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I. INTRODUCTION 

Cancer is a main cause of disease provoking high morbidity and mortality worldwide. In 2012, 

8.2 million cancer-related deaths and estimated 14.1 million new cases arose compared to 7.6 

million and 12.7 million in 2008, respectively [1, 2], and the incidence of new cases is even 

predicted to increase to 22.2 million by 2030 [3]. Treatment options including chemotherapy, 

radiotherapy, surgery, immunotherapy or hormone therapy often have an insufficient success 

rate and side effects, therapy resistance and metastasis formation implicate an urgent 

improvement and further research in cancer therapy. Therefore, two fields of interest, tumor 

targeted gene delivery and chemoresistance, have been focused and are illustrated in the 

following.          

 

1. Polymeric nucleic acid carriers for tumor targeted gene delivery 

1.1. Nucleic acid therapy 

Treatment of diseases caused by genetic alteration is made possible via gene therapy. Medicinal 

nucleic acids offer the possibility to manipulate gene expression in a controlled manner [4] in 

order to treat genetically-based diseases like monogenetic, infectious, cardiovascular, 

neurological, ocular and inflammatory disorders or cancer [5], whereas viral vectors have 

mainly been used as delivery vehicles. These agents can induce gene expression by plasmid 

DNA (pDNA) resulting in a “gain of function” or trigger gene silencing by antisense 

oligonucleotides or synthetic small interfering RNA (siRNA) mediating a “loss of function” 

[4]. Cancer diseases have been focused for gene therapy [5] whereas the major paths to achieve 

therapeutic effects are silencing of genes responsible for tumor growth, metastasis or cell 

survival and introduction of genes hampering cellular growth by apoptosis [6, 7]. Remarkable 

success has already been achieved with gene therapy of patients suffering from hemophilia B 

[8] or severe combined immunodeficiency (SCID) [9], yet it’s still limited therapeutic use so 

far is based on the inefficient delivery of nucleic acids [10]. 

Application of naked nucleic acids without a carrier is only rarely effective such as upon 

intramuscular vaccination or hydrodynamic delivery of naked pDNA [11, 12]. After systemic 

application nucleic acids face many bottlenecks on the way towards their site of action. In the 

extracellular environment they have to be protected against enzymatic degradation by nucleases 

[13], complement activation and unspecific interactions with blood components and matrix 
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[14]. Once reaching the target tissue nucleic acids have to overcome the cell membrane being 

internalized into the endosomes [15]. Finally intracellular, they have to escape from the 

endosomes into the cytosol since these will change later into lysosomes where nucleic acid 

digestion takes place. siRNA is already on target in the cytosol by incorporation into the RNA-

induced silencing complex (RISC) and hence, after separation of the strands, suppresses the 

gene expression by degrading or blocking translation of target mRNA [16]. For pDNA, further 

transport to the nucleus is required to mediate gene expression (Figure 1). This illustrates 

another bottleneck of plasmid delivery because the cellular actin cytoskeleton hinders the 

translocation of pDNA to the perinuclear region [17, 18]. Moreover, passive nuclear uptake can 

only occur during cell division in proliferating cells when the nuclear membrane is degraded. 

In non-dividing cells for particles larger than 9 nm, which therefore cannot pass the membrane 

via passive diffusion, an active nuclear import through the nuclear pore complex (NPC) is 

necessary which can be achieved with the help of short peptide sequences, called nuclear 

localization signals (NLS) [19, 20].  

 

 

1.2. Carrier systems for gene delivery 

Carriers for gene delivery can generally be classified into viral and non-viral vectors [21]. Viral 

vectors randomly integrate into the genome and can therefore be used as delivery agents for 

therapeutic genes. However, their very high transfection efficacy is clouded by safety issues 

limiting therapeutic use. Viruses can have immunogenic and inflammatory effects hampering 

Figure 1: Steps of siRNA and pDNA delivery. Polyplexes are taken up into the tumor cell 

via endocytosis. After escaping the endosome siRNA is released into the cytosol and 

incorporated into the RISC complex. For successful gene expression from pDNA further 

transport to the perinuclear region and nuclear import of pDNA is essential. 
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repeated applications. Besides, limited payload capacity and difficulties to produce them in high 

amounts are further disadvantages of viruses [22]. To conquer these limitations synthetic non-

viral carriers have attracted attention as a promising alternative. Carriers synthesized from 

various natural and synthetic molecules can be tailored to specific needs and mimic functions 

and surface domains of viruses to avoid unspecific biological interactions and mediate specific 

targeting of host cells [23]. Especially liposomes [24] and polymers [22, 25] have emerged as 

promising candidates for gene delivery. The negative charge of the nucleic acid backbone 

allows electrostatic interactions with the cationic liposomes or polymers which results in 

condensed complexes also called “lipoplexes” and “polyplexes” [26]. As a result of neutralizing 

the negative charges, DNA collapses into smaller structures than its free form which is up to 

µm large in size [27]. The condensation leads to small nanoparticles susceptible for endocytosis 

[28]. The most widely studied cationic polymers are polypeptides such as polylysine (PLL) [29] 

or polyethylenimine (PEI) [30, 31] and dendrimers like polyamidoamines (PAMAM) or 

polypropylenimine (PPI) [32]. Due to its high transfection efficacy based on its good endosomal 

buffering capacity to enhance endosomal escape, linear polyethylenimine (LPEI) has emerged 

as gold standard in gene delivery [33]. However, critical drawbacks of these polymers remain 

such as toxic side effects due to their high molecular weight and cationic charge and a lack of 

biodegradability [34-36]. Therefore, functional domains, e.g. for shielding, targeting and 

enhancing endosomal escape can be added to increase safety and transfection efficacy of the 

polyplexes [23].   

1.3. Prospects of endosomal escape 

Endosomal escape is a major obstacle in gene delivery. After internalization into endosomes 

polyplexes have to escape from them since these get acidified and change into lysosomes where 

degradation takes place. A way to overcome endosomal entrapment is the incorporation of lytic 

lipid domains such as oleic acids [37, 38], stearic acids [39-41] or cholesterol [42, 43] into the 

polymeric carrier resulting in hydrophobic interactions between endosomal membrane and 

polyplexes. Another approach is the incorporation of endosomolytic peptides like 

hemagglutinin HA2 deriving from the influenza virus [44] or melittin [45]. Cationic polymers 

such as PEI possess an intrinsic endosomolytic activity [46]. Their unprotonated amine groups 

can buffer protons which results in chloride and water accumulation in the endosomes leading 

to osmotic pressure. Triggered by the concomitant increase of positive polymer charges in the 

endosomes, vesicles lyse consequently and release their content into the cytosol providing an 

escape mechanism for polyplexes [47], also called “proton sponge effect” [48] with regard to 
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the absorption of protons like a sponge. Histidines are known to increase this effect because 

they become cationized upon protonation of their imidazole rings, thus enhancing endosomal 

buffering capacity. Therefore, the incorporation of histidines as functional domains can 

improve endosomal escape and hence transfection efficacy [49].    

1.4. Targeting of polyplexes towards their site of action  

To mediate specific cellular uptake polyplexes have to be directed towards the target tissue. 

This field of interest can be categorized into active and passive targeting. Passive targeting is 

occurring due to the enhanced permeability and retention (EPR) effect [50]. This effect is based 

on the limited blood supply of rapidly growing tumors and the resulting intense angiogenesis 

leading to fenestrated and leaky blood vessels with reduced lymphatic drainage [51]. Upon 

systemic administration small molecules can diffuse nonspecifically out of the blood stream 

into all tissues, whereas macromolecules only pass the leaky endothelium of the tumor and 

accumulate there due to impaired lymphatic drainage [50, 52]. The other strategy to address 

tumors is active targeting which is enabled by diverse expression levels of surface receptors in 

cancer tissues. Commonly addressed receptors are the transferrin receptor [53-56], integrin 

receptor [57-59], epidermal growth factor (EGF) receptor [60-63] or the folic acid (FA) receptor 

[64, 65]. Classes of targeting ligands that are able to bind to receptors are antibodies and their 

fragments [66, 67], glycoproteins [68], peptides [57, 69, 70] and small molecules [71] amongst 

others. The receptor reviewed in this thesis belongs to the cell surface receptor tyrosine kinases 

family - the hepatocyte growth factor receptor (HGFR) also named c-Met. It is predominantly 

expressed in epithelial cells [72] and overexpressed in cancer cells, epithelial-derived tumors 

and in stromal and interstitial cell-derived tumors like fibro- and other sarcoma types [73]. Upon 

binding of the natural ligand - hepatocyte growth factor (HGF) - to the receptor mitogenesis, 

motogenesis and morphogenesis are stimulated, and oncogenesis, tumor progression and 

aggressive cellular invasiveness are promoted. Possibilities to set anticancer drugs at this 

signaling pathway are antagonizing of ligand/receptor interactions, inhibition of tyrosine kinase 

activity and blocking of intracellular interactions [74]. Taking advantage of the c-Met/HGFR 

overexpression has mostly been limited for in vivo imaging and conjugation of an anti-c-Met 

antibody fragment to doxorubicin so far [75-78] but it has not been applied for targeted gene 

delivery.                   
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1.5. Dendrimers 

Compared to the gold standard in gene delivery, LPEI, with its inherent heterogeneity and 

cytotoxicity thus limiting its use, dendrimers can be denoted by an advance towards more 

defined polymers. Their central core molecule is an origin for highly branched symmetrical 

arms which are covalently coupled. Each additional layer (generation) is added stepwise 

resulting in a low polydispersity index and well defined size and structure [32]. As transfection 

efficacy and cytotoxicity of both PAMAM and PPI dendrimers still can be improved several 

modifications have been carried out for gene delivery such as targeting with folate [79], 

transferrin [80] and numerous other ligands, hydrophobic modifications with fatty acids [81, 

82] or phenylalanine [83], cationization with arginine [84, 85] or histidinylation [86] for 

improved endosomal escape. Increased molecular weight (Mw) can on the one hand enhance 

transfection efficacy of the polymers based on low in vivo polyplex stability for low Mw 

compounds [87], but can on the other hand lead to increased cytotoxicity [88]. It is known that 

environment-triggered biodegradation can solve this problem [27, 89, 90]. The dendrimer 

reviewed in this thesis was hence built modifying the core of a PPI of the second generation 

(PPI G2) which has a lower cytotoxicity and moderate pDNA transfer efficacy [91]. An analog 

molecule to PEI based on the artificial amino acid succinoyl-tetraethylene pentamine (Stp) [92] 

consisting of increasing numbers of Stp units was attached as octamers via disulfide linkages 

to generate safe carriers with higher Mw (Figure 2).  

 

Figure 2: Schematic overview of PPI G2 core linked via disulfide linkages to Stp 

oligomers. Biodegradation takes place in the reducing cytosol environment.   

+ 
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1.6. Precise sequence-defined polymers 

Another approach to develop a precise, monodisperse and multifunctional carrier system was 

illustrated by Hartmann et al. They designed well-defined polycationic conjugates with 

precisely positioned functional moieties for tailor-made features via solid-phase synthesis [93]. 

Schaffert et al. developed the method further by introducing novel building blocks [92]. A 

library of polymers with different topologies and functional domains was hence synthesized for 

gene delivery [94-97]. Polymers reviewed in this thesis were synthesized according to this 

method based on a polycationic backbone consisting of repeating units of the artificial amino 

acids Stp or succinoyl-pentaethylene hexamine (Sph) as building block. Cysteines were 

incorporated for redox-sensitive polyplex stabilization resulting from disulfide formation and 

histidines for increased endosomal buffering capacity. Polyethylene glycol (PEG) was attached 

for surface shielding from unwanted interactions with blood components and the ligand cMBP2 

was attached for targeted polymers (Scheme 1). 

 

2. Chemoresistance 

Development of chemoresistance is a major drawback in the successful treatment of cancer 

patients hampering the efficacy of chemotherapeutic drugs. Treatment failure in more than 90% 

of metastatic cancer patients is believed to be induced by reason of chemoresistance [98]. 

Circumvention of drug resistance would therefore have a high impact on clinical outcome and 

survival of patients. On the one hand pharmacological factors such as inefficient tumor drug 

concentration and on the other hand cellular factors can account for the development of 

chemoresistance. Manifestation of resistance can be classified into intrinsic, hence existing 

before the first therapy, and acquired resistance which is developed during chemotherapeutic 

treatment. The diverse mechanisms leading to cellular resistance include increased drug efflux 

through ABC (ATP-binding cassette) drug transporters, alterations in drug targets and changes 

in cellular response such as enhanced repair mechanisms of DNA, stress toleration and evasion 

of apoptosis pathways [98-100]. Another important mechanism of resistance formation to 

chemotherapeutic drugs are cancer stem cells (CSCs). These cells within a tumor are protected 

from chemotherapeutic treatment by ABC transporters as well as to self-renew after 

chemotherapy and are therefore responsible for relapse [101, 102].  
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2.1. Metastasis formation and impact of miRNAs 

Metastases at distant sites in the body are difficult to treat effectively and remain a major cause 

of death. Tumor spreading is propelled by a process called epithelial to mesenchymal transition 

(EMT), a developmental program leading to invasive and migratory properties of cancer cells 

which dissociate from the primary tumor, invade and exit blood vessels and subsequently cause 

metastases at distant tissues. For this purpose they undergo mesenchymal to epithelial transition 

(MET) and reshape into cells with epithelial-like properties [103-105]. 

microRNAs (miRNAs), small non-coding RNAs of about 22 nucleotide sequences regulating 

gene expression [106], are a class of molecules that are often up- or downregulated in several 

types of cancer [107-109]. Based on their target genes they can be classified into tumor 

suppressor and oncogenic miRNAs [108, 110]. They are known to play a role in the acquisition 

of chemoresistance as they can modulate the sensitivity of cancer cells upon chemotherapy 

[111-114]. Additionally, miR-200c has been proposed to regulate EMT through targeting 

repressors of E-cadherin, an epithelial marker [115, 116], resulting in an increased E-cadherin 

expression and low migratory capability of cancer cells hence displaying epithelial-like 

properties [117, 118]. The inhibition of EMT by miR-200c reduces cancer cell migration and 

invasion thus hampering metastasis formation [119-121]. On the contrary, a loss of miR-200c 

at the beginning of metastasis induces EMT which results in low E-cadherin and high vimentin 

levels hence displaying mesenchymal-like properties with an increased migratory capability of 

cancer cells [115-118, 120].  

CSCs show characteristics of cells which have undergone EMT [103] and have also been 

proposed to be involved in tumor invasion and metastasis formation [101]. Hence, they display 

crucial targets in cancer therapy. 

2.2. Salinomycin 

The potassium-ionophore salinomycin (Figure 3) was recently found to selectively target CSCs 

and to reduce the proportion of CSCs in contrast to the classical chemotherapeutic drug 

paclitaxel [122]. Salinomycin is a polyether antibiotic isolated from the bacteria Streptomyces 

albus and has been used as an anticoccidial drug in poultry and other livestock [123, 124]. Its 

anti-cancer mechanisms in diverse cancer types known so far include induction of apoptosis 

and cell death, interference with ABC transporters and cytoplasmic or mitochondrial K+ efflux, 

inhibition of Wnt signaling and oxidative phosphorylation, and differentiation of CSCs [125]. 

Besides, salinomycin has been proposed to reduce malignant traits in colorectal cancer cells 

[126] and to inhibit growth and migration of prostate cancer by inducing oxidative stress [127]. 
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Of note, a few clinical pilot studies have shown a partial clinical regression of pretreated 

therapy-resistant cancers upon treatment with salinomycin [125] which is therefore very 

promising for further in vivo investigations. 

 

  

2.3. Overcoming multiple drug resistance with nanocarriers 

Multiple drug resistance (MDR) in cancer is one of the main reasons for chemotherapy failure. 

MDR is characterized by a broad cross-resistance of cancer cells to structurally different 

chemotherapeutics after acquiring resistance to an individual drug [128]. Potential mechanisms 

of MDR in chemotherapy include overexpression of ABC transporters which results in 

increased drug efflux, CSCs, miRNA regulation, hypoxia induction, efficient repair of DNA 

damage and epigenetic regulation such as DNA methylation and histone modification. One of 

the main mediators of MDR represents the overexpression of ABC drug transporters like the 

well-known permeability glycoprotein (P-glycoprotein), MDR-associated protein1 (MRP1) 

and breast cancer resistance protein (BCRP) [129]. Several approaches to circumvent MDR 

such as co-application of P-glycoprotein inhibitors (e.g. verapamil) display poor selectivity for 

cancer cells hence mediating low therapy efficacy and toxic side effects [130].  

