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Zusammenfassung

In dieser Promotionsarbeit präsentiere ich die erstmalige Realisierung eines Zustands nega-

tiver absoluter Temperatur für bewegliche Teilchen, sowie zusätzlich die detaillierte Unter-

suchung der Dynamik eines Quantenphasenübergangs. Als Grundlage für die Experimente

dienten uns ultrakalte Atome in optischen Gittern, die durch den Bose-Hubbard Hamilton-

Operator beschrieben werden können.

Das Charakteristikum negativer Temperaturen ist eine invertierte Besetzungsverteilung,

bei der Zustände hoher Energien stärker besetzt sind als niederenergetische Zustände. Da-

raus folgt die experimentelle Herausforderung, dass die möglichen Energien des Systems

nach oben beschränkt sein müssen. Zum ersten Mal wurden negative Temperaturen in den

1950er Jahren in Bezug auf den Spinfreiheitsgrad von Atomkernen erreicht, welcher ein

endliches Spektrum bildet. In dieser Arbeit stelle ich die erstmalige Realisierung von ne-

gativen Temperaturen auch für kinetische Freiheitsgrade vor. Dafür beschränkten wir die

kinetische Energie auf ein einzelnes Band des Gitterpotenzials und nutzten die volle Flexi-

bilität unseres Experiments, bestehend aus rotverstimmten Dipolfallen, blauverstimmten

Gitterpotenzialen und einer Feshbach-Resonanz, um die Gesamtenergie des Systems zu li-

mitieren. Durch die Messung der Impulsverteilung konnten wir nachweisen, dass die Atome

vor allem Zustände höchster kinetischer Energie besetzen. Das Experiment ermöglicht in

Zukunft unter anderem die Untersuchung von Systemen, bei denen der oberste Energiezu-

stand besonders interessante Eigenschaften aufweist.

In einem weiteren Experiment untersuchten wir das komplexe dynamische Verhalten an

einem Quantenphasenübergang, das auch in der modernen Physik noch nicht vollständig

verstanden ist. Quantenphasenübergänge zeichnen sich durch eine fundamentale Ände-

rung von Grundzustandseigenschaften bei Variation eines Parameters aus; Beispiele sind

das Auftreten von magnetischer Ordnung oder von Supraleitung als Funktion der Dotierung

in Cupraten. In diesem Projekt untersuchten wir den Phasenübergang von Mott-Isolator

zu Suprafluid, einen paradigmatischen Vertreter der Quantenphasenübergange, und dabei

insbesondere, wie sich Kohärenz beim Übergang vom inkohärenten Mott-Isolator zum

phasenkohärenten Suprafluid dynamisch aufbaut. Das komplexe Verhalten, das wir be-

obachten konnten, geht über die Vorhersagen existierender analytischer Modelle wie des

Kibble-Zurek-Mechanismus’ hinaus. Numerische Simulationen eindimensionaler Systeme

unserer Kollegen von der FU Berlin stimmen hervorragend mit unseren experimentellen

Daten überein und bestätigen unsere Messungen als zertifizierte Quantensimulation. Un-

sere umfangreichen Ergebnisse für unterschiedliche repulsive und attraktive Wechselwirkun-

gen sowie Dimensionalitäten sind ein entscheidender Baustein, um in Zukunft ein tiefer-

gehendes Verständnis des komplizierten dynamischen Verhaltens an Quantenphasenüber-

gängen zu erreichen.
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Abstract

In this thesis, I present the first realization of negative absolute temperatures for mobile

particles as well as a detailed study of the complex dynamics of a quantum phase tran-

sition, namely from the Mott insulator to the superfluid. The experiments are carried

out with ultracold bosons loaded into an optical lattice, which can be described by the

Bose-Hubbard Hamiltonian. The measurements presented in this thesis were only possible

due to the extraordinary control over quantum states that can nowadays be achieved in

modern ultracold atoms setups.

Negative temperature states are characterized by an inverted occupation distribution,

where high-energy states are populated more than low-energy states. This requires, as an

experimental challenge, an upper bound on the possible energies of the system. Negative

temperatures have been realized for the first time in the 1950s for the spin degree of

freedom of nuclei, where the spectrum is finite. In this thesis, I present the first realization

of negative temperatures for motional degrees of freedom. We limited the kinetic energy

to a single band of the optical lattice potential and fully employed the tunability of our

setup, including the combination of dipole potentials at blue- and red-detuned wavelengths

and a Feshbach resonance, to create an upper bound on the total energy of the system.

We identified the negative temperature state via its momentum distribution, which shows

very strong occupation of the highest kinetic energy states. Amongst others, negative

temperature states in optical lattices allow future research on systems where the highest

energy state is of particular interest.

In a separate set of experiments, we investigated the complex dynamical behavior when

a quantum phase transition is crossed, which poses still an open and challenging question

for many-body theory. Quantum phase transitions are characterized by a dramatic change

of ground state properties, for example the appearance of magnetic order or supercon-

ductivity as a function of doping in cuprates. In this project, we investigated the Mott

insulator to superfluid transition, a paradigmatic example of a quantum phase transition.

We performed a detailed study on how coherence emerges when the quantum phase tran-

sition from the incoherent Mott insulator to the phase-coherent superfluid state is crossed

and found a rich behavior beyond the scope of any existing analytical model such as the

Kibble-Zurek mechanism. We obtained excellent agreement with the numerical simulations

of one-dimensional systems of our collaborators, supporting that our measurements can be

considered a valid quantum simulation. Our extensive results for various repulsive and

attractive interactions as well as dimensionalities contribute an essential piece for a future

comprehensive understanding of the intricate dynamics of quantum phase transitions.
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1 Introduction

Nothing can be colder than absolute zero, as at zero Kelvin, the particles cease to move.

This popular statement of thermodynamics is taught in high school and, in a classical

picture, it is correct. In quantum mechanics, due to the zero point energy, the particles

still show some motion even at absolute zero; the general statement that absolute zero is

the coldest possible temperature, however, remains true. Yet, according to the definition

of temperature, it is possible to create systems at negative absolute temperature. These

are characterized by an inverted population distribution that is in thermal equilibrium and

therefore stable. Due to the large occupation of high-energy states, however, a system at

negative temperature is hotter than at any positive temperature; i.e. in thermal contact,

heat would flow from the negative temperature to the positive temperature system.

In everyday life, we do not encounter negative temperatures. Due to the exponentially

increasing occupation distribution at negative temperatures, an upper bound on the en-

ergy of the particles is required to keep the distribution normalizable. In the case of free

particles, however, kinetic energy with its parabolic dispersion is unbounded from above.

Therefore free particles can never be at negative temperature. The key challenge to realize

negative temperatures lies in the implementation of such an upper energy bound. Negative

temperatures were realized experimentally for the first time in 1951 by E. M. Purcell and

R. V. Pound [1]. In their experiment, Purcell and Pound created a population inversion

of the two Zeeman states of the nuclear spins of 7Li in a homogeneous magnetic field.

The inversion was in thermal equilibrium due to spin-spin relaxation processes and was

found to be stable, limited only by the very slow spin-lattice relaxation. As the position

of the nuclei was locked to the lattice sites in a crystal, kinetic energy of the ions was

effectively excluded from the system. The resulting pure two-level system of the Zeeman

states naturally provides an upper bound for the energy of the particles. The tempera-

ture that was realized in this experiment is therefore more precisely characterized by the

term negative spin temperature. In 1956, Norman Ramsey published a first account on the

thermodynamics and statistical mechanics at negative temperature [2].

Following this pioneering breakthrough, various experiments [3, 4] later realized negative

spin temperatures for nuclear spin systems in a similar manner. In 2011, P. Medley and

coworkers [5] created an effective negative spin temperature for ultracold 87Rb atoms in an

optical lattice, i.e. a standing wave pattern of laser beams. They implemented a sequence in

which the atoms are locked to their lattice sites and, by reversing a magnetic field gradient,
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1 Introduction

the population of two hyperfine states is inverted and stable.

In this thesis, I present how we realized a negative temperature state that, for the first

time, also includes kinetic energy, i.e. motional degrees of freedom. The experiment was

recently suggested theoretically [6, 7] and became possible due to the great tunability of

ultracold atoms in an optical lattice. The key feature of such a lattice system lies in the

band structure that divides kinetic energy into several distinct bands and therefore provides

an effective upper bound for the kinetic energy of atoms that are confined to the lowest

band. To realize the negative temperature state for motional degrees of freedom, additional

techniques are necessary, such as Feshbach resonances to control interatomic interactions.

The blue-detuned optical lattice constitutes a special feature of our experimental apparatus

that allows us to tune lattice depth and external confinement independently and is a crucial

ingredient for our negative temperature experiment.

A major achievement in the development of the field of ultracold atoms was the first

realization of a Bose-Einstein condensate (BEC) in 1995 [8–10]. The experiments in the

following years focused on weakly interacting BECs that can be described by a macroscopic

matter wave [11, 12] and are consistent with Bogoliubov’s mean-field theory [13, 14]. The

superfluid property of these systems could be proven by the observation of the characteristic

vortices [15–17]. In 1999, also the first ultracold cloud of fermions was achieved [18].

The introduction of Feshbach resonances into the research field [19] allowed the inter-

atomic interactions to be tuned over a wide range via external magnetic fields and to enter

the regime of strong correlations where interactions become so strong that they cannot be

treated in a mean-field picture anymore. In the case of two-component fermionic systems,

strong correlations enabled the study of the transition from molecular BECs [20–23] on

the repulsive side of the Feshbach resonance to the formation of Bardeen-Cooper-Schrieffer

(BCS) pairing [24, 25] on the attractive side. The superfluidity of the BCS state was again

proven by the observation of vortices [26]. For bosonic systems, Feshbach resonances per-

mitted, e.g., the measurement of the collapse of a Bose-Einstein condensate [27] and the

observation of the long-predicted Efimov state [28–30].

In 1998, D. Jaksch and coworkers proposed the aforementioned optical lattices as an

alternative route to strongly correlated systems [31]. Loading ultracold bosons into such a

periodic potential allows the realization of the Bose-Hubbard Hamiltonian, a model system

which was only known from condensed matter physics [32]. The atoms are trapped in such

an array like the electrons in the ion crystal of a solid [33]. This similarity between the

systems allows solid state physics to be simulated with ultracold atoms experiments. An

experimental breakthrough was achieved in 2002, when M. Greiner and colleagues realized

the superfluid to Mott insulator transition with ultracold atoms in a three-dimensional

lattice [34].

Since then, the field of ultracold atoms in optical lattices grew rapidly, leading to the cre-

ation of Mott insulators in lower dimensions [35, 36] as well as for two-component fermionic

gases [37, 38]. The great control and flexibility of optical lattice setups allowed the real-

ization of ever more intriguing quantum mechanical systems, such as the Tonks-Girardeau
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gas [39, 40], and more complex lattice geometries such as superlattices [41–43] and trian-

gular and hexagonal lattice geometries [44, 45]. Recent progress in detection techniques

now allows the imaging and addressing of single atoms on individual lattice sites [46–48].

This adds to the multitude of detection techniques of standard absorption imaging, phase-

contrast imaging [49], noise correlation measurement [50, 51], and spectroscopic techniques

[35, 52, 53].

The extraordinary control in optical lattice experiments already achieved nowadays

brings us closer to the realization of a fundamental idea of Richard Feynman from 1982

[54]: As the Hilbert space of a quantum many-body system grows exponentially with sys-

tem size, it is impossible to calculate and solve these systems on a classical computer as

soon as the particle number exceeds some small number of order 20-30. Instead, Feynman

suggested using a well-controlled quantum system to model the quantum system of inter-

est via a quantum simulation. Indeed, some of the experiments conducted in recent years,

where particular desired Hamiltonians have been precisely implemented, can already be

interpreted as quantum simulations, and there is even more to come in the near future [55,

56].

In particular, quantum simulations can help to understand dynamical properties of quan-

tum many-body systems. While the static properties of the Mott insulating and superfluid

states are well understood, the dynamics of the transition between the two states is still an

open problem. This particular transition is a prime example of a quantum phase transition

[57] that is characterized by a drastic change of the nature of the ground state upon chang-

ing a parameter of the Hamiltonian, and belongs to the most exciting aspects of quantum

many-body and condensed matter physics. There has been a considerable amount of re-

search on quantum phase transitions in recent years; however, this research topic is still

rather young.

Whereas the superfluid in an optical lattice is characterized by a well-defined phase re-

lation across the system, in the Mott insulating regime, the local phases at each lattice

site have obtained maximum uncertainty. Thus, during the quantum phase transition from

the Mott insulator to the superfluid, phase coherence between distant lattice sites emerges.

In this thesis, I describe a thorough study on the dynamical emergence of coherence at

the Mott to superfluid phase transition. We measured the dynamics of the spreading of

correlations in the system by varying the quench velocity across the transition. We find

very good agreement of our one-dimensional results with density matrix renormalization

group calculations, supporting our measurements as being a valid quantum simulation. For

intermediate quench velocities, we find a power-law increase of the coherence length in the

system, which is reminiscent of the behavior predicted by the popular Kibble-Zurek mech-

anism. However, we observe that the dynamics are more involved than suggested by the

original Kibble-Zurek picture. We used our quantum simulator to measure the dynamics

also in higher dimensions, where numerical simulations are categorically unfeasible, and

for repulsive and attractive interactions.
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1 Introduction

Outline

• The second chapter is a brief overview of the theory of interacting ultracold bosons as

well as of the experimental sequence that we use to create ultracold clouds of atoms.

Also optical dipole potentials as a fundamental ingredient for the experiments are

introduced.

• In the third chapter, the experimental implementation of optical lattices is described

with an emphasis on the peculiarity of blue-detuned lattice potentials. The theory of

both a single particle and many particles in a periodic potential is outlined and the

Bose-Hubbard Hamiltonian is introduced. The experimental part illustrates how we

calibrate the lattice depth and minimize light-assisted collisions. The various imaging

techniques that are utilized for the experiments in this thesis are introduced. The

measurement of a Feshbach-induced Mott insulator state is shown.

• The fourth chapter deals with the theory of negative temperatures and of thermaliza-

tion processes. Negative temperatures are introduced and illustrated in an intuitive

way. The theoretical foundations of thermodynamic equilibrium in both classical and

quantum systems are outlined. The requirements for the creation of negative tem-

perature states are introduced and previous experimental realizations are presented.

The implications of negative temperature states such as the validity of the laws of

thermodynamics at negative temperature and the efficiency of Carnot cycles are dis-

cussed. A recent discussion about the correct definition of entropy is recapitulated,

which was triggered by our publication about negative temperatures.

• The fifth chapter presents our experimental implementation of negative temperatures

for motional degrees of freedom. The experimental sequence for a two-dimensional

system is given with emphasis on the inversion of the external potential. Lifetime

measurements prove the stability of the negative temperature state and show the

dependence on trap frequency and interactions. The method to extract the charac-

teristic inverted occupation distribution is detailed, together with a Bose-Einstein fit

from which the temperature can be estimated. The coherence length of the final state

is analyzed. Finally, the realization of a negative temperature state in 1D is presented

as well as the limitations of our experimental apparatus for an implementation in 3D.

• The sixth chapter contains theory and experiments on the second project of this the-

sis, the emergence of coherence at the Mott to superfluid quantum phase transition.

Quantum phase transitions in general are introduced together with common approxi-

mations for the description of their dynamics including the Kibble-Zurek mechanism.

The experimental sequence for the measurement as well as the experimental meth-

ods for the extraction of the coherence length are given. The determination of the

power-law exponents for the emergence of coherence versus quench time is outlined,

leading to more complex dynamics than expected from the original Kibble-Zurek

picture. The results of theoretical calculations in 1D are compared with the exper-

imental data and a quasiparticle explanation for the spreading of correlations for

short quench times is presented. The applicability of the Kibble-Zurek approxima-

18



tion is investigated and the influence of the external trap in the experimental setup

is discussed. Measurements of the emergence of coherence in higher dimensions are

presented, showing the irrelevance of the dimensionality on the dynamics for high

and intermediate quench velocities. Measurements for attractive interactions prove

that the timescale for the emergence of coherence is a genuine property of the Mott

to superfluid transition. Additional measurements about the time-resolved dynamics

of the cloud size during and after the quench as well the emergence of coherence after

the quench are presented.

Publications

The main results of this thesis are published in the following two papers:

• Emergence of coherence and the dynamics of quantum phase transitions

S. Braun, M. Friesdorf, S. S. Hodgman, M. Schreiber, J. P. Ronzheimer, A. Riera,

M. del Rey, I. Bloch, J. Eisert, and U. Schneider

arXiv 1403.7199 (2014)

• Negative absolute temperature for motional degrees of freedom

S. Braun, J. P. Ronzheimer, M. Schreiber, S. S. Hodgman, T. Rom, I. Bloch, and U.
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2 Theory and Experimental Realiza-

tion of Degenerate Bose Gases

In the first section of this chapter, I introduce the theoretical background of an interacting

ultracold gas of bosonic atoms. In the second section I describe how atoms can be trapped

in an optical dipole trap and how this trap is implemented for the experiments in this

thesis. In the third section I give an overview of the experimental cycle with which a

Bose-Einstein-condensate is created.

2.1 Theory of Interacting Ultracold Bosons

In this section, I present the theoretical foundations of ultracold bosonic gases. Feshbach

resonances are introduced as a tool to tune interactions between particles, which is essential

for the experiments in this thesis.

2.1.1 Bose-Einstein Condensates

In 1925, S. N. Bose [58] and A. Einstein [59] predicted Bose-Einstein-condensation as a

phase transition for an ideal gas of indistinguishable bosonic particles. This phenomenon

also exists for interacting particles, and was first realized in dilute gases of rubidium [8]

and sodium [9] in 1995. At a critical phase space density, the wavefunctions of the indi-

vidual particles start to overlap and a Bose-Einstein condensate (BEC) is formed. Here,

a macroscopic number of particles occupy the same singe-particle eigenstate, forming a

macroscopic matter wave. In an ideal gas, the occupation of single-particle eigenstates

with energy ε at temperature T is given by the Bose distribution function [60]

N(ε) =
1

e
ε−µ
kBT − 1

, (2.1)

where kB denotes Boltzmann’s constant and the chemical potential µ is smaller than or

equal to the energy ε0 of the lowest energy state, µ ≤ ε0
1. Below a critical temperature

Tc, the occupation N0 of the single-particle ground state becomes macroscopic. In our

1In the case of negative temperatures, T ≤ 0, µ is greater or equal than the maximum single-particle

energy εmax, µ ≥ εmax.
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2 Theory and Experimental Realization of Degenerate Bose Gases

experiment, the atoms are trapped in a three-dimensional harmonic trap for which the

condensate fraction N0/N is given by

N0(T )

N
= 1−

(
T

Tc

)3

. (2.2)

At zero temperature, the gas is completely condensed and all particles occupy the lowest

energy state. The many-body wavefunction is then described by a product of identical

single-particle wavefunctions φ(ri),

ΨN (r1, ..., rN ) =

N∏
i=1

φ(ri). (2.3)

The condensate can also be described by a macroscopic wavefunction or order parameter

[61]

ψ(r) =
√
Nφ(r), (2.4)

which is identical to the single-particle wavefunction of the state in which the conden-

sate develops, up to normalization. The particle density is n(r) = |ψ(r)|2. In the case

of a harmonic trap, the single-particle ground state wavefunction φ(r) corresponds to a

Gaussian, whereas in a homogeneous optical lattice, it corresponds to a Bloch wave at

quasimomentum ~q = 0.

2.1.2 Weakly Interacting Bose Gas

In an ultracold dilute Bose gas, the mean particle distance is typically on the order of

〈r〉 ≈ 100 nm [62]. At these large distances, the electronic clouds of the atoms are well

separated and the neutral atoms interact with each other via the van der Waals force

[63–65], which originates from the interaction of induced electric dipole moments. The

van der Waals potential scales as VvdW ∝ −r−6, and has a range on the order of a few

nm [62]. While elastic collisions, in which the internal states of the interacting particles

remain unchanged, are able to redistribute momentum between particles and are therefore

crucial for thermalization processes, inelastic collisions usually lead to atom losses, as the

internal energies usually greatly exceed the depth of the external trapping potential. Both

processes are described by quantum-mechanical scattering theory. In the following, I will

introduce the theoretical description of elastic collisions.

At ultra-low temperatures, only s-wave scattering processes are relevant, as the kinetic

energy of the colliding atoms is insufficient to overcome the centrifugal barrier for l 6= 0,

where l is the orbital quantum number. As both the de Broglie wavelength of the atoms

as well as the average atomic distance are much larger than the range of interactions, the

actual inter-particle potential plays a minor role. Instead, the potential can be replaced

by a simplified version leading to identical scattering properties, the point-like contact

interaction

Vint(r) =
4π~2as

m
· δ3(r) = g · δ3(r). (2.5)
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2.1 Theory of Interacting Ultracold Bosons

Here, ~ = h/2π is Planck’s constant, as the s-wave scattering length, m the atomic mass,

and g = 4π~2as/m the coupling constant. The interaction in an ultracold, dilute atomic gas

is described by only a single parameter, as. Whether a gas of average particle density n̄ can

be considered as dilute is determined by the parameter n̄|as|3, which is usually smaller than

10−3. In such a case, it is sufficient to consider only binary collisions and the system can be

described by a mean-field description that was first introduced by Bogoliubov [66]. In second

quantization, the boson field operator ψ̂(r) annihilates a particle at position r. In the mean-

field description, the field operator is split into its expectation value ψ(r, t) = 〈ψ̂(r, t)〉, and

a fluctuating field operator δψ̂(r, t),

ψ̂(r, t) = ψ(r, t) + δψ̂(r, t). (2.6)

The complex function ψ(r, t) describes the BEC, while the operator δψ̂(r, t) describes

quantum-mechanical and thermal fluctuations and thereby reflects non-condensed parti-

cles. The introduction of the function ψ(r, t) implicitly assumes spontaneous symmetry

breaking in the system, as the wavefunction ψ(r, t) contains a well-defined phase, whereas

the underlying Hamiltonian is invariant under a U(1) gauge transformation.

When the fluctuations are neglected, in second quantization the Gross-Pitaevskii equa-

tion (GPE) [67, 68] follows,

i~
∂

∂t
ψ(r, t) =

(
−~2∇2

2m
+ Vext(r, t) + g|ψ(r, t)|2

)
ψ(r, t). (2.7)

This has the form of a non-linear Schrödinger equation, where the interatomic interactions

are described by a mean-field potential that is proportional to the atomic density n(r) =

|ψ(r)|2. Also for the weakly interacting, dilute Bose gas, the many-body ground state

wavefunction is still a product of identical single-particle states as in Eq. 2.3. In contrast

to the noninteracting case, however, the weakly interacting gas does not condense into the

single-particle ground state, but into a state which is a solution of the GPE.

By neglecting the fluctuations δψ̂, one implicitly assumes that all particles occupy the

condensate, N0 = N . In the weakly interacting regime n̄|as|3 � 1, a better description

can be found by including the fluctuations to first order. This so-called Bogoliubov theory

allows a description of elementary excitations of the condensate via quasi-particles. In

this description, interactions lead to a depletion of the condensate mode as also excited

modes are populated. This depletion is of order
√
n̄|as|3 and is rather small in typical

experiments, about 1 %.

2.1.3 Feshbach Resonances

One great advantage of ultracold atom experiments lies in the tunability of interatomic

interactions via Feshbach resonances. These can be understood via the interatomic po-

tentials of the two colliding atoms, where the scattering process leads to an overall phase

shift between the incoming and outgoing wave. This phase shift in turn determines the

scattering length as, which is the only parameter required to describe the properties of
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2 Theory and Experimental Realization of Degenerate Bose Gases

s-wave collisions. In principle, for a typical interatomic potential, as can assume any real

value, corresponding to repulsive (as > 0) and attractive (as < 0) interactions. A Feshbach

resonance allows as to be tuned by changing a homogeneous magnetic field B.

Interatomic distance

E
ne

rg
y

Closed channel

Open channel

Incident energy

0

Figure 2.1: Sketch of molecular potential curves contributing to a Feshbach resonance. The energy of the

molecular potential curves is plotted versus distance between two atoms. In the closed channel,

also the bound states of the molecular potential are indicated as horizontal lines. The incident

kinetic energy of the two atoms lies just above the asymptote of the open channel for large

distances. When the energy of a bound state of the closed channel matches the incident energy,

a Feshbach resonance occurs.

Figure 2.1 illustrates the principle of a Feshbach resonance. A scattering channel is

defined by a set of quantum numbers which describe the internal state of the incoming

and outgoing particles in the scattering process. Those channels for which the asymptotic

energy at large interatomic distances lies below the energy of the two interacting atoms are

called open channels. If the atoms are initially prepared in the energetically lowest state

all other channels lie above this open channel and are energetically inaccessible; they are

therefore called closed channels. In ultracold gases, the kinetic energy is very low, so the

kinetic energy lies just above the asymptotic value of the open channel potential curve for

large distances.

When a magnetic field B is applied during a scattering process, the total projection

M = m1 + m2 of the spins onto the magnetic field axis is preserved. Although the other

channels are energetically inaccessible at large atomic distances, the different atomic states

are coupled if they have identical projection numbers M [69]. This coupling is the key for

the manipulation of the scattering length via the magnetic field: The various combinations

of atomic states with identical quantum number M have different magnetic moments. The

relative offset between the different combinations can be shifted by changing the magnetic

field because the different magnetic moments lead to different Zeeman shifts. This tuning

can be employed to shift the energy of a bound molecular state of a closed channel in

resonance with the kinetic energy of the particles. Here, a Feshbach resonance appears

where the resulting resonant coupling to the molecular state greatly enhances the scattering

length. At the position of the resonance, the scattering length diverges [70–73]. It can be
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2.1 Theory of Interacting Ultracold Bosons

approximated by [74]

as(B) = abg

(
1− w

B −B0

)
, (2.8)

where abg is the background scattering length far away from the resonance at B = B0 and

w is the width of the resonance.

Feshbach resonances were first observed in ultracold gas experiments in 1998 [19]. Figure

2.2A shows the Feshbach resonance between two 39K atoms in the lowest hyperfine state

|F,mF 〉 = |1,+1〉 [30]. This resonance was used for the experiments throughout this work to

tune the interatomic interactions over a wide range of attractive and repulsive interactions.

Figure 2.2B shows the Feshbach resonance between a 39K atom and a 87Rb atom both in

their ground state |1,+1〉 [75]. This resonance was employed during evaporative cooling to

enhance thermalization between the two species (Section 2.3.2).
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Figure 2.2: Feshbach resonances of alkali atoms that are employed in the experiments described in this

work. Plotted is the calculated scattering length versus magnetic field B. The vertical dashed

line indicates the position of the resonance, the dotted horizontal line zero scattering length. A,

Intraspecies Feshbach resonance of two 39K atoms both in the ground state |F,mF 〉 = |1,+1〉
with parameters taken from [30]. B, Interspecies Feshbach resonance between a 39K and a
87Rb atom both in their ground state |1,+1〉 with parameters from [75].
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2 Theory and Experimental Realization of Degenerate Bose Gases

2.2 Atom-Light Interactions and Optical Dipole Trap

Lasers are the workhorse in ultracold atoms experiments, for preparation, manipulation,

as well as detection of the ultracold samples. The reason lies in the great tunability of

the forces and potentials arising from atom-light interactions. Additionally, using dipole

traps instead of magnetic traps releases the magnetic field as a degree of freedom which

can be used to tune interactions via Feshbach resonances. Interaction of neutral atoms

with a light field takes place in two ways – via dissipative and conservative interactions.

The relevance of the two types depends on the detuning δ = ω − ω0 of the laser frequency

ω from the transition frequency ω0 of the atom [76].

2.2.1 Optical Dipole Potentials

For optical dipole potentials, the conservative part of the atom-light interaction is em-

ployed. In a semiclassical model, it can be described by the interaction of a non-resonant

light field with the light-induced dipole moment d = α(ω)E [77] of the atom, where α(ω)

is the complex polarizability of the atom and E the electric field. This causes a shift in

the energy levels of the atom, called the AC Stark shift. The dipole potential results from

time-averaging as

Vdip = −1

2
〈d ·E〉 ∝ Re(α)I, (2.9)

which is proportional to the real part of the polarizability and the intensity I of the laser

field. For not too large detunings δ � ω, one obtains the dipole potential [77]

Vdip(r) =
3πc2

2ω3
0

Γ

δ
I(r), (2.10)

with the speed of light c and the natural linewidth Γ of the atomic transition. In a particle

picture, this conservative part of the interaction can also be viewed as a Raman process

where an atom virtually absorbs a photon from the laser mode and re-emits it into the

laser mode by stimulated emission. This process induces a phase shift on the light and an

energy shift in the energy levels of the atom, just as in the semiclassical picture [76].

Scattering of photons by absorption from the laser mode and subsequent spontaneous

emission into another mode is described by the scattering rate, which is proportional to the

imaginary part of the polarizability, Γsc ∝ Im(α)I. For δ � ω but not too small detunings

δ � Γ, saturation effects can be neglected and the scattering rate is calculated as

Γsc(r) =
3πc2

2~ω3
0

(
Γ

δ

)2

I(r). (2.11)

This dissipative part of interactions is used for the initial laser cooling step (Section 2.3.1)

and in absorption imaging [49] (Section 3.4). In the case of a conservative dipole potential,

however, it is an adverse effect, as the momentum transfer associated with the photon

scattering process leads to heating of the atomic cloud.

26



2.2 Atom-Light Interactions and Optical Dipole Trap

As the scattering rate scales as I/δ2 and the dipole potential as I/δ, the ratio of the two

scales as

Γsc/Vdip ∝
1

δ
. (2.12)

To minimize the scattering rate for the required potential depth, it is therefore common to

use large detunings and high intensities.

By choosing appropriate intensity distributions I(r), one can engineer a wealth of dipole

potentials Vdip. The sign of the potential is given by the detuning δ: For a red-detuned

light field (δ < 0), the potential is attractive and ground state atoms experience a force

towards the region of highest intensity (Fig. 2.3). A blue-detuned laser (δ > 0), on the

other hand, creates a repulsive potential where the atoms are pushed away from the high-

intensity region. In the experiments of this work, the dipole trap is red-detuned at a

wavelength of λdip = 1064 nm, while the optical lattice is blue-detuned at a wavelength of

λlat = 736.65 nm.

A B

Figure 2.3: Illustration of the effect of optical dipole potentials. A, For red-detuned light (δ < 0), the

atoms are pulled to the position of highest intensity. B, For blue-detuned light (δ < 0), the

atoms are pushed away from the region of high intensity.

In case of the lattice laser which is relatively close to the D1 and D2 lines of 39K at

λD1 = 770.1 nm and λD2 = 766.7 nm [78], respectively, the fine structure splitting of the

excited state needs to be considered. On the other hand, the dipole laser is rather far-

detuned from the atomic transitions such that the rotating-wave approximation δ � ω

creates a substantial error. Considering these two corrections leads to a more precise

expression for the dipole potential of [77]

Vdip(r) =
πc2

2ω3
0

Γ

(
1

ω − ωD1

+
1

ω + ωD1

+
2

ω − ωD2

+
2

ω + ωD2

)
I, (2.13)

where ωD1
and ωD2

are the transition frequencies of the two lines over which Γ and ω are

averaged.

2.2.2 Crossed Dipole Trap

In the experiment, the dipole trap consists of three Gaussian laser beams which intersect

at approximately right angles at the point of their foci2. The beam geometry forms an

2The light is created by two single-frequency, diode-pumped Nd:YAG solid-state lasers (Mephisto Mopa

by InnoLight, now associated with Coherent) with total powers of 18 W and 28 W, respectively, at a

wavelength of λdip = 1064 nm.

27
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oblate trap and is shown in Fig. 2.4. While the two beams in the horizontal (xy) plane

are strongly elliptical with waists of w1,y = 280µm, w1,z = 33µm, w2,x = 340µm, and

w2,z = 33µm, the vertical beam is circular with waists of w3,x = w3,y = 150µm. The waist

of the vertical beam is identical to the waists of the optical lattice beams, which allows the

overall external potential to be appropriately tuned (Section 3.1.2). To avoid interferences

between the beams, the polarizations are mutually orthogonal and the laser frequencies are

detuned relative to each other by more than 100 MHz.

A

C

B

100µm

100µm

x

y

z

Figure 2.4: Configuration of the crossed dipole trap in the experimental setup. A, Illustration of the

beam geometry. Two strongly elliptical beams cross in the horizontal plane, providing strong

confinement against gravity. A spherical vertical beam allows the trap frequency to be tuned

in the horizontal plane, independently of the intensity in the horizontal beams. For clarity, the

increase of the waist along the longitudinal direction of the beams is not shown. B, Profile of

the vertical beam, recorded with a CCD camera. C, Profile of the horizontal beam along the

x-direction. The colors are scaled differently for the two images.

The trapping potential is given by the sum of all three trapping beams and gravity

and is shown in Fig. 2.5A. While the potential is not isotropic for large distances away

from the intersection, the small ultracold clouds mainly sample the central region, which

can be approximated by a harmonic trapping potential and is in general elliptic. For all

measurements presented in this thesis, we circularized the trapping potential by adjusting

the relative laser powers of the two horizontal beams. The circular vertical beam also

provides a circularly symmetric confinement and can be used as an additional degree of

freedom to adjust the horizontal confinement.

The minimum position of the trap in the vertical direction is shifted by gravity (Fig.

2.5B); this shift is called gravitational sag. The magnitude of the sag is smallest for strong

dipole potentials. For very weak dipole traps, below the so-called trap bottom, the dipole

potential cannot hold the atoms against gravity anymore. The slope of the gravitational

gradient and therefore also the gravitational sag depend on the mass of the particles (Fig.

2.5C). This is especially important in the evaporative cooling stage of our experiment

(Section 2.3.2), where a good overlap between the 39K and 87Rb clouds in the dipole trap
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2.2 Atom-Light Interactions and Optical Dipole Trap

is required for efficient thermalization between the species. Because of the large detuning

of the dipole trap laser and the similar linewidths, the dipole potentials are almost equal

for the two species; the atomic masses, on the other hand, differ by more than a factor

of two. The large ellipticity of the two horizontal beams in the experiment provides a

strong vertical confinement and therefore minimizes the sag for both species, ensuring

good overlap and thermalization.
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Figure 2.5: Trapping potential of an idealized version of the crossed dipole beam trap. A, Isopotential

lines in the horizontal plane that crosses the focus of the beam in the vertical direction. In

the central area, the potential can be approximated by a harmonic trap. B, The trapping

potential along the vertical direction for a fixed gravitational potential, for increasing powers

of the horizontal dipole beams (from light to dark). The absolute value of the sag, indicated by

the dotted curve, can be reduced by increasing the trapping potential in the vertical direction.

The vertical dashed line gives the minimum position without sag. C, The trapping potential

along the vertical direction is plotted for increasing strengths of the gravitational potential

gradient (from light to dark), occurring for heavier atomic species. For increasing gravitational

potentials, the minimum position of the trap, shown by the dotted curve, shifts to lower

positions. The vertical dashed line indicates the minimum position without sag.

2.2.3 Trap Frequencies

The central part of the dipole potential can be approximated by a harmonic trap,

Vdip =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (2.14)

where the three trap frequencies ωx, ωy, and ωz fully parametrize the trap. We measure

the trap frequencies by recording oscillations of the center of mass of the atomic cloud

(sloshing) in the trap via time-of-flight imaging (Section 3.4.2): The real space oscillations

are accompanied by oscillations in momentum space, which are translated into large am-

plitude oscillations of the cloud position after long time-of-flight. We excite the oscillations
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by suddenly changing the vertical confinement and thus the gravitational sag. The oscil-

lation along the vertical direction quickly couples to the horizontal directions, leading to

harmonic oscillations along all three directions. Figure 2.6 shows sample trap frequency

measurements along the x- and z-direction.
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Figure 2.6: Trap frequency measurement. The data points are the center of mass position of the

atomic cloud, determined by Gaussian fits after time-of-flight, versus hold time after ex-

citing oscillations. The solid curves are sinusoidal fits, yielding trapping frequencies of A,

ωx = 2π · 31.70(3) Hz along the horizontal x-direction and B, ωz = 2π · 721(3) Hz along the

vertical z-direction with much stronger confinement.

Figure 2.7 shows the horizontal and vertical trap frequencies for various settings of

powers of the dipole trap beams. A power-law fit to both curves yields an exponent of

0.48(2) (horizontal) and 0.46(1) (vertical). As the dipole potential Vdip scales linearly with

power P (Eq. 2.10), we expect the trap frequencies to scale like ωi ∝
√
P to which the fitted

exponents are close. The vertical trap frequency reaches zero already at a non-vanishing

dipole beam power Pbottom. This offset corresponds to the trap bottom. The trap bottom

can be measured directly as the beam power at which the atoms fall out of the trap; such

a measurement is more precise than the extrapolation shown in Fig. 2.7B.

