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via a central scattering region C, where traversing electrons are scattered at a
spin-dependent potential barrier V σ(x). A finite voltage Vsd drives a current J
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by an incoming right-moving electron with wave vector kx. The grey-shaded ar-
eas mark regions that cannot be entered by the charge carrier due to an applied
electrostatic potential V (x, y), leaving only a narrow adiabatic transport chan-
nel centered at y = 0. (b) In addition to the electrostatic potential V (x, y = 0)
(red line) an electron experiences a potential energy εn(x) when entering the
constriction via the n-th transversal mode. This leads to a 1D effective barrier
Vn(x) = V (x) + εn(x) (black lines). In order to traverse the bottleneck via the
transport channel n the charge carrier’s energy must exceed the height of the
corresponding effective barrier, ε(kx)>Vn(x = 0). In the scenario depicted here
the electron will overcome the barrier when entering the constriction via the n=1
mode, but is reflected at the classical turning point xt, when entering it via the
n=2 mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Quantum point contact and the 0.7 anomaly: (a) Split-gate geometry: A negative
voltage Vg, applied to two adjacent metallic gates, depletes the 2DES underneath
and restricts electronic transport between the leads to the QPC. (b) A sketch of
the electrostatic potential V (x, y) of a QPC, including discrete eigenstates due to
the small extension in transverse direction. In the vicinity of the QPC’s center,
x = y = 0, the potential can be approximated by a saddle point form with cur-
vatures in transport and tranverse given by the two energy scales Ωx and Ωy,
see Eq. (2.14). (c) The linear conductance of a QPC as function of gate voltage
features a staircase in units of the conductance quantum GQ, the hallmark of
transport in quasi 1D systems. The data was taken from van Wees et al. (1988).
(inset) The additional shoulder-like step in the linear conductance of the lowest
subband - the 0.7 anomaly - is interaction-induced and its origin still subject to
controversal discussions. The figure is taken from Thomas et al. (1996). . . . . . 15
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2.4 Magnetic field dependence of the first conductance step: (a) The noninteracting con-
ductance of a parabolic barrier as function of barrier height Vc (corresponding
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Zusammenfassung

Diese Arbeit hat zum Ziel den mikroskopischen Ursprung eines Phänomens im Bereich der Halbleiter
Nanostrukturen zu beleuchten, das beim elektronischem Transport durch kurze eindimensionale Veren-
gungen, sogenannte Quantenpunktkontakte (QPCe), auftritt: Während das stufenhafte Ansteigen des
linearen Leitwerts eines QPCs als Funktion seiner Breite in Einheiten des Leitwertquantums GQ eine
wohlverstandene Eigenschaft quasi eindimensionaler Systeme ist [Landauer (1957)], bereitet eine zusät-
zliche schulterartige Zwischenstufe bei 0.7×GQ seit nunmehr beinahe 20 Jahren Kopfzerbrechen - die
0.7 Anomalie. Seit ihrer ersten Erwähnung im Jahre 1996 [Thomas et al. (1996)] gab es eine Vielzahl
von experimentellen Arbeiten [Micolich (2011)], die immer neue Facetten dieses faszinierenden Effekts
aufdeckten. Besonders hervorzuheben ist hierbei die anormal starke Reduktion des Leitwerts im soge-
nannten sub-offenen Regime als Funktion von externen Parametern wie Magnetfeld, Temperatur oder an-
gelegter Spannung. Während Einigkeit darüber herrscht, dass der zugrundeliegende Mechanismus der
0.7 Anomalie in der gegenseitigen Beeinflussung (= Wechselwirkung) der Elektronen beim Durchqueren
des QPC zu finden ist, zeigt die außerordentlich hohe und ständig wachsende Anzahl an vorhandenen
Erklärungsversuchen, dass ein Konsens über das detaillierte Zustandekommen dieser ungewöhnlichen
Schulter bislang nicht erlangt wurde. Insbesondere scheint keine Theorie eine umfassende Erklärung
für die 0.7 Anomalie und all ihre Begleiterscheinungen liefern zu können. Hier präsentieren wir ein
mikroskopisches Model, das versucht, genau diesem Anspruch zu genügen.

Wir beschreiben die effektive Barriere der untersten Transportmode des QPC durch ein eindimen-
sionales parabolisches Potential. Dass eine parabolische Barriere die Realität ausreichend approximiert,
lässt sich durch detaillierte Analyse der experimentellen Leitwert-Stufenform überzeugend begründen.
Um ein möglichst genaues Bild von der Physik eines QPCs zu erhalten legen wir besonderen Wert auf
die Herausarbeitung seiner Einteilchen-Physik; in der Umgebung des Barrierenzentrums finden wir
ein ausgeprägtes Maximum in der lokalen Zustandsdichte bei Energien knapp oberhalb des Potentials.
Dieses “van Hove Maximum”, der in einem semiklassischen Bild mit langsamen Elektronen über der Bar-
riere assoziiert werden kann, fällt im sub-offenen Regime mit der Fermikante zusammen. Hier führt er, bei
endlicher Wechselwirkungstärke, zu einer stark erhöhten Rückstreuwahrscheinlichkeit für einlaufende
Elektronen, resultierend in einer starken Reduktion des Leitwerts; in einem äußeren Magnetfeld liegt
dieser Reduktion eine wechselwirkungsinduzierte Verstärkung der lokalen Verarmung des Subbandes
der energetisch benachteiligen Spinspezies zugrunde (vergleichbar dem ferromagnetischen Stonermod-
ell), im Falle endlicher Anregungsenergien resultiert sie aus einer erhöhten inelastischen Rückstreuung.
Damit liefert das Wechselspiel aus van Hove ridge und Elektron-Elektron Wechselwirkung in einem QPC
eine natürliche Erklärung für das Auftreten der 0.7 Anomalie und ihrer mannigfaltigen Ausprägungen.

Für die Berechnung der wechselwirkenden Physik unseres eindimensionalen QPC Modells ver-
wenden wir zwei unterschiedliche Methoden: Eine eigens entwickelte Näherung innerhalb der funk-
tionalen Renormierungsgruppe (fRG) liefert verlässliche Resultate für die Magnetfeldabhängigkeit der
0.7 Anomalie. Für endliche Temperaturen und Spannungen greifen wir auf Störungstheorie in zweiter
Ordnung in der Wechselwirkung (SOPT) zurück. Da deren Validität auf geringere Wechselwirkungs-
stärken beschränkt ist, ist eine Erweiterung der fRG-Anwendbarkeit auf endliche Anregungsenergien
derzeit in Arbeit.
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Abstract

This thesis aims at shedding light on the microscopic origin of a phenomenon in the field of semicon-
ductor nanostructures, which occurs in transport through a short and narrow quasi one-dimensional
constriction, the quantum point contact (QPC). Unlike the stepwise increase of linear conductance of a
QPC as function of its width in units of the quantum GQ, which is well understood and was predicted
already in the 1950s [Landauer (1957)], an additional shoulder-like step at 0.7×GQ raises questions since
its discovery in 1996 [Thomas et al. (1996)]: the 0.7 anomaly. Subsequent experimental investigations [for
a review see Micolich (2011)] revealed a plethora of accompanying features of this fascinating structure.
Most famously these include a strong reduction of conductance in the sub-open regime of a QPC as func-
tion of external parameters such as magnetic field, temperature or bias voltage. While it is agreed upon
that the 0.7 anomaly arises from electron-electron interactions, the high number of theoretical attempts
at an explanation indicates that the detailed microscopic origin of the peculiar shoulder is still subject to
controversal discussions. In particular no theory seems to describe the whole variety of signatures of the
0.7 anomaly sufficiently. Here, we present a microscopic model that qualifies to meet this requirement.

We model the effective barrier of the lowest transport mode of a QPC by a one-dimensional parabolic
potential with short-ranged Coulomb interactions. By systematic analysis of experimental data we show
that a parabolic barrier approximates the actual barrier shape of the QPC adequately well. In order to
understand the physics of a QPC in detail, we put emphasis on the noninteracting properties of our
model; we find a pronounced maximum in the local density of states in the vicinity of the barrier center
at energies just above the potential. Importantly, this “van Hove ridge”, which can be associated with
slow electrons above the barrier coincides with the chemical potential if the QPC is tuned to be sub-open.
Here, it causes an enhancement of backscattering at finite interactions and a subsequent anomalous
reduction of conductance. In case of a magnetic field the underlying mechanism for this reduction is an
interaction-enhanced local depopulation of the disfavoured spin species’ subband; at finite excitation
energies the reduction is a consequence of an interaction-enhanced inelastic backstattering probability.
Hence, the interplay of van Hove ridge and electron-electron interactions provides a natural explanation
for the appearance of the 0.7 anomaly and its various features.

We calculate properties of our interacting one-dimensional QPC model using two methods: A spe-
cially developed approximation scheme within the function renormalization group (fRG) provides re-
liable results for the magnetic field dependence of the 0.7 anomaly at zero temperature. At finite tem-
perature and finite bias voltage we rely on second order perturbation theory in the interaction (SOPT).
Since SOPT’s validity is restricted to weaker interaction strength, where calculations clearly show the
right trend but not yet the full manifestation of the 0.7 anomaly, we are currently setting up an extension
of our fRG approach within the Keldysh formalism, which will allow us to also explore finite excitation
energies.
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Chapter 1

Introduction

Mesoscopic systems are systems on intermediate length scales where quantum effects start to matter.
Understanding their physics is not only of conceptual relevance, but also gains increasing importance
due to the ongoing miniaturization of technical devices. As local thermodynamic observables are mostly
difficult to access experimentally in mesoscopic systems, transport measurements often serve as the
main diagnostic tool to investigate a system’s microscopic properties. Theoretical understanding is es-
sential to draw conclusions from the measured data about the detailed microscopic structure of a probe.
This demands a thorough theoretical analysis of the transport properties of such systems. Starting in the
mid 50s with Landauers conductance formula in one dimension [Landauer (1957)] transport theory has
thenceforth consistently proven its ability to explain and predict basic phenomena of coherent transport
in mesoscopic systems: Amongst others this famously includes the Aharonov-Bohm effect [Aharonov
and Bohm (1959)], the quantum hall effect [Laughlin (1981)], weak localization [Altshuler et al. (1980)]
and weak anti-localization [Hikami et al. (1980)] as well as ongoing successes in the theory of transport
through one-, and zero-dimensional structures. Despite this success story there are, naturally, still some
blank spots, where theory is in search for the microscopic origin of an observed phenomenon. One of
these appears in transport through an elementary building block of semiconductor nanostructures: The
0.7 anomaly in the conductance of a quantum point contact (QPC).

The validation of Landauers 1D transport theory took some time, as the experimental realization of
a system where electronic movement is restricted to only one dimension requires fine-tuning of the sys-
tem’s geometry on the scale of nanometers. But technical progress was catching up eventually and in the
late 80s van Wees et al. (1988) finally succeeded: By applying negative voltage to metallic gates located
above a two-dimensional electron system (2DES), where electrons are restricted to two dimensions by
an electrostatic potential, they had managed to define a short and narrow quasi one-dimensional con-
striction, the quantum point contact (QPC). Its small extension in transverse direction causes a quanti-
zation condition on its eigenstates, such that they form a discrete spectrum of one-dimensional trans-
port modes. Upon increasing the width of the QPC by increasing the gate voltage one after another
of those modes is shifted from above through the chemical potential, resulting in the famous step-wise
increase of linear conductance in units of the conductance quantum GQ = 2e2/h, where e is the elec-
tron charge and h is Planck’s constant. While this staircase, which is considered one of the hallmarks
of low-dimensional systems, proves the validity of Landauers transport theory it also harbors one of
the biggest conundrums of mesoscopic systems: The first linear conductance step of a QPC features an
additional shoulder-like structure in the sub-open regime around 0.7GQ. Unlike the staircase this 0.7
anomaly cannot be explained by noninteracting theory, but is commonly attributed to electron-electron
interactions. Much effort has been devoted to understand the mechanism behind this unusual and strik-
ing physical characteristic of a sub-open QPC; since its first mentioning by Thomas et al. (1996) the 0.7
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anomaly was subject of hundreds of experimental studies [Micolich (2011)], which brought a plethora of
subsequental features to light: Most impressive is the anomalous reduction of conductance as function
of magnetic field [Koop et al. (2007)], temperature [Thomas et al. (1996)] and bias voltage [Cronenwett
et al. (2002)]. Further anomalous signatures arise in shot-noise [Koop et al. (2007)], compressibility
[Smith et al. (2011)], thermopower [Appleyard et al. (2000)] and almost every additional measurable
quantity of a sub-open QPC.

The high number of experimental studies of the 0.7 anomaly is accompanied by comparably many
theoretical models that aim at explaining the remarkable interaction-induced features of a sub-open
QPC. Thomas et al. (1996) attributed the appearance of a 0.7 shoulder at zero magnetic field to spon-
taneous spin-polarization in the QPC. A theoretical model promoting this picture was presented by
Wang and Berggren (1998). The similarity between the behavior of the conductance as function of ex-
ternal parameters in a sub-open QPC and a quantum dot in the Kondo regime motivated the picture
of a quasi-localized spin-1/2 state forming in the vicinity of the QPC’s center [Cronenwett et al. (2002),
Meir et al. (2002), Rejec and Meir (2006), Iqbal et al. (2013)]. The possible localization of electrons in a
QPC by Wigner crystallization was suggested by Matveev (2004) and Güçlü et al. (2009). Strong ferro-
magnetic spin coupling was stated as origin of the 0.7 anomaly by Aryanpour and Han (2009). Inelastic
scattering and momentum non-conserving processes were discussed by Sloggett et al. (2008) and Lunde
et al. (2009). The diversity of theoretical models as well as their still increasing number demonstrate
that consensus about the microscopic origin of the 0.7 anomaly is not reached yet. Often, a theory seems
taylor-made to explain a certain sub-group of features of the 0.7 anomaly, only to fail in other aspects.
While the large number of features naturally brings about all kinds of theories, it appears to also com-
plicate the discovery of a microscopic mechanism that provides an overall explanation for the various
characteristics of the 0.7 anomaly.

This thesis is devoted to a thorough theoretical analysis of a sub-open QPC. We argue that its essen-
tial physics is captured by a one-dimensional model with a parabolic potential barrier and short-ranged
electron-electron interactions (EEI), thereby following the footsteps of previous works [e.g. Büttiker
(1990), Sloggett et al. (2008)]. Special emphasis is put on the interplay between geometry-induced and
interaction-induced physics, which allows for a clear interpretation of all calculated features. In order to
provide reliable results we calculate the influence of interactions using two perturbative approaches: A
taylor-made approximation scheme within the framework of the functional renormalization group (fRG)
is used for calculations at zero temperature and zero source-drain voltage, whereas finite excitation en-
ergies are covered by second order perturbation theory (SOPT). Both schemes were tested extensively
upon their qualitative reliability. In order to sharpen the physical intuition of the reader for the underly-
ing microscopic mechanisms, we lay special focus on a semi-classical interpretation of our results. Our
calculations provide ample evidence that the chosen model is indeed capable of reproducing all major
conductance features of the 0.7 anomaly.

Outline of this thesis

In chapter 2 we discuss electronic transport in one-dimensional systems. We present a derivation of Lan-
dauers conductance formula, which highlights the inverse proportionality between the local density of
states and the semi-classical velocity of electrons in 1D. We introduce the QPC, one of the elementary
building blocks of electronic nanostructure devices. We show experimental measurements of the con-
ductance of a QPC, including the staircase data of linear conductance and the evolution of the first
conductance step as function of external parameters. In the latter case the features of the 0.7 anomaly are
emphasized by comparison to predictions of noninteracting theory.

Chapter 3 introduces our 1D model of a QPC. We present analytic calculations for both the noninter-
acting transmission through the QPC and the noninteracting local density of states (LDOS) of the QPC.
We then discuss the influence of short-ranged electron-electron interactions (EEI) on the physics of our
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model; we give an overview of the ideas of fRG and SOPT, the methods we use to treat interactions. Fi-
nally, we present fRG calculations that show the evolution of the first conductance step with increasing
interaction strength.

All subsequent chapters contain papers, that are either published, submitted to a journal or will be
submitted in the near future:

Chapter 4 provides a reprint of the NATURE-publication “Microscopic origin of the 0.7 anomaly in
quantum point contacts” [Bauer et al. (2013)], where we present the main findings of our work; we argue
that an interplay between the van-Hove ridge, a local maximum in the LDOS in the vicinity of the barrier
center just above the potential barrier, and EEI causes an interaction-induced enhancement of backscat-
tering in a sub-open QPC. This provides a natural explanation for the emergence of the 0.7 anomaly. The
paper features the comparison of our theoretical data with experimental measurements, that were per-
formed in the group of Stefan Ludwig. The qualitative agreement of theory and experiment provides
further evidence for the validity of our “van-Hove ridge scenario”.

Chapter 5 contains the paper Heyder et al. (2014), where we discuss the geometric crossover from
a QPC to a quantum dot with Kondo effect (KQD). We emphasize the similarities of the physics of
both geometries at low energies, which originate from strong spin-fluctuations, and the differences at
high energies, where the unscreened local moment of the KQD does not have a counterpart in the open
structure of a QPC.

In chapter 6 we present the paper Bauer et al. (2014), where we give a detailed description of the
fRG approach we used to calculate physical properties of the 1D model at zero temperature and zero
source-drain voltage - the coupled ladder approximation (CLA). In order to treat the inhomogeneity of
the potential at intermediate interaction strength with due accuracy we have to include the flow of the
two-particle vertex γ2. The CLA reduces the independent variables of γ2 to a manageable amount, while
including the leading second order frequency-, and space-dependence of the vertex.

Chapter 7 is based on the manuscript Goulko et al. (2014), where we extend the 1D model of a QPC
by a term modelling the effect of (Rashba) spin-orbit interactions (SOI). We investigate the influence of
intermediate and strong SOI both in the absence and presence of EEI. We find striking features caused
by an interplay of SOI and EEI that predict the outcome of future experiments.

In the article Heyder (2014), reprinted in chapter 8, we present a detailed discussion of the SOPT
approach, which we use to calculate conductance of the 1D model at finite excitations. Additionally, we
present a Keldysh-based derivation of the linear conductance formula formerly derived by Oguri (2001)
in Matsubara formalism.

In chapter 9 we present an experiment in order to measure the magnetization of a QPC with the help
of Faraday rotation technique. The future results will be used to shed further light on the van-Hove ridge
scenario.
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Chapter 2

Electronic transport in one-dimensional
systems

In this chapter we provide the necessary background for an understanding of electronic transport in
one-dimensional (1D) systems.

We highlight the derivation of the conductance formula of 1D and quasi 1D fermionic systems by
Landauer (1957), with special focus on the relation between the velocity of the electrons and the local
density of states (LDOS). In order to facilitate the interpretation of subsequent experimental results we
present explicit formulas for the conductance of 1D systems as function of magnetic fieldB, temperature
T and voltage Vsd.

We discuss properties of quasi low-dimensional systems, where the movement of electrons is severely
restricted in some directions, invoking discrete transverse modes, that act as transport channels. We in-
troduce two of the main experimental realizations of quasi low-dimensional systems: The two-dimen-
sional electron system (2DES), a quasi 2D system forming at the heterojunction between two semi-
conducting materials, and the one-dimensional quantum point contact (QPC), a narrow 1D constriction
manufactured by applying negative voltage Vg to metallic gates above the 2DES. As function of in-
creasing Vg , corresponding to increasing constriction width, one after another transport channel opens
up and the QPC famously features a linear conductance staircase in units of the conductance quantum
GQ=2e2/h, with electron charge e and Planck’s constant h=2π~.

Experiments show an additional shoulder-like structure at around 0.7GQ in the so called sub-open
regime. This famous 0.7 anomaly is induced by mutual interactions between the electrons in a narrow
QPC. Its origin has been subject to controversial discussions for almost twenty years now. We show key
features of this conductance anomaly and compare experimental data to noninteracting predictions.

2.1 Noninteracting transport in 1D

Throughout this section we consider an infinite one-dimensional spinful noninteracting fermionic sys-
tem in thermal equilibrium with temperature T . A scheme can be found in Fig. 2.1. The system
is composed of three parts: Two semi-infinite homogeneous regions, the left lead L and the right
lead R, are coupled via a central region C, where we allow for single particle scattering at an arbi-
trary spin-dependent (σ ∈ {↑, ↓} = {+,−}) potential landscape V σ(x). This introduces an energy-,
and spin-dependent transmission T σ(ε) , which describes the probability that an electron with energy
ε and spin σ traverses the central region (as a textbook example consider the transmission through
a 1D square well potential). The occupation of the lead s ∈ {L,R} is given by the Fermi function
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fs(ε) = [1 + exp((ε − µs)/(kBT ))]−1, with Boltzman constant kB and chemical potential µs. The ho-
mogeneous leads harbor plane wave eigenstates with kinetic energy ε=~2k2/(2m), where k is the wave
number and m the electron’s mass.

2.1.1 The relation between the electron’s velocity and the LDOS in 1D

An electron traverses a lead with semiclassical velocity

v(ε)=1/~ · dε/dk. (2.1)

Once it enters the central region it is either reflected at the potential barrier or overcomes the obstacle and
leaves into the other lead. According to its direction of motion we refer to an electron as a right mover
(k>0) or left mover (k<0). Since the leads are one-dimensional they feature an inverse proportionality
between the LDOS per spin species and the velocity of the electrons:

LDOS(ε) = 1/π · dk/dε =
1

π~v(ε)
. (2.2)

In other words, the LDOS is proportional to the time an electron with energy ε spends in the vicinity
of a given position. With the energy dependence of velocity and LDOS cancelling each other, note that
the number of particles that traverse a lead s at given energy ε is proportional to the Fermi distribution
fs(ε).

2.1.2 The current through a 1D system

In order to calculate transport properties of the system, we consider the out-of-equilibrium situation
µL 6=µR, which amounts to a finite source-drain voltage Vsd=(µL − µR)/e. Here, the occupation of the
left lead differs from the occupation of the right lead and the resulting imbalance in the number of right
and left movers generates a current J through the system. The number of right/left movers that leave
the left/right lead via the central region at given energy ε per time unit is given by

ṅs(ε) = fs(ε) · LDOS(ε)/2 · v(ε) =
fs(ε)

2π~
=
fs(ε)

h
, (2.3)

lead L lead Rcentral region C

µL

current J
µR

position x

energy ε

T σ(ε)
V σ(x)

Vsd

Figure 2.1: 1D system: The semi-infinite and homogeneous leads L and R are connected via a
central scattering region C, where traversing electrons are scattered at a spin-dependent poten-
tial barrier V σ(x). A finite voltage Vsd drives a current J through the system, which features a
quantized conductance G = dJ/dVsd.
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where we accounted for the definite direction of the electrons by dividing the LDOS by a factor of 2.
Since charge current is defined as the net particle transfer between the two leads per time unit, i.e.
the net particle transfer through the central region per time unit, we have to account for the scattering
processes at the potential landscape (via T σ(ε)) and integrate over all energies. This yields the simple
current formula

J = e
∑

σ

∫ ∞

−∞
dε[ṅL(ε)− ṅR(ε)]T σ(ε) =

e

h

∑

σ

∫ ∞

−∞
dε[fL(ε)− fR(ε)]T σ(ε). (2.4)

Note that J vanishes trivially in equilibrium.

2.1.3 The quantized conductance of a 1D system

We define the conductance G as the derivative of the current w. r. t. the bias voltage, G = dJ/dVsd, and
apply the voltage in a symmetric fashion, µL = µ+ eVsd/2 and µR = µ− eVsd/2. Since the transmission
probability is an intrinsic property of the central region (hence not dependent on the chemical potentials
in the leads) the voltage derivative acts on the Fermi functions only and the conductance of the system
reads

G = dJ/dVsd = − e
2

2h

∑

σ

∫ ∞

−∞
dε [f ′L(ε) + f ′R(ε)]T σ(ε), (2.5)

where we introduced frequency derivatives f ′s(ε) = dfs(ε)/dε. For fixed potential landscape the con-
ductance G(Vsd, B, T ) is a function of magnetic field B, temperature T and voltage Vsd. Let us briefly
discuss its properties when varying one parameter, while setting the other two to zero. In order to keep
notation compact we use G(B) = G(Vsd = 0, B, T = 0). Furthermore, we introduce the conductance
quantum,

GQ = 2e2/h, (2.6)

and the dimensionless conductance g = G/GQ. In equilibrium, Vsd = 0 ⇒ f ′ := f ′L = f ′R, the linear
conductance is given by

g(B, T ) = −1

2

∑

σ

∫ ∞

−∞
dε f ′(ε)T σ(ε). (2.7)

Contributions to the conductance are limited to an energy-window of width of the temperature around
the chemical potential µ, where the derivative of the fermi function is non-zero. In absence of a mag-
netic field, the spin degrees of freedom are degenerate, T ↑(ε) = T ↓(ε), and the temperature-dependent
conductance reads

g(T ) = −
∫ ∞

−∞
dε f ′(ε)T (ε). (2.8)

At zero temperature the Fermi function is a step function and its derivative the negative of the Dirac
delta function, limT→0 f

′(ε) = −δ(ε − µ). This implies the remarkable fact, that the linear conductance
of a noninteracting 1D system at B=T =0 is identical to the transmission at the chemical potential,

g = T (µ). (2.9)

Note that this is in direct consequence of the relation in Eq. (2.2). In case of perfect transmission the
conductance is just given by the conductance quantum, g = 1.
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A finite magnetic field lifts the spin degeneracy of the system. The field couples to the spin degree
of freedom of the particles and shifts their energy by the Zeeman term σB/2. Note, that in this defi-
nition spin-up is energetically favoured. It proves useful to absorb the Zeeman shift in the potential,
V σ(x)=V (x− σB/2). This implies, that a spin-down electron sees an increased and a spin-up electron
a descreased potential. Hence, the transmission, T σ(ε) =T (ε + σB/2), aquires a spin dependence, too,
and we can write the linear conductance in presence of a finite magnetic field as

g(B) =
1

2

∑

σ

T σ(µ) =
1

2
[T (µ−B/2) + T (µ+B/2)] . (2.10)

Finally, at finite bias voltage but zero temperature and field, the conductance is given by the sum over
the transmission through the central region evaluated at the chemical potentials of the two leads. In fact,
the conductance is identical to the case of finite magnetic field with B = Vsd,

g(Vsd) =
1

2
[T (µL) + T (µR)] =

1

2
[T (µ+ Vsd/2) + T (µ− Vsd/2)] . (2.11)

Throughout this thesis we will repeatedly refer to Eqs. (2.8)-(2.11) when discussing transport properties
of our 1D quantum point contact model. The system is always assumed to be extended along the x-axis
with the central region being centered at x = 0. Whenever additional spatial dimensions are important
they will be referred to as transversal and denoted by y and z.

Let us briefly summarize the main point of this section: The quantization of linear conductance is
a fundamental property of 1D systems and direct consequence of the inverse proportionality between
velocity and LDOS, Eq. (2.2). This involves, in particular, that the linear conductance at B=T =Vsd= 0
is purely given by the transmission probability through the system at the chemical potential, Eq. (2.9).

2.2 Quasi 1D systems

In our world a system can never be purely one-dimensional. In order to design structures that test
the predictions of 1D theory (such as the transport formulas Eqs. (2.8)-(2.11)), one has to minimize or
preferably even eliminate the influence of the two other spatial dimensions y and z. This can be done
by confining the particles with the help of an electrostatic potential, thereby considerably limiting their
movement in the directions in question; upon narrowing down the size of a system, its boundaries
become of increasing importance for its physical properties by imposing quantization conditions on
eigenstates and eigenenergies. If the confinement is small enough, then the energy spectrum of the sys-
tem along y and z can no longer be described by a continuum, as in the extended dimension x, but
is rather given by a set of discrete quantum states, whose energy level spacing increases with further
narrowing of the system (consider the standard example of a particle in a 1D box, where the distance be-
tween successive eigenenergies depends inversely quadratic on the width of the box). Time evolution is
now nontrivial in x-direction only, which limits transport to 1D. There is simply no room for movement
in any other direction. Such systems are called “quasi one-dimensional” (quasi 1D).

2.2.1 The effective potential of quasi 1D systems

The confined transverse world in a quasi 1D system has striking influences on its transport properties.
Let us consider the following situation (for clarity we only consider one transverse dimension y): A
right-moving electron, coming from an extended and homogeneous region with kinetic energy ε(kx) is
about to enter a constrictionC that is confined in all but the x-direction in consequence of an electrostatic
potential V (x, y) (see Fig. 2.2(a)). The narrowing happens adiabatically, i.e. the size of the system in
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transverse direction is a smooth and continuous function of x, with smallest width at x=0, and centered
at y=0. Hence, the constriction hosts discrete transverse modes with position-dependent eigenenergies
εn(x), which increase with decreasing |x| towards their maximum value at x=0. Upon approaching the
constriction the electron starts to “feel” the influence of the boundaries: Unlike in the extended region,
where its energy was purely kinetic and determined by the wave vector kx, the electron now populates
a quantum state, which divides its energy between a (with x slowly increasing) transverse energy εn(x)
and a (with x slowly decreasing) kinetic energy ε(k(x)) = ε(kx) − εn(x). In other words, the electron
continuously slows down as it travels towards the center of the constriction, since the nearby boundaries
act as an effective potential energy barrier, adding to the electrostatic potential V (x) = V (x, y = 0).
Hence, an electron that enters the constriction by population of the n-th transverse mode experiences an
effective 1D potential barrier given by

Vn(x) = V (x) + εn(x), (2.12)

involving a mode-dependent transmission probability Tn(ε). If the electron has enough energy to over-
come the effective barrier, i.e. ε(kx)>Vn(0), then the transmission is close to one. Otherwise the electron
is reflected in the vicinity of the classical turning point xt, where ε(kx)=Vn(xt), and the transmission is
close to zero. This situation is depicted in Fig. 2.2(b), where the electron’s energy is chosen such, that it
can transverse the constriction only via the mode n=1, while being reflected in n=2.

2.2.2 The conductance of quasi 1D systems

We are now in a position to write down an extension of the 1D conductance formula (Eq. (2.5)) to quasi
1D systems. Since every transverse mode provides a 1D transport channel with potential barrier Vn(x)

Vn(x)

V (x)

V1(x)

V2(x)

transport direction xtransport direction x
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Figure 2.2: 1D constriction and effective 1D potential: (a) Illustration of the constriction seen by
an incoming right-moving electron with wave vector kx. The grey-shaded areas mark regions
that cannot be entered by the charge carrier due to an applied electrostatic potential V (x, y),
leaving only a narrow adiabatic transport channel centered at y = 0. (b) In addition to the
electrostatic potential V (x, y = 0) (red line) an electron experiences a potential energy εn(x)
when entering the constriction via the n-th transversal mode. This leads to a 1D effective barrier
Vn(x) =V (x)+εn(x) (black lines). In order to traverse the bottleneck via the transport channel
n the charge carrier’s energy must exceed the height of the corresponding effective barrier,
ε(kx)> Vn(x = 0). In the scenario depicted here the electron will overcome the barrier when
entering the constriction via the n = 1 mode, but is reflected at the classical turning point xt,
when entering it via the n=2 mode.
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and transmission probability Tn(ε), the total conductance (for simplicity evaluated at B = T = Vsd = 0,
see Eq. (2.9)) is given by the sum of all channel’s contributions,

g =
∑

n

Tn(µ). (2.13)

Let us emphasize the peculiarity of this formula: The total number of electrons that enter the 1D con-
striction in a time unit is equally distributed among all transverse modes.