Nanoparticle-based drug delivery, a highly investigated field, offers beneficial options 

concerning specific targeting of cancer cells, increased drug efficacy, lower drug toxicity and 

improved solubility and stability. Moreover, the intracellular drug concentration in cancer cells 

is increased because nanosized particles can utilize the EPR effect [130]. Nanoparticles can be 

Figure 3: Structural formula of salinomycin. 
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categorized into (1) organic, (2) inorganic and (3) hybrid systems. Organic material systems 

(e.g. liposomes, emulsions, albumins, etc.) are situated already in clinical stage for cancer 

chemotherapy as delivery agents for original drugs through improvement of their bioavailability 

and targeting efficacy [131-133]. Inorganic nanobiomaterials (e.g. magnetic [134], metallic 

[135], carbon-based nanoparticles [136]) have gained increased attention due to their high 

thermal/chemical stability, good biocompatibility, resistance to corrosion and easy endowment 

with structural features and specific properties such as mesoporosity. Yet, a crucial issue to 

consider remains the low degradability of inorganic materials of which silica is one of the most 

biocompatible materials due to its endogenous occurrence in bones [131]. A core-shell silica 

nanoparticle encapsulating a fluorescent dye has already been approved by the FDA for a 

human stage I clinical trial for molecular imaging of cancer [137]. Organic-inorganic hybrid 

nanobiomaterials combine advantages of both organic and inorganic materials and can therefore 

have unique characteristics such as controlled drug release, co-delivery of multiple drugs, etc. 

[138, 139].  

Mesoporous silica nanoparticles (MSN) have been highly investigated for improving 

chemotherapeutic efficacy, overcoming MDR and inhibiting metastasis formation. In terms of 

circumventing MDR several strategies have been recognized [140]. Multiple drugs can be co-

loaded into MSN such as a classical chemotherapeutic drug together with an ABC transporter 

inhibitor (e.g. surfactants [141] or siRNA for gene silencing [142, 143]). Moreover, drug efflux 

can be circumvented by direct intranuclear drug delivery of MSN (e.g. using a cell-penetrating 

TAT peptide [144]) whereby ABC transporter inhibitors are no longer required. Additionally, 

a multi-modal combinatorial therapy with MSN combining chemo- with radiotherapy (e.g. 

MSN encapsulating chemo- and radiotherapeutic agents simultaneously [145]) illustrates 

another promising strategy.    

2.4. Mesoporous silica nanoparticles with pH-responsive polymer coating 

MSN display high loading capacity and enable a broad range of inner and outer surface 

modifications [146]. Several strategies to prevent premature release of MSN exist such as 

covalent attachment of cargo inside the mesopores [147] or capping of the whole particle [148-

151]. Methods to promote drug release are e.g. light irradiation [147, 152, 153] and change of 

reduction potential [154], temperature [155], or pH [148, 156]. Polymers are highly attractive 

to coat MSN due to their biocompatibility and tunable properties [157, 158]. pH-responsive 

polymer coatings take advantage of the pH change during endocytosis as trigger for drug 

release. The ability of effective pH-responsive MSN coating using polymers was already 
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demonstrated for poly(acrylic acid) [159] and poly(2-(diethylamino)ethyl methacrylate) [160]. 

Furthermore, poly(2-vinylpyridine) (PVP) was applied for pH-sensitive functionalization based 

on the pronounced transition between hydrophobicity and hydrophilicity upon de-/protonation 

[161]. MSN reviewed in this chapter were functionalized with a pH-responsive cap system 

using the polymer PVP. At low pH the polymer is protonated and in a hydrophilic state enabling 

drug molecules to diffuse into and out of MSN. At pH values of 5.5 or higher the polymer is 

started to be deprotonated, thus converting into a hydrophobic state which results in a collapse 

of the polymer onto the surface preventing release of the drug molecules (Figure 4). Besides, 

PEG was attached to the ends of the PVP cap to increase colloidal stability. Furthermore, it 

enables covalent attachment of a wide variety of functionalities at the outer periphery of the 

PEG shell such as targeting ligands or dyes. The pores of MSN are about 4 nm and the average 

particle diameter is 90 nm for unfunctionalized MSN and 200 nm for PVP/PEG modified MSN 

(Stefan Niedermayer, PhD thesis 2014).     

 

 

 

 

 

 

Figure 4: Concept of the pH-responsive polymer coating. The pores can be reversibly 

uncovered through changes in water solubility of the polymer upon de-/protonation.   
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3. Aims of the thesis 

3.1. Polymeric nucleic acid carriers 

The aim of this part of the thesis was to evaluate three synthesized polymeric systems, 

polypropylenimine (PPI) dendrimers, histidine-containing four-arm polymers and c-Met-

directed structures for their gene transfer efficacy in vivo. Evaluation should be done in 

xenograft mouse tumor models by measurement of gene expression after local or systemic 

administration of pDNA polyplexes.  

First, biodegradable polymers with increased molecular weight (Mw) should be compared to 

lower Mw PPI dendrimers as high Mw is generally associated with enhanced transfection 

efficacy.  

Secondly, four-arm polymers containing histidines should be compared to alanine control 

polymers because the incorporation of histidines results in enhanced endosomal buffer capacity 

facilitating endosomal escape, a major bottleneck in gene delivery.  

Thirdly, polymers targeted with the c-Met receptor-binding ligand cMBP2 should be evaluated 

and compared to an alanine control polymer upon local and systemic administration. 

Additionally, the impact of an enhanced shielding, an increased polycationic part of the polymer 

and co-addition of non-shielded polymers to improve systemic delivery were to be assessed. 

3.2. Chemoresistance 

The acquisition of chemoresistance upon treatment with classical anti-cancer drugs and 

formation of metastasis to secondary tissues still display major drawbacks for the cure of cancer 

patients. In this part of the thesis two approaches to circumvent these obstacles should be 

investigated.  

First, the polyether antibiotic drug salinomycin, which has been demonstrated to selectively 

target cancer stem cells and which has therefore been promising to improve cancer therapy, 

should be analyzed concerning its effect on tumor growth and migration. In a next step, if 

effective, it was purposed to evaluate its potential as an additive compound to a classical 

chemotherapeutic drug.  

Secondly, loading of chemotherapeutic drugs into nanoparticles has raised hope for improving 

chemotherapeutic efficacy, overcoming drug resistance and metastasis formation. Since the 

controlled release displays a critical obstacle in delivery of drugs, synthesized pH-responsive 

coated mesoporous nanoparticles should be evaluated in terms of biodistribution, 

biocompatibility and tumor targeting in vivo.
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II. MATERIALS AND METHODS 

1. Materials 

1.1. Cell culture 

Neuro2A     ATCC (Wesel, Germany) 

HuH7 cells     NIBIO (Osaka, Japan) (formerly HSRRB) 

4T1-Luc cells     Caliper Life Sciences (Alameda, CA, USA) 

MDA MB 231 cells    ATCC (Wesel, Germany) 

KB cells     ATCC (Wesel, Germany) 

DMEM 1 g/l Glucose medium  Invitrogen (Karlsruhe, Germany) 

DMEM 4.5 g/l Glucose medium  Invitrogen (Karlsruhe, Germany) 

Ham`s F12 medium    Invitrogen (Karlsruhe, Germany) 

RPMI 1640 medium    Invitrogen (Karlsruhe, Germany) 

FCS (fetal calf serum)   Invitrogen (Karlsruhe, Germany) 

L-alanyl-L-glutamine    Biochrom (Berlin, Germany) 

PBS (phosphate buffered saline)  Biochrom (Berlin, Germany) 

Trypsin EDTA solution   Biochrom (Berlin, Germany) 

Cell culture plates and flasks   TPP (Trasadingen, Switzerland) 

1.2. In vivo experiments 

Isoflurane CP®    CP-Pharma (Burgdorf, Germany) 

Bepanthen®     Bayer Vital GmbH (Leverkusen, Germany) 

Na-luciferin     Promega (Mannheim, Germany) 

Syringes, needles    BD Medical (Heidelberg, Germany) 

Multivette (serum tubes)   Sarstedt (Nümbrecht, Germany) 

NaCl 0.9 % (isotonic sodiumchloride)  Braun Melsungen AG (Melsungen, Germany) 

HBG (HEPES buffered 5% glucose,  HEPES: Biomol (Hamburg, Germany) 

pH 7.4) Glucose-monohydrate: Merck (Darmstadt, 

Germany) 

Matrigel® Matrix (356231)   Fisher Scientific GmbH (Schwerte, Germany) 
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1.3. Laboratory animals 

1.3.1. NMRI nude mice 

Female Rj:NMRI-Foxn1nu/Foxn1nu mice were purchased from Janvier (Le Genest-St-Isle, 

France). This outbred mouse strain has a mutation in the gene Foxn1 which is affecting thymus 

development and hair follicle keratinization. Due to the absence of T-lymphocytes mice are 

immunodeficient and hence used for xenotransplantation. Other immune system cells like B-

cells, NK-cells and Macrophages are present. Nudeness enables an ideal experimental setup for 

bioimaging studies.    

1.3.2. BALB/c mice 

Female BALB/cByJRj mice were purchased from Janvier (Le Genest-St-Isle, France). These 

small inbred albino mice are immunocompetent and therefore used in a syngeneic 4T1-tumor 

model. Furthermore they were used as sentinel animals for health monitoring of the animal 

facility.  

1.3.3. Housing 

Laboratory mice were housed inside an air-conditioned room in individually ventilated cages 

(IVC type ІІ long, Tecniplast) within a 12 h-day-and-night cycle. The maximum occupancy 

was 5 animals per cage with autoclaved food and water ad libitum and weekly change of the 

bedding. Mice were purchased at an age of 5 weeks and allowed an acclimatization time of at 

least one week to adapt to the housing conditions. Health monitoring of the animal facility was 

conducted quarterly according to FELASA recommendations. 

All animal experiments were performed according to the guidelines of the German law for 

protection of animal life. They were approved by the local ethics committee.  

1.4. Ex vivo experiments 

Cell lysis buffer    Promega (Mannheim, Germany) 

Lysing Matrix D    MP Biomedicals (Strasbourg, France) 

Luciferase assay buffer   Promega (Mannheim, Germany) 

Mayer´s haematoxylin solution  Sigma-Aldrich (Steinheim, Germany) 

Eosin Y     Sigma-Aldrich (Steinheim, Germany) 

Tissue-Tek® Cryomold   Sakura Finetek (Heppenheim, Germany) 

Tissue-Tek® O.C.T. Compound  Sakura Finetek (Heppenheim, Germany) 

Tissue-Tek® Mega-Cassette   Sakura Finetek (Heppenheim, Germany) 
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SuperFrost Ultra Plus® slides  Menzel GmbH (Braunschweig, Germany) 

DAPI      Sigma-Aldrich (Steinheim, Germany) 

1.5. Polymers 

PPI conjugates were synthesized by Edith Salcher (PhD thesis 2013, LMU).  

 

Conjugate 

(Polymer ID) 

Sequence Abbreviation 

536 PPI-(C-C-Stp5)8 PPI-Stp5 

PPI G2 PPI - 

 

Three-arm, four-arm and cMBP2-targeted polymers were synthesized by Ulrich Lächelt and 

Dongsheng He (PhD students, LMU Pharmaceutical Biotechnology). 

 

Conjugate 

(Polymer ID) 

Sequence Topology 

608 AK[AK(A-Sph-A-Sph-A-Sph-AC)2]2 Four-arm; w/o His 

606 AK[HK(H-Sph-H-Sph-H-Sph-HC)2]2 Four-arm; with His 

442 K[dPEG24-HK[H-(Stp-H)4-C]2]-cMBP2 Two-arm; 1 PEG 

440 A-dPEG24-HK[H-(Stp-H)4-C]2 Two-arm; 1 PEG 

694 K[(dPEG24)2-HK[H-(Stp-H)4-C]2]-cMBP2 Two-arm; 2 PEG 

616 A-(dPEG24)2-HK[H-(Stp-H)4-C]2 Two-arm; 2 PEG 

677 K[dPEG24-K(HK(H-(Sph-H)3-C)2)2]-cMBP2 Four-arm; 1 PEG 

678 A-dPEG24-K[HK(H-(Sph-H)3-C)2]2 Four-arm; 1 PEG 

689 C-H-(Stp-H)3-K-[(H-Stp)3-H-C]2 Three-arm; with His 
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608/SPH-AC      І) 

 

 

 

606/SPH-HC      ІІ)                     

 

     

 

442/cMBP2-1PEG/     Ш) 
440/Ala-1PEG    

 

 

694/cMBP2-2PEG/     ІV) 
616/Ala-2PEG 

 

    

677/cMBP2-1PEG/     V)   

678/Ala-1PEG   

    

 

689        VI) 
 

 

 

 

 

Scheme 1: Schematic overview of the synthesized polymers. A: alanine; K: lysine; H: 

histidine and C: cysteine represent the α-amino acids in a one-letter-code; L: targeting ligand 

cMBP2 or the corresponding control alanine. 
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1.6. pDNA 

pCMVLuc     Plasmid Factory (Bielefeld, Germany) 

1.7. Chemotherapeutics 

Doxorubicin hydrochloride (D1515)  Sigma-Aldrich (Schnelldorf, Germany) 

Salinomycin (S6201)    Sigma-Aldrich (Schnelldorf, Germany) 

1.8. Mesoporous silica nanoparticles 

Mesoporous silica nanoparticles (MSN) were synthesized by Stefan Niedermayer (PhD thesis 

2014, LMU) and Stefan Datz (PhD student, LMU Physical Chemistry), both from the group of 

Prof. Dr. Thomas Bein. 

The following types of MSN were applied: 

 

MSN-NH2 

MSN-PVP-PEG-NH2 

MSN-PVP-PEG-NH2-FA 

 

Cy7 (Cyanine 7 NHS-ester/maleimide) Lumiprobe, (Hannover, Germany) 

ATTO 633 maleimide   ATTO-TEC GmbH (Siegen, Germany) 

Calcein     Sigma-Aldrich (Schnelldorf, Germany) 

1.9. Instruments 

FastPrep®-24 instrument   MP Biomedicals (Solon, USA) 

Centro LB 960 luminometer Berthold Technologies (Bad Wildbad, Germany) 

Cordless animal shaver GT 420 ISIS  Aesculap Suhl GmbH (Suhl, Germany) 

Caliper DIGI-Met    Preisser (Gammertingen, Germany) 

IVIS Lumina     Caliper Life Science (Rüsselsheim, Germany) 

Tissue embedding Leica EG1150 Leica Microsystems GmbH (Wetzlar, Germany) 

Microtome Leica RM2265 Leica Microsystems GmbH (Wetzlar, Germany) 

Paraffin floating bath MEDAX GmbH & Co. KG (Neumünster, 

Germany) 

Cryostat Leica CM3050 S Leica Microsystems GmbH (Wetzlar, Germany) 

Olympus BX41    Olympus (Hamburg, Germany) 

Zeiss Cell Observer SD   Carl Zeiss AG (Göttingen, Germany) 
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1.10. Software 

Graph Pad Prism 5 software   Graph Pad Software (San Diego, USA) 

Living Image 3.2    Caliper Life Science (Rüsselsheim, Germany) 

 

2. Methods 

2.1. Cell culture 

Mouse neuroblastoma cells (Neuro2A) were cultured in Dulbecco´s modified Eagle´s medium 

(DMEM 1 g/l Glucose). Human hepatocellular carcinoma cells (Huh7) were grown in a 1:1 

mixture of Dulbecco´s modified Eagle´s medium and Ham´s F12 medium. Stably luciferase 

expressing murine breast adenocarcinoma cells (4T1-Luc) were cultured in RPMI 1640 

medium. Human breast adenocarcinoma cells (MDA-MB-231) were grown in Dulbecco´s 

modified Eagle´s medium (DMEM 4.5 g/l Glucose) and human cervix carcinoma cells (KB) 

were cultured in RPMI 1640 folate free medium at 37 °C in 5 % CO2 humidified atmosphere. 

All media were supplemented with 10 % fetal calf serum (FCS) and 4 mM stable glutamine. 

2.2. In vivo experiments 

Laboratory mice were purchased at an age of five weeks and experiments were carried out at 

6-8 weeks old mice. Tumor cells for all in vivo experiments were cultured as described above. 

In order to harvest the cells, they were peeled off using trypsin/EDTA solution which was 

subsequently inactivated with medium. Cells were centrifuged at 1000 rpm for 5 minutes and 

the cell pellet was resuspended in PBS at the desired final concentration. For experiments using 

Matrigel® matrix for propagation of human tumors, cells were also resuspended in PBS but 

diluted with Matrigel® (1:1) prior to injection. Subcutaneous inoculations of cells were carried 

out with a 1 ml syringe with a 27 gauge needle. Intraperitoneal applications required a 1 ml 

syringe with a 29 gauge needle and for intravenous and intratumoral injections an insulin 

syringe (29 gauge) was used. Tumor growth and body weight were monitored every second or 

third day. Inhalation anesthesia was performed with 2.5 % isoflurane in oxygen and eye lube 

(Bepanthen®) was used to prevent drying out the cornea. 
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2.2.1. Systemic luciferase gene transfer with polypropylenimine 

dendrimers 

Neuro2A cells (5 x 106 per mouse) in 150 µl PBS were injected subcutaneously into the left 

flank of 8 female NMRI nude mice. On day 12, after tumor cell inoculation, mice were divided 

into two groups (n = 4) and polyplex solution was injected into the tail vein. The polyplex 

solution contained 60 µg pCMVLuc (around 2.5 µg/g body weight) complexed with either 

536/PPI-Stp5 or PPI G2 at N/P (protonatable nitrogens of oligomer/phosphate in the nucleic 

acid backbone) ratio of 12 in a total volume of 200 µl HBG. After 48 hours all mice were 

euthanized by cervical dislocation, tumors and organs (lung and liver) were collected and 

homogenized in cell culture lysis buffer using a tissue and cell homogenizer (FastPrep®-24). 

