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Zusammenfassung in deutscher
Sprache

Diese Dissertation behandelt ein Phänomen im Bereich der Halbleiter-Nanostrukturen, der 0.7
Anomalie in Quantenpunktkontakten (QPCen). Dieses ist seit 1996 bekannt, bisher jedoch nicht
eindeutig erklärt. Seit den 80ern ist es möglich Strukturen auf Basis von Halbleitern zu bauen,
deren Größe sich im Bereich von Nano- bis Mikrometer befindet. Eine der einfachsten Struktu-
ren ist der QPC, eine kurze und schmale, und somit punktförmige Verbindung zwischen zwei
ausgedehnten Elektronensystemen. Solche QPCe sind oft Teil komplizierterer Strukturen, und
befinden sich damit in nahezu allen Halbleiter-Nanostrukturen. Daher ist es essentiell, jeden
Aspekt dieser QPCe zu verstehen.

Die zentrale Eigenschaft des QPCs ist die Quantisierung seines Leitwerts: Abhängig von
einer angelegten Gatterspannung, welche die Breite des QPCs bestimmt, ändert sich der Leit-
wert stufenweise in ganzzahligen Vielfachen des Leitwertquantums GQ = 2e2/h, wobei e die
Elektronenladung und h die Planck-Konstante ist. Diese Quantisierung kann in dem Bild nicht-
wechselwirkender Elektronen erklärt werden: In eindimensionalen Systemen ist die elektroni-
sche Zustandsdichte indirekt proportional zu deren Geschwindigkeit – in Bereichen in denen
sich Elektronen besonders langsam bewegen, ist die Anzahl von Zuständen pro Energieinter-
vall entsprechend grösser.

Im Gegensatz dazu gibt es in QPCen Phänomene, die nicht in einem Einteilchenbild ver-
standen werden können, und deren Ursprung kontrovers diskutiert wird. Die prominente-
sten sind in einem Parameterbereich, in dem gemessene Leitwertkurven eine schulterartigen
Zwischenstufe bei etwa 0.7GQ zeigen. Diese Phänomene sind unter den Namen 0.7-Anomaly
bekannt. In diesem Parameterbereich zeigen viele Grössen, wie elektrischer und thermischer
Leitwert, Rauschen und Thermoelektrizität anomales Verhalten als Funktion externer Parame-
ter wie Magnetfeld, Temperatur oder angelegte Spannung. In dieser Arbeit wird ein Modell
vorgestellt, dass die Eigenschaften der 0.7 Anomalie in theoretischen Rechnungen reprodu-
ziert und damit eine intuitive Erklärung für den mikroskopische Ursache der Phänomene er-
möglicht. Dabei werden störungstheoretische Methoden, die funktional Renormierungsgruppe
(fRG), sowie zweite Ordnung Störungstheorie, verwendet.

Für den Bereich der ersten Leitwertstufe wird der QPC durch ein eindimensionales wech-
selwirkendes System beschrieben, wobei der QPC selbst durch eine Potentialbarriere darge-
stellt wird. Ist die Barriere höher als das chemische Potential ist der Leitwert nahe bei Null,
ist sie niedriger geht der Leitwert gegen GQ. Wechselwirkende Effekte sind besonders stark
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wenn die lokale Zustandsdichte (LDOS) am chemischen Potential hoch ist, wenn also die La-
dungsträger beim überqueren der Potentialbarriere besonders langsam sind. Dieser Fall tritt
ein, wenn das Barrierenmaximum nur knapp unterhalb des chemischen Potentials ist. Der
Leitwert ist dort bereits kleiner als GQ, jedoch größer als GQ/2. Dieser Zusammenhang erklärt
unmittelbar das Auftreten unerwarteter Effekte im Bereich der 0.7 -Schulter und liefert eine na-
türliche Erklärung des Auftretens der 0.7-Anomalie. Damit lassen sich die beiden wichtigsten
Phänomene von QPCe, die Leitwertquantisierung und die 0.7-Anomalie, auf ein und die selbe
Eigenschaft eindimensionaler Systemen zurückführen: die Zustandsdichte ist indirekt propor-
tional zur Geschwindigkeit.

Unsere besten theoretischen Ergebnisse wurden mit einem eigens entwickelten Näherungs-
schema, der gekoppelten Leiternäherung (CLA), innerhalb der fRG erzielt. Üblichereise wird
die unendliche Hierarchie der fRG Flussgleichungen nach der zweiten Ordnung abgebrochen.
Damit erhält man eine gekoppelte Differentialgleichung für die Selbstenergie und den Zwei-
teilchenvertex. Im Falle inhomogener Systeme benötigt man eine gewisse räumliche Auflösung
von N ∼ 100 Punkten. Ohne weitere Näherung geht die Anzahl der unabhängigen Variablen,
die den Zweiteilchenvertex representiereni, mitO(N4). Die CLA nutzt aus, dass sich innerhalb
der fRG der Zweiteilchenvertex als Summe seiner Kanäle darstellen lässt. Beschränkt man die
Kopplung dieser Kanäle für Systeme mit einer kurzreichweitigen Wechselwirkung, reduziert
sich die Anzahl der unabhängigen Variablen des Zweiteilchenvertex auf O(N2).

Bedauerlicherweise ist es derzeit nicht möglich, Leitwerte bei endlicher Temperatur oder
endliche angelegte Spannung mit fRG zu berechnen. Daher verwenden wir für diese Para-
meter Störungstheorie in zweiter Ordnung im Keldysh Formalismus. Um eine entsprechende
Leitwertformel herzuleiten, benutzen wir die fRG Gleichungen in ihrer Eigenschaft als exakte
Relationen für die Ableitung der Selbstenergie bezüglich eines Parameters.

Die Arbeit wird abgeschlossen mit einer Vorhersage für die 0.7-Anomalie in Gegenwart
von Spin-Orbit Wechselwirkung (SOI). Ist die charakteristische Energie der SOI von der selben
Grössenordnung wie die geometrische Energieskala des QPC, hängt die Form der Leitwertstu-
fe bei endlichem Magnetfeld sehr stark von der relativen Richtung von SOI und Magnetfeld
ab. Die theoretischen Vorhersagen werden ebenfalls mit der fRG in der CLA erzielt.



Abstract

A Quantum point contact (QPC) is a one dimensional constriction, separating two extended
electron systems allowing transport between them only though a short and narrow channel.
The linear conductance of QPCs is quantized in units of the conductance quantum GQ = 2e2/h,
where e is the electron charge and h is Planck’s constant. Thus the conductance shows a
staircase when plotted as a function of gate-voltage which defines the width of the channel.
In addition measured curves show a shoulder-like step around 0.7GQ. In this regime QPCs
show anomalous behaviour in quantities like electrical or thermal conductance, noise, and
thermopower, as a function of external parameters such as temperature, magnetic field, or
applied voltage. These phenomena, collectively known as the 0.7-anomaly in QPCs are subject
of controversial discussion.

This thesis offers a detailed description of QPCs in the parameter regime of the 0.7-anomaly.
A model is presented which reproduces the phenomenology of the 0.7-anomaly. We give an in-
tuitive picture and a detailed description of the microscopic mechanism leading to the anoma-
lous behavior. Further, we offer detailed predictions for the behavior of the 0.7-anomaly in the
presence of spin-orbit interactions.

Our best theoretical results were achieved using an approximation scheme within the func-
tional renormalization group (fRG) which we developed to treat inhomogeneous interacting
fermi systems. This scheme, called the coupled ladder approximation (CLA), allows the flow
of the two-particle vertex to be incorporated even if the number of interacting sites N, is large,
by reducing the number of independent variables which represent the two-particle vertex from
O(N4) to O(N2).
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Chapter 1

Introduction

In the last decades fabrication of semiconductor nano-devices improved in many ways, such
that nowadays it is standard to build devices which allow charge control on the level of single
electrons. One way to fabricate such devices is to attach metallic gates on top of a hetero-
structure, e.g. GaAs/AlGaAs, which forms a two-dimensional electron system (2DES). At tem-
peratures below 100mK, where electron-phonon scattering is small, the mean free path of
electrons in such structures is in the micron regime, allowing investigation of phase-coherent
many-body quantum phenomena.

One of the building blocks of such nano-devices is the quantum point contact (QPC). De-
pending on the context, QPCs can serve different purposes. If the contact is almost completely
closed, it provides a tunnel contact, which can be used to built quantum dots (QDs) (Goldhaber-
Gordon et al., 1998). A QPC where the first mode is half open, is used to detect charge (Field
et al., 1993) or as an electron beam splitter in quantum Hall bars (Ji et al., 2003).

In order to understand devices with a higher complexity it is essential to understand the

Figure 1.1: First measurement
of the conductance quantiza-
tion of QPCs: Conductance of
a QPC as a function of ap-
plied gate voltage. The con-
ductance increases stepwise in
integer multiples of GQ =
2e2/h. Inset: Gate structure
of the QPC. The metallic gates
(shaded area) are placed on
top of a 2DES. Reprinted fig-
ure from van Wees et al. (1988),
copyright (1988) by the Ameri-
can Physical Society.
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FIG. 1. (I) Gate voltage G�Vg� characteristics showing 20
conductance plateaus quantized in units of 2e2�h. (II) The gate
characteristics (offset by 0.3 V for clarity) in a magnetic field
of 11 T. Insets: (a) detail of the structure at 0.7�2e2�h�; (b) the
in-plane g factors as a function of subband index, as obtained
from the Zeeman splitting at 8.2 T.

the splitting of the transconductance peaks was linear in
Vsd, indicating that Vsd does not perturb the electrostatic
confinement potential within the constriction. We shall
rely on this result when we use Eq. (1) to measure both
gk and g� for all 26 1D subbands.
Low temperature measurements of the two-terminal

conductance, G�Vg� � dI�dV , were performed using an
excitation voltage of 10 mV at a frequency of 71 Hz. Mea-
surements in an in-plane magnetic field were carried out

FIG. 2. Transconductance traces dG�dVg of the transition
between G � 0 and 2e2�h as a function of Bk. The traces
have been vertically offset for clarity. The inset shows the gate
voltage splitting dVg of the transconductance peak positions as
a function of Bk.

FIG. 3. The evolution of the structure at 0.7�2e2�h� into
a step at e2�h in a parallel magnetic field Bk � 0 2 13 T,
in steps of 1 T. For clarity, successive traces have been
horizontally offset by 0.015 V.

with the field applied either parallel �Bk� or perpendicu-
lar �B�� to the current j through the constriction. The
results presented here are qualitatively the same for both
field orientations. To check for an out-of-plane magnetic
field component due to misalignment, we monitored the
Hall voltage; from such measurements we were able to
align the samples to better than 1±. All the results pre-
sented in this paper were reproducible on different sample
cooldowns, and have been observed in a variety of devices
fabricated on different wafers. The bulk 2DEG resistance
changes with B, and so conductance sweeps have been cor-
rected by choosing a series resistance (typically less than

FIG. 4. Temperature dependence of the 0.7 structure com-
pared to the quantized plateau at 2e2�h.

136
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Figure 1.2: First report of the 0.7-anomaly by Thomas et al. (1996). Left: conductance as a
function of applied gate voltage for different temperatures. The first conductance step shows
a shoulder-like step at around 0.7GQ, which becomes more pronounced with higher tem-
peratures. Right: conductance as a function of applied gate voltage for different magnetic
fields. With increasing field, the 0.7 shoulder develops into the spin resolved conductance step.
Reprinted figure from Thomas et al. (1996), copyright (1996) by the American Physical Society.

properties of their building blocks. Many properties of QPCs are well understood. E.g. its
quantized conductance has been predicted (Landauer, 1957) long before it was first measured
by van Wees et al. (1988) and Wharam et al. (1988). Figure 1.1 shows the results of van Wees
et al. (1988). The inset shows the split-gate structure lying above a 2DES, which is the most com-
mon way to build a QPC. Applying negative voltage on the two metallic gates (shaded area)
depletes electrons underneath them, such that electrons can cross only through the narrow
channel between the gates. As a consequence of the quantization in the direction transversal
to the current the conductance of this QPC is quantized in units of GQ = 2e2/h, where e is the
electron charge and h is Planck’s constant. The applied gate voltage determines the number of
modes contributing to the electrical current such that the conductance increases stepwise as a
function of applied gate voltage.

In addition to these well-understood properties of QPCs, there are also properties whose
microscopic origin is still under controversial discussion, such as the shoulder like step at 0.7GQ
shown in figure 1.2. This feature was already present in the data by van Wees et al. (1988), but
was not entirely shown (see figure 1.1). Thomas et al. (1996) were the first who reported that
this is a generic feature of QPCs. Later this shoulder became known as the “0.7-anomaly”,
and hundreds of experimental papers presented all kinds of anomalous behavior for quantities
such as the electrical and thermal conductance as a function of external parameters such as
temperature, magnetic field or applied voltage, all related to the 0.7-anomaly (Micolich, 2011).

Despite the extensive amount of experimental results, no theoretical explanation could be
presented which found approval by the entire community. The most prominent interpretations



3

of the 0.7-anomaly are the idea of spin polarization, proposed by Thomas et al. (1996), and
the Kondo model proposed by Cronenwett et al. (2002) and Meir et al. (2002). However these
interpretations are not able to explain the whole phenomenology of the 0.7-anomaly. So if we
are not able to understand a device as simple as a QPC, the question arises, weather we are
able to understand more complicate setups, especially if they are built from QPCs. In this work
we will argue, that a one-dimensional system with a potential barrier representing the QPC,
explains all properties of the QPC, once interactions are taken into account, and thus we do
understand the QPC.

Although this model is somehow the most obvious description of a QPC (see chapter 2),
at the time this project started several years ago, there were hardly any theoretical calculations
using this type of model. The reason for this might be, that getting reliable results for that
kind of model is a real challenge if interactions are not small. Most methods that are able
to treat models with large interactions are not able to treat systems with a potential that has
spatial structure. So most of the work for this thesis and also most of the ongoing work in this
project is dedicated to develop methods that are both reasonable fast, and reasonable accurate
when used to calculate transport properties. The latter turns out to particularly difficult if the
temperature is nonzero, which of course is desirable since the behavior with temperature is one
of the central aspects of the 0.7-anomaly.

We approached this problem by using different perturbative methods. One of them, the
functional renormalization group (fRG), is more reliable at large interactions, but in the cur-
rent status of its implementation only applicable at zero temperature (an extension of the fRG
approach to finite temperature is topic of ongoing work). Further we used second order per-
turbation theory (SOPT) to get results at finite temperature on the cost of being less reliable
at large interactions. A nice review of the fRG approach was written by Metzner et al. (2012).
Though these approaches have a relatively simple analytic structure, numerically they are quite
challenging, due to the extended spatial structure.

A broad introduction into the field of QPCs is given in chapter 2. We set the stage by in-
troducing a typical experimental sample. Then we derive the conductance quantization by
reformulating the two-dimensional model into a set of effective one-dimensional models. We
discuss the potential form representing the QPC, and the role of interaction. With this moti-
vation of the model we are ready to give a heuristic explanation of the microscopic origin of
the 0.7-anomaly. We do this by simply examining the properties of a one-dimensional model
and without presenting any calculations including effects of interactions. The following sum-
mary of the most prominent experimental results is explained on the same heuristic level. The
chapter is completed by introducing other theoretical models.

In chapter 3, we derive the equations of the functional renormalization group (fRG) ap-
proach used to calculate conductance and susceptibilities at zero temperature. Therefore we
present a compact but complete and generic derivation of the fRG flow equations. At the end
of the chapter we introduce the approximation scheme developed to treat interacting inhomo-
geneous one-dimensional models, in the form of a publication (see also Bauer et al., 2014).

A general formula to calculate conductance at finite temperature in Keldysh formalism is
derived in chapter 4, where we use the exact fRG equations in order to differentiate the self
energy w.r.t. the applied voltage. The main part of this chapter is a draft of a paper which will
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published soon(see also Heyder, 2014).
The heart of this thesis is chapter 5, which contains a reprint of our NATURE publication

(see also Bauer et al., 2013), and the extensive supplementary information. This publication
clarifies the microscopic origin of the 0.7-anomaly, including detailed microscopic calculations.
These calculations are compared with experimental measurements made by the group of Stefan
Ludwig.

Subsequently in chapter 6 we predict how the magnetic field dependence of the 0.7-anomaly
changes in the presence of strong spin orbit interactions. This work will be published soon (see
Goulko et al., 2014).



Chapter 2

Quantum Point Contacts and the
0.7 Anomaly

2.1 Heterostructures and the Split Gate Geometry

2DES made from heterostructures are the most frequently used ones. By arranging different
layers of semiconductor materials, a potential is configured such that the electron density in
the conduction band is finite only at a interface between two layers, in a way that only the
lowest state is occupied. As a result the direction perpendicular to the layers, to be called
z-direction, affects the dynamics of the system only by an overall phase factor, and the dynam-
ics of the system is purely two-dimensional. In this work we consider mainly QPC made of
GaAs/AlGaAs hetero-structures. This material provides 2DES with a very high quality, and

GaAs
AlAs

Al0.3 Ga0.7 As

GaAs

Al0.3 Ga0.7 As

0 0.1

0 0.5 1.0 1.5
V(z) [eV]

0.2 0.3
n [1018cm-3]
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]

0
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-40
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-100

Gates

Si delta-doping

2DES

Figure 2.1: Schematic growth structure of the
GaAs/AlGaAs heterostructure used in our NATURE

publication (chapter 5, Bauer et al., 2013). The low-
est layer of GaAs has a thickness of 800nm, fol-
lowed by the structure shown in the schematic. The
resulting potential energy V(z) in z-direction (i.e.
in growth direction) for electrons in the conduc-
tion band, w.r.t. the chemical potential (dashed black
line) is shown as solid black line. Where the po-
tential is below the chemical potential, the electron
density n (red line) is nonzero, forming a 2DES be-
low the interface between the GaAs and the AlGaAs
layer indicated as red area in the schematic. On top
of the sample, metallic gates are attached indicated
as gray area. The gates consist of 5nm Ti followed
by 30nm Au. Data from Borowsky (2011) and from
Stefan Birner.
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thus it is well suited to investigate generic properties of QPCs. Figure 2.1 shows the schematic
stucture, as well as the electrostatic potential and the density for electrons in the conduction
band of the sample used in our NATURE publication (chapter 5, Bauer et al., 2013), made by
Werner Wegscheider. The lowest state resulting from the triangular potential at the interface
of the GaAs and the AlGaAs layers is 7meV below the chemical potential. The second state
is 20meV above the chemical potential and we can neglect thermal excitations to this level at
temperatures below 10K.

This 2DES can be further confined by attaching metal gates on top of the sample. Applying
voltages to these gates changes the potential energy for electrons in the 2DES. The geometry
of these gates can be shaped on the scale of several nanometers. In this way almost arbitrary
structures can be built. Limiting factors are the number of different voltages that can be applied
at the same time and the topology of the gates. The latter however, is improving continuously
due to novel gating techniques, such that more and more complicated patterns can be built.
However, in this work we are more interested in the simplest gate structure, the split-gate
structure, which forms a QPC.

Split gates can have all kinds of forms, e.g. a trapezoidal form used by van Wees et al.
(1988) (see inset of figure 1.1), but also rectangular or round forms are used. A higher tunability
is achieved by multiple gates on each side allowing to control the length of the QPC. Such a
device is used in our NATURE publication (chapter 5, Bauer et al., 2013, see figure 1 a there),
where an additional top-gate enables control over the width of the QPC. The split gate divides
the 2DES in two areas and allows electronic transport only through a narrow channel, the QPC.

2.2 The noninteracting QPC

All basic properties of a QPC, in particular its quantized conductance, are well understood
within a noninteracting model. This picture is well established and can be found in textbooks
e.g. Heinzel (2003, chapter 7.2). Hence it is reasonable to assume that if these basic properties
can be found in an experimental realization of a QPC, interactions are not too strong, such
that they do not dominate physical properties, but rather alter them w.r.t. the noninteracting
behavior. So we will derive and justify the model for a QPC from the noninteracting point
of view. In the last step we will add an interaction term. Such a model does not incorporate
every aspect of the experimental realization of a QPC. If a certain experimental aspect cannot
be explained by the chosen model one has to go back to this very point and reconsider every
assumption made in the process.

2.2.1 From 2D to 1D

We consider a QPC built by 2DES with a split gate geometry described in section 2.1. We
assume that the electrons in the 2DES can be described by a two-dimensional Schrödinger
equation with a quadratic dispersion and mass m. The top gates define a static electrostatic
potential V(x, y):

Eψ(x, y) = − h̄2

2m
(∂2

x + ∂2
y)ψ(x, y) + V(x, y)ψ(x, y) . (2.1)
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Figure 2.2: a Illustration of a two-dimensional potential V(x, y) resulting from a QPC geometry.
Electrons are confined in y direction, leading to quantized states with energies En indicated by
thick black lines in the center of the potential. Separation of variables leads to an effective one-
dimensional potential, indicated as green line. b Illustration of the one-dimensional potential
V1D(x) from a as a function of x. Electronic states on the left/right side are occupied up to
the chemical potential µL/µR. Electrical current I is carried within the voltage window eVsd =
µl − µR

The potential V(x, y) is illustrated in figure 2.2 a. We take x to be the transport-direction of
the QPC and assume that electrons are confined in y-direction, such that for a given x, the
wave-function φx

n(y) solves the equation

En(x)φx
n(y) = −

h̄2

2m
∂2

yφx
n(y) + (V(x, y)−V(x, y=0)) φx

n(y) , (2.2)

with discrete eigen energies En(x). These energies are indicated by horizontal lines within the
2D potential in figure 2.2 a. Their spacing growths with decreasing width of the QPC. If the
potential changes smoothly with x, such that the cross section of the potential in y-direction
changes slowly with x so that we can neglect the derivatives of φx

n w.r.t. x, the ansatz

ψ(x, y) = φx
n(y)ψ(x), (2.3)

gives

Eψ = − h̄2

2m
∂2

xψ + (V(x, y=0) + En(x))ψ . (2.4)

Hence, for each mode n this results an effective one-dimensional potential

V1D
n (x) = En(x) + V(x, y=0) , (2.5)
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This defines a purely one-dimensional system, where the y-dependence of the potential only
enters via the offset En(x). This fact is illustrated in figure 2.2 a: The green line shows the
effective potential of the lowest mode V1D

1 (x) which has an offset w.r.t. the 2D potential.
The approach discussed above is exact if the potential can be decomposed as V(x, y) =

Vx(x) + Vy(y). A special case of this form is the saddle point potential V(x, y) = m
2h̄2 Ω2

yy2 −
m

2h̄2 Ω2
xx2, which will always be a good approximation for the leading orders. This purely

parabolic potential is one of the few cases which can be solved analytically and is discussed
in Büttiker (1990).

2.2.2 Conductance Quantization

The next step is to derive the current and the conductance of such a one-dimensional system.
I will do this following the original paper of Landauer (1957) for the special case of a one-
dimensional system. This approach may appear a little oldfashioned, in fact we present a
modern approach in chapter 4 following Meir and Wingreen (1992), however, the derivation
presented here provides a deeper understanding about why conductance is quantized, and
we will see later on that the origin of the quantized conductance is also the origin of the 0.7-
anomaly.

Since electrons are fermions, all states up to the Fermi energy, i.e. the chemical potential
µ, are occupied, implying that their kinetic energy can be quite large. Thus in a semiclassical
picture electrons move constantly through the sample. However, to get a finite net-current
a voltage has to be applied to produce an imbalance between the chemical potential of two
reservoirs. Due to that imbalance there are more electrons moving from, say left to right, than
vice versa. This is illustrated in figure 2.2 b: the current I flowing over a potential barrier is
determined by the voltage-window eV = µR − µL defined by chemical potential of the left µL
and the right µR reservoir.

Each electron with energy ω, moving with velocity ±v(ω) carries the elementary charge e.
The number of electrons per energy is given by the density of states, ρn(ω). The distribution
of the right/left moving electrons, i.e. electrons with positive/negative velocity is given by the
Fermi-distribution function of the left/right reservoir fL/ fR. Whether or not an electron with
energy ω is transmitted through the one-dimensional system is given by the one particle trans-
mission probability Tn(ω), determined by the one-dimensional potential V1D

n (2.5). Integrating
overall energies ω and summing over all modes n gives the total current:

I = ∑
n

e
∫

dωρn(ω)vn(ω)Tn(ω) [ fL(ω)− fR(ω)] . (2.6)

In one dimension, the density of states is given by

ρ(ω) = 2 · 1
2π

dk
dω

, (2.7)

(the 2 is due to spin degeneracy) and the velocity is

v(ω) =
1
h̄

dω

dk
. (2.8)
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Together this yields

I = 2 ∑
n
· e
h

∫
dωTn(ω) [ fL(ω)− fR(ω)] . (2.9)

At zero temperature, the conductance is

G =
∂

∂Vsd
I =

2e
h

∂

∂Vsd

∫ µ+eVsd/2

µ−eVsd/2
dωTn(ω)

Vsd=0
=

2e2

h ∑
n
Tn(µ) , (2.10)

where Vsd is the source-drain-voltage. If Tn(µ) is either one or zero with N = ∑n Tn(µ) the
conductance is

G = NGQ, (2.11)

Consequently G is a stepwise increasing function of the gate voltage Vg (see figure 1.1). Note
that the fact that G is a quantized number originates from the relation between the density of
states and the velocity of Fermionic particles in one dimension:

ρ ∝
1
v

. (2.12)

2.2.3 Concrete form of the 1D Potential

To complete the considerations on the noninteracting model, I will discuss the form of the
one-dimensional potential V1D (2.5) for a single mode of the QPC. From now on we will only
consider one-dimensional potentials, hence we omit the superscript 1D. Since the potential has
a global maximum in the center of the QPC (otherwise the transmission would show sharp
resonances) we can choose our coordinates, such that the maximum is at x = 0, implying that
the potential has no component linear in x. Further we assume, that the potential is symmetric
around its maximum. Since the transmission will be dominated by the lowest-order terms we
will examine two potential forms shown in figure 2.3: A purely parabolic potential given by

V(2)(x) = Vg + µ− m
2h̄2 Ω2

xx2 (2.13)

(black line), and a purely quartic potential,

V(4)(x) = Vg + µ− m2

4h̄4 Ω3
xx4 (2.14)

(red line). The potential height Vg, mimics the role of gate voltage and is defined such that
when Vg = 0, the potential maximum is at the chemical potential, m is the effective mass of the
electron and Ωx is the characteristic geometric energy scale characterizing the effective barrier

width, lx =
√

h̄2

2mΩx
. The form for a generic even integer power n of x reads as

V(n)(x) = Vg + µ−Ωx

(
x

2 lx

)n

. (2.15)
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Figure 2.3: a Potentials V(2)(x) (2.13) and V(4)(x) (2.14) as a function of x. b Conductance
G/GQ as a function of potential height Vg for the potentials shown in a in corresponding colors

Figure 2.3 b shows the conductance G/GQ at zero temperature as a function of gate voltage
Vg for the quadratic potential (black line) and the quartic potential (red line).

We first note the salient features of such potential barriers: The conductance G/GQ goes
from one to zero if the potential height Vg crosses the chemical potential from below. The
width of this transition is proportional to the geometric energy scale Ωx, as can be derived by a
dimensional analysis, up to a dimensionless pre-factor. Once the maximum of the potential is
larger than the chemical potential, electrons can only tunnel through the barrier. This tunneling
is exponentially suppressed with barrier height.

The conductance G/GQ of the quadratic potential (black line) has a smooth monotonic tran-
sition from one to zero. For the purely parabolic form given by equation (2.13) , the conductance
is known analytically (Büttiker, 1990): G(Vg)/GQ = T (µ) with

T (ω) =
[
e−2π(ω−µ−Vg)/Ωx + 1

]−1
. (2.16)

In contrast, the conductance of the quartic potential (figure 2.3 a red line) shows oscilla-
tions for negative gate voltage. This fact seems surprising, since the potential is completely
smooth and one would not expect any backscattering, which causes an oscillatory behavior in
the transmission as a function of energy. We learn from this simple example, that oscillations in
the conductance do not necessarily point to a non-adiabatic potential. Conversely, however,we
can conclude that if the conductance shows nice plateaus, without any oscillations, it is a pro-
found assumption that the potential is smooth and has a large leading quadratic term. For that
reason, most of our research is focused either on the purely parabolic potential (2.13), as dis-
cussed in section 3.3.6 H, or the gaussian form used in chapter 5, which also has a large leading
quadratic dependence:

V(x) = (Vg + µ) exp
(
− (x/x0)2

1− (x/x0)2

)
. (2.17)
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Of course, many experimental conductance plots do show small oscillations in the plateau
similar to the conductance of the quartic potential shown as red line in figure 2.3 b. However,
including non-parabolic, and/or non-adiabatic potentials, would increase the parameter-space
extensively. In this work we therefore focus on the generic features, even present for a “perfect”
realization of a QPC. A first theoretical insight into the subject of non-parabolic QPC-potentials,
is given in Heyder et al. (2014), where we study the crossover from a QPC to a QD.

2.3 The Role of Interaction

Before proceeding with the discussion of QPCs we comment on the role of interaction, when it
becomes important, and what the correct effective one-dimensional form is.

2.3.1 Effective Interaction strength

Interaction is a dimensional quantity, thus a priori one cannot make any statement whether it
is large or not. Such a statement can only be made about a dimensionless quantity. For the
interaction the relevant dimensionless quantity is the interaction times density of states at the
chemical potential. In order to make this statement plausible, we perform a simple cartoon
calculation: Let us consider the spin susceptibility,

χ = ∂B(n↑ − n↓)
∣∣

B=0 , (2.18)

where nσ is the number of electrons with spin σ in the system. Above, the only consequence
of spin was to give a factor of two in the DOS (2.7). A magnetic field lifts the spin degeneracy
and the DOS explicitly depends on spin σ: Due to the Zeeman energy, the DOS ρ gets an linear
shift in energy ρσ = ρ(ω + σB), where σ = ↑, ↓ or +,−, and B represents the Zeeman energy.
Lets first discuss the case where the interaction U is zero. Then

χ = ∂B

∫
dω f (ω)

(
ρ↑(ω)− ρ↓(ω)

)∣∣∣∣
B=0

T=0
= ∂B

∫ µ

−∞
dω (ρ(ω + B/2)− ρ(ω− B/2))

∣∣∣∣
B=0

= ρ(µ) , (2.19)

which is the Pauli-susceptibility. Next we calculate the effects of interactions to first order.
For simplicity we take the interaction U as constant. Further since the spin-susceptibility is
the response factor associated with the force coupled to the spin degree of freedom, we take
U as the component of interactions which couples to the spin, i.e. the exchange part of the
interaction, which is a consequence of Pauli’s principle (see e.g. Sakurai, 1993, chapter 6.3).
Then the energy in first order ω

(1)
σ of an electron with spin sigma is given by its bare value ω

(0)
σ

less the Coulomb energy to first order, i.e. the noninteracting occupation of the opposite spin
n(0)

σ times the interaction U:

ω
(1)
σ = ω

(0)
σ − n(0)

σ U . (2.20)
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Defining an effective magnetic field which absorbs the effects of interaction

Beff = ω
(1)
↑ −ω

(1)
↓ = ω

(0)
↑ −ω

(0)
↓ +

(
n(0)
↑ − n(0)

↓
)

U = B +
(

n(0)
↑ − n(0)

↓
)

U , (2.21)

the spin-susceptibility is given by

χ = ∂B(n↑ − n↓)
∣∣

B=0 = ρ(µ) ∂BBeff
∣∣∣

B=0
= ρ(µ)(1 + ρ(µ)U) . (2.22)

As a result the spin-susceptibility is enhanced by the factor (1 + ρ(µ)U), thus interactions be-
come important if ρ(µ)U is of the order one. A similar chain of argument can be made for
each response quantity in any order of interaction. Note, that here the DOS ρ is the total DOS
integrated over space.

2.3.2 Effective one-dimensional Interaction

The world is three-dimensional, and so is the interaction between electrons, even if they live in
a one-dimensional system. Their interaction is determined by the three-dimensional solution
of the Poisson equation, the Coulomb potential:

U(r1, r2) =
e2

4π

1
|r1 − r2|

. (2.23)

This two particle interaction cannot be transformed into a one-dimensional interaction by sim-
ply replacing the three-dimensional position vectors r1/2 with the one-dimensional positions
x1/2. This would yield an infinite changing energy for any two overlapping wave functions.

In order to get the effective one-dimensional interaction for a specific system, one has to
integrate out the other space-dimensions, in our case the y- and z-dimension. To do so, one
has to know the confining wave functions in these directions, φx(y, z), provided one can make
a separation of variables in the spirit of equation (2.3). Then the effective one-dimensional
interaction is

U(x1, x2) =
e2

4π

∫
dz1dz2dy1dy2

|φx1(y1, z1)|2|φx2(y2, z2)|2√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

. (2.24)

In Lunde et al. (2009), this integral has been carried out analytically, for a two-dimensional
saddle-point potential and setting z2 − z1 = 0. The latter is of course a simplification, which
still can lead to an infinite charging energy. For most cases this integral has to be carried out
numerically, however, this goes beyond the scope of this work. We deduce two main properties
of the one-dimensional interaction from this integral form.

First, the interaction U(x1, x2) depends explicitly on both positions x1/2 and cannot be writ-
ten as a function of their difference x2 − x1. Second, the interaction is larger for those positions
where the confinement in y and z direction is stronger, and thus the square of the absolute
value |φx1(y1, z1)|2 is larger. This again reflects the fact that the interaction times the DOS is the
relevant strength of interaction.
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Note, that equation (2.23) and thus equation (2.24) applies only for the vacuum. In a typical
setup, the QPC is surrounded by metallic gates, which have a large influence due to their high
charge density. In order to get a realistic potential, one has to apply the method of mirror
charges, which screens the potential.

Such a realistic treatment of interaction is beyond the scope of this work. We rather investi-
gate the effects of a very short-ranged interaction.

2.3.3 Discrete model with Interactions

In order to calculate physical quantities, especially for the case where interactions are taken into
account, it is convenient to discretize the one-dimensional model (2.4). The model Hamiltonian
in continuous space without spin reads as

H0 = − h̄2

2m
∂2

x + V(x) . (2.25)

We set x = ja, where a is the lattice-spacing and j ∈ Z is the position index. The discrete
version of the potential then is Vj = V(ja) and the first and second spacial derivatives read as

∂xψ(x) =
ψ((j+1)a)− ψ(ja)

a
, (2.26a)

∂2
xψ(x) =

ψ((j+1)a)− 2ψ(ja) + ψ((j−1)a)
a2 . (2.26b)

Now we can write the Hamiltonian in the discrete form using second quantization, and add a
Zeeman term

H0 = ∑
j,σ

[(
Vj −

σ

2
B + 2τ

)
d†

jσdj − τ
(

d†
j+1σdjσ + h.c.

)]
, (2.27)

where d†
jσ (djσ) creates (annihilates) an electron with spin σ on site j. We combined the pre-

factors into an energy called hopping amplitude,

τ =
h̄2

2ma2 . (2.28)

The total Hamiltonian is given by

H = H0 + Hint (2.29)

with a short-ranged, i.e. onsite interaction given by

Hint = ∑
j

Ujnj↑nj↓ , (2.30)

where njσ = d†
jσdjσ counts the number of electrons on site j with spin σ. Uj is larger where the

confinement is smaller, i.e. it is largest in the center of the QPC and goes to zero where the
system is actually two-dimensional. For this purely onsite interaction the exchange interaction
is equal to the density-density interaction. If the interaction is long-ranged the exchange inter-
action is smaller than the density-density interaction. Hence in the present model the effects
at finite fields are accentuated relative to spin symmetric effects, such as temperature effects or
charge-susceptibility.
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2.4 The origin of the 0.7-anomaly

After having discussed the noninteracting picture of QPCs we address properties which cannot
be explained without considering many-body effects. The most prominent of these properties
are all related to the regime where the conductance takes values around 0.7GQ, and thus are
collectively known as the 0.7 anomaly. Anomalous in this context means, that the features
associated with the 0.7 anomaly cannot be explained in a noninteracting picture. In this section
we will give an intuitive explanation for why interactions are important this regime. Later
in this chapter, in section 2.5, we will address these features one by one, and explain on the
intuitive level why they are affected by interactions. In chapter 5 we will corroborate these
statements by detailed calculations which are also published in our NATURE article (Bauer
et al., 2013).

First we define the regime of interest: When the gate voltage is tuned such that the conduc-
tance takes values between 0.5GQ and 0.9GQ, we call the QPC “sub-open”. The potential height
Vg, measured w.r.t. the chemical potential, then has a small negative value (see figure 2.3):

0 > Vg & −Ωx/2 . (2.31)

In this sub-open regime electrons at the chemical potential move particular slowly in the center
of the QPC, since their kinetic energy ωk gets as small as the difference of the chemical potential
and potential maximum, ωmin

k = µ− V(0) = −Vg. This low kinetic energy has an important
impact in the DOS, which is inversely proportional to the velocity as stated in equation (2.12).
As a consequence the density of states at the chemical potential is particularly high in the
center of the QPC. Thus the effective interaction Uρ(µ) in this regime is large, leading to the
anomalous behavior.

This simple chain of arguments

« slow electrons – large DOS – large effective interaction – anomalous behavior »

is the essence of our explanation for the 0.7-anomaly. This argument explains why this regime
is distinct and why one cannot apply the noninteracting picture here. As a direct consequence
this picture explains why all expectations derived under the assumption of non-interacting
particles fail in the sub-opne regime.

Of course these arguments explain why interactions are crucial and thus why the non-
interaction picture breaks down. In order to provide a convincing argument, that this picture
is indeed correct, one needs to reproduce as many features as possible with this model. Most of
this work is dedicated to pursuing this goal. The first step is to get a detailed understanding of
the noninteracting DOS. Figure 2.4 a shows the local DOS in grey scale as a function of energy
ω and position x for a parabolic potential barrier equation (2.13) (black line) with Vg = 0. In
regions where electrons are slow, the LDOS is enhanced (dark region). In a classical picture the
velocity goes to zero at the classical turning-point and thus DOS and therefore the strength of
interaction diverges. However, quantum-mechanically in an inhomogeneous system the veloc-
ity can never reach zero. Hence the divergence in the DOS is smeared out. The scale on which
this happens is given by the geometric energy-scale Ωx. The maximum of the DOS lies O(Ωx)

higher then the potential where its value is proportional to
√

m/h̄3Ωx (see 2.4 b black solid
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Figure 2.4: a LDOS ρ(x, ω) as a function of position x and energy ω, measured w.r.t. the
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for different temperatures T between T = 0 (uppermost curve) and T = 0.3K (lowest curve),
copyright (2008) by Springer-Verlag.

line), meaning that the DOS is highest in the middle of the sub-open regime (compare red line
in 2.4 b).

It is worth noting, that both, the conductance quantization, and the 0.7-anomaly are results
of one distinctive feature of electrons in one dimension: their density of states is inversely
proportional to their velocity.

2.4.1 Related Models

The picture presented above provides a natural explanation for the origin of the anomalous
behavior in the sub-open regime. This point of view has already been presented by others, e.g.
Sloggett et al. (2008) or Lunde et al. (2009), however, despite its simplicity, it wasn’t published
prominently and was rarely cited. We will briefly discuss these two works.

Kinetic equation

Sloggett et al. (2008) have the same line of arguments, which they express via the “the con-
ducting wave-functions” which become peaked “enhancing the electron-electron interaction”.
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Further they argue that “away from the contact the interaction is strongly suppressed by screen-
ing”. Hence the only input into their calculation is the LDOS in the center of the QPC of a
parabolic potential barrier (black solid line in figure 2.4 b). This LDOS enters in the purely neg-
ative correction to the non-interaction conductance. The final result of this calculation in shown
in figure 2.4 c. This is an impressive example of how the right intuition for the physical situ-
ation can directly lead to astonishing results, which shows an almost perfect agreement with
experiments (compare e.g. figure 1.2 or figure 2.5). The downside of such a calculation is that
it is constructed such that the correction to the conductance is purely negative and strongest in
the sub-open regime. Thus it compulsorily leads to this results, not giving any additional cor-
roboration for the physical picture. Further, the assumption that the zero temperature (T = 0)
conductance is equal to the non-interaction one and that interaction are only present in the
center of the QPC is a huge simplification. Nevertheless, the calculation can serve as a nice
illustration of the very convincing argument.

Momentum-nonconserving backscattering using WKB-Wavefunctions

Another analytic calculation for a purely parabolic potential was presented by Lunde et al.
(2009). This calculation uses semiclassical Wentzel, Kramers, Brillouin (WKB) wave-functions
(see e.g. Sakurai, 1993, chapter 2.4) , thereby taking into account the real-space structure of the
system. The semiclassical approximation is only valid if the kinetic energy ωk is larger than
Ωx, since in this approximation the squared amplitude of the wave-function, i.e. the LDOS,
diverges like 1/

√
ωk. In their approach Lunde et al. (2009) only take Fock-like diagrams into

account, which have an influence only at finite temperature and finite source-drain-voltage,
but not at finite magnetic field. An interaction enhanced backscattering as a function of mag-
netic field would have to be described by Hartree-type diagrams, which, they do not treat
explicitly but they absorb into the bare potential. Further, the Hartree type diagrams would
also alter the temperature and voltage dependence. They show, amongst others, that a sin-
gle momentum-non-conserving scattering process, where two electrons approach the contact
and one electron gets reflected while the other gets transmitted is the leading process which
increases exponentially when the potential top approaches the chemical potential. This pro-
cess leads to an enhanced backscattering in the sub-open regime, qualitatively explaining the
anomalous behavior.

2.5 Experimental features of the 0.7-anomaly

Next, we will give a brief overview of the various experimental features, which are related to
the 0.7-anomaly. This overview does not claim to be complete or detailed in every aspect, but
rather mentions only the most important features and those which are connected to our work.
For a comprehensive summary of experimental results as well as a brief overview of theoretical
publications see Micolich (2011).
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Figure 2.5: a Measured conductance G as a function of applied gate voltage Vg for different
temperatures at zero magnetic field. b Same as in a but for different magnetic fields at the
lowest temperature T = 20 mK. Data from Borowsky (2011).

2.5.1 Temperature Dependence

At temperatures around 1K, measured linear conductance curves of most clean QPCs show a
pronounced shoulder at around 0.7GQ, as shown in figure 2.5 a green line, and in figure 1.2 a
(see also Thomas et al., 1998). This shoulder gradually weakens if temperature is lowered.
Since in most measurements the temperature is large enough to see this shoulder, this effect is
certainly the most prominent one and is the reason why the phenomenology in this parameter
regime is known as the 0.7-anomaly.

In the noninteracting picture, the effect of temperature is to smear out the conductance in
a symmetric fashion. This smearing out gets relevant when the temperature is of the order of
the geometric energy scale Ωx/(2π). Typically Ωx ∼ 1meV wich means Ωx/(2π) ∼ 2K. So
in order to explain the temperature-dependence in this regime one needs to invoke interacting
many body effects. As explained in detail in chapter 5 (see also Bauer et al., 2013) our picture
gives a natural explanation why the conductance is affected most in the sub-open. The large
LDOS leads to a combination of elastic backscattering due to additional charge at finite temper-
ature, and strong inelastic scattering due to the large phase-space in the temperature window
around the fermi-surface.

A very important question is how the conductance curve is shaped in the limit where tem-
perature goes to zero. In experiments it is of course impossible to reach zero temperature,
but modern dilution refrigerators can reach temperatures down to several milli-Kelvin, which
would be low enough to give an answer to this question. However, at these temperatures en-
ergy transfer from electrons to phonons is very inefficient, and the temperature of the electron
bath is not necessarily equal to the phonon temperature. The former is heated by the measur-
ing process and by external wiring. Hence, the electronic temperature is often higher than the
dilution temperature, which is usually stated in experimental publications as temperature. In
the measurements shown in figure 2.5 a black line, it was ensured, that the shape of the conduc-
tance curve has saturated as a function of temperature, and will hardly change if temperature
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is lowered even further. This shows, that the conductance curve is still asymmetric at zero
temperature. This feature is reproduced by our calculations using fRG, and we give a detailed
explanation in chapter 5 (see also Bauer et al., 2013).

2.5.2 Dependence on Magnetic Field

In this work we only consider the situation where the magnetic field is parallel to the plane
of the 2DES. Hence, the magnetic field does not couple to motion of the electrons, but to the
spin degree of freedom. A finite magnetic field lifts the degeneracy of spin up and spin down,
leading to a conductance that is quantized in units of e2/h = GQ/2. This is seen in experiments
at large fields (blue line in figure 2.5 b). In contrast to the noninteracting picture, where the
spin up and spin down conductance step are shifted in Vg by the same amount in opposite
directions, in the measurements the position of the first conductance step is almost unchanged
w.r.t. zero magnetic field, while the second step is strongly shifted. This shift corresponds to
an energy which is about two to three times larger than the bulk Zeeman energy implying an
enhanced electon g-factor (Koop et al., 2007). From the noninteracting picture one expects that
the two spin-degenerate conductance steps should be identical in shape. The experimental
data shows a shoulder at around 0.7GQ at low fields, similar to the 0.7-shoulder at finite tem-
perature. All these features point to a large exchange interaction in the QPC, as given by an
interaction term (2.30).

These features are reproduced by our calculations using fRG and SOPT, and their origin is
explained in detail section 3.3.6 (see also Bauer et al., 2014) and chapter 5 (see also Bauer et al.,
2013), using a simple density-density interaction argument: at finite magnetic field, spin up
electrons flow into the QPC, such that spin down electrons not only have to overcome the
Zeeman energy but also the Coulomb repulsion of the additional spin up electrons. Since
the inflow of spin up electrons depends on the DOS, this effect is strongest in the sub-open
regime. This intuitive picture might suggest that it is sufficient to perform a purely Hartree-
type calculation to get these results. This turns out to be true, but including Fock-type diagrams
into the calculation improves the agreement with experimental data.

Furthermore, we discuss the interplay of magnetic field with spin orbit interaction (SOI)
in chapter 6. The latter has an influence on the dispersion relation, and thus alters the DOS,
ρ = ∂k/∂ω, leading to additional features if the spin orbit energy ESOI = α2m/2h̄2 (where α
characterizes the strength of spin orbit coupling (see e.g. Winkler, 2003)) is of the order of the
geometric energy scale Ωx. We present detailed theoretical predictions; their future experimen-
tal tests will judge the validity of the model presented in this work.

2.5.3 Finite Source-Drain Voltage

So far, we only considered the linear response conductance, i.e. the limit where the applied
source-drain voltage, Vsd, goes to zero. At finite voltage, the non-linear conductance Gnl =
∂I/∂Vsd shows a large variety of features. Figure 2.6 a shows Gnl as a function of applied volt-
age for different gate voltages. For those values of gate voltage where the linear conductance
G/GQ rises from zero to one, the nonlinear conductance has a well pronounced narrow maxi-
mum at zero voltage, the zero-bias peak (ZBP). This feature has been attributed to interaction
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Figure 2.6: a Non-linear conductance Gnl = ∂I/∂Vsd as a function of applied voltage Vsd
for different gate voltages Vg in the regime where the linear conductance G/GQ takes values
between zero and one. Data from Borowsky (2011). b simplified circuit diagram of the mea-
surement setup. The current I resulting from an applied voltage Vexp, not only is determined by
the resistance of the QPC RQPC, but also by the resistance of the wiring and measuring devices
R1 and R2. Applying a voltage increases the chemical potential on both sides µL and µR, but
with a different magnitude. The voltage is defined by the resulting difference of the chemical
potential eVsd = µR − µL

effects, which is not entirely correct. Consider the non-interacting, non-linear zero-temperature
conductance following equation (2.10)

Gnl =
GQ

2
[T (eVsd/2) + T (−eVsd/2)] . (2.32)

With the transmission (2.16) this conductance has a ZBP for Vg < 0, i.e. when G > 0.5GQ. To be
more general, there is a ZBP in the non-interacting conductance whenever T (ω) is a concave
function of ω around ω = 0.

Interactions modify this in two ways: the width of the ZBP is much smaller than in the
non-interacting picture, and a ZBP arises even for gate voltages where T (ω) is convex. These
two features are reproduced by our calculations using SOPT, and the microscopic mechanism,
which is similar to the mechanism at finite temperature, is explained in detail in chapter 5, (see
also Bauer et al., 2013).

Next, we will discuss the validity of the theoretical model at finite voltage. In the above
equation (2.32), we assumed that the voltage is applied symmetrically, i.e. µL = −eVsd/2 and
µR = eVsd/2. However, this is typically not the case in the experimental setup. Figure 2.6 b
shows a simplified circuit diagram of a typical setup. Usually all voltages are applied w.r.t. a
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common ground. Due to the fact that the wiring on both sides of the QPC sample has a finite
resistance, R1 and R2, an applied voltage Vexp increases the chemical potentials µL and µR on
both sides. The resistance of the QPC, RQPC, dominates the total resistance, however, R1 and
R2 are of order 2kΩ, which is non-negligible w.r.t. RQPC, which is of order 1/GQ ' 12.9kΩ.
Expressing the chemical potentials in terms of the source-drain voltage eVsd = µr − µL gives

µL =
R1

RQPC
eVsd , µR =

(
R1

RQPC
+ 1
)

eVsd , (2.33)

where both µL and µR have the same sign as Vsd. Nevertheless the conductance as a function
of applied voltage is almost symmetric (see figure 2.6 a). Using these chemical potentials in the
theoretical calculation would yield completely asymmetric curves, even if interactions would
be taken into account. The major difference between the experiment and the theoretical model
is that in the experimental setup, the leads are extended 2DESs. Due to their extension they
also act like gates on the QPC potential. In the model we assumed that the latter is static, and
results only from the gate structure controlled by Vg.

Let’s estimate the effect of voltage onto the potential. The potential at finite voltage will be
the sum of the bare potential and a potential resulting from the two leads:

V(x) = V0(x) + Vl(x) . (2.34)

We assume that Vl changes linearly between the two leads over their spatial separation d:

Vl(x) = µL +
Vsd

d
(x + d/2) . (2.35)

Then

V(x) = Vg −m
Ω2

x

2h̄2 x2 + µL +
Vsd

d
(x + d/2)

= Vg + µ−m
Ω2

x

2h̄2

(
x− eVsdh̄2

dmΩ2
x

)2

−Ωx

(
lx

d

)2 ( eVsd

Ωx

)2

, (2.36)

with µ = µL +
Vsd
2 = µL+µR

2 . Hence, for small applied voltage we can indeed measure every-
thing w.r.t. the average chemical potential µ, with µL/R = µ∓ Vsd

2 . For large voltages eVsd & Ωx
higher order terms will become important. In addition to the non-linear term in equation (2.36),
there will be non-linear terms in Vl(x). All these terms will depend on many details. An es-
timate for these terms would require solving a three-dimensional Poisson equation, which is
beyond the scope of this work. In this work we only consider the case eVsd < Ωx.

One of the features at large voltage is the side-peak structure arising for conductance values
around 0.5GQ (see figure 2.6 a). This feature is reminiscent of the Hubbard side peak arising
for quantum dots in the Kondo regime (see section 2.6.2). We are not able to reproduce this
feature using SOPT. The reason is that, additionally to the question of the appropriate potential
at large voltage, there are theoretical issues in this parameter regime: The SOPT is an approach
that is perturbative in the interaction and is less reliable or large energies, and thus for large
voltage. Whether or not the proposed model reproduces this feature, has to be answered with
a different method, more suited for this regime, and is left for future studies.
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Figure 2.7: a Conductance (black line), field scale B∗ (red line) and temperature scale T∗ (blue
line) on a log-scale as a function of applied gate voltage Vg. Data from Borowsky (2011).
b Shot-noise factor as a function function of conductance G. Reprinted figure from DiCarlo
et al. (2006), copyright (2006) by the American Physical Society.

2.5.4 Low Energy Scale

The dependence of the conductance on temperature T, magnetic field B and voltage Vsd, at
low values, can be analyzed in terms of the low-energy scales T∗, B∗ and Vsd∗ defined via the
quadratic response of the conductance on these parameters:

Gnl(T, B, Vsd)

G(0, 0, 0)
= 1−

(
T
T∗

)2

−
(

B
B∗

)2

−
(

Vsd

Vsd∗

)2

. (2.37)

Such an analysis was first made by Cronenwett et al. (2002) for temperature and voltage. Mo-
tivated by the Kondo effect, they called these scales Kondo temperature TK, and fitted the
temperature dependence with the function

G =
e2

h

(
f
(

T
TK

)
+ 1
)

, f (x) =
[
1 + (21/s − 1)x2

]s
, (2.38)

with s = 0.22, which is also motivated by the Kondo effect. Using this function they assumed,
that the conductance G/GQ always reaches unity at T = 0, and goes to 1

2 for large temperature.
However, these assumptions do not hold general. In the regime where the former does hold,
this definition is equivalent to our definition of T∗.

These scales,T∗, B∗ and Vsd∗, turn out to depend exponentially on gate volage in the sub-
open regime

T∗ ∝ B∗ ∝ Vsd∗ ∝ ecVg , (2.39)

shown for B∗ and T∗ in figure 2.7 a (c is a geometry dependent constant). In first instance this
may indeed sound reminescent of the Kondo-scale Tk seen in QDs, for which TK ∝ ecKV2

g . The
conclusion of Cronenwett et al. (2002) was that this scale dependence is a result of interactions.
However, the non-interacting transmission for a parabolic QPC (2.16), directly leads to the
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exponential dependence, due to the occurrence of the exponential ω-dependence. A detailed
calculation can be found in section S-5.A in the supplementary information of our NATURE

publication (see chapter 5 or Bauer et al., 2013). The dependence of the low energy scale on
interaction and geometry is discussed in section S-5.B and S-5.C respectively.

2.5.5 Shot Noise

DiCarlo et al. (2006) presented shot noise data measured for the first conductance step of a
QPC. The results are shown in figure 2.7 b. In the regime where the conductance takes values
around 0.7GQ, the shot-noise is reduced with respect to its non-interacting value (Blanter and
Büttiker, 2000)

N =
1
2 ∑

σ

Tσ(1− Tσ) , (2.40)

shown as dashed line in figure 2.7. If T↑ = T↓ and T = 0 equation (2.40) still holds at finite
interaction. So if there is no spin polarization (see section 2.6.1), the reduction of shot noise is
a finite temperature effect, where the shot noise is difficult to calculate, and goes beyond the
scope of this work. At T = 0 we can reproduce the evolution of the shot noise factor with
magnetic field B using fRG, as shown in our NATURE publication (see chapter 5, Bauer et al.,
2013, see also section S-3.A of the supplementary information).

2.6 Other Theoretical Models

Over the years many physicists have approached the problem of the 0.7-anomaly, and thus
a lot of ideas for what might be the origin of this phenomena came up. Some of these ideas
are still being pursued. At the moment there is a controversial discussion, about what really
happens inside a QPC in the regime of the 0.7-anomaly. We will briefly introduce two of the
most prominent models.

2.6.1 Spin Polarization

In the first publication where the anomalous behavior, which later became known as the 0.7-
anomaly, was identified, Thomas et al. (1996) also introduced the first idea about what might
be its origin: They suggested that the current is spin polarized, such that one spin-species fully
contributes to the conductance while the other spin species is partially reflected, leading to a
conductance between 0.5GQ and GQ. This view arose, because the double-step structure, which
can be explained at large magnetic fields (see section 2.5.2) is still present at zero field. Thomas
et al. (1996) draw the conclusion, that there might be a spontaneous symmetry breaking lead-
ing to an intrinsic magnetic field, explaining the phenomena. This argument is corroborated by
theoretical calculations, e.g. by Berggren and Yakimenko (2002). Most of the published calcu-
lations are performed in an two-dimensional system within a three-dimensional environment
with Coulomb interaction, however, very similar results can be obtained for a one-dimensional
system with point-like interaction. Interactions are incorporated in a self-consistent Hartree
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approximation resulting in an effective potential

Veff(x) = V(x) + Σ(x) , (2.41)

where V is the bare potential, measured w.r.t. the chemical potential, and Σ the self-energy
describing the effects of interaction. The self-consistent Hartree-equation for Σ reads as

Σ = U · n(Σ) = U
∫

dω f (ω)ρ(ω, Σ) , (2.42)

where U is the interaction, n(Σ) the density which depends on the self-energy, f the fermi
function and ρ the DOS. This calculation is relatively simple, and its result can be illustrated by
a homogeneous one-dimensional system where

n ∝
√
−V − Σ , (2.43)

which is nonzero only for V < 0. Absorbing all pre-factors into the interaction U gives

Σ = U
√
−V − Σ . (2.44)

Figure 2.8 illustrates the solution of this equation: both the left hand side (black line) and the
right hand side (red line) of this equation are plotted as a function of Σ. The unique solution is
the intersection of these lines. We now add the spin degree of freedom and set the interaction
U equal to the exchange interaction, then

Σσ = U · nσ(Σ) = U
√
−V − Σσ = U

√
−V −U

√
−V − Σσ , (2.45)

whose right hand side is plotted as green line in figure 2.8, and intersects with the identity
(black line) in three points, providing three solutions of equation (2.45). One of them is equal
to the solution of the spin symmetric equation (2.44), while the other two provide symmetry
broken solutions.

To incorporate the QPC potential one can use the model equation (2.29), i.e. the chain model
with onsite interaction. Due to the inhomogeneity the DOS ρ(ω) is smeared out (see figure 2.4).
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a
b

Figure 2.9: a Quantum dot structure reprinted from Goldhaber-Gordon et al. (1998), copyright
(1998) by Nature Publishing Group. b Non-linear conductance Gnl = dI/dVsd as a function
of applied voltage Vsd for different temperatures between 15mK (black line) and 900mK (red
line). Reprinted figure from van der Wiel et al. (2000), copyright (2000) by AAAS.