2.3 Experimental realization of low-dimensional systems

2.3.1 The 2-dimensional electron system (2DES)

Experimentally, the basis for the investigation of 1D properties is the so called two-dimensional electron
system (2DES). Here, electrons are free to move in two dimensions (x and y) but are trapped in the third
one (z), where they occupy the localized ground state mode only. 2DES can be realized in different
ways: A metal-oxide-semiconductor field-effect transistor (MOSFET) in inversion mode has a strongly
confined layer of electrons at the semiconductor-oxide junction [Pierret (1983)], some materials and
liquids (most prominent liquid helium) can confine electrons at their surface [Sommer (1964)], graphene
is facricated to be only one or few atomic layers thick [Geim (2009)]. In our nature publication [Bauer
et al. (2013)] the group of Stefan Ludwig uses a high-electron-mobility transistor (HEMT) to form a
2DES of high mobility. The probe includes a heterostructure, i.e. adjacent layers of two semi-conductor
materials with different band gaps, here undoped gallium arsenide (GaAs) and n-doped aluminum
gallium arsenide (AlGaAs). The small intermediate region (heterojunction) at the interface between
the two materials is characterized by a rectangular shaped potential minimum (on the GaAs side) - a
so called quantum well - , that hosts a discrete spectrum in the direction perpendicular to the layers.
Electrons drop from the AlGaAs layer into the quantum well and subsequently form a 2DES which
features a high electronic density of 1.9×1011cm−1.

The electronic movement in a 2DES is naturally subject to constraints due to lattice properties and
will be hindered by several factors: While electron-phonon scattering can be somewhat limited by cool-
ing the system, impurity scattering (e.g. at dopant atoms or imperfections) naturally sets a limit to the
mean free path of the electrons and thus on the mobility of the charge carriers. In order to guarantee
a systematic investigation of fundamental transport properties of low dimensional systems one has to
ensure quasi-ballistic transport by restricting the system size to below the mean free path. In 2DESs
formed within a GaAs/AlGaAs heterostructures the mean free path of the electrons is usually of the
order of several microns.

2.3.2 The quantum point contact (QPC)

Adding metallic gates on top of the heterostructure enables further restriction to the movement of elec-
trons within the 2DES. Applying negative voltage to these gates generates repulsive electrical force on
the charge carriers and leads to a local depletion of the 2DES underneath the gates. Electronic move-
ment in the 2DES is now constrained by an electrostatic potential landscape V (x, y), that is governed
by the shape of the gates and the strength of the voltage. The control of this potential via these external
metallic gates allows for a fine-tuning of the geometry of the resulting low-dimensional system.

The split-gate geometry

A particular simple arrangement is the split-gate structure, which is illustrated in Fig. 2.3(a). Two gates
(oriented along y) face each other some hundred nanometers apart. Applying the negative gate voltage
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Vg ≈−1V (volt) to them devides the 2DES into two electron reservoirs, usually referred to as the leads.
Electronic transport between these is now restricted to a short and narrow constriction in between the
gates - the quantum point contact (QPC) -, which harbors a discrete spectrum of transverse modes due
to its small extension in y direction (see Fig. 2.3(b) for an illustration of the electrostatic potential and the
transverse modes within the QPC).

Linear conductance of a QPC

Fig. 2.3(c) shows the first measurement of the linear conductance of a QPC as function of gate voltage
performed by van Wees et al. (1988). Increasing the gate voltage (in other words make it less negative)
widens the QPC as the influence of the gates on the 2DES weakens. This causes a decrease of the
transverse eigenenergies, such that one after another 1D effective barrier top Vn(0) is shifted from above
through the chemical potential, leading to a stepwise increase in linear conductance by GQ. Thus, the
measurement corroborates the prediction of Eq. (2.13) and is an impressive confirmation of Laudauers
transport theory in quasi 1D.
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Figure 2.3: Quantum point contact and the 0.7 anomaly: (a) Split-gate geometry: A negative volt-
age Vg, applied to two adjacent metallic gates, depletes the 2DES underneath and restricts elec-
tronic transport between the leads to the QPC. (b) A sketch of the electrostatic potential V (x, y)
of a QPC, including discrete eigenstates due to the small extension in transverse direction. In
the vicinity of the QPC’s center, x=y=0, the potential can be approximated by a saddle point
form with curvatures in transport and tranverse given by the two energy scales Ωx and Ωy, see
Eq. (2.14). (c) The linear conductance of a QPC as function of gate voltage features a staircase in
units of the conductance quantum GQ, the hallmark of transport in quasi 1D systems. The data
was taken from van Wees et al. (1988). (inset) The additional shoulder-like step in the linear
conductance of the lowest subband - the 0.7 anomaly - is interaction-induced and its origin still
subject to controversal discussions. The figure is taken from Thomas et al. (1996).
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The electrostatic and effective potential of a QPC

The electrostatic potential in the vicinity of the QPC’s center (x = y = 0) can be approximated by the
parabolic saddle point form

V (x, y) = V0 +
m

2~2
Ω2
yy

2 − m

2~2
Ω2
xx

2, (2.14)

where the height V0 is roughly linear in gate voltage Vg , while the curvatures Ωx and Ωy show only weak
dependence on Vg . This can be deduced from the almost constant step width and plateau length (the
former determined by Ωx, the latter by Ωy , see Sec. 3.1) over a significant range of gate voltage in the
staircase data of Fig. 2.3(c). In fact this form comes not as a surprise: The gates are usually far enough
above the 2DES (typically ∼ 100nm) to form a smooth potential landscape. As illustrated in Fig. 2.3(b),
their symmetric arrangement naturally causes a potential maximum in transport direction and a po-
tential minimum in transverse direction at the QPC’s center, x= y = 0, and a leading order expansion
directly yields Eq. (2.14). Its validity is guaranteed if higher orders contribute for |x| & ~/

√
mΩx and

|y| & ~/
√
mΩy only. We note, that the saddle point ansatz for the electrostatic potential of a QPC is

widely established and was used in a variety of theoretical works [e.g. Büttiker (1990), Sloggett et al.
(2008), Lunde et al. (2009)].

The transmission through a QPC

As a consequence of the separation of the space variables x and y in Eq. (2.14), the 1D effective barriers
of the transport modes of the QPC can be approximated by parabolic potentials

Vn(x) = Vc,n + µ− m

2~2
Ω2
xx

2, (2.15)

where the actual height, Vc,n=V0+εn − µ (here measured w.r.t. the chemical potential µ), is determined
by the transverse quantum harmonic oscillator eigenenergy εn = Ωy(n + 1/2). In Sec. 3 we present
detailed calculations for transport through such a quadratic geometry both in the absence and presence
of electron-electron interactions. In particular, one finds (Sec. 3.2.1 and e.g. Büttiker (1990)) that the
transmission through a parabolic barrier is given by a smooth step function, whose width is determined
by the curvature of the potential,

Tn(ε) =
1

1 + exp (2π(−ε+ Vc,n + µ)/Ωx)
. (2.16)

By plugging this expression into the conductance formulas, Eqs. (2.8)-(2.11), we make noninteracting
predictions for the conductance of the lowest subband (n= 1) of a QPC below (Sec. 2.4) and compare
these to experimental data. This facilitates the identification of interaction-induced features and pro-
vides further insight into the physics of a QPC.

2.4 The 0.7 anomaly

In addition to the (by noninteracting theory predicted) quantized conductance plateaus at integer values
of GQ the data held a surprise for van Wees et al: The onset of the first plateau featured an additional
shoulder-like step around g ' 0.7. At that time they attributed this unexpected and anomalous linear
conductance behavior to an impurity effect and decided to show the data for the second and higher
subbands [Kouwenhoven (2002)]. Nevertheless one can see an intermediate plateau forming at the left
edge of Fig. 2.3(c).
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It took eight years to fully realize that the occurence of this feature had not just been coincidence.
One of the first works addressing the peculiar shoulder directly is Thomas et al. (1996); after “having
observed this feature in many 1D constrictions” they concluded that it is an “intrinsic property” of
narrow QPCs and worth further study. The inset of Fig. 2.3(c) shows a zoom-in on the first conductance
step at intermediate temperatures. The linear conductance shows a distinctive shoulder-like step - the
0.7 anomaly.

As a result of this remarkable finding experimentalists started to investigate the transport properties
of narrow QPCs, tuned into the regime of the first conductance step, in more detail. They found a
plethora of subsequent features, all of which seem to have a common interaction-induced origin and are
collectively referred to as 0.7 anomaly. Here, we present some of the most prominent characteristics of
this anomaly. In order to illustrate what is commonly meant by the phrase “anomalous”, we compare
measurements to noninteracting predictions, where the electrostatic QPC potential is assumed to be of
saddle point form (Eq. (2.14)), so that the lowest subband features an effective 1D parabolic potential of
height Vc=Vc,1 (Eq. (2.15)). For a further in-depth topical review of experimental results and theoretical
attempts at an explanation for the 0.7 anomaly we refer to Micolich (2011).

2.4.1 Evolution of the 0.7 anomaly with magnetic field

One of the key features of the 0.7 anomaly is its evolution with an increasing magnetic field ~B. In
order to avoid coupling to the orbital motion of the electrons, which would involve orbital effects, the
field is oriented in the plane of the 2DES, Bz = 0. Hence, it couples to the spin degree of freedom of
the charge carriers only and can be described by a Zeeman term. The noninteracting conductance at
finite field, but T = Vsd = 0, can be calculated with Eq. (2.10), which predicts a symmetric splitting of
the conductance step into two spin resolved sub-steps, see Fig. 2.4(a), separated by the Zeeman energy
∆E = gµBB, where g is the material dependent bulk g-factor and µB the Bohr magneton. The physical
mechanism for this behavior is quite simple: A finite magnetic field lifts the spin degeneracy of the
transverse modes; each two modes that formerly (at B= 0) belonged to the same energy level are now
spin-polarized, separated by ∆E and successively populated/depopulated upon increasing/decreasing
the gate voltage. This causes a doubling of steps in the staircase.

A typical measurement of the magnetic field dependence of the lowest linear conductance step
(Fig. 2.4(b) presents conductance measurements of a QPC embedded in a GaAs-AlGaAs heterostruc-
ture performed by Koop et al. (2007)) shows several trends that cannot be explained by noninteracting
theory: While the step indeed develops into two sub-steps with increasingB it does so in striking asym-
metric fashion: On the one hand the shape of the conductance in the pinch-off regime (g<0.5) is hardly
affected by the field. On the other hand, the sub-open regime (0.5<g<1) features a strong negative mag-
netoconductance, which conveys the impression that the 0.7 anomaly develops “from above” into the
spin-resolved conductance steps. In addition, the energetic splitting of the transverse modes is found
to be much larger than expected. In fact, the literature shows several mentionings of g-factor enhance-
ments of up to a factor of 6 [Thomas et al. (1998), Koop et al. (2007)]. Since the 0.7 anomaly at zero
magnetic field looks like a remnant of the spin-split scenario at large fields Thomas et. al. speculated
that it might be attributed to spontaneous spin polarization which exists in the QPC even in absence of
an applied magnetic field. An experimental study that argues to have found further evidence for spin
polarization at zero field is given by Rokhinson et al. (2006), a theoretical model promoting this picture
is presented by Wang and Berggren (1998).

2.4.2 Evolution of the 0.7 anomaly with temperature

The most prominent manifestation of many-body physics in a QPC is revealed by measurements of the
temperature dependence of the lowest conductance step. As in the case of magnetic field we consider the
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Figure 2.4: Magnetic field dependence of the first conductance step: (a) The noninteracting conduc-
tance of a parabolic barrier as function of barrier height Vc (corresponding to gate voltage Vg,
see Eq. (2.15)) for several values of magnetic field B. Upon increasing the magnetic field, spin
degeneracy of the system is lifted, resulting in a symmetric double step of widthB (the conver-
sion factor g·µB is absorbed in the magnetic field). (b) Measurement of the linear conductance
of a QPC embedded in a GaAs-AlGaAs heterostructure performed by Koop et al. (2007). Upon
increasing the magnetic field, the 0.7 anomaly develops from above into the spin-resolved con-
ductance steps. Analysis of the sub-band splitting reveals an interaction-induced enhancement
of the g-factor.

single particle situation first, see Fig. 2.5(a): According to Eq. (2.8) we expect finite temperature to smear
out the conductance step by convolution of the transmission with the derivative of the Fermi function; at
nonzero temperature a fraction of the charge carriers is excited to energies above the chemical potential,
which in turn leaves some states below µ unoccupied. This predicts an increase of conductance in
the pinch-off regime (g < 0.5) and a decrease of conductance in the sub-open regime (g > 0.5). This
smearing of the conductance step should happen in symmetric fashion, i.e. the increase and decrease of
conductance below and above the inflection point, Vc,1 =µ, should be identical.

Fig. 2.5(b) presents a typical measurement of the evolution of the first conductance step with increas-
ing temperature. The experiment was performed in a QPC defined by split-gates within a GaAs-AlGaAs
heterostructure by Thomas et al. (1996) and reveals striking discrepancies from the noninteracting pre-
diction: While the conductance indeed decreases in the sub-open regime (and in fact much stronger
than expected in absence of interactions), the pinch-off regime hardly reacts on the finite temperature.
This feature is certainly very surprising and seems to counteract common physical intuition about what
temperature usually does (namely to broaden structures, see above). While the anomalously strong re-
duction of conductance with temperature in the sub-open regime is considered the main feature of the
0.7 anomaly , we want to emphasize, that the unusual lethargy of the step’s onset concerning temperature
is not less spectacular.
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Figure 2.5: Temperature dependence of the first conductance step: (a) The noninteracting conduc-
tance of a parabolic barrier as function of barrier height Vc (corresponding to gate voltage Vg,
see Eq. (2.15)) for several values of temperature T . Upon increasing the temperature, the con-
ductance step is smeared out symmetrically on a scale set by T . (b) Measurement of the linear
conductance of a QPC embedded in a GaAs-AlGaAs heterostructure performed by Thomas
et al. (1996). In the region of the 0.7 anomaly the conductance is anomalously strong suppressed
by temperature. This invokes a pronounced shoulder-like step at intermediate temperatures of
∼1K, which represents the most prominent distinctive feature of the 0.7 anomaly. Note that the
step is even more emphasized due to an unexpectedly weak reaction of the pinch-off conduc-
tance on temperature.

2.4.3 The zero-bias anomaly (ZBA)

Another famous feature of a narrow QPC appears in its differential conductance g(Vsd) = dJ/dVsd.
Fig. 2.6(a) shows the noninteracting differential conductance for several gate voltages corresponding
to different positions within the first linear conductance step. According to Eq. (2.11) noninteracting
theory predicts a peak at zero bias, Vsd=0, for the differential conductance in the sup-open regime and
a dip for the differential conductance in the pinch-off regime. For large bias voltages the differential
conductance is expected to saturate at g(Vsd)=0.5.

Fig. 2.6(b) shows the corresponding experimental data from a measurement performed by Cronen-
wett et al. (2002). In contrast to the single-particle prediction the differential conductance features a
narrow zero-bias peak (ZBP) throughout the whole spectrum of linear conductance, 0<g<1, which can
be subject to splitting in a magnetic field [Sarkozy et al. (2009), Ren et al. (2010)]. In addition, a saturation
at large bias is usually observed at g(Vsd)'0.25 [Chen et al. (2008)]. Since a ZBP is one of the key features
of a quantum dot in the Kondo regime [van der Wiel et al. (2000)], the 0.7 anomaly was associated with
the formation of a local moment in the QPC [Rejec and Meir (2006)].
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Figure 2.6: Source-drain voltage dependence of the first conductance step: (a) The noninteracting
differential conductance of a parabolic barrier as function of bias voltage Vsd for several bar-
rier heights Vc (corresponding to gate voltage Vg, see Eq. (2.15)). The differential conductance
features a peak/dip in the sup-open/pinch-off regime at zero bias, Vsd = 0. For large bias
voltages it saturates at g(Vsd) = 0.5. (b) Measurement of the differential conductance by Cro-
nenwett et al. (2002), realized within a GaAs-AlGaAs heterostructure QPC. A narrow zero bias
peak shows up over the whole range of gate voltages that correspond to the first conductance
step. It is usually accompanied by finite-bias side peaks (here around |Vsd|'0.7mV). For large
voltages, the differential conductance tends to saturate at values g(Vsd) ' 0.25.

2.4.4 Additional features

The presence of a many-body interactions in a narrow QPC manifests itself in various other transport
and local thermodynamic properties. We list some notable measurements here, but make no claim of
completeness. DiCarlo et al. (2006) report an asymmetric shot noise factor, that is anomalously reduced
relative to its noninteracting value when a QPC is tuned in the regime of the 0.7 anomaly. They attribute
their finding to a spin-gap, i.e. an energetic splitting of spin-up and spin-down states that grows linearly
with the density in the constriction. Compressibility measurements by Smith et al. (2011) show minima
associated with the 0.7 anomaly, indicating that the shoulder-like 0.7 anomaly might be accompanied
by a plateau-like feature in the density of a QPC as function of gate voltage. Appleyard et al. (2000)
report that the thermopower, i.e. the voltage induced by a finite temperature gradient between source
and drain, is almost constant in the regime of the 0.7 anomaly.

2.5 Conclusion and outlook

In this chapter we discussed general properties of fermionic transport through 1D systems. We saw
that the inverse proportionality between the electron’s velocity and the LDOS involves a quantized
linear conductance. This peculiar property of 1D (and quasi 1D) systems is highlighted by the linear
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conductance staircase of a QPC. We introduced the 0.7 anomaly, an additional shoulder-like step in the
sub-open regime of the first subband linear conductance. Its existance at B = T = Vsd = 0, as well
as its anomalous evolution with those external parameters strongly suggests an interaction-induced
mechanism as its origin, which is, to date, still subject to controversial discussion. In order to investigate
a QPC in the regime of the 0.7 anomaly, we will continue this thesis by establishing a 1D model of a QPC
in the next section.
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Chapter 3

The origin of the 0.7 anomaly

In Sec. 2.3.2 we argue that the electrostatic potential of a typical QPC can be approximated by a saddle-
point form. As a result, the effective 1D barrier of a given subband features a parabolic barrier top

V (x) = Vc + µ− m

2~2
Ω2
xx

2, (3.1)

where the barrier height Vc is measured w. r. t. the chemical potential µ. In order to further validate this
conjecture we analyze linear conductance data from the group of Stefan Ludwig (Sec. 3.1): We introduce
the experimental setup (Sec. 3.1.1), which features a particularly high tunability of the QPC potential.
In Sec. 3.1.2 we investigate the shape of the conductance step of a higher QPC subband (n= 3), which,
as we argue, can be explained predominantly within noninteracting theory. This allows for a direct
comparison with exact numerical calculations. We show that the absence of Fabri-Perot oscillations in
the plateau and the smooth shape of the step are strong indications for the applicability of Eq. (3.1).
A subsequent comparison between the n = 1 and n = 3 conductance step in Sec. 3.1.3 reveals that the
influence of interactions on the shape of the lowest subband step (at B = Vsd = 0 and a temperature T
below all relevant energy scales) is mostly limited to the so-called “sub-open regime”, defined by linear
conductance values of 0.5.g.0.9.

In order to provide a detailed understanding for the physics of a parabolic barrier we discuss its
noninteracting properties in Sec. 3.2. We calculate transport through the barrier in Sec. 3.2.1. As in-
troduced in Eq. 2.16 the transmission features a smooth, symmetric step, centered at the barrier height
Vc+µ [Büttiker (1990)]. This explains the noninteracting conductance data shown in Sec. 2.4. A calcu-
lation of the local density of states of the barrier (Sec. 3.2.2) reveals a maximum just above the potential
barrier (which we term “van Hove ridge”), which is a remnant of the 1D van Hove singularity in a
homogeneous 1D system, smeared and shifted by the potential.

In Sec. 3.3 we introduce our interacting 1D model of a QPC (Sec. 3.3.1). We argue that many-body
effects in a QPC are described sufficiently well by short-ranged interactions in the vicinity of the barrier
center. In Sec. 3.3.2 we briefly introduce main concepts of the functional renormalization group (fRG)
and second order perturbation theory (SOPT), the two methods we use to treat those interactions. We
discuss advantages and disadvantages of both approaches and state their range of validity. In order to
illustrate why the effective strength of interactions in a QPC is governed by the LDOS at the chemical
potential in the barrier center we present a simple Hartree argument in Sec. 3.3.3. Finally, we show
results for the conductance of our interacting model of a QPC, that are in striking qualitative agreement
with experimental data by Stefan Ludwigs group. We argue that the 0.7-anomaly is due to the van
Hove ridge, which brings about an enhanced possibility of backscattering and a subsequent reduction
of conductance in the sub-open regime in the presence of interactions.
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3.1 Shape of the 1D effective barrier

In this section we analyze linear conductance data from an experiment performed by David Borowsky
and Enrico Schubert in the group of Stefan Ludwig. Here, this data serves as representative of general
properties of transport through a QPC. While some minor details might differ in other QPC geometries,
the major conclusions in that section still express universal properties of QPCs.

3.1.1 Experimental setup

Fig. 3.1(a) shows a linear conductance staircase from the Ludwig experiment. Their QPC is defined
by a gate structure of particular high tunability (see lower inset): Unlike in the usual split-gate setup
(Sec. 2.3.2), here a total of three pairwise adjacent gates manipulate the electrostatic potential in the
2DES via voltages Vc and Vs. An additional large global top-gate controls the chemical potential in the
vicinity of the gates and hence in the QPC. This setup is taylor-made to vary both the length and the
width of the constriction independently. In particular, it can be used for a fine-tuning of the electro-
static potential, in order to exclude spurious effects of geometry or impurities. All experimental results
for a QPC presented in our publications were measured within this setup. In the publication Heyder
et al. (2014) this probe was additionally used to study the crossover from a QPC with 0.7 anomaly to a
quantum dot featuring Kondo physics.

3.1.2 The parabolic 1D barrier

As we discuss in Sec. 2.2.2 the staircase can be explained within Landauer’s transport theory, i.e. with-
out considering interactions. This is particularly true for a wide QPC, where the charge carriers can
somewhat avoid coming too close within the constriction and where screening, i.e. the rearrangement
of charge in order to counteract interactions, is strong due to the population of several transport modes.
Here, traversing electrons are mostly unhampered by the presence of other electrons in the QPC (inter-
action effects will mostly manifest in an overall Hartree shift of the higher conductance steps). Hence,
the shape of the linear conductance of higher subbands (unlike the first step, which features strong
electron-electron interactions in the form of the 0.7 anomaly) is reasonably well approximated by nonin-
teracting theory 1. Since single-particle transport through an arbitrary shaped 1D potential barrier can
be calculated exactly using numerically, this provides an opportunity to learn more about the geometry
of the 1D effective barrier in a QPC: Fig. 3.1(b) shows the linear conductance step of the n= 3 subband.
It exhibits a smooth step and a flat plateau as function of gate voltage Vg . Since the temperature of the
electrons in the 2DES is extremely low (T ∼ 30mK), this curve is basically identical to the hypothetical
zero temperature case. In Fig. 3.1(c) we show the noninteracting conductance of various 1D potential
geometries, defined via their leading order p around the barrier top,

V (x) = Vc + µ− Ωx

(
x

lx

)p
, (3.2)

with characteristic length lx = ~/
√

2mΩx. Note, that the potential broadens with increasing p, corre-
sponding to a flattening of the barrier top. While a parabolic barrier features a symmetric and smooth
conductance step - in beautiful agreement with the experimental measurement - all other geometries
exhibit conductance curves with Fabri-Perot type resonances in the plateau and somewhat skewed step
shapes. This simple analysis adds evidence to the assumption that the electrostatic potential of “our”

1We note, that weaker manifestations of the 0.7 anomaly have been observed in higher subbands also. Still, they
are observed somewhat less frequently, thus not contradicting with our general argument.
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Figure 3.1: Shape of conductance step and sub-open regime: (a) Measurement of the linear conduc-
tance by the Ludwig group. The data features both the typical linear conductance staircase as
well as a weak 0.7 anomaly in the conductance of the first subband. The lower inset shows the
gate structure of the probe, defining the QPC. Six pairwise adjacent gates allow for a particu-
larly high tunability of the electrostatic potential. An additional global top-gate can be used to
manipulate the chemical potential in the QPC region. The upper inset shows a comparison be-
tween the n=1 and n=3 step, highlighting the interaction-induced modulation of conductance
in the sub-open regime. (b) A zoom-in on the smooth n= 3 linear conductance step. (c) Lin-
ear conductance as function of barrier height Vc, calculated for several potentials defined via
Eq. (3.2). Comparison with (b) corroborates the picture, that the effective 1D potential features
a parabolic (p=2) barrier top.

QPC is of saddle-point form and, in particular, supports the subsequent picture that its 1D barrier is
parabolic near the center.

Let us close this section with some conclusive remarks: Under certain circumstances QPCs can fea-
ture non-parabolic 1D barrier tops aswell. This can happen both in very short and very long QPCs
(detailed discussion can be found in Heyder et al. (2014)) or in consequence of a nearby impurity, which
influences the shape of the electrostatic potential beyond control. We argue, though, that properties
of interaction-induced signatures should be investigated preferably in QPCs that are tuned to feature
a parabolic barrier top, where the noninteracting linear conductance is a smooth function of gate volt-
age without any resonances. This allows for a clear distinction between single-particle and many-body
physics and facilitates the search for the underlying mechanisms. Measurements in different geometries,
where Fabri-Perot resonances show up even without interactions, can cause misleading conclusions con-
cerning the origin of signatures in the conductance. For a further in-depth analysis on the implication
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of the QPC’s geometry on both transport and local properties we refer to our publication Heyder et al.
(2014).

3.1.3 The distinctiveness of the sub-open regime

Upon narrowing the QPC (by decreasing the gate voltage) the influence of many-body processes on its
physics increases; particles are now forced to come closer as they traverse the QPC, feeling their mutual
presence more and more. In fact, explicit calculations show [Lunde et al. (2009)], that the effective
strength of interactions scales as 1/ly within a saddle-point potential2. Interactions manifest particularly
strong in a QPC narrowed down to a width where only one mode contributes to the conductance. Here,
in the lowest subband, they cause the 0.7 anomaly. But even in an almost pinched-off QPC, we find
that most of the measured conductance curve, at B = Vsd = 0 and sufficiently small T , seems to be in
agreement with noninteracting theory and that interactions modify the shape of g primarily at the onset
of the first step. To illustrate this point we compare the measured conductance of the n = 1 (where
the QPC is narrow and interactions are “strong”) and the n= 3 subband (where the QPC is wide and
interactions are “weak”) in the inset of Fig. 3.1(a). For best comparison we shifted the two curves in gate
voltage to conincide near g = 0.5. The n= 1 conductance features a weak 0.7 anomaly due to electron-
electron interactions, which is clearly absent in the conductance of the wider QPC . Yet, the overall
shape of both conductance steps is remarkably similar and the many-body feature in the first subband
is somewhat limited to the sub-open regime (0.5.g.0.9), where it can be interpreted as an interaction-
induced reduction of the noninteracting conductance curve, caused by the strong confinement of the
QPC’s geometry. Of course, phenomena caused by interactions can survive until deep in the pinch-off
regime (g� 0.5, see Sec. 2.4), but the modulation of conductance even at negligible excitation energies
highlights the sub-open regime as the home of the 0.7 anomaly.

In order to understand why the sub-open regime of the first conductance step plays a distinctive
role in the transport through a QPC, we continue by applying the following strategy: We investigate
the physics of a parabolic barrier in absence of interactions first (Sec. 3.2) and add interactions on a
later stage (Sec. 3.3). Such a procedure allows to distinguish many-body effects from the more “trivial”
single-particle physics and helps to classify the role of interactions in detail.

3.2 Non-interacting physics of a parabolic barrier

Predictions of noninteracting theory are important benchmarks for experiments in a QPC; in order to
identify a measured effect as interaction-induced it is essential to first eliminate the possibility that an
explanation within noninteracting theory exists. Otherwise one might draw incorrect conclusions about
the origin of a feature. Hence, we devote this section to the single-particle physics of a parabolic barrier,
with the goal to provide both understanding and intuition for the underlying mechanisms.

We present analytic derivations for noninteracting transport (Sec. 3.2.1) and local properties (Sec. 3.2.2),
highlighting the transmission through the barrier (Eq. (3.10)) and the local density of states (LDOS) of the
barrier (Eqs. 3.14-3.15). The transmission is a smooth function of energy, as also discussed in Sec. 2.3.2
and Sec. 3.1.2. The LDOS exhibits a maximum in the sub-open regime at the chemical potential as func-
tion of barrier height Vc [Sloggett et al. (2008)]. We will see in Sec. 3.3 that this structure is responsible
for the anomalous conductance reduction that occurs in the presence of interactions.

To determine analytic expressions for physical quantities we use the following strategy: We solve
the Schrödinger equation of the parabolic barrier Hamiltonian. The corresponding eigenstates describe
left-, and right-moving electrons, that are subject to scattering at the potential. We present an asymptotic

2Their result is somewhat preliminary though as they did non include screening.
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decomposition of the states in terms of an incident, a reflected and a transmitted partial wave [Bohr and
Mottelson (1998)]. This representation then allows for a calculation of all desired physical quantities.

3.2.1 The non-interacting transmission and conductance of a parabolic barrier

Here, we calculate noninteracting transport through a quadratic barrier, which is parametrized as in
Eq. (3.1). We determine the transmission through the barrier, which then allows for a calculation of the
conductance g(B, T, Vsd) via Eqs. (2.9)-(2.11).

In a classical, deterministic world the transmission would be a simple step function,

Tcl(ε) =

{
1, if ε>Vc

0, else.
(3.3)

In particular, Tcl(ε) is determined by the potential height only and does not depend on the detailed
shape of the barrier. In a quantum world, however, the barrier shape causes distinctive features in the
transmission: Here, incident waves are subject to energy-dependent scattering at the potential and the
resulting interference effects drastically change the transmission w. r. t. the simple classical case. We will
now specify this for a parabolic barrier.

