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1. INTRODUCTION  
 

1.1. Glioblastoma multiforme 

1.1.1. Pathology  

Gliomas are a group of low-grade and high-grade brain tumours that originate from glia (from Greek 

for “glue”), the brain tissue providing support functions to neural cells [1]. The cells of origin for the 

development of gliomas are currently unknown. A major theory has been established that neural 

stem cells or neural progenitor cells undergo transformation events during development [2, 3]. 

Another hypothesis refers to the mutation-induced dedifferentiation of mature brain cells like 

astrocytes and oligodendrocytes as the origin of gliomas [4].  

According to the World Health Organisation (WHO), gliomas are classified as grade I to IV. Grade I 

and II gliomas are generally benign, with low proliferative and infiltrative potential, whereas grade III 

and IV gliomas are characterised by a high proliferative activity, marked infiltration into surrounding 

tissue and a very low median survival rate [5, 6]. Grade III and IV malignant gliomas account for 80 % 

of all primary malignant tumours of the brain and the central nervous system (CNS) [7].    

The most common malignant glioma subtype is grade IV astrocytoma, also known as glioblastoma 

multiforme (GBM) [6]. The high aggressiveness and recurrence rate of GBM characterise this glioma 

subtype as the most common deadly primary brain tumour [1, 8]. GBM represents 45.2 % of all 

primary malignant brain tumours and has an incidence rate of 3.19 per 100,000 inhabitants of the 

United States. Despite state-of-the-art therapy, less than 5 % of GBM patients survive within five 

years post diagnosis [7]. Currently there are over 150 ongoing clinical trials for GBM, including 

standard and alternative treatment [9]. 

1.1.2. Standard therapy 

Conventional treatment of GBM comprises surgical intervention, radiotherapy and chemotherapy. 

While surgery and radiotherapy have proven only limited efficacy as monotherapies [8, 10, 11], the 

administration of the chemotherapeutic temozolomide (TMZ, Temodal®) is considered as the most 

important progress in malignant glioma therapy [6]. Median survival times of all patients with newly 

diagnosed GBM improved from 8.1 months in 2000–2003 to 9.7 months in 2005–2008 due to the 

introduction of TMZ [12]. TMZ is an orally available DNA-alkylating agent of the imidazotetrazine 

group. Under physiological conditions TMZ spontaneously decomposes to the active substance 

monomethyltriazene 5-(3-methyltriazen-1-yl)-imidazole-4-carboxamide (MTIC). MTIC further 

releases a highly reactive methyldiazonium cation that mediates the cytotoxic activity of TMZ mainly 

through methylation at the O6
 position of guanine residues in guanine-rich regions of the DNA [13, 

14]. Although TMZ affects non-specifically rapidly dividing cells, the benefits of the drug are good oral 
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tolerance and efficient penetration of the blood-brain barrier [15] that renders TMZ an attractive 

therapeutic agent for GBM. 

TMZ was established as the standard of care chemotherapy against malignant glioma and GBM after 

a study of Stupp et al. [6, 16]. In a randomised phase III clinical trial they demonstrated that the 

median survival of patients with newly diagnosed GBM significantly improved from 12.1 to 14.6 

months by combined TMZ treatment and postoperative radiation, and the 2 year survival rates 

increased to 26 %, in comparison to radiation therapy alone. A follow-up clinical trial revealed a 10 % 

survival rate after 5 years with adjuvant TMZ treatment versus only 2 % with radiation therapy alone 

[17]. Recent clinical trials with GBM pointed out that concomitant and adjuvant TMZ treatment with 

radiation therapy was beneficial for survival outcome [18, 19].     

1.1.3. Strategies for targeting cellular molecules 

Because of the poor prognosis of GBM despite the application of state-of-the-art therapy, novel 

treatment approaches against cellular targets are being evolved in order to inhibit angiogenesis and 

tumour growth or to stimulate anti-tumour immune responses.  

A promising therapeutic strategy to prevent angiogenesis of malignant glioma and thus to arrest 

neoplasm expansion is the human recombinant monoclonal antibody bevacizumab, which targets 

vascular endothelial growth factor (VEGF), a crucial mediator of tumour angiogenesis [20, 21]. 

Bevacizumab was approved in 2009 in the United States for the treatment of recurrent GBM based 

on encouraging response rates [22-24] and led to improved median survival in combination with 

protracted TMZ [25] and radiotherapy [26].  

Further cellular targets for GBM therapy are cell surface growth factor receptors and signalling 

molecules. Overexpression of epidermal growth factor receptor (EGFR) is common in about 40 % of 

the GBM cases [27]. However, it was shown that small-molecule EGFR inhibitors such as gefitinib and 

erlotinib could not prolong survival of GBM patients in clinical trials substantially [28, 29].  

Several approaches to target aberrant signalling pathways in GBM through inhibition of effector 

molecules have been investigated. Attractive molecular targets are the mammalian target of 

rapamycin (mTOR) from the phosphatidylinositide 3-kinase/protein kinase B/mTOR (PI3K/Akt/mTOR) 

pathway [30-32] or protein kinase C (PKC) [33-35].  

Targeting the immune system has been considered a promising future experimental modality for 

treatment of cancer, including malignant gliomas. A panel of approaches are being currently 

investigated in clinical trials for GBM, including immunotherapy with cytokines, dendritic cells and 

autologous stimulated lymphocytes, as well as tumour- or peptide-based vaccines [9].  
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1.2. Limitations of current glioma therapy  

1.2.1. Defence mechanisms of GBM against therapies  

Despite recent survival prolongation of GBM patients by combined TMZ treatment and radiotherapy, 

and despite the development of novel approaches for molecular targeting, the long-term benefit of 

current therapy for GBM remains debatable. A critical factor hampering the eradication of GBM is 

the highly invasive and dispersive nature of GBM cells, leading to dissemination of the tumour and 

thus making complete resection impossible [36, 37]. The immune privilege of the CNS facilitates the 

immune evasion of tumour cells and thus contributes to the immunological ignorance towards GBM 

antigens [38, 39]. These factors limit the efficacy of immunotherapies. The variability of molecular 

aberrations and dysregulated signalling pathways within GBM cases, but also within tumours in 

general, is a considerable obstacle for the development of sustained targeted therapies. Moreover, 

combinations of targeted molecular drugs result in additive toxicity and drug efficacy is diminished 

due to insufficient penetration into the tumour tissue [1]. Finally, the presence of a self-renewable 

CD133+ tumour stem-like cell population that is resistant to chemo- and radiotherapy, is another 

major challenge contributing to tumour recurrence and dismal long-term survival prognosis [40].  

1.2.2. Mechanisms of drug resistance 

1.2.2.1. Resistance to alkylating agents 

Drug-resistance in glioma can often arise from aberrant DNA repair mechanisms [41]. The most 

thoroughly explored DNA repair protein in GBM, associated with poor prognosis and drug-resistance, 

is mediated by the enzyme O6-methylguanine-DNA methyltransferase (MGMT). MGMT is capable of 

removing the O6-methylguanine adducts formed by alkylating agents and high level of the enzyme 

reduces the efficacy of these agents [42]. Hegi et al. showed that MGMT promoter 

hypermethylation, which was detected in 40-50 % of GBM cases, prevents MGMT gene expression 

and is associated with better response to the alkylating drug TMZ and radiation, resulting in longer 

survival [43]. In contrast, overexpression of MGMT due to unmethylated promoter was associated 

with resistance to alkylating drugs in clinical trials [44, 45]. To circumvent resistance to alkylating 

agents resulting from MGMT overexpression, therapeutic approaches using the inhibitor of MGMT 

O
6-benzylguanine (O6-BG) were investigated in combination with alkylating agents as nitrosoureas or 

TMZ, however with limited success [46-48].  

1.2.2.2. Multidrug resistance 

Many tumours can become resistant not only to the specific cytostatic drug applied as a current 

therapy, but also to other agents. This cross-resistance is also called multidrug resistance and is 

caused by multiple mechanisms [49]. The first identified factor mediating multidrug resistance is 

overexpression of the multidrug resistance 1 (MDR1) gene that encodes for the MDR1/P-
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glycoprotein (P-gp) or ABCB1, a member of the adenosine triphosphate (ATP)-binding cassette (ABC) 

transporter family [50]. ABC-transporters mediate a drug efflux that leads to decrease in cellular 

accumulation of cytostatic compounds [49]. Multidrug-resistant cells become insensitive not only to 

structurally unrelated cytostatic drugs such as anthracyclines, vinca alkaloids, and taxanes, but also 

to other compounds such as antiviral drugs and antibiotics, which are transported by P-gp [50]. The 

classical P-gp-mediated as well as alternative mechanisms of multidrug resistance have been 

extensively studied in different cancer cell lines with an established multidrug-resistant phenotype 

[51-53]. However, it has still to be investigated if alternative therapeutic compounds or gene therapy 

approaches using specific prodrugs for example, are also hampered by multidrug resistance 

mediated by P-gp.   

 

Promising tools to circumvent the above described limitations for a successful therapy of GBM are 

alternative tumour-targeting approaches as suicide gene therapy and oncolytic virotherapy. 

Oncolytic viruses have the ability to replicate in and selectively kill tumour cells. To increase their 

killing potential, oncolytic viruses can be equipped with suicide genes that mediate cytotoxicity as a 

part of a suicide gene system. Suicide gene therapy and oncolytic virotherapy have already 

demonstrated their efficacy in tumour eradication, as described in the following.  

 

1.3. Suicide gene therapy   

Suicide gene therapy, also termed gene-directed enzyme prodrug therapy, describes the delivery of a 

gene that encodes an enzyme, which is able to convert a non-toxic prodrug into a metabolite that 

exerts cytotoxic effects in target cells. Prodrugs are inert compounds that can be transformed into 

toxins by suicide gene-encoded enzymes specific for certain tissue or overexpressed in tumours as a 

result of gene delivery [54]. Prodrug-mediated suicide gene systems are therefore convenient tools 

for the application in cancer therapy. Due to its minimal toxicity in healthy tissue, suicide gene 

therapy is designed to address the limitations of conventional chemotherapy, such as severe adverse 

effects and lack of specificity. 

1.3.1. HSV1-TK/GCV suicide system  

The most extensively studied suicide gene strategy in cancer therapy is the Herpes simplex virus 1 

thymidine kinase (HSV1-TK) gene in combination with the prodrug Ganciclovir (GCV) [55]. The HSV1-

TK enzyme is a homodimer with a subunit molecular mass of 45 kDa [56] and is responsible for the 

phosphorylation of its natural substrate deoxythymidine to deoxythymidine triphosphate, which is 

incorporated into nascent DNA of HSV1 [57]. Thus, HSV1-TK is involved in the reactivation of HSV1 

from ganglionic neurons during the latent stage of its life-cycle [58]. HSV1-TK exhibits a broad 
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specificity to other nucleosides, such as deoxycytidine, deoxythymidylate and various pyrimidine and 

guanosine analogues [56]. Of them, the guanosine analogue GCV is metabolised by HSV1-TK with a 

1000-fold higher efficiency compared to mammalian thymidine kinases [59] and this property 

provides the basis for the application of GCV in combination with the suicide gene HSV1-TK for 

cancer gene therapy [57]. Moreover, HSV1-TK exhibits better catalytic properties for GCV than for 

Acyclovir (ACV), a GCV-related guanosine analogue [60, 61]. The prodrug GCV is initially 

phosphorylated by HSV1-TK to GCV-monophosphate, which is further phosphorylated to GCV-di- and 

-triphosphate by cellular enzymes, such as guanylate kinase and nucleoside diphosphokinase [56, 62, 

63]. The toxic metabolite GCV-triphosphate competes with deoxyguanosine triphosphate for the 

incorporation into nascent DNA of dividing cells and inhibits the cellular DNA polymerase, causing 

double strand destabilisation that leads to abrogation of DNA synthesis and subsequently to cell 

death [61, 62, 64] (figure 1.1). In addition, GCV exerts potent anti-viral activity against viruses of the 

herpesvirus family [65] and against hepatitis B virus variants [66].   

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Mode of action of the HSV1-TK/GCV suicide system. After transfection or viral transduction of 

target cells with HSV1-TK-bearing vectors, the HSV1-TK enzyme is expressed and translocated to the cytoplasm. 

HSV1-TK phosphorylates its specific prodrug Ganciclovir (GCV) to GCV-monophosphate (-P), which is further 

phosphorylated to GCV-di-P and GCV-tri-P by cellular kinases. The toxic metabolite GCV-tri-P incorporates into 

the DNA of dividing cells, causing double strand destabilisation, and inhibits the cellular DNA polymerase, 

resulting in termination of DNA synthesis and cell death.      

 

 

It has been suggested that the mode of cell death elicited by the HSV1-TK/GCV system in tumours 

involves both apoptotic [67-70] and non-apoptotic mechanisms [71, 72], depending on the tumour 

cell type. The regulation of the mitochondrial death pathway by B cell lymphoma-2 (Bcl-2) family 

proteins was suggested as the most probable mechanism of HSV1-TK/GCV-mediated apoptotic death 

[68-70]. Death of some tumour cell lines after HSV1-TK/GCV activation can also be caused by 
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apoptosis in the G1 phase of the cell cycle combined with late apoptotic or necrotic sub-G1 DNA 

fragmentation [73]. 

1.3.2. Bystander effect 

The efficacy of the HSV1-TK/GCV suicide gene system is greatly facilitated by the so called bystander 

effect. The principle of the bystander effect was first demonstrated in a mosaic co-culture of 

untransfected and HSV1-TK transfected cells, in which the untransfected cells, surrounded by 

transfected cells, became sensitive to GCV [55]. This finding showed the existence of a bystander 

effect that contributes to the eradication of neighbouring non-HSV1-TK-borne cells, even if there is 

only a small subpopulation of HSV1-TK-bearing cells. Considering the low transduction efficiency of 

some gene delivery vehicles for HSV1-TK, the bystander effect is essential for successful tumour 

eradication by prodrug-mediated suicide systems. The basic principle of the bystander effect is the 

transport of GCV-monophosphate, GCV-diphosphate and GCV-triphosphate into adjacent cells, 

where GCV-monophosphate and GCV-diphosphate are further phosphorylated by cellular kinases 

and accumulated GCV-triphosphate directly leads to cytotoxicity [74, 75] (figure 1.2). It has been 

shown that, when only 10 % of cell culture had been transduced to express HSV1-TK, the treatment 

with GCV could result in 100 % cell killing. Corresponding in vivo tumour models, including glioma, 

also confirmed that treatment with GCV induced a complete tumour regression, when 10-50 % of the 

cell population was HSV1-TK positive [76-80].  

One main drawback of the HSV1-TK/GCV system is that, in contrast to the prodrug, the 

phosphorylated GCV metabolites are highly charged and thus unable to passively diffuse throughout 

the cellular lipid membranes and into neighbouring cells [57, 75]. Therefore, the transfer of 

phosphorylated GCV between HSV1-TK positive cells and neighbouring cells was shown to be 

accomplished through direct intercellular contact, mediated by gap junctions [81-83]. Another 

mechanism for a local bystander effect might be the phagocytosis of apoptotic bodies, generated 

from HSV1-TK-modified cells, by adjacent unmodified tumour cells [77].  
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Figure 1.2: Basic principle of the HSV1-TK/GCV-mediated bystander effect. In a population of HSV1-TK-

transduced and untransduced cells, the metabolites GCV-P, GCV-di-P and GCV-tri-P produced by HSV1-TK and 

cellular enzymes in HSV1-TK-transduced cells, are transported to neighbouring untransduced cells through gap 

junctions. GCV-P and GCV-di-P are phosphorylated to GCV-tri-P by kinases of the untransduced cells. Finally, 

accumulated GCV-tri-P induces cytotoxicity in both HSV1-TK-transduced and untransduced cells [75].     

  

       

1.3.3. HSV1-TK isoforms  

Considering that the Michaelis constant (Km) value of HSV1-TK for GCV is about 100-fold higher than 

its Km value for deoxythymidine [61, 84], the enzyme has a higher affinity for deoxythymidine and 

therefore, both molecules compete for the active site of HSV1-TK. Because of this competition, high 

clinically relevant doses of GCV are needed to be applied, but they often cause undesirable side 

effects in patients [54, 56]. In order to overcome unspecific toxicity mediated by GCV, novel mutant 

variants of HSV1-TK with improved specificity towards GCV have been developed and already used in 

preclinical investigations [85-88].  

The most extensively studied mutant is the HSV1-TK variant sr39TK, derived by semi-random 

sequence mutagenesis of amino acid residues within the putative active site of the enzyme [86]. 

Among seven HSV1-TK variants, HSV1-sr39TK was identified as the most sensitive to GCV. This 

mutant contains five amino acid substitutions (table 1.1) that confer a 43-fold greater sensitivity to 

GCV as well as a 20-fold increased sensitivity to ACV than the wild-type HSV1-TK and better efficiency 

in tumour ablation than the wild-type enzyme [85, 86]. The observed low half maximal inhibitory 

concentration (IC50) of 0.017 µM for GCV with HSV1-sr39TK enabled a drastic reduction of the 

prodrug dose applied in vitro and favoured a 10-fold lower GCV concentration to efficiently inhibit 

the growth of HSV1-sr39TK-expressing glioma xenograft models in comparison to GCV with wild-type 
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HSV1-TK [86]. HSV1-sr39TK in combination with GCV was shown to be more efficient in in vitro and in 

vivo studies against metastatic prostate cancer [89], as well as against various tumour cell lines [90], 

compared to wild-type HSV1-TK or other variants.  

 

Table 1.1: Deduced amino acid sequence of the HSV1-TK semi-

random mutant sr39TK. Mutated residues conferring increased 

sensitivity towards GCV and/or ACV are displayed [86].  

     

 Amino acid residues 159-161 and 168-169 

HSV1-TK (wt) L             I             F                   A             L 

sr39TK (mutant) I             F             L                   F             M 

 
A: Alanine; F: Phenylalanine; I: Isoleucine; L: Leucine; M: Methionine  

 

 

1.3.4. Clinical application of HSV1-TK/GCV gene therapy for cancer  

The success of the HSV1-TK/GCV suicide system in preclinical studies encouraged the conduction of 

several clinical trials towards various tumour types. Beneficial for the therapeutic outcome in cancer 

are the minimal adverse effects of the suicide gene system, due to the preferential killing of rapidly 

dividing cells such as tumour cells, but not of normal tissue [56]. Clinical phase I/II trials towards 

various cancer types, including ovarian cancer [91, 92], metastatic melanoma [93], prostate cancer 

[94, 95] and malignant glioma [96], demonstrated a good safety profile of the HSV1-TK/GCV suicide 

therapy, associated with moderate to encouraging efficacy.  

Given the in chapter 1.2. described limitations of current therapy against glioma, the strategy of 

HSV1-TK/GCV suicide gene therapy is being under investigation as an alternative treatment of these 

neoplasms. Since the HSV1-TK/GCV system exerts its cytotoxic effect only in dividing cells, HSV1-TK 

and GCV are suitable for specific local targeting of the highly proliferating GBM cells [39]. Moreover, 

the immune privilege of the brain hampers the immune recognition of cellular cytotoxic processes 

and favours the transduction of the tumour with viral delivery vectors. Several encouraging phase I 

and II clinical trials towards malignant glioma, using retroviral [97, 98] and adenoviral [96, 99] 

delivery of HSV1-TK, pointed out the safety and feasibility of this suicide gene therapy. Rainov et al. 

reported minimal toxicity of adjuvant HSV1-TK gene therapy in GBM patients in a phase III clinical 

trial, but the limiting factor was the poor transduction efficiency of the retroviral delivery vector 

[100]. Though more encouraging than the trial of Rainov et al., the improvement of overall survival in 

a recent phase III GBM trial, using adenovirus-mediated gene therapy with HSV1-TK and GCV 

administration, was only minor [101]. In order to circumvent resistance of HSV1-TK-expressing cells 

to GCV, a combination of the HSV1-TK/GCV system with conventional chemo- and radiotherapy 
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became a necessary and successful treatment option, as it was shown in preclinical trials that HSV1-

TK could sensitise glioma cells to radiation and cytostatic drugs like TMZ [102, 103].  

1.3.5. Other suicide gene systems  

It is of advantage to develop a broad range of suicide genes/prodrug combinations for cancer 

therapy, because not all cancers respond equally to the same prodrug and, in case of treatment 

failure with one suicide gene, it can be substituted by alternative suicide genes, against which there 

is no pre-existing immune response [56]. Over twenty suicide genes with different kinetic and 

cytotoxic properties are identified by now [57]. Besides HSV1-TK, other examples of widely used 

suicide gene systems include the enzymes cytosine deaminase (CD) and cytochrome P450. The CD 

enzyme, found in bacteria (bCD) and yeast (yCD), catalyses the conversion of the prodrug 5-

fluorocytosine (5-FC) to the toxic metabolite 5-fluorouracil (5-FU) [104]. Cytochrome P450 enzymes 

are drug-metabolising enzymes of mammals, responsible for the conversion of the prodrugs 

ifosphamide (IFO) and cyclophosphamide (CPA) into their 4-hydroxy-forms, which induce cytotoxic 

effects [105]. Both CD/5-FU and cytochrome P450/IFO and CPA suicide gene systems have been 

investigated as approaches against cancer [106, 107]. 

 

1.4. Reporter genes for non-invasive imaging in cancer therapy 

Non-invasive imaging with reporter genes in tumour therapy is applied for monitoring of delivery, 

distribution, expression and persistence of a therapeutic gene within a tumour, for visualising the 

therapeutic success as well as tumour regression or growth in living organisms. Non-invasive imaging 

can be performed e.g. by means of positron emission tomography (PET) with radionuclide probes. 

PET displays a higher sensitivity and spatial resolution than single photon emission computed 

tomography (SPECT). With its ability to detect about 10-10 M of a radiolabelled probe, PET allows the 

direct quantitation of tracer amounts of radiolabelled substrates within cells [108].  

The most commonly applied reporter gene for non-invasive tumour imaging in experimental settings 

is HSV1-TK. The principle of non-invasive imaging with HSV1-TK as a reporter gene is based on the 

enzymatic conversion of various specific radiotracer substrates, such as the acycloguanosine 

derivative [18F]-labelled 9-[4-fluoro-3-(hydroxymethyl)butyl]guanine (FHBG) or the uracil nucleoside 

derivative [124I]- and [131I]-labelled 2’-fluoro-2’-deoxy-5-iodo-1-β-D-arabinofuranosyl (FIAU) by the 

expressed HSV1-TK protein after gene transduction. The phosphorylated radiolabelled metabolites 

produced by this conversion are then trapped within the cell and can be visualised by PET ([18F]-

FHBG, [124I]-FIAU) or SPECT ([131I]-FIAU) imaging [109, 110] (figure 1.3). Crucial for the choice of the 

radiolabelled tracer FHBG and FIAU as reporter probes for HSV1-TK is that HSV1-TK and HSV1-sr39TK 

exhibit greater substrate specificity for these compounds than does mammalian TK [110].  
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Figure 1.3: Principle of reporter 

gene imaging with HSV1-TK. The 

HSV1-TK enzyme, which is 

expressed after gene 

transduction of target cells, 

converts its specific 

radiolabelled substrates (e.g. 

[*I]-FIAU, [
18

F]-FHBG) into 

phosphorylated metabolites. 

These cannot diffuse throughout 

the cell membrane and 

accumulate within the cell, 

enabling non-invasive imaging of 

HSV1-TK-transduced cells by 

means of PET and SPECT. *I: 

[
124

I]- or [
131

I]-FIAU. 

      

 

Early investigations of hepatic reporter gene delivery have shown that adenoviral transfer of HSV1-TK 

or HSV1-sr39TK is promising for in vivo reporter gene PET imaging using radiolabelled 

acycloguanosines [111-113]. Some in vitro and in vivo studies of cardiovascular imaging [114-116] or 

tumour imaging [117-119] showed that HSV1-TK is more sensitive to [14C]-FIAU and [124I]-FIAU than 

to [18F]-FHBG. In contrast, HSV1-sr39TK showed greater sensitivity to [18F]-FHBG than to FIAU probes 

and the HSV1-sr39TK/[18F]-FHBG combination yielded more radiotracer accumulation over time and 

higher imaging contrast for PET than the combination of HSV1-sr39TK and FIAU. Therefore, HSV1-

sr39TK and [18F]-FHBG have been used as an optimal combination of reporter gene and probe for 

non-invasive PET imaging. Non-invasive imaging with HSV1-sr39TK and [18F]-FHBG in a dedicated 

small animal scanner with greater sensitivity than clinical PET scanners, termed microPET, was 

feasible for monitoring the HSV1-sr39TK/GCV-mediated effect in tumour xenografts [120-123]. The 

feasibility of FIAU-/FHBG-based HSV1-TK nuclear reporter gene imaging, its application for assessing 

the safety of transgene delivery vectors and for predicting the therapeutic response in cancer, was 

also demonstrated in several phase I and II clinical trials [124-127]. 

Another example of a widely used nuclear reporter gene is the human sodium-iodide symporter gene 

(hNIS). It mediates the uptake of radioisotopes suitable for imaging with scintigraphic techniques, 

such as 123I, 131I, and 99mTc-pertechnetate (99mTc), or with PET, as 124I and 94mTc [128]. hNIS was applied 

for non-invasive imaging of the response of tumours to radioiodine therapy [129, 130]. Nuclear 

reporter genes can also code for extracellular receptors like human somatostatin receptor subtype 2 

(hSSTR2) [131] or human dopamine 2 receptor (hD2R) [132].    

 

 

HSV1-TK

radiolabelled
substrate:
[*I]-FIAU
[18F]-FHBG

P

PET
SPECT
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1.5. Adenoviruses 

1.5.1. Adenoviral structure 

Human adenoviruses belong to the family of Adenoviridae and the genus of Mastadenoviruses. They 

were first isolated from human adenoids in 1953 by Rowe et al. [133]. Adenoviruses mainly cause 

infections of the respiratory tract that range from mild and self-limited to life threatening, associated 

with acute respiratory disease in immunocompromised patients [134-136]. Over 60 serotypes of 

human adenovirus, which are divided into seven species (A-H), have been identified so far [137].  

Adenoviruses are non-enveloped viruses that have a capsid diameter of over 90 nm and a size of 150 

MDa. Their genome consists of linear, double-stranded DNA of about 36 kb length [138, 139]. The 

mature adenovirus particle is composed of an outer capsid and an inner core that contains the viral 

DNA (figure 1.4). Recently, the visualisation of adenoviruses by X-ray crystallography [140] or 

cryoelectron microscopy [141] enabled the nearly atomic resolution of all structure components of 

the virion. The icosahedral virus capsid is composed of 240 pseudo-hexagonal homotrimers of hexon, 

the major capsid protein, on the faces and edges of the capsid and of a pentagon-shaped penton 

located on each of the 12 fivefold apices. Each penton consists of a covalent complex between the 

homopentameric penton base and a homotrimeric fiber protein [142-144]. Four minor capsid 

proteins (IIIa, VI, VIII and IX) are also involved in capsid assembly [141, 145]. The virus core contains 

six structural proteins, five of which are associated with the viral genome (V, VII, µ, IVa2 and the 

terminal protein). The sixth core protein, the 23K cysteine protease, plays a role in virion assembly 

[138, 144].    

 

  

 

 

 

 

 

 

 

 

Figure 1.4: Adenovirus assembly. The adenovirus capsid is composed of the major capsid proteins hexon and 

penton (built up of penton base and fiber), and the minor capsid proteins IIIa, VI, VIII and IX. The core proteins 

V, VII, µ, the terminal protein and IVa2 stabilise the viral DNA. The viral protease plays a role in virion assembly 

(modified from [144]). 
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1.5.2. Adenoviral infection and life cycle 

The initial contact between the adenovirus and the target cell is mediated by the interaction of the 

viral fiber protein with the coxsackie and adenovirus receptor (CAR), a cell membrane protein [146]. 

However, dependent on species, adenoviruses can also utilise alternative cell surface receptors for 

cell entry, e.g. CD46, CD80, CD86, sialic acid receptors or heparin sulphate glycosoaminoglycans [138, 

144]. The virus-host interaction is further accomplished by the binding of an arginine-glycine-aspartic 

acid (RGD) peptide on the viral penton base to cellular ανβ3/ανβ5 integrins [147]. This binding triggers 

the internalisation of viral particles by clathrin-mediated endocytosis [148]. The delivery of the virus 

into an acidic endosome mediates the viral escape from the endosome and the transport of the virus 

towards the nucleus [149]. After docking to the nuclear pore complex, the viral particle disassembles 

and its DNA is imported into the nucleus, where the transcription of viral genes is initiated [150]. 

1.5.3. Adenoviral genome organisation 

The linear DNA of the adenovirus is flanked by inverted terminal repeats (ITR) that contain the origins 

of DNA replication and, located close to the left ITR, the encapsidation signal [151, 152]. The viral 

genome is divided into transcription units defined as early and late according to the onset of their 

transcription [153] (figure 1.5). The early elements (E1-4) are the first to be transcribed shortly after 

infection and their gene products have regulatory functions. The E1 region codes for the early region 

1A (E1A) and early region 1B (E1B) proteins. E1A are the first proteins of the adenovirus that are 

expressed after infection. Crucial for mediating the regulatory functions of E1A are two transcripts of 

12S and 13S mRNA, derived by alternative mRNA splicing, that encode proteins of 243 amino acid 

(aa) and 289 aa, respectively. E1A contains four conserved regions (CR1-4). The functional difference 

between the 289 aa and the 243 aa proteins arises from the lack of CR3 in the 243 aa protein. In the 

289 aa protein, CR3 codes for a C4 zinc finger motif that acts as a transcriptional activator crucial for 

the transactivation of the delayed early E2-4 genes and of some cellular genes [154-157]. A further 

function of the E1A proteins is the deregulation of the host cell cycle in order to facilitate adenoviral 

replication. Both splice variants of E1A bind to cellular retinoblastoma proteins (pRb) and inhibit their 

cell cycle suppressive activity by destroying pRb-E2F complexes. The released cellular transcription 

factor E2F mediates transition of the host cell cycle from G0/G1 into the S phase [156, 158]. 

Moreover, E1A proteins can directly target the cell division cycle 25 homolog a (cdc25a) phosphatase 

and thus force S phase entry [159].              

The E1B protein family is subdivided into the proteins E1B55K and E1B19K. The E1B55K protein forms 

in cooperation with the E4 encoded protein E4orf6 an ubiquitin-ligase complex that targets p53 and 

inhibits p53-mediated cell cycle arrest and apoptosis [160]. The E1B55K and E4orf6 complex is also 

responsible for the export of viral mRNA transcripts from the nucleus into the cytoplasm for the 
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biosynthesis of viral proteins. In addition, E1B55K and E4orf6 downregulate host protein synthesis 

[161]. The E1B19K protein is a homologue of the Bcl-2 protein and exerts anti-apoptotic effects in 

host cells [162].    

The E2 transcription unit, including the E2A and E2B genes, encode the viral DNA polymerase and 

other proteins that are directly involved in adenoviral DNA replication, DNA elongation, transcription 

control, mRNA stability, protection of viral DNA from degradation and prevention of DNA integration 

into the host genome [163, 164]. At the end of adenoviral replication, up to 106 new DNA molecules 

have been synthesised within 48 h after infection of human cells, which almost correlates with the 

cellular DNA content [152].     

The gene products of the E3 transcription unit are involved in mediation of lytic viral release from the 

infected cells and in adenovirus-mediated immune escape. The E3 encoded adenovirus death protein 

(ADP, formerly E3 11.6K) facilitates host cell lysis and the release of newly synthesised viral particles 

at late stages of infection [165]. E3 encoded proteins with immunomodulatory functions prevent 

detection of virus-infected cells by the host immune system by blocking MHC class I antigen 

presentation and inflammatory responses induced by cytokines [166].   

The E4 gene products are derived by alternative splicing of a primary mRNA transcript. Proteins 

expressed by the E4 region exhibit diverse functions in viral DNA replication, RNA splicing, synthesis 

of late viral proteins, as well as in modulation of transcription, cell cycle, DNA repair and cell 

signalling [167].                  

Gene expression from the late regions L1-5 is initiated about 8 h post infection. The late genes 

encode the viral structural proteins described in chapter 1.5.1. [168]. Besides its role in virion 

assembly [144], the L3-coded 23K proteinase cleaves the cellular cytokeratin network, thus rendering 

the host cell susceptible to lysis and release of newly synthesised viral particles [169]. An indication 

for cell lysis is the cytopathic effect (c.p.e.) that describes the typical swelling and rounding of 

adenovirus-infected cells, occurring one to two days after infection [170].   
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Figure 1.5: Organisation of the adenoviral genome. Location of the early (E1-4) and late (L1-5) gene regions in 

the adenoviral genome and their crucial gene functions.    

 

 

1.6. Adenoviral vectors for gene therapy 

Adenoviruses can be applied as vehicles for the delivery of therapeutic genes and adenovirus-based 

gene therapy is a promising alternative treatment for cancers that are refractory to conventional 

therapies. The advantages of adenoviral vectors in gene therapy are their broad host range and their 

ability to infect proliferating as well as quiescent cells, enabling efficient gene transfer. Moreover, 

they display low pathogenicity in humans and the non-integrative character of their genome allows 

for transient transgene expression and minimises the risk of mutagenesis. Finally, adenoviral vectors 

can be easily purified achieving high titres [168, 171]. The packaging capacity of adenoviral vectors 

for foreign DNA can be up to 105 % of the wild-type adenoviral genome size, which equals to an 

insert size of only about 2 kb, without impairing the genetic stability of the vectors [172]. In order to 

maximise the vector capacity for inserts, first generation vectors with deletions of the E1 and/or E3 

regions that enable insertions of about 8 kb foreign DNA have been constructed, providing safe and 

efficient transgene delivery [153, 168, 173].  
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1.7. Oncolytic adenoviruses 

1.7.1. Nature and modifications  

Oncolytic viruses are biological therapeutic agents that are genetically modified to selectively kill 

tumour cells while sparing healthy tissue. The concept of cancer virotherapy is based on the ability of 

the viral agent to replicate in tumour cells and to spread its progeny throughout the tumour with the 

aim to eliminate the tumour burden completely [171, 174]. The strategy of oncolytic killing utilises 

the replicative and lytic life cycle of the viruses and its regulation by tumour-specific factors [174, 

175]. According to the paradigm of virotherapy, viral oncolysis might also stimulate a systemic 

immune response against residual tumour cells [175]. There are some viruses with natural tropism 

for cancer cells, including reovirus [176], autonomous parvovirus [177], Newcastle disease virus [178, 

179], mumps virus [180] and murine leukemia virus [181]. In contrast, viruses, such as adenovirus, 

measles virus, vesicular stomatitis virus, vaccinia virus and HSV need to be engineered to make them 

tumour specific [175].  