This has two consequences: First, the density n(Σ) is also smeared out, and thus the smallest
solution for Σ is nonzero. Second, the DOS at the chemical potential ρ(µ) is bounded and
symmetry-broken solutions exist only if Uρ(µ) > 1.

Solving the self-consistent Hartree equations in two dimensions does not lead to any addi-
tional qualitative features. Nevertheless a two-dimensional calculation is useful to derive the
QPC-potential from first principles. We believe however, that the symmetric solution is the
physical solution, while the other two solutions are artifacts of the approach. This assump-
tion is corroborated by experimental results, which point to a Fermi-liquid behavior. For a
detailed discussion see section S-2.C in the supplementary information of our NATURE article
(see chapter 5, Bauer et al., 2013).

To summarize, the idea of spin polarization is actually based on the same or similar model
as equation (2.29). Further, as in our scenario, the relevant scale for the interaction is Uρ(µ).
What differs is the interpretation of what happens for such a model. In contrast to the propo-
nents of the spontaneous spin polarization scenario, we do not believe that there is any kind of
symmetry breaking in a one-dimensional system.

The above calculation strikes a nerve of a numerical issue: Suppose you want to incorpo-
rate effects of interactions via the self-consistent Hartree equation (2.42), and want to get the
symmetric solution. An iterative algorithm however, will always lead to the symmetry-broken
solution (if the latter exists, i.e. if Uρ(µ) > 1). At zero magnetic field, this is not a big problem,
since one can solve the equation with the boundary condition Σ↑ = Σ↓, and as a consequence
the solution is unique. However, at finite magnetic field, there are three solutions and in our
experience numerical algorithms tend to flow into the solution corresponding to the symmetry
broken solution at zero field.
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2.6.2 Kondo Model – Formation of a localized State

In 2002 two publications, an experimental paper by Cronenwett et al. (2002), and a theoretical
paper by Meir et al. (2002), linked the 0.7-anomaly to the Kondo effect seen in quantum dots
(QDs). A QD is a small island for electrons, which is weakly coupled to an electron bath with
continuous dispersion. A QD can be realized in a 2DEG by a structure such as that shown in
figure 2.9, which is essentially a series of two QPCs. The number of electrons in the center can
be tuned by an additional independent gate.

The idea is that in the regime of the 0.7-anomaly, a localized state forms inside the QPC.
The anomalous behavior then is explained in terms of the Kondo effect. The Kondo effect is
a very complicated, but well-understood many-body state, which is present in quantum dots
and other kinds of artificial and non-artificial atoms, which have two degenerate states, and
large coulomb repulsion which prevents them from being fully occupied. A nice introduction
into this subject is given by the review of Kouwenhoven and Glazman (2001).

The conclusion that the 0.7-anomaly is related to the Kondo effect was drawn mainly be-
cause of the similarities in the shape of the conductance as a function of source-drain voltage.
The nonlinear conductance as a function of applied voltage for a QD is shown in figure 2.8. Its
shape is similar to that of the non-linear conductance of a QPC, shown in figure 2.6. However,
there are important differences beween these curves. In a QD, the conductance G/GQ at zero
voltage reaches unity.1 This is a central aspect in the Kondo effect: The local electron forms a
many-body singlet state with the electrons in the bath, lying at the Fermi energy. As a result at
zero temperature there is no backscattering. This is not the case in the QPC, and all other prop-
erties of QPCs differ in many aspects from the properties of QDs. In order to make concrete
this idea, Meir et al. (2002) proposed a modified model for the localized state of a QPC, where
in contrast to the common model for a QD, the localized state is only coupled to the energies
of the bath, which are larger then the energy of the localized state. However, until now no
rigorous calculation has been presented, which shows, that this model indeed reproduces the
phenomenology of the 0.7-anomaly. Further, no microscopic mechanism has been presented
which leads to this asymmetric coupling.

In our opinion, up to now there is no conclusive evidence that supports the theory that the
0.7 anomaly can be explained in terms of a localized state. The similarities of these two effects
originate in the fact, that both non-interacting systems have a peaked DOS: a Lorenz-curve in
the case of the QD and the smeared van Hove singularity (see figure 2.4) in the case of a QPC.
The differences between these two systems can be explained by the many differences of the
non-interacting DOS (see discussion in section S-4.C of the supplementary information of our
NATURE article, chapter 5).

The fact that the 0.7-anomaly is not related to a localized state, does not imply, that the
formation of a localized state inside a QPC is not possible. In long QPC or quantum wires it is
expected that electrons form a Wigner crystal at low density, which is shown e.g. by Güçlü et al.
(2009). In this regime, the QPC is expected to show all features of a QD, which are different
from the features of the 0.7-anomaly. Since there is a continuous transition between the two
extrema, namely the 0.7 regime and the formation of a localized state, one can also get some

1note that in figure 2.8, the conductance is plotted in units of e2/h = GQ/2.
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kind of mixing of these two situations. A detailed discussion of this transition is beyond the
scope of this work; however, we claim that all these effects can be understood in terms of a
continuous modification of the potential, which will result in a continuous deformation of the
DOS, from the smeared van Hove singularity to a peak with Lorenzian shape.



Chapter 3

Functional Renormalization Group

In this chapter we derive the fRG equations, and describe the approximations used to treat
one-dimensional chain models with on-site interactions. We use the fRG in its one-particle
irreducible representation, i.e. a set of hierarchical ordinary differential equations in the ver-
tex functions. The terminology “one-particle irreducible” originates from the fact that vertex
functions have the diagrammatic property of being one-particle irreducible. In this work dia-
grammatic concepts are only used for illustrative purposes. A diagrammatic definition of these
objects in the context of fRG, as well as a purely diagrammatic derivation of fRG, is given in
the PhD thesis of Jakobs (2009). In this chapter we review the derivation of the fRG equation
within the functional integral formulation. In the following we presume a detailed knowledge
of functional integrals in the coherent state representation using Grassmann algebra, which
is introduced in the book of Negele and Orland (1988) in the Matsubara formalism, and in
the review of Kamenev and Levchenko (2009) in the Keldysh formalism. Both formalisms are
introduced in the context of fRG in the thesis of Karrasch (2010).

We will define Green’s and vertex functions via the action S (section 3.1), and derive the fRG
equations (section 3.2) without defining the action S explicitly. The formalism isi fully specified,
once the action has been defined, which we will do before introducing the approximations
(section 3.3).

We are only interested in describing electrons, thus we restrict ourselves to fermions. An
introduction to fRG in Matsubara formalism for both fermions and bosons can be found in the
lecture notes of Meden (2002).

The derivation of the fRG equations presented in this chapter is a generalized version of the
derivation presented in my diploma thesis (Bauer, 2008). The latter is based on the lecture notes
of Meden (2002) and the diploma thesis of Karrasch (2006). In his PhD thesis, Karrasch (2010)
generalized his presentation to simultaneously apply to the Matsubara and Keldysh formalism.
I will do the same here, with some minor differences in definitions and notations. I recommend
his thesis for those who are interested in more details and examples.
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3.1 Green’s and Vertex Functions

3.1.1 Definitions of Green’s and Vertex Functions

Let S be an action, {ψ} and {η} sets of Grassmann variables (see Negele and Orland, 1988,
chapter 1.5 for a precise definition) and ψk the conjugate of ψk. k is a composite index, carry-
ing all phase-space information, i.e. time or energy, quantum numbers etc.. (ψ, η) is a scalar
product defined by (ψ, η) := ∑k ψkηk. The action defines the generating functional of Green’s
functions:

W ({η} , {η}) = 1
Z
∫
Dψψ exp

(
−κS

(
{ψ}, {ψ}

)
− (ψ, η)− (η, ψ)

)
. (3.1)

where
∫
Dψψ is a coherent-state path integral (see Negele and Orland, 1988, chapter 2.2). W

defines the m-particle Green’s function

Gm(k′1, . . . , k′m, k1, . . . , km) : = κm δm

δηk′1
· · · δηk′m

δm

δηk1 · · · δηkm

W ({η} , {η})
∣∣∣∣∣
η=0=η

= κm 1
Z
∫
Dψψ ψψ exp (−κS)

= (−κ)m
〈

ψk′1
. . . ψk′m ψk1

. . . ψkm

〉
. (3.2)

where κ is a complex number. In this work we mainly use the Matsubara formalism, for which
κ = 1 (see Negele and Orland, 1988, chapter 2.2). Further we use the fRG equation of the
self-energy, to derive a conductance formula in Keldysh formalism, where κ = i (see Kamenev
and Levchenko, 2009, chapter 5.1). My definition of the scalar product (·, ·) differs by a factor
of κ from the definition given in Karrasch (2010). This affects the definition of W but not the
definition of the Green’s functions.

The action shall have a term purely quadratic in ψ, S0, and a term quartic in ψ, Sint:1

S = S0 + Sint . (3.3)

Let G0
m be the m-particle Green’s function of S0, with the shorthand G0 = G0

1 to be called bare
Green’s function, then S0 can be written as

S0 = −
(

ψ,
[
G0]−1

ψ
)

. (3.4)

Further we define the m-particle connected Green’s function,

Gc
m(k

′
1, . . . , k′m, k1, . . . , km) : = κm δm

δηk′1
· · · δηk′m

δm

δηk1 · · · δηkm

W c ({η} , {η})
∣∣∣∣∣
η=0=η

= (−κ)m
〈

ψk′1
. . . ψk′m ψk1

. . . ψkm

〉
c

, (3.5)

1Sint can of course also contain terms quadratic in ψ.
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with

W c = lnW , (3.6)

and the vertex functions

γm(k′1, . . . , k′m; k1, . . . , km) = κ−mν−m+1 δm

δφk′1
· · · δφk′m

δm

δφk1 · · · δφkm

Γ
({

φ
}

, {φ}
)
∣∣∣∣∣
φ=0=φ

, (3.7)

where ν is a constant and Γ is the Legendre transform ofW c,

Γ
({

φ
}

, {φ}
)
= −W c ({η} , {η})−

(
φ, η

)
− (η, φ) + κ

(
φ,
[
G0]−1

φ
)

, (3.8)

with

φk = −
δ

δηk
W c ({η} , {η}) , φk =

δ

δηk
W c ({η} , {η}) . (3.9)

Note that in (3.8) we added an extra term to the common definition of a Legendre trans-
formation. This modification influences Γ only in the term quadratic in φ, and thus the one-
particle vertex γ1. It is needed to be consistent with the usual diagrammatic definition of vertex
functions: The n-particle vertex functions are defined by the sum of all one-particle irreducible
diagrams with n amputated incoming lines and n amputated outgoing lines. This definition
will not be used later on, for a precise definition of lines and diagrams see Jakobs (2009). Further
we included the prefactor ν−m+1 in the definition of the vertex functions, which is not present
in the corresponding definitions in the works of Karrasch (2010) or Metzner et al. (2012). We
included this factor in order to be more flexible, e.g. in section 3.3 we want to define the vertex
functions to have all dimension of energy, which for the definition of the action (3.57) is only
possible with such a term.

3.1.2 Relation between Vertex and Green’s Functions

In this section we will derive some identities which show the relations between vertex and
Green’s functions. These identities will be used in the derivation of the fRG equations.

General Relations

The fields defined in (3.9) satisfy the identities

δφk′

δφk
= δk,k′ =

δφk′

δφk
,

δφk′

δφk
= 0 =

δφk′

δφk
. (3.10)
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Differentiating the generating functional of the vertex function with respect to these fields
yields

δ

δφk
Γ
({

φ
}

, {φ}
) 3.8
= ∑

q

[
−δW c

δηq

δηq

δφk
− δW c

δηq

δηq

δφk
+ φq

δηq

δφk
−

δηq

δφk
φq − κφq

[
G0]−1

q,k

]
+ ηk

3.9
= ηk − κ ∑

q
φq
[
G0]−1

q,k (3.11)

and

δ

δφk
Γ
({

φ
}

, {φ}
) 3.8
= ∑

q

[
−δW c

δηq

δηq

δφk
− δW c

δηq

δηq

δφk
+ φq

δηq

δφk
−

δηq

δφk
φq + κφq

[
G0]−1

q,k

]
− ηk

3.9
= −ηk + κ ∑

q

[
G0]−1

q,k φq. (3.12)

Differentiating (3.11) with respect to φk′ and (3.12) with respect to φk′ and solving both equa-
tions for the first term on the r.h.s. yields

δηk
δφk′

=
δ2Γ

δφk′δφk
+ κ

[
G0]−1

k′,k ,

δηk

δφk′
= − δ2Γ

δφk′δφk
+ κ

[
G0]−1

k,k′ .

(3.13)

Note the different order of k and k′ of the free propagator. Using these identities one gets

δk,k′ =
δφk

δφk′

3.9
= − δ

δφk′

δW c

δηk
= −∑

q

[
δηq

δφk′

δ2W c

δηqδηk
+

δηq

δφk′

δ2W c

δηqδηk

]

= ∑
q

[(
δ2Γ

δφk′δφq
− κ

[
G0]−1

q,k′

)
δ2W c

δηqδηk
− δ2Γ

δφk′δφq

δ2W c

δηqδηk

]
(3.14)

and in the same way

δk,k′ =
δφk
δφk′

= ∑
q

[(
δ2Γ

δφk′δφq
+ κ

[
G0]−1

k′,q

)
δ2W c

δηqδηk
− δ2Γ

δφk′δφq

δ2W c

δηqδηk

]
(3.15)

0 =
δφk
δφk′

= ∑
q

[
−
(

δ2Γ
δφk′δφq

− κ
[
G0]−1

q,k′

)
δ2W c

δηqδηk
− δ2Γ

δφk′δφq

δ2W c

δηqδηk

]
(3.16)

0 =
δφk

δφk′
= ∑

q

[
−
(

δ2Γ
δφk′δφq

+ κ
[
G0]−1

k′,q

)
δ2W c

δηqδηk
− δ2Γ

δφk′δφq

δ2W c

δηqδηk

]
. (3.17)

(3.18)

We can write the last four equations in one compact equation:



δ2Γ
δφδφ

+ κ
[
G0]−1 δ2Γ

δφδφ

δ2Γ
δφδφ

δ2Γ
δφδφ
−
[
κ
[
G0]−1

]T


 ·

(
δ2W c

δηδη − δ2W c

δηδη

− δ2W c

δηδη
δ2W c

δηδη

)
= 1. (3.19)
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This identity can be written as

V(φ, φ) := κ

(
δ2W c

δηδη − δ2W c

δηδη

− δ2W c

δηδη
δ2W c

δηδη

)
=




κ−1 δ2Γ
δφδφ

+
[
G0]−1

κ−1 δ2Γ
δφδφ

κ−1 δ2Γ
δφδφ κ−1 δ2Γ

δφδφ
−
[[
G0]−1

]T



−1

, (3.20)

where we introduced an abbreviation for this matrix. This equation connects the two generat-
ing functionalsW c and Γ, thus we will need it later on.

Relations for One and Two Particle Vertex Functions

To show relations between vertex and Green’s function we set the external sources to zero and
assume we’re not in a symmetry breaking phase, i.e.

δ2W c

δηδη

∣∣∣∣
η=0=η

=
δ2W c

δηδη

∣∣∣∣
η=0=η

=
δ2Γ

δφδφ

∣∣∣∣
φ=0=φ

=
δ2Γ

δφδφ

∣∣∣∣
φ=0=φ

= 0. (3.21)

The (1,1) element of V then provides

Gc
1

3.5
:= κ

δ2W c

δηδη
=

[
κ−1 δ2Γ

δφδφ
+
[
G0]−1

]−1

. (3.22)

Comparing this with Dyson’s equation,

G1 = G =
[[
G0]−1 − Σ

]−1
, (3.23)

where we introduced the short-hand G = G1 and Σ is the self energy. Using the fact that for the
one-particle propagator the linked cluster theorem provides Gc

1 = G1, one gets the identity

γ1 = κ−1 δ2Γ
δφδφ

= −Σ. (3.24)

Note that without the last term in equation (3.8), the definition of γ1 would be altered to γ1 =
G−1, which would contradict the usual diagrammatic definition.

Finally, we state the relation between two-particle vertex and Green’s function. To this aim
we differentiate equation (3.14) twice, first with respect to φl and second with respect to φl′ and
multiply the result with κ−1. Setting the fields to zero yields

0 = ∑
q

κ−1

[
δ4Γ

δφl′δφlδφk′δφq

δ2W c

δηqδηk
+

(
δ2Γ

δφk′δφq
− κ

[
G0]−1

q,k′

)
∑
s,s′

(
δηs

δφl

δηs′

δφl′

δ4W c

δηs′δηsδηqδηk

)]∣∣∣∣∣
φ=0=φ

(3.25)

= −ν ∑
q

γ2(l′, q, k′, l)Gk,q − ∑
q,s,s′

[G]−1
q,k′ [G]−1

s,l [G]−1
l′,s′ G

c
2(s
′, k, q, s) (3.26)

where we again used Gc
1 = G and equation (3.13). Solving for the two-particle vertex provides

νγ2(k′1, k′2, k1, k2) = − ∑
q′1,q′2,q1,q2

[G]−1
k′1,q′1

[G]−1
k′2,q′2

[G]−1
q2,k2

[G]−1
q1,k1

Gc
2(q
′
1, q′2, q1, q2). (3.27)
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3.2 The fRG Equation

In the following we will derive the fRG equation in the one-particle irreducible version, i.e.
differential equations of the vertex functions w.r.t. a parameter called Λ. Λ will be a parameter
of the bare Green’s function G0,Λ, and can either be a physical parameter like temperature or
magnetic field, or an artificial additional parameter. This involves a large class of possible flow
schemes. Another scheme, not contained here, would be the interaction flow proposed by
Honerkamp et al. (2004). Since G0 plays a special role here, we write the action as indicated in
the last section as

S = −
(

ψ,
[
G0,Λ

]−1
ψ

)
+ Sint (3.28)

To simplify notation we introduce the following shorthands:

QΛ =
[
G0,Λ

]−1
, Q̇Λ = ∂Λ

[
G0,Λ

]−1
(3.29)

3.2.1 Flow Equation of the Generating Functionals

In order to arrive at a differential equation for the vertex functions we will set up a differential
equation for their generating functional Γ, which we will expand on both sides in powers of its
external fields φφ. Comparing orders of φφ will lead to the desired equation.

Since the generating functional of the vertex function is defined via the generating func-
tional of the connected Green’s functions, we will need the following derivative:

d
dΛ
W c,Λ =

d
dΛ

ln
(

1
ZΛ

0

∫
Dψψ exp

[
κ
(

ψ, QΛψ
)
− κSint − (ψ, ηΛ)− (ηΛ, ψ)

])
, (3.30a)

ZΛ
0 =

∫
Dψψ exp

[
κ
(

ψ, QΛψ
)]

. (3.30b)

Note that the normalisation of the functional differs from the previous definition (3.2,3.6). The
free propagator now depends on Λ, hence this is also the case for S0, Z0, W andW c, as indi-
cated by the superscript Λ. Furthermore we require η and η to have a Λ-dependence, chosen
such that the fields φ and φ, which are the natural variables of Γ, are Λ-independent. As a result
η and η depend on Λ via (3.11) and (3.12).

To decompose the derivative we write it as

d
dΛ
W c,Λ = ∑

k,k′
Q̇Λ

k,k′
δZΛ

0

δQΛ
k,k′

∂W c,Λ

∂ZΛ
0

+ ∑
k,k′

Q̇Λ
k,k′

δW c,Λ

δQΛ
k,k′

+ ∑
k

[
dηΛ

k
dΛ

δW c,Λ

δηΛ
k

+
dηΛ

k
dΛ

δW c,Λ

δηΛ
k

]
. (3.31)

Here we already replaced dQΛ

dΛ by Q̇Λ, since QΛ explicitly depends on Λ.



3.2 The fRG Equation 33

For the last sum we can use the definition (3.9) of the fields – mind the minus sign in the
definition of φ.

∑
k

dηΛ
k

dΛ
δW c,Λ

δηΛ
k

= ∑
k

dηΛ
k

dΛ
φk = −

(
φk,

dηΛ
k

dΛ

)
, (3.32)

∑
k

dηΛ
k

dΛ
δW c,Λ

δηΛ
k

= −∑
k

dηΛ
k

dΛ
φk = −

(
dηΛ

k
dΛ

, φk

)
. (3.33)

Furthermore we see from (3.30a) that ∂W c,Λ

∂ZΛ
0

= − 1
ZΛ

0
and with

1
ZΛ

0

δZΛ
0

δQΛ
k,k′

= κ
∫ Dψψ

ZΛ
0

ψkψk′e−κSΛ
0 = −κ

∫ Dψψ

ZΛ
0

ψk′ψke−κSΛ
0

3.2
= G0,Λ

k′,k , (3.34)

we conclude that

∑
k,k′

Q̇Λ
k,k′

δZΛ
0

δQΛ
k,k′

∂W c,Λ

∂ZΛ
0

= −Tr
(
G0,ΛQ̇Λ

)
. (3.35)

The minus sign in (3.34) results from interchanging the two fields ψ and ψ. The same appears
in the following:

1
WΛ ∑

k,k′
Q̇Λ

k,k′
δ

δQΛ
k,k′

∫ Dψψ

ZΛ
0

e[κ(ψ,QΛψ)−κSint−(ψ,ηΛ)−(ηΛ,ψ)]

=− κ

WΛ ∑
k,k′

Q̇Λ
k,k′

∫ Dψψ

ZΛ
0

ψk′ψke[κ(ψ,QΛψ)−κSint−(ψ,ηΛ)−(ηΛ,ψ)]

=
κ

WΛ Tr
(

Q̇Λ δ

δη

δ

δη
WΛ

)
=

κ

WΛ Tr
(

Q̇Λ δ

δη
WΛ δ

δη
lnWΛ

)

=
κ

WΛW
Λ
[

Tr
(

Q̇Λ δ

δη
W c,Λ δ

δη
W c,Λ

)
+ κTr

(
Q̇Λ δ2

δηδη
W c,Λ

)]

=κ
(

φ, Q̇Λφ
)
+ κTr

(
Q̇Λ δ2

δηδη
W c,Λ

)
. (3.36)

Putting all together provides

d
dΛ
W c,Λ =− Tr

(
G0,ΛQ̇Λ

)
+ κTr

(
Q̇Λ δ2W c,Λ

δηδη

)

+ κ
(

φ, Q̇Λφ
)
−
(

φk,
dηΛ

k
dΛ

)
−
(

dηΛ
k

dΛ
, φk

)
. (3.37)
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This makes it easy to differentiate Γ:

d
dΛ

Γ = − d
dΛ
W c,Λ −

(
φk,

dηΛ
k

dΛ

)
−
(

dηΛ
k

dΛ
, φk

)
+ κ

(
φ, Q̇Λφ

)

= Tr
(
G0,ΛQ̇Λ

)
− κTr

(
Q̇Λ δ2W c,Λ

δηδη

)

= Tr
(
G0,ΛQ̇Λ

)
− Tr

(
Q̇ΛV (1,1)

)
. (3.38)

3.2.2 Flow equation for the Vertex Functions

For convenience we leave out the index Λ from now on, but we consider all functions to have
an implicit Λ-dependence. To get the (1, 1) matrix element of V we use equation (3.20) and
expand the r.h.s. around the full propagator G:

V =




κ−1 δ2Γ
δφδφ

+
[
G0]−1

κ−1 δ2Γ
δφδφ

κ−1 δ2Γ
δφδφ κ−1 δ2Γ

δφδφ
−
[[
G0]−1

]T



−1

. (3.39)

To get a dependence of the full propagator we insert a fat zero containing the self energy and
thus we can use the Dyson equation to bring the full propagator into play:

κ−1 δ2Γ
δφδφ

+
[
G0]−1

= κ−1 δ2Γ
δφδφ

− γ1 + γ1 +
[
G0]−1

= κ−1 δ2Γ
δφδφ

− γ1 + [G]−1 . (3.40)

Since we will use it in the following, it is convenient to define an abbreviation for the first two
terms:

U := κ−1 δ2Γ
δφδφ

− γ1 . (3.41)
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Now we can factor out G:

V =



U + [G]−1 κ−1 δ2Γ

δφδφ

κ−1 δ2Γ
δφδφ −UT −

[
[G]−1

]T



−1

=




[G]−1 0

0 −
[
[G]−1

]T


+

(
U κ−1 δ2Γ

δφδφ

κ−1 δ2Γ
δφδφ −UT

)

−1

= −
[

1−
(−G 0

0 [G]T
)( U κ−1 δ2Γ

δφδφ

κ−1 δ2Γ
δφδφ −UT

)]−1 (−G 0
0 [G]T

)

= −




1 +

:=A︷ ︸︸ ︷(
GU κ−1G δ2Γ

δφδφ

−κ−1GT δ2Γ
δφδφ GTUT

)



−1

︸ ︷︷ ︸
=:Ṽ

(−G 0
0 [G]T

)
. (3.42)

With this definition V (1,1) = Ṽ (1,1)G and we can write the differential equation (3.38) as

d
dΛ

Γ = Tr
(
G0,ΛQ̇Λ

)
− Tr

(
GQ̇ΛṼ (1,1)

)
. (3.43)

Now we expand Ṽ into a taylor series around A = 0:

[1 +A]−1 = 1−A+AA−AAA+ . . . . (3.44)

Inserting the definition of A and taking the (1, 1)-matrix element provides

Ṽ (1,1) = 1− GU +

(
GUGU − κ−2G δ2Γ

δφδφ
GT δ2Γ

δφδφ

)
−
(
GUGUGU + . . .

)
+ . . . , (3.45)

where the brackets group the orders of expansion. Using the definition of the vertex functions
(3.7) we can expand their generating functional

Γ =
∞

∑
m=0

(−κ)mνm−1

(m!)2 ∑
k′1...k′m

∑
k1 ...km

γm(k′1, . . . , k′m; k1, . . . , km)φk′1
. . . φk′m

φkm . . . φk1 . (3.46)

Note the minus signs when performing the functional derivative: the factor (−1)m cancels
all minus signs due to permuting the φ-derivatives through the φ’s. Inserting (3.46) into the
definition of U (3.41) gives

Uq′,q =
∞

∑
m=1

(−κ)mνm

(m!)2 ∑
k′1...k′m

∑
k1 ...km

γm+1(k′1, . . . , k′m, q′; k1, . . . , km, q)φk′1
. . . φk′m

φkm . . . φk1 . (3.47)

U is a matrix, indicated by the indices q′, q. These quantum numbers appear in each vertex.
Note that due to the differentiation all indices are shifted by one and the first summand cancels
(see (3.41)). So U is at least of second order in the fields and does not depend on γ0 and γ1.
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The Zero-Particle Vertex Function

For completeness we write down the differential equation for γ0 also known as free energy. To
this end we collect all terms on the r.h.s. of (3.43) that do not depend on φ or φ. For Ṽ (1,1) this is
only the constant 1. Thus we get

d
dΛ

γ0 = νTr
(
G0,ΛQ̇Λ

)
− νTr

(
GQ̇Λ

)
. (3.48)

The One-Particle Vertex Function

Now we are in a position to set up the differential equation for the m-particle vertex starting
from (3.38), and expressing its right hand side using equation (3.42) and (3.45). In (3.45) only
the second term is linear in φφ. This can be seen from the expansion of U (3.47), by noting that
G δ2Γ

δφδφ
GT δ2Γ

δφδφ contains only quadratic terms in φφ. Thus we find

d
dΛ

γ1(k′, k) = ν ∑
q′,q

[
GQ̇ΛG

]
q,q′

γ2(k′, q′; k, q) . (3.49)

To make the notation clear we replaced the trace by a sum over all quantum numbers, but in
the following we will use the shorthand notation:

[
γm(k′1, . . . , k′m−1, · ; k1, . . . , km−1, · )

]
q′,q = γm(k′1, . . . , k′m−1, q′; k1, . . . , km−1, q). (3.50)

Furthermore, we use the convenient definition

S := GQ̇ΛG = G∂Λ

[
G0,Λ

]−1
G, (3.51)

to be called single scale propagator. This name originates from the fact that in many flow
schemes S describes propagation with a narrow energy interval. With this definition equa-
tion (3.49) becomes

d
dΛ

γ1(k′, k) = νTr
[
S γ2(k′, · ; k, · )

]
. (3.52)

Note that the derivative of the vertex contains only one-particle irreducible diagrams, as is
the case for the vertex itself. However the r.h.s. is not independent of γ1, since G and thus S
depends on it.
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The Two-Particle Vertex Function

To be able to write down the flow equation for γ2, we consider on the following relations, which
follows directly from (3.46):

δ2Γ
δφδφ

=
∞

∑
m=2

m(m− 1)(−κ)mνm−1

(m!)2 ∑
k′1...k′m−2

∑
k1 ...km

γm(k′1, . . . , k′m−2, · , · ; k1, . . . , km)
φk′1

. . . φk′m−2
φkm . . . φk1

(3.53)

δ2Γ
δφδφ

=
∞

∑
m=2

m(m− 1)(−κ)mνm−1

(m!)2 ∑
k′1 ...k′m

∑
k1 ...km

γm(k′1, . . . , km; k1, . . . , k′m−2, · , · )
φk′1

. . . φk′m
φkm−2 . . . φk1 .

. (3.54)

As long as we have not a broken symmetry, all cross-terms in G δ2Γ
δφδφ
GT δ2Γ

δφδφ that contain a dif-

ferent number of derivatives w.r.t. φ and φ vanish. Note that the flow equation (3.43) with the
expansion of Ṽ (3.45) only contains products of (3.53), (3.54) and U (3.47). Consequently, the
derivative of the m-particle vertex contains vertices up to order m + 1.

To set up the differential equation for γ2 we need all terms in (3.45) that are proportional to
φφφφ. As one can easily convince oneself they only appear in

GU − κ−2G δ2Γ
δφδφ

GT δ2Γ
δφδφ

+ GUGU . (3.55)

The first term is proportional to γ3. The second and third are quadratic in γ2:

d
dΛ

γ2(k′1, k′2; k1, k2) =νTr
(
Sγ3(k′1, k′2, · ; k1, k2, · )

)
(3.56a)

+ νTr
(
Sγ2( · , · ; k1, k2)GTγ2(k′1, k′2; · , · )

)
(3.56b)

− νTr(Sγ2(k′1, · ; k1, · )Gγ2(k′2, · ; k2, · )) (3.56c)
− νTr(Sγ2(k′2, · ; k2, · )Gγ2(k′1, · ; k1, · )) (3.56d)
+ νTr(Sγ2(k′2, · ; k1, · )Gγ2(k′1, · ; k2, · )) (3.56e)
+ νTr(Sγ2(k′1, · ; k2, · )Gγ2(k′2, · ; k1, · )). (3.56f)

This procedure can be continued to get differential equations for the higher order vertex
functions. The hierarchy of these equations is infinite: Because of the second term GU in the
expansion of V (1,1), equation (3.45), the derivative of the m-particle vertex functions depends
on all vertices up to order m + 1.
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3.3 Approximate solution for the vertex functions

In the last section we derived exact differential equations for the vertex functions γ1 and γ2.
These equations can be used to calculate an approximate solutions for these vertex functions,
applying the following strategy. Suppose, that for a given value of Λ = Λinitial, all vertex
functions are known, and for another value of Λ = Λfinal, the Λ-dependent bare propagator is
the physical propagator G0Λfinal = G0, then integrating the vertex functions from Λinitial to Λfinal
gives the solution for the vertex-functions.

3.3.1 Truncation

In practice, the fRG flow equations cannot be solved exactly, since they form an infinite hier-
archy of differential equations. Thus in order to apply this strategy, one has to make approx-
imations. The most common approximation, in this context, which we also apply here, is the
truncation of the flow equation in n-th order: The derivative of all m-particle vertices with
m > n is set to zero. This approximation, to be called fRGn, can be justified as follows: At
Λinitial all vertices except the two-particle vertex are zero and all higher vertices are generated
by the two-particle vertex at least to power n + 1. Hence fRGn is exact to n-th order in the
interaction. So as long as the effective interaction can be regarded as small, all higher vertices
can be neglected. If at any value of Λ, the flow equation generates an n-particle vertex that
can not be regarded as small or even is divergent, this approximation breaks down. In most
cases the only practical approximation schemes are fRG1 and fRG2, and for models involving
a large number N of interacting states, such as the chain model considered in this work, fRG2
runs into problems, since the two-particle vertex is represented by O(N4) independent vari-
ables. This complication can be resolved by using further approximations for models with a
local interaction, as explained in section 3.3.6 (see also Bauer et al., 2014).

3.3.2 Specifying the Action

For the rest of this chapter we will use the fRG equations in the Matsubara formalism and in the
frequency representation and hence set κ = 1. Further we consider fermions in real space. The
latter is discretized (see section 2.3.3), such that the position is described by a site index. Thus
the composite-index reads as k = (ωn, j, σ), where ωn = iπ(2n + 1)T, with n ∈ Z, is a purely
imaginary discrete Fermionic Matsubara frequency, T is the temperature, j is the site-index and
σ = {↑, ↓} or {+,−} the spin. We define the action as

S = ∑
ijσn

ψσi(ωn)
[
G0]−1

σ,ij (ωn)ψσj(ωn)

+ T ∑
ijσσ′

nmn′m′

Uijδn+m,n′+m′ψσi(ωn)ψσ′ j(ωm)ψσi(ω
′
n)ψσ′ j(ω

′
m) (3.57)

with [
G0]−1

σ,ij (ωn) =
(

ωn − hσ
ij + µ

)
eωn0+ (3.58)



3.3 Approximate solution for the vertex functions 39

where hσ and U are real symmetric matrices and µ is the chemical potential. This action con-
serves spin and frequency. Here the action is defined without deriving it from first principles
(for a derivation see e.g. Meden, 2002), to do so, one has to define the Fourier expansion of the
Grassman fields:

ψσi(ωn) =
√

T
∫ 1/T

0
dτeωnτψσi(τ) (3.59)

The prefactor
√

T defines the dimension of the fields, and the prefactors of the matsubara sums
in the action.

In order to make the notation short, we will use the following conventions: In some cases we
denote the frequency-dependence of the Green’s and vertex functions explicitly, e.g. Gk,k′(ω).
In this case k, k′ are considered not to carry the information of the frequency. The same hold
for the spin, e.g. Gσ

k,k′ . If the indices k, k′ are not written at all, e.g. G(ω), then the Green’s and
vertex function are considered to be matrices or tensors w.r.t. these indices.

In general, the frequency is a complex number, however most of the time we use one of two
special cases: When we write the frequency with an index ωn, then it is a purely imaginary
discrete fermionic Matsubara frequency ωn = iπ(2n + 1)T. In contrast, a frequency without
index ω is considered a real, continuous variable, if not specified explicitly otherwise.

3.3.3 Λ-dependence of the free Propagator

Next we will specify the Λ-dependence of the free propagator. Note that the only restriction we
made is that there has to exist some Λinitial for which the value of all vertices has to be known.
One possibility is GΛinitial = 0. Then all vertices except the two-particle vertex are zero.

At low temperatures the relevant excitations are located near the Fermi surface. Thus when
turning on GΛ, it is intuitive to incorporate large energies first. We use the Matsubara frequency
cutoff

G0,Λ(ωn) = ΘT(|ωn| −Λ)G0(ωn) , (3.60)

where ΘT is a step-function broadened on the scale T:

ΘT(x) =





0 x < −πT
1
2 +

1
2πT x |x| ≤ πT

1 x > πT
. (3.61)

3.3.4 Initial Condition

For GΛinitial
0 = 0

ΓΛinitial
({

φ
}

, {φ}
)
= κSint

({
φ
}

, {φ}
)

. (3.62)

For a derivation see Meden (2002). We now fix ν = T, to enshure that γ2 has dimension of
energy. Comparing the quartic terms of equation (3.46) and (3.57), we obtain

γΛinitial
2 (k′1, k′2; k1, k2) =δn′1+n′2,n1+n2

Uj1 j2

×
(

δj1 j′1
δj2 j′2

δσ′1σ1
δσ′2σ2
− δj1 j′2

δj2 j′1
δσ′1σ2

δσ′2σ1

) (
1− δj1 j2 δσ1σ2

)
. (3.63)
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We introduce a shorthand for the socalled bare action

v = γΛinitial
2 . (3.64)

Since for the action (3.57) Sint is purely quartic in the fields, all other vertex functions are zero:

γΛinitial
m =0 (m 6= 2) . (3.65)

This is correct for Λinitial = ∞, however numerically it is not possible to start the flow at in-
finity. Due to the slow convergence of the single scale propagator S at large frequencies, the
integration form Λ = ∞ to Λ = Λ0 yields a finite contribution for γ1, which has to be calculated
analytically. Λ0 is then the starting point of the numerical integration, chosen much bigger than
all relevant energies and such that 1/Λ0 is smaller than the desired numerical accuracy.

Because of the slow convergence of S , the factor eωn0+ in the definition of the bare Green’s
function (3.58) is relevant for the limit ω → ∞. Integrating the differential equation of γ1 (3.52)
from infinity to Λ = Λ0 gives

ΣΛ0
k,k′(ωn) = −T lim

ε→0

∫ Λ0

∞
dΛ ∑

q,q′,n′
SΛ

q,q′(ωn′)v(k′, q′; k, q)

= − 1
2π

lim
ε→0

∫ Λ0

∞
dΛ ∑

ω=±Λ
∑
q,q′

eiωε δq′,q

iω
vk′,q′;k,q +O(Λ−1

0 )

= − 1
π ∑

q
vk′,q;k,q lim

ε→0

∫ Λ0

∞
dΛ

sin Λε

Λ
+O(Λ−1

0 )

= − 1
π ∑

q
vk′,q;k,q


lim

ε→0

∫ Λ0

0
dΛ

sin Λε

Λ︸ ︷︷ ︸
=0 independent of Λ0

− lim
ε→0

∫ ∞

0
dΛ

sin Λε

Λ︸ ︷︷ ︸
= π

2 independent of ε


+O(Λ−1

0 )

=
1
2 ∑

q
vk′,q;k,q +O(Λ−1

0 ). (3.66)

In the second line we used
∫ Λ0

∞
dΛSΛ

q,q′(ωn) =
∫ Λ0

∞
dΛ
[
GΛ∂Λ

[
GΛ

0

]−1
GΛ
]

q,q′

=
1

2πT

∫ Λ0

∞
dΛ ∑

ω=±Λ

(
eiω0+ δq,q′

iω
+O(ω−2)

)

=
1

2πT

∫ Λ0

∞
dΛ ∑

ω=±Λ
eiω0+ δq,q′

iω
+O(Λ−1

0 ). (3.67)

Note, that Λ is a continuous variable, whereas ωn is not. Replacing ωn by the continuous
variable iω, with |ωn − iω| < πT gives an error of O(ω−2). The same error is obtained by
neglecting h and the feedback of Σ in S .
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Neglecting terms of O(Λ−1
0 ) provides the final version of the initial condition:

ΣΛ0
k′,k = −γΛ0

1 (k′, k) =
1
2 ∑

q
vk′,q;k,q

γΛ0
2 (k′1, k′2; k1, k2) = vk′1,k′2;k1,k2

γΛ0
m = 0 (m > 2) (3.68)

3.3.5 Morris’ Lemma

In most cases we will use the flow equations in the limit T = 0. This limit has to be performed
carefully, since a combination of δ- and Θ-functions appear, which is an application of Morris
(1994) lemma, which we state without proof: For a product of a δ and Θ-functions, where both
are limits of smoothed functions

δ = lim
ε→0

δε, Θ = lim
ε→0

Θε, (3.69)

the following holds:

δε f (Θε)→ δ
∫ 1

0
f (t)dt. (3.70)

In equation (3.51) we defined the operator S , which now can be simplified, since we have
specified the cutoff. Whenever the operators depend on the cutoff we indicate this by the
superscript Λ, thus if we write G0 we mean the cutoff-free bare propagator.

SΛ = GΛ∂Λ

[
G0,Λ

]−1
GΛ

=
1

1 + ΘG0γΛ
1

ΘG0 [G0]−1 1
Θ2 δ

1
1 + ΘG0γΛ

1
ΘG0

=
δ

(
1 + ΘG0γΛ

1

)2G0

= δ∂Θ
1

1 + ΘG0γΛ
1

ΘG0

= δ(|ω| −Λ)∂ΘGΛ, (3.71)

where we used (3.60) and

GΛ =
1

[G0,Λ]
−1

+ γΛ
1

=
1

1 + ΘG0γΛ
1

ΘG0. (3.72)

Hence the single scale Green’s functions reads

SΛ(iω) = δ(|ω| −Λ)G̃Λ (3.73)

with
G̃Λ =

1

[G0]−1 + γΛ
1

. (3.74)



42 3. Functional Renormalization Group

Note that G0 has no Λ-dependence. Further the product of the single scale and the common
Green’s functions gives

SΛ(iω1)GΛ(iω2) = δ(|ω1| −Λ)Θ(|ω2| −Λ)G̃Λ(iω1)G̃Λ(iω2) . (3.75)

3.3.6 Further Approximations – Publication

Due to the large number of interacting sites in the model (2.29) one needs to make further ap-
proximations. A calculation scheme suitable for dealing with inhomogeneous lattice systems,
called the coupled ladder approximation (CLA) has been published in the journal Physical Re-
view B. In this publication we also use the fRG equations to derive a formula for the spin sus-
ceptibility. Thereby we use the property of the fRG equations to yield exact relations for the
derivative of the vertex functions w.r.t. a physical parameter. The publication is completed with
an analysis of the reliability of the CLA for the model of a QPC. Below we include a reprint of
this publication (Bauer et al., 2014).
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I. INTRODUCTION

The calculation of properties of an inhomogeneous inter-
acting quantum system requires adequate care regarding a
proper description of its spatial structure: for a lattice model,
the resolution of a potential landscape, without generating
additional finite-size effects, typically requires an extension of
∼102 sites per spatial dimension. If, in addition, the strength
of interactions can not be regarded as “weak,” a reasonable
approximation scheme must involve detailed information
about higher-order correlations. This usually demands a huge
effort for modern computers, both in memory and speed.
Thus, for a system with nontrivial spatial structure, any
approximation scheme necessarily involves a tradeoff between
computational feasibility and accuracy.

In Ref. [1], we introduced such a scheme, both reasonably
fast and accurate up to intermediate interaction strength,
within the framework of the one-particle-irreducible version
of the functional renormalization group (fRG) [2–10]. The
goal of this paper is to supply a detailed description of this
approximation scheme, called the coupled-ladder approxi-
mation (CLA), which is implemented within the context of
generic, third-order-truncated fRG. In the latter, the flow of
the three-particle vertex is set to zero, while the flow equation
of the two-particle vertex (which we will call “vertex flow”
in the following) is fully incorporated. This vertex flow has
to be incorporated if interactions can not be considered small.
In general, this constitutes a computational challenge since
the vertex generated by this flow involves a large number
O(N4) of independent functions, each depending on three
frequencies, where N is the number of sites of the interacting
region. As a result, the flow equations involve O(N4N3

f )
independent variables, where Nf is the number of discrete
points per frequency used in the numerics. Previous schemes
that included the vertex flow for models with large N made
use of an additional symmetry, e.g., Refs. [5,6] described
systems with a weak spatial inhomogeneity (either changing
adiabatically with position, or confined to a small region),
which could be treated as a perturbation, so that its feedback
to the vertex could be neglected. The resulting equations for
the vertex were solved in the momentum basis, exploiting the
fact that the single-particle eigenstates could approximately

be represented by plane waves. However, this is not possible
for models with strong inhomogeneities. Our CLA scheme
was developed to include the vertex flow for such models. It
extends the idea of Refs. [7,11], where the CLA was introduced
to parametrize the frequency dependence of the vertex for the
single-impurity Anderson model, i.e., N = 1, which reduces
the number of independent variables for that model to O(Nf).
We show that the CLA can be applied to parametrize the
spatial dependence of the vertex for models with a purely
local interaction. The number of independent variables that
represent the spatial dependence of the vertex then reduces
to O(N2), and the total number of independent variables
representing the vertex to O(N2Nf). The CLA scheme is exact
to second order [12,13] and effectively sums up diagrams of
the random phase approximation (RPA) of all three interaction
channels.

To illustrate the capabilities of our CLA scheme, we apply
it, as in Ref. [1], to a one-dimensional chain modeling the
lowest submode of a quantum point contact (QPC), a short
constriction that allows transport only in one dimension. Its
conductance is famously quantized [14–16] in units of GQ =
2e2/h. In addition to this quantization, measured conductance
curves show a shoulder at around 0.7GQ. In this regime, quan-
tities such as electrical and thermal conductance, noise, and
thermopower have anomalous behavior [17–19]. These phe-
nomena are collectively known as the “0.7 anomaly” in QPCs.

In Ref. [1], we showed that the 0.7 anomaly is reproduced by
a one-dimensional model with a parabolic potential barrier and
a short-ranged Coulomb interaction. We presented a detailed
microscopic picture that explained the physical mechanism
which causes the anomalous behavior. Its origin is a smeared
van Hove singularity in the density of states (DOS) just
above the band bottom which enhances effects of interaction
causing an enhanced backscattering. We presented detailed
results for the conductance at zero temperature, obtained
using fRG in the CLA. These numerical data were in good
qualitative agreement with our experimental measurements
and showed that the model reproduces the phenomenology
of the 0.7 anomaly. In this paper, we set forth and examine
the approximation scheme in detail. We present additional
numerical data to verify the reliability of the method for the
case where it is applied to the model of a QPC. For this, we
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present and compare data obtained by different approximation
schemes within the fRG, showing that the phenomenology
is very robust, and can even be obtained by neglecting the
vertex flow. However, including the vertex flow using the CLA
reduces artifacts and gives an insightful view on the spin
susceptibility. For the latter, we finally present a detailed
quantitative error analysis.

II. MICROSCOPIC MODEL

The approximation scheme presented in this paper can be
applied to any model Hamiltonian that can be written in the
following form:

H =
∑
ij,σ

hσ
ij d

†
iσ djσ +

∑
j

Ujnj↑nj↓, (1)

where hσ is a real, symmetric matrix, d
†
jσ (djσ ) creates

(annihilates) an electron at site j with spin σ (= ↑,↓ or +,−,
with σ̄ =−σ ), and njσ = d

†
jσ djσ counts them (in general j

can represent any quantum number, however, for simplicity
we refer to it as a site index throughout the paper). In order
to apply the CLA, the necessary property of this Hamiltonian
is a short-ranged interaction. In principle, the approximation
scheme can be set up for an interaction with finite range
(over several sites), however, since the structure then becomes
very complicated we will only discuss the case of a purely
local, i.e., onsite interaction in this paper as given by Eq. (1).
Whereas the system can extend to infinity, it is crucial that the
number of sites N where Uj is nonzero is finite and not too
large, as discussed in Sec. III H. If the system is extended
to infinity, the effect of the noninteracting region can be
calculated analytically using the projection method (see the
Appendix and Refs. [8,20]). An extension to a Hamiltonian
that is complex Hermitian and nondiagonal in spin space,
needed, e.g., to include spin-orbit effects, is straightforward. In
contrast, applying the scheme to spinless models, for which the
interaction term has to be nonlocal to respect Pauli’s exclusion
principle, is more complicated.

III. fRG FLOW EQUATIONS

In this section, we describe the functional renormalization
group (fRG) approach that we have employed to treat a
translationally nonuniform Fermi system with onsite interac-
tions, such as described by Eq. (1). We use the one-particle-
irreducible (1PI) version of the fRG [2,21]. Its key idea is to
approximately sum up a perturbative expansion, in our case
in the interaction, by setting up and numerically solving a set
of coupled ordinary differential equations (ODEs), the flow
equations, for the system’s 1PI n-particle vertex functions
γn. This is typically done in such a way that the effects of
higher-energy modes, lying above a flowing infrared cutoff
parameter �, are incorporated before those of lower-energy
modes lying below �. This yields a systematic way of
summing up parquet-type diagrams for the two-particle vertex
and for calculating the self-energy. � serves as flow parameter
that controls the RG flow of the �-dependent vertex functions
γ �

n from an initial cutoff �i , at which all vertex functions are
known and simple, to a final cutoff �f , at which the full theory
is recovered.

This idea is implemented by replacing, in the generating
functional for the vertex functions γn, the bare propagator G0

by a modified propagator G�
0 ,

G0 → G�
0 , with G�i

0 = 0, G�f

0 = G0, (2)

constructed such thatG�
0 is strongly suppressed for frequencies

below �. The � dependence of the resulting vertex functions
γ �

n is governed by an infinite hierarchy of coupled ODEs, the
RG flow equations, of the form

d

d�
γ �

n = F
(
�,G�

0 ,γ �
1 , . . . ,γ �

n+1

)
, (3)

where γ1 = −� is the self-energy and γ2 the two-particle
vertex. At the beginning of the RG flow, the vertex functions
are initialized to their bare values

γ
�i

2 = v, γ �i

n = 0 (n �= 2), (4)

while their fully dressed values, corresponding to the full
theory, are recovered upon integrating Eqs. (3) from �i to
�f .

The infinite hierarchy of ODEs (3) is exact, but in most
cases not solvable. In the generic, third-order-truncated fRG,
all n-particle vertex functions with n � 3 are neglected

d

d�
γn = 0 (n � 3), (5)

and the resulting flow equations for γ �
1 and γ �

2 are integrated
numerically. Due to this truncation, fRG is in essence an
“RG-enhanced” perturbation expansion in the interaction,
which will break down if U becomes too large. In fact, the flow
equations can be derived by a purely diagrammatic procedure,
without resorting to a generating functional, as explained
in Ref. [22]. The diagrammatic structure is such that the
flow of the self-energy and three different parquet channels
(i.e., three coupled RPA-like series of diagrams) are treated
simultaneously, feeding into each other during the flow (as
discussed in more detail below). This moderates competing
instabilities in an unbiased way. We also mention that this
approach has been found to be particularly useful to treat
models where infrared divergences play a role [3] (although
the latter do not arise for the present model).

The following statements in this section hold for most,
however, not for every flow parameter. For that reason, we
explicitly define the � dependence at this point. If a different
fRG scheme is used, one should carefully check all relations.
The general idea should be applicable for all fRG schemes.
We use fRG in the Matsubara formalism. In the following
frequencies with subscripts n, n′, n1, etc., are defined to be
purely imaginary:

ωn = iT π (2n + 1). (6)

We introduce � as an infrared cutoff in the bare Matsubara
propagator

G�
0 (ωn) = �T (|ωn| − �)G0(ωn), �i = ∞, �f = 0, (7)

where �T is a step function that is broadened on the scale of
the temperature T .

For a derivation of the fRG flow equations, see, e.g.,
Refs. [3,5]; very detailed discussions are given, e.g., in
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Refs. [8,23], for a diagrammatic derivation see Ref. [22]. The
flow equation for the self-energy reads as

d

d�
γ �

1 (q ′
1,q1) = T

∑
q ′

2,q2

S�
q2,q

′
2
γ �

2 (q ′
2,q

′
1; q2,q1), (8)

where q1, q2, etc., label the quantum number and the fermionic
Matsubara frequency. Here,S� is defined in terms of the scale-
dependent full propagator G�:

S� = G�∂�

[
G�

0

]−1G�, (9a)

G� = [[
G�

0

]−1 − ��
]−1

. (9b)

For later convenience, we divide the two-particle vertex γ2 in
four parts:

γ �
2 = v + γ �

p + γ �
x + γ �

d , (10)

where v is the bare vertex and γ �
p , γ �

x , and γ �
d are called the

particle-particle channel (P ), and the exchange (X) and direct
(D) contributions to the particle-hole channel, respectively.
They are defined via their flow-equations with γ �i

y = 0:

d

d�
γ �

2 = d

d�

(
γ �

p + γ �
x + γ �

d

)
. (11)

Explicitly, these flow equations have the following forms:

d

�
γ �

p (q ′
1,q

′
2; q1,q2) = T

∑
q ′

3,q3,q
′
4,q4

γ �
2 (q ′

1,q
′
2; q3,q4)S�

q3,q
′
3
G�

q4,q
′
4
γ �

2 (q ′
3,q

′
4; q1,q2), (12a)

d

d�
γ �

x (q ′
1,q

′
2; q1,q2) = T

∑
q ′

3,q3,q
′
4,q4

γ �
2 (q ′

1,q
′
4; q3,q2)

[
S�

q3,q
′
3
G�

q4,q
′
4
+ G�

q3,q
′
3
S�

q4,q
′
4

]
γ �

2 (q ′
3,q

′
2; q1,q4), (12b)

d

d�
γ �

d (q ′
1,q

′
2; q1,q2) = −T

∑
q ′

3,q3,q
′
4,q4

γ �
2 (q ′

1,q
′
3; q1,q4)

[
S�

q4,q
′
4
G�

q3,q
′
3
+ G�

q4,q
′
4
S�

q3,q
′
3

]
γ �

2 (q ′
4,q

′
2; q3,q2). (12c)

Here, the higher-order vertices γn�3 have already been set
to zero.

A. Frequency parametrization

Due to energy conservation, the frequencies in Eqs. (8) and
(12) are not independent:

γ1(q ′
1,q1) ∝ δ

(
ωn′

1
− ωn1

)
,

(13)
γ2(q ′

1,q
′
2; q1,q2) ∝ δ

(
ωn′

1
+ ωn′

2
− ωn1

− ωn2

)
.

In the case of the two-particle vertex, this gives a certain
freedom to parametrize its frequency dependence. The natural
choice, as will become apparent later on, is to parametrize it
in terms of three bosonic frequencies:

� = ωn′
1
+ ωn′

2
= ωn1

+ ωn2
, (14a)

X = ωn′
2
− ωn1

= ωn2
− ωn′

1
, (14b)

� = ωn′
1
− ωn1

= ωn2
− ωn′

2
. (14c)

Note that due to their definition in terms of purely imaginary
frequencies, the bosonic frequencies are imaginary too. Con-
versely, the fermionic frequencies can be expressed in terms
of the bosonic ones:

ωn′
1
= 1

2 (� − X + �), ωn′
2
= 1

2 (� + X − �), (15a)

ωn1
= 1

2 (� − X − �), ωn2
= 1

2 (� + X + �). (15b)

B. Neglecting the vertex flow

For the purpose of treating the inhomogeneous model of
Eq. (1), we take the quantum number that labels Green’s
functions and vertices to denote a composite index of site,
spin, and Matsubara frequency q1 = (j1,σ1,ω1), etc. Since

the bare propagators are nondiagonal in the site index, the
number of independent variables γ �

2 (q ′
1,q

′
2; q1,q2) generated

by Eq. (12) is very large O(N4N3
f ), where Nf is the number of

Matsubara frequencies per frequency argument kept track of
in the numerics.

The simplest way to avoid this complication is to neglect
the flow of the two-particle vertex:

d

d�
γ2 = 0. (16)

This scheme, to be called fRG1, yields a frequency-
independent self-energy, which, for the case of local interac-
tion, is site diagonal. It is exact to first order in the interaction.

C. Coupled-ladder approximation

For models where the interaction can not be considered
small, we introduced a novel scheme in Ref. [1], to be called
dynamic fRG in CLA, to incorporate the effects of vertex flow.
In the following, whenever the vertex flow is included, we
treat it using the CLA, thus calling this approximation dfRG2,
to distinguish it from fRG1, and from a static fRG scheme
including the vertex flow sfRG2 to be introduced later. The
dfRG2 scheme exploits the fact that the bare vertex

v(j1σ1,j2σ2; j3σ3,j4σ4)

= Uj1δj1j2δj3j4δj1j4δσ1σ̄2δσ̄3σ4

(
δσ1σ3 − δσ1σ4

)
(17)

is purely site diagonal, and parametrizes the vertex in terms of
O(N2Nf) independent variables.

To this end, we consider a simplified version of the vertex
flow equation (12), where the feedback of the vertex flow
is neglected: on the right-hand side we replace γ �

2 → v.
If the feedback of the self-energy were also neglected, this
would be equivalent to calculating the vertex in second-order
perturbation theory. As a consequence, all generated vertex
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contributions depend on two site indices and a single bosonic
frequency. They have one of the following structures:

Pσσ̄
ji (Π) := γΛ

p (jσΠ−ωn , jσ̄ωn ; iσΠ−ωn, iσ̄ωn)

O(v2)
jσ

jσ̄

iσ

iσ̄

σ

σ̄

Π−ωn

ωn

Π−ωn

ωn

Π−ωn

ωn

,
(18a)

P̄σσ̄
ji (Π) := γΛ

p (jσΠ−ωn , jσ̄ωn ; iσ̄Π−ωn, iσωn)

O(v2)
jσ

jσ̄

iσ

iσ

σ

σ̄

Π−ωn

ωn

Π−ωn

ωn

Π−ωn

ωn

¯

,
(18b)

Xσσ̄
ji (X) := γΛ

x (jσX+ωn , iσ̄ωn; iσX+ωn, jσ̄ωn )

O(v2)
jσ

jσ̄

iσ

iσ̄

σ

σ̄

X+ ωn

ωn

X+ ωn

ωn

X+ ωn

ωn

,
(18c)

Xσσ
ji (X) := γΛ

x (jσX+ωn , iσωn; iσX+ωn, jσωn )

O(v2)

jσ

iσ
σ̄

σ̄

jσ

iσ

X+ ωn

ωn

X+ ωn

ωn

X+ ωn

ωn

,
(18d)

Dσσ
ji (Δ) := γΛ

d (jσΔ+ωn , iσωn; jσωn , iσΔ+ωn)

O(v2)

n

jσ

iσ

σ̄ σ̄

jσ

iσ

Δ+ ωn

ωn

ωn

Δ+ ωn

Δ+ ωωn

(18e)

Dσσ̄
ji (Δ) := γΛ

d (jσ̄Δ+ωn , iσωn; jσωn , iσ̄Δ+ωn)

O(v2)

jσ

iσ̄

jσ̄

iσ

σ̄ σ

Δ+ ωn ωn

Δ+ ωnωn

Δ+ ωnωn .
(18f)

These second-order terms do not depend on the frequencies ωn

and ωn′ . Now note that no additional terms are generated if we
allow for a vertex feedback within the individual channels in
Eqs. (12a), (12b), and (12c), i.e., if we take the flow equation
of γa(A) (a = p,x,d and correspondingly A = �,X,�) and
replace the feedback of the vertex on the right-hand side by

γ2(�,X,�) → v + γa(A). (19)

This scheme is equivalent to solving RPA equations for the
three individual channels P , X, and D (see Sec. III I), with an
additional feedback of the self-energy via Eq. (9).

