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Zusammenfassung

Diese Arbeit stellt verschiedene nicht-parametrische und parametrische Modelle zur Schät-
zung von dynamischen Abhängigkeiten zwischen Finanzzeitreihen vor und überprüft die Qua-
lität der verschiedenen Modelle mehrere Risikomaße präzise zu bestimmen. Des Weiteren
werden die unterschiedlichen Abhängigkeitsstrukturmodelle benutzt, um die Integration von
Schwellenländern und entwickelten Märkten zu analysieren. Um eine Vielzahl dynamischer
Abhängigkeitsstrukturen und insbesondere mögliche Asymmetrien darstellen zu können, wer-
den zwei in ihren Grundcharakteristika verschiedene parametrische Modellklassen untersucht:
die multivariaten GARCH und Copula-Modelle. Für die Archimedischen Copulas wird eine
neue dynamische Abhängigkeitsstruktur eingeführt, welche die bisherige Beschränkung der
dynamischen Archimedischen Copulas auf zwei Dimensionen aufhebt und auf den mehrdi-
mensionalen Fall erweitert. Darauf aufbauend wird eine Mixture-Copula vorgestellt, welche
die neue multivariate Abhängigkeitsstruktur der Archimedischen Copulas nutzt, diese mit mul-
tivariaten elliptischen Copulas mischt und gleichzeitig für die Modellierung der zeitabhängi-
gen Gewichte in der Mixture-Copula einen neuen Prozess vorschlägt: somit kann innerhalb
eines Modells eine breites Spektrum möglicher Abhängigkeitsstrukturen untersucht werden.
Die Analyse verschiedener Portfolios zeigt zum einen, dass alle Aktienportfolios sowie die
Rentenportfolios der Schwellenländer negative Asymmetrien aufweisen, d.h. steigende Ab-
hängigkeiten bei sinkenden Kursen. Das Rentenportfolio welches die entwickelten Länder re-
präsentiert zeigt hingegen keine negativen Asymmetrien. Grundsätzlich zeigen die Analysen
der verschiedenen Risikomaße, dass die parametrischen Modelle die Portfoliorisiken besser
darstellen als die nicht-parametrischen Modelle. Jedoch gibt es nicht ein einziges Modell wel-
ches allen anderen über die verschiedenen Portfolios und Risikomaße hinweg überlegen ist.
Die Untersuchung der Abhängigkeiten zwischen Aktien- und Rentenportfolios entwickelter
Länder, proprietärer und sekundärer Schwellenländer zeigt, dass sekundäre Schwellenländer
in die Weltmärkte weniger integriert sind als proprietäre und sich damit zur Portfoliodiversifi-
kation eines Portfolios bestehend aus Aktien- oder Rentenindizes entwickelter Länder besser
eignen.
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Abstract

This thesis presents several non-parametric and parametric models for estimating dynamic de-
pendence between financial time series and evaluates their ability to precisely estimate risk
measures. Furthermore, the different dependence models are used to analyze the integration
of emerging markets into the world economy. In order to analyze numerous dependence struc-
tures and to discover possible asymmetries, two distinct model classes are investigated: the
multivariate GARCH and Copula models. On the theoretical side a new dynamic dependence
structure for multivariate Archimedean Copulas is introduced which lifts the prevailing restric-
tion to two dimensions and extends the multivariate dynamic Archimedean Copulas to more
than two dimensions. On this basis a new mixture copula is presented using the newly invented
multivariate dynamic dependence structure for the Archimedean Copulas and mixing it with
multivariate elliptical copulas. Simultaneously a new process for modeling the time-varying
weights of the mixture copula is introduced: this specification makes it possible to estimate
various dependence structures within a single model.
The empirical analysis of different portfolios shows that all equity portfolios and the bond port-
folios of the emerging markets exhibit negative asymmetries, i.e. increasing dependence dur-
ing market downturns. However, the portfolio consisting of the developed market bonds does
not show any negative asymmetries. Overall, the analysis of the risk measures reveals that para-
metric models display portfolio risk more precisely than non-parametric models. However, no
single parametric model dominates all other models for all portfolios and risk measures. The
investigation of dependence between equity and bond portfolios of developed countries, pro-
prietary, and secondary emerging markets reveals that secondary emerging markets are less
integrated into the world economy than proprietary. Thus, secondary emerging markets are
more suitable to diversify a portfolio consisting of developed equity or bond indices than pro-
prietary.
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Chapter 1

Introduction

One of the pillars of modern finance theory - as founded by Markowitz (1952) - is that low or
negative dependence between assets can lead to a superior risk-return relationship. Therefore,
the method of estimating dependence between several variables is a critical issue for portfolio
allocation and risk management. For a number of years the standard method of estimating
dependence has been Pearson’s correlation coefficient, which is based on the multivariate
Gaussian distribution. However, as Mandelbrot (1963) and Fama (1965) noted, financial time
series do not fulfill the assumption of normality. It then took another thirty years until the
seminal paper of Embrechts, McNeil, and Straumann (1999) proved that Pearson’s correlation
coefficient is not sufficient to depict the dependence between variables not belonging to the
family of elliptical distributions. In addition, the dependence between financial time series
varies through time- as has been pointed out by Hamao, Masulis, and Ng (1990). Furthermore,
the work of Erb, Harvey, and Viskanta (1994) and Longin and Solnik (2001), among others,
showed that dependence tends to increase during bear markets.

Taking these so called ‘stylized facts’ into account it is clear that there was a need for the
establishment of new methods to overcome the drawbacks of Person’s correlation coefficient.
Multivariate GARCH models constituted such an attempt. The main task of this model class is
the investigation of co-movements between several assets via the modelling of the conditional
covariance or conditional correlation matrix. A popular multivariate GARCH model is the
Dynamic Conditional Correlation model of Engle (2002), who decomposes the conditional
covariance matrix into conditional standard deviations and conditional correlations. Since
the original DCC-model disregards asymmetric correlations Cappiello, Engle, and Sheppard
(2006) enhanced Engle’s model in this direction. Today, a commonly used second alternative
can be found in the so called copulas introduced by Sklar (1959). As will be explained shortly,
a multivariate distribution can be decomposed into its marginal distributions and the depen-
dence structure, at which the copula represents the dependent part. One important feature of
copulas is the possibility of modelling the occurrence of joint positive and- in particular- joint
negative events in the tails of distributions. Joint negative events tie in with the ‘stylized fact’
of asymmetric dependence during bear markets. Until Patton (2006) copulas were useful in
modelling asymmetries but neglected the dynamic behavior of dependence. Patton resolved
this by developing time-varying copulas.

Naturally, this research impacts on the work of practitioners. In the asset management
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industry multivariate dependence plays a crucial role for both portfolio and the risk managers.
Of particular importance to portfolio mangers is the detection of diversification benefits and
therefore an investigation of the dependence structure between several variables. Often pro-
posed for the diversification of a developed market portfolio are the emerging markets (see
Errunza (1977) for example). The risk manager meanwhile is interested in the best possible
display of portfolio risk.

In short, this analysis tries to satisfy the needs of both portfolio and risk managers. The
portfolio manager’s needs are accommodated by an analysis of the time-varying multivariate
dependence structure between the emerging and developed equity and bond markets. The
needs of the risk manager are met by investigating the ability of the different models to esti-
mate the Value-at-Risk, a popular risk measure.

On the theoretical side this analysis contributes to the existing literature in the following
ways. In cooperation with Valentin Braun new time-varying copulas are proposed. Until
now time-varying Archimedean copulas have been restricted to bivariate cases. The dynamic
structure proposed here makes it possible to examine the time-varying tail dependence with
more than two dimensions. The second innovation extends the class of mixture copulas and
has two elements. Firstly it builds on the time-varying multivariate Archimedean copulas
to provide the possibility of estimating a multivariate dynamic mixture copula consisting of
an elliptical and an Archimedean copula with more than two dimensions. Secondly, a new
modelling scheme for time-varying weights of the mixture copulas is proposed. Furthermore,
the elliptical copulas are estimated with a diagonal matrix structure of Cappiello, Engle, and
Sheppard (2006) to incorporate possible asymmetric dependence. The scalar version of this
structure is applied to D-vine copulas which also gives them a time-varying structure with
possible asymmetries.

On the empirical side a multivariate GARCH and several time-varying copula models are
compared for their ability to estimate the Value-at-Risk of developed and emerging market
equity and bond indices. A second empirical task is an in-depth analysis of the dependence
between emerging and developed markets. In this area a great deal of research is devoted
to the analysis of equity indices. We extend this line of analysis to bond indices. Further-
more, the newly developed multivariate copula models allow an appraisal of time-varying tail
dependence: this is also novel.

The analysis is structured as followed.
Chapter 2 presents the model of the financial returns that is used throughout the analysis.

A brief overview of autoregressive models for the conditional mean and univariate GARCH
models for the conditional variance are given. Autoregressive Moving Average theory is also
presented since it is used to specify the time-varying behaviour of some copulas. Chapter
3 introduces multivariate GARCH models. As noted above these are alternative for estimat-
ing time-varying correlations with asymmetric dependence. Chapter 4 is devoted to copulas.
Firstly, the multivariate elliptical copulas are explained, followed by Archimedean copulas.
The last copula class introduced is the vine copulas. Thereafter, the theoretical concepts of
Kendall’s tau and tail dependence are explained. Kendall’s tau plays a crucial role for the
time-varying vine copulas whilst tail dependence is one of the main features of copulas. It is
thus important to present them in more detail. Following this, copula theory is enhanced to
include time-varying cases. In the final step of the theoretical part a copula goodness-of-fit
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test is illustrated.
Chapter 5 is devoted to the empirical analysis. The first part engages with the ability of

the miscellaneous models to estimate risk. Definitions of some risk measures are given and
the different risk estimation results are compared via various tests. This is accompanied by
a description of the different model risk-characteristics and a conclusion concerning which
model displays the risk of the respective portfolio best.

We focus on two popular asset classes: equity and bond indices. In order to cope with a
broad range of risk and return characteristics both asset classes are sub-divided into developed
and emerging markets. It is often said that emerging market and developed market returns
behave quite differently. For example Harvey (1995) argues that emerging market returns are
more driven by local information. Furthermore Bekaert and Harvey (1997) points out that
emerging market returns are more predictable and exhibit higher asymmetric volatility than
developed markets. These different characteristics of emerging and developed markets make
them useful in highlighting the different risk estimation abilities. Special attention is given
to risk-model behaviour through the recent financial crisis. The second empirical section is
an in-depth analysis of the dependence structure between emerging and developed markets.
Again several portfolios are built. Where the risk was previously estimated only for advanced
emerging markets now secondary emerging markets are added to the analysis. Advanced and
secondary emerging markets differentiate in their economic power and may also distinguish in
their level of financial integration with the developed markets. The more the emerging markets
are integrated the less diversification benefits they offer. To test this hypothesis, multivariate
GARCH and different copulas are estimated and the goodness-of-fit test is applied to each
estimated model. Comparing the results of the goodness-of-fit tests while considering the
properties of the different dependence models provide the possibility to deduce the dependence
structure. Attention is given to shifts in dependence over time, especially during the recent
financial crisis.



4 1. Introduction



Chapter 2

Marginal Models

2.1 Preliminaries
At this point it is necessary to introduce some basic definitions used in the following chapters.

This thesis is primary concerned with financial time series variables which belong in gen-
eral to the group of economic variables. We will assume that the variables are described by
a stochastic process. Therefore, it is useful to define a probability space (Ω,Ft ,Pr) where Ω
represents the set of all elementary events, Ft is a sigma-algebra containing all information
up to time t and Pr is a probability measure conditional on the information set Ft . Then a
random variable x is defined as a real valued function on Ω.

A d × 1 vector will be denoted x = (x1, . . . ,xd)
′, xt denotes a process observed in se-

quence over time t = 1, . . . ,T , and xt a d-dimensional multivariate time series process xt =
(x1,t , . . . ,xd,t)

′.
The majority of the time we will follow the usual notation in econometrics, e.g. random

and real valued numbers will both be denoted by lower-case letter. Variations from this nota-
tion will be explicitly mentioned.

2.2 Model Structure
In this section we will present in detail the models used to specify the marginal distributions
of the multivariate models.

Consider y as a real valued variable then in the context of this analysis yt is a financial
return at time t and is calculated as yt = ln

(
pt

pt−1

)
, where pt is the price of the financial time

series. The variable yt will then be modeled as

yt = µt + εt (2.1)

εt = h1/2
t zt , (2.2)

where µt describes the conditional mean (E{yt |Ft−1}= µt), ht the conditional variance(
E{y2

t |Ft−1}= ht
)
, and zt is an i.i.d. process with zero mean and unit variance. The condi-

tional mean will be specified through an Autoregressive (hereafter, AR) model and the con-
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ditional variance through an Generalized Conditional Heteroscedasticity (hereafter, GARCH)
model. Both are explained in the following section.

2.3 Autoregressive Moving Average Processes
The following chapter is based on the results of Hamilton (1994), Enders (1995), and Brock-
well and Davis (2002).

The family of Autoregressive Moving Average (hereafter, ARMA) models proved useful
in capturing the first-moment dynamics of an univariate financial time series. In the following
we will introduce the basic features of the AR, ARMA, and GARCH processes. Although
we do not use the ARMA model in the marginal specification several of its properties will be
used in the copula section. Since the simple ARMA model belongs to the class of univariate
models we will present the necessary theory in this chapter.

Crucial for MA and ARMA models is the white noise process and so a definition needs to
be given. In this analysis a process v is called white noise if it satisfies

E{v} = 0
E{v2} = h, h < ∞

E{vtvτ} = 0, for t ̸= τ ,

where E{} is the usual expectations operator. If vt and vτ are also independent for t ̸= τ the
process is called strict white noise. The MA model needs only a brief introduction as it appears
in this analysis only in the context of the ARMA model and is not treated directly. Consider a
real valued vector time series x, then an MA process of order q is described by

xt = vt −φ1vt−1 − . . .−φqvt−q, (2.3)

where vt is white noise. This process satisfies the stationarity condition if

∞

∑
i=0

|φi|< 0.

The Autoregressive model will be considered in a little more detail because the conditional
mean of the marginal model is estimated as an AR(p1) process. A first order autoregressive
process is described by

xt = ϕ1xt−1 + vt . (2.4)

This model may deduced by backward substitution

xt = vt +ϕ1vt−1 +ϕ 2
1 vt−2 + . . .

=
∞

∑
i=0

ϕ i
1vt−i.
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Only if |ϕ1|< 1, xt is said to be stationary and ergodic. The moments of xt are computed using
the infinite sum

E{xt} =
∞

∑
i=0

ϕ i
1E{vt−i}= 0

var(xt) =
∞

∑
i=0

ϕ 2i
1 var(vt−i) =

h
1−ϕ 2

1
.

If (2.4) is estimated with a constant

xt = ϕ0 +ϕ1xt−1 + vt

the expected value of the mean changes to

E{xt}=
ϕ0

1−ϕ1
.

Sometimes it might be necessary to estimate a model with a lag length greater than one. The
stationary conditions for an AR(p1) model with p1 > 1

xt = ϕ1xt−1 + . . .+ϕp1xt−p1 + vt (2.5)

are derived via the complex roots of the process. Therefore, it is useful to define the lag
operator L

L(xt) = xt−1

L2 = LL
L2(xt) = xt−2

... =
...

Thus, the lag operator L shifts the time index t one period backward. With these definitions an
AR(p1) assumes the form

xt −ϕ1Lxt − . . .−ϕp1Lp1xt = vt

or

ϕ(L)xt = vt ,

where

ϕ(L) = 1−ϕ1L− . . .−ϕp1Lp1 .

Now it is possible to derive the complex roots via the fundamental theorem of algebra which
states that any polynomial can be factored into

ϕ(z) = (1−λ−1
1 z) · · ·(1−λ−1

p1
z),
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where λ1, . . . ,λz are the complex roots of z. An AR(p1) model is stationary and ergodic if
all the complex roots lie outside the unit circle, i.e. |λi| > 1, for all i, where |λ | denotes the
modulus of the complex number λ . The moment conditions for an AR(p1) process are

E{xt}= 0

var{xt}= h
p1

∑
i=1

ϕi.

When estimating (2.3) with a constant the expected value of the mean changes to

E{xt}=
ϕ0

1−∑p1
i=1 ϕi

.

Next, we will present the theoretical results for the ARMA process. In general ARMA pro-
cesses exhibit the same stationary conditions as AR(p1)-processes. In this analysis we will
use ARMA process to model the time-varying behavior of copulas which will be introduced
later. Since the time-varying copulas will always be modelled through an ARMA(1,1) process
we present only the results for this kind of process. An ARMA(1,1) model might be written

xt = ϕ1xt−1 +φ1vt−1 + vt (2.6)

and in lag-operator notation as

xt = (ϕ(L))−1 φ(L)vt

vt = (φ(L))−1 ϕ(L)xt ,

if φ(L) or ϕ(L) are invertible. In the case of an ARMA(1,1) process invertibility and station-
arity are guaranteed if

|φ|< 1 (2.7)

and

|ϕ |< 1. (2.8)

The first two moment conditions of an ARMA(1,1) are

E{xt}= 0

var{xt}=
1+φ2

1 −2ϕ1φ1

1−ϕ 2
1

h,

where again in case of a constant the expected mean changes to

E{xt}=
ϕ0

1−ϕ1
.
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Another important aspect of this analysis is the calculation of the Value-at-Risk (hereafter,
VaR). Since the VaR is always predicted forecast properties of the different models need to be
deduced. The forecast is conditional on all the information available up to time t. All variables
treated in this thesis will only be conditioned on their own past values

Ft = σ{xt , . . . ,xt−T+1} for t = 1, . . . ,T.

The general forecast function of an j-step ahead forecast for an AR(1) process with a constant
takes the form

E{xt+ j|Ft}= ϕ0(1+ϕ1 +ϕ 2
1 + . . .+ϕ j−1

1 +ϕ j
1 xt). (2.9)

The second important model is the ARMA(1,1) model with j-step ahead forecast of

E{xt+ j|Ft}= ϕ0 +ϕ1E{xt+ j−1|Ft}, for j ≥ 2.

As mentioned above we will only make one period ahead forecasts and in the ARMA case this
takes the simple form

E{xt+1|Ft}= ϕ0 +ϕ1xt +φ1vt .

2.4 Univariate ARCH Processes
The following chapter is based on the results of Hamilton (1994), Tsay (2005), and Greene
(2008).

While the above introduced family of AR- and ARMA models successfully describes the
conditional mean they assume a time invariant variance. This assumption has been challenged
empirically by the observation that volatility varies through time. High and low volatility
seems to arise in clusters. This empirical observation leads to a class of models able to
gather the time-varying behavior of the variance - the so called Autoregressive Conditional
Heteroscedasticity (hereafter, ARCH) model.

Recall the general model structure of the financial return yt = µt +εt , where in this analysis
µt = ϕ0 +∑p1

i=1 ϕiyt−i. Then, the ARCH(p2) invented by Engle (1982) may be written

ht = α0 +
p2

∑
j=1

α jε2
t− j, (2.10)

εt = h1/2
t zt ,

where zt is a strict white noise process (with zero mean and unit variance) and ht the condi-
tional variance. If zt is assumed to be strict white noise then the ARCH model is referred to
strong ARCH. Thus, the time varying variance modeled by an ARCH process is described
by a linear function of the past squared residuals. The conditional moments of an ARCH(1)
model are defined as

E{εt |Ft−1}= 0

var{ε2
t |Ft−1}= ht .
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Another important condition in ARCH models is the finiteness of the variance, i.e. h <∞. Due
to the autoregressive structure of ARCH models, a large |ε| in one period leads to large |ε| in
the following periods. This captures the time-varying behavior of volatility. In principle the
white noise variable zt might be distributed with any zero mean and unit variance distribution.
We will make use of this when specifying the different GARCH models. Bollerslev (1986)
and Taylor (1986) generalized Engle’s ARCH model to the famous GARCH model. The
ARCH model in (2.10) captures the heteroscedasticity adequately, but only with a very long
lag order q. The GARCH model is a more parsimonious version of the ARCH model. Many
studies have shown that low order GARCH models capture the empirical properties of the
volatility of asset returns relatively well, see e.g. Engle, Hong, and Kane (1990), Day and
Lewis (1990), Lamoureux and Lastrapes (1990), and Anderson and Bollerslev (1998). In
particular, the simple GARCH(1,1) model captures the heteroscedasticity well ( Bollerslev,
Engle, and Nelson (1994) and Hansen and Lunde (2001)). Bollerslev (1986) introduced the
GARCH(p2,q2) model

ht = α0 +
p2

∑
i=1

αiε2
t−i +

q2

∑
j=1

β jht− j. (2.11)

The GARCH process is weakly stationary if- and only if- ∑p2
i=1 αi +∑q2

j=1 β j < 1. To be identi-
fied, at least one αi has to be greater 0. One feature of the GARCH model is the persistence of
high volatility periods because either a large |εt | or a large ht−1 can lead to a large ht . Another
interesting feature of a GARCH(1,1) process is the kurtosis

Kurt{εt}= 3+
6α2

1
1−β 2

1 −2α1β1 −3α2
1
. (2.12)

For general conditions of higher moments of GARCH processes see He and Teräsvirta (1999).
Even with Gaussian innovations the kurtosis will always be greater than three if α1 > 0. This
implies that it is possible to capture some fat-tailed behavior of a time series, even with Gaus-
sian innovations. This should be kept in mind since it will play a role when comparing the
different multivariate models in later chapters.

GARCH models are broadly divided into two classes: the symmetric and the asymmetric
GARCH models. To handle as many features of a financial time series as possible we make
use of both classes. The symmetric GARCH models we use for specifying the variance are

• Symmetric GARCH models:

– GARCH - Bollerslev (1986)
ht = α0 +α1ε2

t−1 +β1ht−1

– AVGARCH Absolute Value - Taylor (1986)
h1/2

t = α0 +α1|εt−1|+β1h1/2
t−1.

Symmetric GARCH models can be critiqued because they treat negative and positive
shocks in the same way. Black (1976) was one of the first to recognize that after a negative
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shock the volatility seemed to increase more than after a positive shock of the same magni-
tude. Black (1976) and Christie (1982) give an explanation for this phenomena, noting that
a decline in a firm’s stock price would raise the debt to equity ratio of the firm and that the
larger the debt to equity ratio the larger the risk of a default of the firm would be. This leads
to an increase of volatility of the stock’s return. This is today known as the ‘leverage effect’.
Another explanation is given by Campbell and Hentschel (1992) and Wu (2001), the so called
‘volatility feedback effect’. When the volatility of the market is expected to increase an in-
vestor requires the return of the stock to increase and thus lowers stock prices. Studies which
reviewed time varying risk premiums where given by Pindyck (1984) and French, Schwert,
and Stambaugh (1987). As a result a whole new class of GARCH models evolved trying to
take the leverage or volatility feedback effect into account: the asymmetric GARCH-models.

• Asymmetric GARCH models:

– EGARCH Exponential - Nelson (1991)
log(ht) = α0 +α1

|εt−1|√
ht−1

+ γ εt−1√
ht−1

+β1 log(ht−1)

– ZARCH Threshold - Zakoian (1994)
h1/2

t = α0 +α1|εt−1|+ γI{εt−1 < 0}|εt−1|+β1h1/2
t−1

– GJRGARCH Glosten, Jagannathan, and Runkle (1993)
ht = α0 +α1ε2

t−1 + γI{εt−1 < 0}ε2 +β1ht−1

The miscellaneous reactions of the different models to shocks are best described by the
news impact curve, originally developed by Pagan and Schwert (1990). For a detailed survey
of the news impact curve from most of the models described above see Hentschel (1995). For
example the standard GARCH model, e.g. is characterized by a symmetric news impact curve,
the EGARCH by a rotated news impact curve, and the AVGARCH model by a re-centered
news impact curve.

We will now describe describe the main features of the miscellaneous GARCH models
briefly. This is important as in the empirical section of this thesis we estimate volatility of the
different equity and bond indices by GARCH models. An understanding of the main features
of each model might lead to an better understanding of the properties of the respective time
series.

The AVGARCH dampens the effect of the residuals because it models the absolute value of
the residual instead of the squared value. Recent research suggests that absolute returns show
more autocorrelation than squared returns (Granger, Spear, and Ding (2000)). This would
make a parameterization as in the AVGARCH more useful as the fundamental logic that builds
the whole ARCH class is an autoregressive structure of the data. The most celebrated model
which incorporates asymmetric effects is the EGARCH model of Nelson (1991). A unique
feature of the EGARCH model is that it models the log-variance instead of the variance. This
ensures the positivity of the variance and thus no restrictions on the parameters are needed.
The ZARCH and GJRGARCH belong to the class of threshold models. In threshold models
only innovations below or above a certain threshold will be modelled separately. The threshold
in the ZARCH and GJRGARCH is assumed to be zero. The ZARCH model adopts the idea
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of the AVGARCH and models the absolute innovations. Additionally it models the square
root of the variance instead of the variance. The GJRGARCH combines the threshold idea
with the squared innovations of the Bollerslev-GARCH. Thus, the simplest specification of
the financial return yt would be an AR(1)-GARCH(1,1) model

yt = ϕ0 +ϕ1yt−1 +
√

α0 +α1ε2
t−1 +β1ht−1zt .

Multiperiod forecasting for GARCH models sometimes require fairly complicated formulas.
As Zivot (2009) offers a derivation of multiperiod forecasting functions for several GARCH
models these formulas are omitted. The for this analysis relevant one-period ahead forecasts
are as in the AR and ARMA case relatively simple, requiring only a shift in the time index
one-period ahead.

Surveys of the mathematical and statistical properties of the different models are provided
by Bera and Higgins (1995), Diebold and Lopez (1996), Pagan (1996), and Palm (1996). For
an introductory and concise survey of univariate GARCH models see Teräsvirta (2009).

2.4.1 Estimation
The class of ARCH models can be estimated by the Maximum Likelihood Estimation (here-
after, MLE) method.

When explaining the MLE method in the context of GARCH models it is necessary to
introduce the concept of conditional likelihood. As a result of the recursive nature of GARCH
models a starting value y0 at T + 1 must be added. Following McNeil, Frey, and Embrechts
(2005) the density of a random vector yt can then be written

f (y0, . . . ,yT ) = f (y0)
T

∏
t=1

f (yt |yt−1, . . . ,y0). (2.13)

Since the marginal density in (2.13) is not known for ARCH and GARCH models the
following conditional likelihood is used

f (y1, . . . ,yT |y0,h0) =
T

∏
t=1

f (yt |yt−1, . . . ,y0,h0)

L(y1, . . . ,yT ;α0,α1,β1) =
T

∏
t=1

1
ht

g
(

yt

ht

)
,

where h = h0, i.e. the unconditional variance is used as the starting value. The variable g is
the so called density generator. We estimate the conditional variance and conditional mean in
one step and therefore the conditional likelihood has to be modified to

L(y1, . . . ,yT ;α0,α1,β1,γγγ) =
T

∏
t=1

1
ht

g
(

yt −µt

ht

)
,

where γγγ is the parameter vector of the AR(p1) conditional mean specification. We use four
different distributions for the density generator g:
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• Gaussian

g(y1, . . . ,yT ;yt |µt ,ht) =
1√

2πht
exp
(
−(yt −µt)

2

2ht

)
• Student-t

g(y1, . . . ,yT ;yt |µt ,ht ,ν) =
Γ
(ν+1

2

)
π1/2Γ

(ν
2

)(ν −2)−1/2h−1/2
t

·
(

1+
(yt −µt)

2

ht(ν −2)

)− ν(ν+1)
2

• GED

g(y1, . . . ,yT ;yt |µt ,ht ,ν) =
ν

λ2(
ν+1

ν )Γ
( 1

ν
) exp

(
−1

2

∣∣∣∣∣yt −µt

h1/2
t

λ−1

∣∣∣∣∣
ν)

,

λ =

(
2(−2/ν)Γ

( 1
ν
)

Γ
( 3

ν
) )1/2

• skew− t

g(y1, . . . ,yT ;zt |ν ,λ ) =


bc
(

1+ 1
ν−2

(
bzt+a
1−λ

)2
)− ν+1

2

, z <−a
b ,

bc
(

1+ 1
ν−2

(
bzt+a
1+λ

)2
)− ν+1

2

, z ≥−a
b ,

where 2 < ν < ∞, −1 < λ < 1, and zt =
yt−µt

h1/2
t

. The constants are given by

a = 4λc
(

ν −2
ν −1

)
,

b2 = 1+3λ 2 −a2,

c =
Γ
(ν+1

2

)√
π(ν −2)Γ

(ν
2

) .
Engle (1982) and Bollerslev (1986) both used the Gaussian distribution to estimate the ARCH
and GARCH models. Bollerslev, Engle, and Wooldrige (1988) were the first to use the t-
distribution in estimating a GARCH model whilst Nelson (1991) proposed the GED to esti-
mate his EGARCH model. The skew− t distribution was first used by Hansen (1994) in the
context of modeling a financial time series. Since estimating with products is frequently a
complicated task it is more convenient to use the log-likelihood

lnL(y1, . . . ,yT ;θθθ) =
T

∑
t=1

lt(θθθ), (2.14)
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where lt describes the log-likelihood of the tth observation and θθθ = (α0,α1,β1,µ)′ is a vector
of parameters. As the name suggests the likelihood will be maximized

∂
∂θθθ

lnL(y1, . . . ,yT ;θθθ) =
T

∑
t=1

∂ lt(θθθ)
∂θθθ

= 0. (2.15)

Even if the true data process of the innovations is not described by the distributions above it
is still possible to obtain consistent estimates of the parameters (White (1982), Weiss (1984),
Weiss (1986), or Bollerslev and Wooldridge (1992)). This is known as quasi maximum like-
lihood procedure and is essentially the same as maximum likelihood with the exception of
standard errors which have to be estimated in a different way. To account for these QML-
properties We use the robust standard errors of White (1980) in case of estimating univariate
GARCH models. The robust covariance matrix ΩΩΩ is estimated as

ΩΩΩ = A−1BA−1, (2.16)

where

A =−E
{

∂ 2 lnL
∂θθθ∂θθθ ′

}
Â =

1
n

n

∑
t=1

(
∂ lt(θθθ)

∂θθθ
∂ lt(θθθ)

∂θ ′θ ′θ ′

)
.

Here Â denotes the sample estimate of A and ∂ l(θθθ)
∂θθθ the score vector. B and the associated

sample estimate B̂ looks like

B = E
{

∂ lnL
∂θθθ

∂ lnL
∂θ ′θ ′θ ′

}
B̂ =−1

n

n

∑
t=1

∂ 2lt(θθθ)
∂θθθ∂θθθ ′ .

For an introduction of ML estimation and heteroscedasticity-consistent standard errors, see
Greene (2008). More technical details are found in Straumann (2005).



Chapter 3

Multivariate GARCH Models

3.1 Preliminaries
Having explained the importance of taking the time varying behavior into account when mod-
elling the (daily) returns of a financial time series, we will now focus on the comovements
between several variables. The discovery of a time varying variance for a single financial time
series led to the assumption that the comovements between two or more variables may also be
time varying. So it was natural to enhance the univariate ARCH models to multivariate ones.

The time-varying behavior of comovements between several variables has attracted a lot
of attention ins science. Among the first to investigate the time-varying dependence of stock
markets were Hamao, Masulis, and Ng (1990), Susmel and Engle (1994), and Bekaert and
Harvey (1995). Longin and Solnik (1995) was among the first to recognize that correlation
increases through periods of high volatility. Also of interest for portfolio allocation purposes-
and in the line of Longin and Solnik (1995)- are the empirical findings that correlation seems
to increase during bear markets (Erb, Harvey, and Viskanta (1994), De Santis and Gerard
(1997), Das and Uppal (2001), Longin and Solnik (2001), and Ang and Bekaert(2002a)). Tse
(2000) invented a test for time-varying correlations: he tested three asian stock markets and
found time-varying correlations for all of them.

3.2 Multivariate ARCH and GARCH Processes
The first to propose the class of multivariate ARCH (hereafter MVARCH) models were Kraft
and Engle (1982) and Engle, Granger, and Kraft (1984). The multivariate models took the
same route as the univariate models and were refined to multivariate GARCH (hereafter MV-
GARCH) models by Bollerslev, Engle, and Wooldrige (1988). The modelling of the condi-
tional covariance matrix has attracted some attention and several different specifications have
evolved. A comprehensive survey of MVGARCH models is delivered by Bauwens, Laurent,
and Rombouts (2006) whilst Gouriéroux (1997) and Lütkepohl (2005) treat a number of theo-
retical aspects. A concise introductory survey is given by Silvennionnen and Teräsvirta (2009).
To give a better understanding of the models, we first present briefly the original MVARCH
and MVGARCH. Following this, the enhanced models of Engle (2002) and Cappiello, Engle,
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and Sheppard (2006) will be introduced. These are the time-varying models we use in the
empirical section.

In spirit of the univariate specification in (2.2) we will assume that the ith element of a
d-dimensional vector of zero mean residuals εεε t = (ε1,t , . . . ,εd,t)

′ is described by

εi,t = h1/2
i,t ηi,t , for i = 1, . . . ,d, (3.1)

where hi,t is the ith element on the main diagonal of the conditional covariance ma-
trix Ht and ηi,t is a strict white noise process. The covariance matrix is again esti-
mated conditional on its own past values summarized in the information set Ft−1 =
(x1,t−1,x2,t−1, . . . ,xd,t−1,x1,t−2, . . . ,xd,t−2, . . . ,xd,T−t+1). The MVARCH(P) of Kraft and En-
gle (1982) and Engle, Granger, and Kraft (1984) model may then be written as

vech(Ht) = A0 +
P

∑
i=1

Aivech(εεε t−iεεε ′t−i), (3.2)

where vech denotes the half-vectorization operator stacking only the different elements of
a square matrix in a 1

2d(d + 1) dimensional vector. Ai is the coefficient matrix containing(
d(d+1)

2

)2
elements and A0 is a 1

2d(d +1) vector of constants.
With this notation the MVGARCH(P,Q) of Bollerslev, Engle, and Wooldrige (1988) model

is characterized by

vech(Ht) = A0 +
P

∑
i=1

Aivech(εεε t−iεεε ′t−i)+
Q

∑
j=1

B jvech(Ht− j), (3.3)

where B is a symmetric coefficient matrix containing
(

d(d+1)
2

)2
elements. As mentioned

before Ht has to be a positive definite matrix. Engle and Kroner (1995) showed that Ht is
positive definite for the MVGARCH model in (3.3) if all eigenvalues of

P

∑
i=1

Ai +
Q

∑
j=1

B j

are smaller than one in modulus.

3.3 Estimation
The estimation method of MVARCH is exact the same as in the univariate case: the MLE
method. Since in this analysis only MVGARCH models are considered only the theory rele-
vant for these models will be presented.

Again, following McNeil, Frey, and Embrechts (2005) consider a first order model (P = 1
and Q = 1) in (3.3) with conditional joint density

f (εεε1, . . . ,εεεT |εεε0,H0) =
T

∏
t=1

ft(εεε t |Ft−1,εεε0,H0), (3.4)
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where εεε1 = (ε1,1, . . . ,εd,1)
′, ft is the density of the vector εεε t conditioned on the sigma algebra

Ft−1, the vector of starting values εεε0, and the staring value for the conditional covariance
matrix H0. As can be seen by (3.4) the multivariate ARCH representation is easily derived
from the multivariate GARCH results. The conditioning must be done only on εεε0 instead of
εεε0 and H0 since in (M)ARCH models only lagged squared residuals are used as explanatory
variables. Defining the multivariate error density of εεε t by d(εεε t), then the conditional joint
density may be written

f (εεε1, . . . ,εεεT |εεε0,H0) = |Ht |−
1
2 d(H− 1

2
t εεε t),

where Ht is described by (3.3). Assuming that d() is generated by a Gaussian distribution then
the conditional likelihood is given by

L(εεε1, . . . ,εεεT ;θθθ) =
T

∏
t=1

|Ht |−
1
2 d(εεε ′tH−1

t εεε t), (3.5)

where θθθ contains all the estimated parameters. As in the univariate case it is often easier to use
the log-likelihood instead of the likelihood function. The conditional log-likelihood of (3.5)
turns out to be

lnL(εεε1, . . . ,εεεT ;θθθ) =
T

∑
t=1

(
−1

2
ln |Ht |+ lnd(εεε ′tH−1

t εεε t)

)
(3.6)

=
T

∑
t=1

lt(θθθ).

For Maximum Likelihood estimation it is necessary to specify multivariate probability distri-
bution functions. As the multivariate normal distribution belongs to the family of spherical
distributions (3.5) can be used with the multivariate normal plugged in for the density gener-
ator d(). The multivariate GARCH(1,1) likelihood equation based on a multivariate normal
then takes the form

L(εεε1, . . . ,εεεT ;A0,A,B) =
T

∏
t=1

1

2π
d
2 |Ht |

1
2

exp
{
−1

2
(εεε ′tH−1

t εεε t)

}
,

where Ht follows an process described by (3.3). The Quasi Maximum Likelihood Procedure
might also be applied to the multivariate normal MLE and again a robust covariance estima-
tion method has to be implemented. The robust covariance method we use was especially
developed for the MVGARCH model and it is this we will now explain presenting first the
MVGARCH model and thereafter then the standard errors that belong to it.

