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B Summary 

 

Limb-girdle congenital myasthenic syndrome (LG-CMS) is a rare inherited neuromuscular disorder 

in humans. One major objective of the present study was the molecular genetic characterization 

of LG-CMS patients with tubular aggregates (TAs) in muscle biopsies. Mutations in glucosamine-

fructose-6-phosphate aminotransferase 1 (GFPT1) were identified as underlying molecular defect 

by a genome-wide linkage analysis and DNA sequencing of positional candidate genes.  The 

bifunctional enzyme GFPT1 catalyses the first and rate limiting step of the hexosamine 

biosynthetic pathway (HBP) leading to the formation of UDP-N-acetylglucosamine (UDP-GlcNAc) 

which is essential for posttranslational modification of serine and threonine residues of nuclear 

and cytoplasmic proteins. Although glutaminase and isomerase activities have been attributed to 

GFPT1, little is known about the regulation and subcellular localization of GFPT1. A defect in 

glycosylation is a novel underlying pathomechanism in a synaptic transmission disorder and the 

role of GFPT1 in CMS pathogenesis has not been defined yet.  

Immunoblot analysis revealed reduced GFPT1 protein levels in LG-CMS patients’ myoblast 

lysates. Furthermore, decreased levels of O-linked N-acetylglucosamine (O-GlcNAc) on proteins 

were observed in patients’ myoblasts and in mouse myoblasts (C2C12 cells) treated with Gfpt1 

siRNA.  

The analysis of the effects of LG-CMS associated GFPT1 mutations on enzymatic activity 

demonstrated that selected GFPT1 missense mutations have only small effects on the enzyme 

activity of the GFPT1 protein. Furthermore, the subcellular localization of mutant GFPT1 species, 

transiently expressed in SW13 cells, is almost consistent with that of wild-type GFPT1. Therefore, 

a deficiency of GFPT1 protein due to decreased synthesis or stability of the GFPT1 mutants 

seems to result in reduced levels of O-linked N-acetylglucosamine on proteins in LG-CMS patients’ 

myoblasts and might be the major factor at least in the pathogenesis of some GFPT1 associated 

LG-CMS.  

A second major objective was to elucidate the pathogenic mechanisms of a particular mutation in 

the 3’- untranslated region (UTR) of GFPT1 (c.*22C>A) observed in four independent families 

from Spain and Germany. Because this variant does not alter the GFPT1 open reading frame, its 

pathogenic relevance has not yet been established. The GFPT1 protein levels were reduced in 

patients’ myoblast samples carrying c.*22C>A heterozygously compared to controls, similarly as 

it had been observed in patients carrying other disease causing mutations of GFPT1. In a 

controlled assay, the association of GFPT1 c.*22C>A with reduced GFPT1 protein levels was 

confirmed. Furthermore, my data demonstrate that the c.*22C>A mutation in the GFPT1 gene 

allows for illegitimate binding of miR-206* and miR-600 resulting in reduced GFPT1 protein 
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expression. I found that reduced GFPT1 protein levels resulted from repression of translation 

rather than degradation of the mRNA. While it has been demonstrated before that miR-206 is 

expressed in muscle and involved in myogenesis, I first confirmed that the miR-206* (star-

strand) is expressed in skeletal muscle. The overlapping expression profiles of hsa-miR-206*, 

hsa-miR-600 and GFPT1 support the assumption that the binding of these miRNAs to the 3’-UTR 

of mutant GFPT1 mRNA might be pathogenetically relevant. Therefore, my results support a 

model in which the point mutation c.*22C>A in the GFPT1 3’-UTR creates a target site for miR-

206* and miR-600, which influences GFPT1 expression. Notably, the miR-206* is considerably 

upregulated in GFPT1 patients’ muscle compared to control muscle. 

In contrast to most other CMS causing genes which encode post-, pre- or synaptic proteins at the 

neuromuscular junction (NMJ), GFPT1 is ubiquitously expressed. Consequently, one challenge of 

the present thesis was to understand how reduction in GFPT1 protein levels results in selective 

vulnerability at the NMJ. The skeletal muscle-specific expression of miR-206* could explain the 

muscle-specific phenotype of CMS patients with the GFPT1 3’-UTR mutation.  

For the diagnosis, counseling and therapy of a patient, a precise molecular classification of CMS 

is of paramount importance. The identification of GFPT1 mutations in LG-CMS patients allows, in 

contrast to most other inherited disorders, an effective therapy since CMS patients with GFPT1 

mutations response well to acetylchoninesterase inhibitor treatment.  

My results suggest that formation of miRNA binding sites by mutations might be a relevant 

pathogenic factor in CMS and most likely in other Mendelian disorders as well. In keeping with 

this consideration, variants in the 3’-UTRs should be carefully evaluated during routine genetic 

diagnostic procedures.  
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C Zusammenfassung 

 

Die kongenitalen myasthenen Syndrome (CMS) bilden eine klinisch und genetisch heterogene 

Gruppe von neuromuskulären Erkrankungen, denen eine Signalübertragungsstörung der 

motorischen Endplatte zugrunde liegt. Im Fokus dieser Arbeit stand die seit längerem bekannte, 

distinkte Unterform der autosomal-rezessiv vererbten CMS mit Gliedergürtelbetonung (LG-CMS) 

und tubulären Aggregaten in der Muskelbiopsie. Durch genomweite Kopplungsanalyse und die 

anschließende Sequenzanalyse positionaler Kandidatengene gelang es, Mutationen im GFPT1-

Gen, das für das bifunktionelle Enzym glutamine—fructose-6-phosphate transaminase 1 (GFPT1) 

kodiert, als Ursache der LG-CMS zu identifizieren. GFPT1 ist das Schlüsselenzym des Hexosamin-

Stoffwechselweges (HBP) und essentiell für die posttranslationale Modifikation von Serin- und 

Threonin-Resten von nukleären und cytoplasmatischen Proteinen mit O-glykosidisch gebundenem 

N-Acetylglucosamin (O-GlcNAc). Der Zusammenhang zwischen CMS und einem 

Glykosylierungsdefekt ist ein neuer Pathomechanismus für neuromuskuläre 

Signalübertragunsstörungen, so dass diese Arbeit das Ziel  verfolgte, die molekularen und 

zellulären Auswirkungen der GFPT1-Mutationen zu charakterisieren, um die Rolle von GFPT1 in 

der CMS-Pathogenese zu verstehen.  

Es konnte gezeigt werden, dass die GFPT1-Proteinmengen in Myoblasten von Patienten mit 

GFPT1-Mutationen deutlich vermindert sind. Außerdem finden sich in Myoblasten von Patienten 

und in Mausmyoblasten (C2C12-Zellen), in denen die Gfpt1-Expression mit siRNA unterdrückt 

wird, verminderte Level von O-GlcNAc modifizierten Proteinen. Dahingegen konnte durch 

transient exprimiertes GFPT1 in HEK293 Zellen und nachfolgendem GDH Aktivitätstest 

nachgewiesen werden, dass GFPT1-Missensmutationen nur geringe Auswirkungen auf die 

Enzymaktivität haben. Zudem stimmt die subzelluläre Lokalisation von mutiertem GFPT1 mit der 

des Wildtyp Proteins weitgehend überein, so dass es vermutlich aufgrund verminderter Synthese 

oder Stabilität der GFPT1-Mutanten zum Verlust der Proteinfunktion kommt, die sich in 

reduzierten Levels von O-GlcNAc modifizierten Proteinen zeigt. 

Ein weiterer Schwerpunkt der vorliegenden Arbeit war die Analyse der c.*22C>A Mutation in der 

3‘-untranslatierten Region (UTR) von GFPT1, die in vier unabhängigen LG-CMS Familien aus 

Spanien und Deutschland identifiziert wurde. Auch bei diesen Patienten waren in Muskelbiopsien 

und kultivierten Myoblsaten deutlich verminderte GFPT1-Proteinmengen nachweisbar. Es konnte 

gezeigt werden, dass durch die Mutation in der 3‘-UTR von GFPT1 eine Bindestelle der miRNAs 

miR-600 und miR-206* entsteht. In Experimenten mit Reporterkonstrukten konnte bestätigt 

werden, dass durch die Bindung der miRNAs an die Zielsequenz die Expression von GFPT1 

tatsächlich vermindert wird. Dabei ergeben sich die verringerten GFPT1-Proteinmengen in 
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Myoblasten und Muskel von Patienten mit der Mutation c.*22C>A eher aus der Repression der 

Translation als dem Abbau der mRNA. Während bereits bekannt war, dass der sog. „Leitstrang“ 

der miR-206 im Muskel exprimiert wird und als muskelspezifische miRNA eine Rolle bei der 

Myogenese spielt, zeigt diese Arbeit, dass auch die miR-206* (star), der sog. „Folgestrang“ in 

humanem Muskel, Myoblasten, Myotuben und C2C12-Zellen vorliegt. Im Unterschied zu den 

meisten anderen CMS-Genen, die Komponenten der neuromuskulären Endplatte kodieren, wird 

GFPT1 ubiquitär exprimiert. Da durch die GFPT1 3‘-UTR-Mutation eine Zielsequenz für die 

muskelspezifische miRNA miR-206* entsteht, ergibt sich hierfür zumindest für Patienten mit 

dieser Mutation ein plausibler Erklärungsansatz. Mit der Identifizierung von Mutationen im GFPT1-

Gen konnten in der vorliegenden Arbeit Glykosylierungsdefekte als gänzlich neuer 

Pathomechanismus für kongenitale myasthene Syndrome beschrieben werden. Für die 

betroffenen Patienten bedeutet der Nachweis einer GFPT1-Mutation nicht nur die Möglichkeit 

einer gezielten genetischen Beratung, sondern erlaubt – im Gegensatz zu den meisten anderen 

erblichen Erkrankungen – auch eine wirksame Therapie, da bei Patienten mit GFPT1-Mutationen 

Acetylcholinesterasehemmer gut wirksam sind. Untersuchungen zu einer Mutation außerhalb des 

kodierenden Leserahmens des GFPT1-Gens weisen darauf hin, dass die Entstehung einer miRNA 

Bindestelle durch Mutationen im 3‘-UTR eine Ursache monogenetischer Erkrankungen darstellen 

kann und die Analyse der 3‘-UTR in der genetischen Diagnostik berücksichtigt werden muss.      

 

 

 

 



Marina Dusl  INTRODUCTION 

 

7 

 

D Introduction  

 

1 Neuromuscular junction (NMJ) 

 

The NMJ is a specialized synapse to communicate the electrical impulse from the motor neuron to 

the skeletal muscle in order to signal contraction. The synapse consists of the following three 

major structural elements [1, 2]: the presynaptic region containing the nerve terminal, the 

synaptic cleft and the postsynaptic surface of the muscle cell. It is designed to transmit the 

impulses from the nerve terminal to the muscle via the chemical transmitter acetylcholine (ACh). 

This neurotransmitter is synthesized in the motor nerve terminal by the enzyme choline 

acetyltransferase (ChAT) and packed into synaptic vesicles. Following the arrival of an action 

potential and the subsequent influx of presynaptic calcium by voltage-gated calcium channels 

(VGCC), the vesicles are released. They fuse with the plasma membrane of the nerve terminus 

and release the neurotransmitter acetylcholine (ACh) into the synaptic cleft. The neurotransmitter 

binds to the acetylcholine receptor (AChR) at the postsynaptic surface at a ratio of two ACh 

molecules per receptor. Ligand binding leads to the opening of the AChR ion channel, positively 

charged sodium ions enter through the central pore of the receptor and results in the 

depolarization of the postsynaptic membrane. The depolarization of the membrane potential 

leads to the activation of voltage-gated sodium channels (sodium channel isoform Nav1.4, the 

muscle sodium channel which is predominantly expressed in skeletal muscle [3, 4]) on the 

postsynaptic side. An action potential is generated and propagated, eventually leading to 

contraction of the muscle. ACh is hydrolyzed by the enzyme acetylcholinesterase (AChE) in the 

synaptic cleft of the NMJ. Its breakdown product, choline, can be re-synthesized into ACh in the 

motor neuron. The membrane potential of the presynaptic membrane is restored when voltage-

gated potassium channels open.  

During development, the formation of the postsynaptic apparatus is induced by agrin, which is 

released from the nerve terminal [5]. Binding of agrin to the low-density lipoprotein receptor-

related protein 4 (Lrp4) activates the muscle specific tyrosine kinase (MuSK) [6-8] which in turn 

is able to bind downstream of kinase 7 (Dok7) [9]. Activated MuSK also leads to the tyrosine 

phosphorylation of the AChR β-subunit [10]. It was shown that phosphorylation of this motif 

fosters binding of the membrane protein rapsyn to each AChR [11]. Rapsyn also interacts with 

the f-actin cytoskeleton, thus attaching the receptor to the cytoskeleton and being essential for 

AChR clustering [12].       
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Figure 1: Schematic representation of the neuromuscular junction (NMJ). 

The scheme presents the molecular signaling at the neuromuscular junction and the involved molecules in signal 

transmission and development of the apparatus [13]. See text for abbreviations and explanations.    

 

2 Congenital myasthenic syndromes (CMS) 

 

Impaired neuromuscular transmission causes some different neurological conditions, varying from 

poisoning with botulinum and snake venom toxins through the autoimmune mediated disorders 

such as the Lambert-Eaton myasthenic syndrome and myasthenia gravis to the hereditary 

congenital myasthenic syndromes (CMS) [14, 15]. Diseases of the NMJ affect presynaptic, 

synaptic or postsynaptic components and cause skeletal muscle fatigue. Congenital myasthenic 

syndromes are inherited human disorders characterized by defects in neuromuscular transmission 

[16, 17]. These rare hereditary neuromuscular disorders are caused by mutations in a number of 

different genes. There are no current information on the prevalence of CMS in Germany, but a 

recent study in the United Kingdom (UK) revealed that the UK detected prevalence of genetically 

confirmed CMS was about 9.2 cases per million children under 18 years of age [18]. To date, 14 

genes are known to cause CMS and as the majority of them are coding for NMJ proteins, the 
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disorder is classified according to the location of the mutant protein at the NMJ into presynaptic, 

synaptic and postsynaptic CMS [19, 20].    

 

2.1 Main clinical symptoms 

 

In general, the onset of the disease is shortly after birth or during early childhood. Some sporadic 

or late-onset CMS have been described as well [19, 20]. The main clinical features of CMS include 

abnormal fatigue and fluctuating muscle weakness. The disorder may be very severe, resulting in 

progressive muscle weakness, respiratory insufficiency, loss of ambulation and death [21]. The 

symptoms of CMS are sometimes similar to those of two other NMJ disorders, myasthenia gravis 

and Lambert-Eaton myasthenic syndrome. However, these disorders occur when the immune 

system attacks parts of the NMJ [22]. In contrast to autoimmune disorders, tests for AChR and 

MuSK antibodies are negative in CMS patients.  

 

2.2 Classification of CMS  

2.2.1 Presynaptic CMS 

2.2.1.1 CHAT mutations 

Presynaptic CMS is rare and only mutations in the protein choline acetyltransferse (ChAT), 

encoded by the CHAT gene, have been identified so far. The ChAT protein catalyses the 

production of ACh at the nerve terminals. Experiments in knockout mice have shown that ChAT 

affects synaptogenesis and coordinates synaptic maturation [23]. The CHAT mutations in CMS 

patients alter the stability, expression or kinetics of the ChAT protein. The onset of these CMS is 

at birth or in the neonatal period. Patients harboring mutations in ChAT show sudden episodic 

crises with apnea and they respond well to anti-AChE therapy [24-26].    

 

2.2.2 Synaptic CMS 

2.2.2.1 COLQ mutations 

Acetylcholinesterase (AChE) hydrolyses acetylcholine in the synaptic cleft of the NMJ. This 

asymmetric enzyme consists of one, two or three homotetramers of catalytic subunits (AChET) 

attached to a triple-stranded collagenic tail (ColQ) that anchors it in the synaptic basal lamina 

[27]. ColQ comprises an N-terminal proline-rich region attachment region (PRAD), a collagenic 

central domain and a C-terminal region enriched in charged residues and cysteines. Each ColQ 
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strand binds to the proline-rich region of an AChET tetramer [28]. In order to anchor the enzyme 

in the postsynaptic membrane, two binding domains in the collagen domain and residues in the 

C-terminal domain interact with perlecan and the extracellular domain of muscle-specific kinase 

(MuSK). Pathogenic mutations causing synaptic CMS have been identified in each ColQ domain. 

The resulting endplate AChE deficiency can be caused by mutations preventing the attachment of 

AChET to ColQ, producing a short single-stranded and insertion-incompetent ColQ or by impairing 

the triple-helical assembly of the collagenic domain and/or hindering insertion into the basal 

lamina [16]. These different consequences depend on the localization of the COLQ mutations. 

The first symptoms usually arise neonatally or during infancy and they are severe with significant 

lethal risk or less severe, respectively. ColQ patients do not benefit from anti-AChE therapy but 

they can be treated by ephedrine [29] or albuterol [30]. 

 

2.2.2.2 LAMB2 mutations 

In the literature, one case has been reported presenting with symptoms and signs of CMS 

associated with congenital nephrosis and ocular malformations. The molecular genetic analysis of 

this patient confirmed compound heterozygous mutations in the LAMB2 gene, encoding the beta2 

subunit of laminins. The patient did not benefit from cholinesterase inhibitors but the therapy 

with ephedrine was beneficial [31]. Laminins are glycoproteins of the basal lamina located at the 

NMJ and they seem to play an important role in synaptogenesis [32].      

 

2.2.3 Postsynaptic CMS 

2.2.3.1 AChR subunit mutations 

The most common type of CMS is postsynaptic CMS. Most cases are caused by mutations in 

AChR subunit genes. The adult muscle AChR is a pentamer comprising two α subunits, one β, 

one δ and one ε subunit. There is also a fetal form in which a γ subunit is expressed instead of 

the ε subunit. The five homologous subunits consist of a large N-terminal extracellular domain 

followed by three transmembrane domains (M1–3), an intracellular cytoplasmic domain, a final 

transmembrane domain (M4) and an extracellular C-terminus [33]. Each receptor has two ACh 

binding pockets, one at the α/ε interface and one at the α/δ interface.    
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Figure 2: Schematic representation of the acetylcholine receptor (AChR).  

(a) AChR is a pentameric membrane protein. (b) Each subunit consist of a large N-terminal extracellular domain 

followed by three transmembrane domains (1–3), an intracellular cytoplasmic domain, a final transmembrane 

domain (4) and an extracellular C-terminus. (c) The fetal form expresses the γ subunit instead of the ε subunit. 

(d) The adult muscle AChR comprising two α subunits, one β, one δ and one ε subunit. The figure was adapted 

and modified from [34].  

 

AChR mutations can be classified into two major classes: kinetic mutations with or without subtle 

AChR deficiency and mutations leading to major deficiency of AChR at the endplate by altering its 

expression. Kinetic mutations are subdivided into two types depending on their kinetic effect: 

‘slow-channel’ and ‘fast-channel’ mutations. Prolonged opening of the AChR channel and the 

following slow decay of the synaptic current are caused by slow-channel mutations. 

Physiologically, the fast-channel syndrome is the opposite of the slow-channel syndrome. Slow-

channel syndromes are caused by autosomal-dominant gain-of-function mutations, while all other 

CMS types are caused by autosomal-recessive loss-of-function mutations [16, 35-37]. 
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2.2.3.2 RAPSN mutations 

Mutations in the gene encoding rapsyn (receptor-associated protein of the synapse) are also 

classified as postsynaptic CMS. The rapsyn protein comprises several functional domains: a 

myristoylated N-terminal, 7 tetratricopeptide repeats (TPR) important for self-aggregation and 

binding to the muscle kinase MuSK, the coiled coil domain and the C-terminal domain that binds 

to β dystroglycan. Together with agrin, LRP4 (low-density lipoprotein receptor-related protein 4), 

MuSK and Dok-7 (downstream of tyrosine kinase 7) rapsyn clusters the muscle nicotinic ACh 

receptor at the postsynaptic membrane and connects it to the subsynaptic cytoskeleton through 

dystroglycan [7, 9, 38, 39]. The majority of the identified RAPSN mutations are located in the 

tetratricopeptide repeat domain of the rapsyn protein. Expression studies of cells co-expressing 

mutant rapsyn and AChR subunits revealed impaired recruitment of the receptor to rapsyn 

clusters [40]. Mutations in the RAPSN gene are a relatively common cause of CMS and most 

RAPSN CMS patients harbour the p.Asn88Lys mutation in exon 2 either homozygously or 

heterozygously [41, 42]. Both early and late onset phenotypes have been described and the 

clinical picture varies from severe to mild. Ptosis is seen in most patients with RAPSN mutations. 

Other frequent symptoms include respiratory crises and high arched palate. The patients respond 

well to AChE inhibitor therapy.  

 

2.2.3.3 MUSK and AGRN mutations 

Defects in MuSK and agrin are also known to cause CMS. There are two publications on 

mutations in agrin [43, 44] and three on mutations in MuSK [45-47]. The clinical phenotype and 

the disease severity of patients with MUSK mutations is very variable. Only the presence of ocular 

symptoms and fatigable limb weakness are common. The two CMS patients with AGRN mutations 

described so far presented with a fairly mild phenotype without bulbar and respiratory difficulties. 

MUSK as well as AGRN patients benefit from ephedrine treatment while the therapy with 

cholinesterase inhibitors is ineffective.   

      

2.2.3.4 DOK7 mutations 

First described in 2006, mutations in the DOK7 gene have been established as a common cause 

of CMS. The mutations in DOK7 are supposed to result in abnormal activation of MuSK signalling 

which leads to unstable NMJ with simplified pre- and post-synaptic structures [48-50]. 

Furthermore, experiments in zebrafish suggested that Dok-7 deficiency also impairs slow muscle 

fibre organisation independent of Musk [51]. First symptoms of the disease may become 

manifest either in childhood or adulthood. Patients with DOK7 mutations show predominant limb-

girdle weakness, facial weakness and mild ptosis while the extra-ocular muscles are usually 
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spared. These patients do not benefit from AChE inhibitor therapy but they can be treated with 

ephedrine [52] or albuterol [30].  

 

2.2.3.5 SCN4A and PLEC mutations 

Only one CMS patient with mutations in the gene SCN4A encoding the voltage-gated sodium 

channel of skeletal muscle (Nav1.4) has been observed so far [53]. Recently, four CMS patients 

have been reported with mutations in the PLEC gene coding for the intermediate filament-linking 

protein plectin [54-56].   