The samples were subsequently centrifuged at 3000 g at 4 °C for 10 minutes to separate 

insoluble cell components. Luciferase activity was determined in the supernatant using a Centro 

LB 960 luminometer. 

2.2.2. Systemic luciferase gene transfer with four-arm polymers with and 

without histidines 

Neuro2A cells (5 x 106 per mouse) in 150 µl PBS were injected subcutaneously into the left 

flank of 10 female NMRI nude mice. On day 12, after tumor cell inoculation, mice were divided 

into two groups (n = 5) and injected with polyplex solution into the tail vein. The polyplex 

solution contained 60 µg pCMVLuc (around 2.5 µg/g body weight) complexed with either 

608/SPH-AC or 606/SPH-HC at N/P 12 in a total volume of 200 µl HBG. After 48 hours all 

mice were euthanized by cervical dislocation and tumors and organs (lung, liver, spleen, kidney 

and heart) were collected. Sample preparation was carried out as stated above.  

2.2.3. Intratumoral luciferase gene transfer with two-arm c-Met-directed 

polymers 

Huh7 cells (5 x 106 per mouse) in 150 µl PBS were inoculated subcutaneously into the left flank 

of 20 female NMRI nude mice. Approximately 12 days after tumor cell implantation, when 

tumors reached the adequate size (about 500-700 mm3), mice were divided into four groups (n 

= 5), anesthetized with isoflurane and injected with polyplex solution intratumorally. The 

polyplex solution contained 50 µg pCMVLuc (around 2.5 µg/g body weight) complexed with 

either two-arm polymer 442/cMBP2-1PEG, 440/Ala-1PEG, 694/cMBP2-2PEG or 616/Ala-

2PEG at N/P 12 in a total volume of 60 µl HBG. After 24 hours all mice were euthanized by 
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cervical dislocation and tumors were dissected. Sample preparation was carried out as stated 

above. 

2.2.4. Fluorescence imaging after local polyplex administration 

Huh7 cells (5 x 106 per mouse) in 150 µl PBS were inoculated subcutaneously into the left flank 

of 4 female NMRI nude mice. Two weeks after tumor cell implantation mice were divided into 

two groups (n = 2), anesthetized with isoflurane and injected with polyplex solution 

intratumorally. The polyplex solution contained 50 µg pCMVLuc (20 % labeled with Cy7) 

complexed with either targeted (442/cMBP2-1PEG) or untargeted (440/Ala-1PEG) polymers 

at N/P 12 in a total volume of 60 µl HBG. Near infrared (NIR) fluorescence was measured by 

a charge-coupled device (CCD) camera immediately after polyplex injection and repeated after 

0.25, 0.5, 4, 48 and 72 hours. Efficiency of the fluorescence signals was presented for evaluation 

with equalized color bar scales for each group. Pictures were taken with medium binning and 

an exposure time of 30 seconds.  

2.2.5. Systemic luciferase gene transfer of initial and modified c-Met-

directed polymers 

Huh7 cells (5 x 106 per mouse) in 150 µl PBS were inoculated subcutaneously into the left flank 

of 40 female NMRI nude mice. Approximately 12 days after tumor cell implantation, when 

tumors reached the adequate size (about 500-700 mm3), mice were divided into eight groups (n 

= 5) and polyplex solution was injected into the tail vein. The polyplex solution contained 80 

µg pCMVLuc (around 4 µg/g body weight) at N/P 12 in a total volume of 200 µl HBG. For this 

purpose initial two-arm polymers 442/cMBP2-1PEG and 440/Ala-1PEG; four-arm polymers 

677/cMBP2-1PEG and 678/Ala-1PEG and mixtures of the initial two-arm polymers with three-

arm 689 or four-arm 606/SPH-HC were used. After 48 hours all mice were euthanized by 

cervical dislocation and tumors and organs were dissected. Sample preparation was carried out 

as stated above. 

Quantification by real-time PCR (RT-PCR) was carried out to determine residual amounts of 

pDNA in tumors. Polyplex solution was injected as described above and mice (n = 3) were 

sacrificed after 4 hours. Total DNA was isolated according to manufacturer's instructions using 

peqGOLD guanidinisothiocynate/phenol method (Peqlab, Germany). Quantitative RT-PCR 

was then performed on a LightCycler 480 system (Roche) using UPL Probe #84 (Roche) and 

Probes Master (Roche). The following primer sequences were used: reverse primer 5'-CCC 

CGT AGA AAA GAT CAA AGG-3' and forward primer 5'-GCT GGT AGC GGT GGT TTT 
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T-3'. The pDNA dilution series were run in parallel to allow the absolute quantification. RT-

PCR was performed by Petra Kos (PhD student, LMU Pharmaceutical Biotechnology).  

2.2.6. Preliminary dose-finding of doxorubicin 

Regarding the effect of doxorubicin on tumor growth and metastasis of 4T1-Luc tumors 

different dosages were evaluated. Mice were locally shaved and 4T1-Luc cells (1 x 106 per 

mouse) in 50 µl PBS were inoculated into the left next to the last caudal mammary fat pad of 

12 female BALB/c mice. 24 hours later mice were randomly divided into four groups (n = 3) 

and treated with doxorubicin (2 mg/kg, 5 mg/kg and 8 mg/kg) or control (NaCl 0.9 %) every 

six days for three times. Body weight and tumor growth were determined every second or third 

day during the experiment. On day 18, after tumor cell inoculation, two mice treated with 8 

mg/kg doxorubicin had to be euthanized due to severe weight loss (the third mouse of this group 

already on day 7). Before euthanasia bioluminescence imaging was performed as described for 

the other groups. On day 22 the remaining three groups were anesthetized with 2.5 % isoflurane 

in oxygen and 6 mg Na-luciferin in 100 µl PBS were injected intraperitoneally. After 15 minutes 

of distribution all mice were euthanized through cervical dislocation, lungs were dissected and 

bioluminescence imaging was performed by a CCD camera (IVIS Lumina system) with Living 

Image software 3.2. Photon emission of isolated lungs was measured and images were 

interpreted with equalized color bar scales. Regions of Interest (ROIs) were defined for 

quantification and were calculated as photons/second/cm2 (total flux/area). Bioluminescence 

imaging was performed with an exposure time of 10 seconds and medium binning. 

2.2.7. Effect of salinomycin on tumor growth rate 

For evaluating the effect of salinomycin on tumor growth the syngeneic 4T1-Luc mouse model 

was used in BALB/c mice. Mice were locally shaved and 4T1-Luc cells (2 x 106 per mouse) in 

150 µl PBS were inoculated subcutaneously into the left flank of 18 female BALB/c mice. 

Three days after tumor cell injection mice were randomly divided into one treatment (n = 9) 

and one control group (n = 9). Mice were treated with 5 mg/kg salinomycin (2 mg/ml in 

dimethyl sulfoxide (DMSO) stock solution was diluted in phosphate buffered saline), control 

mice were treated with DMSO in phosphate buffered saline. Treatment was carried out on day 

3, 6, 8, 10, 13 and 15 after tumor cell inoculation. Tumor growth was measured on day 2, 4, 6, 

9, 13 and 17, after tumor cell inoculation, with a caliper using formula a x b2/2 (a = longest side 

of the tumor; b = widest side vertical to a). Over a period of 17 days the average tumor volumes 
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of the two groups were compared. On day 17 all mice were euthanized through cervical 

dislocation and tumors were harvested. 

2.2.8. Effect of salinomycin on tumor colonization and migration 

The effect of salinomycin on tumor colonization was tested in the syngeneic 4T1-Luc mouse 

model. 20 female BALB/c mice were randomly divided into two groups (treatment and control) 

and 4T1-Luc cells (1 x 105 per mouse) were injected intravenously via tail vein. 24 and 0.5 

hours before tumor cell inoculation the treatment group was premedicated intraperitoneally 

with 5 mg/kg salinomycin (2 mg/ml in DMSO stock solution was diluted in phosphate buffered 

saline) and the control group with DMSO in phosphate buffered saline. Treatment was repeated 

on day 3, 6 and 9, after tumor cell injection, and tumor colonization was monitored via 

bioluminescence imaging on day 3, 8 and 13. For this purpose, mice were anesthetized with 2.5 

% isoflurane in oxygen and 6 mg Na-luciferin in 100 µl PBS were injected intraperitoneally. 

After 15 minutes of distribution bioluminescence imaging of anesthetized mice was performed 

by a CCD camera (IVIS Lumina system) with Living Image software 3.2. Lungs were defined 

as ROI for quantification and photon emission was calculated as photons/second/cm2 (total 

flux/area). Images were interpreted with equalized color bar scales. Bioluminescence imaging 

was performed with an exposure time of 5 seconds and medium binning. On day 13 mice were 

euthanized after bioluminescence imaging and organs (lung, brain, spleen, kidneys and liver) 

were dissected for subsequent ex vivo luciferase measurements. Sample preparation was carried 

out as stated above. One mouse of the control group had to be sacrificed already earlier due to 

severe medical condition. 

2.2.9. Combinatorial treatment of doxorubicin and salinomycin 

Regarding the combinatorial effect on tumor growth and metastasis, treatment with doxorubicin 

and salinomycin was evaluated within one trial in the syngeneic 4T1-Luc mouse model. 4T1-

Luc cells (1 x 106 per mouse) in 50 µl PBS were inoculated into the left next to last caudal 

mammary fat pad of 40 female BALB/c mice. 24 hours later mice were randomly divided into 

four groups (n = 10). The first, the control group, received weekly intravenous injections of 0.9 

% NaCl and intraperitoneal injections of DMSO in phosphate buffered saline at the same 

intervals as the group treated with salinomycin. The second group was weekly treated 

intravenously with 3.5 mg/kg doxorubicin for three weeks, the third group received 5 mg/kg 

salinomycin intraperitoneally twice a week on day 4, 6, 11, 13, 18 and 20 and the fourth group 

was treated with 3.5 mg/kg doxorubicin plus 5 mg/kg salinomycin at the same intervals as 
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indicated above. Body weight and tumor growth were determined every second or third day. 

On day 21, after tumor cell inoculation, mice were anesthetized with 2.5 % isoflurane in oxygen 

and 6 mg Na-luciferin in 100 µl PBS were injected intraperitoneally. After 15 minutes of 

distribution all mice were euthanized through cervical dislocation, lungs were dissected and 

bioluminescence imaging was performed by a CCD camera (IVIS Lumina system) with Living 

Image software 3.2. Photon emission of the isolated lungs was measured and images were 

interpreted with equalized color bar scales. ROIs were defined for quantification and were 

calculated as photons/second/cm2 (total flux/area). Bioluminescence imaging was performed 

with an exposure time of 10 seconds and medium binning. Tumors and organs were harvested. 

2.2.10. Systemic distribution of mesoporous nanoparticles (MSN) 

Tumor free NMRI nude mice were anesthetized with 2.5 % isoflurane in oxygen and injected 

intravenously into the tail vein with a 100 µg (5 mg/kg) dose of Cy7-labeled (covalently linked 

to amino groups on the surface of MSN) or Cy7-loaded (covalently linked to the inner surface 

of MSN) functionalized MSN-PVP-PEG-NH2-FA or unfunctionalized MSN-NH2 dispersed in 

100 µl HEPES buffered glucose (HBG). NIR fluorescence was measured by a CCD camera 

immediately after injection and was repeated after 0.25, 0.5, 1, 4, 24 and 48 hours. Each trial 

was performed with three animals per group. Efficiency of the fluorescence signals was 

presented for evaluation with equalized color bar scales for each group. Pictures were taken 

with medium binning and an exposure time of 30 seconds. 

2.2.11. Clinical chemistry and histopathology after systemic injection of 

MSN 

Tumor free NMRI nude mice (n = 9) were sacrificed through cervical dislocation 48 hours after 

intravenous injection of pure HBG or a 100 µg (5 mg/kg) dose of functionalized MSN-PVP-

PEG-NH2-FA or unfunctionalized MSN-NH2 dispersed in 100 µl HBG. Blood was collected in 

serum tubes and clinical chemistry parameters (alanine transaminase/aspartate transaminase, 

creatinine levels and blood urea nitrogen) were analyzed. Organs were dissected, fixed in 

formalin and embedded into paraffin. Organs were cut with a microtome into 4.5 µm slices and 

stained with eosin and haematoxylin. Results were documented using an Olympus BX41 

microscope.  

For biocompatibility experiments with increased dosages of MSN, tumor free NMRI nude mice 

(n = 8) were divided into four groups and injected intravenously with a 1.6 mg (80 mg/kg) or 2 
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mg (100 mg/kg) dose of functionalized (MSN-PVP-PEG-NH2-FA) and unfunctionalized 

(MSN-NH2) particles. Intravenous administration of MSN was repeated after seven days. 

2.2.12. Tumor-targeting after systemic administration of MSN 

MDA MB 231 cells (5 x 106 per mouse) resuspended in PBS but diluted with Matrigel® (1:1) 

prior to injection were inoculated subcutaneously into the left flank of 9 female NMRI nude 

mice. On day 42, after tumor cell implantation, mice were randomly divided into three groups 

(n = 3) and injected intravenously via tail vein with a 100 µg (5 mg/kg) dose of untargeted 

(MSN-PVP-PEG-NH2) and folic acid (FA) targeted (MSN-PVP-PEG-NH2-FA) particles 

loaded with fluorescent dyes (calcein and covalently linked ATTO 633) dispersed in 100 µl 

HBG or pure HBG. Mice were sacrificed by cervical dislocation 3 hours after injection, tumors 

and organs (liver, spleen, kidneys and lungs) were harvested, embedded into TissueTek™ and 

stored immediately at -20 °C. For preparation of cryosections with a thickness of 5 μm a Leica 

cryotom was used. Cryosections were dried and fixed with 4 % paraformaldehyde. Nuclei were 

counterstained with DAPI and results were documented via spinning disc microscopy with a 

Zeiss Cell Observer SD microscope. 

2.2.13. Retention of MSN in subcutaneous tumors 

KB cells (5 x 106 per mouse) in 150 µl PBS were inoculated subcutaneously into the nape of 6 

female NMRI nude mice. On day 14, after tumor cell implantation, mice were randomly divided 

into two groups (n = 3) and injected intratumorally with a 100 µg (5 mg/kg) dose of Cy7-labeled 

functionalized FA targeted (MSN-PVP-PEG-NH2-FA) and untargeted (MSN-PVP-PEG-NH2) 

MSN dispersed in 50 µl HBG into anesthetized mice. NIR fluorescence was measured by a 

CCD camera immediately after injection and repeated after 0.25, 0.5, 1, 4, 24, 48, 72, 96, 120, 

144 and 168 hours. Fluorescence signals of the tumors were counted as total flux/area and 

normalized to 0 minutes. Efficiency of the fluorescent signals was presented for evaluation with 

equalized color bar scales for each group. Pictures were taken with medium binning and an 

exposure time of 30 seconds.   

2.3. Statistical analysis 

Results are expressed as mean value ± S.E.M if not indicated elsewise. Statistical analysis was 

performed with t-test using GraphPadPrism™. P-values < 0.05 were considered as significant.
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III. RESULTS 

1. Polymeric nucleic acid carriers for tumor targeted gene delivery 

Three different polymeric systems, polypropylenimine dendrimers, histidine-containing four-

arm polymers and c-Met-directed structures were analyzed for gene transfer in vivo. 

Experiments were performed with Petra Kos (PhD thesis 2014, LMU) in NMRI nude mice.  

1.1. In vivo characterization of polypropylenimine dendrimers 

The polypropylenimine (PPI) core was modified with increasing units (1 - 5 units) of small 

sequence-defined oligomers based on the oligoamino acid succinoyl-tetraethylene pentamine 

(Stp). Unmodified low toxic PPI of the second generation (PPI G2) served as a control. pDNA 

encoding for firefly luciferase was used for transfections to allow measurement of transgene 

expression via bioluminescence. First, in vitro transfection efficacy of all synthesized 

polypropylenimine dendrimers was screened on Neuro2A cells (murine neuroblastoma). Figure 

5 shows the efficacy of dendrimers containing increasing numbers of Stp units. Especially PPI 

conjugates with 3 to 5 repeating Stp units revealed the highest luciferase gene expression with 

similar levels as the “gold standard” LPEI. In comparison, unmodified PPI G2 showed only 

moderate efficacy (around 1 log unit below LPEI). According to these results and to its good 

pDNA binding ability, low cytotoxicity and high endosomal buffering capacity (Petra Kos, PhD 

thesis 2014, LMU), 536/PPI-Stp5 was chosen for further in vivo characterization.      
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To analyze and compare the gene transfer efficacy in vivo, 536/PPI-Stp5 and PPI G2 pDNA 

polyplexes at N/P 12 containing 60 µg pCMVLuc were injected intravenously in a total volume 

of 200 µl HBG into the tail vain of mice bearing subcutaneous Neuro2A tumors. After 48 hours 

mice were sacrificed, tumors and organs (lung and liver) were collected, homogenized in cell 

culture lysis buffer and subsequently centrifuged. Luciferase activity determined in the 

supernatant revealed a significant gene expression in tumor, lung and liver (Figure 6). 536/PPI-

Stp5 polyplexes led to a significantly higher gene transfer in Neuro2A tumors compared to PPI 

G2 polyplexes. In contrast, 536/PPI-Stp5 polyplexes showed lower luciferase expression in 

lung and liver than PPI G2 polyplexes.    

