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Summary

Timeless-Tipin (Tim-Tipin), also referred to as the fork protection complex, is an evo-

lutionarily conserved protein complex coordinating DNA replication and guaranteeing

replication fork stability. DNA replication is a highly dynamic and coordinated pro-

cess controlled by the action of numerous proteins. Key regulatory enzymes, like DNA

helicase and DNA polymerases, are accompanied by accessory factors ensuring the cor-

rect duplication of the genome. The unwound DNA is stabilized by the key factor

Replication Protein A (RPA), which recruits important downstream proteins involved

in unperturbed DNA replication or checkpoint signaling and DNA repair. The Tim-

Tipin complex is recruited to replication forks via RPA and spatially bridges between

the helicase and polymerase, thereby coupling the functions of these two machineries.

However, details of the interactions between Tim-Tipin, RPA, and ssDNA, the under-

lying molecular mechanism of Tim-Tipin recruitment to RPA-ssDNA and/or ssDNA,

and the three dimensional structure of the Tim-Tipin-RPA complex are unknown. In

this thesis, the complex formation of nearly full-length Tim-Tipin and RPA was exam-

ined using biochemical methods. Tim-Tipin and RPA form a 258 kDa complex with a

1:1:1 stoichiometry. CryoEM analysis provided first structural insights into the Tim-

Tipin-RPA interactions and revealed a globular architecture of the complex showing a

ring-like and a U-shaped domain which is covered by a RPA lid. One exciting aspect

was that RPA adopts a compact conformation in the Tim-Tipin-RPA complex similar

to the structure of RPA bound to 30 nt ssDNA. This specific conformation was the

basis for further biochemical studies investigating RPA’s ssDNA length-dependent con-

formational switch and its impact on the recruitment of Tim-Tipin to ssDNA. Here,

Tim-Tipin-RPA-ssDNA complex formation was shown to be modulated by RPA’s con-

formation. The complex was only stable when RPA adopted the more compact 30 nt

binding mode and dissociated when RPA was bound to ssDNA in the 8 nt binding mode.

These dynamic interactions provide a mechanistic basis for RPA-based recruitment of

Tim-Tipin to ssDNA and reveal an interesting aspect of coordination of the eukaryotic

replication fork.
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1. Introduction

1.1. DNA Replication in Eukaryotes

1.1.1. The DNA Replication Machinery

DNA replication is an essential process duplicating genomic information with high fi-

delity in the nucleus. The process of DNA synthesis relies on the coordinated action

of multiple replication proteins. In eukaryotes, these proteins specifically assemble to a

molecular machinery known as the replisome, which is composed of the helicase core,

called mini-chromosome maintenance (MCM) 2-7 complex, associated with Cdc45 and

the heterotetrameric GINS (Sld5-Psf1-Psf2-Psf3) complex, the polymerase α-primase,

the replicative polymerases Pol ǫ and Pol δ, the sliding clamp PCNA, the PCNA loader

replication factor C (RFC), and the replication protein A (RPA) [1].

For the initiation of DNA replication, the DNA has to be separated by a helicase

at the origins of replication, which are sensed by the multi-protein origin recognition

complex (ORC) together with the proteins Cdc6 and Cdt1 [2–4]. This complex also

recruits the helicase, a process which is called licensing [5]. The activity of the loaded

helicase depends on the additional accessory proteins Cdc45 and GINS [6, 7]. Once

activated, the helicase opens the DNA double helix and produces single-stranded (ss)

DNA, which is immediately coated by the heterotrimeric replication protein A, the most

abundant single-strand binding protein in the cell [8, 9]. The RPA-ssDNA complex in

turn mediates the stable attachment of the DNA polymerase α-primase (Pol α) to DNA,

which de novo synthesizes the first RNA-DNA primer [10, 11].

Further, the bidirectional extension of the primer is performed by Pol ǫ and δ [12, 13],

whose processivities are enhanced by the polymerase clamp PCNA (proliferating-cell-

nuclear-antigen) preventing dissociation of the polymerase [14, 15]. The loading of

the replicating polymerases requires a switch from Pol α-primase to Pol ǫ and Pol δ,

which is mediated by the replication factor C specifically recognizing the 3′-hydroxyl

end of the primer-template junction [16, 17]. After loading the replicative polymerases,

the replisome is assembled and the replication fork progresses at the same time as

3



1. Introduction

duplicating the genome.

In addition to the core replication proteins, other regulatory components such as the

fork protection complex (FPC) ensure correct duplication of the genome [18]. The FPC

consists of the proteins Timeless (Tim), the Timeless-interacting protein (Tipin), and

Claspin and is thought to coordinate DNA unwinding and DNA synthesis by coupling

the helicase and DNA polymerase activities [19]. In addition to interactions with the

helicase and DNA polymerases, the FPC components Tim-Tipin also associate with

RPA [19, 20]. However, how Tim-Tipin and Tim-Tipin in complex with RPA travel with

the replisome and affect the DNA replication accuracy, has not been well understood

(Figure 1.1 and Section 1.2).

1.1.2. DNA Synthesis under Replicative Stress

During synthesis, the replisome encounters regions that contain numerous obstacles like

protein-DNA barriers or abnormal DNA topology which cause replicative stress and can

reduce replisome activity [18]. For the protection of the genome integrity, it is crucial to

sense replicative stress, to stabilize normal and stalled forks, and to restart DNA syn-

thesis without any errors after recovery. Eukaryotic cells evolved surveillance factors,

which regulate DNA replication and couple DNA synthesis to cell cycle progression and

DNA damage repair. Thus, the ATR-Chk1 (Ataxia telangiectasia mutated (ATM) and

Rad3-related, checkpoint kinase) intra-S phase checkpoint pathway delays or arrests the

DNA synthesis progression in response to replication stress by modulating the activ-

ities of the cyclin-dependent kinase 2 (CDK2) [21]. Replicative stress inhibiting the

replicative polymerases, but not affecting DNA helicase might result in accumulation of

ssDNA, which is coated by RPA [22, 23]. RPA-coated ssDNA plays a positive role in the

recruitment of the ATR-interacting protein (ATRIP) to the DNA lesions [24]. ATRIP

in turn recruits its interaction partner ATR, a replication stress response kinase, which

phosphorylates Chk1 [25] dependent on the presence of Claspin [26, 27]. In that cas-

cade, Chk1 phosphorylates its downstream targets, which participate in the regulation

of S phase progression [28, 29]. Interestingly, the phosphorylation of Chk1 is mediated

by Tim-Tipin, which indirectly modulates the intra-S phase checkpoint response upon

replicative stress (Figure 1.1 and Section 1.2). However, how Tim-Tipin influences the

ATR-Chk1 checkpoint pathway remains elusive.

Furthermore, the induction of the checkpoint signaling also activates the appropriate

DNA repair mechanism. RPA was shown to sense damaged DNA [30–32] and to recruit

DNA repair proteins to sides of DNA damage by protein-protein interactions. Several
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1.2. Roles of Timeless and Timeless-Tipin in Circadian Clocks and DNA Replication

repair mechanisms are involved in DNA recovery.

In the nucleotide excision repair (NER), RPA senses damaged DNA and specifically

interacts with XPA (xeroderma pigmentosum complementation group A protein). The

complex recruits the corresponding endonucleases that remove bulky DNA lesions [32,

33]. Further, interaction and structural studies have revealed direct association of RPA

with the uracil-DNA glycosylase 2 (UNG2) that initiates base excision repair (BER)

by excising and replacing defective DNA bases [34, 35]. Finally, RPA is also required

for double-strand break (DSB) repair by homologous recombination (HR), which is

facilitated by direct RPA-Rad51 and RPA-Rad52 interactions [34, 36–38].

Interestingly, the interactions of RPA with the DNA repair proteins XPA and UNG2

are mediated by a similar interface as reported for the FPC member Tipin [20]. However,

how the FPC affects the DNA repair mechanisms is not clear yet.

Taken together, the integrity of the genome is guaranteed by an intact replisome/

replication fork, which is stabilized by additional accessory components such as Tim-

Tipin, RPA or Tim-Tipin-RPA.

1.2. Roles of Timeless and Timeless-Tipin in Circadian Clocks

and DNA Replication

The function of the mammalian Tim-Tipin complex was first discussed on the basis

of the function of the mammalian Timeless protein. Mammalian Tim (mTim) was

first identified as an ortholog of the Drosophila Timeless protein (dTim), which is a

key player in the circadian clock of flies. Publications of the past two decades are

inconsistent regarding the role of mammalian Tim and its ambivalent functions are

controversially discussed. Later studies indicate that mTim is directly involved in the

molecular machinery of DNA replication, which apparently reflects the more prominent

biological function of mTim.

1.2.1. Supporting Evidence for Timeless Function in Circadian Clocks

Mammalian Tim was identified based on its sequence similarity to Drosophila Tim,

a key player in the circadian clock of flies [39–41]. Most organisms display biological

rhythms in behavior like rest and activity or sleep and waking cycles. The periodicity of

these rhythms averages 24 h and is a prerequisite for the adaptation of the organisms to

the day and night cycles of the environment. The generation of these circadian rhythms

(circa diem: Latin, ’approximately a day’) is performed by a master clock located in
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1. Introduction

the suprachiasmatic nucleus (SCN) in the brain that perceives external Zeitgeber-stimuli

like light and creates an output that regulates the biological rhythmical processes [42].

In general, intracellular clocks (master (SCN) and peripheral clocks (tissues like lung,

liver, kidney)) consist of positive and negative feedback loops of transcription and trans-

lation that drive periodic rhythms in the mRNA and protein levels mediated by protein-

protein and protein-DNA interactions, post-translational modifications, cellular local-

izations and nuclear translocations, expression rates, and degradation of clock proteins.

Drosophila Tim and its interacting partner Drosophila Period (dPer) are members

of the negative feedback loop in the fly oscillator and inhibit their own transcription

by binding to the transcription factors dClock and dCycle, which represent the positive

limb of the feedback loop and activate the transcription of the dPer and dTim genes

[43]. A comparison of the Drosophila clock with the mammalian clock emphasizes that

many of the core clock functions of Tim in insects are carried out by the Cryptochrome

proteins (mCry) in mammals, leaving the question what the function of mTim in the

mammalian clockwork is?

There are a couple of indications supporting mTim’s role in the mammalian circadian

clock comparable to dTim’s function in the fly clock. Since the formation of homo- or

heteromultimeric complexes is a common feature of circadian clock proteins [41, 44–48],

mTim should interact with other clock proteins. Indeed, mTim was found to associate

with elements of the negative feedback loop, mCry1 and mCry2, by immunoprecipita-

tion of in vivo expressed [49] or over-expressed proteins [50]. Moreover, as rhythmic

expression and activity of clock proteins is mediated by clock protein-protein interac-

tions, a knockdown of one of the component results in changed expression or activity of

the other partner [44, 51, 52]. An alteration in the expression level of mPer and mCry

proteins after mTim knockdown was reported, supporting mTim’s role in the clock [52].

In addition, mTim was shown to repress the mClock-mBMAL1 (Brain Muscle Arnt-like

1) transcription activity [50] similar to dTim in the fly clock, where dTim inhibits its

own transcription by binding to dClock-dCycle (homologs of mClock-mBMAL1) [53].

Further, mTim knockdown abolishes the circadian neuronal activity (firing rate) of the

SCN, the site of the master clock, which demonstrates that mTim is required for SCN

circadian rhythmicity [52]. Another profound characteristic of circadian clocks is the

rhythmic expression of mRNAs and proteins [50, 54, 55]. mTim exists in two alterna-

tive transcripts [56] with only one isoform being expressed in a circadian manner. Adult

animals exhibit a high and constitutive expression rate of a short Tim (Tim-s) isoform

comprising the most C-terminal 475 residues. Full-length Tim expression appears to be

6



1.2. Roles of Timeless and Timeless-Tipin in Circadian Clocks and DNA Replication

periodic and exists only in the embryonic stadium [52].

Despite these data partially supporting the role of mTim as a member of the negative

feedback loop in the mammalian clock, the majority of data point to a minor role of

mTim in the circadian clock.

1.2.2. Non-Supporting Evidence for Timeless Function in Circadian Clocks

Currently, several reports contradict the evidences for mTim function in circadian clocks.

Interactions between the mPer proteins (mPer1, 2, 3) and mTim are ambiguously de-

scribed in literature questioning mTim’s role in the circadian clock. While on the one

hand, mTim-mPer interactions were neither detected by co-immunoprecipitations of in

vivo [49] or overexpressed proteins [50] nor by yeast-two-hybrid experiments [41], in-

direct association of mTim and mPer in the SCN was reported [52]. Protein-protein

interactions also influence cellular localization of the clock proteins. In the fly clock,

dPer and dTim associate and translocate into the nucleus, which is important for the

repression of their own transcription [44]. In mammals, mPer proteins exhibit mostly

cytoplasmic location and are shuttled into the nucleus upon mCry binding [50]. mTim

was shown to be nuclear and did not translocate mPer into the nucleus in contrast to

mCry.

In contrast to bona fide clock proteins, the deletion of mTim is embryonically lethal

as described by Gotter et al. indicating a function of mTim in development [57]. Fur-

thermore, phylogenetic analyses of Tim proteins identified a second gene cluster in the

Drosophlia genome. In addition to the gene cluster containing the canonical, circadian

clock dTim gene, a dTim paralog, dTim-2/dTimeout, was identified, which is required

for chromosome stability [57–59]. Notably, sequence alignments revealed that mTim

shares a greater similarity with the Drosophlia protein dTim-2/dTimeout than with

dTim [57, 58] and therefore might be the true ortholog of dTim-2/dTimeout and not

an ortholog of the clock-relevant dTim protein. In summary, these reports indicate that

Tim’s clock function still remains to be elucidated.

1.2.3. Tim-Tipin and its Role in DNA Replication

Collective observations point to other more prominent biological functions of Tim than

the clock functions. To investigate the putative function of mTim, yeast-to-hybrid ex-

periments were performed by Gotter et al. in 2003 and identified mTipin as a Timeless

interacting protein, which was further confirmed by co-immunoprecipitation assays [60].

7



1. Introduction

Tim and Tipin (hereafter mammalian proteins are meant, if not stated otherwise) form

a complex via their N-terminal regions [61]. Moreover, the complex formation is impor-

tant for their mutual stabilization and the loss of one interacting partner leads to the

loss of the other partner [62] (Figure 1.2). Furthermore, evaluations of the subcellular

location showed a mutual dependance. While Tim was mostly found in the nucleus [50],

Tipin alone was equally distributed in both compartments of the cell. Interestingly,

co-expression of Tipin with Tim promoted Tipin’s nuclear location [60, 63].

Notably, other homologs of Tim and Tipin have been identified inMetazoans and fungi

like Swi1 and Swi3 in fission yeast Schizosaccharomyces pompe [65, 66], Tof1 and Csm3

in budding yeast Saccharomyces cerevisiae [67, 68] as well as ce-TIM1 in Caenorhabditis

elegans [69] indicating that these proteins are conserved in Eukaryotes.

Identification of Tim-Tipin binding to essential DNA replication proteins pointed to

the assumption that Tim-Tipin might play a role in DNA replication as an replisome-

associated protein (Figure 1.1 a). Thus, Tim-Tipin has been shown to bind to the

MCM2-7 helicase subunits in vivo and in vitro in mammals [19, 70] and in yeast [71, 72].

The association of Tim-Tipin with very large replisome complexes consisting among

others of the MCM helicase core, GINS and Cdc45 was reported in yeast and culminated

in the middle S phase [73]. This interaction was recently also detected in human cells

[74] suggesting a high conservation of these complexes among species. Tim-Tipin and

Tim alone were also shown to bind to the replicating DNA-polymerases in cells and

co-immunoprecipitation assays [19, 74]. Since Tipin alone did neither interact with

the helicase nor with the DNA polymerases, these interactions are likely mediated by

Tim. Tim-Tipin was also found to inhibit the helicase and ATPase activity of the CMG

complex (Cdc45-MCM2-7-GINS) and to stimulate the activities of the DNA polymerases

α, δ and ǫ [74, 75]. Collectively, these observations imply the direct involvement of Tim-

Tipin in the catalytic activities of the replisome enzymes.

Depletion of Tim-Tipin leads to an accumulation of ssDNA observed in yeast and

mammals [76–78] implying that Tim-Tipin might stabilize the DNA replisome by spa-

tially bridging between the helicase and DNA polymerase and thereby coupling DNA

unwinding with DNA synthesis [19] (Figure 1.1 b). Consistent with that study, an in-

creased level of chromatin-bound RPA was observed in DNA replication-blocked and

Tipin-depleted Xenopus extracts indicating raised presence of ssDNA [79]. Moreover,

increased chromatid breaks, translocations, and sister-chromatid exchanges have been

observed upon Tim or Tipin depletion [62] supporting the important role of Tim-Tipin

throughout normal DNA replication [80].

8



1.2. Roles of Timeless and Timeless-Tipin in Circadian Clocks and DNA Replication

Tim-Tipin

Claspin

Polδ

PCNA

RFC

MCM2-7

Lagging strand

Leading strand

Polα

Polε

PCNA
Fork movement

Tim-Tipin

RPA

ATR
ATRIP

PCNA

RFC

MCM2-7

Lagging strand

Leading strand
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Chk1
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CDK-CyclinE/A

Cell cycle
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b
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P P

?

Figure 1.1.: Schematic representation of the DNA replication fork. (a) The replisome consists of the
key proteins MCM2-7 helicase, the Pol α-primase, the replicative polymerases Pol ǫ and Pol δ, the
sliding clamp PCNA, the PCNA loader RFC, and RPA. The FPC (Tim-Tipin and Claspin) couples
DNA unwinding and synthesis by bridging between helicase and polymerase during unperturbed
DNA-replication. The Tim-Tipin-RPA complex is mediated by a direct Tipin-RPA32 interaction.
The assembly of the replisome harboring Tim-Tipin-RPA at the fork still needs to be elucidated
(indicated by the question mark). Figure legend continued on next page.
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1. Introduction

In addition, the protein expression levels of Tim and Tipin exhibit an steady increase

prior to and during the S phase [19, 81]. Reduced levels of Tim-Tipin have been reported

to retard S phase progression, which is consistent with the hypothesis that Tim-Tipin

is a key player in DNA replication [19, 61].

During unperturbed DNA replication RPA has been found to recruit additional ac-

cessory proteins, which are essential for correct processing and to help to coordinate

these proteins at the replication fork [82]. Tipin was shown to co-localize with RPA32

and Tim with RPA70 in cells at regions undergoing DNA replication [19]. Complex for-

mation of Tim-Tipin and RPA has been reported to be mediated by a direct interaction

of Tipin and the C-terminal domain of RPA32 [19, 20] (Figure 1.2 b). Furthermore, the

interaction of RPA and Tipin was also observed in the DNA-bound state [63, 83]. The

direct interaction of Tim-Tipin and RPA raises the possibility that the Tim-Tipin-RPA

complex is also located at ssDNA stretches in the replication fork.

However, DNA replication forks are vulnerable to DNA damage or might stall due

to several obstacles [84]. RPA has been reported to be important for the delay of the

cell cycle progression, the recruitment of repair proteins, and for the stabilization of the

replication fork until the DNA damage or block is resolved [21]. Accumulated reports

have shown that Tim-Tipin together with RPA might be involved in the DNA damage

response and DNA repair. Indeed Tim-Tipin was reported to interact with components

of the DNA replication checkpoint pathway (Figure 1.1 b). Tim-Tipin interactions

with Chk1 and ATR-ATRIP were stimulated by UV- or hydroxyurea- (HU) induced

replicative stress [81, 83]. The same reports also demonstrated that the phosphorylation

of Chk1 in response to HU or UV was attenuated upon Tim and Tipin knockdown [61,

81, 83]. Additionally, Tim as well as Tipin were reported to directly bind to Claspin [27,

63], the mediator of the Chk1 phosphorylation by ATR-ATRIP. Moreover, knockdown

of Tim-Tipin have lead to reduced nuclear accumulation of Claspin under replicative

Figure 1.1.: (Previous page). (b) UV-induced DNA damage (yellow star) stalls the DNA polymerase
and leads to helicase-polymerase/leading and lagging strand uncoupling resulting in ssDNA accumu-
lation (leading strand). RPA covers the locally increased ssDNA, which serves as a signal for the
recruitment of ATR/ATRIP. The DNA damage sensors activate the intra-S phase checkpoint by Tim-
Tipin-Claspin mediated Chk1 phosphorylation. Further effector proteins (CDC25A, CDK-CyclinE/A)
arrest cell cycle. In addition, Tim-Tipin together with Claspin stabilize the stalled replication fork
by spatially bridging between helicase and polymerases and thus preventing the replisome from dis-
assembling. The FPC also promotes removal of DNA lesions and fork restart after the obstacle has
been resolved. Other important DNA replication and checkpoint factors (e.g. GINS, Cdc45) are
omitted for simplicity. Adopted from [64].
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stress [61].

Like their mammalian counterpart, the yeast Tim-Tipin and Claspin homologs, Tof1,

Csm3, Mrc1 or Swi1, Swi3, Mrc1, have been found to be also required for the activa-

tion of the effector kinases Rad53 or Cds1 [71, 77]. In addition, Tof1 and Csm3 (Tim

and Tipin) have been reported to be important for the pausing and recovering of the

replication fork at replication fork barriers [85].

Taken together, in addition to the role in unperturbed DNA replication, many reports

support the involvement of Tim and Tipin in checkpoint signaling upon DNA damage

and in DNA repair. Accumulated evidence therefore supports the importance of the

Tim-Tipin complex as an evolutionary conserved player at the DNA replication fork

maintaining genome integrity.

1.3. Replication Protein A and its Multiple Functions

The ubiquitous eukaryotic ssDNA binding protein RPA plays an essential role in all

kinds of DNA metabolisms [9]. RPA consists of three very tightly associated subunits

of approximately 70, 32, and 14 kDa, referred to as RPA70, RPA32, and RPA14 [86] and

is only solubly expressed in bacteria as heterotrimer or RPA32/14 heterodimer [87, 88]

(Figure 1.3). The ternary complex specifically recognizes ssDNA with a nano- to sub-

nanomolar affinity in a cooperative manner, which is length-dependent [89–91]. Multiple

DNA-binding domains have been identified in RPA and structurally characterized (for an

overview see Section 1.4.3) [92–96]. Interestingly, the multi-module protein undergoes

conformational changes and shows a gradual compaction upon DNA binding as the

coverage of RPA by ssDNA progresses [97].

RPA was reported to play an important role in DNA replication initiation and elon-

gation. Although RPA was found to be diffusely localized in the nucleus in G1 and G2

phase, it specifically becomes punctually located at replication foci prior to initiation

and during DNA replication [98, 99]. Studies on the DNA replication of the simian

virus 40 (SV40) have identified interactions of the viral replicative DNA helicase (SV40

T antigen, Tag) and RPA. This direct protein-protein interaction promotes the recruit-

ment of RPA to the emerging ssDNA at the origin of replication. Binding of RPA to

the polymerase α-primase was also reported in the SV40 system [10]. In the eukaryotic

DNA replication, RPA is recruited to ssDNA by interactions with the MCM helicase

subunit and thus stabilizes the MCM-unwinded DNA [100, 101].

In addition to proteins involved in DNA replication, RPA binds many factors in
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processes of other DNA metabolisms including DNA repair and cell cycle checkpoint

signaling. By sensing damaged DNA [30–32], RPA recruits DNA repair proteins to sides

of DNA damage [32–38]. The interactions of these DNA repair factors with RPA are

structurally very similar and are mediated by the RPA32 C-terminal domain (winged-

helix, WH domain) [34]. Strikingly, Tipin has been reported to also interact with the

RPA32 C-terminal WH domain [19, 20, 83]. Indeed, one study has recently shown that

Tipin exhibits sequence similarity with XPA and UNG2 implying that these proteins

share a similar binding interface on the RPA32-WH domain [20] (Figure 1.2). More-

over, the association of XPA with RPA was shown to be mutually exclusive with the

association of Tipin with RPA, supporting a competitive binding to the same RPA32

surface [19].

Similar to ARTIP, Tipin also binds to DNA-bound RPA, as already elaborated in

Section 1.2, and is required for the recruitment of Timeless and Claspin to the sides

of DNA lesion [63]. Thus, the Tim-Tipin-RPA interaction might be important for the

activation of the ATR-Chk1 checkpoint pathway.

Taken together, RPA couples its DNA binding activity to the recruitment of DNA pro-

cessing factors by providing a binding platform for multiple proteins complexes (among

FPC) involved in DNA replication, cell cycle checkpoint signaling, and DNA repair.

1.4. Molecular Architecture of Tim, Tipin, and RPA

1.4.1. Tim

The mouse Tim protein consists of 1197 amino acids (aa), which correspond to a molec-

ular weight of 137.4 kDa. It does not contain any known domains that have been yet

structurally or biochemically identified and therefore could not be associated with any

structural super-family.

However, PSI-BLAST [102] search using the NCBI website (National Center for

Biotechnology Information) revealed two conserved regions (Figure 1.2 a). The N-

terminal region (aa 21-285) belongs to the Timeless protein family (pfam 04821). The

C-terminal part harbors the Timeless protein C-terminal region (Timeless-C, pfam

05029, aa 722-1189). Protein secondary structure prediction analysis using PSIPRED

[103] suggested that Tim’s major regions are all α-helical (Appendix A.1). The three-

dimensional (3D) prediction of Arm/HEAT repeats for Tim is controversially discussed

(Arm/HEAT shortened for Armadillo/Huntingtin, Elongation factor 3, subunit of pro-

tein phosphatase 2A, yeast kinase TOR1 [104]). Unlike one study suggesting Tim to

12



1.4. Molecular Architecture of Tim, Tipin, and RPA

be a member of the Arm/HEAT protein super-family by showing significant hits to a

number of Arm/HEAT repeat proteins including importin α and β [105], a second con-

tradicting study found no significant homology to Arm/HEAT proteins and indicated

false positives and overpredictions in previous analysis [106].

A DDT domain (DNA-binding homeobox and different transcription factors) was

identified in the S. pompe yeast Tim homolog, Swi1, and was shown to be conserved

between mouse Tim (aa 332-385) and the yeast protein (aa 327-378) [107] (Figure 1.2 and

Figure A.1). The DDT domain is a putative DNA-binding domain found in different

transcription and chromosome remodeling factors [108]. The Swi1 DDT domain was

reported to bind DNA in vitro, to associate with chromatin in cells, and to be important

for the recruitment of Swi3 (Tipin homolog) to chromatin.

Further, four putative nuclear localization signals (NLS 1-4) were identified in Tim

but only the C-terminal NLS 4 was reported to be likely relevant for the nuclear import

of Tim [109]. In addition, Tim exhibits several acidic stretches within the protein

sequence including a Glutamate (E)-repeat and five E-rich regions in the C-terminal

part (Figure 1.2). The N-terminal region of human Tim (mouse Tim, aa 1-569) was

reported to bind to human Tipin by co-immunoprecipitation assays [61].

1.4.2. Tipin

Mouse Tipin consists of 278 amino acids, which correspond to a molecular weight of

31.5 kDa. Like for Tim, no similarity to any known structural super-families was re-

ported to date [60]. PSI-BLAST search revealed one conserved domain corresponding

to the Swi3 super-family (S. pompe yeast Tipin homolog Swi3, pfam 07962, aa 63-146

(Figure 1.2 b)). Protein secondary structure prediction analysis suggested that Tipin

is mostly α-helical and exhibits a Proline (P)-rich region at the N-terminus, which is

likely to be disordered (Figure 1.2 b and Appendix A.2). Interestingly, Tipin possesses

sequence similarity to XPA and UNG2 of approximately 48 amino acids (Figure 1.2 c).

Both proteins play an important role in DNA damage repair and bind to the RPA32WH

subunit via the Tipin-homolog region [34]. Further, structural analysis mapped the

RPA-binding region within Tipin to the residues 182-215 [20] (Figure 1.2 d). The N-

terminal region of human Tipin (mouse Tipin, aa 64-140) was reported to be significant

for human Tim-binding and shows no overlap with the C-terminal RPA-binding site [61]

(Figure 1.2 b). Strikingly, no interactions of Tim with RPA were reported supporting

that Tipin harbors both binding sites (for RPA and Tim) [19, 83].
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Figure 1.2.: Domain organization of Tim (a) and Tipin (b) and sequence similarities (c). (a) Light
gray = N-terminal and C-terminal Timeless protein family regions. N1-N4 = nuclear localization
signal (NLS); NLS 1, aa 316-332; NLS 2, 528-537; NLS 3, 935-946; NLS 4, 1175-1190. D =
conserved DNA-binding domain DDT, which was suggested for the S. pompe homolog, Swi1. Dark
gray = E-repeat, aa 662-672 and E-rich regions (E), aa 964-985, 1046-1055, 1099-1107, 1144-1152,
1167-1172. Amino acid boundaries are shown as numbers. The asterisk marks the end of the
construct used in this thesis. Bottom brace = Tipin binding site. (b) Dark gray/P = Proline-rich
region of Tipin, approx. aa 1-60. Light gray = Swi3 protein family region. Bottom braces =
Tim and RPA binding sites. (c) Sequence similarities between mouse and human Tipin, XPA, and
UNG2. Circles = hydrophobic (orange) and charge-charge (green) interactions between hTipin and
hRPA32WH. (d) Electrostatic potential surface representation of human RPA32WH (aa 172-270,
blue = positive, red = negative) and ribbon representation of human Tipin (aa 185-218). The
binding interface is highlighted with sticks and residue numbers. Adopted from [20].

