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1. EINLEITUNG 

Cronobacter spp. sind opportunistische Erreger, die mit seltenen, aber drastisch 

verlaufenden Infektionen in Verbindung gebracht werden (Lai et al., 2001). Innerhalb der 

Gattung Cronobacter werden sieben Spezies auf Basis von biochemischen Eigenschaften und 

DNA-Verwandschaften unterschieden (Iversen et. al., 2007 und 2008; Joseph et al. 2012a). 

Erkrankungsfälle werden vor allem mit Stämmen der Spezies C. sakazakii aber auch C. 

turicensis und C. malonaticus in Verbindung gebracht (Holy & Forsythe, 2003; Stephan et al., 

2011). Von Infektionen mit Cronobacter spp. waren insbesondere Säuglinge betroffen, die im 

Rahmen eines Klinikaufenthaltes mit kontaminierter, rekonstituierter und falsch gelagerter 

Säuglingsnahrung auf Milchpulverbasis (powdered infant formula, PIF) versorgt wurden 

(Simmons et al., 1989; Biering et al., 1989; Noriega et al., 1990; Chap et al., 2009). Vereinzelt 

wurden auch schwere Erkrankungsverläufe bei immunsupprimierten Erwachsenen beobachtet 

(Lai et al, 2001), die weniger mit PIF als vielmehr mit einem ubiquitären Vorkommen der 

Erreger (Jaradat et al., 2009) in Verbindung zu stehen scheinen. Die Infektionen manifestieren 

sich u. a. in schweren Meningitiden, nekrotisierenden Enterocolitiden oder Septikämien mit 

meist letalem Ausgang. Im Falle eines Überlebens bleiben schwere neurologische Schäden 

beim Patienten zurück (Willis & Robinson, 1988; Biering et al., 1989; Lai et al., 2001).  

Es besteht daher ein großes Interesse sowohl an einer detaillierten Charakterisierung der 

Pathogenitätsmechanismen, die zum derzeitigen Zeitpunkt noch nicht abschließend geklärt 

sind, als auch an einfachen kostengünstigen Nachweissystemen, die in der Praxis einen 

schnellen und sicheren Nachweis pathogener Cronobacter-Stämme gewährleisten können. 

Ziel dieser Arbeit war es, monoklonale Antikörper (mAK) gegen Cronobacter spp. zu 

generieren und diese umfassend zu charakterisieren. Damit sollte die Grundlage dafür 

geschaffen werden, einerseits hochempfindliche, spezifische, einfach handhabbare und Vor-

Ort einsetzbare immunchemische Nachweisverfahren zu etablieren, mit denen die 

Analysedauer im Vergleich zu den klassischen mikrobiologischen Verfahren deutlich verkürzt 

werden kann. Andererseits stellen hochaffine und gut charakterisierte mAK effiziente 

Werkzeuge dar, mit denen wertvolle Erkenntnisse zu Pathogenitätsmechanismen von 

Cronobacter spp. gewonnen werden können. 
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Die im Rahmen dieser Arbeit am Lehrstuhl für Hygiene und Technologie der Milch 

durchgeführten Eingriffe und Behandlungen an Tieren wurden der Regierung von 

Oberbayern gemäß §10a des Tierschutzgesetzes mit dem Vorhaben „Herstellung und 

Charakterisierung monoklonaler Antikörper zum Nachweis von Cronobacter spp.“ angezeigt 

und unter dem Aktenzeichen 55.2-1-54.2532.6-2-12 genehmigt. 
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2. SCHRIFTTUM 

2.1 Taxonomie und biochemische Eigenschaften von Cronobacter 

Bei der Gattung Cronobacter handelt es sich um gramnegative, mesophile, motile und 

peritrich begeißelte Stäbchenbakterien mit einer Größe von etwa 3 x 1 µm, die nicht zur 

Sporenbildung befähigt sind (Farmer et al., 1980). Erstmals beschrieben wurden diese Keime 

in Zusammenhang mit dem Auftreten von Meningitis-Fällen im Jahr 1961. Die 

Klassifizierung erfolgte zunächst als gelb-pigmentierter Enterobacter cloacae (Urmenyi & 

Franklin, 1961). Auf Basis von Untersuchungen der DNA-Zusammensetzung, Pigmentierung 

und von biochemischen Besonderheiten wurden 1980 die Keime als Enterobacter sakazakii 

klassifiziert (Farmer et al., 1980). In dieser Studie wurde mittels DNA-DNA-Hybridisierung 

festgestellt, dass nur 31-54% Verwandtschaft zu Enterobacter cloacae besteht, die einzelnen 

Stämme der neuen Spezies hingegen 83-91% Übereinstimmungen untereinander zeigten. Als 

Ergebnis weiterer biochemischer Untersuchungen sowie Untersuchungen des Erbgutes wurde 

2007 die Gattung Cronobacter mit sechs verschiedenen Spezies (C. sakazakii, C. 

malonaticus, C. muytjensii, C. turicensis, C. dublinensis und C. genomospecies 1) 

vorgeschlagen (Iversen et al., 2007a und 2008). Im Jahr 2011 wurde eine weitere Spezies (C. 

condimenti) beschrieben sowie eine Umbenennung der Spezies C. genomospecies 1 in C. 

universalis vorgenommen (Joseph et al., 2012a). Auf Basis weiterführender 2013 

veröffentlichter DNA-Sequenzanalysen wurde postuliert, dass die drei nicht pathogenen 

Enterobacter-Spezies E. pulveris, E. helveticus und E. turicensis ebenfalls in die Gattung 

Cronobacter einzubeziehen sind (C. pulveris, C. helveticus, C. zurichensis) (Brady et al. 

2013; Masood et al., 2013). Für eine eindeutige Zuordnung zum Genus ist die Datenlage 

jedoch zu unsicher (Jaradat et al., 2014), so dass sich die derzeit aktuelle taxonomische 

Klassifizierung entsprechend Tabelle 1 darstellt.  

Für Cronobacter spp. werden in Kultur auf Trypton-Soja-Agar verschiedene Kolonietypen 

beobachtet, die ineinander übergehen können. Es sind sowohl gefurchte bis gekerbte 

Kolonieformen zu beobachten, die bei Kontakt mit der Impföse eine gummiartige Konsistenz 

aufweisen, als auch weiche, glatte Kolonien, die leicht mit der Öse abzutragen sind (Farmer et 

al., 1980). Als Kohlenstoffquelle genügt Cronobacter spp. Glucose und Citrat. Die 

Notwendigkeit der Zufuhr von Vitaminen, Aminosäuren und anderen Wachstumsfaktoren 

besteht nicht. Cronobacter spp. sind fakultativ anaerob (Iversen et al., 2007a), einige Stämme 
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besitzen thermoresistente Eigenschaften (Williams et al., 2005). 

Tabelle 1: Taxonomische Klassifizierung von Cronobacter spp.  

 Taxon Bezeichnung 

Domäne Bacteria 

Stamm Proteobacteria 

Klasse – Classis Gammaproteobacteria 

Ordnung – Ordo  Enterobacteriales 

Familie - Familia Enterobacteriaceae 

Gattung – Genus Cronobacter 

Art – Species C. condimenti  

 C. dublinensis 

 C. malonaticus 

 C. muytjensii 

 C. sakazakii 

 C. turicensis 

 C. universalis 

 (C. helveticus) 

 (C. pulveris) 

 (C. zurichensis) 

 
Die Befähigung zur Pigmentbildung ist bei Raumtemperatur besonders stark ausgeprägt 

(optimale Temperatur: 25 °C). Bei Temperaturen um 36-37 °C hingegen ist diese Eigenschaft 

nicht bei allen Stämmen zu beobachten (Urmenyi & Franklin, 1961; Farmer et al., 1980). Das 

gelbe Pigment ist unlöslich in Wasser, Ethanol, Chloroform und Ether (Urmenyi & Franklin, 

1961) und wurde 2006 von Lehner et al. als Carotinoid identifiziert. 

Eine Vielzahl der Stämme von Cronobacter spp. zeichnet sich durch die Expression von 

α-Glucosidase aus (Farmer et al., 1980; Muytjens et al., 1984), eine Eigenschaft, die auch zur 

Entwicklung von chromogenen Nachweisnährböden eingesetzt wurde. Hierbei werden die 

Nährböden mit dem chromogenen Substrat 5-Bromo-4-chloro-3-indonyl-α-D-Glucopyranosid 

versetzt (0,15 g/l); das Wachstum von α-Glucosidase-exprimierenden Bakterien resultiert in 

einer blau-grünen Verfärbung der Kolonien (Iversen et al., 2004b). Sowohl falsch positive als 

auch falsch negative Ergebnisse sind mit diesen Testsystemen jedoch nicht völlig 

auszuschließen (Gurtler et al., 2005). 

Die Fähigkeit von Cronobacter spp., Gelatine zu hydrolysieren (Urmenyi & Franklin, 

1961; Farmer et al., 1980) sowie Lactose unter Säurebildung, zum Teil unter Gasentwicklung, 

zu fermentieren, wurde mehrfach nachgewiesen. Die Gasproduktion ist bei 37 °C besonders 

intensiv ausgeprägt (Iversen et al., 2004a). 
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Einige Stämme von Cronobacter spp. sind zudem in der Lage, durch eine verstärkte 

Exopolysaccharid-Synthese Kapseln zu bilden (Iversen et al., 2004a). Es können so Barrieren 

gebildet werden, die die ganze Zelle umhüllen. Diese Matrices bieten den Mikroorganismen 

Schutz vor Austrocknung, fungieren aber auch als Barriere gegen die Wirkung von 

Antibiotika. Die Bildung von Exopolymeren ist auch die Voraussetzung für die Bildung von 

Biofilmen, die für Cronobacter spp. beschrieben wurden (Lehner et al., 2005). Durch die 

viskose Umhüllung der Mikroorganismen mit Exopolymeren sind zudem antigen wirkende 

Oberflächenstrukturen durch das Immunsystem der Wirtsorganismen schwerer zu erkennen, 

eine Bekämpfung der Bakterien im Körper wird somit erschwert (Iversen et al., 2004a; Chenu 

& Cox, 2009). 

 

2.2 Vorkommen und Verbreitung von Cronobacter 

Obwohl zahlreiche Untersuchungen zum Vorkommen von Cronobacter spp. durchgeführt 

wurden, konnte bisher kein natürliches Habitat identifiziert werden. In verschiedenen 

Veröffentlichungen wurden jedoch Pflanzen als Hauptreservoir postuliert (Jaradat et al., 2009; 

Molloy et al., 2009). So gelang die Isolierung von Cronobacter spp. aus Kräutern und 

Gewürzen, z.B. Thymian, Anis, Süßholzwurzel, Kamille, Fenchel, Kümmel (Baumgartner et 

al., 2009; Jaradat et al., 2009) sowie aus Getreide, Cerealien und Viehfutter auf Pflanzenbasis 

(Molloy et al., 2009). Als potentielles Umweltreservoir werden auch Insekten angesehen. So 

konnte Cronobacter spp. in mexikanischen Fruchtfliegen (Anastrepha ludens) und dem Darm 

der gemeinen Stechfliege (Stomoxys calcitrans) nachgewiesen werden (Kuzina et al., 2001; 

Hamilton et al., 2003). Auch Nachweise in Boden, Staub und im Inhalt von 

Staubsaugerbeuteln (Jaradat et al., 2009) lassen Schlüsse auf ein ubiquitäres Vorkommen zu. 

In mehreren Untersuchungen konnte nachgewiesen werden, dass ein Persistieren von 

Cronobacter spp. in trockenen Matrices über längere Zeit möglich ist. Die Resistenz 

gegenüber Trockenheit und osmotischem Stress wird einerseits durch die Fähigkeit zur 

Kapselbildung erklärt. Andere Mechanismen, wie die Möglichkeit zur Akkumulation von 

Trehalose (Beeuwer et al., 2003), die Bildung von DNA-Reparaturproteinen (Álvarez-

Ordónez et al., 2014) oder die Bildung von β-Carotin als wirksames Agens gegen reaktive 

Sauerstoffradikale (Joseph et al., 2012b) werden in diesem Zusammenhang ebenfalls 

diskutiert.  

Besondere Bedeutung kommt dem Nachweis von Cronobacter spp. in Säuglingsnahrung 

auf Milchpulverbasis (powdered infant formula, PIF) zu. Nach Erkrankungsfällen bei 
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Neugeborenen konnte Cronobacter spp. in diesen Erzeugnissen (insbesondere in trinkfertigen 

Zubereitungen nach Lagerung bei falschen Temperaturen) identifiziert werden (Simmons et 

al., 1989; Biering et al., 1989; Noriega et al., 1990; Chap et al., 2009). Nur vereinzelt wurde 

hingegen Cronobacter spp. in Folgenahrung für Kinder, älter als 6 Monate, nachgewiesen 

(Chap et al., 2009). Untersuchungen ergaben, dass insbesondere die Zubereitung und die 

Lagerung von rekonstituierter PIF kritische Faktoren für das Wachstum von Cronobacter spp. 

darstellen. So sind Cronobacter spp. in der Lage, bei Temperaturen zwischen 6 °C und 45 °C 

(kapselbildende Stämme bis 47 °C) zu wachsen. Optimale Wachstumsbedingungen liegen, 

abhängig von Stamm und Medium, zwischen 37 und 43 °C. (Farmer et al., 1980; Nazarowec-

White & Farber, 1997; Iversen et al., 2004a).  

Durch die Fähigkeit Biofilme auf diversen Oberflächen (Latex, Polycarbonat, Silikon, in 

geringerem Maße: rostfreier Stahl) zu bilden, können nicht ausreichend gereinigte und 

desinfizierte Zubereitungsutensilien bzw. medizinisches Instrumentarium (Farmer et al., 1980; 

Noriega et al., 1990; Iversen et al., 2004a) ebenso zu einer nosokomialen Verbreitung der 

Keime führen, wie die falsche Lagerung des fertigen Produktes (Biering et al., 1989) oder 

eine unzureichende Zubereitungstemperatur. Cronobacter spp. gelten als deutlich 

thermotoleranter als andere Vertreter der Familie der Enterobacteriaceae (Nazarowec-White 

& Farber 1997; Breeuwer et al., 2003). Studien ergaben, dass das Infektionsrisiko drastisch 

reduziert werden kann, wenn das zugegebene Wasser für die Rekonstitution von PIF eine 

Temperatur von 70 °C überschreitet, das fertige Produkt bei einer Temperatur von unter 4 °C 

gelagert und die Aufbewahrungszeit minimiert wird (Nazarowec-White & Farber, 1997; 

Iversen et al., 2004a; Chap et al., 2009; Chen et al., 2009). Diese Untersuchungen bilden u.a. 

die Grundlagen für Risikobewertungen und das Erstellen von Empfehlungen und Leitfäden 

durch international anerkannte Organisationen. So wurden 2007 durch WHO und FAO 

Richtlinien für Herstellung und Umgang mit PIF veröffentlicht und 2008 durch die Codex-

Alimentarius-Kommission für Lebensmittelhygiene der "Code of hygienic practice for 

powdered formulae for infants and young children, CAC/RCP 66 - 2008" verabschiedet, um 

das Risiko von Kontaminationen durch Cronobacter spp. sowohl im Bereich der Versorgung 

mit als auch der Herstellung von PIF zu minimieren. 

2.3 Erkrankungen 

Cronobacter spp. sind fakultativ pathogene Bakterien, d.h. nur unter bestimmten 

Voraussetzungen, beispielweise bei einem geschwächten Immunsystem, resultiert eine 

Kolonisation mit diesem Erreger in einer klinisch manifesten Erkrankung (Biering et al., 
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1989).  

Verschiedene Krankheitsbilder werden mit Cronobacter spp. in Verbindung gebracht. 

Hauptsächlich sind Neugeborene (Frühchen) betroffen, die nosokomial infiziert wurden. 

Hierbei wurden generalisierte Infektionen mit schweren Meningitiden, teilweise auch in 

Verbindung mit Sepsis, beschrieben (Arseni et al., 1987; Biering et al., 1989; Simmons et al., 

1989; Lai et al., 2001; Bowen & Braden, 2006). Symptomatisch äußert sich das häufig tödlich 

verlaufende Krankheitsbild u.a. durch starkes Fieber. Auch blutige Durchfälle, 

nekrotisierende Enterocolitiden und Infektionen des Urogenital- und Respirationstraktes 

wurden als typische Krankheitsbilder beobachtet (Simmons et al., 1989; Lai et al, 2001). Nach 

einer Infektion sind histologisch im Hirngewebe Flüssigkeitsansammlungen, Mikroabszesse, 

eine Dichteverminderung der weißen Hirnmasse sowie Infarkte und Einblutungen im Bereich 

der Hirnrinde feststellbar (Urmenyi & Franklin, 1961; Willis & Robinson, 1988; Lai et al., 

2001). Wird eine manifeste Erkrankung überlebt, bleiben bei den Patienten oft schwere 

Folgeschäden am Hirn zurück. So werden Gehör- und Sehschäden, sowie spastische 

Lähmungen beschrieben, die sich auf alle Gliedmaßen erstrecken können (Willis & Robinson, 

1988; Biering et al., 1989; Lai et al., 2001). 

Krankheitsausbrüche wurden auch bei Erwachsenen beschrieben. In diesen Fällen lag 

meist eine ausgeprägte Schwächung des Immunsystems, z.B. als Folge einer Krebserkrankung 

vor. Gekennzeichnet waren diese Fälle u. a. durch Bakteriämie, Urosepsis, Konjunktivitis, 

Osteomyelitis bzw. Pneumonie (Lai et al., 2001). Insbesondere bei älteren Menschen (über 70 

Jahre) treten verstärkt Harnwegsinfektionen auf (Patrick et al., 2014). Ein ursächlicher 

Zusammenhang mit der Aufnahme kontaminierter Lebensmittel gilt in diesen Fällen als 

unwahrscheinlich bzw. ist auch aufgrund des ubiquitären Vorkommens von Cronobacter spp. 

nicht zu belegen. 

Als medikamentöse Therapie bei Vorliegen einer Meningitis wurde bis in die 80er Jahre 

standardmäßig eine Mischung von Ampicillin und Chloramphenicol appliziert (Farmer et al., 

1980; Drudy et al., 2006). Aufgrund seines kritischen Nebenwirkungsprofils wurde 

Chloramphenicol mittlerweile durch Gentamicin ersetzt. In den meisten Fällen liegt eine 

Empfindlichkeit von Cronobacter spp. gegen diese Wirkstoffkombination vor. In 

zunehmendem Maß erwerben Cronobacter spp. allerdings Resistenzen, die den Einsatz von 

Carbapenemen oder Cephalosporinen in Kombination mit einem weiteren Antibiotikum, zum 

Beispiel aus der Klasse der Aminoglykoside zur erfolgreichen Therapie erfordern. Die 

Fähigkeit zur Bildung von β-Lactamase konnte bisher nur vereinzelt bei Cronobacter-
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Stämmen nachgewiesen werden (Caubilla-Barron, 2007; Jaradat et al., 2014). Ein Einsatz von 

Antibiotika aus den Gruppen der Lincosamide, Glycopeptide, Streptogramine oder 

Fusidinsäure ist therapeutisch nicht zweckmäßig, da Cronobacter spp. gegen diese Wirkstoffe 

natürliche Resistenzen besitzen (Caubilla-Barron, 2007; Chenu & Cox, 2009; Hunter et al., 

2008).  

 

2.4 Pathogenitätsmechanismen von Cronobacter 

Einen wesentlichen Pathogenitätsmechanismus von Cronobacter spp. stellt deren 

ausgeprägtes Adhäsions- und Invasionsvermögen dar. Mehrfach wurde das Bindungs-

vermögen von Cronobacter spp. an menschliche Epithelzellen beschrieben (Mange et al., 

2006; Townsend et al., 2008), wobei die Effizienz der Bindung und die daraus resultierende 

Pathogenität der verschiedenen Stämme eine gewisse Variationsbreite aufweist (Grishin et al., 

2013). So konnte festgestellt werden, dass beispielsweise das Adhäsionsvermögen bei 

humanen Isolaten deutlich ausgeprägter ist als bei Wildstämmen (Liu et al., 2012).  

Zudem spielen weitere Virulenzfaktoren wie die Bildung von Toxinen oder die Expression 

von Schutzfaktoren, die ein Überleben des Bakteriums trotz der Aktivierung des 

Abwehrsystems des Wirtsorganismus ermöglichen, eine bedeutende Rolle im 

Krankheitsgeschehen. Trotz vielfältiger Studien sind aber zahlreiche Fragen hinsichtlich der 

Pathogenitätsmechanismen von Cronobacter spp. derzeit noch offen.  

2.4.1 Toxine/Enzyme 

Bei der Bewertung der Bedeutung potentieller Toxine ist vorab zu bemerken, dass kein 

geeignetes in-vitro-Modell existiert, das eine direkte Übertragung der Ergebnisse zur Toxizität 

auf Neugeborene zulässt. 

 
- Enterotoxine 

Die Bedeutung einer vermeintlichen Enterotoxinproduktion ist nicht abschließend geklärt. 

Bisher gelang es weder Gene zu identifizieren, die für ein Enterotoxin codieren, noch das 

Enterotoxin selbst genau zu charakterisieren. 

Im Jahr 2003 veröffentlichte Untersuchungen zeigten, dass nach intraperitonealer 

Applikation von Bakterienfiltraten verschiedener Cronobacter-Stämme im 'suckling mouse 

assay' Enterotoxinaktivität gemessen werden konnte (Pagotto et al., 2003). Eine Isolierung 
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und weitere Charakterisierung des möglichen Toxins erfolgte allerdings in diesem 

Zusammenhang nicht. Raghav und Aggarwal gelang es 2007 ein potentielles Enterotoxin aus 

Cronobacter spp.-Isolaten abzutrennen und aufzureinigen. Es handelte sich um ein Protein 

mit einer Molekularmasse von etwa 66 kDa. Das Protein zeigte eine nennenswerte 

Thermostabilität (30 min bei 90 °C). Die höchste toxische Aktivität wurde bei pH 6 

festgestellt (Raghav & Aggarwal, 2007). Untersuchungen, die dieses Ergebnis bestätigen 

konnten, finden sich bisher nicht. 

 
- Enzyme 

Eine Vielzahl von Enzymen, die durch Cronobacter spp. gebildet werden können, 

beeinflussen die pathogenen Eigenschaften dieser Bakterien. Es wurde beispielsweise die 

Sekretion proteolytischer Enzyme beschrieben, die zu Gewebeschäden und Zelllyse führen 

können (Pagotto et al., 2003). Zudem gelang es, ein für eine Zink-Metalloprotease 

codierendes Gen (zpx) zu identifizieren. Dieses Enzym bewirkt in vitro eine Deformation von 

CHO-Zellen im Gewebeverband (Kothary et al., 2007). Einige pathogene C. sakazakii-

Stämme sind zudem in der Lage, Sialinsäuren zu verstoffwechseln und als Kohlenstoffquelle 

zu nutzen. Sialinsäuren sind in Muttermilch und PIF zu finden, stellen aber auch einen 

wesentlichen Bestandteil der Mucin-Schicht im menschlichen Gastrointestinaltrakt dar. Eine 

enzymatische Verwertung von Sialinsäuren könnte über Interaktion mit der Mucinschicht im 

Wirtsorganismus zu einem gesteigerten pathogenen Potential führen (Joseph et al., 2012b; 

Grim et al., 2013). 

Andere Untersuchungen zeigten bei Stämmen von Cronobacter spp., die im 'suckling 

mouse assay' eine toxische Wirkung aufwiesen, eine verstärkte Expression von 

Superoxiddismutase und Thiol-Peroxidase. Beide Enzyme spielen eine Rolle sowohl bei der 

Biofilmbildung als auch für die Invasivität und Pathogenität von Mikroorganismen (Yang et 

al., 2009). In einem pathogenen C. turicensis Stamm wurden außer einer Superoxiddismutase, 

die gegen vom Immunsystem produzierte reaktive Sauerstoffspezies (ROS) schützt und so ein 

Persistieren der Keime in Makrophagen von bis zu 96 h ermöglicht, weitere potentielle 

Virulenzfaktoren identifiziert, so zum Beispiel verschiedene Komponenten des Typ-6-

Sekretionssystems oder ein Enterobactin-Rezeptorprotein, das die Akquirierung von 

siderophosphatgebundenem Eisen auch in einer Umgebung ermöglicht, in der Eisen limitiert 

ist (Townsend et al., 2007; Carranza et al., 2009).  

 
- Endotoxin 
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Bei der Zelllyse gramnegativer Erreger wie Cronobacter spp. können Lipopolysaccharide 

(LPS) freigesetzt werden. Das enthaltene Lipid A entfaltet nach Freisetzung im Wirt starke 

pyrogene Eigenschaften. Heftige Entzündungsreaktionen bis hin zum septischen Schock 

können als toxische Wirkung auftreten. Postuliert wird auch ein Mechanismus, bei dem durch 

die Wirkung von LPS zelluläre Tight-Junctions zerstört werden und somit die Permeabilität 

von physiologischen Barrieren wie z.B. der Blut-Hirn-Schranke erhöht wird. Das kann zu 

einem leichteren Eindringen von Bakterien und in dessen Folge zu einer gesteigerten 

Pathogenität führen (Townsend et al., 2007; Kim & Loessner, 2008; Emami et al., 2011).  

 

2.4.2 Adhäsion und Invasion 

Da die meisten beschriebenen Erkrankungsfälle nach dem Konsum von rekonstituierter 

PIF beschrieben wurden, ist davon auszugehen, dass zunächst intestinale Epithel- und 

Endothelzellen kolonisiert werden, bevor es zu einem Eindringen in den zentralen 

Blutkreislauf und ggf. zu einem Überschreiten der Blut-Hirn-Schranke kommt. Es wurde 

mehrfach nachgewiesen, dass Cronobacter spp. in der Lage sind, sich an menschliche 

Ephitelien aber auch an andere Zellen, wie beispielsweise Erythrozyten zu binden (Mange et 

al., 2006; Liu et al., 2012). Zudem wurde die Fähigkeit zur Invasion in menschliche Intestinal- 

und mikrovaskuläre Endothelzellen des Hirns gezeigt (Mange et al., 2006; Giri et al., 2012).  

 
- Fimbrien / Pili  

Eine essentielle Bedeutung bei der Adhäsion von Cronobacter spp. scheint der 

Ausprägung von Fimbrien zuzukommen. Diese können an Oberflächenproteine (z.B. 

Fibronektin) der Wirtszellen binden. Bei einigen pathogenen Cronobacter-Stämmen wurden 

Gene für Typ-IV-Pili nachgewiesen. Diese Pili wurden auch bei E. coli-Stämmen gefunden, 

die Meningitiden bei Kleinkindern auslösen können. Auch Gene für andere Pili-Typen, für die 

sich homologe Gene bei verschiedenen Pathogenen finden, wurden bei einigen Cronobacter-

Stämmen beschrieben und werden als eine mögliche Erklärung für die Diversität in der 

Virulenz der verschiedenen Cronobacter-Stämme diskutiert (Grim et al., 2013).  

 
- Flagellen 

Die Expression von Flagellen korreliert mit dem Bindungsvermögen an Wirtszellen 

(Carranza, et al., 2009). Wie an einem mutierten Stamm C. sakazakii ES 5 gezeigt werden 

konnte, resultiert die Abwesenheit von Flagellen in einer deutlichen Reduktion des 
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Adhäsionsvermögens (Hartmann et al., 2010).  

- OmpA 

Die Bedeutung von OmpA als potentieller Pathogenitätsfaktor aufgrund seiner Eigenschaft 

als Adhäsin und Invasin bzw. als wichtiger Faktor bei der Biofilmbildung ist für viele 

Bakterien wie z.B. E. coli bekannt (Smith et al., 2007) und konnte auch für C. sakazakii 

gezeigt werden. So wurde von verschiedenen Arbeitsgruppen beschrieben, dass OmpA 

beispielsweise an den Fibronektinrezeptor der Wirtszelloberfläche bindet und so die Invasion 

der Keime in die Zelle ermöglicht (Mange, et al., 2006; Nair et al., 2007; Kim et al., 2010; Lui 

et al., 2012). 

Für die Invasivität von Cronobacter spp. sowohl in mikrovaskuläre Endothelzellen 

(Modell für Blut-Hirn-Schranke) als auch in intestinale Epithelzellen scheint die Expression 

von OmpA essentiell zu sein, wobei die Invasivitätsrate mit der Expression von OmpA 

korreliert. Auch Zusammenhänge zwischen der Ausprägung von OmpA und dem Überleben 

sowie der Vermehrung von Cronobacter spp. im Blut des Wirtes wurden beschrieben (Nair & 

Venkitanarayanan, 2007; Singamsetty et al., 2008; Mittal et al., 2009b; Kim et al., 2010). Des 

Weiteren scheint es für die Pathogenese von nekrotisierenden Enterocolitiden wesentlich zu 

sein, dass Cronobacter-Keime, die aktiv in dentritische Zellen aufgenommen wurden, infolge 

der Expression von OmpA in Selbigen überleben können. Sie sind so in der Lage, die Reifung 

der dentritischen Zellen zu hemmen. Die unreifen dendritischen Zellen dienen zudem als 

Nische für die Replikation von Cronobacter spp. (Mittal et al., 2009a). Die Anreicherung 

dieser Zellen im Intestinum sowie eine verstärkte Bildung von immunsuppressiven Faktoren 

wie IL-10 und TGF-ß scheint mitverantwortlich für die letzten Endes resultierende 

Dysfunktion der intestinalen Barrierefunktion zu sein (Mittal et al., 2009a; Emami et al., 

2011).  

 
- Reorganisation des Cytoskeletts 

Durch Sekretion von Effektor-Molekülen und Wechselwirkungen mit Signalkaskaden (z.B. 

Hemmung von Phosphorylierungsreaktionen) im Wirtsorganismus können pathogene 

Organismen die Struktur des Cytoskeletts beeinflussen. Eine Umorganisation der 

Aktinfilamente kann so induziert werden (Singamsetty et al., 2008). Es konnte nachgewiesen 

werden, dass bei der Invasion von Cronobacter spp. in mikrovaskuläre und intestinale 

Endothelzellen sowohl Mikrofilamente als auch Mikrotubuli der Wirtszellen beteiligt sind 

(Nair & Venkitanarayanan, 2007; Singamsetty et al., 2008).  
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2.5 Cronobacter-spezifische Zellwandantigene 

Gramnegative Bakterien sind durch einen charakteristischen Aufbau ihrer Zellwand 

gekennzeichnet, bestehend aus der äußeren Membran, einer dünnen Mureinschicht und der 

Cytoplasmamembran. Die Mureinschicht gramnegativer Bakterien besteht aus ein bis zwei 

Schichten des Peptidoglykans Murein, welches sich aus den Grundbausteinen N-

Acetylglucosamin und N-Acetylmuraminsäure zusammensetzt (Cypionka, 2010). Zwischen 

äußerer Membran und Mureinschicht liegt der periplasmatische Raum. In diesem 

Zellkompartiment befinden sich verschiedene Proteine wie Enzyme, Bindungsproteine oder 

Chemorezeptoren (Reinhard et al., 1995; Munk et al., 2008). Der periplasmatische Raum stellt 

auch einen Reaktionsraum für biochemische Prozesse dar. Ein Austausch hydrophiler Stoffe 

zwischen Periplasma und Umgebung findet durch Porine statt. Porine sind Kanäle in der 

äußeren Membran, die von drei Proteineinheiten gebildet werden, mit Wasser gefüllt sind und 

so eine Diffusionsbarriere bilden (Reinhard et al., 1995; Fuchs et al., 2007). 