    

Figure 5: Luciferase gene transfer of polypropylenimine dendrimers with increasing 

numbers of Stp units at different N/P ratios. The luciferase activity in the cell lysates was 

analyzed 24 hours after transfection. LPEI was used as a positive control, HBG buffer treated 

cells served as a background. Data are presented as mean values ± S.D. out of quintuplicate. 

Data were generated by Petra Kos (PhD thesis 2014, LMU). 
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Figure 6: Luciferase gene expression. 48 hours after intravenous administration of PPI G2 

and 536/PPI-Stp5 pDNA polyplexes into Neuro2A tumor bearing mice luciferase gene 

expression was measured. A) Tumor, B) Liver, C) Lung. Lysis buffer RLU (relative light unit) 

values were subtracted. Liver weight was around 1.5 g, lung weight around 90 mg and 

Neuro2A tumor weight 433 ± 134 mg. Represented is the mean ± S.E.M. of four mice per 

group. Significance of the results was evaluated by t-test (*p<0.05; **p<0.01). 
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1.2. Influence of histidines on transgene expression in vivo 

A critical requirement for efficient gene transfer after cellular uptake remains the escape of 

polyplexes from endolysosomes. Incorporation of histidines increases the total endolysosomal 

buffer capacity. Precise four-arm polymers based on the building block succinoyl-

pentaethylene hexamine (Sph) containing histidines (606/Sph-HC) and the histidine-free analog 

(608/Sph-AC) were thus compared with their luciferase pDNA transfection efficacy. Scheme 

1-І+II gives an overview over the structures of the synthesized polymers. First, in vitro 

transfection studies were carried out on Neuro2A tumor cells revealing enhanced gene transfer 

with histidinylated structures (Figure 7).  

 

 

 

 

 

 

 

 

Subsequently, mice bearing subcutaneous Neuro2A tumors were injected with 606/Sph-HC or 

608/Sph-AC pDNA polyplexes at N/P 12 containing 60 µg pCMVLuc intravenously into the 

tail vein in a total volume of 200 µl HBG. After 48 hours mice were sacrificed, tumors and 

organs (lung, liver, kidney, spleen and heart) were collected, homogenized in cell culture lysis 

buffer and subsequently centrifuged. Luciferase activity was determined in the supernatant. 

Notably, histidine containing 606/Sph-HC polyplexes mediated highest luciferase transgene 

expression in the tumor tissue (approximately 20000-fold above lysis buffer background) with 

tumor expression levels over 32-fold improved over the histidine-free analog 608/Sph-HC 

(Figure 8). Both formulations showed low expression levels in lung and heart (approximately 

Figure 7: Luciferase pDNA transfection of Neuro2A cells. Comparison of four-arm Sph 

based polymers containing optionally histidines. The luciferase activity in the cell lysates was 

analyzed 24 hours after transfection. LPEI was used as a positive control, HBG buffer treated 

cells served as a background. Data are presented as mean values ± S.D. out of quintuplicate. 

Data were generated by Petra Kos (PhD thesis 2014, LMU).  
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600-800-fold above background) and high transgene expression levels in liver (approximately 

3600-7500-fold above background). Furthermore, the histidine containing 606/Sph-HC 

formulation also induced considerable gene transfer in spleen and kidney (approximately 2300-

2500-fold above background) in contrast to its histidine-free analog 608/Sph-AC. In summary, 

606/Sph-HC showed 32-fold enhanced activity over 608/Sph-AC in tumor, 2-fold in liver, 4-

fold in spleen and 5-fold in kidney. Aside from these findings, both polyplexes were tolerated 

quite well and did not mediate any visual sign of acute toxicity.   

 

 

1.3. Targeted c-Met-directed polyplexes for efficient gene transfer in vivo 

The goal of active targeting is to enhance specific uptake of particles into cancer cells. Receptor 

targeted gene delivery with various targeting ligands is enabled through the upregulation of 

surface receptors in cancer tissues. In the following experiments, the c-Met receptor-binding 

ligand cMBP2 was evaluated concerning in vivo transfection efficacy and compared to a non-

targeted alanine control polymer. Petra Kos (PhD thesis 2014, LMU) already demonstrated the 

successful in vitro gene transfer and the absence of receptor activation of cMBP2-targeted 

polymers. c-Met/HGFR overexpressing hepatocellular carcinoma tumors (Huh7) were utilized 

as xenograft tumor mouse model in NMRI nude mice.   

 

Figure 8: Luciferase gene expression. 48 hours after intravenous administration of pDNA 

polyplexes with four-arm Sph based polymers containing histidines (606/Sph-HC) or alanines 

(608/Sph-AC) into Neuro2A tumor bearing mice luciferase gene expression was measured. 

Lysis buffer RLU (relative light unit) values were subtracted. Represented is the mean ± S.E.M. 

of five mice per group. 
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1.3.1. Intratumoral gene transfer after local administration of c-Met-

directed polyplexes 

The histidine-enriched two-arm polymer 442/cMBP2-1PEG with one PEG24 (polyethylene 

glycol) unit (Scheme 1-III) yielded the most auspicious in vitro gene transfer (Petra Kos, PhD 

thesis 2014, LMU) and was therefore selected first for subsequent in vivo experiments. 

Although attachment of a second PEG24 unit had not shown a beneficial effect in vitro, a 

shielded analog (694/cMBP2-2PEG) with two PEG24 units (Scheme 1-IV) was evaluated at the 

same time, as an additional PEG24 chain might be beneficial in vivo concerning polyplex 

biodistribution and ligand accessibility. Anesthetized mice bearing subcutaneous Huh7 tumors 

were injected intratumorally with polyplexes containing 50 µg pCMVLuc complexed with 

either 442/cMBP2-1PEG, 440/Ala-1PEG, 694/cMBP2-2PEG or 616/Ala-2PEG at N/P 12. 

After 24 hours mice were sacrificed, tumors were collected, homogenized in cell culture lysis 

buffer and subsequently centrifuged. Luciferase activity was determined in the supernatant and 

revealed a significant cMBP2 tumor targeting effect of 442/cMBP2-1PEG polyplexes, with a 

15-fold higher gene expression than the alanine control polyplexes 440/Ala-1PEG (Figure 9-

A). A minor gene expression was displayed for polymers with an extra PEG24 chain but still 

revealed a cMBP2 targeting effect of polymer 694/cMBP2-2PEG (7-fold higher expression) 

compared to its alanine control 616/Ala-2PEG.  

Due to the fact that luciferase gene transfer studies do not allow a quantification of total plasmid 

amount in tumors after local administration of polyplexes, quantitative polymerase chain 

reaction (qPCR) was performed to confirm a cMBP2 targeting effect. According to the 

luciferase gene transfer experiments, the highest retention of plasmid concentration in the tumor 

was achieved with the initial cMBP2-targeted two-arm polymer with only one PEG24 chain 

(442/cMBP2-1PEG). Compared to its non-targeted alanine control (440/Ala-1PEG) the amount 

of plasmid in tumor was almost 10-fold higher and to the cMBP2-targeted two PEG24 unit 

containing polyplexes (694/cMBP2-2PEG) more than 3-fold higher (Figure 9-B). 
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1.3.2. Intratumoral polyplex retention 

Based on the first promising intratumoral gene transfer studies which showed a major targeting 

effect for the two-arm cMBP2 polymer with one PEG24 unit (442/cMPB2-1PEG) compared to 

the polymer with 2 PEG24 units, it was subsequently chosen for further in vivo studies. 

To analyze the functionality of the cMBP2-targeted carrier system, its retention effect was 

compared to its untargeted alanine control polymer (440/Ala-1PEG). For this purpose, 

polyplexes with Cy7-labeled pDNA were injected into subcutaneous Huh7 tumors of 

anesthetized mice. Analysis was done via near infrared (NIR) imaging of the mice immediately 

after polyplex injection and repeated after 0.25, 0.5, 4, 48 and 72 hours. Figure 10 shows one 

representative mouse per group. 

 

Figure 9: In vivo transfection efficacy. A) Luciferase gene expression 24 hours after 

intratumoral administration of cMBP2-targeted and alanine control pDNA polyplexes with 

either one or two PEG24 chains into Huh7 tumor bearing mice. Lysis buffer RLU (relative light 

unit) values were subtracted. Luciferase gene expression is presented as RLU/tumor. The 

weights of the Huh7 tumors were 387 ± 146 mg. Represented is the mean ± S.E.M. of five mice 

per group. B) Quantification of luciferase pDNA detected in tumors 24 hours after intratumoral 

administration of pDNA polyplexes determined with qPCR. Represented is the mean ± S.E.M. 

of four mice per group. qPCR was performed by Petra Kos (PhD student, LMU Pharmaceutical 

Biotechnology). 

Significance of the results was evaluated by t-test (*p<0.05; **p<0.01; ***p<0.001).  
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For two-arm targeted (442/cMBP2-1PEG) particles a strong fluorescent signal in tumor was 

visible over 72 hours, being the highest 30 minutes after polyplex injection probably due to the 

distribution of a high amount of particles in the tumor tissue. In comparison, the non-targeted 

alanine control particles (440/Ala-1PEG) display no Cy7 signal increase in tumor but a 

decreasing signal after 4 hours representing a weaker retention in the tumor tissue and a shorter 

persistency than the targeted particles. Importantly, for non-targeted Ala-1PEG particles an 

immediate liver signal (cranial of the tumor) was observed whereas in case of the targeted 

cMBP2 particles a liver signal appeared only 30 minutes after polyplex administration. 

1.3.3. Systemic gene transfer of c-Met-directed polyplexes after 

intravenous administration 

By reason of the preliminary intratumoral studies which displayed the efficacy of the targeting 

ligand cMBP2, targeted polyplexes were further analyzed for their systemic delivery potential 

in vivo because of the high impact of this administration route.    

Figure 10: Retention of polyplexes in the tumor tissue. Untargeted polyplexes (top) and 

targeted polyplexes (bottom) were injected intratumorally and NIR imaging was performed 

immediately and repeated after 0.25, 0.5, 4, 48 and 72 hours (h). One representative mouse per 

group is shown. The color scale (efficiency) had a minimum of 2.2e-8 and a maximum of  

1.0e-7 fluorescent photons/incident excitation photon.    
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1.3.3.1. Initial two-arm polymer   

Since the so far tested initial targeted two-arm polymer with one PEG24 unit displayed the 

highest transfection efficacy in the intratumoral gene transfer studies, this polymer was 

subsequently applied for systemic delivery experiments. Two-arm targeted (442/cMBP2-

1PEG) and untargeted control polyplexes (440/Ala-1PEG) containing an increased amount of 

pDNA (80 µg pDNA compared to 50 µg in the intratumoral experiments) were injected 

intravenously into the tail vein of mice bearing subcutaneous Huh7 tumors. Mice were 

sacrificed two days after administration, tumors and organs (lung and liver) were collected, 

homogenized in cell culture lysis buffer and subsequently centrifuged. Luciferase activity 

determined in the supernatant displayed moderate expression levels in tumor and organs but 

did not reveal any significant targeting effect of the cMBP2-targeted polyplexes over the 

untargeted control polyplexes (Figure 11). 

     

1.3.3.2. Polymers with additional polycationic arms 

Due to insufficient gene transfer efficacy of the initial two-arm polymer further improvements 

on polymeric structure of this carrier system were realized. Intratumoral gene transfer 

experiments already revealed that an increase to an even 2-fold higher PEG content was rather 

unfavorable hence the opposite direction was taken towards an enhanced dimension of the 

Figure 11: Gene transfer after intravenous administration of the initial two-arm polymer. 

Gene expression in tumor, lung and liver 48 hours after intravenous administration of 

442/cMBP2-1PEG and 440/Ala-1PEG pDNA polyplexes into Huh7 tumor bearing mice. 

Luciferase gene expression is presented as relative light units per organ or tumor (RLU/organ). 

Lysis buffer RLU values were subtracted. Represented is the mean ± S.E.M. of five mice per 

group.   
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polycationic part of the polymers. Although implicating no advantage in vitro (Petra Kos, PhD 

thesis 2014, LMU), polyplexes formed with PEGylated four-arm polymer 677/cMBP2-1PEG 

and the untargeted alanine control 678/Ala-1PEG (Scheme 1-V) were applied for systemic gene 

transfer studies because they still might be favorable in vivo. Polyplexes containing 80 µg 

pDNA were injected intravenously into the tail vein of mice bearing subcutaneous Huh7 

tumors. Mice were sacrificed two days after administration, tumors and organs (lung and liver) 

were collected, homogenized in cell culture lysis buffer and subsequently centrifuged. 

Luciferase activity of these polymers with a higher cationic trait determined in the supernatant 

displayed a significant cMBP2 targeting-dependent luciferase expression in tumor despite only 

moderate expression levels similar to liver and lung (Figure 12).    

 

1.3.3.3. Co-addition of a non-shielded three-arm polymer to the initial two-arm 

polymer 

To further improve transfection efficacy and targeting effect of cMBP2 upon systemic 

administration, an alternative approach to optimize the polymers was considered. Therefore, a 

novel three-arm polymer (689) without PEG shielding was synthesized (Scheme 1-VI). Due to 

disulfide-crosslinking of terminal cysteines of the targeted two-arm cMBP2 polymer and the 

Figure 12: Gene transfer after intravenous administration of polymers with a higher 

amount of cationic charges. Gene expression in tumor, lung and liver 48 hours after 

intravenous administration of 677/cMBP2-1PEG and alanine control 678/Ala-1PEG pDNA 

polyplexes into Huh7 tumor bearing mice. Luciferase gene expression is presented as relative 

light units per organ or tumor (RLU/organ). Lysis buffer RLU values were subtracted. Liver 

weight was around 1.5 g, lung weight around 210 mg and Huh7 tumor weight 282 ± 197 mg. 

Represented is the mean ± S.E.M. of five mice per group. Significance of the results was 

evaluated by t-test (*p<0.05).   
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three-arm polymer stable polyplexes can be formed. Hereupon, this new polymer was mixed in 

a ratio of 30:70 with the initial cMBP2-targeted two-arm polymer (442/cMBP2-1PEG) to reach 

an N/P ratio of 12. Polyplexes formed with targeted bi-polymeric particles (442/cMBP2-1PEG 

+ 689) or the corresponding untargeted alanine control (440/Ala-1PEG + 689) were applied for 

systemic gene transfer studies in mice. Polyplexes containing 80 µg pDNA were injected 

intravenously into the tail vein of mice bearing subcutaneous Huh7 tumors. Mice were 

sacrificed two days after administration, tumors and organs (lung and liver) were collected, 

homogenized in cell culture lysis buffer and subsequently centrifuged. In contrast to mono-

polymer 442/cMBP2-1PEG polyplexes (Figure 11), luciferase activity determined in the 

supernatant revealed a highly increased expression in tumor (Figure 13) for the cMBP2-targeted 

bi-polymeric particles (442/cMBP2-1PEG + 689). The tumor signal of the non-targeted alanine 

control polyplexes (440/Ala-1PEG + 689) was exceeded by 22-fold and of the cMBP2-targeted 

mono-oligomer polyplexes (442/cMBP2-1PEG) by 35-fold (Figure 11). The luciferase 

expression in the organs lung and liver was up to 50-fold lower than in tumor (Figure 13-A). 