1.4.3. RPA

The ternary RPA complex consists of the proteins RPA70, RPA32, and RPA14. It is a

modular protein complex and contains six domains adopting the OB-fold (Oligonucleo-

tide/Oligosaccharide-binding fold), which is very common for ssDNA-binding proteins

[110, 111]. Four OB-domains (N, A, B, C) are located in RPA70, which are tethered

by flexible linkers and one each in RPA32 (D) and RPA14 (14) (Figure 1.3 a-c). Four
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Figure 1.3.: Domain organization and crystal structures of RPA. (a) Schematic representation of
RPA70 domain organization. N = N-terminal RPA70 domain. A, B, C = RPA70 DNA-binding
domains (DBD). Amino acid boundaries of each domain are shown at the top. (b) RPA32 domain
organization. N = Phosphoamino acid cluster. D = RPA32 DNA-binding domain. WH = RPA32
winged helix. (c) RPA14 domain organization. 14 = RPA14. (d) Crystal structure of RPA trimeriza-
tion core consisting of RPA70C (dark blue), RPA32D (light blue), and RPA14 (gray) (PDB 1L1O).
The bound zinc metal ion is represented as yellow sphere. (e) Crystal structure of RPA70A and
RPA70B in the DNA-free state (PDB 1FUG). (f) Crystal structure of the RPA DNA-binding core
consisting of RPA70ABC, RPA32D, and RPA14 bound to ssDNA (PDB 4GNX). Color code as in (d)
and (e). The bound 32 nt ssDNA is represented in green.

of these OB-fold domains possess DNA-binding ability, namely DNA-binding domain

(DBD) A, DBD-B, DBD-C in RPA70, and DBD-D in RPA32 and adopt different con-

formations upon DNA binding [92–96].
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RPA binds to ssDNA in two discrete binding modes, which are referred to the 8 and

30 nucleotide (nt) binding mode and can coexist in a dynamic equilibrium in solution

[112–115].

RPA70 DBD-A and DBD-B exhibit high inter-domain flexibility and adopt multiple

conformations under DNA-free conditions [94] (Figure 1.3 e). In the 8 nt binding mode,

RPA recognizes a minimum of 8 nucleotides by the RPA70 DBD-A and DBD-B only

[92, 95] (Figure 1.3 a, magenta). Binding of ssDNA induces conformational changes and

stabilizes the two domains in a tandem conformation [92]. Increasing length of bound

ssDNA sequentially engages DBD-C and further stabilizes the linker tethering DBD-B

and DBD-C [95]. In the 30 nt binding mode, the ssDNA is bound by RPA involving all

four DBDs (A-D) [96] (Figure 1.3 f). Biochemical studies have shown that these two

RPA binding modes exhibit different dissociation constants (KD) of ∼50 nM for the 8 nt

mode and ∼0.05 nM for the 30 nt binding mode [90, 116]. Further, a recent report from

2013 has shown a progressive compaction of RPA’s overall architecture with increasing

length of bound ssDNA [97].

The trimerization between the RPA subunits is mediated by RPA70 DBD-C, RPA32

DBD-D, and the entire RPA14, which form a three α-helix bundle interface [95]. In-

terestingly, DBD-C contains an zinc ribbon motif and the zinc metal ion impacts the

stabilization and ssDNA-binding activity of the domain [117] (Figure 1.3 d).

Three additional modules have been identified in RPA, which are not incorporated

into the structural core. The N-terminal RPA70N module has low DNA-binding affinity

but was reported to mediate important protein-protein interactions with p53 and to

stimulate Pol-α activity [118–120]. The N-terminal RPA32N module is predicted to

be unstructured and becomes phosphorylated in a cell cycle-dependent manner and in

response to DNA damage [121–124].

The RPA32 C-terminal module contains a winged helix (WH) domain, which was

reported to be important for protein interactions with multiple DNA repair proteins

and Tipin (Section 1.3) [20, 35, 125]. XPA, UNG2, and Tipin interact with the same

interface of RPA32WH and are suggested to associate with a similar binding mode. All

three proteins undergo conformational changes upon RPA32WH binding and adopt an

α-helix conformation (Figure 1.2 d). Thus, RPA uses a single binding site to interact

with several proteins involved in multiple processes of DNA metabolism and serves as

an exchange point.
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1.5. Aim of the Thesis

Since crystal structures of the RPA components, but no structural information about

the Tim-Tipin-RPA complex have been available, little is known about the interactions

between Tim-Tipin, RPA, and ssDNA, the underlying molecular mechanism of Tim-

Tipin recruitment to ssDNA/RPA-ssDNA, and the three dimensional structure of Tim-

Tipin-RPA. The first aim of the thesis was to solve the 3D structure of the Tim-Tipin-

RPA complex. Therefore, the expression and purification protocol of the recombinant

Tim-Tipin complex had to be established and the reported purification protocols of

recombinant RPA had to be adapted to our experimental conditions. Second, to probe

and to characterize the complex formation between Tim-Tipin and RPA, a combination

of biochemical and biophysical approaches was used including pull-down assays, size

exclusion chromatography, static light scattering, microscale thermophoresis, and cross-

linking experiments in combination with mass spectrometry analysis. In addition, to

gain structural insights into the Tim-Tipin-RPA interactions, the complex was analyzed

by electron microscopy (EM). The 3D model obtained from negative stain and cryo-EM

was validated by docking analysis of RPA crystal structures, antibody labeling, and

gel-filtration analysis using RPA sub-complexes.

Based on the structural analysis of the Tim-Tipin-RPA complex, the following ques-

tions were to be answered: how ssDNA and/or RPA’s binding modes affect the stability

and ssDNA binding affinity of Tim-Tipin-RPA and how Tim-Tipin recognizes ssDNA in

a RPA-independent manner? These questions were addressed by employing additional

biochemical methods including size exclusion chromatography with ssDNA substrates,

electrophoretic mobility shift assays, and fluorescence anisotropy experiments.

Finally, the results and conclusions were related to the molecular dynamics at the

DNA replication fork, the DNA replication checkpoint, and DNA repair activities.
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2.1. Definition of the Working Constructs

2.1.1. Purification of Timeless and Crystallization Attempts

Prior to the initiation of the project, the cloning and expression of the first mouse Time-

less (Tim) full-length protein and its constructs generated by rational design according to

secondary structure prediction was performed by the Dortmund Protein Facility (DPF,

Dortmund, Germany). The construct 997-1197 was solubly expressed and purified us-

ing IMAC (immobilized metal ion affinity chromatography) and SEC (size exclusion

chromatography). Christiane Theiß (laboratory technician) conducted first limited pro-

teolysis attempts to further define the best construct for structural studies. The tryptic

digestion of Tim 997-1197 identified two new constructs with the boundaries 997-1134

and 997-1138.

At the beginning of this thesis, the purification of Tim 997-1138 was improved by

an additional ion-exchange chromatography step (Figure 2.1) and octahedral-shaped

crystals were obtained from a 72 mg/mL sample within 10 days in conditions containing

different sized polyethylene glycol polymers (PEGs) (Figure 2.2 a).

Optimization of the initial condition did not give any hits, except two conditions

containing crystals that were too small for data collection. Further crystals appeared in

the initial screen after 1-2 months (Figure 2.2 b-c). While most of the crystals diffracted

poorly from 9-5.5 Å, one crystal diffracted up to 4.4 Å (Figure 2.2 e), with which

a complete diffraction data collection was performed. The crystal adopted the space

group P422 with a = 93.42 Å and c = 201.03 Å. The Matthews probability analysis

indicated 4-6 molecules per asymmetric unit [126, 127]. The crystals were shown to

be comprised of a degradation product of Tim by silver-stained SDS-gels and MS/MS

analysis (Figure 2.2 d).

To improve the diffraction of the crystals, limited proteolysis of Tim 997-1138 was

performed and yielded a stable protein fragment of similar molecular weight (MW),

when compared to the dissolved crystals analyzed by SDS-gel. The boundaries were
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Figure 2.1.: SEC analysis of Tim 997-1138 using a Superdex 75 16/60 column. (a) Size exclusion
chromatogram of purified Tim showing a single peak elution profile at 63 mL visualized by UV
absorbance at 280 nm. (b) SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis)
shows the peak fractions marked by a line. (I) Protein sample injected on gel-filtration column. (M)
Protein marker in kDa.

Figure 2.2.: Crystallization and X-ray diffraction of Tim 997-1138. (a) Initial crystals of Tim
appeared after 10 days in 100 mM Sodium cacodylate pH 6.0, 12% PEG 20000. (b) Further crystals
showed up in an additional condition after 1 month (100 mM Sodium cacodylate pH 6.2, 7% PEG
20000). The rectangle marks the enlarged area shown in (c). (d) SDS-PAGE analysis of dissolved
crystals stained by silver nitrate. (I) Protein sample used for crystallization setup (marked by asterisk).
(M) Protein marker in kDa. (S) Supernatant of the spun-down drop containing the analyzed crystals.
(W1-W4) Content of washing steps. (Xtal) Washed and dissolved Tim 997-1138 crystals (marked
by arrow). (e) Diffraction image obtained from crystals diffracting to 4.4 Å. The black circle shows
the 4.4 Å resolution range.
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Figure 2.3.: Limited proteolysis of Tim 997-1138. The protein was incubated with five different
proteases, each for 30 min on ice. The asterisk marks the stable product that was analyzed by
ESI-MS and N-terminal sequencing and corresponds to Tim 1008-1125. The ratio above each lane
illustrates the dilution of the 1 mg/mL protease stock solution. (M) Protein marker in kDa. (I)
Protein sample used for the proteolytic analysis.

Figure 2.4.: SEC analysis of Tim 1008-1125 using a Superdex 75 16/60 column. (a) Size exclusion
chromatogram of purified Tim showing a single peak elution profile at 66 mL visualized by UV
absorbance at 280 nm and 260 nm. (b) SDS-PAGE shows the peak fractions marked by a line. (M)
Protein marker in kDa. (I) Protein sample injected on gel-filtration column.

determined to be 1008-1125 (Figure 2.3).

The protein fragment (Tim 1008-1125) was purified (Figure 2.4) and set up for crystal-

lization trials. Crystals showing an octahedral shape appeared after 21 days in different

sized PEG polymers (Figure 2.5). The conditions were similar compared to those of

Tim 997-1138. The crystals diffracted from 10-5.3 Å. The data was indexed to the

tetragonal space group I422 with a = 88.68 Å and c = 274.47 Å. However, analysis of

the dissolved crystals on silver-stained SDS-gel showed a degradation product as well

(Figure 2.5 d). Further optimization did not yield reproducible crystals. The difficulty
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Figure 2.5.: Crystallization and X-ray diffraction of Tim 1008-1125. (a) Initial crystals of Tim
appeared after 21 days in (a) 100 mM Tris pH 8.5, 18% PEG 4000 and (b) 100 mM MOPS pH 7.2,
12% PEG 20000. The rectangle marks the enlarged area shown in (c). (d) Silver-stained SDS-
gel of dissolved Tim 1008-1125 crystals. (I) Protein sample used for crystallization setup (marked
by asterisk). (M) Protein marker in kDa. (S) Supernatant of the spun-down drop containing the
crystals. (W4) Content of the last washing step. (Xtal) Washed and dissolved Tim 1008-1125
crystals (marked by arrow). (e) Diffraction image obtained from crystals in (b) diffracting to 5.3 Å.
The black circle shows the 5.3 Å resolution range.

of the reproduction of the crystallization is likely due to in situ degradation. Further-

more, low resolution of the collected data made the crystal structure determination very

challenging.

To tackle the problem of protein degradation, the strategy was modified and longer

Tim fragments were designed based on secondary structure prediction and sequence

conservation. In addition, the expression in insect cells was attempted to solubilize

full-length Tim.

Expression of Tim in insect cells was established by screening for the best expression

conditions. After the optimization by varying the amount of the virus, the protein was

purified using IMAC and SEC and yielded soluble protein. The protein was only stable

in high sodium chloride concentrations (>300 mM) and was prone to degradation.

During the last step of the purification using SEC (Superdex 200 16/60), Tim (full-

length) eluted at 47 mL corresponding to 9.5 MDa, while the theoretical molecular

weight of Tim (full-length) is 162.3 kDa. This indicates that Tim (full-length) is in a

soluble aggregated state (Figure 2.6 a, b). Nevertheless, to determine a stable protein

core and to remove flexible parts which were prone to degradation, limited proteolysis
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Figure 2.6.: SEC analysis of full-length Tim (aa 1-1197) using a Superdex 200 16/60 column. (a)
Size exclusion chromatogram of purified Tim showing a peak at 47 mL (∼9.5 MDa) close to the void
volume visualized by UV absorbance at 280 nm and 260 nm. (b) SDS-PAGE shows the peak fractions
marked by a line. (I) Protein sample injected on gel-filtration column. (c) Limited proteolysis of Tim
with several proteases. The ratio above each lane illustrates the dilution of the 1 mg/mL protease
stock solution. (M) Protein marker in kDa. (I) Protein sample used for the proteolytic analysis.

was performed in the same way as described previously and the products were analyzed

by SDS-PAGE (Fig. 2.6 c). Surprisingly, Tim was very stable in the presence of the

tested proteases. Only by mixing high concentrations of Trypsin and Subtilisin, and

at high concentrations of Chymotrypsin, Tim was susceptible to degradation but no

pronounced fragments were observed.

In parallel, several constructs based on secondary structure prediction and sequence

alignments were tested for expression in E. coli followed by pull-down experiments

using cell lysates for the test of solubility. Besides the tested constructs as shown

in Figure 2.1 and Figure 2.4 (Tim 997-1138 and Tim 1008-1125), only slightly longer

C-terminal constructs of Tim yielded soluble protein despite using a solubility GST-

tag, lower expression temperature and lower IPTG concentrations. All tested Tim

fragments are listed in Figure 2.7. Although a longer construct (Tim 818-1138) could

be purified, its limited proteolysis yielded the same proteolytic product of ∼13 kDa with
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Figure 2.7.: Schematic representation of Tim constructs and boundaries tested for expression (exp),
solubility (sol), and purification (purif). The success is indicated by plus (positive) or minus (nega-
tive). Only C-terminal fragments were soluble in E. coli. None of the N-terminal fragments yielded
soluble protein. Tim 1-1134 was only soluble when co-expressed with Tipin (see Section 2.1.3 for
further details). Full-length Tim (1-1197) was solubilized in insect cells (ic), but eluted at void
volume in SEC (Figure 2.6 a).

Subtilisin (marked by asterisk, Figure 2.8 and Figure 2.3 for comparison). A slightly

longer construct was identified with Elastase and the boundaries were identified to be

aa 950-1129 (marked by plus, Figure 2.8). This construct was not followed up, because

it contained an E-rich region at the N-terminus (aa 964-985). The construct 992-1134

was cloned instead.

The soluble Tim fragments were purified and set up for crystallization. None of

the crystallization experiments of the rationally designed constructs or their proteolytic

cores yielded better diffracting crystal than the crystals shown in Figure 2.2 and Fig-

ure 2.5.

2.1.2. Purification of Tipin and Crystallization Attempts

To examine the structure of the Timeless-interacting protein, full-length Tipin (aa 1-

278) was first tested for expression in E.coli. The protein was well expressed using a

His-GST solubility tag and eluted as a single peak with a small shoulder at 65 mL

(∼860 kDa, theoretical MW 31.9 kDa) indicating formation of higher oligomers (Fig-

ure 2.9 a, b). To define the core suitable for crystallization, the protein was subjected to

proteases (Figure 2.9 c). Three proteolytic products were observed by SDS-PAGE and
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Figure 2.8.: Limited proteolysis of Tim 818-1138. The protein was incubated with five different
proteases, each for 30 min on ice. The asterisk marks the stable product that exhibits the same size
as the proteolytic fragment from Tim 997-1138 (Figure 2.3). The plus marks a construct (aa 950-
1129) that contains an N-terminal E-rich unstructured region, which was not followed up. Instead,
992-1134 was tested for expression (see Figure 2.7). (M) Protein marker in kDa. (I) Protein sample
used for the proteolytic analysis.

further examined by N-terminal sequencing and ESI-MS analysis to define the bound-

aries. Fragments (1), (2) and (3) correspond to aa 1-125, 1-136 and 1-169. In addition,

based on secondary structure prediction and sequence alignments further constructs

were designed as depicted in Figure 2.10 and tested for expression and solubility by

pull-down experiments.

The constructs deriving from limited proteolysis (1)-(3) and three rationally designed

constructs (55-150, -169, -220) were soluble but were highly prone to degradation during

expression and purification (Figure 2.10). Therefore only full-length Tipin was submit-

ted for crystallization experiments but did no yield any crystals.

Since individual full-length Tim and Tipin eluted as high oligomers and limited prote-

olysis did not result in more stable and better behaving protein fragments, co-expression

of Tim and Tipin was tested (Section 2.1.3).

2.1.3. Solubilization of Timeless by Co-Expression with Tipin

Full-length Tim is not soluble in E. coli as proven by expression tests in normal (BL21)

and codon-optimized (BL21 pRARE) E. coli cells followed by pull-down on Ni-beads

(Figure 2.11 a, lane 4-7). Only C-terminal fragments of Tim can be expressed and

purified as described in Section 2.1.1.

To solubilize Tim in the bacterial system, co-expression with its interacting partner
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Figure 2.9.: SEC analysis of full-length Tipin (aa 1-278) using a Superdex 200 16/60 column. (a)
Size exclusion chromatogram of purified Tipin showing a peak at 65 mL (∼860 kDa) indicating
formation of higher oligomers visualized by UV absorbance at 280 nm and 260 nm. (b) SDS-PAGE
shows the peak fractions marked by a line. (I) Protein sample injected on gel-filtration column. (c)
Limited proteolysis of Tipin with several proteases. (M) Protein marker in kDa. (I) Protein sample
used for the proteolytic analysis. (1),(2) and (3) indicate stable Tipin fragments.

Figure 2.10.: Schematic representation of Tipin constructs and boundaries tested for expression
(exp), solubility (sol), and degradation (deg) in E. coli. The success is indicated by plus (positive)
and minus (negative). The proteolytic products are numbered (1), (2), and (3). Most of the designed
constructs were soluble, but were prone to degradation.
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2.1. Definition of the Working Constructs

Figure 2.11.: Solubilization of Tim by co-expression with Tipin. (a) Recombinant expression in
E. coli (TL, total lysate) and in vitro pull-down assays (E, Eluate) of His-Tim and His-GST-Tipin
using GSH beads (lane 1, 2 and 8, 9) and Ni beads (lane 4-7). Coomassie stained SDS-gels are
shown. Tim alone is not expressed (lane 4-7). In contrast, co-expression with Tipin solubilized Tim
(lane 8, 9). (b) SEC of purified Tim-Tipin complex showing a single peak at 11.5 mL corresponding
to 280 kDa and visualized by UV absorbance at 280 nm and 260 nm (top). SDS-PAGE analysis of
the SEC peak marked by a line (bottom). (M) Protein marker in kDa. (I) Protein sample injected
on SEC column. Adopted from [128].

Tipin was tested. First, almost full-length Tim was cloned containing aa 1-1134. These

boundaries are derived from limited proteolysis attempts described in Section 2.1.1.

Co-expression of His-tagged Tim (aa 1-1134) with full-length His-GST-tagged Tipin

(aa 1-278) solubilized Tim. These co-expressed proteins formed a stable complex on

GSH beads in pull-down experiments (Figure 2.11 a, lane 8, 9). The Tim-Tipin complex

could be further purified using IMAC, anion-exchange chromatography (AEX) and SEC

(see Section Materials and Methods) resulting in 1.4 mg of pure protein complex per

1 L TB culture (23 g cell pellet) (Figure 2.11 b).

Next, limited proteolysis (Figure 2.12) was performed on the Tim-Tipin complex to

identify the interaction core. Tim-Tipin was highly stable in presence of the tested

proteases, except for high concentrations of Subtilisin and Chymotrypsin, where the

complex was completely degraded. The 1:100 Trypsin dilution showed several stable

bands in SDS-PAGE in the preliminary (Figure 2.12 a) and time-optimized experiment

(Figure 2.12 b). The 1:100 Trypsin dilution with 15 min and 200 min incubation time

were chosen for large scale limited proteolysis. The proteins were digested into a number

of fragments but these fragments co-eluted together in one peak (15 min, Figure 2.12 c
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Figure 2.12.: Limited proteolysis of the Tim-Tipin complex. (a) The complex was incubated with
five different proteases, each for 30 min on ice. The ratio above each lane illustrates the dilution
of the 1 mg/mL protease stock solution. (b) Time course of the 1:100 Trypsin condition. The
numbers correspond to time in minutes. (h) hour. (c) Large scale proteolysis using the same Trypsin
dilution as in (b). The protein was subjected to the protease for 15 min. Before SEC analysis using
a Superdex 200 10/300 GL column the reaction was stopped by adding a protease inhibitor. (d)
Large scale proteolysis as in (c) with 200 min incubation time. (e) Proteolytic stable constructs
of Tim-Tipin determined by N-terminal sequencing and ESI-MS. (M) Protein marker in kDa. (I)
Protein sample used for the proteolytic analysis.

and 200 min, Figure 2.12 d). The results suggest that proteolysis occurs at flexible

regions without affecting the entire architecture of the complex. Subsequent N-terminal

sequencing and ESI-MS (Fig. 2.12 e) identified the amino acids recognized by the pro-

teolysis. These identified residues correspond to loop regions between helices based on

the secondary structure predictions (Section 1.4) and did not show any sign of flexible
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2.1. Definition of the Working Constructs

domains that are separable from the core.

Taken together, Tim and Tipin were only stable when they were co-expressed and

co-purified and formed a stable protein core. For the following experiments this stable

complex (Tim 1-1134 and Tipin 1-278) was chosen to examine the interaction with RPA

(Section 2.2.1).

2.1.4. Purification of Replication Protein A

To carry out the complex formation of Tim-Tipin and RPA, individual RPA had to

be purified. RPA is a trimeric complex consisting of three RPA proteins (RPA70,

RPA32, RPA14) (Section 1.4.3). In this thesis RPA’s DNA-binding core (RPA70ABC,

RPA32D) together with the RPA14 and RPA32 WH-domain was used. On the basis of

published crystal structures of human RPA, sequence alignments, and secondary struc-

ture predictions (Section 1.4.3), homologous constructs of mouse RPA were designed

for recombinant expression in E. coli, namely RPA70 DBD-A, -B, -C (aa 190-623),

RPA32 DBD-D and WH-domain (aa 43-270), and full-length RPA14 (aa 1-121). All

three RPA subunits were cloned as N-terminal His-fusions and expressed in BL21 (DE3)

gold by co-transformation of the cells with three plasmids. As a DNA binding protein,

the complex had the tendency to be contaminated with nucleic acids. To remove the

DNA, DNaseI and Urea were added to the cell lysate. In addition a high salt wash

was performed during IMAC. Finally, the RPA complex was purified to homogeneity

by AEX and SEC (Figure 2.13) as described in Materials and Methods. RPA eluted

RPA70

RPA32

RPA14

a b

kDa M I SEC peak

66

24
29
36
45

20.1

14.2

280 nm

260 nm

Figure 2.13.: Purification of RPA. (a) SEC analysis of RPA using a Superdex 200 10/300 GL
column. The elution profile shows a single peak at 13.4 mL corresponding to 105 kDa and was
visualized by UV absorbance at 280 nm and 260 nm. (b) SDS-PAGE of the peak fractions marked by
line. (M) Protein marker in kDa. (I) Protein sample injected on SEC column. Adopted from [128].
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as a single peak in SEC at elution volumes corresponding to 105 kDa (estimated based

on molecular weight standard proteins) and contained all three subunits with a 1:1:1

stoichiometry. The yield of the purified complex was 0.3 mg protein/24 g cell pellet.

2.2. Reconstitution of the Tim-Tipin-RPA Complex

2.2.1. Timeless-Tipin in Complex with Replication Protein A

To analyze the interaction of Tim-Tipin and RPA, the individual components were

purified (Section 2.1.3 and 2.1.4). To test if the purified RPA complex interacts with

Tim-Tipin, in vitro GST-pull-down experiments using purified His-GST-tagged Tim-

Tipin and purified His-tagged RPA were performed (Figure 2.14 a). RPA does not

unspecifically bind to GSH-beads or GST ((a) lane 2, 3). His-GST-Tim-Tipin was able

to precipitate His-RPA ((a) lane 5) proving the complex formation. The homogeneity

of the complexes was tested by native PAGE (Figure 2.14 b, top). RPA and Tim-Tipin

Figure 2.14.: Qualitative analysis of the Tim-Tipin-RPA complex formation. (a) GST-pull-down
experiment showing binding of His-RPA to His-GST-Tim-Tipin. The Coomassie stained SDS-gels
show the input (top) and precipitate (bottom). (M) Molecular weight marker in kDa. (b) Native
PAGE analysis demonstrates a homogenous complex formation of RPA, Tim-Tipin, and Tim-Tipin-
RPA (top). SDS-PAGE of the protein samples used in native PAGE (bottom). (M) Native molecular
weight marker in kDa. Adopted from [128].
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2.2. Reconstitution of the Tim-Tipin-RPA Complex

ran as a single band ((b) lane 2, 3). A shift in mobility to higher molecular weight was

observed for Tim-Tipin in presence of RPA, when both complexes were mixed in a 1:1

ratio ((b) lane 4). SDS-PAGE analysis demonstrated the presence of all proteins used

for native PAGE analysis ((b) bottom).

To examine the Tim-Tipin-RPA complex formation quantitatively, analytical SEC

and static light scattering (SLS) were performed. Individual Tim-Tipin or RPA eluted

as a single peak (RPA, blue, 110 kDa; Tim-Tipin, magenta, 321 kDa; Figure 2.15

and Table 2.1). The 1:1 molar ratio mixture of RPA and Tim-Tipin shifted to higher

molecular weight (Tim-Tipin-RPA, green, 388 kDa). The mixture with one molar excess

of RPA (2:1) showed a peak for Tim-Tipin-RPA and a peak from the excess of RPA,

which was not incorporated (cyan). The molecular weight of the proteins was estimated

by means of the calibration of the gel-filtration column by molecular weight standard

proteins and the elution volumes of the complexes (Table 2.1, second and third column).

Since the experimental molecular weights of Tim-Tipin and Tim-Tipin-RPA deter-

mined by SEC were higher than the theoretical molecular weights (Table 2.1, sixth

column), and the elution volumes of the protein complexes were distant from that

predicted by the calibration of the column, static light scattering was performed to

determine molecular weights more precisely. SLS measurements were conducted either

by Dr. Claire Basquin, Dr. Jörg Tittor at MPIB or by myself. The experimental (SLS)

molecular weight for RPA is 106 ± 6 kDa, for Tim-Tipin 164 ± 12 kDa and for Tim-

Tipin-RPA 273 ± 31 kDa (Figure 2.16), which is in line with the theoretical molecular

weights and corresponds to a 1:1:1 RPA complex, 1:1 Tim-Tipin complex and 1:1:1 Tim-

Tipin-RPA complex (Tim:Tipin:RPA). Notably, the Tim-Tipin-RPA complex showed

faint dissociation in the SLS analysis.

Table 2.1.: Elution volumes, experimental, and theoretical molecular weights of RPA, Tim-Tipin,
and Tim-Tipin-RPA. Adopted from [128].

Protein Elution ExperimentalSEC
δ

ExperimentalSLS
%

ExperimentalSG
∗

Theoretical#

complex volume molecular molecular molecular molecular
[mL] weight [kDa] weight [kDa] weight [kDa] weight [kDa]

RPA 1.63± 0.02 110 106± 6 n.d. 96.2
Tim-Tipin 1.46± 0.01 321 164± 12 158 162.3

Tim-Tipin-RPA 1.43± 0.02 388 273± 31 n.d. 258.5

δ Molecular weights derived from size exclusion chromatography (SEC) were estimated based on the
comparison with molecular mass standard proteins.

% Molecular weights determined by static light scattering (SLS).
∗ Molecular weights determined by sucrose-gradient sedimentation assay (SG).
# Molecular weights calculated based on the amino acid sequence.
n.d. = not determined.
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Figure 2.15.: Quantitative analysis of the Tim-Tipin-RPA complex formation. SEC analysis of
RPA (blue), Tim-Tipin (magenta), Tim-Tipin-RPA at a 1:1 (green) and at a 1:2 molar ratio (Tim-
Tipin:RPA). The Tim-Tipin-RPA complex shifted to higher molecular weights demonstrating complex
formation. The elution profile was visualized by UV absorbance at 280 nm (solid) and 260 nm
(dashed). Peak fractions marked by lines were analyzed by Coomassie stained SDS-gels (right).
Adopted from [128].

Finally, to estimate the size of the Tim-Tipin complex with an independent method

from SEC and SLS, sucrose-gradient centrifugation (SG) was performed. Tim-Tipin

(162 kDa) migrated at fractions 7-9, with a maximum population in fraction 8 and

showed the same sedimentation behavior as γ-globulin (158 kDa), which also migrated

with a maximum population in fraction 8 (Figure 2.17). The analysis by SG further

confirmed the molecular weight of Tim-Tipin.