Oncolytic adenoviruses are designed to overcome the limitations of replication-deficient vectors such 

as insufficient infectivity of solid tumours and impaired virus spread [171, 182]. Furthermore, all the 

benefits of attenuated adenoviral vectors, as listed in chapter 1.6., are applicable for oncolytic 

vectors [183]. Due to their ability to transduce also quiescent cells, oncolytic adenoviruses are 

suitable agents against cancer stem cell populations, which show a low proliferation rate [184-186].  

In contrast to the non-selective replication of wild-type adenovirus, oncolytic adenoviruses are 

genetically modified to replicate exclusively in tumour cells. There are two major strategies to 

generate replicative adenoviral vectors with specific tumour tropism. The first strategy involves the 

introduction of loss-of-function mutations in adenoviral genes essential for viral replication in normal 

cells. These mutated viral genes are compensated by aberrant oncogenes, tumour suppressor genes 

or transcription factors in tumour cells, as p53, pRb or Y-box binding protein 1 (YB-1). The adenoviral 

replication is therefore restricted to tumour cells with dysfunctional gene expression [171, 174]. One 

of the most prominent examples for conditionally replicating adenoviruses with introduced 

mutations is ONYX-015 (formerly dl1520), which carries deletions of the E1B55K gene. It was 

originally proposed that this virus replicates selectively in tumour cells with a mutated p53 tumour 

suppressor gene and an aberrant p53-p14ARF pathway, because the p53-binding protein E1B55K is 

not at disposal for inactivation of p53 and lack of p53 expression in tumours enables viral replication 

[187-189]. The p53-dependency of ONYX-015 is however rejected, as another study has stated that 

the replication of the virus does not depend on p53 or p14ARF [190] and probably other mechanisms 

are involved. Another mutated conditionally replicating adenovirus is AdΔ24 that contains a 24 bp 

deletion of the CR2 of E1A, rendering the expressed protein unable to bind to pRb and to stimulate S 

phase entry. The virus can therefore replicate only in cancer cells with mutated pRb [191].  
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In the second strategy for generation of conditionally replicative adenoviral vectors, so called 

transcriptional targeting, viral promoters are replaced by cancer-specific promoters that restrict viral 

replication to tumour cells expressing specific transcription factors [171, 174, 183]. Several oncolytic 

adenoviruses that utilise transcriptional targeting have been designed using cancer-specific 

promoters of genes encoding for example prostate-specific antigen [192], α-fetoprotein [193] or 

human telomerase reverse transcriptase (hTERT) [194].    

In order to augment the anti-tumour efficacy of conditionally replicating adenoviruses, several 

attempts to improve their cell targeting and delivery to the tumour, as well as their intratumoural 

spread, were performed. The rapid clearance of adenoviruses from blood by liver Kupffer cells [195] 

is a considerable obstacle especially for the targeting of disseminated cancers. Therefore, capsid 

modifications were performed in order to prevent the interaction of adenoviruses with hepatocytes 

and to increase adenovirus persistence in blood [174]. Although oncolytic adenoviruses are 

characterised by a high transduction efficiency in vivo [182], many tumours do not express CAR 

receptors sufficiently and adenoviral infection is therefore limited [196]. To enhance viral delivery 

and spread in CAR-deficient tumour cells significantly, an integrin-binding RGD motif [197] or a 

polylysine sequence [198] can be inserted into the adenoviral fiber knob gene. These fiber 

modifications increase both the CAR-independent tumour tropism and the oncolytic potential of the 

viruses [198-200]. A strategy to augment intratumoural spread of oncolytic adenoviruses by 

enhancing viral particle release is the deletion of the anti-apoptotic E1B19K gene [201] or the 

maintenance of the ADP protein [165]. Finally, the use of immune suppressive drugs can prevent 

recognition of oncolytic adenoviruses by the host adaptive immune response and can thus improve 

viral anti-tumour efficacy [175].  

The potency of oncolytic adenoviruses can be further enhanced by arming them with suicide genes, 

as described in chapter 1.8., or transgenes that enhance intratumoural spread of the virus [202], 

modify the tumour microenvironment [203] and modulate immune responses in favour of tumour 

destruction [204].  

1.7.2. In vitro 3D tumour models to explore oncolytic adenoviruses  

Three-dimensional (3D) multicellular spheroids are convenient and feasible models for performing 

preliminary investigations of in vivo effects. A benefit of spheroids is that their complexity is 

intermediate between the conventional two-dimensional (2D) cell culture in vitro and tumours in 

vivo. The use of spheroids represents an approach to mimic micrometastases in order to study the 

biology of tumour microregions [205]. Because they resemble tumour tissue with regard to growth 

kinetics and metabolism [205], multicellular spheroids can be applied for the study of treatment 

efficacy and for drug screening in cancer therapy [206-209]. Spheroids are also a relevant and 

promising 3D model for exploring adenoviral replication, oncolysis, distribution and spread [210]. 
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They were successfully applied in various preclinical analyses of conditionally replicating and tropism-

modified oncolytic adenoviruses prior to in vivo application [211-213]. Moreover, spheroids derived 

from tumour cell lines were used as a convenient in vitro model to assess changes in cellular 

metabolism by means of imaging techniques after treatment with oncolytic adenoviruses [214].  

1.7.3. Clinical application of oncolytic virotherapy  

Modern oncolytic virotherapy undergoes a promising development towards clinical application, 

based on the recent success of some clinical trials. An adenoviral vector with similarity to ONYX-015, 

termed Oncorine (H101), was the first oncolytic adenovirus that was approved as a therapy of head 

and neck squamous cell carcinoma (HNSCC) in China in 2005 [215, 216]. A milestone in the 

development of oncolytic virotherapy was achieved with the first demonstration of significant anti-

cancer efficacy by an attenuated oncolytic HSV-1, termed OncoVEXGM-CSF (talimogene laherparepvec), 

encoding the immunostimulatory cytokine granulocyte macrophage colony-stimulating factor (GM-

CSF) [217, 218]. Another notable clinical development of virotherapy was achieved by the study of 

JX-594, an oncolytic vaccinia virus armed with GM-CSF [219, 220]. Among oncolytic adenoviruses, 

some phase I and II clinical trials showed promising results by applying ONYX-015 with or without 

chemotherapy against various cancer types, including head and neck cancer [221, 222], ovarian 

cancer [223], solid tumours [224], pancreatic carcinoma [225], colorectal cancer [226, 227] and 

malignant glioma [228]. In addition, an oncolytic adenovirus under the control of the hTERT 

promoter and the RGD-modified version of AdΔ24 were tested in phase I trials against solid tumours 

[229] and ovarian cancer [199, 200], respectively.  

HSV has been for a long time the vector of choice for oncolytic virotherapy against brain cancer [175, 

230]. However, recombinant oncolytic HSV have shown only limited efficacy in clinical trials for 

malignant glioma probably due to deletions of crucial viral genes [231-233]. Oncolytic adenoviruses 

have emerged in the focus of malignant glioma therapy, as this tumour type provides favourable 

conditions for viral replication and spread. Malignant gliomas rarely metastasise and the viral load 

can be safely injected intratumourally. Moreover, the blood-brain barrier and the lack of tumour-

specific antigen drainage to the cervical lymph nodes cause an immune privilege of the brain [234, 

235]. ONYX-015 was tested as an adjuvant therapy in a phase I trial for recurrent malignant gliomas 

and demonstrated good viral tolerance and absence of severe anti-viral effects. This therapy was 

safe, but achieved no significant anti-tumour efficacy [228].  
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1.8. Arming oncolytic adenoviruses with suicide and reporter genes   

Although clinical trials have demonstrated their good safety profile, oncolytic adenoviruses are not 

able to improve the outcome of the disease significantly, as described above. Due to the 

heterogeneous expression of cell surface receptors [236] and tumour-specific promoters from one 

tumour type to the other, a treatment with a single oncolytic adenovirus has often not the desired 

efficacy. Oncolytic adenoviruses can be therefore combined with suicide and reporter genes in order 

to improve cell killing and to directly monitor the viral distribution, spread and therapeutic efficacy in 

living systems.  

The HSV1-TK/GCV suicide system was shown to enhance the oncolytic activity of HSV1-TK-armed 

conditionally replicating [237-239] and non-conditionally replicating [240] adenoviruses and thus to 

improve the treatment efficacy in different preclinical tumour models compared to virus treatment 

only. Other studies demonstrated a potent anti-tumour synergistic effect of HSV1-TK-expressing 

conditionally replicating adenoviruses driven by the hTERT promoter and the HSV1-TK/GCV suicide 

system [241, 242].  

Further improvement of armed virotherapy includes the development of oncolytic adenoviruses 

containing bCD/HSV1-TK or yCD/HSV1-sr39TK fusion genes, which allow the concomitant delivery of 

both suicide gene types to tumours [243, 244]. Encouraging results from phase I clinical trials 

demonstrated the potential therapeutic benefit and safety of the combined approach using viral 

oncolysis, activity of both CD/5-FC and HSV1-TK/GCV suicide systems and radiation therapy for 

prostate cancer [245-247]. Oncolytic adenoviruses expressing HSV1-sr39TK [244] or a mutant of 

HSV1-TK that incorporates an 8 aa-domain derived from the Tat protein of the human 

immunodeficiency virus (Tat8TK) [248] can facilitate in vivo PET imaging of viral distribution, 

transgene activity and of the progress of combined anti-tumour oncolytic- and suicide gene therapy. 

Furthermore, the delivery of the hNIS reporter gene to conditionally replicating adenoviruses [249, 

250] or to tropism-modified replication-selective adenoviruses [251-253] was proven to be effective 

for non-invasive imaging of the combined potential of oncolytic virotherapy and hNIS-mediated 

radioiodine treatment against cancer.  

Besides HSV1-TK/HSV1-sr39TK and CD, there are further suicide genes delivered by replication-

competent adenoviruses that were shown to enhance the oncolytic potential of their delivery 

vectors in cancer. One example thereof is the suicide gene FCU1, encoding a bifunctional chimeric 

protein that combines the enzymatic properties of yCD and uracil phosphoribosyl transferase (FUR1 

or UPRT) and catalyses the conversion of 5-FC [254]. Another example is the novel suicide gene 

deoxyribonucleoside kinase of Drosophila melanogaster (Dm-dNK), which sensitises mammalian cells 

to the prodrugs (E)-5-(2-bromovinyl)-20-deoxyuridine (BVDU) and 2’,2’-difluoro-deoxycytidine (dFdC) 

[255].  
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1.9. YB-1 dependent oncolytic adenoviruses 

1.9.1. The multifunctional protein YB-1  

The Y-box binding protein 1 (YB-1) is a protein with multiple functions, concerning the regulation of 

various biological processes. It belongs to the superfamily of the cold-shock proteins and contains a 

highly conserved nucleic-acid-binding motif [256]. Whereas YB-1 is barely present in healthy cells, 

except in certain embryonic tissues [257], it is overexpressed in various cancer types and is located 

mostly in the nucleus of tumour cells [258, 259]. The pleiotropic functions of YB-1 arise from the 

localisation of the protein either in the nucleus or in the cytoplasm of cells. In the cytoplasm, YB-1 is 

involved in regulation of mRNA translation and transport of mRNA to polysomes [260, 261]. 

Translocation of YB-1 into the nucleus of highly proliferating or tumour cells results from 

environmental stressors like chemotherapy [258], UV irradiation [262], hyperthermia [263] or takes 

place at the G1/S phase transition of the cell cycle [264]. YB-1 also accumulates in the nucleus of 

adenovirus-infected cells [259, 265]. Following accumulation in the nucleus, YB-1 binds with its cold-

shock domain to an inverted CCAAT element within a gene promoter region, termed Y-box [264, 

266], and functions as a transcription factor that regulates a variety of genes, associated with cancer 

malignancy [264, 267-272]. YB-1 also promotes an epithelial-mesenchymal transition that 

contributes to the metastatic potential of tumours [273]. It has also been shown that YB-1 is 

associated with the transactivation of genes responsible for tumour proliferation and relapse [274, 

275]. YB-1 directly interacts with p53 or represses the transcription of p53, thus reducing its pro-

apoptotic activity [276, 277]. Evidence exist that many tumours exhibit multidrug-resistant 

phenotype as a result of the transactivation of MDR1 and multidrug resistance-related protein 

(MRP1) gene expression by nuclear accumulated YB-1 [258, 263, 266, 278]. Due to its multiple 

functions in tumourigenesis, nuclear localisation of YB-1 is a prognostic factor for poor clinical 

outcome of many malignancies, including amongst others pediatric GBM [279], breast cancer [280], 

ovarian cancer [281], non-small cell lung cancer [282], HNSCC [283]. Furthermore, high levels of YB-1 

mRNA are observed in GBM [284]. The pleotropic functions of YB-1 as a regulator of genes and 

signalling pathways responsible for development of cancer and malignant phenotype turn this 

protein into an oncogenic factor and an excellent therapeutic target against cancer [285].  

1.9.2. Regulation of adenoviral replication by YB-1 and YB-1 dependent virotherapy 

The adenoviral DNA replication depends on viral replication factors encoded by the adenoviral E2 

region, as described in chapter 1.5.3. The expression of the E2 genes is controlled by the E2-early and 

E2-late promoters [286]. The interaction of the CR1 and CR2 of E1A with pRb releases the host cell 

factor E2F from the pRb-E2F complex, leading amongst others to activation of the E2-early promoter 

by E2F [156, 287]. In contrast, the activity of the E2-late promoter does not depend on E1A or E2F 
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and is required for the accomplishment of adenoviral replication [265]. It was demonstrated that YB-

1 is translocated to the nucleus of adenovirus-infected cells by the adenoviral proteins E1B55K and 

E4orf6. Following nuclear accumulation, YB-1 binds to the proximal Y-boxes of the adenoviral E2-late 

promoter and activates the E2 gene transcription [259, 265]. As mentioned in chapter 1.5.3., E1B55K 

and E4orf6 are expressed after transactivation by the CR3-containing E1A 289 aa protein (E1A 13S 

mRNA) [156]. Interestingly, after infection of tumour cells with adenoviruses that do not produce the 

E1A 289 aa protein as a result of deletion in the CR3 transactivation domain, YB-1 can relocate into 

the nucleus independently of E1A, E1B55K and E4orf6 and can activate the E2-late promoter, leading 

to adenoviral replication [259, 288] (figure 1.6). Therefore, this YB-1-based strategy can be applied 

for the development of conditionally replicating E1A-mutated adenoviruses that replicate in the 

presence of YB-1, which is already accumulated in the nucleus of tumour cells due to overexpression 

[284] or environmental stress [258, 262, 263]. In this context, YB-1 dependent adenoviruses showed 

efficient E1A-independent replication and oncolytic potential in multidrug-resistant cancer cells with 

nuclear localisation of YB-1 [288], as YB-1 induces MDR1 gene expression [258].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Concept of YB-1 dependent oncolytic adenoviruses. The DNA replication of adenoviruses is 

activated by adenoviral E1A proteins, which disrupt the pRb-E2F complex and enable binding of E2F to the E2-

early promoter. However, the E2-late promoter plays the main role in the activation of E2 gene transcription. 

The E1A 289 aa protein, encoded by the E1A 13S mRNA transcript of wild-type adenoviruses (left), 

transactivate the expression of E1B55K and E4orf6. YB-1 is translocated by E1B55K and E4orf6 to the cell 

nucleus and activates the E2-late promoter. In adenoviruses that do not produce E1A 13S mRNA (right), gene 

transactivation is dysfunctional and E1B55K and E4orf6 are consequently not at disposal for nuclear transport 

of YB-1. The replication of these adenoviruses is YB-1 dependent, because the E2-late promoter is activated 

only in tumour cells with already nuclear accumulated YB-1. The transport of YB-1 to the nucleus of these 

tumour cells is induced by stress responses or overexpression of YB-1 (modified from [265]).   
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Several studies demonstrated the relation between chemotherapeutic stress, nuclear localisation of 

YB-1 and adenoviral replication. Among them, a study showed that YB-1 dependent oncolytic 

adenoviruses cause oncolysis and downregulation of MDR1 and MRP1 gene expression, leading to 

resensitization of multidrug-resistant tumour cells to chemotherapy [265]. It was also demonstrated 

that genotoxic stress induced by chemotherapy or radiation enhances the nuclear accumulation of 

YB-1 and augments the replication and oncolytic potential of YB-1 dependent adenoviruses [289-

292].  

A novel oncolytic adenovirus that is based on the concept of YB-1 dependent virotherapy is the 

vector Ad-delo3-RGD [291]. The structure of this adenovirus is partly based on the genome of the 

adenoviral vector dl520 and accordingly, Ad-delo3-RGD contains a deletion of 11 bp in CR3 of E1A 

[293]. Because of this deletion, the adenovirus does not express the 289 aa E1A protein containing 

the transactivation domain encoded by CR3. The E1A deletion renders the virus conditionally 

replicating in the presence of YB-1 [291]. Ad-delo3-RGD also carries a deletion in the E1B19K gene, 

resulting in improved viral spread [201]. A deletion of most of the E3 region enables transgene 

insertion for future applications. Finally, the viral fiber was modified with a RGD motif in order to 

improve infectivity [197]. Ad-delo3-RGD was shown to replicate YB-1 dependently and to exert 

selective oncolytic killing of tumour cells in vitro and in vivo in xenograft models of pancreatic cancer 

and malignant glioma [291, 292]. The oncolytic activity of the virus against pancreatic cancer cells 

was augmented after combination of oncolytic virotherapy with paclitaxel treatment [291]. In 

malignant glioma cells, treatment with TMZ enhanced nuclear accumulation of YB-1, which resulted 

in significant increase in viral replication and in potentiation of the viral anti-tumour effect [292]. 

Encouraging therapeutic efficacy has been obtained recently by the combination of Ad-delo3-RGD 

and TMZ in brain cancer stem cells, suggesting that YB-1 based virotherapy could be promising 

against this subset of cells [294].  
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1.10. Aims of the thesis 

Standard and alternative molecular therapies for GBM and malignant glioma are currently facing 

limited success. Promising strategies to address existing limitations of anti-GBM and anti-cancer 

therapy in general represent suicide gene therapy and oncolytic virotherapy. Oncolytic adenoviruses 

modified to replicate selectively in tumour cells that express the oncogenic factor YB-1 have already 

demonstrated anti-tumour efficacy in vitro and in vivo, also in combination with chemotherapy.  

Based on the finding that YB-1 is overexpressed in GBM, it is of special interest to develop a novel 

targeted approach against GBM, combining YB-1 dependent virotherapy with a HSV1-sr39TK/GCV-

mediated suicide and reporter gene strategy, and TMZ therapy. The aim of this work is first to 

characterise an E1-mutated YB-1 dependent oncolytic adenovirus armed with the suicide and 

reporter gene HSV1-sr39TK with respect to viral replication, release and dissemination, as well as 

induction of oncolytic effect and transgene expression in GBM cells in vitro. Furthermore, the 

combined oncolytic effect and HSV1-sr39TK/GCV-mediated cytotoxicity of the vector is to be 

analysed, regarding the timing of GCV addition and induction of bystander killing effect. Considering 

that YB-1 is accumulated within the cell nucleus upon chemotherapy-induced stress, a further goal of 

this work is to evaluate the influence of TMZ on adenoviral replication and oncolytic effect in GBM 

cells. In addition, the potential synergy between TMZ, viral oncolysis and HSV1-sr39TK/GCV-

mediated cytotoxicity is to be analysed. The application of HSV1-sr39TK in the context of viral 

oncolysis for non-invasive nuclear PET imaging is also to be examined in vitro. The oncolytic, 

cytotoxicity-mediating and imaging properties of the armed vector are to be compared to other YB-1 

dependent oncolytic adenoviruses and a HSV1-sr39TK-expressing replication-deficient adenoviral 

vector, as well as to be analysed in an in vitro 3D multicellular spheroid model. The data obtained in 

this thesis are fundamental for future preclinical investigations in vivo.                
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2. MATERIALS 
 

2.1. Laboratory equipment 

Table 2.1: Laboratory equipment 

Laboratory equipment Manufacturer 

Analytical balances: 

PCE-LSM 2000 

Research RC210P 

 

PCE GmbH, Meschede, Germany 

Sartorius AG, Göttingen, Germany 

Centrifuges: 

Biofuge fresco 

EBA 12 R 

Megafuge 2.0 R 

Ultracentrifuge OptimaTM LE-80K 

 

Heraeus Instruments, Hanau, Germany 

Hettich GmbH & Co.KG, Tuttlingen,Germany   

Heraeus Instruments, Hanau, Germany 

Beckman Coulter GmbH, Krefeld, Germany 

CO2 incubator HERAcell 150i Thermo Scientific Inc., Rockford, IL, USA 

Concentrator 5301 Eppendorf AG, Hamburg, Germany 

Cross-linker UV Stratalinker 2400 Stratagene, La Jolla, CA, USA 

Cryostat microtome HM 560 Microm GmbH, Walldorf, Germany 

Electrophoresis power supply PowerPac 300 Bio-Rad, Munich, Germany 

Gamma-counter Wallac 1480-011  PerkinElmer LAS GmbH, Rodgau, Germany 

Gel electrophoresis units: 

Mini horizontal submarine unit HE33 

Sub-Cell GT system 

 

Amersham Biosciences, Buckinghamshire, UK 

Bio-Rad, Munich, Germany 

Hybridisation oven Personal Hyb Stratagene, La Jolla, CA, USA 

INVEON PET/CT System Siemens Healthcare, Erlangen, Germany 

Microscopes: 

Axiovert 25 and 135 with AxioCam MRc 

Eclipse TE2000-S 

 

Carl Zeiss GmbH, Jena, Germany 

Nikon Instruments, Melville, NY, USA 

Microtiter shaker MTS 2/4 IKA Werke GmbH, Staufen, Germany 

Minishaker MS2 IKA Werke GmbH, Staufen, Germany 

Multilabel counter Wallac Victor2 1420 PerkinElmer LAS GmbH, Rodgau, Germany 

Neubauer cell counting chamber  Brand GmbH, Wertheim, Germany 

Pipettes (10/20/200/1000 µl) Eppendorf AG, Hamburg, Germany 

Pipette controller Accu-jet® Brand GmbH, Wertheim, Germany 

Real-time PCR Sequence Detection System ABI 

7900HT 

Applied Biosystems®, Life Technologies GmbH, 

Darmstadt, Germany 

SDS-PAGE unit Mini-PROTEAN 3 Cell  Bio-Rad, Munich, Germany 

Spectrophotometer DU 640 Beckman Coulter GmbH, Krefeld, Germany 

Sterile bench Hera Safe HS 12 Heraeus Instruments, Hanau, Germany 

Thermal cyclers for PCR: 

Mastercycler® 

PTC-100TM 

 

Eppendorf AG, Hamburg, Germany 

MJ Research Inc., Watertown, MA, USA 

Thermomixer comfort Eppendorf AG, Hamburg, Germany 

UV gel documentation system LTF Labortechnik GmbH, Wasserburg, Germany 

UV transilluminator Biotec-Fischer GmbH, Reiskirchen, Germany 

Water bath Memmert GmbH, Schwabach, Germany 

Western blot: Image Station 440CF Kodak Digital Science, Rochester, NY, USA 

Western blot: Transphor Electrophoresis unit Hoefer Inc., San Francisco, CA, USA 
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2.2. Consumables 

Table 2.2: Consumables 

Consumable Manufacturer 

Cell culture dishes (6, 10 and 15 cm) TPP AG, Trasadingen, Switzerland 

Cell culture test plates (6-, 24-, 96-well) TPP AG, Trasadingen, Switzerland 

Cell lifter Corning Inc., Corning, NY, USA 

Centrifuge tubes, conical (15 and 50 ml) TPP AG, Trasadingen, Switzerland 

Cover slips (24 x 50 mm) G. Menzel GmbH, Braunschweig, Germany 

Cryomold Intermediate (15 x 15 x 5 mm) Sakura Finetek, Torrance, CA, USA 

Cryopreservation tubes CryoPure (1.6 ml) Sarstedt AG & Co., Nümbrecht, Germany 

Dialysis Cassette Slide-A-Lyzer®, 10K Molecular 

Weight Cut-Off (MWCO) 

Pierce Biotechnology Inc., Rockford, IL, USA 

Disposable scalpel Feather Co., Osaka, Japan 

GeneScreen Hybridisation Transfer Membrane PerkinElmer LAS GmbH, Rodgau, Germany 

Micro Amp® Optical 96-well real-time PCR 

Reaction Plate with Optical Adhesive Film 

Applied Biosystems®, Life Technologies GmbH, 

Darmstadt, Germany 

Microscope slides Superfrost Plus G. Menzel GmbH, Braunschweig, Germany 

Needles, sterile (18G x 1½”) MicrolanceTM 3 BD Biosciences, Heidelberg, Germany 

Pipette tips Axygen® Corning Inc., Corning, NY, USA 

Polystyrene Reagent Reservoir (50 ml) Corning Inc., Corning, NY, USA 

Precise Protein Gels (10 %) Thermo Scientific Inc., Rockford, IL, USA 

Polyvinylidene fluoride (PVDF) membrane Millipore, Merck KGaA, Darmstadt, Germany 

Reaction tubes (0.5, 1.5 and 2 ml) Josef Peske GmbH, Aindling, Germany 

Serological pipettes (1, 2, 5, 10, 25, 50 ml) Greiner Bio-One GmbH, Solingen, Germany 

Syringe filter, sterile (0.22 µm) TPP AG, Trasadingen, Switzerland 

Syringes, sterile B. Braun Medical Inc., Melsungen, Germany 

Ultra-clear centrifuge tubes (16 x 102 mm) Beckman Coulter GmbH, Krefeld, Germany 

UV-Cuvette micro with caps Brand GmbH, Wertheim, Germany 

Whatman paper Schleicher & Schuell Bioscience GmbH, Dassel, 

Germany 

 

2.3. Chemicals 

Table 2.3: Chemicals 

Chemical Manufacturer 

Acetic acid  Merck KGaA, Darmstadt, Germany 

Acetone Pharmacy of Klinikum rechts der Isar, Munich, 

Germany 

Ammonium acetate (NH4C2H3O2) Merck KGaA, Darmstadt, Germany 

Bromophenol blue  Sigma-Aldrich GmbH, Steinheim, Germany  

Calcium chloride (CaCl2) Fluka GmbH, Neu-Ulm, Germany 

Cesium chloride (CsCl) Serva, Heidelberg, Germany 

Chloroform  Merck KGaA, Darmstadt, Germany 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich GmbH, Steinheim, Germany 

Ethanol Merck KGaA, Darmstadt, Germany 

Ethylenediamine-tetraacetic acid (EDTA) Merck KGaA, Darmstadt, Germany 

Glycerol  Merck KGaA, Darmstadt, Germany 

Glycine Sigma-Aldrich GmbH, Steinheim, Germany 
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Hydrochloric acid (HCl) 37 % Merck KGaA, Darmstadt, Germany 

Isopropyl alcohol Pharmacy of Klinikum rechts der Isar, Munich, 

Germany 

Magnesium chloride (MgCl2) Merck KGaA, Darmstadt, Germany 

Maleic acid Sigma-Aldrich GmbH, Steinheim, Germany 

β-Mercaptoethanol Sigma-Aldrich GmbH, Steinheim, Germany 

Methanol  Merck KGaA, Darmstadt, Germany 

Phenol:Chloroform:Isoamyl Alcohol 

25:24:1 

Sigma-Aldrich GmbH, Steinheim, Germany 

Potassium chloride (KCl) Sigma-Aldrich GmbH, Steinheim, Germany 

Potassium dihydrogen phosphate (KH2PO4) Merck KGaA, Darmstadt, Germany 

Sodium acetate (C2H3NaO2) Sigma-Aldrich GmbH, Steinheim, Germany 

Sodium chloride (NaCl) Sigma-Aldrich GmbH, Steinheim, Germany 

Sodium citrate dihydrate Merck KGaA, Darmstadt, Germany 

Sodium deoxycholate Sigma-Aldrich GmbH, Steinheim, Germany 

Sodium dodecyl sulfate (SDS)    SERVA Electrophoresis GmbH, Heidelberg, Germany 

Sodium hydrogen carbonate (NaHCO3) Fluka GmbH, Neu-Ulm, Germany 

Sodium hydroxide (NaOH) Merck KGaA, Darmstadt, Germany 

Sodium phosphate (Na2HPO4) Sigma-Aldrich GmbH, Steinheim, Germany 

Sulforhodamine B (SRB), sodium salt  Sigma-Aldrich GmbH, Steinheim, Germany 

Trichloroacetic acid (TCA) Sigma-Aldrich GmbH, Steinheim, Germany 

Tris base Carl Roth GmbH, Karlsruhe, Germany 

Triton-X 100 Sigma-Aldrich GmbH, Steinheim, Germany 

Trizol Reagent Invitrogen GmbH, Karlsruhe, Germany 

Tween 20 Sigma-Aldrich GmbH, Steinheim, Germany 

 

2.4. Biochemical reagents and commercial available substances 

Table 2.4: Biochemical reagents and commercial available substances 

Substance Manufacturer 

Agar noble, ultrapure Affymetrix, Cleveland, USA 

Agarose Peqlab Biotechnologie GmbH, Erlangen, 

Germany 

Bovine Serum Albumin Fraction V (BSA), pH 5.2 Carl Roth GmbH, Karlsruhe, Germany 

Cresol red Sigma-Aldrich GmbH, Steinheim, Germany 

Distilled water (DNase/RNase free) Gibco®, Life Technologies GmbH, Darmstadt, 

Germany 

DNA ladder (1 kb) InvitrogenTM, Life Technologies GmbH, 

Darmstadt, Germany 

DNA loading dye (6x) Sigma-Aldrich GmbH, Steinheim, Germany 

ECLTM Western Blotting Detection Reagent GE Healthcare GmbH, Munich, Germany 

Embedding compound Tissue-Tek® O.C.T.TM  Sakura Finetek, Torrance, CA, USA 

Ethidium bromide (10 mg/ml) Sigma-Aldrich GmbH, Steinheim, Germany 

Glycogen Sigma-Aldrich GmbH, Steinheim, Germany 

High-Range Rainbow Molecular Weight Marker for 

SDS-PAGE 

GE Healthcare GmbH, Munich, Germany 

MgCl2 for PCR Fermentas GmbH, St. Leon-Rot, Germany 

Milk powder AppliChem GmbH, Darmstadt, Germany 

PCR dNTP mix (10 mM each) Roche Diagnostics, Mannheim, Germany 
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PreDeveloped TaqMan Assay Reagent Human 18S 

rRNA 

Applied Biosystems®, Life Technologies 

GmbH, Darmstadt, Germany 

Protease inhibitor cocktail tablets  Roche Diagnostics, Mannheim, Germany 

Protein Assay (Dye reagent) Bio-Rad, Munich, Germany 

qPCR Master Mix Plus Eurogentec s.a., Seraing, Belgium 

qPCR Master Mix Plus for SYBR® Assay I Eurogentec s.a., Seraing, Belgium 

Recombinant green fluorescent protein (rGFP)  MP Biomedicals, Heidelberg, Germany 

Taq buffer with (NH4)2SO4 Fermentas GmbH, St. Leon-Rot, Germany 

Trypan blue (0.4 %) Sigma-Aldrich GmbH, Steinheim, Germany 

Vectashield mounting medium containing 4´,6´-

diamidino-2-phenylindole (DAPI) 

Vector Laboratories, Burlingame, CA, USA 

Western blot: BupHTM Tris-HEPES-SDS Running 

Buffer 

Thermo Scientific Inc., Rockford, IL, USA 

 

2.5. Prepared buffers and solutions 

Table 2.5: Prepared buffers and solutions 

Buffer or solution Composition 

CsCl, ρ 1.25 g/cm3 33.75 g CsCl in 100 ml 10 mM Tris, pH 8.0 

CsCl, ρ 1.35 g/cm3 47.57 g CsCl in 100 ml 10 mM Tris, pH 8.0 

Digestion buffer for DNA isolation 100 mM NaCl, 25m M EDTA (pH 8.0), 10 mM Tris (pH 

8.0), 0.5 % SDS 

GCV 50 mg/ml stock, dissolved in dH2O 

Lysis buffer 250 mM Tris (pH 8.0), 0.1 % Triton X-100 

Radio-Immunoprecipitation Assay (RIPA) 

buffer 

50 mM Tris (pH 7.2), 150 mM NaCl, 0.1 % SDS, 0.5 % 

Na-deoxycholate, 1 % Triton X-100, 1x Protease 

inhibitor cocktail  

TMZ 100 mM stock, dissolved in DMSO 

Tris (1 M) 121.1 g Tris base dissolved in 1l dH2O, pH adjusted 

with 37 % HCl 

PCR master mix 1 x Taq buffer, 1.5 mM MgCl2, 0.4 mM dNTPs, 5 U Taq 

polymerase 

Phosphate Buffered Saline (PBS), 20x 200 mM Na2HPO4, 2.8 M NaCl, 36 mM KH2PO4, 54 mM 

KCl (pH 7.4) 

PBS2+ 1 x PBS, 0.68 mM CaCl2, 0.49 mM MgCl2 

PBS/Tween 1 x PBS, 0.05 % Tween 20 

Precipitation buffer for DNA isolation I 94 % ethanol, 588 mM NH4C2H3O2  

Precipitation buffer for DNA isolation II 97 % ethanol, 300 mM C2H3NaO2 

SDS-Pronase buffer for DNA isolation 10 mM Tris (pH 7.5), 10 mM EDTA (pH 8.0), 0.5 % SDS, 

0.5 mg/ml Pronase 

Sodium chloride-sodium citrate buffer 

(SSC), 20x 

3 M NaCl, 0.3 M sodium citrate  

SRB staining solution 0.5 % (w/v) SRB in 1 % acetic acid 

Tris-acetate-EDTA (TAE) buffer  40 mM Tris (pH 8.0), 1 mM EDTA (pH 8.0), 0.1% acetic 

acid 

Western blot: blocking buffer  5 % (w/v) milk powder, 50 mM Tris (pH 7.5), 150 mM 

NaCl 

Western blot: blotting buffer (10x) 250 mM Tris base, 1.92 M Glycin, 1 % SDS, 20 % 

Methanol   

Western blot: Laemmli buffer (5x) 300 mM Tris (pH 6.8), 1.5 g SDS, 50 % Glycerol, 12.5 % 
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β-Mercaptoethanol, 100 mg Bromophenol blue 

Immunofluorescence: blocking buffer 1 % BSA (w/v) in 1 x PBS, 0.05 % Tween 20 

Southern blot: denaturation solution 0.5 M NaOH, 1.5 M NaCl  

Southern blot: neutralisation solution 0.5 M Tris (pH 7.5), 1.5 M NaCl 

Southern blot (detection): maleic acid 

buffer 

0.1 M maleic acid, 150 mM NaCl, adjust to pH 7.5 with 

solid NaOH  

Southern blot (detection): detection 

buffer 

0.1 M Tris, 0.1 M NaCl, adjust to pH 9.5 with solid 

NaOH, 0.3 % Tween 20 

Southern blot (detection): washing buffer 0.1 M maleic acid, 150 mM NaCl, adjust to pH 7.5 with 

solid NaOH 

Southern blot: stripping buffer 0.2 M NaOH, 0.1 % SDS 

 

2.6. Kits 

Table 2.6: Kits 

Kit Manufacturer 

Adeno-XTM Rapid Titer Kit Clontech Laboratories, Mountain View, CA, USA 

DNA Blood and Tissue Kit Qiagen GmbH, Hilden, Germany 

DIG High Prime DNA Labelling and Detection 

Starter Kit II 

Roche Diagnostics, Mannheim, Germany 

High Capacity cDNA Reverse Transcription Kit Applied Biosystems®, Life Technologies GmbH, 

Darmstadt, Germany 

QIAquick Gel Extraction Kit Qiagen GmbH, Hilden, Germany 

Quant-iTTM PicoGreen® dsDNA Assay Kit InvitrogenTM, Life Technologies GmbH, Darmstadt, 

Germany  

XTT Cell Proliferation Kit II Roche Diagnostics, Mannheim, Germany 

 

2.7. Enzymes 

Table 2.7: Enzymes 

Enzyme Manufacturer 

Benzonase Nuclease (25 U/µl) Novagen, San Diego, USA 

Pronase Boehringer, Mannheim, Germany 

Proteinase K  Qiagen GmbH, Hilden, Germany 

Restriction enzymes New England Biolabs GmbH, Frankfurt am Main, Germany 

(PvuI with buffer R+: Fermentas GmbH, St. Leon-Rot, Germany) 

RNase A Roche Diagnostics, Mannheim, Germany 

Taq DNA polymerase Fermentas GmbH, St. Leon-Rot, Germany 
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2.8. Antibodies 

Table 2.8: Antibodies 

Target Isotype, host Conjugate Manufacturer Application 

anti-goat IgG, donkey HRP Santa Cruz 

Biotechnology, Inc., 

Heidelberg, Germany 

WB 

anti-mouse IgG, goat polyclonal FITC Serotec, Oxford, UK IF 

anti-rabbit IgG-H&L, goat polyclonal Texas Red Abcam, Cambridge, UK IF 

Hexon IgG, mouse  Clontech Laboratories, 

Mountain View, CA, USA 

IF 

HSV1-TK  IgG, rabbit polyclonal   Prof. William Summers, 

Yale University, USA 

IF 

HSV1-TK (N-

terminus) *  

IgG, goat polyclonal  Santa Cruz 

Biotechnology, Inc., 

Heidelberg, Germany 

WB 

 

Abbreviations: Fluorescein isothiocyanate (FITC), Horseradish peroxidase (HRP), Immunofluorescence (IF), 

Western blot (WB). 