From the measurements, we can parametrize the trap frequencies in our experimental

setup depending on the dipole beam powers along the horizontal (Phor) and vertical (Pvert)

directions as

ωx = ωy =
√
γhorPhor + γvertPvert (2.15)

ωz =
√
δ(Phor − Pbottom). (2.16)

We always fix the ratio of the powers in the two horizontal dipole beams such that the two

horizontal trap frequencies are approximately identical.

2.3 Experimental sequence

In this section, I give a short overview of the experimental sequence. The employed cooling

techniques are nowadays standard in ultracold atoms experiments and treated in detail in
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Figure 2.7: Trap frequency versus power in the dipole trap beams. The data points are trap frequencies

extracted from sinusoidal fits to oscillation measurements. The solid lines are power-law fits. A,

Horizontal trap frequencies ωhor/2π versus power Pz in the vertical dipole beam. The power-

law fit ωhor/2π = (c+aPz)b yields an exponent of b = 0.48(2) in agreement with the expected

square-root behavior b = 0.5. The constant c accounts for the confinement of the horizontal

dipole beams. B, Vertical trap frequency ωvert/2π versus power Px in the dipole beam along

the x-direction. The power of the beam along the y-direction is changed proportionally (see

main text). The power law fit ωvert/2π = a (Px − Pbottom)b yields an exponent b = 0.46(1)

that is also close to b = 0.5. The offset Pbottom from the origin is an extrapolation of the trap

bottom (see main text).

books [76] and previous PhD theses of this experimental setup for the case of 87Rb and
40K atoms [79–82], and also for the case of 87Rb and 39K atoms [83]. I will mainly focus

on peculiarities of the cycle that are connected to the cooling of bosonic 39K instead of

fermionic 40K atoms.

2.3.1 Initial Cooling Sequence

At the beginning of each experimental cycle, we heat one dispenser for each species by

running a current through them to increase the respective background pressures in the

MOT chamber of the vacuum setup. Additionally, applying ultraviolet light at a wavelength

of 365nm to the windows of the vacuum chamber turned out to be helpful in providing

atoms by light-induced desorption [84]. A magneto-optical trap (MOT), consisting of one

cooling and one repumping beam close to the D2 transition of 39K, cools and loads 39K

atoms for around 10 seconds at the center of a quadrupole magnetic field. For the last 1

to 2 seconds of the 39K MOT, a cooling and a repumping beam near the D2 transition of
87Rb are applied additionally, creating a double-species MOT. Loading of the Rb MOT is

more efficient than for K, probably because of the larger hyperfine splitting in the 5PS3/2

manifold and the larger vapor pressure of Rb [78, 85]. After compressing the quadrupole

trap, an optical molasses [76] yields additional cooling. At the end of the molasses phase,

we polarize the spins into the |52S1/2, F = 1,mF = −1〉 and |42S1/2, F = 1,mF = −1〉
states in the case of 87Rb and 39K, respectively. A magnetic quadrupole trap is quickly

established, trapping the atoms at the center [86]. The atoms are then transferred within
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2 s over an L-shaped path of 40 cm length to the ultra-high vacuum (UHV) glass cell, by

appropriately applying currents to a sequence of coil pairs [87]. During this transport, the

atoms pass through a differential pumping tube that ensures a differential pressure between

the two sections of the vacuum chamber. While effectively loading the MOT at rather high

pressures between 10−9 and a few 10−8 mbar, the pressure in the glass cell can remain

below 10−11 mbar. The transport scheme is also advantageous in that the MOT optics are

separated from the dipole trap and optical lattice optics and therefore the optical access

at the glass cell is improved.

2.3.2 Evaporative Cooling

In the glass cell, we perform forced evaporative cooling [88–90] on the Rubidium atoms in

the quadrupole trap by driving microwave transitions to the untrapped |F = 2,mF = −2〉
state. The potassium cloud is cooled sympathetically as it stays close to thermal equilib-

rium with the Rubidium cloud. We use Rubidium solely as a coolant for the Potassium

atoms, as the experiments described in this thesis are performed with 39K atoms only and

as we are able to create much larger numbers of cold Rubidium than Potassium atoms in

our experiment. In principle, forced evaporation of 87Rb could also be achieved by driv-

ing radio-frequency (RF) transitions to the untrapped mF = 0,+1 Zeeman states of the

F = 1 manifold. However, as the Zeeman splitting for 39K atoms in the F = 1 manifold

is identical to that of 87Rb atoms, the RF field would also drive transitions of 39K atoms.

These would therefore be evaporated and the final number of remaining Potassium atoms

would be strongly reduced. To prevent Majorana losses at the magnetic field zero of the

quadrupole trap, we apply a blue-detuned laser beam with a wavelength of λp = 760 nm

at the center of the trap in the vertical direction, commonly referred to as a plug beam [9,

49]. The small waist of wp ≈ 30µm in the horizontal directions provides a strong repulsive

potential that prevents atoms from entering the region of low magnetic fields. At the end

of the evaporative cooling stage in the quadrupole trap of a duration of 12 s, we typically

obtain a few 106 87Rb and around 106 39K atoms at a temperature of around 2µK.

We then transfer the atomic clouds into the crossed dipole trap by increasing the powers

in the dipole trap beams. By applying an additional homogeneous magnetic field, the zero

point of the quadrupole field is moved along the vertical direction. At the same time, the

strong dipole potential holds the atoms in place so that the quantization axis is adiabati-

cally transformed and the atomic spins stay polarized. With the help of an intermediate

horizontal homogeneous magnetic field, the field is finally adiabatically transformed into a

vertical homogeneous field. In the dipole trap, we transfer both species into their absolute

ground state |F = 1,mF = +1〉 via a radio-frequency rapid adiabatic passage. Due to

the identical Zeeman splitting of both species, the frequency sweep transfers both species

simultaneously. We exponentially decrease the power in the dipole trap beams over 2.5 s

and thereby further cool the atoms evaporatively. For weak dipole potentials, the high-

energy atoms leave the trap in the vertical direction, following gravity. In this regime,

predominantly Rubidium atoms are evaporated due to their larger mass. We optimize the
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efficiency of sympathetic cooling of the Potassium atoms by increasing the interspecies s-

wave scattering length during evaporation to aRbK ≈ 70 a0 via the corresponding Feshbach

resonance [91, 92] (Section 2.1.3). After all Rubidium atoms have been evaporated away,

we directly cool the Potassium atoms for another 1.5 s by decreasing the dipole potential

further. In this phase, we employ the intraspecies Feshbach resonance to increase the scat-

tering length to aKK > 300 a0 (Section 2.1.3). At the end of the evaporation ramp, we

typically obtain condensates between a few 104 and 1.2 · 105 39K atoms in the absolute

ground state. The fraction of uncondensed atoms is below the detection threshold in time-

of-flight images (Section 3.4.2). This condensate is the starting point for the experiments

described in this thesis.
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Lattices

An optical lattice is a periodic potential in which ultracold atoms can be trapped. The

system is a simple model for a crystal in solid state physics, where electrons move in

a periodic structure created by immobile ions. It is precisely this similarity that allows

to simulate phenomena from solid state physics with ultracold atoms, such as the Mott

insulator to superfluid transition [34, 37, 38].

In the first section of this chapter I show how we experimentally realize optical lattice

potentials and how the blue-detuned lattice creates a global anti-trapping potential for

the atoms. In the second section I discuss single particle states in optical lattices, both

in the Bloch basis as well as in the Wannier basis. I also show how we experimentally

calibrate the lattice depth and minimize light-assisted collisions. In the third section the

Bose-Hubbard model and the Mott to superfluid quantum phase transition as implications

of many-body physics in optical lattices are introduced. In the fourth section I present the

imaging techniques that we apply to extract information from the atomic clouds. In the

fifth section I show our measurements on the Feshbach-induced superfluid to Mott insulator

transition. Reviews of optical lattices and corresponding experiments can be found in Refs.

[33, 93].

3.1 Experimental Realization of Optical Lattice Poten-

tials

In this section, I describe the experimental implementation of the optical lattice potentials

in our setup. Especially, I address the global anti-trapping potential that is created by the

blue-detuned laser beams.

3.1.1 Laser Beam Setup

In our experiment, we create the optical lattice potential by superimposing two counter-

propagating laser beams. To this end, an incoming laser beam is focused onto the center of
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the dipole trap, collimated behind the atoms and retroreflected onto itself1. The resulting

one-dimensional standing wave pattern has a periodicity of dlat = λlat/2 and creates a

dipole potential (Section 2.2.1)

V (z) = Vlat · cos (klatz)
2 (3.1)

for the atoms, where klat = 2π/λlat is the wavenumber of the lattice. Due to interference,

the lattice depth is given by Vlat = 4Vin, where the potential depth Vin of the incoming

laser beam is proportional to its intensity. The lattice depth Vlat is usually given in units

of the recoil energy

Er =
~2k2

lat

2m
, (3.2)

which indicates the change in kinetic energy of an initially resting atom after absorbing

or emitting a photon from the laser field. In the experiment, we create standing wave

potentials in all three directions by superimposing three pairs of laser beams. All beams are

focused at the position of the atoms with waist of w0 ≈ 150µm. We minimize interferences

between the three beam pairs by choosing mutually orthogonal polarizations and detuning

the frequencies by several tens of MHz [94]. As resulting potential we obtain a three-

dimensional simple cubic lattice.

3.1.2 Anti-Trapping Potential

In the case of blue-detuned laser beams as in our experiment, the atoms are trapped at

the nodes of the light field. The intensity and therefore also the lattice depth of a pair of

Gaussian beams depends on the position within the beams. As the Rayleigh length for our

lattice beams of several cm is very large, the lattice depth effectively only depends on the

transverse, e.g., x-position in the Gaussian beam profile,

Vlat(x) = Ṽlate
−2x2/w2

0 , (3.3)

where Ṽlat > 0 in the case of blue detuning. The lattice depth in turn influences the ground

state energy of single particle states on individual lattice sites. In deep lattices, the on-site

potential can be approximated by a harmonic potential, leading to a ground state energy

of Egs(x) = ~ωsite(x)/2 with the on-site trap frequency

ωsite(x) =

√
2Vlat(x)k2

lat

m
. (3.4)

The Gaussian-shaped energy shift Egs(x) is equivalent to a global anti-trapping poten-

tial. In the harmonic approximation, the trap frequency of this potential scales as ωlat ∝√
Egs(0) ∝ Ṽ 1/4

lat and can be calculated as

ωlat = i

√
2h

mw0λlat

(
Ṽlat

Er

)1/4

. (3.5)

1We use a single-frequency Ti:Sa solid state laser (Coherent MBR) at a wavelength λlat = 736.65 nm

with a power of up to 4 W. It is pumped by a diode-pumped, frequency-doubled ND:YVO4 solid state

laser (Coherent Verdi V18) at a wavelength λ = 532 nm with a power of 18 W.
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3.1 Experimental Realization of Optical Lattice Potentials

An anti-trapping potential is formally given by an imaginary trap frequency.

A second, yet much smaller, contribution to the anti-trapping potential originates from

the imbalance of the intensities of the two interfering laser beams. As the retroreflected laser

beam suffers losses and imperfect reflections, its intensity at the position of the atoms is

slightly lower than that of the incoming laser beam. The excess intensity of the incoming

beam leads to a global repulsive dipole potential with a trap frequency that scales as

ωlat2 ∝
√
Ṽlat. Additionally, the intensity imbalance leads to an overall reduction of the

lattice depth Ṽlat.

When both the anti-trapping lattice potential and the dipole trap potential are present

simultaneously, in harmonic approximation, the dipole potential counteracts the global

potential of the lattice. Depending on the strength of the dipole potential, the combined

global potential can range from a trapping, over a flat to an anti-trapping potential. This

combination therefore offers another degree of freedom in the experimental setup, by al-

lowing to tune the external confinement and the lattice depth independently. We use this

feature especially for the measurements of negative temperature states presented in this

thesis.
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Figure 3.1: Anti-trapping frequencies ωlat of lattice potential in the horizontal plane, extracted from ωtot

(see main text), versus lattice depth Vlat of orthogonal lattice beams. The solid line is a power-

law fit ωlat/2π = aV blat to all data points simultaneously. The fitted exponent b = 0.23(3)

agrees with the theoretically expected exponent b = 0.25 (see main text).

By measuring the trap frequency ωtot of the combined potential of dipole trap and one

of the three optical lattice axes similarly to the pure dipole trap case (Section 2.2.3), we

can extract the anti-trapping contribution of the lattice from

ωtot =
√
ω2

dip + ω2
lat, (3.6)

where ωdip is the trap frequency of the pure dipole trap. From a power-law fit to the

resulting anti-trapping frequencies (Fig. 3.1), we can extract an exponent of 0.23(3) which

indeed agrees with the expected value of 0.25. The anti-trapping trap frequency ωxlat along

one direction is given by the contributions of both transverse lattice beams, e.g.,

ωxlat =

√(
βxyV

1/4
y

)2

+
(
βxzV

1/4
z

)2

, (3.7)
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where Vi is the lattice depth in units of Er of the lattice beams along the i-direction and

where the parameters βij are determined from trap frequency measurements. In combina-

tion with the trap frequency calibration for the dipole trap potential (Section 2.2.3), we

obtain a complete calibration of the trap frequencies in our setup in dependence of dipole

trap powers and lattice depths.

3.2 Single Particle in an Optical Lattice Potential

In the noninteracting regime, the many-body state of ultracold atoms in an optical lattice

can be given in terms of the single particle states when also considering the appropriate

quantum statistics of the particles. In this section, I introduce the single particle states in

the Bloch as well as the Wannier basis. I also show how we calibrate the lattice depth and

minimize light-assisted collisions experimentally.

3.2.1 Bloch Bands

A single particle of mass m in a one-dimensional periodic potential Vlat(x) as given by Eq.

3.1 is described by the Schrödinger equation

Ĥφ(n)
q (x) = E(n)

q φ(n)
q (x) with Ĥ = − ~2

2m

∂2

∂x2
+ Vlat(x). (3.8)

Here, the wavenumber q, corresponding to quasimomentum ~q, is a quantum number

which lies within the first Brillouin zone ranging from −~klat to ~klat. The band index n

as a second quantum number indicates that for each quasimomentum there is an infinite

number of orthogonal solutions. The solutions of this equation are called Bloch waves and

are delocalized eigenstates. According to the Bloch theorem, they can be written as a

product of a plane wave eiqx and a function u
(n)
q (x) that has the same periodicity as the

lattice [95],

φ(n)
q (x) = eiqxu(n)

q (x). (3.9)

Due to the 2klatx periodicity, the functions u
(n)
q can be written as a discrete Fourier sum

u(n)
q (x) =

∑
l

c
(n)
q,l e

i2lklatx. (3.10)

The Bloch waves are then expressed as

φ(n)
q (x) =

∑
l

c
(n)
q,l e

i(q+2lklat)x (3.11)

and are therefore given as a superposition of plane waves with wavevectors q+ 2lklat. The

2lklat are called reciprocal lattice vectors [95]. By inserting the expansion (Eq. 3.11) into

the Schrödinger equation (Eq. 3.8), truncating the index l and numerically diagonalizing

the resulting matrix [94] one obtains the coefficients c
(n)
q,l as well as the eigenenergies E

(n)
q .

In Fig. 3.2, the band structure is plotted for various lattice depths.
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Figure 3.2: Band structure of a one-dimensional sinusoidal optical lattice for various lattice depths. The

energy of the Bloch states is plotted versus quasimomentum ~q in the reduced zone scheme.

For a vanishing lattice depth, the band structure is identical to the quadratic dispersion

relation Eq = ~2q2/2m of a free particle. For finite lattice depths, band gaps open up,

i.e. energy intervals that do not support any states. For larger lattice depths, these band

gaps become larger while at the same time the widths of the individual bands decrease

approximately exponentially, until the bands become flat in infinitely deep lattices. In this

regime, the energies of the bands reach the limit E(n) = (n+ 1/2)~ωsite, corresponding to

the harmonic approximation of Eq. 3.4. The strong decrease of the kinetic energy, given

by the width of the bands, compared to the interaction energy allows to enter the strongly

correlated regime even without the use of Feshbach resonances (Section 2.1.3).

In higher-dimensional simple cubic lattices, the dynamics along the individual dimen-

sions are fully separable and the wavefunctions can be calculated separately for each axis.

The total energy is given by the sum of the eigenenergies along the individual axes. In a

three-dimensional lattice with equal lattice depths along all axes, the band gap between

the lowest and the first excited band opens only above a finite lattice depth of Vlat ≈ 2.2Er

[81].

As the relevant physics in the experiments described in this thesis happens in the lowest

band, we put experimental emphasis on not populating higher bands. This especially

includes, as a general condition for all lattice ramps in this thesis, that the lattice depth is

varied only slowly compared to the characteristic timescale set by the band gap between

the lowest and the first excited band. For the realization of negative temperature states for

motional degrees of freedom, the band gap is a crucial requirement as it provides an upper

limit of the kinetic energy, as long as the atoms are confined to the lowest band (Section

4.3.5).

Figure 3.3 shows the Bloch waves for two different quasimomenta in the lowest band.

While the wavefunction at ~q = 0 has an identical phase factor eiqx = 1 (cf. Eq. 3.9)

at all lattice sites, the function at the edge of the Brillouin zone (~q = ~klat) shows an
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Figure 3.3: Wavefunction of Bloch states Φ
(1)
q (x) in the lowest band of an optical lattice of depth Vlat = 8Er

for two different quasimomenta at the center (~q = 0) and at the edge of the Brillouin zone

(~q = ~klat). A, The real or imaginary, respectively, part of the wavefunctions illustrates the

different phase factors of the two Bloch states. B, The probability densities are similar and

involve the same lattice periodicity.

alternating phase factor eiqx = ±1 from lattice site to lattice site. These two wavefunctions

are relevant for our measurements of the emergence of coherence (Section 6.4.2).

3.2.2 Wannier Functions

Although the delocalized Bloch wavefunctions form a complete set of orthogonal wave-

functions, it is convenient to introduce an alternative basis, where particles are localized

on individual lattice sites. These Wannier functions provide an orthonormal basis that is

well-suited to describe short-range interactions between atoms. The Wannier function of

a particle located at site i in the nth band is given as the Fourier transform of the Bloch

waves

wn(x− xi) =
1√
N

∑
q

eiqxiφ(n)
q (x). (3.12)

While the normalization N is given by the number of lattice sites in a finite system, in

an infinite system, the sum is replaced by an integral. Figure 3.4 shows the Wannier

functions in the lowest band for two different lattice depths. While for Vlat = 2Er the

Wannier function extends into neighboring lattice sites, for Vlat = 10Er it is localized to a

single lattice site. For deep lattices, the Wannier function approaches a Gaussian function,

consistent with the harmonic approximation.

The side lobes of the Wannier function lead to a non-vanishing probability to find an

atom on a neighboring lattice site. This effect is described by the tunneling matrix element

between sites i and j,

Jij = −
∫
w1(x− xi)

(
− ~2

2m

∂2

∂x2
+ Vlat(x)

)
w1(x− xj) dx, (3.13)

which only depends on the distances of the lattice sites |i− j|.
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Figure 3.4: Wannier function w1(x) in the lowest band of an optical lattice for two different lattice depths.

For deeper lattices, the Wannier function becomes more localized.

Also interactions between atoms on a single lattice site can be conveniently calculated

via the Wannier functions. The interaction matrix element of two bosons in the same

Wannier state on the same lattice site that interact via s-wave scattering (Section 2.1.2)

in three dimensions is given by

U =
4π~2a

m

∫
|w1(r)|4 dr3, (3.14)

with the scattering length a. As the single particle problem in an optical lattice is separa-

ble, the three-dimensional Wannier function is simply the product of the one-dimensional

functions along the three lattice axes.

Conversely to the above construction of Wannier functions, every Bloch wave can be

constructed from the set of Wannier functions as

φ(n)
q (x) =

1√
N

∑
i

e−iqxiwn(x− xi), (3.15)

where the sum is performed over all lattice sites.

3.2.3 Tight-Binding Limit

For sufficiently deep lattices, the tunneling matrix element Jij for tunneling in the lowest

band over distances larger than one lattice can be neglected. This approximation is called

tight-binding limit and is reached for lattice depths larger than approximately 5Er [31]. In

this regime, only the tunneling matrix element between neighboring lattice sites |i− j| = 1

is relevant and is simply denoted as J . The bandwidth of the lowest band becomes d · 4J ,

with the dimensionality d, and the dispersion relation of the lowest band is simply given

by [33]

εq = −2J cos

(
π
q

klat

)
. (3.16)
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The decrease of the bandwidth for smaller values of J can also be understood in the

framework of the effective mass m∗: For deeper lattices, the atoms become more localized

on lattice sites, leading to a flattening of the dispersion. At the same time, a decreasing

value of J leads to a reduced mobility of particles in the lattice. The mobility of the

particles is governed by the effective mass of the particles, which is inversely proportional

to the curvature of the band,

m∗(q) =
~2

∂2εq/∂q2
. (3.17)

In the case of q = 0 in the tight-binding approximation, one obtains an effective mass that

increases with decreasing tunnel coupling,

m∗(q = 0) =
~2

2Jd2
lat

. (3.18)

The tunneling time is defined as

τ =
~
J

(3.19)

and is a measure for the timescale on which the atoms move in the lattice. The corre-

sponding group velocity of the atoms is given by [93]

vg =
1

~
∂εq
∂q

=
2dlat

τ
sin

(
π
q

klat

)
. (3.20)

and is limited to the range of −2dlat/τ ≤ vg ≤ 2dlat/τ . In contrast to free space, the group

velocity does not monotonically increase with quasimomentum, but reaches its maximum

values (in both directions) at wavenumbers q = ±klat/2. At q = 0 as well as at the edges

q = ±klat of the Brillouin zone, the group velocity vanishes.

3.2.4 Lattice Depth Calibration

The lattice depth can be calibrated by various methods that each have advantages and

disadvantages in certain lattice depth regimes. In our experiment, we use two different

procedures - lattice diffraction for shallow lattices and frequency modulation spectroscopy

for deep lattices.

Lattice Diffraction

In this method, we extract the lattice depth from the diffraction of a coherent matter

wave at the optical lattice potential. After preparing a condensate at zero momentum

|ψ(t = 0)〉 = |q0 = 0〉, we pulse the lattice for variable times τ on the order of tens of µs.

Switching on the lattice potential suddenly leads to a projection of the plane wave of the

condensate into the Bloch basis of the lattice. Because of the symmetry of the |q0 = 0〉
state, only Bloch states |n, q0 = 0〉 with odd band indices n contribute. While strong

lattices allow transitions into several bands, for small lattice powers, the superposition
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consists mainly of the Bloch states in the first and third band and higher bands can be

neglected [79]:

|ψ(t = 0)〉 = c1|n = 1, q0〉+ c3|n = 3, q0〉 (3.21)

Here, ci are the corresponding coefficients. The time evolution of the state is given by the

evolution of the phases of these two states according to their energies

|ψ(t)〉 = c1e
−iε(n=1)

q0
t/~|n = 1, q0〉+ c3e

−iε(n=3)
q0

t/~|n = 3, q0〉. (3.22)

When the lattice is turned off after a time τ , the resulting state |ψ(τ)〉 is projected back into

the plane wave basis |q0 + 2klatµ〉, where µ is an integer. The amplitudes of the individual

plane wave states are

〈q0 + 2klatµ|ψ(τ)〉 = c
(µ)∗
1 c1e

−iε(n=1)
q0

τ/~ + c
(µ)∗
3 c3e

−iε(n=3)
q0

τ/~. (3.23)

Because of the weak lattice potential, only the components µ = 0 and µ = ±1 have

significant contributions. Due to interference between the two terms, the probability |〈q0 +

2klatµ|ψ(τ)〉|2 of finding an atom in any one of the plane wave states oscillates with the

pulse time τ at a frequency ν = (ε3 − ε1)/h.

After the lattice pulse, we switch off all potentials and perform time-of-flight absorption

imaging (Section 3.4.2). By counting the number of atoms in the different momentum

states, we can observe this oscillation and measure the corresponding frequency (Fig. 3.5).

By comparing the frequency to the results of a numerical band structure calculation, we

can extract the lattice depth. For deeper lattices, also higher bands and plane wave states

with higher momenta |µ| ≥ 2 contribute significantly. The probabilities therefore oscillate

between several µ states and the resulting signal is more complicated than a pure sinusoidal

signal as in the above case. While being more involved, one could in principle still extract

the lattice depth from this signal. Instead, we apply a different method which is particularly

suited to calibrate deep lattices.

Frequency Modulation Spectroscopy

In this method, we calibrate the lattice depth via a spectroscopic measurement of the

transition frequency from the lowest band to the first excited band. We load a condensate of
39K atoms into a one-dimensional optical lattice and parametrically excite [96] the atoms

by modulating the frequency of the lattice beam with an amplitude of a few MHz and

variable frequency. The frequency modulation translates into a modulation of the position

of the potential minima. Under this lattice shaking, the parity of the wavefunction is

not conserved anymore such that transitions between even and odd wavefunctions, such as

between the lowest and the first excited band, are possible. When the modulation frequency

νmod is resonant with the transition between the two bands, hνmod = E2
q − E1

q , atoms are

excited. We measure the number of excited atoms by time-of-flight imaging including a

band-mapping technique (Section 3.4.4). Figure 3.6 shows the measurement of a typical

resulting peak, located at the transition frequency between the two bands. The peak is
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Figure 3.5: Lattice depth calibration measurement via lattice diffraction (see main text). The fraction

of atoms in the µ = ±1 peaks is determined via area sums in time-of-flight images and is

plotted versus pulse time τ of the optical lattice pulse. The solid line shows a sinusoidal fit

including exponential decay. Comparing the fitted frequency of ν = 54.2(2) kHz to a numerical

calculation yields a lattice depth of Vlat = 6.13(5)Er.

broadened by the finite bandwidths at the given lattice depth. As this effect is stronger for

small lattice depths, this method is particularly suited for deep lattices. The extension of

the cloud in the inhomogeneous lattice beam profile leads to an additional broadening. By

comparing the extracted frequency with a numerical band structure calculation, we extract

the depth of the optical lattice.

3.2.5 Light-Assisted Collisions

In the presence of a strong light field such as that of an optical lattice, atoms can scatter

photons, leading to heating and losses of atoms from the trap. Additionally, when two

or more atoms are located at the same lattice site, the atoms can undergo light-assisted

collisions. In this process, two atoms on the same lattice site collide while one of the two

atoms absorbs a photon during the collision. This process leads to the transfer of the

atoms into an excited state molecular potential, as illustrated in Fig. 3.7. In the case

of red-detuned laser light, an atom can only be excited if the photon energy is resonant

with a bound state in an excited state potential. Such a bound state molecule decays over

time and simultaneously releases a large amount of energy which ultimately leads to the

loss of the two atoms from the trap. This loss channel can effectively be minimized by

tuning the wavelength of the laser in between two bound states. For blue-detuned lasers,

however, the atoms are excited above the atomic threshold where the molecular potentials

are repulsive and provide unbound quantum states for any photon energy. The repulsive

potential quickly accelerates the atoms away from each other before the excited atom

decays into the ground state again via spontaneous emission of a photon. The increase in
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Figure 3.6: Lattice depth calibration measurement via frequency modulation spectroscopy (see main text).

The relative atom number in the second Brillouin zone, determined via area sums in time-

of-flight images using band-mapping, is plotted versus the frequency of the optical lattice

frequency modulation. By comparing the fitted center frequency of νmod = 79.17(9) kHz to a

numerical calculation, one obtains a lattice depth of Vlat = 22.36(5)Er. The gray shaded area

indicates the combined bandwidths of the lowest and the first excited band.

kinetic energy usually leads to the loss of the atom pair from the trap. In contrast to the

red-detuned case, light-assisted collisions cannot effectively be suppressed for blue-detuned

light because the unbound states form a continuum. Therefore, two or more atoms on a

single lattice site always experience this additional loss channel.

By choosing the correct detuning, light-assisted collisions can still be minimized also for

blue-detuned lattices. The probability for this process is determined by the Franck-Condon

factor, which gives the overlap between the nuclear wavefunctions Ψg and Ψe of the ground

state and the excited state, respectively:

FC =

∣∣∣∣∫ Ψ∗e(R)Ψg(R) dR

∣∣∣∣2 (3.24)

Here, R is the internuclear distance. The strongest contribution to the integral is typically

located around the Condon point RC, i.e. the distance at which the difference in potential

energies matches the energy of a photon [97]. For different photon energies, different excited

states are addressed with wavefunctions Ψe(R) that are shifted relative to each other.

As both wavefunctions Ψg(R) and Ψe(R) exhibit strong oscillations with distance R, the

Franck-Condon factor strongly depends on the photon energy and, in fact, also oscillates.

The atom losses in a blue-detuned light field therefore crucially depend on the precise laser

wavelength.

To measure the losses, we load a BEC of 39K atoms into a combined potential of dipole

trap and a deep blue-detuned optical lattice with high filling. While the lattice light

is present, two atoms on a single site can be lost due to light-assisted collisions. After
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Figure 3.7: Illustration of light-assisted collisions. The energy of the diatomic molecular potential curves

is plotted versus internuclear separation R. During a collision process, one atom can absorb

a photon from a laser beam and thereby the pair of atoms is excited to an excited molecular

potential curve. For red-detuned light with respect to the atomic transition, the photon energy

has to match a bound molecular state, shown as horizontal gray lines. In contrast, for blue-

detuned light, the excited scattering states form a continuum and thereby allow a transition

for any laser frequency. The initial and final energies of the atom pair are indicated by the

horizontal dotted lines. As the photon momentum is small compared to the momenta of the

nuclei, the kinetic energy of the atoms does not change during the absorption process. The

transition happens around the Condon point RC (see main text). The green curve exemplifies

the wavefunction of the ground state molecule.

this sequence, we count the number of remaining atoms in time-of-flight images (Section

3.4.2). We repeat this measurement for different lattice wavelengths λlat. The result

(Fig. 3.8) shows a clear oscillation versus λlat. Additionally to this oscillatory behavior,

the scattering rate Γsc scales with the detuning δlat as Γsc ∝ 1/δ2
lat (Section 2.2.1) and

therefore the detuning should be as large as possible, given the available laser power. We

choose a wavelength of λlat = 736.65 nm where both scattering and light-assisted collisions

are minimized. More details about light-assisted collisions and the relevant molecular

potential curves and wavefunctions, with emphasis on 40K but with the same underlying

principles, can be found in [81, 98, 99].

3.3 Many Particles in an Optical Lattice Potential

After discussing the single particle physics of individual atoms in a homogeneous lattice,

this section deals with the many-body problem. I also incorporate the external trapping

potential, thereby describing the realistic situation for the experiments in this thesis.
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Figure 3.8: Minimizing light-assisted collisions. The total atom number, determined via area sums in time-

of-flight images, after holding the atoms in an optical lattice is plotted versus lattice wavelength

λlat. A, The oscillatory behavior is due to the Franck-Condon factor. The solid line guides

the eye. B, A fine scan allows to determine the precise position of one of the minima of

light-assisted collisions via a Gaussian fit (solid curve) at λlat = 736.65(9) nm.

3.3.1 Wavefunction of a BEC in an Optical Lattice

If the tunnel coupling J is large compared to the interaction energy U of two atoms on the

same site, the atoms are in the weakly interacting regime. Here, also in the presence of

a three-dimensional lattice, the many-body ground state of bosons is a BEC. As outlined

in Section 2.1.2, in the mean-field approximation, the macroscopic wavefunction of the

condensate is described by the Gross-Pitaevskii equation. If the chemical potential µ is

small compared to the lattice depth, the macroscopic wavefunction can be written as a

sum of localized wavefunctions [100]

ψ(r) =
∑
j

ψjw(r− rj) with ψj =
√
n̄je

iφj . (3.25)

The phases φj of the wavefunctions are well-defined in this regime, and the amplitude
√
n̄j

is given by the average particle number n̄j on the lattice site j, which here is assumed to

be large, n̄j � 1. In higher dimensions, the index j is a vector. If the chemical potential

does not exceed the lowest band gap, the localized wavefunctions w(r−rj) are given by the

Wannier functions in the lowest band, w1(r − rj). The system then follows a discretized

version of the Gross-Pitaevskii equation with a Hamiltonian [100]

Ĥ = −J
∑
〈i,j〉

ψ∗i ψj +
∑
j

Vj |ψj |2 +
∑
j

U

2
|ψj |4. (3.26)

The first term corresponds to the kinetic energy with the tunneling matrix element from

Eq. 3.13, where the summation includes all neighboring lattice sites 〈i, j〉. The second

term gives the potential energy, where the energy offset Vj of a site is given by the slowly

varying external harmonic potential Vj =
∫
Vext(r)|w1(r − ri)|2 dr3 ≈ Vext(rj). The third

term describes the on-site interaction between atoms on the same lattice site with the
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interaction matrix element from Eq. 3.14. This Hamiltonian is a special case of the more

general Bose-Hubbard Hamiltonian (Eq. 3.35) for a macroscopic wavefunction.

The ground state wavefunction of a weakly interacting BEC in an optical lattice without

external trap is given by the Bloch wave with quasimomentum ~q = 0. A comparison with

the Bloch wave expression of Eq. 3.15 shows that the phases of the condensate wavefunc-

tions on individual lattice sites are all equal, φj = 0. Therefore, also in the inhomogeneous

lattice, the ground state is characterized by a uniform phase. For a stationary state, the

individual phases also have to evolve at the same rate. As the phase evolution is given by

the term eiµjt/~, this requires that the chemical potential µj is constant across the lattice.

Under the assumption that the interaction energy n̄jU per atom is large compared to

the tunnel coupling J , the kinetic energy term in the Hamiltonian can be neglected. In

the case of shallow optical lattices, this so-called Thomas-Fermi approximation requires

large occupation numbers n̄j on lattice sites. This approximation does not correspond to a

transition into the Mott insulating regime, as J is still assumed to be large compared to the

interaction U between two atoms. As the requirement of large occupation numbers is not

always fulfilled experimentally, the results of this calculation should be considered rather

qualitative for the real experimental situation. In the Thomas-Fermi approximation, the

energy on a lattice site is given by

Ej ≈ Vj |ψj |2 +
U

2
|ψj |4 = Vj n̄j +

U

2
n̄2
j (3.27)

and the chemical potential therefore reads

µj =
∂Ej
∂n̄j

= Vj + Un̄j ≡ µ = const. (3.28)

An illustration of the chemical potential is shown in Fig. 3.9A.

In the case of a small lattice spacing dlat compared to the extension of the cloud, the

occupation numbers n̄j can be approximated by a continuous distribution n̄(r) with the

particle density given by n̄(r)/d3
lat. For a harmonic confinement with an aspect ratio

γ = ωz/ωx = ωz/ωy, one can define an effective distance [79]

ρ2 = x2
j + y2

j + γ2z2
j , (3.29)

such that the potential is expressed as

Vext(ρ) =
m

2
ω2
xρ

2. (3.30)

The chemical potential µ is fixed by the total atom number

N =

∫
n̄(r)

d3
lat

dr3. (3.31)

The requirement of a constant chemical potential in Eq. 3.28 directly leads to the density

distribution of the atoms

n̄(ρ) = max

(
µ− m

2 ω
2
xρ

2

U
, 0

)
(3.32)
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Figure 3.9: Macroscopic wavefunction in an inhomogeneous optical lattice. A, In the inhomogeneous case,

the external trapping potential (red curve) creates an energy offset Vj for each lattice site.

The chemical potential µj can be approximated as the sum of Vj and the interaction energy

per atom. In the stationary state, it has to be constant across the lattice, µj = µ. B, The

previous requirement results in an atomic density profile (solid curve) that is enveloped by a

Thomas-Fermi parabola (dashed curve).

which exhibits the typical Thomas-Fermi parabola (Fig. 3.9B). The Thomas-Fermi radius

is given by

ρTF =

√
2µ

mω2
x

(3.33)

and the chemical potential can be calculated as [94]

µ =

(
15d3

latm
3/2NUγω3

x

16
√

2π

)2/5

. (3.34)

3.3.2 Bose-Hubbard Model

The description of a BEC in an optical lattice as a macroscopic wavefunction like in the

previous section is only valid for shallow lattices. For deeper lattices, correlations between

atoms increase and may lead to a loss of the wave properties of the system. For large

interactions U compared to the tunneling J , the particles undergo a quantum phase tran-

sition into a state of isolated localized particles, the Mott insulator [31, 32] which was first

observed by M. Greiner et al. [34] for ultracold atoms.

In second quantization, the Hamiltonian of interacting bosons in the presence of a pe-

riodic potential is conveniently written in the Wannier basis. For small energies, it is

sufficient to consider only Wannier functions in the lowest band. Additionally, one makes

the approximation of the tight-binding limit (Section 3.2.3) as well as of a contact inter-

action potential (Section 2.1.2) for s-wave interactions where only interactions between

atoms on the same lattice site are relevant. These assumptions lead to the Bose-Hubbard

Hamiltonian:

Ĥ = −J
∑
〈i,j〉

â†i âj +
U

2

∑
i

n̂i(n̂i − 1) +
∑
i

(Vi − µ)n̂i (3.35)
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The operators â†i and âi create and annihilate, respectively, a boson in a Wannier state

on lattice site i, and n̂i = â†i âi is the number operator for bosons on site i. The chemical

potential µ is introduced to fix the atom number in a grand-canonical ensemble. The other

parameters are identical to Eq. 3.26. The Hamiltonian consists of three terms, kinetic,

interaction, and potential energy (cf. Eq. 3.26).