Note that if i =j in Eq. (18), the terms a and c, b and f

as well as d and e have the same structure w.r.t. their external
site and spin indices. As a result, it is possible to account for

an interchannel feedback in the vertex flow without generating
additional terms if the feedback is restricted to purely site
diagonal terms. As in Ref. [11], we avoid frequency mixing
by limiting the interchannel feedback to the static part of
the vertex, i.e., the vertex contributions are evaluated at zero
frequency when fed into other channels. Putting everything
together, the approximation scheme is defined by replacing
the vertex on the right-hand side of the flow equation γ̇ �

a by
(12):

γ2 → v + γa(A) + [γb(0) + γc(0)]δj1j2δj ′
1j

′
2
δj1j

′
1
, (20)

where a,b,c are cyclic permutations of p,x,d, and A,B,C

are the corresponding cyclic permutations of the frequencies
�,X,�. Since this equation is the central definition of this
paper, we explicitly write it for each of the three channels:

γ̇p(�) : γ2(j ′
1,j

′
2; j1,j2; �,X,�)

→ v + γp(�) + [γx(0) + γd (0)]δj1j2δj ′
1j

′
2
δj1j

′
1
, (21a)

γ̇x(X) : γ2(j ′
1,j

′
2; j1,j2; �,X,�)

→ v + γx(X) + [γp(0) + γd (0)]δj1j2δj ′
1j

′
2
δj1j

′
1
, (21b)

γ̇d (�) : γ2(j ′
1,j

′
2; j1,j2; �,X,�)

→ v + γd (�) + [γp(0) + γx(0)]δj1j2δj ′
1j

′
2
δj1j

′
1
. (21c)

This scheme generates a self-energy and a vertex which are
both exact to second order in the interaction. To see this we
note that first, the fRG flow equations without any truncation
are exact, and second, in the fRG truncation (5) and in the
CLA (20) the neglected terms are all of third or higher order
in the interaction.

D. Symmetries

As can readily be checked, these flow equations respect the
following symmetry relations:

Gσ�
ij (ωn) = Gσ�

ji (ωn) = [
Gσ�

ij (−ωn)
]∗

, (22a)

�σ�
ij (ωn) = �σ�

ji (ωn) = [
�σ�

ij (−ωn)
]∗

, (22b)

P σσ̄
ji = P σ̄σ

ji = P σσ̄
ij , P̄ σ σ̄

j i = P̄ σ̄σ
ji = P̄ σ σ̄

ij ,

P σ σ̄
ji = −P̄ σ σ̄

j i , (23a)

Xσσ ′
ji = Xσσ ′

ij = [
Xσ ′σ

ji

]∗
, Dσσ ′

ji = Dσσ ′
ij = [

Dσ ′σ
ji

]∗
,

X = −D, (23b)

P σσ̄
ji (�) = [

P σσ̄
ji (−�)

]∗
, Xσσ ′

ji (X) = [
Xσσ ′

ji (−X)
]∗

,

Dσσ ′
ji (�) = [

Dσσ ′
ji (−�)

]∗
, (23c)

Xσσ ,Dσσ ∈ R. (23d)

As a result, only four independent symmetric frequency-
dependent matrices are left, which we define as follows:

P �
ji (�) = P σσ̄

ji (�), X�
ji(X) = Xσσ̄

ji (X),

Dσ�
ji (�) = Dσσ

ji (�), (24)
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where the superscript � signifies a dependence on the flow parameter. At zero magnetic field, the number of independent matrices
reduces to three since in this case D↑ = D↓.

The flow equations for these matrices can be derived starting from Eqs. (12). The replacement (20) restricts the internal
quantum numbers on the right-hand side of the flow equation q3, q4, q ′

3, and q ′
4 according to the definitions (18):

ẊΛ
ji(X) =γ̇Λ

x (jσX+ωn , iσ̄ωn; iσX+ωn, jσ̄ωn )

(25b)

=T
kl,n

γΛ
2 (jσX+ωn , kσ̄ωn ; kσX+ωn , jσ̄ωn )S σ̄Λ

kl (ωn )GσΛ

σΛ

lk (X+ωn )γΛ
2 (lσX+ωn , iσ̄ωn; iσX+ωn, lσ̄ωn )

+ γΛ
2 (jσX+ωn , kσ̄ωn ; kσX+ωn , jσ̄ωn )Gσ̄Λ

kl (ωn )SσΛ
lk (X+ωn )γΛ

2 (lσX+ωn , iσ̄ωn; iσX+ωn, lσ̄ωn ) ,

Ḋji(Δ) =γ̇Λ
d (jσΔ+ωn , iσωn; jσωn , iσΔ+ωn)

(25c)

=− T
kl,n

γΛ
2 (jσΔ+ωn , kσωn ; jσωn , kσΔ+ωn)SσΛ

kl (ωn )GσΛ
kl (Δ+ωn )γΛ

2 (lσΔ+ωn , iσωn; lσωn , iσΔ+ωn)

+ γΛ
2 (jσΔ+ωn , kσωn ; jσωn , kσΔ+ωn)GσΛ

kl (ωn )SσΛ
kl (Δ+ωn )γΛ

2 (lσΔ+ωn , iσωn; lσωn , iσΔ+ωn)

+ γΛ
2 (jσΔ+ωn , jσ̄ωn ; jσωn , jσ̄Δ+ωn)S σ̄Λ

ji (ωn )Gσ̄Λ
ij (Δ+ωn )γΛ

2 (iσ̄Δ+ωn , iσωn; iσ̄ωn , iσΔ+ωn)

+ γΛ
2 (jσΔ+ωn , jσ̄ωn ; jσωn , jσ̄Δ+ωn)Gσ̄Λ

ji (ωn )S σ̄Λ
ij (Δ+ωn )γΛ

2 (iσ̄Δ+ωn , iσωn; iσ̄ωn , iσΔ+ωn) .

ṖΛ
ji(Π) =γ̇Λ

p (jσΠ−ωn , jσ̄ωn ; iσΠ−ωn, iσ̄ωn)

(25a)

=T
kl,n

γΛ
2 (jσΠ−ωn , jσ̄ωn ; kσωn , kσ̄Π−ωn )SσΛ

kl (ωn )Gσ̄Λ
kl (Π−ωn )γΛ

2 (lσωn , lσ̄Π−ωn ; iσΠ−ωn, iσ̄ωn)

+γΛ
2 (jσΠ−ωn , jσ̄ωn ; kσ̄ωn , kσΠ−ωn )S σ̄Λ

kl (ωn )GσΛ
kl (Π−ωn )γΛ

2 (lσ̄ωn , lσΠ−ωn ; iσΠ−ωn, iσ̄ωn) ,

As is the case for the diagrams (18), these equations do not
depend on ωn and ωn′ , if the same holds for γ2 on the right-
hand side. The latter is of course not the case without the
replacement (20). The initial conditions are

P �i = X�i = Dσ�i = 0. (26)

Performing the replacement (20), these equations can be
compactly written in matrix form

d

d�
P �(�) = P̃ �(�)Wp�(�)P̃ �(�), (27a)

d

d�
X�(X) = X̃�(X)Wx�(X)X̃�(X), (27b)

d

d�
Dσ�(�) = −D̃σ�(�)Wσd�(�)D̃σ�(�)

− I�Wσ̄d�(�)I�, (27c)

where we have introduced the definitions

P̃ �
ji (�) = P �

ji (�) + δji

(
X�

jj (0) + Uj

)
, (28a)

X̃�
ji(X) = X�

ji(X) + δji

(
P �

jj (0) + Uj

)
, (28b)

D̃σ�
ji (�) = Dσ�

ji (�) + δjiX
σ�
jj (0)

= Dσ�
ji (�) − δjiD

σ�
jj (0), (28c)

I�
ji = δji

[
P �

jj (0) + X�
jj (0) + Uj

]
, (28d)

which account for the interchannel feedback contained in
Eq. (20). Wp, Wx , and Wσd each represent a specific bubble,
i.e., a product of two propagators summed over an internal
frequency:

W
p�

ji (�) = T
∑
σn

Sσ�
ji (ωn)G σ̄�

ji (� − ωn), (29a)

Wx�
ji (X) = T

∑
n

[
S↑�

ji (ωn)G↓�

ij (X + ωn)

+S↓�

ij (ωn)G↑�

ji (ωn − X)
]
, (29b)

Wσd�
ji (�) = T

∑
n

[
Sσ�

ji (ωn)Gσ�
ij (� + ωn)

+Sσ�
ij (ωn)Gσ�

ji (ωn − �)
]
. (29c)

Using the above definitions, the flow equation of the self-
energy (8) can be written explicitly as

d

d�
�σ�

ji (ωn) = −T
∑
n′

[
(δjiUj + Pji(ωn + ωn′)

+Xji(σ (ωn − ωn′)))S σ̄
j i(ωn′)

−Dσ
ji(ωn − ωn′ )Sσ

ji(ωn′)

+ δji

∑
k

Dσ
jk(0)Sσ

kk(ωn′)

]
. (30)
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To summarize, dfRG2 is defined by the flow equations (27)
and (30), together with the definitions (9), (18), (24), (28), and
(29).

E. Magnetic susceptibility

In this section, we demonstrate how the fRG approach can
be used to derive expressions for linear response theory. We
start by defining the magnetic susceptibility χi at a given site
i as the linear response of the local magnetization mi to a
magnetic field B:

χi = ∂Bmi |B=0 = 1
2∂B(n↑

i − n
↓
i )|B=0, (31)

where nσ
i is the local occupation of site i with spin σ . Using

the Matsubara sum representation of the local density nσ
i =

T
∑

n Gσ
ii (ωn), we explicitly calculate the derivative w.r.t. the

magnetic field:

χi = T

2

∑
nσ

σ∂BGσ
ii (ωn)|B=0

= T

2

∑
nσ

−σGσ (ωn)∂B[σB/2 − �σ (ωn)]Gσ (ωn)|B=0

= −T

2

∑
nj

Gij (ωn)Gji(ωn)

+T

2

∑
nklσ

σGik(ωn)∂B�σ
kl(ωn)|B=0Gli(ωn). (32)

Note that the derivative of the self-energy w.r.t. the magnetic
field B has the structure of the fRG flow equation of the self-
energy (8). So, we perform the derivative by setting � = B

instead of the � dependence defined in Eq. (7). The single-
scale propagator (9) with � = B set to zero then is

Sσ,B=0 = G∂B

[
Gσ

0

]−1
B=0G = σ

2
G2. (33)

Using this in combination with the flow equation of the
self-energy (8),

∂B�σ
kl(ωn) = T

2

∑
n′j1j2j3σ ′

σ ′Gσ ′
j1j2

(ωn′)Gσ ′
j2j3

(ωn′)

× γ2(j3σ
′ωn′ ,kσωn; j1σ

′ωn′ ,lσωn), (34)

one directly arrives at the well-known Kubo formula for
the magnetic susceptibility, which is exact if the self-energy
and the vertex are known exactly. For the coupled-ladder
approximation, we directly use the explicit flow equation for
the self-energy (30), which yields

χi = − T

2

∑
n,j

Gij (ωn)Gji(ωn)

+ T 2

4

∑
nn′klj

(Gik(ωn)Gli(ωn)Glj (ωn′)Gjk(ωn′)

× [Pkl(ωn + ωn′) + Xkl(ωn − ωn′) + Dkl(ωn − ωn′ )]

− Gik(ωn)Gki(ωn)Dkl(0)Glj (ωn)Gj l(ωn)). (35)

F. Zero-temperature limit

For the numerical data presented in Sec. IV, we focused
exclusively on the case of zero temperature. For the fRG
scheme defined by Eq. (7), the limit T → 0 has to be per-
formed carefully [7]: ωn → iω (ω ∈ R) becomes a continuous
variable and �T a sharp step function, with �(0) = 1

2 and
∂ω�(ω) = δ(ω). For this combination of δ and � functions,
Morris’ lemma [21] can be applied, which yields

S�(iω)
T =0= δ(|ω| − �)G̃�(iω), (36a)

G̃�(iω) = [[G0(iω)]−1 − ��(iω)]−1, (36b)

S�
i,j (iω1)G�

k,l(iω2)
T =0= δ(|ω1| − �)�(|ω2| − �)

× G̃�
i,j (iω1)G̃�

k,l(iω2). (36c)

G. Static fRG

A further possible approximation is to completely neglect
the frequency dependence of the vertex. This is done by setting
all three bosonic frequencies �, X, and � to zero throughout.
As a result, the self-energy is frequency independent, too.
This approach, called static fRG2 (sfRG2), loses the property
of being exact to second order. It leads to reliable results only
for the zero-frequency Green’s function at zero temperature.
If knowing the latter suffices (such as when studying the
magnetic field dependence at T = 0), sfRG2 is a very flexible
and efficient tool, computationally cheaper than our full
coupled-ladder scheme.

H. Numerical implementation

Due to the slow decay of S� for � → ∞, integrating the
flow equation (8) of the one-particle vertex γ1 from � = ∞
to a large but finite value � = �0 yields a finite contribution.
For numerical implementations, the initial condition thus has
to be changed to [5]

γ
�0
1 (q ′

1,q1) = −1

2

∑
q

v(q,q ′
1; q,q1). (37)

All numerically costly steps can be expressed as matrix
operations, for which the optimized toolboxes BLAS and
LAPACK can be used. The calculation time scales asO(N3), due
to the occurrence of matrix inversions (9) and matrix products
(27). In the case of sfRG2 there are six matrix functions,
each depending only on �. As a result, the integration
is straightforward, and can be done, e.g., by a standard
fourth-order Runge-Kutta with adaptive step-size control. We
used the more efficient Dormand-Prince method [24], and
mapped the infinite domain of � ∈ [0,∞) onto a finite domain
using the substitution � = x

1−x
with x ∈ [0,1). The upper

bound for N , the maximal number of sites where Uj �= 0,
is mainly set by accessible memory. In the case of several
gigabytes, N should not exceed 104 to 105. {We note in passing
that for the one-dimensional Hubbard model [which is a special
case of the model studied below, see Eq. (40)], N values of
that magnitude would not yet be large enough to reach the
Luttiger-liquid regime for the case of small interactions U . The
reason is that for the Hubbard model the spectral weight and
the conductance have a nonmonotonic dependence on energy:
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as the energy is decreased, there is an intermediate regime
in which they first increase, before the power-law decrease
characteristic of Luttinger-liquid behavior finally sets in at
very low energy scales, i.e. very large system sizes [6,25]. For
small interactions U � 0.5τ , the latter crossover only becomes
accessible for system sizes well beyond 105 sites (see, e.g.,
Fig. 6 in Ref. [6]). To be able to see the low-energy decrease
of spectral weight for system sizes of order 105, interactions
would have to be chosen to be as large as U � 4τ , for which,
however, the CLA can no longer be trusted.}

For dfRG2, all matrices depend additionally on the Mat-
subara frequency, which is, in the case of zero temperature,
a continuous variable. This variable has to be discretized in
the numerical implementation. A good and safe choice is a
logarithmic discretization since analytic functions have most
structure close to their branch cuts, i.e., small Matsubara
frequencies. Another possible choice, used in Ref. [7], is a
geometric mesh. Since an appropriate discretization consists
of at least 100 frequencies, the upper bound for N is reduced
to 103, for which the run time already becomes quite large.

For frequency values in-between the discrete frequencies on
the mesh, the functions have to be interpolated. Intuitively, one
might expect that a nonlinear interpolation, e.g., a cubic spline,
would lead to better results. However, in our implementations
this led to a self-enhanced oscillatory behavior of the self-
energy as a function of frequency, even for a very dense
discretization mesh. To avoid such numerical artifacts, the
safest choice is a linear interpolation, where the density of the
discretization is increased until the desired accuracy is reached.

I. Relation between fRG2 and RPA

In this section, we show that in the ladder approximation
proposed here, fRG retains the quality of being closely related
to parquet-type equations. This can be seen by considering
a simplified version thereof, in which the coupling between
the three channels is neglected, i.e., using replacement (19)
instead of (20), and so is the feedback of the self-energy by
replacing G̃� by G0 in Eq. (29). In this case, each of the three
differential equations (27) reduces to the generic form

d

d�
��(ν) = ��(ν)W�(ν)��(ν), (38)

with initial condition ��i = U = δijUj (with Uj � 0, for
present purposes). If Eq. (38) converges, its solution is given
by

�(ν) = U [I + W (ν)U]−1 , (39a)

with

W (ν) =
∫ ∞

0
d�W�(ν). (39b)

Now note that Eq. (39) is also obtained if each channel is
separately treated in the random phase approximation (RPA).
Consequently, the full fRG2 scheme (either dynamic or static),
described by Eqs. (27), amounts to a simultaneous treatment
of all RPA channels with interchannel coupling via (28), and
a feedback of Hartree-type diagrams via (9).

IV. fRG RESULTS

In this section, we will discuss some properties of the results
obtained with the fRG equations stated in Sec. III, for the case
of a QPC geometry. We will compare the results for the linear
response conductance for the three approximation schemes
and discuss the spin susceptibility within dfRG2.

A. Model for a QPC

We note that Eq. (1) applies to systems of arbitrary spatial
dimensions. However, in this work we only present and
discuss results for QPCs, thus restricting the model to one
dimension. The lowest one-dimensional subband of the QPC
is modeled by an inhomogeneous tight-binding chain, with
onsite interactions:

H =
∑
jσ

[
Eσ

j njσ − τ (d†
jσ dj+1σ + H.c.)

] +
∑

j

Ujnj↑nj↓,

(40)

with Eσ
j = Vj + 2τ − σB

2 where B is a Zeeman field. For
low kinetic energies, this tight-binding model is a good
approximation for a continuum model with mass m

�2 = 1
2τa2

(where � is Plank’s constant) and potential Vj = V (x =
ja) [26], provided that the lattice spacing a is much smaller
than the length scales on which the potential changes. In order
to keep computational time small, the model should always be
chosen in such a way that the number of sites N where Vj or
Uj are nonzero is as small as possible. In other words: The
inhomogeneity should be incorporated within as few sites as
possible, without loss of adiabaticity.

We model the QPC as a smooth one-dimensional potential
barrier which is purely parabolic around its maximum at x = 0:

V (x) = Vg + μ − m

2�2
�2

xx
2, (41)

or in discrete version

Vj = Vg + μ − �2
x

4τ
j 2 (|j | < jc). (42)

Here, jc defines the range of pure parabolicity, μ is the
chemical potential, and �x is the relevant energy scale for
the QPC [16], which we define such that it has the dimension
of an energy (not frequency). The condition that a has to be
much smaller then the length scales on which the potential
changes implies the condition �x 
τ . Vg is the gate voltage,
which controls the height of the potential. For |j | > jc, the
potential is smoothly connected to homogenous semi-infinite
noninteracting leads. The potential can be considered as purely
parabolic regarding its low-energy transport properties if jc �√

τ/�x . In the following, we use μ = 0.5τ , �x = 0.04τ ,
jc = √

2τμ/�x , and N = 81. These values optimize the
conditions on �x , jc, and the smoothness of the potential
on the one hand and the smallness of the number of sites
N on the other hand. Typical experimental values for GaAs
QPCs are �x = 1 meV and m = 0.067me, where me is the
electron mass. The latter fixes the hopping to τ = 25 meV
and thus the length unit to a =

√
�2/2τm � 5 nm. These

values should give a rough estimate for comparison with
experiment, however, in the following we will use the system
of measurement defined by τ and a, without referring to SI
units.
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FIG. 1. (Color online) (a) Local density of states Aj (ω) (color
scale) for the noninteracting Uj = 0, Hamiltonian Eq. (40) with
potential (42) at Vg = 0 (thick black line). (b) Local density of states
Aj (ω) as a function of (ω − Vj )/�x for a homogeneous tight-binding
chain (Vj = 0, gray line) and for the potential (42) at fixed site j = 0
(blue), j = 10 (green), and j = 20 (red), indicated in (a) by vertical
lines with corresponding colors.

B. Model properties

Having defined the model we first discuss its noninteracting
(U =0) properties. Figure 1 shows the local density of states
(LDOS)

Aj (ω) = − 1

aπ
ImGjj (ω + i0+) (43)

both in a grayscale plot as a function of site index and frequency
[Fig. 1(a)] and at several fixed sites as a function of frequency
[Fig. 1(b)]. Note that just above the potential [black line
in Fig. 1(a)] the LDOS is enhanced [dark region in Fig. 1(a)].
This property originates from the fact that the density of states
(DOS) of a one-dimensional system shows a divergence at
zero velocity: indeed the DOS for the homogenous version
[Vj = 0, i.e., Vg = μ = �x = 0 in Eq. (42)] of our model
[black dashed line in Fig. 1(b)] reads as

A(ω) = 1

πa
√

ω(4τ − ω)

ω
τ≈ 1

2πa
√

τω
∝ 1

vclas
, (44)

where vclas is the classical velocity of the electron. Quantum
mechanically, this divergence is smeared out by the inhomo-
geneity (Vj �= 0) of a potential. Following Ref. [1], we call
this smeared van Hove singularity in the LDOS that follows
the potential a “van Hove ridge.” In the case of a parabolic
barrier with curvature given by �x [Eq. (42)], the maximum
of the LDOS is at an energy of O(�x) bigger than Vj and has a
height of O(

√
τ�x) [see dashed-dotted line in Fig. 1(b)]. For

energies below the potential maximum, electrons get reflected.

This leads to standing waves, altering the LDOS by oscillations
around its bulk value [white striped area in Fig. 1(a) and
oscillations in dark red line Fig. 1(b)].

C. Conductance of a QPC

Having discussed the properties of the noninteracting
model, we continue with the fRG results at finite interaction.
For this we first define the spatial dependence of the interaction
Uj , which, for the one-dimensional model is an effective
one-dimensional interaction resulting from integrating out
two space dimensions. Its strength depends on the geometry,
and is larger if the spatial confinement perpendicular to
the one-dimensional system is smaller. We assume that this
confinement is independent of the position in the transport
direction in the center of the QPC, with Uj=0 = U . This is
a fair assumption for a saddle-point approximation of the
two-dimensional QPC potential. For |j | → N ′ = N−1

2 , Uj

drops smoothly to zero, describing the adiabatic coupling
to the two-dimensional electron system, represented by the
semi-infinite tight-binding chain.

In Ref. [1], we showed that the 0.7 anomaly is caused by
the van Hove ridge in the LDOS discussed above. Its apex
crosses the chemical potential when the QPC is tuned into
the subopen regime, i.e., the regime where the conductance
takes values 0.5GQ < G < 0.9GQ. This high LDOS at the
chemical potential enhances effect of interactions by two
main mechanisms: first, the effective Hartree barrier depends
nonlinearly on gate voltage and magnetic field, causing an
enhanced elastic backscattering; and second, due to the high
LDOS inelastic backscattering is enhanced once a phase space
is opened up by a finite temperature or source-drain voltage.
Both effects reduce the conductance in the subopen regime,
causing the 0.7 anomaly. Since interactions are enhanced by
the LDOS, the relevant dimensionless interaction strength is
UjAj (μ)a, which scales like U/

√
�xτ in the subopen regime.

In this paper, we will concentrate on examining how
the reliability of the method depends on the interaction,
without explaining the physical mechanism underlying the
0.7 anomaly in detail (for the latter, we refer to Ref. [1]).
For the model (40), no reliable results are available from
other methods to which we could have compared our own.
Instead, we here compare the results of the different fRG
schemes fRG1, sfRG2, and dfRG2. These schemes differ in the
prefactor of the perturbative expansion of terms in order U 2 and
higher. If these terms are important, the three approximation
schemes will deviate from each other. Hence, the qualitative
and quantitative reliability can be deduced from the qualitative
and quantitative deviations between these schemes.

The first observable we discuss is the linear response
conductance at zero teperature [27]:

G = e2

h

∑
σ

∣∣2πρσ (i0+)Gσ
−N ′N ′ (i0+)

∣∣2
, (45)

where ρ(ω) is the density of states at the boundary of a semi-
infinite tight-binding chain, representing the two-dimensional
leads (for a derivation of the boundary Green’s function, see
the Appendix).

Particularly interesting in studying the 0.7 anomaly in
QPCs is the shape of the conductance trace as a function
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FIG. 2. (Color online) (a)–(c) Conductance G, as a function of gate voltage Vg , at zero magnetic field B = 0 for different values of
interaction U . (d)–(f) Conductance G at fixed interaction strength U = 3.5

√
�x , for six equidistant magnetic fields B, between 0 and 0.5�x .

Conductance is calculated using fRG1 [(a), (d)], dfRG2 [(b), (c)], or sfRG2 [black lines in (c) and (f)]. Red lines in (c) and (f) show dfRG2 data
repeated from (b) and (e) with a U -dependent shift �Vg in Vg direction (�Vg = 0, 0.001, 0.02 and 0.15�x for U = 0, 0.5, 1, 5, and 3.5

√
�xτ ,

respectively).

of applied gate voltage in the region where its value (in
units of GQ) changes from zero to one, and how this shape
changes with external parameters, such as applied magnetic
field. First of all, we emphasize the good qualitative agreement
of all three approximation schemes with each other as well as
with experimental results [compare Figs. 2(d), 2(e), and 2(f)
with Refs. [17,19] (a direct comparison of dfRG2 with
experiment is given in Ref. [1])]. This confirms that the method
qualitatively captures the physical mechanism with respect to
the conductance at zero temperature very well.

For a more quantitative analysis, we first consider the posi-
tion of the conductance step, say Vpo; even though the actual
position of the step is of minor interest experimentally, it gives
information about how accurate Hartree-type correlations are
treated. Figures 2(a), 2(b), and 2(c) show the conductance at
B = 0 for increasing values of interaction U for fRG1, dfRG2,
and sfRG2, respectively. While for dfRG2 and for sfRG2, Vpo

decreases with interaction, its behavior for fRG1 is nonmono-
tonic: Vpo decreases slightly at small values of interaction, and
increases strongly at larger values of interaction. Hence, the
conductance at large interaction is higher than the bare U = 0
value. This behavior is unphysical: whenever the density is
nonzero, an increase in U should cause an increase in the
effective barrier height due to Coulomb repulsion, and hence
a decrease in the conductance. This artifact is significantly
reduced by the vertex flow of both dfRG2 and sfRG2. For
the latter, interactions suppress the conductance more strongly
than for the former. Due to these deviations between the three
schemes, we can not make a quantitative statement about the
exact position of the conductance step Vpo.

The deviations just discussed make quantitative compar-
isons between these methods (or with others, such as RPA)
difficult if interactions are large. The reason for the difficulty is
that the Vg position of the conductance step depends sensitively
on the precise way in which Hartree-type correlations are
treated and hence differ for each of the above schemes. Hence,
it would not be meaningful to compare their predictions for

physical quantities calculated at a given value of Vg; instead,
it is only meaningful to compare the shape of their evolution
with Vg . Actually, the same is true for physical quantities that
are dominated by Fock-type correlations since internal prop-
agators have to be dressed by Hartree diagrams. Doing this is
crucial for inhomogeneous systems such as ours since an inho-
mogeneous density causes these Hartree contributions to have
a significant dependence on position and gate voltage. In the
fRG approach, the feedback of the self-energy (9) always guar-
antees that internal lines are dressed in a self-consistent way.

Let us now compare the shapes of the Vg-dependent
conductance curves for dfRG2 and sfRG2. To this end, we
replotted the dfRG2 data from Fig. 2(b) in Fig. 2(c) with a
U -dependent shift �Vg in the Vg direction (red lines). It can
be seen from comparison with sfRG2 data that the shapes of
the conductance curves are almost identical.

Next, we analyze the shape of the conductance step at
finite interaction, and how it develops with magnetic field. The
effect of an increasing magnetic field is qualitatively similar
for the three approximation schemes [see Figs. 2(d), 2(e),
and 2(f)]: the conductance step develops into a spin-resolved
double step, in an asymmetric way: while the curves hardly
change for Vg values where G < 0.5GQ, they are strongly
suppressed in the subopen regime, where the LDOS is large.
For fRG1, the Vg range, where the lowest magnetic field
B = 0.1�x significantly reduces the conductance w.r.t. the
conductance at B = 0, is larger than for dfRG2 and sfRG2.
This is related to the fact that the magnetoconductance, the
change of conductance with magnetic field, within fRG1 is
negative even for Vg values where conductance is close to zero
[this effect is too small to be visible in Fig. 2(d)]. Since this is
not the case for dfRG2 and sfRG2 it is not possible to make a
reliable statement about the sign of the magnetoconductance in
the tunnel regime. Again, we reproduced the dfRG2 data from
Fig. 2(e) in Fig. 2(f) with a shift �Vg in Vg (red line) in order to
compare their shape with the sfRG2 data (black dashed line).
The effect of the magnetic field on the conductance within
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sfRG is slightly larger for small fields and slightly smaller for
large fields than for the dfRG2 results. Based on the facts that,
first, the deviations between dfRG2 and sfRG2 are small and,
second, sfRG2 is computationally much cheaper than dfRG2,
we conclude that for preliminary studies, or when scanning a
large parameter space, one should favor sfRG2 whenever it is
sufficient to know the static part of vertex functions.

D. Susceptiblity

As explained in Ref. [1], the 0.7 anomaly is related to
an enhanced spin susceptibility in the subopen regime of the
QPC. For this quantity, an estimate of the error is available
within the dfRG2 approximation scheme. We note that the
spin susceptibility defined in Eq. (31) can be calculated in
two ways: by numerical differentiation of the magnetization
for a small magnetic field χnum, or via Eq. (35), χKubo. Like
the conductance, the value of χ is not known exactly. Thus,
we argue here as in the previous section. χnum and χKubo are
both exact to second order in the interaction, as can easily
be checked, but they differ in terms that are of order U 3 and
higher. If the difference of χnum and χKubo is significant, the
higher-order terms are non-negligible, and the results can not
be trusted.

In Ref. [1] we showed that χnum
j is enhanced due to the

inhomogeneity of the QPC potential and in addition amplified
by interactions. It has a strong Vg dependence, and is maximal
when the QPC is tuned into the subopen regime. In this regime,
at Vg = −�x/4, we compare χnum (Fig. 3 black lines) with
χKubo (Fig. 3 red lines) for different values of interaction. For
intermediate values of interaction U = 1.5

√
�xτ , both results

are essentially identical, while for a larger value of interaction
U = 3.5

√
�xτ deviations are clearly visible, however still

not too large. The qualitative features that the susceptibility
strongly increases with interaction, and that it is enhanced in
the center of the QPC, emphasized in Ref. [1], are confirmed
by both results. Furthermore, they coincide in their spatial
structure, i.e., two maxima in the center and a decaying
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FIG. 3. (Color online) Local spin susceptibility χj [Eq. (31)] as
a function of site index, for the QPC potential [Eq. (42)] at Vg =
−�x/4, calculated using dfRG2 via the the numerical derivative of
the local magnetization χ num (black lines), as well as via the Kubo
formula (35), χ kubo (red lines), for three different values of interaction.
Inset: relative error RE [Eq. (46)] (dots), as a function of interaction
U , on a log-log scale. The error scales as U 3 (compare dashed line)
since dfRG2 is exact to second order in the interaction U .

oscillating behavior. This spatial structure is mainly given
by the LDOS at the chemical potential (see Sec. IV B) and
enhanced by interactions.

For a better quantification, we define the relative error

RE = 2

∑
j

∣∣χKubo
j − χnum

j

∣∣∑
j

∣∣χKubo
j + χnum

j

∣∣ . (46)

This error is shown on a log-log scale in the inset of Fig. 3
(dots). The relative error scales like U 3 since dfRG2, and thus
χnum and χKubo, are exact to second order in U . For the larger
value of interaction U = 3.5

√
τ�x , the relative error of about

18% is quite significant and thus the value of χ is quantitatively
not reliable. The reason for this is that the dimensionless
interaction strength UjAj (μ)a ≈ 3.5 × 0.3 ≈ 1 is already
close to one. Nevertheless, the error is still dominated by the
third-order term, implying that it is controlled.

Finally, we note that the spin susceptibility in the RPA
approximation

χRPA
i =

∑
j

[Wd (0)[1 + UWd (0)]−1]ij (47)

diverges at an interaction strength for which fRG is still well
behaved. For example, if bare internal propagators are used to
calculate Wd , χRPA

i (Vg) turns out to diverge at U � 3.3
√

�xτ .
Moreover, the value of χRPA and thus also the U value
for which it diverges depends on how one chooses to treat
interactions for internal propagators of Wd . However, RPA
itself gives no recipe how to do this. In contrast, the fRG
approach gives a systematic framework for computing the
two-particle vertex, the self-energy, and their feedback into
each other, in a way that moderates competing instabilities in
an unbiased way (as mentioned in Sec. III).

V. CONCLUSION AND OUTLOOK

We have derived a fRG based approximation scheme,
called the coupled-ladder approximation (CLA), for spinful
fermionic tight-binding models with a local interaction and an
arbitrary potential. The main applications are systems with a
significant spatial dependence, in particular, models where the
electron density significantly changes with the position in real
space.

The CLA is formulated within the context of third-order-
truncated fRG schemes, in which the three-particle vertex is
set to zero, while the flow of the two-particle vertex is fully
incorporated. The CLA retains two of the main properties of
third-order-truncated fRG: it is exact to second order, and sums
up diagrams of the RPA in all channels. Since the CLA is based
on a perturbative argument, it is reliable only if interactions
are not too large.

We analyzed in detail the reliability of this approach
for a one-dimensional tight-binding model with a parabolic
potential barrier representing a QPC. For this, we com-
pared results for the conductance and the spin susceptibility
calculated using different approaches within the fRG for
different interactions up to U = 3.5

√
�xτ . We identified

the magnetic field dependence of the conductance and the
enhanced susceptibility related to the 0.7 anomaly [1], as
robust properties of the model.
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Finally, let us comment briefly on the prospects of using
the CLA approach presented here to obtain finite-temperature
results. While the formulas for the local density n and the local
susceptibility χ [Eq. (35)] are valid for arbitrary temperature
T , the conductance formula (45) holds only for the case of
zero temperature. The generalization of this formula to finite
temperature[28] involves an analytic continuation to the real
axis for both self-energy and vertex w.r.t. their frequency
arguments. However, performing such an analytic continuation
for numerical data is a mathematically ill-defined problem and
turns out to be especially difficult for matrix-valued functions.

One possibility to avoid this complication is to formulate
our CLA scheme on the Keldysh contour, in which case
there are several different possibilities for introducing the fRG
flow parameter [29]. (For a fRG treatment of the single-
impurity Anderson model, see Ref. [11].) When using
Keldysh fRG to treat equilibrium properties, the number of
independent correlators can be reduced by exploiting the
Kubo-Martin-Schwinger conditions [30]. Moreover, Keldysh
fRG in principle also allows nonequilibrium properties to be
calculated. The actual implementation of Keldysh fRG for our
model will be nontrivial, though, in particular since numerical
integrations along the real axis, where Green’s functions can
have poles, can be challenging. Another problem at finite
temperature is the violation of particle conservation due to the
fRG truncation (5) [31]. The extent of this violation might be
reduced by implementing the modified vertex flow suggested
by Katanin [32]. We believe that it would be worth pursuing
work in these directions.
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APPENDIX: PROJECTION METHOD

The propagator in the fRG flow [Eqs. (8) and (12)], in
general, lives on an infinite-dimensional chain. However,
since the interacting region has finite extent, we only need
to evaluate it on an N -dimensional subspace. Furthermore,
for the evaluation of Eq. (35) we need to calculate the sum
over all site indices j , including the infinite number of sites
in the leads. To this end, we perform a standard projection
procedure [8,20]. With this method, the influence of the
leads on the propagator and their contribution to the sum
can be calculated analytically if the diagonalization of the
leads is known analytically. Therefore, we define projection
operators C and L, with C2 = C, L2 = L, and L + C = 1
which divide the Hilbert space into the part that describes
the leads L and the finite-dimensional part that describes the
central region where interaction is nonzero C. Furthermore, we
define for a given quadratic Hamiltonian H (for an interacting
system H is replaced by H0 + �), Hc = CHC, Hc = CHC,
Hcl = CHL, Hlc = LHC, ωl = ωL, and ωc = ωC and write
the Hamiltonian in the basis defined by the projections

H =
(

Hc Hcl

Hlc Hl

)
. (A1)

Consequently, the Green’s function in the same basis reads as

G =
(

ωc − Hc −Hcl

−Hlc ωl − Hl

)−1

=
(
Gc Gcl

Glc Gl

)
. (A2)

with

Gc = 1

ωc − Hc − HclglHlc

, gl = 1

ωl − Hl

, (A3a)

Gl = 1

ωl − Hl − HlcgcHcl

, gc = 1

ωc − Hc

, (A3b)

Gcl = GcHclgl = gcHclGl , (A3c)

Glc = glHlcGc = GlHlcgc. (A3d)

In the following, we will only use Gl and gc as well as Gcl

and Glc expressed in terms Gl and gc, so we use the shorthand
notations G = Gl and g = gl (whether G lives on the infinite-
dimensional Hilbert space, or on the subspace of the central
contact, will be clear from its site indices).

For the case of the infinite tight-binding chain defined by
Eq. (40), the central region extends from site −N ′ to site N ′,
with N ′ = N−1

2 , and the coupling to the leads can be expressed
as

Hcl = −τ (d†
−N ′d−N ′−1 + d

†
N ′dN ′+1), (A4a)

Hlc = H
†
cl . (A4b)

Consequently,

HclgHlc = τ 2(d†
−N ′d−N ′−1 + d

†
N ′dN ′+1)

×g(d†
−N ′−1d−N ′ + d

†
N ′+1dN ′ )

= τ 2b(n−N ′ + nN ′ ), (A5)

where b = gN ′+1,N ′+1 is the boundary Green’s function
of a half-infinite tight-binding chain. Transforming into k

space and using the boundary condition 〈d†
N ′dk〉 = 0 we

get 〈d†
N ′+1dk〉 ∝ sin2(k). Together with the dispersion εk =

−μ − 2τ cos(k) and the proper normalization, this yields for
Im(ωn) > 0

b(ωn) = 1

π

∫ π

−π

dk
sin2(k)

ωn + μ + 2τ cos(k)

= 1

2τ 2
[ωn + μ − i

√
4τ 2 − (ωn + μ)2]. (A6)

The square root is defined to have a positive real part, and
b(−ωn) = b∗(ωn). (For the spin-dependent boundary Green’s
function at finite magnetic field, μ has to be replaced by
μ + σB/2.)

Next, we calculate the infinite sum in Eq. (35). We split the
sum into three parts and take k and l to be site indices in the
central region

∞∑
j=−∞

GkjGj l =
(−N ′−1∑

j=−∞
+

N ′∑
j=−N ′

+
∞∑

j=N ′+1

)
GjkGj l

=
N ′∑

j=−N ′
GjkGj l + τ 2Gk,−N ′hLG−N ′,l

+ τ 2Gk,N ′hRGN ′,l , (A7)
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with

hL =
−N ′−1∑
j=−∞

g−N ′−1,j gj,−N ′−1, (A8a)

hR =
∞∑

j=N ′+1

gN ′+1,j gj,N ′+1, (A8b)

where we made use of Eqs. (A3c), (A3d), and (A4).

Finally, we note that the last two terms are identical and
given by

h(ωn) = hL(ωn) = hR(ωn) = [g2(iωn)]N ′+1,N ′+1

= 1

π

∫ π

−π

dk
sin(k)2

[ωn + μ + 2τ cos(k)]2

= 1

2τ 2

(
ωn + μ

ωn + μ − 2τ

√
ωn + μ − 2τ

ωn + μ + 2τ
− 1

)
. (A9)
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Chapter 4

Conductance for Interacting Fermi
Systems

One major theoretical goal in the context of the 0.7-anomaly is to calculate the conductance of
a QPC, i.e. the conductance through an extended interacting system of fermions. Since inter-
actions are crucial (compare section 2.3), one needs to include them as accurately as possible.
Furthermore the chosen approach should respect particle conservation, in the sense of respect-
ing the corresponding Ward identities (Ward, 1950, see also section 4.2 Appendix C). The latter
are violated in the fRG approach in the order of the truncation (see Enss, 2005; Katanin, 2004).
Even if interactions are small enough that the violation of particle conservation is negligible,
it turns out that the numerical calculation of the conductance at finite temperature in the Mat-
subara formalism is unfeasible, as will be explained in section 4.3.

4.1 fRG in Keldysh formalism

The linear conductance is defined as the response of the current to an applied voltage:

G =
dI

dVsd

∣∣∣∣
Vsd=0

. (4.1)

To perform this derivative we will follow the same strategy as for the spin susceptibility in
section 3.3.6.III.E (see also Bauer et al. (2014)): The current I can be expressed in terms of single
particle Green’s functions, and thus equation (4.1) leads to derivatives of Green’s functions
w.r.t. voltage. This derivative can be expressed using the fRG equations, i.e. using derivatives
of the one-particle vertex function.

Even though at the end voltage is set to zero, we need to set up the fRG equations in non-
equilibrium if the flow parameter is the voltage. This can only be done in the Keldysh formal-
ism.
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4.1.1 Specifying the Action

The fRG approach is defined once the action is specified. We use the Keldysh formalism in the
frequency representation and a contour index a (see Keldysh, 1965; Kamenev and Levchenko,
2009; Jakobs, 2009; Jakobs et al., 2010, for details). The composite index k = (ω, a, j, σ) carries
information of frequency ω, contour index a, site j and spin σ. The action reads as

κS =
i

2π

∫
dω ∑

ijσab
ψ

a
σi(ω)

[
gab

σij(ω)
]−1

ψb
σj(ω)

+
i

(2π)3

∫
(dω)4 ∑

ijσσ′a
a1δa1a2

δa′1a′2
δa1a′1

Uijδ(ω1+ω2−ω′1−ω′2)
ψ

a
σi(ω1)ψ

a
σ′ j(ω2)ψ

a
σi(ω

′
1)ψ

a
σ′ j(ω

′
2)

(4.2)

where g is a shorthand for the bare Green’s function G0 and a and b are contour indices. In the
Keldysh formalism it is not possible give a universal explicit definition for g−1(ω). It can only
be given in some special cases, e.g. in equilibrium. A universal definition is only given in the
time representation, where the density-matrix at t = ∞ is known.

We take κ = i, ν = i and Trω =
∫ dω

2π where Trω is the summation over frequency degrees of
freedom. Because of

ΓΛinitial
({

φ
}

, {φ}
)
= κSint

({
φ
}

, {φ}
)

(4.3)

we get

γ2(k′1, k′2, k1, k2) =− a1δa1a2
δa′1a′2

δa1a′1
Uj1 j22πδ(ω′1 + ω′2 −ω1 −ω2)

×
(

δj1 j′1
δj2 j′2

δσ′1σ1
δσ′2σ2
− δj1 j′2

δj2 j′1
δσ′1σ2

δσ′2σ1

) (
1− δj1 j2 δσ1σ2

)
. (4.4)

Note that γ2 has no dimension of energy. The same is true for all other vertex functions.
Further the m-particle Green’s functions have dimension of [energy]−2m. However we defined
these objects in equations (3.2), (3.5) and (3.7) such that the fact that they conserve frequency is
not made explicit. From time translationally invariance one can easily see that

γm(ω
′
1, . . . , ω′m, ω1, . . . , ωm) =2πδ(ω′1 + · · ·+ ω′m −ω1 − · · · −ωm)

× γm(t′1=0, ω′2, . . . , ω′m, ω1, . . . , ωm) (4.5a)
Gm(ω

′
1, . . . , ω′m, ω1, . . . , ωm) =2πδ(ω′1 + · · ·+ ω′m −ω1 − · · · −ωm)

× Gm(t′1=0, ω′2, . . . , ω′m, ω1, . . . , ωm) (4.5b)

(see Jakobs, 2009, for a derivation). The vertex functions on the r.h.s. do all have dimension
of energy, and the Green’s function on the r.h.s. have dimension of [energy]−2m+1.1 In the
following we derive the flow equations for these vertex functions. So we define

Σ(ω) =− γ1(t′ = 0, ω) , (4.6a)
S(ω) =S(t′ = 0, ω) , (4.6b)

L(ω′1, ω′2; ∆) =γ2(t′1=0, ω′2, ω1, ω2) (∆ = ω2 −ω′2) . (4.6c)

1Note, that this problem did not appear in Matsubara formalism in the previous chapter (see section 3.3), since
energy conservation is represented by a Kronecker delta which is dimensionless and either one or zero.
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The flow equation for the one-particle vertex function is

d
dΛ

γ1(k′1ω′1, k1ω1) = i
∫ dω′2

2π

dω2
2π ∑

k′2,k2

γ2(k′1ω′1, k′2ω′2, k1ω1, k2ω2)S(k2ω2, k′2ω′2) . (4.7)

Using equation (4.5) and integrating over ω′1 to get rid of the delta-function, we get

d
dΛ

Σk′1k1
(ω) =

1
2πi

∫
dω′Sk2k′2

(ω′)γ2(k′1t′1 = 0, k′2ω′, k1ω, k2ω′) . (4.8)

In the case of the one-particle Green’s and vertex functions, our notation is as follows:
whenever they only depend on a single frequency they do not contain the delta-function. For
the two-particle we have a certain freedom to parametrise the three independent frequencies.
In the previous section we used three bosonic frequencies whereas for the present purpose the
parametrisation given in equation (4.6c) is more efficient.

Deriving the flow equation for the other vertex functions is straight forward: since the trace
over ω is defined with a factor 1

2π and each delta-function appears with a factor 2π, we are left
with a single frequency integral and the prefactor 1

2π . Together with ν = i we get the prefactor
i

2π .

4.2 Conductance Formula – Publication

The derivation of the conductance formula will be published in a paper giving also additional
details of our calculation using second order perturbation theory. The conductance formula
derived in this publication is a generalised version of the formula derived by Oguri (2001) who
started from the Matsubara formalism. In contrast to the formula of Oguri (2001), our approach
is also valid for non-symmetric Hamiltonians, necessary e.g. when spin-orbit interactions are
present. This section contains a reprint of the draft (Heyder, 2014).
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We discuss various options for calculating the conductance through a central, interacting region
coupled to non-interacting fermionic leads in the Keldysh formalisms. Our starting point is the well-
known Meir-Wingreen formula for the current, whose derivative w.t.r. to the source-drain voltage
yields the conductance. We explore various ways of performing this derivative analytically. They all
exploit an exact flow equation from the function renormalization group (fRG), which expresses the
flow w.r.t. voltage of the one-particle vertex, i.e. the self-energy, in terms of the two-particle vertex.
One of these ways can be used to obtain a Keldysh-based derivation of a formula for the linear
conductance that has previously been obtained by Oguri in the Matsubara formalism. We apply
this formula to calculate the conductance for a model that has previously been shown to capture the
essential physics of a quantum point contact (QPC) in the regime of the 0.7 anomaly. The model
involves a tight-binding chain with a one-dimensional potential barrier and onsite interactions,
which we treat using second order perturbation theory (SOPT). We show that numerical costs can
be reduced significantly by using a non-uniform lattice spacing, chosen such that the occurence of
artificial bound states close to the upper band edge is avoided.

I. INTRODUCTION

Two cornerstones of the theoretical description of
transport through a mesoscopic system are the Landauer-
Büttiker1 and Meir-Wingreen2 formulas for the conduc-
tance. The Landauer-Büttiker formula describes the con-
ductance between two reservoirs connected by a central
region in the absence of interactions. The Meir-Wingreen
formula applies to the more general case that the cen-
tral region contains electron-electron interactions: it ex-
presses the current, in beautifully compact fashion, in
terms of the Fermi functions of the reservoirs, and the re-
tarded, advanced and Keldysh components of the Green’s
function for the central region.

To actually apply the Meir-Wingreen formula, these
Green’s functions have to be calculated explicitly, which
in general is a challenging task. Depending on the in-
tended application, a wide range of different theoretical
tools have been employed for this purpose. Much at-
tention has been lavished on the case of non-equilibrium
transport through a quantum dot described by a Kondo
or Anderson model, where the central interacting region
consists of just a single localized spin or a single electronic
level, see Refs. 3 and 4 for reviews. Here we are inter-
ested in the less well-studied case of systems, where the
physics of the interacting region cannot be described by
just a single site, but rather requires an extended mod-
elling, consisting of many sites.

We have recently used a model of this type in a pa-
per that offers an explanation for the microscopic ori-
gin of the 0.7-anomaly in the conductance through a
QPC5. The model involves a tight-binding chain with a
one-dimensional potential barrier and onsite interactions.
In Ref. 5 we used two approaches to treat interactions:
second-order perturbation theory (SOPT) and the func-
tional renormalization group (fRG). Our calculations of
the linear conductance were based on an exact formula
derived by Oguri6. He started from the Kubo formula in
the Matsubara formalism and performed the required an-

alytical continuation of the two-particle vertex function
occurring therein using Eliashberg theory7.

Since Oguri’s formula for the linear conductance is ex-
act, it can also be used by employing methods more pow-
erful and reliable than SOPT, for example fRG, to calcu-
late the self-energy and two-particle vertex. If this is done
in the Matsubara formalism, however (as in Ref. 5), one
is limited, in practice, to the case of zero temperature,
because finite-temperature calculations would require an
analytic continuation of numerical data from the imagi-
nary to the real frequency axis, which is a mathematically
ill-defined problem. This problem can be avoided by cal-
culating the self-energy and vertex directly on the real
axis using the Keldysh formalism8,9. However, to then
calculate the linear conductance, the ingredients occur-
ing in Oguri’s formula would have to be transcribed into
Keldysh language, and such a transcription is currently
not available in the literature in easily accesible form.

In the present paper, we find a Keldysh version of
Oguri’s formula by deriving it entirely within the Keldysh
formalism. Our starting point is the Meir-Wingreen for-
mula for the current, J(V ), with the conductance defined
by g = ∂V J . Rather than performing this derivative nu-
merically, we here perform it analytically, based on the
following central observation: The voltage derivative of
the Green’s functions that occur in the Meir-Wingreen
formula, ∂V G, all involve the voltage derivative of the
self-energy, ∂V Σ. The latter can be expressed in terms of
the two-particle vertex by using an exact flow equation
from the function renormalization group (fRG). We show
that it is possible to use this observation to derive Oguri’s
formula for the linear conductance, expressed in Keldysh
notation, provided that the Hamiltonian is symmetric
and conserves particle number. Our argument evokes
a Ward identity10, following from U(1)-symmetry, which
provides a relation between components of the self-energy
and components of the vertex.

As an application of our Keldysh version of Oguri’s
conductance formula, we use Keldysh-SOPT to calcu-
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late the conductance through a QPC using the model of
Ref. 5. We show that it is possible to greatly reduce the
numerical costs by using a non-monotonic lattice spacing
when formulating the discretized model. We present re-
sults for the conductance as function of barrier height for
different choices of interaction strength U , magnetic field
B and temperature T and discuss both the successes and
limitations of the SOPT scheme.

The paper is organized as follows: After introducing
the general interacting model Hamiltonian in Sec. II, we
present the Keldysh derivation of Oguri’s conductance
formula in Sec. III. We set the stage for explicit conduc-
tance calculations by expressing the self-energy and the
two-particle vertex within Keldysh SOPT in Sec. IV and
introduce our the 1D-model of a QPC and show and dis-
cuss conductance results in Sec. V. A detailed collection
of definitions and properties of both Green’s and ver-
tex functions in Keldysh formalism can be found in Ap-
pendix A and in Ref. 11 (in fact our paper closely follows
the notation used therein). A diagrammatic derivation
of the fRG flow-equation for the self-energy is given in
Appendix B and the Ward identity resulting from par-
ticle conservation is presented in Appendix C. In Ap-
pendix D we perform an explicit calculation to show the
fluctuation-dissipation theorem for the vertex-functions
within SOPT. Finally, we apply the method of finite
differences in Appendix E, to discretize the continuous
Hamiltonian using a non-constant discretization scheme.

II. MICROSCOPIC MODEL

Within this work we consider a system composed
of a finite central interacting region coupled to two
non-interacting semi-infinite fermionic leads, a left lead,
with chemical potential µl, temperature T l and Fermi-
distribution function f l, and a right lead, with chemi-
cal potential µr, temperature T r and Fermi-distribution
function fr. The two leads are not directly connected
to each other, but only via the central region. A similar
setup was considered in Ref. 2 and Ref. 6.

The general form of the model Hamiltonian reads

H = H0 +Hint =
∑

ij

hijd
†
idj +

∑

ij

Uijninj , (1)

where hij is a hermitian matrix, and Uij is a real, sym-
metric matrix, non-zero only for states i,j within the cen-

tral region. d†i/di creates/destroys an electron in state i

and ni = d†idi counts the number of electrons in state
i. While in general the index i can represent any set of
quantum numbers we will regard it as a composite in-
dex, referring, e.g. to the site and spin of an electron
for a spinful lattice model. Note, that the Hamiltonian
conserves particle number, which is crucial in order to
formulate a continuity equation for the charge current in
the system.

Defining operators L/C/R, which project onto the sub-
space of the central region/left lead/right lead respec-
tively, we can represent the quadratic part of the Hamil-

tonian as

H0 =



LH0L LH0C 0
CH0L CH0C CH0R

0 RH0C RH0R


=



Hl Hlc 0
Hcl H0,c Hcr
0 Hrc Hr


 .

(2)

We note that all matrices on the r.h.s. have the dimen-
sion of the full bare Hilbert space, but are non-zero only
in the corresponding sub-space, e.g. an entry Hlc,ij of
the coupling matrix can differ from zero only if i is a
quantum state of the left lead and j is a quantum state
of the central region.

III. TRANSPORT FORMULAS

We henceforth work in the Keldysh formalism. Our
notation for Keldysh indices, which mostly follows that
of Ref. 11, is set forth in detail in Appendix A, to allow
the main text to focus only on the essential steps of the
argument.

A. Current formula

We begin by retracing the derivation of the Meir-
Wingreen formula. In steady state the number of par-
ticles in the central region is constant. Hence, the par-
ticle current from the left lead into the central region
is equal to the particle current from the central region
into the right lead, J := Jl→c = Jc→r[We remark that
this continuity equation can also be obtained by imposing
the invariance of the partition sum under a gauged U(1)
transformation, following from particle conservation of
the Hamiltonian, see Appendix C]. This allows us to fo-
cus on the current through the interface between left lead
and central region. Expressing the current in terms of the
time-derivative of the total particle number operator of
the left lead, nl =

∑
i∈L ni, we obtain the Heisenberg

equation of motion J = −e〈ṅl〉 = −ie/~〈[H, nl]〉, where
e is the electronic charge and ~ is Planck’s constant.
Thus, considering the above definition of the Hamilto-
nian, Eq.(1), the current reads

J = − ie
~
∑

i∈L
j∈C

[
hij〈d−j (t)[d+

i ]†(t)〉 − hji〈d−i (t)[d+
j ]†(t)〉

]

=
e

~

[
Tr{(Hlc −Hcl)G−|+}

]
, (3)

with the interacting equal-time lesser Green’s function

G
−|+
i|j =G

−|+
i|j (t|t)=−i〈d−

i
(t)[d+

j ]†(t)〉 (here we used time-

translational invariance of the steady-state). Fourier
transformation of Eq.(3) yields

J =
e

h

∫
dεTr

{
(Hlc −Hcl)G−|+(ε)

}
, (4)

with h=2π~. We introduced the symbol G for a Green’s
function that depends on a single frequency only (as op-
posed to the Fourier transform of the time-dependent
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Green’s function G, which, in general, depends on two
frequencies, see Appendix A, Eq.(A.7), for details).

Following the strategy of Ref. 2, we use Dyson’s equa-
tion, Eq.(A.26), to express the current in terms of the
central region Green’s function Gc and rotate from the
contour basis into the Keldysh basis (the explicit Keldysh
rotation is given by Eq.(A.10) and Eq.(A.14c)). This
yields

J=
ie

2h

∫
dε Tr{Γl[G2|2

c − (1− 2f l)(G2|1
c − G1|2

c )]}, (5)

with retarded, G2|1
c (ε), advanced, G1|2

c (ε), and Keldysh

central region Green’s function, G2|2
c (ε), and the hy-

bridization function Γl(ε) = i Hcl(g
2|1
l (ε)− g1|2

l (ε))Hlc,
where gl(ε) is the Green’s function of the isolated left
lead. Here and below we omit the frequency argument
for all quantities that depend on the integration variable
only. Eq.(5) is the celebrated Meir-Wingreen formula for
the current [c.f. Eq.(6) in Ref. 2 for a symmetrized ver-
sion].

