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Summary

Summary

Coralline sponges, extraordinary members of the phylum Porifera, form a solid
basal skeleton of calcium carbonate. These sponges are not closely related and
show differences in their basal skeletons. Coralline sponges were dominant and
abundant reef-building organisms during long periods of the Earth’s history.
They belong to the most understudied sponges in terms of associations with mi-
crobial symbionts, although their Silurian fossils point to close interactions with
microorganisms and might indicate an early stage of sponge-microbial symbiosis.
Moreover, the coralline sponge Astrosclera willeyana uses the degraded remains of
bacteria to seed growth of its skeleton in the biomineralization process.

Here we employed molecular methods for a detailed study of microorganisms
associated with distantly related sponges of the genus Astrosclera and Vaceletia in
order to explore the hitherto unknown microbial diversity in coralline sponges.
We also aimed to determine whether the microbial communities of these ‘living
fossils’, likely living representatives of a long-extinct ancient groups, differ from
those reported for other sponges, or whether they show some specific microbial
patterns. Furthermore, we expected to gain some insight into the mechanisms of
maintenance and evolution of microbial symbiosis in sponges. By first construct-
ing an extended 16S rRNA gene clone library of microbiota associated with Vace-
letia crypta, we revealed a highly diverse symbiotic community with a complex
composition of phyla commonly affiliated with marine sponges. Due to the high
similarity of the obtained sequences related to other sponge-derived sequences
and their prevalent affiliations to sponge-specific clusters, we showed that the
‘living fossil’ coralline sponge V. crypta shares features of its microbial commu-
nity with other sponges. By employing denaturing gradient gel electrophoresis
(DGGE) cluster analysis we were then able to confirm the high microbial diver-
sity associated with the Vaceletia species and, moreover, to indicate distinct mi-
crobial communities in the different growth forms (solitary and colonial).

By having a detailed characterization of microbial communities associated with
Astrosclera willeyana from the Great Barrier Reef and the Red Sea (GBR), and

based on further 16S rRNA gene clone libraries, we also exhibited complex and
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abundant consortia of microorganisms with high resemblance to sequences ob-
tained from other sponges. The A. willeyana-associated sequences formed numer-
ous sponge-specific clusters confirming the uniqueness of the microbial associa-
tions in the sponges. A comparison of the clone libraries revealed, despite the
many similarities, a less complex structure of the microbiota hosted by the Red
Sea Astrosclera specimen.

Primary DGGE analysis of microbial communities associated with A. willeyana
samples from different sites at the GBR indicated closer relationships between the
microbial communities with respect to geographic origin (northern vs. southern
GBR) and suggested that the differences in symbiotic community composition
might be an additional indicator of cryptic species. We could confirm this finding
with further DGGE analysis of numerous Astrosclera specimens from nearly the
entire area of occurrence of this coralline sponge, i.e. from the Red Sea to the cen-
tral Pacific.

Finally, through a comparison of the 16S rRNA gene clone libraries constructed
from co-occurring V. crypta and A. willeyana from the GBR, we were able to dem-
onstrate that, despite some differences, very high similarity exists in the phylo-
genetic composition of both symbiotic consortia. Moreover, in contrast to other
sponges, distantly related coralline sponges shared a much higher degree of mi-
crobial species, thus suggesting specific patterns for the constitution of microbial

communities in this unique group of sponges.
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Introduction

Introduction

Sponges

Sponges (phylum Porifera), which have a fossil record dating back nearly 700
million years (Erwin et al. 2011), arguably belong to the earliest branching Meta-
zoa (Philippe et al. 2009, Philippe et al. 2011). The phylum Porifera consists of
four extant classes: the Hexactinellida (glass sponges), Calcarea (calcareous
sponges), Demospongiae (demosponges), and Homoscleromorpha (Wdérheide et
al. 2012) and contains most of so far 8,000 described species out of an estimated
number of more than 15,000 sponge species living today (Hooper & Van Soest
2002). Sponges predominantly inhabit tropical and subtropical oceans as well as
polar regions, the deep sea, and freshwater lakes and streams (Hooper & Van
Soest 2002), where they belong to important members of benthic communities in
terms of their biomass and function (Bell 2008). Their activity not only influences
the sea floor, but also influences pelagic processes, as sessile filter feeders sponges
process great volumes of seawater. A 1 kg sponge can pump up to 24,000 L per
day (Vogel 2008) in order to feed on microorganisms and food particles taken up
from the seawater.

Most physiological functions of sponges depend on the flow of ambient water,
which enables nutrition, respiration and gas exchange, the removal of digestion
residuals and excretes, the release and intake of gametes and other reproductive
products, etc. Sponges comprise several different cell layers, which form a body
plan built around an aquiferous system of pores, canals, and chambers (Fig. 0.1)
through which surrounding water is pumped in and out. Water enters a sponge
through the ostia (pores) in the outer pinacoderm layer composed of cells called
pinacocytes, which also cover interior canals that penetrate the sponge body and
lead to the chambers. The chambers are covered with choanoderm, a layer of
special flagellated cells called choanocytes that beat their flagellum to pump the
water from ostia to the exits by the osculum. The choanocytes not only produce
water current, but also filter out from the water food particles including bacteria,
unicellular algae, and even viruses (Hentschel et al. 2012) and transfer them to
the inner mesohyl layer. The mesohyl, a glycosidic matrix, contains several types
of cells; among others archaeocytes, which digest food particles and as totipotent

cells can give rise to any of other sponge cell types. In many demosponges, the
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Figure 0.1. Body plan of sponges: (A) schematic overview of a sponge.
Adopted from Westheide &Rieger (2013) , (B) an enlargement of the internal
structure of a typical demosponge. Adopted from Hentschel et al. (2012).

mesohyl also contains dense and various communities of symbiotic microorgan-
isms, which may include cyanobacteria mostly restricted to the light-exposed
outer regions (Taylor et al. 2007b, Hentschel et al. 2012). Despite the simple body
plan, sponges exhibit different shapes and sizes. They vary from a few millime-
ters, thin encrusting species, to giant sponges of a few meters in size (Hooper &
Van Soest 2002). The structure of most sponges is supported by skeleton of sili-
ceous or calcareous spicules, which have an enormous range of shapes, sizes, and
patterns of organization (Bergquist 2001). Together with collagenous tissues, such
as spongin, these enable the development of large individuals (Hooper & Van
Soest 2002).

Sponges, which reproduce sexually or asexually through a variety of strategies,
may be hermaphrodite or gonochoristic (Maldonado & Riesgo 2008). In terms of
development, sponges can either be oviparous with external embryonic devel-
opment and a free-swimming larval stage or viviparous with embryos brooded
in the mesohyl, where larvae are formed before they are subsequently released
into ambient water (Maldonado & Riesgo 2008). In the development cycle of a
few demosponges, embryos grow directly into juveniles without the free-
swimming larvae stage

For several decades, sponges have attracted attention as the most prolific marine

producers of biologically active natural products (Taylor et al. 2007b). Sponge-
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Introduction

derived compounds fulfill in host a variety of functions, including their use as
predator repellents, anti-pathogen and anti-fouling agents, competition facilita-
tion, involvement in communication between individuals, and involvement in
sponge reproduction (Hay & Fenical 1996, Thoms et al. 2006, Hay 2009, Turon et
al. 2009). Each year, more then 200 new bioactive secondary metabolites with a
wide range of biotechnologically relevant properties are reported from sponges
(Blunt et al. 2013) due to the wide range of their activities including anticancer,
anti-inflammatory, antimicrobial, antifungal, antiviral, and antimalarial functions
(Faulkner 2002, Blunt et al. 2003, Proksch et al. 2003, Newman & Cragg 2004,
Sipkema et al. 2005, Piel 2009). Numerous studies have shown that many secon-
dary metabolites obtained from sponges are, in fact, produced by microorgan-
isms harbored by those hosts (Kobayashi & Ishibashi 1993, Bewley & Faulkner
1998, Schmidt et al. 2000, Proksch et al. 2003, Piel et al. 2004a, Piel et al. 2004b,
Glaser & Mayer 2009).

Microbial diversity in sponges

Marine sponges host abundant and diverse microbial communities (Taylor et al.
2007b, Webster & Taylor 2012), and those having the most ancient symbiotic as-
sociations between microorganisms and metazoa are estimated to have existed
for 600 million years (Wilkinson 1984). The terms “symbiosis” and “symbiont,”
which are used throughout this thesis with their broadest possible definition, re-
fer simply to any close, permanent, and long-term relationship between two or
more different organisms (similar as by Taylor et al. 2007b). Sponges differentiate
between bacterial symbionts and “food bacteria” (Wilkinson et al. 1984, Wehrl et
al. 2007); the density of symbiotic communities in sponges exceeds 3-4 orders of
magnitude the density of microorganisms in the surrounding seawater (see re-
view Taylor et al. 2007b). Sponges with bacterial population density of 108-101°
bacteria per gram of wet weight were defined as “bacteriosponges” or “high-
microbial-abundance sponges,” whereas up to 70% biomass could consist of mi-
crobial symbionts (Worheide 1998). In the same habitat, “low-microbial-
abundance sponges” may coexist with distinctly lower bacterial population den-
sity of 10°-10° bacteria per gram of sponge wet weight (Vacelet & Donadey 1977,
Hentschel et al. 2002, Hentschel et al. 2006). Advances in molecular techniques

over the past three decades have greatly improved our knowledge of microbial
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diversity in sponges. To date, at least 28 bacterial phyla (18 formerly described
and 10 bacterial candidate phyla), as well as major archaeal linages, have been
reported from sponges (Fig. 0.2) based on cultivation and/or conventional mo-
lecular approaches such as 16S rRNA gene library construction (Hentschel et al.
2012, Webster & Taylor 2012, Webster et al. 2013). The application of next genera-
tion sequencing methods have allowed the detection of several more phyla (Lee
et al. 2011, Schmitt et al. 2012a). Phylogenetic analyses have shown that members
of the phyla Acidobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, Gemmati-
monadetes, Nitrospirae, Proteobacteria, (especially the Alpha, Delta, and Gamma
classes), as well as the candidate phylum “Poribacteria,” occur most frequently
among sponge microbiota and therefore are recognized as “core” taxa and the
dominant sponge symbionts (Taylor et al. 2007b, Hentschel et al. 2012, Webster et
al. 2013).

Microbial associations in sponges reveal low temporal variability and appear to
be fairly stable in individuals and through time (Taylor et al. 2004, Webster et al.
2004, Hentschel et al. 2006). Numerous studies have provided evidence for spe-
cific microbial consortia in sponges from different oceans and for their differences
from those in the surrounding water (Wilkinson 1978, Santavy et al. 1990,
Hentschel et al. 2002, Taylor et al. 2004, Taylor et al. 2007b). Moreover, a new can-
didate phylum “Poribacteria” of sponge-specific bacteria, which do not occur in
seawater or sediment samples and are not yet cultivable in the laboratory, have
been reported (Fieseler et al. 2004). In the original study using phylogenetic
analyses, Hentschel et al. (2002) indicated the existence of monophyletic, sponge-
specific 16S rRNA sequence clusters, where 70% of the 190 sponge-derived se-
quences belonged. Moreover, Hentschel et al. (2002) established criteria for the
definition of monophyletic, sponge-specific clusters: a group of at least three se-
quences that (i) are found in different host sponge species and/or from different
geographic locations, (ii) are more similar to each other than to any other se-
quence from non-sponge source, and (iii) cluster together independently of the
tree construction method. Subsequent studies reported further sponge-specific
16S rRNA sequence clusters from different sponges (Hill 2004, Schirmer et al.
2005, Hill et al. 2006, Taylor et al. 2007b). However, the next generation sequenc-
ing analysis of several samples recently detected the putatively sponge-specific

bacteria in different marine environments, although generally at extremely low
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Figure 0.2. Diversity and specificity of marine sponge-associated microor-
ganisms. Several phyla detected using pyrosequencing are not included.
Adopted from Hentschel et al 2012.

abundances. Yet the studies also suggested that those bacteria might survive out-
side of a sponge host (Webster et al. 2010, Taylor et al. 2013). Nevertheless,
Gloeckner and colleagues (2013) have produced new evidence that spawning
leads to a 50% reduction of bacteria cells in the mesohyl of adult Ectyoplasia ferox
and that in addition to symbiotic microorganisms found in embryos, a fraction of
bacteria might be released into seawater. These findings might therefore explain
the presence of symbiont-specific 16S rRNA sequences detected in the seawater
sampled, e.g., around Rhopaloides odorabile during the spawning season (Webster
et al. 2010).

The existence of sponge-specific microbes was recently confirmed through com-
prehensive phylogenetic analyses of 7546 sponge-derived 16S and 18S rRNA se-

quences, as nearly one-third of the analyzed sequences fell into monophyletic,
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sponge-specific sequence clusters (SSC/SCC) (Simister et al. 2012). However, due
to the generally short length of the sequences, the 454 data was excluded from
this analysis; therefore, the existence of “sponge-specific” microbes in non-
sponge samples cannot be ruled out (Simister et al. 2012). The most abundant
sponge-specific clusters occurred among Chloroflexi, Cyanobacteria, “Poribacteria,”
Betaproteobacteria, and Acidobacteria (Fig. 0.2) (Simister et al. 2012). Despite the
evidence of sponge-specific clusters, recent analysis has demonstrated the struc-
ture and composition of microbial communities as specific for particular sponge
species and has excluded a correlation between host phylogeny and arrangement
of symbionts (Webster et al. 2010, Lee et al. 2011, Montalvo & Hill 2011, Erwin et
al. 2012). Erwin et al. (2012) classified numerous physical, chemical and biological
conditions that may have an impact on the structure of symbiotic communities in
marine sponges and showed that host-specific factors, such as mesohyl condi-
tions, shape the structure of sponge-associated microbiota.

Questions about the origin, evolution, and maintenance of sponge-microbe asso-
ciations constitute one of the important future directions of the research on mi-
crobial symbiosis in sponges (Taylor et al. 2007a, Vogel 2008, Webster & Blackall
2008, Hentschel et al. 2012, Webster & Taylor 2012). In a Comprehensive review
predicated on classical methods and molecular approach data, Taylor and col-
leagues (2007b) considered various scenarios of evolution of microbial symbiosis
in sponges including ancient symbiosis maintained by vertical transmission, pa-
rental and environmental symbiont transmission, and environmental acquisition.
The passage of complex assemblages of symbionts from adult sponge to next
generations was first observed fifty years ago by Lévi and Porte (1962) using elec-
tron microscopy. Since then, numerous studies using microscopic methods have
proven a vertical transmission of sponge symbionts (Gaino et al. 1987, Kaye 1991,
Sciscioli et al. 1991, Usher et al. 2001, Ereskovsky et al. 2005, de Caralt et al. 2007),
and more recently, have used molecular techniques including 16S rRNA gene li-
brary sequencing, denaturing gradient gel electrophoresis (DGGE), and fluores-
cence in situ hybridization (FISH) (Enticknap et al. 2006, Schmitt et al. 2007,
Sharp et al. 2007, Schmitt et al. 2008, Steger et al. 2008, Lee et al. 2009, Gloeckner
et al. 2013). The high sponge-specificity of microbial symbionts, absent from the
surrounding seawater, served in the ongoing discussion on the origin and main-

tenance of microbial communities as one further argument for vertical transmis-
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sion (Taylor et al. 2007b). The second strategy, where sponges acquired their
symbionts from the surrounding sea water during filter-feeding process, could be
evidenced only indirectly (Hentschel et al. 2012, Schmitt et al. 2012a). Uniform
distribution of symbionts and general conformity in the microbial signatures in
taxonomically distantly related sponges, with geographically non-overlapping
distributions patterns (Hentschel et al. 2002, Olson & McCarthy 2005, Hill et al.
2006, Taylor et al. 2007b) and relatively small divergence between the sponge-
derived microbial 16S rRNA gene sequences in SSC/SCC (Taylor et al. 2007b)
were cited as arguments in support of this thesis. Detection of sponge-specific
microorganisms in several marine environments (Webster et al. 2010, Taylor et al.
2013) suggested that members of the rare seawater biosphere can act as seed or-
ganisms for sponge-specific microbes (Webster et al. 2010). Support for this hy-
pothesis is provided by the fact that sponges can differentiate between the func-
tional categories food bacteria and bacterial symbionts taken from seawater
(Wilkinson et al. 1984, Wehrl et al. 2007). Recent studies have indicated that mi-
crobial communities in marine sponges are being shaped instead through a com-
bination of both strategies (Hentschel et al. 2012, Schmitt et al. 2012a). Neverthe-
less, several issues concerning the evolutionary origin and timing of the strate-

gies shaping sponge-microbe associations remain unresolved.

Coralline sponges

Coralline sponges, also called sclerosponges, are unique members of the phylum
Porifera (Reitner 1992, Worheide 2008). In addition to a spicular skeleton, which
is characteristic for recent sponges, coralline sponges build an unusual solid cal-
careous skeleton (Reitner 1992, Chombard et al. 1997), similar in appearance to
some reef building corals. During long periods of the earth’s history, sclero-
sponges (e.g., “Stromatoporoids,” “Chaetetids,” and “Sphinctozoans”) domi-
nated as diverse and abundant reef-building organisms (Vacelet 1985). Beginning
in the late Jurassic period, hermatypic corals replaced them in their reef building
function (Reitner 1992). Coralline sponges were thought to be extinct until their
rediscovery in the late 1960s (Hartman 1969). Today, only approximately 15 taxa
live. They are mainly restricted to the cryptic niches of coral reefs with reduced
light and strict oligotrophic conditions such as caves, and deeper fore-reef areas

(Reitner 1992, Worheide 1998). Coralline sponges are long-lived and grow slowly
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(0.15 to 1.2mm year?) (Fallon & Guilderson 2005). Their skeletons enable recon-
structions of the paleoclimate from proxy records of salinity and water tempera-
ture over the 100 to 1000 year time range (Fallon et al. 2005) and also have pro-
vided insight into early mechanisms of biomineralization (Jackson et al. 2007).
Sclerosponge genera, such as Acanthochatetes, Vaceletia or Astrosclera, are regarded
as "living fossils" due to their occupation of the same ecological niches for hun-
dreds of millions of years. In addition, these organisms display very similar mor-
phological characteristics when compared to their fossil relatives that lived mil-
lions of years ago (Reitner et al. 2001). Fossil records of Silurian stromatoporoids
found near ubiquitous microbial laminae, or less commonly encrusted by cyano-
bacteria, denote close associations (Soja et al. 2003) and might indicate an early
stage of sponge-microbial symbiosis. Therefore, coralline sponges might provide
insight into the evolution of sponge-microbial associations. Microbial communi-
ties in coralline sponges have not hitherto been investigated using molecular

techniques.

Vaceletia crypta

The coralline sponge Vaceletia is the only recent member of a sphinctozoan-like
sponges, which were reef-building organisms in the Permo-Triassic (Worheide &
Reitner 1996, Vacelet 2002). The discovery of Vaceletia crypta by Vacelet (1977) re-
versed the common belief that sphinctozoan-type coralline sponges were long
extinct (see also Worheide and Reitner 1996, Worheide 2008). Vaceletia widely oc-
curs throughout the Indo-Pacific in semi-closed cavities of coral reefs, front reef
caves, and bathyal environments; it has been reported at depth ranging from 10
m to 530 m (Vacelet 2002). Based on the analyses of partial 28S and full-length 185
rDNA sequences, Worheide (2008) showed that monophyletic taxon Vaceletia be-
longs to the Keratosa. Vaceletia had the highest affinities to the (possibly paraphy-
letic) extant order Dictyoceratida, which includes the commonly known bath
sponges (Worheide 2008).

Vaceletia has long been considered a widespread monotypic genus with a single
species, V. crypta. However, several morphotypes with different growth modes
(solitary vs. colonial) of Vaceletin have been discovered in the Indo-Pacific, al-
though their taxonomic status remained unclear (Vacelet et al. 2002; Worheide &

Reitner 1996). The colonial form, thus far only found in shallow water reef caves

16



Introduction

Figure 0.3. (A) Vaceletia crypta from Guam, dimension unknown, photo
adopted from www.flmnh.ufl.edu; (B) colonial Vaceletia from Coral Sea, di-
ameter approx. 5 cm, photo Karlifiska-Batres

in the western Pacific, has a reef-building capability. The solitary V. crypta (Fig
0.3), non-colonial form, has no reef building potential (Vacelet 2002) and is more
widespread in the darkest areas of reef caves of Indo-Pacific (Worheide & Reitner
1996, Worheide 2008). The living part reaches 5-9 mm (height) and 3 mm (diame-
ter), and has a grey color (Vacelet 2002).

Astrosclera willeyana

Astrosclera willeyana (Fig. 0.4) is considered to be a living relative of the long-
extinct “Stromatoporoidea,” which formed extensive reefs during the Paleozoic
and Mesozoic eras (Wood 1987, Chombard et al. 1997). Genus Astrosclera was
thought to be extinct until it was rediscovered in the Pacific by Lister (1900)
(Worheide 1998). In today's coral reefs, A. willeyana is the most common coralline
sponge throughout the Indo-Pacific, from the northern Red Sea to Tahiti
(Worheide 1998, 2008). A. willeyana occurs at depths from 1 m to 185 m (Hartman
1980); in shallow waters, it can be found mainly in caves, sometimes at the dimly
lit cave entrances and under overhangs less than 10 m (Worheide 1998). The very
darkest areas of caves almost entirely lack A. willeyana (Worheide 1998). As with
all coralline sponges, A. willeyana grows slowly, at a rate of 0.2-1.2 mm/a
(Worheide 1998, Fallon & Guilderson 2005) and has a pyriform-half spherical
(mushroom) growth form (Wérheide 1998). The color of A. willeyana depends on
the light intensity and varies from bright salmon orange in dark areas to greenish

(caused by green algae) and/or red by overhangs and cave entrances with dim
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Figure 0.4. A. willeyana from Osprey Reef; diameter approx. 9 cm (A) and
approx. 6 cm (B). Pictures adopted from Wérheide (1998)

lighting (Worheide 1998). The living tissue of A. willeyana that contains the asso-
ciated microorganisms, penetrates the basal skeleton to a maximum depth of 50%
in small specimens; this ratio decreases with increasing specimen size (Worheide
et al. 2007). In a detailed characterization of the A. willeyana from the Indo-Pacific,
Worheide (1998) described the large bacterial populations in their soft tissue,
mostly rod- or coccoid-shaped, although he also noted an unequal distribution of
bacteria in all of the tissue zones. The choanosome contained a large number of
symbiotic bacteria; here, the number in some areas exceeded 70% of total biomass
(Worheide 1998). However, some parts of the sponges’ tissues were nearly free of
symbiotic bacteria (Worheide 1998). Based on TEM studies, Worheide (1998) dis-
tinguished four major bacterial morphotypes: rod-shaped; spherical to ovoid
with a dense membrane; ellipsoid with a dense membrane and surrounded by
loosely bound EPS sheets; and larger bacteria with a diffuse protoplasm and
outer “capsule” (supposed EPS capsule). Jackson et al. (2010) employed A. willey-
ana as a model to elucidate the early mechanisms of biocalcification. This study
showed that in A. willeyana remaining bacterial matter are entrapped to seed the
growth of CaCOs crystals during the process of biomineralization. Moreover,
based on fossil evidence, this study implied that the reef-building stromatopor-
oids from the Paleozoic and Mesozoic eras conducted similar processes of bacte-
rially induced skeleton formation (Jackson et al. 2010). Therefore, this microbi-
al-metazoan relationship might have established some ancient reef ecosystems
(Jackson et al. 2010). Jackson et al. (2011) recently published further data suggest-

ing ancient origins of the sponge-microbial association. This study indicated a
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horizontal transfer of a gene encoding a protein that is most likely involved in
skeletogenesis in A. willeyana from a bacterium into the A. willeyana genome. This
horizontal gene transfer (HGT) event may have contributed to the evolution of A.
willeyana’s bodyplan (Jackson et al. 2011). This first example of an HGT event into
a sponge genome from a prokaryote provided other evidence supporting an an-
cient origin for the A. willeyana-microbial association (Jackson et al. 2010); how-
ever, the identity of the microbial associates of this coralline sponge was still un-

determined.