 

2.3 Therapeutic strategies for CMS 

 

Dependent on a precise molecular genetic diagnosis, there are some strategies for therapy of 

CMS available. These are based on whether the underlying genetic defect decreases or increases 

the synaptic response to ACh. Acetylcholinesterase (AChE) inhibitors are used to increase the 

synaptic response to ACh. When the synaptic response to ACh is attenuated, 3,4-diaminopyridine 

(3,4-DAP) is also a beneficial treatment as it increases ACh release [36]. By contrast, if the AChR 

opening is prolonged, followed by an increased synaptic response, drugs like ephedrine, quinidine 

or fluoxetine are the treatment of choice. Under this condition, the use of AChE-inhibitors is 

ineffective or symptoms might even get worse.  
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Molecular defect  Treatment Reference 

     

Presynaptic defects    

Choline acetyltransferase deficiency  

(CHAT mutation) AChE inhibitors [24-26] 

     

Synaptic  defects    

Endplate AChE deficiency (COLQ mutation)  Ephedrine or albuterol [29] or [30] 

Laminin beta2 subunit (LAMB2 mutation) Ephedrine [31] 

     

 

Postsynaptic defects    

AChR deficiency without kinetic abnormality AChE inhibitors; 3,4-

diaminopyridine plus AChE 

inhibitors 

[57, 58] 

Fast-channel syndrome AChE inhibitors and 3,4-

diaminopyridine 

[59, 60] 

 

Slow-channel syndrome Fluoxetine, Quinidine [61, 62] 

Rapsyn (impaired AChR clustering)  AChE inhibitors  [63] 

MuSK  Ephedrine and 3,4-

diaminopyridine 

[45-47] 

Agrin  Ephedrine [43, 44] 

Sodium channel, voltage-gated (SCN4A mutation) AChE inhibitors and 

acetazolamide 

[53] 

Plectin 3,4-diaminopyridine [64] 

Dok-7  Ephedrine or albuterol [52] or [30] 

 

 

Table 1: Treatment of CMS with different molecular genetic diagnoses        
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3 Novel clinical and molecular entity  

3.1 Limb-girdle (LG-) CMS with frequent tubular aggregates and 

GFPT1 mutations  

3.1.1 LG-CMS symptoms 

LG-CMS patients show shoulder and pelvic girdle weakness and fatigue. No or only minimal 

involvement of ocular and facial muscles is observed. The onset of the disease usually occurs in 

the first decade of life. Repetitive nerve stimulation (RNS) reveals a significant decrement in 

proximal muscles. The majority of patients show tubular aggregates (TAs) in skeletal muscle and 

esterase inhibitor treatment is beneficial for the patients [65, 66]. Unlike patients with GFPT1 

mutation, CMS patients with DOK7 mutation who suffer from limb-girdle weakness as well do not 

benefit from ACh esterase inhibitor treatment and they show involvement of eye movements 

[48].      

 

3.1.2 Tubular aggregates  

Tubular aggregates (TAs) were first described by Engel as granular “crystal-like” inclusions in 

skeletal muscles, associated with mitochondrial aggregates [67]. To date, the presence of TAs 

has been described in the skeletal muscle of patients with a wide range of neuromuscular 

disorders. The mechanisms which underlie the formation of TAs are still unknown. In addition, 

their functional significance in skeletal muscle has not been fully understood and it is unknown 

whether they represent pathological structures or compensatory reactions to diverse pathogenic 

events such as periodic paralysis, dyskalaemia, intoxication, inflammatory myopathies, cramps 

and myalgias, myotonia congenita, familial myopathies, and several other myopathies of 

uncertain etiology [68, 69]. TAs are composed of long tubules containing one or more inner 

tubules and some saccular dilations [69]. By light microscopy, the aggregates can be seen as 

dark inclusions in the nicotinamide-adenine dinucleotide (NADH) stain of muscle biopsies and as 

they stain positive with the NADH-tetrazolium reductase reaction, they were initially thought to 

originate from mitochondria. However, work of several groups has shown that TAs rather arise 

from the sarcoplasmatic reticulum [70].     
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3.1.3 GFPT1 

The enzyme glutamine-fructose-6-phosphate transaminase (GFPT) catalyses the first and rate 

limiting step of the hexosamine biosynthetic pathway (HBP) leading to UDP-GlcNAc production. It 

is highly conserved among species and it is encoded by the two highly homologous genes GFPT1 

and GFPT2 [71, 72] which are localized on different chromosomes (in humans: GFPT1 maps to 

chromosome 2p13-p1 while GFPT2 maps to chromosome 5q34-q35). There are also differences 

in the expression pattern. Both genes are ubiquitously expressed but while GFPT1 is highly 

expressed in the testis, pancreas and placenta, GFPT2 is more abundant in the heart and central 

nervous system [72]. In skeletal and heart muscle, an additional GFPT1 splice variant was 

discovered [73]. The so called GFPT1-L or muscle-specific variant has a 54 base pair insertion 

(additional muscle-specific exon; 18 amino acid insertion) and is more abundant in muscle than 

the shorter ubiquitous splice variant GFPT1 [73]. 

The GFPT enzyme consists of three catalytic domains: the N-terminal 27 kDa glutamine 

amidotransferase domain, which transfers amide nitrogen from glutamine to the substrate 

fructose-6-phosphate, and the two C-terminal sugar isomerase domains which are phosphosugar-

binding domains [74-76]. The bacterial counterpart (GlmS) has been purified to homogeneity and 

extensively structurally analysed [76-79]. The Escherichia coli (E.coli) GlmS enzyme is supposed 

to function as a dimer. The glutamine amidotransferase and sugar isomerase domains are 

connected by a linker and a hydrophobic channel responsible for ammonia transfer between the 

domains. The overall structure of human GFPT1 is similar to the structure of GlmS and the amino 

acid sequence of the isomerase domain of GFPT1 has 43 % identity with GlmS [80]. Recent 

studies on the human GFPT1 enzyme revealed that it exists in at least two different 

oligomerization states (symmetric dimer and tetramer) during the reaction process [80, 81]. 

 

3.2 Hexosamine biosynthetic pathway (HBP)   

 

Cellular glucose is rapidly phosphorylated to glucose-6-phosphate (glucose-6-P) by hexokinases, 

trapping the glucose within the cell. There are multiple pathways for the cellular fate of glucose 

including glycolysis, glycogen synthesis, pentose phosphate pathway and the HBP. The majority 

enters the glycolytic pathway and serves as energy source. Only 2-3 % of total cellular glucose is 

metabolized via the HBP (Figure 3) [82-84].    
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Figure 3: The hexosamine biosynthetic pathway (HBP) and protein O-GlcNAc modification. 

After phosphorylation of glucose to glucose-6-phosphate (glucose-6-P) it is converted to fructose-6-phosphate 

(fructose-6-P) which is metabolized to glucosamine-6-phosphate by glucosamine-fructose-6-phosphate 

aminotransferase 1 (GFPT1). The major end product of the HBP is uridine diphosphate N-acetylglucosamine 

(UDP-GlcNAc). UDP-GlcNAc serves as substrate for uridine-diphospho-N-acetylglucosamine:polypeptide β-N-

acetylglucosaminyltransferase (OGT), leading to the formation of O-linked β-N-acetylglucosamine (O-GlcNAc) 

modified proteins. The figure was adapted and modified from [85].  

 

Glucosamine-fructose-6-phosphate aminotransferase 1 (GFPT1) catalyses the first and rate 

limiting step of the hexosamine biosynthetic pathway (HBP) by converting fructose-6-phosphate 

to glucosamine-6-phosphate with glutamine as amine donor [86]. The metabolization of 

glucosamine-6-P, via different hexosamine intermediates, leads to the formation of uridine 

diphosphate N-acetylglucosamine (UDP-GlcNAc). GFPT1 activity is subject to feedback inhibition 

by the end product of the pathway UDP-GlcNAc and has been shown to be regulated by glucose 

in cultured rat adipocytes [87]. Kinetic differences between GFPT1 and GFPT1-L enzyme activities 
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are known. The major kinetic difference is a greater susceptibility of GFPT1-L to feed-back 

inhibition by UDP-GlcNAc [73, 88]. UDP-GlcNAc is a substrate of uridine-diphospho-N-

acetylglucosamine:polypeptide β-N-acetylglucosaminyltransferase (OGT) for the synthesis of 

glycoproteins, glycolipids, proteoglycans and it is the donor for the formation of O-GlcNAc 

modified proteins [89]. The removal of O-GlcNAc from proteins is catalysed by the enzyme β-N-

acetylglucosaminidase (O-GlcNAcase).  

The modification of nuclear and cytoplasmatic proteins by O-GlcNAc is very dynamic and plays a 

role in the alteration of activity [90], function [91], protein stability [92, 93] and subcellular 

localization of target proteins [94-96]. Since some serine and threonine residues modified by O-

GlcNAc are also subject to phosphorylation, GlcNAc is in some cases in direct competition with 

phosphorylation [97].   

In contrast, classical and complex N- and O-linked glycosylation occurs on membrane-bound or 

secreted proteins that are synthesized in the endoplasmic reticulum (ER) and the Golgi 

apparatus.   

   

3.2.1 Glycosylation 

More than 20 posttranslational modifications (PTMs) of proteins are known that occur in 

eukaryotes [98]. The dynamically regulated phosphorylation of proteins might be the most 

studied form. But there are many others including the modification of proteins by addition of 

carbohydrate moieties (glycosylation).  Nearly  half  of  all  proteins are estimated to be  

glycosylated, making  glycosylation  the  most  common  form  of  posttranslational modification 

in  vivo [99]. N-linked glycosylation is characterized by remarkably long chains of carbohydrates 

whereby the carbohydrates are added to secreted proteins at the consensus sequence Asn-X-

Ser/Thr, (where X can be any amino acid except proline) [99, 100]. O-linked glycosylation does 

not require a consensus sequence and is often restricted to a few carbohydrate units [101].  

However, it may be elaborated to great lengths and structural diversity. Classical and complex N- 

and O-linked glycosylation occurs on membrane-bound or secreted proteins during their 

synthesis and transport through the endoplasmic reticulum (ER) and the Golgi apparatus.  

 

3.2.1.1 O-GlcNAc Glycosylation 

The attachment of the monosaccharide β-N-acetylglucosamine (O-GlcNAc) to serine and 

threonine residues of nuclear and cytoplasmatic proteins is a rapid and dynamic modification 

[102, 103]. First described by Hart and Torres in 1984 in lymphocyte cells [103], O-GlcNAc is 

distinguished from  other  classical forms of glycosylation  by  occurring  predominantly  on 
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intracellular  proteins  rather  than  those  secreted  to  membrane  compartments [102]. 

Furthermore, unlike other carbohydrate modifications, but similar to phosphorylation, the 

attachment of O-GlcNAc appears to be dynamically regulated. Since some serine and threonine 

residues modified by O-GlcNAc are also subject to phosphorylation, GlcNAc is in some cases in 

direct competition with phosphorylation [97]. Recent studies revealed that O-GlcNAc levels are 

strongly upregulated in response to a number of cell stress stimuli [104]. It has been shown that 

the global extent of O-GlcNAc modification is tightly dependent of the flux through the 

hexosamine biosynthetic pathway (HBP) [105].   
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E Objectives 

 

Since 1998, our laboratory has collected DNA and clinical data of more than 900 independent 

CMS patients of various ethnic origins. Molecular genetic analysis and characterization of these 

patients led to the identification of numerous disease-causing mutations in known CMS genes 

providing novel insights into synaptic function. The main aspect of this thesis was the 

identification and characterization of genetic alterations which lead to defects in neuromuscular 

transmission at the neuromuscular junction and thereby to CMS. The analysis of the pathology of 

mutations is the basis for the classification of the syndrome and has direct impact on the clinical 

management of CMS patients. 

 

The aim of the first part of this thesis was the identification of the underlying gene defect in LG-

CMS with frequent tubular aggregates. Using genome-wide homozygosity mapping and DNA 

sequencing of positional candidate genes, mutations in GFPT1 were identified in a unique 

collection of LG-CMS families. 

 

The second aim of my thesis was the molecular genetic analysis of the GFPT1 gene in additional 

LG-CMS patients to characterize unsolved CMS patients molecular genetically and to establish 

genotype-phenotype correlations. 

 

In contrast to other CMS genes, GFPT1 is a ubiquitous enzyme expressed in most tissues. 

Consequently, one challenge of the present thesis was to understand how mutated GFPT1 results 

in a selective vulnerability of the NMJ and leads to LG-CMS. To address this question, the 

subcellular localization, enzyme activity and expression levels of GFPT1 carrying LG-CMS causing 

missense mutations were studied. 

 

Furthermore, I aimed to analyse in more detail a peculiar change in the 3’- untranslated region 

(UTR) of GFPT1: c.*22C>A which leads to reduced GFPT1 levels in patient muscle samples. To 

get a hint whether reduced protein amounts resulted from repression of translation or altered 

mRNA stability, real-time qRT-PCR, in silico investigation and experimental validation of miRNA 

binding sites were employed. 
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F Materials and Methods   

 

1 Materials 

1.1 Laboratory equipment  

 

Camera: Zeiss AxioCam HR photo camera (Zeiss, Oberkochen, Germany) 

 

Centrifuges: Centrifuge 5417, 5417R (Eppendorf, Hamburg, Germany); Varifuge 3.0R (Heraeus, 

Buckinghamshire, UK) 

 

Cell culture incubator (37°C): Functional line (Heraeus, Buckinghamshire, UK) 

 

ELISA: Spectra Max 250 microplate reader (Molecular Devices, Sunnyvale, CA) 

 

-80°C Freezer: HERA freeze (Heraeus, Buckinghamshire, UK) 

 

Gel documentation system: Herolab, Wiesloch, Germany 

 

37°C Incubator/ bacteria: Heraeus Instruments (Heraeus, Buckinghamshire, UK) 

 

Laminar airflow cabinet: BDK, Sonnenbühl-Genkingen, Germany 

 

Luminometer: Berthold Technologies TriStar LB 941 

 

Microscope: Zeiss Axiovert 200 M fluorescence microscope (Zeiss, Oberkochen, Germany) 

 

pH-meter: HI9321 Microprocessor pH Meter (Hanna Instruments, Kehl am Rhein, Germany) 

 

Pipetes: Pipetman, Gilson (2 μl, 20 μl, 200 μl, 1000 μl) 

 

Power supply: Bio-Rad Power Pac Basic (Bio-Rad Laboratories, Hercules, USA) 

Proteingel chamber: Bio-Rad Mini Protean II (Bio-Rad Laboratories, Hercules, USA) 

 

http://dict.leo.org/ende?lp=ende&p=ziiQA&search=laminar&trestr=0x2001
http://dict.leo.org/ende?lp=ende&p=ziiQA&search=airflow&trestr=0x2001
http://dict.leo.org/ende?lp=ende&p=ziiQA&search=cabinet&trestr=0x2001
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Software: Photoshop CS2 (Adobe); Illustrator CS2 (Adobe); ImageJ (national institute of health, 

USA) 

 

Spectrophotometer: Nanodrop ND-1000 (PeqLab, Erlangen, Germany) 

 

Thermocycler: Mastercycler personal (Eppendorf, Hamburg, Germany); CFX96 Real-Time System 

(Bio-Rad Laboratories, Hercules, USA) 

 

Western blot imager: ChemoCam Imager (INTAS, Göttingen, Germany)  

 

1.2 Chemicals  

 

All used chemicals were purchased from Sigma-Aldrich, PAA Laboratories or Roth.  

Exceptions are listed below: 

Agarose (Invitrogen); dNTPSet (Fermentas); Fluorescence Mounting Medium (Dako); Horse 

Serum (Invitrogen); Running Buffer (MP Biomedicals, LLC); Transfer Buffer (MP Biomedicals, 

LLC)    

    

1.3 Kits and enzymes   

 

The following enzymes and kits were used: 

Restriction endonucleases with 10x restriction buffer system (NewEngland BioLabs, Roche, 

Fermentas); AccuPrimeTM Pfx DNA Polymerase (Invitrogen); PfuULTRATM High-Fidelity DNA 

Polymerase (Agilent Technologies, Inc.); T4 DNA Ligase (NewEngland BioLabs); Calf Intestine 

Alkaline Phosohatase (Fermentas); RNeasy Kit (Qiagen); RNeasy MinElute Cleanup Kit (Qiagen); 

miRNeasy Kit (Qiagen); miScript PCR Starter Kit (Qiagen); Hs_miR-600_1 miScript Primer Assay 

(Qiagen); Oan-miR-206* miScript Primer Assay (Qiagen); BCA Protein Assay Reagent Kit (Pierce); 

Bio-Rad Protein Assay (Bio-Rad Laboratories GmbH); NucleoSpin Extract II (MachereyNagel); 

NucleoBond PC 500 (MachereyNagel); Dual-Luciferase® Reporter Assay (Promega); Restriction 

endonucleases (NewEngland BioLabs, Fermentas); M-MuLV RT (Fermentas); Polyplus jetPEI 

transfection reagent (Biomol); FuGene6 transfection reagent (Roche Diagnostics); Lipofectamine 

2000 transfection reagent (Invitrogen); Wizard® Genomic DNA Purification Kit (Promega); RNase-

Free DNase Set (Qiagen) 
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1.4 Plasmids  

  

Plasmids Description Supplier 

pCMVmyc 1. E. coli origin of replication for plasmid propagation in E. coli  

2. ampicillin resistance marker for selection of E. coli transformants  

3. mammalian expression vector (CMV promoter)                            

4. allows to express a protein of interest fused to the c-Myc tag              

5. multiple cloning site (MCS) 

Clontech 

pCMVmycL-GFPT1wt pCMVmyc vector containing a EcoRI/NotI digested L-GFPT1 wt fragment this study 

pCMVmycT15A pCMVmyc vector containing a EcoRI/NotI digested L-GFPT1 T15A fragment this study 

pCMVmycD348Y pCMVmyc vector containing a EcoRI/NotI digested L-GFPT1 D348Y 

fragment 

this study 

pCMVmycR434H pCMVmyc vector containing a EcoRI/NotI digested L-GFPT1 R434H 

fragment 

this study 

pCMVmycD43V pCMVmyc vector containing a EcoRI/NotI digested L-GFPT1 D43V fragment this study 

pCMVmycM492T pCMVmyc vector containing a EcoRI/NotI digested L-GFPT1 M492T 

fragment 

this study 

pCMVmycI121T pCMVmyc vector containing a EcoRI/NotI digested L-GFPT1 I121T 

fragment 

this study 

pCMVmycR385H pCMVmyc vector containing a EcoRI/NotI digested L-GFPT1 R385H 

fragment 

this study 

pCMVmycR111C pCMVmyc vector containing a EcoRI/NotI digested L-GFPT1 R111C 

fragment 

this study 

pEGFP-N1 1. E. coli origin of replication for plasmid propagation in E. coli         

2. kanamycin resistance marker for selection of E. coli transformants  

3. mammalian expression vector (CMV promoter)                            

4. allows to express a protein of interest fused to EGFP                                    

5. multiple cloning site (MCS) 

Clontech 

pCMVL-GFPT1wt pEGFP-N1 vector with removed EGFP open reading frame and containing a 

KpnI/NotI digested L-GFPT1 wt fragment 

this study 

pCMVT15A pEGFP-N1 vector with removed EGFP open reading frame and containing a 

KpnI/NotI digested L-GFPT1 T15A fragment 

this study 

pCMVD348Y pEGFP-N1 vector with removed EGFP open reading frame and containing a 

KpnI/NotI digested L-GFPT1 D348Y fragment 

this study 

pCMVR434H pEGFP-N1 vector with removed EGFP open reading frame and containing a 

KpnI/NotI digested L-GFPT1 R434H fragment 

this study 

pCMVD43V pEGFP-N1 vector with removed EGFP open reading frame and containing a 

KpnI/NotI digested L-GFPT1 D43V fragment 

this study 

pCMVM492T pEGFP-N1 vector with removed EGFP open reading frame and containing a 

KpnI/NotI digested L-GFPT1 M492T fragment 

this study 
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pCMVI121T pEGFP-N1 vector with removed EGFP open reading frame and containing a 

KpnI/NotI digested L-GFPT1 I121T fragment 

this study 

pCMVR385H pEGFP-N1 vector with removed EGFP open reading frame and containing a 

KpnI/NotI digested L-GFPT1 R385Hfragment 

this study 

pCMVR111C pEGFP-N1 vector with removed EGFP open reading frame and containing a 

KpnI/NotI digested L-GFPT1 R111C fragment 

this study 

pCMVL-

GFPT13'UTRwt 

pEGFP-N1 vector with removed EGFP open reading frame and containing a 

KpnI/NotI digested L-GFPT1 100bp 3'UTR wt fragment 

this study 

pCMVL-c*22C>A pEGFP-N1 vector with removed EGFP open reading frame and containing a 

KpnI/NotI digested L-GFPT1 100bp 3'UTR c*22C>A fragment 

this study 

pCMVGFPT13'UTRwt pEGFP-N1 vector with removed EGFP open reading frame and containing a 

KpnI/NotI digested GFPT1 100bp 3'UTR wt fragment 

this study 

pCMVc*22C>A pEGFP-N1 vector with removed EGFP open reading frame and containing a 

KpnI/NotI digested GFPT1 100bp 3'UTR c*22C>A fragment 

this study 

pRLTK 1. E. coli origin of replication for plasmid propagation in E. coli         

2. ampicillin resistance marker for selection of E. coli transformants  

3. mammalian expression vector (HSV-TK promoter)                           

4. encodes the Renilla luciferase enzyme 

Promega 

pRL-1xG wt pRLTK vector containing a XbaI digested 1xG wt fragment in the 3'UTR 

region of the Renilla luciferase enzyme 

this study 

pRL-1xA mut pRLTK vector containing a XbaI digested 1xA mut fragment in the 3'UTR 

region of the Renilla luciferase enzyme 

this study 

pRL-4xG wt pRLTK vector containing a XbaI digested 4xG wt fragment in the 3'UTR 

region of the Renilla luciferase enzyme 

this study 

pRL-4xA mut pRLTK vector containing a XbaI digested 4xA mut fragment in the 3'UTR 

region of the Renilla luciferase enzyme 

this study 

pGL4.26 1. E. coli origin of replication for plasmid propagation in E. coli         

2. ampicillin resistance marker for selection of E. coli transformants  

3. mammalian expression vector (minP promoter)                            

4. encodes the Firefly luciferase enzyme 

Promega 

pENTR-EF1-mir155 1. E. coli origin of replication for plasmid propagation in E. coli         

2. kanamycin resistance marker for selection of E. coli transformants  

3. mammalian expression vector  

4. the pre-miRNA cloning site is flanked on either side with sequences from 

murine miR-155 to allow proper processing of the engineered pre-miRNA 

sequence 

Sirion 

pEF1-miR-600 pENTR-EF1-mir155 vector containing ds miR-600 oligo wihtin the AaRI site this study 

 

Table 2: Overview of plasmids  
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1.5 Antibodies 

1.5.1 Primary antibodies 

Primary antibody  Supplier Host Dilution 

anti-RL2 O-linked N-Acetylglucosamine IgM Abcam mouse WB: 1:1000 

anti-GFPT1 IgG ProteinTech Group, Inc rabbit WB: 1:1000 

anti-GFP  IgG Abcam rabbit WB: 

1:10000 

anti-alpha-tubulin  IgG Cell Signaling rabbit WB: 1:1000 

anti-beta-actin  IgG Santa Cruz goat WB: 1:200 

anti-c-Myc  IgM Clontech mouse WB: 1:100 

IF: 1:100 

anti-GAPDH IgM Millipore mouse WB: 1:5000 

 

Table 3: Overview of primary antibodies 

 

1.5.2 Secondary antibodies 

Secondary antibody  Conjugate Supplier Host Dilution 

anti-rabbit  HRP Jackson ImmunoResearch goat 1:10000 

anti-goat  HRP Sigma rabbit 1:10000 

anti-mouse HRP DAKO rabbit 1:10000 

anti-mouse IgG Alexa Fluor 488 Invitrogen goat  1:500 

 

Table 4: Overview of secondary antibodies 

 

1.6 E.coli strains 

Strain Genotype Supplier 

TOP10 F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacΧ74 recA1 

araD139 Δ(ara-leu) 7697 galU galK rpsL (StrR) endA1 nupG λ- 

Invitrogen 

DH5α F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK–, 

mK+) phoA supE44 λ– thi-1 gyrA96 relA1 

Invitrogen 

 

Table 5: Overview of strains 
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1.7 Nucleic acids 

1.7.1 Solution 

Real-time PCR reaction mix:  

QuantiTect SYBR Green PCR Master Mix (Qiagen, Hilden, Germany) 

SYBR Green PCR Master Mix (Applied Biosystems, Carlsbad, USA) 

 

