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Dissertation

of the Graduate School of Systemic Neurosciences

of Ludwig–Maximilians–Universität

München

Submitted by

Onur Gökçe
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Abstract

The computation in the brain is executed at different levels, from single synapses
to ensembles of networks. Perception, behavior, and phenomena such as con-
sciousness emerge from the activity of all levels. The synaptic input, which is
mostly received on the dendrites of the neurons is integrated linearly or non-
linearly with other inputs as it propagates to the soma. There, depending on
the strength of the signal, the neuron passes this information to its downstream
partners in the network.

To be able to relate the computation of a single neuron to the computation of
the network, the information on how and where the individual neurons integrate
into the circuit is essential. For this reason, different techniques currently try to
map the connectivity between different neurons in the network.

This study presents a new approach for connectivity mapping by utilizing the
light activated cation channel, channelrhodopsin-2 (ChR2). Specific presynaptic
neuronal populations are targeted genetically to express ChR2 and driven to fire
action potentials by photostimulation. In individual spines of the target post-
synaptic neurons, calcium signals evoked by the stimulated presynaptic neurons
are detected. These sites reliably locate the input of the presynaptic neurons
with single synapse resolution. By systematically scanning over the dendrites
of the postsynaptic neurons, this technique yields input maps that exhibit the
connectivity between the two neuronal populations.

Analysis of the spatial organization of these identified inputs reveals clustering
in the connectivity between pre- and postsynaptic layer 5 neurons of the primary
visual cortex.
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Chapter 1

Introduction

Men ought to know that from nothing else but the brain come joys,

delights, laughter and sports, and sorrows, griefs, despondency, and

lamentations. And by this, in an especial manner, we acquire wisdom

and knowledge, and see and hear, and know what are foul and what

are fair, what are bad and what are good, what are sweet, and what

unsavory; some we discriminate by habit, and some we perceive by

their utility. By this we distinguish objects of relish and disrelish,

according to the seasons; and the same things do not always please us.

And by the same organ we become mad and delirious, and fears and

terrors assail us, some by night, and some by day, and dreams and

untimely wanderings, and cares that are not suitable, and ignorance

of present circumstances, desuetude, and unskillfulness.

[...] Wherefore, I say, that it is the brain which interprets the under-

standing.

Hippocrates, On the Sacred Disease1, 400 B.C.

The brain is a computing biological machine. Our current interpretation of

its workings, and in this respect modern neuroscience research, is based on the

neuron theory, or the neuron doctrine. The doctrine describes the brain as made

up of individual units (neurons) consisting of specialized compartments such as

dendrites, somata and axons. The information flows generally unidirectionally

from the dendrites to the axons via the soma, then to the dendrites of downstream

neurons upon synaptic transmission.

Santiago Ramón y Cajal, from his studies with Golgi staining, was the first

to suggest in 1888 that dendrites and axons terminate and neurons communi-

cate across specialized contacts. This hypothesis at the time contradicted to

1Translation by Francis Adams
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the prevalent idea proposed by Gerlach, where the brain was considered to be a

mesh of neuronal processes forming a continuum which harbors the computations.

Gerlach’s reticular theory was able to readily explain the flow of the currents and

thus of the information. Cajal, later in 1891, postulated his law of dynamic po-

larization, where he could fit his observations of a discontinuous nervous system

interrupted at the contact sites in explaining the information flow. He proposed

that neurons had morphological and functional polarization; the dendrites and

the soma functioning as the receptor apparatus, passing the information to the

emission apparatus, the axon, which then emits to numerous receivers via the dis-

tribution apparatus, the terminal axonal arborization (DeFelipe, 2010). It took

around 60 years until, with the introduction of transmission electron microscopy

(TEM), the synaptic cleft was visualized (Palay and Palade, 1955) and Cajal’s

idea of a discontinuous nervous system had been proven.

After over a century of research, we gained immense knowledge about this

system. Roles, properties and functions of different types of neurons were iden-

tified. The properties of the excitable membrane and the synapses explained

how the information flowed. Individual neurons were shown to compute differ-

ent aspects of the sensory input. Various implementations of neuronal network

architecture were discovered. The developmental studies showed how signaling

pathways shaped this architecture. Detailed studies on the dendrite revealed

subcompartmentalization in the neuronal computation. The plasticity studies

demonstrated some of the rules governing the dynamical changes in the system

and provided insight on how memory and learning might work. Molecular biol-

ogy described the rich molecular content of the neurons and how this composition

gave the neurons unique abilities. On one side of the scale, we learned in great

detail how the synapses work and how molecules maintain the system. On the

other side, we started to describe phenomena with reference to network activity.

Notwithstanding, the brain still remains to be one of the most complex systems

known to humanity. Sensory perception, behavior, memory, learning, analytic

thinking, emotions and consciousness emerge from interactions between individ-

ual neurons, each having their individual cellular processes.



1.1 Spines 3

This study attempts to contribute to the general pursuit of linking the role of

individual synapses to the workings of neuronal networks. The network architec-

ture is the defining content for the function of the brain. Information processing

occurs at different levels, from single synapses to dendritic stretches, from indi-

vidual neurons to microcircuits, from brain regions to the brain as a whole, with

all these levels interacting with each other. Different compartments on these dif-

ferent levels compute individually, but interdependent on each other. Eventually

their outputs are integrated to be passed onto compartments of higher level com-

putation. Most excitatory synaptic input in vertebrate central nervous system are

delivered to the postsynaptic neurons through small dendritic protrusions called

spines. The spines provide the first level of compartmentalization in the net-

work, owing to their morphological properties such as the thin spine neck (Yuste,

2011). The inputs to the spines are integrated on dendritic segments, linearly

or nonlinearly, depending on the spatio-temporal structure of the input and the

membrane characteristics of the dendrites (Branco and Häusser, 2010). Later,

the resultant signal on the dendrites could potentially trigger an action potential

and the neuron gives an output to the network.

Relating the computation in individual neurons to the network requires the

information about their connectivity with each other. Different techniques are

currently available to tackle the connectivity of the neuronal network, each with

their unique strengths, but also weaknesses. Here, we will present our efforts to

open a new niche in input mapping, aiming to complement the current research

by introducing single synapse resolution, neuronal population specificity and large

scale applicability.

1.1 Spines

More than 90% excitatory synapses of the pyramidal neurons are located on small

membranous protrusions called spines (Harris and Kater, 1994). The synapses

provide information relay sites for the neurons. Upon depolarization of the axon

terminals and the boutons via action potentials (APs), the vesicles containing

neurotransmitter fuse with the presynaptic membrane and release their contents
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into the synaptic cleft. Neurotransmitters diffuse in the synaptic cleft and bind to

the receptors on the postsynaptic side of the synapse, resulting either in opening

of ion channels, or in biochemical signaling cascades if they bind to metabotropic

receptors. This is called synaptic transmission and it is the major way a neuron

communicates to another neuron downstream. Different types of synapses utilize

different types of neurotransmitter and matching receptors, and might excite,

inhibit or modulate the postsynaptic cell.

The spines were first described by Cajal, who suggested they might be key

elements for the connection of the dendrites with the axons, it was Gray (1959a;

1959b) who showed that they made synapses. The spines are found in various

neuronal populations in all vertebrates and some invertebrates, e.g. Drosophila

(Leiss et al., 2009), and their densities, distributions, sizes and shapes vary in dif-

ferent brain regions and across species (Ballesteros-Yáñez et al., 2006; Nimchinsky

et al., 2002; Sorra and Harris, 2000) (Fig. 1.1). Three types of spines have been

described based on morphology: thin, mushroom and stubby (Fig. 1.2). While

thin and mushroom spines have long necks, stubby spines lack any. Mushroom

spines are characterized with their larger heads than of thin spines (Peters and

Kaiserman-Abramof, 1970). Additionally, dendritic filopodia are transient struc-

tures, lacking a head, and are primarily found on dendrites of developing neurons.

They might receive synaptic input and may further develop into dendritic spines

during synaptogenesis (Fiala et al., 1998).

Molecular composition of the spines is highly complex, and many biochemical

reactions related to synaptic signaling and plasticity take place within the small

volume of the head. Moreover, this molecular organization is highly dynamic.

The abundance of the constituent molecules can be regulated, including ion chan-

nels, or the proteins can be modified to alter their characteristics (Rochefort and

Konnerth, 2012).

The spines harbor different types of glutamate receptors: N-methyl D-aspar-

tate (NMDA), α-amino 3-hydroxy 5-methyl 4-isoxazolepropionic acid (AMPA),

kainate, and metabotropic glutamate receptors. NMDA receptors (NMDARs)

bind glutamate, but as well require removal of their Mg2+ block to be activated.



1.1 Spines 5

a

b

c

d

Figure 1.1: Different spines on different types of cells. (a) Spines of a hip-
pocampal CA1 pyramidal neuron, (b) zoomed in at the box in a, and (c) of a Purkinje
cell, (d) with higher magnification of the box in c. It can be observed at a first glance
that the density and morphology of the spines belonging to the two distinct types of
neurons show differences (scale bar: (a) 100 µm, (b) 7 µm, (c) 40 µm, (d) 5 µm).
Reproduced with permission of ANNUAL REVIEWS (Nimchinsky et al., 2002).
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Figure 1.2: Spine types based on morphology. Different types of spines are
labeled on a dendritic stretch of a hippocampal CA1 pyramidal neuron (S, stubby;
M, mushroom; T, thin; B, branched; F, filopodium). The spine heads (red) and the
spine necks (white) of the different spine types are marked with arrowheads. Image
was taken at a custom built stimulated emission depletion laser scanning microscope.
Image credit: Marcus Knopp.
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This removal depends on postsynaptic depolarization, making NMDARs impor-

tant for coincidence detection of pre- and postsynaptic activity in spines (Yuste

and Denk, 1995). NMDARs are heteromeric tetramers and different variants show

different glutamate affinity, channel kinetics and Ca2+ permeability depending

on their subunit composition. NMDARs contribute to the spine plasticity. The

spines regulate the abundance of their NMDAR (Paoletti et al., 2013). Ca2+

influx through NMDARs is also regulated by phosphorylation via protein kinase

A (PKA) (Skeberdis et al., 2006).

Most variants of AMPA receptors (AMPARs) are not Ca2+ permeable, how-

ever, they could indirectly contribute to Ca2+ influx by aiding the removal of

the Mg2+ block from NMDARs through depolarizing the spine head (Higley and

Sabatini, 2012). Properties of AMPARs can also be dynamically regulated. It was

shown that subunit composition (Liu and Cull-Candy, 2000), quantity, and/or

phosphorylation state of AMPARs could be modified in relation to synaptic ac-

tivity, which could be crucial for short- or long-term synaptic plasticity (Song

and Huganir, 2002).

Apart from the glutamate receptors mentioned above, voltage-gated Ca2+

channels (VGCCs), scaffold proteins, molecules interacting with the spine cy-

toskeleton, signaling molecules, adhesion molecules and Ca2+ buffering molecules

occupy the spines (reviewed in Tashiro and Yuste, 2003).

The exact function of spines is still debated. Cajal suggested that neurons

might be employing them to increase the membrane area in order to pack more

synapses. However, the requirement for the extra area is disputed as estima-

tions by Harris and Stevens (1988) from electron microscopy (EM) reconstruc-

tions demonstrated in hypothetical Purkinje or hippocampal CA1 pyramidal cells

which lack spines that there would still be free space on the membrane even after

all of the synapses were placed. Nevertheless, spines allow dendrites and axons

to arborize the neuropile with relatively straight paths while still letting them

to connect with high specificity, eventually simplifying the implementation of the

connectivity for the neurons (Swindale, 1981). With the aid of spines, the dendrite

can reach out to axons, hence neither of the two need to make curved trajecto-
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ries to contact each other. Also, with the formation or retraction of spines, the

neuron can change its connectivity without the need of remodeling the whole den-

dritic and/or axonal structure. In addition, employing spines allows the neuron

to have a greater selection of potential presynaptic partners, or in other words,

more potential synapses (Stepanyants et al., 2002).

Otherwise, the primary role for spines might be for compartmentalization.

The narrow spine neck constrains diffusion between the spine head and the den-

drite providing compartmentalization of biochemical signals, most importantly

the Ca2+ signals, as influx of Ca2+ regulates diverse processes including local bio-

chemical signaling, protein/membrane trafficking, and synaptic plasticity (Higley

and Sabatini, 2012; Sabatini et al., 2001; Zucker, 1999). Müller and Connor

(1991) reported that Ca2+ influx through NMDARs in spines led to an increase

in Ca2+ concentration, which was confined in the spine head. Later, Sabatini

et al. (2002) showed the diffusion time constant of Ca2+ between the spine head

and the dendrite to be in the range of 12-190 ms, up to 100 times slower than

what was expected for free diffusion across a similar distance.

It is also suggested that the spine provides electrical compartmentalization.

A passive electrical model for the spine stems from the assumption that spine

necks have high electrical resistances. Rall (1969a; 1969b) applied the cable the-

ory and compartmental modeling to the analysis of dendrites, which provided a

theoretical basis for the interpretation of dendritic integration (Tsay and Yuste,

2004). Rall and his colleagues argued that a high neck resistance relative to the

dendritic resistance would create an impedance mismatch, which would atten-

uate the excitatory postsynaptic potentials (EPSPs), but not the signals from

dendrites invading the spines. Also, the extent of attenuation would depend on

the length of the neck (Rall and Rinzel, 1973; Rinzel and Rall, 1974). Similar re-

sults were derived by Koch and Poggio (1983a; 1983b) according to their model of

the spine, with a small head capacitance, a high head input resistance, a variable

neck resistance and a negligible neck capacitance (Fig. 1.3a). Simulations on

this model revealed a local amplification of the EPSPs in the spine if neck resis-

tance was increased (Fig. 1.3b). This scenario had another consequence: If small
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to the spine neck resistance. Reproduced with permission of ANNUAL REVIEWS
(Yuste, 2013).

synaptic conductance could lead to large changes in the ionic composition within

the spine, then it would be expected that this conductivity could potentially dis-

rupt Na+ gradients across the spine membrane (Yuste, 2013), which could result

in low-pass filtering of the synaptic inputs. From a different perspective, even

if the spine neck does not have a high resistance, the additional membrane area

contributed by the spines could lower the membrane resistance and increase its

capacitance. Such changes in the membrane properties would still alter temporal

dynamics of input integration (Jaslove, 1992).

Further possible electrical properties were attributed with the assumption that

voltage-gated Na+ and K+ channels resided on the spines at sufficient densities

(Tsay and Yuste, 2004; Yuste, 2013). Such active spines could trigger spine

action potentials that might propagate to neighboring spines (Miller et al., 1985),

increase reliability of dendritic integration (Segev and Rall, 1988) and implement

logical operations (Shepherd and Brayton, 1987).

Imaging experiments demonstrated that spines provided biochemical compart-

mentalization for the synaptic input. However, justifying the electrical compart-

mentalization is not as straightforward, since providing evidence requires direct
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electrical measurements from inside the spine head and its base on the dendrite.

The exact resistance of the spine neck is still unknown to this day. Therefore,

studies about electrical properties of the spines remain largely theoretical (Tsay

and Yuste, 2004; Yuste, 2011). The neck resistance was measured most directly

using a voltage-sensitive dye. Palmer and Stuart (2009) detected the fluores-

cence changes of the voltage indicator in the dendrite and in the spines during

backpropagating APs and calculated the neck resistance to be up to ∼500 MΩ.

Their simulations revealed that the resistance of this magnitude affected the am-

plitude of the EPSPs at the soma by less than 15%. Other indirect measurements

provided approximations of the neck resistance. In a recent study with rat hip-

pocampal CA1 pyramidal neurons, Harnett et al. (2012) calculated the neck

resistance to be also ∼500 MΩ by assuming that Ca2+ influx is proportional to

the local voltage. They argued that this resistance was large enough to amplify

spine head depolarization and to promote nonlinear dendritic processing. Other

evidence of electrical compartmentalization has been reviewed by Yuste (2013).

As mentioned above, there are multiple opinions on the function of the spines.

However, there is no reason not to expect each of them being as significant as the

other. The evolutionary drive for the formation of these structures might have

been to acutely deal with a single challenge, and possibly response to this drive

was once the sole function of the spines. It could be expected that, as the brain

continued its evolution, it would have incorporated all emerging advantages of

having spines into its functionality. One recent opinion proposes that the spines

enable implementation of a distributed circuit with widespread connectivity, with

most of the functionality introduced above contributing to the system (Yuste,

2011).

Finally, it should also be stressed, it is not only the molecular organization

which is dynamic in the spines, but also, morphologically, spines are motile. They

can change shape and size. Reasons for this motility are not exactly known, but

it has been proposed that such changes might be altering Ca2+ compartmen-

talization characteristics of spines, serve in synaptogenesis and developmental

plasticity, and/or aid connectivity (Bonhoeffer and Yuste, 2002). Furthermore,
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new spines form, or existing ones retract in accordance with network activity

(Hofer et al., 2009; Keck et al., 2008), providing, conjointly with single spine

modifications, a basis for learning and memory (Yuste and Bonhoeffer, 2001).

1.2 Dendritic Computation

Except for some special synapses, such as the Calyx of Herd (Borst and Soria van

Hoeve, 2012), it is seldom for a single synapse to drive the neuron to fire as the

magnitude of the signal is small to start with and it is further attenuated while

being relayed to the soma. On the other hand, the activation or the dormancy of

a single synapse could determine whether or not the neuron fires (London et al.,

2002). The next level of computation occurs at the dendritic segments, where

signals from individual synapses are integrated. Dendrites are not just passive

cables. If it were the case, they could have only linearly integrated the synaptic

input and propagated it to the soma. With voltage-gated ion channels (VGICs)

and cooperativity between synapses, various nonlinear computations can occupy

the dendritic branches. The computation takes place in various different levels in

the dendrites, from individual spines, to spine clusters, branchlets, branches and

dendritic regions (Fig. 1.4) (Häusser and Mel, 2003).

Until the emergence of techniques, which enabled direct measurements from

the dendrites, studies about the synaptic integration on dendrites were theoreti-

cal, pioneered by Wilfrid Rall. To analyze signal propagation in the dendrites, he

applied William Thomson’s cable theory originally developed to describe signal

noiger citirdneDtelhcnarBretsulc enipSenipS

)d()c()b()a(

Figure 1.4: Different levels of computation in dendrites. Reprinted from
Current Opinion in Neurobiology with permission from Elsevier (Häusser and Mel,
2003).
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propagation through undersea telegraph lines (Gulledge et al., 2005). Models of

passive dendrites predicted attenuation and temporal broadening, consequently

low-pass filtering of synaptic inputs as they propagated to the soma (Fig. 1.5).

These predictions were later experimentally verified in neocortical pyramidal neu-

rons (Stuart and Spruston, 1998) and in hippocampal CA1 pyramidal neurons

(Golding et al., 2005). Such an attenuation also suggested that distal synapses

would not have be represented in the output of a neuron if no other mechanism

compensated. Magee and Cook (2000) showed in hippocampal pyramidal neu-

rons that the EPSP amplitude measured at the soma did not depend on where

on the dendrite the synapse was, and that the somatic EPSP amplitude was even

greater for distal synapses, suggesting a synaptic scaling mechanism. However,

this mechanism was not universal, since a similar effect was not observed in neo-

cortical layer 5 (L5) pyramidal neurons (Williams and Stuart, 2002).

The passive model of the dendrite could also predict how multiple inputs were

integrated depending on their spatial and the temporal relationship. Synaptic

inputs which were spatially and/or temporally close showed sublinear sigmoidal

summation due to a reduction of driving force, whereas distributed inputs showed

near-linear summation (Gulledge et al., 2005). These findings were as well verified

experimentally (Polsky et al., 2004).

The limitation in signal propagation described for passive dendrites was ad-

dressed when dendrites were shown to harbor VGICs. Different channels were

identified to contribute to active signal propagation in dendrites, specifically,

voltage-gated Na+, Ca2+, and K+ channels, hyperpolarization-activated cation

channels (HCN channels) and NMDARs (Spruston, 2008), giving the dendrite

nonlinear computing capabilities and enriching its potential contribution to neu-

ronal information processing.

One important benefit of an active membrane is the facilitation of backprop-

agation. When a neuron fires an AP that propagates through the axon, this AP

also results in a signal that, in some neurons, invades even most distal branches of

the dendrites and the spines. Backpropagating APs provide retrograde signaling

to the dendrite (reviewed in Stuart et al., 1997), which serves to (i) detect pre- and



1.2 Dendritic Computation 12

postsynaptic activity coincidence, which plays a role in some forms of synaptic

plasticity (e.g. Hebbian learning), (ii) influence synaptic plasticity, synaptic in-

tegration or dendritic transmitter release via induced Ca2+ transients, (iii) shunt

out parts of the dendritic tree via activation of dendritic K+ channels, (iv) inter-

rupt synaptic integration by resetting the dendritic membrane potential, or (v)

trigger AP bursts. Additionally, Stuart and Häusser (2001) showed a mechanism

for coincidence detection in neocortical pyramidal neurons, where synchrony of

an EPSP and an AP triggers additional currents facilitated by voltage-gated Na+

channels, which results in nonlinear summation of these events (Fig. 1.6).