Aims of this study

Through the application of molecular methods for the detailed study of microor-
ganisms associated with sponges of the genus Astrosclera and Vaceletia, the aim of
the study was (1) to explore hitherto unknown microbial diversity in coralline
sponges, (2) to determine whether the microbial communities of extant coralline
sponges which represent long-extinct ancient groups, differ from those reported
from other sponges or show some specific microbial patterns, and (3) to gain in-
sight into the mechanisms of maintenance and evolution of microbial symbiosis

in sponges.

In this project microbial 16S rRNA gene, a standard marker to examine the rich-
ness and diversity of microorganisms in the environment (Woese 1987, Pace
1997), was amplified from numerous samples of coralline sponges Vaceletia crypta
and Astrosclera willeyana. Subsequently three extended clone libraries obtained
from different specimens were constructed and sequenced, and denaturing gra-
dient gel electrophoresis (DGGE) analyses were performed with the remaining
samples. These methods allowed us to complete a detailed characterization of
microbiota associated with V. crypta and to conduct an investigation into whether
growth mode and/or putative sister-species relationships lead to differences in
microbial diversity (Chapter 1). Furthermore we explored the spatial variability
in sponge-derived microbial communities between A. willeyana from diverse sites
along the GBR, and we surveyed the taxonomic composition of microbial associ-
ates from one of A. willeyana from the GBR (Chapter 2). We subsequently com-
pared this community with a microbial community associated with A. willeyana

from the northern Red Sea, and we explored the differences in the symbiotic
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communities of A. willeyana over a wide geographic range from the Red Sea to
the central Pacific (Chapter 3). Finally, we examined the differences between the

microbial associates of two co-occurring A. willeyana and V. crypta (Chapter 4).
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Chapter 1

Microbial diversity in the coralline

sponge Vaceletia crypta

This chapter was published as:

Karlinska-Batres K, Worheide G (2013) Microbial diversity in the coralline sponge
Vaceletia crypta. Antonie Van Leeuwenhoek 103(5):1041-1056
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Microbial diversity in the coralline sponge

Vaceletia crypta

Abstract

Coraline sponges of the genus Vaceletia are regarded as a 'living fossils', the only
recent members of the so-called 'sphinctozoan-type' sponges that contributed to
reef-building during the Palaeozoic and Mesozoic eras. Vaceletia species were
thought to be extinct until the discovery of V. crypta in the 1970's. Here, we used
molecular methods to provide first insights into the microbial diversity of these
coralline sponges. Both denaturing gradient gel electrophoresis (DGGE) analyses
of 19 Vaceletia specimens and the analysis of 427 clones from a bacterial 165 rRNA
gene clone library of a specimen of V. crypta from the Great Barrier Reef (Austra-
lia) revealed high diversity and a complex composition with a relatively homo-
geneous phylogenetic distribution. Only a single archaeal 165 rRNA phylotype
was recovered. The most abundant bacteria were the Chloroflexi (35%). Of the mi-
crobial community, 60% consisted of the Gammaproteobacteria, Gemmatimonadetes,
Actinobacteria, Nitrospira, Deltaproteobacteria, Deferribacteres, and Acidobacteria, with
nearly equal representation. Less abundant members of the microbial community
belonged to the Alphaproteobacteria (3%), as well as to the Poribacteria, Betaproteo-
bacteria, Cyanobacteria, Spirochaetes, Bacteroidetes, Deinococcus-Thermus and Archaea
(all together 4%). Of the established 96 OTUs, 88% were closely related to other
sponge-derived sequences, and thereof 71 OTUs fell into sponge- or sponge-coral
specific clusters, which underscores that the "living fossil" coralline sponge Vace-
letia shares features of its microbial community with other sponges. The DGGE
cluster analysis indicated distinct microbial communities in the different growth

forms (solitary and colonial) of Vaceletia species.

1.1. Introduction
Sponges (phylum Porifera) are arguably the earliest branching Metazoa (Philippe
et al. 2009, Philippe et al. 2011), with a fossil record dating back nearly 700 million
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Figure 1.1. TEM micrograph of the choansosome of V. crypta with numerous
bacterial cells and a few sponge cells (Sp) in the mesohyl, as well as in the
choanocyte chamber (ChCh). Scale bar = 2um

years (Erwin et al. 2011). Sponges harbor rich and diverse microbial communities
in their tissues (for a comprehensive review see Taylor et al. 2007b). In the so-
called “high microbial abundance sponges’ or ‘bacteriosponges’, microbes can
make up to 40% of the biomass of the host, whereas the ‘low microbial abun-
dance sponges’ harbor relatively small numbers of microorganisms (Reiswig
1981). Currently, 30 bacterial phyla, two major lineages of the Archaea, and sev-
eral types of eukaryotic microbes associated with sponges have been identified
(Hentschel et al. 2002, Hentschel et al. 2003, Taylor et al. 2007b, Hardoim et al.
2009, Webster et al. 2010, Schmitt et al. 2012b). Phylogenetic analyses have indi-
cated a low temporal variability in marine sponge-associated microbial commu-
nities, which are fairly stable within individuals and through time (Taylor et al.
2004, Webster et al. 2004, Hentschel et al. 2006). Hentschel et al. (2002) established
criteria to define monophyletic, sponge-specific "clusters": a group of at least
three sequences that (i) are found in different host sponge species and/or from
different geographical locations, (i) are more similar to each other than to any
other sequence from a non-sponge source, and (iii) are grouped together into one
clade independent of the tree construction method. This and further studies have
shown that taxonomically distantly related sponges with geographically non-
overlapping distribution patterns and with host-specific secondary metabolite

profiles contain surprisingly uniform microbial signatures (for a review see

24



Chapter 1: Microbial diversity of Vaceletia crypta

Taylor et al. 2007b). However, a recent pyrosequencing study by Webster and
colleagues reported the presence of Poribacteria, and 17 of the other 33 currently
reported sponge-specific groups in seawater (Webster et al. 2010, Taylor et al.
2013). Therefore, this study questions the hypothesis that some groups of mi-
crobes are restricted to the sponge host and distinct from those in the surround-
ing seawater (Taylor et al. 2004).

Coralline sponges, also known as sclerosponges, are unique members of phylum
Porifera (Reitner 1992, Worheide 2008) because they build a solid secondary cal-
careous skeleton (Reitner 1992, Chombard et al. 1997) in addition to a primary,
often spicular, skeleton. During long periods of the Earth’s history, sclerosponges
were dominant, diverse and abundant reef-building organisms (Vacelet 1985).
These organisms were thought to be extinct until their rediscovery in the late
1960s (Hartman 1969). Today, only approximately 15 taxa live, mainly restricted
to the cryptic niches of coral reefs with reduced light and oligothrophic condi-
tions, such as caves and deeper fore-reef areas (Reitner 1992, Worheide 1998).
Sclerosponge genera, such as Acanthochatetes, Vaceletia or Astrosclera, are regarded
as "living fossils" due to their occupation of the same ecological niches for hun-
dreds of millions of years. In addition, these organisms display very similar mor-
phological characteristics when compared to their fossil relatives that lived mil-
lions of years ago (Reitner et al. 2001). Therefore, coralline sponges might provide
insight into the evolution of sponge-microbial symbioses. Fossil records from Si-
lurian microbial reefs, with stromatoporoids neighboring ubiquitous microbial
laminae or less commonly encrusted by cyanobacteria, might already indicate
those close associations (Soja et al. 2003).

Sponges of the genus Vaceletia, which was thought to be extinct until its rediscov-
ery in the 1970's (Vacelet 1977), systematically belong to the Keratosa, a group of
sponges devoid of a primary mineralized skeleton (W6rheide 2008). Bacteria may
make up more than 50% of the entire biomass of the sponge (Reitner & Worheide
2002). Vaceletia species occur in two putative sister-species with different growth
modes (solitary vs. colonial; Worheide & Reitner 1996). For the detailed descrip-
tions and definitions of the solitary and colonial forms see Vacelet (1988), Vacelet
et al. (1992), Worheide & Reitner (1996).

The microbial communities in coralline sponges have yet to be investigated in

detail. Here, we aimed to perform detailed characterizations and sequenced a 16S
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rRNA clone library of a randomly picked Vaceletia crypta specimen, the only val-
idly described recent species of the genus. To further investigate whether growth
mode and/or putative sister-species relationships lead to differences in microbial
diversity, we additionally performed denaturing gradient gel electrophoresis
(DGGE). We aimed to determine whether the microbial communities of these
“living fossil” sponges differ from those reported from other sponges and, by
phylogenetic analyses, contribute to the question of the maintenance of sponge-

microbe symbioses.

1.2. Methods

1.2.1. Sample collection

Seventeen samples were collected by SCUBA diving at depths from 7 to 30 me-
ters at several sampling sites in the Coral Sea and Pacific Ocean. Sponges were
excised from the substrate using a chisel and a hammer and transferred directly
(underwater) to plastic bags. Two samples were collected by a Remotely Oper-
ated Vehicle (ROV) at depths from 200 to 250 meters. The sampling details for all
samples used are listed in Table 1.1. After collection, sponge samples were pre-
served either in silica gel (Erpenbeck et al. 2004), DMSO buffer (20% DMSO, 0.25
M EDTA, and NaCl to saturation, pH 8.0; adapted from Seutin et al. (1991) or
95% ethanol.

1.2.2. DNA extraction

Samples were rinsed with autoclaved Millipore water, and the preserved living
tissue was cut and crushed aseptically with a sterile scalpel on a Petri dish. Total
DNA was extracted from 3 mg of tissue using a Qiagen DNeasy Tissue kit (Qia-

gen GmbH, Hilden, Germany) following the manufacturer’s instructions.

1.2.3. PCR amplification and cloning of the 16S rRNA genes genes of V. crypta
from Yonge Reef, Great Barrier Reef, (sample no. GW947)

The bacterial 16S rRNA genes were amplified from the DNA extract obtained by
PCR using GoTaq polymerase (Promega GmbH, Mannheim, Germany) and uni-
versal bacterial primers (616F: 5- AGA GTT TGA TYM TGG CTC AG -3 and
1525R: 5- AGA AAG GAG GTG ATC CAG CC -3’) (Lane 1991). Cycling condi
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Table 1.1. Sample data of investigated Vaceletia sp. specimens, with collection
sites details. * As the exact coordinates for the sampling sites in Palau and
Solomon Islands were not available, the given coordinates are based on the
Gazetteer of Conventional Names, Third Edition, August 1988, US Board on
Geographic Names

Sal;noltfle Location Site (location) Depth Date Latitude Longitude
Solitary
V. crypta GW947 Coral Sea Yonge Reef 8m 2006 14°57.212S 145°61.489 E
V.sp. GW5147.1 Palau Siaes Tunnel #1 6m 2000 7°30 N* 134°30 E*
V.sp. GW5147.2 Palau Siaes Tunnel #2 6m 2000 7°30 N* 134°30 E*
V.sp. GW5147.3 Palau Siaes Tunnel #3 6m 2000 7°30 N* 134°30 E*
V.sp. GW727 Solomon Islands 200m 2000 8°00 S* 159°00 E*
V. crypta GW5450  Coral Sea Osprey Reef #1 12m 1995 13°53.392S 146°33.267 E
V.crypta G 313971  Coral Sea Osprey Reef #2 10m 1999 13°48.063S 146°32.731E
V.crypta G 313989  Coral Sea Osprey Reef #3 9m 1999 13°53.392S 146°33.267 E
V.crypta G 316280 Coral Sea Osprey Reef #4 30m 2002 13°50.09S 146°33.07 E
V.sp. G316297 Coral Sea Holmes Reef 12m 2002 16°30.629 S 147°50.400 E
Colonial
V.sp. G318578 Norfolk Ridge Jumeau-West 240m 2001 23°40.766 S 168°00.602 E
V.sp. G313956 Coral Sea Bougainville Reef #1 10m 1999 15°28.934S 147°06.076 E
V.sp. G316289 Coral Sea Bougainville Reef #2 25m 2002 15°28.934S 147°06.076 E
V.sp. G316284 Coral Sea Osprey Reef #5 14m 2002 13°53.5S  146°33.1E
V.sp. G316001 Coral Sea Osprey Reef #4 8m 1999 13°56.594S 146°35.909 E
V.sp. G313993 Coral Sea Osprey Reef #6 10m 1999 13°53.428 S 146°33.300 E
V.sp. G313986 Coral Sea Osprey Reef #7 7m 1999 13°49.803S 146°33.940 E
Visp.  G313979 Coral Sea Osprey Reef #8 15m 1999 13°49.744S 146°33.958 E
Visp.  G313972 Coral Sea Osprey Reef #9 10m 1999 13°48.063S 146°32.731E

tions for the Biometra thermocycler were as follows: an initial denaturation step
(2 min at 95°C) followed by 35 cycles of denaturation (30 s at 94°C), primer an-
nealing (1 min at 55°C), elongation (2 min + 4 s at 72°C) and a final extension step
(5 min at 72°C). After purification using the mi-PCR Purification kit (metabion
GmbH, Martinsried, Germany), the DNA was subsequently cloned into the
plasmid cloning vector using an Invitrogen TOPO® TA Cloning Kit for Sequenc-
ing according to the manufacturer’s instructions (Life Technologies GmbH,
Darmstadt, Germany). The inserts of 427 clones were PCR reamplified using vec-
tor specific primers (M13) (Sambrook & Russell 2001) and Promega GoTaq po-
lymerase. Analytical digestions of PCR products of 1500 base pairs length were
performed in single reactions using the restriction enzyme Mspl (Fermentas
GmbH, St. Leon-Rot, Germany) following the manufacturer’s instructions. Based

on the restriction patterns, similar clones were grouped together and chosen ran-
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domly for sequencing. Clones with undefined restriction patterns were addition-
ally taken for sequencing. Prior to sequencing, amplified inserts were purified
using a silica-based protocol modified after Boyle and Lew (1995).

For the amplification of archaeal 16S rRNA gene from the DNA extract, touch-
down PCR using universal archaeal primers (21F: 5’- TTC CGG TTG ATC CYG
CCG GA - 3 and 915R 5'- GTG CTC CCC CGC CAA TTC CT -3’) (DeLong 1992,
Raskin et al. 1994) and an annealing temperature decreasing from 60 to 50.5°C (30
s each) in 0.5°C increments was employed. The cycling conditions for the Biome-
tra thermocycler using Promega GoTaq were as follows: one cycle of initial dena-
turation (2 min at 95°C); 35 cycles of denaturation (30 s at 94°C), primer anneal-
ing (30 s from 60°C minus 0.5°C), and elongation (2 min + 4 s at 72°C) followed
by 25 cycles of denaturation (30 s at 94°C), primer annealing (30 s at 51°C), and
elongation (2 min + 4 s at 72°C) and a final extension step (5 min at 72°C). A
strong band of approx. 900 base pairs was excised, and the DNA was purified
from an agarose gel using the E.Z.N.A Gel Extraction Kit (VWR International
GmbH, Darmstadt, Germany) following the manufacturer’s instructions and

subsequently taken for sequencing.

1.2.4. Sequencing

Sequencing was performed by the Genomics Service Unit (Ludwig-Maximilians-
Universitat Miinchen) using the BigDye® Terminator v3.1 on a 48-capillary se-
quencer (ABI 3730, Applied Biosystems). For the cloned bacterial inserts, the
primers: 610RII (5- ACC GCG/T A/GCT GCT GGC AC -3') (Dotzauer et al.
2002), 616F and 1492R (5’- GGT TAC CTT GTT ACG ACT T -3’) (Lane 1991), or
614F (5'- GTG CAT GGC TGT CGT CAG CTC G -3’) (this study) were used. The
archaeal PCR product was sequenced with AR20F primer (5'- TTC CGG TTG
ATC CYG CCRG -3) (Moyer et al. 1998). CodonCode Aligner
(http:/ /www.codoncode.com/aligner/) was used for sequence editing and as-
sembly. Sequences were checked for chimeras using the Bellerophon web appli-
cations (Huber et al. 2004). Chimera sequences were removed before further

analyses.

1.2.5. Phylogenetic analyses
Phylogenetic analyses were performed using ARB (Ludwig et al. 2004). The ini-
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tial ARB database was constructed from the SILVA Small Subunit rRNA Database
(release 96; Pruesse et al. 2007) and from the database constructed by Taylor and
colleagues, which contains sponge-derived sequences along with their closest
relatives (Taylor et al. 2007b). Our sequences were compared to the sequences
available in public databases using BLAST (http:/ /blast.ncbi.nlm.nih.gov/), and
the nearest relative sequences obtained from different sponges, corals and non-
sponge sources, were also incorporated into the ARB Database. The sequences
were aligned using the ARB Integrated Aligner. The alignment was checked and
corrected manually for alignment errors. The partial sequences were added to the
ARB database using the ARB parsimony “quick add” tool. Initial phylogenetic
trees were evaluated using the neighbor-joining algorithm (Jukes-Cantor correc-
tion) using ARB. Subsequently, the alignment was exported from the ARB data-
base, and maximum likelihood trees were constructed using RAXML (v.7.2.5;
Stamatakis 2006), 1000 bootstrap replicates and the GTR+GAMMA model of se-
quence evolution. The resulting trees were visualized using the program FigTree
(v.1.3.1) (http://tree.bio.ed.ac.uk/software/figtree/). Monophyletic, SSC/SCC
were defined based on established criteria (Hentschel et al. 2002). Sequences ob-
tained from the sponges and corals that grouped together into one clade inde-
pendent of the tree reconstruction method (neighbor-joining and maximum like-

lihood) were regarded as SSC and/or SCC.

1.2.6. Estimation of microbial diversity and statistical analyses

Based on the distance matrix generated by ARB, the sequences were assigned to
operational taxonomic units (OTUs) using Mothur (Schloss et al. 2009). The
clones that were only analyzed by restriction digestion were assigned to corre-
sponding OTUs based on their restriction patterns. For the analysis of an OTU, a
cut-off value of 0.03 was used (Schloss & Handelsman 2005). The rarefaction
curves were also calculated using Mothur. The curves were plotted using the R
software package (http://www.R-project.org). The Shannon-Wiener index
(Spellerberg & Fedor 2003) was calculated to determine the abundance and rich-
ness of the bacterial community associated with V. crypta. The Chaol index
(Colwell & Coddington 1994) was employed to estimate total species richness.

Calculations were performed using the Mothur software. In order to determine
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Figure 1.2. Distribution of 16S rRNA gene clones among the OTUs defined at
the 97% similarity criterion. * N1, number of singletons, N2 number of dou-
bletons, etc.

the phylogenetic composition of the clone library constructed from the microbial
community associated with the V. crypta the percentage for each phylogenetic

group was calculated based on the number of clones assigned to the particular

group.

1.2.7. Denaturing gradient gel electrophoresis

19 samples of genus Vaceletia representing colonial (9 samples) and solitary (10
samples) growth forms were used for DGGE. All of the samples used are listed in
Table 1.1. The bacterial 16S rRNA genes were amplified from the DNA extracts
using touchdown PCR, Promega GoTaq polymerase and the universal bacterial
primers 341F-GC and 907RC (Muyzer & Smalla 1998, Schifer 2001). Cycling con-
ditions for the Biometra thermocycler were as follows: one cycle of initial denatu-
ration (2 min at 95°C); 15 cycles of denaturation (30 s at 94°C), primer annealing
(30 s from 58°C minus 0.5°C), and elongation (2 min + 4 s at 72°C) followed by 25
cycles of denaturation (30 s at 94°C), primer annealing (30 s from 51°C minus
0.5°C), and elongation (2 min + 4 s at 72°C) and a final extension step (5 min at
72°C).

The DGGE analysis was performed with an Ingeny phorU-2 system (Ingeny In-
ternational), Power Pac 300 (BioRad) as a power supplier, and a denaturing gra-
dient of 30%-70% (urea and formamide) in a 6% polyacrylamide gel. Gels were
run for 16 h at 180 V (60°C), then stained for 25 min in SYBR Gold (Molecular
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Probes) and photographed using a RT Color SPOT camera and SPOT advance
imaging software (Visitron Systems GmbH).

Gel images were analyzed using QuantityOne software (version 4.69, Bio-Rad).
Similarities between the DGGE banding patterns were calculated using the band-
matching Dice coefficient with an optimization at 0.75% and a tolerance level of
0.75%. The unweighted pair-group method with arithmetic averages (UPGMA)

was used for cluster analysis to obtain similarity dendrograms.

1.2.8. Nucleotide sequence accession numbers

The 16S rRNA gene sequences representing all OTUs generated in this study
were deposited in EMBL database under the accession numbers HE817775 to
HE817870.

1.3. Results

1.3.1. Clone library construction and OTU assignment

427 clones were selected from the 16S rRNA clone library amplified from the soli-
tary form of V. crypta from Yonge Reef, Great Barrier Reef (GBR, Australia), which
possesses a high microbial abundance, in parts of the sponge outnumbering
sponge cells (Fig. 1.1). From those clones, 253 were sequenced, and the remaining
174 clones were assigned to a particular OTU based on their restriction patterns.
A single archaeal 16S rRNA sequence was retrieved, however the multiple geno-
types cannot be entirely ruled out. Three sequences were discarded as chimeras.
The remaining 250 sequences were clustered into 96 OTUs using a 97% similarity
criterion. From those 96 OTUs, 39 were singletons (Fig. 1.2). Only 8 OTUs
grouped more than 10 clones (two OTUs with 18 and 11 clones and single OTUs
with 15, 22, 23 and with 30 clones, respectively).

1.3.2. Phylogenetic analyses

Using BLAST, 88% of the 96 OTUs (84 OTUs) were found to be closely related
with other previously described sponge- or coral-derived sequences. Of the
OTUs, 70% (67 OTUs) were related to other sponge-derived 16S rRNA genes ob-
tained from 22 different sponge species. A further 18% of the OTUs contained se-

quences obtained from four different species of corals as closest relatives. Of
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those OTUs, 14 were related to 16S rRNA sequences obtained from Montastraea
faveolata, and a single OTU was related to sequences obtained from Oculina pata-
gonica, Diploria strigosa and Erythropodium caribaeorum. Only one OTU was closely
related (99% similarity) to a validly described organism (Delftia acidovorans), and
one was distantly related (91% similarity) to a 165 rRNA gene sequence from a
chloroplast of a red alga. Further, 7% of the OTUs had sequences from marine
environments as next relatives (3 OTUs from seawater, 1 OTU from basaltic glass
from a seamount and 3 OTUs from sediment, with one of the 3 from deep sea).
Three OTUs contained sequences from the terrestrial subsurface as next relatives.
The results of the BLAST search are summarized in supplementary Table S1.1.

The phylogeny obtained with ARB showed that the majority of the sponge-
derived microbial clones were assigned to the Chloroflexi (39 OTUs, number of
clones n=144) and Gammaproteobacteria (13 OTUs, n=46). Clones affiliated with the
Deltaproteobacteria (9 OTUs, n=29), Acidobacteria (6 OTUs, n=24), Gemmatimonade-
tes (5 OTUs, n=46), and Alphaproteobacteria (4 OTUs, n=11) were also observed.
Numerous clones affiliated to the Nitrospirae and Actinobacteria revealed single
and triple OTUs, (1 OTU, n=30) and (3 OTUs, n=34), respectively. The minor
components of the clone library were clones affiliated with the Poribacteria (3
OTUs, n=4), Betaproteobacteria (2 OTUs, n=3), Cyanobacteria (2 OTUs, n=3), Spiro-
chaetes (1 OTU, n=2), Deinococcus-Thermus (1 OTU, n=1), and Bacteroidetes (1 OTU,
n=1). The single sequence obtained by PCR using universal archaeal primers was
affiliated to the Crenarchaeota. Over 9% of the clone sequences (5 OTUs, n=30)
were not classified using ARB database to any described phylum. However,
based on the EMBL phylogeny the available sequences that were most similar
implied an affiliation of these sequences with the phylum Deferribacteres. The

phylogenetic trees present the OTUs with nearest similar sequences assigned to

Figure 1.3. Maximum likelihood phylogeny of V. crypta-derived 165 rRNA
sequences affiliated to the phylum Chloroflexi with next similar sequences
obtained from other sponges or corals, and from the environment. Reference
sequences are listed with their GenBank numbers. Bold text signifies clones
obtained during this study. Shaded boxes represent sponge-specific clusters;
the percentage values next to the boxes indicate the similarity between the
sequences belonging to the clusters. Bootstrap analysis was based on 1000
replicates — the support values 70-85% are indicated by asterisk. Scale bar sig-
nifies 10% sequence divergence >
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the Chloroflexi (Fig. 1.3), Proteobacteria (Fig. 1.4) and to all other phyla (Fig. 1.5).

