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1 INTRODUCTION 

Classical and African swine fever belong to the most important contagious diseases of pigs 

worldwide and are notifiable to the World Organization for Animal Health (OIE). While 

outbreaks of classical swine fever (CSF) have a long and ongoing history in Europe, up to 

now African swine fever (ASF) was considered an exotic disease within EU Member States. 

However, very recently the disease has been introduced into the European wild boar and 

domestic pig population in Poland, Lithuania, Latvia, and Estland. Hence, both diseases pose 

a high risk to the whole European pig industry and wildlife. 

Regardless of very similar clinical pictures that are not discriminable without laboratory 

diagnosis, the causative agents differ greatly. Classical swine fever is caused by a small 

enveloped positive single-stranded RNA virus belonging to the genus Pestivirus within the 

Flaviviridae family. The causative agent of ASF is a complex DNA virus of the genus 

Asfivirus within the Asfarviridae family representing the only DNA arthropod-borne (ARBO) 

virus. 

Classical swine fever virus (CSFV) isolates of recent European outbreaks are characterized by 

their moderate virulence. The clinical picture can range from an almost inapparent infection to 

a lethal hemorrhagic fever like illness. High variability in disease course and outcome are a 

challenge for both disease surveillance and pathogenetic research. Although several studies 

aimed to analyze basic pathogenetic mechanisms, responsible factors have never been 

elucidated entirely. While on the host’s side, age and immune status are acknowleged 

parameters, the virulence of the isolate seems to be decisive on the agent’s side. Moreover, 

the influence of the genetic background of the host has been discussed. To define host 

responses linked to different disease courses and outcome, a first animal trial was conducted 

with a moderately virulent CSFV strain and different pig breeds including European wild 

boar. In a second trial, the impact of the age was revisited in combination with the assessment 

of tools for active swine fever surveillance.  

Dysregulation of immune responses, especially cytokine reactions, seems to play a crucial 

role in CSF pathogenesis. Up to now, there has been a serious lack of appropriate and reliable 

tools for cytokine gene expression analyses, especially in pigs. To overcome this 

shortcoming, a harmonized TaqMan-based RT-qPCR protocol for the detection of seven 

swine fever relevant cytokines was developed and fully validated. This assay is now available 

for future studies and could be implemented also for other swine diseases including ASF.  
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Beyond the studies focusing on underlying mechanisms, diagnostic approaches for active and 

passive disease surveillance in wild boar have been targeted. Sample submission is usually the 

bottleneck of wildlife surveillance under field conditions, even in times of increased risk. 

Pragmatic approaches for sampling and transport could improve the compliance of hunters. In 

view of the fact that an introduction of ASF and CSF is usually accompanied by an increased 

mortality, animals found dead have to be sampled even if they are already in various stages of 

decay. To this means, a dry-/ semi-dry blood swab method was implemented enabling an easy 

handling under field and laboratory conditions. Moreover, a simple approach for sampling of 

live animals for active surveillance, i.e. a “rope-in-a-bait” method, was evaluated with respect 

to the frequently observed subclinical CSF forms in older animals.   



Literature review 

3 

2 LITERATURE REVIEW 

2.1 Classical Swine Fever 

2.1.1 Virus taxonomy, morphology, global distribution and economic impact 

The causative agent of classical swine fever (CSF) is Classical swine fever virus (CSFV) 

which belongs to the genus Pestivirus within the Flaviviridae family (Lindenbach, 2013). It 

represents a small, enveloped, positive single-stranded RNA virus (Horzinek, 1967; 

Lindenbach, 2013; Meyers, 1989; Moennig, 1992).  

The RNA genome consists of approximately 12.3 kb and includes one large open reading 

frame (ORF) flanked by two non-translated regions (NTRs) (Collett, 1992; Rümenapf et al., 

1991a). Virus particles are composed of eleven viral proteins comprising four structural and 

seven non-structural (NS) proteins. In detail, the core (C) protein along with three envelope 

glycopreoteins (E1, E2, and Erns) constitutes the virion, and Npro, p7, NS2-3, NS4A, NS4B, 

NS5A, and NS5B are NS proteins (Elbers et al., 1996; Lattwein et al., 2012; Thiel et al., 

1991). 

CSFV strains can be assigned to three distinct genotypes with three to four subtypes (Paton et 

al., 2000; Postel et al., 2012). This classification is based on the nucleotide sequences of 

fragments of the 5′-non-translated region (5′-NTR), and of the region encoding the 

glycoprotein E2 (Greiser-Wilke et al., 2006; Paton et al., 2000). Due to the fact that the 

appearance of different subtypes is often linked to particular geographical distributions, 

genetic typing enables to trace disease spread and outbreak dynamics (Depner et al., 2006; 

Paton et al., 2000). 

Classical swine fever virus is prevalent worldwide except for Australia, Canada, the United 

States and most of the EU Member States in which eradication programs have been 

successfully implemented. While the current situation in Africa remains unknown (apart from 

reported cases in Madagascar and South Africa) (Penrith et al., 2011; Sandvik et al., 2005), 

CSFV is prevalent in Central and South America, the Carribbean and many parts of Asia 

(Moennig, 2008). Although a decreasing number of outbreaks was reported during the last 

decade (Postel et al., 2013), CSFV keeps reoccurring also in several European countries in 

domestic pigs and wild boar (Blome et al., 2010; Edwards et al., 2000; Floegel-Niesmann et 

al., 2009; Leifer et al., 2010; Moennig, 2008; Pol et al., 2008). Especially the South-Eastern 

European countries are affected although clear reports are rare (Edwards et al., 2000; Vargas 
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Teran et al., 2004). However, recent outbreaks in Lithuania and Latvia demonstrate the 

permanent risk of reintroduction (Postel et al., 2013). Interestingly, current CSF restriction 

zones in Latvia overlap with ASF outbreaks (Animal Disease Notification System, ADNS, 

visited September 11
th

 2014). 

Over the last two decades, most outbreaks among European domestic pigs and wild boar were 

caused by moderately virulent strains of genotype 2, especially subtype 2.3 (Bartak and 

Greiser-Wilke, 2000; Biagetti et al., 2001; Blome et al., 2010; Depner et al., 2006; Leifer et 

al., 2010). The most recent CSFV occurrence in Germany in 2009 was caused by the strain 

“Roesrath” of genotype 2.3. This isolate, found in North Rhine-Westphalia, Germany, 

originated from a wild boar piglet. Wild boar get usually infected through contaminated food 

and may act as important reservoir for CSFV. Large wild boar population sizes (as present in 

Germany and other European countries) may facilitate virus persistence over a long time 

(Moennig, 2000; Penrith et al., 2011). In several European countries, CSFV occurrence in 

wild boar even reaches an endemic state. Because of the permanent risk to spill over into the 

domestic pig population, CSFV infections in wild boar represent a constant threat to the 

whole domestic pig industry and wildlife. Moreover, expensive control-measures are required 

in cases of disease occurence resulting in tremendous socio-economic damage. To state an 

example, the fatality of financial losses had been revealed during the CSFV epidemic in The 

Netherlands in 1997/1998 (Stegeman et al., 2000). The related control measures included the 

slaughtering of more than 11 million pigs and incurred expenses were estimated at about US $ 

2 billion (Stegeman et al., 2000; Terpstra and de Smit, 2000). 

The officially confirmed global CSF situation from January 2013 to August 2014 is illustrated 

in the disease distribution map according to the OIE in Fig. 1 (available on the OIE website 

http://www.oie.int).  

http://www.oie.int/
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Figure 1: CSFV outbreak distribution in domestic pigs and wild boar; reporting period: 

January 2013 to August 2014. 
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2.1.2 Epidemiology, disease surveillance and control strategies 

Members of the Suidae family, i.e. domestic pigs and European wild boar, but also Common 

Warthogs (Phacochoerus africanus) and bushpigs (Potamocherus larvatus) are susceptible 

hosts (Blacksell et al., 2006; Depner et al., 1995; Everett et al., 2011). 

CSF can be transmitted directly by inhaling or ingesting the virus, indirectly through fomites 

contaminated with CSFV (e.g. vehicles, equipment, clothing) or by treatment with 

contaminated medicinal equipment (van Oirschot, 1999).  

Apart from horizontal transmission, a vertical infection to fetuses via the placenta is possible 

in infected sows throughout all stages of gestation. If infection occurs during the first weeks 

of pregnancy, persistently infected piglets may be born and develop the late-onset form of 

CSF (Moennig, 2000; van Oirschot, 1999). Similarly to chronically infected pigs, these 

animals shed virus constantly over the whole course and by that can have a high 

epidemiological impact (van Oirschot, 2004). Another epidemiological risk arises from the 

fact that CSFV may persist in uncooked meat for long periods. This can be crucial in terms of 

illegal feeding of e.g. smuggled meat or swill (Wooldridge et al., 2006). Further risk factors 

for viral spread over long distances include movements of people between herds and transport 

of swine during the incubation time (for slaughtering, sale or breeding). Besides, local spreads 

through neighbourhood infections may also contribute to CSFV dissemination. These most 

likely occur when farm densities are high and distances between them are small (Boender et 

al., 2007). 

Because of the potential to spread over long distances and cause outbreaks in areas where 

CSF was eradicated, e.g. CSF outbreaks in South Africa, The Netherlands, Great Britain, and 

France (Sandvik et al., 2005; Simon et al., 2013; Widjojoatmodjo et al., 1999), disease 

surveillance is not only required for endemic areas. Only timely detection and intervention 

can lower the impact on both, pig industry and wildlife (De la Torre et al., 2013) and prove 

that the disease is not hiding within the domestic pig or wild boar population. This also 

applies for ASF. 

For a successful eradication, cost-effective control strategies adjusted to local conditions and 

pig production systems are necessary. Backyard holdings, like the ones in South-Eastern 

Europe, represent an epidemiological risk by allowing contact between both, domestic pigs 

and wild boar and therefore provide ideal preconditions for virus introduction and 

transmission (Blome et al., 2010). Due to implementation of modern pig production systems 

in Western European countries the risk of CSFV introduction has been significantly reduced. 
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However, during the last years CSFV was reported sporadically also in these countries which 

are otherwise free from CSFV (Germany, Italy, France). In more than two-thirds of cases 

disease outbreaks were associated with contacts between domestic pigs and wild boar 

(Fritzemeier et al., 2000; Laddomada, 2000). Therefore samplings from wild boar are of 

utmost importance for successfull disease surveillance. 

Serological (Rossi et al., 2005) and virological monitoring systems were implemented using 

either blood or organ samples (Mintiens et al., 2005). A scientific opinion issued by the 

European Commission (Scientific Opinion XXIV/B3/R09/1999) recommends a multi-faceted 

approach to control and eradicate CSF in wild boar population comprising the reduction of 

population density, intensive diagnosis and good hygiene practice during hunting. In addition 

to the reduction of wild boar population, an oral vaccination strategy of wild boar using the 

modified live C-Strain vaccine was implemented (Kaden and Lange, 2001; Kaden et al., 

2000). Inclusion of vaccination can limit costs and virus dissemination (van Oirschot, 2003). 

However, the major disadvantage of conventional modified live vaccines are massive trade 

restrictions (Terpstra and de Smit, 2000). Therefore, marker vaccines able to differentiate 

infected from vaccinated animals (DIVA) were developed comprising the commercial 

available E2 subunit marker vaccine (Beer et al., 2007; Moormann et al., 2000) and the 

recently developed marker vaccine candidate CP7_E2alf (Reimann et al., 2004). The latter 

was recently shown to be equally protective as the C-Strain vaccine (Blome et al., 2012; 

Blome et al., 2014b; Eble et al., 2012; Gabriel et al., 2012; König et al., 2011). However, for 

rapid eradication a strict stamping out policy is widely conducted including culling of infected 

pigs, in-contact herds, movement restrictions, non-hazardous removal of carcasses as well as 

the establishment of protection and surveillance zones (Garner et al., 2001; Greiser-Wilke and 

Moennig, 2004). These measures are laid down in the Council Directive 2001/89/EC and 

Commission Decision 2002/106/EC. Although a prophylactic vaccination is prohibited an 

emergency vaccination is a legal tool for limiting CSFV spread. However, in order to avoid 

trade restrictions emergency vaccination was conducted only in Romania so far (Anonymous, 

2006). 
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2.1.3 Clinical courses, signs and lesions 

The clinical picture of CSF is highly variable, ranging from an almost inapparent infection to 

a hemorrhagic fever like illness (Moennig, 2000). In general, peracute, acute, chronic and 

prenatal disease courses can be distinguished. The peracute form is characterized by a short 

period of high fever and a rapid death without the development of CSFV specific signs 

(Dunne, 1970). 

Acute courses may either lead to death (acute-lethal) or to full recovery including production 

of neutralizing antibodies and complete virus clearance (acute-transient). Severe acute courses 

usually start with high fever, anorexia, huddling, conjunctivitis, respiratory and gastro-

intestinal signs (constipation followed by diarrhea) as well as general depression. Secondary 

infections mostly affect the respiratory and gastrointestinal tract as a result of leukopenia and 

thrombocytopenia. Pigs showing an acute-lethal disease course may additionally develop 

hemorrhagic lesions including petechiae and ecchymoses as well as cyanosis and central 

nervous disorders (staggering gait, incoordination, convulsions) (Moennig et al., 2003). These 

signs mostly occur between 14 to 21 days after infection. Hemorrhages of the skin typically 

appear on ears, abdomen, anogenital region, tail and the inner side of the limbs (Moennig et 

al., 2003). In cases of acute-lethal courses pigs often die within 10 to 20 days after infection 

(Blome et al., 2006). In contrast, clinical signs during acute-transient forms are mild and often 

not indicative for CSF (atypical course of infection). These forms usually result in a complete 

convalescence (Depner, 2006). 

The chronic course is accompanied by non-specific symptoms including recurrent fever, loss 

of body weight and growth retardation due to anorexia and chronic enteritis. However, during 

the initial phase after infection signs may resemble the acute forms (Moennig et al., 2003). As 

a result of general immune suppression, secondary infections are frequently observed. After 

several month of alternating acute clinical periods and general improvements all chronically 

infected animals succumb to infection (Moennig et al., 2003; van Oirschot, 1999).  

Transplacentarly infections of the fetus result in a prenatal disease course. While pregnant 

sows only develop mild or subclinical symptoms the effect in fetuses is dependent on the time 

of gestation. CSFV-infections during the very early phase of pregnancy may result in 

abortions, stillbirth, mummification and malformations. In cases of transplacental infections 

between day 50 and 70, immunotolerant and persistently infected piglets are born. Although 

this infection may be inapparent for month, these animals shed virus continuously until finally 

developing the late-onset form and die. Characteristic clinical signs comprise growth 
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retardation, loss of body weight, conjunctivitis, dermatitis, diarrhea and occasionally 

congenital tremor (Kleiboeker, 2002). 

The pathological signs of acute CSF forms include hemorrhagic symptoms (petechiae, 

ecchymoses) in numerous organs, lesions within the lymphoreticular system and infarcts of 

the spleen (Kleiboeker, 2002; Moennig et al., 2003; van Oirschot, 1999). Furthermore, an 

inflammation in different stages of severity affecting the gastro-intestinal tract, particularly 

the ileum, ileocaecal valve and colon (from catarrhal to necrotic and ulcerative lesions), may 

occur. Bacterial secondary infections commonly cause inflammations at the tonsil and the 

respiratory tract (Kleiboeker, 2002). In addition, a non-purulent meningoencephalitis may 

develop (Gruber et al., 1995). 

In contrast to the acute form, pathological findings are less pronounced in cases of chronic 

CSF (Kleiboeker, 2002). Here, atrophy of the thymus and symptoms of the gastro-intestinal 

tract including necrosis and ulceration of the ileum, the ileocaecal valve and the colon are 

characteristic signs (Moennig et al., 2003; van Oirschot, 1999). Haematological changes upon 

CSFV infection comprise leukopenia, thrombocytopenia and in certain cases also anaemia 

(Thiel, 1996; Trautwein, 1988). 
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2.1.4 Pathogenesis and immune response 

Upon oronasal CSFV infection, primary replication takes place in tonsils and other local 

lymphoreticular tissues. Subsequently, virus progeny reaches regional lymph nodes via 

lymphatic vessels and enter the blood circulation (Dunne, 1973; Liess, 1987; Ressang, 1973). 

Thereafter, virus is disseminated into the spleen, bone marrow, visceral lymph nodes, 

intestinal lymphatic mesh, and other parenchymatos organs. 

Thereby, viral replication takes place within immune cells, particularly monocytes, 

macrophages and dendritic cells, which represent primary target cells (Carrasco et al., 2004; 

Gomez-Villamandos et al., 2001; Moennig, 2000). Furthermore, endothelial and epithelial 

cells can get initially infected (Ressang, 1973; Trautwein, 1988) until during later disease 

stages almost every cell type is susceptible towards CSFV (Knoetig et al., 1999). 

After an incubation time of 3 to 10 days a clinical onset with highly varying stages of severity 

may occur (Moennig, 2000). Virus shedding already begins prior to occurence of clinical 

signs (de Smit et al., 1999; Floegel et al., 2000; Moennig, 2008; van Oirschot, 1999) and 

sustains until development of antibodies or death. CSFV is excreted in large amounts via 

saliva and also, to a lesser extent, in urine, faeces, semen as well as ocular and nasal 

secretions (Pasick, 2008; Ressang, 1973; van Oirschot, 1999). 

CSFV infection may either lead to peracute death or result in complete convalescence. 

Several factors from both, the virus’ and the host’s side, has been discussed to influence the 

clinical picture and outcome (Depner et al., 1997; Depner et al., 1995; Kaden et al., 2004). On 

the agent’s side, the virulence of the CSFV isolate seems to play the major role and, to a 

lesser extent, the dose and route of infection (Kaden et al., 2004). It was reported that 

moderately or low virulent strains of wild boar origin may lead to a more severe disease 

course or higher viral loads when introduced into domestic pigs (Kaden et al., 2000; Kaden et 

al., 1999). On the host’s side, age and immune status are assumed to play the key role 

(Depner et al., 1997; Depner et al., 1995; Kaden et al., 2004; Moennig et al., 2003). In 

addition, genetically variances leading to distinct innate antiviral immune responses in 

different breeds or races were suggested to influence the disease severity (Blacksell et al., 

2006; Depner et al., 1997). However, the entire influences of host factors are still far from 

being understood. Neither beneficial nor detrimental reaction pattern have been clearly 

defined to date. 

 



Literature review 

11 

Serious courses predominate in young pigs while the clinical pictures in adult swine are 

usually mild or even subclinical (Moennig et al., 2003). Thus, a peracute disease course 

occurs when highly virulent CSFV isolates infect young piglets (Dunne, 1970). Acute-lethal 

disease forms with severe clinical signs mainly develop in weaner pigs and young fattening 

pigs after infection with moderately to highly virulent strains (Moennig et al., 2003). 

Transient or subacute infections mostly appear in combination of low virulent isolates with an 

increasing age of the hosts (Depner, 2006) and chronic CSF forms only develop when 

effective immune responses have failed to establish (Moennig et al., 2003; Moennig, 2008). 

 

In general, secondary or concomitant infections are characteristic for CSF. They occur in 

consequence of a severe immunosuppression promoted by the depletion of both, B- and T-

lymphocytes (Summerfield et al., 2001). Immunosuppressive events were associated with the 

relatively late humoral and cellular immune response which is typical for CSF (Thiel, 1996; 

Trautwein, 1988). 

In detail, a short-term leukocytosis occurs very early after infection followed by a leukopenia, 

particularly affecting lymphocytes (B- and T-cells) (Gomez-Villamandos et al., 2000; Lee et 

al., 1999; Markowska-Daniel et al., 1999; Pauly et al., 1998; Sato et al., 2000; Summerfield et 

al., 1998; Susa et al., 1992). Thereby, T-cell depletion developes rapidly after infection while 

B-lymphocytes are depleted in later disease stages (Susa et al., 1992). The kinetics of T-cell 

depletion are dependent on the cell subset and the virulence of the isolate. While αβ-T-

lymphocytes are generally depleted irrespective of the virulence, γδ-T-cells are mainly 

reduced after highly virulent infections (Lee et al., 1999; Summerfield et al., 2000; 

Summerfield et al., 2001). In comparison to highly virulent strains, a delay of this kind of 

kinetic was reported upon infection with low virulent isolates (Markowska-Daniel et al., 

1999; Summerfield et al., 1998). However, this difference may only be observed during early 

stages of disease. In advanced stages severe lymphocyte depletions occur irrespective of the 

virulence and therefore even develope in absence of severe clinical signs (Summerfield et al., 

2001). 

The lymphocyte depletion during CSF is caused by lymphocyte apoptosis, which is more 

correlated to virus-host interactions and the release of immunological mediators than to direct 

virus-associated cell damage (Summerfield et al., 2001). Several proinflammatory cytokines 

including Interleukin (IL)-1α, IL-1β, TNF-α, IL-6 and in addition Interferon (IFN)-α were 

suggested to induce apoptosis in lymphocytes or other leukocytes during CSF (Choi et al., 

2004; Nunez et al., 2005; Sanchez-Cordon et al., 2002; Summerfield et al., 2006). 
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Apart from apoptosis, a redistribution of lymphocytes from peripheral blood to lymphoid 

tissues due to local inflammatory reactions may also be involved in decreasing peripheral 

lymphocyte counts (Knoetig et al., 1999). 

 

Clinical signs occurring in acute-lethal forms may resemble viral haemorrhagic fevers which 

are also caused by members of the Arenaviridae, Bunyaviridae, Togaviridae and Filoviridae 

(Bray, 2005; Gomez-Villamandos et al., 2003; Lange et al., 2011; Mahanty and Bray, 2004). 

The underlying pathogenetic mechanism has not been clearly defined up to now. An immuno-

pathogenesis including a dysregulated cytokine release, which is presumed to play a key role 

in pathogenesis of other viral haemorrhagic fevers was also suggested for CSF (Bray, 2005; 

Lange et al., 2011; Mahanty and Bray, 2004). A close correlation between viral infection, 

inflammation process and coagulation dysfunctions resulting in haemorrhagic lesions was 

reported (Lange et al., 2011; Moennig et al., 2003). 

In detail, an overexpression of the proinflammatory cytokines IL-1α, IL-6, and IL-8, along 

with pro-coagulation factors including tissue factor (TF), vascular endothelial cell growth 

factor (VEGF), E-selectin and other factors may lead to coagulation dysfunctions by 

activating platelets and endothelial cells and in addition, increase vascular permeability and 

vasodilatation (Bensaude et al., 2004; Lange et al., 2011). Further suggested cytokines are IL-

10, IL-12, and IFN-γ (Jamin et al., 2008). As IL-10 and IFN-γ were reported to play a role 

during filoviral haemorrhagic fevers (Bray and Geisbert, 2005; Mahanty and Bray, 2004), a 

similar role in the pathogenesis of CSF could be assumed. 

In cases of complete convalescence, protective immunological responses were successful. 

Upon CSFV infection protection is mediated by both, humoral and cellular-mediated immune 

response. However, a stronger focus on the cellular level was shown, especially concerning 

mediation of early protection (Piriou et al., 2003; Sanchez-Cordon et al., 2005). 

 

With regard to the humoral response, quantitative and qualitative changes in B-lymphocytes 

and immunoglobulins (IgM-positive and IgG-positive) occur upon CSFV-infection (Sanchez-

Cordon et al., 2006). In lymphoid organs an early increase of B-cells including plasma cells 

was detected. In detail, IgM
+
 cells were shown to rise from day seven post infection (dpi) and 

IgG
+
 cells increase from 11 dpi onwards (Urbaneck, 1987) until virus-specific neutralizing 

antibodies occur between 10 to 21 dpi in the peripheral blood (Piriou et al., 2003). 