The physics of the quadratic potential barrier is described by the 1D Hamiltonian

H0 = − ~2

2m
∂2
x + V (x) = − ~2

2m
∂2
x + Vc + µ− m

2~2
Ω2
xx

2. (3.4)

Its geometry is defined by two scales: The energy Ωx (defining the potential’s curvature) and the har-
monic oscillator length lx = ~/

√
2mΩx. Hence, a particle with large effective mass m sees a “short”

barrier and vice versa. In order to keep notation clear we introduce the dimensionless position, barrier
height and energies

x̃ = x/lx,

Ṽc = Vc/Ωx,

ε̃ = (ε− Vc − µ)/Ωx,

ε̃µ = (ε− µ)/Ωx, (3.5)

Note that we measure the energy ε̃ w. r. t. the barrier maximum and the energy ε̃µ (similar to the
barrier height Ṽc) w. r. t. the chemical potential. The former simplifies the notation within the following
calculations, since the barrier height determines the energy-dependence of the eigenfunctions of the
Hamiltonian, Eq. (3.4). The latter proves useful, as the linear conductance (Eqs. (2.8)-(2.10)) is governed
by particles with energy at (for temperature T =0) or close to (for T 6=0) the chemical potential.
The eigenfunctions ψ(ε̃, x̃) of the normalized Hamiltonian H̃0 = H0/Ωx are given as solutions of the
time-independent Schrödinger equation

[∂2
x̃ +

1

4
x̃2 + ε̃]ψ(ε̃, x̃) = 0. (3.6)

The parabolic potential describes an open structure, which does not confine electronic states to a finite
region. Hence, the eigenstates of H̃0 form a continuous energy spectrum and are scattering states which
cannot be normalized in the usual sense (in contrast to bound states in a confining geometry). Yet, we
show in Sec. 3.2.2, that one can impose a normalization by semi-classical arguments, which then allows
for an exact calculation of the LDOS of the system.
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Eq. (3.6) is known as Weber differential equation. Its solutions are given by

ψR(ε̃, x̃) = c(ε̃)D(−1/2− iε̃, eiπ/4x̃),

ψL(ε̃, x̃) = c(ε̃)D(−1/2 + iε̃, eiπ3/4x̃), (3.7)

where D(a, z) is the parabolic cylinder function3 and c(ε̃) is an energy-dependent prefactor (once again,
c(ε̃) must be fixed in order to calculate local properties of the system, see Sec. 3.2.2 below). The upper
solution of Eq. (3.7) describes scattering states incident from the left (right movers ψR), and the lower
solution scattering states incident from the right (left movers ψL). As a consequence of the symmetry of
the potential barrier in real space, V (x̃)=V (−x̃), the two solution are related to each other by ψR(ε̃, x̃) =
ψ∗L(ε̃,−x̃), where the superscript ∗ denotes the complex conjugate. This symmetry allows us to discuss
all properties of the potential barrier in terms of the right movers only and refrain from an additional
discussion of the left movers.

Since the right-moving wave function in Eq. (3.7) is a scattering state it is possible to decompose it
in an incident wave φinR (ε̃, x̃), a reflected wave φreR (ε̃, x̃) and a transmitted wave φtrR (ε̃, x̃). In fact one can
find an asymptotic representation [Bohr and Mottelson (1998)] of the parabolic cylinder function

lim
x̃→−∞

ψR(ε̃, x̃) = c(ε̃)[φinR (ε̃, x̃) + φreR (ε̃, x̃)],

lim
x̃→∞

ψR(ε̃, x̃) = c(ε̃)φtrR (ε̃, x̃), (3.8)

with

φinR (ε̃, x̃) = − (2π)1/2

Γ(iε̃+ 1/2)
|x̃|iε̃−1/2 exp

(
−πε̃

4
+

7iπ

8
+
i

4
x̃2

)
,

φreR (ε̃, x̃) = |x̃|−iε̃−1/2 exp

(
−3πε̃

4
+

3iπ

8
− i

4
x̃2

)
,

φtrR (ε̃, x̃) = x̃−iε̃−1/2 exp

(
πε̃

4
− iπ

8
− i

4
x̃2

)
. (3.9)

Here, Γ(z)=(z− 1)! is the Gamma function. These forms can be obtained by a Wenzel-Kramer-Brillouin
(WKB) approximation, which becomes exact in the asymptotic limit |x̃|→∞. The physical interpretation
for the representation in Eq. (3.9) is straightforward: A right-moving incident wave is scattered at the
potential barrier, leading to a reflected and a transmitted partial wave. This situation is depicted in
Fig. 3.2(a) for a scattering state with energy close to ε̃= 0 (i.e. close to the barrier height). Although we
have not yet fixed the prefactor in Eq. (3.7), we can now calculate the transmission probability, which is
simply given by the fraction of the transmitted waves’ and the ingoing waves’ modulus squared,

T (ε̃) =
|φtrR (ε̃, x̃)|2
|φinR (ε̃, x̃)|2 =

|Γ(1/2 + iε̃)|2
2π

exp(πε̃) =
exp (πε̃)

2 cosh(πε̃)
=

1

1 + exp(−2πε̃)
. (3.10)

Hence, the transmission through a parabolic barrier, plotted in Fig. 3.2(b), has the functional form of a
Fermi distribution function with “temperature” Ωx/(2π), defining the step width. In comparison to the
classical case (Eq. (3.3), dashed line in Fig. 3.2(b)) the transmission is reduced for ε̃ > 0 (ε̃µ>Ṽc), due to
“above the barrier” scattering, and enhanced for ε̃ < 0 (ε̃µ< Ṽc), where quantum mechanical tunneling
is possible. The classical case is reproduced in the limit Ωx → 0.

We use Eqs. (2.9)-(2.11) to calculate the conductance as function of the barrier height Ṽc, for external
parameters magnetic field B̃ = B/Ωx, temperature T̃ = T/Ωx and source-drain voltage Ṽsd = Vsd/Ωx.

3see e.g. http://mathworld.wolfram.com/ParabolicCylinderFunction.html
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Note, that T (µ) = T (ε̃ = −Ṽc), since that implies ε̃µ = 0. The results are shown in Fig. 3.2(c). For a
detailed discussion we refer to Sec. 2.4, where these calculations serve as comparison to the data of
various measurements.
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Figure 3.2: Noninteracting transport through a quadratic barrier. (a) Scheme of scattering at a
quadratic potential barrier. The solution of the Schrödinger equation (Eq. (3.7)) can be decom-
posed into an incident, a reflected and a transmitted wave (Eq. (3.9)). (b) Energy-dependent
transmission through the parabolic barrier (Eq. (3.10)). Quantum effects smear out the classical
transmission function (dashed line) in symmetric fashion on a scale set by the potential curva-
ture Ωx. (c) The evolution of the noninteracting conductance of a parabolic barrier as function
of gate voltage Ṽc = Vc/Ωx with magnetic field B̃ =B/Ωx, temperature T̃ = T/Ωx and source
drain voltage Ṽsd=Vsd/Ωx, calculated via Eqs. (2.8)-(2.11). For a detailed discussion see Sec. 2.4.
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3.2.2 The noninteracting LDOS of a parabolic barrier

Next, we turn the discussion to local properties of a parabolic barrier. We calculate and discuss the local
density of states of the system, thereby placing special focus on energies close to the barrier top (|ε̃| .Ωx)
and positions in the vicinity of the barrier center (|x̃| . lx).

Again, let us briefly consider the situation in a classical world: Upon heading towards the barrier
center a classical particle slows down as its kinetic energy converts gradually into potential energy.
In the process, the velocity of the particle is purely determined by the local height of the potential,
vcl(ε, x) =

√
2(ε− V (x))/m. In particular, the particle stops at the barrier top, if its energy coincides

with the barrier height.
We will now discuss how the situation changes in a quantum world. In order to calculate the LDOS

of the system, we have to fix the energy-dependent prefactor of the scattering state in Eq. (3.7). Let
us make some considerations first: The wave nature of a quantum state is especially of physical sig-
nificance, if the wave is subject to interference; for instance, the physical properties of a plane wave
in an infinite homogeneous system (V (x) = 0) can be described within classical theory by appropriate
correspondence. This involves, that the local density of states of the homogeneous system is inverse
proportional to the velocity of a classical particle, LDOShom(ε) = 2/(h vcl(ε)). This correspondence
looses validity upon breaking translational invariance by adding an arbitrary potential V (x) 6= 0. The
wave is now subject to scattering and subsequent superposition and interference modify the LDOS in
such a way that a description in terms of the classical velocity is clearly insufficient. In fact it is this
scattering which makes the task to find the proper prefactor somewhat non-trivial, since this situation
clearly applies to the scattering state of the parabolic barrier. An elegant way to nevertheless use the cor-
respondence between classical velocity and quantum mechanical LDOS is provided by Eq. (3.9). Here,
the scattering state is represented by an asymptotic decomposition into an incident, a reflected and a
transmitted wave. Each of these describes a single propagating wave with definite direction, which
is therefore not subject to interference and superposition. In particular, the incident wave (unlike the
full scattering state) can be associated with a classical velocity, which then corresponds to a quantum-
mechanical local density of states

LDOSin(ε, x) =
2

hvcl(ε, x)
. (3.11)

Note that this is now true even in the presence of the finite potential barrier, since we “eliminated”
interference by the decomposition. This consideration provides us with a direct way to calculate the
full LDOS of the system: If we demand, that the modulus squared of the incoming wave is identical to
LDOSin(ε, x) (thereby fixing the prefactor), then the scattering states’ modulus squared will evidently
describe the LDOS of the full quantum mechanical system, including all modulations due to scattering
at the barrier and consequential superposition. Since Eq. (3.9) provides an exact expression for the
incident wave in the asymptotic limit, x̃ → −∞, we have (for simplicity expressed in the natural units,
see. Eq. (3.5))

lim
x̃→−∞

|c(ε̃)|2|φinR (ε̃, x̃)|2 !
= lim
x̃→−∞

LDOSin(ε̃, x̃) = lim
x̃→−∞

1

2π

√
1

ε̃+ 1/4x̃2
=

1

πx̃
. (3.12)

Inserting the explicit form of the incident wave yields

|c(ε̃)|2 =
eπε̃/2

2π cosh(πε̃)
. (3.13)

We use Eq. (3.13) to write down the analytic expression for the LDOS of the full system (note that we
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have to include the left-movers as well to have the complete set of eigenstates):

LDOS(ε̃, x̃) =
1

2

[
|ψR(ε̃, x̃)|2 + |ψL(ε̃, x̃)|2

]
=

1

2

[
|ψR(ε̃, x̃)|2 + |ψR(ε̃,−x̃)∗|2

]

=
eπε̃/2

4π cosh(πε̃)

(∣∣∣D(−1/2− iε̃, eiπ/4x̃)
∣∣∣
2

+
∣∣∣D(−1/2 + iε̃, eiπ3/4x̃)

∣∣∣
2
)
. (3.14)

Fig. 3.3(a) shows the noninteracting LDOS in the vicinity of the barrier center for energies close
to the potential top. It features a ridge-like (black) structure just above the barrier. This “van Hove
ridge” can be interpreted as remnant of the one-over-square-root divergency (van-Hove singularity) in
a homogeneous system (or likewise as a scattering-induced modification of LDOSin), which is smeared
out by the inhomogeneity of the potential barrier (see Fig. 3.3(c) for an illustration for the case x̃ =
0). Its maximum, ε̃max(x̃), is shifted w. r. t. the potential on an energy scale set by the curvature Ωx.
For energies below the barrier top (ε̃ < 0) the LDOS shows standing wave patterns, caused by the
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Figure 3.3: Local properties of a parabolic barrier. (a) The local density of states as function of
position and energy. The distinct “van Hove ridge” (black) is located just above the potential
barrier. (b) The LDOS, Aµ(Ṽc), as function of barrier height shows a maximum in the sub-open
regime corresponding to g≈ 0.8. This structure causes the anomalous conductance features at
finite interaction strength, known as 0.7 anomaly (see Sec. 3.3). The black dashed line shows
for comparison the corresponding classical time an electron spends in the vicinity of the barrier
center (in arbitrary units). (c) An illustration of the modification of the LDOS by the inhomo-
geneity. In the QPC’s center the LDOS is shifted and smeared by the potential barrier.
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interference of incoming and reflected wave. These features are absent for energies above the barrier
(ε̃ > 0). Here, single-particle scattering is exponentially supressed (see Eq. (3.10)) and the LDOS is
approximately given by Eq. (3.11).

Let us make a connection of this structure to transport through the barrier. The linear conductance is
determined by electrons within an energy intervall of width of the temperature, centered at the chemical
potential (see Eqs. (2.8)-(2.10)). This is easy to understand, since applying an infinitesimal source-drain
voltage will cause an imbalance between left and right-movers in said intervall. Additionally, the impact
of the barrier on traversing electrons is strongest in the vicinity of its maximum. Hence, it is particularly
instructive to investigate the LDOS in the center, x̃= 0, at the chemical potential, µ, for varying barrier
height, Ṽc. Evaluating Eq. (3.14) at x̃ = 0 provides the compact form

Aµ(Ṽc) := LDOS(−Ṽc, x̃ = 0) =
1

4
√

2π2
e−πṼc/2

∣∣∣Γ
(

1/4 + 1/2iṼc

)∣∣∣
2

, (3.15)

where the superscript indicates that we evaluate Eq. (3.14) at the chemical potential. Aµ is plotted
in Fig. 3.3(b) as function of gate voltage (green line). It features a maximum at Ṽc ≈ −0.2, which,
by comparison with the subsequent linear conductance g (blue line), is found to be positioned in the
sub-open regime, corresponding to a noninteracting linear conductance g ≈ 0.8 (see red dashed line).
Again, this peculiar structure has its origin in the van-Hove singularity of a homogeneous system, but
is smeared and shifted by scattering at the harmonic barrier.

3.2.3 Buildung a bridge to interactions

It is quite natural that the maximum of Aµ(Ṽc) in the sub-open regime has drastic influence on the
conductance upon turning on interactions; the large number of available states (or likewise the large
weight of those states) close to the chemical potential will increase the likelyhood of elastic and inelastic
scattering. Let us introduce a semi-classical intuitive picture to illustrate this point: The LDOS, Aµ(Ṽc),
can be interpreted as proportional to the time a traversing electron (with energy εµ = 0) spends in the
vicinity of the barrier center. This time determines how long (and therefore how strong) it is subject to
the local interactions close to x̃=0. Therefore, we expect a strong reaction on interactions for the barrier
heights Ṽc where Aµ(Ṽc) is large. Indeed, we show in Sec. 3.3, that the maximum of Aµ(Vc) in the sub-
open regime is decisive for the strong interaction-induced reduction of linear conductance (enhanced
backscattering), therefore lying at the heart of our interpretation for the 0.7 anomaly.

3.3 Physics of a parabolic barrier in the presence of interactions

The appearence of the 0.7 anomaly in the lowest conductance step of a QPC cannot be explained by
non-interacting theory. The anomalous reduction of conductance in the sub-open regime as function
of external parameters (B, T, Vsd) as well as the accompanying signatures in quantities such as shot
noise and thermo power must be attributed to many-body effects. Hence, in order to make specific
statements about the origin of the 0.7 anomaly we have to add interactions to our 1-dimensional QPC
model, Eq. (3.1).

3.3.1 Interacting Model

We describe the effect of interactions by an effective parameter U(x, x′), which represents the strength
of mutual interactions felt by two electrons situated at positions x and x′. When traversing the QPC
electrons are subjected to interactions particularly strong in the vicinity of the effective 1D barrier top.
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Here, the electronic density is low. This naturally limits the systems possibilities to counteract the effect
of interactions by a rearrangement of charge. In other word: Screening effects are rather weak around
x̃=0. This situation changes in the flanks of the QPC potential and especially in the homogeneous 2DES.
Here, the high electronic density enables rather effective screening. As a consequence electrons feel their
mutual presence only close to the barrier top and a short-ranged interaction should be a sufficient choice
for our model to capture the essential physics of the 0.7 anomaly.

The influence of interactions on the conductance of a QPC must be calculated numerically; an ana-
lytic ansatz is hardly feasible, as the inhomogeneity of the potential must be treated with due accuracy.
In particular, this makes calculation in real space inevitable. Since numerics cannot deal with the infinite
Hilbert space of a continuous system, we discretize the x-axis using the method of finite differences 4

and a set of grid points {xj}. The discretization is straightforward and details can be found in Heyder
(2014), where we discuss different discretization schemes in great detail. In second quantization the
discretized 1D model Hamiltonian is a tight binding chain

H0 =
∑

jσ

[Eσj njσ − τj(d†jσdj+1σ + h.c.)], (3.16)

with onsite energy Eσj = Ej−σB/2 = Vj + τj−1 + τj−σB/2, site-dependent hopping amplitude τj =

~2/(2ma2
j ), spacing aj=xj+1− xj and potential Vj = V (xj). Furthermore, djσ destroys an electron with

spin σ at the grip point xj and nj counts the number of electrons at xj . In order to make calculations
within an infinite system feasible we devide the chain into three parts: The inhomogeneity (Vj 6= 0) is
restricted to a finite region |j| ≤ N ′ (N ′ ≈ 100), which we call the “central constriction region” (CCR).
Here, the parabolic barrier of height Vc+ µ� Ωx drops smoothly to zero upon approaching |j| = N ′.
The influence of the homogeneous outer regions |j| > N ′ (the left and right lead) can be described by
the lead contribution to the CCR self energy, which is determined by standard projection method on the
CCR (see e.g. appendix A of Bauer et al. (2014)). This allows for an effective (and exact) description of
the system within the Hilbert space of the CCR only.

In order to investigate the physics of a QPC in the presence of interactions we add the interaction
term

Hint =
∑

j

Ujnj↑nj↓, (3.17)

where Uj is non-zero only within the CCR. Note, that we choose an onsite interaction, which is the most
extrem case of short-ranged interactions. This approach may well be justified by the above considera-
tions about screening. A treatment incorporating the effect of screening, while going beyond the scope
of this work, is nevertheless highly desirable and left for future studies. We find qualitative agreement
with longer-ranged calculations (in preparation), where the range of interactions is of orderO(lx) which
is usually about ten sites in our discretization scheme. Since interactions influence transport mainly
close to the barrier top, the qualitative nature of the results depends on the strength of interactions in
the vicinity of the barrier center rather than the overall functional form along the whole CCR. We choose
Uj=U to be constant apart from the outermost sites, where it drops smoothly to zero (similar to Vj).

3.3.2 Treatment of interactions

Since the effect of many-body physics in extended inhomogeneous systems, such as Eq. (3.16), cannot
be calculated exactly, this necessitates using approximation schemes, which, importantly, provide qual-
itatively reliable results and allow for a physical interpretation of the data. We calculate the influence

4see e.g. http://en.wikipedia.org/wiki/Finite_difference_method
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of interactions using two different perturbative approaches: (i) The functional renormalization group
(fRG) for calculations at T =Vsd=0 and (ii) second order perturbation theory (SOPT) for calculations at
finite excitations T 6= 0 or Vsd 6= 0. The former approach is discussed in detail both in our nature publi-
cation Bauer et al. (2013) and the subsequent technical paper Bauer et al. (2014). The latter is covered in
great detail in Heyder (2014) and the appendix of Bauer et al. (2013).

The functional renormalization group (fRG)

This section is mainly adressed to experts in diagramatics and/or functional field theory. Since fRG is
discussed in great detail both in our publications [Bauer et al. (2013), Bauer et al. (2014), Heyder et al.
(2014), Goulko et al. (2014)] and the overall literature [see e.g. Meden et al. (2002),Karrasch (2006), Jakobs
et al. (2010)], we restrict the discussion to a brief introduction to the main idea of fRG in the one-particle
irreducible (1PI) version. This requires background knowledge in Green’s and vertex function theory as
well as in many-body diagramatics.

In order to calculate physical properties of a many-body Hamiltonian H = H0 + Hint one has to
determine the interacting one-particle Green’s function, given by the Dyson equation

G = [G−1
0 − Σ]−1. (3.18)

The bare Greens function G0 depends on the noninteracting partH0 of the Hamiltonian only and can be
calculated with arbitrary precision (assuming the Hilbert space of H0 is not too large). This reduces the
problem to the calculation of the self-energy Σ =−γ1, where γ1 is the 1PI one-particle vertex function.
Furthermore, some physical quantities require additional calculation of n-particle Greens functions (n>
1), which in turn require information about the higher order n-particle vertex functions γn as well. In
most cases it is virtually impossible to calculate the γn’s exactly. Rather, they are given as infinite series
of 1PI diagrams. Exemplary, we show the lowest order (in the bare vertex) diagrams of the self-energy
and two-particle vertex, which are given as the sum of all 1PI diagrams with 2 and 4 amputated external
legs, respectively. Representing the bare interaction vertex by a black circle and the bare Green’s function
by a directed line, we have

= + + +Σ += +  ...

= + + +=γ2 + +  ...

1 1 1 1
1

1

1 1 1 1 1

1

1

21

2

21 1 1 1
12 2

2 21 1
1 1 12 2 2

2
2

(3.19)

where the composite indices 1, 2 (1′, 2′) carry all the quantum numbers and the time/frequency argu-
ment of the corresponding annihilation (creation) operator. To evaluate a diagram the arguments of
internal bare Greens functions are summed over. Generally, these series of diagrams cannot be cal-
culated accurately. Hence, one often relies on schemes that truncate them, if possible in a somewhat
controlled manner. As a simple example consider plain perturbation theory, where the truncation is
done strictly after a given order in the bare vertex. Other versions involve the summation of certain in-
finite sub-series, such as self-consistent Hartree for the self-energy, or the random phase approximation
(RPA) for the two-particle vertex.

fRG provides an alternative and very powerful approach: It introduces a parameter Λ into the bare
propagator, G0 → GΛ

0 . Obviously, this introduces a Λ-dependence in the vertex functions as well,
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γn → γΛ
n . In principle, the choice of Λ is arbitrary; it can be a physical parameter (like temperature,

magnetic field, voltage, etc.) or an arbitrary artificial quantity. In order to make use of this parameter,
it is important, that all γn’s are known at some initial value Λi, i.e. that all infinite vertex series can be
evaluated exactly for this special case. Note, that this requires perfect knowledge of a fully interacting
physical system, in case that Λ is a physical parameter.

In the next step the vertex functions are differenciated w. r. t. the parameter, dγΛ
n /dΛ. Importantly,

the structure of the vertex and Greens functions is such, that now the r. h. s. of every vertex series
derivative is a functional of up to one order higher vertex functions and single-particle propagators
(note that this implies that the diagramatic series of the derivative factorizes into vertex and Greens
functions):

dγΛ
n

dΛ
= F(Λ;GΛ

0 , γ
Λ
1 , . . . , γ

Λ
n+1). (3.20)

In the language of functional field theory this is owed to the fact that the generating functional of vertex
functions and the generating functional of connected Greens functions are related via a Legendre trans-
formation. For an explicit illustration of Eq. (3.20) by diagrammatic evaluation of dΣΛ/dΛ =−dγΛ

1 /dΛ
we refer to Appendix B of Heyder (2014), where the necessary steps are performed in some detail. Tak-
ing all n into account Eq. (3.20) is an infinite system of coupled differential equations for the n-particle
vertex function, the so called fRG flow equations. Note that these describe the exact vertices, since no
approximation has been carried out so far. In that sense, Eq. (3.20) can be regarded as a clever resum-
mation of the initial vertex series Eq. (3.19). Provided one has a proper initial condition at Λi, the full
theory is recovered at a final value Λf , where the physical parameter reaches the desired value or where
the artificial parameter vanishes by construction.

Of course, solving the full system of fRG flow equations is equally impossible to calculating the in-
finite vertex series of the form Eq. (3.19). Hence, one has to choose a truncation scheme within fRG as
well. This is usually done by setting γΛ

n>n′ =0, where n′ defines the “order” of truncation. This closes the
flow equations, yielding a system of coupled ODEs for the remaining non-trivial vertices γ1, ... , γn′ only,
which can be solved numerically be means of standard Runge-Kutta routines. Since a vertex γn carries
the quantum numbers of n creation and n annihilation operators, including 2n−1 independent times
or frequencies, its number of independent variables increases hugely with n. This usually demands a
truncation beyond second order, n′= 2, in almost all practical cases, including the treatment of interac-
tions in our QPC model, Eq. (3.16) and Eq. (3.17). The resulting two coupled differential equations for
the self-energy and the two-particle vertex have the diagrammatic representation

1

2

1

2

1 1

22

1 1

22

1 1

2 2

= + −d
dΛ

=11

11

d
dΛ

,

, (3.21)

where double lines indicate fully interacting Greens functions. The crossed out directed double line
represents the so called single-scale propagator, SΛ =GΛ∂Λ[GΛ

0 ]−1GΛ.
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Due to the discretization of real space in our interacting model the number of independent variables
of the two-particle vertex is O(N4N3

f ), where N=2N ′+1 is the number of sites within the CCR and Nf
is the number of discrete points per frequency used in the numerics. Since this is still far from feasible
with present computer power we employ an additional approximation, to be called coupled ladder
approximation (CLA) in frequency-, and real space. This scheme reduces the number of independent
variables of γ2 toO(N2Nf ), thereby being exact to second order in the bare interaction vertex. The CLA
is best described as a coupled RPA approach, where all vertex channels contribute on equal footing.
Technical details are presented in our paper Bauer et al. (2014).

After truncation, fRG is still a perturbative method. This implies that interactions should not be
too large (what that means in practice has to be determined from case to case individually) and that
the validity of the results must be checked carefully for the system in question. We find, that the CLA
yields reliable qualitative results at least up to interaction strengths of U = 3.5/(Ωxlx), where Ωx is the
curvature of the parabolic potential and lx the corresponding harmonic oscillator length (see Sec. 3.2.1).
In Sec. 3.4 as well as in Bauer et al. (2013), Bauer et al. (2014) and Heyder et al. (2014), we show that this
value is sufficient to generate a 0.7 anomaly.

Up to date our fRG approach is Matsubara-based, which limits reliable conductance results to zero
temperature and zero source-drain voltage, T = Vsd = 0. In order to calculate transport at finite ex-
citations one has to implement a Keldysh version of the fRG flow, which provides a number of non-
trivialities and is a subject of our recent studies.

Second order perturbation theory (SOPT)

Our fRG scheme is implemented for zero excitation energies only so far. Hence, all theoretical results at
T 6=0 and Vsd 6=0 within this thesis are SOPT calculations. This amounts to a truncation of the self-energy
and two-particle vertex series beyond second order in the bare vertex, which follows the idea of Oguri
(2001). While this approach is rather elementary, SOPT is nevertheless numerically very demanding
and, importantly, capable of capturing essential interacting physics of a QPC at finite excitation energies.
This is particularly true, since SOPT includes the second order Fock-diagram (the third diagram in the
Σ-series), which considers the effect of the LDOS via inelastic scattering events. We find that SOPT
produces qualitative reliable transport results up to about U = 2.5/(Ωxlx).

3.3.3 The effective interaction strength - a simple Hartree argument

In Sec. 3.2.3 we argued that the impact of interactions on transport through the system is closely related
to the LDOS at the chemical potential in the barrier center, Aµ(Ṽc). Here we want to further elaborate
on this point by discussing the effect of many-body processes to first order in the interaction parameter
U . In other words, we consider the first diagram in the self-energy series (Eq. (3.19)), which describes
Hartree type physics only. This provides intuition as to why the effective strength of interactions, i.e. the
measure how strongly the system is influenced by electron-electron processes, can be written as product
of the interaction parameter and the local density of states:

Ueff(Vc) = U × Aµ(Vc). (3.22)

Once again, we can interpret this result in a (somewhat loose but nevertheless instructive) semiclassical
picture in terms of the electron’s velocity: Slow electrons feel interactions particularly strong.

Let us make some considerations how interactions influence the propagation of a charge carrier in
the QPC: An electron that enters the QPC region sees not only the effective 1D barrier V (x) but in addi-
tion feels the presence of other electrons in the constriction. To first order in the interaction this amounts
to an enhancement of the barrier by the Hartree self-energy Σh(x)=n0(x)U due to the repulsive force of
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the noninteracting electronic density n0(x) (note that in similar manner the electrostatic QPC potential
is created by the electronic density in the metallic gates above the 2DES). The resulting potential

V h(x) = V (x) + Σh(x) (3.23)

is called the effective Hartree barrier (depicted in Fig. 3.4(a)). To first order transport is determined by
V h(x) rather than by the bare potential V (x). Let us calculate how the barrier height of the Hartree
potential, V hc = V h(0), evolves with the barrier height of the bare potential, Vc. Since an increase in Vc
decreases the noninteracting density in the barrier center (with growing barrier height more and more
electrons are pushed into the leads), we know that V hc increases less than Vc:

dV hc
dVc

=
d

dVc

[
Vc + Σh(0)

]
= 1 + U

dn0(0)

dVc
< 1. (3.24)

We evaluate the change in noninteracting density in the barrier center due to a potential shift, i.e. the
derivative on the r.h.s. of Eq. (3.24). Since the density is given by the energy integral over the LDOS (see
Eq. (3.14)) up to the chemical potential (for simplicity evaluated at temperature T =0),

n0(0) =

∫ −Ṽc

−∞
dε̃ LDOS(ε̃, x̃=0), (3.25)

its derivative w.r.t. Vc is just equal to the negative of the LDOS at the chemical potential in the barrier
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Ṽ
h c

Ṽc = Ṽ h
c
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Figure 3.4: The Hartree barrier: (a) Illustration of the bare (U=0) potential V (x̃) and the Hartree
potential V h(x̃) in the vicinity of the barrier top. The combination of finite density n0(x̃) and
finite interaction strength U causes an enhancement w. r. t. the bare barrier given by the Hartree
self-energy Σh(x̃)=n0(x̃)U . (b) The barrier height V h

c of the effective Hartree potential depends
nonlinear on the original barrier height Vc: Beyond pinch-off (Ṽc � 0), where all density is
pushed away from the QPCs center, both coincide independent from the value of U . Yet, in the
sub-open regime the dependence of V h

c on Vc descreases with increasing U . The plot shows
exemplary calculations for several values of the interaction parameter U .
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center. Hence, we find (from Eq. (3.24))

dV hc
dVc

= 1− U ·Aµ(Vc) = 1− Ueff(Vc). (3.26)

This is a logical, but nevertheless remarkable result which we illustrate in Fig. 3.4(b). A change in the
actual barrier height of the interacting system (to first order given by V hc ) with the bare barrier height is
strongly dependent on Vc via the LDOS,Aµ(Vc). This implies that V hc changes least quickly with Ṽc in the
sub-open regime. Note that this indirectly supports the picture of a weaker dependence of conductance
on Vc in the sub-open regime, in other words provides a possible mechanism for the formation of an
interaction-induced plateau-like structure even at B=T =Vsd=0.