There is more to the contribution of VGICs than only enabling backpropaga-

tion. Magee and Johnston (1995) observed that synaptic events could activate

VGICs in the dendrites and suggested that these channels might participate in

dendritic integration, either by non-regenerative activity or by eliciting dendritic

spikes.

Dendritic spike initiation usually requires a strong and synchronous input

and therefore presents a form of local coincidence detection. Different patterns

of synaptic activity, depending on the dendrite morphology and the VGIC dis-

tribution, produce different types of dendritic spikes with varying propagation

efficiency. This determines if the spike reaches the soma with little attenuation,

or stays local and does not spread far beyond the site of initiation (Häusser et al.,

2000). Global spikes have been shown to facilitate distal compartments of pyra-

midal neurons to trigger APs, independent of other dendritic regions (Williams,

2004).

There are several reasons why spikes remain local. It may be due to struc-

ture, e.g. branching points of the dendrite progressively promote attenuation and

therefore present barriers for spike propagation (Ferrante et al., 2013; Vetter et al.,

2001). Or, it may be due to the physiology of the spike, e.g. NMDA spikes are

constrained within the extent of the glutamergic input (Antic et al., 2010). Such

local spikes result in electrical compartmentalization, yielding multiple sites of

synaptic integration that can further interact with each other (Fig 1.7) (Häusser

and Mel, 2003). Larkum et al. (2009) demonstrated in L5 pyramidal neurons how
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Figure 1.7: Neuron with multiple electrical compartments. Different com-
partments of the neuron are indicated with blue for perisomatic branches, and with
red for distal apical branches (left). These compartments locally compute. Then their
outputs are integrated with each other before relayed to the soma (right). Reprinted
from Current Opinion in Neurobiology with permission from Elsevier (Häusser and Mel,
2003).

the different types of spikes could act together for intercompartmental communi-

cation and neuronal output generation. Their data suggested that computations

were carried out locally in distal tuft and basal dendrites via NMDA spikes, which

were integrated at the apical dendrite or at the soma, and relayed further via Ca2+

or Na+ spikes, respectively.

VGICs do not always function to amplify signals, but also to counteract ex-

citability. A-type K+ channels and HCN channels yield non-regenerative currents

in distal parts of the dendrites and further attenuate synaptic inputs, present-

ing compressive nonlinearities to the dendrites possibly to balance global activity

(London and Häusser, 2005).

Active properties of the dendrite are determined by the composition and the

distribution of VGICs. Regulation of spatial organization of the VGICs, their pro-

tein modifications, and external modulators, which alter conductivity or voltage

sensitivity of these channels, provide the neuron with a higher level of adaptabil-

ity, where it could be tailored to suit the needs of computation, e.g. neuronal

input/output mode transitions (Magee and Johnston, 2005; Remy et al., 2010).

Various modes of dendritic integration have been described. Different stud-

ies demonstrated that hippocampal CA1 and CA2 pyramidal neurons, despite
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being innervated by the same neuronal population at similar locations on their

dendrites, had different integration schemes, possibly due to different branching

patterns. This suggested that these different populations might be computing dif-

ferent aspects of similar input information (Piskorowski and Chevaleyre, 2012).

Two-photon uncaging experiments provided detailed information about synaptic

integration by making it possible to activate synapses with precise temporal and

spatial patterns, revealing the contribution of single synapses to the compartment

(Judkewitz et al., 2006).

Losonczy and Magee (2006) applied fast asynchronous input patterns via glu-

tamate uncaging and reported the requirement of temporal coincidence and spa-

tial closeness of synaptic activation to initiate supralinear summation and den-

dritic spikes in oblique dendrites of CA1 pyramidal cells. This initiation as well

depended on the number of synapses that was stimulated. Later, Branco et al.

(2010) could show the effect of the sequence of synaptic activation on dendritic

integration, where distal to proximal synaptic activation yielded higher somatic

currents in comparison to those acquired with the reversed sequence. In a similar

study, Branco and Häusser (2011) explored different integration characteristics of

different compartments in cortical pyramidal neurons, showing that the time win-

dow for supralinear integration was broader for distal inputs, whereas proximal

inputs needed tighter temporal coincidence. Prior activity in dendrites was shown

to determine the integration characteristics. In CA1 pyramidal cells, initiation of

dendritic spikes depended locally on whether or not there was a previous spike,

as spikes inhibit subsequent spikes through Na+ channel inactivation. Also, in

these neurons, backpropagation caused a global reduction in dendritic excitability

(Remy et al., 2009).

Most of the studies on dendritic computation were done in vitro, and it raised

the concern whether the observed mechanisms were also utilized in vivo. Recent

publications provide in vivo examples from barrel cortex of behaving mice, which

support nonlinear computation in dendritic compartments. Xu et al. (2012)

presented evidence for utilization of nonlinear dendritic mechanisms in L5 pyra-

midal neurons of mice while performing an object-localization task. Authors of
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the study observed that global Ca2+ signals were produced by plateau potentials

at distal dendritic branches, which occurred during correlated vibrissal sensory

input and primary motor cortex activity. This suggested a circuit-level com-

putation implemented in these branches, which produced an object-localization

signal during active touch. In a follow up study, the same authors elaborated

on these nonlinearities in different compartments of L5 pyramidal neurons, de-

scribing the contribution of K+ channels during the same object-localization task

(Harnett et al., 2013). Also in barrel cortex of behaving mice, it was shown

that dendrites of layer 4 (L4) spiny stellate neurons generate local and global

multi-branch NMDA spikes, which preferentially amplify the preferred angular

directions of whisker deflection, whereby contributing to the angular tuning of

these neurons (Lavzin et al., 2012).

So far the focus has been directed to the “receptor apparatus” role of the

dendrite in the neuron doctrine, but the beautiful complexity of its computa-

tional capabilities has been revealed not to be only limited to input process-

ing. Dendrites were observed in releasing neurotransmitters, such as glutamate

and γ-aminobutyric acid (GABA) (Ludwig and Pittman, 2003), or neuromodu-

lators (Regehr et al., 2009), usually in retrograde signaling. It was shown in A17

amacrine cells in the retina that neurotransmitter release could be very local,

allowing more than 100 independent parallel processes in a single neuron, each

independently providing feedback inhibition to different presynaptic bipolar cells

(Grimes et al., 2010).

To sum up, electrical integration mechanisms of the dendrite, plasticity of den-

dritic segments, and local neurotransmitter release challenge the idea that neu-

ron is the most elemental circuit component in the vertebrate brain (Fig. 1.8).

Compartments of dendrites perform their independent computation and share

their output with other compartments. They can trigger global dendritic spikes

and yield enough depolarization at the soma to elicit APs, which allows them

to dictate the output of the neuron and pass the outcome of their computation

to the postsynaptic neurons independently. In some circuits, they communicate

directly with the presynaptic neuronal population via local neurotransmitter re-
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Figure 1.8: Parallel processing in the dendrite. (a) In the simplest model, inputs
are linearly integrated at the soma. (b) Dendritic compartmentalization provides local
integration in compartments before being integrated and relayed to the soma. (c)
Via local dendritic transmitter release, compartments can give output independently.
Reprinted from Current Opinion in Neurobiology with permission from Elsevier (Branco
and Häusser, 2010).

lease. Therefore, these compartments are, at least in some networks, individual,

independent components of the circuit.

1.3 Pursuit of Connectomes

The typical neuron in the brain receives thousands of inputs, but it has only one

axon to give output to. Therefore, the dendrite essentially needs to be able to

transform the wide input space to a narrow output space, at times by discarding

irrelevant inputs (London and Häusser, 2005). As was discussed, the dendrite

applies this transformation by exploiting local nonlinear mechanisms. Poirazi

and Mel (2001) presented a theoretical work, where they compared the infor-

mation storage capacity of linear and nonlinear modes of dendritic integration,

and showed that the neuron gains around 50 times more capacity by utilizing

local nonlinear processes. They pointed out that achieving this gain required cor-

rect addressing of relevant presynaptic contacts onto relevant postsynaptic com-

partments, since the effectiveness of a synapse is modulated by the neighboring

synapse activity within the same compartment for nonlinear integration.

Behavior emerges from the activity of an ensemble of neurons in the brain,

connected to one another with a specific architecture. The presynaptic neuronal

population defines the content of the information transmitted to and processed by

the postsynaptic cell. The computational outcome of this presynaptic information



1.3 Pursuit of Connectomes 18

depends on where and how it is delivered to the postsynaptic neuron. For these

reasons, efforts have been undertaken to map the connectivity between different

populations of neurons within networks of differing sizes and complexities.

Different methods have unique strengths and weaknesses. The ultimate brain

map should consist of all neurons with complete morphology, at a resolution that

resolves all of their connections. These connections should be complemented with

additional information, such as their function, synaptic strength, and receptor

composition. The location of the connections should be described with their

environment, that is, with a detailed molecular map of their membranes, with

all ion channels and receptors captured with their sensitivity and conductivity

states, and perhaps even including molecular and ionic composition of individual

compartments. Moreover, neurons are not the only family of cells in the brain,

but their proper working depends on their interaction with other cell types in the

tissue, such as the glia cells. Therefore, the ultimate map of the brain cannot

only be constrained to the neurons and should include all cells which interact with

the network. However, this map could only be a snapshot, trying to explain a

system that changes every instant. Whether or not we would be able to reach this

ultimate map, or if we need such a detailed picture to understand the brain, or

if this detailed picture could be sufficient for an explanation shall be left for time

to show. Current studies have already contributed to our knowledge immensely:

Multiple simultaneous intracellular recordings can be used to probe microcir-

cuit connectivity. Multi-patch based methods elicit APs on one of the neurons

and measure the synaptic response on the others. Connectivity information is

usually based on statistics; random sets of neurons from defined populations are

patched, and the connectivity is probed. Recording from enough number of sets

gives a percentile of the presynaptic population that makes their connections with

the postsynaptic population. This percentile can then be translated to relative

connection weights. Using dual and triple intracellular recordings, Thomson et al.

(2002) mapped the microcircuitry of rat and cat neocortex, including excitatory

and inhibitory neurons from all layers of the cortex. Kampa et al. (2006) used

recordings from triplets of rat layer 2/3 (L2/3) and L5 cortical pyramidal neurons
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and could show that specific L5 subnetworks receive inputs from different L2/3

subnetworks. Brown and Hestrin (2009) recorded simultaneously from up to four

L5 pyramidal neurons from subpopulations with specific long range targets and

investigated their local intracortical connections in relation to their long range

connectivity. Such approaches show the general architecture of the circuitry,

however, although connections are detected, it is not possible to know their exact

locations on dendrites.

Using light microscopy based cytomorphology to infer connectivity informa-

tion extends back to Cajal, where axonal and dendritic arborizations of labeled

neuron populations are cross-correlated and the circuitry is mapped with the ap-

proximation that the size of axodendritic overlap correlates with the number of

connections. This approximation has been used by Peters (Peters and Feldman,

1976; Peters and Payne, 1993), and currently is referred to as Peters’ rule. In

the last decade, Binzegger et al. (2004) provided a quantitative map of the cat

primary visual cortex (V1) circuit based on this principle. In addition to being

an approximation, this approach also did not provide any spatial information

about the synapses. An improvement to this technique was possible by locating

potential synapses according to the proximity between the dendrite and the axon

(Stepanyants and Chklovskii, 2005). This concept has been used by Shepherd

et al. (2005) together with laser scanning photostimulation (ultraviolet (UV)

glutamate uncaging) to demonstrate that the functional circuits in barrel cortex

could be predicted from morphology. However, the location of the synapses still

remained an approximation.

Connectivity maps at synaptic resolution can be acquired by EM methods.

With recent advances in sample handling, such as in serial block face scanning

electron microscopy (SBSEM) (Denk and Horstmann, 2004), difficulties in the

alignment of subsequent sections and the automation of data acquisition were

further improved, hence allowing large scale, high throughput and high resolu-

tion imaging of neuronal structures to obtain very detailed synaptomes. SBSEM

has also been used in combination with two-photon calcium imaging. The con-

nectivity of the neurons which were identified by Ca2+ imaging according to the
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direction preference in the mouse retina (Briggman et al., 2011), or to the orien-

tation preference in the mouse V1 (Bock et al., 2011) was subsequently mapped

at a high resolution with SBSEM. Array tomography combined immunohisto-

chemisty of very thin sections with EM, providing the molecular architecture of

the neurons in addition to the connectivity maps at synaptic resolution (Micheva

and Smith, 2007). Unfortunately, the analysis of these data will remain hard and

tedious work, especially for large volumes of tissue, until a reliable, fully auto-

mated reconstruction algorithm is discovered. Additionally, the volume of the

the tissue that is mapped is still limited and prevents EM based methods to map

long range connections.

Recently, the GFP reconstitution across synaptic partners (GRASP) tech-

nique (Feinberg et al., 2008) has been adapted to be used with mammalian tis-

sue, called mammalian GRASP (mGRASP) (Kim et al., 2012). In mGRASP, two

non-fluorescent fragments of split green fluorescent protein (GFP) are expressed

on pre- and postsynaptic neuron populations, respectively, and at the synapses

the fragments can reconstitute, granted by the close separation in the synaptic

cleft. The reconstitution restores the fluorescence of the GFP and the fluorescent

puncta pinpoint location of potential synapses. This method provides maps at

synaptic resolution with the ease and speed of light microscopy. A raising con-

cern is whether neurite touches could also be facilitating reconstitution, leading

to false positives. As addressed by the authors, this did not seem to be an is-

sue. Additional affinity coming from reconstituted GFP could have also induced

formation of synapses, but an increase in the number of synapses was not ob-

served in comparison to nontransduced neurons. The great advantage aside, the

functionality of the synapses is not assessed, however it potentially could be if

supplemented with imaging data for synaptic transmission.

Strategies that stimulate presynaptic neurons and measure responses on the

postsynaptic neurons by Ca2+ imaging or by electrophysiology can yield func-

tional maps. Richardson et al. (2009) mapped thalamic and intracortical inputs

to L4 auditory cortex neurons by electrically stimulating presynaptic areas and

identified functional synapses via two-photon imaging of postsynaptic calcium
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signals. Since stimulation was delivered electrically, the stimulated presynaptic

population was local, but not targeted specifically. Matsuzaki et al. (2011) stim-

ulated individual presynaptic neurons via two-photon glutamate uncaging and

were able to locate functional synapses via calcium imaging. Stimulated cells

were selected manually, therefore this method addressed the specificity of presy-

naptic neuronal population. However, restriction of the stimulation to individual

cells and a limited field of view prevented this method from being suitable for

larger scale mapping. Similarly, Nikolenko et al. (2007) stimulated presynaptic

cells via two-photon glutamate uncaging and located postsynaptic partners via

two-photon Ca2+ imaging at cellular resolution. Petreanu et al. (2007; 2009) used

light activated cation channel channelrhodopsin-2 (ChR2) for presynaptic stim-

ulation and measured light evoked postsynaptic potentials. With this method,

they could target presynaptic neurons selectively with genetic tools and probe the

connectivity between neuronal populations at a subcellular resolution, however,

they did not resolve single synapses as the connectivity information was based on

the readout of postsynaptic electrical currents. Little and Carter (2012) stimu-

lated presynaptic neurons also with ChR2, and resolved and identified individual

inputs by two-photon calcium imaging, which, as will be discussed later, is also

the method of choice for this study. They did not, however, systematically scan

dendritic branches and therefore did not provide any input maps.

1.4 The Basic Organization of Cortex

The cortex occupies a large portion of vertebrate brains and its complex cir-

cuitry, along with its flexibility in rewiring, gives the organisms a large variety

of behavioral and perceptual abilities (Douglas and Martin, 2007a). It has a

laminar six-layered organization, where neurons both excitatory and inhibitory

interact with each other, with intra- and interlayer connections, as well as with

long range connections to other microcircuits in the same region, or in different

brain regions, ipsi- or contralaterally. The six-layered architecture is preserved

across mammalian species, however with structural differences, such as different

relative thickness and neuron density at different layers (DeFelipe et al., 2002).
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Developed by work of Mountcastle (1957) in cat somatosensory cortex and Hubel

and Wiesel (1963) in cat visual cortex, it is hypothesized that the cortex has a

columnar organization in some species. It is also hypothesized that this colum-

nar organization enabled cortex to expand laterally, unit by unit, in the course

of evolution as it got more complex and capable (Buxhoeveden and Casanova,

2002; DeFelipe et al., 2002; Mountcastle, 1997).

The most extensive intracortical circuit mapping was done by Binzegger et al.

(2004) in cat V1 (Fig. 1.9). They compared the dentritic and axonal arbors

of excitatory and inhibitory neurons from different layers of the cortex. The

extent of the axodendritic overlap between two neurons approximated the relative

connectivity. This way, they could show, for instance, L2/3 neurons made most of

their connections within the layer, which accounted for most of the intracortical

connections, whereas L5 received most of its input from L2/3 and in comparison

did not make as many contacts within the layer. They also showed that thalamic

inputs innervated mostly L4 and made up a small fraction of all the connections

in the cortex. This suggested an architecture based on recurrent neuronal circuits

in the cortex, with feedforward excitatory and feedback inhibitory connections,

computing locally as microcircuits (Douglas and Martin, 2007b). Prevalence of

local connectivity, a columnar organization, and the general homogeneity of the

cytoarchitecture throughout the cortex led to the pursuit of a canonical circuit

(Douglas et al., 1989).

Some other studies revealed the existence of specific subnetworks within the

cortical network, such as the study by Yoshimura et al. (2005). By cross-

correlating evoked excitatory postsynaptic currents (EPSCs) and inhibitory post-

synaptic currents (IPSCs) in simultaneously recorded adjacent L2/3 neurons upon

photostimulating L4 or L5, they showed that there were finer subnetworks within

functional columns. Separate subpopulations of L2/3 neurons received input

from specific presynaptic subpopulations in L4, whereas inhibitory neurons and

L5 pyramidal neurons gave output to L2/3 disregarding subpopulations.

The attempts to discover the connectivity in the cortex are not limited to

the studies mentioned above. However, the cortex is a very complex network.
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Therefore, novel high-throughput methods that can provide high resolution data

are necessary to eventually figure out how it functions.

1.5 Objective of This Study

In this study, a new technique is developed and applied for neuronal circuit map-

ping at single synapse resolution. As discussed, there are several gaps in the data

acquired by current methods. Some methods are not able to provide neuronal

population specificity. The techniques that address the population specificity ei-

ther do not have the synaptic resolution, or when they do, the technique is not

applicable for large scale mapping. mGRASP cannot provide the information

whether the detected puncta are functional synapses or not. EM based meth-

ods can supply very high resolution information at the expense of difficult and

time consuming analysis. Additionally, they are currently only suitable for inves-

Figure 1.9: Microcircuitry of cat V1. (a) between excitatory neurons, (b) from
excitatory onto inhibitory neurons, (c) from inhibitory onto excitatory neurons, and
(d) between inhibitory neurons. Reproduced with permission of SOCIETY FOR
NEUROSCIENCE (Binzegger et al., 2004).
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tigating local connectivity. Here, this new approach addresses these issues and

provides a new level of information to complement existing methods.

Shortly, we genetically target specific presynaptic neuronal populations to ex-

press ChR2 (Nagel et al., 2003), and induce activity only in these subpopulations

via light stimulation (Boyden et al., 2005). Simultaneously, in a postsynaptic

neuron filled with a volume marker and a calcium indicator, NMDAR mediated

Ca2+ influx is detected in individual spines upon successful synaptic transmission

from the presynaptic population (similarly as done by Zhang and Oertner, 2007).

This technique adds to current mapping efforts by specific presynaptic population

targeting and single synapse resolution in a single experiment. Specific presynap-

tic targeting also allows to acquire large scale maps since the connectivity of the

whole population is mapped onto postsynaptic cells, rather than of individual

presynaptic neurons.

We apply this technique to probe L5 to L5, and L2/3 to L5 excitatory con-

nectivity in the mouse V1, specifically to scan basal dendritic branches of post-

synaptic L5 neurons and map their functional synapses with the presynaptic

population. Later, the spatial organization of the detected inputs are analyzed.

We chose L5 and L2/3 as the presynaptic population for practical purposes.

Thy1-ChR2 transgenic mice (Section 2.5) express ChR2 in L5, and it is possible

to target L2/3 for expression by in utero electroporation (Section 2.6).

L5 neurons were interesting to investigate as the postsynaptic neuronal popu-

lation. They are the major cortical output, and therefore represent the final stage

of computation in cortical circuits (Harnett et al., 2013). Moreover, L5 neurons

exhibit different subpopulations within the same circuit depending on their target

regions. These subpopulations have distinct morphology, membrane properties

and firing characteristics, therefore, potentially compute specific output for their

target regions (Hattox and Nelson, 2007; Kasper et al., 1994). Altogether, L5 is

a great model to study dendritic computation in the microcircuitry.