1.3.3. Sponge-specific and sponge-coral clusters

From the 84 OTUs that contained sequences similar to sequences obtained from
other sponges or corals, 71 OTUs (85%) were assigned to 63 SSC or SCC. The
largest number of clusters belonged to the phylum Chloroflexi (27 clusters with 30
OTUs). A further 15 clusters were defined among the Proteobacteria (15 clusters
with 16 OTUs). The SSC/SCC are indicated with grey-shaded boxes in the phy-

logenetic trees (Figs. 1.3-1.5).

1.3.4. Estimation of microbial diversity and statistical analyses

The microbial community composition was calculated for all clones affiliated to
each phylogenetic group and revealed a high diversity with a complex composi-
tion (Fig. 1.6). The most abundant taxa were the Chloroflexi (35%). Due to the
complexity, variety and diversity of the phylum Proteobacteria, the proteobacterial
classes were treated as separate phylogenetic groups (Alpha-, Beta-, Gamma- and
Deltaproteobacteria) and as separate groups for the estimations of the microbial
community composition. If, for the calculation of community composition, the
Proteobacteria were regarded as one single group (phylum), it would be the sec-
ond most abundant group in the community (22%) behind the Chloroflexi.

A rarefaction analysis was used to assess whether the number of clones se-
quenced from the library represented the full diversity of the microbial commu-
nity. The rarefaction curves calculated using 97% and 95% cut-off criteria for
grouping OTUs at the “species” and “genus” levels as well as 90% did not reach

a clear saturation (Fig. 1.7). However, according to the Chaol index (Table 1.2),

Figure 1.4. Maximum likelihood phylogeny of V. crypta-derived 165 rRNA
sequences affiliated to the phylum Profeobacteria with next similar sequences
obtained from other sponges or corals, and from the environment. Reference
sequences are listed with their GenBank numbers. Bold text signifies clones
obtained during this study. Shaded boxes represent sponge-specific clusters;
the percentage values next to the boxes indicate the similarity between the
sequences belonging to the clusters. Bootstrap analysis was based on 1000
replicates — the support values 70-85% are indicated by asterisk. Scale bar sig-
nifies 10% sequence divergence >
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we sequenced over 70% of the predicted number of microbial species, which pro-
vides a representative picture of the core microbial community of V. crypta. In
addition, using Sanger sequencing to cover the remaining 30% of the community

would be costly and time-consuming (Schmitt et al. 2012b).

1.3.5. Denaturing gradient gel electrophoresis

DGGE analysis of nine colonial and ten solitary forms of individuals from genus
Vaceletia indicated that the diversity of all the bacterial communities was very
high. The number of bands ranged from 27 to 35 per sample. The lowest number
of bands was obtained from the bacterial community associated with the solitary
form of Vaceletia from Palau, Siaes Tunnel (sample #3, Fig. S1.1 of the Supplemen-
tary material), and the largest number of bands was obtained from the colonial
form from Bougainville Reef (sample #2, Fig. S1.1 of the Supplementary mate-
rial). The banding patterns displayed numerous co-occurring bands; however,
only four bands were found in all samples from both growth forms. 18 bands
were specific to the samples from the solitary Vaceletia form and 19 to the samples
from the colonial form. A cluster analysis showed that the microbial communities
appear to be growth-form specific (Fig. 1.8); however, the solitary specimens from
Palau, which clustered together, displayed a higher affiliation to the cluster of
colonial samples. The bacterial profiles for the samples obtained from Norfolk
Ridge (colonial form) and from Solomon Island (solitary form), both from deeper

sampling zones, did not cluster with the other samples.

1.4. Discussion
This is the first study assessing the phylogenetic diversity of Bacteria and Archaea

in coralline sponges using molecular approaches. The 16S rRNA gene-based di-

Figure 1.5. Maximum likelihood phylogeny of V. crypta-derived 165 rRNA
sequences affiliated to several phyla with next similar sequences obtained
from other sponges or corals, and from the environment. Reference se-
quences are listed with their GenBank numbers. Bold text signifies clones
obtained during this study. Shaded boxes represent sponge-specific clusters;
the percentage values next to the boxes indicate the similarity between the
sequences belonging to the clusters. Bootstrap analysis was based on 1000
replicates — the support values 70-85% are indicated by asterisk. Scale bar sig-
nifies 10% sequence divergence >
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Figure 1.6. Distribution of the 165 rRNA clones among particular phyloge-
netic groups in the clone library obtained from the V. crypta

versity analysis of V. crypta revealed that its associated microbial community is
phylogenetically complex and diverse because it is composed of representatives
of the Archaea and 13 bacterial phyla. The phylogenetic distribution of the se-
quences was relatively even between phylogenetic groups, however the largest
number of sequences was affiliated with the Chloroflexi, which have frequently
been reported as members of sponge-associated microbial communities and often
as the predominant group (Hentschel et al. 2002, Webster et al. 2004, Thiel et al.
2007). In a recent work Schmitt and colleagues (2011) showed that HMA sponges
host more diverse, abundant, and similar Chloroflexi bacteria then LMA sponges.
Of the sequences belonging to the Chloroflexi, 91% of those V. crypta-associated
sequences fell into sponge- or sponge/ coral clusters (Fig. 1.3), which is consistent
with these results.

The second most abundant group of V. crypta symbionts belonged to the Proteo-
bacteria, which are commonly found and often predominant in microbial consor-
tia associated with different sponges from different marine sites (Friedrich et al.
1999, Schmidt et al. 2000a, Burja & Hill 2001, Friedrich et al. 2001, Webster & Hill
2001, Webster et al. 2001, Hentschel et al. 2002, Webster et al. 2004, Li et al. 2006).
Delftia acidovorans, an obligate aerobe able to grow in 1.5% NaCl (Wen et al. 1999),
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Figure 1.7. Rarefaction curves for the 165 rRNA sequences obtained from V.
crypta Operational Taxonomic Units (OTU) were defined at the 97%, 95%
and 90% similarity criterion

Table 1.2. Sample diversity

Chao estimate Shannon diversity index
Label OTUs . . . .
(95% confidence interval) (95% confidence interval)
unique 233 957 (676-1417) 5.04 (4.93-5.15)
0.03 96 137 (114-189) 4.04 (3.94-4.14)
0.05 94 127 (108-170) 4.01 (3.91-4.11)
0.10 83 101 (90-130) 3.80 (3.69-3.91)

was the only validly described next relative for one of the V. crypta betaproteo-
bacterial clones. D. acidovorans has been found in several habitats, such as soil,
sediment, activated sludge, crude oil, fresh water and various clinical samples,
and Kennedy et al. reported that it is a sponge-associated bacterium for the first
time (Kennedy et al. 2008).

Actinobacteria from the microbial communities of sponges have been the focus of
natural product screenings (see the review by Taylor et al. 2007b), since members
of this phylum display the most promising biosynthetic potential for secondary
metabolite production (Schneemann et al. 2010). Approximately half of the bioac-
tive secondary metabolites that have been currently discovered in bacteria are

attributed to the Actinobacteria (Lam 2006), and many new chemical entities and
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amplified bacterial 165 rRNA genes of microbial community associated
with solitary (S) and colonial (C) forms of Vaceletia sponges from different
locations. Sample names according to the Table 1.1 (column: Site)

bioactive metabolites have been reported from marine members of this phylum
(Blunt et al. 2004, Salomon et al. 2004, Fiedler et al. 2005, Jensen et al. 2005). In
this study, two OTUs belonged to the family Acidimicrobiaceae, which might be
involved in secondary metabolite production; however, secondary metabolites
are, at present, unexplored from Vaceletia sponges.

Investigations on prokaryotic diversity provide first hypotheses into the putative
functions of the microbial communities associated with these sponges. The pres-
ence of some clades of the ammonia-oxidizing Beta- and Gammaproteobacteria or
some genera of the nitrite-oxidizing Deltaproteobacteria/Nitrospina and Nitrospirae
in the community, suggests that pathways for nitrogen metabolism (Bayer et al.
2008) are also present in V. crypta. The ammonia-oxidizing bacteria (AOB) were
represented here by four OTUs. One was associated with the Betaproteobacteria/
Nitrosospira and several others with the Gammaproteobacteria/ Nitrososcoccus. In

addition, numerous 165 rRNA gene sequences for nitrite-oxidizing bacteria
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(NOB) were found in our clone library. Three OTUs, representing 5% of the
community, were affiliated with the Deltaproteobacteria/Nitrospina, and 30 se-
quences were recognized as belonging to the Nitrospira. All of the sequences af-
filiated with the phylum Nitrospira (9% of the community) were defined as a sin-
gle OTU.

The V. crypta microbial community also contains microorganisms, which show
high sequence homologies to known sulfur-metabolizing bacteria, indicating
their possible role in sulfur cycle. One clone indicated the presence of sulfate-
reducing bacteria belonging to the Desulfurellaceae/ Deltaproteobacteria. Hoffmann
et al. (2005) provided evidence that anaerobic sulfate reduction occurs in Geodia
barretti tissue in zones of hypoxia and anoxia, which are created by changes in
sponge pumping activity. Sulfate reducing bacteria (SRB) were also detected by
fluorescence in situ hybridization (FISH) in the Mediterranean sponges Chondro-
sia reniformis and Petrosia ficiformis (Schumann-Kindel et al. 1997, Manz et al.
2000).

Coralline sponges of the genus Vaceletin are representatives of the keratose
sponges (Worheide 2008), which form an early-branching lineage in the Demo-
spongiae (Philippe et al. 2009, Pick et al. 2010), with their earliest fossil record
most likely in the late Proterozoic era (Reitner & Worheide 2002). Our results
demonstrate that the complex microbial communities associated with V. crypta
are very similar to the microbiota found in other sponges (Taylor et al. 2007b). An
overwhelming majority of the OTUs were very closely related to other sponge- or
coral-derived sequences and moreover fell into SSC/SCC, which underscores
that this "living fossil" sponge shares features of its microbial community with
other sponges. Such a relatively small divergence between the 16S rRNA gene
sequences obtained from different sponges might suggest an environmental ac-
quisition of symbionts (Hentschel et al. 2002, Taylor et al. 2007b). If we assume
that 50 million years of evolution corresponds to an approximately 1 to 2% 16S
rRNA sequence difference (Ochman et al. 1999), then a greater discrepancy
should occur if these bacteria had been living separately within their host
sponges for 600 million years (Taylor et al. 2007b). Moreover, small populations
of endosymbiotic microorganisms enhance the fixation of mutations and are,
therefore, believed to evolve more rapidly (Ochman et al. 1999). Several studies

have shown that sponges from different oceans and with distant taxonomic ori-
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gins harbor specific microbial consortia (Hentschel et al. 2002, Taylor et al. 2007b).
Our study is consistent with that pattern because the sponges and corals that
contain the microorganisms that are the closest relatives to those associated with
V. crypta were collected from different, mostly tropical, geographic regions. To the
contrary, our DGGE analysis of the 165 rRNA genes of symbionts obtained from
a further nine solitary and nine colonial specimens of Vaceletia, reveal that soli-
tary and colonial growth forms appear to harbor distinct communities and sug-
gest a closer relationship between the microbial communities from the same
growth form (solitary vs. colonial) than from the same geographic origin (Fig.
1.8). This observation suggests that the bacterial community might have been
achieved not through an environmental acquisition, but through a different
mechanism of the transmission followed by successive bacterial speciation within
the sponge hosts. Erwin et al. (2012) categorized numerous factors (environ-
mental and host related), which could affect the structure of the microbial com-
munities and noted that factors specific to different host species might have in-
fluenced the differences between the Ircinig-associated symbiotic communities.
Therefore, as the number of SSC/SCC (63) and the proportion of sequences
within SSC or SCC (88%) by the V. crypta appear to be the highest ever reported,
indicating a particularly tight sponge-microbe association, which might be re-
lated to the evolutionary age of the host species. In addition, some symbionts
were specific for V. crypta because they were absent in the microbial community
analyzed from another coralline sponge, Astrosclera willeyana, which co-occurs at,
and was sampled from, the same site (Karlifiska-Batres & Worheide 2013b). A
similar trend was observed in sympatric Ircinia species from Mediterranean Sea,
which harbored different symbiont communities (Erwin et al. 2012).

This work on sclerosponges from genus Vaceletia enhances our knowledge about
microbial communities in sponges and further provides initial insights into the
diversity, structure, and composition of the microbiota of these unique sponges.
Further research using deeper sequencing, FISH probes and/or specific primers
designed for genes involved in denitrification, anammox or particular microbial
groups (e.g. SRB and SOB) might reveal these processes in V. crypta providing a
clearer picture of the metabolism of this sponge’s microbial community. Future

studies might aim to examine if other coralline sponges harbor such diverse
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communities of symbionts and how much those communities differ from each

other and between different geographical locations.
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Phylogenetic diversity and community structure of
the symbionts associated with the coralline sponge

Astrosclera willeyana of the Great Barrier Reef

Abstract

The coralline sponge Astrosclera willeyana, considered to be a living representative
of the reef-building stromatoporoids of the Mesozoic and the Paleozoic periods,
occurs widely throughout the Indo-Pacific oceans. We aimed to examine, for the
first time, the phylogenetic diversity of the microbial symbionts associated with
A. willeyana using molecular methods and to investigate the spatial variability in
the sponge-derived microbial communities of A. willeyana from diverse sites
along the Great Barrier Reef (GBR). Both, denaturing gradient gel electrophoresis
(DGGE) analyses of 12 Astrosclera specimens and sequencing of a 165 rRNA gene
clone library, constructed using a specimen of A. willeyana from the Yonge Reef
(380 clones), revealed the presence of a complex microbial community with high
diversity. An assessment of the 165 rRNA gene sequences to the particular phylo-
genetic groups showed domination of the Chloroflexi (42%) followed by the Gam-
maproteobacteria (14%), Actinobacteria (11%), Acidobacteria (8%), and the Deferribac-
teres (7%). Of the microbes that were identified, further 15% belonged to the Del-
taproteobacteria, Alphaproteobacteria, and Nitrospirae genera. The minor phyloge-
netic groups Gemmatimonadetes, Spirochaetes, Cyanobacteria, Poribacteria, and the
Archaea composed 3% of the community. Over 94% of the sequences obtained
from A. willeyana grouped together with other sponge- or coral-derived se-
quences, and of these 72% formed, with nearest relatives, 46 sponge-specific or
sponge-coral clusters, highlighting the uniqueness of the microbial consortia in
sponges. The DGGE results showed clear divisions according to the geographical
origin of the samples, indicating closer relationships between the microbial

communities with respect to their geographic origin (northern vs. southern GBR).

47



K. Karlifiska-Batres: Microbial diversity of coralline sponges

2.1. Introduction

Sponges (Porifera) are evolutionarily ancient metazoans, with a fossil record dat-
ing back nearly 700 million years (Erwin et al. 2011). They have attracted research
interest not only because of their ecological importance in aquatic ecosystems,
including coral reefs, but also because of the dense and diverse microbial com-
munities that they host in their tissues (Hentschel et al. 2006). Sponges and their
associated microbes are a significant source of a wide range of bioactive com-
pounds for pharmacological use (Wang 2006, Vogel 2008, Freeman et al. 2012).
These symbiotic microbial communities, which may constitute up to 70% of the
sponges’ biomass (Worheide 1998), may include bacteria, archaea, and several
types of eukaryotic microbes (see review Webster & Taylor 2012). Distantly re-
lated sponges from distant geographical regions often share microbial consortia
(Hentschel et al. 2002, Taylor et al. 2004); these consortia are frequently quite spe-
cific to sponges (Hentschel et al. 2002, Taylor et al. 2007b) and absent from the
surrounding seawater (Lafi et al. 2009). In the ongoing discussion about the ori-
gin and maintenance of the sponge-associated microorganisms, these findings
were cited as evidence supporting strict vertical transmission of the symbionts in
sponges (Lee et al. 2009). However, a recent study by Webster and colleagues
(2010) based on 16S rRNA gene tag pyrosequencing, reported the presence of
sponge-specific microorganisms in the seawater, suggesting that environmental
transmission might play a significant role in the acquisition of symbionts by ju-
venile sponges (Webster et al. 2010).

A unique group of the phylum Porifera, the so-called ‘coralline sponges” or “scle-
rosponges’ (Hartman & Goreau 1970, Chombard et al. 1997), constructs a solid
secondary calcareous basal skeleton that is superficially similar to the skeleton
constructed by the scleractinian corals in addition to a primary, often spicular,
skeleton (Reitner 1992, Chombard et al. 1997, Worheide 2008). During long peri-
ods of the Earth’s history, sclerosponges were dominant, diverse, and abundant
reef-building organisms (Vacelet 1985). Today, only approximately 15 taxa exist,
and these are mainly restricted to the cryptic niches of coral reefs that have re-
duced light and oligotrophic conditions, such as caves and deeper fore-reef areas
(Reitner 1992, Worheide 1998). Fossil records from the Silurian microbial reefs

that show stromatoporoids neighboring ubiquitous microbial laminae or, less
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Figure 2.1. TEM micrograph of the choansosome of A. willeyana with nu-
merous bacterial cells and only a few sponge cells (Ac = sponge archaeo-
cyte). Modified from Worheide (1998)

commonly, encrusted by cyanobacteria, might indicate that sponges and micro-
organisms had already formed close associations (Soja et al. 2003).

Astrosclera willeyana is regarded as a "living fossil" and considered to be a living
relative of the long-extinct ‘Stromatoporoidea’, which formed extensive reefs dur-
ing the Paleozoic and Mesozoic eras (Wood 1987, Chombard et al. 1997). Astro-
sclera was thought to be extinct until it was rediscovered in the Pacific by Lister
(1900), and in today's coral reefs, A. willeyana is the most common coralline
sponge throughout the Indo-Pacific, from the northern Red Sea to Tahiti
(Worheide 1998, 2008). Similar to all coralline sponges, A. willeyana grows slowly,
at a rate of 0.2-1.2 mm/a (Worheide 1998, Fallon & Guilderson 2005), is pyriform-
half spherical (mushroom) in form and mostly bright orange in color (Wérheide
1998). The living tissue of A. willeyana, which encloses the associated microorgan-
isms, penetrates the basal skeleton to a maximum depth of 50 % in small speci-
mens, but this ratio decreases with increasing specimen size (Worheide et al.
2007). Worheide (1998) described in detail the A. willeyana from the Indo-Pacific
and noted that they contain a large bacterial population, which is mostly rod- or
coccoid-shaped, in their soft tissue, although the distribution of bacteria is not
equal in all of the tissue zones. The choanosome contained a large number of
symbiotic bacteria, and here, the number exceeded 70 % of the total biomass in
some areas (Worheide 1998). However, some parts of the sponges’ tissues were

nearly free of symbiotic bacteria (Worheide 1998). Based on transmission electron
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microscopy (TEM) studies, Worheide (1998) distinguished four major bacterial
morphotypes: rod-shaped, spherical to ovoid with a dense membrane, ellipsoid
with a dense membrane and surrounded by loosely bound exopolymer secre-
tions (EPS) sheets, and larger bacteria with a diffuse protoplasm and outer 'cap-
sule' (supposed EPS capsule) (Fig. 2.1). Jackson et al. (2010) showed that in A. wil-
leyana bacterial remains are used to seed the growth of CaCOs crystals during the
process of biomineralisation. Moreover, based on fossil evidence, this study sug-
gested that the same process of bacterially induced skeleton formation occurred
in stromatoporoids during the Paleozoic and Mesozoic eras, suggesting that
some ancient reef ecosystems might have been founded on this microbial-meta-
zoan relationship (Jackson et al. 2010). Further data supporting an ancient origin
of the sponge-microbial association were published recently by Jackson et al.
(2011), who revealed that a gene encoding a protein that is most likely involved
in skeletogenesis in A. willeyana was horizontally transferred from a bacterium
into the A. willeyana genome. This horizontal gene transfer (HGT) event may
have contributed to the evolution of A. willeyana’s bodyplan (Jackson et al. 2011).
Jackson et al. (2011) demonstrated the first example of an HGT event into a
sponge genome from a prokaryote and provided other evidence supporting an
ancient origin for the A. willeyana-microbial association (Jackson et al. 2010);
however, the identity of the microbial community of this coralline sponge was
still unknown.

Details about the microbial communities of coralline sponges are generally not
well known (Karlifiska-Batres & Worheide 2013a), but could provide insights into
the evolution of this putatively ancient symbiosis. Consequently, in this study, we
aimed to assess the hitherto undetermined phylogenetic diversity of the micro-
bial symbionts that are associated with A. willeyana from the Great Barrier Reef
(GBR). We employed the denaturing gradient gel electrophoresis (DGGE)
method to investigate the spatial variability in sponge-derived microbial com-
munities between A. willeyana from diverse sites along the GBR. Furthermore, a
16S rRNA gene clone library from an A. willeyana specimen was sequenced to

perform, for the first time, a detailed characterization of its microbial community.
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Table 2.1. Sample data of investigated A. willeyana specimens, with collec-
tion site details

Sample No. Site (location) Depth Date Latitude Longitude
GW950 Yonge Reef 8m 2006 14°34'20” S 145°36'54” E
93 (GW5431)  Mac Gillivray Reef #1 6 m 1994 14°38'56" S 145°29'30" E
92 (GW5430)  Mac Gillivray Reef #2 6 m 1994 14°38'56" S 145°29'30" E
G316237 Harrier Reef 8m 2001 15°0812” S 145°41°18” E
GW718 Ribbon Reef 7 12m 2001 14°58'44"S 145°42'54"E
G316273 Ribbon Reef 5 9m 2001 15°20°07” S 145°46'33” E
G316198 Reef No. 15-040 7m 2001 15°22'05” S 145°56'28” E
G313772 Myrmidon Reef 17m 1999 18°1528” S 147°22'51” E
G313826 Hook Reef 8m 1999 19°45'14” S 149°10'45 E
G316066 Swain Reefs 4m 2000 21°22'25” S 151°14'32” E
G316118 Merv’s Reef 12m 2001 21°53’15” S 152°20'50” E
GW79%4 Heron Island 15 m 2003 23°25'43"S 151°57'6"E

2.2. Materials and Methods

2.2.1. Sample collection and DNA extraction

Sampling took place during SCUBA dives at depths between 4 and 17 meters at
several different sites along the GBR. Details of all samples are listed in the Table
2.1. Twelve sponges were excised with a chisel and hammer and transferred di-
rectly to plastic bags while underwater. After collection, sponge samples were
preserved either in silica gel (Erpenbeck et al. 2004), DMSO buffer (20% DMSO,
0.25 M EDTA, and NaCl to saturation, pH 8.0; adapted from Seutin et al. (1991),
or 95% ethanol. Living tissue was cut and crushed aseptically with a sterile scal-
pel on a Petri dish from samples rinsed with autoclaved Millipore water. Total
DNA was extracted from 3 mg of tissue using the Qiagen DNeasy Tissue Kit (Qi-

agen GmbH, Hilden, Germany) according to the manufacturer’s instructions.