Sowohl die äußere Membran als auch die Cytoplasmamembran setzen sich aus 

Phospholipid-Doppelschichten zusammen. Die äußere Membran hat, im Gegensatz zum 

Bilayer der Cytoplasmamembran, einen asymmetrischen Aufbau. Während die 

Cytoplasmamembran durch zwei Membranblätter aus Phospholipiden gebildet wird, setzt sich 

die äußere Membran aus einem inneren Membranblatt aus Phospholipiden und einem äußeren 

Membranblatt, das einen hohen Anteil an Lipopolysacchariden (LPS) aufweist, zusammen 

(Fuchs et al., 2007; Munk et al., 2008). Die Anwesenheit von LPS in der äußeren Membran ist 

charakteristisch für gramnegative Bakterien und bedingt einige spezifische Eigenschaften 

dieser Organismen. Von besonderer Bedeutung ist die Wirkung des LPS als Endotoxin 

(Caroff & Karibian, 2003; Rolle & Mayr, 2006; Cypionka, 2010). 

LPS setzen sich aus drei strukturell verschiedenen Motiven zusammen, nämlich dem Lipid 

A, dem Kernoligosaccharid und der O-spezifischen Seitenkette (Abbildung 1). Der lipophile 

Teil des LPS, das Lipid A, ist im Bilayer der äußeren Membran verankert. Lipid A besteht aus 

sechs Fettsäureresten, die an zwei phosphorylierte Glucosaminreste gebunden sind. Über eine 

weitere glykosidische Bindung ist das Lipid A an das Kernoligosaccharid (Core) gebunden, 

das aus teilweise phosphorylierten Heptosen und Hexosen besteht und in seiner 

Zusammensetzung eine geringe Variabilität zwischen den verschiedenen Organismen 

aufweist (Caroff & Karibian, 2003).  
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Abbildung 1:  Schematischer Aufbau eines Lipopolysaccharid-Moleküls (modifiziert nach 
Munk et al., 2008) 

 

Hoch variabel hingegen ist der dritte Molekülabschnitt, die O-spezifische Seitenkette. Die 

Seitenkette ragt aus der äußeren Membran heraus und bedingt, in Verbindung mit der Core-

Region, die hydrophilen Eigenschaften der Bakterienwand. Die O-spezifische Seitenkette 

wird i.d.R. aus Einheiten von vier oder fünf Zuckerresten gebildet, die sich innerhalb der 

Kette mehrfach wiederholen (Fuchs et al., 2007; Munk et al., 2008). Für den Stamm 

Cronobacter turicensis HPB 3287 beispielsweise konnte ein Pentasaccharid identifiziert 

werden, das in glykosidisch gebundenen Wiederholungen ein Polymer mit einer 

Molekülmasse von ca. 25.000 Da bildet (MacLean et al., 2011; Tabelle 2). Die variable 

Seitenkette wirkt als spezifische antigene Struktur (O-Antigen). Die Struktur der O-

spezifischen Seitenkette bietet auch die Möglichkeit verschiedene Serotypen gramnegativer 

Bakterien zu unterscheiden. Bis heute gelang es beispielsweise innerhalb der Gattung 

Cronobacter 17 verschiedene Serotypen zu definieren. Davon entfallen sieben auf die Spezies 

C. sakazakii (O1 - O7), drei auf C. turicensis (O1 - O3), jeweils zwei auf C. malonaticus (O1, 

O2) und C. muytjensii (O1, O2). Für C. universalis wurde bisher nur ein Serotyp (O1) 

nachgewiesen (Jarvis et al., 2011 und 2013; Sun et al., 2011 und 2012). In verschiedenen 

Arbeitsgruppen gelang die Strukturaufklärung der O-spezifischen Seitenketten einiger 

Serotypen von Cronobacter spp. (Tabelle 2). Dabei sind 11 der 13 identifizierten 

Oligosaccharid-Strukturen, die sich im LPS-Molekül wiederholen, verzweigt. Für einige 

Stämme wurden identische Grundstrukturelemente nachgewiesen (Markierungen in Tabelle 

2). Die Hauptkomponenten bilden Glucose (Glc), Rhamnose (Rha) und Galactose (Gal), 

 

              Lipid A                              Kernoligosaccharid (Core)              O-spezifische Seitenkette 

Hexose / Heptose 
 
variabler Zuckerrest 
 
Glucosaminrest 
 
Phosphatrest 
 

n 
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sowie Derivate dieser Monosaccharide. Zudem sind auch selten vorkommende Derivate von 

Fucose (Fuc), Quinovose (Qui) und Legionaminsäure (Leg) Bestandteile der O-Antigene 

einiger Serotypen von Cronobacter spp. In der O-spezifischen Seitenkette von C. sakazakii 

Serotyp O5 sowie eines C. malonaticus-Stammes wurde der Zucker Ketodesoxyoctonsäure 

(Kdo) nachgewiesen (MacLean et al., 2009c; Sun et al., 2012). Dieses Kohlenhydrat ist 

charakteristischer Bestandteil der Core-Region aller gramnegativen Bakterien und bindet dort 

unmittelbar ans Lipid A. Diese Kdo-Lipid-A-Domäne wird als essentiell für die endotoxische 

Wirkung von LPS angesehen (Caroff & Karibian, 2003; Rolle & Mayr, 2006; Fuchs et al., 

2007). Ein Vorkommen von Kdo als Bestandteil der O-spezifischen Seitenkette gilt als selten 

(MacLean et al., 2009c; Sun et al., 2012).  

Ein Hauptprotein der äußeren Membran gramnegativer Bakterien ist das 'Outer membrane 

protein A' (OmpA). Durch seine β-Barrel-Struktur mit acht transmembranen Strängen ist 

OmpA in der Lage, die äußere Membran des Mikroorganismus strukturell zu stabilisieren, 

fungiert zugleich als Virulenz- und Pathogenitätsfaktor (2.4.2) und als Rezeptor, z.B. für 

Phagen und Colicin (Etz et al., 2011). 
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Tabelle 2:  Oligosaccharid-Strukturen der O-spezifischen Seitenkette verschiedener Serotypen von Cronobacter spp. Die mit *, ** bzw. *** 
gekennzeichneten Stämme enthalten jeweils die gleichen Grundstrukturelemente. 

Spezies Serotyp Struktur Literatur 

C. sakazakii O1 
α-D-Glcp-(1→4)-α-D-GlcpA 

 ↓4 
[→2)-β-D-Quip3NAc-(1→6)-β-D-Glcp-(1→3)-α-D-GalpNAc-(1→] 

Sun et al., 
2012 

C. sakazakii* O2 
α-D-GalpA-(1→4)-α-L-Rha-(ungeklärt) 

↓2 
[→3)-α-L-Rhap -(1→4)-α-D-Glcp-(1→2)-α-L-Rhap-(1→3)-β-D-GlcpNAc-(1→] 

Sun et al., 
2012 

C. sakazakii** O3 
[→4)-α-D-Quip3NAc-(1→3)-α-L-Rhap-(1→6)-α-D-GlcpNAc-(1→4)-β-D-GlcpA-(1→3)-α-D-GalpNAc-(1→] 

↑
4 

β-D-Glcp 

Arbatsky et 
al., 2012 

C. sakazakii O5 
[→2)-β-D-Quip3NAc-(1→3)-α-L-Rhap-(1→5)-α-Kdop-(2→3)-β-L-Rhap-(1→4)-β-D-GlcpNAc-(1→] 

↑
2 

OAc 

Sun et al., 
2012 

C. sakazakii*** O6 

β-D-GlcpNAc 
 ↓2 

[→4)-β-Kdop-(2→6)-β-D-Glcp-(1→6)-β-D-Galcp-(1→3)-β-D-GalcpNAc-(1→] 
3
↑

4 
OAc2 

Sun et al., 
2012 

C. sakazakii O7 
β-D-GlcpNAc 

↓2 
[→3)-α-L-FucpNAc-(1→4)-α-D-GalcpA-(1→3)-α-L-FucpNAc-(1→3)-β-D-GlcpNAc-(1→] 

Sun et al., 
2012 

C. sakazakii  nicht bekannt 
[→2)-β-D-Quip3NAc-(1→6)- α-D-Glcp-(1→3)- β-D-GlcpA-(1→3)-α-D-GalpNAc-(1→] 

↑
2 

α-D-Glcp 

MacLean et 
al., 2009b 

C. sakazakii* nicht bekannt 

α-D-GalpA-(1→4)-α-L-Rha                                            α-D-Glcp 
↓2                                                                                                                                    ↓4    

[→3)-α-L-Rhap -(1→4)-α-D-Glcp-(1→2)-α-L-Rhap-(1→3)-β-D-GlcpNAc-(1→] 
↑

4 
OAc 

Czerwicka 
et al., 2010 
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Fortsetzung Tabelle 2:  Oligosaccharid-Strukturen der O-spezifischen Seitenkette verschiedener Serotypen von Cronobacter spp. Die mit *, ** 
bzw. *** gekennzeichneten Stämme enthalten jeweils die gleichen Grundstrukturelemente. 

Spezies Serotyp Struktur Literatur 

C. turicensis O2 [→4)-α-Legp5Ac7Ac-(2→3)-α-D-Galp-(1→3)-β-L-Rhap-(1→4)-β-D-GlcpNAc-(1→] 
MacLean et 
al., 2011 

C. turicensis nicht bekannt 
α-D-Glcp 

↓2 
[→3)-β-D-GlcpNAc-(1→3)-β-L-Rhap-(1→4)-β-D-GlcpNAc-(1→] 

Czerwicka 
et al., 2013 

C. turicensis nicht bekannt 
α-D-Glcp 

↓4 
[→3)-β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)-α-D-Galp-(1→4)-α-Legp5Ac7Ac-(2→] 

MacLean et 
al., 2011 

C. malonaticus  
*** 

nicht bekannt 
β-D-GlcpNAc 

 ↓2 
[→4)-β-Kdop-(2→6)-β-D-Glcp-(1→6)-β-D-Galcp-(1→3)-β-D-GalcpNAc-(1→] 

MacLean et 
al., 2009c 

C. muytjensii** nicht bekannt [→3)-α-D-GalpNAc-(1→4)-α-D-Quip3NAc-(1→3)-α-L-Rhap-(1→6)-α-D-GlcpNAc-(1→4)-β-D-GlcpA-(1→] 
MacLean et 
al., 2009a 
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2.6 Nachweisverfahren für Cronobacter 

2.6.1 Klassische mikrobiologische Verfahren 

In der "Verordnung (EG) Nr. 2073/2005 der Kommission vom 15. November 2005 über 

mikrobiologische Kriterien für Lebensmittel" wird als Referenzverfahren zum Nachweis von 

Cronobacter spp. auf die Norm ISO/TS 22964 verwiesen. Das analytische Procedere beginnt 

mit einer nicht selektiven Voranreicherung der Probe in gepuffertem Peptonwasser, 

anschließend erfolgt eine selektive Flüssiganreicherung in modifizierter Laurylsulfat-

Tryptose-Bouillon unter Zusatz von Lactose und Vancomycin. Letzteres hemmt das 

Wachstum grampositiver Keime, die hohe Salzkonzentration in der Bouillon sowie die hohe 

Bebrütungstemperatur von 44 °C hemmen das Wachstum von anderen Enterobacteriaceae. 

Im Anschluss wird ein Aliquot der angereicherten Bouillon auf selektive Nährböden 

ausgebracht, z.B. ESIA (Enterobacter sakazakii isolation agar) oder CCI (Chromogenic 

Cronobacter isolation agar). Die Selektivmedien enthalten als Indikator für α-Glucosidase-

Aktivität, die für Cronobacter spp. charakteristisch ist, das Chromogen 5-Bromo-4-chloro-3-

indolyl-α-D-glucopyranosid (Farmer et al., 1980; Muytjens et al., 1984). Die Cronobacter-

Kolonien nehmen auf diesen Medien während der Inkubation eine spezifische blau-grüne 

Färbung an.  

Sowohl der hohe Zeitaufwand als auch die teilweise mangelnde Spezifität der klassischen 

Analyseverfahren (Gurtler et al., 2005) waren Anlaß für eine ganze Reihe von 

Untersuchungen, die die Entwicklung schnellerer und spezifischerer Nachweisverfahren zum 

Ziel hatten.  

 

2.6.2 Apparative Verfahren 

Apparative Verfahren bieten die Möglichkeit schnell und automatisiert Mikroorganismen 

nachzuweisen.  

Relativ weit verbreitet sind PCR-basierte Testssysteme für den Nachweis von Cronobacter 

spp. Grundprinzip dieser Verfahren sind Amplifikation und Nachweis spezifischer DNA-

Sequenzen. Bereits 2004 veröffentlichten Lehner et al. ein PCR-Verfahren zur Identifizierung 

von Cronobacter spp., das auf dem Nachweis des spezifischen 16S-rRNA-Gens beruht. Heute 

finden in der Praxis vor allem real-time PCR-Verfahren Anwendung. Hier ist direkt während 

der Analyse eine Signal-Detektion möglich, da durch die Amplifikation von DNA eine 
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Aktivierung von Fluoreszenzfarbstoffen erfolgt. Dies kann durch den Einsatz von 

Sondenmolekülen (z.B. TaqMan-System) oder den Einsatz von interkalierenden 

Fluoreszenzfarbstoffen (z.B. SYBR Green) geschehen (Schmidt & Rothhämel, 2012). PCR-

Verfahren für den Nachweis von Cronobacter spp. auf dieser Basis wurden z.B. von Liu et al. 

(2006) etabliert. Mittlerweile sind entsprechende Test-Kits kommerziell erhältlich (z.B. 

Applied Biosystems, 2011). Auch die FDA empfiehlt aktuell die Verwendung von PCR-

Verfahren zum Nachweis von Cronobacter spp. (Chen et al., 2012). 

Durch die Kombination von molekularbiologischen und immunchemischen Techniken 

gelang es Blazkova et al. (2011) einen immunchromatographischen Test zum Nachweis von 

Cronobacter spp. zu entwickeln. Dazu wurden auf einer Nitrocellulosemembran Antikörper 

gegen Digoxigenin immobilisiert, mit denen mittels PCR amplifizierte und mit Biotin und 

Digoxigenin markierte Gensequenzen (komplementär der 16S rRNA von Cronobacter spp.) 

gebunden werden. Die Visualisierung der Bindung erfolgt durch Zugabe von Carbon-

Nanopartikeln, die mit Biotin bindendem Neutravidin beladen sind. Postuliert wird ein 

Nachweis von Cronobacter spp. mit dieser Methode innerhalb von 16 Stunden. Dieses 

Nachweissystem wurde auch für die Untersuchung von PIF eingesetzt, nach Voranreicherung 

der Keime lag die Nachweigrenze bei weniger als 10 Keimen in 10 g PIF (Javurková et al., 

2012). Auf einem analogen Prinzip basiert ein weiteres Nachweisverfahren, das 2014 von 

Chen et al. beschrieben wurde. Hier wurden zur Detektion mit Neutravidin beladene Gold-

Nanopartikel eingesetzt. Es gelang auch bei einer Begleitflora von 108 KbE/mL Salmonella 

spp. spezifisch Cronobacter spp. nachzuweisen, in der Anreicherungsbouillon lag die 

Nachweisgrenze bei 106 KbE/mL (Chen et al., 2014).  

Als alternatives Identifizierungs-/Bestätigungsverfahren hat in den letzten Jahren die 

MALDI-TOF-MS-Analyse (matrix-assisted laser desorption ionisation time-of-flight mass 

spectrometry) weite Verbreitung gefunden. Ein auf diesem Nachweisprinzip basierendes 

Verfahren wurde auch zur Untersuchung von PIF eingesetzt (Javurková et al., 2012). Hierbei 

erfolgt eine Anreicherung der Keime nach Suspendieren der Probe in Flüssigkulturmedium. 

Im Anschluss werden nach Inkubation auf Selektivagar (z.B. ESIA) potentielle Cronobacter-

Kolonien identifiziert und eine geringe Menge der selektierten Bakterien in Zimtsäurederivat-

haltiger Matrix auskristallisiert. Nach Laser-Desorption werden im Massenspektrometer dann 

die Massen der Analyten (Messbereich meist 2-20 kDa) bestimmt. Aus dem sich daraus 

ergebenden Gesamtspektrum, das meist durch ribosomale Proteine dominiert wird, kann ein 

für den jeweiligen Mikroorganismus typischer Fingerprint erstellt werden (Javurková et al., 

2012).  
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Weitere apparative Verfahren wie die Pulsfeldgelelektrophorese oder die Multilocus-

Sequenzanalyse dienen in erster Linie zur Feintypisierung von Isolaten (Holy & Forsythe, 

2014). In der Routineanalyse zum Nachweis von Cronobacter spp. kommen sie nicht zur 

Anwendung und werden daher an dieser Stelle nicht näher beschrieben. 

  

2.6.3 Antikörper-basierte Verfahren 

Die Durchführung von PCR- und MALDI-TOF-Verfahren ist mit einem großen 

apparativen und ggf. auch infrastrukturellen Aufwand, dem Einsatz von hoch qualifiziertem 

Personal und daraus resultierend mit hohen Kosten verbunden. Als Alternative bieten sich 

immunchemische Testsysteme an, die kostengünstiger sind und auch schnelle spezifische 

Untersuchungen vor Ort, z.B. bei der Produktion von Lebensmitteln ermöglichen würden. 

Auf Antikörpern basierende Nachweisverfahren für Cronobacter spp. wurden bislang jedoch 

nur vereinzelt beschrieben. Eine Etablierung in der Routineanalytik erfolgte bisher nicht. 

Bereits im Jahr 2009 wurde durch Hochel & Škvor ein indirektes EIA-Verfahren zum 

Nachweis von C. sakazakii entwickelt. Dazu wurden Kaninchen mit erhitzten bzw. 

Formaldehyd-inaktivierten Zellsuspensionen von C. sakazakii ATCC 29544 immunisiert. 

Nach affinitätschromatographischer Isolierung der IgG-Fraktionen (polyklonale Antikörper) 

wurden indirekte Enzyimmuntests etabliert. Die gereinigten IgG-Fraktionen dienten als 

primäre spezifische Antikörper, als Sekundärantikörper wurde peroxidasemarkiertes Anti-

Kaninchen-IgG verwendet. Die Beschichtung der EIA-Platten erfolgte mit ganzen Zellen von 

C. sakazakii, die beschichteten Platten wurden zudem mit Glutaraldehyd (0,5% v/v) fixiert. 

Die gegen Formaldehyd-inaktivierte C. sakazakii-Keime gewonnenen Kaninchenseren 

erwiesen sich als etwas sensitiver, die Nachweisgrenze des entsprechenden EIA lag bei 0,6 x 

105 KbE/ml (bezogen auf Stamm C. sakazakii ATCC 29544). Allerdings reagierte nur einer 

von zwölf weiteren getesteten C. sakazakii-Stämmen positiv, so dass die Autoren eine 

Serotyp-Spezifität der hergestellten Kaninchen-Antiseren postulierten (Hochel & Škvor, 

2009). Eine Zuordnung der untersuchten Keime zu den verschiedenen Serotypen von C. 

sakazakii erfolgte in der Publikation jedoch nicht.  

Park et al. gelang es 2012 einen hochspezifischen Sandwich-EIA zur Detektion von C. 

muytjensii zu etablieren. Dieses System basiert auf polyklonalen Antikörpern 

(Fangantikörper: IgY aus dem Hühnerei, Detektionsantikörper: IgG aus dem Kaninchen). Als 

Immunogen wurde ein mittels Ultraschallbehandlung gewonnenes Zelllysat von C. muytjensii 
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ATCC 51329 eingesetzt. Kreuzreaktionen im generierten Testsystem mit pathogenen 

Bakterienstämmen anderer Gattungen wie E. coli, S. Thyphimurium, S. aureus, B. cereus und 

L. monocytogenes wurden nicht festgestellt. Auch Kreuzreaktionen mit Stämmen der Gattung 

Enterobacter konnten nicht nachgewiesen werden. Angaben zur Epitop-Spezifität wurden 

nicht gemacht. Aus dem Genus Cronobacter war nur für C. muytjensii-Stämme eine positive 

Reaktion feststellbar, andere Cronobacter-Spezies wurden nicht erfasst, wobei allerdings nur 

drei C. muytjensii-Stämme, zwei C. sakazakii-Stämme und ein Stamm der Spezies C. 

turicensis getestet wurden. Die Nachweisgrenze des EIAs wurde mit 6,3 x 104 KbE/ml 

angegeben (Park et al., 2012).  

Weitere immunchemische Testsysteme, die auch für die Untersuchung von PIF eingesetzt 

wurden, beschrieben Xu et al. (2014). Neben einem auf polyklonalen Kaninchen-Antikörpern 

basierenden indirekten EIA-Verfahren, wurden unter Verwendung von polyklonalen 

(Kaninchen)- bzw. monoklonalen (Maus)-Antikörpern auch zwei Sandwich-EIAs etabliert. 

Die Versuchstiere wurden mit hitzeinaktivierten Keimen des Stammes C. sakazakii ATCC 

29544 immunisiert. Die Nachweisgrenzen lagen bei 105 KbE/ml (indirekter EIA) bzw. 2 x 104 

KbE/ml (Sandwich-EIAs). Für dotierte PIF-Proben konnten nach 10 h Anreicherung in einer 

nicht selektiven Bouillon (modifizierte Laurylsulfat-Tryptose-Bouillon) Nachweisgrenzen 

von 1 KbE/100 g PIF realisiert werden. Während in den Sandwich-EIAs lediglich mit 

Stämmen der Spezies C. sakazakii positive Signale erhalten wurden (vier Stämme wurden 

getestet), reagierten im indirekten EIA unter Verwendung der aufgereinigten polyklonalen 

Antikörper alle untersuchten 12 Cronobacter-Stämme verschiedener Species, wie z.B. C. 

malonaticus, C. muytjensii, C. turicensis oder C. dublinensis. Kreuzreaktivität mit Stämmen 

anderer Gattungen (z.B. Escherichia, Enterobacter, Citrobacter, Salmonella) wurde nicht 

nachgewiesen (Xu et al., 2014).  
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3. EIGENE UNTERSUCHUNGEN 

3.1 Material 

3.1.1 Chemikalien und Biochemika 

6-Amino-n-Capronsäure (Sigma-Aldrich, A2504) 

ALEXA Fluor 488 goat anti-mouse IgG (H + L) (Invitrogen, A11029) 

Aminopterin (Sigma, A 515) 

Bradford-Reagenz (Sigma, B6916) 

Bromphenolblau (Serva, 15375) 

Casein (Oxoid, LP0041) 

Coomassie Blue R „Phast Gel“ (GE Healthcare, 17-0518-01) 

Complete Mini Protease Inhibitor Cocktail Tablets (Roche, 04693124001) 

Desoxyribonuclease I (Sigma, DN25) 

Dulbecco´s Medium (Biochrom, F 0435) 

Ethylendiamintetraessigsäure Dinatriumsalz Dihydrat, EDTA (Sigma, E1644) 

Equilibration Buffer I ReadyPrep starter kit (BIO-RAD 163-2107) 

Equilibration Buffer II ReadyPrep starter kit (BIO-RAD 163-2108) 

Fetal Calf Serum, FCS (Biochrom, S 0115) 

Goat Anti-Mouse Fab-Fragment Alexa 488 (Life Technologies, A11017) 

Hefeextrakt (Oxoid, LP0021) 

Hypoxanthin/Thymidin (Sigma, H 0137) 

Immobilon Western Chemiluminescent HRP Substrat (Millipore, WBKLS0100) 

L-Glutamin (Biochrom, K 0282) 

LMW Calibration Kit for SDS Electrophoresis (GE Healthcare, 17-0446-01) 

Magermilchpulver (Merck, 1.15363.0500) 

Mercaptoethanol (Sigma, M 6250) 

Mineralöl (BIO-RAD, 163-2129) 

Mouse Monoclonal Antibody Isotyping Reagent (Sigma, ISO2) 

Natriumpyruvat (Biochrom, L 0473) 

NBT/BCIP Ready-to-Use Tablets (Roche, 11 697 471 001) 

Overlay Agarose Ready Prep (BIO-RAD, 163-2111) 
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Paraformaldehyd (Fluka, 76240) 

Polyethylenglycol PEG 1500 (Roche, 10783641001) 

Polyklonales Kaninchen-Anti-Maus-Ig/HRP (Dako, P0161) 

Precision Plus Protein All Blue Standards (BIO-RAD, 161-0373) 

Ponceau S Solution (Sigma, P7170) 

Polymyxin B Sulfat (Sigma, P1004) 

Proteinase K (Sigma-Aldrich, P6556) 

Rehydration/Sample Buffer Ready Prep (BIO-RAD, 163-2106) 

Ribonuclease A (Sigma, R5503) 

Silbernitrat (Sigma-Aldrich, 209139) 

Tetramethylbenzidin (Sigma, T 2885) 

Tris-(hydroxymethyl)-aminomethan, TRIS (Roth, 0188.3) 

Tris/Tricine/SDS Buffer, 10 x (BIO-RAD, 161-0744) 

Triton X-100 (Sigma, 9002-93-11) 

Trizma Base (Sigma-Aldrich, T1503) 

Trypton (Fluka, 95039) 

Tween-20 (Sigma, P1379) 

XT MOPS Running Buffer, 20 x Electrophoresis purity reagent (BIO-RAD, 161-0788) 

XT Sample Buffer, 4 x (BIO-RAD, 161-0791) 
 

Alle weiteren, nicht separat aufgeführten Reagenzien wurden in p.a.-Qualität eingesetzt. 

3.1.2 Bakterienstämme 

Für die Untersuchungen wurden die in Tabelle 3 aufgeführten Bakterienstämme aus der 

Stammsammlung des Lehrstuhls für Hygiene und Technologie der Milch der LMU München 

(Präfix: MHI) verwendet. Soweit es sich dabei um Isolate aus anderen Sammlungen wie der 

Deutschen Stammsammlung von Mikroorganismen (DSMZ) oder der Stammsammlung des 

Institutes für Lebensmittelsicherheit und Lebensmittelhygiene der Universität Zürich (Präfix: 

E) handelt, ist die ursprüngliche Bezeichnung ergänzend aufgeführt. 
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Tabelle 3: Verwendete Bakterienstämme  

Bezeichnung Spezies Herkunftsland Herkunft 

Cronobacter spp. 

MHI 975 DSMZ 4485 Cronobacter sakazakii USA Kind (Rachen) 

MHI 977  Cronobacter sakazakii Deutschland Milchpulver 

MHI 979  Cronobacter sakazakii Deutschland Milchpulver 

MHI 982  Cronobacter sakazakii Deutschland Babynahrung 

MHI 986  Cronobacter sakazakii Deutschland Babynahrung 

MHI 987  Cronobacter sakazakii Deutschland Babynahrung 

MHI 990  Cronobacter sakazakii Deutschland Babynahrung 

MHI 992  Cronobacter sakazakii Deutschland Babynahrung 

MHI 995  Cronobacter sakazakii Deutschland Babynahrung 

MHI 21000  Cronobacter sakazakii Deutschland Babynahrung 

MHI 21001  Cronobacter sakazakii Deutschland Babynahrung 

MHI 21002  Cronobacter sakazakii Deutschland Babynahrung 

MHI 21008  Cronobacter sakazakii Deutschland Babynahrung 

MHI 21011  Cronobacter sakazakii Deutschland Babynahrung 

MHI 21012  Cronobacter sakazakii Deutschland Babynahrung 

MHI 21027 E 604 Cronobacter sakazakii Kanada Klinisches Isolat  

MHI 21028 E 655 Cronobacter sakazakii Kanada Klinisches Isolat  

MHI 21029 E 785 Cronobacter sakazakii Holland Neugeborenes 

MHI 21030 E 789 Cronobacter sakazakii Holland Neugeborenes 

MHI 21032 E 796 Cronobacter sakazakii Großbritannien Human 

MHI 21035 E 886 Cronobacter sakazakii Holland Neugeborenes 

MHI 21036 E 535 Cronobacter sakazakii Deutschland Humanes Isolat 

MHI 21037 E 786 Cronobacter sakazakii Holland Neugeborenes 

MHI 21038 E 821 Cronobacter sakazakii USA Neugeborenes 

MHI 21039 E 823 Cronobacter sakazakii USA Neugeborenes 

MHI 21040 E 824 Cronobacter sakazakii USA Human 

MHI 21041 E 901 Cronobacter sakazakii USA Klinisches Isolat 

MHI 21031 E 793 Cronobacter muytjensii USA Human 

MHI 21026 3032 Cronobacter turicensis Schweiz Neugeborenes 

MHI 21049 E 625 Cronobacter turicensis Korea Babynahrung 

MHI 21050 E 609 Cronobacter turicensis Großbritannien Lebensmittel 

MHI 981  Cronobacter universalis Deutschland Milchpulver 
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Fortsetzung Tabelle 3: Verwendete Bakterienstämme  

Bezeichnung Spezies Herkunftsland Herkunft 

Sonstige gramnegative Enterobacteriaceae 

MHI 708 DSMZ 499 Escherichia coli Deutschland unbekannt 

MHI 712  Escherichia coli Deutschland unbekannt 

MHI 815  Escherichia coli Deutschland unbekannt 

MHI 902 DSMZ 30039 Citrobacter freundii Deutschland Typstamm 

MHI 903 DSMZ 30047 Citrobacter sp. Deutschland Hackfleisch 

MHI 904 DSMZ 30054 Enterobacter cloacae Deutschland Spinalflüssigkeit 

MHI 905  Moellerella wisconsensis Deutschland Rohschinken 

MHI 906 DSMZ 5570 Shigella sonnei unbekannt Typstamm 

MHI 909 DSMZ 10062 
Salmonella enterica subsp. 
enterica serovar Senftenberg 

Deutschland unbekannt 

MHI 910 DSMZ 30097 Hafnia alvei Deutschland unbekannt 

MHI 911 DSMZ 788 Proteus mirabilis Deutschland unbekannt 

MHI 913 DSMZ 30119 Proteus vulgaris Deutschland Faeces 

MHI 914 DSMZ 4782 Shigella flexneri Deutschland Typstamm 

MHI 952 DSMZ 6676 Providencia stuartii Deutschland Faeces (Kind) 

MHI 955 DSMZ4560 Enterobacter hermannii Deutschland Human (Fuß) 

MHI 968  Enterobacter asburiae Japan unbekannt 

MHI 969  
Enterobacter aerogenes WS 

1292 
Deutschland unbekannt 

MHI 973 DSMZ 4780 Yersinia enterocolitica Deutschland Human (Nasenschleim) 

MHI 974 DSMZ 4480 Serratia rubidea Deutschland Typstamm 

MHI 991 DSMZ 6675 Morganella morganii Deutschland Faeces (Kind) 

MHI 21024  Klebsiella pneumoniae unbekannt Kolostrum (Kalb) 

Ohne BL 21 Escherichia coli Deutschland unbekannt 

Sonstige Gramnegative Keime 

MHI 954 DSMZ 2403 Acinetobacter lwoffii Deutschland Typstamm 

MHI 1000 DSMZ 939 Pseudomonas aeruginosa Deutschland Wasser 

MHI 1001 DSMZ 4358 Pseudomonas fluorescens Deutschland Rohmilch 

MHI 1004 DSMZ 30020 Aeromonas media Deutschland pasteurisierte Milch 

MHI 1007 DSMZ 30004 Achromobacter liquefaciens Deutschland unbekannt 

MHI 1017 DSMZ 291 Pseudomonas putida Deutschland Laktatanreicherung 
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Fortsetzung Tabelle 3: Verwendete Bakterienstämme  

Bezeichnung Spezies Herkunftsland Herkunft 

Grampositive Keime 

MHI 163 DSMZ 4384 Bacillus cereus Deutschland Lebensmittelvergiftung 

MHI 348 DSMZ 20372 Staphylococcus aureus unbekannt unbekannt 

MHI 379  Staphylococcus aureus unbekannt Milch 

MHI 409  Staphylococcus aureus unbekannt Kolostrum 

MHI 414 DSMZ 20491 Staphylococcus aureus unbekannt unbekannt 

 

3.1.3 Lösungen, Puffer und Nährmedien 

Anzucht der Bakterien 

- Luria-Bertani-Medium (LB): 10 g Trypton, 5 g Hefeextrakt, 10 g NaCl, A. dest. ad 

1000 ml (pH 7,0) 

Lyse von Bakterien 

- Lyse-Puffer:  20 mg Polymyxin-B-Sulfat, 0,4 mg DNase, 9,5 mg MgCl2, 80 µg 

RNase, 1,5 ml Complete-Mini-Stock-Solution, PBS ad 10 ml 

EIA 

-  Bicarbonatpuffer:  (pH 9,6): 1.000 ml A. dest., 1,59 g Na2CO3, 2,93 g NaHCO3 

-  Phosphatgepufferte Kochsalzlösung (PBS): 1000 ml A. dest., 6,79 g NaCl, 1,47 g 

Na2HPO4, 0,43 g KH2PO4 (pH 7,3) 

-  Absättigungslösung:  3 g Casein, 97 ml PBS 

-  Waschlösung:  1000 ml A. dest., 8,55 g NaCl, 2,5 ml Tween 20  

- TMB-Lösung:  9 ml Methanol, 1 ml Aceton, 50,4 mg 3,3´,5,5´-

Tetramethylbenzidin 

-  H2O2-Puffer:  800 ml A. dest., 44,129 g Citronensäure Monohydrat, 200 ml 1M 

KOH (pH 3,95), 336 µl H2O2  

-  Chromogen-/ Substratlösung: 20 ml H2O2-Puffer, 1 ml TMB-Lösung 

-  Stopplösung:  1 mol/l H2SO4  
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SDS-PAGE bzw. 2-D-Elektrophorese 

-  Tris/HCl-Puffer:  0,73 g Tris, A. dest. ad 100 ml, HCl bis pH 8,0 

-  SDS-Puffer:  0,2 g EDTA, 15 g SDS, Tris/HCl ad 200 ml 

-  Bromphenolblau-Lösung:  0,3% (w/v) Bromphenolblau in A. dest. 