1.7.2 Size standards 

1 kb ladder: GeneRuler™ 1 kb DNA ladder (Fermentas) 

100 bp ladder: GeneRuler™ 100 bp DNA ladder (Fermentas) 

 

1.7.3 Oligonucleotides for molecular genetic analysis of putative GFPT1 

patients 

Oligonucleotide primer Sequence 

GFAT1s 5'-GAGGGAGTCGTGTCGGC-3' 

GFAT1as 5'-CATCACCCAGACTTCGCAC-3' 

GFAT2s 5'-TGAAATGTTTGAAAGACAGAATCTAAC-3' 

GFAT2as 5'-GCAATACTCCACATAAATGGTAACAC-3' 

GFAT3s 5'-TATCCTGGTTCTTGACACACAATAG-3' 

GFAT3as 5'-TTTCTTTCCTCCCTTCAATGTTAC-3' 

GFAT4s 5'-GTATATTCCAAGAGAGCAGCATTG-3' 

GFAT4as 5'-TGCTCTCTACTACTTCTGAATGTTTG-3' 

GFAT5s 5'-ACTGTTTGCTTCAGCTATGCCAC-3' 

GFAT5as 5'-TATGGTGTTTGTTGCACATCCC-3' 

GFAT6s 5'-TTTGAATAATGGGATATGGTGTTC-3' 

GFAT6as 5'-CTAATCCTCCATCGTGTGTACTGTG-3' 

GFAT7s 5'-AAGCCAGTATGTTCTAGGCATTTC-3' 

GFAT7as 5'-TAAATGGAAGAGTGGTAAGCAACAG-3' 

GFAT8s 5'-TCTTATATCTGAAGTTGAGCTTGGG-3' 

GFAT8as 5'-ATCTGACCAAAGAGCCATCTATTC-3' 

GFAT9s 5'-CATGGAAATAAGGTGATCTACTTGG-3' 

GFAT9as 5'-AGACTGATACACAATGACTTCTTGG-3' 

GFAT10s 5'-TCTGAGATACTGCAGAGTGATAGAG-3' 

GFAT10as 5'-CTAGCGTTGTCCCTTCACTAATC-3' 

GFAT11s 5'-TTTAGGCAGTCATGTCTATTGC-3' 
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GFAT11as 5'-AGTTGTTCTACAAGGCTATTAAGGG-3' 

GFAT12s 5'-ATTGCCTAGTTCACATGGTTCTTTG-3' 

GFAT12as 5'-CCATGGATAAATAATTCCAAGCAG-3' 

GFAT13s 5'-AAGTCCGATGAAAGAGTATTTGAAG-3' 

GFAT13as 5'-AATCTGTATTCGTCAAGTCATCTGC-3' 

GFAT14s 5'-AGGAAGAGAGATCCTGACAAGCC-3' 

GFAT14as 5'-TTAAACTCTATCAGGAAGAGGGAG-3' 

GFAT15s 5'-ACAGGGTCTCACTCTGTCCCAG-3' 

GFAT15as 5'-CTAAATAGCTACAAGCCACAGCTTC-3' 

GFAT16s 5'-ACCCATACTGATTGATAGCACAGAG-3' 

GFAT16as 5'-CAATGCATAAATACAGAAGCACTTTC-3' 

GFAT17s 5'-TTTGGATAGATAGACAGTGGCTTG-3' 

GFAT17as 5'-ATGTAAACCTCAAAGGCTGTATTCC-3' 

GFAT18s 5'-CCTGGTATTTCTTAGTTGCATGAG-3' 

GFAT18as 5'-GTGATGTAACCTACAAATTGGGC-3' 

GFAT19s 5'-CTCTTTCTGTGTGAACTGGCAC-3' 

GFAT19as 5'-TAGATTCCATTATTCAAAGTCCTCC-3' 

GFAT8Amss 5'-GGAATAGATGGCTCTTTGGTCAG-3' 

GFAT8Amsas 5'-GCACATTCATTCACTCCAAGAAC-3' 

 

Table 6: Overview of GFPT1 exon oligonucleotides 

 

1.7.4 Oligonucleotides for cDNA amplification 

Oligonucleotide primer Sequence 

KpnIGFPT1_for 5'-TATTAGGTACCCGCCACCATGTGTGGTATATTTGCTTACTTAAAC-3' 

EcoRIGFPT1_for 5'-GCGAATTCTGATGTGTGGTATATTTGCTTACTTAAAC-3' 

NotIGFPT1_rev 5'-GCGGCCGCTCACTCTACAGTCACAGATTTGG-3' 

NotIGFPT13UTR_rev 5'-TTGATGCGGCCGCGTCCTCCACAAATTACTGGGAAAATG-3' 

 

Table 7: Overview of cDNA amplification oligonucleotides 
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1.7.5 Oligonucleotides for site-directed mutagenesis PCR 

Oligonucleotide primer Sequence 

GFAT1_R111C sense 5'-GTCAATAGCCACCCCCAGTGCTCTGATAAAAATAATGA-3'  

GFAT1_R111C antisense 5'-TCATTATTTTTATCAGAGCACTGGGGGTGGCTATTGAC-3' 

GFAT1_T15A sense 5'-AACTACCATGTTCCTCGAGCGAGACGAGAAATCCT-3' 

GFAT1_T15A antisense 5'-AGGATTTCTCGTCTCGCTCGAGGAACATGGTAGTT-3' 

GFAT1_D43V sense 5'-TCTGCTGGTGTGGGATTTGTTGGAGGCAATGATAA-3' 

GFAT1_D43V antisense 5'-TTATCATTGCCTCCAACAAATCCCACACCAGCAGA-3' 

GFAT1_I121T sense 5'-AGCGCTCTGATAAAAATAATGAATTTATCGTTACTCACAATGGAATCATCA-3' 

GFAT1_I121T antisense 5'-TGATGATTCCATTGTGAGTAACGATAAATTCATTATTTTTATCAGAGCGCT-3'  

GFAT1_ D348Y sense 5'-ATGAGAGGAAGAGTCAACTTTGATTACTATACTGTGAATTTGGG-3' 

GFAT1_ D348Y antisense 5'-CCCAAATTCACAGTATAGTAATCAAAGTTGACTCTTCCTCTCAT-3' 

GFAT1_ R434H sense 5'-GATACTTTGATGGGTCTTCATTACTGTAAGGAGAGAGGA-3' 

GFAT1_ R434H antisense 5'-TCCTCTCTCCTTACAGTAATGAAGACCCATCAAAGTATC-3' 

GFAT1_ M492T sense 5'-TGATGTTTGCCCTTATGACGTGTGATGATCGGATCTC-3' 

GFAT1_M492T antisense 5'-GAGATCCGATCATCACACGTCATAAGGGCAAACATCA-3' 

GFAT1_R385H sense 5'-ATCATGAAGGGCAACTTCAGTTCATTTATACAGAAGGAAATATTTG-3' 

GFAT1_ R385H antisense 5'-CAAATATTTCCTTCTGTATAAATGAACTGAAGTTGCCCTTCATGAT-3' 

GFAT1_c.*22 sense 5'-GTGAGGAATATCTATACAAAATGTAAGAAACTGTATGATTAAGCAACACAA-3' 

GFAT1_c.*22 antisense 5'-TTGTGTTGCTTAATCATACAGTTTCTTACATTTTGTATAGATATTCCTCAC-3' 

 

Table 8: Overview of mutagenesis oligonucleotides 

 

1.7.6 Oligonucleotides for plasmid sequencing 

Oligonucleotide primer Sequence 

pCMVs 5'-ACTTTCCAAAATGTCGTAACAACTC-3' 

pCMVas 5'-ACCACAACTAGAATGCAGTGAAAA-3' 

GFAT1_600bp_for 5'-ATTGGTGTACGGAGTGAACATAAAC-3' 

pCMVmyc_for 5'-GATCCGGTACTAGAGGAACTGAAAAAC-3' 

pCMVmyc_rev 5'-ATAGCATCACAAATTTCACAAATAAAG-3' 

pENTRs 5'-CCTACGTCGAGCAGCACGAGATG-3' 

pRLTKs 5'-GGTCTTCATTTTTCGCAAGAAG-3' 

 

Table 9: Overview of plasmid sequencing oligonucleotides 

 

 



Marina Dusl  MATERIALS AND METHODS 

 

31 

 

1.7.7 Oligonucleotides for cloning of the miR-600 expression plasmid 

miR single strand 

nucleotides 

sequence 

miR-600_top 5'-TGCTGACTTACAGACAAGAGCCTTGCTCGTTTTGGCCACTGACTGA 

CTAGGAAGGCTCTTGTCTGTCAGG-3' 

miR-600_bottom 5'-CCTGCCTGACAGACAAGAGCCTTCCTAGTCAGTCAGTGGCCAAAAC 

GAGCAAGGCTCTTGTCTGTAAGTC-3' 

 

Table 10: Overview of miR-600 oligonucleotides 

 

1.7.8 Oligonucleotides for qRT-PCR 

Oligonucleotide primer Sequence 

GFPT1 for 5'-AACACAGTTGGCAGTTCCAT-3' 

GFPT1 rev 5'-GCATGATCTCTTTGCGTCTT-3' 

hH4 for 5'-GGTGACTTACACGGAGCAC-3' 

hH4 rev 5'-ACCGCCGAAACCATAAAG-3' 

 

Table 11: Overview of qRT-PCR oligonucleotides 

 

All primers were designed with Primer3 program, synthesized and ordered at Metabion 

(Martinsried, Germany). The miScript Primer Assays for real-time PCR in order to detect the 

mature miRNAs hsa-miR-600 and oan-miR-206* were ordered at Qiagen (Hilden, Germany).  

 

1.7.9 Mature siRNAs/miRNAs/inhibitors and control miRNA 

Oligonucleotide Supplier 

hsa-miR-600-MSY0003268                5‘-ACUUACAGACAAGAGCCUUGCUC-3‘ Qiagen 

anti-hsa-miR-600-MIN0003268 Qiagen 

oan-miR-206*-MSY0006994              5‘-ACAUGCUUCUUUAUAUCCCCA-3‘ Qiagen 

siRNA Gfpt1-MSS204659                   5‘-UAUCCAAGAAGUCACUGGCAAGCUC-3‘ Invitrogen 

miRNA control-1027280 Qiagen 

 

Table 12: Overview of miRNAs, inhibitors, controls and siRNAs  
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As hsa-miR-206* was not annotated, assays were performed using oan-miR-206* after checking 

sequence homology using http://www.mirbase.org/.  

 

1.8 Patients 

1.8.1 Collection of genomic DNA samples 

Venous blood samples were obtained from the patients as well as from their unaffected relatives, 

if available. All studies were carried out with informed consent of the patients or their parents.  

All samples that were collected were assigned an identification number. 

 

2 Methods 

2.1 Patient selection 

 

The patients were selected for the molecular genetic analysis of GFPT1 according their clinical 

picture and – for linkage studies – according to the pedigree structure. This subgroup of CMS 

patients is characterized by proximal muscle weakness and fatigue. The majority showed tubular 

aggregates in muscle biopsies but additional CMS patients without tubular aggregates, and 

patients with non-fatigable weakness but with tubular aggregates were included as well. A 

common feature was a beneficial response to acetylcholinesterase inhibitor treatment, while the 

patients showed only minimal ocular and facial involvement [65, 66]. Most of the patients had 

been tested negative for DOK7 mutations.   

   

2.2 Microbiology methods 

2.2.1 Preparation of competent cells 

E. coli bacteria from glycerol stocks were streaked out on LB plates and incubated o.n. at 37°C. 

One single colony was used to grow a 5 ml LB preculture o.n. at 37°C. About 16 h later, 2 ml of 

the preculture was transferred into 1 l LB medium and grown to an OD600 of 0.5 (about 2-3 h). 

The culture was cooled on ice for 10 min and centrifuged (10 min, 4000 rpm, 4°C). After 

centrifugation, the supernatant was discarded and the cell pellet was resuspended in 300 ml ice 

cold TFBI. Cells were incubated on ice for 30 min and centrifuged at 4000 rpm for 5 min (4°C). 

http://www.mirbase.org/
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The pelleted cells were gently resuspended in 40 ml ice cold TFBII. Aliquots of 200 μl were 

stored at -80°C. 

 

Luria-Bertani (LB) medium 

1.0 % bacto-tryptone 

1.0 % NaCl 

0.5 % bacto-yeast extract 

pH 7.0 with 10 M NaOH 

 

The medium was autoclaved and after cooling down to 60°C the appropriate antibiotics were 

added. For preparing plates the LB medium was mixed with 1.5 % agar. 

 

TFBI 

30 mM KAcetate 

100 mM KCl 

50 mM MnCl2 

15 % glycerol 

pH 5.8 

filter 0.2 μm, keep at 4°C 

 

TFBII 

10 mM MOPS/NaOH pH 7 

75 mM CaCl2 

10 mM KCl 

15 % glycerol 

filter 0.2 μm, keep at 4°C 

 

2.2.2 Plasmid transformation 

Chemically competent cells were thawed on ice and plasmid DNA or ligation product was added. 

The cell suspension was incubated on ice for 30 min, heat-shocked for 30 sec at 42°C and 

immediately chilled on ice for 2 min. 250 μl of SOB medium was added and the cells were 

incubated for 1 h at 37°C. The transformed cells were plated on LB agar plates supplemented 

with the appropriate antibiotic and incubated for 12 to 16 h at 37°C. 
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Super Optimal Broth (SOB) medium 

2 % bacto-tryptone  

0.5 % bacto-yeast extract  

8.56 mM NaCl  

2.5 mM KCl  

0.01 mM MgCl2 

pH 7.0 with 10 M NaOH 

The medium was sterilized in an autoclave. 

 

2.2.3 Culturing of E. coli 

E. coli cells were grown in LB medium, supplemented with appropriate antibiotic if indicated, at 

37°C with constant shaking at 200 rpm. In order to isolate single colonies, cells were plated onto 

LB agar plates containing appropriate antibiotic if indicated. 

 

2.2.4 Isolation of plasmid DNA from E. coli 

2.2.4.1 Miniprep 

LB medium (5 ml) supplemented with the appropriate antibiotic was inoculated with a single 

colony picked from an agar plate of transformed bacteria. The cultures were grown at 37°C and 

shaking at 200 rpm o.n. 4 ml of each o.n. culture were transferred into a tube and centrifuged (5 

min, 14000 rpm). The pelleted bacteria were resuspended in 250 μl P1 to destabilize the bacterial 

membrane. The bacterial suspension is lysed by adding 250 μl P2. To mix the components, the 

tubes were immediately inverted several times and incubated at rt for 3 min. The lysis was 

stopped by adding 350 μl P3 immediately followed by inverting the tube again several times and 

incubating on ice for at least 10 min. Chromosomal DNA and precipitated proteins were 

sedimented by centrifugation (10 min, 14000 rpm). The supernatant was transferred in a 1.5 ml 

tube. Isopropanol (600 μl) was added and the sample was centrifuged 30 min at 14000 rpm 

(4°C). The pelleted plasmid DNA was washed twice with 70 % ethanol and centrifuged (5 min, 

13000 rpm, 4°C). The supernatant was discarded and the pellet air dried. The dried DNA was 

rehydrated in an appropriate volume of TE buffer. 

 

 

 

 

http://en.wikipedia.org/wiki/Tryptone
http://en.wikipedia.org/wiki/NaCl
http://en.wikipedia.org/wiki/KCl
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P1 

50 mM Tris pH 8.0 

10 mM EDTA 

100 μg/ml RNase A 

 

P2 

200 mM NaOH 

1 % SDS 

 

P3 

3 M KAcetate pH 5 

 

TE buffer 

10 mM Tris-HCl  

1 mM EDTA 

pH 8.0 

 

2.2.4.2 Maxiprep 

In order to obtain larger amounts of plasmid DNA, 250 ml of LB medium including the 

appropriate antibiotic were inoculated with 150 μl of a single colony preculture. The culture was 

incubated at 37°C at 200 rpm in a shaker (o.n.). The bacterial suspension was transferred into a 

corning tube and the bacteria were pelleted by centrifugation (15 min, 3500 rpm, 4°C). The 

further isolation of the plasmid DNA was done with the NucleoBond PC 500 kit according to the 

manufacturer`s instructions. 

 

2.3 Nucleic acid methods 

2.3.1 Genomic DNA isolation from whole blood samples 

Total genomic DNA was isolated from leukocytes of whole blood samples by means of a salting-

out method using a blood and tissue culture DNA extraction kit (Wizard Genomic DNA Purification 

Kit, Promega) according to the manufacturer’s recommendations. 
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2.3.2 Agarose gel electrophoresis 

For qualitative as well as quantitative analysis, the DNA was separated by size on an agarose gel 

containing ethidium bromide. The percentage of agarose solution ranged from 1 to 4 % in 1x 

TAE buffer. For high percentage gels (4 %) 10 % ethanol (80 %) was added to the 1x TAE 

buffer. The agarose solutions were boiled and allowed to cool down to approximately 50°C. 

Afterwards ethidium bromide was added to a final concentration of 0.1 μg/ml.  

Before loading the samples onto the gel they were mixed with 6x loading dye. Gel electorphoresis 

was performed with 10 V/cm gel length. 1 kb or 100 bp ladder were used as a size standard. The 

DNA was visualized by UV light. Gels were documented with the help of a gel documentation 

system. 

 

1x TAE 

0.049 M Tris  

2 mM EDTA 

Acetic acid glacial pH 8.5 

 

6x loading dye 

10 mM Tris-HCl pH 7.6 

0.03 % Bromphenol blue 

60 % Glycerol 

60 mM EDTA 

 

2.3.3 Gel purification 

For DNA gel purification, the NucleoSpin Extract II Kit was used. In brief, the desired DNA band 

was excised from the gel and the gel slice was dissolved in appropriate buffer at 50°C. The DNA 

was supplied onto the column, provided with the kit. After a washing step, the DNA was eluted in 

an appropriate volume of TE buffer and stored at -20°C.  

 

2.3.4 Quantification and purity analysis of DNA 

The concentration and the purity of solutions of plasmid DNA, PCR products after purification via 

agarose gels or isolated DNA from blood samples were determined with a NanoDrop ND-1000 

spectrophotometer by measuring the absorption at 260 nm. 
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2.3.5 Cloning of the miRNA expression plasmid  

The pENTR-EF1-mir155 (SIRION BIOTECH, Martinsried, Germany) vector was used to create the 

pEF1-miR-600 expression plasmid. The pre-miRNA cloning site is flanked on either side with 

sequences from murine miR-155 to allow proper processing of the engineered pre-miRNA 

sequence. Two complementary single-stranded DNA oligonucleotides encoding the hsa-miR-600 

were designed containing a 5’ overhang (TGCT or CAGG) (Table 10) complementary to the vector 

and required for directional cloning. The synthetic oligonucleotides were synthesized and 

purchased at Metabion (Martinsried, Germany). After annealing, the double-stranded (ds) oligos 

were directly cloned into the AarI site of the pENTR-EF1-mir155 vector. Orientation of the insert 

was verified by sequencing. 

 

2.3.6 Polymerase Chain Reaction (PCR) 

2.3.6.1 Exon-specific PCR 

After isolation of total DNA from blood of putative CMS patients, PCR was used to amplify known 

coding exons, the adjacent intronic regions as well as the promoter region of CMS genes. 

 

Standard reaction: 

      

Component                                                                  Amount per reaction 

ddH2O ad 50 μl 

10xThermoPol buffer 5 μl 

mM each dNTPs  0.25 

Forward primer  50 pmol 

pmol Reverse primer  50 

gDNA template  100-500 ng 

U Taq 2.5 

Total reaction volume 50 μl 

 

        

Temperature                                                                                Time                     Cycles 

95°C 2 min   

95°C   15 sec   

59°C 1 min     40x  

72°C 2 min   

72°C 7 min   
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The calculation of the melting temperature (Tm) according to the nearest neighbor method was 

done as described by [106] but using the values published by [107]. For this purpose the 

Oligonucleotide Properties Calculator OligoCalc by [108] available at 

http://www.basic.northwestern.edu/biotools/oligocalc.html was used. 

The PCR products were analysed on an agarose gel in order to control the amplification of the 

DNA fragments by agarose gel electrophoresis. The required band was excised from the gel, 

purified and sequenced. 

 

2.3.6.2 cDNA amplification PCR 

Human GFPT1 cDNA was amplified from human skeletal muscle cDNA and inserted into the 

EcoRI and NotI sites of the pCMV-Myc vector allowing expression of human GFPT1 with an N-

terminal Myc-tag. For enzyme activity assays, the GFPT1 constructs were cloned into the pEGFP-

N1 plasmid. Simultaneously the EGFP open reading frame was removed to obtain untagged 

GFPT1. For expression studies, the human GFPT1 coding region and additional 100 bp of the 3’ –

UTR was amplified from human skeletal muscle cDNA and inserted into the KpnI and NotI sites of 

the pEGFP-N1 plasmid (Clonetech, Mountain View, CA). The EGFP open reading frame was 

removed to obtain untagged GFPT1.  

 

Standard reaction: 

      

Component                                                                   Amount per reaction  

ddH2O Ad 50 μl 

10xPfuUltra HF reaction buffer 5 μl 

mM each dNTPs 0.25  

Forward primer  50 pmol 

pmol Reverse primer  50 

DNA template (500ng/μl) 1 μl 

PfuUltra HF DNA Polymerase 1 μl 

Total reaction volume 50 μl 
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Temperature                                                                                 Time                Cycles 

95°C 2 min   

95°C 30 sec   

49°C 30 sec 5x  

72°C 1-3 min   

95°C 30 sec   

53°C 30 sec 20x  

72°C 1-3 min   

72°C 7 min   

     

All PCR samples were analysed on an agarose gel. The required band was excised from the gel, 

purified, digested and ligated in the appropriate digested vector. Ligated plasmid DNA was 

directly transformed into Escherichia coli cells. Correct orientation of the inserts and absence of 

PCR-induced mutations were verified by sequencing. 

 

2.3.6.3 Site-directed mutagenesis PCR 

The GFPT1 mutants T15A, D348Y, R434H, D43V, M492T, I121T, R385H, R111C and *22C>A 

were generated by site directed mutagenesis [109] with mismatch primers (Table 8). In brief, 

two mutant fragments were amplified and purified. In the following steps the fragments were 

annealed and extended. After purification of the extended mutant fragment it was digested and 

ligated into the appropriate digested vector. Ligated plasmid DNA was directly transformed into 

Escherichia coli cells. Correct orientation of the inserts and absence of PCR-induced mutations 

were verified by sequencing. 

 

2.3.6.4 Colony PCR 

Colony PCR was used to screen single bacterial colonies by PCR in order to determine if they 

have inserted the transformed plasmid DNA.  
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Standard reaction: 

      

Component                                                                      Amount per reaction  

ddH2O ad 50 μl 

10xThermoPol buffer 5 μl 

dNTPs 0.25 mM each 

Forward primer  50 pmol 

Reverse primer 50 pmol 

μl Bacterial suspension  2 

Taq 2.5 U 

Total reaction volume 50 μl 

    

 
      

Temperature                                                                                Time                Cycles 

95°C 6 min   

95°C 30 sec   

40x  55°C 30 sec 

72°C 1-3 min   

72°C 7 min 
  

 

All PCR samples were analysed on an agarose gel and plasmid DNA from positive colonies was 

isolated by miniprep. The orientation of the insert and absence of polymerase chain reaction-

induced mutations were verified by sequencing. 