2.2.2. Denaturing gradient gel electrophoresis

The touchdown PCR with Promega GoTaq polymerase (Promega GmbH, Mann-
heim, Germany) and universal primers 341F-GC and 907RC (Muyzer & Smalla
1998, Schifer 2001) was employed to amplify the bacterial 165 rRNA genes from
all DNA extracts. The cycling conditions for the PCR reaction in a Biometra ther-
mocycler using Promega GoTaq were as follows: one cycle of initial denaturation
(2 min at 95°C), 15 cycles of denaturation (30 s at 94°C), primer annealing (30 s
from 58°C minus 0.5°C), elongation (2 min + 4 s at 72°C), followed by 25 cycles of
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denaturation (30 s at 94°C), primer annealing (30 s from 51°C minus 0.5°C), elon-
gation (2 min + 4 s at 72°C), and a final extension step (5 min at 72°C). DGGE was
then performed using an Ingeny phorU-2 system (Ingeny International) and
Power Pac 300 (BioRad) to supply power, with a denaturing gradient of 30%-70%
(urea and formamide) in a 6% polyacrylamide gel. PCR-amplified DNA (30 ul)
was loaded onto the gel and run for 16 h at 180 V and at a temperature of 60°C.
The gels were removed from the glass plates and stained for 25 min in SYBR
Gold (Molecular Probes) and photographed with an RT Color SPOT camera and
SPOT advance imaging software (Visitron Systems GmbH). The gel image data
were analysed using QuantityOne, version 4.69 software (Bio-Rad). The similari-
ties between the DGGE banding patterns were calculated using the band-
matching Dice coefficient with an optimisation at 0.75% and a tolerance level of
0.75%. The unweighted pair-group method with arithmetic averages (UPGMA)
was used for cluster analysis with QuantityOne (BioRad) to obtain similarity

dendrograms.

2.2.3. Construction of the 16S rRNA gene clone library

Universal bacterial primers (616F: 5- AGA GTT TGA TYM TGG CTC AG -3’ and
1525R: 5’- AGA AAG GAG GTG ATC CAG CC -3’) (Lane 1991) and GoTaq po-
lymerase were used for the amplification of the 16S rRNA genes from the DNA
extract obtained from the A. willeyana from the Yonge Reef (GBR, Australia, sam-
ple no. GW950). Cycling conditions for the PCR reaction in the Biometra thermo-
cycler were as follows: initial denaturation (2 min at 95°C), followed by 35 cycles
of denaturation (30 s at 94°C), primer annealing (1 min at 55°C), elongation (2
min + 4 s at 72°C), and a final extension step (5 min at 72°C). The PCR products
were purified with the mi-PCR Purification Kit (metabion GmbH, Martinsried,
Germany) and were cloned into the plasmid cloning vector using the Invitrogen
TOPO® TA Cloning Kit for Sequencing according to the manufacturer’s instruc-
tions (Life Technologies GmbH, Darmstadt, Germany). White colonies were ran-
domly selected for the PCR re-amplification of their plasmid inserts with vector-
specific primers (M13) using Promega GoTaq polymerase. PCR products of 1500
base pairs were digested in single reactions with the restriction enzyme Mspl
(Fermentas GmbH, St. Leon-Rot, Germany), following the manufacturer’s in-

structions. From each group of clones with similar restriction patterns, one was
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chosen randomly for sequencing. In addition, clones with unclear restriction pat-
tern were sequenced. The silica-based protocol for the purification of PCR prod-
ucts (Boyle & Lew 1995) was modified and used to prepare the amplified inserts
for sequencing.

The archaeal 165 rRNA gene was amplified from the DNA extract using touch-
down PCR with the universal primers (21F: 5- TTC CGG TTG ATC CYG CCG
GA - 3 and 915R 5- GTG CTC CCC CGC CAA TTC CT -3') (DeLong 1992,
Raskin et al. 1994) and by decreasing the annealing temperature from 60 to 50.5°C
(30 s each) in 0.5°C increments. The cycling conditions for the PCR reaction using
the Biometra thermocycler and Promega GoTaq were as follows: one cycle of ini-
tial denaturation (2 min at 95°C), 35 cycles of denaturation (30 s at 94°C), primer
annealing (30 s from 60°C minus 0.5°C), elongation (2 min + 4 s at 72°C), fol-
lowed by 25 cycles of denaturation (30 s at 94°C), primer annealing (30 s at 51°C),
elongation (2 min + 4 s at 72°C), and a final extension step (5 min at 72°C). The
resulting strong band of approx. 900 base pairs was excised from the gel, purified
with an E.Z.N.A Gel Extraction Kit (VWR International, Darmstadt, Germany)

and subsequently sequenced.

2.2.4. Sequencing

Sequencing was performed by the Genomics Service Unit, Ludwig-Maximilians-
Universitat Miinchen using BigDye® Terminator v3.1 on a 48-capillary sequencer
(ABI 3730, Applied Biosystems). For the cloned bacterial inserts, the primers:
610RII (5'- ACC GCG/T A/GCT GCT GGC AC -3') (Dotzauer et al. 2002), 616F
(Lane 1991), and 1492R (5-GGT TAC CTT GTT ACG ACT T-3’) (Juretschko et al.
1998), or 614F (5-GTG CAT GGC TGT CGT CAG CTC G -3) (this study) were
used. The archaeal PCR product was sequenced with AR20F primer (5'- TTC
CGG TTG ATC CYG CCRG-3) (Moyer et al. 1998). The sequences were edited
and assembled using the CodonCode Aligner
(http:/ /www.codoncode.com/aligner/). The Bellerophon web application
(Huber et al. 2004) was used to check for chimeras, and chimerical sequences

were removed from further analysis.

2.2.5. Phylogenetic analyses

The sequences obtained through PCR were compared with the sequences avail-
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able in the public database using the BLAST (http:/ /blast.ncbi.nlm.nih.gov/) to
find similar sequences. The sequences with the highest degree of similarity, to-
gether with our sequences, were incorporated into the ARB, which was used to
run the phylogenetic analyses (Ludwig et al. 2004). The sequences were aligned
using the ARB Integrated Aligner. The alignment was checked for alignment er-
rors, and these were corrected manually. Partial sequences were added to the
ARB database using the ARB parsimony “quick add” tool. The neighbor-joining
method (Jukes-Cantor correction) was used to calculate the initial phylogenetic
tree using ARB. Subsequently, the alignment was exported from the ARB data-
base and maximum likelihood trees were constructed using RAXML v.7.2.5
(Stamatakis 2006) using 1000 bootstrap replicates and the GTR+GAMMA model
of sequence evolution. The resulting trees were visualized using the FigTree

(v.1.3.1) program.

2.2.6. Sponge-specific and sponge-coral clusters

To define monophyletic, sponge-specific and sponge-coral clusters, the BLAST
search results were checked for similar sequences obtained from different
sponges, corals, and non-sponge sources, which subsequently were incorporated
into the ARB database and used to calculate phylogenies using neighbor-joining
(ARB) and maximum-likelihood methods (RAxML). Based on the criteria estab-
lished by Hentschel (2002), sponge-specific and sponge-coral clusters (SSC/SCC)
were defined as groups of sequences from sponges and corals that cluster to-

gether in one clade, independently of the method of tree reconstruction.

2.2.7. Estimation of microbial diversity and statistical analysis of the clone
library

The sequences were grouped as OTUs (operational taxonomic units) using a
Mothur (Schloss et al. 2009), based on the distance matrix generated by ARB and
a cut-off value of 0.03 (Schloss & Handelsman 2005). In addition, clones that were
analyzed only by restriction digestion were assigned to corresponding OTUs
based on their restriction patterns. The Mothur was used to generate rarefaction
curves, Chaol richness estimator (Colwell & Coddington 1994), and Shannon di-
versity indices (Spellerberg & Fedor 2003). The rarefaction curves were plotted

using the R software package (http:/ / www.R-project.org). In order to determine
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Figure 2.2. DGGE results of the PCR-amplified bacterial 16S rRNA genes of
the microbial community associated with A. willeyana from localities along
the GBR; UPGMA dendrogram (right) constructed from the DGGE banding
profile (left). Samples are named according to Table 2.1 (column: Site). Aster-
isk indicates cloned sample

the phylogenetic composition of the clone library constructed from the microbial
community associated with the A. willeyana the percentage for each phylogenetic

group was calculated based on the number of clones assigned to the particular

group.

2.2.8. Nucleotide sequence accession numbers
The final sequence data were submitted to the EMBL database under the acces-

sion numbers HE985081 to HE985159.

2.3. Results

2.3.1. Denaturing gradient gel electrophoresis

DGGE fingerprinting of the 16S rRNA gene fragments obtained from twelve in-
dividuals of A. willeyana from different locations along the GBR showed a com-
plex banding pattern (Fig. 2.2). All samples revealed a very high diversity of mi-
crobes in their bacterial communities. The number of bands ranged from 28 to 37

per sample. The largest number of bands was obtained from the A. willeyana from
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Figure 2.3. Distribution of 16S rRNA gene clones among the OTUs. * N1 rep-
resents the number of singletons, N2 the number of doubletons, etc.

Heron Island (Sample No. GW794), and the sample with the fewest bands was
obtained from Swain Reefs (Sample No. G316066). The banding patterns exhib-
ited numerous co-occurring bands; however, only four bands were found in all of
the samples, and seventeen bands occurred only in one or two samples.

A cluster analysis revealed a clear division according to the geographical origin
of the sample; the location of the dividing line is approximately at the latitude of
Townsville. The data obtained from the microbial communities from the southern
part of the GBR (Heron Island, Hook Reef, Mervs Reef and Swain Reefs), as well
as the ones from the northern part (Myrmidon Reef, Ribbon Reefs, Harrier Reef,
Yonge Reef), clustered together, whereas the two specimens from the Mac Gil-
livray Reef (a reef near Lizard Island, north of Cooktown) formed a sister group

to the remaining samples (Fig. 2.2).

2.3.2. Phylogenetic analysis and sponge-specific/sponge-coral clusters

From the 16S rRNA gene clone library amplified from the A. willeyana from Yonge
Reef (GBR, Australia), 380 clones were screened, and 298 of these clones were se-
quenced. The remaining 82 clones, which were not sequenced, were assigned to a
particular OTU based on their restriction patterns. Nine sequences were dis-
carded as chimeras. The remaining 289 bacterial sequences, together with a single
archaeal 165 rRNA gene sequence, which was amplified directly from the DNA
extract, were clustered into 79 OTUs based on a similarity criterion of 97%. Figure
2.3 shows the distribution of 16S rRNA gene clones among the OTUs. Of those 79
OTUs, 25 were singletons and 13 were doubletons. Only eight OTUs consisted of
10 or more clones (these OTUs contained 10, 13, 15-17, 23, 27, and 29 clones).
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Due to the complexity and variety of the phylum Proteobacteria, the proteobacte-
rial classes (Alpha-, Gamma-, and Deltaproteobacteria) were treated as separate phy-
logenetic groups. Therefore, among the 13 phylogenetic groups represented in
our clone library, the Chloroflexi (25 OTUs, n=156 clones) and Gammaproteobacteria
(12 OTUs, n=51) were the most abundant. Numerous clones were members of the
Actinobacteria (6 OTUs, n=41), Acidobacteria (9 OTUs, n=29), Deltaproteobacteria (8
OTUs, n=22), and Alphaproteobacteria (8 OTUs, n=19). A single OTU contained 16
clones that exhibited similarity to the Nitrospirae. Clones that were similar to the
Gemmatimonadetes (3 OTUs, n=7), Spirochaetes (2 OTUs, n=3), Cyanobacteria (1
OTUs, n=1), and Poribacteria (1 OTUs, n=1) were also observed. The single ar-
chaeal sequence that was amplified with the universal primers belonged to the
Crenarchaeota. A group of 25 sequences (2 OTUs) were assigned in ARB to an un-
classified bacterial clade, but due to BLAST search they were affiliated to the phy-
lum Deferribacteres.

The BLAST results revealed that for 94% (74 OTUs) of the 79 defined OTUs, the
most similar 16S rRNA gene sequences matched those that have been previously
obtained from sponges or corals. 82% of the OTUs (65 OTUs) were related to se-
quences obtained from 12 different sponge species. 11% of the OTUs contained
165 rRNA gene sequences that were similar to those previously obtained from 2
species of corals — Montastraea faveolata (8 OTUs) and Pseudopterogorgia elisabethae
(1 OTUs). The remaining 6% of the OTUs (5 OTUs) contained sequences that ap-
peared to be distantly related to previously described environmental sequences
(3 sequences from the deep-sea exhibited 96-93% similarity, 1 from sediment ex-
hibited 95% similarity, and 1 from saline soil exhibited 88% similarity). The re-
sults of the BLAST search are summarized in a Table S2.1 in the Supplementary
material.

Of the sequences from the 74 OTUs that were closely related to other sponge- or
coral-derived sequences, 53 OTUs (67% of the total number of OTUs) formed 46
SSC/SCC with their nearest relatives. The largest number of OTUs that was
grouped to the SSC/SCC was affiliated with the phylum Chloroflexi (17 OTUs
formed 13 SSC/SCC), and the largest number of SSC/SCC was found in the phy-
lum Proteobacteria, (15 OTUs formed 15 SSC/SCC). Grey-shaded boxes indicate
all of the SSC/SCC in the phylogenetic trees (Figs. 2.4, 2.5, and 2.6). The percent-
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age values next to the grey-shaded boxes, ranging from 84 to 100%, indicate the

degree of similarity between the sequences belonging to the clusters.

2.3.3. Microbial diversity and community structure

The microbial community of the coralline sponge A. willeyana was very diverse,
with a complex composition (Fig. 2.7). The green non-sulphur bacteria Chloroflexi
made up 42% of this community. Additionally, for the estimations of the micro-
bial community composition, the proteobacterial classes (Alpha-, Gamma-, and
Deltaproteobacteria) were treated as separate phylogenetic groups. Consequently,
the next most abundant were the Gammaproteobacteria (14%), the Actinobacteria
(11%), Acidobacteria (8%), and the Deferribacteres (7%). Of the identified members
of the microbial community, 15% consisted of the Deltaproteobacteria (6%), Alpha-
proteobacteria (5%), Nitrospirae (4%). The minor phylogenetic groups Gemmati-
monadetes, Spirochaetes, Cyanobacteria, Poribacteria, and Archaea composed 3% of
the overall microbial community. If all Proteobacteria were treated as a single phy-
logenetic group, they accounted for 25% of the microbial community and became
the second-most-abundant group behind the Chloroflexi.

Rarefaction curves (Fig. 2.8) indicated how well the diversity within a sample
was assessed, based on the number of examined clones. The rarefaction curves
were calculated for the 0.03, 0.05, and 0.1 cut-off criteria for grouping OTUs at the
“species” and “genus” levels. However, the rarefaction curves didn’t reach clear
saturation; instead, they were only little slanted, meaning that the majority of the
diversity within the clone library was detected. The rarefaction analysis sug-
gested that the microbial diversity was not fully resolved, which is an expected
finding given the high bacterial diversity associated with marine sponges
(Radwan et al. 2010). Additionally, the Chao estimate suggested that the discov-
ered OTUs accounted for 80% of the total (Tab. 2.2), which suggests these OTUs

Figure 2.4. The maximum-likelihood phylogeny of A. willeyana-derived 16S
rRNA gene sequences affiliated with the phylum Chloroflexi, with the next
most similar sequences obtained from other sponges or corals and from the
environment. Reference sequences are listed with their GenBank numbers.
Bold text signifies clones obtained during this study. Shaded boxes represent
sponge-specific clusters. Bootstrap analysis was based on 1000 replicates —
the support values 70-85% are indicated by asterisks. Scale bar signifies 10%
sequence divergence >
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clones A299/GW950, A371/GW950, Xestospongia testudinaria, Xestospongia muta, Plakortis sp.,
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provide a comprehensive picture of the core microbial community of the A. wil-
leyana (Schmitt et al. 2011). Certainly, the results obtained through the 16S rRNA
gene tag pyrosequencing exposes a much higher magnitude of diversity; how-
ever, it results in higher costs and does not change the view of who the major mi-

crobial players in the sponge-associated community are (Webster & Taylor 2012).

2.4. Discussion

To our knowledge this is the first detailed assessment of microbial communities
associated with the “living fossil” coralline sponge A. willeyana and it shows simi-
larities with microbiota of "modern" sponges. This is also the first investigation
showing spatial variability of coralline sponge microbial consortia with a phylo-
geographic break detected between A. willeyana-derived microbial communities
from diverse sites along the GBR. The 165 rRNA gene-based diversity analysis
revealed that the A. willeyana from the GBR harbors a rich and diverse microbial
community, including at least one representative from one archaeal phylum and
representatives from ten bacterial phyla. The A. willeyana-associated community
appears to be typical of sponge-associated bacterial groups. The most abundant
members were classified as Chloroflexi, Proteobacteria, Actinobacteria, and Acidobac-
teria, which are commonly associated with sponges (Hentschel et al. 2002,
Webster et al. 2004, Thiel et al. 2007, Webster & Taylor 2012), and based on the
cDNA libraries were reported to be active members of the microbial communities
(Kamke et al. 2010).

The Chloroflexi frequently dominate in the microbiota of sponges (Hentschel et al.
2002, Webster et al. 2004, Thiel et al. 2007) and are more diverse and abundant, as
well as similar in high, compared with low-microbial-abundance sponges
(Schmitt et al. 2011). Our results do not correspond to the results published re-
cently by Schmitt et al. (2011), where at least 78% of the Chloroflexi sequences

Figure 2.5 The maximum-likelihood phylogeny of A. willeyana-derived 16S
rRNA gene sequences affiliated with the phylum Proteobacteria, with the next
most similar sequences obtained from other sponges or corals and from the
environment. Reference sequences are listed with their GenBank numbers.
Bold text signifies clones obtained during this study. Shaded boxes represent
sponge-specific clusters. Bootstrap analysis was based on 1000 replicates —
the support values 70-85% are indicated by asterisks. Scale bar signifies 10%
sequence divergence >
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from high-abundance sponges were found in sponge-specific/sponge-coral clus-
ters SSC/SCC, whereas only 68% of the A. willeyana-associated sequences were
attributed to Chloroflexi SSC/SCC. Of those, 20% of OTUs from A. willeyana were
classified as Dehalococcoides, which indicates the presence of the process of an-
aerobic reductive dehalogenation that was reported in sponges for the first time
by Ahn et al. (2003).

The second most abundant group of A. willeyana-associated symbionts belonged
to the Proteobacteria, which in a recently published review on the microbial diver-
sity of marine sponges were found to constitute nearly half of the published se-
quence library (Webster & Taylor 2012). In the maximum likelihood tree of the
Proteobacteria (Fig. 2.5), two gammaproteobacterial OTUs (A46/GW947 and A2/
GW947) were not placed next to the most similar sequences obtained by BLAST
search (soil clone Y89 EU328062 and Xestospongia muta clone XF1E08 HQ270412,
respectively), but rather, next to sequences to which they were probably more
related. This displacement was likely caused by the low similarity of the OTUs to
their closest relatives (88% and 90%, respectively). However, the positions of the
branches were not supported (support values below 50). The presence of the
ammonia-oxidizing Gammaproteobacteria and some genera of the nitrite-oxidizing
Gammaproteobacteria and Deltaproteobacteria/Nitrospina, together with the presence
of representatives of the phylum Nitrospirae (Fig. 2.6), which are responsible for
the two steps of the nitrification process, suggest pathways for nitrogen metabo-
lism in the sponge tissues (Bayer et al. 2007). The ammonia-oxidizing bacteria
(AOB) were represented here by three OTUs associated with the
Gammaproteobacteria [ Nitrosococcus. The nitrite-oxidizing bacteria (NOB), which
are responsible for the second step of nitrification and play a major role in remov-
ing toxic nitrite from the environment for living organisms (Philips et al. 2002),

were represented by three single OTUs affiliated with the Gammaproteobacteria/

Figure 2.6 The maximum-likelihood phylogeny of A. willeyana-derived 16S
rRNA gene sequences affiliated with several phyla, with the next most simi-
lar sequences obtained from other sponges or corals and from the environ-
ment. Reference sequences are listed with their GenBank numbers. Bold text
signifies clones obtained during this study. Shaded boxes represent sponge-
specific clusters. Bootstrap analysis was based on 1000 replicates — the sup-
port values 70-85% are indicated by asterisks. Scale bar signifies 10% sequence
divergence >
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Figure 2.7. Distribution of the 165 rRNA gene clones among particular phy-
logenetic groups in the clone library obtained from the A. willeyana from
Yonge Reef, GBR

Nitrococcus, Deltaproteobacteria/Nitrospina, and with the phylum Nitrospirae. Nitri-
fying bacteria have been reported from numerous sponges (Bayer et al. 2007,
Mohamed et al. 2010, Schlappy et al. 2010). Recently, Off et al. (2010) cultivated
for the first time nitrifying bacteria from a marine sponge. They obtained a cul-
ture of a novel Nitrospira-like bacterium (Aa01) from the mesohyl of the Aplysina
aerophoba, characterized it phylogenetically, and analyzed its most important
physiological features (Off et al. 2010). An additional step of nitrogen metabolism
in A. willeyana was indicated by the presence of Cyanobacteria, which in many
sponges are responsible for nitrogen fixation, particularly in the shallow areas of
coral reefs (Wilkinson & Fay 1979, Mohamed et al. 2008a). Phylogenetic analysis
revealed that the single cyanobacterial OTU was not closely affiliated with the
Candidatus “Synechococcus spongiarum,” which formed a sponge-specific cluster
based on 18 sponges collected from various geographic locations (Hentschel et al.
2006). The closest relative was a 165 rRNA gene sequence obtained from a coral
Pseudopterogorgia elisabethae (JIN863717, 99% similarity), and the free-living marine

Synechococcus sp. exhibited the same sequence similarity (Fig. 2.6).
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Figure 2.8. Rarefaction curves for the 165 rRNA gene sequences obtained
from A. willeyana. Operational Taxonomic Units (OTUs) were defined at the
97%, 95% and 90% similarity criteria

The presence of sulfate-reducing bacteria (SRB) was indicated by three OTUs af-
filiated to the Desulfurellaceae/ Deltaproteobacteria. Recently, Meyer and Kuever
(2008) provided evidence for a sponge-specific sulfur cycle in the deep-water
sponge Polymastia cf. corticata based on the activities of sulfate-reducing and
sulfide-oxidizing symbionts caused by changes in the pumping activity of
sponges (Hoffmann et al. 2005). However, the microbial community of A. willey-
ana as documented here provided no indication of sulfide-oxidizing bacteria
(SOB).Among the sponge-associated bacteria, the Actinobacteria are of great inter-
est as producers of commercially useful enzymes and therapeutically useful bio-
active molecules (Cook & Meyers 2003, Takahashi & Omura 2003), which have
obvious implications for natural products and drug discovery. The actinobacte-
rial OTUs obtained from the A. willeyana fell into two groups within the family
Acidimicrobiaceae, which contains several large SSC (Taylor et al. 2007b). Corre-
spondingly, 83% of the A. willeyana OTUs merged with the SSC and were mostly
similar to the group, with the nearest (but still distantly related) culturable repre-
sentative being the wastewater bacterium Microthrix parvicella (Taylor et al.
2007b).

Further abundant members of the A. willeyana-associated microbiota were Acido-

bacteria, whose functional role in the sponge microbial community is still uncer-
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Table 2.2. Sample diversity

Chao estimate Shannon diversity index
Label OTUs . . . )
(95% confidence interval) (95% confidence interval)
unique 242 726 (997-552) 5.26 (5.35-5.16)
0.03 79 100 (136-86) 3.88 (3.98-3.77)
0.05 74 99 (142-83) 3.77 (3.88-3.66)
0.10 57 64 (85-58) 3.54 (3.64-3.44)

tain (Meyer & Kuever 2008), although it is one of the most common phyla recov-
ered from marine sponges (Webster & Taylor 2012). Recently, the vertical trans-
mission of the Acidobacteria from an adult sponge of the species Svenzea zeai to its
embryo was discovered (Lee et al. 2009). Furthermore, Mohamed et al. (2008b)
successfully isolated an Acidobacterium strain (N2yML4) from the sponge spe-
cies Mycale laxissima after the maintenance of this sponge in aquaculture. A de-
tailed investigation of these novel cultured bacteria may provide insights into its
metabolic capabilities and importance to the sponge host (Mohamed et al. 2008b).
Significant fractions of A. willeyana-associated symbionts were indirectly (through
next similar sequences) assigned to the phylum Deferribacteres, which enclose
chemoorganotrophic heterotrophs that respire anaerobically (Garrity & Holt
2001). Those results would be comparable with a recently published study by
Montalvo and Hill (2011), where the community associated with a giant barrel
sponge X. testudinaria exhibited the Deferribacteres in similar abundance.