Chapter 2

Methods

2.1 ChR2 Assisted Synapse Identity Mapping

2.1.1 Optogenetic Stimulation

ChR2 is a light gated cation channel isolated from green alga Chlamydomonas

reinhardtii. Originally, Nagel et al. (2003) showed that mammalian systems, such

as the HEK293 and BHK cell lines, could also express the functional channel and

they could be depolarized via the light induced ionic currents. Later, this light

induced depolarization was demonstrated to be large enough to elicit photostimu-

lus locked APs in hippocampal neurons with millisecond time resolution (Boyden

et al., 2005). This provided a powerful tool for neuroscience research. Its strength

lies with the possibility to target specific neuronal populations genetically for ex-

pression, which enables selective and noninvasive stimulation of these populations

with light. This is particularly important in in vivo studies and in studies where

stimulation of specific neuronal populations is required. Over the past years,

new variants of ChR2 or similar proteins were engineered to give a selection of

conductivity, kinetics and excitation wavelengths (Berndt et al., 2011; Kleinlogel

et al., 2011; Lin et al., 2009; Prigge et al., 2012). Additionally, halorhodopsin, a

light activated Cl- pump, complements ChR2 with an inhibiting function (Han

and Boyden, 2007).

Optogenetic stimulation is an important tool not only for basic research,

but also in medicine with a wide potential application pool, including blind-

ness, Parkinson’s disease, epilepsy, addiction, neuropsychiatric diseases, etc. (Cao

et al., 2011; Kokaia et al., 2013; Zhang et al., 2007a).
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2.1.2 Two-Photon Calcium Imaging

In single photon fluorescence, a fluorophore absorbs one photon of sufficient en-

ergy and subsequently enters an excited state. If its relaxation proceeds through

radiative transitions, it emits a photon with lower energy, accounting for non-

radiative energy losses. It is also possible to excite a fluorophore with multiple

photons, when a single photon cannot provide the adequate energy for excitation.

This requires these photons to be absorbed simultaneously and their summed en-

ergy to fit the energy gap for excitation. Emission happens as in single photon

fluorescence. Occurrence of multi-photon absorption is a very rare event, and can

happen only when the photon density is very high.

This phenomenon has been applied to microscopy, most commonly with two-

photon fluorescence, where only fluorophores in very close vicinity to the focal

point of the objective lens receive enough light intensity to absorb two photons

and fluoresce, giving the technique an intrinsic 3D resolution (Fig. 2.1) (Zipfel

et al., 2003). This excitation volume is scanned over the tissue to acquire an image

(Denk et al., 1990). Typically near infrared light is used for excitation, which has

deeper tissue penetration in comparison to lower wavelengths. The diffraction-

limited focal volume (the resolution) depends on the excitation wavelength, the

numerical aperture and the filling of the back aperture of the objective lens (Zipfel

et al., 2003). The intrinsic 3D resolution makes its implementation relatively

easy when compared to other tomographic microscopy techniques. However, the

requirement of powerful femtosecond lasers makes it also an expensive technique

(Denk and Svoboda, 1997; Svoboda and Yasuda, 2006).

This technique can in principle be used to image any fluorophore, synthetic

or genetically encoded. By using a Ca2+ indicator that changes its fluorescence

characteristics depending on whether Ca2+ is bound or not, it has been possible

to make quantitative measurements of intracellular Ca2+ concentrations (Denk

et al., 1996). This has been used with two-photon microscopy to measure Ca2+

dynamics in spines (Denk et al., 1995; Yuste and Denk, 1995).
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Figure 2.1: Single photon vs. two photon excitation volume. Single photon
excitation (a), and two-photon excitation (b) of fluorescein. The excitation volume is
localized in the focal plane with two-photon excitation, whereas single photon excitation
occurs at all locations on the path of the excitation beam. Reprinted by permission
from Macmillan Publishers Ltd: Nature Biotechnology (Zipfel et al., 2003).

2.1.3 Mapping of Synaptic Inputs

In this study, optogenetic stimulation was combined with two-photon calcium

imaging to map functional synapses between presynaptic and postsynaptic pop-

ulations (Fig. 2.2). Presynaptic neurons expressing ChR2 from acute brain

slices were stimulated with blue light. Ca2+ influx into postsynaptic spines upon

synaptic transmission was detected via two-photon imaging of Fluo-5F (Zhang

and Oertner, 2007). Experiments were done in the presence of NBQX to block

AMPARs. NMDAR currents were promoted by depolarizing postsynaptic neu-

rons to remove the Mg2+ block from the channels and by including D-serine.

Hence, glutamergic synaptic transmission in the slice was restricted to NMDAR of

the patched neuron, allowing to map only direct inputs while preventing polysy-

naptic transmission. Picrotoxin blocked GABAA receptor chloride channels to

avoid possible inhibition.

2.2 Experimental Setup

Imaging was done with a custom built two-photon laser-scanning microscope

(Fig. 2.3). Two femtosecond, 80 MHz pulsed Ti:sapphire lasers (Mai Tai and

Millenia-Tsunami) were tuned to different wavelengths (960 and 810 nm, respec-

tively). The intensity of the beams could be tuned with electro-optic modulators

in the beam path. Polarization of the beams was adjusted to be perpendicular
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Figure 2.2: ChR2 assisted synapse identity mapping. (a) Presynaptic neuron
population (red) is targeted genetically to express ChR2. A postsynaptic target cell
(green) is patched and filled with a volume dye and a Ca2+ indicator. (b) Upon light
stimulation, activity is evoked in transfected presynaptic neurons (red). At an input
site between a transfected cell and the patched postsynaptic cell (green), calcium signals
could be detected (yellow star) upon successful synaptic transmission. The contact site
of an untransfected presynaptic cell (gray) remains dark. Illustration credit: Dr. Volker
Scheuss.

to each other using a half-wave plate and subsequently the beams were combined

via a polarizing beam splitter.

The combined beam was imaged onto a galvanometric scanner through two

telescope lenses. After the scan-head, the deflected beam was collected with a

scan lens and collimated with the tube lens to partially overfill the back aperture

of the objective lens. A 470 nm light emitting diode (LED) was coupled to

the beam path after the galvanometric scanner at the dichroic mirror unit of a

commercial microscope body. The LED was focused at the back focal plane of the

objective lens using the collector lens installed on the unit and the tube lens of the

microscope body, in the epifluorescene path, to uniformly illuminate the object

plane. Trans-fluorescence was collected and separated to red and green channels

with a dichroic mirror and detected with shutter protected photomultiplier tubes

(PMTs). Shutter protection was necessary since it was not possible to completely

block the blue stimulation light with filters, and the stray light was strong enough

to damage the PMTs. The PMT signals were preamplified and fed into to the
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acquisition board.

The pipette holders were controlled with micromanipulators. The microscope

stage was driven by stepping motors also controlled by the micromanipulator

controller. Slices were visualized for patching by infrared Dodt gradient contrast

video microscopy (Dodt and Zieglgänsberger, 1994). Electrical activity of the

cells was recorded (see Section 2.4) with an Axon MultiClamp system. During

the experiments, Labview and Matlab based custom software was used for setup

control and data acquisition.

2.3 Experimental Procedures

Acute slices from 40-55 days old mice were used to map inputs to postsynaptic

L5 pyramidal neurons. Slices were acquired either from Thy1-ChR2 transgenic

line (Thy1-ChR2) mice for L5 presynaptic targeting, or from electroporated mice

M
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SCL
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CL2
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Figure 2.3: The setup light path. Refer to the text for the details. PC1 and
PC2, electro-optic modulators; λP, half-wave plate; M, silver mirror; BS, polarizing
beam splitter; TL1 and TL2, telescope lenses; SCM, galvanometric scanner; SCL, scan
lens; TBs, tube lenses; DM1, DM2 and DM3, dichroic mirrors; CL1 and CL2, collector
lenses; OB, objective lens; SPE, specimen; CO, condenser; SHT, shutter; BF1 and
BF2, band-pass filters; and PMT, photomultiplier tube. Dashed rectangle encloses the
microscope body. Illustration credit: Dr. Volker Scheuss.
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for L2/3 presynaptic targeting. Postsynaptic L5 cells were visually identified and

patched. They were kept at resting potential in voltage clamp mode and filled

with 30 µM Alexa 594 fluorophore and 1 mM Fluo-5F calcium indicator at room

temperature in artificial cerebrospinal fluid (ACSF) containing 10 µM NBQX,

50 µM picrotoxin, and 10 µM D-serine (experimental ACSF). The cells were

filled minimum for 10 minutes before they were depolarized to NMDAR reversal

potential+10 mV to remove the Mg2+ block. Prior to the experiments, imaging

laser powers were calibrated. Experiments were conducted using a Labview based

custom imaging software (Colibri), forked from the original imaging software

by BioImaging Zentrum, Ludwig-Maximilians-Universität München. The acute

slices were imaged at 810 nm excitation for the synthetic fluorophores (Alexa 594,

Fluo-5F), and 960 nm excitation for the fluorescent proteins (enhanced YFP

(EYFP), mCherry).

Mapping experiments were conducted by imaging single z-planes of dendritic

segments in 5×19.8 µm tiles at 100 nm xy-sampling with a frame rate of 10 Hz.

During each time series, Alexa 594 and Fluo-5F fluorescence were acquired before

and after the photostimulation (470 nm LED). In Thy1-ChR2 mice, the photo-

stimulus consisted of 3×2 ms pulses at 30 Hz with 4 mW power at objective

lens back-aperture, and was delivered to the slice with an open field aperture. In

electroporated mice, it consisted of 3×5 ms pulses at 30 Hz with 500 µW power,

and was delivered with a closed field aperture (diameter ∼80 µm at the object

plane).

In each acquisition, first, one blank frame was recorded to measure the elec-

trical offset of the system. The blank frame was followed by five baseline frames.

After the baseline frames, the shutter protecting the PMTs was closed for two

frames and the photostimulus was delivered to the slice. Right after shutter open-

ing, 42 poststimulus frames were acquired. In total, 50 frames were collected in

5 s. Postsynaptic electrical currents were also recorded.

At every location, multiple z-planes were imaged to be able to cover every

spine. Each spine had minimum three measurements. At least 10 s passed be-

tween subsequent acquisitions. Once all the spines in multiple z-planes at a
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certain tile location were imaged, a morphological z-stack was taken at 50 nm

xy-sampling and with 1 µm increments in z-dimension. Afterwards, the tile was

moved to a new location to continue with mapping. Dendritic branches were

systematically scanned with overlapping tiles.

To be able to fit the spines and the dendritic segment optimally in the field of

view, rotation of the imaging tile was adjusted. Experiments ended when the cells

exhibited unrecoverable internal Ca2+ increase, widespread blebbing, or when the

patch was lost. At the end of the experiments, low resolution, low magnification

images documented the location of the cells.

2.4 Electrophysiology

Whole Cell Voltage Clamp Recordings

In mapping experiments the cells were clamped (Blanton et al., 1989; Edwards

et al., 1989; Hamill et al., 1981) to NMDAR reversal potential+10 mV and mean-

while loaded with Fluo-5F calcium indicator and Alexa 594 fluorophore. The pri-

mary function for voltage clamp was to remove the Mg2+ block from NMDARs.

Since this removal was in steady state, no compensation was made for access resis-

tance or cell capacitance. The cells were patched using pipettes (from thin walled

glass capillaries) with 3-5 MΩ resistance, and filled with Cs-based internal solu-

tion (recipe in Appendix B). Target access resistance was 20 MΩ. Lower access

resistances caused cellular wash-out and blebbing, whereas higher resistances hin-

dered loading of dyes. Cells were let for filling at the resting potential for at least

10 min before starting the experiments. NMDAR reversal was measured prior

to each experiment to exclude the variations due to junction potentials (Barry

and Lynch, 1991). This was done by photostimulating the slice and adjusting the

holding potential until no current was observed.

Whole Cell Current Clamp Recordings

In experiments for somatic and axonal photostimulation response characteriza-

tion, the membrane potential of the cells was recorded in current clamp mode

(Blanton et al., 1989; Edwards et al., 1989) without any current injection. Bridge
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resistance and pipette capacitance were compensated. Cells were patched using

pipettes (from thin walled glass capillaries) with 3-5 MΩ resistance, and filled

with K-based internal solution (recipe in Appendix B). In these experiments,

experimental ACSF also contained 10 µM CPP to isolate the effect of ChR2

currents.

Cell Attached Recordings

To obtain ChR2 dose-response characteristics, spiking in the cells was measured

by cell attached current recordings (Margrie et al., 2002), not to interfere with

the membrane potential and change spiking properties. For this procedure,

pipettes (from thin walled glass capillaries) with 3-5 MΩ resistance , filled with

“loose-seal” internal solution (recipe in Appendix B) (Sato et al., 2007) were

used. A seal resistance of ∼30 MΩ gave the best signal-to-noise ratio. In these

experiments, experimental ACSF contained also 10 µM CPP to isolate the effect

of ChR2 currents.

To verify the specificity of light evoked presynaptic activity, spikes of the

cells in different layers of V1 were measured upon light stimulation. In these

experiments, the ACSF solution used was identical to the one in the mapping

experiments.

2.5 Transgenic Line Thy1-Chr2

Thy1-ChR2 (line-18) mice (Wang et al., 2007) were bred and used for experiments

where presynaptic L5 pyramidal neurons expressed wildtype ChR2 (wtChR2). In

the experiments, 40-55 days old mice were used. The lower boundary was selected

based on the end of critical period for V1 (∼postnatal day 30, see Huang et al.,

1999), when the cortical network could be considered mature. The upper bound-

ary was selected to give a convenient time window for experiments, meanwhile

considering the negative effect of age on the preparation quality.
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2.6 In Utero Electroporation

Application of electrical pulses permeabilizes cell membranes and allows hy-

drophilic molecules to enter cells. This is commonly known as electroporation,

named based on the hypothesis that electrical fields create pores in membranes

by means of increasing surface tension. Although the exact mechanism is not

yet understood, the technique has been widely employed to load cells with DNA,

drugs, dyes, or alike (Rols, 2008).

An in vivo application of electroporation, in utero electroporation (IUE), was

first introduced by Saito and Nakatsuji (2001), where a solution containing the

plasmid/s is injected into the ventricles of fetuses, and cells at the lining of the

ventricles are transfected by the application of an electrical field. By performing

the procedure at different developmental stages of the cortex and adjusting the

orientation of the electrical field, it is possible to target gene expression to different

regions and layers of the cortex. In this project, the protocol by Harvey et al.

(2009) was primarily followed. Wild type C57BL/6 pregnant females on fifteenth

day after plug check, were used to target L2/3 of the V1. Good aseptic technique

and proper animal handling were followed at every stage of the procedure. The

surgeries were performed in compliance with the institutional guidelines of the

Max-Planck-Gesellschaft and the local government (Regierung von Oberbayern)

under the license number 55.2-1-54-2531-54-09.

Preparation

The operating bench and the heating pad were thoroughly wiped and disinfected

with 80% ethanol solution. All metal instruments were sterilized with a glass

bead sterilizer at 275◦C. The rest of the tools were soaked in 80% ethanol for

disinfection. Most consumables were purchased in sterile packages.

The bench and the heating pad were covered with a sterile surgical drape.

A well soaking and thin multipurpose tissue was placed over the heating pad to

provide dryness during operation. Prior to the start of a surgery, all materials

were placed on the drape (Fig. 2.4, a complete list is found in Appendix B).

50 ml of sterile 0.9% (w/v) saline was heated to 35◦C on a heatblock to be used
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for flushing and moistening during the surgery. The saline solution was applied

with sterile plastic Pasteur pipettes. The heating pad was prewarmed to 37◦C.

DNA solution contained 10 mM Tris-HCl pH 7.4, 0.02% (w/v) Fast Green dye,

2.0 mg/ml pCAGGS - hChR2(H134R) - EYPF - WPRE plasmid, and 0.5 mg/ml

pCAGGS - mCherry - WPRE plasmid (see Section 2.7). The total DNA concen-

tration should not be below 2.0 mg/ml if high transfection rates are desired, and

should not be higher than 4.0 mg/ml, since it might cause toxicity and does not

contribute to a higher transfection. When cotransfecting multiple plasmids, the

ratio of plasmids should be optimized to provide the desired levels of expression

for each plasmid.

The DNA solution was filtered through an Ultrafree-MC centrifugal filter unit

with 0.22 µm pore size. Filtration is essential, because small particles present in

the DNA solution might block the ventricular ducts and cause hydrocephalus.

Injection pipettes were pulled in a single step from thick wall glass capillaries

with a vertical puller, and the tips were broken under a microscope to have an

opening diameter of 50-100 µm and ideally a 45◦ bevel angle. A suitable pipette

will pierce through the embryo skull smoothly without any effort. If the tips

break or need too much force to penetrate, better pipettes should be prepared.

One should always have extra pipettes nearby.

The pipettes were loaded with 20 µl of DNA solution. Injections were done

with a picospritzer, which was driven by a Master-8 pulse stimulator. The pres-

sure of the picospritzer was set to 18 psi. The injection volume per trigger was

adjusted to 1 µl by changing the number of pulses in the 100 Hz train (single

pulse width, 5 ms). Typically, depending on the tip diameter of the pipette, 10-30

pulses were sent to the picospritzer. The exact number of pulses was calibrated by

comparing the size of ejected droplets from the pipette to 1 µl measured droplets.

The electroporator was set to five pulses of 50 ms width at 1 Hz with an

amplitude of 30 V. More pulses and higher voltages might be used for denser

transfection at an expense of a lowered survival rate (Saito and Nakatsuji, 2001).

These should be optimized individually depending on requirements.

C57BL/6 mice with previous pregnancy experience and in their fifteenth day
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Figure 2.4: The operating area, tools and consumables. (a) The operating area
prior to the start of a surgery. (b-c) The consumables and the tools used during the
surgery. Asterisk marks the custom-made ring forceps with electrically insulated tips.
Photo credit: Cvetalina Coneva.
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of pregnancy were used for surgeries. In our early surgeries, we observed lack of

maternal care in naive females and it was necessary to supply surrogate mothers

for the survival of the pups. This was avoided by using experienced females.

Mice were first anesthetized with 3% isoflurane in a chamber for gentle han-

dling during shaving of the abdomen with a trimmer. The isoflurane level was

adjusted with a vaporizer and mixed with 100% O2 at a flow rate of 800 ml/min.

They were let to recover from anesthesia while being still handled and were ad-

ministered orally with ∼25 µl metamizole (500 mg/ml) as an analgesic. Mice do

not swallow all of this volume, however, at such high concentrations, the amount

they lick and what diffuses through the oral mucosa is sufficient.

Later, mice were anesthetized again with 3% isoflurane in the chamber, then

laid dorsally on the multipurpose tissue over the heating pad and the head was

placed into the custom made inhalation mask. Mice lose corneal reflexes under

anesthesia. Therefore, Isopto-Max eye ointment was applied to the eyes to avoid

drying during the procedure. The mice were restrained by taping their hind limbs

onto the multipurpose tissue, and the forelimbs onto the inhalation mask. The

anesthesia was reduced to operation levels (1.0-1.5% isoflurane). During the whole

procedure the respiration was closely monitored. The isoflurane level was reduced

if the mice started gasping, or elevated if the breathing became shallower and/or

faster. The abdomen was disinfected with iodine tincture, and later cleaned with

80% ethanol. The mice were covered with sterile gauze pads moistened with

saline, while leaving the abdomen accessible.

Surgery

A ∼2.5 cm medial incision was made on abdominal skin starting from approx-

imately the middle of the most posterior nipple pair using iris scissors. If the

incision starts too posterior, then the adipose tissue underneath the skin makes

stitching harder. The incision needs to be large enough that the uterine horns can

be taken out without any resistance, however, it should also be considered that

the length of the incision determines the time it takes for suturing. The incisions

need to be straight and clear (Fig. 2.5ab).

After the skin was cut, ∼50µl of Xylonest 2% (2 mg/ml prilocain with epi-
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Figure 2.5: The incision. (a) The abdomen of a pregnant females shaved. The
dashed line indicates the extent of the incision made during surgeries. Arrow heads
mark left nipples of posterior nipple pairs. (b) The skin incision. (c) The abdominal
wall incision. (d) A uterine horn exposed. Photo credit: Cvetalina Coneva.

nephrine) was spread over the incision and the tissue underneath as an additional

local anesthetic and to stop any hemorrhage with the vasoconstrictor epinephrine.

During the surgery, whenever there was a hemorrhage, Xylonest 2% was applied

to cut blood vessel ends by dripping, complemented with compressions if neces-

sary. Typically, hemorrhages should not be expected; most times the surgeries

were executed without any.

Another slightly smaller incision was made on the abdominal wall through

the linea alba (Fig. 2.5c). The linea alba is not vascularized, therefore incising

through will not yield any hemorrhage. One of the uterine horns was pulled out

using adson forceps with finely serrated tips, grabbing the uterus very gently from

in between embryos and helping the pull with ring forceps. The fully exposed

uterine horn was laid on the gauze pads, and kept moist by dripping saline from

time to time (Fig. 2.5d). Exposing a single horn at a time minimizes the heat

loss and drying.