The B-cell increase as well as their differentiation into immunoglobulin-producing plasma 

cells require stimulatory signals mediated through several cytokines, including IL-4, IFN-γ, 
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and IL-2, released by activated monocytes/macrophages and T-cells following CSFV 

infection (Clark, 1994; Nunez et al., 2005; Parker, 1993; Sanchez-Cordon et al., 2005; van 

Miert, 1995). This differentiation mechanism was suggested to be dependent on an increased 

IL-4 level secreted by T-cells, an eventual predominance of IL-4 over IL-2, and a late 

decrease of IFN-γ (Sanchez-Cordon et al., 2005; Sanchez-Cordon et al., 2006). The delayed 

occurrence of neutralizing antibodies may be explained by this relatively late change from 

cell-mediated to humoral immune response, which is characteristic for CSFV infection. 

Concordantly to the late development of antibodies, IgG
+
 cell increase occurs in advanced 

disease stages until they outnumber the initially predominant IgM
+
 cells (Depner, 1994; 

Laevens et al., 1999; Piriou et al., 2003). The protective value of neutralizing antibodies 

against CSFV infection was demonstrated in vivo and in vitro (Terpstra and Wensvoort, 

1988). 

CSFV-specific antibodies are primarily targeted against the envelope glycoprotein E2 which 

is known to be the major immunogen of pestiviruses and additionally targeted by cytotoxic T-

cells (Ceppi et al., 2005; Risatti et al., 2005; Risatti et al., 2006; Risatti et al., 2007). The 

envelope glycoprotein E
rns

 represents an additional antibody target and is moreover important 

for host adaption (Konig et al., 1995; Weiland et al., 1992; Windisch et al., 1996). 

 

Upon CSFV infection, the cell-mediated immune response is primarily focused on the early 

and middle stages of disease (Sanchez-Cordon et al., 2005). This response includes 

quantitative changes in T-lymphocyte populations comprising cytotoxic T-cells (CTL; CD4
-

CD8
+
), T-helper cells (CD4

+
CD8

-
), and mature T-cells (CD3

+
) (Arnaud et al., 1996; Kearse et 

al., 1995; Roitt, 1998) along with qualitative changes in cytokine expressions by T-cells (IFN-

γ, IL-2, IL-4) (Suradhat et al., 2001). 

With regard to the kinetic of T-cell response, an initial activation of cytotoxic T-cells (CD4-

CD8+ cells) and T-helper cells (CD4+CD8- cells) was shown shortly after infection (Narita et 

al., 1996; Piriou et al., 2003; Sanchez-Cordon et al., 2005). During the further disease course 

a focus on cytotoxic T-cell response was suggested (Lee et al., 1999; Narita et al., 2000; Pauly 

et al., 1998) which may contribute to the defense mechanisms against CSFV-infection 

(Doherty, 1992; Pauly et al., 1995; Summerfield et al., 1996). The defending ability of T-cells 

was demonstrated in cases of full protection towards CSFV despite neutralizing antibodies 

were absent (Rümenapf et al., 1991b; Suradhat et al., 2001). 

In addition, an activation of memory T-cells (CD4
+
CD8

+
) was observed during disease course 

(Summerfield et al., 1996; Zuckermann and Husmann, 1996).  
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2.2 African Swine Fever 

2.2.1 Virus taxonomy, global distribution, control strategies and economic impact 

The causative agent of ASF is African swine fever virus (ASFV) of the genus Asfivirus within 

the Asfarviridae family. African swine fever virus represents a large, complex, double-

stranded DNA virus (Takamatsu, 2011) and is the only known DNA virus which can be 

transmitted by arthropods (ARBO-virus = arthropod borne virus). Soft ticks of the genus 

Ornithodoros (Kleiboeker and Scoles, 2001) may serve as potential vector, in particular 

Ornithodoros erraticus which was identified in Spain and Portugal, and the Ornithodoros 

moubata complex in Africa. So far, 22 main ASFV genotypes have been identified; some of 

them with haemadsorbing abilities (Bastos et al., 2003; Gallardo et al., 2009). 

As ASF had been considered as an exotic disease until recently by especially impairing pig 

productions considerably in Africa (Penrith and Vosloo, 2009), ASFV was lately introduced 

into the European wild boar and domestic pig population including outbreaks within EU 

Member States (OIE, 2014). 

Before ASFV spread across Europe, epidemics and repeating outbreaks were mostly restricted 

to several African countries of the sub-Saharan region including Madagascar and the Iberian 

Peninsula. Apart from the long-lasting ASFV presence in Africa, the endemic situation in 

Sardinia, Italy, in domestic pig and wild boar population has retained since 1978. Outside of 

Sardinia, ASFV outbreaks in Europe had just occurred occasionally and were eradicated 

eventually (Costard et al., 2013; Giammarioli et al., 2011; Laddomada et al., 1994).  

Then, ASFV was introduced in Georgia in 2007 (Chapman et al., 2011) from where the virus 

spread throughout the Trans-Caucasian Countries, the Islamic Republic of Iran (Rahimi et al., 

2010) and the Russian Federation (Khomenko et al., 2013). In the latter, ASFV has become 

endemic since 2008 and still continues to spread (Khomenko et al., 2013). Subsequently, 

ASFV expanded its geographical distribution into other Eastern European countries (e.g. 

Armenia, Azerbaijan, Ukraine) (Khomenko et al., 2013) by affecting both, wild boar and the 

domestic pigs. Recent outbreaks were affirmed in Belarus, Latvia, Lithuanian and Poland 

(WAHID, status report as of July 29
th

 2014) where the disease has not been controlled until 

now. Current speads are illustrated in the ASFV distribution map in Fig. 2. ASFV isolates of 

genotype 2 were identified to be responsible for the current spread across Europe (Gallardo et 

al., 2009; Rowlands et al., 2008). 

Due to the fact that neither a vaccine nor a treatment against ASFV is available, the disease 

represents a serious problem in many countries by causing tremendous economic losses 
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through extensive culling. To give an example, overall losses due to ASF were estimated at 

30 billion RUB or 1 billion USD through culling of more than 600.000 pigs from 2007 to 

mid-2012 (Khomenko et al., 2013) in the Russian Federation where all sectors of pig industry 

and production have been affected until now (Gogin et al., 2013; Khomenko et al., 2013). 

Nevertheless, outbreaks have to be controlled by a stamping out policy including the 

implementation of movement restrictions of swine and their products (Khomenko et al., 

2013). In addition, eradication programs are further complicated by the fact that control 

measures are difficult to implement in mostly affected areas where equipment of veterinary 

services and personnel training is insufficient. Moreover, the compliance of the population is 

often low because of the scarceness in food through culling measures which often concerns 

the poorest households and farmers (Khomenko et al., 2013). 

 

 

Figure 2: ASFV outbreak distribution in domestic pigs and wild boar; reporting period: 

January 2013 to August 2014. 

 

2.2.2 Epidemiology and risk factors 

ASFV can infect domestic pigs and different wild Suidae. In addition, soft-tick species can act 

as non-vertebral hosts and vectors under special conditions. Moreover, stable-flies (Stomoxys 
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spp.) as well as probably other blood-suckling insects may serve as mechanical vectors 

(Mellor, 1987). While the infection of domestic pigs is likely to cause a clinical disease, 

milder forms or asymptomatic carrier states may occur in feral pigs, especially in African 

wild suids (Costard et al., 2013). Susceptible wild suids include warthogs (Phacochoerus 

africanus), bushpigs (Potachoerus larvatus), red river hogs (Potamochoerus porcus) and 

Giant Forest hogs (Hylochoerus meinertzhangi). Amongst them, the widely distributed 

Warthogs are considered to be the original and most important vertebrate ASFV reservoir in 

Africa and therefore playing a major epidemiological role (Anderson et al., 1998; Jori and 

Bastos, 2009; Plowright et al., 1969; Thomson, 1985). Soft ticks (O.moubata) display another 

virus reservoir in Africa which may retain and transmit ASFV over long periods (Plowright et 

al., 1969). Apart from direct transmissions, transstadional, transovarial, and sexual 

transmissions are possible enabling a viral persistence for up to 15 month even in absence of 

susceptible hosts (Plowright et al., 1974; Plowright et al., 1970; Rennie et al., 2001). Like 

O.moubata in Africa, O.erraticus was considered as biological vector and reservoir in Spain. 

In contrast to warthogs, which remain clinically inapparent, in Europe, wild boar and feral 

pigs were shown to be equally susceptible towards ASFV as domestic pigs (Jori and Bastos, 

2009; McVicar et al., 1981). For virus maintenance in wild boar populations a direct contact 

to domestic pigs or other infectious sources seem to be necessary. Otherwise ASFV outbreaks 

in wild boar would be self-limiting (Laddomada et al., 1994; Mur et al., 2012a; Perez et al., 

1998; Ruiz-Fons et al., 2008). However, disease occurrence in wild boar is always 

accompanied by the risk to spill over into the domestic pig population (Costard et al., 2013). 

Upon an introduction of the highly contagious ASFV to previously free areas the disease 

spreads rapidly by showing morbidities up to 100 % and high mortality rates (Blome et al., 

2013). In contrast, in endemic regions in which chronic or subclinical forms were reported to 

occur more often, mortality rates may be lower (Allaway et al., 1995; Fasina et al., 2010; 

Owolodun et al., 2010; Thomson, 1985). In these areas, chronically infected or clinically 

recovered pigs may play a role in disease persistence and pose a risk for sporadic outbreaks or 

spreading into disease-free areas (Allaway et al., 1995; Boinas et al., 2004; Sanchez-Vizcaino 

et al., 2012). 

The complexity of ASF epidemiology is underlined by the existence of several transmission 

cycles, namely the sylvatic cycle, the domestic cycle, the transmissions from sylvatic to 

domestic pigs or back as well as the tick-pig-cycle. In Europe, the domestic cycle plays the 

major epidemiological role. It is restricted to domestic pigs and includes the transmission 

either directly via contact between susceptible swine or indirectly via contaminated fomites 
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(clothing, equipment, vehicles) (Mur et al., 2012c; Plowright, 1994; Sanchez-Vizcaino et al., 

2012) as well as the ingestion of contaminated meats and products (Farez and Morley, 1997). 

The sylvatic cycle occurs exclusively in Africa and involves warthogs and ticks of the 

O.moubata complex (Plowright, 1994; Plowright et al., 1969; Thomson, 1985). Briefly, it 

comprises the infection of suckling warthogs via ticks (O.moubata) which is necessary for 

virus maintenance as a vertical and horizontal transmission between warthogs is not possible 

(Thomson, 1985). Other tick-pig cycles were identified in Africa, the Iberian Peninsula and 

also in some areas of Spain by involving O.erraticus (Caiado et al., 1988; Haresnape and 

Mamu, 1986; Haresnape and Wilkinson, 1989; Haresnape et al., 1988; Perez-Sanchez, 1994).  

A particular contribution to the potential risk of local and international spread is displayed by 

pig trades/movements as well as a lack of biosecurity practices in endemic areas (Costard et 

al., 2013). In these regions, backyard holdings are often predominating and disease control 

measures may be implemented only poorly. Due to the fact that ASFV remains viable and 

infectious not only in blood but also in porcine tissues for long periods the access of pigs to 

carcasses, frozen or insufficiently cooked or pured meat represents a further risk of infection 

(Farez and Morley, 1997). These risk factors may not only lead to persistence within one 

region but also to a spread across Europe (Costard et al., 2013; Mur et al., 2012b; Mur et al., 

2012c; Sanchez-Vizcaino et al., 2012; Wieland et al., 2011). 
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2.2.3 Clinical courses, signs and lesions 

Similarly to CSF, ASFV can cause a wide range of clinical syndromes in both, domestic pigs 

and wild boar, ranging from peracute to almost inapparent clinical forms. Concordantly, 

highly variable pathomorphological findings may be observed (Blome et al., 2013; 

Kleiboeker, 2002; Penrith and Vosloo, 2009; Takamatsu, 2011).  

The incubation period varies from 2 to 7 (in rare cases up to 14) days (Mebus, 1988). The 

peracute course is characterized by a sudden death of pigs without obvious clinical signs 

(Kleiboeker, 2002). Clinical symptoms during acute disease forms typically comprise initial 

high fever, severe depression, anorexia, reddened skin at the acra (ears, tail, distal extremities, 

ventral areas of chest and abdomen), and conjunctivitis. Furthermore, respiratory findings, 

tachypnoe, tachycardia and cyanosis as well as gastro-intestinal signs like vomiting and 

diarrhea (watery to bloody) may be observed. Central nervous symptoms including 

incoordination, ataxia and convulsions may additionally appear particularly during final 

stages of the disease. In addition, fertility disruptions are possible leading to abortions in 

pregnant sows (Schlafer and Mebus, 1987). During acute-lethal forms, also petechiae and 

epistaxis may appear, leading to death mostly within 6 to 13 days after infection (Gomez-

Villamandos et al., 2003). In wild boar, the main clinical signs are severe depression, 

anorexia, diarrhea and respiratory distress (Gabriel et al., 2011; Ruiz-Fons et al., 2008). 

Pathomorphological findings can include hemorrhages in several organs, swollen and 

haemorrhagic lymph nodes (particularly affecting gastrohepatic and renal lymph nodes), a 

congestive splenomegaly with necrotic foci, petechiae in kidneys, ecchymoses in serosae, 

alveolar haemorrhages and oedema of the lungs (Arias, 2002; Blome et al., 2013; Colgrove et 

al., 1969; Kleiboeker, 2002; Rodriguez et al., 1996). 

In less acute disease courses, typical clinical signs comprise respiratory findings (dyspnea, 

coughing, sneezing) and gastro-intestinal symptoms (watery diarrhea to obstipation) (Blome 

et al., 2013). Less pronounced clinical signs occur during subacute courses characterized by 

recurrent fever, anorexia, wasting as well as milder gastro-intestinal (diarrhea), and 

respiratory clinical signs (agitation-associated cough and dyspnea). In addition, pregnant sows 

may abort. This disease course may either lead to death within 15 to 45 days or full 

convalescence after 30 to 45 days (Arias, 2002; Kleiboeker, 2002). These forms are 

accompanied by less severe pathomorphological findings including pneumonia, serofibrinous 

pleuritis and pericarditis (Arias, 2002; Kleiboeker, 2002). 
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Clinical signs of chronic disease courses are highly variable and unspecific like recurrent 

fever, wasting, growth retardation, respiratory signs, chronic skin ulcers, arthritis and 

abortions. Secondary infections may cause additional signs. It was reported that these forms 

can last 2 to 5 month by showing low mortality rates (less than 30%) (Arias, 2002; 

Kleiboeker, 2002). Necropsy of chronically infected pigs may either reveal hemorrhages, 

enlarged lymph nodes, interstitial pneumonia, fibrinous pericarditis and splenomegalie or a 

complete absence of lesions (Arias, 2002; Kleiboeker, 2002). 

Changes of blood count parameters upon ASFV infection mainly include leukopenia and 

thrombocytopenia and are dependent on the isolates virulence and host factors. Highly 

virulent strains were reported to cause severe alterations in white blood cells resulting in a 

decrease of lymphocyte counts and a parallel increase of neutrophils while red blood counts 

remain unchanged (Detray and Scott, 1957; Greig and Plowright, 1970; Wardley and 

Wilkinson, 1977). However, reports gave different indications concerning significant changes 

in total white blood cell and platelet counts (Gomez-Villamandos et al., 1997). Moderately 

virulent strains were shown to have only minor effects on total white blood cell counts 

including slight increases in neutrophils and decreases in lymphocytes (Knudsen and 

Genovesi, 1987). In subacute forms, a transient lymphopenia and thrombocytopenia were 

observed. During chronic disease courses, marked differences in blood counts were observed, 

mainly concerning changes of immune cell proportions, in particular B-lymphocytes and 

macrophages (Blome et al., 2013; Ramiro-Ibanez et al., 1997). 
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2.2.4 Pathogenesis and immune response 

Virus dissemination and target cells 

Outside the sylvatic cycle, ASFV enters the host organism oronasally via the tonsils or the 

mucosa on the dorsal pharynx and reaches the mandibular or retropharyngeal lymph nodes. 

Subsequently, the virus spreads systemically throughout the body (Greig, 1972; Plowright, 

1994). Approximately 8 hours post infection (hpi), primary viraemia appears and from 15 to 

24 hpi secondary viraemia is detectable (Blome et al., 2013; Colgrove et al., 1969). When 

viral dissemination has completed after approximately 30 hpi, ASFV can be found in almost 

all tissues especially in spleen, lymph nodes and other organs owning high proportions of 

cells of the mononuclear phagocyte system (Blome et al., 2013; Heuschele, 1967). 

Monocytes/macrophages are considered as main target cells for ASFV (Malmquist, 1960; 

Sanchez-Torres et al., 2003; Sierra et al., 1990). However, their susceptibility seems to be 

dependent on the maturation state by suggesting that mature macrophages are more 

susceptible than young monocytes. The expression of several macrophage specific markers 

(e.g. CD163, CD107a) as well as the presence of SLA II antigens may benefit permissiveness 

towards ASFV (Blome et al., 2013; Chamorro et al., 2005; Rodriguez et al., 1996; Sanchez-

Torres et al., 2003). Further initial susceptible cells comprise dendritic cells (Gregg et al., 

1995), granulocytes and neutrophils (in particular the immature state) (Carrasco et al., 1996; 

Gomez-Villamandos et al., 1997). Moreover, during advanced stages of disease, ASFV 

replicates in additional cell types including endothelial cells, hepatocytes and platelet 

precursor cells (megakaryocytes). 

During viraemia, ASFV genotypes with haemadsorbing abilities may be found associated 

with erythrocytes (Quintero et al., 1986; Wardley and Wilkinson, 1977), but also with 

lymphocytes and neutrophils (Plowright, 1994).  

 

Influencing factors on clinical course and outcome 

As already stated for CSF, the highly variable clinical course and outcome is dependent on 

both, factors on the agent’s and the host’s side (Costard et al., 2013).  

Concerning the virus, the clinical form is mainly influenced by the virulence but also by the 

dose and the route of exposure (Costard et al., 2013; Kleiboeker, 2002). On the host’s side, 

several factors like previous presence of the agent in the corresponding pig population and 

genetical factors were discussed to play a role.  
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Acute to peracute forms mostly develop after introduction of highly virulent ASFV strains 

into a naïve pig population whereas chronic to subacute courses mainly occur in regions in 

which infections have become more frequent (Allaway et al., 1995; Costard et al., 2013; 

Fasina et al., 2010; Owolodun et al., 2010; Thomson, 1985). Several factors were discussed to 

be responsible for the milder to subclinical forms in Africa compared to the fatal outcomes 

caused by the same isolates in European pigs. One hypothesis includes an acquired immunity 

from previous exposure to lower viral doses or to related viruses of reduced virulence (Penrith 

et al., 2004). Furthermore, genetically reasons were suggested for reduced susceptibility of 

African local pig breeds. However, it was shown that this increased resistance is not heritable 

(Penrith et al., 2004). Apart from the fact that chronic forms are more likely to occur upon 

infection with low virulent strains, another reason is presumed to be responsible for ASFV 

occurrence in the Iberian Peninsula from 1960 to 1995. Here, the employment of live 

attenuated vaccines during the 1960s is a suspected source of infection (Sanchez-Vizcaino et 

al., 2012). 

In general, acute and peracute forms were presumed to be correlated to highly virulent strains, 

subacute courses to moderately, and chronic courses to low virulent isolates. However, the 

above mentioned facts clarify that disease courses are influenced by further factors which are 

far from being understood to date. 

 

The role of cytokines 

The increasing phagocytic and secretory activity of several macrophage subpopulations upon 

ASFV-infection results in an unregulated release of active substances including cytokines, 

complement factors and arachidonic acid metabolites (Blome et al., 2013; Penrith, 2004). 

The enhanced secretion of proinflammatory cytokines like IL-1, IL-6, and TNF-α (Murtaugh 

et al., 1996) is timely correlated to the onset of fever, vascular damage, and changes in 

lymphoid structures (Salguero et al., 2002). Furthermore, the expression levels of IL-1α and 

TNF-α correlate with the development of interstitial oedema and the formation of fibrin 

microthrombi in septal capillaries (Carrasco et al., 2002). Like IL-1 and TNF-α, also IL-6 was 

shown to enhance the acute-phase-reactions and inflammatory events. IL-6 is also capable of 

activating endothelial cells and inducing their apoptosis. The same procoagulatory effect was 

shown for TNF-α with the difference that this cytokine is additionally able to activate the 

anticoagulant status of the vascular endothelium (Blome et al., 2013). The presumably 

particular importance of TNF-α during pathogenesis of ASF is further underlined by it’s 

ability to enhance vasodilatation and vascular permeability (Gomez del Moral, 1999). TNF-α 
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is mainly produced by mature macrophages primarily targeted by ASFV (Chamorro et al., 

2005). IL-1, IL-6, and TNF-α are known to enhance acute phase reactions, which are 

characteristic for highly virulent ASFV infections. In addition, these cytokines may also 

stimulate the production of further acute-phase-indicators like C-reactive protein (CRP), 

serum-amyloid A (SAA), and haptoglobin (Gabay and Kushner, 1999). 

Besides the involvement of proinflammatory cytokines in lymphopenia by mediating 

lymphocyte apoptosis, their role in development of haemorrhagic lesions is presumably of 

higher importance than direct viral cell damage (Blome et al., 2013). This is evidenced by the 

fact that first haemorrhagic lesions in lymphoid organs occur exactly when local monocytes/ 

macrophages get infected and destroyed (Salguero et al., 2005). Coinciding with that, 

neighboring endothelial cells get stimulated by released cytokines leading to a procoagulant 

state of the endothelium and final and activation of coagulation cascade (Blome et al., 2013). 

Direct infections of endothelial cells only occur in later disease stages when haemorrhages 

had been developed for several days (Gomez-Villamandos et al., 1997; Perez et al., 1994). 

IFN-α, IL-12, and IL-2 may be of additional importance in ASFV pathogenesis as they are 

involved in development of cellular immunity. Increases of IFN-α and IL-12 were detected in 

several in vitro studies in dependence of the isolates virulence (Gil et al., 2008). In addition, 

an IL-2 decrease was suggested to contribute to the development of lesions because of its 

relevant influence on regulatory and effector T-cells (Canals et al., 1995). Therefore, it was 

suggested that the survival seems to be influenced by cytokine reaction pattern at least partly 

(Blome et al., 2013). Another positive relationship between survival and cytokine production 

was shown for IFN-γ. An increased level of ASFV-specific IFN-γ producing T-cells may 

promote convalescence (Takamatsu et al., 2013). Besides, it was suggested that controlling 

the IFN-γ expression by the virus may determine the virulence of the ASFV isolate (Afonso et 

al., 2004).  

Apart from that, cytokines do not seem to play a major role in chronic ASF forms. Here, an 

auto-immune component was suggested in which lesions might result from deposition of 

immune-complexes in lungs, kidneys, skin and other tissues with subsequent binding to 

complement (Plowright, 1994). 