-  Coomassie-Färbelösung:  1 Tablette Coomassie Blue R “PhastGel“, 120 ml Methanol, 

 80 ml A. dest.  

-  Entfärber:  300 ml A. dest., 150 ml Methanol, 50 ml Eisessig 

-  Fixierer:  425 ml A. dest., 50 ml Eisessig, 25 ml Glycerin 

Immunoblot 

-  Anodenpuffer I:  37,2 g Trizma Base, 200 ml Methanol, A. dest. ad 1000 ml 

-  Anodenpuffer II:  3,02 g Trizma Base, 200 ml Methanol, A. dest. ad 1000 ml 

-  Kathodenpuffer:  5,24 g 6-Amino-n-Capronsäure, 3,02 g Trizma Base, 200 ml 

  Methanol, A. dest. ad 1000 ml 

-  Absättigungslösung:  3 g Casein, 97 ml A. dest., 25 µl Tween 20 

-  Entfärbelösung:  5 ml Eisessig, A. dest. ad 100 ml 

-  Detektionslösung:  Super Signal West Femto Maximum Sensitivity Substrate 

  Kit (Thermo, 34095) 

Zellkultur 

-  HT- Medium:   500 ml Dulbecco´s Medium, 100 ml FCS, 5 ml Na-Pyruvat-

 Lösung (100 mM), 10 ml L-Glutaminlösung (200 mM), 5 

 ml Mercaptoethanollösung (5 mM), 5 ml Hypoxanthin (100 

 mM)/ Thymidin (16 mM) 

-  HAT-Selektivmedium:  HT-Medium + Aminopterin (1 Fläschchen in 10 ml sterilem 

 PBS gelöst) 

LPS-Präparation und Detektion 

-  TAE-Puffer:  540 mM Tris-Acetat-Puffer (pH 8,5), 2 mM EDTA (steril filtriert) 

-  Lösung I:   0,3 g SDS, 0,6 g Trizma base, 1,28 ml 1N NaOH, A. dest. ad 10 ml 

-  Lösung II:  0,5 ml 1M Tris-HCl (pH 8), 333 µl 3M Na-Acetat, A. dest. ad 10 ml 

-  3M Na-Acetat (pH 5,2) 

-  Phenollösung:  Phenol, Chloroform, Isoamylalkohol (1:1:24) 



 3. Eigene Untersuchungen      27 

-  2x SDS-Ladepuffer: 120 mM Tris-HCl (pH 6,8), 4% Glycerin, 4% SDS, 8% ß-

Mercaptoethanol, 0,04% Bromphenolblau 

-  Fixierlösung:  40 ml Ethanol (absolut), 5 ml Essigsäure (96%), 55 ml A. dest.  

- Fixierlösung mit Na-Perjodat, frisch herstellen: 200 ml Fixierlösung, 1,4 g Na-Perjodat  

-  Färbelösung, frisch herstellen: 140,2 ml A. dest., 2,8 ml 1N NaOH, 2 ml Ammoniak 

(32%), 5 ml AgNO3-Lösung (20% in A. dest.)  

  Die Reihenfolge der Substanzzugabe ist einzuhalten!  

-  Entwickler, frisch herstellen:  200 ml A. dest., 10 mg Citronensäure, 100 µl 

Formaldehyd (37%) 

-  50 mM EDTA-Lösung: 3,42 g EDTA, A. dest. ad 200 ml 

-  TBS:   0,48 g TRIS, 1,8 g NaCl, A. dest. ad 200 ml 

-  Blotpuffer:  3,03 g TRIS, 14,4 g Glycin, 200 ml Methanol, 800 ml A. dest.  

-  Absättigungslösung, frisch herstellen: 0,2 g Tween 20,6 g Magermilchpulver, TBS ad 

200 ml; Magermilchpulver unter Erwärmen lösen und durch einen 

Papierfilter filtrieren 

Sonstiges 

-  Proteinase-K-Lösung (PK): 1,0 mg Proteinase K, A. dest ad 1000 µl 

 

3.1.4 Weitere Materialien 

EIA 

Mikrotiterplatten (96 well, Nunc, Immuno Plate Maxi Sorp, 439454) 

Bradford-Bestimmung 

Küvette, Quarzglas suprasil 10,00 mm (Hellma) 

SDS-PAGE 

PhastGelTM Gradient 10-15 (GE Healthcare, 17-0540-01) 

PhastGelTM SDS-Buffer Strips Pufferstreifen (GE Healthcare, 17-0516-01)  

PhastGelTM Sample Appl. 8/1 (GE Healthcare 18-1618-01)  
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Immunoblot 

Immobilon-P Transfer Membrane PVDF 0,45 µm (Millipore, IPVH304F0) 

Electrode Paper Novablot (GE Healthcare, 80-1106-19) 

2-D-Elektrophorese 

Electrode Wicks (BIO-RAD, 1654071) 

IPG-Strips 11 cm, pH 4-7 (BIO-RAD 163-2015) 

IPG-Strips 11 cm, pH 5-8 (BIO-RAD 163-2018) 

PROTEAN i12 IEF Cell 11 cm rehydration trays (BIO-RAD, 1654025) 

Criterion Tris-HCl Gel 10%, IPG + 1 well, 11 cm (BIO-RAD, 345-0101) 

Criterion Tris-HCl Gel 12,5%, IPG + 1 well, 11 cm (BIO-RAD, 345-0102) 

Criterion XT Bis-Tris Gel 12%, IPG + 1 well, 11 cm (BIO-RAD, 345-0121) 

Zellfusion 

Maus-Myelomzellen X63-Ag8.653 (DSM, ACC-43) 

Mikrotiterplatten (96 well, Nunc, 436110) 

LPS-Präparation und Detektion 

Criterion XT Bis-Tris Gel 12%, 18 Well Comb, 30 µl, 1.0 mm (BIO-RAD, 345-0118) 

Immobilon-P Transfer Membrane PVDF 0,45 µm (Millipore, IPVH304F0) 

Criterion Blotter Filter Papier (BIO-RAD, 1704085) 

Sonstiges 

Columbia-Agar mit Schafblut Plus Platten (Oxoid, PB5039A) 

Amicon Ultra Centrifugal Filter Units (Millipore, UFC803024) 

Eppendorf Reaktionsgefäße 0,5 ml (Eppendorf, 0030 121.023) 

Eppendorf Reaktionsgefäße 1,5 ml (Eppendorf, 0030 120.086) 

Eppendorf Reaktionsgefäße 2,0 ml (Eppendorf, 0030 120.094) 

Filterpapier Grade 3 hw (Munktell, 4.303.150) 

Gold Seal, 22 x 22 mm (Sciences Services GmbH, E63757-01) 

Lysing Matrix B (MP Biomedicals, 6911-050) 

Millex GV Filter Unit 0.22 µm (Millipore, SLGV033RB) 

PP-Röhrchen, steril, 15 ml (Greiner bio-one, 188271) und 50 ml (Greiner bio-one, 227261) 

Zählkammer nach Thoma (Brand) 
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3.1.5 Geräte 

Gelelektrophorese  

Criterion Cell (BIO-RAD) 

Phast System Separation and Control Unit (Amersham Pharmacia Biotech) 

Protean IEF Cell (BIO-RAD) 

GS-800 Calibrated Densitometer (BIO-RAD) 

EPS 1001 (GE Healthcare) 

Power Pac HC (BIO-RAD) 

Immunoblot 

Novo Blot Multiphor II (Amersham Biosciences) 

Kodak Image Station 200MM (Biostep) 

Criterion Blotter 560BR (BIO-RAD) 

Sonstige: 

Autoklav:  Varioklav Dampfsterilisator  (H+P Labortechnik GmbH)  

Brutschrank:   Brutschrank - Memmert 

Heizblock:  Thermomixer comfort (Eppendorf) 

Magnetrührer:  AREX Heating Magnetic Stirrer (VELP Scientifica)  

Mikroskop:  Fluoreszenzmikroskop BZ-8000 (Keyence) 

pH-Meter:  inoLab (wtw) 

Photometer:  Photometer UV - 1602 (Shimadzu Corporation) 

Autoreader:  Sunrise (Tecan) 

Pipetten:  Eppendorf Research 10-100 µl, 10-300 µl 

   Eppendorf Reference 0,5-10 µl, 100-1000 µl 

Ribolyser:  Hybaid Ribolyser Homogenisator (Hybaid GmbH) 

Schüttler:  Vortex-Genie Model K-550-GE (Merck) 

Schüttelinkubator: Controlled Environment Incub. Shaker (New Brunswick) 

Sterilbank:  Sterilwerkbank HERA-safe (Heraeus) 

Taumler:  Heidolph Polymax 1040 (Schütt) 

Waagen:  Sartorius excellence 

   Sartorius research 
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Zentrifugen:  Zentrifuge Multifugee 1 S-R (Heraeus) 

   Biofuge pico (Heraeus) 

   Suprafuge 22 (Heraeus) 

3.1.6 Software 

Bildanalyse Software, BZ-Analyser für Fluoreszenzmikroskop (Keyence) 

RIDAWIN (R-Biopharm AG) 

KODAK 1D 3.6. software (Biostep) 

PDQuest 2-D-Analysis software 2003 (BIO-RAD) 
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3.2 Methodik 

3.2.1 Bradford-Bestimmung 

Um den Proteingehalt von Proben zu bestimmen, wurden 5 µl proteinhaltiges 

Probenmaterial mit 5 µl A. dest. verdünnt und mit 500 µl Bradford-Reagenz versetzt. Als 

Blindwert wurden 5 µl A. dest. wie eine Probe behandelt. Die Reaktion erfolgte bei 

Raumtemperatur im Dunkeln über einen Zeitraum von 10 min. Nach Ablauf dieser Zeit 

wurden die Proben photometrisch bei 595 nm gegen den Blindwert vermessen und über eine 

Kalibriergerade (0–500 µg/ml bovines Serumalbumin) der Proteingehalt quantitativ bestimmt. 

Prinzipiell wurden Bestimmungen der Proteinkonzentration mittels Bradford im Rahmen 

dieser Arbeit nur für die hergestellten Lysate (3.3.1) durchgeführt, da die Ghost-Präparationen 

(3.3.1) aufgrund ihrer Zusammensetzung (Suspension von unlöslichen Zellbestandteilen) 

diversen Verdünnungsschritten unterzogen werden mussten, um die Trübung des 

Probenmaterials soweit zu reduzieren, dass eine valide photometrische Bestimmung erfolgen 

konnte.  

 

3.2.2 Enzymimmuntest (EIA) 

Für den Nachweis spezifischer Antikörper gegen Cronobacter spp. in Seren immunisierter 

Mäuse bzw. Zellkulturüberständen (ZKÜ) der generierten Hybridoma-Zelllinien, wurden 

indirekte EIA-Verfahren unter Verwendung verschiedener Antigen-Präparationen eingesetzt. 

Dazu wurden Mikrotiterplatten mit gleich bleibenden Konzentrationen der Antigen-

Präparationen (3.3.4.1; verdünnt in Bicarbonatpuffer; 100 µl/Kavität) beschickt und bei 

Raumtemperatur (Ausnahme: unbehandeltes Keimmaterial bei 4 °C) über Nacht inkubiert.  

Anschließend wurden die Platten ausgeschlagen und die Kavitäten mit je 200 µl 

Absättigungslösung versetzt. Nach 2-3 h wurden die Platten erneut ausgeschlagen, dreimal 

mit Waschlösung gespült und auf einem Stapel mit Filterpapier trocken geschlagen. Danach 

wurde eine Verdünnungsreihe der polyklonalen Maus-Antiseren bzw. antikörperhaltigen 

ZKÜ zugegeben (100 µl/Kavität). Nach einstündiger Inkubationszeit und viermaligem 

Waschen mit Waschlösung wurden in jede Kavität 100 µl der peroxidasemarkierten 

Sekundärantikörper (Anti-Maus-Ig-HRP; verdünnt 1:3.000 in 1% Casein/PBS) pipettiert und 

erneut eine Stunde inkubiert. Nach einem dritten Waschschritt (5-maliges Spülen) wurden in 
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jede Kavität 100 µl Substrat/Chromogenlösung gegeben und nach 20 min die Farbreaktion 

durch Zugabe von 100 µl Stopplösung beendet. Mittels Mikrotiterplatten-Lesegerät 

(Autoreader) erfolgte abschließend die Bestimmung der Extinktion bei 450 nm. 

Die Bestimmung der Affinität bzw. der Spezifität der hergestellten Antikörper erfolgte 

unter identischen EIA-Bedingungen, mit dem Unterschied, dass hierbei eine 

Verdünnungsreihe der Antigen-Präparationen zur Beschickung der Platten verwendet wurde 

und die Antikörper in gleich bleibender Konzentration eingesetzt wurden.  

 

3.2.3 Gel-Elektrophorese (SDS-PAGE) und Coomassie-Färbung 

Zur Auftrennung der Proteine wurden 20 µl Probenmaterial, 10 µl SDS-Puffer sowie 1 µl 

Bromphenolblaulösung vermischt und für 5 min auf 100 °C erhitzt. Aliquote jeder Probe (1 

µl, max. 2 µg Protein) wurden auf das Gel aufgetragen. Die elektrophoretische Trennung 

erfolgte bei 15 °C und 10 mA in einem Spannungsgradienten von 110 bis 240 V.  

Für eine anschließende Proteinfärbung mit Coomassie-Brillant-Blau wurden die Gele in 

filtrierter Coomassie-Färbelösung für 60 min auf einem Taumler inkubiert und im Anschluss 

über 2 h mit Entfärbelösung entfärbt. Danach wurden die Gele kurz mit A. dest abgespült und 

abschließend für 10 min mit Fixierlösung behandelt. 

 

3.2.4 2-D-Elektrophorese 

Ein etwa 150–250 µg Protein enthaltendes Aliquot des Probenmaterials (Lysate nach 

Polymyxinbehandlung; 3.3.2) wurde mit 1,5 ml 2-D-Sample-Puffer versetzt und anschließend 

mittels Ultrafiltrationseinheiten auf ein Volumen von etwa 120 µl aufkonzentriert. Der Ansatz 

wurde auf einen 11 cm-IEF-Strip aufgetragen und für 12 h inkubiert. Anschließend wurde der 

Gelstreifen zur isoelektrischen Fokussierung (IEF) in die Protean-IEF-Cell eingebracht. Um 

ein Austrocknen zu verhindern, wurde der IEF-Strip während der Inkubation und der 

isoelektrischen Fokussierung mit Mineralöl beschichtet.  
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Die IEF wurde bei 20 °C unter folgenden technischen Bedingungen durchgeführt:  

 Spannung 

[V] 

Zeit Volt-Hours 

[V-hr] 

Verlauf Rehydrierung Strom 

[µA/strip] 

Stufe 1 250 20 min - linear inaktiv max. 50 

Stufe 2 8.000 2,5 h - linear inaktiv max. 50 

Stufe 3 8.000 - 20.000 rapid inaktiv max. 50 

 

Nach Abschluss der isoelektrischen Fokussierung wurde der Gelstreifen je 10 min in 

Equilibration-Puffer I und II konditioniert und nach kurzem Abspülen mit Running-Puffer in 

die vorgesehene Aussparung des 2D-Gels eingebracht. Luftreste in der Aussparung wurden 

durch Auffüllen mit erwärmter Agarose entfernt. In eine weitere Kavität des Gels wurden 5 µl 

der Referenzproteinlösung pipettiert. Nach ca. 5 min (Verfestigung der Agarose) konnte das 

Gel in die Elektrophoresekammer eingebracht werden. Die Apparatur wurde vollständig mit 

Running Puffer befüllt und die Elektrophorese bei 200 V durchgeführt (35 bis 60 min). Im 

Anschluss wurde das Gel entweder mit Coomassie-Brillant-Blau gefärbt oder mittels 

Immunoblot weiter untersucht. 

 

3.2.5 Generierung von Hybridomzelllinien 

Die Zellfusionen wurden, wie von Wiescher (2013) beschrieben, durchgeführt. Nach 

Entnahme der Milz und Präparation einer Einzelzellsuspension wurde das Zellmaterial unter 

Verwendung von Polyethylenglykol 1500 mit Maus-Myelomzellen der Linie X36-Ag8.653 

fusioniert. Zur Kultivierung der Fusionsprodukte wurden mit Makrophagen vorbeschichtete 

Mikrotiterplatten (2,5 x 10³ Zellen/Kavität) verwendet.  

Der erste Test auf Produktion von Antikörpern erfolgte mittels indirektem EIA (3.3.5) 12 d 

nach Zellfusion. Positiv reagierende Klone wurden weiter vermehrt und mittels 

Endpunktverdünnung (Limiting-dilution-Technik) kloniert. Die Isotypisierung der 

selektierten Klone erfolgte mittels eines Mouse Monoclonal Antibody Isotyping Kits. 

  

3.2.6 Immunoblot 

Zur Überprüfung der Reaktivität generierter Antikörper wurde über SDS-PAGE (3.2.3) 

oder 2-D-Elektrophorese (3.2.4) aufgetrenntes Probenmaterial mittels Semidry-Blotting in 
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einem Novo Blot Multiphor II-Gerät für 1 h bei 0,8 mA/cm² auf eine PVDF-Membran 

transferiert. Der Aufbau dieses Verfahrens ist in Abbildung 2 skizziert. 

 

Abbildung 2: Schematischer Aufbau eines Graphitblotters für Semidry-Blotting 

 
Nach erfolgtem Blotting wurden die Membranen mit Ponceau-S-Lösung angefärbt und mit 

5% (v/v) Essigsäure entfärbt, bis die Proteinbanden sichtbar wurden. Die Position der 

Referenzproteine wurde markiert. Anschließend wurden zur Blockierung freier 

Proteinbindungsstellen die Membranen über Nacht in Absättigungslösung inkubiert. Danach 

erfolgte die Zugabe der Primärantikörper in Form von Zellkulturüberständen (ZKÜ) der 

Hybridome (i.d.R. eingesetzt in einer Verdünnung von 1:10 in 3%- Casein-PBS-Tween-

Lösung) für 1 h. Nach einem Waschschritt [3 x 10 min in PBS unter Zusatz von 0,025% (v/v) 

Tween 20] wurde der Blot für 1 h mit peroxidasemarkierten Sekundärantikörpern 

(Kaninchen-anti-Maus; 1:1.500 in 3%-Casein-PBS-Tween) inkubiert und der Waschschritt 

wiederholt. Nach weiteren 10 min, in denen die Membran in PBS gespült wurde, erfolgte eine 

fünfminütige Inkubation mit Immobilon Western-Chemiluminescent-HRP-Substrat. 

Abschließend wurde die Lumineszensentwicklung auf der Membran über eine Kodak Image 

Station ermittelt. 

Alternativ erfolgte die Detektion der enzymmarkierten sekundären Antikörper auf der 

Membran unter Verwendung der NBT/BCIP Ready-to-Use Tablets.  

 

3.2.7 Immunfluoreszenz  

Um Aussagen über Bindungseigenschaften von Antikörpern an Oberflächenstrukturen 

vitaler Bakterien treffen zu können, wurden Immunfluoreszenztests durchgeführt. Dazu 

wurden über Nacht Bakterien ausgewählter Stämme in 10 ml LB bei 37 °C im 

Schüttelinkubator angezüchtet. Ein Aliquot der Kultur (20 µl) wurde mit 230 µl PBS versetzt 

und bei 7.000 x g für 15 min zentrifugiert. Das erhaltene Pellet wurde nach Entfernen des 

Kathode 
 
9 x Filter (Kathodenpuffer) 
 

Gel 
Membran 
3 x Filter (Anodenpuffer II) 
 

6 x Filter (Anodenpuffer I) 
 

Anode 
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Überstandes in 225 µl PBS unter Zusatz von 1% (v/v) Tween 20 aufgenommen, mit 25 µl des 

zu testenden antikörperhaltigen ZKÜ versetzt und bei Raumtemperatur für 30 min inkubiert. 

Danach wurde erneut bei 7.000 x g für 15 min zentrifugiert und das Pellet in 250 µl PBS 

resuspendiert. Folgende Arbeitsschritte wurden anschließend im Dunkeln ausgeführt: 

- Zugabe von 1 µl fluoreszenzmarkiertem Sekundärantikörper (Anti-Mouse Fab-

 Fragment) 

-  30 min Inkubation bei Raumtemperatur 

-  Zentrifugation (7.000 x g, 15 min) 

-  Pellet aufnehmen in 250 µl PBS. 

Ein Aliquot der erhaltenen Suspension (40 µl) wurde abschließend mittels 

Fluoreszenzmikroskop analysiert. 

Das beschriebene Verfahren kam auch für die Untersuchung von Bakterienpräparationen 

nach Polymyxin-B-Verdau zur Anwendung. Dabei wurden statt der lebenden Keime Aliquote 

der nach 3.3.2 hergestellten Ghost-Präparationen (5 µl) wie oben beschrieben aufgearbeitet 

und untersucht. 

 

3.2.8 Präparation und Detektion von Lipopolysacchariden 

Im Rahmen von Untersuchungen zur Epitop-Spezifität der generierten Antikörper, wurden 

Lipopolysaccharid-Präparationen verschiedener Bakterienstämme hergestellt und analysiert. 

 

3.2.8.1 Isolierung von Lipopolysacchariden 

Bakterien ausgewählter Stämme wurden in LB-Medium über Nacht bei 37 °C 

angereichert; 2 x 1 ml dieser Anzuchten wurden dann bei 13.000 x g für 2 min zentrifugiert 

und anschließend die Pellets in 100 µl TAE-Puffer resuspendiert. Jeder Probe wurden 200 µl 

Lösung I (3.1.3) zugegeben und vorsichtig 6-8 mal invertiert. Die Ansätze wurden ca. 20 min 

bei 100 °C inkubiert und danach langsam auf Raumtemperatur abgekühlt. Im Anschluss 

wurden 200 µl Phenollösung zu jedem Ansatz gegeben, durch Invertieren homogenisiert und 

15 min bei 13.000 x g zentrifugiert. Die abgetrennte wässrige obere Phase wurde in ein 

frisches Eppendorfgefäß überführt und als Präparation für das weitere Verfahren genutzt. 

Dieser Arbeitsschritt, der der Extraktion der Lipopolysaccharide und deren Anreicherung in 

der wässrigen Phase dient, wurde insgesamt dreimal wiederholt. 
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Anschließend wurden die Präparationen mit 200 µl A. dest. und 50 µl 3M Na-Acetat (pH 

5,2) versetzt. Zum Ausfällen der LPS wurden jeweils 500 µl Ethanol (absolut) zugegeben, 

invertiert und 5 min bei 13.000 x g zentrifugiert. Der Überstand wurde verworfen und das 

Präzipitat in je 200 µl Lösung II (3.1.3) aufgenommen. Dieser Arbeitsschritt wurde 

wiederholt und das Präzipitat nach einem Trocknungsschritt (10-20 min bei 45 °C im 

Heizblock zur Entfernung von Ethanolresten) in 50 µl A. dest. gelöst. Die erhaltene LPS-

Präparation wurde für maximal eine Woche bei 4 °C aufbewahrt oder direkt mit dem gleichen 

Volumen 2x SDS-Ladepuffer versetzt und für 10 min bei 100 °C erhitzt. Aliquote der 

Aufarbeitung wurden dann auf ein SDS-Gel aufgetragen. Als Trenngel wurde ein Criterion 

XT Bis-Tris Gel 12% verwendet, die Auftrennung erfolgte bei konstant 200 V für ca. 45 min.  

 

3.2.8.2 Silberfärbung 

Zum Sichtbarmachen der aufgetrennten LPS mittels Silberfärbung wurde das Trenngel in 

200 ml Fixierlösung über Nacht bei Raumtemperatur im Dunkeln gelagert. Anschließend 

erfolgte ein Oxidationsschritt durch Inkubation in Fixierlösung mit Zusatz von Na-Perjodat (7 

g/l) unter leichtem Schwenken (40 rpm) für 5 bis 10 min. Danach wurde das Gel 3 x 15 min 

in 500 ml A. dest. unter Schwenken (40 rpm) gewaschen, bevor es für 10 min unter 

Schwenken (70 rpm) in Färbelösung inkubiert wurde. Es folgten drei weitere Waschschritte 

(3 x 10 min mit 500 ml A. dest. bei 40 rpm). Im Anschluss wurde das Gel in 

Entwicklerlösung gelegt. Bevor sich der Hintergrund braun verfärbte, wurde der Entwickler 

abdekantiert und die Reaktion mit 50 ml 50 mM EDTA (pH 8) gestoppt. Nach etwa 10 min 

wurde das Gel in A. dest. überführt und bei 4 °C gelagert.  

 

3.2.8.3 Immunoblot 

Das Übertragen der LPS vom Gel auf eine PVDF-Membran erfolgte über einen Zeitraum 

von 16 h bei 4 °C in einem Tankblotgerät bei einer Spannung von 10 V (max. 40 mA). Das 

weitere Vorgehen erfolgte analog dem unter 3.2.6 beschriebenen Verfahren, wobei folgende 

Modifikationen im Versuchsablauf eingesetzt wurden:  

- längere Inkubationszeit der Primärantikörper (2 d), 

- Verwendung von PBS unter Zusatz von 0,1% (v/v) Tween 20 als Waschlösung, 

- Einsatz von Super Signal West Femto Maximum Sensitivity Substrate.  
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3.3 Ergebnisse 

3.3.1 Präparation des Immunisierungsmaterials 

Bei herkömmlichen Verfahren zur Herstellung und Inaktivierung von 

Bakterienpräparationen, wie z.B. unter Verwendung von Paraformaldehyd oder auch durch 

Temperaturbehandlung, ist mit deutlichen Veränderungen der Oberflächenstrukturen der 

Bakterien und einer Denaturierung von Membranproteinen zu rechnen. Im Rahmen der 

vorliegenden Arbeit sollte für die Immunisierung von Mäusen zur Gewinnung monoklonaler 

Antikörper gegen Cronobacter spp. Immunisierungsmaterial zum Einsatz kommen, bei dem 

potentiell immunogene Zielstrukturen der Bakterien in möglichst unveränderter Form 

vorliegen. Um diese Vorgaben erfüllen zu können, wurde ein Aufarbeitungsverfahren 

etabliert, bei dem die Bakterien abgetötet und die Oberflächenstrukturen der 

Mikroorganismen weitgehend erhalten werden: 

Das Antibiotikum Polymyxin B wurde aufgrund seiner speziellen Eigenschaften für die 

Herstellung der Immunogen-Präparationen ausgewählt. Polymyxin B gehört zur Gruppe der 

Polypeptid-Antibiotika. Gebildet werden diese Decapeptide, die bakterizid auf gramnegative 

Erreger wirken, durch das Bakterium Bacillus polymyxa (Stansly & Schlosser, 1947). 

Strukturell bestehen Polymyxine aus einem hydrophilen Ring (sieben Aminoacylreste), an 

dem über eine Amidbindung ein Tripeptid gebunden, das mit einem Fettsäurerest verestert ist. 

Er verleiht dem Molekül durch seine Lipophilie einen amphiphilen Charakter (Hausmann & 

Craig, 1954; Hausmann, 1956; Wilkinson & Lowe, 1964). Die bakterizide Wirkung der 

Polymyxine beruht auf einer Adhäsion an die bakterielle Zellwand gramnegativer Bakterien 

(Few & Schulman, 1953; Neter et al., 1958) in deren Folge es durch strukturelle 

Wechselwirkungen zu einer partiellen Desorganisation der Membranstruktur (Schindler & 

Teuber, 1975) und damit zu einer Permeabilitätserhöhung der Membran kommt (Koch, 1998; 

Pristovsek & Kidric, 1999).  