We now present a version of the Meir-Wingreen
formula in terms of the interacting one-particle irre-
ducible self-energy Σ (with retarded, Σ1|2, advanced,
Σ2|1 and Keldysh component Σ1|1 [Eq.(A.3), Eq.(A.7),
Eq.(A.13)]). It can be derived by means of Dyson’s equa-
tion, Eq.(A.25), which enables a reformulation of the
Green’s functions in Eq.(5) in terms of the hybridiza-
tion functions Γ, the lead distribution functions f and
the self-energy Σ:

G2|1
c −G1|2

c = G2|1
c

([
G1|2
c

]−1−
[
G2|1
c

]−1)G1|2
c

= G2|1
c

(
− i(Γl + Γr) +Σ1|2 − Σ2|1)G1|2

c ,

G2|2
c =G2|1

c

(
− i

∑

k=l,r

(1− 2fk)Γk +Σ1|1)G1|2
c . (6)

Hence, the current formula can be written as the sum of
two terms,

J =
e

h

∫
dε(f l − fr)Tr{ΓlG2|1

c ΓrG1|2
c }+

+
ie

2h

∫
dεTr{ΓlG2|1

c

(
Σ1|1−(1−2f l)(Σ1|2−Σ2|1)

)
G1|2
c }.

(7)

In equilibrium, i.e. f := f l = fr, the current must
fulfill J = 0. With the first term of Eq.(7) vanish-
ing trivially, this imposes the fluctuation-dissipation the-
orem (FDT) for the self-energy at zero bias voltage,
Σ1|1 = (1−2f)(Σ1|2−Σ2|1). Note that a similar FDT
can be formulated for the Green’s function in Eq.(5).

B. Differential conductance formula

Differentiating Eq.(5) w.r.t. the source-drain voltage
V =(µl−µr)/e, i.e. the voltage drop from the left to the
right lead, provides the differential conductance gV =
∂V J . We denote derivatives w.r.t. frequency by a prime,

e.g. f l
′

:= ∂εf
l, and derivatives w.r.t. the source-drain

voltage by a dot,
.
Gc := ∂V Gc. Using Dyson’s equation

[Eq.(A.25)], we can express the derivative of the Green’s
function in terms of derivatives of the self-energy:

.
Gα|α′c =

∑

β,β′

Gα|β′c

.
Σβ
′|βGβ|α′c + Sα|α

′
,

S1|1 =S1|2 =S2|1 =0 , S2|2 = G2|1
c

.
Σ

1|1
leadG1|2

c . (8)

Here we introduced the so called single scale propagator

S and the lead self-energy Σ
1|1
lead =−i∑k=l,r(1− 2fk)Γk

[Eq.(A.21)]. Hence, we can write the differential conduc-
tance in the form

gV =
ie

2h

∫
dεTr{Γl[

∑

β,β′

Gα|β′c

.
Σβ
′|βGβ|α′c + S2|2

− (1− 2f l)(G2|1
c

.
Σ1|2G2|1

c − G1|2
c

.
Σ2|1G1|2

c )

+ 2
.
f l(G2|1

c − G1|2
c )]}. (9)

We specify the voltage via the chemical potentials in the
leads, µl = µ + αeV and µr = µ + (α − 1)eV , with
α∈ [0, 1]. This provides

S2|2 = −2ie G2|1
c

[
αf l
′
Γl + (α− 1)fr ′Γr

]
G1|2
c . (10)

Note that in the special case α = 0, i.e. if the voltage
is applied to the right lead only, the last term in Eq.(9)
vanishes and the differential conductance takes a partic-
ularly simple form. This is a consequence of our initial
choice to express the current via the time derivative of
the left lead’s occupation.

The above derived formula for the differential conduc-
tance of an interacting Fermi system involves derivatives
of all self-energy components,

.
Σ. Below, we show how

these can be expressed in terms of the irreducible two-
particle vertex L and the single scale propagator S using
the fRG flow equation for the self-energy. While we ap-
ply this scheme only to derive a Keldysh Kubo-type linear
conductance formula, which for a symmetric Hamiltonian
yields a Keldysh version of Oguri’s formula, we want to
stress that an extension to finite bias is trivial and that
Eq.(9) can likewise be written in terms of the two-particle
vertex, following the recipe below.

In Ref. 5 we used Eq.(9) (with α = 1/2) to calculate
the differential conductance of a 1D parabolic potential
barrier in the presence of an onsite electron-electron in-
teraction (see Sec.V for details of the model). There we
used second order perturbation theory (SOPT, details
are presented in Sec.IV) to evaluate both the self-energy
and its derivative with respect to voltage. We showed
that the model, which is designed to mimick the low-
est transport mode of a quantum point contact (QPC),
qualitatively reproduces the main feature of the 0.7 con-
ductance anomaly, including both its typical magnetic
field and temperature dependence as well as the zero-bias
peak, which usually accompanies the anomaly.
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C. Linear conductance formula

In linear response, i.e. V → 0, the linear conductance
g0 does not depend on the specific choice of α. For the
sake of simplicity we use α= 1, which corresponds to a
voltage setup µl = µ+eV and µr = µ. Henceforth, a dot

implies the derivative at zero bias, e.g.
.
f l = ∂V f

l
∣∣
V=0

,

and we have
.
f l=−ef ′ and

.
fr=0. Differentiating Eq.(7)

w.r.t. the voltage, followed by setting V = 0, yields the
linear conductance formula

g0 = ∂V J |V=0

=− e2

h

∫
dεf ′Tr{ΓlG2|1

c (Γr+i(Σ1|2−Σ2|1))G1|2
c }

+
e2

h

∫
dεTr{ΓlG2|1

c ΦlG1|2
c }. (11)

All quantities in the integrand are evaluated in equilib-
rium. The voltage derivatives of the self-energy are com-
bined in the expression

Φl=
i

2e

[ .
Σ1|1−(1− 2f)

( .
Σ1|2−

.
Σ2|1

)]
. (12)

Provided that all components of the self-energy and its
derivative in Eq.(12) are known at zero bias, Eq.(11) is
sufficient to calculate the linear conductance. But, as is
shown below, it is possible to express the voltage deriva-
tives of Σ directly in terms of the two-particle vertex
L, i.e. the rank-four tensor defined as the sum of all
one-particle irreducible diagrams with four external am-
putated legs (see Appendix A). This not only reduces
the numbers of objects to be calculated, but more im-
portantly, it completely eliminates the voltage from the
linear conductance formula: whereas the derivative

.
Σ

needs information of the self-energy at finite bias, the
two-particle vertex does not. Finally, it allows for a very
compact representation of the linear conductance formula
with a clear interpretation of the individual terms.

To this end we use the fact that an exact expression for
the derivative of the self-energy w.r.t. some parameter
Λ is provided by the so called flow equation of the func-
tional renormalization group (fRG) (for a diagrammatic

derivation of this equation see Appendix B and Ref. 12.
A rigorous functional derivation of the full set of coupled
fRG equations for all 1PI vertex functions is given in e.g.
Ref. 13). Usually, Λ is taken to be some high-energy cut-
off, but it can equally well be a physical parameter of
the system, such as magnetic field, temperature or, as in
the case in question, voltage: Λ = V . The general flow
equation reads

∂ΛΣ
α′|α
i|j (ε) =

1

2πi

∫
dε′
∑

ββ′
kl∈C

S
β|β′
Λ,k|l(ε

′)Lα
′β′|αβ

Λ,ik|jl (ε′, ε; 0),

(13)

where L(ε′, ε; 0) is the irreducible two-particle vertex, de-
fined via Eq.(A.4) and Eq.(A.7). The specific form of this
equation for a given flow-parameter Λ is encoded in the
single-scale propagator S, which is given by

SΛ = −Gc∂Λ [G0,c]−1 Gc = GcG−1
0,c [∂ΛG0,c]G−1

0,cGc, (14)

with bare central region Green’s function G0,c(ε). Ac-

cording to Eq.(A.22) only its Keldysh component, G2|2
0,c ,

depends explicitly on the voltage. Additionally, we use[
G−1
0,c

]2|2
= 0, following from causality, Eq.(A.12), which

yields:

S
2|2
V=0 = G2|1

c

[
G−1
0,c

]1|2
∂V=0G2|2

0,c

[
G−1
0,c

]2|1 G1|2
c

= −2ief ′G2|1
c ΓlG1|2

c ,

S
1|1
V=0 = S

1|2
V=0 = S

2|1
V=0 = 0. (15)

It is instructive to realize that this is indeed the single-
scale propagator already introduced in the derivation
of the differential conductance via Eq.(10). The triv-
ial Keldysh structure of S now implies, that the α′|α-
dependence of the self-energy derivatives only enters via
that of the two-particle vertex:

.
Σ
α′|α
i|j (ε)=

1

2πi

∫
dε′
∑

kl∈C
S

2|2
V=0,k|l(ε

′)Lα
′2|α2
il|jk (ε′, ε; 0).

(16)

This allows us to write Eq.(12) in the form

Φli|j(ε) =
1

2πi

∫
dε′f ′(ε′)

∑

kl∈C

[
G2|1
c (ε′)Γl(ε′)G1|2

c (ε′)
]
k|l
Kil|jk(ε′, ε; 0), (17)

with vertex response part

Kil|jk(ε′, ε; 0)=L12|12
il|jk (ε′, ε; 0)− (1− 2f(ε))(L12|22

il|jk (ε′, ε; 0)− L22|12
il|jk (ε′, ε; 0)). (18)

We use the invariance of the trace under a cyclic permutation, Tr{ΓlG2|1
c ΦlG1|2

c } = Tr{ΦlG1|2
c ΓlG2|1

c }, and interchange
the frequency labels, ε↔ ε′, to obtain the linear conductance formula
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g0 = −e
2

h

∫
dεf ′Tr{ΓlG2|1

c

(
Γr + i(Σ1|2 − Σ2|1)

)
G1|2
c }+

e2

h

∫
dεf ′Tr{ΓlG1|2

c Φ̃lG2|1
c }, (19)

with the resorted vertex correction term

Φ̃ll|k(ε) =
1

2πi

∫
dε′

∑

ij∈C

[
G1|2
c (ε′)Γl(ε′)G2|1

c (ε′)
]
j|i
Kil|jk(ε, ε′; 0). (20)

In appendix C we show that particle conservation requires, that the imaginary part of the self-energy is connected to
the vertex correction part via a Ward identity

i[Σ1|2(ε)− Σ2|1(ε)] = Φ̃l + Φ̃r. (21)

This result is obtained by demanding the invariance of the physics under a gauged, local U(1) transformation, which
must hold for any Hamiltonian that conserves the particle number in the system. This symmetry implies an infinite
hierarchy of relations connecting different Green’s functions. The first equation in this hierarchy reproduces the
continuity equation used in the beginning of the above derivation. The second equation in the hierarchy is Eq.(21),
which connects parts of one-particle and two-particle Green’s function. Inserting the ward identity in Eq.(19) yields

g0 = −e
2

h

∫
dεf ′(ε)Tr{Γl(ε)G2|1

c (ε)
[
Γr(ε) + Φ̃l(ε) + Φ̃r(ε)

]
G1|2
c (ε)}+

e2

h

∫
dεf ′(ε)Tr{Γl(ε)G1|2

c (ε)Φ̃l(ε)G2|1
c (ε)}.

(22)

This formula is the central result of this chapter. It expresses the linear conductance in terms of the two-particle
vertex L, which enters via the vertex part Φ̃ [Eq.(20)] and the response vertex K [Eq.(18)]. Note that the two
terms in Eq.(22) differ in their Keldysh structure via the Keldysh indexing of the full Green’s functions, which
prevents further compactification of Eq.(22) for a non-symmetric Hamiltonian (e.g. in the presence of finite spin-orbit
interactions, see. e.g. Ref. 14). If, in contrast, the Hamiltonian of Eq.(1) is symmetric (i.e. hij=hji), Eq.(22) can be
compactified significantly using the following argument: A symmetric Hamiltonian implies that the Green’s function
G, the self-energy Σ and the hybridization Γ are symmetric, too. This in turn gives a symmetric Φ̃ via Eq.(21). Hence,
the trace in the first term of Eq.(22) is taken over the product of four symmetric matrices, and transposing yields

Tr{ΓlG2|1
c

[
Γr + Φ̃l + Φ̃r

]
G1|2
c } = Tr{ΓlG1|2

c

[
Γr + Φ̃l + Φ̃r

]
G2|1
c }. Hence, all contributions involving Φ̃l cancel in Eq.(22)

and the linear conductance now simply reads

g0 = −e
2

h

∫ ∞

−∞
dεf ′(ε)Tr{Γl(ε)G1|2

c (ε)[Γr(ε) + Φ̃r(ε)]G2|1
c (ε)}. (23)

A Matsubara version of this linear conductance formula for a symmetric Hamiltonian has been derived before in
Ref. 6 using Eliashberg theory in order to perform the analytic continuation of the vertex from Matsubara space to
the real axis. Comparison of the two formulas allows for a connection between the three Keldysh vertex components
in Eq.(18) and the ones used in Oguri’s derivation.

D. Thermal conductance formula

We end this chapter with some considerations regarding thermal conductance, i.e. the conductance induced by a
temperature difference between the leads. In the following we assume zero bias voltage, V = 0. The left lead is in
thermal equilibrium with T l=T + T̃ and the right lead in thermal equilibrium with temperature T r =T . Thus, the
temperature gradient between the leads will provide a charge current through the central region. Similar to above,
we are now interested in the linear response thermal conductance formula, g0,T = ∂T̃=0J , which we could calculate in
similar fashion as the linear conductance g0. Much easier is the following though: all terms in Eq.(22) were obtained
by once time taking the derivative of the Fermi distribution f l w.r.t. the voltage, partly explicitly in Eq.(7) and

partly from evaluating the single-scale propagator in Eq.(15). Now note, that ∂T̃=0f
l = ε−µ

T f ′ = − (ε−µ)
eT ∂V=0f

l. For
a symmetric Hamiltonian this directly implies, that the linear thermal conductance is given by

g0,T =
e

hT

∫ ∞

−∞
dε(ε− µ)f ′(ε)Tr{Γl(ε)G1|2

c (ε)[Γr(ε)+Φ̃r(ε)]G2|1
c (ε)}. (24)
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IV. VERTEX FUNCTIONS IN SOPT

In order to apply the above defined conductance for-
mulas we calculate the self-energy Σ and the two-particle
vertex L in second order perturbation theory (SOPT).
Both are defined in Eq. (A.7) and occur in the conduc-
tance formula (22). The SOPT-strategy is to approxi-
mate them by a diagrammatic series truncated beyond
second order in the bare interaction vertex ν, defined be-
low.

Within this section the compact composite index no-
tation used above is dropped in favor of a more explicit
one. We henceforth use blue roman subscripts (i1, i2, ...)
for site indices only and explicitly denote spin dependen-
cies using σ ∈ {↑, ↓}={+,−}. A green number subscript
denotes an object’s order in the interaction, e.g. Σ2 is
the desired self-energy to second order in the bare vertex
ν.

Below, the quadratic part of the model Hamiltonian,
Eq.(1), is is represented by a real matrix that is symmet-
ric in position basis and diagonal in spin space

hσij = hσji ∈ R , h = h↑ + h↓. (25)

In consequence, the bare Green’s function, too, is diago-
nal in spin space and symmetric in position space:

G0,iσ|jσ′ = δσσ′Gσ0,i|j , Gσ0,i|j = Gσ0,j|i. (26)

We distinguish between composite quantum numbers in-
cluding contour indices kn = (an, in, σn) and compos-
ite quantum numbers including Keldysh indices κn =
(αn, in, σn). The noninteracting Green’s function is rep-
resented by a directed line

G0,k1|k′1(ε) =
εk1 k1 . (27)

We choose an onsite interaction, which reduces the quar-
tic term in Eq.(1) to a single sum

Hint =
∑

i∈C
Uini↑ni↓, (28)

i.e. we evaluate the vertex functions for the case of an on-
site electron-electron interaction. Since the two-particle
interaction is instantaneous in time, we construct the

anti-symmetrized bare interaction vertex as

νk′1,k′2|k1,k2(t′1, t
′
2|t1, t2)

= Ui1δi1i2δi1i′1δi1i′2(−a1)δa1a2δa1a′1δa1a′2
× δ(t1 − t2)δ(t1 − t′1)δ(t1 − t′2)

× δσ1σ̄2δσ′1σ̄′2(δσ′1σ1
− δσ′1σ2

) , (29)

with σ̄ = −σ. Note that its spin-dependence is de-
termined by Pauli’s exclusion principle and the Slater-
determinant character of the fermionic state. After
Fourier transformation [ Eq.(A.6), Eq.(A.7)] and Keldysh
rotation [Eq.(A.10), Eq.(A.11)] we find

νκ′1,κ′2|κ1κ2
(ε′1, ε

′
2|ε1, ε2)=2πδ(ε1+ε2−ε′1−ε′2)ūκ′1,κ′2|κ1κ2

,

(30)

where we introduced the bare vertex

ūκ′1,κ′2|κ1κ2
= ui1δi1i2δi1i′1δi1i′2ξ

α′1α
′
2|α1α2

× δσ1σ̄2δσ′1σ̄′2(δσ′1σ1
− δσ′1σ2

)

=
κ1

κ2κ1

κ2

, (31)

with ui = Ui/2 and the modulo operation

ξα
′
1α
′
2|α1α2 =

{
1, if α′1 + α′2 + α1 + α2 = odd

0, else.

A. The two-particle vertex in SOPT

Our goal is to approximate the vertex part, Eq.(18),
to second order in the interaction. The fully interacting
two-particle vertex, L(ε, ε′; 0), has the following diagram-
matic representation:

Lκ′1κ′2|κ1κ2
(ε′, ε; 0) =

ε

ε

ε

ε

κ1

κ1

κ2

κ2

(32)

In SOPT, the vertex L2 is given by the sum of all 1PI
diagrams with four external amputated legs and not more
than two bare vertices. Defining the frequencies

p = ε+ ε′ , x = ε− ε′, (33)

the vertex reads

L2(ε′, ε; 0) = ū+ Lp2(p) + Lx2(x) + Ld2(0), (34)

with particle-particle channel Lp2, particle-hole channel
Lx2 and direct channel Ld2 defined as
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Lp2,κ′1κ′2|κ1κ2
(p) =

κ1 κ2

κ1 κ2

=
i

2π

∫ ∞

−∞
dε′′

∑

q1q2q′1q
′
2

ūκ′1κ′2|q1q2G0,q1|q′1(p− ε′′)G0,q2|q′2(ε′′)ūq′1q′2|κ1κ2
, (35a)

Lx2,κ′1κ′2|κ1κ2
(x) =

κ1

κ2

κ2

κ1

=
i

2π

∫ ∞

−∞
dε′′

∑

q1q2q′1q
′
2

ūκ′1q′2|q1κ2
G0,q1|q′1(ε′′)G0,q2|q′2(ε′′ + x)ūq′1κ′2|κ1q2 , (35b)

Ld2,κ′1κ′2|κ1κ2
(0) =

κ1

κ1

κ2

κ2

=
−i
2π

∫ ∞

−∞
dε′′

∑

q1q2q′1q
′
2

ūκ′1q′2|κ1q1G0,q1|q′1(ε′′)G0,q2|q′2(ε′′)ūq′1κ′2|q2κ2
. (35c)

These expressions can be derived by a straightforward
perturbation theory.

Using Eq.(26) and Eq.(31), we can identify the only
non-vanishing components in spin- and real space,

Πσσ̄
ij (p) = Lp2,iσiσ̄|jσjσ̄(p), (36a)

Xσσ′
ij (x) = Lx2,iσjσ′|jσiσ′(x), (36b)

∆σσ′
ij (0) = Ld2,iσjσ′|iσ′jσ(0). (36c)

Eq.(25) and the channel definitions, Eq.(35), imply the
symmetries

Πij = Πji , Xij = Xji , ∆ij = ∆ji, (37a)

Π(p) = Πσσ̄(p) = Πσ̄σ(p), (37b)

Xσσ′(x) = Xσ′σ(−x), (37c)

∆σσ′(0) = ∆σ′σ(0). (37d)

Moreover, and directly following from the Keldysh
structure of the bare vertex in Eq.(31), we are left with
only four non-zero components per channel in Keldysh
space. This is best seen from realizing, that the inter-
nal Keldysh structure of the diagrams in Eq.(35) only
depends on whether the sum of external indices belong-
ing to the same bare vertex is even/odd. Furthermore,
from the Keldysh structure of the bare vertex, combined
with G1|1 = 0 and the analytic properties of G, it fol-
lows that L22|22 = 0. Hence, SOPT preserves the theo-
rem of causality, Eq.(A.12), as it should. (this has also
been shown for a wide range of approximation schemes
in Ref. 15). Thus, the Keldysh structure of the channels
Y = Π, X,∆ is given by the matrix representation

Y =

(
Y K Y R

Y A 0

)
=

(
Y 1|1 Y 1|2

Y 2|1 Y 2|2

)
. (38)

We define the individual components according to the

Keldysh structure of the full vertex,

Lα
′
1α
′
2|α1α2

2 = Πψ(α′1,α
′
2)|ψ(α1,α2)

+Xψ(α′1,α2)|ψ(α1,α
′
2)

+∆ψ(α′1,α1)|ψ(α2,α
′
2), (39)

where we introduced the modified modulo operation

ψ(α1, α2, ..., αn) =

{
1, if

∑
i=1,...,n αi = odd

2, else.

That leaves us with the following explicit formulas

Π
1|2
ij (p) = −uiuj

2πi

∫
dε
[
Gσ,2|10,i|j (p−ε)Gσ̄,2|20,i|j (ε)

+Gσ,2|20,i|j (p−ε)Gσ̄,2|10,i|j (ε)
]
, (40a)

Π2|1 =
[
Π1|2

]∗
, (40b)

Π
1|1
ij (p) = −uiuj

2πi

∫
dε
[
Gσ,2|20,i|j (p−ε)Gσ̄,2|20,i|j (ε)

+Gσ,2|10,i|j (p−ε)Gσ̄,2|10,i|j (ε)

+Gσ,1|20,i|j (p−ε)Gσ̄,1|20,i|j (ε)
]
, (40c)

Π1|1(p)
∣∣∣
V=0

= [1 + 2b(p− µ)]
[
Π1|2(p)−Π2|1(p)

]
V=0

,

(40d)
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X
σσ′,1|2
ij (x) = −uiuj

2πi

∫
dε
[
Gσ̄,1|20,i|j (ε)Gσ̄

′,2|2
0,i|j (ε+ x)

+Gσ̄,2|20,i|j (ε)Gσ̄
′,2|1

0,i|j (ε+ x)
]
,

(41a)

X2|1 =
[
X1|2

]∗
, (41b)

X
σσ′,1|1
ij (x) = −uiuj

2πi

∫
dε
[
Gσ̄,2|20,i|j (ε)Gσ̄

′,2|2
0,i|j (ε+ x)

+Gσ̄,2|10,i|j (ε)Gσ̄
′,1|2

0,i|j (ε+ x)
]

+Gσ̄,1|20,i|j (ε)Gσ̄
′,2|1

0,i|j (ε+ x)
]
,

(41c)

X1|1(x)
∣∣∣
V=0

= [1 + 2b(x+ µ)]
[
X1|2(x)−X2|1(x)

]
V=0

,

(41d)

∆
σσ′,1|2
ij (0) =

uiuj
2πi

∫
dε
[
Gσ̄,1|20,i|j (ε)Gσ̄

′,2|2
0,i|j (ε)

+Gσ̄,2|20,i|j (ε)Gσ̄
′,2|1

0,i|j (ε)
]
, (42a)

∆ = ∆2|1 = ∆1|2, (42b)

∆1|1 = 0. (42c)

Here, we introduced the Bose distribution function,
b(z) = 1/(e(z−µ)/T − 1), with chemical potential µ and
temperature T . [ ]∗ denotes the complex conjugate. Note
that the components of every individual channel fulfill
a fluctuation dissipation theorem (FDT) in equilibrium
[Eqs.(40d,41d,42c)], warranting the choice of notation in-
troduced in Eq.(38). We derive this FDT in detail in
Appendix D.

Finally we write down the three components of the
SOPT two-particle vertex that occur in the vertex-

correction part, Eq.(18):

L12|22
2,iσ,lσ′|jσ,kσ′(ε

′, ε; 0) =

δσσ̄′δijδikδilui + δσσ̄′δilδjkΠ
1|2
ij (p)

+ δikδjlX
σσ′,1|2
ij (x) + δσσ′δijδkl∆

σσ′
ik (0), (43a)

L22|12
2 = ū+ Π2|1 +X2|1 + ∆, (43b)

L12|12
2 = Π1|1 +X1|1. (43c)

Utilizing the equilibrium’s FDT for the Π-, and X-
channel [Eq.(40d), Eq.(41d)], we find

Kiσ,lσ′|jσ,kσ′(ε
′, ε; 0) =

δσσ̄′δilδjk [2f(ε) + 2b(p− µ)] (Π
1|2
ij (p)−Π

2|1
ij (p))

+ δikδjl [2f(ε) + 2b(x+ µ)] (X
σσ′,1|2
ij (x)−Xσσ′,2|1

ij (x)).

(44)

We note, that this result (for µ=0) has been obtained
before by Oguri (see Eq.(4.7) of Ref. 6) using Matsubara
formalism and an analysis of the two-particle vertex
following Eliashberg7.

B. The self-energy in SOPT

Our goal is to approximate the self-energy to second
order in the interaction. The fully interacting self-energy,
Σ(ε), has the following diagrammatic representation:

Σκ′1|κ1
(ε) =

κ1

κ1

ε

ε

(45)

In SOPT, the self-energy Σ2 is given by the sum of
all 1PI diagrams with two external amputated legs and
not more than two bare vertices. This amounts to three
topologically different diagrams (the static first and sec-
ond order Hartree diagrams and the frequency-dependent
second order Fock diagram):

Σ2,κ′1|κ1
(ε) =

κ1

κ1

+
κ1

κ1

κ1

κ1

+

=
−i
2π

∫ ∞

−∞
dε′
∑

q1q′1

[
ūk′1q′1|k1q1 + γd2,k′1q′1|k1q1(0) + γp2,k′1q′1|k1q1

(ε+ ε′)
]
G0,q1|q′1(ε′). (46)

We note that, equivalently, the Fock diagram can also be expressed via either spin configuration, Xσσ or Xσσ̄,
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[Eq.(41a), Eq.(48a)] of the particle-hole vertex channel
γx2 instead of the particle-particle channel γp2.

As a consequence of the spin-dependence of both the
noninteracting Green’s function and the bare vertex,
Eq.(26) and Eq.(31), as well as the real space symme-
try of the Hamiltonian, Eq.(25), the self-energy, too, is
spin-diagonal and symmetric in real space:

Σiσ|jσ′ = δσσ′Σ
σ
i|j , Σσi|j = Σσj|i. (47)

The Keldysh structure of the self-energy is given by ma-
trix structure [Eq.(A.13)] with ΣR = Σ1|2. The theorem
of causality demands Σ2|2 = 0 [Eq.(A.12)]. Finally, ex-
plicit evaluation of the diagrams in Eq.(46) yields

Σ
σ,1|2
2,i|j (ε)=

−i
2π

∫
dε′
[
δijuiGσ̄,2|20,i|i (ε′) + δij

∑

k

Gσ,2|20,k|k(ε′)∆σσ
ik (0) + Gσ,2|20,i|j (ε′)Xσσ,1|2

ij (ε− ε′) + Gσ,2|10,i|j (ε′)Xσσ,1|1
ij (ε− ε′)

]
,

(48a)

Σ21
2 =

[
Σ12
]∗
, (48b)

Σ
σ,1|1
2,i|j (ε) =

−i
2π

∫
dε′
[
Gσ,2|20,i|j (ε′)Xσσ,1|1

ij (ε− ε′) + Gσ,2|10,i|j (ε′)Xσσ,1|2
ij (ε− ε′) + Gσ,1|20,i|j (ε′)Xσσ,21

ij (ε− ε′)
]
, (48c)

Σ
σ,1|1
2,i|j (ε)|V=0 = (1− 2f(ε))

[
Σ
σ,1|2
2,i|j (ε)− Σ

σ,2|1
2,i|j (ε)

]
V=0

. (48d)

We derive the FDT, Eq.(48d), in Appendix D.

C. Voltage derivative of the self-energy in SOPT

In order to calculate the differential conductance via
Eq.(9) we now provide explicit formulas for the voltage
derivative of the self-energy components. In principle we
could use the natural approach and differentiate the r.h.s.
of the self-energy expressions, Eq.(48), with the corre-
sponding vertex components given by Eqs.(40)-(42). To

illustrate the power of the fRG flow equation we choose
an alternative, more direct route, by expanding Eq.(16)
up to second order in the bare interaction and allow for
arbitrary values of the voltage V .

To first order in the interaction the single-scale propa-
gator, Eq.(14), reads

S
2|2
1,V =

.
G2|2
0 + G2|1

0 Σ
1|2
1

.
G2|2
0 +

.
G2|2
0 Σ

2|1
1 G

1|2
0 . (49)

Inserting both Eq.(49) and the SOPT vertex, Eq.(43c),
in Eq.(16) directly yields

.
Σ
σ,1|2
2,i|j (ε) =

−i
2π

∫
dε′
[
δijui

.
Gσ̄,2|20,i|i + δij

∑

k

[
ui

(
Gσ̄2|1

0,i|kΣ
σ̄1|2
1,k|k

.
Gσ̄2|2

0,k|i+
.
Gσ̄,2|20,i|k Σ

σ̄,2|1
1,k|kG

σ̄,1|2
0,k|i

)
+

.
Gσ,2|20,k|k∆σσ

ik (0)
]

+
.
Gσ,2|20,i|j X

σσ,1|2
ij (x) +

.
Gσ̄,2|20,i|j

(
X
σσ̄,1|2
ij (x) + Π

1|2
ij (p)

)]
,

.
Σ
σ,2|1
i|j (ε) =

[ .
Σ
σ,1|2
i|j (ε)

]∗
,

.
Σ
σ,1|1
i|j (ε) =

−i
2π

∫
dε′
[

.
Gσ,2|20,i|j X

σσ,1|1
ij (x) +

.
Gσ̄,2|20,i|j

(
X
σσ̄,1|1
ij (x) + Π

1|1
ij (p)

)]
, (50)

where the derivative of the Keldysh bare Green’s function
is given by [e.g. Eq.(A.22)]

.
G2|2
0 = G2|1

0

.
Σ

1|1
leadG

1|2
0 =2iG2|1

0

( ∑

k∈l,r

.
fkΓk

)
G1|2
0 . (51)

For compactness, we dropped all arguments that match
the integration frequency in Eq.(50).

It is important to note that the energy integral
∫
dε′

in Eq.(50) can be performed trivially for the special case
of zero temperature, T = 0: Then the derivative of the

Fermi functions in
.
G2|2
0 are Dirac delta functions [for the

definition of the voltage see Sec.(III B)]:

.
f l(ε′)

T=0
= eα · δ(ε′ − µ− eαV )

.
fr(ε′)

T=0
= e(α− 1) · δ(ε′ − µ− e(α− 1)V ). (52)

This reduces the integration in Eq.(50) to evaluating the
integrand at the chemical potentials of the left and right
lead, respectively. Naturally, this simplification proves
extremely beneficial: We can express the self-energy at
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arbitrary voltage as

Σ(V ) = Σ(0) +

∫ V

0

dV ′
.
Σ(V ′). (53)

Numerically calculating this voltage integration provides
both the self-energy Σ(V ′) and its derivative

.
Σ(V ′)

within the whole intervall 0≤ V ′ ≤ V . Hence, this pro-
cedure can save orders of magnitude of calculation time
compared to the direct evaluation of the self-energy and
its voltage derivative via Eq.(48) and Eq.(50), respec-
tively.

V. 1D MODEL OF A QPC

As an application of the above formalism, we now
study the influence of electron-electron interactions on
the linear conductance of a one-dimensional symmetric
potential barrier of height Vc (measured w.r.t. the chem-
ical potential µ) and parabolic near the top,

V (x) = Vc + µ− mΩ2
x

2~2
x2, (54)

where m is the electron’s mass. The geometry of the bar-
rier is determined by the energy scale Ωx and the length
scale lx = ~/

√
2mΩx. While the system extends to in-

finity, the potential is non-zero only within the central
region C, defined by −`/2<x<`/2, and drops smoothly
to zero as |x| approaches |`|/2. We call the outer homo-
geneous regions the left lead L (x<−`/2) and the right
lead R (x>`/2).

Numerics cannot deal with the infinite Hilbert space of
this continuous system. Hence, we discretize real space
using the method of finite differences (see Appendix E
for details), which maps the system onto a discrete set
of space points {xj}. This results in the tight-binding
representation

H=
∑

jσ

[Eσj njσ−τj(d†jσdj+1σ + h.c.)]+
∑

j∈C
Ujnj↑nj↓, (55)

with spin-dependent onsite energy Eσj = Ej −σB/2 =
Vj+τj−1 +τj−σB/2, site-dependent hopping amplitude
τj = ~2/(2ma2

j ), spacing aj=xj+1−xj and potential en-
ergy Vj = V (xj). Note that we included a homogeneous
Zeeman-field B to investigate magnetic field dependen-
cies, as well as an onsite-interaction, whose strength is
tuned by the site-dependent parameter Uj .

In Ref.5 we have used this model to investigate the
physics of a quantum point contact (QPC), a short one-
dimensional constriction We showed that the model suf-
fices to reproduce the main features of the 0.7 anomaly,
including the strong reduction of conductance as function
of magnetic field, temperature and source-drain voltage
in a sub-open QPC (see below). We argued, that the
appearance of the 0.7 anomaly is due to an interplay of
a maximum in the local density of states (LDOS) just
above the potential barrier (the “van-Hove ridge”) and
electron-electron interactions.

Here, we show that a proper choice of real space dis-
cretization scheme can minimize numerical costs. We
discuss both the noninteracting physics of the model as
well as the magnetic field and temperature dependence
of the linear conductance in the presence of interactions
using SOPT.

A. The choice of discretization

For a proper description of the continuous case it is
essential to choose the spacing much smaller than the
length scale on which the potential changes (condition
of adiabatic discretization). We model the central re-
gion by N = 2N ′+1 sites, located at the space points
{x−N ′ , x−N ′+1, ..., xN ′−1, xN ′}, where N & 100 proves
sufficient for a potential of the form Eq. (54). Due to the
parity symmetry of the barrier we always choose x0 = 0
and xj=−x−j .

The discretization of real space introduces an upper
bound, Emax = max(Vj+ 2τj−1 + 2τj), for the eigenen-
ergies of the bare Hamiltonian. In addition, it causes
the formation of a site-dependent energy band, defined
as the energy intervall where the local density of states
(LDOS) is non-negligible, i.e. where eigenstates have
non-negligible weight. In case of an adiabatic discretiza-
tion this energy band follows the shape of the potential.
At a site j it is defined within the upper and lower band
edge

εmin
j = Vj , εmax

j = Vj + wj , (56)

where the band width depends on the local spacing, i.e.
on the choice of discretization (see Appendix E for addi-
tional information):

wj=2τj−1+2τj =
~2

m

(
1

a2
j−1

+
1

a2
j

)
. (57)

Note that a larger distance between successive sites leads
to a narrowing of the energy band and vice versa; while
the lower band edge is, for any adiabatic discretization,
directly given by the potential, the upper band edge de-
pends sensitively on the applied discretization scheme.

In the following we discuss and compare two differ-
ent discretization procedures: The standard approach of
equidistant discretization (constant hopping τ) causes a
local maximum εmax

0 = V0 + 2τ of the upper band edge
in the vicinity of the barrier center. This approach leads
to artificial bound states far above the potential barrier,
which complicate numerical implementation and calcu-
lation. Hence, we recommend and apply an alternative
adaptive scheme where the spacing increases (the band
width decreases) with increasing potential, i.e. towards
j = 0. Note that this still implies a constant hopping
τ|j|>N ′=τ in the leads.

1. Constant discretization
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Figure 1. (a), left half: The non-interacting LDOS of the central region, A0(ε, xj), resulting from a constant real-space
discretization. The position of the discrete points xj is indicated by the x-axis ticks. Both the lower and upper band edge
follow the shape of the potential: εmin

j =V (xj) and εmax
j =V (xj)+4τ . The local maximum of εmax

j at j=0 causes the formation
of bound states for energies ε > 4τ . (c), their discrete spectrum shows up as poles in the non-interacting Green’s function
G0,0|0(ε). (a), right half: The non-interacting LDOS of the central region resulting from an adaptive real-space discretization
with c = 0.55 [Eq.(60)], i.e. the spacing aj increases towards the barrier center (see x-axis ticks). Hence, the band width
decreases with increasing barrier height, resulting in a local minimum of εmax

j at j = 0. (b), the LDOS at the central site,
A0(ε, 0), for both schemes.

We discuss the case of constant spacing a = aj , im-
plying grid points xj = aj and a constant hopping
τ = ~2/(2ma2). In a homogeneous system, V (xj) = 0,
the energy eigenstates are Bloch waves ψk(xj) = eikaj ,
which form an energy band εk = 2τ [1−cos(ka)] of width
w=4τ . Adding the parabolic potential,

V (xj) = Vc + µ− Ω2
x

4τ
j2, (58)

these states are now subject to scattering at the barrier
which causes the formation of standing wave patterns for
energies ε < V0=V (0) = Vc +µ below the barrier top.
The left half (xj < 0) of Fig. 1(a) shows the noninter-
acting central region’s local density of states (LDOS),

Aσ0(xj , ε) =−1/(πa)·ImGσ,2|10,j|j (ε) at B= 0, as a function

of position xj and energy ε. Due to the condition of
adiabaticity the energy band smoothly follows the shape
of the potential, implying a site-dependent upper band
edge, εmax(xj)=Vj+ 4τ .

The local maximum of εmax(xj) in the central region’s
center generates artificial bound states, owed to the dis-
cretization scheme, in the energy interval ε∈ [4τ, 4τ+V0].
This is illustrated in Figure 1(c), where the real and imag-

inary parts of the bare Green’s function of the central

site, G2|1
0,0|0(ε), are plotted. These bound states result

from the shape of the upper band edge: Since the band
in the homogeneous leads is restricted to energies below
4τ (unlike in the continuous case), all states with higher
energy are spacially confined to within the central region,
have an infinite lifetime and form a discrete spectrum,
determined by the shape of the applied potential V (xj).

The calculation of self-energy and two particle vertex,
Eq.(48) and Eq.(42), is performed by ad-infinitum fre-
quency integrations over products of Green’s functions.
Thus, the energy region of the upper band edge and the
local bound states must be included in their calculation
with adequate care. This involves determining the exact
position and weigth of the bound states, which requires
high numerical effort, as well as dealing with the numer-
ical evaluation of principal value integrals and convolu-
tions, where one function has poles and the other one
is continuous. While all this is doable with sufficient
dedication, we can avoid such complications entirely by
adapting the discretization scheme, discussed next.
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2. Adaptive discretization

According to Eq. (56) and Eq. (57) we can modify
the band width locally by choosing non-equidistant dis-
cretization points. In the following we discuss a non-
constant discretization scheme that reduces the band
width within the central region enough so that the up-
per band edge exhibits a local minimum at x0 rather
than a local maximum (as in the case of constant spac-
ing). In consequence the Green’s functions are contin-
uous within the whole energy band, which facilitates a
numerical treatment of interactions.

For a non-constant real space discretization it proves
useful to first define the onsite energy Ej and the hopping
τj of the discrete tight-binding Hamiltonian Eq. (55) and
then use these expressions to calculate the geometry of
the corresponding physical barrier, i.e. its height Vc and
curvature Ωx.

We specify the onsite energy to be quadratic near the
top with

Ej = Ẽj + 2τ ' Ẽ0

[
1− j2

N ′2

]
+ 2τ, (59)

where Ẽ0 is positive. We use the shape of Ẽj within C
(which, apart from its height and the quadratic shape
around the top does not influence transport properties,
as long as Ẽj goes adiabatically to zero upon approaching
j = |N ′|) to define a site-dependent hopping (amounting
to a site-dependent spacing)

τj = τ
[
1− c

2τ

(
Ẽj + Ẽj+1

)]
, (60)

where we have introduced a dimensionless positive pa-
rameter c< τ/Ẽ0 that determines how strongly the band
width is to be reduced. Note that Eq. (60) describes
a hopping, that is constant (= τ) in the leads, where

Ẽj=Vj=0, and decreases with increasing Ẽj in the cen-
tral region. This corresponds to a site-dependent lattice
spacing aj=a

√
τ/τj , which increases towards the center

of the central region. The real space position xj that
corresponds to a site j is given by

xj = sgn(j)

|j|∑

j′=1

aj′ = a
√
τ sgn(j)

|j|∑

j′=1

1
√
τj
, (61)

where sgn(x) is the sign function. Following Eq. (56), the
construction introduced in Eq.(59) and Eq.(60) leads to
an upper band edge given by

εmax
j ' Ej + τj−1 + τj ' 4τ + (1− 2c)Ẽj , (62)

which for the choice c > 0.5 indeed exhibits a smooth
local minimum at j = 0, thus avoiding the bound states
discussed above for the constant discretization, c=0.

Despite the drastic manipulation of εmax
j , the lower

band edge still serves as a proper potential barrier,

εmin
j =Vj ' (1 + 2c)Ẽj , (63)

with a quadratic potential barrier top whose height now
depends on the compensation factor c:

Vj ' (1 + 2c)Ẽj

[
1− j2

N ′2

]
. (64)

Finally, we write the potential barrier in the form given
in Eq.(58), i.e. express the curvature Ωx in units of the
constant lead-hopping τ . By comparison we find

Vc = V0 − µ, Ωx =
2

N ′
√
V0τ0. (65)

The right half (xj > 0) of Fig. 1(a) shows the LDOS
of the central region for an adaptive discretization with
c=0.55. All additional parameters are chosen such that
the resulting potential barrier matches the case of con-
stant discretization (plotted for xj < 0). Most impor-
tantly, the minimum of εmax

j at j= 0 prevents the occu-
rance of bound states above the barrier, which allows for
a faster numerical evaluation of the vertex functions. Im-
portantly, both discretization schemes approximate the
same physical system; their differences are non-neglegible
only for energies far above the barrier, i.e. far away from
the energies relevant for transport. This can be seen from
the matching grey scale at the interface j=0 for energies
ε < V0 +O(Ωx), as well as from comparison of the central
site’s LDOS in Fig. 1(c).

B. The choice of system parameters

To ensure that the discrete model reflects the trans-
port properties of the continuous barrier, Eq. (54), the
chemical potential of the system (or of both leads in non-
equilibrium) must be chosen far enough below the global
minimum of εmax(xj). Only in this case the unphysical
upper band edge does not contribute to the results. The
onsite-energy is chosen as

Ẽj = θ(N ′ − |j|)Ẽ0 exp

(
−

(
j
N ′
)2

1−
(
j
N ′
)2

)
, (66)

where θ(x) is the Heavyside step function. Note, that this
definition is consistent with Eq.(59). In order to calculate
the site-dependent coupling we use c= 0.55 in Eq. (60).
Hence, for a barrier height V0 = µ (corresponding to a
noninteracting transmission T0 =0.5, see Eq.(68) below),
we get a potential curvature Ωx = 0.039τ . Finally, the
shape of the onsite interaction is chosen as

Uj = θ(N ′ − |j|)U0 exp

(
−

(
j
N ′
)6

1−
(
j
N ′
)2

)
. (67)

C. Non-interacting properties of the model

In Ref. 5 we argued that the model of Eq.(55),
combined with a potential with parabolic barrier top,
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Figure 2. : (a)-(c), Linear conductance as a function of barrier height Vc for some values of magnetic field B with interaction
strength U increasing from left to right. (d)-(f), Linear conductance as a function of barrier height Vc for some values
of temperature T with interaction strength U increasing from left to right. Interactions cause an asymmetric evolution of
conductance with magnetic field and temperature due to the interaction-enhanced reduction of conductance in the sub-open
regime – the 0.7 anomaly.

Eq.(54), is sufficient to describe the physics of the low-
est subband of a QPC: Making a saddle-point ansatz for
the electrostatic potential caused by voltages applied to
a typical QPC gate structure provides an effective 1D-
potential of the form Eq.(54). Information about the
transverse geometry of the QPCs potential can be in-
corporated into the site-dependent effective interaction
strength Uj , see Eq.(67).

The non-interacting, spin-dependent transmission
through a quadratic barrier of height V0 = Vc + µ and
curvature Ωx, Eq. (54), in the presence of a magnetic
field B can be derived analytically16 and is given by

T σ0 (ε) =
1

e−2π(ε−V0+σB/2)/Ωx + 1
. (68)

Hence, according to the Landauer-Büttiker formula, the
non-interacting (bare) linear conductance,

g0 = −e
2

h

∑

σ

∫ ∞

−∞
f ′(ε)T σ0 (ε), (69)

is a step function of width Ωx at B=T =0, changing from
0 to 1, when the barrier top is shifted through µ from
above. This step gets broadened with temperature [see
Figure 2(d)] and develops a double-step structure with
magnetic field [see Figure 2(a)]. For all B and T the bare
conductance obeys the symmetry g0(Vc) = 1− g0(−Vc).

Furthermore, an analytic expression for the non-
interacting LDOS at the chemical potential in the barrier
center as function of barrier height Vc can be calculated

[see e.g. Ref. 17],

A0(ε=µ, 0) =
|Γ (1/4 + iVc/(2Ωx))|2

4
√

2π2eπVc/(2Ωx)
, (70)

where Γ(z) is the complex gamma-function. This is a
smeared and shifted version of the 1D van Hove singular-
ity [see Ref. 5 for further details], peaked at Vc=−O(Ωx),
i.e. if the barrier top lies sightly below the chemical po-
tential. Here, the value of the noninteracting conduc-
tance is given by g0 ≈ 0.8. Hence, we call this parameter
regime sub-open.

D. Interacting results

As was discussed in Ref. 5, the shape of the LDOS
in the barrier center lies at the heart of the mecha-
nism causing the 0.7 conductance anomaly: Semiclassi-
cally, the LDOS can be interpreted as being inversely
proportional to the velocity v of the charge carriers,
A0(ε, xj) ∝ 1/vj(ε). Hence, the average time that a
non-interacting electron with energy ε = µ spends in the
vicinity of the barrier center is maximal in the sub-open
regime (where A0(µ, 0) is maximal), resulting in an en-
hanced scattering probability and thus a strong reduction
of conductance at finite interaction strength in this pa-
rameter regime.

Figure 2 compares the bare conductance, calculated
via the Landauer-Büttiker formula [Eq.(69)], with the
conductance obtained by taking into account interac-
tions using SOPT, calculated via the Keldysh version of
Oguri’s formula [Eq.(23)], as a function of barrier height
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Vc for several values of magnetic field (panels (a)-(c))
and temperature (panels (d)-(f)), for three interaction
strengths increasing from left to right. For small but fi-
nite interactions, U

√
Ωxτ = 0.5, the shape of the LDOS

causes a slight asymmetry in the conductance curves at
(b) finite magnetic field or (e) finite temperature: A finite
magnetic field induces an imbalance of spin-species in the
vicinity of the barrier center. This imbalance is enhanced
by exchange interactions via Stoner-type physics, where
the disfavoured spin species (say spin down) is pushed out
of the center region by the coulomb blockade of the the
favoured spin-species (say spin up). Hence, transport is
dominated by the spin-up channel, resulting in a strong
reduction of total conductance in the sub-open regime
even for a small magnetic field. A finite temperature,
on the other hand, opens phase-space for inelastic scat-
tering, which, again, is strongest for large LDOS, again
resulting in the reduction of conductance in the sub-
open regime. This interaction-induced trend continues
with increasing interactions, and gives rise to a weak 0.7
anomaly at B 6= 0, Figure 2(c), or T 6= 0, Figure 2(f), for
intermediate interaction strength, U

√
Ωxτ = 1.7. Upon

a further increase of interactions, SOPT breaks down (see
below), and more elaborate methods are needed to obtain
qualitatively correct results. This was done in Ref. 5 and
Ref. 18, where we used fRG to reach interaction strength
of up to U

√
Ωxτ = 3.5; they yielded a pronounced 0.7

anomaly even at B = T = 0 and its typical magnetic field
development into the spin-resolved conductance steps at
high field.

The main limitations of SOPT when treating the in-
homogeneous system, introduced in Eq.(54), can be ex-
plained as follows: Upon increasing interactions, the
LDOS is shifted towards higher energy, as Hartree contri-
butions cause an effective higher potential barrier com-
pared to the non-interaction case. As a consequence,
a proper description of interactions requires information
about this shift to be incorporated into the calculation
of the vertex functions via feed-back of the self-energy
into all propagators. However, SOPT calculates the self-
energy and the two-particle vertex [Section IV] using
only bare propagators, which only carry information of
the bare LDOS. Together with the drastic truncation of
the perturbation series beyond second order, this lim-
its the quantitative validity of SOPT to weak interaction
strength and the qualitative validity of SOPT to interme-
diate interaction strength. Nevertheless, SOPT suffices
to illustrate the essential physics involved in the appear-
ance of the 0.7 conductance anomaly.

VI. CONCLUSION AND OUTLOOK

In this paper we discuss electronic transport through
an interacting region of arbitrary shape using the
Keldysh formalism. Starting from the well-established
Meir-Wingreen formula for the system’s current we derive
formulas for both the differential and linear conductance.
In the latter case we use the fRG flow-equation for the
self-energy as well as a Ward identity, following from the

Hamiltonian’s particle conservation, to obtain a Keldysh
version of Oguri’s linear conductance formula. As an ap-
plication we calculate the conductance of the lowest sub-
band of a QPC, which we model by a one-dimensional
parabolic potential barrier and onsite interactions - a
setup we have recently used to explore the microscopic
origin of the 0.7 conductance anomaly5. We present
detailed discussion of the model’s properties and argue
that an adaptive, non-constant real space discretization
scheme greatly facilitates numerical effort. We treat the
influence of interactions using SOPT, presenting all de-
tails that are necessary to employ the derived conduc-
tance formulas. Our SOPT-results for the linear con-
ductance as function of magnetic field and temperature
illustrate that the anomalous reduction of conductance
in the sub-open regime of a QPC is due to an interplay
of the van-Hove ridge and electron-electron interactions.

In order to improve on the interacting results we are
currently setting up Keldysh fRG. Since approximation
schemes within the fRG violate particle conservation at
finite excitation energies, future studies must prioritize
to quantify how severe this violation influences the va-
lidity of transport results. A possible alternative are
self-consistent approximation schemes, where the U(1)-
symmetry of the Hamiltonian is preserved by construc-
tion.

Appendix A: Properties of Green’s and vertex
functions in Keldysh formalism

To investigate transport properties of the system in
and out of equilibrium, we apply the well-established
Keldysh formalish8,9. Here we collect some of its stan-
dard ingredients. In large parts, we follow the definitions
and conventions given in Ref.[11].

All operators carry Keldysh time-contour indices,
a1, a

′
1, a2, ... = {+,−}, marking the position of the time

argument t of an operator as lying on the forward (−)
or backward (+) branch of the Keldysh contour. We
use Keldysh indices with or without a prime, a or a′, to
label the time arguments of annihilation or creation oper-
ators, respectively. Since the model Hamiltonian, Eq.(1),
is time-independent, the only non-zero matrix elements
of the Hamiltonian in contour space have equal contour
indices:

Ha1a
′
1

0 = −a1 · δa1a′1H0,

Ha1a2|a
′
1a
′
2

int = −a1 · δa1a2δa1a′1δa1a′2Hint, (A.1)

with {a} labeling the time arguments of annihilation op-
erators and {a′} labeling the time arguments of creation
operators. Note that a calligraphic H carries contour
indices, while a capital H does not.

We define time-dependent, n-particle Keldysh Green’s
functions as the expectation values

G
n,a|a′

i|i′ (t|t′) = G
a1,...,an|a′1,...a′n
i1,...,in|i′1,...i′n

(t1, ..., tn|t′n, ..., t′1) =

(−i)n〈Tcda1i1 (t1)...danin (tn)[d
a′n
i′n

]†(t′n)...[d
a′1
i′1

]†(t′1)〉, (A.2)
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where we use boldface notation for multi-indices x =
(x1, ..., xn). The operator dai (t)/ [dai ]

†
(t) destroys/creates

an electron at time t on contour branch a in quantum
state i, and the time-ordering operator Tc moves later
contour times to the left. In case of equal time argu-
ments, annihilation operators are always arranged to the
right of creation operators. The bare, non-interacting
Green’s function, whose time-dependence is governed by
the quadratic part of the Hamiltonian, H0, carries an
additional subscript, G0.

We define anti-symmetrized, irreducible, n-particle

vertex functions, γ
n,a′|a
i′|i (t′|t), as the sum of all 1-particle

irreducible (1PI) diagrams with n amputated ingoing
and n amputated outgoing legs. For an explicit series
representation of the one- and two-particle vertex, see
Eq.(B.1). A formula for the prefactor of every single di-
agram is given by Eq.(20) of Ref.[11].

The Dyson equation provides a direct relation between
the one-particle Green’s and vertex function:

G(t1|t′1)=G0(t1|t′1)−
∫
dτ1dτ

′
1G0(t1|τ ′1)γ(τ ′1|τ1)G(τ1|t′1).

(A.3)
Here and below, whenever quantum state indices i and
contour indices a/Keldysh indices α are implicit, they are
understood to be summed over in products.

Decomposing the two-particle Green’s yields a connec-
tion to the two-particle vertex function via

G(t1, t2|t′1, t′2) = G(t1|t′1)G(t2|t′2)−G(t1|t′2)G(t2|t′1)

−i
∫
dτG(t1|τ ′1)G(t2|τ ′2)γ(τ ′1, τ

′
2|τ1, τ2)G(τ1|t′1)G(τ2|t′2).

(A.4)

Since the Hamiltonian, Eq.(1), is time-independent,
the Green’s/vertex functions are translationally invari-
ant in time, implying that n-particle functions depend
on 2n− 1 time arguments only:

G(t1, ..., tn|t′1, ...t′n) = G(0, ..., tn − t1|t′1 − t1, ..., t′n − t1),

γ(t′1, ..., t
′
n|t1, ...tn) = γ(0, ..., t′n − t′1|t1 − t′1, ..., tn − t′1).

(A.5)

As a consequence, the Fourier-transform,

G(ε|ε′) =

∫
dtdt′ eiεte−iε

′t′G(t|t′),

γ(ε′|ε) =

∫
dtdt′ eiε

′t′e−iεtγ(t′|t), (A.6)

fulfills energy conservation. In particular, this allows for
the following representation for the one- and two-particle
functions, where calligraphic letters G and L are used
when a δ-function has been split off:

G(ε1|ε′1) = 2πδ(ε1 − ε′1)G(ε1),

G(ε1, ε2|ε′1, ε′2) = 2πδ(ε1 + ε2 − ε′1 − ε′2)G(ε2, ε
′
1; ε1 − ε′1),

γ(ε′1|ε1) = −2πδ(ε′1 − ε1)Σ(ε′1),

γ(ε′1, ε
′
2|ε1, ε2) = 2πδ(ε′1 + ε′2 − ε1 − ε2)L(ε′2, ε1; ε′1 − ε1).

(A.7)

The one-particle vertex-function Σ, introduced above, is
called the interacting irreducible self-energy. We Fourier-
transform Dyson’s equation, Eq.(A.3), which provides

G(ε)=G0(ε)+G0(ε)Σ(ε)G(ε)=
[
[G0(ε)]

−1 − Σ(ε)
]−1

.

(A.8)

Note that this is a matrix equation in both Keldysh and
position space.

The four single-particle Green’s functions and self-
energies in contour space are called chronological (G−|−,
Σ−|−), lesser (G−|+, Σ−|+), greater (G+|−, Σ+|−) and
anti-chronological (G+|+, Σ+|+). As a consequence of the
definition, Eq.(A.2), the single-particle Green’s functions
fulfill the contour-relation

G+|+ + G−|− = G−|+ + G+|−. (A.9)

We define the transformation from contour space (a =
{−,+}) into Keldysh space (α = {1, 2}) by the rotation

R =

(
R−|1 R−|2

R+|1 R+|2

)
=

1√
2

(
1 1
−1 1

)
. (A.10)

Hence, any n-th rank tensor An,α
′|α in Keldysh space is

represented in contour space by

An,α|α
′

=
∑

a,a′

[
R−1

]α|a
An,a|a

′
Ra

′|α′
. (A.11)

As can be shown explicitly (see Chapter 3.3 of Ref.11) the
Green’s and vertex functions fulfill a theorem of causality:

G1...1|1...1 = 0,

L2...2|2...2 = 0. (A.12)

The remaining three non-zero Keldysh components of the
single-particle functions are called retarded (G2|1, Σ1|2),
advanced (G1|2, Σ2|1) and Keldysh (G2|2, Σ1|1):

G =

(
0 GA
GR GK

)
=

(
0 G1|2

G2|1 G2|2

)
,

Σ =

(
ΣK ΣR

ΣA 0

)
=

(
Σ1|1 Σ1|2

Σ2|1 0

)
. (A.13)

The transformation, Eq.(A.11), provides the identities

G−|+ =
1

2

[
G2|2 −

(
G2|1 − G1|2

)]
, (A.14a)

G+|− − G−|+ = G2|1 − G1|2, (A.14b)

H1|2
0 = H2|1

0 = H0 , H1|1
0 = H2|2

0 = 0, (A.14c)

all of which are used in the derivation of the conduc-
tance formula in Sec.I. Note that a calligraphic H car-
ries Keldysh indices, while a capital H does not. The
retarded/advanced components are analytic in the up-
per/lower half plane of the complex frequency plane.
Hence, the following notation is always implied,

G2|1(ε) = G2|1(ε+ iδ) , Σ1|2(ε) = Σ1|2(ε+ iδ), (A.15)

G1|2(ε) = G1|2(ε− iδ) , Σ2|1(ε) = Σ2|1(ε− iδ), (A.16)
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with real, infinitesimal, positive δ. In contrast, the
Keldysh component is a response function, restricted to
the real frequency axis. In equilibrium, the single-particle
functions fulfill a fluctuation dissipation theorem (FDT):

Σ1|1(ε) = (1− 2f(ε))
[
Σ1|2(ε)− Σ2|1(ε)

]
, (A.17a)

G2|2(ε) = (1− 2f(ε))
[
G2|1(ε)− G1|2(ε)

]
, (A.17b)

where f(ε) = 1/(1 + exp[(ε− µ)/T ]) is the Fermi distri-
bution function.