3.4 Dynamic Conditional Correlation
The fundamental logic behind conditional correlation models is that the positive-definite con-
ditional covariance matrix Ht can be decomposed into the conditional standard deviations and
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conditional correlation matrix. In the following the Dynamic Conditional Correlation (here-
after DCC) developed by Engle (2002) will be introduced making use of this decomposition.
The DCC model tries to shape possible time-varying behavior of the correlation between time
series by a GARCH-based procedure. From a practical point of view an advantage of the DCC
model is the two-step procedure. In the first step univariate GARCH models are estimated for
each time series and in the second step the covariance matrix with standardized residuals from
the first step. Any univariate GARCH model which assumes Gaussian innovations can be
used in the first stage. This allows great flexibility and makes it possible to allow for example
asymmetric GARCH models. On the other side, even GARCH processes with Gaussian inno-
vations depict a kurtosis greater than 3 and so the fat-tailed behavior of financial time series
returns can be embraced in part. As has been shown by numerous studies this might still prove
insufficient (see Bollerslev (1987) for example), but using GARCH models with Gaussian
innovations assumption is the only possibility using the two-step procedure. As always, multi-
step estimation procedures comes with a loss of efficiency but the advantages- especially in
higher dimensions- seems to outweigh this. One of the first to use the decomposition of the
correlation matrix was Bollerslev (1990) who invented the Constant Conditional Correlation
(hereafter CCC) model. The specification of the CCC model may be written

Ht = DtRDt (3.7)

Dt = diag
(√

hi,t

)
for i = 1, . . . ,d

ηηη t = D−1
t εεε t ,

where diag is an operator which projects a vector onto the main diagonal of a square matrix and
R is a positive definite correlation matrix. The CCC incorporates the time-varying behavior of
(univariate) volatility but neglects the possibility of a time varying behavior of the correlation.
Bera and Kim (2002) and Tse and Tsui (2002) for example both reject the hypothesis of
constant correlation in international equity markets. These findings raised the need to develop
a model which incorporates time-varying correlations. Engle (2002) developed such a model:
the DCC model. This uses the same decomposition of the covariance matrix as the CCC model
in (3.7) but models the correlation matrix as time varying

Ht = DtRtDt . (3.8)

Furthermore, it assumes conditional normality for the zero mean residuals

εεε t |Ft−1 ∼ N (0,DtRtDt).

Engle (2002) also noted that the conditional correlation matrix equals the conditional covari-
ance matrix of the standardized returns

Rt = E{ηηη tηηη ′
t |Ft−1}.

To give a better understanding of the DCC-model the derivation of the DCC structure follow-
ing Engle (2002) will be briefly explained. The dynamic structure of the correlation matrix
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can be derived via the exponential smoother used by RiskMetrics

ρi j,t =
∑t−1

s=1 λ sηi,t−sη j,t−s√(
∑t−1

s=1 λ sη2
j,t−s)(∑

t−1
s=1 λ sη2

j,t−s

) ,
where λ describes the smoothing parameter. For daily returns RiskMetrics set λ = 0.94 based
on their empirical evidence. This might be an aspect to criticize since λ is kept constant no
matter what kind of sample is used in the analysis although stock and bond indices might need
quite different values. Exponential smoothing leads to

qi j,t = (1−λ )(ηi,t−1η j,t−1)+λ (qi j,t−1) (3.9)

ρi j,t =
qi j,t√qii,tq j j,t

.

Equation (3.9) can be written as a GARCH(1,1)

qi j,t = ρ i, j +α
(

ηi,t−1η j,t−1 −ρ i, j

)
+β

(
qi, j,t−1 −ρ i, j

)
, (3.10)

where ρ denotes the unconditional correlation. In matrix form (3.10) may be written as

Qt = S(1−a−b)+a(ηηη t−1ηηη ′
t−1)+bQt−1,

where S represents the unconditional sample correlation of ηηη . With the definition of Qt the
conditional correlation matrix is given by

Rt = diag(Q∗
t )

−1 Q∗
t diag(Q∗

t )
−1,

where Q∗
t is a diagonal matrix with the square root of the ith diagonal element of Qt on its ith

diagonal position

Q∗
t =


√q11,t

. . .
√qii,t

 .
Note that different lag length of the standardized residuals and Qts are also possible

Qt = S

(
1−

P2

∑
i=1

ai −
Q2

∑
j=1

b j

)
+

P2

∑
i=1

ai
(
ηηη t−iηηη ′

t−i
)
+

Q2

∑
j=1

b jQt− j. (3.11)

This is the original DCC(P2,Q2) model as it has been developed by Engle (2002). Both uni-
variate and multivariate GARCH give geometric declining weights to information contained
in the sample, i.e. the most recent data point achieves the highest weight and the most distant
the least weight. This a huge difference to Pearson’s correlation coefficient which applies the
same weight to every data point.



20 3. Multivariate GARCH Models

As explained above the correlation matrix needs to be positive-definite and this implies a
positive-definite covariance matrix. Ding and Engle (2001) worked out some sufficient con-
ditions for Qt to be positive definite. Firstly, the unconditional covariance matrix Q0 has to
be positive definite. Further the intercept S(1−∑P2

i=1 ai −∑Q2
j=1 b j) has to be positive definite,

too. As a result of the two step procedure the sufficient conditions for Ht in (3.8) to be positive
definite are the same as the conditions for GARCH models, i.e. at least one a j has to be greater
0 and 1−∑p2

i=1 ai −∑q2
j=1 b j > 0. If this criteria is not fulfilled the unconditional covariance

matrix of ηηη t would not exist. Additional ∑P2
i=1 ai and ∑Q2

j=1 b j in (3.11) have to be greater than

zero and ∑P2
i=1 ai +∑Q2

j=1 b j < 1. For more details see Engle and Sheppard (2001).

3.4.1 Asymmetric Dynamic Conditional Correlation

The DCC model met with the same criticism as the original univariate GARCH model devel-
oped by Bollerslev - the symmetrical response to positive and negative shocks. One expla-
nation for the asymmetric volatility is the volatility feedback effect- the increase in expected
returns from investors leads to lower stock prices. As Kroner and Ng (1998) notes this could
lead to a change in the correlation between assets if the volatility feedback back applies to one
asset but not to the others. Cappiello, Engle, and Sheppard (2006) developed in the spirit of the
univariate GARCH specification of Glosten, Jagannathan, and Runkle (1993) an asymmetric
version of the DCC model - the Asymmetric Generalized Dynamic Conditional Covariance
(AG-DCC(P2,Q2)) model here presented with P2 = 1 and Q2 = 1

Qt =
(
Q−A′QA−B′QB−G′NG

)
+A′ηηη t−1ηηη ′

t−1A+B′Qt−1B+G′nt−1n′
t−1G, (3.12)

where Q is the unconditional covariance matrix, A,B, and G are parameter matrices, and
nt = R[ηtηtηt < 0]◦ηηη t . R describes the d×1 indicator function and ◦ the Hadamard product. The
indicator function takes the value 1 if the condition in the brackets is fulfilled, 0 otherwise.
In this analysis we restrict A,B, and G to diagonal matrices as otherwise there could be to
many parameters to estimate. The AG-DCC model in (3.12) clearly nests the simple DCC-
model if G is replaced by the zero matrix 0dd and A = Id

√
a and B = Id

√
b, where Id is the

d-dimensional identity matrix. The A-DCC model is obtained by keeping the DCC specifica-
tion and furthermore by setting G = Id

√
g. The so-called G-DCC model is obtained by setting

G = 0dd in (3.12). As with the univariate GARCH models there might be some considerable
advantages in specifying an asymmetric term especially if the phenomena of increasing corre-
lation during bear markets exists in the sample. In the DCC model of Engle all variables react
in the same way to the arrival of new information. When using matrices instead of scalars ev-
ery time series can respond to their own specific news. This might be advantageous especially
when estimating portfolios with low dimension and different dynamic structures.

Again the one-period ahead forecast of the covariance and therefore also the forecast of the
correlation matrix are fairly simple. The multiperiod forecasts for DCC models are explained
in Engle and Sheppard (2001).

The time-varying behavior modelling through MVGARCH models has attracted some
interest. For example Tse and Tsui (2002), Billio and Caporin (2006), Silvennionnen and
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Teräsvirta (2005), and Silvennionnen and Teräsvirta (2005) model either directly Rt or Qt
through different specifications.

3.4.2 Estimation
To complete the theoretical section of the MVGARCH models we must explain the estimation
procedure of the DCC models following Engle (2002). The DCC model is estimated via the
MLE method just as for other multivariate GARCH models. A unique feature of the DCC
model is that it can be estimated in two steps. Therefore the (log-)likelihood in equation (3.6)
has to be modified. Although efficiency is lost with this estimation method especially when
estimating high dimensional portfolios the computational advantage cannot be neglected.

The first step consists of estimating univariate GARCH models for the variance of each
asset. The second step estimates the covariance matrix using residuals standardized by the
standard deviation of the variance estimated in the first step. The complete likelihood may
then be written

L(θθθ DCC) = LV (κκκ)+LC(υυυ ,κκκ),

where κκκ represents the parameter vector of the univariate GARCH models, υυυ the parameter
vector of the correlation part, and θθθ DCC = (κκκ ,υυυ)′ is the parameter vector of all estimated
parameters. It can be clearly seen that the correlation part is conditioned on the volatility part.
Under the normality assumption the log-likelihood of the volatility term

lnLV (εεε1, . . . ,εεεT ;κκκ) =−1
2

T

∑
t=1

(
d ln(2π)+ ln |Dt |2 +εεε ′tD−2

t εεε t
)
,

is just the sum of the univariate GARCH estimates as can be seen by

lnLV (εεε1, . . . ,εεεT ;κκκ) =−1
2

T

∑
t=1

(
ln(2π)+

d

∑
i=1

lnhi,t +
d

∑
j=1

ε2
j,t

h j,t

)
,

where |Dt | depicts the determinant of Dt . The log-likelihood of the correlation term is given
by

lnLC(ηηη1, . . . ,ηηηT ;υυυ |κ̂κκ) =−1
2

T

∑
t

(
ln |Rt |+ηηη ′

tR
−1
t ηηη t −ηηη ′

tηηη t
)
,

where κ̂κκ is the estimated parameter vector of the univariate GARCH models. Under standard
regularity conditions consistency and asymptotic normality will hold for the parameters of the
two-step procedure, see Newey and McFadden (1994) and Engle and Sheppard (2001). Since
the full likelihood combines the likelihood of the univariate GARCH models and the likelihood
of the correlation part the same distribution has to be assumed for both estimation stages. Thus,
when the above method is used the DCC model is limited to the Gaussian distribution in the
MLE. Pesaran and Pesaran (2007) points out that estimating the DCC model for example with
a multivariate t-distribution implies that the univariate GARCH models have to be estimated
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with an univariate t-distribution, too. This would not be a problem were it not for the fact that
the degree-of-freedom parameters for each univariate GARCH and the multivariate GARCH
must be the same, something that is extremely unlikely in practice.

If the standardized residuals are not Gaussian distributed then the DCC estimator preserves
QML properties. Similarly to univariate GARCH models this implies that the DCC GARCH
process is able to model some of the fat-tailed behavior often found in daily returns of finan-
cial time series which might still be enclosed in the standardized residuals. Again, as in the
univariate case, this requires modifications of the standard errors. The formula for the DCC
standard errors is fairly complicated because they depend on the standard errors of the first
stage univariate GARCH standard errors. The standard errors for both stages must be the
Bollerslev and Wooldridge (1992) robust standard errors. To guarantee asymptotic normality

√
T
(

θ̂θθ DCC − θ̂θθ 0

)
A∼ N (0,ΩΩΩ∗) ,

the Bollerslev-Wooldridge standard errors need to be modified. The asymptotic robust
Bollerslev-Wooldridge covariance matrix ΩΩΩ∗ involves all covariance terms, i.e. covariance
estimates from the first and the second stage

ΩΩΩ∗ = A−1
∗ B∗A−1

∗ ,

where

A∗ =


E
{

∂ 2 lnLV (κκκ)
∂κκκ ′∂κκκ

}
0

E
{

∂ 2 lnLC(υυυ ,κκκ)
∂υυυ ′∂κκκ

}
E
{

∂ 2 lnLC(υυυ ,κκκ)
∂υυυ ′∂υυυ

}


and

B∗ = var
[

E
{

∂LV (κκκ)
∂κκκ

}
,E
{

∂ lnLC(υυυ ,κκκ)
∂υυυ

}]
.

The derivation of the standard errors and all proofs can be found in Bollerslev and Wooldridge
(1992) and Engle and Sheppard (2001).

The class of multivariate GARCH models (and especially the DCC model of Engle) offers
a relatively simple way to estimate time-varying correlations. A major advantage of the DCC
models compared to the rolling window linear correlation coefficient is that the weighting of
the different point in time is not arbitrary. A drawback of Engle’s approach is the necessity
of the multivariate Gaussian distribution in the MLE procedure. Although due to the QML
properties of the DCC estimator and the implied modelling of a kurtosis greater than the
multivariate Gaussian distribution this might not be enough when modelling daily returns
of financial time series. Another disadvantage might be the symmetry of the multivariate
Gaussian distribution. To overcome these drawbacks a new class able to model dependence in
more flexible ways has to be introduced: the copula.



Chapter 4

Copulas

4.1 Preliminaries
As this chapter deals mostly with (pure) mathematics the notation departs from the style used
in standard econometrics. In accordance with proper mathematical practice random variables
are labelled with upper-case letters. Real valued numbers continue to be denoted by lower-case
letters whilst real valued vectors and matrices are denoted by bold lower-case letters.

Generally speaking, copulas are mathematical objects able to describe the dependence
structure between random variables. Since their development in the 1950s they have gained a
great deal of attention particularly in the field of finance. Here we introduce some basic copula
theory before discussing the static version of copulas and the dynamic copula- enhanced for
time-varying purposes. Finally some useful dependence measures related to copulas will be
explained.

The use of copulas in financial applications became well known due to Li (2000) who
used the Gaussian copula in CDO pricing. The work of Embrechts, McNeil, and Straumann
(1999,2002) is highly relevant for the use of copulas in finance whilst Mikosch (2006) pro-
vides a nice discussion about the advantages and disadvantages using copulas to estimate de-
pendence. For a concise survey of copula models and their use in financial time series context
see Patton (2009).

Sklar (1959) was the first to model dependence through a copula. The basic idea that
underlies every copula is that it is possible to decompose a joint distribution function for
a random vector into its marginal functions and their corresponding dependence structure.
A copula describes this dependence structure and belongs to the class of joint cumulative
distribution functions (c.d.f., hereafter).

Consider some random numbers X1, . . .Xd with marginal distributions F1(x1)=Pr[X1 < x1]
and Fd(xd) = Pr[Xd < xd]. Their joint distribution function F may be written as

F(x1, . . . ,xd) = Pr [X1 ≤ x1, . . . ,Xd ≤ xd] (4.1)
F(x1, . . . ,xd) = Pr [F1(X1)≤ F1(x1), . . . ,Fd(Xd)≤ Fd(xd)] . (4.2)

Sklar (1959) shows in his theorem that the copula can be depicted as

F(x1, . . . ,xd) =C (F1(x1), . . . ,Fd(xd)) , x1, . . . ,xd ∈ Rd. (4.3)
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If the marginal distributions F1, . . . ,Fd are continuous than C is unique. In contrast, F is a
multivariate distribution function with univariate distributions F1, . . . ,Fd if C is a copula.

A multivariate distribution function consists of marginal distributions and a dependence
structure. As shown by (4.3) the copula describes the dependence structure and binds the
univariate marginal distributions together to a multivariate distribution function. The copula
itself can be deduced from (4.3) directly via

C(u1, . . . ,ud) = F
(
F−1

1 (u1), . . . ,F−1
d (ud)

)
. (4.4)

In the spirit of equation (4.1) it is possible to show that the copula is the distribution function
of the (continuous) marginal distributions

C(u1, . . . ,ud) = Pr [F1(X1)≤ u1, . . . ,Fd(Xd)≤ ud] .

Fisher (1932) and Rosenblatt (1952) introduced the concept of probability integral transform.
A random variable X1 with a continuous distribution function F1 may transformed into an
uniform distributed random variable by applying the distribution function to the variable

U1 = F1(X1)∼Uni f orm(0,1), (4.5)

where Uni f orm(0,1) denotes the uniform distribution on the interval [0,1]. By using the
quantile function F−1

1 , X1 is re-extracted by

X1 = F−1
1 (U1)⇒ X1 ∼ F1.

If all marginal distributions are assumed continuous, then the copula C is unique and represents
a mapping for the d-dimensional unit hypercube into the unit interval

C : [0,1]d → [0,1].

If the following properties hold for a distribution function it is a copula

1. C(u1, . . . ,ud) is increasing in every component ui

2. C(1, . . . ,1,ui,1, . . . ,1) = ui, ∀i ∈ {1, . . . ,d},ui ∈ [0,1]

3. ∀(a1, . . . ,ad),(b1, . . . ,bd) ∈ [0,1]d, ai ≤ bi :
∑2

i1=1 · · ·∑2
id=1(−1)i1+···+idC(u1,i, . . . ,ud,i)≤ 0,

where u j,1 = a j, u j,2 = b j for all j = 1, . . . ,d, see McNeil, Frey, and Embrechts (2005, p.185).
The first property is required by every multivariate density function. A function with this
property is called grounded. The second property is a prerequisite of every uniform marginal
density. The third property is the rectangle inequality and a function with this property is
2-increasing. Since the density of a multivariate distribution is given by

f (x1, . . . ,xd) =
∂ dF(x1, . . . ,xd)

∂x1 · · ·xd
. (4.6)
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the density of a copula may be written as

f (x1, . . . ,xd) =
∂ dC(F1(x1), . . . ,Fd(xd))

∂x1 · · ·∂xd

=
∂ dC(F1(x1), . . . ,Fd(xd))

∂F1(x1) · · ·∂Fd(xd)
·

d

∏
i=1

∂Fi(xi)

∂xi
(4.7)

=
∂ dC(u1, . . . ,ud)

∂u1 · · ·∂ud
·

d

∏
i=1

∂Fi(xi)

∂xi

= c(u1, . . . ,ud) ·
d

∏
i=1

fi(xi), (4.8)

where the last term in (4.8) represents the density of the marginals. Equation (4.7) is also called
the canonical representation of a multivariate density, (Cherubini, Luciano, and Vecchiato
(2004, p.145)). With elementary algebra the copula density derived from (4.8) is given by

c(u1, . . . ,ud) =
f (x1, . . . ,xd)

∏d
i=1 fi(xi)

(4.9)

and in quantile transformation form as

c(u1, . . . ,ud) =
f
(
F−1

1 (u1), . . . ,F−1
d (ud)

)
f1
(
F−1

1 (u1)
)
· · · fd

(
F−1

d (ud)
) .

Among the copula’s many attractive properties is the fact that it is invariant under strictly in-
creasing transformations of the margins (for more details on copula properties see Embrechts,
Lindskog, and McNeil (2003)). This is of great use in finance in finance applications because
often logarithmic returns are frequently used instead of arithmetical returns. A number of dif-
ferent copulas have now been developed and useful theoretical summaries of many of these
are given in Nelsen (2006) and Joe (1997) whilst Cherubini, Luciano, and Vecchiato (2004)
treats the empirical side. In the following we will introduce two special copulas which are not
used directly in this analysis but are nontheless relevant as they own some properties which
most copulas share.
Hoeffding (1940) and Fréchet (1951) showed that all multivariate distribution functions are
bounded by their marginal distributions. The Fréchet-Hoeffding lower bound is also known
as the countermonotonic copula and is defined by

W d(u) = max

{
d

∑
i=1

ui +1−d,0

}
. (4.10)

It represents perfect negative dependence between random variables but it is not a copula for
d ≥ 3. The Fréchet-Hoeffding upper bound, also known as the comonotonic copula, may be
stated as

Md(u) = min(u1, . . . ,ud) (4.11)
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and describes perfect positive dependence between random variables. The third copula is
the independence copula. As the name suggests it covers the case of independence between
random variables

Πd(u) =
d

∏
i=1

ui. (4.12)

Finally, (4.10) and (4.11) imply that for every d-dimensional copula

W d(u)≤C(u)≤ Md(u) (4.13)

must hold.

4.2 Copula Classes

4.2.1 Elliptical Copulas
A copula that belongs to the elliptical family is the Gaussian copula

CGA(u1,u2, . . . ,ud;R) = ΦR
(
ϕ−1(u1), . . . ,ϕ−1(ud)

)
, (4.14)

where ΦR denotes the joint distribution of the multivariate standard normal distribution with
the usual positive definite linear correlation matrix R. The inverse of the standard univariate
Gaussian distributions is denoted by ϕ−1. The complete multivariate Gaussian copula may be
written as

CGA(u1, . . . ,ud;R) =
∫ Φ−1(u1)

−∞
· · ·
∫ Φ−1(ud)

−∞

1
2πd/2|R|1/2

· exp
{
−1

2
x′R−1x

}
dx1, . . .dxd. (4.15)

According to equation (4.9) the Gaussian copula density is derived by1

cGA(u1, . . . ,ud) =
f GA (ϕ−1

1 (u1), . . . ,ϕ−1
d (ud)

)
∏d

i=1 fi
(
ϕ−1

i (ui)
)

=

1
(2π)d/2|R|1/2 exp

{
−1

2ζζζ ′R−1ζζζ
}

∏d
i=1

1
(2π)1/2 exp

{
−1

2ϕ−1
i (ui)2

}
=

1
(2π)d/2|R|1/2 exp

{
−1

2ζζζ ′R−1ζζζ
}

1
(2π)d/2 exp{− 1

2ζζζζζζ ′}

=
1

|R|1/2 exp
{
−1

2
ζζζ ′(R−1 − I)ζζζ

}
,

1The analytical expressions for the elliptical copulas are based on Bouyé et al (2000).
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(b) Density; ρ = 0.8
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(d) Density; ρ = 0.2

Figure 4.1: Contour and Density Gaussian Copula. This figure shows contour and density
plots of the Gaussian copula.

where ζζζ =
(
ϕ−1(u1), . . . ,ϕ−1(ud)

)′, f GA represents the multivariate density of the normal
distribution, and fi the density of the margin. Figure 4.1 shows the contour and density plots
of a Gaussian copula with a bivariate linear correlation coefficient of ρ = 0.8 and ρ = 0.2.
For the copula density and contour plots all margins are constructed in the following way. We
simulate 100 values from a Uni f orm(0,1) distribution with equal distance between each point.
The data points are then sorted in ascending order and plugged into the copula. The Gaussian
copula is comprehensive because its lower bound is given by lim

R→−1
CGA =W , its upper bound

by lim
R→1

CGA = M and the independence case is depicted by lim
R→0

CGA = Π.

Another copula that belongs to the class of elliptical copulas is the t-copula

CT (u1, . . . ,ud;R,ν) = TR,ν(t−1
ν (u1), . . . , t−1

ν (ud)),

where TR,ν denotes the joint distribution of the multivariate t-distribution with the correla-
tion matrix R and the degree-of-freedom parameter ν . The univariate inverse c.d.f. of the
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t-distribution is denoted by t−1
ν . The t-copula in the multivariate case may be written then as

CT (u1, . . . ,ud;R,ν) =
∫ t−1

ν (u1)

−∞
· · ·
∫ t−1

ν (ud)

−∞

Γ
(ν+d

2

)
|R|−1/2

Γ
(ν

2

)
(νπ)d/2

·
(

1+
1
ν

x′R−1x
)− ν+d

2

dx1 . . .dxu

and the associated density as

cT (u1, . . . ,ud) = |R|−1/2 Γ
(ν

2

)
Γ
(ν+1

2

) (Γ
(ν+d

2

)
Γ
(ν

2

) )d (
1+ 1

ν ζζζ ′R−1ζζζ
)− ν+d

2

Πd
j=1

(
1+

ζ 2
j

ν

)− ν+d
2
,

where ζζζ = (t−1
ν (u1), . . . , t−1

ν (ud))
′. Figure 4.2 shows the t-copula contour and density plots

with two different bivariate correlations coefficients. Compared to the Gaussian copula both
figure highlight that the t-copula has more mass in the tails for the respective correlation
coefficient. A key drawback of elliptical copulas when they are used for financial time series
is their inability to model asymmetric behavior. As noted above it seems to be a so-called
stylized fact that dependence increases with large losses more than with large wins. This
should resemble in asymmetric tail dependence.

4.2.2 Archimedean Copulas
The inability of elliptical copulas to model asymmetric dependence in the tails can be over-
come by Archimedean copulas. These are able to model positive dependence in either the
left or the right tail. Unlike Elliptical copulas the Archimedean copulas have closed-form
expressions which makes them in most cases simpler to handle.

Fundamental to the construction of Archimedean copulas is the generator function

φ : [0,1]→ [0,∞]

and the pseudo-inverse of the generator function defined by

φ−1 =

{
φ−1, 0 ≤ t ≤ φ(0),
0, φ(0)< t ≤ ∞.

Nelsen (2006, p. 152) derived the conditions for the generator to guarantee that C in (4.17) is
d-dimensional copula. The generator φ must be a continuous, strictly decreasing function, i.e.
φ(1) = 0 and φ(0) = ∞. The inverse generator φ−1 must be completely monotonic on [0,∞).
Genest and MacKay(1986a, 1986b) define a bivariate Archimedean copula as

C(u1,u2) = φ−1 (φ(u1)+φ(u2)) . (4.16)

Bivariate Archimedean copulas are easily extended to the multivariate case

C(u1, . . . ,ud) = φ−1 (φ(u1)+φ(u2)+ · · ·φ(ud)) . (4.17)
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(c) Contour; ρ = 0.2

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

1

2

3

4

5

6

7

8

9

U1
U2

C
op

ul
a 

pd
f

(d) Density; ρ = 0.2

Figure 4.2: Contour and Density Student-t Copula. This figure shows contour and density
plots of the t-copula.
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The density of an Archimedean copula may be deduced by means of the generator function

c(u1, . . . ,u2) = φ−1[d] (φ(u1)+ . . .+φ(ud)) ·
d

∏
i=1

φ ′(ui), (4.18)

where φ−1[d] depicts the d-derivative of the inverse generator function.
The first Archimedean copula to be introduced is the Gumbel copula (Gumbel (1958)).

The d-dimensional Gumbel copula has generator and pseudo-inverse

φ(t) = (− ln t)θ , θ ≥ 1

φ−1(t) = exp
(
−t1/θ

)
.

In the multivariate case it is described by

CGU(u1, . . . ,ud) = exp
{
−
[
(− lnu1)

θ + · · ·+(− lnud)
θ
] 1

θ
}
, θ ≥ 1. (4.19)

The Gumbel copula contains the Frèchet upper bound lim
θ→∞

CGU(θ) = M as defined in (4.11)

and the independence copula lim
θ→1

CGU(θ) = Π described in (4.12) as limiting cases. It effec-

tively models joint positive events as demonstrated by Figure 4.3. The dependence between
the elliptical and the Archimedean copulas is not directly comparable. Kendall’s τ is a mea-
sure that is able to map the elliptical dependence into Archimedean dependence. An Gaussian
dependence of ρ = 0.8 implies θ GU = 2.4410 and ρ = 0.2, θ GU = 1.4470. Since the analyt-
ical expressions of Archimedean densities in the multivariate case can be rather complicated
we present the densities only for the bivariate case. Venter (2001) derived the density of the
bivariate Gumbel copula

c(u1,u2) = exp
[
−
(
(− lnu1)

θ +(− lnu2)
θ
)1/θ

]
· (u1 ·u2)

−1

·
(
(− lnu1)

θ +(− lnu2)
θ
)−2+2/θ

· (lnu1 · lnu2)
θ−1

·
(
(1+θ −1)

(
(− lnu1)

θ +(− lnu2)
θ
)−1/θ

)
.

The second Archimedean copula presented is the Clayton copula (Clayton (1978)). It has
the generator and the pseudo-inverse

φ(t) =
1
θ
(t−θ −1), θ ≥ 0

φ−1(t) = (θ t +1)−1/θ .

The Clayton copula in the multivariate case takes the form

CCL(u1, . . . ,ud) =
(

u−θ
1 + · · ·+u−θ

d +1
)− 1

θ
. (4.20)
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(b) Density θ GU = 2.4410
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(d) Density θ GU = 1.1470

Figure 4.3: Contour and Density Gumbel Copula. This figure shows contour and density
plots of the gumbel copula.
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(b) Density θCL = 2.8820
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(d) Density θCL = 0.2941

Figure 4.4: Contour and Density Clayton Copula. This figure shows contour and density plots
of the clayton copula.

Its characteristic feature is the modelling of joint negative events, see Figure 4.4. The Clay-
ton copula contains as borderline cases the independence copula lim

θ→0
CCL(θ) = Π and the

comonotonic copula lim
θ→∞

CCL(θ) = M. The density of a bivariate Clayton copula is

c(u1,u2) = (1+θ) · (u1 ·u2)
−1−θ ·

(
u−θ

1 +u−θ
2 −1

)−1/θ−2
,

see Venter (2001).
Closely related to the Clayton copula is the rotated Clayton copula, also called survival

Clayton copula. Nelsen (2006, p.32) defines a survival function F of a random variable X by

F(x) = Pr[X > x] = 1−F(x).

The name ‘survival function’ owes to the time an individual survives beyond time t. Based on
the survival function a d-dimensional rotated Copula is given by

C = u1 + · · ·+ud −d +C(u1, . . . ,ud). (4.21)



4.2 Copula Classes 33

With the definition of (4.21) the multivariate survival (or rotated) Clayton copula can be de-
picted by

CRCL(u1, . . . ,ud) = u1 + · · ·+ud −d +1+CCL(1−u1, . . . ,1−ud) (4.22)

with associated density

cRCL(u1, . . . ,ud) = cCL(1−u1, . . . ,1−ud), (4.23)

see Kaishev and Dimitrova (2006) for example. Thus, the rotated Clayton copulas is a Clayton
copula rotated by 180◦ and therefore models events in the right tail which is similar to the
Gumbel copula. The main advantage of the rotated Clayton copula compared to the Gumbel
copula is its less complicated density which makes MLE much easier.

For many purposes (Monte-Carlo applications for example) it is necessary to simulate
random numbers. One of the most famous Monte-Carlo applications in risk management is
the estimation of the Value-at-Risk: this will be presented in detail later. In the following
section we describe some simulation algorithms for the copulas introduced so far. For more
details on the simulation algorithm for elliptical copulas, see McNeil, Frey, Embrechts (2005,
p.193). The simulation algorithm for the Gaussian copula builds on the positive definiteness
of the correlation matrix. The general rule is that if a symmetric matrix is positive-definite the
Cholesky decomposition can be applied

R = JJ′,

where J is a lower triangular matrix with positive diagonal elements. If a vector W =

(W1, . . . ,Wd)
′ exists, where Wi

i.i.d.∼ N(0,1) for i = 1, . . . ,d then µ + JW ∼ Nd(µ,R). After
introducing these building blocks the instruction to simulate some random number from a
Gaussian copula looks like this: first determine the Cholesky decomposition of the correlation
matrix R, then generate z = (z1, . . . ,zd)

′ where every zi, for i = 1, . . . ,d is from a N(0,1) dis-
tribution. Thereafter, create a new vector y = Jz. Finally apply the standard normal c.d.f. ϕ to
every yi. Then (u1, . . . ,ud) are simulated from the Gaussian-copula with correlation matrix R.

The simulation algorithm for the t-copula follows basically the same idea. The core idea
is to generate a vector W ∼ TR,ν(µµµ, v

v−2R,ν). W may be obtained by

W = µ +

√
ν√
V

Z,

where V ∼ χ2
ν , Z ∼ Nd(0,R), and v

v−2R describes the scale matrix. The sequence of steps to
simulate random numbers from the t-copula equal the steps of the Gaussian copula number
generation process. First, apply the Cholesky decomposition to the correlation matrix R then
generate z from a standard normal. Thereafter, simulate a random number V from a χ2

ν and set
y = Jz. Finally create a new vector x =

√
ν√
V

y and apply to every variable xi of this new vector
the c.d.f. of a Student’s t. Then (u1, . . . ,ud) are simulated from a t-copula with correlation
matrix R and d.o.f. parameter ν .
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McNeil, Frey, Embrechts (2005, p.224) developed simulation algorithms for the Gumbel
and Clayton copula based on the discovery of Joe (1997, chapter 4.2) that it is possible to
construct Archimedean copulas using the Laplace-Stiltjes transform of distribution functions.
In the following the simulation algorithm for both copulas and the necessary distribution func-
tions will be introduced. Define a function L with L(0) = 0 and Laplace-Stiltjes transformation

L̂(w) =
∫ ∞

0
e−wx dG(x), t ≤ 0.

Assume a random variable V with distribution function L and a sequence of random vari-
ables U1, . . . ,Ud with conditional distribution function FUi|V (u|v) = exp

{
−vL̂−1(u)

}
. Then an

Archimedean copula with generator φ = L̂−1 has the form

Pr[U1 ≥ u1, . . . ,Ud ≥ ud] = L̂
(
L̂−1(u1)+ · · ·+ L̂−1(ud)

)
.

To simulate random numbers from an Archimedean copula first it is necessary to simulate
some i.i.d. Uni f orm(0,1) variables X1, . . . ,Xd . Following this only one more step is needed.
One just has to calculate

U =
(
L̂(− ln(X1)/V, . . . , L̂(− ln(Xd)/V

)′
,

where V depends on the copula to be simulated. For the Gumbel copula

V ∼ St
(

1
θ
,1,γ ,0

)
, where γ =

(
cos
( π

2θ

))θ
,

St describes the α-stable distribution with characteristic function

ϕ(t) = E [exp(itX)] =

{
exp
(
−γα |t|α

(
1− iβ sign(t) tan

(π
2

)
α
)
+ iδ t

)
, α ̸= 1,

exp
(
−γ |t|

(
1− iβ sign(t)

( 2
π
)

ln |t|
)
+ iδ t

)
, α = 1

where α ∈ (0,2], β ∈ [−1,1], γ > 0, and δ ∈ R. A simulation algorithm for a variable from
an α-stable distribution is provided by Nolan (2010). For the Clayton copula V is simulated
from the gamma distribution

V ∼ Γ
(

1
θ
,1
)
, θ > 0.

A random variable Y has a gamma distribution, written Y ∼ Γ(α ,β ) if its density is described
by

f (y) =
β α

Γ(α)
yα−1 exp(−βy), y > 0, α > 0, β > 0,

where Γ represents the usual gamma function

Γ(α) =
∫ ∞

0
xα−1e−x dx, α > 0.
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A drawback of the t-copula and the Archimedean copulas is their modelling of tail-dependence
through a single parameter. The t-copula estimates a whole correlation matrix but tail depen-
dence is related to the degrees of freedom (d.o.f.) and the multivariate t-copula shares just one
d.o.f. parameter. Although both the Gumbel and the Clayton copula models have opposite de-
pendence they just have one dependence parameter. The higher the dimension of the portfolio
the lower the likelihood that all assets share the same degree of dependence. Now the question
arises as to whether it is possible to keep the characteristics of the respective copula whilst
making them a better fit to portfolios with more than two dimensions.

4.2.3 Vine Copulas
Bedford and Cooke (2001,2002) developed the vine copula by building on the findings of
Joe (1996) regarding conditional functions. Aas et al (2009) introduced the concept of vine
copula to finance. The fundamental idea of a vine copula is to decompose a multivariate
density function and thus a multivariate copula density into univariate margins and several
bivariate copulas. These bivariate copulas are often called pair-copulas. With the concept of
vine copulas it is now possible to build a multivariate copula model based on the well-known
characteristics of bivariate copulas. Furthermore, as the name suggests, a pair copula only
has to estimate the dependence between two variables: this is beneficial for a model with just
one dependence parameter. To fully understand the concept of vine-copulas it is necessary
to introduce the pair-copula decomposition of a multivariate density. Following Aas et al
(2009) we will explain the concept of vine copulas in detail. Consider some random numbers
X1, . . . ,Xd with density function f (x1, . . . ,xd). This density function may factorized into a
series of univariate (conditional) densities by

f (x1, . . . ,xd) = f (xd) · f (xd−1|xd) · f (xd−2|xd−1,xd) · · · f (x1|x2, . . . ,xd). (4.24)

According to (4.9) a multivariate joint density is constructed using a multivariate copula den-
sity via

f (x1, . . . ,xd) = c12···d (F1(x1), . . . ,Fd(xd)) · f1(x1) · · · fd(xd), (4.25)

where c12···d depicts a d-dimensional copula density. A pair copula density then may be written

f (x1,x2) = c12(F1(x1),F2(x2)) · f1(x1) · f2(x2).

This result is fairly intuitive since- by definition- the copula is the ’extracted’ dependence
structure of a multivariate distribution. The conditional function is elementary for vine copulas.
If the variable x1 is conditioned on the variable x2 the conditional density function in the view
of pair copulas takes the form

f (x1|x2) = c12(F1(x1),F2(x2)) · f1(x1). (4.26)

Since we will deal with more than two dimensions, we will describe one more vine copula in
detail to clarify the concept of the conditional density. Consider a conditional density where
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x1 is conditioned on x2 and x3

f (x1|x2,x3) =
f (x1,x2|x3)

f (x2|x3)

=
c12|3

(
F1|3(x1|x3),F2|3(x2|x3)

)
· f (x1|x3) · f (x2|x3)

f (x2|x3)

= c12|3
(
F1|3(x1|x3),F2|3(x2|x3)

)
· f (x1|x3). (4.27)

With these examples it can be shown that a d-dimensional conditional density f (xd−1|xd) may
be decomposed into a pair copulas of the form c(d−1)d(Fd−1(xd−1),Fd(xd)) and the marginal
densities fd−1(xd−1). Now it becomes clear that the last term in (4.27) can be further factor-
ized into f (x1|x3)= c13(F1(x1),F3(x3)) · f1(x1). With these prerequisites the three dimensional
vine copula of (4.27) takes the form

f (x1|x2,x3) = c12|3(F1|3(x1,x3),F2|3(x2|x3)) · c13(F1(x1),F3(x3)) · f1(x1).

