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1 Abbreviations 

AMIR   Antibody-mediated immune response 

APC   Antigen-presenting cell  

BoLA   Bovine leukocyte antigen 

BNP   Bovine neonatal pancytopenia 

BNP-dam  Dam that has given birth to a BNP-calf 

BTV   Bluetongue virus 

BVDV   Bovine Viral Diarrhoea Virus 

CD   Cluster of differentiation 

CMIR   Cell-mediated immune response  

DCVC    S-(1,2-Dichlorovinyl)-L-cysteine 

DNA   Deoxyribonucleic acid 

dsRNA   Double-stranded RNA 

EHDV   Epizootic haemorrhagic disease virus  

FAIT   Foetal alloimmune thrombocytopenia 

hCG   Human chorionic gonadotropin 

IFN   Interferon 

IgG   Immunoglobulin G 

IgM   Immunoglobulin M 

IL   Interleukin 

IPA   Ingenuity Pathway Analysis 

ISCOM   Immune stimulating complex 

i.v.    Intravenous 

kDa   Kilodalton 

KEGG   Kyoto Encyclopedia of Genes and Genomes 

MDBK cells  Madin-Darby bovine kidney cells 

MHC   Major histocompatibility complex 



 

II 
 

mRNA   Messenger RNA 

NAIT   Neonatal alloimmune thrombocytopenia 

ncp   Noncytopathic 

NGS   Next-generation sequencing 

NI   Neonatal Isoerythrolysis 

Non-BNP-dam  Dam that has not given birth to a BNP-calf 

PBMC   Peripheral blood mononuclear cell 

p.c.i.   Post colostrum intake 

PCV-2    Porcine circovirus type 2 

PDNS    Porcine dermatitis and nephropathy syndrome 

PMWS   Postweaning multisystemic wasting syndrome 

Poly(I:C)  Polyriboinosinic acid-polyribocytidylic acid 

RBC   Red blood cells 

RIG-1   Retinoic-acid-inducible gene 1 

RNA   Ribonucleic acid 

RNA-Seq  RNA sequencing 

RT-PCR    Reverse transcriptase polymerase chain reaction 

SNP   Single nucleotide polymorphism 

Spp.    Subspecies 

ssRNA   Single-stranded RNA 

Th cell   T-helper cell 

TLR   Toll-like receptor 
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2 Introduction 

Bovine neonatal pancytopenia (BNP) is an alloimmune disease, which has recently emerged in 

newborn calves. This disease has been registered in several European countries as well as in New 

Zealand during the last few years (Bell et al., 2010b; Corbière et al., 2009; Ellis-Iversen and Colloff, 

2009; Friedrich et al., 2009c; Gentile et al., 2009; Ministry of Agriculture and Forestry - MAF - New 

Zealand, 2011; Pardon et al., 2010; Sánchez-Miguel et al., 2010; Smolenaars and Mars, 2009). In 

all of these countries a specific inactivated vaccine (PregSure® BVD) against the Bovine Viral 

Diarrhoea Virus (BVDV) had been applied, which is strongly associated with BNP (Lambton et al., 

2012; Sauter-Louis et al., 2012). This vaccine comprises a unique adjuvant and was shown to 

induce very high antibody titres against BVDV in vaccinated animals (Bastian et al., 2011; Raue et 

al., 2011). However, during aetiological investigations on BNP it was revealed that vaccination 

with PregSure® BVD additionally induces alloreactive antibodies in some vaccinated animals, 

which are directed against calf leucocytes (Bridger et al., 2011; Pardon et al., 2011). These 

alloantibodies are transferred to susceptible calves by ingestion of colostrum from these specific 

dams (Friedrich et al., 2011; Schröter et al., 2011). As a result of this BNP-colostrum intake, 

affected calves suffer from external and internal haemorrhages, marked thrombocytopenia and 

leucopenia and a depletion of the bone marrow (panmyelophthisis) (Friedrich et al., 2009c; 

Pardon et al., 2010). Although the number of observed clinical BNP-cases is low compared to the 

number of PregSure® BVD vaccinated dams or vaccination doses sold (Kasonta et al., 2012), case 

fatality is very high (Pardon et al., 2010). Besides these clinical cases of BNP, subclinical BNP-cases 

have been described. These cases show a transient thrombocytopenia and leucopenia, but no 

clinical signs characteristic of BNP (Pardon et al., 2010; Witt et al., 2011). The incidence of 

subclinical cases has not been investigated thoroughly up to now, and therefore it is possible that 

clinical cases of BNP only represent the tip of the iceberg. 

Only a subset of PregSure® BVD-vaccinated dams are known to produce colostrum which can 

induce BNP in related, but also in unrelated calves after ingestion of the respective colostrum 

(Friedrich et al., 2011; Schröter et al., 2011). A possible genetic predisposition of the dam involved 

in clinical BNP has been revealed in a study by Krappmann et al. (Krappmann et al., 2011). This 

study investigated a well-characterised cattle resource population with occurrence of clinical BNP-

cases and pointed out that all dams, which had clinical BNP-cases, were confined exclusively to 

one specific sire line of this population. 

Investigations on the target antigen of BNP-associated alloantibodies showed that alloantibodies 

bind to the surface of the Madin-Darby Bovine Kidney (MDBK) cell line, which had been used for 
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the production of PregSure® BVD (Bastian et al., 2011). The nature of the targeted antigen was 

revealed as MHC class I (Deutskens et al., 2011; Foucras et al., 2011). Hence, it was proposed that 

the vaccine was contaminated with MHC class I antigens from the MDBK cell line, which elicit the 

production of alloantibodies in BNP-dams. However, not only BNP-dams possess alloantibodies 

directed against MHC class I, but also some non-BNP-dams (Deutskens et al., 2011) and also a 

large proportion of animals experimentally vaccinated (Kasonta et al., 2012). 

So far, several questions regarding the aetiopathogenesis of BNP still remain unresolved. The 

study presented here addresses some of these questions. Firstly, a well-characterised cattle 

resource population was monitored for the incidence and for a possible genetic predisposition 

also involved in subclinical BNP-cases. Secondly, the immune response after vaccination with 

PregSure® BVD was characterised on trancriptome level with an RNA-Seq approach in order to 

gain an overview of the immune response to this viral inactivated vaccine and novel insights into 

potential characteristic immune reactions evoked by this vaccine. 



Literature Review 

 

3 
 

3 Literature Review 

3.1 Bovine Neonatal Pancytopenia (BNP) 

3.1.1 Definition 

Since 2007, an increase in the number of neonatal calves showing clinical signs of a haemorrhagic 

diathesis has been documented in many European countries (Bell et al., 2010b; Ellis-Iversen and 

Colloff, 2009; Friedrich et al., 2009c; Gentile et al., 2009; Pardon et al., 2010; Sánchez-Miguel et 

al., 2010; Smolenaars and Mars, 2009). This syndrome, initially denoted as “bleeding calf 

syndrome”, “blood sweating” or “haemorrhagic diathesis”, was officially termed “Bovine Neonatal 

Pancytopenia” (BNP) at the Satellite Symposium of the European Buiatric Congress in Marseille, 

France, in 2009. Several criteria were defined in order to assign calves with a bleeding disorder as 

a BNP-case (Friedrich et al., 2009a): 

1) Bleeding disorder (typical haematological alterations may exist some days before clinical 

signs or even without clinical signs) 

2) Negative test results for Bovine Viral Diarrhoea Virus  (Panpestivirus PCR) 

3) Thrombocytopenia (< 200 G/L) and leucopenia (< 4.0 G/L) 

4) Calves younger than four weeks 

5) Calves show no signs of septicaemia 

6) Post mortem: Panmyelophthisis (Friedrich et al., 2009c) 

In addition to clinical and haematological findings indicative of BNP, the proof of a 

panmyelophthisis in calves up to the age of four weeks is considered to be the gold standard for 

defining a BNP-case. In case of a missing pathological examination, the combination of clinical and 

haematological (thrombocytopenia and leucopenia) findings associated with BNP is required for 

case confirmation (Reichmann, 2012; Sauter-Louis et al., 2012). 

 

3.1.2 Epidemiology 

Prior to 2007, sporadic cases of idiopathic haemorrhagic diathesis in neonatal calves had been 

perceived (Friedrich et al., 2009b). However, since 2007 an accumulation of calves with a bleeding 

disorder has been observed in Bavaria and thereafter also in other parts of Germany (Friedrich et 

al., 2009b; Friedrich et al., 2009c). Similar reports from other European countries like Belgium 

(Pardon et al., 2010), France (Corbière et al., 2009), the Netherlands (Smolenaars and Mars, 

2009), Great Britain and Scotland (Bell et al., 2010b; Ellis-Iversen and Colloff, 2009), Italy (Gentile 
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et al., 2009) and Ireland (Sánchez-Miguel et al., 2010) were recorded. In neighbouring countries 

like Switzerland, Austria and Denmark, which are free of BVD or where no BVD-vaccinations had 

been undertaken, no such cases were observed (Friedrich et al., 2011). In August 2011, a first case 

of BNP was registered in New Zealand (Ministry of Agriculture and Forestry - MAF - New Zealand, 

2011). 

Both genders are equally affected by BNP (Pardon et al., 2010), and the disease was also observed 

in a variety of different breeds such as Simmental, Holstein Friesian, Belgian Blue, Aberdeen 

Angus, Charolais, Blonde d’Aquitaine, Montbéliarde and Limousine (Bell et al., 2009; Corbière et 

al., 2009; Friedrich et al., 2009c; Pardon et al., 2010). Pardon et al. (Pardon et al., 2010) reported 

that 40% of BNP-calves were born to heifers, 30% to dams from 2nd parity, 25% to dams from 3rd 

parity and 5% to dams from 4th parity. Some dams gave birth to more than one BNP-calf, but not 

necessarily in subsequent years (Friedrich et al., 2011; Pardon et al., 2010). 

First observations pointed out that BNP may be linked to vaccinations against the Bovine Viral 

Diarrhoea Virus (BVDV) (Friedrich et al., 2009c). Two independently conducted epidemiological 

studies then revealed a strong association between the occurrence of BNP and the use of a 

specific inactivated vaccine against BVD (PregSure® BVD, Pfizer Animal Health) (Lambton et al., 

2012; Sauter-Louis et al., 2012). PregSure® BVD had been launched in 2004 in Germany (Kasonta 

et al., 2012) and was retracted from the European market in 2010 (Paul-Ehrlich-Institut - PEI, 

2010). Following a first case report, the vaccine was also recalled in New Zealand in 2011 (Ministry 

of Agriculture and Forestry - MAF - New Zealand, 2011). Until 28th February 2011, more than 

3.000 case reports had been registered in Germany (Paul-Ehrlich-Institut - PEI, 2011). By the end 

of August 2012, 6913 suspected BNP-cases had been reported across Europe, with a decreasing 

tendency of reported cases in 2011 and 2012 compared to previous years (Jones et al., 2013).  

BNP is a non-notifiable disease. Therefore, the precise number of cases in Germany is likely to 

have been much higher since not all cases have been reported, as a German study revealed 

(Reichmann, 2012). Considering the large amount of vaccination doses sold (Doll et al., 2013), the 

overall reported incidence of clinical cases of BNP is low (Kasonta et al., 2012; Pardon et al., 

2010). On individual farm level, the incidence rate was generally not more than 10% (Foucras et 

al., 2011; Witt et al., 2011), but there were farms with an incidence rate up to 20% (Reichmann, 

2012). There are reports of an increase of clinical BNP-cases during summer and autumn, 

potentially due to insect bites (Friedrich et al., 2009c; Pardon et al., 2010). Furthermore, field 

observations revealed a high proportion of BNP-affected herds, in which a subclinical case of BNP 

could be detected (Pardon et al., 2010). A study on a farm with a high incidence rate of BNP 

demonstrated a remarkable proportion of neonatal calves showing alterations in haematological 
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parameters without clinical signs of BNP (Witt et al., 2011). Although these studies point to the 

occurrence of subclinical cases, extensive investigations on the true incidence of subclinical BNP-

cases are missing. 