The amount of pDNA accumulating in tumor 4 hours after intravenous injection was 

determined by qPCR. Administration of cMBP2-targeted polyplexes resulted in an increased 

pDNA amount in tumor compared to the alanine analogs confirming the cMBP2 targeting 

effect. According to the luciferase gene transfer experiments, the highest pDNA retention was 

observed with cMBP2-targeted bi-polymeric particles (442/cMBP2-1PEG + 689) 

outperforming their alanine analogs 30-fold (Figure 13-B).             
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1.3.3.4. Co-addition of a non-shielded four-arm polymer to the initial two-arm 

polymer 

To examine whether this beneficial effect after co-adding polymer 689 is specific or it can be 

achieved by the addition of any non-shielded polymer a different combination was investigated 

in their systemic transfection efficacy. Instead of three-arm polymer 689 a four-arm polymer 

with Sph building blocks (Scheme 1-II) was mixed in a ratio of 30:70 with the initial cMBP2-

targeted two-arm polymer (442/cMBP2-1PEG) to reach an N/P ratio of 12. Polyplexes formed 

with cMBP2-targeted bi-polymeric particles (442/cMBP2-1PEG + 606) or the corresponding 

untargeted alanine control (440/Ala-1PEG + 606) were applied for systemic gene transfer 

studies in mice. Polyplexes containing 80 µg pDNA were injected intravenously into the tail 

vein of mice bearing subcutaneous Huh7 tumors. Mice were sacrificed 48 hours after 

administration, tumors and organs (lung and liver) were collected, homogenized in cell culture 
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Figure 13: Gene transfer after intravenous administration of bi-polymeric particles. A) 

Luciferase gene expression in tumor, lung and liver 48 hours after intravenous administration 

of two-arm PEGylated cMBP2-targeted (442/cMBP2-1PEG) or alanine control (440/Ala-

1PEG) polymers mixed with three-arm non-PEGylated polymer 689 into Huh7 tumor bearing 

mice. Luciferase gene expression is presented as relative light units per organ or tumor 

(RLU/organ). Lysis buffer RLU values were subtracted. Liver weight was around 1.6 g, lung 

weight around 230 mg and Huh7 tumor weight 452 ± 189 mg. Represented is the mean ± 

S.E.M. of five mice per group. B) Quantification of luciferase pDNA detected in tumors 4 

hours after intravenous administration of either cMBP2-targeted or alanine control single - or 

bi-polymeric particles determined with qPCR. Represented is the mean ± S.E.M. of three mice 

per group. qPCR was performed by Petra Kos (PhD student, LMU Pharmaceutical 

Biotechnology). Significance of the results was evaluated by t-test (*p<0.05).  
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lysis buffer and subsequently centrifuged. Luciferase activity determined in the supernatant 

yielded a significant cMBP2 tumor targeting effect, however with a lower luciferase expression 

in tumor and a remarkably increased expression in lung (Figure 14). 

 

 

2. Circumventing chemoresistance of cancer 

In this chapter, two different approaches to circumvent chemoresistance of cancer were 

analyzed. First, the efficacy of the drug salinomycin against cancer cells and its ability to inhibit 

migration and metastasis was investigated in vivo. These experiments were performed together 

with Florian Kopp (PhD thesis 2013, LMU). The additive effect of salinomycin to the classical 

therapeutic drug doxorubicin was further investigated in a tumor mouse model. Secondly, 

packing of chemotherapeutic drugs inside mesoporous nanoparticles was investigated in vivo 

in terms of biodistribution, biocompatibility and tumor targeting. Stefan Niedermayer (PhD 

thesis 2014, LMU) and Stefan Datz (PhD student, LMU Physical Chemistry) synthesized these 

mesoporous nanoparticles (MSN).   

Figure 14: Systemic gene transfer after co-addition of a non-shielded four-arm polymer. 

Gene expression in tumor, lung and liver 48 hours after intravenous administration of two-arm 

PEGylated cMBP2-targeted (442/cMBP2-1PEG) or alanine control (440/Ala-1PEG) polymers 

combined with four-arm non-PEGylated polymer 606 into Huh7 tumor bearing mice. 

Luciferase gene expression is presented as relative light units per organ or tumor (RLU/organ). 

Lysis buffer RLU values were subtracted. Liver weight was around 1.5 g, lung weight around 

210 mg and Huh7 tumor weight 438 ± 152 mg. Represented is the mean ± S.E.M. of five mice 

per group. Significance of the results was evaluated by t-test (**p<0.01). 
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2.1. Effects of doxorubicin upon increasing dosage 

Regarding the effect of the classical chemotherapeutic drug doxorubicin on tumor growth and 

metastasis of 4T1-Luc breast tumors different dosages were evaluated in a preliminary dose-

finding experiment for subsequent combinatorial treatment. BALB/c mice (n = 12) were 

divided into four groups, one control group (NaCl 0.9 %) and three treatment groups (2 mg/kg, 

5 mg/kg, and 8 mg/kg doxorubicin). Luciferase expressing syngeneic 4T1 breast cancer cells 

were inoculated into the mammary fat pad. 24 hours later treatment started and was repeated 

every six days for three times. On day 18, after tumor cell inoculation, two mice treated with 8 

mg/kg doxorubicin had to be euthanized due to severe weight loss (the third mouse of this group 

had to be euthanized already on day 7). The group treated with 5 mg/kg doxorubicin also lost 

weight initiating after one week of treatment compared to the control or lowest treatment group 

(2 mg/kg doxorubicin) which constantly gained weight. Figure 15 shows the weight loss-to-

time diagram. 

  

Treatment with the lowest dosage (2 mg/kg doxorubicin) mediated no effect on hampering 

tumor growth but a similar increase in tumor volume as the control group visible in a tumor 

growth curve (Figure 16-A). Only treatment with 5 mg/kg doxorubicin led to a significant tumor 

growth inhibition without premature termination due to severe medical condition (Figure 16-

B).       

Figure 15: Weight loss-to-time diagram. Weight development of mice during systemic 

treatment with 2 mg/kg, 5 mg/kg, 8 mg/kg doxorubicin or control starting with 4T1-Luc breast 

cancer cell inoculation (day 0) and ending with euthanasia (day 22, day 18 for the 8 mg/kg 

group). Represented is the mean ± S.E.M. of three (two within the 8 mg/kg treatment group) 

mice per group over time.  
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At the end of the trial on day 22 (mice treated with 8 mg/kg doxorubicin on day 18) metastasis 

formation to the lungs was evaluated via bioluminescence imaging. For this purpose mice were 

anesthetized and injected with Na-luciferin intraperitoneally. After 15 minutes of distribution 

mice were euthanized through cervical dislocation, lungs were dissected and bioluminescence 

imaging was performed. For quantification of the tumor burden bioluminescent signals were 

counted as total flux/area (photons/second/cm2). Figure 17-A represents the luminescent signal 

of 4T1-Luc tumors in lungs. The average luciferin signal in lungs of the group treated with the 

lowest dose of doxorubicin (2 mg/kg) was significantly higher than in the control group 

implying an enhanced metastasis formation upon low dosage treatment. Even higher dosage 

with 5 mg/kg doxorubicin led to a slightly increased tumor burden in the lungs compared to the 

control group. The highest dosage (8 mg/kg) of doxorubicin caused minor metastasis formation 

to the lungs. To visualize these findings, two pictures (ventral and dorsal side) were taken per 

lung (Figure 17-B). The group treated with 2 mg/kg doxorubicin had much higher luminescent 

signals than the other groups. As this experiment was performed for dose-finding, these results 

need to be validated by larger group numbers.     

 

 

Figure 16: Tumor growth over time. Tumor volume of BALB/c mice bearing 4T1-Luc breast 

tumors in the mammary fat pad during three systemic treatments (day 1, 7 and 13) with 2 

mg/kg, 5 mg/kg or 8 mg/kg doxorubicin or control (NaCl 0.9 %). Tumor growth was monitored 

for 22 days at indicated time points. A) Average tumor volumes of all four groups over time. 

B) Average tumor volumes of the group treated with 5 mg/kg doxorubicin compared to the 

control group. Significance of the results was evaluated by t-test (*p<0.05; **p<0.01).   

Represented is the mean ± S.E.M. of three mice per group.   
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2.2. Influence of salinomycin on tumor growth 

To evaluate the efficacy of the drug salinomycin to hamper tumor growth, luciferase expressing 

4T1 breast cancer cells and syngeneic BALB/c mice were used in a subcutaneous tumor model. 

Subcutaneous tumor bearing mice were treated intraperitoneally with either salinomycin (5 

mg/kg) or control (DMSO in phosphate buffered saline) for six times between day 3 and 15 

after tumor implantation. Treatment with salinomycin mediated similar tumor size increase 

Figure 17: Quantification of tumor burden in the lungs. A) The luminescent signal of 4T1-

Luc tumor formation to the lungs was counted as total flux/area (photons/second/cm2). 

Represented is the mean ± S.E.M. of three mice per group. Significance of the results was 

evaluated by t-test (*p<0.05). B) Images of the harvested lungs. Panel no. 1 shows the tumor 

burden of the lungs of the control group, no. 2 of the group treated with 2 mg/kg doxorubicin, 

no. 3 of the group treated with 5 mg/kg doxorubicin and no. 4 of the group treated with 8 mg/kg 

doxorubicin. Each lung was pictured from dorsal and ventral side.      
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over time to the control group visible in a tumor growth curve (Figure 18-A). Only a minor 

effect on tumor size could be observed for the final day (day 17) (Figure 18-B).  

 

All mice were in good general condition during the experiment and both groups showed similar 

weight increase over time (Figure 19).  

Figure 18: Tumor growth rate. Tumor volume of BALB/c mice bearing subcutaneous 4T1-

Luc breast tumors during six intraperitoneal treatments (day 3, 6, 8, 10, 13 and 15) with 5 mg/kg 

salinomycin or control. A) Average tumor volumes of both groups over time. Tumor growth 

was monitored for 17 days at indicated time points. B) Average tumor volumes of the 

salinomycin treated group compared to the control group on the final day (day 17).  

Represented is the mean ± S.E.M. of nine mice per group.     

Figure 19: Weight loss-to-time diagram. Weight development of mice during intraperitoneal 

treatment with 5 mg/kg salinomycin or control starting with 4T1-Luc breast cancer cell 

inoculation (day 0) and ending with euthanasia (day 17). Represented is the mean ± S.E.M. of 

nine mice per group over time. 
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2.3. Influence of salinomycin on tumor colonization and migration 

Besides the findings of salinomycin on hampering tumor growth we considered whether 

salinomycin is able to prevent metastasis formation in vivo. Hence, the effect of salinomycin 

on tumor cell colonization and migration was evaluated in a syngeneic 4T1-Luc mouse model. 

BALB/c mice (n = 20) were divided into two groups, one control group and one treatment 

group. Luciferase expressing syngeneic 4T1 breast cancer cells were injected intravenously via 

tail vein. 24 and 0.5 hours before tumor cell inoculation the treatment group was premedicated 

intraperitoneally with 5 mg/kg salinomycin. Treatment was repeated on day 3, 6 and 9 after 

tumor cell injection and tumor growth was monitored using bioluminescence imaging on day 

3, 8 and at the end of the experiment (day 13). For this purpose mice were anesthetized and 

injected with Na-luciferin intraperitoneally. After 15 minutes of distribution bioluminescence 

imaging was performed. One mouse of the control group had to be sacrificed already earlier 

due to severe medical condition. Figure 20 shows the luminescent signals of the 4T1-Luc 

tumors in the lungs at the end of the trial (day 13).      
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Figure 20: Bioluminescence Imaging. A) Images of mice with primary tumor formation in 

the lungs treated with control. The upper panel shows dorsoventral and the lower panel shows 

ventrodorsal images of mice. B) Images of mice with primary tumor formation in the lungs 

treated with 5 mg/kg salinomycin. The upper panel shows dorsoventral and the lower panel 

shows ventrodorsal images of mice. C) Images of dissected lungs. The upper panel shows 

tumor burden in the lungs of the control treated group and the lower panel shows tumor burden 

in the lungs of the salinomycin treated group. 
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All mice in both groups exhibited a thoracic luminescent signal reflecting the primary tumor 

burden in the lung of each mouse. A stronger signal could be observed in dorsal position of the 

mice (Figure 20-A+B lower panel). Mice treated with salinomycin showed similar signals in 

the lungs to the control mice. To localize the luminescent signal quite clearly lungs were 

dissected and imaged separately (Figure 20-C). The findings are in accordance with images of 

the living mice, salinomycin treated mice had similar signals in the lungs to control treated 

mice. 

For quantification of the tumor burden over time bioluminescence imaging was performed on 

day 3, 8 and at the end of the trial (day 13). Signals were counted as total flux/area 

(photons/second/cm2). Figure 21 represents the average luminescent signals over time. In line 

with the subcutaneous model, treatment with salinomycin did not yield a significant effect on 

primary tumor formation and growth over time. 

 

 

 

 

 

 

 

 

 

 

To evaluate the effect of salinomycin on hampering migration, metastasis formation from 

primary tumor to secondary organs was analyzed subsequently. Therefore, mice were 

euthanized at the end of the trial (day 13) and organs (brain, spleen, kidneys and liver) were 

dissected for subsequent ex vivo luciferase measurements. Organs were homogenized in cell 

culture lysis buffer followed by centrifugation and determination of the luciferase activity in 

the supernatant. Remarkably, metastases in brain, spleen and kidneys were significantly 

reduced after treatment with salinomycin (Figure 22).  

 

Figure 21: Quantification of tumor burden in the lungs. The luminescent signal of 4T1-Luc 

tumor formation in the lungs was counted as total flux/area (photons/second/cm2). Represented 

is the mean ± S.E.M. of ten (treatment group) or nine (control group) mice over time. 
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All mice were in good general condition at the beginning of the experiment. After one week 

they started to lose weight due to the tumor burden in the lungs and therefore the experiment 

had to be terminated at day 13. Both groups show similar body weight levels over time (Figure 

23). 

 

 

 

 

 

 

 

 

 

 

Figure 22: Metastasis formation in a syngeneic intravenous mouse tumor model. 

Metastasis in 4T1-Luc tumor bearing mice on day 13 after intraperitoneal treatment with 5 

mg/kg salinomycin or control. Luciferase gene expression was analyzed in brain, spleen, 

kidneys and liver. Significance of the results was evaluated by t-test (*p<0.05; **p<0.01). 
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2.4. Combinatorial effect of doxorubicin and salinomycin 

Due to the positive effect of salinomycin on hampering migration but not on tumor growth 

reduction, it´s efficacy as an additive compound to the classical chemotherapeutic drug 

doxorubicin was investigated in a syngeneic tumor mouse model. BALB/c mice (n = 40) were 

divided into four groups, one control group and three treatment groups (single doxorubicin, 

single salinomycin and combined treatment). Luciferase expressing syngeneic 4T1 breast 

cancer cells were inoculated into the mammary fat pad. 24 hours later treatment with 

doxorubicin started. As the preliminary dose-finding experiment for doxorubicin revealed 

tumor growth inhibition but also severe weight loss of mice treated with 5 mg/kg and 8 mg/kg 

a lower dosage was inescapable (Figure 15 + 16). 2 mg/kg implied enhanced metastasis 

formation and mediated no tumor growth inhibition, thus, a compromise solution was found 

favourable. The doxorubicin and combinatorial group received 3.5 mg/kg weekly for three 

weeks intravenously. The salinomycin and combinatorial group received 5 mg/kg twice per 

week intraperitoneally. Treatment with salinomycin again mediated similar tumor size increase 

over time to the control group visible in a tumor growth curve (Figure 24-A). Only treatment 

with doxorubicin could reduce the tumor burden significantly whereas the combinatorial 

treatment could not yield any additional effect on tumor growth inhibition to single doxorubicin 

treatment. In Figure 24-B a detailed illustration of tumor size proportions at the end of the trial 

(day 21) is shown.   

Figure 23: Weight loss-to-time diagram. Weight development of mice during intraperitoneal 

treatment with 5 mg/kg salinomycin or control starting with intravenous 4T1-Luc breast cancer 

cell inoculation (day 0) and ending with euthanasia (day 13). Represented is the mean ± S.E.M. 

of ten (treatment group) or nine (control group) mice over time. 
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At the end of the trial, on day 21 after tumor cell inoculation, metastasis formation to the lungs 

was evaluated using bioluminescence imaging. For this purpose mice were anesthetized and 

injected with Na-luciferin intraperitoneally. After 15 minutes of distribution mice were 

euthanized through cervical dislocation, lungs were dissected and bioluminescence imaging 

was performed. Figure 25-A shows the luminescent signals of the 4T1-Luc tumor burden in the 

lungs at the end of the trial (day 21). One mouse in the control group (number 9) and two in the 

doxorubicin treated group (number 5 and 9) did not develop metastasis formation to the lungs. 

For quantification of the tumor burden in the lungs bioluminescent signals were counted as total 

flux/area (photons/second/cm2). Mice without metastases in the lungs were excluded as the 

experimental settings malfunctioned here. The control group yielded the highest amount of 

metastases in the lungs followed by the treatment groups (Figure 25-B). Within this 

experimental setting neither single nor combinatorial treatment were able to hamper metastasis 

formation significantly.            

 

 

Figure 24:  Tumor growth over time. Tumor volume of BALB/c mice bearing 4T1-Luc breast 

tumors in the mammary fat pad during either three systemic treatments (day 1, 8 and 15) with 

3.5 mg/kg doxorubicin or six intraperitoneal treatments (day 4, 6, 11, 13, 18 and 20) with 5 

mg/kg salinomycin or a combination of both. A) Average tumor volumes of all groups over 

time. Tumor growth was monitored for 21 days at indicated time points. B) Average tumor 

volumes of all treatment groups compared to the control group on the final day (day 21). 

Significance of the results was evaluated by t-test (*p<0.05). 

Represented is the mean ± S.E.M. of ten mice per group.      
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Figure 25: Metastasis formation to the lungs. A) Bioluminescence imaging of the dissected 

lungs. Panels (from top down) show the tumor burden in the lungs of the control, single 

doxorubicin, single salinomycin and combined treated mice. Each lung was pictured from 

dorsal and ventral side. B) The luminescent signal of 4T1-Luc tumor formation to the lungs 

was counted as total flux/area (photons/second/cm2). Represented is the mean ± S.E.M. of ten 

mice per group.   
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All mice were in good general condition during the whole experiment, however the group 

treated with doxorubicin plus salinomycin showed minor weight increase over time compared 

to the other groups (Figure 26). 