This decomposition is not the only possible, however. Another factorization is

f (x1|x2,x3) =
f (x1,x3|x2)

f (x3|x2)

=
c13|2

(
F1|2(x1|x2),F3|2(x3|x2)

)
· f (x1|x2) · f (x3|x2)

f (x3|x2)

= c13|2
(
F1|2(x1|x2),F3|2(x3|x2)

)
· f (x1|x2).

Taking into account (4.24) and(4.9) a threedimensional multivariate joint density can be first
decomposed into

f (x1,x2,x3) = f3(x3) · f2|3(x2|x3) · f1|23(x1|x2,x3)

= f3(x3) · c23(F2(x2),F3(x3)) · f2(x2) · c13|2(F1|2(x1|x2),F3|2(x3|x2))

· f1|2(x1|x2),

and finally into:

f (x1,x2,x3) = f1(x1) · f2(x2) · f3(x3) · c12(F1(x1),F1(x2)) · c23(F2(x2),F3(x3))

· c13|2(F1|2(x1|x2),F3|2(x3|x2)). (4.28)

These examples show that each component of equation (4.28) may be factorized into a pair-
copula and an appropriate conditional margin via

f (s|v) = csv− j(F(s|v− j),F(v j|v− j)) · f (s|v− j),

where v is a d-dimensional vector with j = 1, . . . ,d elements. The notation v− j denotes the
vector v without element j. With the theory presented above it is possible to factorize a d-
dimensional multivariate density into a sequence of pair copulas. To complete the theory of



4.2 Copula Classes 37

vine copulas a thorough definition of conditional margins must be given. The conditional
margins F(s|v) developed by Joe (1996) are determined via

F(s|v) =
∂Csv j|v− j

(
F(s|v− j),F(v j|v− j)

)
∂F(v j|v− j)

, (4.29)

where Ci j|k denotes a bivariate conditional copula. In the univariate case the vector v reduces
to the variable v and (4.29) may be re-written as

F(s|v) =
∂Cs|v (F(s),F(v))

∂F(v)
.

The following notation was introduced to simplify the delineation of a conditional distribution
given s and v are uniform distributed, i.e. f (s) = f (v) = 1, F(s) = s, and F(v) = v. Aas et al
(2009) defined the so called h-function as

h(s,v;θ) = F(s|v) =
∂Cs,v(s,v;θ)

∂v
, (4.30)

where θ denotes the parameter vector of the copula. The function h−1(u,v;θ) is the inverse
function of h with respect to the variable u. The example of the 3-dimensional pair-copula
density may now be continued, taking the definition of the h-function into account. It can
be clearly seen that F(x1|x2) = h(x1,x2;θ12) where θ12 describes the parameter of the first
pair-copula. Therefore, F(x1|x2,x3) can be reduced to

∂C13|2(F(x1|x2),F(x3|x2))

∂F(x3|x2)
= h(F(x1|x2),F(x3|x2);θ13|2)

= h(h(x1,x2;θ12),h(x3,x2;θ32);θ13|2).

Based on the results of the factorization of a 3-dimensional density a 3-dimensional copula
density now may be decomposed into

c(u1,u2,u3) =c12(u1,u2) · c23(u2,u3) · (c13|2(h(u1,u2;θ12),h(u3,u2;θ23)).

In the following we will introduce the derivation of the Clayton h-function as an example. The
Clayton copula is defined in (4.20) and with partial differentiation the h− function is given by

h(u1,u2;θ12) =
∂

∂u2
CCL(u1,u2;θ12) = u−θ12−1

2

(
u−θ12

1 +u−θ12
2 −1

)−1−1/θ12
,

where θ12 in this case depicts the dependence parameter of the bivariate Clayton copula. The
inverse function h−1 of the Clayton copula takes the form

h−1(u1,u2;θ12) =

[(
u1 ·uθ12+1

2

)− θ12
θ12+1

+1−u−θ12
2

]−1/θ12

.
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Derivation of h-functions and the associated inverse h-functions for the Gaussian, Student-t
and Gumbel copula are found in Aas et al (2009). As noted above the decomposition of a
multivariate density function is not univocal. Aas et al (2009) showed that it is possible to
construct 240 different pair-copula decompositions for a 5-dimensional distribution function.
Therefore, they focus on two special cases, namely the canonical vine and the D-vine. In the
following analysis we concentrate on the D-vine copula as the canonical vine requires a lead
variable, i.e. a variable that captures some common behavior of all variables. The D-vine
copula was originally introduced by Kurowicka and Cooke (2004) and consists of several lev-
els. In the first level bivariate copulas are applied to the original data. Thereafter, the data
is generated by the conditional distribution functions introduced in (4.29). In Figure 4.5, the
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Figure 4.5: D-Vine Copula. This figure shows a 4-dimensional D-vine copula. The variables
are denoted by circles and the connection between the circles represent the pair-copulas.

sequence of a 4-dimensional D-vine copula is shown. The circles denote the data, e.g. 1 de-
scribes the first vector of a financial time series. The numbers under the cross-connections
between the circles connote the respective pair-copula. The data in the first level is ordered
by degree of dependence. Therefore, bivariate copulas are estimated for all possible bivari-
ate compositions. The pair with the highest dependence will be in first place. Now the rank
order of the first two variables has to be determined: this will depend on the dependence of
the first two variables with all other variables. Again the data might be re-ordered according
to the highest dependence as in Figure 4.5 where the highest dependence was found between
the variables 1 and 2 and the second highest dependence between the variables 2 and 3 deter-
mining the position of variable 4. In the second level the first conditional copulas (C13|2 and
C24|3) are estimated with the conditional marginals (F1|2, F2|3, and F3|4). Based on the second
level conditional margins, F13|2 and F24|3 are created and estimated by the conditional copula
C14|23. An algorithm to simulate (conditional) random numbers from a D-vine copula was
introduced by Aas et al (2009). First, independent uniform random numbers are generated
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wi
i.i.d.∼ Uni f orm(0,1), for i = 1 . . . ,d. Thereafter,

x1 = w1 (4.31)

x2 = F−1
2|1 = (w2|x1) (4.32)

... =
... (4.33)

xd = F−1
d|1,2,...,d−1(wd|x1, . . . ,xd−1), (4.34)

where x are the random numbers simulated from a D-vine and

F(x j|x1, . . . ,xd−1) =
∂C j,1|2..., j−1

(
F(x j|x2, . . . ,x j−1),F(x1|x2, . . . ,x j−1)

)
∂F(x1|x1, . . . ,x j−1)

. (4.35)

4.2.4 Mixture Copulas
Each of the copulas introduced so far has both advantages and disadvantages. The
Archimedean copulas are restricted to show either dependence of negative or positive joint
events. It may be that the more dimensions the data set has, the more unlikely it is that all
variables share the same dependence: a prerequisite for a good fit of copulas with just one
dependence parameter. The elliptical copula model meanwhile models dependence through
a greater number of parameters, but is limited to symmetric dependence. To combine the ad-
vantageous features of both a new class of copulas has been introduced. These are known as
‘mixture copulas’. The mixture allows the use of two or more copulas to describe the depen-
dence structure of a data set. Clearly, the mixing of different copulas can generate a wide range
of dependence structures. In this analysis we restrict ourself to bivariate mixture copulas. A
bivariate mixture copula may be written

CMIX(u1, . . . ,ud;θ1,θ2,w1,w2) = w1 ·CMIX1(u1, . . . ,ud;θ1)

+w2 ·CMIX2(u1, . . . ,ud;θ2), (4.36)

where w2 = 1−w1, CMIX represents the mixture copula, CMIX1 the first copula in the mix-
ture copula and CMIX2 the second. The mixture is estimated in this analysis the same way
as the other copulas - by the two-step MLE. Following Hu (2006) we always mix one ellip-
tical copula with one of the Archimedean copulas. This has several advantages. As noted
above, the elliptical copulas model dependence on a bivariate basis while even multivariate
Archimedean copulas describe dependence only through one parameter. Thus, mixing an el-
liptical with an Archimedean copula preserves the bivariate dependence analysis of elliptical
copulas but overcomes the drawback of symmetric dependence. Furthermore, the elliptical
copulas (particularly the Gaussian) remain in frequent use in finance. Thus, it might be in-
teresting to investigate the behavior of the weight of these copulas when they are mixed with
the Archimedean copulas. If the elliptical copulas are a bad choice for the data sets used
here they should have only little weight in the mixing copula. The upper part of Figure 4.6
shows scatter-plots of a t-copula with ρ = 0.8, a clayton copula with dependence parameter
θCL = 2.881, a mixture copula where the t-copula has a weight of w1 = 0.7, and the clayton
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Figure 4.6: Scatter Plots Mixture Copulas. This figure shows scatter plots of the t, Clayton,
t-Clayton mixture, Gaussian, Gumbel, and Gaussian-Gumbel Mixture Copula

copula of w2 = 1−w1 = 0.3. The mixture copula has more mass in the left tail as the t-copula
and more mass in the right tail as the Clayton copula. In the lower part of the figure a Gaus-
sian copula is mixed with a Gumbel copula. Again, the linear correlation coefficient is ρ = 0.8.
The dependence parameter of the Gumbel copula θ GU equals 2.441. To make a comparison
possible the weight of the Gaussian copula equals 0.7 and the weight of the Gumbel copula
0.3. It can clearly be seen that the Gaussian-Gumbel mixture has more mass in the right tail
than the mixture copula and more mass in the left tail than the gumbel copula. To summarize,
the mixture approach is able to generate a wide range of dependence structures. the greater the
number of dimensions the lower the likelihood that the dependence structure can be described
by a single parameter.

4.3 Copula-related Dependence Measures

4.3.1 Kendall’s tau
Embrechts, McNeil, and Straumann (1999) discuss several pitfalls using Pearson’s correlation
coefficient. If the distribution of the variables does not belong to the elliptical family it is no
longer true that the marginal distributions and their pairwise correlation determine their joint
distribution. Furthermore it is not anymore always possible to construct a joint distribution
F with given marginal distributions F1 and F2 and correlation coefficient ρ because in the
elliptical case correlation always depends on the marginal distributions.

Kendall’s tau is a dependence measure that does not depend on the marginal distribution.
It is based on the rank of the variable and might be interpreted as a concordance measure
for dependence vectors. We will only present the results for the bivariate case because we
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use Kendall’s tau only for the time-varying D-vine copulas which are build on bivariate pair-
copulas. Nelsen (2006, p.158) defines Kendall’s tau as

τ = Pr[(X1 −X2)− (Y1 −Y2)]> 0]−Pr[(X1 −X2)(Y1 −Y2)< 0],

where (X1,Y1)
′ and (X2,Y2)

′ are two vectors of random variables. Thus, Kendall’s tau resem-
bles the difference of the probability of concordant and discordant pairs. A pair of random
variables (X1,Y1) and (X2,Y2) is said to be concordant if (X1 −X2)(Y1 −Y2) > 0. In contrast,
a pair of random variables (X1,Y1) is said to be discordant if (X1 −X2)(Y1 −Y2) < 0. If all
pairs of variables are concordant (discordant) (X1,Y1) and (X2,Y2) are identified as comono-
tone (anti-comonotone). Kendall’s tau lies always in the interval [−1,1]and takes the value 0
if the variables are independent. But as Embrechts, McNeil, and Straumann (1999) remarks
a dependence parameter of 0 does not necessarily mean independence. Schweizer and Wolff
(1981) showed that Kendall’s tau is related to every copula via

τ(X1,X2) = 4E[C(F1(X1),F2(X2))]−1

= 4
∫ 1

0

∫ 1

0
C(u1,u2) dC(u1,u2)−1

= 1−4
∫ 1

0

∫ 1

0

∂C(u1,u2)

∂u1

∂C(u1,u2)

∂u2
du1 du2.

Like copulas Kendall’s tau keeps its properties under monotone increasing transformations of
the random variables. Lindskog, McNeil, and Schmock (2003) showed that Kendall’s tau for
elliptical copulas is given by

τGA = τT =
2
π

arcsinρ , (4.37)

where ρ denotes the bivariate correlation coefficient. Genest and MacKay (1986a) and Genest
and Rivest (1986) derived for the Archimedean case Kendall’s tau via the generator function
φ(w)

τ = 1+4
∫ 1

0

φ(w)
φ ′(w)

dw.

If one takes into account that φ(w)
φ ′(w) =

1
θ w lnw then for the Gumbel copula Kendall’s tau is

calculated as

τGU = 1+4
∫ 1

0

1
θ

w lnw dw

= 1+ f
1
θ

([
1
2

w2 lnw
]1

0
−
∫ 1

0

1
2

w dw

)

= 1+4
1
θ

(
0− 1

4

)
= 1− 1

θ
. (4.38)
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Kendall’s tau for the Clayton copula is derived by

τCL = 1+4
∫ 1

0

1
θ

(
wθ+1 −w

)
dw

= 1+4
1
θ

[
1

θ +2
wθ+2 − 1

2
w2
]1

0

= 1+4
1
θ

(
1

θ +2
− 1

2

)
.

=
θ

θ +2
. (4.39)

Nelsen (2006) delivers a thorough introduction and many proofs for dependence measures
related to copulas.

4.3.2 Tail Dependence
A measure of the dependence of extreme values is the tail dependence. Here some general
results concerning tail dependence are presented. Almost all theoretical derivations of tail
dependence are on a bivariate level. Therefore, we will present only some general results
and the tail dependence for the Gaussian and t-copula in detail. First of all, it should be
noted that there exist two different measures of tail dependence. Joe (1997) defined strong tail
dependence which explained below. Coles et al (1999) defined a measure that is often called
tail dependence, too. Related to the strong tail dependence of Joe it is sometimes known as
‘weak tail dependence’ and describes the speed the strong tail dependence converges to zero.

The upper asymptotic tail dependence coefficient is defined by Joe (1997, p.33) as

λU = lim
u→1

Pr
[
X2 > F−1

2 (u)|X1 > F−1
1 (u)

]
assuming λU ∈ [0,1] exists. The lower asymptotic tail dependence coefficient may be written
as

λL = lim
u→0

Pr
[
X2 < F−1

2 (u)|X1 ≤ F−1
1 (u)

]
assuming λL ∈ [0,1] exists. Thus, the tail dependence shows how probable it is that an extreme
event of one variable occurs conditional on an extreme event of another variable. Nelsen (2006,
pp.214, 215) proved that if the margins of the random variable are continuous, the upper tail
dependence is connected with the copula via

λU = lim
u→1

Pr
[
X1 > F−1

1 (u),X2 > F−1
2 (u)

]
= lim

u→1

Pr
[
X1 > F−1

1 (u),X2 > F−1
2 (u)

]
Pr
[
X2 > F−1

2 (u)
]

= lim
u→1

1−2u+C(u,u)
1−u

(4.40)
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and the lower tail dependence by

λL = lim
u→0

Pr
[
X1 ≤ F−1

1 (u),X2 ≤ F−1
2 (u)

]
= lim

u→0

Pr
[
X1 ≤ F−1

1 (u),X2 ≤ F−1
2 (u)

]
Pr
[
X2 ≤ F−1

2 (u)
]

= lim
u→0

C(u,u)
u

. (4.41)

The tail dependence parameters for the Gaussian copula have been derived by Embrechts,
Lindskog, and McNeil (2003). Following equation (4.40), the upper tail dependence parameter
of the Gaussian copula is given by

λ GA
U = lim

u1→1

1−2u1 +CGA(u1,u1)

1−u1
= lim

u1→1

CGA
(u1,u1)

1−u1
= lim

u1→1

dCGA
(u1,u1)

du1

= − lim
u1→1

(
−2+

δ
δ s

CGA(s, t)|s=t=u1 +
δ
δ t

CGA(s, t)|s=t=u1

)
= lim

u1→1
(Pr[U2 > u1|U1 = u1]+Pr[U1 > u1|U2 = u1])) ,

where CGA denotes the Gaussian survival copula. The Gaussian copula belongs to the class of
exchangeable copulas , e.g. C(u1,u2) =C(u2,u1). This simplifies the derivation of the upper
tail dependence parameter to

λ GA
U = 2 lim

u1→
Pr[U2 > u1|U1 = u1].

The lower tail dependence parameter may be calculated the same way

λ GA
L = lim

u1→0

C(u1,u1)

u1
= lim

u1→0

dC(u1,u1)

du1

= 2 lim
u1→0

Pr[U2 < u1|U1 = u1].

Finally, the upper tail dependence of the Gaussian copula is given by

λ GA
U = 2 lim

x1→∞
Pr
[
ϕ−1

2 (U2)> u1|ϕ−1
1 (U1) = u1

]
= 2 lim

x1→∞
Pr [X2 > x1|X1 = x1]

= 2 lim
x1→∞

ϕ

(
x1 −ρx1√

1−ρ2

)

= 2 lim
x1→∞

ϕ
(

x1
√

1−ρ√
1+ρ

)
,

where ϕ(·) = 1− ϕ(·) denotes the survival function of the standard normal distribution. As
a result of the symmetric properties: λ GA

U = λ GA
L . Furthermore, as long as ρ < 1 upper and

lower tail dependence equal zero (λ GA
U = λ GA

L = 0). Thus, events in the tails of the Gaussian
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copula appear independent of each other and are not related to the correlation coefficient. In
contrast to the Gaussian copula, the t-copula shows some tail dependence. Due to Demarta
and McNeil (2005), the upper tail dependence of the t-copula is given by

λ T
U = 2 lim

x1→∞
Pr
[
t−1
ν (U2)> u1|t−1

ν (U1) = u1
]
= 2 lim

x1→∞
Pr [X2 > x1|X1 = x1]

= 2 lim
x1→∞

tν+1

(
−
(

ν +1
ν + x2

1

)1/2

· x1 −ρx1√
1−ρ2

)

= 2 tν+1

(
−
√

1−ρ
√

ν +1√
1+ρ

)
,

where X2|X1 ∼ tν+1

(
ρx1,

(
ν+x1

1
ν+1

)(
1−ρ2)). Thus, the tail dependence parameter of the t-

copula depends not only on the correlation coefficient but also on the degree of freedom pa-
rameter ν . The tail dependence decreases as the degree-of-freedom parameter increases and
increases as the correlation parameter increases. Like the Gaussian copula the t-copula is also
symmetric, i.e. λ T

U = λ T
L .

For bivariate tail dependence of Archimedean copulas see e.g. Savu and Trede (2004) and
Nelsen (2006).

4.4 Dynamic Copulas

4.4.1 Theory
The copulas introduced above do not capture any comovements over time between several
variables. This means that every point in time is given the same weight when estimating the
dependence parameter. Extensive research in the multivariate GARCH area (see chapter 3)
has shown the time-varying dependence behavior of multivariate financial time series. The
multivariate GARCH models discussed above are able to model time-varying correlations but
are rooted in the Gaussian world for the marginals and the dependence structure. The advan-
tage of the copula approach is the separate modelling of the marginal distributions and the
multivariate dependence with neither limited to the Gaussian world anymore. Patton (2006)
provided the necessary theory to take the static copula to a time-varying one. To give some the-
oretical background we will begin in spirit of Patton (2006) by developing the general theory
of a multivariate distribution function conditioned on a variable.

Assume a conditioning variable W which is of dimension one. Then the conditional bivari-
ate distribution may be written

F(x1,x2|w) = f (w)−1 · ∂F(x1,x2,w)
∂w

, w ∈ W ,

where f (w) denotes the unconditional density of W , W is the support of W , and F(x1,x2)
the bivariate distribution function of x1 and x2. As the copula is a distribution function it is
possible to apply the theory developed above to it

F(x1,x2|w) =C(F1(x1|w),F2(x2|w)|w), ∀(x1,x2) ∈ R2 (4.42)
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If the conditioning variable is assumed to be a sigma algebra Ft−1

Ft−1 = σ{x1,t−1, . . . ,xd,t−1, . . . ,x1,t−T+1, . . . ,xd,t−T+1},

Sklar’s theorem may be extended to

Ft
(
x1,t , . . . ,xd,t |Ft−1

)
=Ct

(
F1,t(x1,t |Ft−1), . . . ,Fd,t(xd,t |Ft−1)|Ft−1

)
,

where Ct denotes the conditional Copula of (X1, . . . ,Xd) conditional on the information set
Ft−1 and the conditional distribution function Ft . The random variable X (conditional on the
information set Ft−1) is distributed as Xi|Ft−1 ∼ Fi,t . It is important to note that the condi-
tioning variable has to be the same for the marginal models and the copula, see Fermanian
(2005) and Fermanian and Wegkamp (2012). As described above the marginal distributions
are estimated as AR-GARCH models. This implies that each random variable is conditioned
only on its own past values and not on the past values of other variables. One can still estimate
the conditional copula, but subsets of the sigma algebra have to be created. Thus, Fi,t−1 must

be defined as the smallest subset of Ft−1 so that Xi,t |Fi,t−1
D
= Xi,t |Ft−1. Now each marginal

distribution is conditioned on their own past values Fi,t−1 but the copula is conditioned on the
past values of all variables Ft−1. The density of the conditional copula is derived in the same
manner as in (4.6) and (4.7)

f (x1, . . . ,xd|w) =
∂ dF(x1, . . . ,xd|w)

∂x1 · · ·∂xd

=
∂ dC(F1(x1|w1), . . . ,Fd(xd|wd)|w)

∂x1 · · ·∂xd

= c(u1, . . . ,ud|w) ·
d

∏
i

fi(xi|wi), (4.43)

where Wi is a subset of W .
Having engaged with the necessary theory we will now introduce a range of dynamic

copulas.

4.4.2 Multivariate Dynamic Elliptical Copulas
As the primary innovator of the dynamic copula, the dependence structure of Patton (2006)
will be considered first. For the bivariate Gaussian copula his dynamic structure takes the
form

ρt = Λ

(
ω +β ·ρt−1 +α · 1

10

10

∑
j=1

Φ−1(u1,t− j) ·Φ−1(u2,t− j)

)
, (4.44)

where Λ(x) is the modified logistic transformation Λ(x) = (1−e−x)
(1+e−x) . The transformation is nec-

essary to ensure that −1 ≤ ρt ≤ 1 which are the bounds of the Gaussian dependence parameter.
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It can clearly be seen that the dynamic structure is similar to an ARMA(1,10) process2. The
lagged dependence parameter is imposed to capture any persistence in the dependence. The
final term depicts the forcing variable- an average over the last ten observations to incorporate
any short-term variation in dependence.

With the dependence structure of the MVGARCH models multivariate elliptical copulas
are easily enhanced to multivariate dynamic elliptical copulas. Jin (2009) was among the
first to apply Engle’s DCC-approach to the Gaussian and the t-copula: a fairly simple ex-
tension of this is to apply the (diagonal) parameter matrix approach of Cappiello, Engle,
and Sheppard (2006) to both elliptical copulas. For this extension, all that has to be done
is the re-transformation of the the variables ut = u1,t , . . . ,ud,t into standardized residuals ηtηtηt
and plugging them into (3.12). The transformation of the Uni f orm(0,1) variables is achieved
by ηηη t = Φ−1(ut) in the Gaussian case, where Φ−1 is the inverse c.d.f. of the multivariate
standard normal Gaussian distribution. When estimating the t-copula the transformation is
done via ηηη t = T−1

R,ν(ut), where T−1
R,ν is the inverse c.d.f. of the multivariate t-distribution with

correlation matrix R and degree of freedom parameter ν3.

4.4.3 Multivariate Archimedean Copulas
Archimedean copulas are an useful tool for estimating asymmetric dependence. Time-varying
Archimedean copulas are until now limited to the bivariate analysis. The following makes
an attempt to enhance this line of research to the multivariate case. For the multivariate
Archimedean copulas 4 we propose a structure similar to Patton’s original specification of the
bivariate symmetrized Joe-Clayton copula. The original dynamic structure of Patton (2006)
for the Archimedean copulas is given by

θ PA
t = Λ

(
ωPA +β PAθ PA

t−1 +αPA 1
10

10

∑
j=1

|u1,t− j −u2,t− j|

)
, (4.45)

where Λ(x) = (1+ e−x)−1 to keep θ PA
t in [0,1]. Intuitively explained: when the variables are

comonotone the distance between them is zero whilst with countermonotone variables the dis-
tance between them is maximized and thus equals one. This implies that the forcing variable
lies always in [0,1]. The approach of Patton is limited to bivariate dependence this makes him
useful with regards to multivariate estimation only through the use of D-vine copulas. To use
multivariate Archimedean copulas ‘directly’ equation (4.45) has to be expanded to the multi-
variate case. Instead of using the absolute distance between variables we propose the use of
the so called K −means algorithm which belongs to the class of multivariate distance mea-
sures. As a distance measure we choose the ‘cityblock’ measure which calculates the absolute
distance from every point to the median within the cluster. Consider a random vector in time
Xt = (X1,t , . . . ,Xd,t)

′ then the random variables X1,t , . . . ,Xd,t are defined as a cluster at time t,

2The process has been described by Patton as an ARMA(1,10) process and we will stick to this notation
although this might be irritating since there is only one parameter to estimate the effect of the forcing variable.

3As a starting value for ν in the estimation procedure the unconditional d.o.f. parameter of the t-copula is
used.

4The multivariate extension of the Archimedean copulas is developed in cooperation with Valentin Braun.
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there exists one cluster at each point in time. The K−means algorithm with cityblock distance
measure now calculates the median of this cluster and measures the absolute distance of every
point in this cluster to the median

θ MA
t = ωMA +β MA ·θ MA

t−1 +αMA 1
10

10

∑
j=1

d

∑
i=1

|ui,t− j −mt− j|, (4.46)

where mt is the median at time t. Clearly, this models the time-varying behavior akin to an
ARMA(1,10) process and thus resembles the idea of Patton. The forcing variable still takes the
value of zero if the variables are comonotone and one if they are countermonotone. However,
although Patton’s transformation keeps the copula dependence parameters in their desired
bounds, it does not make use of the forecasting properties of an ARMA process. To be able to
do so the restrictions of ARMA-process needs to be applied to (4.46). Although the dynamic
dependence structure are referred to as an ARMA(1,10), the restrictions are the same as for
an ARMA(1,1) process. This leads to the following restrictions |β MA| < 1 and |αMA| < 1
(see (2.7) and (2.8) in section 2.3). The constant ωMA remains unrestricted. The restrictions
introduced so far ensure that (4.46), has the properties of an ARMA process but this does not
guarantee that the dependence parameter of the respective copulas stay in their defined bounds.
The dependence parameter of the Clayton and rotated Clayton copula is always in the interval
[0,∞] and the dependence parameter of the Gumbel copula in [1,∞]. Therefore, θ MA

t in the
(rotated) Clayton case is transformed by eθ MA

t and for the Gumbel copula by 1+ eθ MA
t (as in

Hafner and Manner (2012)). Thus, for example the time-varying dependence parameter of the
Clayton copula may be written as

exp
(

θ MA
t

)
= exp

(
ωMA +β MA ·θ MA

t−1 +αMA 1
10

10

∑
j=1

d

∑
i=1

|ui,t− j −mt− j|

)
.

4.4.4 Dynamic Vine Copulas
The only chance to use Patton’s original time-varying dependence structure for copulas in the
multivariate case is through the use of D-vine copulas, since vine copulas cascades a multi-
variate distribution function into several pair-copulas. But instead of using Patton’s dynamic
structure we follow the approach of Heinen and Valdesogo (2009) who criticize Patton’s ap-
proach because ρt is a nonlinear function of lagged values of conditional dependence and the
dynamics are not easily comparable across different copulas. Instead they propose modelling
the time-varying behavior through Engle’s DCC-approach (see section 3.4). Since Engle’s
DCC-model is embedded in the Gaussian world again some transformations need to be made.
First, the uniform variables u1 and u2 are transformed to standardized residuals ηtηtηt via the
inverse Gaussian c.d.f. Thereafter, these standardized residuals are plugged into the DCC-
structure and finally a 2× 2 positive definite correlation matrix Rt is achieved. But since the
Gumbel and Clayton copulas do not belong to the elliptical copula family, some mapping of
the bivariate Gaussian correlation parameter is necessary. Since vine copulas estimate at every
stage, Rt contains only one secondary diagonal with one element- the bivariate Gaussian corre-
lation coefficient ρt . This correlation coefficient is mapped into the dependence parameter off
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the different copulas via the respective Kendall’s tau. The Gaussian and Student-t dependence
parameter are mapped into Kendall’s tau via equation (4.37)

τt =
2
π

arcsinρt ,

where arcsin denotes the inverse of the sinus function. Thereafter, Kendall’s tau is mapped
into the copula specific dependence parameter. In case of the Gaussian and the t-copula this is
done through

θ GA
t = sin(

τtπ
2

) = θ T
t

where sin depicts the sinus function. Formulas for Kendall’s tau for the different copulas were
derived in section 4.3.1. Now Kendall’s tau is given and the respective copula parameter needs
to be inferred. For the Clayton copula Kendall’s tau were defined in (4.39). The dependence
parameter of the Clayton copula related to Kendall’s tau then is calculated as

θCL
t =

2τt

1− τt
.

Kendall’s tau of the Gumbel copula is found in equation (4.38) and the dependence parameter
is obtained by

θ GU
t =

1
1− τt

.

The advantage of this approach is the comparability of the different dependence parameters
since every dependence parameter is estimated with a Gaussian time-varying structure. A
drawback of this approach is that for the Clayton and Gumbel copula ρt must be restricted.
Both copulas just model positive dependence, the Clayton copula positive dependence in the
left tail and the Gumbel copula positive dependence in the right tail. That is for both copulas
ρt needs to be redefined to ρt = max(0,ρt). Heinen and Valdesogo (2009) argues that if the
best model is chosen by the MLE method or a related criterion as the AIC or BIC criterion
the restriction does not matter since copulas which allow for negative dependence will still be
chosen if the data set contains periods with negative dependence of the data, i.e. the copulas
which fit’s the data best should be those one’s with the highest MLE values.

4.4.5 Dynamic Mixture Copula
We explained the benefits of mixture copulas in section 4.2.4, above. In this section we will
introduce dynamic mixture copulas. These incorporate time-varying copulas and time-varying
weights. Time-varying weights seem to be a useful enhancement for mixture copulas. Con-
sider, for example, a data sample that at times inheres dependence in the left tail and fit a
mixture copula consisting of an elliptical and the Clayton copula to this sample. Then the
dependence parameter of the Clayton copula should increase during times with left tail depen-
dence. It might be the case that during times of low left tail dependence the weight of the
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Clayton copula is fairly low and then when left tail dependence increases dramatically the low
weight might not reflect the asymmetric dependence enough despite an increase in the depen-
dence parameter of the Clayton copula. Figure 4.7 shows a t-Clayton mixture copula with
different dependence parameters and weights for the Clayton copula. In sub-image 4.7(a), the
weight of the t-copula is wT = 0.8 and the correlation parameter ρ = 0.8. The weight of the
Clayton copula in the mixture copula is wCl = 0.1 and θCL = 2. Sub-image 4.7(b) shows a
t-Clayton mixture copula where θCL = 10. The weight and the correlation parameter of the
t-copula stay the same. In subimage 4.7(c) the weight of the t-Copula changes to wT = 0.6
and the weight of the Clayton copula to wCL = 0.4. Finally in subimage 4.7(d) wT = 0.6,
wCl = 0.4, ρ = 0.8 and θCL = 10. It can be clearly seen that the weight has a great impact
to the dependence structure. Ng (2008) proposed as one of the first dynamic weights for a
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Figure 4.7: Scatter Plots t-Clayton Mixture Copula. This figure shows the scatter plots of a
t-Clayton mixture copula.

mixture copula

wNG
i,t =

[
1+ exp

(
−

(
ωNG

i +αNG
i wNG

i,t−1 +β NG
i

1
L

L

∑
j=1

|u1,t− j −u2,t− j|

))]−1

, (4.47)

for i = 1, . . . ,n where n represents the numbers of copulas in the mixing structure. The weight
of the copula i at time t is represented by wNG

i,t . A drawback of Ng’s approach is that only
the weights are modelled as time-varying. The dependence parameter of the copulas are esti-
mated only once, i.e. they are kept constant all the time. This clearly restricts the dependence
structure. To overcome this we5 introduce a procedure where the copula parameters are also

5The dynamic mixture copulas are developed in cooperation with Valentin Braun.
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time-varying. The dynamic structure of the Archimedean copulas follow (4.46) whereas for
the elliptical copulas the dynamic structure of equation (3.12) developed by Cappiello, Engle,
and Sheppard (2006) is chosen. The weights are modelled again by an ARMA(1,10) structure

wDW
i,t = ωDW

i +αDW
i wDW

i,t−1 +β DW
i

1
10

10

∑
j=1

 ci,t− j (u1, . . . ,ud,θi,t−1)
n
∑

k=1
ck,t− j

(
u1, . . . ,ud,θk,t− j

)
 , (4.48)

for i = 1, . . . ,n− 1. The forcing variable is defined as an average of the respective copula
density at time t relative to sum of all copula densities at time t. The MLE procedure implies
that the higher the density of the copula the better the fit to the data sample. For the dynamic
structure in (4.48) this implies that the higher the density of the respective copula the higher the
weight in the mixing structure should be. This is assured by the use of the relative density. To
ensure that (4.48) exhibits the properties of an ARMA process several parameter constraints
have to be implemented. Again we can make full use of the results developed in section 2.3.
To guarantee stationarity and invertibility of the dynamic process some parameters have to be
restricted: |αDW

i | < 1 and |β DW
i | < 1. The weights have to sum up to one, i.e. ∑n

i=1 wDW
i,t = 1

and need to be in the interval [0,1]. Negative weights are ruled out since they would not make
any sense here. To ensure 0 ≤ wi,t ≤ 1 the following restrictions need to be imposed:

|αDW
i |+ |β DW

i | ≤ ωDW
i

and

ωDW
i + |αDW

i |+ |β DW
i | ≤ 1.

Since the weight is modelled through an ARMA-like equation the expected value appears to
be

E{wi,t}=
ωDW

i

1−αDW
i

.

To guarantee the existence of the expected value and to keep the weight in [0,1] two more
conditions are needed, namely 0 ≤ ωDW

i ≤ 1 and |αDW
i |< 1.

A major advantage of this approach is the possibility of multiperiod forecasts as (4.48)
gets along without any exponential transformations. Furthermore, the restrictions to bivariate
copulas and constant copula parameters (as in Ng (2008)) are abolished. Modelling the forcing
variable as relative densities takes advantage of the MLE feature such that the better the fit of
the respective copula, the better the likelihood value. Due to the use of time-varying copulas
it is possible to give the copula with the best fit at time t the most weight at that point in time.
The benefit in contrast to Patton (2006) is clearly in the mixing composition giving far more
flexibility to model the dependence structure and again the enhancement from the bivariate to
the multivariate case.

According to the static mixture in (4.36) the representation of the dynamic mixture is given
by

CDW
t (u1, . . . ,ud;θθθ t) =

n

∑
i=1

wDW
i,t Ci,t(u1, . . . ,ud;θi,t). (4.49)
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Several other authors have also investigated dynamic copulas. Jondeau and Rockinger (2006)
employed a similar strategy as Patton whilst Chollete (2005), Garcia and Tsafack (201), Ro-
driguez (2007), Okimoto (2008), Chollete, Heinen, and Valdesogo (2009), and Kenourgios,
Samitas, and Paltalidis (2011) use regime-switching copulas to specify the time-varying be-
havior. Panchenko (2005) used a semi-parametric copula and Lee and Long (2009) consider
a combination of MVGARCH and copulas. Bodnar and Hautsch (2012) uses a multiplicative
error model for modelling the conditional mean of high frequency data in combination with a
DCC-GARCH Gaussian Copula. and DCC-GARCH Cherubini et al (2012) gives a thorough
introduction to the so called convolution-based copulas. A survey of bivariate time-varying
copulas is provided by Manner and Reznikova (2012). A survey reviewing copula especially
for economic time series is given by Patton (2012).

4.5 Estimation

The MLE method is a useful tool in estimating parametric copulas. Since the copula is a
distribution function itself one needs only to specify the corresponding density and estimation
can be carried out. Let yt = (y1,t , . . . ,yd,t)

′ be a vector of real valued variables with marginal
densities f1, . . . , fd and joint density f .