 

Finally, cytokines may additionally be involved in the development of thrombocytopenia 

resulting in a haemorrhagic syndrome during acute and subacute ASF forms. This may be due 

to an impairment of platelets and coagulation changes (Blome et al., 2013). However, the 

genesis of thrombocytopenia remains unknown to date. 
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It was suggested that an impairment of thrombocytopoiesis through infection and destruction 

of megakaryocytes is responsible for platelet decrease (Rodriguez et al., 1996). Despite the 

fact that bone marrow lesions may be observed during ASFV-infection other studies prefer 

the hypothesis of peripheral consumption of platelets as main reason for thrombocytopenia 

(Gomez-Villamandos et al., 1997). Indications for microthrombi correlated to disseminated 

intravascular coagulation exist (Rodriguez et al., 1996), which could result in peripheral 

platelet consumption. Possibly involved cytokines are the platelet activating factor (PAF) 

which is probably secreted by activated macrophages and the tissue factor/coagulation factor 

III (TF) produced by endothelial cells. While PAF may contribute to activation and 

degranulation of platelets during ASFV-infections (Gomez-Villamandos et al., 1996), TF was 

demonstrated to activate the coagulation system and by that, trigger the generation of 

microthrombi and peripheral platelet consumption (Vallee et al., 2001). 

In conclusion, probably both, an impairment of thrombocytopoiesis and a peripheral platelet 

consumption may lead to the frequently observed thrombocytopenia (Blome et al., 2013). 

 

Humoral immune response 

Regarding the humoral immune response, the existence of an antibody-mediated protection is 

controversially discussed. After a complete absence of neutralizing antibodies during ASF 

had been suggested (Dimmock, 1993) several studies indicated that developing antibodies 

may at least lead to a delayed disease onset and in addition, reduce viraemia titers (Onisk et 

al., 1994). These factors were considered to determine the survival after infection (Escribano 

et al., 2013). In addition, several authors demonstrated neutralizing capacities of immune sera 

and monoclonal antibodies against several ASFV-isolates (Borca et al., 1994; Gomez-Puertas 

et al., 1996; Zsak et al., 1993). 

However, a failure of protection after immunization and challenge of pigs with the inactivated 

ASFV strain “Armenia08” (Blome et al., 2014a) was reported recently resulting in an acute-

lethal disease course in all animals. This is in line with observations from previous studies, 

posing that inactivated ASFV does not induce the production of neutralizing antibodies (Hess, 

1981; Vinuela, 1985). Recent studies even indicate an accelerated disease course when 

antibodies are present (Blome et al., 2014a). In addition, indications exist that antibodies 

against the A104R/histone may probably promote an effective immune response while others 

against the K196R/thymidine kinase were frequently found in clinically diseased pigs (Reis et 

al., 2007). 
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Cellular immune response 

Apart from the fact that the role of ASFV-specific antibodies and its potential for viral 

neutralization is doubtful so far, a common agreement concerning the major role of cellular-

mediated immune responses towards ASFV seem to exist. 

A resistance was demonstrated for pigs which survived infection with less-virulent isolates or 

developed a chronic course. Despite the fact that this was only observed for homologous or 

closely related isolates, this observation evidenced the development of a protective immune 

response against ASFV (Alonso et al., 1997; Canals et al., 1992; King et al., 2011; Leitao et 

al., 2001; Malmquist, 1963; Martins et al., 1993; Oura et al., 2005; Revilla et al., 1992). 

However, the underlying mechanism has not been identified up to now. It was suggested that 

moderately or non-virulent ASFV-strains may induce the proliferation of ASFV-specific 

memory T-cells (Alonso et al., 1997; Canals et al., 1992; Casal et al., 1987; Revilla et al., 

1992; Scholl et al., 1989). 

The adaptive cellular immune response, in particular the cytotoxic T-cell subset seems to play 

a major role in mediating antiviral protection. This was demonstrated by showing that a 

depletion of CD8
+
 lymphocytes resulted in a loss of protection against related virulent viruses 

in vivo (Oura et al., 2005). The depletion of CD8
+
 lymphocytes led to a severe clinical disease 

course and high viraemia upon homologue challenge while control animals were protected 

completely. In detail, this study was conducted by employing the non-virulent OURT88/3 

ASFV isolate for immunization. Approximately after 5 weeks, one group of pigs was treated 

with an anti-CD8α monoclonal antibody (mAb) intravenously for 5 to 6 days. At day 2 of 

mAb inoculation, a challenge was performed with the virulent OURT88/1. In contrast to the 

isotype control mAb treated animals, all pigs with an effective CD8
+
 depletion succumbed to 

infection (Oura et al., 2005; Takamatsu et al., 2013). This finding is in line with other studies 

in which a close relationship between the presence of ASFV-specific CD8
+
 T-cells and the 

protection against challenge virus upon immunization was observed (Argilaguet et al., 2012). 

In particular, double positive cytotoxic T-cells with the CD4
+
CD

8high+
 phenotype seem to be 

mainly involved as they were found in higher proportions in peripheral blood mononuclear 

cells (PBMC) from ASF immune pigs when compared to clinically diseased pigs. 

Furthermore, an involvement of the innate immune response was suggested after showing an 

increased activity of natural killer (NK) cells upon asymptomatic, non-virulent infections 

(Leitao et al., 2001). In contrast, a lower NK activity was detected in pigs showing a severe 

clinical picture. The observed induction of antiviral protection upon challenge infection may 
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be a result of their antigen-specific memory (Paust et al., 2010; Paust and von Andrian, 2011). 

This was observed for non-pathogenic ASFV isolates so far (Takamatsu et al., 2013). 

As mentioned above, IFN-γ seems to play an important role in mediating antiviral protection. 

This is supported by the observed positive relationship between the amount of IFN-γ 

producing T-cells and the degree of protection towards ASFV-challenge (Esparza et al., 1988; 

King et al., 2011; Revilla et al., 1992). Main IFN-γ producers during ASFV-infection were 

characterized as CD4
+
CD8

+
 T-cells comprising mainly CTLs (CD8

high
), but also to a lesser 

extent T memory cells (CD4
+
CD8

low
) (Takamatsu et al., 2013). 

In general, immune responses towards ASFV are impaired by the infection of professional 

antigen-presenting cells (APCs), coding for several immune evasion genes, and inducing an 

extensive apoptosis of lymphocytes resulting in a severe lymphopenia (Oura et al., 1998; 

Ramiro-Ibanez et al., 1996; Ramiro-Ibanez et al., 1997; Salguero et al., 2004). 
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3 OBJECTIVES 

 
Classical swine fever 

Assessment of host responses towards moderately virulent CSFV 

Moderately-virulent CSFV isolates of genotype 2.3 have predominated in Europe over the last 

two decades. These isolates are characterized by a highly variable, mostly age-dependent 

clinical picture. Besides, immune status and genetic background were reported to play a role 

in disease severity and outcome. So far, little is known about the reaction pattern leading to 

these differences and their impact on disease dynamics. For this reason, a recent CSFV isolate 

was employed in infection studies with weaner pigs of different breeds, and for a trial with 

subadult wild boar. Analyses focused on virological and immunological tests.  

 

Swine fever pathogenesis 

Development and validation of multiplex RT-qPCRs for seven porcine cytokines 

Dysregulation of immune responses is suspected to play an important role in the pathogenesis 

of severe infections including classical and African swine fever. Especially proinflammatory 

cytokines were reported as key factors. To assess normalized gene expression profiles of 

seven cytokines that were previously reported in this context, a highly specific and sensitive 

Taqman-based RT-qPCR was established.  

 

Swine fever surveillance 

Implementation of disease surveillance and early warning tools 

Despite of the emerging spread of ASFV across Europe and the continuing reoccurence of 

CSFV, current disease surveillance is insufficient regarding the massive lack of sample 

submissions from both fallen and living animals. With the purpose to provide pragmatic 

approaches for passive and active swine fever surveillance adequate sampling tools were 

validated and implemented. For optimization of passive swine fever surveillance dry/semi-dry 

blood swabs were proven to be suitable. Secondly, ‘‘rope-in-a-bait’’sampling swabs were 

evaluated for CSFV in order to improve early warning strategies. 
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4 RESULTS 

 

The publications are grouped according to their topic. 

 

The reference section of each manuscript is presented in the style of the respective journal and 

is not included at the end of this document. The numeration of figures and tables corresponds 

to the published form of each manuscript. 
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Comparative analyses of host responses upon infection with moderately virulent 

Classical swine fever virus in domestic pigs and wild boar 

 

Abstract 

 

Background 

Classical swine fever (CSF) is one of the most important viral diseases of pigs. Clinical signs 

may vary from almost inapparent infection to a hemorrhagic fever like illness. Among the 

host factors leading to different disease courses are age, breed, and immune status. The aim of 

this study was to compare host responses of different pig breeds upon infection with a recent 

moderately virulent CSF virus (CSFV) strain, and to assess their impact on the clinical 

outcome and the efficiency of immune responses. To this means, two domestic pig types 

(German Landrace and hybrids), were compared to European wild boar. Along with clinical 

and pathological assessments and routine virological and serological methods, kinetics of 

immune-cellular parameters were evaluated. 

Findings 

All animals were susceptible to infection and despite clinical differences, virus could be 

detected in all infected animals to similar amounts. All but one animal developed an acute 

disease course, two landrace animals recovered after a transient infection. One wild boar got 

chronically infected. Changes in the percentages of lymphocyte subsets in peripheral blood 

did not show a clear correlation with the clinical outcome. High and early titers of 

neutralizing antibodies were especially detected in wild boar and German Landrace pigs. 

Conclusions 

While differences among breeds did not have the expected impact on course and outcome of 

CSFV infection, preload with facultative pathogens and even small differences in age seemed 

to be more relevant. Future studies will target the characterization of responses observed 

during different disease courses including cytokine reactions and further analyses of 

lymphocyte subsets. 
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Findings 

 

Clinical signs of classical swine fever (CSF) can range from an almost inapparent infection to 

a hemorrhagic fever like illness with high mortality. Factors influencing disease severity and 

outcome include the virulence of the CSF virus (CSFV) isolate as well as the age and immune 

status of the host [1-3]. However, neither beneficial nor detrimental host reaction patterns 

have been defined up to know, and the influence of breed-related factors remains unclear. Yet, 

indications exist that breed and race may have a relevant impact on the severity of the disease 

[1,4-6]. To target this issue, the presented study was undertaken to compare host responses of 

different pig breeds upon infection with a recent moderately virulent CSFV strain. 

 

Six German landrace pigs (12 weeks of age), six hybrid pigs (8–10 weeks of age), and six 

European wild boar (12 weeks of age), were oronasally inoculated with 10
5.5

 tissue culture 

infectious doses 50% of the moderately virulent CSFV strain “Roesrath” (CSF1045). Three 

additional pigs of each breed acted as negative controls (housed separately). Clinical scores 

(CS) were assessed as previously described [7], and rectal body temperatures were recorded. 

While body temperatures of domestic pigs could be assessed daily, wild boar were measured 

upon blood collection only as they did not tolerate measurement without restraint. All animals 

were subjected to necropsy. 

 

Blood samples were collected in regular intervals from 0 to 28 days post inoculation (dpi). 

Peripheral blood mononuclear cells (PBMC) were subjected to multicolor immuno-staining 

for flow cytometry analysis of pig-cell surface markers using a BD FACSCanto™ flow 

cytometer (BD Biosciences). Virus isolation and neutralization tests (NT) were carried out as 

previously described [8]. All methodological details can be obtained from the author’s upon 

request. 

 

Landrace pigs developed first clinical signs at 3 dpi. While four animals developed an acute-

lethal course of the disease with severe clinical symptoms (see Figure 1 and Additional file 1: 

Table S1), two animals recovered. Clinical scores mirrored the disease outcome (see Figure 1) 

and mortality reached 66%. Post mortem examinations revealed CSF symptoms in all pigs 

with acute-lethal infection (see Additional file 1: Table S1). The surviving animals (LR#56 

and LR#59) showed poor nutritional status and multifocal petechiae in the kidneys. 
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Figure 1 Group mean values (mean value ± standard deviation) for clinical score points 

of European wild boar (WB), commercial fattening hybrids (HY) and German Landrace 

(LR) pigs. Each race/breed was divided into one group for infection with CSFV “Roesrath” 

(infected) and one group acting as negative control (control). During the cause of disease total 

numbers of pigs decreased due to euthanasia. 

 

Hybrid pigs showed first clinical signs from 3 dpi that worsened till the day of euthanasia (see 

Figure 1 and Additional file 1: Table S1). All animals succumbed to infection. In post-mortem 

examinations, all hybrid pigs showed typical CSF lesions and severe secondary infections. 

 

In infected wild boar, first clinical signs were observed from 5 dpi, but raises in body 

temperature were only sporadically observed (see Additional file 2: Table S2). In total, 5 

animals showed an acute-lethal disease course, while one animal survived till the end of the 

trial. Thus, mortality amounted to 83%. Post-mortem examinations revealed severe 

pathological lesions, both CSF specific and related to secondary infections (see Additional 

file 1: Table S1). 
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In the group of control pigs, unspecific symptoms were occasionally observed and led to 

euthanasia of one landrace pig at 7 dpi (dyspnea upon bleeding), and of one wild boar at 23 

dpi (ruptured gall bladder, severe gastritis and enteritis). 

 

Parameters indicative for the B-cell populations in peripheral blood are summarized in Figure 

2: The percentage of cells with CD2 + CD21+ phenotype (naïve B-cells) was down regulated 

in all infected groups. After an initial decline, an increase of CD2-CD21+ cells (phenotype of 

B-cells after activation) was observed in all infected groups (see Figure 2). Cells representing 

the phenotype of antibody producing plasma cells (CD2 + CD21-) showed a percentage 

increase in all infected groups with highest changes in hybrid pigs from 7 dpi With regard to 

T-cell populations (see Figure 3), all inoculated animals showed slightly elevated CD4+ T 

helper cells starting from 3 dpi compared to the controls (see Figure 3). The reaction was 

most pronounced in landrace pigs. Following the increase of helper cells, an increase of cells 

with a CD8 + CD4- phenotype (cytotoxic T cells, CTL) was detectable. The highest 

percentage peak was observed in hybrid pigs. Furthermore, an increase in γδ-TCR-positive T 

cells was detectable in domestic pigs, especially in landrace pigs (see Figure 3). 
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Figure 2 B-cell related responses upon infection. Blood lymphocytes were immune-stained 

to determine the frequency of different B cell subpopulations by FACS analysis: conventional 

B cells: CD3-CD2 + CD21+; activated B cells upon antigen contact: CD3-CD2-CD21+ and 

antibody forming and/or memory B cells: CD3-CD2 + CD21-. Filled symbols represent data 

from infected animals in comparison to uninfected controls (open symbols). 

 

 

Figure 3 T-cell related responses upon infection. Percentage of T cell subpopulations of 

blood lymphocytes is given: cytotoxic T cells: CD8 + CD4-; T-helper cells/memory T-helper 

cells: CD4 + CD8-/CD4 + CD8low. Bottom row shows percentage of γδTCR + T cells of all 

T cells during infection. Filled symbols represent data from infected animals in comparison to 

uninfected controls (open symbols). 

 

Virus isolation was positive for all samples from infected animals taken at 7 and 10 dpi. 

Thereafter, virus detection mirrored the clinical status and most tonsil samples taken at 

necropsy were virus isolation positive. 
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With regard to antibody detection, landrace pigs showed one weak-positive NT result at 10 

dpi (see Figure 4). At 14 dpi, neutralization test were positive for 2 out of 4 pigs. At 21 and 28 

dpi, all remaining pigs were found positive with high homologue titers in surviving pigs (see 

Figure 4). 

 

 

Figure 4 Mean values of antibody responses of infected groups of each race (WB: wild 

boar; HY: commercial fattening hybrid; LR: German Landrace). Results of the 

neutralization test using CSFV strain “Roesrath” are shown in (a), in which antibody titers are 

represented as log10 ND50. 

 

Hybrid pigs became positive in NTs from 14 dpi (two animals). From 21 dpi, all remaining 

pigs were found positive (see Figure 4). 

In wild boar, first antibodies were detected at 10 dpi with 2 out of 6 animals in the NTs. From 

14 dpi, all tested wild boar were positive in the NTs with the homologue virus (see Figure 4). 

 

Classical swine fever may cause most variable clinical syndromes and it is generally 

acknowledged that disease courses are influenced by both virus and host factors. On the 

host’s side, age and immune status are main parameters that influence disease course and 

outcome [9]. However, breed factors were also often discussed to play an important role. 
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Depner et al. [1] showed that German landrace pigs were more severely affected than 

crossbred animals. Influence of breed was also seen when susceptibility was assessed in 

indigenous Moo Laat and improved Large White/Landrace [4]. In contrast, no differences 

were seen by Bunzenthal [10]. 

 

In the presented study, two domestic pig breeds were compared to European wild boar in a 

CSFV infection experiment. All animals proved to be susceptible to CSFV, and all but one 

animal enrolled in this study developed an acute course of CSF. For all hybrids and all but 

one wild boar, infection led to acute-lethal disease. The remaining wild boar showed both 

moderate antibody titers and high viral loads by the end of the trial. Based on these findings, a 

chronic disease course can be assumed. In the group of landrace pigs, two animals recovered 

after an acute-transient disease course, the others showed again an acute-lethal disease course. 

The clinical picture of hybrids was apparently influenced by their preload of secondary 

pathogens of the respiratory tract that were not sufficiently controlled by metaphylactic 

antibiotic treatment. Necropsy gave rise to suspicions of Actinobacillus pleuropneumoniae 

and Haemophilus parasuis infections. In addition to these secondary infections, hybrids were 

slightly younger than wild boar and landrace pigs (about two to three weeks), and the body 

weight was markedly lower than that of the landrace pigs. Taken together, these facts might 

also have influenced the clinical picture in the hybrid pigs. 

 

In terms of serological responses, wild boar showed earliest responses. However, by the end 

of the trial, titers of neutralizing antibodies were similar or even higher in landrace pigs. In 

hybrids, E2 antibodies were only detected late in some animals and to lower titers. This 

reflects the clinical picture but contrasts tendencies seen in the responses of lymphocyte 

phenotypes (with regard to percentages of cells with plasma cell phenotype). 

 

Despite the fact that the majority of leukocytes will be active outside the blood compartment, 

changes in the percentages of different lymphocyte phenotypes were investigated in blood 

samples as the only matrix that allowed kinetics in individual animals. With regard to B-cell 

responses in peripheral blood, some breed-depended patterns were observed that were 

however not statistically significant among the different groups. Upon infection, all animals 

showed a down regulation of CD2 + CD21+ cells (phenotype of naïve B-cells), this could be 

either due to depletion or an indication of B-cell activation. As especially domestic pigs 

showed an increase of cells presenting the phenotype of primed and activated B-cells (CD2-
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CD21+) after 7 dpi, activation could be suggested. Interestingly, the increase of cells 

displaying the phenotype of antibody producing plasma cells (CD2 + CD21-) was highest in 

hybrid pigs. This is in contrast to both clinical course and serology. However, due to the lack 

of additional plasma cell markers at the time point of the experiment (CD79a) and the 

possible impact of lymphocyte depletion, these results have to be viewed with caution and 

need further investigation. All investigated breeds showed slightly elevated helper cells from 

3 dpi. Following the increase of helper cells, an increase of CD8 + CD4- CTLs was 

detectable. Strongest CTL proliferation was seen again in hybrid pigs. Preceding CTL 

proliferation, probably virus-mediated decrease of CD8 + CD4- T cells was detectable in all 

animals. This is in line with previous studies that showed that CSFV is able to suppress 

porcine T cells [11] and to induce killing of T cells [12]. In domestic pigs an increase of γδ 

TCR positive T cells was detectable, more pronounced in landrace pigs. The γδ T cells are 

discussed as antigen presenting cells in swine [13]. Clearly, changes in lymphocyte subsets 

need further investigation, especially with regard to harmful pattern and involvement of the 

immune system in the pathogenesis of CSF as was suggested by several authors [14-16]. 

 

While differences among breeds did not have the expected impact on course and outcome of 

CSFV infection, preload with facultative pathogens and even small differences in age seemed 

to be more relevant. Future studies will target the characterization of responses observed 

during different disease courses including cytokine reactions and further analyses of 

lymphocyte subsets. 

 

Additional file 1: Table S1 Overview on clinical presentation and disease courses upon 

infection with CSFV strain “Roesrath”. Onset refers to the occurrence of clinical signs 

excluding fever. Duration is given as the number of consecutive days (int. = intermittent, d = 

day). Unspecific symptoms (Unspec.) include depression and changes in general bearing, 

reduced liveliness, lack of appetite, conjunctivitis, gastro-intestinal and respiratory signs. 

Neurological signs (Neurol.) include ataxia, hind leg paresis, and uncontrolled shivering. 

Haemorrhagic signs (Haem.) refer to skin haemorrhages and cyanosis. Pathological lesions 

are presented for the lymphatic organs in particular (To. =  tonsil, Lnn. = lymphnodes, Sp. = 

spleen) . Moreover, haemorrhagic lesions (Haem.) and secondary infections (Sec.Inf.) are 

accounted for. Additional abbreviations: WB = wild boar; HY = hybrid pigs; LR = landrace 

pigs; INF = inoculated animal; NC = uninfected control animal; DOE = day of euthanasia; AL 

= acute-lethal disease course; AT = acute-transient disease course, CH = chronic illness.
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Animal Breed Status Fever Onset Duration CS max Clinical Symptoms Outcome DOE Pathology Seroconversion 

      [T°C ≥40]       Unspec. Neuro. Haem.     To. Lnn. Sp. Haem. Sec. Inf. E2 Erns 

#WB08 WB INF 10 dpi 5 dpi 11 d 9.0 x     AL 15 dpi x x       x x 

#WB09 WB INF 12 dpi 8 dpi 16 d 15.0 x x   AL 23 dpi x x   x x x x 

#WB10 WB INF int. 5 dpi 13 d 13.0 x x   AL 17 dpi x x   x x x x 

#WB13 WB INF 10 dpi 10 dpi 15 d 11.5 x x   AL 24 dpi x x   x x x x 

#WB15 WB INF int. 5 dpi 24 d 11.5 x x   CH 28 dpi x x     x x x 

#WB16 WB INF   7 dpi 9 d 9.5 x     AL 15 dpi x x     x x x 

#WB07 WB NC       

 

        28 dpi               

#WB12 WB NC   4 dpi 1 d 1.0 x       28 dpi               

#WB14 WB NC   2 dpi int. 15.0 x x     23 dpi               

#DP49 HY INF 3-24 dpi 3 dpi 22 d 16.5 x x x AL 24 dpi x x x x x x x 

#DP50 HY INF 3-18 dpi 3 dpi 16 d 14.5 x x x AL 18 dpi   x   x x x x 

#DP51 HY INF 4-17 dpi 5 dpi 13 d 14.0 x x   AL 17 dpi   x     x x x 

#DP52 HY INF 3-7 dpi 3 dpi 5 d 16.5 x     AL 7 dpi         x     

#DP53 HY INF 5-21 dpi 5 dpi 17 d 17.0 x x x AL 21 dpi   x   x x x x 

#DP54 HY INF 3-19 dpi 6 dpi 19 d 11.0 x x x AL 20 dpi x x   x x x x 

#DP43 HY NC 20 dpi              28 dpi               

#DP44 HY NC int.              28 dpi               

#DP45 HY NC int.              28 dpi               

#DP55 LR INF 3 - 11 dpi 6 dpi 6 d 8.0 x x   AL 11 dpi   x   x     x 

#DP56 LR INF int. 4 dpi 25 d 7.0 x x   AT 28 dpi       x   x x 

#DP57 LR INF int. 5 dpi 14 d 15.0 x x x AL 18 dpi x x   x x x x 

#DP58 LR INF 3-17 dpi 5 dpi 13 d 15.5 x x x AL 17 dpi x x   x x x x 

#DP59 LR INF 4-20 dpi 6 dpi 23 d 6.0 x x   AT 28 dpi   x   x x x x 

#DP60 LR INF 4-7 dpi 3 dpi 5 d 7.5 x x   AL 7 dpi   x   x       

#DP46 LR NC 4 dpi 4 dpi int. 12.5 x x     7 dpi               

#DP47 LR NC int. 8 dpi 6 d 6.0 x x     28 dpi               

#DP48 LR NC int.     