It is important to note though, that not only the height of the potential, but of course also its over-
all geometry is influenced by interactions. Surely this includes a change in the barrier curvature Ωx,
which subsequently changes transmission and conductance. From this perspective the above calcula-
tion is insufficient to draw definite conclusions about the shape of the conductance in the presence of
interactions. Rather, we present it here to provide the reader with intuition, why the local density of
states Aµ(Ṽc) determines the interacting physics of a QPC via Ueff(Ṽc). Still, Hartree contributions are
of great importance for the physics of the 0.7 anomaly. In order to produce reliable results for the shape
of the conductance step in the presence of interactions, it is necessary to include them to all orders:
The density n0(x) within the QPC gives rise to an enhanced Hartree barrier, which in turn generates
a modified density n1(x) etc. This provides an infinite feedback loop and a self-consistency condition
for the Hartree density, ni+1(x) = ni(x). The number of iterations needed to fulfill this condition with
due accuracy depends sensitively on the value of Aµ(Ṽc) and thus sensitively on the barrier height. In
addition, successive orders usually show oscillatory behavior, meaning an alternating overestimate and
underestimate of interactions before convergence. Hence, truncation at low (or too low) orders leads to
an inconsistent description of interactions along the conductance step. Since Hartree contribution are
of particular interest for the physics at zero excitation-energy T = Vsd = 0, where inelastic scattering
(covered by Fock contributions) is forbidden, we refrain from drawing conclusions about the detailed
shaping of the zero temperature linear conductance curve from our SOPT results (in which Hartree con-
tributions are restricted to second order). In contrast, fRG provides a generic way to sum up Hartree
contributions to infinite order, hence allowing for an interpretation of the shaping of the T = Vsd = 0
conductance step.

After having presented a simple Hartree argument, which makes anomalous conductance bahavior
in the sub-open regime plausible, we now present fRG calculation for the linear conductance, which
show that our model is indeed capable of reproducing the features of the 0.7 anomaly.

3.4 Interacting conductance of a parabolic barrier - the 0.7 anomaly

Since all our results for the conductance and local properties of a parabolic barrier in the presence of
finite electron-electron interactions are discussed in detail in our various publications, collected in sub-
sequent chapters, we want to emphasize just one key features here: The U -dependence of the conduc-
tance, i.e. the evolution of the linear conductance step with increasing interaction strength at B=T =0,
which highlights the importance of the LDOS, Aµ(Ṽc), for the occurance of the 0.7 anomaly. The results,
calculated with fRG, are in beautiful agreement with the experimental data from the group of Stefan
Ludwig. For a further in-depth discussion of the U -dependence we refer to Bauer et al. (2013).

Fig. 3.5(a) shows the linear conductance step for several values of the interaction parameter U at
B = T = 0. In agreement with a Hartree picture (the presence of charge carriers in the barrier center
enhances the barrier w. r. t. the bare case, thus reducing the linear conductance, see Sec. 3.3.3) the con-
ductance curve is shifted towards smaller values of Vc. In addition, we find the step widening and its
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slope decreasing with increasing U . This happens in asymmetric fashion, featuring the formation of a
weak, shoulder-like structure in the sub-open regime (at the onset of the plateau) at intermediate inter-
action strength - the 0.7 anomaly. The position of this structure coincides with the maximum of Aµ(Ṽc),
the local density of states in the barrier center at the chemical potential, which is plotted in Fig. 3.5(b)
for the same values of U . This corroborates the importance of the LDOS for the interaction-induced fea-
tures in the conductance of a QPC: The high local density of states at the chemical potential in the barrier
center indicates a high cross section for elastic and (at finite T or Vsd) inelastic scattering events. This
leads to an enhanced probability of backscattering, causing a strong decrease in the transmission proba-
bility through the barrier and a subsequent strong supression of conductance in the sub-open regime as
function of various external parameters. It is remarkable that the seed for this behavior is found in the
noninteracting physics of a QPC, namely the noninteracting LDOS given by Eq. (3.15), which strongly
amplifies the effect of interactions.

In Fig. 3.5(c)-(d) we compare noninteracting and interacting conductance curves from theory and
experiment. In accordance with the discussion in Sec. 3.1.2 we assume, that the shape of the third step

U/(Ωxlx)

0

1

0
0.4
1.2
2.0
2.8
3.6

3.6

L
D

O
S

(µ
,0

)
·Ω

x
l x

0

0.3

0 -1 -21

n=1
n=3

0

0 -1 -21
∆Vc/Ωx

-3

0

0

1

0

1

(a)

(b)

(c)

(d)

U/(Ωxlx)

theory

experiment

co
n
d
u
ct

an
ce

g

co
n
d
u
ct

a
n
ce

g
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Figure 3.5: Formation of the 0.7 anomaly with increasing interactions: (a) The evolution of the linear
conductance g as function of barrier height Vc for increasing interaction parameterU , calculated
using fRG. The data features a weak 0.7 shoulder at intermediate interaction strength. (b) Its
origin can be associated with a maximum in Aµ(Ṽc) in the sub-open regime, which indicates
slow electrons in the barrier center at the chemical potential. These are subject to an enhanced
backscattering probability as a consequence of strong local interactions at the barrier top. (c),(d)
Comparison between “noninteracting” and “interacting” conductance. The data were shifted
in Vc for clarity. Note the remarkable similarity between theory and experiment.
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in experiment can be explained mainly by noninteracting transport through a parabolic barrier. There
we used comparison to the shape of the first conductance step to show the distinctiveness of the sub-
open regime. Our fRG data show a remarkably similar behavior: The strong reduction of conductance
at U = 3.6/(Ωxlx) w. r. t. the noninteracting case (after shifting the curves to lie on top of each other in
the pinch-off regime) is somewhat limited to the sub-open regime.

3.4.1 Conclusion

In this chapter we have presented a microscopic 1D model of the lowest transport mode of a QPC, fea-
turing a parabolic barrier and short-ranged electron-electron interactions (EEI). Detailed noninteracting
calculations were presented for both the transmission probability and the LDOS. The latter exhibits a
maximum just above the potential barrier - the van-Hove ridge. Adding interactions, we find an inter-
play between EEI and the van-Hove ridge responsible for the anomalous conductance features, i.e. the
0.7 anomaly. In order to sharpen intuition for the underlying physical mechanics, we use a semi-classical
picture: For a sub-open QPC we associate the van-Hove ridge with slow electrons at the chemical po-
tential in the barrier center. These are subject to a strongly enhanced probability of backscattering once
EEI are present.



Chapter 4

Microscopic origin of the 0.7 anomaly
in quantum point contacts

This chapter presents the paper “Microscopic origin of the 0.7 anomaly in quantum point contacts’’, pub-
lished in NATURE [Bauer et al. (2013)]. The scientific results of this work originate from a collaboration
between theory (von Delft group) and experiment (Ludwig group). On the theory side, we propose a
one-dimensional (1D) model with a parabolic potential barrier and short-ranged Coulomb interactions
(see also Sec. 3.3.1) to describe the physics of the lowest subband of a quantum point contact (QPC). The
model qualitatively reproduces the main features of the well-known 0.7 anomaly in QPCs, including the
anomalously strong reduction of the conductance in the sub-open regime, i.e. at the onset of the first
plateau, as function of magnetic field B (calculated using the functional renormalization group (fRG),
see Sec. 3.3.2 and Sec. 6), temperature T and source-drain voltage Vsd (calculated using second order
perturbation theory (SOPT), see Sec. 3.3.2 and Sec. 8). Our theoretical setup allows for a thorough inves-
tigation of the microscopic origin of this peculiar conductance behavior: We find that the local density
of states (LDOS) of the QPC exhibits a broad maximum at energies just above the 1D effective barrier.
We argue that this “van Hove ridge” (see also Sec. 3.2.2 and Fig. 3.3 therein) gives rise to an enhanced
probability of backscattering in the sub-open regime in the presence of interactions, which explains the
anomalous conductance features; at finite magnetic field the strong reduction of conductance is mainly
caused by an interaction-amplified depopulation of the disfavoured spin species’ subband, originating
from strong exchange interactions (“Stoner-type” physics). At finite temperature/finite bias voltage (i.e.
finite excitation energies) the interplay between the van Hove ridge and finite interaction strength gen-
erates an increase in inelastic backscattering (similar arguments were used in Sloggett et al. (2008) and
Lunde et al. (2009). On the experimental side the group of Stefan Ludwig uses a metallic gate structure
of particularly high tunability, which enables a fine-tuning of the QPC’s electrostatic potential (“geome-
try”). As a result they can, importantly, define a QPC that features a parabolic effective 1D barrier. Their
measurement reveals an asymmetric shape of the first conductance step even at B=T =Vsd= 0, which
is in beautiful agreement with our theoretical prediction from fRG calculations (see also Fig. 3.5). Their
data show the typical dependencies of the 0.7 anomaly on external parameters, all of which are qual-
itatively reproduced by our theoretical calculations and can be explained within the van Hove ridge
scenario. They find that the energy-scales B∗, T∗ and Vsd∗, defined via the leading quadratic order of the
conductance on the parameters B, T or Vsd respectively, show exponential dependence on gate voltage
towards pinch-off. We argue that this functional form is a remnant of the noninteracting physics of a
parabolic barrier.

The publication is divided into two major parts: The main text tells a consistent story of the van



42 4. Microscopic origin of the 0.7 anomaly in quantum point contacts

Hove ridge scenario and shows and discusses the major results from both the theory and experimental
side. The supplementary material provides comprehensive information about the experimental setup,
specific details about data analysis, the theoretical 1D model and the numerical methods to treat inter-
actions, as well as information about implications and predictions of our theory.
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Microscopic origin of the ‘0.7-anomaly’ in quantum
point contacts
Florian Bauer1,2*, Jan Heyder1,2*, Enrico Schubert1, David Borowsky1, Daniela Taubert1, Benedikt Bruognolo1,2, Dieter Schuh3,
Werner Wegscheider4, Jan von Delft1,2 & Stefan Ludwig1

Quantum point contacts are narrow, one-dimensional constric-
tions usually patterned in a two-dimensional electron system, for
example by applying voltages to local gates. The linear conductance
of a point contact, when measured as function of its channel width,
is quantized1–3 in units of GQ 5 2e2/h, where e is the electron charge
and h is Planck’s constant. However, the conductance also has an
unexpected shoulder at 0.7GQ, known as the ‘0.7-anomaly’4–12,
whose origin is still subject to debate11–21. Proposed theoretical
explanations have invoked spontaneous spin polarization4,17, fer-
romagnetic spin coupling19, the formation of a quasi-bound state
leading to the Kondo effect13,14, Wigner crystallization16,20 and vari-
ous treatments of inelastic scattering18,21. However, explicit calcu-
lations that fully reproduce the various experimental observations
in the regime of the 0.7-anomaly, including the zero-bias peak that
typically accompanies it6,9–11, are still lacking. Here we offer a detailed
microscopic explanation for both the 0.7-anomaly and the zero-bias
peak: their common origin is a smeared van Hove singularity in the
local density of states at the bottom of the lowest one-dimensional
subband of the point contact, which causes an anomalous enhance-
ment in the Hartree potential barrier, the magnetic spin susceptibility
and the inelastic scattering rate. We find good qualitative agreement
between theoretical calculations and experimental results on the
dependence of the conductance on gate voltage, magnetic field, tem-
perature, source–drain voltage (including the zero-bias peak) and
interaction strength. We also clarify how the low-energy scale govern-
ing the 0.7-anomaly depends on gate voltage and interactions. For
low energies, we predict and observe Fermi-liquid behaviour similar
to that associated with the Kondo effect in quantum dots22. At high
energies, however, the similarities between the 0.7-anomaly and the
Kondo effect end.

In our measurements, we use the multigate layout on the surface of a
GaAs/AlGaAs heterostructure shown in Fig. 1a. By suitably tuning the
central- and side-gate voltages, Vc and Vs, at a fixed top-gate voltage, Vt,
we can use the device to define a short, one-dimensional (1D) channel,
containing a smooth, symmetric barrier, in the two-dimensional elec-
tron system (2DES) buried in the heterostructure. To describe such a
quantum point contact (QPC), we adopt a 1D model with local inter-
actions and a smooth potential barrier. We treat interactions perturba-
tively, using either second-order perturbation theory23 (SOPT) or the
functional renormalization group24–26 (FRG) approach (Supplementary
Information, sections 7 and 6, respectively). The lowest 1D subband of
the device is modelled by

Ĥ~
X

js

Ejsn̂js{tj d{
jz1 sdjszh:c:

� �h i
z
X

j

Ujn̂j:n̂j; ð1Þ

Here n̂js~d{
jsdjs counts the number of electrons with spin s (spin up,

s 5 " or 1; spin down, s 5 # or 2) at site j of an infinite, tight-binding
chain with hopping amplitude tj, on-site interaction Uj and potential

energy Ejs~Ej{s~B=2 (Supplementary Fig. 8), and ‘h.c.’ denotes
Hermitian conjugate. The Zeeman energy, ~B~ gelj jmBB, describes the
effect of a uniform external parallel magnetic field B, where mB is the
Bohr magneton and gel is the effective g factor (,0 in GaAs). (When
similar symbols are used for model parameters and experimental para-
meters, we add tildes to the former to distinguish them from the latter.)
We neglect spin–orbit interactions and other orbital effects. The para-
meters Ej, Uj and tj vary smoothly with j and differ from their bulk
values, Ebulk 5 Ubulk 5 0 and tbulk 5 t (taken as the unit of energy), only
within a central constriction region (CCR) of N sites around j 5 0,
representing the QPC. Sites j , 2N/2 and j . N/2 represent two
non-interacting leads, each with bandwidth 4t, chemical potential m
and bulk Fermi energy eF 5 2t 1 m; we choose m 5 0, implying half-
filled leads (Fig. 1b). We set Uj to a fixed value, U, for all but the
outermost sites of the CCR, where it drops smoothly to zero.

Within the CCR, we define the QPC barrier by specifying the shape
of the ‘band bottom’ as vmin

j ~Ej{ tj{1ztj
� �

{m (Fig. 1b, solid
black line). We choose vmin

j to define a smooth, symmetric barrier
within the CCR, parabolic near the top3, where we parameterize it as
vmin

j <~Vc{V2
xj2
�

4t0 (Supplementary Information, section 4D). Here
~Vc sets the barrier height with respect to m (Fig. 1b, dashed black line),
and Vx=t characterizes its curvature. We first consider the theoretical
case of zero temperature, ~T~kBT (kB, Boltzmann’s constant), source–
drain voltage, ~Vsd~ ej jVsd, and field, ~B: ~T~~Vsd~~B~0. As ~Vc is
decreased below 0, the conductance, g 5 G/GQ, increases from 0 to
1, showing a step of width ,Vx (about 1.5 meV in our experiment),
whose shape depends on U (Fig. 1k). In the upper part of the step, say
0:5= g = 0:9, we say that the QPC is ‘sub-open’; the sub-open regime
is of special interest because for measured g(Vc) curves it contains the
0.7-anomaly.

The bare local density of states (LDOS), A0
j vð Þ, for equation (1)

has a strong maximum just above the band bottom18, seen as a
yellow–red ridge-like structure in Fig. 1b. In a semiclassical picture,
A0

j vð Þ!1
�

vj vð Þ, where vj(v) is the velocity at site j of an electron with
energy v with respect to m. The ridge-like maximum of A0

j vð Þ above
the barrier reflects the fact that electrons move slowest there. In the
CCR’s outer flanks, this ridge develops smoothly into the van Hove

singularity, A0
bulk! v{vmin

bulk

� �
t

� �{1=2
, in the bulk LDOS at the bulk

band bottom in the leads, vmin
bulk~{eF. We therefore call this LDOS

structure a ‘van Hove ridge’. Near the barrier’s centre, its curvature causes
the singularity to be smeared out on a scale set by Vx. This limits the
amplitude of the van Hove ridge to max A0

j vð Þ
h i

!O Vxt0ð Þ{1=2 and

shifts it upwards in frequency relative to the band byO Vxð Þ (Fig. 1f–h).
The van Hove ridge has a strong, ~Vc-dependent effect on numerous

QPC properties. Near those spatial locations where the ridge intersects
the chemical potential (v 5 0), the LDOS is enhanced, thus amplifying
the effects of interactions by O Vxt0ð Þ{1=2 (which grows with QPC
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length). In semiclassical terms, slow electrons feel interactions parti-
cularly strongly. When lowering the barrier top, ~Vc, to open the QPC,
the van Hove ridge sweeps downwards (Fig. 1f–h); its interaction-
amplifying effects are strongest in the ~Vc regime where its apex, which
has most weight, crosses m. This happens for 0> ~Vc >{O Vxð Þ
(Fig. 1g), which, very importantly, encompasses the sub-open regime
containing the 0.7-anomaly. Below, we show that the 0.7-anomaly and
the zero-bias peak (ZBP) stem precisely from the amplification of
interaction effects where the van Hove ridge intersects m. The relevant
implications are enhancements in the effective Hartree barrier governing
elastic transmission, the spin susceptibility and the inelastic scattering
rate, all of which lead to an anomalous reduction of g in the sub-open
regime, especially for T, B, Vsd . 0.

Figure 1c–e illustrates several local properties, calculated at ~T~0
using FRG, for the sub-open QPC barrier shown in Fig. 1b. We note
four salient features, all intuitively expected. First, the local density,
nj~ n̂j:zn̂j;

	 

, is minimal at the barrier centre (Fig. 1c). Second, the

local magnetization, mj~ n̂j:{n̂j;
	 
�

2, vanishes at ~B~0 (Fig. 1d, blue
line); this reflects a physical assumption entailed in our calculations
(Supplementary Information, section 6), namely that no spontaneous

magnetization occurs, in contrast to the spontaneous spin splitting
scenario advocated in refs 4, 8, 17. Third, mj increases without satura-
tion when ~B becomes large (Fig. 1d, inset), indicating a smooth redis-
tribution of spin, as expected for an open structure. Fourth, the local
spin susceptibility, xj~ Lmj

�
L~B

� �
~B~0, is strongly enhanced with

increasing U (Fig. 1e), because interactions amplify any field-induced
spin imbalance.

The j dependence of xj is governed by that of A0
j 0ð Þ (in fact,

xU~0
j ~A0

j (0)=2), which is maximal near those sites where the van
Hove ridge intersects m. When ~Vc is decreased through 0 (Figs 1f–h),
these intersection points sweep out a parabolic arch in the ~Vc�j plane,
along which xj

~Vc
� �

(Fig. 1i, colour scale) is peaked, with most weight
near the arch’s apex. This leads to a corresponding peak in the total spin
susceptibility, xtot~

PCCR
j xj, as a function of ~Vc (Fig. 1j). This peak

is strongly enhanced by increasing U (in accordance with the fourth
feature above) and is located near the ~Vc value where g < 0.7 (Fig. 1k).
We will see further below that this peak strongly affects the ~B depend-
ence of the conductance (Fig. 1l).

Note that the spatial structure for xj
~Vc
� �

in Fig. 1i, namely two
peaks merging into one as ~Vc is lowered, is consistent with that, shown
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Figure 1 | Experimental set-up and model. a, Scanning electron microscope
picture of the gate layout, featuring a top gate (t) at voltage Vt, two central gates
(c) at voltage Vc and four side gates (s) at voltage Vs. Negative voltages Vc and Vs

locally deplete the 2DES, which is 85 nm beneath the sample surface. Together
with Vt, they induce a tunable electrostatic potential landscape in the 2DES.
b, Barrier shape and LDOS. The bare (Uj 5 0, ~B~0) 1D LDOS per spin species,
A0

j vð Þ (colour scale), as a function of energy, v, and site index, j, for
~Vc~{0:28Vx . The barrier shape is defined by the solid black line, showing the
band bottom, vmin

j . The LDOS vanishes exponentially rapidly below vmin
j

(Supplementary Fig. 11), and has a van Hove ridge (yellow–red) just above it,
followed by Friedel oscillations (white fringes) at higher energies (up to
v= ~Vc). c–e, Local properties of a sub-open QPC: FRG results for the sub-
open barrier shown in b. c, d, The local density, nj (c), and the magnetization, mj

(d), for several values of magnetic field, ~B. Inset of d, mS~
X
jjjƒ10

mj as a

function of ~B. e, The local spin susceptibility, xj, for several values of interaction

strength, U. The shapes of mj and xj are modulated by Friedel oscillations
inherited from the bare LDOS (b), with locally varying wavelength, l < 1/nj.
f–l, Changing barrier height. f–h, The bare LDOS, A0

j vð Þ, for three successively
lower barrier heights, ~Vc

�
Vx~1 (f), 20.28 (g) and 22 (h). The LDOS pattern

is fixed with respect to ~Vc (grey dashed lines) but shifts with respect to m (black
dashed lines). i–l, FRG results for the ~Vc dependence of the local spin
susceptibility, xj (colour scale), at fixed U 5 0.5t (i); the total spin susceptibility,
xtot~

PCCR
j xj, for several U values (solid lines), and the inverse low-energy

scale, 1
�

~B�, for U 5 0.5t (dashed line) (j); the zero-temperature linear-response
(Vsd 5 0) conductance, g 5 G/GQ, for several U values (at fixed ~B~0) (k) and
for several ~B values (at fixed U 5 0.5t) (l). For a large enough interaction,
U 5 0.5t, even for ~B~~T~~Vsd~0 (blue lines in k and l), g ~Vc

� �
has a shoulder

(red arrow) at g < 0.7, the 0.7-anomaly. Three vertical dashed lines in i–l mark
the three ~Vc values used in f–h, as indicated by dots of matching colours.
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in fig. 2b of ref. 14, for the density of spin-up electrons calculated using
spin-density-functional theory, initialized in a small applied field to
break spin symmetry. In ref. 14, the local maximum in the spin-up
density was interpreted as evidence for a ‘quasi-bound state’ that was
argued to host a spin-1/2 local moment; in contrast, features one and,
especially, three above imply that our model yields no local moment.

Next we discuss the effect of the van Hove ridge on the conductance,
g ~Vc
� �

, starting with its U dependence at ~B~~T~0 (Fig. 1k). Increasing
U skews the shape of the step in g ~Vc

� �
, which eventually develops a

shoulder near g<0:7 (red arrow). This shoulder develops because the
increase in local density with decreasing ~Vc is slightly nonlinear when
the apex of the van Hove ridge drops past m, causing a corresponding
nonlinear upward shift in the effective Hartree barrier. For a parabolic
barrier top, this occurs for g<0:7. If the shape of the barrier top is
changed to be non-parabolic, both the shape of the bare conductance
step and the energy distance between the van Hove ridge apex and m
will change, which can cause the interaction-induced shoulder in g to
shift away from 0.7. This explains the experimentally observed
spread6,12 of shoulders (that is, plateau values of the 0.7-anomaly) for
0:5= g = 1.

On increasing ~B for fixed U and ~T~0 (Figs 1l and 2a), the shoulder
in g ~Vc

� �
becomes more pronounced, eventually developing into a

spin-split plateau. Comparison of Fig. 2a with Fig. 2e shows that this
development qualitatively agrees with experiment; the agreement was
optimized by using U as fit parameter. Inspecting how the corresponding

spin-resolved conductances, g" and g#, change with ~B (Fig. 2b), we note a
strong asymmetry: although the bare barrier heights for spins " and # are
shifted symmetrically by {~B

�
2 and ~B

�
2, respectively, g# is decreased

much more strongly than g" is increased. This is due to exchange inter-
actions: increasing the spin-up density near the CCR centre (Fig. 1d)
strongly raises the Hartree barrier, and more so for spin-down electrons
than spin-up, owing to Pauli’s exclusion principle. The consequences are
most pronounced in the sub-open regime, owing to the van-Hove-ridge-
induced peak in xtot there (Fig. 1j). We note, however, that g"5 g# at
~B~0, reflecting our above-mentioned assumption that no spontaneous
spin splitting occurs.

Our FRG approach is limited to the case of zero temperature and
zero source–drain voltage, for which no inelastic scattering occurs. To
access qualitatively the effects of the latter at fixed U, we have instead
used SOPT (Supplementary Information, section 7). Figure 2c–h
shows a comparison of our SOPT results for the linear conductance,
g ~Vc
� �

, calculated for several values of magnetic field, ~B, and temper-
ature, ~T~kBT , and our experimental data for g(Vc). The measured
conductance step shows a shoulder (Fig. 2e, f, red arrows) that
becomes increasingly more pronounced with both increasing field, B
(Fig. 2e), and increasing temperature, T (Fig. 2f), which is the hallmark
of the 0.7-anomaly. Our perturbative calculations qualitatively repro-
duce both trends remarkably well. The only caveat is that the experi-
mental curves in Fig. 2e, f show more pronounced shoulders than do
the respective SOPT curves in Fig. 2c, d. This failure of SOPT to
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Figure 2 | Conductance: theory versus experiment. a, b, FRG results: the
linear response conductance, g ~Vc, ~B

� �
, of a QPC (a), and its spin-resolved

components, g" and g# (b), plotted as functions of ~Vc

�
Vx for several values of ~B

at ~T~0 (but finite interaction U). The grey dashed and solid lines in a show the
low-energy scale ~B� ~Vc

� �
for U 5 0 and U 5 0.5, respectively, plotted on the log-

linear scale indicated on the right-hand axis (as also done in c–f). The small-
field magnetoresponse in a is strongest when ~B� takes its smallest value,
~Bmin
� (vertical dashed lines). Inset of b, the shot noise factor,

Nshot~
P

s gs 1{gsð Þ=2, plotted as function of g. Its asymmetric development
with ~B, which reflects that of g" and g#, agrees qualitatively with experiment (see
fig. 4d of ref. 7). c, d, SOPT results: g ~Vc, ~B

� �
at ~T~0 for several values of ~B

(c) and g ~Vc, ~T
� �

at ~B~0 for several values of ~T (d), both plotted as functions of
~Vc
�

Vx . The low-energy scale ~B� ~Vc
� �

is shown as a thin grey line in c and
repeated in d; ~T� ~Vc

� �
and ~Vsd� ~Vc

� �
are respectively shown as thin black and

brown lines in d. The vertical dashed line indicates where ~B� takes its minimal
value, ~Bmin

� . For ~Vc values below this dashed line, the lines for ~B�, ~T� and ~Vsd� in
d are nearly straight on the log-linear scale, implying the behaviour
summarized by equation (3), and are nearly parallel to each other, implying that
the ratios ~B�

�
~T� and ~Vsd�

�
~T� are essentially independent of ~Vc there.

e, f, Experiments—pinch-off curves. e, g(Vc) measured at a low 2DES

temperature, T0, for various magnetic fields parallel to the 2DES, plotted as a
function of DVc 5 Vc 2 V0.5, where V0.5 is the gate voltage for which the
conductance at B 5 0 and T 5 T0 is g(V0.5) 5 0.5. f, Analogous to e, but for
B 5 0 and various temperatures T. Colours in e and f are chosen to provide
comparability with theory curves in a, c and d (with the correspondence
ej jDVc!{~Vc). g, h, Experiments—Fermi-liquid behaviour: g(B)/g(0) as

function of B at temperature T0 (g), and g(T)/g(T0) as function of T at B 5 0
(h), shown on log-linear scales (insets show their differences from unity on log-
log scales) to emphasize small values of B and T. Coloured symbols distinguish
data taken at different fixed Vc values, indicated by dashed lines of
corresponding colour in e and f. The quadratic B and T dependences observed
in g and h for each fixed Vc value confirm equation (2) and were used to
determine the corresponding scales B�(Vc) and T�(Vc). (Black lines in g and
h show 1 2 (B/B�)

2 and 1 2 (T/T�)
2, respectively.) The resulting energies,

E�5 mBB�(Vc) and E�5 kBT�(Vc), are shown as functions of Vc in e (for B�)
and f (for both B� and T�) on a log-linear scale. The shape of these measured
functions agrees qualitatively with the SOPT predictions in c and d, confirming
the nearly exponential ~Vc dependences and the nearly Vc-independent B�=T�
ratio, discussed above. (For additional data, similar to that in g and h, see
Supplementary Information, section 2B.)
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produce real shoulders is present both in the low-field dependence
at low temperature (compare Fig. 2e with Fig. 2c; the former, but
not the latter, shows a weak shoulder even at zero field) and in the
temperature dependence at zero field (compare Fig. 2f and Fig. 2d). In
contrast, the more powerful FRG approach does reproduce the weak
shoulder even for ~B~~T~0, as discussed above; compare the black
g ~Vc
� �

curves in Fig. 2a (FRG) and Fig. 2c (SOPT). (That the latter
curve, in contrast to the former, lies above its non-interacting version,
g0 ~Vc
� �

, is an artefact of SOPT; see Supplementary Information,
section 7D.)

We next focus on the limit of small energies ~B, ~T and ~Vsd. Here our
SOPT calculations yield three predictions, enumerated below, that are
all consistent with our measurements. First, for fixed ~Vc, the leading
dependence of the nonlinear conductance, gnl~ dI

�
d ~Vsd

� ��
GQ, on ~B,

~T and ~Vsd is predicted to be quadratic, as confirmed by the measured
data in Figs 2g, h and 3a. This implies an expansion of the form

gnl ~B, ~T, ~Vsd
� �

gnl 0, 0, 0ð Þ <1{
~B2

~B2
�
{

~T2

~T2
�
{

~V2
sd

~V2
sd�

ð2Þ

for ~B
�

~B�, ~T
�

~T�, ~Vsd

�
~Vsd�=1, where ~B�, ~T� and ~Vsd� are ~Vc-dependent

crossover scales that govern the ‘strength’ of the 0.7-anomaly for U ? 0:
the smaller these scales, the stronger the dependence on ~B, ~T and ~Vsd

for a given ~Vc. Our SOPT results for these crossover scales are shown as
thin lines on log-linear scales in Fig. 2c and Fig. 2d, respectively.
Second, in that part of the sub-open regime where gnl 0, 0, 0ð Þ<1, they
all depend exponentially on ~Vc:

~B�, ~T�, ~Vsd�!exp {p~Vc
�

Vx
� �

ð3Þ

Third, and again for gnl 0, 0, 0ð Þ<1, the ratios ~B�=~T� and ~Vsd�=~T� are
essentially independent of ~Vc (Supplementary Fig. 4). Remarkably,
both the second and third predictions are confirmed by our experi-
mental results (Fig. 2e for B*, Fig. 2f for T* and Supplementary Fig. 3 for
Vsd*). The behaviour predicted by equation (3) for ~T� is also in accord
with previous experiments6 and with a perturbative treatment of inter-
actions using Wentzel–Kramers–Brillouin wavefunctions21. Remarkably,
the exponential ~Vc dependence of the crossover scales stated in equa-
tion (3) can be understood from a non-interacting (U 5 0) theory, by
using the bare transmission probability3

T0
s vð Þ~ e{2p v{~Vczs~B=2ð Þ=Vx z1

h i{1
ð4Þ

in the Landauer–Büttiker formula. A detailed analysis (Supplementary
Information, section 5) shows that the crossover scales experience a fur-
ther exponential reduction with increasing effective interaction strength,
U
� ffiffiffiffiffiffiffiffiffiffi

Vxt0
p

.
When plotted as a function of ~Vc, 1

�
~B� has a peak in the sub-open

regime just before the onset of the exponential dependence of equa-
tion (3) (Fig. 1j). This peak is roughly similar in shape and position to
that in xtot

~Vc
� �

(compare dashed and solid blue lines in Fig. 1j), except
that the latter has a finite offset, reflecting the non-zero spin suscept-
ibility of an open QPC. Thus, we predict, fourth, that 1

�
~B�, which

characterizes the strength of the low-field magnetoconductance, is
roughly proportional to the spin susceptibility, xtot, of the CCR.