The first method introduced is the ‘Exact Maximum Likelihood’ (hereafter EML) and in-
volves estimating the univariate margins and the copula parameter together in one step. There-
fore, the parametric univariate margins must be known. The log-likelihood for the EML may
be written as

lnL(u1, . . . ,uT ;θθθ EML) =
T

∑
t=1

lnc
(
F1(y1,t), . . . ,Fd(yd,t)

)
+

T

∑
t=1

d

∑
j=1

ln f j(y j,t),

where θθθ EML denotes the complete set of estimated parameters. Since the estimation of the
copula with ELM is computationally very extensive the estimation in this analysis is done
as a two-step procedure. This two step procedure is sometimes referred to as the ‘Inference
Functions for Margins’ (hereafter IFM) method and was developed by Joe and Xu (1996). Sim-
ilarities to process of estimation in Engle’s DCC model should be noted. First, the parametric
univariate margins are estimated and then the copula is conditioned on the parameters of the
univariate margins. The canonical density form of a copula in (4.7) clarifies the possibility of a
two-step estimating procedure. This special embodiment of a copula density demonstrates the
possibility of the disjunction between the copula and the marginal densities. The completed
likelihood for the IFM method is given by

LIFM(θθθ M,θθθC) = LIFM
M (θθθ M)+LIFM

C (θθθC,θθθ M), (4.50)

where LIFM
M (θθθ M) denotes the likelihood of the margins and LIFM

C (θθθC,θθθ M) the likelihood of
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the copula6. First, every univariate margin is estimated separately

lnLIFM
M (y1, . . . ,yT ;θθθ M) =

T

∑
t=1

d

∑
j=1

ln f j(y jt). (4.51)

The second step incorporates the estimation of the copula, conditioned on the parameter of the
univariate margins θθθ M.

lnLIFM
C (u1, . . . ,uT ;θθθC,θ̂θθ M

) =
T

∑
t=1

lnc(F1(y1,t), . . . ,Fd(yd,t),θ̂θθ
M
). (4.52)

Finally, the IFM estimator takes the form

θ̂θθ IFM
=
(

θ̂θθ M
,θ̂θθC
)′
,

where θ̂θθ M
= argmaxLIFM

M (θθθ M) and θ̂θθC
= argmaxLIFM

C (θθθC,θ̂θθ M
) are the estimated parameter

vectors of the univariate margins and the copula. This procedure leads to inefficient results
compared to a method were all parameters are estimated in one step, see Joe (2005). Regard-
less of the inefficiency it is used here since it significantly reduces the number of parameters
to be estimated at each step.

Joe (1997) discusses several issues of the IFM estimation procedure- asymptotic covari-
ance estimation among them. Joe and Xu (1996) and Joe (2005) proved the asymptotical
normality of the two-step procedure

√
T
(

θ̂θθ IFM −θθθ 0

)
→ N

(
0,V−1(θθθ 0)

)
,

where V is the Godambe Information Matrix which is given by

V (θθθ 0) = D−1M D−1.

According to Durrlemann, Nikeghbali, and Roncalli (2000) when estimating the complete
score vector D it is useful to first define a score vector g: g= (g1, . . . ,gd,gm)

′, where m= d+1

and g j(θθθ IFM) =

(
∂LIFM

M, j

∂θ M
j
,

∂LIFM
C

∂θC

)′
. Then D is the score vector E{∂g(θθθ IFM)/∂ (θθθ IFM)′} and

M = E{gg′}. In a final step we will explain the construction of the mixture copula: this is the
weighted sum of the single copula likelihoods

LMIX = w1 ·L1 +(1−w1) ·L2. (4.53)

A third method to estimate copulas is the Canonical Maximum Likelihood (hereafter CML)
method. Fermanian and Scaillet (2005) showed that for misspecified marginal distributions,
the estimate of the copula dependence parameter might be biased. The CML method tries

6Note that in this analysis the standardized residuals ηηη t are always used when fitting copulas with the IFM
method.
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to overcome this by replacing the parametric margins. The first alternative to the parametric
margins is the empirical c.d.f.. This usually takes the form

F̂d(yi) =
1

d +1

d

∑
i=1

1(Yi ≤ y) , (4.54)

where 1(A) is the indicator function that takes on value 1 if event A happened and zero if event
A did not happen. The second alternative is the semiparametric estimation method. McNeil
and Frey (2000) argued that the empirical c.d.f. is a poor estimator for the marginals. In
their approach, univariate GARCH models are fitted to financial time series and standardized
returns are constructed. Following this, two thresholds are defined- one for the left tail and
one for the right tail. Values above (right tail) and below (left tail) the threshold are then
modelled according to the Generalized Pareto Distribution. Values between the two thresholds
are modelled either through the empirical c.d.f. or a kernel. Thereafter, the copula is estimated
based on these semiparametric margins.

According to McNeil and Frey (2000) the generalized pareto density function may be
written

G(t) =

{
1− (1+ξ t/β )−1/ξ , if ξ ̸= 0
1− exp{−t/β}, if ξ = 0,

(4.55)

where β > 0, t ≥ 0 when ξ ≥ 0, and 0 ≤ t ≤ −β/ξ when ξ ≤ 0. The estimate of the upper
tail (y>s) is given by

F̂u(y) = 1− n
T

(
1+ ξ̂n

y− s
βn

)−1/ξn

,

where n/T represents the proportion of data in the tail. The lower tail estimator is defined in a
similar manner. We model the middle part through a Gaussian kernel

F̂m(y) =
1√
2π

exp
(

y2

2

)
.

The log-likelihood function then is given by

lnLCML
C (ût ;θθθC) =

T

∑
t=1

lnc(F̂1(y1,t), . . . , F̂d(yd,t)),

where this time F̂ is composed of three parts - the two tail estimators and the Gaussian kernel.
Again the estimator will be maximized through θ̂̂θ̂θC = argmaxLCML

C (θθθC). For properties of the
CML estimator see Genest, Ghoudi, and Rivest (1995), Chen and Fan (2006), and Chen, Fan,
and Tsyrennikov (2006). Embrechts, Klüppelberg, and Mikosch (1997) provides a reference
for extreme value theory. Several more kernel functions are explained in Franke, Härdle, and
Hafner (2008). The D-Vine copula is also estimated by the Maximum Likelihood Estimation
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method. Therefore, a likelihood function has to be derived. For a d-dimensional D-vine copula
the density is given by

f (y1, . . . ,xd) =
d

∏
k=1

f (yk)
d−1

∏
j=1

d− j

∏
i=1

ci,i+ j|i+1,...,i+ j−1(F(yi|yi+1, . . . ,yi+ j−1),F(yi+ j|yi+1, . . . ,yi+ j−1)), (4.56)

see Aas et al (2009). Acar, Genest, and Něslehová (2012) and Stoeber, Joe, and Czado (2013)
criticize the "simplified" estimation method of (4.56) since all pair copulas do not depend on
the variables they are conditioned on. This makes the estimation of the copulas more tractable
but has the drawback of - under certain conditions - misleading inference about dependence.

4.6 Goodness-of-fit Test
After estimating several different parametric copulas, the question of which one is the best
arises. Miscellaneous methods to determine this have emerged in the literature. First of all
there are tests built solely for testing the goodness-of-fit of single copulas. For example Malev-
ergne and Sornette (2003) tests the null hypothesis of a Gaussian copula and Cui and Sun
(2004) the null of a Clayton copula. Other tests are based on kernels, weight functions and
other smoothing parameters, as in Berg and Bakken (2005) or Fermanian (2005). Some be-
long to the class of so called ‘blanket tests’ developed by Genest and Rémillard (2008) and
Genest, Rémillard, and Beaudoin (2009). Especially concerned with time-varying copulas is
Busetti and Harvey (2011), who test the null that the copula is changing over time - based on
indicator variables. The goodness-of-fit test we use has been developed by Breymann, Dias
and Embrechts (2003).

In general, the null hypothesis of a copula goodness-of-fit test may be stated as

H0 : Ci(U1,t , . . . ,Ud,t ; θ̂t) =C0(U1,t , . . . ,Ud,t ;θ 0
t ),

where C0 denotes the true copula and Ci the copula the null hypothesis is tested against. The
test of Breymann, Dias and Embrechts (2003) is based on the probability integral transform
(hereafter PIT) introduced in section 4.1. Since copulas are multivariate functions, the PIT
theory must be taken to the multivariate case. Fundamental is the construction of so called
pseudo-variables Zt . The multivariate conditional PIT is given by

Z1,t = F1(X1,t)

Z2,t = F2|1(X2,t |X1,t)

... =
...

Zd,t = Fd|1,...,d−1(Xd,t |X1,...,d−1,t),

where Fd|1,...,d−1 denotes the conditional distribution function. For (closed form) copula mod-
els these conditional distributions are derived via

C(uk,t |u1,t , . . . ,uk−1,t) =
∂ k−1C(u1,t , . . . ,uk,t)

∂u1,t · · ·∂uk−1,t
·

(
∂ k−1C(u1,t , . . . ,uk−1,t)

∂u1,t · · ·∂uk−1,t

)−1

,
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for k = 2, . . . ,d, see Cherubini, Luciano, and Vecchatio (2004, p.182). Since the Gaussian
and t-copula have no closed form it is not possible to derive the conditional distribution of by
dividing partial derivatives (as it is for Archimedean copulas). For the Gaussian copula we fall
back on the results of Chen, Fan, and Patton (2004) and for the t-copula on the findings of Box
and Jenkins (1976, pp.262-264). According to Chen, Fan, and Patton (2004) the conditional
distribution of the ith element of the Gaussian distribution may be depicted as

Zi,t = Φ

 Xi,t −X[1:i−1],t ·R−1
[1:i−1,1:i−1],t ·R[1:i−1,i],t√

1−R[i,1:i−1],t ·R−1
[1:i−1,1:i−1],t ·R[1:i−1,i],t

 ,

for i = 2, . . . ,d, where Rt is the correlation matrix at time t and R[1:i,1:i],t is a submatrix of Rt
with dimension i× i. The formula for the multivariate t-copula is a little bit more complicated.
First, the partitioning of a matrix has to be introduced: let X be a vector of dimension k
then X = (X1,X2)

′ where X1 = X[1:k1] is of dimension k1 and X2 = X[k1+1:k] of dimension
k2 = k− k1. Then a symmetric matrix S is in a similar manner partitioned into

S =

 S11 S12

S21 S22

 ,
where S11 is of dimension k1 × k1. Subsequently the ith pseudo-variable is given by

Zi,t = TR,ν

(
S21,tS−1

11,tX2,t ,
ν +X′

2,tS
−1
11,tX2,t

ν + k1
·S22,t −S21,tS−1

11,tS12,t ,ν + i−1

)
,

for i = 2, . . . ,d. The vector X2,t = X[1:i−1],t is the vector composed of the conditioning vari-
ables, TR,ν denotes the c.d.f. of the non-standardized Student-t distribution, and St = Rt · ν−2

ν
is the so called scale-matrix. For the mixture copulas we generate the pseudo variables by the
weighted sum of the respective copula in the mixture

CMIX(uk,t |u1,t , . . . ,uk−1,t) =w1 ·CMIX1(uk,t |u1,t , . . . ,uk−1,t)

+w2 ·CMIX2(uk,t |u1,t , . . . ,uk−1,t), for k = 1, . . . ,d.

Liu (2006) generated conditional variables of a mixture copula consisting of the Gumbel and
rotated Gumbel copula in this way. Conditional variables from a D-vine are generated as in
(4.31) and (4.35) with wd = Fd(Xd).

The definition of the probability integral transforms the variables Z1,t , . . . ,Zd,t should be
distributed as Uni f orm(0,1) and Breymann, Dias and Embrechts (2003) proposes the trans-

formation Gt = ∑d
i=1
(
Φ−1(Zi,t)

)2, where Φ is the standard normal distribution and Gt
i.i.d.∼ χ2

d .
This procedure makes it possible to apply several statistical distance measures between Gt and
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the χ2
d distribution. we make use of the following distance measures:

KS =
√

T max
t=1,...,T

(∣∣∣Fχ2
d
(Gt)− F̂(Gt)

∣∣∣) , (4.57)

AKS =
1√
T

T

∑
t=1

∣∣∣Fχ2
d
(Gt)− F̂(Gt)

∣∣∣ , (4.58)

AD =
√

T max
t=1,...,T


∣∣∣Fχ2

d
(Gt)− F̂(Gt)

∣∣∣√
F̂(Gt)

(
1− F̂(Gt)

)
 , (4.59)

AAD =
1√
T

T

∑
t=1

∣∣∣Fχ2
d
(Gt)− F̂(Gt)

∣∣∣√
F̂(Gt)(1− F̂(Gt))

, (4.60)

where Fχ2
d

is the chi-square distribution function with d d.o.f., F̂ the empirical distribution
function, AKS the average Kolmogorov-Smirnov distance, AD the Anderson-Darling distance
(Anderson and Darling (1952)), and AKS the average Anderson-Darling distance. The main
difference between the AD and KS tests is that the AD test gives more weights to the tails
of the distribution. We use these distance measures just as another quality measure in the
manner of the AIC and BIC criteria. Therefore, we do not assume any null hypotheses and
do not report any critical values. Instead, we compare the different statistics: the smaller the
reported statistic of the respective copula is, the better the copula fits the data. This procedure
is recommended by Berg (2007) and avoids the critique of Dobric and Schmid (2007) who
argued that the test performs poorly in rejecting a false null hypothesis. Another advantage is
that the fit of the different copulas are directly comparable amongst one another.
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Empirical Results

5.1 Emerging Markets

The World Bank classification of developing countries lead to the term ‘emerging markets’ in
the 1980s. According to the World Bank definition all countries with a Gross National Income
(GNI) of US$ 975 per capita or less (in 2008) belong to the group of developing countries.
The group of developing countries is then divided into several subgroups. There are some
developing countries (e.g. Ethiopia, Cambodia, Uganda, etc.) whose financial markets barely
exist. By World Bank standards such countries do not belong to the emerging markets. The
International Finance Corporation (IFC) tried to create a definition that separates between
emerging and developing countries. By their definition a country is classified as emerging if it
belongs to the group of developing countries; shows high potential for economic growth; has
macroeconomic and political stability; and shows signs of financial and economic reforms.
Its financial markets must also be relatively liquid and accessible to foreign investors and
they must show significant changes in terms of its relative size compared to Gross Domestic
Product (GDP).

FTSE, meanwhile, defines twenty-four countries as emerging markets and these are di-
vided into two categories: advanced and secondary emerging markets. In the group of ‘ad-
vanced emerging markets’ are Brazil, Hungary, Mexico, Poland, and South Africa. The
group of ‘secondary emerging markets’ is much broader and consists of Argentina, Chile,
China, Colombia, Czech Republic, Egypt, India, Indonesia, Malaysia, Morocco, Pakistan,
Peru, Philippines, Russia, Thailand, and Turkey. This breakdown makes sense since there are
large disparities in the level of economic and financial development. For example, Brazil is
an emerging market in the ‘maturity phase’ which means it is relatively close to the developed
countries whereas countries such as Colombia and Indonesia still have a long way to go 1. In
the context of this analysis, it seems to make sense to follow the FTSE definition of advanced
and secondary emerging markets and to investigate the financial integration of each group with
some developed markets 2.

1For an introduction to the stock markets and related data of emerging markets see Arouri, Jawadi, and
Nguyen (2010).

2For a discussion of the economic differences between several emerging markets among each other and
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5.2 Data Description

As defined by FTSE the category of advanced emerging markets that we use in this analy-
sis consists of: Brazil (BRA), Hungary (HUN), Mexico (MEX), Poland (POL), and South
Africa (RSA)3. The secondary emerging markets defined by FTSE and used in this analysis
are: Chile (CHI), Czech Republic (CZE), Indonesia (IND), India (INA), and Thailand (THA).
FTSE defines several more countries as a secondary emerging market. We have chosen these
seven because they provide enough data to conduct a realistic VaR backtest. The countries
representing the developed markets are: Australia (AUS), Denmark (DEN), Sweden (SWE),
Italy (ITA), Japan (JPN), Great Britain (GBR), and the United States of America (USA). All
stock indices are provided by MSCI and all bond indices by J.P. Morgan. All emerging market
bond indices bar India’s belong to the subdivision J.P. Morgan Government Bond Emerging
Markets-Index Global (GBI-EM) which consists of investable indices. India belongs to the
group of GBI-EM Broad and so might not be accessible to all investors. All developed mar-
ket indices belong to the Government Bond Index Global (GBI Global) series and are also
investable. Furthermore, all indices are total return indices and denominated in US$. The full
sample runs from 05/03/2003 to 08/10/2010 and contains 1826 daily returns.

5.2.1 Risk, Return and Correlation Characteristics

The returns of emerging and developed market indices show different characteristics. For
example Harvey (1995) argues that emerging market returns are more driven by local infor-
mation. Furthermore, Bekaert and Harvey (1997) point out that emerging market returns are
more predictable and exhibit higher asymmetric volatility. Claessens, Dasgupta, and Glen
(1995) and Bekaert et al (1998) highlight the non-normality and the time-varying skewness
and kurtosis of emerging market returns. The above mentioned volatility of these markets is
characterized by several shifts which are linked to country specific social-economic events,
as has been pointed out by Aggarwal, Inclan, and Leal (1999). Thus it might be the case
that empirical results for the emerging and market indices differ. Furthermore, the more the
investigated indices differ the more empirical properties of the different risk models can be
highlighted.

Figures A.1, A.2, A.3, and A.4 show the price and return series of all indices. By simple
graphical inspection, heteroscedastic behaviour of the return series can be detected- this is
important for the determination of the marginals via the AR-GARCH models. It is also a first
indication that the return series departs from the normality assumption. Furthermore, it is often
said that emerging markets offer higher expected returns but also higher volatility in contrast
to developed markets. To rectify this we make use of some statistical measures. Nevertheless,
these measures are useful in highlighting some important properties of the respective time
series. Table B.1 shows these summary statistics for the bond indices used in this analysis.
All series show departures from normality which can be seen by their respective kurtosis and
skewness. The normal distribution has a kurtosis of 3 and a skewness of 0. All indices exhibit a

between developed markets see e.g. Bekaert and Harvey (2003).
3Taiwan does belong to this group too, but J.P. Morgan does not provide any bond prices so it is here omitted.



5.2 Data Description 59

kurtosis greater than three indicating a higher probability of large negative and positive returns
than would be expected under normality. Interestingly, all emerging market bond series have
negative skewness which indicates more frequent large negative returns than large positive
returns. Another interesting feature is the wide spread between the individual skewness of
the particular series. A simple statistical test to confirm the departure from normality is the
Jarque-Bera(JB) test invented by Jarque and Bera (1980)

JB =
T
6

(
SK2 +

(KU −3)2

4

)
,

where SK denotes the sample skewness, KU the sample kurtosis, and T the sample size. The
null hypothesis states that the sample is drawn from a normal distribution. The appropriate
test statistic is calculated as JB ∼ χ2

2 . All series clearly reject the assumption of normality.
The summary statistics for all stock indices are found in table B.2. Again all indices show

a kurtosis greater than three and a skewness other than zero. The Jarque-Bera test rejects the
assumption of normality for all stock indices.

Often the unconditional correlation (also called mean correlation) is still used in finance.
Therefore, we report the unconditional correlations for the full sample. The lower the correla-
tion the lower the integration between these two markets. Interestingly, all stock markets show
positive dependence on each other, the lowest between the United States and Japan (0.167) and
the highest between Denmark and Sweden (0.794) as can be seen by table C.1. When compar-
ing bond markets unconditional correlations in table C.2 it stands out that the bond markets
of Japan and the United States show negative correlation to several other markets. Japan and
Mexico show the highest negative correlation (-0.231) whereas Sweden and Italy show the
highest positive (0.854).

Since one part of this analysis is the detection of asymmetries in correlation it makes sense
to introduce a test capable of discovering these asymmetric correlations. This is particularly
the case for vine copulas which are based on bivariate pair copulas. The tests might give a
hint if an asymmetric dependence structure is given. Ang and Chen (2002b) and Hong, Tu,
and Zhou (2007) both provide two simple tests of asymmetric correlations. We use the test
of Hong, Tu, and Zhou (2007) since this does not presume a statistical model for the data.
Ang and Chen (2002b) tests the null hypothesis to determine whether the quantile dependence
of the data sample resembles the quantile dependence of the Gaussian distribution. Since
there are more symmetric distributions than the Gaussian, the test does not rule out symmetric
dependence by rejection of the null hypothesis. Hong, Tu, and Zhou (2007) overcome this
drawback by introducing a distribution free test. Their test is based on bivariate data samples.
First, they define an exceedance level c as standard deviations away from the mean. The
correlation at this exceedance level is the correlation between two real valued variables (e.g. x
and y) when both variables exceed c

ρ+(c) = corr(x1,t ,y1,t |x1,t > c,y1,t > c), (5.1)
ρ−(c) = corr(x1,t ,y1,t |x1,t <−c,y1,t <−c). (5.2)

Therefore, the null hypothesis can be stated as

H0 : ρ+(c) = ρ−(c), ∀c > 0
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and the alternative hypothesis as

H1 : ρ+(c) ̸= ρ−(c), for some c > 0.

The test is based on the intuitive idea that the difference of the m×1 difference vector ρρρ+−
ρρρ− = (ρρρ+(c1)−ρρρ−(c1), . . . ,ρρρ+(cm)−ρρρ−(cm)) must be close to zero. The covariance needed
for the test statistic is estimated by the Newey and West (1994) covariance estimator Σ̂ΣΣ. With
these definitions the test statistic for the null of symmetric dependence is given by

Jρ = T ·
(
ρ̂ρρ+− ρ̂ρρ−)Σ̂ΣΣ

(
ρ̂ρρ+− ρ̂ρρ−) ,

and Jρ
A→ χm as T → ∞. We follow Ang and Chen (2002b) and Hong, Tu, and Zhou (2007) in

choosing four different values for c: (c1 = 0, c2 = 0.5, c3 = 1, c4 = 1.5). At 10% confidence
level eighteen significant asymmetric correlations are found when evaluating all possible pair-
wise bond returns. Only three are when comparing all possible stock returns (see Tables C.3
and C.4).

5.3 Marginal Models
Fantazzini (2009) studied the effect of misspecified marginal models on the estimation of VaR
using copulas modelling the dependence structure. As in this analysis he uses AR-GARCH
models and concludes that misspecified marginals do have an effect. This effect diminishes
as the sample size increases in relation to the effect a misspecified copula has on the VaR. In
order to keep the effect of the possibly misspecified marginals as low as possible we put much
emphasis on finding the correct marginal model.

As explained above, for every time series AR(p1)-GARCH(1,1) with four different
distribution-assumptions for the innovations (Gauss, t, GED, and skew− t) and p1 = 1, . . . ,5
will be estimated. Since we use 5 different GARCH models (AVGARCH, GARCH, EGARCH,
GJRGARCH, ZARCH) this leaves one hundred possible specifications for every marginal dis-
tribution. To give a first hint as to which model might be the best we use the Schwarz (1978)
criteria, also known as Bayesian Information Criteria (hereafter BIC)

BIC =−2 · lnL+ log(T ) · k,

where k denotes the numbers of parameters estimated and T the sample size. The GARCH
model which minimizes the BIC criterion is put to further investigations.

To begin, we check the residuals of the AR-part for (G)ARCH effects. Only when the
residuals show heteroscedastic behavior does the use of GARCH models makes sense. Engle
(1982) constructed a simple Lagrange multiplier test to test for heteroscedasticity. The squared
residuals of (2.1) are regressed on p own lags

ε2
t = ω +α1ε2

t−1 +α2ε2
t−2 + · · ·+αpε2

t−p + et .

Then,

T ·R2 A∼ χ2
p



5.3 Marginal Models 61

under H0 : εt
i.i.d.∼ N(0,h), where R2 is the usual sample correlation coefficient and T denotes

the sample size. Since the above described test is related to ARCH models and only ARCH
models of a high lag order are able to capture heteroscedastic features of a time series we use
p = 10 and a confidence level of α = 0.05. For all time series the null hypothesis of no ARCH
effects is rejected. Furthermore, the properties of the standardized residuals should show the
behavior of a white-noise process, i.e. they must not show any autocorrelation. This can be
checked by the so called Portmanteau test. We use the test of Ljung and Box (1978) (hereafter
LB) which may be stated as

Q = n(n+2)
l

∑
j=1

ρ̂( j)2

n− j
,

where ρ̂ denotes the sample autocorrelation function and l the degrees of freedom. The statis-
tic Q then has an asymptotic χ2

l distribution under the null hypothesis of no autocorrelation.
Thereafter a goodness-of-fit test is performed to check if the right distribution for the MLE
method was chosen. The goodness-of-fit test used here is the Kolmogorov-Smirnov (here-
after KS) test which makes use of the Rosenblatt (1952) transformation which is discussed
extensively in the copula chapter, see (4.5). The null hypothesis thus can be stated as

H0 : FS(x) = F0(x), ∀x ∈ R

where FS(x) is the sample c.d.f. and F0(x) is the hypothesized c.d.f. with respect to which
FS(x) is being evaluated for. This test is of importance for the VaR-Analysis since in that
section we use the IFM approach to estimate the copulas. The IFM approach uses exactly the
transformation of equation (4.5). Any misspecification of the Uni f orm(0,1) variables could
lead to series biases in the copula estimation. If the model with the minimum BIC does not
fail either the KS test or the LB test no further tests are applied. If one of the two tests is
failed we do a graphical inspections as in the work of Diebold, Gunther, and Tay (1998). They
define a variable z as z1 = F1(x1), z i.i.d.∼ U(0,1) and z = ∑d

i=1 zi. The graphical test is based
on the correlograms of (z− z),(z− z)2,(z− z)3, and (z− z)4. These tests are useful to reveal
dependence through the conditional mean, conditional variance, conditional skewness, and
conditional kurtosis. Under the assumption of a correctly specified model the autocorrelation
of these measure should be zero. Any significant autocorrelation implies a misspecified model.

Table D.1 shows the GARCH models for the emerging market stocks used to estimate
copulas. For the copula evaluation all four distributions are possible specifications for the in-
novations. First of all, the BIC-criterion selected p1 = 1 as the appropriate lag length for all
models implying that the return series does not show any significant autocorrelation. For the
ten emerging market stock indices values four times the GED and six times the skew− t are
chosen. All GED distributions are heavier than the normal, since ν is always smaller than two.
Brazil shows the highest ν (10.1868) for indices estimated with the skew− t. Thus, it can be
concluded that all indices show heavier tails than could be expected under Gaussian assump-
tion. For all indices the null hypothesis of the KS test is not rejected which implies that the
transformed standardized residuals are Uni f orm(0,1) distributed. The marginal distributions
for use with the MVGARCH models has to be estimated with Gaussian innovation assump-
tion. Table D.2 reports the chosen GARCH models. The KS-test rejects the assumption of
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Uni f orm(0,1) variables at a 5% confidence level on six out of ten occasions, indicating that
the Gaussian innovation assumption is not suitable for the data sample. Figure D.3 reports the
graphical tests for the different indices which failed the KS-test. Since no autocorrelation is
detected we again stay with the selected models.

For the emerging stock market indices either the GJRGARCH or the ZARCH are chosen,
implying that all indices exhibit asymmetric volatility. The results of the emerging market
bonds marginal models for use with copulas estimation are reported in table D.3. Interest-
ingly, the chosen distribution is always the skew−t for the advanced emerging market indices,
whereas for the secondary emerging markets either the GED or the Student-t are selected.
Furthermore, for the advanced emerging bond indices always an asymmetric GARCH model
is selected whereas for the secondary emerging markets this is only once the case. Either
the KS-test or the LB-test fails for India, Indonesia, and Thailand. Therefore, we check the
correlograms of the z-variables in Figure D.4. Again no serious autocorrelation is detected.

For the emerging market bonds estimated with Gaussian distribution assumption either the
KS- or the LB-test failed on ten out of twelve occasions (see table D.4). Figure D.4 shows
the z-plots for all indices which failed either one of the two tests. Again, no autocorrelation
can be recognized and so the chosen models are used for the estimation with the multivariate
GARCH models. Interestingly, now the symmetric GARCH model is selected only for the
Czech Republic.

Table D.5 shows the marginal models for the developed bond indices. The upper part of
the table describes the models with Gaussian assumption used for MVGARCH estimation
and the lower part the GARCH models with all possible innovation assumptions. The simple
GARCH model clearly dominates all other models. It is chosen eleven out of fourteen times
emphasizing the symmetric volatility structure of daily bond returns for the developed markets.
The KS-test fails only in the cases of Italy and Japan but as Figure D.1 reveals the z-plots do
not show any autocorrelation. The marginal models for the developed stocks are reported in
table D.6. Only asymmetric GARCH models are chosen as the appropriate volatility model.
In contrast to the bond market returns this clearly indicates a higher volatility after negative
shocks than after positive shocks of the same magnitude. Only Italy and Great Britain with
Gaussian distribution assumption for the innovations fail the KS-test. Again the results of the
z-plots in Figure D.2 do not provide an indication of any serious autocorrelation.

To sum up: whenever it is possible to estimate the GARCH models with any other innova-
tion assumption than the Gaussian the non-Gaussian distribution is selected as the appropriate
one. This seems to confirm the stylized fact that financial time series returns do not follow a
Gaussian distribution (although the GARCH models with Gaussian assumption does account
for some kurtosis, see equation (2.12)). Furthermore, the conditional mean of all models is es-
timated as an AR(1) process which confirms again a stylized fact, namely that (daily) financial
time series returns do not reveal any significant autocorrelation in their first moment. Almost
all stock indices seem to show some asymmetry in the variance, whereas for the bond indices
the simple GARCH model is chosen more often than the asymmetric versions.

After introducing the marginal model we will now turn to the main part of this analysis:
the different methods to estimate dependence between financial time series.
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5.4 Multivariate Models
One aspect of this analysis is to find the best risk model for different portfolios. For this pur-
pose, we consider four different equally weighted portfolios which combine different features.
Table B.3 reports some summary statistics for the portfolios considered in detail. We intro-
duce another model choosing criteria based on the log-likelihood, the so called Akaike (1974)
(hereafter AIC) criteria

AIC =−2(lnL)+2 · k.

The difference between both likelihood-criteria is that the BIC criterion penalizes models with
more estimation parameters heavier than the AIC criterion. First, we will present the different
statistical features of the miscellaneous portfolios. This makes it possible to infer later on
which multivariate model characteristic best suits the different portfolio characteristics. The
first portfolio considered consists of developed market stocks (AUS, DEN, SWE, ITA, JAP,
GBR, USA). This portfolio shows the highest kurtosis (16.5211) of all portfolios, i.e. the fat-
test tails. In line with this finding is that it has the largest Jarque-Bera statistic (13925.1). The
developed bonds portfolio shows quite different characteristics and is investigated at second
place. It shows the lowest positive daily return (0.0461), the smallest negative daily return
(-0.0296), the lowest annualized volatility (0.0880), and the lowest kurtosis (8.0296). As the
only portfolio considered in the VaR analysis it exhibits positive skewness (0.3221). The third
portfolio considered consists of advanced emerging market stocks (BRA, HUN, MEX, POL,
RSA). This portfolio shows the highest (0.1565) and the smallest daily returns (-0.1311) of all
portfolios and also the highest annualized volatility (0.2922) but its kurtosis (12.8311) is below
that of the developed market stocks. The final portfolio investigated in detail is the emerging
market bond portfolio. This portfolio exhibits the highest negative skewness (-0.4202) but the
rest of its statistics are in the ‘middle’ range of all portfolios.

It can be seen, then that the four different portfolios exhibit quite different features. This
makes them interesting for comparing the ability of the different time-varying models to es-
timate their dependence structures and their respective Value-at-Risk. Several working hy-
potheses should be considered. First of all, it might be interesting to analyze how well the
MVGARCH models capture the fat-tailed behavior of the stock markets. Within MVGARCH
models the AR-GARCH margins are estimated with Gaussian innovation assumption. The
MVGARCH itself is also estimated with multivariate Gaussian distribution assumption. Due
to their QML properties both models are able to capture some fat-tailed behavior and the
question arises if this is enough for the portfolio consisting of developed stock indices since
this shows the highest kurtosis? Furthermore, a comparison between the MVGARCH and
the Gaussian copula is of particular interest because the only difference between them is their
marginal model. Since the copula models depict a wide range of different dependence struc-
tures it is only natural to ask if the dependence structure makes a difference in VaR estimation.

Models of time-varying dependence only make sense if the investigated data sample shows
changing correlations. Therefore, we implement a simple test of time-varying correlation
developed by Engle and Sheppard (2001). The null hypothesis of this test can be stated as

H0 : Rt = R ∀t ∈ T
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and the alternative hypothesis as

H1 : vechu(Rt) = vechu(R)+β1vechu(Rt−1)+β2vechu(Rt−1)+ . . .

+βpvechu(Rt−1),

where vechu is an operator that selects only elements above the diagonal and projects them
onto a vector. In short the procedure of the test is described like this: First estimate the
univariate GARCH models and standardize the residuals. Thereafter, the correlation matrix of
the standardized residuals is estimated by the MVGARCH model and the vector of univariate
standardized residuals is jointly standardized by the square root decomposition of R. As Engle
and Sheppard (2001) points out the use of the correlation matrix in finite samples weakens
further the power of the test. Using the correlation matrix, the test is also sensitive to the
standardized variance of the univariate GARCH processes not being unity. Under the null of
constant correlation now the residuals should be i.i.d. with covariance matrix Id . We use the
covariance matrix instead of the correlation matrix and so the necessary vector autoregression
is done with the (lagged) outer products of the standardized residuals

rt = vechu
[(

R−1/2D−1
t εεε t

)(
R−1/2D−1

t εεε t

)′
− Id

]
.

The test statistic is estimated as Ψ̂ΨΨ′XX′Ψ̂ΨΨ
ĥ

which is asymptotically χ2
s+1, where X depicts the

regressor matrix and Ψ̂ΨΨ is a d × 1 vector of the estimated parameters from the vector autore-
gression. We assume s = 10 although different lag length are possible. For all portfolios the
assumption of constant correlation is rejected as can be seen by table 5.1 and thus the analysis
of time-varying correlations make sense.

Table 5.1: Engle and Sheppard (2001) test of time-varying correlation.

Portfolio Developed Bonds Developed Stocks EM advanced Bonds EM advanced Stocks

Stat 8217.0 8954.4 3667.1 4008.2

19.6751 is the respective critical value from a χ2
s+1 distribution, where s = 10.

We estimate the dynamic structure of the MVGARCH and the elliptical copula models
according to equation (3.12) with restrictions of the respective model. In all tables concern-
ing the DCC models we report the squared values as Cappiello, Engle, and Sheppard (2006)
because this makes it easier to compare results with other studies. To avoid any confusion we
will not report standard errors as they are estimated with the original coefficients which are
not squared. Significant values are marked with an asterisk.
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5.5 Value-at-Risk Analysis

5.5.1 Value-at-Risk Theory
The Value-at-Risk is a popular measure of risk for portfolios and was used first for financial
applications by J.P. Morgan in 1994. The VaR at confidence Level α is defined as

VaRα(L) =− inf{l ∈ R : Pr(L > l)≤ 1−α}, α ∈ (0,1) (5.3)

where inf denotes the infimum, L the loss4, see e.g. Artzner et al (1999).
Literally, the VaR is the number that will not be exceeded by a loss with a probability of

1−α . We report the VaR as a positive number since this is the usual convention, see e.g
Christoffersen and Pelletier (2004) . The 1% 1 day ahead VaR (α = 0.01) is often written
VaR(1/1) and we follow this notation. However, VaR has significant drawbacks and we will
discuss these below. A first drawback is that the VaR measure has nothing to say about the
severity of the loss that occurs with probability ≤ α . Another related critique is the non-
subadditivity of VaR, i.e. the VaR of a portfolio can be greater than the sum of the single
VaRs, see Artzner et al (1997) and Artzner et al (1999). This contradicts a main proposition of
modern finance theory, namely that there should be diversification benefits when combining
several assets if they are not perfectly dependent. A risk measure that is sub-additive is the
Expected Shortfall (hereafter ES)

ESα(L) =−E(L|L <−VaRα) (5.4)

The ES can be interpreted as the expected value of the loss beyond the VaR and is also reported
as a positive number. Common in practice are the VaR(1/1), the VaR(5/1), and finally the
VaR(10/1). We use these three different levels since they highlight the ability of the model
to estimate different risk levels. The VaR(1/1) can be interpreted as the capability of the
model to capture ‘extreme’ behavior, the VaR(5/1) displays more the ‘intermediate’ range and
the VaR(10/1) the ‘lower’ one. We estimate the VaR via the Monte Carlo method, which
implies full repricing of the portfolio at every point in time. To keep a balance between
the computational costs and the accuracy of the results we simulate five thousand portfolio
values for each point in time. As the benchmark model we choose the Historical Simulation
(hereafter HS) method. In this approach the loss function L is the empirical distribution of the
equal weights portfolio returns yt−n+1,1, . . . ,yt , where we use n = 100.

The first parametric model we use is the so called Delta-Normal (hereafter DN) method.
The VaR estimated by the DN method is described by

VaRα
t+1 =−

(w1,t , . . . ,wd,t)


h11,t · · · h1d,t

... · · · ...

hd1,t · · · hdd,t

(w1,t , . . . ,wd,t)
′



1/2

· sα ,

4The Loss L is calculated as L =Vt+1 −Vt where Vt denotes the portfolio value at time t.
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where sα is the quantile at confidence level α from a standard normal distribution. The
variance and the covariance this time are the simple sample variance and covariance estimates.
To make a comparison between the HS and DN method possible we estimate both on the past
100 returns. Clearly the Delta-Normal method is based on the multivariate Gaussian distribu-
tion. Since this does not own any QML properties it is interesting to see how it compares to
the DCC model.

Backtesting the VaR is useful to detect any misspecification of the risk model. Below
we will introduce some common backtesting techniques, following Christoffersen (2003),
Christoffersen and Pelletier (2004), and Christoffersen (2008).