Our results are consistent with several studies, which have shown that sponges
from different oceans and with distant taxonomic origins harbor specific micro-
bial consortia (Taylor et al. 2004, Hentschel et al. 2006). The overwhelming major-
ity of the closest relatives for the A. willeyana-associated OTUs were microorgan-
isms from sponges and corals collected from different, mostly tropical, geo-
graphic regions. Moreover, an overwhelming number of those could be affiliated
with larger SSC/SCC, with very high similarity. This underlines that the micro-
bial community of the A. willeyana shares microbiota with recently analyzed
sponges. Our results revealed the presence of some specific bacterial groups in
the microbial community of A. willeyana that were absent in the microbiota ob-

tained from another coralline sponge, Vaceletia crypta, which co-occurs and was
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sampled from the same site during the same dive (Karlifiska-Batres & Worheide
2013a). The differences in the microbial communities of the two closely neighbor-
ing sponges may indicate the existence of some mechanisms for the selection of
symbionts. Further studies are necessary for the comprehensive comparison of
the microbial communities of both coralline sponges to demonstrate an exact re-
lationship.

The community structure of the "living fossil" coralline sponge A. willeyana was
very complex, with no clear domination of any of the phylogenetic groups found.
The DGGE results of the 165 rRNA gene sequences of bacteria associated with
twelve samples of A. willeyana support the above conclusions but suggest a closer
relationship between the microbial communities regarding their geographic ori-
gin (northern vs. southern GBR). The microbial communities of the A. willeyana
could differ due to environmental differences, though the lack of measurements
precludes further conclusions. However these observed geographical differences
in bacterial community composition could also be caused by the genetic variabil-
ity of the host sponge (Taylor et al. 2005). Furthermore, in the area of the GBR, a
similar deep phylogeographic break with distinct northern and southern clades
was revealed for the calcareous sponges Leucetta chagosensis and Pericharax hetero-
raphis (Leucettidae) (Worheide et al. 2002b, Worheide et al. 2008). Based on spic-
ule morphology in Indo-Pacific populations, Worheide (1998) distinguished geo-
graphic sub-species, and subsequent investigations of nuclear internally tran-
scribed spacer rDNA (ITS) seemed to support the presence of at least two distinct
cryptic species (Worheide et al. 2002a). Nevertheless, these findings were not
confirmed by mitochondrial marker analysis, and the northern and southern
GBR populations of A. willeyana could not be distinguished as sibling species
(Worheide 2006). However, the mitochondrial markers may not fully resolve the
genetic divergence of sponge populations, as in the case of the Mediterranean
sponge Crambe crambe, which revealed strong population structure through mi-
crosatellite investigations (Duran et al. 2004a) but not in mitochondrial DNA
(Duran et al. 2004b). Therefore, the split of the southern and northern GBR mi-
crobial communities of A. willeyana might be an additional indicator of the exis-
tence of cryptic species. It would be interesting to explore in future studies the

differences in the microbial communities of A. willeyana over a wide geographic
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range from the Red Sea to the central Pacific and to clarify the overlap in micro-

biota with the distribution of Astrosclera cryptic species.
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Spatial variability of microbial communities of the

coralline demosponge Astrosclera willeyana across
the Indo-Pacific

Abstract

The coralline sponge Astrosclera willeyana, considered to be a living representative
of the reef-building stromatoporoids of the Mesozoic and Paleozoic, is the most
common coralline sponge to be found throughout Indo-Pacific coral reefs. Here
we used molecular methods to examine the microbiota of A. willeyana over its
almost whole geographic range, from the Red Sea to the central Pacific. Denatur-
ing gradient gel electrophoresis analyses of 42 Astrosclera specimens revealed a
high microbial diversity and a complex composition in all of the investigated
samples. Clearly distinct banding patterns indicated closer associations of the
microbiota according to their geographic origin. Moreover, we provide the first
insights into the hitherto undetermined diversity and composition of microbial
communities associated with coralline sponges from the Red Sea. Random se-
quencing of a 165 rDNA clone library constructed from a single specimen of A.
willeyana from the northern Red Sea exposed a very complex consortia, with the
most abundant being Chloroflexi, followed by Gammaproteobacteria, and Deltapro-
teobacteria. Further members of the community belonged to Actinobacteria, Alpha-
proteobacteria and Acidobacteria, Deferribacteria, Nitrospirae, Gemmatimonadetes, Spi-
rochaetes as well as one uncertain bacterial group. A comparison with a 16S rRNA
clone library obtained previously from A. willeyana from the Great Barrier Reef
revealed both similarities and substantial differences in the composition of the
microbiota. This study provides novel information on microbiota in coralline
sponges, a diversity that has not been sufficiently investigated. Furthermore, it
implies that the differences in symbiotic community composition may be an ad-

ditional indicator of previously postulated cryptic host species.
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3.1. Introduction

Marine sponges harbor abundant and diverse microbial communities (Taylor et
al. 2007, Webster & Taylor 2012); and those of the most ancient symbiotic associa-
tions between microorganisms and metazoa are estimated to have been in exis-
tence for 600 million years (Wilkinson 1984). Microbial communities may con-
tribute up to 70% of the sponges” biomass (Worheide 1998) and impact host me-
tabolism, health and evolution (see Taylor et al. 2007, Webster & Taylor 2012 for a
review). Recent comprehensive phylogenetic analyses on 7546 sponge-derived
165 and 185 rRNA sequences confirmed the existence of sponge-specific mi-
crobes, and, in total, 27% of the sequences in this study fell into monophyletic,
sponge-specific sequence clusters (Simister et al. 2012). However, next-generation
sequencing analysis revealed that putatively sponge-specific bacteria also occur
in other marine environments and are probably capable of surviving outside the
host, although generally at extremely low abundances (Webster et al. 2010, Taylor
et al. 2013). Microbial communities in sponges are regarded as highly specific to
the host species and generally stable across time and space (Taylor et al. 2007). In
a recent pyrosequencing analysis of 32 marine sponge species from eight world-
wide locations, Schmitt et al. (2012b) hypothesized that different sponges share a
very small ‘core community’, and that they host mainly species-specific commu-
nities. These results suggest that broader investigations of microbial diversity in
different sponge species may contribute to a clarification of sponge-specific mi-
crobiota, which may play a key role in the evolution of this putatively ancient
symbiosis and in sponge response to climate change and environmental stress
(Webster et al. 2011, Webster & Taylor 2012, Webster et al. 2013).

Astrosclera willeyana belongs to a group of coralline sponges which build a solid
secondary calcareous skeleton (Reitner 1992, Chombard et al. 1997) in addition to
a primary, often spicular, one. Coralline sponges (also called sclerosponges) con-
tributed to the construction of reefs, where they dominated in the late Paleozoic
and Mesozoic (Vacelet 1985). Regarded as a “living fossil”, A. willeyana occurs in
cryptic and light-reduced environments (e.g. reef caves) (Reitner et al. 1996), from
the northern Red Sea to Tahiti (Wo6rheide 1998), and is the most common coral-
line sponge throughout the Indo-Pacific coral reefs (Reitner et al. 1996). Vacelet
(1981) was the first to observe that different regional populations of A. willeyana
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vary in spicule morphology, which is used as a criterion for taxonomic identifica-
tion of the sponges. Based on a detailed morphological study of A. willeyana spic-
ules distinguishing several regional populations (Worheide 1998), and based on
molecular investigations of nuclear internal transcribed spacer rDNA (ITS), Wor-
heide et al. (2002a) proposed the presence of at least three distinct cryptic species.
However, this hypothesis was not consistent with the results of a subsequent mi-
tochondrial marker analysis — probably due to very low mtDNA substitution
rates in this taxon (Worheide 2006).

Worheide (1998) was the first to report large microbial communities in the living
tissue of A. willeyana from the Indo-Pacific and noted that bacteria may make up
more than 70% of the total biomass of some of the sponge’s areas; on the contrary,
other parts of the sponge’s tissues lack bacteria almost entirely (Worheide 1998).
Recently, Karlifiska-Batres and Worheide (2013a) were the first to use molecular
methods to explore the microbial diversity of coralline sponges, and they also
gave the first insight into the composition of the symbiotic community of A. wil-
leyana from the Great Barrier Reef (GBR) (Karlifiska-Batres & Worheide 2013b).
Denaturing gradient gel electrophoresis (DGGE) revealed a clear split of the mi-
crobiota of A. willeyana specimens from the southern and northern parts of the
GBR, thus further corroboration was provided for the existence of A. willeyana
cryptic species (Karlifiska-Batres & Worheide 2013b). An investigation of the
symbiotic communities of A. willeyana from other geographical locations will not
only bring insight into the under-investigated microbial diversity in coralline
sponges, but might also provide additional data to test the presence of cryptic
species in Astrosclera.

Hence, we aimed to explore the differences in the microbial communities of A.
willeyana over a wide geographic range, from the Red Sea to the central Pacific,
and to test whether distinct microbiota correlate with the distribution of putative
Astrosclera cryptic species. Therefore, we created a clone library from a microbial
community of A. willeyana from the popular “Canyon” dive site in the Gulf of
Agqaba (Dahab, Red Sea) to compare it with a previously assessed clone library
obtained from A. willeyana from the Yonge Reef, GBR, Australia. Furthermore, we
performed DGGE analysis to investigate any resemblance between the microbial
communities covering nearly the total area of occurrence of A. willeyana, i.e. more

than 20,000 km.
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3.2. Materials and Methods

3.2.1. Samples collection

Samples of A. willeyana were collected during SCUBA dives at depths of between
4 and 23 meters at several sites located in the western and southern Pacific
Ocean, Coral Sea and Red Sea (Table 3.1). Forty-two sponges were excised with
chisel and hammer and transferred directly to plastic bags while underwater.
Sponge samples were preserved either in silica gel (Erpenbeck et al. 2004), DMSO
buffer (adapted from Seutin et al. (1991), or 95% ethanol. Karlifiska-Batres and
Worheide (2013a) previously described the processing of sponge samples and

DNA extractions in detail.

3.2.2. Construction of 16S rRNA gene clone libraries and phylogenetic analyses

The clone library from A. willeyana sample no. GW950 from Yonge Reef, GBR,
Australia was described in detail by Karlifiska-Batres and Worheide (2013b). A
second clone library was constructed from a sample of A. willeyana from the Red
Sea (sample no. GW1046) using the same procedure, including PCR amplification
and sequencing of individual clones but without the restriction digestion step
(Karlinska-Batres & Worheide 2013b). Sequences obtained from both samples,

together with the most similar sequences determined by BLAST, were imported
into the ARB program (Ludwig et al. 2004) and subsequently aligned using the
ARB Integrated Aligner. The resulting alignment was checked and corrected
manually for alignment errors. The neighbor-joining method (Jukes-Cantor cor-
rection) was used to calculate the initial phylogenetic tree using ARB. Subse-
quently, the alignment was exported from the ARB database and maximum like-
lihood trees were constructed using RAXML v.7.2.5 (Stamatakis 2006), using 1000
bootstrap replicates and the GTR+GAMMA model of sequence evolution. The

resulting trees were visualized with the use of the FigTree v.1.3.1 program.

Table 3.1. Sample data of investigated A. willeyana specimens, with collec-
tion site details. @ As the exact coordinates for the marked sampling sites
were not available, the given coordinates are based on the Gazetteer of Con-
ventional Names, Third Edition, August 1988, US Board on Geographic
Names. P As the exact coordinates for the Red Sea, Canyon were not avail-
able, the given coordinates are based on the Google Earth
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Sample No. Location Site (location) Depth Date Latitude Longitude
RS1 Red Sea Canyon #1 15m 1992 28°3020" NP 34°31'25" Eb
RS2 Red Sea Canyon #2 15m 1992 28°3020" NP 34°31'25" Eb
RS3 Red Sea Canyon #3 15m 1992 28°3020" NP 34°31'25" EP
RS4 Red Sea Canyon #4 15m 1992 28°3020" NP 34°31'25" Eb
GW1046 Red Sea Canyon #5 15m 2006 28°3020" Nb 34°31'25" Eb
GW950 GBR Yonge Reef 8m 2006 14°3420"S 145°36'54"E
93 (GW5431) GBR Mac Gillivray Reef #1 6 m 1994 14°38'56"S  145°29'30" E
92 (GW5430) GBR Mac Gillivray Reef #2 6 m 1994 14°38'56"S  145°29'30" E
G316237 GBR Harrier Reef 8m 2001 15°08'12"S 145°41'18"E
GW718 GBR Ribbon Reef 7 12m 2001 14°58'44"S 145°42'54"E
G316273 GBR Ribbon Reef 5 9m 2001 15°20'07"S 145°46'33"E
G316198 GBR Reef No. 15-040 7m 2001 15°22'05"S 145°56'28" E
G313772 GBR Myrmidon Reef 17m 1999 18°1528"S 147°22'51"E
G313826 GBR Hook Reef 8m 1999 19°45'14"S  149°10'45" E
G316066 GBR Swain Reefs 4m 2000 21°22'25"S  151°14'32" E
G316118 GBR Merv’s Reef 12m 2001 21°53'15"S 152°20'50" E
GW79%4 GBR Heron Island 15m 2003 23°25'43"S 151°57'6"E
GW972 GBR, Coral Sea  South Island #1 6m 2010 14°42'10"S 145°27'3"E
GW977 GBR, Coral Sea  South Island #2 6m 2010 14°42'10"S 145°27'3"E
(316283 Coral Sea Osprey Reef 14m 2006 13°53'30"S 146°33'6"E
UF6 French Polynesia Tuamotus 10m 2005 14°58'60"S 147°37'0" W
UF8 French Polynesia Moorea 12-16 m 2005 15°00' S2 140°00" Wa
G316176 Guam Haputo #1 5-18 m 2001 13°28'Na  144°47'E=
G316179 Guam Haputo #2 5-18 m 2001 13°28' Na  144°47'E=
GW769.7 Palau Siaes Tunnel #1 5-18 m 2002 7°30' N2 134° 30" E2
GW769.6 Palau Siaes Tunnel #2 5-18 m 2002 7°30' N2 134° 30" E2
GW769.5 Palau Siaes Tunnel #3 5-18 m 2002 7°30' N2 134° 30" E2
GW769.4 Palau Siaes Tunnel #4 5-18 m 2002 7°30' N 134° 30' E2
GW769.1 Palau Siaes Tunnel #5 5-18 m 2002 7°30' N2 134° 30" E2
G313888 Vanuatu Vanu Lava 18-23 m 1999 13°56'48"S  167°26"28" E
G313906 Vanuatu Mota Lava 15m 1999 13°393"S  167°39'14" E
G313935 Vanuatu 5-18m 1999 16°00' 52 167° 00" E2
JH47 Vanuatu Espiritu Santo #1 5-18 m 16°00' 52 167° 00" E2
JH23 Vanuatu Espiritu Santo #2 5-18 m 16° 00" 52 167° 00" E2
JH3 Vanuatu Espiritu Santo #3 5-18 m 16° 00" S 167° 00" E2
102 (GW5440) Fiji Waya Island #1 15m 1999 18°00'S? 175° 00" E2
101 (GW5439) Fiji Waya Island #2 15m 1999 18°00'S? 175° 00" E2
98 (GW5436)  Fiji Astrolabe Reef #1 8m 1998 18°00' S? 175° 00" E2
97 (GW5435)  Fiji Astrolabe Reef #2 6m 1998 18°00' S2 175° 00" E2
96 (GW5434)  Fiji Astrolabe Reef #3 6m 1998 18°00' S 175° 00" E2
95 (GW5433)  Fiji Astrolabe Reef #4 15m 1998 18°00'S? 175° 00" E2
94 (GW5432)  Fiji Astrolabe Reef #5 15m 1998 18°00'S? 175° 00' E2
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3.2.3. Sponge-specific and sponge-coral clusters

Monophyletic, sponge-specific and sponge-coral clusters (SSC/SCC) were de-
fined based on criteria established by Hentschel et al. (2002). The BLAST search
results were checked for similar sequences obtained from different sponges, cor-
als and non-sponge sources, which were subsequently incorporated into the ARB
database and used to calculate phylogenies using neighbor-joining (ARB) and
maximum likelihood methods (RAXML).

3.2.4. Estimation of microbial diversity and statistical analysis of the clone li-
braries

The distance matrix generated by ARB was used to assign sequences obtained
from the samples of A. willeyana, from Yonge Reef, GBR and from the Red Sea, to
operational taxonomic units (OTUs) using Mothur (Schloss et al. 2009) and with a
cut-off value of 0.03 (Schloss & Handelsman 2005). The clones from the GBR
sample that were analyzed only by restriction digestion were also assigned to a
corresponding OTU based on their restriction pattern. To determine the abun-
dance and richness of the bacterial communities associated with each sponge, the
Shannon and Simpson diversity indices (Spellerberg & Fedor 2003) were calcu-
lated to describe species diversity. The Chaol and ACE (abundance-based cover-
age estimator) richness index (Colwell & Coddington 1994) was used to estimate
total species richness. The LIBSHUFF method was applied in order to determine
the significance of differences between the clone libraries (Schloss et al. 2004). The
method compares more than two libraries at once with the same distance matrix
in order to determine whether two libraries were drawn from the same popula-
tion. Mothur was used to perform the calculations and to generate a Venn dia-
gram to compare the richness shared between the microbial communities of both
sponges. The rarefaction curves calculated with Mothur were plotted using the R

software package (http:/ / www.R-project.org).

3.2.5. Nucleotide sequence accession numbers

Clone sequences obtained from A. willeyana from the Yonge Reef, GBR were pre-
viously deposited in an EMBL database under the accession numbers HE985081-
HE985159. The sequences obtained during this study from the specimen from the
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Red Sea were deposited in the EMBL database under the accession numbers
HG423455-HG423535.

3.2.6. Denaturing gradient gel electrophoresis

The bacterial 16S rRNA genes from all 42 DNA extracts were amplified by touch-
down PCR with GoTaq polymerase (Promega GmbH, Mannheim, Germany) and
universal primers 341F-GC and 907RC (Muyzer & Smalla 1998, Schéfer 2001) in a
Biometra (Gottingen, Germany) thermocycler. PCR reactions were performed as
described by Karliriska-Batres and Worheide (2013b). A phorU-2 system (Ingeny,
Goes, Netherlands) and Power Pac 300 (BioRad, Munich, Germany) to supply the
power were used for the DGGE with a denaturing gradient of 30%-70% (urea
and formamide) in a 6% polyacrylamide gel. PCR-amplified DNA (30 ul) was
loaded onto the gel and run for 16 h at 180 V and at a temperature of 60 °C. Due
to the large number of samples we processed them on two different DGGE gels;
the horizontal line in Table 1 indicates a separation of the samples between the
gels. Gel 1 included samples from the GBR and the Red Sea; gel 2 included sam-
ples from the Coral Sea (also GBR), French Polynesia, Guam, Fiji, Palau, and
Vanuatu. After DGGE the gels were soaked for 25 min in SYBR Gold (Molecular
Probes, Darmstadt, Germany) and photographed with an RT Color SPOT camera
and SPOT advanced imaging software (Visitron Systems, Puchheim, Germany).
QuantityOne version 4.69 software (Bio-Rad) was used for gel image data analy-
sis. Automatic assignment of band positions was checked and corrected manu-
ally. The band-matching Dice coefficient with optimization at 0.75% and a toler-
ance level of 0.75% was used for the similarity calculations between the DGGE
banding patterns. Cluster analyses were performed using the unweighted pair
group method with arithmetic averages (UPGMA) to obtain similarity dendro-

grams.

3.3. Results

3.3.1. Clone library construction, OTU assignment and phylogenetic analyses

A total of 380 clones were selected from the 165 rRNA clone library as amplified
from A. willeyana from the Yonge Reef (GW950). From that number, 298 clones

were sequenced and 9 sequences were discarded as chimeras. Through clustering
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30

® Great Barrier Reef
No. of OTUs 25_25 Red Sea

with Nx
clones

NI N2 N3 N4 N5 N6 N7 N8 N9 NIO NIl NI2 NI3 NI5 NI6 N17 N21 N23 N27 N29 N35

Number of clones per OTU

Figure 3.1. Distribution of 16S rRNA gene clones among the OTUs. * N1 rep-
resents the number of singletons, N2 the number of doubletons, etc.

of the remaining 289 clone sequences together with a single archaeal 16S rRNA
sequence in Mothur, 79 OTUs were retrieved using a 97% similarity criterion. A
further 82 clones were assigned to a particular OTU based on their restriction pat-
terns. From the 16S rRNA clone library amplified from A. willeyana from the Red
Sea (GW1046), 427 clones were selected and sequenced and from those one chi-
merical sequence was discarded. The remaining 426 clones were clustered into 81
OTUs using Mothur (97% similarity criterion). The singletons constituted 32% of
the clone library of A. willeyana from the GBR and about 37% of the specimen
from the Red Sea (Fig. 3.1). Both specimens of A. willeyana revealed 16S rRNA
gene sequences classified as Chloroflexi, Gammaproteobacteria, Actinobacteria, Acido-
bacteria, Deferribacteres, Deltaproteobacteria, Alphaproteobacteria, Nitrospirae, and Spi-
rochaetes (Tab. 3.2). Additionally, the GBR specimen exposed sequences belonging
to Poribacteria, Cyanobacteria, and Crenarchaeota; the specimen from the Red Sea
also revealed a single sequence of uncertain affiliation, which differed from bac-
teria from any described phylum. The phylogenetic trees present the OTUs from
both A. willeyana with the nearest similar sequences assigned to Chloroflexi (Fig.
3.2) and Proteobacteria (Fig. 3.3A and B), and to all other phyla (Fig. 3.4).

3.3.2. Closest relatives

Based on the BLAST results, A. willeyana from the GBR had a slightly higher frac-
tion of OTUs that were closely related to other previously described sponge- or
coral-derived microbial sequences, i.e. 94% (74 OTUs out of 79 defined OTUs) in
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Table 3.2. Distribution of the 16S rRNA clones and OTUs defined at distance
0.03 among particular phylogenetic groups in the clone libraries obtained
from the A. willeyana samples

Great Barrier Reef Red Sea
Phylogenetic No. of No. of No. of No. of
group clones OTUs clones OTUs
Chloroflexi 156 25 174 27
Gammaproteobacteria 51 12 95 17
Actinobacteria 41 6 28 5
Acidobacteria 29 9 21 5
Deferribacteres 25 2 18 3
Deltaproteobacteria 22 8 46 9
Alphaproteobacteria 19 8 27 9
Nitrospirae 16 1 9 2
Gemmatimonadetes 7 3 5 2
Spirochaetes 3 2 2 1
Poribacteria 1 1 0 0
Cyanobacteria 1 1 0 0
uncertain affiliation 0 0 1 1
Archaea 1 1 0 0
372 79 426 81

comparison with the Red Sea specimen of 88% (71 OTUs out of 81 defined
OTUs). The closest Red Sea-associated relatives were obtained from 18 different
sponge species, and those from the GBR were obtained only from 13 species.
Both Astrosclera specimens shared closest relatives hosted by 10 sponge species
(Ancorina alata, Agelas dilatata, Aplysina fulva, Axinella corrugata, Geodia baretti,
Plakortis sp., Rhopaloeides odorabile, Svenzea zeai, Xestospongia muta, Xestospongia
testudinaria). The GBR specimen revealed closest relatives from a further 3
sponges (Acanthostrongylophora sp., Phyllospongia papyracea, Theonella swinhoei),
and the Red Sea specimen from a further 8 sponges (Desmacidon sp., Haliclona ho-
garthi, Haliclona simulans, Ircinia oros, Ircinia strobilina, Ircinia variabilis, Pachastrella
sp., Sigmadocia fibulata). Both sponges revealed similar fractions of OTUs with
closest relatives obtained from corals (GBR 11%, Red Sea 10%); the most numer-

ous sequences were obtained from Montastraea faveolata (8 OTUs from the GBR
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sponge, and 7 OTUs from the Red Sea sponge), and single OTUs from two differ-
ent corals (GBR — Pseudopterogorgia elisabethae and Red Sea — Porites astreoides). A.
willeyana from the GBR had a distinctly lower ratio (6%) of OTUs, with closest
relatives derived from the environment (Red Sea specimen 12%). Only A. willey-
ana from the Red Sea exposed two OTUs with a closest sequence derived from a
validly described organism (94% similarity with a sponge isolate Pseudovibrio de-
nitrificans and 99% similarity with a copepod isolate Pseudoalteromonas piscicida),
as well as one OTU with a closely related (99%) 16S rRNA sequence of Pseudomo-
nas sp. isolated from costal sediment water. The results of the BLAST search are

summarized in a table in Supplementary Material (Tab. S3.1).