Within this work we consider a system composed of
a finite central interacting region coupled to two non-
interacting fermionic leads: The left lead L, with chem-
ical potential µL and temperature TL, and the right
lead R, with chemical potential µR and temperature TR.
Defining operators C/L/R, which project onto the sub-
space of the central region/left lead/right lead respec-
tively, we can represent the quadratic part of the Hamil-
tonian as

H0 =



LH0L LH0C 0
CH0L CH0C CH0R

0 RH0C RH0R


=



Hl Hlc 0
Hcl H0,c Hcr
0 Hrc Hr


 .

(A.18)

where the matrices Hl and Hr fully define the proper-
ties of the isolated leads, and the matrix H0,c describes
the non-interacting physics of the isolated central region.
Finally, Hcl and Hcr specify the coupling of the central
region to the corresponding lead. Similarly, we write the
system’s Green’s function, G(ε) [Eq.(A.8)], in the same
basis (for the bare, non-interacting Green’s function G0
we set Σ=0):

G=



LGL LGC 0
CGL CGC CGR

0 RGC RGR


=



Gl Glc 0
Gcl Gc Gcr
0 Grc Gr


 .

(A.19)

We use the small letter g to denote the Green’s func-
tion of an isolated subsystem, e.g. gl(ε) is the Green’s
function of the isolated left lead L. The non-interacting
Green’s function of the central region is given by Dyson’s
equation

G0,c = g0,c+g0,cΣleadG0,c =
[
[g0,c]

−1−Σlead

]−1

.

(A.20)

Again note that this is a matrix equation in Keldysh and
position space. We incorporated environment contribu-
tions into the lead self-energy

Σlead =
∑

k=l,r

HckgkHkc. (A.21)

The individual Keldysh components of the non-

interacting Green’s function are given by

G1|2
0,c(ε) =

(
ε−H0,c − Σ

2|1
lead(ε)

)−1

, (A.22a)

G2|1
0,c(ε) =

(
ε−H0,c − Σ

1|2
lead(ε)

)−1

, (A.22b)

G2|2
0,c(ε) = G2|1

0,c(ε)Σ
1|1
lead(ε)G1|2

0,c(ε)

= −i
∑

k=l,r

[1− 2fk(ε)]G2|1
0,c(ε)Γ

k(ε)G2|1
0,c(ε),

(A.22c)

where we introduced the hybridization function, Γk(ε)=

iHck(g
2|1
k (ε)−g1|2

k (ε))Hkc.

With the interaction being restricted to the central re-
gion we use the notation Σ = Σc = CΣC for the inter-
acting self-energy. Dyson’s equation, Eq.(A.8), and the
real space structure, Eq.(A.19), yields

Gc(ε) =
[
[G0,c(ε)]−1 − Σ(ε)

]−1

. (A.23)

The matrix representation of its Keldysh structure is
given by

(
0 G1|2

c

G2|1
c G2|2

c

)
=



(

0 G1|2
0,c

G2|1
0,c G

2|2
0,c

)−1

−
(

Σ1|1 Σ1|2

Σ2|1 0

)

−1

.

(A.24)

Block matrix inversion then provides the components

G1|2
c (ε) =

(
ε−H0,c − Σ

2|1
lead(ε)− Σ2|1(ε)

)−1

, (A.25a)

G2|1
c (ε) =

(
ε−H0,c − Σ

1|2
lead(ε)− Σ1|2(ε)

)−1

, (A.25b)

G2|2
c (ε) = G2|1

c (ε)
[
Σ

1|1
lead + Σ1|1

]
G1|2
c (ε). (A.25c)

From Eq.(A.8), we can show, that the off-diagonal com-
ponents of the full Green’s function, are given by

Gkc = gkHkcGc , Gck = GcHckgk. (A.26)

For a symmetric, real Hamiltonian, the following symme-
tries hold

G1|2
0,i|j=

[
G2|1
0,i|j

]∗
,G1|2
i|j =

[
G2|1
i|j

]∗
,Σ

1|2
i|j =

[
Σ

2|1
i|j

]∗
, (A.27a)

G1|2
0,i|j=G1|2

0,j|i , G
1|2
i|j =G1|2

j|i , Σ
1|2
i|j =Σ

1|2
j|i , (A.27b)

G2|1
0,i|j=G2|1

0,j|i , G
2|1
i|j =G2|1

j|i , Σ
2|1
i|j =Σ

2|1
j|i , (A.27c)

G2|2
0,i|j=−

[
G2|2
0,j|i

]∗
,G2|2
i|j =−

[
G2|2
j|i

]∗
,Σ

1|1
i|j =−

[
Σ

1|1
j|i

]∗
.

(A.27d)
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Appendix B: Diagrammatic derivation of the fRG flow-equation of the self-energy

Here, we provide a diagrammatic derivation of the fRG flow-equation for the self-energy, Eq.(13). We use the
observation, that every diagram in the diagrammatic series of the self-energy contains a sub-diagram which appears
in the diagrammatic series of the two-particle vertex. As a consequence, taking the derivative of the self-energy, ∂ΛΣ,
w.r.t. some parameter Λ allows for a resummation of diagrams, such that the full two-particle vertex series can be
factorized. Hence, we get an equation which can formally be written as ∂ΛΣΛ =

∫
SΛLΛ, with the so called single-scale

propagator S and the two-particle vertex L, both depending on the parameter Λ.

The self-energy Σ and two-particle vertex L are diagrammatically defined as the sum of all one-particle irreducible
diagrams with two and four amputated external legs, respectively. Using the graphical representation of the bare
Green’s function, Eq.(27), and the bare vertex, Eq.(31), the first terms of their perturbation series are (we omit the
arrows for the sake of simplicity)

= + + + +Σ + + ...= (B.1a)

= + + + + +  =L + ...
(B.1b)

We introduce a parameter Λ into the bare propagator, G0 → GΛ
0 , and represent its derivative w.r.t. Λ by a crossed-out

line, ∂ΛGΛ
0 = . Hence, the derivative of the self-energy is given by

=∂ΛΣ
Λ [ ++ + + ...

[

+ [ ++ + ...

[

+ [ ++ + ...

[

=

=

+ ...

(B.2)

where we introduced the so called single scale propagator

= + + + + ...

= [1 + G0Σ+ G0ΣG0Σ+ ...] ∂ΛGΛ
0 [1 + ΣG0 +ΣG0ΣG0 + ...]

= G [G0]
−1

∂ΛGΛ
0 [G0]

−1 G

SΛ =

(B.3)

Finally, we fix the prefactor of the diagram on the r.h.s. in Eq.(B.2) by the following argument: The first order self-
energy, Σ1, is of Hartree-type and hence purely determined by the local density nj and the local interaction strength

Uj . We use the bare local density of states, A0,j(ε) = −1/π · ImG2|1
0,j|j(ε), and calculate the first order self-energy in

equilibrium

Σ1,j |V=0 = njUj = 2ūj

∫
dεf(ε)A0,j(ε) = πiūj

∫
dεf(ε)(G2|1

0,j|j − G
1|2
0,j|j) =

1

2πi
ūj

∫
dε G2|2

0,j|j(ε). (B.4)
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Hence, we end up with Eq.(13) for the derivative of the self-energy:

∂ΛΣ
α′|α
i|j (ε) =

1

2πi

∫
dε′
∑

ββ′
kl∈C

S
β|β′
Λ,k|l(ε

′)Lα
′β′|αβ
ik|jl (ε′, ε; 0). (B.5)

Appendix C: Charge conservation - Ward identity

Here we derive the Ward identity, Eq.(21), from variational principles; since the action corresponding to the Hamil-
tonian, Eq.(1), is invariant under a global U(1) symmetry, it satisfies a conservation law. Starting from the path inte-
gral representation of expectation values using Grassmann variables, the requirement of vanishing variation under the
gauged U(1) transformation yields both a continuity equation for particle current and the desired connection between
the interacting self-energy Σ, introduced in Eq.(A.7), and the vertex part Φ, defined in Eq.(20).

Within this Appendix we combine the left and right lead to L=L
⊗
R, thus representing the Hamiltonian and the

Green’s function by

H0 =

(
CH0C CH0L
LH0C LH0L

)
=

(
H0,c Hc`
H`c H`

)
, G =

(
CGC CGL
LGC LGL

)
=

(
Gc Gc`
G`c G`

)
. (C.1)

Let {ψ}, {ψ̄} be sets of Grassmann variables, i.e. fermionic fields. We write n-particle expectation values in terms of
the functional path integral,

G
n,a|a′

i|i′ (t|t′)=(−i)n〈ψa1i1 (t1)...ψanin (tn)ψ̄
a′n
i′n

(t′n)...ψ̄
a′1
i′1

(t′1)〉=(−i)n
∫
D(ψ̄ψ)ψa1i1 (t1)...ψanin (tn)ψ̄

a′n
i′n

(t′n)...ψ̄
a′1
i′1

(t′1)eiS[ψ̄,ψ],

(C.2)

where the Keldysh action is given by the Keldysh contour time integral

S[ψ̄,ψ]=

∫

C
dt
∑

ii′

ψ̄i′(t)(

[G0(t)−1]i′i︷ ︸︸ ︷
iδi′i∂t −H0,i′i)ψi(t) + Sint[ψ̄,ψ]=

∫ ∞

−∞
dt
∑

a,ii′

(−a)ψ̄ai′(t) (iδi′i∂t −H0,i′i)ψ
a
i (t) + Sint[ψ̄,ψ]

=

∫ ∞

−∞
dt
∑

a

(−a)ψ̄
a
(t)(i∂t −H0)ψa(t) + Sint[ψ̄,ψ]. (C.3)

In the last line we introduced the vector notation ψ=



ψ1

ψ2

...


 and ψ̄=(ψ1, ψ2, . . .). Note that ∂t is a diagonal matrix.

1. Gauge transformation

The action, Eq.(C.3), is invariant under the global U(1) transformation ψ → ψeiα and ψ̄ → ψ̄e−iα, where α is a
real constant. Gauging this transformation, i.e. making α space-, and time-dependent, yields to linear order in α

δψai (t) = iαai (t)ψai (t) , δψ̄ai′(t
′) = −iαai′(t′)ψ̄ai′(t′). (C.4)

Since we are interested in the current through the system, from one lead to another, it is convenient to pick α
non-vanishing only in the central region:

αai (t) =

{
αa(t), if i ∈ C
0, if i ∈ L.

(C.5)

This is equivalent to first deriving the Ward identity using an arbitrary α and then summing over the central region.
The requirement of vanishing variation under the gauged U(1) transformation now reads:

δG
n,a|a′

i|i′ (t|t′) = 0. (C.6)
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2. The continuity equation (zeroth order Ward identity)

For n = 0, Eq.(C.6) sets a condition on the variation of the partition sum. Since the measure of the path integral
is invariant under the transformation in Eq.(C.4) (implying that the U(1)-symmetry is not anomalous), this in turn
sets a condition on the variation of the action:

0 = δ

[∫
D(ψ̄ψ)eiS[ψ̄,ψ]

]
= i

∫
D(ψ̄ψ)δS[ψ̄,ψ]eiS[ψ̄,ψ]. (C.7)

The quartic term, Sint, describes a density-density interaction. Hence, its variation vanishes trivially and the variation
of the total action reduces to the variation of the quadratic term:

δS[ψ̄,ψ] =

∫ ∞

−∞
dt
∑

a,i

(−a)
[
αai (t)ψ̄ai (t)∂tψ

a
i (t)− ψ̄ai (t)∂t(α

a
i (t)ψai (t)) +

∑

i′

[
iαai′(t)− iαai (t)

]
ψ̄ai′(t)H0,i′iψ

a
i (t)

]

=

∫ ∞

−∞
dt
∑

a

(−a)αa(t)
[
∂t
(
ψ̄
a
c (t)ψac (t)

)
− iψ̄ac (t)Hclψ

a
l (t) + iψ̄

a
l (t)Hlcψ

a
c (t)

]

=

∫ ∞

−∞
dt
∑

a

(−a)αa(t)
[
− ∂t

(
ψac (t)ψ̄

a
c (t)

)
+ iTr

{
Hclψ

a
l (t)ψ̄

a
c (t)
}
− iTr

{
Hlcψ

a
c (t)ψ̄

a
l (t)
} ]
, (C.8)

where we used integration by parts in the first term Since Eq.(C.7) must hold for arbitrary α(t) this provides the
continuity equation

−∂t〈ψac (t)ψ̄
a
c (t)〉 = iTr

{
Hlc〈ψac (t)ψ̄

a
l (t)〉

}
− iTr

{
Hcl〈ψal (t)ψ̄

a
c (t)〉

}
. (C.9)

In steady-state, the time derivative of the density term on the l.h.s. vanishes and Eq.(C.9) reduces to current
conservation, i.e. the current into the central region equals the current out of the central region:

Tr
{
HlcG

−|+
cl (0)

}
= Tr

{
HclG

−|+
lc (0)

}
. (C.10)

Here we made use of the time-translational invariance of the Green’s function, Eq.(A.5), and the equivalence of the
contour Green’s function components for equal-time arguments G−|+(t, t)=G−|−(t, t)=G+|+(t, t).

3. Relation between self-energy and two-particle vertex (first order Ward identity)

For n = 1, Eq.(C.6) reads

0 = δ〈ψai (t)ψ̄a
′
i′ (t
′)〉 =

∫
D(ψ̄ψ)

[
(δψai (t)) ψ̄a

′
i′ (t
′) + ψai (t)(δψ̄a

′
i′ (t
′)) + iψai (t)ψ̄a

′
i′ (t
′)(δS[ψ̄,ψ])

]
eiS[ψ̄,ψ]. (C.11)

Since the r.h.s. contains both terms quadratic and quartic in ψ, this equation will eventually lead to a relation between
the self-energy and the two-particle vertex. For states i, i′∈C Eq.(C.11) can be written as

0 =

∫ ∞

∞
dt′′
∑

a′′

(−a′′)iαa′′(t′′)
{∫
D(ψ̄ψ)ψai (t)ψ̄a

′
i′ (t
′)

[
(−a)δ(t′′ − t)δaa′′ + a′δ(t′′ − t′)δa′a′′

+
∑

j∈C
∂t′′
(
ψ̄a
′′
j (t′′)ψa

′′
j (t′′)

)

+ i
∑

j1,j2

(
ψ̄a
′′
j1 (t′′)H`c,j1|j2ψ

a′′
j2 (t′′)− ψ̄a′′j2 (t′′)Hc`,j2|j1ψ

a′′
j1 (t′′)

)]
eiS[ψ̄,ψ]

}
. (C.12)

Again, this must be true for arbitrary α(t), providing

[(−a)δ(t′′ − t)δaa′′ + a′δ(t′′ − t′)δa′a′′ ]Ga|a
′

i|i′ (t|t′)

=
∑

j1,j2

[
H`c,j1|j2G

a′′a|a′′a′
j2i|j1i′ (t′′t|t′′t′) −Hc`,j2|j1G

a′′a|a′′a′
j1i|j2i′ (t′′t|t′′t′)

]
− i∂t′′

∑

j∈C
G
a′′a|a′′a′
ji|ji′ (t′′t|t′′t′). (C.13)
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We proceed by decomposing the 2-particle Green’s function in the first term of the r.h.s. according to Eq.(A.4). Since
the first disconnected term, G(t′′|t′′)G(t|t′), vanishes due to the current conservation, Eq.(C.9), we get

[(−a)δ(t′′ − t)δaa′′ + a′δ(t′′ − t′)δa′a′′ ]Ga|a
′

i|i′ (t|t′)

= −
∑

j1,j2

[
G
a|a′′
i|j1 (t|t′′)H`c,j1|j2G

a′′|a′
j2|i′ (t′′|t′)−Ga|a

′′

i|j2 (t|t′′)Hc`,j2|j1G
a′′|a′
j1|i′ (t′′|t′)

]
− i∂t′′

∑

j∈C
G
a′′a|a′′a′
ji|ji′ (t′′t|t′′t′)

− i
∑

j1,j2

∑

k,b

∫
dτ G

a|b′2
i|k′2

(t|τ ′2)
[
G
b1|a′′
k1|j1 (τ1|t′′)H`c,j1|j2G

a′′|b′1
j2|k′1

(t′′|τ ′1)−(j1 ↔ j2, H`c↔Hc`)
]
γ
b′1b
′
2|b1b2

k′1k
′
2|k1k2

(τ ′1, τ
′
2|τ1, τ2)G

b2|a′
k2|i′ (τ2|t

′).

(C.14)

We find the corresponding relation in frequency domain after Fourier transformation w.r.t. all time arguments t, t′, t′′,

(−a)δaa′′Ga|a
′

i|i′ (ε+ ω) + a′δa′a′′Ga|a
′

i|i′ (ε)

=−
∑

j1,j2

[
Ga|a

′′

i|j1 (ε+ ω)H`c,j1|j2G
a′′|a′
j2|i′ (ε)− (j1 ↔ j2, H`c↔Hc`)

]
− ω

2π

∫
dε′
∑

j∈C
Ga
′′a|a′′a′
ji|ji′ (ε, ε′;ω).

− i

2π

∑

k,b
j1,j2

Ga|b
′
2

i|k′2
(ε)

{∫
dε′
[
Gb1|a

′′

k1|j1 (ε′)H`c,j1|j2G
a′′|b′1
j2|k′1

(ε′ + ω)−(j1 ↔ j2, H`c↔Hc`)
]
Lb
′
1b
′
2|b1b2

k′1k
′
2|k1k2

(ε, ε′;ω)

}
Gb2|a

′

k2|i′ (ε+ ω).

(C.15)

We set ω=0 and sum over a′′ on both sides to get the matrix equation

∑

a′′

[(−a)δaa′′ + a′δa′a′′ ]Ga|a
′

c (ε) = Y a|a
′
(ε), (C.16)

where we defined the response object

Y
a|a′
i|i′ (ε) =−

∑

a′′

∑

j1,j2

[
Ga|a

′′

i|j1 (ε)H`c,j1|j2G
a′′|a′
j2|i′ (ε)− (j1 ↔ j2, H`c↔Hc`)

]

− i

2π

∑

a′′

∑

k,b
j1,j2

Ga|b
′
2

i|k′2
(ε)

{∫
dε′
[
Gb1|a

′′

k1|j1 (ε′)H`c,j1|j2G
a′′|b′1
j2|k′1

(ε′)−(j1 ↔ j2, H`c↔Hc`)
]
Lb
′
1b
′
2|b1b2

k′1k
′
2|k1k2

(ε, ε′; 0)

}
Gb2|a

′

k2|i′ (ε).

(C.17)

With two independent contour arguments, a and a′, Eq.(C.16) results in four independent contour space relations

0 = Y +|+ = Y −|− , −2G+|−
c = Y +|− , 2G−|+c = Y −|+. (C.18)

Adding up all equations and transforming into Keldysh space [Eq.(A.10)] yields

2(G+|−
c − G−|+c ) = Y +|+ + Y −|− − Y +|− − Y −|+

Eq.(A.10)⇔ G2|1
c − G1|2

c = Y 1|1. (C.19)

As a consequence of the theorem of causality [Eq.(A.12)] we have G1|1 =0. Hence, only the summand with a′′=2 in
Y 1|1 is non-zero:

Y 1|1(ε) = b1|1(ε)− iG1|2
c (ε)Φ̃(ε)G2|1

c (ε), (C.20)

where we defined the coupling term

bα|α
′

= Gα|2c Hc`G2|α′
`c − Gα|2c` H`cG2|α′

c

Eq.(A.26)
= Gα|2c Hc`

∑

β,γ

g
2|β
` H

β|γ
`c Gγ|α

′
c −

∑

β,γ

Gα|βc Hβ|γc` g
γ|2
` H`cG2|α′

c , (C.21)

and the response function

Φ̃k′2|k2(ε) =
1

2π

∫
dε′
∑

b1,b′1
k1,k′1

b
b1|b′1
k1|k′1

(ε′)Lb
′
12|b12

k′1k
′
2|k1k2

(ε, ε′; 0). (C.22)
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Using the hybridization, Γ = iHc`(g
2|1
` − g

1|2
` )H`c, we find

b1|1 = −iG1|2
c ΓG2|1

c , b1|2 = −b2|1 = (1− 2f)b1|1. (C.23)

Hence, the response function reads (since γ22|22 =0)

Φ̃k′2|k2(ε)=
1

2πi

∫
dε′
∑

j1,j′1
k1,k′1

G1|2
k1|j′1

(ε′)Γj′1|j1(ε′)G2|1
j1|k′1

(ε′)

×
[
L12|12
k′1k
′
2|k1k2

(ε, ε′; 0)− (1− 2f(ε′))
(
L12|22
k′1k
′
2|k1k2

(ε, ε′; 0)− L22|12
k′1k
′
2|k1k2

(ε, ε′; 0)
)]
, (C.24)

in accord with Eq.(20). Finally, we multiply
[
G1|2]−1

from the left and
[
G2|1]−1

from the right in Eq.(C.19), which
provides

[
G1|2(ε)

]−1

−
[
G2|1(ε)

]−1

= −i
[
Γ(ε) + Φ̃(ε)

]
. (C.25)

Inserting Eq.(A.25) and using Σ
1|2
lead(ε) − Σ

2|1
lead(ε) = −iΓ(ε) [see Eq.(A.21)] the hybridization terms cancel and we

recover Eq.(21) (note that we combined the left and right lead, which implies Φ̃ = Φ̃l + Φ̃r):

i
[
Σ1|2(ε)− Σ2|1(ε)

]
= Φ̃(ε). (C.26)

This equation is a necessary condition that any method for describing the influence of interactions has to satisfy
in order to produce quantitative reliable results for transport properties of the system. If Eq.(C.26), and therefore
particle conservation, is violated by a chosen approach (such as e.g. truncated fRG schemes) one should exercise great
caution in interpreting the results.

Appendix D: Derivation of the fluctuation-dissipation theorem for the vertex channels and the self-energy

Below, we derive the fluctuation-dissipation theorem in SOPT for both the frequency-dependent vertex channels,
Eq.(40d) and Eq.(41d), and the self-energy, Eq.(48d).

1. FDT for the Π-channel

We use the FDT for the bare Green’s function, Eq.(A.17), to write the Keldysh Green’s function in terms of the
difference between the retarded and advanced Green’s function. With that we can write the Keldysh component of
the Π-channel as

Π
1|1
ij (p) = −uiuj

2πi

∫
dε
[
Gσ,2|20,i|j (p−ε)Gσ̄,2|20,i|j (ε) + Gσ,2|10,i|j (p−ε)Gσ̄,2|10,i|j (ε) + Gσ,1|20,i|j (p−ε)Gσ̄,1|20,i|j (ε)

]

= −uiuj
πi

∫
dε
[
1− f(ε)− f(p− ε) + 2f(ε)f(p− ε)

] (
Gσ,2|10,i|j (ε)− Gσ,1|20,i|j (ε)

)(
Gσ̄,2|10,i|j (p− ε)− Gσ̄,1|20,i|j (p− ε)

)
,

(D.1)

where we added zeros
∫
dε G2|1

0 (ε)G1|2
0 (p− ε) =

∫
dε G1|2

0 (ε)G2|1
0 (p− ε) = 0. We then use the relation

2f(ε)f(p− ε) = 2b(p− µ)[1− f(p− ε)− f(ε)], (D.2)

which yields

Π
1|1
ij (p) = −uiuj

πi

[
1 + 2b(p− µ)

] ∫
dε
[
1− f(ε)− f(p− ε)

] (
Gσ,2|10,i|j (ε)− Gσ,1|20,i|j (ε)

)(
Gσ̄,2|10,i|j (p− ε)− Gσ̄,1|20,i|j (p− ε)

)

=
[
1 + 2b(p− µ)

] [
Π

1|2
ij (p)−Π

2|1
ij (p)

]
. (D.3)

This proves Eq.(40d).
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2. FDT for the X-channel

A similar calculation as above shows the FDT for the x-channel:

X
σσ′,1|1
ij (x) = −uiuj

2πi

∫
dε
[
Gσ̄,2|20,i|j (ε)Gσ̄

′,2|2
0,i|j (ε+ x) + Gσ̄,2|10,i|j (ε)Gσ̄

′,1|2
0,i|j (ε+ x) + Gσ̄,1|20,i|j (ε)Gσ̄

′,2|1
0,i|j (ε+ x)

]

= −uiuj
πi

∫
dε
[
f(ε)− f(ε+ x)− 2f(ε)f(−ε− x+ 2µ)

] (
Gσ̄,2|10,i|j (ε)− Gσ̄,1|20,i|j (ε)

)(
Gσ̄
′,2|1

0,i|j (ε+ x)− Gσ̄
′,1|2

0,i|j (ε+ x)
)

= −uiuj
πi

[
1 + 2b(x+ µ)

] ∫
dε
[
f(ε+ x)− f(ε)

] (
Gσ̄,2|10,i|j (ε)− Gσ̄,1|20,i|j (ε)

)(
Gσ̄
′,2|1

0,i|j (ε+ x)− Gσ̄
′,1|2

0,i|j (ε+ x)
)

=
[
1 + 2b(x+ µ)

] [
X
σσ′,1|2
ij (x)−Xσσ′,2|1

ij (x)
]
. (D.4)

3. FDT for the self-energy

Finally we show the FDT for the self-energy: Using the FDT for both the X-channel of the vertex as well as of the
bare Green’s function, we can rewrite the Keldysh component of the self-energy:

Σ
σ,1|1
2,i|j (ε) =− 1

2πi

∫
dε′
[
Gσ,2|20,i|j (ε′)Xσσ,1|1

ij (ε− ε′) + Gσ,2|10,i|j (ε′)Xσσ,1|2
ij (ε− ε′) + Gσ,1|20,i|j (ε′)Xσσ,2|1

ij (ε− ε′)
]

=− 1

2πi

∫
dε′ ([1− 2f(ε′)] [1 + 2b(ε− ε′ + µ)] + 1)

(
Gσ,21
0,i|j(ε

′)− Gσ,12
0,i|j(ε

′)
)(

X
σσ,1|2
ij (ε− ε′)−Xσσ,2|1

ij (ε− ε′)
)

=− 1

2πi
[1− 2f(ε)]

∫
dε′ [2− 2f(ε′) + 2b(ε− ε′ + µ)]

(
Gσ,21
0,i|j(ε

′)− Gσ,12
0,i|j(ε

′)
)(

X
σσ,1|2
ij (ε− ε′)−Xσσ,2|1

ij (ε− ε′)
)

. = [1− 2f(ε)]
[
Σ
σ,1|2
2,i|j (ε)− Σ

σ,2|1
2,i|j (ε)

]
. (D.5)

Here we added zeros,
∫
dε′G2|1

0 (ε′)X2|1(ε− ε′) =
∫
dε′G1|2

0 (ε′)X1|2(ε− ε′) = 0, to get to the second line. Furthermore
we used the relation

b(ε− ε′ + µ) [f(ε)− f(ε′)] = −f(ε)f(−ε′ + 2µ) = −f(ε) + f(ε)f(ε′). (D.6)

Appendix E: Method of finite differences for
non-uniform grid

Our goal in this appendix is to derive a discrete de-
scription of a continuous system having the Hamiltonian
H(x) = ~2/(2m)∂2

x + V (x). While the standard prece-
dure usually involves discretization via a grid with con-
stant spacing, we focus on the more general case, where
the spacing is non-constant. This bypasses, for a proper
choice of non-monotonic discretization, the occurence of
artificial bound states close to the upper band edge, which
are a consequence of the inhomogeneity V(x).

We discretize real space using a set of grid points {xj}
(see Fig.(3)). The distance between two successive points
is given by aj = xj+1−xj . Now, a function ψ(x) and
its first and second derivatives ψ′(x) and ψ′′(x) are dis-
cretized as

ψj = ψ(xj),

ψ′j+1/2 =
ψ(xj+1)− ψ(xj)

aj
,

ψ′′j =
ψ′j+1/2 − ψ′j−1/2

aj+aj−1

2

= 2

ψj+1−ψj

aj
− ψj−ψj−1

aj−1

aj + aj−1

' 1

a2
j−1

ψj−1 −
(

1

a2
j−1

+
1

a2
j

)
ψj +

1

a2
j

ψj+1, (E.1)

where we demanded that the spacing changes smoothly

ajaj−1 aj+1

x

ψ(x)

ψj

ψj+1

ψj−1

ψj+2

xj+1xj−1 xj+2xj

Figure 3. Illustration of the choice of notation used to dis-
cretize real space.
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as a function of j, implying (aj + aj−1)aj ' 2a2
j and

(aj + aj−1)aj−1'2a2
j−1. Note that the first derivative is

defined ‘in between’ grid points.
Hence, the discretized version of the Hamiltonian

H(x)=− ~2

2m∂
2
x+V (x) at a point xj is given by

Hψj = −τj−1ψj−1 − τjψj+1 + Ejψj , (E.2)

with site-dependent hopping τj = 1/(2ma2
j ) (here and

below we set ~ = 1) and the onsite-energy Ej = τj−1 +
τj + Vj .
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4.3 Problems of the Matsubara Formalism

In the last section we derived a conductance formula which requires retarded and advanced
Green’s and vertex function on the real frequency axis. The vertex functions calculated using
the approach described in section 3.3 are given numerically on a finite subset of Matsubara fre-
quencies, i.e. purely imaginary frequencies. Performing an analytic continuation of the vertex
functions from the imaginary axis to the real axis numerically is an ill-posed problem (see e.g.
Jarrell and Gubernatis, 1996): If the number of frequencies for which the vertex functions are
given is finite, as is the case in numerics, the number of analytic functions intersecting the given
points is infinite.

4.3.1 Zero Temperature

Fortunately the analytic continuation is only necessary at finite temperature. At zero tempera-
ture the derivative of the Fermi functions is a δ-function:

lim
T→0

f ′(ω) = −δ(ω). (4.9)

As a consequence the Green’s and vertex functions only need to be evaluated at ω = ±i0+

which at zero temperature are fermionic Matsubara frequencies. Further the vertex correction
P and the self energy terms vanishes at zero frequency:

ΣR(0)− ΣA(0) = Ps(0) = 0 (T = 0) . (4.10)

So the conductance can be written as

G = Tr ΓLG(i0+)ΓRG(−i0+) (4.11)

4.3.2 Finite Temperature

At finite temperature one needs to perform the analytic continuation to the real axis. Although
the problem is ill-posed a wide range of different methods exist which approach it. For scalar
functions the most commonly used technique is the maximum entropy method (MEM) (Silver
et al., 1990; Gubernatis et al., 1991). In the context of the fRG, where the numerical data has
no statistical error, one usually represents the function using continuous fractions, also known
as Padé approximation (Vidberg and Serene, 1977; Karrasch et al., 2008). Karrasch et al. (2010)
made additional use of the proportional coupling ΓL ∝ ΓR given for the single impurity An-
derson model (SIAM). In this case the conductance can be expressed in terms of single particle
Green’s functions (Meir and Wingreen, 1992; Oguri, 2001).

In principle it is possible to extend all these approaches to matrix valued functions given
by the fRG equations described in section 3.3. However, it turns out that the result using con-
tinued fraction is very unstable, especially for the two particle vertex. Since this then results
in an uncontrolled error in the conductance we stopped pursuing this approach. Despite these
problems Aryanpour and Han (2009) chose this approach for Monte Carlo data and they claim
that it works.
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We decided to follow the direct approach, i.e. to calculate the vertex functions directly on
the real axis. The first step in this direction was to calculate them using SOPT. This approach
is explained in detail in section 4.2. A brief summary can also be fond in section S-7 in the
supplementary information of our NATURE article (chapter 5, Bauer et al., 2013). Higher order
correlations can be included by using fRG in Keldysh formalism. This in principle is possible
following Jakobs et al. (2010), and is the topic of ongoing research in our group.
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Chapter 5

Microscopic origin of the 0.7 anomaly –
Publication

In section 2.4 we gave an intuitive picture for the origin of the 0.7 anomaly in QPCs. In this
chapter we now set this intuitive picture on solid ground by corroborating everything with
detailed theoretical calculations using fRG and SOPT introduced in chapter 3 and 4 and com-
paring the results with experimental data made in the group of Stefan Ludwig. The detailed
explanations of the microscopic mechanism has been published in NATURE (Bauer et al., 2013).
The publication consists of two parts: The main article containing a summarized version of the
most important aspects, and extensive supplementary information containing detaild explana-
tions and additional data. The supplementary information also contains a summary of the fRG
approach and SOPT, which can be skipped by those who have read chapter 3 and 4. Below we
include a reprint of the publication including the supplementary information.
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doi:10.1038/nature12421

Microscopic origin of the ‘0.7-anomaly’ in quantum
point contacts
Florian Bauer1,2*, Jan Heyder1,2*, Enrico Schubert1, David Borowsky1, Daniela Taubert1, Benedikt Bruognolo1,2, Dieter Schuh3,
Werner Wegscheider4, Jan von Delft1,2 & Stefan Ludwig1

Quantum point contacts are narrow, one-dimensional constric-
tions usually patterned in a two-dimensional electron system, for
example by applying voltages to local gates. The linear conductance
of a point contact, when measured as function of its channel width,
is quantized1–3 in units of GQ 5 2e2/h, where e is the electron charge
and h is Planck’s constant. However, the conductance also has an
unexpected shoulder at 0.7GQ, known as the ‘0.7-anomaly’4–12,
whose origin is still subject to debate11–21. Proposed theoretical
explanations have invoked spontaneous spin polarization4,17, fer-
romagnetic spin coupling19, the formation of a quasi-bound state
leading to the Kondo effect13,14, Wigner crystallization16,20 and vari-
ous treatments of inelastic scattering18,21. However, explicit calcu-
lations that fully reproduce the various experimental observations
in the regime of the 0.7-anomaly, including the zero-bias peak that
typically accompanies it6,9–11, are still lacking. Here we offer a detailed
microscopic explanation for both the 0.7-anomaly and the zero-bias
peak: their common origin is a smeared van Hove singularity in the
local density of states at the bottom of the lowest one-dimensional
subband of the point contact, which causes an anomalous enhance-
ment in the Hartree potential barrier, the magnetic spin susceptibility
and the inelastic scattering rate. We find good qualitative agreement
between theoretical calculations and experimental results on the
dependence of the conductance on gate voltage, magnetic field, tem-
perature, source–drain voltage (including the zero-bias peak) and
interaction strength. We also clarify how the low-energy scale govern-
ing the 0.7-anomaly depends on gate voltage and interactions. For
low energies, we predict and observe Fermi-liquid behaviour similar
to that associated with the Kondo effect in quantum dots22. At high
energies, however, the similarities between the 0.7-anomaly and the
Kondo effect end.

In our measurements, we use the multigate layout on the surface of a
GaAs/AlGaAs heterostructure shown in Fig. 1a. By suitably tuning the
central- and side-gate voltages, Vc and Vs, at a fixed top-gate voltage, Vt,
we can use the device to define a short, one-dimensional (1D) channel,
containing a smooth, symmetric barrier, in the two-dimensional elec-
tron system (2DES) buried in the heterostructure. To describe such a
quantum point contact (QPC), we adopt a 1D model with local inter-
actions and a smooth potential barrier. We treat interactions perturba-
tively, using either second-order perturbation theory23 (SOPT) or the
functional renormalization group24–26 (FRG) approach (Supplementary
Information, sections 7 and 6, respectively). The lowest 1D subband of
the device is modelled by

Ĥ~
X

js

Ejsn̂js{tj d{
jz1 sdjszh:c:

� �h i
z
X

j

Ujn̂j:n̂j; ð1Þ

Here n̂js~d{
jsdjs counts the number of electrons with spin s (spin up,

s 5 " or 1; spin down, s 5 # or 2) at site j of an infinite, tight-binding
chain with hopping amplitude tj, on-site interaction Uj and potential

energy Ejs~Ej{s~B=2 (Supplementary Fig. 8), and ‘h.c.’ denotes
Hermitian conjugate. The Zeeman energy, ~B~ gelj jmBB, describes the
effect of a uniform external parallel magnetic field B, where mB is the
Bohr magneton and gel is the effective g factor (,0 in GaAs). (When
similar symbols are used for model parameters and experimental para-
meters, we add tildes to the former to distinguish them from the latter.)
We neglect spin–orbit interactions and other orbital effects. The para-
meters Ej, Uj and tj vary smoothly with j and differ from their bulk
values, Ebulk 5 Ubulk 5 0 and tbulk 5 t (taken as the unit of energy), only
within a central constriction region (CCR) of N sites around j 5 0,
representing the QPC. Sites j , 2N/2 and j . N/2 represent two
non-interacting leads, each with bandwidth 4t, chemical potential m
and bulk Fermi energy eF 5 2t 1 m; we choose m 5 0, implying half-
filled leads (Fig. 1b). We set Uj to a fixed value, U, for all but the
outermost sites of the CCR, where it drops smoothly to zero.

Within the CCR, we define the QPC barrier by specifying the shape
of the ‘band bottom’ as vmin

j ~Ej{ tj{1ztj
� �

{m (Fig. 1b, solid
black line). We choose vmin

j to define a smooth, symmetric barrier
within the CCR, parabolic near the top3, where we parameterize it as
vmin

j <~Vc{V2
xj2
�

4t0 (Supplementary Information, section 4D). Here
~Vc sets the barrier height with respect to m (Fig. 1b, dashed black line),
and Vx=t characterizes its curvature. We first consider the theoretical
case of zero temperature, ~T~kBT (kB, Boltzmann’s constant), source–
drain voltage, ~Vsd~ ej jVsd, and field, ~B: ~T~~Vsd~~B~0. As ~Vc is
decreased below 0, the conductance, g 5 G/GQ, increases from 0 to
1, showing a step of width ,Vx (about 1.5 meV in our experiment),
whose shape depends on U (Fig. 1k). In the upper part of the step, say
0:5= g = 0:9, we say that the QPC is ‘sub-open’; the sub-open regime
is of special interest because for measured g(Vc) curves it contains the
0.7-anomaly.

The bare local density of states (LDOS), A0
j vð Þ, for equation (1)

has a strong maximum just above the band bottom18, seen as a
yellow–red ridge-like structure in Fig. 1b. In a semiclassical picture,
A0

j vð Þ!1
�

vj vð Þ, where vj(v) is the velocity at site j of an electron with
energy v with respect to m. The ridge-like maximum of A0

j vð Þ above
the barrier reflects the fact that electrons move slowest there. In the
CCR’s outer flanks, this ridge develops smoothly into the van Hove

singularity, A0
bulk! v{vmin

bulk

� �
t

� �{1=2
, in the bulk LDOS at the bulk

band bottom in the leads, vmin
bulk~{eF. We therefore call this LDOS

structure a ‘van Hove ridge’. Near the barrier’s centre, its curvature causes
the singularity to be smeared out on a scale set by Vx. This limits the
amplitude of the van Hove ridge to max A0

j vð Þ
h i

!O Vxt0ð Þ{1=2 and

shifts it upwards in frequency relative to the band byO Vxð Þ (Fig. 1f–h).
The van Hove ridge has a strong, ~Vc-dependent effect on numerous

QPC properties. Near those spatial locations where the ridge intersects
the chemical potential (v 5 0), the LDOS is enhanced, thus amplifying
the effects of interactions by O Vxt0ð Þ{1=2 (which grows with QPC
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length). In semiclassical terms, slow electrons feel interactions parti-
cularly strongly. When lowering the barrier top, ~Vc, to open the QPC,
the van Hove ridge sweeps downwards (Fig. 1f–h); its interaction-
amplifying effects are strongest in the ~Vc regime where its apex, which
has most weight, crosses m. This happens for 0> ~Vc >{O Vxð Þ
(Fig. 1g), which, very importantly, encompasses the sub-open regime
containing the 0.7-anomaly. Below, we show that the 0.7-anomaly and
the zero-bias peak (ZBP) stem precisely from the amplification of
interaction effects where the van Hove ridge intersects m. The relevant
implications are enhancements in the effective Hartree barrier governing
elastic transmission, the spin susceptibility and the inelastic scattering
rate, all of which lead to an anomalous reduction of g in the sub-open
regime, especially for T, B, Vsd . 0.

Figure 1c–e illustrates several local properties, calculated at ~T~0
using FRG, for the sub-open QPC barrier shown in Fig. 1b. We note
four salient features, all intuitively expected. First, the local density,
nj~ n̂j:zn̂j;

	 

, is minimal at the barrier centre (Fig. 1c). Second, the

local magnetization, mj~ n̂j:{n̂j;
	 
�

2, vanishes at ~B~0 (Fig. 1d, blue
line); this reflects a physical assumption entailed in our calculations
(Supplementary Information, section 6), namely that no spontaneous

magnetization occurs, in contrast to the spontaneous spin splitting
scenario advocated in refs 4, 8, 17. Third, mj increases without satura-
tion when ~B becomes large (Fig. 1d, inset), indicating a smooth redis-
tribution of spin, as expected for an open structure. Fourth, the local
spin susceptibility, xj~ Lmj

�
L~B

� �
~B~0, is strongly enhanced with

increasing U (Fig. 1e), because interactions amplify any field-induced
spin imbalance.

The j dependence of xj is governed by that of A0
j 0ð Þ (in fact,

xU~0
j ~A0

j (0)=2), which is maximal near those sites where the van
Hove ridge intersects m. When ~Vc is decreased through 0 (Figs 1f–h),
these intersection points sweep out a parabolic arch in the ~Vc�j plane,
along which xj

~Vc
� �

(Fig. 1i, colour scale) is peaked, with most weight
near the arch’s apex. This leads to a corresponding peak in the total spin
susceptibility, xtot~

PCCR
j xj, as a function of ~Vc (Fig. 1j). This peak

is strongly enhanced by increasing U (in accordance with the fourth
feature above) and is located near the ~Vc value where g < 0.7 (Fig. 1k).
We will see further below that this peak strongly affects the ~B depend-
ence of the conductance (Fig. 1l).

Note that the spatial structure for xj
~Vc
� �

in Fig. 1i, namely two
peaks merging into one as ~Vc is lowered, is consistent with that, shown
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Figure 1 | Experimental set-up and model. a, Scanning electron microscope
picture of the gate layout, featuring a top gate (t) at voltage Vt, two central gates
(c) at voltage Vc and four side gates (s) at voltage Vs. Negative voltages Vc and Vs

locally deplete the 2DES, which is 85 nm beneath the sample surface. Together
with Vt, they induce a tunable electrostatic potential landscape in the 2DES.
b, Barrier shape and LDOS. The bare (Uj 5 0, ~B~0) 1D LDOS per spin species,
A0

j vð Þ (colour scale), as a function of energy, v, and site index, j, for
~Vc~{0:28Vx . The barrier shape is defined by the solid black line, showing the
band bottom, vmin

j . The LDOS vanishes exponentially rapidly below vmin
j

(Supplementary Fig. 11), and has a van Hove ridge (yellow–red) just above it,
followed by Friedel oscillations (white fringes) at higher energies (up to
v= ~Vc). c–e, Local properties of a sub-open QPC: FRG results for the sub-
open barrier shown in b. c, d, The local density, nj (c), and the magnetization, mj

(d), for several values of magnetic field, ~B. Inset of d, mS~
X
jjjƒ10

mj as a

function of ~B. e, The local spin susceptibility, xj, for several values of interaction

strength, U. The shapes of mj and xj are modulated by Friedel oscillations
inherited from the bare LDOS (b), with locally varying wavelength, l < 1/nj.
f–l, Changing barrier height. f–h, The bare LDOS, A0

j vð Þ, for three successively
lower barrier heights, ~Vc

�
Vx~1 (f), 20.28 (g) and 22 (h). The LDOS pattern

is fixed with respect to ~Vc (grey dashed lines) but shifts with respect to m (black
dashed lines). i–l, FRG results for the ~Vc dependence of the local spin
susceptibility, xj (colour scale), at fixed U 5 0.5t (i); the total spin susceptibility,
xtot~

PCCR
j xj, for several U values (solid lines), and the inverse low-energy

scale, 1
�

~B�, for U 5 0.5t (dashed line) (j); the zero-temperature linear-response
(Vsd 5 0) conductance, g 5 G/GQ, for several U values (at fixed ~B~0) (k) and
for several ~B values (at fixed U 5 0.5t) (l). For a large enough interaction,
U 5 0.5t, even for ~B~~T~~Vsd~0 (blue lines in k and l), g ~Vc

� �
has a shoulder

(red arrow) at g < 0.7, the 0.7-anomaly. Three vertical dashed lines in i–l mark
the three ~Vc values used in f–h, as indicated by dots of matching colours.
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in fig. 2b of ref. 14, for the density of spin-up electrons calculated using
spin-density-functional theory, initialized in a small applied field to
break spin symmetry. In ref. 14, the local maximum in the spin-up
density was interpreted as evidence for a ‘quasi-bound state’ that was
argued to host a spin-1/2 local moment; in contrast, features one and,
especially, three above imply that our model yields no local moment.

Next we discuss the effect of the van Hove ridge on the conductance,
g ~Vc
� �

, starting with its U dependence at ~B~~T~0 (Fig. 1k). Increasing
U skews the shape of the step in g ~Vc

� �
, which eventually develops a

shoulder near g<0:7 (red arrow). This shoulder develops because the
increase in local density with decreasing ~Vc is slightly nonlinear when
the apex of the van Hove ridge drops past m, causing a corresponding
nonlinear upward shift in the effective Hartree barrier. For a parabolic
barrier top, this occurs for g<0:7. If the shape of the barrier top is
changed to be non-parabolic, both the shape of the bare conductance
step and the energy distance between the van Hove ridge apex and m
will change, which can cause the interaction-induced shoulder in g to
shift away from 0.7. This explains the experimentally observed
spread6,12 of shoulders (that is, plateau values of the 0.7-anomaly) for
0:5= g = 1.

On increasing ~B for fixed U and ~T~0 (Figs 1l and 2a), the shoulder
in g ~Vc

� �
becomes more pronounced, eventually developing into a

spin-split plateau. Comparison of Fig. 2a with Fig. 2e shows that this
development qualitatively agrees with experiment; the agreement was
optimized by using U as fit parameter. Inspecting how the corresponding

spin-resolved conductances, g" and g#, change with ~B (Fig. 2b), we note a
strong asymmetry: although the bare barrier heights for spins " and # are
shifted symmetrically by {~B

�
2 and ~B

�
2, respectively, g# is decreased

much more strongly than g" is increased. This is due to exchange inter-
actions: increasing the spin-up density near the CCR centre (Fig. 1d)
strongly raises the Hartree barrier, and more so for spin-down electrons
than spin-up, owing to Pauli’s exclusion principle. The consequences are
most pronounced in the sub-open regime, owing to the van-Hove-ridge-
induced peak in xtot there (Fig. 1j). We note, however, that g"5 g# at
~B~0, reflecting our above-mentioned assumption that no spontaneous
spin splitting occurs.

Our FRG approach is limited to the case of zero temperature and
zero source–drain voltage, for which no inelastic scattering occurs. To
access qualitatively the effects of the latter at fixed U, we have instead
used SOPT (Supplementary Information, section 7). Figure 2c–h
shows a comparison of our SOPT results for the linear conductance,
g ~Vc
� �

, calculated for several values of magnetic field, ~B, and temper-
ature, ~T~kBT , and our experimental data for g(Vc). The measured
conductance step shows a shoulder (Fig. 2e, f, red arrows) that
becomes increasingly more pronounced with both increasing field, B
(Fig. 2e), and increasing temperature, T (Fig. 2f), which is the hallmark
of the 0.7-anomaly. Our perturbative calculations qualitatively repro-
duce both trends remarkably well. The only caveat is that the experi-
mental curves in Fig. 2e, f show more pronounced shoulders than do
the respective SOPT curves in Fig. 2c, d. This failure of SOPT to
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Figure 2 | Conductance: theory versus experiment. a, b, FRG results: the
linear response conductance, g ~Vc, ~B

� �
, of a QPC (a), and its spin-resolved

components, g" and g# (b), plotted as functions of ~Vc

�
Vx for several values of ~B

at ~T~0 (but finite interaction U). The grey dashed and solid lines in a show the
low-energy scale ~B� ~Vc

� �
for U 5 0 and U 5 0.5, respectively, plotted on the log-

linear scale indicated on the right-hand axis (as also done in c–f). The small-
field magnetoresponse in a is strongest when ~B� takes its smallest value,
~Bmin
� (vertical dashed lines). Inset of b, the shot noise factor,

Nshot~
P

s gs 1{gsð Þ=2, plotted as function of g. Its asymmetric development
with ~B, which reflects that of g" and g#, agrees qualitatively with experiment (see
fig. 4d of ref. 7). c, d, SOPT results: g ~Vc, ~B

� �
at ~T~0 for several values of ~B

(c) and g ~Vc, ~T
� �

at ~B~0 for several values of ~T (d), both plotted as functions of
~Vc
�

Vx . The low-energy scale ~B� ~Vc
� �

is shown as a thin grey line in c and
repeated in d; ~T� ~Vc

� �
and ~Vsd� ~Vc

� �
are respectively shown as thin black and

brown lines in d. The vertical dashed line indicates where ~B� takes its minimal
value, ~Bmin

� . For ~Vc values below this dashed line, the lines for ~B�, ~T� and ~Vsd� in
d are nearly straight on the log-linear scale, implying the behaviour
summarized by equation (3), and are nearly parallel to each other, implying that
the ratios ~B�

�
~T� and ~Vsd�

�
~T� are essentially independent of ~Vc there.

e, f, Experiments—pinch-off curves. e, g(Vc) measured at a low 2DES

temperature, T0, for various magnetic fields parallel to the 2DES, plotted as a
function of DVc 5 Vc 2 V0.5, where V0.5 is the gate voltage for which the
conductance at B 5 0 and T 5 T0 is g(V0.5) 5 0.5. f, Analogous to e, but for
B 5 0 and various temperatures T. Colours in e and f are chosen to provide
comparability with theory curves in a, c and d (with the correspondence
ej jDVc!{~Vc). g, h, Experiments—Fermi-liquid behaviour: g(B)/g(0) as

function of B at temperature T0 (g), and g(T)/g(T0) as function of T at B 5 0
(h), shown on log-linear scales (insets show their differences from unity on log-
log scales) to emphasize small values of B and T. Coloured symbols distinguish
data taken at different fixed Vc values, indicated by dashed lines of
corresponding colour in e and f. The quadratic B and T dependences observed
in g and h for each fixed Vc value confirm equation (2) and were used to
determine the corresponding scales B�(Vc) and T�(Vc). (Black lines in g and
h show 1 2 (B/B�)

2 and 1 2 (T/T�)
2, respectively.) The resulting energies,

E�5 mBB�(Vc) and E�5 kBT�(Vc), are shown as functions of Vc in e (for B�)
and f (for both B� and T�) on a log-linear scale. The shape of these measured
functions agrees qualitatively with the SOPT predictions in c and d, confirming
the nearly exponential ~Vc dependences and the nearly Vc-independent B�=T�
ratio, discussed above. (For additional data, similar to that in g and h, see
Supplementary Information, section 2B.)
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produce real shoulders is present both in the low-field dependence
at low temperature (compare Fig. 2e with Fig. 2c; the former, but
not the latter, shows a weak shoulder even at zero field) and in the
temperature dependence at zero field (compare Fig. 2f and Fig. 2d). In
contrast, the more powerful FRG approach does reproduce the weak
shoulder even for ~B~~T~0, as discussed above; compare the black
g ~Vc
� �

curves in Fig. 2a (FRG) and Fig. 2c (SOPT). (That the latter
curve, in contrast to the former, lies above its non-interacting version,
g0 ~Vc
� �

, is an artefact of SOPT; see Supplementary Information,
section 7D.)

We next focus on the limit of small energies ~B, ~T and ~Vsd. Here our
SOPT calculations yield three predictions, enumerated below, that are
all consistent with our measurements. First, for fixed ~Vc, the leading
dependence of the nonlinear conductance, gnl~ dI

�
d ~Vsd

� ��
GQ, on ~B,

~T and ~Vsd is predicted to be quadratic, as confirmed by the measured
data in Figs 2g, h and 3a. This implies an expansion of the form

gnl ~B, ~T, ~Vsd
� �

gnl 0, 0, 0ð Þ <1{
~B2

~B2
�
{

~T2

~T2
�
{

~V2
sd

~V2
sd�

ð2Þ

for ~B
�

~B�, ~T
�

~T�, ~Vsd

�
~Vsd�=1, where ~B�, ~T� and ~Vsd� are ~Vc-dependent

crossover scales that govern the ‘strength’ of the 0.7-anomaly for U ? 0:
the smaller these scales, the stronger the dependence on ~B, ~T and ~Vsd

for a given ~Vc. Our SOPT results for these crossover scales are shown as
thin lines on log-linear scales in Fig. 2c and Fig. 2d, respectively.
Second, in that part of the sub-open regime where gnl 0, 0, 0ð Þ<1, they
all depend exponentially on ~Vc:

~B�, ~T�, ~Vsd�!exp {p~Vc
�

Vx
� �

ð3Þ

Third, and again for gnl 0, 0, 0ð Þ<1, the ratios ~B�=~T� and ~Vsd�=~T� are
essentially independent of ~Vc (Supplementary Fig. 4). Remarkably,
both the second and third predictions are confirmed by our experi-
mental results (Fig. 2e for B*, Fig. 2f for T* and Supplementary Fig. 3 for
Vsd*). The behaviour predicted by equation (3) for ~T� is also in accord
with previous experiments6 and with a perturbative treatment of inter-
actions using Wentzel–Kramers–Brillouin wavefunctions21. Remarkably,
the exponential ~Vc dependence of the crossover scales stated in equa-
tion (3) can be understood from a non-interacting (U 5 0) theory, by
using the bare transmission probability3

T0
s vð Þ~ e{2p v{~Vczs~B=2ð Þ=Vx z1

h i{1
ð4Þ

in the Landauer–Büttiker formula. A detailed analysis (Supplementary
Information, section 5) shows that the crossover scales experience a fur-
ther exponential reduction with increasing effective interaction strength,
U
� ffiffiffiffiffiffiffiffiffiffi

Vxt0
p

.
When plotted as a function of ~Vc, 1

�
~B� has a peak in the sub-open

regime just before the onset of the exponential dependence of equa-
tion (3) (Fig. 1j). This peak is roughly similar in shape and position to
that in xtot

~Vc
� �

(compare dashed and solid blue lines in Fig. 1j), except
that the latter has a finite offset, reflecting the non-zero spin suscept-
ibility of an open QPC. Thus, we predict, fourth, that 1

�
~B�, which

characterizes the strength of the low-field magnetoconductance, is
roughly proportional to the spin susceptibility, xtot, of the CCR.

Next we address the remarkable experimental fact6 that many low-
energy properties of the 0.7-anomaly (including our first and third
predictions) are similar to those seen in transport through a Kondo
quantum dot (KQD). This led to the proposal13,14 that a QPC harbours
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Figure 3 | Finite excitation energies. a–f, Zero-bias peak. a, Experimental
data for the nonlinear conductance, gnl, as a function of source–drain voltage,
measured for several Vc values at a fixed low temperature and zero field.
b, Keldysh SOPT results for gnl ~Vsd

� �
for several ~Vc values at ~T~~B~0, showing

qualitative agreement with a. c, The linear-response conductance,
g~gnl ~Vsd~0

� �
, as a function of ~Vc. d–f, gnl ~Vsd

� �
as in b, but for three different

~Vc values (compare colour-matched dots in c and b) and five different magnetic
field values in each panel. Increasing ~B causes the ZBP to split into two subpeaks
once ~B> ~B�; the splitting is therefore most pronounced in e, for which ~B� is
smallest. A detailed discussion of the ZBP, including its T dependence, will be
published elsewhere. Here we would like to point out the qualitative agreement
of d–f with published data; see, for example, fig. 2d of ref. 6. g, h, Interacting
LDOS: Aj vð Þ, calculated using SOPT, shown for two fixed gate voltage values,
~Vc
�

Vx~0 (g) and 20.75 (h) (red dashed lines). i–n, Equilibrium transmission

probabilities: the corresponding elastic, inelastic and total transmission
probabilities, Tel

s (i, j), T in
s (k, l) and Ts (m, n), calculated using SOPT and

shown as functions of energy, v, for three different temperatures. At ~T~0
(black curves) T in

s vð Þ vanishes at v 5 0, where there is no phase space for
inelastic scattering. However, it increases as v changes from zero, causing a
corresponding reduction in the elastic transmission for v ? 0, such that Tel

s vð Þ
has a narrow ‘low-energy peak’ around v 5 0. On increasing the temperature,
the probability of inelastic scattering increases, causing the minimum in T in

s vð Þ
and the peak in Tel

s vð Þ to be smeared out. This leads to a net ~T-induced
reduction in the total transmission, Ts vð Þ near v 5 0, causing a corresponding
reduction in the conductance (Fig. 2d, f). This reduction is stronger for
~Vc
�

Vx~0 (m) than for ~Vc
�

Vx~{0:75 (n), because the probability of
electron–hole pair creation during inelastic scattering is largest when apex of
the van Hove ridge lies closest to m (compare g and h).
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a quasi-bound state, whose local moment gives rise to the Kondo effect.
In contrast, our van-Hove-ridge scenario fully explains the 0.7-anomaly
without invoking the Kondo effect. In particular, we find no indications
that a smooth parabolic barrier hosts a discrete, localized spin (com-
pare with the third feature above), and no Kondo effect/0.7-anomaly
similarities (experimentally or theoretically) at high energies (> ~B�),
where the Kondo effect is governed by an unscreened local moment.
Nevertheless, the two phenomena do have similar low-energy beha-
viour. This is because both involve a spin-singlet ground state featuring
spatially confined spin fluctuations. For a KQD they result from screen-
ing of the localized spin, whereas for a QPC they result from the
extended structure of the van Hove ridge (Fig. 1i); but this distinction,
which is important on short length scales (high energies), does not
matter on long ones (low energies). These spin fluctuations are char-
acterized by exponentially small energy scales, the Kondo temperature
for a KQD, and ~T� for a QPC, both scaling inversely with the local spin
susceptibility (for a QPC, this follows from prediction four). For a KQD,
the local spin fluctuations can be described by Nozières–Fermi-liquid
theory27,28 in terms of scattering phase shifts, which determine its low-
energy properties. Because a QPC, like a KQD, harbours spatially con-
fined spin fluctuations, a similar Nozières–Fermi-liquid framework
applies, explaining why its low-energy transport properties are similar
to those of a KQD.