 

2.3.6.5 Reverse transcription (RT)-PCR 

Total RNA was extracted from cells or human muscle using RNeasy kit according to the 

manufacturer‘s manual. In case of human muscle, the protocol was adjusted. The tissue (about 

30 mg) was pestled under liquid nitrogen at least 15 min prior to the homogenization step in 

QIAzol. To avoid DNA contamination, on column DNaseI digestion was performed. The cDNA was 

dissolved in RNase-free water. RNA concentration was quantified using a spectrophotometer. 
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Standard reaction for total and large RNA:  

      

Component                                                                   Amount per reaction 

RNase free H2O ad 20 μl 

ng RNA 500 

5x reaction buffer  4 μl 

RiboLock RNase inhibitor 20 U 

dNTPs 1 mM 

U Reverse transcriptase 20 

Random hexamer primers 1 μl 

Total reaction volume 20 μl 

 

 

 

Temperature                                                                               Time 

25°C 10 min 

37°C 60 min 

70°C 10 min 

4°C   hold 

 

The cDNA was used for qRT-PCR, amplification of specific genes (end-point PCR) or stored at -

20°C. 

 

In order to extract and separate into small (miRNA) and large RNA (mRNA), the miRNeasy Kit 

was combined with the RNeasy MinElute Cleanup Kit according to the manufacturer‘s manual.  

RNA was dissolved in RNase-free water (small RNA in 14 μl; large RNA in 45 μl) and the 

concentration of the large RNA fraction was quantified using a spectrophotometer. 

 

Standard reaction for small RNA using the miScript PCR Kit: 

      

Component                                                                    Amount per reaction  

RNase free H2O 3.5 μl 

μl RNA (MinElut) 3 

5x reaction buffer  2 μl 

Nucleic mix 1 μl 

Reverse transcriptase mix 0.5 μl 

Total reaction volume 10 μl 
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Temperature                                                                               Time 

37°C 60 min 

95°C 5 min 

4°C  hold 

 

The cDNA was used for qRT-PCR or stored at -20°C. 

 

2.3.6.6 Quantitative real-time PCR (qRT-PCR) 

For mRNA, the desired target cDNA species were amplified using specific primers. The primer 

pairs for mRNA expression (Table 11) were designed using published sequences (GFPT1: 

NM_002056.3; hH4: NM_175054.2). They were ordered and synthesized at Metabion 

(Martinsried, Germany). To correct for sample to sample variation, an endogenous control, hH4, 

was amplified with the target and served as an internal reference to normalize the data. The 

expression levels of GFPT1 relative to those of hH4 were calculated using the 2-ΔΔC
T method 

[110]. 

 

Standard reaction: 

      

Component                                                                    Amount per reaction  

RNase free H2O ad 20 μl 

cDNA 12.5 ng 

μl 2x SensiFAST SYBR no-ROX Mix 10 

Forward primer (10µM) 0.8 μl 

Reverse primer (10µM) 0.8 μl 

Total reaction volume 20 μl 

 

The reaction plates were centrifuged for 2 min at 3000 rpm to abolish bubbles. 

        

Temperature                                                                                Time                Cycles 

95°C 2 min   

95°C 5 sec   

60°C 10 sec 40x  

72°C 10 sec   

65-95°C     0.5°C steps 

 

For miRNA, the miScript Primer Assay for specific miRNA targets were synthesized and ordered at 

Qiagen. MicroRNA was quantified by a two-step real-time PCR using the miScript-Reverse 
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Transcripton kit combined with the miRNA-SYBR Green PCR kit. Cellular miRNA levels were 

normalized using U6 snRNA (RNU6) as reference RNA. The amount of miR-600, miR-206 and 

miR-206* relative to RNU6 was calculated using the 2-ΔΔC
T method [110]. For the qRT-PCR 96-

Well Optical Reaction Plates (BioRad) were used. 

 

Standard reaction using the miScript PCR system: 

      

Component                                                                   Amount per reaction  

RNase free H2O 5 μl 

cDNA 16.7 ng 

μl 2x QuantiTec SYBR Green 10 

10x UP primer 2 μl 

10x primer assay primer 2 μl 

Total reaction volume 20 μl 

 

The reaction plates were centrifuged for 2 min at 3000 rpm to remove bubbles. 

 

       

Temperature                                                                               Time                  Cycles 

95°C 15 min   

94°C 15 sec   

55°C 30 sec 40x  

70°C 30 sec   

65-95°C     0.5°C steps 

 

All PCR samples were analysed on a 4 % agarose gel. 

 

2.3.7 Restriction digest 

For analytic restriction, about 400 ng of DNA were digested using 5 U of each restriction enzyme 

in a total volume of 20 µl. Double digests were performed using the appropriate NEB buffer to 

achieve the highest possible activity for the combination of both enzymes. Bovine serum albumin 

(BSA) was added if required. Restriction digest was performed for 2 h at 37°C.  

For cloning purposes, 2 µg of DNA were digested using 10 U of enzyme for 2 h at 37°C. BSA was 

added if required. The linearized plasmid was dephosphorylated with 1 U Calf Intestine Alkaline 

Phosohatase (CIAP) in CIAP buffer for 30 min at 37°C to prevent re-ligation. Afterwards the 
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phosphatase was inactivated for 10 min at 65°C. The sample was purified via NucleoSpin Extract 

II Kit according to the manufacturer´s protocol. 

 

2.3.8 Ligation 

Ligation of digested plasmids and PCR fragments was performed with T4 DNA ligase. Reaction 

mixtures contained plasmid and PCR fragment (insert) in a molar ration of 1:3. Usually 100 ng of 

plasmid were used. The mass of insert to be used was calculated according to the following 

equation:  

 

mass (insert) = 3 ∙ mass (plasmid) ∙      
number of bp (insert) 

                number of bp (plasmid) 

 

      

Component                                                                                    Amount per reaction  

ddH2O ad 10 μl 

ng Plasmid 100 

Insert 3-fold molar amount of plasmid    

T4 DNA ligase  1 μl 

T4 DNA reaction buffer (10x)  1 μl 

Total reaction volume 10 μl 

 

The reaction mix was pipetted at rt and incubated o.n. in an isolating box in the cold room (4°C). 

 

2.3.9 Sequencing of DNA 

The sequencing of purified DNA premixed with primer was performed by Eurofins MWG Operon 

(Ebersberg, Germany). 

 

2.3.10 Genome-wide linkage analysis 

Homozygosity mapping [111] was performed by genome-wide genotyping of SNP for family 

LGM3 using the Illumina 300 K chip (Illumina, San Diego, CA). Multipoint linkage analysis was 

performed with MERLIN [112]. DNA samples from families LGM1, LGM2, LGM5, LGM6, LGM7, 

LGM8, LGM10, LGM11, and LGM12 were analyzed with short tandem repeat (STR) markers. 
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Twenty-three markers were retrieved from the National Center for Biotechnology Information 

UniSTS database, and four new polymorphisms were identified by using the Repeat-Masker 

program. PCR primers for new STRs were designed by the Primer3 program. The sense primers 

were labeled with FAM fluorophores (MWG Biotech, Ebersberg, Germany) for detection on an ABI 

377 DNA sequencer (Applied Biosystems, Foster City, CA). Multipoint LOD scores were calculated 

with the GeneHunter v2.1r5 program [113] in the EasyLinkage software package [114]. The 

genomic localization of the markers was derived from the Marshfield map and the University of 

California Santa Cruz (UCSC) human genome assembly. Linkage analysis was performed in 

collaboration with Prof. Dr. Jan Senderek (Aachen, Germany) and Dr. Tim-Matthias Strom 

(Munich, Germany). 

 

2.3.11 Linkage analysis 

In some CMS index patients we used a linkage approach with DNA marker sets of the known 

CMS genes [115] in order to reduce the number of candidate genes prior to subsequent mutation 

analysis. In order to use the patients for linkage analysis, they have to derive from families with 

more than one affected patient or several unaffected siblings and possibly parental 

consanguinity. The microsatellite marker set included the gene loci of the known CMS genes 

CHRNA1, CHRNB1, CHRNE, CHRND, CHAT, COLQ, RAPSN, DOK7, MUSK, SCN4A, AGRN and 

GFPT1. The linkage analysis was performed in collaboration with Prof. Dr. Angela Hübner 

(Dresden, Germany).  

 

2.4 Tissue culture methods 

 

Five different adherent cell lines were used in this study: human embryonic kidney 293 cells 

(HEK293), skeletal mouse myoblasts C2C12, the human adrenal carcinoma cell line SW13, the 

african green monkey kidney fibroblast cell line COS-7 and human myoblasts. All cell lines were 

obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA) except for 

human myoblasts (Muscle Tissue Culture Collection, Friedrich-Baur-Institute, Munich, Germany). 

 

2.4.1 General information  

HEK293, C2C12, SW13 and COS-7 cells were cultured in Dulbecco’s Modified Eagle’s medium 

(DMEM) supplemented with 10 % fetal calf serum, 2 mM Glutamine and penicillin/ streptomycin 
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(40 U/mL penicillin and 0.04 mg/mL streptomycin).  Primary human myoblasts were isolated as 

previously described [116]. Myoblasts from patients with GFPT1 mutations and control myoblasts 

were obtained from the Medical Research Council (MRC) Centre for Neuromuscular Diseases 

Biobank, Newcastle, UK, and the Muscle Tissue Culture Collection, Friedrich-Baur-Institut, 

Munich, Germany. Human myoblasts were grown in skeletal muscle growth medium (SGM 

PromoCell, Heidelberg, Germany) supplemented with SupplementalMix (Provitro), 10 % FCS, 1.5 

% 100 x Glutamax (Gibco) and 50 μg/ml gentamycin. For maturation into multinucleated 

myotubes, the human myoblasts were grown in SGM on culture dishes coated with laminin 

(Sigma) to near confluency. They were induced to fuse and differentiate by replacing SGM with 

DMEM supplemented with 5 % horse serum (fusion medium) for 7 d. All cell lines were kept in a 

37°C incubator with a humidified atmosphere of 5 % CO2. 

 

2.4.2 Passage of cells 

The cells were grown in 10 cm or 16 cm tissue culture dishes and washed once with PBS before 

digestion with 0.05 % trypsin-EDTA for about 5 min at 37°C. The trypsin digest was terminated 

by adding supplemented DMEM or SGM medium.   

 

2.4.3 Transfection of HEK293, SW13, COS-7 or C2C12 cells  

Cells were plated in 10 cm tissue culture dishes, 6-well plates, 24-well plates or on cover slips the 

day before transfection and grown to 60-90 % confluency. HEK293 cells were transfected with 3–

6 mg of wild-type and mutated GFPT1 plasmid DNA (with and without N-terminal Myc tag) with 

Polyplus jetPEI transfection reagent (Biomol, Hamburg, Germany) according to the 

manufacturer’s recommendations. Transfection of SW13 cells was carried out with FuGene6 

transfection reagent (Roche Diagnostics, Mannheim, Germany). C2C12 cells were transfected 

with 3 μg of GFPT1-3’-UTR wt or mutant (c.*22C>A) constructs. The cells were co-transfected 

with 0.3 μg pEGFP-N1 (Clontech, Mountain View, CA) in order to use the expression of the green 

fluorescent protein (GFP) as a transfection efficiency control. Lipofectamine (Invitrogen, Carlsbad, 

CA) was used according to manufacturer’s instructions. Cells were analyzed 24-48 h after 

transfection by immunoblot, immunofluorescence staining or GFPT1 activity assay. 
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2.4.4 siRNA experiments 

C2C12 cells were plated in 6-well plates the day before transfection and grown to a confluency of 

50 %. The siRNA duplex oligonucleotides (100 pmol) (Table 12) were diluted in Lipofectamine 

according to manufacturer’s instructions. The mixture was added drop by drop to the cells and 

they were analyzed 24 h after transfection by immunoblot. 

 

2.4.5 Harvesting of cells 

Growth medium was removed using a vacuum pump and cells were washed with sterile PBS. The 

cells were mechanically scraped in ice cold 1xPBS buffer and transferred to a 1.5 ml tube. After 

centrifugation at 14000 rpm at 4°C (5 min) the supernatant was removed and the cell pellet was 

used for protein isolation or stored at -80°C. 

 

2.4.6 Storage of cells 

Cells were grown to 80-90 % confluency in 10 cm tissue culture dishes and washed once with 

PBS before digestion with 0.05 % trypsin-EDTA for about 5 min at 37°C. The trypsin digest was 

terminated by adding supplemented DMEM medium. The cell suspension was transferred to a 50 

ml falcon tube and centrifuged for 3 min at 1200 rpm (RT). The cell pellet was resuspended in 2 

ml freezing medium, transferred to a 2 ml freezing vials and gently cooled down to -80°C. The 

frozen cells were stored in liquid nitrogen.  

To utilize cells in culture, they were quickly thawed, washed with medium (3 min, 1200 rpm, RT) 

and seeded in a 10 cm dish for further culturing. 

 

Freezing medium 

DMEM medium 

10 % DMSO 

30 % FCS 
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2.5 Protein methods 

2.5.1 Protein isolation 

For Western blot analysis, protein extracts from different cell lines were used. Cells were 

harvested 24 or 48 h after transfection. The cells were washed once with 1xPBS buffer, 

mechanically scraped in 1x PBS buffer and transferred to a 1.5 ml tube. After centrifugation at 

14,000 rpm at 4°C for 5 min the supernatant was removed and the cell pellet was homogenized 

in lysis buffer. Homogenized cell samples were then incubated at 95°C for 5min. Debris was 

removed by 5 min centrifugation at 14,000 rpm and supernatants were used for immunoblot 

analysis. 

 

Lysis buffer  

10 mM Tris-HCl pH 7.4 

1 % SDS 

 

2.5.2 Protein quantification 

Protein concentrations were determined using the BCA Protein Assay (Pierce) or the BioRad 

Protein Assay according to the manufacturer`s instruction. BSA (Bovine serum albumin) was 

used as a protein standard [117]. 

 

2.5.3 SDS-Polyacrylamid-Gelelectrophoresis (SDS-PAGE) 

Discontinuous electrophoresis was used to separate protein mixtures. The gel consists of an 8 % 

separating and a 3.3 % stacking gel that were poured sequentially. After complete polymerization 

of the gel it was placed into a chamber filled with SDS running buffer. The protein samples were 

mixed with SDS loading dye and denatured for 5 min at 95°C before applying on the gel. Protein 

markers were used to determine the molecular weight of the samples. Proteins were separated at 

120 V.  

Afterwards the gel was further processed by Western blotting. 
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Lower Tris (4x) 

36.34 g Tris base 

8 ml 10 % SDS 

ad 200 ml H2O 

pH 8.8 

 

Upper Tris (4x) 

6.06 g Tris base 

4 ml 10 % SDS 

ad 100 ml H2O 

pH 6.8 

 

Separating gel (8 %) 

4.83 ml H2O 

2.67 ml acrylamid mix (30/0.8) 

2.5 ml Lower Tris 

50 μl 10 % APS 

10 μl TEMED 

 

Stacking gel (3.3 %) 

3.25 ml H2O 

0.55 ml acrylamid mix (30/0.8) 

1.25 ml Upper Tris 

20 μl 10 % APS 

10 μl TEMED 

 

Running buffer 

25 mM Tris 

192 mM glycine 

0.1 % SDS 
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SDS loading dye (6x) 

20 mM Tris-HCl pH 6.8 

6 % SDS 

30 % glycerol 

0.03 % bromphenol blue 

5 % β-Mercaptoethanol 

 

2.5.4 Western blotting 

A nitrocellulose membrane (BioTrace™ NT Nitrocellulose Transfer Membrane; 9 cm x 6 cm; 0.20 

μm pore size; PALL) as well as two filter papers and two fiber pads were pre-wet in transfer 

buffer. The gel was removed from the electrophoresis apparatus and the blotting sandwich was 

assembled in the following order: gel holder cassette (white side; facing the positive electrode), 1 

fiber pad, 1 piece of filter paper, membrane, gel, 1 piece of filter paper, 1 fiber pad, gel holder 

cassette (black side; facing the negative electrode). The assembly was transferred to the blotting 

apparatus, which was filled with 1 x transfer buffer and an ice block for cooling. The proteins 

were transferred to the membrane by electrophoresis at 110 V for 2 h at 4°C.  

In order to determine the blotting efficiency the membrane was Ponceau S stained after the 

transfer and washed in 1xTBS-T for 20 min. The membrane was blocked in 5 % milk/BSA in 1x 

TBS-T for 1 h at rt on a shaker. Subsequently it was incubated with the primary antibody in 5 % 

milk/BSA in TBS-T o.n. at 4°C on a shaker followed by five washing steps (5 min each) in TBS-T. 

Afterwards the membrane was incubated with the appropriate HRP conjugated secondary 

antibody for 1 h at 4°C while shaking. The blot was washed again five times and the 

immunoreactive bands were visualised with the ECL system (ECL Advance Western Blotting 

Detection Kit, Amersham) using the ChemoCam Imager of INTAS. 

 

Ponceau S staining solution  

0.1 % Ponceau S  

5 % acetic acid 

 

1x TBS-T 

10 mM Tris-HCl pH 7.4 

140 mM NaCl 

0.1 % Tween-20 
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Transfer buffer 

25 mM Tris 

192 mM glycine 

0.02 % SDS 

15 % methanol 

 

2.5.5 Immunofluorescence 

For immunofluorescence analysis, cells were grown on glass coverslips and transfected as 

described above. Fortyeight hours after transfection, coverslips were washed in PBS, fixed in 3.7 

% formaldehyde (freshly prepared from paraformaldehyde) in 1x CSK buffer for 10 min at room 

temperature, and permeabilized with 0.1 % Triton X-100 in 1x CSK buffer for 15 min. After three 

washes in PBS, nonspecific binding sites were blocked with PBS containing 5 % horse serum for 

1 h, followed by overnight incubation at 4°C with the appropriate primary antibody in PBS with 5 

% horse serum. After three washes in PBS, cells were incubated with the secondary antibody, for 

1 h at room temperature. Nuclei were visualized with bisbenzimide H 33258 (40 mg/ml). Digital 

images were captured with a Zeiss Axiovert 200 M fluorescence microscope and a Zeiss AxioCam 

HR photo camera. 

 

1x CSK buffer  

100 mM NaCl  

300 mM sucrose  

3 mM MgCl2  

1 mM EGTA 

10 mM PIPES  

pH 6.8 

 

2.5.6 GFPT1 enzyme activity assay 

The enzymatic activity of untagged wild-type and mutant GFPT1 was measured with the 

glutamate dehydrogenase method [118, 119]. HEK293 cells transfected with GFPT1 expression 

constructs were lysed in GFPT buffer, and 100 ml aliquots of the lysates were mixed with an 

equal volume of the reaction buffer and incubated at 37°C for 45 min. Glutamate was used as a 

standard. The change in absorbance was monitored at 370 nm with a Spectra Max 250 

microplate reader. The enzymatic activity of each mutant was normalized to GFPT1 expression 



Marina Dusl  MATERIALS AND METHODS 

 

52 

 

levels determined by immunoblot analysis of cell lysates used for enzyme activity measurements. 

All transfections and measurements were done in triplicates. 

 

GFPT buffer 

50 mM KH2PO4  

10 mM EDTA   

5 mM reduced L-glutathione  

12 mM D-glucose-6-phosphate Na2  

1 mM PMSF  

pH 7.6 

freshly prepared 

 

Reaction buffer 

100 mM KH2PO4 

10 mM D-fructose 6-phosphate  

6.0 mM L-glutamine  

0.3 mM 3-acetylpyridine adenine dinucleotide  

50 mM KCl  

6 U L-glutamate dehydrogenase from bovine liver  

pH 7.6 

freshly prepared 
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2.5.7 Dual Luciferase reporter assay                                                                                                  

 

Figure 4: Schematic view of the transfection of COS-7 

cells followed by the Dual-Luciferase reporter assay 

 

The pRL-TK (Promega, Madison, WI) reporter vector 

containing a wt and mutant (c.*22C>A) 80 bp 

fragment of the GFPT1 3’-UTR or multimers of it 

(Figure 28) was used as reporter assay in COS-7 

cells. The four tandem repeats of an 80 bp 

sequence (GeneArt, Carlsbad, CA) encompassing wt 

or mutant c.*22C>A predicted miRNA binding site 

were cloned into the XbaI restriction site 

downstream from the Renilla luciferase (RLuc) gene. 

An empty Firefly luciferase reporter vector (pGL4, 

Promega) was used as control. 0.8 x 105 cells per 

well in 24-well plates were transfected using 

Polyplus jetPEI transfection reagent (Biomol, 

Hamburg, Germany) following manufacturer’s 

recommendations with a mixture comprising 200 ng 

of pRL-TK construct, 2 ng of pGL4 control vector 

and the appropriate mature miRNA mimic (hsa-miR-

600, oan-miR-206*; Qiagen, Hilden, Germany) or control miRNA (100 nM; Qiagen, Hilden, 

Germany). For blocking experiments 300 nM αmiRNA-600 (Qiagen, Hilden, Germany) were 

included. 24 h after transfection, luciferase expression was analysed using the dual-luciferase 

reporter assay system (Promega, Madison, WI).  In brief, cells were rinsed once with 1xPBS and 

lysed with 1xPLB. In order to assure complete lysis, cell lysates were incubated on a shaker at 

200 rpm for 15 min. The Firefly reporter is measured first by adding Luciferase Assay Reagent II 

to generate a luminescent signal. After quantifying this luminescence, the reaction is quenched, 

and the Renilla luciferase reaction is simultaneously initiated by adding Stop & Glo Reagent. In 

order to correct for vector-dependent unspecific effects and to correct for differences in the 

transfection efficiency, relative reporter activity was obtained by normalization to Firefly luciferase 

activity (ratio of Renilla luciferase to Firefly luciferase). Each experimental condition was 

measured in triplicates and each assay was performed three times. Dual luciferase assay was 

performed on white 96-well plates using 20 μl lysate and 100 μl of both substrates per well. 

Luciferase expression was detected on a Berthold Technologies TriStar LB 941 reader. As hsa-
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miR-206* was not annotated, assays were performed using oan-miR-206* after checking 

sequence homology using http://www.mirbase.org/.  

 

2.6 Statistical analysis 

 

The data show the mean ± SD. Statistical significance was determined with two-tailed Student’s 

t-test. Significance was set at p < 0.05 (*), p < 0.01 (**), or p < 0.001 (***). 
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G Results 

 

1 Identification of GFPT1 mutations in LG-CMS families 

 

LG-CMS patients, characterized by weakness of limb muscles, sparing of ocular or facial muscles, 

good treatment response to acetylcholinesterase inhibitors and tubular aggregates (TA) in muscle 

biopsy samples were analysed by a genome-wide linkage screen in order to identify the 

molecular defect causing this condition.  

 

1.1  Selection of LG-CMS families for molecular genetic studies  

 

Using direct sequencing or haplotype analysis we had previously excluded all known genes and 

loci known to be involved in CMS (CHRNA1, CHRNB1, CHRND, CHRNE, CHAT, COLQ, DOK7, 

RAPSN, MUSK, SCN4A, LAMB2, AGRN as well as two functional candidate genes CNTN1 and 

AChE) in the 16 LG-CMS families analysed in this study. 

 

1.1.1 Clinical features of LG-CMS families 

Sixteen LG-CMS families (comprising 23 patients) of various ethnic origins were selected for 

molecular genetic studies.  
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Figure 5: Summary of the clinical features of 23 LG-CMS patients. 