3.3.3 Superfluid and Mott Insulator Phase

The Bose-Hubbard model exhibits a prime example of a genuine quantum phase transi-

tion that is driven by quantum fluctuations. This transition connects the superfluid and

the Mott insulating phases. The fundamental properties of these phases can already be

understood in a homogeneous lattice system, where the energy offset between lattice sites

vanishes, Vi = 0, and are outlined in the following.

If the tunnel coupling J is much larger than the interaction U , the many-body ground

state ψSF is given by a condensate in the Bloch state |n = 1, q = 0〉 (Section 3.3.1) where

each of N particles is delocalized over all M lattice sites,

|ψSF〉(U/J ≈ 0) =

 1√
M

M∑
j=1

â†j

N

|0〉. (3.36)

In the limit of large N and M , the state can be approximated by a product of coherent

states on individual lattice sites [33],

|ψSF〉 ≈
M∏
j=1

|αj〉, (3.37)

which are eigenstates of the annihilation operator,

âj |αj〉 = αj |αj〉. (3.38)

The amplitudes αj =
√
n̄je

iφj are determined by the average occupation number n̄j = n̄ =

N/M and the phase φj and define the condensate wavefunction on the lattice sites (cf. Eq.

3.25). The phases φj are well-defined on each lattice site, establishing phase coherence in

the ground state, and the system is superfluid. Expressed in the Fock basis, these coherent

states are a superposition of the Fock states |n〉j [101],

|αj〉 = e−|αj |
2/2

∞∑
n=0

αnj√
n!
|n〉j . (3.39)

The occupation of the individual Fock states follows a Poissonian statistics with variance

σ2 = n̄.

In the case where U is much larger than J , atom number fluctuations on individual

lattice sites are energetically costly and are strongly suppressed. Instead, if the filling in

the homogeneous case is commensurate, n̄ ∈ N, the atoms are localized to individual lattice
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sites and the ground state is the Mott insulator. This state is described by a product of

Fock states with exactly n̄ atoms per lattice site,

|ψMI〉(J/U ≈ 0) =
∏
j

1

n̄!

(
â†j

)n̄
|0〉. (3.40)

In this regime, the atom number per site is well-defined, but the phase of the matter wave

is maximally uncertain. In contrast to the superfluid regime, the expectation value of

the annihilation operator on individual lattice sites equals zero and phase coherence has

vanished. In the homogeneous case where the filling is not commensurate, the ground state

is a superfluid.

When the ratio U/J is increased, at a critical value (U/J)c, the system will undergo a

quantum phase transition from the superfluid to the Mott insulator state in the commen-

surate case. This phase transition is driven by quantum fluctuations [57] and therefore

also occurs at zero temperature when thermal fluctuations are frozen out. The critical

value depends on both dimensionality of the system as well as on the filling n̄. In the case

of n̄ = 1, quantum Monte-Carlo and density-matrix renormalization group calculations

provided the values (U/J)c ≈ 3.3 [102–104] in 1D, (U/J)c = 16.7 [105] in 2D, and 29.3

[106] in 3D.

The inhomogeneous system, if the external potential varies slowly enough, can be ap-

proximated by a series of homogeneous systems with locally varying chemical potential

µi = µ− Vi. (3.41)

In this local density approximation, all local quantities such as filling ni are approximated

by the respective quantities of the homogeneous system,

ni = n(µ− Vi, T ). (3.42)

The chemical potential µ in the center of the trap is still adjusted to obtain the correct

atom number in the grand canonical ensemble.

Figure 3.10A qualitatively shows the phase diagram of the 2D Bose-Hubbard model

[107–109]. The ground state depends on both the value J/U as well as on the chemical

potential µi. An inhomogeneous system samples a range of chemical potentials from a

maximum value in the center of the trap to µi = 0 at the border of the cloud, indicated by

the vertical line. For large J/U values, the system is superfluid at every point in the trap.

In contrast, for small J/U , the system alternates between Mott insulating and superfluid

phases. The corresponding profile of the 2D cloud in Fig. 3.10B shows the characteristic

structure of Mott insulating shells with superfluid shells in between. This wedding cake

structure has also been observed in experiments [47, 110, 111].

When the critical point is crossed, the excitation spectrum in the system changes, which

is an essential feature of a quantum phase transition. In the superfluid regime, the lowest

excitations are Bogoliubov excitations which exhibit a gapless spectrum. These excita-

tions correspond to phase differences between lattice sites and may have arbitrarily small
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Figure 3.10: Mott insulator (MI) and superfluid (SF) phases in an inhomogeneous system. A, Schematic

phase diagram of chemical potential µi versus J/U in 2D or 3D. Along the horizontal dashed

lines, the density is integer-valued in the superfluid regime. The arrow exemplary indicates

the range of µi that is present in a trapped system, with the largest µi at the center of the

cloud and µi = 0 at the border. B, Visualization of the corresponding shell structure in a 2D

system.

energies. Additionally, there are also purely gapped excitations of a different kind in the

superfluid regime. These originate from the Higgs amplitude mode and correspond to col-

lective superfluid density variations in the system [112]. When the Mott insulating regime

is entered, a gap ∆ in the spectrum opens up which is responsible for the insulating prop-

erties of the state. In this regime, excitations correspond to the creation of particle-hole

pairs, where a particle is an extra particle on a lattice site on top of the Mott insulator,

and a hole a reduction of the Mott insulator by one particle. The gap depends on the

value J/U and the filling n of the Mott insulator and can be extracted from the phase

diagram. It is given by the difference of chemical potentials at the upper and lower edge

of the corresponding Mott lobe. In the deep Mott insulating regime, J/U � 1, it simply

equals the interaction energy, ∆ = U : For any n, creating a particle-hole pair requires a

particle to hop on an already occupied lattice site, at the cost of the interaction energy U .

3.4 Absorption Imaging

To extract information about the atomic ensembles in the experiments described in this

thesis, we always use standard absorption imaging. This can be applied either to in situ

clouds, or alternatively to clouds that have expanded after some time-of-flight (TOF).

In absorption imaging, a near-resonant laser beam is directed onto the atoms which

absorb a fraction of the intensity. The resulting intensity profile I(x, y) of the beam is

imaged onto a CCD camera. Additionally, an image of the reference intensity distribution

I0(x, y) without atoms is taken. Combining both images, the optical density D(x, y) of the

atomic cloud can be determined from the Lambert-Beer absorption law,

I(x, y) = I0(x, y)e−D(x,y) with D(x, y) =
σ0

1 + 4δ2/Γ2
ncol(x, y). (3.43)
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This expression assumes the thin lens approximation and a low intensity of the imaging

beam compared to the saturation intensity of the atomic transition. The parameter δ is the

detuning of the imaging beam, Γ the linewidth of the atomic transition, and ncol(x, y) =∫
n(x, y, z) dz the integrated density along the beam direction. The resonant cross section

σ0 = 3λ2/2π is valid for a two-level atom that is imaged with polarized light of wavelength

λ. In the case of linearly polarized light and a vanishing magnetic field, several degenerate

Zeeman levels can be occupied such that the atom does not constitute a two-level system

anymore. In the case of 39K, the cross section then has to be corrected by a factor of

7/15 ≈ 0.47. In our experiment, the imaging light in our standard imaging axis along the

z-direction is not perfectly linearly polarized and the correction factor was measured for
87Rb as 0.40(5) [113]; due to the identical hyperfine structure of the two atomic species, we

assume the same correction factor for 39K. On the CCD chip, we measure the integrated

intensity over the area of an individual pixel, corresponding to a column density that

is averaged over an area A in the focal plane, determined by the magnification of the

imaging system. Therefore, by multiplying the measured column density with the area

A, we obtain the corresponding atom number. The resolution of our imaging system is

approximately 3µm, which we deduced from measurements of very small atom clouds and

which is consistent with the expectation from diffraction theory.

3.4.1 In Situ Imaging

We use absorption imaging to directly measure the in situ distribution of the cloud. This

is especially relevant for the experiments concerning the emergence of coherence when

crossing the Mott to superfluid phase transition, where the in situ cloud size is required

for a determination of the coherence length (Section 6.2.4). However, according to Eq.

3.43, clouds with very high optical densities such as Bose-Einstein condensates lead to an

exponentially small amount of transmitted light which cannot be distinguished from noise

in the images. In these regions of high optical densities, the images do not provide any

information about the column density. To circumvent this problem, phase-contrast imaging

[49] could be used which extracts information from the phase shift that the atomic cloud

induces in a detuned imaging beam rather than from the absorption of a near-resonant

beam. For the purposes of the experiments described in this thesis, however, absorption

in situ imaging is sufficient, as the broad wings of the atomic clouds in our oblate dipole

trap geometry allow to estimate the optical density of the cloud center.

In the experiments about the emergence of coherence, to image the in situ distribution in

a shallow optical lattice at Vlat = 6Er, we quickly ramp up all three lattices to the deepest

possible value of Vlat = 33Er to freeze out the atomic distribution. During a hold time

of several ms in the deep lattice, we switch off the magnetic field and perform absorption

imaging on the in situ cloud. Absorption imaging at high magnetic fields is problematic due

to the various Zeeman levels that are populated during the imaging process, which provide

transitions that are not resonant with the imaging light. These detuned transitions do not

contribute to the absorption signal but mainly provide phase shifts to the imaging light,
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distorting the absorption signal of the resonant transition.

3.4.2 Time-of-Flight Absorption Imaging

The momentum distribution of the atomic cloud can be measured via time-of-flight (TOF)

absorption imaging. At the end of an experimental sequence, all trapping potentials are

switched off and the atomic cloud evolves in free space for a certain time tTOF. At the end

of this period, a standard absorption image is taken.

During time-of-flight, the atoms are accelerated by gravity. Additionally, if interactions

between the atoms can be neglected, the atoms will evolve according to their initial ve-

locities. For very long tTOF, the in situ distribution of the cloud can be neglected, and

the spatial distribution of the cloud is given by the initial momentum distribution. For

short and intermediate tTOF, the in situ distribution has to be taken into account when

analyzing TOF images.

3.4.3 Measuring the Momentum Distribution

If the lattices are instantaneously switched off at the beginning of the TOF period, the

quasimomentum states |~q〉 in the lattice are projected into the basis of plane waves |p〉
(cf. Section 3.2.4). These plane wave states then determine the momentum at which the

atoms evolve during TOF. A BEC at |~q = 0〉 therefore shows up as an array of peaks,

spaced by 2~klat, corresponding to the superposition state in the plane wave basis and

reflecting the phase coherence of the superfluid state. In contrast, a Mott insulating state

of localized atoms at unity filling is given by a superposition of all |~q〉 states in the lowest

band. The projection leads to a broad distribution of the plane wave states and the TOF

image shows only a broad peak, determined by the on-site Wannier function, without any

obvious additional features, reflecting the absence of phase coherence between lattice sites

[34, 114].

Modeling the interference pattern

The interference pattern contains information about the phase coherence between lattice

sites. We extract this information by calculating the interference pattern in a simple model

and comparing the calculated patterns to the experimentally measured one by a fit.

The momentum distribution of the atoms in the optical lattice is [115]

〈n̂(k)〉 =
1

N
|w̃(k)|2S(k), (3.44)

where the Fourier transform of the on-site Wannier function w̃(k) determines the overall

envelope of the interference pattern, and N is a normalization factor. The interference

term S(k) is given by a sum over all lattice sites at positions rµ,

S(k) =
∑
rµ,rν

exp (ik(rµ − rν))
〈
â†µâν

〉
. (3.45)
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In the experimental sequence, we record the momentum distribution via absorption

imaging after finite time-of-flight tTOF. In the images, we attribute to each position r in

real space a momentum ~k = mr/tTOF. Since after finite tTOF, the initial positions rµ of

the atoms still influence the measured distribution, the interference pattern is generalized

to [115]

S̃(k) =
∑
rµ,rν

exp

(
ik(rµ − rν)− i m

2~ tTOF
(r2
µ − r2

ν)

)〈
â†µâν

〉
. (3.46)

The second term in the exponential provides a correction of a pure Fourier transform of the

in situ distribution for finite TOF [115]. It is equivalent to the quadratic term in the Fresnel

approximation of near-field optics. We model the correlator by assuming a Gaussian in

situ density distribution and exponentially decaying correlations between lattice sites,〈
â†µâν

〉
(T>0)

=
√
nµ
√
nν · exp

(
−|rµ − rν |

ξ

)
(3.47)

= exp

(
−

r2
µ + r2

ν

4R2
− |rµ − rν |

ξ

)
, (3.48)

where ξ is the correlation length and nµ the density at site µ. In the case of negative tem-

perature, where we expect condensation at ~qi = ±~klat, with qi indicating the components

of q, this correlator contains an additional phase term,〈
â†µâν

〉
(T<0)

=
〈
â†µâν

〉
(T>0)

· eiklat(rµ−rν), (3.49)

where klat = (klat, klat, klat) in the 3D case. While ~q = 0 at positive temperature cor-

responds to a constant phase between lattice sites, ~qi = ±~klat features an alternating

phase (cf. Fig. 3.3).

To fit a measured interference pattern, we integrate the image along one axis of a region of

interest (ROI) and thus obtain 1D data which we normalize (Fig. 3.11). For the comparison,

we calculate the expected interference patterns for a 1D system. Results for both exemplary

integrated data and calculated interference curves are shown in Fig. 3.12. For very small

coherence lengths ξ � dlat, only the Fourier transform of the Wannier function as envelope

function is visible. For larger ξ, the interference peaks become more pronounced and their

width decreases. For large ξ, the peak widths saturate at a minimum value which is given

by the in situ width R of the atomic cloud. Yet, also the region between the peaks contains

valuable information that we use for the extraction of the coherence length.

We minimize the sum of absolute residuals of the calculated interference curves with re-

spect to the averaged experimental curve and thus obtain ξ. This fitted ξ value, however,

can only be an approximation to the real coherence length in the system: The imaged

cloud is an average over several 2D layers with different radii R. Also, the assumption of

a Gaussian in situ density distribution is only an approximation to the real distribution.

However, the optimal calculated curve in Fig. 3.12 shows very good agreement with the

experimental data, indicating that our assumptions of a Gaussian in situ density distribu-

tion and exponentially decaying correlations between lattice sites allow a good description

of the experimental situation.
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3 Ultracold Bosons in Optical Lattices

A B

Figure 3.11: Obtaining 1D data from TOF images. The experimental data is integrated along the short

axis of a thin ROI that includes potential interference peaks (black boxes). Images from, A,

a positive temperature, and, B, a negative temperature experiment in 2D.
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Figure 3.12: Extracting the coherence length by comparing experimental data (red curve) with calculated

interference patterns for coherence lengths ξ = (0.1, 0.5, 1, 2, 3, 4, 5, 20) dlat (blue curves, from

light to dark). Both experimental data and theory curves are normalized to a maximum value

of 1. A, Data from a positive temperature experiment in a 2D system. Theory curves are

calculated for a Gaussian width R = 32 dlat. B, Data from a negative temperature experiment

(Section 5) in 2D. Compared to the positive temperature case, the peaks are shifted by half

the Brillouin zone. Theory curves are calculated for a Gaussian width R = 31 dlat.

3.4.4 Measuring the Quasimomentum Distribution

A related time-of-flight imaging technique is the so-called band mapping. Here, the lattice

potential is not switched off instantaneously, but on a timescale which is fast compared to

the tunneling dynamics in the lowest band, but adiabatic with respect to transitions into

other bands [116, 117]. During this ramp, a Bloch wave |~q〉 is adiabatically transferred

into the plane wave state |p = ~q〉. The momentum distribution therefore directly reflects

the quasimomentum in the lattice. With this method, also atoms in higher bands can be

clearly identified as they are transferred to higher plane waves, corresponding to higher

Brillouin zones.

3.5 Feshbach-Induced Mott Insulator

As outlined in Section 3.3.3, the transition from the superfluid to the Mott insulating regime

is determined by the fraction U/J . Typically, this fraction is tuned by changing the depth
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3.5 Feshbach-Induced Mott Insulator

of the optical lattice. Alternatively, the transition can also be achieved by only changing the

interaction U ∝ a via the scattering length a [118]. The species 39K is predestined for this

route due to its broad Feshbach resonance in the absolute ground state (Section 2.1.3).

We mapped out the phase transition for various interactions by preparing an ultracold

cloud of 39K atoms at various scattering lengths and then ramping a 3D optical lattice to

variable lattice depth. The TOF images in Fig. 3.13 show the loss of phase coherence at

the phase transition via the typical disappearance of the interference pattern. Although

the atoms in our experiment are trapped in an external harmonic potential leading to

an inhomogeneous filling, we obtain a qualitatively good agreement with the theoretical

prediction of (U/J)c = 29.3 from quantum Monte-Carlo calculations for a 3D system at

n = 1 [106].
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Figure 3.13: Feshbach-induced Mott insulator. Time-of-flight images are plotted for various lattice depths

and scattering lengths. The strength of the interference pattern is a measure for the super-

fluidity of the system. The red solid line is the theoretical value of the Mott transition of

(U/J)c = 29.3 from quantum Monte-Carlo calculations for a 3D system at n = 1 [106].
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4 Theory of Negative Absolute Tem-

peratures

In this chapter I lay out the theoretical background for negative absolute temperatures.

In the first section I present how negative temperatures are defined and what they mean

physically. In the second section the concept of thermodynamic equilibrium and the ap-

proach to it, i.e. thermalization, are introduced, both for classical and quantum systems.

In the third section I show how negative temperatures can be realized in experiments and

how this has been done previously. In the fourth section I discuss some of the implications

of negative temperatures. I also address some of the confusion that is connected with the

concept of negative temperatures. In the fifth section, I lay out a recent discussion about

the correct definition of entropy which also affects the concept of negative temperature.

This chapter is strongly connected with our publication Negative Absolute Temperature for

Motional Degrees of Freedom [119].

4.1 What are Negative Absolute Temperatures?

Here I describe the fundamental concepts of negative absolute temperatures - how they are

defined and what they mean physically.

4.1.1 Occupation Inversion

Absolute temperature T is usually bound to be strictly positive. However, under special

conditions, also negative absolute temperatures are possible. An intuitive understanding

of negative temperatures can be obtained in the canonical ensemble via the Boltzmann

distribution

Pi =
1

Z(T )
e−Ei/kBT , (4.1)

which is normalized by the partition function Z(T ) =
∑
i e
−Ei/kBT . This distribution

gives the probability Pi for a canonical ensemble in thermal equilibrium with a heat bath

to occupy a quantum state i with energy Ei. In Fig. 4.1, an illustration of the Boltzmann

distribution for several temperatures is given. In the case of a very small positive temper-

ature, most particles will occupy states with very low energy. The Boltzmann distribution
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4 Theory of Negative Absolute Temperatures

is strongly peaked near the lowest possible energy – the ground state. This lower energy

bound is necessary to obtain a normalizable distribution: Otherwise the probabilities Pi

would diverge for Ei → −∞ and thus also Z(T ). For increasing temperatures, more par-

ticles will also occupy higher energy states, leading to a broader Boltzmann distribution.

In the case of an infinite temperature, the occupation of individual states becomes inde-

pendent of energy; therefore the Boltzmann distribution is flat. To realize such a state,

however, both a lower and an upper bound in the energy spectrum is required for a nor-

malizable distribution Pi. Inserting a temperature of negative infinity leads to the same

distribution as positive infinity. In fact, these two extreme values describe the same quan-

tum state. By inserting a finite negative temperature into the Boltzmann formula (Eq.

4.1), the exponentially decreasing function turns into an exponentially increasing one. In

this case, states with high energies are more strongly occupied than states with low ener-

gies. To realize such a state, an upper energy bound is required such that the distribution

of the particles does not diverge for infinite energies. If the numerical value of the negative

temperature is increased close to T = −0 K, most atoms will occupy states near the upper

energy bound and the Boltzmann distribution will be strongly peaked here. The strong

symmetry between positive and negative temperature states is similar to the symmetric

spectrum of systems with both lower and upper energy bounds, such as spin systems where

only two spin states are available.

4.1.2 Definition of Temperature

The formal thermodynamic definition of temperature is given via entropy,

1

T
=

∂S

∂E

∣∣∣∣
V

. (4.2)

Figure 4.2 shows an idealized curve S(E) for a system with both lower and upper energy

bounds. The internal energy E is given by the total energy of all particles in the system.

Therefore, the limiting energies Emin and Emax in the graph correspond to the minimum

and maximum energy of the total system. At minimum energy, only the ground state would

be populated and the entropy would reach its minimum value, which would be zero in the

case of a non-degenerate ground state, and the temperature would be zero. For increasing

energies, also higher energy states are populated and the entropy increases. At the aver-

age energy E0 of all microstates, the occupation distribution becomes flat, corresponding

to a maximized number of microstates leading to the same macrostate and therefore to

maximum entropy Smax. If the energy in the system is increased even further, high-energy

states are occupied more strongly than low-energy states. This narrower occupation distri-

bution leads to a reduced entropy in the system. In the extreme case of maximum energy,

the number of available microstates is minimized, in the case of non-degeneracy to one,

leading to vanishing entropy. According to Eq. 4.2, the inverse absolute temperature is

given by the slope of this curve. In the blue area, temperature is therefore positive, and

in the red area negative. The temperature axis is thus monotonically increasing over the
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Figure 4.1: Visualization of the Boltzmann distribution for various temperatures T . The spheres indicate

particles that are distributed in, e.g., a gravitational potential. In this illustration, however,

the vertical axis indicates total energy of the particles, which also includes kinetic energy.

The marble disks symbolize energy bounds in the system: While for positive temperatures, a

lower energy bound is required, for negative temperatures an upper bound is necessary, and

for positive or negative infinite temperature, both lower and upper bounds are required. The

corresponding Boltzmann distributions are sketched in the graphs at the top. For details, see

main text.

whole energy range, but contains a discontinuous jump from positive to negative infinity.

This counterintuitive behavior of the temperature scale is a consequence of the historical

definition of temperature. An alternative definition of temperature such as −β = −1/kBT

would be monotonically increasing throughout the entire range. This temperature scale

would also emphasize the fact that negative temperatures are actually hotter than positive

temperatures: In thermal contact, heat flows from a negative temperature system to a

system at positive temperature [2].

4.2 Thermodynamic Equilibrium and Thermalization

To be able to assign a temperature to a system, it is necessary that the system is in thermal

equilibrium, otherwise temperature is not defined. In thermodynamics, an isolated system

is said to be in thermal equilibrium if it can be described by a few macroscopic parameters

and if these parameters do not change over time. Two systems are said to be in thermal

equilibrium if they do not transfer heat between each other even though they are able
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Figure 4.2: Sketch of entropy versus internal energy in a canonical ensemble with both lower (Emin) and

upper bounds (Emax) for the total internal energy. In the blue area temperature is positive

and in the red area negative. At infinite temperature the entropy reaches its maximum value

Smax. An alternative temperature definition −β does not involve a discontinuous jump like the

well-established definition T does. The insets show sample occupation distributions of single-

particle states for positive, infinite, and negative temperatures, assuming weak interactions.

to. If they are unable to exchange heat, they are said to be in thermal equilibrium if

they would not do so if they were able to. In thermal equilibrium, the temperature of the

two systems is equal. In the case of open systems that can additionally exchange work

and matter, thermodynamic equilibrium also requires, in addition to the above thermal

equilibrium, also mechanical equilibrium (i.e. identical pressures in both systems) and

chemical equilibrium (i.e. identical chemical potentials) [120].

In statistical mechanics, a widespread definition of thermodynamic equilibrium is based

on the fundamental postulate of statistical mechanics: A macroscopic system in thermo-

dynamic equilibrium can be found with equal probability in any of the microstates that

are consistent with the macroscopic parameters of the system. For an isolated system

with fixed particle number, volume, and energy, this corresponds to the microcanonical

ensemble. If the system can exchange heat, work, or matter with the surroundings, this

leads to other statistical ensembles such as the canonical or the grand-canonical ensemble.

Following this widespread ensemblist view [121], in classical mechanics a system is said to

be in thermodynamic equilibrium if its probability distribution ρ over phase space is close

to the distribution ρens of the corresponding ensemble,

ρ ≈ ρens. (4.3)

As the statistical ensembles correspond to those macrostates with maximum entropy under

given external conditions, an equivalent definition can be given via entropy: A system is

in thermal equilibrium if the entropy is maximized under the given external conditions.

As an alternative to applying statistical ensembles to a system as a whole, one may

also split the system into several subsystems that are weakly coupled with each other and

may exchange heat, work and matter. The surroundings of a small subsystem can then

be considered as an external bath. The above definition of thermodynamic equilibrium
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4.2 Thermodynamic Equilibrium and Thermalization

corresponds to global thermodynamic equilibrium, where all subsystems are in thermal

equilibrium by themselves and with each other. In this framework, alternatively, a system

may also be in partial or local thermodynamic equilibrium [60]: As the relaxation time

increases with system size, individual small subsystems may already be in thermodynamic

equilibrium, while the subsystems have not yet equilibrated between each other. Partial

thermodynamic equilibrium may also refer to different processes that appear on different

timescales. For example, a mixture of substances undergoing a chemical reaction may

quickly reach equilibrium with respect to the motion of the molecules, whereas equilibrium

with respect to the slow chemical reaction is not yet established [60].

Equilibrium states are distinct states of a system and most systems are found at non-

equilibrium. The challenging questions are: Under what circumstances does a non-equilib-

rium system reach thermal equilibrium and how long does it take? In the following section

I introduce some of the established concepts of thermalization.

4.2.1 Classical Thermalization

The ability of a classical system to thermalize is contained in the concept of ergodicity. It

states that an isolated system, for almost every initial condition X(0), uniformly covers the

accessible hypersurface of phase space when it evolves over time to become X(t). Almost

every means that the set of exceptions is of measure zero [122]. Ergodicity therefore ensures

that all microstates will be reached with equal probability during time evolution. After

some time, the probabilities of an ergodic system in a particular macroscopic state are thus

equally distributed among the microstates, consistent with the fundamental postulate of

statistical mechanics.

The time average of a function f(t) can be defined as

f(t) = lim
T→∞

1

T

∫ T

0

dt f(t). (4.4)

Classical ergodicity can be formulated via the trajectory X(t) of an isolated system in

phase space, with initial condition X(0) at fixed energy E [122],

δ(X −X(t)) ≡ lim
T→∞

1

T

∫ T

0

dt δ(X −X(t)) = ρmc(E). (4.5)

Here, δ indicates the delta distribution, X an arbitrary point in phase space, and ρmc(E)

the classical microcanonical density with energy E.

The timescale over which a macroscopic system explores the entire phase space, how-

ever, can be very large so that the thermodynamic equilibrium state exhibits a special

form of ergodicity breaking. For example, below the Curie temperature, a ferromagnetic

system should explore all states with a time-averaged magnetization of zero. However, the

spontaneous magnetization of the system, an example of spontaneous symmetry breaking,

does not change its direction anymore and therefore breaks ergodicity.

The notion of ergodicity is closely related to integrability: If a classical system with

s degrees of freedom and, thus, a 2s-dimensional phase space, contains s conservation
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laws (i.e. integrals of motion) it is called integrable. In this case, the restrictions due to the

integrals of motion restrict the system to a subspace of the total phase space and the system

is therefore non-ergodic and does not thermalize. Such integrals of motion (in addition to

total energy and momentum) could be, e.g., the absolute value of the velocity of non-

interacting particles. As another example of a non-ergodic system, in the solar system, if

interactions between planets are neglected, conservation of energy and angular momentum

leads to regular orbits of the planets around the sun. The concept of ergodicity is also

linked to chaotic behavior: If a system exhibits full dynamical chaos, its motion in phase

space is ergodic [123]. On the other hand, the pure presence of a nonlinearity in a system is

not sufficient for ergodic behavior to emerge [124–128]. In general, it is challenging to prove

ergodicity for a given system, yet most interacting many-body systems behave ergodically.

A detailed account of integrability can be found in [83].

4.2.2 Quantum Thermalization

The most direct transfer of classical ergodicity into the quantum case would be to require

that the long time average of the density matrix of a system equals the density matrix ρ̂mc

of the corresponding, e.g. microcanonical, ensemble. This formulation, however, is almost

never fulfilled [122]: A quantum-mechanical system is initially prepared in an arbitrary

superposition |ψ(0)〉 =
∑
α Cα|Ψα〉 of energy eigenstates |Ψα〉, with Ĥ|Ψα〉 = Eα|Ψα〉.

The time evolution is given by

|ψ(t)〉 = e−iĤt|ψ(0)〉 =
∑
α

Cαe
−iEαt|ψα〉. (4.6)

The long time average of the density matrix

|ψ(t)〉〈ψ(t)| =
∑
α

|Cα|2|ψα〉〈ψα| = ρ̂diag (4.7)

is given by the so-called diagonal ensemble [122]. As the prefactors Cα of the initial state

do not change during unitary evolution, this long time average is in general different from

the microcanonical ensemble

ρ̂mc =
∑
α

1

N
|ψα〉〈ψα|, (4.8)

where N is the number of energy eigenstates in the energy interval I ≡ [E0−∆E,E0 +∆E]

around the energy expectation value E0. With this definition, a generic quantum system

would almost never be ergodic.

Instead, the quantum version of ergodicity is meaningfully expressed with the help of

natural observables, i.e. observables that can be directly measured in a given experimental

situation, such as local observables like densities or short-range correlation functions or

macroscopic observables derived from local observables [122, 129, 130]. The expectation

value of any observable Ô is given by

〈Ô(t)〉 ≡ 〈ψ(t)|Ô|ψ(t)〉 =
∑
α,β

C∗αCβe
i(Eα−Eβ)tOαβ , (4.9)
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with the matrix elements Oαβ = 〈Ψα|Ô|Ψβ〉. As the oscillating terms average out, the

long-time average of this expectation value is then

〈Ô〉 =
∑
α

|Cα|2Oαα, (4.10)

which may also be called, similar to Eq. 4.7, a diagonal ensemble [130]. If a system does

relax, it has to relax to this value.

If the expectation value of an observable behaves thermally, it has to approach the value

predicted by the appropriate statistical ensemble [130],

〈Ô〉 = 〈Ô〉ens. (4.11)

In the following, I present the ramifications for the case of the microcanonical ensemble

ρ̂ens = ρ̂mc which implies the following ensemble average of the observable:

〈Ô〉mc(E0) ≡ Tr(Ôρ̂mc) =
1

N

∑
α,Eα∈I

Oαα (4.12)

Equation 4.11 therefore implies∑
α

|Cα|2Oαα =
1

N

∑
α,Eα∈I

Oαα. (4.13)

This statement embodies thermodynamic universality: While the left-hand side depends

on the coefficients Cα and therefore on the initial state of the system, the right-hand side

only depends on total energy. There are in general three options as to how this equality

can be fulfilled, depending on the fluctuations of either the eigenstate occupation numbers

(EONs) |Cα|2 or of the eigenstate expectation values (EEVs) Oαα: First, if both EEVs

and EONs fluctuate strongly but in an uncorrelated way, a state with given EONs samples

the EEVs without any bias. Second, if the EONs fluctuate very little, |Cα|2 ≈ 1/N ∀α,

the initial state has similar weight of all eigenstates in the interval. Both these scenarios,

however, impose constraints on the initial state of the system and have therefore only

very limited applicability. In the third case, the EEVs fluctuate only very little between

eigenstates close in energy.

This last option is called the eigenstate thermalization hypothesis [130–132], and it does

not put constraints on the initial state of the system. It assumes that the expectation value

of a natural observable with respect to any energy eigenstate |ψα〉 in the interval I equals

the ensemble average,

〈ψα|Ô|ψα〉 = 〈Ô〉ens(Eα). (4.14)

There is no proof that the eigenstate thermalization hypothesis is the correct mechanism

for thermalization in isolated quantum systems. However, several theoretical simulations

provide strong evidence that the hypothesis is indeed the underlying process [130].

In addition to the above ergodicity statement, there is an even stronger statement via

observables, called normal typicality [121]. It is stronger in the sense that it not only
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makes a statement about time averages, but about the properties of a quantum state for

most times during its evolution. This property of the quantum state investigated here is

the joint probability distribution of the outcome when measuring a commuting family of

macroscopic observables (such as temperature or pressure). In a nutshell, a system in an

initial state |ψ(0)〉 is called normal if this state develops such that, for most times, this

joint probability distribution is close to the ensemble probability distribution [121]. The

ensemble probability distribution itself is very strongly dominated by those values of the

macroscopic observables that correspond to thermal equilibrium [121]. In other words, a

system that is normal for an initial state |ψ(0)〉 is in thermal equilibrium for most times of

the evolution. Normal typicality states that typical macroscopic systems, consisting of a

Hilbert space and a set of commuting macroscopic observables, are normal for every initial

state |ψ(0)〉 [121]. This is a statement about the vast majority of systems and thus is not

a proof for a particular given system. However, the statement gives reason to believe that,

in practice, macroscopic systems are normal [121].

Quantum ergodicity, as in the classical case, is closely related to the concept of quantum

integrability. A straightforward extension of the classical definition of integrability to the

quantum case is not meaningful, as one can easily find a set of sH conserved quantities,

where sH is the dimensionality of the Hilbert space, such as the projection operators

to the energy eigenstates. An alternative definition of quantum integrability would be

to require that a system is exactly solvable and, thus, all eigenstates can explicitly be

constructed [133]. To date, however, there are several definitions of quantum integrability

and not a single unique established one [133]. For the experiments presented in this thesis,

it is important to know that free models are in general integrable, such as noninteracting

bosons or fermions in optical lattices in any dimension. Also hard-core bosons in a 1D

system constitute an integrable system as they can be mapped to free fermions [134]. In

a 1D lattice, this mapping is achieved via a Jordan-Wigner transformation [135, 136]. A

compelling example of an integrable system of strongly interacting bosons in 1D without

a lattice was given with a quantum version of Newton’s cradle [137]. The Bose-Hubbard

model at intermediate interactions, as is mostly investigated in this thesis, is in general non-

integrable [33] and atoms are therefore expected to thermalize. For example, a numerical

simulation convincingly showed that bosons released into a 2D lattice thermalize to the

microcanonical ensemble [130]. An experimental study of the relaxation of an initially

prepared density wave in a 1D optical lattice for intermediate interactions also suggests

thermalization [138]. A detailed study of non-equilibrium dynamics in ultracold atoms and

the connection to integrability can be found in the thesis of Philipp Ronzheimer [83].

Also integrable systems relax during time evolution, but to states that cannot be de-

scribed by the ensemble average, i.e. thermodynamic equilibrium. The so-called generalized

Gibbs ensemble has proven to be successful in describing the asymptotic states of integrable

systems, taking into account the constraints of the system [122, 139–141]. The timescale for

relaxation and thermalization processes is yet another question. In the case of integrable

quantum systems, a phenomenon called prethermalization has been suggested and mea-
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sured, where the system rapidly establishes a quasi-stationary state that already contains

some properties of equilibrium [142–147]. Full thermalization, if it happens at all, then

occurs on a much longer timescale. These prethermalized states can be described via the

generalized Gibbs ensemble [122].

There are, however, also non-integrable systems that do not thermalize, a prominent

example being systems exhibiting many-body localization [148]: In such systems, particles

can be localized by a sufficiently strong disorder potential and do not thermalize despite

interactions; this may even happen in the case of highly excited states [148]. In this case,

the particles do not even relax to a modified ensemble such as the generalized Gibbs

ensemble [148]. The latter is also true in the analogous noninteracting case, where Anderson

localization [149] prevents relaxation of the system [148].

4.3 Experimental Realizations of Negative Absolute

Temperatures

In this section I discuss how negative temperatures can be realized experimentally. The

key challenge is to create an upper bound in the energy spectrum. I discuss how negative

temperature states have been realized previously, for localized nuclear spin as well as atomic

spin systems, and establish why lasers with population inversion cannot be considered

systems at negative temperature. Finally, I show how negative temperatures can be realized

with ultracold atoms in optical lattices.

4.3.1 Realization of Upper Energy Bound

As already introduced, an upper bound in the energy spectrum is the crucial feature neces-

sary for the realization of negative temperatures. This upper bound has to be established

with respect to all degrees of freedom that take part in the occupation inversion at nega-

tive temperature. One could separate some degrees of freedom from the rest and create a

thermalized negative temperature state only for these isolated degrees of freedom. In the

case where no degrees of freedom are isolated, an upper bound has to be created for the

total energy of the system.

This is precisely the reason why we never encounter negative temperature states in

daily life: Kinetic energy Ekin of free particles is related to momentum p by the quadratic

dispersion Ekin ∝ p2 and therefore is unbounded from above. Instead, kinetic energy

for free particles is only bounded from below, and therefore all systems in daily life are

at positive temperature. This asymmetry is in contrast to the picture given in Fig. 4.1,

where positive and negative temperatures together with lower and upper energy bounds

constitute a very symmetric situation. It is a fundamental question why the world mostly

exists at positive and not at negative temperature.