Alloreactive antibodies contained in colostrum of certain dams were shown to be the causal 

agents for inducing BNP in calves (Bridger et al., 2011; Friedrich et al., 2011; Pardon et al., 2011; 

Schröter et al., 2011). Kasonta et al. (Kasonta et al., 2012) reported that in most cases, repetitive 

vaccinations with PregSure® BVD, such as a basic immunisation consisting of two doses and a 

booster vaccination, were required for the induction of alloreactive antibodies. Varying incidences 

of BNP were observed amongst European countries and also within other European countries 

(Lambton et al., 2012). For different regions of Germany, different vaccination regimens were 

found to be a potential causative factor for varying incidences of BNP (Kasonta et al., 2012). In the 

German federal state of Bavaria, where a much higher incidence rate of BNP was observed in 

comparison to the federal state of Lower Saxony, PregSure® BVD had been applied according to 

the manufacturer’s instructions. Therefore, dams in Bavaria had received at least two doses of 

PregSure® BVD. In Lower Saxony, however, a two-step vaccination scheme, which consists of a 

primary vaccination with an inactivated BVD-vaccine like PregSure® BVD and a booster 

immunisation with a live attenuated BVD vaccine, had been applied. Thus, in Lower Saxony most 

dams had received a maximum of one dose of PregSure® BVD (Kasonta et al., 2012). In some 

cases, one dose of PregSure® BVD was still sufficient for the development of BNP-associated 

alloantibodies, as demonstrated by the very low incidence rate of BNP-cases in Lower Saxony.  

 

3.1.3 Clinical Signs 

The background for the most prominent clinical signs found in BNP-calves is a haemorrhagic 

diathesis due to thrombocytopenia. Increased bleeding tendencies can be due to defects in 

primary haemostasis like thrombocytopenia or qualitative disorders like thrombopathy. 

Underlying mechanisms for disorders in secondary haemostasis involve defects during fibrin 

formation from coagulation factors, for example caused by vitamin K antagonists or inherited 

coagulopathies (Grubbs and Olchowy, 1997). A thrombocytopenia can result from a decreased 

platelet production, increased platelet destruction, consumption of thrombocytes, or 

sequestration. 

Initially, BNP-calves are born healthy and with a normal birth weight (Bell et al., 2010b; Kappe et 

al., 2010). First abnormalities in affected calves are not necessarily signs of a bleeding disorder, 

and calves can present typical neonatal diseases such as diarrhoea, umbilical infections and/or 
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lung infections. Some calves displayed fever of unknown origin and a dull demeanour (Friedrich et 

al., 2009c). First indications of a bleeding disorder are sometimes prolonged bleeding after ear-

tagging, injections or dehorning (Bell et al., 2010b; Friedrich et al., 2009c; Klemt, 2010; Pardon et 

al., 2010). The typical clinical signs of BNP are sometimes already observed at the age of one week 

(Bell et al., 2010b; Buck et al., 2011), but mostly show up during the 2nd and 3rd week after birth 

(Friedrich et al., 2009c; Kappe et al., 2010; Klemt, 2010; Pardon et al., 2010), and up to the age of 

approximately four weeks post partum (Kappe et al., 2010; Pardon et al., 2010; Smolenaars and 

Mars, 2009). On average, the bleeding disorder becomes noticeable at the age of 12.7 days 

(Friedrich et al., 2009c) or 14 days (Smolenaars and Mars, 2009). According to Pardon et al. 

(Pardon et al., 2010), calves on average die at the age of 13 days post partum. In experimental 

studies with challenge calves, first clinical signs of a bleeding disorder were already noticed at the 

age of 3 – 4 days (small amounts of blood in faeces) (Friedrich et al., 2011). After the onset of 

obvious clinical symptoms, most affected calves die peracutely or acutely within a few days (Bell 

et al., 2010b; Friedrich et al., 2009c; Kappe et al., 2010; Klemt, 2010). Irrespective of any medical 

treatment, lethality in affected calves is high, with reports of a lethality rate ranging between 60% 

(Buck et al., 2011) up to 90% (Pardon et al., 2010). 

One of the most frequent clinical findings in BNP-affected calves is differing amounts of blood in 

the faeces, which ranges from single bloody smears to single coagula up to a bloody diarrhoea 

(Friedrich et al., 2009c). In addition, petechiae on mucous membranes are a common observation 

and can be observed mainly on the oral mucous membranes, especially sublingually, but also on 

buccal, nasal and vaginal mucosae and on the edges of the eyelids (Friedrich et al., 2009c; Pardon 

et al., 2010). In the initial phase of the disease, mucous membranes are pink (Pardon et al., 2010), 

and in the progress of the disease turn anaemic (Klemt, 2010; Pardon et al., 2010). Less common 

clinical findings are epistaxis, subscleral bleedings, haematomas and blue discolouration at the 

chin, the opening of the mouth and muzzle (Friedrich et al., 2009c; Pardon et al., 2010). Only 60% 

of clinically affected calves displayed bleedings of the skin, which resulted in the initial colloquial 

term “blood sweating” used for the disease. However, this term is misleading, because the 

bleedings do not originate from large areas, but rather from very small, punctual localisations 

(Friedrich et al., 2009c). According to Pardon et al. (Pardon et al., 2010), areas around the eyes, 

ears, the back and distal part of the limbs are mainly affected by transcutaneous bleedings, which 

might be due to insect bites (Friedrich et al., 2009c; Pardon et al., 2010). These fly bites might also 

have been the reason for a higher number of reported clinical BNP-cases during the summer and 

autumn (Friedrich et al., 2009c; Pardon et al., 2010). In first case reports, pyrexia, resistant to 

medical treatment, was revealed as a common finding in BNP-calves (Bell et al., 2010b; Friedrich 

et al., 2009c; Klemt, 2010). However, not all animals display fever, and especially in the final stage 
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of the disease calves may show hypothermia (Pardon et al., 2010). In experimental studies with 

challenge calves, only a small number of calves showed fever (Friedrich et al., 2011), and 

challenge calves did not display this symptom more frequently compared to control calves (Bell et 

al., 2013). The general condition of calves deteriorates during the course of the disease up to a 

severely depressed state and permanent recumbency (Friedrich et al., 2009c; Pardon et al., 2010). 

Along with these characteristic findings of BNP, several BNP-calves were affected by other 

infections, such as diarrhoea, umbilical infections, pneumonia or septicaemia, which did not 

respond to medical treatment (Friedrich et al., 2009c). Calves that survived clinical BNP showed 

stunted growth (Witt et al., 2011). 

 

3.1.4 Haematological Findings 

Reference ranges for blood parameters in neonatal calves differ from those applied to adults 

(Knowles et al., 2000). There are few studies only that deal with haematological profiles in 

neonatal calves (Egli and Blum, 1998; Knowles et al., 2000; Mohri et al., 2007; Tennant et al., 

1974). Studies in the context of BNP applied reference ranges of 200 – 800 G/l for thrombocytes 

(Buck et al., 2011; Friedrich et al., 2011) or 300 G/l (Kappe et al., 2010; Klemt, 2010; Witt et al., 

2011) or only 100 G/l (Pardon et al., 2010) for the threshold. For the leucocytes, reference ranges 

from 4.0 – 10.0 G/l (Friedrich et al., 2011; Pardon et al., 2010) or up to 12.0 G/l for the upper 

margin (Kappe et al., 2010; Klemt, 2010; Witt et al., 2011) were previously used. 

The most distinctive haematological aberration found in clinically affected BNP-calves is a severe 

thrombocytopenia (Bell et al., 2010b; Buck et al., 2011; Friedrich et al., 2009c; Kappe et al., 2010; 

Pardon et al., 2010) along with a normal morphology of the platelets (Buck et al., 2011; Friedrich 

et al., 2009c). Shortly before death, calves can have thrombocyte counts < 10.0 G/l (Buck et al., 

2011; Krappmann et al., 2011; Pardon et al., 2010), which is incompatible with life. Depending on 

the outcome of the disease in clinical BNP-cases, thrombocyte counts increased continually back 

to reference ranges in calves that survived BNP, whereas lethal BNP-cases showed no recovery 

from thrombocytopenia (Buck et al., 2011; Friedrich et al., 2009c; Pardon et al., 2010). In 

challenge studies, which applied a frequent haematological monitoring, platelet numbers already 

decreased during the first three hours post colostrum intake in challenge calves (Friedrich et al., 

2011). This phenomenon of decreasing thrombocyte counts after birth could also be found in 

control or healthy calves (Egli and Blum, 1998; Knowles et al., 2000; Schröter et al., 2011), 

however already being significantly less distinctive 8 hours after colostrum intake than in 

challenge calves (Bell et al., 2013). Thereafter, in healthy or control calves and BNP-affected 

calves, platelet counts again increased up to day 3 (Bell et al., 2013; Schröter et al., 2011). 



Literature Review 

 

8 
 

However, after this increase, BNP-calves showed a second decline in thrombocytes, with values 

below the applied reference ranges (Bell et al., 2013; Friedrich et al., 2011; Schröter et al., 2011). 

Some animals with clinical BNP display a severe leucopenia besides a marked thrombocytopenia, 

especially shortly before death (Bridger et al., 2011; Buck et al., 2011; Friedrich et al., 2009c; 

Kappe et al., 2010; Krappmann et al., 2011; Pardon et al., 2010). However, the leucopenia does 

not always occur simultaneously with the thrombocytopenia (Schröter et al., 2011) and can show 

varying courses over time, with leucocyte counts being temporarily back above the threshold of 

4.0 G/l (Bridger et al., 2011; Friedrich et al., 2011; Schröter et al., 2011). Immunosuppression as a 

result of sustained leucopenia is likely to be the reason for attendant bacterial infections and 

lacking success of medical treatment (Friedrich et al., 2011). Leucocyte differential counts 

revealed a monocytopenia, lymphopenia (relative lymphocytosis) and neutropenia (Bell et al., 

2010b; Kappe et al., 2010; Pardon et al., 2010). After an initial significant decrease of neutrophils 

after colostrum ingestion in challenge calves, there was no significant difference in neutrophil 

counts after 8 hours post colostrum intake and thereafter in challenge calves compared to control 

animals until both groups of calves were euthanised for experimental reasons on day 10 after 

birth (Bell et al., 2013). At the time points 8 hours and 12 hours after colostral intake, challenge 

calves showed a significantly higher proportion of band neutrophils than control calves, which 

suggests myeloid stress (Bell et al., 2013). 

Anaemia was found in several calves (Bell et al., 2010b; Kappe et al., 2010; Krappmann et al., 

2011; Pardon et al., 2010), especially in the final stage of the disease (Schröter et al., 2011). The 

anaemia was normocytic and normochromic (Bell et al., 2010b). Initially it was of haemorrhagic 

nature, but then turned into an aplastic anaemia, since hardly any reticulocytes could be found in 

affected calves (Bell et al., 2010b; Friedrich et al., 2009c). In accordance with these findings, the 

packed cell volume was within applied reference ranges or below the threshold (Buck et al., 2011; 

Friedrich et al., 2011; Kappe et al., 2010; Pardon et al., 2010). 