Under a surgical microscope, each embryo was manipulated and held gently

with ring forceps on its torso, and 1-2 µl of the DNA solution was injected into one

of the lateral ventricles. This was a crucial step. If the injections failed to precisely

target the lateral ventricles, the transfection efficiency turned out to be very poor.

For precise targeting, the head was pushed against the uterine wall. The pipette

was pushed through the parietal bone, approximately 1 mm equidistant to the

sagittal and lamboidal sutures, at an angle ∼30◦C to the tangential plane laterally
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Figure 2.6: Pipette orientation to enter lateral ventricles of the embryos.
The pipette orientation is displayed at two different camera angles. The entrance
points are marked with black dots and encircled with dashed white ellipses. Photo
credit: Cvetalina Coneva.

and perpendicular to the sagittal suture (Fig. 2.6). The pipette was pushed with

pulses rather than a single push to avoid traveling too deep. If the injection was

too deep, then all the ventricles were filled with the DNA solution (Fig. 2.7b).

A correct injection filled only the targeted lateral ventricle (Fig. 2.7a). Before

continuing with electroporation, some time was given for the DNA solution to

diffuse and mix with the cerebrospinal fluid. Typically 3-4 embryos were injected,

then subsequently electroporated before moving to another set of injections.

The orientation of the electroporation electrodes and its contact to the tissue

was another very crucial step, especially to target V1. Some high conductive

electrode gel (covering ∼ 1/4 of the electrodes at the tips) was applied to ensure

a b

Figure 2.7: Injected ventricles. (a) A correct injection into the lateral ventricle of
embryos. Only the injected ventricle is filled (enclosed with dashed line). (b) A deep
injection into the lateral ventricle results in filling of all of the ventricles. Arrowheads
show the filled ventricles. Photo credit: Cvetalina Coneva.
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Figure 2.8: Electrode gel on the electrodes. One quarter of the electrodes at
the tips are covered with the highly conductive electrode gel. Photo credit: Cvetalina
Coneva.

the contact to the tissue (Fig. 2.8). The embryos were held on their torso

with custom made ring forceps (bent and electrically insulated tips) (Fig. 2.4c,

asterisk). The heads of the embryos were pushed against the uterine wall to

minimize the amount of the amniotic fluid between the head and the uterus.

For targeting V1, the anode contacted between the contralateral eye and the

nose, caring not to apply the electrical field through the eye (Fig. 2.9a). The

cathode was brought in contact with the tissue above the dorsal posterior end of

the injected ventricle, towards the cerebellum, in alignment with the central axis

along the ventricle (Fig. 2.9b). These locations were gently touched with the

gel. It was made sure that the ventricle was centered with the electrodes. During

pulsing, the direction of the electrical field was always kept constant. If the

electrodes or the embryo move during pulses, the efficiency of the electroporation

drops. To avoid effects of the electrical field on neighboring embryos and/or

the mother, the embryo to be electroporated need to be held up, away from the

torso of its mother. Otherwise, twitches on the siblings or the mother would be

observed. It should also be avoided to electroporate across large blood vessels.

Once one horn was finished with, it was put back in gently, caring to avoid any

twists. The abdominal cavity was flushed with saline. Then the next horn was

exposed for injections and electroporations. Often the transfection of embryos

closest to the cervix or to the ovaries was skipped, since any damage to these



2.6 In Utero Electroporation 40

+

-

+

-

a

b

Figure 2.9: The electrode orientation for V1 targeting. Two different camera
angles show the correct electrode orientation. The placement of anode (-) is clearer to
see in a, and the cathode (+) in b. The rim of the gel contact is marked with white
dashed lines. Ventricles are enclosed with black dashed lines. Photo credit: Cvetalina
Coneva.
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Figure 2.10: Sutures. (a) The abdominal wall stitched with silk sutures. Note the
entry and the exit locations of the needle and stitch separation. (b) Closed abdominal
wall. (c) The skin stitched with polyester sutures. (d) Closed skin. Photo credit:
Cvetalina Coneva.

locations during embryo handling might lead to abortions.

Prior to closing, the abdominal cavity was flushed generously with saline, and

the horns were lightly manipulated to slide on each other and to settle in place.

Simple interrupted stitches were tied with square knots with one loop on the

first throw, and two loops on the second throw. Needle entry and exit locations

were ∼1 mm away from the cut. The stitches were placed ∼1 mm apart. The

abdominal wall was sutured with silk sutures, and the skin with polyester sutures

(Fig. 2.10). The skin should be sutured with polyester sutures, because mice

cannot chew off the thread. After suturing was complete, some Xylonest 2% was

dripped over the wound.

Post-Operation

The mice were let to recover under a heating lamp (150 W). They were provided

with red transparent mouse houses and paper tissue in their cages for additional

comfort during birth and nursing. They were closely monitored until after the

delivery. After birth, the pups were observed for milk in their stomachs. A

surrogate mother was placed in the cage if the pups were not fed. At postnatal

day 3, the pups were screened for red fluorescence with a stereo fluorescence

microscope. Positive pups were marked by tattoos on their palms of either left or

right hind limb, depending on the hemisphere transfected. Tattooing was done
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by inserting a tattoo ink coated sterile needle subcutaneously along the palms.

The electroporated mice were used for experiments when they were 40-55 days

old.

2.7 Plasmids

pCAGGS - hChR2(H134R) - EYPF - WPRE (plasmid 1), and pCAGGS -

mCherry - WPRE (plasmid 2) were cloned as follows:

pCAGGS expression vector backbone, containing the synthetic CAG promoter

(Niwa et al., 1991), and woodchuck hepatitis virus posttranscriptional regulatory

element (WPRE) (Zufferey et al., 1999) was prepared from pCAGGS - ChR2 -

Venus plasmid (Petreanu et al., 2007) by digesting it with NheI and PspXI re-

striction enzymes to remove the transgene. Backbone was isolated by gel elec-

trophoresis, followed by gel extraction (QIAEX II Gel Extraction Kit).

hChR2(H134R) - EYFP transgene was extracted from pLenti - Synapsin -

hChR2(H134R) - EYFP - WPRE plasmid (Zhang et al., 2007b) by polymerase

chain reaction (PCR) (Saiki et al., 1988) using the forward primer PrimerF-A

(primer sequences can be found in Appendix B) and the reverse primer PrimerR

at 70◦C annealing temperature. Flanking regions included NheI restriction site

in the forward primer and PspXI restriction site in the reverse primer. The

PCR product was isolated and cleaned by gel electrophoresis followed by gel

extraction. Insert was acquired by digesting the PCR product with NheI and

PspXI restriction enzymes.

mCherry transgene was extracted from pLenti - CaMKIIa - hChR2(H134R) -

mCherry - WPRE plasmid (Zhang et al., 2007b) by PCR using the forward primer

PrimerF-B and the reverse primer PrimerR at 65.5◦C annealing temperature.

Flanking regions included NheI restriction site in the forward primer and XhoI

restriction site in the reverse primer. The PCR product was isolated and cleaned

by gel electrophoresis followed by gel extraction. Insert was acquired by digesting

the PCR product with NheI and XhoI restriction enzymes.

PCRs were done with iProof HF master mix with 100 pg template and each

primer at 500 nM final concentration. After initial denaturation at 98◦C for
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30 s, 40 cycles of 10 s denaturation at 98◦C, 30 s annealing at the indicated

temperatures above, and 45 s extension at 72◦C were executed, and the reaction

ended with 10 min final extension at 72◦C. All restriction digestions were carried

out at 37◦C for 3 hours.

Inserts were put to overnight ligation reactions with the prepared backbone

(3:1 molar ratio) and T4 DNA ligase at 16◦C to get target plasmids. Ligation

products were transformed to competent Escherichia coli DH5α. The transfor-

mants were grown on lysogeny broth (LB medium) agar plates with ampicillin

(100 µg/ml) overnight at 37◦C. The colonies were prescreened for correct target

plasmids by colony PCR (Trower, 1996) using the forward primer PrimerSeq-G

and the reverse primer PrimerSeq-K for plasmid 1, and the forward primer

PrimerSeq-I and the reverse primer PrimerSeq-K for plasmid 2. Target plas-

mids were obtained by mini prep (QIAGEN Plasmid Mini Kit) from overnight

liquid cultures of the identified colonies, and were verified by sequencing (in-

house facility). The following primers were used for sequencing: for plasmid 1,

PrimerSeq-A, B, C, D, E, F, G, and H, and for plasmid 2, PrimerSeq-A, I, J, and

K.

Finally, plasmid 1 and plasmid 2 were purified at high concentrations (>4.0

mg/ml) from overnight liquid cultures (LB medium, 100 µg/ml ampicillin, 37◦C)

with EndoFree Plasmid Mega Kit. Impurities, especially genomic DNA contami-

nation, reduces tranfection efficiency with IUE. Extra attention must be paid for

high purity.

2.8 Acute Brain Slices

Before starting with the slice preparation:

� ACSF solutions (see Appendix B for the recipes) (Scheuss et al., 2006) were

oxygenated and pH stabilized via carbogen bubbling,

� solutions and equipment were equilibrated to their application temperatures

(recovery ACSF, 35◦C; choline ACSF, 0◦C; vibratome slicing chamber, 0◦C),

� blades were cleaned with diethyl ether off the oil residues from manufactur-
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ing, and

� orientation of the cutting blade of the vibratome was calibrated.

Prior to harvesting brains, the mice were perfused with cold choline ACSF.

This improves the quality of the slices, especially of those from older mice (>p20).

For this procedure:

1. The mice were anesthetized, first with isoflurane (0.7 ml in ∼3 L chamber),

then while the mice were still drowsy, further with 200 µl intraperitoneal

(IP) injection of 7% chloral hydrate1 in saline using a 27 gauge needle

(Field et al., 1993). Before continuing, it was made sure that the mice were

completely anesthetized via observing complete suppression of the toe pinch

reflex. If after 5 min the reflexes were still present, more chloral hydrate

was injected, up to 500 µl, paying attention to avoid overdosing, which is

hinted by appearance of the gasp reflex.

2. The limbs of the mice were fixed in supine position. The thoracic cavity

was opened and the heart was exposed.

3. The right atrium was incised, and the left ventricle was entered with a

23 gauge needle connected to a 10 ml syringe filled with choline ACSF. The

contents of the syringe was slowly injected to the ventricle, in about 1 min,

purging out blood and replacing it with choline ACSF. If the perfusion

worked, twitches were observed at the tail.

After the mice were perfused, the brain was taken out. Upon successful perfu-

sion, the brain was completely without blood, with no vessels visible. Before any

cuts were made to the brain, it was let to cool down in choline ACSF for 1 min.

Later, the frontal half of the cerebrum was removed coronally at midline. The

cerebellum was also removed. The dorsal half of the cerebrum was glued onto

the slicing platform of the vibratome, frontal side down. The hemispheres were

separated prior to slicing. A surgical blade was used for all of these mentioned

cuts.

1Chloral hydrate is not advised to be used as an anesthetic for survival surgeries.
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The slicing platform was transferred to the slicing chamber, filled with choline

ACSF. 300 µm thick slices were obtained with the following parameters: cutting

speed, 0.14 mm/s; cutting amplitude, 1 mm. Slices were transferred to a chamber

filled with recovery ACSF and under continuous carbogen bubbling and let to

recover for 1 hr before being used in experiments. 3-4 sections were cut for V1,

yielding 6-8 slices for both hemispheres. Only the slices from the transfected

hemisphere were collected from the electroporated mice.

2.9 Histology

For Nissl staining and immunohistochemistry the mice were perfused as described

in Section 2.8, but first with 10 ml saline containing 0.0005% lidocaine and

0.00028% heparin, then with 10 ml 4% paraformaldehyde (PFA) solution. The

brains were taken out and incubated in 4% PFA for a minimum of 2 days at 4◦C.

Afterwards, the brains were transferred to 30% sucrose in phosphate buffered

saline (PBS) solution and kept at 4◦C until they sank (∼2 days). Once the brains

were ready to slice, 40 µm sections were cut at a sliding microtome. Sections were

incubated in PBS overnight at 4◦C.

When sections were ready to use, immunostaining was done as follows:

1. Wash with PBS three times, 10 min each.

2. Incubate in PBS containing 0.4-1% Triton X-100 and 10% normal goat

serum (NGS) overnight at 4◦C.

3. Hybridize primary antibody by incubating in PBS containing 0.4-1% Triton

X-100, 5% NGS and 1:1000 dilution Anti-GFP overnight at 4◦C.

4. Rinse with PBS three times, 10 min each.

5. Hybridize secondary antibody, , by incubating in PBS containing 5% NGS

and 1:200 dilution Anti-Rabbit overnight at 4◦C.

6. Wash with PBS three times, 10 min each.

Afterwards, Nissl staining was done as follows:
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1. Wash with PBS for 5 min.

2. Wash with PBS containing 0.1% Triton X-100 for 10 min.

3. Rinse with PBS two times, 5 min each.

4. Incubate 20 min in fluorescent Nissl stain (NeuroTrace) diluted 100 times

in PBS.

5. Rinse with PBS three times, 5 min each.

Once all stainings were finished, the sections were mounted on microscope

slides.

2.10 Analysis

The whole analysis was conducted on custom software developed using Matlab

programming language. The code was optimized to make the analysis scalable,

to handle different loads and types of data and to seamlessly execute on a modest

system with 2 GB of RAM. It was designed to be completely modular and expand-

able to incorporate new features. It is an extensive suite of software, consisting

of approximately 42000 lines of code, and is called “Ateş Böceği”2.

2.10.1 Data Organization

The acquisitions from Colibri produced separate TIFF images for each slice in

z-stacks, or for each frame in time lapse imaging. Electrophysiology data were

separately saved in MAT files. An additional module was programmed in Matlab

and was integrated into the imaging software to be triggered at every acquisi-

tion, which then connected to the MultiClamp 700B amplifier to dump all of its

settings. This module also provided a graphical user interface (GUI) where the

experimenter could supply information about the experiments, e.g. experiment

type, information about the mice in experiment, solutions used, cell tag, cell

type, slice tag, stimulation location, etc., basically anything that could describe

2firefly
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the experiment. The amplifier dumps and user supplied information were saved

in separate MAT files.

All in all, each experiment produced thousands, sometimes more than 10 thou-

sand files, distinguished primarily by file names. Handling such quantities of files

was not practical in analyzing, transferring or backing up. Therefore, all of the

data and associated meta-data from a single experiment were first parsed and

organized in a single binary hierarchical data format (HDF5) file3 using the ap-

plication programming interface (API) in Matlab. Results of the analyses were

also stored in the same file. Utilization of HDF5 had several advantages: (i)

The library is open source and APIs exist for most of the popular programming

languages making these files truly cross-platform. (ii) Different multidimensional

data structures can be arranged in groups within the file, which makes the orga-

nization easy and robust for access. (iii) Furthermore, additional organizational

schemes may be implemented without the need of duplicates by internal sym-

bolic linking. (iv) Attributes which describe the data can be assigned and easily

fetched along with the data. (v) And most importantly, for better performance

and memory usage, the data can be fetched partially, i.e. only the portion of

data which will be processed (e.g. from a region of interest (ROI) over time) can

be read into the memory without the need to load the contents of the whole file.

Such a strength cannot be achieved when using data which are fragmented in

different files or with file formats such as TIFF or MAT, on which, for instance

Matlab cannot operate unless the file is completely loaded to the memory. (vi)

Moreover, these partial accesses can be stored virtually, without any duplication

via symbolic links, and can be accessed anytime without the need of redefining

them.

To improve the performance, flexibility and ease of programming even fur-

ther, each experiment file was complemented with SQLite4 databases. All of the

attributes of raw and processed data, and analysis results with links to the asso-

ciated data were stored in these databases to provide a directory service. This

allowed at any point of analyses to quickly query and fetch the location of the

3http://www.hdfgroup.org/HDF5/
4http://www.sqlite.org/

http://www.hdfgroup.org/HDF5/
http://www.sqlite.org/
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data or the analysis results with specific attributes and to combine and compare

specific data or analyses from selected experiments.

2.10.2 Analysis Flow

Analysis of the data consisted multiple steps, some completely automated, while

some of the steps required manual input. Figure 2.11 summarizes the individual

steps of the analysis. The details of each step are explained below.

Parsing Raw Data and Initiation Processes

All of the files generated during the experiment from a cell were parsed and or-

ganized in a HDF5 file. A SQLite database was created for attributes of the

raw data for each cell. These database entries were also appended to a separate

database where all data from all cells were pooled together. Two datasets were

acquired during experiments. One was structural z-stacks for tiles (morphology

dataset), and the other time-lapse calcium imaging of tiles (calcium dataset).

These datasets were processed independently. Boundaries in the z-dimension

were set manually on the morphology dataset. Later, respecting these bound-

aries, maximum z-projections were taken for each tile to be used during subse-

quent processing. For the calcium dataset, all of the acquisitions were scanned to

identify those that were repeats of each other and were grouped together. Mean

morphology images of the repeats were generated by averaging all of the mor-

phology image frames in the time series of all the acquisitions from the respective

repeats.

Stitching

The coordinates acquired from stage controller during the experiments were prone

to mechanical noise, and could not reliably be used to relate images from different

coordinates. Establishing such relations were necessary since often the same

spines were measured in different tiles at different coordinates and needed to be

identified the same. For this reason, a software-based fine tuning was necessary

to correct this offset due to noise. This was done by first setting assumed overlap

regions on the tiles based on the stage coordinates, then cross-correlating these
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Parse raw data

Create HDF5 file 
and SQLite DB 

Set z-stack
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repeats

Tile z-projections

Stitching tiles

ROI placement

Branch reconstruction
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Mean morphology
images of tiles
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ROI import
and placement

Branch reconstruction

Input identification Spine volume
and length
calculation

Further analysisOTHER CELLS

Figure 2.11: Analysis Flow Chart. General steps in the analysis of the experimen-
tal data. Refer to the text for details.
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regions to find the exact overlap. A semi-automatic operation mode with a GUI

let users intervene at any step to check and correct if automated offset calculations

were to produce errors. These true offsets between the tiles were calculated

separately on the two datasets, using maximum z-projections as tile images for the

morphology dataset, and mean morphology images as tile images for the calcium

dataset. The offset values were saved and used extensively when defining ROIs.

Also, stitched images were rendered using these offsets to acquire whole images

of dendritic branches which were mapped during the experiments (Fig. 3.6c).

These renders were further processed with nonlinear lookup table assignments for

visualization purposes only.

Region of Interest Definitions

Structures in the images were enclosed with rectangles manually to be able to

extract information for analysis, separately on the two datasets, easing the pro-

cess with coordinate translations across the datasets. The datasets consisted of

many tiles, sometimes close to a hundred. With the help of the offsets calculated

during stitching, translations could be applied to avoid annotating each single tile

independently.

First, rendered merge images were annotated, then the ROI coordinates were

translated to individual tiles. ROIs on individual tiles were readjusted, espe-

cially for those with rotational distortions. ROI coordinates from the morphology

dataset were translated to the calcium dataset, to preserve same ROI identifiers

(IDs) in both datasets. Consequently, the same readjustments were made on

individual tiles of the calcium dataset. Eventually, all visible spine heads were

enclosed with rectangular ROIs and the dendritic branches were traced with line

segments. Additionally, the spine necks were traced in the morphology dataset

to measure the spine length. Spine ROIs in the calcium dataset were paired with

ROIs enclosing the closest dendritic regions at the spine bases to compare the

spine signal to the dendrite signal.

Spine volume and length information was acquired from the morphology

dataset, and calcium signals from the calcium dataset. Spine volume and length

information could only be extracted from spines extending laterally, since the
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spines sticking up or down in the z-dimension could not reliably be separated

from the dendrite due to the low resolution in this dimension in two-photon

imaging. Hence, the morphology dataset lacked the annotations of these spines.

Spine distances along the dendrite were extracted from 3D reconstructions on the

calcium dataset, where all visible spines were annotated.

Image Analysis

For all calculations from the ROIs, the mean blank frame intensity was subtracted

first to remove the electrical offset.

The calcium signals were extracted from the spine and the dendritic base

ROIs from the calcium dataset. For the spine signal, the brightest 70% of pixels

in the red channel (volume marker, Alexa 594) of ROIs were selected to fetch

signals from the red and green (calcium indicator, Fluo-5F) channels, since round

spine heads enclosed with rectangular ROIs had background signal contamination

around the rims of spines. The mean value of these pixels in each time frame

represented the fluorescence intensity for the time point. The change in calcium

fluorescence (∆G) was calculated by subtracting the mean green fluorescence of

the baseline from all frames of the green channel. ∆G was normalized by dividing

the signal by the mean red channel fluorescence from all frames. The ∆G/R

were used for subsequent analysis. Similarly, the dendrite signal was acquired,

but without any pixel selection. These spine and dendrite signals were used to

decide whether there were inputs to spines. Decay time-constants (τdecay) were

calculated for ∆G signals by exponential curve fitting.

To be able to detect whether spines received inputs, first, the peaks of spine

and dendrite signals were obtained. This was done for each acquisition indepen-

dently. The peak of a ∆G/R signal was the highest value of the second, third

or fourth time point after the stimulus. To reduce the effect of noise, these time

point values were each averaged with one previous and one next time point value.