* Supplied together with a blocking peptide (0.2 µg/µl; Santa Cruz Biotechnology, Inc., Heidelberg, Germany) 

for competition studies.  

 

2.9. Primers and oligonucleotide probes 

Table 2.9: Primer and probe sequences 

Target gene Sequence Tm Application 

Adenoviral E1A  fw: 5’-ATG GCC GCC AGT CTT TTG-3’ 

rev: 5’-GCC ATG CAA GTT AAA CAT TAT C-3’ 

56°C 

60°C 

PCR 

Adenoviral E2 fw: 5’-GGC TGC TCT GCT CGG AAG AC-3’ 

rev: 5’-GTA ATT AAC AAC CGT TCC GAG G-3’ 

65°C 

60°C 

PCR 

Adenoviral E1A-pIX   fw: 5’-GGG AAA ACT GAA TAA GAG G-3’ 

rev: 5’-AAC GAG TTG GTG CTC ATG G-3’ 

52.4°C 

56.7°C 

PCR 

Adenoviral E3 fw: 5’-CGA GCT CAG CTA CTC CAT C-3’ 

rev: 5’-GTA ATT AGC ATA GCA GTG CAG C-3’ 

60°C 

64°C 

PCR 

HSV1-sr39TK fw: 5’-ATC AAC ACG CGT CTG CGT TCG-3’  

rev: 5’-TCA GTT AGC CTC CCC CAT CTC-3’  

61.8°C 

61.8°C 

PCR 

Adenoviral Fiber 5 fw: 5’-AAG CTA GCC CTG CAA ACA TCA-3’  

rev: 5’- CCC AAG CTA CCA GTG GCA GTA-3’ 

59°C 

63°C 

real-time PCR 

HSV1-sr39TK fw: 5’-GTA CCC GAG CCG ATG ACT TAC T-3’ 

rev: 5’-CCC GGC CGA TAT CTC A-3’ 

61°C 

58°C 

real-time PCR 

Probe: 6-FAM – 5‘-CTT CCG AGA CAA TCG CGA 

ACA TCT ACA CC-3’ – TAMRA 

 

 

All primers applied for Polymerase chain reaction (PCR) analysis and the adenoviral Fiber 5 primers 

used in real-time PCR analysis were purchased from Metabion International AG, Martinsried, 

Germany. They were dissolved in dH2O to obtain a stock concentration of 100 µM. The adenoviral 

E1A-pIX primers amplify a sequence located between E1A and the gene coding for minor capsid 

protein IX (pIX). The HSV1-TK primers and probe applied for real-time PCR analysis were designed 
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according to Ebeling et al. [295] and were obtained from Applied Biosystems®, Life Technologies 

GmbH, Darmstadt, Germany. The primers were diluted in 1 mM Tris-HCl, pH 8.0/0.01 mM EDTA to a 

stock concentration of 10 µM. The specific HSV1-TK probe, coupled to the 5’ reporter dye 6-

carboxyfluorescein (FAM) and the 3’ quencher dye 6-carboxytertramethylrhodamine (TAMRA), was 

supplied at a concentration of 100 µM.   

   

2.10. Plasmids 

pXC1 

pXC1 is a cloning vector that contains the left terminal 16 % of human adenovirus 5 (Ad5) DNA [296]. 

It was used within this thesis as a positive reference for detection of adenoviral E1A in the test of 

adenovirus preparations for contamination with wild-type adenovirus. 

pBHGlox∆E1,3 Cre 

The plasmid pBHGlox∆E1,3 Cre is an E1- and E3-deleted Ad5 backbone vector for adenovirus 

construction and transgene expression. It contains a loxP-site (locus of X-over of P1) and a coding 

sequence for Cre recombinase (cyclization recombinase), enabling vector construction by means of 

the Cre-loxP recombination system [297]. pBHGlox∆E1,3 Cre was used within this thesis as a positive 

reference for detection of adenoviral E2 region in the test of adenovirus preparations for 

contamination with wild-type adenovirus. 

pBHG10 

The E1- and E3-deleted Ad5 backbone plasmid pBHG10 is used for adenovirus construction by means 

of homologue recombination [173]. The vector was used within this thesis for the derivation of 

template-specific DNA hybridisation probe for detection of adenoviral E2 region. 

pDC316sr39TK 

The plasmid pDC316sr39TK is a transfer vector used for adenovirus construction containing the 

transgene HSV1-sr39TK. The vector was used within this thesis for the generation of a template-

specific DNA hybridisation probe for detection of HSV1-sr39TK.  

The plasmids pXC1, pBHGlox∆E1,3 Cre and pBHG10 were obtained from Microbix Biosystems, 

Toronto, Canada. The plasmid pDC316sr39TK was constructed in the laboratory of Dr. Martina 

Anton, Klinikum rechts der Isar, Munich, Germany.  
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2.11. Prodrugs, cytostatic drugs and radiolabelled compounds 

GCV 

GCV (Cymeven®) is a prodrug that is converted by HSV1-TK into the toxic metabolite GCV-

triphosphate, which induces cytotoxicity through inhibition of DNA synthesis [61, 62, 64]. GCV was 

purchased from Hoffmann-La Roche, Grenzach-Wyhlen, Germany and a stock solution was prepared 

as described in table 2.5. 

Daunorubicin  

The cytostatic drug daunorubicin (daunoblastin) is a member of the group of anthracyclines. As a 

DNA intercalator, it inhibits DNA and RNA synthesis [298]. The drug was used within this thesis as a 

substrate for P-gp in order to maintain the multidrug-resistant phenotype of the cell line EPP85-

181RDB. Daunorubicin was purchased from Sigma-Aldrich GmbH, Steinheim, Germany. 

TMZ 

The cytostatic drug TMZ is a DNA alkylating agent, which exerts its cytostatic effect through 

formation of a reactive methyldiazonium cation and DNA methylation of guanine at the O6 position 

[13, 14]. TMZ was purchased from Sigma-Aldrich GmbH, Steinheim, Germany and a stock solution 

was prepared as described in table 2.5. 

[18F]-FHBG 

[18F]-FHBG is a radiolabelled GCV analogue, converted by HSV1-TK into an insoluble metabolite that is 

trapped within the cell and can be detected by a gamma-counter or a PET system [109]. The 

radiotracer was synthesised at the Department of Nuclear Medicine, Klinikum rechts der Isar, 

Munich, Germany [114, 299], yielding [18F]-FHBG at an average specific activity of 33.4 GBq/µmol. 

 

2.12. Cell culture media and supplements 

Table 2.10: Cell culture media and supplements 

Cell culture medium or supplement Manufacturer 

Eagle’s Minimum Essential Medium (MEM) 

with Earle’s salts and 2 mM L-glutamine 

Gibco®, Life Technologies GmbH, Darmstadt, 

Germany 

Dulbecco's Modified Eagle’s Medium (DMEM) Biochrom AG, Berlin, Germany 

D-glucose Merck KGaA, Darmstadt, Germany 

Fetal bovine serum (FBS) PAN-Biotech GmbH, Aidenbach, Germany 

Fetuin Sigma-Aldrich GmbH, Steinheim, Germany 

Fungizone® Antimycotic Gibco®, Life Technologies GmbH, Darmstadt, 

Germany 

Horse serum (HS) Gibco®, Life Technologies GmbH, Darmstadt, 

Germany 

L-alanyl-L-glutamine Biochrom AG, Berlin, Germany 
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Leibovitz’s L-15 medium BioWhittakerTM, Lonza GmbH, Cologne, 

Germany 

MEM-vitamins, 100x Biochrom AG, Berlin, Germany 

NaHCO3, pH 7.5 Fluka GmbH, Neu-Ulm, Germany 

Non-essential amino acids (NEAA) Gibco®, Life Technologies GmbH, Darmstadt, 

Germany 

Transferrin Sigma-Aldrich GmbH, Steinheim, Germany 

Trasylol Pharmacy of Klinikum rechts der Isar, Munich, 

Germany 

Trypsin/EDTA (0.25 %/0.02 %)  Biochrom AG, Berlin, Germany 

Opti-MEM® I + GlutaMAXTM I  Gibco®, Life Technologies GmbH, Darmstadt, 

Germany 

PBS-Dulbecco, 1x  Biochrom AG, Berlin, Germany 

Penicillin/Streptomycin (PS), 100x  Biochrom AG, Berlin, Germany 

 

DMEM was supplemented with 10 % FBS and 2 mM L-glutamine. The culture medium of adenovirus-

infected HEK293 cells consisted of DMEM supplemented with 5 % HS and 2 mM L-glutamine. Eagle’s 

MEM with Earle’s salts and 2 mM L-glutamine was supplemented with 10 % FBS and 1 % NEAA. U87-

MG spheroid growth medium consisted of Eagle’s MEM with Earle’s salts and 2 mM L-glutamine 

supplemented with 10 % FBS, 1 % NEAA, 1 % PS, 1 % NaHCO3 (0.22 µm filtered) and 0.25 µg/ml 

Fungizone®. The L-15 medium was replenished with 10 % FBS, 1 mM L-glutamine, 1 g/l glucose (0.22 

µm filtered), 1,1 g/l NaHCO3 (0.22 µm filtered), MEM-vitamins (1x), 6.25 mg/l fetuin, 2.5 mg/l 

transferrin and 20,000 kIU (Kallikrein Inhibitor Units)/l  Trasylol.  

 

2.13. Cell lines 

HEK293 

The human embryonic kidney (HEK) cell line 293 (Microbix Biosystems, Toronto, Canada) is used for 

the production and titration of adenoviruses. The HEK293 cells are stably transformed with 4.5 kb of 

the left end of the Ad5 genome, enabling a transcomplementation of the E1 region and rendering the 

cell line permissive for Ad5 infection [300]. In this thesis, all adenoviruses were produced within this 

cell line. HEK293 cells were maintained in DMEM with supplements.   

U87-MG 

U87-MG (wt-p53) is a human, epithelial glioblastoma-astrocytoma (grade IV) cell line, derived from 

malignant glioma of a Caucasian 44-year-old woman and first characterised by J. Ponten [301]. U87-

MG (HTB-14) were purchased from American Type Culture Collection (ATCC), Rockville, MD, USA and 

cultured in Eagle’s MEM with Earle’s salts and 2 mM L-glutamine with supplements. The cell line is 

characterised by a high expression level and partial nuclear localisation of YB-1 [290].  
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EPP85-181RDB 

The human pancreatic carcinoma cell line EPP85-181RDB (RDB: resistant to daunoblastin) is 

characterised by a multidrug-resistant phenotype and was derived as a subclone from the parental, 

drug-sensitive cell line EPP85-181, established by Hermann Lage [51]. The cell line EPP85-181RDB 

was kindly provided by PD Dr. Per Sonne Holm, Klinikum rechts der Isar, Munich, Germany and 

cultured in L-15 medium with supplements. Its classical multidrug-resistant phenotype, conferred by 

overexpression of MDR1/P-gp, was maintained by addition of 2.5 µg/ml daunorubicin to the culture 

medium every two weeks [51]. Nuclear distribution of YB-1 had been already verified [288].    

 

2.14. Adenoviruses 

Ad-delo3-RGD  

The structure of the oncolytic adenovirus Ad-delo3-RGD (chapter 1.9.2.) is partially based on the 

genome of the Ad5-derived dl520 [293]. In this context, dl520 DNA from SspBI (Ad5 wild-type 

position nt193) to MunI (Ad5 wild-type nt3925) was subcloned into the shuttle plasmid of the AdEasy 

system (Qbiogene). This fragment carries an 11 bp deletion in the CR3 region of the E1A gene, 

resulting in lack of expression of the transactivating 289 aa protein by the E1A13S splice variant. Ad-

delo3-RGD contains also a partial deletion of E1B19K due to restriction with EcoNI (Ad5 wild-type 

position nt1715) and BstEII (Ad5 wild-type position nt1916), which abrogates E1B19K expression. The 

open reading frame of E1B55K has not been affected. The vector carries also a deletion of the E3 

region. Ad-delo3-RGD as well as the following oncolytic vectors were derived by homologous 

recombination with a RGD-modified [197] AdEasy backbone [291]. All oncolytic vectors were 

constructed and kindly provided by PD Dr. Per S. Holm and Klaus Mantwill, Klinikum rechts der Isar, 

Munich, Germany (figure 2.1).     

Ad-delo-sr39TK-RGD 

The Ad5-based, oncolytic adenovirus Ad-delo-sr39TK-RGD (Ad-delo2-sr39TK-RGD) contains the same 

deletions of E1A13S and E1B19K as Ad-delo3-RGD. However, the ADP gene was retained and the 

transgene HSV1-sr39TK, controlled by a human cytomegalovirus (CMV) promoter and a simian virus 

40-polyadenylation (SV40-poly(A)) recognition sequence, was inserted into the otherwise deleted E3 

region of the RGD-modified backbone of Ad-delo-sr39TK-RGD (figure 2.1). 

Ad-delo-shMGMT-RGD 

Ad-delo-shMGMT-RGD is an Ad5-based oncolytic vector containing the same deletion of E1A13S as 

Ad-delo3-RGD and Ad-delo-sr39TK-RGD, but without ablation of the E1B19K gene. The partially 

deleted E3 region expresses a short hairpin RNA (shRNA) insert, which is processed into a small 
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interfering RNA (siRNA) sequence against the cellular MGMT gene, and contains also the ADP gene 

and the RGD motif (figure 2.1). 

Ad-sr39TK 

Ad-sr39TK is a replication-deficient, E1- and E3-deleted adenovirus. The vector was derived by 

homologous recombination of a transfer vector, containing the human CMV promoter-controlled 

transgene HSV1-sr39TK together with a SV40-poly(A) recognition sequence, with an adenoviral 

packaging plasmid [113]. The transgene was thereby inserted into the deleted E1 region of the 

packaging plasmid. Ad-sr39TK was kindly provided by Prof. Dr. Sanjiv S. Gambhir, University of 

California School of Medicine, Los Angeles, CA, USA (figure 2.1).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Structure of YB-1 dependent oncolytic adenoviruses and of HSV1-sr39TK-armed replication-

deficient adenovirus. Mutations of the oncolytic vectors Ad-delo3-RGD (A), Ad-delo-sr39TK-RGD (B) and Ad-

delo-shMGMT-RGD (C), as well as of the replication-deficient vector Ad-sr39TK (D) are described in detail in 

chapter 2.14. Blue bars indicate insertions.   
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Ad5-wt 

Ad5-wt (wild-type) denotes the wild-type adenovirus of serotype 5. Ad5-wt DNA was applied as a 

reference for the verification of the genetic structure of the oncolytic adenoviruses and was kindly 

provided by Klaus Mantwill, Klinikum rechts der Isar, Munich, Germany.   

Ad-mCMVeGFP 

The replication-deficient, E1- and E3-deleted adenovirus contains the murine CMV (mCMV) 

promoter-controlled transgene enhanced green fluorescent protein (eGFP) inserted into the deleted 

E3 region. Ad-mCMVeGFP was produced by Cre-loxP recombination of a transgene-containing 

transfer vector with the adenoviral packaging vector pBHGlox. The virus was applied as an indicator 

of adenoviral infectivity of U87-MG-derived spheroids. The vector was constructed in the laboratory 

of Dr. Martina Anton, Klinikum rechts der Isar, Munich, Germany. 

 

2.15. Software and databases 

Table 2.11: Software and databases 

Software or database Application Company or URL 

EndNote citation management Thomson Reuters, New York City, 

NY, USA 

GraphPad Prism data analysis, statistics GraphPad Software, San Diego, CA, 

USA 

Image J image processing National Institutes of Health, 

Bethesda, MD, USA 

INVEON Acquisition and 

Research Workplace 

PET data analysis Siemens Healthcare, Erlangen, 

Germany 

Microsoft Office word processing, data analysis Microsoft GmbH, Unterschleißheim, 

Germany 

National Center for 

Biotechnology 

Information (NCBI) 

literature, gene and protein 

database 

http://www.ncbi.nlm.nih.gov 

 

SDS2.2 real-time PCR analysis Life Technologies GmbH, Darmstadt, 

Germany 

Universal Protein 

Resource 

Knowledgebase 

(UniProtKB) 

protein database http://www.uniprot.org 

 

VectorNTI gene sequence analysis Life Technologies GmbH, Darmstadt, 

Germany 
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3. METHODS 
 

3.1. Cell culture  

3.1.1. 2D monolayer cell culture 

All cell lines were cultured in appropriate culture medium at 37°C in a humidified atmosphere 

containing 5 % CO2. The cells were passaged, when reaching 70-80 % confluence, by detaching the 

cell monolayer with Trypsin and resuspending it in fresh culture medium. When used for 

experiments, the number of living cells for plating was determined by a Neubauer cell counting 

chamber and the total number of living cells was calculated according to following equation: average 

number of cells per one large square x 104 x dilution factor = cell number per ml. To exclude dead 

cells from counting, the cell suspension was stained in a 1:1 ratio with Trypan blue. The anionic diazo 

dye of Trypan blue passes through the leaky membranes of non-living cells and is microscopically 

visible after accumulation within the cell lumen. Dead cells can thus be excluded from counting.  

For freezing, cells were detached as described above, centrifuged at 1200 rpm for 3 min at room 

temperature (RT) and resuspended in 90 % FBS and 10 % DMSO per 1-2 x 106 cells. The cell 

suspension was immediately frozen in an isopropyl alcohol containing freezing container at -80°C and 

was transferred to the vapour phase of liquid nitrogen for long-term storage after 24 h. Cryo-

conserved cells were thawed in a 37°C water bath and immediately transferred into fresh culture 

medium. When the cells had attached to the culture dish, the medium was changed to remove traces 

of DMSO and the cells were cultured as described above.     

3.1.2. 3D spheroid cell culture  

Spheroids of U87-MG cells were cultured at 37°C in a humidified atmosphere containing 5 % CO2 and 

were established as described by Leske et al. [302]. Accordingly, 4000 cells per well were dissociated 

and seeded into wells of a 96-well plate coated with 60 µl of 1 % noble agar dissolved in PBS, using 

the appropriate culture medium. Spheroids formed within 24 h and were allowed to grow for three 

days, before performing experiments. For long-term cultivation of spheroids, culture medium was 

changed three times a week. Spheroid diameter was measured with an inverted microscope and 

their volumes were calculated using the equation  � =
�

�
��

�. The migration of cells from spheroids, 

formed as described above and attached to an uncoated well of a 24-well plate, was microscopically 

monitored 24 h to 7 days after attachment. Migration distance was measured using transmitted light 

microscopy.  
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3.2. Adenovirus amplification and purification 

All infections of HEK293 cells with adenoviruses during the adenoviral amplification process were 

performed as described in chapter 3.4. When first signs of c.p.e. of the assembled adenoviruses 

occurred, cell supernatants containing released viral particles were collected and several small-scale 

viral amplification steps were performed. During all expansion steps, adenoviruses were released 

from the producer cells by three freezing and thawing steps of the virus-containing supernatant or 

cell suspension. After an expansion step in 8 x 15 cm culture dishes of HEK293 cells, the scraped cells 

were harvested about 48 h post infection by centrifugation at 2700 rpm and RT for 20 min and the 

pellet was resuspended in 6-10 ml PBS2+ (table 2.5). The viral titre was determined by End-point 

dilution assay as described in chapter 3.3.2. This suspension, so called “crude stock”, was applied for 

large-scale adenovirus expansion. For expansion to a large format prior to adenovirus purification, 

20-30 x 15 cm culture dishes of HEK293 cells were infected with the “crude stock” at a multiplicity of 

infection (MOI) of 10 (pfu/cell, see chapter 3.3.2). When c.p.e. was almost complete, usually after 

about 48 h, the cells were harvested by centrifugation at 2700 rpm and RT for 20 min and the pellet 

was resuspended in 10-15 ml of 0.1 M Tris, pH 8.0. To separate the viral particles from the cell debris, 

the suspension was centrifuged for 10 min at 2000 rpm and RT and once again in an ultracentrifuge 

for 15 min at 8000 rpm and RT. The supernatant was incubated with 200 units of Benzonase 

Nuclease for 45 min, in order to degrade remaining cellular nucleic acids. The adenoviruses were 

then purified by two subsequent CsCl step-gradient centrifugations at 30,000 rpm and 10 °C. The first 

gradient consisted of CsCl (ρ 1.35 g/cm3), overlaid with CsCl (ρ 1.25 g/cm3). The viral suspension was 

applied on top of the gradient and centrifuged for 3 h. The viral band from the first step-gradient was 

then added to a second gradient, consisting of CsCl with a density of 1.35 g/cm3 and centrifuged for 

16-24 h. Afterwards, the virus was pooled from the ultracentrifuge tube with a syringe and a needle, 

and purified by three consecutive dialysis steps against PBS in a Slide-A-Lyzer® dialysis cassette. The 

purified virus was stored in PBS2+ supplemented with 10 % glycerol at -80 °C.   
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3.3. Determination of viral titre 

3.3.1. Infectious units 

The number of infectious units (ifu) per ml of adenoviral preparations was determined in HEK293 

cells by Adeno-XTM Rapid Titer Kit according to manufacturer’s instructions.    

3.3.2. Plaque forming units              

Adenoviral particles cause c.p.e. in infected cells, which results in detachment of the adherent cell 

layer and formation of clear spots, so called “plaques”. The number of viral plaque forming units 

(pfu) per ml was determined by End-point dilution assay, according to Clontech’s titration protocol 

based on the Spearman-Karber method (Clontech Laboratories, USA). To perform the titration, 

HEK293 cells were seeded into a 96-well plate and infected with serial dilutions of the virus solution, 

either in form of CsCl-purified stocks, “crude stocks” or supernatants of infected U87-MG cells or 

spheroids containing released viral particles. The infected HEK293 cells were incubated in a 

humidified atmosphere for 10 days at 37°C. The fraction of c.p.e.-positive wells for each of the serial 

dilutions was determined and viral titre (pfu/ml) was calculated according to the following formula:  

Titre (pfu/ml) = 10(x + 0.8)  

x = the sum of the fractions of c.p.e.-positive wells  

3.3.3. Viral particle number and aggregate formation     

The amount of viral particles (VP) was determined by optical densitometry. The virus stock was 

diluted 1:20 in a 0.1 % SDS solution in order to inactivate the functional virus and the optical density 

(OD) in nm was measured by a spectrometer. The amount of VP/ml was calculated according to 

OD260 x 1.1 x 1012 VP/ml [303]. An OD260/OD280 ratio about 1.4 indicated optimal purity.  

To test adenoviruses for aggregation, viral solutions were diluted 1:50 in CsCl (ρ 1.35 g/cm3) prior to 

desalting in a dialysis cassette and OD260, OD320 and OD340 were determined. Ratios of OD320/OD260 and 

OD340/OD260 below 0.26 ensured that the viral stock was not aggregated. 

According to the above described measurements, the adenoviral stocks applied in this thesis had an 

optimal purity and were not aggregated.   
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3.4. Adenovirus infections 

The total MOI for all infections, referred to as either ifu or pfu, was derived by multiplication of the 

required MOI (ifu/cell or pfu/cell) with the cell number to be infected.  

3.4.1. 2D cell culture 

Infections of HEK293 cells were performed by diluting the virus at the required MOI (pfu/cell) in 

PBS2+ and applying the viral solution onto the cell monolayer. After incubation in a humidified 

atmosphere at 37°C for 30 min, HEK293 culture medium for infections was added to the cells. U87-

MG and EPP85-181RDB cells were infected with viruses at the required MOI (ifu/ml) in Opti-MEM® I 

+ GlutaMAXTM I. U87-MG and EPP85-181RDB cells were incubated for 30 min and 1 h at 37°C, 

respectively, and cultured subsequently in growth medium for a period of time dependent on 

experiment. Morphological changes of the cells and the occurrence of c.p.e. was monitored by 

transmitted-light microscopy.  

3.4.2. 3D spheroid culture  

3.4.2.1. Infection  

U87-MG-derived spheroids with a volume of 0.1-0.18 mm³ were infected three days after formation 

in 50 µl Opti-MEM® I + GlutaMAXTM I for 30 min in a humidified atmosphere at 37°C without 

removing the spheroids from the coated wells and cultured in growth medium for a period of time, 

dependent on experiment. The cell number per spheroid was extrapolated from a spheroid growth 

curve with known initial number of cells and the MOI (ifu/cell) per spheroid was calculated 

accordingly. Spheroid growth was monitored at different time points and their volume was 

calculated as described in chapter 3.1.2.   

3.4.2.2. Determination of infectivity  

The infectivity of spheroids was explored by infections with Ad-mCMVeGFP at different MOIs 

(pfu/cell) as described above. The fluorescent signal intensity of eGFP was detected microscopically. 

In addition, spheroids were digested with 10 µl lysis buffer (table 2.5) for 15 min at RT. The lysates 

were used to quantify the fluorescent signal according to a standard consisting of serial dilutions with 

known concentrations of rGFP. The protein amount in the spheroid samples was determined by Bio-

Rad Protein Assay as described in chapter 3.12.2. The fluorescent signal intensity of eGFP was 

measured in a black 96-well plate using a multilabel counter with excitation at 485 nm and emission 

at 535 nm wavelength. The amount of eGFP in the samples was calculated by extrapolation from the 

standard curve and normalised to the protein amount.    
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3.5. DNA isolation 

3.5.1. Viral DNA isolation  

DNA from purified virus stocks was isolated by phenol-chloroform extraction. 200 µl digestion buffer 

(table 2.5) was added to 10 µl of the virus together with 0.6 mAU (milli-arbitrary unit) proteinase K to 

degrade the viral capsid. After incubation for 1 h at 50°C, equal volume of phenol-chloroform-isoamyl 

alcohol was added to the suspension and centrifuged for 15 min at 14,000 rpm and 4°C. An equal 

volume of chloroform was added together with cresol red to the upper, aqueous phase containing 

the DNA for removal of phenol residuals and centrifuged again. The DNA from the aqueous phase 

was precipitated by addition of the 4.25-fold volume of precipitation buffer I (table 2.5) with 35 

µg/ml of glycogen as a DNA carrier and collected by centrifugation for 30 min at 14,000 rpm and 4°C. 

The DNA pellet was washed from remaining salts with 70 % ethanol, air dried and resuspended in 

dH2O. DNA concentration was determined by Quant-iTTM PicoGreen® dsDNA Assay Kit as described in 

chapter 3.7.2. 

3.5.2. Extraction of cellular DNA  

In order to perform adenoviral replication analysis by Southern blot or by real-time quantitative PCR, 

infected U87-MG or EPP85-181RDB cells were lysed over night at 37°C by 500 µl SDS-Pronase buffer 

(table 2.5) for DNA extraction. The cell lysates were then mixed with an equal volume of phenol-

chloroform-isoamyl alcohol and centrifuged for 15 min at 15°C and 14,000 rpm. The DNA from the 

aqueous phase was precipitated by addition of precipitation buffer II (table 2.5) and mixing by 

inversion until a visible DNA filament was formed. After three washing steps with 70 % ethanol, the 

DNA was air dried and resuspended in dH2O. The DNA concentration was determined by optical 

densitometry as described in chapter 3.7.1.  

  

3.6. RNA isolation and reverse transcription 

3.6.1. Isolation of cellular RNA 

For RNA isolation infected U87-MG or EPP85-181RDB cells were lysed by incubation for 5 min with 1 

ml Trizol reagent/1 x 106 cells. 200 µl chloroform per ml Trizol was then applied to the cell lysates, 

mixed well and centrifuged for 15 min at 13,000 rpm and 4°C. The RNA from the upper aqueous 

phase was precipitated by addition of one volume of isopropyl alcohol and, after an incubation step, 

centrifugation for 10 min at 13,000 rpm and 4°C. The RNA pellet was washed out from residual salts 

with 80 % ethanol, centrifuged for 5 min at 7600 rpm and 4°C and air dried. The pellet was finally 

resuspended in nuclease-free water, followed by denaturation of the RNA at 65°C for 10 min. The 

RNA concentration was determined by optical densitometry. The integrity of RNA was verified by 
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electrophoretic separation in a 1 % agarose gel as described in chapter 3.8. Extracted RNA was stored 

at -80°C.      

3.6.2. Reverse transcription from RNA into cDNA 

The reverse transcription of RNA into complementary DNA (cDNA) was performed using the High 

capacity cDNA reverse transcription kit according to manufacturer’s instructions. 1 µg RNA per 

reaction was reverse transcribed in a thermal cycler (PTC-100TM). The cDNA was stored at -20°C. 

 

3.7. Determination of DNA and RNA concentration 

3.7.1. Measurement of optical density 

DNA and RNA concentration was determined by optical densitometry of OD260/OD280 in a 

spectrophotometer. Provided that the path length of light, passing through a sample, is 1 cm, an 

OD260 of 1.0 corresponds to a concentration of 50 μg/ml for double-stranded (ds)DNA or 40 μg/ml for 

single-stranded (ss)RNA according to the Beer-Lambert law. Thus, the concentration was calculated 

as follows:  

dsDNA (µg/ml): 50 μg/ml × OD260 × dilution factor 

ssRNA (µg/ml): 40 μg/ml × OD260 × dilution factor  

An OD260/OD280 ratio of about 1.8 for DNA and of 1.8-2 for RNA is indicative for maximal purity.   

3.7.2. PicoGreen assay for DNA quantification  

In case of low DNA yield the concentration of DNA was determined using Quant-iTTM PicoGreen® 

dsDNA Assay Kit. The DNA was labelled by the fluorescent nucleic acid stain PicoGreen and 

fluorescence was measured at 538 nm after excitation at 485 nm in a multilabel counter. The DNA 

amount was quantified by means of a standard curve with bacteriophage λ-DNA (provided by the 

kit), treated as the unknown samples.   

    

3.8. Agarose gel electrophoresis 

DNA and RNA fragments were subjected to electrophoretic gel separation in order to determine the 

length of DNA fragments, to isolate DNA fragments of interest or to analyse the integrity of RNA. The 

agarose gels were prepared by melting of 1 % or, when large fragments were analysed, 0.8 % agarose 

in 1 x TAE. Prior to polymerisation, 0.5 μg/ml of ethidium bromide was added to the gel. DNA or RNA 

reactions were mixed in a ratio of 1:6 with 6 x DNA loading dye and loaded next to a DNA ladder on 

the gel. Electrophoresis was run in gel units with power supply at 90 V or at 20-30 V depending on 

experiment. Because of the intercalation with ethidium bromide, the DNA emits visible light after 
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excitation with UV light at 366 nm and the DNA fragments can be visualised in an UV gel 

documentation system or transilluminator. 

 

3.9. Southern blot  

Southern blot is a method for transferring electrophoretic separated DNA fragments from a gel to a 

solid support in order to detect a gene or DNA region of interest with a specific fluorescent or 

radiolabelled DNA probe. The probe hybridises to the complementary DNA fragments and can be 

visualised in a chemiluminescent or autoradiographic reaction [304].   

In order to perform adenoviral replication analysis by Southern blot, DNA from infected and/or GCV-

treated U87-MG cells was extracted as described in chapter 3.5.2. 1 µg DNA was digested with 10 U 

PvuI in a 20 µl reaction mix of 1 x buffer R+ and 10 µg RNase A for 90 min at 37°C. The restriction was 

terminated by incubation of the reaction for 5 min at RT with 5 µg pronase. DNA fragments, which 

were in a range from 1.67 to 13.81 kb depending on virus, were obtained by electrophoretic 

separation on a 0.8 % agarose gel over night at 20-30 V. The separated DNA fragments on the gel 

were then exposed to 250 mM HCl for 10-20 min, followed by incubation in denaturation solution 

and subsequently in neutralisation solution (table 2.5) for 2 x 15 min, each. The exposal to weak acid 

results in partial depurination of the DNA and the strong base in the denaturation solution 

hydrolyses the phosphodiester backbone at the sites of depurination. The resulting about 1 kb 

fragments can then be transferred from the gel with high efficiency [305]. The DNA fragments were 

blotted onto a GeneScreen Hybridisation Transfer Membrane by capillary transfer overnight at RT. 20 

x SSC was used to elute the DNA from the gel and a weight on top of the transfer system was applied 

to ensure tight connection between the layers of material used within it. The DNA was immobilised 

on the membrane by UV irradiation at 120 mJ in a Cross-linker.  