Durch die Behandlung von Bakterien mit Polymyxin-B-Sulfat können prinzipiell zwei 

unterschiedliche Kategorien von Immunisierungsmaterial gewonnen werden. Durch einen 

Zentrifugationsschritt nach Polymyxin-B-Verdau wird mit dem Pellet einerseits Material 

generiert, das v.a. potentiell immunogen wirkende Bestandteile der Bakterienzellwand 

enthält, andererseits kann auch der nach Zentrifugation erhaltene Überstand, der theoretisch 

v.a. Bestandteile des Cytoplasmas enthält, als Immunogen eingesetzt werden (Lysat). 
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Aufnahmen von behandelten Bakterien unter dem Phasenkontrastmikroskop nach 

Polymyxin-B-Verdau zeigten, dass nach einer 1,5 stündigen Inkubationszeit noch 

Cytoskelette der behandelten Bakterien zu erkennen sind. Diese bakteriellen Zellhüllen, die 

nach Zelllyse von den ausgetretenen Cytoplasmabestandteilen durch Zentrifugation 

abgetrennt werden können, werden im weiteren Verlauf der Arbeit als „Ghosts“ bezeichnet 

(in Anlehnung an: Langemann et al., 2010; Jalava et al., 2003). Signifikante strukturelle 

Unterschiede zwischen vitalen Bakterien und Polymyxin-B-Präparationen konnten 

lichtmikroskopisch nicht sichtbar gemacht werden. Dies ist in Abbildung 3 am Beispiel der 

Stämme C. turicensis MHI 21026 und C. sakazakii MHI 21001 dargestellt.  

Eine Differenzierung zwischen Ghosts und lebenden Bakterien war lediglich anhand 

deutlicher Unterschiede in der Motilität möglich. Während nach Polymyxin-Behandlung in 

den Präparationen nun mehr unbewegliche Ghosts zu sehen waren, zeigten die unbehandelten 

Organismen eine deutlich ausgeprägte Motilität. Zellwand-Trümmer waren in den 

Polymyxin-B-Sulfat-Präparationen nicht zu beobachten - ein Hinweis darauf, dass mit 

Polymyxin-B-Sulfat ein Abtöten der Bakterien unter weitgehender Strukturerhaltung möglich 

ist. 

 

 

Abbildung 3: Mikroskopische Aufnahmen der Stämme C. sakazakii MHI 21001 (a, b) bzw. 
C. turicensis MHI 21026 (c, d) 
a)/c) vitale unbehandelte Bakterien  
b)/d) nach Behandlung mit Polymyxin-B-Sulfat (Ghost-Präparationen) 

 

Bei der Auswahl der Stämme (Tabelle 4) für die Herstellung der Immunogen-

Präparationen wurden folgende Auswahlkriterien festgelegt:  
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(I) Verwendung mindestens zwei verschiedener Spezies der Gattung Cronobacter, 

(II)  unterschiedliche geographische Herkunft der Stämme, 

(III) verschiedene Matrices aus denen die Stämme isoliert wurden und 

(IV) mindestens ein Stamm, der nachweislich zu Erkrankungsfällen geführt hat.  

 

Tabelle 4: Zur Gewinnung der Immunogene genutzte Cronobacter spp. Stämme 

Mikroorganismus Stamm Herkunftsland 

Cronobacter sakazakii MHI 21001 Deutschland 

Cronobacter turicensis MHI 21026 Schweiz 

Cronobacter sakazakii MHI 21040  USA 

  

C. sakazakii MHI 21001 wurde in Deutschland aus Babynahrung isoliert. Bei den 

Stämmen C. turicensis MHI 21026 und C. sakazakii MHI 21040 handelt es sich jeweils um 

klinische Isolate, wobei dem Stamm C. turicensis MHI 21026 zwei schwere Erkrankungsfälle 

Neugeborener zugeordnet werden können (Mange et al., 2006).  

 

3.3.1.1 Empfindlichkeit verschiedener Bakterienstämme gegenüber Polymyxin B 

Zur Etablierung des oben skizzierten Verfahrens wurden zunächst die in Tabelle 4 

aufgeführten drei Stämme der Gattung Cronobacter sowie, um das Untersuchungsspektrum 

auf andere gramnegative Bakterien zu erweitern, drei weitere Bakterienstämme der Gattungen 

Escherichia, Salmonella und Yersinia (siehe Tabelle 5) mit polymyxinhaltigem Lysepuffer 

(3.1.3) versetzt. Nach einer definierten Inkubationszeit bei einer Inkubationstemperatur von 

37 °C wurde eine Öse der Bakteriensuspension auf Blutagarplatten ausgestrichen, diese über 

Nacht bei ebenfalls 37 °C im Brutschrank inkubiert und im Anschluss ausgewertet.  

Zunächst wurde das Präzipitat einer 50 ml Anzucht in Luria-Bertani-(LB)-Medium (37 °C; 

über Nacht), das durch Zentrifugation (10.000 x g, 4 °C, 10 min) gewonnen worden war, für 1 

h mit 0,5 ml des polymyxinhaltigen Lysepuffers (3.1.3) behandelt. Wie in Tabelle 5 (Variante 

1) dargestellt, zeigte sich, dass unter diesen Bedingungen die Bakterien nicht vollständig 

abgetötet werden können. Um die Effizienz der Polymyxin-B-Sulfat-Behandlung zu erhöhen, 

wurde die Inkubationszeit auf 1,5 h und die Menge des eingesetzten Lysepuffers auf 1 ml 

erhöht. Durch diese Modifikationen konnte die Wirksamkeit des Verfahrens signifikant 

verbessert werden (Tabelle 5; Variante 2).  
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Tabelle 5: Effekt verschiedener Varianten einer Polymyxin-B-Behandlung auf Vertreter der 
Familie Enterobacteriaceae. 
Variante 1: Zell-Pellet behandelt mit 0,5 ml Polymyxin-B-Sulfat-Lysepuffer für 

1 h bei 37 °C  
Variante 2:  Zell-Pellet behandelt mit 1,0 ml Polymyxin-B-Sulfat-Lysepuffer für 

1,5 h bei 37 °C 

  Wachstum 

Mikroorganismus Stamm Variante 1 Variante 2 
    

Cronobacter sakazakii MHI 21001 ++ +/- 

Cronobacter turicensis MHI 21026 - - 

Cronobacter sakazakii MHI 21040 - - 

Escherichia coli BL 21 ++ ++ 

Salmonella enterica subsp. enterica 

serovar Senftenberg  
MHI 909 ++ - 

Yersinia enterocolitica MHI 973 - - 
 

-    vollständig abgetötet (keine Einzelkolonien im Ösenausstrich auf Blutagar) 
+/- in verschiedenen Ansätzen entweder vollständig abgetötet oder einzelne Kolonien 
++ deutliches Wachstum (Bildung eines Bakterienrasens nach Ösenausstrich auf Blutagar) 
 

Von den zunächst sechs untersuchten Stämmen war unter den geänderten 

Versuchsbedingungen lediglich bei E. coli BL 21 ein deutliches Wachstum auch nach 

Polymyxin-B-Sulfat-Verdau zu verzeichnen. Bei allen anderen untersuchten Stämmen trat 

nach Polymyxin-Behandlung eine weitestgehende Inaktivierung des Keimmaterials auf.  

Im weiteren Verlauf der Arbeit wurden die Untersuchungen (Variante 2) auf die in Tabelle 

sechs aufgeführten Stämme ausgeweitet. Die Untersuchungen zielten darauf ab, mögliche 

Resistenzen der für die Folgeuntersuchungen genutzten Stämme gegenüber Polymyxin B zu 

identifizieren und damit die Informationen der Stammbibliothek zu ergänzen. Grundsätzlich 

wurden im Laufe der Untersuchungen von allen mit Polymyxin behandelten Präparationen 

Kontrollausstriche auf Blutagar angelegt. Dieser Arbeitsschritt diente als In-Prozess-

Kontrolle, um die Effektivität des Polymyxin-B-Verdaus zu überprüfen.  

Ein Großteil der untersuchten Stämme zeigte eine deutliche Empfindlichkeit gegenüber der 

Behandlung mit Polymyxin-B-Sulfat. Bei fünf der untersuchten Stämme war jedoch auch 

nach einer 1,5 stündigen Polymyxin-B-Behandlung ein deutliches Wachstum zu verzeichnen 

(BL 21, MHI 904, MHI 913, MHI 968, MHI 974). Bei keinem dieser resistenten Stämme 

handelte es sich um Cronobacter spp. 
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Tabelle 6:   Effekt des Polymyxin-B-Verdaus auf das Wachstum gramnegativer Keime. 
Angegeben ist zudem die nach Polymyxin-Behandlung nachweisbare 
Proteinkonzentration (Bradford-Bestimmung) im zellfreien Überstand.  

Mikroorganismus Stamm Wachstum nach 
Polymyxin-B-
Behandlung 

Protein-
konzentration 

im Lysat 
(mg/ml) 1 

Cronobacter spp. 

Cronobacter sakazakii MHI 975 - 3,7 

Cronobacter sakazakii MHI 977 - 3,3 

Cronobacter sakazakii MHI 979 - 3,7 

Cronobacter sakazakii MHI 982 - 2,0 

Cronobacter sakazakii MHI 986 - 3,1 

Cronobacter sakazakii MHI 987 - 3,1 

Cronobacter sakazakii MHI 990 - 2,8 

Cronobacter sakazakii MHI 992 - 2,5 

Cronobacter sakazakii MHI 995 + 1,2 

Cronobacter sakazakii MHI 21000 - 1,3 

Cronobacter sakazakii MHI 21002 - 3,2 

Cronobacter sakazakii MHI 21008 - 2,3 

Cronobacter sakazakii MHI 21011 - 1,9 

Cronobacter sakazakii MHI 21012 - 2,9 

Cronobacter sakazakii MHI 21027 +/- 1,5 

Cronobacter sakazakii MHI 21028 +/- 3,0 

Cronobacter sakazakii MHI 21029 +/- 1,7 

Cronobacter sakazakii MHI 21030 +/- 3,1 

Cronobacter sakazakii MHI 21032 +/- 3 

Cronobacter sakazakii MHI 21039 +/- 3,8 

Cronobacter sakazakii MHI 21035 +/- 2,1 

Cronobacter universalis MHI 981 - 3,4 

Cronobacter muytjensii MHI 21031 - 4,6 

Cronobacter turicensis MHI 21049 - 1,8 

Cronobacter turicensis MHI 21050 - 1,9 

Sonstige gramnegative Enterobacteriaceae 

Citrobacter freundii MHI 902 - 2,4 

Enterobacter cloacae MHI 904 ++ 1,2 
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Fortsetzung Tabelle 6: Effekt des Polymyxin-B-Verdaus auf das Wachstum gramnegativer 
Keime. Angegeben ist zudem die nach Polymyxin-Behandlung 
nachweisbare Proteinkonzentration (Bradford-Bestimmung) im 
zellfreien Überstand  

Mikroorganismus Stamm Wachstum nach 
Polymyxin-B-
Behandlung 

Protein-
konzentration 

im Lysat 
(mg/ml) 1 

Sonstige gramnegative Enterobacteriaceae 

Hafnia alvei MHI 910 - 0,4 

Proteus vulgaris MHI 913 ++ 0,4 

Enterobacter asburiae MHI 968 ++ 1,8 

Serratia rubidea MHI 974 ++ 3,2 

Klebsiella pneumoniae MHI 21024 - 0,5 

Sonstige Gramnegative 

Pseudomonas aeruginosa MHI 1000 - 5,0 

 
1 nach Aufkonzentrieren um Faktor 10 mittels Ultrafiltrationseinheiten 
-  vollständig abgetötet (keine Einzelkolonien im Ösenausstrich auf Blutagar) 
+/- in verschiedenen Ansätzen entweder vollständig abgetötet oder einzelne Kolonien 
+ einzelne Kolonien (1 bis 7) im Ösenausstrich sichtbar 
++ deutliches Wachstum (Bildung eines Bakterienrasens auf Blutagar) 

 

Die Effizienz des Verfahrens zeigte sich auch bei der Bestimmung des Proteingehaltes in 

den Lysaten, die im Anschluss an jede Polymyxin-B-Behandlung durchgeführt wurde. Mit 

Ausnahme der Stämme Hafnia alvei, Proteus vulgaris und Klebsiella pneumoniae waren in 

den Lysaten aller Stämme Proteinkonzentrationen von > 1 mg/ml nachweisbar (Tabelle 6). 

Auch bei den Stämmen, die Anzeichen einer Resistenz gegen Polymyxin B zeigten, wurde 

Protein im Lysat nachgewiesen. Dieser Sachverhalt spricht dafür, dass auch bei diesen 

Stämmen eine Aktivität des eingesetzten Antibiotikums zu verzeichnen ist. 
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3.3.2 Immunogen-Herstellung 

Als Immunogene wurden Polymyxin-B-Präparationen der in Tabelle 4 (3.3.1) aufgeführten 

Cronobacter Stämme verwendet. Die ausgewählten Bakterienstämme wurden auf Columbia 

Agar mit Schafblut angezüchtet. Für die Immunogenherstellung wurde Koloniematerial der 

ausgewählten Stämme im Brutschrank bei 37 °C über Nacht in 50 ml LB-Medium 

angezüchtet. Nach Zentrifugation des Keimmaterials (10.000 x g, 4 °C, 10 min) wurden die 

erhaltenen Pellets in je 1,5 ml steriler PBS-Lösung aufgenommen, nach Überführung in 

Eppendorf-Tubes erneut bei 10.000 x g und 4 °C für 10 min zentrifugiert und der Überstand 

verworfen. Zur Bakteriolyse wurden die erhaltenen Pellets in je 1 ml polymyxinhaltigem 

Lysepuffer aufgenommen und anschließend 1,5 h unter sanftem Schütteln (300 rpm) bei 37 

°C inkubiert. Zur Kontrolle der antibiotischen Wirkung des Polymyxin-B-Sulfats wurde eine 

Öse des Materials auf Blutagarplatten ausgestrichen, diese über Nacht bei 37 °C im 

Brutschrank inkubiert und am nächsten Tag abgelesen (3.3.1.1). 

Die Ansätze wurden nach dem Lyse-Schritt in Eppendorf-Gefäßen bei 7 °C und 14.000 x g 

für 30 min zentrifugiert. Die erhaltenen Überstände wurden sterilfiltriert, mittels 

Ultrafiltrationseinheiten um etwa Faktor 10 aufkonzentriert und abschließend der 

Proteingehalt mittels Bradford-Bestimmung ermittelt. Die so erhaltenen proteinhaltigen, 

partikelfreien Konzentrate werden im Folgenden als „Lysate“ bezeichnet.  

Die nach der Polymyxin-B-Sulfat-Behandlung erhaltenen Pellets wurden in 250 µl PBS 

resuspendiert („Ghost-Präparationen“). Das beschriebene Verfahren wurde für die drei 

Cronobacter Stämme MHI 21001, MHI 21026 und MHI 21040 im Laufe der Untersuchungen 

16 (MHI 21040) bis 20 mal (MHI 21026) durchgeführt. Für die Aufbewahrung über einen 

Zeitraum länger als eine Woche wurde das Material bei -20 °C eingefroren.  

In den Lysaten konnten Proteingehalte von 1 bis 5 mg/ml nachgewiesen werden. Die 

durchschnittliche Proteinmenge lag dabei bei Stamm MHI 21040 mit 2,4 mg/ml signifikant 

unter denen der Stämme MHI 21026 (3,1 mg/ml) und MHI 21001 (3,4 mg/ml).  
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3.3.3 Immunisierung 

Für die Produktion monoklonaler Antikörper (mAK) gegen Cronobacter spp., wurden 

weibliche Balb/c –Mäuse intraperitoneal immunisiert. Immunisiert wurde eine Gruppe von 

vier Tieren mit Lysaten und eine weitere Gruppe von fünf Tieren mit den entsprechenden 

Ghost-Präparationen. Die Grundimmunisierung erfolgte mit einer Emulsion aus Immunogen 

und inkomplettem Freundschem Adjuvans (iFA). Sechs Wochen (Lysate) bzw. acht Wochen 

(Ghosts) nach der Grundimmunisierung wurde den Mäusen erstmals Blut entnommen, um 

mittels EIA zu kontrollieren, ob im Serum der immunisierten Tiere spezifische Antikörper 

gegen Cronobacter nachzuweisen sind. Die erste Restimulierung erfolgte 14 Wochen nach 

der Grundimmunisierung, fünf Wochen später erfolgte erneut eine Blutentnahme. Mittels EIA 

wurden diejenigen Tiere aus den beiden Immunisierungsgruppen identifiziert, bei denen hohe 

Titer hochaffiner spezifischer Antikörper nachweisbar waren (3.3.5). Drei Tage vor der 

geplanten Zellfusion erhielten die ausgewählten Mäuse nochmals eine 

Restimulierungsinjektion ohne Zusatz von Adjuvans. Details zu den durchgeführten 

Immunisierungen sind in den Tabellen 7 und 8 zusammengefasst. 

 

Tabelle 7:  Übersicht zur Immunisierung von Mäusen mit Ghost-Präparationen von 
Cronobacter spp. Verwendet wurde jeweils eine Mischung bestehend aus 
gleichen Anteilen Ghosts der Cronobacter-Stämme MHI 21001, MHI 21026 
und MHI 21040. 

Arbeitsschritt Zeitpunkt Tier applizierte Ghosts1 

Grundimmunisierung Woche 1 Maus I-IV 1 x 107 in iFA  

1. Blutentnahme Woche 9 Maus I-IV  

1. Restimulierung Woche 15 Maus I-IV 1 x 107 in iFA 

2. Blutentnahme Woche 20 Maus I-IV  

2. Restimulierung Woche 23 Maus II 2 x 107 in PBS 

Zellfusion Woche 24 Maus II  
 

1  Die Angaben basieren auf dem Keimzahlgehalt der Präparation vor der Polymyxin-
induzierten Inaktivierung. 
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Tabelle 8:  Übersicht zur Immunisierung von Mäusen mit Lysat-Präparationen von 
Cronobacter spp. Verwendet wurde jeweils eine Mischung bestehend aus 
gleichen Anteilen der Cronobacter-Stämme MHI 21001, MHI 21026 und MHI 
21040. 

Arbeitsschritt Zeitpunkt Tier applizierte Proteinmenge 

Grundimmunisierung Woche 1 Maus V-IX 30 µg Protein in iFA  

1. Blutentnahme Woche 7 Maus V-IX  

1. Restimulierung Woche 15 Maus V-IX 40 µg Protein in iFA 

2. Blutentnahme Woche 20 Maus V-IX  

2. Restimulierung Woche 21 Maus V 60 µg Protein in PBS 

Zellfusion Woche 22 Maus V  

 

3.3.4 Etablierung von Enzymimmuntests 

3.3.4.1 Herstellung von Antigen-Präparationen 

Als Antigen-Präparationen, die v.a. bei der Beschichtung von Mikrotiterplatten und in 

Immunoblots eingesetzt wurden, dienten Lysate bzw. Ghosts der in den Tabellen 5 und 6 

aufgeführten Bakterienstämme. Herstellung und Aufarbeitung der Präparationen erfolgte, wie 

für die Immunogen-Herstellung beschrieben (3.3.2). 

Daneben wurde in Abhängigkeit von der jeweiligen Fragestellung auch anderes 

antigenhaltiges Material hergestellt und für EIA-, Immunoblot- bzw. Immunfluoreszenz-

untersuchungen eingesetzt.  

 
a) vitale Keime 

Zur Überprüfung, ob die gewonnenen polyklonalen Seren bzw. mAK auch mit lebenden 

unbehandelten Keimen reagieren, wurden die entsprechenden Stämme in 50 ml LB-Medium 

über Nacht bei 37 °C angereichert, nach Abzentrifugieren (15 min, 10.000 x g) mit 10 ml PBS 

gewaschen und nach erneutem Zentrifugieren die Pellets in 500 µl PBS aufgenommen. Für 

die EIAs wurden die Mikrotiterplatten mit diesen Suspensionen in seriellen Verdünnungen 

(1:100 bis 1:10.000) beschichtet. 

 

b) Ribolyser-Material 

Im EIA wurden des Weiteren auch Zellhomogenisate eingesetzt, die mittels Zellaufschluss 

im Ribolyser gewonnen worden waren. In diesem Verfahren werden durch stark 
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beschleunigte Silikatpartikel die Zellmembranen der behandelten Bakterien zerstört und 

Cytoplasmabestandteile freigesetzt. Das so erhaltene Probenmaterial enthält sowohl 

Membranstrukturen als auch Cytoplasmabestandteile. Für Fragestellungen, in denen eine 

Differenzierung zwischen Ghost-Präparation und Lysat nicht notwendig war, bot diese 

Präparationsmethode eine schnelle und wenig aufwändige Alternative zum Polymyxin-

Verdau.  

Um diese Homogenisate zu erzeugen, wurden 1,5 ml einer 37 °C Über-Nacht-Kultur (10 

ml LB-Medium) des zu untersuchenden Stammes in Lysing Matrix B Röhrchen unter Zusatz 

von Proteinasehemmern auf Stufe 6 des Ribolyser-Gerätes lysiert. Um eine Denaturierung der 

Proteine durch die entstehende Wärmeentwicklung zu vermeiden, wurde die Reaktionszeit auf 

40 sec begrenzt und im Anschluss die Probe auf Eis gekühlt. Dieser Zyklus wurde dreimal 

wiederholt. Die in den Proberöhrchen enthaltenen Silikatpartikel wurden im Anschluss durch 

dreiminütiges Zentrifugieren bei 4.000 x g abgetrennt.  

 

3.3.4.2 Stabilitätstest 

Um die Stabilität der hergestellten Lysat- und Ghost-Präparationen begleitend zu 

überwachen, wurde ausgewähltes Probenmaterial über einen Zeitraum von 3 Jahren bei -20 

°C aufbewahrt und in mehrmonatigen Abständen im EIA unter Verwendung verschiedener 

Antikörper analysiert. Als Antigene wurden Ghost-Präparationen und Lysate der Cronobacter 

Stämme MHI 21001, MHI 21026 und MHI 21040 eingesetzt. Dafür wurden Mikrotiterplatten 

mit seriellen Verdünnungen (von 1:100 bis 1:6.400) der entsprechenden, bei -20 °C 

gelagerten Präparationen beschichtet. Als primäre Antikörper wurden zunächst die im 

Rahmen der Blutentnahmen (3.3.3) gewonnenen Antiseren, später Zellkulturüberstände von 

Hybridomazellen in einer konstanten Verdünnung (Antiseren 1:2.000; ZKÜ 1:50) in PBS 

verwendet. Für eine vergleichende Bewertung der EIA-Ergebnisse wurden diejenigen 

Verdünnungen der Präparationen herangezogen, für die im EIA Extinktionen zwischen 0,2 

und 1,5 ermittelt wurden. Zur Absicherung des Ergebnisses wurden jeweils 

Mehrfachbestimmungen durchgeführt. 

Erste Untersuchungen, die mit polyklonalen Mausantiseren durchgeführt wurden, zeigten 

keine signifikanten Veränderungen der Reaktivität innerhalb eines fünfmonatigen 

Versuchszeitraums. Auf eine Darstellung von Details dieser Untersuchungen wird verzichtet. 

Für die weiteren Untersuchungen wurden ZKÜ der hergestellten Hybridome eingesetzt. 
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ZKÜ bzw. Antikörper, die aus Hybridomzelllinien gewonnen wurden, denen eine 

Immunisierung mit Ghost-Material zugrunde lag, werden im Folgenden mit mAK αG 

bezeichnet, ZKÜ bzw. Antikörper, die aus Hybridomzelllinien gewonnen wurden, denen eine 

Immunisierung mit Lysaten voraus ging, mit mAK αL bezeichnet. 

Für die Untersuchungen der ausgewählten Ghost-Präparationen (MHI 21001, MHI 21026 

und MHI 21040) mit monoklonalen Antikörpern wurde der breit reagierende mAK 1H9 αG 

als primärer Antikörper im EIA eingesetzt. Über den Untersuchungszeitraum hinweg war 

tendenziell eine Abnahme der Reaktivität festzustellen. Während beim Stamm C. turicensis 

MHI 21026 die Extinktionen über den Untersuchungszeitraum von 1,1 (± 0,2) auf 0,74 (± 

0,01) und beim Stamm C. sakazakii MHI 21040 von 1,3 (± 0,3) auf 0,71 (± 0,03) absanken 

(67% bzw. 56% des Ausgangswertes), wurden beim Stamm C. sakazakii MHI 21001 mit 

einer Extinktion von 0,24 (± 0,03) am Ende der Versuchsreihe noch 91% des Ausgangswertes 

von 0,26 (± 0,03) erhalten (Abbildung 4a). 

Aufgrund der hohen Spezifität der gegen die Lysat-Präparationen generierten Antikörper 

(mAK αL; 3.3.7), wurden für die Stabilitätstests zwei verschiedene mAK αL eingesetzt. 

Hierbei wurde für die Kombination von Stamm MHI 21001 und mAK 2C12 αL eine 

signifikante Abnahme der Reaktivität festgestellt. Die Auswertung der 1:6.400 Verdünnung 

(Proteinkonzentration ca. 0,4 µg/ml) zeigte ein Absinken der Extinktion von 1,33 (± 0,43) zu 

Beginn des Versuchszeitraumes auf 0,56 (± 0,02) am Ende der Lagerungszeit. Dies entspricht 

etwa 42% des Ausgangswertes (Abbildung 4b). Für das Lysat des Stammes MHI 21040 

(primärer Antikörper: mAK 2F8 αL, Abbildung 4b), konnte in diesem Versuchaufbau 

hingegen keine signifikante Abnahme der Reaktivität verzeichnet werden. 

 
Lagerzeit in Wochen 

Abbildung 4: Stabilitätstest von Präparationen der Stämme C. sakazakii MHI 21001 und 
MHI 21040 über einen Zeitraum von 136 Wochen 
a) Ghost-Präparation des Stammes MHI 21001 (Verdünnung 1:100), mAK: 1H9 αG 
b) Lysate der Stämme MHI 21001 und MHI 21040 (Verdünnung 1:6.400), mAK: 2C12 αL 

und 2F8 αL 
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Die vorliegenden Ergebnisse der Stabilitätstest zeigen, dass die Präparationen nach 

Polymyxin-B-Verdau bei einer Lagerung von -20 °C weitgehend stabil sind, jedoch bei einer 

mehrmonatigen Lagerung bei -20 °C ein Abbau antigener Strukturen nicht auszuschließen ist, 

wie am Beispiel des mAK 2C12 αL und dem Lysat des Stammes MHI 21001 beobachtet 

wurde.   

 

3.3.5 Kontrolle des Immunsisierungserfolges  

Im Verlauf des Immunisierungsprozesses wurde den Tieren, wie unter 3.3.3 beschrieben, 

zweimal Blut entnommen und die daraus gewonnenen polyklonalen Antiseren mittels EIA-

Untersuchungen charakterisiert. Zur Bestimmung der Antikörper-Titer wurden indirekte EIA-

Verfahren eingesetzt, wobei alle Antiseren mit verschiedenen Antigenpräparationen (Lysat- 

und Ghost-Material bzw. lebenden Keime) getestet wurden. Definiert wurde der Antikörper-

Titer als diejenige Verdünnungsstufe des Antiserums, bei der im EIA noch eine Extinktion 

von 1,0 erreicht wurde. Dazu wurden im EIA die Antigene in einer gleich bleibenden 

Konzentration und die Mäuseseren in verschiedenen Verdünnungsstufen eingesetzt.  

Die Untersuchung der Antiseren von den Tieren, die mit Ghosts immunisiert worden 

waren, erfolgte zunächst mit der auch für die Immunisierung eingesetzten Ghost-Präparation 

(107 KbE/ml einer anteiligen Mischung von Ghost-Material der Stämme MHI 21001, MHI 

21026 und MHI 21040). Im Serum aller Mäuse wurden bereits nach der ersten Blutentnahme 

signifikante Titer im Bereich von 1:20.000 bis 1:55.000 gegen Cronobacter-Ghosts 

nachgewiesen. Nach Restimulierung der Tiere konnte ein deutlicher Anstieg der Titer auf 

Werte von 1:200.000 bis 1:270.000 verzeichnet werden, die höchsten spezifischen 

Antikörper-Konzentrationen wiesen die Seren der Mäuse II und III auf (Titer von 1:230.000 

bzw. 1:270.000, Abbildung 5a).  
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Abbildung 5: Nachweisbare Antikörper-Titer in den Seren der mit Ghosts (a) bzw. Lysaten 
(b) immunisierten Mäuse. Zur Titerbestimmung wurde jeweils homologes Material der 
Stämme MHI 21001, MHI 21026 und MHI 21040 eingesetzt.  
 

Um zu überprüfen, ob die Seren der Mäuse I bis IV nach der 1. Restimulierung auch 

Reaktivität gegen Lysate bzw. lebende unbehandelte Cronobacter-Keime zeigten, wurden 

weitere Titerbestimmungen unter Verwendung indirekter EIAs durchgeführt. Zur 

Beschichtung der Platten wurden hierbei Lysate der Stämme MHI 21001, MHI 21026 und 

MHI 21040 (Proteinkonzentration je 1 µg/ml) bzw. Keimmaterial des Stammes MHI 21001, 

hergestellt nach 3.3.4.1, in einer Verdünnung von 1:4.000 eingesetzt. Prinzipiell konnte für 

alle überprüften Antiseren im indirekten EIA Reaktivität mit diesen alternativen 

Antigenpräparationen nachgewiesen werden, wobei das Serum von Tier II in diesen 

Versuchen tendenziell die höchsten Titer aufwies (Tabelle 9). 

Spezifische Antikörper konnten auch in den Seren derjenigen Tiere, die mit Cronobacter-

Lysaten immunisiert worden waren, nachgewiesen werden. Für die Titerbestimmungen wurde 

zur Beschichtung der EIA-Platten eine anteilige Mischung von Lysaten der Stämme MHI 

21001, MHI 21026 und MHI 21040 (Proteinkonzentration 1 µg/ml) eingesetzt. Die Titer der 

Antiseren nach der ersten Blutentnahme bewegten sich im Bereich von 1:1.000 (Maus VII) 

bis 1:8.900 (Maus V). Nach Restimulierung der Tiere war eine deutliche Zunahme der Titer 

zu verzeichnen, die Werte lagen mit 1:3.000 (Maus IX) bis 1:91.000 (Maus V) deutlich über 

den Ergebnissen der ersten Blutentnahme (Abbildung 5b). Bei beiden Titerbestimmungen 

zeigte das polyklonale Antiserum von Maus V die höchsten Antikörper-Titer. Ergänzend zu 

diesen Untersuchungen wurden die Seren auch in indirekten EIAs gestestet, bei denen 

unbehandeltes Keimmaterial des Stammes MHI 21001 (nach 3.3.4.1, Verdünnung 1:4.000) 

zur Beschichtung der Platten eingesetzt wurde. Auch hierbei wurde für das Antiserum von 
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Maus V die höchste Antikörperaktivität nachgewiesen. Der Titer lag hier bei 1:101.000, 

während in den Seren der anderen Tiere die Titer zwischen 1:3.000 (Maus IX) und 1:35.000 

(Maus VII) variierten (Tabelle 9). 