2.2.2. Binding Affinity of Tim-Tipin to RPA

To determine the binding affinity (KD) of Tim-Tipin and RPA, microscale thermophore-

sis (MST) was performed. MST uses the thermophoretic movement of molecules within

an infrared laser induced temperature gradient and measures the change of that move-

ment due to alterations of the hydration shell and charge or size of the molecule upon

binding of the interaction partner. The motion is monitored by fluorescence of the

molecule. Before MST measurement, RPA was fluorescently labeled with Cy3 as de-

scribed in Section 4.2.5. The average number of lysines labeled per RPA was calculated

by Equation 4.2 to be 4.4. The integrity and homogeneity of labeled RPA was tested

by native PAGE and analytical SEC (Figure 2.18).
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2.2. Reconstitution of the Tim-Tipin-RPA Complex

Figure 2.16.: Molecular weight determination of RPA, Tim-Tipin, and Tim-Tipin-RPA by static light
scattering (SLS). Representative profiles are shown. The curves are UV absorbance (violet), light
scattering (green), and refractive index (red) for the indicated protein complex solution. The top left
panels are the average molecular weight values in the population of the peaks shown in logarithmic
scale. The refractive index peaks at ∼3mL show no UV absorbance and no light scattering indicating
small molecules (e.g. glycerol). Adopted from [128].
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Figure 2.17.: Molecular weight determination of Tim-Tipin by sucrose-gradient centrifugation anal-
ysis (SG) and comparison to standard proteins. Coomassie stained SDS-gels of approximately 500 µL
fractions from a 5-20% (w/v) sucrose-gradient with sedimented (a) standard proteins and (b) Tim-
Tipin complex are shown. The standard proteins were Myoglobin (17 kDa), Ovalbumin (44 kDa),
γ-globulin (158 kDa for the entire molecule of two light and two heavy chains), and Thyroglobulin
(670 kDa for entire homo-dimeric molecule). The Tim-Tipin complex (162 kDa) migrated at the
same position within the gradient as γ-globulin (158 kDa). Adopted from [128].

Figure 2.18.: Fluorescence labeling of RPA and binding of Tim-Tipin to RPA analyzed by microscale
thermophoresis (MST). (a) Fluorescence image of native PAGE analysis of Cy3 labeled RPA. Non-
labeled RPA as control. (b) Analytical SEC analysis of RPA using a Superose 6 3.2/PC column.
The elution profile was visualized by UV absorbance at 280 nm (solid) and 550 nm (dashed). (c)
Peak fractions marked by a line in (b) were analyzed by Imperial stained SDS-gel. (d) Fluorescence
image of SDS-PAGE shown in (c). Note, RPA14 was only visible in the fluorescence image of the
SDS-gel, likely due to the detection limit of the Imperial stain. (M) Protein marker in kDa. (I)
Protein sample injected on SEC. (e) MST measurement. The concentration of Cy3 labeled RPA was
kept constant at 100 nM while the Tim-Tipin concentration varied from 2.5 nM to 80550 nM. The
resulting binding curve yields a KD of 0.18± 0.04 µM. Adopted from [128].
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The labeled RPA complex showed a homogenous behavior in native PAGE (Fig-

ure 2.18 a) and eluted as a single peak in analytical SEC showing the specific Cy3

absorbance at 550 nm (Figure 2.18 b). SDS-PAGE analysis displayed the presence and

labeling of all RPA subunits (Figure 2.18 c, d). Finally, the determination of theKD was

performed using Cy3 labeled RPA, as previously described, and non-labeled Tim-Tipin

in the MST measurement. The binding affinity of Tim-Tipin to RPA was measured to

be 0.18± 0.04 µM (Figure 2.18 e).

2.3. Structural Studies of the Tim-Tipin-RPA Complex Using

EM

2.3.1. Sample Preparation of Tim-Tipin-RPA Using GraFix

To obtain insights into the three dimensional (3D) architecture of Tim-Tipin-RPA, the

complex was reconstituted using SEC (Section 2.2.1) and directly observed by negative

stain electron microscopy (EM) (Figure 2.19). The EM micrographs showed low image

contrast and the sample displayed slight heterogeneity, aggregates, and additional small

densities. Despite dissociation of the complex particles (Figure 2.19 a), 1914 intact

particles were selected and classification and averaging of those particles was performed.

The 2D class averages showed an overall globular architecture with a ring- and U-like

shape (Figure 2.19 a, A).

To reduce the problem of heterogeneity, likely due to particle dissociation during EM

grid preparation, and to increase the image contrast, the GraFix method [129] was

employed (Figure 2.19 b, c). During GraFix preparation, the complexes are gradually

and chemically fixed by glutaraldehyde and are concurrently purified by sedimentation

in a sucrose gradient. After cross-linking, the content of each fraction of the gradient

containing the cross-linked particle sedimented according to size and the sample with-

out glutaraldehyde as control were analyzed by SDS-PAGE (Figure 2.19 c, d). Three

fractions of the cross-linked sample (C8, C10 and C12) displayed sharp and well-defined

bands on the SDS-gel. Particles in fraction C8 migrated with higher molecular mass

(300 ± 100 kDa), likely containing either large aggregates, different cross-linking levels

or heterogeneous particle composition. Particles in fraction C12 migrated close to the

170 kDa protein marker band indicating complex dissociation (170± 70 kDa). Fraction

C10 contained particles migrating close to the expected molecular weight of Tim-Tipin-

RPA (theoretical MW 258 kDa, experimental MW 230,±80 kDa).
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Figure 2.19.: Negative stain EM analysis and GraFix of Tim-Tipin-RPA. (a) Negative stain image of
non-cross-linked Tim-Tipin-RPA. The white circles show examples of the Tim-Tipin-RPA complex.
An aggregate and partial dissociation of the non-cross-linked complex are marked by a black and white
arrowhead. (A) Representative 2D class averages. (b) Negative stain image of cross-linked Tim-Tipin-
RPA. (A) Representative 2D class averages. (P) Reprojections of the 3D reconstruction. Fractions
of (c) cross-linked Tim-Tipin-RPA using the GraFix method and (d) non-cross-linked Tim-Tipin-RPA
analyzed by SDS-PAGE (4-12% Bis-Tris, Invitrogen). Fractions lacking glutaraldehyde were used as
control (d). Fractions indicated by asterisk were selected for mass spectrometry. The stoichiometry
of cross-linked Tim-Tipin-RPA in fraction C10 was calculated to be 1:1 (Tim-Tipin:RPA) using
quantitative mass spectrometry analysis (iBAQ) as described in the Methods Section. Fraction C10
was used for subsequent EM analysis in (b). (M) Molecular weight marker. Adopted from [128].
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Table 2.2.: Mass spectrometry (MS) analysis and intensity based absolute quantification (iBAQ).
MS analysis identified all five proteins within the cross-linked samples. The stoichiometry of the
protein complexes was determined by dividing the sum of all peptide peak intensities by the number
of theoretically observable tryptic peptides. The quotient is specified in the table. Error bars for all
log intensities were estimated to be ± 0.05. Adopted from [128].

Fraction C8 Fraction C10 Fraction C12

Protein log Intensity log Intensity log Intensity

RPA14 6.67 7.14 6.13
RPA32 6.41 7.09 6.02
RPA70 6.68 7.18 6.19
Tim 7.06 7.35 7.53
Tipin 6.74 7.00 7.19

average
RPA 6.6± 0.2 7.1± 0.1 6.1± 0.1

Tim-Tipin 6.9± 0.2 7.2± 0.3 7.4± 0.2

To identify the presence of all components in the cross-linked samples and to de-

termine their stoichiometry, a combination of trypsin digestion and mass spectrometry

(MS) was performed (Table 2.2). MS analysis identified RPA14, RPA32, RPA70, Tim,

and Tipin in all three fractions (C8, C10, C12). The stoichiometry of the Tim-Tipin and

RPA subcomplexes was quantified using MaxQuant and the integrated iBAQ package

(intensity based absolute quantification (iBAQ)) [130]. iBAQ revealed a 1:1 stoichiom-

etry of Tim-Tipin to RPA in fraction C10 (log Intensity RPA 7.1± 0.1 and Tim-Tipin

7.2 ± 0.3, Table 2.2). Fraction C8 and C12 contained non-stoichiometric complexes

with excess of Tim in C8 (log Intensity Tim 7.06, other proteins 6.41-6.74) and excess

Tim-Tipin in C12 (log Intensity RPA 6.1± 0.1 and Tim-Tipin 7.4± 0.2, Table 2.2).

The negative stain EM analysis of the cross-linked sample was performed using frac-

tion C10 (Figure 2.19 d). The resulting specimens were homogeneous and the electron

micrographs showed a stable, monodispers complex of Tim-Tipin-RPA without any de-

tectable aggregates for the cross-linked sample. In addition, the image contrast was in-

creased with chemical fixation compared to the non-cross-linked complex (Figure 2.19 a).

The 2D class averages of 13311 selected particles of the GraFix sample displayed similar

features (Figure 2.19 b, A) in comparison to the 2D class averages of the non-cross-linked

sample (Figure 2.19 a, A). The cross-linked Tim-Tipin-RPA 2D classes revealed sharp

features in various views displaying a core ring-like shape, a U-shape and particles with

four different globular domains (Figure 2.19 b, A). The complex showed a uniform size

of ∼150 Å suggesting an overall globular architecture.
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2.3.2. Initial Model Generation by Random-Conical Tilt and Negative Stain

EM Reconstruction of the Tim-Tipin-RPA Complex

Single-particle EM analysis helps to determine and to understand the structure of bio-

logical macromolecules from micrographs. One of the key points in this analysis is the

generation of a 3D map out of a series of 2D images. To obtain a starting 3D model,

the angles positioning the 2D images into the right orientation in 3D space have to

be determined. The random conical tilt (RCT) method [131] was used for the angular

assignment. The principle of RCT is to collect untilted and tilted micrographs pairs of

the same particles, with known angles of the tilted images and the tilt axis direction.

Coordinating the images of the untilted and tilted particles relative to each other in 3D

space by the known angles and tilt axis, results in an ab initio 3D model. Here, 857

pairs of untilted and tilted particles (Figure 2.20 a, b) were interactively selected, the

corresponding angles were assigned, and eight initial models were generated as described

in Radermacher et al. [131]. Two most similar models (Figure 2.20 c, d) with prominent

features were merged and used as the initial model (Figure 2.20 e).

For the subsequent 3D reconstruction the projection matching refinement method was

employed by comparing the reprojections of the RCT model to the 2D class averages as

well as raw data. The 3D reconstruction was improved by iterative reprojection match-

ing of the merged RCT reconstruction as a reference and the 13311 selected untilted

particles. The refined reconstruction at ∼23 Å resolution (according to the Fourier Shell

Correlation (FSC) = 0.5 criterion) displayed an overall globular shape with the size of

∼150 Å x ∼120 Å x ∼120 Å (Figure 2.21). The most prominent feature of the model

displays a ring-like density (Figure 2.21, front) with a ∼30 Å-wide channel (channel 1,

dashed circle). This channel is closed at the bottom by a lid density (lid). The view ro-

tated by 90◦revealed a connection between the lid and the ring-like structure forming a

U-like feature (side, U-shape). This U-shape feature incloses a second channel (channel

2, dashed circle), which is formed by the lid and the protruding density of the ring-like

core to the back. The back view unveiled four different domains (marked by asterisks).

2.3.3. Cryo-EM 3D Reconstruction of the Tim-Tipin-RPA Complex

For cryo-EM reconstruction of the cross-linked Tim-Tipin-RPA complex, the specimen

was frozen in vitreous ice (Figure 2.22 a). 39679 particles were chosen for the cryo-

EM analysis. The 3D reconstruction of the Tim-Tipin-RPA complex was obtained by

using the 3D model of the negative-stained samples as a reference (Figure 2.21). The
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Figure 2.20.: Random conical tilt (RCT) reconstruction of Tim-Tipin-RPA. Corresponding pair of
(a) untilted- and (b) tilted-specimen micrographs. Examples of the Tim-Tipin-RPA complex are
marked with white circles. (c, d) Two similar RCT models showing prominent characteristics (top)
and their mesh surface representation (bottom) showing the core density (solid surface). (e) Merged
3D density map used as initial RCT model. Representation as in (c) and (d). Adopted from [128].

3D model was refined by iterative projection matching resulting in a cryo-EM map at

17 Å resolution (Figure 2.22 b, c). The final Tim-Tipin-RPA model shows a ring-like

structure (Figure 2.22 d, front) forming a ∼30 Å channel (channel 1) that is closed by

a lid density at the bottom (lid). Further, a second channel (channel 2) is formed by

the lid and the ring-like density. The back view of the 3D reconstruction displays four

distinctive domains (back, marked by asterisks). The reprojections of the 3D cryo-EM

model of the Tim-Tipin-RPA complex (Figure 2.22 a, P) showed good consistency when

compared to the 2D class averages (Figure 2.22 a, A) for verification.
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Figure 2.21.: Negative stain EM 3D reconstruction of Tim-Tipin-RPA in different views (front, side,
back, top, and bottom) related by rotation around the y- and x-axis as indicated. The lid volume
and the scale bar are marked. For more details see main text. Adopted from [128].

2.3.4. Negative Stain Analysis of the Individual Tim-Tipin Complex and

RPA

To further elucidate the structural composition of the Tim-Tipin-RPA complex, nega-

tive stain EM of individual Tim-Tipin and RPA was performed. Tim-Tipin and RPA

were cross-linked using the GraFix method and each fraction of the gradient was an-

alyzed on SDS-PAGE after cross-linking as described for the Tim-Tipin-RPA complex

(Section 2.3.1). Four fractions of the cross-linked Tim-Tipin complex showed distinct

bands on the SDS-gel (Figure 2.23 a, b, asterisks). One fractions migrated close to the

170 kDa marker band, which is consistent with the theoretical molecular weight of the

Tim-Tipin complex (162 kDa). Fraction G9 was chosen for negative stain EM analysis.

The cross-linking of RPA showed less defined bands on SDS-PAGE. The fraction G9

migrated close to the expected molecular weight of RPA (96 kDa) (Figure 2.23 c, d)

and was therefore chosen for negative stain EM analysis. The electron micrographs of

the GraFix samples of Tim-Tipin and RPA showed good image contrast and a stable

complex formation with no aggregates (Figure 2.23 e, f).
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Figure 2.22.: Cryo-EM analysis of the Tim-Tipin-RPA complex. (a) Micrograph of Tim-Tipin-RPA
under cryo-conditions. Examples of individual particles are circled in white. (A) Representative 2D
class averages. (P) Projections of the 3D reconstruction. (b) Fourier shell correlation (FSC) plot of
Tim-Tipin-RPA. The measured resolution is 17 Å using the 0.5 cut-off criterion. Selected particles
were divided into two and two reconstructions were individually calculated for the estimation of the
resolution by FSC. (c) Angular distribution plot showing the particles relative to the 3D volume in
the final step of refinement. The intensity of the dots is proportional to the number of particles
assigned to a certain reference reprojection by projection matching. (d) Cryo-EM reconstruction of
the Tim-Tipin-RPA complex. The negative stain 3D model (Figure 2.21) was used as initial reference.
Different views of the reconstruction are shown (front, side, back, top, and bottom) which are related
by rotation around the y- and x-axis as indicated. The lid volume and the scale bar are marked. For
more details see main text. Adopted from [128].
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Figure 2.23.: See next page for figure legend.
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Figure 2.23.: (Previous page). GraFix and negative stain EM analysis of individual Tim-Tipin
and RPA. Fractions of (a) cross-linked Tim-Tipin, (b) non-cross-linked Tim-Tipin, (c) cross-linked
RPA, (d) non-cross-linked RPA analyzed by SDS-PAGE (4-12% Bis-Tris, Invitrogen). Fractions
lacking glutaraldehyde were used as control. Fractions indicated by G9 were selected for EM. (M)
Molecular weight marker. (e) Negative stain images of the cross-linked Tim-Tipin complex indicate
that the Tim-Tipin shape predominates the structure of the Tim-Tipin-RPA complex (Figure 2.22 a).
(f) Negative stain images of cross-linked RPA show that RPA adopts a rod and horse shoe-shape
structure. The comparison of the 2D class averages of RPA (A) and the reprojections (PX) of the
crystal structure of RPA bound to 32 nt ssDNA [96] (PDB 4GNX) revealed similar features. White
circles mark examples of the Tim-Tipin and RPA complex. (A) Representative 2D class averages.
(PX) Reprojections of the crystal structure. Adopted from [128].

10872 particles for Tim-Tipin and 1673 particles for RPA were chosen for negative

stain EM analysis. The 2D class averages of Tim-Tipin and RPA revealed specific

structures. The Tim-Tipin complex showed a ring-like structure with ∼100 Å x ∼100 Å

dimensions (Figure 2.23 e, A). RPA displayed a rod-like shape (∼90 Å x ∼55 Å) and

a smaller horse shoe-shape (U-shape, ∼90 Å x ∼80 Å) with 2 or 3 globular densities

(Figure 2.23 f, A). The comparison of the RPA 2D class averages to the reprojections

of the crystal structure containing four DBDs-A-D of RPA bound to 32 nt ssDNA [96]

displayed good agreement with the dimensions and structural features (Figure 2.23 f,

A, PX). The reprojections showed similar shapes and displayed a rod-like and U-shape

structure similar to the 2D class averages.

The comparison of the 2D class averages of Tim-Tipin-RPA (Figure 2.22 a), Tim-

Tipin, and RPA only (Figure 2.23 e, f) shows that Tim-Tipin is the component respon-

sible for the characteristic features of the Tim-Tipin-RPA complex showing a ring-like

shape with comparable dimensions.

2.3.5. Antibody Labeling of RPA and Tipin within the Tim-Tipin-RPA

Complex

To map the location of RPA and Tipin in the structure of the Tim-Tipin-RPA complex,

antibody labeling of RPA and Tipin was performed. A commercially available polyclonal

antibody against the N-terminus of Tipin and a monoclonal antibody against the RPA

DBD-A (Figure 2.24 a) were chosen on the basis that their epitopes were different

to RPA’s binding site to Tim-Tipin or Tipin’s binding site to RPA, respectively and

therefore do not interfere with complex formation of Tim-Tipin and RPA (Figure 2.24).

The binding of RPA DBD-A (Figure 2.24 a) to Tim-Tipin was tested and showed no

signs of interaction according to the SEC analysis (Figure 2.34 b).
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Cross-linked Tim-Tipin-RPA was incubated with the RPA antibody and negatively

stained. For Tipin antibody labeling cross-linked Tim-Tipin-RPA was incubated with

the Tipin antibody and the immune complex was further purified by SEC to better dis-

tinguish between labeled and non-labeled complexes. Images of the labeled Tim-Tipin-

RPA complex showed a similar U-shape architecture as non-labeled Tim-Tipin-RPA

(Figure 2.24 b). For the RPA-antibody labeled Tim-Tipin-RPA complex, the 2D class

averages and raw images showed an additional density at the side of the U-like shape

(Figure 2.24 b, arrowhead). The additional density appeared in the corresponding po-

sition of 3D reconstruction at channel 2 at the left-bottom side of the ring-like feature

of Tim-Tipin-RPA (Figure 2.24 c). The lid domain likely corresponds to RPA accom-

modating RPA70 DBD-A and -B. Further, antibody labeling with the Tipin antibody

revealed an additional density at the top right of the U-shape density (Figure 2.24 b,

arrowhead). Therefore, the top right of the ring-like density likely accommodates the

RPA32WH-Tipin-C-terminus interface. This result is consistent with previous reported

protein-protein interaction studies [19, 20]. Finally, this result also suggests, that Tim-

less is most likely located in the right part of the ring-like density in the 3D reconstruc-

tion.

2.3.6. Docking Analysis of RPA into the Tim-Tipin-RPA 3D Reconstruction

RPA is known to adopt different conformations dependent on the length of ssDNA and

to undergo two major transitions upon ssDNA binding. Several studies have provided

insights into RPA’s architecture. To find out, which of these RPA conformations is most

consistent with our EM model and to gain molecular insight into the structure of the

Tim-Tipin-RPA complex (Figure 2.22), published crystal structures and SAXS models

of RPA were docked into the EM model (Figure 2.25).

A small angle X-ray scattering (SAXS) analysis of RPA bound to ssDNA was pub-

lished investigating RPA’s DNA binding modes [97]. DNA-free RPA displays an ex-

tended conformation with a maximal diameter of 171 Å and very flexible relative DBD

arrangement. Upon ssDNA binding, RPA undergoes a successive compaction as the cov-

erage by ssDNA progresses. The first transition in the presence of short ssDNA (∼10 nt)

results in the compaction of DBD-A and -B, while the trimerization core of RPA (DBD-

C, -D and RPA14) still remains flexibly tethered. The second transition upon binding

to longer ssDNA substrates (>20 nt) leads to a more compact architecture by closer po-

sitioning the trimerization core to RPA70 DBD-A and -B. The crystal structure of RPA

bound to 32 nt ssDNA revealed an even more compact architecture showing a horse
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2.3. Structural Studies of the Tim-Tipin-RPA Complex Using EM

Figure 2.24.: Antibody labeling of Tim-Tipin-RPA using negative stain EM. (a) Domain architecture
of the Tim-Tipin-RPA complex showing the antibody binding site within RPA70 DBD-A (black line,
aa 268-304) and within the first 50 N-terminal amino acids of Tipin (dashed line). (A, B, C, D) DNA
binging domains of RPA. (WH) Winged helix domain of RPA32. (14) RPA14. (b) Representative
2D class average (A) and raw images of negative stained Tim-Tipin-RPA with an antibody against
the RPA70 subunit (first row), with an antibody against the N-terminus of Tipin (second row), and
Tim-Tipin-RPA without antibody (third row). The RPA antibody binds to the left-bottom and the
Tipin antibody to the top right of the ring-like density (marked by an arrowhead). (c) Schematic
representation of the 3D model of Tim-Tipin-RPA and the antibody binding site in two different
views. The putative localization of RPA within the model is represented as dark gray area and
corresponds to a volume of approximately 96 kDa. The position of the RPA and Tipin antibody is
indicated by an arrow. Adopted from [128].

shoe-like RPA conformation (PDB 4GNX) [96]. The published RPA structures were

compared to the RPA structure in the Tim-Tipin-RPA 3D reconstruction as suggested

by antibody labeling (Section 2.3.5). The SAXS model of DNA-free RPA [97] (BioIsis

ID RPADCP) could not be fitted into the Tim-Tipin-RPA 3D model, leaving nearly half

of the model outside of the envelope (Figure 2.25 a). Docking of the crystal structure of

RPA bound to 32 nt ssDNA [96] and docking the corresponding SAXS model [97] fitted

the cryoEM reconstruction (Figure 2.25 b, c). Finally, crystal structures of DNA-free
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Figure 2.25.: Docking analysis. RPA models were fitted into the Tim-Tipin-RPA 3D reconstruction
shown as transparent surface representation. RPA models: (a) SAXS model of DNA-free RPA (BioIsis
ID RPADCP). (b) Crystal structure of RPA bound to 32 nt ssDNA (PDB 4GNX). (c) SAXS model
of 30 nt DNA-bound RPA (BioIsis DBC30Y). (d) Crystal structure of the RPA trimerization core
(blue, PDB 1L1O) and crystal structure of DNA-free RPA70 DBD-A and -B (magenta, PDB 1FGU
chainA). Adopted from [128].

RPA70 DBD-A and -B and the trimerization core were individually placed in the 3D

reconstruction. This approach takes the relative flexibility of the RPA domains into

consideration and allows an optimized positioning of the subunits into the 3D density.

The docking of the individual crystal structure of DNA-free RPA70 DBD-AB (PDB

1FGU chainA) and the RPA trimerization core (RPA70C/32D/14, PDB 1L1O) into the

Tim-Tipin-RPA 3D reconstruction gave the best fitting (Figure 2.25 d). The docking

analysis clearly shows that the rather compact conformation of RPA showing a horse

shoe-like conformation as reported by Fan et al. 2012 and Brosey et al. 2013 is most

consistent with the 3D reconstruction, while the extended conformation of RPA (171 Å

in length) could not be reasonable accommodated in the EM model (Figure 2.25 a).

To verify that the compact RPA conformation in the 3D reconstruction occurs due

to binding to Tim-Tipin and not due to the chemical fixation, the 2D class averages of

the negative stained non-cross-linked sample were compared to the class averages and
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2.3. Structural Studies of the Tim-Tipin-RPA Complex Using EM

Figure 2.26.: EM analysis of non-cross-linked Tim-Tipin-RPA and comparison to the cryo-EM
specimen. (a) Reference-free 2D class averages (A) of non-cross-linked Tim-Tipin-RPA (first row,
non CL). Reference-free 2D class averages of cross-linked and vitrified Tim-Tipin-RPA (second row).
Reprojections (P) of the final cryo-EM model (third row). (b) 3D reconstruction of non-cross-linked
Tim-Tipin-RPA in various view as in Figure 2.21. The comparison of the non-cross-linked and the
cross-linked specimens revealed that RPA adopts a compact conformation due to Tim-Tipin binding
and is independent of the chemical fixation. Adopted from [128].

reprojections of the negative stain 3D reconstruction of cross-linked Tim-Tipin-RPA.

The class averages of the untreated sample showed comparable features to the GraFix

sample. (Figure 2.26 a). The 3D reconstruction of the non-cross-linked sample was

performed using the negative stain GraFix EM model as reference. The gained overall

structure revealed no difference on the structural arrangement of RPA (Figure 2.26 b)

indicating that the binding of Tim-Tipin to RPA clamps RPA’s conformation in the

Tim-Tipin-RPA complex.
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2.3.7. Tim-Tipin Assignment Using Difference Mapping

To assign the electron density of the Tim-Tipin complex in the 3D reconstruction of Tim-

Tipin-RPA, 2D class averages of Tim-Tipin were aligned to the reprojections of various

3D Tim-Tipin-RPA models missing the putative RPA density (Tim-Tipin-∆RPA).

First, fourteen 3D models displaying the electron density of Tim-Tipin only and miss-

ing the RPA region were generated by deleting the putative RPA density within the 3D

Tim-Tipin-RPA map (Appendix B.1). These Tim-Tipin-∆RPA 3D models were ob-

tained by subtracting the RPA density enclosing the expected volume for RPA. For this

analysis, the segmentation map function in Chimera [132] was used as described in Sec-

tion 4.2.6. Briefly, the 3D model was sub-divided into eleven segments (Figure 2.27 a).

Specific segments giving the final putative RPA volume were merged (Figure 2.27 b,

merged segments) and subtracted from the 3D Tim-Tipin-RPA map resulting in four-

teen models (Figure 2.27 b, difference map number 1-14 and Appendix B.1). Difference

map number 15 was derived from the antibody labeling and docking analysis described

in Section 2.3.5 and Section 2.3.6. Briefly, the volume recognized by the RPA antibody

and accommodating the crystal structure of the RPA trimerization core and the crys-

tal structure of DNA-free RPA70 DBD-A and -B was subtracted (Figure 2.24 c and

Figure 2.25 d).

Tim-Tipin 2D class averages (Figure 2.23 e and Appendix B.2) were aligned to the

reprojections of each difference map. The total number of the averages was plotted as

bar chart against the reference to which the 2D class average was best aligned (difference

map number, Figure 2.27 c). This approach assumes that the more Tim-Tipin 2D class

averages are aligned to the reprojection of a specific reference/difference map, the better

this reference represents the Tim-Tipin electron density. Reprojections of difference

maps missing the lid region and parts of the U-shape electron density (number 14, 15)

showed the highest number of aligned 2D class averages (14 and 17) indicating that

these reprojections resemble the 2D averages the best (Figure 2.27 c). This result is

in agreement with the antibody labeling and the docking analysis (Section 2.3.5 and

Section 2.3.6) showing RPA being located in a horse shoe-like conformation in the 3D

map.
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Figure 2.27.: Difference mapping of Tim-Tipin. (a) Negative stain 3D reconstruction of Tim-
Tipin-RPA sub-divided into 11 segments. (b) Segments enclosing the RPA volume were merged as
defined in the table and subtracted from the 3D map. (c) Bar chart showing the total number of the
Tim-Tipin 2D class averages, which aligned the best with the reprojections of the 3D maps number
1 to 15.

2.4. Biochemical Analysis of the Tim-Tipin-RPA Complex

2.4.1. SEC and FA Analysis of ssDNA Binding

The EM structure revealed that RPA adopts a compact, horse shoe-like conformation

in the Tim-Tipin-RPA complex. Several studies have shown that RPA undergoes con-

formational changes dependent on the length of the ssDNA substrate and the number

of RPA molecules bound to ssDNA. To examine if the conformational changes of RPA

affect the stability and ssDNA binding activity of the Tim-Tipin-RPA complex, SEC

analysis using ssDNA substrates of various length (60, 31, 14 nt ssDNA) at different
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protein:ssDNA stoichiometric ratios was performed. For comparison, the binding of

individual RPA and the Tim-Tipin complex to various ssDNA substrates under our

experimental conditions was examined.

Pre-incubation of RPA with excess amounts of 60 or 31 nt ssDNA (protein:DNA,

16 µM:32 µM), shifted the SEC peak to higher molecular weight (Table 2.3 and Fig-

ure 2.28 a, b, left) compared to DNA-free RPA (Figure 2.15). The chromatogram

showed increased 260/280 ratio at the peak fraction (1.57 ± 0.05, 60 nt; 1.46 ± 0.01,

31 nt ssDNA) indicating DNA-bound RPA. The change of the molecular weight from

110 kDa to approximately 180 kDa indicates that one RPA is bound to ssDNA, likely

in its 30 nt binding mode. When RPA was incubated with sub-stoichiometric amounts

of DNA (protein:DNA, 32 µM:8 µM or 16 µM:8 µM) the SEC peak further shifted to

higher molecular weight (Table 2.3 and Figure 2.28 a, b, right) and still showed increased

260/280 ratio (1.32 ± 0.03, 60 nt; 1.28 ± 0.05, 31 nt ssDNA). The shift to even higher

molecular weight indicates an accumulation of RPA on ssDNA and likely a conforma-

tional change from the 30 nt to the 8 nt binding mode. In addition, the mixture of

RPA with short ssDNA (14 nt) in all tested protein:DNA ratios showed an infinitesimal

shift of the RPA peak and increased 260/280 ratio demonstrating that only one RPA

molecule is bound to ssDNA, presumably in the 8 nt binding mode (260/280 = 1.47±0.24

and 1.27 ± 0.06; Table 2.3 and Figure 2.28 c, left, right). These results are consistent

with published data, which have shown that under conditions where either the ssDNA

is short (here 14 nt), or RPA oligomers are bound to ssDNA (here sub-stoichiometirc

DNA amounts), RPA employs the 8 nt binding mode [82, 92, 95, 113, 115].