3.3.3. Shared OTUs

Cloned A. willeyana samples shared 31 OTUs, which represented 61% of the GBR
clones (n=227) and 55% of the Red Sea clones (n=236). The largest number of
shared OTUs belonged to the phylum Proteobacteria (12 OTUs), which grouped 43
clones from the GBR specimen and 70 clones from the Red Sea specimen. Ten
shared OTUs belonged to the Chloroflexi and grouped 100 clones from the GBR
specimen and 102 clones from the Red Sea specimen. A. willeyana from the GBR
shared seven OTUs with 10-29 clones, and Red Sea A. willeyana shared 9 OTUs
with 10-27 clones. In the phylogenetic trees (Figs. 3.2-3.4) the shared OTUs are

indicated as clone names in brackets.

3.2.4. Sponge-specific and sponge-coral clusters
From both coralline sponges, 67% of the OTUs closely related to other sponge- or
coral-derived sequences fell into 49 SSCs/SCCs (GBR - 53 OTUs, Red Sea — 54

Figure 3.2. The maximum-likelihood phylogeny of A. willeyana-derived 16S
rRNA sequences affiliated to the phylum Chloroflexi, with the next most simi-
lar sequences obtained from other sponges or corals and from the environ-
ment. Reference sequences are listed with their GenBank numbers. Bold text
signifies clones obtained during this study from A. willeyana samples (blue
from the GBR; red from the Red Sea); clone names in brackets indicate shared
OTUs. Shaded boxes represent sponge-specific clusters: grey - clusters shared,
blue with the clones from the GBR, red with the clones from the Red Sea;
numbers in parenthesis next to sponge names indicate the number of sequences
per sponge. Bootstrap analysis was based on 1000 replicates — the support
values 70-85% are indicated by asterisks. Scale bar signifies 10% sequence di-
vergence >

80



o) Aplysina fulva clone AF-53 GU982072

Svenzea zeai clone A124 FJ529310

Rhopaloeides odorabile clone R6 AF333545
Plakortis sp. clone PK040 EF076113
8)A‘(eswspongia muta clone XE1HOS FJ481372
Xestospongia testudinaria clone XC1B07 FJ481344

o— Haliclona hogarthi clone HH-A6 GU981857
Jl_—clune A371/GWI50

clone C87/GW1046

100 |75 9 Eclonc C452/GW1046
Tedania ignis clone TI-76 GU982011

(clone A299/GW950, clone C369/GW1046), X. testudinaria, S. zeai, I. strobilina  95-999,

*|L Geodia barretti clone GBc183 JQ612188

Ancorina alata clone AncK5 FJ900344

Agelas dilatata clone AD050 EF076186

seawater clone 41-12—-61 JIN018807

deep—sea clone FOP262000_S_M20 HQ674551

#[ seawater clone 52-3-22 JN018843

(clone A48/GW950, clone C411/GW1046), clone A225/GW950, clone A196/GW950, A. alata (2),
G. barretti, X. testudinaria (2), A. chartacea (2), Plakortis sp., H. hogarthi, T. ignis, S. zeai, A. fulva 87-100%
deep—sea clone OTU198_Ref_Clone01 AB694463

deep—sea sediment clone Kazan—1B-18/BC19-1B-18 AY592095

soil clone bac587 JF727736

(clone A180/GW950, clone C37/GW1046), clone C58/GW1046,

A.dilatata, X. testudinaria, G. barretti, R. odorabile,Plakortis sp. 94-100%
deep—sea clone HOT157_350m1 JN166279

clone C343/GW1046, X. testudinaria, M. faveolata 95-97%
marine bacterioplankton clone SAR261 AY534091
deep—sea clone CB1341b.05 GQ337174
deep—sea clone CB0563b.90 GQ337119
clone A61/GW950, clone C224/GW1046, X. testudinaria, A. alata  95-99%
Xestospongia muta clone XE3E10 IN596636
sediment clone 251-30 FN553470 (clone A8/GW950, clone C198/GW1046), clone A29/GW950, clone A56/GW950
clone C120/GW1046, clone c190/Gw1(?46, clone C206/GW1046, clone C260/GW1046,

clone C414/GW1046, clone C474/GW1046, S. zeai, Pachastrella sp., G. barretti, X. muta, 83-99%
X. testudinaria (2), X. exiuga, A. aerophoba, Plakortis sp. (2), A. alata (2), A. dilatata (3)

deep—sea clone Ulr1528 AM997444
soil clone UHASS5.50b JN037994

Medea brine lake clone 2M1S-B97 JF809789
100L—seawater clone 41-12-88 JN018824

subsurface clone HDB_SI0Z412 HM 186750
sediment clone 953Sed32u AB606808

hydrothermal vent clone JR224_E9_II-C6 IN562618

100~ deep—sea clone CB1891b.35 GQ337238

seawater clone HF0200_06116 GU474876

(clone A95/GW950, clone C480/GW1046), clone A246/GW950,

clone C154/GW1046, clone C254/GW1046, E. caribaeorum, Plakortis sp., 85-99%
X. testudinaria (2), M. faveolata, A. alata (2), S. zeai, A. dilatata, A. aerophoba

91

deep—sea clone Ulr1530 AM997436
86 92 *‘l mL—clone A270/GW950
clone C469/GW1046
L deep—sea clone Ulrdd__4 AM997469
08 clone A366/GW950
Edeep—sea clone Ulrdd_22 AM997488
” Sglone A80/GWI50, clone C140/GW1046), clone C18/GW1046,
. testudinaria, X. exiuga, A. dilatata, G. barretti, S. maori, 86-100%
T. swinhoei, H. sinapium, R. odorabife, M. faveofata, L. variabilis
% clone A359/GW950

o soil clone BIGMM-3s5-399 JQ801054
_Esedimem clone Ulr1500 AM997465
] L4 seawater clone 65-11-34 JN018921

4— seawater clone SAR269 AY 534090
100 Chondrilla nucula clone CN72 AM259923
Montastraea faveolata clone Mfav_A13 GU118572
86 Geodia barretti clone GBc239 JQ612326

clone A152/GW950, Aplysina aerophoba, Xestospongia testudinaria 96-98%
soil clone RUGL6-210 GQ366528
deep—sea clone OTU232_Common_Clone02 AB694515
S?lone A66/GWI50, clone C433/GW1046), A. aerophoba, Plakortis sp., g3 g9
.muta, X. testudinaria, T. ignis, I. strobilina, D. sponge, M. faveolata o
subsurface clone HDB_SISU635 HM 187436
soil clone AMME10 AM934825
91 :— clone A129/GW950, clone C401/GW1046, R. odorabile, 82-959%
T. ignis, X. testudinaria, S. maori, G. barretti, 1. strobilina 0
" [~ Aplysina fulva clone AF-37 GU982057
L clone A349/GW950
clone A382/GW950, clone C19/GW1046, X. muta, X. testudinaria, T. ignis, 93-100%
A. aerophoba, . strobilina, A. fulva, H. hogarthi, Pachastrella sp. 0
aquatic moss pillars clone MPB1-182 AB630564
gglgnq A187/GWI50, clone C348/GW1046), clone A176/GW950, 1. strobilina, H. hogarthi, A. fulva, 91_100%
. ignis, S. zeai, X. muta, X. testudinaria, M. faveolata, R. odorabile, A. alata, C. candelabrum
geothermal water clone Tat—08-009_38_50 GU437404
hydrothermal sediment clone V19F33b FJ905635
soil clone AKYG1138 AY921707

2<clone A50/GW9I50, clone C340/GW1046, clone C475/GW1046, X. muta, X. testudinaria (2;, 91-98%
1. oros, I. fasciculata, Ircinia spp., A. aerophoba, M. faveolata, Plakortis sp., G. barretti, A. alata -7670

99— Agelas dilatata clone AD007 EF076127
_|* E clone A42/GW950
0.1 seawater clone 72—-07 JN018953

%
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OTUs). The Astrosclera specimens shared 33 SSCs/SCCs and, additionally, 10
OTUs of the GBR specimen were assigned to 10 individual SSCs/SCCs, and 10
OTUs of the Red Sea specimen were assigned to 5 individual SSCs/SCCs.

3.2.5. Microbial diversity and community structure

An analysis of the clone library showed that the microbial community of A. wil-
leyana from the GBR was slightly more diverse due to the presence of Poribacteria,
Cyanobacteria, and Archaea; however, members of an unclassified clade were
found only by the A. willeyana from the Red Sea (Fig. 3.5). Furthermore, both
communities varied notably in the abundance of Gammaproteobacteria (14% for the
GBR and 22% for the Red Sea) and Deltaproteobacteria (6% for the GBR and 11%
for the Red Sea) as well as slightly in the abundance of Actinobacteria and Acido-
bacteria (11% and 8% for the GBR and 7% and 5% for the Red Sea, respectively). In
both communities the most abundant taxa were Chloroflexi (43% for the GBR and
41% for the Red Sea). Libhuff statistical analysis of the libraries (Schloss et al.
2004) confirmed a highly significant difference between the microbial communi-
ties of the two A. willeyana samples (P<0.0001). A Venn diagram of the OTU dis-
tributions at a distance of 0.03 revealed that of the 129 defined and different
OTUs, 24% were shared between the communities of A. willeyana from the GBR
and Red Sea.

A slightly higher Shannon-Wiener index for A. willeyana from the GBR confirmed
a greater complexity of its microbiota. However, the Simpson index, which gives

a strong weighting to the dominants, showed no differences between the two in-

Figure 3.3A. The maximum-likelihood phylogeny of A. willeyana-derived
16S rRNA sequences affiliated to the phylum Proteobacteria, with the next
most similar sequences obtained from other sponges or corals and from the
environment. The tree is displayed as two subtrees (a, b), arrows go to the
remaining tree parts. Reference sequences are listed with their GenBank
numbers. Bold text signifies clones obtained during this study from A. wil-
leyana samples (blue from the GBR; red from the Red Sea); clone names in
brackets indicate shared OTUs. Shaded boxes represent sponge-specific clus-
ters: grey - clusters shared, blue with the clones from the GBR, red with the
clones from the Red Sea; numbers in parenthesis next to sponge names indicate
the number of sequences per sponge. Bootstrap analysis was based on 1000
replicates — the support values 70-85% are indicated by asterisks. Scale bar
signifies 10% sequence divergence >
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(a) Delta-
proteobacteria
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seawater clone 3C002751 EU801456
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Figure 3.3B. Continued

vestigated communities. According to the Chaol index and the abundance-based
coverage estimator (ACE; Tab. 3.3), we sequenced 80% of the predicted number
of microbial species in the community associated with A. willeyana from the GBR;
for A. willeyana from the Red Sea the values given by the estimators differed (65%
according to the Chaol index and 72% for ACE) and indicated a less effective
sampling. In contrast, the rarefaction curves for the Red Sea sample calculated for
the 0.03, 0.05, and 0.1 cut-off criteria indicated a more successful sampling than
was denoted by the Chaol and ACE estimators; however, they did not reach clear
saturation, but were rather very flat (Fig 3.6). Despite these differences, the sam-
pled diversity provides a comprehensive picture of the core microbial communi-

ties of both coralline sponges (Schmitt et al. 2011).

3.2.6. Denaturing gradient gel electrophoresis

We found very complex DGGE banding profiles in all of the samples with nu-
merous bands: the samples from Fiji and the Red Sea showed the lowest average
number of bands (26 bands from the Red Sea and Waya Island, Fiji, and 27 bands
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by the Astrolabe Reef, Fiji); the Haputo, Guam, samples showed the highest av-
erage of bands (34). On Gel 1 we detected 73 different band types, with only two
predominant bands, which were present in all of the Astrosclera samples, and an-
other 4 bands, which were missing from four individual samples. On Gel 2 we
found 84 different band types, and here also only 2 bands were present in all 25
samples, and a further 2 in 24 samples (the banding profiles of both gels are
available in the supplementary material — Fig. S3.1 and Fig. S3.2). Due to the dif-
ficulty of making an accurate comparison between the gels, we performed the
cluster analysis separately. However, on both gels the samples were clustered to-
gether according to their geographical origin (Fig 3.7). Analysis of Gel 1 demon-
strated a clear division between North GBR (N’GBR), South GBR (S’GBR) and
GBR inshore samples with separation of the Red Sea. Analysis of Gel 2 demon-
strated a definite division between the microbial communities associated with A.
willeyana from Palau, the Coral Sea, and the South Pacific (French Polynesia);
whereas within the Western Pacific the microbial communities of A. willeyana
sampled to the north of the largest Fijian island, Viti Levu, (Guam, Vanuatu and
the Waya Island) clustered together and formed a sister group to the specimens
from the Astrolabe Reef (to the south of Viti Levu) (Fig 3.7).

3.4. Discussion

To our knowledge this is the first study to address the diversity and composition
of the microbial community associated with coralline sponges from the Red Sea,
and it is the first investigation of the microbiota of A. willeyana over its wide
Indo-Pacific range, from the Red Sea to the central Pacific. The 165 rRNA gene-
based characterization of the microbial diversity of A. willeyana from the Red Sea
revealed a highly complex and rich symbiotic community, including representa-
tives of eight bacterial phyla and one uncertain bacterial group. A comparison
with a previously assessed 16S clone library of A. willeyana from the GBR
(Karlinska-Batres & Worheide 2013b) showed significant differences in commu-
nity composition as well as some similarities between the microbiota. The DGGE
analysis of bacterial 165 rRNA genes obtained from A. willeyana specimens cover-

ing the vast area of their appearance confirmed a high microbial diversity in all of
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the investigated samples and revealed a closer association between the microbial
communities with respect to their geographical provenance.

The Red Sea, with its perennial high temperatures and high salinity of seawater
bodies, constitutes a unique ecosystem on a global scale and a natural habitat for
corals and sponges (Ilan et al. 2004). More than two decades of research on Red
Sea sponges have brought significant findings regarding natural products and
bioactive compounds as well as and their ecological importance to coral reefs
(Ilan et al. 2004). However, from among about the 240 sponge species that were
recorded in the Red Sea (Radwan et al. 2010), the microbial communities of only
a few were investigated (Hentschel et al. 2002, Oren et al. 2005, Radwan et al.
2010, Lee et al. 2011). Our investigations on the microbial community of A. willey-
ana gave the first ever insight into the microbiota of coralline sponges from the
Red Sea. This was also the first study on Red Sea sponges with a very high num-
ber of selected clones. Phyla commonly associated with marine sponges domi-
nated in the microbial community of A. willeyana (Taylor et al. 2007, Webster &
Taylor 2012); however, these phyla were significantly differentiated from the
communities associated with other Red Sea sponges that had previously been
studied using a similar 165 rRNA cloning approach (Hentschel et al. 2002, Oren
et al. 2005, Radwan et al. 2010, Lee et al. 2011). The level of diversity could be
compared with the microbiota of Red Sea Hyrtios erectus (42 selected clones), but
this symbiotic community revealed members of Bacteroidetes, Firmicutes, TM7 and
Betaproteobacteria (Radwan et al. 2010), and lacked bacteria of an uncertain affilia-
tion that were found in the Red Sea A. willeyana. In the same study Radwan et al.

(2010) also investigated the microbial community from Amphimedon sp. (39

Figure 3.4. The maximum-likelihood phylogeny of A. willeyana-derived 16S
rRNA sequences affiliated to several phyla and to the domain Archaea, with
the next most similar sequences obtained from other sponges or corals and
from the environment. Reference sequences are listed with their GenBank
numbers. Bold text signifies clones obtained during this study from A. wil-
leyana samples (blue from the GBR; red from the Red Sea); clone names in
brackets indicate shared OTUs. Shaded boxes represent sponge-specific clus-
ters: grey - clusters shared, blue with the clones from the GBR, red with the
clones from the Red Sea; numbers in parenthesis next to sponge names indicate
the number of sequences per sponge. Bootstrap analysis was based on 1000
replicates — the support values 70-85% are indicated by asterisks. Scale bar
signifies 10% sequence divergence >
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Figure 3.5. Distribution of the 16S rRNA gene clones among particular phy-
logenetic groups in the clone libraries obtained from the A. willeyana from
Yonge Reef, GBR, Australia (left) and from the Red Sea (right). Phylogenetic
groups found only in one of the clone libraries are indicated with asterisks
(GBR) or with a degree symbol (Red Sea)
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clones), but this microbiota revealed strikingly lower diversity and only slight
overlap with A. willeyana. The microbial diversity associated with A. willeyana
also significantly exceeded the diversity of the Red Sea sponge Diacarnus
erythraenus (37 clones) dominated by Cyanobacteria (Bergman et al. 2011). How-
ever, if we also consider sequences obtained from larvae (38 clones) and from iso-
lates from adult sponges (88) and larvae (40), the magnitude of diversity in-
creases considerably (Bergman et al. 2011), which makes the results comparable
to those of the community obtained from A. willeyana. The first pyrosequencing
analysis of microbiota associated with three Red Sea sponges — Hyrtios erectus,
Stylissa carteri and Xestospongia testudinaria (Lee et al. 2011) — significantly ex-
panded the magnitude of microbial diversity in sponges from this biogeographic
region; however, the differences in the level of phylogenetic resolution between
the techniques that were used made a direct comparison of this study with our
analyses difficult. One of the striking findings of the study by Lee et al. (2011)
was a very high abundance of Archaea — up to 300 archaeal species estimated
from a single sponge (up to 100 OTUs revealed). A. willeyana from the Red Sea

lacked Archaea entirely. Interestingly, the clone library of A. willeyana from the
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GBR revealed only a single archaeal OTU that was similar to a clone library con-
structed from another coralline sponge, Vaceletia crypta, which co-occurs and was
sampled from the same site (Yonge Reef, GBR) (Karliniska-Batres & Worheide
2013a). These findings raise the question as to whether coralline sponges indeed
form very limited associations with Archaea.

The comparison of 165 rRNA clone libraries obtained from A. willeyana from the
Red Sea and from the GBR (Karlinska-Batres & Worheide 2013b) showed identi-
cal participation of clones from both communities in the SSC/SCC, thus confirm-
ing the uniqueness of symbiotic associations in sponges; they also revealed a
more complex structure of the microbial community associated with the GBR
specimen. The microbiota differed in terms of presence of some minor members
of the communities (Poribacteria, Cyanobacteria, Archaea and the unclassified clade)
and in the abundance of other groups (Gammaproteobacteria, Deltaproteobacteria,
Actinobacteria, and Acidobacteria). According to Shade and Handelsman (2012), an
abundant microorganism that is shared among all samples within a given habitat
must play a significant function in the community. Therefore, recognizing core
microbiomes (microbes that are common to two or more samples) in complex mi-
crobial habitats is the first step in understanding systems ecology (Shade &
Handelsman 2012, Webster et al. 2013). Most studies compare the microbial
communities of sponges from the same geographical region or sea (Erwin et al.
2012, Schmitt et al. 2012b, Webster et al. 2013). A study of 13 GBR sponge species
revealed a high core microbiome within each species but a low microbiome
shared between the species — a maximum of five sponge species shared OTUs
and 91% of the OTUs were species-specific (Webster et al. 2013). In another study
of three sympatric Mediterranean Ircinia sp., Erwin at al. (2012) identified host
species-specific OTUs, OTUs shared between the two most phylogenetically re-
lated species and OTUs common to two species sharing the same cryptic habitat.
These results suggested that host-specific factors have an impact on structuring
microbial symbiont communities (Erwin et al. 2012). Montalvo and Hill (2011)
compared, for the first time, the microbial symbionts of two closely related
sponges from different oceans and revealed that the bacterial communities asso-
ciated with X. muta and X. testudinaria were specific to each of the sponge species
and to the genus Xestospongia. Our results are comparable with the study on Xes-

tospongia sp. (Montalvo & Hill 2011), since the investigated A. willeyana samples
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Figure 3.6. Rarefaction curves for the 165 rRNA gene sequences obtained
from A. willeyana from the GBR and from the Red Sea. Operational Taxo-
nomic Units (OTUs) were defined at the 97%, 95% and 90% similarity criteria

Table 3.3. Diversity analysis of the 16S rRNA gene clone libraries con-
structed at distance 0.03 for the A. willeyana samples. Lower and upper 95%
confidence intervals are shown in parentheses where available. ACE:
abundance-base coverage estimator

Sample No. of No. of Chao ACE Shannon Simpson
source clones OTUs estimate index index
Great Barrier 372 79 100 100 3.88 0.028
Reef (87-136) (89-125) (3.77-3.98) (0.023-0.033)
Red Sea 426 81 124 113 3.84 0.029

(98-191) (96-148) (3.73-3.94) (0.025-0.033)

from the GBR and Red Sea shared 31 OTUs as defined on the 0.03 similarity crite-
rion which grouped over half of both clone libraries. However, despite the fact
that more clones were selected from the Red Sea specimen, we detected less di-
versity (predicted 65% of OTUs). Hence, Red Sea A. willeyana might harbor more
abundant and heterogeneous microbiota; therefore, although our results indicate
high species-specific associations in this coralline sponge, a further investigation
of samples is necessary to confirm the host-specific nature of A. willeyana micro-
bial communities.

The DGGE analysis of 42 microbial communities of A. willeyana over species
widespread geographical distribution from the Red Sea to French Polynesia con-
firmed both high diversity and complex composition in all microbial communi-

ties. Moreover, the results exhibited a closer relationship between microbial
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Figure 3.7. UPGMA dendrograms obtained with DGGE results of the PCR-
amplified bacterial 16S rRNA genes of the microbial community associated
with A. willeyana from different localities; colors of different clades (trees)
accordingly to the colors of the geographical origin of the samples (map).
Samples are named according to Table 3.1 (column: Site)

communities depending on geographical origin, which was similar to observa-
tions in samples from the GBR (Karlinska-Batres & Worheide 2013b). Karlifiska-
Batres and Worheide (2013b) suggested that the split between the southern and
northern GBR microbial communities associated with A. willeyana might be an
additional indicator of the existence of cryptic species (Worheide 1998, Worheide
et al. 2002a, Worheide 2006). In this study, not only on a small scale (GBR) but
also through the wide range of A. willeyana in the Indo-Pacific, the microbial
communities derived from specimens obtained from geographically closer popu-
lations clustered together (Fig. 3.7) partly confirmed these assumptions. The pre-

sent data support the separation of a distinct Red Sea population of A. willeyana,
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as has been primarily evidenced by analyses of ITS and COI (Wérheide et al.
2002a, Worheide 2006). However, the separation of microbial communities from
the Coral Sea and Palau, together with the clustering of microbial communities
from Guam with microbiota of A. willeyana from Vanuatu and Waya Island (Fiji),
as well as a clear split of the Astrolabe Reef population from the rest of Fiji, sug-
gests closer affiliation of geographically more distant populations. This pattern
could be explained, though, by ancient gene flow regimes determined by histori-
cal events that were controlled by different current systems during sea level low
stands (Benzie 1999, Worheide et al. 2002a) as was evidenced for some other coral
reef organisms, such as the sponge Leucetta ‘chagosensis’, starfishes Acanthaster
plancii and Linckia levigata as well as the giant clam Tridacna gigas (Benzie 1994,
1999, Worheide et al. 2002b).