First of all a visual inspection of the VaR violations is done. The 1% confidence level
one-day ahead VaR predicts one VaR violation every 100 days. A VaR violation occurs if the
realized loss is greater than the predicted VaR. Thus, a first check might be to see if the number
of occurred VaR violations equals the number of expected violations. Another common check
when backtesting VaR’s is defining a so called ‘hit-sequence’

Hitt+1 =

{
1, if Lt+1 <−VaRα

t+1

0, if Lt+1 >−VaRα
t+1.

The ‘hit-sequence’ is kind of a indicator function that returns a 1 if the loss exceeds the pre-
dicted VaR and 0 if not for each point in time. Following Christoffersen, we use the notation
t+1 to make clear that the VaR is predicted from period t to period t+1. It has been mentioned
above that- in a correctly specified risk model- the VaR should be violated with probability α .
It could be the case that the number of violations indicates a perfect risk model: 75 violations
for a VaR(10/1) model for this analysis. However, this assumption would be misleading since
the violations needs to be independently distributed. This intuitively makes sense since 75
violations in a time period of 75 days clearly leads to the rejection of the risk model although
in a sample of 750 observations the number of violations is as expected for the VaR(10/1).
The information that the violations of a perfect risk model must be independent can be used to
construct a formal test. Completely unpredictable variables (that can only take two values) are
modelled with a Bernoulli distribution and thus the null hypothesis of the test can be stated as

H0 : Hitt+1 ∼ Bernoulli(p),

where the Bernoulli distribution function may be written

f (Hitt+1) = (1− p)1−Hitt+1 pHitt+1 .

The variable p describes the probability of an event to occur. In the case of VaR backtesting p
takes the value of α , i.e. 0.01, 0.05, or 0.10.

Based on this theory Christoffersen develops several VaR-tests. The first is the ‘uncondi-
tional coverage’ test which verifies if the numbers of violations is significantly different from
p. That is to say, it checks if the VaR model delivers violations across the sample with prob-
ability p. Therefore the likelihood of an i.i.d. Bernoulli hit sequence needs to be defined
as

L(π) =
T

∏
t=1

(1−π)Hitt+1πHitt+1 = (1−π)T0πT1 ,
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where T1 represents the number of violations and T0 the number of non-violations in the back-
testing sample. The variable π̂ is estimated by T1/T , i.e. it is just the unconditional probability
of a violations. This leads to a sample likelihood of

L(π̂) =
(

1− T1

T

)T0

·
(

T1

T

)T1

and with the previously stated null hypothesis, i.e. π = p

L(p) =
T

∏
t=1

(1− p)1−Hitt+1 pHitt+1 = (1− p)T0 pT1 .

The test statistic is calculated by an likelihood ratio test

LRuc =−2ln
[

L(p)
L(π̂)

]
A∼ χ2

1 .

A second test is concerned with the independence of the violations. To take a look only at
the sheer number of observation could be very misleading in determining the perfect risk
model since the violations should not be predictable. This prerequisite makes it necessary to
construct a test that is able to give some information about the independence of the violations.
Fortunately this task can be easily performed by an Ljung-Box test

LB(k) = T (T +2)
m

∑
k=1

γ2

T − k
∼ χm,

where m denotes the d.o.f. and the γ the autocorrelation at lag length k for the hit sequence
Hitt+1. The null hypothesis states that the first m autocorrelations are zero. Berkowitz,
Christoffersen, and Pelletier (2009) finds that m = 5 delivers good testing power for daily
data and so we use this lag-length.

Another simple test is the means test

MT =
√

T
π̂ − p√

var(Hitt+1)
∼ N(0,1).

The intuition behind this test is that the standardized unconditional violation probability be-
haves like a standard normal.

Copulas and VaR analysis have also been considered by Fantazzini (2008), Giacomini and
Härdle (2005), Huang et al (2009), and Ozun and Cifter (2007). A D-vine copula for VaR esti-
mation in a Bayesian setting has been considered by Hofmann and Czado (2011). Especially
with emerging markets occupied is e.g. Bao, Lee, and Saltoğlu (2006) who investigate the
VaR behavior of different models through the Asian crisis, thus giving insight into emerging
markets whilst Dimitrakopoulos, Kavussanos, and Spyrou (2010) compares various VaR ap-
proaches for 16 different emerging markets and finds no outperformance for a specific model.
Gençay and Selçuk (2004) uses extreme value theory models to estimate the VaR and finds
that the generalized pareto distribution fits the data well.
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5.5.2 Multivariate Model Determination

In this section we examine the ability of the miscellaneous models to estimate the VaR of the
different portfolios.

The model of Cappiello, Engle, and Sheppard (2006) incorporates symmetric (DCC, G-
DCC) and asymmetric (A-DCC, AG-DCC) specifications for the time-varying Qt matrix.
These different dynamic structures are applied to the MVGARCH and several copula models.
Since estimating the VaR for all different specifications would be an elaborate task we explain
in the following the procedure we have chosen to determine the best dynamic structure within
a given model.

First of all, we estimate all models with different dynamic structures for the full sample.
Based on these results and the AIC and BIC criterion we choose the best fitting dynamic struc-
ture for the VaR estimation. Another criterium is the amount of significant parameter. When-
for whatever reason- the AIC and BIC criteria choose an asymmetric model where most of the
asymmetry parameters are insignificant we investigate the corresponding symmetric model.
Thereafter, we decide which model fits better. For the D-vine copulas we restrict ourselves
to the scalar dynamics DCC and A-DCC. The vine copulas consist of several pair-copulas
which in turn are based on the data sample and ordered according to their (unconditional)
dependence. As a result of this procedure it can be concluded that when the data is ordered
in a bivariate manner the respective data pair displays a similar dependence structure and so
reacts to news in the same way. The multivariate dynamic mixture copula models consists of
an elliptical copula and a multivariate archimedean one. For the elliptical copula in the mix-
ture we use the optimal dynamic structure of the elliptical copula estimated alone. All copula
models are estimated by the IFM procedure explained in section 4.5. The next chapter covers
a complete dependence structure analysis so we will keep the analysis of this process here as
short as possible.

The first portfolios we consider are the single developed market stock and bond indices.
Table E.1 shows the results of the AG-DCC MVGARCH estimation for the developed market
stocks for the full sample. The BIC criterion favors the A-DCC model and the AIC criterion
the AG-DCC model. Since only three out of five asymmetric parameters in the AG-DCC
model are significant we choose the more parsimonious A-DCC model as the best fitting one.
Table E.2 shows the parameter estimates for the developed market bonds estimated with the
MVGARCH models. Here the BIC criterion favors the DCC model while the AIC criterion
prefers the AG-DCC model. Since no asymmetric parameter of the AG-DCC model is signifi-
cant we choose the DCC model as the better fit. Table E.5 reports the results of the Gaussian
copula for the developed markets stocks. Again, the BIC criterion favors the A-DCC model
while AIC favors the AG-DCC one. Based on the results above (again only three out of five
asymmetric parameters are significant) we choose the A-DCC dynamic structure as the best
fit.

Table E.6 shows the results for the developed market bonds estimated with a Gaussian
copula. Here it can be seen that the BIC criterion prefers the DCC model and the AIC criterion
the G-DCC model. Since all G-DCC parameters are significant we conclude the G-DCC
structure is the best fit. After comparing the Gaussian dependence structures we consider the
results of the t-copula. As above we first investigate the developed market stocks (see Table
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E.9) for which both criteria favor the A-DCC model. To complete the comparisons between
the developed markets stock and bond indices and the Gaussian and t-copula the parameter
estimates for the developed market bonds estimated with a t-copula are missing. This time the
BIC criterion favors the DCC while the AIC favors the G-DCC. Since again all parameters for
the G-DCC structure are significant we select G-DCC as our favorite dynamic structure for
the developed bond indices. Table E.9 reports the parameter estimation results.

The final copula class that exhibits different dynamic dependence structures is the vine
copula class introduced in subsection 4.2.3. Table E.13 shows the bivariate dependence pa-
rameters of the developed stock indices for the Gaussian, t-, Clayton, and rotated Clayton
D-vine copulas. We follow Aas et al (2009) and order the data according to their bivariate
unconditional dependence. The pair with the highest dependence then ascertains the first two
variables in Figure 4.5. The order of the first variables follows from the dependence of each of
these variables with all other variables. For example for the t-copula the highest dependence
(measured by the lowest d.o.f.) is between Sweden and Italy (ν = 6.7416). The highest de-
pendence between one of these two countries and all other countries is between Sweden and
Denmark (ν = 10.2089). Therefore, the first variable is Denmark, the second Sweden, and the
third Italy. This routine is repeated until the whole sample is ordered. The same procedure is
applied to the developed bond indices. Table E.14 shows the results.

Table E.15 shows the log-likelihood, AIC, and BIC values of the vine estimation for the
developed market stock and bonds. The developed stocks prefer the A-DCC model while for
the developed bond the DCC model is selected for all vine copulas. The first conclusion is
that the asymmetric correlation test does not give any hints about the dependence structure.
The test of Hong, Tu, and Zhou (2007) indicates a more asymmetric correlation in the bonds
than the stock indices case. The vine model selection criteria reveal a different picture. They
choose an asymmetric model only in the case of stock indices. After explaining the different
models of the developed stock and bond indices we turn now to the emerging market stock and
bond indices. The procedure to determine the best model is the same as with the developed
markets.

For the emerging market stock indices estimated with the MVGARCH model the AIC and
BIC criteria both favor the A-DCC dynamic structure- as for the emerging bond indices (see
tables E.3 and E.4). Table E.7 shows the results of the Gaussian copula estimation for the
emerging market stocks. Again, the A-DCC model structure is chosen by both criteria as for
the emerging market bonds (see Table E.8). Table E.11 reports the estimation results for the
t-copula emerging market stocks. In contrast to the d.o.f. parameter of the developed market
stocks in Table E.9 the d.o.f. parameter across the different dynamic structures is pretty close
to each other. A significant difference is only detected between the symmetric and asymmetric
models. Nevertheless, the A-DCC model is the best fitting one. Table E.12 reports the results
of the emerging market bond t-copula estimation. Again, the A-DCC model is chosen as
the best fit. Table E.18 reports the log-likelihood values and the AIC and BIC criteria for
the advanced emerging stock and bond indices estimated with the D-vine copula. For the
advanced emerging markets stocks we choose the DCC model as the best fitting one for all
vine copulas. The Gaussian vine performs better with the asymmetric A-DCC structure when
estimating the advanced emerging market bonds. Tables E.16 and E.17 show the unconditional
pair dependence and the data-ordering for the pair-copulas.
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Having explained the full sample properties of the different portfolios and the selection of
the best model we will now to examine the Value-at-Risk estimation abilities of the miscella-
neous models.

5.5.3 VaR Empiricism

In order to find out if the fit of a risk model is adequate a backtest is needed. The VaR-
backtesting procedure can be explained as follows: for all parametric models, i.e. for all
models except the HS, we estimate the coefficients of the dependence models with the data
sample running from May 02, 2003 to Aug 08, 2007. The backtesting routine then runs
from August 09, 2007 to Aug 09, 2010. This gives 1075 data points for the sample that is
used to estimate the multivariate model coefficients and 750 data points for the VaR backtest
sample. Within this backtest sample we keep the coefficients of the multivariate time-varying
dependence models constant. Through the backtesting period we update the AR-GARCH
models five times, i.e. every 150 days. In total, this procedure gives 750 VaR predictions
for each model. To these predictions we apply the set of tests described above with a view
to finding the best risk model. Within this backtest sample the optimal risk model should
show 7.5 VaR violations for the 1% confidence level VaR, 37.5 violations for the 5%, and 75
violations for the 10% level.

We also report other measures ancillary to the tests and VaR violations. One of them is
the maximum VaR exceedance, which describes the distance between |VaRt+1| and |Lt+1| if a
VaR violation occurred5. If different risk models have the same number of VaR violations and
perform identically on the VaR tests a conservative risk manager might choose the risk model
with the smallest VaR exceedance. If an unpredicted loss appears, the difference between
the loss and the VaR should be as small as possible. We report only the maximum VaR
exceedance for the 1% VaR since this is the most common VaR used in practice. We also test
for the Expected Shortfall defined in (5.4) and follow McNeil and Frey (2000) who defines
empirical residuals ert+1 = Lt+1 − (−ESα

t+1(Lt+1 < −VaRα
t+1)) , where Lt+1 is the realized

portfolio return on day t +1 and ESα
t+1(Lt+1 < −VaRα

t+1) the expected shortfall at time t +1
predicted at time t when the realized loss is greater than the VaR at the respective confidence
level 6. We report the minimum exceedance residual (minert+1) for the 1% confidence level
VaR. A negative number indicates that the expected shortfall has been violated, i.e. the loss
is greater than the expected shortfall. On the contrary, whenever min(ert+1) is positive the
expected shortfall is not violated. In both cases a risk manager might prefer a model where
the estimated ES is as close as possible to the realized loss. Banks for example have to deposit
capital for risky positions. When a risk model overestimates the true risks the bank has to
build to much accruals, decreasing their profits. When the risk model underestimates the risk
to much capital is allocated to risky positions and that might hurt the profits, too. Thus in both
cases a conservative risk manager might prefer a risk model where |min(ert+1)| is smaller
compared to other risk models.

The final number we consider is a rather simple one and shows the absolute difference

5We report the distance since in every model tested at least one VaR violation occured.
6Note that the expected shortfall is reported as a positive number, see equation (5.4).
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between expected VaR violations and VaR violations which occur when comparing the one-
day-ahead VaR with the realized loss. The lower this number, the better the model fits (when
looking only at the number of violations). We do this for each VaR confidence level under
the heading ‘error’. To compare the different models over all confidence levels we sum these
errors under the heading ‘error sum’. Both numbers are found in the Table where the backtest
sample is partitioned into three periods. We calculate the absolute difference for every period.
The column ‘error’ shows the arithmetic mean of the errors calculated for each period.

To recall, there are four different classes of risk models we test: First, a naive risk model
is applied to the data. This is the HS method and is a pretty simple model which acts as the
benchmark. The second class is the Delta-Normal (DN) method which is a simple parametric
method. The other two classes of dependence models need to beat the naive and the DN VaR
forecast otherwise it would not make any sense to invest the time (and probably money) build-
ing more sophisticated models. The third model class consists of the MVGARCH model. It is
more sophisticated than HS but is limited to symmetric dependence and Gaussian marginals.
The final class contains the copulas who are able to capture a wide range of dependence struc-
tures and marginal models. It is important to mention that the marginal models of the different
copulas for the respective portfolio are always the same but the marginals between the MV-
GARCH and copula models differ. Therefore, the ability of the copula models to predict the
VaR is solely dependent on the dependence structure of the respective copula. In general it
should be noted that the tests presented below does not give any direct information about the
dependence structure of the data. It is the backtest which considers the complete risk model,
encompassing both the marginal and dependence models. Section 5.6 below contains an anal-
ysis of determining the (true) dependence structure.

Table 5.2 gives an overview of the different VaR backtest results for the developed stock
and bond indices. According to Christoffersen a 10% confidence level is appropriate for the
VaR-tests and so all p-values in the table are calculated at this level. The first portfolio we
investigate in detail is the developed market stocks. This is the portfolio with the highest
kurtosis of any we investigate. For the VaR(1/1) the MVGARCH model delivers 7 violations
which is pretty close to the 7.5 expected but the Ljung-Box (LB) test rejects the null hypothesis
that the violations are independently distributed. All copula models deliver three violations
when 7.5 are expected for the 1% confidence level VaR. Hence in contrast to the MVGARCH
model the copulas overestimates the risk. Both, the unconditional coverage (LRuc) and the LB
test are rejected for all copula models, too. The HS method has fourteen violations and the
DN 26 for the VaR(1/1) which is far above the 7.5 expected. Figure 5.1 shows the VaR(1/1)
estimations of the developed stocks portfolio for different models. This pictures depicts the
differences between the copula estimation, the MVGARCH, the DN, and the HS method. The
different copula models does not show any significant differences in their VaR estimates, so
we only show the newly developed t-Clayton mixture Copula. A significant difference can
be detected between the copula and MVGARCH model. Most of the time the MVGARCH
VaR estimate is below the estimate derived from the copula models although the MVGARCH
model shows the highest peak. As might be expected the VaR increases dramatically after the
default of the Lehman Brothers bank on Sep 15, 2008- indicated by the vertical line. Since
all of the marginal models for the copula are estimated with either a skew− t or Student-t
innovation assumption it is no surprise that most of the time the VaR derived from the Gaussian
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Figure 5.1: VaR Developed Stocks. This figure shows the 1% confidence level VaR estimates
for the developed stock indices portfolio. The vertical line shows the default of the Lehman
Brothers bank.
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copula is higher than the VaR derived from the MVGARCH model. But for the 1% confidence
level VaR the fat-tailed innovation assumption does not improve the VaR estimation. The fat
tails generated through the QML properties of the Gaussian univariate DCC-GARCH seems to
be enough for the developed stocks portfolio. For the VaR(5/1) the MVGARCH model beats
all other models with 34 VaR violations (against an expectation of 37.5) This time all null
hypotheses are accepted. The violations of the copula models are between 27 and 29. Only
the t-Gumbel mixture and the multivariate Gumbel copula do not reject the LRuc test. The
LB independence test is rejected by all copula models and the same goes for the means test
(MT ) with the exception of the t-Gumbel and Gumbel copulas. The HS delivers 48 violations
and only the null hypothesis of the MT test is accepted. The same applies to the DN with 55
violations. The final VaR we consider is the VaR(10/1) with 75 expected violations. This time
the MVGARCH falls short of some copula models with only 64 violations where the copula
models range from 62 (Clayton vine) to 69 (Gaussian copula). This time all copula models
pass the LRuc test, reject the independence test and pass the MT test. The HS has 86 violations,
passing the LB and MT test whereas the DN method shows 84 violations but passes none of
the tests.

Another interesting set of results derives from the maximum VaR exceedance at 1% confi-
dence level. Here the DN delivers the highest number with 0.00521. The MVGARCH displays
the third highest number with 0.00158. The t-vine copula denotes the lowest VaR exceedance
value with 0.00106. Of note is the minimum exceedance residual (minert+1) for which only
the MVGARCH shows a positive number. This implies that the expected shortfall is at least
once not violated. This is in start contrast to the copula models where the expected shortfall is
violated whenever the VaR is violated.

So far it can be concluded that the MVGARCH delivers the best results for the developed
stocks portfolio with a 1% confidence level VaR. In Table 5.3 we break down the backtesting
sample into three periods each with 250 trading days. The backtesting period covers a rela-
tively quiet period for the first 250 trading days from Aug 09, 2007 to Aug 11, 2008 a turbulent
second period from Aug 12, 2008 until Aug 11, 2009- with the breakdown of Lehman Broth-
ers on the Sep 15, 2008 -and another tranquil period from Aug 12, 2009 to Aug 09, 2010. we
have chosen this kind of break down because it divides the sample in a relatively quiet period
(the first one), a turbulent period (the second period with the default of the Lehman Brothers
bank) and a third ‘intermediate’ section. It might be interesting to see if the VaR violations are
distributed equally across these three periods or if e.g. in the turbulent period more violations
occur. The MVGARCH model performed best for the VaR(1/1) with 7 violations. Of these 7
violations 2 occurred in the first backtesting period, 5 in the second and 0 in the third. Since
every period has 250 trading days 2.5 VaR violations would be expected within each of the
three backtesting periods.

By analyzing the results it can be seen that for the VaR(1/1) the MVGARCH model per-
forms well in the first period underestimates the risk in the turbulent second period and overes-
timates the risk in the third period. For the 5% confidence level VaR the MVGARCH performs
well in the crisis period with 13 violations (where 12.5 would be expected). In the final period
it overestimates the risk showing 9 violations when 12.5 would be expected. For the VaR(1/1)
all copula models show 1 violation in the first, 2 violations in the second and no violations in
the third period. For the 5% VaR most copula models perform relatively well in the first and
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second periods but fail in the third period. For the 10% VaR the picture is reversed: here the
copula models show good performance in the first and second periods but perform poorly in
the third period.

Considering the sum of the violations of the different VaR levels the Gaussian copula
performs best for the developed stocks portfolio with an error sum of 7. The DN method
shows the worst performance with an error sum of 16.33.

The next portfolio we investigate is the developed market bonds. This is the portfolio
with the lowest annualized volatility and kurtosis, and the only one with positive skewness.
All parametric models perform poorly for all confidence levels because they overestimate the
risks dramatically (see Table) 5.2. Only the HS and DN methods shows different results. The
HS underestimates the risk for all confidence levels whereas the DN does this only for the
1% confidence level. All violation numbers are far away from their expected values. Figure
5.2 shows the 1% confidence level VaR estimates for the developed bonds. The first thing
to note is that it seems curious that the VaR for the MVGARCH model peaks at a higher
level than the VaR of the copula models, but this might be due to the different selection of
GARCH models for the marginal distributions. Again, it can be noted that the VaR(1/1) of the
different copula models is pretty close together and a difference is only detected between the
DN, MVGARCH, the copula models, and the nonparametric HS method. We do not consider
any further investigations of the developed bond portfolio since all models underestimate the
true risk by a considerable amount. One might conclude that this is because of the specification
of the margins by AR-GARCH models. Considering the error sum the DN method performs
best with 9.00: all parametric models have an error sum higher than 20.

The next portfolio we investigate is the emerging markets stocks (see table 5.4). The main
characteristic of this portfolio is that it has the highest annualized volatility and the smallest
and highest daily returns. This time the MVGARCH seems to underestimate the VaR with ten
violations at the 1% confidence level whereas most copula models are around seven. The HS
method shows nine violations, and the DN method overestimates enormously, showing twenty-
one violations. For the 5% VaR the MVGARCH has thirty-six VaR violations just as most
copula models only the Clayton-vine copula falls short with just thirty-one violations. Again,
the HS method underestimates the VaR with forty-eight violations, far more than the thirty-
seven and a half expected. The same is true for the DN method with fifty-three violations.
For the 10% VaR the picture differs a little. Now the MVGARCH has seventy-three violations
while the copula models vary between sixty-five (Clayton vine) and eighty-one (t-copula). The
HS method meanwhile reports eighty-three and the DN eighty-five. All of the models accept
the null hypothesis of the unconditional coverage test bar the HS (for all confidence levels) and
DN (with 1% and 5% confidence levels). The independence test for the 1% and 5% confidence
level are passed by all models whereas for the 10% confidence level only the multivariate t-
copula and Gumbel copula pass the test. The MT test is successfully completed by all models
for all confidence levels except for the HS VaR(10/1) and the DN method, which fails to pass
at any confidence level. This time min(ert+1) is positive for all models implying that whenever
the 1% confidence level VaR is violated the ES is also violated. The MVGARCH shows the
greatest maximum exceedance residual and the greatest max VaR exceedance.

It is also necessary to analyze how the VaR violations partition into the three periods we
defined above by looking at Table 5.5. For the 1% confidence level VaR all copula models
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Figure 5.2: VaR Developed Bonds. This figure shows the 1% confidence level VaR estimates
for the developed bonds portfolio. The vertical line shows the default of the Lehman Brothers
bank.
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deliver one violation in the first period. For the second period all deliver four violations with
the exception of the multivariate Gumbel which delivers two violations. In the third period all
copula models deliver two violations. The MVGARCH delivers three violations in the first
period, four in the second and three in the third. The HS method shows two violations in the
first period, five in the second and two in the third. The DN method shows four in the first
period, twelve in the second and again four in the third. For the 5% confidence level VaR all
parametric models are pretty close together in all three periods. They show eight or nine in
the first, between eighteen and twenty in the second and eight in the third period. Only the HS
and DN method differ- the former showing fourteen violations in the first period, twenty in
the second and fourteen in the third and the latter showing fifteen, twenty-one, and seventeen
in the respective periods. At the 10% confidence level the parametric models differ a little bit
more. In the first period the copula models report between nineteen and twenty-two violations
whereas the MVGARCH has only sixteen, the HS twenty-five, and the DN twenty-three. In
the second (turbulent) period all parametric models are between thirty-one and thirty-three
violations whilst the HS produces thirty-four violations and the DN thrity-seven. In the final
period the parametric models show twenty-six or twenty-seven violations, the HS method
twenty-four violations and the DN twenty-five.

Figure 5.3 shows the 1% confidence level VaR for the different models. From this it can
be seen that all models seem to underestimate the risk during the turbulent second period
for all confidence levels. The MVGARCH VaR estimate is slightly below the copula models
which are again fairly close together. After the default of the Lehman Brothers Bank the VaR
increases for all models but for the HS method it stays on high level for a much longer period.
No model passes all VaR tests: most pass either seven or eight out of nine tests. The minert+1
is positive for all models, whereas the Clayton vine and t-Gumbel mixture show the smallest
difference.

The last portfolio considered in detail is the emerging market bonds. First of all it should
be noted that all models perform far better than for the developed bond indices portfolio. For
the 1% VaR the HS method has eighteen violations, the DN twenty-five, the MVGARCH
seven, and the copula models either five or six violations. For the 5% VaR the MVGARCH
has thirty-five violations, the HS method fourty-two, and the DN forty-one. All copula models
stay within twenty-nine (rotated Clayton vine) or thirty-four (multivariate Clayton). For the
10% VaR the MVGARCH shows only sixty-two violations when seventy-five are expected.
Three copulas (Gaussian-Clayton, t-Clayton, and Clayton) show seventy violations and are
closest to the number of expected violations along with the HS method with eighty violations.
The DN method reports only sixty-five violations. Only four copulas do not pass all tests. The
MVGARCH rejects only the LB independence test for the 1% confidence level VaR whilst the
HS method passes only the 5% and 10% confidence level LB independence tests.

The null hypothesis of the MT means test is accepted for all parametric models at all con-
fidence levels. All copula models underestimate the risk in the second period for the 5% and
10% confidence levels (see table 5.5). The MVGARCH model delivers here better results.
Taking again a look at the sum of all errors the MVGARCH model performs best with 7.33:
it also shows the lowest max exceedance VaR. For all parametric models the maximum ex-
ceedance residual is positive and again the MVGARCH shows the smallest number, implying
the smallest difference between the realized loss and the violated expected shortfall. Figure
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Figure 5.3: VaR Emerging Market Stocks. This figure shows the 1% confidence level VaR
estimates for the advanced emerging market stock indices portfolio. The vertical line shows
the default of the Lehman Brothers bank.
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5.4 shows the 1% confidence level VaR estimations for the advanced emerging market bonds.
The MVGARCH model show the highest peak which might be again through the different
determination of the marginal models.
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Figure 5.4: VaR Emerging Market Bonds. This figure shows the 1% confidence level VaR
estimates for the advanced emerging market bond indices portfolio. The vertical line shows
the default of the Lehman Brothers bank.

We will now sum up the results discussed above and find the best risk model for each
portfolio.

For the developed stocks portfolio the MVGARCH seems to perform best for the 1% and
5% confidence levels. The t-vine copula is the only model that does not fail a test for the 10%
confidence level VaR and thus seems to be the best model for this confidence level. It should be
noted that the HS and DN methods overestimate the risk for all confidence levels. Especially
for the 1% confidence level the DN method gives a particularly bad performance. For the
developed bond indices all parametric models except for the DN method overestimate the risk
and deliver far fewer VaR violations than expected. For these indices the DN method shows
a relatively good performance for the 5% and 10% confidence levels. Overall the DN method
performs better than the more sophisticated parametric models. For the advanced emerging
market stocks several copulas show a good overall performance accepting eight out of nine
null hypotheses that the VaR risk model is correctly specified. The only model that accepts
all null hypotheses is the Clayton D-vine copula. However, it falls a little bit short when
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the number of violations are considered, showing only five for the VaR(1/1). This time most
copulas perform better than the MVGARCH even for the 1% confidence level VaR. The HS
does well for the 10% confidence level but overall rejects five out of nine null hypotheses. This
however, is better than the DN, which rejects seven. For the advanced emerging market bond
indices the MVGARCH results are good for the 1% and 5% confience level VaR. In general
it accepts seven out of nine null hypothesis and shows the lowest maximum exceedance VaR.
Some copula models pass all tests but have either a higher max exceedance VaR or more
violations than expected which results in a higher error sum.

The task of finding the best risk model is a difficult one. The four different models classes
display different characteristics for different portfolios and VaR confidence levels. The mis-
cellaneous copula models deliver more or less the same VaR estimates across the different
portfolios and VaR confidence levels. In contrast, the MVGARCH produces a diverging per-
formance the majority of the time. Of further interest is that the MVGARCH model for the
10% confidence level VaR has fewer violations than the copula models for all portfolios. For
the 5% confidence level the evidence is mixed, however, with the MVGARCH model and cop-
ula models alternating with regards to which produces more VaR violations. For the VaR(1/1)
the MVGARCH shows at least as many VaR violations as the copula models and sometimes
produces more. In the case of the developed stock portfolio this is beneficial because it is
closer to the expected number of violations, but this is not the case with regards to the emerg-
ing market stocks.

Even looking at the table where the entire backtesting period is broken down into three
sub-periods it is not possible to detect constant behavior in the respective models, meaning it
would be a challenging task for a risk manager to determine favorite. The only clear result
is that the HS and DN methods perform poorly compared to the sophisticated parametric
models for three out of four portfolios: only for the developed bond portfolio do they give
a better performance. The Delta-Normal method performs particularly poorly dramatically
underestimating the 1% confidence level VaR. Any risk manager using this method should pay
great attention to this. It can be concluded that it would be worth investing in the development
of a sophisticated parametric model. Until now we have compared the different risk models.
It might also be worth comparing the emerging and developed market VaRs within each asset
class. Figure 5.5 compares the 1% confidence level VaR estimated with a Gaussian copula for
the developed and emerging markets. It can be seen that, in general, the VaR increased after
the Lehman Brothers default for all portfolios. Of particular interest is the fact that the VaR
of the emerging stock markets increased more than that of the developed markets, despite the
default occurring in the US- one of the developed markets. A major component of the VaR
in the introduced framework is the volatility, which reacts to positive and negative shocks. As
can be seen in the figure the emerging markets show much more larger positive and negative
returns than the developed markets around the default of the Lehman bank. Clearly this leads
to a higher volatility and explains the higher VaR. In principle the emerging stock markets’
VaR seems to be above the VaR of the developed markets most of the time. This is particularly
the case for the bond indices, as can be seen in Figure 5.6.
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Figure 5.5: VaR Emerging and Developed Stocks. This figure
compares the 1% confidence level VaR for the emerging and de-
veloped stock indices. The vertical line shows the default of the
Lehman Brothers bank.
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Figure 5.6: VaR Emerging and Developed Bonds. This figure
compares the 1% confidence level VaR for the emerging and de-
veloped bond indices. The vertical line shows the default of the
Lehman Brothers bank.
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5.6 Dependence Structure Analysis
The final part of this analysis is devoted to the analysis of the dependence structure between
emerging and developed markets. The characteristic of the dependence provides an indication
as to how integrated the financial markets are and might offer further clues as to possible
diversification benefits.

First of all, the term ‘financial integration’ should be clarified. Kindleberger (1988, p.75)
offers a broad definition, defining (financial) markets as integrated if they share the same price
for the same asset. In this analysis assets are either equity or bond indices. Thus the ‘same
price’ in Kindleberger’s definition should be redefined here to ‘level’ or- in a time-varying
context- to ‘movement’. Clearly the different indices will not share exactly the same price but
the respective levels should move together if they are integrated. To build on Kindleberger’s
definition of integration it might be said, that two financial markets are integrated if financial
assets with the same characteristics return the same performance (Arouri, Jawadi, and Nguyen
(2010, p.150)), or in the words of Bekaert and Harvey (2003, p.4): "In finance, markets are
considered integrated when assets of identical risk command the same expected return irre-
spective of their domicile."

According to Markowitz (1952) a diversified portfolio yields the best risk-return relation-
ship. The lower the dependence between the financial assets the better the possibilities of
building a portfolio with superior risk-return relationship. For modern portfolio theory, then
the identification of levels of financial market integration is always connected to possible di-
versification benefits.

As a result there has been a great deal of research on the international diversification ben-
efits of equities. Among the first to implement this kind of analysis based on dependence
patterns were Grubel (1968), Levy and Sarnat (1970), and Solnik (1974).

In general recent research can be subdivided into two categories: To the first category
belongs research finding diminishing international diversification benefits and increasing cor-
relations. Of these Errunza, Hogan, and Hung (1999) examine return correlations and volatil-
ity spanning: they conclude that international diversification benefits diminish. Forbes and
Rigobon (2002) uses heteroscedasticity biases tests to find comovements for market crash pe-
riods. Goetzmann, Li, and Rouwenhorst (2005) investigates correlations between the world
equity markets and documents changes through the whole period; and Carrieri, Errunza, and
Sarkissian (2007) examines industrial linkages and equity correlations between the US and 16
OECD countries, finding increasing correlations from the 1990s on. Lewis (2007) considers a
U.S. investor’s point-of-view and explores the correlation and volatility to foreign equity mar-
kets, finding increasing correlation but decreasing volatilities. Baele and Inghelbrecht (2009)
estimates a multifactor model for twenty-one developed markets during the period from 1973-
2007, and reports increasing correlations for this time period. This line of research suggests
that for a developed market equity investor investing in other (foreign) developed equity mar-
kets does not make much sense since the miscellaneous developed markets are to dependent
among themselves. Then it makes sense to look for diversification opportunities outside the
developed markets.

The second category is comprised of researchers that have not found increasing correla-
tions or diminishing diversification benefits between developed markets. Among the first in
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this category are King, Sentana, and Wadhwani (1994) also estimating a multifactor model.
Karolyi and Stulz (1996) explores the dependence between the U.S. and Japanese equities and
finding no evidence for the hypothesis that U.S. macroeconomic announcement have an effect
on the U.S. and Japanese equity return correlations; and Brooks and Del Negro (2004) investi-
gates the international diversification benefits of industrial sectors as against the diversification
benefits of countries, finding that industrial sectors are more integrated than countries.

There is much less research to be found regarding bond indices. For example Levy and
Lerman (1988) studied the benefits of international diversification for an US bond holder. Cap-
piello, Engle, and Sheppard (2006) finds asymmetric correlations for equity and bond indices
concluding that diversification effects diminish within both groups for the world markets.

Of particular relevance for this analysis are the integration and diversification benefits be-
tween emerging and developed markets. Several studies have already investigated this: For
example Errunza (1977) considers the general possibilities of emerging markets for interna-
tional diversification benefits as one of the first. Among those who focus on the correlation
are e.g. Bekaert and Harvey (2000) who tests for shifts in correlation, finding that the correla-
tion between emerging markets after the liberalization period are significantly higher. This is
an important finding since increasing correlations between the emerging markets themselves
reduces also the probability of diversification benefits of a portfolio comprised of emerging
and developed markets. Fujii (2005) meanwhile, studies the integration of Latin American
equities with those of the rest of the world using residual cross-correlation function tests find-
ing significant linkages. Carrieri, Errunza, and Hogan (2007) investigates integration between
eight emerging markets for the time period 1977-2000 and detects differences of the degree
of integration. Clacher et al (2006) analyzes the diversification benefits of an US investor
diversifying into twelve emerging markets and finds an improvement of the risk-return re-
lationship. Kuecuek (2009) finds that emerging market debt denominated in local currency
adds significant alpha to a bond portfolio consisting of developed countries. Brunda, Hamann,
Lall (2010) investigates the co-movement in emerging market bond returns and the influence
of external and domestic factors, finding that following the collapse of the Lehman Brothers
the low correlation period between the emerging markets ended. Turgutlu and Ucer (2010)
use a static mixed copula approach to analyze the dependence between emerging and devel-
oped equity indices. Eiling and Gerard (2011) discover highly significant positive time trends
in cross-country correlations between twenty-four developed and thirty-two emerging equity
markets for the period from 1973 to 2009. Chollete, de la Peña, and Lu (2011) documents
asymmetric dependence for Latin American countries and less downside risk for the G5 and
East Asia using several static copulas. Christoffersen et al (2012) uses MVGARCH and mul-
tivariate copulas to find an uptrending correlation between emerging and developed equity
markets. Kenourgios, Samitas, and Paltalidis (2011) estimates dependence between between
the BRIC markets and the developed markets of the UK and the USA for the period 1995-
2006 using a Gaussian regime-switching copula and the AG-DCC model of Cappiello, Engle,
and Sheppard (2006). They find that contagion effects spread from the country where a crisis
originates to all other countries implying significant linkages between all countries. Dimitriou,
Kenourgios, and Simos (2013) investigates contagion effects between the US and BRIC equity
markets using a FIAPARCH-DCC GARCH framework. They find no signs of contagion in
the early stage of the crisis but significant linkages after the collapse of the Lehman Brothers
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bank. Chen, Firth, and Rui (2002) does not directly investigate the dependence but studies the
integration via an error-correction vector autoregressive model finding a cointegration vector
for equity prices. Cointegration, vector error correction analysis, and the AG-DCC model has
been used by Kenourgios and Padhi (2012).They focus on the behaviour of bond and equity
indices between three emerging markets and the US and two global indices and find that equity
indices seem to haver stronger links than bond indices.

Briefly, the already existing literature have not led to an unanimous view concerning diver-
sification benefits of emerging markets. Some researcher found significant linkages between
emerging and developed markets implying only minor diversification benefits. Others showed
the existence of diversification benefits.

This analysis tries to enhance the already existing literature in the following ways: First
of all, the newly developed multivariate Archimedean and dynamic mixture copulas present a
novel view on (tail) dependence in general and hence also on emerging and developed market
dependence. Furthermore, the dependence between emerging and developed markets through
the recent financial crisis is investigated. Since the roots of the crisis are found in the devel-
oped markets it might be interesting to see how the emerging markets react to this situation.
Especially for bond indices only few research in this direction can be found. In addition the
emerging markets are split into advanced and secondary emerging markets allowing to inves-
tigate if economic power and dependence are linked.