To realize an upper energy bound in the lab, the system in addition has to be isolated

from the environment which is in general at positive temperatures. If the system is coupled
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to an arbitrarily small system that does not possess an upper energy bound, the negative

temperature state is not stable [150].

4.3.2 Negative Temperature for Nuclear Spin Systems

E. M. Purcell and R. V. Pound [1] were the first to experimentally create negative absolute

temperatures. In their experiment, they applied the recently developed NMR techniques

for solid materials [151] to 7Li nuclear spins with I = 1/2 [4] arranged in a LiF crystal: In

a thermalized ensemble of these spins in a strong homogeneous magnetic field B along the

z direction, the two energy levels corresponding to the two Zeeman states Iz = ±1/2 are

occupied according to the Boltzmann distribution p ∝ exp (−EZ/kBT ). Here, EZ = −~γIB
is the Zeeman energy, with the gyromagnetic ratio γ. The occupation difference is usually

very small, due to the small energy difference of the Zeeman levels, but can be increased by

increasing the ratio B/T . By applying an oscillating magnetic field with a frequency that

is resonant with the energy difference of the two Zeeman states, some of the spins can be

excited to the upper energy level, and therefore energy is transferred into the nuclear spin

system. This energy transfer depends on the initial population imbalance and increases

the resistance of the resonant circuit, including a radio-frequency (RF) coil that creates the

oscillating field. The resistance is measured by the regulation electronics that keeps the

amplitude of the oscillating magnetic field constant [152], and is a measure for the relative

population imbalance of the two states.

To create negative temperatures, Purcell and Pound reversed a homogeneous B field of

100 G in a timescale of 0.2µs which is too fast for the nuclear spins to follow adiabati-

cally [1]: The timescale of the spins in this system to follow changes in the magnetic field

adiabatically is set by the spin-spin relaxation time τ2 [4] at roughly τ2 ≈ 20µs [1]. The

resulting population inversion of the two energy levels turned out to be stable so that the

sample could be inserted into the strong homogeneous magnetic field of 6376 G for the

NMR measurement. The measured signal was negative, indicating a net energy transfer

from the nuclear spin system to the RF coil. The RF field therefore induces radiation of

the nuclear spins. By repeating the NMR measurement over time, the negative signal was

found to decay, crossing zero and finally reaching the original positive strength correspond-

ing to the positive temperature of the lattice. The spin system therefore slowly relaxes to

the positive temperature state, by crossing T = ±∞ at which equal populations in both

Zeeman states lead to a vanishing NMR signal. The timescale for this relaxation process is

determined by the spin-lattice relaxation time τ1 [4] and was found to be about 5 minutes

[1]. The negative temperature state is therefore metastable. The spins attain a thermal

distribution on a timescale of the spin-spin relaxation time τ2 [3]. Therefore, during the

relaxation process, the spin system can indeed be assigned a meaningful temperature. As

only the Zeeman levels are taking part in the population inversion and not, e.g., the mo-

tional degrees of freedom of the nuclei in the lattice structure, the negative temperature is

more precisely termed negative spin temperature.

After this initial creation of negative spin temperatures, various similar experiments
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have been performed with nuclear spins [3, 4] where negative spin temperatures could be

achieved.

4.3.3 Effective Negative Temperature for Atomic Spin System

P. Medley et al. [5] created an effective negative spin temperature for ultracold atoms

in an optical lattice. For this purpose, a mixture of two hyperfine states of 87Rb was

created in a magnetic field gradient. The gradient is chosen such that two clouds with

different hyperfine states are displaced from each other but still overlap in some region.

The width w of the region is proportional to the temperature T and inversely proportional

to the magnetic field gradient ∇|B|, w ∝ T/∇|B|. The temperature can be obtained from

the width of the region via spin gradient thermometry [153]. For the creation of effective

negative spin temperatures, an optical lattice was ramped up slowly such that the atom

clouds entered the Mott insulating regime. In this regime, the timescale for the exchange

of two spins (i.e. hyperfine states) is very long, on the order of 1 s. The atoms can therefore

be considered as isolated from each other, and the spin distribution is frozen. The magnetic

field gradient was then reversed on a timescale much faster than 1 s. As the temperature

scales according to T ∝ w · ∇|B|, this leads to an effective negative temperature. During

the quench of the gradient, the ensemble remains in thermal equilibrium, because the spin

distribution corresponds (for any choice of ∇|B|) to a thermal distribution and is stable.

As the kinetic degree of freedom of the atoms is frozen, however, the negative temperature

is an effective spin temperature. By choosing a small magnitude for the reversed gradient,

negative spin temperatures with very small absolute values of T = −(50 ± 20) pK could

be realized, where the measured value was limited by the optical resolution of the imaging

system. A hold time measurement showed heating of the prepared samples only after a

hold time of 3 s, indicating the good stability of the effective negative spin temperature

state.

4.3.4 Are Lasers at Negative Temperature?

A stationary population inversion of the energy levels also exists in the gain medium of

lasers, reminiscent of a negative temperature state. However, a population inversion alone,

even in a steady state as in a laser, is not sufficient for the system to be in a thermal

equilibrium state. The latter is required for temperature to be a meaningful notion and to

assign a temperature to a system. Thermal equilibrium implies that the system stays in its

state when it is isolated from the environment. This is the case for the implementations of

negative temperatures for nuclear and atomic spins. In a gain medium of a laser, however,

the population inversion is created by the laser pump. As soon as the gain medium is

isolated from the pump, the population inversion immediately decays until an equilibrium

distribution at positive temperature is reached. Therefore, when the pump is activated,

the gain medium is in a steady state, but not in thermal equilibrium. Thus one cannot

assign the gain medium in a laser a temperature at all [4].
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4.3.5 Negative Temperature for Motional Degrees of Freedom in

an Optical Lattice

So far, negative temperatures have only been created for spin degrees of freedom. In

these systems, the discrete and finite spectrum of the Zeeman states naturally provides

both lower and upper energy bounds. The upper energy bound is the key challenge for

the realization of negative temperatures for motional degrees of freedom, i.e. where the

occupation of the kinetic energy levels is described by an inverted thermal distribution.

Ultracold atoms in optical lattices have been theoretically suggested as a possible im-

plementation scheme for negative temperatures for motional degrees of freedom [6, 7]. A

great advantage of such systems lies in the very good isolation from the environment which

is at positive temperature and would immediately destroy the negative temperature state

upon thermal contact. As a key feature, optical lattices provide an elegant way of cre-

ating an upper bound on kinetic energy: If the thermal energy of the atoms trapped in

an optical lattice potential is much smaller than the band gap between the lowest and

the first excited band, the atoms will be confined to the lowest band. The kinetic energy

for ultracold atoms in an optical lattice is therefore effectively limited to the lowest band,

providing both a lower and an upper limit. In the case of negative temperatures, the atoms

will predominantly occupy the kinetic energy states close to the upper band edge. At this

upper limit, the spectrum of the available states is identical but inverted compared to

the lower band edge; only are the quasimomenta shifted by half the Brillouin zone. This

strong symmetry between the lower and the upper band edge is another advantage of the

Hubbard Hamiltonian: It directly follows that thermalization at the upper band edge is

just as efficient as at the lower limit and a thermalized state with population inversion is

actually realizable experimentally.

To create a negative temperature state, however, not only kinetic energy but all relevant

degrees of freedom have to be limited from above. This prevents the realization of negative

temperatures for motional degrees of freedom in solids: Here, the electrons also experience

a band structure like in an optical lattice but couple to phonons that provide a spectrum

with only a lower bound.

Negative temperature in the Bose-Hubbard Hamiltonian

Ultracold bosons in the tight-binding limit and confined to the lowest band are described

by the Bose-Hubbard Hamiltonian (Section 3.3.2),

H = −J
∑
〈i,j〉

â†i âj +
U

2

∑
i

n̂i(n̂i − 1) + V
∑
i

r2
i n̂i, (4.15)

containing interaction and potential energy in addition to kinetic energy. Thus, to realize a

negative temperature state for bosons in this system, also interaction and potential energy

need to be limited from above. Figure 4.3 illustrates the energy bounds of the three terms

in the Bose-Hubbard model and shows how lower and upper bounds can be realized. As
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already outlined, kinetic energy Ekin is restricted to the lowest band of width 4dJ , where

d is the dimensionality (Section 3.2.3).

The energy bound of the on-site interaction term depends on the sign of the interaction

U . Bose-Einstein condensates are initially prepared at repulsive interactions with U > 0 in

ultracold atom experiments to prevent collapse [27]. In principle, all atoms could occupy

the same lattice site in an optical lattice. In the thermodynamic limit, this would lead to

a diverging interaction energy per particle. For repulsive interactions, interaction energy

therefore contains a lower bound at zero energy, in the case when all atoms occupy different

lattice sites, but not an upper bound. The situation is inverted in the case of attractive

interactions with U < 0 where zero interaction energy indeed constitutes an upper bound.

The energy bound of the potential term analogously depends on the sign of the external

potential V , where ultracold atoms in experiments are initially trapped in a trapping

potential with V > 0. In such a potential, a minimum in potential energy is reached when

all atoms gather at the trap center, while potential energy can be increased to arbitrarily

high values by atoms occupying remote sites. When the external confinement is instead

converted to an anti-trapping potential with V < 0, the trap center instead constitutes an

upper limit for potential energy. As a conclusion, an upper bound for the total energy of

the Bose-Hubbard model can be realized with attractive interactions and an anti-trapping

potential.
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Figure 4.3: Energy bounds of the kinetic (Ekin), interaction (Eint) and potential energy term (Epot) of

the two-dimensional Bose-Hubbard Hamiltonian. The insets illustrate the bounds either in

quasimomentum or real space. In a sufficiently deep optical lattice, if the atoms are confined

to the lowest band, kinetic energy is limited both from below and above. At positive U and V ,

interaction and potential energy are limited from below. For attractive interactions (U < 0)

and an anti-trapping potential (V < 0), they provide an upper bound such that all three terms

are limited from above.

When realizing the Bose-Hubbard model with attractive interactions and negative tem-

perature, an important question arises: How does the phase diagram in this regime look

like, e.g. does the superfluid to Mott insulator phase transition happen at the same abso-

lute values of |U |/J as for the repulsive Bose-Hubbard model at positive temperature (cf.

Fig. 3.10)?
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Any thermal state of a system with Hamiltonian Ĥ and therefore also the phase diagram

of this system is determined by the equilibrium density matrix [7]

ρ̂ = e
− Ĥ
kBT . (4.16)

Apparently, if a system is prepared with an inverted Hamiltonian Ĥ ′ = −Ĥ and at negative

temperature T ′ = −T , the resulting density matrix will be identical, ρ̂′ = ρ̂. In our

experiment, the Bose-Hubbard Hamiltonian (Eq. 4.15) consists of three terms, i.e. inverting

the total Hamiltonian corresponds to inverting each of the three terms. In the experimental

sequence (Section 5.1), however, we only invert the interaction U → −U and the external

potential V → −V , as required for the upper energy bound, but the tunneling parameter

J is unchanged. However, the tight-binding dispersion relation of the lowest band (Eq.

3.16)

Ekin = −2J cos

(
π
q

klat

)
(4.17)

shows that the sign of J can effectively be changed if the quasimomentum ~q is shifted by

half the width of the Brillouin zone, ~q → ~q + ~klat [7]:

Ekin → −2J cos

(
π
q + klat

klat

)
= 2J cos

(
π
q

klat

)
(4.18)

This is precisely what happens in the experiment (cf. Section 5.1.3): The strongest occu-

pation shifts from the ~q = 0 state to the edge of the Brillouin zone at ~q = ±~klat and,

thus, the quasimomenta are shifted by ~klat. Therefore, the phase diagram of the attractive

Bose-Hubbard model at negative temperature is indeed the same as the phase diagram of

the repulsive Bose-Hubbard model at positive temperature under the condition that all

quasimomenta are shifted by half the Brillouin zone [7]. Therefore, also the superfluid to

Mott insulator transition is expected at the same |U |/J values in both cases [154].

Negative temperature in the Fermi-Hubbard Hamiltonian

In contrast, fermionic atoms are described by the Fermi-Hubbard Hamiltonian,

H = −J
∑
〈i,j〉,σ

ĉ†i,σ ĉj,σ + U
∑
i

n̂i,↓n̂i,↑ + V
∑
i

r2
i (n̂i,↓ + n̂i,↑), (4.19)

where the index σ ∈ {↓, ↑} denotes two different hyperfine states of the atoms, ĉi,σ and ĉ†i,σ
are the annihilation and creation operators for a fermion, respectively, and n̂i,σ = ĉ†i,σ ĉi,σ

is the atom number operator.

The crucial difference compared to the Bose-Hubbard Hamiltonian lies in the Pauli

exclusion principle that limits the occupation numbers to n̂i,σ ∈ {0, 1}. The on-site in-

teraction therefore, in addition to the lower bound of 0, also possesses an upper bound

of U/2 per particle. Negative temperatures are therefore possible for both attractive and

repulsive interactions [155]. They have been realized, at least for local thermal equilibrium,

in expansion experiments of fermionic band insulators in a homogeneous lattice [156] in
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our group. The experimental sequence of this experiment was similar to the one employed

in the experiment described in this thesis (Section 5.1). By adiabatically ramping up an

optical lattice, instead of a Mott insulator a band insulator of non-interacting fermions

was created. In the deep lattice, the interactions were rapidly switched to repulsive or

attractive interactions, creating a state at maximum or minimum interaction energy, re-

spectively. Then, the trapping potential was rapidly turned off instead of being converted

into an anti-trapping potential. The lattice depth was suddenly decreased, and thereby

expansion of the atomic cloud and also thermalization between atoms was initiated.

During expansion, interaction energy was converted into kinetic energy as the density

and the number of doublons decreased. The formation of the negative temperature state

was indirectly deduced from the observed identical expansion for repulsive and attractive

interactions: The symmetry of the lowest band leads to the same group velocity at the

center of the Brillouin zone as at the edge, although the kinetic energies are different

(Eq. 3.20). In the case of attractive interactions, a conversion of interaction into kinetic

energy should lower the mean kinetic energy and thus states with low kinetic energies are

expected to be occupied more strongly, described by a positive temperature. For repulsive

interactions, on the other hand, high kinetic energies should prevail, leading to an inverted

distribution consistent with negative temperature.

From a more general viewpoint, the identical expansion for repulsive and attractive

interactions can be understood from the symmetry of the Hubbard Hamiltonian presented

above for the bosonic version: Both the initial band insulator state in the experiment

presented here and the density operator are invariant, up to a global phase, with respect

to shifting quasimomenta by half the Brillouin zone. Changing the sign of the interaction

U and effectively shifting quasimomenta by half the Brillouin zone is, in the absence of a

global trapping potential, equivalent to an inversion of the Hamiltonian. Because the latter

is equivalent to time reversal under which both the initial state and the density operator

are invariant, the dynamics are identical [156].

4.4 Implications of Negative Absolute Temperatures

In this section, I describe some of the implications of negative temperatures such as the

validity of the laws of thermodynamics at negative temperature. I show how Carnot ef-

ficiencies above unity could be realized and how this is not in contradiction with energy

conservation. Finally, I show that negative temperatures necessarily entail negative pres-

sure and vice versa, and comment on a possible relation between negative temperature and

dark energy in cosmology.

4.4.1 Validity of the Laws of Thermodynamics

To discuss whether the fundamental laws of thermodynamics also apply for negative tem-

peratures, some quantities have to be clarified. The temperature definition T = (∂S/∂E)−1

applies for both positive and negative temperatures, i.e. for all thermal ensembles with
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any energy between the lower and upper energy bounds, if existing. The zeroth law of

thermodynamics is therefore unaltered: Temperature is equal for all systems in thermal

equilibrium. The definitions of work δW and heat δQ can also be the same for positive and

negative temperatures [2]. The first law, indicating energy conservation as dU = δQ− δW ,

is valid for negative temperatures as well.
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Figure 4.4: Clausius statement of the second law of thermodynamics. A heat transfer Q from a cold

system to a hot system always leads to a decrease of the total entropy S = SC + SH of the

combined system. The Clausius statement is therefore consistent with the entropy statement

of the second law. A, Both systems at positive temperature. B, Both systems at negative

temperature. C, The cold system at positive temperature and the hot system at negative

temperature.

For the second law, a clarification has to be made about the terms hot and cold. The

temperature axis, ordered in terms of energy contained in a system, starts at +0 K, increases

to +∞, jumps to −∞, and increases to −0 K. This ordering of temperatures is also

consistent with the heat flow from hot to cold, when two systems are brought into thermal

contact: Heat flows from the hotter to the colder system. Therefore, in contrast to the

numerical temperature value, the above ordering is taken as ordering for the terms hot

and cold. The coldest possible system is at T = +0 K, the hottest possible at T = −0 K.

With this definition, the various statements of the second law can be investigated. The
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entropy formulation of the second law also applies to negative temperatures: The entropy

of a system is a variable of its state and the entropy of an isolated system can never

decrease [2]. The Clausius statement is also unaltered: It is impossible to build a machine

operating in a closed cycle that will produce no other effect than the transfer of heat from

a cooler to a hotter body [2]. Figure 4.4 illustrates how this formulation is consistent with

the entropy formulation: A heat transfer from cold to hot always leads to a decrease of

the total entropy of both systems, irrespective of whether the systems are at positive or

negative temperature.

The Kelvin-Planck formulation, on the other hand, poses some subtleties. While ex-

tracting heat from a positive reservoir and performing an equivalent amount of work is

clearly reducing the total entropy, the total entropy for such a process even increases for

a negative temperature reservoir. In fact, the latter process is indeed possible [2]: It is

possible to construct a closed-cycle engine that only extracts heat from a negative tem-

perature reservoir and performs an equivalent amount of work. For example, in the first

negative temperature experiment, the RF signal was amplified as it passed through the

negative temperature sample (Section 4.3.2). In contrast, dumping heat into a negative

temperature reservoir by performing work on an engine reduces the total entropy. There-

fore, this reversed process which is easily feasible on the positive temperature side, is not

possible for negative temperatures. Thus, the Kelvin-Planck formulation has to be altered

to the following: It is not possible to build an engine that will operate in a closed cycle

and produce no other effect than (a) the extraction of heat from a positive temperature

reservoir with the performance of an equivalent amount of work or (b) the rejection of

heat into a negative temperature reservoir with the corresponding work being done on the

engine [2].

The third law of thermodynamics is also unchanged if a temperature of absolute zero is

understood as both positive zero and negative zero: It is not possible by any procedure,

in a finite number of operations, to reduce any system to the absolute zero of positive

temperature or to raise any system to the absolute zero of negative temperature [2]. This

discussion about the laws of thermodynamics emphasizes the symmetry between positive

and negative temperatures: The difficulty of heating a hot system at negative temperatures

is analogous to the challenge of cooling a cold system at positive temperatures.

4.4.2 Carnot Efficiency

The Carnot efficiency indicates the largest efficiency achievable in a closed cycle of a working

body operating between a hot and a cold reservoir at temperatures TH and TC, respectively.

Such a cycle operating at the Carnot limit is characterized by zero entropy production.

The efficiency η of a heat engine is given by the ratio of work W performed during one

cycle over the heat QH that is extracted from the hot reservoir,

η =
W

QH
=
QH −QC

QH
= 1− QC

QH
= 1− TC

TH
, (4.20)
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where QC is the heat dumped into the cold reservoir. In the last step, the relation δQ =

T dS for reversible processes was used where dS is the entropy change. Equation 4.20 is

also applicable to negative temperatures. The results, however, may sound counterintuitive

at first sight and have to be clarified.
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Figure 4.5: Illustration of constant entropy machines. Heat (QH, QC), work (W ) and entropy flows (S)

are indicated by arrows, where the length of the arrows in the entropy versus energy graphs

on the left is exaggerated. In an ideal Carnot cycle, the reservoirs are infinitely large such

that the temperatures TH and TC are constant throughout the cycle and the arrows in the

diagram are infinitesimal. In the schematic diagrams of the cycles on the right, the width of

the arrows qualitatively indicates the amount of heat or work. A, The usual Carnot cycle

operating between two positive temperature reservoirs leads to an efficiency between 0 and

1. B, If both reservoirs are at negative temperature, the efficiency is negative and therefore

work must be supplied to maintain the cycle. This cycle is the mirror image of the case with

positive temperatures. C If the hot reservoir is at negative temperature and the cold reservoir

at positive temperature, the efficiency is larger than 1. In this case, heat can be extracted from

both reservoirs simultaneously.

In the case of both temperatures TH and TC being positive (Fig. 4.5A), the resulting

efficiency is always between 0 and 1, i.e. some fraction of the extracted heat from the

hot reservoir is converted into work, and the remainder is dumped into the cold reservoir

such that the increase in entropy S of the cold reservoir precisely balances the decrease in
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entropy of the hot reservoir and the net entropy production during the cycle is zero. If

the heat engine is reversed, work must be supplied to maintain the cycle. The cycle then

operates as a heat pump.

If both reservoirs are at negative temperatures (Fig. 4.5B), then TC/TH = |TC|/|TH| > 1.

Therefore, the efficiency is negative, η < 0, and its absolute value can be very large. Thus,

work must be performed to transfer heat from the hotter to the colder reservoir, in contrast

to positive temperatures. In this case, entropy flows from the cold to the hot reservoir, also

in contrast to the positive temperature case. If the engine is reversed, it delivers work by

transporting heat from the cold to the hot reservoir [2], which is not possible in the case

of positive temperatures. The roles of engine and heat pumps are thus reversed compared

to the case with positive temperatures above: The cycle between negative temperatures is

the mirror image of the cycle between positive temperatures.

A peculiar case is given if the hot reservoir is at negative temperature and the cold

reservoir at positive temperature. The ratio of the temperatures is negative in this case,

TC/TH < 0, leading to a Carnot efficiency above unity, η > 1. Thus, the work delivered by

the engine is larger than the heat extracted from the hot reservoir. At first sight, this may

seem like a contradiction to energy conservation. However, the key for an understanding

of this seemingly unphysical result lies in the slope of the entropy curve (Fig. 4.5C). In

contrast to positive temperatures, at negative temperatures entropy increases when heat

is extracted from a reservoir. Thus, heat can be extracted from both reservoirs at the

same time, while the increase of entropy of the negative temperature reservoir is precisely

compensated by a decrease of entropy of the positive temperature reservoir. The work

produced by the cycle is therefore, instead of the difference as in the usual case, the sum of

both heat quanta, W = QH +QC. Also in this case, entropy flows from the cold to the hot

reservoir, in contrast to the usual heat engine at positive temperatures. If this engine is

reversed, work must be supplied to increase the energy in both reservoirs simultaneously.

To realize such an engine, however, one would need to find a way to couple these two

reservoirs. It turns out that the regions of opposite temperature are not adiabatically

connected at β = 0, i.e. it is not possible to drive a system across the plane β = 0 without

producing entropy [157]. Therefore a Carnot engine that operates between a positive and a

negative temperature reservoir through β = 0 is impossible. Still, it is in principle possible

to build an engine that operates between a positive and a negative temperature reservoir

where the efficiency, due to the entropy production when crossing β = 0, is below the

Carnot limit but still above unity. Alternatively, the ideal Carnot efficiency can be reached

if β = 0 is not crossed quasi-statically but if a process connects the eigenstates at positive

and negative temperature exactly such that no entropy is produced. For example, an ideal

π-pulse inverts the population of a two-level system without producing entropy.

Figure 4.6 shows a possible realization of an engine with efficiency above unity in the

Carnot sense. It consists of three stable two-level systems as heat reservoirs and working

body, e.g. hyperfine states of atoms with negligible spontaneous emission that thermal-

ize via collisions. The working body is initially at very low temperature TW,i ≈ 0 where
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the ground state is predominantly occupied. When the working body is coupled to the

cold reservoir at positive temperature TC > TW,i, heat and entropy are transferred to the

working body until TW = TC, i.e. the occupation of the excited state of the working body

increases. After decoupling, the working body is coupled to the hot reservoir at tempera-

ture TH ≈ −0. Again, heat flows into the working body until TW = TH, corresponding to a

strong occupation of the excited state. This heat flow is accompanied by a reverse entropy

flow into the hot reservoir. During both couplings, also some entropy is created as these

couplings are nonadiabatic processes. After decoupling, a coherent external electromag-

netic field is applied to extract the energy from the working body. A π-pulse of the field

leads to a de-population of the excited state until TW ≈ 0, similarly to the initial state;

simultaneously the field is amplified. Thus, work is extracted from the working body which

was previously gained from both the cold and the hot reservoirs, leading to an efficiency

η > 1.

QC QH

SC SH

W

TC > 0 TH ≈ -0

cold reservoir hot reservoirworking body

�-pulse

TW

1 2

3

Figure 4.6: Possible realization of a heat engine with efficiency η > 1. A working body operates between

a cold reservoir at positive temperature TC and a hot reservoir at negative temperature TH,

where all three systems consist of stable two-level systems. The height of the bars schematically

indicates the occupation probabilities of the ground and the excited state of the reservoirs and

of the initial state of the working body. In steps 1 and 2, the working body is consecutively

brought into thermal contact with the two reservoirs and the heat QC and QH flows during

the subsequent thermalization. The corresponding entropy flows are indicated by SC and SH.

In step 3, work is performed by the working body on an external electromagnetic field, which

is applied as a π-pulse. For details, see main text.

4.4.3 Negative Pressure

A thermal gas at attractive interactions and in an anti-trapping potential, such as in our

realization of negative temperature, turns out to be at negative pressure. This can be

derived via the local density approximation, which assigns an effective chemical potential

to each position x in the trapping potential V (x) [33],

µ(x) = µ0 − V (x), (4.21)

where µ0 is the chemical potential at the center of the trap. In an inhomogeneous system,

also the pressure P (x) depends on the position. Far away from the center, at x = xremote
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where the density n(x) of the gas approaches zero, also the pressure vanishes, P (xremote) =

0. The pressure at the center P0 = P (x0) can trivially be expressed via an integration

along the axis of the trap (Fig. 4.7),

P0 =

∫ P0

P (xremote)

dP. (4.22)
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Figure 4.7: Determination of the pressure at the cloud center. The external potential is sketched in black,

and the density distribution in blue. The arrow indicates the integration path from a remote

position xremote to the cloud center x0 (see main text). A, In the case of a trapping potential,

the atomic cloud exerts an outward-pointing force on the external trapping potential. B, In

the anti-trapping case, the force of the atomic cloud is directed towards the center. The gray

curve indicates the upper band edge in the case of an optical lattice at which the atoms are

Bragg reflected (gray arrow). For details, see main text.

The pressure differential can be expressed via the Gibbs-Duhem equation N dµ =

−S dT + Ṽ dP , which relates the intensive properties of a thermodynamical system. Under

the assumption of thermodynamic equilibrium, T = const, the pressure differential can be

expressed as dP = ndµ, where the density n = N/Ṽ is given by particle number N and

volume Ṽ . Inserting this differential into Eq. 4.22 gives

P0 =

∫ µ0

µ(xremote)

n(µ) dµ =

∫ x0

xremote

n(x)
∂µ

∂x
dx. (4.23)

The local density approximation 4.21 allows us to express the chemical potential via the

trapping potential, ∂µ/∂x = −∂V/∂x, which yields

P0 = −
∫ x0

xremote

n(x)
∂V

∂x
dx. (4.24)

The density is always greater than zero, n(x) ≥ 0. The partial derivative of the trapping

potential, however, is negative in the case of a trapping potential (Fig. 4.7A) and positive
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in the case of an anti-trapping potential (Fig. 4.7B). Therefore, the pressure at the center

of the cloud is positive in the case of a trapping potential and negative in the case of a

stable gas in thermodynamic equilibrium in an anti-trapping potential. In the former case,

the atomic cloud exerts a force onto the trapping potential that is directed from inside to

the outside, as usual for a gas at positive pressure that is trapped in a finite volume. In

the latter case, however, the cloud exerts an inward-pointing force onto the anti-trapping

potential. The origin of this force in our experiment is rooted in the band structure of the

optical lattice potential: After transferring momentum onto the anti-trapping potential,

corresponding to the lower band edge of the lowest band, the atoms leave the central region

of the potential and travel outwards. When reaching the upper band edge, on the other

hand, the atoms are Bragg reflected [158] and return towards the trap center (Fig. 4.7B).

Attractive interactions between the particles as in our experiment provide an additional

contribution of an inward-pointing force.

In the following, I will derive a generalized stability condition for a gas which is applicable

to both positive and negative pressures, following the derivation given in our publication

[119]. To reach thermal equilibrium, a gas with fixed total energy E that is trapped in a

box of volume Ṽbox will maximize its entropy S under the given constraints. The volume

of the gas Ṽ can adopt any value, with the upper limit of Ṽbox. Usually, this leads to the

condition of a positive pressure P where the gas fills the whole box, Ṽ = Ṽbox [60]. In a

more general treatment, however, the maximum entropy principle only requires

∂S

∂Ṽ

∣∣∣∣
E

≥ 0. (4.25)

If the derivate was negative, the gas would spontaneously contract and thereby increase its

entropy. Thus, there would not exist an equilibrium solution with Ṽ = Ṽbox, but instead

the gas would be unstable against collapse. The partial derivative can be extracted from

the energy differential dE = T dS − P dṼ as

∂S

∂Ṽ

∣∣∣∣
E

=
P

T
. (4.26)

Therefore, in thermal equilibrium, pressure and temperature necessarily have the same

sign, P/T ≥ 0. Negative pressures therefore imply negative temperatures and vice versa.

Usually, a gas with attractive interactions is expected to contract and, in the case of

a sufficiently large Bose-Einstein condensate at attractive interactions, even to collapse

– it is unstable [27]. In our experiment, however, the gas at attractive interactions and

negative pressure in an anti-trapping potential is stabilized against collapse by the negative

temperature.

4.4.4 A Possible Relation between Negative Temperature and

Dark Energy?

As outlined in the previous paragraph, a gas with attractive interactions and negative

pressure is stabilized against collapse by a negative temperature. There is a similarity to
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4.4 Implications of Negative Absolute Temperatures

the universe as a whole: All mass and energy contained in the universe exerts a mutual

attraction, resulting in an overall force that is directed towards a contraction of the universe.

Observations, however, indicate that the universe in contrast expands at an accelerating

rate, and is therefore stabilized against collapse [159, 160]. Dark energy is postulated as the

driving force for the accelerating expansion and is contained in the cosmological constant

Λ in the corresponding equations of general relativity.

By inserting the Friedman-Lemâıtre-Robertson-Walker metric into the Einstein field

equations, one obtains the two Friedman equations [161]:(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
(4.27)

ä

a
= −4πG

3c2
(
ρc2 + 3p

)
(4.28)

Here, a = a(t) is the scale factor, a relative measure for the size of the universe, G the

gravitational constant, k the curvature of spacetime which, according to the latest mea-

surements [162], is probably flat (k = 0), and c the speed of light. The total energy density

ρ contains the contributions from matter ρmat (both baryonic and dark), radiation ρrad,

and dark energy ρΛ, thus ρ = ρmat + ρrad + ρΛ. Similarly, also the total pressure p is the

sum of all three contributions, p = pmat + prad + pΛ. The second equation, sometimes

also called Friedman acceleration equation, expresses the acceleration of the scale factor in

terms of mass and pressure and is therefore fundamental for the future expansion of the

universe.

As the movement of particles on a cosmological scale is collisionless at non-relativistic

velocities, the pressure of matter can be assumed to be zero, pmat = 0. The pressure of

radiation, on the other hand, is related to the energy density via prad = c2ρrad/3. The

pressure of dark energy, finally, is negative and can be expressed via the energy density as

pΛ = −c2ρΛ. Inserting these expressions into the right hand side of Eq. 4.28, one obtains

ä

a
= −4πG

3
(ρmat + 2ρrad − 2ρΛ) . (4.29)

Today, in contrast to the very early stage of the universe, the energy density of radiation

is negligible, ρrad � ρmat, ρΛ. According to the latest research results from the Planck

collaboration on the cosmic microwave background, only ρmat = 31.7 % of the total energy

in the universe consists of dark matter and baryonic matter, while ρΛ = 68.3 % is made

out of dark energy [162]. Therefore, the second derivative of the scale factor is positive and

the expansion of the universe accelerates.

Thus, despite attractive interactions between the constituent particles, the universe

does not collapse, just like in our experimental realization of negative temperature. In

both cases, the pressure of the system is negative. In the case of cosmology, the negative

pressure originates from dark energy. As shown in Eqs. 4.25 and 4.26, in a stable system

at thermal equilibrium, negative pressure implies negative temperature and vice versa.

However, whether there is a connection between negative temperature and dark energy and
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4 Theory of Negative Absolute Temperatures

whether negative temperature plays a role for the accelerated expansion of the universe is

both unclear and rather speculative, as well as being beyond the scope of this work.

4.5 Definition of Entropy

Formally, in the formula introduced above (Eq. 4.2),

1

T
=

∂S

∂E

∣∣∣∣
V

, (4.30)

temperature is defined with the help of entropy S. In this work, I use the standard definition

of von Neumann entropy

S(ρ̂) = −kBTr(ρ̂ ln ρ̂), (4.31)

where ρ̂ is the density matrix of the system. In the microcanonical ensemble in thermal

equilibrium, this definition is equivalent to the Boltzmann entropy

SB = kB ln Ω(E, V,N) (4.32)

that is common in most physics textbooks [163] and established in the great majority of

the physics community. For clarity, I denote the Boltzmann entropy here as SB. In the

definition, Ω(E, V,N) is the number of accessible microstates for a system in a well-defined

macrostate, e.g. in the microcanonical ensemble for fixed energy E, volume V , and particle

number N . Usually, one counts the number of states in a small interval between E and

E + δE, where δE is chosen arbitrarily. Therefore, entropy is not uniquely defined but

only up to an additive quantity. Ω(E, V,N) is, up to a constant ε, given by the density of

states g(E, V,N),

Ω(E, V,N) = εg(E, V,N). (4.33)

Temperature can thus be expressed as [164]

TB =

(
∂SB

∂E

)−1

=
1

kB

g

g′
, (4.34)

which I denote for clarity as Boltzmann temperature TB; g′ indicates the derivative, g′ =

∂g/∂E. The Boltzmann temperature is therefore negative when g′ < 0, i.e. when the

density of states is decreasing with energy as on the right-hand side of Fig. 4.2.

While this section is mostly about the microcanonical definition of entropy, it is not

clear that our experimental system, with which we create the negative temperature state,

is correctly described by the microcanonical ensemble: At the end of the evaporation

sequence (Section 2.3.2), the energy E of the system is not clearly defined, as individual

realizations of the same sequence may result in different values of E. Thus, the system

may be in a mixture of different energies E. Although after evaporation, the system is

isolated from the environment, parameter changes (e.g. ramps of the lattice depth or the

trap frequency) are still performed externally and may still change the energy E. For

example, in the case of ideal adiabatic parameter changes, entropy rather than energy
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4.5 Definition of Entropy

will be conserved in the system. These deviations from an ideal microcanonical ensemble,

however, do not handicap the thermodynamic description of our experimental setup, as in

the thermodynamic limit the various ensembles are equivalent if the Boltzmann entropy is

concave with respect to energy [165] (cf. Section 4.5.2).

4.5.1 Alternative Entropy Definition

In a recent publication [164], a different definition of entropy SV was advocated, defined

via the integrated density of states G(E, V,N) =
∫ E
E0
g(E′, V,N) dE′, with E0 the ground

state energy,

SV = kB lnG(E, V,N). (4.35)

In this definition, not only all accessible states in a small interval around E are considered,

but all energy states from the ground state up to energy E. This definition of entropy was

discussed by Gibbs in 1902 [166] and also used by Paul Hertz in 1910 [167], and therefore the

authors call it the Gibbs entropy. It should not, however, be confused with the well-known

Gibbs entropy formula

SG = −kB

∑
i

pi ln pi, (4.36)

where pi is the probability that the eigenstate i occurs during the fluctuations of the system

and which is the classical analog of the von Neumann entropy (Eq. 4.31). The Boltzmann

entropy (Eq. 4.32) is a special case of the Gibbs entropy formula where the probabilities

of all Ω accessible microstates are equal, pi = 1/Ω. To avoid confusion, I will therefore call

the alternative entropy definition (Eq. 4.35) volume entropy SV , as it takes into account all

microstates in a phase-space volume up to a maximum energy. Analogously, the Boltzmann

entropy could also be called surface entropy. I will call the temperature following from the

volume entropy definition volume temperature TV , which is given by

TV =

(
∂SV
∂E

)−1

=
1

kB

G

g
. (4.37)

Because the density of states g as well as the integrated density of states G are always

positive, the volume temperature can never be negative.