 

2.5. Mesoporous silica nanoparticles (MSN) for efficient drug delivery 

Circumvention of resistance to a drug, to reduce its side effects or to protect it against body 

fluids can be achieved by encapsulating chemotherapeutics into drug delivery vehicles. Below, 

a multifunctional delivery vehicle based on mesoporous silica nanoparticles (MSN) with a pH-

responsive coating is investigated in vivo. In previous in vitro experiments, MSN were 

characterized regarding physical and chemical properties and showed the successful delivery 

of several cargo into cells (Stefan Niedermayer, Veronika Weiss, PhD theses 2014, LMU).      

2.5.1. Systemic biodistribution of MSN 

In a first experiment, the biodistribution of functionalized polymer-coated and folic acid (FA) 

targeted MSN (MSN-PVP-PEG-NH2-FA) was compared with unfunctionalized MSN (MSN-

NH2) and evaluated in tumor free mice. Anesthetized mice were injected intravenously into the 

tail vein with a 100 µg (5 mg/kg) dose of Cy7-labeled particles (Cy7 was covalently linked to 

amino-groups on the surface). Analysis using NIR imaging of the mice was done immediately 

after injection and repeated after 0.25, 0.5, 4, 24 and 48 hours. Figure 27 shows one 

representative mouse per group. Both particle types were well tolerated by the mice and both 

showed similar short circulation times. In ventral position of the mice (Figure 27 - upper panel) 

Figure 26: Weight loss-to-time diagram. Weight development of control, doxorubicin, 

salinomycin or combined treated mice starting with 4T1-Luc breast cancer cell inoculation (day 

0) and ending with euthanasia (day 21). Represented is the mean ± S.E.M. of ten mice per 

group. 
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a signal in the spleen could be observed on the left side of the body. The fluorescent signal 

cranial represents the lungs. In dorsal position (Figure 27 - lower panel) preferred liver 

accumulation could be observed. A signal in the bladder occurred 15 minutes after injection. In 

summary, both particle types showed similar biodistribution manners upon systemic 

administration.    

 

Figure 27: Biodistribution upon systemic administration. Cy7-labeled functionalized 

(MSN-PVP-PEG-NH2-FA) and unfunctionalized (MSN-NH2) particles were injected 

intravenously and NIR imaging was performed immediately. Time dependent distribution over 

48 hours. The upper panel shows dorsoventral and the lower panel ventrodorsal images of mice. 

One representative mouse per group is shown. The color scale (efficiency) had a minimum of 

1.2e-8 and a maximum of 1.0e-7 fluorescent photons/incident excitation photon.   

MSN-PVP-

PEG-NH2–FA

MSN-NH2

MSN-PVP-

PEG-NH2–FA

MSN-NH2

Time after injection (h)

0           0.25         0.5           1              4         24             48 



  III. Results 

50 
 

To investigate the stability of particles and the attachment of the fluorescent dye due to the 

signal in the bladder, a second biodistribution experiment with Cy7 covalently linked to the 

inner surface of the particles was carried out. Anesthetized mice were injected intravenously 

into the tail vein with Cy7-loaded functionalized or unfunctionalized particles. Analysis using 

NIR imaging of the mice was done immediately after injection and repeated after 0.25, 0.5, 4, 

24 and 48 hours. Figure 28 shows one representative mouse per group. Both particle types 

showed again similar short circulation times with a generally weaker fluorescent signal intensity 

compared to particles labeled on the outside of MSN. In dorsal position (Figure 28 - lower 

panel) preferred liver accumulation and a signal in the lung could be observed. Importantly, no 

signal in the bladder is visible implying a good particle stability and a stable attachment of dye 

to particles.   
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2.5.2. Biocompatibility after systemic administration of MSN 

To test the biocompatibility of mesoporous nanoparticles and to exclude the possibility of acute 

toxic effects after single dose application clinical chemistry parameters were analyzed. Tumor 

free NMRI nude mice (n = 9) were euthanized 48 hours after intravenous administration of a 

100 µg (5 mg/kg) dose of functionalized (MSN-PVP-PEG-NH2-FA) and unfunctionalized 

Figure 28: Biodistribution upon systemic administration. Cy7-loaded functionalized 

(MSN-PVP-PEG-NH2-FA) and unfunctionalized (MSN-NH2) particles were injected 

intravenously and NIR imaging was performed immediately. Time dependent distribution over 

48 hours. The upper panel shows dorsoventral and the lower panel ventrodorsal images of mice. 

One representative mouse per group is shown. The color scale (efficiency) had a minimum of 

1.3e-8 and a maximum of 6.0e-8 fluorescent photons/incident excitation photon.   
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(MSN-NH2) particles or control (HEPES buffered glucose, HBG). Blood was collected in 

serum tubes. Serum parameters are shown in Table 1. Compared to the control group, treatment 

with both particle types showed no deviation of alanine transaminase (ALT) and aspartate 

transaminase (AST) levels implying intact liver function. Furthermore, serum creatinine levels 

and blood urea nitrogen (BUN) did not alter, proving that treatment did not compromise kidney 

function. Besides, histopathological examination of liver, lung, spleen and kidney were carried 

out. Organs were dissected, fixed in formalin, embedded into paraffin and stained with eosin 

and haematoxylin. Both particle types exhibited no histological disturbances compared to the 

HBG (control) treated group (Figure 29). 

Treatment  

group  

ALT (U/l) 

 ± SD  

AST (U/l) 

 ± SD  

Creatinine (mg/dl) 

 ± SD  

BUN (mg/dl) 

 ± SD 

control 33.9 ± 12.9 54.7 ± 14.1 0.3 ± 0.0 47.3 ± 8.5 

MSN-PVP-PEG- 

NH2 –FA 
43.2 ± 13.6 59.2 ± 12.1 0.3 ± 0.0 43.9 ± 6.7 

MSN-NH2 32.5 ± 2.5 51.9 ± 2.1 0.3 ± 0.0 47.4 ± 6.5 

 

 

 

 

 

 

 

Table 1: Clinical chemistry parameters. Values shown: alanine transaminase (ALT); 

aspartate transaminase (AST); creatinine, blood urea nitrogen (BUN). 
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2.5.2.1. Biocompatibility with increased dosages of MSN 

To test the biocompatibility of MSN with increased dosages a further experiment was carried 

out subsequently. Tumor free NMRI nude mice (n = 8) were divided into four groups and 

injected intravenously with a 1.6 mg (80 mg/kg) or 2 mg (100 mg/kg) dose of functionalized 

(MSN-PVP-PEG-NH2-FA) and unfunctionalized (MSN-NH2) particles. Intravenous 

administration of MSN was repeated after one week. Neither single nor second application of 

both dosages mediated any visual sign of toxicity. 

2.5.3. Tumor-targeting after systemic injection of MSN 

In a next step, biodistribution and tumor targeting upon systemic administration of MSN was 

investigated using confocal microscopy in a subcutaneous mouse tumor model with FA receptor 

overexpressing MDA MB 231 (breast adenocarcinoma) cells in NMRI nude mice (n = 9). 

Subcutaneous tumor bearing mice were injected intravenously via tail vein with functionalized 

but untargeted (MSN-PVP-PEG-NH2) and FA targeted (MSN-PVP-PEG-NH2-FA) particles 

Figure 29: Histopathological sections 48 hours after systemic treatment with control 

(HBG), functionalized (MSN-PVP-PEG-NH2-FA) and unfunctionalized (MSN-NH2) 

particles. a) Liver after treatment with HBG, b) functionalized MSN and c) unfunctionalized 

MSN. d) Lung after treatment with HBG, e) functionalized MSN and f) unfunctionalized MSN. 

g) Spleen after treatment with HBG, h) functionalized MSN and i) unfunctionalized MSN. j) 

Kidney after treatment with HBG, k) functionalized MSN and l) unfunctionalized MSN. One 

representative image is shown. The scale bars represent 100 µm.     
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loaded with fluorescent dyes (calcein and covalently linked ATTO 633). The control group was 

injected with HBG. After 3 hours mice were euthanized, tumors and organs (liver, lung, spleen 

and kidneys) were dissected, prepared for cryosections and stained with DAPI. Figure 30 shows 

slices of cryosections analyzed via confocal microscopy. The highest accumulation of particles, 

visible as red dots (ATTO 633), can be seen in spleen followed by liver and lung but no particles 

can be seen in kidneys. Calcein loading was not detectable presumably due to the very weak 

signal and the high autofluorescence of the tissue in the region of calcein-detection (data not 

shown). Of note, both particles also accumulate passively in tumor. The active targeting abilities 

of FA targeted particles could not be evaluated within this experimental setting and have to be 

investigated further. 

 

 

Figure 30: Distribution of MSN in a tumor mouse model. Passive tumor targeting of 

functionalized untargeted MSN-PVP-PEG-NH2 and folic acid (FA) targeted MSN-PVP-PEG-

NH2-FA after systemic injection into MDA MB 231 tumor bearing mice. Cryosections of 

tumor, liver, lung, spleen and kidney 3 hours after injection. One representative mouse per 

group is shown, one mouse per horizontal row. Cell nuclei were stained with DAPI (blue) and 

particles with ATTO 633 (red). Images were taken with 63 x magnification. The scale bar 

represents 50 µm. Slices were analyzed by Veronika Weiss (PhD student, LMU, Department 

of Chemistry). 
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2.5.4. Retention of MSN in subcutaneous tumors 

The retention efficacy of FA ligand containing MSN was investigated in a subcutaneous mouse 

tumor model with FA receptor overexpressing KB (human cervix carcinoma) cells in NMRI 

nude mice (n = 6) using NIR imaging. Subcutaneous tumor bearing mice were injected 

intratumorally with Cy7-labeled functionalized FA targeted (MSN-PVP-PEG-NH2-FA) and 

untargeted (MSN-PVP-PEG-NH2) MSN. Figure 31 shows total flux per tumor normalized to 

the initial value for one week after injection of MSN. Slightly increased retention for the FA 

modified particles could be observed within the first few hours compared to untargeted 

particles. Both particles displayed prolonged retention in tumors for more than one week 

(experiment had to be terminated as tumors became too big in size which is one of the human 

end points) compared to lower persistence upon systemic administration. 

 

Figure 31: Retention of MSN in the tumor tissue. Folic acid (FA) targeted (MSN-PVP-PEG-

NH2-FA) and untargeted (MSN-PVP-PEG-NH2) MSN labeled with Cy7 were injected 

intratumorally into KB tumor bearing mice. NIR imaging was performed for 7 days after 

application of MSN. A) Fluorescence signals of tumors were counted as total flux/area 

(photons/second/cm2) and normalized to 0 minutes (min). Represented is the mean ± S.E.M. of 

three mice per group. B) Representative images of targeted (top) and untargeted (bottom) MSN 

in tumors. 
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IV. DISCUSSION 

1. Polymeric nucleic acid carriers for tumor targeted gene delivery 

1.1. In vivo evaluation of polypropylenimine dendrimers 

In this chapter synthetic nucleic acid carriers based on the precise, symmetrical PPI dendrimer 

structure were evaluated in terms of their transfection efficacy. Modification of synthetic 

vectors while maintaining a defined structure reveals a great opportunity to overcome different 

obstacles in gene delivery. Increased molecular weight of the polymers can on the one hand 

improve transfection efficacy but on the other hand might result in increased cytotoxicity [88]. 

It is known that environment-triggered biodegradation can solve this problem [27, 89, 90]. 

Therefore, the octavalent polypropylenimine core (PPI G2) was attached with increasing units 

of small sequence-defined oligomers based on the oligoamino acid succinoyl-tetraethylene 

pentamine (Stp) [92]. Sequence-defined Stp polymers had been generated in precise form by 

solid-phase synthesis [92, 94, 162]. Biodegradability of Stp-linked PPI dendrimers results from 

reducible disulfide linkages through the incorporation of cysteines for which reason the Stp 

modified conjugates dissociate in the reducing cytosol environment (Figure 2).  

In previous in vitro experiments the PPI conjugate with 5 Stp units (536/PPI-Stp5) revealed the 

most promising characteristics for in vivo application such as high transfection efficacy, good 

pDNA binding ability, low cytotoxicity and high endosomal buffering capacity and was 

subsequently chosen for systemic in vivo experiments. A higher luciferase gene expression in 

lung and liver was obtained with unmodified PPI G2 polyplexes (Figure 6). Aggregation of PPI 

G2 polyplexes into micrometer-sized structures could lead to their accumulation and 

entrapment in lung capillaries explaining the undesirable luciferase expression in this organ 

[163, 164]. Tang et al. also showed that DNA complexes of unmodified dendrimers generally 

appear as clusters in electron micrographs and have diameters in solutions larger than 1 µm 

[165]. In contrast, the modified conjugates are smaller (about 267 nm) and could therefore have 

a better systemic distribution and accumulation in the tumor tissue due to the so called enhanced 

permeability and retention (EPR) effect [50] explaining the significantly higher tumor 

luciferase expression of the 536/PPI-Stp5 conjugates compared to the control PPI G2 

polyplexes. This promising in vivo data illustrates the conversion of unmodified Stp which is 

ineffective [166] due to its small size into potent gene carriers upon attachment to PPI. This 

concept presents a platform of several modifications for future experiments such as better 
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stabilizing [95], targeted and shielded [70] sequence-defined oligomers to further improve gene 

delivery.  

1.2. Effect on transfection efficacy in vivo upon incorporation of histidines       

Next, precise, tunable structures with multiple functional domains were generated [167, 168] 

using solid-phase synthesis with Stp and succinoyl-pentaethylene hexamine (Sph). The Sph 

building block showed an improved nucleic acid compaction and gene transfer in vitro [162] 

which is in line with our preliminary in vitro experiments yielding the most promising results 

with this structure, thus it has undergone further investigations. A bottleneck in transfection 

process after cellular uptake is the escape of polyplexes from endolysosomes to reach the 

cytoplasm. The so called “proton sponge hypothesis” postulates improved transfection results 

by cationic delivery agents with high endosomal buffering capacity [48]. The endosomal escape 

is caused by chloride and water accumulation in the endosomes leading to osmotic pressure. 

Triggered by the concomitant increase of positive polymer charges in the endosomes, vesicles 

lyse consequently and release their content into the cytosol [47]. Histidine residues become 

cationized upon protonation of their imidazole rings, thus enhancing endosomal buffering 

capacity [49].  

Polymers based on the building block Sph modified with histidines in the polycationic 

backbone (606/Sph-HC) and the histidine-free analog (608/Sph-AC) were compared with their 

transfection efficacy after intravenous administration into tumor bearing mice (Figure 8). The 

transgene expression in the Neuro2A tumor tissue 48 hours after injection was approximately 

32-fold higher with the histidinylated polymers compared to its histidine free analog, implying 

a critical impact of histidines on gene transfer. Remarkably, gene expression levels in tumors 

were higher than in lung, liver, spleen, kidney and heart in the case of the histidinylated 

polymers. Which, in fact, is in accordance with the high density of blood vessels and low 

amount of infiltrating macrophages in Neuro2A tumors [169]. These characteristics cause on 

the one hand good DNA uptake into the tumor and on the other hand low DNA degradation and 

therefore facilitate high gene expression. Expression levels in lungs were 30-fold lower than in 

tumor compared to the high molecular weight linear polyethylenimine (LPEI), a cationic 

polymer also labeled as “gold standard” for pDNA delivery, which mediates 100-fold higher 

transfection levels in lungs than in Neuro2A tumors [170]. The good toleration of the polymers 

investigated in this experiment compared with LPEI 22 kDa [88, 170] and the far lower lung 

expression are in accordance with their lower molecular weight. 
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1.3. Evaluation of targeted c-Met-directed polymers for efficient gene transfer 

in vivo 

Instead of passive targeting, another strategy to facilitate uptake of delivery agents into the 

tumor tissue is active targeting via targeting ligands. The c-Met/hepatocyte growth factor 

receptor (HGFR) is overexpressed in many tumors and hence displays an interesting target 

receptor in cancer therapy. The c-Met binding ligand cMBP2 with the amino acid sequence 

KSLSRHDHIHHH has previously been reported by Kim et al. In their study they showed 

targeting in vitro and in vivo with the radiolabeled (125I) peptide here called cMBP2 [171] and 

proved its application as a specific optical imaging system [172]. Another c-Met binding 

peptide with the amino acid sequence YLFSVHWPPLKA was already tested as radioiodinated 

diagnostic agent for tumor imaging [173]. Yet, targeting c-Met has not been applied for gene 

delivery so far. Because its superiority over the other c-Met binding peptide (Petra Kos, PhD 

thesis 2014, LMU) the cMBP2 ligand was conjugated to sequence-defined oligomers composed 

of the artificial amino acid Stp for alleviation of gene delivery, histidines for increased buffering 

capacity as described before, terminal cysteines for increased polyplex stability and 

polyethylene glycol (PEG) units for surface shielding (Scheme 1). Targeted polyplexes were 

investigated in vivo in a xenograft tumor mouse model and compared to their untargeted control.              