All observed changes in peripheral blood cell counts correspond to the life span of these cells in 

the blood combined with a destruction of the bone marrow stem cells: the shortest life span can 

be found in granulocytes (less than one week), followed by thrombocytes (5 – 10 days) and 

erythrocytes (110 – 150 days) (Baker et al., 1998; Bell et al., 2013; Friedrich et al., 2009c; Mizuno 

et al., 1959). As indicated in Bell et al. (Bell et al., 2013), lymphocytes in the periphery have a 

variable lifespan. 

There are several reports either in the field or in challenge studies on calves that showed cell 

counts below the applied reference ranges in at least two haematopoietic cell lineages, but no 
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clinical symptoms consistent with BNP (Friedrich et al., 2011; Pardon et al., 2010; Schröter et al., 

2011; Witt et al., 2011). These calves were classified as subclinical BNP-calves. 

Except for a hypoproteinaemia, which might be due to the haemorrhagic diathesis, blood 

biochemical parameters did not show any abnormalities in clinically affected BNP-calves (Pardon 

et al., 2010). Bell et al. (Bell et al., 2010b) found no abnormalities in the prothrombin and 

activated partial thromboplastin times, while Pardon et al. (Pardon et al., 2010) reported of a 

slightly prolonged prothrombin time and in some calves a slightly prolonged activated partial 

thromboplastin time. In contrast, Krappmann et al. (Krappmann et al., 2011) revealed an 

extremely prolonged prothrombin time in a number of BNP-cases. Fibrinogen was either elevated 

or normal (Pardon et al., 2010). 

 

3.1.5 Pathology and Histology 

Gross pathological findings in BNP-calves revealed generalised haemorrhages in varying degrees, 

ranging from petechiae to ecchymoses or suggilations, which could be found in various organs, 

tissues and localisations (Buck et al., 2011; Friedrich et al., 2009c; Kappe et al., 2010; Klemt, 2010; 

Krappmann et al., 2011; Pardon et al., 2010). Haemorrhages were found most frequently on the 

skin and subcutaneously, especially at bony prominences, external mucosae, on the serosae, 

subepi- and subendocardially, in the meninges and in the skeletal muscle (Friedrich et al., 2009c; 

Kappe et al., 2010; Krappmann et al., 2011; Schröter et al., 2011). The gastrointestinal tract can be 

filled with coagulated blood (Krappmann et al., 2011; Pardon et al., 2010). Less common findings 

are haemorrhagic fluid in the pleura, the abdomen or intra-articular (Pardon et al., 2010). After 

venipuncture or injections, severe haemorrhages were found at respective locations (Schröter et 

al., 2011). Due to the haemorrhagic diathesis, carcasses appear anaemic (Friedrich et al., 2009c; 

Kappe et al., 2010; Klemt, 2010; Pardon et al., 2010). The bone marrow of sternum and long 

bones has a pale red appearance (Kappe et al., 2010). In challenge experiments, lymph nodes like 

prescapular or inguinal lymph nodes were found to be enlarged in some calves (Bell et al., 2013; 

Schröter et al., 2011), as well as the thymus (Bell et al., 2013). In necropsy of challenge calves, Bell 

et al. (Bell et al., 2013) showed at 10 days after first colostrum intake a significantly reduced 

length of the femurs in comparison to control calves, while Kappe et al. (Kappe et al., 2010) 

reported in BNP-calves a good nutritional condition and bodyweight according to the respective 

age at necropsy. Besides these findings, other pathological observations in several BNP-calves 

were bronchopneumonia, inflammations in the oral cavity or catharral enteritis and detection of 

pathogens associated to these diseases (Friedrich et al., 2009c; Kappe et al., 2010; Klemt, 2010; 

Krappmann et al., 2011; Pardon et al., 2010). 
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The most distinctive finding in histopathology is a depletion of the bone marrow haematopoetic 

cells (panmyelophthisis) (Bell et al., 2010b; Buck et al., 2011; Friedrich et al., 2009c; Friedrich et 

al., 2011; Kappe et al., 2010; Klemt, 2010; Krappmann et al., 2011; Pardon et al., 2010; Schröter et 

al., 2011). Depending on the degree of hypoplasia, ranging from hypo- to aplastic bone marrow, 

various numbers of precursor cells are still present, but all precursor cells of the erythroid, 

myeloid and lymphoid lineage, including megakaryocytes, are reduced (trilineage hypoplasia) (Bell 

et al., 2010b; Friedrich et al., 2009c; Kappe et al., 2010; Pardon et al., 2010; Schröter et al., 2011). 

Clusters of macrophages were found, many of them being activated and in some calves showing 

haemophagocytosis (Pardon et al., 2010). In some animals, the eosinophilic component was 

increased (Pardon et al., 2010). A comprehensive study, in which bone marrow biopsies were 

taken at 24 hours, 6 days and at necropsy 10 days after giving a standardised dose of the same 

colostrum to all challenge calves, a reduced cellularity, involving all cell lineages, was revealed 6 

days post challenge. At 10 days post colostrum ingestion, the reduced cellularity was marked, but 

small numbers of eosinophil, mature neutrophils and erythroid progenitors could still be 

detected. Hence, the destruction of the bone marrow does not affect the more mature stages of 

neutrophil, eosinophil and erythrocyte precursors (Bell et al., 2013). Areas affected by 

hypocellularity are replaced by fatty stromal tissue or filled with erythrocytes or a proteinaceous 

fluid (Bell et al., 2010b; Bell, 2011). Regarding the vascular architecture, neither damages relating 

to a vasculopathy, nor endothelial changes or transmural inflammation were detected (Pardon et 

al., 2010). An extravasation of red blood cells could be demonstrated, whereby the affected tissue 

and organ architecture did not show any abnormalities (Pardon et al., 2010). Other 

histopathological findings include a diffuse lymphoid depletion equally involving T- and B-

compartments in spleen and lymph nodes; in some calves the lymphoid depletion was also found 

in the thymus (Kappe et al., 2010; Pardon et al., 2010). There is an increase of apoptotic 

lymphocytes in lymphoid follicles (Kappe et al., 2010). Bell et al. (Bell et al., 2013) revealed wider 

cortices and no well-defined secondary follicle formation compared to control calves 10 days after 

colostral intake in lymph nodes of challenge calves. Lymphocyte depletion can be observed in the 

periarteriolar lymphoid sheets and lymphoid follicles in the spleen. Additionally the red pulp can 

display a hypocellularity (Pardon et al., 2010). 

 

3.1.6 Therapy and Prophylaxis 

Blood transfusions were undertaken in some BNP-calves. These proved to be a short term success 

only, and the lethality rate was not decreased (Buck et al., 2011; Pardon et al., 2010). On a long-

term perspective, haematological alterations like thrombocytopenia and leucopenia were not 
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improved with this approach (Pardon et al., 2010). Moreover, several attempts were made in 

treating bacterial infections and fever with different antibiotics and antiphlogistics, either without 

(Friedrich et al., 2009c; Kappe et al., 2010; Pardon et al., 2010) or with limited success (Klemt, 

2010). It had been reported that prophylactic treatment of calves with dexamethasone on day 7 

after birth resulted in a lower incidence of clinically affected BNP-calves, and haematological 

parameters also showed less dramatic deviations from reference ranges (Klemt, 2010). 

In first experimental studies with challenge calves, colostrum from specific dams was shown to be 

the key causal agent for the induction of BNP (Friedrich et al., 2011; Schröter et al., 2011). Feeding 

a group of calves with a colostrum substitute in a herd with previous BNP-incidence proved to 

prevent BNP-cases, while some calves of the same herd, which were fed colostrum from their 

own dams, showed haematological alterations or developed clinical signs of BNP (Schröter et al., 

2012). Similarly, Bell et al. (Bell et al., 2010a) reported that calves from BNP-dams were muzzled 

immediately after birth and received a colostrum substitute, which prevented development of 

BNP in these calves. Thus, feeding of mixed colostrum in herds with previous BNP-cases as well as 

colostrum from dams that are known to have had BNP-calves should be avoided. 

  

3.2 Alloimmune Diseases 

Alloimmunity is defined as an immune response towards antigens of a genetically different 

member of the same species. The prefix “allo-” means “other”. The term is most often used in 

connection with graft rejection or blood transfusions. In autoimmune diseases, with the prefix 

“auto” meaning “self”, an individual’s own tissue is attacked by the immune system. Finally, the 

prefix “xeno”, originating from “xenos”, the Greek word for “foreign”, describes a graft between 

two animals of different species (Tizard, 2012a; Tizard, 2012b). 

Cell surface molecules of red blood cells (RBC), comprising membrane proteins, glycoproteins or 

glycolipids, differ between individuals and can act as antigens (Urbaniak, 2002). In humans, more 

than 20 blood group systems have been recognised, and well-known antigens are the 

polysaccharide antigens AB0 or protein antigens such as Rhesus. Alloimmunisation against RBC 

antigens can occur during blood transfusions, pregnancy or tissue/organ transplantation, if there 

are genetic differences between donor and recipient (Urbaniak, 2002). Alloantibodies against RBC 

antigens can also preexist naturally in an individual without any previous exposure to foreign RBCs 

and are typically of IgM type (Urbaniak, 2002). After exposure to RBCs of a genetically different 

individual, the recipient will produce alloantibodies (Tizard, 2012c). RBCs of the donor will be 
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eliminated through intravascular haemolysis and phagocytosis within the recipient. Subsequent 

exposure to the same antigen will result in immediate destruction of the RBCs (Tizard, 2012c). 

Several authors pointed out that there are parallels between BNP and a condition in humans, 

namely the foetal/neonatal alloimmune thrombocytopenia (FAIT/NAIT) (Bridger et al., 2011; 

Deutskens et al., 2011; Foucras et al., 2011; Witt et al., 2011), which is considered to be the 

platelet counterpart of Rhesus Haemolytic Disease of the Newborn (RHD) (Kaplan, 2006). NAIT is 

caused by maternal alloantibodies, which are directed mainly against platelet-specific alloantigens 

of the foetus. The fetal platelet antigens, which differ from those of the mother, are inherited 

from the father and elicit alloantibody production in the mother. Maternal alloantibodies can 

cross the placenta during pregnancy due to the haemochorial placenta in humans. NAIT can 

already occur during a first pregnancy in healthy mothers. Newborns display petechiae, purpura 

or haematoma, infrequently also visceral haemorrhages and in 20% of cases intracranial 

haemorrhages. A thrombocytopenia and sometimes anaemia due to haemorrhages can be found 

(Kaplan, 2006). 

Naturally occurring cases of neonatal isoerythrolysis (NI) or neonatal haemolytic disease have 

been observed in horses and cats. This feto-maternal incompatibility manifests itself post natum 

after colostral intake of maternal alloantibodies and is characterised by immune-mediated 

destruction of RBCs. In cats, this phenomenon is associated with the fading kitten syndrome 

(Bücheler, 1999). NI in horses is caused by alloimmunisation of the mare lacking specific 

erythrocyte antigens carried by the foal and inherited from its sire (Kähn et al., 1991). 

Alloimmunisation can occur during pregnancy, parturition or blood transfusions (Kähn et al., 

1991). 

A feto-maternal incompatibility phenomenon caused by vaccination had been observed in cattle 

in the past. Vaccines against anaplasmosis contained erythrocytic membranes, which stimulated 

alloantibody production in the vaccinated cow, if the cow had different erythrocyte antigens as 

contained in the vaccine. Alloantibodies were transferred to calves via colostrum and caused a 

haemolytic anaemia in calves that had inherited the respective erythrocyte antigens from the sire 

against which alloantibodies from the dam were directed (Luther et al., 1985). 

 

3.3 Previous Studies on the Aetiopathogenesis of BNP 

Differential diagnoses of haemorrhagic diathesis in cattle include inherited or acquired disorders. 

The latter include for example infections, drug and chemical exposures or immunological causes. 