Tabelle 9: Mittels indirekter EIAs nachweisbare reziproke Antikörper-Titer in den Seren der 
mit Ghosts (Mäuse I-IV) bzw. Lysaten (Mäuse V-IX) immunisierten Tiere nach 
der 1. Restimulierung. Zur Beschichtung der Platten wurden unterschiedliche 
Antigen-Präparationen verwendet. 
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Maus I 45.000 38.000 19.000 60.000 Maus V 91.000 101.000 

Maus II 352.000 54.000 18.000 234.000 Maus VII 30.000 35.000 

Maus III 151.000 13.000 7.000 120.000 Maus VIII 89.000 25.000 

Maus IV 154.000 51.000 6.000 135.000 Maus IX 3.000 3.000 

 

Untersuchungen zur Affinität der Seren wurden ebenfalls mittels indirekter EIA-Verfahren 

durchgeführt. Dabei erfolgte die Beschickung der Mikrotiterplatten mit einer seriellen 

Verdünnungsreihe lebender Zellen des Stammes MHI 21001 (nach 3.3.4.1), beginnend in 

einer Verdünnung von 1:4.000 (entspricht etwa einer Keimzahl von 7 x 107 KbE/ml). Die 

Seren wurden in konstanter Konzentration (Verdünnung 1:3.000) zugegeben. Unter diesen 

EIA-Bedingungen gilt, dass je geringer die Konzentration des Beschichtungsantigens ist, bei 

der noch eine signifikante Extinktion von ≥ 1,0 beobachtet werden kann, desto höher ist die 

Affinität des eingesetzten Antiserums. Die höchste Affinität der untersuchten Seren war in 

den jeweiligen Versuchstiergruppen für Maus IV bzw. Maus V festzustellen (Abbildung 6). In 

der Gruppe der Versuchstiere, die mit Ghost-Material immunisiert worden waren, lagen die 

Keimzahlen, ab der noch eine Extinktion von 1,0 im EIA erreicht wurde für die Tiere IV (1,3 

x 106 KbE/ml), III (1,7 x 106 KbE/ml) und II (1,8 x 106 KbE/ml) in einem ähnlichen 

Größenbereich. Für Tier I war mit 3,8 x 106 KbE/ml bereits eine signifikant höhere Keimzahl 

nötig, um eine Extinktion von 1,0 zu erhalten.  

Deutlich größere Unterschiede in der Affinität der Seren untereinander waren in der 

Versuchstiergruppe der Mäuse zu verzeichnen, die mit Lysaten immunisiert worden waren 

(Abbildung 6). Während mit den Seren der Tiere V und VIII bereits bei einer Keimzahl von 
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1,3 x 106 bzw. 1,4 x 106 KbE/ml eine Extinktion von 1 im EIA erreicht wurde, waren bei den 

Seren der Tiere VII und IX Keimzahlen von 1,8 x 107 bzw. 7,5 x 107 KbE/ml notwendig.  

 

 

Abbildung 6: Orientierende Bestimmung der Affinität von  
  a) Seren der mit Ghost-Material immunisierten Mäuse,  
  b) Seren der mit Lysat-Material immunisierten Mäuse. 

Die Beschichtung der Mikrotiterplatten erfolgte mit lebenden Keimen des Stammes C. 

sakazakii MHI 21001. Die Antiseren der aufgeführten Versuchstiere wurden in einer 
konstanten Verdünnung von 1:3.000 eingesetzt.  

 

Des Weiteren wurden mittels indirektem EIA Untersuchungen zur Intra-Genus-Spezifität 

der Seren durchgeführt. Als Antigene wurden dabei Suspensionen der in Tabelle 10 

aufgeführten Bakterienstämme (Präparation nach 3.3.4.1) in einer Verdünnung von 1:120.000 

eingesetzt. Die Seren wurden in einer konstanten Verdünnung von 1:3.000 zugegeben. Für 

das Experiment ausgewählt wurden die Seren der Mäuse II und IV sowie V und VIII, die in 

den bisherigen Untersuchungen tendenziell die höchsten Antikörper-Titer bzw. die höchsten 

Affinitäten gezeigt hatten.  

Alle untersuchten Antiseren zeigten eine breite Reaktivität für die verschiedenen 
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Cronobacter-Stämme (Tabelle 10). Tendenziell reagierten die Seren, die aus der 

Versuchtiergruppe stammen, die mit Ghost-Material immunisiert wurden, stärker mit den 

untersuchten Bakterien als die Seren der Tiere, die mit Lysaten immunisiert wurden.  

 
Tabelle 10: Reaktivität von Mäuse-Antiseren gegen Cronobacter-Ghosts (Mäuse II und IV) 

bzw. Cronobacter-Lysate (Mäuse V und VIII) mit verschiedenen Vertretern des 
Genus Cronobacter. Die Daten wurden mittels indirektem EIA ermittelt. 

Maus    Stamm 
  II IV V VIII    

MHI 975 C. sakazakii            

MHI 977 C. sakazakii            

MHI 979 C. sakazakii            

MHI 982 C. sakazakii            

MHI 986 C. sakazakii            

MHI 987 C. sakazakii            

MHI 990 C. sakazakii            

MHI 992 C. sakazakii            

MHI 995 C. sakazakii            

MHI 21000 C. sakazakii            

MHI 21001 C. sakazakii            

MHI 21002 C. sakazakii            

MHI 21008 C. sakazakii            

MHI 21011 C. sakazakii            

MHI 21012 C. sakazakii            

MHI 21027 C. sakazakii            

MHI 21028 C. sakazakii            

MHI 21029 C. sakazakii        

MHI 21030 C. sakazakii            

MHI 21032 C. sakazakii            

MHI 21035 C. sakazakii            

MHI 21037 C. sakazakii            

MHI 21039 C. sakazakii            

MHI 21040 C. sakazakii            

MHI 21036 C. sakazakii            

MHI 21038 C. sakazakii            

MHI 21041 C. sakazakii             

MHI 981 C. universalis           Extinktion > 1 
MHI 21031 C. muytjensii            Extinktion zwischen 0,3 und 1 
MHI 21026 C. turicensis            Extinktion ≤ 0,3 und > Leerwert 

 

Im Hinblick auf die Generierung von mAK wurde aus der Gruppe der Tiere, die mit Ghost-

Material immunisiert worden waren, Maus II ausgewählt. Der Titer im Serum (2. 

Blutentnahme) dieses Tieres, der unter Verwendung der Ghost-Präparation ermittelt wurde, 

lag mit 1:200.000 zwar etwas niedriger als der von Tier III (1: 270.000), doch im Serum von 

Maus II war zu diesem Zeitpunkt mit Abstand die höchste Antikörperaktivität gegenüber 

lebenden Bakterien und Lysaten zu verzeichnen. Im Serum von Maus II konnte zudem eine 
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breite Reaktivität mit verschiedenen Cronobacter Stämmen beobachtet werden (Tabelle 10).  

Bei den mit Lysaten immunisierten Tieren wies das Serum von Maus V im Vergleich zu 

den Seren der anderen Tiere, in allen Untersuchungen die höchsten Titer sowie die höchste 

Affinität auf. Da auch im Rahmen der Untersuchung der Intra-Genus-Spezifität eine Reaktion 

mit allen getesteten Keimen nachgewiesen werden konnte, wurde Tier V für die Zellfusions-

Experimente (3.2.5) ausgewählt.  

 

3.3.6 Etablierung und Produktivität von Hybridom-Zelllinien  

Um Antikörper produzierende Zelllinien zu etablieren, wurde mit den aus den Milzen der 

Mäuse II und V gewonnenen Einzelzellsuspensionen verfahren, wie unter 3.2.5 beschrieben. 

Zwölf Tage nach Zellfusion und danach in regelmäßigen Abständen wurde die 

Antikörperproduktion der Hybridom-Zellen mittels EIA getestet. Ziel war es, produktive 

Hybridome von Nichtproduzenten zu separieren und anschließend gut produzierende Klone 

weiter zu kultivieren, um letztlich stabile mAK-produzierende Reinkulturen zu erhalten.  

Bei Testung der beiden durchgeführten Zellfusionen wurden 27 reaktive Klone (12 Klone: 

Ghost-Präparation als Immunogen; 15 Klone: Lysate als Immunogen) identifiziert. Mittels 

indirektem EIA wurden die Antikörper-Titer in den gewonnenen Zellkulturüberständen der 

Hybridomzellen (ZKÜ) bestimmt. Dabei erfolgte die Titerbestimmung in den ZKÜ der 

Hybridomzellen, die aus der Immunisierung mit Ghost-Präparationen hervorgingen (Maus II), 

mit einer anteiligen Mischung von in je 1 ml sterilem PBS resuspendierten Ghosts der 

Stämme C. sakazakii MHI 21001, C. sakazakii MHI 21040 und C. turicensis MHI 21026 

(Verdünnung 1:500). Für die Bestimmung der Titer in den Überständen der Hybridomzellen, 

die nach Immunisierung mit Lysaten gewonnen wurden (Maus V), wurde eine Lösung 

verwendet, in der die Lysate der Stämme C. sakazakii MHI 21001, C. sakazakii MHI 21040 

und C. turicensis MHI 21026 gepoolt in einer Proteinkonzentration von je 0,5 µg/ml 

eingesetzt wurden.  

Es konnte eine große Spannbreite in der Produktivität der Hybridomzellen nachgewiesen 

werden. Die ZKÜ der Hybridome, die auf Basis von Ghost-Präparationen als Immunogen 

gewonnen worden waren, zeigten Antikörper-Titer von 1:2 bis 1:2.500. Die Titer der ZKÜ 

von Hybridomen, die aus mit Lysat-Material immunisierten Tieren gewonnenen worden 

waren, bewegten sich in einem Bereich von 1:7 bis 1:6.500.  
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In Hinblick auf die Etablierung von stabilen Zelllinien wurden jeweils sieben Klone mit 

tendenziell hoher Antikörper-Produktivität ausgewählt und mittels Limiting-Dilution-Technik 

kloniert. Die AK-Produktivität nach der ersten Klonierung wurde mittels indirektem EIA 

bestimmt (Tabelle 11). Während für die mAK αL die Titer der ZKÜ untereinander nur gering 

differierten (1: 5.000 bis 1:8.000), zeigten die Titer der mAK αG eine große Spannbreite von 

1:10 (mAK 1A11 αG) bis 1:8.000 (mAK 2G8 αG).  

Des Weiteren wurde von allen mAK mittels Isotypisierungskit der Subtyp bestimmt. Alle 

produzierten Antikörper sind der Antikörperklasse IgG zuzuordnen. Unter den mAK αG 

finden sich Antikörper der Subtypen IgG1 und IgG2a, bei den mAK αL handelt es sich um die 

Subtypen IgG1, IgG2a und IgG2b (Tabelle 11).  

 
Tabelle 11:  Produktivität der ausgewählten Hybridomzelllinien. Die Titerbestimmungen 

erfolgten mittels indirektem  EIA. Die Beschichtung der Platten erfolgte mit 
gepoolten a) Ghosts (1:3.000) bzw. b) Lysaten (0,2 µg Protein/ml) der 
Cronobacter-Stämme MHI 21001, MHI 21026 und MHI 21040.  
Die Subtypen der mAK wurden mittels Isotypisierungskit bestimmt. 

 

mAK gegen Ghost-Präparationen - mAK αG 

Klon 1A11 αG 1H9 αG 2B5 αG 2B11 αG 2B12 αG 2F7 αG 2G8 αG 

Titer 1: 10 1: 4.000 1: 250 1: 4.000 1: 250 1: 6.000 1: 8.000 

Subtyp IgG2a IgG2a IgG1 IgG1 IgG1 IgG1 IgG1 
 

mAK gegen Lysate - mAK αL 

Klon 1A11 αL 1C4 αL 1G3 αL 1G9 αL 2C12 αL 2F8 αL 2G4 αL 

Titer 1: 7.000 1: 5.000 1: 8.000 1: 8.000 1: 5.000 1: 6.000 1: 8.000 

Subtyp IgG2b IgG2a IgG2b IgG1 IgG2b IgG2b IgG2a 
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3.3.7 Charakterisierung der Antikörper  

Um die gewonnenen mAK umfassend zu charakterisieren, kamen verschiedene, 

vorwiegend immunchemische Untersuchungsverfahren wie EIA, Immunoblots und 

Immunfluoreszenzuntersuchungen zum Einsatz. Schwerpunktmäßig wurden hierbei Lysate 

und Ghost-Präparationen der in Tabelle 3 aufgeführten Stämme verwendet. Für spezielle 

Fragestellungen wurden zudem Untersuchungen mit unbehandeltem Keimmaterial (3.3.4.1a) 

oder anderen Präparationen wie z. B. Ribolyser-Zellextrakten (3.3.4.1b) durchgeführt.  

Für EIA-basierte Untersuchungen zur Spezifität und Affinität der gewonnenen mAK, 

wurden als Ausgangsmaterialien für die Beschickung der Mikrotiterplatten hauptsächlich 

Lysate in einer Ausgangsverdünnung von 1:50 (entspricht 10-100 µg Protein pro ml) sowie 

Ghost-Präparationen in einer Verdünnung beginnend ab 1:100 (entspricht etwa 1-10 x 109 

KbE/ml) eingesetzt. Wurde unbehandeltes Keimmaterial oder Ribolyser-Extrakte im 

indirekten EIA verwendet, erfolgte die Beschichtung der Platten i. d. R. ebenfalls mit einer 

Ausgangsverdünnung von 1:100. Weitere Verdünnungsschritte mit Bicarbonatpuffer erfolgten 

üblicherweise jeweils im Verhältnis 1:2.  

 

3.3.7.1 Bestimmung der relativen Affinität der mAK gegen Cronobacter spp. 

3.3.7.1.1 Monoklonale Antikörper gegen Cronobacter spp.-Ghosts - mAK αG  

Die durchgeführten EIA-Untersuchungen zeigten, dass mit Ausnahme von mAK 1A11 αG 

die Antikörper dieser Gruppe mit den Ghost-Präparationen aller untersuchten und in Tabelle 

12 aufgeführten Cronobacter-Stämme reagierten.  
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Tabelle 12:  Reaktivität der hergestellten mAK αG mit Ghost- und Lysat-Präparationen 
verschiedener Cronobacter-Stämme. Die Ergebnisse wurden mittels indirekter 
EIA-Verfahren erhalten. Zur Beschichtung der Platten wurden serielle 
Verdünnungen von Präparationen der aufgeführten Stämme verwendet. Die 
mAK αG wurden in einer Verdünnung von 1:50 (ZKÜ, 1. Klon) eingesetzt. 

mAK 

Cronobacter-Stämme 
 

1H9 αG 2B5 αG 
2B11 αG 
2B12 αG 

2F7 αG 2G8 αG 1A11 αG 

MHI 975 C. sakazakii ++ + ++ ++ ++ + ++ ++ ++ +++  

MHI 977 C. sakazakii + ++ +++ + ++ + +++ + +++ +++  

MHI 979 C. sakazakii +++ + +++ ++ ++ (+) +++ ++ +++ +++  

MHI 982 C. sakazakii ++ + +++ + +++ - +++ - +++ +++  

MHI 986 C. sakazakii + + +++ ++ ++ + +++ + +++ +++  

MHI 987 C. sakazakii ++ + +++ + +++ + +++ + +++ +++  

MHI 990 C. sakazakii + + +++ + + + +++ (+) +++ +++  

MHI 992 C. sakazakii + + +++ ++ ++ + +++ ++ +++ +++  

MHI 995 C. sakazakii ++ ++ +++ (+) ++ - +++ - +++ +  

MHI 21000 C. sakazakii ++ + +++ + +++ - +++ + +++ +  

MHI 21001 C. sakazakii ++ + +++ + +++ - +++ + +++ +++ ++ - 

MHI 21002 C. sakazakii + + +++ + +++ + +++ +++ +++ +++  

MHI 21008 C. sakazakii ++ + +++ + +++ + +++ ++ +++ +++  

MHI 21011 C. sakazakii ++ + +++ ++ +++ + +++ + +++ +++  

MHI 21012 C. sakazakii + + +++ + +++ + +++ ++ +++ +++  

MHI 21027 C. sakazakii ++ (+) +++ + + (+) ++ (+) + +  

MHI 21028 C. sakazakii +++ + +++ + +++ + +++ ++ +++ +++  

MHI 21029 C. sakazakii ++ + +++ + ++ + +++ + +++ +++  

MHI 21030 C. sakazakii +++ + +++ + ++ + ++ ++ +++ +++  

MHI 21032 C. sakazakii ++ + +++ + + + ++ + +++ +++  

MHI 21035 C. sakazakii ++ + +++ + + + ++ + +++ +++  

MHI 21039 C. sakazakii +++ + +++ + +++ + +++ + +++ +++ - - 

MHI 21040 C. sakazakii ++ + +++ - ++ - +++ - +++ + + - 

MHI 981 C. universalis ++ ++ +++ + +++ + +++ - +++ +++  

MHI 21031 C. muytjensii ++ +++ +++ + +++ ++ +++ ++ +++ +  

MHI 21026 C. turicensis ++ + +++ + +++ + +++ + +++ +++ + - 

MHI 21049 C. turicensis ++ + +++ ++ + + + + ++ ++ + - 

MHI 21050 C. turicensis ++ (+) +++ + + + + + ++ ++ (+) - 

 
 

Extinktion im EIA: 
+++ > 2 bei einer Verdünnung des Ghost-Materials von 1:10.000 (ca. 1-10 x 107 KbE/ml) 
+++ > 2 bei Proteinkonzentration von 0,7 µg/ml (Lysat-Material) 

 

++ 1-2 bei einer Verdünnung des Ghost-Materials von 1:10.000 (ca. 1-10 x 107 KbE/ml) 

++ 1-2 bei Proteinkonzentration von 0,7 µg/ml (Lysat-Material) 
 

+ < 1 bei einer Verdünnung des Ghost-Materials von 1:10.000 (ca. 1-10 x 107 KbE/ml) 
+ < 1 bei Proteinkonzentration von 0,7 µg/ml (Lysat-Material) 

 

(+) geringfügig über dem Leerwert (< 0,3 bei allen Verdünnungsstufen) 
 

- keine eindeutig positive Reaktion nachweisbar 
 

 nicht getestet 
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Hierbei zeigte mAK 2B5 αG die höchste Affinität und eine breite Reaktivität. Im 

indirekten EIA konnten mit diesem Antikörper für alle untersuchten Cronobacter-Ghosts in 

einer Verdünnung von 1:25.000 (entspricht etwa 0,4- 4 x 107 KbE/ml) noch Extinktionen von 

> 2,1 und in einer Verdünnung von 1:100.000 (entspricht 1-10 x 106 KbE/ml) noch 

Extinktionen von > 0,4 erzielt werden. Ähnliche Charakteristika wies der mAK 2G8 αG auf, 

wobei dieser Antikörper jedoch mit einzelnen Stämmen (MHI 21027, MHI 21049, MHI 

21050) vergleichsweise schwach reagierte. Besonders auffällig war dies bei Stamm MHI 

21027, bei dem bereits bei einer Verdünnung (Ghost-Präparation) von 1:10.000 nur noch ein 

sehr geringes Messsignal im EIA erhalten wurde, während bei allen anderen Stämmen noch 

Extinktionen von > 2,0 ermittelt wurden. Die im Rahmen dieser Untersuchungen erstellten 

Antigen-Verdünnungskurven sind exemplarisch für mAK 2G8 αG in Abbildung 7 dargestellt.  

 

 

Abbildung 7: Relative Affinität des mAK 2G8 αG für Ghost-Präparationen (a) und Lysate 
(b) ausgewählter Cronobacter-Stämme im indirekten EIA. Die Beschichtung der 
Mikrotiterplatten erfolgte mit seriellen Verdünnungen von Ghost- und Lysat-Präparationen 
der angegebenen Cronobacter-Stämme. Der Antikörper wurde in einer Verdünnung von 1:50 
(ZKÜ, 1. Klon) eingesetzt.  
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Die Antikörper 2B11 αG und 2B12 αG, mit denen im indirekten EIA wie auch mit mAK 

2F7 αG tendenziell geringere Messsignale als mit den affineren mAK 2B5 αG und 2G8 αG 

erhalten wurden, zeigten ein nahezu identisches Reaktionsprofil (Tabelle 12). 

Von den getesteten breit reagierenden Antikörpern wies mAK 1H9 αG die vergleichsweise 

geringste Affinität für Ghost-Material von Cronobacter spp. auf. So reagierten im Gegensatz 

zu allen anderen mAK bei einer Beschichtungskonzentration von ca. 5 x 106 KbE/ml nur 

mehr 14% der untersuchten Stämme deutlich positiv.  

Für mAK 1A11 αG wurde bereits in den ersten orientierenden Versuchen nur eine geringe 

Reaktivität mit den untersuchten Ghost-Präparationen festgestellt. Da zudem auch mit 

verschiedenen Lysaten keine Reaktion nachgewiesen werden konnte, wurde dieser Antikörper 

nur eingeschränkt für weitergehende Untersuchungen genutzt und daher auch nicht mit allen 

zur Verfügung stehenden Cronobacter-Stämmen getestet (Tabelle 12). 

In den EIA-Untersuchungen, in denen Lysate als Antigenpräparationen eingesetzt wurden, 

waren für die mAK αG vergleichsweise geringere Reaktivitäten nachzuweisen. Zum Teil war 

bei einigen Antikörpern (mAK 2B5 αG, 2B11 αG, 2B12 αG und 2F7 αG) keine Reaktivität 

mit manchen Lysaten festzustellen, obwohl diese mAK stark mit den Ghosts dieser Stämme 

reagiert hatten (z.B. MHI 21040). Die tendenziell geringere Affinität der mAK αG für die 

entsprechenden Lysate spricht dafür, dass Anteile der antigen wirkenden Strukturen durch 

Zentrifugation und Filtration im Rahmen der Aufarbeitung nach 3.3.2 zurückgehalten werden 

und daher nur in einem eingeschränkten Umfang in den Lysat-Präparationen vorliegen. Bei 

mAK 2G8 αG war die unterschiedliche Reaktivität mit den Ghost-Präparationen und den 

Lysaten am geringsten ausgeprägt (Tabelle 12), zudem wurden die mit Abstand höchsten 

Affinitäten für die Lysate der untersuchten Stämme nachgewiesen (Tabelle 13). Mit 

Ausnahme der Stämme MHI 995, MHI 21001, MHI 21027, MHI 21031 und MHI 21040 

wurden bei Einsatz dieses mAKs im indirekten EIA selbst bei niedrigen 

Beschichtungskonzentrationen von 0,1 µg Protein pro ml Lysat noch hohe Messsignale 

erhalten, wie exemplarisch in Abbildung 7b dargestellt ist.  

Alle anderen untersuchten mAK αG zeigten deutlich schwächere Reaktivität mit den 

Lysaten der eingesetzten Cronobacter-Stämme. 
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 Gestützt wurden die in Tabelle 12 dargestellten semiquantitativen Ergebnisse durch die 

Bestimmung der relativen Affinitäten der mAK αG für die Lysate aller untersuchten 

Cronobacter-Stämme (Tabelle 13). Die relative Affinität wurde definiert als diejenige 

Proteinkonzentration der Antigenpräparation, bei der unter den Bedingungen eines mAK-

Überschusses im indirekten EIA noch eine Extinktion von 1,0 erreicht wird. Bei den Angaben 

zur relativen Affinität ist zu berücksichtigen, dass es sich bei den Lysaten um 

Rohpräparationen von ganzen Keimen handelte und somit eine breite Mischung 

unterschiedlichster Proteine und anderer struktureller Komponenten darstellte. Daraus folgt, 

dass der tatsächliche Antigengehalt sicherlich in einem deutlich niedrigeren 

Konzentrationsbereich liegt, als die aus dem Gesamtproteingehalt der Lysate errechneten 

Werte.  

Grundsätzlich konnte für die mAK 1H9 αG, 2B5 αG, 2B11 αG, 2B12 αG und 2F7 αG ein 

sehr heterogenes Reaktionsprofil mit den Lysaten der untersuchten Cronobacter-Stämme 

nachgewiesen werden. Während für Lysate einzelner Stämme bereits bei Konzentrationen von 

deutlich weniger als 1 µg/ml eine Extinktion von 1,0 im indirekten EIA erzielt wurde, 

mussten bei anderen Stämmen Proteinkonzentrationen im zweistelligen µg-Bereich eingesetzt 

werden (Tabelle 13). 

Insbesondere bei Einsatz der mAK 1H9 αG und 1B11 αG im indirekten EIA wurden sehr 

flache Dosis-Wirkungs-Kurven erhalten. Des Weiteren konnte für 14 bzw. 19 der getesteten 

28 Cronobacter-Lysate im untersuchten Konzentrationsbereich (die Ausgangskonzentrationen 

für die Beschickung der Mikrotiterplatten lagen für diese Stämme bei 20 bis 90 µg/ml) keine 

Extinktion von ≥ 1 im indirekten EIA erreicht werden; fünf der 28 untersuchten Lysate 

reagierten negativ. Darunter waren auch die Stämme MHI 21001 und MHI 21040, deren 

Ghost-Präparationen für die Immunisierung der Mäuse verwendet worden waren. Auch mAK 

2F7 αG zeigte mit den Lysaten von fünf Cronobacter-Stämmen keine Reaktivität.  
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Tabelle 13:  Relative Affinität der mAK αG für Lysate verschiedener Cronobacter-

Stämme. Die Bestimmung erfolgte im indirekten EIA unter Verwendung 
serieller Verdünnungsreihen der Antigenpräparationen. Angegeben sind die 
Proteinkonzentrationen im Lysat [µg/ml], bei denen unter diesen 
Versuchsbedingungen mit Einsatz des jeweiligen mAK in einer Verdünnung 
von 1:50 (ZKÜ, 1.Klon) noch eine Extinktion von 1,0 erreicht wurde. 

 

mAK Cronobacter spp. 
(Lysate) 1H9 αG 2B5 αG 2B11 αG 2F7 αG 2G8 αG 

C. sakazakii 
MHI 975  5 0,2 1 0,5 0,1 
MHI 977  0,2 2,6 > 80 > 80 < 0,1 
MHI 979  > 90 0,5 > 90 0,6 0,1 
MHI 982  > 60 1,5 - - 0,1 
MHI 986  1,8 0,6 > 60 0,8 0,1 
MHI 987  > 50 1,3 > 50 > 50 0,2 
MHI 990   30 1,8 > 50 - 0,2 
MHI 992  1 0,3 > 60 0,4 0,1 
MHI 995  1 > 30 - - 0,8 
MHI 21000  > 30 > 30 - > 30 0,1 
MHI 21001  > 60 > 60 - > 60 0,9 
MHI 21002  3,2 2,7 3,7 0,4 0,1 
MHI 21008  4,8 0,8 2,8 0,6 0,1 
MHI 21011  > 50 0,4 > 50 1 0,2 
MHI 21012  2,3 0,8 > 70 0,4 0,1 
MHI 21027  >30 3,4 > 30 > 30 > 30 
MHI 21028  > 60 2,1 12 0,5 0,1 
MHI 21029  30 > 40 > 40 1 < 0,3 
MHI 21030  1,7 2 3,5 0,6 0,1 
MHI 21032  > 70 2,6 3 1 0,1 
MHI 21035  > 50 1,8 > 50 2,7 0,3 
MHI 21039  > 50 5 3 0,6 0,1 
MHI 21040  > 20 - - - 3,4 
C. universalis 
MHI 981  1 1,3 > 70 - 0,1 
C. muytjensii 
MHI 21031  0,1 8,3 0,8 0,4 3 
C. turicensis 
MHI 21026  1,6 2,8 7,9 0,8 0,1 
MHI 21049  > 20 0,6 > 20 > 20 0,4 
MHI 21050  > 20 1 > 20 > 20 0,6 
 

 
     

- keine eindeutig positive Reaktion nachweisbar (Extinktion kleiner als dreifacher Leerwert) 
 

Zusammenfassend zeigten die durchgeführten Untersuchungen, dass mAK 2B5 αG und 

2G8 αG in der Gruppe der monoklonalen Antikörper gegen Cronobacter spp.-Ghosts im EIA 

die höchsten Affinitäten für die untersuchten Antigen-Präparationen aufweisen, während für 

mAK 1A11 αG und 1H9 αG die geringsten Reaktivitäten ermittelt wurden. 
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3.3.7.1.2 Monoklonale Antikörper gegen Cronobacter spp.-Lysate - mAK αL 

In den durchgeführten EIA-Untersuchungen basierend auf den mAK αL zeigte sich, dass 

die Antikörper dieser Gruppe, mit Ausnahme von mAK 2F8 αL, der mit allen untersuchten 

Antigenpräparationen reagierte, ein deutlich anderes Reaktionsprofil aufwiesen als die oben 

beschriebenen mAK αG. So wurden für mAK 1A11 αL, 1C4 αL, 1G3 αL, 1G9 αL und 2C12 

αL lediglich Reaktivitäten mit Präparationen von Stämmen der Spezies C. sakazakii 

nachgewiesen (Tabelle 14). Dabei wurden zudem nur einzelne Stämme und nicht die gesamte 

Spezies erfasst. Mit Präparationen anderer Arten der Gattung Cronobacter wurden negative 

Ergebnisse im EIA erhalten. Im Gegensatz hierzu reagierte der mAK 2G4 αL sehr selektiv 

mit C. turicensis MHI 21026.  

Für mAK αL konnten im Rahmen der Untersuchungen mittels EIA, anders als für mAK 

αG, keine systematischen Unterschiede in ihrer Reaktivität zwischen Ghosts und Lysaten 

festgestellt werden. Wenn mAK αL im EIA positiv mit Lysaten reagierten, dann waren 

adäquate Reaktionen auch mit den entsprechenden Ghost-Präparationen zu beobachten und 

umgekehrt. Analog verhielt es sich mit unbehandeltem Keimmaterial (Tabelle 14). Alle 

Stämme, deren Ghost- bzw. Lysat-Präparationen mit den mAK αL reagiert hatten, zeigten 

auch in diesen Untersuchungen positive EIA-Reaktionen.  

Insgesamt zeigte der breit reagierende mAK 2F8 αL die höchsten Affinitäten im EIA. Für 

alle untersuchten Cronobacter-Ghost-Präparationen konnten bei einer Verdünnungsstufe von 

1:10.000 noch Extinktionswerte von > 3 erreicht werden. Bis auf einzelne Stämme (MHI 975, 

MHI 21001, MHI 21002 und MHI 21040) waren für Ghost-Präparationen von C. sakazakii 

sogar in Verdünnungen von 1:100.000 noch Extinktionen von > 3 nachzuweisen. Für Ghost-

Material der Spezies C. turicensis und C. muytiensii konnten hingegen bei einer Verdünnung 

von 1:100.000 nur mehr Extinktionswerte von 0,3 bis 1,2 ermittelt werden. 

Für den hochspezifischen mAK 2G4 αL wurden bei Testung der Ghost-Präparationen 

lediglich mit dem C. turicensis-Stamm MHI 21026 Extinktionen von > 0,3 erhalten, wobei 

noch sehr niedrige Beschichtungskonzentrationen von etwa 1 x 105 KbE/ml zu positiven 

Messergebnissen führten.  

Wurden die anderen mAK αL mit Ghost-Präparationen verschiedener Cronobacter spp. 

getestet, wurde für alle Antikörper ein nahezu identisches Reaktionsprofil erhalten. Die mAK 

αL zeigten aber eine große Spannbreite bei der Reaktivität mit den jeweiligen Stämmen. So 

reagierten zum Beispiel Ghosts des Stammes MHI 21001 vergleichsweise schwach. Wurde 
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Ghost-Material dieses Stammes in einer Verdünnung von 1:10.000 eingesetzt (entspricht ca. 