Next we address the remarkable experimental fact6 that many low-
energy properties of the 0.7-anomaly (including our first and third
predictions) are similar to those seen in transport through a Kondo
quantum dot (KQD). This led to the proposal13,14 that a QPC harbours
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Figure 3 | Finite excitation energies. a–f, Zero-bias peak. a, Experimental
data for the nonlinear conductance, gnl, as a function of source–drain voltage,
measured for several Vc values at a fixed low temperature and zero field.
b, Keldysh SOPT results for gnl ~Vsd

� �
for several ~Vc values at ~T~~B~0, showing

qualitative agreement with a. c, The linear-response conductance,
g~gnl ~Vsd~0

� �
, as a function of ~Vc. d–f, gnl ~Vsd

� �
as in b, but for three different

~Vc values (compare colour-matched dots in c and b) and five different magnetic
field values in each panel. Increasing ~B causes the ZBP to split into two subpeaks
once ~B> ~B�; the splitting is therefore most pronounced in e, for which ~B� is
smallest. A detailed discussion of the ZBP, including its T dependence, will be
published elsewhere. Here we would like to point out the qualitative agreement
of d–f with published data; see, for example, fig. 2d of ref. 6. g, h, Interacting
LDOS: Aj vð Þ, calculated using SOPT, shown for two fixed gate voltage values,
~Vc
�

Vx~0 (g) and 20.75 (h) (red dashed lines). i–n, Equilibrium transmission

probabilities: the corresponding elastic, inelastic and total transmission
probabilities, Tel

s (i, j), T in
s (k, l) and Ts (m, n), calculated using SOPT and

shown as functions of energy, v, for three different temperatures. At ~T~0
(black curves) T in

s vð Þ vanishes at v 5 0, where there is no phase space for
inelastic scattering. However, it increases as v changes from zero, causing a
corresponding reduction in the elastic transmission for v ? 0, such that Tel

s vð Þ
has a narrow ‘low-energy peak’ around v 5 0. On increasing the temperature,
the probability of inelastic scattering increases, causing the minimum in T in

s vð Þ
and the peak in Tel

s vð Þ to be smeared out. This leads to a net ~T-induced
reduction in the total transmission, Ts vð Þ near v 5 0, causing a corresponding
reduction in the conductance (Fig. 2d, f). This reduction is stronger for
~Vc
�

Vx~0 (m) than for ~Vc
�

Vx~{0:75 (n), because the probability of
electron–hole pair creation during inelastic scattering is largest when apex of
the van Hove ridge lies closest to m (compare g and h).
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a quasi-bound state, whose local moment gives rise to the Kondo effect.
In contrast, our van-Hove-ridge scenario fully explains the 0.7-anomaly
without invoking the Kondo effect. In particular, we find no indications
that a smooth parabolic barrier hosts a discrete, localized spin (com-
pare with the third feature above), and no Kondo effect/0.7-anomaly
similarities (experimentally or theoretically) at high energies (> ~B�),
where the Kondo effect is governed by an unscreened local moment.
Nevertheless, the two phenomena do have similar low-energy beha-
viour. This is because both involve a spin-singlet ground state featuring
spatially confined spin fluctuations. For a KQD they result from screen-
ing of the localized spin, whereas for a QPC they result from the
extended structure of the van Hove ridge (Fig. 1i); but this distinction,
which is important on short length scales (high energies), does not
matter on long ones (low energies). These spin fluctuations are char-
acterized by exponentially small energy scales, the Kondo temperature
for a KQD, and ~T� for a QPC, both scaling inversely with the local spin
susceptibility (for a QPC, this follows from prediction four). For a KQD,
the local spin fluctuations can be described by Nozières–Fermi-liquid
theory27,28 in terms of scattering phase shifts, which determine its low-
energy properties. Because a QPC, like a KQD, harbours spatially con-
fined spin fluctuations, a similar Nozières–Fermi-liquid framework
applies, explaining why its low-energy transport properties are similar
to those of a KQD.

We next study finite excitation energies (~T , ~Vsdw0), where inelastic
scattering becomes important (Fig. 3). We begin by considering the
nonlinear differential conductance, gnl, as a function of source–drain
voltage, Vsd. Experimentally, gnl shows a narrow peak at Vsd 5 0 (Fig. 3a;
see also refs 6, 9, 10). This ZBP appears strongest in the sub-open
regime, but remains visible even very close to pinch off10 (g R 0). It
splits with increasing field once B exceeds a Vc-dependent crossover
value that is smallest when g<0:7 (see fig. 2d of ref. 6). Remarkably, our
model, treated using Keldysh SOPT (Supplementary Information,
section 7B), yields a ZBP (Fig. 3b, d–f) that qualitatively reproduces this
behaviour. In the sub-open regime (0:5= g = 0:9), a ZBP arises even
without interaction (this follows from equation (4)), but interactions
modify it in two ways (Supplementary Information, section 7C): a finite
Vsd causes a net charge enhancement at the barrier, resulting in a reduc-
tion of transmission due to Coulomb repulsion; and opens up a finite
phase space for inelastic backscattering. Both effects strongly depend on
the LDOS near m (Fig. 3g, h), and are thus strongest when the apex of the
van Hove ridge lies near m (as in Figs 3g and 1g). However, the van Hove
ridge intersects m also for g , 0.5 (as in Fig. 1f), which explains why a
ZBP is experimentally observed even close to pinch off10.

The two modification mechanisms just discussed also apply to the
case of increasing temperature. To highlight the role of inelastic scat-
tering, we now discuss (for ~B~~Vsd~0) the transmission probability
Ts vð Þ~Tel

s vð ÞzT in
s vð Þ, written as the sum of elastic and inelastic

contributions corresponding respectively to transmission without or
with the creation of electron–hole pairs (see Supplementary Informa-
tion, section 7A, for their precise definition). Figure 3i–n shows exam-
ples of these quantities. With increasing temperature, the probability
for inelastic scattering increases, causing T in

s vð Þ to increase (Fig. 3k, l)
and Tel

s vð Þ to decrease (Fig. 3i, j). This leads to a net temperature-
induced reduction in the total transmission, Ts vð Þ (Fig. 3m, n), near
v 5 0, causing a corresponding reduction in the conductance (Fig. 2d, f).
Importantly, this reduction is ~Vc dependent: it is strongest when the apex
of the van Hove ridge lies near m (as in Fig. 3m) and decreases away from
this point (as in Fig. 3n), because the probability for electron–hole pair
creation during inelastic scattering increases with the LDOS near m. The
fact that Ts vð Þ acquires a non-trivial, interaction-induced dependence
on ~T in the sub-open regime is consistent with the fact that near g < 0.7
the measured thermopower violates the Mott relation5, which is based
on the assumption of non-interacting electrons.

Finally, we note that we have studied the magnetic field dependence
of the transconductance, dG/dVc, both experimentally and by using
FRG. We obtain excellent qualitative agreement between experiment

and theory, showing that such measurements can be understood with-
out invoking spontaneous spin polarization, as is often advocated to
explain them4,8,17. A detailed analysis (Supplementary Information,
section 2C, and Supplementary Fig. 5) establishes that the g factor is
enhanced significantly by interactions, and that interaction strength
can be tuned experimentally using a top gate.

We have presented detailed microscopic calculations that qualita-
tively reproduce the full phenomenology of the 0.7-anomaly. We
argued that a van Hove ridge in the LDOS, combined with interactions,
provides a natural explanation for the anomalous behaviour of the
conductance of a sub-open (g > 0:5) QPC. The experimentally
observed6 similarities between the 0.7-anomaly and the Kondo effect
at low energies arise because both phenomena involve spatially loca-
lized spin fluctuations; at high energies, the similarities cease. We
verified our Fermi-liquid predictions for the QPC conductance by
systematic measurement of the conductance as a function of Vc, B
and T. Strikingly, we demonstrated that the zero-bias peak in a QPC
arises from the interplay of interactions and geometry. By implication,
anomalous zero-bias behaviour might also arise in other systems
involving interacting electrons traversing 1D low-density regions with
slowly varying spatial inhomogeneities, such as the gated nanowires
being studied in the search for Majorana fermions29.

METHODS SUMMARY
The nanostructure is laterally defined in a 2DES located 85 nm beneath the surface
of a GaAs/AlGaAs heterostructure. The low-temperature carrier density and
mobility are 1.9 3 1011 cm22 and 1.2 3 106 cm2 V21 s21, respectively. Electron-
beam lithography was used to create the Ti/Au gates. The top gate is electrically
insulated from the others by cross-linked poly(methyl methacrylate). Perfect
alignment of magnetic fields parallel to the 2DES and the 1D channel defining
the QPC was ensured by using a two-axis magnet and was controlled by magne-
totransport measurements. We used a dilution refrigerator and reached electron
temperatures as low as T2DES < 30 mK.

Our most accurate theoretical results were obtained by using FRG24–26 to calculate
T 5 0 properties. FRG amounts to doing renormalization-group-enhanced per-
turbation theory in the interaction U. In setting up our FRG flow equations, we
made two approximations, both exact to second order in U: we truncated the infinite
hierarchy of flow equations by neglecting the flow of the three-particle vertex; and we
set to zero all components of the two-particle vertex that are not already generated to
second order in the interaction (coupled-ladder approximation).

To access the effects of inelastic scattering for ~Tw0 or ~Vsdw0 at fixed U, we
used SOPT: we dressed bare Green’s functions by evaluating the self-energy per-
turbatively to second order in the interaction. For ~Vsd~0, we calculated the linear
conductance following the strategy in ref. 23, generalized to ~B=0 and broken
electron–hole symmetry. For ~Vsdw0, we calculated the nonlinear conductance,
gnl~ dI

�
d ~Vsd

� ��
GQ, using the Meir–Wingreen formula for the current (equa-

tion (6) of ref. 30).
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S-1. OVERVIEW

The following supplementary material provides addi-
tional information related to various aspects of the main
article. Its sections can be read independently and in ar-
bitrary order. They are grouped into two parts: Part I
(Secs. S-2 and S-3) is devoted to experiments and their

comparison with theory; Part II (Secs. S-4 to S-7C) pro-
vides further theoretical details.

Section S-2 gives supplementary information about
our measurements discussed in the main article. Sec-
tion S-2 A describes the experimental setup. In Sec. S-
2 B we present the raw data on which the experimen-
tal tests of Fermi liquid predictions in the main article
are based, together with corresponding results obtained
by the functional renormalization group (fRG) (Fig. S2).
We also present additional data (Fig. S3) illustrating the
gate-voltage dependence of the crossover scales in mag-
netic field, temperature and source-drain-voltage, B∗, T∗
and Vsd∗, together with corresponding calculations using
second-order perturbation theory (SOPT). Sec. S-2 C ex-
plains in detail how the effective g-factor gss is extracted
from the transconductance for large fields (Fig. S5), and
offers some comments on the much-discussed scenario
that the 0.7-anomaly is due to spontaneous spin polar-
ization in the QPC region.

Sec. S-3 presents further T = 0 fRG results (Figs. S6
and S7) that demonstrate qualitative agreement with
shot noise and compressibility measurements by other
groups. These fRG results, and those in Sec. S-5, were
calculated using “static” fRG, which differs from the “dy-
namic” fRG approach used in the main text by neglecting
the frequency dependence of the self-energy and all ver-
tices (see Sec. S-6 F). Static fRG yields results that are
very similar to those of dynamic fRG (see Fig. S15), while
being numerically cheaper by a factor ∼ 103.

Section S-4 describes our theoretical model in detail.
We have used two slightly different parametrizations of
the QPC barrier shape, called “model I” and “model II”,
which both describe parabolic barrier tops and hence give
essentially equivalent results for QPC properties. They
are defined in Secs. S-4B and S-4D, respectively (the
main article uses only model II). Sections S-4 C and S-
4 E explain how the effects of geometry are encoded in
the bare local density of states (LDOS), focussing in par-
ticular on the van Hove ridge of a QPC, which is key to
understanding the 0.7-anomaly.

Section S-5 focuses on the low-energy scale B̃∗(Ṽc) for

a QPC: it shows that its exponential Ṽc-dependence has
a purely geometric origin, and that the strength of its U -
dependence likewise depends on the shape of the barrier.

Sections S-6 and S-7 discuss details of the two theoreti-
cal methods used here to incorporate the effect of inter-
action: the functional Renormalization Group (fRG) and
second order perturbation theory (SOPT), respectively.
Section S-7 C is devoted to a detailed description of our
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SOPT results for finite temperature or finite source-drain
voltage, offering a summary of the features of the 0.7-
anomaly which SOPT does or does not capture quali-
tatively. Finally, Sec. S-7 D discusses an SOPT artefact
that arises with increasing U .

Equation and figure and section numbers from the
main article or the supplementary material are pref-

aced below by A (for “article”) vs. S (for “supplemen-
tary”), respectively, e. g. Eq. (A1), Fig. A1f, Sec. A-
2 vs. Eq. (S1), Fig. S2b, Sec. S-4. As in the main
article, we use tildes to distinguish theory parameters

from those used in experiment, writing, e. g. T̃ = kBT ,

B̃ = |gel|µBB, and Ṽc,s ∝ −|e|Vc,s.

PART I: EXPERIMENT VS. THEORY

S-2. OUR EXPERIMENTAL DATA VS.
THEORY

A. Experimental setup

The gate layout of our sample, shown in Fig. A1a for
a dummy sample whose layout is identical to that of the
actual sample, provides a particularly high tunability of
the central constriction region (CCR). The gates can be
used to laterally define either a quantum point contact
(QPC) or a quantum dot (QD) in the two-dimensional
electron system (2DES) 85 nm beneath the surface of
a GaAs/AlGaAs heterostructure. In this work, we fo-
cus exclusively on the QPC geometry; a study of the
crossover from QD to QPC will be published elsewhere.1

More information about the experimental conditions is
provided in the methods summary section of the main
article.

In our two-terminal transport measurements the cur-
rent Isd flows through the nanostructure between ohmic
contacts marked by ”source” and ”drain” in Fig. A1a,
and we measure the differential conductance g =
(dIsd/dVsd)/GQ (henceforth simply called conductance)
using lockin methods. In all measurements discussed in
this paper we apply a negative voltage Vc to both center
gates and a negative voltage Vs to all four side gates. This
depletes the 2DES in the vicinity of the gates, so that
propagation between source and drain through the CCR
is confined to a narrow channel, leading to the quantiza-
tion of transverse modes. (Further variations of individ-
ual gate voltages allow additional control of the lateral
symmetry properties of the CCR, but such studies are
not included in this work.) Moreover, our sample also
contains a global top gate (see Fig. A1a).

In this work, we focus on gate voltages such that trans-
port is carried solely by the first subband, corresponding
to the lowest transverse mode. Its behavior can be de-
scribed by a one-dimensional effective model for motion
in the longitudinal (say x-) direction. The shape of the
effective potential Veff(x) in the CCR can be changed by
tuning Vc, Vs and Vt. Increasing the top gate voltage Vt

increases the carrier density of the 2DES in the contacts
of the CCR and hence the chemical potential, thereby
deepening (w. r. t. µ) the trenches between the regions
of high potential energy caused by the central and side
gates4. This changes not only the shape of Veff(x), but
also causes the transverse wave functions to be more lo-

calized and hence increases the effective one-dimensional
on-site interaction strength U within the CCR. For future
reference, we summarize this trend as follows:

The effective interaction strength U can

be increased experimentally by increasing Vt. (S1)

For a QPC geometry, increasing Vt has an additional
effect: due to the deepened trenches in the potential land-
scape, the energy spacing of the transverse eigenmodes
increases, resulting in an increased subband spacing5.
This trend is demonstrated in Fig. S1 based on mea-
sured pinch-off curves of our QPC for varying top-gate
voltages. It can be used, in principle, to quantify the Vt-
induced increase in U in terms of the Vt-induced increase
in subband spacing6, as will be elaborated in Sec. S-5 C
below.

B. Fermi liquid properties

Figs. S2b and S2c show the raw experimental data for
the measured linear response conductance of our QPC (a
constant lead resistance has already been subtracted for
all data). They show how the pinch-off curves depend on
magnetic field and temperature, respectively. For com-
parison, Fig. S2a shows corresponding fRG data calcu-
lated for zero temperature as a function of the magnetic

field B̃. Both calculated and measured data exhibit the
expected transition from a weak kink at g � 0.7 at small
T and B to a pronounced 0.7-anomaly if either mag-
netic field (measured and calculated data) or tempera-
ture (measured data) is substantially increased.

The raw data from Figs. S2b and S2c underly the ex-
perimental results presented in Figs. A2e-h of the main
article. Figs. S3a-d shows additional data sets, plot-
ted in the same way as in Figs. A2g and A2h, but
displaying data not shown there for lack of space. To-
gether, these data confirm the Fermi-liquid behavior ex-
pected theoretically for sufficiently low fields and tem-
peratures: Figures A2g and S3a,b show that at suf-
ficiently low temperatures, T0 � T∗ (in our measure-
ments T0 = T2DES � 30 mK), the leading magnetic field-
dependence of the linear conductance is quadratic,

g(B)/g(0) = 1 − (B/B∗)
2 , B � B∗ , (S2a)
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Figure S1: Vt-dependence of subband spacing. a, Mea-
sured pinch-off curves g(Vc) of our QPC for a series of top-gate
voltages in the range −0.7V ≤ Vt ≤ 0.8V. As Vt is decreased
the carrier density also becomes smaller which, in turn, results
in a larger pinch-off voltage Vc and, clearly, in more narrow
plateaus at integer g. The steep increase of g(Vc) independent
of Vt at Vc � −0.25V indicates the transition from 1D to 2D
transport as the 2DES directly below the center gates is no
longer depleted. b, Energy spacing between the lowest two
1D subbands as a function of Vt. The data points were eval-
uated from finite-Vsd measurements (raw data2 not shown),
using a procedure described in Refs. 2,3, whose uncertainty
is indicated by the error bars. The resulting subband spacing
is approximately proportional to the width of the first con-
ductance plateau in a. As expected from a simple capacitive
model, it is also proportional to Vt (the dashed straight line
is a guide for the eye).

as expected from Eq. (A2). Similarly, Figs. A2h and
S3c,d show that at zero field (B = 0), the leading tem-
perature dependence is likewise quadratic,

g(T )/g(T0) = 1 − (T/T∗)
2 , T � T∗ . (S2b)

Fitting Eqs. (S2a) and (S2b) to the data in
Figs. S2b and S2c, respectively, yields the low-energy
scales B∗(Vc) and T∗(Vc) used in Figs. A2g and A2h and
depicted by colored symbols in Figs. A2e and A2f, re-
spectively (and similarly for Figs. S3a-d). The scaled
conductance curves displayed in Figs. S3a-d are plot-
ted only in the restricted ranges g(B)/g(0) � 0.8 and

g(T )/g(T0) � 0.8, respectively. For smaller conduc-
tances, where the conditions B � B∗ or T � T∗ no
longer hold, the measured B- and T -dependences of the
conductance deviate from quadratic behavior by bend-
ing upward, tending toward saturation (as shown in
Figs. A2g,h ).

The fit parameters B∗ and T∗ are compared in the
half-logarithmic presentation in Fig. A2f as functions of
the center gate voltage ∆Vc. For convenience, this data
is shown again in Fig. S3f, together with the low-energy
source-drain voltage scale Vsd∗. The latter was obtained
by determining the curvature of the nonlinear conduc-
tance curves gnl(Vsd) (shown in Fig. A3i) at Vsd = 0:

gnl(Vsd)/gnl(0) = 1 − (Vsd/Vsd∗)
2, Vsd � Vsd∗ . (S2c)

Compared to our determinations of B∗ and T∗ from
linear-response data, those for Vsd∗ have rather larger
error margins, since for technical reasons the non-linear
conductance data was measured with a smaller signal-to-
noise ratio.

As mentioned in the main article, SOPT makes two

predictions for the Ṽc-dependence of the crossover scales

B̃∗, T̃∗ and Ṽsd∗ in the Vc-range where g → 1: first, all
three scales depend exponentially on Vc (Fig. S3e); and

second, the ratios B̃∗/T̃∗ and Ṽsd∗/T̃∗ are, to within a

few %, independent of Ṽc (as illustrated in Fig. S4 for
a range of U -values). The experimental results for B∗,
T∗ and Vsd∗ shown in Fig. S3f confirm both predictions.
This demonstrates that at low energies a QPC shows
Fermi-liquid behavior, as argued in detail in the main
article.

C. Top-gate tuning of effective gss-factor

In a QPC geometry, interactions are known to enhance
the effective electronic g-factor7–9. For large fields (B �
B∗), an effective g-factor, say gss, can be extracted from
the transconductance dg/dVc, by exploiting the fact that
the measured field-induced subband splitting of the first
conductance step, say ∆E, increases linearly with field,
∆E = gssB. In previous experiments with in-plane fields
(B in the 2DES plane), |gss|-values have been observed
exceeding the bulk value (gGaAs � −0.45) by up to a
factor of 69,10, an increase that was attributed by Koop
et al. to interaction effects9.

In Fig. S5 we present the results of fRG calculations
and measurements of the transconductance and the top-
gate dependence of gss that confirm this interpretation.
We numerically deduce the transconductance dG/dVc

(dG/dṼc) from both the measured and calculated con-
ductance data. Typical experimental results are plotted
in Fig. S5a for the range 0 < g < 1 as a function of Vc.
They show two peaks whose splitting ∆E increases lin-
early for large fields, as ∆E � gssB + ∆hfo (Fig. S5b),
where both the slope gss and the “high-field offset” ∆hfo

are found to increase with top-gate voltage Vt (Fig. S5c).
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The effect of increasing Vt can be mimicked in our model
by increasing U (for reasons explained in Supplemen-
tary Sec. S-2A). Indeed, the results of our fRG calcula-
tions, shown in Fig. S5d-f, qualitatively match the trends
shown by the experimental data in Fig. S5a-c. This es-
tablishes several important points. First, interactions
are the reason why the g-factor extracted from ∆E(B)
is anomalously large. Second, the effective interaction
strength can be tuned experimentally via a top gate volt-
age. Third, the experimental observation of ∆hfo �= 0 can
be understood without adopting the spontaneous spin po-
larization scenario that is often advocated7,9,31 to explain
it. Let us now elaborate these points in more detail.

We theoretically studied the U -dependence of gss by
using fRG to calculate pinch-off curves for parabolic QPC
barrier shapes such as that of Fig. A1b, for a range of

fields B̃ and interaction strengths U . Fig. S5d plots

the transconductance, i. e. the derivative −dg(Ṽc)/dṼc

as function of Ṽc (varied over a range corresponding to

0 ≤ g ≤ 1), for a large number of different B̃-fields, at
U = 0.5τ . In such a plot the field-induced spin splitting
of the conductance step manifests itself as a pair of local

maxima7–9,11. The Ṽc-separation of their peaks, say ∆E,

is proportional to the effective B̃-induced subband split-

ting. Evidently ∆E increases with B̃. Fig. S5e shows

∆E(B̃) vs. B̃ for six values of U , including the data ex-

tracted from Fig. S5d. For large fields (B̃ � B̃∗) we find
a linear relation,

∆E(B̃) � (gss/gel)B̃ + ∆hfo , (S3)

where ∆hfo represents the “high-field offset” as defined
by Koop et al.9, i. e. the linear extrapolation of the high-

field behavior to B̃ = 0. Fig. S5f and its inset show that

both the slope and the offset increase with U , implying
that both gss and ∆hfo serve as measures of the effective
interaction strength.

Koop et al. have reported a strong enhancement of
the g-factor as the spacing ω12 between the electronic
subbands of the QPC is increased9. Our theory nicely
explains this finding: an increase in ω12 corresponds to a
smaller transverse channel width, implying an enhanced
interaction strength (as argued at the end of section S-
2 A) and hence an increase in gss (see Fig. S5f).

This interpretation is confirmed by the experimental
data shown in Fig. S5a-c. This data was measured using
a second sample (“sample 2”), of similar design than that
used to study the Fermi-liquid properties of Figs. A2e-h
discussed in the main text (“sample 1”). For sample 2,
we measured ∆E(B) = a ·∆Vc (for the values of the con-
version factor a see table in Fig. S5b) as function of top
gate voltage Vt, which corresponds to tuning the effective
interaction strength. According to our theoretical consid-
erations, increasing Vt causes increasing U [see Eq. (S1)]
and hence increasing gss (by Fig. S5f). Fig. S5a-c present
experimental results corresponding to the predictions in
Fig. S5d-f (using Vt instead of U). They qualitatively
confirm our numerical results, especially that both gss
and ∆hfo increase with Vt and, therefore, the interaction
strength. (In contrast to us, Koop et al. did not observe a
systematic correlation between gss and ∆hfo. A possible
reason is that their study varied the shape of the QPC
potential by varying the width and length of the QPC,
whereas we varied Vt. Our studies thus differ from theirs
in the detailed shape of the 2D potential landscape. The
effective interaction strength is very sensitive towards the
latter, as discussed in more detail in Sec. S-5C.)

We conclude our discussion on ∆E(B) with an impor-
tant comment on the high-field offset ∆hfo. In several
experimental studies of the 0.7-anomaly7–9, the observa-
tion of a nonzero value for ∆hfo was interpreted as ev-
idence “that there is a possible spin polarization of the
1D electron gas in zero magnetic field” (the quote is from
Thomas et al.7). Our fRG results show that this inter-
pretation is not compelling, since we obtain ∆hfo �= 0
without any spontaneous spin polarization. ∆hfo �= 0

simply implies that the B̃ = 0 conductance step g(Ṽc) is
somewhat skewed (see Figs. A1k, A1l, A2a), so that the
peak in the transconductance is not symmetric (as seen
in Fig. S5d); as shown here, this can be achieved with a
magnetization that is strictly zero. Indeed, our fRG ap-
proach assumes from the outset that the magnetization

per site, mj = 1
2 (nj↑ − nj↓), is strictly zero at B̃ = 0

(see blue line in Fig. A1d, and introduction of Sec. S-6).
This a priori assumption is justified a posteriori by the
good qualitative agreement between fRG and experiment
found throughout this work, and in Fig. S5 in particular.
Moreover, this assumption is a prerequisite for under-
standing the low-energy Fermi-liquid properties of the
0.7-anomaly discussed in the main text, and the result-
ing analogies between the 0.7-anomaly and the Kondo
effect: for the latter, there is zero spin polarization at
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Figure S5: Determination of the subband-splitting g-
factor gss. a-c. Results from experimental measurements
on a sample (“sample 2”) of similar design as that discussed
in the main text (“sample 1”). d-f, Corresponding results
from fRG calculations. a,d, The transconductance, i. e. the
derivative of the conductance with respect to gate voltage (Vc

in a, Ṽc in d), plotted as a function of gate voltage, for sev-
eral magnetic fields. An increasing magnetic field lifts the
spin degeneracy, causing the conductance step to split into
two spin-resolved sub-steps and giving rise to two local max-

ima in a,d (marked by blue dots). In d, B̃min
∗,0.5 (red square)

stands for B̃min
∗ at U = 0.5. b,e. The peak distance ∆E, de-

termined by fitting a pair of Gaussians (shown by gray lines
in a) to the peak pairs in a,d, is plotted as function of mag-
netic field, in b for three different top gate voltages, and in e
for seven different values of the on-site interaction U . Linear
least-square fits to such curves in the range of large fields,
using ∆E � gssB + ∆hfo, yield the effective g-factor gss and
high-field offset ∆hfo. Errors, s. e.m. (n = 5 - 7). (To convert
∆Vc in a to ∆E in b, we used the Vt-dependent conversion
factors a = ∆E/∆Vc listed in the legend of b, obtained ap-
proximately from nonlinear transport measurements7,9.) c,f,
|gss| (and in insets, ∆hfo), plotted as a function of Vt (in c)
or U (in f). The red straight line in c is a error-weighted
least square fit. Both theory and experiment show the same
trend, namely that gss and ∆hfo increase with the effective
interaction strength U (which increases with Vt in our sample
geometry.

B̃ = T = 0, because lead electrons screen the local spin
into a spin singlet.

It is noteworthy, though, that the linear increase in

∆E(B̃) in Fig. S5e sets in already at rather small fields,

of order O(B̃∗) and similarly for ∆E(B) in Fig. S5b.
The reason is that at small fields the spin polarization
rapidly grows with field, since the spin susceptibility is
large. It is large because it is strongly enhanced by in-
teractions (Fig. A1j), as recognized and emphasized by
Thomas et al.7, and because the effects of interactions
are further enhanced by the van Hove ridge in the QPC,
as discussed in the main article. According to our analy-
sis, the large spin susceptibility goes hand in hand with
a strong interaction-induced enhancement in the inverse
scale 1/B∗(∝ χtot) [Fig. A1j], as discussed in the main
article, and also in Sec. S-5B below.

The scale B̃∗ governs the “strength” of the 0.7-
anomaly, in that the conductance is significantly reduced

once B̃ or T̃ increase past B̃∗. In an alternative model
proposed by Reilly et al.12, one of the advocates of
spontaneous spin polarization, the strength of the 0.7-
anomaly is governed by the size of the spin gap. This
model was used successfully, for example, to model the
shot noise measurements of Ref. 13. The Reilly model as-
sumes that the spin gap increases strongly with decreas-
ing Vc, i. e. with increasing density in the QPC-region.

Note that this Ṽc-dependence of the proposed spin gap
shows the same tendency as that shown by the Hartree-
enhancement of the barrier size in our work, which like-

wise increases linearly with increasing density as Ṽc is
made more negative. (The density near the CCR cen-
ter also increases as temperature or source-drain volt-
age is increased, and becomes strongly spin-asymmetry

as B̃ increases.) In this sense, our work sheds light on
why the Reilly model is phenomenologically successful at
large energies: it makes qualitatively correct assumptions
about the Vc-dependence of the effective barrier height
that governs the strength of the conductance’s B- or T -
dependence. That having been said, we emphasize once
more that our Hartree-shift in barrier height is not a spin
gap, and that our scenario differs decidedly from that
of the Reilly model for energies below B∗: there we as-
sert the appearance of Fermi-liquid behavior that is not
compatible with spontaneous spin polarization. In our
theory, a spin splitting sets in only once spin symmetry

is broken by finite B̃ (though a spin-symmetric Hartree-

shift in barrier height is present even at B̃ = 0). The spin

gap predicted by our theory for B̃ �= 0 does increase with
the density in the QPC, as in the Reilly model, since it
arises from Hartree contributions to the self-energy (see
Eq. (S42) in our fRG scheme, or the first two diagrams
in Eq. (S53) when doing perturbation theory).
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S-3. OTHER EXPERIMENTAL DATA VS.
FRG

This section presents additional fRG results on the
zero-temperature behavior of the conductance, the shot

noise, and the charge susceptibility. Their Ṽc- and

B̃-dependence is found to be in qualitative agreement
with that observed experimentally by other groups (Di-
Carlo et al. for the shot noise13, Smith et al. for the
compressibility14.