Probe generation, hybridisation of template DNA with specific DNA probes and signal detection were 

performed according to DIG High Prime DNA Labelling and Detection Starter Kit II. To generate a 

complementary DNA probe for the detection of a template in the E2 region, a 1669 bp fragment was 

obtained by PvuI-restriction (nt6149/nt7818) of the adenoviral backbone plasmid pBHG10. A specific 

1146 bp probe for detection of the HSV1-sr39TK gene was derived by restriction of the shuttle 

plasmid pDC316sr39TK with EcoRI (nt993) and HindIII (nt2139). Both probes were purified using 

QIAquick Gel Extraction Kit and their concentration was determined by Quant-iTTM PicoGreen® 

dsDNA Assay Kit (chapter 3.7.2). The probes were labelled with the steroid hapten digoxigenin (DIG) 

coupled to 2´-deoxyuridine 5´-triphosphate (dUTP). The optimal hybridisation temperature of the 

probes was based on their melting temperature (Tm) and was calculated following the 
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manufacturer’s instructions. The labelling efficiency of the probes was determined in a preliminary 

experiment to be sufficient to label 1-3 pg/µl of template DNA.  

After hybridisation of the template DNA with its complementary DNA probes, signals were detected 

in a chemiluminescent reaction at 477 nm by a Kodak image station. All buffers used within the kit 

for immunological detection are listed in table 2.5. If it was necessary for the DNA blot to be re-

probed, the first DNA probe was removed by washing the transfer membrane in Stripping buffer 

(table 2.5), following the manufacturer’s instructions of the DIG High Prime kit. The template DNA 

was hybridised with a second DIG-labelled DNA probe and detected as described above.  

    

3.10. Polymerase chain reaction  

PCR analysis of adenoviral DNA as a control to exclude an unintentional contamination with wild-type 

adenovirus was performed using PCR master mix (table 2.5), 0.2 µM of each forward and reverse 

E1A- and E2-specific primers (table 2.9) and 50 ng adenoviral template DNA, isolated as described in 

chapter 3.5.1, in a total reaction volume of 50 µl. The plasmids pXC1 and pBHGlox were used as 

positive amplification controls for E1A and E2, respectively. DNA was amplified on a thermal cycler 

according to table 3.1. PCR analysis for verification of the genetic modifications of the adenoviral 

vectors was performed as described above with 0.2 µM of each forward and reverse E1A-pIX-, E3- 

and HSV1-sr39TK-specific primers (table 2.9). Amplifications were carried out on a thermal cycler as 

described in table 3.1.  

 

Table 3.1: PCR cycling conditions    

            Target 

PCR step  
Adenoviral E1A/E2 Adenoviral E1A-pIX/E3 HSV1-sr39TK 

Initial denaturation 94 °C     2 min    1x 94 °C       2 min    1x 94 °C     2 min    1x 

Denaturation 94 °C   45 sec   35x 94 °C     45 sec    30x 94 °C   45 sec   35x 

Annealing 57 °C   45 sec   35x 50 °C     45 sec    30x 57 °C   45 sec   35x 

Extension 72 °C     1 min  35x 72 °C       5 min   30x 72 °C     1 min  35x 

Final extension 72 °C   10 min    1x 72 °C     10 min     1x 72 °C   10 min    1x 

 

The length of the PCR products was determined by electrophoretic separation on a 1 % agarose gel 

at 90 V as described in chapter 3.8. 
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3.11. Real-time quantitative PCR analysis   

Real-time quantitative PCR (qPCR) is a method for monitoring the amplification throughout the PCR 

process in real time and provides a powerful tool to quantify gene replication or expression. The 

quantity of PCR products correlates with the time point when the target amplification is first 

detected. This value is defined as cycle threshold (Ct), the cycle in which the fluorescence intensity of 

the target is greater than background fluorescence. The greater the quantity of initial target DNA, the 

faster a fluorescent signal exceeds the background level, resulting in a lower Ct [306].  

Two real-time qPCR data analysis types can be discriminated: absolute and relative quantification. 

Absolute quantification is used to determine the input copy number of a sample, interpolating it 

from a standard curve. The standard curve enables a linear correlation between Ct and initial amount 

of nucleic acids, allowing quantification of unknown samples based on their Ct values [306]. Relative 

quantification is applied to determine changes in gene expression of a target sample in relation to a 

reference (calibrator). Target gene expression is normalised to an endogenous control, usually a 

housekeeping gene or ribosomal RNA (rRNA). In this thesis, relative gene expression was calculated 

by the comparative Ct (2
-ΔΔCt) method, which determines changes in gene expression as a relative fold 

difference between a target and reference sample [307].  

Real-time qPCR can be performed with different detection chemistries, as SYBR green dye or 

TaqMan® hydrolysis probes. The fluorescent cyanine dye SYBR green binds to the minor groove of 

dsDNA and emits fluorescence at 524 nm [308]. Thus, increase of fluorescence intensity correlates 

directly with dsDNA accumulation. The group of TaqMan® probes comprises sequence-specific 

oligonucleotides containing a fluorescent reporter dye on the 5´ end and a quencher dye on the 3´ 

end [306]. The quencher dye reduces the fluorescence emitted by the reporter dye by fluorescence 

resonance energy transfer [309], when the probe is intact. When annealed to the target sequence, 

the probe is cleaved by the 5´ exonuclease activity of Thermus aquaticus (Taq) DNA polymerase 

during the extension step of the PCR, the quencher is separated from the reporter and fluorescence 

emission increases [306, 310].       

3.11.1. Absolute DNA quantification  

In order to perform absolute quantification of Fiber 5 and HSV1-sr39TK genes, a standard of known 

copy number was generated by extraction of DNA from a highly concentrated purified Ad-delo-

sr39TK-RGD-stock using DNeasy Blood and Tissue Kit according to manufacturer’s instruction. The 

copy number of the DNA per µl was calculated by means of its concentration and molecular weight 

and serial dilutions were prepared in order to derive a standard curve. Each standard dilution was 

mixed with 5 ng of genomic (U87-MG) DNA to mimic an “in vivo” adenoviral infection. DNA from 

infected cells was isolated (chapter 3.5.2) and DNA concentration was determined as described in 
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chapter 3.7.1. DNA from 100 µl of virus-containing cellular supernatants was extracted according to 

DNeasy Blood and Tissue Kit and the DNA concentration was determined by Quant-iTTM PicoGreen® 

dsDNA Assay Kit (chapter 3.7.2). The absolute qPCR of Fiber 5 was performed using 12.5 µl of the 

qPCR Master Mix Plus for SYBR® Assay per reaction, 0.4 µM of each specific forward and reverse 

primers (table 2.9) and 2-2.5 ng of template DNA in a total reaction volume of 25 µl. The absolute 

qPCR of HSV1-sr39TK was performed with 12.5 µl of qPCR Master Mix Plus, 300 nM of each primer, 

200 nM of the probe (table 2.9) and 5 ng of template DNA in a total reaction volume of 25 µl. The 

template DNA was amplified in a real-time PCR sequence detection system according to the cycling 

conditions listed in table 3.2 and table 3.3. The amount of gene copies was calculated by means of 

the standard curve using SDS 2.2 software.  

 

Table 3.2: Real-time qPCR cycling conditions for SYBR® Green assay 

 Stage Temperature (°C) Time Cycles 

1. Initial denaturation 95 15 min   1 

2. Denaturation 95 15 sec 40 
 Annealing 58 15 sec  40 
 Extension 72 15 sec 40 

3. Dissociation (melting curve analysis) 95 

60 

95 

15 sec 

15 sec 

15 sec 

  1 

  1 

  1 

 
 
Table 3.3: Real-time qPCR cycling conditions for TaqMan® assay 

 Stage Temperature (°C) Time Cycles 

1. Initial denaturation 50   2 min   1 

2. Denaturation 95 10 min   1 

3. Annealing 95 15 sec  40 
 Extension 60   1 min 40 

 

 

3.11.2. Relative mRNA quantification  

For the relative quantification of HSV1-sr39TK mRNA expression, total RNA was isolated from 

infected U87-MG or EPP85-181RDB cells (chapter 3.6.1) and reverse transcribed into cDNA (chapter 

3.6.2). The qPCR was performed with master mix, primers and probe as described in chapter 3.11.1, 

using 5 ng of cDNA per reaction. cDNA from uninfected cells served as a reference. The transgene 

expression was normalised to the expression of the endogenous control 18S rRNA, which was 

detected in parallel using PreDeveloped TaqMan Assay Reagent Human 18S rRNA in 1 ng cDNA per 

reaction. The amplification was performed according to table 3.3. 
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3.12. Protein analysis  

3.12.1. Extraction of cellular proteins  

For analysis of HSV1-sr39TK protein expression, infected and/or GCV-treated U87-MG or EPP85-

181RDB cells were harvested by centrifugation at 2700 rpm for 10 min, when cells infected with 

oncolytic adenoviruses showed indication of c.p.e. After two washing steps with 1 x PBS, cells were 

lysed in 500 µl/1 x 106 cells ice-cold RIPA buffer (table 2.5) for 30 min on ice. DNA was removed from 

the lysates by centrifugation for 30 min at 10,000 rpm and 4°C. Supernatants containing the 

extracted cellular and viral proteins were stored at -80°C.  

3.12.2. Protein quantification  

Protein concentration was quantified by the Bio-Rad Protein Assay, which is based on the method of 

Bradford [311]. Accordingly, the absorbance maximum for an acidic solution of Coomassie® Brilliant 

Blue G-250 dye, included in the dye reagent, shifts from 465 nm to 595 nm when forming complexes 

with proteins. For quantification, protein standard consisting of BSA (stock solution 1.45 mg/ml in 20 

% RIPA buffer) was prepared by serial dilutions. The protein sample and the standard dilutions were 

mixed 1:4 with dye reagent and incubated for 20 min. The absorbance at 590 nm was measured in a 

multilabel counter and protein concentration was calculated according to the standard curve.     

3.12.3. TCA precipitation  

Samples containing a low protein amount, mostly because of c.p.e., were concentrated by TCA 

precipitation. For this purpose, protein extracts were treated with ¼-fold volume of 50 % ice-cold 

TCA and incubated for 15 min on ice. After centrifugation for 15 min at 14,000 rpm and 2°C, the 

pellets were resuspended in 500 µl ice-cold acetone to remove residual TCA and centrifuged again 

for 15 min at 2°C and 14,000 rpm. Pellets were vacuum-dried in a concentrator and resuspended in 5 

x Laemmli buffer (table 2.5). 

3.12.4. SDS-polyacrylamide gel electrophoresis and Western blot   

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) is applied in order to separate proteins according 

to their size, using SDS as a detergent [312]. SDS acts as an anionic, denaturing detergent that binds 

to proteins directly proportional to their molecular weight and enables their motility in an electric 

field through its negative charge.  

Prior to subjecting proteins to SDS-PAGE, precipitated and in Laemmli buffer diluted samples were 

boiled at 95°C for 5 min to further denature the proteins by breaking up secondary and tertiary 

structures. 150 µg of the protein samples were loaded together with a molecular weight marker on 

10 % polyacryamid gels and separated according to their size by electrophoresis at 25 mA per gel, 

using BupHTM Tris-HEPES-SDS Running Buffer (table 2.4). 
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Proteins were then blotted onto a PVDF membrane by electrophoretic transfer in a transfer unit 

filled with blotting buffer (table 2.5) for 1 h at 400 mA. The membrane was blocked to avoid 

unspecific antibody binding by incubation in blocking buffer (table 2.5) for 30 min at RT. The primary 

antibody against HSV1-TK (table 2.8) was diluted 1:1000 in blocking buffer and incubated for 

overnight at 4°C onto the membrane. In a parallel reaction, the primary antibody (1:1000) was 

incubated with 1 µg/ml of a blocking peptide (table 2.8) against the HSV1-TK-specific antibody for 30 

min at RT to test the specificity of the antibody. The antibody-blocking peptide complex was then 

applied to a protein sample on the membrane and incubated overnight at 4°C. The antibody that is 

neutralised by the blocking peptide is no longer able to bind to the epitope of its target protein and 

thus no signal is detected. After three washing steps with PBS/Tween (table 2.5) for 10 min, a 1:3000 

dilution of the secondary antibody (table 2.8) in blocking buffer was applied for 1 h at RT. Following 

four washing steps of 15 min with PBS/Tween and one with PBS, protein detection was performed 

using the ECLTM ("Enhanced Chemiluminescence") detection reagent. The enzyme HRP coupled to the 

secondary antibody catalyses the oxidation of luminol and generates chemiluminescence at 425 nm 

wavelength. Signals were detected by an image station. Mean intensity was quantified using Image J 

software.    

 

3.13. Cytotoxicity assays 

3.13.1. SRB staining  

In order to quantify c.p.e., HSV1-sr39TK/GCV-mediated cytotoxicity or the combined cell killing effect 

of adenoviral infection, TMZ and the HSV1-sr39TK/GCV-system, cell staining with SRB was performed 

[313]. SRB is a fluorescent aminoxanthene dye that binds to basic amino acid residues of cellular 

proteins under mild acetic conditions. Hence, SRB staining enables quantification of cell survival after 

treatment. The remaining adherent cells were first fixed in 10 % cold TCA solution (50 µl/well, 96-

well plate) overnight at 4°C. After rinsing of TCA by five washing steps with distilled water, cells were 

stained by SRB staining solution (table 2.5; 50 µl/well, 96-well plate) for 10 min at RT. Subsequently, 

the dye was removed by five times washing with 1 % acetic acid and the stained cells were air dried. 

In addition, images of SRB-stained cells were taken. To quantify cell survival, dried SRB dye was 

dissolved in 10 mM non-buffered Tris (100 µl/well, 96-well plate) for 1 h and the OD at 590 nm was 

measured in a multilabel counter.  

3.13.2. XTT assay 

Metabolic activity of cells or U87-MG-derived spheroids, subjected to viral infections or GCV and TMZ 

treatment, was verified using the XTT Cell Proliferation Kit II according to the manufacturer’s 

instructions. Briefly, cells or spheroids were incubated in growth medium with XTT solution for 4-24 
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h. The solution contains the yellow tetrazolium salt XTT that is cleaved by metabolically active cells to 

form an orange formazan dye [314, 315]. As this conversion occurs only in viable cells, the amount of 

orange formazan formed correlates with the increase in viability and can be quantified 

spectrometrically in a multilabel counter at absorbance of 490 nm with background correction at 630 

nm. The number of viable cells in 2D monolayer culture was determined by means of an equally 

treated standard curve, consisting of serial dilutions with known cell number.  

In contrary to SRB staining, the XTT assay enables the quantification of metabolically active cells, 

whereas SRB detects intact cells, regardless of functional metabolism.   

 

3.14. Preparation of cryosections and immunofluorescence staining 

For immunofluorescence analysis of adenoviral distribution, infected and drug-treated U87-MG-

derived spheroids were fixed 48 h post infection in acetone/methanol (1:1) for 20 min at -20°C and 

embedded in Cryo Tissue Tek medium for cryosectioning. Cryosections of 14 µm thickness were 

generated using a cryostat microtome and mounted onto microscope slides. Prior to 

immunostaining, frozen sections at -20°C were warmed to RT and fixed for permeabilisation of cells 

in acetone/methanol (1:1) for 10 min at RT. After washing with 1 x cold PBS, unspecific antibody 

binding was avoided by incubation of the sections in blocking buffer (table 2.5) for 30 min RT. The 

slides were washed once with PBS/Tween (table 2.5) and incubated simultaneously with 1:1000 

dilutions of the primary anti-Hexon or anti-HSV1-TK antibodies (table 2.8) overnight at 4°C. After 

three times rinsing with 1 x PBS, the sections were treated with 1:50 dilutions of the corresponding 

FITC- and Texas Red-coupled secondary antibodies (table 2.8) for 1 h at RT. After three times rinsing 

with 1 x PBS, the sections were air dried and mounted in Vectashield mounting medium containing 

DAPI. Fluorescent signals were analysed on a Nikon Eclipse fluorescence microscope. 

  

3.15. [
18

F]-FHBG radiotracer uptake 

The radiotracer uptake activity of HSV1-sr39TK as an indicator of the enzymatic function of HSV1-

sr39TK was analysed by in vitro uptake of [18F]-FHBG in infected and/or treated U87-MG cells or 

spheroids. For uptake analysis, 1 x 105 cells and spheroids containing approximately 1 x 105 cells were 

washed once with 1 x PBS and labelled with 0.1 MBq [18F]-FHBG. All probes were incubated for a 

minimum of 1 h at 37°C and washed twice with ice-cold PBS, before the accumulated radiotracer was 

released from the cells by addition of 1 ml 1 M NaOH. A standard curve, containing serial dilutions of 

the [18F]-FHBG solution, was prepared in order to determine the uptake dose of the samples. The 
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radiotracer activity per 1 x 105 cells was measured as counts per minute (cpm) using a gamma-

counter and decay-corrected. 

To measure the spatial accumulation of radiotracer without disrupting the spheroid morphology, 

infected and/or treated spheroids consisting of 4 x 105 cells were labelled with [18F]-FHBG as 

described above. After labelling, spheroids were transferred to a 24-well plate, containing one 

spheroid per well, and radioactivity was detected on a combined small-animal positron emission 

tomography (PET)/computed tomography (CT) system. The analysis of the regions of interest (ROI) 

was performed with INVEON Research Workplace software using the statistical iterative 

reconstruction algorithm of ordered subset expectation maximisation (OSEM 3D) with attenuation 

correction/scatter correction (ACSC). Decay correction was performed and the measured activity was 

validated by means of a standard curve with serial radiotracer dilutions. 

 

3.16. Statistical analysis 

Statistical analysis of TMZ-enhanced adenoviral replication was performed by using Student’s t-test 

(paired, two-sided). The criterion for statistical significance was taken as p < 0.05. To analyse 

spheroid growth after subjection to viral infections and TMZ or GCV treatment in a time-course, two-

way ANOVA at 5 % level of significance (alpha value of 0.05) was performed. Correction of alpha 

error level was subsequently conducted by Tukey’s multiple comparison test (95 % confidence 

interval) for the significance of multiple independent groups. Metabolic activity of spheroids after 

treatment was analysed by Student’s t-test (paired, two-sided, p < 0.05). The radiotracer uptake 

studies were evaluated by one-way ANOVA at a 5 % level of significance (alpha value of 0.05) with 

Tukey’s multiple comparison test (95 % confidence interval) as described above. 
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4. RESULTS 
 

4.1. Characterisation of adenoviral vectors 

The adenoviral vectors (figure 2.1) applied in this work were characterised in order to verify their 

correct genetic structure prior to the beginning of all experiments. Additionally, the adenoviral 

preparations were examined for potential contamination with wild-type adenovirus.  

4.1.1. Verification of crucial genetic modifications 

The integrity of essential mutated adenoviral regions and the maintenance of the transgene HSV1-

sr39TK in Ad-delo-sr39TK-RGD were verified after virus production and compared to respective gene 

regions of a HSV1-sr39TK-armed and non-armed adenovirus. The verification was performed by 

means of PCR analysis of DNA extracted from CsCl-purified adenovirus preparations. The expected 

PCR products are summarised in table 4.1 and the derived PCR signals are depicted in figure 4.1.  

The E1 region-specific primers amplify a DNA fragment, which comprises the E1A, E1B19K and 

E1B55K genes. This fragment was detected in its full length in Ad5-wt DNA. The vectors Ad-delo-

sr39TK-RGD and Ad-delo3-RGD contain an 11 bp deletion in the CR3 region of the E1A gene and a 

201 bp deletion in the E1B19K gene (chapter 2.14.). Because of these two manipulations, a shorter 

PCR product than the one in Ad5-wt was derived from Ad-delo-sr39TK-RGD and Ad-delo3-RGD, as 

expected. In the replication-deficient adenovirus Ad-sr39TK, the detected fragment in the E1 region 

is for the most part deleted and replaced by the transgene HSV1-sr39TK (chapter 2.14.). The specific 

amplification resulted therefore in a PCR product shorter than that of Ad5-wt and the oncolytic 

adenoviruses. 

The E3 region-specific primers amplified a sequence located in the E3 region of Ad5-wt. In Ad-delo-

sr39TK-RGD, this part of the E3 region is replaced by the 1131 bp insertion of the HSV1-sr39TK gene. 

This insertion resulted in a larger PCR product, compared to Ad5-wt, when detected with E3-specific 

primers. No respective PCR signal was obtained in the E3-deleted Ad-delo3-RGD vector. A fragment, 

localised outside of the deletion in the E3 region and corresponding to the respective PCR sequence 

derived from Ad5-wt, was detected in Ad-sr39TK DNA.  

Both Ad-delo-sr39TK-RGD and Ad-sr39TK yielded a positive amplification signal for the transgene 

HSV1-sr39TK. The vectors armed with the transgene HSV1-sr39TK were also verified by sequencing 

(data not shown). The oncolytic vector Ad-delo-shMGMT-RGD had already been verified previously. 
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Table 4.1: Expected PCR products after specific detection of adenoviral E1/E3 region and HSV1-sr39TK. 

Virus PCR product (size in bp)  

 E1 E3 HSV1-sr39TK 

Ad5-wt 3345 796  n.a. 

Ad-delo-sr39TK-RGD 3163   2147  1070 

Ad-delo3-RGD 3163  - n.a. 

Ad-sr39TK 2935 796  1112 

Ad5-wt: wild-type adenovirus 5; n.a.: not analysed   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Verification of key adenoviral modifications. DNA was isolated by phenol-chloroform extraction 

from CsCl-purifications of the indicated adenoviruses and subjected to PCR analysis with specific primers for 

the amplification of adenoviral E1A-pIX region (left), E3 region (middle) and HSV1-sr39TK gene (right). Lane 1: 1 

kb DNA ladder with DNA bands of indicated length. - : negative control.  

 

 

4.1.2. Control for contamination with wild-type Ad5 recombinants 

Recombinant replication-competent adenoviruses (RCA) arise from the recovery of E1 sequences 

during accidental homologous recombination between E1-deleted or E1-mutated adenoviruses and 

the wild-type E1 sequence provided by the producer cell line HEK293 [316]. In order to exclude 

possible contamination of the adenoviruses with wild-type Ad5 RCA, the adenoviral vectors were 

examined by specific PCR amplification of DNA extracted from CsCl-purified adenovirus preparations.  

If the PCR analysis with specific primers for E1A is positive in replication-deficient, E1A-deleted 

adenoviruses, the virus of interest is contaminated with RCA. However, oncolytic adenoviruses like 

Ad-delo-sr39TK-RGD, Ad-delo3-RGD and Ad-delo-shMGMT-RGD, which contain an 11 bp deletion in 

the CR3 region of the E1A gene, yield a positive amplification signal despite being devoid of 

contamination with wild-type recombinants. The results of the PCR analysis for wild-type RCA 

contamination are summarised in table 4.2 and the signals derived by the PCR are depicted in figure 

4.2. Amplification of all oncolytic vectors with E1A-specific primers resulted in the expected PCR 

products, which are 11 bp shorter than the respective product of the Ad5-derived vector pXC1. 

However, due to the similar length of the PCR products derived from the oncolytic vectors and of 

those derived from the Ad5-vector pXC1, a potential wild-type RCA contamination of the oncolytic 
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vectors could not be definitely excluded. Absence of RCA contamination was therefore verified by 

the distinctive PCR signals of the oncolytic vectors in figure 4.1. No PCR signal was derived by E1A-

specific amplification of Ad-sr39TK. The sensitivity of the amplification was high, given that the 

detection limit of the E1A-specific PCR had been proved to be 10 fg of pXC1 DNA that corresponds to 

912 DNA copies (Dr. Martina Anton, personal communication). The presence of adenoviral DNA was 

verified by successful E2-specific PCR amplification, using the vector pBHGlox as a positive reference.  

 

Table 4.2: Expected PCR products after specific detection of fragments in adenoviral E1A and E2 regions for 

proof of contamination with wild-type RCA. 

Virus PCR product (size in bp) 

 E1A E2 

pXC1 1042 n.a. 

pBHGlox n.a. 631 

Ad-sr39TK - 631 

Ad-delo-sr39TK-RGD 1031 631 

Ad-delo-shMGMT-RGD 1031 631 

Ad-delo3-RGD 1031 631 

n.a.: not analysed     

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Control of contamination with wild-type RCA. DNA was isolated by phenol-chloroform extraction 

from CsCl-purifications of the indicated adenoviruses and subjected to PCR analysis with specific primers for 

the amplification of adenoviral E1A (left) and E2 region (right). Plasmid DNA of pXC1 and pBHGlox was used as 

a positive control for E1A and E2 amplification, respectively. Lane 1: 1 kb DNA ladder showing relevant DNA 

bands. - : negative control. 

 

The results described in 4.1.1. and 4.2.1. demonstrate that Ad-delo-sr39TK-RGD contains the correct 

modifications of its genome and that the replication-deficient adenovirus Ad-sr39TK was devoid of 

any detectable wild-type RCA contamination. Due to the presence of the E1A region, the lack of RCA 

contamination in the oncolytic adenovirus preparations was only partially confirmed. The 

adenoviruses could be applied in the subsequent experiments. 
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4.2. Induction of cytopathic effect by YB-1 dependent oncolytic adenoviruses 

in tumour cell lines        

Cytopathic effect (c.p.e.) is a characteristic of infection with replicating adenoviruses and a 

prerequisite for lysis of infected cells. The ability of oncolytic adenoviruses to induce c.p.e. is 

therefore a crucial step for efficient tumour cell eradication. The vectors Ad-delo-sr39TK-RGD, Ad-

delo3-RGD and Ad-delo-shMGMT-RGD were rendered YB-1 dependent by deleting the CR3 domain 

of E1A (figure 2.1). Thus, it was of interest to examine the potential of YB-1 dependent oncolytic 

adenoviruses in mediating c.p.e in the glioma cell line U87-MG and in the multidrug-resistant 

pancreatic cell line EPP85-181RDB as a reference. The replication of YB-1 dependent oncolytic 

adenoviruses is stimulated by nuclear accumulated YB-1 [259, 265]. In this context, the U87-MG cell 

line had been characterised by a high expression level and partial nuclear localisation of YB-1 [290]. 

Nuclear distribution of YB-1 in EPP85-181RDB cells had also been verified [288].  

As shown in figure 4.3, c.p.e. was microscopically visible as colonies of rounded cells detached from 

the cell monolayer. Ad-delo-sr39TK-RGD was able to induce complete c.p.e. in U87-MG cells at MOI 

of 100 ifu/cell already 48 h after infection. At MOI of 10 ifu/cell, Ad-delo-sr39TK-RGD could induce 

c.p.e. in only about 50-70 % of the cell population 72 h after infection (data not shown). The c.p.e. 

elicited by Ad-delo3-RGD 48 h after infection was as strong as that of the armed virus, but started 

with a delay of one day compared to Ad-delo-sr39TK-RGD, when a MOI of 10 ifu/cell was applied 

(data not shown). Ad-delo-shMGMT-RGD induced a similar c.p.e. as Ad-delo-sr39TK-RGD and Ad-

delo3-RGD, regarding its strength and onset time-point. C.p.e. was absent after infection of the 

tumour cells lines with Ad-sr39TK. In EPP85-181RDB, all oncolytic adenoviruses were able to mediate 

c.p.e. successfully and at the same level as in U87-MG cells, but 72 h after infection.  

 

 

 

 

 

 

 

 

 

Figure 4.3: Induction of c.p.e. by YB-1 dependent oncolytic adenoviruses in tumour cell lines. U87-MG and 

EPP85-181RDB cells (5 x 10
5
) were infected with the indicated adenoviruses at MOI of 100 ifu/cell and analysed 

in an inverted microscope for occurrence of c.p.e. 48 h (U87-MG) or 72 h (EPP85-181RDB) after infection. Scale 

bar: 100 µm.    

 



RESULTS 53

 

Taking the above described results into account, all YB-1 dependent adenoviruses successfully 

induced c.p.e. and thus oncolytic effect in tumour cells. As a next step, the contribution of viral 

replication to c.p.e. was explored. 

   

4.3. Replication competence of YB-1 dependent oncolytic adenoviruses  

4.3.1. Replication of oncolytic adenoviruses in tumour cells  

Given that adenoviral replication is a prerequisite for successful induction of c.p.e. and oncolytic 

effect in target cells, it was of interest to examine the replication capacity of oncolytic adenoviruses. 

Moreover, it was analysed whether the replication kinetics of the transgene HSV1-sr39TK in Ad-delo-

sr39TK-RGD correlated with the replication potential of the virus. These examinations were 

performed by Southern blot and real-time qPCR analyses. 

In accordance with their strong induction of c.p.e., the oncolytic adenoviruses replicated efficiently in 

U87-MG cells, as shown by Southern blot detection of viral DNA (figure 4.4 A). A time-dependent and 

cumulative increase of the DNA amount of all oncolytic viruses was observed from 24 h up to 96 h 

after infection. HSV1-sr39TK gene replication also increased slightly from 24 h to 96 h after infection 

with Ad-delo-sr39TK-RGD. The transgene was not detected in the DNA of Ad-delo3-RGD and Ad-delo-

shMGMT-RGD. No DNA replication was observed after infection with Ad-sr39TK. Addition of GCV to 

infected U87-MG cells immediately after infection resulted in absence of Ad-delo-sr39TK-RGD DNA 

replication, even when high viral doses (MOI of 100 ifu/cell) were applied, as shown by the specific 

detection of HSV1-sr39TK (figure 4.4 B).  

 

A 

 

 

 

       

B 

 

 

 

 

 

 

 

 

 

Figure 4.4: Analysis of adenoviral replication in glioma cells. U87-MG cells (5 x 10
5
) were infected with the 

indicated adenoviruses at MOI of 100 ifu/cell. A: DNA was isolated from cells 6 h, 24 h, 48 h and 96 h after 
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infection using phenol-chloroform extraction. Southern blot analysis was performed with 1 µg DNA, digested 

with PvuI. A 1669 bp fragment of the adenoviral E2 region and, after stripping and re-probing, a 1146 bp 

fragment of HSV1-sr39TK were detected by hybridisation with complementary DIG-dUTP-labelled DNA probes. 

B: GCV [50 µg/ml] was added to U87-MG cells immediately after infection. DNA was isolated 72 h after 

infection and subjected to Southern blot analysis and specific detection of HSV1-sr39TK as described in A.    

 

 

Consistent with the detection of viral DNA by Southern blot analysis, but more accurately, the 

replication of the oncolytic adenoviruses was demonstrated by real-time qPCR analysis of adenoviral 

Fiber 5 gene copy number in U87-MG glioma cells and in the multidrug-resistant cell line EPP85-

181RDB (figure 4.5). A significant replication burst of Ad-delo-sr39TK-RGD was observed in U87-MG 

cells from 24 h to 48 h (150-fold) and in EPP85-181RDB cells from 12 h to 24 h (260-fold) after 

infection. The overall DNA accumulation from 6 h to 72 h post infection was about 180,000-fold in 

U87-MG cells and only about 1700-fold in EPP85-181RDB cells. In contrast, the DNA copy number of 

Ad-sr39TK remained constant over time in both cell lines, which confirmed the replication-deficient 

character of the virus. In comparison to Ad-delo-sr39TK-RGD, the replication of Ad-delo3-RGD 

increased only 8300-fold from 6 h to 72 h in U87-MG cells, despite identical E1A genetic backbone. 

The lower replication level obtained by Ad-delo3-RGD reflected the 24 h-delayed induction of c.p.e. 

by Ad-delo3-RGD compared to Ad-delo-sr39TK-RGD, as described in chapter 4.2. In EPP85-181RDB 

cells, the DNA accumulation of Ad-delo3-RGD reached a similar level as Ad-delo-sr39TK-RGD 

replication 48 h and 72 h post infection. Hence, Ad-delo-sr39TK-RGD not only replicates effectively, 

but has an improved replication competence over Ad-delo3-RGD in glioma cells.  

The gene copy number of HSV1-sr39TK paralleled the increase in Ad-delo-sr39TK-RGD replication and 

accumulated about 5000-fold in U87-MG cells and only about 500-fold in EPP85-181RDB cells from   

6 h to 72 h post infection. The transgene copy number remained constant in Ad-sr39TK and was not 

detectable in Ad-delo3-RGD. The difference between the accumulated DNA copy number of Fiber 5 

and that of HSV1-sr39TK resulted most probably from the different efficiency of the detection 

chemistries (SYBR green dye for Fiber 5 and TaqMan® probe for HSV1-sr39TK) used for quantification 

of the genes.   
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Figure 4.5: Accumulation of adenoviral DNA in glioma and pancreatic carcinoma cells. U87-MG and EPP85-

181RDB cells (1 x 10
6
) were infected with the indicated adenoviruses at MOI of 10 ifu/cell. DNA was isolated 

from infected cells 6-72 h after infection by phenol-chloroform extraction. The copy number of adenoviral Fiber 

5 gene and HSV1-sr39TK transgene was quantified by means of absolute real-time qPCR of 2.5 ng (Fiber 5) and 

5 ng (HSV1-sr39TK) DNA per reaction (mean±SD); n=3.   

 

4.3.2. Release of newly synthesised adenoviral particles  

In order to spread to, infect and lyse neighbouring cells, an oncolytic adenovirus should be able to 

produce functional viral progeny. Therefore, the release of newly synthesised viral particles by U87-

MG and EPP85-181RDB cells infected with oncolytic adenoviruses was analysed by absolute real-time 

qPCR of Fiber 5 DNA copy number. Release of newly synthesised Ad-delo-sr39TK-RGD oncolytic 

adenoviral particles from both tumour cell lines was first detected 48 h after infection (figure 4.6). 

The values measured 6 h, 12 h and 24 h after infection indicate most probably not internalised 

adenoviruses, as viral release usually starts about 48 h to 72 h post infection [165]. After 96 h, viral 

release from U87-MG and EPP85-181RDB cells reached a 9020-fold and an about 25-fold higher level 

than the initial value, respectively. This finding correlated with the enhanced intracellular replication 

of viral DNA up to 72 h after infection (figure 4.5). In comparison, the cumulative release of Ad-delo3-
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RGD and Ad-delo-shMGMT-RGD particles from U87-MG and EPP85-181RDB cells started 72 h or 96 h 

post infection (figure 4.6).  

In addition to its delayed release, Ad-delo3-RGD yielded 16,000-times and 70-times less viral particles 

than Ad-delo-sr39TK-RGD from U87-MG and EPP85-181RDB cells, respectively, 96 h post infection. 