After the emergence of BNP, all of these differential diagnoses were investigated, and most of the 
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disorders could be excluded as aetiological factors for BNP. A strong evidence for an immune-

mediated pathogenesis was obtained in several studies. An overview of all studies considering 

different factors causative for a haemorrhagic diathesis related to BNP is given hereafter. 

 

3.3.1 Infectious Agents 

In cattle, different pathogens may induce clinical symptoms similar to those of BNP. Therefore, 

first studies on BNP considered potential infectious agents to be involved in the pathogenesis of 

BNP, since many BNP-calves also revealed therapy-resistant fever, which is frequently associated 

with viral infections (Friedrich et al., 2009c). 

Infections with the BVD virus cause a variable outcome in cattle, dependent on age and immune 

status of the animal, as well as on the strain and biotype of the virus (Lanyon et al., 2014). One of 

these disease syndromes is the haemorrhagic syndrome in calves, which is an acute infection 

caused by noncytopathic (ncp) BVD virus (Liebler et al., 1995). In an experimental study, young 

calves were infected with a ncp field isolate of the BVD virus and clinical signs similar to those 

observed in BNP, e.g. internal and external haemorrhages and a thrombocytopenia, were 

detected 2 weeks post infectionem (Corapi et al., 1989). Bone marrow biopsies, however, showed 

a marked hyperplasia of the megakaryocytes (Corapi et al., 1989). This is in contrast to findings in 

BNP-calves, which revealed a damage of the bone marrow related to all cell lineages including the 

megakaryocytes (Bell et al., 2010b; Friedrich et al., 2009c; Kappe et al., 2010; Pardon et al., 2010; 

Schröter et al., 2011). Without exception, RT-PCRs for BVD antigen were negative in all tested 

BNP-calves (Bell et al., 2010b; Buck et al., 2011; Friedrich et al., 2009c; Friedrich et al., 2011; 

Kappe et al., 2010; Krappmann et al., 2011; Pardon et al., 2010). Moreover, all dams of affected 

calves had been vaccinated against BVDV (Friedrich et al., 2009c; Pardon et al., 2010; Schröter et 

al., 2011). In challenge studies, no BVDV-antibodies were detected before colostrum intake, but 

after colostrum ingestion, calves were positive for BVDV-antibodies (Friedrich et al., 2011; 

Schröter et al., 2011). Calves that did not survive BNP had significantly higher BVDV-antibody 

titres compared to animals that survived the disease (Schröter et al., 2011). 

Bluetongue virus (BTV), or the epizootic haemorrhagic disease virus (EHDV), may cause clinical 

signs like reddening of the lip mucosa, oral erosions, petechiae on the lingual and buccal papillae, 

or echymotic haemorrhages at the hoof (Brenner et al., 2011; Yadin et al., 2008). PCRs for both 

BTV (Buck et al., 2011; Kappe et al., 2010; Klemt, 2010; Krappmann et al., 2011; Pardon et al., 

2010) and EHDV (Pardon et al., 2010) antigens were negative in BNP-calves. In 2008, a vaccination 

against the bluetongue virus (BTV) type 8 had been introduced in Germany, and there were 
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concerns from farmers about a possible correlation between the respective vaccine and the 

occurrence of BNP (Kappe et al., 2010). However, BNP-cases had already been observed in 2007 

(Buck et al., 2011; Kappe et al., 2010; Krappmann et al., 2011). 

Kappe et al. (Kappe et al., 2010) detected circoviral DNA with very high similarity to the porcine 

circovirus type 2b (PCV-2) in five of 25 examined BNP-calves and in one of eight non-BNP-calves. 

In pigs, this virus is associated with a number of different syndromes like the postweaning 

multisystemic wasting syndrome (PMWS) or the porcine dermatitis and nephropathy syndrome 

(PDNS) (Segalés et al., 2005). Many years before the occurrence of BNP, this virus had already 

been described in Canadian cattle with respiratory distress or aborted bovine foetuses (Nayar et 

al., 1999). In other countries, such as the USA, PCV-2 had also been detected in cattle, whilst the 

exact biological impact of this virus in cattle is not understood until today (Li et al., 2011). Other 

studies did not find any evidence that PCV-2 is involved in the pathogenesis of BNP (Bastian et al., 

2011; Schröter et al., 2011; Willoughby et al., 2010). 

Friedrich et al. (Friedrich et al., 2009c) and Pardon et al. (Pardon et al., 2010) discussed a possible 

involvement of bovine parvovirus in BNP. In cats and dogs, this virus is known to cause either a 

panleucopenia or a pancytopenia (Hosokawa et al., 1987; Weiss et al., 1999). In cattle, the 

respective virus causes mainly diarrhoea, but no damage of the bone marrow (Durham et al., 

1985; Friedrich et al., 2009c). Moreover, no signs of a parvovirus infection were seen in histology 

in BNP-calves (Pardon et al., 2010). 

Pathogenic bacteria were also included in analyses. A wide range of different bacteria was 

detected in BNP-calves, but none of them were found in all BNP-calves and were therefore 

associated with BNP (Kappe et al., 2010; Klemt, 2010; Krappmann et al., 2011). Pasteurella 

multocida, which is associated with a haemorrhagic septicaemia (Rhoades et al., 1967), was only 

found sporadically (Kappe et al., 2010) and no Salmonella spp. was detected (Schröter et al., 

2011). 

 

3.3.2 Toxicological Agents 

In literature, several toxicological agents are described, which may cause bone marrow damages 

and clinical signs as observed in BNP. 

Furazolidone is a nitrofuran antibiotic and can cause a depletion of the bone marrow and similar 

clinical symptoms as BNP, but only after administration over a long period of time (Hofmann, 

1972). Nitrofuranes are forbidden by law for the use in food producing animals in the European 
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Union (Commission Regulation (EU) No 37 / 2010). Additionally, BNP-calves tested for 

furazolidone were all negative (Friedrich et al., 2009c; Kappe et al., 2010). Similarly, 

chloramphenicol can cause an aplastic anaemia in cattle (Jorna and Postema, 1986), but is also 

forbidden by law for food producing animals in the European Union (Commission Regulation (EU) 

No 37 / 2010). Overdosage of the coccidiostat halofuginone can cause bloody diarrhoea 

(Scholtysik and Steuber, 2007). This pharmaceutical was not applied in all monitored BNP-affected 

herds (Pardon et al., 2010), and no indication was obtained for overdosage of halofuginone in 

BNP-calves (Krappmann et al., 2011). Other pharmaceuticals that may cause BNP-associated 

symptoms are sulfonamides or non-steroidal anti-inflammatory drugs. However, these drugs were 

applied only occasionally in connection with the treatment of BNP, and an association of these 

drugs with BNP was excluded by Friedrich et al. (Friedrich et al., 2009c). 

S-(1,2-Dichlorovinyl)-L-cysteine (DCVC) is a metabolite of trichloroethylene, which has been used 

in the past for the extraction of soybean oil (Kappe et al., 2010). Intoxications with this agent can 

cause aplastic anaemia and renal injury (Lock et al., 1996). However, no DCVC could be detected 

in BNP-calves (Friedrich et al., 2009c; Kappe et al., 2010). 

Bracken fern or field melilot were excluded as potential toxic agents involved in BNP, too (Bell et 

al., 2010b; Friedrich et al., 2009c; Kappe et al., 2010; Pardon et al., 2010; Sauter-Louis et al., 

2012). 

Analyses for mycotoxins, such as trichothecenes or mycotoxins of Stachybotrys chartarum and 

Aflatoxin B1 in forage samples, were also negative in BNP-calves (Buck et al., 2011; Friedrich et al., 

2009c; Kappe et al., 2010; Pardon et al., 2010). 

In an epidemiological questionnaire, a couple of farms affected by BNP as well as a few control 

farms could not exclude the use of rodenticides (Sauter-Louis et al., 2012). The study indicated 

that dicumarol was used in most instances (Sauter-Louis et al., 2012), which does not cause bone 

marrow depletion (Runciman et al., 2002; Sauter-Louis et al., 2012; Wang et al., 2007). 

 

3.3.3 Genetic Factors 

Studies on the aetiology of BNP also involved investigations on possible genetic factors associated 

with BNP. Several cattle breeds were affected by BNP (Bell et al., 2009; Corbière et al., 2009; 

Friedrich et al., 2009c; Pardon et al., 2010), but only a small proportion of calves showed clinical 

signs of BNP compared to the respective whole cattle population. This was also true on individual 

farm level, where animals were kept under the same conditions (Foucras et al., 2011; Kasonta et 
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al., 2012; Pardon et al., 2010; Reichmann, 2012; Witt et al., 2011). Some dams gave birth to more 

than one BNP-calf (Pardon et al., 2010), and in challenge studies, the disease could be reproduced 

with colostrum from specific dams in several unrelated challenge calves (Friedrich et al., 2011; 

Schröter et al., 2012), indicating that the production of the aetiological agent may be restricted to 

a certain subset of dams. 

For hereditary coagulopathies in cattle, inherited disorders involving coagulation factor VIII (Khalaj 

et al., 2009) or a factor XI deficiency in Holstein cattle (Marron et al., 2004) have been described. 

Krappmann et al. (Krappmann et al., 2011) screened a well characterised crossbreed Holstein x 

Charolais cattle resource population with incidence of clinical BNP for mutations in factor XI. No 

specific mutations in the coagulation factor XI gene associated with BNP could be detected. 

However, the study revealed that all clinical BNP-cases were confined to one specific sire line of 

the F2 resource population. All affected BNP-calves were progeny of a single F1 Charolais x 

Holstein crossbred male. This accumulation of clinical BNP-cases in one specific family was 

statistically significant. Therefore, a genetic predisposition involved in BNP-pathogenesis is likely 

(Krappmann et al., 2011). 

A further study genotyped BNP-calves and control animals of the Holstein breed at the major 

histocompatibility complex (MHC) class II DRB3 locus (Ballingall et al., 2011), which is associated 

with autoimmune diseases and variations in immune response (Handunnetthi et al., 2010). No 

significant differences in allele frequencies were found in BNP-calves compared to control animals 

(Ballingall et al., 2011). 

 

3.3.4 Idiopathic Cases of Haemorrhagic Diathesis 

Sporadic cases similar to BNP and unknown aetiology were observed before the accumulation of 

BNP-cases in 2007 (Friedrich et al., 2009c). A recently published epidemiological study revealed 

that 4.5% of suspected BNP-cases were born to non-PregSure® BVD-vaccinated dams, received 

colostrum exclusively from the own dam, and originated from farms with no history of BNP-cases. 

However, these calves were not further investigated for other factors that might contribute to a 

pancytopenia (Jones et al., 2013). In literature, there are only rare reports on idiopathic 

haemorrhagic diathesis in calves. 

Ammann et al. (Ammann et al., 1996) described the case of a 14-day-old Holstein calf that 

displayed clinical signs of a haemorrhagic disorder like a bloody diarrhoea. This calf had been 

treated with trimethroprim and sulfadoxine. Haematology revealed a severe anaemia, leucopenia 

and thrombocytopenia, while gross pathology revealed multiple haemorrhages. These findings 
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were all associated with a hypocellular bone marrow, which was demonstrated in a histological 

examination. As possible aetiology for the condition in this calf, a drug-induced or inherited bone 

marrow aplasia was suspected. 

Another case report was documented in 2007 in Japan (Shimada et al., 2007). This case report 

describes an 11-day old Holstein calf, which was presented with melaena, external haemorrhages 

and pancytopenia, including a non-regenerative anaemia. In histology, a bone marrow hypoplasia 

was diagnosed, which comprised all cell lineages. Possible causes for the bone marrow aplasia, 

e.g. genetic factors, viral infections such as BVDV, toxic agents, chemicals or radiation were 

excluded. The calf had received no drugs associated with a bone marrow aplasia (Shimada et al., 

2007). Neither the vaccination history of the dam was mentioned in this case report, nor was the 

BVDV status of the dam known. This case report has a strong resemblance to BNP and a possible 

association of this case with BNP remains unclear. 