Our first working hypothesis is that the advanced emerging markets are fairly well inte-
grated into the (financial) world economy while the secondary emerging markets are still de-
coupled. If this is the case there should be a low dependence between the secondary emerging
and developed markets and a higher dependence between the advanced emerging and devel-
oped markets.

In the following section we concentrate on the analysis of the dependence between the
emerging and developed equity and bond markets. We build six different portfolios wherein
all indices are equal weighted. As in the VaR analysis chapter, all indices are total return
indices and denominated in US$. The first portfolio consists of the developed markets stock
indices. This is the benchmark portfolio for the equity portfolios. The second portfolio is
comprised of the developed markets and the advanced emerging markets stocks. The last stock
portfolio contains the developed market and the secondary emerging market stocks. After the
investigation of the stock indices we explore the behavior of the bond indices. The bond
portfolios are built in the same way as the stock portfolios. This procedure allows me to
analyze the effect the advanced and secondary emerging market indices have on the portfolio
consisting of the developed markets.

The copula estimation method used in the last section was the IFM method. In this section
we try to determine the dependence structure via a goodness-of-fit test. Since the IFM method
has been criticized as unsuitable for this purpose we use the CML method instead. Again,
we estimate AR(p1)-GARCH(1,1) models for all indices and construct standardized residuals
based on the estimated variances. Due to their theoretical construction the models based on
the DCC dynamic dependence need standardized residuals as input. Therefore, we estimate all
models with standardized residuals. To these standardized residuals we apply the generalized
pareto distribution defined in (4.55) with a Gaussian kernel. We appoint 10% of the data to
each tail. The estimation method of the MVGARCH models stays the same as in the previous
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sections. We use Breymann, Dias and Embrechts’s (2003) goodness-of-fit test. We apply the
different statistical measures defined in (4.57) to the generated pseudo-variables. For some
models it is necessary to determine the optimal dynamic structure (DCC, A-DCC, G-DCC, or
AG-DCC). Hence, first we estimate the possible dynamic structures for each model and apply
the goodness-of-fit test to each of these. If the various statistical distance measures prefer
different structures we use the AIC and BIC criterion to determine the best one. Thereafter,
we compare the different MVGARCH and copula models to determine the best fitting one,
again via the goodness-of-fit test.

5.6.1 Stock Portfolios Analysis
First, we will analyze the equity indices. It seems to makes sense to examine whether the new
portfolios exhibit time-varying dependence via the test of Engle and Sheppard (2001). Table
5.6 shows the results. The null hypothesis of no dynamic correlation is rejected in all cases.
The first portfolio investigated thoroughly is the one containing the developed stock indices.

Table 5.6: Engle and Sheppard (2001) Test of Time-Varying Correlation for the Composed
Portfolios.

Portfolio Stat
Developed Stocks + Advanced Emerging Market Stocks 21532.3
Developed Stocks + Secondary Emerging Market Stocks 15056.6
Developed Bonds + Advanced Emerging Market Bonds 17877.1
Developed Bonds + Secondary Emerging Market Bonds 11565.0

Notes to Table: 19.6751 is the respective critical value from a χ2
s+1 distribution, where s = 10.

For the MVGARCH the AG-DCC dynamic structure fits best as can be seen in Table F.1.
Three out of the four statistical distance measures and the AIC criterium favor this dynamic
dependence structure. The A-DCC structure seems to be the best fit for the Gaussian copula.
Only the AD measure suggests the AG-DCC structure as preferable (see table F.7). This is
similar to the results of the AIC and BIC criterion which also preferred the AG-DCC and
A-DCC dynamic structure. The estimation results for the t-copula are found in Table F.18.
Again, the AIC criterion favors the AG-DCC structure while the BIC favors the A-DCC one.
This time however, the statistical measures have a clear favorite, namely the G-DCC dynamic
structure.

Of particular interest is the comparison between the Gaussian and t-copula. Both belong
to the class of elliptical copulas and the (linear) correlation matrix resembles the dependence
of each of the copulas. The t-copula seems to deliver the better fit since all statistical measures
are smaller than in the Gaussian case (see Table 5.7). When taking tail dependence into ac-
count the preferred dynamic structure changes from an asymmetric (A-DCC for the Gaussian
copula) to a symmetric one (G-DCC for the t-copula). This seems quite surprising since both
copulas are symmetric and one might think that they share the same dynamic structure. A
first conclusion is that the best fitting structure of Cappiello, Engle, and Sheppard (2006) is
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related to tail dependence. Figure 5.7 shows the differences in the average correlation of the
Gaussian and the t-copula. The Gaussian copula is estimated with the A-DCC structure and
the t-copula with the G-DCC one according to the best fit. Thus, the average correlation of the
Gaussian copula seems to be lower than the average correlation of the t-copula for the major-
ity of the time. As both are estimated with different dynamic structures we plot the Gaussian
copula with the two different dynamic structure (A-DCC and G-DCC, see Figure5.8). This
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Figure 5.7: Gaussian and t-copula Corre-
lation Developed Stocks. This figure com-
pares the Gaussian (A-DCC) and t-copula
(G-DCC).
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Figure 5.8: Gaussian Copula A-DCC and
G-DCC Dependence Structure. This fig-
ure compares the Gaussian copula with A-
DCC and G-DCC structure.

plot makes it clear that the major difference comes from the chosen dynamic structure and not
from the copula since the time-varying dependence of both copulas with the G-DCC structure
is almost the same.

A further comparison of interest is between the MVGARCH and the Gaussian copula. The
dependence structure of both is Gaussian and the only difference lies in their marginal distri-
butions. When comparing the different statistical measures it is apparent that the Gaussian
copula seems to fit better than the MVGARCH: the log-likelihood value is higher and all dis-
tance measures are smaller for the Gaussian copula. The graphical inspection of Figure 5.9
shows that correlation estimated with the MVGARCH is lower than the one of the Gaussian
copula for the majority of the time. Both are estimated with the A-DCC structure.

Now, we investigate the two multivariate Archimedean copulas, the Clayton and rotated
Clayton copula, whose parameter estimation results can be found in Table F.28. Compared
with other copulas used on the developed stock indices these two do not perform very well and
the multivariate rotated Clayton copula clearly shows the worst results, when looking at the
different goodness-of-fit measures. The first conclusion to be drawn is that the developed eq-
uity indices do not share common features which the time-varying multivariate Archimedean
copulas can capture. However, the discovery that the Clayton copula performs better than the
rotated Clayton copula indicates that the developed stock indices share more dependence in the
left tail than in the right one. Much better results than the multivariate Archimedean copulas-
regarding the goodness-of-fit- show the dynamic mixture copula consisting of a t-copula and
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Figure 5.9: Average Correlation MVGARCH vs. Gaussian Copula Developed Stocks. This
figure shows the average correlation of the MVGARCH and Gaussian copula for the developed
stocks portfolio estimated with the A-DCC structure.

a Clayton copula (see Table F.30 for the parameter estimation results). Since the Clayton cop-
ula performs better than the rotated Clayton copula and the t-copula better than the Gaussian
copula, this is the only mixture copula we estimate for the developed stock indices.

The last models we estimate for each portfolio are the Gaussian- and t-vine copulas. The
results of the goodness-of-fit statistics for the different dynamic structures of the vine copulas
are found in table F.24. In general the A-DCC structure is preferred for both copulas. The t-
vine with the A-DCC structure seems to perform better than the Gaussian vine and every other
model for the developed stock indices. The data-ordering for the bivariate pairs of the vine
copula are based on the unconditional dependence parameters (see Table F.26). Investigating
the different portfolios it can be concluded that the developed stock indices share asymmetric
dependence: the correlation between them increases after negative shocks more than after
positive shocks of the same magnitude.

Now we turn to the composed portfolios. In this part we will only analyze the fit of the
different models. Later on we will try to give the findings an economic interpretation. First we
investigate the portfolio consisting of the advanced emerging7and developed market stocks8.
Again, the models of the Gaussian world, the MVGARCH and the Gaussian copula, all prefer
an asymmetric dependence structure, namely the A-DCC one (see Tables F.2 and F.10). How-
ever the picture is complicated by the fact that both of the measures based on averages (AAD
and AKS) favor the AG-DCC structure. Since only one asymmetric parameter is significant
and the AIC and BIC both prefer A-DCC we choose this as the best fitting one. The t-copula
again yields the best results concerning the different distance measures when estimated with
the symmetric G-DCC structure (see Table F.19). Furthermore, the Clayton copula seems to

7To recall: The advanced emerging markets consists of Brazil (BRA), Hungary (HUN), Mexico (MEX),
Poland (POL), and the Republic of South Africa (RSA)

8To recall: The developed markets consists of Australia (AUS), Denmark (DEN), Sweden (SWE), Italy (ITA),
Japan (JAP), Great Britain (GBR), and the Unites States of America (USA).
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perform better than the rotated Clayton copula and so the data seems to share more depen-
dence in the left tail than in the right tail: see Table F.28 for the parameter estimation results.
Again, the t-Clayton mixture copulas perform better than either the t-copula or the Clayton
copula estimated alone. Parameter estimation results for the mixture copula are found in Table
F.30. When comparing the different vine copulas for the portfolio in Table F.24 it can be seen
that the t-vine with a symmetric dependence structure fits best. This is also the best model
comparing all of them for the portfolio, see again Table 5.7.

The second composed portfolio contains the secondary emerging markets9. This time
all copulas give the best results with a symmetric structure. The elliptical copulas perform
best when estimated with the G-DCC structure related to the different distance measures- this
is shown in Tables F.11 and F.20. To find the best dynamic structure for the MVGARCH
model is again a complicated task: the statistical distance measures choose the AG-DCC
MVGARCH model as the best fitting one. Since only two asymmetric parameter within this
model are significant we choose again the A-DCC structure as the better fit (see Table F.3).
The rotated Clayton copula again performs worse than the Clayton copula and has the worst
overall performance. The t-vine copula seems to fit best overall when accounting for the
different statistical distance measures in Table 5.7. The second best performance comes from
the t-Clayton (T-CL) mixture copula: estimation results are found in Table F.31.

At this point we want to take a closer look at the Dynamic Mixture model and display
some of its properties. Figure 5.10 shows the time-varying weights and the Clayton copula
in the dynamic mixture t-Clayton copula. Taking a look at the figure it can be seen that
the weight of the respective copula remains relatively constant through time and the t-copula
clearly dominates with a weight > 90% all of the time. The lower part of the figure shows
the dynamic multivariate Clayton copula in the mixture structure: after the default of Lehman
Brothers the dependence increases dramatically. Thus, although the weight stays the same
the increased dependence of the Clayton copula parameter leads to a different dependence
structure at that point in time. The analysis of tail dependence above showed that when tail
dependence is taken into account the preferred dynamic structure is a symmetric one. The
dynamic mixture shows that although the symmetric G-DCC t-copula fits better than either an
A-DCC or AG-DCC t-copula there still might be some asymmetries in the data. Within the
mixture structure these are ‘carried’ by the Clayton copula.

A further interesting comparison is between the multivariate Clayton copula and the Clay-
ton copula in the mixing structure. Figure 5.11 shows the multivariate dynamic Clayton copula.
Compared to the Clayton copula in the mixing structure the time-varying dependence behav-
ior of the Clayton copula overall seems to be similar overall but the dependence level is much
lower. This can be explained by the fact that within the mixing structure the t-copula has much
more weight than the Clayton copula and so the Clayton copula in the mixing structure can
concentrate on the events with dependence in the left tail. In contrast the multivariate Clayton
copula (estimated without a mixing structure) has to capture all events. Thus a mixing struc-
ture seems preferable especially to an Archimedean copula for multivariate data sets. Only
within the mixing structure the multivariate Archimedean copula can play out its strength.

9To recall: The secondary emerging markets consists of Chile (CHI), Czech Republic (CZE), India (IND),
Indonesia (INA), Thailand (THA).
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Figure 5.10: t-Clayton Mixture Copula Secondary and Developed Market Stocks. This figure
shows the dynamic t-Clayton mixture copula for the portfolio consisting of the Secondary
Emerging Market and Developed Market Stocks. The upper panel shows the weights of the
respective copula in the mixing structure. The lower panel shows the dependence parameter of
the Clayton copula in the mixing structure. The vertical line shows the default of the Lehman
Brothers bank.
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Figure 5.11: Dynamic Clayton Copula Secondary and Developed Market Stocks. This figure
shows the multivariate dynamic Clayton copula for the portfolio consisting of the Secondary
Emerging Market and Developed Market Stocks. The vertical line shows the default of the
Lehman Brothers bank.
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5.6.2 Bond Portfolios Analysis
In the next section we do the same analysis as in the previous section for portfolios composed
of bond indices. Initially, we investigate the portfolio consisting of developed market bonds.
Table 5.8 summarizes the results of the goodness-of-fit tests. For the developed bond indices,
the t-vine copula with a symmetric dynamic dependence structure is clearly the best fitting
one: Table F.25 shows the estimation results. All statistical measures favor this copula over all
other copulas. This time only the MVGARCH model prefers an asymmetric structure while
all other models favor a symmetric one. Parameter estimation results for the Gaussian and t-
copula can be found in Tables F.12 and F.21. Interestingly, this time the rotated Clayton copula
performs better than the Clayton copula (see Table F.29). This implies that the developed
bond indices share more joint negative than positive events. Until now the AG-DCC structure
defined in (3.12) has incorporated only asymmetric negative dependence. The finding that the
rotated Clayton copula fits better than the Clayton copula implies possible positive asymmetric
dependence. In this case nt = N[ηtηtηt < 0] ◦ηηη t should be redefined to nt = N[ηtηtηt > 0] ◦ηηη t .
Table F.13 shows the parameter estimation results. Interestingly, for the A-DCC structure
the asymmetric parameter is now significant and the different statistical distance measures
indicate a better fit of the positive asymmetries.
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Figure 5.12: Dynamic Clayton and Rotated Clayton Copula Developed Bonds. This figure
shows the dependence parameter of the dynamic Clayton (θCL) and Rotated Clayton copula
(θ RCL) for the Developed Bond Indices. The vertical line shows the default of the Lehman
Brothers bank.

Figure 5.12 compares the Clayton and rotated Clayton copula for the developed bond in-
dices. Note that the dependence parameter does not have to be mapped into Kendall’s tau
because both copulas share the same tau. Most models point in the direction of symmetric
returns and therefore it is not a surprise that both seem to follow almost similar patterns. This
can also be seen by the different statistical measures since they are pretty close together for
both copulas. Again, the t-copula with a symmetric dynamic structure (G-DCC) performs
much better than the two elliptical models from the Gaussian world. The data sample esti-
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mated with the Gaussian vine copula favors the A-DCC structure and performs better than the
multivariate Gaussian copula.

After the investigation of the developed bond indices we turn now to the analysis of the
composed portfolios. The first composed portfolio consists of the advanced emerging market
and developed market bond indices.

This time the two models from the Gaussian world favor different dynamic structures.
While the MVGARCH model prefers a symmetric one (G-DCC) the Gaussian copula yields
the best fit when estimated with the A-DCC structure. The t-copula favors the G-DCC struc-
ture (see Tables F.16 and F.22 for the parameter estimation results). This time the Clayton
copula displays a better fit than the rotated Clayton copula. Again the t-vine copula with a
symmetric structure performs best overall when looking at the different statistical measures.
Three out of four measures choose the t-vine over all other models. Only the AD measure
favors the t-Clayton mixture copula. The AIC criterion prefers the t-copula while the BIC
criterion prefers the t-Clayton mixture copula. This implies that the data sample shows more
negative joint dependence than positive joint dependence.

The last portfolio consists of the secondary emerging markets and the developed bond
indices. The MVGARCH model favors the G-DCC dynamic structure while the Gaussian
copula favors the asymmetric scalar one (A-DCC). The t-copula with the G-DCC structure
again fits better than both models from the Gaussian world. The Clayton copula performs
better than the rotated Clayton and the t-vine copula better than the Gaussian vine copula.
Two out of four statistical distance measures choose the t-vine copula as the best fitting one.
The other two distance measures favor the t-Clayton dynamic mixture copula. Since the AIC
criterion also favors this copula we conclude that the t-Clayton dynamic mixture copula is the
best fitting one.

5.6.3 Economic Analysis
Having determined the most adequate model via the goodness-of-fit test for all portfolios
we will now try to give the results some economic interpretation. The data sample ranges
from 2003 to 2010 and so the recent financial crisis is incorporated. It might be especially
interesting to see what kind of dependence the emerging markets and the developed markets
show in this period.

In the following we will analyze the different portfolios and their dependence pattern es-
timated by the miscellaneous models. Based on these results we will try to determine the
degree of financial integration, which also implies possible diversification benefits. Since the
financial integration is measured against a portfolio composed of developed assets we will
start with a short analysis of the developed markets; specifically with the equity indices. Ac-
cording to the proposed goodness-of-fit test the best fitting copula is the t-vine copula with an
asymmetric dynamic structure. By the construction of the asymmetric dependence structure
this implies that the developed stock indices tend to fall together in bear markets. Since espe-
cially in downward markets diversification should take effect this kind of behavior is not what
a portfolio manager is looking for. The same conclusion can be draw from a comparison of the
multivariate Archimedean copulas. Although the overall fit is not very good, the multivariate
Clayton copula performs better than the multivariate rotated Clayton copula. This gives fur-
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ther indication of greater dependence in the left tail than in the right : that is to say (extreme)
joint negative events tend to occur more often than (extreme) joint positive events.

Another number that characterizes the risk of the portfolio is the d.o.f. of the multivariate
t-copula. The lower the d.o.f. parameter, the more fat-tailed the data sample is resulting in
a greater extremity of events shown. A portfolio manager (and in particular a risk manager)
might prefer a portfolio where the d.o.f. parameter is high relative to another portfolio with
the same risk-return relationship. All descriptive statistics for the different equally weighted
portfolios can be found in Table B.3. The d.o.f. parameter of the t-copula for the benchmark
portfolio composed of developed stocks is ν = 20.7376. Briefly: if the best fitting copula for
the developed stock indices is a t-vine with an asymmetric dynamic dependence structure this
indicates fairly strong asymmetries.

We will now investigate the portfolio composed of the developed and advanced emerging
market indices in order to attempt to identify what kind of benefits the addition of the ad-
vanced emerging market stocks- if any- generates. Firstly, we will take a look at the advanced
emerging market stock indices estimated with a Gaussian copula. This is the only copula we
estimate for this portfolio because the only purpose of this analysis is a short characteriza-
tion of the dependence behavior of the advanced emerging stock indices. Different statistical
distance measures prefer either the A-DCC of the AG-DCC structure (see Table F.8) with
both structures pointing to the direction that the correlation between the advanced emerging
markets increases during bear markets.

Now we come back to the main analysis, the investigation of the composed portfolio. The
first composed portfolio consists of the advanced emerging and developed market stock in-
dices. The best fitting copula for this portfolio is the t-vine copula but this time with a sym-
metric dynamic dependence structure. In contrast to the portfolio composed of the developed
stocks, this indicates a symmetric reaction to the arrival of good and bad news. This, in turn,
means that the markets move upwards and downwards together to the same extent. In contrast,
the developed stock indices seem to move together more during downward moves than during
upward ones. Thus, this model points in the direction of diversification during bear markets
when adding advanced emerging markets to a portfolio of developed markets. When looking
at the tail dependence the picture is unclear: In comparing the Clayton and rotated Clayton
copula it can be seen that the Clayton copula again performs better than the rotated Clayton
copula (see table 5.7). Figure 5.13 compares the time-varying Clayton dependence parame-
ters and shows that the variation of the dependence parameters for both portfolios is almost
the same. Sometimes the composed portfolio seems to share more left tail dependence than
the portfolio consisting only of the developed markets. Thus, from a (left) tail dependence
view, the advanced emerging and developed stock indices seem to be integrated, attenuating
diversification benefits.

Since the best fitting copula- by the different statistical distance measures- is a vine copula
and these kind of copulas are a multivariate distribution cascaded into several pair copulas
it makes sense to take a look at the results of the multivariate t-copula in Table F.18 for the
developed stocks and Table F.19 for the portfolio consisting of the advanced emerging market
and developed stocks. The asymmetric parameter of the A-DCC dynamic structure for the
developed stock indices portfolio (0.0127) is much higher than for the advanced emerging
and developed market indices portfolio (0.0089). This might explain why- in the case of the
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Figure 5.13: Dynamic Clayton Copula Stocks. This figure shows the dependence parameter
of the Clayton copula for the stock indices portfolios. The vertical line shows the default of
the Lehman Brothers bank.

developed stocks portfolio- the t-vine copula performs better with an A-DCC structure and
for the composed portfolio with the DCC structure. The d.o.f. parameter of the t-copula is
ν = 20.4885 almost the same as for the developed stock market indices portfolio.

The last stock portfolio is composed of the secondary emerging market and developed mar-
ket stock indices. Firstly, we will take a look at the estimation results of the Gaussian copula
for the secondary emerging markets indices. The different statistical measures prefer either
the A-DCC or the AG-DCC structure, see Table F.9. For the portfolio consisting of the sec-
ondary emerging and developed stock indices again the t-vine copula with the DCC structure
again proves to be the best fitting dependence model. Only the MVGARCH model prefers
an asymmetric structure (AG-DCC) clearly indicating that the secondary emerging markets
display a different behavior to the advanced emerging markets when added to a portfolio of
developed stock indices. Figure 5.13 seems to prove this for tail dependence: a graphical
inspection reveals that the time-varying dependence parameter of the Clayton copula for the
portfolio of the secondary emerging markets is below the other two for the majority of the
time. This implies that the negative returns of the secondary emerging market and developed
market stock indices do not coincide as frequently as those of the developed indices alone, nor
the portfolio composed of the advanced emerging market and developed indices.

Figure 5.14(a) shows the average correlation for the stock portfolios estimated with the
t-copula the best fitting of the elliptical copulas. It reaffirms our findings thus far with the
dependence level of the portfolio containing the secondary emerging markets stocks at a much
lower level than the other two. However, it has to be mentioned that shortly after the Lehman
Brothers crash the dependence of all portfolios increased. In addition, there seems to be an
upward trend for all portfolios until the Lehman default. Returning to the secondary and
developed stock indices, the d.o.f. parameter of the t-copula for the last stock portfolio is
ν = 23.3114: slightly higher than for the other two portfolios. Thus, another feature of the
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(b) Average Tail Dependence

Figure 5.14: Average Correlation and Tail Dependence Stocks. This figure shows the average
bivariate correlation and the average bivariate tail coefficient for the stock portfolios estimated
with the t-copula. The vertical line shows the default of the Lehman Brothers bank.

portfolio is that both positive and negative returns are smaller.
Figure 5.14(b) shows the bivariate average tail dependence of the t-copula for the stock

indices. After the default of the Lehman Brothers bank, the tail dependence of the devel-
oped markets and the portfolio consisting of the advanced emerging and developed markets
increases more than the average tail dependence of the portfolio composed of the secondary
emerging and developed market stocks. After the default the tail dependence between the
advanced emerging and developed stock indices converges to almost the same level. Thus,
to return to the issue of financial integration of stock markets, it seems that the secondary
emerging markets are less integrated into the developed markets than the advanced emerging
markets. The advanced emerging stock indices display very similar behavior to the developed
stock indices. In general, there seems to be an upward trend in the dependence for all port-
folios. This kind of behavior applies to left tail dependence, the average correlation and the
average t-copula tail dependence coefficient.

The next task is to determine the financial integration and diversification benefits of the
different bond indices. Again, we first analyze the benchmark portfolio- this time illustrated
by the developed bond indices. The best fitting copula is the t-vine with a symmetric dynamic
structure (DCC, see Table 5.8). Only the MVGARCH and the Gaussian-vine copula favor an
asymmetric dependence structure. The A-DCC dependence parameter for the MVGARCH is
very low and not significant (see Table F.4). Thus, although all statistical distance measures fa-
vor the A-DCC structure, in this case it might prove sensible to choose the more parsimonious
DCC models as the best fitting one for the MVGARCH. Figure 5.15(a) shows the time-varying
dependence parameter of the rotated Clayton copula. It can be seen that the developed bond
indices share a considerably larger tail dependence than the other two portfolios. Interestingly,
there seems to be a break after the default of the Lehman Brothers bank, with dependence
continuing on a much lower and smoother level. The dependence parameter of the Clayton
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Figure 5.15: Dynamic Clayton and Rotated Clayton Copula Bonds. This figure shows the
rotated Clayton and Clayton time-varying dependence parameter for the bond portfolios. The
vertical line shows the default of the Lehman Brothers bank.

has a maximum value of max(θCL) = 1.4235 and the maximum value of the rotated Clayton
parameter is max(θ RCL) = 1.5996, indicating stronger right tail than left tail dependence. A
graphical inspection of Figure 5.15 seems to confirm that the peaks of the rotated Clayton
copula seems to be marginally higher than the one for the Clayton copula. After investigating
the positive joint tail dependence it is only natural to compare the joint negative dependence
of the portfolios in Figure 5.15(b). Since the statistical measures indicated that the rotated
and Clayton copula exhibit almost the same fit it is no surprise that the dependence parame-
ter for the Clayton copula and the developed bond portfolio is also higher than for the other
two portfolios. The figure also reveals that the dependence parameter of the Clayton copula
is more volatile than that of the rotated Clayton copula. However, there seems to be a break
after the Lehman Brothers crash for the Clayton copula, too, although this is not as clear as
in the case of the rotated Clayton copula. In summary, the comparison of the Clayton and
rotated Clayton- and the Gaussian copula with negative and positive asymmetries- both point
to the conclusion that the developed bond indices seem to share more joint positive than joint
negative dependence.

Now, we turn our focus to the first combined bond portfolio, composed of the advanced
emerging market and developed market bonds. The best fitting model is again the t-vine
copula with the DCC structure, with three out of the four statistical measures choosing this
model. In second place is the t-Clayton dynamic mixture copula, chosen by the BIC criterion
and the Anderson-Darling (AD) statistic. This time the MVGARCH, Gaussian copula and the
Gaussian vine copula favor an asymmetric dependence structure, whereas for the developed
bond portfolio only the MVGARCH and Gaussian vine do so. This suggests that the advanced
emerging market bond indices tend to fall together with the developed market bonds. This is
confirmed by the fact that the Clayton copula fits the sample better than the rotated Clayton
copula.

When comparing the estimation results of the A-DCC Gaussian copula it is striking that
the asymmetric parameter for the advanced emerging market bond portfolio is significant: it
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is significantly higher than for the developed bond portfolio (parameter estimation results can
be found in table F.12 and F.14). Since the A-DCC parameter of the portfolio consisting of
advanced emerging and developed bond indices is also significant it can be concluded that
both seem to move together in bear markets.

Figure 5.16(a) shows the average correlation estimated with the t-copula for the bond
index portfolios. Again, we choose this copula because it yields the best fit of the elliptical
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Figure 5.16: Average Correlation and Tail Dependence Bonds. This figure shows the average
bivariate correlation and the average bivariate tail coefficient for the bond portfolios estimated
with the t-copula. The vertical line shows the default of the Lehman Brothers bank.

copulas. Before the Lehman crash the average correlation of the developed bond indices is
permanently higher than for the other two portfolios. Shortly after the default however, there
is a drop and the average correlation continues on a lower level. The tail dependence of the
(rotated) Clayton copula displays the same pattern. Following the crash the portfolio of the
developed and advanced emerging bond indices converges to the average correlation level of
the developed bond indices. This implies that the bond markets of the advanced emerging
economies became more integrated into the world economy after the Lehman default. Figure
5.16(b) shows the average bivariate tail dependence coefficient of the bond portfolios. First of
all, the figure confirms the decreasing dependence of the developed bond indices for the tail
dependence, though there is no sharp drop after the Lehman default. It is also apparent that the
average tail dependence of the portfolio composed of the advanced emerging and developed
markets is constantly below the one of the developed markets- there is no upward trend even
after the Lehman default.

The last portfolio we investigate consists of the secondary emerging market and developed
market bonds. For this portfolio the t-Clayton mixture copula seems to fit the data sample
best. The two log-likelihood based criteria (AIC and BIC), the AD, and the KS distance
measures all favor this copula whilst the AAD and AKS criteria prefer the t-vine copula with a
symmetric dynamic dependence structure (DCC). Again, the Clayton copula performs slightly
better than the rotated Clayton copula for three out of the four statistical distance measures.
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Since all statistical distance measures between these two copulas are very close together, it
might be concluded that the joint positive and joint negative events occur almost to the same
degree. Of the copulas with possible different dependence structures only the Gaussian and
Gaussian-vine copula favor an asymmetric dependence structure.

Table F.15 shows the parameter estimation results for secondary emerging market bonds
estimated with a Gaussian copula. Here the asymmetric parameter of the A-DCC structure
is not significant, it’s low level indicating that the secondary emerging market bonds do not
move together during bear markets. Figure 5.16(a) confirms that the average correlation of
the secondary emerging bond markets with the developed markets is much lower than that
of the advanced emerging and the developed markets. A look at the bivariate average tail
dependence coefficient of the t-copula in figure 5.16(b) supports this from a tail dependence
view, although the difference is relatively small. A graphical inspection of figures 5.15(b)
and 5.15(a) meanwhile reveals that the secondary emerging market bonds share fewer joint
positive and less joint negative events with the developed bond indices than the advanced
emerging markets.

Taking all information accumulated so far into account, it can be concluded that the sec-
ondary emerging market bonds are less integrated than the advanced emerging market bonds
with all models suggesting this is the case. In contrast to the stock portfolios, the average cor-
relation of the bond portfolios does not seem to increase during the time period. Furthermore,
for the majority of the time, the three portfolios display different kinds of behavior, whereas
the stock portfolios share the same behavior for the majority of the time- only on a different
level. In fact, the average correlation and average tail dependence for the bond portfolios
seems to decrease up until the default of the Lehman Brothers bank. Thereafter, the average
correlation between the advanced emerging and the developed bond indices increases until
they are on the same level. The bivariate tail dependence between these two increases too,
although not as considerably as the average correlation.

It is also important to consider possible diversification benefits from the level of financial
integration. The comparison of the multivariate Archimedean copulas shows a better fit of
the rotated Clayton copula with regards to developed bond indices portfolio. The Gaussian
copula with positive asymmetries supports these results. When mixed with emerging market
bonds the Clayton copula is more appropriate, implying that the portfolios share more joint
negative than positive events. Since the dependence has been altered through the addition
of the emerging markets it can be concluded that they are not integrated into the developed
financial markets. However it is important to note that from the persepctive of a portfolio
manager the increased occurrence of joint negative events might have had a negative impact
on the portfolio’s characteristics.



Chapter 6

Conclusions

Coping with multivariate dependence is a major issue in portfolio and risk management. For a
long time Pearson’s correlation coefficient dominated the field. Recent research showed that (i)
Pearson’s correlation coefficient is not suitable for financial time series as a result of its statisti-
cal properties, (ii) dependence varies over time and (iii) dependence of financial time series of-
ten shows asymmetries, i.e. the dependence increases during bear markets. The main purpose
of this analysis is the development and comparison of different multivariate time-varying de-
pendence models that take these features into account. The multivariate dependence concepts
introduced can be sub-classified into multivariate GARCH and copulas, with the copulas then
grouped into elliptical, Archimedean and D-vine copulas. The risk management requirements
are taken care of by a comparison of Value-at-Risk estimates and the portfolio management
requirements with an in-depth dependence structure analysis of different portfolios.

Copulas used for estimating time-varying dependence of more than two dimensions are
dominated by the elliptical copulas which means analysts much accept their known limitations
to symmetrical dependence. Time-varying Archimedean copulas are able to capture asymmet-
ric dependence but research in this area is dominated by bivariate analysis. Of most practical
relevance for portfolio and risk managers are the cases concerned with more than two dimen-
sions. To allow for time-varying dependence analysis with multivariate Archimedean copulas
I have proposed in co-operation with Valentin Braun a new dependence structure. Building on
the multivariate time-varying Archimedean copulas, time-varying dynamic mixture copulas
are introduced: these combine the features of Elliptical and Archimedean copulas. Addition-
ally, a new modelling scheme for the time-varying weights of the copulas in the mixture is
proposed. To take the elliptical copulas to time-varying asymmetric dependence, a model
structure originally proposed for multivariate GARCH model is applied to them. A scalar
version of this dependence structure is applied to D-vine copulas.

After these theoretical considerations the focus is turned to empirical applications of the
multivariate models introduced. First of all, the ability to estimate the Value-at-Risk is tested.
Four different but equally weighted portfolios of different asset classes and countries are cre-
ated. The countries are sub-divided into developed and emerging countries and the asset
classes into equity and bond indices. This gives a broad range of different portfolio char-
acteristics and raises the question as to whether there is single, superior risk model for all
portfolios or if the different portfolio characteristics require different risk models. The VaR-
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backtest sample includes the recent financial crisis- with the default of the Lehman Brothers
bank- and thus it is possible to compare the risk behavior of emerging and developed markets
during the crisis. To justify the use of parametric models the non-parametric historical simu-
lation method acts as a benchmark model. The comparison of different VaR tests shows that
the two parametric model classes differ in their results.

In general, the different copula models showed only minor differences although they depict
quite different dependence structures. For the developed stocks portfolio the Gaussian copula
seems to have the best overall performance, although the multivariate GARCH model gives a
superior result for the 99% confidence level VaR. All parametric models but the Delta-Normal
method overestimate the VaR of the developed bond indices portfolio for all confidence levels
by a considerable amount: this might be through misspecification of the marginals. Several
copulas show similar performance for the emerging market stocks portfolio, although the re-
sults of the rotated Clayton D-vine copula suggest that it outperforms the other models slightly.
The MVGARCH displays a good VaR estimation overall performance for the emerging market
bond portfolio. For all portfolios bar the developed bond indices, the parametric risk models
outperform the historical simulation method: devoting time and money to the development
of parametric models would therefore seem to make sense. The main result is that no model
displays a superior performance for all portfolios and VaR confidence levels. In fact, the risk
manager should clarify which level of risk is most important to him and thereafter decide
which model suits his risk needs and the portfolio characteristic best.

The second empirical section of this analysis is devoted to an in-depth analysis of the
dependence structure between emerging and developed markets. This is guided by the con-
sideration that emerging markets are not fully integrated into the developed financial markets
and therefore turn out to be useful diversifying a portfolio of developed countries. A further
point to note is that there are differences in the economic development of emerging markets:
some already exhibit the growth levels of the developed countries whilst others remain such
levels of growth. Therefore, emerging equity and bond markets are subdivided into advanced
and secondary emerging markets. The latter resemble countries that are one level below the
economic development of the advanced emerging markets. The dependence structure analysis
also includes the findings of the best-fitting model for each portfolio via a goodness-of-fit test.

The analysis of all possible dependence models results in the finding that the secondary
emerging markets are less integrated into the developed markets than the advanced emerging
markets. This applies to the equity as well as bond indices. However, the equity and bond
portfolios display quite different behaviors through time: the average correlation and left tail
dependence seems to increase for all stock portfolios over time. Furthermore, the behavior
of the two mixed portfolios frequently resembles the behavior of the developed stocks port-
folio, only on different dependence levels. In contrast, left and right tail dependence for the
developed bond indices decreases until the default of the Lehman Brothers bank. The Lehman
crash seems to mark a structural break. After the default, left and right tail dependence of the
developed bond indices remains continuous on a lower level. Both mixed portfolios perma-
nently display a much lower tail dependence at almost the same level. After the default of
the Lehman Brothers bank, the average correlation between the advanced emerging and the
developed bond indices converge to the same level, while the average correlation between the
secondary emerging and developed indices continuous on a much lower level. The goodness-
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of-fit test reveals that the time-varying D-vine t-copula exhibits the best fit for most portfolios.
For one portfolio the newly developed t-Clayton dynamic mixture copula fits best. The worst
fit across all portfolios comes from the multivariate time-varying Archimedean copulas. These
copulas describe the dependence structure only through one parameter and it is likely that fi-
nancial time series do not show enough common features to be described through a single
dependence parameter. Nevertheless, they are useful in highlighting the time-varying tail de-
pendence. For example the comparison of the Clayton and rotated Clayton copula for the
developed bond shows that the developed bond indices exhibit more dependence in the right
than in the left tail. This is an important finding for the use of diversification benefits since in
the case of bond indices the addition of the emerging market indices changes the predominant
right tail dependence to a left tail one.

Future research following this line might apply the newly developed time-varying depen-
dence structure to copulas other than Archimedean copulas, potentially circumventing the
disadvantage of describing the whole dependence through a single parameter. Furthermore,
it would seem that further research on multivariate tail dependence would be fruitful. The
goodness-of-fit section shows that the dynamic mixture copulas seem to be a promising ap-
proach displaying dependence. Since several more multivariate copulas other than those intro-
duced in this research exist it might be useful to mix other Archimedean copulas or more than
two copulas at a time. The analysis also shows that time-varying D-vine copulas are a useful
tool to analyze financial time series: it might also be promising to mix two or more of these.
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Figure A.1: Developed Bond Indices Characteristics. This figure shows AUS, DEN, SWE,
ITA, JAP, UK, and USA Bond Characteristics.
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Figure A.2: Developed Stock Indices Characteristics. This figure shows AUS, DEN, SWE,
ITA, JAP, UK, and USA Stock Characteristics.
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Figure A.3: Emerging Bond Indices Characteristics. This figure shows BRA, HUN, MEX,
POL, RSA, CHI, CZE, IND, INA, and THA Bond Characteristics.
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Figure A.4: Emerging Stock Indices Characteristics. This figure shows BRA, HUN, MEX,
POL, RSA, CHI, CZE, IND, INA, and THA Stock Characteristics.