Next, the ssDNA binding characteristics of Tim-Tipin were examined. The Tim-Tipin

complex exhibited only a small shift to higher molecular weight with excess ssDNA (Ta-

ble 2.3 and Figure 2.28 a, b, left) compared to DNA-free Tim-Tipin (Figure 2.15). The

small shift of the peak is presumably based on the detection limit of the experimental

system. Further, the chromatogram showed a slightly increased 260/280 ratio at the

peak fraction (0.98 ± 0.14, 60 nt; 0.74 ± 0.01, 31 nt ssDNA; Table 2.3) compared to

DNA-free Tim-Tipin (260/280 = 0.55 ± 0.01; Figure 2.15), indicating that Tim-Tipin

is only partially occupied by ssDNA.

Additionally, to quantify Tim-Tipin binding to ssDNA, fluorescence anisotropy (FA)

was performed. Binding isotherms showed that Tim-Tipin binds to 30 nt ssDNA with

a KD of 1.7± 0.2 µM and to 60 nt ssDNA with a KD of 0.29± 0.01 µM (Figure 2.29).
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Figure 2.28.: Size exclusion chromatograms of RPA (blue), Tim-Tipin (magenta), and Tim-Tipin-
RPA (green) with 60 nt (a), 31 nt (b), and 14 nt (c) ssDNA at different protein:ssDNA stoichiometric
ratios. Coomassie blue stained SDS-gels show the SEC protein peak fractions (black line). (M)
Protein marker. (I) Protein mixture injected on SEC. Solid line: UV absorbance at 280 nm. Dashed
line: UV absorbance at 260 nm. Excess amounts of 60 and 30 nt ssDNA resulted in an association of
Tim-Tipin-RPA with ssDNA. Sub-stoichiometric amounts of ssDNA and short ssDNA (here 14 nt)
resulted in a breaking of the complex into DNA-free Tim-Tipin and DNA-bound RPA presumably
because of the conformational change of RPA from the 30 nt to the 8 nt binding mode. Adopted
from [128].
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Figure 2.29.: Representative binding isotherms for binding of Tim-Tipin to 30 nt (left) and 60 nt
(right) using 5′-FAM labeled ssDNA analyzed by fluorescence anisotropy. The anisotropy is shown
as a function of the protein concentration in logarithmic scale. The KD was calculated to be
1.7±0.2 µM to 30 nt and 0.29±0.01 µM to 60 nt ssDNA. The fit of the binding isotherms is shown
as solid line and was calculated by using a nonlinear fit to the Hill equation with a Hill coefficient of
n = 1.2± 0.2 (30 nt) and 2.2± 0.1 (60 nt) as described in Section 4.2.5. The error bars represent
the standard deviation of three independent measurements. (Bottom) Residual plots for the curve
fit (difference between the calculated anisotropy of the curve fit and the measured anisotropy) show
a good quality of the regressions and no bias. Adopted from [128].

When Tim-Tipin was incubated with sub-stoichiometric amounts of ssDNA as de-

scribed for RPA, the SEC peak was not shifted to higher molecular weight (Figure 2.28 a,

b, right) and the 260/280 ratio was infinitesimal increased (0.74±0.06, 60 nt; 0.57±0.02,

31 nt ssDNA; Table 2.3), which is in agreement with the low affinity of Tim-Tipin to

ssDNA as determined by FA (Figure 2.29) and with the partial binding of ssDNA to

Tim-Tipin in SEC. Notably, no binding of Tim-Tipin to 14 nt ssDNA was detected

(Figure 2.28 c, 260/280 = 0.54± 0.02 (left) 0.54± 0.00 (right)).

Finally the ssDNA binding characteristics of Tim-Tipin-RPA to various length and

concentrations of ssDNAs using SEC were analyzed. The Tim-Tipin-RPA complex

eluted at higher molecular weight when incubated with excess amounts of 60 or 31 nt

ssDNA (Figure 2.28 a, b, left) compared to the DNA-free complex (Figure 2.15) and

displayed increased 260/280 ratio (1.20±0.04, 60 nt; 1.11±0.04, 31 nt ssDNA; Table 2.3).

This implies that ssDNA is bound to the intact Tim-Tipin-RPA complex with a RPA

52



2.4. Biochemical Analysis of the Tim-Tipin-RPA Complex

Table 2.3.: Elution volumes, 260/280 ratio, experimental, and theoretical molecular weights of RPA,
Tim-Tipin (TTP), and Tim-Tipin-RPA. Adopted from [128].

DNA substrate/ Protein mixture/ Elution 260/280∗ ExperimentalSEC
δ

Theoretical#

Protein:ssDNA DNA substrate volume∗ MW MW
(µM) [mL] [kDa] [kDa]

RPA 1.63± 0.02 0.63± 0.02 110 96.2
Tim-Tipin 1.46± 0.01 0.55± 0.01 321 162.3

Tim-Tipin-RPA 1.43± 0.02 0.56± 0.01 388 258.5
60 nt RPA 1.54± 0.00 1.57± 0.05 194 114.6
16:32 Tim-Tipin 1.44± 0.01 0.98± 0.14 364 180.7

Tim-Tipin-RPA 1.39± 0.01 1.20± 0.04 498 276.9

60 nt RPA 1.38± 0.01 1.32± 0.03 531 403.2
32:8 Tim-Tipin 1.47± 0.01 0.74± 0.06 301 180.7

Tim-Tipin-RPA 1.44± 0.01 (TTP) 0.66± 0.05 364
1.33± 0.05 (RPA) 1.13± 0.04 726

31 nt RPA 1.55± 0.03 1.46± 0.01 182 105.7
16:32 Tim-Tipin 1.46± 0.02 0.74± 0.01 321 171.8

Tim-Tipin-RPA 1.40± 0.03 1.11± 0.04 468 268.0

31 nt RPA 1.48± 0.02 1.28± 0.05 283 201.9
16:8 Tim-Tipin 1.47± 0.01 0.57± 0.02 301 171.8

Tim-Tipin-RPA 1.41± 0.03 (TTP) 0.87± 0.00 439
1.38± 0.03 (RPA) 0.98± 0.01 531

14 nt RPA 1.63± 0.00 1.47± 0.24 110 100.5
16:32 Tim-Tipin 1.48± 0.01 0.54± 0.02 283 166.6

Tim-Tipin-RPA 1.45± 0.02 (TTP) 0.66± 0.08 342
1.62± 0.01 (RPA) 1.27± 0.05 117

14 nt RPA 1.63± 0.00 1.27± 0.06 110 100.5
16:8 Tim-Tipin 1.48± 0.01 0.54± 0.00 283 166.6

Tim-Tipin-RPA 1.45± 0.02 (TTP) 0.64± 0.05 342
1.62± 0.01 (RPA) 1.22± 0.04 117

ssDNA only 60 nt 1.70 1.82 64 18.4
0:16 31 nt 1.70 1.76 64 9.5

14 nt 1.88 2.34 21 4.3
Thyroglobulin 1.32± 0.02∗ 670
γ-globulin 1.63± 0.03∗ 158
Ovalbumin 1.76± 0.01∗ 44
Myoglobin 1.91± 0.02∗ 17

Vitamin B12 2.15± 0.02∗ 1.35

* Average numbers and standard deviations of at least two independent measurements are shown.
δ Molecular weights derived from size exclusion chromatography (SEC) were estimated based on the

comparison with molecular mass standard proteins.
# Molecular weights calculated based on the amino acid sequence.

conformation likely resembling its compact 30 nt binding mode. When the complex was

incubated with sub-stoichiometric amounts of ssDNA, dissociation of Tim-Tipin-RPA

to DNA-free Tim-Tipin and DNA-bound RPA was observed (Figure 2.28 a, b, right)

with a RPA conformation likely resembling its 8 nt binding mode. Interestingly, when

Tim-Tipin-RPA was mixed with short ssDNA (14 nt), the complex showed dissociation
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Figure 2.30.: Representative binding isotherms for binding of Tim-Tipin-RPA and RPA to 5′-
FAM labeled 30 nt ssDNA analyzed by fluorescence anisotropy. The maximum anisotropy of each
protein complex was set to 100% ssDNA-bound protein complex for normalization and is shown as
a function of the protein concentration in logarithmic scale. The ssDNA concentration was kept
constant at 10 nM. The KD was calculated to be 24.7±1.3 nM for RPA alone and 23.5±1.5 nM for
Tim-Tipin-RPA. Notably, the Tim-Tipin-RPA complex dissociates with sub-stoichiometric ssDNA
amounts. Therefore the Tim-Tipin-RPA binding isotherm represents RPA binding to ssDNA at
protein concentrations higher than 10 nM. The solid line represents the fit of the binding isotherms
using a nonlinear fit to the Hill equation with a Hill coefficient of n = 5.0±0.7 (Tim-Tipin-RPA) and
4.2± 0.5 (RPA). The error bars show the standard deviation of three independent measurements.

to DNA-free Tim-Tipin and DNA-bound RPA in all tested conditions (Figure 2.28 c,

left, right). The SEC analysis indicates that upon change of the RPA conformation

to the 8 nt mode (at sub-stoichiometirc ssDNA amounts or short ssDNA), Tim-Tipin

dissociates from DNA-bound RPA.

Although dissociation of Tim-Tipin-RPA was observed using SEC with sub-stoichio-

metric ssDNA amounts (excess amounts of protein complex), the quantification of Tim-

Tipin-RPA binding to 30 nt ssDNA was attempted using fluorescence anisotropy and

compared to RPA alone. Binding isotherms of Tim-Tipin-RPA showed similar binding

curves to the curves of RPA alone, indicating that after Tim-Tipin-RPA dissociation,

RPA likely takes over ssDNA binding (Figure 2.30). This interpretation is supported

by the SEC results, where RPA eluted as ssDNA-protein complex and Tim-Tipin as

DNA-free protein at sub-stoichiometric ssDNA amounts (Figure 2.28 a, b, c, right).

2.4.2. EMSA of RPA and Tim-Tipin Using ssDNA

The SEC analysis revealed that the change of RPA from the 30 nt to the 8 nt mode

coincides with the dissociation of the Tim-Tipin-RPA complex. To gain further insight
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into the accumulation of RPA and Tim-Tipin and the association of Tim-Tipin-RPA

with ssDNA, EMSA analysis was performed using ssDNA substrates of various lengths

(60, 30, 14 nt ssDNA) at the same protein:ssDNA stoichiometric ratio as applied in the

SEC analysis (Section 2.4.1).

RPA incubation with excess amounts of 60 or 30 nt ssDNA resulted in one molecule

of RPA bound to one molecule of 60 or 30 nt ssDNA in the EMSA (Figure 2.31 a, lane 3

and 9). This is consistent with the shift of RPA to higher molecular weight in SEC (from

110 kDa to ∼180 kDa) bound to one molecule of 60 nt or 31 nt ssDNA (Figure 2.28 a,

b, left).

As the ssDNA concentration was reduced to sub-stoichiometric amounts the EMSA

showed RPA-ssDNA complexes with stepwise reduced mobility indicating the accumu-

lation of excess RPA on ssDNA. The degree of accumulation was dependent on the

length of the ssDNA. The stoichiometry of RPA to ssDNAs at the saturation level was

determined to be two (RPA II) for 30 nt (Figure 2.31 a, lane 11) and four (RPA IV) for

60 nt (Figure 2.31 a, lane 5). In contrast, one RPA molecule (RPA I) was detected for

the shortest ssDNA substrate (14 nt) (Figure 2.31 a, lane 13-18).

Notably, in the EMSA of RPA using 14 nt ssDNA, a faint band below (marked by

asterisk, lane 14-16) and above the major shifted band (marked by plus, lane 17) ap-

peared. To further investigate these bands and for a better comparison of the migration

of the RPA-ssDNA complexes, an EMSA additionally using 8 nt ssDNA was performed

on the same gel. In this experiment the lower bands were not observed in the 8 nt ssDNA

condition (Figure 2.31 b, lane 11-13), in contrast to the conditions using 14 nt ssDNA

(Figure 2.31 b, lane 7-9, asterisk). The result indicates that the lower bands are most

probably derived from a certain population of RPA adopting the compact 30 nt binding

mode, which cannot be achieved in presence of the very short 8 nt ssDNA. Interestingly,

the migration of RPA is slightly different between the RPA-8 nt and RPA-14 nt ssDNA

complexes, which could derive from a slightly different RPA conformation.

The upper band in Figure 2.31 a (lane 17, marked by plus) could not be reproduced

in the follow-up EMSA using 14 nt ssDNA, but a similar migrating band was detected

using 8 nt ssDNA (Figure 2.31 b, lane 11, marked by plus). Hence, the upper band is

likely an artifact, which could derive from a conformational heterogeneity of RPA.

In summary, the EMSA demonstrates that RPA undergoes a conformational change

from the 30 nt (long and excess amount of ssDNA) to the 8 nt binding mode under

our experimental conditions (short or sub-stoichiometric amount of ssDNA), which is

in agreement with published data [82, 92, 95, 113, 115].
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Figure 2.31.: Electrophoretic mobility shift assay (EMSA) of RPA and Tim-Tipin. 60, 30, and
14 nt 5′-FAM labeled ssDNA substrates were used in (a). Decreasing amounts of the added ssDNA
substrate are indicated by a triangle (total concentration of 64, 32, 8, and 4 µM). The protein
concentration was kept constant at 16 µM. Four RPAs were identified on 60 nt ssDNA (RPA I-IV,
lane 1-6), two RPAs on 30 nt (RPA I-II, lane 7-12), and one RPA on 14 nt ssDNA (RPA I, lane 13-18).
For Tim-Tipin, only one molecule was bound to ssDNA, indicating a 1:1 binding stoichiometry to
the substrate. The complex shows the highest preference for 60 nt ssDNA (Tim-Tipin, lane 19-23)
followed by 30 nt ssDNA (lane 24-29) and no binding to 14 nt ssDNA (lane 30-35). Unbound DNA is
marked as free DNA. (b) EMSA of RPA using a 60, 30, 14, and 8 nt 5′-FAM labeled ssDNA substrate
analyzed on the same native gel for better comparison. ssDNA and protein total concentrations as
in (a). Frame = Control (C), DNA-free RPA. Stain = Coomassie stained native PAGE. Lane 2-13
= fluorescence image of the native gel. The asterisks (lane 7-9) indicate a small RPA population in
the 30 nt binding mode. The cross (lane 11) indicates an artifact probably from a conformational
heterogeneity of RPA. Adopted from [128].

Further, in the EMSA of Tim-Tipin with 60 and 30 nt ssDNA a band-shift to protein-

DNA complexes with reduced mobility was observed (Figure 2.31, lane 19-23 for 60 nt;

lane 24-29 for 30 nt), which was more pronounced with 60 nt ssDNA than with 30 nt
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ssDNA. Notably, no binding of Tim-Tipin to 14 nt ssDNA was detected (Figure 2.31,

lane 30-35). The EMSA results are in agreement with the SEC and FA analyses (Fig-

ure 2.28 and Figure 2.29) showing that the affinity of Tim-Tipin to ssDNA increases

with the length of the DNA substrate.

Finally the ssDNA binding characteristics of Tim-Tipin-RPA were examined by EMSA.

The detection of the different protein-ssDNA was supported by immunoblotting. Ex-

cess amounts of long (here 60 nt) ssDNA yielded the association of ssDNA with Tim-

Tipin-RPA (Figure 2.32, lane 2 and 3, arrowhead P). Notably, this super-shift was not

observed for RPA alone with long ssDNA (Figure 2.31 lane 2 and 3). Nevertheless, a

partial dissociation of the Tim-Tipin-RPA-ssDNA complex was detected (Figure 2.32,

lane 2 and 3, marked by R). Further, when Tim-Tipin-RPA was pre-incubated with sub-

stoichiometric amounts of ssDNA (Tim-Tipin-RPA in excess), a complete dissociation

of the complex into DNA-bound RPA and DNA-free Tim-Tipin was observed. RPA

displayed accumulation on ssDNA with up to 4 RPAs for 60 nt ssDNA (Figure 2.32,

lane 4 and 5, R), which is consistent with the EMSA of RPA-ssDNA alone (Figure 2.31,

lane 4 and 5).

When the Tim-Tipin-RPA complex was incubated with short ssDNA (here 14 nt), the

dissociation of the complex into DNA-bound RPA (marked by R) and DNA-free Tim-

Tipin (marked by T) was observed with excess as well as at sub-stoichiometric amounts

of ssDNA (Figure 2.32, lane 6-10), which is in line with our SEC analysis (Figure 2.28 c,

left, right).

Finally, to stabilize Tim-Tipin-RPA-ssDNA complex formation, the protein-ssDNA

mixture was cross-linked after incubation with 60 nt ssDNA and analyzed by EMSA.

As under non-cross-linked conditions, the stabilized Tim-Tipin-RPA complex showed

significant binding to ssDNA (Figure 2.32 b, lane 16, arrowhead P) as a super-shifted

band, which was not observed with cross-linked RPA and Tim-Tipin (Figure 2.32 b,

lane 14 and 15, R and T).

2.4.3. EMSA of RPA and Tim-Tipin Using Replication Fork-Like DNA

In the previous analyses, the binding characteristics of Tim-Tipin to ssDNA were ex-

amined using SEC and FA (Section 2.4.1), and EMSA (Section 2.4.2). The results

showed a higher affinity of Tim-Tipin to ssDNA with increasing length of the DNA sub-

strate. Interestingly, several studies have demonstrated the association of Tim-Tipin

with components of the DNA replication fork. To gain additional insights into the

binding characteristics of Tim-Tipin to fork-like DNA, EMSA was performed using
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Figure 2.32.: Electrophoretic mobility shift assay (EMSA) of Tim-Tipin-RPA using long (60 nt) or
short (14 nt) 5′-FAM labeled ssDNA substrate. (a) Decreasing amounts of the added ssDNA substrate
are indicated by a triangle (total concentration of 64, 32, 8, and 4 µM). The protein concentration
was kept constant at 16 µM. The ssDNA-protein complexes were visualized by fluorescence imaging of
the labeled ssDNA (EMSA), immunoblot analysis (anti-RPA, anti-Tipin), and by Coomassie-staining
of the native gels (Coomassie). R = RPA; T = Tim-Tipin; P = pentameric Tim-Tipin-RPA complex.
Lane 11-13 show the DNA-free proteins. While Tim-Tipin-RPA binds to long ssDNA under excess
ssDNA conditions (lane 2, 3), sub-stoichiometric amounts of the 60 nt ssDNA substrate (lane 4,
5) or short ssDNA (14 nt; lane 6-10) lead to a complete dissociation of the complex to DNA-free
Tim-Tipin and DNA-bound-RPA. (b) EMSA of glutaraldehyde cross-linked protein complexes using
long (60 nt) 5′-FAM labeled ssDNA. The protein-ssDNA complexes (0.6 µM Tim-Tipin-RPA and
1.2 µM ssDNA; 0.92 µM Tim-Tipin and 1.84 µM ssDNA; 1.56 µM RPA and 3.12 µM ssDNA) were
cross-linked after incubation with ssDNA, analyzed by EMSA, and visualized as in (a). A significant
amount of cross-linked Tim-Tipin-RPA is bound to ssDNA (lane 16) and shows a super-shift, which
is not observed with Tim-Tipin and RPA alone (lane 14, 15). Adopted from [128].
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various DNA substrates (Figure 2.33 a-c). Two DNA substrates showed fork-like struc-

tures with two kinds of junctions. The first DNA substrate displayed features of a

splayed double-stranded DNA with 30 nt long ssDNA overhangs (splayed (sp)DNA;

Figure 2.33 a). The second substrate displayed features of a splayed double-stranded

DNA with overhangs supplemented with complementary DNA strands (replication fork

(RF)DNA; Figure 2.33 b). To better discriminate whether Tim-Tipin is binding to the

ssDNA-, dsDNA-part or to the junction, dsDNA was tested as third substrate (dsDNA;

Figure 2.33 c). In addition, the DNA binding studies were conducted with RPA as

control.

When RPA was incubated with the DNA substrates, a shift to slower migrating

protein-DNA complexes was only observed with splayed DNA (Figure 2.33 d, lane 14,

15), which is in agreement with RPA’s characteristic binding to ssDNA. Tim-Tipin did

not show any preference for any of the tested DNAs and formed protein-DNA complexes

in all tested EMSA conditions (Figure 2.33 d, lane 18, 19, dsDNA; lane 22, 23, RFDNA;

lane 26, 27 spDNA).

From these results it is not possible to conclude, whether Tim-Tipin prefers binding

to any junctions, to ssDNA or dsDNA. Rather the EMSA indicates a broad specificity

of Tim-Tipin in DNA recognition.

2.4.4. RPA Domains Identification for Tim-Tipin-RPA Formation

The Tim-Tipin-RPA complex was successfully reconstituted on SEC as described in

Section 2.2.1 by incubation of the Tim-Tipin complex with the ternary RPA. Inter-

estingly, Tipin has been reported to interact with the RPA32 C-terminal WH domain

[19, 20, 83]. To investigate which components of the trimeric RPA complex facilitate

intact Tim-Tipin-RPA formation, various RPA sub-complexes were cloned, expressed

and purified, and tested for the interaction with the Tim-Tipin complex using SEC.

On the basis of published crystal structures of human RPA, sequence alignments and

secondary structure predictions (Section 1.4.3), four homologous constructs of mouse

RPA were designed for recombinant expression in E. coli.

First, the RPA32 C-terminal WH domain was cloned (RPA32, aa 173-270) and pu-

rified to homogeneity (Figure 2.34 a, blue). The SEC peak of the WH domain showed

very low absorbance at 280 nm, because of low contents of tyrosines or tryptophans.

Secondly, the major ssDNA binding domains of RPA70, DBD-A and -B, were cloned

(RPA70, aa 190-431) and purified. The SEC elution profile showed a single peak and

pure protein on SDS-PAGE (Figure 2.34 b, blue). Thirdly, RPA32 DBD-D together with
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Figure 2.33.: Electrophoretic mobility shift assay (EMSA) using splayed DNA (spDNA, a),
replication-fork DNA (RFDNA, b), and double-stranded DNA (dsDNA, d). The DNA substrates were
5′-FAM labeled (marked by asterisk). The triangle in the EMSA (d) indicates increasing amounts of
the added protein complex (total concentration of 0.08, 0.24, 0.8, and 4.8 µM). The DNA substrate
concentrations were kept constant at 80 nM. RPA binds only to DNA substrates with present ssDNA-
parts. The Tim-Tipin complex shows a broad preference and binds to all tested DNA substrates.
Unbound DNA is marked as free DNA. Lane 1, 6, and 11 show the negative control with DNA only.

the C-terminal WH-domain (RPA32, aa 43-270) and RPA14 (aa 1-121, full-length) were

chosen for the subsequent binding study. The dimeric complex was purified to high pu-

rity and homogeneity as demonstrated by SDS-PAGE and SEC analysis (Figure 2.34 c,

blue). Finally, all three RPA subunits lacking the major DBD-A and -B (RPA70 DBD-

C, aa 445-623; RPA32 DBD-D and WH-domain, aa 43-270; RPA14 fl, aa 1-121) were

cloned and showed pure complex after purification (Figure 2.34 d, blue).

For the subsequent interaction study of Tim-Tipin with RPA, the reported interaction

of Tipin with RPA32 WH domain was first taken into consideration. When the purified

RPA32 WH domain was incubated with the Tim-Tipin complex, only a weak interaction

was detected (Figure 2.34 a). Further, the mixture of Tim-Tipin and RPA70 DBD-

A and -B or RPA32/14 (Figure 2.34 b, c) showed no interactions and the individual

components eluted in distinct peaks. Finally, when Tim-Tipin was incubated with the

ternary RPA70DBD-C/32/14 complex (lacking RPA70 DBD-A and -B) an interaction

with Tim-Tipin was detected (Figure 2.34 d). This interaction was weaker compared to

the RPA70/32/14 complex containing all DBD-A, -B, -C, and -D (Figure 2.15).
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Figure 2.34.: See next page for figure legend.
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Figure 2.34.: (Previous page). Size exclusion chromatography (SEC) analysis of various RPA
sub-complexes binding to Tim-Tipin. Different RPA sub-complexes (blue, (a) RPA32 WH domain,
(b) RPA70 DBD-A and -B, (c) RPA32/14 (RPAd), (d) RPA70C/32/14 (RPAt)) were mixed with
Tim-Tipin at a molar ratio of 1:1 (green) and 2:1 (cyan). RPA32WH and RPA32/14 did not
significantly bind to Tim-Tipin. RPA70C/32/14 formed a weaker complex compared to RPA70/32/14
(Figure 2.15) and RPA70AB showed no binding to Tim-Tipin. Solid line: UV absorbance at 280 nm.
Dashed line: UV absorbance at 260 nm. The peak fractions for each sample mixture were analyzed
on Coomassie stained SDS-gels (right). For the SDS-PAGE analysis in (a) only one fourth of the
sample was used as input for the SDS-gel when compared to (b)-(d). The same SEC run and SDS-gel
for Tim-Tipin is illustrated in (b) and (c). Adopted from [128].

In summary, although RPA70 DBD-A and DBD-B do not directly interact with Tim-

Tipin, this subunit plays an indirect role in stabilizing the Tim-Tipin-RPA complex.

Hence, ternary RPA containing all four DBDs A-D is required and individual RPA

subunits are not sufficient for the Tim-Tipin-RPA complex formation.

2.4.5. Timeless-Tipin in Complex with Full-Length Replication Protein A

The RPA complex used in this thesis is lacking the RPA70 N-terminal domain (RPA70N,

amino acids 1-189) and the first 42 amino acids of RPA32 (RPA32N) (Figure 1.3). To

investigate whether the Tim-Tipin-RPA complex formation and its biochemical activity

is affected by the lack of RPA70N and RPA32N, full-length RPA (RPAFL) was cloned,

expressed and purified. The SEC elution profile showed two peaks corresponding to

the RPAFL protein and an excess of the RPA32FL/RPA14 dimer (Figure 2.35 a).

Although RPAFL was accessed in high purity as shown by SDS-PAGE, a degradation

of RPA32FL occurred during purification (arrowhead, black). RPA32FL was truncated

to a construct lacking the cloning overhang and the first two residues as identified by

Edman sequencing.

Further the purified RPAFL complex was tested for the interaction with the Tim-

Tipin complex using SEC. The mixture of RPAFL and Tim-Tipin shifted to higher

molecular weight compared to the truncated Tim-Tipin-RPA complex (Figure 2.35 b).

SDS-PAGE confirmed the successful reconstitution of Tim-Tipin-RPAFL. This result

indicates, that the additional domains do not interfere with complex formation.

Finally, the stability and ssDNA binding activity of the Tim-Tipin-RPAFL complex

was tested by SEC using ssDNA substrates of various length (60, 31, 14 nt ssDNA)

at different protein:ssDNA stoichiometric ratios. When Tim-Tipin-RPAFL was incu-

bated with excess amounts of 60 and 31 nt ssDNA the complex eluted in a single

peak and showed increased 260/280 ratio at the peak fraction (260/280 = 1.24, 60 nt;
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Figure 2.35.: Purification of RPAFL and Tim-Tipin-RPAFL reconstitution. (a) SEC analysis of
RPAFL using a Superdex a 200 16/60 column. The elution profile shows two peaks corresponding to
RPAFL and excess RPA32/14 as visualized by UV absorbance at 280 nm and 260 nm. SDS-PAGE
shows the peak fractions marked by solid and dashed line. (M) Protein marker in kDa. (I) Protein
sample injected on SEC column. The observed degradation of RPA32FL to a truncated construct
lacking the cloning overhang and the first two residues is marked by a black arrowhead. RPA32FL is
marked by magenta arrowhead. (b) SEC analysis of the Tim-Tipin-RPAFL complex formation. Tim-
Tipin and RPAFL (green) shifted to higher molecular weights compared to truncated Tim-Tipin-RPA
lacking RPA70N and RPA32N (black). The protein mixture was loaded on a Superdex 200 10/300
GL column and the elution profile was visualized by UV absorbance at 280 nm. Peak fractions marked
by line were analyzed by Coomassie stained SDS-gels (right) and demonstrated complex formation.
Adopted from [128].

1.05, 31 nt ssDNA) indicating ssDNA binding of the intact Tim-Tipin-RPAFL with

RPA likely in the 30 nt binding mode (Figure 2.36 a left and b). The slightly lower

260/280 ratio (260/280 = 1.05) for Tim-Tipin-RPAFL using the 31 nt ssDNA in com-

parison to Tim-Tipin-RPA (260/280 = 1.11 ± 0.04) might result from oligomerization

of RPAFL (0.9 mL, marked by asterisk). Further, the mixture of the complex with

sub-stoichiometric amounts of 60 nt ssDNA and short ssDNA (14 nt) resulted in the

dissociation of the complex to DNA-free Tim-Tipin and DNA-bound RPA probably

adopting its 8 nt binding mode (Figure 2.36 a, right and c).