In each acquisition, for the spine and the dendrite ∆G/R signal, the standard

deviation of the baseline and the last five time points were calculated, and the

highest of these standard deviation values was selected to represent the noise of

the acquisition. A spine was detected to receive input if its peak was higher than
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the dendrite peak by three standard deviations of the noise. Decisions of this

algorithm were verified by a human subject for each individual acquisition.

The calcium signal over the entire stretch of the dendrite in individual tiles

were acquired by automatically creating ROIs along the trace of the dendrite.

These ROIs had the span of 0.5 µm along the trace, and extended perpendicular

to the trace by 0.6 µm in both directions. Any spine overlay on these ROIs were

removed before processing them. ∆G/R for each ROI was calculated as described

above.

Spine volume and length were measured from the morphology dataset. For

the spine volume, background was subtracted and the sum of pixels in ROIs were

calculated for each z-plane in all tiles for a spine. The highest value represented

the volume of the spine. Since this value is affected by the depth, the fluorophore

filling and the laser power, these were normalized for cross comparisons between

experiments. A universal mean spine volume was assumed, and the measured

volumes were normalized to the mean spine volume of segments. A segment was

the dendritic stretch between branching points. Lengths were measured from the

spine neck traces as 2D projected lengths.

Spatial Analysis

From the extracted spine distances along the dendritic segments, dendrograms

were constructed as simplified visualizations for the mapped branches. Order-

based dendrograms (Appendix A.1) represented neighborhood information in

numbers of spines. Distance-based dendrograms (Appendix A.2) were constructed

from real distances extracted from 3D reconstructions of mapped branches.

Nearest neighbor distance distributions between spines receiving input were com-

puted for both types of dendrograms and were compared to Monte Carlo simu-

lations to spot whether input locations displayed a difference to random input

distribution.

Inputs that lay within 10 µm to each other were treated to belong to the same

cluster. These patterns were analyzed for likelihood of occurrence.
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2.10.3 Methods of Analysis

Exponential Curve Fitting

Exponential curves were fit to the spine and the dendrite signals to calculate

τdecay, in two steps, assuming the following model:

I(t) = A(1− e
− t/τrise)(e

− t/τdecay) + I0

First, approximate fits were obtained by scaled template matching (Clements

and Bekkers, 1997), with templates created from a range of τdecay and τrise values.

The pair of τdecay and τrise which yielded the minimum sum of squared error,

together with the corresponding scaling factor and the offset were used as initial

coefficients for nonlinear regression fitting based on the Levenberg-Marquardt

algorithm (Marquardt, 1963). Time constants from nonlinear fitting were used

to describe the signal time constants.

Monte Carlo Simulations

For each mapped cell simulated branches were generated by keeping all proper-

ties (i.e. total number of spines, total number of inputs, and location of spines)

the same as the mapped branches, but randomly assigning the inputs to spines.

Subsequently, these simulated data were analyzed exactly the same way as if they

were experimental data. Repetition of simulations 1000 times yielded distribu-

tions of analysis results which reflect what could be expected from a random

distribution of inputs on branches.

Statistics

All populations were assumed to be normally distributed. Two-sample two-tailed

t-tests were applied when comparing two populations. Z-tests were applied when

comparing a single value to a population. In plots asterisks illustrate p-values as

*, p<0.05; **, p<0.01; and ***, p<0.001.

The values given in the text are mean±SEM (standard error of the mean), if

not indicated otherwise.
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Cluster Likelihood Scores

Cluster likelihood scores are calculated based on combinatorics according to the

following formula5:

pN,n(lM , m, lg) =

(

N
∑

i=1

(

M lM
i − 2

m− 2

)(

N −M lM
i − g

lgl
i − g

lgt
i

n−m

)

)

1
(
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n

) ,

where,

M lM
i =

{

spines(di, di + lM) if spines(di, di + lM) ≥ m

0 if spines(di, di + lM) < m

g
lgl
i = spines(di − lg, di)

g
lgt
i = spines(di + lM , di + lM + lg).

N is total number of spines in a segment; n, total number of inputs to the segment;

lM , length of the cluster, whose likelihood is calculated; m, number of inputs of

the cluster; lg, gap length; d, distance of spines from segment origin.

5Unpublished work by Dr. Volker Scheuss.
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Results

In this study, L5 and L2/3 inputs were mapped onto the basal dendritic branches

of L5 pyramidal neurons.

Prior to the mapping experiments, the experimental design was verified. It

was confirmed that ChR2 expressing presynaptic neurons were confined to L5 in

the Thy1-ChR2 mice, and to L2/3 in the electroporated mice. The photostimu-

lus protocol was optimized respectively for the wtChR2 and the codon optimized

ChR2 H134R mutant (hChR2(H134R)) to be able to evoke the highest presy-

naptic activity. The photostimulation protocols were validated not to be evoking

any unspecific activity in the neurons other than the ChR2 expressing ones in the

targeted presynaptic layers.

When probing L5 to L5 connectivity, presynaptic inputs could reliably be

detected on the postsynaptic cells. The analysis of the spatial distribution of

the identified inputs presented evidence for a clustered organization. Spines with

identified input did not differ morphologically from the spines with no identi-

fied input. Analysis of spine-dendrite signal coupling did not show a correlation

between the coupling ratio and the spine neck length.

In L2/3 to L5 mapping experiments, sufficient number of inputs could not be

detected to analyze their spatial organization, most likely due to inefficiencies in

the transfection.
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3.1 Targeting of Presynaptic Neurons

To be able to make safe conclusions about the connectivity between the pre-

and posysynaptic neuronal populations, it was important to verify whether the

presynaptic population could be targeted specifically to express ChR2. If the

presynaptic population was contaminated with neurons belonging to other lay-

ers, then mapping would include nonspecific inputs, rendering the experiment

unreliable. We examined 40 µm thick Anti-GFP immunostained slices of V1

of Thy1-ChR2 mice and observed that wtChR2 expressing neurons were really

confined to L5 in the cortex (Fig. 3.1a).

To estimate the amount of undetectable L5 input, the percentage of the

wtChR2 expressing neurons needed to be established. Counts from fluorescent

Nissl stainings (Fig. 3.1b) quantified the L5 neuronal density to be ∼79000

neurons/mm3, in agreement with what was shown before (∼85000 neurons/mm3,

Schüz and Palm, 1989). We counted the apical dendrites of fluorescent neurons

from immunostainings to approximate the number of wtChR2 positive neurons,

because the somata of these neurons were not clearly visible, since the trans-

gene was trafficked to the cellular membrane (Fig. 3.1c). The positive neuronal

density was observed to be ∼3000 neurons/mm3, corresponding to ∼4% of the

L5 population. However, this contradicted the observations from photostimulus

power calibration experiments (Section 3.2), where almost every neuron that was

blindly selected responded to the light stimulus; either by firing APs or by sub-

threshold responses. This indicated that the expression level in Thy1-ChR2 varied

greatly, and the immunopositive ∼4% population reflected the “highly expressing

neurons”.

A similar verification was obtained for the electroporated mice. The IUE

technique presented difficulties for V1 targeting and high transfection efficiency.

For the experiments, the mice were selected first based on the red fluorescence

(mCherry) visible across the skull at postnatal day 3 (Fig. 3.2a), then, after

preparation, based on the density of positive neurons and the transfected region

(Fig. 3.2b-d). The density of the transfection varied substantially from prepa-

ration to preparation (not quantified). The slice in Figure 3.2 is an example
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of dense transfection and does not represent a typical outcome of the proce-

dure, however, it does represent a typical preparation used in the experiments.

Targeting of the V1 L2/3 presynaptic population was very specific. Its dense

axonal arborization at L5 could also be observed.

3.2 Characterization and Calibration of Optical

Stimulation

The number of pulses in the photostimulus needed to be maximized in order to

maximize the release probability and assure synaptic transmission. This required

the highest applicable stimulus frequency. We selected 30 Hz based on what was

described as the maximum reliable performance for ChR2 (Berndt et al., 2011;

Boyden et al., 2005; Lin et al., 2009). It was also shown in Thy1-ChR2 mice

a
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Figure 3.1: wtChR2 expression in Thy1-ChR2 mice. (a)An immunostained
40 µm thick slice from a Thy1-ChR2 mouse displays the wtChR2 expressing neurons
confined to L5, observable by the dense fluorescence marked with the arrowhead. (b)
Fluorescent Nissl staining of the slice in a, zoomed in to L5. The area used for the
quantification of L5 neuronal density is enclosed with the rectangle. Measured density
was ∼79000 neurons/mm3. (c) Overlay of immuno (green) and Nissl stainings (pur-
ple) illustrate that wtChR2 is not expressed in the cytosol, therefore somata remain
considerably dark.
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that 30 Hz was the maximum photostimulus frequency that cortical pyramidal

neurons could follow (Wang et al., 2007).

Due to the requirement of PMT protection (Section 2.2), it was not possible

to photostimulate and image simultaneously. To minimize the time between the

first stimulus pulse and the resumption of imaging, it was necessary to fit the

stimulus in a single imaging frame of 100 ms duration. A stimulus with 3 light

pulses was chosen considering also the shutter lag. With the frequency and the

pulse number chosen, the power and the width of the stimulation pulse were

optimized to drive ChR2 positive neurons most efficiently, caring not to damage

them or the ChR2 proteins with strong illumination.

For wtChR2, we acquired cell attached recordings from blindly selected V1

L5 neurons of Thy1-ChR2 mice, while stimulating them with varying power (1,

2, 4, 6, and 9 mW at objective lens back aperture) and pulse widths (1, 2, and

5 ms) at full field aperture. Increasing the power and the pulse width increased

a b c d
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Figure 3.2: hChR2(H134R) expression in electroporated mice. (a) After
IUE, transfection was visible across the skull at postnatal day 3, which gave a first
impression about the efficiency and the regional targeting of the transfection. Here,
a pup with dense transfection at hippocampus (right hemisphere) and a wide region
from somatosensory cortex to V1 (left hemisphere) is presented. Visible fluorescence is
from mCherry. (b-d) A 300 µm acute slice displays location of the positive neurons in
L2/3 of V1 with membrane-bound hChR2(H134R)-EYFP fluorescence (dense dendritic
arborization), and with cytosolic mCherry fluorescence (more pronounced somata).
Brightfield image shows white matter (dark fibers) for orientation and outlines layers
of cortex. Note the dense axonal arborization at L5, marked with arrowheads.
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Figure 3.3: Dose-response curves for wtChR2. (a) Average number of APs
measured in cell attached mode at different light intensities and at different pulse widths
(see legend) of 3 light pulses at 30 Hz (n=12 cells). (b) Average AP count at different
light intensities with 2 ms pulse width (left) and with 5 ms (right). The cells are
separated into two groups depending on their responsiveness to the light stimulus. Red
lines belong to high responding cells (n=4 cells, at 2 ms pulse width; n=5 cells, at
5 ms), black lines to low responding cells (n=8 cells, at 2 ms pulse width; n=7 cells,
at 5 ms). Dashed lines represent data from individual cells and thick lines the mean of
these data. Error bars correspond to standard error in a, and standard deviation in b.

the AP yield, with the exception of 9 mW (n=12 cells, Fig. 3.3a), revealing an

adverse effect of increased illumination.

The measurements were analyzed once again by dividing the cells into two

groups depending on their responsiveness to light. “High responding” were neu-

rons which fired on average more than one AP at low power settings (1, 2, and

4 mW), whereas “low responding” neurons fired less than one. Low responding

neurons responded more to increasing illumination without any negative effect.

However, the high responding neurons performed worse at high illumination in-

tensity (Fig. 3.3b). In summary, for the experiments, the stimulus was chosen to

be 3×2 ms light pulses (470 nm) at 30 Hz with 4 mW power (objective lens back

aperture). This stimulus yielded an average of 1.57±0.54 APs in Thy1-ChR2

preparations.

In electroporated mice, we expected less neurons to express ChR2 when com-

pared to the transgenic line. Additionally, severed axons during the slice prepera-

tion would further reduce the viable presynaptic neuronal population. Moreover,

it was not possible to stimulate cell body layer of L2/3 while imaging postsynap-
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tic cells at L5 due to the design constraints of the experimental setup. Therefore,

we checked if the axons could locally be depolarized and driven to fire APs, as

reported by Petreanu et al. (2007).

While recording from hChR2(H134R) expressing neurons in L2/3, the photo-

stimulus was delivered to the slice with a reduced field aperture (∼80 µm diam-

eter at object plane) either over L5, where the axons of L2/3 neurons innervated

(axonal stimulation), or over L2/3, where the presynaptic somata lay (somatic

stimulation). Axonal stimulation yielded APs with rapid onsets and longer de-

lays. In contrast, the APs exhibited slow onsets and shorter delays with somatic

stimulation (Fig. 3.4a, inset). The difference was more pronounced when the

neurons failed to fire APs. Axonal stimulation did not manifest any response to

the light pulses in failures, whereas subthreshold potentials were detected with

somatic stimulation (Fig. 3.4a).

We deduced that with somatic stimulation, both APs and the ChR2 driven

depolarization could be measured at the soma. However, with axonal stimulation,

the local ChR2 depolarization could not propagate to the soma, and therefore only

the backpropagating APs could be resolved. This led to the conclusion that it

was possible to elicit APs via local axonal depolarization, which also suggested

that the stimulation area could be kept to a minimum. This was an advantage

in terms of reducing the overall excitation and the photodamage in the slice.

We also used 3 pulses at 30 Hz to stimulate axons of hChR2(H134R) express-

ing L2/3 cells, as discussed above, and optimized the stimulus protocol through

similar dose-response measurements (pulse widths: 2 and 5 ms; power: 250, 350,

500 µW at the objective lens back aperture, see Fig. 3.4b). The light intensi-

ties used for optimization appear to be significantly lower than what was used

for wtChR2, however this is due to reduced field aperture. It should be noted

that the energy density was kept comparable, e.g. 4 mW with open aperture

corresponded to 250 µW with reduced aperture.

Illumination intensity had no adverse effect on hChR2(H134R) expressing

neurons, therefore 5 ms pulse width and 500 µW power was chosen for the ex-

periments. This setting yielded an average of 2.14±0.14 APs in the L2/3 neurons
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Figure 3.4: Axonal excitability and dose-response curves for
hChR2(H134R). (a) Light stimulus, as indicated with blue lines, was deliv-
ered either over L5 to stimulate axons (left), or over L2/3 to stimulate the cell
body (right). Failed response to the third pulse is not observable when the axon is
stimulated, whereas a subthreshold current is measured in the somatic stimulation.
The inset shows aligned APs of axonal (dashed) and somatic (solid) stimulation
and depicts the difference in onset. (b) Dose-response curves for hChR2(H134R) at
different light intensities and pulse widths. Error bars are standard error.

per stimulus consisting of three pulses. One concern was whether photostimula-

tion would deplete the functional hChR2(H134R) channels over time on a thin

structure like an axonal segment with limited membrane area. The endurance

of the axonal stimulability was tested by illuminating the same area 100 times,

while measuring for the number of elicited APs in the L2/3 neurons. There was

no reduction in the performance (data not shown, n=4 cells).

3.3 Specificity in Evoked Presynaptic Activity

Once the stimulation protocol was optimized, it was necessary to confirm that

the protocol did not evoke any APs in cells other than the ChR2 positive presy-

naptic population. Such an unspecific activity would have contaminated the

mapping results with inputs delivered via polysynaptic transmission. Using the

same ACSF as in mapping experiments, we measured responses of ChR2 neg-

ative cells in different layers, while stimulating at L5, with field aperture open

in the Thy1-ChR2 mice, or reduced in the electroporated mice. Cell attached

recordings were performed not to interfere with the membrane potential. In the

electroporated mice, only L2/3 or L5 neurons were probed as they are the main
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Figure 3.5: Unspecific activity in the ChR2 negative neurons. Spiking in
neurons were measured by cell attached recordings upon light stimulus at L5. Cross
markings show the vertical location of the cells which were recorded in slices from
Thy1-ChR2 mice (left), and in electroporated mice (middle). Color codes for the type of
activity which was observed; red, no evoked AP; blue, evoked AP; yellow, spontaneously
active neurons with activity during stimulus; and green, delayed AP. Example traces
for the different types of evoked activity are shown together with the stimulus (right).

targets of L2/3 pyramidal neurons.

Recordings in slices from the Thy1-ChR2 mice showed only three neurons in

layer 6 (L6) which fired time-locked to the light stimulus. Otherwise, one neuron

in L2/3 and one in L6 elicited delayed APs. One neuron in L4 and one neuron

in L6 which were already spontaneously active, showed firing activity during the

stimulus (n=9, L2/3; n=13, L4; n=23, L6). In electroporated mice, no evoked

APs were detected (n=6, L2/3; n=7, L5) (Fig. 3.5).
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3.4 Identification of Layer 5 Inputs

To map the connectivity between pre- and postsynaptic L5 populations, L5 pyra-

midal neurons were patched and filled with a fluorescent Ca2+ indicator and a

fluorescent volume marker (Fig. 3.6). Ca2+ signals upon light stimulation were

imaged as was shown to be possible by Zhang and Oertner (2007). Spines, in

which elevated Ca2+ signals were detected, were identified as input sites of presy-

naptic population (See Section 2.1). As L5 of the Thy1-ChR2 mice was populous

with wtChR2 expressing neurons, the postsynaptic cells were selected from those

with no visible yellow fluorescent protein (YFP) fluorescence under normal imag-

ing laser powers to minimize wtChR2 currents, which contributed to global Ca2+

signals and impaired spine input identification process.

The size of the field of view was optimized to allow for simultaneous imaging

of Ca2+ signals from as many spines, meanwhile to be fast enough to resolve the

time course of these signals (5×19.8 µm at 10 Hz).

Figure 3.7a shows an acquisition from a trimmed tile (out of focus part

removed) over time, presented to demonstrate the raw data obtained during ex-

periments. Here, for the spines and the dendritic regions marked in the mor-

phology image, Ca2+ signals were acquired. The baseline frame shows the Ca2+

fluorescence before the photostimulation, which immediately after the stimulus

(indicated with the blue line) increases. In the first time frame after the stimu-

10 µm
200 µm

a b c

Figure 3.6: Postsynaptic L5 cell. (a) A postsynaptic cell in L5 is patched and
filled with Fluo-5F and Alexa 594. (b) YFP and Fluo-5F fluorescence show that the
soma of the neuron, marked with the arrowhead, resides within a dense basal dendrite
network. (c) Maximum z-projection from Alexa 594 fluorescence shows the segment of
the neuron that was mapped. Stretch enclosed by the rectangle is the tile in Figure 3.7.
Image is obtained by stitching the tiles from the experiment.
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lus, elevated Ca2+ signals are visible in the spines (red boxes in the morphology

image), which later spread into the dendrite. Towards the end of the acquisition,

after 4 s, Ca2+ levels approach back to baseline levels. In the raw data, it is normal

to observe apparently higher signals in the dendrite than that of the spines due

to the larger volume of the dendrite, which contains to more fluorophores in the

two-photon excitation volume. Therefore, the change in Ca2+ fluorescence (∆G)

was normalized to the volume marker (R) before comparing signals in spines to

their closest respective dendritic region (black boxes). Normalized ∆G/R signals

for the marked spines and dendritic regions at their bases from all acquisitions of

this tile are plotted in Figure 3.7b.

To be able to decide from these traces whether spines received input, we had

a simple assumption. The spine neck provides biochemical compartmentalization

to the spine (Müller and Connor, 1991; Sabatini et al., 2002). Therefore, it is

not expected to see a higher normalized Ca2+ signal in the dendrite when the

source of Ca2+ is the spine. A spine was identified as receiving input when its

signal peak was higher than of the signal at its base on the dendrite. If the peaks

were comparable, then the spine peak had to occur earlier than the dendrite peak

(see Section 2.10.2). Traces when the spines received input (Fig. 3.7b, round

markers) clearly demonstrate this amplitude difference. When there is no input,

the spine signal and the dendrite signal overlay with each other (traces with no

markers). We also looked at the signal of the volume marker and confirmed that

the acquisitions did not induce photobleaching (Fig. 3.7c).

It can also be argued that a global Ca2+ spike might contaminate the mea-

surements. This was addressed by analyzing the propagation of the Ca2+ signal

in the whole stretch of the dendrite. Figure 3.8 shows for the tile in Figure 3.7,

that dendritic signal elevation starts locally and spreads over the whole stretch

over time, suggesting that if this was a spike, then it is likely a local NMDA spike

(Antic et al., 2010), rather than a global Ca2+ spike. Additionally, the origin of

the signal corresponds to where the identified inputs are.

We progressed along the basal dendrites of L5 pyramidal cells of Thy1-ChR2

and systematically acquired tiles to be able to measure responses from every single
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spine on the dendritic stretch. In total, 157 of the 1436 analyzed spines were

identified to be receiving input from L5 presynaptic neurons (identified fraction,

10.9%, n=13 cells). To be able to display them altogether on entire branches,

tiles were stitched together to get an overall image of the branch. Figure 3.9

displays all of the spines of the dendritic branch in Figure 3.6c, receiving input

from L5.