Appendix B

Descriptive Statistics

Table B.1: Descriptive Statistics Bonds.

Asset Min Max Annualized Annualized Kurtosis Skewness JB
Return Return Mean Return Volatility

Advanced Emerging Markets
BRA -0.1048 0.0857 0.1414 0.1818 15.6840 -0.8587 12465
HUN -0.1152 0.0894 0.0614 0.2135 12.2443 -0.5743 6602
MEX -0.0764 0.0538 0.0570 0.1376 14.9295 -0.7565 11002
POL -0.0947 0.0767 0.0689 0.1739 11.5303 -0.4910 5610
RSA -0.1138 0.0741 0.0739 0.2166 7.1795 -0.4355 1387

Secondary Emerging Markets
CHI -0.0454 0.0421 0.0854 0.1138 6.8715 -0.3010 1167
CZE -0.0660 0.0613 0.0782 0.1407 8.6259 -0.0073 2408
IND -0.0502 0.0365 0.0475 0.0838 12.7805 -0.0534 7364
INA -0.1874 0.1060 0.0999 0.1834 58.4229 -2.1669 23513
THA -0.0363 0.0248 0.0686 0.0664 11.5614 -0.3604 5616

Developed Markets
AUS -0.0883 0.0701 0.0812 0.1525 16.6034 -0.9106 14332
DEN -0.0371 0.0567 0.0590 0.1108 8.1187 0.2886 2019
SWE -0.0431 0.0705 0.0581 0.1363 8.0959 0.4353 2033
ITA -0.0418 0.0548 0.0588 0.1170 7.0360 0.1421 1245
JAP -0.0318 0.0502 0.0495 0.1152 7.2314 0.5713 1461
GBR -0.0781 0.0471 0.0425 0.1202 11.8293 -0.5655 6028
USA -0.0196 0.0212 0.0427 0.0522 5.5064 0.0007 477

Notes to Table: This table shows summary statistics for daily bond returns. JB denotes the test statistic of the Jarque-Bera test (critical
value=5.9606). The annualized volatility is based on the sample variance.
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Table B.2: Descriptive Statistics Stocks.

Asset Min Max Annualized Annualized Kurt Skew JB
Return Return Mean Return Volatility

Advanced Emerging Markets
BRA -0.1832 0.2263 0.1596 0.4000 12.8131 -0.2051 7339
HUN -0.2035 0.2031 0.0845 0.4127 13.1874 0.0271 7896
MEX -0.1090 0.1539 0.1162 0.2925 10.4417 -0.0679 4214
POL -0.2040 0.1423 0.0952 0.3605 10.1189 -0.4584 3919
RSA -0.1357 0.1235 0.1136 0.3273 8.0642 -0.3263 1983

Secondary Emerging Markets
CHI -0.1162 0.2215 0.1342 0.2435 32.1645 0.6672 64849
CZE -0.1675 0.1998 0.1299 0.3305 19.7189 -0.0281 21267
INA -0.1595 0.1949 0.1503 0.3241 13.2630 -0.3613 8054
IND -0.1458 0.1504 0.1600 0.3368 9.8333 -0.3904 3599
THA -0.0821 0.0823 0.0615 0.2561 6.0098 -0.2325 705

Developed Markets
AUS -0.1597 0.1630 0.1019 0.2952 15.0768 -0.7800 11282
DEN -0.1351 0.1446 0.1110 0.2574 14.1861 -0.1971 9532
SWE -0.1256 0.1405 0.1034 0.3198 9.4659 0.0604 3182
ITA -0.0968 0.1380 0.0064 0.2546 12.5227 -0.0152 6899
JAP -0.1122 0.1311 0.0593 0.2547 10.0835 -0.2982 3844.6
GBR -0.1031 0.1071 0.0391 0.2245 11.5291 -0.0444 5535
USA -0.0947 0.1042 0.0255 0.2150 14.1638 -0.3890 9524

Notes to Table: This table shows summary statistics for daily stock returns. JB denotes the test statistic of the Jarque-Bera test (critical
value=5.9606). The annualized volatility is based on the sample variance.

Table B.3: Descriptive Statistics Portfolios.

Asset Min Max Annualized Annualized Kurtosis Skewness JB
Return Return Mean Return Volatility

Dev Stocks -0.0874 0.12603 0.0771 0.2029 16.5211 -0.2262 13925.1
EM Adv Stocks -0.1311 0.1565 0.1257 0.2997 12.8311 -0.1769 7363.0
EM Sec Stocks -0.1007 0.1331 0.1396 0.2180 14.8435 -0.6583 10798.1
EM Adv Dev Stocks -0.0990 0.1389 0.1008 0.2344 15.3167 -0.1739 11551.2
EM Sec Dev Stocks -0.0930 0.1290 0.1073 0.1980 17.5171 -0.4867 16106.4
Dev Bonds -0.0257 0.0467 0.0583 0.0865 8.1573 0.3388 2058.6
EM Adv Bonds -0.0699 0.0652 0.0874 0.1478 12.0769 -0.4202 6322.2
EM Sec Bonds -0.0284 0.0273 0.0849 0.0656 10.1983 -0.3604 3981.8
EM Adv Dev Bonds -0.0347 0.0434 0.0722 0.0999 8.4309 -0.0052 2244.0
EM Sec Dev Bonds -0.0266 0.0373 0.0681 0.0717 9.4235 0.2513 3158.5

Notes to Table: This table shows summary statistics for equal weighted portfolios. JB denotes the test statistic of the Jarque-Bera test (critical
value=5.9606). The annualized volatility is based on the sample variance.
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Figure D.1: Z-plots Developed Market Bonds. This figure shwos Diebold, Gunther, and Tay
(1998) z-plots developed market bonds.
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Figure D.2: Z-plots Developed Market Stocks. This figure shows Diebold, Gunther, and Tay
(1998) z-plots developed market stocks.
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Figure D.3: Z-plots Emerging Market Stocks. This figure shows Diebold, Gunther, and Tay
(1998) z-plots emerging market stocks.
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Figure D.4: Z-plots Emerging Market Bonds. This figure shows Diebold, Gunther, and Tay
(1998) z-plots emerging market bonds.



Appendix E

Estimation Results Multivariate Models
VaR Analysis

Table E.1: DCC MVGARCH Developed Market Stocks (VaR Analysis).

a2
i b2

i a2
i g2

i b2
i

AUS 0.0099* 0.9813* 0.0068 0.0070* 0.9810*
DEN 0.0238 0.9400* 0.0167 0.0254* 0.9318*
SWE 0.0249 0.9391* 0.0135 0.0271 0.9371*
ITA 0.0241* 0.9478* 0.0179* 0.0218 0.9382*
JPN 0.0068 0.9898* 0.0078 0.0018 0.9879*
GBR 0.0298* 0.9358* 0.0156* 0.0304* 0.9376*
USA 0.0046* 0.9834* 0.0037 0.0014 0.9819*

Scalar Model 0.0133* 0.9695* 0.0104* 0.0086* 0.9661*
Log-l BIC AIC

DCC 40988.0 -81961.0 -81972.0
A-DCC 40995.2 -81967.9 -81984.5
G-DCC 41011.6 -81918.1 -81995.2

AG-DCC 41026.0 -81894.3 -82010.0

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC MVGARCH models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table E.2: DCC MVGARCH Developed Market Bonds (VaR Analysis).

a2
i b2

i a2
i g2

i b2
i

AUS 0.0235* 0.9718* 0.0246* 0.0000 0.9704*
DEN 0.0200* 0.9783* 0.0214* 0.0002 0.9763*
SWE 0.0208* 0.9762* 0.0216* 0.0028 0.9747*
ITA 0.0213* 0.9770* 0.0226* 0.0005 0.9752*
JPN 0.0258* 0.9653* 0.0253* 0.0011 0.9656*
GBR 0.0171* 0.9791* 0.0178* 0.0000 0.9782*
USA 0.0093* 0.9896* 0.0097* 0.0013 0.9881*

Scalar Model 0.0183* 0.9797* 0.0183* 0.0001 0.9798*
Log-l BIC AIC

DCC 53149.3 -106283.6 -106294.6
A-DCC 53149.3 -106276.1 -106292.6
G-DCC 53176.8 -106248.6 -106325.7

AG-DCC 53187.9 -106218.1 -106333.8

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC MVGARCH models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.

Table E.3: DCC MVGARCH Emerging Market Stocks.

a2
i b2

i a2
i g2

i b2
i

BRA 0.0200 0.9659* 0.0200 0.0063 0.9604*
HUN 0.0207 0.9692* 0.0170 0.0133* 0.9635*
MEX 0.0142 0.9757* 0.0127 0.0025 0.9785*
POL 0.0121 0.9803* 0.0085 0.0185 0.9784*
RSA 0.0092* 0.9859* 0.0079 0.0109 0.9772*

Scalar Model 0.0144* 0.9759* 0.0115* 0.0077 0.9747*
Log-l BIC AIC

DCC 25535.5 -51055.9 -51067.0
A-DCC 25414.5 -51058.4 -51075.0
G-DCC 25539.3 -51003.5 -51058.6

AG-DCC 25546.7 -50980.8 -51063.4

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC MVGARCH models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.

Table E.4: DCC MVGARCH Advanced Emerging Market Bonds (VaR Analysis).

a2
i b2

i a2
i g2

i b2
i

BRA 0.0238 0.9550* 0.0195* 0.0301* 0.9295*
HUN 0.0265 0.9611* 0.0272* 0.0061 0.9610*
MEX 0.0166* 0.9637* 0.0061* 0.0260* 0.9786*
POL 0.0146 0.9690* 0.0108* 0.0084* 0.9701*
RSA 0.0153 0.9822* 0.0185* 0.0105 0.9613*

Scalar Model 0.0188* 0.9686* 0.0151* 0.0103* 0.9659*
Log-l BIC AIC

DCC 31647.8 -63280.7 -63291.7
A-DCC 31654.1 -63285.8 -63302.3
G-DCC 31654.3 -63233.6 -63288.7

AG-DCC 31665.4 -63218.1 -63299.8

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC MVGARCH models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table E.5: DCC Gaussian Copula Developed Market Stocks.

a2
i b2

i a2
i g2

i b2
i

AUS 0.0093* 0.9838* 0.0072 0.0112 0.9774*
DEN 0.0227* 0.9513* 0.0140* 0.0270* 0.9464*
SWE 0.0258* 0.9428* 0.0104 0.0287* 0.9474*
ITA 0.0242* 0.9498* 0.0171* 0.0243 0.9396*
JPN 0.0059* 0.9909* 0.0083 0.0027 0.9838*
GBR 0.0287* 0.9398* 0.0128* 0.0293* 0.9449*
USA 0.0043* 0.9838* 0.0032 0.0035 0.9760*

Scalar Model 0.0123* 0.9734* 0.0089* 0.0127* 0.9681*
Log-l BIC AIC

DCC 41146.0 -82277.0 -82288.0
A-DCC 41163.3 -82304.1 -82320.6
G-DCC 41167.8 -82230.4 -82307.6

AG-DCC 41191.8 -82226.0 -82341.7

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC Gaussian copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.

Table E.6: DCC Gaussian Copula Developed Market Bonds.

a2
i b2

i a2
i g2

i b2
i

AUS 0.0240* 0.9714* 0.0248* 0.0001 0.9708*
DEN 0.0181* 0.9786* 0.0194* 0.0002 0.9768*
SWE 0.0200* 0.9755* 0.0200* 0.0011 0.9750*
ITA 0.0189* 0.9771* 0.0196* 0.0007 0.9759*
JPN 0.0281* 0.9696* 0.0260* 0.0011 0.9708*
GBR 0.0153* 0.9790* 0.0158* 0.0002 0.9781*
USA 0.0102* 0.9889* 0.0103* 0.0010 0.9880*

Scalar Model 0.0181* 0.9784* 0.0180* 0.0001 0.9785*
Log-l BIC AIC

DCC 53107.1 -106210.2 -106210.2
A-DCC 53107.1 -106191.7 -106208.2
G-DCC 53122.4 -106139.7 -106216.8

AG-DCC 53128.7 -106099.7 -106215.4

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC Gaussian copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.

Table E.7: DCC Gaussian Copula Advanced Emerging Market Stocks.

a2
i b2

i a2
i g2

i b2
i

BRA 0.0235* 0.9620* 0.0212* 0.0088* 0.9588*
HUN 0.0184* 0.9732* 0.0149* 0.0122* 0.9694*
MEX 0.0137* 0.9785* 0.0130* 0.0039* 0.9777*
POL 0.0108* 0.9838* 0.0087* 0.0103 0.9791*
RSA 0.0098* 0.9854* 0.0084* 0.0095 0.9794*

Scalar Model 0.0137* 0.9785* 0.0114* 0.0081* 0.9762*
Log-l BIC AIC

DCC 25630.0 -51245.0 -51256.0
A-DCC 25636.8 -51251.2 -51267.7
G-DCC 25634.3 -51193.5 -51248.6

AG-DCC 25642.2 -51171.8 -51254.5

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC Gaussian copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table E.8: DCC Gaussian Copula Advanced Emerging Market Bonds.

a2
i b2

i a2
i g2

i b2
i

BRA 0.0297* 0.9454* 0.0237 0.0264 0.9342*
HUN 0.0185* 0.9784* 0.0194 0.0081 0.9702*
MEX 0.0221* 0.9533* 0.0117 0.0244 0.9616*
POL 0.0127* 0.9802* 0.0106 0.0085 0.9772*
RSA 0.0269* 0.9569* 0.0210 0.0149 0.9567*

Scalar Model 0.0197* 0.9682* 0.0158* 0.0127* 0.9652*
Log-l BIC AIC

DCC 31823.6 -63632.3 -63643.3
A-DCC 31832.6 -63642.7 -63659.2
G-DCC 31829.7 -63584.3 -63639.4

AG-DCC 31840.0 -63567.3 -63650.0

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC Gaussian copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.

Table E.9: DCC t-Copula Developed Market Stocks.

a2
i b2

i a2
i g2

i b2
i

AUS 0.0094* 0.9837* 0.0070 0.0116 0.9771*
DEN 0.0230* 0.9477* 0.0136 0.0286* 0.9434*
SWE 0.0248* 0.9441* 0.0092 0.0302 0.9482*
ITA 0.0236* 0.9506* 0.0171 0.0238 0.9400*
JPN 0.0056* 0.9912* 0.0087 0.0023 0.9833
GBR 0.0286* 0.9400* 0.0135 0.0295 0.9425*
USA 0.0043* 0.9841* 0.0035 0.0030 0.9746*

Scalar Model 0.0123* 0.9734* 0.0089* 0.0127* 0.9681*
ν Log-l BIC AIC

DCC 17.5553* 41185.8 -82349.1 -82365.6
A-DCC 17.5553* 41197.4 -82364.8 -82386.8
G-DCC 20.8899* 41205.5 -82298.4 -82381.1

AG-DCC 22.9212* 41227.6 -82290.1 -82411.3

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC t-copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.

Table E.10: DCC t-Copula Developed Market Bonds.

a2
i b2

i a2
i g2

i b2
i

AUS 0.0227* 0.9733* 0.0231* 0.0005 0.9734*
DEN 0.0180* 0.9788* 0.0189* 0.0003 0.9777*
SWE 0.0209* 0.9747* 0.0208* 0.0013 0.9742*
ITA 0.0182* 0.9780* 0.0188* 0.0008 0.9769*
JPN 0.0228* 0.9763* 0.0226* 0.0016 0.9748*
GBR 0.0144* 0.9797* 0.0147* 0.0004 0.9793*
USA 0.0101* 0.9893* 0.0106* 0.0013 0.9876*

Scalar Model 0.0175* 0.9793* 0.0174* 0.0003 0.9791*
ν Log-l BIC AIC

DCC 15.7129* 53212.0 -106401.5 -106418.0
A-DCC 15.7933* 53212.1 -106394.1 -106416.2
G-DCC 15.7841* 53225.0 -106337.5 -106420.1

AG-DCC 15.8121* 53228.7 -106292.2 -106413.4

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC t-copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table E.11: DCC t-Copula Emerging Market Stocks.

a2
i b2

i a2
i g2

i b2
i

BRA 0.0219* 0.9638* 0.0190 0.0091 0.9625
HUN 0.0190* 0.9716* 0.0149 0.0113 0.9699
MEX 0.0152* 0.9767* 0.0135 0.0049 0.9764
POL 0.0105* 0.9850* 0.0086 0.0087 0.9807
RSA 0.0092* 0.9880* 0.0082 0.0076 0.9820

Scalar Model 0.0136* 0.9790* 0.0111* 0.0082* 0.9771*
ν Log-l BIC AIC

DCC 14.9582* 25669.7 -51316.9 -51333.4
A-DCC 16.3916* 25675.3 -51320.7 -51342.7
G-DCC 14.9948* 25673.5 -51264.5 -51325.1

AG-DCC 16.3658* 25679.4 -51238.8 -51326.9

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC t-copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.

Table E.12: DCC t-Copula Emerging Market Bonds.

a2
i b2

i a2
i g2

i b2
i

BRA 0.0248 0.9535 0.0189 0.0300* 0.9426*
HUN 0.0262 0.9646 0.0172 0.0146 0.9663*
MEX 0.0184 0.9633 0.0135 0.0216 0.9569*
POL 0.0156 0.9746 0.0114 0.0097 0.9747*
RSA 0.0215 0.9722 0.0232 0.0138 0.9582*

Scalar Model 0.0208* 0.9669* 0.0155* 0.0151* 0.9650*
ν Log-l BIC AIC

DCC 14.4355* 31875.1 -63727.8 -63744.3
A-DCC 15.2105* 31885.3 -63740.6 -63762.6
G-DCC 14.3769* 31879.9 -63677.3 -63737.9

AG-DCC 15.1651* 31891.1 -63662.2 -63750.3

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC t-copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table E.13: Vine Copula Unconditional Dependence Parameter Estimates Developed Stocks.

DEN SWE ITA JAP GBR USA
Developed Stocks Gaussian Copula (ρ)

AUS 0.6612 0.5722 0.5066 0.6364 0.5247 0.2305
DEN 0.7948 0.6570 0.4136 0.6771 0.4226
SWE 0.7111 0.3456 0.7110 0.5013
ITA 0.3962 0.8420 0.5278
JAP 0.4059 0.1675
GBR 0.5166

Developed Stocks Student-t Copula (ν)
AUS 26.0020 21.6683 18.8055 7.0431 37.3075 265.7061
DEN 6.7416 10.2089 300.0000 11.3455 22.7083
SWE 12.6179 182.5938 18.1244 15.9005
ITA 64.2327 8.3917 8.1042
JAP 300.0000 300.0000
GBR 21.1044

Developed Stocks Clayton Copula (θCL)
AUS 0.8312 0.6929 0.4167 0.7709 0.4412 0.2005
DEN 1.4425 0.6597 0.3277 0.7070 0.4029
SWE 1.0089 0.3477 1.0379 0.6109
ITA 0.3778 1.9355 0.7000
JAP 0.4178 0.1395
GBR 0.6288

Developed Stocks Rotated Clayton Copula (θ RCL)
AUS 0.7067 0.7362 0.3155 0.6325 0.3591 0.2009
DEN 1.3794 0.5666 0.2338 0.6348 0.3920
SWE 0.9429 0.3085 0.9283 0.6549
ITA 0.3227 1.8138 0.6988
JAP 0.3588 0.1434
GBR 0.6407

Data ordering
GA GBR ITA SWE DEN AUS JAP USA
T SWE DEN ITA GBR USA AUS JAP

CL ITA GBR SWE DEN AUS JAP USA
RCL GBR ITA SWE DEN AUS JAP USA

Notes to Table: The upper part of this table reports the unconditional bivariate dependence parameter estimates for the Gaussian, t-, Clayton
and rotated Clayton copula. The lower part describes the data ordering according to the dependence of the bivariate variables.
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Table E.14: Vine Copula Unconditional Dependence Parameter Estimates Developed Bonds.

DEN SWE ITA JAP GBR USA
Developed Bonds Gaussian Copula (ρ)

AUS 0.5869 0.6198 0.5933 -0.0407 0.5203 -0.0741
DEN 0.8458 0.9652 0.3709 0.7254 0.2523
SWE 0.8541 0.2483 0.6243 0.0898
ITA 0.3233 0.7229 0.2224
JAP 0.2488 0.3316
GBR 0.2336

Developed Bonds Student-t Copula (ν)
AUS 8.4491 13.4541 10.4817 2.5141 12.2714 10.6884
DEN 6.1282 4.0758 5.3779 7,.8689 11.7071
SWE 8.0779 3.8437 8.0588 7.6554
ITA 4.0704 6.9955 7.1840
JAP 5.1374 9.3053
GBR 11.0590

Developed Bonds Clayton Copula (θCL)
AUS 0.9859 1.1402 1.0751 0.3605 0.7743 0.0221
DEN 2.7980 7.4404 0.7607 1.4158 0.3196
SWE 3.1253 0.6378 1.1404 0.1870
ITA 0,8036 1,5386 0.3412
JAP 0.5440 0.4782
GBR 0.3238

Developed Bonds Rotated Clayton Copula (θ RCL)
AUS 0.9737 1.1344 1.0767 0.3269 0.7980 1.4508
DEN 2.7817 7.4319 0.6621 1.6270 0.3461
SWE 3.0720 0.5319 1.3115 0.1868
ITA 0.7141 1.7957 0.3876
JAP 0.5404 0.4377
GBR 0.4102

Data ordering
GA DEN ITA SWE GBR AUS JAP USA
T AUS JAP SWE DEN ITA GBR USA

CL DEN ITA SWE GBR AUS JAP USA
RCL DEN ITA SWE GBR AUS JAP USA

Notes to Table: The upper part of this table reports the unconditional bivariate dependence parameter estimates for the Gaussian, t-, Clayton
and rotated Clayton copula. The lower part describes the data ordering according to the dependence of the bivariate variables.
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Table E.15: DCC Vine Copulas Log-likelihood Developed Markets.

Dynamic structure Log-l AIC BIC
Developed Stocks

GA DCC 41194.0 -82304.0 -82072.6
GA A-DCC 41221.6 -82317.2 -81970.1
T DCC 41238.6 -82351.3 -82004.2
T A-DCC 41268.8 -82369.7 -81906.9

CL DCC 39901.5 -79719.1 -79487.8
CL A-DCC 39928.1 -79730.2 -79383.1

RCL DCC 40321.6 -80559.3 -80327.9
RCL A-DCC 40323.4 -80520.8 -80173.7

Developed Bonds
GA DCC 53171.2 -106258.5 -106027.1
GA A-DCC 53160.4 -106194.9 -105847.8
T DCC 53311.1 -106496.2 -106149.1
T A-DCC 53316.0 -106464.0 -106001.2

CL DCC 50601.6 -101119.3 -100887.9
CL A-DCC 50634.4 -101142.9 -100795.8

RCL DCC 51840.2 -103596.5 -103365.1
RCL A-DCC 51918.9 -103711.9 -103364.8

Notes to Table: This table reports the log-likelihood values estimated with four different vine copulas: Gaussian (GA), t- (T), Clayton (CL),
and Rotated Clayton (RCL).

Table E.16: Vine Copula Unconditional Dependence Parameter Estimates Emerging Market
Stocks.

HUN MEX POL RSA
Emerging Markets Stocks Gaussian Copula (ρ)

BRA 0.5475 0.7725 0.5480 0.6159
HUN 0.5448 0.7293 0.6525
MEX 0.5570 0.5874
POL 0.6672

Emerging Markets Stocks Student-t Copula (ν)
BRA 9.6861 5.7650 11.4720 17.2026
HUN 14.3216 6.6208 16.7160
MEX 11.2632 13.1293
POL 8.2697

Emerging Markets Stocks Clayton Copula (θCL)
BRA 0.5592 1.2227 0.6462 0.7239
HUN 0.4828 1.1606 0.8507
MEX 0.6088 0.6571
POL 0.8979

Emerging Markets Stocks Rotated Clayton Copula (θ RCL)
BRA 0.5139 1.1160 0.6297 0.6453
HUN 0.4534 1.1384 0.7589
MEX 0.5772 0.5891
POL 0.8322

Data ordering
GA MEX BRA USA POL HUN
T MEX BRA HUN POL RSA

CL MEX BRA HUN POL RSA
RCL HUN POL RSA BRA MEX

Notes to Table: The upper part of this table reports the unconditional bivariate dependence parameter estimates for the Gaussian, t-, Clayton
and rotated Clayton copula. The lower part describes the data ordering according to the dependence of the bivariate variables.
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Table E.17: Vine Copula Unconditional Dependence Parameter Estimates Emerging Market
Bonds.

HUN MEX POL RSA
Emerging Markets Bonds Gaussian Copula (ρ)

BRA 0.4562 0.6084 0.4694 0.4892
HUN 0.4571 0.8008 0.5892
MEX 0.4943 0.4725
POL 0.6026

Emerging Markets Bonds Student-t Copula (ν)
BRA 6.9739 9.6858 11.2837 10.4950
HUN 10.8005 5.2684 14.0518
MEX 11.9087 9.0906
POL 10.9558

Emerging Markets Bonds Clayton Copula (θCL)
BRA 0.5492 0.7535 0.5659 0.6148
HUN 0.4551 1.7567 0.8531
MEX 0.4982 0.5548
POL 0.8290

Emerging Markets Bonds Rotated Clayton Copula (θ RCL)
BRA 0.5538 0.6358 0.5122 0.5432
HUN 0.4730 1.8065 0.8930
MEX 0.4709 0.5133
POL 0.8092

Data ordering
GA POL HUN RSA BRA MEX
T POL HUN BRA MEX RSA

CL POL HUN RSA BRA MEX
RCL POL HUN RSA BRA MEX

Notes to Table: The upper part of this table reports the unconditional bivariate dependence parameter estimates for the Gaussian, t-, Clayton
and rotated Clayton copula. The lower part describes the data ordering according to the dependence of the bivariate variables.



138 E. Estimation Results Multivariate Models VaR Analysis

Table E.18: DCC Vine Copulas Log-likelihood Emerging Markets.

Dynamic structure Log-l AIC BIC
Advanced Emerging Market Stocks

GA DCC 25655.6 -51271.2 -51161.0
GA A-DCC 25662.1 -51264.2 -51098.9
T DCC 25686.3 -51312.6 -51147.4
T A-DCC 25697.6 -51315.3 -51094.9

CL DCC 24906.5 -49773.0 -49662.9
CL A-DCC 24908.9 -49757.8 -49592.5

RCL DCC 25043.6 -50047.2 -49937.0
RCL A-DCC 25047.3 -50034.7 -49869.4

Advanced Emerging Market Bonds
GA DCC 31846.4 -63652.8 -63542.6
GA A-DCC 31860.4 -63660.8 -63495.5
T DCC 31896.7 -63733.4 -63568.1
T A-DCC 31906.0 -63732.0 -63511.6

CL DCC 30960.9 -61881.9 -61771.7
CL A-DCC 30960.1 -61860.2 -61694.9

RCL DCC 31420.0 -62800.1 -62689.9
RCL A-DCC 31427.0 -62794.1 -62628.8

Notes to Table: This table reports the log-likelihood values estimated with different four vine copulas: Gaussian (GA), t- (T), Clayton (CL),
and Rotated Clayton (RCL).



Appendix F

Estimation Results Multivariate Models
Dependence Analysis

Table F.1: DCC MVGARCH Models Developed Market Stocks.

a2
i b2

i a2
i g2

i b2
i

AUS 0.0099* 0.9813* 0.0068 0.0070* 0.9810*
DEN 0.0238 0.9400* 0.0167 0.0254* 0.9318*
SWE 0.0249 0.9391* 0.0135 0.0271 0.9371*
ITA 0.0241* 0.9478* 0.0179* 0.0218 0.9382*
JPN 0.0068 0.9898* 0.0078 0.0018 0.9879*
GBR 0.0298* 0.9358* 0.0156* 0.0304* 0.9376*
USA 0.0046* 0.9834* 0.0037 0.0014 0.9819*

Scalar Model 0.0133* 0.9695* 0.0104* 0.0086* 0.9661*
Log-l BIC AIC

DCC 40988.0 -81961.0 -81972.0
A-DCC 40995.2 -81967.9 -81984.5
G-DCC 41011.6 -81918.1 -81995.2

AG-DCC 41026.0 -81894.3 -82010.0 -
AD AAD KS AKS

DCC 8.1708 0.1231 3.7200 0.0498
A-DCC 7.2613 0.1068 3.2480 0.0419
G-DCC 8.1731 0.1200 3.7543 0.0485

AG-DCC 7.0189 0.1039 3.2835 0.0407

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC MVGARCH models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table F.2: DCC MVGARCH Advanced Emerging Market & Developed Market Stocks.

a2
i b2

i a2
i g2

i b2
i

BRA 0.0107 0.9761* 0.0120 0.0022 0.9722*
HUN 0.0108* 0.9786* 0.0107* 0.0069 0.9703*
MEX 0.0082* 0.9809* 0.0089* 0.0012 0.9784*
POL 0.0133* 0.9698* 0.0113 0.0111 0.9605*
RSA 0.0112* 0.9714* 0.0087* 0.0126 0.9608*
AUS 0.0042* 0.9880* 0.0015 0.0114 0.9812*
DEN 0.0156 0.9602* 0.0121 0.0134* 0.9520*
SWE 0.0200 0.9521* 0.0164 0.0121 0.9458*
ITA 0.0147* 0.9646* 0.0114 0.0102 0.9602*
JPN 0.0033 0.9935* 0.0006 0.0095 0.9923*
GBR 0.0173* 0.9518* 0.0113* 0.0152 0.9500*
USA 0.0055 0.9869* 0.0073 0.0001 0.9857*

Scalar Model 0.0087* 0.9796* 0.0074* 0.0055* 0.9759*
Log-l BIC AIC

DCC 67898.8 -135782.6 -135793.7
A-DCC 67910.9 -135799.2 -135815.8
G-DCC 67923.1 -135666.1 -135798.3

AG-DCC 67944.2 -135618.1 -135816.4
AD AAD KS AKS

DCC 10.9352 0.1569 5.0052 0.0624
A-DCC 9.6646 0.1422 4.1796 0.0549
G-DCC 10.6943 0.1535 4.8189 0.0609

AG-DCC 9.5956 0.1394 4.0926 0.0537

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC MVGARCH models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.

Table F.3: DCC MVGARCH Secondary Emerging Market & Developed Market Stocks.

a2
i b2

i a2
i g2

i b2
i

CHI 0.0073 0.9795* 0.0086 0.0014 0.9828*
CZE 0.0127* 0.9628* 0.0094 0.0089* 0.9581*
IND 0.0041 0.9761* 0.0009 0.0543* 0.8800*
INA 0.0031 0.9781* 0.0000 0.0484 0.9019*
THA 0.0035 0.9916* 0.0000 0.0150 0.9732*
AUS 0.0070 0.9870* 0.0013 0.0186 0.9756*
DEN 0.0172 0.9480* 0.0146 0.0135 0.9373*
SWE 0.0215 0.9472* 0.0190 0.0067 0.9496*
ITA 0.0163 0.9536* 0.0187 0.0098 0.9411*
JPN 0.0030 0.9925* 0.0000 0.0107 0.9783*
GBR 0.0173 0.9496* 0.0139* 0.0090 0.9534*
USA 0.0059 0.9835* 0.0059* 0.0011 0.9854*

Scalar Model 0.0079* 0.9751* 0.0063* 0.0073* 0.9674*
Log-l BIC AIC

DCC 67901.9 -135788.9 -135799.9
A-DCC 67914.4 -135806.2 -135822.8
G-DCC 67929.1 -135678.1 -135810.3

AG-DCC 67956.4 -135642.6 -135840.9
AD AAD KS AKS

DCC 11.8398 0.1612 5.4844 0.0643
A-DCC 10.7141 0.1494 4.9002 0.0583
G-DCC 11.6885 0.1593 5.4492 0.0635

AG-DCC 10.0172 0.1461 4.6100 0.0568

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC MVGARCH models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table F.4: DCC MVGARCH models Developed Market Bonds.

a2
i b2

i a2
i g2

i b2
i

AUS 0.0235* 0.9718* 0.0246* 0.0000 0.9704*
DEN 0.0200* 0.9783* 0.0214* 0.0002 0.9763*
SWE 0.0208* 0.9762* 0.0216* 0.0028 0.9747*
ITA 0.0213* 0.9770* 0.0226* 0.0005 0.9752*
JPN 0.0258* 0.9653* 0.0253* 0.0011 0.9656*
GBR 0.0171* 0.9791* 0.0178* 0.0000 0.9782*
USA 0.0093* 0.9896* 0.0097* 0.0013 0.9881*

Scalar Model 0.0183* 0.9797* 0.0183* 0.0001 0.9798*
Log-l BIC AIC

DCC 53149.3 -106283.6 -106294.6
A-DCC 53149.3 -106276.1 -106292.6
G-DCC 53176.8 -106248.6 -106325.7

AG-DCC 53187.9 -106218.1 -106333.8
AD AAD KS AKS

DCC 9.9268 0.1518 4.7447 0.0615
A-DCC 9.8848 0.1515 4.7230 0.0614
G-DCC 9.8363 0.1552 4.7524 0.0633

AG-DCC 10.2421 0.1595 4.8755 0.0654

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC MVGARCH models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table F.5: DCC MVGARCH Advanced Emerging Market & Developed Market Bonds.

a2
i b2

i a2
i g2

i b2
i

BRA 0.0144* 0.9710* 0.0154* 0.0006 0.9680*
HUN 0.0122* 0.9804* 0.0123* 0.0112 0.9777*
MEX 0.0106* 0.9795* 0.0106* 0.0007 0.9788*
POL 0.0106* 0.9836* 0.0103* 0.0020 0.9824*
RSA 0.0116* 0.9810* 0.0115* 0.0022 0.9800*
AUS 0.0176* 0.9755* 0.0185* 0.0000 0.9740*
DEN 0.0126 0.9839* 0.0125 0.0014 0.9829*
SWE 0.0157* 0.9823* 0.0160* 0.0012 0.9810*
ITA 0.0160 0.9819* 0.0163 0.0016 0.9806*
JPN 0.0193* 0.9740* 0.0202* 0.0002 0.9731*
GBR 0.0118* 0.9858* 0.0119* 0.0003 0.9854*
USA 0.0084* 0.9890* 0.0085* 0.0017 0.9881*

Scalar Model 0.0122 0.9849* 0.0118 0.0011 0.9846*
Log-l BIC AIC

DCC 85562.8 -171110.7 -171121.7
A-DCC 85565.0 -171107.5 -171124.0
G-DCC 85626.5 -171072.9 -171205.1

AG-DCC 85643.6 -171016.9 -171215.2
AD AAD KS AKS

DCC 11.9663 0.1800 5.6853 0.0725
A-DCC 11.7444 0.1758 5.4639 0.0704
G-DCC 11.8929 0.1791 5.6167 0.0722

AG-DCC 11.6641 0.1774 5.5348 0.0714

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC MVGARCH models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table F.6: DCC MVGARCH Secondary Emerging Market & Developed Market Bonds.

a2
i b2

i a2
i g2

i b2
i

CHI 0.0026* 0.9736* 0.0025* 0.0000 0.9757*
CZE 0.0128* 0.9844* 0.0137* 0.0000 0.9827*
IND 0.0052* 0.9835* 0.0051* 0.0002 0.9843*
INA 0.0047* 0.9816* 0.0046* 0.0000 0.9826*
THA 0.0033* 0.9867* 0.0031* 0.0002 0.9878*
AUS 0.0178* 0.9751* 0.0182* 0.0000 0.9747*
DEN 0.0169* 0.9810* 0.0184* 0.0001 0.9790*
SWE 0.0165* 0.9804* 0.0177* 0.0022 0.9786*
ITA 0.0173* 0.9806* 0.0186* 0.0001 0.9789*
JPN 0.0229* 0.9683* 0.0220* 0.0017 0.9690*
GBR 0.0140* 0.9832* 0.0147* 0.0000 0.9821*
USA 0.0086* 0.9889* 0.0089* 0.0003 0.9884*

Scalar Model 0.0101* 0.9879* 0.0101* 0.0007 0.9876*
Log-l BIC AIC

DCC 88659.9 -177304.9 -177315.9
A-DCC 88661.0 -177299.6 -177316.1
G-DCC 88791.2 -177402.2 -177534.4

AG-DCC 88803.9 -177337.4 -177535.8
AD AAD KS AKS

DCC 13.3417 0.2003 6.3698 0.0808
A-DCC 13.0645 0.1965 6.2846 0.0789
G-DCC 13.6027 0.2025 6.5761 0.0822

AG-DCC 13.7924 0.2059 6.7041 0.0839

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC MVGARCH models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table F.7: DCC Gaussian Copula Developed Market Stocks.

a2
i b2

i a2
i g2

i b2
i

AUS 0.0097* 0.9831* 0.0066 0.0142 0.9756*
DEN 0.0234* 0.9500* 0.0145* 0.0288* 0.9450*
SWE 0.0243* 0.9463* 0.0119 0.0268* 0.9472*
ITA 0.0250* 0.9489* 0.0172 0.0264* 0.9394*
JPN 0.0065* 0.9904* 0.0070 0.0055 0.9832*
GBR 0.0295* 0.9378* 0.0129 0.0315* 0.9433*
USA 0.0043* 0.9841* 0.0036 0.0032 0.9749*

Scalar Model 0.0128* 0.9730* 0.0088* 0.0141* 0.9684*
Log-l BIC AIC

DCC 41156.2 -82297.5 -82308.5
A-DCC 41177.2 -82331.9 -82348.4
G-DCC 41177.3 -82249.5 -82326.6

AG-DCC 41204.0 -82250.3 -82366.0
AD AAD KS AKS

DCC 6.1306 0.0973 2.8488 0.0408
A-DCC 4.3694 0.0606 1.8360 0.0234
G-DCC 6.0999 0.0946 2.7655 0.0396

AG-DCC 4.2127 0.0624 1.8856 0.0246

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC Gaussian copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.