1.3.1. After intratumoral administration 

In the first in vivo experiments, polyplexes were injected locally into subcutaneous c-Met 

overexpressing Huh7 tumors. Here, two-arm polymers with two different amounts of PEG24 

units for surface shielding were investigated. Surface modification of delivery agents with PEG, 

a hydrophilic molecule, has been verified as a strategy to increase the solubility of hydrophobic 

drugs, prolong circulation times and reduce unspecific interactions with blood components like 

the complement system. By passive targeting it causes a higher accumulation at the tumor-site 

and can facilitate the incorporation of active targeting ligands additionally [174]. The PEG 

content has an influence on the polyplex biodistribution and the ligand accessibility but it can 

also reduce reporter gene expression [175-178].  

We demonstrated that the cMBP2-targeted polymers, regardless of the amount of PEG 

shielding (442/cMBP2-1PEG and 694/cMBP2-2PEG), showed much higher gene expression in 

tumor than their alanine control analogs (440/Ala-1PEG and 616/Ala-2PEG) (Figure 9-A) 

favoring polymers with only 1 PEG24 chain. A proof for specificity of the targeting mechanism 

is given by the structural identity of both polyplexes apart from the cMBP2 ligand.  
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To investigate the retention capability in the tumor tissue, targeted and untargeted polyplexes 

were locally injected and their elution from the tumor was followed up for several days (Figure 

10). Both particles remained in tumor over 72 hours, however, the non-targeted particles 

(440/Ala-1PEG) had a slightly shorter retention time as only a barely visible signal could be 

detected for the last time point. Moreover, a small part of these particles was immediately 

washed out of the tumor. Overall, a significantly different retention time could not be 

demonstrated within this experimental setting. One reason therefore might be the size of the 

polyplexes (approximately 200-400 nm) as they are more rigid once applied into the tumor 

tissue than smaller untargeted particles which - since unbound - can easier access the blood 

vessels and hence yield a significant retention effect [179]. 

1.3.2. After systemic administration           

Although cMBP2-targeted polymers yielded a high gene expression upon local administration, 

in most cases an intratumoral application of therapeutics cannot be considered. Hence, for 

further investigations polyplexes were applied systemically. On its way to the tumor the cargo 

has to conquer several barriers. The complex has to be stable in the blood circulation, needs 

protection from unwanted interactions with other blood components and has to avoid activation 

of the complement system [180, 181]. Therefore, polymers were equipped with PEG shielding 

domains as described above.  

In the first experiment the initial targeted and untargeted two-arm polymers were applied 

intravenously and transfection efficacy was measured after 48 hours (Figure 11). In contrast to 

the previous results upon local administration and although the amount of injected pDNA was 

increased for systemic administration, no cMBP2 targeting effect was obtained. Which, in fact, 

is underlining the special requirements and configurations of polyplexes for systemic delivery.  

Despite the application of polymers with one PEG24 chain and without disregarding the 

advantages of surface shielding, the PEG content is still very high because the polymers contain 

equal numbers of ethylene glycol units as protonatable Stp nitrogens. In a previous in vitro 

study this constitution resulted in insufficient pDNA condensation, presumably due to the 

interference with the PEG chains, and therefore form more loose structures [70]. Hence, 

polymers were designed towards the opposite direction to an augmented dimension of the 

polycationic part of the polymers. Adding extra polycationic arms has already previously been 

shown as favorable in the gene delivery process [94, 162]. Furthermore, the polycationic 

backbone of the polymers was rearranged from Stp to Sph building blocks. This replacement 

with the Sph building block was based on recent findings of improved gene transfer with this 
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novel building block [162]. Targeted and untargeted polymers now having four instead of two 

polycationic arms in the carrier backbone were applied intravenously. Although they did not 

show a beneficial effect upon in vitro transfections (Petra Kos, PhD thesis 2014, LMU), with 

these carriers a slight cMBP2 targeting effect in tumor was obtained. Tumor expression levels 

were similar to those in liver and lung (Figure 12).  

To further enhance transfection efficacy and cMBP2 tumor-targeting upon systemic 

administration, another approach in the design of polymers was considered. This time polymers 

were not directly tuned in their chemical composition, but the desired features - pDNA 

compaction plus surface shielding with targeting - were spread to two unequal sequence-defined 

polymers, one with and one without PEG24 units. As mentioned above, PEG chains can shield 

the surface but are not advantageous invariably. They presumably interfere with the pDNA 

condensation process compared to PEG-free analogous polyplexes which form a compact shape 

of rod- or toroid-like structures unlike loose “spaghetti-type” structures which were formed by 

polyplexes with PEG units [70]. Thereupon, the initial targeted two-arm polymer (442/cMBP2-

1PEG) was mixed with a non-shielded three-arm polymer (689) in a ratio of 70:30. This 30 

percent co-addition of non-shielded polymers revealed change in shape to round-shaped 

particles compared to rather spaghetti-like structures obtained before (Dr. Petra Kos, Dr. 

Markus Döblinger, LMU, unpublished data not shown). These bi-polymeric particles greatly 

enhanced gene transfer in the tumor tissue in sharp contrast to mono-polymer 442/cMBP2-

1PEG polyplexes (Figure 13-A+B).  

Despite these results we were interested whether this beneficial effect is specific to the co-added 

polymer 689 or whether it can be achieved by any non-shielded polymer. Instead of the three-

arm polymer with Stp building blocks in the carrier backbone, now the four-arm polymer with 

Sph building blocks (606) was mixed with the initial shielded and targeted two-arm polymer 

(442/cMBP2-1PEG) in the same ratio as before (30:70) and was applied intravenously. This 

time, a significant tumor targeting effect was achieved again but was associated with an 

increased gene transfer in the lung (Figure 14) stating that non-shielded polymers cannot be 

added arbitrarily. To improve gene transfer polymers have to be carefully selected and refined 

for special requirements of systemic in vivo application which obviously cannot always be 

identified by sole in vitro testing.          
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2. Circumventing chemoresistance of cancer 

2.1. Salinomycin as a potential additive compound to hamper metastasis 

Chemoresistance of cancer is a major drawback in the successful treatment of cancer patients. 

An important mechanism of resistance formation to chemotherapeutic drugs are cancer stem 

cells (CSCs). These cells within a tumor are able to self-renew after chemotherapy and are 

therefore responsible for relapse [101, 102]. Salinomycin was recently found to selectively 

target CSCs [122]. In this work it was analyzed whether this novel anticancer drug has an 

influence on tumor growth and tumor metastasis in vivo in a syngeneic mouse model. Murine 

4T1-Luc breast cancer cells originating from BALB/c mice are stably expressing luciferase 

which enables tracking of tumor growth and tumor cell dissemination via bioluminescence 

imaging.  

First, a tumor mouse model using the classical drug doxorubicin was established for subsequent 

combinatorial treatment with salinomycin. Here, a dosage needed to be found that is high 

enough to mediate a cytotoxic effect but low enough to leave some expansion space for 

beneficial effects of a combinatorial treatment. Thus, three different dosages of doxorubicin (2 

mg/kg, 5 mg/kg and 8 mg/kg) were evaluated regarding their compatibility, tumor growth and 

metastasis formation to a new tissue which was primarily the lungs (Figure 15, 16, 17). 4T1 

breast cancer cells were inoculated orthotopically into the mammary fat pad of BALB/c mice 

within this tumor model and metastasis formation was monitored. The highest dosage led to 

severe weight loss therefore the mice had to be euthanized ahead of time. 5 mg/kg doxorubicin 

revealed tumor growth inhibition but also severe weight loss thus the dosage was still too high. 

The lowest dosage mediated no tumor size reduction but, of note, implied an enhanced 

metastasis formation to the lungs instead of an expected inhibition. However, these results have 

to be validated by larger group numbers. Doxorubicin is inducing cytostatic effects as well as 

dose dependent cancer cell migration by activating TGFβ signaling as shown by 

Bandyopadhyay et al. TGFβ signaling is known to induce epithelial to mesenchymal transition 

(EMT) [182]. EMT, a developmental program leading to invasive and migratory properties of 

cancer cells, is also able to generate stem cell-like cells resulting in resistance to chemotherapy 

[103, 104].  

The CSCs targeting drug salinomycin was first tested regarding its effect on reducing tumor 

growth in vivo. Thus, a simplified setup with subcutaneous 4T1-Luc tumors in the flanks of the 

mice was used. Gupta et al. showed tumor size reduction of SUM159 human breast tumors in 

NOD/SCID mice with daily intraperitoneal injections of 5 mg/kg salinomycin for 5 weeks 
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[122]. In our tumor growth experiment treatment of 4T1-Luc tumors with salinomycin only 

mediated a minor effect on tumor size on the final day (Figure 18). We injected the same amount 

of salinomycin intraperitoneally but only for six times between day 3 and 15 after tumor 

implantation. 4T1-Luc tumors become necrotic after that short period although they were less 

than 600 mm3 in size when the experiment had to be terminated to guarantee proper results for 

further in vitro experiments and to keep the mice in a good general condition. Dosage and 

treatment intervals were not increased as the mice turned out to be apathetic for a couple of 

hours after injection of salinomycin which could be based on the recently described neurotoxic 

side effects [183]. Another issue of 4T1-Luc tumors is their poor blood supply what could also 

explain the minor effect on tumor size reduction as only a smaller amount of salinomycin is 

able to reach the tumor. Subsequent in vitro investigation of tumors revealed increased 

apoptosis, an increased miR-200c expression, elevated E-cadherin protein levels and an 

epithelial-like tumor after salinomycin treatment. Hence, treatment led to an induction of 

mesenchymal to epithelial transition (MET) (Florian Kopp, PhD thesis 2013, LMU).  

Based on these results and on encouraging preliminary in vitro experiments showing inhibitory 

effects of salinomycin on cell migration (Florian Kopp, PhD thesis 2013, LMU) we were also 

interested whether salinomycin was able to prevent metastasis in vivo. Because CSCs have been 

proposed to be in charge of colonization at secondary organs upon metastatic spreading [184] 

the question came up whether the inhibition of CSCs by salinomycin was accompanied by 

reduced metastasis formation in vivo. In this experiment 4T1-Luc cells were injected 

intravenously to specifically examine the final steps of metastasis, thus they form primary 

tumors almost without exception in the lungs. Mice were treated with salinomycin also before 

tumor cell inoculation to imitate a treated primary tumor aiming to prevent metastasis 

formation. This colonization experiment was terminated already on day 13 after tumor cell 

injection as mice started to lose weight due to the pulmonary tumor burden. Besides, this period 

was long enough to measure the luciferase signal through bioluminescence imaging (Figure 20, 

23). One mouse of the control group had to be euthanized already earlier due to severe central 

nervous disorders what later turned out to be a matter of brain metastases. Primary tumor 

formation and growth in the lungs was not significantly affected with salinomycin treatment as 

also observed in the subcutaneous tumor growth model (Figure 21). In contrast, Gupta et al. 

showed a 4-fold reduction of lung tumor burden three weeks after intravenous injection of 4T1 

cells into BALB/c mice. However, they pretreated 4T1 cells for four days in vitro with 

salinomycin compared to compound treatment of mice in our experiment, for which reason a 

direct comparison is very difficult [122]. Subsequent in vitro analysis of lung tumors revealed 
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considerably elevated miR-200c levels according to the subcutaneous 4T1-Luc tumors treated 

with salinomycin (Florian Kopp, PhD thesis 2013, LMU). Remarkably, metastases in brain, 

spleen and kidneys were significantly reduced after treatment with salinomycin determined by 

ex vivo luciferase measurements (Figure 22). These results suggest that salinomycin is capable 

to induce MET leading to significantly decreased metastasis formation to secondary organs. In 

summary, salinomycin treatment causes less migratory capacity of tumor cells, less metastasis 

and higher susceptibility to classical chemotherapy due to the induction of MET.  

Therefore, salinomycin as a drug targeting CSCs might be an interesting candidate for 

combinatorial therapies together with agents targeting non-CSCs within tumors specifically as 

tumors contain different cellular phenotypes. Oak et al. demonstrated efficient killing of HER2 

positive cells and CSCs upon treatment with the anti-HER2 monoclonal antibody trastuzumab 

and salinomycin opening an interesting possibility for further combinatorial treatments with 

salinomycin [185]. Kim et al. proposed an increased sensitivity of cancer cells to the apoptotic 

effects of doxorubicin associated with an increased DNA damage upon treatment with 

salinomycin in vitro [186]. Thus, the efficacy of salinomycin as an additive compound to the 

classical chemotherapeutic drug doxorubicin, an anthracycline antibiotic intercalating DNA, 

was investigated in the previously established syngeneic tumor mouse model. Based on those 

results of the dose finding experiment we decided to apply 3.5 mg/kg doxorubicin, the dosage 

of salinomycin was maintained with 5 mg/kg. 4T1-Luc cells were inoculated into the mammary 

fat pad and 24 hours later treatment with doxorubicin started and was repeated once a week 

compared to every six days in the preliminary experiment. These settings were changed with 

regard to the combinatorial treatment with salinomycin. Due to the slight toxic effect upon 

application of this drug we wanted the mice to recover completely before treatment with 

doxorubicin, thus the treatment intervals had always been the same. Combinatorial treatment 

with salinomycin and doxorubicin did not yield beneficial effects on tumor growth reduction. 

Only doxorubicin reduced the tumor burden significantly upon both single and combinatorial 

application (Figure 24). At the end of the trial metastasis formation to the lungs was again 

evaluated using bioluminescence imaging. Of note, some mice did not develop metastasis 

formation to the lungs implicating the problems of metastasis models. One reason could be an 

inhomogeneous inoculation of tumor cells into the mammary fat pad and into unequal areas 

more or less vascularized. On the contrary, intravenous injection of tumor cells led to a 

homogeneous colonization in the lungs within all mice implicating an advantage over the 

intramammary tumor model with spontaneous metastasis. Mice without metastases in the lungs 

were excluded from the analysis but this time neither single nor combinatorial treatment could 
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hamper metastasis formation significantly (Figure 25). However, different pharmacological 

parameters within the intramammary tumor model compared to the intravenous tumor model 

have to be considered. In future experiments the dosage of doxorubicin could be changed since 

this has a high impact on displaying beneficial effects with other compounds and the beginning 

of salinomycin treatment could be preponed to refine its effects. Despite these results 

salinomycin is still an interesting candidate for combinatorial treatments with other drugs. 

Besides, further in vitro processing still has to be performed. However, these findings illustrate 

once more the complexity of in vivo experiments and their implementation. Consequently, the 

experimental setups for further metastasis experiments should be revised and new tumor models 

should be considered such as further cancer cell lines. 

2.2. Efficacy of mesoporous nanoparticles as tumor targeted delivery agents 

circumventing chemoresistance     

A major drawback in the cure of cancer remains the multiple drug resistance (MDR) to free 

chemotherapeutic drugs and the severe toxic side effects of free chemotherapeutics to normal 

tissues due to the lack of tumor-selectivity [140]. Mesoporous nanoparticles are expected to 

overcome these obstacles by reversing MDR. Thus, a developed multifunctional drug delivery 

vehicle based on a mesoporous silica core with a pH-responsive polymer coating was 

investigated in vivo in terms of biodistribution, biocompatibility and tumor targeting.  

First, the biodistribution of mesoporous silica nanoparticles (MSN) functionalized with the 

PVP/PEG coating and the folic acid (FA) ligand was evaluated and compared to 

unfunctionalized MSN without coating. Within the first trial the fluorescent dye Cy7 was 

covalently linked to the amino-groups on the outside of the particles. Near infrared fluorescence 

imaging revealed a sufficient signal with 5 mg/kg MSN and preferred accumulation of both 

particle types in liver and spleen (Figure 27). These results are in line with similar findings 

made by Wu et al., who investigated biodistribution of MSN for the first time by magnetic 

resonance imaging (MRI) and found an accumulation in liver and spleen [187]. This 

accumulation in healthy tissues can enhance side effects, should be substantially reduced and 

the accumulation in tumor maximized. Modification of the surface with PEG can reduce uptake 

of MSN by the reticuloendothelial system (RES) and increase the blood circulation time [188, 

189]. Though this could not be observed within our experiment, dependance on amount, density 

and length of PEG has to be considered [190]. He et al. investigated in vivo biodistribution of 

MSN with several particle sizes (80 - 360 nm) and the effect of PEGylation and observed that 

MSN and PEG-MSN both mainly accumulate in liver and spleen and a minority in lung whereas 



  IV. Discussion 

65 
 

MSN in the size of 360 nm were easier captured by the organs [191]. The biodistribution of our 

PVP/PEG coated MSN are comparable with other studies published to date which mainly 

observe accumulation in spleen and liver. Although no clear effect upon PVP/PEG coating 

could be demonstrated within these experimental settings, particle size, shape and surface 

modification can affect biodistribution kinetics [191]. We could observe a signal in the bladder 

occurring 15 minutes after injection (Figure 27) what raised the question about the excretion of 

the particles. Degradation and elimination of MSN are investigated in many studies, but the 

wide variety not only of the particles itself but also of study designs and lack of standardization 

makes a comparison quite difficult. The porous structure and thus the large surface area of MSN 

are beneficial for accelerating degradation, but their chemical stability is generally higher than 

for organic particles [131] and the in vivo long-term effect of non-degraded particles is still 

unknown. Renal elimination of intact MSN through urine has been reported [192, 193] although 

their particle size is beyond the renal cut off limit of 4.5 - 5 nm [194], but the exact excretion 

process remained unclear in this case. Another elimination route of MSN is hepatobiliary 

excretion which has been shown by Lu et al [195]. This demonstrates the exceptional diversity 

of several MSN and their behavior meaning that unification could be beneficial for future 

experiments. Due to the bladder signal we wanted to investigate the stability of particles and 

the attachment of the fluorescent dye to the outer surface. Therefore, a second experiment was 

carried out with Cy7 linked to the inner surface of MSN. This time no bladder signal occurred 

implying a good particle stability in the blood circulation and a stable attachment of dye to 

particle although the signal intensity was lower compared to the attachment outside (Figure 28).  