We checked the reproducibility and the reliability of the input identification

method. Approximately 65% of the identified input sites (with at least three

trials) showed a response to the light stimulus more than once. The mean success

rate was 46.1% for these inputs (Fig. 3.10). The performance of the response

detection algorithm was also evaluated. We gave our subjective decision for each
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Figure 3.7: Fluorescence signals recorded from an experimental tile. (a)
Morphology and time-lapse images of an acquisition from the tile, marked with the
rectangle in Figure 3.6c, presented as raw data. Time of the photostimulus is shown
with the horizontal blue line. The spines and the dendritic regions, whose traces are
shown in b and c, are marked and labeled in the morphology image (red, spines; black,
dendritic regions). (b) Calcium (∆G/R), and (c) volume marker (R) signals from the
ROIs shown in a. Traces with round markers in b belong to the acquisitions when the
spines were identified as receiving input. Other traces, when the spines failed to show
responses.
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Figure 3.8: Ca2+ signal propagation in the dendritic stretch. The Ca2+ signal
in the whole dendritic stretch of the tile in Figure 3.7 is aligned with structural data.
Signal is retrieved along the trace (dashed line), with 0.6 µm bilateral extension and
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the stimulus frame. Color map codes for signal amplitude (∆G/R). Spines receiving
input are marked with arrowheads.
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Figure 3.9: Dendritic branch with the spines receiving input from L5.
Arrowheads mark the input sites. Image was obtained by stitching the tiles from
the experiment.



3.4 Identification of Layer 5 Inputs 67

2 4 6 8 10
0

10

20

30

40

50

P
e

rc
e

n
ti
le

 (
%

)

# Successful trials

Reproducibility

20 40 60 80 100
0

10

20

30

P
e

rc
e

n
ti
le

 (
%

)

Success rate (%)

Reliability
a b

Figure 3.10: Reproducibility and reliability of the identification method.
∼65% of the spines receiving input showed light evoked responses more than once (a).
These spines showed response on average 46.1% of the trials (b). Graphs were drawn
from spines with at least three trials (n=139).

trace, whether there was a response or not. The traces were labeled as ambiguous

when it was not straightforward to decide. In the individual traces (n=6949

acquisitions), the total discrepancy between human decision and the algorithm

was 1.91%, of which, from the human perspective, 0.72% were false negatives,

0.33% were false positives and 0.86% were ambiguities. The discrepancy in the

individual traces translated to the overall input identification (n=1436 spines)

by 3.92% total discrepancy, where 0.56% were false negatives, 1.12% were false

positives and 2.24% were ambiguities. Most of the false positives emerged from

the spines with low fluorescence intensity, i.e. small or out of focus spines, hence

more noise. False negatives were usually due to the signals with very fast decay.

Further analyses were conducted with the human corrected results.

The signal amplitudes of the spines with identified L5 input in successful

acquisitions were found to be significantly higher than the corresponding signals

at their bases on the dendrite (Fig. 3.11). Cumulative plots describe these

amplitude differences in detail (Fig. 3.12). For the spines with identified input,

all successful acquisitions showed signals with higher amplitude in the spines than

in the dendrites, whereas in failures, the signal amplitude in the spines was very

close to those in the dendrite, or the signals in the dendrite had higher amplitude.

The same relationship as in failures was observed for the spines with no identified
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Figure 3.11: Spine and dendrite mean peak signal comparison. Mean peak
signal amplitude of the spines with identified input (S) and of their dendritic base
(D) from the branch in Figure 3.9 (left) and from all experiments (right, n=13 cells)
are compared. For this branch, mean peak ∆G/R=0.89±0.06 for the spines, and
mean peak ∆G/R=0.44±0.05 for the dendrite (p<0.001 two-sample two-tailed t-test,
n=13 spines), and from all experiments, mean peak ∆G/R=0.66±0.02 for the spines,
and mean peak ∆G/R=0.23±0.01 for the dendrite (p<0.001 two-sample two-tailed t-
test, n=157 spines). Error bars represent standard error.

input.

The average τdecay of the traces identified to be responses was calculated from

exponential fits to be 1.89±0.09 s (n=434). Hence, the 10 Hz image frame rate

used in these experiments was proven to be adequate to catch these signals. These

are rather slow signals and do not reflect physiological conditions, where τdecay for

spines was reported to be 12 ms (Sabatini et al., 2002). We used an intermediate

affinity Ca2+ indicator (Fluo-5F, Kd=2300 nm) at a high concentration (1 mM)

to be able to increase the Ca2+ detection sensitivity, which also dominated the

endogenous Ca2+ buffering.

3.5 Morphological Comparisons

The morphological properties of the spines with L5 input were compared to those

of the spines without any detected input. No significant differences were ob-

served in the volume or the length of the spines between these two populations
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(Fig. 3.13). It should be pointed out that the spines without identified input also

contains L5 inputs which were not detected. This contamination from unidenti-

fied L5 inputs could be diluting the results, and might be occluding a difference,

if it exists.

3.6 Spine-Dendrite Signal Coupling

We analyzed the spine-dendrite signal coupling in the acquisitions when the spines

received input with an anticipation to see a reverse correlation between the spine

length and the signal coupling, based on the evidence that spines are biochemical

compartments facilitated by the spine neck (Müller and Connor, 1991; Sabatini
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Figure 3.12: Spine and dendrite mean peak signal comparison (cumulative).
Cumulative plots for the mean peak signal, for the spines with identified L5 input in
the branch in Figure 3.9 (a), and in all experiments (c). Successful acquisitions (solid
lines) and failures (dashed lines) are shown for the spines (red) and their bases on the
dendrite (black). In successes spine signals are higher than dendrite signals, whereas
in failures both signals overlay each other. Cumulative plots for the spines with no
identified input show in the branch in Figure 3.9 (b), and in all experiments (d), that
the signals from the dendrite (black) are higher than the signals from the spines (red).
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Figure 3.13: Morphological comparisons between the spines with identified
L5 input and with no identified input. (a) Mean normalized volume of the spines
with identified L5 input (0.87±0.07, n=24 spines) and the spines with no identified
input (1.02±0.04, n=273 spines) show no significant difference (p=0.19, two-sample
two-tailed t-test). Spine volumes were normalized to the mean spine volume for the
segment (dendritic stretch between branching points). (b) Cumulative distribution
of normalized spine volumes for the two spine populations, with identified L5 (solid)
and no identified (dotted) input. (c) Comparison of mean spine lengths also show no
significant difference between the spines with identified L5 (1.05±0.05 µm, n=23 spines)
and no identified input (1.03±0.02 µm, n=255 spines) (p=0.80, two-sample two-tailed
t-test). Spine lengths are z-projected approximate lengths. (d) Cumulative distribution
of spine lengths, for spines with identified L5 (solid) and no identified input (dotted).
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Figure 3.14: Spine-dendrite signal coupling depending on spine length. The
ratios of dendrite mean peak amplitude to spine mean peak amplitude are calculated for
each successful acquisition of a spine receiving input. Spine lengths are measured from
z-projection of morphological stacks. Regression analysis does not show a correlation
between signal coupling and spine length (R2=0.002, n=72 acquisitions from 48 spines).

et al., 2002). However, such an effect of the spine length on the spine-dendrite

coupling was not observed (Fig. 3.14).

This contradiction could be explained by various aspects which were not an-

alyzed, such as the width of the spine neck, which also contributes to the sig-

nal compartmentalization, and the Ca2+ extrusion mechanisms (Sabatini et al.,

2002). Additionally, the dendrite signals had in most of the cases multiple sources

(multiple activated inputs), which invalidated the comparison. Furthermore, the

measured length of the spines were z-projected 2D approximations, which might

have occluded the results.
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3.7 Spatial Organization of Layer 5 Inputs

The most interesting findings of this study were revealed by analyzing the spatial

organization of the inputs. We simplified visualization of the input maps by

migrating from marked two-photon images to ‘dendrograms’, which enabled a

clearer glimpse of the data. For every branch mapped, the dendritic segments

were traced to obtain a representative 3D reconstruction. These reconstructions

made it possible to extract order and distance information of the spines along the

dendrite. First, order-based dendrograms were generated, where the distances

between schematized spines were in number of neighbors. Figure 3.15 shows

the order-based dendrogram for the branch in Figure 3.9 (refer to Appendix A.1

for order-based dendrograms of all cells). Even without any analysis, apparent

clustering of spines with identified input was observable.

We analyzed the distribution of order-based nearest neighbor distances of

the spines with identified input from all the mapped branches to investigate the

existence of clusters. In doing so, a standard dataset was required to compare the

experiments to. The best approach in this case was to compare the experimental

data to simulated data from random input maps. Then, any significant difference

would have meant that the spines with identified input in the experimental data

were not randomly scattered on dendritic branches, but rather they had a non-

random spatial organization. Surrogate branches were generated by keeping the

total number of spines and the number of inputs constant, independently for every

branch simulated, and by randomizing the assignment of inputs to the spines.

Identified input

No identified input

Spines with

Figure 3.15: The order-based dendrogram for the branch in Figure 3.9.
Spines with identified input are marked with red. Different lengths these spines repre-
sent their success rate in three steps: 0-33%, 33-66% and 66-100%. The spines with no
identified input are black. Dashed lines indicate branches not mapped.
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For each simulation instance, the distribution of order-based nearest neighbor

distances was computed the same way that was done for the experimental data.

Repetition of the Monte Carlo simulation 1000 times provided the percentile

distribution for random cases of each order-based distance represented in the

histogram. Comparison of the experimental findings to the simulations revealed

that there were significantly more spines with identified input that were either

immediate neighbors (nearest neighbor distance=1), or had only one spine in

between that showed no response (nearest neighbor distance=2) (Fig. 3.16a).

This finding provided numerical evidence for the observed proximity between the

spines with identified input.

From a different perspective, we wanted to know how this applied to the size

of clusters formed by immediate neighbors. A similar comparison of experimen-

tal data to Monte Carlo simulations revealed significantly less ‘loner’ spines (no

neighbor with input, cluster size=1), but more neighbor pairs (cluster size=2)

than what would have been expected if spatial organization of the inputs were

random (Fig. 3.16b), similarly suggesting the existence of a proximity.

Order-based analysis provided an initial insight into the data, however real

distances needed to be analyzed to be able to relate the findings to a frame-

work where they could be applied to dendritic integration studies. Figure 3.17

shows the refined dendrogram of the same branch, in real distances (refer to

Appendix A.2 for distance-based dendrograms of all cells).

The same approach as in the order-based neighborhood analysis was used to

assess real distance relationship between the spines with identified input, but with

a single representational difference. In order-based analysis, distances were always

integers, which then did not require any binning to plot and analyze the distribu-

tion, however this was not the case with distance-based analysis. Therefore, the

experimental data was compared to the simulated data with cumulative distri-

butions to avoid binning. Similarly, random dendritic branches were generated,

keeping the location of spines constant and randomly assigning the same number

of inputs to these preserved locations. Figure 3.18 shows the cumulative dis-

tribution of nearest neighbor distances of all spines, of the spines with identified
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Figure 3.16: Order-based comparison of data to Monte Carlo simulations.
(a) Distribution of order-based nearest neighbor distances of spines with identified in-
put, from experimental data (bars), and from Monte Carlo simulations (blue plot,
n=1000 simulations). (b) Distribution of sizes of immediate neighbor clusters, from
experimental data (bars), and from Monte Carlo simulations (blue plot, n=1000 sim-
ulations). Error bars are standard deviation. (*, p<0.05; **, p<0.01; ***, p<0.001,
z-test)
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Figure 3.17: The distance-based dendrogram for the branch in Figure 3.9.
Spines with identified input are marked with red. Different lengths of spines with input
represent their success rate in three steps: 0-33%, 33-66% and 66-100%. The spines
with no observed response are black. Markings that appear thick are multiple spines
which are very close to each other, whose markings could not be separated in this scale.
Dashed lines indicate branches not mapped.
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input, and of the simulated inputs. The distribution from all spines provides a

minimum baseline for the other two distributions. This analysis also exhibited

that the distances between the spines with identified input from experiments to be

smaller than the random case expectations. Comparison of median values of data

(3.42 µm) and simulations (5.55 µm) revealed a significant difference (p=0.0001,

z-test). Distribution of inputs from experiments differed from simulations more

for distances below ∼10 µm.
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Figure 3.18: Distance-based comparison of data to Monte Carlo simula-
tions. Cumulative distributions of real distance-based nearest neighbor distances of all
spines (experimental data, black), and of spines receiving L5 input (experimental data,
red; Monte Carlo simulations, mean, blue; individual simulations, pale blue, n=1000
simulations; experimental data and simulation difference, purple). Median inter-input
distance is 3.42 µm for the experimental data, and 5.55±0.56 (standard deviation) µm
for the simulations. The median difference is highly significant (p=0.0001, z-test)
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3.8 Detected Clusters and Their Properties

The results presented so far suggested the proximity of identified inputs with dis-

tances smaller than to be expected if they were randomly scattered on dendritic

branches. This also suggests that these detected inputs could be clustered. As

pointed out above, inter-input distances of experimental data deviated most from

simulations below ∼10 µm. Also, it was shown in the context of long-term poten-

tiation (LTP) that synapses could influence induction of plasticity of their nearby

neighbors within 10 µm (Harvey and Svoboda, 2007). Furthermore, Takahashi

et al. (2012) and Kleindienst et al. (2011) observed spontaneously active inputs

that had synchronized activity to be within about 10 µm to each other. Therefore,

we searched for patterns of identified input with an assumption that two spines

within 10 µm to each other belonged to the same cluster.

We calculated the occurrence likelihood of detected patterns by permuting

all pattern possibilities for a segment given the branch parameters, i.e. spine

locations and the number of inputs, and finding the percentile of similar patterns

(same or less length, same number of inputs). We chose a likelihood threshold of

2% to decide if a particular pattern was a cluster or not. Also, patterns needed to

have at least three inputs to qualify as clusters. Figure 3.19 shows the result of

this analysis for the branch in Figure 3.9 (refer to Appendix A.2 for dendrograms

with cluster analysis of all cells).
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Figure 3.19: Detected clusters and their likelihood scores. The values under
marked clusters are the likelihood scores.
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Figure 3.20: Cluster positions. Cumulative plots show the distribution of the
cluster positions as the distance from the soma. Cluster location is its center of gravity.
Different plots are results with different distance criteria (5, 7.5, 10, 15 µm).

In total 31 patterns were identified that met the distance criterion (10 µm). Of

those, 11 patterns detected in 9 cells fulfilled the cluster definition (likelihood≤0.02,

inputs≥3). These detected clusters had a mean length of 11.44±3.17 µm. They

received input from 6.09±1.00 spines, corresponding to an input density of

0.75±0.17 spines/µm, and a packing ratio1 of 0.48±0.04. The mean likelihood

of clusters was 0.007±0.002. They did not have a spatial preference on dendritic

segments, which is seen from the linearity in the cumulative distribution of their

positions based on their center of gravity (Fig. 3.20, thick line).

Although the distance criterion had physiological basis, we still verified the

sensitivity of cluster detection to different distance criteria (5, 7.5 and 15 µm).

The potential effect of having a larger interaction distance was that (i) nearby

clusters could merge, or (ii) detected clusters might gain more inputs, or, less

likely, (iii) new clusters could be detected from sparsely distributed inputs.

Figure 3.21 displays some of the properties we compared with different dis-

tance criteria. As expected, longer clusters were detected with higher distance

criteria (b). Likelihood distribution of detected clusters (a) did not differ very

much, but there was a trend that with higher distance criteria detected clusters

1packing ratio is the ratio of the number of inputs to the total number of spines in the
cluster.
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scored worse. The input density (c) or packing ratio (d) of the detected clusters

was less for the clusters detected with higher distance criteria, possibly due input

dilution. The positions of detected clusters differed only slightly (Fig. 3.20),

since new inputs added to the existing clusters with increased distance criteria

could only influence the center of gravity of clusters to a certain extent. Overall,

there were some differences, most with 15 µm distance criterion. Other dis-

tances did not yield radically different results. Therefore, the detection algorithm

showed robustness to distance criteria between 5-10 µm.

We investigated the input cooperativity in clusters by visually analyzing coac-

tivated spines in individual acquisitions. Previously, Harnett et al. (2012) de-

mostrated that multiple coactivated spines exhibited input cooperativity which

was detected by higher than expected EPSPs. In our experiments, the peak am-

plitudes of the input signals did not correlate with the number of successes in

the acquisitions, hence did not reveal any cooperativity in terms of Ca2+ influx

(Fig. 3.22, refer to Appendix A.3 for all examples).
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Figure 3.21: Cluster detection sensitivity to distance criteria. Outcomes of
analyses with different distance criteria (5, 7.5, 10, 15 µm) shown as cumulative plots
for comparison of (a) likelihood of clusters, (c) cluster length, (c) density of inputs in
clusters, and (d) packing ratio of clusters.
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Figure 3.22: Spine cooperativity in clusters. Clusters from Figure 3.19 are shown
with activity of their spines over different acquisitions (rows of circles). Red circles
represent spines with identified input, with the size of filled circles representing peak
∆G/R amplitude of an input normalized to its mean, and open circles representing
failures (no response detected in the acquisition). The fixed size of the open circles
represent the mean peak amplitudes. Black circles correspond to the spines with no
identified input. Likelihood scores are shown next to the clusters.
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3.9 Identification of Layer 2/3 Inputs

We attempted to map the connectivity between presynaptic L2/3 and postsynap-

tic L5, with the intention of comparing the outcome of this second dataset with the

mapping results shown above. We used the same approach to identify the spines

receiving input from L2/3 (Fig. 3.23). We were able to demonstrate that in prin-

ciple the technique could still be applied to mice obtained from a different genetic

targeting method (IUE), using a different variant of ChR2 (hChR2(H134R)), and

stimulating with a different protocol (local axonal stimulation).

Analysis of this dataset was performed as described for the previous dataset.

No clusters were detected in this particular branch, which was expected since not

many spines were identified (Fig. 3.24).
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Figure 3.23: Identification of L2/3 inputs. (a, b) Location of the experimented
neuron. Layers of the cortex are outlined. (c) Identified inputs from L2/3 are marked
with arrowheads and labeled. (d) Calcium (∆G/R) signals from spines shown in c and
from their bases on the dendrite. Traces with round markers are from acquisitions when
spines were identified as receiving input. Other traces represent when spines did not
respond.
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Figure 3.24: Cluster analysis for L2/3 inputs. No clusters were detected for
the branch. The pattern analyzed is marked with black bar on the distance-based
dendrogram, with the likelihood score shown beneath.

Unfortunately, any further analysis was not possible due to a lack of data.

It should be stressed that the experiment demonstrated here for L2/3 to L5

connectivity is the only experiment in which multiple responding spines were

detected. In other cases, either no spines or only a single spine were detected.

We were persistent to get this dataset. In total, 101 mice were prepared (from

∼110 surgeries, excluding mice for control and optimization experiments) with

relatively high transfection and precise V1 targeting, of which 25 had especially

dense transfection.

Optimization for the stimulation protocol concentrated on how efficiently

presynaptic ChR2 expressing neurons were driven to fire APs. We checked the

effect of the stimulus on the postsynaptic electrical currents, and investigated

whether it could be possible to increase the input to the postsynaptic neurons by

increasing the pulse width of the stimulation. In addition to the stimulus used in

the experiments (3×5 ms pulses), a single 33 ms pulse and a single 66 ms pulse

were tested, with reduced or open field aperture (Fig. 3.25). With reduced field

(local axonal stimulation), we did not observe any difference between stimuli in

terms of peak postsynaptic current and total driven charge. Wide field stimula-

tion yielded higher currents as expected, since a wider area meant more axonal

segments being stimulated, thus more contacts activated.

Another possibility for the high rate of undetected inputs could have been if

contacts between L2/3 and L5 had less NMDAR, therefore the spines receiving

input were not resolved with our method. We measured AMPAR and NMDAR
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Figure 3.25: L5 postsynaptic currents under different L2/3 photostimulation
protocols. Peak current (a), and total charge (b) in L5 postsynaptic cells under
different L2/3 photostimulation protocols (3×5 ms, 33 ms and 66 ms pulses, with
reduced or open field aperture). Open circles, individual measurements; filled circles,
mean values; error bars, standard deviation (n=8 cells).

currents and compared our findings to what has been shown for pyramidal neurons

in hippocampus (Scheuss and Bonhoeffer, 2013); we did not observe any lack of

NMDAR (Fig. 3.26).

Finally, we compared electrophysiological recordings of mapping experiments

from Thy1-ChR2 and electroporated mice. As expected, the peak current and the

total charge was significantly higher in the Thy1-ChR2 dataset (Fig. 3.27ab).

This was easily explained by the fact that more inputs could be identified in

the Thy1-ChR2 dataset, and also more inputs were expected to be activated

simultaneously since the stimulus was delivered with an open field aperture. The

mean traces from the two datasets also show this difference between the light

evoked postsynaptic currents (Fig. 3.27c).