1-10 x 107 KbE/ml), lagen die ermittelten Extinktionen mit diesen Antikörpern im EIA unter 

0,7 während für alle anderen positiv reagierenden Stämme Extinktionen ermittelt wurden, die 

in dieser Verdünnungsstufe deutlich über 1 lagen und teilweise auch eine Extinktion von 3 

überschritten. Tendenziell waren für mAK 1A11 αL geringere Affinitäten für die Ghosts zu 

beobachten als für mAK 1C4 αL, 1 G9 αL, 1G3 αL und 2 C12 αL. Die Antikörper 1C4 αL 

und 1G9 αL unterschieden sich in der semiquantitativen Auswertung der EIA-

Untersuchungen (Tabelle 14) von mAK 1G3 αL und 2C12 αL lediglich in einer geringeren 

Reaktivität mit den Ghosts des Stammes MHI 21039. 
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Tabelle 14:  Reaktivität der hergestellten mAK αL gegen Ghost- und Lysat-Präparationen sowie unbehandeltes Keimmaterial verschiedener 
Cronobacter-Stämme. Die Ergebnisse wurden mittels indirekter EIA-Verfahren erhalten. Zur Beschichtung der Platten wurden 
serielle Verdünnungen von Präparationen der aufgeführten Stämme verwendet (Spalte A: Ghosts, Spalte B: Lysat, Spalte C: vitale 
Keime). Die mAK αL wurden in einer Verdünnung von 1:50 (ZKÜ, 1. Klon) eingesetzt. 

 

mAK 

1A11 αL 
1C4 αL 
1G9 αL 

1G3 αL 
2C12 αL 

2G4 αL 2F8 αL 
Cronobacter-Stämme 
 A B C A B C A B C A B C A B C 
MHI 975 C. sakazakii +++ + + ++ + + ++ + + - -  +++ +++ + 
MHI 977 C. sakazakii - -  - -  - -  - -  +++ +++ + 
MHI 979 C. sakazakii - -  - -  - -  - -  +++ +++ + 
MHI 982 C. sakazakii - -  - -  - -  - -  +++ +++ + 
MHI 986 C. sakazakii - -  - -  - -  - -  +++ +++ + 
MHI 987 C. sakazakii - -  - -  - -  - -  +++ +++ + 
MHI 990 C. sakazakii - -  - -  - -  - -  +++ +++ + 
MHI 992 C. sakazakii - -  - -  - -  - -  +++ +++ + 
MHI 995 C. sakazakii - -  - -  - -  - -  +++ +++ + 
MHI 21000 C. sakazakii ++ ++ + +++ +++ + +++ +++ + - -  +++ +++ + 
MHI 21001 C. sakazakii + +++ + + +++ + + +++ + - -  +++ +++ + 
MHI 21002 C. sakazakii - -  - -  - -  - -  +++ +++ + 
MHI 21008 C. sakazakii +++ +++ + +++ +++ + +++ +++ + - -  +++ +++ + 
MHI 21011 C. sakazakii +++ +++ + +++ +++ + +++ +++ + - -  +++ +++ + 
MHI 21012 C. sakazakii ++ + + +++ +++ + +++ +++ + - -  +++ +++ + 
MHI 21027 C. sakazakii - -  - -  - -  - -  +++ +++ + 
MHI 21028 C. sakazakii +++ +++ + +++ +++ + +++ +++ + - -  +++ +++ + 
MHI 21029 C. sakazakii - -  - -  - -  - -  +++ +++ + 
MHI 21030 C. sakazakii ++ +++ + +++ +++ + +++ +++ + - -  +++ +++ + 
MHI 21032 C. sakazakii - -  - -  - -  - -  +++ +++ + 
MHI 21035 C. sakazakii - -  - -  - -  - -  +++ +++ + 
MHI 21036 C. sakazakii   -   -   -   -   + 
MHI 21037 C. sakazakii   -   -   -   -   + 
MHI 21038 C. sakazakii   +   +   +   -   + 
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Fortsetzung Tabelle 14: Reaktivität der hergestellten mAK αL gegen Ghost- und Lysat-Präparationen sowie unbehandeltes Keimmaterial 
verschiedener Cronobacter-Stämme. Die Ergebnisse wurden mittels indirekter EIA-Verfahren erhalten. Zur Beschichtung der Platten 
wurden serielle Verdünnungen von Präparationen der aufgeführten Stämme verwendet (Spalte A: Ghosts, Spalte B: Lysat, Spalte C: 
vitale Keime). Die mAK αL wurden in einer Verdünnung von 1:50 (ZKÜ, 1. Klon) eingesetzt. 

  

mAK 

1A11 αL 
1C4 αL 
1G9 αL 

1G3 αL 
2C12 αL 

2G4 αL 2F8 αL 
Cronobacter-Stämme 
 A B C A B C A B C A B C A B C 
MHI 21039 C. sakazakii ++ + + ++ +++ + +++ +++ + - -  +++ +++ + 
MHI 21040 C. sakazakii - -  - -  - -  - -  +++ +++ + 
MHI 21041 C. sakazakii   -   -   -   -   + 
MHI 981 C. universalis - -  - -  - -  - -  +++ +++ + 
MHI 21031 C. muytjensii - -  - -  - -  - (+)  +++ + + 
MHI 21026 C. turicensis - -  - -  - -  +++ +++ + +++ +++ + 
MHI 21049 C. turicensis - -  - -  - -  (+) -  +++ +++ + 
MHI 21050 C. turicensis - -  - -  - -  (+) -  +++ +++ + 

 
 

Extinktion im EIA: 
+++ > 2 bei einer Verdünnung des Ghost-Materials von 1:10.000 (ca. 1-10 x 107 KbE/ml) 
+++ > 2 bei Proteinkonzentration von 0,7 µg/ml (Lysat-Material) 

 

++ 1 - 2 bei einer Verdünnung des Ghost-Materials von 1:10.000 (ca. 1-10 x 107 KbE/ml) 

++ 1 - 2 bei Proteinkonzentration von 0,7 µg/ml (Lysat-Material) 
 

+ < 1 bei einer Verdünnung des Ghost-Materials von 1:10.000 (ca. 1-10 x 107 KbE/ml) 
+ < 1 bei Proteinkonzentration von 0,7 µg/ml (Lysat-Material) 

 

+ > 0,3 bei einer Keimzahl von ca. 106 KbE/ml 
 

(+) geringfügig über dem Leerwert (< 0,3 bei allen Verdünnungsstufen) 
 

- keine eindeutig positive Reaktion nachweisbar 
 nicht untersucht 
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Detailliertere Untersuchungen zur relativen Affinität der mAK αL für Lysate von 

Cronobacter-spp. sind in Tabelle 15 aufgeführt.   

 
Tabelle 15:  Relative Affinität der mAK αL für Lysate verschiedener Cronobacter-Stämme. 

Die Bestimmung erfolgte im indirekten EIA unter Verwendung serieller 
Verdünnungsreihen der Antigenpräparationen. Angegeben sind die 
Proteinkonzentrationen im Lysat [µg/ml], bei denen unter diesen 
Versuchsbedingungen mit Einsatz des jeweiligen mAK in einer Verdünnung des 
ZKÜ (1.Klon) von 1:50 noch eine Extinktion von 1 erreicht wurde. 

 

mAK Cronobacter 

spp. (Lysate) 
 

1A11 αL 1C4 αL 1G9 αL 1G3 αL 2C12 αL 2G4 αL 2F8 αL 

C. sakazakii 
MHI 975  > 80 > 80 > 80 > 80 > 80 - < 0,06 
MHI 977  - - - - - - < 0,07 
MHI 979  - - - - - - < 0,08 
MHI 982  - - - - - - < 0,05 
MHI 986  - - - - - - < 0,06 
MHI 987  - - - - - - < 0,05 
MHI 990   - - - - - - 0,1 
MHI 992  - - - - - - < 0,06 
MHI 995  - - - - - - 0,14 
MHI 21000  0,5 0,03 0,1 0,02 < 0,01 - < 0,03 
MHI 21001  0,04 0,09 0,25 0,4 0,3 - 0,15 
MHI 21002  - - - - - - < 0,06 
MHI 21008  0,1 < 0,02 0,04 < 0,02 < 0,02 - < 0,06 
MHI 21011  < 0,04 < 0,01 0,02 0,03 0,01 - < 0,05 
MHI 21012  0,9 0,04 0,1 0,05 0,04 - < 0,07 
MHI 21027  - - - - - - < 0,03 
MHI 21028  0,07 0,03 0,1 0,025 < 0,02 - < 0,06 
MHI 21029  - - - - - - 0,04 
MHI 21030  0,1 0,03 0,2 0,09 0,04 - < 0,09 
MHI 21032  - - - - - - < 0,06 
MHI 21035  - - - - - - 0,1 
MHI 21039  > 80 0,03 0,24 0,1 0,05 - < 0,09 
MHI 21040  - - - - - - 0,06 
C. universalis 
MHI 981  - - - - - - < 0,06 
C. muytjensii 
MHI 21031  - - - - - > 16 5,5 
C. turicensis 
MHI 21026  - - - - - 0,009 < 0,03 
MHI 21049  - - - - - - 0,08 
MHI 21050  - - - - - - 0,1 
 

 
     

- keine Extinktion im EIA nachweisbar 
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Auffallend war zunächst, dass die Beschichtungskonzentrationen, bei denen im EIA eine 

Extinktion von 1,0 erzielt wurde, für viele Stämme bei unter 0,1 µg Protein pro ml lagen; ein 

Hinweis auf eine vergleichsweise hohe Affinität der eingesetzten Antikörper. Wie zu 

erwarten, zeigten die mAK αL insgesamt deutlich höhere Affinitäten zu den Lysaten als die 

mAK αG. 

Durch die quantitative Auswertung der EIA-Untersuchungen wurde bestätigt, dass sich die 

Affinitäten von mAK 1A11 αL, 1C4 αL, 1G9 αL, 1G3 αL und 2C12 αL für Cronobacter-

Lysate untereinander in jeweils ähnlichen Größenbereichen bewegen, wobei die mAK 1A11 

αL und 1G9 αL die tendenziell geringsten Affinitäten aufwiesen. Für diese beiden mAK αL 

waren die Dosis-Wirkungskurven zum Teil durch einen sehr flachen Verlauf gekennzeichnet, 

wie in Abbildung 8 exemplarisch für Stamm MHI 21039 dargestellt ist.  

 

 

 

Abbildung 8: Reaktivität verschiedener mAK αL mit Lysat des Stammes C. sakazakii MHI 
21039. Die Beschichtung der Mikrotiterplatten erfolgte mit seriellen Verdünnungen des 
Lysats, die Antikörper wurden fix in einer 1:50 Verdünnung (ZKÜ, 1. Klon) eingesetzt.  

 

Der Antikörper 2G4 αL zeigte auch in Verbindung mit Lysaten eine hochspezifische 

Reaktion mit hoher Affinität für C. turicensis MHI 21026. Bereits eine Proteinkonzentration 

von 0,009 µg/ml im Lysat reichte aus, um mit dieser Antigenpräparation eine Extinktion von 

1,0 im EIA zu erhalten. Für die Lysate der C. turicensis-Stämme MHI 21049 und MHI 21050 

wurden hingegen bei Einsatz des mAK 2G4 αL nur geringfügige Extinktionen im EIA 

nachgewiesen. Die Messwerte waren um etwa Faktor 1.000 geringer als für MHI 21026. 
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Auffällig war, dass der breit reagierende mAK 2F8 αL für alle untersuchten Stämme 

(außer MHI 21031) sehr hohe Affinitäten aufwies, d.h. die Beschichtungskonzentrationen, die 

im EIA in einer Extinktion von > 1,0 resultierten, lagen mit max. 0,15 µg/ml auf einem sehr 

niedrigen Niveau. Auch für das Lysat des Stammes C. sakazakii MHI 975, das mit den 

anderen mAK αL nur sehr schwach reagierte (Tabelle 15), wurde mit mAK 2F8 αL ein hohes 

Messsignal erhalten. Während die Extinktionen im EIA für das Lysat dieses Stammes in 

Verbindung mit den mAK 1A11 αL, 1C4 αL, 1G3 αL, 1G9 αL und 2C12 αL selbst bei einer 

Proteinkonzentration von 80 µg/ml einen Wert von 1,0 nicht erreichten, lagen die Werte im 

EIA basierend auf mAK 2F8 αL bei einem Proteingehalt von 0,06 µg/ml noch bei > 3,0. 

Lediglich mit dem Lysat von C. muytjensii MHI 21031 zeigte 2F8 αL eine tendenziell 

schwache Reaktivität. Von dieser Präparation wurden 5,5 µg Protein/ml benötigt, um im EIA 

eine Extinktion von 1,0 zu erhalten. Der deutliche Unterschied in den Affinitäten von mAK 

2F8 αL zwischen dem Lysat dieses Stammes und den anderen untersuchten Keimen, ist in 

Abbildung 9 im Vergleich mit den Stämmen C. sakazakii MHI 990 und MHI 21035 

dargestellt. 

   

 

 
Abbildung 9: Reaktivität von mAK 2F8 αL mit Lysaten ausgewählter Cronobacter-Stämme. 
Die Beschichtung der Mikrotiterplatten erfolgte mit seriellen Verdünnungen der Lysat-
Präparationen der angegebenen Cronobacter-Stämme, der Antikörper (ZKÜ, 1. Klon) wurde 
in einer Verdünnung von 1:50 eingesetzt.  
 

Für die Gruppe der monoklonalen Antikörper gegen Cronobacter-Lysate lässt sich 

zusammenfassend feststellen, dass sich zwei Antikörper aufgrund ihrer hohen Affinität und 

ihrer Spezifität klar von den anderen mAK αL differenzieren lassen. Dabei zeigte mAK 2G4 
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αL ein sehr selektives Verhalten und reagierte nur mit dem C. turicensis-Stamm MHI 21026, 

mAK 2F8 αL hingegen zeichnete sich durch eine breite Reaktivität mit allen eingesetzten 

Cronobacter-Präparationen aus. Die anderen hergestellten mAK αL zeigten lediglich 

Reaktivität mit einzelnen C. sakazakii-Stämmen, wobei sich das Spezifitätsmuster der 

Antikörper untereinander nicht unterschied. Auch im Hinblick auf die Affinitäten konnten mit 

Ausnahme des mAK 1A11 αL nur geringe Unterschiede zwischen diesen Antikörpern im 

indirekten EIA ermittelt werden. 

  

3.3.7.1.3 Nachweisempfindlichkeit der indirekten EIAs 

Die Unterschiede in den Affinitäten der mAK ließen sich auch an der 

Nachweisempfindlichkeit der jeweiligen indirekten EIAs ablesen. Die Nachweisgrenze 

(NWG) im EIA als Maß für die Sensitivität der gewonnenen Antikörper wurde definiert als 

die Antigenkonzentration, bei der im EIA eine Extinktion erreicht wird, die den dreifachen 

Wert des antigenfreien Kontrollstandards überschreitet.  

Die Sensitivität differiert für jeden der untersuchten Antikörper in Abhängigkeit vom 

untersuchten Mikroorganismus. Zudem variierten insbesondere für die mAK αG die 

Nachweisempfindlichkeiten sehr stark. Verdeutlicht wird dies am Beispiel von Stamm MHI 

21001; während im EIA bereits ab 0,06 µg Protein pro ml Lysat ein positiver Nachweis mit 

mAK 2G8 αG erhalten wurde, konnte mit mAK 2F7 αG diese Präparation unter den 

vorgegebenen Versuchsbedingungen erst ab einer Proteinkonzentration von 32 µg/ml erfasst 

werden.  

Die höchsten Sensitivitäten wurden mit dem Testsystem basierend auf mAK 1H9 αG und 

2G8 αG erreicht (Tabelle 16). Für mAK 2G8 αG war dieses Ergebnis zu erwarten, da dieser 

Antikörper die höchsten Affinitäten der mAK αG im indirekten EIA zeigte. Dies war bei 

mAK 1H9 αG nicht der Fall. Es wurden sehr flache Verläufe der Dosis-Wirkungskurven im 

EIA nachgewiesen und häufig wurden auch unter Verwendung von Lysaten mit 

Proteingehalten größer 50 µg/ml keine Extinktionen von 1 erreicht. Dennoch war es mit 

diesem Antikörper möglich, bereits vergleichsweise geringe Antigenkonzentrationen (z. B. 

0,05 µg Protein/ml Lysat des Stammes MHI 21030) im indirekten EIA sicher zu erfassen. 

Im Vergleich zu den mAK αG reagierten die mAK αL erwartungsgemäß sensitiver auf die 

untersuchten Lysate, da diese Antikörper das Ergebnis der Immunisierung von Mäusen mit 

Lysat-Material darstellen. Die ermittelten NWG lagen weitestgehend unter 0,01 µg Protein 
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pro ml Lysat. Insbesondere für mAK 1C4 αL, 1G3 αL, 1G9 αL und 2C12 αL, die alle ein 

identisches Reaktionsprofil für Cronobacter spp. aufwiesen (vgl. 3.3.7.1.2) und sich auch in 

ihren Affinitäten nur wenig unterschieden, lagen auch die NWG in ähnlichen 

Konzentrationsbereichen. MAK 1C4 αL zeigte hier tendenziell die höchste und mAK 1G3 αL 

die niedrigste Sensitivität, wie in Tabelle 16 an ausgewählten Stämmen dargestellt ist. Eine 

hohe Nachweisempfindlichkeit der mAK αL im indirekten EIA war auch für unbehandeltes 

Keimmaterial festzustellen (Ergebnisse nicht dargestellt). So konnten die in Tabelle 16 

aufgeführten Stämme bei einer Keimzahl von ca. 107 KbE/ml (entspricht einer Verdünnung 

der LB-Anzucht von 1:32.000) von allen mAK αL noch sicher erfasst werden. 1C4 αL zeigte 

auch hier die höchste Sensitivität. Bereits bei sehr niedrigen Beschichtungskonzentrationen 

von unter 106 KbE/ml (bezogen auf die in Tabelle 16 dargestellen Stämme) wurden im EIA 

Extinktion erreicht, die den dreifachen Wert des antigenfreien Kontrollstandards deutlich 

überschritten.  

 
Tabelle 16:  Nachweisgrenzen monoklonaler Antikörper, ermittelt mittels indirektem EIA. 

Die Beschichtung der Mikrotiterplatten erfolgte mit seriellen Verdünnungen 
von Lysat-Präparationen der angegebenen Cronobacter-Stämme, die 
Antikörper wurden in einer Verdünnung von 1:50 (ZKÜ, 1.Klon) eingesetzt.  

 

Nachweisgrenzen der mAK für die Antigenpräparation in µg/ml 
mAK 

MHI 21001 (Lysat) MHI 21039 (Lysat) MHI 21030 (Lysat) 

1H9 αG 0,06 0,1 0,05 
2B5 αG 8,0 0,2 0,1 
2B11 αG - 0,3 0,5 
2F7 αG 32,0 0,1 0,1 
2G8 αG 0,06 0,02 0,005 
1A11 αL 0,005 0,05 0,004 
1C4 αL 0,003 0,003 0,003 
1G9 αL 0,005 0,007 0,007 
1G3 αL 0,015 0,007 0,007 
2C12 αL 0,008 0,003 0,005 
 

Für den selektiven mAK 2G4 αL wurde bei Einsatz des Lysates von Stamm C. turicensis 

MHI 21026 eine Nachweisgrenze von 0,0002 µg/ml (0,2 ng/ml) ermittelt. Die ermittelte 

NWG für das Lysat des Stammes C. muytjensii MHI 21031, für den mit mAK 2G4 αL als 

einziges weiteres Cronobacter-Lysat eine schwach positive Reaktion im EIA nachgewiesen 

werden konnte, betrug dagegen 42 µg/ml (Faktor 200.000). Lebende Bakterien des Stammes 

MHI 21026 waren bei Keimzahlen von 104 KbE/ml noch im indirekten EIA nachweisbar.  
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3.3.7.2 Inter-Genus-Spezifität der monoklonalen Antikörper 

Um die Spezifität der gewonnenen mAK auch Genus-übergreifend beurteilen zu können, 

wurden ergänzend zu den bisherigen Tests mit Lysaten und Ghost-Material von Cronobacter 

spp. (3.3.7.1) EIA-Untersuchungen mit Präparationen weiterer gramnegativer und 

grampositiver Bakterienstämme durchgeführt. Für die Beschichtung der Platten wurden 

sowohl Lysate und Ghosts als auch Zellhomogenisate nach Ribolyser-Behandlung (3.3.4.1b) 

eingesetzt. In Vorversuchen konnte nachgewiesen werden, dass die Untersuchungen mit 

Ribolyser-Material im indirekten EIA vergleichbare Ergebnisse lieferten, wie sie unter 

Verwendung von Ghosts erhalten worden waren. Die Herstellung von Ribolyser-

Zellhomogenisaten ist jedoch mit einem deutlich geringeren Aufwand verbunden als die 

Probenvorbereitung mit Polymyxin-Verdau, so dass sich dieses Material dafür eignete, in 

einem vereinfachten Verfahren Untersuchungen zum Reaktionsspektrum der mAK im 

indirekten EIA durchzuführen.  

Die untersuchten mAK αG zeigten eine insgesamt sehr breite Reaktivität gegenüber den 

getesteten gramnegativen Keimen (Tabelle 17). Während die mAK 1H9 αG, 2B5 αG und 2G8 

αG Reaktivität mit allen untersuchten Enterobacteriacae-Stämmen zeigten (insbesondere mit 

den Ghost-Präparationen), wurde für die mAK 1A11 αG, 2B11 αG, 2B12 αG und 2F7 αG nur 

mit den Präparationen einzelner gramnegativer Stämme eine positive Reaktion festgestellt (14 

von 28 Stämmen). Diese Antikörper besitzen beispielsweise keine Reaktivität mit den 

getestenen Vertretern von Hafnia alvei (MHI 910), Proteus vulgaris (MHI 913) oder Yersinia 

enterocolitica (MHI 973). 1A11 αG reagierte als einziger der mAK αG nicht mit 

gramnegativen Bakterien außerhalb der Familie der Enterobacteriaceae.  

Wie bereits im Rahmen der Untersuchungen mit Cronobacter spp. festgestellt worden war, 

reagierten auch hier die mAK αG mit Lysaten tendenziell schwächer als mit den 

entsprechenden Ghost-Präparationen. Mit den bisherigen Feststellungen (3.3.7.1.1) korreliert 

zudem, dass auch bei diesen Untersuchungen mit verschiedenen gramnegativen 

Enterobacteriaceae für mAK 2G8 αG vergleichsweise höhere Extinktionen mit Lysaten im 

EIA zu beobachten waren, als für die anderen getesteten mAK αG.  

Mit Präparationen der untersuchten grampositiven Stämme konnte, mit Ausnahme von 

mAK 2B5 αG, keine Reaktivität beobachtet werden. Die Reaktion von 2B5 αG mit Bacillus 

cereus MHI 163 (inaktiviert mit 4% Paraformaldehyd in PBS) war aber nur sehr schwach 

ausgeprägt. So waren Keimzahlen von ca. 1 x 109 KbE/ml erforderlich, um im indirekten EIA 

eine Extinktion von 0,5 zu erreichen. Dieser Wert wurde bei allen anderen mit mAK 2B5 αG 
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positiv reagierenden Ghost-Präparationen (Tabelle 17) bereits bei Keimzahlen von ca. 106 

KbE/ml (entspricht einer Verdünnung der Ghost-Präparation von 1:50.000) deutlich 

überschritten.  

Zusammenfassend, auch unter Berücksichtigung der in 3.3.7.1.1 dargestellten Ergebnisse, 

deuten die gewonnenen Daten zur Intra- und Inter-Genus-Spezifität der gegen Cronobacter-

Ghosts gerichteten mAK darauf hin, dass die Antikörper mit Epitopen reagieren, die innerhalb 

der Familie der Enterobacteriaceae regelmäßig zu finden sind.  

Wie aufgrund in 3.3.7.1.2 dargestellten Untersuchungen zu erwarten war, zeigten die mAK 

αL auch im EIA mit Präparationen anderer Bakterienstämmen, die nicht dem Genus 

Cronobacter zuzuordnen sind, unterschiedliche Reaktionsmuster. So reagierte mAK 2F8 αL 

für den bereits innerhalb der Gattung Cronobacter eine breite Reaktivität nachgewiesen 

werden konnte, auch mit 26 von 28 der getesteten gramnegativen Bakterien anderer 

Gattungen. Lediglich mit den Stämmen Escherichia coli (MHI 708) und Providencia stuartii 

(MHI 952) war keine Reaktivität nachweisbar. Auch grampositive Organismen wurden durch 

diesen Antikörper erfasst (Tabelle 17).  

Die nach den bisherigen Untersuchungen (3.3.7.1.2) postulierte Selektivität der mAK αL 

für C. sakazakii (ausgenommen mAK 2F8 αL und mAK 2G4 αL) wurde bestätigt. Für keine 

der in den vorliegenden Untersuchungen eingesetzten 28 gramnegativen und zwei 

grampositiven Spezies konnte mit den mAK 1A11 αL, 1C4 αL, 2C12 αL, 1G3 αL und 1G9 

αL eine positive Reaktion nachgewiesen werden (Tabelle 17).  

Für den C. turicensis-spezifischen mAK 2G4 αL wurden lediglich mit Ghost-Material der 

Stämme Klebsiella pneumoniae (MHI 21024), Serratia rubidea (MHI 974), Yersinia 

enterocolitica (MHI 973) und Enterobacter cloacae (MHI 904) Extinktionen erhalten, die 

geringfügig über denen der jeweiligen Leerwerte lagen. Wurden die Ghost-Präparationen in 

einer Verdünnung von 1:100 eingesetzt, bewegten sich die Extinktionen im EIA bei 0,5 (MHI 

973 und MHI 21024) bzw. 0,2 (MHI 904 und MHI 974). Die Affinität von mAK 2G4 αL ist 

somit für Ghosts von C. turisensis MHI 21026 etwa 2.000-fach höher als für diese Stämme. 
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Tabelle 17:  Reaktivität der hergestellten mAK mit Antigenpräparationen verschiedener 
gramnegativer Bakterienstämme. Die Ergebnisse wurden mittels indirekter 
EIA-Verfahren erhalten. Zur Beschichtung der Platten wurden serielle 
Verdünnungen von Präparationen der aufgeführten Stämme verwendet. Die 
mAK wurden in einer Verdünnung von 1:50 (ZKÜ nach 1. Klonierung 
eingesetzt.  

 

 mAK 

Bakterienstämme 

1A
11

 α
G

 

1H
9 
α

G
 

2B
5 
α

G
 

2B
11

 α
G

 
2B

12
 α

G
 

2F
7 
α

G
 

2G
8 
α

G
 

  

1A
11

 α
L

 

1C
4 
α

L
 

1G
9 
α

L
 

1G
3 
α

L
 

2C
12

 α
L

 

2G
4 
α

L
 

2F
8 
α

L
 

Gramnegative Enterobacteriaceae 
MHI 902 C. freundii + + + + + +  - - - - + 
MHI 904 E .cloacae - + + - + +  - - - - + 
MHI 909 S. Senftenberg + + + + + +  - - - (+) + 
MHI 910 H. alvei - + + - - +  - - - - + 
MHI 913 P. vulgaris - + + - - +  - - - - + 
MHI 968 E. asburiae - + + - - +  - - - - + 
MHI 973 Y. enterocolitica - + + - - +  - - - (+) + 
MHI 974 S. rubidea - + + - + +  - - - (+) + 
MHI 21024 K. pneumoniae + + + + + +  - - - (+) + 
BL 21 E. coli + + + + - +  - - - - + 
MHI 708 E. coli + + + + - +  - - - - - 

MHI 712 E. coli + + + + - +  - - - - + 
MHI 815 E. coli + + + + - +  - - - - + 
MHI 903 Citrobacter sp. + + + + + +  - - - - + 
MHI 905 M. wisconsensis - + + - - +  - - - - + 
MHI 906 S. somnei + + + + - +  - - - - + 
MHI 911 P. mirabilis - + + - - +  - - - - + 
MHI 914 S. flexneri - + + - - +  - - - - + 
MHI 952 P. stuartii - + + - - +  - - - - - 
MHI 955 E. hermannii - + + + + +  - - - - + 
MHI 969 E. aerogenes + + + + + +  - - - - + 
MHI 991 M. morganii - + + + - +  - - - - + 

Sonstige Gramnegative Keime 
MHI 954 A. lwoffii - - - - - -  - - - - + 
MHI 1000 P. aeruginosa - - - - - -  - - - - + 
MHI 1001 P. fluoreszens - + + + + +  - - - - + 
MHI 1004 A. media - + + + - +  - - - - + 
MHI 1007 A. liquefaciens - - - - - -  - - - - + 
MHI 1017 P. putida - - - - - -  - - - - + 

Grampositive Keime 
MHI 163 B. cereus - - + - - -  - - - - + 
MHI 414 S. aureus - - - - - -  - - - - + 

 
+ eindeutig positive Reaktion, Extinktionswerte im EIA lagen deutlich über 0,5 

(+) geringfügig über dem Leerwert (< 0,5 bei allen Verdünnungsstufen, nur mit Ghost-Material) 
- keine eindeutig positive Reaktion nachweisbar (Extinktion kleiner als dreifacher Leerwert) 
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Zusammenfassend ist festzustellen, dass für die gegen Ghost-Präparationen generierten 

Antikörper, mit Ausnahme von mAK 2B11 αG und 2B12 αG, die eine identische Spezifität 

aufweisen, für jeden der Antikörper ein unterschiedliches Reaktionsmuster nachgewiesen 

werden konnte. Während für mAK 1A11 αG lediglich Kreuzreaktivität mit Vertretern der 

Familie Enterobacteriaceae nachgewiesen werden konnte, zeigten die weiteren mAK αG im 

EIA auch Familien-übergreifend positive Reaktionen.  

Die vorliegenden Untersuchungen zeigten zudem, dass alle mAK αL, mit Ausnahme 2F8 

αL und 2G4 αL, eine identische Spezifität aufweisen. Die Reaktivität ist auf einzelne Stämme 

der Spezies C. sakazakii beschränkt. Dagegen ist für mAK 2F8 αL, dessen breite, auch 

Genus-übergreifende Reaktivität charakteristisch. Eine hoch selektive Reaktivität mit C. 

turicensis MHI 21026 wurde für mAK 2G4 αL nachgewiesen.  

 

3.3.7.3 Epitop-Spezifität 

Zur weiteren Charakterisierung der mAK, insbesondere im Hinblick auf deren Epitop-

Spezifität, wurden Immunoblots eingesetzt. In Vorversuchen wurde zuerst überprüft, 

inwieweit sich die nach Polymyxin-Verdau erhaltenen Ghost- und Lysat-Präparationen 

elektrophoretisch mittels SDS-PAGE auftrennen lassen. Ziel war es zudem, Aussagen über 

eine optimale Beladung der Gele treffen zu können, um in weiterführenden Untersuchungen 

mittels Immunoblot bestmöglich verwertbare Ergebnisse zu erhalten.  

In Abbildung 10 sind mit Coomassie gefärbte Gele nach SDS-PAGE dargestellt, auf denen 

verschiedene Lysat-Präparationen in unterschiedlichen Konzentrationen aufgetrennt wurden. 

Bei der Applikation von 0,4 µg Protein oder weniger je Laufspur konnten charakteristische 

Banden teilweise nur mehr schwer detektiert werden (Abbildung 10, Positionen 1 bis 3). Ab 

einer Menge von ca. 3 µg Protein, ließ die Qualität der Trennung z.T. deutlich nach 

(Abbildung 10, Position 5).  