This finding was in accordance with the attenuated intracellular DNA replication efficacy of Ad-delo3-

RGD compared to the armed oncolytic adenovirus. Ad-delo-shMGMT-RGD was characterised by a 

400-fold and 6-fold lower particle release than Ad-delo-sr39TK-RGD from U87-MG and EPP85-

181RDB cells, respectively, 96 h post infection.  

 

 

 

 

 

 

 

 

 

 

                                                                 

 

 

Figure 4.6: Release of newly synthesised adenoviral particles from glioma and pancreatic carcinoma cells. 

U87-MG and EPP85-181RDB cells (2 x 10
5
) were infected with the indicated oncolytic adenoviruses at MOI of 

10 ifu/cell. DNA was isolated from supernatants of infected cells 6-96 h after infection using DNeasy Blood and 

Tissue Kit (Qiagen). Cumulative release of newly synthesised adenoviral particles was analysed by detection of 

Fiber 5 gene copy number by absolute real-time qPCR of 2.5 ng DNA per reaction (mean±SD); n=3.  

 

4.3.3. Oncolytic adenoviruses produce infectious progeny  

The infectivity of released oncolytic viral progeny from U87-MG glioma cells was examined by End-

point dilution assay on HEK293 cells and the infectious titre was determined accordingly (figure 4.7). 

The infectious titre of released Ad-delo-sr39TK-RGD particles was 7.94 x 106 pfu/ml 5 days after 

infection of U87-MG cells. Ad-delo3-RGD and Ad-delo-shMGMT-RGD particles yielded 25-fold and 3-

fold lower titres than Ad-delo-sr39TK-RGD, respectively. The low amount of infectious particles of 

Ad-delo3-RGD was associated with the attenuated replication efficiency and progeny release of the 

virus, as shown in figures 4.5 and 4.6. No infectious particles were produced by Ad-sr39TK-infected 

glioma cells. 
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Figure 4.7: Infectivity of newly synthesised 

adenoviral particles. U87-MG cells (2 x 10
5
) 

were infected with the indicated adenoviruses 

at MOI of 10 ifu/cell and supernatants 

containing released viral particles were collected 

5 days post infection. The titres of released viral 

particles, defined as plaque forming units per ml 

(pfu/ml), were determined by End-point dilution 

assay in HEK293 cells.                                                                                                       

 

 

 

 

 

 

 

The results described in chapter 4.3. demonstrate the strong replication competence of Ad-delo-

sr39TK-RGD, as well as the efficient production and release of viral progeny, which was in accordance 

with the successful induction of c.p.e in infected tumour cells and proved the oncolytic potential of 

the virus. Moreover, Ad-delo-sr39TK-RGD displayed improved replication capacity and viral release 

as compared to the E3-deleted vector Ad-delo3-RGD. The accumulation of HSV1-sr39TK copy number 

over time correlated with adenoviral replication. The replication competence of Ad-delo-sr39TK-RGD 

in glioma cells was 100-times higher than in multidrug-resistant pancreatic carcinoma cells at late 

time points of viral infection. In addition, Ad-delo-sr39TK-RGD was able to produce high amount of 

viral progeny to re-infect tumour cells.  

 

4.4. Expression of adenovirus-delivered HSV1-sr39TK in tumour cells 

In order to investigate the expression kinetics of the transgene HSV1-sr39TK, U87-MG and EPP85-

181RDB cells infected with armed oncolytic and replication-deficient vectors were subjected to 

specific mRNA real-time quantification and immunodetection of the protein by SDS-PAGE and 

Western blot. 

The relative mRNA levels of HSV1-sr39TK synthesised by Ad-delo-sr39TK-RGD-infected U87-MG and 

EPP85-181RDB cells increased 52-fold and 87-fold, respectively, from 6 h to 72 h post infection, 

whereas mRNA delivered by Ad-sr39TK did not accumulate over time in both cell lines (figure 4.8). 

The highest HSV1-sr39TK mRNA level in Ad-delo-sr39TK-RGD-infected EPP85-181RDB cells was 

detected 48 h post infection. However, the mRNA levels in infected U87-MG cells were about 10-

times higher than the mRNA levels derived from infected EPP85-181RDB cells at each time point 

analysed.   
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Figure 4.8: Relative quantification of adenovirus-delivered HSV1-sr39TK mRNA transcripts. U87-MG and 

EPP85-181RDB cells (1 x 10
6
) were infected with the indicated adenoviruses at MOI of 10 ifu/cell. Total RNA 

was isolated 6-72 h post infection using Trizol reagent (Invitrogen) and reverse transcription into cDNA was 

performed. HSV1-sr39TK mRNA transcripts were deduced from cDNA amount (5 ng per reaction) in a relative 

real-time qPCR and normalised to 18S rRNA endogenous control (mean±SD); n=3.  

 

 

The results of the mRNA quantification were supported by analysis of protein expression (figure 4.9). 

The HSV1-sr39TK protein of 40.97 kDa (UniProtKB) delivered by Ad-delo-sr39TK-RGD and Ad-sr39TK 

was successfully detected 48 h after infection of U87-MG cells and 72 h after infection of EPP85-

181RDB cells (figure 4.9 A left), when first signs of c.p.e. were visible (figure 4.3). As shown by the 

analysis of signal intensity (figure 4.9 A right), the protein expression level of the transgene in Ad-

delo-sr39TK-RGD (second lane) was comparable to that of the transgene in Ad-sr39TK (third lane) in 

both cell lines. The expression levels of the HSV1-sr39TK protein in the EPP85-181RDB cell line were 

lower than those in U87-MG cells, regardless of delivery vector. 

It was further investigated if GCV had an impact on HSV1-sr39TK expression in infected U87-MG cells 

(figure 4.9 B). Ad-delo-sr39TK-RGD- as well as Ad-sr39TK-delivered HSV1-sr39TK was weakly 

expressed when GCV was applied 24 h or 48 h after infection. After GCV addition 72 h post infection, 

a significant level of HSV1-sr39TK expressed by Ad-sr39TK (lane 6) was detected, compared to a 

lower expression by Ad-delo-sr39TK-RGD (lane 5). This finding could result from an enhanced cell 

killing by Ad-delo-sr39TK-RGD 72 h after infection. The lack of a HSV1-sr39TK protein signal, when 

the primary antibody was neutralised by a blocking peptide against HSV1-TK and applied to lysates of 

Ad-delo-sr39TK-RGD-infected cells, proved the specificity of the anti-HSV1-TK antibody (figure 4.9 C).  
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Figure 4.9: Expression of adenovirus-delivered HSV1-sr39TK in tumour cells. U87-MG and EPP85-181RDB cells 

(1 x 10
6
) were infected with the indicated adenoviruses at MOI of 100 ifu/cell. Protein extractions were derived 

at indicated time points using RIPA buffer, concentrated by TCA precipitation and subjected to Western blot 

analysis. HSV1-sr39TK protein expression was analysed in 150 µg protein lysates by immunodetection. A: HSV1-

sr39TK protein was detected 48 h (U87-MG) and 72 h (EPP85-181RDB) after infection (left) and the protein 

signal intensity was determined by densitometry (right). B: U87-MG cells were treated with GCV [50 µg/ml] 24 

h, 48 h and 72 h after infection. Protein expression was analysed 48 h after GCV addition. C: The specificity of 

the primary antibody against HSV1-sr39TK was verified in protein extractions of Ad-delo-sr39TK-RGD-infected 

cells by the incubation of the antibody with a blocking peptide [1 µg/ml].   

 

 

To sum up, the increasing HSV1-sr39TK expression from Ad-delo-sr39TK-RGD 6 h to 72 h after 

infection was due to the replication competence of the oncolytic virus and thus due to accumulation 

of transgene DNA copies, as shown by the replication analysis. Moreover, it could be shown that GCV 

had a negative impact on protein expression at early time points of infection, probably due to HSV1-

sr39TK/GCV-mediated cytotoxicity.   
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4.5. Analysis of growth, cellular migration and infectivity of glioma spheroids 

Spheroids are convenient models to mimic tumour behaviour in vitro and to study anti-tumour 

treatment effects. Therefore, spheroids were first analysed in respect of various parameters 

concerning their growth, migration ability of cells out of the spheroidal structure and infectivity with 

adenoviruses. 

4.5.1. Spheroids exhibit tumour-like growth pattern 

In order to examine U87-MG spheroid growth, spheroids were cultivated for 28 days after formation. 

During that time-course the surface areas and the volumes of the spheroids were calculated, as 

depicted in figure 4.10. The increase of the spheroid surface areas corresponded to the increase of 

their volumes. All of the 12 spheroids analysed displayed similar growth pattern with some 

fluctuations of their volumes from day 17 to day 28 of monitoring, characteristic of tumour-like 

growth. The spheroids grew exponentially until reaching a plateau phase of growth after 14 days. At 

day 14 they had increased up to 6-fold of their initial volumes. After 28 days the spheroids reached 

mean volumes of 0.4 ± 0.11 mm³ that corresponded to an 8-fold increase relative to the initial 

values. All spheroids had mostly uniform morphology at each time point analysed, as depicted in 

figure 4.10, below. 

 

 

 

 

 

 

Figure 4.10: Growth analysis of U87-MG-derived multicellular spheroids. The growth of glioma spheroids, 

consisting of an initial number of about 1 x 10
5
 cells, was monitored in a time-course of 28 days after 

formation. Spheroid diameter was measured in an inverted microscope. The surface areas and volumes were 

calculated accordingly at the indicated time points (mean±SD); n=12. Representative spheroids are shown 

below (magnification: days 1-4: x 100, days 7-28: x 40).         
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4.5.2. Migration potential of cells from spheroids 

The migration behaviour of U87-MG cells, detached from spheroids, was explored in the following 

one to seven days after adherence of spheroids to solid substrate. Representative images of 

migrating glioma cells from attached spheroids are displayed in figure 4.11. It could be shown that 

only one day after adherence cells started to migrate from the spheroids and reached migration 

distances in a range of 175-300 µm. Migration continued after two and three days with increasing 

migration behaviour of the cells, spreading at distances of up to 700 µm. Cell filaments outgrowing 

from the spheroids were formed during the migration process. After seven days a significant number 

of cells had detached from the spheroids and migrated at distances of up to 1000 µm, forming 

specific clusters and cell networks.     

 

              

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Cellular migration from U87-MG-derived spheroids. Glioma spheroids consisting of about 1 x 10
5
 

cells were attached after formation to uncoated wells of a 24-well plate. The migration behaviour of cells from 

spheroids (n=2) was monitored 1-7 days after spheroid attachment to the surface. Scale bar: 500 µm.     

 

4.5.3. Spheroids allow for adenoviral infections 

Prior to infection with oncolytic and armed replication-deficient adenoviruses, the infectivity of 

spheroid culture was investigated by infection of spheroids with the eGFP-expressing adenovirus Ad-

mCMVeGFP (chapter 2.14). Fluorescent microscopic analysis of infected spheroids revealed that 

eGFP expression was visible already one to two days post infection, especially at MOI of 20, 50 and 

100 pfu/cell, and was stable up to seven days (figure 4.12 A). However, as Ad-mCMVeGFP is a 

replication-deficient adenovirus, the infection takes place in the outer spheroid layers, giving no 

information about the infectivity of the inner layers. The microscopic observations were confirmed 

by fluorimetric quantification of eGFP expression in spheroid lysates (figure 4.12 B). Both microscopic 

and fluorimetric evaluation methods revealed that the signal intensity of eGFP was directly 

proportional to the viral MOI applied. According to these results and considering that replication-

competent adenoviruses yield better infectivity than replication-deficient viruses, MOI of 50 was 

chosen for further infections.  
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Figure 4.12: Infectivity of U87-MG-derived spheroids. Glioma spheroids with volumes of 0.1-0.18 mm³, 

consisting of an initial number of about 1 x 10
5
 cells, were infected with MOI of 5 to 100 pfu/cell of the 

replication-deficient adenovirus Ad-mCMVeGFP. A: Merged transmitted light and fluorescent images 

demonstrate expression of the reporter gene eGFP as an indicator of spheroid infectivity at indicated time 

points post infection. Scale bar: 500 µm. B: The expression of eGFP at each MOI was quantified at 485/535 nm 

wavelength in lysates of spheroids 7 days after infection according to a standard curve. Quantity of eGFP [ng] 

was normalised to total protein amount [µg]; n=1.   
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Regarding the characterisation of glioma spheroids with respect to their growth, cellular migration 

and infectivity, the spheroids displayed tumour-like growth pattern and characteristics, and were 

susceptible to adenoviral infections. These properties classified them as a suitable in vitro model to 

explore the effects of viral oncolysis and of the HSV1-sr39TK/GCV system against tumours. 

 

4.6. Overlapping time- and dose-dependent HSV1-sr39TK/GCV-mediated 

cytotoxicity and oncolytic effect 

Initially, the influence of overlapping oncolytic potential and HSV1-sr39TK/GCV-mediated cytotoxicity 

on tumour cells was investigated. Bearing in mind that both effects are exerted by Ad-delo-sr39TK-

RGD, it was expected that they should mutually potentiate their action. In this context, it was 

analysed whether the time point of GCV addition and the prodrug dose were crucial for the strength 

of the HSV1-sr39TK/GCV-mediated cytotoxicity and/or oncolytic effect. The highest concentration of 

GCV corresponded to therapeutically relevant GCV concentrations used in preclinical and clinical 

studies [96, 98, 101, 317]. The experiment was performed by means of SRB quantification of cell 

survival and XTT assay for analysis of metabolic activity, using the drug-sensitive cell line U87-MG and 

the multidrug-resistant cell line EPP85-181RDB as a reference. 

As shown in figure 4.13 A, when GCV was added to glioma cells immediately after infection (0 h), the 

GCV dose mediating the strongest cytotoxicity was 100 µg/ml, leading to cell survival of 16.1 ± 5 % 

with Ad-delo-sr39TK-RGD, compared to 7.1 ± 0.11 % cell survival with Ad-sr39TK (figure 4.13 A). The 

XTT cytotoxicity assay displayed the percentage of metabolically active cells. After GCV addition 

directly post infection, the metabolic activity of Ad-delo-sr39TK-RGD-infected cells decreased in a 

dose-dependent way, paralleling SRB quantification (figure 4.13 B). The amount of metabolically 

active cells was 44 ± 8.55 % at 1 µg/ml GCV and only 9 ± 3.19 % at 10 µg/ml GCV. Addition of GCV 24 

h, 48 h or 72 h post infection revealed effective cell killing at the lowest GCV dose of 0.001 µg/ml for 

the oncolytic adenovirus. Glioma cell survival with Ad-delo-sr39TK-RGD and 0.001 µg/ml GCV was 5.6 

± 0.18 %, compared to 106.5 ± 4.6 % survival with Ad-sr39TK, when GCV was added 24 h post 

infection. Cell killing activity was most effective by applying GCV 48 h or 72 h after infection, when 

the least survival of Ad-delo-sr39TK-RGD-infected cells was 4.1 ± 0.02 % (48 h) and 4.1 ± 0.16 % (72 h) 

at 0.001 µg/ml GCV (figure 4.13 A). In contrast, the survival of Ad-sr39TK-infected cells at 0.001 

µg/ml GCV was 99.4 ± 4.98 % (48 h) and 87.6 ± 4.05 % (72 h). These results indicate that addition of 

GCV 48 h or 72 h post infection leads to a significant overlap of viral oncolysis and HSV1-sr39TK/GCV-

mediated cytotoxicity in U87-MG cells regardless of GCV dose, compared to the exclusively prodrug 

dose-dependent cytotoxicity of the replication-deficient Ad-sr39TK at each time point analysed. 
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Supporting the results of the SRB quantification, when GCV was applied 48 h post infection with Ad-

delo-sr39TK-RGD, no metabolically active cells remained, unlike infection with Ad-delo3-RGD plus 

GCV application (figure 4.13 B). Although cell killing was enhanced by rising GCV doses (figure 4.13 

A), Ad-sr39TK-infected cells remained metabolically active (figure 4.13 B). The IC50 values of the Ad-

sr39TK/GCV-mediated cytotoxicity varied from 9.8 µg/ml (72 h) to 0.35 µg/ml (24 h) (figure 4.13 A). 

Although the contribution of suicide system and oncolysis to cell killing could not be clearly 

dissected, the HSV1-sr39TK/GCV-mediated cytotoxicity of Ad-delo-sr39TK-RGD predominated its 

oncolytic activity from GCV concentrations of 1 to 100 µg/ml when applied 0 h and 24 h post 

infection (figure 4.13 A). This finding was confirmed by the strong cytotoxic effects of Ad-sr39TK at 1 

to 100 µg/ml GCV, but less cytotoxicity at lower doses. A peak value of cell survival was observed at 

0.1 µg/ml GCV after infection with Ad-delo-sr39TK-RGD and GCV addition 0 h or 24 h post infection. 

This gave rise to the assumption that viral replication was prevented by the cytotoxicity of the HSV1-

sr39TK/GCV system, acting on the initial number of infected cells. The inhibition of oncolysis was 

overcome when GCV was added 48 h or 72 h post infection, because the oncolytic effect of the virus 

had already been initiated before GCV addition and thus predominated over the HSV1-sr39TK/GCV-

mediated cytotoxicity.  

The oncolytic activity of Ad-delo-sr39TK-RGD (0 µg/ml GCV) promoted strong cell killing. The cell 

survival after oncolysis by Ad-delo-sr39TK-RGD was between 33 ± 2.98 % to 4.2 ± 0.18 % 10 days 

after infection and the cell killing was accordingly 67-96 % (not shown in figure 4.13 A). However, 

without addition of GCV most of the Ad-delo-sr39TK-RGD-infected cells (89 ± 11.7 %) remained 

metabolically active 10 days after infection, despite oncolytic effect (not shown in figure 4.13 B). In 

contrast, progressive cell death mediated by Ad-delo-sr39TK-RGD and GCV could be observed 

microscopically already 3-4 days after infection (data not shown). 
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Figure 4.13: Overlapping time- and dose-dependent HSV1-sr39TK/GCV-mediated cytotoxicity and oncolytic 

effect in glioma cells. U87-MG cells (2 x 10
3
) were infected at MOI of 100 ifu/cell with the indicated 

adenoviruses. GCV was added at increasing concentrations starting 0 h, 24 h, 48 h and 72 h after infection and 

applied again after 72 h. A: Cell killing was detected 10 days after infection using SRB staining and 

quantification of cell survival by measurement of the absorbance at 590 nm. Cell survival was quantified in 

percentage (mean±SD), referring to the survival of uninfected cells (100 %); n=3. B: After GCV addition directly 

(0 h) or 48 h post infection with the indicated adenoviruses, the metabolic activity was quantified by XTT assay 

10 days after infection. The number of metabolically active cells was calculated using a standard curve and 

quantified in percentage (mean±SD) referring to the metabolic activity of uninfected cells (100 %); n=3.  

 

 

Ad-delo-sr39TK-RGD and its HSV1-sr39TK/GCV-mediated cytotoxicity induced an overall weaker cell 

killing in EPP85-181RDB cells compared to U87-MG cells at equal viral MOI and when GCV was 

applied 24 h post infection (figure 4.14). The lowest cell survival amounted to 51 ± 6.31 % at a GCV 

concentration of 10 µg/ml. The IC50 value for the Ad-sr39TK/GCV-mediated cytotoxicity was about 5-

times higher than that for Ad-delo-sr39TK-RGD/GCV. In addition, the IC50 for the Ad-sr39TK/GCV-

mediated cytotoxicity in EPP85-181RDB cells was about 140-times higher than that in U87-MG cells 

(figure 4.13 A) at the same time point of GCV application. In comparison, the oncolytic effect of Ad-

delo-sr39TK-RGD alone led to a cell survival of 61 ± 7.74 % (not shown in figure 4.14). As in Ad-delo-

sr39TK-RGD-infected U87-MG cells, the replication and oncolytic potential of Ad-delo-sr39TK-RGD in 
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EPP85-181RDB cells was inhibited by GCV at a concentration of 0.01 µg/ml. Ad-sr39TK was not 

successful in inducing HSV1-sr39TK/GCV-mediated cytotoxicity, as cell survival was not below 79 ± 

2.34 % at 10 µg/ml GCV. In this context, the HSV1-sr39TK/GCV-mediated effect might be attenuated 

through hampering the activity of GCV by the multidrug-resistant phenotype of the pancreatic 

carcinoma cells.  

Ad-delo3-RGD and Ad-delo-shMGMT-RGD were limited in their oncolytic potential. EPP85-181RDB 

cells infected with Ad-delo3-RGD and Ad-delo-shMGMT-RGD displayed an average cell survival of 90 

% and 50 %, respectively, independent of GCV dose. The application of GCV immediately after 

infection with oncolytic and replication-deficient adenoviruses or two to three days after infection 

did not potentiate the killing of EPP85-181RDB cells (data not shown). A GCV concentration of 100 

µg/ml exerted unspecific toxicity. 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Overlapping dose-dependent HSV1sr39TK/GCV-mediated cytotoxicity and oncolytic effect in 

multidrug-resistant pancreatic carcinoma cells. EPP85-181RDB cells (2 x 10
3
) were infected at MOI of 100 

ifu/cell with indicated adenoviruses. GCV was added at increasing concentrations 24 h after infection and again 

after 72 h. Cell killing was detected 10 days after infection using SRB staining and quantification of cell survival 

by measurement of the absorbance at 590 nm. Cell survival was quantified in percentage (mean±SD), referring 

to the survival of uninfected cells (100 %); n=3.  

 

 

These results show that the oncolytic effect of Ad-delo-sr39TK-RGD in glioma cells was enhanced by 

the HSV1-sr39TK/GCV-mediated cytotoxicity in a prodrug dose-dependent way, although virus-

mediated cell killing was inhibited at critical GCV concentrations applied immediately after infection, 

even at a high viral dose. However, by applying GCV at later time points following infection, the 

combined action of oncolytic effect and the suicide system induced an equally strong cell killing, so 

that the oncolytic effect of the virus could not be further augmented. Due to their multidrug-

resistant phenotype, over 50 % of the EPP85-181RDB cells survived the combined treatment with Ad-

delo-sr39TK-RGD and the HSV1-sr39TK/GCV suicide system.   
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4.7. Bystander effect of viral oncolysis and HSV1-sr39TK/GCV-mediated 

cytotoxicity 

The aim of the following experiment was to prove if the bystander effect, described for the HSV1-

TK/GCV system [55], can be translated into glioma cells infected with oncolytic HSV1-sr39TK-armed 

adenoviruses. The potential of bystander cell killing in glioma cells was compared to the respective 

effect in multidrug-resistant pancreatic carcinoma cells. The major challenge was to distinguish 

between HSV1-sr39TK/GCV-mediated bystander effect and bystander effect by viral replication. A 

GCV concentration of 10 µg/ml was chosen for the analysis of bystander effect in order to circumvent 

inhibition of oncolytic cell killing by GCV at lower doses (figure 4.13, Ad-delo-sr39TK-RGD). To ensure 

that the oncolytic effect did not dominate the HSV1-sr39TK/GCV-mediated cytotoxicity (figure 4.13, 

Ad-delo-sr39TK-RGD), the prodrug was applied shortly after infection to co-cultured infected and 

uninfected cells. Cell survival was analysed by SRB staining and subsequent quantification. 

As shown in figure 4.15, it was demonstrated that the survival of U87-MG glioma cells, treated with 

GCV, decreased exponentially with increasing ratio of Ad-sr39TK-infected to uninfected cells. Cell 

survival was 18 ± 0.01 % even if only 17 % of the whole cell population was infected with Ad-sr39TK, 

compared to the same approach without addition of GCV. This data indicates the action of an Ad-

sr39TK-induced, HSV1-sr39TK/GCV-mediated bystander effect. No bystander effect was observed 

without GCV addition. Ad-delo-sr39TK-RGD also induced a bystander effect after addition of GCV, 

indicated by an inversely proportional decrease in cell survival with increasing ratio of infected to 

uninfected cells. When only 17 % of the cell population were infected, the cell survival was 45.9 ± 9.7 

%. The larger amount of eradicated cells compared to the fraction of virus-infected cells indicated a 

bystander effect of the HSV1-sr39TK/GCV system. Ad-delo-sr39TK-RGD and Ad-sr39TK induced a 

similar bystander effect with GCV. The oncolytic activity of Ad-delo-sr39TK-RGD, shown in the setting 

without GCV, was directly proportional to the fraction of infected cells. The bystander effect, induced 

by GCV, led to enhanced cell killing compared to the oncolytic effect alone.  

In EPP85-181RDB cells, there was a decrease of survival mediated by the HSV1-sr39TK/GCV-effect to 

61 ± 0.04 %, when 50 % of the cell population were infected with Ad-sr39TK (figure 4.15). Survival 

reached 34 ± 0.002 % when 100 % of the cells were infected with Ad-sr39TK and subjected to GCV. 

As expected, there was no influence of Ad-sr39TK-infected cells without GCV on cell survival. In Ad-

delo-sr39TK-RGD-infected cells with GCV, survival decreased with increasing ratio of infected to 

uninfected cells. Survival reached 65 ± 0.02 % even with 50 % infected cells. As observed with Ad-

sr39TK and GCV, the fraction of infected cells corresponded to the fraction of dead cells (cell 

survival), indicating no additional bystander killing. Moreover, the oncolytic effect of Ad-delo-sr39TK-

RGD alone resulted in stronger cell killing of the multidrug-resistant cell line than the combination of 
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virus and HSV1-sr39TK/GCV-mediated cytotoxicity, as only 30 % infected cells led to survival of 8 ± 

0.001 %. A GCV concentration of 50 µg/ml was needed for Ad-delo-sr39TK-RGD- and Ad-sr39TK-

infected EPP85-181RDB cells in order to cause a bystander cell killing with GCV similar to that in U87-

MG cells (data not shown).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Bystander effect of oncolysis and HSV1-sr39TK/GCV-mediated cytotoxicity. U87-MG and EPP85-

181RDB cells were infected with Ad-delo-sr39TK-RGD and Ad-sr39TK at MOI of 10 ifu/cell. Infected and 

uninfected cells were co-cultured at ratios 1:0 (100 % infected cells) to 1:5 (17 % infected cells) in a total 

population of 5 x 10
4
 cells. GCV [10 µg/ml] was added 3 h after co-culturing and re-added 72 h after the first 

treatment. The potential bystander effect conducted by the adenoviruses in combination with GCV was 

evaluated by SRB-staining (above) and photometric quantification (below) 10 days after co-culture. Cell survival 

was quantified in percentage (mean±SD), referring to the survival of uninfected cells (100 %); n=2.  

 

 

These results show that Ad-delo-sr39TK-RGD in cooperation with the HSV1-sr39TK/GCV-system 

exerted a strong bystander effect, which induced efficient cytotoxicity even in glioma cell populations 

U87-MG EPP85-181RDB 

Ad-delo-sr39TK-RGD

Ad-delo-sr39TK-RGD + GCV

Ad-delo-sr39TK-RGD + GCV

Ad-sr39TK

Ad-sr39TK + GCV

infected cells [%]

s
u

rv
iv

a
l 
[%

]

0 20 40 60 80 100
0

20

40

60

80

100

120

140

infected cells [%]

s
u

rv
iv

a
l 
[%

]

0 20 40 60 80 100
0

20

40

60

80

100

120

140



RESULTS 69

 

with a low fraction of infected cells. In multidrug-resistant pancreatic carcinoma cells, however, no 

significant enhancement of cell killing by a bystander effect with GCV was observed, as the fraction 

of infected cells corresponded to the amount of eradicated cells. This finding indicates a low 

susceptibility of the multidrug-resistant cells to GCV. Taking the results described in chapters 4.6. and 

4.7. into account, EPP85-181RDB cells were not as successfully eradicated through the HSV1-

sr39TK/GCV-mediated cytotoxicity as U87-MG cells and were not further investigated in this context. 

  

4.8. Enhancement of the oncolytic potential of YB-1 dependent adenoviruses 

by TMZ  

It is known that cytostatic drugs are able to enhance the translocation of YB-1 to the nucleus of 

tumour cells. Enhanced nuclear YB-1 accumulation results in augmented replication of YB-1 

dependent oncolytic adenoviruses that consequently leads to an enhanced oncolytic effect [291, 

292]. In order to prove whether treatment with TMZ leads to potentiated oncolytic effect of the 

adenoviruses in tumour cells, different experimental approaches were investigated by varying TMZ 

and viral doses. TMZ concentrations, similar to those used in clinical trials for the study of TMZ 

pharmacokinetics in human plasma [318, 319], were used in this experiment. Cell survival after 

treatment was analysed by SRB staining and quantification. The IC50 value of TMZ was higher than 

500 µM in uninfected U87-MG and EPP85-181RDB cells. It was expected that a combined treatment 

of TMZ and oncolytic adenoviruses should decrease cell survival substantially.    

Ad-delo-sr39TK-RGD led to cell eradication even at a MOI of 5 with rising TMZ concentrations (figure 

4.16). MOI of 5 and 25 µM TMZ led to 49 ± 19.39 % survival of glioma cells. 25 µM TMZ was needed 

to decrease the survival to 10 ± 2.66 % at MOI of 10, and at MOI of 20 and 10 µM TMZ it was reduced 

to 12 ± 2.55 %. A potent oncolytic effect was observed at MOI of 50 and 100 regardless of TMZ 

concentration, resulting in reduction of survival to 6 %. 

Ad-delo3-RGD did not result in enhanced oncolytic cell killing in combination with TMZ pre-treatment 

at the same level as Ad-delo-sr39TK-RGD at MOI of 5, 10 and 20 (figure 4.16). The cell survival at MOI 

of 5 and 10 with 250 µM TMZ was 61 ± 3.57 % and 55 ± 0.88 %, respectively. MOI of 20 of Ad-delo-3-

RGD caused a more prominent decrease in cell survival than MOI of 5 and 10. At MOI of 20 and 50 

µM TMZ, the fraction of surviving cells was 33 ± 4.75 %. A significant cell killing potential, similar to 

that of Ad-delo-sr39TK-RGD, was observed at MOI of 50 and 100, regardless of TMZ dose.  

Ad-delo-shMGMT-RGD carries a shRNA sequence for silencing the expression of the cellular MGMT 

gene (figure 2.1). Silenced MGMT is no longer able to remove the cytotoxic adducts caused by TMZ 

and consequently the lack of MGMT-mediated repair mechanism leads to improved outcome of TMZ 

therapy [320]. Ad-delo-shMGMT-RGD is therefore expected to enhance tumour cell killing on the one 
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hand through TMZ-mediated and YB-1 dependent replication and on the other hand, by stimulation 

of the cytotoxic activity of TMZ. As shown in figure 4.16, Ad-delo-shMGMT-RGD displayed an MOI- 

and TMZ dose-dependent oncolytic potential, similar to that of Ad-delo-sr39TK-RGD. The cell survival 

at MOI of 5 and 50 µM TMZ was 46 ± 4.4 %. MOI of 10 and 50 µM TMZ resulted in 19 ± 11.9 % 

survival. At MOI of 20, 2.5 µM TMZ was necessary to reduce the cell survival to 19 ± 13.6 %. Similar 

to Ad-delo-sr39TK-RGD and Ad-delo3-RGD, MOI of 50 and 100 of Ad-delo-shMGMT-RGD caused 

almost complete eradication of glioma cells, regardless of TMZ dose.  

Infection with Ad-sr39TK did not cause oncolytic activity in TMZ pre-treated cells (figure 4.16). The 

decrease of cell survival after infection with Ad-sr39TK was rather due to non-virally induced 

cytotoxicity by rising TMZ doses, as also observed in uninfected cells.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Enhancement of oncolytic effect by TMZ in glioma cells. U87-MG cells (2 x 10
3
) were pre-treated 

for 24 h with varying doses of TMZ and infected at MOI of 5-100 ifu/cell with the indicated adenoviruses. Cell 

survival was determined 7 days post infection by photometric quantification of SRB-staining and displayed in 

percentage (mean±SD), referring to the survival of uninfected and untreated cells (100 %); n=3.  
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0.09 %, whereas 500 µM TMZ and MOI of 100 resulted in a decrease to only 4 ± 0.01 % survival 

(figure 4.17). Ad-delo3-RGD and Ad-delo-shMGMT-RGD mediated significant oncolysis and decrease 

in survival to 44 ± 0.05 % and 17 ± 0.1 %, respectively, with 500 µM TMZ. Ad-sr39TK-infected and 

uninfected cells were not affected by TMZ, except at a cytotoxic dose of 500 µM. Considering the low 

efficiency of TMZ-enhanced oncolysis in EPP85-181RDB cells, the cell line was not taken into account 

for further analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: Enhancement of oncolytic effect by TMZ in multidrug resistant pancreatic carcinoma cells. 

EPP85-181RDB cells (2 x 10
3
) were infected at MOI of 100 ifu/cell with the indicated adenoviruses and treated 

with varying doses of TMZ after infection. Cell survival after treatment was determined 7 days post infection by 

photometric quantification of SRB-staining. Cell survival is displayed in percentage (mean±SD), referring to the 

survival of uninfected and untreated cells (100 %); n=3.  

 

 

The above described results show efficient TMZ-mediated augmentation of the oncolytic activity of 

YB-1 dependent adenoviruses in glioma cells. The oncolytic activity correlated with viral MOI and 

cytostatic drug dose, and was potentiated by TMZ even at low virus and TMZ doses. The oncolytic 

potential of Ad-delo-sr39TK-RGD was similar to that of Ad-delo-shMGMT-RGD, which has a dual 

function of mediating YB-1 dependent oncolysis and potentiation of TMZ cytotoxicity by silencing of 

MGMT. The enhancement of the oncolytic effect by TMZ in the multidrug-resistant EPP85-181RDB 

cell line was successful only after infection of cells at a high viral MOI and treatment with high TMZ 

doses post infection.  
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4.9. Improved cell killing by the combination of oncolytic potential, TMZ and 

HSV1-sr39TK/GCV-mediated cytotoxicity 

4.9.1. Combined cell killing in 2D glioma culture 

It was further analysed if TMZ and GCV enhance the killing of infected glioma cells through the 

combined activity of TMZ-mediated potentiation of oncolysis and HSV1-sr39TK/GCV-mediated 

cytotoxicity. Cell survival after virus infection and treatment with TMZ, GCV or TMZ plus GCV was 

analysed by SRB staining and quantification. In addition, the metabolic activity was investigated by 

XTT assay. As described in chapter 3.13.2, the XTT assay quantifies living and metabolically active 

cells, whereas SRB staining detects detached but intact cells, regardless of their viability and 

functional metabolism. A low concentration of GCV [0.5 µg/ml] and variable concentrations of TMZ, 

as well as a viral dose of 10 ifu/cell were chosen in order to be able to detect subtle effects. 

In 2D glioma culture, GCV addition to Ad-delo-sr39TK-RGD-infected TMZ-untreated cells resulted in 

cell survival of 24 ± 10.66 % (cell killing of 80 %), compared to survival of 36 ± 13.41 % (cell killing of 

60 %, not shown) after infection with Ad-delo-sr39TK-RGD and without treatment (figure 4.18 A). 