There was another striking difference between the postsynaptic currents from

the two datasets. Figure 3.27c shows that IUE trace has a rapid onset and

decays much faster than the Thy1-ChR2 trace. It also has a shoulder, as indicated

by the arrowhead, which suggest the postsynaptic currents from electroporated

mice might have a fast and a slow component. This shoulder coincides with the
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Figure 3.26: AMPAR and NMDAR currents in L2/3 inputs. AMPAR
(-70 mV) versus NMDAR (+40 mV) currents line on the equality (dotted line)
(n=9 cells).

peak of the current in Thy1-ChR2 mice. The Thy1-ChR2 trace only shows a slow

activation and deactivation.

Different subtypes of NMDARs have different kinetics. NMDARs consisting

of GluN2B subunits have lower conductance but a slower deactivation, where, for

instance, those with GluN2A subunits have much larger currents, but a very fast

decay. Both of these subunits are expressed by cortical neurons in adults (Paoletti

et al., 2013). Recruiting different variants of NMDARs with different abundance

could explain the difference in the kinetics of the postsynaptic currents between

the two datasets. At this point, this is merely a speculation, however, also, an

interesting outcome to investigate. Such a difference could also explain why our

attempts to map inputs from L2/3 failed. It could be possible that the Ca2+

signals at these inputs were faster than what can be resolved, and that we could

only detect the Ca2+ signals from a slow component.

In summary, we could not map L2/3 inputs on basal dendrites of L5 pyrami-

dal cells in electroporated mice. There might be different reasons for this result.

One would be that IUE yields sparse transfection even in the most efficient out-

come and is not therefore suitable for mapping experiments. Another possibility

could be that L2/3 does not make connections in the proximal segments of basal
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Figure 3.27: Comparison of postsynaptic electrical currents from
Thy1-ChR2 and electroporated mice. Comparison of (a) peak electrical current,
and (b) total charge upon photostimulation in Thy1-ChR2 and electroporated mice
(open circles, individual measurements ; filled circles, mean values; error bars, stan-
dard deviation. ***, p<0.001, two-sample two-tailed t-test, n=5 cells for each set). (c)
The mean current traces from Thy1-ChR2 (dotted) and electroporated (solid) mice.
Dashed trace is the scaled down mean trace of Thy1-ChR2. The arrowhead marks the
shoulder in the trace from electroporated mice.
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dendrites, where we did our mapping, but this would contradict what Petreanu

et al. (2009) showed previously, where L5 pyramidal neurons in mouse barrel

cortex received L2/3 input on proximal basal dendrites.



Chapter 4

Discussion

In this study we aimed to develop a new method for connectivity mapping, where

the functional inputs between specific neuronal populations could be identified at

synaptic resolution. This technique was applied to map the connectivity between

postsynaptic L5 neurons and presynaptic L2/3 and L5 neurons. We were able to

detect inputs and obtain systematically acquired input maps. The experimental

data provides evidence that the inputs from L5 to L5 are clustered. Mapping of

L2/3 inputs onto L5 was not successful under the conditions tried.

Overall, the method shows promise to complement existing connectivity map-

ping efforts, even more so with possible further improvements.

4.1 Effects of Undersampling of Inputs

There are multiple reasons to expect false negatives when using this method. Not

every presynaptic cell is expected to be transfected, or if it is, a uniform expression

level could be hard to achieve. It is an in vitro technique, requiring slicing of the

brains which inflicts damage to the tissue and “broken inputs” as a consequence.

Those cells which survive slicing still face stress ex vivo and tissue degrades in

quality over the course of experiments, further contributing to nonviable inputs.

It was shown that axonal photostimulation was possible in electroporated mice

with hChR2(H134R), which in principle eliminates the necessity of having somata

in slices. However, it was not verified whether severed axonal segments survived,

or if they did, it was not characterized how long they could. Moreover, those cells

which require somatic photostimulation to fire APs might fail to display their
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inputs if their axons are severed during slicing.

We could stimulate neurons with ChR2 only to a certain limit. It was shown

earlier in this report that cells, both from Thy1-ChR2 and electroporated mice,

could not be driven to fire without failures. Considering not every AP yields

vesicle release as characterized by the release probability (Borst, 2010), failures

to drive the cells reliably will eventuate failures in synaptic transmission and con-

sequently in “hidden inputs”. Furthermore, not every synaptic event is expected

to trigger the same postsynaptic influx due to the different molecular composition

and/or state of the synapses (Marder and Goaillard, 2006). Then, some inputs

could remain under the detection limit of the method.

This method relies heavily on the removal of Mg2+ blocks from NMDARs via

depolarization. To facilitate clamping, a cesium based internal solution, including

QX-314, to block Na+ currents, and additionally TEA-Cl to block K+ currents,

was used during the mapping experiments to make the cells less leaky. Despite,

other sources for signal attenuation might hinder removal of Mg2+ block in distal

branches.

It is hard to estimate the extent of the unaccounted inputs, since they could

stem from numerous reasons listed above, and since it is difficult to design control

experiments for each case to quantify their contribution. Nonetheless, assuming

their existence, different scenarios might be postulated for their effect on our

results. The greatest concern, here, is whether our observation of clusters is

merely an artifact of undersampling of the inputs.

One possibility is that L5 excitatory inputs to L5 basal dendrites are truly

clustered as we observed. Then, clustering might be achieved either (i) if presy-

naptic neurons from all locations in L5 homogeneously innervate certain hotspots,

or (ii) if subpopulations of L5 selectively innervate different hotspots, or (iii) if

individual neurons in L5 make contacts at multiple neighboring synapses simul-

taneously, and thus the clusters do not even reflect the population circuitry but

rather connectivity of a single neuron.

Paired recordings from adjacent L5 neurons in the rat somatosensory cortex

and subsequent morphological investigation of the dendritic and axonal arbors
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of these pairs revealed synaptic contacts between the two neurons to be dis-

tributed over different dendritic branches (Markram et al., 1997). Matsuzaki et al.

(2011) stimulated individual L2/3 neurons via two-photon glutamate uncaging

and mapped inputs to basal dendrites of L5 neurons via calcium imaging. They

did not observe any cluster of neurons making contacts at the same dendritic

branch, set aside neurons that made multiple adjacent connections. Therefore,

the third mechanism for clustering seems highly unlikely and our observations do

reflect the population connectivity.

If these clusters are innervated homogeneously, then this would mean that

there could be no bias in the spatial organization of the unaccounted inputs.

Depending on the amount, then, these inputs either would present themselves as

the gaps in observed clusters, or in larger quantities they would completely disrupt

observed clusters and yield a distribution that resembles random dispersion.

A different outcome is expected if the clusters were to be associated to specific

subpopulation of neurons. To elaborate, different subpopulation scenarios are to

be assumed. The subpopulations might have a spatial organization, that is, they

are defined by the proximity of their members to each other and innervate different

clusters on the dendrites of the target neurons. This kind of organization might

be most susceptible to slicing. The unaccounted inputs then are expected to have

an organization on the dendrites, where the loss of input from a subpopulation

on the target neurons would remove clusters of detected inputs, resulting in a

smaller number of detectable clusters.

The subpopulations might have genetic or epigenetic variability, which might

influence the expression level of the transgene under the same promoter, i.e. some

subpopulations would express ChR2 in higher quantities relative to other subpop-

ulations, creating a bias for the mappable presynaptic populations. This would as

well result in inputs that are missing as clusters from weakly driven presynaptic

subpopulations. Similar effects could be expected if different subpopulations have

different release probabilities, or make synapses of different strength. If there is

no spatial, genetic or synaptic bias to subpopulations, then the outcome of this

case is no different than clusters being innervated homogeneously. This holds
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true for cases such as unaccounted inputs due to presynaptic cell death during

the course of the experiments. Here, we assume there is no bias as any cell is as

likely to die as any other cell under the same circumstances.

On the other hand, if there is no clustering in L5 to L5 connectivity, and

the contacts are dispersed randomly on dendritic branches, loss of presynaptic

partners and subsequently their contacts would manifest the unaccounted inputs

at random locations. Mathematically, removal of random samples from a random

population will end up with a random subpopulation. Order cannot be attained if

all manipulations to a random system are random. No physiologically persuasive

explanation comes to mind on how it would be possible to lose contacts in a way

that the remaining ones start showing clustering, if there was not clustering to

begin with.

To summarize, removal of random inputs from a clustered organization could

end up in a distribution that resembles a random distribution, but removal of

random inputs from a dispersed organization cannot create clusters. Any sce-

nario that yields clusters with unaccounted inputs should therefore come from a

clustered organization. In this respect, it could have been much more difficult to

argue for a finding where the inputs were shown to be randomly distributed on

branches.

An artifact could arise if the axons of Thy1-ChR2 are photostimulatable. This

case is not desired as L5 of other cortical regions and the hippocampus also express

ChR2. It was not possible to test axonal stimulation on these preparations, as

the axonal and dendritic arbors overlapped and there was not a region where

direct dendritic stimulation could have been avoided. However, judging from

the inefficiency in somatic excitability, one can assume this case to be unlikely.

Additionally, L5 gets it major input from L5 and L2/3 (Binzegger et al., 2004),

hence other brain regions are not expected to innervate L5 significantly to produce

misleading false-positives.
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4.2 Clusters

This study is the first study that attempted to systematically map functional in-

puts of a presynaptic population to a postsynaptic population with single synapse

resolution. It is also the first study to show plausible evidence for the existence

of input clusters between populations, namely L5 pre- and postsynaptic pop-

ulations. We showed a deviation from simulated segments with random input

distribution at distances below 10 µm. The clusters we detected with low oc-

currence likelihood had a mean size of 11.44±3.17 µm and received 6.09±1.00

inputs.

Though not population specific, and not in large quantities, evidence of clus-

tering in the nervous system already exists. One of the first hints of clustering

came from synaptic plasticity studies by Harvey and Svoboda (2007), where they

showed that the potentiation of a single synapse decreased the threshold of po-

tentiation of its neighbors within an interaction distance of ∼10 µm for ∼10 min.

This suggested a mechanism which could provoke cluster formation, such that

synapses in close proximity promoted the potentiation of one another, and if

these synapses received input within the time frame of this promoted potenti-

ation, they could strengthen and stabilize together. Any synapse which would

not be active within this time frame would eventually be eliminated, yielding

a cluster of synapses with similar activity patterns (Winnubst and Lohmann,

2012). Later, the same authors explained this cross-talk with spread of activated

Ras (Harvey et al., 2008). Another interesting hint for plasticity related clus-

tering came from Makino and Malinow (2011) where they showed that sensory

experience preferentially potentiated nearby synapses.

Two groups described that the synchronized spontaneous activity was clus-

tered. Kleindienst et al. (2011) investigated the spontaneous activity in develop-

ing hippocampal networks and found that the synapses of CA3 pyramidal neurons

which were coactivated within a window of 100 ms were more likely to be closer to

each other than 16 µm. Establishment of the clustering was dependent on spon-

taneous activity, as they could abolish the cluster formation by blocking activity

with TTX or NMDAR antagonist APV. They argued, spontaneous activity could
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be able to organize the synapses at a subcellular level during the development.

Similarly, Takahashi et al. (2012) showed in older rat hippocampal slice cultures,

where they could resolve spontaneous input in individual spines via Ca2+ imag-

ing, synapses that were coactived synchronously were within 8 µm to each other.

They also looked at mouse L2/3 somatosensory cortex neurons in vivo and they

found these synapses to be within 6 µm to each other. Both of these studies

demonstrated the existence of clusters, however in terms of circuitry, it still needs

to be shown where these inputs are specifically coming from.

Lavzin et al. (2012) demonstrated the role of NMDA spikes in vivo, in angular

tuning of L4 spiny stellate neurons of barrel cortex. They tackled the underly-

ing circuitry by artificially pairing corticocortical and thalamocortical inputs and

evoking what they observed physiologically. Although the exact circuitry still re-

mains to be shown, the existence of such regenerative NMDA spiking that require

localized coactivation of inputs (Antic et al., 2010), provides a physiological basis

for the employment of clusters.

Our method utilizes artificially evoked presynaptic activity to resolve inputs,

therefore cannot address the physiological activation pattern of the inputs ob-

served to be clustered. If they coactivate, then these findings can readily be ex-

plained in line of the reported findings introduced above. The mean inter-input

distance in the detected clusters was 1.87±0.83 µm, well within the interaction

distance for neighbor potentiation (Harvey and Svoboda, 2007), and the distances

on clustered synchronous activity (Kleindienst et al., 2011; Takahashi et al., 2012).

Relevance of activity clustering to dendritic integration has been demonstrated

by Losonczy and Magee (2006), who showed in hippocampal dendrites that inputs

in a ∼20 µm segment of the dendrite could trigger supralinear summation if

they were activated with 0.1 ms temporal separation. In this case, 5 inputs were

sufficient to trigger the nonlinearity. If inputs were activated with a 2 ms temporal

separation, though, the integration remained linear. The clusters we detected had

a mean size ∼11 µm, and received input from ∼6 inputs. If these inputs have as

well a high temporal coincidence, in addition to their spatial proximity, this could

mean that they can potentially trigger the nonlinearities observed by Losonczy



4.3 Evaluation of the Method for Mapping and Its Future 93

and Magee (2006). Even if these inputs are not activated simultaneously enough

to evoke nonlinear activity, sufficient temporal coincidence could be utilized to

maximize the transmission probability of information, delivered by the clustered

inputs of a redundant presynaptic neuronal population.

It should also be noted that there are conflicting findings to coactivation of

inputs in clusters. It was shown in vivo that the organization of sensory inputs

on dendritic branches of mice in somatosensory cortex (Varga et al., 2011), in

visual cortex (Jia et al., 2010), and in auditory cortex (Chen et al., 2011) showed

a widespread dispersion. It now needs to be demonstrated how clustering at

the circuit level could relate to what happens in the sensory space. It could

be possible that different traits of sensory inputs are delivered as temporally

independent information channels, therefore would not reveal clustered inputs on

a circuit level. In this respect, our results still comply with these findings if the

inputs in the detected clusters are not coactivated.

4.3 Evaluation of the Method for Mapping and

Its Future

The development of a novel method to investigate microcircuitry was an as im-

portant part of this study as what was found by applying it. Advantages and its

contribution to mapping studies has been repeatedly pointed out throughout this

report. However, can it be trusted? And, is it worth the effort to use it?

The method is reliable and gives trustworthy results. We showed the identified

inputs had significantly higher signal than the signal in the dendrite. However,

at this stage it should be regarded more as a proof of principle, as there is still

room for improvement that should potentially increase the performance and the

throughput. It is a method that provides a new level of information that was not

possible to get previously, but the difficulty of the experiment itself prevents it

from being a mapping method for large scale circuit analysis.

One drawback we encountered was the duration of the experiments. Typically,

single experiments had an upper time limit of about two hours, limited by how

long patched cells could be kept alive. Within this time window, we tried to scan
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entire dendritic branches systematically. We could image with tiles of ∼20 µm

length. With the overlaps between the tiles, having to image multiple z-planes to

capture every single spine, and repeating the measurements for at least three times

at each location limited the extent of branches we could map. Our longest maps,

summing subbranch lengths together, were around 300 µm. Some advancements

could be utilized to extend the experiment time, and simultaneously make it more

efficient to acquire the maps.

ChR2 Improvements

The primary reason why the cells needed to be patched was to depolarize them

and to facilitate NMDAR currents for detection, where AMPARs were blocked

to prevent polysynaptic transmission. We initially tried to obtain presynaptic

specificity by performing experiments in the presence of tetrodotoxin (TTX)1 and

4-aminopyridine (4-AP)2. In this setting, AP propagation was blocked by TTX,

and synaptic transmission depended on local presynaptic bouton depolarization,

enhanced by 4-AP (as done by Zhang and Oertner, 2007). Since polysynaptic

input in this setting was not a possibility, it was not necessary to block AMPARs.

However, when compared to our current settings, experiments with TTX and

4-AP yielded less detected inputs (data not shown), most likely due to use of

wtChR2.

Over the last years many new variants of ChR2 were engineered with superior

conductance in comparison to those we used (Berndt et al., 2011; Kleinlogel et al.,

2011; Lin et al., 2013). It could be possible to use one of these new variants and

to do the experiments by blocking APs. In this case, one could only patch the cell

to fill it with a Ca2+ indicator, and afterwards retract the pipette to eliminate

the loss of cells due to patching. Improving further, it could also be possible to

use genetically encoded Ca2+ indicators and make the whole mapping process

completely noninvasive. Use of a higher conducting ChR2 is also expected to

increase the reliability of the evoked presynaptic activity, hence of the experiments

overall.

1voltage-gated Na+ channel blocker
2voltage gated K+ channel blocker
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Hardware Improvements

Hardware improvements can be implemented to make the acquisitions faster.

Our system uses galvanometric scanners which have limited scan speeds when

compared to some alternatives, such as resonant mirror scanners. Increasing the

scan speed will enable to acquire bigger tiles and to proceed faster on the dendrite.

It should be also possible to use acousto-optic modulators to perform random

access scans (Lv et al., 2006; Otsu et al., 2008), deflecting the beam rapidly on

the spine heads and the dendritic regions, and simultaneously imaging from a

large area by only acquiring the information that is relevant. Faster acquisitions

also mean that more time points can be gathered, which would subdue the effect

of noise in the response detection.

It was necessary to protect the PMTs with a shutter during the delivery of the

photostimulus. This resulted in missing approximately the first 50 ms of the Ca2+

signals while waiting for the shutter opening. Faster shutters, or use of PMTs that

can be gated electronically should overcome this limitation. Another possibility is

to use ‘red’ calcium indicators, since then the stray light of the photostimulation

can be filtered out much more efficiently, releasing the requirement of a PMT

protection.

Dendritic segments which were not parallel to the imaging plane also slowed

down the experiment, since those locations needed higher number of z-planes

for scanning all spines. A workaround to this problem could be achieved by

controlling the focal plane of the objective lens rapidly via piezo controllers. Then

on such branches, oblique scans can be made, making the acquisitions much more

efficient. A microscopy technique that requires scanning is not even a necessity. A

technique such as light sheet microscopy, also recently possible with two-photon

fluorescence (Truong et al., 2011), will make the mapping process much faster.

Transfection Improvements

Another drawback was transfection. Using IUE, it was not possible to have a

dense enough transfection in V1, which prevented us to map L2/3 inputs on L5

neurons. V1 in comparison to e.g. somatosensory cortex, is a region harder to
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target with IUE. It could still be possible to conduct the mapping experiments

with the electroporated mice if a different region, where it could be possible to

have a denser transfection, is targeted.

Also, alternative methods for transfection could be considered to increase

efficiency. With clever strategies using Cre lines (Sauer, 1998), it is possible

to get dense transfections in specific neuronal populations via complementing

virus injections. Additionally, with the increasing number of Cre lines available

to researchers, it will be much quicker to create transgenic lines with specific

subpopulations targeted.

4.4 Comparison to Current Mapping Methods

Different methods that map connectivity between different neuron populations

were introduced previously in Section 1.3. Here, we discuss how our method

differs and how it could potentially complement what already exists.

The most extensive connectivity maps can be acquired quickest by analyzing

morphological data. The amount of overlapping axonal and dendritic arbors have

been previously used to infer relative connectivity weights between different layers

of the cortex (Binzegger et al., 2004). In this study, the location of the inputs were

not addressed. These locations can be approximated with the assumption that

when the dendrite and the axon are within a certain vicinity, they are potentially

connected (Stepanyants and Chklovskii, 2005). The validity of this approximation

was investigated by Shepherd et al. (2005) and shown to predict where inputs

were. However, this method cannot be used to pinpoint the exact locations of

synaptic inputs. These approaches are very useful to give an approximate idea

to where to look for inputs, therefore could be used together with our method,

especially for naive circuits where there might not be previous information where

to expect the inputs.

mGRASP is also a method that makes it easy and quick to probe connectivity

between neuronal populations at single synapse resolution (Kim et al., 2012).

Specific pre- and postpopulations can be targeted genetically to express the two

split GFP fragments, respectively, and contact sites can readily be detected. To
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be able to probe whether these contacts are really functional synapses, our method

can be incorporated, by expressing also ChR2 in the presynaptic population, and

imaging the Ca2+ signals in the postsynaptic cells. Then, the tentative inputs

revealed by mGRASP can rapidly be screened for physiological activity. This

cooperation would be a gain for our method as well by eliminating the requirement

of systematically scanning dendritic branches, which is time-wise a bottleneck.

Evoking presynaptic activity by photostimulation via ChR2 gives the advan-

tage of population targeting, as it is a genetically encoded channel. This allows

to drive larger populations of presynaptic cells simultaneously by wide field pho-

tostimulation, or specifically activate the presynaptic cells via axonal stimulation

where the postsynaptic cells are imaged. This is an advantage in terms of maxi-

mizing activated inputs in the field of view. This is not possible with other photo-

stimulation methods, such as glutamate uncaging, where the uncaging laser needs

to be scanned on the presynaptic cell layer (Matsuzaki et al., 2011; Nikolenko

et al., 2007). Electrical stimulation of the presynaptic cells has also been used to

map inputs to postsynaptic cells, as done by Richardson et al. (2009), however,

in this setting it is not possible to target the presynaptic population specifically.