A similar case report was published shortly afterwards, describing a 15 day old Japanese black calf 

with clinical findings similar to those of BNP (Fukunaka et al., 2010). Haematological findings 

included a severe thrombocytopenia and leucopenia as well as a non-regenerative anaemia. 

Multiple haemorrhages were detected in necropsy, and histopathology revealed a marked bone 

marrow aplasia. Toxins or infections in utero were considered as unlikely and a viral infection with 

BVDV was ruled out (Fukunaka et al., 2010). The authors could not exclude a possible association 

with BNP. 

 

3.3.5 Evidence for an Alloimmune-mediated Pathogenesis of BNP 

First investigations on the aetiopathogenesis of BNP observed that some dams gave birth to more 

than one BNP-calf, although not always in consecutive years (Friedrich et al., 2011; Pardon et al., 

2010). Based on observations from farmers and findings of an emerging thrombocytopenia after 

colostrum intake in BNP-calves, and given the time period between colostrum ingestion and the 

development of clinical signs of BNP, it was suspected that colostrum might be involved as a 

potential aetiological agent in the pathogenesis of BNP (Friedrich et al., 2011). In challenge 

experiments, colostrum from specific dams, which all had been vaccinated with PregSure® BVD, 

was then confirmed to be the key aetiological agent involved in the pathogenesis of BNP. Clinical 

BNP or at least haematological changes could be reproduced quite reliably in the majority of 

challenge calves originating from different breeds by feeding colostrum from unrelated dams that 

had given birth to a BNP-calf before (Friedrich et al., 2011; Schröter et al., 2011). These results 

pointed to an immune-mediated mechanism, putatively elicited by antibodies in colostrum 



Literature Review 

 

18 
 

(Friedrich et al., 2011). A different approach to demonstrate an alloimmune-mediated mechanism 

was described by Foucras et al. (Foucras et al., 2011). In this experiment, a pool of IgGs from 

dams, which had given birth to a BNP-calf before, was injected i.v. into unrelated neonatal healthy 

calves, thereby excluding a potential effect of antibody resorption in the digestive tract after 

colostrum intake. Accordingly, characteristic findings associated with BNP were observed in these 

calves, including a cellular depletion of the bone marrow. 

Further evidence of an alloimmune-mediated mechanism was then revealed in other studies. 

Pardon et al. (Pardon et al., 2011) and Bridger et al. (Bridger et al., 2011) demonstrated via flow 

cytometry that sera from BNP-dams contained alloantibodies that bind to calf leucocytes. The 

binding of alloantibodies was not age-dependent, since also older calves showed reactivity, and 

therefore the expression of the target antigen(s) does not seem to be age-related (Pardon et al., 

2011). The disease is, however, restricted to neonates after colostrum ingestion, because 

colostral alloantibodies are only able to pass the intestinal barrier up to 36 hours p.c.i. (Kruse, 

1983). Additionally, in contrast to other species like humans, antibodies in cattle are not able to 

pass from the mother to the fetus during gravidity due to the epitheliochorial nature of the 

placenta (Bridger et al., 2011; Kruse, 1983; Pardon et al., 2011). In a further experiment, the 

amount of alloantibody-positive lymphocytes/monocytes (IgG+-cells) in neonatal calves was 

monitored after intake of colostrum from BNP-dams. The percentage of IgG+-cells mainly 

increased between 6 - 12 hours post colostrum intake and thereafter the severity of clinical signs 

of BNP correlated with the percentage of IgG+-cells and the duration and persistence of these 

levels (Bridger et al., 2011). Cells that were opsonised with alloantibodies induced 

cytophagocytosis by macrophages (Bastian et al., 2011). 

No alloantibodies were bound when incubating leucocytes with either serum of non-BVD-

vaccinated dams or with serum from dams which had been vaccinated with an alternative BVD-

vaccine to PregSure® BVD (Bastian et al., 2011). Accordingly, alloantibody titres in BNP-dams were 

found to be significantly higher than in BVDV-unvaccinated control dams and also correlated with 

the severity of BNP in calves (Bridger et al., 2011). The severity of BNP, however, did not correlate 

with the BVDV-antibody titres in these dams (Bridger et al., 2011), although it had been shown 

that BVDV-neutralising antibody titres of BNP-dams exceeded those of PregSure® BVD vaccinated 

non-BNP-dams (Bastian et al., 2011). Three repetitive immunisations with PregSure® BVD had 

been shown to induce high alloantibody titres, which differed significantly from alloantibody titres 

found in animals immunised with other booster vaccination schemes like three consecutive 

vaccinations with an inactivated BVD vaccine other than PregSure® BVD. Applying a “modified 

two-step vaccination” that consisted of a primary vaccination with PregSure® BVD and two 
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subsequent booster immunisations with a live attenuated BVD vaccine also resulted in 

significantly lower alloantibody titres than a vaccination scheme using only PregSure® BVD 

(Kasonta et al., 2012). 

When testing a panel of BNP-sera for alloantibody-binding to leucocytes of different individuals, 

leucocytes of one individual did not necessarily show a reaction with each of the BNP-dam sera 

(Bastian et al., 2011; Bridger et al., 2011). This may indicate that individual BNP-dams responded 

to different antigens (or different alleles of a polymorphic antigen), but also that expression of 

alloantigens was variable among individuals (Bastian et al., 2011). 

Furthermore, immunofluorescence microscopy of peripheral blood smears and bone marrow 

smears revealed that in comparison to non-BNP-dams, the sera of BNP-dams contained 

alloantibodies that bound to these cells. However, the megakaryocytes did not show a distinct 

staining when incubated with BNP-dam sera in this study (Pardon et al., 2011). In flow cytometry 

studies, it was observed that BNP-associated alloantibodies bound more effectively to 

lymphocytes and monocytes compared to granulocytes (Bastian et al., 2011; Bridger et al., 2011; 

Pardon et al., 2011). These binding patterns of BNP-associated alloantibodies to peripheral blood 

cell subsets were evaluated in a further study via immunofluorescence microscopy of different 

cell types with either BNP-dam or non-BNP-dam colostrum (Assad et al., 2012). Firstly, it was 

shown that BNP-alloantibodies bound to 100% of all platelets and to 70% of all leucocytes. Cells of 

the myeloid lineage, like granulocytes and monocytes, displayed 100% reactivity with 

alloantibodies, whilst not all cells of the lymphoid lineage, especially the CD4+ T cells (T-helper 

cells), bound BNP-associated alloantibodies. Secondly, regardless of breed, the reactivity of 

colostral alloantibodies was identical for cells either of juvenile or of adult origin, pointing to a 

constant expression of the target antigen (Assad et al., 2012). 

The binding pattern of BNP-associated alloantibodies was also evaluated with the BVD virus and 

different cell lines used for vaccine production. No reaction of alloantibodies could be detected 

with the BVD-virus or surface antigens of all cell lines, except for the bovine kidney cell line used 

for the production of PregSure® BVD (Bastian et al., 2011). In order to evaluate if the induction of 

alloantibodies was restricted only to PregSure® BVD, guinea pigs were immunised with different 

BVD-vaccines and only PregSure® BVD induced alloantibodies that bound to cell surface antigens 

of bovine leucocytes (Bastian et al., 2011). 

Two independent studies proposed that BNP-associated alloantibodies target the MHC class I 

antigen present on bovine leucocytes, but also on the Madin-Darby bovine kidney cell line (MDBK) 

used for the production of the inactivated vaccine PregSure® BVD (Deutskens et al., 2011; Foucras 
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et al., 2011). MHC class I, an approximately 42 kDa protein, from the MDBK cell line was shown to 

be a constituent and therefore a contamination of PregSure® BVD, which might have elicited 

alloantibody production in BNP-dams (Deutskens et al., 2011; Foucras et al., 2011). After down-

regulation of ß2-microglobulin-coding mRNA in MDBK cells via RNA interference and consecutively 

reduced MHC class I expression, cell staining was reduced after incubation with BNP-dam sera 

(Foucras et al., 2011). Immunoprecipitation with BNP-dam sera showed a reaction with MHC class 

I on the MDBK cell line (Deutskens et al., 2011; Foucras et al., 2011; Kasonta et al., 2012). Sera of 

non-vaccinated BVDV-free dams or dams which had been vaccinated with an alternative 

inactivated BVD vaccine revealed no or only a very weak reactivity with MHC class I, respectively. 

However, some of the PregSure® BVD-vaccinated non-BNP-dams also showed reactivity with MHC 

class I (Deutskens et al., 2011). This was confirmed by Kasonta et al. (Kasonta et al., 2012) for the 

serum of a large proportion of animals after experimental vaccination with PregSure® BVD. 

Additionally, after incubation with a standardised, pooled BNP-serum, a reactivity with MHC class 

I on PBMCs of some BNP-dams was revealed (Deutskens, 2012). 

Evidence of a massive cellular contamination of PregSure® BVD was obtained in a further study 

(Euler et al., 2013) that compared the cell surface proteome of the MDBK cell line with the protein 

composition of PregSure® BVD. PregSure® BVD contained a 3.5 fold higher amount of proteins 

than a different, live-attenuated BVD-vaccine. Several proteins were shared between PregSure® 

BVD and the MDBK cell surface. MHC I was, however, one of the least abundant shared proteins 

in PregSure® BVD and MDBK cells and the authors instead presented some other alloantigens as 

candidates, that still need further validation (Euler et al., 2013). 

 

3.4 RNA-Sequencing (RNA-Seq) 

In recent years, next-generation sequencing (NGS) or deep-sequencing technologies have been 

introduced, which offer the opportunity for high throughput sequencing at single-base resolution. 

In case of transcriptome sequencing, the method is termed RNA-Seq (RNA sequencing). This novel 

method was applied in our second study and therefore, a short overview on advantages of this 

method will be given.  

The transcriptome is defined as the sum of all RNA molecules or transcribed loci, including mRNA, 

tRNA, rRNA and non-coding RNA, in a cell or particular tissues at a specific time point or condition. 

RNA-Seq provides the option of mapping and quantifying transcriptomes. It is not restricted to an 

existing genome annotation of a species. Hence, also novel transcripts or genes can be detected. 

This method can also reveal exon/intron boundaries or alternative splicing. Additionally, sequence 
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variations, for example single nucleotide polymorphisms (SNPs), can be evaluated with RNA-Seq 

(Lister et al., 2009; Wang et al., 2009). Another advantage of RNA-Seq in comparison to 

microarrays is its large dynamic range. Therefore, transcripts with very high or low expression 

levels or marked fold-changes can be detected. Finally, this method is characterised by a low 

technical variance. Results for both technical as well as biological replicates can be reproduced 

reliably (Wang et al., 2009). 
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4 Objectives 

Several questions regarding the aetiopathogenesis of BNP still remain open, and some published 

results demand further research. For this thesis, two main aspects concerning aetiopathogenesis 

and manifestations of BNP were selected for further evaluation. 

In literature, several field observations or challenge studies reported on the incidence of 

subclinical BNP-cases. Subclinical BNP-calves display no clinical signs of BNP, but a shift in cell 

counts below the applied reference ranges in at least two haematopoietic cell lineages (Friedrich 

et al., 2011; Pardon et al., 2010; Schröter et al., 2011; Witt et al., 2011). The true incidence of 

subclinical BNP-cases has, however, not been thoroughly investigated. An accumulation of clinical 

BNP-cases in exclusively one specific sire line of an F2 experimental resource population was 

revealed in a previously performed study at our institute (Krappmann et al., 2011). All BNP-calves 

were descendants of one F1 male. Hence, the hypothesis of a genetic predisposition being 

involved in clinical BNP was proposed (Krappmann et al., 2011). Therefore, the present study 

investigated the incidence, a possible genetic predisposition, and further epidemiological factors 

involved in subclinical BNP (Publication I). 