The fRG results presented below were obtained us-
ing “static” fRG, a simplified version of the “dynamic”
fRG scheme used in the main text. Static fRG neglects
the frequency dependence of the self-energy and all ver-
tices (see Sec. S-6 F). This simplification reduces compu-
tational costs by a factor of 103. Nevertheless, for the
model studied here the results of static fRG turn out to
be qualitatively very similar to those of dynamic fRG (see
Fig. S15 below). Hence we have opted to use static fRG
for the results presented in Secs. S-3 and S-5.

A. Spin-resolved conductance, shot noise

This subsection presents a detailed discussion of the
spin-resolved conductance. It is based on calculations
using model I (defined in Sec. S-4B), but the results are
fully analogous to those shown in Figs. A2a,b for model
II (defined in Sec. S-4 D).

The role of interactions for the magnetoconductance of
a QPC at zero temperature can be very clearly revealed
by studying the spin-resolved conductance gσ = Tσ and
the shot noise factor15

N =
1

2

∑

σ

gσ(1 − gσ). (S4)

Fig. S6 shows these quantities together with the full con-
ductance g = g↑+g↓, all calculated at T = 0 as functions

of Ṽc, for various fields. To highlight the effect of inter-
actions, we also show corresponding results for the bare
(U = 0) model, which we discuss first.

We begin with some elementary observations: First,

the bare transmission probability T 0
σ (Ṽc, 0) at zero field,

studied as function of Ṽc, is antisymmetric w. r. t. the
point T 0

σ (0, 0) = 0.5 [cf. Eq. (S30) below]:

T 0
σ (Ṽc, 0) = 1 − T 0

σ (−Ṽc, 0) . (S5)

A finite field B̃ shifts the bare potential in opposite direc-

tions for opposite spins, δṼj = −σ
2 B̃ (with σ = ±1 for ↑,

↓). Thus the bare spin-resolved transmission probability

T 0
σ at finite B̃ is equal to that at B̃ = 0 but for a shifted

value of Ṽc:

T 0
σ (Ṽc, B̃) = T 0

σ (Ṽc − σ
2 B̃, 0). (S6)

This implies that B̃ induces a shift (but not a change in
shape) for the spin-resolved conductance step in gσ by

σ
2 B̃ (see Figs. S6b-c). Nevertheless, since Eqs. (S6) and
(S5) together imply

T 0
σ (Ṽc, B̃) = 1 − T 0

σ̄ (−Ṽc, B̃) , (S7)

the full conductance remains antisymmetric w. r. t. the

point T 0
σ (0, B̃) = 0.5 even for finite B̃ (see Fig. S6a):

g0(Ṽc, B̃) = 1 − g0(−Ṽc, B̃) . (S8)

Eq. (S7) also implies that the bare shot noise, N 0, is

symmetric w. r. t. Ṽc = 0, or g = 0.5 (see Fig. S6j).

The above antisymmetry of g(Ṽc) w. r. t. Ṽc = 0 is bro-
ken in the presence of interactions, in a manner that
becomes increasingly more pronounced with increasing
field, see Figs. S6d and S6g, for U/τ = 0.2 and 0.45, re-
spectively. In the latter case the broken antisymmetry is
visible already at zero field, in that the fRG conductance
curve shows a slight 0.7-shoulder, in agreement with ex-

periment (cf. Fig. A2e). This shoulder at B̃ = T̃ = 0 oc-
curs because the interaction-induced increase of the effec-
tive potential barrier is enhanced by the van Hove ridge
in the local density of states (LDOS) and hence is non-

uniform in Ṽc (see the main article for a detailed explana-

tion). The breaking of Ṽc-antisymmetry increases with B̃
because (exchange) interactions amplify the field-induced
asymmetry in the population of spin-up and -down elec-
trons in the CCR, in particular near the top of the bar-

rier: a small B̃-induced surplus of spin-up electrons leads
to a significantly increased Hartree barrier, and more so
for spin-down electrons than for spin-up electrons (due
to the Pauli principle), causing a strong decrease of g↓
relative to g↑. This effect, whose strength increases with
U (compare 2nd and 3rd columns of Fig. S6) results in
the field-induced strengthening of the 0.7-shoulder that
is characteristic of the 0.7-anomaly, and its evolution into
a double step for large fields.

The increasing Ṽc-asymmetry (i. e. departure from per-

fect antisymmetry) in gσ(Ṽc) as B̃ increases is also re-
flected in the shot noise factor N (g) [Eq. (S4)], see
Figs. S6k and S6l, for U/τ = 0.2 and 0.45, respectively.
For zero applied field, N (g) is symmetric w. r. t. g = 0.5;
this follows directly from the form of Eq. (S4) (which
holds whenever a Fermi-liquid description applies), and
our assumption that there is no spontaneous breaking of

spin symmetry at B̃ = 0, implying g↑ = g↓. With increas-
ing field, N (g) develops an g-asymmetry w. r. t. g = 0.5,
being somewhat suppressed in the range g > 0.5 relative
to its values in the range g < 0.5. This field-induced
g-asymmetry is in good qualitative agreement with the
experimental measurements of the noise factor by Di-
Carlo et al., cf. Fig. 4(d) of Ref. 13. Note, though, that
the measured noise factor shows an g-asymmetry even at
zero field, in contrast to our fRG predictions; we believe
that this remnant g-asymmetry is a finite-temperature
effect that will gradually disappear if the experimental
temperature is lowered further. Reproducing this behav-
ior explicitly by a finite-temperature calculation of the
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Figure S6: Comparison of results for model I, for its bare U = 0 version (first column), or treated using static fRG for
U/τ = 0.2 and 0.45 (second and third columns, respectively). The top, middle and bottom rows show, respectively, the full

QPC conductance g = g↑ + g↓ and its spin-resolved contributions g↑ and g↓, all plotted as functions of Ṽc/Ωx for several values

of magnetic field B̃. The fourth column shows a similar comparison for the shot noise factor N [Eq. (S4)], plotted as function
of g.

noise factor for our model is left as a task for future
study.

B. Compressibility and charge susceptibility

Recently, Smith et al.14 have experimentally studied
the compressibility of the electron gas of a QPC. In par-
ticular, they measured the Vc-dependence of the com-
pressibility in the vicinity of the 0.7-anomaly and studied
its evolution with increasing temperature and magnetic
field. The compressibility is a measure of the density of
states at the chemical potential. In a QPC geometry,
its Vc-dependence is thus governed by that of the LDOS
maxima at the bottom of the 1D band, i. e. by the van
Hove ridge discussed in detail in the main article and in
Sec. S-4 C below (see the yellow ridges in Fig. A1b and
Fig. S10d); and its B-dependence is governed by the spin
splitting of this van Hove ridge.

Within our model, the compressibility can be associ-

ated with the charge susceptibility of the CCR,

χµ =
dntot

dµ
, ntot =

CCR∑

jσ

njσ , (S9)

where ntot is the total charge in the CCR and µ the chem-
ical potential. Figs. S7a and S7b show zero-temperature

fRG results for the conductance g(Ṽc) and the charge

susceptibility χµ(Ṽc), respectively. The results exhibit
a number of features, enumerated below, that are qual-
itatively consistent with features observed by Smith et
al.14.

Consider first the noninteracting case, U = 0 (black

dashed lines for g0 and χ0
µ): When Ṽc is lowered past

0, the bare charge susceptibility χ0
µ(Ṽc) in Fig. S7b tra-

verses a single broad peak, aligned with the center of the
corresponding conductance step in Fig. S7a. This peak
arises because the bare charge susceptibility equals the
bare total density of states at the chemical potential [cf.

56 4. Microscopic origin of the 0.7 anomaly in quantum point contacts
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Figure S7: Charge Susceptibility. Static fRG results

(model I) for (a) the conductance g(Ṽc) and (b) the charge

susceptibility χµ(Ṽc) [Eq. S9] as function of Ṽc, calculated for

six values of B̃ at a fixed Ṽs and T̃ = 0. Black dashed lines
in a and b show the bare (U = 0, B̃ = 0) curves, g0 and
χ0
µ = A0

tot(0), respectively. Vertical dashed lines are a guide
for the eyes and mark the weak shoulder or second maximum

of χµ(Ṽc). c, The full (U �= 0) LDOS at the chemical po-

tential, Aj(0), as function of gate voltage Ṽc and site index
j.

Eq. (S39)],

χ0
µ =

CCR∑

jσ

A0
jσ(0) = A0

tot(0), (S10)

which traverses a peak when the spin-degenerate van
Hove ridge is lowered past µ. For nonzero U but still

B̃ = 0 (black solid lines), χµ(Ṽc) is reduced, since in-
teractions tend to counteract the (infinitesimal) increase
in charge induced by an (infinitesimal) increase in µ
[Eq. (S9)]. This reduction occurs in such a way that

(i) χµ(Ṽc) retains a dominant peak, with (ii) a weak

shoulder developing on its right (even though B̃ = 0),

roughly aligned with the roll-over of g(Ṽc) towards the

first conductance plateau. This shoulder arises because

when Ṽc decreases into the open-channel regime, the
van Hove ridge apex drops so far below µ that Aj(0),
the LDOS at µ, decreases rapidly (Fig. S7c). As a re-
sult, its interaction-enhancing effects, and hence also the
Coulomb-blockade reduction in χµ, weaken rapidly, re-
sulting in a shoulder in χµ.

The colored lines in Fig. S7 show the evolution of the

conductance g(B̃) and charge susceptibility χµ(Ṽc) with
magnetic field for U = 0.45τ . While the conductance
step evolves into the familiar spin-split double step with
increasing field (Fig. S7a), (iii) the dominant peak in

χµ(Ṽc) (Fig. S7b) remains aligned with the center of the

first conductance step, while (iv) the shoulder in χµ(Ṽc)
develops into a weak peak that shifts towards the right,
remaining roughly aligned with the roll-over to the sec-
ond conductance plateau (as indicated by dashed col-
ored lines between Figs. S7a and S7b). This reflects the
field-induced spin-splitting of the van Hove ridge into two
spin-resolved sub-ridges, which get lowered past µ at dif-

ferent Ṽc-values. As a result, (v) χµ(Ṽc) develops a weak
minimum between the two peaks.

Features (i)-(v) can also be found, on a qualitative
level, in Figs. 2 and 3(a) of Smith et al.. Their mea-
sured signal, called dVsg/dVmid there, has minima when
the compressibility has maxima, and vice versa. In
their Fig. 2(a), the red curve shows a strong dip at
Vmid = 0.14 V and a very weak minimum at 0.22 V.
We associate these, respectively, with the dominant peak

(i) and the weak shoulder (ii) in χµ(Ṽc) discussed above.
In their Fig. 2(b), the two dips in the red curve at
Vmid = 0.12 V and 0.19 V, correspond, respectively, to
the two maxima mentioned in (iii) and (iv) above. And
in their Fig. 3(a), the peak marked by an arrow corre-
sponds to the dip mentioned in (v). We thus conclude
that the measured compressibility maxima accompany-
ing the conductance steps are indeed due to maxima in
the density of states at the band bottom, as suggested
by Smith et al. themselves (and in Ref. 16). This sup-
ports our contention that van Hove ridges play a central
role in the physics of the 0.7-anomaly. By implication
it also confirms the presence of the “quasi-bound states”
advocated by Meir and collaborators17–19, provided that
we identify their “quasi-bound states” with our van Hove
ridges – as argued in Sec. S-4 E below, both names refer
to the same peaked structures in the LDOS.

This identification was not clear at the time of writ-
ing of Ref. 14, however. Instead, Smith et al. argued
that they see “no evidence of the formation of the quasi-
bound state predicted by the Kondo model”. This state-
ment was based on a comparison of their B = 0 data
for dVsg/dVmid to simulations16 using density-functional
theory (DFT) combined with the local spin density ap-
proximation (LSDA). These data and the simulation re-
sults are shown, respectively, as black and red curves in
Fig. 4(b) of Ref. 14. The simulations yielded an addi-
tional strong dip [indicated by an arrow in Fig. 4(b)],
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aligned with the onset of the conductance plateau, that
had no counterpart in the measured data. We suspect
that this additional strong dip might be an artefact of
the tendency of DFT+LSDA calculations, when initial-
ized using a small nonzero magnetic field19,20, to yield a
nonzero spin polarization in regions where the spin sus-
ceptibility is large (as is the case in the QPC). We assert,
however, that at B = 0 the spin polarization is strictly
zero (in contrast to views expressed in Refs. 7,8,14), since
this is a prerequisite for understanding the Fermi-liquid

properties discussed in the main article. Our fRG cal-

culations for B̃ = 0 thus assume zero spin polarization
from the outset. Remarkably they yield, instead of the
strong additional peak found by DFT+LSDA, only the
weak shoulder (ii) mentioned above, which is consistent
with the compressibility data of Smith et al. Further ar-
guments in support of the absence of spontaneous spin
polarization at zero field are offered at the end of Sec. S-
2 C.

PART II: THEORETICAL DETAILS

S-4. MODELS USED FOR BARRIER SHAPE

In the course of our studies of the 0.7-anomaly, we have
explored many different parametrizations of smooth,
symmetric QPC barrier shapes. We found that as long
as the barrier top is parabolic, characterized by a barrier

height Ṽc (w. r. t. to the chemical potential) and a curva-
ture parameter Ωx, the details of the parametrization of
the barrier do not matter.

In this section we present the details of two differ-
ent parametrizations for parabolic barriers, to be called
“model I” and “model II”, whose results for QPC proper-

ties are fully equivalent when expressed as functions of Ṽc

and Ωx. Both models use the same Hamiltonian, choice
of chemical potential and local interaction strength Uj ,
specified in Sec. S-4 A, but differ in their choices for the
hopping amplitude τj (which is j-independent for Model
I but not for Model II) and the on-site potential Ej .

Model I is presented in Sec. S-4 B: its hopping ampli-
tude is j-independent, τj = τ , and the barrier shape is
specified by parametrizing Ej in terms of a central gate

voltage Ṽc and a side gate voltage Ṽs. It is designed
to allow a theoretic study of the crossover between a
Kondo quantum dot (KQD) and a QPC by continuously
deforming the 1D potential from a double-barrier to a
single-barrier shape (see Figs. S9c and S9d below, re-
spectively). (The results of a corresponding study will
be published elsewhere1.) Here we use model I to calcu-
late numerous QPC properties presented in various parts
of the supplementary material (Figs. S6, S7, S10, S11,
S13 and S14). Moreover, model I allows instructive in-
sights into the similarities and differences between the
bare density of states of a QD and a QPC, which are
key to understanding the similarities and differences be-
tween the Kondo effect and the 0.7-anomaly, as briefly
discussed in Sec. S-4 C.

For model II, presented in Sec. S-4 D, τj depends non-
trivially on j, and the barrier shape is specified solely in

terms of a central gate voltage Ṽc and the barrier cur-
vature Ωx (adjusted via the length N of the CCR, but
without reference to a side gate voltage). Compared to
model I, model II has technical advantages when treated
using SOPT (as explained below). For clarity, model II

was used for all numerical results (both from fRG and
SOPT) presented in the main article. It was also used
for Figs. S2, S4, S12, S16 in the supplementary material.
We emphasize that the results obtained using models I
and II are qualitatively consistent.

To conclude our introductory comments on the models
used here, we remark that the idea of studying the 0.7-
anomaly using an effective 1D model with a smoothly
varying QPC potential and local interactions has of
course been pursued previously by numerous authors.
For example, a model with local exchange interactions
was studied in Refs. 21 and 22, a model with an un-
screened Coulomb interaction in Ref. 6, and a model
with a point like interaction restricted to the center of
the QPC potential in Ref. 23. Our work is similar in
spirit to these, but our use of fRG allows us to treat the
effects of interactions more systematically than Refs. 21
and 6, and for longer chains than Ref. 22, which also
did not have access to the limit T → 0. Works based
on 2D or 3D density-functional theory calculations16–20

treat the potential landscape more realistically than we
do, but at the expense of not treating correlation effects
as accurately as fRG does. In particular, our fRG treat-
ment allows accurate predictions for the conductance at
zero temperature, which is beyond the scope of all pre-
vious treatments. Moreover, our SOPT calculations at
finite source-drain voltages are first to give a detailed de-
scription of the origin of the ZBP.

A. Hamiltonian, chemical potential, Uj

The model Hamiltonian defined in the main article,

Ĥ =
∑

jσ

[
Ejσn̂jσ − τj(d

†
j+1σdjσ + h.c.)

]
+

∑

j

Uj n̂j↑n̂j↓, (S11)

with Ejσ = Ej− σ
2 B̃, is depicted schematically in Fig. S8.

It shows a tight-binding chain divided into two semi-
infinite, non-interacting, uniform leads on the left and
right, connected to the central constriction region (CCR),
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Figure S8: Schematic depiction of the one-dimensional model
of Eq. (S11) (for a QPC barrier shape). It represents an
infinite tight-binding chain with hopping matrix element τj
(gray); the prescribed local potential Ej (blue) and on-site
interaction Uj (red) are nonzero only within a central con-
striction region (CCR) of N = 2N ′ + 1 sites. The CCR is
connected to two semi-infinite non-interacting leads on the

left and right. A homogeneous Zeeman magnetic field B̃ (or-
ange) can be switched on along the whole chain.

consisting of an odd number N = 2N ′+1 of sites centered
on j = 0. The lattice does not represent actual atomic
sites, but instead is merely used to obtain a discrete,
coarse-grained description of transport in the lowest sub-
band. The position-dependent parameters Uj and Ej ,
nonzero only within the CCR, are taken to vary slowly
on the scale of the lattice spacing a. (We set a = 1 in
our calculations.)
Choice of µ: Since the chemical potential is a prop-

erty of the bulk, we begin by considering our model for
Ej = Uj = 0 and τj = τ , representing a bulk tight-
binding chain (infinite, homogeneous). The eigenergies
εk corresponding to wave number k have dispersion

εk = −2τ cos(ka) ∈ [−2τ, 2τ ] , (S12)

plotted in Fig. S9a. To describe the phenomena of
present interest, the chemical potential µ should lie some-
where within this band, not too close to its edges; the
precise value does not matter. All our numerical calcu-
lations (fRG and SOPT) used µ = 0, implying half-filled
leads; but for the sake of generality, we keep µ arbitrary
below, particularly in Figs. S9a,b and S10a,b.) The en-
ergy difference between the chemical potential and the
bulk band bottom defines the bulk Fermi energy,

εF = 2τ + µ (> 0) . (S13)

Choice of Uj: In choosing a purely on-site interaction
in Eq. (S11), we implicitly assume that screening is strong
enough to render the interaction short-ranged. (A more
realistic treatment of screening is beyond the scope of
this work.) We set the on-site interaction Uj equal to
U throughout the CCR, except near its edges, where it
drops smoothly to zero to avoid spurious backscattering
effects (Fig. S9e):

Uj =





0 , ∀ N ′ ≤ |j| ,

U exp

[
− ( j

N′ )
6

1−( j
N′ )

2

]
∀ |j| ≤ N ′ .

(S14)

U is to be regarded as an effective parameter, whose value
is influenced by the transverse modes not treated explic-
itly in our model. In particular, the effect of increasing

ka
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Figure S9: a, Dispersion relation εk vs. k [Eq. (S12)] for
a bulk non-interacting tight-binding chain without magnetic
field (infinite, homogeneous, Ejσ = Uj = 0). The filling fac-
tor in the leads is controlled by the global chemical potential
µ (blue dashed line); it is here drawn at µ �= 0 for general-
ity, although our fRG calculations use µ = 0. b, The corre-
sponding j-independent bulk LDOS [Eq. (S19)], shown both
as A0

bulk(ω) (on x-axis) versus ω = εk −µ (on y-axis), and us-
ing a color scale. The distance from the chemical potential to
the bulk band bottom ωmin

bulk is εF = 2τ +µ = −ωmin
bulk (> 0). c

and d, Model I: The one-dimensional potential Ej of Eq. (S15)

(thick dashed black line) for a QD potential (Ṽs > Ṽc) and a

QPC potential (Ṽc > Ṽs), respectively. In the outer region of
the CCR (j0 ≤ |j| ≤ N ′), Ej is described by quartic polyno-
mial, in the inner region (|j| < j0) by a quadratic one (thin
red and blue lines, respectively, shown only for j > 0.) For

given N ′, js, Ṽs and Ṽc, the parameters j0 and Ωx are ad-
justed such that the resulting potential Ej depends smoothly
on j throughout the CCR. e, The on-site interaction Uj of
Eq. (S14).

the top gate voltage Vt can be mimicked by increasing U
[Eq. (S1)], as will be discussed in more detail in Sec. S-
5 C. We typically take U to be somewhat smaller than
the maximum value of the inverse bare LDOS, since if
U ·max[A0

j (ω)], is too large, the fRG calculations do not
converge. We remark that we have also explored the op-
tion of taking Uj to be proportional to Ej , or of taking
the range of sites where Uj = U to be several times larger
than that where Ej �= 0. Such modifications change de-
tails of the results, such as the precise shape of the con-
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ductance g(Ṽc, Ṽs) as function of Ṽc or Ṽs, but not the
qualitative trends discussed in the main article, as long
as Uj drops smoothly to zero near the edges of the CCR.

B. Model I

For model I, we choose the the hopping amplitude to
be j-independent, τj = τ , while the on-site potential Ej

describes a reflection-symmetric barrier within the CCR.
Its shape is tunable between a double barrier describ-
ing a QD (Fig. S9c) and a single barrier describing a
QPC (Fig. S9d) (thick dashed black lines). We have
parametrized it as follows:

Ej =





0 , ∀ |j| ≥ N ′,

(Ṽs + εF)

[
2

(
|j|−N ′

js−N ′

)2

−
(

|j|−N ′

js−N ′

)4
]

,

∀ j0 ≤ |j| ≤ N ′,

Ṽc + εF +
Ω

2
xj

2

4τ sgn(Ṽs − Ṽc), ∀ 0 ≤ |j| < j0.

(S15)

The sites ±j0 divide the CCR into two “outer regions”,
where the potential is a quartic polynomial in j, and
an “inner region”, where it is quadratic in j. In the
latter, the magnitude of the curvature is governed by the
parameter Ωx (≥ 0), which has units of energy. (The
quadratic term for the inner region was chosen to have
the form 1

2mω2
xx

2 used in Ref. 5, with ωx = Ωx/�, x = aj

and m = �2/(2τa2) corresponding to the effective mass at
the bottom of a tight-binding chain.) The shape of Ej is
controlled by four independent parameters: (i) N ′, which
sets the halfwidth of the CCR; (ii) js, which governs the

width of the outer flanks of the potential; (iii) Ṽs and

(iv) Ṽc, which give the potential’s height w. r. t. εF at the
sites j = ±js and 0, respectively:

E±js = Ṽs + εF; Ej=0 = Ṽc + εF . (S16)

Once the four parameters N ′, js, Ṽs and Ṽc have been
specified, the dependent parameters j0 and Ωx are chosen
such that Ej is a smooth function of j at the boundaries
±j0 between the inner and outer regions.

An electron incident at the chemical potential has en-
ergy εF w. r. t. to the bulk band bottom and hence sees a

relative potential of height Ej − εF at site j. For Ṽs>Ṽc,
the relative potential describes a QD potential with two

maxima of height Ṽs at j = ±js and a local parabolic

minimum of height Ṽc at j = 0. For Ṽc > Ṽs (the case
of present interest), it describes a QPC potential with a

single parabolic maximum at j = 0, of height Ṽc. The

crossover point between QD and QPC lies at Ṽs = Ṽc

(for which Ωx = 0). Evidently Ṽc and Ṽs respectively
mimick the role of the voltages applied to the central
gates (Vc) and side gates (Vs) in the experiment (with

Ṽc,s ∝ −|e|Vc,s).

Figure N ′ Ṽc[τ ] Ṽs[τ ] Ωx js

Fig. S6 150 -0.035 to 0.015 -0.25 0.016 60

Fig. S7 150 -0.032 to 0.01 -0.25 0.016 60

Fig. S9a-b 150 -2 -2 0 -

Fig. S9c 150 -0.6 0.6 0.0416 60

Fig. S9d 150 0.3 -0.3 0.023 60

Fig. S10a 150 -0.5 0.5 0.037 60

Fig. S10b 150 0.5 -0.5 0.027 60

Fig. S10c 150 -0.025 0 0.005 60

Fig. S10d 150 0.008 -0.25 0.016 60

Fig. S11 150 0 -0.25 0.016 60

Fig. S13 150 -0.016 to 0.006 -0.25 0.016 60

Fig. S14 150 -0.02 to 0.02 -0.25 0.016-0.048 60

Table I: Parameters used for model I [defined in Eq. (S15)] for
the fRG results shown in various figures of the supplementary
information.

We emphasize that the QPC barriers studied in this
work are all parabolic near the top. For quantitative
studies of the 0.7-anomaly using model I, we fix N ′, js
and Vs, and tune the QPC from closed to open by low-

ering Ṽc past 0, at which the bare (U = 0) conductance
g0 equals 0.5. The width of the conductance step [see
Fig. A1k, and Eq. (S30)] is governed by the curvature
parameter at this point, Ωx = Ωx|Ṽc=0, which we will

simply call “curvature” henceforth. (Ωx itself changes
slightly during this crossover, but for the barrier shapes
used in this work this change is typically less than 10%

between Ṽc = ±Ωx.) The curvature Ωx also governs the

exponential Ṽc-dependence of B̃∗ [Eq. (S35a)]. Note that
formulas such as Eqs. (S30) and (S35a) would change
for non-parabolic QPC barriers, e. g. barriers with a flat
top. Studying the 0.7-anomaly for such situations would
be an interesting extension of the present work, which
we leave for the future24.

C. Bare local density of states (LDOS)

In the main article we have argued that geometry
strongly influences the 0.7-anomaly, via its effect on the
local density of states (LDOS) and the van Hove ridge
of the latter. Here we elaborate this in detail, by dis-
cussing the geometry-dependence of the noninteracting
LDOS (for model I). We do so not only for the QPC bar-
rier shape of present interest, but also for a QD barrier
shape. This lays the ground for a subsequent comparison,
presented in Sec. S-4E below, of the LDOS structures of
a QPC and a QD, which sheds light on the similarities
and differences between the 0.7-anomaly and the Kondo
effect.

The LDOS per spin species σ at energy ω (measured

60 4. Microscopic origin of the 0.7 anomaly in quantum point contacts
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Figure S10: Model I: Noninteracting zero-field LDOS per spin species of a,c, a QD, and b,d, a QPC, for potential shapes
shown by thin black lines (marked by black arrows) for ωmin

j = Ej − εF. (The logarithmic color scale shows A0
j (ω) smeared by

a Lorentzian of width δ = 0.001τ , in order to render very sharp structures visible.) Panels c,d focus on the central region of

the CCR and energies close to µ (black dashed lines); the Ṽc- and Ṽs-choices differ from those used in a,b. Thin green dashed
lines in c,d indicate the shape of the “LDOS ridges” discussed in the text. For the KQD, they enclose an area in the j-ω plane
on which the corresponding LDOS ridge has weight 1; for the QPC, they trace a contour along which A0,QPC

j (ω) = 0.7.

relative to the chemical potential µ) is defined as

Aσ
j (ω) = − 1

π
ImGσR

jj (ω) , (S17)

where GσR
ij (ω) is the Fourier transform of the retarded

T = 0 propagator25,

GσR
ij (t) = −iθ(t)〈G|{diσ(t), d†jσ(0)}|G〉 , (S18)

where |G〉 is the model’s ground state. In this subsection
we will discuss only the spin-degenerate case of zero field

(B̃ = 0) and zero interaction (Uj = 0). We thus drop the
spin index σ (as in the main article) and instead put a
superscript 0 on A0

j (ω) to denote the bare LDOS.
For Ej = 0, representing an infinite, homogenous,

bulk tight-binding chain, the LDOS of Eq. (S17) is j-
independent and equal to the 1D bulk LDOS,

A0
bulk(ω) =

a

π

[
∂k

∂εk

]

εk=ω+µ

. (S19a)

This is nonzero only for ωmin
bulk < ω < ωmax

bulk, where

ωmin
bulk = −εF , ωmax

bulk = −εF + 4τ , (S19b)

denote the bottom and top of the band, measured w. r. t.
µ, respectively. Within these limits, it has the form

A0
bulk(ω) =

1

π
√

(ωmax
bulk − ω)(ω − ωmin

bulk)
, (S19c)

shown in Fig. S9b, featuring square-root van Hove singu-
larities near the band edges (yellow fringes in Fig. S9b).
While the upper van Hove singularity (of unoccupied
states) may be viewed as an artefact of describing the
lowest subband using a tight-binding chain, the lower
one is realistic for effective one-dimensional geometries;
it would also arise, e. g., when using a free-electron model.

Now consider a nonzero potential Ej that is smooth
on the scale of the lattice spacing, modelling a QD or
QPC in the CCR, as shown by the thick black lines in
Figs. S10a-d. The color scale in these figures indicates
the corresponding j-dependent LDOS, A0

j (ω). The latter
has an ω-dependence that, for fixed j, is reminiscent of
the bulk case, but with several differences, caused by the
spatial structure in Ej . First, the band edges now are
j-dependent and follow the shape of the potential, with

ωmin
j = Ej − εF , ωmax

j = Ej − εF + 4τ . (S20)

In particular, the band bottom at the CCR center, j = 0,

is given by ωmin
0 = Ṽc. Second, A0

j (ω) exhibits nar-
row fringes (visible clearly in Figs. S10a-d), due to the
fact that the electronic wave functions form standing
wave patterns. In the central part of the QD potential
(Fig. S10a), and in the central part of the QPC potential
for energies ω > ωmax

bulk (Fig. S10b), these standing waves
correspond to bound state wave functions. (For the case
of the QPC these bound states are artefacts and they are
avoided in model II.) In the outer regions of both QD
and QPC potentials they correspond to Friedel oscilla-
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Figure S11: Inset: The band bottom ωmin
j (black line) as

function of j, for a 301-site CCR with a parabolic QPC bar-

rier (model I) with curvature Ωx and height Ṽc = ωmin
0 = 0.