Petreanu et al. (2007; 2009) also used ChR2 and were able to acquire popu-

lation specificity. Their mapping strategy was to scan the tissue with the photo-

stimulation laser and measure the light evoked postsynaptic electrical currents.

Their maps did not resolve individual input sites, but rather gave the distribution

of where they were. Petreanu et al. (2007) also demonstrated another particular

advantage of ChR2 assisted circuit mapping, which was the ability to map long

range connections via stimulating axons locally. This approach also could supply

valuable information in directing a method such as ours on where to map, in es-

pecially naive circuits, and our method can provide the single synapse resolution.

Highest resolution maps can be acquired by EM based methods by recon-

structing individual neurons from the EM images and locating the synapses be-

tween these neurons by identifying the postsynaptic density and the presynaptic

vesicles. Briggman et al. (2011) and Bock et al. (2011) demonstrated that it is

possible to combine EM based circuit analysis with prior in vivo neuron charac-
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terization. This provided to obtain connectivity maps of neurons whose functions

in the network were identified. Micheva and Smith (2007) combined EM with im-

munohistochemistry and could supply the connectivity maps with the molecular

architecture of the network.

One drawback with EM is the requirement of fixed tissue which prevents ob-

taining the properties of the inputs. Additionally, the difficulty in data analysis

hinders high throughput acquisition of maps. Advances in sample handling, such

as with SBSEM (Denk and Horstmann, 2004), allowed to conveniently image

complete blocks of tissue and obtain local connectivity. However, the volume of

the tissue that can be analyzed is still limited, therefore it is currently not possi-

ble to map long range connections with EM. We can complement the limitations

of EM based circuitry analysis. It is possible to map the inputs and probe their

properties with our method. Although not demonstrated in this study, we can

also work with neurons whose function in the network, such as orientation or

direction selectivity in V1, have been identified with prior in vivo experiments.

Also, it should be possible to map long range connections, as reported by Petreanu

et al. (2007). The information we can supply from an experiment may further be

analyzed in higher detail with EM by reconstructing the complete local connec-

tivity of the cell we experimented on. This way both methods could address the

gaps in the acquired data of the other and mutually supply the most extensive

connectivity information ever to be shown between two neuronal populations.
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Conclusion

This study introduced a new method for cortical circuitry mapping. It was

demonstrated that population specific presynaptic stimulation was evoked by

using ChR2. Reliable calcium signals were detected upon photostimulation that

enabled to pinpoint the input sites of the presynaptic L5 and L2/3 populations on

the basal dendritic branches of postsynaptic L5 neurons. These indentified input

sites were shown to have higher Ca2+ signals than the signals in the dendrite at

their bases. The spines with identified L5 input did not exhibit any morphological

difference to the spines with no identified input.

The spatial analysis of the L5 inputs revealed clusters according to the com-

parisons of the experimental data to the Monte-Carlo simulations and according

to their likelihood of occurrence based on combinatorics. Although the method

had various sources for false-negatives, this fact did not seem to affect the detec-

tion of clusters.

Due to the challenges of transfection of L2/3 neurons in V1, sufficient number

of inputs were not detected to draw conclusions.

This method has proven to be reliable and can provide information that was

not previously possible to get with existing methods. It can complement other

methods by pre- and postsynaptic population specificity at single synapse reso-

lution. Although currently it is more a proof of concept, it can be adapted for

large scale input mapping with easy to implement advancements.

Eventually, using this method, it shall be possible to map the connectivity

between any two populations of neurons in the brain, provided that it will be

possible to target any presynaptic population with high ChR2 expression. Using
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better performing ChR2 variants and targeting the postsynaptic populations to

express genetically encoded Ca2+ indicators, it will be possible to conduct nonin-

vasive, long duration, high throughput experiments, where inputs can be mapped

on entire cells, not just on short segments. The method, in principle, will be able

to map systematically the entire circuit architecture at synaptic resolution, un-

veiling information that is missing to relate single neuron processes to network

computations.
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Additional Data

A.1 Order-Based Dendrograms

Order-based dendrograms from all L5 to L5 input mapping experiments are pre-
sented in the following pages. By assuming homogeneous density in spine spatial
distribution, order-based dendrograms show the spines which receive L5 input
(red), where distance between schematized spines are in number of neighbors.
Different lengths of spines with identified input show their success rate in three
steps: 0-33%, 33-66% and 66-100%. Spines with no identified input are black.
Dashed lines indicate the end of mapping for a particular branch. Figure legend
is placed only in the first dendrogram.
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Cell ID: 2

Cell ID: 3
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Cell ID: 8
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Cell ID: 10 (shown previously)
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A.2 Distance-Based Dendrograms with Clusters

Results of cluster analysis are shown on distance-based dendrograms from all
L5 to L5 input mapping experiments in the following pages. Patterns formed
by inputs that are within 10 µm to each other are marked underneath with a
red line if they fulfilled the cluster detection criteria (likelihood≤0.02, inputs≥3),
hence are clusters, or with a black line if they are not clusters. The likelihood
scores are under pattern markings. Spines with identified input are marked with
red. Different lengths of these spines show their success rate in three steps: 0-
33%, 33-66% and 66-100%. Spines with no identified input are black. Markings
that appear thick are multiple spines which are very close to each other, whose
markings could not be separated in this scale. Dashed lines indicate the end
of mapping for a particular branch. Figure legend is placed only in the first
dendrogram. Scale bar is distance in µm.
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A.3 Spine Cooperativity in Patterns

Alternate visualizations to the patterns formed by inputs that are within 10 µm
to each other are presented in the following pages. Here, patterns are shown with
activity of their spines over different acquisitions (rows of circles). Red circles are
the spines with identified input, with the size of filled circles representing peak
∆G/R amplitude of an input normalized to its mean, and open circles representing
failures (no response detected in the acquisition). The fixed size of the open circles
represent the mean peak amplitudes. Black dots represent the spines with no
identified input. Cluster likelihood scores are shown next to the patterns. Please
note that not all of these patterns fulfill the cluster detection criteria. Refer to
previous section to see which are detected to be clusters. Figure legend is placed
only in the patterns of first cell. Distances between spines are relative distances.
Different patterns have different scaling.
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Materials

B.1 Solutions

ACSF Recipes
choline ACSF in mM (Scheuss et al., 2006): 110 choline chloride, 2.5 KCl,

25 NaHCO3, 1.25 NaH2PO4, 0.5 CaCl2, 7 MgCl2, 25 D-glucose, 11.6 Na-L-ascorbate,
3.1 Na-pyruvate.

experimental ACSF recovery ACSF containing in µM: 10 NBQX, 50 picrotoxin,
10 D-serine.

recovery ACSF in mM (Scheuss et al., 2006): 127 NaCl, 2.5 KCl, 25 NaHCO3,
1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 25 D-glucose.

Internal Solutions
“loose-seal” internal solution in mM (Sato et al., 2007): 10 KCl, 140 K-gluconate,

10 HEPES, 2 MgCl2, 2 CaCl2, 0.05 Alexa 594, pH 7.25.
Cs-based internal solution in mM (Scheuss et al., 2006): 125 Cs-methanesulfonate,

10 HEPES, 10 Na2phosphocreatine, 4 MgCl2, 4 Na2-ATP, 0.4 Na-GTP,
3 Na-L-ascorbate, 5 QX-314, 10 TEA-Cl, 1 Fluo-5F, 0.03 Alexa 594, pH 7.3.

K-based internal solution in mM (Scheuss et al., 2006): 135 K-methylsulfate,
10 HEPES, 10 Na2phosphocreatine, 4 MgCl2, 4 Na2-ATP, 0.4 Na-GTP,
3 Na-L-ascorbate, 0.03 Alexa 594, pH 7.3.

PBS in mM: 2.6 KCl, 1.4 KH2PO4, 136 NaCl, 8 Na2HPO4, pH 7.4.

B.2 Chemicals and Reagents

Cloning: Enzymes and Reagents
ampicillin Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. A9518-100G.
iProof HF master mix Bio-Rad Laboratories GmbH, Munich, DE, Cat.Nr. 172-5310.
LB Broth Difco LB Broth, Becton-Dickinson, Heidelberg, DE, Cat.Nr. 240210.
NheI-HF New England Biolabs GmbH, Frankfurt am Main, DE, Cat.Nr. R3131S.
PspXI New England Biolabs GmbH, Frankfurt am Main, DE, Cat.Nr. R0656S.
T4 DNA ligase New England Biolabs GmbH, Frankfurt am Main, DE, Cat.Nr. M0202S.
XhoI New England Biolabs GmbH, Frankfurt am Main, DE, Cat.Nr. R0146S.

Cloning: Plasmids
pCAGGS - ChR2 - Venus Addgene, Cambridge, MA, US, Cat.Nr. 15753.
pLenti - CaMKIIa - hChR2(H134R) - mCherry - WPRE Addgene, Cambridge,

MA, US, Cat.Nr. 20943.
pLenti - Synapsin - hChR2(H134R) - EYFP - WPRE Addgene, Cambridge, MA,

US, Cat.Nr. 20945.
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Cloning: Primers (Metabion GmbH, Martinsried, DE)
PrimerF-A 5′-AATAAGCTAGCATGGACTATGGCGGCGCTTTG-3′.
PrimerF-B 5′-TATTAGCTAGCATGGTGAGCAAGGGCGAGGAGGATAAC-3′.
PrimerR 5′-TTATTGCTCGAGTTTACTTGTACAGCTCGTCCATGC-3′.
PrimerSeq-A 5′-GTTCGGCTTCTGGCGTGT-3′.
PrimerSeq-B 5′-GTTCACCTTGATGCCGTTCT-3′.
PrimerSeq-C 5′-TTGCGGATATCTCCGTGAAT-3′.
PrimerSeq-D 5′-GTCCTGTGGCAAGGTAGAGC-3′.
PrimerSeq-E 5′-CACATGAAGCAGCACGACTT-3′.
PrimerSeq-F 5′-TCCTGATCCACGAGCACATA-3′.
PrimerSeq-G 5′-GCTCTACCTTGCCACAGGAC-3′.
PrimerSeq-H 5′-ATCTGGCGGAGCCGAAAT-3′.
PrimerSeq-I 5′-CCGACTACTTGAAGCTGTCCTT-3′.
PrimerSeq-J 5′-CATGGTCTTCTTCTGCATTACG-3′.
PrimerSeq-K 5′-TGGAGAGAAAGGCAAAGTGG-3′.

Experiments
Alexa 594 Molecular Probes, Life Techonologies, Darmstadt, DE, Cat.Nr. A10438.
CaCl2 Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. 21115-250ML.
carbogen 95% O2, 5% CO2, Westfalen AG, Mnster, DE, Cat.Nr. Secudur C5 095.
chloral hydrate Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. C-8383-250G.
choline chloride Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. C1879-500G.
(R)-CPP Tocris, Bristol, UK, Cat.Nr. 0247.
Cs-methanesulfonate Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. C-1426-

25G.
D-glucose Carl Roth GmbH, Karlsruhe, DE, Cat.Nr. 6887.1.
D-serine Tocris, Bristol, UK, Cat.Nr. 0226.
diethyl ether Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. 32203-1L.
Fluo-5F Molecular Probes, Life Technologies, Darmstadt, DE, Cat.Nr. F14221.
HEPES Biomol GmbH, Hamburg, DE, Cat.Nr. 05288.100.
K-gluconate Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. G4500-100G.
K-methylsulfate Pfaltz Bauer Inc., Waterbury, CT, US, Cat.Nr. M26480.
KCl Fluka, Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. 60135-250ML.
KH2PO4 Merck KGaA, Darmstadt, DE, Cat.Nr. 1.04873.1000.
MgCl2 Fluka, Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. 63069-100ML.
Na2-ATP Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. A2383-1G.
Na2HPO4 Merck KGaA, Darmstadt, DE, Cat.Nr. 1.06586.0500.
Na2phosphocreatine Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. P7936-1G.
Na-GTP Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. G8877-1G.
Na-L-ascorbate Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. A7631-100G.
Na-pyruvate Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. P2256-25G.
NaCl VWR International bvba, Leuven, BE, Cat.Nr. 27810.295.
NaH2PO4 Merck KGaA, Darmstadt, DE, Cat.Nr. 1.06346.0500.
NaHCO3 Merck KGaA, Darmstadt, DE, Cat.Nr. 1.06329.1000.
NBQX Tocris, Bristol, UK, Cat.Nr. 1044.
picrotoxin Tocris, Bristol, UK, Cat.Nr. 1128.
QX-314 Alomone Labs, Jerusalem, IL, Cat.Nr. Q-150.
TEA-Cl Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. 86614-25G.

Histology
Anti-GFP Fitzgerald, Acton, MA, US, Cat.Nr. 20R-GR011.
Anti-Rabbit Alexa Fluor 488 conjugated. Life Technologies, Darmstadt, DE, Cat.Nr.

A11034.
heparin Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. H4784-250MG.
lidocaine Research Biochemicals International, Natick, US, Cat.Nr. L102.
NeuroTrace Red fluorescent Nissl Stain. Molecular Probes, Life Technologies, Darmstadt,

DE, Cat.Nr. N-21482.
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normal goat serum Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. G6767.
paraformaldehyde Science Services, Munich, DE, Cat.Nr. 15714.
sucrose Merck KGaA, Darmstadt, DE, Cat.Nr. 1.07651.1000.
Triton X-100 Fluka, Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. 93420.

In Utero Electroporation
Fast Green Sigma-Aldrich Chemie GmbH, Steinheim, DE, Cat.Nr. F7252-5G.
iodine tincture Braun AG, Melsungen, DE, Cat.Nr. 3864235.
isoflurane Baxter Deutschland GmbH, Unterschleißheim, DE, Cat.Nr. HDG9623.
Isopto-Max eye ointment Alcon Pharma GmbH, Freiburg, DE, Cat.Nr. 2DBA1.
metamizole Novalgin Tropfen, Sanofi-Aventis GmbH, Frankfurt Am Main, DE, Cat.Nr.

72121.
O2 Westfalen AG, Mnster, DE, Cat.Nr. Secudur O.
saline Braun AG, Melsungen, DE, Cat.Nr. 12063451.
tattoo ink Ketchum Manufacturing Inc., Ottawa, CA, Cat.Nr. KI-1471-039.
Tris-HCl Carl Roth GmbH, Karlsruhe, DE, Cat.Nr. 9090.3.
Xylonest 2% with adrenalin (1:200000), Astra Zeneca GmbH, Wedel, DE, Cat.Nr.

NE2808A4.

B.3 Equipment and Consumables

Acute Brain Slices
10 ml syringe Braun AG, Melsungen, DE, Cat.Nr. 4606108V.
23 gauge needle Neolus, Terumo Europe N.V., Leuven, BE, Cat.Nr. 74200-14.
27 gauge needle Neolus, Terumo Europe N.V., Leuven, BE, Cat.Nr. NN-2719R.
cutting blade Fine Science Tools GmbH, Heidelberg, DE, Cat.Nr. 10050-00.
glue Pattex, Henkel, Düsseldorf, DE.
sliding microtome Mikrom HM 400, Thermo Fisher Scientific Inc., Waltham, MA, US.
surgical blade Bruno Bayha GmbH, Tuttlingen, DE, Cat.Nr. 24.
vibratome VT1200S, Leica Biosystems GmbH, Nussloch, DE.

Experiments and Analysis
acquisition board BNC-2090A, National Instruments Germany GmbH, Munich, DE.
electro-optic modulator pockels cells: 350-80, controller: 302 RM, Conoptics, Danbury,

CT, US.
galvanometric scanner Yanus iMic 2030 Scan Head, Till Photonics GmbH, Gräfelfing,

DE.
headstage Axon Instruments CV-7B, Molecular Devices GmbH, Biberach an der Riss,

DE.
Labview 8.6 National Instruments Germany GmbH, Munich, DE.
LED KSL 70, 470 nm, Rapp Optoelectronic, Wedel, DE.
Mai Tai Newport Spectra-Physics GmbH, Darmstadt, DE.
Matlab 2011a Mathworks, Ismaning, DE.
micromanipulator controller: Luigs-Neumann SM 5-9, actuators: Luigs-Neumann

Junior, Ratingen, DE.
Millenia-Tsunami Newport Spectra-Physics GmbH, Darmstadt, DE.
MultiClamp 700B amplifier Axon Instruments, Molecular Devices GmbH, Biberach an

der Riss, DE.
objective lens LUMPlanFI/IR 60×/0.90 W, Olympus Deutschland GmbH, Hamburg,

DE.
oscilloscope TDS2014B, Tektronix UK Ltd., Berkshire, UK.
peristaltic pump Minipuls 3, Gilson, Middleton, WI, US.
PMT tubes: E850-22, Hamamatsu Photonics Deutschland GmbH, Herrsching am

Ammersee, DE, power source: PS310, Stanford Research Systems, Sunnyvale, CA,
US.

preamplifier DHPCA-100, Femto Messtechnik GmbH, Berlin, DE.
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shutter Uniblitz VS25S2ZM0R1-21, driver:Uniblitz VCM-D1, Vincent Associates,
Rochester, NY, US.

stepping motor Vextra PK244M-01B, Oriental Motor Europa GmbH, Düsseldorf, DE.
thin walled glass capillary World Precision Instruments, Sarasota, FL, US, Cat.Nr.

TW150F-3.
vibration isolation table Table: M-ST-UT2 tuned-damped optical table; legs: I-2000.

Newport Spectra-Physics GmbH, Darmstadt, DE.

In Utero Electroporation
adson forceps Fine Science Tools GmbH, Heidelberg, DE, Cat.Nr. 11006-12.
analog heatblock VWR International, Darmstadt, DE, Cat.Nr. 460-3249.
electrode BTX Tweezertrode 7mm, Harvard Apparatus, Holliston, MA, US, Cat.Nr. 45-

0118.
electrode gel Signa gel, Parker Laboratories Inc., Fairfield, NJ, US, Cat.Nr. 15-60.
electroporator BTX ECM 830, Harvard Apparatus, Holliston, MA, US.
EndoFree Plasmid Mega Kit Qiagen GmbH, Hilden, DE, Cat.Nr. 12381.
gauze pad Gazin 7.5×7.5 mm, Lohmann Raucher GmbH, Neuwied, DE.
glass bead sterilizer Steri 350, Inotech Biosystems International, Dietikon, CH.
heating pad Homeothermic blanket system, Harvard Apparatus, Holliston, MA, US.
iris scissors Fine Science Tools GmbH, Heidelberg, DE, Cat.Nr. 14090-09.
Master-8 pulse stimulator A.M.P.I., Jerusalem, IL.
multipurpose tissue Molinea, Paul Hartmann AG, Molinea, DE, Cat.Nr. 992330/9.
narrow pattern forceps Fine Science Tools GmbH, Heidelberg, DE, Cat.Nr. 11002-12.
picospritzer Toohey Spritzer, Toohey Company, Fairfield, NJ, US.
plastic Pasteur pipette Alpha Laboratories Ltd., Hampshire, UK, Cat.Nr. LW4692.
polyester suture Size: 6-0. Needle: Taper point C-1, 13 mm, 3/8 circle. Ethicon

Ethibond Excel, Johnson Johnson Medical GmbH, Norderstedt, DE, Cat.Nr. 6889H.
QIAEX II Gel Extraction Kit Qiagen GmbH, Hilden, DE, Cat.Nr. 20021.
QIAGEN Plasmid Mini Kit Qiagen GmbH, Hilden, DE, Cat.Nr. 12125.
ring forceps Karl Hammacher GmbH, Solingen, DE, Cat.Nr. HSC 703-96 (6 mm), HSC

702-93 (3 mm).
silk suture Size: 6-0. Needle: Taper point BV-1, 9.3 mm, 3/8 circle. Ethicon Perma-Hand

Seide, Johnson Johnson Medical GmbH, Norderstedt, DE, Cat.Nr. K802H.
surgical drape Foliodrape, Paul Hartmann AG, Molinea, DE, Cat.Nr. 277507.
surgical microscope Carl Zeiss, West Germany.
thick wall glass capillary Clark, GC150F-10, Warner Instruments, Harvard Apparatus,

Holliston, MA, US, Cat.Nr. 30-0057.
trimmer Aeuculap Isis GT420, Braun Vet Care GmbH, Tuttlingen, DE.
Ultrafree-MC centrifugal filter unit Millipore, Merck KGaA, Darmstadt, DE, Cat.Nr.

UFC30GVNB.
vaporizer Isoflurane Vapor 2000, Dräger, Lübeck, DE.
vertical puller PC-10, Narishige International Ltd., London, UK.
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B. Judkewitz, A. Roth, and M. Häusser. Dendritic enlightenment: using patterned two-photon uncaging to
reveal the secrets of the brain’s smallest dendrites. Neuron, 50(2):180–183, Apr 2006. doi: 10.1016/j.neuron.
2006.04.009. URL http://www.pubmed.org/16630828.

B. M. Kampa, J. J. Letzkus, and G. J. Stuart. Cortical feed-forward networks for binding different
streams of sensory information. Nat Neurosci, 9(12):1472–1473, Dec 2006. doi: 10.1038/nn1798. URL
http://www.pubmed.org/17099707.
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