The occurrence of BNP is strongly associated with the vaccination of dams with a specific 

inactivated vaccine (PregSure® BVD) against the Bovine Viral Diarrhoea Virus (BVDV) (Lambton et 

al., 2012; Sauter-Louis et al., 2012). This vaccine has been shown to induce very high antibody 

titres against BVDV (Bastian et al., 2011; Raue et al., 2011), but also to elicit the production of 

alloantibodies in some dams (Bridger et al., 2011; Pardon et al., 2011). The vaccine comprises a 

unique adjuvant. Furthermore, it has been revealed that the vaccine is highly contaminated with 

proteins derived from the Madin-Darby bovine kidney (MDBK) cell line used for the production of 

the specific vaccine (Euler et al., 2013). Due to these particular characteristics of the vaccine, the 

second aim of the present study was to characterise the immune response to vaccination with 

PregSure® BVD to gain insight into the structural and quantitative regulation of the blood 

transcriptome by means of an RNA-Seq approach (Publication II). 
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5 Results 
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6 Discussion 

Since the emergence of BNP in 2007, several studies focussed on different factors potentially 

involved in the aetiopathogenesis of the disease. Although these studies remarkably shed light 

onto the complex aetiopathogenesis of this alloimmune disease, a number of questions regarding 

the pathogenesis require further investigation or have emerged from published findings. The 

fundamentals for the objectives deduced for this study were limited data concerning subclinical 

BNP cases (Pardon et al., 2010; Witt et al., 2011) and the hypothesis of a genetic predisposition 

involved in clinical BNP (Krappmann et al., 2011). Furthermore, the immune response to 

vaccination with the specific inactivated BVD-vaccine associated to BNP (PregSure® BVD) had not 

been characterised in detail before. It was only known that this vaccine elicited significantly 

higher neutralising antibody titres compared to other commercial BVD-vaccines (Bastian et al., 

2011; Raue et al., 2011), and additionally evoked BNP-associated pathogenic alloantibodies 

(Bridger et al., 2011; Pardon et al., 2011). Results from our studies confirm that a genetic 

predisposition is required for clinical and potentially subclinical BNP, and provide evidence that 

the incidence of subclinical BNP cases is not higher than for clinical BNP cases. Analysis of the 

blood transcriptome regulation after booster vaccination with PregSure® BVD applying an RNA-

Seq approach revealed a very coordinated immune response to double-stranded (ds) RNA, 

although the inactivated vaccine is directed against a single-stranded (ss) RNA virus. This indicates 

a contamination of the vaccine with dsRNA, or the inclusion of a dsRNA analogue into the vaccine. 

Additionally, the study identified a novel gene with cytokine-like features, which is highly 

upregulated after vaccination in all animals. These results are comprehensively discussed 

hereafter in the context of the aetiopathogenesis of BNP. 

All our studies were performed on animals of the experimental German Holstein x Charolais 

crossbred resource population at the FBN Dummerstorf, except for one German Holstein cow also 

kept within the resource population. This resource population provided a good basis for the 

investigations, because this population had been kept throughout under constant housing, 

feeding and management conditions including identical vaccination protocols for all cows. All 

dams had received at least a basic vaccination with PregSure® BVD, consisting of two doses given 

according to the manufacturer’s instructions. Booster vaccinations were performed annually. 

PregSure® BVD presents the main risk factor for producing BNP colostrum (Lambton et al., 2012; 

Sauter-Louis et al., 2012), and the respective vaccination regime is known to induce high 

alloantibody titres (Kasonta et al., 2012). All dams included in the second study (Demasius et al., 

2013) had been classified into three groups according to results previously reported by 
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Krappmann et al. (Krappmann et al., 2011) and according to findings of our first study (Demasius 

et al., 2014). Firstly, dams, which gave birth to clinical BNP-calves, were included. They all 

originated, except for the German Holstein cow, from one specific sire line and were fullsibs. The 

second group comprised fullsib-dams from the same sire line which in contrast had given birth to 

clinically healthy calves, but which nonetheless showed haematological deviations from the 

average of the peer group. Thirdly, a group of control cows from alternative sire lines and with 

healthy calves was included. 

Our first study (Demasius et al., 2014) closely monitored all newborn calves of the resource 

population for the incidence of subclinical BNP and other epidemiological factors involved in 

clinical and subclinical BNP. Other studies which had reported on the incidence of subclinical BNP 

(Pardon et al., 2010; Witt et al., 2011) considered calves with haematological alterations and 

without clinical signs as suspected subclinical cases after only a single blood sampling. Although 

literature on haematological profiles of neonatal calves is sparse, reports on healthy calves show 

that they may display transient blood cell counts below reference ranges (Egli and Blum, 1998). 

Similar findings were also reported from BNP challenge studies (Friedrich et al., 2011; Schröter et 

al., 2011). The very close and frequent clinical and haematological monitoring of a subset of 

calves included in our study enabled exact classification of subclinical cases and discrimination of 

subclinical BNP-calves from healthy calves that showed only transient thrombocytopenia or 

leucopenia. Moreover, all calves included in our study had received colostrum exclusively from 

their own dams, since feeding of mixed colostrum on BNP-affected farms may result in an 

increased risk for calves to develop haematological alterations (Witt et al., 2011). Our study could 

not confirm the hypothesis that subclinical BNP cases occur more frequently than clinical BNP 

cases. However, the single observed subclinical BNP case in our study occurred in the one specific 

sire line of the resource population in which an accumulation of clinical BNP cases had been 

observed in a previous study (Krappmann et al., 2011). This previous study had proposed the 

hypothesis of a possible genetic predisposition involved in clinical BNP (Krappmann et al., 2011). 

The present study could confirm this hypothesis of a genetic predisposition involved in clinical 

BNP, as two further clinical BNP cases exclusively occurred in this one specific sire line. For the 

single subclinical BNP case, a genetic predisposition can also be assumed, as this case was also 

confined to the BNP-affected sire line. Moreover, healthy calves of this BNP-affected sire line 

revealed a decrease in thrombocytes between day 7 and day 14 after colostral intake and 

significantly decreased thrombocyte counts on day 14 as well as decreased leucocyte counts on 

day 7, compared to healthy calves of other sire lines. Although blood cell counts were still above 

ranges reported for young calves in other studies (Mohri et al., 2007), these calves must have 

ingested an agent via colostrum which had a decreasing effect on cell numbers of certain blood 
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cell lineages. Considering published literature on BNP, it can only be speculated about the 

factor(s) responsible for different manifestations of the disease at this stage. These factors could 

be variable alloantibody titres in dams, different types of alloantibodies produced by dams and 

different alloantibody combinations ingested by calves, or also a predisposition on the part of the 

calves. Yet, our results suggest a genetically determined reaction of the dam towards PregSure® 

BVD vaccination. Our study indicates that subclinical BNP occurs with a low incidence. For 

confirmation of this hypothesis, large scale studies with close clinical and haematological 

monitoring should be performed in different cattle herds vaccinated with PregSure® BVD. But 

since a genetic predisposition also seems to be involved in subclinical BNP, the true incidence for 

subclinical BNP might be similarly low as for clinical BNP. This would be in agreement with the 

reported low incidence for clinical BNP (Kasonta et al., 2012; Pardon et al., 2010) relative to the 

number of PregSure® BVD-vaccinated animals or the number of vaccination doses sold (Kasonta 

et al., 2012). Knowledge about the true incidence of subclinical BNP is useful, because subclinical 

BNP might result in a decrease of health statuses of calves (Sauter-Louis et al., 2012). On farms 

with high incidence rates of BNP, subclinical cases were assumed to be the reason for an increase 

in medical treatments (Reichmann, 2012), which can result in substantial economic losses. 

Our study did not reveal further epidemiological factors contributing to BNP. With regard to 

PregSure® BVD vaccinations, neither the time point itself nor the proximity to parturition were 

risk factors for clinical or haematological alterations associated with BNP. These results are in line 

with findings of other epidemiological studies (Jones et al., 2013; Lambton et al., 2012). Also, the 

frequency of PregSure® BVD vaccination did not present a risk factor, which was also shown by 

Lambton et al. (Lambton et al., 2012). However, the findings of Lambton et al. (Lambton et al., 

2012) are in contrast to those of Jones et al. (Jones et al., 2013), the latter revealing that dams of 

second or more lactation were at higher risk of having a BNP-calf, because these dams had 

received more doses of PregSure® BVD compared to first lactation dams. Repetitive vaccinations 

with PregSure® BVD result in higher alloantibody titres (Kasonta et al., 2012). However, 

experiments also showed that some animals already developed alloantibodies after receiving only 

a single dose of PregSure® BVD (Kasonta et al., 2012). Finally, different vaccination regimes may 

also account for differing alloantibody titres in dams (Kasonta et al., 2012). Our study applied for 

all cows an identical PregSure® BVD vaccination scheme according to the manufacturer’s 

instructions, which had been reported to result in higher alloantibody titres compared to a two-

step vaccination regime (Kasonta et al., 2012). Excluding further potential epidemiological factors 

for BNP in the experimental resource population of the FBN Dummerstorf focuses factors 

involved in the aetiopathogenesis of BNP to a genetic predisposition of the dam required for 
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producing BNP-colostrum (Demasius et al., 2014; Krappmann et al., 2011) in combination with the 

main risk factor, PregSure® BVD vaccination (Lambton et al., 2012; Sauter-Louis et al., 2012). 

Reports that contaminating MHC class I antigen, originating from the MDBK cell line used for 

vaccine production of PregSure® BVD, is responsible for production of pathogenic alloantibodies 

in some dams (Deutskens et al., 2011; Foucras et al., 2011) would match with the hypothesis of a 

possible genetic predisposition required for producing BNP-colostrum (Demasius et al., 2014; 

Krappmann et al., 2011). Related dams, as found in our experimental setup, are more likely to 

display the same MHC class I haplotypes. Dams that differ in MHC class I genotype from the MHC 

class I genotype of the MDBK cell line will respond to the MHC class I antigen with alloantibody 

production. The low incidence rate observed for clinical BNP-calves (Kasonta et al., 2012; Pardon 

et al., 2010) might therefore be explained by diversity in the MHC class I region (Kelley et al., 

2005), and the genetically determined MHC class I makeup carried by dam and calf. However, 

considering different strategies that exist to achieve and maintain diversity in the MHC region, 

and especially those applied in cattle, the MHC class I hypothesis has to be questioned. The 

strategies for maintaining diversity in the MHC class I region include polymorphic genes and/or 

varying gene numbers and combinations in different haplotypes (Kelley et al., 2005; Parham et al., 

1995; Trowsdale and Parham, 2004). Cattle apply a combination of both strategies. So far, the 

existence of six classical MHC class I genes (gene 1 – 6) has been proposed (Hammond et al., 

2012). Cattle show region configuration polymorphism, expressing between one and three of the 

six genes per haplotype (Birch et al., 2006; Codner et al., 2012; Ellis et al., 1999). Additionally, high 

degrees of polymorphisms can be found between individuals (Babiuk et al., 2007). Considering 

these strategies applied by cattle for maintaining diversity in the MHC class I region, it is unlikely 

that the large proportion of observed non-BNP-dams shared (an) MHC class I allele(s) with the 

MDBK cell line. This assumption is underlined by findings that alloantibodies against MHC class I 

can be found in sera of some non-BNP-dams (Deutskens et al., 2011) as well as in a large 

proportion of animals after experimental vaccination (Kasonta et al., 2012). The high degree of 

diversity in the MHC class I also contradicts the hypothesis of causal MHC class I alleles, because 

clinical BNP or at least haematological alterations could be reproduced frequently with BNP-

colostrum in almost all challenge calves (Bell et al., 2013; Friedrich et al., 2011; Schröter et al., 

2011). It is unlikely that all of these unrelated challenge calves shared MHC class I alleles with the 

MDBK cell line. In our resource population, sera of all dams included in the second study, 

regardless of BNP status, contained alloantibodies directed against MHC class I on MDBK cells 

(Deutskens, 2012). This also included the control cows from non-BNP affected sire lines. Calves of 

these dams which were monitored in our first study (Demasius et al., 2014) did not show any 

clinical or haematological alterations consistent with BNP. Our unpublished results have revealed 
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that these control cows, which were included in our second study, do not share classical MHC 

class I alleles with the MDBK cell line, except for one control cow, which shares a single MHC class 

I allele with the MDBK cell line. Consequently, also control dams differing from the MDBK cell 

MHC class I genotype might respond to allogeneic MHC class I of the MDBK cell line with 

alloantibody production. Exclusion of MHC class I as single causal agents for BNP would eradicate 

further puzzling observations regarding the MHC class I hypothesis that had previously arisen. 