Following the definition of volume temperature, all realizations of negative temperatures

including the one presented in this work would have to be named differently. Nonetheless,

the physical innovation of creating stable systems with population inversion in thermal

equilibrium would remain unaffected. It remains to be clarified which statistical entropy

definition is correct, i.e. which temperature corresponds to the thermodynamic temperature

T , and whether the claim from Ref. [164] is substantiated. The authors in Ref. [164] argue

that a consistent thermostatistical model, consisting of a pair (ρ, S) of a density operator
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4 Theory of Negative Absolute Temperatures

ρ and an entropy potential S, must satisfy the differential structure of thermodynamics,

dS =

(
∂S

∂E

)
dE +

(
∂S

∂V

)
dV +

∑
i

(
∂S

∂Ai

)
dAi (4.38)

≡ 1

T
dE +

P

T
dV +

∑
i

ai
T

dAi, (4.39)

where Ai denotes potential additional external parameters such as magnetic field. To fulfill

this equation, the equalities [164]

T

(
∂S

∂Aµ

)
E

= −
(
∂E

∂Aµ

)
S

= −

〈
∂Ĥ

∂Aµ

〉
(4.40)

have to be satisfied for any Aµ ∈ {V,Ai}. Here, the second equation requires that ther-

modynamic quantities are correctly identified with statistical expectation values [164]. The

authors show that the microcanonical density operator

ρ̂mc =
δ(E − Ĥ)

g
(4.41)

together with the volume entropy SV indeed fulfills this equation for any system size, in

contrast to the combination (ρ̂mc, SB) for small systems, and conclude that SB cannot define

a thermodynamic entropy [164]. Additionally, the authors argue that, for classical systems

with confined trajectories and finite ground state energy, only TV fulfills the equipartition

theorem for all canonical coordinates, whereas TB does not [164], at least for small systems.

For typical large systems with unbounded spectra, the differences between the two def-

initions become negligible, and also the width δE of the energy band in the Boltzmann

definition does not play a role: For these large systems, the number of states grows so

fast with increasing energy E that almost all states in the energy volume up to E are

concentrated around E [168]. For small systems, however, the differences are significant.

The authors give several examples of small systems of one or few particles where SV , in

contrast to SB, produces meaningful results for the heat capacity. For a system with a

bounded energy spectrum with lower limit E0 = 0 and upper limit E+, however, the two

definitions yield different results even in the case of many particles. The authors calculated

the entropies and temperatures for a system of N weakly interacting bosonic oscillators

[164]. The result (Fig. 4.8) shows that for any energy close to or above half the maximum

energy of the system, E & E+/2, the two definitions yield fundamentally different temper-

atures, in particular that the negative (Boltzmann) temperature experiments described in

this work are assigned a positive volume temperature.

The temperature that we extract in our experiment by fitting a canonical Bose-Einstein

distribution to the one-particle energy distribution, however, yields a negative value (Sec-

tion 5.3.2). The authors show that the one-particle distribution yields the Boltzmann

temperature TB [164]. They provide a formula that allows the volume temperature TV to

be calculated from TB [164],

TB =
TV

1− kB/C
, (4.42)
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Figure 4.8: Comparison of Boltzmann and volume entropy and the corresponding temperatures. The curves

are calculated for a system of 10 weakly interacting bosonic oscillators [164], providing both

a lower (Emin = 0) and an upper bound Emax for the total energy. A, While the Boltzmann

entropy SB decreases again for energies E > Emax/2, the volume entropy SV is monotonically

increasing throughout the whole energy range. B, The corresponding Boltzmann temperature

TB diverges at E = Emax/2 and features a discontinuous jump from positive to negative

infinity. For E > Emax/2, it is always negative. In contrast, the volume temperature TV is

always positive and increases monotonically up to a finite maximum value Tmax
V at E = Emax

which depends on the system size. In this case, kBT
max
V /Emax ≈ 1800.

which would be positive instead. Here, C = (∂TV /∂E)−1 is the total heat capacity asso-

ciated with TV .

As described in Section 4.4.2, combining a positive and a negative (Boltzmann) tem-

perature reservoir in an engine leads to Carnot efficiencies above unity. As the volume

temperature is always positive, inserting the corresponding volume temperatures into the

formula for the Carnot efficiency

η = 1− TC

TH
(4.43)

leads to efficiencies that cannot exceed one. The authors argue that an efficiency exceeding

one would be impossible [164]. However, as outlined in Section 4.4.2, an efficiency above

unity is not at all a physical mystery or in contradiction to energy conservation but simply

a consequence of the definition of the Carnot efficiency as the ratio of work performed over

the heat that is extracted from the hot reservoir alone.

4.5.2 Problems of the Alternative Entropy Definition

Although a detailed discussion of the correct definition of entropy is outside the scope of

this thesis, in this section, I briefly comment on some of the implications of volume entropy.

Some of the arguments below can also be found in recent publications [169], including one

from our group [170]. The discussion is ongoing [171, 172] and will certainly continue.
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4 Theory of Negative Absolute Temperatures

Temperature as an ordering relation and the zeroth law of thermodynamics

Temperature as an intensive quantity defines an ordering relation for physical systems:

Systems can be arranged in a row, from the coldest to the hottest systems. If two systems

are brought into contact, heat will always flow from the hotter to the colder system. This

is consistent with the Clausius formulation of the second law of thermodynamics, stating

that no process can exist whose only effect is the transfer of heat from a colder to a hotter

reservoir. The Boltzmann entropy and temperature definition is consistent with such an

ordering relation, if one takes into account that systems at negative Boltzmann temperature

are hotter than any system at positive Boltzmann temperature: Heat will always flow

from the system with the larger numerical value of Boltzmann temperature to the one

with the smaller value of the same sign; if two systems with different sign of Boltzmann

temperature are brought into contact, heat will flow from the negative temperature system

to the positive temperature one. The parameter −βB = −1/kBTB orders the systems from

coldest to hottest, also including negative temperatures.

Figure 4.9 shows an example, where a small isolated system with an upper energy

bound, consisting of a few particles and described by the microcanonical ensemble, may

be prepared at negative Boltzmann temperature T s
B < 0 (−βs

B > 0), i.e. with a stable

population inversion. Additionally, a large system, i.e. a thermal bath, may be prepared

at large positive temperature, T b
B →∞ (−βb

B ≈ 0). If these two systems are brought into

weak thermal contact, heat will flow from the small system to the bath. In equilibrium,

the small system, which is then described by the canonical ensemble, will have attained

the positive temperature T b
B of the bath and the population inversion will have vanished.

This heat flow, as stated above, is correctly predicted via Boltzmann temperature.

Q

heat bath small system

-βB ≈ 0

TV > 0

b

b

-βB > 0

TV > 0

s

s

<

>

Figure 4.9: Temperature as an ordering relation. When a small system at negative Boltzmann temperature

is coupled to a large bath close to infinite Boltzmann temperature, heat Q flows from the

small system to the bath. This is consistent with the ordering of the systems via Boltzmann

temperature, but not via volume temperature. For details, see main text. The filled rectangles

illustrate the occupation of the energy levels in the systems.

Following the definition of volume entropy, however, the same small system is initially

at a positive, finite volume temperature T s
V . In finite systems, the value of the volume

temperature reaches a finite, positive value Tmax
V in the limit of maximum energy [164].

This finite value and also the overall TV (E) curve in Fig. 4.8B depend on the specific

system, especially on system size. For a large bath, the bath temperature in the above

example will be at a volume temperature that is larger than the one of the small system
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with population inversion, T b
V > T s

V . The observed heat flow in this case therefore happens

from the system at lower volume temperature to the system at higher volume temperature.

Volume temperature therefore does not constitute an ordering relation for physical systems,

in contrast to Boltzmann temperature.

Just knowing the value of volume temperature of two systems is therefore not sufficient

in determining which system is actually hotter. As a consequence, two systems that are

in thermal equilibrium with each other may have different volume temperatures, violating

the zeroth law of thermodynamics. This also becomes evident from Eq. 4.42: Two systems

in thermal equilibrium possess the same Boltzmann temperature, and one may calculate

the corresponding volume temperatures from this equation. As this equation, however,

includes the total heat capacity C, the volume temperatures depend on system size and

are, in general, not equal.

Consistency with other ensembles

An isolated system, where particle and heat exchange with the environment may be

neglected, is well-described by the microcanonical ensemble. It is, however, also possible

to describe a large system with weak couplings between its constituents approximately

within the framework of the canonical or grand-canonical ensemble: A small subsystem,

for example a single atom in the final stage of our experiment where interactions are

weak, is coupled to the rest of the system, e.g. 105 atoms, which may be considered as

a heat bath. The subsystem is in thermodynamic equilibrium with the bath and can

therefore approximately be described by the canonical ensemble. The one-particle energy

distribution is in the classical limit described by the famous Boltzmann distribution Eq.

4.1. The canonical temperature T = Tcan in the Boltzmann formula is negative for a

thermal state with population inversion. This temperature turns out to be identical to the

Boltzmann temperature, Tcan = TB, of the microcanonical ensemble [164].

The suggestion for the alternative volume entropy definition applies to the microcanon-

ical ensemble [164]. The definition of temperature Tcan in the canonical ensemble remains

unaffected. The authors provide Eq. 4.42 which allows the measured canonical tempera-

ture Tcan = TB to be converted into volume temperature TV , which is in general different.

Hence, following the definition of volume entropy, the temperature of the system as a whole

is different from the individual temperature of any subsystem. The temperature of an iso-

lated system would thus have lost its role as the parameter that controls equilibrium of

one part of the system with another [163]. The definition of volume entropy also renders

the equivalence of ensembles impossible. In contrast, the equivalence of ensembles is estab-

lished in the thermodynamic limit in the case of Boltzmann entropy if it is concave with

respect to energy as in Fig. 4.8A [165].
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5 Realization of Negative Absolute

Temperatures

This chapter is closely based on our publication Negative Absolute Temperature for Mo-

tional Degrees of Freedom [119]. In the first section of this chapter, I describe the experi-

mental realization and observation of negative absolute temperatures in a two-dimensional

system. In the second section I show results of stability measurements of the negative

temperature state. In the third section I demonstrate how the energy distribution and the

temperature of the final state can be approximately determined and compare this temper-

ature to critical temperatures for both the superfluid and the Bose-Einstein condensation

transition. In the fourth section I describe how we derive an approximate coherence length

of the final phase-coherent state at negative temperature. Finally, the fifth section deals

with the realization of negative temperature states in one and three dimensions.

5.1 Experimental Sequence and Images

In this section, I describe the experimental sequence for the creation of negative temper-

ature states in a two-dimensional system where the vertical lattice is very deep, creating

isolated two-dimensional layers of atoms. I also show an analogous sequence for a standard

positive temperature state for comparison. Some emphasis in this chapter is put on details

of the inversion of the external harmonic confinement. Resulting time-of-flight images are

shown for both negative and positive temperatures.

5.1.1 Experimental Sequence

The initial state of ultracold atoms experiments is necessarily always at positive temper-

ature. In order to realize negative temperatures, at some point the transition has to be

made between the two. For the transition, we choose a state which is an eigenstate of the

Hamiltonian in both the repulsive and attractive regime, such that the transition does not

trigger any dynamics in the system and the final negative temperature state is stable. Such

a state is given by an n = 1 Mott insulator close to the atomic limit, |U |/J → ∞, which

can be approximated by a product of Fock states, |Ψ〉 = Πiâ
†
i |0〉, where â†i is the creation

operator for a boson on lattice site i. The general idea of the sequence (Fig. 5.1) is based
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Figure 5.1: Experimental sequence for the creation of negative temperatures in 2D. The lattice depth Vlat,

horizontal trap frequency ωhor and scattering length a are plotted versus time t. The sequence

for a final negative temperature state is red, and blue for a positive temperature state. In

the negative temperature case, the magnetic field crosses a Feshbach resonance and thus the

scattering length diverges.

on a proposal by A. Rapp et al. [7], building on earlier works by A. P. Mosk [6]. It consists

of loading a repulsively interacting BEC into an optical lattice deep in the Mott insulating

regime (region I), changing U and V to negative values (region II) and finally melting the

Mott insulator by decreasing |U |/J again via a lattice ramp (region III). For comparison,

we also created a positive absolute temperature state with a corresponding sequence.

We initially prepared a condensate of N = 1.1(2)× 105 39K at positive temperature in

an oblate dipole trap with trapping frequencies of ωhor = 2π × 37(1) Hz and ωvert = ωz =

2π × 181(12) Hz along the horizontal and vertical directions, respectively. The horizontal

trap frequency is given by the root mean square of the trapping frequencies along the two

horizontal directions, ωhor =
√

(ω2
x + ω2

y)/2. The condensate is essentially pure since in

time-of-flight images the thermal cloud around the condensate is below the detection limit.

We linearly ramped up a three-dimensional optical lattice (region I in Fig. 5.1) with simple

cubic symmetry and of wavelength λlat = 736.65 nm within 25 ms to a lattice depth of

Vlat = 22(1)Er. The scattering length during the lattice loading ramp was large at a =

309(5) a0, giving a very large value U/J > 800 and minimizing doubly occupied sites in the

Mott insulating state. When crossing the Feshbach resonance to the attractive side, these

double occupancies would result in atoms excited to higher bands [173]. During the loading,

we increased the trapping frequencies to ωhor = 2π× 97(4) Hz and ωvert = 2π× 215(13) Hz

by changing the power of the dipole trap beams in order to increase the fraction of atoms

within the Mott insulating core.

In the deep lattice (region II), the tunneling time is large at τ = h/2πJ = 10(2) ms,

and therefore tunneling is essentially negligible. Once in the deep lattice, we ramped the
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magnetic field B within 2 ms to its final value. Due to a Feshbach resonance at B =

402.50(3) G [30] this changes the scattering length to either a positive, repulsive value at

a = 33(1) a0 or a negative, attractive value at a = −37(1) a0. In both cases, the system

stays in the Mott insulating regime at |U/J | > 80. Simultaneously with the magnetic field

ramp, we decreased the horizontal trap frequency to ωhor = 2π × 39(4) Hz in the repulsive

case by decreasing the power of the dipole trap beams. In the attractive case we changed

to the maximum possible anti-trapping potential with a formally imaginary trap frequency

of |ωhor| = 2π × 49(1) Hz by reducing the power of the dipole trap beams to zero.

After a hold time of 1 ms, we linearly decreased the horizontal lattice depth (region

III) within 2.5 ms to Vhor = 6.1(1)Er, resulting in final values of U/J = −2.1(1) in the

attractive case and U/J = +1.9(1) in the repulsive case. We kept the vertical lattice

depth at Vvert ≈ 22(1)Er to avoid adverse effects due to gravity and to enable strong

anti-trapping potentials (Section 5.1.2). During this lattice ramp, we kept the dipole trap

beams turned off, resulting in trapping frequencies that change only marginally.

For imaging, we instantly switch off all optical potentials and subsequently ramped down

the homogeneous magnetic field within 2 ms to zero. After a total time-of-flight (TOF) of

7 ms, we recorded absorption images along the vertical direction. For a sufficient transfor-

mation of the imaged atomic distribution from real space into momentum space, one would

ideally want to use longer TOF. However, since for longer TOF also the optical density

(and therefore the signal-to-noise ratio in the images) decreases due to the expansion of the

cloud, the chosen TOF is a compromise. The whole sequence was experimentally optimized

to maximize the visibility of the final interference pattern at negative temperature.

5.1.2 Inversion of the External Potential

In principle, negative temperature states can also be created in three dimensions, by addi-

tionally inverting the vertical trapping potential. In the experiment, however, this inversion

would also result in an inversion of the gravitational sag. The atoms would therefore experi-

ence a strong vertical gradient at their position, leading to Bloch oscillations and dephasing

between lattice sites. This problem could be circumvented by additionally applying a ver-

tical magnetic field gradient. However, in our experiment, we chose a different approach by

keeping the vertical lattice strong, which provides an additional experimental advantage:

As the anti-trapping potential is generated by the lattice beams, the more intense vertical

lattice beam allows higher anti-trapping potentials of up to |ωhor| = 2π × 43(1) Hz in the

final shallow lattice compared to the creation of negative temperature states in three di-

mensions. The challenges of the realization of negative temperatures in three dimensions

with our setup are also detailed in Section 5.5.2.

In the chosen two-dimensional lattice setup, to exactly invert the potential energy term

of the Hamiltonian, the horizontal confinement should have been precisely inverted, from

the initial trap frequency of ωhor,i = 2π×97(4) Hz to the final value of |ωhor,f| = 2π×97 Hz.

In the case of the interaction energy term, the Feshbach ramp should have provided a final

scattering length af which is precisely inverted compared to the initial one ai = 309 a0,
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af = −309 a0. The final sequence then should have precisely imaged the loading sequence.

However, in the experiment, a precise inversion of the trapping potential would only be

possible with the help of additional blue-detuned anti-trapping beams, which were not

available during the measurements for this work but could be a future improvement of the

experimental setup.

The available lower anti-trapping trap frequency of |ωhor| = 2π×43(1) Hz would require

a large amount of mass redistribution during ramp-down: During the ramp, the atomic

distribution follows the change in U/J to realize the transition from the flat-top n = 1

distribution in the Mott insulating state to the parabolic Thomas-Fermi distribution in

the superfluid regime. This redistribution guarantees that the chemical potential across

the system stays flat during ramp-down. If the atoms were not able to achieve this change,

the resulting inhomogeneous chemical potential would lead to dephasing between lattice

sites, reducing the phase coherence of the final, ideally superfluid state. To prevent the

adverse dephasing effect, we have optimized the visibility of the interference pattern and

therefore the phase coherence of the final state by adjusting the scattering length a. The

resulting reduced value of a = −37(1) a0 partially compensates the reduced trap frequency

and thereby minimizes the total amount of redistribution during ramp-down. A detailed

analysis of the dynamics during lattice ramp-down in an external potential can be found

in Chapter 6, and especially in Section 6.3.3.

Concerning the ramp time, ramping down the lattice within 25 ms as in the loading

sequence is in principle possible and leads to a comparable final visibility that is only

4 % below the visibility for the chosen 2.5 ms ramp. The small reduction of the visibility

originates from the minimized, yet inevitable dephasing that increases with longer ramp

times. Only in the limit of an adiabatic lattice ramp, where the chemical potential is

homogeneous throughout the entire ramp, would dephasing not be present. However,

heating effects limit the final visibility in this regime (Section 6.3.3). Overall, in order to

minimize dephasing, a ramp time of 2.5 ms turned out to be ideal experimentally. Despite

the rather short ramp time, the obtained stability of the final state (Section 5.2) shows

that the created states are sufficiently close to equilibrium.

5.1.3 Resulting TOF Images

Figure 5.2 shows TOF images for various times during the sequence, which are indicated

in Fig. 5.1. Interference peaks of the initial superfluid during lattice ramp up, at Vlat =

6.1(1)Er (t = 6.8 ms, top image) are visible, indicating phase coherence across the system.

The strong incoherent background, however, results from the strong repulsive interactions

due to quantum depletion [174]. To obtain an image that is comparable to the final positive

and negative temperature images, we also show an analogous image for identical dipole trap

and lattice ramps, but at a scattering length of a = 33(1) a0 (t = 6.8 ms, bottom image).

As soon as the Mott insulating regime is entered, the interference peaks vanish (t = 25 ms).

After changing the scattering length to weaker positive (t = 28 ms, top image) or negative

(bottom image) values, only weak nearest-neighbor correlations are expected, resulting in
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5.1 Experimental Sequence and Images

similar (but not identical) images for the two cases.

After reducing the depth of the horizontal lattices, and thereby entering the superfluid

regime again, the coherence peaks reappear. For positive scattering length (t = 30.5 ms,

top image), the image is comparable to the initial image during lattice loading for the

same interaction (t = 6.8 ms, bottom image), although the peaks are somewhat broadened

due to heating during the experimental sequence. The high central peak indicates strong

occupation of the ~q = 0 state at minimum kinetic energy, with higher order peaks at

~q = ±2~klat in both directions. In the case of attractive interactions, however, the

center of the Brillouin zone is only weakly populated, while sharp peaks show up in the

corners of the Brillouin zone, again with higher order peaks. These peaks indicate a strong

occupation of the ~q = ±~klat state in both directions, which is at maximum kinetic

energy. The spontaneous development of these sharp peaks is the smoking-gun signature

for the formation of a negative temperature state for motional degrees of freedom: The

highest total energy state, which in the case of a shallow optical lattice corresponds to

the highest kinetic energy state, is occupied the strongest, thus constituting an inverted

population distribution. There are in principle two possible routes to enter the negative

temperature regime: Either the system stays close to thermal equilibrium throughout the

entire lattice sequence, or alternatively the system relaxes towards a thermal negative

temperature distribution during lattice ramp-down. Either of these options shows the

thermodynamic stability of the negative temperature state.
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Figure 5.2: Time-of-flight images at various times during the sequence as indicated in Fig. 5.1. Blue borders

indicate the sequence for the final positive temperature state, red for the negative temperature

state. The initial picture at t = 6.8 ms is taken once for a scattering length of a = 309(5) a0 as

used in the sequence, and once for a = 33(1) a0. The latter image, where the optical density

is rescaled by a factor of 0.25, is comparable to the final images at t = 30.5 ms. All images are

averages of approximately 20 individual shots.
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5 Realization of Negative Absolute Temperatures

5.2 Stability of the Negative Absolute Temperature

State

In this section I describe the measurements of the stability of the negative temperature

state, as well as the positive temperature state for comparison. The influence of trap

frequency as well as the effect of interactions on the stability are discussed.

5.2.1 Stability versus Trap Frequency

To investigate the stability of the final negative and positive temperature states, we perform

the sequence outlined in the previous section to create these states. Instead of immediately

switching off all trapping potentials, however, we hold the cloud for variable times in the

final shallow lattice at Vhor = 6.1(1)Er and Vvert = 22(1)Er. After this hold time, we

switch off all trapping potentials and the magnetic field and record images after 7 ms TOF,

as described in the previous section.

A B

Figure 5.3: Extraction of visibility. The total atom number in the black (nb) and in the red boxes (nr)

is determined via area sums. The visibility V is calculated according to Eq. 5.1. Due to the

different symmetries of the A, negative and B, positive temperature states, the position of the

boxes is different in the two cases.

As a quantitative measure for the quality of the states, we extract the visibility V of the

interference pattern in the TOF images,

V =
nb − nr

nb + nr
, (5.1)

where nb and nr count the total number of atoms in the black and red boxes, respectively.

Since the negative and the positive temperature states have different symmetry, we define

the visibility differently for the two cases (Fig. 5.3).

The resulting visibilities are plotted in Fig. 5.4 versus hold time along with exponential

fits to the decay. The extracted lifetimes from the fits are shown in Fig. 5.5. For the optimal

anti-trapping potential with a trap frequency of ωhor = 2π × 43(1) Hz, the lifetime of the

negative temperature state exceeds 600 ms and is just as long as for the analogous positive

temperature state. From the point of view of statistical mechanics, the high stability of

the negative temperature state is rooted in the maximum entropy principle: The chosen

experimental sequence has put the system into a state of high internal energy E, which,

as the system is isolated, is conserved. For the given energy E, the negative temperature

state is the state with maximum entropy which therefore has to be stable. The stability of
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Figure 5.4: Stability of the final negative temperature state. Red data points are measurements for attrac-

tive, blue for repulsive interactions. For attractive interactions, we performed the measurement

for various trap frequencies, from dark to light, |ωhor|/2π = 43(1) Hz, 22(3) Hz and 6(8) Hz

anti-trapping, 21(4) Hz, 42(3) Hz, 85(4) Hz trapping. The positive temperature data is taken

at 45(3) Hz trapping. The solid lines are exponential fits. For the strongest anti-trapping poten-

tial, the lifetime of the negative temperature state is as long as that of the positive temperature

state.
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Figure 5.5: Coherence lifetimes. The lifetimes τ are obtained from the exponential fits in Fig. 5.4. Red

data points are for attractive interactions, blue for repulsive. The color scale is the same as in

Fig. 5.4. The lifetime for the strongest anti-trapping potential is similar to the lifetime of the

positive temperature state.

the negative temperature state can also be explained in an intuitive picture by the energy

bounds present in the system: Usually, one would expect the atoms at maximum potential

energy to follow the potential gradient and thereby reduce their potential energy such as

a ball on top of a hill. In the isolated system, potential energy can only be reduced by

converting it into either interaction or kinetic energy. Because of the energy bounds in the

system, both of these are limited from above. The many-body ground state at a negative

temperature close to T = −0 K in the shallow lattice maximizes the sum of interaction

and kinetic energy such that this sum cannot increase any further. Therefore, there is no

channel available to absorb energy and the potential energy cannot be reduced. Thus, the
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5 Realization of Negative Absolute Temperatures

atoms stay at maximum potential energy; more generally, they remain at their maximum

energy many-body state and are stable. Although it is intuitive that the ground state of the

system is a stable state, the same argument can also be applied to the positive temperature

case: In this case, the potential energy of the atoms is close to the minimum, and also the

sum of interaction and kinetic energy of the many-body state is minimized. Therefore,

also in this case, energy cannot be converted from one form to another, rendering the

many-body state stable.

Figures 5.4 and 5.5 also show the same measurement for different trap frequencies. In

the deep lattice, instead of realizing the optimal trap frequency, we ramped within 2 ms to

various different intensities for the vertical dipole trap beam, resulting in different trapping

frequencies. The measurement shows that in the case of non-optimal trapping frequencies,

the lifetime drops quickly. In these cases, the required redistribution of atoms during

lattice ramp-down when crossing the Mott to superfluid transition is not minimized, and

thus cannot be achieved during the relatively short ramp time of 2.5 ms. Therefore, the

chemical potential at the end of the lattice ramp is less homogeneous across the system,

and dephasing between lattice sites is stronger. The dephasing is responsible for the decay

of visibility when holding the final state in the shallow lattice, and becomes faster the more

the trapping potential deviates from the optimal one.

For weak trapping potentials (i.e. small real trap frequencies) the visibility can even

reach negative values after hold times of around 100 ms. In the case of a trapping potential

– in contrast to an anti-trapping one – the system is no longer bounded from above and

the negative temperature state is no longer stable. In this case, the atoms are able to

partially convert kinetic energy into potential energy, leading to a stronger occupation of the

~q = 0 state. The corresponding TOF images then rather resemble a positive temperature

state (e.g., Fig. 5.6 for a trapping potential of ωhor = 2π × 21 Hz and thold = 700 ms).

When evaluating the visibility as defined for the negative temperature state, this results

in negative values.

Time-dependent Gutzwiller mean-field theory calculations [175] show that in the case

of trapping potentials, the attractively interacting cloud is also allowed to expand by clus-

tering, i.e. by creating higher occupation on individual lattice sites, and thereby reducing

interaction energy and converting it into potential energy. This expansion is shown to be

strongest in the case of small trapping frequencies, ultimately also leading to atoms com-

pletely leaving the trap [175]. Experimentally, we also observe a strong loss of atoms in the

case of small absolute trapping frequencies for both trapping and anti-trapping potentials

where the trapping potential is essentially flat (Fig. 5.6 for an anti-trapping potential of

|ωhor| = 2π × 6 Hz and thold = 700 ms). For small absolute trapping frequencies and long

hold times, distortions are visible in the TOF images. These can be attributed to residual

deviations of the trapping potential from the purely harmonic case, which are most severe

far away from the trap center. The expanding clouds in the case of small absolute trapping

frequencies probe these deviations and are thus distorted.
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Figure 5.6: Sample time-of-flight images for the determination of visibility plotted in Fig. 5.4. Red frames

indicate attractive, blue frames repulsive interactions. Qualitatively, the loss of coherence over

time can be observed in these images. In the case of attractive interactions, this happens faster

for less anti-trapping potentials. For long hold times, atom losses and distortions are visible

mainly in the case of weak external potentials (see main text).

5.2.2 Stability versus Interaction

We also investigated how the lifetime of the final negative and positive temperature states

changes for various interactions. For these measurements, we chose a final anti-trapping

potential with trap frequency |ωhor| = 2π × 43(1) Hz but ramped the scattering length

within 2 ms to different values than the previously optimized ones of a = 33(1) a0 and a =

−37(1) a0. We then kept the scattering length fixed during lattice ramp-down. Despite the

similarity in the protocol, there is an important difference in this measurement compared

to the previous trap frequency measurement: As U/J is proportional to the scattering

length a, choosing different a values results in different initial and final values of U/J for

the lattice ramp. The Mott to superfluid quench induced by the lattice ramp therefore

reaches differently deep into the superfluid regime.

We evaluated the data identically to the previous measurement, by extracting the visibil-

ity for various hold times. The results are plotted in Fig. 5.7, together with exponential fits.

We find that the small scattering length of a = −37 a0 is optimal, giving the largest life-

time of 890(50) ms (Fig. 5.8). Negative scattering lengths even closer to zero are technically
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Figure 5.7: Visibility of the final negative (A) and positive (B) temperature states versus hold time for

various scattering lengths. The visibility is evaluated as in Fig. 5.3. In both cases, the stability

of the state is maximized for rather small scattering lengths. The reduced visibility at zero

hold time for strong interactions is caused by the reduced coherence length of a system that is

closer to the Mott insulating regime. Solid lines are exponential fits.

challenging to reach as they are located at small magnetic fields, due to the background

scattering length abg = −29.0(3) a0 [30] of the Feshbach resonance (cf. Section 2.1.3). For

stronger attractive interactions, already the initial visibility decreases. This can be ex-

plained by the different final (U/J)f values, which can be as large as (U/J)f = −10 in

the case of a = −183 a0. As the critical value for the Mott to superfluid transition is at

(U/J)c = 16.7 [105], this value is not very deep in the superfluid regime, reducing the

observed visibility of the interference pattern. The reduced lifetime for scattering lengths

which differ from the optimal one can again be understood via dephasing: The potential

of the mean-field interaction of the atomic cloud effectively modifies the external potential

experienced by the atoms. Therefore, for some interaction strength, the mean-field poten-

tial is optimal in terms of the mass redistribution which is required during the Mott to

superfluid transition in order to obtain a homogeneous chemical potential. If the required

redistribution is too large for the ramp duration, the cloud cannot follow the ramp adi-

abatically but instead will be excited, resulting in an inhomogeneous chemical potential

across the cloud. The inhomogeneous chemical potential causes dephasing between lattice

sites, which in turn reduces the visibility of the interference pattern over time (cf. Section

6.3.3).

We also performed analogous measurements in the case of a final positive temperature

state. We observe the same behavior, with the longest lifetime of 610(50) ms for a relatively

weak scattering length of a = 31 a0. The lifetime also drops for stronger interactions. The

similarity of the optimal scattering lengths for both cases is caused by the similar trapping

frequencies of |ωhor| = 2π× 43(1) Hz for an anti-trapping potential in the negative temper-

ature case and of ωhor = 2π×45(3) Hz for a trapping potential in the positive temperature

case which we chose intentionally. We therefore expect similar atomic distributions in

both cases and therefore also similar optimal interaction strengths. This measurement also
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Figure 5.8: Coherence lifetimes of positive and negative temperature states for various scattering lengths

a. The lifetimes τ , obtained from the exponential fits in Fig. 5.7, reveal that rather weak

interactions are optimal in both cases. They also highlight the symmetry between positive and

negative temperature states.

highlights the strong symmetry between negative and positive temperature distributions.

5.3 Extraction of Energy Distribution and of Absolute

Temperature

In this section I present how we extracted the kinetic energy distribution from the measured

quasimomentum distributions. I also show how we determined the temperature of the

negative and positive temperature states, by fitting Bose-Einstein distribution functions

to the measured quasimomentum distribution. We compared the measured temperatures

to estimated critical temperatures for condensation and the superfluid transition in the

two-dimensional system.

5.3.1 Determination of Energy Distribution

To measure the quasimomentum distribution experimentally, we applied band-mapping

before imaging (Section 3.4.4). For both negative and positive temperature cases, we took

about 20 individual images and averaged them. As the TOF of tTOF = 7 ms is finite,

the measured distributions do not represent the pure quasimomentum distributions, but

are still convolved with the in situ density distribution. Since the lattice beams in the

experimental setup are not perfectly orthogonal, the first Brillouin zone is not represented

by a perfect square in the TOF images. We corrected this slight asymmetry in the negative

temperature images by fitting the positions of the four peaks in an image and subsequently

applying a shearing transformation to all images, thereby mapping the first Brillouin zone

onto a square. In the case of the positive temperature images, we extracted the necessary

shearing transformation from the fitted positions of the first order coherence peaks in a
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5 Realization of Negative Absolute Temperatures

TOF image without band mapping. Additionally, due to slight experimental asymmetries,

the four peaks in the negative temperature images do not have the same amplitudes. As

a correction, we multiplied the averaged image with a linearly interpolated normalization

map. We did not apply an analogous normalization to the averaged image at positive

temperature as there is only a single sharp peak present. The resulting averaged images

are shown in Fig. 5.9.
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Figure 5.9: Occupation distributions. The data points show the measured occupation of kinetic energies

within the first Brillouin zone for the final negative (red) and positive (blue) temperature state,

highlighting the population inversion of the negative temperature state. These data points are

extracted from time-of-flight images with band-mapping technique (top insets), showing the

quasimomentum distribution. The originally recorded images were symmetrized and are still

broadened by the in situ cloud size and the imaging system. The solid lines in the main graph

show the occupation of the kinetic energies for the fitted distributions, showing very good

agreement with the measured distributions. The kinetic energy distributions are derived from

the fitted quasimomentum distributions (bottom insets) with a noninteracting Bose-Einstein

distribution assuming a homogeneous system, and show qualitatively good agreement with the

measured TOF distributions. The broadening of the experimental images has been included in

the fitted distributions as well.

To extract the energy occupation we assign the corresponding quasimomentum (~qx, ~qy)

to each pixel in the two-dimensional image by employing the fitted peak positions used for

the shearing transformation. This gives the quasimomentum distribution nexp(qx, qy) in

the first Brillouin zone, where we neglect atoms imaged beyond the first Brillouin zone.

This quasimomentum distribution, however, is still convolved with the in situ density

distribution and therefore an approximation to the real distribution. By using the tight-

binding dispersion relation at the given lattice depth (Eq. 3.16),

Ekin(qx, qy) = −2J

[
cos

(
π
qx
klat

)
+ cos

(
π
qy
klat

)]
, (5.2)

we obtain the kinetic energy distribution nexp(Ekin(qx, qy)), i.e. the number of atoms with

a given kinetic energy. This model neglects interaction and potential energy. To obtain the

occupation ρexp(Ekin) per Bloch wave, we normalized the kinetic energy distribution by the

numerically calculated density of states in the two-dimensional optical lattice D2(Ekin),

ρexp(Ekin) = nexp(Ekin(qx, qy))/D2(Ekin). (5.3)
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The result is shown as the data points in Fig. 5.9, demonstrating the expected exponentially

increasing and decreasing occupation functions.

5.3.2 Fitting a Bose-Einstein Distribution

To obtain an estimate for the temperature of the negative and positive temperature states,

we fitted the experimentally extracted quasimomentum distribution nexp(qx, qy) with a

Bose-Einstein distribution function for the kinetic energy (neglecting interaction and po-

tential energy),

nfit(qx, qy) =
1

e(Ekin(qx,qy)−µ)/kBT − 1
+ o, (5.4)

where independent fitting parameters are the chemical potential µ, the absolute tempera-

ture T , and a constant offset o. We convolved this distribution with an elliptical Gaussian

function to take into account the convolution with the in situ distribution after finite TOF

and the expansion of the cloud along the vertical direction during time-of-flight: Since the

vertical lattice axis, along which the cloud expands, and the imaging axis are not perfectly

parallel, the vertical expansion of the cloud is projected into the imaging plane and appears

in the TOF images as a convolution of the cloud with an elliptical Gaussian.

In the case of the negative temperature image, we fixed both the aspect ratio and the

rotation angle of the elliptical Gaussian by fitting the central peak in a positive temperature

image. Thus, only the width σG of the elliptical Gaussian remains as free parameter for

the fit. As an additional fitting parameter, we also included the length lBZ of the first

Brillouin zone after TOF. Since the distribution extends beyond the first Brillouin zone

due to the Gaussian convolution, we also included pixels on the outside of the first Brillouin

zone in the fit. Therefore, there are five free parameters in the negative temperature fit,

µ, T , o, σG, and lBZ. To obtain reliable values for each free parameter in the fit, it is

necessary that the effects of the different parameters on the fit function are distinguishable.

Both higher temperature T and larger width σG increase the width of the four peaks in

the negative temperature fit. However, as the profiles of the unconvolved peaks in the

corners of the Brillouin zone are shaped as quadrants instead of being circular, the effect

of a larger width σG, which broadens the peaks in the convolved image in all directions

simultaneously, is different from the effect of increasing temperature T , which broadens

the peaks only towards the center of the Brillouin zone. Therefore, fitting both parameters

simultaneously yields reliable results. Monitoring the residual sum of squares shows that

this fit is stable, as there is only a single global minimum.