 

        28 dpi               
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Additional file 2: Table S2 Rectal body temperatures upon infection with CSFV strain “Roesrath” (0–28 days post infection). Fever was defined 

as a body temperature >40°C for at least two consecutive days. Temperatures >40°C but <40.5 are marked iin yellow, temperatures >40.5°C in 

red. WB = wild boar, HY = hybrid pigs, LR = landrace pigs, inf = infected, ctr = negative control, nd = not determined. 
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Novel rope-based sampling of classical swine fever shedding in a group of wild boar 

showing low contagiosity upon experimental infection with a classical swine fever field 

strain of genotype 2.3 

 

Abstract 

 

Several classical swine fever (CSF) epidemics in wild boar and domestic pigs in Europe 

during the last decades have been caused by CSF virus (CSFV) strains of genotype 2.3. This 

genotype is known to be virulent leading to high morbidity and mortality. We experimentally 

infected two eight months old wild boar with 10
5,5 

TCID50 of CSFV genotype 2.3 and kept the 

animals together with five noninoculated wild boar of the same age. Our original purpose was 

to evaluate a non-invasive sampling method based on saliva collection using ”rope-in-a-bait” 

sampling baits. While expecting high morbidity, high level of virus shedding and some 

mortality, we actually observed a subclinical course of infection with an unexpected low 

contagiosity. The two inoculated animals infected only three contact animals while two 

contact animals remained uninfected. These findings substantially add to our epidemiological 

understanding of CSFV circulation in wild boar populations. CSFV infected animals older 

than six months and in good condition may not shed sufficient virus to transmit infection to 

all seronegative in-contact animals. The contagiosity in relation to the animal’s age is 

discussed. This supports the hypothesis of silent perpetuation of CSFV in wild boar 

populations for several months if the wild boar density is sufficiently high. The feasibility of 

the “rope-in-a-bait” sampling method could be proven during the short viraemic phase of 

infected animals during the second week of infection. 

 

Key words 

 

Classical swine fever (CSF), wild boar, contagiosity, subclinical course, non-invasive 

sampling “rope-in-a-bait” 
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1. Introduction 

 

Classical swine fever (CSF) is caused by an RNA virus of the genus Pestivirus of the 

Flaviviridae family. The disease is often fatal, affecting pigs and wild boar (Sus scrofa) alike, 

and causes major economic losses especially in countries with an intensive pig production 

system (Horst et al., 1999). The role of wild boar in CSF is primarily of epidemiological 

interest since they are regarded as a reservoir for CSF virus (CSFV) and a possible source of 

infection for domestic pigs (Artois et al., 2002; Staubach et al., 2013). Therefore, the presence 

of CSFV in wild boar populations represents a high risk for domestic pigs. Under these 

conditions adequate surveillance which enables an early detection of CSF in the wild boar 

population is crucial. However, collecting a statistically significant number of samples from 

wild boar for early detection of infection, e.g. for demonstration of the presence of virus, viral 

RNA or antigen, is logistically difficult and up to now linked exclusively to hunting or 

trapping activities (Alexandrov et al., 2013). Furthermore, sampling methods for antibody 

detection provide a retrospective analysis of the disease situation, but are not useful for early 

warning.  

Our primary aim in this study was to explore the efficiency of CSF viral RNA detection in 

saliva samples collected by a non-invasive method using specific sampling baits consisting of 

ropes imbedded in a bait matrix (“rope-in-a-bait”). For validating the method we conducted 

an experimental infection of wild boar to probe animals which shed CSFV and which can be 

sampled regularly.  In particular, we wanted to assess the sensitivity of the novel “rope-in-a-

bait” sampling technique by comparison with blood tests and oronasal swabs. 

 

2. Materials and methods 

 

Seven wild boar were used in the experiment. The animals were eight months old, weighing 

around 45 kg each. They were all in good condition and kept in the same stable. Two 

randomly selected wild boar (A1 and A2) were inoculated oronasally with 4 ml of cell culture 

medium containing 10
5.5 

TCID50 (tissue culture infectious dose 50%) of CSFV isolate 2.3 

„Rösrath“. The CSFV strain “Rösrath” (CSF1045, GenBank accession number GU233734) 

was originally isolated from a wild boar piglet in Germany in 2009 and has been previously 

described by Leifer et al. (2010) as a strain of moderate virulence causing varying clinical 
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pictures of different severities ranging from unspecific symptoms to haemorrhagic lesions. 

The challenge virus was obtained from the German National Reference Laboratory for CSF 

and passaged twice on PK15 cells prior to use. The inoculum was from the same virus stock 

used in earlier experiments showing a higher virulence. 

Clinical signs were recorded daily. Blood samples (Monovette
®

 EDTA KE/9 ml resp. 

Serum/9 ml Sarstedt, Numbrecht, Germany) for virological and serological investigations as 

well as oronasal swabs (Copan Rayon Regular Tip cat. no. 155C, Hain Lifescience GmbH, 

Nehren, Germany) were taken twice a week during the first 4 weeks, and once a week 

afterwards. The last samples were taken 81 days post infection. For collecting oronasal swabs 

and blood samples the animals had to be sedated using Tiletamin and Zolezepam (0,5-1 ml 

Zoletil
R
 100 per animal). While the animals were under sedation the body temperature was 

also measured. Increased body temperatures between 40 °C and 41 °C were regarded as an 

effect caused by the handling and agitation of the animals while body temperatures above 41 

°C where regarded as fever. 

For non-invasive sampling we used rope-in-a-bait sampling baits which were manufactured in 

analogy to the CSF oral vaccine baits (Faust et al., 2007) by embedding  a raw cotton rope 

with a length of 10 cm and a diameter of 0.8 cm (Kanirope GmbH, Dortmund, Germany) in a 

cereal-based bait matrix. At least seven sampling baits were distributed every morning on the 

floor of the pen. The chewed cotton ropes were collected either the same day or next morning.  

RNA was extracted from all samples using the MagAttract Virus Mini M48 Kit for automated 

extraction (Qiagen GmbH, Hilden, Germany) according to the manufacturer’s 

recommendations. For CSF viral RNA detection real time reverse transcription PCR 

(RTqPCR) according to the protocol of Hoffmann et al. (2005) was used. Samples with Cq 

values below 40 were considered as positive.  

For antibody detection a commercially available CSF antibody ELISA (IDEXX CSFV Ab, 

Idexx Laboratories, Inc., Westbrook Maine, USA ) was used according to the protocol of the 

producer. Additionally, selected serum samples were tested in the virus neutralisation assay 

(NT) according to the OIE manual of diagnostic tests and vaccines for terrestrial animals 

(OIE, 2008). 

After completion of the trial necropsy was performed. 
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3. Results 

 

Liveliness and appetite of all animals remained normal during the whole observation period 

and no clinical signs of CSFV infection were seen (for example hemorrhages in the skin, 

central nervous symptoms). The only sign which could be attributed to CSF was fever in 

some of the animals during the second week of infection (Fig 1). However, fever did not 

affect their lively roaming and eating behaviour. 

The virological and serological results are shown in Table 1. The first RTqPCR positive 

results were detected on day 3 post inoculation (3 dpi) in the blood sample of one inoculated 

animal (A1) and on 6 dpi of the second inoculated wild boar (A2). Three contact animals (C3, 

C4, C5) reacted positive one week later (10 dpi), while two contact animals (C6 and C7) 

remained negative during the entire observation period. Seroconversion started in the 

inoculated animals 2 weeks post infection (10 dpi), followed by the three positive RTqPCR 

contact animals (13 and 17 dpi). CSF specific antibodies could not be detected in serum 

samples from the two wild boar with negative RTqPCR results. These two animals were 

repeatedly tested negative until 81 dpi. 

In the “rope-in-a-bait” samples, positive RTqPCR reactions were measured on 12 dpi (Cq 36) 

and 13 dpi (Cq 35) while only one oronasal swab from 10 dpi gave a positive RTqPCR signal 

(Cq 37). 

At necropsy no gross pathological signs of a CSFV infection were seen. Viral RNA was 

detected in tonsils (Cq 33-34), salivary gland (Cq 37), mandibular lymphnotes (Cq 33-36) but 

not in spleen. 
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Fig. 1. Rectal temperature (°C) of wild boar infected with CSFV.  

A1 and A2 (bold face) were inoculated with 10
5,5 

 TCID50 Rösrath genotype 2.3 CSFV. 

C3, C4 and C5 were infected by contact, C6 and C7 remained uninfected (italic). 

 

4. Discussion 

 

The experimental trial presented in this paper was aimed to validate a non-invasive sampling 

method for the detection of CSF viral RNA in saliva of wild boar. The unexpected subclinical 

course in the five infected animals and the absence of infection in two sentinel animals did not 

allow a thorough evaluation of the non-invasive sampling method. Virus excretion through 

saliva could only be demonstrated with two sampling baits and one oronasal swab during the 

second week of infection. The low virus dose in the saliva is reflected by the high Cq values 

(>30) measured. Presumably, insufficient amounts of virus had been excreted during the 

viraemic phase which lasted less than one week.  Since measurements of temperature and 

blood sampling could not be performed every day, the temperature curve and the viral RNA 
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detection in oronasal swabs may not reflect accurately the duration of virus shedding and 

clinical course.   

CSFV isolates belonging to the 2.3 genotype have caused several CSF epidemics in wild boar 

and domestic pigs in Europe during the last decades (von Rüden et al., 2008; Leifer et al., 

2010; Postel et al., 2013; Staubach et al., 2013). These strains are classified as moderate 

virulent causing age-dependent disease outcomes with severe clinical signs and high mortality 

in young animals, and milder, often transient courses in older animals. Hence, we expected in 

our experimental trial distinct clinical signs of CSF as well as a lethal outcome for some of 

the animals. Further, as shown in previous experiments, we expected an extended virus 

excretion (Depner et al., 1995; Depner et al., 1996). Based on our results, we hypothesized 

that the reason for the low contagiosity might be (i) either a change in virus virulence, (ii) a 

partial protection by fortuitous presence of antibodies against bovine viral diarrhea (BVD) 

virus, or (iii) a natural robustness associated with physiological host factors. For excluding an 

eventual virus mutation we sequenced PCR products of different positive blood samples from 

inoculated (6 dpi) and contact animals (10/13 dpi) (Schaarschmidt et al., 2000) and  could 

prove that the subclinical infection was indeed caused by CSFV 2.3 „Rösrath“ (data not 

shown). Furthermore, we also excluded an unnoticed prior BVDV infection by retesting the 

sera of 0 dpi  in a BVD virus neutralization antibody test in which all sera proved to be 

negative (data not shown). Hence, the role of host factors influencing the course of the disease 

remained the only plausible hypothesis.  

It is known that host factors may significantly influence the outcome of a CSFV infection 

(Depner at al., 1997). Younger pigs are not yet fully immunocompetent (Suradhat et al., 

2007). This might be an explanation why the severity of infection (mortality) is higher in 

piglets than in adults. Field data from the CSF epidemics in wild boar in Germany have 

shown that CSFV is mainly detected in animals younger than one year. Around 80% of virus 

positive samples originated from this age group (Kern et al., 1999; von Rüden at al., 2008). 

Unfortunately, the exact age of young wild boar (e.g. younger or older than 6 months) had not 

been reported. In our experiment the wild boar were eight months old sub-adults. They were 

in excellent condition which might have positively influenced the mild course of infection. 

Other possible determinants affecting the outcome of CSFV infections may be factors 

associated to virus dose (Dahle and Liess, 1995). However, this can be excluded here since 

the inoculated pigs received a very high virus dose (>10
5,5

 TCID50). From experimental 
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studies it is known that inoculation doses of 300 TCID are sufficient to infect an animal 

(Depner et al., 1995). 

The results of this infection experiment might help to explain the virus silent perpetuation 

over several months in a wild boar population. The age (older than six months) together with 

a good condition of the animal might influence the outcome of CSF. Under field conditions 

this means that during certain periods of time when fewer young piglets (< six months) are 

present in the population (e.g. towards the end of the year, before the farrowing period starts) 

subclinical courses may sustain the epidemic if the wild boar density is sufficiently high, e.g. 

more than 2 animals per square kilometer (EFSA 2009). 

The results described in this communication underline the need to examine more closely the 

age dependency of CSF in wild boar, particularly in animals between six and 12 months of 

age. 

In conclusion, the most striking finding in our experiment was that two contact animals did 

not become infected, although they had permanent direct contact with infected animals 

throughout the viraemic phase. The contagiosity of CSF seems to be dependent from age and 

the condition of the animal. Limited virus shedding may not lead to fast spread but rather 

subtle transmission that may go unnoticed for long time periods. Attributing a particular 

virulence feature to a field strain, e.g. high or low virulent, can be misleading and not predict 

the outcome of the infection which results from the complex interaction between pathogen 

and host. The feasibility of the “rope-in-a-bait” sampling method could be proven although 

the animals had a very short viraemic phase and virus excretion via saliva was poor. 

Furthermore, the results of this experimental trial lead to the recommendation to determine 

the exact age primarily of hunted young boar in the context of epidemiological investigations 

during a CSF epidemic. 
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Table 1 

Comparison of rectal temperature, Cq-values and results of antibody detection by ELISA. On 

the days not shown all RTqPCR reactions were negative. Between 17 dpi and 81 dpi all serum 

samples were ELISA positive. A1 and A2 were inoculated with 10
5,5 

TCID50 Rösrath 

genotype 2.3 CSFV and C3, C4, C5, C6 and C7 were contact animals. 

 -1 dpi 3 dpi 6 dpi 10 dpi 12/13 dpi 17 dpi 81 dpi 

A1        

temperature
1
 39.9 39.8 40.6 40.1 40.1 39.0 

*
nd

2
 

EDTA blood no cq 37 32 35 no cq no cq 
*
nd 

oronasal swab no cq no cq no cq no cq no cq no cq 
*
nd 

ELISA
3
 -

4
 - - - +

3
 ++

3
 

*
nd 

A2        

temperature 39.6 40.0 40.4 40.4 39.9 39.3 
*
nd 

EDTA blood no cq no cq 32 34 37 no cq 
*
nd 

oronasal swab no cq no cq no cq no cq no cq no cq 
*
nd 

ELISA - - - (+)
3
 + ++ 

*
nd 

C3        

Temperature 39.8 39.8 41.2 41.5 40.4 40.3 39.4 

EDTA blood no cq no cq no cq 35 no cq no cq nd 

oronasal swab no cq no cq no cq 37 no cq no cq nd 

ELISA - - - - + ++ ++
3
 

C4        

Temperature 39.8 39.6 40.4 40.0 41.0 40.3 40.2 

EDTA blood no cq no cq no cq 31 34 35 nd 

oronasal swab no cq no cq no cq no cq no cq no cq nd 

ELISA - - - - - + ++ 

C5        

Temperature 40.2 40.0 40.6 41.3 40.2 39.6 39.2 

EDTA blood no cq no cq no cq 36 33 37 nd 

oronasal swab no cq no cq no cq no cq no cq no cq nd 

ELISA - - - - - + ++ 

C6        

Temperature 40.1 39.8 40.3 40.0 40.2 40.0 39.2 

EDTA blood no cq no cq no cq no cq no cq no cq nd 

oronasal swab no cq no cq no cq no cq no cq no cq nd 

ELISA - - - - - - - 

C7        

Temperature 40.0 39.6 40.1 40.5 40.3 39.9 41.5 

EDTA blood no cq no cq no cq no cq no cq no cq nd 

oronasal swab no cq no cq no cq no cq no cq no cq nd 

ELISA - - - - - - - 

“Rope in a bait” (accumulative sample)  

rope sample no cq no cq no cq no cq 36/35 no cq nd 
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1 
Rectal (°C), fever (>41.0) showing in bold 

2 
Not done 

3
 % inhibition: positive (+) 30-40, + >40-70, ++ >70; negative –< 30 

*
 Euthanised at 46 dpi. 
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Alternative sampling strategies for passive classical and African swine fever surveillance 

in wild boar 

 

Abstract 

 

In view of the fact that African swine fever (ASF) was recently introduced into the wild boar 

population of the European Union and that classical swine fever (CSF) keeps reoccurring, 

targeted surveillance is of utmost importance for early detection. Introduction of both diseases 

is usually accompanied by an increased occurrence of animals found dead. Thus, fallen wild 

boar are the main target for passive surveillance. However, encouraging reporting by hunters 

and sampling of these animals is difficult. Partly, these problems could be solved by 

providing a pragmatic sampling approach. For this reason, we assessed the applicability of 

three different dry/semi-dry blood swabs, namely a cotton swab, a flocked swab, and a 

forensic livestock swab, for molecular swine fever diagnosis. After nucleic acid extraction 

using manual and automated systems, routine quantitative real-time polymerase chain 

reactions (qPCR) were carried out. Results obtained from swabs or their fragments were 

compared to results generated from EDTA blood. 

It was shown that reliable detection of both pathogens was possible by qPCR. Shifts in 

genome copy numbers were observed, but they did not change the qualitative results. In 

general, all swabs were suitable, but the forensic swab showed slight advantages, especially in 

terms of cutting and further storage. Robustness of the method was confirmed by the fact that 

different extraction methods and protocols as well as storage at room temperature did not 

have an influence on the final outcome. Taken together, swab samples could be recommended 

as a pragmatic approach to sample fallen wild boar. 

 

Keywords 

 

Passive surveillance, wild boar, swine fever, alternative sampling, swabs 
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1. Introduction 

 

Both African and classical swine fever are among the most important and devastating viral 

diseases of domestic pigs and wild boar (Edwards et al., 2000; Sanchez-Vizcaino et al., 2013) 

and are notifiable to the World Organization for Animal Health (OIE). Recently, African 

swine fever (ASF) was introduced into the wild boar population of the European Union (EU), 

but also classical swine fever (CSF) keeps reoccurring (WAHID interface, visited May 10th 

2014). As was observed with classical swine fever (CSF), disease occurrence in the wild boar 

population is often accompanied by spill over into the domestic pig population (Fritzemeier et 

al., 2000), with severe socio-economic consequences. Similar pattern were recently seen with 

African swine fever (ASF) that was also transmitted from wild boar to domestic pigs and back 

(Gogin et al., 2013). Only timely detection and intervention can lower the impact on both pig 

industry and wildlife and therefore, appropriate surveillance and warning systems are needed 

for countries at risk (De la Torre et al., 2013). 

As introduction of both diseases into a naïve wild boar population is usually accompanied by 

high morbidity and mortality (Artois et al., 2002; Costard et al., 2013), and thus an increased 

occurrence of animals found dead, passive surveillance is crucial. However, the number of 

sample submissions from fallen wild boar is usually very low, even in times of increased risk. 

This could be partly due to the fact that sampling and/or transport of wild boar carcasses in 

various stages of decay is difficult and in some cases even nauseating. Thus, encouraging 

hunters to report and sample fallen wild boar could be facilitated by provision of an easy to 

handle and pragmatic sampling and transport approach. 

In the presented pilot study, dry blood swabs were investigated. To this means, different 

swabs were immersed in EDTA blood samples from experimentally infected wild boar and 

domestic pigs and subsequently subjected to molecular swine fever diagnosis using different 

nucleic acid extraction methods and specific quantitative real-time polymerase chain reaction 

(qPCR) techniques. Preparatory methods were chosen to allow detection of both diseases at 

the same time. Additional samples were tested to assess field applicability and transferability 

to other sample matrices including organ swabs. 
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2. Materials and methods 

 

2.1. Swabs 

Three different swabs, namely a routine cotton swab (COPAN), a flocked swab 

(FLOQSwabs, COPAN), and a forensic livestock swab (Genotube, Prionics) were used.  

2.2 Processing and testing of samples  

As a first proof of concept experiment, the above mentioned cotton swabs were immersed in 

EDTA blood samples from experimentally infected animals (n=7 for ASF, collected at 4 dpi; 

n=11 for CSF, collected at 4, 5, 7, 10 dpi). Samples were chosen to represent animals in the 

clinical phase of infection and had been stored at -70°C until further use. The resulting blood 

swabs were stored three days (ASF) or over night (CSF) at room temperature to mimic 

sample transport without cooling. For nucleic acid extraction, swabs were dipped into the 

AVL buffer of the QIAamp Viral RNA Mini Kit (Qiagen) and used to stir it. After removal of 

the swab, all subsequent extraction steps were carried out according to the manufacturers 

instructions. A slight modification concerned the addition of an internal control DNA/RNA (5 

µl per reaction with 2 x 105 copies per µl). Subsequently, qPCR or reverse transcription 

qPCR (RT-qPCR) was performed according to the protocols published by King et al.(2003) 

for ASF, and Hoffmann et al. (2005) for CSF. The PCR reactions were carried out using a 

Bio-Rad CFX Cycler (Bio-Rad Laboratories) and its accompanying software. Results were 

presented in a semi-quantitative way as quantification cycle (cq) values. 

In a second pilot experiment, three different swabs (cotton, flocked and forensic) were used 

along with one manual and one automated nucleic acid extraction system. This time, swab 

fragments were subjected to nucleic acid extraction to ensure a retesting option.  

For ASF, 10 samples from wild boar experimentally infected with ASF virus “Armenia08” 

(including samples from 6, 8 and 9 dpi) were used to soak the above mentioned swabs in 

parallel. After storage over night at room temperature, small fragments (about pinhead sized) 

were cut from the swabs with sterile scissors and used to extract nucleic acids through either 

the manual QIAamp Viral RNA Mini Kit (Qiagen) or the automated EZ1 Virus Mini Kit v2.0 

(Qiagen) with slight modifications (modification details are available from the authors upon 

request). For CSF, 5 samples from animals infected with CSFV strains recently isolated in 

Israel (“CSF01047”, 2009, genotype 2.1) and Germany ( “CSF1045”, 2009, genotype 2.3) 

were subjected to the protocol described above. Downstream handling was done as in the 

pilot trial, but here, a dilution series of a synthetic standard with known copy numbers was 

used to quantify genome copies in the respective samples. Results were compared among the 
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different swabs and extraction methods, and with results from EDTA blood samples (pre-

existing data from the respective animal trials or parallel extractions).  

Based on the results of the two pilot experiments, additional Genotube samples were tested 

for both ASF (n=30) and CSF (n=19). The parental blood samples were tested in parallel. The 

samples were chosen from the clinical phase of infection from both domestic pigs and wild 

boar. The CSFV panel included in addition a dilution series of a strong positive blood sample 

(1:2 to 1:1024) to assess the dose response. Here, pinhead-sized swab fragments were used for 

nucleic acid extraction using the QIAamp Viral RNA Mini Kit (Qiagen) after 24 h storage at 

room temperature. All samples were subsequently tested in the above mentioned PCR 

systems, and results were presented in a semi-quantitative way as quantification cycle (cq) 

values. In addition, flexibility and robustness were assessed through the inclusion of 

Genotube organ swabs. These swabs were taken from different blood and organ samples of 

experimentally ASFV and CSFV infected animals directly upon thawing of the material and 

after 7 days at 37°C in an incubator. Downstream handling was done as described above. 