We next study finite excitation energies (~T , ~Vsdw0), where inelastic
scattering becomes important (Fig. 3). We begin by considering the
nonlinear differential conductance, gnl, as a function of source–drain
voltage, Vsd. Experimentally, gnl shows a narrow peak at Vsd 5 0 (Fig. 3a;
see also refs 6, 9, 10). This ZBP appears strongest in the sub-open
regime, but remains visible even very close to pinch off10 (g R 0). It
splits with increasing field once B exceeds a Vc-dependent crossover
value that is smallest when g<0:7 (see fig. 2d of ref. 6). Remarkably, our
model, treated using Keldysh SOPT (Supplementary Information,
section 7B), yields a ZBP (Fig. 3b, d–f) that qualitatively reproduces this
behaviour. In the sub-open regime (0:5= g = 0:9), a ZBP arises even
without interaction (this follows from equation (4)), but interactions
modify it in two ways (Supplementary Information, section 7C): a finite
Vsd causes a net charge enhancement at the barrier, resulting in a reduc-
tion of transmission due to Coulomb repulsion; and opens up a finite
phase space for inelastic backscattering. Both effects strongly depend on
the LDOS near m (Fig. 3g, h), and are thus strongest when the apex of the
van Hove ridge lies near m (as in Figs 3g and 1g). However, the van Hove
ridge intersects m also for g , 0.5 (as in Fig. 1f), which explains why a
ZBP is experimentally observed even close to pinch off10.

The two modification mechanisms just discussed also apply to the
case of increasing temperature. To highlight the role of inelastic scat-
tering, we now discuss (for ~B~~Vsd~0) the transmission probability
Ts vð Þ~Tel

s vð ÞzT in
s vð Þ, written as the sum of elastic and inelastic

contributions corresponding respectively to transmission without or
with the creation of electron–hole pairs (see Supplementary Informa-
tion, section 7A, for their precise definition). Figure 3i–n shows exam-
ples of these quantities. With increasing temperature, the probability
for inelastic scattering increases, causing T in

s vð Þ to increase (Fig. 3k, l)
and Tel

s vð Þ to decrease (Fig. 3i, j). This leads to a net temperature-
induced reduction in the total transmission, Ts vð Þ (Fig. 3m, n), near
v 5 0, causing a corresponding reduction in the conductance (Fig. 2d, f).
Importantly, this reduction is ~Vc dependent: it is strongest when the apex
of the van Hove ridge lies near m (as in Fig. 3m) and decreases away from
this point (as in Fig. 3n), because the probability for electron–hole pair
creation during inelastic scattering increases with the LDOS near m. The
fact that Ts vð Þ acquires a non-trivial, interaction-induced dependence
on ~T in the sub-open regime is consistent with the fact that near g < 0.7
the measured thermopower violates the Mott relation5, which is based
on the assumption of non-interacting electrons.

Finally, we note that we have studied the magnetic field dependence
of the transconductance, dG/dVc, both experimentally and by using
FRG. We obtain excellent qualitative agreement between experiment

and theory, showing that such measurements can be understood with-
out invoking spontaneous spin polarization, as is often advocated to
explain them4,8,17. A detailed analysis (Supplementary Information,
section 2C, and Supplementary Fig. 5) establishes that the g factor is
enhanced significantly by interactions, and that interaction strength
can be tuned experimentally using a top gate.

We have presented detailed microscopic calculations that qualita-
tively reproduce the full phenomenology of the 0.7-anomaly. We
argued that a van Hove ridge in the LDOS, combined with interactions,
provides a natural explanation for the anomalous behaviour of the
conductance of a sub-open (g > 0:5) QPC. The experimentally
observed6 similarities between the 0.7-anomaly and the Kondo effect
at low energies arise because both phenomena involve spatially loca-
lized spin fluctuations; at high energies, the similarities cease. We
verified our Fermi-liquid predictions for the QPC conductance by
systematic measurement of the conductance as a function of Vc, B
and T. Strikingly, we demonstrated that the zero-bias peak in a QPC
arises from the interplay of interactions and geometry. By implication,
anomalous zero-bias behaviour might also arise in other systems
involving interacting electrons traversing 1D low-density regions with
slowly varying spatial inhomogeneities, such as the gated nanowires
being studied in the search for Majorana fermions29.

METHODS SUMMARY
The nanostructure is laterally defined in a 2DES located 85 nm beneath the surface
of a GaAs/AlGaAs heterostructure. The low-temperature carrier density and
mobility are 1.9 3 1011 cm22 and 1.2 3 106 cm2 V21 s21, respectively. Electron-
beam lithography was used to create the Ti/Au gates. The top gate is electrically
insulated from the others by cross-linked poly(methyl methacrylate). Perfect
alignment of magnetic fields parallel to the 2DES and the 1D channel defining
the QPC was ensured by using a two-axis magnet and was controlled by magne-
totransport measurements. We used a dilution refrigerator and reached electron
temperatures as low as T2DES < 30 mK.

Our most accurate theoretical results were obtained by using FRG24–26 to calculate
T 5 0 properties. FRG amounts to doing renormalization-group-enhanced per-
turbation theory in the interaction U. In setting up our FRG flow equations, we
made two approximations, both exact to second order in U: we truncated the infinite
hierarchy of flow equations by neglecting the flow of the three-particle vertex; and we
set to zero all components of the two-particle vertex that are not already generated to
second order in the interaction (coupled-ladder approximation).

To access the effects of inelastic scattering for ~Tw0 or ~Vsdw0 at fixed U, we
used SOPT: we dressed bare Green’s functions by evaluating the self-energy per-
turbatively to second order in the interaction. For ~Vsd~0, we calculated the linear
conductance following the strategy in ref. 23, generalized to ~B=0 and broken
electron–hole symmetry. For ~Vsdw0, we calculated the nonlinear conductance,
gnl~ dI

�
d ~Vsd

� ��
GQ, using the Meir–Wingreen formula for the current (equa-

tion (6) of ref. 30).
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S-1. OVERVIEW

The following supplementary material provides addi-
tional information related to various aspects of the main
article. Its sections can be read independently and in ar-
bitrary order. They are grouped into two parts: Part I
(Secs. S-2 and S-3) is devoted to experiments and their

comparison with theory; Part II (Secs. S-4 to S-7C) pro-
vides further theoretical details.

Section S-2 gives supplementary information about
our measurements discussed in the main article. Sec-
tion S-2A describes the experimental setup. In Sec. S-
2B we present the raw data on which the experimen-
tal tests of Fermi liquid predictions in the main article
are based, together with corresponding results obtained
by the functional renormalization group (fRG) (Fig. S2).
We also present additional data (Fig. S3) illustrating the
gate-voltage dependence of the crossover scales in mag-
netic field, temperature and source-drain-voltage, B∗, T∗
and Vsd∗, together with corresponding calculations using
second-order perturbation theory (SOPT). Sec. S-2C ex-
plains in detail how the effective g-factor gss is extracted
from the transconductance for large fields (Fig. S5), and
offers some comments on the much-discussed scenario
that the 0.7-anomaly is due to spontaneous spin polar-
ization in the QPC region.

Sec. S-3 presents further T = 0 fRG results (Figs. S6
and S7) that demonstrate qualitative agreement with
shot noise and compressibility measurements by other
groups. These fRG results, and those in Sec. S-5, were
calculated using “static” fRG, which differs from the “dy-
namic” fRG approach used in the main text by neglecting
the frequency dependence of the self-energy and all ver-
tices (see Sec. S-6 F). Static fRG yields results that are
very similar to those of dynamic fRG (see Fig. S15), while
being numerically cheaper by a factor ∼ 103.

Section S-4 describes our theoretical model in detail.
We have used two slightly different parametrizations of
the QPC barrier shape, called “model I” and “model II”,
which both describe parabolic barrier tops and hence give
essentially equivalent results for QPC properties. They
are defined in Secs. S-4B and S-4D, respectively (the
main article uses only model II). Sections S-4C and S-
4E explain how the effects of geometry are encoded in
the bare local density of states (LDOS), focussing in par-
ticular on the van Hove ridge of a QPC, which is key to
understanding the 0.7-anomaly.

Section S-5 focuses on the low-energy scale B̃∗(Ṽc) for

a QPC: it shows that its exponential Ṽc-dependence has
a purely geometric origin, and that the strength of its U -
dependence likewise depends on the shape of the barrier.

Sections S-6 and S-7 discuss details of the two theoreti-
cal methods used here to incorporate the effect of inter-
action: the functional Renormalization Group (fRG) and
second order perturbation theory (SOPT), respectively.
Section S-7C is devoted to a detailed description of our
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SOPT results for finite temperature or finite source-drain
voltage, offering a summary of the features of the 0.7-
anomaly which SOPT does or does not capture quali-
tatively. Finally, Sec. S-7D discusses an SOPT artefact
that arises with increasing U .

Equation and figure and section numbers from the
main article or the supplementary material are pref-

aced below by A (for “article”) vs. S (for “supplemen-
tary”), respectively, e. g. Eq. (A1), Fig. A1f, Sec. A-
2 vs. Eq. (S1), Fig. S2b, Sec. S-4. As in the main
article, we use tildes to distinguish theory parameters

from those used in experiment, writing, e. g. T̃ = kBT ,

B̃ = |gel|µBB, and Ṽc,s ∝ −|e|Vc,s.

PART I: EXPERIMENT VS. THEORY

S-2. OUR EXPERIMENTAL DATA VS.
THEORY

A. Experimental setup

The gate layout of our sample, shown in Fig. A1a for
a dummy sample whose layout is identical to that of the
actual sample, provides a particularly high tunability of
the central constriction region (CCR). The gates can be
used to laterally define either a quantum point contact
(QPC) or a quantum dot (QD) in the two-dimensional
electron system (2DES) 85 nm beneath the surface of
a GaAs/AlGaAs heterostructure. In this work, we fo-
cus exclusively on the QPC geometry; a study of the
crossover from QD to QPC will be published elsewhere.1

More information about the experimental conditions is
provided in the methods summary section of the main
article.
In our two-terminal transport measurements the cur-

rent Isd flows through the nanostructure between ohmic
contacts marked by ”source” and ”drain” in Fig. A1a,
and we measure the differential conductance g =
(dIsd/dVsd)/GQ (henceforth simply called conductance)
using lockin methods. In all measurements discussed in
this paper we apply a negative voltage Vc to both center
gates and a negative voltage Vs to all four side gates. This
depletes the 2DES in the vicinity of the gates, so that
propagation between source and drain through the CCR
is confined to a narrow channel, leading to the quantiza-
tion of transverse modes. (Further variations of individ-
ual gate voltages allow additional control of the lateral
symmetry properties of the CCR, but such studies are
not included in this work.) Moreover, our sample also
contains a global top gate (see Fig. A1a).
In this work, we focus on gate voltages such that trans-

port is carried solely by the first subband, corresponding
to the lowest transverse mode. Its behavior can be de-
scribed by a one-dimensional effective model for motion
in the longitudinal (say x-) direction. The shape of the
effective potential Veff(x) in the CCR can be changed by
tuning Vc, Vs and Vt. Increasing the top gate voltage Vt

increases the carrier density of the 2DES in the contacts
of the CCR and hence the chemical potential, thereby
deepening (w. r. t. µ) the trenches between the regions
of high potential energy caused by the central and side
gates4. This changes not only the shape of Veff(x), but
also causes the transverse wave functions to be more lo-

calized and hence increases the effective one-dimensional
on-site interaction strength U within the CCR. For future
reference, we summarize this trend as follows:

The effective interaction strength U can

be increased experimentally by increasing Vt. (S1)

For a QPC geometry, increasing Vt has an additional
effect: due to the deepened trenches in the potential land-
scape, the energy spacing of the transverse eigenmodes
increases, resulting in an increased subband spacing5.
This trend is demonstrated in Fig. S1 based on mea-
sured pinch-off curves of our QPC for varying top-gate
voltages. It can be used, in principle, to quantify the Vt-
induced increase in U in terms of the Vt-induced increase
in subband spacing6, as will be elaborated in Sec. S-5C
below.

B. Fermi liquid properties

Figs. S2b and S2c show the raw experimental data for
the measured linear response conductance of our QPC (a
constant lead resistance has already been subtracted for
all data). They show how the pinch-off curves depend on
magnetic field and temperature, respectively. For com-
parison, Fig. S2a shows corresponding fRG data calcu-
lated for zero temperature as a function of the magnetic

field B̃. Both calculated and measured data exhibit the
expected transition from a weak kink at g � 0.7 at small
T and B to a pronounced 0.7-anomaly if either mag-
netic field (measured and calculated data) or tempera-
ture (measured data) is substantially increased.
The raw data from Figs. S2b and S2c underly the ex-

perimental results presented in Figs. A2e-h of the main
article. Figs. S3a-d shows additional data sets, plot-
ted in the same way as in Figs. A2g and A2h, but
displaying data not shown there for lack of space. To-
gether, these data confirm the Fermi-liquid behavior ex-
pected theoretically for sufficiently low fields and tem-
peratures: Figures A2g and S3a,b show that at suf-
ficiently low temperatures, T0 � T∗ (in our measure-
ments T0 = T2DES � 30mK), the leading magnetic field-
dependence of the linear conductance is quadratic,

g(B)/g(0) = 1− (B/B∗)
2 , B � B∗ , (S2a)
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Figure S1: Vt-dependence of subband spacing. a, Mea-
sured pinch-off curves g(Vc) of our QPC for a series of top-gate
voltages in the range −0.7V ≤ Vt ≤ 0.8V. As Vt is decreased
the carrier density also becomes smaller which, in turn, results
in a larger pinch-off voltage Vc and, clearly, in more narrow
plateaus at integer g. The steep increase of g(Vc) independent
of Vt at Vc � −0.25V indicates the transition from 1D to 2D
transport as the 2DES directly below the center gates is no
longer depleted. b, Energy spacing between the lowest two
1D subbands as a function of Vt. The data points were eval-
uated from finite-Vsd measurements (raw data2 not shown),
using a procedure described in Refs. 2,3, whose uncertainty
is indicated by the error bars. The resulting subband spacing
is approximately proportional to the width of the first con-
ductance plateau in a. As expected from a simple capacitive
model, it is also proportional to Vt (the dashed straight line
is a guide for the eye).

as expected from Eq. (A2). Similarly, Figs. A2h and
S3c,d show that at zero field (B = 0), the leading tem-
perature dependence is likewise quadratic,

g(T )/g(T0) = 1− (T/T∗)
2 , T � T∗ . (S2b)

Fitting Eqs. (S2a) and (S2b) to the data in
Figs. S2b and S2c, respectively, yields the low-energy
scales B∗(Vc) and T∗(Vc) used in Figs. A2g and A2h and
depicted by colored symbols in Figs. A2e and A2f, re-
spectively (and similarly for Figs. S3a-d). The scaled
conductance curves displayed in Figs. S3a-d are plot-
ted only in the restricted ranges g(B)/g(0) � 0.8 and

g(T )/g(T0) � 0.8, respectively. For smaller conduc-
tances, where the conditions B � B∗ or T � T∗ no
longer hold, the measured B- and T -dependences of the
conductance deviate from quadratic behavior by bend-
ing upward, tending toward saturation (as shown in
Figs. A2g,h ).
The fit parameters B∗ and T∗ are compared in the

half-logarithmic presentation in Fig. A2f as functions of
the center gate voltage ∆Vc. For convenience, this data
is shown again in Fig. S3f, together with the low-energy
source-drain voltage scale Vsd∗. The latter was obtained
by determining the curvature of the nonlinear conduc-
tance curves gnl(Vsd) (shown in Fig. A3i) at Vsd = 0:

gnl(Vsd)/gnl(0) = 1− (Vsd/Vsd∗)
2, Vsd � Vsd∗ . (S2c)

Compared to our determinations of B∗ and T∗ from
linear-response data, those for Vsd∗ have rather larger
error margins, since for technical reasons the non-linear
conductance data was measured with a smaller signal-to-
noise ratio.
As mentioned in the main article, SOPT makes two

predictions for the Ṽc-dependence of the crossover scales

B̃∗, T̃∗ and Ṽsd∗ in the Vc-range where g → 1: first, all
three scales depend exponentially on Vc (Fig. S3e); and

second, the ratios B̃∗/T̃∗ and Ṽsd∗/T̃∗ are, to within a

few %, independent of Ṽc (as illustrated in Fig. S4 for
a range of U -values). The experimental results for B∗,
T∗ and Vsd∗ shown in Fig. S3f confirm both predictions.
This demonstrates that at low energies a QPC shows
Fermi-liquid behavior, as argued in detail in the main
article.

C. Top-gate tuning of effective gss-factor

In a QPC geometry, interactions are known to enhance
the effective electronic g-factor7–9. For large fields (B �
B∗), an effective g-factor, say gss, can be extracted from
the transconductance dg/dVc, by exploiting the fact that
the measured field-induced subband splitting of the first
conductance step, say ∆E, increases linearly with field,
∆E = gssB. In previous experiments with in-plane fields
(B in the 2DES plane), |gss|-values have been observed
exceeding the bulk value (gGaAs � −0.45) by up to a
factor of 69,10, an increase that was attributed by Koop
et al. to interaction effects9.
In Fig. S5 we present the results of fRG calculations

and measurements of the transconductance and the top-
gate dependence of gss that confirm this interpretation.
We numerically deduce the transconductance dG/dVc

(dG/dṼc) from both the measured and calculated con-
ductance data. Typical experimental results are plotted
in Fig. S5a for the range 0 < g < 1 as a function of Vc.
They show two peaks whose splitting ∆E increases lin-
early for large fields, as ∆E � gssB + ∆hfo (Fig. S5b),
where both the slope gss and the “high-field offset” ∆hfo

are found to increase with top-gate voltage Vt (Fig. S5c).
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The effect of increasing Vt can be mimicked in our model
by increasing U (for reasons explained in Supplemen-
tary Sec. S-2A). Indeed, the results of our fRG calcula-
tions, shown in Fig. S5d-f, qualitatively match the trends
shown by the experimental data in Fig. S5a-c. This es-
tablishes several important points. First, interactions
are the reason why the g-factor extracted from ∆E(B)
is anomalously large. Second, the effective interaction
strength can be tuned experimentally via a top gate volt-
age. Third, the experimental observation of ∆hfo �= 0 can
be understood without adopting the spontaneous spin po-
larization scenario that is often advocated7,9,31 to explain
it. Let us now elaborate these points in more detail.
We theoretically studied the U -dependence of gss by

using fRG to calculate pinch-off curves for parabolic QPC
barrier shapes such as that of Fig. A1b, for a range of

fields B̃ and interaction strengths U . Fig. S5d plots

the transconductance, i. e. the derivative −dg(Ṽc)/dṼc

as function of Ṽc (varied over a range corresponding to

0 ≤ g ≤ 1), for a large number of different B̃-fields, at
U = 0.5τ . In such a plot the field-induced spin splitting
of the conductance step manifests itself as a pair of local

maxima7–9,11. The Ṽc-separation of their peaks, say ∆E,

is proportional to the effective B̃-induced subband split-

ting. Evidently ∆E increases with B̃. Fig. S5e shows

∆E(B̃) vs. B̃ for six values of U , including the data ex-

tracted from Fig. S5d. For large fields (B̃ � B̃∗) we find
a linear relation,

∆E(B̃) � (gss/gel)B̃ +∆hfo , (S3)

where ∆hfo represents the “high-field offset” as defined
by Koop et al.9, i. e. the linear extrapolation of the high-

field behavior to B̃ = 0. Fig. S5f and its inset show that

both the slope and the offset increase with U , implying
that both gss and ∆hfo serve as measures of the effective
interaction strength.

Koop et al. have reported a strong enhancement of
the g-factor as the spacing ω12 between the electronic
subbands of the QPC is increased9. Our theory nicely
explains this finding: an increase in ω12 corresponds to a
smaller transverse channel width, implying an enhanced
interaction strength (as argued at the end of section S-
2A) and hence an increase in gss (see Fig. S5f).

This interpretation is confirmed by the experimental
data shown in Fig. S5a-c. This data was measured using
a second sample (“sample 2”), of similar design than that
used to study the Fermi-liquid properties of Figs. A2e-h
discussed in the main text (“sample 1”). For sample 2,
we measured ∆E(B) = a ·∆Vc (for the values of the con-
version factor a see table in Fig. S5b) as function of top
gate voltage Vt, which corresponds to tuning the effective
interaction strength. According to our theoretical consid-
erations, increasing Vt causes increasing U [see Eq. (S1)]
and hence increasing gss (by Fig. S5f). Fig. S5a-c present
experimental results corresponding to the predictions in
Fig. S5d-f (using Vt instead of U). They qualitatively
confirm our numerical results, especially that both gss
and ∆hfo increase with Vt and, therefore, the interaction
strength. (In contrast to us, Koop et al. did not observe a
systematic correlation between gss and ∆hfo. A possible
reason is that their study varied the shape of the QPC
potential by varying the width and length of the QPC,
whereas we varied Vt. Our studies thus differ from theirs
in the detailed shape of the 2D potential landscape. The
effective interaction strength is very sensitive towards the
latter, as discussed in more detail in Sec. S-5C.)

We conclude our discussion on ∆E(B) with an impor-
tant comment on the high-field offset ∆hfo. In several
experimental studies of the 0.7-anomaly7–9, the observa-
tion of a nonzero value for ∆hfo was interpreted as ev-
idence “that there is a possible spin polarization of the
1D electron gas in zero magnetic field” (the quote is from
Thomas et al.7). Our fRG results show that this inter-
pretation is not compelling, since we obtain ∆hfo �= 0
without any spontaneous spin polarization. ∆hfo �= 0

simply implies that the B̃ = 0 conductance step g(Ṽc) is
somewhat skewed (see Figs. A1k, A1l, A2a), so that the
peak in the transconductance is not symmetric (as seen
in Fig. S5d); as shown here, this can be achieved with a
magnetization that is strictly zero. Indeed, our fRG ap-
proach assumes from the outset that the magnetization

per site, mj = 1
2 (nj↑ − nj↓), is strictly zero at B̃ = 0

(see blue line in Fig. A1d, and introduction of Sec. S-6).
This a priori assumption is justified a posteriori by the
good qualitative agreement between fRG and experiment
found throughout this work, and in Fig. S5 in particular.
Moreover, this assumption is a prerequisite for under-
standing the low-energy Fermi-liquid properties of the
0.7-anomaly discussed in the main text, and the result-
ing analogies between the 0.7-anomaly and the Kondo
effect: for the latter, there is zero spin polarization at
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Figure S5: Determination of the subband-splitting g-
factor gss. a-c. Results from experimental measurements
on a sample (“sample 2”) of similar design as that discussed
in the main text (“sample 1”). d-f, Corresponding results
from fRG calculations. a,d, The transconductance, i. e. the
derivative of the conductance with respect to gate voltage (Vc

in a, Ṽc in d), plotted as a function of gate voltage, for sev-
eral magnetic fields. An increasing magnetic field lifts the
spin degeneracy, causing the conductance step to split into
two spin-resolved sub-steps and giving rise to two local max-

ima in a,d (marked by blue dots). In d, B̃min
∗,0.5 (red square)

stands for B̃min
∗ at U = 0.5. b,e. The peak distance ∆E, de-

termined by fitting a pair of Gaussians (shown by gray lines
in a) to the peak pairs in a,d, is plotted as function of mag-
netic field, in b for three different top gate voltages, and in e
for seven different values of the on-site interaction U . Linear
least-square fits to such curves in the range of large fields,
using ∆E � gssB + ∆hfo, yield the effective g-factor gss and
high-field offset ∆hfo. Errors, s. e.m. (n = 5 - 7). (To convert
∆Vc in a to ∆E in b, we used the Vt-dependent conversion
factors a = ∆E/∆Vc listed in the legend of b, obtained ap-
proximately from nonlinear transport measurements7,9.) c,f,
|gss| (and in insets, ∆hfo), plotted as a function of Vt (in c)
or U (in f). The red straight line in c is a error-weighted
least square fit. Both theory and experiment show the same
trend, namely that gss and ∆hfo increase with the effective
interaction strength U (which increases with Vt in our sample
geometry.

B̃ = T = 0, because lead electrons screen the local spin
into a spin singlet.
It is noteworthy, though, that the linear increase in

∆E(B̃) in Fig. S5e sets in already at rather small fields,

of order O(B̃∗) and similarly for ∆E(B) in Fig. S5b.
The reason is that at small fields the spin polarization
rapidly grows with field, since the spin susceptibility is
large. It is large because it is strongly enhanced by in-
teractions (Fig. A1j), as recognized and emphasized by
Thomas et al.7, and because the effects of interactions
are further enhanced by the van Hove ridge in the QPC,
as discussed in the main article. According to our analy-
sis, the large spin susceptibility goes hand in hand with
a strong interaction-induced enhancement in the inverse
scale 1/B∗(∝ χtot) [Fig. A1j], as discussed in the main
article, and also in Sec. S-5B below.

The scale B̃∗ governs the “strength” of the 0.7-
anomaly, in that the conductance is significantly reduced

once B̃ or T̃ increase past B̃∗. In an alternative model
proposed by Reilly et al.12, one of the advocates of
spontaneous spin polarization, the strength of the 0.7-
anomaly is governed by the size of the spin gap. This
model was used successfully, for example, to model the
shot noise measurements of Ref. 13. The Reilly model as-
sumes that the spin gap increases strongly with decreas-
ing Vc, i. e. with increasing density in the QPC-region.

Note that this Ṽc-dependence of the proposed spin gap
shows the same tendency as that shown by the Hartree-
enhancement of the barrier size in our work, which like-

wise increases linearly with increasing density as Ṽc is
made more negative. (The density near the CCR cen-
ter also increases as temperature or source-drain volt-
age is increased, and becomes strongly spin-asymmetry

as B̃ increases.) In this sense, our work sheds light on
why the Reilly model is phenomenologically successful at
large energies: it makes qualitatively correct assumptions
about the Vc-dependence of the effective barrier height
that governs the strength of the conductance’s B- or T -
dependence. That having been said, we emphasize once
more that our Hartree-shift in barrier height is not a spin
gap, and that our scenario differs decidedly from that
of the Reilly model for energies below B∗: there we as-
sert the appearance of Fermi-liquid behavior that is not
compatible with spontaneous spin polarization. In our
theory, a spin splitting sets in only once spin symmetry

is broken by finite B̃ (though a spin-symmetric Hartree-

shift in barrier height is present even at B̃ = 0). The spin

gap predicted by our theory for B̃ �= 0 does increase with
the density in the QPC, as in the Reilly model, since it
arises from Hartree contributions to the self-energy (see
Eq. (S42) in our fRG scheme, or the first two diagrams
in Eq. (S53) when doing perturbation theory).
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S-3. OTHER EXPERIMENTAL DATA VS.
FRG

This section presents additional fRG results on the
zero-temperature behavior of the conductance, the shot

noise, and the charge susceptibility. Their Ṽc- and

B̃-dependence is found to be in qualitative agreement
with that observed experimentally by other groups (Di-
Carlo et al. for the shot noise13, Smith et al. for the
compressibility14.

The fRG results presented below were obtained us-
ing “static” fRG, a simplified version of the “dynamic”
fRG scheme used in the main text. Static fRG neglects
the frequency dependence of the self-energy and all ver-
tices (see Sec. S-6 F). This simplification reduces compu-
tational costs by a factor of 103. Nevertheless, for the
model studied here the results of static fRG turn out to
be qualitatively very similar to those of dynamic fRG (see
Fig. S15 below). Hence we have opted to use static fRG
for the results presented in Secs. S-3 and S-5.

A. Spin-resolved conductance, shot noise

This subsection presents a detailed discussion of the
spin-resolved conductance. It is based on calculations
using model I (defined in Sec. S-4B), but the results are
fully analogous to those shown in Figs. A2a,b for model
II (defined in Sec. S-4D).
The role of interactions for the magnetoconductance of

a QPC at zero temperature can be very clearly revealed
by studying the spin-resolved conductance gσ = Tσ and
the shot noise factor15

N =
1

2

∑

σ

gσ(1− gσ). (S4)

Fig. S6 shows these quantities together with the full con-
ductance g = g↑+g↓, all calculated at T = 0 as functions

of Ṽc, for various fields. To highlight the effect of inter-
actions, we also show corresponding results for the bare
(U = 0) model, which we discuss first.

We begin with some elementary observations: First,

the bare transmission probability T 0
σ (Ṽc, 0) at zero field,

studied as function of Ṽc, is antisymmetric w. r. t. the
point T 0

σ (0, 0) = 0.5 [cf. Eq. (S30) below]:

T 0
σ (Ṽc, 0) = 1− T 0

σ (−Ṽc, 0) . (S5)

A finite field B̃ shifts the bare potential in opposite direc-

tions for opposite spins, δṼj = −σ
2 B̃ (with σ = ±1 for ↑,

↓). Thus the bare spin-resolved transmission probability

T 0
σ at finite B̃ is equal to that at B̃ = 0 but for a shifted

value of Ṽc:

T 0
σ (Ṽc, B̃) = T 0

σ (Ṽc − σ
2 B̃, 0). (S6)

This implies that B̃ induces a shift (but not a change in
shape) for the spin-resolved conductance step in gσ by

σ
2 B̃ (see Figs. S6b-c). Nevertheless, since Eqs. (S6) and
(S5) together imply

T 0
σ (Ṽc, B̃) = 1− T 0

σ̄ (−Ṽc, B̃) , (S7)

the full conductance remains antisymmetric w. r. t. the

point T 0
σ (0, B̃) = 0.5 even for finite B̃ (see Fig. S6a):

g0(Ṽc, B̃) = 1− g0(−Ṽc, B̃) . (S8)

Eq. (S7) also implies that the bare shot noise, N 0, is

symmetric w. r. t. Ṽc = 0, or g = 0.5 (see Fig. S6j).

The above antisymmetry of g(Ṽc) w. r. t. Ṽc = 0 is bro-
ken in the presence of interactions, in a manner that
becomes increasingly more pronounced with increasing
field, see Figs. S6d and S6g, for U/τ = 0.2 and 0.45, re-
spectively. In the latter case the broken antisymmetry is
visible already at zero field, in that the fRG conductance
curve shows a slight 0.7-shoulder, in agreement with ex-

periment (cf. Fig. A2e). This shoulder at B̃ = T̃ = 0 oc-
curs because the interaction-induced increase of the effec-
tive potential barrier is enhanced by the van Hove ridge
in the local density of states (LDOS) and hence is non-

uniform in Ṽc (see the main article for a detailed explana-

tion). The breaking of Ṽc-antisymmetry increases with B̃
because (exchange) interactions amplify the field-induced
asymmetry in the population of spin-up and -down elec-
trons in the CCR, in particular near the top of the bar-

rier: a small B̃-induced surplus of spin-up electrons leads
to a significantly increased Hartree barrier, and more so
for spin-down electrons than for spin-up electrons (due
to the Pauli principle), causing a strong decrease of g↓
relative to g↑. This effect, whose strength increases with
U (compare 2nd and 3rd columns of Fig. S6) results in
the field-induced strengthening of the 0.7-shoulder that
is characteristic of the 0.7-anomaly, and its evolution into
a double step for large fields.

The increasing Ṽc-asymmetry (i. e. departure from per-

fect antisymmetry) in gσ(Ṽc) as B̃ increases is also re-
flected in the shot noise factor N (g) [Eq. (S4)], see
Figs. S6k and S6l, for U/τ = 0.2 and 0.45, respectively.
For zero applied field, N (g) is symmetric w. r. t. g = 0.5;
this follows directly from the form of Eq. (S4) (which
holds whenever a Fermi-liquid description applies), and
our assumption that there is no spontaneous breaking of

spin symmetry at B̃ = 0, implying g↑ = g↓. With increas-
ing field, N (g) develops an g-asymmetry w. r. t. g = 0.5,
being somewhat suppressed in the range g > 0.5 relative
to its values in the range g < 0.5. This field-induced
g-asymmetry is in good qualitative agreement with the
experimental measurements of the noise factor by Di-
Carlo et al., cf. Fig. 4(d) of Ref. 13. Note, though, that
the measured noise factor shows an g-asymmetry even at
zero field, in contrast to our fRG predictions; we believe
that this remnant g-asymmetry is a finite-temperature
effect that will gradually disappear if the experimental
temperature is lowered further. Reproducing this behav-
ior explicitly by a finite-temperature calculation of the
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Figure S6: Comparison of results for model I, for its bare U = 0 version (first column), or treated using static fRG for
U/τ = 0.2 and 0.45 (second and third columns, respectively). The top, middle and bottom rows show, respectively, the full

QPC conductance g = g↑ + g↓ and its spin-resolved contributions g↑ and g↓, all plotted as functions of Ṽc/Ωx for several values

of magnetic field B̃. The fourth column shows a similar comparison for the shot noise factor N [Eq. (S4)], plotted as function
of g.

noise factor for our model is left as a task for future
study.

B. Compressibility and charge susceptibility

Recently, Smith et al.14 have experimentally studied
the compressibility of the electron gas of a QPC. In par-
ticular, they measured the Vc-dependence of the com-
pressibility in the vicinity of the 0.7-anomaly and studied
its evolution with increasing temperature and magnetic
field. The compressibility is a measure of the density of
states at the chemical potential. In a QPC geometry,
its Vc-dependence is thus governed by that of the LDOS
maxima at the bottom of the 1D band, i. e. by the van
Hove ridge discussed in detail in the main article and in
Sec. S-4C below (see the yellow ridges in Fig. A1b and
Fig. S10d); and its B-dependence is governed by the spin
splitting of this van Hove ridge.

Within our model, the compressibility can be associ-

ated with the charge susceptibility of the CCR,

χµ =
dntot

dµ
, ntot =

CCR∑

jσ

njσ , (S9)

where ntot is the total charge in the CCR and µ the chem-
ical potential. Figs. S7a and S7b show zero-temperature

fRG results for the conductance g(Ṽc) and the charge

susceptibility χµ(Ṽc), respectively. The results exhibit
a number of features, enumerated below, that are qual-
itatively consistent with features observed by Smith et
al.14.

Consider first the noninteracting case, U = 0 (black

dashed lines for g0 and χ0
µ): When Ṽc is lowered past

0, the bare charge susceptibility χ0
µ(Ṽc) in Fig. S7b tra-

verses a single broad peak, aligned with the center of the
corresponding conductance step in Fig. S7a. This peak
arises because the bare charge susceptibility equals the
bare total density of states at the chemical potential [cf.
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Figure S7: Charge Susceptibility. Static fRG results

(model I) for (a) the conductance g(Ṽc) and (b) the charge

susceptibility χµ(Ṽc) [Eq. S9] as function of Ṽc, calculated for

six values of B̃ at a fixed Ṽs and T̃ = 0. Black dashed lines
in a and b show the bare (U = 0, B̃ = 0) curves, g0 and
χ0
µ = A0

tot(0), respectively. Vertical dashed lines are a guide
for the eyes and mark the weak shoulder or second maximum

of χµ(Ṽc). c, The full (U �= 0) LDOS at the chemical po-

tential, Aj(0), as function of gate voltage Ṽc and site index
j.

Eq. (S39)],

χ0
µ =

CCR∑

jσ

A0
jσ(0) = A0

tot(0), (S10)

which traverses a peak when the spin-degenerate van
Hove ridge is lowered past µ. For nonzero U but still

B̃ = 0 (black solid lines), χµ(Ṽc) is reduced, since in-
teractions tend to counteract the (infinitesimal) increase
in charge induced by an (infinitesimal) increase in µ
[Eq. (S9)]. This reduction occurs in such a way that

(i) χµ(Ṽc) retains a dominant peak, with (ii) a weak

shoulder developing on its right (even though B̃ = 0),

roughly aligned with the roll-over of g(Ṽc) towards the

first conductance plateau. This shoulder arises because

when Ṽc decreases into the open-channel regime, the
van Hove ridge apex drops so far below µ that Aj(0),
the LDOS at µ, decreases rapidly (Fig. S7c). As a re-
sult, its interaction-enhancing effects, and hence also the
Coulomb-blockade reduction in χµ, weaken rapidly, re-
sulting in a shoulder in χµ.

The colored lines in Fig. S7 show the evolution of the

conductance g(B̃) and charge susceptibility χµ(Ṽc) with
magnetic field for U = 0.45τ . While the conductance
step evolves into the familiar spin-split double step with
increasing field (Fig. S7a), (iii) the dominant peak in

χµ(Ṽc) (Fig. S7b) remains aligned with the center of the

first conductance step, while (iv) the shoulder in χµ(Ṽc)
develops into a weak peak that shifts towards the right,
remaining roughly aligned with the roll-over to the sec-
ond conductance plateau (as indicated by dashed col-
ored lines between Figs. S7a and S7b). This reflects the
field-induced spin-splitting of the van Hove ridge into two
spin-resolved sub-ridges, which get lowered past µ at dif-

ferent Ṽc-values. As a result, (v) χµ(Ṽc) develops a weak
minimum between the two peaks.

Features (i)-(v) can also be found, on a qualitative
level, in Figs. 2 and 3(a) of Smith et al.. Their mea-
sured signal, called dVsg/dVmid there, has minima when
the compressibility has maxima, and vice versa. In
their Fig. 2(a), the red curve shows a strong dip at
Vmid = 0.14 V and a very weak minimum at 0.22 V.
We associate these, respectively, with the dominant peak

(i) and the weak shoulder (ii) in χµ(Ṽc) discussed above.
In their Fig. 2(b), the two dips in the red curve at
Vmid = 0.12 V and 0.19 V, correspond, respectively, to
the two maxima mentioned in (iii) and (iv) above. And
in their Fig. 3(a), the peak marked by an arrow corre-
sponds to the dip mentioned in (v). We thus conclude
that the measured compressibility maxima accompany-
ing the conductance steps are indeed due to maxima in
the density of states at the band bottom, as suggested
by Smith et al. themselves (and in Ref. 16). This sup-
ports our contention that van Hove ridges play a central
role in the physics of the 0.7-anomaly. By implication
it also confirms the presence of the “quasi-bound states”
advocated by Meir and collaborators17–19, provided that
we identify their “quasi-bound states” with our van Hove
ridges – as argued in Sec. S-4E below, both names refer
to the same peaked structures in the LDOS.

This identification was not clear at the time of writ-
ing of Ref. 14, however. Instead, Smith et al. argued
that they see “no evidence of the formation of the quasi-
bound state predicted by the Kondo model”. This state-
ment was based on a comparison of their B = 0 data
for dVsg/dVmid to simulations16 using density-functional
theory (DFT) combined with the local spin density ap-
proximation (LSDA). These data and the simulation re-
sults are shown, respectively, as black and red curves in
Fig. 4(b) of Ref. 14. The simulations yielded an addi-
tional strong dip [indicated by an arrow in Fig. 4(b)],
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aligned with the onset of the conductance plateau, that
had no counterpart in the measured data. We suspect
that this additional strong dip might be an artefact of
the tendency of DFT+LSDA calculations, when initial-
ized using a small nonzero magnetic field19,20, to yield a
nonzero spin polarization in regions where the spin sus-
ceptibility is large (as is the case in the QPC). We assert,
however, that at B = 0 the spin polarization is strictly
zero (in contrast to views expressed in Refs. 7,8,14), since
this is a prerequisite for understanding the Fermi-liquid

properties discussed in the main article. Our fRG cal-

culations for B̃ = 0 thus assume zero spin polarization
from the outset. Remarkably they yield, instead of the
strong additional peak found by DFT+LSDA, only the
weak shoulder (ii) mentioned above, which is consistent
with the compressibility data of Smith et al. Further ar-
guments in support of the absence of spontaneous spin
polarization at zero field are offered at the end of Sec. S-
2C.

PART II: THEORETICAL DETAILS

S-4. MODELS USED FOR BARRIER SHAPE

In the course of our studies of the 0.7-anomaly, we have
explored many different parametrizations of smooth,
symmetric QPC barrier shapes. We found that as long
as the barrier top is parabolic, characterized by a barrier

height Ṽc (w. r. t. to the chemical potential) and a curva-
ture parameter Ωx, the details of the parametrization of
the barrier do not matter.

In this section we present the details of two differ-
ent parametrizations for parabolic barriers, to be called
“model I” and “model II”, whose results for QPC proper-

ties are fully equivalent when expressed as functions of Ṽc

and Ωx. Both models use the same Hamiltonian, choice
of chemical potential and local interaction strength Uj ,
specified in Sec. S-4A, but differ in their choices for the
hopping amplitude τj (which is j-independent for Model
I but not for Model II) and the on-site potential Ej .

Model I is presented in Sec. S-4B: its hopping ampli-
tude is j-independent, τj = τ , and the barrier shape is
specified by parametrizing Ej in terms of a central gate

voltage Ṽc and a side gate voltage Ṽs. It is designed
to allow a theoretic study of the crossover between a
Kondo quantum dot (KQD) and a QPC by continuously
deforming the 1D potential from a double-barrier to a
single-barrier shape (see Figs. S9c and S9d below, re-
spectively). (The results of a corresponding study will
be published elsewhere1.) Here we use model I to calcu-
late numerous QPC properties presented in various parts
of the supplementary material (Figs. S6, S7, S10, S11,
S13 and S14). Moreover, model I allows instructive in-
sights into the similarities and differences between the
bare density of states of a QD and a QPC, which are
key to understanding the similarities and differences be-
tween the Kondo effect and the 0.7-anomaly, as briefly
discussed in Sec. S-4C.

For model II, presented in Sec. S-4D, τj depends non-
trivially on j, and the barrier shape is specified solely in

terms of a central gate voltage Ṽc and the barrier cur-
vature Ωx (adjusted via the length N of the CCR, but
without reference to a side gate voltage). Compared to
model I, model II has technical advantages when treated
using SOPT (as explained below). For clarity, model II

was used for all numerical results (both from fRG and
SOPT) presented in the main article. It was also used
for Figs. S2, S4, S12, S16 in the supplementary material.
We emphasize that the results obtained using models I
and II are qualitatively consistent.
To conclude our introductory comments on the models

used here, we remark that the idea of studying the 0.7-
anomaly using an effective 1D model with a smoothly
varying QPC potential and local interactions has of
course been pursued previously by numerous authors.
For example, a model with local exchange interactions
was studied in Refs. 21 and 22, a model with an un-
screened Coulomb interaction in Ref. 6, and a model
with a point like interaction restricted to the center of
the QPC potential in Ref. 23. Our work is similar in
spirit to these, but our use of fRG allows us to treat the
effects of interactions more systematically than Refs. 21
and 6, and for longer chains than Ref. 22, which also
did not have access to the limit T → 0. Works based
on 2D or 3D density-functional theory calculations16–20

treat the potential landscape more realistically than we
do, but at the expense of not treating correlation effects
as accurately as fRG does. In particular, our fRG treat-
ment allows accurate predictions for the conductance at
zero temperature, which is beyond the scope of all pre-
vious treatments. Moreover, our SOPT calculations at
finite source-drain voltages are first to give a detailed de-
scription of the origin of the ZBP.

A. Hamiltonian, chemical potential, Uj

The model Hamiltonian defined in the main article,

Ĥ =
∑

jσ

[
Ejσn̂jσ − τj(d

†
j+1σdjσ + h.c.)

]
+

∑

j

Uj n̂j↑n̂j↓, (S11)

with Ejσ = Ej− σ
2 B̃, is depicted schematically in Fig. S8.

It shows a tight-binding chain divided into two semi-
infinite, non-interacting, uniform leads on the left and
right, connected to the central constriction region (CCR),
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~

Figure S8: Schematic depiction of the one-dimensional model
of Eq. (S11) (for a QPC barrier shape). It represents an
infinite tight-binding chain with hopping matrix element τj
(gray); the prescribed local potential Ej (blue) and on-site
interaction Uj (red) are nonzero only within a central con-
striction region (CCR) of N = 2N ′ + 1 sites. The CCR is
connected to two semi-infinite non-interacting leads on the

left and right. A homogeneous Zeeman magnetic field B̃ (or-
ange) can be switched on along the whole chain.

consisting of an odd number N = 2N ′+1 of sites centered
on j = 0. The lattice does not represent actual atomic
sites, but instead is merely used to obtain a discrete,
coarse-grained description of transport in the lowest sub-
band. The position-dependent parameters Uj and Ej ,
nonzero only within the CCR, are taken to vary slowly
on the scale of the lattice spacing a. (We set a = 1 in
our calculations.)
Choice of µ: Since the chemical potential is a prop-

erty of the bulk, we begin by considering our model for
Ej = Uj = 0 and τj = τ , representing a bulk tight-
binding chain (infinite, homogeneous). The eigenergies
εk corresponding to wave number k have dispersion

εk = −2τ cos(ka) ∈ [−2τ, 2τ ] , (S12)

plotted in Fig. S9a. To describe the phenomena of
present interest, the chemical potential µ should lie some-
where within this band, not too close to its edges; the
precise value does not matter. All our numerical calcu-
lations (fRG and SOPT) used µ = 0, implying half-filled
leads; but for the sake of generality, we keep µ arbitrary
below, particularly in Figs. S9a,b and S10a,b.) The en-
ergy difference between the chemical potential and the
bulk band bottom defines the bulk Fermi energy,

εF = 2τ + µ (> 0) . (S13)

Choice of Uj: In choosing a purely on-site interaction
in Eq. (S11), we implicitly assume that screening is strong
enough to render the interaction short-ranged. (A more
realistic treatment of screening is beyond the scope of
this work.) We set the on-site interaction Uj equal to
U throughout the CCR, except near its edges, where it
drops smoothly to zero to avoid spurious backscattering
effects (Fig. S9e):

Uj =




0 , ∀ N ′ ≤ |j| ,

U exp

[
− ( j

N′ )
6

1−( j
N′ )

2

]
∀ |j| ≤ N ′ .

(S14)

U is to be regarded as an effective parameter, whose value
is influenced by the transverse modes not treated explic-
itly in our model. In particular, the effect of increasing

ka

ε k
 /τ ω

µ
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Figure S9: a, Dispersion relation εk vs. k [Eq. (S12)] for
a bulk non-interacting tight-binding chain without magnetic
field (infinite, homogeneous, Ejσ = Uj = 0). The filling fac-
tor in the leads is controlled by the global chemical potential
µ (blue dashed line); it is here drawn at µ �= 0 for general-
ity, although our fRG calculations use µ = 0. b, The corre-
sponding j-independent bulk LDOS [Eq. (S19)], shown both
as A0

bulk(ω) (on x-axis) versus ω = εk −µ (on y-axis), and us-
ing a color scale. The distance from the chemical potential to
the bulk band bottom ωmin

bulk is εF = 2τ +µ = −ωmin
bulk (> 0). c

and d, Model I: The one-dimensional potential Ej of Eq. (S15)

(thick dashed black line) for a QD potential (Ṽs > Ṽc) and a

QPC potential (Ṽc > Ṽs), respectively. In the outer region of
the CCR (j0 ≤ |j| ≤ N ′), Ej is described by quartic polyno-
mial, in the inner region (|j| < j0) by a quadratic one (thin
red and blue lines, respectively, shown only for j > 0.) For

given N ′, js, Ṽs and Ṽc, the parameters j0 and Ωx are ad-
justed such that the resulting potential Ej depends smoothly
on j throughout the CCR. e, The on-site interaction Uj of
Eq. (S14).

the top gate voltage Vt can be mimicked by increasing U
[Eq. (S1)], as will be discussed in more detail in Sec. S-
5C. We typically take U to be somewhat smaller than
the maximum value of the inverse bare LDOS, since if
U ·max[A0

j (ω)], is too large, the fRG calculations do not
converge. We remark that we have also explored the op-
tion of taking Uj to be proportional to Ej , or of taking
the range of sites where Uj = U to be several times larger
than that where Ej �= 0. Such modifications change de-
tails of the results, such as the precise shape of the con-
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ductance g(Ṽc, Ṽs) as function of Ṽc or Ṽs, but not the
qualitative trends discussed in the main article, as long
as Uj drops smoothly to zero near the edges of the CCR.

B. Model I

For model I, we choose the the hopping amplitude to
be j-independent, τj = τ , while the on-site potential Ej

describes a reflection-symmetric barrier within the CCR.
Its shape is tunable between a double barrier describ-
ing a QD (Fig. S9c) and a single barrier describing a
QPC (Fig. S9d) (thick dashed black lines). We have
parametrized it as follows:

Ej =





0 , ∀ |j| ≥ N ′,

(Ṽs + εF)

[
2
(

|j|−N ′

js−N ′

)2

−
(

|j|−N ′

js−N ′

)4
]

,

∀ j0 ≤ |j| ≤ N ′,

Ṽc + εF +
Ω

2
xj

2

4τ sgn(Ṽs − Ṽc), ∀ 0 ≤ |j| < j0.

(S15)

The sites ±j0 divide the CCR into two “outer regions”,
where the potential is a quartic polynomial in j, and
an “inner region”, where it is quadratic in j. In the
latter, the magnitude of the curvature is governed by the
parameter Ωx (≥ 0), which has units of energy. (The
quadratic term for the inner region was chosen to have
the form 1

2mω2
xx

2 used in Ref. 5, with ωx = Ωx/�, x = aj

and m = �2/(2τa2) corresponding to the effective mass at
the bottom of a tight-binding chain.) The shape of Ej is
controlled by four independent parameters: (i) N ′, which
sets the halfwidth of the CCR; (ii) js, which governs the

width of the outer flanks of the potential; (iii) Ṽs and

(iv) Ṽc, which give the potential’s height w. r. t. εF at the
sites j = ±js and 0, respectively:

E±js = Ṽs + εF; Ej=0 = Ṽc + εF . (S16)

Once the four parameters N ′, js, Ṽs and Ṽc have been
specified, the dependent parameters j0 and Ωx are chosen
such that Ej is a smooth function of j at the boundaries
±j0 between the inner and outer regions.
An electron incident at the chemical potential has en-

ergy εF w. r. t. to the bulk band bottom and hence sees a

relative potential of height Ej − εF at site j. For Ṽs>Ṽc,
the relative potential describes a QD potential with two

maxima of height Ṽs at j = ±js and a local parabolic

minimum of height Ṽc at j = 0. For Ṽc > Ṽs (the case
of present interest), it describes a QPC potential with a

single parabolic maximum at j = 0, of height Ṽc. The

crossover point between QD and QPC lies at Ṽs = Ṽc

(for which Ωx = 0). Evidently Ṽc and Ṽs respectively
mimick the role of the voltages applied to the central
gates (Vc) and side gates (Vs) in the experiment (with

Ṽc,s ∝ −|e|Vc,s).

Figure N ′ Ṽc[τ ] Ṽs[τ ] Ωx js

Fig. S6 150 -0.035 to 0.015 -0.25 0.016 60

Fig. S7 150 -0.032 to 0.01 -0.25 0.016 60

Fig. S9a-b 150 -2 -2 0 -

Fig. S9c 150 -0.6 0.6 0.0416 60

Fig. S9d 150 0.3 -0.3 0.023 60

Fig. S10a 150 -0.5 0.5 0.037 60

Fig. S10b 150 0.5 -0.5 0.027 60

Fig. S10c 150 -0.025 0 0.005 60

Fig. S10d 150 0.008 -0.25 0.016 60

Fig. S11 150 0 -0.25 0.016 60

Fig. S13 150 -0.016 to 0.006 -0.25 0.016 60

Fig. S14 150 -0.02 to 0.02 -0.25 0.016-0.048 60

Table I: Parameters used for model I [defined in Eq. (S15)] for
the fRG results shown in various figures of the supplementary
information.

We emphasize that the QPC barriers studied in this
work are all parabolic near the top. For quantitative
studies of the 0.7-anomaly using model I, we fix N ′, js
and Vs, and tune the QPC from closed to open by low-

ering Ṽc past 0, at which the bare (U = 0) conductance
g0 equals 0.5. The width of the conductance step [see
Fig. A1k, and Eq. (S30)] is governed by the curvature
parameter at this point, Ωx = Ωx|Ṽc=0, which we will

simply call “curvature” henceforth. (Ωx itself changes
slightly during this crossover, but for the barrier shapes
used in this work this change is typically less than 10%

between Ṽc = ±Ωx.) The curvature Ωx also governs the

exponential Ṽc-dependence of B̃∗ [Eq. (S35a)]. Note that
formulas such as Eqs. (S30) and (S35a) would change
for non-parabolic QPC barriers, e. g. barriers with a flat
top. Studying the 0.7-anomaly for such situations would
be an interesting extension of the present work, which
we leave for the future24.

C. Bare local density of states (LDOS)

In the main article we have argued that geometry
strongly influences the 0.7-anomaly, via its effect on the
local density of states (LDOS) and the van Hove ridge
of the latter. Here we elaborate this in detail, by dis-
cussing the geometry-dependence of the noninteracting
LDOS (for model I). We do so not only for the QPC bar-
rier shape of present interest, but also for a QD barrier
shape. This lays the ground for a subsequent comparison,
presented in Sec. S-4E below, of the LDOS structures of
a QPC and a QD, which sheds light on the similarities
and differences between the 0.7-anomaly and the Kondo
effect.

The LDOS per spin species σ at energy ω (measured
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Figure S10: Model I: Noninteracting zero-field LDOS per spin species of a,c, a QD, and b,d, a QPC, for potential shapes
shown by thin black lines (marked by black arrows) for ωmin

j = Ej − εF. (The logarithmic color scale shows A0
j (ω) smeared by

a Lorentzian of width δ = 0.001τ , in order to render very sharp structures visible.) Panels c,d focus on the central region of

the CCR and energies close to µ (black dashed lines); the Ṽc- and Ṽs-choices differ from those used in a,b. Thin green dashed
lines in c,d indicate the shape of the “LDOS ridges” discussed in the text. For the KQD, they enclose an area in the j-ω plane
on which the corresponding LDOS ridge has weight 1; for the QPC, they trace a contour along which A0,QPC

j (ω) = 0.7.

relative to the chemical potential µ) is defined as

Aσ
j (ω) = − 1

π
ImGσR

jj (ω) , (S17)

where GσR
ij (ω) is the Fourier transform of the retarded

T = 0 propagator25,

GσR
ij (t) = −iθ(t)〈G|{diσ(t), d†jσ(0)}|G〉 , (S18)

where |G〉 is the model’s ground state. In this subsection
we will discuss only the spin-degenerate case of zero field

(B̃ = 0) and zero interaction (Uj = 0). We thus drop the
spin index σ (as in the main article) and instead put a
superscript 0 on A0

j (ω) to denote the bare LDOS.
For Ej = 0, representing an infinite, homogenous,

bulk tight-binding chain, the LDOS of Eq. (S17) is j-
independent and equal to the 1D bulk LDOS,

A0
bulk(ω) =

a

π

[
∂k

∂εk

]

εk=ω+µ

. (S19a)

This is nonzero only for ωmin
bulk < ω < ωmax

bulk, where

ωmin
bulk = −εF , ωmax

bulk = −εF + 4τ , (S19b)

denote the bottom and top of the band, measured w. r. t.
µ, respectively. Within these limits, it has the form

A0
bulk(ω) =

1

π
√

(ωmax
bulk − ω)(ω − ωmin

bulk)
, (S19c)

shown in Fig. S9b, featuring square-root van Hove singu-
larities near the band edges (yellow fringes in Fig. S9b).
While the upper van Hove singularity (of unoccupied
states) may be viewed as an artefact of describing the
lowest subband using a tight-binding chain, the lower
one is realistic for effective one-dimensional geometries;
it would also arise, e. g., when using a free-electron model.
Now consider a nonzero potential Ej that is smooth

on the scale of the lattice spacing, modelling a QD or
QPC in the CCR, as shown by the thick black lines in
Figs. S10a-d. The color scale in these figures indicates
the corresponding j-dependent LDOS, A0

j (ω). The latter
has an ω-dependence that, for fixed j, is reminiscent of
the bulk case, but with several differences, caused by the
spatial structure in Ej . First, the band edges now are
j-dependent and follow the shape of the potential, with

ωmin
j = Ej − εF , ωmax

j = Ej − εF + 4τ . (S20)

In particular, the band bottom at the CCR center, j = 0,

is given by ωmin
0 = Ṽc. Second, A0

j (ω) exhibits nar-
row fringes (visible clearly in Figs. S10a-d), due to the
fact that the electronic wave functions form standing
wave patterns. In the central part of the QD potential
(Fig. S10a), and in the central part of the QPC potential
for energies ω > ωmax

bulk (Fig. S10b), these standing waves
correspond to bound state wave functions. (For the case
of the QPC these bound states are artefacts and they are
avoided in model II.) In the outer regions of both QD
and QPC potentials they correspond to Friedel oscilla-
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Figure S11: Inset: The band bottom ωmin
j (black line) as

function of j, for a 301-site CCR with a parabolic QPC bar-

rier (model I) with curvature Ωx and height Ṽc = ωmin
0 = 0.