For the positive temperature image, it is not possible to use both σG and T as free pa-

rameters, because they are not independent when fitting only a single round peak. Instead,

by assuming that the Gaussian convolution function is the same in the negative and pos-

itive temperature case, we fixed σG to the value obtained from the negative temperature

fit. As also lBZ cannot be extracted from a single peak, we fixed its value by fitting the

first order coherence peaks in a positive temperature image without band-mapping. Thus,

in the positive temperature case, the free parameters are reduced to µ, T , and o.
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5 Realization of Negative Absolute Temperatures

As Bose enhancement increases with filling in the lattice, the fitted temperature ex-

tracted from a measured quasimomentum distribution increases with assumed filling in the

fit (cf. Fig. 5.11). The filling enters the fitting process through the chemical potential, which

determines the overall atom number, and through the discretization of the first Brillouin

zone: The discretization defines the number of available quasimomentum states, which

in turn equals the number of contributing lattice sites. While the atom number can be

determined from TOF images, the precise number of contributing lattice sites can only be

roughly estimated due to the inherent integration in absorption images and the inhomoge-

neous, decreasing filling at the edge of the cloud. In an initial attempt to obtain an upper

bound for the absolute value of temperature in both negative and positive temperature

cases (see below), we normalized the experimental data to the number of quasimomentum

states used in the fits, corresponding to unity filling in the optical lattice. The resulting

fitted distributions are shown in Fig. 5.9 as the lower two insets. They include the con-

volution with an elliptical Gaussian and reproduce well the measured experimental data

above. From these fitted distributions, we extract the occupation per Bloch wave ρfit(Ekin)

analogously to the experimental data. The result is shown as the solid lines in Fig. 5.9 and

is in excellent agreement with the experimental data. The temperatures that we extract

from the fits are T = −2.2 J/kB and T = 2.7 J/kB, where the errors are dominated by

systematic uncertainties about the filling and discussed in the following. The very good

agreement between data and a thermal Bose-Einstein distribution function, together with

the great stability, indicate that the final negative and positive temperature states are

indeed thermalized.

The fitting procedure neglects interaction as well as potential energy. By using a man-

ageable, homogeneous model system and by assuming unity filling for this system, we over-

estimate the average filling of the real system: In the experiment, the atoms are trapped in

a harmonic trap and we expect unity filling to be reached only in the center of the cloud,

while the filling decreases at the edge of the cloud. The TOF images therefore average

over many two-dimensional systems with different fillings each (Section 3.4). As the den-

sity distribution realized in the experiment is not precisely known, it is very challenging

to perform the whole fitting procedure for this real distribution. Instead, we estimate a

more realistic average filling of the in situ cloud. The final lattice ramp of 2.5 ms from the

Mott insulating to the superfluid regime allows no more than 2 tunneling events (Section

6.2.1), limiting the overall mass transport possible during the ramp. Therefore it is an

acceptable approximation to assume the same average filling n̄ at the end of the lattice

ramp in the superfluid regime as at the beginning of the lattice ramp in the Mott insulating

regime. The average filling in the Mott insulating regime depends on the average entropy

per particle, S/N . In our experiment, we expect the entropy to lie somewhere between

zero, which implies n̄ = 1, and an upper bound of S/N ≈ 1.5 kB, which gives n̄ ≈ 0.5. An

intermediate value of S/N ≈ 0.8 kB corresponds to n̄ ≈ 0.7.

In both negative and positive temperature cases we performed the fit to the same ex-

perimental data several times, fixing the filling each time to different values resulting in
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Figure 5.10: Chemical potential for various assumed fillings in the fit. The chemical potentials µ are

adjusted in the Bose-Einstein fits and result in different fillings. The kinetic energies in the

lowest band range from 0 to 8J . A, Fit results for the negative temperature case. B, Positive

temperature case.

different chemical potentials (Fig. 5.10). For these fillings, we extracted the temperatures

and found an approximately linear scaling of temperature with filling in both cases (Fig.

5.11). From the linear fits, we extract that in the negative temperature case, a filling of

n̄ = 0.7 results in a fitted temperature whose absolute value is 17(2) % lower than the one

for n̄ = 1, and a filling of n̄ = 0.5 gives a temperature which is 29(2) % lower. In the

positive temperature case, the temperatures are 23(1) % and 38(1) %, respectively, lower.

Therefore, the fitted temperatures of T = −2.2 J/kB and T = 2.7 J/kB that assume n̄ = 1

are systematically too large (considering the absolute values) and represent only upper

bounds for the real temperatures realized in the experiment.
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Figure 5.11: Fitted temperature for various assumed fillings in the fit. The temperatures T show an

approximately linear dependence on the filling that is fixed for the fitting process via the

chemical potential. A realistic average filling n̄ < 1 leads to a reduction of the absolute value

of the absolute temperature, compared to n̄ = 1. The values obtained from the fits assuming

n̄ = 1 are therefore upper bounds for the temperature. A, Negative temperature case. B,

Positive temperature case.
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5.3.3 Critical Temperatures

We compare our fitted temperatures with estimated critical temperatures for our system. In

an infinitely large two-dimensional system in free space, condensation into a BEC at p = 0

does not exist [176, 177]. But in the 2D trapped system, as realized in our experiment,

condensation for non-interacting bosons is possible [178, 179]. In this case, the critical

temperature is

Tc =

√
6N2D

π2

~ωhor

kB
, (5.5)

with the atom number N2D.

This expression can be adjusted for the case of a 2D optical lattice via the effective mass

approximation for small quasimomenta [93],

− 2J

[
cos

(
π
qx
klat

)
+ cos

(
π
qy
klat

)]
≈ −2J +

~2(q2
x + q2

y)

2meff
, (5.6)

where the effective mass is given by

meff =
~2

2Jd2
lat

. (5.7)

In our case of a lattice depth of Vlat = 6Er, this yields meff/m = 2.008 ≈ 2. Due to the

effective mass, the trap frequency effectively changes to

ωeff
hor =

√
m

meff
ωhor. (5.8)

This effective trap frequency can be inserted into Eq. 5.5 for the bare trap frequency ωhor.

We estimate the atom number in the central 2D layer by assuming that all atoms are

part of a perfect n = 1 Mott insulator, without any surrounding shells. The shape of

this Mott insulator is elliptical, where the trap frequencies ωhor = 2π × 97(4) Hz and

ωvert = 2π × 215(13) Hz determine the aspect ratio γ = ωvert/ωhor = 2.21(16). The radius

R of the central layer in the horizontal direction can be calculated from the atom number

N = 105(14) × 103 via the volume of the ellipsoid, V = 4
3πR

3/γ = d3
latN . The area of

the central layer is calculated as A = πR2 = π(3γd3
latN/4π)2/3 = d2

latN2D and leads to the

number of atoms in the central layer,

N2D = π

(
3γN

4π

) 2
3

≈ 4.6(4)× 103. (5.9)

Substituting this into Eq. 5.5 gives an estimated critical temperature of Tc = 3.4(2) J/kB.

Below Tc, a quasicondensate with fluctuating phase is expected. Only well below Tc will

the phase fluctuations decrease on length scales on the order of the Thomas Fermi radius

[180], such that the quasicondensate will turn into a real condensate. This approximation,

however, is not valid in the case of interacting bosons in the thermodynamic limit. In this

case, the BEC transition is replaced by a Berezinskii-Kosterlitz-Thouless (BKT) transition

to a superfluid [181]. From quantum Monte Carlo calculations, this transition is expected
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at a critical temperature of TBKT ≈ 1.8 J/kB for the parameters used in our experiment

[105]. However, quantum Monte Carlo calculations have also shown that even well above

TBKT, quasicondensate correlations appear [182].

As both the experimentally fitted temperatures as well as Tc are approximate estimates,

we cannot conclusively decide whether our final negative and positive temperature states

are in either the BEC or the superfluid regime.

5.4 Extraction of Coherence Length

We extract the coherence length of the final negative temperature state from the TOF

images by the fitting procedure described in Section 3.4.3. To fit a measured interference

pattern, we take a thin horizontal region of interest (ROI) in the TOF image, only contain-

ing two out of the four negative temperature peaks. We assume a Gaussian in situ density

distribution with width R = 30 dlat (cf. Section 6.2.4). Performing the procedure for 20

different images of the same final negative temperature state, we obtain a coherence length

of ξ = 2.5(1) dlat. In Fig. 5.12, the optimal calculated curve for one of the experimental

images is plotted together with the data. Details about the dynamics of the spreading of

correlations during the final lattice ramp can be found in Chapter 6.
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Figure 5.12: Extraction of coherence length. The experimental data (black) is obtained by averaging a

time-of-flight image in a thin ROI that contains two of the four coherence peaks. The fitted

calculated interference pattern (red) for an in situ width R = 30 dlat yields the coherence

length of the system.

5.5 Negative Temperature in Other Dimensionalities

In this section, I present experimental results about the realization of negative temperature

states in 1D and 3D. The major results have all been discussed in 2D which is, due to the
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5 Realization of Negative Absolute Temperatures

gravitational sag, favored over 3D for the realization of negative temperature states in our

experimental setup (cf. Section 5.1.2).

5.5.1 1D

We are also able to realize a negative temperature state in 1D, by not ramping down

the horizontal lattice along the y-direction in the final ramp. Coherence is still visible

in the images along the y-direction in the case where the transverse lattices are kept at

V = 19Er. As we are mainly interested in the coherence along the longitudinal x-direction,

we suppress the transverse coherence by rapidly increasing the transverse lattices within

0.1 ms (negative temperature) or within 0.4 ms (positive temperature) to V = 30Er as soon

as the lattice loading to V = 19Er has been finished. In principle, we could also ramp up

the lattices to V = 30Er at the same rate as the lattice ramp to V = 19Er. However, the

Ti:Sa laser used for the creation of the optical lattice potential exhibits an amplitude noise

resonance at 85 kHz, which coincides with the bandgap at a lattice depth of V = 25.5Er.

For this reason, we observe strong heating of the atoms at this lattice depth. The full

sequence is similar to the 2D case and is shown in Fig. 5.13.
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Figure 5.13: Experimental sequence for negative (red) and positive (blue) temperatures in 1D. The se-

quence is very similar to the one in the 2D case (Fig. 5.1). In contrast to the 2D sequence, only

the x-lattice depth is ramped down in the end. After the loading sequence to Vlat = 19Er,

both y- and z-lattice are quickly increased to Vlat = 30Er to reduce the coherence along

these directions (see main text). Trapping frequencies and scattering lengths were optimized

specifically for the 1D case.

In Fig. 5.14 images are shown for the final positive and negative temperature state. As

coherence is only established along the x-direction, a characteristic stripe pattern appears.
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Figure 5.14: Time-of-flight images of the final positive (A) and negative temperature state (B) in 1D.

Phase coherence is visible only along the x-direction. In both transverse directions, it is

suppressed by the deep optical lattices. The colors in the two images are individually scaled.

5.5.2 3D

In the 3D case, the population inversion is also visible after an analogous sequence. The

sequences for both negative and positive temperature states in 3D (Fig. 5.15) were exper-

imentally optimized to maximize the lifetime of the final states. We performed a lifetime

measurement analogous to that in Section 5.2, by holding for variable times in the final

shallow lattice and by evaluating the visibility in the final TOF images. While the visibility

in the negative temperature case (Fig. 5.16A) at the end of the lattice ramp is comparable

to the 2D case (Fig. 5.4), the lifetime of the negative temperature state of τ = 2(1) ms

is very short. In the case of such a short lifetime, the final state cannot be considered

a thermal state at all and therefore also cannot be assigned a temperature. The atom

number during the hold time is quite stable and is not responsible for the fast decrease of

visibility (Fig. 5.16B). In contrast, the lifetime of the positive temperature state is much

longer with τ = 1.2(4) s, where the atom number decreases on a similarly long timescale

(Fig. 5.17).

The lifetime in the positive temperature case is very long, and comparable to the lifetimes

in the 2D negative and positive temperature cases. The drastic decrease of the lifetime in

the negative temperature case can be explained by the effect of the gravitational sag (Sec-

tion 2.2.2). The equilibrium position is given by the minimum of the combined potential of

both dipole trap and gravitational force, which is shifted downwards compared to the case

without gravity (Fig. 5.18). This equilibrium position changes during the experimental se-

quence, depending on the trap frequency in the vertical direction. The clouds are initially

prepared in a dipole trap with a high vertical trap frequency. During the initial lattice

ramp, this vertical trap frequency changes only slightly and reaches ωvert = 227 Hz at the

end of the ramp. At this point, the atoms are trapped in the deep lattice and locked to

their respective lattice sites. In the positive temperature case, the vertical trap frequency

and therefore also the gravitational sag remain approximately constant while the lattice
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Figure 5.15: Optimized sequence for the creation of negative (red) and analogous positive temperatures

(blue) in 3D, depicted schematically. In contrast to the sequence in 2D (Fig. 5.1), the depth of

all three lattice beams is ramped down. Trap frequencies and scattering lengths are optimized

to maximize the lifetimes of the final states. In the 3D case, also the vertical trap frequency

ωvert is relevant. Due to experimental constraints, the final ωvert in the negative temperature

case is limited to small absolute values.
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Figure 5.16: Lifetime measurement of the negative temperature state in 3D. A, The visibility is evaluated

as in Fig. 5.3 from time-of-flight images versus hold time in the final shallow optical lattice.

The solid line is an exponential fit. Despite the optimization of the sequence, the lifetime

is only small (τ = 2(1) ms). B, The total atom number is measured via area sums. The

horizontal line guides the eye. As the atom number is essentially constant over the entire

range of hold times, atom losses can be excluded as a reason for the fast loss of coherence.
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Figure 5.17: Analogous lifetime measurement as in Fig. 5.16 for the final positive temperature state. A,

The lifetime τ = 1.2(4) s of coherence is much longer than for the negative temperature state,

and comparable to the lifetimes in the 2D case. B, Atom losses become relevant on a similar

timescale (τ = 2.6(1.0) s) as the loss of coherence.

is reduced from the Mott insulating to the superfluid regime (Fig. 5.15). In this case,

the atoms in the cloud redistribute in order to keep the chemical potential homogeneous

throughout the system (Section 5.1.2), leading to a long lifetime of the final state.

In contrast, in the negative temperature case, the external trapping potential is trans-

formed into an anti-trapping potential in the deep lattice. In this case, the equilibrium

position of the external potential and the gravitational potential, however, moves to a po-

sition above the location without gravity. As the atoms are locked to their lattice sites,

they cannot reach this equilibrium position, but instead experience a strong gradient along

the vertical direction (Fig. 5.18). As the distance to the equilibrium position is on the

order of 300 lattice sites, it is also impossible for them to reach this position during lattice

ramp-down. Therefore, once phase coherence between lattice sites starts to emerge, the

strong gradient at the position of the atoms will lead to fast dephasing and destroy the

visibility of the interference pattern in TOF images. We estimate the energy difference

between two neighboring lattice sites for the case of a final anti-trapping potential with a

trap frequency of ωvert = 48 Hz, and obtain ∆ν ≈ 370 Hz. We therefore expect dephasing

on a timescale of (∆ν)−1 = 2.7 ms which explains our experimental result.

Stable negative temperatures could, however, also be created in 3D. The obvious solution

would be to compensate the gravitational potential with a magnetic field gradient. In the

course of this work, we have not implemented this solution, but it may constitute a future

improvement for the setup. But since the magnetic field degree of freedom is required for

the homogeneous magnetic field around the Feshbach resonance, one has to be careful with

the magnetic field inhomogeneity across the cloud. The required magnetic field gradient B′

can be calculated from the Zeeman shift δνZ = −gFmFµBB
′z/h = mgz/h with the gravity

of earth g = 9.81 m/s2 as B′ = 0.5 mG/dlat. Estimating the extension of the cloud along

the vertical direction from an n = 1 ellipsoid, as described in Section 5.3.3, gives a diameter

of around 2Rvert = 34 dlat. The maximum required difference of the magnetic field across
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Figure 5.18: Potential energy along the vertical direction in the 3D case. A, Coarse plot, B, Zoom, area

indicated by the small black rectangle in A. The blue curve is the combined potential of a

harmonic trapping potential with trap frequency ωvert/2π = 227 Hz and gravity for 39K atoms.

The gravitational sag is zsag ≈ −13 dlat (blue dotted line). The red curve is the combined

potential for the case of a harmonic anti-trapping potential with trap frequency |ωvert|/2π =

48 Hz. In this case the gravitational sag is positive, zsag ≈ 300 dlat (red dotted line). In the

deep lattice, however, the atoms are trapped at their positions around z ≈ −13 dlat. The

anti-trapping potential leads to an approximately linear potential at the position of the atoms

that causes dephasing (see main text). The gray dashed line indicates the trap minimum

without gravity.

the cloud is therefore B′ · 34 dlat = 8.6 mG. When for example using a magnetic field of

B = 397.9 G near the Feshbach resonance at B0 = 402.50(3) G [30] to realize a scattering

length of a = 300 a0, the magnetic field inhomogeneity would result in a variation of the

scattering length across the cloud of ∆a/a = 0.2 %. This effect is therefore very small and

the compensation scheme should be feasible.

For the 3D implementation of negative temperatures, there is another limitation of

our experimental setup: The maximum achievable anti-trapping potentials in the vertical

direction are limited due to the laser beam geometry. As the anti-trapping potential is

created by the intensity profiles of the lattice beams itself, and the lattice beam profiles

are circular, the anti-trapping trap frequency along the vertical direction can only be as

strong as in the horizontal directions. As our dipole beams are elliptical, creating a rather

high trap frequency along the vertical direction to have good confinement against gravity,

we cannot precisely invert the trapping potential along the vertical direction in the deep

lattice. This limitation is similar to the imperfect inversion of the horizontal trapping

potential in the 2D case (Section 5.1.2) and leads to additional dephasing in the final state.

It could be resolved by additional blue-detuned anti-trapping beams.
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6 Emergence of Coherence and the

Dynamics of Quantum Phase

Transitions

This chapter is based on our publication Emergence of coherence and the dynamics of

quantum phase transitions [183]. In the first section, I give an introduction to classical and

quantum phase transitions (QPTs) and how the dynamics across QPTs can be described

within the Kibble-Zurek framework. In the second section, I describe the experimental

sequence, data evaluation and numerical methods that we, as a collaboration, used to

investigate the emergence of coherence across a QPT. In the third section, I discuss the

experimental and numerical results for the emergence of coherence in a quench in 1D and

compare them to the predictions of the Kibble-Zurek mechanism. In the fourth section,

I present the results for the emergence of coherence in higher dimensions as well as for

attractive interactions, along with the conclusions that can be drawn from these measure-

ments. In the fifth section, I show unpublished data about the emergence of coherence

after a quench as well as additional in situ data, emphasizing the different timescales for

the local emergence of coherence and global thermalization.

6.1 Classical and Quantum Phase Transitions

Phase transitions are ubiquitous phenomena, describing the transition of a thermodynamic

system from one state of matter to another. Many times, these states of matter, or phases,

differ by their symmetry. For example, the spins aligned in the same direction in a ferromag-

net constitute a phase of low symmetry where rotational and time reversal symmetry are

spontaneously broken due to the choice of a particular direction, while randomly oriented

spins in the paramagnetic phase above the Curie temperature represent a more symmetric

phase [184]. Following Landau’s mean-field theory of phase transitions, one may define a

quantity that characterizes the symmetry that is broken at the phase transition, called

order parameter η [60]. In the above example of ferromagnetism, the order parameter is

the magnetization; it is zero in the paramagnetic phase and at the phase transition, and

acquires a finite value in the ferromagnetic phase. Following Landau, the thermodynamic
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6 Emergence of Coherence and the Dynamics of Quantum Phase Transitions

potential of the system can be expanded in the vicinity of the phase transition in powers of

the order parameter η [60]. In thermodynamic equilibrium, this thermodynamic potential,

e.g. Helmholtz free energy in the canonical ensemble, adopts its minimum value. From this

condition, one can obtain the value of the order parameter and also other quantities of the

system such as entropy and specific heat in the vicinity of the phase transition. In general,

the theory of phase transitions is intricate even in the case of classical phase transitions

and therefore was not developed until the late 19th century. Nowadays, phase transitions

are classified into two broad categories, first order and continuous phase transitions [185].

First order phase transitions are characterized by a discontinuity in the order parameter

as well as in the first derivatives of the thermodynamic potential (e.g. free energy), such

as density or entropy. This discontinuity involves latent heat at the phase transition, thus

the system absorbs or releases an additional amount of heat during the phase transition

while the temperature stays constant. In this regime, the system is in a mixed state of two

phases simultaneously. Familiar examples for first order phase transitions are the melting

of ice and boiling of water below the critical point: While boiling, water absorbs a large

amount of heat which increases the entropy of the system and leads to a jump in entropy

and pressure at the phase transition. Also the order parameter, the density difference

between the liquid and gas phase, exhibits a discontinuity [186]. During this process, water

is in a mixed-phase regime, where some part has completed the phase transition and the

rest has not.

Continuous phase transitions are characterized by continuous first derivatives of the

thermodynamic free energy, including the order parameter, but discontinuous second or

higher order derivatives. Consequently, continuous phase transitions do not involve latent

heat. For example, in the paramagnet to ferromagnet phase transition, the magnetization

continuously changes from zero to a finite value, but the magnetic susceptibility, a second-

order derivative, exhibits a jump. The correlation length ξ, i.e. the length scale on which

fluctuations in a system appear, diverges at the transition point of a continuous phase

transition, and can often1 be described by a power-law behavior [188]

ξ ∝ |ε|−ν , (6.1)

where ε = (T − Tc)/Tc is the relative distance of the temperature T from the critical

point Tc. The exponent ν is an example of the critical exponents that allow to categorize

continuous phase transitions into distinct classes. Universality states that very different

physical systems may possess the same set of critical exponents and thus belong to the same

universality class [184]. As fluctuations at the transition point appear on all length scales,

the diverging correlation length indicates scale invariance of these critical fluctuations [184],

and can be observed in the liquid water to vapor transition that turns into a continuous

phase transition right at the critical point: The densities of the two phases become identical,

and the latent heat vanishes. The diverging correlation length, in this case the length

1An important exception is the Kosterlitz-Thouless transition [187], where the correlation length near

the critical point shows an exponential scaling. This transition is also relevant for the measurements

presented in this thesis (Section 6.3.1).
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scale of density fluctuations, manifests itself in the critical opalescence where long-range

fluctuations scatter light of all wavelengths [189]. This critical point, which is a special

point of a first order phase transition curve, is not to be confused with multicritical points.

The latter are special points within a critical manifold (e.g. a phase transition curve) of

continuous phase transitions that belong to a different universality class than the usual

one of this manifold. Multicritical points are borders of a critical manifold, or the points

on intersection and branch lines of critical manifolds [190].

Classical phase transitions describe changes of thermodynamic properties of a system

and are based on the competition between energy and the entropy of thermal fluctuations.

At T = 0, thermal fluctuations vanish and hence a phase transition cannot be classical any-

more. Instead, at absolute zero, quantum fluctuations of the ground state (i.e. fluctuations

of an observable around its expectation value due to the Heisenberg uncertainty principle

in the case when the Hamiltonian contains non-commutating terms [57]) become relevant

and may change the properties of the ground state substantially, leading to different quan-

tum phases. By changing a parameter of the system at T = 0, one may enter a different

quantum phase and thereby cross the quantum phase transition, which is defined as a

phase transition driven by quantum fluctuations [191]. The classification into first order

and continuous or second order phase transitions also applies to quantum phase transitions

[192]. An example of a first order quantum phase transitions is the emergence of super-

conductivity in band ferromagnets [193]. Just as in continuous classical phase transitions,

in continuous quantum phase transitions, the characteristic power-law behavior of Eq. 6.1

can often be found. In this case, however, ε = (λ − λc)/λc describes the relative distance

of a non-thermal control parameter λ of the Hamiltonian from the quantum critical point

λc. At finite temperature, thermal fluctuations of energy kBT compete with quantum

fluctuations. As long as quantum fluctuations are still dominant, remnants of a quantum

phase transition can also be observed at finite T [194]. One of the most famous continuous

quantum phase transitions is the Mott insulator to superfluid transition, which we investi-

gated in this project. While the critical curve of the Mott lobes (Fig. 3.10) belongs to one

particular universality class, the tip of the Mott lobe constitutes a multicritical point and

thus belongs to a different universality class with different critical exponents. While in this

work, we examined the transition at the tip of the Mott lobe, the transition at the side

of the Mott lobe was studied previously also with an ultracold atoms setup [195]. Other

previous experiments on quantum phase transitions investigated the inverse superfluid to

Mott insulator phase transition [111], the vacuum to superfluid transition [196], or spinor

Bose-Einstein condensates entering a ferromagnetic state [197].

6.1.1 Sudden and Adiabatic Approximations

In general, it can be a very challenging task to describe the dynamics of quantum mechan-

ical systems during a quench, i.e. when a parameter of the Hamiltonian H is changed over

time t. Depending on the quench speed, however, two limiting cases apply which can be

solved more easily.
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Sudden approximation: During an instantaneous quench, ∂H/∂t→∞ for a time period

∆t → 0. The initial state wavefunction 〈r|ψ0〉 remains unchanged and is projected into a

new basis, corresponding to the energy eigenstates of the final Hamiltonian. An initial pure

state |ψ0〉 is in general projected into a superposition of eigenstates of the final Hamiltonian

and the initial quantum numbers are lost. The dynamics in the final Hamiltonian is

determined by the phase evolution of the individual eigenstates.

Adiabatic approximation: We assume that the system is initially in a nondegenerate

energy eigenstate |ψ0〉 of the Hamiltonian which is separated throughout the quench by

gaps ∆i from the other energy eigenstates |ψi〉. For infinitely slow quenches, ∆t→∞ and

∂H/∂t→ 0, the system adiabatically follows the change of the eigenstate |ψ0(t)〉 over time,

i.e. it remains in this eigenstate, |ψ(t)〉 = |ψ0(t)〉. The spatial wavefunction 〈r|ψ(t)〉 adapts

accordingly and gradually changes. The system retains all quantum numbers for which

the corresponding operators commute with the Hamiltonian throughout the quench. The

condition for adiabaticity is given by [198]

|〈ψi|∂H/∂t|ψ0〉| � ∆2
i /~, (6.2)

which needs to be fulfilled for all eigenstates |ψi〉 6= |ψ0〉. It ensures a sufficiently large gap

throughout the quench and prevents excitations of the system into nearby states.

The simplicity of these two limiting cases is appealing. However, the vast majority of

real dynamical processes are neither sudden nor adiabatic.

6.1.2 Kibble-Zurek Mechanism

The Kibble-Zurek mechanism (KZM) [188, 199–202] provides an intuitive and calculable

picture for the creation of defects and the resulting correlation length in a system when a

continuous phase transition is crossed at a finite rate. Originally, the KZM was developed

for classical phase transitions [199, 200], but it can also be applied to the case of quantum

phase transitions [188], where a control parameter λ of the Hamiltonian is quenched over

the critical point λc. Via the KZM, the size of domains and the corresponding correlation

length of a system after a phase transition can be estimated. The basic statement of the

KZM is that essential properties of the final state after the phase transition scale as a

power-law with the quench rate, i.e. the velocity at which the phase transition is crossed,

and that the exponent of this power-law depends only on the critical exponents of the

model at equilibrium. One may therefore view the KZM as an extension of the universal

equilibrium properties of a model to its dynamical behavior at the phase transition. The

KZM has been successfully applied in many circumstances, both to experimental results

and numerical simulations [201, 203–207].

The spectral gap ∆, i.e. the energy of the lowest excitation above the ground state,

closes at the critical point of a continuous quantum phase transition [57]. Near the critical

point, the functional behavior of the gap can be described via the critical exponents ν and

z, where the latter is the dynamical exponent,

∆ ∝ |ε|zν . (6.3)
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Here, ε indicates the distance of the control parameter λ from the critical point λc in

dimensionless units,

ε =
λ− λc

λc
. (6.4)

With the quench rate ε̇, one can define a characteristic timescale

τε(t) =

∣∣∣∣ε(t)ε̇(t)

∣∣∣∣ (6.5)

for the instantaneous relative change of ε during the ramp. The inverse of the quench rate

at the position t = 0 of the phase transition is a characteristic measure for the quench and

is usually denoted [188]

τQ =

∣∣∣∣ 1

ε̇(0)

∣∣∣∣ . (6.6)

The relaxation time τ of the system indicates how fast the system is able to react to

external changes. It is given by the inverse of the gap ∆ and therefore diverges at the

critical point,

τ ∝ |ε|−νz. (6.7)

This divergence of the relaxation time is also called critical slowing down [202]. The corre-

lation length ξ diverges at the critical point and is expected to scale as in Eq. 6.1,

ξ ∝ |ε|−ν . (6.8)

The basic idea of KZM is to split the evolution across the quantum phase transition into

several regimes, which are called either adiabatic or frozen, combining the two limiting

cases from Section 6.1.1 (Fig. 6.1). The initial state of the system, far away from the

phase transition, is assumed to be the ground state. In this regime, the ground state is

protected by a large gap ∆, and the dynamics are assumed to be adiabatic such that the

system remains in the ground state. The correlation length ξ of the system therefore adapts

continuously.

At some point ε̂, the freeze-out point, as the gap closes towards the critical point where

the correlation length diverges, the timescale τε for the external parameter change becomes

shorter than the relaxation time τ of the system, and the system cannot follow the external

parameter change anymore. The dynamics therefore cease to be adiabatic. Only if this

happens sufficiently close to the phase transition, where the ground state properties can be

described via the critical exponents, can one calculate this point ε̂ via the critical exponents

[188]. In general, the quench can be linearized near the critical point, |ε̇(t)| ≈ |ε̇(0)| = 1/τQ,

such that the above condition

τε =
|ε|

1/τQ

!
= τ ∝ |ε|−νz (6.9)

leads to

|ε̂| ∝ τ−
1

1+νz

Q . (6.10)
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Figure 6.1: Illustration of the Kibble-Zurek mechanism. The relaxation timescale τ of a system and the

timescale of a quench τε are plotted versus the quench parameter ε. The crossing of the two at

ε̂ divides the quench into an adiabatic and a frozen regime (dotted line). For details, see main

text.

Closer to the critical point, the dynamics are considered frozen, i.e. the sudden ap-

proximation applies and the correlation length ξ of the system does not change anymore.

Therefore, the final correlation length after crossing the phase transition is, according to

this approximation, given by the value at ε̂,

ξ̂ ∝ τ
ν

1+νz

Q . (6.11)

This is the main statement of the KZM [202]. In an alternative derivation leading to the

same result, the freeze-out point is sometimes derived via a sonic horizon picture, instead

of the above strict sudden approximation [200, 208]: Within the freeze-out regime, from

time T1 to T2, correlations can spread maximally with the corresponding sound velocity

vs(t), establishing a correlation length limited by the sonic horizon [208]

h =

∫ T2

T1

vs(t) dt. (6.12)

To determine the size of the freeze-out regime one needs to compare the ground state

correlation length with this sonic horizon. At the point where the two are equal, the

propagation of correlations in the freeze-out regime is identical to the correlation length

already established in the adiabatic regime. The correlation length therefore does not

increase further during the freeze-out regime.

The KZM prediction for slow quenches across continuous phase transitions has been

checked in various integrable models. A phase transition in free (i.e. noninteracting)

fermionic systems can be mapped to a set of Landau-Zener anti-crossings, where an actual

crossing corresponds to the excitation of a quasiparticle in the system. The quasiparticle

density after the phase transition can be calculated with the help of the Landau-Zener

formula. It scales as a power-law with the quench time, where the exponent is given by

the critical exponents and is consistent with the Kibble-Zurek prediction [188, 209]. For
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more complex and non-integrable models, the Kibble-Zurek scaling was verified via adi-

abatic perturbation theory [122, 210]. In this method, the transition probabilities to the

instantaneous eigenstates of the system are expanded in powers of ε̇ [122].

6.2 Experimental and Numerical Methods

After the theoretical introduction of quantum phase transitions and the Kibble-Zurek mech-

anism in general, I now turn to the investigation of the dynamics at the Mott to superfluid

transition, which is the primary interest in this chapter. In this section, I describe the

experimental sequence used to measure the emergence of coherence, both in 1D and in

higher dimensions. To obtain the coherence length in the final system, we fit the resulting

TOF images with calculated interference patterns. I show how we determine the in situ

width of the clouds with a different method to reduce the number of free fitting parame-

ters. I present the three numerical methods that our collaborators at FU Berlin used to

simulate and explain our experimental results. These are density matrix renormalization

group calculations [211], exact diagonalization and the doublon-holon fermionic model. Fi-

nally, I show how we extract the exponent of the power-law growth of coherence, both for

experimental and numerical data.

6.2.1 Experimental Sequence for 1D

Initially, we created an essentially pure condensate of, depending on the data set, (25 −
85) · 103 39K atoms in a dipole trap of oblate shape with trapping frequencies of ω =

2π · (50, 50, 181) Hz along the (x, y, z) direction. The following sequence is shown in Fig.

6.2. Within 50 ms, we performed a linear ramp of a 3D optical lattice to a depth of

Vlat = Vi = 19Er. Within 0.4 ms, we quickly increased the lattices along the y- and z-

direction to V ylat = V zlat = 30Er to reduce correlations along these directions even further.

We performed the final ramp in a short time to prevent heating of the atoms via a resonance

of amplitude noise of the Ti:Sa laser used for the optical lattice (Section 5.5.1). The

scattering length during the loading procedure was set at a = 148 a0, leading to a large

U/J = 350 at the end of the lattice loading, deep in the Mott insulating regime and close

to the atomic limit. To obtain a large n = 1 Mott insulating core in the center of the cloud,

the trap frequencies in the horizontal plane were increased during the lattice loading to

ω = 2π · (91, 92, 158) Hz.

In the deep lattice, we ramped the scattering length to variable values by employing

the Feshbach resonance at B = 402.50(3) G [30], resulting in variable initial (U/J)i values.

The ramp was not linear in the scattering length a as suggested by the schematic Fig.

6.2, but linear in the magnetic field B. Via an exact diagonalization calculation (Section

6.2.6), our theory colleagues verified that this Feshbach ramp is close to adiabatic, such

that the final state can be well approximated by the ground state of the system (Fig. 6.3).

For interactions (U/J)i ≥ 40, the ground state itself is close to a product state. We then

linearly decreased the depth of the x-lattice to V xlat = Vf = 6Er in a variable ramp time
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Figure 6.2: Experimental sequence for the emergence of coherence in 1D. Exemplary ramps of scattering

length a, lattice depth Vlat and U/J . After loading the atoms into a 3D optical lattice (I),

the lattice depth along the y- and z-direction is quickly increased to Vlat = 30Er (cf. Section

5.5.1). In the deep lattice (II), the scattering length is quickly ramped to variable values. This

leads to different initial (U/J)i and final (UJ/)f values for the final lattice ramp (III) of the

x-lattice in variable times tramp. The horizontal dashed line indicates the critical value (U/J)c

that separates the superfluid (SF) from the Mott insulating regime (MI).

tramp,

Vlat(t) = Vi + (Vf − Vi) · t/tramp, (6.13)

leading to a smaller final (U/J)f value. If the scattering length is not too large, this ramp

leads to a crossing of the Mott to superfluid phase transition at (U/J)c ≈ 3.3 [102–104].

With this procedure, we can thus control the final interaction (U/J)f via the scattering

length without changing the lattice ramp. The ratio of the initial to the final interaction

is fixed at (U/J)i/(U/J)f ≈ 24. The quench can be approximated well by an exponential

function

(U/J)(t) = B · a · e−C(t/tramp)D , (6.14)

where t ∈ [0, tramp]. The parameters of this approximation, obtained from fits to the real

ramps, are B = 2.33/a0, C = 3.04, and D = 1.10. In the following, I parametrize the ramp

time in dimensionless units by the quantity

τramp = tramp ·
J̄

~
≈ tramp · 0.93/ms, (6.15)

which equals the integral of the number of tunneling times (Eq. 3.19) during the ramp.

Here, J̄ =
∫ Vf

Vi
J(V ) dV/(Vf − Vi) is the average tunneling rate during the ramp. This

parametrization of the ramp time is directly proportional to the inverse of the quench rate

at the critical point (Eq. 6.6), which is also frequently used as a parametrization [188].

Due to this proportionality, both parametrizations yield the same power-law exponents for

the growth of the coherence length with ramp time, which is analyzed in detail in Section

6.2.8.

Subsequently, we switched off all trapping potentials and recorded absorption images

along the z direction after a time-of-flight of tTOF = 7 ms (Fig. 6.4). From these images,
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Figure 6.3: Exact diagonalization calculations of the overlap of the initial state with the ground state of

the system and with a product state. These reveal that for not too small initial interactions

(U/J)i ≥ 20, the initial state in the experiment is essentially the ground state of the system,

i.e. excitations during the ramp of the scattering length in the deep lattice are negligible. For

(U/J)i ≥ 40, the initial state is essentially a product state, the ground state deep in the Mott

insulating regime.

we then determined the coherence length of the system. Alternatively, to obtain the width

of the in situ distribution, we performed in situ imaging by freezing out the distribution in

a very deep lattice and subsequently switching off the magnetic field (Section 3.4.1).

