 

music, eliciting convenient associations to an advertisement for French wine (114) (118). In the 

area of product design, so-called sound objects are connected to activities like closing a car door 

(119). In the area of interactive media, acoustic signals connected to certain events like a mouse 
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click on a graphical element are also referred to as sound objects. An example for the 

employment of sound objects in advertising is a banner ad from Apple where one can choose 

different colors for the iPhone and a sound appears when the user moves the mouse cursor 

over one of the items. In literature, many more types and subtypes of sound branding are 

described, such as Brand Songs, Soundscapes, Sound Icons, Brand Voices or Corporate Songs 

(114). Most of the sound branding elements are used in different application areas and have 

been transferred to various platforms, e.g. you can find a sound logo, jingle or sound object 

today on television, the internet, mobile devices or even when unpacking a real or virtual 

product. As diverse are proposals for possible future applications of sound branding, including 

areas such as multi-sensory communication, the use of interactive sounds in packaging or at the 

point of sale (113). 

In the last years, a trend to interactive advertisements can be identified, for example casual 

games in the web (for example within a banner ad) or interactive wall or floor displays in the 

out-of-home domain. Besides regular games where one has to achieve a certain goal, there are 

also interactive plays (120), i.e. invitations to less structured activities that imply creative or 

participatory elements. Such advertisements often allow manipulating visual objects that are 

constituent parts of the brand identity, like a brand logo that can be moved along the display 

surface by hands or feet. Acoustic events mostly play only a secondary role or do not appear at 

all in these interactive advertisements: often, they are delimited to sound objects 

supplementing the visual interaction or statically playing background music.  

The functions of sound in advertising are manifold: The acoustic sensory channel is hard to 

ignore (compared e.g. to the visual channel) and thus, sounds are often used to gain or hold 

attention (121) (122). Sound is also used to influence the mood of consumers, to structure the 

time of an ad or to persuade consumers by using rhetorical elements like rhythm, repetition, 

narration, identification or location (123). Sound can increase the reception and memorization 

of information and can enhance the overall user experience (114).  

Advertising sounds are a powerful tool, but they are also subject to specific requirements. For 

example, according to John Groves, the characteristics of an effective sound logo include 

memorability, distinctiveness, flexibility, conciseness and brand fit (113) (114): Memorability is 

the most important quality of a good sound logo. It strongly depends on the sound designer´s 

ability to create a ‘mini hit’ or catchy tune. Memorability includes the recognition and recall of 

the sound logo, where the latter is more difficult to achieve. Memorable elements are often 

used to quickly evoke associations. A good sound logo has to be distinctive; otherwise it may not 

be recognized or confused with a competitor. For this reason, an unmistakable sound 

characteristic has to be found. This is usually done by analyzing the market sector and how 

competitors deal with music and sound. For a sound logo, two kinds of flexibility are 

advantageous: musical and technical flexibility. Musical flexibility means that a melody can be 

combined with different contexts and emotional situations of different advertisement, e.g. by 
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recording it with different instrumentations or styles. Technical flexibility means that the sound 

can be perceived cross-platform (e.g. via phone, computer speaker or television) without 

impairments. Good sound logos have to be concise, i.e. short and with tone combinations 

usually only lasting seconds since they are often combined with visual logos which also appear 

only for a short time. A typical sound logo has a length of about two seconds. Brand fit means 

that a sound logo should reflect the brand’s values and communicate its attributes on the 

acoustic level. It can be very adverse if the sound identity contradicts or obviously overstates the 

brand´s attributes. 

 

7.4.5 CONCLUSION 

We investigated how interactive music systems can be used in the area of pervasive advertising, 

described requirements of interactive advertising music and outlined possible application areas 

and limitations. Based on our framework for composing music with soft constraints, we 

introduced a general approach for developing applications where advertising music is controlled 

by user interaction such that it complies with the requirements of both interactivity and brand 

recognition. The results of our first study make us confident that it is possible to intuitively 

control music with hand movements in front of a public display without any previous training 

period. 

We presented interactive advertising jingles controlled by a touch display at the ‘Komma 2011’ 

trade fair for communication and marketing in Munich and were in contact with several 

companies which showed interest in employing the system in a real advertising campaign. In the 

meantime, we also developed a system based on markerless motion tracking and would like to 

see how people interact with it in a real public situation. Besides this, we are also interested in 

developing and assessing new user interfaces and interaction paradigms. 