Main plot: Energy dependence of the LDOS near the band
bottom, showing A0

bulk(ω) (dashed), and A0,QPC
j (ω) (solid)

for three j-values near the center, all plotted as functions of
(ω−ωmin

j )/Ωx (blue line corresponds to Fig. 1 in Ref. 23). Ar-
rows of matching colors in the inset indicate the corresponding
values of j (namely 0, 20 and 40). The short, heavy, colored
vertical lines in the main panel indicate where the energy coin-
cides with the barrier top, ω = ωmin

0 ; the corresponding values
of the x-coordinate (ωmin

0 −ωmin
j )/Ωx (namely 0, 1.6 and 6.4)

give the remaining barrier height as seen from site j. In the
bulk, ωmin

j = −εF. The peak of A0,QPC
j (ω) lies at an energy

ωH
j = ωmin

j +O(Ωx). For j = 0 it lies at ωH
0 = 0.21Ωx and has

height 0.28/
√
τΩx (dotted blue lines). Note that A0,QPC

j (ω)

matches A0
bulk(ω) once the energy ω lies above ωmin

0 by more
than O(Ωx), corresponding to free propagation above the bar-
rier.

tions. Third, the van Hove singularities are somewhat
smeared out on the outer flanks of the QD, and through-
out the entire QPC, in the latter case on a scale set by
Ωx (see Fig. S11).

For the rest of this subsection, we focus on the QPC
barrier of Figs. S10b,d. (The QD barrier of Figs. S10a,c
is revisited in Sec. S-4 E below, where we compare its

LDOS to that of a QPC.) For a QPC, A0,QPC
j (ω) de-

pends smoothly on ω and j near the center of the CCR,
its weight being concentrated along a curved, broad
“van Hove ridge” (framed by the green dashed lines in
Fig. S10d). This ridge originates from a van Hove singu-
larity just above the band bottom that has been pushed
upward by the QPC potential barrier. The van Hove
ridge has limited spatial extent when traversed at con-
stant ω, reflecting the limited spatial size of the QPC.
At the outside flanks of the CCR barrier, the tails of the
ridge split up into discrete fringes, representing Friedel
oscillations associated with standing waves that build up
near the barrier (as also seen in Figs. S10a,b). For given
j, the ω-dependence of the van Hove ridge, shown in
Fig. S11, is asymmetric w. r. t. to its maximum, with
a steep, exponentially decaying flank below the maxi-
mum, and above it a long tail, whose envelope decays as

QPC

0

0 0.1

2
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–25 25

1

j

ω
/τ

ωmax

ωmin
j

j

Aj (ω)τ0

Vc = – 0.2τ~
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~

N = 101, Ωx = 0.04τ, U = 0

Figure S12: Noninteracting zero-field LDOS per spin species,
A0

j (ω), shown on a logarithmic color scale, for the QPC model
II defined by Eqs. (S22) and (S23). The thin black line
(marked by black arrow) indicates the lower band edge, ωmin

j

[Eq. (S24)]. The curvature of the lower and upper band edges
is, respectively, negative and positive throughout the CCR,
ensuring that no bound states occur.

[τ(ω−ωmin
j )]−1/2, reflecting the ω-asymmetry of the bulk

van Hove singularity of Eq. (S19). The divergence of the
latter is cut off here, due to the absence of translational
invariance, on a scale set by the barrier curvature. In-
deed, the maximum value taken by the van Hove peak in

A0,QPC
j (ω) occurs at an energy, say ωH

j , that lies above
the lower band edge by an amount of order Ωx,

ωH
j = ωmin

j + O(Ωx) . (S21)

For example, for a purely parabolic barrier top, the van

Hove peak in A0,QPC
j=0 (ω), the LDOS at the center of the

QPC, lies at ωH
0 = ωmin

0 + 0.21Ωx. In that case, the
van Hove peak lies precisely at the chemical potential,

ωH
0 = 0, when Ṽc = −0.21Ωx.
Eq. (S21) implies not only that the van Hove peak

energy depends on Ωx, but also that its height (i. e.
the maximum value of the LDOS) scales as 1/

√
τΩx.

As a consequence, all local quantities that depend on

A0,QPC
j (ω), such as the local magnetic susceptibility χj ,

depend on Ωx, too. In this way they acquire an explicit
dependence on the shape of the QPC barrier.

D. Model II

In this section we describe model II, used for all numer-
ical results (fRG and SOPT) presented in the main arti-
cle. For model II, designed to model exclusively a QPC,
we have modified the choice of Ej and τj in two minor
ways relative to model I of Sec. S-4 B, which turn out to
facilitate SOPT calculations. The two changes, described
below, are designed (i) to allow using a shorter CCR
while maintaining a small curvature Ωx at the barrier
top, and (ii) to avoid the occurrence of artificial bound
states in the bare density of states of the QPC (such as
those seen in Fig. S10b near the upper band edge, for
energies ω > ωmax

bulk).
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(i) Modified potential shape: We define the onsite po-
tential Ej by

Ej =





0 , ∀ N ′ ≤ |j| ,

(Ṽc + εF)

1 + 2b
exp

[
−

(
j
N ′

)2

1 −
(

j
N ′

)2

]
∀ |j| ≤ N ′ ,

(S22)
where the parameter b is defined in (ii) below. This yields
a smooth parabolic barrier near the CCR center and
rapidly decaying flanks, allowing the CCR to be chosen
shorter than for the potential of Eq. (S15). Using a short
CCR is advantageous in particular for SOPT calcula-
tions: due to the matrix structure of the Greens function
and the summation/integration over internal frequencies,
the computation of the self-energy Σ and the vertex cor-
rection P needed for SOPT [see Eq. (S53) and Eq. (S52)]
is rather time-consuming.
(ii) Modified hopping: For model I, the QPC poten-

tial barrier of Eq. (S15) (at B̃ = 0) yields a bare band
whose upper edge has a maximum in energy at j = 0,
causing a large number of bound states in the energy

range ω ∈ [ωmax
bulk, ω

max
bulk + Ṽc] (visible as narrow fringes in

Fig. S10). Though these artificial bound states are com-
pletely irrelevant for the physics of the 0.7-anomaly, the
corresponding poles in the bare Green’s functions never-
theless would have to be treated with due accuracy in the
energy integrals involved in SOPT. To avoid the occur-
rence of such poles, model II takes the hopping matrix
element τj in Eq. (S11) to be site-dependent within the
CCR, τj = τ − δτj , involving a smooth (adiabatic) re-
duction proportional to the local barrier height:

δτj = 1
2 (Ej + Ej+1)b (> 0) , −N ′ ≤ j < N ′, (S23)

and δτj = 0 otherwise. Then the lower and upper band
edges are approximately given by

ωmin
j

ωmax
j

}
= −µ ∓ 2τ j + Ej , τ j = 1

2 (τj + τj−1). (S24)

Here τ̄j , the average hopping matrix element involving
site j, is approximately equal to τ j � τ − bEj , since the
potential varies smoothly with j. Eq. (S24) implies a
j-dependent bandwidth, 4τ j . For the upper band edge
ωmax
j , the upward shift contributed by Ej inside the CCR

is counteracted by a downward shift, contributed by 2τ j ,
of −2δτ j � −2bEj . The latter can be ensured to over-
compensate the former by choosing the numerical factor
b to be larger than 1/2 (we choose b = 0.55). Then the
upper band edge ωmax

j throughout the CCR lies below
the bulk band edge ωmax

bulk, ensuring that no bound states
occur near the upper band edge. This is illustrated in
Fig. S12, which is to be contrasted to the bound states
seen in Fig. S10b for model I, with j-independent hop-
ping.

The prefactor 1/(1 + 2b) in Eq. (S22) ensures that

Ṽc corresponds to the effective barrier height w. r. t.

the chemical potential, Ṽc = ωmin
j=0 [as is the case for

Eq. (S15)]. Finally, the parameter Ωx is defined as the

curvature of the band bottom at Ṽc = 0, obtained by
expanding Eq. (S24) to second order in j [in analogy to
Eq. (S15)]: ωmin

j |Ṽc=0 � −Ω2
xj

2/(4τ0). For the choice

µ = 0 used here, τ0 � τ/(1 + 2b). We have checked that
with this definition of Ωx, the bare transmission probabil-
ity for model II, calculated numerically, agrees well with
the analytic prediction of Eq. (S30) below (and that of
model I). For all calculations performed in this with with
model II, we chose N ′ = 50 and b = 0.55, in which case
Ωx = 0.04τ .

We emphasize that transport and local properties are
not modified in any essential way by the changes (i) and
(ii) of model II w. r. t. model I. Their effect is solely to
reduce the computation time.

E. Comparison: bare LDOS of QPC and QD

In this subsection, we offer a detailed comparison of
the bare LDOS structures for a QPC and a QD. They are
shown in Figs. S10d and S10c, respectively, which focus
on the CCR-center and energies near ω = 0. They evi-
dently exhibit numerous differences, but also some sim-
ilarities. These are key to understanding the differences
and similarities between the 0.7-anomaly and the Kondo
effect.

For a QPC, A0,QPC
j (ω) exhibits a prominent, smooth

van Hove ridge (Fig. S10d), as discussed in detail in

Sec. S-4 C. In contrast, for a QD, A0,QD
j (ω) has appre-

ciable weight only along a set of “ridges” at discrete
energies, one of which is marked by the green box in
Fig. S10c. Each ridge is associated with a discrete eigen-
state of the bare QD potential: it is characterized by a
discrete eigenenergy, say ωα, and its spatially confined,
oscillatory j-dependence reflects that of |ψα(j)|2, where
the wavefunction ψα(j) represents a confined standing
wave. Its spatial extent is approximately set by the clas-
sical turning points (where ωα = ωmin

j ), though it tunnels
a bit beyond these. Each ridge has a small but nonzero
width in ω, due to tunneling into the leads outside the
QD, and a quantized total weight of 1 when j-summed
over the range of ψα(j) and ω-integrated over its width,
as indicated by the green box in Fig. S10c.

(Parenthetic remark: When interactions are turned on,
the detailed shape of the LDOS will change, since barrier
heights and energy levels will be renormalized. Neverthe-
less, the full Aj(ω) will retain the generic properties illus-
trated in Figs. S10c,d, namely discrete ridges for the QD
and a single broad ridge for the QPC. Many-body corre-
lations may lead to additional fine structures in the full
LDOS, such as a narrow Kondo resonance at the Fermi

energy for AKQD
j (ω). However, such many-body effects

do not concern us at the present qualitative level of argu-
mentation, which merely seeks to identify the geometric
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prerequisites for their occurrence.)

The most important difference between the bare LDOS
of a QD and a QPC lies in the following fact, evident

from Figs. S10a-d: near the center of the CCR, A0,QD
j (ω)

consists of a series of discrete ridges of quantized weight,

whereas A0,QPC
j (ω) does not, being dominated by just a

single ridge of nonquantized weight. The physical reason
for this difference clearly is that a QD constitutes a closed
structure that hosts discrete, localized states, whereas
a QPC, being truly open, does not. This difference is
responsible for the different behavior between a KQD and

a QPC for large fields: for B̃ � B̃∗, the magnetization
of a KQD saturates, whereas that of a QPC does not (as
seen in Fig. A1d and its inset). This behavior reflects
the fact that for the KQD the spin of only the single odd
electron in the topmost nonempty level is being polarized
in a large field, whereas for the QPC, whose LDOS has
no discrete structure, there is no intrinsic limit for the
magnitude of the magnetization.

While the differences between the LDOS ridge struc-
tures of KQD and QPC matter at high energies, the low-

energy behavior (B̃, T̃ � B∗) is governed by a generic
common feature shared by the LDOS of both geometries:

the very existence of a Ṽc-tunable ridge with a strongly
peaked dependence on both ω and j. (Details such as the
number of such ridges or their internal spatial structure
are irrelevant for the ensuing argument.) The existence
of such a ridge guarantees a strong magnetic response in

both the conductance and the magnetization when Ṽc is
tuned such that the (interaction-shifted version of the)
ridge is located energetically somewhat below µ. For a
KQD, this is the local moment regime; for the QPC, it is
the regime where g � 0.7. This situation is particularly
inductive to a strong local magnetic response, for two
reasons: First, when spin symmetry is broken by turning

on a magnetic field (say B̃ > 0), the B̃-induced surplus
of spin-up over spin-down electrons is enhanced by the
presence of an LDOS ridge below the chemical potential,
because this ridge constitutes a large density of states
in a confined region of space. Second, interactions will
generally act to further increase this surplus by repelling
spin-down electrons, and will be aided in this by the fact
that the ridge, and hence the region in which the surplus
is large, has a limited spatial extent.

This microscopic mechanism generates a strong, lo-
cal magnetic response irrespective of whether the LDOS
ridge has quantized weight or not. Thus, this mecha-
nism applies equally to a KQD and a QPC, and in this
respect the low-energy behavior of the Kondo effect and
the 0.7-anomaly are indeed similar. This similarity was
first pointed out in Ref. 26 and emphasized, in particular,
by Meir and collaborators17–19: the “narrow transmis-
sion resonances above the barrier” or “quasi-bound state”
evoked in their arguments correspond to the van Hove

ridge in A0,QPC
j (ω) described above. Indeed, the asym-

metric bare LDOS peak at the QPC barrier center found

by us [Fig. S11, blue line for A0,QPC
j=0 (ω)] is qualitatively

similar to that found in Ref. 17 [see Fig. 3a there, right in-
set, solid line for ν↑(ε)] by spin-density-functional theory
(SDFT) in a small applied field. Moreover, the van Hove
ridge in our Figs. S10b,d corresponds to the bright spot
seen in the center of Fig. 3a of Ref. 19 by Rejec and Meir,
which shows the full spin-up LDOS Aj(ω) as function of
position and energy, again calculated by SDFT in a small
applied field. Though SDFT includes interactions and
our bare LDOS does not, interactions affect the minor-
ity species much more strongly than the majority species.
We therefore expect that the geometry-dependence of the
majority LDOS obtained from SDFT should be similar
to that of a noninteracting theory. Thus, we believe that
Meir and Rejec’s “quasi-bound states” are synonymous
to our “van Hove ridges”. (We somewhat prefer the latter
nomenclature, since it indicates the origin of these LDOS
structures.) It would be highly desirable to have a plot

similar to Fig. S10d for the full AQPC
j (ω) calculated using

fRG, but its energy dependence is not accessible by static
fRG. To obtain a first impression, we have calculated it
using perturbation theory, see Fig. A3g,h; calculating it
with Keldysh fRG would be an interesting goal for future
studies.

We wish to emphasize that the details of the magnetic
response of a KQD and a QPC will be similar only as

long as the conditions B̃, T̃ � B̃∗ hold ; once they are vio-
lated, the differences in the LDOS ridges, discrete for QD
vs. continuous for QPC, begin to matter. This caveat,
not discussed in Refs. 17–19, prevents the similarity be-
tween Kondo effect and 0.7-anomaly from extending to
the regime of large energies.

A detailed comparative study of the similarities and
differences in the behavior of a KQD and QPC, all origi-
nating from the similarities and differences between their
LDOS ridges, will be published elsewhere1.

S-5. THE LOW-ENERGY SCALE B̃∗

This section covers the influence of geometry and inter-

actions on the low-energy scale B̃∗ for a QPC. In Sec. S-
5 A we show that the exponential dependence of the low-

energy scale B̃∗(Ṽc) has a purely geometric origin, and
contrast this to the more complicated case of the Kondo
temperature for a KQD. Sec. S-5 B discusses the effects of

interactions on B̃∗ and T̃∗ for a QPC. Finally, Sec. S-5 C
discusses the extent to which the interaction parameter
U itself depends on the 2D potential landscape.

A. Exponential Ṽc-dependence of B̃∗

In the main article we reported that for a QPC the
low-energy scale B∗(Vc) depends exponentially on Vc (see
Eq. (A3), Figs. A2a, c, e). The same is true for T∗(Vc)
(see Eq. (A3), Figs. A2d, f), as was first found in Ref. 26.
In this subsection, we explain the origin of this exponen-
tial Vc-dependence. It is present already for the nonin-
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teracting (U = 0) version of our model, hence we begin
by discussing the latter.

According to the Landauer-Büttiker formula, the non-

interacting differential conductance g0nl(T̃ , B̃, Ṽsd) as a

function of temperature T̃ = kBT , magnetic field B̃ =

|gel|µBB and source-drain voltage Ṽsd = −|e|Vsd is given
by

g0nl(T̃ , B̃, Ṽsd) =
d

dṼsd

1

2

∑

σ=±

∫ ∞

−∞
dω T (ω + 1

2σB̃)

×
[
f(ω − 1

2 Ṽsd) − f(ω + 1
2 Ṽsd)

]
(S25)

where f(ω) = [eω/T̃ + 1]−1 is the Fermi function,
and T (ω) is the noninteracting transmission probability
across the QPC barrier of a lead electron incident with

energy ω w. r. t. µ, at B̃ = 0. Let us expand it in powers
of energy:

T (ω) = T (0) + T (1)ω +
1

2
T (2)ω2 + . . . , (S26)

where T (0) = T (0) is the transmission probability at the
chemical potential. Inserting Eq. (S26) into (S25) leads
to the following expression for the leading dependence of

the bare conductance on T̃ 2, B̃2 and Ṽ 2
sd (at fixed Ṽc and

Ṽs)

g0nl(T̃ , B̃, Ṽsd)

T (0)
=


1 −

(
T̃

T̃ 0∗

)2

−
(

B̃

B̃0∗

)2

−
(

Ṽsd

Ṽ 0
sd∗

)2

 ,

(S27)

with low-energy scales T̃ 0
∗ , B̃0

∗ and Ṽ 0
sd∗ given by

− 8T (0)

T (2)
=

(
B̃0

∗
)2

=
(
Ṽ 0
sd∗

)2

=
4π2

3

(
T̃ 0
∗
)2

. (S28)

Their mutual ratios hence are independent of Ṽc:

B̃0
∗

T̃ 0∗
=

2π√
3
,

Ṽ 0
sd∗
B̃0∗

= 1 . (S29)

(Remark: Depending on the height and shape of the po-
tential barrier, T (2) can be either negative or positive; in

the latter case, the scales B̃0
∗ , T̃ 0

∗ and Ṽ 0
sd∗ as defined here

would be imaginary. In the following, we are interested
only in the former case.)

Now consider a purely parabolic QPC potential barrier

with height Ṽc and longitudinal curvature 1
4τ Ω2

x [as in

Eq. (S15)]. Then the bare transmission T (ω) at B̃ = 0
is given by5

T (ω) � 1

e−2π(ω−Ṽc)/Ωx + 1
. (S30)

Recall that Ṽc = ωmin
j=0 is the height of the band bottom’s

maximum at the central site w. r. t. the chemical poten-

tial. When Ṽc is decreased to open up the QPC, the

bare transmission of an electron incident at the chemical
potential (ω = 0) increases past T (0) = 0.5 when Ṽc de-
creases past 0. [We obtained Eq. (S30) from Eq. (4) of
Ref. 5, which in turn was derived by a semiclassical treat-
ment of transmission through a parabolic barrier27,28, as-
suming a quadratic dispersion of the form p2/2m. The
latter assumption is applicable for our situation in the
limit that our tight-binding band is much wider than
the energy range over which the transmission changes
rapidly, τ � Ωx. This allows a quadratic approxima-
tion for the dispersion [Eq. (S12)] near the band bot-
tom, εk � −2τ + τk2a2, implying an effective mass of
m = �2/(2τa2).]

The bare dimensionless conductance at B̃ = T̃ = Ṽsd =
0, viewed as function of Ṽc, is then given by

g0nl = g0nl(0, 0, 0) = T (0) =
1

e−2πṼc/Ωx + 1
. (S31)

Let us now focus on the regime of negative Ṽc = −|Ṽc|,
where for the quadratic potential top considered here the
bare magnetoconductance is strictly negative. Evaluat-

ing Eq. (S28) for B̃0
∗ using Eq. (S30), one finds:

B̃0
∗ =

Ωx

π

√
2 coth(π|Ṽc|/Ωx) eπ|Ṽc|/Ωx (S32a)

=
Ωx

π

1√
g0 − 1/2

√
g0

1 − g0
. (S32b)

(The second line follows from the first by inverting
Eq. (S31).) Expression (S32a) for the low-energy scale

in the absence of interactions, B̃0
∗ , agrees to within a

few percent with our numerical calculations for U = 0,
shown by the black dashed line in Fig. S13a. It states

that B̃0
∗ diverges both when |Ṽc| → 0+ (i. e. g0 → 1/2

from above) and when |Ṽc|/Ωx � 1 (i. e. g0 → 1 from

below). Between these two limiting cases B̃0
∗ has a mini-

mum, which turns out to occur at a bare conductance of
g0∗ = 1/

√
2 � 0.707.

The message of the above analysis is that the experi-
mentally observed exponential Vc-dependence of the low-
energy scales B∗ and T∗ reported in the main article (and
for T∗ also in Ref. 26) has a purely geometric origin, which
can already be understood within a noninteracting model.
It arises simply because for a quadratic barrier the trans-
mission amplitude above the barrier depends exponen-
tially on its height (as can be made explicit in a semiclas-
sical WKB treatment of the transmission problem27,28).

Moreover, the scale for the Ṽc-dependence is set solely by
Ωx, the curvature at the top of the barrier [Eq. (S15)].

The fact that for a QPC the exponential Ṽc-depen-

dence of B̃∗ can be found without considering interac-
tions at all stands in striking contrast to the case of a

KQD: there B̃∗ is proportional to the Kondo tempera-

ture, which likewise depends exponentially on Ṽc, but

the exponent is quadratic in Ṽc, and the scale of its Ṽc-
dependence is set by the interaction strength U and effec-
tive level width Γ. To be explicit, for the single-impurity
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Anderson model, with level position εd = Ṽc, the Kondo

temperature corresponding to T̃∗ is given by29

T̃K =
√

UΓ/2 exp

[
πṼc(Ṽc + U)

2ΓU

]
. (S33)

It arises as the low-energy scale T̃K ∝ e−1/jeff character-
izing the onset of a logarithmic infrared divergence that
occurs when doing perturbation theory in the effective
exchange interaction between the spins of a local moment
and a conduction band. The form of the corresponding
effective dimensionless exchange coupling jeff , given by

jeff =
2Γ

π

[
1

Ṽc + U
− 1

Ṽc

]
, (S34)

is found by a Schrieffer-Wolff transformation. Evidently,
such KQD results can not be obtained without consider-
ing the role of interactions from the outset. In contrast,

for a QPC the origin of the exponential Ṽc-dependence

of B̃∗ is decidedly different and can be understood al-
ready for a noninteracting theory, as described above.
In particular, at high energies a QPC does not display
local-moment behavior, so that the corresponding loga-
rithmic infrared divergence characteristic of the Kondo
effect does not occur.

Having made this point, we hasten to add that B̃∗ is
of course affected by interactions for a QPC too, albeit
less severely than for a KQD. The role of interactions is
discussed in the next subsection.

B. Effects of interactions on B̃∗ and T̃∗

While the fact that the low-energy scales B̃∗, T̃∗ and

Ṽsd∗ for a QPC depend exponentially on gate voltage,

as eπ|Ṽc|/Ωx , has an elementary geometric origin, the be-
havior of the pre-exponential factor is more subtle: quite
generally this pre-exponential factor will depend on the

interaction strength U and gate voltage Ṽc. A detailed
theoretical analysis of this issue is beyond the scope of
the present paper. Here we just want to make two points,

the first regarding the ratio B̃∗/T̃∗, the second regarding

the U -dependence of B̃∗.
The ratio B̃∗/T̃∗: When interactions are turned on, the

effects of finite B̃ or finite T̃ are, in general, not equiva-

lent: Finite B̃ shifts the effective barrier height seen by
spin-up and spin-down electrons in opposite directions, in
a way that is enhanced by interactions (which amplifies
the imbalance between spin up and spin down), however
without opening up the possibility of inelastic scattering.

Finite T̃ causes an effective increase in barrier height, too,
due to an increase in density near the barrier center (be-
cause the LDOS is ω-asymmetric there), but it does not
involve any imbalance between spin-up and -down. More-

over, finite T̃ also leads to inelastic scattering. In lowest-
order perturbation theory for the self-energy (Sec. S-7),

shifts in barrier height (both B̃-induced, spin-asymmetric

and T̃ -induced, spin-symmetric shifts) are described by

the Hartree contribution, and T̃ -induced inelastic scat-
tering by the Fock contribution [see Eq. (S53)]. In gen-
eral, the relative strength of these two effects will depend
not only on U but also on gate voltage. Since the strength

of the (negative) conductance response to increasing B̃

or T̃ is characterized by 1/B̃∗ or 1/T̃∗, respectively, the

ratio B̃∗/T̃∗, too, will in general likewise depend not only

on U , but also directly on Ṽc.
In the light of the above comments, it is all the more

remarkable that the experimentally observed ratio B∗/T̃∗
does, in fact, become essentially independent of Vc in the
Vc-regime well below Vc0, where g → 1 (compare thin
grey and black lines in Fig. A2f). In the main article
we have already pointed out that this Vc-independence
of B∗/T∗ for g � 1 is characteristic of the Fermi-liquid
behavior expected from Nozières’ treatment of the Kondo
problem in the limit B, T � TK.

Once the condition g � 1 is relaxed, the experimentally
determined B∗/T∗ does acquire a dependence on Vc, in
accord with the expectations stated above. Indeed, in
Fig. A2f the measured ratio B∗/T∗ increases with in-

creasing Ṽc as B∗ and T∗ approach their minimal values.
Remarkably, our model qualitatively reproduces this be-
havior when we treat interactions using SOPT (compare

the lines for B̃∗ and T̃∗ in Fig. A2d). An increase in

B̃∗/T̃∗ means that the conductance reduction induced by

increasing T̃ grows relative to that induced by increas-

ing B̃, implying that inelastic scattering [Fock term, di-
agram c in Eq. (S53)] gains importance relative to the

B̃-induced enhancement of the barrier height [Hartree
terms, diagrams a and b in Eq. (S53)]. Moreover, Fig. S4

above shows that B̃∗/T̃∗ decreases with increasing U , im-
plying that in general interactions have a stronger effect

on the low-B̃ dependence of the conductance than on its

low-T̃ dependence.

U -dependence of B̃∗: We have used fRG to explore

in some more detail how interactions affect the Ṽc-
dependence of B̃∗ for a QPC. (Similar studies of T̃∗ are
not possible using static fRG, but would be worth pur-
suing by Keldysh fRG). As in Sec. S-5 A above, we focus

on the regime g � 1 (say |Ṽc| � 0.75Ωx). Our results
for this regime can be summarized by stating that for

U small enough to be treatable by fRG, B̃∗ shows the
following behavior:

B̃∗(Ṽc, U) �
√

2Ωx

π
e−F (U)eπ|Ṽc|/Ωx , (S35a)

F (U) � (0.8 ± 0.05)U/
√

τΩx . (S35b)

The behavior of Eq. (S35a) is illustrated in Fig. S13a,

which shows ln(B̃∗) as function of |Ṽc|/Ωx for several

values of U : for |Ṽc|/Ωx � 0.75 the resulting lines all
have roughly the same slope, but are shifted downward
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Figure S13: Effect of interaction strength U on the low-

energy scale B̃∗, in the regime of negative Ṽc = −|Ṽc| (calcu-
lated for model I using static fRG). a, B̃∗/Ωx as function of

|Ṽc|/Ωx. Grey dashed lines indicate linear fits of ln(B̃∗) vs.

|Ṽc|/Ωx in the range 0.8 ≤ |Ṽc|/Ωx < 1, the offsets of which
yield F (U). b, The function F (U) vs. U for several choices
of Ωx, plotted in scaled fashion to illustrate the behavior of
Eq. (S35b).

in uniformly-spaced steps when U is increased in uni-

form steps. This implies that B̃∗ is exponentially sup-
pressed with increasing U (which also shifts the mini-

mum in B̃∗ towards more positive |Ṽc|-values). The func-
tion F (U) that characterizes the exponential suppression

can be obtained from the offsets of linear fits to ln(B̃∗)
vs. π|Ṽc|/Ωx, repeated for various U -value. The result-
ing function F (U), shown in Fig. S13b for several values
of the curvature Ωx, exhibits the behavior described by
Eq. (S35b) quite well: it increases linear with U , on a
scale set by

√
τΩx. This reflects the fact that in static

fRG, the dimensionless quantity that governs the effec-
tive interaction strength is UAj(0) (cf. Sec. S-6), and at
the barrier top we have [cf. Eq. (S19c) and Fig. S11]

UAj=0(0) ∝ U/
√

τΩx . (S36)

Paraphrasing Eq. (S35a), we can formulate the follow-

ing conclusions for how the Ṽc-dependence of B̃∗ in the

regime g � 1 is affected by turning on U : (i) The fac-

tor eπ|Ṽc|/Ωx from Eq. (S32) persists, essentially without

a change in the numerical prefactor π/Ωx of |Ṽc| in the
exponent. (ii) The pre-exponential factor decreases expo-
nentially with U , in a fashion that corresponds to shift-

ing Ṽc → Ṽc + ΩxF (U)/π. The physical interpretation
is that local interactions increase the Hartree potential
and hence the effective barrier height [causing (ii)], but
do not significantly change its effective curvature [result-
ing in (i)]. Of course, the latter statements are true only
approximately, in that Fig. S13 does exhibit slight devi-
ations between the actual data and the behavior stated
by Eqs. (S35).

Together, points (i) and (ii) suggest that for a QPC,

the qualitative effect of interactions on B̃∗ can already be
found by perturbatively calculating the Hartree potential.
We have done so, obtaining results (not shown here) in
qualitative agreement with those just discussed. A sim-
pler treatment of the same effects might be possible using
semiclassical WKB wave functions, as done in Ref. 6 in

a calculation of the Fock contribution to T̃∗, but this is
left as a topic for future study. (We remark that when

the calculation of T̃∗ in Ref. 6, extractable from their
Eq. (33), is specialized to a point-like interaction with

range zero, the result yields precisely the same eπ|Ṽc|/Ωx

dependence for T̃∗ as found by us in Eq. (S32) above.)

Note from Eq. (S35) that decreasing the curvature Ωx

at the top of the QPC barrier or increasing the interac-
tion strength U (e. g. using a top gate) have qualitatively

similar effects, in that both tend to decrease B̃∗ and

hence to strengthen the low-B̃ response of the conduc-
tance. Likewise, decreasing Ωx or increasing U also cause

similar changes in the conductance step at B̃ = T̃ = 0, in
that both tend to make the 0.7-shoulder more prominent.
This is illustrated in Fig. S14, whose panels b and c offer
a succinct summary of how the 0.7-anomaly depends on
geometry and interactions, respectively.

Since Ωx sets both the width of the conductance step

[Eq. (S31)] and the slope of ln(B̃∗) vs. |Ṽc| [Eq. (S35a)],
an experimental consistency check is possible: We have
determined the said step width and slope from Fig. A2e
and extracted Ωx-values from each, finding Ωstep

x � a ×
0.026 V from the step width and Ωslope

x � a × 0.048 V
from the slope (a � 37 meV/V is a geometric conversion
factor between applied gate voltage (in V) and the re-
sulting electrostatic potential energy (in meV), such that

Ṽc = −a Vc). The fact that Ωstep
x and Ωslope

x agree within
a factor of two is quite satisfactory, given the fact that we
made no attempt to realistically model the shape of the
QPC potential. Possible reasons for why the agreement
is not perfect are that the experimental QPC potential
was not perfectly parabolic, and that our use of a purely
on-site (instead of longer-range) interaction is an over-
simplification. (See also Sec. S-5 C below.)