0.045

0.37

2.2

22

93

τramp0 1

Figure 6.4: Time-of-flight images for U(J/)i = 47 and (U/J)f = 1.9 in 1D for several τramp. While for very

short ramps, correlations cannot spread and no coherence is visible, for intermediate ramps,

coherence has emerged in the system. For very long ramps, coherence is not observable either.

6.2.2 Experimental Sequence for Higher Dimensions and Attrac-

tive Interactions

The experimental sequence for the emergence of coherence in higher dimensions is very

similar to the one in 1D and is shown in Fig. 6.5A,B for the 2D and 3D cases, respectively.

Instead of ramping down the lattice power only along the x-direction, as in the 1D case,

we simultaneously ramp down both horizontal lattices in 2D or all three lattices in 3D.
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In contrast to the 1D case, in 2D we do not quickly ramp the z-lattice to a deeper depth

of V zlat = 30Er, but stay at V zlat = 19Er, although this would also have been feasible in

principle and would reduce correlations along the z-direction. The ratio of the initial to

the final interaction is fixed at (U/J)i/(U/J)f ≈ 35 in 2D and 50 in 3D. The parameters for

the exponential approximation of the final lattice ramp (Section 6.14) are, for the 2D case,

B = 1.80/a0, C = 3.32, and D = 1.11. In the 3D case, they are B = 1.79/a0, C = 3.60,

and D = 1.11. Figure 6.6 shows TOF images for several ramp times τramp in the 2D case

We realize the measurements for attractive interactions in both 1D and 2D, leading to

negative temperature states in the case of thermalization, where the sequence for the 2D

case is shown in Fig. 6.5C. Realizing stable negative temperatures in 3D in our experimental

setup requires some technical improvements (Section 5.5.2) that could be implemented in

future experiments. In contrast to the repulsive interactions case, the magnetic field is

ramped over the Feshbach resonance at B = 402.50(3) G to a magnetic field value that

corresponds to a negative scattering length a. Thus, also the interaction parameter U is

switched to negative values such that the ensemble realizes a Mott insulating state at large

negative (U/J)i, close to the highest excited state. Simultaneously to the Feshbach ramp,

we also switch the external confinement from a trapping to an anti-trapping potential,

and thereby realize a stable state at negative temperature in the case of thermalization

(Chapter 5). The following lattice ramp decreases the absolute value |(U/J)|, crossing the

critical value (U/J)c = −3.3 [102–104] and finally reaching a small negative interaction

strength (U/J)f.

6.2.3 Extraction of Coherence Length

To extract the coherence length in all 1D, 2D and 3D cases, we integrated the TOF images

over a small range of width dint ≈ 0.2~klattTOF/m along the y-direction which includes

potential interference peaks (cf. Section 3.4.3). Thus, in the 2D and 3D case, we evaluated

only a single row of interference peaks, discarding the others. We fitted the resulting 1D

data with theoretically calculated curves, as detailed in Section 3.4.3. We determined the

in situ width R externally (Section 6.2.4), instead of keeping it as a free fitting parameter

in addition to the coherence length ξ. Figure 6.7 shows that the rather simple theoretical

model of Eqs. 3.44-3.47 captures the experimental interference curves well.

6.2.4 Obtaining the In Situ Width

The fitting function given by Eqs. 3.44-3.47 contains two free parameters, the coherence

length ξ and the in situ width R. For the fitting procedure, these are not entirely inde-

pendent as both a larger ξ and a smaller R have similar effects on the interference pattern,

namely decreasing peak widths (Fig. 6.8). Keeping both as free parameters in the fitting

procedure leads to unstable fitting results. Therefore, we only kept ξ as a free parameter

and determined R externally from in situ images.

In addition to the TOF images, we also recorded data sets with in situ images for each
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Figure 6.5: Experimental sequence for higher dimensions and attractive interactions. A, Sequence for the

emergence of coherence in 2D. The sequence is similar to the 1D sequence (Fig. 6.2). In the

2D case, both x- and y-lattice depths are ramped down simultaneously. In contrast to the 1D

sequence, the lattice depth along the z-direction stays at V zlat = 19Er (see main text). B, In

the 3D sequence, in contrast to the 2D sequence, we ramp down the depth of all three lattice

axes simultaneously. C, Sequence for the emergence of coherence for attractive interactions in

2D. By crossing the Feshbach resonance with the magnetic field ramp in the deep lattice, the

scattering length is rapidly switched to a negative value. This also leads to a large negative

(U/J)i value that decreases (in absolute terms) to the negative final interaction (U/J)f. During

the Feshbach ramp, we rapidly switch the trapping to an anti-trapping potential (not shown),

thereby creating a stable state at negative temperature (cf. Fig. 5.1).
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Figure 6.6: Time-of-flight images for the 2D case and repulsive interactions for (U/J)i = 110 and

(U/J)f = 3.2. In contrast to the 1D case (Fig. 6.4), coherence is established along both

horizontal directions. Again, there is an intermediate ramp time for which the final coherence

is maximized.

ramp time of some (U/J)f values in 1D, 2D (both at repulsive and attractive interactions),

and 3D. We fitted these distributions, which represent integrated 3D density distributions,

with 2D Gaussian functions

n(x, y) = Ae
− (x−x0)2

2R2
x
− (y−y0)2

2R2
y , (6.16)

from which we obtained the free fit parameters A, x0, Rx, y0, and Ry. Cuts through some

sample in situ images together with the fits are shown in Fig. 6.9. We obtained the in situ

width as the root mean square

R =

√
R2
x +R2

y

2
. (6.17)
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Figure 6.7: Extraction of coherence length. The experimental data (black) in a 1D measurement at

(U/J)f = 2 was integrated along y. The red curves are the fitted interference patterns for

each ramp time τramp with fixed in situ width R = 31 dlat. For this figure, after fitting the

normalized curves, both experimental and fitted curve were rescaled to the original amplitude

of the experimental data.
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Figure 6.8: Dependence of width and coherence length. Compared to the calculated interference pattern

for R = 31 dlat, ξ = 2 dlat (light blue), both a larger coherence length ξ (dark blue) and a

smaller width R lead to a decreasing peak width. These two parameters are therefore not

completely independent in the fitting procedure.

The resulting widths R for the 1D case with repulsive interactions are plotted in Fig.

6.10 versus τramp. For small and intermediate ramp times of τramp . 10, the width R
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Figure 6.9: Fitting of in situ clouds. The blue curves are cuts through experimental in situ distributions

for (U/J)f = 1.9 in 1D for various ramp times. In some images, the high optical density of

the cloud center exceeded the dynamical range of our imaging setup (cf. Section 3.4.1). We

excluded the corresponding data points from the fits and also from this plot. The red curves

are cuts through the 2D Gaussian fits.

is constant. Only for longer ramp times is global mass redistribution possible and the

cloud expands during the lattice ramp. While in the 1D cases, the cloud expands along

the x-direction where the lattice is lowered during ramp-down, in the 2D and 3D cases,

the clouds expand along both the x- and y- directions that are visible in the images taken

along the z-direction. As, in this project, we are mainly interested in short and intermediate

timescales, we average all measured R up to a maximum ramp time τmax
ramp = 4.
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Figure 6.10: Fitted in situ widths R versus ramp time for various (U/J)f in 1D. The dashed line indicates

the maximum ramp time τmax
ramp = 4 up to which the widths are averaged. The solid horizontal

lines indicate the resulting average.

We did not record in situ images for all data sets with (U/J)f for which we also recorded

TOF images. We can, however, still estimate the width R for those data sets for which

we only recorded TOF images. For this purpose, we determined the atom number from
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the TOF images by performing a simple area sum and averaged all values for small and

intermediate ramp times to obtain N . The atom number only decreases for large τramp

due to heating from technical noise and light scattering. As expected, when plotting the

fitted width R versus N1/3 for those data sets for which we recorded both TOF and in

situ images, we observe a clear correlation (Fig. 6.11). In all 1D and 2D experiments,

we used the same loading sequence for the optical lattice, leading to the same functional

dependence R = m · N1/3, with a fitted slope m1D,2D = 0.685(4) dlat. In the 3D case,

the trap frequencies during lattice loading were different, leading to a different atomic

distribution and a fitted slope m3D = 0.807(5) dlat. These fitted slopes allowed us to

estimate the widths R also for those data sets for which we did not record in situ images.

We rounded each R to an integer number of lattice constants dlat and used the resulting

value for the fitting of interference patterns to determine ξ. The resulting widths R of all

data sets lie between 26 and 32 dlat.
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Figure 6.11: Fitted in situ widths R versus N1/3, determined from area sums in TOF images. The two

quantities show a strong correlation. The linear fit R = m · N1/3 (solid gray line) to both

1D and 2D data gives a slope of m1D,2D = 0.685(4) dlat and the fit to the 3D data (purple)

m3D = 0.807(5) dlat.

6.2.5 DMRG Calculations

In the following three sections, I briefly describe the numerical calculation methods that

were used by our colleagues at FU Berlin – Mathis Friesdorf, Jens Eisert, Arnau Riera,

and Marco del Rey – to simulate our experimental measurements in 1D.

The key method in this project is a density matrix renormalization group (DMRG)

simulation [211], based on the Open Source TEBD code [212]. It is performed for a ho-

mogeneous 1D system of variable system size between N = 20 and 55, and is based on

matrix-product states. It was also extended to an inhomogeneous, trapped system (Section

6.3.3). The only input parameters for this calculation were the time-dependent parameters
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U(t) and J(t) as they develop during the experimental sequence, and there was no fitting

to experimental parameters. The code assumes open boundary conditions and truncates

the occupation per lattice site at 6 particles. By varying technical DMRG parameters and

monitoring the results of the simulation, the code was checked to be stable with respect to

these parameters.

The calculations start in the ground state of the deep lattice, which turns out to be an

excellent approximation for the experimental sequence (Section 6.2.1). The Feshbach ramp

preparing the initial state at (U/J)i is performed deep in the Mott insulating regime with

a large spectral gap and is very close to adiabatic. The simulation yields the correlator

〈â†µâν〉 and the coherence length is obtained by exponential fits of the correlations at the

center of the system (Fig. 6.12). For large τramp, the decay of correlations is expected to

be exponential only for large distances, but to follow power-law characteristics over short

distances [213]. However, we fit the overall decay with a single exponential function. This is

supported by the good agreement of the resulting coherence lengths with the experimentally

measured values (Section 6.3.1).
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Figure 6.12: Non-equilibrium correlators obtained from DMRG calculations for (U/J)f = 1 in 1D for

various ramp times and corresponding exponential fits.

6.2.6 Exact Diagonalization Calculations

The exact diagonalization calculation consists of a numerical integration of the homoge-

neous 1D Bose-Hubbard model. It is restricted to 15 sites with unity filling, and restricts

the on-site occupation to 9 bosons. Periodic boundary conditions were assumed and the

computational complexity was reduced by taking into account all symmetries of the system.

The exact diagonalization simulation agrees with the DMRG calculations for short ramp

times, despite its limitation to relatively small system sizes (Fig. 6.13): For short τramp,

the coherence length in the system is much smaller than the system size. For longer ramp
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times, where the two methods deviate from each other, a finite size scaling was performed

(Fig. 6.14). While the exact diagonalization calculation indeed shows limitations for long

ramp times, the DMRG calculation for system sizes larger than a particular threshold yields

essentially the same behavior as an infinite system. This is consistent with a light-cone

picture, where correlations spread for longer ramps but cannot exceed a certain limit set

by the maximum propagation velocity.
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Figure 6.13: Comparison of the resulting coherence lengths between the DMRG and exact diagonalization

calculations for (U/J)f = 2 in 1D. The vertical dashed line indicates the ramp time at which

deviations between the two methods become relevant.
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Figure 6.14: Finite size scaling of both DMRG and exact diagonalization calculations for a fixed ramp time

τramp = 2.0 at (U/J)f = 1 in 1D, plotted versus system size L (left). In the plot versus 1/L

(right) one can extract the limit L→∞.

6.2.7 Doublon-Holon Fermionic Model

The doublon-holon fermionic model (DHFM) is a method that is based on the truncation

of the Hilbert space in the quasiparticle picture of the Mott insulator with integer filling

n̄. It restricts the possible quasiparticle excitations to two kinds, holons and doublons,
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corresponding to occupations n̄− 1 and n̄+ 1, respectively. The model is a valid approx-

imation for the 1D Bose-Hubbard model close to the Mott insulator ground state in the

strong interaction regime (U/J) & 8 [214, 215]. Here, the density of quasiparticle excita-

tions is low such that interactions between these are negligible. Applying this model to a

lattice quench leads to the physical intuition that quasiparticle excitations are continuously

created during the ramp. These excitations subsequently spread ballistically throughout

the system with their corresponding quasiparticle velocity, which is ultimately limited by

a Lieb-Robinson bound [216–222]. The model is exactly solvable and therefore allows the

evolution of the system to be investigated for time-dependent parameters U(t), J(t) for

very large system sizes up to several hundreds of bosons. Even though the model is not

valid at the phase transition (U/J)c ≈ 3.3 (n̄ = 1) [102–104], which is crossed for the most

relevant experimental ramps, it reproduces the results of the full Bose-Hubbard model for

these ramps for sufficiently short ramp times. Further details about the model can be

found in the supplementary material of [183].

The starting point of the model, following [214, 215], is the Bose-Hubbard Hamiltonian,

where periodic boundary conditions and unity filling n̄ = 1 per lattice site are assumed.

The local occupation was truncated at 2 bosons per site, and the quasiparticles are intro-

duced as holons ĥ and doublons d̂. New doublon and holon species were constructed via a

double Jordan-Wigner transformation as fermionic excitations. As an additional approx-

imation, the fermions in the model are unconstrained, i.e. can appear simultaneously on

the same lattice site. As the density of excitations deep in the Mott insulating regime is

low and the coincidence of two excitations at the same site is very unlikely, this approxi-

mation is justified. The model is solved in the Fourier basis, by exactly diagonalizing the

Hamiltonian at a given time via a Bogoliubov transformation into modes γd̂,k, γĥ,−k of

quasiparticles with definite momenta k. From the dispersion relation of these modes, one

obtains a maximum group velocity for the spread of correlations [215], i.e. a maximum

relative velocity of a doublon-holon pair where both particles are created simultaneously

during the quench at opposite momenta [214],

V = max
k

∣∣∣vγĥ,−k − vγd̂,k ∣∣∣ = 6J − 32

3

J3

U2
+O

(
J4

U3

)
. (6.18)

This maximum velocity is reminiscent of a Lieb-Robinson bound. To finally obtain the

correlators 〈â†µâν〉 necessary for the comparison with the experiment, the initial state at

the beginning of the quench is assumed to be a product state, i.e. without any doublons

or holons.

In Fig. 6.15, the DHFM calculation is compared to the DMRG and exact diagonalization

results. For short ramp times, the DHFM calculation agrees with the other two methods,

even though the ramp crosses into the superfluid regime where the model loses validity.

During these fast ramps, only few doublons and holons are created and, in particular, they

also have only a short time to propagate. Therefore, in this regime, the limitations of

the model (i.e. a maximum of 2 particles per site and unconstrained fermions) do not yet

become relevant. In contrast, during longer ramp times, additional doublons and holons
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as well as larger propagation distances both exceed the limitations of the model and lead

to deviations from the exact calculations.
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Figure 6.15: Comparison of the doublon-holon fermionic model (on 64 sites) with DMRG and exact diag-

onalization (on 15 sites) for (U/J)f = 2 in 1D. The vertical dashed lines indicate the ramp

times at which the methods start to deviate from each other. For other (U/J)f values, the

behavior is qualitatively the same.

For Bose-Hubbard models, rigorous Lieb-Robinson bounds are not applicable in the case

of unlimited local occupation, because Bose enhancement increases the tunnel coupling

[214]. However, in the case of a truncated model such as the DHFM, we can estimate an

upper limit for the emergence of coherence in the system via the time-dependent maximum

velocity V for the spreading of quasiparticles (Eq. 6.18). At the end of the lattice ramp,

the spreading of quasiparticles is limited to
∫ τramp

0
dtV(t), corresponding to a crude upper

bound for the emergence of coherence,

ξ(τ) ≤ ξ0 +

∫ τramp

0

dtV(t). (6.19)

This limit takes into account the spreading of quasiparticles even close to the ground

state deep in the Mott insulating regime where quasiparticles are absent, and therefore

systematically overestimates the emergence of coherence. However, this intuitive estimate

already leads to a functional behavior of the increasing coherence length that qualitatively

resembles the exact calculation.

6.2.8 Determination of Power-Law Exponents

After the presentation of the three theoretical methods in the previous sections, in this

section, I describe how we extracted the power-law exponents for both experimental and

theoretical data. The experimentally measured coherence length is plotted in Fig. 6.17 for

several final interaction strengths (U/J)f. In this plot, one can distinguish several distinct
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Figure 6.16: Emergence of coherence for the Lieb-Robinson bound provided by Eq. 6.19 and for the

doublon-holon fermionic model for (U/J)f = 3 in 1D. The vertical dashed line indicates

the ramp time at which the DHFM deviates from the DMRG calculation (Fig. 6.15).

regimes. For very short ramp times, τramp . 0.1, the evolution can be approximated

by the sudden approximation. The measured coherence length is therefore given by the

initial coherence length ξi at the beginning of the lattice ramp. This coherence length

is considerably below one lattice spacing, ξi < dlat, and increases with decreasing (U/J)i

closer to the superfluid regime (cf. Figs. 6.20 and 6.21). Thus, already during the Feshbach

quench correlations build up between atoms, albeit only on a low level. For larger ramp

times 0.1 . τramp . 1, the coherence length quickly increases up to several lattice sites.

In this project, we mainly focus on this regime, as it gives the major contribution to the

emergence of coherence. Within almost one order of magnitude difference, the coherence

length versus ramp time shows a power-law increase

ξ(τramp) = a τ bramp, (6.20)

which I focus on in this section.

For larger ramp times τramp & 1, the coherence length starts to deviate from the power-

law increase and, at some point, decreases. The reason for this deviation is the external

trapping potential present in the experiment which requires global mass and entropy re-

distributions when ramping from the Mott insulating into the superfluid regime. Details

about the intricate effects of the external trapping potential are given in Section 6.3.3.

For very long ramp times τramp & 100, heating due to technical noise in the laser beams

as well as by photon scattering decreases the coherence length even further: From hold

time experiments in a shallow optical lattice potential, we know that phase coherence be-

tween lattice sites decreases on a timescale of several hundred ms (cf., e.g., Section 5.2.1),

corresponding to ramp times τramp of several hundred.

To obtain a reliable value for the exponent b of the power-law growth of the coherence
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Figure 6.17: Emergence of coherence. Extracted coherence length ξ for the 1D system and (U/J)i = 47,

(U/J)f = 2 versus ramp time τramp in a double-logarithmic plot. For very short τramp, the

coherence length acquires a small, finite value ξi. The power-law increase for intermediate

τramp is qualitatively highlighted by the straight line. For large τramp, the coherence length

decreases due to the external trapping potential and heating (see main text). The insets show

sample time-of-flight profiles (black) with the corresponding fitted calculated interference

pattern (red).

length, it is desirable to include as many data points as possible into the fitting procedure.

When fitting a pure power-law function ξ(τramp) = a τ bramp, however, the range of data

points for the fit is limited by two effects: For small ramp times, the coherence length is

given by the initial coherence length ξi, while for long ramp times τramp & 1, the data

deviates from a pure power-law increase due to the influence of the trap. To improve the

stability of the fit, we include the initial coherence length ξi in the fitting procedure via an

empirical function

ξ(τramp) =
(
ξqi + (a τ bramp)q

)1/q
, (6.21)

which approaches the pure power-law increase for large τramp. Here, a, b, and ξi serve as

free fit parameters; only for (U/J)f > (U/J)c, ξi is fixed to numerically calculated values

(see below). With this fit function, we can include all data points for short and intermediate

ramp times up to a maximum value τmax
ramp. As in some data sets, clear deviations from the

pure power-law behavior due to the trap appear for τramp > 1, we chose τmax
ramp = 1.0, as

it guarantees that for all data sets in any dimension and at both repulsive and attractive

interactions the influence of the trap on the fitted exponent b is negligible.

To obtain a reasonable value for the parameter q, we perform sample fits on the data

sets for (U/J)f = 1.0 and 1.9 in 1D for varying q, for both experimental as well as exact

diagonalization data (Section 6.2.6). As a measure of how close the fits are to the data,

we determine the sum of squared residuals (SSR) of the fit and find that q = 4 is a good

compromise (Fig. 6.18). Figure 6.19 indicates that the fitted exponents are robust with

respect to the choice of q and Fig. 6.20 shows that the choice q = 4 indeed captures the
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Figure 6.18: Sum of squared residuals (SSR) of the general power-law fit (Eq. 6.21) versus value of q for

some 1D data. Light-blue and dark-blue are the results of fits to experimental data with

(U/J)f = 1.0 and 1.9, respectively. Light-red and dark-red are the corresponding results for

exact diagonalization data. A choice of q = 4 leads to close-to-minimum SSR values in all

four cases.
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Figure 6.19: Fitted exponents in 1D for τmax
ramp = 1 and variable (U/J)f for various q values. Left, experi-

mental data, right, DMRG data. The error bars are fit uncertainties, and the vertical dashed

line indicates (U/J)c. For details of the fitting procedure, see Figs. 6.20 and 6.21.

In the 1D case, we also recorded data sets for which the system does not cross the phase

transition during the lattice ramp, but where the final interaction strength is still larger

than the critical value, at (U/J)f > (U/J)c. In these cases, the power-law increase of

the coherence length is slow, such that it is difficult to distinguish the power-law regime

from the regime that is dominated by the initial coherence length ξi, and the fit does not

capture the behavior reliably anymore. Exact diagonalization calculations (Section 6.2.6)

provide theory values for the initial coherence length ξi. In the case of the data sets with

(U/J)f < (U/J)c (Fig. 6.20), these agree well with the fitted ξi. For the data sets with

(U/J)f > (U/J)c, we fix the initial coherence lengths to the calculated ones and thereby

improve the stability of the fit. The resulting fits (Fig. 6.21) match the data well; only
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Figure 6.20: Power-law fits (solid lines) for q = 4 for experimental data in 1D with (U/J)f < (U/J)c

and the initial coherence length ξi as a free fit parameter. The vertical dashed lines indicate

the upper end τmax
ramp = 1.0 of the fitting range. The horizontal dashed lines denote ξi at the

beginning of the lattice ramp obtained from exact diagonalization calculations that show good

agreement with the extrapolated fitted values ξ(τramp → 0).

for very large interaction strengths (U/J)f � (U/J)c do systematic deviations from the

simple power-law behavior become relevant.
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Figure 6.21: Power-law fits (solid lines) for q = 4 for experimental data in 1D with (U/J)f > (U/J)c. The

initial coherence lengths ξi in the fit are fixed to the value obtained by exact diagonalization

calculations, indicated by the horizontal dashed lines. The vertical dashed lines indicate the

upper end τmax
ramp = 1.0 of the fitting range. The fitting model captures the behavior well for

not too large (U/J)f. For very large (U/J)f, systematic deviations of the model from the data

appear.

With this procedure, we were able to reduce the problem of defining an appropriate

fitting range. The upper limit τmax
ramp, however, is still arbitrary. In the 1D case, where

the phase transition at the multicritical point is of Kosterlitz-Thouless type [187], we

expect the power-law exponent to depend slightly on the ramp time and therefore also

on the upper limit for the fit (Section 6.3.1). As mentioned, we chose τmax
ramp = 1.0, as it

excludes data points that are considerably influenced by the trap, for all data sets in any

dimension. To estimate the uncertainty of the resulting exponents b, we also performed

fits for different values of τmax
ramp = 0.9 and 0.7. In Fig. 6.22, all resulting exponents in the

1D repulsive interactions case are plotted with the corresponding fit errors. As a measure

for the uncertainty associated with the choice of τmax
ramp, we determined the total amplitude

of the fitting errors for the three different choices of τmax
ramp.
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Figure 6.22: Fitted exponents for various upper limits of the fit range for A, experimental data, B, DMRG

data. The error bars are the fit uncertainties and the vertical dashed line indicates (U/J)c.

The insets show sample fits for (U/J)f = 2, with the vertical dashed lines indicating τmax
ramp.

6.3 Results in 1D

In this section, I present the results for the power-law emergence of coherence in 1D and

compare them to the numerical simulations. After determining the predictions of the

Kibble-Zurek mechanism for the 1D case, I compare them to our findings and analyze the

applicability of this model to our particular situation. I give an analysis of the decrease of

the coherence length in the experimental measurements for long ramp times, which is in

some regime caused by the external trapping potential.
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6.3.1 Power-Law Emergence of Coherence and the Kibble-Zurek

Prediction

We find excellent agreement between the measured experimental data on the emergence

of coherence in 1D and the results of DMRG calculations (Fig. 6.23). For both the initial

coherence length ξi as well as the subsequent power-law increase of the coherence length up

to ramp times of τramp . 1−2, the data of experiment and theory match very well. As the

numerical calculations are performed on a homogeneous system, this agreement shows that

for short and intermediate ramp times we effectively probe the homogeneous Bose-Hubbard

model in the experiment: On short timescales of up to a few tunneling events, global mass

redistribution in the system is negligible and thus the density is essentially constant during

the ramp and given by that of the initial Mott insulator, i.e. a homogeneous distribution

of one atom per site. In the homogeneous Bose-Hubbard model with integer filling the

Mott insulator to superfluid phase transition crosses the multicritical point at the tip of

the Mott lobe [32]. This experiment is the first investigation of the physics at a quantum

critical point in an essentially homogeneous system. In contrast, an inhomogeneous system,

where the dynamics is dominated by mass transport, crosses the phase transition at the

side of the Mott lobe, corresponding to a change in density [195].

Inhomogeneities only become relevant for longer ramp times τramp & 2 − 5: While

the coherence length in the numerical data continues to increase, the experimental data

deviates and starts to decrease. This effect is caused by the trap and is described in detail

in Section 6.3.3. In this regime, the system does not cross the phase transition at the

multicritical point anymore.

The doublon-holon fermionic model, which is consistent with the result of the DMRG

calculations for ramp times τramp . 0.3, consequently also agrees with the experimental

data in this regime. On these short timescales, the limitations of this analytic model are

not yet relevant (Section 6.2.7). The dynamics in this regime can therefore be explained by

quasiparticle excitations that are continuously created during the ramp and subsequently

spread ballistically in the system. The velocity of the quasiparticles is ultimately limited by

Lieb-Robinson bounds (Section 6.2.7). For intermediate ramp times τramp & 0.3, however,

interactions between the quasiparticles become relevant. These interactions, which are not

captured by the doublon-holon fermionic model presented in this work, are expected to be

one reason for the deviation of the model from the exact results.

For slow quenches, one can use the adiabatic theorem (Section 6.1.1) and the Kibble-

Zurek mechanism (Section 6.1.2) to explain the dynamics. If the breakdown of adiabaticity

happens close to the critical point, where the physics is governed by critical scaling, the

KZM predicts a power-law increase of the coherence length, with exponents that are de-

termined by the critical exponents of the corresponding universality class. The dynamical

exponent of the Bose-Hubbard model for a phase transition at the multicritical point is

z = 1, and the critical exponent ν depends on the dimensionality of the system. In 1D,

the phase transition at the multicritical point is a Kosterlitz-Thouless transition [187]. A

Kosterlitz-Thouless transition is characterized by an exponential, non-polynomial scaling
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Figure 6.23: Emergence of coherence in 1D. The experimental data (points) is plotted together with DMRG

calculations (blue curves). A, Comparison of (U/J)f = 2 data with doublon-holon fermionic

model (red curve). B, Data and DMRG calculations for various (U/J)f.

of both the gap and the correlation length around the critical point, which can be described

as ν → ∞ very close to the critical point. Following Eq. 6.11, the correlation length is

expected to scale linearly with the quench time [223],

ξ̂ ∝ τ bQ = τQ. (6.22)

This scaling should, however, only be valid in the limit of very long quench times, as the

exponential scaling of the gap in a Kosterlitz-Thouless transition implies that the coherence

length follows a true power-law increase only for very long quench times [224]. For shorter

quench times, the increase can, in a limited range of quench times, be approximated by

a power-law behavior, with an exponent depending on the quench time [224]. Estimates

from Ref. [224] yield an exponent b < 0.1, i.e. much smaller than the limiting case b = 1 of

Eq. 6.22 for extremely long quench times.

In the case of the generic density-driven transition at the side of the Mott lobe, the

critical exponents are z = 2 and ν = 0.5 [187], leading to

ξ̂ ∝ τ1/4
Q . (6.23)
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A classical phase transition with inhomogeneous Kibble-Zurek scaling has recently been

investigated with ion chains [203, 204], and a thermal phase transition with ultracold atom

systems [225, 226].

In both our experiment and in the numerical simulations, we observe a power-law in-

crease for ramp times of about one order of magnitude (Section 6.2.8). This may be

surprising, as rough estimates suggest that the breakdown of adiabaticity in the interme-

diate ramp time regime in the experiment happens outside of the critical regime, thus

violating an applicability condition of the KZM (Section 6.3.2). The fitted power-law ex-

ponents (Section 6.2.8) in 1D are systematically below b = 1 expected from the above KZM

scaling at the multicritical point for long quench times (Fig. 6.24). On the other hand,

they are substantially larger than the estimate b < 0.1 for our ramp time regime. The

KZM prediction for the generic transition at the side of the Mott lobe, b = 1/4, which we

do not expect to be applicable in the intermediate ramp time regime, is also clearly lower

than the experimental exponents.

More importantly than the deviation of the absolute value of the exponents from the

KZM scaling, we observe a dependence of the experimental and numerical exponents on

interaction (U/J)f, even when neglecting those ramps that do not cross the phase transition.

The Kibble-Zurek picture assumes a freezing of the state near the critical point and in a

gapless phase, such that the coherence length should not depend on the final interaction

(U/J)f of the ramp. While, therefore, the power-law is also expected to be independent

of (U/J)f, we clearly measure a dependence, both in the experiment as well as in the

numerical simulations.
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Figure 6.24: Fitted exponents for an upper limit of the fit range τmax
ramp = 1.0 for experimental and DMRG

data. The error bars are the total amplitude of fitting errors for τmax
ramp = 1.0, 0.9, and 0.7.

The vertical dashed line indicates (U/J)c. The horizontal dotted lines are the predictions

b = 1 and b = 1/4 of a typical Kibble-Zurek model for the 1D case at the tip and the side of

the Mott lobe, respectively.
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Figure 6.25: Exemplary exact diagonalization results of the development of ξ during the lattice ramp.

The calculation is performed in 1D for (U/J)i = 24 and (U/J)f = 1 for total ramp times of

τramp = 0, 0.25, 1.1, 2.3, and ∞ (from dark red to light red). While the coherence length

diverges in an infinite system in the adiabatic limit (τramp → ∞), it is restricted to finite

values in the case of finite ramp times. The emergence of coherence mostly happens around

the critical point (U/J)c (vertical dashed line), but barely during the initial part of the ramp

at large (U/J).

6.3.2 Applicability of the Kibble-Zurek Mechanism

The previous section showed that a simple Kibble-Zurek scaling is not sufficient to describe

the complex dynamics at the Mott to superfluid phase transition in the regime of fast and

intermediate quenches. Not only is the dependence of the exponent b not captured in the

Kibble-Zurek framework, but also the dependence of the exponent on dimensionality is

much weaker than suggested by Kibble-Zurek (Section 6.4). There are several reasons that

could be responsible for these deviations, which I address in this section.

In the experiment, a different final interaction (U/J)f also entails a different value (U/J)i

at the beginning of the quench. Exact diagonalization simulations (Section 6.2.6), however,

show that the initial portion of the evolution is adiabatic and coherence emerges mainly

around the critical point (U/J)c (Fig. 6.25). Thus, the influence of a different initial value

(U/J)i – in contrast to the final value (U/J)f – on the final coherence length is negligible and

cannot be responsible for the interaction dependence. Our collaborators have performed

additional exact diagonalization calculations with analogous ramps starting in a deeper

lattice Vlat = 45Er, in contrast to the usual Vlat = 19Er (Fig. 6.26). The resulting power-

law exponents do not change, except for the one quench that reaches deepest into the

superfluid regime. The reason is that in the latter case, the initial state for the usual

quench starting at Vlat = 19Er is already excited by the Feshbach ramp (see below) such

that the dynamics is not comparable to the dynamics of an initial ground state such as

in the case of Vlat = 45Er. The overall dependence of the exponent on (U/J)f is still

present. The influence of the initial and final values of the control parameter have also

been investigated in [227, 228].

The calculations also prove that the deviation cannot be caused by the external trap, as
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Figure 6.26: A, Comparison of exact diagonalization calculations of 15 particles for the experimental ramps

starting at Vlat = 19Er (blue) and ramps starting in a deeper lattice Vlat = 45Er (red), for

(U/J)f = 2 (left) and (U/J)f = 0.5 (right). B, Corresponding power-law exponents from the

ramps starting in the deeper lattice. The dotted line is a guide to the eye, the vertical dashed

line indicates (U/J)c.

they are performed in a homogeneous system and agree very well with the experimental

result. Furthermore, the influence of the trap becomes relevant in the experimental data

only for large ramp times τramp > 1, which are excluded in the fitting of the power-law

exponent (for details, see Section 6.3.3).

Also finite size effects [201, 229] cannot explain the deviation from the Kibble-Zurek

prediction, as the maximum measured coherence lengths ξmax ≈ 5 dlat are much smaller

than the system size 2R ≈ 60 dlat. This is further supported by numerical calculations for

various system sizes (Section 6.2.6), which converge for large systems and in which this

limiting value agrees with the experimentally measured data.

The Kibble-Zurek mechanism assumes that the quench starts in the ground state of the

system. The influence of the actual initial state has also been addressed in the literature

[230]. Numerical simulations, however, show that the Feshbach ramp in the 1D system in

general prepares the ground state of the system (Fig. 6.27A). Only for Feshbach ramps

to very low interactions (U/J)i is the system excited. Additionally, our theory colleagues

performed exact diagonalization calculations for initial states that include either a doublon

or a hole, corresponding to defects or finite temperature (Fig. 6.27B). The power-law

increase in both cases is slightly reduced compared to the zero temperature case, leading

to marginally smaller exponents. This small effect, however, also indicates that finite

temperature cannot be responsible for the deviation.

The ramp sequence may also have an influence on the resulting scaling [209, 231–233].

Our ramps of (U/J)(t) are, for all dimensionalities, captured well by exponential functions

(Eq. 6.14 and Section 6.2.2). In a large range around the critical point (U/J)c, however,

the quenches can be approximated by linear ramps, given by tangents to the experimental

ramp at the critical point (cf. Eq. 6.6): Relative deviations of these linear approximations

from the exponential ramps are below 10 % in a range U/J ∈ [2.3, 5.6] in 1D, [12, 28] in

2D, and [20, 50] in 3D. Therefore, the influence of the precise ramp timing on the resultant

scaling should be small. It is, however, not clear that the resulting power-laws only depend

on the evolution of the ratio (U/J)(t) rather than of each of the parameters U(t) and

J(t) individually. In our ramps, which are performed by changing the lattice depth Vlat,
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Figure 6.27: A, Adiabaticity of the Feshbach ramp. For positive (U/J)i, the overlap with the ground state

is indicated (cf. Fig. 6.3). For negative (U/J)i, corresponding to negative temperatures in

the case of thermalization, the overlap with the highest excited state is shown. B, Exact

diagonalization calculation for 12 sites, showing the influence of a single defect. For details,

see main text.

the interaction U(t) is close to constant, whereas J(t) increases almost exponentially and

dominates the dynamics. This issue would be an interesting topic for future experiments

or simulations.

An often stated assumption for the validity of the Kibble-Zurek mechanism is that

adiabaticity is only broken close to the phase transition, where everything is dominated by

critical scaling. Rough estimates suggest that the experimental ramps in the intermediate

ramp time regime are so fast that adiabaticity is broken already outside of the critical

regime and the Kibble-Zurek mechanism is not applicable. It is, however, difficult to give a

precise value of the maximum quench rate for which the KZM is still applicable and so far,

to our knowledge, no quantitative measure for this condition exists. It is therefore difficult

to apply it to a particular, concrete experimental sequence. A complete formulation of the

KZM should thus also include quantifiable limits of its applicability regime. Most likely,

such limits would not only depend on the universality class of the transition, but on more

details of the system such as the precise quench sequence. In addition, another uncertainty

arises from the limited available data about the scaling of the gap away from the phase

transition which sets the adiabaticity timescale (Section 6.1.1).

In general, the Kibble-Zurek mechanism does not seem to be applicable to the experi-

mental situation at hand. Far away from the phase transition, the evolution is certainly

adiabatic (Fig. 6.28). Adiabaticity breaks down close to the phase transition when the

gap becomes comparable to the change of the Hamiltonian, consistent with the KZM. The

dynamics around the phase transition, however, cannot be considered frozen in the current

setting: Numerical simulations show that the major part of the dynamics happens close to

the critical point (Fig. 6.28), in contrast to the Kibble-Zurek picture.