Finally, Genotube samples were generated from 96 negative wild boar blood samples of 

varying quality (almost optimal to dark haemolytic with impurities) to assess field 

applicability. In this case, nucleic acids were extracted using the QIAsymphony DSP 

Virus/Pathogen Mini Kit (Qiagen) on the respective instrument. 

 

3. Results 

 

In the first pilot trial, comparison of RT-PCR results showed no qualitative differences among 

EDTA and swab samples irrespective of the initial genome load. However, while quantitative 

ASF results were again comparable in terms of cq-values, marked shifts were observed 

between CSF blood and swab samples (see supplementary table 1). The latter showed up to 8 

cq values difference. 
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Supplementary Table 1: Comparison of blood and blood swab samples in real-time PCR 

(cq-values) after nucleic acid extraction using the QIAamp Viral RNA Mini Kit (Qiagen). dpi 

= days post infection, gt = genotype 

    QIAamp Viral RNA Mini Kit (Qiagen) 

    EDTA Blood 
cotton swab,  

immersed in AVL-buffer 
#76 - 4 dpi CSF1045 gt 2.3 33.38 38.77 
#76 - 7 dpi CSF1045 gt 2.3 23.45 28.81 
#75 - 4 dpi CSF1045 gt 2.3 35.41 37.34 
#75 - 7 dpi CSF1045 gt 2.3 26.93 31.30 
#100 - 7 dpi CSF1045 gt 2.3 19.99 23.26 
#100 - 10 dpi CSF1045 gt 2.3 18.18 26.41 
#167 - 7 dpi CSF1045 gt 2.4 22.45 26.24 
#90 - 4 dpi CSFV "Koslov" gt 1.1 15.38 19.93 
#90 - 5 dpi CSFV "Koslov" gt 1.1 12.10 17.19 
#91 - 4 dpi CSFV "Koslov" gt 1.1 18.56 20.97 
#91 - 5 dpi CSFV "Koslov" gt 1.1 16.68 18.19 
#HS1 - 4 dpi ASPV Armenia08 19.84 19.50 
#HS2 - 4 dpi ASPV Armenia08 18.91 19.22 
#HS 3 - 4 dpi ASPV Armenia08 18.16 19.44 
#HS 4 - 4 dpi ASPV Armenia08 18.46 19.42 
#HS 5 - 4 dpi ASPV Armenia08 20.50 20.41 
#HS 9 - 4 dpi ASPV Armenia08 20.15 19.61 
#HS 11 - 4 dpi ASPV Armenia08 22.20 25.09 
 

Comparing the different swabs of the second pilot experiment treated with the manual 

extraction method, PCR results were roughly similar with differences mainly within one log 

step for all swabs. In general, slightly higher genome loads were found in flocked and 

forensic swabs (see figure 1 and supplementary table 2). In case of ASF, comparison with 

parallel extractions from EDTA blood using the same methodology, did not reveal any 

qualitative differences. Nevertheless, quantitative divergence was obvious but stayed within 

one log step or slightly above (see figure 1 and supplementary table 2).  
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Fig. 1.: Comparison of blood and different blood swab samples after manual nucleic acid 

extraction using the QIAamp Viral RNA Mini Kit (Qiagen) and ASFV specific qPCR. Results 

are presented as genome copy numbers per µl based on a synthetic standard. Samples were 

taken from experimentally infected wild boar between days 6 and 9 post infection (dpi) with 

ASFV “Armenia08”. 

 

For CSF, qualitative results from EDTA blood were also confirmed using swab samples. 

Quantitative differences were observed in the same manner (see supplementary table 3). 

Comparison of different extraction methods using the same swabs showed no qualitative 

changes. Slightly higher genome loads were detected upon nucleic acid extraction using the 

EZ1 automated system for both ASF and CSF (see figure 2 and supplementary table 4 for 

ASF, and supplementary table 3 for CSF). One Genotube sample showed negative results 

upon EZ1 extraction in both target and internal control PCR. 
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Fig. 2.: Comparison of different blood swab samples after manual and automated nucleic acid 

extraction and ASFV specific qPCR. The manual extraction was carried out using the 

QIAamp Viral RNA Mini Kit (Qiagen), while automated extraction was performed 

employing the EZ1 Virus Mini Kit v2.0 (Qiagen). Results are presented as genome copy 

numbers per µl based on a synthetic standard. Samples were taken from experimentally 

infected wild boar between days 6 and 9 post infection (dpi) with ASFV “Armenia08”. 

 

Testing of the additional Genotube samples showed matching qualitative results (see figures 3 

and 4), and quantification cycle values differed in the range seen in the pilot trials. Testing of 

the CSF dilution series showed the expected dose response in both EDTA blood and 

Genotube samples (see figure 4). Using blood and organ samples from experimentally 

infected animals, Genotubes were shown to be suitable for organ swabbing, even if the 

samples were stored for 7 days at 37°C (see supplementary table 4). No qualitative 

differences occurred. However, blood samples showed the lowest variance. Comparative 

studies with FTA cards showed similar results on ASF samples stored for one week at 37°C 

(see supplementary table 4). All field samples gave negative results in the ASFV and CSFV 

specific PCRs while detection of internal controls was possible. 
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Fig. 3.: Testing of ASFV forensic swab (Genotube) samples in comparison with the parental 

EDTA blood sample after nucleic acid extraction using the QIAamp Viral RNA Mini Kit 

(Qiagen). Results are depicted as quantification cycle values. 
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Fig. 4.: Testing of CSFV forensic swab (Genotube) samples in comparison with the parental 

EDTA blood sample after nucleic acid extraction using the QIAamp Viral RNA Mini Kit 

(Qiagen). Results are depicted as quantification cycle values. 

 

4. Discussion 

 

The recent introduction of ASF into the wild boar population of the EU has stressed the 

necessity of targeted surveillance and early warning actions (De la Torre et al., 2013). Based 

on the assumption that an increase in wild boar mortality could be observed upon introduction 

of either ASF or CSF, fallen wild boar are the primary target for passive surveillance. In most 

countries, hunters will observe and sample fallen wild boar and thus, early warning relies on 

their compliance. Lowering the effort involved in sampling and transport could increase 

willingness to cooperate.  

Among the options are different swab samples that could be send via ordinary mail or courier 

to the competent laboratory. In general, rectal (faecal) or oropharyngeal swabs are easiest to 

obtain. Yet, these samples were shown to contain much lower genome loads than organs or 

blood, especially in the case of ASF (Blome et al., 2013). In contrast, dry blood samples, e.g. 

on filter papers or FTA cards (Braae et al., 2013; Michaud et al., 2007), have been shown to 

contain high viral loads and work for both RNA and DNA viruses. While filter papers would 

still need an additional device to drop blood onto the device or to somehow soak it, swab 

sampling would minimize the necessary contact to the carcass (that can remain in the 

ecosystem while the region is free from swine fever) and allow shipment in the swab tube.  

In the presented study, different swabs were tested for their suitability along with three 

different nucleic acid extraction methods to assess robustness of the approach. The most 

promising swab was tested in more detail. 

It was shown that both ASFV and CSFV could be detected in nucleic acids derived from swab 

samples irrespective of the nucleic extraction method. In general, both testing of swabs by just 

immersing them in lysis buffer or by cutting small fragments was possible. To allow a 

retesting of samples in case of doubtful results or technical problems, fragment generation and 

testing is recommended. In this regard, the forensic Genotube swab had the advantage that 

cutting a suitable fragment was easiest and least contamination prone. Moreover, this device 

has been shown to be suitable for long term storage of ASF samples (K. Goller, unpublished 

data), and retesting of CSF samples after 35 days and two months confirmed stability also for 
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the viral RNA (data not shown). In terms of genome load, the flocked swab was slightly 

superior (figure 1 and supplementary table 2), but fragment generation was most difficult.  

As expected, shifts in genome load were seen when comparing results from EDTA blood and 

the corresponding swabs. These differences were in the range of roughly one log step (about 3 

cq-values) for ASFV and slightly higher for CSFV. When judging on these differences and 

their impact on the fitness for purpose, it has to be kept in mind that the relevant fallen 

animals died from the disease in question and will therefore contain very high copy numbers 

of the respective pathogen. For this reason, the loss of sensitivity is probably acceptable, even 

if field samples would mean swabs of reddish fluid from any accessible part of the body 

rather than blood like in the presented study. In this regard, testing of field samples showed 

that even suboptimal samples did not negatively influence the diagnostic specificity (100 % 

based on 96 field blood samples from shot wild boar). Flexibility of the approach was further 

proven through inclusion of different organ samples. Although blood samples were again 

shown to be most robust, all organ samples from acutely infected animals were found positive 

in qPCR, even after seven days at 37°C. Here, results were comparable with FTA cards. A 

general drawback of swab (or FTA card) sampling alone is the loss of syndromic surveillance 

that could be carried out on the whole carcass. However, this drawback might be tolerable if 

the number of samples for targeted swine fever surveillance can be considerably increased. 

Suitability for other diseases should be tested as it can be assumed that other pathogens would 

be also detectable. 

 

5. Conclusions 

 

Blood swabs are suitable for a reliable ASF and CSF virus detection. Different swabs and 

extraction protocols could be robustly used. Forensic swabs showed advantages in terms of 

fragment preparation and further storage. Swabbing of organs is possible where no blood is 

available. 

Taken together, swab samples could be recommended as a pragmatic approach to sample 

especially fallen wild boar for passive swine fever diagnosis. 



 Alternative sampling strategies for passive classical and African swine fever surveillance in wild boar 

65 

 

 

Supplementary Table 2:  Comparison of blood and different blood swab samples for ASF virus detection. Results of qPCR are presented as cq values and 

genome copy numbers per µl. The table includes results obtained from EDTA blood after nucleid acid extraction using the QIAamp DNA Mini Kit. These 

results were obtained in the framework of the animal trial. WB = wild boar; dpi = days post infection 

 

 

Supplementary Table 3: Comparison of blood and different blood swab samples for detection of CSFV genome. Results include different extraction protocols. 

RT-qPCR results are depicted as cq values and/or genome copy numbers per µl.  n.d. = not done 

 

Animal Type dpi cq copies/µl cq copies/µl cq copies/µl cq copies/µl cq copies/µl

Bache 3 WB, adult 6 dpi 14.87 3.12E+06 17.60 4.38E+05 20.66 5.69E+04 20.64 5.77E+04 20.94 4.73E+04

Paula WB, adult 6 dpi 15.75 1.75E+06 17.63 4.31E+05 22.78 1.39E+04 23.59 8.07E+03 21.81 2.64E+04

Fridolin WB, piglet 6 dpi 15.87 1.62E+06 18.47 2.45E+05 22.34 1.86E+04 21.89 2.51E+04 22.89 1.28E+04

Keiler WB, adult 8 dpi 15.02 2.83E+06 17.93 3.51E+05 21.22 3.92E+04 21.67 2.90E+04 20.67 5.64E+04

Fridolin WB, piglet 8 dpi 16.71 9.35E+05 18.92 1.82E+05 22.54 1.63E+04 23.06 1.14E+04 24.02 6.03E+03

Paula WB, adult 8 dpi 15.71 1.67E+06 19.30 1.41E+05 21.04 4.43E+04 21.80 2.65E+04 21.17 4.05E+04

Bache 3 WB, adult 8 dpi 15.83 1.80E+06 17.31 5.32E+05 21.40 3.48E+04 21.41 3.46E+04 21.34 3.62E+04

Keiler WB, adult 9 dpi 19.50 1.51E+05 19.51 1.23E+05 22.41 1.77E+04 23.08 1.13E+04 22.76 1.41E+04

Bache 3 WB, adult 9 dpi 15.92 1.57E+06 17.45 4.85E+05 20.21 7.67E+04 22.12 2.16E+04 22.77 1.39E+04

Paula WB, adult 9 dpi 21.84 3.28E+04 20.04 8.59E+04 21.28 3.76E+04 22.62 1.54E+04 23.68 7.57E+03

QIAamp DNA Mini

EDTA blood 200 µl FLOQSwab, fragment Genotube, fragment cotton swab, fragmentEDTA blood parallel 75 µl

QIAamp Viral RNA Mini

QIAamp Viral RNA

Animal Inoculum EDTA blood

365 CSFV "CSF1047", gt 2.1 26.43 27.77 1.02E+04 28.26 7.54E+03 26.91 1.74E+04 31.32 1.12E+03 29.54 3.40E+03 30.27 2.16E+03

366 CSFV "CSF1047", gt 2.1 23.09 25.37 4.54E+04 26.11 2.87E+04 24.27 9.00E+04 29.24 4.10E+03 27.48 1.23E+04 28.20 7.81E+03

367 CSFV "CSF1047", gt 2.1 26.89 29.54 3.39E+03 30.17 2.30E+03 32.24 6.32E+02 33.76 2.47E+02 31.90 7.80E+02 32.23 6.39E+02

368 CSFV "CSF1047", gt 2.1 25.07 27.51 1.20E+04 28.21 7.76E+03 26.31 2.54E+04 30.00 2.56E+03 27.88 9.56E+03 28.55 6.27E+03

76 CSFV  "CSF1045", gt 2.3 23.45 n.d. n.d. 27.55 1.17E+04 28.22 7.69E+03 30.44 1.94E+03 27.64 1.11E+04 30.27 2.16E+03

cotton swab, fragment

QIAamp Viral RNA EZ1 AL-Puffer QIAamp Viral RNA EZ1 AL-Puffer QIAamp Viral RNA EZ1 AL-Puffer

FLOQSwab, fragment FLOQSwab, fragment Genotube, fragment Genotube, fragment cotton swab, fragment
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Alternative sampling strategies for passive classical and African swine fever surveillance 

in wild boar – Extension towards African swine fever virus antibody detection 

 

To the Editor: 

 

We recently reported on the use of blood swab samples for passive classical and African 

swine fever (CSF and ASF) surveillance in wild boar (Petrov et al., in press). Upon 

availability of the article online, we were asked by national and international colleagues 

whether this approach would be suitable also for antibody detection. 

While antibody detection might not be the primary focus of diagnostic investigations in fallen 

animals, we think that an approach that would allow both pathogen and antibody detection in 

one easy-to-collect sample matrix, combined with simple shipment, and long-term storage, 

would be optimal under field conditions. 

For this reason, we tried to rapidly answer this question on a limited set of sero-positive and 

sero-negative blood samples from animal experiments. Given the current epidemiological 

situation of ASF in the European Union wild boar population (cases in several Eastern 

Member States with a tendency to spread, see OIE WAHID), we feel that the audience of 

Veterinary Microbiology would benefit from a brief addendum to the above mentioned 

article. For this reason, we report on the outcome of our initial studies here, while further 

validation is still in progress. 

 

Study design and outcome 

  

A total of 42 porcine EDTA blood samples was employed to test applicability of swab 

fragments for antibody detection. The expected status of the blood sample was related to the 

corresponding serum sample of the same animal and sampling day. The result of the p72 

antibody ELISA (Ingezim PPA Compac, Ingenasa, Madrid, Spain) was used as a reference. 

Genotube swabs (Prionics, Zurich, Switzerland), were dipped into the respective blood 

sample and left to dry for at least 12 h at room temperature. Thereafter, diamond-shaped 

fragments (app. 5 mm lateral length) were cut with sterile scissors and transferred to the 

ELISA system. To test samples close to the “worst-case-scenario”, 30 samples were included 

that had been stored for more than 21 months at 4°C. This set comprised 12 samples from 

sero-negative animals, and 18 samples from sero-positive animals. The latter had been 

immunized twice with an inactivated preparation of genotype II ASFV Armenia08 (Blome et 
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al., 2014). Samples were included from days 28 to 41 post immunization. The second set of 

samples comprised animals that had been inoculated with ASFV OURT88/3 (genotype I, non-

hemadsorbing). These samples (n = 10) had been taken 29 days post inoculation and were 

stored approximatelyone month at 4°C. Also here, negative animals (n=2) were included. To 

compare the performance with dried blood on filter papers as foreseen in the ELISA protocol 

(see below), we tested 14 samples also on this matrix (the second set of samples and two 

long-term storage samples, see table 1).  

The commercially available ID Screen
®
 African Swine Fever Indirect antibody ELISA 

(ID.vet, Grabels, France) allows a protocol for dried blood on filter papers. We used this 

protocol to test the swab fragments. The original protocol foresees the use of two filter paper 

punches with a diameter of 6 mm. We replaced them with two of the above mentioned 

Genotube fragments and performed all subsequent steps according to the manufacturer’s 

instructions. 

 

Based on the above mentioned set of samples, we could clearly demonstrate that antibody 

detection is possible also from Genotube swabs (see table 1). Fourty out of 42 samples were 

in complete agreement with the serological status, and an additional sample that had a 

doubtful status was detected positive. Only one doubtful sample gave a negative result. 

Comparison of dried blood on filter paper and on Genotube swabs gave similar results (see 

table 1), also in terms of raw data values (data not shown). No false positive reactions 

occurred, even with samples stored for several months (see table 1). 

 

Table 1: EDTA blood sample details and results. The status of the sample was defined by a 

p72 antibody ELISA (Ingezim PPA Compac, Ingenasa) of the corresponding serum sample. 

The storage time is depicted in month (M). DPI = days post inoculation; neg = negative 

according to the test criteria; dbt = doubtful according to the test criteria; pos = positive 

according to the test criteria; nd = not done; inact. = inactivated 
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Genotube Animal ID DPI Storage Virus Status 

Result 

swab  

Result  

filter  

1 HS1 0 21M / neg neg nd 

2 HS2 0 21M / neg neg nd 

3 HS3 0 21M / neg neg nd 

4 HS4 0 21M / neg neg nd 

5 HS5 0 21M / neg neg nd 

6 HS6 0 21M / neg neg nd 

7 HS7 0 21M / neg neg nd 

8 HS8 0 21M / neg neg nd 

9 HS9 0 21M / neg neg nd 

10 HS11 0 21M / neg neg nd 

11 HS12 0 21M / neg neg nd 

12 HS13 0 21M / neg neg nd 

13 HS3 28 21M Armenia08 inact. neg neg nd 

14 HS4 28 21M Armenia08 inact. neg neg nd 

15 HS6 28 21M Armenia08 inact. neg neg nd 

16 HS7 28 21M Armenia08 inact. pos pos nd 

17 HS8 28 21M Armenia08 inact. pos pos nd 

18 HS9 28 21M Armenia08 inact. pos pos nd 

19 HS11 28 21M Armenia08 inact. pos pos nd 

20 HS8 35 21M Armenia08 inact. pos pos nd 

21 HS12 28 21M Armenia08 inact. pos pos nd 

22 HS13 28 21M Armenia08 inact. pos pos nd 

23 HS4 41 21M Armenia08 inact. dbt neg nd 

24 HS6 41 21M Armenia08 inact. dbt pos nd 

25 HS7 41 21M Armenia08 inact. pos pos nd 

26 HS8 41 21M Armenia08 inact. pos pos nd 

27 HS9 41 21M Armenia08 inact. pos pos nd 

28 HS11 41 21M Armenia08 inact. pos pos nd 

29 HS12 41 21M Armenia08 inact. pos pos pos 

30 HS13 41 21M Armenia08 inact. pos pos pos 

31 HS1 29 1M OURT88/3 pos pos pos 

32 HS2 29 1M OURT88/3 pos pos pos 

33 HS3 29 1M OURT88/3 pos pos pos 

34 HS4 29 1M OURT88/3 pos pos pos 

35 HS5 29 1M OURT88/3 pos pos pos 

36 HS6 29 1M OURT88/3 pos pos pos 

37 HS7 29 1M OURT88/3 pos pos pos 

38 HS8 29 1M OURT88/3 pos pos pos 

39 HS9 29 1M OURT88/3 pos pos pos 

40 HS10 29 1M OURT88/3 pos pos pos 

41 HS1 0 1M / neg neg neg 

42 HS2 0 1M / neg neg neg 
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Despite the fact, that further validation is clearly needed and ongoing, these initial results are 

most promising and could prompt the inclusion of antibody detection from swabs in the field. 

Due to the very high virulence of the ASFV strains currently circulating in Eastern Europe 

(Gabriel et al., 2012; Blome et al., 2013), antibody detection is still a rather rare finding. 

However, to obtain a full picture of the epidemiological situation, and to fulfill all legal 

requirements (e.g. Commission Decision 2003/422/EC), the search for antibodies is 

mandatory. Another important issue would be to isolate the causative virus strains for further 

characterization. In this respect, preliminary studies showed that ASFV isolation from 

Genotube swabs was possible in blood monocyte derived macrophage cultures while CSFV 

could not be isolated (data not shown). Probably, the latter could be obtained from RNA 

transfection. 

Easy sampling and testing by using swabs for both pathogen and antibodies could facilitate 

this task and present a pragmatic approach also for other scenarios, e.g. for wild-life 

monitoring in Africa. 
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Development and validation of a harmonized TaqMan-based triplex real-time RT-PCR 

protocol for the quantitative detection of normalized gene expression profiles of seven 

porcine cytokines 

 

Abstract 

 

Dysregulation of cytokine responses plays a major role in the pathogenesis of severe and life-

threatening infectious diseases like septicemia or viral hemorrhagic fevers. In pigs, diseases 

like African and classical swine fever are known to show exaggerated cytokine releases. To 

study these responses and their impact on disease severity and outcome in detail, reliable, 

highly specific and sensitive methods are needed. For cytokine research on the molecular 

level, real-time RT-PCRs have been proven to be suitable. Yet, the currently available and 

most commonly used SYBR Green I assays or heterogeneous gel-based RT-PCRs for swine 

show a significant lack of specificity and sensitivity. The latter is however absolutely essential 

for an accurate quantification of rare cytokine transcripts as well as for detection of small 

changes in gene expressions. For this reason, a harmonized TaqMan-based triplex real-time 

RT-PCR protocol for the quantitative detection of normalized gene expression profiles of 

seven porcine cytokines was designed and validated within the presented study. Cytokines 

were chosen to represent different immunological pathways and targets known to be involved 

in the pathogenesis of the above mentioned porcine diseases, namely interleukin (IL)-1β, IL-

2, IL-4, IL-6, IL-8, tumor necrosis factor (TNF)-α and interferon (IFN)-α. Beta-Actin and 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) served as reference genes for 

normalization. For absolute quantification a synthetic standard plasmid was constructed 

comprising all target cytokines and reference genes within a single molecule allowing the 

generation of positive control RNA. The standard as well as positive RNAs from samples, and 

additionally more than 400 clinical samples, which were collected from animal trials, were 

included in the validation process to assess analytical sensitivity and applicability under 

routine conditions. 

The resulting assay allows the reliable assessment of gene expression profiles and provides a 

broad applicability to any kind of immunological research in swine. 
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1. Introduction 

 

Cytokines are important mediators that orchestrate cellular functions including inflammatory 

responses and innate immune reactions. However, excessive activation of the innate immune 

system in response to pathogens can lead to pathological inflammatory consequences [1], and 

dysregulation of cytokine responses plays a major role in the pathogenesis of severe and life-

threatening infectious diseases including viral haemorrhagic fevers [2]. Another example is 

the “cytokine storm” that is held responsible for the exceptionally high morbidity and 

mortality in human highly pathogenic influenza virus infections [3]. Hence, cytokine profiles, 

especially when targeting a set of cytokines expressed within a certain microenvironment [4, 

5], can provide important insights into the development of infectious diseases, which are 

characterised by an immune pathogenesis such as classical swine fever (CSF), a severe 

porcine infection that can be accompanied by haemorrhagic lesions. For CSF, a cytokine 

dysregulation is suspected to be decisive for clinical severity [6]. Similar responses are known 

for African swine fever (ASF) [7], a disease that recently gained importance through its 

introduction into several Eastern European countries [8, 9].  