LG: limb-girdle; RNS: repetitive nerve stimulation; AChE: acetylcholine esterase; TA: tubular aggregate 

 

All patients presented with limb-girdle weakness and patients who had a neurophysiological 

examination showed a decremental response in repetitive nerve stimulation (RNS). Almost all 

patients (95 %) responded well to AChE-inhibitor therapy. Tubular aggregates (TAs) were 

identified in the muscle biopsies of 75 % of the LG-CMS patients. Only few patients had facial 

weakness (23 %) and only 5 % of the patients showed respiratory weakness. Ocular muscles 

were generally spared: None of the patients showed involvement of the external eye muscles 

(ophthalmoparesis) and only 5 % exhibited ptosis.   
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1.1.2 Pedigree analysis 

Pedigrees of the LG-CMS families included in the study: 

 

 

 

 

 

Figure 6: Pedigrees of the limb-girdle myasthenia (LGM) families included in the study. 

Circles represent females, squares males and diamonds were used when the information on the gender was 

unknown. A double line indicates a consanguineous marriage. Filled symbols represent affected family members. 

Red bars indicate the individuals of whom genomic DNA was obtained and used for genotyping. Asterisks indicate 

patients whose clinical data were available. 
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Family Ethnic origin Consanguinity 

LGM1 Iran + 

LGM2 Turkey + 

LGM3 Libya + 

LGM4, 13, 15, 16 Italy 4: +; 13, 15, 16: - 

LGM5 Spain - 

LGM6 Germany - 

LGM7 UK - 

LGM8 UK - 

LGM9 Germany - 

LGM10 Senegal + 

LGM11 Spain + 

LGM12 Spain - 

LGM13 Italy - 

LGM14 Sweden - 

LGM15 Italy - 

LGM16 Italy - 

 

Table 13: Summary of the ethnic origin and the marriages of the 16 limb-girdle myasthenia (LGM) 

families. +: yes; -: no 

 

The families are of various ethnic origins from nine different countries (Table 13). There is almost 

equal frequency of the disease in both sexes (female and male). LGM families LGM1-4, LGM10 

and LGM11 are consanguineous (Figure 6 and Table 13). All parents of the patients are healthy. 

In total, the genomic DNA of 62 individuals was used for genotyping, of whom 23 were affected 

and clinical data was available (Figure 6). 

All in all, the genetic evaluation of the LG-CMS families revealed pedigrees typical of an 

autosomal recessive trait of the disease (Figure 6).  

 

1.2 Genome-wide homozygosity mapping 

 

Genome-wide homozygosity mapping in an extended pedigree of a consanguineous Libyan family 

(LGM3, Figure  6) with five affected children allowed to identify the genetic locus for LG-CMS. 

The homozygosity mapping in this family defined a single candidate region on chromosome 2 

(2p12-p15) with a maximum LOD score (logarithm (base 10) of odds) of 3.24. A LOD score >3 is 

usually considered sufficient for establishing genetic linkage to a chromosomal region. Using 
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linkage and homozygosity data from additional, smaller pedigrees (LGM1, 2, 5, 6, 7, 8, 10, 11, 

12) the critical interval was narrowed down to a region of interest of 5.92 Mb. The genes in this 

region (46 genes) were prioritized on the basis of expression pattern and function. They were 

evaluated and ranked with respect to neuromuscular endplate and skeletal muscle biology and 

disease or role in calcium metabolism (tubular aggregates seen in muscle biopsies of LG-CMS 

patients might be a consequence of calcium overload) or vesicle transport.    

 

Gene name GenBank Mutation analysis 

MEIS1 NM_002398 yes 

ETAA1 NM_019002 no 

C1D NM_001190265 no 

WDR92 NM_138458 yes 

PNO1 NM_020143 no 

PPP3R1 NM_000945 yes 

CNRIP1 NM_001111101 no 

PLEK NM_002664 yes 

FBXO48 NM_001024680 no 

APLF NM_173545 no 

PROKR1 NM_138964 yes 

ARHGAP25 NM_001007231 yes 

BMP10 NM_014482 no 

GKN2 NM_182536 no 

GKN1 NM_019617 no 

ANTXR1 NM_032208 no 

GFPT1 NM_002056 yes 

NFU1 NM_015700 yes 

AAK1 NM_014911 yes 

ANXA4 NM_001153 yes 

GMCL1 NM_178439 no 

SNRNP27 NM_006857 no 

MXD1 NM_002357 yes 

ASPRV1 NM_152792 no 

LOC400960 NR_033872 no 

PCBP1 NM_006196 no 

C2orf42 NM_017880 no 

TIA1 NM_022173 no 

PCYOX1 NM_016297 no 

SNRPG NM_003096 no 

FAM136A NM_032822 no 

TGFA NM_003236 yes 
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Table 14: Positional candidate genes in the defined LG-CMS candidate region (chromosome 2p12-

p15; region of interest of 5.92 Mb) 

 

None of the 46 genes had been previously associated with CMS or is exclusively expressed at the 

NMJ or in motor neurons or in skeletal muscle. Therefore, the entire coding region and exon-

intron boundaries of 16 genes (Table 14; mutation analysis: yes) were sequenced in the index 

patients of three families (LGM1, 3, 10).  

Fifteen genes were sequenced before different homozygous missense mutations were identified 

in the glutamine—fructose-6-phosphate transaminase 1 (GFPT1) gene in all three families. No 

disease-related sequence changes were identified in any of the other sequenced genes. Further 

evidence for a causative role of GFPT1 mutations in LG-CMS where achieved when extending the 

mutation screening to additional families in our cohort. Mutations were identified in all LG-CMS 

families except for LGM4, 15 and 16. GFPT1 mutations had not previously been linked to a 

human disease.   

 

1.3 GFPT1 mutation spectrum  

 

GFPT1 is the first and rate-limiting enzyme in the hexosamine biosynthetic pathway (HBP) 

leading to UDP-GlcNAc production. The GFPT1 gene is composed of 19 constitutive exons (1-19) 

and one alternative exon (8A) exclusively incorporated in mRNA encoding the muscle-specific 

GFPT1-L protein. GFPT1 has a total length of 62 kb and is located on chromosome 2p13.  

 

ADD2 NM_017488 yes 

FIGLA NM_001004311 no 

CLEC4F NM_173535 no 

CD207 NM_015717 no 

VAX2 NM_012476 no 

ATP6V1B1 NM_001692 no 

ANKRD53 NM_024933 no 

TEX261 NM_144582 no 

NAGK NM_017567 yes 

MCEE NM_032601 no 

MPHOSPH10 NM_005791 no 

PAIP2B NM_020459 no 

ZNF638 NM_014497 yes 

DYSF NM_001130981 yes 
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Exon Nucleotide change Effect on the protein LG-CMS families with the mutation 

2 c.43A>G p.Thr15Ala LGM13 

2 c.44C>T p.Thr15Met LGM8 

3 c.128A>T p.Asp43Val LGM6 

4 c.222_223insA p.Gln76fs LGM14 

4 c.331C>T p.Arg111Cys LGM3, LGM14 

5 c.362T>C p.Ile121Thr LGM6 

7 c.595G>T p.Val199Phe LGM9 

8 c.621_622 del p.Leu208fs LGM13 

8A c.719G>A p.Trp240X LGM2 

11 c.1042G>T p.Asp348Tyr LGM1 

13 c.1154G>A p.Arg385His LGM7 

14 c.1278_1281 dup p.Asp428fs LGM12 

14 c.1301G>A p.Asp434His LGM7 

15 c.1472T>C p.Met491Thr LGM11 

15 c.1475T>C p.Met492Thr LGM5 

15 c.1486C>T pArg496Trp LGM8 

15 c.1534C>T p.Arg512Trp LGM10 

19 c.*22C>A  LGM5, LGM9, LGM12 

 

Table 15: GFPT1 mutations identified in LG-CMS families.  

No GFPT1 mutations were identified in LGM families LGM4, 15 and 16. The nucleotide and amino acid numbering 

is according to NM_002056.2 and NP_002047.2 (exception c.719G>A (p.Trp240X): AF334737.1 and 

AAK15342.1). 

 

 

 

 

Figure 7: Schematic view of the domain structure of GFPT1 and the positions of the identified 

mutations in 13 LG-CMS families. 

GFPT1 consists of a glutaminase and two sugar isomerase (SIS) domains. The insertion of 18 amino acids (aa) of 

the muscle-specific exon is indicated. Reference sequence: NM_002056.2   
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In total, 18 different GFPT1 mutations consisting of 13 missense mutations, three frameshift 

mutations (p.Gln76fs, p.Leu208fs and Asp428fs), one nonsense mutation (p.Trp204X) and one 

variant in the 3’-UTR (c.*22C>A) were found in 13 unrelated LG-CMS families (Table 15 and 

Figure 7). Mutations are distributed throughout the entire gene and affect the glutaminase as 

well as the sugar isomerase domain (Figure 7). There is only one LG-CMS patient with a 

homozygous-GFPT1 null mutation (LGM2). However, the homozygous p.Trp240X mutation is 

located in the alternative exon, exclusively incorporated in the muscle-specific GFPT1-L protein 

(Figure 7). None of the GFPT1 patients carried two null mutations in the constitutive exons of the 

gene. One of the GFPT1 mutations identified in three independent families from Spain (LGM5 and 

12) and Germany (LGM9) was a nucleotide exchange 22 bp downstream of the TGA translation 

termination codon (c.*22C>A) in the 3’-untranslated region (UTR). In all three families, the 

mutation was compound heterozygous to missense or protein truncating mutations (Table 15).  

 

2 Molecular genetic analysis of isolated LG-CMS patients  

2.1 Clinical features of putative GFPT1 patients of the Munich CMS 

patient cohort 

 

Subsequent to the identification of GFPT1 as novel CMS gene further undiagnosed patients from 

our cohort of about 900 CMS patients were screened for mutations in the GFPT1 gene according 

to their clinical picture and/or haplotype analysis results. 

We primarily selected patients with prominent limb-girdle weakness, tubular aggregates in 

skeletal muscle biopsies and good response to esterase inhibitor therapy. 
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Figure 8: Summary of the clinical features of 15 CMS patients analysed in this study in order to 

identify the underlying molecular genetic defect. 

LG: limb-girdle; RNS: repetitive nerve stimulation; AChE: acetylcholine esterase; TA: tubular aggregates   

 

In total, 15 undiagnosed CMS patients from our CMS cohort were screened for GFPT1 mutations. 

The majority of the patients (73 %) exhibited limb-girdle weakness. If limb-girdle weakness was 

missing, the patients showed at least tubular aggregates in their muscle biopsy and/or haplotype 

analysis suggested potential linkage at the GFPT1 locus. In about 86 %, repetitive nerve 

stimulation (RNS) yielded a decremental response, if electrophysiology was tested (6/7). About 

75 % of the patients responded well to AChE-inhibitor therapy if treated (6/8). Most muscle 

biopsies showed unspecific or mild myopathic changes and tubular aggregates (TAs) were 

identified in 50 % (5/10). Four patients showed only tubular aggregates in muscle biopsies, while 

additional hints for LG-CMS were missing. These patients were included in order to define 

whether only TAs are a sufficient inclusion criteria for LG-CMS with GFPT1 mutations. Only a 

minor proportion of patients exhibited facial weakness (21 %) and none of the patients showed 

respiratory weakness.  

 

2.2 Identified GFPT1 mutations 

 

The following results were obtained by direct sequencing of the coding exons (1-19 and the 

additional muscle-specific exon 8A) and the adjacent intronic regions of the GFPT1 gene in 

additional patients selected as described above. 
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2.2.1 Polymorphisms and harmless variants 

Sequencing of the GFPT1 gene in the 15 CMS patients revealed several known and unknown 

single nucleotide polymorphisms (SNPs) that are unlikely to be disease-related but rather 

represent normal variations among individual genomes.  

  

 

 

 

Figure 9: Map of GFPT1 gene and the locations of the SNPs relative to the coding exons. 

Dark shading indicates coding regions, light shading indicates untranslated regions and introns are shown as a 

line. Large introns are not shown completely (double vertical lines). 

 

 

Name Sequence variation Location dbSNP ID Minor allele frequency 

(MAF) 

SNP1 IVS1+36T>C intron 1 rs6720415 A = 0.38 

SNP2 IVS5+30T>C intron 5 rs67760762 G = 0.26 

SNP3 IVS11+7A>G intron 11 rs6722492 T = 0.39 

SNP4 IVS13+13delT intron 13 rs113734896 - = 0.10 

SNP5 
IVS18-22delTT 

 
intron 18 unknown unknown 

 

Table 16: Summary of the sequence variations found in 15 putative GFPT1 patients.  

Reference sequence: AC114772. IVS: intervening sequence; del: deletion; A: adenine; C: cytosine; G: guanine; 

T: thymine. SNP1, SNP2 and SNP3 are already published in [120, 121]. MAF source: dbSNP. 

 

As the so far identified GFPT1 mutations are found along the coding sequence, all exons were 

sequenced in this study. A total of five sequence variations were identified in 15 putative GFPT1 

patients of our Munich patient cohort (Table 16). All variations are localized in different introns of 

the GFPT1 gene. They do not affect spice sites and they were found in a broad variety of patients 

and controls. The MutationTaster algorithm (http://www.mutationtaster.org) [122] and the 

http://www.mutationtaster.org/
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Exome Variant Server predicted all variations as polymorphisms. Therefore, they were supposed 

to be single nucleotide polymorphisms (SNPs).  

  

2.2.2 Pathogenic mutations identified in GFPT1 

Putative pathogenic mutations are sequence variations which are assumed to alter different 

protein features and are linked to a human disease. The 15 putative GFPT1 patients were 

sequenced for GFPT1 mutations according to their clinical picture and/or haplotype analysis 

results. The disease co-segregation with recessive inheritance of the GFPT1 mutations was 

analysed if DNA from family members was available.  

 

Exon Nucleotide change Effect on the protein Patient with the mutation 

7 c.572G>T p.Ser191Ile patient 3 

8 c.639G>A p.Ser213Asn patient 1 

12 c.1060G>C p.Gly354Arg patient 2 

15 c.1472T>C p.Met491Thr patient 1 

16 c.1649C>T p.Ala550Val patient 4 

19 c.*22C>A  patient 4 

 

Table 17: GFPT1 mutations identified in 15 putative GFPT1 patients.  

GFPT1 mutations were identified in four of 15 putative GFPT1 patients. The nucleotide and amino acid numbering 

is according to NM_002056.2 and NP_002047.2. 

 

 

 

 

Figure 10: Schematic view of the domain structure of GFPT1 and the position of the identified 

mutations. 

GFPT1 consists of a glutaminase and two sugar isomerase (SIS) domains. The insertion of 18 amino acids (aa) of 

the muscle-specific exon is indicated. Reference sequence: NM_002056.2   
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In total, putative pathogenic GFPT1 mutations were identified in four of 15 unsolved CMS 

patients (Table 17 and Figure 10).  

 

Patient 1 showed limb-girdle weakness, decremental response to RNS and benefited from 

AChE-inhibitors. His muscle biopsy revealed aspecific changes without TAs. This patient carried 

the compound heterozygous mutations c.1472T>C (p.M491T) [65] and c.638G>A (p.S213N). To 

date, the p.S213N mutation localized within the glutaminase domain (Figure 10), has not been 

published but the MutationTaster algorithm (http://www.mutationtaster.org) predicts a “disease 

causing” effect of the mutation on the GFPT1 protein. In addition, the mutation is not listed in 

the Exome Variant Server (http://evs.gs.washington.edu/EVS/). Compound heterozygosity was 

confirmed by analysis of DNA samples of the parents. 

 

Patient 2 showed limb-girdle weakness, no clear effect from AChE-inhibitor therapy and no TAs 

in a biopsy of the muscle. RNS was not tested. The parents of the patient are first cousins. This 

patient carried the homozygous GFPT1 mutation c.1060G>C (p.G354R) which is localized 

between the glutaminase and the SIS1 domain (Figure 10). The MutationTaster algorithm 

(http://www.mutationtaster.org) also predicts a “disease causing” effect of the mutation on the 

GFPT1 protein. The mutation c.1060G>C (p.G354R) is not listed in the Exome Variant Server 

(http://evs.gs.washington.edu/EVS/).  

 

Patient 3 showed limb-girdle weakness, a positive effect from AChE-inhibitor treatment and TAs 

in muscle biopsy. The RNS test revealed no decremental response. In this patient, the 

heterozygous variation c.572G>T (p.S191I) which is localized within the glutaminase domain was 

identified. The MutationTaster algorithm (http://www.mutationtaster.org) predicts a “disease 

causing” effect of the mutation on the GFPT1 protein but no second mutation was identified in 

this patient. The sequence variation c.572G>T (p.S191I) is not listed in the Exome Variant Server 

(http://evs.gs.washington.edu/EVS/). The healthy father of patient 3 also carried the mutation 

heterozygously making autosomal dominant inheritance very unlikely. In order to investigate if 

the patient carries a second mutation not detectable by sequencing of genomic DNA, the cDNA 

reverse transcribed from muscle RNA of the patient was analysed.    

http://www.mutationtaster.org/
http://evs.gs.washington.edu/EVS/
http://www.mutationtaster.org/
http://evs.gs.washington.edu/EVS/
http://www.mutationtaster.org/
http://evs.gs.washington.edu/EVS/
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Figure 11: Gel analysis of the GFPT1 cDNA PCR product of patient 3. 

Gel electrophoresis analysis of the amplicon confirms the presence of one fragment with the expected size (~2.1 

kb). An 1 kb DNA marker was used. Since the GFPT1 and the GFPT1-L transcripts differ only in 54 bp and the 

DNA resolution of the gel (1 % agarose) is low, only one GFPT1 cDNA band, consisting of both transcripts, was 

observed.  

 

Gel analysis of the PCR product showed one GFPT1 cDNA band at about 2.1 kb. This band  

consists of the muscle specific longer isoform GFPT1-L (2.097 kb) and the shorter isoform GFPT1 

(2.045 kb). No truncated transcripts were detected and sequencing of the RT-PCR product did 

not reveal any abnormal exon-exon junctions, largely excluding a second mutation which has an 

effect on splicing.    
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Figure 12: Sequence analysis of cDNA of a control patient (wild-type) and patient 3 carrying GFPT1 

c.572G>T (p.S191I) heterozygously. 

Reverse strand chromatograms are shown.  

 

Sequence analysis of the cDNA fragment amplified from muscle cDNA of patient 3 also showed 

biallelic expression of G and T alleles at position c.572. This finding largely excluded the 

possibility of mutations leading to instable transcripts or the existence of an mRNA that contains 

a premature translation-termination codon (PTC) which could lead to nonsense-mediated decay 

(NMD) of the mRNA. The results suggest that, patient 3 carries a putative pathogenic mutation 

(p.S191I) but without any effect on the patient due to the heterozygous state of the mutation 

and the absence of a second mutation.  

 

Patient 4 showed limb-girdle weakness, benefited from AChE-inhibitor therapy and had no TAs 

in a biopsy of the deltoid muscle. A decremental response was observed in the trapezius muscle. 

This patient carried the compound heterozygous mutations c.*22C>A and c.1649C>T (p.A550V). 

The 3’-UTR mutation c.*22C>A is a recurrent change [65] while the p.A550V variant, localized 

within the isomerase 2 (SIS2) domain (Figure 10), has not yet been published. The 

MutationTaster algorithm (http://www.mutationtaster.org) predicts a “disease causing” effect of 

http://www.mutationtaster.org/
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the mutation on the GFPT1 protein. The mutation is not listed in the Exome Variant Server 

(http://evs.gs.washington.edu/EVS/). 

 

No GFPT1 mutations were identified in the patients with non-fatigable weakness but with tubular 

aggregates in the muscle biopsies (4/15). 

 

3 Characterization of mutant GFPT1 species 

3.1 Investigation of GFPT1 missense mutations 

 

In total, 21 different GFPT1 mutations consisting of 16 missense mutations, three frameshift 

mutations, one nonsense mutation and one in the 3’-UTR were found in 16 unrelated LG-CMS 

families (Figure 7 and 10). GFPT1 mutations had not previously been linked to a human disease 

and the pathomechanism resulting in NMJ and skeletal muscle dysfunction is currently unclear. In 

order to investigate the role of GFPT1 in CMS pathogenesis, selected missense mutations were 

characterized. First of all GFPT1 protein levels were analysed in myoblast cells of GFPT1 patients. 

After that mutant proteins were transiently expressed in SW13 or HEK293 cells and effects on 

expression levels and subcellular localization were assessed. Finally the enzyme activity of GFPT1 

mutants was measured in vitro.   

 

3.1.1 Expression studies of mutant GFPT1 species 

3.1.1.1 Reduced GFPT1 expression in GFPT1-mutated myoblast cells from GFPT1 

patients  

Primary myoblasts were derived from three GFPT1 patients. The immunoblots were performed to 

establish the GFPT1 protein levels in the myoblast lysates using anti-GFPT1 antibody. 

http://evs.gs.washington.edu/EVS/
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Figure 13: Western Blot of GFPT1 and O-GlcNAcylation in myoblast samples of GFPT1 patients. 

Immunoblot was performed on protein samples from primary human myoblasts (MB) obtained from three 

different GFPT1 patients (LGM5.3, 5.5 and 9.3), heterozygous for c.*22C>A, compared to two healthy control 

individuals (ctr1 and ctr2) with an anti-GFPT1 antibody (top). LGM5.3 and 5.5 are compound heterozygous for 

c.*22C>A and c.1475T>C (p.Met492Thr); LGM9.3 is compound heterozygous for c.*22C>A and c.595G>T 

(p.Val199Phe). The RL2 antibody detects single N-acetylglucosamine at serine or threonine residues [123] 

(middle).  The anti-β-actin antibody was used to ensure equal protein loading (bottom).    

 

Western Blot analysis of myoblasts obtained from three GFPT1 patients (LGM5.3, 5.5 and 9.3) 

revealed reduced expression of the mutant GFPT1 protein compared to wild-type controls. 

Furthermore, immunoblotting of protein extracts with the RL2 antibody, which selectively detects 

O-linked N-acetylglucosamine (O-GlcNAc) residues on numerous proteins [123], revealed 

markedly decreased band intensities in myoblasts of GFPT1 patients compared to healthy 

controls. The anti-β-actin antibody visualized equal protein loading (Figure 13).  

 

3.1.1.2 Modulation of GFPT1 affects the levels of O-linked N-acetylglucosamine on 

proteins 

O-GlcNAc, the main product of the hexosamine biosynthetic pathway (HBP) which is regulated by 

GFPT1, is essential for posttranslational modification of serine and threonine residues of nuclear 

and cytoplasmic proteins. Immunoblot analysis of myoblast lysates of GFPT1 patients and 

controls with the RL2 antibody, which selectively detects O-GlcNAc residues on proteins, showed 
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that O-GlcNAcylated proteins were markedly decreased in lysates from the patients’ myoblast 

cells. To examine whether loss of Gfpt1 leads to impaired glycosylation of proteins in cultured 

myoblasts, C2C12 cells were treated with Gfpt1 siRNA to decrease its expression. 

 

 

 

Figure 14: Western Blot of GFPT1 and O-GlcNAcylation in siRNA treated C2C12 cells 

C2C12 cells were treated with control or Gfpt1 siRNA and immunoblotted with an anti-GFPT1 antibody. The RL2 

antibody detects single N-acetylglucosamine at serine or threonine residues [123].  The anti-α-tubulin antibody 

was used to ensure equal protein loading. 

 

Western Blot analyses showed that Gfpt1 siRNA down-regulated endogenous Gfpt1 protein levels 

(Figure 14; Gfpt1 antibody). Silencing with siRNA reduced Gfpt1 protein efficiently (85-90 %) and 

resulted in a reduction of the levels of O-linked N-acetylglucosamine on proteins compared with 

control siRNA (Figure 14; RL2 antibody). 