One may try to formulate potential intuitive explanations for the measured behavior

of a (U/J)f dependence of the power-law exponents. For example, as coherence mainly

emerges around the phase transition, the total time that the system spends at or near the

phase transition may determine the resulting coherence length at the end of the ramp and

thus also the power-law exponent. A different scattering length changes both (U/J)f and

(U/J)i and indeed changes this time span. This rescaling, however, is identical for all ramp
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Figure 6.28: Numerical simulations showing the time evolution of the system during a ramp from (U/J)i =

47 to (U/J)f = 2 in 1D for a fixed ramp time τramp = 0.25. Red dots indicate the overlap with

the ground state, and blue dots the instantaneous coherence length ξ. The vertical dashed

line marks the phase transition.

times τramp such that the prefactor of the power-law increase may be affected, but not the

power-law exponent. An intuitive explanation for the observed behavior is still lacking,

but hopefully this project encourages a scientific discussion.

6.3.3 Influence of the Trap

In a homogeneous system, both a Mott insulator as well as a superfluid are translation

invariant. Therefore, when ramping from the Mott insulating into the superfluid regime,

no mass redistribution is required. The same is also true for entropy transport. In contrast,

in a trapped system, both mass and entropy distributions strongly depend on the phase

of the atomic ensemble. While the mass distribution in the deep lattice is given by a

flat distribution in the central Mott insulating core, surrounded by a superfluid or normal

shell at lower filling, a weakly interacting superfluid in the shallow lattice at T = 0 is

described by a parabolic Thomas-Fermi distribution. Entropy in the strongly interacting

(U/J � (U/J)c) regime at T = 0 is only located in the shell around the central Mott

insulating core, whereas in the superfluid regime, it is distributed more evenly throughout

the system. Thus, when performing a quench from the Mott insulating into the superfluid

regime, in addition to the establishment of phase coherence between lattice sites, mass and

entropy have to be redistributed on a global scale, as illustrated in Fig. 6.29.

In the experiment, we employ a 50 ms ramp to load the atoms into the optical lattice,

from Vlat = 0Er to 19Er. In previous experiments [234], this timescale turned out to

produce large Mott insulating cores with only few double occupancies, thus allowing the

major part of required mass and entropy redistribution. As the ramp is not perfectly

adiabatic, the ensemble will still be heated and additional entropy will be created during

the ramp. The state will therefore consist of a low-entropy Mott insulating core at unity
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Figure 6.29: Density profiles for the ground state at the beginning (diabatic limit τramp = 0) and at the

end of the ramp (adiabatic limit τramp = ∞), as well as for finite ramp times. The DMRG

calculation was performed in 1D for (U/J)f = 3 for 28 particles and a trap frequency of

ωx/2π = 66 Hz by our colleagues at FU Berlin.

filling with a surrounding hot thermal gas at lower filling that accommodates most of the

entropy. Some entropy will also be stored in the central core in the form of holes. Even if

a large amount of mass and entropy is redistributed during the ramp, it remains unclear

whether global thermal equilibrium is established during the ramp. This is particularly

true for the employed blue-detuned optical lattice for which the resulting trap frequency of

the external confinement decreases with increasing lattice depth (Section 3.1.2). In the case

of a red-detuned lattice, the trap frequency during loading increases, thereby compressing

the cloud during loading. The resulting wedding cake structure of the atomic distribution

with higher occupancies in the center (Section 3.3.3) is closer to the distribution of the

initial superfluid than the flat n = 1 Mott insulator which we prepare in this experiment.

However, the very good agreement for short and intermediate ramp times between the

experimental data and the numerical calculations, which assume a perfect initial Mott

insulator, indicates that the observed experimental dynamics are indeed dominated by

that of a low-entropy initial Mott insulator.

Analogously, mass and entropy transport are also required during lattice ramp-down

from Vlat = 19Er to 6Er. The fitted in situ widths R (Fig. 6.10) indicate that mass

transport on a global scale only happens for ramp times τramp & 10, but is negligible

for short lattice ramps. The fraction of the lattice loading from Vlat = 6Er to 19Er

is performed in tramp ≈ 34 ms, corresponding to τramp ≈ 32. This particular choice of

ramp time for the loading ramp is therefore supported by the observed timescale for mass

redistribution.

For short and intermediate ramps, the final density distribution cannot correspond to

the equilibrium superfluid distribution at the particular parameters given. Thus, the chem-

141



6 Emergence of Coherence and the Dynamics of Quantum Phase Transitions

ical potential is not constant across the system and leads to dephasing between atoms on

different lattice sites. This phase difference can be seen in the complex two-point correla-

tors in Fig. 6.32, and drives a particle current that tries to adapt the chemical potential

throughout the system and thereby reach an equilibrium distribution. Dephasing already

takes place during the lattice ramp, and competes with the emergence of phase coherence

between lattice sites as soon as the latter starts to be established. The absolute amount of

dephasing during the ramp is difficult to estimate due to the dynamics in the system. In

general, the effect of dephasing increases with time; thus, for short ramp times τramp . 1,

dephasing is negligible. For longer ramp times, dephasing becomes relevant and the mea-

sured coherence length ξ deviates from the pure power-law behavior of the homogeneous

system. The dephasing rate is determined by the mismatch of the chemical potential across

the system. Figure 6.30 shows that the choice of a different final horizontal trap frequency

for the same interaction (U/J)f leads to the same power-law exponent, but can increase

the range of the pure power-law behavior and therefore reduces the mismatch of chemical

potential. Figure 6.31 shows that there indeed exists an optimum trap frequency for which

the effect of dephasing is minimized: For this particular trap frequency, the total amount of

required mass redistribution is minimized such that also the chemical potential mismatch

after a fixed ramp time is minimized.
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Figure 6.30: Coherence length versus ramp time for (U/J)f = 3.6 in 1D on a semi-log plot, for two different

trap frequencies. The solid curves are power-law fits up to τmax
ramp = 1.0 that are plotted up

to higher τramp. In the larger trap frequency case, the power-law range is extended to higher

ramp times. Thus, dephasing is reduced compared to the case with lower trap frequency (see

main text).

For a ramp time τramp & 40, the ramp should be close to adiabatic and most of the

required mass redistribution should be achieved such that dephasing should not be relevant.

Nonetheless, the measured coherence length after this ramp time is reduced by about a

factor of 2 compared to the maximum measured coherence length. This reduction can
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Figure 6.31: Coherence length for (U/J)f = 3.9 in 1D for a fixed ramp time τramp = 2.8 versus power in

the vertical dipole trap beam. The power at the maximum corresponds to a trap frequency

ωx/2π ≈ 70 Hz, consistent with Fig. 6.30. For this particular trap frequency, the effect of

dephasing is minimized (see main text).

be attributed to entropy transport, which is expected to happen on a similar timescale

as mass transport. After this ramp time, a global redistribution of entropy should have

been achieved, and the entropy that was mainly concentrated in the shell around the Mott

insulating core should have spread across the system. The increased entropy density on

most lattice sites leads to a reduction of the phase coherence between lattice sites and

therefore of the measured coherence length. For very long ramp times τramp & 100, we

expect heating due to light scattering and technical noise to reduce phase coherence even

further (Section 6.2.3).

The above considerations show that it is difficult to model the initial in situ distribution

precisely: The lattice loading is not perfectly adiabatic so that the initial state contains

entropy in the surrounding shell, as well as in the central Mott insulating core in the form

of holes. More importantly, the density distribution changes during lattice ramp down, and

the total amount of mass redistribution depends on the ramp time. Therefore, technically,

one would have to model the in situ distribution for each ramp time individually. In this

project, however, we assume a simple Gaussian for the in situ distribution. The good

agreement between the calculated interference patterns and the experimentally measured

curves (Section 6.2.3) shows that this simple model captures the experimental situation

very well. Also, the match of the experimentally extracted coherence lengths with the

ones obtained from numerical calculations is further support for the model used in the

experimental data evaluation.

Our collaborators have qualitatively modeled the effect of the trap by performing DMRG

calculations of a 1D system with a harmonic confinement of ωx/2π = 66 Hz. The simulation

was performed on tubes of variable length, i.e. where the initial state is a perfect n = 1 Mott
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insulator with variable atom number. The experimentally measured data is an average

over many such tubes of different lengths, where the length of each tube is determined

by the ellipsoid created by the external harmonic confinement. For longer ramp times

τramp > 1, the calculated two-point correlators obtain a significant imaginary contribution

from dephasing due to the spatially varying chemical potential (Fig. 6.32).
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Figure 6.32: Real (Re) and imaginary (Im) part of the final two-point correlator for (U/J)f = 3 in a trapped

system with N = 24 particles for various ramp times.

To extract the coherence length, the two-point correlators were fitted under the assump-

tion of exponentially decaying correlations (Eq. 3.47). The resulting coherence lengths

demonstrate that the deviation of the coherence length from the power-law behavior is

indeed caused by the trap and that this effect is dominated by the influence of the shorter

tubes (Fig. 6.33). A more precise modeling of the trapped system is not feasible because

of uncertainties regarding the initial state: Since the loading of the lattice is not perfectly

adiabatic and the system is not guaranteed to be in thermal equilibrium in the deep lat-

tice, a complete dynamical simulation of the 3D loading procedure would be necessary to

precisely predict the in situ distribution of the system in the deep lattice.

6.4 Emergence of Coherence in Higher Dimensions and

for Attractive Interactions

The very good agreement of the experimental measurements with the theoretical results of

exact diagonalization and DMRG calculations provides confidence that both experiment

and theory allow a reliable investigation of the actual quantum dynamics at the phase

transition, i.e., it certifies our experiment as a quantum simulator. Whereas current nu-

merical techniques are effectively limited to 1D systems, it is straightforward to extend the

experimental setup to higher dimensions. In this section, I show results on the emergence

of coherence in 2D and 3D, and compare them to the 1D case. I also present measurements

and calculations about the emergence of coherence for attractive interactions that prove

that the observed characteristic timescale is generic for the phase transition.
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Figure 6.33: Emergence of coherence in a trapped system for (U/J)f = 3 in 1D. The solid curves are

DMRG calculations for various particle numbers N and the points are experimental data.

6.4.1 Emergence of Coherence in 2D and 3D

The experimental sequences for the 2D and 3D measurements are similar to the 1D case and

are outlined in Section 6.2.2. The extraction of the coherence length from the individual

images is performed in the same way as in the 1D case (Section 6.2.3). The resulting

coherence lengths are shown in Fig. 6.34 as a function of ramp time. We found that,

for short ramp times τramp . 1, the emergence of coherence is almost independent of

dimensionality, showing similar curves for 1D, 2D and 3D up to the power-law regime.

This is rather surprising, as the Kibble-Zurek mechanism predicts exponents that strongly

depend on dimensionality (Section 6.1.2). Apparently, in the regime where the coherence

length is not larger than a few lattice sites, dimensionality only has a minor effect on the

spreading of correlations. For longer ramp times, the higher-dimensional systems continue

the emergence of coherence to larger ξ than in lower dimensions. This difference might be

explained by the different critical values (U/J)c ≈ 3.3 [102–104] in 1D, 16.7 [105] in 2D,

and 29.3 [106] in 3D: A fixed (U/J)f in the 1D case is closer to or even deeper in the Mott

insulating regime than for higher dimensions. Thereby, the maximum achievable coherence

length, even for adiabatic ramps, is fundamentally limited by the final interaction (U/J)f,

in addition to potential dephasing effects.

Similarly to 1D, we find that the extracted power-law exponents in both 2D and 3D

depend on the interaction (U/J)f (Fig. 6.35), in contrast to the prediction of the Kibble-

Zurek mechanism. The precise dependence, however, looks different in the various dimen-

sionalities. It may be interesting to perform a detailed analysis of the measured coherence

lengths and exponents, also with the help of theoretical models. Due to the difficulty of

simulations in higher dimensions, however, such a study is very challenging. The presented

measurements already reveal complex dynamics in this regime where, currently, there are
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Figure 6.34: Experimentally measured coherence length in 1D, 2D, and 3D versus τramp for various (U/J)f.

For short ramp times τramp . 1, the emergence of coherence is almost independent of dimen-

sionality. For larger τramp, the maximum achievable ξ is limited by the ratio (U/J)f/(U/J)c,

which is different for the three dimensionalities (see main text).

no theoretical methods available. This may encourage future theoretical efforts. Detailed

investigations have to include the precise ramp schedules employed in the experiment, the

dimension-dependent critical values (U/J)c, as well as the different nature of equilibrium

correlations: Whereas quasi-long-range order is expected in 1D, true long-range order pre-

vails in 2D in the case of T = 0 and in 3D.
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Figure 6.35: Power-law exponents b for the 2D (left) and 3D (right) cases. The fitting procedure to the

experimental data, including error bars, is identical to the 1D case (Section 6.2.8). Also in

higher dimensions, the exponent depends on the final interaction (U/J)f, in contrast to a

typical Kibble-Zurek type prediction (dotted lines).

6.4.2 Emergence of Coherence for Attractive Interactions

Qualitatively, the rather fast timescale for the emergence of coherence has already been

observed in previous experiments [34]. In these experiments, similarly to the experiments

presented above, the phase order of the initial superfluid at quasimomentum ~q = 0 before

loading into the deep lattice is identical to that of the final superfluid after ramping down

the lattice again, namely with an identical phase factor eiqx = 1 at each lattice site (cf. Fig.

3.3). Even in the deep optical lattice, if entropy is not too large, phase coherence is still

present in the superfluid shell around the Mott insulating core, representing a remnant

of the initial superfluid phase order. One might conjecture that the establishment of

phase coherence in the final superfluid could be facilitated by this remnant: Instead of

creating phase coherence out of completely scrambled local phases in a Mott insulating

state, the surviving phase order in the superfluid shell could potentially seed phase order
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across the system. With the help of negative temperatures, however, we can show that

the timescale for the emergence of coherence is indeed generic for this particular phase

transition, independent of the preparation procedure. The general idea is to choose different

phase orders for the initial and the final superfluid such that the above speculation can be

falsified.

The experimental sequence for the emergence of coherence measurements for attractive

interactions is described in Section 6.2.2. With our experimental setup we were able to

perform such measurements in 1D and 2D. The resulting emergence of coherence in 2D (Fig.

6.36) is almost identical to the repulsive interactions case, consistent with the symmetry

of the Bose-Hubbard Hamiltonian for repulsive and attractive interactions (cf. Section

4.3.5). Only for strong interactions are deviations visible. These can qualitatively be

explained by multi-band effects that lead to changes in the effective local Wannier functions

[235]: Attractive and repulsive interactions lead to an effectively deeper or shallower lattice

potential, respectively, that modifies the effective lattice ramp [236]. The corresponding

exponents of the power-law increase (Fig. 6.37) agree within the error bars.
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Figure 6.36: Experimental data of coherence length versus ramp time for repulsive and attractive interac-

tions in 2D. For not too strong interactions (U/J)f, the emergence of coherence for the two

cases is very similar. The deviations for larger interactions can be attributed to self-trapping

effects (see main text).

Also in 1D, we obtain very good agreement between the emergence of coherence for

attractive and repulsive interactions, at least for large interactions (Fig. 6.38). We can-

not reliably measure the emergence of coherence for small attractive interactions, as this

requires ramping the Feshbach field over the range where the scattering length vanishes.

This leads to a crossing from the Mott to the superfluid regime in the deep lattice. As the

system cannot follow this quench due to the long timescales in the deep lattice, a lot of

entropy is created and the system is heated.

Our theory collaborators performed exact diagonalization simulations of the 1D emer-

gence of coherence for attractive interactions. These are identical to the calculations for

repulsive interactions (Section 6.2.6). The simulated Feshbach ramp, in this case, crosses

the Feshbach resonance such that the highest excited state in the lowest band is populated,

consistent with a negative temperature state in the case of thermalization. The correlator

contains an additional phase factor in comparison with the positive temperature state (Eq.

3.49). Just like in the repulsive interactions case, the resulting emergence of coherence

signals show excellent agreement with the experimentally measured values (Fig. 6.39).

The quasimomentum distributions of negative and positive temperature states, as mea-
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Figure 6.37: Power-law exponents for repulsive and attractive interactions in 2D, extracted from the data

in Fig. 6.36. The fitting procedure is the same as described in Section 6.2.8. For not too

strong interactions |(U/J)f|, the values for the two cases are consistent with each other.
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Figure 6.39: Emergence of coherence in 1D for attractive interactions for various (U/J)f. The points are

experimental data and the solid curves exact diagonalization calculations.

sured in time-of-flight images, are fundamentally different, corresponding to different phase

factors at the lattice sites (Fig. 3.3). Nonetheless, we experimentally observe the same

timescale for the emergence of coherence in these different superfluid states. The super-

fluid shell at the beginning of the lattice ramp, if any, still contains the phase order with

identical phase factor at each lattice site: The switching of both interactions and external

confinement cannot lead to the fast establishment, still in the deep lattice, of phase coher-

ence with an alternating phase factor between lattice sites in the superfluid shell, as the
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tunneling time of τ = 5.7 ms is too large. Therefore, we conclude that the establishment

of phase coherence in the final shallow lattice is independent of the preparation sequence

and the timescale is generic for the Mott to superfluid phase transition.

6.5 Dynamics after and during the Quench

In this project, we have mostly evaluated the dynamics by varying the quench rate, i.e.

the duration of the final lattice ramp and measuring the coherence length right at the end

of the ramp. With our experimental setup, we can also extend the measurements to the

dynamics in the system after the ramp, where the ramp time is fixed. In this section, I

introduce several exemplary hold time measurements, for various dimensionalities, that are

not presented in our corresponding publication. The sequence for the 2D case is shown

in Fig. 6.40. In the following, I indicate the hold time, like the ramp time, in units of

tunneling times, τhold = thold · 2πJ/h ≈ thold · 3.0/ms. The dynamics of the in situ cloud

size after the ramp reveals information on the adiabaticity of the preceding ramp. In this

context, I also present measurements of how the in situ cloud size evolves during the ramp

for a fixed ramp time.
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Figure 6.40: Experimental sequence for measuring the dynamics after the final ramp. In contrast to the

previous ramps (Figs. 6.2 and 6.5), the ramp time tramp is fixed for this measurement. After

a variable hold time thold, in situ or time-of-flight images are taken.

6.5.1 Dynamics of the Cloud Size after the Quench

I first present in situ data for long hold times that allows conclusions to be drawn about

the timescale for global thermalization in the system. For this measurement in 3D, where

we ramped down all three lattice axes simultaneously, we employed a fixed ramp time

τramp = 9.3. This ramp time is outside the power-law regime and should already allow some

mass redistribution in the system. We performed the measurement for various scattering

lengths. The resulting in situ widths R (Fig. 6.41A) show dynamics for all interaction

values, indicating that the state at the end of the ramp is not in global thermal equilibrium.
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For very weak interactions (U/J)i, the system was already driven across the critical point

(U/J)c = 29.36 [106] in the deep lattice by the Feshbach ramp. As the timescales in

the deep lattice are very long, the short Feshbach ramp crossing the phase transition

is strongly nonadiabatic and leads to excitations of the system. These excitations are

reflected in strong oscillations after the lattice ramp. For stronger interactions, these

oscillations become weaker until the cloud approaches its equilibrium value asymptotically

for the strongest interactions. The dynamics happen on a timescale on the order of τhold =

40, in addition to the dynamics that are achieved during the ramp. This timescale for

equilibration is consistent with our choice of the lattice loading (Section 6.3.3). We also

recorded a single measurement for a longer ramp time τramp = 47 (Fig. 6.41B). The cloud

size is much more stable than in the case of the shorter ramp for the same interaction. This

indicates that the bulk of the required mass distribution has already taken place during

the lattice ramp.
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Figure 6.41: Fitted in situ widths R after variable hold time τhold. The ramp time of the 3D lattice ramp

is fixed at A, τramp = 9.3, and B, τramp = 47. In contrast to most other measurements in

this chapter, the time axis is linear. The two lowest interaction values (U/J)f = 0.1 and 0.4

correspond to (U/J)i = 4 and 18, i.e. the final lattice ramp already started in the superfluid

regime.

6.5.2 Dynamics of the Cloud Size during the Quench

We also performed measurements on the in situ cloud size during the final lattice ramp

from 19Er to 6Er in the 3D case. We recorded data for several interactions, for the same
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ramp times as above (Fig. 6.42). In both cases, the cloud size at the beginning of the ramp

is approximately independent of interaction. During the initial part of the ramp, where

the tunneling time is still large, there is not much dynamics. The bulk of the dynamics

happens during the last part of the ramp in the shallow lattice, where the tunneling time is

small. The dynamics are similar for all interactions. As expected, the cloud sizes reached

at the end of the ramps approximately correspond to the initial cloud sizes in the hold time

measurement above. The final cloud sizes in the case of τramp = 9.3, however, are smaller

than for τramp = 47. This again supports the hypothesis that, during the short ramp, the

total time for mass redistribution is insufficient to reach the large equilibrium value of R,

whereas during the long ramp the cloud is able to converge closer to equilibrium.
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Figure 6.42: Fitted in situ widthsR during the lattice ramp for various interactions in 3D for A, τramp = 9.3

and B, τramp = 47. The time during the ramp is indicated in units of integrated tunneling

times. Error bars are the standard deviation of several averaged measurements.

6.5.3 Emergence of Coherence after the Quench

We also investigated how coherence emerges in the system while holding the atoms in the

shallow optical lattice after the lattice ramp. The evaluation method is identical to the

other measurements in this chapter where the ramp duration was varied. The chosen ramp

times in this section are below τramp = 0.5 such that the global mass distribution is far

from equilibrium. We perform sample measurements for all three dimensionalities.
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1D

The dataset in 1D presented here was taken for a fixed ramp time τramp = 0.09. In

the measurements for variable ramp times, the power-law behavior begins approximately

at this ramp time, starting from the initial coherence length ξi (Section 6.3.1). We find

that the coherence length indeed increases substantially during holding (Fig. 6.43A). The

interactions (U/J)f = 1, 2, 3 are the most relevant, as they are both initially close to

the ground state (cf. Fig. 6.27) and cross the phase transition during the lattice ramp.

In these cases, the coherence length after the ramp approximately doubles within a hold

time of τhold ≈ 1. The maximum value ξmax ≈ 1.3 dlat is considerably below the maximum

coherence length in the case of variable ramp times, where it reaches 3 to 4 lattice sites (cf.

Fig. 6.23). The speed of the emergence increases with final interaction strength. This is

also represented by the corresponding power-law exponents (Fig. 6.43B), even though the

fit range is limited to a few data points only for which a power-law fit is not meaningful.

However, in analogy to the measurements for variable ramp times, we fitted a power-law

to obtain a qualitative measure. Whereas for very weak interactions, almost no coherence

emerges during holding, the exponent approaches approximately a value of 0.5 for (U/J)f =

(U/J)c.
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Figure 6.43: A, Coherence length ξ versus hold time τhold for various interactions in 1D, for a fixed ramp

time τramp = 0.093. The straight lines are qualitative power-law fits to three or four data

points. B, Extracted exponents from the power-law fits. The error bars are fit uncertainties.

The vertical dashed line indicates (U/J)c.

2D

In the case of 2D, I present data for a fixed ramp time τramp = 0.47. The initial coher-

ence length is already above 1 lattice site (Fig. 6.44A), consistent with the measurement

for variable ramp times (Fig. 6.34). Similarly to the 1D case above, for not too weak inter-

actions, the coherence length approximately doubles within a hold time of τhold ≈ 1. The

maximally achieved coherence lengths of ξmax ≈ 3.5 dlat are a factor of 2 smaller than in the

case of variable ramp times. The speed of the emergence of coherence again increases with
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interactions, where a power-law exponent b ≈ 0.5 is reached at (U/J)f ≈ 7 (Fig. 6.44B).
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Figure 6.44: A, Coherence length ξ versus hold time τhold for various interactions in 2D, for a fixed ramp

time τramp = 0.47. The straight lines are qualitative power-law fits for different fit ranges.

B, Extracted exponents from the power-law fits. The error bars are fit uncertainties. The

vertical dashed line indicates (U/J)c.

3D

In the 3D case, we chose a ramp time τramp = 0.23. The observed dynamics are quite

different to the 1D and 2D cases: Coherence emerges for much longer timescales, even for

hold times τhold > 100 for some interactions (U/J)f (Fig. 6.45A). The maximum achievable

coherence length ξmax ≈ 10 dlat for some interactions is much higher than in the 1D and

2D cases. The speed of the emergence for τhold . 10, on the other hand, is not higher than

in the 1D and 2D cases (Fig. 6.45B). Also in this case, the power-law exponent increases

with interaction. The accelerated spreading of correlations for τhold & 50 is a peculiarity

of the 3D system and can already, to a smaller extent, be observed in the case of variable

ramp times (Fig. 6.34). The corresponding power-law exponents are substantially larger

than the ones for shorter hold times (Fig. 6.45B). In the case of (U/J)f = 2 and 4, they

are compatible with b = 1 which corresponds to ballistic spreading of correlations. The

underlying mechanism is an open question and could be worth investigating in future

projects.

Summary

In all three dimensionalities, coherence also emerges after the quench. Compared to the

case of variable ramp times, the maximum achievable coherence length is smaller (1D and

2D), or takes much longer to develop (3D). This can be explained by the fast quenches

applied in the measurements of this section which excite the system strongly and thereby

hinder the emergence of coherence after the quench. In general, the rate at which coherence

emerges (i.e. the power-law exponent) during a hold time of up to a few tunneling times
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and in many cases also the maximum achievable coherence length increase with increasing

interaction (U/J)f. This behavior can also be explained by the excitations that are created

during the fast lattice quench: For small interactions (U/J)f, the fast quench reaches deep

into the superfluid regime and thereby strongly excites the system. These excitations limit

the maximum achievable coherence length after the quench and also the rate at which

correlations can spread. In contrast, in the case of larger interactions (U/J)f the quench

reaches less deep into the superfluid or even stays in the Mott insulating regime. It is

therefore less violent and leads to less excitations in the system that allow coherence to

emerge more efficiently and to higher values. In 3D, coherence emerges for much longer

hold times and to much higher values than in lower dimensions. This may be related to

the fact that, in contrast to 3D, real long-range order in 1D and, at finite temperature, in

2D does not exist [176, 177]. The observed behavior is certainly a very interesting topic for

future investigations.

Comparing the timescale for the local emergence of coherence in this section to the

long timescales required for mass redistribution (Sections 6.5.1 and 6.5.2) highlights the

difference between local and global thermalization: While locally, thermal equilibrium and

short-range phase coherence such as in the experiments on negative temperatures (Chapter

5) is achieved within a few tunneling times, global thermal equilibrium requires global mass

and entropy flows and is much slower (cf. Section 4.2).
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In this thesis, I have presented the first realization of a negative temperature state for

motional degrees of freedom. Ultracold atoms in optical lattices are particularly suitable

for this exotic state of matter, as the band structure of the optical lattice potential creates

an effective upper bound on the kinetic energy of the atoms. Using the combination of a

red-detuned dipole trap and a blue-detuned optical lattice potential allowed full control of

the external confinement, independent of the lattice depth. The use of bosonic potassium

(39K), which has a conveniently tunable Feshbach resonance, furthermore enabled us to

control interactions, and therefore all three parameters of the Bose-Hubbard Hamiltonian

independently. In addition to realizing negative temperatures, we used the flexibility of our

experimental setup to carry out a detailed study of the complex and not yet fully under-

stood dynamics at a quantum phase transition. We measured the emergence of coherence

at the Mott insulator to superfluid transition for various interactions, dimensionalities and

for repulsive and attractive interactions. Our results shed light on the intriguing question

of how two vastly different quantum states are dynamically connected.

To create negative temperature states, we used the total control of the quantum system

in our setup to create the required upper limit not only for the kinetic, but for the total

energy of the system. We engineered an optimized sequence that results in a stable negative

temperature state at low entropy. The negative temperature state manifested itself in

time-of-flight images as four sharp peaks in the corners of the Brillouin zone, indicating a

macroscopic occupation of the highest kinetic energy states. We found excellent agreement

with a fitted Bose-Einstein distribution function that allowed us to extract an estimate

for the (negative) temperature of the system. The negative temperature state turned out

to be as stable as a corresponding low entropy state at positive temperatures, indicating

thermal equilibrium of the final state and highlighting the symmetry between positive and

negative temperatures. With some straightforward extensions, the laws of thermodynamics

are fully consistent with negative temperatures. Seemingly counterintuitive consequences

of negative temperatures such as Carnot efficiencies above unity are in full agreement with

energy conservation and the second law of thermodynamics. Our published results have

sparked a discussion on the very foundations of statistical mechanics that goes far beyond

the direct implications of the experiments.

To investigate the dynamics of quantum phase transitions, we performed a quench from

the Mott insulator into the superfluid regime. Measurements of the coherence length from
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time-of-flight images revealed a power-law increase of the coherence length versus ramp

time, as expected from critical behavior. However, the exponents show a dependence on

the final interaction strength and indicate a complex behavior that reaches beyond any cur-

rent analytical description, such as the Kibble-Zurek mechanism. Numerical simulations

of the experimental sequence in 1D from our collaborators at FU Berlin show excellent

agreement with our experimental data, proving the reliability of the experiment for the

investigation of the quantum dynamics at the phase transition and thereby validating the

experiment as a quantum simulator. On very short timescales, the dynamics can be cap-

tured in a free quasiparticle picture, which however fails to describe the observed power-law

behavior. We found that short and intermediate timescales are consistent with dynamics

in a homogeneous system, whereas the dynamics at large timescales are dominated by slow

mass and entropy redistribution in the trap. The similarity of the emergence of coherence

in higher dimensions on short timescales indicates a minor role of dimensionality in this

process on these short timescales, in contrast to the strong dependence of the Kibble-Zurek

description on dimensionality. The striking symmetry of the dynamics at repulsive and at-

tractive interactions finally proves that the characteristic timescale does not depend on the

preparation scheme, but is a generic feature of the Mott to superfluid transition.

The symmetry between positive and negative temperatures predicts the identical phase

diagram for the attractive Bose-Hubbard model at negative temperatures as for the repul-

sive Bose-Hubbard model at positive temperatures, with only the quasimomenta shifted

by half the Brillouin zone. A next step could therefore be to study this phase diagram

by investigating the Feshbach-induced superfluid to Mott insulator transition at negative

temperatures [154], similarly to the positive temperature case. The stability of the sys-

tem in spite of the attractive interactions also allows future studies on the renormalization

of Hubbard parameters by interactions, analogous to previous results for repulsive inter-

actions [118, 154, 235, 237]. The tunability of the setup allows the upper bound on the

kinetic energy to be removed by lowering the lattice depth. Thereby one could investigate

the transition from a stable to an unstable system at attractive interactions in a controlled

way and connect the negative temperature states to the collapse of BECs [27], which is even

relevant for cosmology [238]. Furthermore, negative temperature states allow the study of

new many-body systems that are only present close to the upper limit of kinetic energy.

In kagome (i.e. trihexagonal) lattices, for example, the highest of three sub-bands is flat

and therefore of particular interest [239]. The parameter space for quantum simulations

can be extended with the use of negative temperatures, as these provide an elegant way to

effectively change the sign of interactions when Feshbach resonances are not available or to

stabilize a bosonic gas at attractive interactions against collapse [240]. For example, a sim-

ulation of the attractive, fermionic SU(3) model containing the quantum phase transition

from color superfluidity to trion bound states is possible by using repulsively interacting
173Yb, which features a low recombination loss rate [240].

A future improvement for the measurement of the dynamics of the Mott insulator to

superfluid phase transition may utilize a box potential to remove the influence of the
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trap on the experimental measurements. This would allow the observation of the power-

law behavior of the emergence of coherence for longer ramp times and the detection of

a possible dependence of the power-law exponent on ramp time in 1D [224]. In addition,

driving the transition purely via the interaction U(t), i.e. via the magnetic field close

to the Feshbach resonance, would enable to decouple the influence of the simultaneous

quenches in U(t) and J(t). Our findings on the dynamics at quantum phase transitions

reach beyond currently available theoretical models such as the Kibble-Zurek mechanism

or a quasiparticle picture. They raise the fundamental question of how well the dynamics

at a quantum phase transition can be described in the context of simple scaling laws

or, if the latter are not sufficient, how much knowledge about the system is in general

required to characterize the evolution. The success of the Kibble-Zurek mechanism for

various models suggests that much less information than a full knowledge of the quench,

the energy levels and the eigenstates, may be sufficient. We hope that this work inspires

scientific discussion in this direction. Our experimental measurements in 1D were confirmed

by numerical simulations as a valid quantum simulation, i.e. the agreement between the

two provides confidence that both approaches are free from systematic errors and reflect

the true quantum dynamics faithfully. As the dynamical behavior in higher dimensions is

out of reach of current numerical techniques, this work may also inspire an investigation

on the general problem of how accurately quantum-mechanical experiments can really

be certified as valid quantum simulators. Finally, also a general question concerning the

computational power of analog quantum simulators may receive future attention: How do

analog quantum simulations perform in relation to classical simulations in the context of

computational complexity theory, e.g. which problems can be solved by analog quantum

simulators in polynomial time that are exponentially hard on classical computers?
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Precision measurements on a tunable Mott insulator of ultracold atoms. Phys. Rev.

Lett. 107, 175301 (2011).

[119] S. Braun, J. P. Ronzheimer, M. Schreiber, S. S. Hodgman, T. Rom, I. Bloch, and U.

Schneider. Negative absolute temperature for motional degrees of freedom. Science

339, 52 (2013).

[120] C. J. Adkins. Equilibrium thermodynamics. Cambridge University Press (1983).

[121] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zangh. Long-time behavior of

macroscopic quantum systems. Eur. Phys. J. H 35, 173 (2010).

[122] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore. Nonequilibrium dy-

namics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863 (2011).

[123] M. V. Berry. Regular and irregular motion. In: AIP conference proceedings 46, 1.

AIP Publishing (1978).

[124] E. Fermi, J. Pasta, and S. Ulam. Studies of nonlinear problems. Los Alamos Scientific

Laboratory, LA-1940 (1955).

[125] G. P. Berman and F. M. Izrailev. The Fermi-Pasta-Ulam problem: Fifty years of

progress. Chaos 15, 015104 (2005).

[126] A. N. Kolmogorov. On conservation of conditionally periodic motions under small

perturbations of the Hamiltonian. Dokl. Akad. Nauk SSSR 98, 527 (1954).

[127] J. Moser. On invariant curves of area-preserving mappings of an annulus. Vanden-

hoeck & Ruprecht (1962).

[128] V. I. Arnol’d. Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-

periodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv.

18, 9 (1963).

[129] A. Peres. Ergodicity and mixing in quantum theory. I. Phys. Rev. A 30, 504 (1984).

[130] M. Rigol, V. Dunjko, and M. Olshanii. Thermalization and its mechanism for

generic isolated quantum systems. Nature 452, 854 (2008).

[131] J. M. Deutsch. Quantum statistical mechanics in a closed system. Phys. Rev. A 43,

2046 (1991).

166

http://dx.doi.org/10.1103/PhysRevLett.101.155303
http://dx.doi.org/10.1103/PhysRevLett.101.155303
http://dx.doi.org/10.1103/PhysRevLett.74.1542
http://dx.doi.org/10.1103/PhysRevLett.74.1542
http://dx.doi.org/10.1103/PhysRevLett.87.160405
http://dx.doi.org/10.1103/PhysRevLett.87.160405
http://dx.doi.org/10.1103/PhysRevLett.107.175301
http://dx.doi.org/10.1103/PhysRevLett.107.175301
http://dx.doi.org/10.1126/science.1227831
http://dx.doi.org/10.1126/science.1227831
http://dx.doi.org/10.1140/epjh/e2010-00007-7
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1063/1.1855036
http://dx.doi.org/10.1070/RM1963v018n05ABEH004130
http://dx.doi.org/10.1070/RM1963v018n05ABEH004130
http://dx.doi.org/10.1103/PhysRevA.30.504
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevA.43.2046


Bibliography

[132] M. Srednicki. Chaos and quantum thermalization. Phys. Rev. E 50, 888 (1994).

[133] J.-S. Caux and J. Mossel. Remarks on the notion of quantum integrability. J. Stat.

Mech. 2011, P02023 (2011).

[134] M. Girardeau. Relationship between systems of impenetrable bosons and fermions

in one dimension. J. Math. Phys. 1, 516 (1960).

[135] P. Jordan and E. Wigner. Über das Paulische Aequivalenzverbot. Z. Phys. 47, 631

(1928).

[136] M. Rigol and A. Muramatsu. Universal properties of hard-core bosons confined on

one-dimensional lattices. Phys. Rev. A 70, 031603 (2004).

[137] T. Kinoshita, T. Wenger, and D. S. Weiss. A quantum Newton’s cradle. Nature 440,

900 (2006).

[138] S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert, and I.
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[142] J. Berges, S. Borsányi, and C. Wetterich. Prethermalization. Phys. Rev. Lett. 93,

142002 (2004).
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