145

Table F.8: DCC Gaussian Copula Advanced Emerging Markets Stocks.

a2
i b2

i a2
i g2

i b2
i

BRA 0.0254* 0.9598* 0.0200* 0.0150* 0.9566*
HUN 0.0188* 0.9738* 0.0138* 0.0169* 0.9683*
MEX 0.0148* 0.9774* 0.0127* 0.0069* 0.9755*
POL 0.0111* 0.9837* 0.0085* 0.0145 0.9757*
RSA 0.0099* 0.9859* 0.0085* 0.0152 0.9744*

Scalar Model 0.0145* 0.9775* 0.0105* 0.0128* 0.9746*
Log-l BIC AIC

DCC 25626.8 -51238.6 -51249.6
A-DCC 25640..5 -51258.5 -51275.1
G-DCC 25631.2 -51187.4 -51242.5

AG-DCC 25645.5 -51178.4 -51261.0
AD AAD KS AKS

DCC 5.7738 0.0874 2.6966 0.0367
A-DCC 3.7528 0.0536 1.7372 0.0210
G-DCC 5.6331 0.0868 2.6437 0.0365

AG-DCC 4.1503 0.0567 1.9070 0.0225

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC Gaussian copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.

Table F.9: DCC Gaussian Copula Secondary Emerging Markets Stocks.

a2
i b2

i a2
i g2

i b2
i

CHI 0.0290* 0.9415* 0.0196* 0.0044* 0.9704*
CZE 0.0142* 0.9836* 0.0157* 0.0142* 0.9540*
IND 0.0085* 0.9815* 0.0135* 0.0510* 0.8945*
INA 0.0031 0.9903* 0.0001 0.0860* 0.8909*
THA 0.0026 0.9870* 0.0000 0.0248* 0.9422*

Scalar Model 0.0106* 0.9737* 0.0086* 0.0107* 0.9641*
Log-l BIC AIC

DCC 26116.6 -52218.2 -52229.2
A-DCC 26122.6 -52222.7 -52239.2
G-DCC 26121.4 -52167.8 -52222.9

AG-DCC 26134.9 -52157.1 -52239.8
AD AAD KS AKS

DCC 4.7851 0.0676 2.1753 0.0281
A-DCC 3.8597 0.0470 1.7633 0.0190
G-DCC 4.9667 0.0684 2.2703 0.0286

AG-DCC 4.0668 0.0423 1.7655 0.0168

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC Gaussian copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table F.10: DCC Gaussian Copula Advanced Emerging Market Stocks and Developed Market
Stocks.

a2
i b2

i a2
i g2

i b2
i

BRA 0.0112* 0.9762* 0.0075 0.0092 0.9783*
HUN 0.0108* 0.9810* 0.0083 0.0106 0.9776*
MEX 0.0078* 0.9826* 0.0051 0.0063 0.9830*
POL 0.0127* 0.9743* 0.0095 0.0110 0.9708*
RSA 0.0123* 0.9732* 0.0082 0.0166* 0.9649*
AUS 0.0041* 0.9892* 0.0006 0.0266 0.9679*
DEN 0.0159* 0.9653* 0.0102 0.0194 0.9600*
SWE 0.0190* 0.9588* 0.0124 0.0144 0.9606*
ITA 0.0143* 0.9672* 0.0111 0.0180 0.9575*
JPN 0.0030* 0.9939* 0.0000 0.0258 0.9604*
GBR 0.0166* 0.9543* 0.0092 0.0224 0.9535*
USA 0.0053* 0.9876* 0.0044 0.0027 0.9880*

Scalar Model 0.0085* 0.9820* 0.0062* 0.0102* 0.9770*
Log-l BIC AIC

DCC 68148.3 -136281.6 -136292.6
A-DCC 68186.1 -136349.7 -136366.2
G-DCC 68169.7 -136159.2 -136291.4

AG-DCC 68215.3 -136160.3 -136358.6
AD AAD KS AKS

DCC 9.2068 0.1324 4.2003 0.0545
A-DCC 6.6969 0.0952 2.6991 0.0359
G-DCC 9.2381 0.1293 4.2012 0.0531

AG-DCC 6.7408 0.0928 2.8091 0.0349

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC Gaussian copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.

Table F.11: DCC Gaussian Copula Secondary Emerging Market Stocks and Developed Mar-
ket Stocks.

a2
i b2

i a2
i g2

i b2
i

CHI 0.0070* 0.9806* 0.0080 0.0042 0.9823*
CZE 0.0113* 0.9666* 0.0067 0.0133* 0.9626*
IND 0.0039* 0.9822* 0.0003 0.0521 0.8917*
INA 0.0034 0.9823* 0.0000 0.0569* 0.9075*
THA 0.0032 0.9925* 0.0000 0.0180* 0.9686*
AUS 0.0067* 0.9883* 0.0006* 0.0263* 0.9670*
DEN 0.0169* 0.9555* 0.0095* 0.0253* 0.9504*
SWE 0.0214* 0.9516* 0.0133* 0.0147* 0.9594*
ITA 0.0164* 0.9561* 0.0153* 0.0168* 0.9483*
JPN 0.0026* 0.9931* 0.0000 0.0141* 0.9682*
GBR 0.0168* 0.9526* 0.0096 0.0154* 0.9626*
USA 0.0050* 0.9845* 0.0048* 0.0028 0.9850*

Scalar Model 0.0071* 0.9802* 0.0048* 0.0106* 0.9728*
Log-l BIC AIC

DCC 68303.0 -136590.9 -136602.0
A-DCC 68335.3 -136648.2 -136664.7
G-DCC 68325.6 -136471.1 -136603.3

AG-DCC 68373.3 -136476.2 -136674.6
AD AAD KS AKS

DCC 8.9280 0.1231 4.2127 0.0510
A-DCC 6.5168 0.0890 2.6813 0.0341
G-DCC 5.9954 0.0730 2.0633 0.0272

AG-DCC 6.3432 0.0862 2.5902 0.0330

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC Gaussian copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table F.12: DCC Gaussian Copula Developed Market Bonds.

a2
i b2

i a2
i g2

i b2
i

AUS 0.0238* 0.9727* 0.0245* 0.0000 0.9715*
DEN 0.0194* 0.9792* 0.0197* 0.0002 0.9787*
SWE 0.0194* 0.9782* 0.0197* 0.0009* 0.9777*
ITA 0.0200* 0.9784* 0.0203* 0.0003 0.9779*
JPN 0.0231* 0.9726* 0.0232* 0.0008 0.9724*
GBR 0.0159* 0.9801* 0.0162* 0.0000 0.9796*
USA 0.0101* 0.9893* 0.0103* 0.0002 0.9889*

Scalar Model 0.0180* 0.9805* 0.0180* 0.0008 0.9801*
Log-l BIC AIC

DCC 53380.4 -106745.9 -106756.9
A-DCC 53380.6 -106738.8 -106755.3
G-DCC 53398.6 -106692.2 -106769.3

AG-DCC 53401.5 -106645.4 -106761.1
AD AAD KS AKS

DCC 7.1453 0.1033 3.3736 0.0417
A-DCC 7.2173 0.1012 3.3753 0.0407
G-DCC 7.2803 0.1087 3.4199 0.0443

AG-DCC 7.3693 0.1102 3.4600 0.0450

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC Gaussian copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.

Table F.13: DCC Gaussian Copula Developed Bonds Positive Asymmetries.

a2
i b2

i a2
i g2

i b2
i

AUS 0.0238* 0.9727* 0.0222* 0.0026 0.9731*
DEN 0.0194* 0.9792* 0.0195* 0.0006 0.9786*
SWE 0.0194* 0.9782* 0.0190* 0.0013 0.9779*
ITA 0.0200* 0.9784* 0.0202* 0.0004 0.9777*
JPN 0.0231* 0.9726* 0.0214* 0.0036 0.9732*
GBR 0.0159* 0.9801* 0.0155* 0.0006 0.9797*
USA 0.0101* 0.9893* 0.0107* 0.0000 0.9882*

Scalar Model 0.0180* 0.9805* 0.0169* 0.0027* 0.9801*
Log-l BIC AIC

DCC 53380.4 -106745.9 -106756.9
ADCC+ 53371.8 -106721.2 -106737.7
GDCC 53398.6 -106692.2 -106769.3

AGDCC+ 53391.5 -106625.3 -106741.0
AD AAD KS AKS

DCC 7.1453 0.1033 3.3736 0.0417
ADCC+ 6.6176 0.0680 2.0795 0.0253
GDCC 7.2803 0.1087 3.4199 0.0443

AGDCC+ 6.3886 0.0765 2.3940 0.0296

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC Gaussian copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table F.14: DCC Gaussian Copula Advanced Emerging Market Bonds.

a2
i b2

i a2
i g2

i b2
i

BRA 0.0320* 0.9425* 0.0227 0.0323 0.9342*
HUN 0.0206* 0.9755* 0.0190 0.0124 0.9665*
MEX 0.0219* 0.9558* 0.0116 0.0263 0.9604*
POL 0.0131* 0.9798* 0.0106 0.0119 0.9743*
RSA 0.0252* 0.9619* 0.0181 0.0179 0.9614*

Scalar Model 0.0204* 0.9679* 0.0146* 0.0173* 0.9654*
Log-l BIC AIC

DCC 31822.8 -63630.6 -63641.6
A-DCC 31838.6 -63654.7 -63671.2
G-DCC 31829.1 -63583.2 -63638.3

AG-DCC 31845.6 -63578.5 -63661.2
AD AAD KS AKS

DCC 7.0699 0.0987 3.0099 0.0403
A-DCC 6.0131 0.0653 2.3790 0.0247
G-DCC 7.0801 0.0965 2.9959 0.0394

AG-DCC 6.0764 0.0678 2.5458 0.0260

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC Gaussian copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.

Table F.15: DCC Gaussian Copula Secondary Emerging Market Bonds.

a2
i b2

i a2
i g2

i b2
i

CHI 0.0253* 0.9157* 0.0045* 0.0019 0.9821*
CZE 0.0101* 0.9866* 0.0067* 0.0015 0.9594*
IND 0.0090* 0.9810* 0.1234* 0.0026 0.8386*
INA 0.0061* 0.9884* 0.0123* 0.0242* 0.9400*
THA 0.0024* 0.9969* 0.0044 0.1611* 0.5422*

Scalar Model 0.0075* 0.9834* 0.0081* 0.0008 0.9801*
Log-l BIC AIC

DCC 34902.9 -69790.8 -69801.8
A-DCC 34902.8 -69783.1 -69799.7
G-DCC 34907.3 -69739.5 -69794.6

AG-DCC 34908.0 -69703.5 -69786.1
AD AAD KS AKS

DCC 4.7392 0.0738 2.1991 0.0311
A-DCC 4.6355 0.0719 2.1521 0.0302
G-DCC 4.8284 0.0728 2.2530 0.0307

AG-DCC 4.5970 0.0681 2.1322 0.0286

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC Gaussian copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table F.16: DCC Gaussian Copula Advanced Emerging Market and Developed Market Bonds.

a2
i b2

i a2
i g2

i b2
i

BRA 0.0130* 0.9768* 0.0134* 0.0020 0.9746*
HUN 0.0120* 0.9822* 0.0118* 0.0043 0.9808*
MEX 0.0102* 0.9812* 0.0097* 0.0036 0.9806*
POL 0.0094* 0.9868* 0.0090* 0.0022 0.9860*
RSA 0.0120* 0.9810* 0.0112* 0.0039 0.9806*
AUS 0.0173* 0.9774* 0.0178* 0.0003 0.9760*
DEN 0.0142* 0.9842* 0.0139* 0.0010 0.9838*
SWE 0.0140* 0.9835* 0.0137* 0.0020 0.9829*
ITA 0.0146* 0.9837* 0.0142* 0.0013 0.9831*
JPN 0.0170* 0.9802* 0.0172* 0.0009 0.9798*
GBR 0.0103* 0.9874* 0.0102* 0.0004 0.9873*
USA 0.0084* 0.9905* 0.0088* 0.0011 0.9891*

Scalar Model 0.0118* 0.9860* 0.0138* 0.0042* 0.9801*
Log-l BIC AIC

DCC 86196.9 -172378.9 -172389.9
A-DCC 86195.5 -172368.5 -172385.0
G-DCC 86250.2 -172320.2 -172452.4

AG-DCC 86260.2 -172250.1 -172448.4
AD AAD KS AKS

DCC 9.2094 0.1351 3.9819 0.0542
A-DCC 8.3731 0.1190 3.4922 0.0464
G-DCC 9.4650 0.1361 4.0557 0.0549

AG-DCC 9.1469 0.1313 4.0432 0.0525

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC Gaussian copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.

Table F.17: DCC Gaussian Copula Secondary Emerging Market Bonds and Developed Mar-
ket Bonds.

a2
i b2

i a2
i g2

i b2
i

CHI 0.0031* 0.9717* 0.0034* 0.0000 0.9674*
CZE 0.0122* 0.9856* 0.0126* 0.0000 0.9847*
IND 0.0052* 0.9850* 0.0050* 0.0007 0.9856*
INA 0.0050 0.9836* 0.0050* 0.0000 0.9839*
THA 0.0029 0.9921* 0.0029* 0.0002 0.9919*
AUS 0.0178* 0.9758* 0.0182* 0.0000 0.9753*
DEN 0.0159 0.9824* 0.0167* 0.0000 0.9815*
SWE 0.0154* 0.9820* 0.0158* 0.0006 0.9814*
ITA 0.0162* 0.9819* 0.0168* 0.0000 0.9811*
JPN 0.0201 0.9758* 0.0194* 0.0009* 0.9763*
GBR 0.0131* 0.9841* 0.0134* 0.0000 0.9836*
USA 0.0095* 0.9890* 0.0096* 0.0001 0.9887*

Scalar Model 0.0098* 0.9886* 0.0138* 0.0026* 0.9801*
Log-l BIC AIC

DCC 89466.5 -178918.0 -178929.1
A-DCC 89437.7 -178852.9 -178869.4
G-DCC 89579.8 -178979.4 -179111.7

AG-DCC 89584.8 -178899.3 -179097.6
AD AAD KS AKS

DCC 8.0854 0.1175 3.7337 0.0466
A-DCC 7.7395 0.1120 3.5206 0.0439
G-DCC 8.2339 0.1242 3.9243 0.0502

AG-DCC 8.2720 0.1259 3.9536 0.0510

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC Gaussian copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table F.18: DCC t-Copula Developed Markets Stocks.

a2
i b2

i a2
i g2

i b2
i

AUS 0.0097* 0.9832* 0.0063 0.0142 0.9757*
DEN 0.0232* 0.9470* 0.0137* 0.0304* 0.9426*
SWE 0.0230* 0.9478* 0.0102 0.0290* 0.9480*
ITA 0.0244* 0.9495* 0.0178 0.0255* 0.9385*
JPN 0.0062* 0.9907* 0.0077 0.0046 0.9831*
GBR 0.0291* 0.9384* 0.0134 0.0310* 0.9415*
USA 0.0042* 0.9846* 0.0039 0.0026 0.9735*

Scalar Model 0.0127 0.9732* 0.0085* 0.0127* 0.9705*
ν Log-l BIC AIC

DCC 17.5171* 41197.4 -82372.4 -82388.9
A-DCC 23.0426* 41214.3 -82398.6 -82420.6
G-DCC 20.7376* 41216.2 -82319.9 -82402.5

AG-DCC 23.1134* 41239.9 -82314.6 -82435.8
AD AAD KS AKS

DCC 4.2276 0.0624 2.0923 0.0261
A-DCC 4.7122 0.0727 2.3475 0.0302
G-DCC 3.0337 0.0423 1.4800 0.0175

AG-DCC 4.4361 0.0669 2.2019 0.0277

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC t-copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table F.19: DCC t-Copula Advanced Emerging Market Stocks and Developed Market Stocks.

a2
i b2

i a2
i g2

i b2
i

BRA 0.0109* 0.9751* 0.0063 0.0097* 0.9797*
HUN 0.0102* 0.9797* 0.0082* 0.0101* 0.9771*
MEX 0.0084* 0.9819* 0.0051 0.0069* 0.9827*
POL 0.0129* 0.9722* 0.0105* 0.0105* 0.9678*
RSA 0.0120* 0.9722* 0.0081* 0.0168* 0.9637*
AUS 0.0037* 0.9892* 0.0005 0.0249 0.9689*
DEN 0.0151* 0.9637* 0.0098* 0.0191* 0.9581*
SWE 0.0177* 0.9595* 0.0112* 0.0151* 0.9617*
ITA 0.0129* 0.9701* 0.0102* 0.0164* 0.9605*
JPN 0.0026 0.9942* 0.0001 0.0194 0.9630*
GBR 0.0152* 0.9545* 0.0086* 0.0211* 0.9534*
USA 0.0049* 0.9885* 0.0038 0.0027 0.9890*

Scalar Model 0.0087* 0.9801* 0.0057* 0.0089* 0.9790*
ν Log-l BIC AIC

DCC 20.3006* 68257.9 -136493.3 -136509.8
A-DCC 23.1984* 68285.3 -136540.6 -136562.6
G-DCC 20.4885* 68276.3 -136364.9 -136502.6

AG-DCC 23.5057* 68310.8 -136343.7 -136547.6
AD AAD KS AKS

DCC 3.9416 0.0613 1.9200 0.0260
A-DCC 5.8357 0.1028 2.8749 0.0436
G-DCC 3.8536 0.0616 1.9037 0.0262

AG-DCC 5.8805 0.1008 2.9200 0.0427

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC t-copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.

Table F.20: DCC t-Copula Secondary Emerging Market Stocks and Developed Market Stocks
Portfolio.

a2
i b2

i a2
i g2

i b2
i

CHI 0.0062* 0.9809* 0.0078 0.0041 0.9820*
CZE 0.0106* 0.9664* 0.0063* 0.0127* 0.9619*
IND 0.0045* 0.9800* 0.0012 0.0505* 0.8871*
INA 0.0041 0.9758* 0.0000 0.0548* 0.9058*
THA 0.0034* 0.9926* 0.0000 0.0172 0.9697*
AUS 0.0063* 0.9889* 0.0005* 0.0246 0.9684*
DEN 0.0149* 0.9574* 0.0080* 0.0253* 0.9518*
SWE 0.0185* 0.9565* 0.0115* 0.0157* 0.9611*
ITA 0.0145* 0.9605* 0.0139* 0.0165* 0.9499*
JPN 0.0026* 0.9931* 0.0000 0.0128 0.9707*
GBR 0.0151* 0.9568* 0.0087* 0.0153* 0.9634*
USA 0.0045* 0.9863* 0.0045* 0.0025 0.9855*

Scalar Model 0.0069* 0.9801* 0.0045* 0.0094* 0.9753*
ν Log-l BIC AIC

DCC 22.9195* 68390.9 -136759.3 -136775.8
A-DCC 25.8858* 68414.6 -136799.1 -136821.2
G-DCC 23.3114* 68409.7 -136631.6 -136769.4

AG-DCC 26.7674* 68447.4 -136616.9 -136820.8
AD AAD KS AKS

DCC 3.7129 0.0478 1.7333 0.0200
A-DCC 5.5892 0.0883 2.6531 0.0369
G-DCC 3.4980 0.0466 1.6932 0.0194

AG-DCC 5.5768 0.0869 2.7337 0.0362

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC t-copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table F.21: DCC t-Copula Developed Bonds.

a2
i b2

i a2
i g2

i b2
i

AUS 0.0231* 0.9747* 0.0232* 0.0004 0.9745*
DEN 0.0195* 0.9797* 0.0199* 0.0001 0.9791*
SWE 0.0210* 0.9777* 0.0209* 0.0005 0.9777*
ITA 0.0201* 0.9789* 0.0205* 0.0001 0.9783*
JPN 0.0185* 0.9783* 0.0187* 0.0000 0.9781*
GBR 0.0155* 0.9818* 0.0158* 0.0000 0.9811*
USA 0.0107* 0.9886* 0.0110* 0.0003 0.9878*

Scalar Model 0.0189* 0.9801* 0.0177* 0.0028* 0.9801*
ν Log-l BIC AIC

DCC 13.5750* 53529.5 -107036.5 -107053.0
A-DCC 13.4748* 53532.3 -107034.6 -107056.7
G-DCC 13.4326* 53546.9 -106981.2 -107063.9

AG-DCC 13.4161* 53547.9 -106930.7 -107051.9
AD AAD KS AKS

DCC 6.8617 0.1206 3.4186 0.0499
A-DCC 7.3395 0.1299 3.6610 0.0538
G-DCC 6.1951 0.1099 3.0923 0.0454

AG-DCC 6.2134 0.1083 3.1009 0.0447

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC t-copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.



153

Table F.22: DCC t-Copula Advanced Emerging Market Bonds and Developed Market Bonds.

a2
i b2

i a2
i g2

i b2
i

BRA 0.0125* 0.9781* 0.0126* 0.0018 0.9767*
HUN 0.0136* 0.9808* 0.0131 0.0043 0.9798*
MEX 0.0102* 0.9820* 0.0094* 0.0041 0.9821*
POL 0.0097* 0.9866* 0.0093 0.0023 0.9861*
RSA 0.0117* 0.9826* 0.0106* 0.0036 0.9829*
AUS 0.0165* 0.9791* 0.0170* 0.0005 0.9778*
DEN 0.0144* 0.9843* 0.0141 0.0011 0.9836*
SWE 0.0145* 0.9832* 0.0140 0.0021 0.9826*
ITA 0.0145* 0.9839* 0.0141 0.0013* 0.9833*
JPN 0.0155* 0.9821* 0.0156* 0.0010 0.9818*
GBR 0.0103* 0.9877* 0.0105 0.0005 0.9873*
USA 0.0090* 0.9898* 0.0095 0.0015 0.9881*

Scalar Model 0.0159* 0.9801* 0.0137* 0.0054* 0.9801*
ν Log-l BIC AIC

DCC 18.8403* 86364.7 -172706.8 -172723.4
A-DCC 19.2566* 86382.9 -172735.8 -172757.9
G-DCC 18.7610* 86431.4 -172675.1 -172812.9

AG-DCC 19.0032* 86440.2 -172602.5 -172806.4
AD AAD KS AKS

DCC 5.5230 0.0922 2.6346 0.0382
A-DCC 6.9818 0.1188 3.3076 0.0494
G-DCC 5.3101 0.0903 2.5568 0.0373

AG-DCC 5.4338 0.0938 2.6651 0.0388

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC t-copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table F.23: DCC t-Copula Secondary Emerging Market Bonds and Developed Market Bonds.

a2
i b2

i a2
i g2

i b2
i

CHI 0.0043* 0.9654* 0.0044* 0.0010 0.9637*
CZE 0.0123* 0.9861* 0.0124* 0.0000 0.9859*
IND 0.0044* 0.9881* 0.0043* 0.0002 0.9881*
INA 0.0043* 0.9893* 0.0044 0.0064 0.9866*
THA 0.0028 0.9924* 0.0027 0.0002 0.9922*
AUS 0.0172* 0.9774* 0.0174* 0.0001 0.9772*
DEN 0.0157* 0.9830* 0.0158* 0.0000 0.9829*
SWE 0.0160* 0.9817* 0.0161* 0.0000 0.9816*
ITA 0.0162* 0.9822* 0.0162* 0.0000 0.9821*
JPN 0.0168* 0.9802* 0.0167* 0.0014 0.9803*
GBR 0.0126* 0.9855* 0.0127* 0.0001 0.9853*
USA 0.0096* 0.9888* 0.0098* 0.0004 0.9883*

Scalar Model 0.0151* 0.9801* 0.0137* 0.0039* 0.9801*
ν Log-l BIC AIC

DCC 20.0962* 89588.8 -179155.1 -179171.6
A-DCC 20.3452* 89599.1 -179168.1 -179190.2
G-DCC 20.1995* 89735.3 -179282.9 -179420.7

AG-DCC 20.1705* 89739.6 -179201.4 -179405.2
AD AAD KS AKS

DCC 5.1454 0.0884 2.4637 0.0365
A-DCC 6.4296 0.1085 3.0644 0.0450
G-DCC 4.9053 0.0849 2.4123 0.0348

AG-DCC 5.0191 0.0836 2.4799 0.0343

Notes to Table: The upper part of this table reports the parameter estimates for the symmetric and asymmetric DCC t-copula models.
Parameter estimates significantly different from zero at 5% confidence Level are marked with an asterisk. The lower part reports the different
goodness-of-fit criteria.
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Table F.24: DCC Vine Stock Portfolios Dependence Analysis.

Model Log-l AIC BIC AD AAD KS AKS

Developed Stocks
Vine GA DCC 41202.9 -82321.8 -82090.4 6.0503 0.0938 2.8762 0.0394
Vine GA A-DCC 41273.0 -82333.5 -81986.4 4.5685 0.0323 1.0962 0.0110
Vine T DCC 41255.3 -82384.7 -82037.6 2.5232 0.0315 1.1229 0.0129
Vine T A-DCC 41280.6 -82393.2 -81930.5 2.3425 0.0141 0.5647 0.0051

Advanced Emerging Markets & Developed Stocks
Vine GA DCC 68274.7 -136285.5 -135558.3 6.9350 0.1000 3.1467 0.0399
Vine GA A-DCC 68312.7 -136229.5 -135138.6 5.8802 0.0749 1.9198 0.0271
Vine T DCC 68435.4 -136474.8 -135384.0 2.4251 0.0271 1.0785 0.0103
Vine T A-DCC 68482.1 -136436.2 -134981.7 5.0319 0.0753 2.3437 0.0317

Secondary Emerging Markets & Developed Stocks
Vine GA DCC 68347.3 -136430.7 -135703.5 5.7015 0.0805 2.6568 0.0319
Vine GA A-DCC 68390.7 -136385.5 -135294.6 5.8747 0.0648 2.6568 0.0238
Vine T DCC 68482.0 136568.1 -135477.3 2.1343 0.0194 0.8809 0.0073
Vine T A-DCC 68525.9 -136523.9 -135069.5 5.3970 0.0820 2.4419 0.0343

Notes to Table: This table reports the different goodness-of-fit criteria.

Table F.25: DCC Vine Bond Portfolios Dependence Analysis.

Model Log-l AIC BIC AD AAD KS AKS

Developed Bonds
Vine GA DCC 53463.1 -106842.2 -106610.8 7.3213 0.1104 3.5264 0.0453
Vine GA A-DCC 53461.4 -106796.9 -106449.8 6.8211 0.1034 3.2475 0.0420
Vine T DCC 53591.1 -107056.3 -106709.2 4.1549 0.0292 0.9808 0.0102
Vine T A-DCC 53565.4 -106962.8 -106500.0 4.4671 0.0357 1.1665 0.0130

Advanced Emerging Markets & Developed Bonds
Vine GA DCC 86349.7 -172435.4 -171708.2 9.5905 0.1402 4.2927 0.0570
Vine GA A-DCC 86360.7 -172325.4 -171234.6 8.8116 0.1198 3.9088 0.0473
Vine T DCC 86547.6 -172699.3 -171608.4 5.2452 0.0638 1.8403 0.0254
Vine T A-DCC 86564.8 -172601.6 -171147.1 6.2374 0.1029 3.0049 0.0428

Secondary Emerging Markets & Developed Bonds
Vine GA DCC 89714.0 -179164.1 -178436.8 8.5232 0.1252 3.8934 0.0510
Vine GA A-DCC 89719.6 -179043.2 -177952.4 8.2059 0.1151 3.8458 0.0463
Vine T DCC 89911.7 -179427.5 -178336.7 4.6422 0.0593 2.1419 0.0242
Vine T A-DCC 89897.1 -179266.2 -177811.7 5.3282 0.0780 2.5918 0.0322

Notes to Table: This table reports the different goodness-of-fit criteria.
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Table F.28: Archimedean Copulas Stock Portfolios.

ωMA αMA β MA Log-l AIC BIC AD AAD KS AKS
Developed Stocks

CL 0.1107* 0.9334* -0.1465* 39749.3 -79492.6 -79476.1 9.8589 0.1466 4.6259 0.0619
(0.0398) (0.0307) (0.0552)

RCL 0.3108 -0.0253 -0.9999 39541.8 -79077.6 -79061.0 10.9092 0.1611 5.1449 0.0647
(0.2585) (0.8855) (0.7580)

Advanced Emerging Markets & Developed Stocks
CL 0.1963* 0.8801* -0.1478* 65431.7 -130931.6 -130915.1 13.7441 0.2141 5.6425 0.0908

(0.0520) ( 0.0358) ( 0.0396)
RCL 0.1792 -0.9730* -0.8894* 65046.8 -130246.8 -130230.3 15.1044 0.2263 7.4122 0.0957

(0.2416) (0.0124) (0.1207)
Secondary Emerging Markets & Developed Stocks

CL 0.2165* 0.8884* -0.1554* 66200.5 -132447.9 -132431.4 9.8500 0.1369 4.6508 0.0563
(0.0553) ( 0.0301) ( 0.0392)

RCL 0.1636 0.7734* -0.1918 65821.6 -131735.2 -131718.6 13.1320 0.1949 6.2211 0.0822
(0.1032) ( 0.1931) ( 0.1398)

Notes to Table: The left part of the table reports the parameter estimates, the right part the log-likelihood values and goodness-of-fit tests.

Table F.29: Archimedean Copulas Bond Portfolios.

ωMA αMA β MA Log-l AIC BIC AD AAD KS AKS
Developed Bonds

CL 0.6296 0.4092 -0.9999 48921.2 -97836.4 -97819.9 15.2962 0.2292 7.4330 0.0961
(0.6105) (0.5789) (0.9665)

RCL 0.1992* 0.8828* -0.2779* 49020.7 -98035.5 -98019.0 14.9765 0.2295 7.1511 0.0961
(0.0511) (0.0311) (0.0713)

Advanced Emerging Markets & Developed Bonds
CL -0.7105* -0.9972* -0.5718* 79417.9 -158829.8 -158813.2 17.7846 0.2663 8.7157 0.1124

(0.1141) (0.0025) (0.0619)
RCL 0.0939* 0.9271* -0.0845 79363.6 -158721.3 -158704.8 18.8260 0.2870 9.3003 0.1217

(0.0542) (0.0671) (0.0589)
Secondary Emerging Markets & Developed Bonds

CL 0.5194 0.0142 -0.8145* 83314.4 -166606.3 -166622.8 15.0180 0.2243 7.2336 0.0944
(0.3181) (0.2919) (0.2623)

RCL 0.8852* 0.0033 -0.9999* 83340.1 -166674.3 -166657.8 15.1875 0.2351 7.4150 0.0988
(0.2070) (0.0048) (0.1034)

Notes to Table: The left part of the table reports the parameter estimates, the right part the log-likelihood values and goodness-of-fit tests.



159

Table F.30: Dynamic Mixture Copulas Stock Portfolios.

Developed Stocks Adv EM & Dev Stocks Sec EM & DevStocks
a2 b2 a2 b2 a2 b2

AUS 0.0096* 0.9834* BRA 0.0117* 0.9737* CHI 0.0060* 0.9823*
DEN 0.0225* 0.9483* HUN 0.0106* 0.9793* CZE 0.0105* 0.9682*
SWE 0.0226* 0.9484* MEX 0.0092* 0.9814* IND 0.0050* 0.9791*
ITA 0.0255* 0.9478* POL 0.0132* 0.9715* INA 0.0045 0.9747*
JPN 0.0062* 0.9906* RSA 0.0118* 0.9725* THA 0.0038* 0.9923*
GBR 0.0302 0.9381* AUS 0.0038* 0.9894* AUS 0.0068* 0.9888*
USA 0.0042* 0.9844* DEN 0.0155* 0.9625* DEN 0.0133* 0.9598*

SWE 0.0175* 0.9595* SWE 0.0169* 0.9601*
ITA 0.0123* 0.9716* ITA 0.0122 0.9667*
JPN 0.0026 0.9943* JPN 0.0028* 0.9930*
GBR 0.0145 0.9566* GBR 0.0146* 0.9597*
USA 0.0052 0.9883* USA 0.0045* 0.9878*

ν ωMA αMA β MA ωDW αDW β DW

Developed Stocks
T-CL 20.7408* 0.5318* 0.9328 -0.4426 0.9425 0.0189 0.0381

(5.9099) (0.0573) (0.4824) (-0.0610) (1.2230) (0.0273) (0.1593)
Advanced Emerging Market & Developed Stocks

T-CL 20.4379* 1.4651* 0.7418* -0.7798* 0.5455* 0.4545 -0.0177
(1.8415) (0.3079) (0.0745) (0.1816) 0.5679 0.5467 0.0566

Secondary Emerging Market & Developed Stocks
T-CL 23.5284* 0.9122* 0.8684* -0.4627* 0.9688* -0.0309 0.0312

(0.0024) (0.2646) (0.0324) (0.1317) (0.1830) 0.1792 0.0586

Log-l BIC AIC AD AAD KS AKS
Developed Stocks

T-CL 41221.9 -82397.9 -82271.1 2.8866 0.0390 1.4212 0.0162

Advanced Emerging Market & Developed Stocks
T-CL 68289.1 -136512.2 -136330.4 2.8805 0.0424 1.3581 0.0183

Secondary Emerging Market & Developed Stocks
T-CL 68423.0 -136780.0 -136598.2 2.5871 0.0238 1.2628 0.0101

Notes to Table: The upper part of the table shows the parameter estimates of the elliptical copula in the mixture structure. The middle
part reports (i) the parameters estimates of the archimedean copula in the mixture and (ii) the time-varying weights. Parameter estimates
significant at 5% confidence level are marked with an asterisk. Standard errors are in parenthesis. The lower part of the table reports the
goodness-of-fit tests.
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Table F.31: Dynamic Mixture Copulas Bond Portfolios.

Developed Bonds Adv EM & Dev Bonds Sec EM & Dev Bonds
a2 b2 a2 b2 a2 b2

AUS 0.0239* 0.9750* BRA 0.0120* 0.9793* CHI 0.0047 0.9644*
DEN 0.0203 0.9791* HUN 0.0136* 0.9813* CZE 0.0131 0.9856*
SWE 0.0221 0.9772* MEX 0.0098* 0.9828* IND 0.0044 0.9883*
ITA 0.0212 0.9781* POL 0.0098* 0.9871* INA 0.0042 0.9893*
JPN 0.0187* 0.9776* RSA 0.0112* 0.9838* THA 0.0029 0.9921*
GBR 0.0167 0.9816* AUS 0.0167* 0.9793* AUS 0.0175* 0.9776*
USA 0.0111* 0.9880* DEN 0.0145* 0.9844* DEN 0.0162 0.9827*

SWE 0.0148* 0.9832* SWE 0.0164 0.9818*
ITA 0.0148* 0.9839* ITA 0.0169 0.9817*
JPN 0.0154* 0.9821* JPN 0.0166 0.9802*
GBR 0.0107* 0.9878* GBR 0.0132 0.9852*
USA 0.0094* 0.9893* USA 0.0101 0.9882*

Model ν ωMA αMA β MA ωDW αDW β DW

Developed Bonds
T-CL 15.6410* 0.8571 0.6571* -0.9999 0.9800* 0.0091 0.0019

(0.0030) (0.5981) (0.1614) (0.6829) (0.0593) (0.0729) (0.0185)
Advanced Emerging Market & Developed Bonds

T-CL 19.9121* 0.1116 -0.9878* -0.3825 0.8584 0.1416 -0.0052
(1.6593) (5.0700) (0.5406) (3.6079) (7.7271) (7.4851) (0.2935)

Advanced Emerging Market & Developed Bonds
T-CL 22.0674 1.8850 0.7168* -0.9999 0.9800 0.0200 -0.0069

(32.2821) (1.8930) (0.3864) (0.8495) (0.0186)* (0.2463) (0.2323)

Log-l BIC AIC AD AAD KS AKS
Developed Bonds

T-CL 53562.7 -106952.7 -107079.4 4.6924 0.0781 2.3448 0.0322

Advanced Emerging Market & Developed Bonds
T-CL 86442.8 -172757.9 -172735.8 4.6052 0.0717 2.1584 0.0298

Advanced Emerging Market & Developed Bonds
T-CL 89751.5 -179437.0 -179255.2 4.0192 0.0635 1.9830 0.0259

Notes to Table: The upper part of the table shows the parameter estimates of the elliptical copula in the mixture structure. The middle
part reports (i) the parameters estimates of the archimedean copula in the mixture and (ii) the time-varying weights. Parameter estimates
significant at 5% confidence level are marked with an asterisk. Standard errors are in parenthesis. The lower part of the table reports the
goodness-of-fit tests.
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