Main plot: Energy dependence of the LDOS near the band
bottom, showing A0

bulk(ω) (dashed), and A0,QPC
j (ω) (solid)

for three j-values near the center, all plotted as functions of
(ω−ωmin

j )/Ωx (blue line corresponds to Fig. 1 in Ref. 23). Ar-
rows of matching colors in the inset indicate the corresponding
values of j (namely 0, 20 and 40). The short, heavy, colored
vertical lines in the main panel indicate where the energy coin-
cides with the barrier top, ω = ωmin

0 ; the corresponding values
of the x-coordinate (ωmin

0 −ωmin
j )/Ωx (namely 0, 1.6 and 6.4)

give the remaining barrier height as seen from site j. In the
bulk, ωmin

j = −εF. The peak of A0,QPC
j (ω) lies at an energy

ωH
j = ωmin

j +O(Ωx). For j = 0 it lies at ωH
0 = 0.21Ωx and has

height 0.28/
√
τΩx (dotted blue lines). Note that A0,QPC

j (ω)

matches A0
bulk(ω) once the energy ω lies above ωmin

0 by more
than O(Ωx), corresponding to free propagation above the bar-
rier.

tions. Third, the van Hove singularities are somewhat
smeared out on the outer flanks of the QD, and through-
out the entire QPC, in the latter case on a scale set by
Ωx (see Fig. S11).

For the rest of this subsection, we focus on the QPC
barrier of Figs. S10b,d. (The QD barrier of Figs. S10a,c
is revisited in Sec. S-4E below, where we compare its

LDOS to that of a QPC.) For a QPC, A0,QPC
j (ω) de-

pends smoothly on ω and j near the center of the CCR,
its weight being concentrated along a curved, broad
“van Hove ridge” (framed by the green dashed lines in
Fig. S10d). This ridge originates from a van Hove singu-
larity just above the band bottom that has been pushed
upward by the QPC potential barrier. The van Hove
ridge has limited spatial extent when traversed at con-
stant ω, reflecting the limited spatial size of the QPC.
At the outside flanks of the CCR barrier, the tails of the
ridge split up into discrete fringes, representing Friedel
oscillations associated with standing waves that build up
near the barrier (as also seen in Figs. S10a,b). For given
j, the ω-dependence of the van Hove ridge, shown in
Fig. S11, is asymmetric w. r. t. to its maximum, with
a steep, exponentially decaying flank below the maxi-
mum, and above it a long tail, whose envelope decays as

QPC

0

0 0.1

2

–2
–25 25

1

j

ω
/τ

ωmax

ωmin
j

j

Aj (ω)τ0

Vc = – 0.2τ~

Vc
~

N = 101, Ωx = 0.04τ, U = 0

Figure S12: Noninteracting zero-field LDOS per spin species,
A0

j (ω), shown on a logarithmic color scale, for the QPC model
II defined by Eqs. (S22) and (S23). The thin black line
(marked by black arrow) indicates the lower band edge, ωmin

j

[Eq. (S24)]. The curvature of the lower and upper band edges
is, respectively, negative and positive throughout the CCR,
ensuring that no bound states occur.

[τ(ω−ωmin
j )]−1/2, reflecting the ω-asymmetry of the bulk

van Hove singularity of Eq. (S19). The divergence of the
latter is cut off here, due to the absence of translational
invariance, on a scale set by the barrier curvature. In-
deed, the maximum value taken by the van Hove peak in

A0,QPC
j (ω) occurs at an energy, say ωH

j , that lies above
the lower band edge by an amount of order Ωx,

ωH
j = ωmin

j +O(Ωx) . (S21)

For example, for a purely parabolic barrier top, the van

Hove peak in A0,QPC
j=0 (ω), the LDOS at the center of the

QPC, lies at ωH
0 = ωmin

0 + 0.21Ωx. In that case, the
van Hove peak lies precisely at the chemical potential,

ωH
0 = 0, when Ṽc = −0.21Ωx.
Eq. (S21) implies not only that the van Hove peak

energy depends on Ωx, but also that its height (i. e.
the maximum value of the LDOS) scales as 1/

√
τΩx.

As a consequence, all local quantities that depend on

A0,QPC
j (ω), such as the local magnetic susceptibility χj ,

depend on Ωx, too. In this way they acquire an explicit
dependence on the shape of the QPC barrier.

D. Model II

In this section we describe model II, used for all numer-
ical results (fRG and SOPT) presented in the main arti-
cle. For model II, designed to model exclusively a QPC,
we have modified the choice of Ej and τj in two minor
ways relative to model I of Sec. S-4B, which turn out to
facilitate SOPT calculations. The two changes, described
below, are designed (i) to allow using a shorter CCR
while maintaining a small curvature Ωx at the barrier
top, and (ii) to avoid the occurrence of artificial bound
states in the bare density of states of the QPC (such as
those seen in Fig. S10b near the upper band edge, for
energies ω > ωmax

bulk).
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(i) Modified potential shape: We define the onsite po-
tential Ej by

Ej =





0 , ∀ N ′ ≤ |j| ,

(Ṽc + εF)

1 + 2b
exp

[
−

(
j
N ′

)2

1−
(

j
N ′

)2

]
∀ |j| ≤ N ′ ,

(S22)
where the parameter b is defined in (ii) below. This yields
a smooth parabolic barrier near the CCR center and
rapidly decaying flanks, allowing the CCR to be chosen
shorter than for the potential of Eq. (S15). Using a short
CCR is advantageous in particular for SOPT calcula-
tions: due to the matrix structure of the Greens function
and the summation/integration over internal frequencies,
the computation of the self-energy Σ and the vertex cor-
rection P needed for SOPT [see Eq. (S53) and Eq. (S52)]
is rather time-consuming.
(ii) Modified hopping: For model I, the QPC poten-

tial barrier of Eq. (S15) (at B̃ = 0) yields a bare band
whose upper edge has a maximum in energy at j = 0,
causing a large number of bound states in the energy

range ω ∈ [ωmax
bulk, ω

max
bulk + Ṽc] (visible as narrow fringes in

Fig. S10). Though these artificial bound states are com-
pletely irrelevant for the physics of the 0.7-anomaly, the
corresponding poles in the bare Green’s functions never-
theless would have to be treated with due accuracy in the
energy integrals involved in SOPT. To avoid the occur-
rence of such poles, model II takes the hopping matrix
element τj in Eq. (S11) to be site-dependent within the
CCR, τj = τ − δτj , involving a smooth (adiabatic) re-
duction proportional to the local barrier height:

δτj =
1
2 (Ej + Ej+1)b (> 0) , −N ′ ≤ j < N ′, (S23)

and δτj = 0 otherwise. Then the lower and upper band
edges are approximately given by

ωmin
j

ωmax
j

}
= −µ ∓ 2τ j + Ej , τ j =

1
2 (τj + τj−1). (S24)

Here τ̄j , the average hopping matrix element involving
site j, is approximately equal to τ j � τ − bEj , since the
potential varies smoothly with j. Eq. (S24) implies a
j-dependent bandwidth, 4τ j . For the upper band edge
ωmax
j , the upward shift contributed by Ej inside the CCR

is counteracted by a downward shift, contributed by 2τ j ,
of −2δτ j � −2bEj . The latter can be ensured to over-
compensate the former by choosing the numerical factor
b to be larger than 1/2 (we choose b = 0.55). Then the
upper band edge ωmax

j throughout the CCR lies below
the bulk band edge ωmax

bulk, ensuring that no bound states
occur near the upper band edge. This is illustrated in
Fig. S12, which is to be contrasted to the bound states
seen in Fig. S10b for model I, with j-independent hop-
ping.
The prefactor 1/(1 + 2b) in Eq. (S22) ensures that

Ṽc corresponds to the effective barrier height w. r. t.

the chemical potential, Ṽc = ωmin
j=0 [as is the case for

Eq. (S15)]. Finally, the parameter Ωx is defined as the

curvature of the band bottom at Ṽc = 0, obtained by
expanding Eq. (S24) to second order in j [in analogy to
Eq. (S15)]: ωmin

j |Ṽc=0 � −Ω2
xj

2/(4τ0). For the choice

µ = 0 used here, τ0 � τ/(1 + 2b). We have checked that
with this definition of Ωx, the bare transmission probabil-
ity for model II, calculated numerically, agrees well with
the analytic prediction of Eq. (S30) below (and that of
model I). For all calculations performed in this with with
model II, we chose N ′ = 50 and b = 0.55, in which case
Ωx = 0.04τ .

We emphasize that transport and local properties are
not modified in any essential way by the changes (i) and
(ii) of model II w. r. t. model I. Their effect is solely to
reduce the computation time.

E. Comparison: bare LDOS of QPC and QD

In this subsection, we offer a detailed comparison of
the bare LDOS structures for a QPC and a QD. They are
shown in Figs. S10d and S10c, respectively, which focus
on the CCR-center and energies near ω = 0. They evi-
dently exhibit numerous differences, but also some sim-
ilarities. These are key to understanding the differences
and similarities between the 0.7-anomaly and the Kondo
effect.

For a QPC, A0,QPC
j (ω) exhibits a prominent, smooth

van Hove ridge (Fig. S10d), as discussed in detail in

Sec. S-4C. In contrast, for a QD, A0,QD
j (ω) has appre-

ciable weight only along a set of “ridges” at discrete
energies, one of which is marked by the green box in
Fig. S10c. Each ridge is associated with a discrete eigen-
state of the bare QD potential: it is characterized by a
discrete eigenenergy, say ωα, and its spatially confined,
oscillatory j-dependence reflects that of |ψα(j)|2, where
the wavefunction ψα(j) represents a confined standing
wave. Its spatial extent is approximately set by the clas-
sical turning points (where ωα = ωmin

j ), though it tunnels
a bit beyond these. Each ridge has a small but nonzero
width in ω, due to tunneling into the leads outside the
QD, and a quantized total weight of 1 when j-summed
over the range of ψα(j) and ω-integrated over its width,
as indicated by the green box in Fig. S10c.

(Parenthetic remark: When interactions are turned on,
the detailed shape of the LDOS will change, since barrier
heights and energy levels will be renormalized. Neverthe-
less, the full Aj(ω) will retain the generic properties illus-
trated in Figs. S10c,d, namely discrete ridges for the QD
and a single broad ridge for the QPC. Many-body corre-
lations may lead to additional fine structures in the full
LDOS, such as a narrow Kondo resonance at the Fermi

energy for AKQD
j (ω). However, such many-body effects

do not concern us at the present qualitative level of argu-
mentation, which merely seeks to identify the geometric
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prerequisites for their occurrence.)

The most important difference between the bare LDOS
of a QD and a QPC lies in the following fact, evident

from Figs. S10a-d: near the center of the CCR, A0,QD
j (ω)

consists of a series of discrete ridges of quantized weight,

whereas A0,QPC
j (ω) does not, being dominated by just a

single ridge of nonquantized weight. The physical reason
for this difference clearly is that a QD constitutes a closed
structure that hosts discrete, localized states, whereas
a QPC, being truly open, does not. This difference is
responsible for the different behavior between a KQD and

a QPC for large fields: for B̃ � B̃∗, the magnetization
of a KQD saturates, whereas that of a QPC does not (as
seen in Fig. A1d and its inset). This behavior reflects
the fact that for the KQD the spin of only the single odd
electron in the topmost nonempty level is being polarized
in a large field, whereas for the QPC, whose LDOS has
no discrete structure, there is no intrinsic limit for the
magnitude of the magnetization.

While the differences between the LDOS ridge struc-
tures of KQD and QPC matter at high energies, the low-

energy behavior (B̃, T̃ � B∗) is governed by a generic
common feature shared by the LDOS of both geometries:

the very existence of a Ṽc-tunable ridge with a strongly
peaked dependence on both ω and j. (Details such as the
number of such ridges or their internal spatial structure
are irrelevant for the ensuing argument.) The existence
of such a ridge guarantees a strong magnetic response in

both the conductance and the magnetization when Ṽc is
tuned such that the (interaction-shifted version of the)
ridge is located energetically somewhat below µ. For a
KQD, this is the local moment regime; for the QPC, it is
the regime where g � 0.7. This situation is particularly
inductive to a strong local magnetic response, for two
reasons: First, when spin symmetry is broken by turning

on a magnetic field (say B̃ > 0), the B̃-induced surplus
of spin-up over spin-down electrons is enhanced by the
presence of an LDOS ridge below the chemical potential,
because this ridge constitutes a large density of states
in a confined region of space. Second, interactions will
generally act to further increase this surplus by repelling
spin-down electrons, and will be aided in this by the fact
that the ridge, and hence the region in which the surplus
is large, has a limited spatial extent.

This microscopic mechanism generates a strong, lo-
cal magnetic response irrespective of whether the LDOS
ridge has quantized weight or not. Thus, this mecha-
nism applies equally to a KQD and a QPC, and in this
respect the low-energy behavior of the Kondo effect and
the 0.7-anomaly are indeed similar. This similarity was
first pointed out in Ref. 26 and emphasized, in particular,
by Meir and collaborators17–19: the “narrow transmis-
sion resonances above the barrier” or “quasi-bound state”
evoked in their arguments correspond to the van Hove

ridge in A0,QPC
j (ω) described above. Indeed, the asym-

metric bare LDOS peak at the QPC barrier center found

by us [Fig. S11, blue line for A0,QPC
j=0 (ω)] is qualitatively

similar to that found in Ref. 17 [see Fig. 3a there, right in-
set, solid line for ν↑(ε)] by spin-density-functional theory
(SDFT) in a small applied field. Moreover, the van Hove
ridge in our Figs. S10b,d corresponds to the bright spot
seen in the center of Fig. 3a of Ref. 19 by Rejec and Meir,
which shows the full spin-up LDOS Aj(ω) as function of
position and energy, again calculated by SDFT in a small
applied field. Though SDFT includes interactions and
our bare LDOS does not, interactions affect the minor-
ity species much more strongly than the majority species.
We therefore expect that the geometry-dependence of the
majority LDOS obtained from SDFT should be similar
to that of a noninteracting theory. Thus, we believe that
Meir and Rejec’s “quasi-bound states” are synonymous
to our “van Hove ridges”. (We somewhat prefer the latter
nomenclature, since it indicates the origin of these LDOS
structures.) It would be highly desirable to have a plot

similar to Fig. S10d for the full AQPC
j (ω) calculated using

fRG, but its energy dependence is not accessible by static
fRG. To obtain a first impression, we have calculated it
using perturbation theory, see Fig. A3g,h; calculating it
with Keldysh fRG would be an interesting goal for future
studies.
We wish to emphasize that the details of the magnetic

response of a KQD and a QPC will be similar only as

long as the conditions B̃, T̃ � B̃∗ hold ; once they are vio-
lated, the differences in the LDOS ridges, discrete for QD
vs. continuous for QPC, begin to matter. This caveat,
not discussed in Refs. 17–19, prevents the similarity be-
tween Kondo effect and 0.7-anomaly from extending to
the regime of large energies.
A detailed comparative study of the similarities and

differences in the behavior of a KQD and QPC, all origi-
nating from the similarities and differences between their
LDOS ridges, will be published elsewhere1.

S-5. THE LOW-ENERGY SCALE B̃∗

This section covers the influence of geometry and inter-

actions on the low-energy scale B̃∗ for a QPC. In Sec. S-
5A we show that the exponential dependence of the low-

energy scale B̃∗(Ṽc) has a purely geometric origin, and
contrast this to the more complicated case of the Kondo
temperature for a KQD. Sec. S-5B discusses the effects of

interactions on B̃∗ and T̃∗ for a QPC. Finally, Sec. S-5C
discusses the extent to which the interaction parameter
U itself depends on the 2D potential landscape.

A. Exponential Ṽc-dependence of B̃∗

In the main article we reported that for a QPC the
low-energy scale B∗(Vc) depends exponentially on Vc (see
Eq. (A3), Figs. A2a, c, e). The same is true for T∗(Vc)
(see Eq. (A3), Figs. A2d, f), as was first found in Ref. 26.
In this subsection, we explain the origin of this exponen-
tial Vc-dependence. It is present already for the nonin-
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teracting (U = 0) version of our model, hence we begin
by discussing the latter.
According to the Landauer-Büttiker formula, the non-

interacting differential conductance g0nl(T̃ , B̃, Ṽsd) as a

function of temperature T̃ = kBT , magnetic field B̃ =

|gel|µBB and source-drain voltage Ṽsd = −|e|Vsd is given
by

g0nl(T̃ , B̃, Ṽsd) =
d

dṼsd

1

2

∑

σ=±

∫ ∞

−∞
dω T (ω + 1

2σB̃)

×
[
f(ω − 1

2 Ṽsd)− f(ω + 1
2 Ṽsd)

]
(S25)

where f(ω) = [eω/T̃ + 1]−1 is the Fermi function,
and T (ω) is the noninteracting transmission probability
across the QPC barrier of a lead electron incident with

energy ω w. r. t. µ, at B̃ = 0. Let us expand it in powers
of energy:

T (ω) = T (0) + T (1)ω +
1

2
T (2)ω2 + . . . , (S26)

where T (0) = T (0) is the transmission probability at the
chemical potential. Inserting Eq. (S26) into (S25) leads
to the following expression for the leading dependence of

the bare conductance on T̃ 2, B̃2 and Ṽ 2
sd (at fixed Ṽc and

Ṽs)

g0nl(T̃ , B̃, Ṽsd)

T (0)
=


1−

(
T̃

T̃ 0∗

)2

−
(

B̃

B̃0∗

)2

−
(

Ṽsd

Ṽ 0
sd∗

)2

 ,

(S27)

with low-energy scales T̃ 0
∗ , B̃0

∗ and Ṽ 0
sd∗ given by

− 8T (0)

T (2)
=

(
B̃0

∗
)2

=
(
Ṽ 0
sd∗

)2

=
4π2

3

(
T̃ 0
∗
)2

. (S28)

Their mutual ratios hence are independent of Ṽc:

B̃0
∗

T̃ 0∗
=

2π√
3
,

Ṽ 0
sd∗
B̃0∗

= 1 . (S29)

(Remark: Depending on the height and shape of the po-
tential barrier, T (2) can be either negative or positive; in

the latter case, the scales B̃0
∗ , T̃ 0

∗ and Ṽ 0
sd∗ as defined here

would be imaginary. In the following, we are interested
only in the former case.)
Now consider a purely parabolic QPC potential barrier

with height Ṽc and longitudinal curvature 1
4τΩ

2
x [as in

Eq. (S15)]. Then the bare transmission T (ω) at B̃ = 0
is given by5

T (ω) � 1

e−2π(ω−Ṽc)/Ωx + 1
. (S30)

Recall that Ṽc = ωmin
j=0 is the height of the band bottom’s

maximum at the central site w. r. t. the chemical poten-

tial. When Ṽc is decreased to open up the QPC, the

bare transmission of an electron incident at the chemical
potential (ω = 0) increases past T (0) = 0.5 when Ṽc de-
creases past 0. [We obtained Eq. (S30) from Eq. (4) of
Ref. 5, which in turn was derived by a semiclassical treat-
ment of transmission through a parabolic barrier27,28, as-
suming a quadratic dispersion of the form p2/2m. The
latter assumption is applicable for our situation in the
limit that our tight-binding band is much wider than
the energy range over which the transmission changes
rapidly, τ � Ωx. This allows a quadratic approxima-
tion for the dispersion [Eq. (S12)] near the band bot-
tom, εk � −2τ + τk2a2, implying an effective mass of
m = �2/(2τa2).]

The bare dimensionless conductance at B̃ = T̃ = Ṽsd =
0, viewed as function of Ṽc, is then given by

g0nl = g0nl(0, 0, 0) = T (0) =
1

e−2πṼc/Ωx + 1
. (S31)

Let us now focus on the regime of negative Ṽc = −|Ṽc|,
where for the quadratic potential top considered here the
bare magnetoconductance is strictly negative. Evaluat-

ing Eq. (S28) for B̃0
∗ using Eq. (S30), one finds:

B̃0
∗ =

Ωx

π

√
2 coth(π|Ṽc|/Ωx) eπ|Ṽc|/Ωx (S32a)

=
Ωx

π

1√
g0 − 1/2

√
g0

1− g0
. (S32b)

(The second line follows from the first by inverting
Eq. (S31).) Expression (S32a) for the low-energy scale

in the absence of interactions, B̃0
∗ , agrees to within a

few percent with our numerical calculations for U = 0,
shown by the black dashed line in Fig. S13a. It states

that B̃0
∗ diverges both when |Ṽc| → 0+ (i. e. g0 → 1/2

from above) and when |Ṽc|/Ωx � 1 (i. e. g0 → 1 from

below). Between these two limiting cases B̃0
∗ has a mini-

mum, which turns out to occur at a bare conductance of
g0∗ = 1/

√
2 � 0.707.

The message of the above analysis is that the experi-
mentally observed exponential Vc-dependence of the low-
energy scales B∗ and T∗ reported in the main article (and
for T∗ also in Ref. 26) has a purely geometric origin, which
can already be understood within a noninteracting model.
It arises simply because for a quadratic barrier the trans-
mission amplitude above the barrier depends exponen-
tially on its height (as can be made explicit in a semiclas-
sical WKB treatment of the transmission problem27,28).

Moreover, the scale for the Ṽc-dependence is set solely by
Ωx, the curvature at the top of the barrier [Eq. (S15)].

The fact that for a QPC the exponential Ṽc-depen-

dence of B̃∗ can be found without considering interac-
tions at all stands in striking contrast to the case of a

KQD: there B̃∗ is proportional to the Kondo tempera-

ture, which likewise depends exponentially on Ṽc, but

the exponent is quadratic in Ṽc, and the scale of its Ṽc-
dependence is set by the interaction strength U and effec-
tive level width Γ. To be explicit, for the single-impurity
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Anderson model, with level position εd = Ṽc, the Kondo

temperature corresponding to T̃∗ is given by29

T̃K =
√

UΓ/2 exp

[
πṼc(Ṽc + U)

2ΓU

]
. (S33)

It arises as the low-energy scale T̃K ∝ e−1/jeff character-
izing the onset of a logarithmic infrared divergence that
occurs when doing perturbation theory in the effective
exchange interaction between the spins of a local moment
and a conduction band. The form of the corresponding
effective dimensionless exchange coupling jeff , given by

jeff =
2Γ

π

[
1

Ṽc + U
− 1

Ṽc

]
, (S34)

is found by a Schrieffer-Wolff transformation. Evidently,
such KQD results can not be obtained without consider-
ing the role of interactions from the outset. In contrast,

for a QPC the origin of the exponential Ṽc-dependence

of B̃∗ is decidedly different and can be understood al-
ready for a noninteracting theory, as described above.
In particular, at high energies a QPC does not display
local-moment behavior, so that the corresponding loga-
rithmic infrared divergence characteristic of the Kondo
effect does not occur.
Having made this point, we hasten to add that B̃∗ is

of course affected by interactions for a QPC too, albeit
less severely than for a KQD. The role of interactions is
discussed in the next subsection.

B. Effects of interactions on B̃∗ and T̃∗

While the fact that the low-energy scales B̃∗, T̃∗ and

Ṽsd∗ for a QPC depend exponentially on gate voltage,

as eπ|Ṽc|/Ωx , has an elementary geometric origin, the be-
havior of the pre-exponential factor is more subtle: quite
generally this pre-exponential factor will depend on the

interaction strength U and gate voltage Ṽc. A detailed
theoretical analysis of this issue is beyond the scope of
the present paper. Here we just want to make two points,

the first regarding the ratio B̃∗/T̃∗, the second regarding

the U -dependence of B̃∗.
The ratio B̃∗/T̃∗: When interactions are turned on, the

effects of finite B̃ or finite T̃ are, in general, not equiva-

lent: Finite B̃ shifts the effective barrier height seen by
spin-up and spin-down electrons in opposite directions, in
a way that is enhanced by interactions (which amplifies
the imbalance between spin up and spin down), however
without opening up the possibility of inelastic scattering.

Finite T̃ causes an effective increase in barrier height, too,
due to an increase in density near the barrier center (be-
cause the LDOS is ω-asymmetric there), but it does not
involve any imbalance between spin-up and -down. More-

over, finite T̃ also leads to inelastic scattering. In lowest-
order perturbation theory for the self-energy (Sec. S-7),

shifts in barrier height (both B̃-induced, spin-asymmetric

and T̃ -induced, spin-symmetric shifts) are described by

the Hartree contribution, and T̃ -induced inelastic scat-
tering by the Fock contribution [see Eq. (S53)]. In gen-
eral, the relative strength of these two effects will depend
not only on U but also on gate voltage. Since the strength

of the (negative) conductance response to increasing B̃

or T̃ is characterized by 1/B̃∗ or 1/T̃∗, respectively, the
ratio B̃∗/T̃∗, too, will in general likewise depend not only

on U , but also directly on Ṽc.
In the light of the above comments, it is all the more

remarkable that the experimentally observed ratio B∗/T̃∗
does, in fact, become essentially independent of Vc in the
Vc-regime well below Vc0, where g → 1 (compare thin
grey and black lines in Fig. A2f). In the main article
we have already pointed out that this Vc-independence
of B∗/T∗ for g � 1 is characteristic of the Fermi-liquid
behavior expected from Nozières’ treatment of the Kondo
problem in the limit B, T � TK.
Once the condition g � 1 is relaxed, the experimentally

determined B∗/T∗ does acquire a dependence on Vc, in
accord with the expectations stated above. Indeed, in
Fig. A2f the measured ratio B∗/T∗ increases with in-

creasing Ṽc as B∗ and T∗ approach their minimal values.
Remarkably, our model qualitatively reproduces this be-
havior when we treat interactions using SOPT (compare

the lines for B̃∗ and T̃∗ in Fig. A2d). An increase in

B̃∗/T̃∗ means that the conductance reduction induced by

increasing T̃ grows relative to that induced by increas-

ing B̃, implying that inelastic scattering [Fock term, di-
agram c in Eq. (S53)] gains importance relative to the

B̃-induced enhancement of the barrier height [Hartree
terms, diagrams a and b in Eq. (S53)]. Moreover, Fig. S4

above shows that B̃∗/T̃∗ decreases with increasing U , im-
plying that in general interactions have a stronger effect

on the low-B̃ dependence of the conductance than on its

low-T̃ dependence.

U -dependence of B̃∗: We have used fRG to explore

in some more detail how interactions affect the Ṽc-
dependence of B̃∗ for a QPC. (Similar studies of T̃∗ are
not possible using static fRG, but would be worth pur-
suing by Keldysh fRG). As in Sec. S-5A above, we focus

on the regime g � 1 (say |Ṽc| � 0.75Ωx). Our results
for this regime can be summarized by stating that for

U small enough to be treatable by fRG, B̃∗ shows the
following behavior:

B̃∗(Ṽc, U) �
√
2Ωx

π
e−F (U)eπ|Ṽc|/Ωx , (S35a)

F (U) � (0.8± 0.05)U/
√

τΩx . (S35b)

The behavior of Eq. (S35a) is illustrated in Fig. S13a,

which shows ln(B̃∗) as function of |Ṽc|/Ωx for several

values of U : for |Ṽc|/Ωx � 0.75 the resulting lines all
have roughly the same slope, but are shifted downward
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Figure S13: Effect of interaction strength U on the low-

energy scale B̃∗, in the regime of negative Ṽc = −|Ṽc| (calcu-
lated for model I using static fRG). a, B̃∗/Ωx as function of

|Ṽc|/Ωx. Grey dashed lines indicate linear fits of ln(B̃∗) vs.

|Ṽc|/Ωx in the range 0.8 ≤ |Ṽc|/Ωx < 1, the offsets of which
yield F (U). b, The function F (U) vs. U for several choices
of Ωx, plotted in scaled fashion to illustrate the behavior of
Eq. (S35b).

in uniformly-spaced steps when U is increased in uni-

form steps. This implies that B̃∗ is exponentially sup-
pressed with increasing U (which also shifts the mini-

mum in B̃∗ towards more positive |Ṽc|-values). The func-
tion F (U) that characterizes the exponential suppression

can be obtained from the offsets of linear fits to ln(B̃∗)
vs. π|Ṽc|/Ωx, repeated for various U -value. The result-
ing function F (U), shown in Fig. S13b for several values
of the curvature Ωx, exhibits the behavior described by
Eq. (S35b) quite well: it increases linear with U , on a
scale set by

√
τΩx. This reflects the fact that in static

fRG, the dimensionless quantity that governs the effec-
tive interaction strength is UAj(0) (cf. Sec. S-6), and at
the barrier top we have [cf. Eq. (S19c) and Fig. S11]

UAj=0(0) ∝ U/
√

τΩx . (S36)

Paraphrasing Eq. (S35a), we can formulate the follow-

ing conclusions for how the Ṽc-dependence of B̃∗ in the

regime g � 1 is affected by turning on U : (i) The fac-

tor eπ|Ṽc|/Ωx from Eq. (S32) persists, essentially without

a change in the numerical prefactor π/Ωx of |Ṽc| in the
exponent. (ii) The pre-exponential factor decreases expo-
nentially with U , in a fashion that corresponds to shift-

ing Ṽc → Ṽc + ΩxF (U)/π. The physical interpretation
is that local interactions increase the Hartree potential
and hence the effective barrier height [causing (ii)], but
do not significantly change its effective curvature [result-
ing in (i)]. Of course, the latter statements are true only
approximately, in that Fig. S13 does exhibit slight devi-
ations between the actual data and the behavior stated
by Eqs. (S35).

Together, points (i) and (ii) suggest that for a QPC,

the qualitative effect of interactions on B̃∗ can already be
found by perturbatively calculating the Hartree potential.
We have done so, obtaining results (not shown here) in
qualitative agreement with those just discussed. A sim-
pler treatment of the same effects might be possible using
semiclassical WKB wave functions, as done in Ref. 6 in

a calculation of the Fock contribution to T̃∗, but this is
left as a topic for future study. (We remark that when

the calculation of T̃∗ in Ref. 6, extractable from their
Eq. (33), is specialized to a point-like interaction with

range zero, the result yields precisely the same eπ|Ṽc|/Ωx

dependence for T̃∗ as found by us in Eq. (S32) above.)

Note from Eq. (S35) that decreasing the curvature Ωx

at the top of the QPC barrier or increasing the interac-
tion strength U (e. g. using a top gate) have qualitatively

similar effects, in that both tend to decrease B̃∗ and

hence to strengthen the low-B̃ response of the conduc-
tance. Likewise, decreasing Ωx or increasing U also cause

similar changes in the conductance step at B̃ = T̃ = 0, in
that both tend to make the 0.7-shoulder more prominent.
This is illustrated in Fig. S14, whose panels b and c offer
a succinct summary of how the 0.7-anomaly depends on
geometry and interactions, respectively.

Since Ωx sets both the width of the conductance step

[Eq. (S31)] and the slope of ln(B̃∗) vs. |Ṽc| [Eq. (S35a)],
an experimental consistency check is possible: We have
determined the said step width and slope from Fig. A2e
and extracted Ωx-values from each, finding Ωstep

x � a ×
0.026 V from the step width and Ωslope

x � a × 0.048 V
from the slope (a � 37 meV/V is a geometric conversion
factor between applied gate voltage (in V) and the re-
sulting electrostatic potential energy (in meV), such that

Ṽc = −a Vc). The fact that Ω
step
x and Ωslope

x agree within
a factor of two is quite satisfactory, given the fact that we
made no attempt to realistically model the shape of the
QPC potential. Possible reasons for why the agreement
is not perfect are that the experimental QPC potential
was not perfectly parabolic, and that our use of a purely
on-site (instead of longer-range) interaction is an over-
simplification. (See also Sec. S-5C below.)

To conclude this subsection, let us emphasize once
more its most important qualitative conclusion: inter-
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Figure S14: Effect of barrier curvature Ωx (panels a,b) and interaction strength U (panel c) on the conductance through a
QPC (model I), calculated by static fRG. The inset to a shows the top of a parabolic QPC barrier for several values of the

curvature Ωx. a, In the absence of interactions (U = 0) the conductance curves g(Ṽc), calculated for different Ωx, all collapse

onto a single curve when plotted as function of Ṽc/Ωx, as expected from Eq. (S30). b, Similar plot as a, but for U �= 0, which

prevents a scaling collapse. c, Conductance curves g(Ṽc) calculated for fixed Ωx but several different values of U , and scaled as
in a and b. As explained in the main article, the combination of enhanced spectral weight at the Fermi energy Aj=0(0) and

interaction U lowers the conductance in the vicinity of Ṽc � 0, resulting in an asymmetric and broadened conductance step.
The strength of this effect is governed by the product UAj=0(0) ∝ U/

√
τΩx [cf. Eq. (S36)]. This increases with decreasing Ωx

at fixed U (panel b) or likewise with increasing U at fixed Ωx (panel c), causing an enhancement of the 0.7-shoulder in both
cases.

actions cause an exponential reduction in B̃∗, which can
thus be significantly smaller than the QPC’s natural en-
ergy scale Ωx. (In Fig. A2f, the smallest values reported
for µBB∗ and kBT∗ are 0.3 meV and 0.08 meV, respec-
tively, significantly smaller than the above estimates of
Ωstep

x � 1 meV.) While the detailed form of the func-
tion F (U) describing this suppression may be model-

dependent, we believe the strong suppression of B̃∗ with
increasing U to be generic. This is a crucial ingredient
for understanding the 0.7-anomaly, since it becomes more
pronounced the smaller this crossover scale.

C. Geometry-dependence of interaction U

It would be interesting to experimentally study the
interaction- and geometry dependence of B∗ more sys-
tematically, by using the side- and top-gate voltages Vs

and Vt to vary the effective barrier shape and interac-
tion strength. Of course numerous studies of the 0.7-
anomaly in varying geometries do exist4,8–10,12,30,31, but
to systematically check the predictions of Eq. (S35) for

B̃∗(Ṽc,Ωx, U), it would be necessary to simultaneously
monitor the Vt- and Vs-dependence of B∗(Vc), Ωx and
U . Indeed, whereas our model treats U as a fixed, given
constant, in reality the effective interaction strength is
geometry-dependent. We have already pointed out in
Sec. S-2A that it depends on the lateral confinement in
the QPC region; more specifically, the effective interac-
tion constant for a 1D model will depend on the spatial

extent, say ly, of the transverse wave-function, which,
in turn, can depend quite delicately on the amount of
screening, etc.
If no realistic modelling of the latter is available (we

have not attempted any), the evolution of interaction
strength with geometry is best gauged by tracking the
evolution of experimentally accessible quantities such as
gss and ∆hfo. To be specific, the conductance g(Vc, B, T )
could be measured for various settings of Vt and Vs. A
measure for the resulting changes in the effective interac-
tion strength U could be obtained from the transconduc-
tance dG/dVc at low T by monitoring the corresponding
changes in gss or ∆hfo (as in Fig. S5b, c). Simultaneously,
estimates for Ωx and ly could be extracted, respectively,
from the widths of the first step and first plateau of the
conductance curve at low T ; and B∗ and T∗ from the
low-energy B- and T -dependence of the conductance (as
in Figs. A2e, f). This would yield enough information
to check Eq. (S35) in detail. We leave such a study for
future work.

S-6. FUNCTIONAL RENORMALIZATION
GROUP

In this section and the next, we describe the de-
tails of the two theoretical approaches used here: The
present section is devoted to the functional renormal-

ization group (fRG) which we used to study the B̃-

dependent quantities at T̃ = Ṽsd = 0. Section S-7 out-
lines the second-order perturbation theory (SOPT) ap-
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proach which we used to explore the properties of our

model for fixed U at T̃ �= 0 or Ṽsd �= 0.
Both fRG and SOPT are set up as perturbation ex-

pansions with respect to a noninteracting ground state
that has zero magnetization in the absence of a magnetic
field, hence both yield perturbed ground states that also
have this property. The possibility of spontaneous break-
ing of spin symmetry is thus ruled out a priori within
both approaches. In choosing to set them up in this way,
we therefore make the physical assumption that sponta-
neous symmetry breaking need not be invoked to explain
the 0.7-anomaly. This assumption is justified a posteri-
ori by the agreement between our fRG results and our
experiments for the magnetic-field dependence of the 0.7-
anomaly (as discussed in detail in Sec. S-2C).
The present section summarizes the central ingredi-

ents of the fRG approach in the one-particle irreducible
version32 used here. The details of our approach, using
the Matsubara formalism, are very similar to those of
Refs. 33,34,40 and 41; technical aspects going beyond the
latter works will be presented in detail elsewhere36. The
main purpose here is to explicitly formulate the approx-
imations that we have employed for the translationally
nonuniform system with on-site interactions defined by
Eq. (A1) of the main text [or Eq. (S11)]. (For complete-
ness, we remark that the fRG approach described below
is also capable of dealing with the Kondo effect in a 1D-
model of a quantum dot, described by a double-barrier
potential. Corresponding results will be presented else-
where, in a comparative study of the Kondo effect and
the 0.7-anomaly.1)

A. Observables

Our goal is to calculate the conductance g through the
CCR and the average number njσ of spin-σ electrons at
site j, at zero temperature. Following Ref. 33,34, we
proceed in three steps. (i) We integrate out the two
semi-infinite, noninteracting leads to the left and right
of the CCR, using a standard projection technique; this
results in a bare Matsubara Green’s function for the
CCR, (G0)

σ
ji(iω), with a matrix structure in real space,

j, i ∈ [−N ′, N ′] being site indices. (ii) We incorporate in-
teractions in the CCR by using fRG to calculate the full
Matsubara Green’s function of the CCR, Gσ

ji(iω); this
step will be described in more detail in the next subsec-
tion. (iii) We calculate g and njσ at T = 0 using

g =
1

2

∑

σ

Tσ(0) , (S37)

Tσ(ω) =
∣∣2πτ2ρσ0 (ω)Gσ

−N ′,N ′(ω + i0+)
∣∣2 , (S38)

njσ = 〈n̂jσ〉T =

∫ ∞

−∞
dω f(ω)Ajσ(ω)

= T
∑

n

G(iωn) +
1

2
, (S39)

Ajσ(ω) = − 1

π
ImGσ

jj(ω + i0+) . (S40)

Here Tσ(ω) is the spin-dependent transmission probabil-
ity for a spin-σ electron incident with energy ω relative to
the chemical potential µ, and ρσ0 (ω) is the local density
of states at the first site of a semi-infinite noninteract-
ing tight-binding chain, representing a lead. For our fRG
calculations we have chosen µ = 0, implying half-filled
leads.

B. fRG strategy and approximations

fRG may be viewed as RG-enhanced perturbation the-
ory in the interaction. It is based on solving a hierarchy
of coupled ordinary differential equations, the flow equa-
tions, for the system’s n-particle vertex functions, γΛ

n .
The flow parameter Λ controls the RG flow from an ini-
tial cutoff Λi, at which all vertex functions are known and
simple, to a final cutoff Λf , at which the full theory is
recovered. Solving the full hierarchy of flow equations,
however, is impossible in practice and simplifying ap-
proximations are needed to render them tractable. When
setting up our flow equations, we make two technical ap-
proximations, which are both exact to second order in
the interaction U . We briefly summarize them here, and
provide more details in the subsequent technical discus-
sions.
(i) We truncate the fRG hierarchy by setting γΛ

n≥3 = 0.

This standard approximation32 offers a systematic way
of summing up parquet-type diagrams (i. e. diagrams
that result from coupled RPA-equations)32 for the two-
particle vertex. However, due to the neglect of higher
order terms, it fails if the interaction becomes too large
(on a scale set by the local density of states at the chem-
ical potential).
(ii) We apply the coupled-ladder approximation40,41 to

treat the frequency dependence of the vertex, and extend
this scheme to also treat the real space structure of the
vertex. The coupled-ladder approximation sets to zero all
components of the vertex except those that are generated
already to second order in the bare (onsite) interaction,
but retains the latter components throughout the flow.

C. fRG Flow equations

We introduce Λ as an infrared cut-off in the bare Mat-
subara propagator,

GΛ
0 (iω) = ΘT (|ω| − Λ)G0(iω) , Λi = ∞, Λf = 0 , (S41)

where ΘT is a step function that is broadened on the
scale of the temperature T (we discuss the limit T =
0 in Sec. S-6E below). The fRG approach in the one-
particle irreducible version then leads to the following
set of equations. (For a derivation, see e. g. Refs. 32,37;
very detailed discussions are given e. g. in Refs. 33,38, for
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a diagrammatic derivation see Ref. 39.) The flow of the
self-energy ΣΛ = −γΛ

1 is given by

d

dΛ
γΛ
1 (q

′
1, q1) = T

∑

q′2,q2

SΛ
q2,q

′
2
γΛ
2 (q

′
2, q

′
1; q2, q1) ,

(S42a)

=11

11

d
dΛ

. (S42b)

Here SΛ is defined in terms of the scale-dependent full
propagator GΛ,

SΛ = GΛ∂Λ

[
GΛ
0

]−1 GΛ = , (S43a)

GΛ =
[ [

GΛ
0

]−1 − ΣΛ
]−1

= , (S43b)

and γΛ
2 is the two-particle irreducible vertex.

The flow of the latter can be arranged into three contributions (or parquet channels),

d

dΛ
γΛ
2 =

d

dΛ
(γΛ

p + γΛ
x + γΛ

d ) , (S44)

1

2

1

2

1 1

22

1 1

22

1 1

2 2

= + −d
dΛ

(S45)

called the particle-particle channel (P), and the exchange (X) and direct (D) contributions to the particle-hole channel,
respectively, with the following explicit forms:

d

dΛ
γΛ
p (q

′
1, q

′
2; q1, q2) = T

∑

q′3,q3,q
′
4,q4

γΛ
2 (q

′
1, q

′
2; q3, q4)SΛ

q3,q
′
3
GΛ
q4,q

′
4
γΛ
2 (q

′
3, q

′
4; q1, q2), (S46a)

d

dΛ
γΛ
x (q

′
1, q

′
2; q1, q2) = T

∑

q′3,q3,q
′
4,q4

γΛ
2 (q

′
1, q

′
4; q3, q2)

[
SΛ
q3,q

′
3
GΛ
q4,q

′
4
+ GΛ

q3,q
′
3
SΛ
q4,q

′
4

]
γΛ
2 (q

′
3, q

′
2; q1, q4) , (S46b)

d

dΛ
γΛ
d (q

′
1, q

′
2; q1, q2) = −T

∑

q′3,q3,q
′
4,q4

γΛ
2 (q

′
1, q

′
3; q1, q4)

[
SΛ
q4,q

′
4
GΛ
q3,q

′
3
+ GΛ

q4,q
′
4
SΛ
q3,q

′
3

]
γΛ
2 (q

′
4, q

′
2; q3, q2) . (S46c)

All higher order vertices γn≥3 have been set to zero.
For the purpose of treating the inhomogeneous chain
model of Eq. (S11), the quantum numbers qi denote a
composite index of site, spin and Matsubara-frequency,
q1 = (j1, σ1, iω

1
n), etc.

D. fRG for non-uniform systems

A standard strategy for getting an initial impression of
the system’s behavior is to neglect the flow of the two-
particle vertex completely. For the present model, the
results so obtained36 turn out to be similar to those ob-
tained from SOPT – they capture the effects of interac-
tions quite well qualitatively, but not quantitatively. To
allow quantitative comparisons to experiment, we have
therefore included the flow of the two-particle vertex for

all fRG results shown in this work. We now describe how
this was done.
Since the bare propagators are not site-diagonal, the

number of independent variables needed to describe
the vertex γΛ

2 (q
′
1, q

′
2; q1, q2) generated by Eq. (S46) is

very large, O(N4N3
f ) (Nf is the number of Matsubara-

frequencies used in the numerics). To deal with this com-
plication we use the coupled-ladder approximation40,41

for the frequency dependence of γΛ
2 and treat its site-

dependence in a similar manner. Given the structure of
the flow equation (S46) for γΛ

2 , it is natural to divide the
flowing vertex into four parts41:

γΛ
2 = v+γΛ

p +γΛ
x +γΛ

d , γΛi
p = γΛi

x = γΛi

d = 0 . (S47)

Here v is the bare vertex, and γp
2 , γx

2 and γd
2 , whose flows

by definition are given by Eqs. (S46a), (S46b) and (S46c),
sum up the P-, X- and D-channels, respectively (see Sec.
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S-6C).
Now, since the bare vertex is site-diagonal, only

O(N2Nf) of the O(N4N3
f ) different components in each

channel are generated already to order v2 [i. e. if, at the
beginning of the flow, γΛ

2 is replaced by v on the r. h. s.
of Eq. (S46)]. We exploit this fact by making the follow-
ing simplifying approximation in the spatial structure of
γ2: in each channel we set to zero all components except
those that are generated already to order v2, but retain
the latter components throughout the flow. The dropped
components are all of order v3 or higher, which justifies
their neglect as long as Uj is not too large. Further-
more we only keep the intrinsic frequency dependence of

each channel (i. e. the frequency-dependence generated
to 2nd order). Each channel thus depends only on a sin-
gle bosonic frequency, denoted by Π, X and ∆ for the P-,
X- and D-channels, respectively. The feed-back into the
other channels is performed using only the static part of
each channel, i. e. its value evaluated at zero frequency41.
By exploiting various symmetry relations, the retained
components of γΛ

2 can be parametrized in terms of four

frequency-dependent matrices, PΛ
ij (Π), XΛ

ij(X), D↑Λ
ij (∆)

and D↓Λ
ij (∆), defined as follows (and shown together with

the diagrams that generate them to lowest order):

PΛ
ji(Π) : = γΛ

p (jσΠ−ω′
n, jσ̄ ω′

n; iσΠ−ωn, iσ̄ ωn) = −γΛ
p (jσΠ−ω′

n, jσ̄ ω′
n; iσ̄Π−ωn, iσ ωn) , (S48a)

O(v2)�
jσ

jσ̄

iσ

iσ̄

σ

σ̄

Π−ωn

ωn

Π−ωn

ωn

Π−ωn

ωn

= −
jσ

jσ̄

iσ

iσ

σ

σ̄

Π−ωn

ωn

Π−ωn

ωn

Π−ωn

ωn

¯
,

XΛ
ji(X) : = γΛ

x (jσX+ω′
n, iσ̄ ωn; iσX+ωn, jσ̄ ω′

n) = −γΛ
d (jσX+ω′

n, iσ̄ ωn; jσ̄ ω′
n, iσX+ωn) , (S48b)

O(v2)�
jσ

jσ̄

iσ

iσ̄

σ

σ̄

X+ ωn

ωn

X+ ωn

ωn

X+ ωn

ωn

= −

jσ

iσ̄

jσ̄

iσ

σ̄ σ

X+ ωn ωn

X+ ωnωn

X+ ωnωn ,

DσΛ
ji (∆) : = γΛ

d (jσ∆+ω′
n, iσ ωn; jσ ω′

n, iσ∆+ ωn) = −γΛ
x (jσ∆+ω′

n, iσ ωn; iσ∆+ ωn, jσω′
n) , (S48c)

O(v2)�

jσ

iσ

σ̄ σ̄

jσ

iσ

∆+ ωn

ωn

ωn

∆+ ωn

∆+ ωnωn = −
jσ

iσ
σ̄

σ̄

jσ

iσ

∆+ ωn

ωn

∆+ ωn

ωn

∆+ ωn

ωn

.

Note that these diagrams do not depend on ωn and
ω′
n; this is the reason why the coupled-ladder approxi-

mation allows each channel to be parametrized by just
a single frequency. A detailed analysis of the flow of
PΛ
ij , XΛ

ij and DσΛ
ij , to be published elsewhere36, shows

that the exchange channel XΛ
ij , which grows significantly

during the flow, is the dominant one. This lends a
posteriori support to an assertion made in numerous
works4,7–9,12,14,20–22,30,31,42, namely that exchange inter-
actions in the low-density inner region of the QPC play
a dominant role for the 0.7-anomaly.

The parameter controlling the convergence of the fRG
equations is U · maxṼc,j

[Aj(0)]; if it is too large, these

equations do not converge. For a QPC, the maximum
value of the bare LDOS A0

j (0) scales as 1/
√

τΩx (see
Sec. S-4C).

E. Zero-temperature limit

The fRG flow equations discussed above apply to an
arbitrary temperature T . However, the conductance at
T �= 0 depends on the retarded correlator GR(ω) =
G(iωn → ω + i0+) as well as the retarded parts of the
vertex channels (e.g. P (iΠn → Π + i0+)), which have
to be obtained by analytic continuation from the imag-
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inary to the real frequency axis. In numerical practice,
this analytical continuation turned out to be unfeasible
for the present problem. Therefore, we have here studied
only the T = 0 limit, in which the Matsubara frequencies
form a continuum and the conductance [Eq. (S37)] is ex-
pressed in terms of the zero-energy transmission Tσ(0).
For numerical computations, we represented the contin-
uum of Matsubara frequencies by a discrete set, and
used its smallest positive member to evaluate the Mat-
subara Green’s function Gσ

−N ′,N ′(i0+) needed for Tσ(0)
[Eq. (S38)].
In the limit T → 0, the cut-off function ΘT in Eq. (S41)

becomes a sharp step function, with Θ0(0) = 1
2 and

∂ωΘ0(ω) = δ(ω). Since a combination of δ- and Θ-
functions occurs in the fRG flow equations, the limit
T → 0 has to be taken with care, with the result40:

SΛ(iω)
T=0
= δ(|ω| − Λ)G̃Λ(iω), (S49a)

G̃Λ(iω) =
[
[G0(iω)]

−1 − ΣΛ(iω)
]−1

, (S49b)

SΛ
i,j(iω)GΛ

k,l(iω
′)

T=0
= δ(|ω| − Λ)G̃Λ

i,j(iω) (S49c)

×Θ(|ω′| − Λ)G̃Λ
k,l(iω

′).

F. Static fRG

Most of our exploratory work on the zero-temperature
properties of the 0.7-anomaly was done using “static”
fRG (here denoted by fRG0). It entails a further ap-
proximation relative to the “dynamic” fRG approach de-
scribed above (here denoted by fRGω), in that fRG0 ne-
glects the frequency dependence of the self-energy and
all vertices. This is done by setting all three bosonic fre-
quencies Π, X and ∆ to zero. As a result the self-energy
is frequency-independent, too. fRG0 leads to reliable
results only for the zero-frequency Green’s function at
zero temperature. If knowing the latter suffices (such as

when studying the magnetic field-dependence at T̃ = 0),
fRG0 is a very flexible and efficient tool, computationally
cheaper than our full coupled-ladder scheme fRGω by a
factor of 103. Moreover, for the model studied here its
results turn out to be qualitatively very similar to those
of fRGω. This is illustrated in Fig. S15, from which we
note the following salient features.
The main difference in the conductance curves cal-

culated by the two methods is an overall interaction-
induced, U -dependent shift of the position of the fRG0

conductance step w. r. t. to that of fRGω, towards some-

what smaller values of Ṽc (compare Figs. S15a,b); how-
ever the shapes of the corresponding curves (modulo the
shift) are essentially identical (Fig. S15c). The shift itself
merely amounts to a small change in overall chemical po-
tential and can be regarded as an insignificant detail, in
particular in the context of the 0.7-anomaly, where both
in theoretical and experimental studies, the focus is on
the shape of the step, not its position.
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Figure S15: Comparison of results from static fRG (fRG0, top
panels) and dynamic fRG (fRGω, middle panels, reproduced
from Figs. A1k and A2a, respectively). The bottom panels
show that after compensating for a U -dependent shift (here
applied to the fRGω curves to get best overlap with the fRG0

curves) both sets of curves have almost identical shapes. Left

panels: The interaction dependence of the conductance g(Ṽc)

at B̃ = T̃ = 0. Right panels: The magnetic-field dependence

of the T̃ = 0 conductance g(Ṽc) at fixed U = 0.5τ .

Closer inspection reveals that the magnetic field de-
pendence (at fixed U) of the fRG0 conductance curves is
slightly stronger for small fields and slightly weaker for
large fields, compared to that of fRGω (see Figs. S15d-
f). This implies small quantitative differences in the low-

energy scale B̃∗ and the effective g-factor gss.

All in all, for the purposes of exploring the field-
dependence of the 0.7-anomaly at fixed U , the differ-
ences in results between fRGω and fRG0 are evidently
very small. Hence we have opted to use the computa-
tionally much cheaper fRG0 for the results presented in
Secs. S-3 and S-5.
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S-7. SECOND-ORDER PERTURBATION
THEORY

The main limitation of our calculations using static
fRG is their restriction to ω = 0 and hence to zero tem-
perature and zero source-drain voltage. As a first step to-

ward exploring the properties of our model at T̃ �= 0 and

Ṽsd �= 0, we have calculated the conductance of a QPC
using second-order perturbation theory (SOPT), applied
to model II (see Supplementary Sec. S-4D). Sec. S-7A
presents the diagrams used for this purpose, and Sec. S-
7B discusses how we treat non-equilibrium transport us-
ing Keldysh-SOPT. Sec. S-7C elaborates the main arti-

cle’s discussion of the SOPT results for the B̃-, T̃ - and

Ṽsd-dependence of the conductance, which are in fairly
good qualitative agreement with experiment. Sec. S-7D
concludes with some comments regarding an SOPT arte-
fact that arises with increasing U .

A. Equilibrium SOPT

We follow the strategy of Oguri43, who has carried out
a similar calculation for a particle-hole symmetric version
of our model (with N ≤ 4) at zero field. It is straight-
forward to generalize his equations to the case of present
interest, with broken particle-hole symmetry and nonzero
field. The conductance is calculated from

g =
1

2

∑

σ

∫ ∞

−∞
dω

[
−∂f(ω)

∂ω

]
Tσ(ω) . (S50)

where Tσ(ω) is calculated using Oguri’s43 equations
(2.36-38) and (4.10). They can be graphically depicted
as

ω

ω
ω ω

ω

(S51)

σ̄,ε2

σ̄,ε2

σ̄,ε1

iσ,

jσ,

σ
ε2−ε1+±N

Γσ̄
R/L

+

P
σ,R/L
ji ( ) =

iσ,

jσ,

±N

= σ̄,ε2

σ̄,ε1

σ̄,ε1

iσ,

jσ,

σ
ε2−ε1+±N

Γσ̄
R/L

σ̄,ε2

σ,ε1

σ,ε1

iσ,

jσ,

σ̄
ε2−ε1+±N

Γσ
R/L

+

ω

ω

ω

ω

ω ω

ω

ω

ω

ω ω

ω

(S52)
where large black dots depict the bare interaction vertex,
small black dots the coupling Γσ

R/L(ε) to the reservoirs,

and the double lines represent the retarded interacting

Green’s function GR = [(G0R)−1 −ΣR]−1. Its self-energy
ΣR is calculated to second order using the following dia-
grams:

jσ iσ
jσ

iσjσ
iσ

Σσ
j i( ) = δij + δij +

σ̄ε1

σ̄ε1σ̄ε1

σε2

σ̄ε1

σ̄ε2

σ(ε2 − ε1 + )

ω

ωω ωω
ω ω

ω

a b c

(S53)
Diagram c corresponds to Oguri’s43 Fig. 6, which repre-
sent the Fock contribution. Our treatment differs from
Oguri’s only regarding the Hartree diagrams a and b.
Whereas he incorporates their effects in an implicit man-
ner by exploiting particle-hole symmetry, this symme-
try is not present in our problem, hence we include the
Hartree diagrams explicitly in the self-energy.
The diagrams in Eqs. (S52) and (S53) involve Matsub-

ara frequencies; they have to be analytically continued to
real frequencies before being used in Eq. (S51) for Tσ(ω),
as discussed in detail by Oguri. The resulting formulas,
obtained by generalizing Oguri’s43 equations [his (4.2),
(4.3) for the Fock diagram, and (4.10) for the current
vertex] to the spin-dependent case of non-zero field, will
be presented elsewhere36.

In the main article, the transmission probability is
written as

Tσ(ω) = T el
σ (ω) + T in

σ (ω), (S54)

where T el
σ (ω) and T in

σ (ω), given by the first and second
terms of Eq. (S51), describe the elastic and inelastic con-
tributions to the transmission probability, respectively.
They are related by a generalized Ward identity that
is respected within the approximation scheme described
above (Eq. (3.120) in Ref. 43):

− ImΣσ,R
ji (ω) =

∑

α=L/R

Pσ,α
ji (ω) . (S55)

This relation links the current vertex to the inelastic de-
cay rate, governed by the imaginary part of the self-
energy. An increase in the contribution of the current
vertex, therefore, goes hand in hand with an increase in
inelastic scattering.
SOPT calculations turn out to be computationally sig-

nificantly more costly than fRG calculations. Therefore,
all our SOPT calculations were done using model II,
which has some computational advantages over model
I, as explained in Supplementary Sec. S-4D.

B. Nonequilibrium SOPT

In order to calculate the differential conductance

gnl =
dI

dṼsd

(S56)
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at finite bias voltage (Ṽsd �= 0) we use the Meir-Wingren
formula for the current through a region of interacting
electrons44:

I =
ie

2h

∫
dε
(
Tr{[fLΓL − fRΓ

R](GR − GA)}

+Tr{[ΓL − ΓR]G<}
)
, (S57)

with G< = 1
2

(
GK − GR + GA

)
. The finite bias Ṽsd enters

via the occupation functions of the left and right lead:

fR/L(ω) = f(ω ∓ Ṽsd/2). (S58)

The retarded, advanced and Keldysh Green’s functions
GR/A/K are given by Dyson equations:

GR/A =
1

(GR/A)−1 − ΣR/A
.