These findings reported that BNP-associated alloantibodies bind to a target antigen expressed on 

platelets and all cells of the myeloid lineage, but not to all cells of the lymphoid lineage (Assad et 

al., 2012). However, MHC class I expression in humans is found on nearly all nucleated cells, and 

especially lymphoid tissues reveal high expression levels of MHC class I (Agrawal and Kishore, 

2000). If the ubiquitously expressed MHC class I would be the target antigen in calves, then 

alloantibody-related damages should not only be detected in haematological tissue in 

histopathology (Friedrich et al., 2009b; Pardon et al., 2010). As discussed in Euler et al. (Euler et 

al., 2013), a transfusion-related syndrome in humans, known as transfusion-related acute lung 

injury (TRALI), is characterised by a high frequency of MHC class I alloantibodies. However, these 

are only weak triggers with low fatality. Not all antigens crucial for transfusion have been 

identified yet (Euler et al., 2013). Prominent MHC class I alloantibody production in TRALI patients 

might overshadow other possible candidates, which might be the case in BNP as well (Euler et al., 

2013). 

Observations regarding challenge studies in calves suggest that potentially more than one antigen 

might induce BNP-associated alloantibody production. While feeding similar volumes of colostrum 

from a single BNP-dam to challenge calves resulted in different degrees of severity for clinical 

findings in these calves (Friedrich et al., 2011; Schröter et al., 2011), ingestion of mixed colostrum 

increased the incidence of clinical BNP as well as the mortality rate (Schröter et al., 2011). Feeding 

a standardised quantity from the same pooled colostrum to each challenge calf resulted in 

consistent alterations found in all challenge calves (Bell et al., 2013). If there are multiple causal 

antigens involved in BNP-associated alloantibody production, pooling colostrum increases the 

chance that a wider spectrum of different alloantibodies may be found in the colostrum as 

compared to colostrum of a single dam. It has to be considered, however, that if multiple 

alloantibodies would be directed against multiple different antigens, this will result in a dilution 

effect of each specific alloantibody in mixed colostrum and might not exert BNP in calves 

anymore. Indications for a massive contamination of PregSure® BVD with proteins derived from 

the MDBK cell line was revealed in the study by Euler et al. (Euler et al., 2013). Therefore, there is 

more than one potential protein candidate proposed which might elicit pathogenic alloantibody 

production. Results of our second study (Demasius et al., 2013) provided further evidence of a 
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massive contamination of the vaccine. We could observe a very coordinated immune response to 

dsRNA or a dsRNA analogue 14 days after booster vaccination with PregSure® BVD across all dams 

included in the study. This is revealed by upregulated, immune response-related genes and 

overrepresented pathways in KEGG (Kyoto Encyclopedia of Genes and Genomes, 

http://www.genome.jp/kegg/pathway.html) and Ingenuity pathway analysis (IPA, Ingenuity® 

Systems, http://www.ingenuity.com), especially by the RIG-I-like receptor signaling pathway 

(KEGG) and the string starting with the Toll-like receptor (TLR) 3 in the overrepresented canonical 

pathway TLR signaling pathway (IPA). TLR3 is a receptor for dsRNA (Zhang et al., 2013). Based on 

these results, we proposed a model for a very coordinated response to dsRNA after PregSure® 

BVD vaccination (Figure 5, (Demasius et al., 2013)). These results are striking, because PregSure® 

BVD is an inactivated vaccine against the BVDV, an ssRNA pestivirus belonging to the Flaviviridae 

(Peterhans et al., 2010). We could not identify differentially expressed genes or enriched 

pathways related to a response to ssRNA, for example upregulation of receptors for ssRNA like 

TLR7 or TLR8 (Heil et al., 2004). Since the vaccine is inactivated, there should not be viral 

replication occurring anymore. During replication, dsRNA may occur temporarily as a replication 

intermediate (Kato et al., 2006). Therefore, the source for dsRNA may have originated from the 

MDBK host cell line used for virus cultivation during vaccine production. This would be another 

proof of the massive contamination of the vaccine. Alternatively, a dsRNA analogue was added to 

PregSure® BVD, for example polyinosine-polycytidylic acid (poly(I:C)). Poly(I:C) can be detected by 

both RIG-1 as well as TLR3 (Kato et al., 2006). This synthetic dsRNA analogue has been shown to 

increase immunostimulatory effects (Thim et al., 2012) and could be an example for a potentially 

added adjuvant to PregSure® BVD. 

These findings also draw attention to the unique nanoparticle-based adjuvant contained in 

PregSure® BVD and to potentially further adjuvants added. According to the instruction leaflet, 

PregSure® BVD contains the adjuvants Quil A, cholesterol, Amphigen Base and drakeol 5 (liquid 

paraffin). Quil A is a saponin which originates from the bark of Quillaja saponaria, a Chilean tree 

(Singh and O'Hagan, 2003). This saponin has been shown to intercalate into cell membranes and 

to have haemolytic properties. To reduce these cytotoxic effects, Quil A is combined with 

phospholipids and cholesterol (Singh and O'Hagan, 2003). This results in nano-complex formation 

of about 40 nm, termed immune stimulatory complexes (ISCOMs), which carry the respective 

antigens (Sjölander et al., 1997). ISCOMs are recognised by APCs (Singh and O'Hagan, 2003). 

Adjuvants can have a major influence on the type of immune response elicited after vaccination 

(Sjölander et al., 1997). Quil A showed the ability to efficiently induce humoral and cell-mediated 

immune responses. In mice, antigen-specific antibodies of all IgG subclasses are induced. 

Additionally, Quil A induces both Th1-like as well as Th2-like immune responses, characterised by 

http://www.ingenuity.com/
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IFN-γ and IL-4 production, respectively (Sjölander et al., 1997). The dose of the BVDV-antigen 

(structural glycoproteins E1 and E2, (Pfizer Animal Health Technical Bulletin, 2004)) bound to the 

ISCOM is not known. PregSure® BVD is known to elicit significantly higher neutralising antibody 

titres compared to other commercial BVD-vaccines (Bastian et al., 2011; Raue et al., 2011). These 

antibody titres even exceed titres observed in naturally infected animals (Bastian et al., 2011). It 

can be assumed that these findings are due to the very potent adjuvant contained in PregSure® 

BVD, which elicits multiple types of immune responses. Considering the aetiopathogenesis of BNP 

and the massive cellular contamination of the vaccine (Euler et al., 2013), it can be assumed that 

this potent adjuvant represents a further driving factor in alloantibody production towards an 

antigen, that has yet to be characterised. 

In our second study (Demasius et al., 2013), we found a strong upregulation of a previously 

unknown locus, XLOC_032517, with cytokine-like features, which was highly upregulated across 

all samples 14 days after booster vaccination with PregSure® BVD. No functional annotation of 

this locus could be found in cattle or any other species. Detection of this novel transcript 

highlights the capacity of RNA-Seq in comparison to other methods applied for transcriptome 

analysis (Wang et al., 2009). Whole blood samples of non-PregSure® BVD vaccinated animals also 

showed expression of XLOC_032517, however, at significantly lower levels compared to 

PregSure® BVD-vaccinated animals. In future studies, it has to be evaluated if upregulation of 

XLOC_032517 is specifically linked to PregSure® BVD vaccination, or can also be found after 

application of other immunostimulatory agents, for example after vaccination with other 

commercial BVD vaccines. Moreover, it should be determined which specific blood cells express 

XLOC_032517, and it should be determined, if the transcript is translated into a protein. Finally, it 

has to be evaluated, if expression of XLOC_032517 is specific to immune response in ruminants. 

Different immune response pathways and expression of specific cytokines are regulated by T-

helper cells (Th cells) (Kidd, 2003). Th1 cells elicit a cell mediated (CMIR) type 1 response to 

intracellular pathogens, while the type 2 response is an antibody mediated immune response 

(AMIR) to extracellular pathogens. In cattle, a type 2 response is associated with production of 

IgG1 (Estes and Brown, 2002). Colostrum-derived BNP alloantibodies were shown to be 

exclusively of IgG1 subclass (Assad et al., 2012). Several studies deal with AMIR or CMIR and could 

classify animals into high, average or low immune responders, accordingly (Begley et al., 2009; 

Heriazon et al., 2013; Hine et al., 2012). Besides these phenotypic classifications, heritabilities for 

both AMIR and CMIR have been established as moderate and high, respectively (Heriazon et al., 

2013). In our first study (Demasius et al., 2014), we could demonstrate an accumulation of BNP-

dams in one specific sire line of our resource population and a genetic predisposition required for 
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the production of pathogenic BNP-colostrum. It has been shown that some dams sporadically 

produce alloantibodies against MHC class I after only one dose of PregSure® BVD (Kasonta et al., 

2012), and that BNP-dams show higher alloantibody titres than non-BNP-dams (Bastian et al., 

2011). These findings suggest that these dams were high AMIR. A recent study that evaluated 

humoral immune response to human chorionic gonadotropin (hCG) in lactating dairy cows 

revealed that most cows showed a humoral immune response to hCG after two to three 

injections of hCG (Giordano et al., 2012). However, one cow already showed an antibody 

response against hCG after a single exposure, while some animals did not develop any detectable 

antibody responses after three injections of hCG (Giordano et al., 2012). Similar immune 

responses towards a contaminating antigen in PregSure® BVD can be assumed. Therefore, 

regardless of (a) further yet unidentified specific antigen(s) responsible for alloantibody 

production in BNP, genetically determined differences in humoral immune responses in dams 

vaccinated with PregSure® BVD have to be additionally considered regarding the 

aetiopathogenesis of BNP. 
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7 Conclusions and Outlook 

The emergence of the feto-maternal incompatibility phenomenon BNP in recent years and 

published results relating to the aetiopathogenesis of this disease have highlighted the risks 

involved in producing vaccines on homologous cell lines. In case of inadequate purification during 

vaccine production, contaminating antigens of the host cell line in combination with very potent 

adjuvants in the vaccine may result in fatal diseases as observed for BNP. Although PregSure® BVD 

has been retracted from the market and BNP will thus no longer occur, elucidation of the exact 

aetiopathogenesis of BNP is essential, because this may have implications for the general safety of 

vaccines, including vaccines for use in humans. Immunisation with specific vaccines and 

subsequent transcriptome analysis can give insights into the structural and quantitative regulation 

of the transcriptome in specific tissues or cells after vaccination. In our study the novel method of 

RNA-Seq on RNA derived from whole blood after booster vaccination with PregSure® BVD was 

applied. This represents an approach independent of any proposed hypotheses at a time where 

the exact aetiopathogenesis of BNP is not fully uncovered. Contradictory observations regarding 

the MHC hypothesis raise the question, if MHC class I should be regarded as a single causal 

antigen responsible for BNP-associated alloantibody production. It has been shown that 

PregSure® BVD is highly contaminated with proteins derived from the producer cell line MDBK, 

which implies that a whole panel of further potential antigens has to be validated in the future. 