Weiterhin ist zu erkennen, dass die Proteinmuster der Lysat-Aufarbeitungen verschiedener 

gramnegativer Bakterien unterschiedlicher Genera z.T. deutliche Parallelen zueinander 

zeigten. So finden sich auf gleicher Höhe Banden zwischen 50 kDa und 60 kDa. Auch bei ca. 

40 kDa ist eine deutliche Bande in allen untersuchten Präparationen erkennbar (Abbildung 10, 

obere Markierungen).  
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Abbildung 10: SDS-PAGE von Lysat-Präparationen verschiedener gramnegativer Bakterien 
nach Anfärben mit Coomassie-Brilliant-Blau. Aufgetrennt wurden Lysate mit differierenden 
Proteinkonzentrationen. Die Markierungen kennzeichnen prominente Banden der 
aufgetrennten Lysate. 

 

Das Proteinprofil der untersuchten Cronobacter-Stämme (MHI 21001, MHI 21026, MHI 

21040) weist jedoch im Gegensatz zu den Salmonellen (MHI 909) und Yersinien (MHI 973) 

zusätzlich eine prominente Bande bei etwa 18 kDa (Abbildung 10, untere Markierung) auf. 

Mittels SDS-PAGE konnte zudem verdeutlicht werden, dass sich die Zusammensetzung 

der Proteinfraktionen von Lysat- und Ghost-Aufarbeitungen, wie zu erwarten, deutlich 

voneinander unterscheidet (Abbildung 11). Am Beispiel der verschiedenen Cronobacter- 

Stämme ist erkennbar, dass in den Lysaten der Anteil der Proteine zwischen 20 und 40 kDa 

tendenziell höher ist, als bei den Ghosts (Markierungen Abbildung 11). 

 

1: Y. enterocolitica MHI 973, Lysat (Proteinmenge: 0,3 µg) 
2: S. Senftenberg MHI 909, Lysat (Proteinmenge: 0,2 µg) 
3: C. sakazakii MHI 21040, Lysat (Proteinmenge: 0,4 µg) 
4: C. sakazakii MHI 21040, Lysat (Proteinmenge: 1,5 µg) 
5: C. sakazakii MHI 21040, Lysat (Proteinmenge: 3,0 µg) 
6: Standardproteingemisch            

  1            2           3           4             5           6     
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Abbildung 11: SDS-PAGE von Lysat- und Ghost-Präparationen der Stämme C. turicensis 

MHI 21026 sowie C. sakazakii MHI 21040 und MHI 21001. Die Färbung erfolgte mit 
Coomassie-Brilliant-Blau. Die Markierungen kennzeichnen Bereiche in denen sich die Lysate 
deutlich von den Ghost-Präparationen unterschieden. 

 

3.3.7.3.1 Immunoblots mit monoklonalen Antikörpern gegen Cronobacter spp.-Ghosts 

– mAK αG 

Bei Verwendung der mAK αG wurden, wie in Abbildung 12 exemplarisch für den Stamm 

C. turicensis MHI 21026 dargestellt, unterschiedliche Reaktionsmuster in den Immunoblots 

erhalten.  

 

 
Abbildung 12: Immunoblot einer Ghost-Präparation von Stamm C. turicensis MHI 21026 
nach SDS-PAGE. Das nach Polymyxin-Verdau erhaltene Pellet wurde in 500 µl PBS 
suspendiert (ca. 1011 KbE/ml). 2 µl dieser Suspension wurden mit 8 µl Bicarbonat-Puffer und 
5µl SDS-Lösung vermischt und 1 µl dieses Materials pro Kavität im SDS-Gel aufgetrennt. 
Die primären Antikörper wurden in einer Verdünnung des ZKÜ (1.Klon) von 1:5 eingesetzt. 
Die Detektion gebundener AK erfolgte mittels NBT/BCIP. 

 1a       1b         2a        2b      3a      3b       4         
 

 

kDa 
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66,0 

 
45,0 
 

 
30,0 

 
20,1 
 
14,4 

1: mAK 1A11 αG 
2: mAK 1H9 αG 
3: mAK 2B5 αG 
4: mAK 2B11 αG 
5: mAK 2B12 αG 
6: mAK 2F7 αG 
7: mAK 2G8 αG 
 

1a: MHI 21026 Ghost (ca. 1 x 107 KbE) 
1b: MHI 21026 Lysat (0,5µg Protein) 
2a: MHI 21040 Ghost (ca. 5 x 107 KbE) 
2b: MHI 21040 Lysat (3,0 µg Protein) 
3a: MHI 21001 Ghost (ca. 3 x 107 KbE) 
3b: MHI 21001 Lysat (1,4 µg Protein) 
4: Standardproteingemisch 
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Grundsätzlich war eine Reaktivität der untersuchten mAK αG lediglich in Bereichen von > 

40 kDa zu verzeichnen. Deutlich erkennbar ist, dass mAK 2B11 αG und 2B12 αG (Abbildung 

12; Positionen 4 und 5) in Intensität und Reaktionsmuster nahezu identisch reagierten. Diese 

Beobachtung korreliert mit den in den Abschnitten 3.3.7.1.1 und 3.3.7.2 dargestellten 

homologen Reaktivitäten der beiden Antikörper in den EIA-Untersuchungen zur Affinität und 

Spezifität. Während bei mAK 1A11 αG und 2F7 αG deutliche Unterschiede bei der Affinität 

und Spezifität im EIA festgestellt worden waren, zeigten diese mAK im Immunoblot ein sehr 

ähnliches Reaktionsmuster (Abbildung 12; Positionen 1 und 6). Die reaktive Bande lag etwa 

auf gleicher Höhe wie das von den mAK 2B11 und 2B12 erkannte Protein, die Intensität der 

Reaktion war aber deutlich schwächer. Von diesen mAK ließen sich im Immunoblot die mAK 

1H9 αG, 2B5 αG und 2G8 αG deutlich unterscheiden. So zeigte mAK 2B5 αG die stärkste 

Reaktion im Bereich von > 97 kDa (Abbildung 12, Position 3), während mAK 2G8 αG 

zusätzlich sehr intensiv mit Proteinbanden von < 50 kDa (Abbildung 12, Position 7) reagierte.  

Die eindeutige Reaktivität der mAK mit spezifischen Banden im Immunoblot legt nahe, 

dass es sich bei den Antigenen der mAK αG um Proteine handelt. Da die Ghost-Präparationen 

vor allem aus den unlöslichen Anteilen der lysierten Bakterien bestehen, könnte es sich 

hierbei um Bestandteile bakterieller Membranen handeln.  

Aufgrund der breiten Reaktivität dieser mAK im EIA, insbesondere mit gramnegativen 

Keimen (3.3.7.1.1 und 3.3.7.2), waren diese Antikörper jedoch nicht für den angestrebten 

spezifischen Cronobacter-Nachweis einsetzbar. Daher wurden auch keine weiterführenden 

Untersuchungen zur genauen Identifizierung der reaktiven Antigene durchgeführt. 

 

3.3.7.3.2 Immunoblots mit monoklonalen Antikörpern gegen Cronobacter spp.-Lysate 

– mAK αL 

Bei der Untersuchung von mAK αL im Immunoblot konnten analog zu den oben 

beschriebenen EIA-Spezifitäten voneinander deutlich differierende Reaktionsmuster 

beobachtet werden:  

a) Immunoblots mit mAK 2F8 αL 

Die in Abbildung 13 exemplarisch dargestellten Blots von Lysaten der Stämme C. 

turicensis MHI 21026 und C. sakazakii MHI 21040 zeigen deutliche Parallelen zueinander.  
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Abbildung 13: Vergleich SDS-PAGE - Immunoblot von Lysat-Aufarbeitungen der Stämme 
C. turicensis MHI 21026 und C. sakazakii MHI 21040 mit mAK 2F8 αL, eingesetzt in einer 
Verdünnung von 1:5 (ZKÜ, 1.Klon). 

 

Der Antikörper reagiert in beiden Präparationen mit einem Bestandteil der Lysat-

Präparation im Bereich von etwa 70 kDa. Dabei handelt es sich offensichtlich nicht um eine 

der besonders prominenten Proteinbanden, die in der SDS-PAGE erkennbar waren 

(Abbildung 13, Positionen 1 und 3). Eine Bestätigung, dass es sich bei den von mAK 2F8 αL 

erkannten Lysat-Bestandteilen um Proteine handelt, wurde mittels Proteinase-K-Test erbracht. 

Dazu wurden Lysate verschiedener Cronobacter-Stämme mit PBS auf Proteinkonzentrationen 

von 30 – 100 µg/ml eingestellt. Zu 400 µl Aliquoten dieser Lösungen wurde je 4 µl 

Proteinase-K-Lösung (PK) gegeben, die Ansätze 1 h unter leichtem Schütteln bei 65 °C und 

im Anschluss über Nacht im Brutschrank bei 37 °C inkubiert. Am Folgetag wurden die 

Proben zur Inaktivierung der PK 1 h im siedenden Wasserbad erhitzt. Im indirekten EIA 

wurde anschließend getestet, ob die Proteinase-K-Präparationen im Vergleich zu den 

unbehandelten Lysaten eine reduzierte Reaktivität mit den zu testenden Antikörpern 

aufweisen. Als Negativkontrolle wurden 400 µl PBS analog wie eine Probe behandelt, als 

Positivkontrolle wurden die Lysate unbehandelt in einer Verdünnung von 1:20 eingesetzt.  

Der Effekt der Proteinase-K-Behandlung auf die Reaktivität von mAK 2F8 αL ist in 

Tabelle 18 anhand der Lysat-Präparation des Stammes C. sakazakii MHI 21001 dargestellt. 

Nach Verdau des Lysates mit PK reagierten die Ansätze im EIA negativ, die gemessenen 

Extinktionen entsprachen denen der Leerwerte.  

 

1: Lysat MHI 21026 - SDS-PAGE 
2: Lysat MHI 21026 - Immunoblot 
3: Lysat MHI 21040 - SDS-PAGE  
4: Lysat MHI 21040 - Immunoblot 
5: Standardproteingemisch - SDS-PAGE 
 

 

kDa 
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45,0 
 
 
 
30,0 
     1            2             3          4           5           
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Tabelle 18:   Reaktivität des mAK 2F8 αL mit unbehandeltem bzw. mit Proteinase K 
behandeltem Lysat des Stammes C. sakazakii MHI 21001. Der mAK wurde in 
einer Verdünnung von 1:50 (ZKÜ nach 1.Klonierung) eingesetzt. 

Extinktion im indirekten EIA 
Proteinkonzentration 

im Lysat 
Lysat 

unbehandelt 

Lysat 

nach Proteinase-K-Behandlung 

10 µg/ml 3,22 0,02 

5 µg/ml 1,61 0,02 

2,5 µg/ml 0,85 0,02 

Die Ergebnisse deuten darauf hin, dass mAK 2F8 αL mit Proteinstrukturen der 

Cronobacter-Stämme reagiert und unterstreichen damit die Ergebnisse der Immunoblots. 

Aufgrund der geringen Selektivität von 2F8 αL wurden jedoch keine weiterführenden 

Untersuchungen zur genauen Identifizierung des reaktiven Proteins durchgeführt.  

 

b) Immunoblots mit weiteren mAK αL 

Die Untersuchungen im Immunoblot, die mit den anderen mAK αL durchgeführt wurden, 

resultierten in für Protein-Antigene untypischen Reaktionsmustern.  

- mAK 2G4 αL 

Der selektiv mit C. turicensis MHI 21026 reagierende mAK 2G4 αL zeigte im Immunoblot 

mit der Lysat-Aufarbeitung dieses Stammes ein deutlich anderes Reaktionsmuster, als es für 

mAK 2F8 αL mit Lysaten verschiedener Cronobacter-Stämme beobachtet worden war. In 

Abbildung 14 ist zu erkennen, dass eine Zuordnung zu Proteinbanden aus der SDS-PAGE 

hier nicht möglich ist. Es sind lediglich zwei breite Reaktionszonen in den Bereichen von 30 

bis 40 kDa und 70 bis 100 kDa erkennbar. Zudem ist festzustellen, dass selbst mit einer 

Beladung von lediglich 0,04 µg Protein pro Bande eine sehr intensive Reaktion mit mAK 2G4 

αL zu beobachten ist. Das entspricht etwa einem 30stel der Proteinmenge, die für eine 

optimale Beladung eines SDS-Gel mit Coomassie-Färbung nach Elektrophorese ermittelt 

worden war.  
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Abbildung 14: Vergleich des bei Einsatz des mAK 2G4 αL erhaltenen Immunoblots mit 
einer SDS-PAGE (Coomassie-Färbung) der eingesetzten Präparation des Stammes C. 

turicensis MHI 21026. Der Antikörper 2G4 αL wurde in einer Verdünnung des ZKÜ (1.Klon) 
von 1:10 eingesetzt. 

 

Die nach den Untersuchungen im EIA postulierte Selektivität des mAK 2G4 αL auf Stamm 

MHI 21026 wurde auch im Immunoblot bestätigt. Bei adäquater Beladung der Gele konnten 

für andere C. turicensis Stämme keine positiven Reaktionen im Blot nachgewiesen werden 

(Ergebnisse nicht dargestellt).  

 

- mAK 1A11 αL, 1C4 αL, 1G3 αL, 1G9 αL und 2C12 αL 

Für diese monoklonalen Antikörper wurden untereinander ähnliche Reaktionsmuster 

beobachtet (Abbildung 15). Grundsätzlich wurden in den Immunoblots drei 

Hauptreaktionszonen in den Bereichen um 20 kDa, 45 kDa und 97 kDa erhalten. Die 

Antikörper 1G3 αL und 2C12 αL, die sich hinsichtlich Intensität und Reaktionsmuster nicht 

signifikant unterscheiden, reagierten im Bereich von 45 und 37 kDa deutlich schwächer als 

die Antikörper 1A11 αL, 1C4 αL und 1G9 αL, die wiederum untereinander ein nahezu 

identisches Bild im Immunoblot ergeben. Diese Unterschiede in der strukturellen Spezifität 

der mAK, waren aufgrund der Untersuchungen im indirekten EIA nicht erwartet worden, da 

diese Antikörper dort ein sehr homogenes Reaktionsprofil gezeigt hatten (3.3.7.1.2).  

Grundsätzlich konnten ähnlich wie für mAK 2G4 αL auch bei diesen Untersuchungen 

keine klar definierten Reaktionsbanden erhalten werden, die eine Zuordnung zu im SDS-Gel 

sichtbaren Proteinbanden erlaubt hätten (Abbildung 15).  

 

1: MHI 21026 Lysat (0,04 µg Protein) - Immunoblot 
2: MHI 21026 Lysat (0,08 µg Protein) - Immunoblot 
3: MHI 21026 Lysat (1,3 µg Protein) - SDS-PAGE 
4: Standardproteingemisch - SDS-PAGE  
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Abbildung 15: Immunoblot-Analysen zur Reaktivität der mAK mit Lysat-Präparationen von 
C. sakazakii MHI 21001. Die primären Antikörper wurden in einer Verdünnung von 1:10 
(ZKÜ, 1.Klon) eingesetzt. 
  

- 2D-Gel-Elektrophorese: 

Eine differenziertere Auftrennung und Darstellung von Proteinen kann durch das 

Verfahren der 2D-Elektrophorese (SDS-PAGE nach isoelektrischer Fokussierung) mit 

anschließendem Immunoblot erfolgen. Diese Methode wurde ergänzend zu den bisherigen 

Untersuchungen angewendet, um evt. doch vorhandene potentiell antigen wirkende 

Proteinstrukturen zu identifizieren. Für die Versuchsreihe wurden die mAK 1G3 αL und 2G4 

αL eingesetzt. 

Dazu wurde zunächst eine isoelektrische Fokussierung (IEF) von Lysat-Material des 

Stammes C. turicensis MHI 21026 im pH-Bereich von pH 4 bis pH 7 und pH 5 bis pH 8 

durchgeführt. Nach anschließender Elektrophorese, Blotten und Entwickeln mit mAK 2G4 αL 

zeigte sich deutlicher als bei der 1D-PAGE auf der Membran ein streifiges Muster mit parallel 

verlaufenden Banden in den Bereichen von 20 bis 30 kDa und 60 bis 70 kDa (Abbildung 

16b). Es ist deutlich erkennbar, dass eine Fokussierung der antigen wirkenden Struktur an 

einem bestimmten pH-Wert nicht möglich ist. Ein Vergleich mit einer Aufnahme einer 

Membran nach Ponceau-Färbung (Anfärben der Proteine) vor dem Immunoblot mit mAK 

2G4 αL und dem fertig entwickelten Blot (Abbildung 16) zeigt, dass eine Zuordnung der 

reaktiven Strukturen zu einzelnen Protein-Spots nach 2D-Elektrophorese nicht möglich ist. 

Diese Ergebnisse legen dar, dass es sich bei dem von mAK 2G4 αL erkannten Antigen nicht 

um eine Proteinstruktur handeln kann. 

 

1: mAK 1G3 αL 
2: mAK 2C12 αL 
3: mAK 1A11 αL 
4: mAK 1C4 αL 
5: mAK 1G9 αL 
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Abbildung 16: Vergleichende Darstellung der Ergebnisse einer 2D-Elektrophorese von Lysat 
des Stammes C. turicensis MHI 21026 (aufgetragene Menge ca. 250 µg Protein) im pH-
Bereich 5 bis 8;  
a) Membran nach 2D-Elektrophorese und Ponceau-Färbung,  
b) Membran nach 2D-Elektrophorese und Immunoblot mit mAK 2G4 αL, eingesetzt in einer 
Verdünnung von 1:50 (ZKÜ, 1.Klon). 

 

Analog wurde auch Lysat des Stammes C. sakazakii MHI 21001 mit mAK 1G3 αL als 

Vertreter der mAK αL, die selektiv mit einzelnen C. sakazakii Stämmen reagieren, in der 2-

D-Elektrophorese mit anschließendem Immunoblot getestet. Auch hier war keine Zuordnung 

zu Protein-Spots im zuvor angefärbten Gel möglich. Es waren, ähnlich wie für mAK 2G4 αL 

reaktive Banden zwischen 15 und 20 kDa im Blot zu erkennen (Ergebnisse nicht dargestellt).  

Für eine weitere Charakterisierung der Epitopspezifität dieser Antikörper, wurden daher 

Lysate der Stämme C. turicensis MHI 21026 und C. sakazakii MHI 21001 der unter 

3.3.7.3.2a) beschriebenen Proteinase-K-Behandlung unterzogen. Das Lysat des Stammes C. 

sakazakii MHI 21001 wurde neben dem mAK 1G3 αL auch mit den anderen, sehr ähnlich 

reagierenden mAK 1A11 αL, 1C4 αL, 1G9 αL und 2C12 αL getestet. Für die Beurteilung von 

mAK 2G4 αL wurde das Lysat des Stammes C. turicensis MHI 21026 verwendet. Es war 

festzustellen, dass alle eingesetzten mAK mit den PK-behandelten Proben schwächer 

reagierten. Die im indirekten EIA erzielten Extinktionen sanken auf 20 bis 55% im Vergleich 

zu den unbehandelten Proben. Wurden die Präparationen dagegen einer 

Temperaturbehandlung ohne PK-Zusatz unterzogen, war ein Anstieg der Extinktion im 

indirekten EIA auf bis zu 170% des Ausgangswertes zu verzeichnen (Tabelle 19). 

Offensichtlich kam es durch die Erhitzung der Lysate zu einer Demaskierung von weiteren 

Epitopen in den Präparationen. 

 

pH 5                                                      pH 8          pH 5                                                    pH 8 

 a)                                                                              b)         
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Tabelle 19:  Reaktivität verschiedener mAK αL mit unbehandelten bzw. mit Proteinase K- 
und hitzebehandelten Lysaten der Stämme C. sakazakii MHI 21001 und C. 

turicensis MHI 21026. Die mAK wurde in einer Verdünnung von 1:50 (ZKÜ, 1. 
Klon) eingesetzt. Angegeben sind die im indirekten EIA gemessenen 
Extinktionswerte. 

 Extinktion im indirekten EIA 

mAK αL Lysat 

unbehandelt 

Lysat nach 

Proteinase-K-Behandlung 

Lysat nach 
Temperaturbehandlung 

 Lysat MHI 21001  

1A11 αL 0,7 0,4 1,2 

1C4 αL 1,4 0,5 1,9 

2C12 αL 1,0 0,2 1,1 

1G3 αL 1,1 0,3 1,3 

1G9 αL 0,7 0,3 1,0 

 Lysat MHI 21026  

2G4 αL 1,1 0,3 2,2 

 
Da das in den oben beschriebenen Immunoblots erhaltene Bandenmuster stark dem 

typischen LPS-Muster ähnelte (Poxton, 1995, Jaradat et al., 2011), wurde zunächst LPS aus 

C. turicensis MHI 21026 isoliert (3.2.8) und mit mAK 2G4 αL getestet. Als Kontrolle wurden 

kommerzielle LPS-Präparationen von E. coli und S. Typhimurium in den Versuchsaufbau 

einbezogen. 

Es konnte eindeutig nachgewiesen werden, dass mAK 2G4 αL mit Bestandteilen der LPS-

Fraktion von C. turicensis MHI 21026 reagiert. In Abbildung 17 ist der entsprechende 

Immunoblot dargestellt, eine Reaktivität mit den als Kontrolle eingesetzten LPS-

Präparationen von E. coli und S. Typhimurium wurde nicht festgestellt. Intensiv gefärbte 

Banden wurden zwischen 20 und 30 kDa und im Bereich ab ca. 60 kDa beobachtet 

(Abbildung 17).  
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a)  b)    
              1      2      3                          1        2       3 

Abbildung 17:  Nachweis von Lipopolysacchariden nach Gelelektrophorese und Immunoblot 
a) SDS-Gel nach Silberfärbung 
b) Immunoblot mit mAK 2G4 αL.   
Die Markierungen kennzeichnen die Zonen der Reaktionsmaxima im 
Immunoblot. 

 

Analog wurden LPS-Präparationen der Stämme C. sakazakii MHI 21008 und MHI 21012 

mit den Antikörpern 1A11 αL, 1C4 αL und 1G3 αL untersucht. Abbildung 18 zeigt anhand 

des mAK 1C4 αL, dass auch diese mAK mit isoliertem LPS reagieren. Die Zonen der 

intensivsten Reaktion waren wiederum im Bereich von ca. 30 kDa sowie bei > 60 kDa zu 

erkennen. 

 

 
       1       2        3       4                   5       6 

Abbildung 18:  Nachweis von Lipopolysacchariden nach Gelelektrophorese und Immunoblot 
a) SDS-Gel nach Silberfärbung  
b) Immunoblot mit mAK 1C4 αL gegen isoliertes LPS von C. sakazakii. 
Die Markierungen kennzeichnen die Zonen der Reaktionsmaxima im 
Immunoblot. 

1: Standardproteingemisch 
2: LPS - S. Thyphimurium (Sigma) 
3: LPS - C. sakazakii MHI 21001 
4: LPS - E. coli (Sigma) 
5: LPS - C. sakazakii MHI 21008 
6: LPS - C. sakazakii MHI 21012    

LPS isoliert aus:  
1: C. turicensis MHI 21026 
2: E. coli (Sigma)  
3: S. Typhimurium (Sigma) 
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Annähernd analoge Resultate wurden mit den mAK 1A11 αL und 1G3 αL erzielt. Für 

mAK 1G3 αL der bereits im Immunoblot mit den Lysat-Präparationen nur schwach reagierte 

(Abbildung 15), waren die Reaktionszonen jedoch deutlich schwerer erkennbar. Es konnte 

lediglich im Bereich um 30 kDa eine positive Reaktion mit Teilen der LPS-Präparation 

beobachtet werden (Ergebnisse nicht dargestellt).  

 

3.3.7.4 Immunfluoreszenz-Untersuchungen 

Immunfluoreszenztests (3.2.7) wurden sowohl mit Ghosts als auch mit lebendem 

Keimmaterial durchgeführt, um zu überprüfen, ob die generierten Antikörper, insbesondere 

die LPS-reaktiven, tatsächlich in der Lage sind an degenerierte (Ghosts) bzw. native 

Keimzellwände zu binden.  

 

3.3.7.4.1 Monoklonale Antikörper gegen Cronobacter spp.-Ghosts - mAK αG 

Diese Antikörper zeigten in der Immunfluoreszenz keine eindeutig positiven Reaktionen 

mit vitalen Keimen. Wie in Abbildung 19a anhand einer Präparation des Stammes C. 

sakazakii MHI 987 exemplarisch dargestellt ist, konnte lediglich für Zelldebris und 

vereinzelte Keime, deren Motilität im Phasenkontrastmikroskop wahrnehmbar eingeschränkt 

war, eine schwache Anfärbung beobachtet werden. 

Wurden die mAK αG hingegen mit Ghost-Material getestet, konnten für die Stämme, die 

im EIA sowohl als Ghost-Präparation als auch als Lysat positiv reagiert hatten, mittels 

Immunfluoreszenz eine schwache Bindung der Antikörper gezeigt werden, obwohl bei vitalen 

Bakterien dies nicht der Fall war. Die fluoreszierenden Bereiche waren allerdings nicht 

gleichmäßig über die Zelloberfläche verteilt (Abbildung 19b).  
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Abbildung 19: Immunfluoreszenzuntersuchungen  
a) vitale Keime von C. sakazakii MHI 987 mit mAK 2F7 αG (1 sec 

Belichtungszeit; Overlay-Modus) 
b)  Ghost von C. turicensis MHI 21026 mit mAK 1H9 αG (2 sec 

Belichtungszeit; Overlay-Modus:  

3.3.7.4.2 Monoklonale Antikörper gegen Cronobacter spp.-Lysate - mAK αL 

- mAK 2F8 αL 

Für den mAK 2F8 αL, der im indirekten EIA sehr unspezifisch reagierte (positive Reaktion 

mit allen untersuchten Cronobacter-Stämmen sowie der Mehrzahl der anderen untersuchten 

Keime) und für den im Immunoblot Proteinstrukturen als antigene Determinanten identifiziert 

worden waren, konnte ebenfalls keine Reaktivität mit vitalen Keimen mittels 

Immunfluoreszenz nachgewiesen werden. Dagegen waren an den untersuchten Ghosts 

deutliche Fluoreszenzeffekte zu beobachten (Ergebnisse nicht dargestellt).  

- mAK 2G4 αL 

MAK 2G4 αL zeigte auch in den Immunfluoreszenzuntersuchungen nur mit Stamm C. 

turicensis MHI 21026 eine positive Reaktion. Während annähernd 100% der beobachteten 

lebenden Mikroorganismen dieses Stammes eine deutliche Fluoreszenz an der Zelloberfläche 

zeigten (Abbildung 20), wurden bei Versuchen, in denen Ghost-Präparationen statt vitaler 

Bakterien eingesetzt wurden, lediglich bei ca. 70% der Ghosts eindeutige Fluoreszenzeffekte 

beobachtet. Dies war zu erwarten, da durch die Bindung von Polymyxin B an die LPS-

Moleküle Strukturveränderungen der bakteriellen Zellwand induziert werden (3.3.1).  

b) a) 
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Weiterhin war in unbehandelten Vergleichsproben unter dem Phasenkontrastmikroskop zu 

beobachten, dass vitale Bakterien des Stammes C. turicensis MHI 21026 ohne Zusatz von 

mAK 2G4 αL eine deutlich höhere Motilität zeigten, als die Präparate, denen der Antikörper 

zugesetzt worden war.  

 
- weitere mAK αL 

Für die Antikörper 1A11 αL, 1C4 αL, 1G3 αL, 1G9 αL und 2C12 αL konnte für alle 

Stämme, die im EIA eine positive Reaktion zeigten, ebenfalls positive Reaktionen bei 

Immunfluoreszenzuntersuchungen von unbehandeltem Keimmaterial nachgewiesen werden. 

Exemplarisch zeigt Abbildung 21 eine Aufnahme von lebenden Bakterien des Stammes MHI 

21001 nach Reaktion mit mAK 1A11 αL bei einer Belichtungszeit von 1/10 sec. 

  

Zusammenfassend zeigten die Immunfluoreszenzuntersuchungen mit mAK αL, dass mit 

den Antikörpern, die mit LPS-Strukturen reagieren im Gegensatz zu den breit reagierenden 

mAK αG und 2F8 αL (Proteine als antigene Determinanten) lebende Keime gezielt erfasst 

werden können.  

 

Abbildung 21: Immunfluoreszenzuntersuchung von 
C. sakazakii MHI 21001 mit mAK 1A11 αL (1/10 sec 
Belichtungsdauer).  

Abbildung 20: 
Immunfluoreszenzuntersuchung von C. 
turicensis MHI 21026 mit mAK 2G4 αL 
(1/7 sec Belichtungsdauer). 
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4. DISKUSSION 

Durch Cronobacter spp. hervorgerufene Infektionen sind durch hohe Mortalitäts- (Drudy 

et al., 2006) bzw. Komplikationsraten gekennzeichnet (Willis & Robinson, 1988; Biering et 

al., 1989; Lai et al., 2001). Am häufigsten erkranken immunsupprimierte ältere Menschen 

sowie Kinder unter einem Jahr (Patrick et al., 2014). Insbesondere bei Neugeborenen, bei 

denen die Infektion in der Regel über kontaminierte Säuglingsnahrung auf Milchpulverbasis 

(powdered infant formula, PIF) erfolgt, enden manifestierte Erkrankungen häufig letal 

(Friedemann, 2008; Jaradat et al., 2014). Deswegen wurden Cronobacter-Infektionen trotz 

der geringen Prävalenz (Friedemann, 2008; Patrick et al., 2014) sowohl von WHO und FAO 

(Paoli & Hartnett, 2006) als auch von den zuständigen Stellen innerhalb der EU als 

ernstzunehmendes Problem für die öffentliche Gesundheit eingestuft. Relativ zügig nachdem 

- zumindest bei Kleinkindern - der Zusammenhang zwischen Infektion und Kontamination 

von Lebensmitteln gezeigt werden konnte, wurden daher gesetzliche Regelungen zum Schutz 

des Verbrauchers getroffen. So legt die VO (EG) 2073/2005 (Anhang I, lfd. Nr. 1.24) fest, 

dass in 10 g Säuglingsanfangsnahrung und getrockneten diätetischen Lebensmitteln für 

besondere medizinische Zwecke (Säuglinge unter 14 Monaten) Cronobacter spp. während der 

Haltbarkeitsdauer nicht nachweisbar sein darf. Des Weiteren wurden von der Codex 

Alimentarius Kommission Empfehlungen zu adäquaten Hygienemaßnahmen im Umgang mit 

PIF erarbeitet (FAO & WHO, 2007; Codex Alimentarius Commission, 2008).  

Um lebensmittelbedingte Infektionen durch Cronobacter spp. zu verhindern, wäre die 

Verfügbarkeit von einfachen, vor Ort einsetzbaren – idealerweise laborunabhängigen - und 

robusten Analyseverfahren wünschenswert, mit denen die Keime schnell in kontaminierten 

Lebensmitteln nachgewiesen werden könnten. Diese Kriterien werden z.B. von Antikörper-

basierten Nachweisverfahren erfüllt. Bislang stehen aber keine entsprechenden 

Nachweissysteme zur Verfügung. 