TMZ pre-treatment of Ad-delo-sr39TK-RGD-infected cells in combination with GCV led to a 

potentiated GCV-enhanced cytotoxic effect, even with only 2.5 µM TMZ (survival 13 ± 0.58 %). This 

effect caused a 2.7-fold reduction in survival compared to infected and untreated cells. Therefore, 

2.5 µM TMZ in combination with 0.5 µg/ml GCV was sufficient to induce an oncolytic effect, which 

was able to eradicate about 90 % of the cell population. In addition, the reduction of cell survival by 

Ad-delo-sr39TK-RGD in combination with TMZ and GCV was stronger than TMZ-enhanced oncolysis 

elicited by Ad-delo3-RGD and Ad-delo-shMGMT-RGD at all TMZ concentrations analysed. The 

combination of TMZ pre-treatment and GCV reduced the cell survival of uninfected and Ad-sr39TK-

infected glioma cells, probably due to toxicity of TMZ.  

The results of the survival analysis by SRB quantification were confirmed by measurement of the 

metabolic activity of infected and treated cells. As shown in figure 4.18 B, the amount of 

metabolically active Ad-delo-sr39TK-RGD-infected cells was decreased from about 50 % to < 30 % 

when treated with TMZ plus GCV and correlated with cell survival, as demonstrated by SRB 

quantification. The reduction of the metabolic activity of Ad-delo3-RGD- and Ad-delo-shMGMT-RGD-

infected cells upon combined treatment paralleled cell survival, as shown in figure 4.18 A. However, 

the oncolytic effect of Ad-delo-shMGMT-RGD (0 µM TMZ) resulted in a lower amount of living cells 

than detected by the analysis of cell survival in figure 4.18 A. Despite of the toxicity exerted by TMZ 

and GCV upon uninfected and Ad-sr39TK-infected cells (figure 4.18 A), over 60 % of these cells 

remained metabolically active after double treatment.      
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As demonstrated by some representative images of cell survival (figure 4.18 C), GCV addition to TMZ-

pre-treated and Ad-delo-sr39TK-RGD-infected cells altered the morphology and induced lysis of the 

affected cells. While untreated oncolytic adenovirus-infected cells, or either TMZ- or GCV-treated Ad-

delo-sr39TK-RGD-infected cells showed only signs of c.p.e. and appeared rounded, but without 

disrupted membranes (no necrosis), simultaneous TMZ and GCV treatment of cells infected with Ad-

delo-sr39TK-RGD resulted in massive cell death (arrows). Cell death was also observed when TMZ 

concentrations lower than 10 µM were applied (data not shown). Cells, subjected to the combined 

effect of oncolysis, HSV1-sr39TK/GCV-mediated cytotoxicity and TMZ treatment, showed indications 

of a mixed type of cell death. On the one hand, some cells probably displayed apoptotic 

characteristics, indicated by formation and lysis of apoptotic bodies. On the other hand, few cells had 

a necrotic appearance, indicated by swelling and an enlarged nucleus. In contrast, Ad-delo3-RGD- 

and Ad-delo-shMGMT-RGD-infected cells displayed c.p.e. that was potentiated by TMZ, but not 

further enhanced by GCV. Thus, the mode of cell death, induced by HSV1-sr39TK/GCV, contributed to 

the combined TMZ-mediated- and oncolytic effect of the virus and was responsible for the low 

metabolic activity of Ad-delo-sr39TK-RGD-infected cells, as shown in figure 4.18 B. No major 

alteration in cellular morphology was observed in uninfected cells and cells infected with Ad-sr39TK 

and treated with TMZ and GCV, their number was however slightly reduced upon treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESULTS 74

 

A                                                                                     B        

 

 

 

 

 

 

 

 

 

 

 

 

C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMZ [µM] + GCV

s
u

rv
iv

a
l 
[%

]

0 2.5 10 25 50 100
0

20

40

60

80

100

120

0 2.5 10 25 50 100
0

50

100

150

TMZ [µM] + GCV

m
e

ta
b

o
li
c
 a

c
ti

v
it

y 
[%

]

uninfected

Ad-delo-sr39TK-RGD

Ad-sr39TK

Ad-delo3-RGD

Ad-delo-shMGMT-RGD



RESULTS 75

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Improved cell killing by the combination of oncolytic effect, TMZ and HSV1-sr39TK/GCV-

mediated cytotoxicity in glioma cells. U87-MG cells (2 x 10
3
) were pre-treated for 24 h with varying doses of 

TMZ and infected at MOI of 10 ifu/cell with the indicated adenoviruses. GCV [0.5 µg/ml] was applied 24 h post 

infection. Cell survival after combined treatment was assessed 5 days post infection by photometric 

quantification of SRB-staining (A) and metabolic activity was analysed by XTT assay (B). Cell survival or 

metabolic activity are displayed in percentage (mean±SD), referring to the survival or metabolic activity of 

uninfected and untreated cells (100 %); n=3. C: Representative images of U87-MG cells pre-treated with 0, 10 

and 100 µM TMZ and infected as described above with or without GCV addition were taken in an inverted 

microscope 5 days post infection. Arrows indicate morphologic changes due to apoptotic (black) or necrosis-

like (red) cell death. Scale bar: 100 µm.  
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4.9.2. Combined cell killing in 3D glioma spheroids 

It was further investigated whether the HSV1-sr39TK/GCV-mediated cytotoxicity and TMZ-enhanced 

oncolysis can be translated from U87-MG monolayer culture into 3D spheroids of glioma cells. To 

increase the accessibility of cells in the inner spheroid layers and because of low cell killing at MOI of 

10 ifu/cell (data not shown), spheroids were transduced with MOI of 50 ifu/cell. Moreover, 100 µM 

TMZ was applied in order to increase penetration of the drug into the 3D cell structure. The effect of 

viral oncolysis and single or combined TMZ and GCV treatment on spheroids was assessed by 

monitoring the spheroid growth and metabolic activity.  

As indicated in figure 4.19 A, a combined application of TMZ [100 µM] and GCV [0.5 µg/ml] induced 

the strongest decrease of spheroid volume in Ad-delo-sr39TK-RGD-infected spheroids and resulted in 

growth retardation from day 4 till day 10 after infection, when spheroids were markedly reduced to 

their initial volume of 0.06 ± 0.003 mm³. The combination between TMZ and GCV seemed to have a 

more pronounced effect than TMZ and GCV treatment alone. The volume of TMZ-treated or 

untreated Ad-delo-sr39TK-RGD-infected spheroids started to reduce 7 days post infection. At that 

time point the combined treatment was 3-times more effective than Ad-delo-sr39TK-RGD alone and 

2-times more effective than Ad-delo-sr39TK-RGD in combination with TMZ.  Ad-delo3-RGD- and Ad-

delo-shMGMT-RGD-infected spheroids also displayed stronger growth retardation from day 2 to 4 

due to the TMZ treatment, compared to virus alone. Their growth was not further affected by GCV. 

The oncolytic effect of Ad-delo-shMGMT-RGD alone was able to reduce spheroid growth 10 days 

after infection, whereas the oncolytic effect of Ad-delo3-RGD only prevented further spheroid 

growth 7 to 10 days post infection. However, TMZ elicited cellular toxicity also without oncolytic virus 

activity, as shown in untreated and in Ad-sr39TK-infected spheroids. Compared to Ad-delo-sr39TK-

RGD, Ad-sr39TK did not induce a pronounced reduction in spheroid volume in combination with 

simultaneous TMZ and GCV treatment. 

According to the results observed in Ad-delo-sr39TK-RGD-infected spheroids (figure 4.19 B), TMZ and 

GCV treatment alone as well as combined TMZ plus GCV treatment resulted in significant reduction 

of the cellular metabolic activity to 14 ± 0.4 %, 19 ± 1 % and 16 ± 1 %, respectively, compared to 26 ± 

3 % metabolic activity of infected and untreated spheroids. TMZ induced a 2- to 4-fold reduction in 

the metabolic activity of Ad-delo3-RGD- and Ad-delo-shMGMT-RGD-infected spheroids, in relation to 

virus infection alone and virus with GCV treatment. In comparison, TMZ attenuated the metabolic 

activity of uninfected and Ad-sr39TK-infected spheroids only about 1.5-fold, as also demonstrated in 

figure 4.19 A. Moreover, the oncolytic activity of Ad-delo-sr39TK-RGD as single treatment induced 

the strongest reduction of spheroid metabolic activity amongst all oncolytic adenoviruses. Taken 

together, the analysis of the metabolic activity of spheroids confirmed the data of the spheroid 

growth monitoring.  
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Furthermore, detachment of cells from the rim of spheroids, infected with Ad-delo-sr39TK-RGD, Ad-

delo3-RGD and Ad-delo-shMGMT-RGD, revealed an enhanced c.p.e. due to the oncolytic effect 10 

days post infection (figure 4.19 C). The c.p.e. in additionally TMZ- or GCV-treated spheroids was not 

as prominent as the c.p.e. elicited in untreated spheroids, probably due to the fact that most of the 

infected cells had been already lysed or that their growth had been suppressed by the combination 

of oncolysis and drug treatment. No c.p.e. was induced in Ad-sr39TK-infected spheroids, but their 

growth was retarded by TMZ, similar to uninfected spheroids. The combination of oncolytic cell 

killing, TMZ and HSV1-sr39TK/GCV-mediated cytotoxicity (Ad-delo-sr39TK-RGD + GCV/TMZ + GCV) 

was superior to HSV1-sr39TK/GCV-mediated cytotoxicity alone (Ad-sr39TK + GCV) (figure 4.19 A-C).   
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Figure 4.19: Improved cell killing by the combination of oncolytic effect, TMZ and HSV1-sr39TK/GCV-

mediated cytotoxicity in 3D glioma spheroids. U87-MG-derived spheroids, consisting of about 1 x 10
5
 cells, 

were treated with 100 µM TMZ 24 h before and immediately after infection with the indicated adenoviruses at 

MOI of 50 ifu/cell, and/or treated every three days with GCV [0.5 µg/ml] starting 24 h after infection. A: 

Spheroid growth was monitored on an inverted microscope by diameter measurement and volume calculation 

(mean±SD) 0, 2, 4, 7 and 10 days after infection; n=3. Asterisks indicate significant differences of Ad-delo-

sr39TK-RGD, TMZ+GCV vs. untreated: **p=0.001-0.01 (day 2), ****p < 0.0001 (days 4-10), as calculated using 

two-way ANOVA with Tukey’s multiple comparison test. B: XTT assay was performed with spheroids, which 

were infected and treated as described above, 10 days after infection. Asterisks indicate significant differences 

of Ad-delo-sr39TK-RGD, TMZ and TMZ+GCV vs. untreated: ***p=0.0001-0.001; Ad-delo-sr39TK-RGD, GCV vs. 

untreated: **p=0.001-0.01, as calculated using one-way ANOVA with Tukey’s multiple comparison test. C: 

Representative images of infected and treated spheroids at day 10 after infection reveal c.p.e. caused by the 

oncolytic viruses. Significant differences between treatment combinations are marked (squares; Ad-delo-

sr39TK-RGD, GCV and TMZ+GCV vs. Ad-sr39TK, GCV: ****p<0.0001). Scale bar: 500 µm.  
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treatments. The combined approach was efficient for eradication of glioma cells and 3D spheroids. 

Furthermore, it is suggested that glioma cells, subjected to the combined action of HSV1-

sr39TK/GCV-mediated cytotoxicity and enhancement of oncolysis by TMZ, underwent probably a 

mixed type of cell death. 

 

4.10. Enhancement of replication of YB-1 dependent adenoviruses by TMZ 

As described previously, YB-1, which is accumulated into the nucleus as a result of treatment with 

cytostatic drugs, augments the replication of YB-1 dependent oncolytic adenoviruses [291, 292]. It 

was therefore investigated if TMZ was able to boost the replication of YB-1 dependent oncolytic 

adenoviruses in glioma cells and whether the augmented viral replication was responsible for the 

enhanced oncolytic activity of these viruses. Moreover, the influence of GCV and combined TMZ and 

GCV treatment upon adenoviral replication was analysed. Similar to the analyses of cell and spheroid 

survival after different treatment combinations (figures 4.18 and 4.19), a low concentration of GCV 

[0.5 µg/ml] was chosen in order to be able to detect subtle effects. A TMZ concentration of 50 µM, 

which enhanced adenoviral oncolysis of glioma cells substantially (figure 4.16), was applied to 2D cell 

culture. As for the analysis of spheroid growth (figure 4.19), 100 µM TMZ was applied to spheroids 

also in this experiment. Adenoviral replication analyses were performed by absolute real-time qPCR 

with DNA isolated from infected 2D glioma culture and 3D glioma spheroids. 

4.10.1. Enhancement of replication in 2D glioma culture 

In 2D glioma culture, continuous TMZ treatment induced a highly significant 8-fold increase of Ad-

delo-sr39TK-RGD DNA copy number 72 h post infection, compared to a 5-fold and 2-fold replication 

enhancement of Ad-delo3-RGD and Ad-delo-shMGMT-RGD, respectively, related to untreated 

infected samples (figure 4.20). Because of its replication-deficient character, no increase in DNA 

amount of Ad-sr39TK was induced by TMZ. Simultaneous TMZ and GCV treatment resulted in an only 

1.7-fold replication augmentation of Ad-delo-sr39TK-RGD, related to Ad-delo-sr39TK-RGD and GCV 

treatment only. Moreover, GCV reduced the DNA amount of Ad-delo-sr39TK-RGD 3000-fold, as 

compared to virus infection alone, and 13,700-fold in combination with TMZ, as compared to virus 

plus TMZ treatment. There is strong evidence that the reduction of the DNA copy number of Ad-delo-

sr39TK-RGD by GCV and TMZ plus GCV was caused by attenuation of viral DNA replication by the 

HSV1-sr39TK/GCV-mediated cytotoxicity (figures 4.18 A and 4.18 B), acting on the DNA of replicating 

HSV1-TK-bearing adenoviruses. GCV addition did not alter the replication kinetics of the GCV-

insensitive adenoviruses Ad-delo3-RGD and Ad-delo-shMGMT-RGD, consequently TMZ and 

combined TMZ plus GCV treatment caused a similar increase in DNA replication. Single or double 

treatment did not influence the replication of Ad-sr39TK.  
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Figure 4.20: Enhancement of oncolytic adenoviral replication by TMZ in 2D culture of glioma cells. U87-MG 

cells (5 x 10
4
) were treated with 50 µM TMZ 24 h before and immediately after infection with the indicated 

adenoviruses. Infections were performed at MOI of 10 ifu/cell. GCV [0.5 µg/ml] was added 24 h post infection 

and incubated for 48 h. DNA was isolated from infected cells by phenol-chloroform extraction. Fiber 5 gene 

copy number was detected by absolute real-time qPCR of 2 ng DNA (mean±SD); n=3. Asterisks indicate 

significant differences between treatment approaches (only shown for Ad-delo-sr39TK-RGD in terms of 

simplification): ****p < 0.0001, as calculated using one-way ANOVA with Tukey’s multiple comparison test.   

 

4.10.2. Enhancement of replication in 3D glioma spheroids 

The enhancement of replication of the oncolytic adenoviruses by TMZ was further investigated in 

infected 3D glioma spheroids 48 h after infection (figure 4.21). Continuous TMZ application induced a 

27-fold replication increase of Ad-delo-sr39TK-RGD DNA, compared to an 11.4-fold and 18.9-fold 

increase of Ad-delo3-RGD and Ad-delo-shMGMT-RGD DNA, respectively, related to untreated 

spheroids (figure 4.21 A). As expected, TMZ did not enhance the replication of Ad-sr39TK. Similar to 

2D culture, but to a lesser extent, GCV addition to TMZ-untreated or TMZ-treated spheroids 24 h 

after infection attenuated the replication of Ad-delo-sr39TK-RGD significantly, compared to infected 

TMZ-/GCV-untreated spheroids. As observed in 2D culture, GCV did not affect Ad-delo3-RGD and Ad-

delo-shMGMT-RGD replication negatively.  

In parallel with Fiber 5 replication, the replication of the HSV1-sr39TK transgene in Ad-delo-sr39TK-

RGD-infected spheroids was enhanced 1.7-fold by TMZ (figure 4.21 B). As for Fiber 5, the replication 

of HSV1-sr39TK was attenuated 10- to 25-fold by GCV and combined TMZ plus GCV treatment, as 

compared to untreated or TMZ-treated Ad-delo-sr39TK-RGD-infected spheroids. The lower level of 

replication enhancement of HSV1-sr39TK than that of Fiber 5 by TMZ could be due to the different 

efficiency of the detection chemistries used for detecting HSV1-sr39TK and Fiber 5, as also described 

in chapter 4.3. The replication of the transgene in Ad-sr39TK was not augmented by TMZ.  
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Figure 4.21: Enhancement of oncolytic adenoviral replication by TMZ in 3D glioma spheroids. U87-MG 

spheroids with volumes of 0.1-0.18 mm³ and consisting of about 1 x 10
5
 cells were treated with 100 µM TMZ 

24 h before and immediately after infection with the indicated adenoviruses. Infections were performed at 

MOI of 50 ifu/cell. GCV [0.5 µg/ml] was added 24 h post infection and incubated for additional 24 h. DNA was 

isolated from infected spheroids by phenol-chloroform extraction. Fiber 5 (A) and HSV1-sr39TK (B) gene copy 

number was detected by absolute real-time qPCR of 2 ng DNA (mean±SD); n=3. Asterisks indicate significant 

differences between treatment approaches (only shown for Ad-delo-sr39TK-RGD in terms of simplification): 

**p=0.001-0.01, as calculated using one-way ANOVA with Tukey’s multiple comparison test. 

 

 

TMZ caused an efficient augmentation of oncolytic adenoviral replication and transgene DNA 

accumulation in 2D glioma culture and in 3D glioma spheroids. The enhancement of viral replication 

by TMZ verified the concept of YB-1 dependent oncolysis in the presence of cytotoxic stress. The 

augmented replication of the oncolytic adenoviruses resulted in enhancement of both oncolysis and 

combined oncolytic and HSV1-sr39TK/GCV-mediated cytotoxicity in 2D culture and 3D spheroids, as 

described in chapter 4.8. and chapter 4.9. However, the HSV1-sr39TK/GCV-mediated cytotoxicity 

inhibited the DNA replication of Ad-delo-sr39TK-RGD. 

 

4.11. Release and infectivity of newly synthesised viral particles from 

infected and drug-treated 3D glioma spheroids   

The infectivity of newly synthesised and released oncolytic adenoviral particles from infected 

spheroids was determined by titration of the viral particles using End-point dilution assay. It was also 

analysed whether the viral titre changed upon TMZ, GCV or combined TMZ plus GCV treatment. Ad-

delo-sr39TK-RGD was compared to an oncolytic (Ad-delo3-RGD) and replication-deficient (Ad-sr39TK) 

adenovirus in respect of infectivity of released particles.  

The infectious titre of newly synthesised and released adenoviral particles from infected non-treated 

spheroids was 1.42 x 106 pfu/ml for Ad-delo-sr39TK-RGD and 7.04 x 105 pfu/ml for Ad-delo3-RGD two 
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days post infection, and was not further enhanced by TMZ treatment at that time point (figure 4.22). 

GCV and combined TMZ plus GCV addition did not result in markedly reduced viral release. The 

infectious progeny increased to 2.94 x 1011 pfu/ml for Ad-delo-sr39TK-RGD and 3.01 x 107 pfu/ml for 

Ad-delo3-RGD 4 days post infection. TMZ treatment augmented the release of Ad-delo-sr39TK-RGD 

particles 68-fold, compared to only 1.4-fold for Ad-delo3-RGD. Therefore, the enhancement of viral 

replication by TMZ (figure 4.21) correlated with an increase of the release of new infectious viral 

particles. Following GCV addition and combined TMZ and GCV treatment, the amount of released Ad-

delo-sr39TK-RGD particles was decreased over 1000-fold in relation to untreated spheroids. GCV 

treatment did not alter Ad-delo3-RGD viral release. 10 days after infection, TMZ enhanced the viral 

release of Ad-delo-sr39TK-RGD 36-fold compared to virus infection alone, although the overall viral 

titre decreased significantly, probably because of pronounced cell killing. A decrease was also 

observed for the titre of released Ad-delo3-RGD particles upon single and combined treatment. 

According to its replication-deficiency, Ad-sr39TK did not show increase of the titre of its progeny 

over time.    

 

  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 4.22: Release and infectivity of newly synthesised viral particles from infected 3D glioma spheroids. 

U87-MG spheroids with volumes of 0.1-0.18 mm³, consisting of about 1 x 10
5
 cells, were infected with MOI of 

50 ifu/cell of the indicated adenoviruses after pre-treatment with 100 µM TMZ for 24 h. Following an anew 
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treatment with 100 µM TMZ directly after infection, GCV [0.5 µg/ml] was added 24 h post infection. 

Supernatants containing released viral particles were collected 2, 4 and 10 days after infection. Titres of 

released viral particles, defined as plaque forming units per ml (pfu/ml), were determined in supernatants by 

End-point dilution assay in HEK293 cells (mean±SD); n=2.  
 

 

As in 2D culture, YB-1 dependent oncolytic adenoviruses showed successful viral release and 

infectivity of newly synthesised viral particles in 3D glioma spheroids. The release of Ad-delo-sr39TK-

RGD particles was enhanced by TMZ as predicted by viral replication. Moreover, the combined 

oncolytic effect and HSV1-sr39TK/GCV-mediated cytotoxicity diminished the production of infectious 

progeny in spheroids, infected with the armed oncolytic adenovirus. 

 

4.12. Adenovirus dissemination and HSV1-sr39TK expression in 3D glioma 

spheroids   

In the following, viral dissemination and transgene expression in spheroids, transduced with 

oncolytic adenoviruses and treated with TMZ, GCV or a combination of TMZ and GCV, was explored. 

For this purpose, viral hexon protein and HSV1-sr39TK expression was analysed by simultaneous 

immunodetection on cryosections of spheroids.  

The spread of Ad-delo-sr39TK-RGD, Ad-delo3-RGD and Ad-delo-shMGMT-RGD, as visualised by hexon 

staining, was mainly restricted to several outer layers of non-drug treated and TMZ-treated spheroids 

48 h after infection, but progression to the inner layers was also observed (figure 4.23). The oncolytic 

adenoviruses were evenly distributed throughout the spheroid layers. A co-localisation of hexon and 

HSV1-sr39TK expression was observed in Ad-delo-sr39TK-RGD-infected spheroids. Upon GCV and 

combined TMZ and GCV treatment, adenoviral localisation and transgene expression were focused to 

only few cells of the outer spheroid layer. Regardless of treatment approach, the oncolytic 

adenoviruses displayed a prominent lateral spread within a single cell layer of some spheroids, rather 

than a medial spread, as indicated most distinctively for Ad-delo-sr39TK-RGD (untreated), Ad-delo3-

RGD (TMZ + GCV) and Ad-delo-shMGMT-RGD (GCV). This phenomenon was not observed in Ad-

sr39TK-infected spheroids, where the overall adenoviral distribution was hampered by the 

replication-deficient character of the virus. HSV1-sr39TK expression was restricted only to the outer 

layers of Ad-delo-sr39TK-RGD- and Ad-sr39TK-infected spheroids, regardless of treatment approach. 

Considering the replication of oncolytic adenoviruses, an enhanced viral spread was observed both in 

untreated and TMZ-treated spheroids. In contrast, GCV or combined TMZ and GCV treatment 

impaired intercellular viral dissemination, but not viral replication within spheroid cells, as indicated 

by the strong localised hexon expression, which resulted in decrease of overall particle amount. 

These data are consistent with the adenoviral DNA replication pattern as described in chapter 4.10.2.  
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Figure 4.23: Adenovirus dissemination and HSV1-sr39TK expression in 3D spheroid culture model. U87-MG 

spheroids with volumes of 0.1-0.18 mm³ and consisting of about 1 x 10
5
 cells were infected with MOI of 50 

ifu/cell of the indicated adenoviruses after pre-treatment with 100 µM TMZ for 24 h. TMZ treatment was 

repeated again directly after infection and GCV [0.5 µg/ml] was added once 24 h post infection. 

Immunodetection of adenoviral hexon protein and HSV1-sr39TK was performed on cryosections of infected 

and treated spheroids 48 h post infection. Cell nuclei were visualized using DAPI staining. Representative 

sections show the widest diameter of spheroids. Scale bar: 100 µm.  
 

 

Thus, as a prerequisite for cell killing, the YB-1 dependent oncolytic adenoviruses displayed 

successful infectivity and spread within glioma spheroids due to their replication competence. In 

addition, Ad-delo-sr39TK-RGD was able to trigger HSV1-sr39TK expression in parallel with adenoviral 

replication. However, adenoviral spread was attenuated by the inhibition of viral replication by the 

HSV1-sr39TK/GCV-mediated suicide system. 
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4.13. Uptake of [
18

F]-FHBG by HSV1-sr39TK-expressing glioma cells 

In order to evaluate the potential of the armed oncolytic adenovirus for non-invasive imaging using 

HSV1-sr39TK as a reporter gene, in vitro uptake studies using the enzymatic activity of HSV1-sr39TK 

for metabolising the radiotracer [18F]-FHBG were performed by gamma-counting and PET imaging.  

4.13.1. [
18

F]-FHBG accumulation in 2D glioma culture 

Regarding the radiotracer uptake in 2D glioma culture, a 2.8-fold lower radiotracer accumulation was 

mediated by HSV1-sr39TK, when expressed by Ad-delo-sr39TK-RGD, than when delivered by Ad-

sr39TK, two days post infection (figure 4.24 A). Thus, these data suggest that the enzyme level of 

HSV1-sr39TK was attenuated by the progressive oncolytic potential of Ad-delo-sr39TK-RGD. As 

expected, only background radiotracer accumulation was detected in uninfected and Ad-delo3-RGD-

infected glioma cells. The replication-competent adenovirus Ad-delo-sr39TK-RGD was analysed for 

alteration of its ability to induce radiotracer accumulation over time due to an influence of the viral 

oncolytic potential and HSV1-sr39TK/GCV-mediated cytotoxicity on transgene expression (figure 4.24 

B). The highest uptake was detected three days after infection, when HSV1-sr39TK gave rise to a 

significant 5.4-fold increase of accumulated radiotracer, compared to the uptake on day 1. GCV 

addition 24 h prior to the uptake study led to a 2-fold decrease in radiotracer accumulation, 

compared to the respective approach without GCV, indicating HSV1-sr39TK/GCV-mediated 

cytotoxicity. Thus, the uptake of radiotracer was positively influenced by the adenoviral replication 

competence, but was attenuated by HSV1-sr39TK/GCV-mediated cell killing, as demonstrated 

previously. However, cytotoxicity was not as excessive as to abolish radiotracer accumulation 

completely. Background levels of radiotracer accumulation were detected in uninfected cells.    

 

A                                                                                         B                                                                                                                

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24: Accumulation of [
18

F]-FHBG in HSV1-sr39TK-expressing glioma cells. 2D culture of U87-MG cells (1 

x 10
5
)

 
were infected with the indicated adenoviruses at MOI of 10 ifu/cell. [

18
F]-FHBG uptake was performed 

[1
8
F

]-
F

H
B

G
 [

%
 a

p
p

li
e
d

 d
o

s
e
]

unin
fe

ct
ed

A
d-d

el
o-s

r3
9T

K
-R

G
D

A
d-s

r3
9T

K

A
d-d

el
o3-

R
G
D

0

1

2

3

4

[1
8
F

]-
F

H
B

G
 [

%
 a

p
p

li
e
d

 d
o

s
e
]

unin
fe

ct
ed

A
d-d

el
o-s

r3
9T

K
-R

G
D

0

2

4

6

8

10

12

14 ***
***

***
***

***
day 1

day 2

day 3

day 3 + GCV



RESULTS 88

 

using 1 x 10
5
 cells 2 days post infection (A) or 1-3 days post infection with GCV [0.5 µg/ml] addition 24 h prior 

to performing the uptake study on day 3 (B). After labelling with 0.1 MBq [
18

F]-FHBG per 1 x 10
5
 cells, the 

accumulated radiotracer due to HSV1-sr39TK activity was released from the cells using 1M NaOH and 

measured by gamma-counting. Accumulated radiotracer dose was calculated as % of total applied (100 %) [
18

F]-

FHBG dose (mean±SD); n=3. Asterisks indicate significant differences between treatment approaches. 

***p=0.0001-0.001, as calculated using one-way ANOVA with Tukey’s multiple comparison test.  

 

4.13.2. [
18

F]-FHBG accumulation in 3D glioma spheroids 

Measurement of the uptake activity of the enzyme HSV1-sr39TK in 3D spheroids by gamma-counting 

revealed a slight decrease in radiotracer accumulation upon TMZ treatment of Ad-delo-sr39TK-RGD-

infected spheroids, compared to untreated Ad-delo-sr39TK-RGD-infected spheroids (figure 4.25). 

Radiotracer accumulation was further reduced by GCV treatment and combined TMZ plus GCV 

application in Ad-delo-sr39TK-RGD-infected spheroids, compared to untreated virus-infected 

spheroids, indicating an effect of the HSV1-sr39TK/GCV-mediated cytotoxicity in combination with 

the oncolytic activity of the virus. However, the overall radiotracer accumulation levels in Ad-delo-

sr39TK-RGD-infected spheroids were about 10-fold lower than the respective accumulation levels in 

2D cell culture three days post infection (figure 4.24), suggesting an influence of the spheroidal 

geometry on the uptake capacity. Accumulation of metabolised [18F]-FHBG in untreated Ad-sr39TK-

infected spheroids was lower than in untreated Ad-delo-sr39TK-RGD-infected spheroids and was not 

markedly influenced by treatment with TMZ, GCV or by combined TMZ and GCV treatment.  

 

 

 

 

 

 

 

 

 

Figure 4.25: Accumulation of [
18

F]-FHBG in HSV1-sr39TK-expressing 3D glioma spheroids. U87-MG-derived 

spheroids, containing about 1 x 10
5
 cells, were infected at MOI of 50 ifu/cell with the indicated adenoviruses. 

Spheroids were treated with 100 µM TMZ 24 h before and directly after infection and/or treated with 0.5 

µg/ml GCV 24 h after infection. Uptake was performed with 0.1 MBq [
18

F]-FHBG per spheroid 4 days after 

infection. Accumulated radiotracer was released from spheroids using 1M NaOH measured by gamma-

counting. Radiotracer dose was calculated as % of total applied (100 %) [
18

F]-FHBG dose (mean±SD); n=3. 
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Asterisks indicate significant differences between treatment approaches. **p=0.001-0.01, ***p=0.0001-0.001, 

as calculated using one-way ANOVA with Tukey’s multiple comparison test. 

 

 

The feasibility of HSV1-sr39TK for nuclear non-invasive imaging as well as the spatial distribution of 

Ad-delo-sr39TK-RGD and Ad-sr39TK were additionally examined by PET measurement of [18F]-FHBG 

accumulation in virus-infected spheroids (figure 4.26). The accumulated radiotracer activity into 

representative infected and/or drug-treated spheroids is displayed in figure 4.26 A, showing a single 

spheroid per well and no overlap between the signals in the wells. Each region of interest (ROI) 

analysed (circle) had an average volume of 7 mm3, which corresponded to the actual mean spheroid 

volume (data not shown). ROI analysis of the single spheroids allowed the calculation of the mean 

signal intensity of the samples (figure 4.26 B). In addition, the accumulated radiotracer dose [% 

applied dose] (figure 4.26 C) was determined by means of a standard, consisting of serial dilutions of 

[18F]-FHBG with indicated absolute intensities (figure 4.26 D).  

Accordingly, the spheroids had incorporated 2 to 3 % of the applied radiotracer dose, depending on 

virus and treatment approach (figure 4.26 C). PET imaging detected about 3- to 5-fold higher levels of 

accumulated [18F]-FHBG than detected by gamma-counting (figure 4.25). This fact was due to the 4-

fold higher cell number in spheroids applied for PET analysis than for gamma-counting, resulting in 

an enhanced uptake. The data derived by PET imaging revealed no large variations in HSV1-sr39TK-

mediated radiotracer incorporation amongst untreated and TMZ-treated Ad-delo-sr39TK-RGD-

infected spheroids. As also shown by gamma-counting (figure 4.25), radiotracer incorporation was 

reduced in GCV-treated and especially in combined TMZ- and GCV-treated Ad-delo-sr39TK-RGD-

infected spheroids, indicating activity of the HSV1-sr39TK/GCV-mediated system in cooperation with 

TMZ-enhanced viral oncolysis. No significant variations in radiotracer accumulation amongst Ad-

sr39TK-infected spheroids were detected in respect of treatment approach. The overall [18F]-FHBG 

accumulation in spheroids, resulting from the use of Ad-sr39TK, was comparable to that in Ad-delo-

sr39TK-RGD-infected and combined virus-infected and TMZ-treated spheroids, which was in 

accordance with the results shown in figure 4.25. 
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Figure 4.26: Accumulation of [
18

F]-FHBG in HSV1-sr39TK-expressing 3D glioma spheroids. U87-MG-derived 

spheroids were infected at MOI of 50 ifu/cell with the indicated adenoviruses. Spheroids containing about 4 x 

10
5
 cells were treated with 100 µM TMZ 24 h before and directly after infection and/or treated with 0.5 µg/ml 

GCV 24 h after infection. Uptake was performed with 0.1 MBq [
18

F]-FHBG per spheroid 4 days after infection. 

Radiotracer accumulation was measured by PET/CT imaging and mean intensity of ROIs was analysed using 

OSEM 3D reconstruction algorithm with attenuation correction. One representative ROI is displayed for each 

data set (A). The average of n=3 ROIs per data set was calculated as mean intensity after decay and volume 

correction (B) and [
18

F]-FHBG accumulation was calculated as % of total applied [
18

F]-FHBG dose (mean±SD) (C) 

according to a [
18

F]-FHBG standard (D). Asterisks indicate significant differences between treatment 

approaches. *p=0.01-0.05, ***p=0.0001-0.001, as calculated using one-way ANOVA with Tukey’s multiple 

comparison test. 

 

 

The data above demonstrate the successful radiotracer accumulation in both 2D and 3D glioma cell 

models infected with HSV1-sr39TK-expressing oncolytic adenovirus, using HSV1-sr39TK as a reporter 

 Mean intensity of ROI [Bq] 

Sample untreated TMZ GCV TMZ+GCV 

uninfected 0 0 0 0 

Ad-delo-sr39TK-RGD 2774 ± 14 3015 ± 250 2312 ± 116 1913 ± 88 

Ad-sr39TK 3269 ± 260 3379 ± 102 3186 ± 121 3278 ± 115 
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gene. The radiotracer uptake rate was facilitated by the replication competence of the virus. 