This experiment also linked reduced amounts of functional Gfpt1 protein to reduced levels of O-

linked N-acetylglucosamine on proteins.  
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3.1.1.3 Transfection studies of wild-type and mutant GFPT1 constructs in HEK293 

cells 

To study the effect of mutations on protein expression levels in a controlled experiment, plasmid 

constructs were generated to express wild-type and mutant myc-tagged GFPT1-L (muscle-

specific variant) protein (p.Arg111Cys, p.Asp43Val, p.Met492Thr, p.Thr15Ala, p.Asp348Thr, 

p.Arg434His and p.Ile121Thr) in HEK293 cells. The cells were co-transfected with the different 

myc-tagged GFPT1 constructs together with a pcDNA3 vector, expressing GFP to estimate 

transfection efficiency. Immunoblot analysis was performed to establish the levels of wild-type 

and mutant myc-tagged GFPT1 protein in HEK293 cells using anti-GFPT1 antibody. 

 

 

Figure 15: Western Blot of GFPT1 in HEK293 cells co-transfected with either the wild-type or 

mutant GFPT1 constructs and GFP. 

The cells were co-transfected with a GFP expression vector for transfection efficiency control.  The cell lysates 

were immunoblotted with an antibody that recognizes the myc-tagged GFPT1 protein. The anti-actin antibody 

was used as loading control and visualized equal protein loading.    
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Figure 16: Expression study 

HEK293 cells were transfected with either wild-type or mutant GFPT1 constructs and GFP. Protein bands (for a 

representative experiment see figure 15) were quantified with the ImageJ program. GFPT1 expression levels were 

normalized to GFP and actin protein amounts. Expression levels of each mutant are compared to that of the wild-

type. Three independent transfection experiments were performed for each mutant and lysates were measured in 

triplicates. Error bars indicate + SD; significant differences from wild-type *P < 0.05.   

 

The amount of myc-tagged GFPT1 protein species was measured by immunoblotting in 

transiently transfected HEK293 cells. Comparison of total myc-tagged GFPT1 amounts in HEK293 

cells transfected with either wild-type or mutant GFPT1 constructs showed a reduction of the 

GFPT1 expression to 83 % for p.Arg111Cys, 58 % for p.Asp43Val and 73 % for p.Met492Thr 

compared to the wild-type GFPT1 amount (Figure 15 and 16). The mutants p.Thr15Ala, 

p.Asp348Thr, p.Arg434His and p.Ile121Thr had no effect on protein expression (Figure 15 and 

16). HEK293 cells transfected only with GFP showed no expression of myc-tagged GFPT1 (Figure 

15). The actin-antibody visualized equal protein loading (Figure 15). 

 

3.1.2 Subcellular localization of mutant GFPT1 species 

Glutaminase and isomerase activities have been attributed to GFPT1 but little is known about the 

regulation and subcellular localization of GFPT1. Mutations that alter protein folding could result 

in abnormal subcellular localization of the mutant protein. To characterize the subcellular 

localization pattern of wild-type and mutant GFPT1-L, SW13 cells were transfected with either 

wild-type or mutant Myc-tagged GFPT1 constructs and investigated by indirect 

immunofluorescence microscopy with appropriate antibodies.  
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Figure 17: Subcellular localization of GFPT1 mutants. 

SW13 cells were transfected with either wild-type or mutant Myc-tagged GFPT1 constructs. Cells were stained 

with a mouse monoclonal antibody that recognizes the Myc-tag, followed by an anti-mouse IgG secondary 

antibody conjugated to a green fluorescent dye (Alexa Fluor 488).  
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Immunofluorescence microscopy using an antibody that recognizes the Myc-tag of the transiently 

expressed GFPT1 species reveals that all mutants show a diffuse cytoplasmic staining pattern 

similar to wild-type GFPT1 (Figure 17). GFPT1 was not detected in the nucleus. At high 

expression levels, some GFPT1 constructs, including wild-type, tend to form aggregates (Figure 

17). This finding is most likely non-specific and rather results from the high non-physiological 

expression level. 

 

3.1.3 Enzyme activity of GFPT1 mutants 

The activity of the rate-limiting enzyme of the hexosamine biosynthetic pathway (HBP), 

Glucosamine-fructose-6-phosphate aminotransferase 1 (GFPT1) was measured in vitro by the 

glutamate dehydrogenase (GDH) method in transiently transfected cells. HEK293 cells were 

transfected with either wild-type or mutant GFPT1 constructs. For this series experiments I 

decided to use untagged GFPT1 as myc-tagged GFPT1 did not exhibit enzyme activity. The aim of 

these studies was to investigate whether GFPT1 missense mutations, observed in LG-CMS 

patients may cause NMJ and muscle pathology through altered enzyme activity.  

 

 

 

Figure 18: Determination of the GFPT activity 

The enzyme activity is measured by quantification of glutamate using glutamate dehydrogenase (GDH) as 

coupling enzyme. Reduction of the 3-acetylpyridine analogue of NAD+ (acetylpyridine adenine dinucleotide, 

APAD) by GDH can be followed spectrometrically by the measurement of the absorbance at 370 nm. 
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Figure 19: Analysis of the enzymatic activity of GFPT1 mutants 

HEK293 cells were transfected with either wild-type or mutant untagged GFPT1 constructs. GFPT1 enzyme 

activity was measured in cell lysates with the glutamate dehydrogenase method 48 h after transfection. The 

enzymatic activity of each mutant was normalized to GFPT1 protein amounts determined by Western blot analysis 

of cell lysates. Three independent transfection experiments were performed for each mutant and lysates were 

measured in triplicates. Error bars indicate + SD; significant differences from wild-type **P < 0.01; ***P < 

0.001. n.s., not significant.  

 

Heterologous expression of GFPT1 mutants and analysis of the GFPT1 enzyme activity using the 

the GDH method revealed that the mutations p.Thr15Ala (relative activity of about 71 %), 

p.Asp43Val (relative activity of about 58 %) and p.Asp348Tyr (relative activity of about 82 %) 

had small effects on enzymatic activity. Furthermore, the mutants p.Arg111Cys (relative activity 

of about 97 %) and p.Arg434His (relative activity of about 88 %) had no statistically measurable 

effect on enzymatic activity. Mock transfected HEK293 cells showed only a low GFPT1 enzyme 

activity (relative activity of about 6 %). This finding correlates with the result that HEK293 cells 

express only low protein levels of endogenous GFPT1 compared to cells transfected with GFPT1 

constructs.  
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4 Investigation of the 3’-UTR mutation c.*22C>A 

 

The c.*22C>A mutation in the 3’-UTR of the GFPT1 gene was identified heterozygously in four 

independent families from Spain and Germany (LGM5, 9, 12 and patient 4). It was determined 

that the 3’-UTR mutation c.*22C>A is associated with reduced amounts of GFPT1 protein levels 

in myoblasts, myotubes and muscle tissue obtained from three patients (Figure 13) [65]. 

Sequence analysis of the GFPT1 cDNA of these patients excluded major degradation of the 

c.*22A mRNA species relative to the mRNA amount transcribed from the 2nd allele [65]. However, 

no absolute quantification of GFPT1 mRNA levels was performed in these patients. Because this 

variant does not alter the GFPT1 open reading frame, its pathogenic relevance has not yet been 

extablished. Therefore, experiments were designed to characterize the pathomechanism related 

to c.*22C>A.  

 

 

 

 

Figure 20: 3'-UTR mutation c.*22C>A in the GFPT1 gene. 

The mutation in the 3’-UTR of GFPT1 has been identified in 3 independent families (LGM5, 9 and 12) by linkage 

and homozygosity data (Table 15). After the identification of GFPT1 mutations in LG-CMS patients, this mutation 

has been identified in one further patient (Patient 4, Table 17). The compound heterozygous state of the 

mutation has been confirmed [65]. The mutation is located after the open reading frame (ORF) of GFPT1, 22 bp 

downstream of the translation termination codon (TGA) in the 3’-UTR (red arrow indicates the position of the 

mutation). Dark shading indicates coding regions, green and red shading indicates untranslated regions and 

introns are shown as a line. Large introns are not shown completely (double vertical lines).    
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4.1 Relative quantification of GFPT1 mRNA in myoblast and 

muscle lysates 

 

As a first experiment, GFPT1 mRNA levels were quantified in total RNA derived from the myoblast 

and muscle samples of GFPT1 patients carrying the c.*22C>A mutation and a missense change 

on the 2nd allele, and control individuals. The mRNA levels were analysed and quantified by real-

time qRT-PCR.  

 

 

 

Figure 21: GFPT1 relative expression in myoblasts. 

Relative expression of GFPT1 mRNA in myoblast samples obtained from GFPT1 patient (LGM5.3, 5.5 and 9.3) 

compound heterozygous for c.*22C>A and two healthy control individuals (ctr1 and 2). LGM 5.3 and 5.5 are 

compound heterozygous for c.*22C>A and c.1475T>C (p.Met492Thr); LGM9.3 is compound heterozygous for 

c.*22C>A and c.595G>T (p.Val199Phe). Transcript levels were analysed by qRT-PCR and normalized to histone 

hH4. Error bars indicate + SD; significant differences from control 2 (ctr2) *P < 0.05. n.s., not significant. 
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Figure 22: GFPT1 relative expression in muscle. 

Relative expression of GFPT1 mRNA in muscle biopsy samples obtained from a control individual (wt) and a 

GFPT1 patient (patient 4 of this study), compound heterozygous for c.*22C>A and c.1649C>T (p.A550V). 

Transcript levels were analysed by qRT-PCR and normalized to histone hH4. Error bars indicate + SD; n.s., not 

significant. 

 

 

The quantification of the GFPT1 mRNA levels in total RNA derived from myoblasts of patients 

with the c.*22C>A mutation (LGM5.3, 5.5 and 9.3) by real-time qRT-PCR revealed no gross 

changes in the GFPT1 mRNA level compared to control individuals (ctr 1 and ctr 2) (Figure 21). 

Consistently, the real-time qRT-PCR analysis revealed almost identical GFPT1 relative expression 

in skeletal muscle of a GFPT1 patient (1.02), compound heterozygous for c.*22C>A and 

c.1649C>T (p.A550V), and a control individual (ctr) (1.0) (Figure 22). A significant difference 

between the GFPT1 transcript level of patients (LGM5.3 and LGM5.5) compared to a healthy 

control individual (ctr2) was observed only in myoblast cells from one family (LGM5) (Figure 21). 

There was no significant difference in all other analysed patients (Figure 21 and figure 22). This 

result indicates that the reduced amounts of GFPT1 protein levels in muscle and myoblast lysates 

(Figure 13) of GFPT1 patients [65] resulted from repression of translation rather than altered 

mRNA stability. 
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4.2 Expression analysis of the 3’-UTR mutation c.*22C>A 

 

To confirm the association of the 3’-UTR mutation c.*22C>A with lower amounts of GFPT1 

protein directly in a controlled experiment, C2C12 myoblasts were transfected with either wild-

type or mutant GFPT1 constructs. The constructs used here contained the GFPT1-L coding region 

and about 100 bp of its endogenous 3’-UTR downstream of the TGA stop codon in wild-type or 

mutant c.*22C>A state.   

 

 

 

 

Figure 23: Western Blot of GFPT1 in C2C12 cells transiently transfected with GFPT1-3’-UTR wt or 

mutant (c.*22C>A) constructs. 

The cells were co-transfected with a GFP expression vector for transfection efficiency control. The intensities of 

the bands were measured and GFPT1 expression was normalized to the GFP and α-tubulin levels. Each bar 

represents the average GFPT1 protein levels observed in n=3 independent experiments in C2C12 cells. Data are 

shown relative to the wt GFPT1 level.  

 

Western Blot analysis of C2C12 cells transfected with either GFPT1 wild-type or mutant 

constructs revealed that the 3’-UTR mutation leads to a significant decrease in GFPT1 expression 

levels compared to wild-type (Figure 23 A, top) confirming the association of GFPT1 c.*22C>A 

with reduced GFPT1 protein levels in a controlled assay. Co-transfection of a GFP expression 

vector shows equal transfection efficiency for both constructs (Figure 23 A, bottom). The 

experiment revealed a reduction in the expression of the mutated construct to 36 % (Figure 23 

B) compared to wild-type (wt). This result confirms the association of GFPT1 c.*22C>A with 

reduced GFPT1 protein levels.  
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4.3 The mutation c.*22C>A creates a miR-600 and miR-206* 

binding site in the GFPT1 3’-UTR 

 

It has been shown that endogenous GFPT1 protein amounts are reduced in myoblasts, myotubes 

and muscle tissue samples of patients with the c.*22C>A mutation [65] and the findings from 

the expression analysis of transfected cells in this study support this observation (Figure 23). On 

the other hand, GFPT1 mRNA levels seemed largely unchanged in a muscle biopsy and myoblast 

samples of patients with the 3’-UTR variant. Thus the pathogenic effect of the 3’-UTR mutation 

may be mediated through downregulation of GFPT1 protein translation. One mechanism of 

expression regulation is miRNA binding to its target mRNA. The binding results in translational 

repression through either the degradation of the mRNA or its translational inhibition. Considering 

the possibility that the 3’-UTR variant may have an effect on the regulation of GFPT1 expression, 

in silico analyses were undertaken and revealed two potential miRNA binding sites.  

 

 

 

Figure 24: Schematic representation of the sequence alignment of the hsa-miR-600 and the miR-

206* with wild-type (wt) and the variant (c.*22C>A) GFPT1 mRNA. 

Bioinformatics tools on http://bioinfo.uni-plovdiv.bg/microinspector/ and http://www.mirbase.org/search.shtml 

revealed that the 3’-UTR mutation c.*22C>A may result in a gain of a putative binding site in the 3’-UTR for both 

the miR-600 and miR-206* miRNA. (A) miR-600 alignment [MIMAT0003268]. The mutation creates a 7mer-A1 

site which is highlighted in grey. The GFPT1 3’-UTR c.*22C>A mutation is shown in red. (B) miR-206* 

[MIMAT0006994] alignment shows imperfect seed pairing, but compensatory pairing in the 3’-region of the 

miRNA. The GFPT1 3’-UTR c.*22C>A mutation is shown in red. Cycles indicate wobble base pairing (G:U), while 

lines indicate Watson-Crick base pairing. The seed region is highlighted in grey. 

http://bioinfo.uni-plovdiv.bg/microinspector/
http://www.mirbase.org/search.shtml
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In silico analysis revealed that the c.*22C>A variant results in a sequence matching the seed of 

mature hsa-miR-600 (5’CUUACA3’; Figure 24 A). The predicted hsa-miR-600 site in the variant 

GFPT1 3’-UTR is a 7mer-A1 seed match type, which comprises the exact seed match (position 2-

7 of the mature miRNA) supplemented by an A across from miRNA nucleotide 1 (Figure 24 A). 

The mutation c.*22C>A changes the 3’-UTR sequence from 5’UGUACG3’ (wild-type) to 

5’UGUAAG3’ (mutant c.*22C>A) generating a perfect match to the seed of hsa-miR-600 (Figure 

24 A). 

In addition, the GFPT1 variant also leads to the gain of a putative binding site on its 3’-UTR for 

miR-206*. There is no perfect seed matching but there seems to be a compensatory base pairing 

site in the 3’-region of the miR-206*. The c.*22C>A variant lies within the compensatory site and 

the C>A change results in an additional Watson-Crick base pairing (A:U) (Figure 24 B).  

 

4.3.1 Hsa-miR-600 controls the expression of mutant GFPT1 

In order to test the interaction between mutant GFPT1 and miR-600, co-expression studies were 

performed. HEK293 cells were transfected with GFPT1-3’-UTR wt or mutant (c.*22C>A) 

constructs together with the empty pENTR vector or with the miR-600 expression vector pEF1-

miR-600. The GFPT1 protein amounts were investigated 24 or 48 h after transfection by Western 

blot analysis with appropriate antibodies. To investigate potential downstream effects of altered 

GFPT1 levels, I made use of the RL2 antibody which recognises single O-GlcNAc modifucations of 

proteins [123].  
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Figure 25: Western Blot of GFPT1 and O-GlcNAcylation in HEK293 cells transfected with GFPT1-3’-

UTR wt or mutant (c.*22C>A) constructs. 

The cells were co-transfected with either an empty pENTR vector or a pENTR vector expressing the hsa-miR-600. 

Cells were lysed either 24 or 48 h after transfection. The RL2 antibody detects single N-acetylglucosamine 

modifications at serine or threonine residues [123].   

 

The microRNA miR-600 downregulates the expression of mutant GFPT1. Co-transfection of the 

mutant GFPT1-3’-UTR construct with the miR-600 expression vector pEF1-miR-600 led to a 

reduction of the mutant GFPT1 protein amount compared with the amount of mutant GFPT1 co-

trasfected with the empty pENTR vector (Figure 25) after 24 hours. Due to the limited lifetime of 

the small microRNA miR-600, no reduction of the mutant GFPT1 protein was observed 48 hours 

after transfection. In contrast, the protein amount of wild-type GFPT1 co-transfected with the 

miR-600 expression vector was almost the same as co-transfected with the empty vector after 24 

and 48 hours. Furthermore, immunoblotting of lysates from co-transfected HEK293 cells with the 

RL2 antibody, which selectively detects O-linked N-acetylglucosamine (O-GlcNAc) residues on 

numerous proteins [123], revealed markedly decreased band intensities when the mutant 
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construct was co-transfected with the miR-600 expression vector. In contrast, compared to the 

band intensities detected with the RL2 antibody after 24 hours (+/- miR-600), the intensities 

were markedly increased after 48 hours when co-transfecting the wild-type construct together 

with the miR-600 expression vector. This result correlates with the higher expression level of 

GFPT1 after 48 hours compared to the expression level after 24 hours (+/- miR-600) and 

confirms that the expression of the miR-600 has no influence on the expression of wild-type 

GFPT1 (Figure 25). 

 

4.3.2 Expression profile of the microRNAs miR-206* and miR-600 

As the expression of microRNAs is spatially and temporally controlled, the expression profile of 

miR-206* and miR-600 was investigated. It is known that miR-206 is highly expressed in human 

skeletal muscle and may play a potential role in myogenesis [124-128]. Its expression is robustly 

induced during the myoblast-myotube transition in primary human myoblasts [129]. However, 

there is no information on the abundance of its star-form miR-206*. Concerning miR-600, there 

is only one publication on the expression of this microRNA in human colorectal cells [130]. 

The microRNAs were quantified by a two-step real-time PCR using the miScript-Reverse 

Transcription kit and the miRNA-SYBR Green PCR Kit. The first step includes polyandenylation 

and reverse transcription of total RNA, followed by real-time PCR. In addition to dissociation 

curve analysis, the PCR products were run on an agarose gel to verify specificity of the 

amplification. 
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Figure 26: Expression profile of miR-206* (A) and miR-600 (B). 

qRT-PCR to detect miR-206* and miR-600 was performed on cDNA samples from muscle biopsies and myoblasts 

(MB) obtained from  GFPT1 patients (pat), heterozygous for c.*22C>A, compared to control (ctr) muscle, human 

myoblasts (MB), myotubes (MT) and C2C12 cells. MB pat (LGM9): compound heterozygous for c.*22C>A and 

c.595G>T (p.V199F); muscle pat (patient 4 of this study): compound heterozygous for c.*22C>A and c.1649C>T 

(p.A550V). PCR products were run on an agarose gel to verify specificity. U6 snRNA was used as normalization 

control. (C) Relative expression of the microRNA miR-600 and miR-206* in muscle samples of the patient. 

miRNAs were detected by qRT-PCR and normalized to U6 snRNA. miScript PCR control primers for U6 snRNA 

show relatively constant expression levels across the different samples. 

 

To determine the abundance of miR-206*, real-time qRT-PCR was performed on RNA samples 

from muscle, myoblasts and myotubes (Figure 26 A). The expression of the miRNAs was 

analysed in samples obtained from GFPT1 patients compound heterozygous for the mutation 

c.*22C>A and control individuals. The miR-206* is robustly expressed in muscle and myoblast 

cells of GFPT1 patients and controls. The star-form is also abundant in C2C12 cells and myotubes 

of controls. Gel electrophoresis analysis of the amplicon confirms the presence of a single specific 

fragment of the expected size (~ 90 base pairs).  

The microRNA miR-600 is also detectable in RNA samples obtained from human muscle biopsies 

and myoblast samples of GFPT1 patients as well as in C2C12 cells (Figure 26 B). Gel 
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electrophoresis analysis of the PCR products revealed the presence of a single specific fragment 

of the expected size (~ 90 base pairs) in the patient muscle biopsy sample, but there was a 

second, non-specific fragment of approximately 110 base pairs in human myoblasts and C2C12 

cells (Figure 26 B).  

The relative quantification by real-time qRT-PCR of the miRNA samples derived from human 

muscle samples showed that the miR-206* is more abundant (~2x) in patients’ muscle biopsies 

than the miR-600 (Figure 26 C). 

 

4.3.3 Relative expression profile of the microRNAs miR-206 and 206* 

 

 

 

Figure 27: Expression profile of hsa-miR-206 and miR-206*. 

Detection of miRNAs hsa-miR-206 and miR-206* in muscle, myoblasts and myotubes. The miRNAs were isolated 

with the miRNeasy Kit. RT-PCR was performed using the miScript SYBR Green PCR Kit containing QuantiTec 

Primer sets specific for hsa-miR-206, oan-miR-206* or U6 snRNA. U6 snRNA was used as an internal control. 

qRT-PCR was performed on cDNA samples from muscle and myoblasts (MB) obtained from two different GFPT1  

patients (pat), heterozygous for c.*22C>A, compared to control (ctr) muscle, human myoblasts (MB), myotubes 

(MT) and C2C12 cells. (A) The PCR products were confirmed by 4 % agarose gel electrophoresis. (B) Relative 

expression of the microRNAs miR-206 and miR-206* in myoblast (MB) and myotube (MT) samples of controls 

(ctr). (C) Relative expression of the microRNAs miR-206 and miR-206* in myoblast (MB) samples of a GFPT1 

patient (pat) and two controls (ctr). MB pat: compound heterozygous for c.*22C>A and c.595G>T (p.V199F); 

muscle pat: compound heterozygous for c.*22C>A and c.1649C>T (p.A550V).  
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The miR-206 is known to be robustly induced during the myoblast-myotube transition in primary 

human myoblasts [129, 131]. Consistent with this, qRT-PCR analysis of myoblast and myotube 

samples of a healthy control individual showed that the miR-206 is more abundant in myotubes 

than in myoblasts (Figure 27 A and B). Furthermore, the qRT-PCR assay revealed also that star-

form miR-206* is detectable in myoblasts and is further upregulated upon differentiation (Figure 

27 A and B) like known from the miR-206. 

In addition, relative quantification showed that both miR-206 and miR-206* are more abundant 

in myoblast (MB) samples of a GFPT1 patient (pat) than in two controls (ctr) (Figure  27 C).  

Gel electrophoresis of qRT-PCR products (miR-206 and miR-206*) confirmed the presence of a 

specific fragment (~ 90 base pairs). No non-specific fragments were observed. miScript PCR 

control primers for U6 snRNA show relatively constant expression levels across the different 

samples (Figure  27 A). 

 

4.3.4 Reporter assay testing the interaction between putative regulatory 

miRNAs and mutant GFPT1 

In order to test the hypothesis that the GFPT1 3’-UTR mutation c.*22C>A leads to the gain of a 

miRNA binding site, a reporter gene assay was performed. This assay offers the opportunity to 

test the interaction between the mutant 3’-UTR and microRNAs directly. 
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Figure 28: Schematic representation of the Renilla luciferase (Ren-luc) expression vectors and the 

GFPT1 gene. 