Notably, oligomers of RPAFL have been observed in the tested conditions eluting

at 0.9 mL and between 1.0 and 1.2 mL (Figure 2.36, marked by asterisk), which have

not been observed with truncated RPA and Tim-Tipin-RPA. The oligomerization was

increased, when the RPA concentration was raised to 32 µM (Figure 2.36 a, right).

The SEC analysis showed an intact complex formation and a similar behavior of Tim-
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Tipin-RPAFL as the truncated complex without RPA70N and RPA32N in terms of the

dependence on the ssDNA length and the protein:ssDNA stoichiometry suggesting that

RPA70N and RPA32N do not affect Tim-Tipin-RPAFL complex formation and ssDNA

binding.

Figure 2.36.: Size exclusion chromatograms of RPAFL (blue) and Tim-Tipin-RPAFL (green) with
60 nt (a), 31 nt (b), and 14 nt (c) ssDNA at different protein:ssDNA ratios and SDS-gels showing the
SEC protein peak fractions (black line). (I) Protein mixture injected on SEC. (M) Protein marker.
Solid line: UV absorbance at 280 nm. Dashed line: UV absorbance at 260 nm. RPAFL displayed
oligomers (marked by asterisk), which have not been observed with the truncated RPA. Tim-Tipin-
RPAFL shows a similar behavior like Tim-Tipin-RPA lacking RPA70N and RPA32N and forms an
intact ssDNA-protein complex when RPA is in the 30 nt binding mode (long and excess amount of
ssDNA) and shows dissociation when RPA adopts its 8 nt binding mode (sub-stoichiometric amounts
and short ssDNA). Adopted from [128].
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The study carried out in this thesis provides a structural and biochemical basis of the

Tim-Tipin interaction with RPA. The 3D model of the complex shows a first view of

the architecture of the almost full-length Tim-Tipin-RPA complex with RPA employing

a compact conformation similar to the recently reported structure of RPA bound to

30 nt ssDNA [96, 97]. In addition, the results help to understand the RPA-controlled

Tim-Tipin recruitment to ssDNA, which is strongly dependent on RPA’s binding mode.

Specifically, RPA binding to ssDNA in its 8 nt binding mode reduces the stability of

the Tim-Tipin-RPA complex resulting in the dissociation of Tim-Tipin from the com-

plex. Finally, the RPA-controlled Tim-Tipin recruitment to ssDNA provides interesting

implications for the organization of DNA replication, the DNA replication checkpoint,

and DNA repair.

This Section will discuss the reconstitution (Section 3.1 and 3.2) and the structural

characterization of the Tim-Tipin-RPA complex (Section 3.3), as well as the dispens-

ability of the N-terminal RPA70 and RPA32 and C-terminal Tim regions for complex

formation and function (Section 3.4). Further, the Tim-Tipin-RPA dissociation upon

change of the RPA conformation in presence of short or sub-stoichiometric ratios of ss-

DNA and the putative ssDNA path in the stable Tim-Tipin-RPA-ssDNA complex will be

taken into consideration (Section 3.5 and 3.6). Moreover, the structural and biochemical

characterization provides implications for the role of Tim-Tipin-RPA and Tim-Tipin in

the effective organization of DNA replication (Section 3.5 and 3.6), the DNA replication

checkpoint, and DNA repair (Section 3.7) and finally hints to a mechanistic basis for

replication fork organization using dynamic interactions (Section 3.8). The last Section

will provide a short overview of open questions and an outlook (Section 3.9).

3.1. Reconstitution of the Tim-Tipin-RPA Complex In Vitro

The biochemical and biophysical analyses in this thesis report the in vitro assembly of

the Tim-Tipin and Tim-Tipin-RPA complex at stoichiometric levels. This study shows

that individual Tim and Tipin form large oligomers and are only stable when they are
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co-expressed and co-purified in agreement with previous reports [74, 83]. Other stud-

ies using immunoprecipitation assays of in vitro translated or over-expressed proteins

also report that Tim forms homo-multimeric complexes, which are disrupted by Tipin

[60, 83]. The SEC analysis in this study indicates an experimental molecular weight

of 321 kDa for Tim-Tipin, which almost corresponds to the double value of the theo-

retical molecular weight (162 kDa) calculated based on the amino acid sequence. This

discrepancy might arise from the fact that SEC determines the hydrodynamic radius of

the protein and its calibration is based on elution volumes of proteins of globular shape.

Elongated or unstructured proteins can elute at positions corresponding to higher molec-

ular weights than a globular protein with similar size [133]. Although controversially

discussed, Tim was suggested to be a member of the Arm/HEAT protein super-family

[105], which could hint at an elongated shape. Nevertheless, the EM analysis in this

thesis of individual Tim-Tipin revealed a globular shape of the complex (Section 2.3.4).

The apparent disagreement in the elution volume might derive from a certain interaction

of the Tim-Tipin complex with the SEC resin. SLS analysis, representing a more reli-

able technique of molecular weight determination, and sucrose gradient sedimentation

assays in this study show a monomeric complex of Tim-Tipin with a 1:1 stoichiometry

corresponding to a molecular weight of approximately 160 kDa.

Moreover, this study examines the in vitro reconstitution of the Tim-Tipin-RPA

complex using to my knowledge the longest Tim-Tipin and RPA fragments (almost

full-length). The mixture of Tim-Tipin and RPA elutes basically in one shifted peak,

but shows an exaggerated molecular weight as observed for Tim-Tipin alone. How-

ever, SLS analysis determines a molecular weight of approximately 260 kDa, which

clearly demonstrates a 1:1:1 (Tim:Tipin:RPA) stoichiometry of the SEC-reconstituted

Tim-Tipin-RPA complex.

In this study, micro scale thermophoresis experiments using almost full-length proteins

determine a KD in the low micro-molar range (KD = 0.18 ± 0.04 µM) between RPA and

the Tim-Tipin complex. One limitation of the MST measurement is that this method

uses fluorescently labeled proteins (here Cy3-labeled RPA). The labeling takes place

at primary amino groups (lysines, K) and may in this way insulate this residues from

interactions with the binding partner. The used RPA constructs possess 54 lysines

with approximately half of the residues (27 K) being exposed to the solvent. The

degree of labeling was determined to be 4.4 lysines/858 aa (=̂ 1 lysine/200 aa) for RPA

indicating that four solvent-exposed lysines were modified by the fluorophore and may be

hindered to bind to Tim-Tipin. In this case, the measured KD could be underestimated.
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If a label-free method was used, we might obtain a higher affinity of Tim-Tipin to

RPA. To conclusively determine the KD, a label-free method (e.g. isothermal titration

calorimetry) could be applied.

However, one study from 2010 determined the KD from fitting of the chemical shift

perturbation of amino acid E252 in human RPA32WH domain upon hTipin (amino acids

185-218) binding to be 0.5 ± 0.2 µM [20]. In contrast to that study, nearly full-length

proteins were used in this thesis. Here, the data shows a similar range as previously

reported but reflects the affinity of the entire complex.

3.2. Requirement of Three RPA Subunits in the

Tim-Tipin-RPA Complex

The SEC analysis performed in this thesis using various RPA truncations shows that

the Tim-Tipin-RPA complex formation requires all three RPA subunits. In this study

only a weak interaction of Tim-Tipin and RPA32WH is observed and no interaction

of RPA70AB and RPA32/14 is detected. In particular, only the DNA-binding core

of RPA (RPA70ABC, RPA32D, RPA14) together with the RPA32 WH-domain show

relevant complex formation (Section 2.4.4). These results go beyond the study of Ali et

al. and Gotter et al. only focusing on RPA32 and Tipin fragments and reporting that

the complex formation of Tim-Tipin and RPA is mediated by a direct interaction of

Tipin and the C-terminal RPA32 WH-domain [19, 20]. In summary, this study propose

that the involvement of all RPA subunits is important for the relevant Tim-Tipin and

RPA interaction under DNA-free conditions.

3.3. Adoption of a Compact Conformation of RPA in the

Tim-Tipin-RPA Complex

The structural study of the Tim-Tipin and the Tim-Tipin-RPA complex in this thesis

using negative stain and cryo-EM analysis provides the first view of these fully assembled

complexes. Despite the number of reports investigating the structure of RPA subunits

and RPA32WH in complex with a Tipin peptide, no structural analysis on Tim-Tipin-

RPA has been published so far [20, 92–96].

In this study, the sample for the EM analysis displays faint dissociation and low image

contrast as determined by SLS analysis, density gradient sedimentation, and negative

stain EM of the Tim-Tipin-RPA complex (Section 2.2.1 and 2.3.1). To circumvent
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this issues, the GraFix method was applied. This study and several other reports

successfully applied this method of mild fixation and purification in a density gradient

to stabilize macromolecular complexes for EM analysis [129, 134]. The quantitative

mass spectrometry analysis identified all subunits in the cross-linked Tim-Tipin-RPA

complex with a 1:1 stoichiometry (Tim-Tipin:RPA).

The EM analysis using negatively stained and vitrified specimens shows comparable

overall architectures with a ring-like density at the front view covered by a lid at the

bottom and a horse shoe-like density at the side view. The antibody labeling against the

RPA70 DBD-A suggests that this RPA subunit is situated at the lid and the lower part of

the U-shape density of the complex, respectively. For RPA, the crystal structures of the

RPA70AB together with the RPA trimerization core (RPA70C, RPA32D, RPA14) and

RPA’s DNA-binding core (RPA70ABC, RPA32D, RPA14) bound to 30 nt ssDNA fit well

into the EM model and support the good consistency between the 3D reconstruction and

known RPA structures [94–96] (Figure 3.1 a, b). The EM analysis accompanied by the

validation exercises (Section 2.3) show that RPA adopts a compact conformation in the

DNA-free Tim-Tipin-RPA complex. This conformation resembles RPA’s conformation

in the 30 nt ssDNA binding mode and shows RPA70ABC, RPA32D and RPA14 in a

horse shoe-like shape, which was previously reported [96, 97].

The relative orientation of Tim-Tipin to RPA was also mapped in this study using

an antibody against Tipin and revealed the localization of Tipin at the upper part of

the horse shoe-shape density. Previous studies reporting that Tipin directly interacts

with the RPA32WH domain [20] motivated the placement of the RPA32WH-Tipin-C-

terminus interface at the top of the ring-like density. The fact, that no interactions of

Tim with RPA were reported so far [19, 83] together with the results of the mapping

and docking analysis in this thesis suggest that Tim is most likely located at the right

part of the ring-like density in the 3D reconstruction.

The antibody labeling, docking analysis, and difference mapping tempt to assign an

envelope for Tim-Tipin (Figure 3.1 c). The shape of Tim-Tipin may be described as

fingers, palm and thumb of a hand with the RPA32-WH-Tipin-C-Terminus interface

being located at the top of the fingers and Tipin in the region of the finger joints. The

palm could harbor Tim with its C-terminus extending to the thumb. However, this view

is hypothetical and only limited conclusion can be drawn form the structural analysis

in the present study. Thus, the Tim-Tipin structural model clearly requires further

investigations.
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Figure 3.1.: Summary of the EM results and putative Tim-Tipin envelope. (a) Based on antibody
labeling using an antibody against RPA70A, the crystal structure of DNA-free RPA70 DBD-A and
-B (magenta, PDB 1FGU chainA) was fitted into the lower part of the U-shape domain (lid domain)
in the Tim-Tipin-RPA 3D reconstruction. The RPA antibody position is indicated by a white arrow.
Antibody labeling using an antibody against the N-terminus of Tipin suggested that the top right
of the ring-like density (front) likely accommodates the RPA32WH-Tipin-C-terminus interface. The
Tipin antibody position is indicated by a black arrow and the putative WH-Tipin location by a dashed
circle (WH). Docking analysis fitted the crystal structure of the RPA trimerization core (blue, PDB
1L1O) into upper part of the U-shape density. (b) Schematic representation of the summary in (a).
The densities show a mesh representation of the Tim-Tipin-RPA 3D reconstruction and the RPA
subunits are depicted as spheres. A = RPA70 DBD-A, B = RPA70 DBD-B, C = RPA70 DBD-C.
D = RPA32 DBD-D. 14 = RPA14. (c) Putative Tim-Tipin envelope (solid yellow density) and its
location in the 3D map (mesh representation). It should be noted that only RPA’s DNA binding core
(RPA70ABC/RPA32D/RPA14) was deleted from the 3D map, thereby the yellow envelope harbors
a small contribution from RPA32WH (MW ∼10 kDa). Four different views of the reconstruction are
shown (top, front, side, back), which are related by rotation around the y- and x-axis as indicated.
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The comparison of the 2D class averages of the GraFix cross-linked and the SEC-

reconstituted specimens shows no detectable differences on the structural arrangement

of the RPA conformation (Figure 2.26), further supporting the notion that the compact

conformation of RPA in the Tim-Tipin-RPA complex derives from binding to Tim-Tipin

rather than from chemical fixation by glutaraldehyde. Despite this analysis, the question

if direct interactions of Tim-Tipin with RPA are driving RPA’s structure in a compact

conformation remains unanswered. One the one hand, the SEC results using truncated

RPA proteins show no interactions between RPA70AB and Tim-Tipin (Section 2.4.4)

indicating that this subunit may play an indirect role in stabilizing Tim-Tipin-RPA and

that the overall architecture of RPA is necessary for a relevant interaction. However,

another possible explanation for RPA’s specific structural arrangement could be weak

contacts between Tim-Tipin/Tim and RPA70AB, which are not detectable by SEC. The

weaker interactions between the ternary RPA70DBD-C/32/14 complex (lacking RPA70

DBD-A and -B) and Tim-Tipin compared to the RPA70/32/14 complex containing all

DBD-A, -B, -C, and -D may support this hypothesis. Further, the close proximity of the

putative Tim C-terminus to the lid domain accommodating RPA70AB in the EM model

may hint at an additional interface between RPA and Tim-Tipin/Tim (Figure 3.1 c).

Hence, further experiments are required to conclusively verify a second interface and to

answer the question what is the driving force for RPA’s specific compact architecture.

3.4. Dispensability of RPA70N, RPA32N, and Tim C-terminus

for Tim-Tipin-RPA Complex Function

In this study, RPA’s DNA binding core together with the RPA32 C-terminal WH do-

main, which was reported to mediate Tipin interactions, were used. The N-terminal

region of RPA70 (aa 1-189, RPA70N), the first 42 residues of RPA32 (RPA32N), and

the C-terminus of Tim (aa 1135-1197) were excluded for the structural and biochemical

analysis. These truncations are justified by several observations emphasizing that the

deleted segments do not affect the conclusions drawn from this study. First, RPA70N

and RPA32N are deleted because they are not included into the DNA-binding core and

thus do not contribute to RPA’s ssDNA binding affinity in the 30 nt binding mode

[82, 135]. Second, this two subunits are also structurally independent of RPA’s DNA-

binding core. For instance, RPA70N is connected by a long, unstructured, and poorly

conserved linker and RPA32N is proven to be unstructured [136–138]. Third, Tim is

truncated at the C-terminus because it shows severe degradation in limited proteolysis
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(Section 2.1.1 and 2.1.3). Finally, truncated Tim-Tipin was fully able to bind to RPA

highlighting the dispensability of this C-terminal region for Tim-Tipin-RPA complex

formation.

Despite these observations, the reconstitution of Tim-Tipin-RPA using full-length

RPA proteins was tested and could be successfully carried out. Further, the Tim-Tipin-

RPA(FL) complex shows similar behavior to Tim-Tipin-RPA including truncated RPA

proteins in terms of the dependence on ssDNA length and protein:ssDNA stoichiometry

(Section 2.4.5). Thus, the truncated N-terminal RPA70 and RPA32 regions do not affect

the complex formation and the biochemical function of the complex based on the SEC

analysis.

However, the deleted RPA and Tim fragments may have further relevant biological

functions. The C-terminal part of Tim comprises a nuclear localization signal, which was

reported to be likely relevant for the nuclear import of Tim and/or Tim-Tipin and may

be important for its in vivo function [109]. RPA32N becomes phosphorylated at the first

33 amino acids in a cell-cycle dependent manner and also in response to DNA damage

[139, 140]. The phosphorylation introduces negative charge to the N-terminus and leads

to a conformational change of RPA. Reportedly, this phosphorylation-induced inter-

subunit rearrangement promotes the interaction of RPA32N with RPA70N [139]. In

addition, RPA70N represents an important RPA-protein interaction domain and was re-

ported to bind the p53 tumor suppressor, Rad9 (subunit of the Ras9-Hus1-Rad1 (9-1-1)

complex), ATRIP (S phase checkpoint) and Mre11 (double-strand break/recombinational

repair) [118, 141]. Thus, the phosphorylation-induced conformational change of RPA

may modulate RPA’s interaction with other proteins and/or ssDNA and may regulate

RPA’s function in that sense in vivo.

Potentially, to further characterize the role of RPA70N and RPA32N in recruitment

and release of Tim-Tipin, truncated versions of RPA lacking the RPA70N and RPA32N

regions could be used for in vivo experiments. In parallel, in vitro studies using phospho-

mimetic proteins could be used to characterize the influence of phosphorylation on Tim-

Tipin-RPA complex formation and ssDNA-binding activity.

3.5. Tim-Tipin-RPA Dissociation and Resulting Implications

for DNA Replication

Further, the SEC and EMSA analyses using various ssDNA substrates suggest that the

stability and the ssDNA binding ability of Tim-Tipin-RPA also highly depends on RPA’s
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conformation in the presence of ssDNA and RPA’s ssDNA binding mode, respectively.

This study shows that the Tim-Tipin-RPA-ssDNA complex stays intact when RPA

adopts the 30 nt binding mode at excess amounts of ssDNA and with ssDNA ≥ 30 nt

engaging all four DBDs A-D [96, 97]. When the ssDNA length is short (<15 nt) or

at sub-stoichiometric ssDNA amounts (excess amount of protein), the Tim-Tipin-RPA-

ssDNA complex dissociates into DNA-free Tim-Tipin and DNA-bound RPA (Figure

2.28 and Figure 2.32, summarized in Figure 3.2). At this conditions RPA binds ssDNA

in the 8 nt binding mode with DBD-A and DBD-B only contacting the ssDNA. In sum-

mary, these observations support the notions of a link between RPA’s ssDNA-dependent

conformation and RPA-protein interactions.

Figure 3.2.: Graphical summary of Tim-Tipin-RPA formation relying on the ssDNA length-
dependent RPA conformation. RPA possesses two DNA binding modes (8 nt and 30 nt binding
mode), which can coexist in a dynamic equilibrium (top). In the DNA-free state, Tim-Tipin and
RPA form a complex and RPA’s conformation is fixed into a compact mode resembling RPA’s con-
formation with long ssDNA. An intact complex formation is also observed with long and excess
amounts of ssDNA. In the presence of short or at sub-stoichiometric amounts of long ssDNA, thus
upon the conformational change of RPA to the 8 nt binding mode, the complex dissociates into
DNA-free Tim-Tipin and DNA-bound RPA. The RPA conformation-based association and dissoci-
ation of Tim-Tipin-RPA provides a molecular basis for the recruitment and correct arrangement of
involved proteins at the replication fork. The hypothetical ssDNA path in the Tim-Tipin-RPA EM
reconstruction is indicated as dashed line (ssDNA taken from RPA-core-32 nt complex structure,
PDB 4GNX). Adopted from [128].
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Several reports suggest that the Tim-Tipin complex is located between the helicase

and polymerase and plays a role in coupling DNA-unwinding and DNA-synthesis by

directly affecting the catalytic activities of these enzymes. These observations together

with the results of this thesis lead to the speculation that the recruitment of the Tim-

Tipin complex to replications forks and its release might be modulated by RPA’s ssDNA-

dependent conformation. While the 30 nt binding mode of RPA might be important for

the recruitment of the Tim-Tipin complex to the replication fork, the conformational

switch of RPA from the 30 nt to the 8 nt binding mode might be crucial for the release

of the Tim-Tipin complex, which is then placed at its optimal location between the

helicase and polymerase to couple the functions between these two machineries [19,

70, 74, 75, 79]. The conformational switch could be triggered by the oligomerization

of RPA at opened ssDNA, which probably harbors RPA in its 8 nt binding mode.

Moreover, RPA’s conformation was also suggested to be modulated by binding of other

proteins, for example by the SV40 Tag helicase [9, 142]. RPA’s recruitment to the

replication fork is proposed to be dependent on DNA unwinding by the helicase and

specific RPA-helicase interaction. The RPA-helicase interaction was only stable when

RPA adopted the 8 nt binding mode on ssDNA thus forming a ternary ssDNA-RPA-

Tag helicase complex. These findings would further support the release of Tim-Tipin by

RPA’s conformational switch to the 8 nt binding mode upon recruitment, which could

be induced by RPA-protein interactions (Figure 3.3).

Figure 3.3.: Hypothetical role of Tim-Tipin-RPA at the replication fork under normal conditions.
Tim-Tipin-RPA could form a complex with RPA in its 30 nt binding mode. After recruitment
to the replication sites, Tim-Tipin could be ’handed off’ to its optimal position coupling helicase
and polymerase function. During this process, the release of Tim-Tipin could be induced by a
conformational switch of RPA to the 8 nt binding mode by interactions with other proteins. Adopted
from [128].
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Interestingly, the DNA-binding studies reveal a different behavior of the Tim-Tipin

complex in comparison to other RPA-binding proteins, which is profoundly discussed

in Section 3.7. Briefly, many proteins destabilize RPA’s 30 nt binding mode by binding

to RPA’s protein interaction domains (RPA70N, RPA70AB, RPA32WH) [34, 116, 142].

Protein-RPA interactions are coupled to the conformational shift of RPA from the 30 nt

to the 8 nt binding mode and may lead to a protein-mediated displacement of RPA from

ssDNA. In contrast, our DNA-binding studies show that the Tim-Tipin-RPA complex

formation is stabilized when RPA adopts its 30 nt binding mode indicating a different

behavior.

3.6. Biochemical Implications for the ssDNA Path in the

Tim-Tipin-RPA Complex

The SEC, EMSA and FA experiments in this study show that Tim-Tipin binds ssDNA

in a length-dependent manner with sub-micromolar affinity to long (60 nt) and no

detectable affinity to short ssDNA substrates (14 nt) (Section 2.4.1 and 2.4.2). Here,

the FA analysis also points out that RPA’s ssDNA binding affinity is significantly higher

compared to Tim-Tipin (summarized in Figure 3.4) and that the ssDNA binding in the

Tim-Tipin-RPA complex is dominated by RPA as examined by FA and SEC analysis

(Figure 2.28 and 2.30).

Figure 3.4.: Interaction scheme of RPA with ssDNA, RPA with Tim-Tipin, and Tim-Tipin with
ssDNA. While RPA binds ssDNA with high (nano- to sub-nanomolar) affinity, Tim-Tipin shows
micromolar affinity, which is length-dependent suggesting that Tim-Tipin binding to ssDNA plays
only a minor role in the Tim-Tipin-RPA complex and is taken over by RPA. The asterisk indicate the
KD determined in this thesis. Adopted from [128].

Based on these results together with the fact that Tim-Tipin-RPA complex formation

depends on RPA’s conformation and ssDNA, this study suggests that Tim-Tipin plays

only a minor role in ssDNA binding in the Tim-Tipin-RPA complex, while RPA takes
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Checkpoint and DNA Repair

over DNA binding. The hypothetical path of the ssDNA could pass RPA’s ssDNA

binding core (Figure 3.2).

The weak DNA binding affinity may be advantageous for Tim-Tipin to stay proximal

to the key replisome proteins. This hypothesis is in line with the reports suggesting the

involvement of Tim-Tipin as an accessory protein in the DNA replication machinery

coupling the function of the helicase and polymerase [19, 70, 74, 75, 79]. In this scenario,

RPA may recruit Tim-Tipin to the replication fork and may ’hand off’ the complex to

the key replicative enzymes (Figure 3.3).

Interestingly, the structural characterization and the docking and mapping analysis

of the Tim-Tipin-RPA complex may provide an explanation for the length-dependent

affinity of Tim-Tipin to ssDNA and hint at the hypothesis of the presence of one long or

multiple ssDNA binding sites all over Tim-Tipin. Considering the rise per base pair in

B-DNA of 3.4 Å and of 3.7 Å in the elongated Z-DNA, the rise per base in ssDNA could

probably correspond to be 3.5-4 Å. Further, the 3D reconstruction reveals that the Tim-

Tipin complex is likely located in the right part of the ring-like density and spans about

∼150 Å (Figure 3.1). Taken together, Tim-Tipin could be spanned by 40-50 nucleotides

all across its surface/DNA binding site when taking the bended form of Tim-Tipin in the

reconstruction into account. Thus, only relatively long ssDNA (here 60 nt) is capable to

span all across the complex and to form an adequate interface with Tim-Tipin. Based on

the FA and EMSA analysis, the minimum requirement on ssDNA length for detectable

Tim-Tipin interaction lies in the range of 15-30 nt. Increasing DNA length provides an

additional contribution to Tim-Tipin-DNA complex formation, which is also reflected

in the 6-fold higher affinity to 60 nt than to 30 nt ssDNA.

However, another explanation for the weak ssDNA binding affinity may be the acidic

nature of the Tim-Tipin complex, which has a pI of 5.2. Further structural analysis is

required to gain evidence about Tim-Tipin’s length-dependent ssDNA binding.

3.7. Implications for Tim-Tipin-RPA and Tim-Tipin Function

in the DNA Replication Checkpoint and DNA Repair

Collective observations show that the Tim-Tipin complex also interacts with compo-

nents of the DNA replication checkpoint pathway [27, 61, 81, 83]. One key structure

activating this pathway is accumulated ssDNA, which occurs when the DNA polymerase

stalls due to DNA damage or reduced nucleotide levels causing replicative stress [143].

These impediments lead to the uncoupling of the polymerase from the helicase activity
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Figure 3.5.: Hypothetical role of Tim-Tipin-RPA at the replication fork under replicative stress con-
ditions or after DNA damage. In response to replicative stress or DNA damage, accumulated ssDNA
occurs, which is covered by RPA. Tim-Tipin could be recruited to these sides by RPA to mediate
Chk1 phosphorylation in the DNA replication checkpoint protein complex [81]. RPA conformational
switch induced by RPA-protein interactions or phosphorylation [139] could lead to Tim-Tipin release,
which in turn pursues RPA-independent functions like DNA binding, helicase-polymerase coupling or
association with other forks. Adopted from [128].

generating ssDNA stretches, which are immediately covered by RPA [143]. Although a

continuous Tim-Tipin association with the replisome is suggested to stabilize the struc-

ture of stalled replication forks and to prevent the disassembly of the components until

the damage is resolved [18], our study also suggests that Tim-Tipin may be recruited

by RPA to the sides of accumulated ssDNA. Tim-Tipin associated with ssDNA-coated

RPA could mediate the effective phosphorylation of Chk1 by ATR and thus contribute

to the activation of the DNA damage response [61, 83]. Based on the SEC results,

Tim-Tipin could be recruited and released from these sites in an RPA conformation-

dependent manner. The conformational change could be induced by phosphorylation

[139] or interactions with other proteins (discussed on next page). Thus, Tim-Tipin-

RPA-ssDNA could serve as an adapter unit to physically link ATR and Chk1 and thus

facilitate Chk1 phosphorylation. The release of Tim-Tipin from RPA could allow addi-

tional Chk1 phosphorylation by association with other forks (Figure 3.5).

The EMSA analysis in this thesis using branched DNA show that Tim-Tipin has a

broad specificity to fork-like and splayed DNA junctions. This result together with the

FA and SEC analysis using ssDNA hint at a RPA-independent role. Similar Tim-Tipin

association with single-, double-stranded, and fork-like DNA is also reported in vitro
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by Yilmaz et al. supporting the hypothesis that Tim-Tipin may use its affinity to rec-

ognize checkpoint inducing DNA substrates [144]. Nevertheless, further investigations

are required to provide insights into the RPA-independent function of Tim-Tipin in

checkpoint signaling.

Single-stranded DNA structures do not only occur as checkpoint inducing substrates

after uncoupling of the polymerase and helicase due to replicative stress and DNA

damage but also appear as intermediate structures in DNA repair mechanisms, namely

nucleotide excision repair (NER), base excision repair (BER), and double-strand break

(DSB) repair by homologous recombination. They usually emerge from oligomers being

excised at the damaged DNA strand. RPA is suggested to stabilize these intermediate

structures and to serve as an anchor point for the assembly of proteins involved in

DNA repair [21]. The SEC and EMSA results on the ssDNA binding characteristics

of the Tim-Tipin-RPA complex hint at a RPA-mediated recruitment of Tim-Tipin to

the sides of the DNA damage. This hypothesis is supported by the observations that

Tipin shares a similar binding interface on the RPA32WH domain like the DNA repair

enzymes XPA and UNG2 and displays a sequence similarity to these enzymes in the

region responsible for RPA binding [20, 34]. In addition, the MST measurement in

this study determines a sub-micromolar binding affinity of Tim-Tipin to RPA (KD =

0.18 µM), which is comparable to the binding affinity of XPA to RPA (KD = 0.02 µM)

[145]. It should be noted, that the XPA binding affinity highly depends on the length

of the used protein constructs. Thus, binding studies using only XPA fragments, which

have a sequence similarity to Tipin (e.g. human XPA, aa 1-98), showed a much lower

affinity to RPA and were determined to be in the micro-molar range (KD = 5 µM) [34],

indicating that an additional contribution to RPA binding is made by other parts of

XPA. This is consistent with the reported interaction of XPA’s C-terminal region with

RPA70 [145]. High KD values were also reported for short UNG2 constructs (human

UNG2, aa 73-88, KD ≤ 10−6 M) [34].