To evaluate the biocompatibility of these MSN and to exclude the possibility of acute toxic 

effects after single dose application clinical chemistry parameters were analyzed. Compared to 

the control group, single treatment with functionalized (MSN-PVP-PEG-NH2-FA) and 

unfunctionalized (MSN-NH2) particles showed no deviations from liver and kidney parameters, 

(Table 1) and histopathological examinations showed no disturbances (Figure 29). Increased 

dosage with 80 and 100 mg/kg mediated no visual toxic effects. These findings are in 

accordance with He et al., they observed no tissue toxicity for MSN and PEG-MSN in one 

month [191]. Nevertheless, synthesis, particle size, morphology, surface modification, dosage 

and administration routes play an important role in hematological and histological 

biocompatibilities of MSN and have to be considered carefully. In addition, there are still many 

unknown issues that have to be addressed in the future like neuro-, brain- and reproductive 

toxicity or long term safety for up to one year [131]. 
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Targeting of nanoparticles to the tumor can be achieved by the EPR effect as mentioned earlier 

and enhanced with specific interactions between the nanoparticle and the cancer cell via active 

targeting using specific targeting ligands. Folic acid (FA) is one of the most studied targeting 

ligands for active targeting by MSN in vivo. Many tumor types possess an overexpression of 

folate receptors [64, 196] but its expression on normal tissue is limited [65], therefore folate 

receptor targeting is a frequently used model. Mamaeva et al. showed active folate receptor 

targeting with MSN after intratumoral and intravenous administration [197] and Lu et al. 

demonstrated successful tumor growth inhibition of pancreatic tumors with camptothecin 

loaded and FA modified MSN [193]. Due to their pH-responsive polymer coating, which 

enables controlled drug release, biodistribution and tumor targeting upon systemic 

administration of MSN with and without FA ligand was investigated in a subcutaneous mouse 

tumor model with folate receptor overexpressing MDA MB 231 tumors. Confocal microscopy 

of cryosections 3 hours after intravenous administration revealed again high accumulation in 

spleen and liver but also an accumulation in tumor for both MSN, presumably due to the EPR 

effect in this tissue (Figure 30). The active targeting abilities of FA targeted particles have to 

be evaluated further with quantitative measurements or chemotherapeutic drug loaded MSN.  

To evaluate the retention time of FA targeted and untargeted MSN, they were injected locally 

into subcutaneous KB tumors as these are highly overexpressing the folate receptor and were 

monitored for one week. The results display just a slightly increased retention time for the FA 

modified particles within the first few hours compared to untargeted particles (Figure 31). This 

could be due to the large size of the particles because they cannot be washed easily out of the 

tumor as it has been shown for smaller nanoparticles [179] in the same tumor model. Both 

particles showed prolonged retention times in tumor for more than one week compared to lower 

persistence upon systemic administration making them attractive also for local applications 

with constant release of drugs. The experiment had to be terminated as tumors became too big 

in size, which is one of the human end points, thus it could not be exactly defined how long the 

particles remained there.  

In conclusion, the PVP/PEG coated MSN are promising particles for tumor targeted drug 

delivery but have to be refined concerning biodistribution and circulation times. Further 

experiments regarding the loading of drugs and their controlled release still have to be 

performed in the future.      
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V. SUMMARY 

The high morbidity and mortality caused by cancer represents an urgent need to improve 

treatment of cancer patients. Insufficient success rates, side effects, therapy resistance and 

metastasis formation remain major drawbacks in the cure of cancer, despite of several treatment 

options. Therefore, we focused on two approaches to improve cancer treatment - tumor targeted 

nucleic acid delivery and prospects to circumvent chemoresistance. 

Nucleic acid therapy shows great promise for the treatment of a broad range of genetically-

based diseases. However, appropriate delivery of genes to target cells requires efficient delivery 

agents and displays a major challenge, hence three polymeric carriers were tested in vivo. First, 

the efficacy of biodegradable modified gene carriers was investigated. We could demonstrate 

that 536/PPI-Stp5 carriers with a higher molecular weight led to enhanced transfection efficacy 

in tumor and reduced gene transfer in the healthy organs lung and liver compared to unmodified 

polypropylenimine dendrimers of the second generation (PPI G2). Secondly, escape from 

endosomes is a major challenge in gene delivery. Histidines are known to improve endosomal 

escape because they increase buffer capacity. Accordingly, in vivo transfection efficacy of 

polymers enriched with histidines was compared to a histidine free analog. This histidinylation 

led to an improved gene transfer in tumor which demonstrates the beneficial incorporation of 

such functional domains. Thirdly, active targeting via targeting ligands facilitates uptake of 

delivery agents into the tumor tissue. We demonstrated targeting of c-Met/hepatocyte growth 

factor receptor (HGFR), overexpressed in many tumors, using the c-Met binding peptide 

cMBP2 as targeting ligand. After intratumoral injection targeted polyplexes, regardless of the 

amount of PEG shielding, revealed high luciferase expression in tumor demonstrating the 

specificity of the targeting mechanism. For systemic application however, polymers with an 

augmented dimension of the polycationic part had to be formulated to mediate a slight targeting 

effect in distant tumors. A mixture of the targeted and shielded polymer with a non-shielded 

polymer, a new form of pDNA polyplex, resulted in successful systemic gene transfer. These 

results show that different requirements upon systemic application have to be fulfilled to obtain 

efficient gene carriers. 

Acquisition of resistance to classical chemotherapeutics and formation of metastasis to 

secondary tissues remain enormous obstacles in the treatment of cancer. Cancer stem cells 

(CSCs) represent an important mechanism of chemoresistance and are known to be involved in 

tumor invasion and metastasis formation. Thus, the drug salinomycin, which was recently found 

to selectively target CSCs, is of particular importance for the search of new anticancer drugs. 
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Treatment with salinomycin resulted in significantly reduced metastatic tumor burden in a 

syngeneic mouse model. Concerning its effect on hampering tumor growth, salinomycin was 

not able to reduce the size of the tumor significantly. However, these findings suggest a 

combinatorial treatment with a classical chemotherapeutic drug. Therefore, we investigated the 

effect of treatment with doxorubicin and salinomycin on tumor growth and metastasis 

formation. Within our experimental settings we could not demonstrate a beneficial effect of 

salinomycin, yet we assume that the final outcome is associated with experimental setups.  

Multiple drug resistance might be overcome by packing of drugs into nanoparticles. In this field 

mesoporous silica nanoparticles (MSN) are highly promising. Controlled drug release is a 

crucial point, therefore we evaluated pH-responsive coated MSN in vivo in terms of 

biodistribution, biocompatibility and tumor targeting. MSN, regardless of coating, revealed 

preferred liver and spleen accumulation but mediated no toxic side effects after single lower 

and repeated high dosage application. MSN accumulated passively in tumors to moderate extent 

after systemic injection and showed prolonged retention after local application. 

In conclusion, this work deals with the in vivo evaluation of polymeric nanocarriers and 

strategies to circumvent chemoresistance. The results display encouraging options to improve 

cancer treatment which are a point of origin for further investigations.  
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VI. ZUSAMMENFASSUNG 

Aufgrund der durch Krebs verursachten hohen Erkrankungshäufigkeit und Todesrate bedarf die 

Therapie von Krebspatienten einer dringenden Verbesserung. Unbefriedigende Erfolgsquoten, 

Nebenwirkungen, Therapieresistenzen und Metastasenbildung stellen trotz vielfältiger 

Therapiemöglichkeiten große Hindernissse im Kampf gegen den Krebs dar. Aus diesem Grund 

haben wir uns auf zwei Herangehensweisen konzentriert. Diese sind zum einen der 

zielgerichtete Transport therapeutischer Nukleinsäuren in den Tumor und zum anderen 

Aussichten die Bildung von Chemotherapeutika-Resistenzen zu umgehen. 

Die Anwendung therapeutischer Nukleinsäuren ist sehr vielversprechend für eine große Anzahl 

an Krankheiten, die ihren Ursprung auf genetischer Ebene haben. Jedoch stellt der Transport 

von Genen in die Zielzellen eine der größten Herausforderungen dar. Hierfür werden effiziente 

Träger benötigt, weshalb wir drei verschiedene aus Polymeren bestehende Genfähren 

tierexperimentell getestet haben. Zuerst wurde die Wirksamkeit eines modifizierten, natürlich 

abbaubaren Trägers untersucht. Hierbei konnten wir zeigen, dass der Träger 536/PPI-Stp5 mit 

einem erhöhten Molekulargewicht im Vergleich zu einem unmodifizierten Polypropylenimin 

aus der zweiten Generation (PPI G2) eine erhöhte Transfektionsrate in den Tumorzellen und 

einen reduzierten Gentransfer in den gesunden Organen Lunge und Leber bewirkte. Zweitens 

stellt das Entkommen der Genfähren aus dem Endosom eine weitere Herausforderung dar. 

Histidine sind bekannt dafür dieses Entweichen zu verbessern indem sie die Pufferkapazität 

erhöhen. Aus diesem Grund wurde die Wirksamkeit von mit Histidinen ausgestatteten 

Polymeren untersucht und mit Histidin-freien Analoga verglichen. Diese Histidinylierung 

führte zu einem verbesserten Gentransfer im Tumor, wodurch der Vorteil solch funktioneller 

Domänen dargestellt werden konnte. Drittens erleichtert aktives Ansteuern von Tumorzellen 

mithilfe von Liganden die Aufnahme der Genfähren. Unter Verwendung des Liganden c-Met-

bindendes Peptid, cMBP2, steuerten wir den c-Met/Hepatozyten Wachstumsfaktor Rezeptor 

(HGFR) an, welcher in vielen Tumoren überexprimiert ist. Die Injektion der zielgerichteten 

Polyplexe in den Tumor führte ungeachtet der Höhe an Abschirmung mit PEG zu einer hohen 

Expression an Luciferase, wodurch die spezifische Wirkungsweise bewiesen werden konnte. 

Um einen zumindest leichten zielgerichteten Effekt nach systemischer Verabreichung zu 

erhalten wurden jedoch Polymere mit erhöhtem polykationischen Anteil benötigt. Erst eine 

Mischung aus zielgerichtetem abgeschirmten und nicht abgeschirmten Polymer, also eine neue 
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Art von pDNA Polyplex, führte zum Erfolg. Diese Ergebnisse machen die unterschiedlichen 

Anforderungen an eine Genfähre für die systemische Verabreichung deutlich. 

Der Erwerb von Resistenzen gegenüber klassischen Chemotherapeutika und die Metastasierung 

in sekundäre Organe stellen immer noch gewaltige Hürden im Kampf gegen den Krebs dar. 

Krebsstammzellen verkörpern einen wichtigen Mechanismus der Chemoresistenz- Bildung und 

sind an Tumorinvasion und Metastasierung beteiligt. Aus diesem Grund ist Salinomycin, ein 

Medikament welches neulich als Krebsstammzell-spezifisch entdeckt wurde, von großem 

Interesse für die Suche nach neuen Krebstherapeutika. Die Behandlung mit Salinomycin führte 

zu einer erheblich reduzierten Tumor-Metastasierung in einem gen-identischen Mausmodell, 

ohne einen wesentlichen Einfluss auf das Tumorwachstum zu haben. Diese Erkenntnisse 

rechtfertigten eine kombinatorische Behandlungsstrategie mit einem klassischen 

Chemotherapeutikum. Daraufhin haben wir die Auswirkungen auf Tumorwachstum und 

Metastasierung nach kombinatorischer Behandlung mit Doxorubicin und Salinomycin 

untersucht. Wir konnten allerdings keine vorteilhafte Wirkung durch Salinomycin erreichen. 

Jedoch vermuten wir, dass das Ergebnis mit den Versuchsbedingungen zusammenhängt. 

Die Mehrfachresistenz kann möglicherweise mithilfe der Verpackung von Medikamenten in 

Nanopartikel überwunden werden. Mesoporöse Nanopartikel aus Siliziumdioxid haben sich als 

sehr vielversprechend erwiesen. Die kontrollierte Medikamentenfreisetzung ist entscheidend, 

deshalb haben wir Partikel mit einer pH-abhängigen Hülle bezüglich ihrer Biodistribution, 

Verträglichkeit und Tumor-Ansteuerung getestet. Die Partikel zeigten unabhängig von ihrer 

Hülle eine bevorzugte Ansammlung in Leber und Milz und verursachten keine 

Nebenwirkungen sowohl nach einmaliger niedriger und zweimaliger Verabreichung einer 

höheren Dosis. Außerdem häuften sie sich nach systemischer Verabreichung in moderatem 

Umfang passiv im Tumor an und verweilten nach lokaler Verabreichung für längere Zeit im 

Tumor. 

Zusammenfassend handelt diese Arbeit von der in vivo Testung von auf Polymeren basierenden 

Genfähren und Strategien zur Umgehung von Chemoresistenzen. Die Ergebnisse zeigen 

vielversprechende Ansätze zur Verbesserung der Krebstherapie auf, welche Ausgangspunkte 

für fortführende Untersuchungen darstellen.       
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VIII. APPENDIX 

1. Abbreviations 

ABC Adenosine triphosphate (ATP) binding cassette 

Ala Alanine 

ALT Alanine transaminase 

AST Aspartate transaminase 

BCRP Breast cancer resistance protein 

BUN Blood urea nitrogen 

CCD Charge-coupled device 

cMBP2   c-Met binding peptide 2 

CMV    Cytomegalovirus 

CSCs Cancer stem cells 

Cy7 Cyanine 7 

DAPI    4`,6-diamidino-2-phenylindole 

DMSO    Dimethyl sulfoxide 

DNA    Deoxyribonucleic acid 

e.g. exempli gratia (for example) 

EDTA Ethylenediamine tetraacetic acid 

EGF    Epidermal growth factor 

EMT Epithelial to mesenchymal transition 

EPR effect   Enhanced permeability and retention effect 

FA    Folic acid 

FCS    Fetal calf serum 

FDA    Food and drug administration 

FELASA Federation of European laboratory animal science associations 

h hours 

HA2 Hemagglutinin subunit 2 

HBG    HEPES buffered glucose 

HEPES   N-(2-hydroxyethyl) piperazine-N`-(2-ethanesulfonic acid) 

HER2 Human epidermal growth factor 2 

HGF    Hepatocyte growth factor 

HGFR    Hepatocyte growth factor receptor 
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LPEI    Linear polyethylenimine 

Luc Luciferase 

MDR Multiple drug resistance 

MET Mesenchymal to epithelial transition 

min minutes 

miR-200c micro RNA 200c 

miRNA micro RNA 

MRI Magnetic resonance imaging 

mRNA    Messenger RNA 

MRP1 MDR-associated protein 1 

MSN Mesoporous silica nanoparticles 

Mw    Molecular weight 

N/P Polymer nitrogen to nucleic acid phosphate ratio 

NaCl Sodium chloride 

NIR Near infrared 

NLS Nuclear localization signal 

no. Number 

NPC Nuclear pore complex 

PAMAM   Polyamidoamine 

PBS    Phosphate buffered saline 

pCMVLuc Plasmid encoding firefly luciferase under the control of CMV 

promotor 

pDNA Plasmid DNA 

PEG Polyethylene glycol 

PEG24 Polyethylene glycol with 24 ethylene glycol units 

PEI Polyethylenimine 

P-glycoprotein Permeability glycoprotein 

PLL Polylysine 

PPI G2 Polypropylenimine of the second generation 

PPI Polypropylenimine 

PVP Poly(vinylpyridine) 

RES Reticuloendothelial system 

RISC RNA-induced silencing complex 

RLU Relative light units 



  VIII. Appendix 

84 
 

RNA Ribonucleic acid 

ROI Region of interest 

RT-PCR Reverse transcription polymerase chain reaction 

S.D. Standard deviation 

S.E.M. Standard error of the mean 

SCID Severe combined immune deficiency 

siRNA Small interfering RNA 

Sph Succinoyl-pentaethylene hexamine 

Stp Succinoyl-tetraethylene pentamine 

TAT peptide Transactivator of transcription of human immunodeficiency 

virus, a cell-penetrating peptide 

TGFβ Transforming growth factor beta 

Wnt Wingless-related integration site 
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