Four tandem repeats (4xA or 4xC) or a single unit (1xA or 1xC) of an 80 bp sequence around GFPT1 c.*22 with C 

(wild-type; wt) or A (c.*22C>A; mutant; mut) were subcloned downstream of the Ren-luc gene. * indicates the 

position of the mutation (c.*22C>A); (pA): poly(A) signal  

 

Either four tandem repeats (to increase the effect) or a single unit of an 80 bp sequence around 

GFPT1 c.*22 with C (wt) or A (c.*22C>A; mut) were subcloned downstream of the luciferase 

gene (Figure 28). RNAfold programme was used to avoid the occurrence of secondary RNA 

structures that might interfere with miRNA binding due to secondary structures of the tandem 

repeats.  

 

4.3.4.1 Reporter assay for testing the interaction between putative regulatory 

miRNA miR-600 and mutant GFPT1 

Reporter gene assays are widely used to study gene expression. The dual-luciferase reporter 

assay enables the simultaneous expression of the Renilla and firefly luciferase. While the partial 

GFPT1 3’-UTR (wt and c.*22C>A) was cloned downstream of the Renilla luciferase gene (Figure  

24), an empty firefly luciferase reporter vector was used as control. After cell lysis, the firefly 

luminescent signal is measured first by adding the appropriate reagent. After quantifying this 

luminescence, the reaction is quenched, and the Renilla luciferase reaction is initiated. In order to 
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correct for vector-dependent unspecific effects relative reporter activity was obtained by 

normalization to firefly luciferase activity. MiR-mimics are double-stranded miRNA-like RNA 

fragments. Once introduced into the cell, this small RNA fragment mimics an endogenous miRNA, 

binds to its target gene and leads to posttranscriptonal repression of the gene [132, 133].  

Reporter gene vectors and the appropriate miR-mimic (or control) were transiently transfected 

into COS-7 cells and the Renilla luciferase relative to the firefly luciferase activity was measured. 

Since COS-7 cells do not express miR-206 endogenously, miR-206 levels can be easily titrated by 

transfection with a cognate miRNA expression vector, and this cell line was chosen for reporter 

assay experiments [134]. Likewise, the microRNA miR-600 is not abundant in COS cells either.  

 

 

 

Figure 29: Renilla-to-firefly luminescence ratios  

Renilla-to-firefly luminescence ratios observed when co-transfecting COS-7 cells with the luciferase reporter pRL-

4xA (mut) with either 0, 10, 50 or 100 nM miR-600. Error bars indicate +SD obtained from three replicates.  

 

In order to find the right miR-600 concentration for further experiments, dose-response 

experiments of the pRL-4xA (mut) construct and the miR-600 (either 0, 10, 50 or 100 nM) were 

performed. The highest effect (reduction of the signal to ~ 50 %) was achieved with 100 nM 

miR-600 (Figure 29).   
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Figure 30: Renilla-to-firefly luminescene ratios 

Renilla-to-firefly luminescence ratios observed when co-transfecting COS-7 cells with the indicated luciferase 

reporter (pRL, pRL4xC or pRL4xA) and either 100 nM control miRNA, 100 nM miR-600 (A) or 300 nM miR-600 

inhibitor (B). Error bars indicate +SD obtained from three replicates. *: P < 0.05; ***: P < 0.001; **: P < 0.01. 

 

In agreement with the prediction that miRNA miR-600 downregulates the expression of  GFPT1 

c.22*C>A, co-transfection of the reporter constructs (pRL, pRL4xC or pRL4xA) with the miR-600 

led to a highly significant reduction of the pRL-4xA (mut) signal to ~ 66 % of the signal obtained 

with pRL-4xC (wt) or the unmodified pRL (Figure 30 A). On the other hand, when co-transfecting 
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the same reporter constructs with a control miRNA, there was no significant difference between 

luminescence obtained with pRL-4xC, pRL-4xA or unmodified pRL. The pRL-4xA (mut) signal co-

transfected with the miR-600 was significantly decreased to ~ 57 % of the signal obtained with 

the pRL-4xA (mut) construct co-transfected with the control miRNA. As opposed to this, co-

transfection of miR-600 had no significant effect on the pRL-4xC (wt) signal compared to control 

miRNA.  

Addition of a miR-600 inhibitor to cells co-transfected with the pRL-4xA (mut) construct and miR-

600 restored the signal to the level obtained with the pRL-4xA (mut) construct co-transfected 

with the control miRNA (Figure 30 B).  

These results indicate that miR-600 specifically repressed luciferase activity of mutant constructs 

containing the c.*22C>A but had no effect on the wild-type sequence. Moreover, derepression 

was obtained with an inhibitor against miR-600.   

 

The experiments were repeated with luciferase vectors into which a single transcript unit of an 

80bp sequence around GFPT1 c.*22 with either C (wt) or A (c.*22C>A; mut) was subcloned, 

creating constructs pRL-1xC (wt) and pRL-1xA (mut) respectively (Figure 28).  

 

 

Figure 31: Renilla-to-firely luminescence ratios  

Renilla-to-firefly luminescence ratios observed when co-transfecting COS-7 cells with the indicated luciferase 

reporter (pRL, pRL1xC or pRL1xA) and either 100 nM control miRNA or miR-600. Error bars indicate +SD 

obtained from three replicates. *: P < 0.05. 
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The signal obtained from pRL-1xC (wild-type) did not change when COS7 cells were co-

transfected with control miRNA and miR-600, whereas a significant reduction of the pRL-1xA 

(mutant) signal was obtained in cells co-transfected with miR-600 compared to cells 

cotransfected with control miRNA (decrease to ~ 70 %) (Figure 31). However, stronger effects 

were achieved with the tandem constructs (4xC or 4xA).   

 

4.3.4.2 Reporter assay for testing the interaction between putative regulatory 

miRNA miR-206* and mutant GFPT1 

Similar to the experimental setup for the miR-600, the dose-response between the pRL-1xA 

(mut) reporter construct and miR-206* was determined for further experiments. The reporter 

gene vector pRL-1xA (mut) and the miR-206* mimic (or control) were transiently transfected into 

COS-7 cells and the Renilla luciferase relative to the Firefly luciferase activity was measured. 

 

 

 

Figure 32: Renilla-to-firefly luminescence ratios 

Renilla-to-firefly luminescence ratios observed when co-transfecting COS-7 cells with the luciferase reporter pRL-

1xA (mut) and 100 nM miR-206*. Error bars indicate +SD obtained from three replicates.  

 

In agreement with the prediction that miRNA miR-206* downregulates the expression of mutant 

GFPT1, co-transfection of the reporter construct pRL1xA (mut) with 100 nM miR-206* led to a 

highly significant reduction of the pRL-1xA (mut) signal to ~ 58 % of the signal obtained with 
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pRL-1xA co-transfected with the control miRNA (Figure 32). This miR-206* concentration was 

kept for the following experiments.  

 

 

 

 

Figure 33: Renilla-to-firefly luminescence ratios 

Renilla-to-firefly luminescence ratios observed when co-transfecting COS-7 cells with the indicated luciferase 

reporter (pRL, pRL1xC or pRL1xA) and either 100 nM control miRNA or miR-206* oligonucleotide. Error bars 

indicate +SD obtained from three replicates. *: P < 0.05; ***: P < 0.001; **: P < 0.01. 

 

When co-transfecting the reporter constructs (pRL, pRL1xC or pRL1xA) with miR-206*, a 

significant reduction of pRL-1xA (mut) signal to ~66 % of the signal obtained with pRL-1xC (wt) 

was observed (Figure 33). On the other hand, when the same reporter constructs were co-

transfected with a control miRNA, no significant difference between luminescence was obtained 

for pRL-1xC or pRL-1xA. Co-transfection of pRL1xA (mut) and miR-206* yielded ~61 % of the 

signal obtained with the pRL-1xA (mut) construct co-transfected with the control miRNA. As 

opposed to that, pRL-1xC (wt) showed similar signals when expressed together with miR-206* or 

control miRNA. Altogether, the results indicate that miR-206* repressed luciferase activity only in 

case of mutant constructs containing the c.*22C>A site. 
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H Discussion 

 

1 Identification of mutations in the GFPT1 gene in LG-CMS 

patients  

 

Limb-girdle congenital myasthenic syndrome (LG-CMS) is an autosomal recessively inherited 

subform of CMS and a long-recognized entity in the clinical literature [135]. This type of CMS is 

characterized by prominent proximal muscle weakness. Over the past years it became apparent 

that LG-CMS is a less homogeneous entity than previously thought. At least two subgroups of LG-

CMS patients have now been recognized. Mutations in the DOK7 gene were identified as 

underlying genetic defect in one subgroup of LG-CMS patients who do not show tubular 

aggregates in muscle biopsies and do not benefit from acetylcholinesterase (AChE) inhibitor 

treatment [49, 136-138]. The other subgroup responds well to AChE inhibitors and muscle 

biopsies are characterized by the presence of tubular aggregates. Although the identification of 

the molecular defect is of paramount importance as it has direct impact on the clinical 

management of CMS patients, the genetic basis for AChE inhibitor-responsive LG-CMS with 

tubular aggregates has remained unidentified until now. 

In order to identify the underlying genetic defect, we made use of our collection of LG-CMS 

families and performed genome-wide linkage analysis. The genome scan mapped the LG-CMS 

locus on chromosome 2 (2p12-p15) and sequencing of different genes at this locus in selected 

index patients revealed mutations in the GFPT1 gene. In total, 18 different GFPT1 mutations 

consisting of 13 missense mutations, three frameshift mutations, one nonsense mutation and one 

in the 3’-UTR were found in 13 out of the 16 LG-CMS families included in the initial study that 

lead to the identification of GFPT1 as a new CMS gene (Table 15 and figure 7) [65].  

In addition, GFPT1 mutation screening in 15 isolated CMS patients yielded three additional novel 

GFPT1 missense mutations (p.S213N, p.G354R, p.S191I; Figure 10) in three LG-CMS patients. 

The disease causing effect of these mutations on the GFPT1 protein was predicted by the 

MutationTaster algorithm (http://www.mutationtaster.org) [122]. The mutations are not listed in 

the Exome Variant Server (http://evs.gs.washington.edu/EVS/). The parents of these patients 

carried mutations in the heterozygous state. One further missense change (p.S191I) was 

identified heterozygously in a patient without second mutation. Autosomal dominant inheritance 

was excluded since the healthy father of this patient (patient 3) carried the mutation 

heterozygously, too. This change might still be a polymorphism or the second mutation was not 

detectable by standard exon sequencing of genomic DNA. The analysis of the cDNA reverse 

http://www.mutationtaster.org/
http://evs.gs.washington.edu/EVS/


Marina Dusl  DISCUSSION 

 

96 

 

transcribed from muscle RNA of this patient (Figure 11) revealed no second mutation. 

Sequencing of the entire UTRs of the GFPT1 gene might be necessary to further clarify the 

genetic defect of this patient (patient 3).  

 

Up to now, the identified GFPT1 missense or frameshift mutations are spread over the whole 

gene and affect the glutaminase as well as the sugar isomerase domain (Figure 7 and figure 10). 

There seems to be no mutation hot-spot in the GFPT1 gene. In contrast, common mutations are 

well known in other CMS genes. For instance, the overwhelming majority of DOK7 patients 

harbor the common frame-shift mutation c.1124_1127dupTGCC; p.Pro376ProfsX30 in exon 7 on 

at least one allele [19]. Common mutations are also known for the CMS genes CHRNE 

(c.1267delG; exon 12, founder mutation in South-Eastern Europe) [139] and RAPSN 

(p.Asn88Lys; exon 2, founder mutation in patients from Central Europe) [140]. 

 

1.1 Novel pathomechanism in CMS characterized by the defect in 

glycosylation due to GFPT1 mutations  

 

The GFPT1 enzyme is extremely well conserved among species. It catalyses the first and rate-

limiting step of the hexosamine synthesis pathway (Figure 3), transferring an amino group from 

glutamine to fructose-6-phosphate, to produce glucosamine-6-phosphate and glutamate. 

Glucosamine-6-phosphate is subsequently used to synthesise uridine diphospho-N-

acetylglucosamine (UDP-GlcNAc), UDP-N-acetylgalactosamine, and cytidine monophospho (CMP)-

sialic acid. These molecules are essential components for the glycosylation of proteins and lipids.  

The enzyme GFPT1 and the HBP are known to be implicated in signaling pathways that may 

become deregulated in diseases of the immune system, cancer, diabetes mellitus, cardiovascular 

disease and neurodegenerative diseases [97, 141]. However, GFPT1 mutations had not 

previously been linked to a human disease and implicate a novel pathomechanism (impaired 

glycosylation) for NMJ disorders. Many key proteins of the NMJ are glycosylated [142] including 

AChR subunits, agrin, MuSK, dystroglycan and integrins. Furthermore, several proteins are known 

to be O-GlcNAc-modified in skeletal muscle including contractile proteins such as actin and 

myosin [143], but also glycolytic enzymes, signal transduction proteins and heat-shock proteins 

[144, 145]. In addition, it is assumed that O-GlcNAc variations could control the muscle protein 

homeostasis and could be implicated in the regulation of muscular atrophy [145].  

Interestingly, a missense mutation in the epsilon subunit of the AChR (p.S143L) is located at one 

of the N-glycosylation sites of this protein and causes CMS by preventing AChR expression at the 

cell surface [146]. Besides, the treatment with an inhibitor of protein glycosylation (tunicamycin) 
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as well as in vitro mutations of AChR subunits that prevent glycosylation reduce the cell surface 

expression of AChR either through a failure in efficient assembly of the pentameric AChR or 

through a decrease of metabolic stability [147]. Indicating that aberrant glycosylation of NMJ 

proteins may lead to loss of expression of the respective protein.   

In skeletal and heart muscle, the predominant splice variant is called GFPT1-L or muscle-specific 

variant. These variant has a 54 bp insertion compared to the shorter ubiquitous splice variant 

GFPT1 [73]. 

As glycosylation is essential for cell survival, complete loss of the GFPT1 protein would likely be 

detrimental for organs like kidney, pancreas and liver where GFPT1 is the only or predominant 

isoform [73]. For that reason, GFPT1 germline mutations causing LG-CMS are expected to create 

hypomorphic alleles with a residual function of the enzyme rather than resulting in complete loss-

of-function. This is in line with the observation that none of the GFPT1 patients (LGM1-16 and 

patient 1-4) carried two null mutations in the exons 1-19 (constitutive exons) of the GFPT1 gene 

(Figure 7 and Figure 10). The homozygous p.Trp240X mutation (likely to result in severely 

truncated GFPT1 or no protein at all) occurs in an alternative exon (exon 8A; Figure 7), 

exclusively incorporated in the predominant GFPT1 species in striated muscle (GFPT1-L), and is 

therefore supposed to lead to decreased GFPT1 levels only in heart and skeletal muscle. 

Something similar is known from CMS patients with mutations in the subunits of the AChR which 

account for about 50 % of CMS in a cohort of 295 patients [15], indicating that there is a 

correlation between the expression profile of a gene and the severity of mutations in this gene. 

Patients harboring null mutations in both alleles of the α-, β-, or δ-AChR subunits are rare and 

they have a very severe course of the disease with high fatality [15, 17]. In contrast, patients 

harboring null mutations in both alleles of the AChR ε-subunit generally have only mild 

symptoms. An explanation might be that the expression of the fetal γ-subunit partially 

compensates for the absence of the ε-subunit and rescues the phenotype [37, 148].   

 

1.2 Genotype-phenotype correlations 

 

GFPT1 mutations are associated with a myasthenic syndrome (which can be confirmed by 

repetitive nerve stimulation (RNS)), limb-girdle weakness, response to AChE-inhibitor therapy and 

tubular aggregates (TAs) in muscle biopsies whereas facial weakness, respiratory difficulties, 

ophthalmoparesis and ptosis are usually absent. TAs in muscle biopsies are not an obligatory 

finding in patients with GFPT1 mutations. The present data also confirm earlier observations, that 

the genetic causes of TAs are heterogeneous: Sequencing of the three patients with LG-CMS and 

tubular aggregates (families LGM4, 15 and 16 described in [149]; Figure 6) did not reveal GFPT1 
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mutations. Moreover, four patients without a myasthenic syndrome but with TAs in muscle 

biopsies did not reveal GFPT1 mutations either. This finding is in line with the fact that the 

functional significance of TAs in skeletal muscle has not yet been fully understood. It is unknown 

whether they represent pathological structures or compensatory reactions to diverse pathogenic 

events such as periodic paralysis, dyskalaemia, intoxication, inflammatory myopathies, cramps 

and myalgias, myotonia congenita, familial myopathies, and several other myopathies of 

uncertain etiology [68, 69]. TAs were initially thought to originate from mitochondria. However, 

work of several groups has shown that TAs rather arise from the sarcoplasmatic reticulum [70]. 

Patients with TAs but without GFPT1 mutations may still carry cryptic mutations in GFPT1 which 

are not detectable by standard exon sequencing of genomic DNA, or they may carry mutations in 

other, yet unknown genes. Genes encoding enzymes of the HBP pathway downstream of GFPT1 

might be novel candidates for GFPT1-negative LG-CMS patients (LGM4, 15 and 16) or cases with 

TA myopathy.  

 

 

 

Figure 34: Synthesis pathways for the formation of UDP-sugars 

Potential candidate genes for CMS are in red. The figure was adapted and modified from [85, 150].  
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GFPT1 is the key and rate-limiting enzyme for UDP-GlcNAc biosynthesis, the end product of 

hexosamine biosynthesis pathway. This pathway involves other enzymes which might be 

potential candidate genes for CMS. The genes coding for the HBP enzymes Glucosamine-6-

phosphate N-acetyltransferase 1 (GNA1, location of the gene: 14q22.1), phosphoglucomutase 3 

(PGM3, location of the gene: 6q14.1-q15), UDP-N-acteylglucosamine pyrophosphorylase 1 (UAP1, 

location of the gene: 1q23.3) and O-linked GlcNAc transferase (OGT, location of the gene: Xq13) 

might be putative novel CMS candidates (Figure 34).   

On the other hand, potential candidate genes might emerge from a second synthesis pathway for 

formation of UDP-sugars which are also needed for the synthesis of proteoglycans. The end 

product of this pathway is UDP-xylose (UDP-Xyl) which is a sugar donor for the synthesis of 

proteoglycans in mammals [151, 152]. Candidates might be genes coding for enzymes like UDP-

glucose pyrophosphorylase 2 (UGP2, location of the gene: 2p14-p13), UDP-glucose 6-

dehydrogenase (UGDH, location of the gene: 4p15.1) and UDP-glucuronate decarboxylase 1 

(UXS1, location of the gene: 2q12.2).  

 

2 Effects of GFPT1 missense mutations on different protein 

features 

2.1 Mutant GFPT1 expression and localization 

 

Analysis of GFPT1 expression in cultured primary myoblasts and in a muscle biopsy, from GFPT1 

patients revealed reduced GFPT1 protein levels compared to controls (Figure 13) [65]. To study 

the effect of the mutations at the protein level in a controlled experiment, plasmid constructs 

were generated to express wild-type and mutant myc-tagged GFPT1-L (muscle-specific variant) 

protein (p.Arg111Cys, p.Asp43Val, p.Met492Thr, p.Thr15Ala, p.Asp348Thr, p.Arg434His and 

p.Ile121Thr) in HEK293 cells. Immunoblot analysis was performed of the myc-tagged GFPT1-L 

protein. HEK293 cells also express endogeneous GFPT1 but its effect was negligible due to the 

overexpression of transfected GFPT1 and use of an anti-myc antibody which only detects GFPT1 

derived from the transfected constructs. Comparison of total GFPT1 amounts in HEK293 cells 

transfected with either wild-type or mutant GFPT1 constructs showed a reduction of GFPT1 

expression to 83 % of p.Arg111Cys, 58 % of p.Asp43Val and 73 % of p.Met492Thr compared to 

the wild-type GFPT1 amount (Figure 15 and 16). The mutants p.Thr15Ala, p.Asp348Thr, 

p.Arg434His and p.Ile121Thr had no effect on protein expression (Figure 15 and16). In contrast 

to the analysis of the GFPT1 expression in LG-CMS patients, the in vitro transfection studies 

(Figure 15 and 16) revealed only a small effect of the missense mutations p.Arg111Cys, 



Marina Dusl  DISCUSSION 

 

100 

 

p.Asp43Val and p.Met492Thr on protein expression. Compared to the wild-type, the protein levels 

of the mutants were not reduced below 50 %. One explanation might be that for transfection 

studies, the human cytomegalovirus immediate-early gene (CMV) promoter was used instead of 

the endogenous eukaryotic GFPT1 promoter. The CMV promoter induces high-level expression in 

a variety of mammalian cell lines and is probably the most widely used promoter for mammalian 

expression [153]. The artificial high-level expression of the GFPT1 mutants might be the reason 

for the small effect of the missense mutations on the GFPT1 protein levels observed by the 

transfection studies. The use of a promoter region derived from the human skeletal α-actin (HSA) 

gene which is specifically expressed in striated muscles, heart and skeletal muscle and which 

allows low-level expression [154, 155] might overcome this artificial situation.  

The subcellular localization of mutant GFPT1 species (p.Thr15Ala, p.Asp43Val, p.Arg111Cys, 

p.Ile121Thr, p.Asp348Tyr, p.Arg434His and p.Met492Thr), transiently expressed in SW13 cells 

was almost identical to that of wild-type GFPT1 (Figure 17). Altogether, reduced expression of 

mutant GFPT1 protein species is a likely molecular pathomechanism although I could not confirm 

these data in in vitro transfection studies.            

 

2.1.1 Reduced GFPT1 amounts result in reduced O-GlcNAc modification 

Two experimental approaches link reduced amounts of functional GFPT1 protein to reduced 

levels of O-GlcNAc modified proteins. Immunoblot analysis of muscle and myoblast lysates of 

GFPT1 patients and controls with the RL2 antibody, which selectively detects O-GlcNAc residues 

on proteins, showed that O-GlcNAcylated proteins were markedly decreased in lysates from the 

patients’ myoblasts and muscle biopsies (Figure 13) [65]. In addition, knockdown of Gfpt1 

expression in C2C12 cells treated with Gfpt1 siRNA also resulted in a reduction of the levels of O-

linked N-acetylglucosamine on proteins (Figure 14). This is in line with earlier observations of 

others: blockage of GFPT using pharmacological and antisense strategies resulted in a decreased 

RL2 signal on intracellular proteins in Rat aortic smooth muscle (RASM) cells [156]. The 

prominent protein band that is differentially O-GlcNAcylated in immunoblots in both experiments 

(Figure 13 and Figure 14) is most likely heat shock protein 70 (Hsp70). Hsp70 has been shown to 

be O-GlcNAcylated in L6 myotubes (a model of skeletal muscle) [157].  

 

Altered protein glycosylation is a new potential pathomechanism underlying defects of NMJ 

transmission in LG-CMS patients. It is likely that GFPT1 deficiency does not only influence O-

GlcNAcylation of intracellular proteins but may also directly affect clustering of the ACh receptor 

(AChR) and the structure of the NMJ. It has been shown that correct glycosylation of agrin and 

MuSK is necessary to induce clustering of AChRs at the NMJ [158-160]. Furthermore, a mutation 
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in the ε-subunit of the AChR (p.S143L) is located at one of its N-glycosylation sites [146]. It could 

be shown that this mutation causes CMS by preventing AChR expression at the cell surface which 

indicates that aberrant glycosylation of NMJ proteins may lead to loss of expression of the 

respective protein and thereby to a neuromuscular disorder.  

Defects in O-GlcNAcylation have also been described in other pathologies, including Alzheimer’s 

disease. Several proteins that have been thought to be involved in this neurodegenerative 

disease (e.g. tau and the β-amyloid precursor protein) are modified by O-GlcNAc and there is 

some evidence that reduced O-GlcNAc levels are associated with the disease [161]. 