We obtained indication on a previously postulated potential contamination of the vaccine with 

residues of the MDBK cell line, because we found a very coordinated immune response towards 

dsRNA after booster vaccination, although PregSure® BVD is directed against an ssRNA virus. 

Alternatively, a dsRNA analogue might have been added to the vaccine in order to improve the 

immunostimulatory properties of the vaccine. In addition, we could reveal a strong upregulation 

of a cytokine-like gene in all animals after booster vaccination with PregSure® BVD, which has 

never before been described in any other species. Prospective studies will have to evaluate 

whether this novel gene is specifically linked to an immune response after PregSure® BVD 

vaccination. Finally, we could confirm a genetic predisposition as a requirement for the 

production of either BNP- or non-BNP colostrum in dams vaccinated with PregSure® BVD.  

Based on these results and other findings regarding the aetiopathogenesis of BNP, future studies 

will have to consider genetically determined differential immune responses in cows after 

vaccination. Analyses for differential gene expression between BNP and non-BNP-dams after 

PregSure® BVD vaccination will give further insights into these mechanisms. Thereby, the very 

potent features of the unique adjuvant contained in PregSure® BVD and its potential effects have 
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to be kept in mind. Knowledge about expression patterns of antigens on haematopoietic stem 

cells and peripheral blood cells targeted by BNP-associated alloantibodies can also aid to the 

understanding of the aetiology of BNP. Finally, an exact description of MHC class I alleles 

expressed by BNP-dams, non-BNP-dams and the MDBK cell line will provide evidence, if MHC 

class I can be regarded as single causal agent for BNP-associated alloantibodies. Puzzling 

observations and published findings regarding the MHC hypothesis have highlighted that the 

exact aetiopathogenesis of BNP has not been fully elucidated yet.  
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8 Summary 

 

Investigations on selected aspects involved in the aetiology of  

bovine neonatal pancytopenia (BNP) 

 

Bovine neonatal pancytopenia (BNP) is a recently emerged alloimmune disease affecting neonatal 

calves and is strongly associated with the vaccination of dams with a specific inactivated BVDV 

(Bovine Viral Diarrhoea Virus) vaccine (PregSure® BVD, Pfizer Animal Health). The vaccine 

comprises a unique adjuvant based on nanoparticles and has been shown to be highly 

contaminated with cellular proteins of the vaccine producer cell line MDBK (Madin-Darby bovine 

kidney). The disease is induced by ingestion of colostral alloantibodies of certain PregSure® BVD-

vaccinated dams. The hypothesis that BNP-associated alloantibodies might be directed against 

MHC class I has been proposed. Currently, there are published observations, which contradict this 

hypothesis and which suggest that the aetiopathogenesis of BNP has not been fully elucidated 

yet. The aims of this study were to gain more insights into selected factors and underlying 

mechanisms involved in BNP. The hypothesis of a genetic predisposition for clinical BNP had been 

proposed in a previous study, but the incidence and potential genetic predisposition for 

subclinical cases had not been investigated thoroughly before. Therefore, a well-defined cattle 

resource population was monitored for the incidence, vaccination-associated epidemiological 

factors and a possible genetic predisposition involved in subclinical BNP. Prominent immune 

responses to PregSure® BVD vaccination had been reported. This study characterised the immune 

response to a booster immunisation with PregSure® BVD to obtain insights into the structural and 

quantitative regulation of the blood transcriptome after vaccination by means of deep sequencing 

transcriptome analysis. Furthermore, this approach should facilitate insights into the composition 

of the vaccine. 

The previously proposed hypothesis of a genetic predisposition required for giving birth to clinical 

BNP-calves could be confirmed in this study. Our results suggest that a genetic predisposition is 

potentially also involved in subclinical BNP and additionally required for a significant decrease of 

thrombocytes and leucocytes in healthy calves without manifestation of clinical or subclinical 

BNP. In the monitored cattle resource population, the frequency of subclinical BNP did not exceed 

the frequency of clinical BNP-cases. Further vaccination-associated epidemiological factors, e.g. 

frequency of vaccination or time point of vaccination relative to parturition, could be excluded. 
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Transcriptome analysis 14 days after booster vaccination with PregSure® BVD highlighted a very 

coordinated immune response to double-stranded (ds) RNA, although the inactivated vaccine was 

directed against a single-stranded (ss) RNA BVD virus. The source of the dsRNA is unknown and 

could have originated from the MDBK cell line, which would underline the contamination of the 

vaccine with host cells from vaccine production. Alternatively, a dsRNA analogue was potentially 

added to improve the efficacy of the vaccine. Finally, this study identified a cytokine-like gene, 

which was highly upregulated across all animals after booster vaccination. This gene has not been 

described before in any other species. It has to be evaluated if upregulation of this gene is specific 

for ruminant immune response and linked to PregSure® BVD vaccination. In conclusion, this study 

confirmed that a genetic predisposition of PregSure® BVD-vaccinated dams is required for 

producing BNP-colostrum. Therefore, prospective studies will have to consider genetically 

determined differential immune responses between BNP- and non-BNP-dams towards exogenous 

proteins combined with very potent adjuvants. Regarding the MHC class I hypothesis, published 

observations raise the question, if MHC class I should be considered as single causal agent for 

BNP-associated alloantibodies. This requires further research. Potential allogeneic effects of a 

whole panel of contaminating proteins contained in the vaccine still have to be validated. 
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9 Zusammenfassung 

 

Untersuchungen zu ausgewählten Aspekten, die an der Ätiologie der  

Bovinen Neonatalen Panzytopenie (BNP) beteiligt sind 

 

Die Bovine Neonatale Panzytopenie (BNP) ist eine vor kurzem aufgetretene Alloimmunerkrankung 

neugeborener Kälber, die stark assoziiert ist mit der Impfung mit einer bestimmten, inaktivierten 

BVDV (Bovines Virusdiarrhoe-Virus) Vakzine (PregSure® BVD, Pfizer Animal Health) bei 

Muttertieren. Die Vakzine enthält ein spezifisches, auf Nanopartikeln basierendes Adjuvans. Es 

konnte nachgewiesen werden, dass der Impfstoff hochgradig mit zellulären Proteinen der MDBK-

Zellline (Madin-Darby bovine kidney) kontaminiert ist, die für die Impfstoffherstellung verwendet 

wurde. Die Erkrankung wird ausgelöst durch die Aufnahme kolostraler Alloantikörper bestimmter 

PregSure® BVD-geimpfter Muttertiere. Es ist die Hypothese aufgestellt worden, dass BNP-

assoziierte Alloantikörper gegen MHC Klasse I gerichtet sind. Gegenwärtig lassen sich publizierte 

Beobachtungen finden, die im Widerspruch zu der MHC Klasse I-Hypothese stehen und die zeigen, 

dass die Ätiopathogenese der BNP noch nicht vollständig geklärt ist. Ziele der vorliegenden Studie 

waren daher, weitere Einblicke in ausgewählte Faktoren und zugrunde liegende Mechanismen, 

die an der BNP beteiligt sind, zu gewinnen. In einer vorherigen Studie war die Hypothese einer 

möglichen genetischen Prädisposition für die klinische BNP aufgestellt worden. Über die Inzidenz 

und eine mögliche genetische Prädisposition für die subklinische BNP lagen noch keine 

umfassenden Studien vor. Daher wurde eine gut charakterisierte Ressourcenpopulation auf die 

Inzidenz, impfassoziierte epidemiologische Faktoren und eine mögliche genetische Prädisposition 

für subklinische BNP untersucht. Schließlich war nach PregSure® BVD-Impfungen über prominente 

Immunreaktionen berichtet worden. Die vorliegende Studie charakterisierte die Immunantwort 

nach einer PregSure® BVD-Auffrischimpfung auf Transkriptomebene mittels eines RNA-Seq-

Ansatzes, um Einblicke in die strukturelle sowie quantitative Regulation des Blut-Transkriptoms 

sowie weitere Hinweise auf die Impfstoffzusammensetzung zu erhalten. 

Die in einer früheren Studie aufgestellte Hypothese einer genetischen Prädisposition für das 

Hervorbringen von klinischen BNP-Kälbern konnte in dieser Studie bestätigt werden. Die hier 

gewonnenen Ergebnisse legen nahe, dass für eine subklinische BNP ebenfalls eine genetische 

Prädisposition erforderlich ist sowie auch für einen signifikanten Abfall von Thrombozyten- und 

Leukozytenzahlen bei klinisch gesunden Kälbern, die keine Manifestation einer klinischen oder 
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subklinischen BNP zeigen. In der untersuchten Ressourcenpopulation gab es keinen Hinweis auf 

eine höhere Frequenz subklinischer Fälle im Vergleich zu klinischen BNP-Fällen. Weitere 

impfassoziierte epidemiologische Faktoren wie Anzahl an Impfungen oder Zeitpunkt einer 

Impfung während der Trächtigkeit konnten ausgeschlossen werden. Die Transkriptomanalyse 14 

Tage nach Auffrischimpfung mit PregSure® BVD konnte eine koordinierte Reaktion gegen 

doppelsträngige (ds) RNA aufzeigen, obwohl ein inaktivierter Impfstoff gegen das einzelsträngige 

(ss) BVD-RNA-Virus eingesetzt worden war. Der Ursprung der dsRNA ist unbekannt. Entweder 

stammte die dsRNA aus der MDBK-Zelllinie, was die Kontamination der Vakzine mit der für die 

Impfstoffherstellung verwendeten Zelllinie bestätigen würde oder es wurde ein dsRNA-Analogon 

dem Impfstoff zugefügt, um die immunstimulatorischen Eigenschaften der Vakzine zu verbessern. 

Schließlich konnte in der vorliegenden Studie bei allen Tieren ein signifikant hochreguliertes Gen 

mit zytokinartigen Eigenschaften 14 Tage nach Booster-Impfung identifiziert werden. Dieses Gen 

war zuvor bei keiner anderen Spezies beschrieben worden. Zukünftige Untersuchungen sollten 

klären, ob die Hochregulierung dieses Gens spezifisch für eine Immunantwort beim Rind ist und 

ob ein Zusammenhang mit einer PregSure® BVD-Impfung besteht. Abschließend konnte diese 

Studie bestätigen, dass eine genetische Prädisposition seitens PregSure® BVD-geimpfter 

Muttertiere für die Produktion von BNP-Kolostrum erforderlich ist. Daher sollten zukünftige 

Studien genetisch determinierte Unterschiede in der Immunantwort auf exogene Proteine in 

Kombination mit potenten Adjuvanzien zwischen BNP-Kühen und nicht-BNP-Kühen 

berücksichtigen. Hinsichtlich der MHC Klasse I – Hypothese werfen publizierte Beobachtungen die 

Frage auf, ob MHC Klasse I als einziger, kausaler Kandidat für BNP-assoziierte Alloantikörper 

angesehen werden kann. Hierzu bedarf es weiterer Untersuchungen. Die potenziellen 

allogenetischen Effekte einer Vielzahl kontaminierender Proteine in der Vakzine sollten validiert 

werden. 
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