Cytokines can be targeted at various levels, from assessment of cellular expression profiles 

using mRNA detection by RT-PCR, to measurement of intracellular proteins by fluorescence-

activated cell sorter staining and quantification of secreted cytokine proteins by the use of 

bioassays, enzyme-linked immunosorbent assays, radioactive immunosorbent assays, and 

microarrays [10]. For pathogenesis studies, a combination of expression and protein detection 

methodologies is usually advisable. However, assessment of expression profiles in pigs is so 

far severely hampered by the lack of fully validated and reliable diagnostic tools. While 

several PCR systems for porcine cytokine detection were developed during the last years, 

most of them either comprised non-standardised heterologous conventional RT-PCR systems 

[11-13] or were performed using intercalating fluorescent dyes such as SYBR-Green I [14-

18]. However, these techniques have clear disadvantages compared to TaqMan based PCRs 

particularly with regard to the lack of sensitivity and specificity which are however essential 

for the accurate quantification of rare cytokine transcripts and the detection of small changes 

in gene expression.  

With the pig as target species, the presented study reports on the design and validation of a 

harmonized approach for specific detection of cytokine gene expression profiles in swine. 
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Cytokines were chosen to represent different reaction pattern of the immune system (Th1 and 

Th2 responses), and mediators that are known to be involved in the pathogenesis of important 

porcine infections such as CSF. To this means, a harmonized multiplexed one-step TaqMan 5' 

nuclease [19] protocol for specific detection and quantification of seven cytokines, namely 

interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, tumor necrosis factor (TNF)-α and interferon 

(IFN)-α, was designed and validated. Two reference genes were included to allow reliable 

normalization. 

 

2. Materials and methods 

 

2.1 Selection of primers and probes 

Primers and probes for seven porcine cytokines (IL-1β, IL-2, IL-4, IL-6, IL-8, IFN-α, TNF-α) 

and two reference genes (β-Actin, GAPDH) were either selected from previous studies [20-

25] or designed using “Primer-BLAST” (NCBI GenBank). Sequences and corresponding 

references are shown in table 1. For corresponding alignments Mega 5- and BioEdit software 

(IBIS Biosciences Carlsbad, USA) were utilized. For all cytokines, probes were labeled with 

6-Carboxyfluorecein (FAM), the β-Actin probe with hexachloro-6-carboxyfluorescein (HEX) 

and the GAPDH probe with Texas Red (TR). The synthesis of oligonucleotides was carried 

out by biomers.net (Ulm, Germany). 

 

2.2 In vitro generation of positive control RNA 

2.2.1 Generation of peripheral blood mononuclear cells (PBMCs) 

Approximately 50 ml of porcine EDTA blood were overlayed with the equal amount of 

lymphocyte separation medium LSM 1077 (PAA Laboratories GmBH, Pasching, Austria) and 

a density gradient centrifugation at 580 g for 40 min at 20°C without brake was performed. 

The leucocyte phase was collected and washed with 0.8 mM EDTA solubilized in phosphate 

buffered saline (PBS
-
)

 
for removal of separation medium. Thereafter, the remaining 

erythrocytes were removed through lysis with buffered ammonium chloride solution 

(containing 153mM NH4Cl, 10mM KHCO3, 1 mM EDTA to 1 l (pH 7.4)). To this means, the 

threefold volume of lysis buffer was added and incubated at 4°C for 15 min. The resulting 

PBMC suspension was washed with PBS
-  

and cultured in DMEM medium containing 10% 

fetal bovine serum, 20 mM HEPES including penicillin-streptomycin (“Anti-Anti (100X)”), 

Antibiotic-Antimycotic from GIBCO by Life Technologies, Carlsbad, California, USA) at 
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approximately 10
7
 cells/ml. After 16 h of incubation at 37°C in a 5% CO2 atmosphere, non-

adherent cells where removed through washing with sterile pre-warmed PBS
- 

, and the 

cleaned PBMC cell suspension was incubated for one to three days for maturation under the 

same culture conditions until exposure to different cytokine-stimulators. 

2.2.2 In-vitro stimulation of cytokines 

Different mitogens and antigens were used for stimulation of the desired cytokines as 

previously described [26-29]. Details are depicted in table 2. The stimulating agents were 

obtained from Sigma (Sigma-Aldrich, St. Louis, Missouri, USA). After a maturation time for 

PBMCs of one to three days, stimulators were utilized at the following concentrations: 

Lipopolysaccharide (LPS) 20 µg/ml, all other stimulating agents (Peptidoglycan, PGN; 

Concanavalin A, ConA; phytohaemagglutinin; PHA; pokeweed mitogen, PWM) 5 µg/ml. 

Along with the stimulating agents, cells were incubated for approximately 18 h at 37°C with 

5% CO2 in 6-well plates until the expected cytokine expression optimum was reached. For 

RNA extraction, cells were harvested and subjected to RNA extraction using the methods 

described below. 

 

Table 2: In-vitro cytokine stimulation 

The stimulating agents are presented along with the corresponding target cytokines as well as 

background information about their functionality. 

LPS=Salmonella typhimurium lipopolysaccharid; PGN= Staphylococcus aureus 

peptidoglycan; ConA= Concanavalin A; PWM=Pokeweed mitogen; PHA= 

Phytohemagglutinin 

Cytokine Stimulating agents Manner of stimulation 

IL-1β LPS  LPS: a component of the outer gram 

positive bacteria membrane, antigenic 

effect on PBMCs 

PGN: a stabilizing macro molecule in the 

cell wall of gram positive bacteria; 

antigenic effect on PBMCs  

 ConA: a lectin from the jack bean, 

mitogenic effect (especially on T-cells) 

 PHA: a herbal lectin, mitogenic effect 

(especially on T-cells) 

 PWM: a lectin of the American pokeweed, 

activating effect on B- and T-cells  

IL-4 PWM + ConA + PHA 

IL-2 PWM + ConA + PHA 

IL-6 PWM + ConA + PHA 

IL-8 LPS  

IFN-α PGN + LPS + ConA 

TNF-α PGN + LPS + ConA  
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2.3 RNA isolation 

RNA extraction of different sample matrices was performed using Trizol Reagent (Life 

Technologies) in combination with the automated MagAttract Virus Mini M48 Kit (QIAGEN 

GmbH, Hilden, Germany) on the King Fisher 96 Flex instrument (Thermo Scientific) as 

previously described [30]. 

 

2.4 Analyses of expression stability of reference genes 

Confirmatory analyses of stable expressions of β-Actin and GAPDH comprised the following 

tests. Firstly, in vivo generated PBMCs (see section 2.2.1) were exposed to different 

stimulating agents (see section 2.2.2 and table 2) while several wells were left untreated by 

incubating them only with cell culture media each time. PBMC RNA was extracted in 

different time intervals after stimulation (after 1, 12, 18, 24, 36, 48 and 60 hours) and RT-

qPCRs targeting β-Actin and GAPDH were performed comparing the quantification cycle 

(Cq)-values of stimulated and untreated PBMC RNA. Secondly, RNA from EDTA blood 

derived from pigs infected with the highly virulent CSFV-strain “Koslov” were used in RT-

qPCR. Cq-values of β-Actin and GAPDH were detected prior to infection and compared to 

measurements at different time intervals after infection. 

 

2.5 Construction of synthetic standard RNA 

A synthetic gene comprising all target cytokines and reference genes (see figure 1) was 

constructed and synthesized by GeneArt Gene Synthesis (Life Technologies). The 

Kanamycin-resistant gene was transformed in corresponding resistant bacteria after 

permeabilization. The bacteria plasmid was purified with QIAfilter Plasmid Maxi Kit 

(Qiagen, Venlo, Netherlands) and the nucleic acid concentration was determined with a 

NanoDrop 2000c Spectrophotometer (PEQLAB Biotechnologie GmbH, Polling, Austria). To 

verify the transformation process the plasmid was sequenced using the Big Dye Terminator 

v1.1 Cycle sequencing Kit (Applied Biosystems). Nucleotide sequences were read with an 

automatic sequencer (3130 Genetic Analyzer, Applied Biosystems) and analyzed using the 

Genetics Computer Group software version 11.1 (Accelrys Inc., San Diego, USA). 

Thereafter, the DNA-plasmid was used for synthesis of heterologous RNA. It was cleaved at 

the attached NOD1-restriction site with NOD1 enzyme (New England Biolabs, Ipswitch, 

Massachusetts, USA) and linearized DNA strands were filtrated and eluted by using 
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QIAquick Nucleotide Removal Kit (Qiagen). The obtained DNA was in vitro transcribed 

using T7 RNA Polymerase (Promega Corporation, Madison, USA). Subsequently, the DNA 

matrix was removed through DNase I digestion (RQ1 RNase-Free DNase, Promega). The 

gained RNA was visualized by 1% agarose gel electrophoresis. RNeasy Mini Kit (Qiagen) 

was utilized in combination with Trizol Reagent (Life Technologies) and DNA digestion 

(with RNase-Free DNase Set (Qiagen)) for a final RNA cleanup. Finally, RNA concentration 

was determined using the NanoDrop spectrophotometer (Peqlab) and the concentration was 

set to 2x10
9
 copies/µl. A 10-fold standard dilution series was generated in RNA-safe buffer 

(50 ng/μl of carrier polyA-RNA, 0.05% Tween-20, 0.05% sodium azided in RNase-free 

water). Dilutions from 2x10
1
 to 2x10

6
 copies/µl were employed for subsequent RT-qPCRs. 

 

 

Figure 1: Composition of the synthetic standard gene comprising all target cytokines (IL-2, 

IL-4, IL-8, TNF-α, IFN-α, IL-6, IL-1β) and internal reference genes (β-Actin, GAPDH, 

HPRT (Hypoxanthin-Guanin-Phosphoribosyltransferase), starting with the T7-promotor 

sequence and concluding with the NOD1 restriction site as initial point for linearization and 

transformation to RNA. Each target cytokine was included with a nucleotide overhang of 

approximately 50 base pairs (Takamatsu et al.) prior to forward primer sequence. In total, the 

synthetic standard gene comprises 1464 bp. 

 

2.6 RT-qPCR 

Prior to implementation in RT-qPCR systems, 10-fold dilution series of each in-vitro 

generated positive control RNA and the synthetic standard RNA were amplified in 

conventional RT-PCR, visualized in 3% agarose gel electrophoresis and verified by 

sequencing. Sequence data were obtained from the NCBI GenBank and corresponding 

alignments were carried out with Mega 5- and BioEdit software (IBIS Biosciences Carlsbad, 

USA).  

In a first step, single-tube assays were designed for each cytokine or reference gene as basis 

for the subsequent development of the triplex RT-qPCR protocol using the AgPath-ID One-
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Step RT-PCR reagents (Ambion-Applied Biosystems, Thermo Fisher Scientific by Life 

technologies) for simultaneous detection of one target cytokine and two reference genes.  

Subsequently, tests for the reduction of the total mastermix reaction volume from 25 µl to 

12.5 µl were carried out. Thereby, the mastermix for a single reaction comprised 0.25 µl 

RNase-free water, 6.25 µl 2X RT- PCR Buffer, 0.5 µl of 25X RT- PCR Enzyme Mix, 1 µl 

FAM-labelled cytokine-primer-probe mix, 1 µl of each reference gen-primer-probe mix and 

finally 2.5 µl of template RNA.  

All RT-qPCRs were performed with a Bio-Rad CFX 96 Real-Time Detection Systems (Bio-

Rad, Hercules, CA, USA). Protocols for all cytokine RT-qPCRs were adjusted to the same 

thermal profile: reverse transcription at 45°C for 10 min, followed by PCR activation for 10 

min at 95°C and 45 cycles including denaturation phase at 95°C for 15 sec, annealing at 57°C 

for 20 sec and elongation for 30 sec at 72°C. Data were collected during the annealing phase.  

Oligonucleotide concentrations were optimized through checkerboard titrations. Furthermore, 

confirmatory tests for the absence of residual DNA in isolated RNA samples were performed 

by deployment of the one- and two-step RT-qPCR chemistry from Promega. For that purpose, 

RNA samples were tested using both systems under the same conditions while the two-step 

assay was carried out without adding the enzyme for reverse transcription. 

Moreover, reproducibility of all assays was tested using the standard RNA in triplicates and 

deviations of Cq-value were determined.  

In addition, 402 samples gathered from pigs infected or vaccinated with CSFV (leucocyte 

samples) and infected with ASFV (EDTA blood samples) during several animal trials carried 

out at the Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany 

(sample repository) were tested in all seven triplex RT-qPCRs (see table 3). In the 

experimental studies involving live animals, all applicable animal welfare regulations, 

including EU Directive 2010/63/EC and institutional guidelines, were taken into 

consideration. The animal experiments were approved by the competent German authority 

(Landesamt für Landwirtschaft, Lebensmittelsicherheit und Fischerei Mecklenburg-

Vorpommern) under reference numbers 7221.3-1.1-015/12 and 7221.3-1.1-018/12. 
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Table 3: Samples from different animal trials (n=402) used for assay validation. Samples 

were chosen to represent different pig species (wild boar, domestic pigs) and inoculation 

status (CSFV infection/ vaccination, ASFV infection, corresponding control animals). 

Moreover, PBMC and EDTA blood samples were included. 

Sample status Sample matrix Domestic pigs Wild boar 

Control 
EDTA 3 3 

PBMC 49 24 

CSFV infected PBMC 109 45 

CSFV vaccinated PBMC 97 55 

ASFV infected EDTA 17 / 

 

3. Results 

 

3.1 Confirmation of identity and stable expression of reference genes 

Identity of all cytokines and reference genes could be confirmed by alignments with 

sequences available through NCBI GenBank. No indications for possible cross-reactions were 

observed. Absence of residual DNA in extracted RNA samples was proven by tests for no-

reverse transcription (RT) as described in section 2.6. 

RT-qPCRs conducted for the assessment of β-Actin- and GAPDH as reference targets (see 

section 2.4) revealed no coherent changes in expression levels after different stimulation or 

infection and thus, suitability for gene expression normalization was confirmed. 

  

3.2 Sensitivity 

For first assessment of analytical sensitivity, a 10-fold dilution series of the positive control 

RNA derived from the synthetic plasmid was employed for testing each cytokine and 

reference gene. The resulting standard curves from all single tube assays are shown in 

supplementary figure S1, starting from 2x10
7
 copies/µl as highest standard to 2x10

1
 copies/µl 

as lowest. Corresponding Cq-values and efficiencies for all assays are listed in supplementary 

table S1. The last employed standard dilution of to 2x10
1
 copies/µl could be detected by each 

assay except for β-Actin which showed a detection limit of 2x10
2
 copies/µl. Cq-values of 

standard RNA dilutions ranged between 15 for the highest standard and 35 for the lowest (see 

supplementary table S1). 

Sensitivity was further analyzed by testing in vitro-generated positive RNA in 10-fold 

dilutions from 10
-1

 to 10
-7

. The measured Cq-values as well as limits of detections are shown 
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in supplementary table S1 ranging from a dilution of 10
-3

 (for IL-6 and IFN-α) to more than 

10
-7

 for IL-8. 

 

Figure S1: Amplifications of all single assays of 10-fold diluted standard RNA ranging 

from 2x10
1
 to 2x10

7
 copies/µl. The cytokines IL-2, IL-4, IL-6, IL-8, IL-1β, TNF-α, and IFN-

α were measured in FAM; β-Actin in HEX and GAPDH in TR. The vertical axis 

demonstrates fluorescence levels (RFUs), the horizontal axis shows the number of cycles. 

 

Finally, the applicability of all assays for routine pig samples (EDTA blood and white blood 

cells) could be demonstrated by testing a total number of 402 samples from pigs infected with 

different CSFV strains, ASFV “Armenia08”or from CSFV vaccinated pigs. Exemplary results 

for normalized TNF-α and IL-8 expression (ΔΔCq) after infection of two different pig breeds 

with the highly virulent CSF virus strain “Koslov” are depicted in figures 2 and 3, 

respectively. Additionally, detailed information comprising the results of all seven triplex 

assays including Cq values and corresponding normalized gene expressions are provided in 

supplementary table S5. To link gene expression with protein detection, exemplary results are 

depicted in supplementary figure 2. 
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Figure 2: Detection of normalized TNF-α gene expression (ΔΔCq) in leukocyte samples from 

CSFV infected pigs. Samples were obtained from two different pig breeds at days 0, 2, 4, and 

7 post infection (dpi). Results are given as mean values: in total from all animals (TNF-α 

overall mean) and separately for each breed (Mean Breed 1, Mean Breed 2). Bars indicate 

standard deviations. 
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Figure 3: Detection of normalized IL-8 gene expression (ΔΔCq) in leukocyte samples from 

CSFV infected pigs. Samples were obtained from two different pig breeds at days 0, 2, 4, and 

7 post infection (dpi). Results are given as mean values: in total from all animals (IL-8 overall 

mean) and separately for each breed (Mean Breed 1, Mean Breed 2). Bars indicate standard 

deviations. 

 

Figure S2a: Exemplary comparison of gene expression and cytokine protein detection using 

ELISA systems. Comparison of IL-8 gene expression (Normalized Expression, ΔΔCq) 

analyzed by triplex real-time RT-qPCR with protein detection using a commercial available 

ELISA system for IL-8 (CytoSet
TM 

(Novex, Life technologies), given as concentration in 

pg/ml. Optical densities were determined using the TECAN infinite F200 Pro- ELISA-reader 

(Tecan Austria GmBH, Austria). For calculation of results, the Magellan 7.0 software (Tecan) 

was employed. Three different domestic pigs (all adult) were included into comparison. 
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Figure S2b: Exemplary comparison of gene expression and cytokine protein detection using 

ELISA systems. Comparison of IL-6 gene expression (Normalized Expression, ΔΔCq) 

analyzed by triplex real-time RT-qPCR with protein detection using a commercial available 

ELISA system for IL-6 (CytoSet
TM 

(Novex, Life technologies), given as concentration in 

pg/ml. Optical densities were determined using the TECAN infinite F200 Pro- ELISA-reader 

(Tecan Austria GmBH, Austria). For calculation of results, the Magellan 7.0 software (Tecan) 

was employed. Three different domestic pigs (all adult) were included into comparison. 

 

3.3 Implementation of seven cytokine triplex RT-qPCR assays 

In order to detect one cytokine and two reference genes simultaneously a triplex protocol was 

developed (as described in section 2.6). Checkerboard titrations of all primers and probes 

revealed the following optimal and harmonized concentrations: for all cytokines the 
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harmonized protocols uses 10 pmol primers, 2.5 pmol probe, and for reference genes 2.5 pmol 

primers, 1.25 pmol probe. 

A comparison between single and triplex assays was performed for each cytokine by using the 

standard RNA and in vitro-generated positive RNA in 10-fold dilutions. The comparative 

results are presented in supplementary table S2.  

The analyses revealed variations of Cq-values between single and multiplex assays of less 

than 2 Cq-values in all cases apart from two exceptions, in which higher deviations were 

found within the last dilution steps of positive RNA (IFN-α, IL-1β). Each single and triplex 

assay was able to detect the lowest deployed standard (see supplementary table S2). 

Furthermore, losses of end fluorescence levels (End RFUs) did not obviously influence final 

results (see figure 4).  

 

Figure 4: Comparative amplifications of 10-fold diluted standard RNA ranging from 

2x10
2
 to 2x10

7
 copies/µl of single target and multiplex assays of all target cytokines 

(FAM). The vertical axis demonstrate fluorescence levels (relative fluorescence units, RFU), 

the horizontal axis shows the number of cycles. Comparative illustrations of end fluorescence 

levels of standard curves are shown illustrating higher end fluorescences in single target 
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compared triplex assays in which target cytokines were detected simultaneously with β-Actin 

(HEX) and GAPDH (TR). 

 

All validation experiments of the triplex RT-qPCR protocol were performed with a total 

mastermix reaction volume of 12.5 µl including 2.5 µl RNA-template. Comparative analyses 

of full (25 µl) and halved (12.5 µl) approaches revealed no notable differences of Cq-values, 

detected genome copies and fluorescence levels (RFUs) as shown in supplementary table S3. 

Cq-losses higher than 3 were only observed in some of the lowermost dilution steps within 

the standard- and positive RNA 10-fold dilution series. For example, the lowest standard of 

2x10
1
 copies/µl revealed Cq-losses in assays targeting IL-2, IL-8 and IL-1β (FAM) or by 

targeting β-Actin (HEX) in the IFN-α triplex assay and GAPDH (TR) in the IL-2-,TNF-α and 

IFN-α triplex assays respectively. Apart from that, no notable differences of Cq-values or 

absolute quantities were measured. End fluorescence levels revealed differences between 

approximately 500 to maximum deviations of 3000 (see supplementary table S3). 

Finally, reproducibility was tested as described in section 2.6 and could be confirmed by 

showing no notable differences in Cq-values between the standard RNA triplicates in all 

assays (see supplementary table S4). Cytokine Cq-deviations were below 1 in the majority of 

cases which corresponds to a less than with a less than 3-fold deviation. In general, variation 

was mainly observed in higher dilutions (lowest target concentrations, see supplementary 

table S4). 

 

4. Discussion 

 

Cytokines are powerful mediators of the immune system and have a key role in the selection 

of immunological pathways and link innate and adaptive immune responses. To date, many 

basic immune pathological mechanisms e.g. for haemorrhagic diseases like CSF and ASF 

have not been clearly defined showing the need for reliable detection tools in order to 

characterize beneficial or detrimental reaction patterns. The selection of target cytokines for 

this study pursued the objective of covering a preferably wide range of immunological events 

in swine. While IL-2 can be regarded as indicator for the Th1 pathway, IL-4 is indicative for 

the Th2 response respectively [31]. The endogenous pyrogen TNF-α is of great importance as 

it can provoke shock symptoms upon systemically release. Yet, it also has beneficial abilities 

through a local restrictive effect after infection [31]. Especially in the context of CSF 
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pathogenesis, it has been proven one of the most crucial cytokines [32]. In this context, 

inclusion of the TNF-α induced proinflammatory cytokines IL-1β and IL-6 seems reasonable 

for their potential of acting either pyrogenic or activating monocytes and natural killer cells 

[31]. In contrast, IL-8 which can be produced e.g. by T-helper cells can be indicative for the 

Th2 pathway possessing the abilities of attracting neutrophil granulocytes, lymphocytes and 

of contributing to angiogenesis [31]. An IL-8 dysregulation is suspected to be involved in 

CSF development [20]. Finally, as an effective mediator of antiviral resistance, IFN-α is 

particularly involved in important mechanisms of innate immunity [33] and was therefore 

included in the established assay. Taken together, the selected cytokines represent valuable 

immunological markers by giving information about complex immunological responses. 

Among the most suitable techniques for molecular cytokine research is the highly sensitive 

one-step RT-qPCR system [34] which allows quantitative analyses as well as multiplexing. 

As already stated by Huggett et al., the enhanced specificity of TaqMan-based real-time 

assays is greatly advantageous for immunological research since many cytokines appear in 

such low abundances that detection of their mRNA by real-time RT-PCR represents the only 

method which is sensitive enough for reliably measuring their expression in vivo [24, 35]. So 

far, gel-based PCR systems have been applied widely for cytokine detection [11, 13] despite 

their disadvantage of being not truly quantitative and often leading to an underestimation of 

total mRNA levels because of common depletion of reagents during the reaction [36]. 