Interestingly, several studies suggest that the association of XPA, UNG2, Rad52 [34],

and the SV40 Tag helicase [116, 142] with the C-terminal region of RPA32 or with

RPA70AB and RPA70N is attended by a conformational switch of RPA from the 30 nt

to the 8 nt binding mode and by the dissociation of the RPA trimerization core, which

is weakly bound to ssDNA (KD = 2-10 µM) [97, 146]. It is speculated that the binding

of these proteins places constraints on RPA’s conformation and increases the distance

between RPA70AB and the trimerization core. The resulting steric hindrances then

prevent the re-association of the trimerization core with the ssDNA and thus may even
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lead to a conformation induced displacement of RPA from DNA [97]. Unlike these

suggestions of Brosey et al. and the sequence similarity of Tipin to XPA and UNG2,

this thesis shows that the Tim-Tipin-RPA complex formation on ssDNA is only achieved

with RPA in the 30 nt binding mode and is negatively affected by the 30 nt to the 8 nt

conformational switch. The hypothesis that the RPA32WH domain acts as a general

anchor and exchange point for RPA accessory proteins may be extended by this study

[34]. The results lead to speculations that RPA’s conformation also plays a critical role

in the assembly of RPA accessory protein during DNA repair.

Further, the ubiquitous occurrence of ssDNA as an intermediate structure in normal

and perturbed DNA replication, in DNA repair, and as a checkpoint inducing structure

suggests that Tim-Tipin-RPA-ssDNA formation may also serve as a link between DNA

replication, the S phase checkpoint pathway, and DNA repair.

3.8. Dynamic Interactions as Mechanistic Basis for the

Replication Fork Organization

In summary, the Tim-Tipin complex is recruited to ssDNA by a specific interaction

with RPA, which is formed by a similar RPA binding site as observed for key repair

proteins. However, the formation and dissociation of Tim-Tipin-RPA-ssDNA is further

based on RPA’s conformation/binding mode and occurs in a highly dynamic manner.

This result provides a mechanistic basis for the correct arrangement of the involved

proteins at the replication fork. In general, dynamic interactions may support a high

turnover of proteins and may be advantageous for an efficient and fast adaptation of

the involved proteins at the replication fork to incidents during DNA replication. This

study indicates that the recruitment of RPA binding proteins to RPA/RPA-ssDNA takes

place in a sensitive equilibrium and hint at an elaborated organization of the replisome

accessory components to ensure correct duplication of the genome.

3.9. Open Questions and Outlook

The Tim-Tipin complex fulfill a tethering and stabilizing function at the replication

fork and is suggested to be recruited by a specific interaction with RPA. The EM 3D

reconstruction of the Tim-Tipin-RPA complex shows that RPA adopts a U-shape con-

formation resembling the conformation when RPA is bound to ssDNA. Determination

of the crystal structure of Tim-Tipin alone and in complex with RPA will explore what
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is the driving force for the preference of this specific compact RPA architecture. In

addition to the SEC experiments of this study, further binding studies are required

to conclusively answer the question if a second interface between RPA70AB and Tim-

Tipin/Tim is existing. To explicitly determine the KD between Tim-Tipin and RPA,

a label-free method (e.g. isothermal titration calorimetry, ITC) could be applied in

addition to the MST measurements.

Moreover, the Tim-Tipin-RPA complex lacking the RPA70N and RPA32N regions

could be used for in vivo experiments to characterize the role of these regions in recruit-

ment and release of Tim-Tipin and other accessory proteins. In addition, interaction

studies like MST or ITC using full-length, truncated or phospho-mimetic proteins could

be performed to better quantify the impact of the RPA70N and RPA32N regions and

to further characterize the influence of the phosphorylation on Tim-Tipin-RPA complex

formation and ssDNA-binding activity in vitro.

Besides RPA, Tim-Tipin binds a number of replication factors like polymerases, the

helicase and Claspin. Structural characterization of Tim-Tipin in complex with key or

accessory replication protein is crucial to advance the understanding of the concerted

assembly and function in the progressing replisome.

Further, the biochemical analysis in this thesis shows an intact Tim-Tipin-RPA com-

plex formation with ssDNA under particular conditions. These results could serve as

a lead to define the putative ssDNA path in Tim-Tipin-RPA and could help to con-

clusively answer the question, if Tim-Tipin contacts the ssDNA in the complex. It

will be also interesting to further examine Tim-Tipin’s length-dependent ssDNA bind-

ing by advanced binding experiments or structural characterization. These approaches

could provide the answer to the question if Tim-Tipin harbors a long or multiple DNA

binding sites for long DNA substrates spanning across the complex, which can form an

adequate interface with Tim-Tipin. In addition, the results revealing a broad specificity

of Tim-Tipin in DNA substrate recognition could be expand to characterize the putative

RPA-independent roles of Tim-Tipin.

Moreover, Tim-Tipin is suggested to fulfill further functions in DNA processing. In

addition to tethering and stabilizing function at the replisome, Tim-Tipin is involved in

the DNA replication checkpoint promoting Chk1 activation. Tipin’s sequence similarity

to DNA repair enzymes and its similar binding interface on RPA32WH hints at a third

function in DNA repair mechanisms. How these three pathway are interconnected and

how Tim-Tipin-RPA or individual Tim-Tipin possibly link these three pathways by po-

tentially favoring particular protein interactions of one pathway and disfavoring of the
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other is poorly understood. The RPA conformation-induced association and dissocia-

tion of Tim-Tipin-RPA and the highly dynamic nature of the Tim-Tipin-RPA complex

formation on ssDNA examined in this thesis provide a mechanistic basis for the re-

cruitment and organization of other factors involved in the DNA processing pathways.

Competitive pull-down experiments using purified proteins could help answering the

question, if RPA/RPA-ssDNA/RPA-damaged DNA in complex with Tim-Tipin serves

as an assembly platform for other proteins or if RPA recruits Tim-Tipin and other

factors in a mutual exclusive manner? SEC analysis as performed in this study could

investigate the highly dynamic complex assembly with additional factors. Finally the

identification of new Tim-Tipin/Tim-Tipin-RPA interaction partners and further inves-

tigations of Tim-Tipin in the fully assembled DNA replisome could shed light on the

elaborated organization of normal and perturbed DNA replication.
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4.1. Materials

4.1.1. Consumables and Chemicals

All chemicals were purchased from Biomol (Hamburg, Germany), Merck (Darmstadt,

Germany), Qiagen (Venlo, The Netherlands), Roche Diagnostics (Mannheim, Ger-

many), Roth (Karlsruhe, Germany), Serva (Heidelberg, Germany), and Sigma-Aldrich

(München, Germany). Transfection and ECL reagents were ordered from Invitrogen

(Darmstadt, Germany) and GE Healthcare (München, Germany). Enzymes were pur-

chased from Merck (Darmstadt, Germany), NEB (Schwalbach, Germany), Roche Di-

agnostics (Mannheim, Germany), and Thermo Scientific (Epson, UK). Antibodies were

obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA). PVDF membranes

were provided by Merck (Darmstadt, Germany). Template DNAs were purchased from

Thermo Scientific (Epson, UK). Gel and plasmid extraction and fluorescent labeling

kits were purchased from Qiagen (Venlo, The Netherlands) and Jena Bioscience (Jena,

Germany). Buffer exchange columns, ultrafiltration devices and standard proteins were

obtained from Bio-Rad Laboratories (Hercules, CA, USA), Sartorius Stedim Biotech,

(Göttingen, Germany), and Thermo Scientific (Epson, UK). Chromatography mate-

rial was purchased from GE Healthcare (München, Germany) and Qiagen (Venlo, The

Netherlands). DNA oligonucleotides were synthesized by Eurofins Genomics (Ebersberg,

Germany) and Purimex (Grebenstein, Germany). Bacterial and insect cell expression

flasks were obtained from Corning B.V. Life Sciences (Amsterdam, The Netherlands),

Sarstedt (Nümbrecht, Germany), and Sigma-Aldrich (München, Germany). Crystal-

lization screens and cryo-loops were purchased from Hampton Research (Aliso Viejo,

CA, USA) and Qiagen (Venlo, The Netherlands). Pre-cast gels and gel running buffers

were obtained from Invitrogen (Darmstadt, Germany).

81



4. Materials and Methods

4.1.2. Equipment

Instrument Supplier
Ultrasonic homogenizer Bandelin electronic, Berlin, Germany
Emulsiflex C3 homogenizer Avestin, Mannheim, Germany
Dounce homogenizer Thermo Scientific, Epson, UK

ÄKTA purification systems GE Healthcare, München, Germany
High pressure liquid chromatography Waters, Milform, MA, USA
TDA302 detector array Viscotek, Malvern, Herrenberg, Germany
NanoDrop spectrophotometer Thermo Scientific, Epson, UK
ImageQuant LAS 4000 imager GE Healthcare, München, Germany
Typhoon FL 7000 phosphoimager GE Healthcare, München, Germany
Genios Pro fluorescence reader Tecan, Männedorf, Switzerland
Monolith NT.115 NanoTemper,München, Germany
Gradient station Biocomp, Fredericton, NB, Canada
Gradient fractionator Biocomp, Fredericton, NB, Canada
SW40 rotor Beckmann Coulter, Krefeld, Germany
Plasma cleaner chamber Harrick Plasma, Ithaca, NY ,USA
Vitrobot cryo-station FEI, Eindhoven, The Netherlands
CM200-FEG electron microscope FEI, Eindhoven, The Netherlands
Tecnai F20 electron microscope FEI, Eindhoven, The Netherlands
Phoenix nanodispenser robot Art Robbins Instruments, Sunnyvale, CA, USA
PXII beam line SLS, Villigen, Switzerland

4.1.3. Software

Software Supplier/Developer
BSOFT Heymann and Belnap 2007 [147]
CTFFIND3 Mindell and Grigorieff [148]
EMAN Ludktke et al. 1999 [149]
Max Quant Cox and Mann 2008 [150]
OmniSEC 4.5 Viscotek, Malvern, Herrenberg, Germany
Origin 8.1 Origin-Lab, Northampton, MA, USA
SPARX Hohn et al. 2007 [151]
SPIDER Frank et al. 1996 [152]
UCSF Chimera Pettersen et al. 2004 [132]
VectorNTI Life Technologies, Darmstadt, Germany
XDS Kabsch 2010 [153]

4.1.4. Media and Buffers

Medium Composition Cell type
LB 1% (w/v) Bacto Trypton, 0.5% (w/v) Yeast extract, E. coli

0.5% (w/v) NaCl, pH 7.2
TB 1.2% (w/v) Bacto Trypton, 2.4% (w/v) Yeast extract, E. coli

0.004% (v/v) glycerol, supplemented with phosphate buffer
(10% (v/v), 0.17 M KH2PO4, 0.72 M K2HPO4 x 3 H2O)

SOC 2% (w/v) Bacto Trypton, 0.5% (w/v) Yeast extract, E. coli

10 mM NaCl, 10 mM MgSO4, 2.5 mM KCl, 1 mM MgCl2,
0.4% glucose, pH 7.2

Sf-900 II SFM Serum-free, protein-free insect cell culture medium Insect cells
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4.1.5. Antibiotic Solutions

Antibiotic Stock solution Final concentration
Ampicillin 100 mg/ml 100 µg/ml
Kanamycin 50 mg/ml 50 µg/ml
Streptomycin 50 mg/ml 50 µg/ml
Chloramphenicol 34 mg/ml 34 µg/ml

4.1.6. Bacterial Strains and Cell Lines

Table 4.1.: Bacterial stains

Strain Species Genotype
DH5α E. coli F− φ80lacZ∆M15 ∆(lacZYA-argF) U169 recA1 endA1

hsdR17(rk
−, mk

+) phoA supE44 thi-1 gyrA96, relA1 λ−

BL21 DE3 gold E. coli F− ompT hsdS(rB
− mB

−) dcm+ Tetr

gal λ(DE3) endA Hte
BL21 DE3 gold E. coli F− ompT hsdS(rB

− mB
−) dcm+ Tetr

pLysS gal λ(DE3) endA Hte [pLysS Camr ]
BL21 DE3 gold E. coli F− ompT hsdS(rB

− mB
−) dcm+ Tetr

pRARE gal λ(DE3) endA Hte [pRARE Camr]
BL21 DE3 pRIL E. coli F− ompT hsdS(rB

− mB
−) gal dcm λ(DE3) [pRIL Camr]

DH10Bac E. coli F− mcrA, ∆(mrr -hsdRMS-mcrBC) φ80lacZ∆M15 ∆lacX74
recA1 endA1 araD139 ∆(ara, leu)7697 galU galKλ- rpsL,
nupG /pMON14272 /pMON7124

Table 4.2.: Cell lines

Cell line Description
Sf21 Ovarian cells isolated from Spodoptera frugiperda (fall armyworm);

used for transfection with bacmid DNA and propagation of recombinant baculovirus stocks
Sf9 originated from Sf21;

used for transfection with bacmid DNA and propagation of recombinant baculovirus stocks
High Five Ovarian cells derived from the parental Trichopulsia ni cell line (cabbage looper);

used for the expression of recombinant proteins using the baculovirus expression system

4.1.7. Antibodies

Antibody (ab) Specificity Order number Dilution
anti-Tipin primary ab, polyclonal IgG sc-160865 1:4000

from goat
anti-RPA70 primary ab, monoclonal IgG1 sc-166023 1:5000

from mouse
anti-goat secondary ab, IgG-HRP sc-2020 1:10000

from donkey
anti-mouse secondary ab, IgG-HRP BML-SA204-0100 1:10000

from goat
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4.1.8. Plasmids

Table 4.3.: Vectors

Name Application Tag Cleavable
pEC-A-HT-His Bacterial expression of proteins N-terminal 6xHis-Tag TEV
pEC-K-3C-His Bacterial expression of proteins N-terminal 6xHis-Tag 3C
pEC-S-CDF-His Bacterial expression of proteins N-terminal 6xHis-Tag Tev
pEC-K-3C-GST Bacterial expression of proteins N-terminal 6xHis-GST-Tag 3C
pCoofy27 Insect cell expression of proteins N-terminal 6xHis-Tag 3C

Table 4.4.: Cloned Plasmids

Name Vector Primer Insertion sites
Tim 992-1134 pEC-A-HT-His 17JW, 18JW LIC TEV
Tim 1008-1134 pEC-K-3C-GST 25JW, 3JW LIC 3C
Tim 1008-1125 pEC-K-3C-GST 25JW, 2JW LIC 3C
Tim 872-949 pEC-K-3C-GST 14JW, 15JW LIC 3C
Tim 872-1134 pEC-K-3C-GST 14JW, 3JW LIC 3C
Tim 810-1134 pEC-K-3C-GST 12JW, 3JW LIC 3C
Tim 818-1138 pEC-K-3C-GST 24JW, 23JW LIC 3C
Tim 1-655 pEC-S-CDF-His 37JW, 41JW LIC TEV
Tim 1-585 pEC-K-3C-GST 4JW, 7JW LIC 3C
Tim 1-529 pEC-S-CDF-His 37JW, 48JW LIC TEV
Tim 1-332 pEC-K-3C-GST 4JW, 6JW LIC 3C
Tim 1-267 pEC-S-CDF-His 37JW, 38JW LIC TEV
Tim 1-241 pEC-S-CDF-His 37JW, 49JW LIC TEV
Tim 1-1134 pEC-S-CDF-His 37JW, 18JW LIC TEV
Tim 1-1197 pCoofy27 9JW, 10JW SLIC
Tipin 55-127 pEC-K-3C-GST 34JW, 64JW LIC 3C
Tipin 55-136 pEC-K-3C-GST 34JW, 65JW LIC 3C
Tipin 55-150 pEC-K-3C-GST 34JW, 35JW LIC 3C
Tipin 55-169 pEC-K-3C-GST 34JW, 66JW LIC 3C
Tipin 55-220 pEC-K-3C-GST 34JW, 36JW LIC 3C
Tipin 55-278 pEC-K-3C-GST 34JW, 29JW LIC 3C
Tipin 1-127 pEC-K-3C-GST 28JW, 64JW LIC 3C
Tipin 1-136 pEC-K-3C-GST 28JW, 65JW LIC 3C
Tipin 1-169 pEC-K-3C-GST 28JW, 66JW LIC 3C
Tipin 1-278 pEC-K-3C-GST 28JW, 29JW LIC 3C
RPA70 1-623 pEC-S-CDF-His 89JW, 57JW LIC TEV
RPA70 190-623 pEC-S-CDF-His 78JW, 57JW LIC TEV
RPA70 445-623 pEC-S-CDF-His 56JW, 57JW LIC TEV
RPA70 190-431 pEC-K-3C-His 78JW, 79JW LIC 3C
RPA32 1-270 pEC-A-HT-His 90JW, 59JW LIC TEV
RPA32 43-270 pEC-A-HT-His 58JW, 59JW LIC TEV
RPA32 173-270 pEC-K-3C-GST 42JW, 43JW LIC 3C
RPA14 1-121 pEC-K-3C-His 53JW, 54JW LIC 3C
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4.1.9. Oligonucleotides for Cloning

Name Sequence (5’→3’)
2JW cagaccgccaccgactgcttaTTCTGTCCGGTGCTCCTCAC
3JW cagaccgccaccgactgcttaACGGGCTGACAGAAGGGC
4JW ccaggggcccgactcgatgGACTTGTACATGATGAACTGTGAAC
6JW cagaccgccaccgactgcttaGCGATGGACAGACAGCTCC
7JW cagaccgccaccgactgcttaCTCTGAGGCCGCATCAAAGG
9JW aagttctgttccaggggcccATGGACTTGTACATGATGAACTGTGAACTTCTAG
10JW ccccagaacatcaggttaatggcgTCAGTCATCCTCATCCTCAATCTGAAACC
12JW ccaggggcccgactcgAGCCACAGAGCTCCTCTGTG
14JW ccagggagcagcctcgctggaagttctgttccaggggcccGAGTTCCAGAAGAGGAAAGGG
15JW gcaaagcaccggcctcgttaAGAAGGCGCCAGCTTCTTTC
17JW ccagggagcagcctcgctggaagttctgttccaggggcccGGTCAGGGCAGCTCATCTC
18JW gcaaagcaccggcctcgttaACGGGCTGACAGAAGGGC
23JW cagaccgccaccgactgcttaTGCTTTCCTCTTACGGGCTG
24JW ccaggggcccgactcgatgCCTGAGGAAGAGGCCCAG
25JW ccaggggcccgactcgatgCGTCAGGAAGGCCTCTCTG
28JW ccaggggcccgactcgatgTTAGAGCAAGAAGAAAATGGCTTGTTTG
29JW cagaccgccaccgactgcttaGTCTAAGTTAGTATGGTCCAGTTG
34JW ccaggggcccgactcgatgAGAACAGTTAAAAGGAATCTACCTAAGC
35JW cagaccgccaccgactgcttaATCTTCATGTACAATAGGCAGATCAAG
36JW cagaccgccaccgactgcttaCTGGCTATTACTCAGTAGCTTTGC
37JW ccagggagcagcctcgatgctggaagttctgttccaggggcccATGGACTTGTACATGATGAACTGTGAAC
38JW gcaaagcaccggcctcgttaCCGAGCTCTCTTCTCCGC
41JW gcaaagcaccggcctcgttaCTCCTGCTGCCGGGG
42JW ccaggggcccgactcgatgAACAGCCAGGCCTCTGCAG
43JW cagaccgccaccgactgcttaCTCTGCATCTGTAGACTTAAAGTG
48JW gcaaagcaccggcctcgttaTCTTTTGTTCTGCACCATCAGGTTC
49JW gcaaagcaccggcctcgttaGCGTCCCTGCCCTACTC
53JW ccaggggcccgactcgatgGAGGACATAATGCAGCTCCC
54JW cagaccgccaccgactgcttaTTCATGTTGTGGAAGCCCTACAG
56JW ccagggagcagcctcgatgctggaagttctgttccaggggcccGGAGGGGGCAACACCAAC
57JW gcaaagcaccggcctcgttaCATGTTCTTCCTGATGTTCGCG
58JW ccagggagcagcctcgatgctggaagttctgttccaggggcccGCCCAGCATATTGTGCCCTG
59JW gcaaagcaccggcctcgttaCTCTGCATCTGTAGACTTAAAGTG
64JW cagaccgccaccgactgcttaTAGGTTTTCGACTCTGTCAATAAAATCTTC
65JW cagaccgccaccgactgcttaACAGGTCTGAACCTCCTTTTTATTTC
66JW cagaccgccaccgactgcttaAGTAGCAGATACATCTGGGCC
78JW ccaggggcccgactcgatgCAGTCCAAAGTGGTGCCCATC
79JW cagaccgccaccgactgcttaTAAGGCTTGTCCTTCTGAGTCAAAC
89JW ccagggagcagcctcgatgGTGGGACACCTGAGCGAG
90JW ccagggagcagcctcgatgTGGAATAGCGGATTCGAAAGCTTC

Small letters show LIC and SLIC overhangs.
Capital letters correspond to the sequence of the gene of interest.
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4.1.10. Buffers for Protein Purification

Buffer Composition Protein Application
PD 1 20 mM Tris pH 7.5, 150 mM NaCl, 2 mM imidazole, all tested Expression/

10% glycerol, 0.1% NP-40 constructs solubility test
Lys 1 50 mM Tris pH 7.4, 400 mM NaCl, 25 mM imidazole, Tim-Tipin, Cell lysis

10% glycerol, 1 mM β-ME RPA70/32/14,
RPA32/14,
Tipin

Lys 2 50 mM Tris pH 7.5, 400 mM NaCl, 25 mM imidazole, RPA70FL/32FL/14 Cell lysis
10% glycerol, 1 mM β-ME

Lys 3 50 mM Tris pH 7.4, 300 mM NaCl, 10 mM imidazole, RPA70C/32/14 Cell lysis
10% glycerol, 1 mM β-ME

Lys 4 50 mM Tris pH 7.5, 300 mM NaCl, 14 mM β-ME, RPA32WH, Cell lysis
10% glycerol, 1 mM EDTA C-term. Tim

Lys 5 50 mM Tris pH 7.5, 300 mM NaCl, 10 mM imidazole, RPA70AB Cell lysis
15% glycerol, 1 mM β-ME, 1 mM EDTA

RSB 10 mM Tris pH 7.5, 10 mM NaCl, 1 mM MgCl2 Tim Cell lysis
His 1 50 mM Tris pH 7.4, 200 mM NaCl, 25 mM imidazole, Tim-Tipin, IMAC

5% glycerol, 1 mM β-ME RPA70/32/14,
RPA32/14,
Tipin

His 2 50 mM Tris pH 7.4, 200 mM NaCl, 500 mM imidazole, Tim-Tipin, IMAC
5% glycerol, 1 mM β-ME RPA70/32/14,

RPA32/14,
Tipin

His 3 50 mM Tris pH 7.5, 200 mM NaCl, 25 mM imidazole, RPA70FL/32FL/14 IMAC
5% glycerol, 1 mM β-ME

His 4 50 mM Tris pH 7.5, 200 mM NaCl, 500 mM imidazole, RPA70FL/32FL/14 IMAC
5% glycerol, 1 mM β-ME

His 5 50 mM Tris pH 7.4, 300 mM NaCl, 10 mM imidazole, RPA70C/32/14, IMAC
5% glycerol, 1 mM β-ME RPA70AB

His 6 50 mM Tris pH 7.4, 300 mM NaCl, 500 mM imidazole, RPA70FC/32/14, IMAC
5% glycerol, 1 mM β-ME RPA70AB

His 7 50 mM Tris pH 7.4, 500 mM NaCl, 40 mM imidazole, Tim IMAC
1 mM β-ME

His 8 50 mM Tris pH 7.4, 500 mM NaCl, 500 mM imidazole, Tim IMAC
1 mM β-ME

HS 1 His-buffer 1 supplemented with 1 M NaCl Tim-Tipin Wash
HS 2 His-buffer 1 supplemented with 3 M NaCl RPA70/32/14, Wash

RPA32/14
HS 3 His-buffer 1 supplemented with 2.5 M KCl RPA70/32/14 Wash
HS 4 His-buffer 4 supplemented with 1 M NaCl RPA70C/32/14 Wash
HS 5 His-buffer 5 supplemented with 1 M NaCl RPA70AB Wash
ATPW 1 His-buffer 1 supplemented with Tim-Tipin, Wash

2 mM ATP, 10 mM MgSO4, 50 mM KCl RPA70/32/14,
RPA32/14

ATPW 2 His-buffer 4 supplemented with RPA70C/32/14 Wash
2 mM ATP, 10 mM MgSO4, 50 mM KCl

Q 1 25 mM Bis-Tris pH 6.5, 150 mM NaCl, 14 mM β-ME Tim-Tipin, AEX
Tipin

Q 2 25 mM Bis-Tris pH 6.5, 1000 mM NaCl, 14 mM β-ME Tim-Tipin, AEX
Tipin

Q 3 25 mM Bis-Tris pH 7.0, 150 mM NaCl, 14 mM β-ME, RPA70/32/14, AEX
5% glycerol, 0.01 mM Zn(OAc)2 RPA32/14

Q 4 25 mM Bis-Tris pH 7.0, 1000 mM NaCl, 14 mM β-ME, RPA70/32/14, AEX
5% glycerol, 0.01 mM Zn(OAc)2 RPA32/14
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Buffer Composition Protein Application
Q 5 25 mM Bis-Tris pH 7.3, 100 mM NaCl, 14 mM β-ME, RPA70FL/32FL/14 AEX

5% glycerol, 0.01 mM Zn(OAc)2
Q 6 25 mM Bis-Tris pH 7.3, 1000 mM NaCl, 14 mM β-ME, RPA70FL/32FL/14 AEX

5% glycerol, 0.01 mM Zn(OAc)2
Q 7 20 mM Tris pH 7.6, 100 mM NaCl, 5 mM DTT, RPA70C/32/14 AEX

5% glycerol, 0.01 mM Zn(OAc)2
Q 8 20 mM Tris pH 7.6, 1000 mM NaCl, 5 mM DTT, RPA70C/32/14 AEX

5% glycerol, 0.01 mM Zn(OAc)2
Q 9 50 mM BTP pH 7.0, 50 mM NaCl, 10 mM β-ME RPA32WH AEX
Q 10 25 mM Bis-Tris pH 7.0, 150 mM NaCl, 5% glycerol, RPA70AB AEX

5 mM β-ME
Q 11 25 mM Bis-Tris pH 7.0, 1000 mM NaCl, 5% glycerol, RPA70AB AEX

5 mM β-ME
Q 12 50 mM Bis-Tris pH 7.0, 100 mM NaCl, 5% glycerol, Tim AEX

10 mM β-ME
Q 13 50 mM Bis-Tris pH 7.0, 1000 mM NaCl, 5% glycerol, Tim AEX

5 mM β-ME
Q 14 50 mM Bis-Tris pH 6.0, 50 mM NaCl, 14 mM β-ME C-term Tim AEX
Q 15 50 mM Bis-Tris pH 6.0, 1000 mM NaCl, 14 mM β-ME C-term Tim AEX
Dia 1 50 mM Tris pH 7.3, 150 mM NaCl, 14 mM β-ME Tim-Tipin Dialysis
SEC 1 20 mM Hepes pH 7.0, 125 mM NaCl, 2 mM DTT Tim-Tipin SEC
SEC 2 20 mM Hepes pH 7.5, 125 mM NaCl, 2 mM DTT, RPA70/32/14, SEC

0.01 mM Zn(OAc)2 RPA70FL/32FL/14
SEC 3 20 mM Hepes pH 7.5, 150 mM NaCl, 5 mM DTT, RPA70C/32/14, SEC

2.5% glycerol, 0.01 mM Zn(OAc)2 RPA32/14
SEC 4 25 mM Hepes pH 7.0, 150 mM NaCl, 2 mM DTT RPA32WH, SEC

C-term. Tim
SEC 5 25 mM Hepes pH 7.0, 300 mM NaCl, 2 mM DTT Tim SEC

IMAC, immobilized metal ion affinity chromatography; β-ME, β-mercaptoethanol;
ATP, adenosine triphosphate; DTT, dithiothreitol; EDTA, ethylenediaminetetraacetic acid;
AEX, anion-exchange chromatography; SEC, size exclusion chromatography

4.2. Methods

4.2.1. Cloning Procedures

Template DNA

Genes encoding full-length mouse RPA70 (BC019119), full-length mouse RPA32 (BC00-

4578), full-length mouse RPA14 (BC028489) and full-length mouse Tipin (BC016211)

were purchased from Thermo Scientific (Epson, UK). The full-length Tim gene (AB019-

001) was a generous gift from Dr. Achim Kramer, Charité Berlin, Germany.

Polymerase Chain Reaction

Genes were amplified from template DNA using Pfu DNA Polymerase (Thermo Sci-

entific Fermentas, Epson, UK) and a standard PCR and amplification protocol (Table

4.4 and 4.5). After amplification the PCR product was analyzed by agarose gel elec-
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trophoresis (1% w/v) in 1x TAE (40 mM Tris pH 8.0, 0.1% HOAc, 1 mM EDTA), cut

from the gel and purified using a gel extraction kit (Qiagen, Venlo, The Netherlands).