However, the radiotracer accumulation was not augmented by enhancement of viral replication 

through TMZ, presuming that the potentiated oncolytic effect of Ad-delo-sr39TK-RGD by TMZ or the 

combination of TMZ-mediated enhancement of replication and HSV1-sr39TK/GCV-mediated 

cytotoxicity resulted in decrease of uptake, compared to Ad-sr39TK-infected glioma cells.  
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5. DISCUSSION  
 

5.1. Application of YB-1 dependent oncolytic adenoviruses to address 

limitations of GBM therapy 

Despite promising advances in GBM therapy [16, 17], the search for a treatment with sustained 

efficacy is still a challenge. Major limitations for the success of anti-GBM therapy are the highly 

aggressive character of the tumour, leading to heterogeneous response to therapy from one GBM 

case to the other [321], and an acquired drug resistance. Gene therapy with single gene-replacement 

approaches is often insufficient, because of the accumulation of mutations during cancer progression 

[37]. Hence, novel targeted experimental approaches are urgently needed. Since conditionally 

replicating adenoviruses have limited success in clinical trials, combined experimental approaches 

like YB-1 dependent virotherapy plus chemotherapy [292] or a three-pronged strategy [289] are 

gaining more interest. Suicide gene therapy is also a potent approach to eradicate tumour cells. 

However, cell killing is often hampered by impaired diffusion of the prodrug GCV into the cells, by 

insufficient gene transfer and limited distribution within the tumour mass [54]. The issue of 

inefficient biodistribution of therapeutic vectors and limited treatment success can be circumvented 

by introducing a suicide gene into replication-competent adenoviruses. Hence, the objective of this 

study was to investigate whether the oncolytic effect could be augmented by HSV1-sr39TK/GCV-

mediated cytotoxicity and classical TMZ therapy, using the background of YB-1 dependent oncolysis 

and the finding that YB-1 is upregulated in recurrent glioma [284]. To the author’s knowledge, YB-1 

dependent oncolytic adenoviruses have so far not been combined with suicide genes. In addition, the 

suitability of the HSV1-sr39TK-armed oncolytic adenovirus for non-invasive imaging was explored, in 

order to provide an insight into the viral biodistribution in future preclinical trials.  

5.2. Genetic stability and quality of adenoviruses is crucial for their 

application as anti-tumour agents 

The YB-1 dependency of oncolytic adenoviruses is ensured by a deletion in the CR3 of E1A, resulting 

in lack of the transactivating E1A13S splice variant [259, 288]. In addition, the YB-1 dependent 

oncolytic adenoviruses Ad-delo-sr39TK-RGD and Ad-delo3-RGD contain a deletion of E1B19K, which 

increases the cell killing potential of the viruses [201]. The presence of the crucial mutations in the 

E1A and E3 regions of the adenoviral vectors applied in this thesis, as well as the insertion of the 

transgene HSV1-sr39TK in Ad-delo-sr39TK-RGD and Ad-sr39TK, was verified (table 4.1, figure 4.1), 

proving the genetic stability of the adenoviruses after CsCl-purification. Thus, the adenoviruses 

contained the desired modifications in order to be applied as virotherapeutic agents. 
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A major obstacle in the production of qualitative adenoviral vectors for gene therapy is the potential 

contamination of adenoviral preparations for clinical application with recombinant RCA. Although 

there is a safety guideline allowing the presence of not more than 1 RCA per 3 x 1010 viral particles in 

replication-deficient adenovirus preparations for human use, no corresponding guideline for the 

permissive amount of wild-type-like or non-selective recombinants for oncolytic adenovirus 

preparations exists [322, 323]. As recombination between residual E1 sequences in E1A-mutated 

conditionally replicating oncolytic adenoviruses and the E1 region in HEK293 cells can result in loss of 

the tumour specificity of oncolytic adenoviruses, RCA generation in large-scale oncolytic adenovirus 

preparations should be avoided. The lack of contamination of the adenoviruses applied in this thesis 

with wild-type RCA could not be definitely verified by the applied PCR analysis. Due to the E1A 

deletion of only 11 bp in the oncolytic vectors, the E1A PCR products of the oncolytic vectors and of 

the Ad5-wt-derived reference vector pXC1 were not clearly distinguishable from each other by this 

standard method for RCA detection (table 4.2, figure 4.2). The E1A PCR signals derived from the 

oncolytic vectors may therefore indicate a false-positive RCA contamination. However, the PCR 

products derived by E1- and E3-specific amplification of the oncolytic vectors (table 4.1, figure 4.1), 

confirmed the lack of wild-type RCA contamination. 

In order to discriminate between E1A-mutated oncolytic vectors and wild-type RCA contaminations 

more accurately, PCR analysis can be performed by using primers that amplify only wild-type 

adenovirus E1 sequences or DNA fragments of a size of less than 1 kb, which allow the detection of 

the 11 bp E1A-deletion in YB-1 dependent oncolytic vectors [291].    

An alternative method for the detection of RCA in preparations of oncolytic adenoviruses represents 

a bioamplification assay, which amplifies non-selective adenoviruses through multiple passages in 

order to assess the biological activity of wild-type and non-selective recombinants by a panel of 

analytical methods [323]. This assay is based on the use of cell lines, permissive only for non-selective 

RCA and not for conditionally replicating adenoviruses. However, despite of being highly sensitive, 

this bioamplification assay does not eliminate the need of a specific PCR for detection of potential 

RCA contaminations, but moreover supports the design of appropriate qPCR assays for detecting 

RCA. Furthermore, the generation of wild-type RCA can be avoided by the use of alternative virus 

packaging cell lines for large-scale and clinical applications, such as Per.C6 cells, which contain a 

truncated E1 sequence with limited homology to many E1-deficient adenoviral vectors [324]. 

Alternative packaging cell lines with improved safety compared to Per.C6 cells could be the E1-

transcomplementing cell lines Ac51 and Ac139, derived by stable retrovirus transfection, which 

contain the E1A and E1B genes located on separate genomic loci and thus minimising the risk of RCA 

production [324].    
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5.3. Efficient replication and oncolytic potential of YB-1 dependent 

adenoviruses 

The localisation of YB-1 in the nucleus of tumour cells is a prerequisite for successful replication of 

YB-1 dependent oncolytic adenoviruses [259, 265]. The nuclear YB-1 status of U87-MG cells and the 

multidrug-resistant EPP85-181RDB cell line has been already verified as sufficient to activate 

adenoviral replication [288, 290, 292]. It is of importance to examine the targeting of multidrug 

resistance by YB-1 dependent oncolytic adenoviruses, as YB-1 is associated with overexpression of 

MDR1 [258]. Moreover, GBM cells often develop multiple resistance against chemotherapy, arising 

from cancer stem cells [40] or from the overexpression of ABC-transporter proteins in some subsets 

of stem cells [325]. 

Indeed, the YB-1 dependent adenoviruses induced c.p.e. and thus oncolytic effect in the YB-1-

positive cell lines U87-MG and EPP85-181RDB, confirming the YB-1-based mechanism of activating 

adenoviral replication (figure 4.3). The strong replication competence of the YB-1 dependent 

adenoviruses in both tumour cell lines was confirmed by Southern blot (figure 4.4 A) and real-time 

qPCR analyses (figure 4.5). The results indicate that a threshold amount of produced viral DNA is 

needed for the virus to be able to induce oncolytic cell killing. The improved replication potency of 

Ad-delo-sr39TK-RGD over the E3-deleted vector Ad-delo3-RGD, despite the identical genetic 

background of the E1 region, may be caused by the function of the HSV1-sr39TK enzyme in Ad-delo-

sr39TK-RGD. The enzyme is part of the thymidine salvage pathway, catalysing the transfer of the γ-

phosphate from ATP to the 5’-hydroxyl of deoxythymidine to form deoxythymidine-5‘-

monophosphate [326]. Furthermore, as an alphaherpesvirus enzyme, HSV1-TK is in fact a 

polynucleoside kinase that can phosphorylate all four nucleosides [327]. Therefore, it can be 

hypothesised that the synthesis of adenoviral DNA can be potentiated by increasing the availability of 

phosphorylated endogenous nucleosides by HSV1-sr39TK. The incorporation of nucleosides into viral 

DNA during replication can be analysed by incubation with radiolabelled nucleosides, e.g. [3H]-

thymidine [328].  

The increasing release of newly synthesised viral particles (figure 4.6) and the high infectivity of the 

viral progeny (figure 4.7, figure 4.22) proved the disseminating character of the oncolytic 

adenoviruses and were especially important for enhancing the oncolytic potential. The higher release 

of newly synthesised Ad-delo-sr39TK-RGD viral particles in comparison to Ad-delo3-RGD release 

might be explained by the expression of the ADP protein by the armed vector. ADP is required for 

efficient lysis of adenovirus-infected cells and for release of adenoviral progeny [165]. The 

attenuated release of Ad-delo-shMGMT-RGD particles compared to Ad-delo-sr39TK-RGD, despite 

functional ADP, could be due to the anti-apoptotic action of the E1B19K protein, which prevents 

sufficient viral release, and is therefore deleted in many oncolytic adenoviruses [201, 329]. With its 
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strong replication capacity, oncolytic potential and successful production of functional progeny, Ad-

delo-sr39TK-RGD meets first requirements of efficient oncolytic virotherapy. The tumour-specific 

replication of the virus, which is comparable in its strength to that of other armed oncolytic 

adenoviruses used in some preclinical [244, 248] or clinical trials [247], could be therefore beneficial 

for achieving potent anti-tumour effects in future preclinical studies with Ad-delo-sr39TK-RGD. The 

viremic threshold of 3 x 107 pfu/kg for yielding efficient delivery of oncolytic viruses to tumours [175, 

330] could be reached by Ad-delo-sr39TK-RGD.      

The correlation between YB-1 and multidrug resistance is controversial [331]. Moreover, it is 

suggested that YB-1 is necessary for the initiation rather than for the maintenance of drug resistance 

[332]. These findings could explain the delayed induction of cytopathic effect and attenuated 

replication of YB-1 dependent oncolytic adenoviruses in the multidrug-resistant cell line EPP85-

181RDB 48 h to 72 h post infection in comparison to the U87-MG cell line, as the abundance of cells 

with nuclear localised YB-1 is probably diminished at late stages of multidrug resistance 

development.   

Malignant glioma cells have been characterised by low to intermediate CAR expression [236, 289, 

290, 333-335]. Therefore, the modification of the oncolytic adenoviruses with a RGD motif is crucial 

for targeting the rather CAR-deficient cell line U87-MG [236, 290, 334]. This cell line exhibits also a 

moderate expression level of receptor CD46, necessary for binding of adenoviruses of the serotype B 

[334, 335]. In contrast, U87-MG cells express high levels of ανβ3/ανβ5 integrins [334], which interact 

with the RGD motif and enhance the CAR-independent infectivity of adenoviruses. In addition to 

their replication competence, the RGD-modified oncolytic adenoviruses have an advantage over the 

non-RGD-modified replication-deficient Ad-sr39TK in their improved tumour transduction. Though 

the cell line EPP85-181RGD is also CAR-deficient [336], there is evidence that low viral replication did 

not result from low infectivity, as the RGD-modified adenoviruses induced c.p.e. in these cells. 

However, the integrin status of the multidrug-resistant cell line has to be verified.     

5.4. Stable expression of HSV1-sr39TK from replication-competent adenoviral 

vectors  

In contrast to the constant transcription of the HSV1-sr39TK transgene into mRNA from the 

replication-deficient vector Ad-sr39TK as an indication of protein expression, the cumulative 

production of HSV1-sr39TK mRNA transcripts from Ad-delo-sr39TK-RGD correlated with the 

replication capacity of the virus in U87-MG and EPP85-181RDB cells (figure 4.8). Consequently, the 

replication of Ad-delo-sr39TK-RGD was not impaired by the constitutive expression of the transgene. 

Contrariwise, the HSV1-sr39TK expression level was not attenuated by the induction of c.p.e. in Ad-

delo-sr39TK-RGD-infected tumour cells (figure 4.3). The difference in HSV1-sr39TK protein expression 
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level between Ad-delo-sr39TK-RGD and Ad-sr39TK was marginal (figure 4.9 A), in contrast to mRNA 

transcription. This finding was due to the fact that all configurations of the protein are detected by 

Western blotting, including inactivated or degraded forms, making variations in protein expression 

difficult to recognise. The attenuated expression kinetics of HSV1-sr39TK from Ad-delo-sr39TK-RGD 

in EPP85-181RDB cells compared to U87-MG cells reflects the attenuated YB-1 dependent 

replication, as described above. A hypothesis for the decreased expression is that the 

downregulation of cellular protein biosynthesis in favour of virus replication [161] could be more 

prominent during maintenance of multidrug resistance.  

Taken together, these data prove that propagation of a transgene with viral replication is one of the 

benefits of applying replication-competent adenoviruses in gene therapy. An alternative method for 

arming oncolytic adenoviruses is the insertion of a transgene into the L3 region of the vectors [337]. 

This method links transgene expression to late viral gene expression and leads to high levels of 

tumour-specific expression of the transgene. On the contrary, the regulation of a transgene by 

constitutive promoters or its insertion into E3 locations may exhibit low levels of off-target gene 

expression, a critical issue when arming oncolytic adenoviruses with cytotoxic genes [337].      

5.5. Multicellular 3D glioma spheroids as a feasible model to explore anti-

tumour treatment 

Due to their resemblance to tumour tissue in vivo in respect of multicellular architecture, growth 

kinetics and metabolism [205, 209], 3D glioma spheroids were developed in order to explore the 

efficacy of YB-1 dependent oncolytic adenoviruses in combination with TMZ and the HSV1-

sr39TK/GCV suicide system in vitro. The 3D spheroids displayed classical tumour characteristics, such 

as proliferative growth and migration of cells from the tumour focus [8] (figure 4.10, figure 4.11), the 

latter being a prerequisite for tumour invasion and recurrence [338]. Consistent with this fact, 

formation of clusters of outgrowing cells were observed with progression of cellular migration (figure 

4.11, day 7), giving an indication of the highly invasive character of GBM [8]. These data support the 

use of spheroids as tumour-mimicking models to study the response of tumour growth to therapy in 

vitro [209]. The tumour characteristics of spheroids can be utilised to explore tumour angiogenesis in 

a 3D model [339]. Moreover, neurospheres formed by single CD133+ cancer stem cells in vitro can be 

applied to analyse chemoresistance in GBM [340]. The MOI-dependent transduction efficiency of the 

glioma spheroids indicated their suitability for adenoviral gene transfer (figure 4.12), which was in 

line with previous observations [210]. It was expected that the introduction of a RGD motif and the 

use of replicating adenoviruses would enhance viral transduction [341]. The infectivity of spheroids 

can also predict the transduction efficiency and viral effects in tumours in vivo [211].  
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The dissemination of oncolytic adenoviruses and the combined effect of oncolysis, TMZ and HSV1-

sr39TK/GCV-mediated cytotoxicity were investigated in 3D spheroids, because they are more 

representative than 2D culture as in vitro model for solid tumours, where the penetration of large 

molecules, such as viruses or drugs, is attenuated by the complexity of tumour geometry and the 

presence of extracellular matrix. In tumour spheroids, cells are clustered together by surface 

membrane microprojections and a plethora of intercellular junctions [205, 212]. These properties of 

spheroids reproduce the treatment-related effects in vivo more precisely than 2D culture. 

5.6. Mutual potentiation of adenoviral oncolysis and HSV1-sr39TK/GCV-

mediated effect  

The analysis of the HSV1-sr39TK/GCV-mediated cytotoxicity was first carried out in 2D cell culture to 

optimise the cell killing conditions by variation of dose and timing of pro-drug application. U87-MG 

glioma cells are susceptible to the suicide gene approach, as indicated by the strong HSV1-

sr39TK/GCV-mediated cytotoxicity in Ad-sr39TK-infected cells (figure 4.13 A). Cell killing was induced 

by the combination of overlapping HSV1-sr39TK/GCV-mediated cytotoxicity and oncolytic activity of 

Ad-delo-sr39TK-RGD. The E1A12S protein of Ad-delo-sr39TK-RGD might also contribute to the HSV1-

sr39TK/GCV-killing, for it is known that E1A as an S-phase inducer enhances the HSV1-TK/GCV activity 

[342]. Although the oncolytic effect alone was strong enough to induce cell killing, the cells were still 

metabolically active after c.p.e. (data not shown in figure 4.13 B), in contrast to infected and 

concomitantly GCV-treated cells (figure 4.13 B). This observation indicated that the HSV1-

sr39TK/GCV-mediated cytotoxicity contributes to eradicate tumour cells completely. Important for 

the successful cell killing were the concentration of GCV and the timing of GCV application. The cell 

survival was drastically reduced at GCV concentrations of even less than 0.01 µg/ml, indicating that 

the high sensitivity of HSV1-sr39TK to GCV overlapped with the oncolytic effect of the adenovirus. It 

was previously reported that HSV1-sr39TK displays a 14-fold decrease in the Km value for GCV and an 

80-fold higher kinetics with GCV when compared with wild-type TK, which enables the use of GCV at 

lower, less immunosuppressive doses [343]. A recent study demonstrated a strong therapeutic 

efficacy of the HSV1-sr39TK/GCV system against rat C6 glioma both in vitro and in vivo, by applying 

GCV to HSV1-sr39TK-transduced cells at a lower concentration as compared to wild-type TK-

transduced cells [317]. Thus, the mutant HSV1-sr39TK is a potent suicide gene for inhibition of 

tumour growth and favours the application of low GCV doses for mediating cytotoxic effects, which 

can result in less unspecific toxicity of the prodrug. 

The eradication of tumour cells was more successful when GCV was applied one to three days after 

infection than when applied directly after infection (figure 4.13). This observation was consistent 

with a previously described study of an HSV1-TK armed oncolytic adenovirus with potent anti-tumour 
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effects in glioma [240]. The reduced response of cells infected with replicating adenoviruses to GCV 

when added immediately after infection than when added at later time points could be due to the 

ability of GCV-triphosphate to extenuate adenoviral replication, as it incorporates into the DNA of 

dividing cells as well as into replicating viral DNA [61]. This finding is in accordance with the 

replication analyses shown in this thesis (figure 4.4 B, figure 4.21) and is also supported by the 

observation of HSV1-TK/GCV-triphosphate-mediated inhibition of replication-competent 

adenoviruses in other studies [243, 344, 345]. By adding GCV one day post infection, the progressive 

cytotoxicity mediated by HSV1-sr39TK/GCV exerted a deleterious effect on Ad-delo-sr39TK-RGD 

DNA, as it abolishes the proliferation of virus-infected cells and thus viral replication and spread 

(figure 4.22). The attenuated replication of Ad-delo-sr39TK-RGD by GCV, added immediately after 

infection, was the most probable explanation for the cell survival at 0.1 µg/ml GCV (figure 4.13 A). 

This dose was insufficient to induce HSV1-sr39TK/GCV-mediated cytotoxicity and to counteract the 

repressed oncolysis. The deleterious effect of GCV upon viral replication was not dependent on viral 

dose, as a pronounced cell survival could also be observed with MOI of 10 ifu/cell (data not shown). 

The finding that the level of HSV1-sr39TK/GCV-mediated cell killing of Ad-sr39TK remained constant 

regardless of the time point of GCV addition confirmed the inhibitory action of GCV against HSV-TK1-

armed replicating adenoviruses. When GCV was applied at later time points, the accumulated Ad-

delo-sr39TK-RGD viral particles were able to overcome the initial inhibitory effect of GCV. The 

oncolysis could be promoted successfully, as already small amounts of E1A gene products are 

sufficient to initiate adenoviral replication [346]. However, the predominating oncolytic effect of Ad-

delo-sr39TK-RGD led to decrease in HSV1-sr39TK expression due to cell killing, when GCV was added 

48 h to 72 h post infection (figure 4.9 B). This observation suggests that a strong oncolytic potential 

may lead to an increased risk of uncontrolled viral spread. Inhibition of adenoviral replication by 

HSV1-TK/GCV at early stages of the viral life cycle presents therefore an important safety regard and 

a fail-safe means to control viral dissemination, which is crucial for a safe in vivo application. In order 

to maintain a balance between the strength of the oncolytic effect and the activity of the HSV1-

sr39TK/GCV system, as well as to control viral spread, the optimal time point of GCV application in 

vitro was determined to be one day after infection. 

The weak oncolytic effect of Ad-delo-sr39TK-RGD in EPP85-181RDB cells could not be substantially 

enhanced by the HSV1-sr39TK/GCV-mediated cytotoxicity, even at a high viral dose (figure 4.14). The 

high IC50 value of HSV1-sr39TK/GCV in EPP85-181RDB cells (50 µg/ml as compared to 0.35 µg/ml in 

U87-MG cells) and the thus resulting attenuated HSV1-sr39TK/GCV-mediated cell killing could be 

explained by a low susceptibility of the cell line to GCV as a result of its multidrug-resistant 

phenotype. Considering the broad spectrum of drug substrates transported by P-gp [50], a developed 
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cross-resistance towards the guanosine analogue GCV after long-term exposure could be possible. 

Optimisation of the HSV1-sr39TK/GCV-mediated bystander effect could be considered as a method 

to increase the GCV-sensitivity of multidrug-resistant cells, as described in the following.      

5.7. Potentiation of viral oncolysis by HSV1-sr39TK/GCV-mediated bystander 

effect  

The bystander effect contributed successfully to the HSV1-sr39TK/GCV-mediated cytotoxicity and 

enabled the eradication of tumour cells containing a small fraction of infected cells (figure 4.15). This 

observation was in line with previous findings that the mutant sr39TK could induce a strong 

bystander effect at lower GCV concentrations than the wild-type enzyme in vitro as well as in vivo 

[90, 347]. Through the replication-competence of Ad-delo-sr39TK-RGD and the resulting increase in 

HSV1-sr39TK expression, the oncolytic potential of the virus was enhanced by the bystander effect of 

HSV1-sr39TK/GCV. Although the bystander effect alone, elicited by Ad-sr39TK, was sufficient to 

induce almost complete cell eradication due to the high sensitivity of HSV1-sr39TK for GCV, this 

effect cannot be always translated into an in vivo situation. In this context, U87-MG glioma cells have 

been shown to be susceptible to bystander killing in vitro by GCV-mediated apoptosis, but this effect 

is insufficient in vivo [80]. Therefore, the use of replicating adenoviruses has a benefit over 

replication-deficient adenoviruses in enhancing the bystander effect in vivo. Moreover, the use of 

high viral and prodrug doses, which can compromise the safety of adenovirus-mediated suicide gene 

therapy [348], can be circumvented by a bystander effect. Regarding the mode of action of the 

bystander effect, it was demonstrated that TK from a replication-competent HSV-1 was able to 

enhance connexin 43 subunit (Cx43) expression in the presence of GCV and thus to induce bystander 

effect in a tumour cell line, suggesting augmented intercellular transport of active GCV through gap 

junctions [349]. If the enhancement of Cx43 expression by the HSV1-TK/GCV suicide system as a 

bystander mechanism is also valid in the context of HSV1-TK-armed oncolytic adenoviruses, remains 

to be shown.  

No bystander effect of HSV1-sr39TK/GCV was observed in the multidrug-resistant cell line EPP85-

181RDB under the same conditions as for U87-MG cells (figure 4.15). In contrast, a strong bystander 

cell killing with only 17 % infected cells was induced by applying a 5-fold higher GCV concentration 

that increased the sensitivity of EPP85-181RDB cells for the prodrug (data not shown). However, an 

increase of GCV concentration alone may not be sufficient for preventing resistance against HSV1-

TK/GCV-mediated killing in vivo. Considering the low HSV1-sr39TK expression from Ad-delo-sr39TK-

RGD (figure 4.9 A) and the attenuated viral oncolytic effect plus HSV1-sr39TK/GCV-mediated 

cytotoxicity (figure 4.14, figure 4.15) in EPP85-181RDB cells, it can be assumed that unarmed 
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conditionally replicating adenoviruses could be more efficient in eradication of multidrug-resistant 

tumour cells [265, 288, 291] than armed replicating adenoviruses.  

A promising approach to target multidrug resistance and to enhance the HSV1-TK/GCV suicide 

system in vivo could be the silencing of MDR1 by shRNA-targeting [350]. Another consideration for in 

vivo studies is the finding that overexpression of the proto-oncogene Bcl-2 in GBM is associated with 

resistance against HSV1-TK/GCV suicide gene therapy [351]. This issue could be addressed by an 

inhibitor of Bcl-2 [352].  

In order to increase the safety and efficacy of the HSV1-TK/GCV suicide system, potent bystander 

tumour cell eradication in in vivo glioma models can be induced through gap junction-mediated 

transport of toxic metabolites between HSV1-TK expressing bone marrow-derived cells or normal 

brain cells and glioma cells [353, 354]. These strategies demonstrate that normal brain cells may 

contribute to the HSV1-TK/GCV therapy by long-term delivery of therapeutic genes and through 

induction of a bystander effect.   

5.8. Potentiation of YB-1 dependent viral oncolysis by TMZ and benefit of 

viral dissemination in 3D  

The oncolytic potency of Ad-delo-sr39TK-RGD was augmented by TMZ treatment of glioma cells in 

both 2D and 3D culture, as shown by the decrease in cell survival (figure 4.16) and enhancement of 

viral replication (figure 4.20 and 4.21) and viral release (figure 4.22) by TMZ. Treatment of glioma 

cells and spheroids with TMZ once before and after infection achieved a higher level of replication 

enhancement than pre-treatment only (data not shown). This level was also higher than the 

replication enhancement of Ad-delo3-RGD within an in vivo study [292], indicating that the 

continuous TMZ treatment schedule could be beneficial for improving the oncolytic potential of YB-1 

virotherapy in vivo. In respect of in vivo use, it is noteworthy that the half-life of TMZ in human 

plasma is only 1.8 h [318, 319], corroborating the need of repeated TMZ addition in order to increase 

the virotherapeutic performance. These results indicate that sensitisation of glioma cells to 

adenoviral infection by TMZ could be a promising virotherapeutic approach. As the IC50 of TMZ for 

U87-MG cells was stated to range between < 100 µM [355] and 20.2 mM [103], the IC50 of TMZ of > 

500 µM for this cell line (figure 4.16) lies within the published range. The discrepancy of IC50 of TMZ 

for U87-MG cells in the literature probably arises from the different incubation periods of the drug 

on cells: 72 h [355] and 96 h [103]. Here, TMZ was incubated on cells for 24 h (figure 4.16). Thus, the 

combinatorial approach of virotherapy and TMZ raises the susceptibility of GBM cells to TMZ and 

allows the use of low virus and TMZ doses (e.g. MOI 10 and 25 µM TMZ, or MOI 20 and 10 µM TMZ) 

to reach the same level of cell killing as high doses of single treatment (e.g. MOI 50/100 or > 500 µM 
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TMZ). The combined treatment is therefore beneficial for reducing potential toxic effects in future 

systemic applications in vivo.  

The enhancement of oncolysis is based on the nuclear translocation of the transcription factor YB-1 

as a result of TMZ-mediated cytostatic stress and thus stimulation of adenoviral replication, as shown 

previously for Ad-delo3-RGD [292]. The mechanisms of YB-1 nuclear translocation as a result of stress 

response are not clear yet. There is strong evidence that several concurrent signalling pathways, 

activated as a result of DNA-damaging agents, are involved in this process [262, 356]. 

Phosphorylation of YB-1 at Ser102 by the serine/threonine kinase Akt has been shown to trigger the 

transition of YB-1 to the nucleus [357]. However, the dependence of YB-1 nuclear transport on Akt 

could not be reproduced for some tumour cell lines [358]. Another regulatory mechanism for nuclear 

translocation of YB-1 is associated with the C-terminal cleavage of the protein by the 20S 

proteasome, induced by DNA-damaging agents [359], but the molecular mechanism of YB-1 nuclear 

transport mediated by proteolysis needs to be re-assessed [360].  

The improved oncolytic effect of Ad-delo-sr39TK-RGD over Ad-delo3-RGD in combination with TMZ 

(figure 4.16) was likely to be caused by the improved viral release of the armed oncolytic adenovirus 

due to the expression of ADP, as described previously. Ad-delo-sr39TK-RGD demonstrated a similar 

to slightly stronger oncolytic effect depending on viral MOI and TMZ concentration than Ad-delo-

shMGMT-RGD. It was expected that the double function of Ad-delo-shMGMT-RGD in inducing 

oncolysis and simultaneously potentiating the cytostatic effect of TMZ by silencing of the DNA repair 

gene MGMT [320] could achieve stronger glioma cell killing than YB-1 dependent virotherapy with 

Ad-delo-sr39TK-RGD alone. A synergistic therapeutic efficacy of oncolytic virotherapy, TMZ and 

down-modulation of MGMT expression against GBM has been already demonstrated [361], but not 

in the context of YB-1 dependent oncolysis. However, the use of U87-MG cells to assess the benefit 

of adding MGMT-silencing to YB-1 dependent oncolysis is equivocal, as these cells exhibit MGMT-

promoter hypermethylation and thus low MGMT expression [355]. The use of TMZ-resistant glioma 

cells with an unmethylated MGMT-promoter reflects the clinical scenario more accurately. 

Moreover, the lack of the anti-apoptotic protein E1B19K in Ad-delo-sr39TK-RGD contributed to the 

enhanced TMZ-mediated oncolytic effect of Ad-delo-sr39TK-RGD at low MOIs in comparison to Ad-

delo-shMGMT-RGD. Ad-delo-sr39TK-RGD has therefore the potential for eliminating of GBM cells 

regardless of their MGMT status.  

In contrast to the high oncolytic potential of the YB-1 dependent adenoviruses upon TMZ treatment 

in GBM cells, a 20-fold higher viral MOI and 50- to 200-fold higher TMZ doses than applied in U87-

MG cells were needed for the oncolytic viruses to achieve an almost complete eradication of EPP85-

181RDB cells (figure 4.17). The multidrug-resistant phenotype of the pancreatic carcinoma cells was 

most likely to be responsible for the worse response to TMZ and thus low oncolytic potential, 
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considering also the controversial role of YB-1 in multidrug resistance [331, 332]. Explanations for 

this worse effect could be on the one hand a cross-resistance towards TMZ. On the other hand, no 

additional stress stimuli like TMZ could further enhance the nuclear accumulation of YB-1, due to a 

selection pressure over TMZ, since EPP85-181RDB cells are maintained in the presence of 

daunorubicin [290].  

The role of multidrug resistance-mediating ABC-transporter proteins in GBM is controversial. 

Although expressed in GBM cells, it is still unknown whether TMZ is actually transported by these 

proteins [362]. However, evidence exist that MDR1 is associated with TMZ resistance and the protein 

is therefore an independent predictive factor for the outcome of TMZ therapy [363]. 

The level of DNA replication enhancement of the oncolytic adenoviruses by TMZ was stronger in 

spheroids than in 2D culture (figure 4.20, figure 4.21), indicating that the 3D cell structure facilitated 

the viral spread and confirming the 3D model as the more relevant one for replication analyses. This 

statement was supported by the finding that Ad-delo-sr39TK-RGD invaded not only the outer layers, 

but also several inner layers of the spheroids, in contrast to the replication-deficient Ad-sr39TK 

(figure 4.23). The adenoviral distribution in spheroids shown here was in accordance with the finding 

of Grill et al. that spread of a replication-deficient adenovirus is restricted to the outer layers of 

glioma spheroids, but replication-competent and oncolytic adenoviruses invade also the inner layers 

[210]. The reasons for the restriction of adenoviral replication to the outer replicating layers of 

spheroids may be the increasing proportion of nonproliferating cells during growth and the 

occurrence of necrotic regions in the spheroid core as a result of a hypoxic environment and glucose 

deprivation, similar to cancers in vivo [205]. Hypoxia usually exists in sections within solid tumours 

and can attenuate adenoviral replication by downregulation of viral protein expression [364, 365]. 

Necrotic regions in the core of tumour spheroids with diameters larger than 400-500 µm, as in the 

case of the glioma spheroids generated in this thesis, may occur at a distance of 50-300 µm from the 

spheroid periphery and the thickness of the proliferating layers, surrounding the necrotic centre, may 

range between 100-220 µm [205, 209].  

Spheroids can give also an insight into the mode of viral dissemination within a solid tumour. 

Regarding viral dissemination, it was shown that oncolytic adenoviruses seemed to favour lateral 

rather than medial spread within spheroids (figure 4.23). This could be due to a tight lateral 

clustering of cells or an uneven distribution of the adenovirus-binding integrins αvβ3 and αvβ5 on the 

cell surface, as these integrins are known to be overexpressed in the periphery of high-grade gliomas 

[366].     

 



DISCUSSION 103

 

5.9. Relevance of 3D spheroids for exploring potential in vivo effects of the 

HSV1-sr39TK/GCV suicide system 

Although the spread of Ad-delo-sr39TK-RGD (figure 4.23) and the release of infectious Ad-delo-

sr39TK-RGD-particles (figure 4.22) was impaired by the inhibitory action of GCV upon viral replication 

(figure 4.20, figure 4.21), the combined viral and HSV1-sr39TK/GCV approach efficiently induced 

HSV1-sr39TK/GCV-mediated cytotoxicity in 3D spheroids and was stronger than both oncolytic effect 

and HSV1-sr39TK/GCV-mediated cytotoxicity alone (figure 4.19). The cell killing was therefore 

augmented by the bystander effect of GCV and not by adenoviral replication alone. However, 

evidence exist that HSV1-TK-expressing spheroids display lower GCV-bystander effect than 

monolayer culture [367]. Here, this finding was in accordance with the lower cytotoxicity of the 

replication-deficient Ad-sr39TK in spheroids than in 2D culture, presuming a role of the attenuated 

bystander effect. The potential bystander effect of GCV in spheroids was however enhanced by 

replication of the oncolytic adenoviruses at late time points and the difference in cell survival after 

the single viral approach and the combined viral and HSV1-sr39TK/GCV-approach was more 

prominent in 3D than in 2D. Due to the similarity of the 3D structure to tumour tissue, the results in 

3D are assumed to be more relevant for predicting the therapeutic efficacy of the suicide gene 

system in vivo.    

There are conflicting data in the literature regarding the efficacy of oncolytic adenoviruses combined 

with HSV1-TK/GCV suicide therapy. Some studies show that the HSV1-TK/GCV system enhances the 

oncolytic activity of replication-competent E1B55K-deleted adenoviruses [237, 238] or of replication-

competent adenoviruses with a deletion of the Mr 19.000 glycoprotein (gp19K) coding sequence in 

the E3 region [240], whereas other studies demonstrate no further enhancement of E1B-positive 

oncolytic adenoviruses, especially when the E1B55K protein is functional [368-371]. However, GCV 

was applied in the latter studies not earlier than two days after infection.  