Consequently, PCR products are not proportional to the amount of initial target when 

visualised on a gel [37]. The most widely used SYBR-Green I assays [38-42] have the 

disadvantages of potentially generating primer-dimers, the indiscriminately binding to all 

double-stranded DNA which might lead to a formation of secondary structures, and to a 

possibly limiting primer-concentration as well as to an overestimation of target-DNA [43]. To 

overcome these problems and to add specificity, a fluorogenic probe based approach 

waschosen in the presented study. The probe detection system in TaqMan PCRs make those 

assays clearly advantageous  in comparison to SYBR Green and conventional PCR methods 

as they provide a high level of target specificity [19]. Specificity is particularly difficult to 

prove in immunological assays as truly negative biological samples are difficult to obtain (e.g. 

stress reactions or previous pathogen contact). However, “negative” control samples were 

involved in the establish procedure either originating from in vitro generated PMBCs or from 

pigs of untreated control groups. To prove the “diagnostic” performance of the established 

assay more than 400 samples were collected during several animal trials including CSFV 
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vaccination and infection as well as ASFV infection and were tested in all seven triplex 

assays. However, due to the above mentioned reasons, comparative evaluations of true 

“positive” and “negative” pigs concerning specific cytokine gene expressions was 

problematic. During the development procedure, the “Assay validation pathway” [44] was 

implemented as far as for this purpose possible by detecting analytical performance 

characteristics. The assessment of repeatability revealed a high level of agreement between 

triplicates of synthetic standard RNA by showing only minor deviations while increased 

variations were exclusively found in dilution steps with lowest concentrations as shown in 

supplementary table 4. Furthermore, limits of detections were assessed for determining the 

analytical sensitivity for each, single-target test (see supplementary table 1), comparative 

analyses between single target and multiplex assays (see supplementary table 2) as well as the 

comparison between a full mastermix reaction volume of 25 µl and a halved volume of 12.5 

µl (see supplementary table 3). Indeed detection limits partly showed decreases in triplex 

assays compared to single target PCRs and also in the halve approach compared to the full, 

but these were measured in negligible amounts or exclusively within the least dilutions of the 

standard RNA or biological control RNA. Thereby, it could be proven that RT-qPCR 

chemistry as well as the sample volume could be successfully halved making the assay much 

more cost-effective and that simultaneous detection of one target cytokine and two reference 

genes is possible which allows an accurate determination of gene expression profiles by 

normalization. Another advantage of inclusion of two reference genes is to control varying 

amounts of input RNA used in the reverse transcription step [34]. This is particularly useful 

regarding the high variability of biological sample material. Different stimulation and 

infection experiments were successfully conducted for further confirmation of stable β-Actin 

and GAPDH expressions [45] despite this was already shown by preliminary studies [46]. 

First implementation of the assays in different animal trials (see examples in supplementary 

table 5) showed that the choice of sample matrices and sample handling (especially leukocyte 

preparation and freeze/thawing) had a strong impact on the detection of cytokine gene 

expression. While in vitro stimulations proved that the respective cytokine mRNAs were 

reliably detected (see results for positive RNAs), diagnostic samples often resulted in negative 

results (if normalized gene expression was assessed). In this context, further validation and 

optimization for sample transport (direct cooling), preparation (avoiding freeze/thawing) and 

extraction (direct sample suspension in Trizol or equivalents) is clearly needed. 

 



Development and validation of a harmonized TaqMan-based triplex real-time RT-PCR 

protocol for the quantitative detection of normalized gene expression profiles of seven porcine 

cytokines  

90 

5. Conclusions 

 

A one-step TaqMan-based triplex RT-qPCR protocol was established and validated for the 

accurate and reliable detection and quantification of seven porcine cytokines (IL-1β, IL-2, IL-

4, IL-6, IL-8, TNF-α, IFN-α) representing immunological markers by covering a broad range 

of host responses. These real-time assays were successfully harmonized by using a unique 

RT-qPCR protocol along with the same chemistry, temperature profile and synthetic standard 

resulting in a simple, cost-efficient, specific and highly sensitive assessment of normalized 

gene expression profiles. This novel and versatile tool will aid not only studies of swine fever 

pathogenesis but also swine immunology in general. 
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Table 1: Sequences of primers and probes. FAM 5’ modification was used for IL-1β, IL-2, IL-4, IL-6, IL-8, IFN-α, TNF-α; HEX for β-Actin; Texas Red for 

GAPDH. BHQ (Black-Hole-Quencher)-1was used for 3’ modifications of IL-1β, IL-2, IL-4, IL-6, IFN-α, β-Actin and GAPDH; BHQ-2 was used for of TNF-α 

and IL-8. Corresponding references are given in the right column. Sequences marked with “this study” were created by the use of “Primer-BLAST” available 

on NCBI GenBank. F= Forward Primer; R= Reverse Primer; P= Probe; bp=base pairs. 

Gen-

name 

Forward- (F) and Reverse- (R) primer Probe (P) Product

length 

Reference 

IL-1β F-GTGCTGGCTGGCCCACA 

R- GAACACCACTTCTCTCTTCA 

CTCTCCACCTCCTCAAAGGG 71 bp F/P: this study; R: Lange, 2010  

IL-4 F-GTCTGCTTACTGGCATGTACCA 

R-GCTCCATGCACGAGTTCTTTCT 

CCACGGACACAAGTGCGACATCACCTT

AC 

117 bp F/R: Duvigneau et al., 2005  

P: this study 

IL-2 F-TGCTGATCTCTCCAGGATGC 

R-CCTCCAGAGCTTTGAGTTCTTCTACTA 

AAGCAGGCTACAGAATTGAAACACCTT 103 bp F: this study; R: Yang et al., 2012 

[47]; P: Duvigneau et.al. 2005 

[21] 

IL-6 F-CTGGCAGAAAACAACCTGAACC 

R-TGATTCTCATCAAGCAGGTCTCC 

TGGCAGAAAAAGACGGATGC 93 bp F/R: Duvigneau et al., 2005 [21];  

P: this study 

IL-8 F-AAGCTTGTCAATGGAAAAGAG 

R-CTGTTGTTGTTGCTTCTCAG 

TCTGCCTGGACCCCAAGGAAAAGT 101 bp 

 

F/R/P: Lange, 2010 [20] 

IFN-α F-TGGTGCATGAGATGCTCCA 

R-GCCGAGCCCTCTGTGCT 

CAGACCTTCCAGCTCT 54 bp 

 

F/R/P: Bautista et al., 2004 [48]  

TNF-α F-AACCTCAGATAAGCCCGTCG 

R-ACCACCAGCTGGTTGTCTTT 

CCAATGCCCTCCTGGCCAACG 128 bp F/R/P: Lange, 2010 [20] 

β-Actin F-AGCGCAAGTACTCCGTGTG 

R-CGGACTCATCGTACTCCTGCTT 

TCGCTGTCCACCTTCCAGCAGATGT 105 bp F modified /R/P:  

Toussaint et al., 2007 [49] 

GAPDH F-ACATGGCCTCCAAGGAGTAAGA 

R-GATCGAGTTGGGGCTGTGACT 

CCACCAACCCCAGCAAGAGCACGC 105 bp F/R/P: Demissie et al.,2004 [21] 
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Table S1: RT-qPCR results of all single target assays. Results were obtained including the 10-fold dilution series of the synthetic standard RNA and in vitro 

generated positive RNA in all assays. The standard RNA dilution is given as copies/µl, ranging from 2x10
1
 to 2x10

7
. In vitro generated positive RNA obtained 

through specific stimulation of PBMCs is declared as “positive RNA” and given as 10-fold dilution steps ranging from 10
-1

 to 10
-7

. The “Limit of detection” 

describes the last dilution step with a positive RT-qPCR result. 

Target gene IL-2 IL-4 IL-6 IL-8 IL-1β TNF-α IFN-α β-Actin GAPDH 

Efficiency in % 106.1 106.4 107.1 103.9 90.1 103.3 103.9 97.9 103.8 

Standard RNA copies Cq-values 

2x10
1 
 32.94 35.47 35.09 33.74 35.91 34.39 35.46 N/A 35.65 

2x10
2 
 30.00 32.15 32.32 30.44 33.46 31.07 32.24 33.46 31.88 

2x10
3 
 26.84 29.31 29.36 27.27 29.87 27.80 29.13 29.69 28.94 

2x10
4 
 23.59 26.20 26.01 24.07 25.98 24.57 25.82 26.36 25.41 

2x10
5
  20.23 22.65 22.85 20.65 22.32 21.25 22.56 23.00 22.09 

2x10
6
  17.24 19.60 19.58 17.53 18.45 18.10 19.35 19.70 18.97 

2x10
7 
 

13.93 16.39 16.23 14.39 14.98 14.94 16.09 16.51 16.36 

Limit of detection 

positive RNA 
10

-5
 10

-4
 10

-3
 > 10

-7
 10

-6
 10

-4
 10

-3
     

Positive RNA dilution Cq-values     

10
-1

 22.85 30.27 29.07 21.13 23.29 28.81 31.75     

10
-2

 26.26 33.19 32.21 24.42 27.1 32.27 35.27     

10
-3

 29.61 36.19 34.83 27.83 30.15 36.17 39.05     

10
-4

 32.95 40.14 N/A 31.1 32.84 39.92 N/A     

10
-5

 36.2 N/A N/A 34.25 35.07 N/A N/A     

10
-6

 N/A N/A N/A 37.09 39.09 N/A N/A     

10
-7

 N/A N/A N/A 38.15 N/A N/A N/A     
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Table S2: Comparison of single target and triplex RT-qPCR results. Cq-values and total amounts (given as copies/µl) of target cytokines (IL-2, IL-4, IL-6, 

IL-8, IL-1β, TNF-α and IFN-α) from the 10-fold diluted standard RNA series ranging from 2x10
2
 to 2x10

6
 copies/µl and of positive RNA dilutions of 10

-1
 to 

10
-5

 are comparatively illustrated between single target and triplex assays (FAM). Corresponding deviations between Cq-values of single and multiplex assay as 

well as PCR-Efficiencies (E) and Baseline Thresholds (Thresholds) are additionally provided. PC RNA= in vitro generated positive RNA; Std=Standard; E= 

Efficiency of RT-qPCR; NTC= H2O used as negative control; N/A=no Cq-value detectable 

Dilutions of 

pos. RNA 

and Std. 

IL-2  IL-4 

Single Target Multiplex Deviations Single Target Multiplex Single Target Multiplex Deviations Single Target Multiplex 

Cq-values        Cq-values Copies/µl        Copies/µl                 Cq-values       Cq-values Copies/µl        Copies/µl 

PC RNA 10
-1

 22.71 23.14 -0.43 5.81E+04 6.94E+04 29.07 29.29 -0.02 1.42E+03 1.68E+03 

PC RNA 10
-2

 26.21 26.41 -0.20 4.93E+03 6.97E+03 32.62 33.39 -0.77 1.12E+02 9.50E+01 

PC RNA 10
-3

 29.44 29.78 -0.34 5.12E+02 6.46E+02 36.59 42.62 -6.03 6.53E+00 1.48E-01 

PC RNA 10
-4

 32.64 33.05 -0.41 5.36E+01 6.48E+01 N/A N/A / N/A N/A 

PC RNA 10
-5

 35.99 37.8 -1.81 5.09E+00 2.29E+00 N/A N/A / N/A N/A 

Std 2x10
2
 30.83 31.45 -0.62 2.00E+02 2.00E+02 31.22 32.45 -1.23 2.00E+02 2.00E+02 

Std 2x10
3
 27.47 28.21 -0.74 2.00E+03 2.00E+03 27.85 29.01 -1.16 2.00E+03 2.00E+03 

Std 2x10
4
 24.15 24.8 -0.65 2.00E+04 2.00E+04 24.63 25.65 -1.02 2.00E+04 2.00E+04 

Std 2x10
5
 20.93 21.77 -0.84 2.00E+05 2.00E+05 21.56 22.32 -0.76 2.00E+05 2.00E+05 

Std 2x10
6
 17.73 18.32 -0.59 2.00E+06 2.00E+06 18.47 19.36 -0.89 2.00E+06 2.00E+06 

E in % 102.1 % 102.2 %     104.5 % 101.5 %       

NTC N/A N/A     N/A N/A     

Threshold: 300 300     300 300     

  IL-6  IL-8 

Single Target Multiplex Deviations Single Target Multiplex Single Target Multiplex Deviations Single Target Multiplex 

Cq-values        Cq-values Copies/µl        Copies/µl Cq-values       Cq-values Copies/µl        Copies/µl 

PC RNA 10
-1

 27.33 26.74 0.59 3.53E+03 5.35E+03 19.38 19.56 -0.18 3.13E+05 3.14E+05 

PC RNA 10
-2

 30.4 30.07 0.33 3.94E+02 4.94E+02 22.86 22.65 0.21 2.53E+04 3.40E+04 

PC RNA 10
-3

 33.36 33.04 0.32 4.80E+01 5.96E+01 26.32 26.26 0.06 2.07E+03 2.53E+03 

PC RNA 10
-4

 36.21 35.46 0.75 6.29E+00 1.06E+01 33.52 32.53 0.99 1.13E+01 2.78E+01 

PC RNA 10
-5

 N/A N/A / N/A N/A 34.66 33.98 0.68 4.97E+00 9.79E+00 

Std 2x10
2
 31.27 31.26 0.01 2.00E+02 2.00E+02 29.52 29.88 -0.36 2.00E+02 2.00E+02 

Std 2x10
3
 28.23 28.22 0.01 2.00E+03 2.00E+03 26.42 26.49 -0.07 2.00E+03 2.00E+03 

Std 2x10
4
 24.92 24.88 0.04 2.00E+04 2.00E+04 23.21 23.37 -0.16 2.00E+04 2.00E+04 

Std 2x10
5
 21.64 21.7 -0.06 2.00E+05 2.00E+05 19.9 20.14 -0.24 2.00E+05 2.00E+05 
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Std 2x10
6
 18.41 18.38 0.03 2.00E+06 2.00E+06 16.86 17.06 -0.20 2.00E+06 2.00E+06 

E in % 104.0 % 104.1 %       106.1 % 105.4 %       

NTC N/A N/A     N/A N/A     

Threshold: 300 300     300 300     

Dilutions of 

pos. RNA 

and Std. 

 IL-1β  TNF-α 

Single Target Multiplex Deviations Single Target Multiplex Single Target Multiplex Deviations Single Target Multiplex 

Cq-values        Cq-values Cq-values       Cq-values Cq-values       Cq-values Copies/µl        Copies/µl 

PC RNA 10
-1

 25.54 26.45 -0.91 1.12E+04 1.94E+04 27.72 26.96 0.76 1.23E+03 1.26E+03 

PC RNA 10
-2

 28.79 29.85 -1.06 1.08E+03 1.70E+03 30.88 31.19 -0.31 1.35E+02 6.72E+01 

PC RNA 10
-3

 31.78 34.27 -2.49 1.24E+02 7.19E+01 35.55 36.81 -1.26 6.18E+00 1.38E+00 

PC RNA 10
-4

 N/A N/A / N/A N/A N/A N/A / 2.30E-02 N/A 

PC RNA 10
-5

 40.34 N/A -4.66 2.58E-01 N/A N/A N/A / N/A N/A 

Std 2x10
2
 30.91 33.32 -2.41 2.00E+02 2.00E+02 30.38 29.87 0.51 2.00E+02 2.00E+02 

Std 2x10
3
 28.13 29.34 -1.10 2.00E+03 2.00E+03 26.97 26.06 0.91 2.00E+03 2.00E+03 

Std 2x10
4
 24.9 25.94 -1.04 2.00E+04 2.00E+04 23.55 22.8 0.75 2.00E+04 2.00E+04 

Std 2x10
5
 21.47 23.03 -1.56 2.00E+05 2.00E+05 20.3 19.62 0.68 2.00E+05 2.00E+05 

Std 2x10
6
 18.28 20.4 -2.12 2.00E+06 2.00E+06 17.16 16.46 0.70 2.00E+06 2.00E+06 

E in % 105.7 % 104.6 %       100.4 % 99.8 %       

NTC N/A N/A     N/A N/A     

Threshold: 250 450     350 150     

  IFN-α 

Single Target Multiplex Deviations Single Target Multiplex 

Cq-values        Cq-values Copies/µl        Copies/µl 

PC RNA 10
-1

 26.66 25.05 1.61 1.11E+03 3.50E+03 

PC RNA 10
-2

 30.02 30.16 -0.14 1.16E+02 1.06E+02 

PC RNA 10
-3

 32.46 N/A -12.54 2.26E+01 N/A 

PC RNA 10
-4

 N/A N/A / N/A N/A 

PC RNA 10
-5

 43.87 N/A -1.13 1.05E-02 N/A 

Std 2x10
2
 28.97 28.98 -0.01 2.00E+02 2.00E+02 

Std 2x10
3
 26.08 25.78 0.30 2.00E+03 2.00E+03 

Std 2x10
4
 22.35 23.15 -0.80 2.00E+04 2.00E+04 

Std 2x10
5
 19.09 19.13 -0.04 2.00E+05 2.00E+05 

Std 2x10
6
 15.34 15.46 -0.12 2.00E+06 2.00E+06 

E in % 95.9 % 98.0 %    

NTC N/A N/A    

Threshold: 150 150    
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Table S3: Comparison of RT-qPCRs between a total mastermix reaction volume of 25 µl and the halved volume of 12.5 µl. 

10-fold dilution series of synthetic standard RNA (“std. dilutions”) ranging from 2x10
1
 to 2x10

6
 copies/µl and in vitro generated positive RNA (“pos. RNA”) 

including the dilutions steps 10
-1

 to 10
-5

 were used for assessment of the applicability of a halved mastermix reaction volume of 12.5 µl instead of 25 µl. Cq-

values, total amounts (in copies/µl) as well as end fluorescence levels (End RFUs) for each triplex assay are comparatively provided for each channel (target 

cytokines IL-2, IL-4, IL-6, IL-8, IL-1β, TNF-α , IFN-α in FAM; β-Actin in Hex; GAPDH in Texas Red). Fat letters indicate deviations of more than three Cq-

values. 

Std=Standard; PC RNA=in vitro generated positive RNA; N/A=no Cq-value detectable; V-MM=total mastermix reaction volume including RNA-template 
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Table S4: Assessment of reproducibility by the use of a synthetic standard RNA dilution series as triplicates. Mean Cq-values of the 10-fold standard 

RNA dilution series ranging from 2x10
1
 to 2x10

6
 copies/µl are given for each channel (FAM, HEX, TR) for all cytokine triplex real-time RT-qPCR assays (IL-

2, IL-4, IL-6, IL-8, IL-1β, TNF-α , IFN-α, β-Actin, GAPDH) along with corresponding Cq-deviations between the triplicates. 

Std=Standard; „/“=no Cq-value detectable 

IL-2 triplex assay IL-1β triplex assay 

Standard 

dilution 

series 

IL-2 FAM β-Actin HEX GAPDH TR Standard 

dilution 

series 

IL-1β FAM β-Actin HEX GAPDH TR 

Cq 

mean 

Cq std. 

deviation 

Cq 

mean 

Cq std. 

deviation 

Cq 

mean 

Cq std.  

deviation 

Cq 

mean 

Cq std. 

deviation 

Cq 

mean 

Cq std. 

deviation 

Cq 

mean 

Cq std. 

deviation 

Std 2x10
1
 34.20 0.09 37.00 0.53 35.99 0.94 Std 2x10

1
 34.62 0.12 36.58 0.26 34.53 0.26 

Std 2x10
2
 31.29 0.05 34.67 0.20 33.55 0.31 Std 2x10

2
 32.28 0.12 36.24 0.55 32.34 0.16 

Std 2x10
3
 28.01 0.07 30.94 0.16 30.03 0.11 Std 2x10

3
 29.22 0.06 32.01 0.12 29.04 0.05 

Std 2x10
4
 24.69 0.06 27.59 0.24 26.78 0.12 Std 2x10

4
 26.08 0.04 28.46 0.06 25.80 0.06 

Std 2x10
5
 21.45 0.12 24.31 0.40 23.64 0.39 Std 2x10

5
 22.76 0.08 24.87 0.17 22.43 0.06 

Std 2x10
6
 18.14 0.01 20.65 0.14 20.15 0.03 Std 2x10

6
 19.41 0.05 21.48 0.08 19.17 0.06 

IL-4 triplex assay TNF-α triplex assay 

 IL-2 FAM β-Actin HEX GAPDH TR  IL-1β FAM β-Actin HEX GAPDH TR 

Cq 

mean 

Cq std. 

deviation 

Cq 

mean 

Cq std. 

deviation 

Cq 

mean 

Cq std.  

deviation 

Cq 

mean 

Cq std. 

deviation 

Cq 

mean 

Cq std. 

deviation 

Cq 

mean 

Cq std. 

deviation 

Std 2x10
1
 36.36 0.50 35.71 0.50 35.30 1.41 Std 2x10

1
 34.28 1.23 35.96 0.70 37.14 0.05 

Std 2x10
2
 32.18 0.41 34.96 1.66 31.88 0.55 Std 2x10

2
 29.47 0.08 33.65 0.26 32.25 0.42 

Std 2x10
3
 28.84 0.08 30.45 0.21 28.06 0.05 Std 2x10

3
 26.24 0.03 30.78 0.06 29.17 0.09 

Std 2x10
4
 25.65 0.16 27.04 0.32 24.92 0.17 Std 2x10

4
 23.04 0.07 27.44 0.11 25.78 0.25 

Std 2x10
5
 22.44 0.04 23.77 0.15 21.61 0.06 Std 2x10

5
 19.68 0.02 24.14 0.01 22.49 0.04 

Std 2x10
6
 19.24 0.15 20.35 0.24 18.43 0.10 Std 2x10

6
 16.44 0.05 20.88 0.07 19.27 0.11 
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IL-6 triplex assay IFN-α triplex assay 

 IL-2 FAM β-Actin HEX GAPDH TR  IL-1β FAM β-Actin HEX GAPDH TR 

Cq 

mean 

Cq std. 

deviation 

Cq 

mean 

Cq std. 

deviation 

Cq 

mean 

Cq std.  

deviation 

Cq 

mean 

Cq std. 

deviation 

Cq 

mean 

Cq std. 

deviation 

Cq 

mean 

Cq std. 

deviation 

Std 2x10
1
 34.12 0.80 / / / / Std 2x10

1
 34.55 0.77 36.57 1.02 35.86 1.00 

Std 2x10
2
 30.50 0.10 32.62 0.29 34.21 0.49 Std 2x10

2
 31.69 0.13 35.14 0.19 32.73 0.35 

Std 2x10
3
 28.02 0.01 29.05 0.19 29.94 0.16 Std 2x10

3
 28.30 0.17 30.65 0.44 29.35 0.19 

Std 2x10
4
 24.95 0.05 25.72 0.17 26.53 0.08 Std 2x10

4
 25.23 0.09 27.21 0.06 26.07 0.07 

Std 2x10
5
 21.59 0.11 22.49 0.13 23.29 0.13 Std 2x10

5
 22.02 0.05 23.95 0.20 22.85 0.01 

Std 2x10
6
 18.33 0.02 19.21 0.07 20.13 0.04 Std 2x10

6
 18.56 0.03 20.33 0.17 19.33 0.08 

IL-8 triplex assay 

Standard 

dilution 

series 

IL-2 FAM β-Actin HEX GAPDH TR 

Cq 

mean 

Cq std. 

deviation 

Cq 

mean 

Cq std. 

deviation 

Cq 

mean 

Cq std.  

deviation 

Std 2x10
1
 34.31 0.76 / / / / 

Std 2x10
2
 29.19 0.15 33.10 0.41 / / 

Std 2x10
3
 26.06 0.10 29.51 0.13 30.89 0.31 

Std 2x10
4
 22.79 0.14 25.90 0.37 27.55 0.14 

Std 2x10
5
 19.50 0.10 22.74 0.03 24.31 0.06 

Std 2x10
6
 16.40 0.02 19.62 0.09 21.15 0.02 
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Table S5: Testing of experimental samples. 