GK = GR[(GR)−1GK(GA)−1 +ΣK ]GA, (S59)

The non-equilibrium retarded, advanced and Keldysh
self-energies occurring herein, ΣR/A/K , are calculated to
second order in the interaction, using standard Keldysh
techniques. The corresponding diagrams are again given
by Eq. (S53), but now feature an additional Keldysh in-
dex.

C. B̃-, T̃ - , and Ṽsd-dependence of g(Ṽc)

In this section, we give a detailed discussion of the

SOPT results presented in the main text for the B̃-, T̃ -

and Ṽsd-dependence of the conductance g(Ṽc). In partic-
ular, we analyse their similarities and differences w. r. t.
our fRG results and experimental measurements.
Dependence on magnetic field at zero temperature:

To gauge the reliability of SOPT, we begin by com-
paring its results for the magnetic field dependence
of the conductance (Fig. A2c) to those obtained from
fRG (Fig. A2a) and from experimental measurements
(Fig. A2e). Though some details differ, the qualitative
agreement is very good. It includes, in particular, the
following two important features: (i) The conductance

g(Ṽc) is strongly suppressed with increasing B̃ for Ṽc < 0,
leading to the evolution of a kink around 0.5 (thick red

line in Fig. A2c). (ii) ln(B̃∗) increases nearly linearly

with decreasing Ṽc in the regime where g → 1 (thin grey
line in Fig. A2c); in fact, even the slope of the linear
increase is nearly the same as that found by fRG (grey
line in Fig. A2a). This remarkable agreement between

SOPT and fRG for the Ṽc-dependence of B̃∗ implies that
the latter is determined mainly by geometry (corrobo-
rating a similar conclusion from Sec. S-5), i. e. interac-
tions, which are underestimated in SOPT, influence the

Ṽc-dependence only weakly.
As an aside, we note that both of the above-mentioned

features (i) and (ii) survive45 (data not shown) even if

0.50
0

0

0.2

0.4

0.6

0.8

1

–0.5 –0.5

g n
l

N = 101, Ωx = 0.04τ, B = T = 0
~ ~

U = 0 SOPT ( U = 0.35τ )

0.5
0

0.2

0.4

0.6

0.8

1

g
nl

Vsd[Ωx]
~

Vsd[Ωx]
~

Figure S16: Differential conductance for model II at B̃ =

T̃ = 0, plotted as a function of bias voltage for several Ṽc-
values, calculated a without and b with interactions, the lat-
ter treated using second order perturbation theory (SOPT)
(see Sec. S-7B).

SOPT is simplified by neglecting the Fock contribution
to the self-energy [diagram c of Eq. (S53)], retaining only
the first- and second-order Hartree terms [diagrams a and

b of Eq. (S53)]. Thus, the B̃-dependence is dominated
by Hartree terms (describing shifts in the barrier heights
for spin-up vs. spin-down electrons), rather than Fock
terms (describing inelastic scattering, which is relevant
only at finite temperatures and finite bias voltage). This
conclusion is consistent with the fact that the approach
of Lunde et al., Ref. 6, which properly incorporated the
(model) system’s geometry-dependence by using WKB
wave functions, is nevertheless unable to reproduce the

energy scale B̃∗ from the magnetic field dependence as
long as only Fock-like diagrams are considered46.

Next, we mention an important instance in which
SOPT fails to agree with experimental and fRG results
for the conductance (compare Fig. A2c to Fig. A2e and
Fig. A2a): SOPT does not yield the 0.7-shoulder in the

conductance at T̃ = B̃ = 0. (A shoulder does develop
for larger U (� 0.5τ), for which, however, SOPT can no
longer be trusted.)
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To summarize: SOPT correctly captures several im-
portant features of the field dependence of the conduc-
tance at zero temperature, but not all details. The same
turns out to be true for the temperature dependence at
zero field, as we discuss next:

Dependence on temperature at zero magnetic field:
Fig. A2d presents SOPT results for the temperature-
dependence of the conductance at zero field. Compar-
ing these to the corresponding experimental results of
Fig. A2f, we note that SOPT correctly reproduces the
main effect of increasing temperature, namely to reduce
the conductance. However, SOPT does not fully succeed
in reproducing the detailed shape of the experimental
pinch-off curves: the SOPT curves lack the tendency of
the experimental curves to show a well-defined shoulder
that is amplified by increasing temperature.

Dependence on bias voltage: Fig. S16a shows the bare
(U = 0) differential conductance g0nl as a function of

bias voltage Ṽsd for several Ṽc-values ranging from the
open channel (g � 1) to the pinched-off regime (g � 0).
The bare conductance can easily be calculated from the
Landauer-Büttiker formula (S25), using Büttiker’s for-

mula (S30) for the transmission. The resulting g0nl(Ṽsd)
exhibits a zero bias peak (ZBP) for linear conductance

g > 0.5 (Ṽc < 0), and a zero bias minimum in the tun-

neling regime, where Ṽc > 0 and g < 0.5.

Turning on interaction (see Fig. A3i, as well as
Fig. S16b) causes the following effects on gnl: First, a
ZBP forms even when the linear conductance is g < 0.5,
and second, the width of the ZBP is reduced across the

whole Ṽc-range. These two interaction-induced charac-
teristics can be understood in terms of two main mech-
anisms: (i) Applying finite bias generates a net charge
flow into the barrier region (since there the LDOS is ω-
asymmetric around ω = 0), thereby enhancing the effec-
tive barrier height for electrons entering the CCR. For
sufficiently large interaction this leads to a reduction of

conductance (Hartree effect). (ii) Turning on Ṽsd opens
phase space for inelastic scattering. Consequently the
combination of a large LDOS in the vicinity of the clas-
sical turning points (where ωmin

j � 0), interactions, and

Ṽsd > 0, leads to a high probability for backscattering,
hence a reduction of conductance. We note that both
mechanisms (i) and (ii) also apply when the temperature
is increased; in this sense, the temperature- and bias-
dependencies of the 0.7-anomaly are manifestations of
the similar physical processes.

We take the SOPT results shown in Fig. A2d and
Figs. A3b,d-f as encouraging indications that our model
has the potential to properly describe properties of the
0.7-anomaly at finite temperature and bias. To summa-
rize: the anomalous conductance decrease with increas-
ing T̃ or Ṽsd in the sub-open regime originates from the
enhancement, by the van Hove ridge apex near µ, of the

T̃ - or Ṽsd-induced increase of (i) the net charge and (ii)
the amount of inelastic scattering in the CCR.
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Figure S17: SOPT results (solid lines) for the conductance

g(Ṽc) as function of Ṽc, illustrating the qualitative changes
incurred when interactions are increased from being weak
(left panels) to rather strong (right panels, reproduced from

Figs. A2c,d). Panels (a,b) show the B̃-dependence of the

conductance at T̃ = 0, panels (c,d) show its T̃ -dependence at

B̃ = 0. Dashed lines show corresponding curves for the bare

U = 0 conductance, g0(Ṽc).
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Figure S18: The zero-temperature linear conductance g(Ṽc)

as function of Ṽc, for several values of U , calculated a, using
pure SOPT, and b, using a self-consistent Hartree approach
(without Fock contributions). The non-monotonic behavior

of g(Ṽc) as function of increasing U seen in a is an SOPT
artefact, caused by the neglect of terms beyond 2nd order; this
artefact is avoided by the self-consistent Hartree approach, as
seen in b.

D. SOPT artefact arising for increasing U

We conclude with some comments on the choice of
interaction strength used for our SOPT calculations.

Fig. S17 compares the SOPT results for the B̃- and T̃ -

dependence of g(Ṽc) calculated at U = 0 (left panels,
dashed lines), U = 0.1τ (left panels, solid lines) and
U = 0.35τ (right panels, solid lines). The left pan-
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els show that upon turning on a weak interaction (solid

lines), the conductance g at fixed values of Ṽc, B̃ and

T̃ is shifted slightly downward due to the increase of the
Hartree barrier, leading to a slight skewing of the shape of
the conductance step relative to the corresponding non-

interacting value g0(Ṽc) (dashed lines). However, signif-
icantly larger values of U are needed (right panels) to
yield the strong type of skewing characteristic for mea-
sured conductance curves that exhibit the 0.7-anomaly.
Note that due to this large choice of U in the right pan-

els, the SOPT conductance curve g(Ṽc) at B̃ = T̃ = 0
(solid black) has been shifted upwards to actually lie
above its non-interacting value (dashed black). This

non-monotonic behavior of g(Ṽc) for increasing U (the
shift being initially downwards, then upwards, illustrated
clearly in Fig. S18a) is an artefact of SOPT’s neglect of
terms beyond 2nd order: the signs (+ or −) of Hartree
contributions are known to alternate with the order of
expansion, hence truncating the latter beyond 2nd order
generates non-monotonic behavior for the shift with in-
creasing U once the 2nd-order term becomes larger than
the 1st-order term. (fRG avoids this problem by sum-
ming up, in effect, a series of diagrams to all orders, re-

sulting in a monotonic dependence of g(Ṽc) on U , see
Fig. A1k.)
We emphasize that this SOPT artefact is problematic

only if one is interested in following the evolution of phys-
ical properties with increasing U (examples of such evo-

lution, calculated by fRG, are shown in Figs. A1e,j,k).
However, for the purpose of studying physical properties
at fixed U , SOPT does quite well: it succeeds in quali-
tatively illustrating the generic, experimentally observed

trends of how interactions affect the B̃-, T̃ -, and Ṽsd-
dependence of the conductance even if the (fixed) value
of U is rather large, because the physical origin of these
trends is robust. A detailed discussion of this point will
be published elsewhere.

Finally, we note that the above-mentioned artefact can
be avoided by adopting an approach similar in spirit to
SOPT, but using a self-consistently-determined Hartree
potential (thus treating Hartree and Fock terms on un-

equal footing): For T̃ = Ṽsd = 0, calculate the self-energy
from just the first-order Hartree diagram Eq. (S53)a to
obtain a Hartree-shifted local potential Ejσ +Ujnjσ, de-
termine the local charge njσ self-consistently, and calcu-
late the QPC transmission using Hartree-dressed Green’s
functions (see Fig. S18b).

For nonzero T̃ or Ṽsd, use Hartree-dressed (instead of
bare) Green’s functions for all thin lines in the SOPT
Eqs. (S51) to Eq. (S53), but include only the Fock di-
agram in the latter, to avoid double-counting Hartree
contributions. The Ward identity [Eq. (S55)] relating
the current vertex to the self-energy would remain intact
in this approach. Pursuing it in detail is left as a topic
for future study.
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5 Büttiker, M. Quantized transmission of a saddle-point con-
striction. Phys. Rev. B 41, 7906(R) (1990).

6 Lunde, A. M., De Martino, A., Schulz, A., Egger, R.,
and Flensberg, K., Electron-electron interaction effects in
quantum point contacts. New J. Phys. 11, 023031 (2009).

7 Thomas, K. J., Nicholls, J. T., Simmons, M. Y., Pepper,
M., Mace, D. R. Possible Spin Polarization in a One-
Dimensional Electron Gas. Phys. Rev. Lett. 77, 135-138
(1996).

8 Thomas, K. J., Nicholls, J. T., Appleyard, N. J., Simmons,
M. Y., Pepper, M., Mace, D. R., Tribe, W. R., & Ritchie,
D. A. Interaction effects in a one-dimensional constriction.

Phys. Rev. B 58, 4846-4852 (1998).
9 Koop, E., Lerescu, A., Liu, J., van Wees, B., Reuter, D.,
Wieck A.D. & van der Wal, C. The Influence of Device
Geometry on Many-Body Effects in Quantum Point Con-
tacts: Signatures of the 0.7 Anomaly, Exchange and Kondo
J. Supercond. Nov. Magn. 20, 433-441 (2007).

10 Burke A. M., Klochan O., Farrer I., Ritchie D. A., Hamil-
ton A. R. & Micolich A. P. Extreme Sensitivity of the Spin-
Splitting and 0.7 Anomaly to Confining Potential in One-
Dimensional Nanoelectronic Devices. Nano Letters, Article
ASAP, DOI: 10.1021/nl301566d (2012).

11 Patel, N. K., Nicholls, J. T., Martn-Moreno, L., Pepper,
M., Frost, J. E. F., Ritchie, D. A. & Jones, G. A. C. Prop-
erties of a ballistic quasi-one-dimensional constriction in a
parallel high magnetic field. Phys. Rev. B 44, 10973-10975
(1991).

12 Reilly, D. J., Buehler, T. M., O’Brien, J. L., Hamilton, A.
R., Dzurak, A. S., Clark, R. G., Kane, B. E., Pfeiffer, L.
N. & West, K. W. Density-Dependent Spin Polarization in
Ultra-Low-Disorder Quantum Wires. Phys. Rev. Lett. 89,
246801 (2002).

13 DiCarlo, L., Zhang, Y., McClure, D. T., Reilly, D. J., Mar-
cus, C. M., Pfeiffer, L. N. & West, K. W. Shot-Noise Signa-
tures of 0.7 Structure and Spin in a Quantum Point Con-
tact. Phys. Rev. Lett., 97, 036810 (2006).

14 Smith, L. W., Hamilton, A. R., Thomas, K. J., Pepper,
M., Farrer, I., Griffths, J. P., Jones, G. A. C. &Ritchie, D.
A. Compressibility measurements of quasi-one-dimensional

120 5. Microscopic origin of the 0.7 anomaly – Publication



W W W. N A T U R E . C O M / N A T U R E  |  2 9

SUPPLEMENTARY INFORMATION RESEARCH
29

quantum wires Phys. Rev. Lett. 107, 126801 (2011).
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Schollwöck, U. Functional renormalization group for Lut-
tinger liquids with impurities. Phys. Rev. B 70, 075102
(2004).

38 Bauer, F. 0.7 Anomaly of Quantum Point Contacts: Treat-
ment of Interactions with Functional Renormalization
Group. Diploma thesis, LMU Munich (2008).

39 Jakobs, S. G., Meden, V. & Schoeller, H. Nonequilibrium
Functional Renormalization Group for Interacting Quan-
tum Systems. Phys. Rev. Lett. 99, 150603 (2007).

40 Karrasch, C., Hedden, R., Peters, R., Pruschke, T.,
Schönhammer, K. & Meden, V. A finite-frequency func-
tional RG approach to the single impurity Anderson
model. J. Phys.: Condensed Matter, 20, 345205 (2008).

41 Jakobs, S. G., Pletyukhov, M. & Schoeller, H. Nonequi-
librium functional RG with frequency dependent vertex
function - a study of the single impurity Anderson model.
Phys. Rev. B, 81, 195109 (2010).

42 Wang, C.-K. & Berggren, K.-F. Spin splitting of subbands
in quasi-one-dimensional electron quantum channels. Phys.
Rev. B 54, R14257-14260 (1996).

43 Oguri, A. Transmission Probability for Interacting Elec-
trons Connected to Reservoirs. J. Phys. Soc. Jap. 70, 2666
(2001).

44 Y. Meir & N. S. Wingreen. Landauer formula for the cur-
rent through an interacting electron region. Phys. Rev.
Lett. 68, 2512-2515 (1992).

45 Bruognolo, B. Störungstheoretische Analyse der Magnet-
feldabhängigkeit der 0.7 Anomalie in Quantenpunktkon-
takten. Bachelor Thesis, LMU Munich (2011).

46 Gangkofner, D. WKB-Calculations on the 0.7-
Conductance Anomaly of Quantum Point Contacts.
Bachelor Thesis, LMU Munich (2010).

121



122 5. Microscopic origin of the 0.7 anomaly – Publication



Chapter 6

The 0.7 Anomaly in the Presence of
Spin Orbit Interactions – Publication

Until now we mainly explained and reproduced data that has already been measured. A crucial
test for every theory is the prediction of new phenomena, which then can be tested experimen-
tally. In this section we present such a prediction, namely the influence of spin orbit interaction
(SOI) on the shape of the conductance curve at finite magnetic field depending on the relative
direction of SOI and magnetic file. This section contains a draft of a paper to be submitted to
Physical Review Letters (Goulko et al., 2014).
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Effect of Spin-Orbit Interactions on the 0.7 Anomaly in Quantum Point Contacts
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We study how the conductance of a quantum point contact is affected by spin-orbit interactions, for
systems at zero temperature both with and without electron-electron interactions. In the presence of
spin-orbit coupling, tuning the strength and direction of an external magnetic field can change the
dispersion relation and hence the local density of states in the point contact region. This modifies the effect
of electron-electron interactions, implying striking changes in the shape of the 0.7-anomaly and introducing
additional distinctive features in the first conductance step.

DOI: 10.1103/PhysRevLett.113.266402 PACS numbers: 71.70.Ej, 73.40.-c

Spin-orbit interactions (SOI) play an important role
in a variety of fields within mesoscopic physics, such as
spintronics and topological quantum systems. In this Letter
we study the effects of SOI on the conductance of a
quantum point contact (QPC), a one-dimensional constric-
tion between two reservoirs [1,2]. The linear conductance
G of a QPC is quantized in multiples of GQ ¼ 2e2=h,
showing the famous staircase as a function of gate voltage.
In addition, at the onset of the first plateau, measured
curves show a shoulderlike structure near 0.7GQ [3]. In this
regime QPCs exhibit anomalous behavior in the electrical
and thermal conductance, noise, and thermopower [3–11].
The microscopic origin of this 0.7-anomaly has been the
subject of a long debate [12–18]. It has recently been
attributed to a strong enhancement of the effects of
electron-electron interactions (EEI) by a smeared van
Hove singularity in the local density of states (LDOS)
at the bottom of the lowest QPC subband [15,18]. While
this explains the 0.7-anomaly without evoking SOI, the
presence of SOI can change the dispersion relation and
hence the LDOS, thus strongly affecting the shape of the
0.7-anomaly. Previous studies of SOI in QPCs exist
[19–23], but not with the present emphasis on their inter-
play with the QPC barrier shape and EEI, which are crucial
for understanding the effect of SOI on the 0.7-anomaly.
Setup.—We consider a heterostructure forming a two-

dimensional electron system (2DES) in the xy plane. Gate
voltages are used to define a smooth, symmetric potential
which splits the 2DES into two leads, connected by a short,
one-dimensional channel along the x axis: the QPC [1,2].
The transition between the leads and the QPC is adiabatic.
We also assume the confining potential in the transverse
direction to be so steep that the subband spacing is much
larger than all other energy scales relevant for transport, in
particular those related to the magnetic field and SOI, and
consider only transport in the first subband, corresponding
to the lowest transverse mode. This can be described by a
one-dimensional model with a smooth potential barrier and

local EEI [18]. The magnetic field B is assumed to be in the
xy plane, acting as a pure Zeeman field, without orbital
effects.
A moving electron in an electric field can experience an

effective magnetic field BSOI proportional to its momentum
ℏk. Depending on the origin of the electric field one
distinguishes between Rashba and Dresselhaus terms, the
former resulting from the gradient of the external potential,
and the latter from the asymmetry of the ionic lattice [24].
To be able to rotate B through any angle φ w.r.t. BSOI
we require that BSOI also lies in the xy plane. Without loss of
generality (see the Supplemental Material [25]), we choose
the y axis to be parallel toBSOI, such that the SOI contribution
to the Hamiltonian is −ασyk, where α characterizes the
strength of the (Rashba) SOI and σy is a Pauli matrix [26].
We only consider the leading SOI contribution proportional
to k and choose the spin quantization direction along B.
Without SOI, the dispersion relation ℏ2k2=2m of a

homogeneous one-dimensional model with effective
mass m splits in the presence of a Zeeman field into
two identical branches offset in energy by �B=2. On the
other hand, without a Zeeman field, the momentum-
dependent SOI splits the dispersion in k direction and also
yields a negative spin-independent energy offset of mag-
nitude ΔESOI ¼ α2m=2ℏ2. In the following, we shift the
energy origin by −ΔESOI and quote all energies w.r.t. the
new origin. If both B and BSOI are nonzero, their interplay
depends on φ, as illustrated in Fig. 1(a1)–(a3). In (a1),
where the fields are parallel (φ ¼ 0), the energy offsets
simply add, while for nonparallel fields a spin mixing
occurs, resulting in an avoided crossing [27]. For orthogo-
nal fields (φ ¼ π=2), the lower dispersion branch exhibits
either one broader minimum at k ¼ 0 if B ≥ 4ESOI, or two
minima at finite k and a maximum at k ¼ 0 otherwise. The
latter case is shown in Fig. 1(a2)–(a3).
Model.—For the lowest subband we model the QPC by a

symmetric potential barrier which is quadratic around its
maximum,
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VðxÞ≃ Vg þ μ − Cbx2=2; ð1Þ
and vanishes smoothly at the boundary of the QPC. The
barrier height Vg, measured w.r.t. the chemical potential μ,
mimics the role of the gate voltage. If Vg is swept
downwards through zero, the conductance g ¼ G=GQ
increases from 0 to 1. For B ¼ 0 this occurs in a single
step whose width is given by the energy scale
Ωx ¼

ffiffiffiffiffiffiffiffiffiffiffi
CbCd

p
, which is set by the fixed curvature of the

barrier Cb and the curvature of the bulk dispersion at its
minimum Cd [28]. For φ ¼ 0, Cd ¼ ℏ2=m.
For numerical purposes, we discretize real space and

obtain an infinite tight-binding chain with spacing a, taking
B and α constant throughout the chain. The noninteracting
Hamiltonian is

H0¼
X

j;σ;σ0
d†jσ

�

ðVjþ2τÞδσσ0 −
1

2
ðσ ·BÞσσ0

�

djσ0

þ
X

j;σ;σ0

�

d†jþ1σ

�

−τ0δσσ0 þ
iα
2
ðσyÞσσ0

�

djσ0 þH:c:

�

; ð2Þ

where djσ annihilates an electron with spin σ ∈ f↑;↓g≡
fþ;−g at site j. The effective mass of the charge carrier is
m ¼ ℏ2=2τa2 with τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ20 þ α2

p
[29]. We keep τ fixed

when varying α. The QPC barrier potential Vj ¼ VðjaÞ

(and later EEI) are nonzero only in a region of length
L ¼ 2Na centered around j ¼ 0, representing the QPC. All
results shown are for N ¼ 50. We use the smooth function
VðxÞ ¼ ðVg þ μÞ expf−ð2x=LÞ2=ð1 − ½2x=L�2Þg for the
potential, with μ ¼ 2τ. Sites j < −N and j > N represent
two leads with bandwidth 4τ. The strength of SOI in a QPC
is determined by the dimensionless parameter

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔESOI

Ωx

s

¼ α

ℏ

ffiffiffiffiffiffiffiffi
m
2Ωx

r

: ð3Þ
SOI strengths of up to α≃ 10−11 eVm have been reported in
the literature [19,27,30,31]. Typical values of Ωx ≃ 1 meV
andm≃ 0.05me for InGaAs yield R≃ 0.2. A stronger spin-
orbit effect due to an enhancement of the anisotropic Lande
g-factor is reported in Ref. [32]. Hole quantum wires have
been used to observe the spin-orbit gap [27] and the
anisotropic Zeeman splitting [33]. For hole QPCs, the larger
effective hole mass and the resulting smaller Ωx imply larger
values of R. Here we consider both small and large R, where
R≲ 0.4 is a realistic scale for electron systems and R≳ 1 is
accessible using hole systems [34], for QPCs with small
barrier curvature Cb and hence small Ωx.
System without EEI.—Many insights on the interplay

between SOI and geometry can already be gained from the
modelwithoutEEI, as shown in the left part (a1)–(d3) ofFig. 1.

FIG. 1 (color online). Effect of SOI on the model without EEI, left columns (a1)–(d3), and with EEI, right column (e1)–(e4). The left
columns (a1)–(d1), (a2)–(d2), and (a3)–(d3) represent different combinations of SOI strength R and angle φ between B and BSOI. They
highlight the correspondence between the dispersion relation ωðkÞ in a homogeneous system (a1)–(a3), the LDOS for fixed ω ¼ μ
as function of Vg on the central site of a QPC with potential barrier (b1)–(b3), the conductances of the two QPC transmission channels
(c1)–(c3), and the total conductance of the QPC for several equally spaced magnetic field values between B ¼ 0 and B ¼ 0.88Ωx
(d1)–(d3). In (a1)–(c3), the magnetic field is fixed at B ¼ 0.88Ωx, with dashed lines showing the case B ¼ 0 for comparison. The line
colors in (a1)–(a3) quantify the contribution of each spin state (red ¼ ↑, blue ¼ ↓) in the dispersion branches, to illustrate the spin
mixing at φ ≠ 0. The right column (e1)–(e4) shows the total conductance forU > 0, with φ ¼ π=2 and several combinations of R and B
[the latter were chosen smaller than in (d1)–(d3), since EEI enhance the g-factor [18]].
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We discuss exact results for two physical quantities, whichwe
also relate to the bulk dispersion relation: the linear conduct-
anceg and theLDOSAσ

j ðωÞ ¼ −ImGσσ
jj ðωÞ=πa,whereGσσ0

jj0 is
the retarded propagator from site j0 with spin σ0 to site j with
spin σ. Due to SOI, spin is not conserved for φ ≠ 0 and hence
Gσσ0
jj is not spin-diagonal. However at j ¼ 0 its off-diagonal

elements turn out to be negligible compared to the diagonal
ones. Thus it is meaningful to analyze the LDOS at j ¼ 0 for
given σ. The linear conductance at zero temperature can be
calculated via g ¼ g1 þ g2 ∝ Trðt†tÞ [35], where tσσ

0 ¼
Gσσ0
−N;NðμÞ is the transmission matrix of the QPC and Trðt†tÞ

equals the sumof the eigenvalues of t†t. The spin structure of t
depends on N, but the eigenvalues of t†t, which yield the
conductances g1 and g2 of the two transmission channels,
do not.
For φ ¼ 0 (Fig. 1, left column) spin is conserved and

SOI have no influence on the LDOS and the conductance.
This case is analogous to the one discussed in Ref. [18].
The bulk [i.e., VðxÞ ¼ 0] LDOS,

Aσ
bulkðωÞ ∝

∂k
∂ω

�
�
�
�
σ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
2ℏ2ðωþ σB=2Þ

r

; ð4Þ

has a van Hove singularity, diverging at the minimum
ω ¼ −σB=2 of the corresponding dispersion branch, where
the electron velocity vanishes. In the QPC, the x-dependent
LDOS is shifted in energy by the barrier potential VðxÞ.
Since the barrier breaks translational invariance, the van
Hove singularity is smeared out on a scale set by Ωx [15],
forming a ridgelike structure, called van Hove ridge
in [18]. The LDOS height becomes finite, of order
O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðℏ2ΩxÞ

p
), determined by Ωx and the curvature

ℏ2=m of the bulk dispersion. At a given position x, the
LDOS maximum occurs at an energy which isOðΩxÞ larger
than the corresponding potential energy VðxÞ−σB=2. Here
andhenceforthwequote theLDOSas a functionofVg at fixed
ω ¼ μ. Figure 1(b1) shows it at the central site j ¼ 0; the
spatially resolved LDOS is shown in Fig. 1 of the
Supplemental Material [25]. The LDOS has the same shape
for both spins. Its structure is clearly inherited from that of
the dispersion in (a1), with peak energies aligned with the
dispersion minima up to the shift of OðΩxÞ. Similarly, the
conductances g1ðVgÞ and g2ðVgÞ of the two channels in (c1)
showstepsof the sameshapewithwidths∝ Ωx [28], split byB
and aligned with the dispersion minima. This causes the total
conductance gðVgÞ in (d1) to split symmetrically into a double
step with increasing field, just as for a QPC without SOI.
Next consider the case φ¼π=2 shown in Fig. 1(a2)–(d3).

Spin mixing leads to an avoided crossing with spin gap ∝ B,
which splits the dispersion into an upper branch with a
narrow minimum and a lower branch with two minima and
one maximum (for B < 4ESOI). Note that bulk LDOS
structures separated in energy by less than Ωx are not
resolved within the QPC. In the following, we give an
intuitive explanation of how the dispersion minima relate to
the properties of the LDOS peaks and the conductance steps.

The curvatures of the lower and upper dispersion branches
are, respectively, smaller or larger than in (a1), Cd1 < Cd <
Cd2 (loosely speaking,Cd1 is the effective curvature obtained
by smearing the double dispersionminimumbyΩx, yielding a
single minimum). Because the barrier curvature Cb is fixed,
this results in two modified energy scales Ωxi ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
CbCdi

p
,

with Ωx1 < Ωx < Ωx2, which determine the LDOS peak
heights and widths, as well as the conductance step widths.
Consequently, in (b2) the LDOS peak for A↓

0 is lower and

wider than forA↑
0 . Likewise, in (c2) the conductance step for

g2ðVgÞ iswider than for g1ðVgÞ, causinggðVgÞ in (d2) to show
a strikingasymmetry for itsB-induced evolution froma single
to a double step. This asymmetry is reminiscent of but
unrelated to that known for the 0.7-anomaly—the latter is
driven by EEI, as discussed below—but should be observable
in higher conductance steps, where EEI are weaker.
For R≳ 1 more structures emerge, see Fig. 1(a3)–(b3).

Spin-mixing produces an additional “emergent” peak inA↓
0

(b3) and an additional step in g2ðVgÞ (c3) near Vg ≃ 0.
Between the two steps, the transmission g2ðVgÞ has a
minimum, corresponding to the spin gap, and the total
conductance gðVgÞ in (d3) likewise develops a spin gap
minimum with increasing B. These features can be under-
stood by looking at the spin composition of the two bulk
dispersion branches, depicted quantitatively through the
colors in Fig. 1(a1)–(a3). At k ¼ 0 the SOI field is zero
and we have pure spin-states w.r.t. the chosen quantization.
At larger jkj the SOI field increases, leading to spin-mixing.
In fact in the limit k → ∞ we find a fully mixed state
with equal up and down contributions. Since the upper
branch minimum at k ¼ 0 is in a pure spin-down state, it
corresponds to a peak only in A↓. But the minima of the
lower branch are shifted away from k ¼ 0 and have a spin-
down share besides the dominant spin-up contribution. This
causes the emergent peak in A↓ at low frequencies, whose
height increases with R, due to the stronger spin-mixing.
Interacting system.—We now include EEI via Hint ¼P
jUjd

†
j↑dj↑d

†
j↓dj↓. The on-site interaction Uj ¼ UðjaÞ

is switched on smoothly over the QPC according to
UðxÞ ¼ U expf−ð2x=LÞ6=½1 − ð2x=LÞ2�g. We set Uj ¼ 0
for jjj > N, because outside the QPC region transverse
confinement is weak or absent, and screening strong
[18,36]. We calculate the conductance at zero temperature
with the functional renormalization group technique in
the one-particle irreducible version [29,37–40] using the
coupled ladder approximation, which was presented in
Ref. [36] for a model without SOI. Generalizations neces-
sary in the presence of SOI are described in the
Supplemental Material [25].
The B dependence of the conductance for φ ¼ π=2 and

differentR in the presence ofEEI is shown in the right column
(e1)–(e4) of Fig. 1 and the corresponding transconductance
dg=dVg in Fig. 2(b)–(f). The case R ¼ 0 [see Figs. 1(e1)
and 2(a)–(c)], which is equivalent to φ ¼ 0, has been
discussed in Refs. [18,36]: once a finite magnetic field breaks

PRL 113, 266402 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2014

266402-3

127



the spin degeneracy a surplus of spin-up electrons develops in
the QPC, so that spin-down electrons experience both a
Zeeman and a Coulomb energy cost. This Stoner-type effect
depends on the LDOS at μ and hence is strongest when the
apex of the van Hove ridge touches the chemical potential,
i.e., when Vg is within≃0.5Ωx below 0 [18]. This causes an
asymmetry w.r.t.Vg ¼ 0 in theB-induced evolution of gðVgÞ
from a single to a double step in Fig. 1(e1), in contrast to the
case without EEI in Fig. 1(d1). This asymmetry is character-
istic of the 0.7-anomaly. The corresponding transconductance
in Fig. 2(b)–(c) shows a double peakwhose spacing increases
roughly linearly with B (with an EEI-enhanced g-factor),
as seen in numerous experiments [3,10,18].
The Stoner-type Coulomb enhancement of a field-

induced population imbalance is amplified when R ≠ 0,
as shown in Figs. 1(e2)–(e4) and 2(d)–(f), because of the
height imbalance for the spin-up and spin-down LDOS
peaks caused by SOI. Correspondingly, with increasing R
the double-step structure in the conductance becomes more
pronounced, the second substep becoming much broader
than the first [see Figs. 1(e2)–(e3)] and the transconduct-
ance in Fig. 2(d)–(e) shows a weakening of the lower-Vg

peak with increasing R. This reflects the increasing
curvature Cd2 of the upper dispersion branch (and hence
larger step width Ωx2). For R≳ 1, additional features,
inherited from the noninteracting case, emerge for gðVgÞ
in Fig. 1(e4): a local maximum (marked by an arrow),
followed by a spin gap minimum at lower Vg. For the
transconductance, Fig. 2(f), these features show up as a
strong secondary peak around Vg=Ωx ≃ −1 (marked by an
arrow), followed by a region of negative transconductance
(black). EEI also induce a secondary 0.7-type double-step
feature in gðVgÞ for Vg=Ωx between 0 and −1, Fig. 1(e4),
which is similar to, but narrower than that for R ¼ 0. It
originates from themainLDOSpeak inA↑

0 and the emergent

peak in A↓
0 . Unlike the regular A↓

0 peak aligned with the
upper dispersion branch, whose Vg position is governed by

the magnetic field, the emergent A↓
0 peak occurs, due to

strong spin-mixing, at nearlyB-independent energy close to
theA↑

0 peak. As a result, the two transconductance maxima
in Fig. 2(f) remain parallel with increasing B, in strong
contrast to the situation for R < 1 in Fig. 2(c)–(e).

Figures 2(g)–(l) show, for two fixed values of B, how the
transconductance evolves as jφj is increased from 0 to π=2,
thus switching on the effects of SOI. The decrease in peak
spacing with increasing jφj in Fig. 2(l) strikingly reflects
the increasing importance of spin mixing. The strong angle
dependence predicted here is a promising candidate for an
experimental test of our theory [41].
At small nonzero temperature, inelastic scattering

causes a Fermi-liquid-type reduction of the conductance,
gðT; VgÞ=gð0; VgÞ ¼ 1 − ðT=T�Þ2 for T ≪ T�, with a
Vg-dependent low-energy scale T�ðVgÞ. We expect its
magnitude to be similar to the case without SOI, typically

≃1 K]18 ]. Thus, for T ≲ 0.1 K, the T-dependence should
be very weak and the T ¼ 0 predictions applicable.
In summary, we have shown that in the presence of SOI,

the changes in the dispersion induced by the interplay of B
and BSOI can strongly affect the shape of the 0.7-anomaly.
In the absence of EEI, SOI cause an anisotropic response of
the spin splitting to the applied in-plane magnetic field.
With EEI, the 0.7-anomaly also develops an anisotropic
response to magnetic field, and if SOI are strong, the
conductance develops additional features due to the inter-
play of EEI and SOI: for φ ¼ π=2 these include a field-
induced double step in the conductance that does not split
linearly with B, followed by a spin gap minimum. The
dependence of the conductance on the angle between B and
BSOI is already apparent for R≃ 0.4, which is accessible in
experiments with electron QPCs. Hole QPCs with R≳ 1
would allow access to regimes with strong SOI.
An experimental verification of our predictions would

highlight the influence of LDOS features on the conduct-
ance and thus lend further support to the van Hove scenario
of Ref. [18] as microscopic explanation for the 0.7-
anomaly. More generally, our work lays out a conceptual
framework for analyzing the interplay of SOI, EEI, and

FIG. 2 (color online). Functional renormalization group results
for the conductance g and transconductance dg=dVg, for U ¼
3.36

ffiffiffiffiffiffiffiffi
Ωxτ

p
at zero temperature. Top row: 3d or color-scale plots of

the conductance (a) and the transconductance (b) and (c) as
functions of Vg and B, for R ¼ 0. Three bottom rows (d)–(l):
Color-scale plots of the transconductance for three choices of R
(three columns), plotted as a function of Vg and either B for fixed
φ ¼ π=2 (second row) or of φ for fixed B ¼ 0.18Ωx (third row)
and B ¼ 0.88Ωx (fourth row).
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barrier shape in quasi-1D geometries: examine how SOI
and barrier shape modify the (bare) LDOS near μ—
whenever the LDOS is large, EEI effects are strong. We
expect this to be relevant for the more complicated hybrid
superconductor-semiconductor junctions currently studied
by seekers of Majorana fermions [42–44]. A proper
analysis of such systems would require a generalization
of our approach to include superconducting effects.
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Supplemental Material to “The effect of spin-orbit interactions on the 0.7-anomaly in
quantum point contacts”

I. GEOMETRIC DETAILS OF THE MODEL

In our model the 2DES is in the xy-plane and the
QPC is directed along the x-axis (this is the direction
of motion of the charge carrier). For the directions of the
B and BSOI fields we impose the following restrictions.
To avoid orbital effects we require the magnetic field B
to be in the xy-plane of the 2DES. We also want to be
able to rotate B through any angle ϕ w.r.t. BSOI, which
implies that BSOI also must lie in the xy-plane. With
the latter condition, the BSOI field can be either parallel
to the direction of motion of the electrons (pure Dres-
selhaus contribution), or orthogonal to it (pure Rashba
contribution), or a combination of the two. But for our
mathematical model, the end results depend only on the
relative angle ϕ between B and BSOI. This means that
we can choose the direction of BSOI without loss of gen-
erality. We choose BSOI to be parallel to the y-axis, c.f.
Eq. (2) of the main text.

II. THE SPATIALLY RESOLVED LDOS

In Fig. 1(b1-b3) of the main text we show the LDOS at
fixed µ as a function of Vg on the central site of the QPC.
The behavior at the center captures all relevant features.
For completeness we include here in Fig. 1 the spatially
resolved plots of the LDOS Aσj for both spin states and
the same parameter values as in Fig. 1 of the main text.

III. SECOND ORDER FRG

The functional Renormalization Group (fRG) method
is an improved perturbation technique [1–5]. Rather than
expanding the Green’s function in orders of the coupling
and truncating the expansion, fRG introduces a flow pa-
rameter Λ into the free Green’s function G0. At zero
temperature we define

G0(iω)→ θ(|ω| − Λ)G0(iω) ≡ GΛ
0 (iω), (1)

where θ(ω) is the Heaviside step function. At the be-
ginning of the flow, setting Λ =∞ yields GΛ

0 = 0, which
means that the only contribution to the full Green’s func-
tion comes from the bare vertex. At the end of the flow,
Λ = 0 recovers the full model. The technical details of
the one-particle irreducible version of the fRG employed
in this work are presented in depth in [6]. We use the
static approximation at zero temperature, which will be
described below in Sec. III B. Since [6] does not deal with
spin-orbit interactions, no spin-mixing is possible, which
introduces additional symmetries into the system. In our
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FIG. 1. Spatially resolved plots of the noninteracting LDOS
Aσ
j at fixed ω = µ, plotted as a function of gate voltage Vg

and site index j, for B = 0.88Ωx and for spin σ =↑ (top
row) and σ =↓ (bottom row). Left column: R = 0.84, ϕ = 0.
Middle column: R = 0.84, ϕ = π/2. Right column: R = 1.26,
ϕ = π/2. All results shown are for N = 50.

case these symmetries are no longer present. In this Sup-
plement we focus on the generalizations necessary to ac-
count for such spin-mixing terms.

The second-order fRG flow equations in the one-
particle irreducible version and in the static approxima-
tion are given by
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d

dΛ
γΛ
d (q′1, q

′
2; q1, q2) = − 1

2π

∑

ω=±Λ

∑

q′3,q3,q
′
4,q4

γΛ
2 (q′1, q

′
3; q1, q4)G̃Λ

q4,q
′
4
(iω)G̃Λ

q3,q
′
3
(iω)γΛ

2 (q′4, q
′
2; q3, q2), (6)

where −γΛ
1 is the self-energy and γΛ

2 is the two-particle
irreducible vertex. All higher order vertices γn≥3 have

been set to zero. Here G̃Λ is defined as

G̃Λ =
[
G−1

0 + γΛ
1

]−1
=

1

iω −H0 + γΛ
1

, (7)

where H0 is the (known) Hamiltonian of the non-
interacting system. The quantum numbers qi encode the
spin and spatial degrees of freedom q ≡ (σ, j). The flow of
γΛ

2 was split into three contributions called the particle-
particle channel (P ), and the exchange (X) and direct
(D) contributions to the particle-hole channel, respec-
tively. This will allow us to simplify the flow equations
later.

For a derivation of Eqs. (2-6) see for instance [4, 6, 7].

A. Initial condition

For the numerical treatment we cannot set the initial
value of the flow parameter Λinit to infinity, but it is
sufficient that it is much larger than all relevant energy
scales. We have the following initial condition at Λinit

[4, 6, 7],

γΛinit
2 (q1, q2, q3, q4) = vq1,q2,q3,q4 , (8)

γΛinit
1 (q1, q2) = −1

2

∑

q

vq1,q,q2,q, (9)

where the vertex vq1,q2,q3,q4 is site diagonal and at site
j ≡ j1 = j2 = j3 = j4 is given by

vq1,q2,q3,q4 = Ujδσ1σ̄2 (δσ1σ3δσ2σ4 − δσ1σ4δσ2σ3) . (10)

This means that the spins q1 and q2, as well as the spins
q3 and q4 must be opposite. This leaves two possibilities:
σ1 = σ3 = σ̄2 = σ̄4 that has positive sign, and σ1 = σ4 =
σ̄2 = σ̄3 that has negative sign. Inserting this into the
initial condition for γΛ

1 yields

γΛinit
1 (q′, q) = −(Uj/2)δσ′σ. (11)

B. Approximations

We use the following approximations, see [7] and ref-
erences thereof. Firstly, we neglect the frequency depen-
dence of γΛ

2 . This is called the static approximation and
is known to give good results at T = 0 [6]. Given the
structure of the flow equation for γΛ

2 above, it is natural
to divide the flowing vertex into four parts as follows:

γΛ
2 = v + γΛ

p + γΛ
x + γΛ

d . (12)

Here v is shorthand for the bare vertex, and the flows
of γΛ

p , γΛ
x and γΛ

d were given above. The initial value

for γΛ
2 is simply the bare vertex. If we insert the bare

vertex into the flow equations for the components of γΛ
2

we observe that some of its symmetries remain preserved
in the derivative on the left hand side. For instance,
for γΛ

p we see that the first two and the second two site
indices must be identical and also that the first and the
second pair of spin indices must be opposite, respectively.
Similarly, for γΛ

x we see that the first and fourth site
index, as well as the the second and third site index must
be equal. For γΛ

d the first and the third, as well as the
second and the fourth site indices are equal. There is no
restriction on the any of the spin indices for either γΛ

x or
γΛ
d .
The next iteration would break the remaining symme-

tries, since all three channels contribute to the derivative
of γΛ

2 and then back-feed into the differential equations
for each channel. If instead we choose to only back-
feed each channel into its own differential equation, we
can preserve the symmetries described above. This im-
mensely simplifies the treatment of the equations. By
doing so, we only neglect contributions of order v3 and
higher, which justifies their neglect as long as Uj is not
too large. Altogether we obtain the following contribu-
tions:

Pσσ̄ji := γΛ
p (jσ, jσ̄; iσ, iσ̄) (13)

P̄σσ̄ji := γΛ
p (jσ, jσ̄; iσ̄, iσ) (14)

Xσ1σ2σ3σ4
ji := γΛ

x (jσ1, iσ2; iσ3, jσ4) (15)

Dσ1σ2σ3σ4
ji := γΛ

d (jσ1, iσ2; jσ3, iσ4) (16)

131



3

Note that some elements of a channel can also satisfy
the symmetries of another channel. So for instance the
diagonal element Pσσ̄jj has the same symmetries as the di-

agonal elements Xσσ̄σσ̄
jj and Dσσ̄σσ̄

jj . If we back-feed such
elements too we preserve the symmetries in each channel,
but obtain a more accurate approximation. Therefore, in
each of the three flow equations for the channels of γΛ

2

we replace γΛ
2 on the right hand side by the appropri-

ate channels plus the site diagonal contributions of the
other channels that obey the same symmetries. The ini-
tial conditions for the three channels follow immediately
from (12): γΛinit

p = γΛinit
x = γΛinit

d = 0. Of course, for the

differential equation for γΛ
1 we need the full γΛ

2 which is
the sum of all three channels and the bare vertex.

C. Symmetries

Due to the hermiticity of the Hamiltonian the following
relation holds for the Green’s function

G(iω) = G†(−iω)⇔ Gij(iω) = G∗ji(−iω). (17)

We assume that this relation also holds for G̃Λ. If γΛ
1

is hermitian then the assumption is obviously justified.
Numerical results indeed confirm that γΛ

1 is hermitian.
We also have the following symmetries of γ2:

γ2(q1, q2, q3, q4) = −γ2(q2, q1, q3, q4) (18)

= −γ2(q1, q2, q4, q3) (19)

= γ2(q2, q1, q4, q3) (20)

This follows directly from the equation defining the two-
particle vertex, see e.g. [4]. Again we assume that these
relations hold also for γΛ

2 and moreover for each of the
separate channels. Their consistency with the numeri-
cal results will be demonstrated below. Altogether this
yields the following symmetry relations for the different
channels:

Pσσ̄ji = P σ̄σji = −P̄σσ̄ji (21)

Dσ1σ2σ3σ4
ji = Dσ2σ1σ4σ3

ij = −Xσ1σ2σ4σ3
ji (22)

Xσ1σ2σ3σ4
ji = Xσ2σ1σ4σ3

ij = −Dσ1σ2σ4σ3
ji (23)

We observe that P ↑↓ = P ↓↑ and hence the spin indices for
P will be dropped from now on, leaving only the site in-
dex. The alternative configuration P̄ follows completely
from P and does not need to be kept track of separately.
Same applies to X and D which completely define each
other. We choose to work with D. There are various
symmetries of D but there is no restriction on the spin
index. This means that there are 24 = 16 different sub-
matrices corresponding to 16 different spin configurations
of D. We choose to arrange them as follows

Dσ1σ2σ3σ4 =




↑↑↑↑ ↑↑↑↓ ↑↓↑↑ ↑↓↑↓
↑↑↓↑ ↑↑↓↓ ↑↓↓↑ ↑↓↓↓
↓↑↑↑ ↓↑↑↓ ↓↓↑↑ ↓↓↑↓
↓↑↓↑ ↓↑↓↓ ↓↓↓↑ ↓↓↓↓


 (24)

Note that the first and third spin index are fixed along
a row and correspondingly the second and fourth index
are fixed along one column. This form of the matrix
will prove convenient later. From the symmetries of D
it follows that this matrix is symmetric. Numerically we
also confirm the following relations between the different
blocks, schematically

As B B∗ C

BT Ds Eh F

(B∗)T ETh D∗s F ∗

CT FT (F ∗)T Gs

where identical symbols denote equal blocks and symmet-
ric (hermitian) submatrices are labeled by the subscript
s (h). There are only seven different blocks in total. Nu-
merically we also show that the corner submatrices As,
Gs, C and CT are real. The other submatrices are com-
plex in general. For a hermitian γΛ

1 , the first flow equa-
tion implies that γΛ

2 (q′2, q
′
1; q2, q1) = γΛ∗

2 (q2, q1; q′2, q
′
1).

Translated to the separate channels this confirms that
P must indeed be hermitian, since Pij = P ∗ji, as well as
all the remaining relations between the different subma-
trices of D.
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D. Flow equation for the P-channel

Restricting γΛ
p according to the symmetries of the P -channel we obtain the following simplified equation for the

derivative of P :

d

dΛ
Pji =

d

dΛ
γΛ
p (jσ, jσ̄; iσ, iσ̄) (25)

=
1

2π

∑

ω=±Λ

∑

k,l

1

2
·
[
γΛ

2 (jσ, jσ̄; kσ, kσ̄)G̃Λσσ
kl (iω)G̃Λσ̄σ̄

kl (−iω)γΛ
2 (lσ, lσ̄; iσ, iσ̄)

+γΛ
2 (jσ, jσ̄; kσ̄, kσ)G̃Λσ̄σ̄

kl (iω)G̃Λσσ
kl (−iω)γΛ

2 (lσ̄, lσ; iσ, iσ̄)

+γΛ
2 (jσ, jσ̄; kσ, kσ̄)G̃Λσσ̄

kl (iω)G̃Λσ̄σ
kl (−iω)γΛ

2 (lσ̄, lσ; iσ, iσ̄)

+γΛ
2 (jσ, jσ̄; kσ̄, kσ)G̃Λσ̄σ

kl (iω)G̃Λσσ̄
kl (−iω)γΛ

2 (lσ, lσ̄; iσ, iσ̄)
]

(26)

Note that the first two terms and the last two terms in the sum are equivalent after summation over ω, due to the
symmetry relations (19) and (20). We can thus keep one of the terms respectively and cancel the factor of 1/2. With
the definitions

Π
pΛ(1)
kl =

1

2π

∑

ω=±Λ

G̃Λσ̄σ̄
kl (iω)G̃Λσσ

kl (−iω) (27)

Π
pΛ(2)
kl =

1

2π

∑

ω=±Λ

G̃Λσ̄σ
kl (iω)G̃Λσσ̄

kl (−iω) (28)

the flow equation can be written more succinctly as

d

dΛ
Pji =

∑

kl

[
γΛ

2 (jσ, jσ̄; kσ, kσ̄)Π
pΛ(1)
kl γΛ

2 (lσ, lσ̄; iσ, iσ̄) + γΛ
2 (jσ, jσ̄; kσ, kσ̄)Π

pΛ(2)
kl γΛ

2 (lσ̄, lσ; iσ, iσ̄)
]

(29)

=
∑

kl

γΛ
2 (jσ, jσ̄; kσ, kσ̄)

[
Π
pΛ(1)
kl −Π

pΛ(2)
kl

]
γΛ

2 (lσ, lσ̄; iσ, iσ̄), (30)

where in the last step we used symmetry relation (19). If we now define

ΠpΛ
kl ≡ Π

pΛ(1)
kl −Π

pΛ(2)
kl =

1

2π

∑

ω=±Λ

[
G̃Λσ̄σ̄
kl (iω)G̃Λσσ

kl (−iω)− G̃Λσ̄σ
kl (iω)G̃Λσσ̄

kl (−iω)
]

(31)

we arrive at

d

dΛ
Pji = P̃jkΠpΛ

kl P̃li, (32)

where P̃ equals P plus the diagonal contributions from the other channels which have the same symmetries as P .
Explicitly we get

P̃jk = Pjk + δjk
(
Xσσ̄σσ̄
jj +Dσσ̄σσ̄

jj + Uj
)

= Pjk + δjk
(
−Dσσ̄σ̄σ

jj +Dσσ̄σσ̄
jj + Uj

)
(33)

Note also that the matrix ΠpΛ
kl is hermitian, due to the symmetry (17) of the Green’s function.

E. Flow equation for the D-channel

Restricting γΛ
d according to the symmetries of the D-channel we obtain the following simplified equation for the

derivative of D:

d

dΛ
Dσ1σ2σ3σ4
ji =

d

dΛ
γΛ
d (jσ1, iσ2; jσ3, iσ4) (34)

= − 1

2π

∑

ω=±Λ

∑

kl

∑

σ,σ′,σ′′,σ′′′

γΛ
2 (jσ1, kσ; jσ3, kσ

′)G̃Λσ′σ′′
kl (iω)G̃Λσ′′′σ

lk (iω)γΛ
2 (lσ′′, iσ2; lσ′′′, iσ4) (35)
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Observe that the summation goes over the second and fourth index of the first γΛ
2 matrix and over the first and third

index of the second γΛ
2 matrix, while the other indices remain fixed. If we want to recast this expression as a matrix

multiplication this indeed implies that the first and third spin index should be fixed along a row and the second and
fourth index along one column. This justifies the matrix scheme (24). If we arrange the spin configurations according
to this scheme we obtain the matrix equation

d

dΛ
Dσ1σ2σ3σ4
ji =

∑

kl

∑

σ,σ′,σ′′,σ′′′

γΛ
2 (jσ1, kσ; jσ3, kσ

′)ΠdΛσσ′′σ′σ′′′
kl γΛ

2 (lσ′′, iσ2; lσ′′′, iσ4) (36)

where

ΠdΛσσ′′σ′σ′′′
kl ≡ − 1

2π

∑

ω=±Λ

G̃Λσ′σ′′
kl (iω)G̃Λσ′′′σ

lk (iω). (37)

Note that the order of the spin indices on Π is not the same as on the Green’s functions. The symmetries from (24)
remain valid. With our approximation we get

d

dΛ
Dσ1σ2σ3σ4
ji = D̃σ1σσ3σ

′

jk Πdσσ′′σ′σ′′′
kl D̃σ′′σ2σ

′′′σ4

li (38)

where D̃ equals D plus the diagonal contributions from the other channels which have the same symmetries as D.
Explicitly we get

D̃σ1σ2σ3σ4

jk = Dσ1σ2σ3σ4

jk + δjk
(
Xσ1σ2σ3σ4
jj + (Pjj + Uj)δσ1σ̄2(δσ1σ3δσ2σ4 − δσ1σ4δσ2σ3)

)
(39)

= Dσ1σ2σ3σ4

jk + δjk
(
−Dσ1σ2σ4σ3

jj + (Pjj + Uj)δσ1σ̄2
(δσ1σ3

δσ2σ4
− δσ1σ4

δσ2σ3
)
)

(40)

Just like D itself, the matrix ΠdΛσσ′′σ′σ′′′
kl is symmetric, however in general not real. The structure of ΠdΛσσ′′σ′σ′′′

kl in
terms of its submatrices is the same as for D.

F. Flow equation for γ1

For the self-energy equation

d

dΛ
γΛ

1 (k′σ′, kσ) =
1

2π

∑

ω=±Λ

∑

k1,k2,σ1,σ2

G̃Λσ2σ1

k2k1
(iω)γΛ

2 (k1σ1, k
′σ′; k2σ2, kσ) (41)

we need the full γΛ
2 = v + γΛ

p + γΛ
x + γΛ

d . We abbreviate

Sσ2σ1

k2k1
=

1

2π

∑

ω=±Λ

G̃Λσ2σ1

k2k1
(iω). (42)

Taking into account the symmetry of each channel we obtain

d

dΛ
γΛ

1 (k′σ′, kσ) = δσσ′S σ̄σ̄kk′(Pk′k + δkk′Uk)− δσσ̄′S σ̄σkk′(Pk′k + δkk′Uk)

−
∑

σ1σ2

Sσ2σ1

k′k Dσ1σ
′σσ2

kk′ + δkk′
∑

l,σ1,σ2

Sσ2σ1

ll Dσ1σ
′σ2σ

lk . (43)

The first line accounts for the bare vertex and the P/P̄ -channel, while the second line contains the contribution from
the X-channel and then the D-channel. Note that the D-channel only influences the diagonal elements of γΛ

1 , due to
its symmetry.
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Chapter 7

Conclusion & Outlook

In this thesis a detailed microscopic explanation for the origin of the 0.7 anomaly in QPCs
was given. We showed that the 0.7-anomaly can be explained by a one-dimensional model
with interaction and a potential barrier representing the QPC. This model was derived from
first principles and we explained and justified every assumption in detail. We argued that
interactions are crucial in regions of large local density of states (LDOS). The LDOS is inversely
proportional to the velocity of the electrons, and electrons move particularly slowly in a QPC
in the parameter-regime where its conductance is around 0.7GQ. This mechanism explains the
anomalous behaviour.

We offered detailed theoretical calculations showing excellent agreement with experiments.
This gives strong corroboration that the derived model adequately describes QPCs in the regime
of the 0.7 anomaly. These calculations where made using two perturbative approaches, the
functional renormalization group (fRG) and second order perturbation theory (SOPT). The fRG
was formulated in the language of functional path integrals using Grassmann variables. We
showed that the fRG can be used to derive formulas for linear response quantities, such as the
spin-susceptibility and the linear conductance.

We made detailed predictions for the 0.7 anomaly in the presence of spin orbit interactions
(SOI). Thereby the relevant dimensionless strength of SOI was specified, and a prediction was
given for how conductance curves change when the relative direction between the external
magnetic field and the effective spin-orbit field is changed.

In this work we investigated QPCs represented by a parabolic potential barrier. In order to
understand the geometric differences between the various QPCs, other potential forms have to
be studied in detail. This can be done with the same theoretical and numerical tools, used for
this work. The main challenge here is to define the different potential form, and systematically
analyse their differences.

At the current state of our research, the main drawback is the quality of the results using
SOPT, which is not good enough to reliably predict shape of a conductance curve. Although
SOPT can give a qualitative insight into the microscopic mechanism, it would be desirable to
have a method whose results at finite temperature are of a similar quality as the results of
fRG at zero temperature. One candidate to achieve this goal would be the fRG approach in
Keldysh formalism following Jakobs et al. (2010). Another possibility is to do a diagrammatic
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calculation in the spirit of Janiš (1999) and Janiš and Augustinský (2008). Both approaches
have been applied to a single-impurity Anderson model. Extending them to the chain model
of a QPC is challenging due to numerical issues: One has to perform a double integral over
matrix-valued functions, which can have poles, or at least sharp structures.

Another interesting aspect is to extend the model to a long ranged interaction. A general-
ization of the coupled ladder approximation in fRG is possible. However, depending on the
system size hardware limitations set upper bounds on the range of interaction. In the static ap-
proximation this issue is less severe, since no frequency representation of the vertex functions
is needed.
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