Our study demonstrates the high diversity of microorganisms associated with A.
willeyana from the Indo-Pacific. We cloned single samples from the GBR
(Karlinska-Batres & Worheide 2013b) and from the Red Sea, but by selecting an
exceptionally high number of clones we provided a comprehensive picture of the
core microbial community of the investigated A. willeyana, which was comple-
mented through the application of DGGE for analysis of numerous samples. In
our results the absence (Red Sea) or low occurrence (GBR) of Archaea and Poribac-
teria is surprising. Future studies with specific primers could bring more insight
into the diversity of these phylogenetic groups. However, another coralline
sponge, Vaceletia crypta, which co-occurs and was sampled from the same site
(Yonge Reef, GBR), showed similar results (Karlifiska-Batres & Worheide 2013a).
Furthermore, exploring the differences between the microbial communities of
these two coralline sponges could bring more insight into the microbial associa-

tions that are specific for coralline sponges.
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Microbial duel between coralline sponges — a
comparison of the symbiotic communities of

Astrosclera willeyana and Vaceletia crypta

Abstract

Coralline sponges remain among the most understudied sponges in terms of
their associations with microbial symbionts, although their Silurian fossils point
to close interactions with microorganisms and might indicate an early stage of
sponge-microbial symbiosis. Here we compare, for the first time, the microbial
communities of two coralline sponges co-occurring at the Great Barrier Reef and
demonstrate that, despite some differences, these sponges share phylogenetic
highly similar symbiotic consortia. Both Astrosclera willeyana and Vaceletia crypta,
considered to be living representatives of reef-building sclerosponges of the
Mesozoic and Paleozoic, harbored very rich and diverse microbial communities
with strikingly comparable composition of phyla, which are commonly affiliated
with marine sponges. However, the coralline sponges differed in the abundance
of members of particular phylogenetic groups. In this respect, V. crypta revealed a
slightly more complex community structure showing a higher number of OTUs
and the presence of members of Betaproteobacteria, Deinococcus-Thermus, and Bac-
teroidetes. Both coralline sponges exhibited very high numbers of OTUs with next
similar sequences obtained from other sponges. A. willeyana and V. crypta shared
over 30% of the 93 here identified sponge-specific clusters to which the majority
of their microbial 165 rRNA sequences were affiliated. Furthermore, the coralline
sponges shared a high number of bacterial species exceeding the level of OTUs
characteristic for other sponges, and thus indicated specific patterns for the con-
stitution of microbial communities in sclerosponges. Our results imply that at
least a fraction of the symbionts of both A. willeyana and V. crypta must have been

transmitted vertically.
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4.1. Introduction

Associations of sponges (phylum Porifera) with extremely dense and diverse
communities of microorganisms are believed to have their origin in the Precam-
brian (Wilkinson 1984), making them one of the most ancient microbe-metazoan
symbiosis. So far, at least 32 bacterial phyla and candidate phyla as well as sev-
eral archaeal lineages were reported from sponges (Hentschel et al. 2012, Webster
& Taylor 2012, Webster et al. 2013), though members of the Acidobacteria, Actino-
bacteria, Chloroflexi, Cyanobacteria, Gemmatimonadetes, Nitrospirae, Proteobacteria,
(especially Alpha, Delta, Gamma classes) and the candidate phylum “Poribacteria”
are considered as “core” taxa and the dominant sponge symbionts (Taylor et al.
2007b). Despite recently being reported from seawater (Webster et al. 2010) mi-
crobial symbionts are highly specific for sponges and their associations show low
temporal and spatial variability (Hentschel et al. 2002, Taylor et al. 2007b). Analy-
sis of numerous physical, chemical, and biological conditions, which may have
an impact on the structure of symbiotic communities in marine sponges, showed
that host-specific factors, such as mesohyl conditions, shape the structure of
sponge-associated microbiota (Erwin et al. 2012). Moreover the microbial com-
munities in sponges have been recently reported as specific to particular sponge
species (Webster et al. 2010), and there is apparently a lack of correlation between
host phylogeny and the arrangement of the symbionts (Schmitt et al. 2012a,
Webster et al. 2013). However, after three decades of research the clear picture of
microbial diversity in sponges remain afar and many issues unsolved; the ongo-
ing studies bring new insights and lead to better understanding of those interac-
tions (Webster & Blackall 2008, Webster & Taylor 2012).

Coralline sponges, or other called sclerosponges, belong to the most understud-
ied sponges in term of associations with microbial symbionts. This unique group
of Porifera constructs a solid secondary calcareous skeleton and enclose ap-
proximately 15 living taxa with Astrosclera willeyana and Vaceletia crypta among
others (Reitner 1992, Chombard et al. 1997). Slerosponges contributed to reef-
building in the Paleozoic and Mesozoic (Vacelet 1985) until they were displaced
by corals approximately since late Jurassic (Reitner 1992). Both coralline sponges
are regarded as 'living fossils": A. willeyana, the most common coralline sponge

throughout the Indo-Pacific, is considered to represent the long-extinct “Stroma-
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toporoidea,” (Wood 1987, Chombard et al. 1997) and V. crypta is the only recent
member of the so-called ‘sphinctozoan-type’ sponges (Reitner & Worheide 2002).
The discovery of Silurian fossil stromatoporoids neighbouring ubiquitous micro-
bial laminae or less commonly encrusted by Cyanobacteria denote close associa-
tions (Soja et al. 2003) and might indicate an early stage of sponge-microbial
symbiosis. It implies that investigations of coralline sponges might contribute to
the elucidation of the evolution of sponge-microbe symbiosis.

Recently Karlinska-Batres and Worheide described the microbial diversity of sin-
gle sclerosponge species (2013a, 2013b), but microbiota of different coralline
sponge species were never compared. Here we aim to close this gap and to exam-
ine how those previously assed microbial communities of the two co-occurring
coralline sponges A. willeyana and V. crypta differ, and whether they show any
specific patterns. The comprehensive analysis of the symbiotic communities will
contribute to the limited knowledge of the insufficiently explored microbial di-
versity in coralline sponges and will elucidate if factors modeling modern micro-
bial communities have also influenced the ancient associations of microorgan-

isms in sclerosponges.

4.2. Material and methods

4.2.1. Sample collection and construction of the 16S rRNA gene clone library
Samples of A. willeyana (sample No. GW950) and V. crypta (sample No. GW947)
were collected in 2006 during one SCUBA diving in a cave at a depth of 8 meters
at Yonge Reef on the Great Barrier Reef (GBR) (14°34'20” S, 145°36'54” E). Collec-
tion, processing of both samples, and construction of the clone libraries were de-
scribed previously in detail by Karlifiska-Batres and Woérheide (2013a, 2013b).

4.2.2. Phylogenetic analyses of microbial 16S rRNA clone libraries

The sequences obtained from the A. willeyana and V. crypta, together with the
most similar sequences found by BLAST (http:/ /blast.ncbi.nlm.nih.gov/) were
incorporated into the ARB database used to run phylogenetic analyses (Ludwig
et al. 2004). The partial sequences were added to the ARB database using the ARB
parsimony “quick add” tool. For this study the sequences were aligned using the

ARB Integrated Aligner and the alignment was checked and corrected manually
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for alignment errors. The neighbor-joining method (Jukes-Cantor correction) was
used to calculate the initial phylogenetic using ARB. Subsequently, the alignment
was exported from the ARB database and maximum likelihood phylogenies were
constructed using RAXML v.7.2.5 (Stamatakis 2006) using 1000 bootstrap repli-
cates and the GTR+GAMMA model of sequence evolution. The resulting trees

were visualized using a program FigTree v.1.3.1.

4.2.3. Sponge-specific and sponge-coral clusters

In order to define the monophyletic, sponge-specific clusters the BLAST search
results were checked for similar sequences obtained from different sponges, cor-
als and non-sponges sources, which subsequently were incorporated in the ARB
database and used to calculate phylogenies using neighbor-joining (ARB) and
maximum likelihood methods (RAXML). Based on the criteria established by
Hentschel (2002), as sponge-specific and/or sponge-coral cluster (SSC/SCC)
were regarded group of sequences from sponges and corals that cluster together

in one clade independent of the tree reconstruction method.

4.2.4. Estimation of microbial diversity and statistical analysis of clone library

The sequences obtained from the samples of A. willeyana and V. crypta were
grouped as OTUs (operational taxonomic units) using Mothur (Schloss et al.
2009) and based on the distance matrix generated by ARB with a cut-off value of
0.03 (Schloss & Handelsman 2005). To determine the abundance and richness of
the bacterial communities associated with each sponge, the Shannon and Simp-
son diversity indices (Spellerberg & Fedor 2003) were calculated to describe spe-
cies diversity. The Chaol and ACE (abundance-base coverage estimator) richness
index (Colwell & Coddington 1994) were used to estimate total species richness.
In order to determine the significance of differences between the clone libraries,
the LIBSHUFF method was applied (Schloss et al. 2004). It compares more than
two libraries at once with the same distance matrix to determine whether two
libraries were drawn from the same population. The calculations were performed
using Mothur. Also Mothur was used to generate rarefaction curves for observed
OTUs and Venn diagram to compare the richness shared between both sponges.
The rarefaction curves were plotted using the R software package

(http:/ / www.R-project.org).
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4.2.5. Nucleotide sequence accession numbers

The 16S rDNA sequences obtained from V. crypta under the accession numbers
HEB817775 to HE817870 (Karlifiska-Batres & Worheide 2013a) and from A. willey-
ana were deposited in EMBL database under the accession numbers HE985081 to
HE985159 (Karlifiska-Batres & Worheide 2013b).

4.3. Results

4.3.1. Clone libraries construction and OTU assignment

165 rRNA clone libraries were constructed as previously described (Karlinska-
Batres & Worheide 2013a). Mothur clustering analyses of the V. crypta sequences
resulted in 96 OTUs from the remaining 250 bacterial sequences and a single ar-
chaeal sequence based on a similarity criterion of 97%. The remaining 174 clones
were assigned to particular OTUs based on their restriction patterns (Karlifiska-
Batres & Worheide 2013a). From the 16S rRNA clone library amplified from the
A. willeyana, 380 clones were selected. From those clones, 298 were sequenced,
and 9 sequences were discarded as chimeras. The remaining 289 clone sequences
together with a single archaeal 165 rRNA sequence, which was retrieved, were
clustered into 79 OTUs using a 97% similarity criterion. Further 82 clones were
assigned to a particular OTU based on their restriction patterns (Karlifiska-Batres
& Worheide 2013b). The clone libraries differ with respect to amount of single-
tons - 32% of the clone library of A. willeyana and 41% of the V. crypta (Fig. 4.1).

N 25
No. of OTUs B Vaceletia crypta
with Nx 0 W Astrosclera willeyana

clones

0
NI N2 N3 N4 N5 N6 N7 N8 N9 NIO NII NI3 NI5 NI6 NI7 NI8 N2I N22 N23 N27 N29 N30

Number of clones per OTU

Figure 4.1. Distribution of 16S rRNA gene clones among the OTUs. * N1 rep-
resents the number of singletons, N2 the number of doubletons, etc.
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4.3.2. Closest relatives

V. crypta revealed a slightly smaller fraction of OTUs with sponge-associated
closest relatives, 71% (68 OTUs) in comparison to 82% (65 OTUs) from A. willey-
ana. However, the V. crypta-associated closest relatives were obtained from 23 dif-
ferent sponge species and those of A. willeyana from only 13 species. Of those
sponge species, 12 (Ancorina alata, Agelas dilatata, Aplysina fulva, Acanthostrongylo-
phora sp., Axinella corrugata, Geodia sp., Plakortis sp., Rhopaloeides odorabile, Svenzea
zeai, Theonella swinhoei, Xestospongia muta, Xestospongia testudinaria) were found in
BLAST results from both investigated coralline sponges. The constantly growing
number of new sponge-derived sequences in public databases influenced the
BLAST results from V. crypta, as a new search for the clone B400/ GW947 revealed
as the closest match sponge-derived sequences (previously the closest similar se-
quence was from the environment). V. crypta revealed closest relatives from fur-
ther 10 sponges (Discodermia dissoluta, Desmacidon sponge, Hyrtios erectus, Ircinia
strobilina, Neofibularia nolitangere, Pachastrellidae sp., Tedania ignis, Tsitsikamma fa-
vus, Vetulina sp., Xestospongia exigua); A. willeyana from one further sponge Phyllo-
spongia papyracea. Both coralline sponges differed in the fraction of OTUs with
closest relatives obtained from corals (18% V. crypta; A. willeyana 11%), however,
for both the most numerous of those sequences were obtained from Montastraea
faveolata (14 OTUs from V. crypta, and 8 OTUs from A. willeyana). Furthermore, V.
crypta revealed single OTUs with closest sequences obtained from three corals
(Oculina patagonica, Diploria strigos and Erythropodium caribaeorum) and A. willey-
ana revealed single OTU with closest sequence from Pseudopterogorgia elisabethae,
an octocoral. Only V. crypta exposed one OTU with its closest sequence derived
from a validly described organism (99% similarity), as well as one with distantly
related (91%) 16S rRNA sequence from the chloroplast of a red alga (AY731517).

Figure 4.2. Maximum likelihood phylogeny of V. crypta- and A. willeyana-
derived 165 rRNA sequences affiliated to the Chloroflexi with next similar
sequences obtained from other sponges or corals, and from the environment.
Reference sequences are listed with their GenBank numbers. Bold text sig-
nifies clones analyzed during this study. The parentheses enclose shared OTUs
defined at distance 0.03. Shaded boxes represent sponge-specific clusters: grey
— shared between both coralline sponges, blue — with only A. willeyana clones,
green — with only V. crypta clones. Bootstrap analysis was based on 1000 rep-
licates — the support values 70-85% are indicated by asterisk. Scale bar signi-
fies 10% sequence divergence
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Vaceletia had slightly higher ratio (9%) of OTUs with closest relatives derived

from environment (A. willeyana nearly 6%).

4.3.3. Phylogenetic analyses

The analyzed coralline sponges differ mostly by the presence of Betaproteobacteria,
Deinococcus-Thermus, and Bacteroidetes in the clone library of V. crypta. Further
sequences obtained from both sponges were assigned to Chloroflexi, Gammaproteo-
bacteria, Gemmatimonadetes, Actinobacteria, Deltaproteobacteria, Acidobacteria, Alpha-
proteobacteria, Poribacteria, Nitrospirae, Deferribacteres, Spirochaetes, Cyanobacteria,
and Crenarchaeota. The phylogenetic trees present the OTUs from both coralline
sponges with nearest similar sequences assigned to the Chloroflexi (Fig. 4.2), Pro-
teobacteria (Fig. 4.3) and to all other phyla (Fig. 4.4). The details of clones and

OTUs assignments to particular phylogenetic groups are presented in Table 4.1.

4.3.4. Shared OTUs

21 OTUs defined at the 97% criterion, representing 35% of the V. crypta clones
(n=141) and 28% of the A. willeyana clones (n=105), were found in both investi-
gated samples. The largest number of shared OTUs was found in the phylum
Proteobacteria (9 OTUs), which grouped 45 clones of V. crypta and 33 clones of A.
willeyana. Five shared OTUs belonged to the Chloroflexi and grouped 43 clones of
V. crypta and 39 clones of A. willeyana. V. crypta shared five OTUs with 13-22
clones in contrast to A. willeyana, which shared only 2 OTUs with 13 and 15
clones. In the phylogenetic trees (Fig. 4.2-4.4) shared OTUs in are indicated as

clone names in brackets.

Figure 4.3. Maximum likelihood phylogeny of V. crypta- and A. willeyana-
derived 16S rRNA sequences affiliated to the Proteobacteria with next similar
sequences obtained from other sponges or corals, and from the environment.
Reference sequences are listed with their GenBank numbers. Bold text t sig-
nifies clones analyzed during this study. The parentheses enclose shared OTUs
defined at distance 0.03. Shaded boxes represent sponge-specific clusters: grey
— shared between both coralline sponges, blue — with only A. willeyana clones,
green — with only V. crypta clones. Bootstrap analysis was based on 1000 rep-
licates — the support values 70-85% are indicated by asterisk. Scale bar signi-
fies 10% sequence divergence >
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100 clone B137/GW947, G. carnosa, T. favus ~ 87-88%

activated sludge wastewater clone M1_322_F3 JN683962
100 clone B214/GW947
Delftia acidovorans SPH—1 CP000884

glone A186/GW950, clone B4/GW947), clone A214/GW950, clone B440/GW947, X, muta, . 91-99%
. matthewsi, C. coralliophila, A. dilatatd, S. zeai, A. alata, G. tarnosa, A. aerophoba, G. barretti - o

‘marine sediment clone RODAS-027 JF344005

°d (clone A230/GW950, clone B339/GW947), S.zeai  98%

seafloor lava clone POX3b5C05 EU491387

marine sediment clone Cm1-21 GQ246358

clone A231/GW950, clone B266/GW947, clone B368/GW947, P. damicornis, A. alata, R. odorabile
clone A378/GW950, clone B225/GW947, Plakortis sp. 87-96% 88-94%
Agelas dilatata clone AD026 EF076137

clone B419/GW947

clone B237/GW947

100 seawater clone HOT157_350m90 JN166362

ridge flank crustal fluid clone FS142-29B-02 DQ513029

marine sediment clone Cm1-44 GQ246381

hypersaline mat clone SBZP_4237 JN537548

clone A257/GW950

Xestospongia testudinaria clone XC1009 JN596669

skin clone ncd318f10c1 HM317237

92 rSpongiobacter sp. S2293 FJ457274
kS
100

100

100

seawater clone 15H20_PL4 GU200436

Erythropodium caribaeorum clone EC22 DQ889931
clone B401/GW947

%E Codakia orbicularis gill symbiont X84979

environmental sample clone AO6 AB597528
marine sediment clone Sd1-25 GQ246306

‘glone A46/GW950, clone B119/GW947), clone A82/GW950, T. swinhoei, Ircinia sp., A. fulva, X. muta,

lakortis sp., Acanthostrongylophora sp., G. barretti, X. dinaria, N. nolii e, C. h i,
hydrothermal sediment clone p763_b_1.18 AB305454

95 deep marine sediment clone 13C FJ205335 89-99%

% clone B24/GW947, T. favus, S. carteri, C. coralliophila  87-90%

s — composting sample clone TE-2-A5 JQ337375

alkaline soil clone TX4CB_44 FJ152913

(clone A200/GW950, clone B205/GW947), Ancorina alata, X. muta, X. testudinaria 97-99%
seawater clone F9P41000_S_H13 HQ673185

0 (clone A336/GW950, clone B27/GW947), C. matthewsi, A. alata, X. testudinaria, X. muta ~ 97-99%,

hypersaline mat clone SBZP_5333 JN538550
soil clone G2-78 JF703353 o

clone A184/GW950, C. matthewsi, A. dilatata, X. muta, X. testudinaria, 1. oros 95-98%

clone A2/GW950

saline soil clone Y89 EU328062

100 100 clone A376/GW950, X. muta, X. testudinaria, S. zeai  93-99%

marine biofilm clone 8M49 JF272043
99 2clone,A3L3/GW950, clone B326/GW947), A. fulva, X. exi%ua,R. odorabile, Ircinia sp., 96-99%
100 . variabilis, A. aerophoba, Acanthostrongylophora sp., A. chartacea, X. testudinaria 0
seafloor lavas clone POX4b3D10 EU491411
] marine sediment clone 2 3B 39 FJ800206
oil field clone BP64 HQ190537
Acanthostrongylophora sp. clone OP348 EF513681
clone A120/GW950
Svenzea zeai clone E42 F1529327
clone B5/GW947
clone A116/GW950
Agelas dilatata clone AD040 EF076132

1004 (clone A12/GW950, clone B,99/GW947}é Haliclona s% H. erectus, 0
A. aerophoba, X.'testudinaria, X. muta, R. odorabile, Plakortis sp. 97-99%

seawater clone F9P41000_S_I20 HQ673210
clone B42/GW947, X. muta, X. testudinaria, A. alatac999,
marine sediment clone ANOX-044 JF344606

Oculina patagonica clone w2uc5 DQ416442

cave wall biofilm clone RTB—22 FR754418

clone BS‘)Z/(;Y(‘);)‘)M

clone A397/GW950, clone B18/GW947. X. exigua, A. dilatata, H. erectus, 93-99%,
R. odorabile, M. faveolata, L. variabilis, D. dissoluta, Plakortis sp.[2],
microbial mat clone GRF1171i05 JF266339
saline soil clone HSS49 HQ397458
sediment clone T333B11 HM 178878
clone A159/GW950
clone A77/GW950, clone B75/GW947 1. strobilina, A. aerophoba, A. alata, H. hogarthi, X. muta,
clone BI/GW947 X. testudinaria
soil microcosm clone OTU80-140 JQ311913 95-99%
grass prairie clone p35p09ok FJ478594
microbial mat clone GBO5225a01 HM445222
hydrothermal vent chimney clone Ba49 FJ640819
100 seamount basalt clone JAFBGBact_32 DQ070825
clone B62/GW947

Alpha-
proteobacteria

Beta-
proteobacteria

Gamma-
proteobacteria

Delta-
proteobacteria
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4.3.5. Sponge-specific and sponge-coral clusters

For both coralline sponges the majority of OTUs that were closely related to other
sponge- or coral-derived sequences fell into 93 sponge-specific or sponge-coral
clusters (SSC/SCC), however for V. crypta the percentage was slightly higher
(87%, 74 OTUs) compared to A. willeyana (81%, 60 OTUs). The coralline sponges
shared 32 SSC/SCC with 20 shared OTUs, and additionally 54 OTUs of V. crypta
were assigned to 33 SSC/SCC, and 40 OTUs of A. willeyana to 18 SSC/SCC. The
largest numbers of clusters belonged to the phyla Chloroflexi and Proteobacteria (31
and 23 clusters), but the most shared clusters were defined among the Proteobac-
teria (13 clusters with 20 OTUs of both coralline sponges, and thereof 9 shared
OTUs). The SSC/SCC are indicated with shaded boxes in the phylogenetic trees
(Figs. 4.2, 4.3 and 4.4), grey boxes indicate shared clusters, green boxes indicate
clusters with clones only from V. crypta, and blue boxes indicate clusters with
clones only from A. willeyana. The percentage values next to the grey-shaded
boxes, ranging from 84 to 100%, indicate the degree of similarity between the se-

quences belonging to the clusters.