Table 4.4.: PCR reaction

Component Stock concentration Final concentration Amount
dNTPs 2 mM 0.2 mM 5 µL
Pfu buffer 10x 1x 5 µL
Template DNA ∼50-200 ng/µL ∼100 ng 1 µL
5’ Primer 10 µM 0.4 µM 2 µL
3’ Primer 10 µM 0.4 µM 2 µL
Pfu polymerase 2.5 U/µL 2.5 U 1 µL
ddH2O add to 50 µL 34 µL

Table 4.5.: PCR amplification protocol

Step Temperature [◦C] Time Cycles
1 95 180 sec 1
2 95 30 sec
3 55 30 sec
4 72 60 sec/500 bp 30x to step 2
5 72 10 min 1
6 4 ∞

Cloning in pEC Vectors

Amplified genes (Section 4.2.1) were cloned into pEC series of vectors generated by

Jerôme Basquin and Florence Martin (MPIB), which were designed for Ligase Indepen-

dent Cloning (LIC) [154]. The LIC principle utilizes the 3’ to 5’-exonuclease activity

of the T4 DNA polymerase (Novagen, Merck KGaA, Darmstadt, Germany) to create

12-15 base pairs (bp) long single-stranded overhangs on the linearized vector and the

PCR product, which are complementary. By incubation of the processed vector and

PCR product, the compatible overhangs anneal forming a circular product and can be

directly transformed in E. coli without requiring DNA ligase.

For cloning, the LIC vector was linearized for 3 hours at 37 ◦C using restriction

enzymes (NEB, Schwalbach, Germany) as described in Table 4.6. After restriction, the

cleavage reaction was loaded onto an agarose gel and the DNA was isolated using a

gel extraction kit (Qiagen). The genes of interest were amplified using oligonucleotides

with specific LIC overhangs as described in Section 4.2.1. For LIC insert and LIC vector

processing, the reaction was prepared as described in Table 4.7 and 4.8. After 30 min

incubation at RT, the enzyme was inactivated at 75 ◦C for 20 min.

Note, 2 µL processed insert and 1 µL processed vector were mixed and incubated for

10 min at RT. After addition of 1 µL EDTA (6.25 mM final concentration), the mixture
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Table 4.6.: Vector linearization using restriction enzymes

Component Stock concentration Amount
Vector 6 µg

10x NEBuffer 4 10x 10 µL
ZraI or SacII 10 U/µL or 20 U/µL 10-5 µL

ddH2O add to 100 µL

Table 4.7.: LIC insert processing using a 20 µL reaction mix

Component Stock concentration Amount
PCR product 600 ng (30 ng/µL)

T4 DNA polymerase buffer 10x 2 µL
dATP 25 mM 2 µL
DTT 100 mM 1 µL

T4 DNA Pol. LIC qualified 2.5 U/µL 0.4 µL
ddH2O add to 20 µL

Table 4.8.: LIC vector processing using a 30 µL reaction mix

Component Stock concentration Amount
Linearized pEC vector 450 ng (15 ng/µL)

T4 DNA polymerase buffer 10x 3 µL
dTTP 25 mM 3 µL
DTT 100 mM 1.5 µL

T4 DNA Pol. LIC qualified 2.5 U/µL 0.6 µL
ddH2O add to 30 µL

was incubated 10 min at RT and 2 µL of that mixture were transformed into competent

E. coli cells (Section 4.2.1). Ten colonies were picked and tested for false positives via

PCR, in which a single colony was used as template DNA. Two positive clones were am-

plified for plasmid purification using a plasmid DNA extraction kit (Qiagen, Venlo, The

Netherlands) and the cloning success was additionally confirmed by DNA sequencing

(Biochemistry Core Facility (MPIB) or Eurofins Genomics, Ebersberg, Germany).

Cloning in pCoofy Vectors

Amplified genes were cloned into pCoofy series of vectors generated by the Biochemistry

Core Facility (MPIB) [155], which were designed for Sequence and Ligation-Independent

Cloning (SLIC). SLIC cloning represents a parallel PCR-based method and uses the

principle of homologous recombination and single-strand annealing, which is catalyzed

by RecA [156].

For cloning, the pCoofy vector was linearized by PCR as described in Section 4.2.1

using oligonucleotides with specific SLIC overhangs. The gene of interest was also am-

plified via PCR using oligonucleotides with complementary overhangs to the linearized

vector. After PCR, both products were purified via gel-extraction (Qiagen) and used
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for the SLIC reaction as described in Table 4.9. The reaction mixture was incubated

for 30 min at 37 ◦C and transformed into competent E. coli cells (Section 4.2.1). The

clones were tested for false positives as described in Section 4.2.1.

Table 4.9.: SLIC reaction

Component Stock concentration Amount
Linearized pCoofy vector 100 ng

PCR product 300 ng
RecA buffer 10x 1 µL

RecA 2 µg/mL 1 µL
ddH2O add to 10 µL

Transformation of Competent Cells

Transformation-competent cells were prepared as described in the Qiagen E. coli Hand-

book and stored at -80 ◦C until further use. For transformation, cells were thawed on ice

and ∼100 ng of plasmid were added to 50 µL E. coli cells. The mixture was incubated

for 30 min on ice, transformed at 42 ◦C for 45 sec and chilled for 2 min on ice. After

adding 500 µL of SOC medium, the cells were shaken at 37 ◦C for 80 min at 1000 rpm.

The bacteria were plated on LB agar containing the appropriate antibiotic (Table 4.1.5)

and incubated over night at 37 ◦C.

Baculovirus Stocks

All baculovirus constructs were cloned into pFastBac vectors (here the term pCoofy is

used for pFastBac) expressing the gene of interest under the control of the Autographa

californica multiple nuclear polyhedrosis virus polyhedrin promoter, which is highly

induced in insect cells. DH10Bac E. coli cells were used as host for the pCoofy vector

to generate recombinant bacmid DNA, which was then transfected into insect cells to

produce the first recombinant baculovirus. After amplification of the virus, the stock

was used to infect insect cells for large-scale expression of the recombinant protein.

Recombinant bacmids and baculovirus stocks were generated as described in the Bac-

to-Bac manual (Invitrogen, Darmstadt, Germany). Briefly, after isolation of the recom-

binant bacmid DNA, Sf9 or Sf21 cells ware transfected with the bacmid DNA using

Cellfectin II Reagent (Invitrogen). Baculoviral particles were released after transfection

into the medium by cell lysis and were harvested from the supernatant. This baculovirus

stock (P1) was used to amplify the viral stock and to obtain higher titer viruses (P2,

P3) (Table 4.10).
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To define the optimal amount of P3 virus for recombinant protein expression, 3 mL

High Five cells (1x106 cells/mL) were infected with varying amounts of P3 at 26 ◦C and

130 rpm in 25 mL tubes (Sarstedt, Nümbrecht, Germany) as described in Table 4.11.

After 72 h, 400 µL of the cultures were harvested by centrifugation, the pellets were

dissolved in 125 µL 1 x SDS loading dye and analyzed on SDS-gels.

Table 4.10.: Generation of recombinant baculovirus

Final viral stock Virus origin Cells Cell culture Amplification procedure
P1 Transfected cells Sf9 or Sf21 2mL/well, Adherent cells,

0.4x106 cells/mL 72 h, 26 ◦C
P2 1mL P1 Sf9 or Sf21 10 mL, Cell suspension,

1x106 cells/mL 96 h, 85 rpm, 26 ◦C
P3 0.5mL P2 Sf9 or Sf21 500 mL, Cell suspension,

0.4x106 cells/mL 72 h, 85 rpm, 26 ◦C

Table 4.11.: Defining optimal virus amounts

Condition P3 virus Amount [µL]
1 1:100 dilution 15
2 1:100 dilution 150
3 non-diluted 15
4 non-diluted 75
5 non-diluted 150
6 non-diluted 300

4.2.2. Protein Expression

Expression in E. coli

Large scale protein expression was typically carried out in 2.5 L Tunair shake flasks

(Sigma-Aldrich, Germany) containing 1 L TB medium supplemented with appropriate

antibiotics (Table 4.1.5) and was inoculated using a small scale pre-culture (1:100 dilu-

tion). For the pre-culture, 100 mL LB medium with the appropriate antibiotics were

inoculated with colonies of freshly transformed E. coli cells and grown for 3 h at 37 ◦C

and 220 rpm.

Inoculated large scale bacterial cultures were cultivated at 37 ◦C and 220 rpm until

they reached an optical density of 1.8-2.2. The temperature was then reduced to 18 ◦C

and protein expression was induced with 0.1 mM Isopropyl-β-D-thiogalactopyranoside

(IPTG) for 16-18 h. For RPA70 DBD-AB, the expression was induced with 1 mM IPTG

for 4 h at 37 ◦C. The cells were harvested by centrifugation (8000 x g, 10 min) and kept

at -80 ◦C until further use.

Small scale protein expression was performed to analyze expression and solubility
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of the designed constructs (Section 4.2.3). Typically, the expression was carried as

described for large scale expression with the exception, that 200 mL Erlenmeyer flasks

containing 20 mL TB medium were used.

Table 4.12.: Conditions for large scale expression

Expressed construct E. coli strain Condition
Tim-Tipin BL21 (DE3) pRARE 0.1 mM IPTG, 16-18 h, 18 ◦C

Tipin BL21 (DE3) pRARE 0.1 mM IPTG, 16-18 h, 18 ◦C
C-terminal Tim BL21 (DE3) pRIL 0.1 mM IPTG, 16-18 h, 18 ◦C
RPA70/32/14, BL21 (DE3) gold 0.1 mM IPTG, 16-18 h, 18 ◦C

RPA70FL/32FL/14 BL21 (DE3) gold 0.1 mM IPTG, 16-18 h, 18 ◦C
RPA70C/32/14 BL21 (DE3) gold 0.1 mM IPTG, 16-18 h, 18 ◦C

RPA32/14 BL21 (DE3) gold 0.1 mM IPTG, 16-18 h, 18 ◦C
RPA32WH BL21 (DE3) pLysS 0.1 mM IPTG, 16-18 h, 18 ◦C
RPA70AB BL21 (DE3) pLysS 1 mM IPTG, 4 h, 37 ◦C

Expression in Insect Cells

Protein expression in insect cells was carried out in 3 L Fernbach flasks (Corning B.V.

Life Sciences, Amsterdam, The Netherlands) using 500 mL High Five cell suspension

with 1x106 cells/mL infected with ∼5 mL P3 virus. The cells were grown for 72 h at

26 ◦C under constant agitation (85 rpm) and were harvested by centrifugation (2000 x g,

15 min). The cell pellets were frozen in liquid nitrogen and kept at -80 ◦C until further

use.

4.2.3. Protein Purification

All protein purification steps were carried out at 4 ◦C. The buffers used during purifi-

cation are detailed in Table 4.1.10. Typically, loading of the lysate was performed using

a peristaltic pump. All other purification steps were carried out on ÄKTA purification

systems (GE Healthcare). The washing and elution steps were performed using buffer

mixtures of buffer 1 and buffer 2 (e.g. His 1 and His 2, Q 1 and Q 2). The buffer

mixture is noted in percentage.

Pull-down Experiments for Expression and Solubility Analysis

Pull-down experiments were performed for all E. coli expressed constructs in this thesis

to analyze expression and solubility. Initially, the same amount of E. coli cells was

harvested (corresponding to 20 mL of a culture with an optical density of 1), resuspended

in pull-down buffer 1 (PD 1) and sonicated briefly (Bandelin Sonoplus, tip VS70T,

pulse ON/OFF 0.2/0.8, 20% amplitude, Bandelin electronic, Berlin, Germany). The
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cell lysate was clarified by centrifugation (21000 x g, 30 min) and the supernatant

was incubated with 50 µL Glutathione sepharose 4B slurry (GE Healthcare, München,

Germany) or Ni-NTA agarose (Qiagen) (50% v/v) for 1 h at 4 ◦C under constant

agitation. After centrifugation (500 x g, 2 min), the supernatant was discarded and the

beads were washed three times using 500 µL PD 1. The protein was eluted using 25 µL

PD 1 supplemented with either 400 mM imidazole (Ni-beads) or 20 mM Glutathion

(GSH beads) and shaking for 5 min at 30 ◦C. The collected eluate was concentrated in

a vacuum centrifuge, mixed with 2 x SDS loading dye and loaded on SDS-gels.

Purification of Tim-Tipin

The pellet of recombinantly co-expressed His-GST-Tipin (aa 1-278) and His-Tim (aa

1-1134) was resuspended in lysis buffer 1 (Lys 1) supplemented with 1 mM phenyl-

methanesulfonylfluoride (PMSF) and 3 mg DNase I (Roche Diagnostics, Mannheim,

Germany). The resuspended cells were lysed by sonication (Bandelin Sonoplus, tip

MS72, pulse ON/OFF 0.5/0.5, 40% amplitude, 15 min) and the lysate was clarified

by centrifugation (75000 x g, 50 min). The soluble fraction was loaded on Ni-NTA-

sepharose (2 x 5 mL HisTrap FF column, GE Healthcare) and washed with His-buffer 1

(His 1) followed by a high-salt (HS 1) and ATP-wash (ATPW 1). The immobilized

protein complex was further washed with 15% His-buffer 2 (His 2) (100 mM imida-

zole) and eluted by an imidazole gradient to 500 mM. The eluate was desalted using

a Sephadex G-25 Fine desalting column (GE Healthcare) to Q-buffer 1 (Q 1), loaded

on a Q-sepharose column (5 mL HiTrap Q HP, GE Healthcare), washed with 10% Q-

buffer 2 (Q 2) (250 mM NaCl), and eluted using a gradient to 50% Q 2 (650 mM NaCl).

His-tag and GST-tag were cleaved with 3C protease (final concentration 0.006 mg/ml)

over night at 4 ◦C during dialysis against dialysis buffer 1 (Dia 1). The cleavage mix-

ture was concentrated by ultra-filtration and subjected to SEC (Superdex 200 16/60

column, GE Healthcare) pre-equilibrated with SEC buffer 1 (SEC 1). For GST-pull-

downs, the GST-tag was left uncleaved. Finally, the purified protein was concentrated

by ultra-filtration, flash frozen in liquid nitrogen and stored at -80 ◦C.

Purification of Tipin

The purification protocol of His-GST-Tipin (aa 1-278) is similar to the protocol de-

scribed for the Tim-Tipin complex (Section 4.2.3). Briefly, the protein was expressed in

E. coli. After cell lysis in Lys 1 and centrifugation, the clarified lysate was loaded on

Ni-NTA-Sepharose (2 x 5 mL HisTrap FF column, GE Healthcare), washed with 10%
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His-buffer 2 (His 2) (75 mM imidazole), and eluted by an imidazole gradient to 500 mM.

The eluate was dialysed over night against buffer Q 1 and the His-GST-tag was removed

by adding 3C protease (final concentration 0.006 mg/ml). The cleavage mixture was

loaded on a Q-sepharose column (5 mL HiTrap Q HP, GE Healthcare), washed with 5%

Q 2 (200 mM NaCl), and eluted from the anion-exchanger using a gradient to 65% Q 2

(800 mM NaCl). The protein was further subjected to SEC (Superdex 200 16/60 col-

umn, GE Healthcare) pre-equilibrated with SEC buffer 1 (SEC 1). Finally, the purified

protein was concentrated by ultra-filtration, flash frozen in liquid nitrogen and stored

at -80 ◦C.

Purification of RPA70/32/14

The resuspended cell pellet of recombinantly co-expressed His-RPA70 (aa 190-623),

His-RPA32 (aa 43-270) and His-RPA14 (aa 1-121) was lysed by sonication (Bandelin

Sonoplus, tip MS72, pulse ON/OFF 0.5/0.5, 40% amplitude, 15 min) in Lys 1 sup-

plemented with 1 mM PMSF, 3 mg DNaseI (Roche), 100 mM Urea and two tablets of

EDTA-free protease inhibitor cocktail (Roche). After centrifugation (75000 x g, 50 min),

the clarified fraction was loaded on Ni-NTA-Sepharose (2 x 5 mL HisTrap FF column,

GE Healthcare) and the resin was first washed with His-buffer 1 (His 1), then with

His 1 either supplemented with high salt (HS 2, 3.2 M NaCl; HS 3, 2.5 M KCl) or ATP

(ATPW 1), and finally with 10% His 2 (75 mM imidazole) prior to the elution. The

His-tagged complex was eluted by an imidazole gradient to 500 mM and the eluate was

desalted using a Sephadex G-25 Fine desalting column (GE Healthcare) to Q-buffer 3

(Q 3). The protein was further applied on a Q sepharose column (HiTrap Q HP, GE

Healthcare), washed with 4% Q-buffer 4 (Q 4) (190 mM NaCl), and eluted using a linear

gradient to 20% Q 4 (350 mM NaCl). Finally, the complex was purified by SEC (Su-

perdex 200 16/60 column, GE Healthcare) pre-equilibrated with SEC buffer 2 (SEC 2),

concentrated by ultra-filtration, flash frozen, and stored at -80 ◦C.

Purification of RPA70FL/32FL/14

The purification protocol of co-expressed His-RPA70FL (aa 1-623), His-RPA32FL (aa

1-270) and His-RPA14 (aa 1-121) complex was the same as outline for RPA70/32/14

(Section 4.2.3) with the exception that buffers with higher pH values were used (Table

4.1.10), because of an increased isoelectric point (pI 6.2) compared to RPA70/32/14

(pI 5.8).
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Purification of RPA70C/32/14

The co-expressed protein complex consisting of His-RPA70C (aa 445-623), His-RPA32

(aa 43-270) and His-RPA14 (aa 1-121) was purified using a similar protocol detailed for

RPA70/32/14 (Section 4.2.3). Briefly, the resuspended cells were lysed by sonication in

Lys 3 and the proteins were immobilized by IMAC followed by a high-salt and ATP-

wash step (His 5, HS 4 and ATPW 2). The column was further washed with 10% His 6

(60 mM imidazole) prior to elution of the protein using a gradient to 500 mM imidazole

(100% His 6). After desalting to low-salt buffer (Q 7), the protein was applied on a Q

sepharose column (GE Healthcare) and eluted by a gradient to 20% Q 8 (300 mM NaCl).

Finally, the protein was purified by SEC (Superdex 200 16/60 column, GE Healthcare)

using buffer SEC 3, concentrated, flash frozen, and stored at -80 ◦C .

Purification of RPA32/14

For the purification of co-expressed His-RPA32 (aa 43-270) and His-RPA14 (aa 1-121),

the resuspended cells were lysed in Lys 1 and the clarified cell lysate was loaded on Ni-

NTA-sepharose followed by a high-salt and ATW-wash (HS 2, ATPW 1). After washing

with 10% His 1 (75 mM imidazole) and elution by an imidazole gradient to 500 mM

imidazole, the complex was desalted to low-salt buffer (Q 3). The protein was applied

on Q sepharose column (HiTrap Q HP, GE Healthcare), washed with 5% Q 4 (200 mM

NaCl), and eluted by a linear gradient to 100% Q 4 (1 M NaCl). The His-tag was

removed by incubation with 3C protease (final concentration 0.006 mg/ml) over night

at 4 ◦C and the protein complex was further purified by SEC (Superdex 200 16/60

column, GE Healthcare, buffer SEC 3), concentrated, flash frozen, and stored at -80 ◦C.

Purification of RPA32WH

For the purification of His-GST-RPA32WH (aa 173-270), resuspended cells were lysed

by sonication in Lys 4 and bound to GSH sepharose (GE Healthcare). After washing

with Lys 4 supplemented with 1 M NaCl and elution by Lys 4 supplemented with

20 mM Glutathion, the His-GST-tag was cleaved with 3C protease (final concentration

0.006 mg/ml) during over night dialysis against low salt buffer (Q 9). The protein

was further passed through a Q-sepharose column. The flow through after Q-column

containing RPA32WH was further purified by SEC (Superdex 200 10/300 GL column,

GE Healthcare) using SEC 4, concentrated, flash frozen, and stored at -80 ◦C.
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Purification of RPA70AB

Resuspended cells of over-expressed His-RPA70AB (aa 190-431) were lysed by sonica-

tion in Lys 5. The protein was immobilized on Ni-NTA-Sepharose (2 x 5 mL HisTrap

FF column, GE Healthcare), washed with His 5, high-salt (HS 5), 5% His 6 (35 mM im-

idazole), and eluted by a gradient to 500 mM imidazole. After dialysis against low-salt

buffer (Q 10) and His-tag cleavage using 3C protease (final concentration 0.006 mg/ml)

over night, the protein was applied on a Q sepharose column (HiTrap Q HP, GE Health-

care), washed with 4% Q 11 (190 mM NaCl), and eluted by a linear gradient to 20%

Q 11 (350 mM NaCl). Finally, the protein was subjected to SEC (Superdex 200 10/300

GL column, GE Healthcare) using SEC 4, concentrated, flash frozen, and stored at

-80 ◦C.

Purification of Tim

His-Tim (aa 1-1197) was expressed in insect cell. The cells were osmomechanically

lysed after resuspending the pellet in RSB buffer (7.5 mL/1 g cells) supplemented with

1 mM PMSF and three tablets of EDTA-free protease inhibitor cocktail (Roche). The

crude lysate was homogenized using a Dounce homogenizer (Thermo Scientific, Epson,

UK) by moving the pestle 20 times up and down. The lysate was adjusted to 500 mM

NaCl and 40 mM imidazole and centrifuged (3220 x g, 15 min). The supernatant was

decanted and subjected to a second centrifugation (75000 x g, 50 min). The lysate was

applied on Ni-NTA-sepharose (2 x 1 mL HisTrap FF column, GE Healthcare), washed

with His 7, His 7 supplemented with 1 M NaCl, and 7% His 8 (75 mM imidazole) prior

to elution by a gradient to 100% His 8 (500 mM imidazole). The His-tag was cleaved

using 3C protease (final concentration 0.006 mg/ml) during over night dialysis against

Q 12 and was then applied on a Q sepharose column (HiTrap Q HP, GE Healthcare).

Bound Tim was eluted using a gradient to 100% Q 13 (1 M NaCl) and subjected to SEC

(Superdex 200 10/300 GL column, GE Healthcare) using SEC 5. Finally, the protein

was concentrated, flash frozen, and stored at -80 ◦C.

Purification of C-terminal Tim Constructs

This purification protocol applies to all C-terminal Tim constructs. His-GST-tagged C-

terminal Tim fragments were expressed in E. coli. The cell pellets were resuspended in

Lys 4 supplemented with 3 mg DNase I (Roche) and passed twice through an Emulsiflex

C3 homogenizer (Avestin, Mannheim, Germany) at a pressure of 15000-20000 psi. After
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centrifugation (75000 x g, 50 min) the soluble fraction was applied on GSH sepharose

(GE Healthcare) and the resin was washed with Lys 4 and Lys 4 supplemented with 1 M

NaCl. Elution was carried out using Lys 4 supplemented with 20 mM Glutathion. The

His-GST-tag was cleaved with 3C protease (final concentration 0.006 mg/ml), which was

directly applied on the column. Both ends of the column were connected, the flow rate

was reduced to 0.3 mL/min, and the on-column tag cleavage was performed over night.

The flow through was desalted to Q 14 and applied on a Q sepharose column (HiTrap

Q HP, GE Healthcare). The bound fraction was washed with Q 14 and eluted by a

gradient to 100% Q 15 (1 M NaCl). Finally, SEC was performed using a Superdex 75

16/60 column (GE Healthcare) pre-equilibrated with SEC 4. The purified protein was

concentrated, flash frozen, and stored at -80 ◦C.

4.2.4. Protein Biochemistry

Determination of Protein Concentration and Purity

Protein concentrations were determined by absorbance at 280 nm using the NanoDrop

spectrophotometer (Thermo Scientific, Epson, UK). The extinction coefficients were

calculated using VectorNTI (Life Technologies, Darmstadt, Germany). The purity of

proteins was assessed by monitoring the absorbance at 280 nm and 260 nm during ion

exchange chromatography and SEC, the 260/280 ratio, and SDS-PAGE.

Polyacrylamide Gel Electrophoresis

Proteins were analyzed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis

(SDS-PAGE) using 12%-18% SDS-gels as described by Laemmli, 1970 [157] or using

commercially available pre-cast SDS-gels (4-12% Bis-Tris in 1 x MES buffer, Invitrogen).

SDS-gels were stained with Coomassie brilliant blue R-250.

SDS-gels loaded with Cy3-labeled RPA (Section 4.2.5) were first analyzed by fluores-

cence imaging (excitation 532 nm, filter 580 nm, Typhoon FL 7000 phosphoimager, GE

Healthcare) before Coomassie staining.

For silver staining, the gels were soaked in fixing solution for 10 min and washed two

times in ddH2O for 5 min. For sensitization, the gels were soaked in 0.02% Na2S2O3 for

1 min. After washing two times in ddH20, the gels were soaked in fresh 0.1% AgNO3

solution for 10 min in the dark, rinsed quickly with ddH20, and with a small volume

of developing solution. The gels were further soaked in fresh developing solution until

bands appeared. The developing solution was discarded and stop solution was added to
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block development. This protocol was provided by Dr. Christian Biertümpfel (MPIB).

Table 4.13.: Silver stain solutions

Solution Component Stock concentration Final concentration
Fixing solution Methanol 100% 40%

Formalin 100% 13.5%
Developing solution Na2CO3 powder 3%

Formalin 100% 0.05%
Na2S2O3 powder 0.000016%

Stop solution Ethanol 100% 50%
HOAc 100% 15%

Native Gel Electrophoresis

To assess the homogeneity of individual proteins and protein complexes and for elec-

tromobility shift assays (EMSA), commercially available native 4-12% Tris-Glycine gels

(Invitrogen, Darmstadt, Germany) were used. Note that 50% glycerol with bromphenol

blue was used as 6 x native loading dye.

For EMSA, the native gels were first pre-equilibrated for 90 min in 1 x Tris-Glycine

running buffer pH 8.3 (Invitrogen) at 125 V and 4 ◦C. After loading the samples, elec-

trophoresis was performed at 4 ◦C and run at 90 V. Before Coomassie staining, the gels

were analyzed by fluorescence imaging (Section 4.2.5).

For homogeneity analysis, the native gels were used without pre-equilibration. Elec-

trophoresis was performed at 4 ◦C and run at 125 V for 2.5 h. Typically 3 µg were

loaded per well. The native gels were stained with Coomassie. Native gels loaded with

Cy3-labeled RPA (Section 4.2.5) were first analyzed by fluorescence imaging (excita-

tion 532 nm, filter 580 nm, Typhoon FL 7000 phosphoimager, GE Healthcare) before

Coomassie staining.

Immunoblot

For immunoblot analysis, samples were separated on native 4-12% Tris-Glycine gels as

described in Section 4.2.4. After electrophoresis, the gels were incubated in 0.1% SDS for

15 min and the proteins were transferred onto 0.2 µm polyvinylidene fluoride (PVDF)

membranes (Merck Millipore, Darmstadt, Germany) for 80 min at 200 mA using a

transfer buffer consisting of 20 mM Tris, 150 mM glycine, 5% methanol, and 0.02%

SDS. To fix the transferred proteins, the membranes were incubated in 10% HOAc for

15 min and air dried. After rehydration in 1 x Tris-buffered saline (TBS, 50 mM Tris

pH 7.5, 150 mM NaCl) the membranes were blocked in 10% non-fat dry milk in 1 x TBS
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for 1 h at RT, washed two times with TBS containing 0.05% Tween 20 (TBS-T), and

once with TBS. The membranes were incubated with a primary antibody in 3% BSA in

1 x TBS for 1 h at RT. After two times washing with TBS-T and once with TBS, the

membranes were further incubated with a horseradish peroxidase-conjugated secondary

antibody for 1 h at RT, subsequently washed two times with TBS-T, and once with

TBS. Bound antibodies were detected by chemiluminescence using ECL reagents (GE

Healthcare) and an ImageQuant LAS 4000 imager (GE Healthcare).

Limited Proteolysis

For limited proteolysis, 10 µL protein was diluted to 0.6 mg/mL in SEC 2, mixed with

3 µL protease solution and incubated for 30 min on ice. Trypsin, Subtilisin, Elas-

tase, GluC and Chymotrypsin were diluted from a 1 mg/ml stock using 20 mM Hepes

pH 7.5, 50 mM NaCl and 10 mM MgSO4 and were used at three different concentrations

(0.1 mg/mL, 0.01 mg/mL, 0.001 mg/mL). The reaction was stopped using 1 µL 100 mM

AEBSF (4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride). The degradation

products were separated by SDS-PAGE and stained with Coomassie for visualization

or peptide fingerprinting. The samples were also transferred to PVDF membranes for

N-terminal sequencing. To determine the total mass of the fragments, the stopped re-

action was analyzed by ESI-TOF mass spectrometry (MS). Peptide finger printing was

performed by Dr. Cyril Boulègue or Nagarjuna Nagaraj, PhD (MPI Biochemistry Core

Facility) (Section4.2.4). N-terminal Sequencing was carried out by Isabella Mathes,

Dr. Reinhard Mentele or Dr. Josef Kellermann (MPI Biochemistry Core Facility) and

ESI-TOF MS by Elisabeth Weyher-Stingl (MPI Biochemistry Core Facility).

Mass Spectrometry Analysis

For mass spectrometry analysis protein sample bands from SDS-gels were cut out. Alter-

natively, a liquid protein sample was analyzed. The samples were digested with trypsin

[158], the peptides were analyzed by Orbitrap mass spectrometry [159], and identified

using the Max Quant software [150]. The stoichiometry of the protein complexes was

determined by dividing the sum of all peptide peak intensities by the number of the-

oretically observable tryptic peptides (intensity-based absolute quantification (iBAQ))

[130].
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Static Light Scattering

To determine the molecular weight and the monodispersity of a protein sample, static

light scattering (SLS) was performed. During a SLS experiment, the sample passes

through a size exclusion chromatography column, which is directly coupled to a detector

monitoring light scattering (LS), ultraviolet absorbance (UV) and refractive index (RI).