 

2.2 Mutant GFPT1 enzyme activity  

 

GFPT1 catalyses the first step in de novo biosynthesis of hexosamines. To analyse the impact of 

mutations on GFPT1 enzymatic activity, the wild-type long isoform GFPT1-L containing a striated 

muscle-specific 18 amino acid insert was cloned into an expression vectors. Different GFPT1 

mutants were generated by site directed mutagenesis. Heterologous protein expression of the 

GFPT1 mutants p.Thr15Ala, p.Asp43Val and p.Asp348Tyr in HEK293 cells had only small effects 

on enzymatic activity and the mutations p.Arg111Cys and p.Arg43His had no effect at all (Figure 

19). Based on the structural model of the Escherichia coli ortholog for GFPT1 (GlmS) and the 

crystal structure of the isomerase domain of human GFPT1 [80], no functional consequences can 

be predicted for the GFPT1 missense mutations analysed in this study. Consistently, no gross 

changes in enzyme activity were observed for GFPT1 mutants by the glutamate dehydrogenase 

(GDH) assay (Figure 19).  

It is still conceivable that use of an alternative enzymatic assay might reveal activity changes of 

GFPT1 mutants. Three methods have been developed to measure the GFPT1 enzyme activity. In 

the present study, the glutamate dehydrogenase (GDH) method has been used. This method 

allows continuous determination of the GFPT1 activity with limited effort but also with less 

specificity. As the glutamate production is not always coupled to the amidotransferase activity of 

GFPT1, the GDH method has its limitations in screening inhibitors of the fructose-6-phosphate 

binding site of GFPT1 [162]. This method has been used since our laboratory was fully equipped 

with all required facilities.      

The most frequently used assay is the highly specific and relatively sensitive Elson-Morgan 

method [163, 164]. It is based on N-acetylation of the amino sugar phosphate, incubation in 

alkaline potassium tetraborate solution and condensation with p-dimethylaminobenzaldeyde. The 

third step leads to the formation of a purple product which has the absorption maximum at 595 

nm. The third method is the most sensitive one and based on a radiometric assay [165] which 
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allows the determination of picomolar amounts of GFPT1. However, this assay is very laborious 

and technically demanding.    

 

3 A 3’-UTR mutation creates a microRNA target site in the 

GFPT1 gene of LG-CMS patients 

 

3’-untranslated regions (UTRs) are involved in diverse regulatory roles at multiple levels. They 

play an important role in gene expression regulation by determination of mRNA 

stability/degradation, subcellular localization, nuclear export and translation efficiency [166-168]. 

The analysis of 3’-UTRs of some 17,700 human genes identified about 100 highly conserved 

motifs in human 3’-UTRs by comparison of several mammals. Many of them (about one-half) 

turned out to be microRNA target sites and the results suggested that at least 20 % of human 

genes are regulated by miRNAs [169]. Currently, mutations within proximal gene regulatory 

regions comprises only approximately 1.7 % of known mutations associated with human 

inherited disease [170]. However, this might be an underestimation as 3’-UTRs are less likely to 

be sequenced for mutations in research testing or routine diagnostic procedures especially if they 

are large.  

One of the identified GFPT1 mutations in four independent families from Spain (LGM5 and 12) 

and Germany (LGM9 and patient 4) was a 3’-UTR mutation c.*22C>A. In all four families, the 

mutation was compound heterozygous to missense or protein truncating mutations. The 

c.*22C>A variant lies 22 bp after the TGA translation termination codon in the 3’-UTR of the 

GFPT1 gene. Western blot analysis revealed that GFPT1 mutations generally lead to reduced 

GFPT1 protein levels in patient muscle and cultured muscle cells [65] and this was observed for 

patients of LGM5 and LGM9 with the c.*22C>A mutation as well (Figure 13). Nevertheless, the 

pathogenic mechanism of the c.*22C>A mutation which is located after the open reading frame 

(ORF) (Figure 20) of GFPT1 remained unclear. Transfection experiments in C2C12 cells linked the 

3’-UTR mutation directly to a reduced GFPT1 protein level in a controlled experiment (Figure 23 

A). Compared to wild-type, the expression level of the mutant construct was reduced to 36 % 

(Figure 23 B). Several expression regulation mechanisms have to be taken into account in order 

to further clarify the pathomechanism of the 3’-UTR mutation. 

One mechanism of expression regulation is based on miRNA binding to its target mRNA. These 

small non-coding RNAs participate in post-transcriptional regulation through imperfect sequence 

complementarity to the 3′-untranslated regions of the target mRNAs. The binding results in 

translational repression through the degradation of the mRNA or translational inhibition [171]. 

Encoded by nuclear DNA, primary miRNAs (pri-miRNAs) are processed to precursor miRNA (pre-
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miRNA) hairpins and transported to the cytoplasm where they are cleaved by Dicer, resulting in 

miRNA duplexes of about 21-23 nucleotides. Subsequently, the strands are selectively loaded into 

the RNA-induced silencing complex (RISC) [171, 172]. Strand selection correlates with the 

thermodynamic stability of each end of the duplex [173-175]. The more abundant and 

biologically active strand is called miRNA, whereas its less abundant partner and inactive strand is 

known as the star-form miRNA (miRNA*) [172, 176]. Since the star-form is rarely expressed, the 

functions of the miRNA* have not been taken into account [177]. However, recent studies 

revealed that some miRNA* species are relatively abundant in total RNA and that the star-form 

miRNAs may also have an important regulatory function [176-178]. In addition, miRNA/miRNA* 

ratios seems to vary dramatically among developmental stages [174, 179, 180]. 

In this study, the pathogenic effects of the c.*22C>A mutation in the 3’-UTR of the GFPT1 gene 

was investigated and the hypothesis that this mutation might interfere with microRNA-mediated 

gene regulation was confirmed.  

 

3.1 The GFPT1 3’-UTR mutation leads to the gain of a putative 

binding site for microRNAs 

 

Computer algorithms predicted that miR-600 and miR-206* would bind to the mutant GFPT1 

mRNA. The predicted microRNA binding site is present in the GFPT1 3’-UTR and alignments of 

the 3’-UTR of GFPT1 mRNA and the predicted microRNAs confirmed increased probability for 

miRNA binding to the mutant mRNA (Figure 24). The predicted miR-600 site in GFPT1 mutant 3’-

UTR is a 7mer-A1 seed match type (an exact match to positions 2-7 of the mature miRNA 

followed by an Adenine; Figure 24). Four types of seed-matched sites are known to be selectively 

conserved [181]: 6mer, 7mer-m8, 7mer-A1 and the 8mer site with the following hierarchy of site 

efficacy: 8mer > 7mer-m8 > 7mer-A1 > 6mer [182, 183]. Although there is no perfect miR-

206*:mutant GFPT1 mRNA seed matching (position 2-7 of the mature miRNA) there seems to be 

a compensatory base pairing site in the 3’ region of the miR-206* (Figure 24). Perfect miRNA 

seed matches are often necessary and sufficient for target regulation [184-187] and they are the 

basis of most of the genome wide predictions of miRNA binding sites [188-190]. However, recent 

studies presented 3’-supplementary, 3’-compensatory pairing and “centered sites” as new classes 

of microRNA target sites [182, 191]. The 5’ region of the microRNA, containing the seed region, 

is the most highly conserved region of the mature miRNA and it is therefore the most important 

site for target recognition [188, 192]. The next most highly conserved region spans from 

nucleotides 13 to 16. It is the region most important for 3’-supplementary and 3’-compensatory 
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pairing [182]. Centered sites lack both, perfect seed pairing and 3’-compensatory pairing, and 

instead have 11–12 contiguous Watson–Crick pairs to the center of the microRNA [191].   

 

3.1.1 Dual-luciferase reporter assays support the hypothesis that the 

GFPT1 3’-UTR mutation c.*22C>A leads to reduced GFPT1 protein 

amounts 

In order to test the interaction between the mutant GFPT1 transcript and the microRNAs directly, 

dual-luciferase reporter assays were performed. COS-7 cells were co-transfected with control 

miRNA, miR-600 or miR-206* mimics and reporter constructs containing wild-type or mutant 

GFPT1 3’-UTR sequences downstream of a luciferase reporter gene. In agreement with the 

predictions the mutant reporter constructs co-transfected with either miR-600 or miR-206* 

yielded significantly diminished reporter signals compared to the signal obtained by co-

transfection with the control miRNA (Figure 30 A and 33). Therefore, the results support a model 

in which the point mutation c.*22C>A in the GFPT1 3’-UTR creates a target site for two miRNAs, 

miR-600 and miR-206*, which influence GFPT1 expression.  

Up to now, there are only a few examples which link gene expression regulation through miRNAs 

and human diseases. A mutation in the 3’-UTR of the HDAC6 gene located in the seed region of 

hsa-mir-433 has been shown to abolish post-transcriptional regulation in a patient with X-linked 

chondrodysplasia [193]. In patients with Tourette syndrome, a variant in the 3′-UTR of the 

SLITRK1 gene was found to create a hsa-miR-189 binding site with higher affinity leading to 

repression of SLITRK1 expression [194]. Furthermore, miRNAs (miR-140 and miR-691) might be 

involved in the pathogenesis of hereditary spastic paraplegia (HSP) as they regulate expression of 

the HSP gene REEP1 [195, 196]. In the future, the identification of functional miRNA targets 

could greatly benefit from new assays based on crosslinking immunoprecipitation (HITS-CLIP). 

Recently, sequence analysis of RNAs isolated by HITS-CLIP has led to the identification of 

functional interaction sites [197]. 

 

3.2 Repression of translation results in reduced GFPT1 protein 

amounts in LG-CMS patients 

 

Quantification of GFPT1 mRNA levels in total RNA samples derived from myoblast and muscle 

samples of GFPT1 patients compound heterozygous for c.*22C>A, and control individuals (Figure 

21 and 22) indicates that the reduced amounts of GFPT1 protein levels in myoblast and muscle 
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lysates reported in the study (Figure 13) [65] resulted from repression of translation rather than 

altered mRNA stability. Compared to immunoblot results which revealed markedly reduced GFPT1 

protein level in GFPT1 patients (Figure 13), the effects on GFPT1 mRNA level are less distinct 

(Figure 21 and 22). Therefore, control of translation might be rather the pathogenic effect of the 

mutation than degradation of the target mRNA. It has been shown that destabilization of target 

mRNA by microRNAs account for most (>/=84 %) of the reduced protein expression. This study 

indicates that altered mRNA levels might reflect the impact of miRNAs on gene expression [198]. 

Reduced GFPT1 protein levels seem to result from repression of translation rather than 

degradation of the mRNA. Although most miRNAs act through destabilization of target mRNA, 

other miRNAs have been shown to affect translation. In a recent study about 16 % of the 

analysed miRNAs decrease translational efficiency of the target mRNAs [198]. Furthermore, it has 

to be taken into account that the GFPT1 patients (LGM 5 and 9) carry a 2nd GFPT1 mutation on 

the other allele (Table 15) and that the reduced GFPT1 protein amounts (Figure 13) [65] and the 

effects on the mRNA level in myoblast (Figure 21) und muscle lysates (Figure 22) reflect the 

impact of both mutations.   

 

3.3 c.*22C>A mutation allows for illegitimate binding of miRNA 

  

Several results confirm that the c.*22C>A mutation in the 3’-UTR is a causative mutation 

resulting in reduced protein expression. First of all, the mutation (LGM5 and LGM9) was 

associated with reduced amounts of GFPT1 in lysates of patients’ myoblast cells (Figure 13). 

Secondly, the mutation was found in four unrelated families (LGM5, 9, 12 and patient 4) and the 

c.*22C>A mutation was absent in a large number of control chromosomes [65]. Furthermore, 

experiments with expression constructs revealed a link between the 3’-UTR mutation and 

reduced GFPT1 protein amounts in C2C12 cells experimentally (Figure 23).  

Impaired glycosylation due to reduced amounts of functional GFPT1 protein (observed in two 

experimental approaches, Figure 13 and Figure 14) is presumably the pathogenic mechanism of 

GFPT1 mutations. Therefore, the co-transfection studies of the mutant GFPT1-3’-UTR construct 

with the miR-600 expression vector which revealed a functional effect on protein glycosylation 

(Figure 25) strongly suggest that the c.*22C>A mutation is a causative mutation. 
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3.4 Potential role of miRNA-206* and miR-600 in skeletal muscle 

 

MiR-206 has previously been shown to be strongly expressed in skeletal muscle and only rarely 

detectable in the heart [124-127, 199]. This skeletal muscle-specific expression of miR-206 sets it 

apart from the other myomiR (myo = muscle + miR = miRNA) family members [128]. So far, 

there is no information on the fate of its star-form miR-206* which I identified as a potential 

regulator of GFPT1 expression from the c.22*C>A allele.  

For the majority of miRNAs, only one strand (guide strand) of the double-stranded (ds) miRNA 

duplex is loaded into RISC while the other strand (star, *) is degraded rapidly [172, 200-202]. 

However, deep sequencing studies indicate that a large number of miRNA*s are loaded into the 

RISC and that the relative expression levels of the two strands vary widely among tissues [177, 

203-206]. It was proposed that the relative instability of the duplex termini determines which 

strand will be loaded. If both termini of the miRNA have almost the same stability, both strands 

might be selected [172]. An alternative model is proposed for miRNAs for which the two selected 

strands do not make a perfect miRNA duplex (with 2 nt overhangs) with similar stability on both 

termini. In this situation, the mature miRNA sequence, especially at the 5’ end is no longer fixed 

[207].    

To analyse the abundance of miR-206*, real-time qRT-PCR was performed of myoblast, myotube 

and muscle cDNA samples. Mature miR-206* is well detectable in muscle, myoblast and myotube 

samples obtained from GFPT1 patients and control individuals (Figure 26 A and 27 A). MiR-206 is 

known to be a critical regulator of skeletal muscle differentiation and regeneration [129, 131, 

208]. Recently, it has been shown that miR-206 is upregulated following muscle injury and it has 

been indicated that miR-206 slows progression of Duchenne muscular dystrophy [208]. The 

present thesis revealed that the miR-206* is also upregulated upon differentiation (Figure 27 A 

and B) and that both, the miR-206 and the star-form are more abundant in GFPT1 patients’ 

myoblasts than in controls (Figure 27 A and B). One may speculate that upregulation of miR-

206* is a similar generalized protective mechanism activated in diseased skeletal muscle. 

However, in the particular setting of the GFPT1 3’-UTR mutation allowing for improved binding of 

miR-206* this upregulation might initiate a vicious circle by further reducing the availability of 

functional GFPT1 in the cell instead of alleviating the disease process.  

The miR-600 expression has been reported in human colorectal cells [130], but not in muscle so 

far. The results of the present study showed the presence of hsa-miR600 in human muscle 

obtained from a GFPT1 patient heterozygous for c.*22C>A and c.1649C>T (Figure 26 B), 

suggesting a physiological role in the skeletal muscle. However, gel electrophoresis analysis of 

the PCR products revealed the presence of a second, non-specific fragment of approximately 110 

base pairs in human myoblasts and C2C12 cells (Figure 26 B).   
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To date, several methods have been utilized for detection and quantification of miRNAs. They are 

largely based on cloning, northern blotting [209], or primer extension [210]. In this study, the 3’-

end of the miRNAs were first tailed with a common sequence by the E.coli Poly(A) Polymerase 

(PAP) [211] and then reverse transcribed by using a universal primer consisting of an oligo(dT) 

sequence with an universal primer-binding sequence at its 5’-region. A qPCR assay was used to 

detect and quantify the specific miRNAs by a miRNA-specific and a universal primer. The qPCR 

products were detected by using SYBR Green. False positive signal may arise from closely related 

miRNAs, precursors and genomic sequences. For instance, the target sequence is present in the 

primary transcript and the precursor, in addition to the mature miRNA [212]. Furthermore, SYBR 

Green binds to all dsDNA, including unspecific products such as primer-dimers [213]. In future, 

the presence of the non-specific hsa-miR600 amplification product has to be elucidated by 

optimization of the used detection method or by the use of another method (e.g. TaqMan 

probes).       

 

4 Expected consequences for human pathology diagnosis 

and therapy 

 

In general, a precise molecular classification of CMS is of paramount importance for the 

diagnosis, counseling and therapy of a patient. The identification of the molecular defect has 

direct impact on the clinical management of CMS patients [214]. In this thesis, it has been shown 

that mutations in a gene encoding an enzyme of a glycosylation pathway (GFPT1) underlie a 

form of congenital myasthenia with a limb-girdle pattern of weakness. In other fields of medicine, 

congenital disorders of glycosylation (CDGs) have been recognized as a rapidly expanding group 

of inherited disorders with a large spectrum of multisystemic phenotypes that are mostly 

combined with severe central neurological impairment [215]. 

However, glycosylation defects have not been considered to be implicated in disturbed signal 

transmission at the neuromuscular junction. Therefore, further research into the role of 

glycosylation in neuromuscular transmission may help in understanding synaptic processes.  

Thanks to its size and easy accessibility the NMJ is usually considered as a model synapse. Thus, 

understanding the correlation between inaccurate protein glycosylation and disturbed signal 

transmission at the neuromuscular junction might provide a helpful model for studying general 

aspects of glycosylation processes at central nervous system synapses. Although several findings 

suggest a postsynaptic origin of the neurotransmission defect in GFPT1 patients, it is important to 

clarify if it is indeed primarily postsynaptic or presynaptic, or a combination of pre- and 

postsynaptic abnormalities. This finding could be the basis for potential novel treatment options.    
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Traditionally, only 0.2 % of disease-associated mutations have been estimated to reside within 

3’-UTR [216] but recent findings suggest a higher rate. The data of the present thesis point 

toward the importance of extending molecular genetic analyses to UTRs, especially when only 

one heterozygous mutation is found in a recessive disease. In turn, interfering with miR-600 and 

miR-206* activity could provide a therapeutic option for patients with the c.*22C>A mutation. 

Sponge constructs and/or antagomirs against miR-600 and miR-206* might be tested for 

recovering GFPT1 protein levels in muscle.  

 

Administration of glucosamine might be an alternative treatment option for CMS patients with 

GFPT1 mutations. Glucosamine enters the hexosamine pathway downstream of the rate-limiting 

step catalyzed by the GFPT1 enzyme. It has been shown that when GFPT1 is bypassed by 

glucosamine it is able to elevate the O-GlcNAc levels in 3T3-L1 adipocytes [217]. Another 

strategy could be the treatment with saturated fatty acids. It has been shown that GFPT mRNA 

expression in primary myotubes can be upregulated by addition of the saturated fatty acids 

palmitate and stearate [218].  

 

Since the identification of the first CMS genes it has been recognized that biochemical studies of 

CMS-causing mutations may lead to a better understanding of the molecules involved in signal 

transmission at the NMJ and they may be useful to develop potential novel therapeutic 

approaches. This is especially true for the discovery of a defect in glycosylation as a previously 

unrecognized pathomechanism in a synaptic transmission disorder. 
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Declaration of contributions to “Identification of GFPT1 Mutation in LG-CMS patients” 

Genome-wide linkage analysis using the Illumina 300 K chip (Illumina, San Diego, CA) was 

conducted by Dr. Tim-Matthias Strom (Munich, Germany) (Results 1.2). DNA sequencing of 

positional candidate genes was performed in collaboration with Prof. Dr. Jan Senderek’s 

laboratory in Aachen, Germany (Results table 14; mutation analysis). I evaluated the clinical data 

(Results 1.1.1), analysed the pedigrees (Results 1.1.2) and performed the extended mutation 

screening in additional families in our cohort (Results 1.3). These data are published by Senderek 

et al., 2011. For this publication, I also contributed the generation of the plasmid constructs used 

in this study (table 2), the enzyme activity assays (Results 3.1.3), the subcellular localization 

studies (Results 3.1.2) and the analysis of the results. 
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K Abbreviations  

 

aa    amino acid 

ab    antibody 

Acetyl-CoA  Acetyl-CoenzymeA 

ACh   Acetylcholine 

AChE/ACHE   Acetylcholinesterase/gene  

AChR   Acetylcholine receptor (nicotinic)  

αAChR   Acetylcholine receptor, alpha-subunit 

βAChR   Acetylcholine receptor, beta-subunit 

δAChR   Acetylcholine receptor, delta-subunit 

γAChR   Acetylcholine receptor, gamma-subunit 

εAChR   Acetylcholine receptor, epsilon-subunit 

BCA   bicinchonin acid 

BLAST   basic local alignment search tool 

bp    base pair/s 

BSA   bovine serum albumin 

°C   Grad Celsius  

cDNA    complementary DNA 

ChAT/CHAT  Cholin-Acetyltransferase/gene 

CHRNA1  gene coding for the alpha-subunit of the AChR 

CHRNB1  gene coding for the beta-subunit of the AChR 

CHRND   gene coding for the delta-subunit of the AChR 

CHRNE   gene coding for the epsilon-subunit of the AChR 

ColQ/COLQ  collagen tail/gene 

CMS   Congenital myasthenic syndrome 

CSK   cytoskeletal buffer  

d   day/s 

ddH2O    double-distilled water 

DMSO   dimethyl sulfoxide 

DNA    deoxyribonucleic acid 

dNTPs   mixture of all 4 deoxy ribonucleotides dATP, dTTP, dCTP, dGTP 

DTT   Dithiothreitol 

E.coli   Escherichia coli 

EDTA   ethylenediaminetetraacetic acid 
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ELISA   enzyme-linked immunosorbent assay 

HEK   Human embryonic kidney  

e.g.    exempli gratia, for example 

et al.    et alii, and others 

etc.    et cetera 

FCS   fetal calf serum 

g    gram 

GAPDH   Glyceraldehyde 3-phosphate dehydrogenase 

GFP    green fluorescent protein 

GFPT1/GFPT1  glutamine-fructose-6- phosphate transaminase 1/gene (human) 

Gfpt1/Gfpt1  glutamine-fructose-6- phosphate transaminase 1/gene (mouse) 

GFPT1-L/GFAT1-L muscle-specific variant of glutamine-fructose-6- phosphate transaminase 1 

h    hour/hours 

hpf    hours post fertilization 

HRP   horseradish peroxidise 

hsa   Homo sapiens    

IF   Immunofluorescence 

l    liter 

kb   kilobase 

kDa    kilodaltons 

LB    Luria-Bertani 

LOD   Logarithm of odds 

min    minutes 

M    molar 

ml    millilitre 

mM    millimolar 

mRNA    messenger ribonucleic acid 

MuSK/MUSK  Muscle specific kinase/gene 

mut   mutant 

Myc   myelocytomatosis oncogene 

ng    nanogram 

nm    nanometer 

NTPs    nucleotide triphosphate mixture containing adenosine, guanidine, 

uridine and cytosine 

oan   Ornithorhynchus anatinus   

o.n.    over night 
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ORF    open reading frame 

PBS   phosphate buffered saline 

PCR    polymerase chain reaction 

PMSF   phenylmethylsulfonyl fluoride 

pol    RNA-polymerase II 

qRT-PCR  quantitative reverse transcription PCR 

Rapsyn/RAPSN  Receptor-associated protein of the synapse/gene 

RNA    ribonucleic acid 

rpm    revolutions per minute 

rt    room temperature 

RT    reverse transcription 

RT-PCR   reverse transcription polymerase chain reaction 

SCCMS   Slow-Channel CMS 

SCN4A   gene coding for the sodium channel 

sec    seconds 

SNP   Single nucleotide exchange polymorphism 

TE   Tris-EDTA 

Tris   Tris-(hydoxymethyl)-amminomethan  

UTR   untranslated region  

wt    wild-type 

WB   Western blot 

μg    microgram 

μl    microliter 

μM    micromolar 
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