All seven triplex RT-qPCRs were performed with different sample matrices (leukocytes, EDTA-blood) in order to prove suitability for field samples. The 

following sample amounts were included in all assays: 

45 wb and 85 dp infected with CSFV strain "Roesrath" along with corresponding negative controls (neg.ctr.): 24 wb, 49 dp; 

24 samples from CSFV strain "Koslov" infected pigs; 17 samples from ASFV strain "Armenia" infected pigs with additional neg. ctr. (3 wb; 3 dp); 

83 samples from pigs vaccinated against CSFV with "C-strain" vaccine (31 wb; 52 dp); 

69 samples from pigs vaccinated against CSFV with the marker vaccine candidate "CP7_E2alf" (24 wb; 45 dp); 

Relevant data from PCR assays are listed below: 

Cq-values for target cytokines (IL-6, IL-8, TNF-α, IFN-α, IL-1β, IL-2, IL-4; FAM labled), for reference gene 1 (β-Actin; Ref 1) using HEX, for reference gene 

2 (GAPDH; Ref 2) Texas Red (TR) labeled; 

along with corresponding gene expression values of each target cytokine as ΔΔCq. Animal identities (Animal ID) are given as ear tag numbers (ET). 

wb = wild boar; dp = domestic pig; DPI = days post inoculation; Vacc. = Vaccine 
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5 DISCUSSION 

5.1 Host related influences on classical swine fever disease course and 

outcome 

Classical swine fever virus isolates of genotype 2.3 were responsible for most of the recent 

CSF-outbreaks among European domestic pigs and wild boar (Bartak and Greiser-Wilke, 

2000; Biagetti et al., 2001; Blome et al., 2010; Depner et al., 2006; Leifer et al., 2010). These 

strains are moderately virulent and lead to highly variable clinical pictures that present a 

challenge for both outbreak detection and research on pathogenesis. To date, only little is 

known about the underlying mechanisms and principles with regard to virus characteristics 

and specific host reaction pattern that lead to the observed differences. It was shown that age 

and immune status of the animal have a major impact on disease severity (Moennig et al., 

2003). In addition, studies with animals of different breeds gave rise to the assumption that 

the genetic background may also influence the clinical course of CSF infection with 

moderately virulent strains (Blacksell et al., 2006; Depner et al., 1997). In some studies, 

domestic pigs were shown to present more severe disease courses upon infection with CSFV 

strains of wild boar origin (Kaden et al., 2000; Kaden et al., 1999).  

In the two here presented studies with animals of different breeds and age classes, efforts 

were directed towards the characterization of beneficial and detrimental reaction pattern on 

the individual animal level, and on gaining basic knowledge for the estimation of disease 

dynamics in animal groups.  

In order to mirror the current field situation, the well characterized CSFV strain “Roesrath” 

(CSF1045) was employed to inoculate the animals. This virus was originally isolated from a 

German wild boar piglet in 2009 (Leifer et al., 2010) and was used as challenge virus in a 

previously published animal trial (Blome et al., 2014). In addition to the available sequencing 

information concerning CSFV subgroup 2.3 (Leifer et al., 2010), the genetic identity of the 

employed isolate was further confirmed by sequencing of different experimental samples 

(Mouchantat et al., 2014a). Apart from the isolate’s representative characteristics, it allows 

direct comparison with previously published trials employing similar strains of the same 

subgenotype, namely “CSF0634” (Bunzenthal, 2003), and “Visbek/Han95” (Depner et al., 

1997).  
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In the first approach, weaner pigs with a different genetic background, in detail two domestic 

breeds and European wild boar, were employed (Petrov et al., 2014a). The domestic pig 

breeds, i.e. crossbred fattening pigs (hybrids) and purebred German landrace, were chosen 

due to their practical relevance in pig industry. While hybrids are commercially used for 

fattening, German landrace pigs are used as parental line for breeding purposes. Their wild 

relatives, European wild boar, were included in order to target basic differences in host 

immune responses and due to their key role in epidemiology and disease surveillance.  

According to previous studies, hybrids were suspected to show superiority in terms of 

immunological functions (Buschmann, 1985) and landrace pigs were assumed to be most 

susceptible (Depner et al., 1997). Furthermore, wild boar were expected to show a strong 

cellular response. The latter assumption was based on previous, so far unpublished 

observations by the author group.  

In contrast to our expectations, no significant genetically determined influence was observed 

(Petrov et al., 2014a). Finally, all animals were susceptible to infection and despite clinical 

differences, virus could be detected in all infected animals to similar amounts. All but one 

animal developed an acute disease course. One wild boar showed laboratory results that 

indicated a chronic disease course. Despite the fact that hybrids showed strong cellular 

immune responses, all of these animals succumbed to infection. In contrast, two German 

landrace pigs recovered after having shown only moderate cellular reactions. Thus, 

indications exist that dysregulation of immune responses might play a role in CSF 

pathogenesis and that moderate responses are beneficial. In the experimental work with wild 

boar, difficulties in clinical scoring were revealed. In the end, scores were not indicative for 

the disease outcome in this species. This complication might be due to the fact that the 

clinical evaluation system according to Mittelholzer et al. (2000) was hardly applicable to 

wild boar as their behavior differed greatly from that of domestic pig breeds and led probably 

to concealment of clinical signs. In order to reflect the health status of the animals in a proper 

way, more parameters such as viraemia, blood cell counts, and post mortem findings should 

be included in the future. 

Concluding, minor differences in age and body weight as well as preload with facultative 

pathogenes outweight the impact of genetic background on disease outcome. However, 

substantial variations were observed among individuals ranging from acute-lethal to chronic 

forms or complete convalescence. Additional studies are currently targeting the definition of 

individual host responses, e.g. on cytokine level, and further characterization of the virus.  
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The second trial was conducted with the same isolate and infectious dose with a group of 

subadult wild boar. In contrast to the previous trial, all infected animals developed a 

subclinical form and seroconverted (Mouchantat et al., 2014a). This outcome confirmed 

previous observations and shows that on population level all disease courses will be present. 

It also shows that both virus and antibody detection methods are needed in surveillance.  

5.2 Detection of porcine cytokine gene expression profiles by RT-qPCR  

To further target individual host responses that might have led to the observed differences in 

CSF disease course and outcome, suitable parameters had to be defined. As the above 

mentioned studies indicated that dysregulation of immune responses plays a key role in CSF 

pathogenesis, cytokines were chosen as an additional target as they are known to link and 

orchestrate different parts of the immune system. Generally, cytokines are among the 

parameters that are suspected to influence disease course and outcome (Lange et al., 2011). In 

this context, especially TNF-α, IL-1β, IL-1α, and IL-6 were discussed (Jamin et al., 2008). 

The proinflammatory cytokines TNF-α and IL-1 seem to be involved in the induction of 

apoptosis in different leukocyte populations (Choi et al., 2004) that is well described for 

swine fever infection (Sanchez-Cordon et al., 2005). In analogy to filoviral infections, IL-6 

could be suspected to be involved in changes in endothelial permeability (Lange et al., 2011).  

Nevertheless, up to now, there has been a serious lack of appropriate and reliable tools for 

cytokine gene expression analyses, especially in pigs. Despite the fact that enormous progress 

has been made in the field of PCR-technologies, SYBR-Green based assays 

(Charerntantanakul et al., 2013; Ferrari et al., 2013) and conventional gel-based PCRs (Choi 

et al., 2006; Techau et al., 2007) are still commonly implemented for immunological 

purposes. However, these techniques possess significant deficits in terms of sensitivity and 

specificity.  

In order to close this methodological gap, a harmonized TaqMan-based triplex RT-qPCR 

protocol was developed and validated for the quantitative detection of normalized gene 

expression profiles of seven porcine cytokines (Petrov et al., 2014c, in press). Cytokines were 

selected according to their proposed role in pathogenesis and as key cytokines for 

immunological pathways, namely IL-1β, -2, -4, -6, -8, TNF-α, and IFN-α (Lange et al., 2011). 

To further complement the system, two additional cytokines, i.e. IL-10 and IFN-γ, have been 

added recently (so far unpublished data).  

The resulting assays were shown to be highly sensitive and specific and are harmonizied in 

terms of PCR chemistry, cycling conditions, and handling. In addition, they are economic due 
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to the validation for a small-volume (12.5 µl) approach and easy to conduct with common 

real-time PCR equipment. The novel assays are now available for in vivo and in vitro studies 

and have been included in ongoing pathogenesis studies. 

However, a challenge is posed by potential instabilities of cytokine mRNA. Cytokines are 

tightly regulated factors in vivo for their crucial role in coordinating immune responses (Mino 

and Takeuchi, 2013; Reznik et al., 2014). Regulation strategies include modifications of 

cytokine mRNA stabilities, translations and degradations. The necessity of physiological 

regulation mechanisms was already shown in other contexts (Costa-Pereira, 2014; Kother et 

al., 2014; Masuda et al., 2013; Payne et al., 2014; van Vliet et al., 2013). Although mRNA 

degradations are essential for avoiding uncontrolled cytokine expressions and releases 

(Damgaard and Lykke-Andersen, 2013), they might interfere accurate gene expression 

analyses. This especially applies to IL-2 and IL-4 which are essential for the Th1/Th2 balance 

(Jungi, 1996; Murphy, 2009; Zhou et al., 1994). Their detection is further complicated by rare 

mRNA amounts due to a limited number of highly specialized producer cells and short 

expression times (Murphy, 2009). In contrast, assays for other cytokines, e.g. IL-8 (Jungi, 

1996), with manifold functions and producer cells appear to be more robust. In addition, 

expressions of cytokines are markedly influenced by storage times and conditions (Duvigneau 

et al., 2003). While some expression levels can be artificially increased upon inadequate 

storage, other mRNAs may not be detectable anymore. This finding was confirmed during 

validation studies with more than 400 samples from experimentally infected animals (Petrov 

et al., 2014c, in press). Sample handling and processing, especially freeze-thawing, seems to 

be a crucial for possible mRNA degradation. In this respect, there is still a need for further 

optimization. Future studies will target the evaluation of proper handling methods for 

leucocyte isolations, ideal storage conditions and times as well as effects of freeze-thawing 

cycles on mRNA stability. 

Cytokine mRNA encodes for highly regulated proteins (Reznik et al., 2014) which will also 

be targeted in future studies. Available test systems include commercially available ELISA 

systems (ready for use kits and antibody pairs), radioactive immunosorbent assays, Luminex 

based systems, bioassays as well as micro arrays. Bioassays (Baarsch et al., 1991; Pauli et al., 

1994) and ELISAs (Nuntaprasert et al., 2004; Nuntaprasert et al., 2005; Splichal et al., 2003) 

were mostly implemented in the past and are still well suited for single parameter analysis 

nowadays (Dong et al., 2013; G et al., 2014; Wyns et al., 2013). During the last years, 

technical advances were made, e.g. by developing several Luminex-based assays allowing a 

multiparameter analysis with even small sample volumes (Bjerre et al., 2009; Bongoni et al., 
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2013; Graham et al., 2010; Wyns et al., 2013). However, numerous difficulties must be 

resolved before usage. One problem is the lack of validation for porcine serum and other 

biological samples. So far, several validation experiments, including spike-recovery protocols 

and validation on experimental samples, were conducted in order to overcome technical and 

biological limitations (data unpublished).  

A combination of the new tools with optimized flow cytometry analyses and routine 

serological tests will cover a broad spectrum of host responses in future animal trials. Besides 

the great potential to reveal new insights in disease development of CSF, the applicability is 

also expandable to other diseases of swine with immune pathogenetic background, e.g. ASF.  

 

5.3 Optimization of swine fever surveillance and early warning tools 

In January 2014, an exotic disease was introduced into the wild boar population of the EU 

that had been spreading in Eastern Europe since 2007, and that has a clinical picture that is 

indistinguishable from CSF: African swine fever. Up to now, four EU Member States, namely 

Lithuania, Latvia, Poland, and Estland (OIE WAHID, visited September 18
th

 2014), are 

affected, and the disease already spread to domestic pigs. Taking previous transmission 

pattern into account, the risk of introduction into additional free areas is high (Costard et al., 

2013; Edwards et al., 2000; Vargas Teran et al., 2004).  

A crucial factor for the control of animal diseases such as CSF and ASF is early detection. 

Depending on disease characteristics, active and/or passive surveillance can be crucial. Both 

systems are relying on compliance of hunters and sufficient sample submissions. Especially 

the latter is oftern lacking, even in times of increased risk.  

 

In order to establish pragmatic detection workflows for the swine fevers that could increase 

compliance and sample submissions, two non-invasive methods were validated in the 

framework of our studies using either dry blood swabs (Petrov et al., 2014b) for passive ASF 

and CSF surveillance, or a “rope-in-a-bait” sampling method for active (Mouchantat et al., 

2014a) CSF surveillance. Also the highly variable disease forms observed during both 

experimental trials with a recent CSFV isolate (Mouchantat et al., 2014a; Petrov et al., 2014a) 

demonstrate the necessity of including both, live and fallen animals, in disease surveillance. 

The design of the workflows profited from the significant technological and methodological 

advances in diagnostic techniques that were achieved over the last few years. Nowadays, 

neither sample handling nor test sensitivity can be regarded as diagnostic bottle necks. 
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Accurate laboratory methods for serological and virological analyses are laid down in the EU 

Diagnostic Manual and the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 

for CSF and ASF (OIE, 2008a; OIE, 2008b). Furthermore, diagnostic procedures were tested 

and validated previously (Donahue et al., 2012; Gallardo et al., 2009; Hoffmann et al., 2011; 

Schroeder et al., 2012). Especially the application of highly sensitive real-time PCR protocols 

allowed pragmatic approaches (Haines et al., 2013; Hoffmann et al., 2009; Leifer et al., 2011; 

Tignon et al., 2011).  

With regard to the dry blood swabs, it was shown that qualitative CSFV and ASFV genome 

detection in blood, feces and organ samples is possible even after storage under suboptimal 

climatic conditions (storage experiment at 37°C for 7 days prior to swab sampling). These 

results suggest the potential applicability to samples from carcasses even in various stages of 

decay. The fact that qualitative results were irrespective of the swab type and extraction 

method gives additional evidence concerning the robustness of this method. This system will 

be further validated under field conditions.  

Apart from detection of viral genome, also serological analyses are required by law 

(Commission Decision 2003/422/EC). In cases of ASFV, it could be recently shown that 

forensic livestock swabs (their fragments) represent also an appropriate matrix for antibody 

detection by ELISA (Blome et al., 2014c, in press).  

However, the major weakness is the loss of syndromic surveillance in the field. To overcome 

parts of this problem, applicability to swab samples for other pathogens should be explored.  

In our second approach, detection of CSFV genome in saliva from rope baits was evaluated as 

pragmatic tool for early warning (Mouchantat et al., 2014a). So far, an adequate sample 

collection from living animals in the field involves special hunting or trapping activities 

(Alexandrov et al., 2013). On the contrary, the distribution and collection of rope baits do not 

require any additional equipment, is easy to handle and to transport for laboratory analysis. It 

could be shown that the system is suitable in principle. Moreover, its applicability was proven 

for foot-and-mouth diseased pigs recently (Mouchantat et al., 2014b). 

Taken together, pragmatic approaches are now available for field application that could 

markedly lower the threshold of sample submission and increase compliance of hunters. In 

general, transfer is also possible to backyard settings or areas with semi-wild pigs improving 

the control measures in both CSF and ASF outbreak scenarios.  
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6 SUMMARY 

Classical swine fever is among the most devastating diseases of pigs worldwide. Outbreaks 

are accompanied by tremendous socio-economic consequences. During the last two decades, 

CSFV isolates of genotype 2.3 have predominated in Europe. Their most characteristic feature 

is the moderate virulence leading to highly variable clinical pictures and outcomes. Several 

influencing factors were identified such as age and immune status on the host’s side as well as 

virulence of the isolate on the agent’s side. Furthermore, an impact of genetic background and 

individual factors were proposed. However, little is known about host responses leading to 

different disease courses and other basic pathogenetic mechanisms. With aim of 

characterising host responses, two experimental infection trials were performed with pigs of 

different breeds and ages. The strong age-dependence could be confirmed by observing 

subclinical courses in the older group and predominantly severe forms in younger animals 

irrespective of the genetic background. The breed-related impact was only minor compared to 

the influence of age and body weight as well as preload with facultative pathogens. However, 

significant differences were revealed among individuals that merit further investigation. 

To identify underlaying immune-pathogenetic mechanisms, seven porcine cytokines were 

targeted for their suggested key role in swine fever pathogenesis. To this means, a TaqMan-

based RT-qPCR for the assessment of normalized gene expression profiles of IL-1β, -2, -4, -6, 

-8, TNF-α, and IFN-α was developed and validated. This highly specific and sensitive assay is 

harmonized in terms of procedure, PCR chemistry, and cycling conditions enabling a rapid 

and economic mRNA detection. This assay will be used to target beneficial and detrimental 

host reaction pattern not only for swine fever but also for other porcine diseases with an 

immune-pathogenetic background. 

In terms of disease surveillance, the lack of easy and swift sample submissions for laboratory 

diagnosis, even in times of increased risk, presents the major bottleneck. Therefore, pragmatic 

approaches for easy conductable sampling strategies were implemented. With regard to 

passive swine fever surveillance, a robust dry-/ semidry blood swab technique for CSFV and 

ASFV detection was validated and established. Furthermore, “rope-in-a-bait” sampling swabs 

were tested in terms of CSF in order to facilitate early warning strategies for optimization of 

active surveillance. An implementation for other diseases is conceivable providing a worthy 

contribution to the entire control of infectious animal diseases. 
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7 ZUSAMMENFASSUNG 

Die Klassische Schweinepest (KSP) zählt weltweit zu den verheerendsten 

Schweinekrankheiten und verursacht im Ausbruchsfall immense sozio-ökonomische Verluste. 

Verantwortlich für die europäischen Ausbrüche der vergangenen zwei Jahrzehnte waren 

vorrangig Virusisolate vom Genotyp 2.3. Diese zeichnen sich insbesondere durch ihre 

moderate Virulenz aus, welche eine hohe Variabilität an klinischen Symptomen und 

Krankheitsausgängen zulässt. Einige beeinflussende Faktoren wurden sowohl auf Wirtsseite 

als auch auf Seiten des Erregers identifiziert. Hierzu zählen Alter und Immunstatus des Tieres 

sowie die Virulenz des jeweiligen Schweinepestisolates. Darüber hinaus wurden genetisch-

bedingte Einflüsse und individuelle Faktoren in Betracht gezogen. Jedoch sind die 

grundlegenden pathogenetischen Mechanismen bislang nur unzureichend geklärt. Um die 

zugrunde liegenden Wirtsreaktionen näher zu charakterisieren, wurden zwei 

Infektionsversuche durchgeführt. Die infizierten Schweine unterschieden sich hinsichtlich 

Alter und Rasse. Die vorberichtlich starke Altersabhängigkeit konnte während der Versuche 

bestätigt werden, da die infizierten Tiere der älteren Gruppe ausschließlich subklinische 

Verläufe entwickelten, während schwere Verlaufsformen in allen jüngeren Tieren unabhängig 

von deren Rasse dominierten. Ein genetisch-bedingter Einfluss konnte nur geringfügig 

beobachtet werden, während Unterschiede im Alter und Gewicht der Tiere sowie eine 

Vorbelastung mit fakultativen Pathogenen eine größere Rolle gespielt haben. Jedoch zeigten 

sich starke individuelle Unterschiede im Krankheitsverlauf, die einer weiteren Betrachtung 

bedürfen. 

Aufgrund der vermuteten Schlüsselrolle von Zytokinen in der Immunpathogenese der 

Schweinepest wurden sieben von ihnen als Messparameter ausgewählt. Für die Analyse 

normalisierter Genexpressionsprofile von Interleukin (IL)-1β, -2, -4, -6, -8, Tumor-Nekrose-

Faktor-alpha (TNF-α), und Interferon-alpha (IFN-α) wurde ein TaqMan-basiertes real-time 

RT-PCR System entwickelt und validiert. Diese hoch spezifischen und sensitiven Assays 

wurden hinsichtlich der Durchführung, der PCR-Chemie, und des Temperaturprofils für die 

verschiedenen Zytokine vereinheitlicht und ermöglichen eine schnelle ökonomische 

Detektion der mRNA. Diese Technik gestattet nicht nur die Definition von Reaktionsmustern 

im Verlaufe der Schweinepest, sondern ist zudem auf jede andere Erkrankung des Schweines, 

der eine Immunpathogenese zu Grunde liegt, anwendbar. 

Neben der KSP stellt insbesondere die aktuell bedrohliche Ausbreitung der Afrikanischen 

Schweinepest (ASP) innerhalb der Europäischen Union ein erhebliches Risiko dar. Trotz 

dieser alarmierenden Tatsache besteht derzeit ein bedenklicher Mangel an zur Diagnostik 

eingesandten Proben. Aus diesem Grund wurden pragmatische nicht-invasive Ansätze 

entwickelt, welche die Probennahme im Feld und dessen Transport erleichtern sollen. Für die 

passive Schweinepestüberwachung wurde eine robuste Methode auf der Basis von 
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getrockneten Blut-Tupfern etabliert und validiert. Diese ermöglicht sowohl die Detektion von 

Klassischer als auch von Afrikanischer Schweinepest. Des Weiteren wurde eine „Seil-im-

Köder“ Technik für die Klassische Schweinepest implementiert, welche als vereinfachte 

Frühwarnstrategie die aktive Seuchenüberwachung optimieren soll. Eine Anwendung beider 

neu etablierten Beprobungsstrategien ist darüber hinaus für andere Seuchengeschehen 

denkbar, was einen bedeutenden Beitrag für die gesamte Tierseuchenbekämpfung darstellt.  
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8 ABBREVIATIONS 

 

ASF  African swine fever 

ASFV  African swine fever virus 

BHQ  Black Hole Quencher 

CSF  Classical swine fever 

CSFV  Classical swine fever virus 

DIVA  Differentiation of infected from vaccinated animals 

DNA  Deoxyribonucleic acid 

EFSA  European Food Safety Authority 

ELISA  Enzyme-linked immunosorbent assay 

EU  European Union 

FAM  6-Carboxyfluorecein 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

HEX  Hexachloro-6-carboxyfluorescein 

IFN  Interferon 

IL  Interleukin 

mAb  monoclonal antibody 

NK  Natural killer cells 

NS  Non-structural protein 

NT  Neutralization test 

NTR  Non-translated region 

OIE  Office International des Épizooties, World Organisation for Animal Health 

ORF  Open reading frame 

PAF  Platelet-activating factor 

PBMC  Peripheral blood mononuclear cell 

RNA  Ribonucleic acid 

RT-qPCR Reverse transcription polymerase chain reaction 

spp.  Species pluralis, several species 

TF  Tissue factor 

TNF-α  Tumor necrosis factor-alpha 

TR  Texas Red  
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