Specifically, a high pressure liquid chromatography system from Waters (Milform, MA,

USA) (pump, ultraviolet (UV)) coupled to a TDA302 detector array (Viscotek, Malvern,

Herrenberg, Germany) was used. Proteins samples (10 µL, 2 mg/mL) were injected onto

a Superdex 200 5/150 column coupled to the detector. Bovine serum albumin was used

as a standard and the refractive index increment (dn/dc) was set to 0.180 ml/g for

calculations. Data analysis was performed using OmniSEC 4.5 software (Viscotek).

SLS measurements were conducted either by Dr. Claire Basquin, Dr. Jörg Tittor at

MPIB or by myself.

Sucrose-Gradient Sedimentation

Sucrose-gradient sedimentation was used to determine the molecular weight of proteins.

Sucrose gradients (5-20% w/v) were prepared in centrifuge tubes (Seton open-top poly-

clear centrifuge tubes, 14 x 95 mm) in 50 mM Hepes pH 7.5 and 150 mM NaCl using the

Gradient Station (Biocomp, Fredericton, NB, Canada). The protein sample at 1 mg/ml

or at 3.5 mg/ml (for standard proteins mixture) was applied on top of the gradient

solution together with a 300 µL buffering cushion (50 mM Hepes pH 7.5, 150 mM NaCl,

2.5% sucrose). The samples were sedimented at 4 ◦C in a swing out rotor (Beckmann

SW40 rotor, Beckmann Coulter, Krefeld, Germany) for 18 h at 35000 rpm (217290 x g).

After harvesting using the Gradient Fractionator (Biocomp, Fredericton, NB, Canada),

the fractionated samples were analyzed by SDS-PAGE (4-12% Bis-Tris in 1 x MES,

Invitrogen). For gradient calibration, standard proteins (Bio-Rad Laboratories) were

used: Myoglobin (17 kDa), Ovalbumin (44 kDa), γ-globulin (158 kDa for the entire

molecule of two light and two heavy chains) and Thyroglobulin (670 kDa for the entire

homo-dimeric molecule).

4.2.5. Binding Experiments

GST-Pull-Down Experiments

Prior to GST-pull-down experiments, Glutathione sepharose was blocked to reduce un-

specific protein binding. Thus, 667 µL of 75% Glutathione sepharose 4B slurry (GE
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Healthcare) were washed with 900 µL of 20 mM Hepes pH 7.5, 150 mM NaCl, and 0.1%

NP-40 (blocking buffer) and resuspended in 500 µL of 20 mM Hepes pH 7.5, 550 mM

NaCl, 0.1% NP-40, 0.08 mg/mL glycogen carrier, 0.08 mg/mL tRNA, and 0.8 mg/mL

bovine serum albumin. After two hours incubation at 4 ◦C, the beads were washed

three times with 900 µL blocking buffer and stored at 4 ◦C.

All GST pull-down experiments were performed at 4 ◦C. The GST-Tim-Tipin complex

(6 µg, 4.2 µM final concentration) was mixed with 2-fold molar excess of RPA (input

sample) in 30 µL, supplemented with 2 x buffer to a total volume of 60 µL containing

the final concentrations of 20 mM Hepes pH 7.5, 125 mM NaCl, 12.5% glycerol, 0.1%

NP-40, 1 mM DTT, and 0.01 mM Zn(OAc)2. After incubation at 30 ◦C for 20 min,

12 µL blocked Glutathione sepharose (GE Healthcare, 50% v/v) and 200 µL buffer P1

(20 mM Hepes pH 7.5, 125 mM NaCl, 12.5% glycerol, 0.1% NP-40, 1 mM DTT, 0.01 mM

Zn(OAc)2) were added and the proteins were immobilized for 1 h under constant rotation

at 4 ◦C. The beads were washed three times with buffer P1. Bound proteins were eluted

using 20 µL buffer P2 (30 mM Tris pH 8.8, 150 mM NaCl, 14% glycerol, 0.1% NP-40,

1 mM DTT, 0.01 mM Zn(OAc)2, 2 mM imidazole, 20 mM Glutathione) and shaking for

5 min at 30 ◦C. The eluate was collected, concentrated in a vacuum centrifuge, mixed

with 2 x SDS loading dye, analyzed on 18% SDS-polyacrylamide gels, and stained with

Coomassie blue.

Electrophoretic Mobility Shift Assay

For EMSA analysis, protein samples were incubated with DNA substrates and the

protein-DNA complexes were separated by native PAGE (Section 4.2.4). DNA sub-

strates were fluorescently labeled at the 5’-end with fluorescein (5-FAM) and purchased

from Purimex (Grebenstein, Germany) or Eurofins Genomics (Ebersberg, Germany).

Annealed DNA substrates (spDNA, RFDNA, dsDNA) and DNA substrates named ’CB’

were a kind gift of Dr. Christian Biertümpfel (MPIB).

Typically, 16 µM of protein was incubated with the indicated amounts of ssDNA

substrate (64, 32, 16 or 4 µM). For EMSA using spDNA, RFDNA and dsDNA, the DNA

substrate concentration was kept constant at 80 nM and the total protein concentration

was varied (0.08, 0.24, 0.8, 4.8 µM). To keep the final buffer concentrations at 20 mM

Hepes pH 7.5, 125 mM NaCl, 2 mM DTT, and 0.01 mM Zn(OAc)2 (SEC 2), 7.5 x buffer

was added and the mixture was supplemented with 6 x native loading dye. The samples

were incubated 15 min at RT and 15 min at 4 ◦C prior to separation by native PAGE

(Section 4.2.4). Gels were analyzed by fluorescence imaging (excitation 473 nm, filter
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520 nm, Typhoon FL 7000 phosphoimager, GE Healthcare) followed by Coomassie

staining.

Table 4.14.: DNA substrates for EMSA

DNA substrate Name Sequence
8 nt ssDNA 8merFAM 5’-FAM-ATCCCTAA-3’
14 nt ssDNA 14merFAM 5’-FAM-GACGGCATCCCTAA-3’
30 nt ssDNA CB209short 5’-FAM-ACGCTGCCGAATTCTACCAGTGCCTTGCTA-3’
60 nt ssDNA CB209 5’-FAM-ACGCTGCCGAATTCTACCAGTGCCTTGCTA-

GGACATCTTTGCCCACCTGCAGGTTCACCC-3’
spDNA CB209 5’-FAM-ACGCTGCCGAATTCTACCAGTGCCTTGCTA-

GGACATCTTTGCCCACCTGCAGGTTCACCC-3’
CB212 5’-CGATAGTCGGATCCTCTAGACAGCTCCATGAGCA-

AGGCACTGGTAGAATTCGGCAGCGT-3’
RFDNA CB209 see spDNA

CB212 see spDNA
CB217 5’-CATGGAGCTGTCTAGAGGATCCGACTATCG-3’
CB218 5’-GGGTGAACCTGCAGGTGGGCAAAGATGTCC-3’

dsDNA CB209 see spDNA
CB215 5’-GGGTGAACCTGCAGGTGGGCAAAGATGTCCTA-

GCAAGGCACTGGTAGAATTCGGCAGCGT-3’

Fluorescence Anisotropy Measurements

For Fluorescence anisotropy measurements, 5’-FAM-labeled DNA substrates were used

(Table 4.14). The DNA concentration was kept constant at 10 nM, while the protein

concentrations varied between 1 nM and 10 µM. FA measurements were performed on a

Genios Pro (Tecan, Männedorf, Switzerland). The protein-DNA mixture was incubated

for 15 min at 30 ◦C in SEC 2 in a total volume of 50 µL before anisotropy reading. The

excitation and emission wavelengths were 485 nm and 535 nm. Each titration point was

carried out three times using 10 reads with an integration time of 40 µs. The KD was

calculated by directly fitting the curve using the Hill function (Equation 4.1) included

in the program Origin 8.1 (Origin-Lab, Northampton, MA, USA),

Atotal = A0 + (Amax −A0)
xn

kn + xn
(4.1)

where Atotal is measured anisotropy, A0 is the intrinsic anisotropy of the DNA substrate,

Amax is the anisotropy of the saturated protein-DNA complex, n is the Hill coefficient

and x is the concentration of the protein. To assess the quality of the regression, residual

plot analysis was performed and the agreement between the observed and calculated

binding isotherms was evaluated.
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SEC-Based Protein-Protein Binding Experiments

For preparative formation of Tim-Tipin-RPA complexes, Tim-Tipin was mixed with

RPA at a 1:1.5 (Tim-Tipin:RPA) molar ratio in a final volume of 200 µL. Typically

∼45 µM Tim-Tipin and ∼68 µM RPA (final concentrations) were mixed and supple-

mented with SEC 2 (Table 4.1.10) to the final volume. After 15 min incubation at

RT and 15 min on ice, the mixture was injected on a Superdex 200 10/300 column

equilibrated with SEC 2.

For analytical formation of Tim-Tipin-RPA complexes, Tim-Tipin was mixed with

RPA at a 1:1 (16 µM:16 µM, ∼65 µg Tim-Tipin and ∼38.5 µg RPA) or 1:2 (16 µM:32 µM,

∼65 µg Tim-Tipin and ∼77 µg RPA) molar ratio in 25 µL final volume. The mixture was

incubated as described above and loaded on a Superose 6 3.2/PC column on ÄKTAmicro

(GE Healthcare) equilibrated with SEC 2. For the formation of Tim-Tipin-RPA32WH

complexes, the molar amount of used protein mixture was increased to give final con-

centrations of 64 µM:64 µM and 64 µM:128 µM (Tim-Tipin:RPA32WH) because of low

content of tyrosine or tryptophan in RPA32WH and resulting low absorbance at 280 nm.

SEC-Based Protein-ssDNA Binding Experiments

For analytical complex formation analysis of Tim-Tipin, RPA, and Tim-Tipin-RPA

with ssDNA substrates, the protein sample was mixed with excess or sub-stoichiometirc

amounts of ssDNA. The final concentrations were 16 µM:32 µM and 32 µM:8 µM (pro-

tein:ssDNA) for 60 nt ssDNA and 16 µM:32 µM and 16 µM:8 µM (protein:ssDNA) for

31 nt and 14 nt ssDNA. For SEC analysis non-labeled ssDNA substrates were used (Ta-

ble 4.15). To estimate if ssDNA was bound to the protein, the ratio of the absorption

at 260 nm and 280 nm was calculated and compared to the ratio of purified DNA-free

proteins.

Table 4.15.: DNA substrates for SEC analysis

ssDNA substrate Sequence
14 nt 5’-AGAAGAGCCAAAAC-3’
31 nt 5’-CGGGATCCCAGCCAGCGATGTCTCAAGCTGC-3’
60 nt 5’-CAGACCGCCACCGACTGCTTAGATATTTAA-

GTTTTCTAATTTTTCATTGAAAGCATTAAG-3’

Calibration of SEC Columns

All SEC columns used in this thesis (Superdex 200 16/60, Superdex 75 16/60, Su-

perdex 200 10/300 GL, Superose 6 3.2/PC, GE Healthcare) were calibrated using molec-
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ular mass standard proteins (Bio-Rad Laboratories, Hercules, CA, USA): Vitamin B12

(1.35 kDa), Myoglobin (17 kDa), Ovalbumin (44 kDa), γ-globulin (158 kDa) and Thy-

roglobulin (670 kDa).

Fluorescent Labeling and Microscale Thermophoresis

To determine the binding affinity of Tim-Tipin to RPA, microscale thermophoresis was

performed. MST measures the motion of molecules along an infrared (IR) laser induced

temperature gradient. This thermophoretic movement depends on the hydration shell,

the charge or size of the molecule and changes due to alterations in the structure upon

binding of an interaction partner. The motion of the protein can be monitored by the

fluorescence of an attached dye.

For MST measurements, RPA was fluorescently labeled using the Cy3 protein labeling

kit according to manufacturer’s protocol (Jena Bioscience, Jena, Germany). Briefly, 6 µL

of purified RPA at 11 mg/mL (final concentration, 31 µM, 3 mg/mL) were mixed with

2 µL of 1 M Na2CO3 (100 mM final concentration) in a total volume of 20 µL. The pH

was raised to an optimal value of 8.3-8.5 by the addition of Na2CO3. The supplied dye

was diluted to the same concentration like RPA (3 mg/mL) and 2 µL of that dilution

were added to the RPA solution. The mixture was incubated for 1 h in the dark and the

conjugate was purified from unbound dye using buffer exchange spin columns (Micro

Bio-Spin 6 columns, Bio-Rad) equilibrated with SEC 2.

The ideal degree of labeling (DOL) should correspond to approximately one fluo-

rophore per 200 aa and was determined to be 4.4/858 aa (=̂ 1/200 aa) for RPA. The

average number of lysines labeled per RPA was calculated by Equation 4.2,

DOL =
Amax ∗ ǫ280(RPA)

(A280 −Amax ∗ CF ) ∗ ǫmax
(4.2)

where Amax is the absorbance of the conjugate solution (Cy3-RPA) measured at 550 nm

using NanoDrop (Thermo Scientific), ǫ280 is the extinction coefficient of RPA (ǫ280 =

69670 cm−1M−1), A280 is the absorbance of the conjugate solution measured at 280 nm,

CF (correction factor), and ǫmax (extinction coefficient of Cy3) are the intrinsic prop-

erties of the dye (CF = 0.08, ǫmax = 150000 cm−1M−1).

For MST measurements, 100 nM Cy3-RPA were titrated with varying amounts of

non-labeled Tim-Tipin (25-80550 nM) in SEC 2 and incubated for 10 min at RT. The

thermophoresis measurements were performed at 50% LED and 65% IR-Laser power

using a Monolith NT.115 (NanoTemper, München, Germany). Laser-On time was 40 s,
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and Laser-Off time was 5 s. The experiments were repeated three times.

The results were analyzed and processed using Origin 8.1 (OriginLab). The baseline

was subtracted from each individual experiment and each individual repetition was

divided by its amplitude (the difference between the bound and unbound state). Three

measurements were averaged and the standard deviation was determined. The KD was

calculated by directly fitting the curve using the Hill function (Equation 4.1) of Origin.

4.2.6. EM Structure Determination

Sample Preparation Using GraFix

Gradient Fixation (GraFix) is a method of mild intramolecular fixation and concurrent

purification of a protein sample in a density gradient for EM analysis. This method is

used to stabilize macromolecular complexes and to reduce heterogeneity of the sample

due to particle dissociation during sample preparation on EM grids. GraFix was per-

formed as described [129]. Briefly, sucrose gradients (5-30% (w/v) for Tim-Tipin-RPA,

5-20% (w/v) for Tim-Tipin and RPA) combined with a glutaraldehyde gradient (cross-

linker, 0-0.2% (v/v)) were prepared in 50 mM Hepes pH 7.5, 150 mM NaCl using a

standard gradient mixer (MPI workshop) and filled into centrifuge tubes (Beckmann,

50 Ultra-Clear Tubes, 14 x 95 mm). A cushion solution (300 µL) consisting of 50 mM

Hepes pH 7.5, 150 mM NaCl, and 2.5% sucrose was applied on top of the gradient

followed by the protein sample (200 µL, 1 mg/mL). Cross-linking was carried out while

sedimenting the sample at 12 ◦C in a swing out rotor (Beckmann SW40 rotor, Beck-

mann Coulter, Krefeld, Germany) for 16 h at 35000 rpm (217290 x g). In parallel, the

same sample was sedimented in a sucrose gradient without the cross-linker and was used

as control. Samples were harvested from the bottom of the tube and glutaraldehyde

was neutralized by adding 1 M Tris to a final concentration of 80 mM. The fractions

were analyzed by SDS-PAGE (4-12% Bis-Tris in 1 x MES, Invitrogen). This sample

was directly used for negative stain EM analysis. For cryo-EM observation, sucrose was

removed using a Zeba Spin Desalting Column (Thermo Scientific) and samples were

concentrated to 0.3 mg/ml using a Vivaspin 500 ultrafiltration device (Sartorius Stedim

Biotech, Göttingen, Germany). Mass spectrometry analysis was performed to identify

the presence of all components in the cross-linked samples (Section 4.2.4).
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Negative Stain EM

Negative-stain EM was used as a first step for 3D structure determination and prior to

grid preparation for cryo-EM. For negative staining, carbon-coated copper grids were

glow-discharged in a plasma cleaner chamber (Harrick Plasma, Ithaca, NY ,USA) for

45 sec. The cross-linked sample from GraFix preparation (4 µL) (Section 4.2.6) was

applied onto the grids for 30 s. Excess solution was blotted off with filter paper and

the grid was washed four times with ddH2O before applying negative stain solution (1%

(w/v) uranyl acetate). After blotting the grid was air-dried. Data were collected on

a CM200-FEG (FEI, Eindhoven, The Netherlands) operated at 160 kV and 50000 x

magnification in a defocus range between 2 µm and 4 µm using an Eagle CCD camera

(FEI) with a 2.16 Å pixel size.

Cryo-EM

For cryo-EM, 5 µL of the cross-linked sample (Section 4.2.6) were applied to glow-

discharged Quantifoil holey carbon grids and vitrified in either liquid ethane or liquid

ethane/propane mixture using a vitrobot cryo-station (FEI). Data of the vitrified spec-

imens were collected on a Tecnai F20 electron microscope (FEI) at 200 kV and 50000 x

magnification with a GATAN 626 cryo-holder. Data (673 images) were recorded using

an Eagle CCD camera (FEI) with a pixel size of 2.21 Å at the specimen level.

Image Processing

Data processing was done using BSOFT [147], SPIDER [152], EMAN [149] and SPARX

[151]. Micrographs were visualized and single particles were selected using BSHOW and

BPICK of the BSOFT software package. For negative stained images, 13311 particles

for Tim-Tipin-RPA, 10872 particles for Tim-Tipin, 1673 particles for RPA, and 1914

particles for the non-cross-linked Tim-Tipin-RPA sample were selected. For cryo-EM

analysis, 39679 particles of cross-linked Tim-Tipin-RPA were chosen. The particles were

boxed out with the size of 128 pixels. Contrast transfer function (CTF) was estimated

and corrected by flipping phases for the images of vitrified specimen using the program

CTFFIND3 [148] and BCTF of the BSOFT software package. For the initial assessment

of the particles, selected Tim-Tipin-RPA, Tim-Tipin and RPA particles were subjected

to reference-free classification using BSOFT or SPARX leading to 74 class averages.

The alignment and classification was iteratively optimized.

3 D maps were displayed using UCSF Chimera [132]. Further, maps were segmented
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using the segment map option of the Segger package to estimate volumes of the sub-

complexes [160]. Crystal structures were docked into the 3D map by manual fitting of

the models using Chimera.

Initial Model Generation Using Random Conical Tilt

The initial 3D model of Tim-Tipin-RPA was obtained by the Random Conical Tilt

(RCT) method [161]. For RCT processing, image pairs of tilted (45◦) and untilted

(0◦) micrographs of negative stained Tim-Tipin-RPA were collected. 857 particle tilt

pairs were selected and 8 initial models were generated as described in Radermacher,

1988 [161]. Two most similar models with prominent features were merged and used as

the initial model. First, the RCT model was refined against the class averages of the

negative stained data by comparing the reprojections of the RCT reconstruction to the

class averages for verification. The resulting 3D map was further refined against the raw

data of the untilted 13311 particles by iterative reprojection matching using the merged

RCT reconstruction as a reference.

Cryo-EM Reconstruction

Reference-based cryo-EM reconstructions were performed using SPARX. The recon-

struction of the negative stain data (Section 4.2.6) was used as initial reference and was

low-pass filtered to 50 Å. For the first cycles of iterative projection matching, the data

was binned by two (4.42 Å/pixel) and 10 iterations per one cycle of iterative projection

matching refinement were performed using angular increments from 5 to 2 degrees. For

the last cycle of iterative refinement, non-binned original data with 2.21 Å/pixel size was

used and the final 3D reconstruction was performed with an angular step of 2 degrees

over the course of 10 iterations.

The resolution was estimated by Fourier shell correlation (FSC) curves between re-

constructions from halves of the data set [162]. The data set was split into two and two

independent reconstructions were iteratively calculated using the RCT reconstructions

filtered to 50 Å as reference. The final resolution was estimated to be 17.3 Å with the

FSC = 0.5 criteria. The amplitudes of the final density maps were corrected by using

the amplitudes from an atomic model with a similar size/protein density (PDB code:

2BR2, exosome core) using the ’bampweigh’ command in BSOFT and the structure was

low-pass filtered to 17 Å. The angular distribution of the images used for the refinement

was assessed using ’sxplot projs distrib.py’ command in SPARX.
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Antibody Labeling

For the mapping of RPA70, 0.23 µM of Tim-Tipin-RPA were mixed with 0.077 µM of an

antibody against RPA70 (sc-166023, Santa Cruz Biotechnology, Santa Cruz, CA, USA,

Table 4.1.7) and incubated at RT for 30 min. For the mapping of Tipin, 0.54 µM of the

Tim-Tipin-RPA complex were mixed with 1.25 µM of an antibody against Tipin (sc-

160865, Santa Cruz Biotechnology, Table 4.1.7), incubated on ice for 1 h and injected

on a Superose 6 3.2/PC column. The protein-antibody mixture or the eluted immune

complex were negatively stained with uranyl acetate (1% w/v, Section 4.2.6). Images

were collected as described in Section 4.2.6. Sixty-six particles for RPA70 and 347

particles for Tipin localization were selected with the size of 128 pixels. Image processing

was performed as described in Section 4.2.6.

Segmentation of the Tim-Tipin-RPA 3D Map

To assign the electron density corresponding only to Tim-Tipin in the Tim-Tipin-RPA

reconstruction, 3D models missing the putative RPA density were generated (Tim-Tipin-

∆RPA models). The negative stain Tim-Tipin-RPA 3D map was sub-divided in eleven

segments using the segment map option in Chimera [132, 160, 163]. Next, the volumes

of the eleven segments were determined and segments enclosing the RPA volume were

merged given two constraints: the final merged volume must enclose the calculated

volume of ∼1.2 e5 Å3 and the merged segments must be connected. RPA’s volume

(∼1.2 e5 Å3) was calculated using its molecular weight (96000 Da) and the specific

volume of 0.81 Å3/Da. The merged volumes corresponding to the putative RPA density

were deleted from the Tim-Tipin-RPA reconstruction resulting in Tim-Tipin-∆RPA

models. Finally, the alignment of Tim-Tipin 2D class averages to the reprojections of

the Tim-Tipin-∆RPA models was performed using the multi-reference alignment script

in SPIDER. The total number of the averages with the best reference-fit was plotted as

bar chart.

4.2.7. Crystallization Procedures

Initial Screening

Initial crystallization experiments were performed in 96 well sitting drop plates using

commercially available or self-made screens. Typically, 100 nL protein solution was

mixed with 100 nL of the reservoir solution using a Phoenix nanodispenser robot (Art

Robbins Instruments, Sunnyvale, CA, USA). Two temperatures (20 ◦C and 4 ◦C) were
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tested for screening. Initial hits were optimized in 96 well sitting or 24 well hanging

drop plates. The plates were automatically imaged using the imaging system of the

crystallization facility (MPIB). All crystallization experiments were set up by Dr. Karina

Valer-Saldaña or Sabine Pleyer from the crystallization facility (MPIB).

Cryo-Protection

For cryo-protection, crystals were transferred from the original drop to a 5 µL drop con-

taining the original drop solution supplemented with 5% of the cryo-protectant (ethylene

glycol). In the following, the concentration of the cryo-protectant in the drop was grad-

ually increased to reach the final concentration of 25% ethylene glycol by successively

adding and removing of a series of cryo-protectant solutions with increasing amounts

of ethylene glycol. Finally, the crystals were picked up from the cryo-protectant using

suitably sized nylon cryo-loops (Hampton Research, Aliso Viejo, CA, USA) and flash

cooled by plunging into liquid nitrogen.

Data Collection and Processing

Data from crystals mounted in cryo-loops was collected at 100 ◦K at the Swiss Light

Source (SLS, Villigen, Switzerland) using the PXII beamline and a MarCCD detec-

tor. The data was indexed using XDS [153]. The Matthews probability analysis was

performed using the website http://www.ruppweb.org/mattprob/default.html.

109





Acknowledgments

The present thesis would be nothing without the support of my supervisors, colleagues,

family, and friends.

First of all, I would like to thank Elena Conti. Thank you a lot for giving me the

opportunity to perform my research in your department at the Max Planck Institute of

Biochemistry in Martinsried and for your infinite support during my thesis. I esteem

the professional and very productive environment in your research group, which is not

given to every PhD student.

I would like to express my deepest gratitude to Naoko Mizuno, who was a great

supervisor. Thank you for helping me to develop new ideas on my project and to realize

them immediately. With your great help and your motivating support, I was able to

push the project in a consequent and productive way to a very successful end.

I am also very grateful to Eva Wolf for supervising this thesis. Thank you for giving

me the opportunity to work on this challenging research topic and thank you a lot for

your trust and freedom.

I have benefited a lot from the resources and the infrastructure at the Max Planck

Institute of Biochemistry and from the support of the people in the department of Elena

Conti. First, I thank the people in the different service groups and specially the Core

Facility of the MPIB for the great methods portfolio and relying analyses. Moreover,

I would like to acknowledge all people from the Conti group for helpful suggestions,

discussions, and hands-on assistance. Besides, I would like to thank Judith Ebert for

her trust, Claire Basquin and Jörg Tittor for their biophysical expertise, Peter Reichelt

for help with columns and purification systems, Christian Benda and Walter Erhardt for

IT- and technical support, Karina Valer-Saldaña, Sabine Pleyer, and Jerôme Basquin
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Figure A.1.: See after next page for figure legend.
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Figure A.1.: See next page for figure legend.
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Figure A.1.: Multiple sequence alignment of Tim orthologs. Dark blue indicates strictly conserved
residues; white variable residues. The black box indicates the DDT domain. The orthologs were
identified using BLASTP [102, 164], aligned with CLUSTALW2 [165, 166], and displayed using
Jalview [167]. The secondary structure elements are indicated and were calculated using Jpred [168].
The alignment shows the sequences from Mus musculus (mm), Homo sapiens (hs), Xenopus laevis
(xl), Drosophila melanogaster (dm), Caenorhabditis elegans (ce), and Schizosaccharomyces pombe
(sp). UniProt and NCBI accession numbers [164, 169] from top to bottom: Q9R1X4, ACC80011.1,
Q3LGB9, AAF73481.1, AAF13189.1, CAB44362.1.
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A. Multiple Sequence Alignments

A.2. Tipin Orthologs
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Figure A.2.: Multiple sequence alignment of Tipin orthologs. The orthologs were identified, aligned,
and displayed as in Appendix Figure A.1. The alignment shows the sequences from Mus musculus
(mm), Homo sapiens (hs), Gallus gallus (gg), Xenopus laevis (xl), Danio rerio (dr), Schizosaccha-
romyces pombe (sp), and Saccharomyces cerevisiae (sc). UniProt and NCBI accession numbers
[164, 169] from top to bottom: DAA01364.1, DAA01365.1, Q5F416, NP 001081090.1, AAI63996.1,
AAS77252.1, DAA09947.1.
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A.3. RPA14 Orthologs

A.3. RPA14 Orthologs
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Figure A.3.: Multiple sequence alignment of RPA14 orthologs. The orthologs were identified,
aligned, and displayed as in Appendix Figure A.1. The alignment shows the sequences from Mus
musculus (mm), Homo sapiens (hs), Gallus gallus (gg), Xenopus laevis (xl), Danio rerio (dr), and
Drosophila melanogaster (dm). UniProt accession numbers [164] from top to bottom: Q9CQ71,
A4D105, E1C4C7, Q6AZP5, A5PMY4, Q9VYW3.

A.4. RPA32 Orthologs
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Figure A.4.: Multiple sequence alignment of RPA32 orthologs. The orthologs were identified,
aligned, and displayed as in Appendix Figure A.1. The alignment shows the sequences from Mus
musculus (mm), Homo sapiens (hs), Gallus gallus (gg), Xenopus laevis (xl), Danio rerio (dr), and
Drosophila melanogaster (dm). UniProt accession numbers [164] from top to bottom: Q62193,
P15927, Q5ZLH1, Q6IP18, Q9DDG4, Q8SXG3.
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A. Multiple Sequence Alignments

A.5. RPA70 Orthologs
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Figure A.5.: Multiple sequence alignment of RPA70 orthologs. The orthologs were identified,
aligned, and displayed as in Appendix Figure A.1. The alignment shows the sequences from Homo
sapiens (hs), Mus musculus (mm), Gallus gallus (gg), Xenopus laevis (xl), Danio rerio (dr), and
Drosophila melanogaster (dm). UniProt and NCBI accession numbers [164, 169] from top to bottom:
NP 002936.1, NP 080929, Q5ZJJ2, Q01588, Q6NY74.1, Q24492.
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B. Difference Maps and 2D Class Averages

B.1. Tim-Tipin-∆RPA Maps

Figure B.1.: Difference maps in four different views (front, side, back, side, U-shape) related by
rotation around the y-axis as indicated. The difference maps (Tim-Tipin-∆RPA) were generated
by subtraction of the putative volume enclosing RPA from the negative stain Tim-Tipin-RPA 3D
reconstruction (black model).
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B. Difference Maps and 2D Class Averages

B.2. Negative Stain Tim-Tipin 2D Class Averages

Figure B.2.: Negative stain Tim-Tipin 2D class averages used for difference mapping.
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