4.3.6. Microbial diversity and community structure

Analysis of the composition of the clone libraries revealed both microbial com-
munities to be very complex and diverse (Fig. 4.5), however the microbiota of V.
crypta was more diverse, because A. willeyana lacks of the Betaproteobacteria,
Deinococcus-Thermus, and Bacteroidetes. Furthermore, the both communities vary
significantly in the abundance of the Gemmatimonadetes (11.2% in V. crypta and
1.9% in A. willeyana), as well as slightly in Alphaproteobacteria and Nitrospirae
(2.7% and 7.3% in V. crypta and 5.1% and 4.3% in A. willeyana, respectively). In

Figure 4.4. Maximum likelihood phylogeny of V. crypta- and A. willeyana-
derived 16S rRNA sequences affiliated to several phyla and to the domain
Archaea with next similar sequences obtained from other sponges or corals,
and from the environment. Reference sequences are listed with their Gen-
Bank numbers. Bold text signifies clones analyzed during this study. The
parentheses enclose shared OTUs defined at distance 0.03. Shaded boxes repre-
sent sponge-specific clusters: grey — shared between both coralline sponges,
blue — with only A. willeyana clones, green — with only V. crypta clones. Boot-
strap analysis was based on 1000 replicates — the support values 70-85% are
indicated by asterisk. Scale bar signifies 10% sequence divergence >

104



—~

*

99 IEZ: clone A36/GW950, S. zeai, I. oros, L. variabilis, C. matthewsi, X. exigua, T. swinhoei, G. barretti
wetland soil clone MP-R271 JN038908 96-99%
clone B22/GW947, clone B287/GW947, T. swinhoei [2], C. nucula, Discodermia sp., 91-99%
L. variabilis, X. testudinaria, A. aerophoba, M. faveolata, C: coralliophila, - o

hypersaline groundwaler clone MTSB133 IF747659
marine sediment clone O-B64 IN886929
Geodia barretti clone GBc173 Q612276

clone A239/GW950
7« clone A49/GW9I50, S. zeai, G. barretti, X. testudinaria, Ircinia sp. 97-99%,
deep-sea clone J8P41000_1HO01 GQ351195
cold seep sediment clone AB240706
clone B33/GW947, L. variabilis, R. odorabile, H. erectus, A. fulva, X. testudinaria [2] 98-100%
seawater clone HOT157_350m41 IN166311
Desmacidon sponge clone KspoB1 EU035930
clone A289/GW950
Ircinia fasciculata clone AF10-3-9_C24 JN655263
Agelas dilatata clone AD049 EF076124 : .

fone A320/GW950 Acidobacteria
hydrocarbon seep clone BPC066 AF154095
Cymbastella coralliophila clone CYMB_C06044 JX455306
$'——4 clone B395/GW947, X. muta, T. swinhoei, A. fulva  96-99%

marine sediment clone CK_2C3_32 EU488170 97-99%,
100 100 clone A174/GW950, L. variabilis, C. coralliophila, T. swinhoei, M. faveolata, G. barretti
seafloor lava clone EPR4059—-B2-Bc47 EU491550

(clone A295/GW950, clone B253/GW947), (clone A375/GW950 clone[BS/GW947),

clone A35/GW950, I strobilina, C. 2], X. muta,  92-100%
X. ia [2], M [ Acanthostrongylophora sp =

marine sediment clone DHl?3B24 IN672645
deflOOr lavas clone P7X3b4D03 EU491067
clone B250/GW947, X. muta, X. testudinaria, Holoxea sp., A. aerophoba, R. odorabile 98-100%
deep—sea clone J8P41000_1B04 GQ351144
clone B2/GW947, X. testudinaria, Acanthostrongylophora sp., H. erectus 96-99%
seawaler isolate SCGC AAA007-E17 HQ675460

clone A185/GW950, L. variabilis, X. testudinaria, I. strobilina, T. ignis 98-99%
deep—sea clone SGTA632 GQ348443
seawater clone SHAB748 GQ348806
seawater clone HF500_34H09 EU361121
Haliclona hogarthi clone HH-BS GU981867
ﬁplysmaﬁtlva clone AF-74 GU982093

Svenzea zeai clone E79 FI529351 .
Rhopaloeides odorabile clone T028deg12 IN210877 Deferribacteres
Acanthostrongylophora sp. clone OP447 EF513719
(clone B47/GW947
Aplysina fulva clone 106 FM 160887
clone A310/GW950)
Xestospongia testudinaria clone XTES_B8 JX455626
Plakortis sp. clone PK019 EF076072
Ancorina alata clone AncL29 FJ900327
Theonella swinhoei clone JAWS5 AF434982

Neofibularia nolii e clone 222i EU816845
seawater clone F9P41300_G20 HQ673429
19  clone B270/GW947, X. testudinaria, A. alata, A. fulva  96-99%
* 100 o< clone B90/GW947, X. testudinaria, H. hogarthi, A. fulva 95-97%
sediment clone OGT_B2_20 AB583328

96 | Aplysina lacunosa clone 174 AY485286

100 | seawater clone SWB-Pla—-31 FJ652532
Ircinia strobilina clone 1S-Pla-28 FJ652488
100 clone B55/GWY947, X. testudinaria, Plakortis sp.  98-99% Poribacteria
0 “l"m 33{)294%/\&3;9750 Tone BS0/GW947,
Plgtka clone rcmta S? I 96-99%

rtis sp., X. muta, A. cavernicola, T. swinhoei
Texas state well LlOﬂE: EDW07B00§ 49 HMO
sediment clone AMSMV-30-B31 HQ588621
glone A342/(,W950 clone B15/GW947), clone A278/GW950, A. alata, 94-99%
barretti, A. dilatata, X. extgua X. muta, X. testudinaria, M. faveolata 0
sedﬂoor lava clone EPR4059-BJ-Bc83 EU491583
cave clone wb1_P06 AF317769 o
clone A143/GW950 X. exigua, X. muta, X. testudinaria, R. odorabile 99-100%

100

99

100

clone A374/GW950, clone B7/GW947, C. nucula, T. swinhoei, A.fulva ~ 93-99% Actinobacteria
sedwater clone FOP261000_S_DO05 HQ674073
clone A41/GW950, L. variabilis, C. matthewsi, X. exigua, X. testudinaria, A. aerophoba, A. alata 97-100%

100

clone B112/GWY947, Ircinia sp., X ia muta, X pongi dinaria  98-99%
haloalkaline soil clone HAHS13.. 54HQ396925

clone A130/GW950, X. testudinaria, X. muta, G. barretti, A. dilatata, Plakortis sp. 96-99%
seafloor lava clone POX3b5H09 EU491399

100 l__< clone A266/GW950, C. matthewsi, X. testudinaria, X. muta, G. barretti, T. swinhoei 94-99%
deep—sea clone Ucb1575 AM997865
marine sediment clone 3G1820-56 DQ431899

clone B56/GW947 o G
clone B76/GW947, L. variabilis, S. zeai, X. muta, X. testudinaria 92-99% tll‘?lrgg?l-etes
microbial mat clpne MAT-CR-M5-D035 EU245722
river estaury sediment clone MidBa36 FJ748806 89-98%
Ic sedi A% b FJ1905
voleano sediment g8 WS cibne ﬁ%%9/cw947) clone A210/GW950, clone B17/GW947,
clone B39/GW947, A. alata, R. odorabile, M bf veolata [2], A. aerophoba,
X. muta, A. dilatata, C. coralllophtla L. variabilis [2], X. testudinaria
marine sedlmenl clc;rg‘:) PET— 09367](1; 442 " i -
l:l _‘QP lkarns sp aria tLo,?el} var‘t)la/z‘lzs gfl%\tfeoelvavfll ijy téggjgzana aé%gua 95-100% Nitrospirae
dccp—sca clone Ucb15518 AM997911 .
clone B332/GW947, X. muta, Corallistes sp., I. strobilina 97-99% Deinococcus-
thermophilic biogas reactor clone HAW-R60-B-B924d- FN436140 Thermus
clone A145/GW950, X. testudinaria, S. zeai, G. barretti
93 (clone A402/GW950, clone B54/GW947), A. dil X. dinaria, A. aerophoba, G. barretti
hypersaline mat clone SBZI_4560 JN527079 91-99% | Spirochaetes

hypersaline mat clone SBZI_1599 IN523931
r Oculina patagonica clone 113 AY654756
clone B115/GW947

100

Montastraea faveolata clone SHFH709 FJ203619 Bacteroidetes
biofilm on SWRO membrane clone SBS-RV-055 HQ326321

PEX_8+P_E2 JF915095
lone XE2C09 JN596608

100 clone A276/GW950
seawater clone [GB]
Xestospongia muta c

Pseud. ogorgia

Z;

lisabethae DGGE band 7 JN863717

99 Paralemanea annulata AY731517 1
o4 clone B165/GW947 CyanObaCterla
100 19 clone B173/GW947, M. faveolata, D. strigosa 93-96%
Ostreobium sp. John West 2924 FJ535840

(PCR18/GW950, PCR35/11/GW947) A. conifera, A. corrugata  96-100%

hydroLhermal vent clone PNG_’

TBG_AT70 IN881619 0.1 Archaea
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Table 4.1. Distribution of the 16S rRNA clones and OTUs defined at distance
0.03 among particular phylogenetic groups in the clone libraries obtained
from the coralline sponges

Vaceletia crypta Astrosclera willeyana

Proportion of Proportion of

No. of No. of No. of No. of

Phylogenetic group clon.es in the clones OTUs clon.es in the clones OTUs
library library
Chloroflexi 35.2% 144 39 42.9% 156 25
Gammaproteobacteria 11.2% 46 13 13.7% 51 12
Gemmatimonadetes 11.2% 46 5 1.9% 7 3
Actinobacteria 8.3% 34 3 11.0% 41 6
Nitrospirae 7.3% 30 1 4.3% 16 1
Deferribacteres 7.3% 30 5 6.7% 25 2
Deltaproteobacteria 7.1% 29 9 5.9% 22 8
Acidobacteria 5.9% 24 6 7.8% 29 9
Alphaproteobacteria 2.7% 11 4 5.1% 19 8
Poribacteria 1.0% 4 3 0.3% 1 1
Betaproteobacteria 0.7% 3 2 - - -
Cyanobacteria 0.7% 3 2 0.3% 1 1
Spirochaetes 0.5% 2 1 0.8% 3 2
Deinococcus-Thermus 0.2% 1 1 - - -
Bacteroidetes 0.2% 1 1 - - -
Archaea 0.2% 1 1 0.3% 1 1
409 96 372 79

both communities the most abundant taxa were the Chloroflexi (35.2% V. crypta
and 42.9% A. willeyana), followed by Gammaproteobacteria (11.2% in V. crypta and
13.7% in A. willeyana).

Libshuff statistical analysis of the libraries confirmed a highly significant differ-
ence between the microbial communities of V. crypta and A. willeyana (P<0.0001).
A Venn diagram of OTU distributions at distance 0.03 revealed that from 154 de-
fined different OTUs, and thereof 21 OTUs were shared between the communi-
ties of V. crypta and A. willeyana. According to the Chaol index and abundance-
base coverage estimator (ACE; Tab. 4.2), we sequenced nearly 70% of the pre-
dicted number of microbial species in the community associated with V. crypta
and 80% of the A. willeyana one. Also, the rarefaction analysis confirmed more

successful sampling for A. willeyana (Fig. 4.6). Although the rarefaction curves for
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both samples calculated for the 0.03, 0.05, and 0.1 cut-off criteria didn’t reach
clear saturation, they were very flat indicating that the sampled diversity provide
a comprehensive picture of the core microbial communities of both coralline
sponges (Schmitt et al. 2011). The slightly higher Shannon-Wiener index for the V.
crypta confirmed a greater complexity of its microbiota. However the A. willeyana-
community revealed a slightly higher value of the Simpson index, which gives a

strong weighting to the dominants.

4.4. Discussion

This study represents the first comparison of microbial communities of taxo-
nomically diverse coralline sponges from the GBR and despite some variations
indicates a very high degree of similarity of these microbiota. Both, V. crypta and
A. willeyana harbored very rich and diverse consortia with strikingly comparable
phyla composition, however, they differed in the abundance of the members of
the particular phylogenetic groups and V. crypta revealed slightly more complex
community structure. Coralline sponges shared also a high number of bacterial
species, exceeding the level of OTUs shared with other sponges from the same
location. Both sponges exhibited very high numbers of OTUs with next similar
sequences obtained from other sponges, though the number was slightly higher
for the A. willeyana. Furthermore the sequences fell into numerous SSC/SCC and
thereof over 30% were shared between A. willeyana and V. crypta. A large fraction
of the SSC/SCC with sequences of both coralline sponges also contained se-
quences obtained from other sponges from the GBR.

Core microbiomes — abundant microbes, shared between all samples taken from
some complex microbial habitat — must fulfill functions important for the main-
tenance of the microbial community (Shade & Handelsman 2012, Webster et al.
2013). The microbial communities of A. willeyana and V. crypta contained phyla
commonly affiliated with marine sponges (Taylor et al. 2007b, Webster & Taylor
2012), with the most abundant Chloroflexi followed by Gammaproteobacteria. The
third most abundant phylum in the microbial community of V. crypta - the Gem-
matimonadetes, constituted only minor component of the microbiota of A. willey-
ana, where the Actinobacteria were the third most abundant phylum. Kamke and

colleagues (2010) reported the Gemmatimonadetes as active members of sponge
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microbiota, nevertheless the features of their functions in the community remain
still unspecified. Furthermore, the microbial communities of both coralline
sponges differed with respect to the abundance of Alphaproteobacteria and also

Nitrospirae involved in the two steps of the nitrification, and thereby indicating
pathways for nitrogen metabolism in the host tissues (Bayer et al. 2007). Alto-
gether V. crypta revealed a higher microbial diversity due to the higher number of
OTUs and to the presence of members of the Betaproteobacteria, Deinococcus-
Thermus, and Bacteroidetes. Libshuff statistical analysis of the libraries confirmed
significant differences in the structure of the symbiotic communities hosted by
both coralline sponges.

Recently Erwin et al. (2012) classified numerous factors shaping the symbiotic
communities and suggested that host-specific factors determined microbial con-
sortia of Ircinia sp. from the Mediterranean Sea. Our results confirm this hypothe-
sis since A. willeyana and V. crypta share restricted cryptic habitats (Worheide
1998). At the sampling site at Yonge Reef coralline sponges appear in caves
mostly on the outer seaward slope in a water depth starting between 8-15 m and
A. willeyana and V. crypta are restricted to the darker zones (0-2 lux) of the caves
(Worheide 1998). Generally A. willeyana occurs scarcely in the very darkest areas
of the caves (Worheide 1998), but actually, V. crypta revealed a higher ratio of the
light-dependent Cyanobacteria; nevertheless they constituted only a minor part of
the microbial communities in both investigated coralline sponges (Tab. 4.1).
Moreover, the herein investigated sponges were collected in one cave during the
same dive, thus definitely were exposed to the similar environmental conditions.

A. willeyana and V. crypta harbor symbiotic communities comprised primarily of
sequences closely related to microbial sequences from other sponges and the ma-
jority of those sequences formed numerous SSC/SCC (93) with nearest relatives,
indicating that the microbiota of coralline sponges comprise a particular assem-
bly of generalist sponge symbionts. The proportion of sequences within the SSC/
SCC in both coralline sponges belong to the highest ever reported, even if slightly
decreased for V. crypta, however increased for A. willeyana compared to a previ-
ous single analysis (Karlifiska-Batres & Worheide 2013a, Karlinska-Batres &
Worheide 2013b). The symbiotic communities in sponges have been reported not
only as sponge-specific (Hentschel et al. 2002, Taylor et al. 2007b), but recently

moreover as specific to particular sponge species (Webster et al. 2010). Montalvo
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Figure 4.5. Distribution of the 165 rRNA gene clones among particular phy-
logenetic groups in the clone libraries obtained from two coralline sponges —
V. crypta (left) and A. willeyana (right) from Yonge Reef, GBR, Australia. Phy-
logenetic groups found only in the clone library of V. crypta are indicated
with asterisks

and Hill (2011) analyzed the microbial diversity of the two closely related, but
geographically distant giant barrel sponges Xestospongia muta (Atlantic) and Xes-
tospongia testudinaria (Pacific) and referred the microbial communities as specific
to each of the sponge species and to the genus Xestospongia. Recently Schmitt and
colleagues (2012a) demonstrated the absence of correlation between host phy-
logeny and arrangement of the symbiotic communities in three species each
within the genera Aplysina, Hyrtios, and Ircinia from the Mediterranean Sea.
Likewise three sympatric Mediterranean Ircinia sp., which exposed host species-
specific communities of symbionts, with fractional ratio of OTUs (12-14%) shared
between all three species (Erwin et al. 2012). Interestingly, I. variabilis and I. fasc-
culata, whose sequences can not be distinguished with the mitochondrial COI
marker, shared slightly higher ratio (21% and 24% of the detected OTUs, respec-
tively) (Erwin et al. 2012). Also a previous study of symbionts in putative cryptic
species of the coralline sponge A. willeyana confirmed the species-specific charac-
ter of the sponge microbiota showing differences in microbial communities from

different geographical localities (Red Sea vs. GBR) (Karlifiska-Batres and Wor-
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Table 4.2. Diversity analysis of the 165 rRNA gene clone libraries con-
structed at distance 0.03 for the coralline sponges samples. Lower and upper
95% confidence intervals are shown in parentheses where available. ACE:
abundance-base coverage estimator

Sample No.of No. of Chao ACE Shannon Simpson
source clones OTUs estimate index index
Vaceletia 409 9% 142 140 4.02 0.025
crypta (117-200) (119-181) (3.92-4.12)  (0.021-0.029)
Astrosclera 372 79 100 100 3.88 0.028
willeyana (87-136) (89-125) (3.77-3.98)  (0.023-0.033)

heide, in review). A recent study of 13 diverse GBR sponge species revealed mi-
crobial communities largely conserved within different individuals of each spe-
cies, but particular low microbiome shared between species — no OTU was com-
mon for all species (Webster et al. 2013). Moreover, the most ubiquitous OTUs
were shared by maximal five sponge species and 91% of OTUs were species-
specific (Webster et al. 2013). In comparison, our result showed that taxonomi-
cally distant A. willeyana and V. crypta, collected also from the GBR, shared re-
markable high number of bacterial species (21 OTUs representing app. 30% of
each clone library) significantly outnumbering microbiome shared between other
GBR sponge species (Webster et al. 2013). Consequently, these results together
with very high ratio of A. willeyana and V. crypta 16S r RNA gene sequences
within the SSC/SCC are an indication of a particularly tight bonding of coralline
sponges with their symbionts. Furthermore, this indicates that microbial com-
munities in coralline sponges both are shaped by factors that are host-dependent,
but also represent specific patterns, which deviate from the patterns shown by
other sponges. These specific patterns likely correlate with the evolutionary age
of the sclerosponge host species (Karlifiska-Batres & Worheide 2013a).

Recent studies indicated that combination of vertical and horizontal transmission
forms microbial communities in marine sponges (Hentschel et al. 2012, Schmitt et
al. 2012a). Nevertheless several issues concerning the evolution of the strategies
shaping the sponge-microbe associations remain unresolved. Did these mecha-
nisms develop simultaneously? Or maybe one has more primary origin, and the

other has evolved over time, leading to strategy where both, vertical and hori-
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Figure 4.6. Rarefaction curves for the 165 rRNA gene sequences obtained
from A. willeyana and V. crypta from Yonge Reef, GBR. Operational Taxo-
nomic Units (OTUs) were defined at the 97%, 95% and 90% similarity criteria

zontal transmission, complement themselves? V. crypta and A. willeyana repro-
duce sexually with development of parenchymella larva, which enclose numer-
ous bacteria as evidenced for A. willeyana (W6rheide 1998, Vacelet 2002). Our re-
sults imply that at least a fraction of symbionts of both coralline sponges must
have been vertically transmitted. This suggestion base on distant similarity of
their microbial 16S rRNA gene sequences to the next related sequences in the
SSC/SCC and on criterion for the proposal of a novel species (< 97% 16S rRNA
gene sequence similarity), and a new genus (<93%) (Rohwer et al. 2002). Those
criteria revealed approximately 30% of novel symbiotic species in both coralline
sponges, and thereof 15% and 11% (V. crypta and A. willeyana, respectively) novel
at genus level. Simultaneously, very high ratio of the microbial 16S rRNA gene
sequences from both coralline sponges in SSC/SCC, closely related to other mi-
crobial sequences, together with very high similarity of microbiota between scle-
rosponges, might indicate maintenance their microbial communities mainly
through environmental transmission (Hentschel et al. 2002, Taylor et al. 2007b).
Moreover, if we consider that coralline sponges of the genus Vaceletia belong to
the keratose sponges (Worheide 2008), forming an early-branching lineage in the
Demospongiae (Philippe et al. 2009), suggesting environmental acquisition as
more primary mechanism.

However we compared only single specimens of A. willeyana and V. crypta, their
clone libraries enclosed remarkably high number of clones enabling comprehen-

sive analysis. Nevertheless, the example of the clone B400/GW947 - primarily

111



K. Karlifiska-Batres: Microbial diversity of coralline sponges

distantly related to an environmental sequence (Karlifiska-Batres & Worheide
2013a), after re-analysis with BLAST revealed 98% similarity to recently pub-
lished Xestospongia exigua clone XEXI_H2 (Fig. 4.2), shows that we still lack a full
picture of microbial diversity in sponges and new studies would extend our
knowledge and lead to more precise and certain conclusions.

This first ever comparison of microbial communities in A. willeyana and V. crypta
demonstrates, despite some differences, very high similarity in phylogenetic
composition of both symbiotic consortia. Coralline sponges share high number of
bacterial species, far exceeding the amount of shared OTUs characteristic for
other sponges and thus indicate by sclerosponges specific patterns for the consti-
tution of microbial communities. Our results confirm indirectly vertical transmis-
sion of microbial symbionts in coralline sponges; however simultaneously indi-
cate horizontal transmission as more original mechanism. Further studies involv-
ing reproductive stages and wider range of specimens of A. willeyana and V.
crypta, as well as other coralline sponges, would bring more information on
shared “core microbiome” and elucidate if those microorganisms might be func-

tionally important for the ecology and evolution of sclerosponges.
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Summary of results

The 165 rRNA gene-based analysis of microorganisms associated with the coral-
line sponge Vaceletia crypta from the Great Barrier Reef revealed a highly diverse
symbiotic community with a complex composition demonstrating a relatively
homogeneous phylogenetic distribution (Chapter 1). The majority of the micro-
bial sequences were closely related to other sponge-derived sequences and also
fell into sponge- or sponge-coral specific clusters, denoting that the “living fossil”
coralline sponge V. crypta shares features of its microbial community with other
sponges. The denaturing gradient gel electrophoresis cluster analysis confirmed a
high microbial diversity associated with V. crypta and indicated distinct microbial

communities in the different growth forms (solitary and colonial).

Exploration of microbial diversity in Astrosclera willeyana from the Great Barrier
Reef exposed the presence of a complex symbiotic community with high diver-
sity (Chapter 2) and also confirmed the uniqueness of the microbial consortia in
sponges, as the majority of the A. willeyana-associated sequences grouped to-
gether with other sponge-derived sequences and formed numerous sponge spe-
cific clusters. The DGGE results showed clear divisions according to the geo-
graphical origin of the samples, indicating closer relationships between the mi-
crobial communities with respect to their geographic origin (northern vs. south-
ern GBR) and suggesting that differences in symbiotic community composition

might be an additional indicator of cryptic species.

Additional DGGE analyses of numerous A. willeyana specimens from virtually
the entire area wherein A. willeyana occurs — from the Red Sea to the central Pa-
cific — confirmed high microbial diversity and a complex composition in all sam-
ples that were investigated (Chapter 3). Closer associations between the microbi-
ota with respect to their geographic origin were also confirmed for the whole dis-
tribution range, thus supporting separation of A. willeyana populations. Moreo-
ver, this study provided initial insight into the hitherto undetermined diversity
and composition of microbial communities associated with sclerosponges from

the Red Sea. Subsequent comparison with previously assessed 16S clone library
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of the A. willeyana from the GBR showed that, in spite of many similarities, mi-
crobiota associated with the Red Sea specimen have a less complex structure.
Nevertheless, both sponges shared 40% of defined OTUs, which represents about
60% of both clone libraries.

A comparison of microbial communities associated with A. willeyana and V. crypta
from the Great Barrier Reef demonstrated, despite some differences, a highly
similar phylogenetic composition of both symbiotic consortia (Chapter 4). Both
coralline sponges harbored rich and diverse microbial communities with strik-
ingly comparable composition of phyla; they differed, however, in the abundance
of the members of the particular phylogenetic groups. V. crypta revealed a
slightly more complex community structure. A. willeyana and V. crypta shared a
large number of bacterial species, far exceeding the amount of shared OTUs
characteristic for other sponges. Our results indirectly confirmed vertical trans-
mission of microbial symbionts in coralline sponges; however, our results simul-

taneously indicated horizontal transmission as the more primary mechanism.

The first ever characterization of microbial symbionts associated with coralline
sponges clearly showed a very complex structure and a high diversity of their
communities. Sclerosponges harbor microbial consortia composed mainly of
members of phyla typically associated with other sponges. Microbial 16S rRNA
gene sequences obtained from coralline sponges show a high similarity with
other sponge-derived sequences and fall into abundant sponge specific clusters.
In contrast to other sponges, distantly related sclerosponges share a much higher
degree of microbial species and thus indicate specific patterns for the constitution
of microbial communities. Further studies involving wider ranges of specimens
of A. willeyana and V. crypta, as well as other coralline sponges and reproductive
stages, would bring more information on shared “core microbiome” and clarify
whether or not those microorganisms are functionally important for the ecology

and evolution of sclerosponges.
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Figure S1.1 Image of the DGGE gel; sample names according to the Table 1.1 (column:
Site)
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Table S2.1. List of the OTUs obtained from Astrosclera willeyana from GBR with phyloge-

netic affiliations and closest relative sequences from BLAST search.
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Figure S3.1. Image of the DGGE gel - Gel 1; sample names according to the Table 3.1
(column: Site)

% 4 ISTA8 =

NI TN N STEr Y G TEEE N N oo

S s s SR R -
vmw—<§ ggEEE‘L‘QQEE_«‘L’
Ok L, R i Gl g R o [ R A
G CHAONHICHIORORGOR S 1Sl SERIC! TOIlY

Figure S3.2. Image of the DGGE gel - Gel 2; sample names according to the Table 3.1
(column: Site)
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