 

4.1 Entwicklung von Antikörpern 

In der vorliegenden Arbeit wurden monoklonale Antikörper (mAK) zum Nachweis von 

Cronobacter spp. generiert und charakterisiert. Die mAK wurden durch Immunisierung von 

Mäusen und anschließender Etablierung AK-produzierender Hybridomzelllinien gewonnen. 

Um in den Tieren eine breite Immunantwort zu induzieren, wurden für die Immunisierung 
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verschiedene Cronobacter spp. unterschiedlicher Provenienz eingesetzt. Im Einzelnen 

handelte es sich dabei um die Stämme C. sakazakii MHI 21001 (Isolat aus Babynahrung), C. 

sakazakii MHI 21040 und C. turicensis MHI 21026 (klinische Isolate), wobei Stamm C. 

turicensis MHI 21026 nachweislich in zwei schwere Erkrankungsfälle bei Neugeborenen 

involviert war (Mange et al., 2006). Als Immunogene wurden Lysate und Ghost-

Präparationen nach Behandlung der Keime mit Polymyxin-B-Sulfat (3.3.1) eingesetzt.  

Zur Induzierung von Antikörpern gegen Mikroorganismen müssen die verwendeten 

Keimpräparationen inaktiviert werden. Die Verwendung von mit klassischen Verfahren wie 

z.B. Behandlung der Keime mit Hitze, Aceton oder NaOH hergestellten, nicht pathogenen 

Immunogen-Präparationen zur Immunisierung von Versuchstieren, resultiert aber häufig in 

der Bildung von IgM-Antikörpern, die nur bedingt für die Entwicklung von diagnostischen 

Enzymimmuntests einsetzbar sind. Oft sind zudem auch nur geringe Titer LPS-spezifischer 

Antikörper in den Seren der Versuchstiere nachzuweisen. Dies ist auch bei Verwendung von 

gereinigtem LPS als Immunogen der Fall. Zudem ist bei diesen Methoden nicht zu steuern, 

mit welchen Strukturelementen der Lipopolysaccharide die gebildeten AK interagieren. So 

wurden nach Immunisierung mit isoliertem LPS häufiger Antikörper gegen den Lipid-A-Teil 

oder die Core-Region gebildet als gegen das O-Antigen (Poxton, 1995). Für eine 

zielgerichtete Bildung von mAK gegen O-spezifische Seitenketten kamen z.B. Präparationen 

zur Anwendung, bei denen das isolierte O-Antigen kovalent an ein Protein gebunden wurde, 

um die Intensität der Immunreaktion gegenüber der Immunisierung mit isoliertem LPS zu 

erhöhen und dabei die Toxizität des Immunisierungsmaterials durch Verzicht auf den pyrogen 

wirkenden Lipid-A-Teil zu vermindern (Poxton, 1995). Dieses aufwändige Verfahren wurde 

bspw. in der Humanmedizin bei der Entwicklung von Vaccinen gegen gramnegative Erreger 

beschrieben (Cryz et al., 1991).  

Im Rahmen verschiedener Arbeiten gelang es auch mit klassischen Verfahren, diagnostisch 

einsetzbare monoklonale Antikörper (IgG bzw. IgM) gegen O-Antigene unterschiedlicher 

Bakterien-Gattungen zu gewinnen. Als Immunogene wurden dabei u.a. mit Paraformaldehyd 

behandeltes (Szijártó et al., 2014) oder hitzeinaktiviertes Keimmaterial (Jaradat & 

Zawistowski, 1996) eingesetzt. So war es möglich, mAK zu generieren, die z.B. das O5-

Antigen von Salmonella Thyphimurium (Jaradat & Zawistowski, 1996) oder das O25-

Antigen von E. coli erfassen (Szijártó et al., 2014). Im Hinblick auf die Gewinnung von 

Antikörpern gegen Cronobacter spp. konnten Jaradat et al. (2011) nach wiederholter 

Immunisierung von Mäusen mit LPS-Präparationen (eingebettet in eine Polyacrylamid-

Matrix), zwar Antikörper in den Seren der immunisierten Mäuse gegen LPS eines C. 
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muytjensii-Stammes mittels Immunoblot nachweisen, aufgrund der niedrigen Titer scheiterten 

jedoch alle durchgeführten Zellfusions-Experimente zur Etablierung stabiler 

Hybridomzelllinien. Die geringe Immunogenität der Präparationen wurde von den Autoren 

auf die vermutete lineare Struktur des O-Antigens beim verwendeten Stamm C. muytjensii 

ATCC 51329 zurückgeführt. Eine solche Struktur konnte von MacLean et al. (2009a; Tabelle 

2) auch für den Stamm C. muytjensii 3270 gezeigt werden. Andere Studien zur Generierung 

von Antikörpern gegen LPS-Strukturen von Cronobacter spp. wurden bisher nicht publiziert. 

Im Rahmen der Entwicklung von indirekten EIA-Verfahren zum Nachweis von C. sakazakii 

wurde 2009 von Hochel & Škvor zwar betont, dass die generierten polyklonalen Antikörper 

serotyp-spezifisch seien, die präsentierten Ergebnisse zur Spezifität der Antikörper belegten 

jedoch deren Reaktivität mit Proteinstrukturen, die im LPS-Molekül an sich nicht 

vorkommen.  

Mit der in der vorliegenden Arbeit neu etablierten Methode zur Immunogenherstellung 

basierend auf einem Polymyxin-B-Verdau der Keime konnten in den immunisierten Mäusen 

hohe Antikörper-Titer gegen Cronobacter induziert und letztendlich eine ganze Reihe von 

mAK hergestellt werden, von denen ein hoher Anteil mit O-Antigenen von Cronobacter spp. 

reagiert. Dass die Bildung von LPS-spezifischen Antikörpern durch so hergestellte 

Immunogene zumindest für Cronobacter spp. reproduzierbar möglich ist, zeigte sich auch im 

Rahmen von weiteren am Institut durchgeführten Immunisierungen, bei denen gezielt C. 

sakazakii-Stämme verschiedener Serotypen (O2, O7) eingesetzt wurden. Auch hier konnten 

erfolgreich stabile Hybridome generiert werden, die mAK gegen diese Typen O-spezifischer 

Seitenketten produzieren. Weitere derzeit noch laufende Immunisierungen mit Yersinia spp., 

ebenso ein Vertreter der Familie der gramnegativen Enterobacteriaceae, untermauern die 

generelle Einsetzbarkeit dieses Verfahrens (E. Scharinger, persönliche Mitteilung).  

Die Gründe für die hohe Immunogenität der so hergestellten Präparationen sind allerdings 

unklar. Der bakterizide Effekt von Polymyxin B beruht auf einer Bindung des Antibiotikums 

an LPS der äußeren Zellmembran gramnegativer Bakterien (Neter et al., 1958; Pristovsek & 

Kidric, 1999; Tsubery et al., 2002). Aufgrund der amphiphilen Struktur adsorbiert Polymyxin 

über elektrostatische Wechselwirkungen. Der hydrophile Teil des Moleküls reagiert mit den 

Phosphatresten der LPS, während der lipophile Teil des Antibiotikums mit den 

Fettsäureresten des Lipid A in Wechselwirkung tritt (Moore et al., 1986; Domingues et al., 

2012). Denkbar ist, dass aus dieser Bindung über eine Erhöhung der Strukturkomplexität eine 

Steigerung der Immunantwort resultiert. Andererseits werden dem Polymyxin B in einer 

neueren Publikation auch adjuvante Eigenschaften zugeschrieben. So konnte bei Mäusen eine 
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Steigerung der humoralen Immunantwort beobachtet werden, wenn das als Immunogen 

verwendete Ovalbumin zusammen mit Polymyxin B oder anderen Polypeptid-Antibiotika auf 

die Nasenschleimhaut aufgetragen wurde. Die Ursache für diesen Effekt blieb unklar, 

allerdings deuten die Untersuchungen darauf hin, dass der amphiphile Charakter von 

Polymyxin B einen entscheidenden Einfluss auf das adjuvante Potential hat (Yoshino et al., 

2013). 

Bei einer Immunisierung mit Lysaten nach Polymyxin-B-Verdau, ist jedoch zu beachten, 

dass die Immunogen-Präparationen frisch hergestellt werden. Die durchgeführten 

Stabilitätstests zeigten, dass die Antigene, die mit den O-Antigen-spezifischen mAK 

interagieren, einem kontinuierlichen Abbau unterliegen (3.3.4.2). Vorstellbar ist, dass die 

Polysaccharidketten oxidativen Prozessen ausgesetzt sind, die eine Veränderung der Epitop-

Struktur zur Folge haben oder freigesetzte Enzyme (Glucosidasen) einen "Alterungsprozess" 

der Antigene induzieren. 

 

4.2 Charakterisierung der Antikörper 

Es wurden zwei Kategorien von mAK generiert: mAK gegen Cronobacter spp.-Ghosts 

(mAK αG) und mAK gegen Cronobacter spp.-Lysate (mAK αL). 

Alle mAK αG sowie ein mAK αL (2F8) zeichneten sich durch ein sehr breites und  

Genus-übergreifendes Reaktionsspektrum aus. So zeigten diese mAK außer mit Cronobacter 

spp. Reaktivität mit verschiedenen anderen Vertretern der Enterobacteriaceae, wie z.B. 

Stämmen der Spezies C. freundii, K. pneumoniae oder S. Senftenberg und teilweise mit 

weiteren gramnegativen Keimen wie P. fluoreszenz oder A. media (Tabellen 12 und 17). Bei 

zwei dieser mAK (2B5 αG und 2F8 αL) konnten zudem im indirekten EIA auch Affinitäten 

für Gram-positive Erreger (z.B. B. cereus) nachgewiesen werden (Tabelle 17). 

Alle aus der Immunisierung mit Cronobacter spp.-Ghosts resultierenden mAK reagierten 

ausnahmslos mit Proteinstrukturen der Keime. Für sechs der acht gegen Proteine gerichteten 

mAK wurde im Immunoblot ein Protein von ca. 70 kDa als Antigen identifiziert. 

Untersuchungen zur Epitopspezifität von Antikörpern gegen Cronobacter spp. wurden im 

Jahr 2009 von Hochel und Škvor (polyklonale AK) und 2011 von Jaradat et al. (monoklonale 

AK) veröffentlicht. Die in diesen Arbeiten charakterisierten Antikörper reagierten mit einem 

breiten Spektrum an Proteinen, wobei allerdings keine prominenten Banden bei ca. 70 kDa 

beobachtet werden konnten. Auch für die anderen in den eigenen Untersuchungen isolierten 
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mAKs 2B5 αG und 2G8 αG, die ein anderes Reaktionsmuster im Immunoblot zeigten 

(Abbildung 12), waren keine charakteristischen Gemeinsamkeiten mit den Immunoblots von 

Hochel & Škvor (2009) bzw. Jaradat et al. (2011) festzustellen. 

Charakteristisch für die im Rahmen dieser Arbeit gewonnenen mAK gegen von 

Cronobacter spp. exprimierte Proteine war, dass im indirekten EIA positive Reaktionen mit 

lebenden Keimen erhalten wurden, in den Immunfluoreszenz-Untersuchungen aber eine 

Bindung der mAK an die Zellen nicht verifiziert werden konnte. Da für die 

Immunfluoreszenz-Untersuchungen die Bakterien mehrmals gewaschen und anschließend die 

einzelnen Keime unter dem Mikroskop beobachtet wurden, im EIA dagegen das komplete 

Material der Anzucht Verwendung fand, ist davon auszugehen, dass die EIA-Reaktivität der 

Präparation durch proteinhaltigen Zelldebris verursacht wurde. Die Beobachtungen sprechen 

zudem dafür, dass die als antigene Determinanten fungierenden Proteine entweder nicht 

Bestandteil der membranassoziierten Oberflächenproteinfraktion sind oder bei lebenden 

Zellen die für die Reaktion der mAK entscheidenden Epitope nicht für die Antikörper 

zugänglich sind.  

Die mAK, die im Immunoblot bei ca. 70 kDa ein Reaktionsmaximum zeigten, waren im 

EIA durch unterschiedliche Kreuzreaktivität charakterisiert. So reagierte z.B. mAK 2F7 αG 

mit acht der 22 getesteten gramnegativen Enterobacteriaceae außerhalb der Gattung 

Cronobacter während mAK 1A11 αG, 2B11 αG und 2B12 αG mit 12 dieser Stämme eine 

positive Reaktion zeigten. MAK 1H9 αG hingegen erfasste alle untersuchten 

Enterobacteriaceae (Tabellen 12 und 17). Die Vermutung liegt daher nahe, dass diese mAK 

an unterschiedliche Epitope der gleichen Proteinstruktur binden. Die sehr breite Reaktivität 

der Antikörper spricht für "hochkonservierte" Epitope, die Genus-übergreifend vorkommen, 

innerhalb der verschiedenen Spezies jedoch geringe strukturelle Abweichungen aufweisen. 

Zusammenfassend bleibt aber festzustellen, dass diese mAK aufgrund ihrer breiten 

Reaktivität für den Einsatz im angestrebten spezifischen Cronobacter-Nachweissystem 

ungeeignet sind. Daher wurden auch weiterführende Untersuchungen zur genauen 

Charakterisierung und Identifizierung der jeweiligen Antigene im Rahmen der vorliegenden 

Arbeit nicht durchgeführt. 

Im Gegensatz hierzu zeigten sechs der sieben mAK αL, die aus der Immunisierung mit 

den nach Polymyxin-Behandlung der Keime gewonnenen Lysat-Präparationen resultierten, 

ein deutlich spezifischeres Reaktionsspektrum. Die hohe Intra-Genus-Spezifität der mAK αL, 

die fehlenden Kreuzreaktivitäten mit verwandten Keimgruppen und letztendlich die 
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charakteristischen Reaktionsmuster der mAK in den durchgeführten Immunoblots sprachen 

dafür, dass die O-spezifischen Seitenketten des LPS die antigenen Determinanten für diese 

mAK darstellen (Poxton, 1995; Jaradat et al., 2011). Eine in einer weiterführenden Studie 

durchgeführte Serotypisierung der untersuchten Cronobacter-Stämme zeigte, dass alle mit 

den mAK 1A11 αL, 1C4 αL, 1G3 αL, 1G9 αL und 2C12 αL reaktiven C. sakazakii-Stämme 

dem Serotyp O1 zuzuordnen sind (Ergebnisse nicht dargestellt). Obwohl diese fünf mAK 

durch eine identische Intra-Genus-Spezifität gekennzeichnet sind und keine Kreuzreaktivität 

mit anderen Spezies zeigten (Tabellen 14 und 17), unterschieden sie sich doch geringfügig in 

ihrer Affinität (Tabelle 15) und zeigten z.T. in den Immunoblots ein signifikant 

unterschiedliches Reaktionsmuster (Abbildung 15). So wiesen die mAK 2C12 αL und 1G3 

αL in den Reaktionszonen um 45 kDa und 100 kDa eine deutlich schwächere Reaktion auf als 

die mAK 1A11 αL, 1C4 αL und 1G9 αL. Da die O1-spezifische Seitenkette von C. sakazakii 

eine verzweigte Struktur besitzt (Sun et al., 2012; Tabelle 2), ist denkbar, dass die 

verschiedenen AK an unterschiedliche Stellen des O-Antigens binden, woraus verschiedene 

Reaktionsmuster im Immunoblot resultieren können. 

Auffällig war, dass C. sakazakii MHI 21040 nicht von den O1-spezifischen Antikörpern 

erkannt wurde, obwohl dieser Stamm dem Serotyp O1 zuzuordnen ist und zudem Bestandteil 

der Immunogen-Präparation war. Detaillierte Untersuchungen zeigten, dass dieser Stamm 

phänotypische Abweichungen zu anderen Cronobacter-Stämmen aufweist. So ist er nicht 

invasiv und zeigt deutlich geringere Wachstumsraten (Weiner, 2013). Die Untersuchungen 

deuten darauf hin, dass bei diesem Stamm durch eine Mutation wichtige Virulenzfaktoren, 

wie die O-spezifische Seitenkette, nicht vollständig exprimiert werden und in Folge dessen, 

O1-Antigen-spezifische mAK nicht binden können. 

Auch hinsichtlich des hochspezifisch mit C. turicensis MHI 21026 reagierenden mAK 2G4 

αL sprechen die Untersuchungen für ein Epitop innerhalb der O-spezifischen Seitenkette. 

Während die anderen im Rahmen dieser Arbeit untersuchten C. turicensis-Stämme zum 

Serotyp O3 gehören, ist MHI 21026, der als einziger Stamm von mAK 2G4 αL erfasst wird, 

dem C. turicensis-Serotyp O1 zuzuordnen (Jarvis et al., 2011).  

Eine abschließende Bestätigung des Bindungsvermögens von mAK 2G4 αL an die O-

spezifische Seitenkeite von C. turicensis MHI 21026 wurde am Lehrstuhl durch 

Untersuchungen einer wzx-Mutante erbracht. Das wzx-Gen codiert für eine O-Antigen-

Flippase, die für den Transport von Kohlenhydrat-Einheiten an die äußere Seite der 

bakteriellen Membran verantwortlich ist. Aus diesen Bausteinen wird dann das O-spezifische 
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Polysaccharid zusammengesetzt (Marolda et al., 2004). Fehlt die Translocase, wie in der 

untersuchten Mutante, kann kein O-Antigen ausgebildet werden; dies führte dazu, dass mAK 

2G4 αL nicht mehr an die Zelloberfläche dieser Mutante binden konnte (Schauer et al., 2014). 

Mit den in der vorliegenden Arbeit generierten O-Antigen-spezifischen mAK wurden 

zudem die Grundlagen für weiterführende Untersuchungen zur Aufklärung von 

Pathogenitätsmechanismen von Cronobacter spp. geschaffen. Insbesondere mAK 2G4 αL 

bietet sich aufgrund seiner besonderen Eigenschaften (hohe Spezifität, sehr hohe Affinität, 

Hemmung der Motilität) für den Einsatz in Folgeuntersuchungen an. So konnte im Rahmen 

einer weiteren Dissertationsarbeit der Nachweis erbracht werden, dass mAK 2G4 αL nicht nur 

hoch affin an lebende Keime von C. turicensis MHI 21026 in Kulturmedien bindet, sondern 

diese Keime auch nach einer Invasion innerhalb eukaryotischer Zellen (CaCo2) erfasst. 

Zudem wurde gezeigt, dass mAK 2G4 αL die Invasion von C. turicensis MHI 21026 in 

Epithelzellen hemmt (Weiner, 2013).  

In anderen detaillierten Studien konnte die in den eigenen Untersuchungen beobachtete 

Hemmung der Motilität von C. turicensis durch den mAk 2G4 αL bestätigt werden. Dabei 

wurde gezeigt, dass durch eine monovalente Bindung von mAK 2G4 αL ans O1-Antigen von 

C. turicensis MHI 21026 die Flagellenaktivität beeinflusst und in dessen Folge die Motilität 

der Keime inhibiert wird (Schauer et al., 2014). Damit wird bestätigt, dass die 

Flagellenaktivität dieses Stammes einen Hauptvirulenzfaktor darstellt. Dies wurde bereits für 

andere Cronobacter-Stämme postuliert (Carranza, et al., 2009; Hartmann et al., 2010).  

 

4.3 Testverfahren 

Bisher wurden in drei Publikationen die Entwicklung von EIA-Testverfahren zum 

Nachweis von Cronobacter-Stämmen beschrieben (Hochel & Škvor, 2009; Park et al., 2012; 

Xu et al., 2014). Hochel & Škvor (2009) etablierten indirekte EIA-Verfahren zum Nachweis 

von C. sakazakii, allerdings werden von den eingesetzten Antikörpern nur einige wenige 

Cronobacter-Stämme erfasst. Mit dem von Park et al. etablierten Sandwich-EIA konnten drei 

untersuchte C. muytjenisii-Stämme nachgewiesen werden. Der Assay zeigte jedoch keine 

Reaktion mit gestesteten C. sakazakii- und C. turicensis-Stämmen (Park et al., 2012), die 

zusammen mit C. malonaticus an den meisten schweren Cronobacter-Infektionen beteiligt 

sind (Jaradat et al., 2014). Für Untersuchungen von Lebensmitteln auf eine Kontamination 

mit Cronobacter spp. sind diese Testsysteme daher nur eingeschränkt geeignet. 
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Aussichtsreicher erscheinen dagegen die EIA-Verfahren, die von Xu et al. (2014) entwickelt 

wurden. Ein Sandwich-EIA auf Basis monoklonaler Antikörper zeigte eine hohe Spezifität 

und reagierte nur mit den untersuchten C. sakazakii-Stämmen (keine Kreuzreaktivität mit 

anderen Cronobacter-Spezies). Da lediglich vier C. sakazakii-Stämme (keine 

Serotypisierung) getestet wurden, ist bisher noch unklar, ob sich die Ergebnisse auf alle 

sieben C. sakazakii-Serotypen übertragen lassen. Untersuchungen zur Epitop-Spezifität 

wurden in dieser Studie nicht beschrieben. Ein weiteres, parallel entwickeltes, auf 

polyklonalen Antikörpern basierendes, indirektes EIA-Verfahren konnte alle getesteten 

Cronobacter-Stämme erfassen, Genus-übergreifende Kreuzreaktionen traten nicht auf (Xu et 

al., 2014).  

Für die von den verschiedenen Arbeitsgruppen etablierten Sandwich-EIAs, mit denen 

i.d.R. eine höhere Sensitivität als mit indirekten EIA-Formaten erreicht werden kann 

(Porstmann & Kiessig, 1992), wurden Nachweisgrenzen von 2 bis 6 x 104 KbE/ml angegeben 

(Park et al., 2012; Xu et al., 2014), für die indirekten EIAs Nachweisgrenzen von 6 x 104 bis 

105 KbE/ml (Hochel & Škvor, 2009; Xu et al., 2014). Die im Rahmen der vorliegenden 

Arbeit generierten Antikörper zeigten z.T. eine höhere Affinität. So war mit dem mAK 2G4 

αL ein sicherer Nachweis von C. turicensis MHI 21026 im indirekten EIA bei einer 

Lebendkeimzahl von ca. 104 KbE/ml noch möglich. Die weiteren mAK αL zeigten im 

indirekten EIA eine tendenziell geringere Affinität. Abhängig vom untersuchten Stamm und 

vom eingesetzten Antikörper lagen die ermittelten Nachweisgrenzen im Bereich von 105 

KbE/ml (z.B. für C. sakazakii MHI 21011 mit mAK 1C4 αL) bis 107 KbE/ml (z.B. für C. 

sakazakii MHI 21038 mit mAK 1A11 αL). Derzeit laufende Untersuchungen zur Etablierung 

von Sandwich-EIA-Verfahren, basierend auf den im Rahmen der vorliegenden Arbeit 

generierten Antikörper deuten darauf hin, dass mit dem mAK 2G4 αL Nachweisgrenzen im 

Bereich von < 104 KbE/ml realisiert werden können, für den Nachweis von Cronobacter spp. 

des Serotyps O1 mittels mAK 1C4 αL liegen die Werte im Bereich von 1 – 4 x 104 KbE/ml 

(E. Scharinger, persönliche Mitteilung). Diese Daten bestätigen die hohe Affinität der 

entwickelten Antikörper. 
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4.4 Ausblick 

Zusammenfassend eröffnen die im Rahmen der vorliegenden Arbeit entwickelten 

Materialien (Antikörper) und methodischen Ansätze (Immunogen-Präparation) neue 

Möglichkeiten in der immunchemischen Analytik der lebensmittelhygienisch bedeutsamen 

Familie der Enterobacteriaceae - insbesondere von Cronobacter spp. So ist es offensichtlich 

mit dem eingesetzten Immunisierungsverfahren möglich, gezielt O-Antigen-spezifische IgG 

zu produzieren. Antikörper dieses Types gelten – im Gegensatz zu IgM-Antikörpern – 

aufgrund ihrer Eigenschaften (geringe Größe, Vorliegen als Monomer, Stabilität) als 

besonders geeignet für die Etablierung immunchemischer Nachweisverfahren (Rehm & 

Letzel, 2010). Die Entwicklung Serotyp-spezifischer EIAs für den Nachweis von 

Cronobacter spp. ist damit möglich, unter praktischen Gesichtspunkten ist aber der 

kombinierte Einsatz von mAK mit unterschiedlichen Serotyp-Spezifitäten in einem EIA-

System sicherlich sinnvoller. So könnte ein breiteres Spektrum an Serotypen zeitgleich erfasst 

und ein Nachweisverfahren entwickelt werden, das in der Lage ist, alle relevanten 

Cronobacter Keime in PIF und anderen Matrices nachzuweisen.  

Vorstellbar wäre zudem die Entwicklung eines affinitätschromatographischen Verfahrens, 

das bei der gezielten Anreicherung von Cronobacter spp. aus verschiedenen Probenmatrices 

Anwendung finden kann, um bspw. in Kombination mit PCR-basierten Verfahren auch bei 

geringer Ausgangskeimzahl ohne weitere Anreicherungsschritte die Bakterien im 

Lebensmittel zeitnah detektieren zu können. Zur Realisierung dieses Konzeptes müsste 

allerdings zuerst überprüft werden, ob die Aktivität der eingesetzten Antikörper bei der 

Immobilisierung an die Trägermatrix erhalten bleibt (Rehm & Letzel, 2010). Der Einsatz der 

Affinitätschromatographie als Anreicherungsverfahren von Bakterien aus z.T. komplexen 

Matrices wurde bereits in verschiedenen Arbeiten beschrieben (Peskoller et al., 2009; Ott et 

al.; 2011; Wiescher, 2013).  

Im Hinblick auf gezielte Untersuchungen zu den einer Cronobacter-Infektion 

zugrundeliegenden Pathogenitätsmechanismen wäre es schließlich sicherlich interessant zu 

klären, welcher Mechanismus der flagellenabhängigen Adhäsion von C. turicensis MHI 

21026 an den Wirtsorganismus zugrunde liegt und ob bzw. welche Rezeptoren hierbei von 

Bedeutung sind. Durch den Einsatz der generierten mAK könnte auch geklärt werden, ob 

analoge Mechanismen auch bei C. sakazakii-Stämmen existieren und falls ja, ob bei den LPS-

spezifischen Antikörpern Serotyp-spezifische Unterschiede in der Beeinflussung von 

Adhäsivität/Invasivität bzw. Beeinträchtigung der flagellären Aktivität auftreten.
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      5. ZUSAMMENFASSUNG 

Cronobacter spp. sind opportunistische pathogene Erreger, die insbesondere nach der 

Aufnahme kontaminierter Lebensmittel schwere Infektionen mit hohen Letalitätsraten bei 

Neugeborenen und immungeschwächten Erwachsenen hervorrufen können. Um spezifische 

immunchemische Nachweisverfahren für diese Keimgruppe zu etablieren, wurden in der 

vorliegenden Arbeit monoklonale Antikörper (mAK) zum Nachweis von Cronobacter spp. 

generiert und umfassend charakterisiert. 

 Zur Präparation der Immunogene wurden Cronobacter-Keime mit Polymyxin B behandelt 

und anschließend wurden Mäuse entweder mit dem durch Zentrifugation erhaltenem 

Zellpellet (Ghosts) oder mit dem zellfreien Überstand (Lysat) dieser Präparationen 

immunisiert. Beide Präparationen erwiesen sich als hoch immunogen, die nachweisbaren 

Titer lagen üblicherweise bei > 1:10.000. Insgesamt konnten 14 stabile Hybridomzelllinien 

(sieben je Ansatz) etabliert werden. Die Intra- bzw. Inter-Genus-Spezifität und Affinität der 

entsprechenden mAK wurde umfassend unter Verwendung von indirekten EIA-Verfahren 

überprüft. Für Studien zur Epitopspezifität der generierten mAK wurden Immunoblots und 

Immunfluoreszenz-Analysen eingesetzt.  

Alle mAK, die aus der Immunisierung mit Cronobacter-Ghosts resultierten, zeichneten 

sich durch ein sehr breites Reaktionsspektrum aus, Kreuzreaktionen wurden vorzugsweise mit 

Vertretern aus der Familie der Enterobacteriaceae aber auch mit anderen gramnegativen 

Keimen beobachtet. Für alle mAK konnten Proteine als antigene Determinanten identifiziert 

werden, die relativen Molekulargewichte reaktiver Proteinbanden lagen üblicherweise im 

Bereich von > 40 kDa.  

Demgegenüber zeigten sechs der sieben mAK, die aus der Immunisierung von Mäusen mit 

Polymyxin B generierten Lysat-Präparationen resultierten, eine hohe Affinität für die O-

spezifische Seitenkette der Cronobacter-typischen Lipopolysaccharide (LPS): mAK 2G4 αL 

reagierte hochspezifisch mit dem C. turicensis-Stamm (MHI 21026; Serotyp O1). Im 

indirekten EIA war dieser Erreger bei Keimzahlen von ca. 104 KbE/ml noch nachweisbar. Für 

die weiteren fünf mAK, die alle spezifisch mit C. sakazakii des Serotyps O1 reagierten, 

wurden im indirekten EIA Nachweisgrenzen im Bereich von 105-107 KbE/ml ermittelt. Alle 

mAK gegen LPS gehören zum IgG-Subtyp und reagierten in der Immunfluoreszenz mit 

lebenden Cronobacter-Keimen. 
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5 . SUMMARY 

Production and characterization of monoclonal antibodies against 

Cronobacter spp.  

Cronobacter spp. are opportunistic pathogens that cause serious infections, characterized 

by high lethality rates, particularly in infants and immunocompromised adults after ingestion 

of contaminated food. To establish immunochemical assays for the specific detection of 

Cronobacter, within this study monoclonal antibodies were generated and comprehensively 

characterized.  

For the preparation of the immunogen, Cronobacter cells were first treated with polymyxin 

B and, subsequently, mice were immunized either with the resulting cell pellet (ghosts) 

obtained by centrifugation or with the cell-free supernatants (lysate) of these preparations. 

Both polymyxin B derived preparations were highly immunogenic, serum antibody titres were 

usually higher than 1:10,000. Cell fusion experiments resulted in the establishment of 14 

stable hybridoma cell lines (seven per approach). Intra- and inter-genus-specificity and 

affinity of the mAbs were determined by using indirect enzyme immunoassays (EIA). 

Epitope-specificity of the generated mAbs was determined by immunoblot- and 

immunofluorescence techniques. 

All of the mAbs derived from the immunization with Cronobacter ghosts were 

characterized by broad reactivity towards bacteria mainly within the family Entero-

bacteriaceae but also to other gram-negative bacteria. For all of these mAbs proteins were 

identified as antigenic determinants. Reactive bands generally showed an apparent molecular 

weight of > 40 kDa.  

In contrast, using the lysate preparation as immunogen, six of the seven obtained mAbs 

exhibited high affinity for the O-polysaccharide chains of Cronobacter specific 

lipopolysaccharides (LPS): mAb 2G4 αL showed highly specific reactions with C. turicensis 

MHI 21026 (serotype O1). Employing this mAb in an indirect EIA, the limit of detection was 

at approx. 104 cfu/ml. For the other five O-antigen-specific mAbs, which interacted 

specifically with strains of C. sakazakii, serotyp O1, detection limits ranging from 105-107 

cfu/ml were achieved. All anti-LPS mAbs were of the IgG subtype and reacted with viable 

Cronobacter cells as shown by immunofluorescence studies. 
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