Sound is a powerful tool which has to be employed with care: many people have fun with 

musical applications, but they can also be annoying in some situations. When employed 

appropriately, we think that interactive advertising music can be a quite attractive way of 

communicating a certain brand image.  
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8 CONCLUSION AND FURTHER WORK 

In this work, we extended known approaches for composing music based on classical constraints 

with soft constraints à la Bistarelli et al. that provide a new level of expressiveness and allow 

specifying additional types of musical rules. We introduced an algebraic framework for 

interactively composing music in real-time with soft constraints and implemented it along with 

several applications based on a tangible interface, touch displays and a motion tracking system. 

Furthermore, we investigated how interactive music can be employed in the area of pervasive 

advertising. In our systems, we successfully used soft rules that would not be expressible in a 

classical constraint framework, e.g. optimization of harmonic intervals or maximizing similarity 

to a musical transition model. Our framework allows specifying interactive music systems by 

declaratively defining preferences and is general enough to model common techniques like 

classical constraint-based rules, optimization goals or machine learning approaches. Different 

aspects of the music generation can be constrained in order to e.g. coordinate multiple voices or 

generate music fitting to a certain style. Besides static preferences, it is also possible to define 

dynamically changing preferences. To achieve the latter, we extended the theory of monoidal 

soft constraints with an approach for defining preferences which change over time. 

We introduced our framework and demonstrated applications of it in the scientific area at 

conferences, talks and workshops. We also made public exhibitions at the ‘night of science’ in 

Munich (Nacht der Wissenschaften / Senses09), ‘Ferchau Art of Engineering 2010’, the ‘Komma’ 

trade fair for communication and marketing in Munich (2011) or the concert series 

‘Zukunft(s)musik’ in Augsburg (2011). The overall feedback was very positive: many people got 

attracted by our interactive music applications, wanted to know how they work and enjoyed 

playing with them. To our taste, the interactively generated music sounds quite good for being 

algorithmically composed. Especially in applications which make use of previously trained 

melodic rules, the resulting melodies’ rhythmic and tonal sequences sound quite ‘natural’. There 

is of course a significant difference to music which was composed by a human: the melodies are 

not as elaborate as in a carefully composed piece and an overall structure and development is 

missing. This could be improved with additional rules or by varying several styles. With our 

approach, we ‘correct’ the actions of a user with respect to both tonality and rhythm: a rough 

declaration of the desired tonal height is transformed to a concrete note pitch such that it also 

complies with musical rules. When it comes to correcting rhythm, there is an inherent problem: 

when a user’s action is detected shortly before a regular rhythmic position (e.g. a 16th note), it 

can be corrected by delaying it a bit (which is barely inaudible). However, when the user’s action 

is detected shortly after a regular position, it has to be delayed for a rather long time to correct 

it – which is clearly audible and leads to strange rhythms and undesired syncopations (i.e. 

accenting of unusual rhythmic positions). We consider this as one of the main musical 

deficiencies of our system – especially in combination with high-latency user interfaces. In order 

to improve this, we want to experiment with rules which constrain certain syncopations. While 

being very interesting in the beginning, we also made the observation that many people do not 
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have long term motivation to play. This is fine for musical applications in the area of casual 

gaming, but we also envision applications which make users want to play longer musical 

performances. One possible reason for this could be the missing challenge in playing: the user 

has much control over the music, but our system always ensures a rather good result. It would 

be interesting to investigate how our system can be made more ‘difficult to play’ and if this has 

an effect on long term motivation. 

      

FIGURE 76 FLUXUS MODULAR PROTOTYPES 

 

We want to continue our work in two directions: interactive algorithmic tools for (electronic) 

musicians and musical instruments for people with strong physical disabilities. At the moment, 

we are working on a modular version of the ‘Fluxus’ sequencer based on the Arduino platform 

for embedded devices. This modular system will be a simpler version of the desktop application: 

it will for example not be possible to coordinate multiple players among each other due to the 

distributed modular architecture. We also do not use a generic constraint solver in this system 

because of limited computing power and memory. Instead, we directly program all rules and 

optimization goals. In the past, we made initial investigations how interactive music systems 

could be used for music therapy (13) (43). We think there are several application areas where 

computer-assisted musical instruments could be adequate, for example for people with strong 

physical disabilities that can use an accessible instrument controlled e.g. by an eye tracker. 

We want to iteratively design and evaluate such musical instrument together with a music 

therapist and a group of disabled people that are willing to learn an instrument. At the moment, 

we are in contact with a music therapist who wants to evaluate the usage of electronic systems 

in general and would like to participate in the development process. 

Besides our scientific contribution of extending known constraint-based approaches for 

generating music with soft and concurrent rules, we also have personal proof of concept that 

soft constraints can be used in interactive real-time systems in general with high reliability and 

maintainability. This could be interesting for any application area where concurrent processes 

have to be optimized in real-time while running. 
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