It is suggested that the HSV1-TK/GCV system might still be suitable to enhance the cytoreductive 

effect of highly potent oncolytic vectors in clinical settings, because immune responses often limit 

viral spread [369]. Moreover, HSV1-TK/GCV administration might potentiate the oncolytic activity by 

immune-mediated mechanisms [372]. In this thesis it was demonstrated that the E1B55K-expressing 

HSV1-sr39TK-armed oncolytic adenovirus had a potent anti-tumour effect by oncolysis alone, 

especially in 2D glioma culture. Additionally, there was an enhancement of the oncolytic effect by the 

combination of oncolytic and HSV1-sr39TK/GCV activity, which was more distinctive in 3D spheroids 

than in 2D cell culture. It can be presumed that the impaired accessibility of cells within spheroids, 

even by replicating adenoviruses, leading to a delayed oncolytic effect compared to 2D culture, 

resembles the in vivo situation more precisely and can be substantially enhanced by the suicide gene 

system.  
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5.10. Combined effect of YB-1 dependent virotherapy, TMZ and HSV1-

sr39TK/GCV suicide system against GBM 

It was shown that TMZ, by enhancing the replication and thus oncolytic effect of Ad-delo-sr39TK-RGD 

via triggering the nuclear translocation of YB-1 [292] , acted in combination with the HSV1-sr39TK-

/GCV-system to potentiate the decrease of glioma cell survival both in 2D culture (figure 4.18) and 3D 

spheroids (figure 4.19). Compared to the sole combination of oncolysis and HSV1-sr39TK/GCV-

mediated cytotoxicity, additional TMZ-stimulation induced an earlier onset of cell killing and allowed 

the application of less viral load. In contrast, TMZ exerted rather cytostatic than cytotoxic effects in 

uninfected spheroids.  

The type of cell death, mediated by the combined experimental approach, and the mode of action of 

this treatment have to be elucidated in more detail. Replicating adenoviruses induce more than one 

type of cell death or a mixed type of cell death, according to the heterogeneous functions of the 

adenoviral gene products and the time point of their activation during the adenoviral life cycle [373, 

374]. The most commonly observed adenovirus-mediated cell death modes include apoptosis [375], 

necrosis-like cell death [376], cell lysis [165] and autophagy [377]. As shown in figure 4.18 C, YB-1 

dependent oncolytic adenoviruses induced probably an apoptotic cell death after c.p.e., which is in 

line with previous findings that Ad-delo3-RGD induces apoptosis in vivo [292]. The hypothesis that 

E1B19K-deleted adenoviruses, such as Ad-delo-sr39TK-RGD and Ad-delo3-RGD, induce apoptosis, at 

least in early stages of the viral life cycle, is corroborated by the finding that cells infected with an 

E1B19K mutant undergo apoptosis, because DNA damage caused by viral infection activates the 

proteosomal degradation of the anti-apoptotic Bcl-2 family member Myeloid Cell Leukemia 1. The 

Bcl-2 homologue E1B19K is then not at disposal to block this pathway and to counteract apoptosis 

mediated by E1A [378].  

The suggested apoptotic cell death upon TMZ treatment and infection with YB-1 dependent oncolytic 

adenoviruses (figure 4.18 C) needs to be analysed more thoroughly, since it has been shown that the 

combination of TMZ and conditionally-replicating adenoviruses elicits autophagic cell death in vitro in 

U87-MG cells, whereas both autophagy and apoptosis are observed in vivo in glioma models [379]. 

Moreover, TMZ induces apoptosis and senescence in GBM spheroids [380], but doses up to 100 µM 

TMZ do not lead to strong apoptosis [208]. Thus, it can be concluded that tumour cell eradication 

(figure 4.18, figure 4.19) resulted predominantly from the potentiation of the oncolytic effect by TMZ 

and the HSV1-sr39TK-/GCV-mediated cytotoxicity, and probably to a lower extent from induction of 

apoptosis by TMZ. As indicated by the difference in cellular morphology (figure 4.18 C), it can be 

assumed that the oncolytic effect elicited a different type of cell death than the HSV1-sr39TK/GCV 

system alone. The HSV1-TK/GCV suicide system has been shown to mediate apoptosis in U87-MG 

cells [70]. On the contrary, combined TMZ and GCV treatment of Ad-delo-sr39TK-RGD-infected GBM 
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cells resulted most likely in a mixed apoptotic and necrosis-like mode of cell death. More detailed 

examinations are necessary to determine the exact type of cell death induced by this triple 

combinatorial approach. 

It has been shown that inhibition of YB-1 sensitizes GBM cells to TMZ [381]. This finding could be one 

of the mechanisms underlying the additive effect of YB-1 dependent oncolysis and TMZ treatment, as 

YB-1 is not at disposal because of its function in activating viral replication.      

The mechanism of action of the HSV1-sr39TK/GCV-mediated cytotoxicity in potentiating viral 

oncolysis requires a more detailed elucidation. It has been shown that infection with oncolytic 

adenoviruses induces a profound overreplication of genomic DNA in permissive cell lines. The 

overreplication results from the transactivation of cdc25a phosphatase by E1A and the promotion of 

E1A-induced S phase entry by activated cdc25a [382]. Deregulated cdc25a activity during adenoviral 

infection induces uncontrolled genomic DNA replication via activation of cdc2. Consequently, DNA 

overreplication is associated with the occurrence of genomic DNA damage. As a result, the DNA 

homologous recombination repair pathway, involving the key kinase ataxia telangiectasia and Rad3-

related (ATR) and checkpoint kinase 1 (Chk1), is activated in order to maintain the integrity of the 

genome. Inhibition of the ATR-Chk1 pathway impairs DNA damage repair, which results in 

accumulation of cytotoxic lesions and consequently leads to cell death [382].  

The HSV1-TK/GCV system may interfere in the above described model in a dual mode. First, the 

incorporation rate of GCV-triphosphate into genomic DNA may be increased due to genomic DNA 

overreplication in adenovirus-infected cells, since GCV-triphosphate exerts its cytotoxicity upon 

rapidly dividing DNA. Second, GCV-triphosphate induces an irreversible arrest in late S-G2 phase 

through activation of the G2-M DNA damage checkpoint and inhibition of the activity of cdc2 [383]. 

During this irreversible late S-G2 phase arrest, unrepairable DNA double strand breaks may 

accumulate due to blocked Chk1-mediated homologous recombination repair [384], which adds to 

the deleterious effect of virus-induced DNA damage. Hence, through the incorporation of GCV-

triphosphate during virus-induced DNA overreplication and by interfering with the virus-mediated 

cell cycle progression and with DNA repair pathways, the HSV1-sr39TK/GCV system exerts additive 

effects in combination with viral replication for mediation of cell death.  

Rainov et al. already assessed the synergy between TMZ and GCV in mediating cytotoxicity in HSV1-

TK-expressing malignant glioma cells and elucidated the possible mechanism underlying this synergy 

[103]. Accordingly, GCV-triphosphate is supposed to inhibit the repair of TMZ-induced DNA-crosslinks 

by MGMT. According to a model of mutual synergism between chemotherapy and YB-1, defined as 

Mutually Synergistic Therapy (MUST), chemotherapy leads to increased levels of nuclear YB-1 and 

consequently enhances adenoviral replication, while viral-mediated nuclear translocation of YB-1 

leads to enhanced susceptibility of cells to chemotherapy [265]. Thus, there is strong evidence that 
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the combined effect of TMZ, YB-1 dependent oncolysis and HSV1-sr39TK/GCV-mediated cytotoxicity 

is based on the mutual synergism between these three components. In addition, the results of this 

thesis confirm the increased efficacy of YB-1 dependent virotherapy in multimodal over single-mode 

approaches against GBM in previous studies [289, 292]. 

5.11. Suitability of HSV1-sr39TK-armed YB-1 dependent oncolytic 

adenoviruses for non-invasive reporter gene imaging 

Multicellular spheroids had been already used as a relevant in vitro model to assess changes in cell 

viability after treatment with oncolytic adenoviruses by means of a PET scan using [18F]-labelled 

deoxyglucose [214]. To the author’s knowledge, no PET imaging of multicellular spheroids using 

HSV1-sr39TK has been performed by now. In this thesis, 3D glioma spheroids were used - along with 

2D cell culture - as a feasible model for the analysis of the cellular uptake and spatial distribution of 

PET radiotracer, specific for HSV1-sr39TK. The data demonstrate that Ad-delo-sr39TK-RGD mediated 

accumulation of radiotracer by the enzymatic activity of HSV1-sr39TK in 2D culture (figure 4.24) and 

in 3D spheroids (figure 4.25, figure 4.26). The activity of HSV1-sr39TK correlated positively with the 

amplification of the transgene by viral replication (figure 4.24 B). Although the replication-deficient 

vector Ad-sr39TK has been successfully applied for non-invasive radiotracer imaging in vivo [113, 

115], replication-competent adenoviruses may have an advantage over replication-deficient viruses 

in allowing the use of lower and non-toxic viral doses for in vivo imaging, which can be further 

amplified by replication.  

In future in vivo studies, progression of tumour cell killing as a result of oncolytic virotherapy in 

combination with cytostatic agents and the HSV1-sr39TK/GCV-mediated system could be monitored 

by non-invasive PET radiotracer imaging, having in mind that the accumulation rate correlates with 

cell viability. The use of the disseminating oncolytic adenovirus Ad-delo-sr39TK-RGD facilitates 

nuclear reporter gene delivery, as well as biodistribution, and provides first evidence that the 

therapeutic efficacy of the HSV1-sr39TK/GCV system could be easily monitored in vivo. Nevertheless, 

the radiotracer application should be well timed in order to achieve an equilibrium between the 

HSV1-sr39TK/GCV-mediated cytotoxicity, oncolytic killing and tracer accumulation. An optimal time 

point for uptake analysis would be three days post infection (figure 4.24 B), when the amount of 

oncolytic viral particles is significantly increased due to replication burst. In addition, imaging might 

be most successful if the radiotracer is applied before GCV treatment [126], because cell depletion by 

the HSV1-TK/GCV system would thus be circumvented. 

Regarding the issue of oncolytic toxicity, which could hamper imaging success, the replication-

deficient Ad-sr39TK has an advantage over Ad-delo-sr39TK-RGD for imaging, because of its non-lytic 

properties (figure 4.24 A). To circumvent the problem of off-target toxicity due to the action of 
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armed oncolytic adenoviruses and as a safety regard, GCV can be applied in appropriate doses in 

order to abort the proliferation of HSV1-TK-expressing cells and thus attenuate adenoviral replication 

when necessary, but maintaining the therapeutic effect. The decrease in [18F]-FHBG accumulation 

upon dual and triple treatment approaches (figure 4.25, figure 4.26) reflected the enhanced 

cytoreduction by viral oncolysis in combination with TMZ and upon TMZ plus GCV treatment. These 

results point out the feasibility and sensitivity of HSV1-sr39TK/[18F]-FHBG reporter gene imaging for 

monitoring of minor differences in the viability of tumour cells after subjecting them to treatment. 

In respect of the technique for radiotracer detection in spheroids, gamma-counting allows a more 

precise quantification of absolute radiotracer amount on cellular level than PET imaging. Therefore, 

the determination of radiotracer accumulation by gamma-counting was more sensitive than PET 

measurement and was able to detect alterations between each of the TMZ, GCV or combined TMZ 

and GCV treatment approaches in Ad-delo-sr39TK-RGD-infected spheroids more accurately than PET 

(figure 4.25). Nevertheless, the ability of PET imaging to detect radiotracer accumulation in small 

tumour spheroids of size about 7 mm³ and consisting of about 4 x 105 cells (figure 4.26) proved the 

feasibility and the high sensitivity of this technique in combination with HSV1-sr39TK and [18F]-FHBG. 

The high imaging sensitivity when using this reporter gene and probe pair was in accordance with a 

previously estimated detection limit of 1 x 105 HSV1-sr39TK-transduced cells for tumours of size 

about 3 mm³ [385]. The preliminary results in 3D spheroids provide a first indication of the suitability 

of HSV1-sr39TK, delivered by an YB-1 dependent replicating adenovirus, in combination with [18F]-

FHBG for non-invasive in vivo PET imaging.     

5.12. Outlook and future perspectives of combined YB-1 dependent 

virotherapy and HSV1-sr39TK/GCV suicide gene system   

The combined approach of YB-1 dependent oncolytic virotherapy, HSV1-sr39TK/GCV suicide system 

and TMZ therapy proves to be promising, though some improvements are necessary for future 

application in preclinical studies. There is often a discrepancy between results obtained by in vitro 

and in vivo investigations, because monolayer cell culture does not reflect the tumour 

microenvironment [236]. Even 3D spheroid models, consisting of one cell type, are not able to 

constitute the complex interplay between tumours, vascularisation, tumour microenvironment and 

the immune system. Hence, a xenograft GBM in vivo model is needed to address the efficacy of the 

described therapeutic strategy, using the time- and dose-dependent treatment conditions, which 

were optimised in this study. Moreover, repetitive non-invasive microPET imaging can be performed 

after intratumoural injection of replicating HSV1-sr39TK-bearing adenoviruses and radiotracer 

application in order to explore the kinetics of viral replication, biodistribution and the tracer 

detection limits in respect of time and dosage in vivo. The tumour growth or regression after GCV 
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and TMZ addition, as well as possible toxicity of the combined treatment, can also be monitored by 

means of microPET imaging. Subtle differences in viral replication during GCV and TMZ treatment can 

be analysed by immunohistology and the correlation to biodistribution of radiotracer can be 

assessed. Considering that [18F]-FHBG has background leakage preferentially in the liver [115, 116], 

analysis of the biodistribution of the radiotracer in tumours and organs can be performed.   

An orthotopic GBM xenograft model can be used to examine the correlation between uptake of [18F]-

FHBG by HSV1-sr39TK-expressing GBM cells and 3'-deoxy-3'-[18F]-fluorothymidine uptake as a 

proliferation biomarker [386], in order to assess the effect of combined adenoviral, TMZ and HSV1-

sr39TK/GCV treatment on tumour growth and to predict survival outcome. Furthermore, the 

implantation of Ad-delo-sr39TK-RGD-infected GBM spheroids into established GBM models could 

result in a bystander effect of HSV1-sr39TK/GCV, induced from infected spheroids on uninfected 

GBM cells. This bystander effect can facilitate the application of low virus and GCV doses, and could 

help to avoid potential off-target effects. For all future in vivo studies, a GCV application at late time 

points of viral replication and a systemic TMZ addition should be preferred for enhancing the 

treatment efficacy and allowing control of virus spread.    

Future refinements of the current triple treatment approach may concern vector modifications, 

strategies for immune evasion, targeted delivery and improvement of the therapeutic efficacy. In 

order to target tumour cells with a low expression level or insufficient nuclear localisation of YB-1 

and in order to expand the application field of YB-1 dependent virotherapy and suicide gene therapy 

beyond the treatment of malignant gliomas, YB-1 can be cloned into a largely deleted E1 region of 

HSV1-sr39TK-armed oncolytic adenoviruses to ensure YB-1 overexpression. It has been 

demonstrated that YB-1 overexpression from an adenoviral vector can trigger the replication and 

oncolytic potential of E1-deficient adenoviruses [387]. The YB-1 gene can be inserted in place of 

E1B55K, as evidence exist that expression of this gene constitutes no further improvement of viral 

oncolysis by the HSV1-TK/GCV system. A critical issue hampering the success of virotherapy and 

suicide gene therapy in vivo is the presence of immune responses against the therapeutic vectors 

[175]. Therefore, virus shielding with polymers [388] or coupling of polymer-coated adenoviruses to 

therapeutic antibodies that bind to receptors on tumour cells, e.g. EGFR [389], can be considered as 

future mechanisms to improve systemic tumour transduction in vivo and to evade the immune 

system of the host. In addition, the targeted delivery and the potency of oncolytic adenoviruses in 

vivo can be improved by associating them with magnetic nanoparticles and a magnetic-field-guided 

infection [390]. Furthermore, the combined oncolytic- and suicide gene strategy can be improved in 

respect of efficacy and toxicity by the use of sustained intratumoural prodrug delivery systems, e.g. 

GCV-containing silicone formulations [391] or long-circulating PEGylated liposomes with 

encapsulated GCV [392]. The addition of immunostimulatory factors like interleukin-12 [393] or the 
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human soluble Fms-like tyrosine kinase 3 ligand [394] may help to improve the efficacy of combined 

oncolytic- and suicide gene therapy via stimulating an anti-tumour immunity.      

Regarding future preclinical or clinical application of RGD-modified oncolytic adenoviruses, it could 

be rather of disadvantage for the treatment efficacy when combining them with anti-angiogenic 

agents as the inhibitor of ανβ3/ανβ5 integrins cilentigide [395], because the inhibition of adenovirus-

binding integrins may attenuate adenoviral tumour targeting. 

 

Concluding the results of this thesis, the combination between low oncolytic virus, GCV and TMZ 

doses is as efficient as high doses of the single components for inducing glioma cell eradication. This 

combined approach might thus reduce the occurrence of potential treatment-induced side effects in 

vivo. Hence, combining YB-1 dependent oncolytic adenoviruses with suicide and reporter gene 

therapy, and classical anti-glioma chemotherapy, is promising in paving the way to an optimized 

therapeutic approach against solid cancers, which can be applied in vivo. 
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6. SUMMARY 
 

Glioblastoma multiforme (GBM) is the most common primary brain tumour, characterised with 

infiltrative growth, high recurrence rate and a fatal outcome. Suicide gene therapy, using the suicide 

and reporter gene Herpes simplex virus 1 thymidine kinase (HSV1-TK) with its prodrug Ganciclovir 

(GCV), and oncolytic virotherapy are promising tools to address the limitations of current anti-GBM 

treatment, arising from the aggressive nature of GBM and its resistance to therapy. Conditionally 

replicating oncolytic adenoviruses are gaining considerable influence in tumour gene therapy. Among 

them, adenoviruses, dependent in their replication on the oncogenic factor Y-box binding protein 1 

(YB-1), contain a manipulation of the essential E1A gene, which allows them to replicate in tumour 

cells with stress-induced nuclear accumulation of YB-1. Despite the success of the HSV1-TK/GCV 

suicide gene therapy and YB-1 dependent oncolytic virotherapy in the combat of GBM, single-mode 

approaches are often not as efficient as combined treatments to achieve a sustained therapeutic 

outcome.  

Therefore, based on the finding that YB-1 is overexpressed in GBM, it was of interest to characterise 

the therapeutic potential of an YB-1 dependent oncolytic adenovirus, armed with the HSV1-TK-

mutant HSV1-sr39TK, in combination with GCV and the standard anti-GBM chemotherapeutic agent 

Temozolomide (TMZ) in glioma cells in vitro, including a 3D multicellular spheroid model with tumour 

characteristics. The virus demonstrated strong replication competence, oncolytic potential and 

ability to produce infectious viral progeny. HSV1-sr39TK transgene expression correlated positively 

with viral replication, indicating a stable transgene expression despite oncolytic effect. Arming YB-1 

dependent oncolytic adenoviruses with a suicide gene was able to eradicate glioma cells more 

efficiently than oncolysis and HSV1-sr39TK/GCV-mediated cytotoxicity alone in the 3D spheroid 

model. In 2D culture, oncolysis was potentiated by the HSV1-sr39TK/GCV-mediated cytotoxicity only 

when GCV was applied at early time points post infection. The potent bystander effect of the suicide 

gene system in combination with viral replication contributed to the efficacy of the therapeutic 

approach and allowed for application of low viral load in order to minimise off-target toxicity in non-

malignant tissue. In addition, the inhibitory potential of GCV on viral replication at early stages of the 

viral life cycle represents a fail-safe means to control viral dissemination. Enhancement of YB-1 

dependent oncolysis by TMZ and combining this approach with HSV1-sr39TK/GCV-mediated 

cytotoxicity resulted in a potentiation of glioma cell killing, probably through a combined mode of 

cell death. In comparison to the oncolytic effect and the HSV1-sr39TK/GCV-mediated cytotoxicity 

alone, the triple treatment induced significant reduction of 3D spheroid growth. In contrast, viral 

oncolysis and the HSV1-sr39TK/GCV system exerted a diminished efficacy in the context of 

multidrug-resistance. Furthermore, HSV1-sr39TK-expressing oncolytic adenoviruses allowed for 
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radiotracer [18F]-FHBG accumulation in both 2D and 3D glioma models and thus proved to be suitable 

for non-invasive PET imaging of the therapeutic efficacy within a limited time frame. In conclusion, 

the results obtained in this thesis highlight the importance of combining YB-1-based virotherapy with 

conventional cancer treatment and suicide gene therapy for enhancing the therapeutic efficacy of 

anti-cancer approaches. The problem of impaired efficacy of the suicide gene therapy in many in vivo 

applications, caused by a low transduction efficiency of replication-deficient vectors, can be 

circumvented by applying replication-competent oncolytic adenoviruses. 
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7. ZUSAMMENFASSUNG 
 

Glioblastoma multiforme (GBM) ist der häufigste primäre Hirntumor, der sich durch infiltrierendes 

Wachstum, eine hohe Rezidivrate und eine schlechte Prognose auszeichnet. Die Suizidgentherapie 

mit dem Herpes simplex virus 1 Thymidinkinase (HSV1-TK)/Ganciclovir (GCV)-System, sowie 

onkolytische Virotherapie, sind vielversprechende Ansätze, um häufig auftretende Einschränkungen 

der gegenwärtigen Therapiemöglichkeiten für GBM aufzuheben. Diese Einschränkungen resultieren 

aus dem aggressiven Charakter und der Therapieresistenz von GBM. Tumorzellspezifische 

onkolytische Adenoviren gewinnen beträchtlich an Einfluss auf die Gentherapie von Tumoren. Unter 

ihnen befindet sich die Gruppe der Adenoviren, welche in ihrer Replikation von dem onkogenen 

Faktor Y-Box-bindendes Protein 1 (YB-1) abhängig sind und eine Mutation des essentiellen E1A-Gens 

enthalten. Diese E1A-Mutation ermöglicht den Viren die Replikation in Zellen, die eine Stress-

induzierte Kernlokalisation von YB-1 aufweisen. Trotz des Erfolges der HSV1-TK/GCV-

Suizidgentherapie und der Therapie mit YB-1-abhängigen onkolytischen Adenoviren gegen GBM, sind 

kombinierte Ansätze meistens effizienter als Monotherapien, um einen nachhaltigen Therapieerfolg 

zu erzielen.          

Basierend auf der Erkenntnis, dass YB-1 in GBM überexprimiert wird, war es daher von Interesse das 

therapeutische Potential eines HSV1-sr39TK-tragenden, YB-1-abhängigen onkolytischen Adenovirus 

in Kombination mit GCV und dem klassischen anti-GBM-Chemotherapeutikum Temozolomid (TMZ) 

zu charakterisieren. Die in vitro Analyse erfolgte in Gliomzellen, einschließlich eines 3D 

multizellulären Sphäroid-Modells mit Tumoreigenschaften. Das Virus zeichnete sich durch seine 

starke Replikationskompetenz, onkolytischen Potential und Fähigkeit zur Produktion von infektiösen 

viralen Nachkommen aus. Die Expression des Transgens HSV1-sr39TK korrelierte positiv mit der 

viralen Replikation, was auf eine stabile Expression trotz onkolytischen Effekts hindeutet. Die 

Kombination aus YB-1-abhängigen onkolytischen Adenoviren und einem Suizidgen ermöglichte ein 

effizienteres Abtöten von Gliomzellen im 3D Sphäroid-Modell als die Onkolyse und die HSV1-

sr39TK/GCV-vermittelte Zytotoxizität allein. Der onkolytische Effekt in 2D Zellkultur wurde durch die 

HSV1-sr39TK/GCV-vermittelte Zytotoxizität nur unter Zugabe von GCV zu frühen Zeitpunkten nach 

der Infektion verstärkt. Der starke Bystander-Effekt, induziert durch das Suizidgen-System in 

Kombination mit viraler Replikation, steuerte zur Wirksamkeit des Therapieansatzes bei und 

ermöglicht den Einsatz von niedriger Virusdosis, um „Off-target“-Toxizität in nicht-malignes Gewebe 

zu verhindern. Die Hemmung der viralen Replikation durch GCV in frühen Stadien des viralen 

Entwicklungszyklus stellt zusätzlich eine zuverlässige Methode dar, um die Ausbreitung des Virus zu 

kontrollieren. Die Steigerung des YB-1-abhängigen onkolytischen Effektes durch TMZ und die 

Kombination dieses Ansatzes mit der HSV1-sr39TK/GCV-vermittelten Zytotoxizität führte zu 
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verstärktem Abtöten von Gliomzellen. Dieses Abtöten kam möglicherweise durch eine kombinierte 

Art von Zelltod zustande. Im Vergleich zum onkolytischen Effekt und der HSV1-sr39TK/GCV-

vermittelten Zytotoxizität allein, erzeugte die dreifache Behandlung eine signifikante Reduktion des 

Wachstums von 3D Sphäroiden. Im Gegensatz dazu übten die virale Onkolyse und das HSV1-

sr39TK/GCV-System einen schwächeren Effekt auf multiresistente Zellen aus. Des Weiteren 

ermöglichten die HSV1-sr39TK-exprimierenden onkolytischen Adenoviren die Akkumulation des 

radioaktiven Tracers [18F]-FHBG sowohl in 2D, als auch in 3D Gliom-Modellen und zeigten dadurch 

ihre Eignung zum nicht-invasiven Imaging der therapeutischen Wirksamkeit im PET-System innerhalb 

eines begrenzten Zeitfensters. Die Ergebnisse dieser Arbeit heben die Bedeutung der Kombination 

aus YB-1-abhängiger Virotherapie, konventioneller Krebstherapie und  Suizidgentherapie zur 

Verstärkung der Wirksamkeit von Krebstherapien hervor. Mögliche Beeinträchtigung der 

Wirksamkeit von Suizidgentherapie in vivo, verursacht durch eine niedrige Transduktionseffizienz mit 

replikationsdefizienten Vektoren, könnte durch den Einsatz von replikationskompetenten 

onkolytischen Adenoviren umgangen werden. 
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9. APPENDIX 
 

9.1. Abbreviations 

’’ Inch 

°C Degree Celsius 

Δ Deletion 

ρ Volumetric mass density 

aa Amino acid 

ABC ATP-binding cassette 

ACV Acyclovir 

Ad5 Human adenovirus type 5 

ADP Adenovirus death protein 

Akt Protein kinase B 

ATCC American Type Culture Collection 

ATP Adenosine triphosphate 

ATR Ataxia telangiectasia and Rad3-related 

Bcl-2 B cell lymphoma-2 

bp Base pair 

Bq Becquerel 

BSA Bovine Serum Albumin 

CaCl2 Calcium chloride 

CAR Coxsackie and adenovirus receptor 

CD Cluster of differentiation 

CD (b/y) Cytosine deaminase (from bacteria or yeast) 

Cdc(x) Cell division cycle (x=number) 

cDNA Complementary DNA 

Chk1 Checkpoint kinase 1 

C2H3NaO2 Sodium acetate 

cm Centimetre 

cm
3
 Cubic centimetre 

CMV Cytomegalovirus 

CNS Central nervous system 

CO2 Carbon dioxide 

CR Conserved region 

Cre Cyclization recombinase 

CsCl Cesium chloride 

Ct Cycle threshold 

CT Computed tomography 

c.p.e. Cytopathic effect 

cpm Counts per minute 

Cx43 Connexin 43 subunit 

Da Dalton 

DAPI 4´,6´-diamidino-2-phenylindole 

delo2/3 Deletion on 2/3 locations 

dH2O Distilled water 

DIG Digoxigenin 

DMEM Dulbecco's Modified Eagle’s Medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DNase Deoxyribonuclease 
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dNTP Deoxynucleoside triphosphate 

ds Double-stranded 

dUTP 2´-deoxyuridine 5´-triphosphate 

EDTA Ethylenediamine-tetraacetic acid 

E2F E2 promoter binding factor 

e.g. For example 

eGFP Enhanced green fluorescent protein 

EGFR Epidermal growth factor receptor  

FAM 6-carboxyfluorescein 

FBS Fetal bovine serum 

5-FC 5-fluorocytosine 

FHBG 9-[4-fluoro-3-(hydroxymethyl)butyl]guanine 

FIAU 2’-fluoro-2’-deoxy-5-iodo-1-β-D-arabinofuranosyl 

FITC Fluorescein isothiocyanate 

5-FU 5-fluorouracil 

g Gravitational field strength 

g Gramme 

G Gauge 

G Giga 

GBM Glioblastoma multiforme 

GCV Ganciclovir 

h Hour 

HCl Hydrochloric acid 

HEK Human embryonic kidney 

HEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid 

hNIS Human sodium-iodide symporter gene 

HNSCC Head and neck squamous cell carcinoma 

HRP Horseradish peroxidase 

HS Horse serum 

HSV Herpes simplex virus 

HSV1-TK Herpes simplex virus 1 thymidine kinase 

hTERT Human telomerase reverse transcriptase 

IC50 Half maximal inhibitory concentration 

IF Immunofluorescence 

ifu Infectious units 

Ig Immunoglobulin  

kb 1000 base pairs 

KCl Potassium chloride 

KH2PO4 Potassium dihydrogen phosphate 

kIU Kallikrein Inhibitor Units 

Km Michaelis constant 

l Litre 

loxP   Locus of X-over of P1 

M Mega 

M Molarity 

mA Milliampere 

mAU Milli-arbitrary unit 

mCMV Murine cytomegalovirus 

MDR1 Multidrug resistance gene 1 

MEM Minimum Essential Medium 

mg Milligramme 

MgCl2 Magnesium chloride 
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MGMT O
6-methylguanine-DNA methyltransferase 

min Minute 

mJ Millijoule 

ml Millilitre 

mm Millimetre 

mM Millimolar (mmol/l) 

MOI Multiplicity of infection 

Mr Relative molecular mass 

mRNA Messenger RNA 

MTIC 5-(3-methyltriazen-1-yl)-imidazole-4-carboxamide 

mTOR Mammalian target of rapamycin 

µg Microgramme 

µl Microlitre 

µm Micrometre 

µM Micromolar (µmol/l) 

NaCl Sodium chloride 

NaHCO3 Sodium hydrogen carbonate 

Na2HPO4 Sodium phosphate 

NaOH Sodium hydroxide 

NEAA Non-essential amino acids 

ng Nanogramme 

NH4C2H3O2 Ammonium acetate 

(NH4)2SO4 Ammonium sulfate 

nm Nanometre 

nM Nanomolar (nmol/l) 

nt Nucleotide 

OD Optical density 

pIX Minor capsid protein IX 

PAGE Polyacrylamide gel electrophoresis 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PEG Polyethyleneglycol 

PET Positron emission tomography 

pfu Plaque forming units 

pg Picogramme 

P-gp P-glycoprotein 

PI3K Phosphatidylinositide 3-kinase 

PKC Protein kinase C  

poly(A) Polyadenylation 

pRB Retinoblastoma protein 

PS Penicillin and streptomycin 

PVDF Polyvinylidene fluoride 

qPCR Quantitative PCR 

r Radius 

RCA Replication-competent adenoviruses 

RDB  Resistant to daunoblastin 

RGD Arginine-glycine-aspartic acid  

rGFP recombinant green fluorescent protein 

RIPA Radio-Immunoprecipitation Assay 

RNA Ribonucleic acid 

rRNA Ribosomal RNA 

RNase Ribonuclease 
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ROI Region of interest 

rpm Revolution per minute 

RT Room temperature 

SD Standard deviation 

SDS Sodium dodecyl sulfate 

sec Second 

shRNA Short hairpin RNA 

siRNA Small interfering RNA 

SPECT Single photon emission computed tomography 

SRB Sulforhodamine B 

ss Single-stranded 

SSC Sodium chloride-sodium citrate buffer 

SV40 Simian virus 40 

TAE Tris-acetate-EDTA 

TAMRA 6-carboxytertramethylrhodamine 

Taq Thermus aquaticus 

TCA Trichloroacetic acid 

Tm Melting temperature 

TMZ Temozolomide 

U Unit 

UV Ultraviolet  

V Volt 

V Volume 

VEGF Vascular endothelial growth factor  

VP Viral particles 

WB Western blot 

wt Wild-type 

w/v Weight/volume 

XTT Sodium 3´-[1-(phenylaminocarbonyl)- 3,4-tetrazolium]-bis (4-methoxy-6-nitro) 

benzene sulfonic acid hydrate 

YB-1 Y-box binding protein 1 
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9.2. Publications 

9.2.1. Original articles 

Kostova Y, Mantwill K, Holm PS, Anton M: An armed, YB-1 dependent oncolytic adenovirus as a 

candidate for a combinatorial anti-glioma approach of virotherapy, suicide gene therapy and 

chemotherapeutic treatment. Cancer Gene Therapy 2015 Jan; 22 (1): 30-43. doi: 

10.1038/cgt.2014.67. Epub 2014 Dec 12. 

Kostova Y, Schillinger U, Wolf A, Koch C, Plank C, Anton M: Spatio-temporal control of growth factor 

gene expression in 2D and 3D rat mesenchymal stem cell cultures and its influence on differentiation 

potential. In preparation 

Anton M, Kostova Y, Wolf A, Mykhaylyk O, Ogris M, Plank C: Imaging of spatio-temporal control by 

TNFalpha-inducible cox-2 promoter dependent luciferase gene expression. In preparation 

9.2.2. Posters  

Kostova Y*, Mantwill K, Dumler K, Wolf A, Wester HJ, Gänsbacher B, Holm PS, Anton M: Functional 

analysis of armed oncolytic adenoviruses for nuclear reporter gene imaging. 17th Annual Meeting of 

the German Society for Gene Therapy (DG-GT e.V.), Munich, Germany (October 2010). 

Kostova Y*, Mantwill K, Dumler K, Wolf A, Gänsbacher B, Holm PS, Anton M: A YB-1-dependent, 

armed oncolytic adenovirus as a candidate for nuclear reporter gene imaging and suicide tumour 

gene therapy. Collaborative Congress of the European Society of Gene and Cell Therapy and British 

Society for Gene Therapy, Brighton, UK (October 2011).  

Anton M*, Hillreiner M, Kostova Y, Koch C, Eglin D, Zelphati O, Borget P, Daculsi G, Alini M, Plank C: 

Development of gene activated matrices for tissue regeneration in osteoarthritis. Collaborative 

Congress of the European Society of Gene and Cell Therapy and French Society of Cell and Gene 

Therapy, Versailles, France (October 2012). 

9.2.3. Oral presentations 

Anton M*, Kostova Y, Schillinger U, Eglin D, Sapet C, Borget P, Daculsi G, Alini M, Plank C: 

Development of gene activated matrices for tissue regeneration in osteoarthritis. Tissue Engineering 

and Regenerative Medicine International Society – EU Meeting, Genova, Italy (June 2014). 

* Presenting author 
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