To conclude this subsection, let us emphasize once
more its most important qualitative conclusion: inter-
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Figure S14: Effect of barrier curvature Ωx (panels a,b) and interaction strength U (panel c) on the conductance through a
QPC (model I), calculated by static fRG. The inset to a shows the top of a parabolic QPC barrier for several values of the

curvature Ωx. a, In the absence of interactions (U = 0) the conductance curves g(Ṽc), calculated for different Ωx, all collapse

onto a single curve when plotted as function of Ṽc/Ωx, as expected from Eq. (S30). b, Similar plot as a, but for U �= 0, which

prevents a scaling collapse. c, Conductance curves g(Ṽc) calculated for fixed Ωx but several different values of U , and scaled as
in a and b. As explained in the main article, the combination of enhanced spectral weight at the Fermi energy Aj=0(0) and

interaction U lowers the conductance in the vicinity of Ṽc � 0, resulting in an asymmetric and broadened conductance step.
The strength of this effect is governed by the product UAj=0(0) ∝ U/

√
τΩx [cf. Eq. (S36)]. This increases with decreasing Ωx

at fixed U (panel b) or likewise with increasing U at fixed Ωx (panel c), causing an enhancement of the 0.7-shoulder in both
cases.

actions cause an exponential reduction in B̃∗, which can
thus be significantly smaller than the QPC’s natural en-
ergy scale Ωx. (In Fig. A2f, the smallest values reported
for µBB∗ and kBT∗ are 0.3 meV and 0.08 meV, respec-
tively, significantly smaller than the above estimates of
Ωstep

x � 1 meV.) While the detailed form of the func-
tion F (U) describing this suppression may be model-

dependent, we believe the strong suppression of B̃∗ with
increasing U to be generic. This is a crucial ingredient
for understanding the 0.7-anomaly, since it becomes more
pronounced the smaller this crossover scale.

C. Geometry-dependence of interaction U

It would be interesting to experimentally study the
interaction- and geometry dependence of B∗ more sys-
tematically, by using the side- and top-gate voltages Vs

and Vt to vary the effective barrier shape and interac-
tion strength. Of course numerous studies of the 0.7-
anomaly in varying geometries do exist4,8–10,12,30,31, but
to systematically check the predictions of Eq. (S35) for

B̃∗(Ṽc, Ωx, U), it would be necessary to simultaneously
monitor the Vt- and Vs-dependence of B∗(Vc), Ωx and
U . Indeed, whereas our model treats U as a fixed, given
constant, in reality the effective interaction strength is
geometry-dependent. We have already pointed out in
Sec. S-2 A that it depends on the lateral confinement in
the QPC region; more specifically, the effective interac-
tion constant for a 1D model will depend on the spatial

extent, say ly, of the transverse wave-function, which,
in turn, can depend quite delicately on the amount of
screening, etc.

If no realistic modelling of the latter is available (we
have not attempted any), the evolution of interaction
strength with geometry is best gauged by tracking the
evolution of experimentally accessible quantities such as
gss and ∆hfo. To be specific, the conductance g(Vc, B, T )
could be measured for various settings of Vt and Vs. A
measure for the resulting changes in the effective interac-
tion strength U could be obtained from the transconduc-
tance dG/dVc at low T by monitoring the corresponding
changes in gss or ∆hfo (as in Fig. S5b, c). Simultaneously,
estimates for Ωx and ly could be extracted, respectively,
from the widths of the first step and first plateau of the
conductance curve at low T ; and B∗ and T∗ from the
low-energy B- and T -dependence of the conductance (as
in Figs. A2e, f). This would yield enough information
to check Eq. (S35) in detail. We leave such a study for
future work.

S-6. FUNCTIONAL RENORMALIZATION
GROUP

In this section and the next, we describe the de-
tails of the two theoretical approaches used here: The
present section is devoted to the functional renormal-

ization group (fRG) which we used to study the B̃-

dependent quantities at T̃ = Ṽsd = 0. Section S-7 out-
lines the second-order perturbation theory (SOPT) ap-
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proach which we used to explore the properties of our

model for fixed U at T̃ �= 0 or Ṽsd �= 0.
Both fRG and SOPT are set up as perturbation ex-

pansions with respect to a noninteracting ground state
that has zero magnetization in the absence of a magnetic
field, hence both yield perturbed ground states that also
have this property. The possibility of spontaneous break-
ing of spin symmetry is thus ruled out a priori within
both approaches. In choosing to set them up in this way,
we therefore make the physical assumption that sponta-
neous symmetry breaking need not be invoked to explain
the 0.7-anomaly. This assumption is justified a posteri-
ori by the agreement between our fRG results and our
experiments for the magnetic-field dependence of the 0.7-
anomaly (as discussed in detail in Sec. S-2 C).

The present section summarizes the central ingredi-
ents of the fRG approach in the one-particle irreducible
version32 used here. The details of our approach, using
the Matsubara formalism, are very similar to those of
Refs. 33,34,40 and 41; technical aspects going beyond the
latter works will be presented in detail elsewhere36. The
main purpose here is to explicitly formulate the approx-
imations that we have employed for the translationally
nonuniform system with on-site interactions defined by
Eq. (A1) of the main text [or Eq. (S11)]. (For complete-
ness, we remark that the fRG approach described below
is also capable of dealing with the Kondo effect in a 1D-
model of a quantum dot, described by a double-barrier
potential. Corresponding results will be presented else-
where, in a comparative study of the Kondo effect and
the 0.7-anomaly.1)

A. Observables

Our goal is to calculate the conductance g through the
CCR and the average number njσ of spin-σ electrons at
site j, at zero temperature. Following Ref. 33,34, we
proceed in three steps. (i) We integrate out the two
semi-infinite, noninteracting leads to the left and right
of the CCR, using a standard projection technique; this
results in a bare Matsubara Green’s function for the
CCR, (G0)

σ
ji(iω), with a matrix structure in real space,

j, i ∈ [−N ′, N ′] being site indices. (ii) We incorporate in-
teractions in the CCR by using fRG to calculate the full
Matsubara Green’s function of the CCR, Gσ

ji(iω); this
step will be described in more detail in the next subsec-
tion. (iii) We calculate g and njσ at T = 0 using

g =
1

2

∑

σ

Tσ(0) , (S37)

Tσ(ω) =
∣∣2πτ2ρσ0 (ω)Gσ

−N ′,N ′(ω + i0+)
∣∣2 , (S38)

njσ = 〈n̂jσ〉T =

∫ ∞

−∞
dω f(ω)Ajσ(ω)

= T
∑

n

G(iωn) +
1

2
, (S39)

Ajσ(ω) = − 1

π
ImGσ

jj(ω + i0+) . (S40)

Here Tσ(ω) is the spin-dependent transmission probabil-
ity for a spin-σ electron incident with energy ω relative to
the chemical potential µ, and ρσ0 (ω) is the local density
of states at the first site of a semi-infinite noninteract-
ing tight-binding chain, representing a lead. For our fRG
calculations we have chosen µ = 0, implying half-filled
leads.

B. fRG strategy and approximations

fRG may be viewed as RG-enhanced perturbation the-
ory in the interaction. It is based on solving a hierarchy
of coupled ordinary differential equations, the flow equa-
tions, for the system’s n-particle vertex functions, γΛ

n .
The flow parameter Λ controls the RG flow from an ini-
tial cutoff Λi, at which all vertex functions are known and
simple, to a final cutoff Λf , at which the full theory is
recovered. Solving the full hierarchy of flow equations,
however, is impossible in practice and simplifying ap-
proximations are needed to render them tractable. When
setting up our flow equations, we make two technical ap-
proximations, which are both exact to second order in
the interaction U . We briefly summarize them here, and
provide more details in the subsequent technical discus-
sions.

(i) We truncate the fRG hierarchy by setting γΛ
n≥3 = 0.

This standard approximation32 offers a systematic way
of summing up parquet-type diagrams (i. e. diagrams
that result from coupled RPA-equations)32 for the two-
particle vertex. However, due to the neglect of higher
order terms, it fails if the interaction becomes too large
(on a scale set by the local density of states at the chem-
ical potential).

(ii) We apply the coupled-ladder approximation40,41 to
treat the frequency dependence of the vertex, and extend
this scheme to also treat the real space structure of the
vertex. The coupled-ladder approximation sets to zero all
components of the vertex except those that are generated
already to second order in the bare (onsite) interaction,
but retains the latter components throughout the flow.

C. fRG Flow equations

We introduce Λ as an infrared cut-off in the bare Mat-
subara propagator,

GΛ
0 (iω) = ΘT (|ω| − Λ)G0(iω) , Λi = ∞, Λf = 0 , (S41)

where ΘT is a step function that is broadened on the
scale of the temperature T (we discuss the limit T =
0 in Sec. S-6 E below). The fRG approach in the one-
particle irreducible version then leads to the following
set of equations. (For a derivation, see e. g. Refs. 32,37;
very detailed discussions are given e. g. in Refs. 33,38, for
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a diagrammatic derivation see Ref. 39.) The flow of the
self-energy ΣΛ = −γΛ

1 is given by

d

dΛ
γΛ
1 (q′1, q1) = T

∑

q′2,q2

SΛ
q2,q

′
2
γΛ
2 (q′2, q

′
1; q2, q1) ,

(S42a)

=11

11

d
dΛ

. (S42b)

Here SΛ is defined in terms of the scale-dependent full
propagator GΛ,

SΛ = GΛ∂Λ

[
GΛ
0

]−1 GΛ = , (S43a)

GΛ =
[ [

GΛ
0

]−1 − ΣΛ
]−1

= , (S43b)

and γΛ
2 is the two-particle irreducible vertex.

The flow of the latter can be arranged into three contributions (or parquet channels),

d

dΛ
γΛ
2 =

d

dΛ
(γΛ

p + γΛ
x + γΛ

d ) , (S44)

1

2

1

2

1 1

22

1 1

22

1 1

2 2

= + −d
dΛ

(S45)

called the particle-particle channel (P), and the exchange (X) and direct (D) contributions to the particle-hole channel,
respectively, with the following explicit forms:

d

dΛ
γΛ
p (q′1, q

′
2; q1, q2) = T

∑

q′3,q3,q
′
4,q4

γΛ
2 (q′1, q

′
2; q3, q4)SΛ

q3,q
′
3
GΛ
q4,q

′
4
γΛ
2 (q′3, q

′
4; q1, q2), (S46a)

d

dΛ
γΛ
x (q′1, q

′
2; q1, q2) = T

∑

q′3,q3,q
′
4,q4

γΛ
2 (q′1, q

′
4; q3, q2)

[
SΛ
q3,q

′
3
GΛ
q4,q

′
4
+ GΛ

q3,q
′
3
SΛ
q4,q

′
4

]
γΛ
2 (q′3, q

′
2; q1, q4) , (S46b)

d

dΛ
γΛ
d (q′1, q

′
2; q1, q2) = −T

∑

q′3,q3,q
′
4,q4

γΛ
2 (q′1, q

′
3; q1, q4)

[
SΛ
q4,q

′
4
GΛ
q3,q

′
3
+ GΛ

q4,q
′
4
SΛ
q3,q

′
3

]
γΛ
2 (q′4, q

′
2; q3, q2) . (S46c)

All higher order vertices γn≥3 have been set to zero.
For the purpose of treating the inhomogeneous chain
model of Eq. (S11), the quantum numbers qi denote a
composite index of site, spin and Matsubara-frequency,
q1 = (j1, σ1, iω

1
n), etc.

D. fRG for non-uniform systems

A standard strategy for getting an initial impression of
the system’s behavior is to neglect the flow of the two-
particle vertex completely. For the present model, the
results so obtained36 turn out to be similar to those ob-
tained from SOPT – they capture the effects of interac-
tions quite well qualitatively, but not quantitatively. To
allow quantitative comparisons to experiment, we have
therefore included the flow of the two-particle vertex for

all fRG results shown in this work. We now describe how
this was done.

Since the bare propagators are not site-diagonal, the
number of independent variables needed to describe
the vertex γΛ

2 (q′1, q
′
2; q1, q2) generated by Eq. (S46) is

very large, O(N4N3
f ) (Nf is the number of Matsubara-

frequencies used in the numerics). To deal with this com-
plication we use the coupled-ladder approximation40,41

for the frequency dependence of γΛ
2 and treat its site-

dependence in a similar manner. Given the structure of
the flow equation (S46) for γΛ

2 , it is natural to divide the
flowing vertex into four parts41:

γΛ
2 = v+γΛ

p +γΛ
x +γΛ

d , γΛi
p = γΛi

x = γΛi

d = 0 . (S47)

Here v is the bare vertex, and γp
2 , γx

2 and γd
2 , whose flows

by definition are given by Eqs. (S46a), (S46b) and (S46c),
sum up the P-, X- and D-channels, respectively (see Sec.
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S-6 C).
Now, since the bare vertex is site-diagonal, only

O(N2Nf) of the O(N4N3
f ) different components in each

channel are generated already to order v2 [i. e. if, at the
beginning of the flow, γΛ

2 is replaced by v on the r. h. s.
of Eq. (S46)]. We exploit this fact by making the follow-
ing simplifying approximation in the spatial structure of
γ2: in each channel we set to zero all components except
those that are generated already to order v2, but retain
the latter components throughout the flow. The dropped
components are all of order v3 or higher, which justifies
their neglect as long as Uj is not too large. Further-
more we only keep the intrinsic frequency dependence of

each channel (i. e. the frequency-dependence generated
to 2nd order). Each channel thus depends only on a sin-
gle bosonic frequency, denoted by Π, X and ∆ for the P-,
X- and D-channels, respectively. The feed-back into the
other channels is performed using only the static part of
each channel, i. e. its value evaluated at zero frequency41.
By exploiting various symmetry relations, the retained
components of γΛ

2 can be parametrized in terms of four

frequency-dependent matrices, PΛ
ij (Π), XΛ

ij(X), D↑Λ
ij (∆)

and D↓Λ
ij (∆), defined as follows (and shown together with

the diagrams that generate them to lowest order):

PΛ
ji(Π) : = γΛ

p (jσ Π−ω′
n, jσ̄ ω′

n; iσ Π−ωn, iσ̄ ωn) = −γΛ
p (jσ Π−ω′

n, jσ̄ ω′
n; iσ̄ Π−ωn, iσ ωn) , (S48a)

O(v2)�
jσ

jσ̄

iσ

iσ̄

σ

σ̄

Π−ωn

ωn

Π−ωn

ωn

Π−ωn

ωn

= −
jσ

jσ̄

iσ

iσ

σ

σ̄

Π−ωn

ωn

Π−ωn

ωn

Π−ωn

ωn

¯
,

XΛ
ji(X) : = γΛ

x (jσ X+ω′
n, iσ̄ ωn; iσ X+ωn, jσ̄ ω′

n) = −γΛ
d (jσ X+ω′

n, iσ̄ ωn; jσ̄ ω′
n, iσ X+ωn) , (S48b)

O(v2)�
jσ

jσ̄

iσ

iσ̄

σ

σ̄

X+ ωn

ωn

X+ ωn

ωn

X+ ωn

ωn

= −

jσ

iσ̄

jσ̄

iσ

σ̄ σ

X+ ωn ωn

X+ ωnωn

X+ ωnωn ,

DσΛ
ji (∆) : = γΛ

d (jσ ∆+ω′
n, iσ ωn; jσ ω′

n, iσ ∆ + ωn) = −γΛ
x (jσ ∆+ω′

n, iσ ωn; iσ ∆ + ωn, jσω′
n) , (S48c)

O(v2)�

jσ

iσ

σ̄ σ̄

jσ

iσ

∆+ ωn

ωn

ωn

∆+ ωn

∆+ ωnωn = −
jσ

iσ
σ̄

σ̄

jσ

iσ

∆+ ωn

ωn

∆+ ωn

ωn

∆+ ωn

ωn

.

Note that these diagrams do not depend on ωn and
ω′
n; this is the reason why the coupled-ladder approxi-

mation allows each channel to be parametrized by just
a single frequency. A detailed analysis of the flow of
PΛ
ij , XΛ

ij and DσΛ
ij , to be published elsewhere36, shows

that the exchange channel XΛ
ij , which grows significantly

during the flow, is the dominant one. This lends a
posteriori support to an assertion made in numerous
works4,7–9,12,14,20–22,30,31,42, namely that exchange inter-
actions in the low-density inner region of the QPC play
a dominant role for the 0.7-anomaly.

The parameter controlling the convergence of the fRG
equations is U · maxṼc,j

[Aj(0)]; if it is too large, these

equations do not converge. For a QPC, the maximum
value of the bare LDOS A0

j (0) scales as 1/
√

τΩx (see
Sec. S-4 C).

E. Zero-temperature limit

The fRG flow equations discussed above apply to an
arbitrary temperature T . However, the conductance at
T �= 0 depends on the retarded correlator GR(ω) =
G(iωn → ω + i0+) as well as the retarded parts of the
vertex channels (e.g. P (iΠn → Π + i0+)), which have
to be obtained by analytic continuation from the imag-
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inary to the real frequency axis. In numerical practice,
this analytical continuation turned out to be unfeasible
for the present problem. Therefore, we have here studied
only the T = 0 limit, in which the Matsubara frequencies
form a continuum and the conductance [Eq. (S37)] is ex-
pressed in terms of the zero-energy transmission Tσ(0).
For numerical computations, we represented the contin-
uum of Matsubara frequencies by a discrete set, and
used its smallest positive member to evaluate the Mat-
subara Green’s function Gσ

−N ′,N ′(i0+) needed for Tσ(0)

[Eq. (S38)].
In the limit T → 0, the cut-off function ΘT in Eq. (S41)

becomes a sharp step function, with Θ0(0) = 1
2 and

∂ωΘ0(ω) = δ(ω). Since a combination of δ- and Θ-
functions occurs in the fRG flow equations, the limit
T → 0 has to be taken with care, with the result40:

SΛ(iω)
T=0
= δ(|ω| − Λ)G̃Λ(iω), (S49a)

G̃Λ(iω) =
[
[G0(iω)]

−1 − ΣΛ(iω)
]−1

, (S49b)

SΛ
i,j(iω)GΛ

k,l(iω
′)

T=0
= δ(|ω| − Λ)G̃Λ

i,j(iω) (S49c)

×Θ(|ω′| − Λ)G̃Λ
k,l(iω

′).

F. Static fRG

Most of our exploratory work on the zero-temperature
properties of the 0.7-anomaly was done using “static”
fRG (here denoted by fRG0). It entails a further ap-
proximation relative to the “dynamic” fRG approach de-
scribed above (here denoted by fRGω), in that fRG0 ne-
glects the frequency dependence of the self-energy and
all vertices. This is done by setting all three bosonic fre-
quencies Π, X and ∆ to zero. As a result the self-energy
is frequency-independent, too. fRG0 leads to reliable
results only for the zero-frequency Green’s function at
zero temperature. If knowing the latter suffices (such as

when studying the magnetic field-dependence at T̃ = 0),
fRG0 is a very flexible and efficient tool, computationally
cheaper than our full coupled-ladder scheme fRGω by a
factor of 103. Moreover, for the model studied here its
results turn out to be qualitatively very similar to those
of fRGω. This is illustrated in Fig. S15, from which we
note the following salient features.

The main difference in the conductance curves cal-
culated by the two methods is an overall interaction-
induced, U -dependent shift of the position of the fRG0

conductance step w. r. t. to that of fRGω, towards some-

what smaller values of Ṽc (compare Figs. S15a,b); how-
ever the shapes of the corresponding curves (modulo the
shift) are essentially identical (Fig. S15c). The shift itself
merely amounts to a small change in overall chemical po-
tential and can be regarded as an insignificant detail, in
particular in the context of the 0.7-anomaly, where both
in theoretical and experimental studies, the focus is on
the shape of the step, not its position.
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g

a

0

1
B̃=T=0˜

U/τ

0
0.1
0.2
0.3
0.4
0.5

b

g

0

1

0 -1
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Figure S15: Comparison of results from static fRG (fRG0, top
panels) and dynamic fRG (fRGω, middle panels, reproduced
from Figs. A1k and A2a, respectively). The bottom panels
show that after compensating for a U -dependent shift (here
applied to the fRGω curves to get best overlap with the fRG0

curves) both sets of curves have almost identical shapes. Left

panels: The interaction dependence of the conductance g(Ṽc)

at B̃ = T̃ = 0. Right panels: The magnetic-field dependence

of the T̃ = 0 conductance g(Ṽc) at fixed U = 0.5τ .

Closer inspection reveals that the magnetic field de-
pendence (at fixed U) of the fRG0 conductance curves is
slightly stronger for small fields and slightly weaker for
large fields, compared to that of fRGω (see Figs. S15d-
f). This implies small quantitative differences in the low-

energy scale B̃∗ and the effective g-factor gss.

All in all, for the purposes of exploring the field-
dependence of the 0.7-anomaly at fixed U , the differ-
ences in results between fRGω and fRG0 are evidently
very small. Hence we have opted to use the computa-
tionally much cheaper fRG0 for the results presented in
Secs. S-3 and S-5.
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S-7. SECOND-ORDER PERTURBATION
THEORY

The main limitation of our calculations using static
fRG is their restriction to ω = 0 and hence to zero tem-
perature and zero source-drain voltage. As a first step to-

ward exploring the properties of our model at T̃ �= 0 and

Ṽsd �= 0, we have calculated the conductance of a QPC
using second-order perturbation theory (SOPT), applied
to model II (see Supplementary Sec. S-4 D). Sec. S-7 A
presents the diagrams used for this purpose, and Sec. S-
7 B discusses how we treat non-equilibrium transport us-
ing Keldysh-SOPT. Sec. S-7 C elaborates the main arti-

cle’s discussion of the SOPT results for the B̃-, T̃ - and

Ṽsd-dependence of the conductance, which are in fairly
good qualitative agreement with experiment. Sec. S-7 D
concludes with some comments regarding an SOPT arte-
fact that arises with increasing U .

A. Equilibrium SOPT

We follow the strategy of Oguri43, who has carried out
a similar calculation for a particle-hole symmetric version
of our model (with N ≤ 4) at zero field. It is straight-
forward to generalize his equations to the case of present
interest, with broken particle-hole symmetry and nonzero
field. The conductance is calculated from

g =
1

2

∑

σ

∫ ∞

−∞
dω

[
−∂f(ω)

∂ω

]
Tσ(ω) . (S50)

where Tσ(ω) is calculated using Oguri’s43 equations
(2.36-38) and (4.10). They can be graphically depicted
as

ω

ω
ω ω

ω

(S51)

σ̄,ε2

σ̄,ε2

σ̄,ε1

iσ,

jσ,

σ
ε2−ε1+±N

Γσ̄
R/L

+

P
σ,R/L
ji ( ) =

iσ,

jσ,

±N

= σ̄,ε2

σ̄,ε1

σ̄,ε1

iσ,

jσ,

σ
ε2−ε1+±N

Γσ̄
R/L

σ̄,ε2

σ,ε1

σ,ε1

iσ,

jσ,

σ̄
ε2−ε1+±N

Γσ
R/L

+

ω

ω

ω

ω

ω ω

ω

ω

ω

ω ω

ω

(S52)
where large black dots depict the bare interaction vertex,
small black dots the coupling Γσ

R/L(ε) to the reservoirs,

and the double lines represent the retarded interacting

Green’s function GR = [(G0R)−1 −ΣR]−1. Its self-energy
ΣR is calculated to second order using the following dia-
grams:

jσ iσ
jσ

iσjσ
iσ

Σσ
j i( ) = δij + δij +

σ̄ε1

σ̄ε1σ̄ε1

σε2

σ̄ε1

σ̄ε2

σ(ε2 − ε1 + )

ω

ωω ωω
ω ω

ω

a b c

(S53)
Diagram c corresponds to Oguri’s43 Fig. 6, which repre-
sent the Fock contribution. Our treatment differs from
Oguri’s only regarding the Hartree diagrams a and b.
Whereas he incorporates their effects in an implicit man-
ner by exploiting particle-hole symmetry, this symme-
try is not present in our problem, hence we include the
Hartree diagrams explicitly in the self-energy.

The diagrams in Eqs. (S52) and (S53) involve Matsub-
ara frequencies; they have to be analytically continued to
real frequencies before being used in Eq. (S51) for Tσ(ω),
as discussed in detail by Oguri. The resulting formulas,
obtained by generalizing Oguri’s43 equations [his (4.2),
(4.3) for the Fock diagram, and (4.10) for the current
vertex] to the spin-dependent case of non-zero field, will
be presented elsewhere36.

In the main article, the transmission probability is
written as

Tσ(ω) = T el
σ (ω) + T in

σ (ω), (S54)

where T el
σ (ω) and T in

σ (ω), given by the first and second
terms of Eq. (S51), describe the elastic and inelastic con-
tributions to the transmission probability, respectively.
They are related by a generalized Ward identity that
is respected within the approximation scheme described
above (Eq. (3.120) in Ref. 43):

− ImΣσ,R
ji (ω) =

∑

α=L/R

Pσ,α
ji (ω) . (S55)

This relation links the current vertex to the inelastic de-
cay rate, governed by the imaginary part of the self-
energy. An increase in the contribution of the current
vertex, therefore, goes hand in hand with an increase in
inelastic scattering.

SOPT calculations turn out to be computationally sig-
nificantly more costly than fRG calculations. Therefore,
all our SOPT calculations were done using model II,
which has some computational advantages over model
I, as explained in Supplementary Sec. S-4 D.

B. Nonequilibrium SOPT

In order to calculate the differential conductance

gnl =
dI

dṼsd

(S56)
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at finite bias voltage (Ṽsd �= 0) we use the Meir-Wingren
formula for the current through a region of interacting
electrons44:

I =
ie

2h

∫
dε

(
Tr{[fLΓL − fRΓR](GR − GA)}

+ Tr{[ΓL − ΓR]G<}
)
, (S57)

with G< = 1
2

(
GK − GR + GA

)
. The finite bias Ṽsd enters

via the occupation functions of the left and right lead:

fR/L(ω) = f(ω ∓ Ṽsd/2). (S58)

The retarded, advanced and Keldysh Green’s functions
GR/A/K are given by Dyson equations:

GR/A =
1

(GR/A)−1 − ΣR/A
.

GK = GR[(GR)−1GK(GA)−1 + ΣK ]GA, (S59)

The non-equilibrium retarded, advanced and Keldysh
self-energies occurring herein, ΣR/A/K , are calculated to
second order in the interaction, using standard Keldysh
techniques. The corresponding diagrams are again given
by Eq. (S53), but now feature an additional Keldysh in-
dex.

C. B̃-, T̃ - , and Ṽsd-dependence of g(Ṽc)

In this section, we give a detailed discussion of the

SOPT results presented in the main text for the B̃-, T̃ -

and Ṽsd-dependence of the conductance g(Ṽc). In partic-
ular, we analyse their similarities and differences w. r. t.
our fRG results and experimental measurements.
Dependence on magnetic field at zero temperature:

To gauge the reliability of SOPT, we begin by com-
paring its results for the magnetic field dependence
of the conductance (Fig. A2c) to those obtained from
fRG (Fig. A2a) and from experimental measurements
(Fig. A2e). Though some details differ, the qualitative
agreement is very good. It includes, in particular, the
following two important features: (i) The conductance

g(Ṽc) is strongly suppressed with increasing B̃ for Ṽc < 0,
leading to the evolution of a kink around 0.5 (thick red

line in Fig. A2c). (ii) ln(B̃∗) increases nearly linearly

with decreasing Ṽc in the regime where g → 1 (thin grey
line in Fig. A2c); in fact, even the slope of the linear
increase is nearly the same as that found by fRG (grey
line in Fig. A2a). This remarkable agreement between

SOPT and fRG for the Ṽc-dependence of B̃∗ implies that
the latter is determined mainly by geometry (corrobo-
rating a similar conclusion from Sec. S-5), i. e. interac-
tions, which are underestimated in SOPT, influence the

Ṽc-dependence only weakly.
As an aside, we note that both of the above-mentioned

features (i) and (ii) survive45 (data not shown) even if
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Figure S16: Differential conductance for model II at B̃ =

T̃ = 0, plotted as a function of bias voltage for several Ṽc-
values, calculated a without and b with interactions, the lat-
ter treated using second order perturbation theory (SOPT)
(see Sec. S-7B).

SOPT is simplified by neglecting the Fock contribution
to the self-energy [diagram c of Eq. (S53)], retaining only
the first- and second-order Hartree terms [diagrams a and

b of Eq. (S53)]. Thus, the B̃-dependence is dominated
by Hartree terms (describing shifts in the barrier heights
for spin-up vs. spin-down electrons), rather than Fock
terms (describing inelastic scattering, which is relevant
only at finite temperatures and finite bias voltage). This
conclusion is consistent with the fact that the approach
of Lunde et al., Ref. 6, which properly incorporated the
(model) system’s geometry-dependence by using WKB
wave functions, is nevertheless unable to reproduce the

energy scale B̃∗ from the magnetic field dependence as
long as only Fock-like diagrams are considered46.

Next, we mention an important instance in which
SOPT fails to agree with experimental and fRG results
for the conductance (compare Fig. A2c to Fig. A2e and
Fig. A2a): SOPT does not yield the 0.7-shoulder in the

conductance at T̃ = B̃ = 0. (A shoulder does develop
for larger U (� 0.5τ), for which, however, SOPT can no
longer be trusted.)
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To summarize: SOPT correctly captures several im-
portant features of the field dependence of the conduc-
tance at zero temperature, but not all details. The same
turns out to be true for the temperature dependence at
zero field, as we discuss next:

Dependence on temperature at zero magnetic field:
Fig. A2d presents SOPT results for the temperature-
dependence of the conductance at zero field. Compar-
ing these to the corresponding experimental results of
Fig. A2f, we note that SOPT correctly reproduces the
main effect of increasing temperature, namely to reduce
the conductance. However, SOPT does not fully succeed
in reproducing the detailed shape of the experimental
pinch-off curves: the SOPT curves lack the tendency of
the experimental curves to show a well-defined shoulder
that is amplified by increasing temperature.

Dependence on bias voltage: Fig. S16a shows the bare
(U = 0) differential conductance g0nl as a function of

bias voltage Ṽsd for several Ṽc-values ranging from the
open channel (g � 1) to the pinched-off regime (g � 0).
The bare conductance can easily be calculated from the
Landauer-Büttiker formula (S25), using Büttiker’s for-

mula (S30) for the transmission. The resulting g0nl(Ṽsd)
exhibits a zero bias peak (ZBP) for linear conductance

g > 0.5 (Ṽc < 0), and a zero bias minimum in the tun-

neling regime, where Ṽc > 0 and g < 0.5.

Turning on interaction (see Fig. A3i, as well as
Fig. S16b) causes the following effects on gnl: First, a
ZBP forms even when the linear conductance is g < 0.5,
and second, the width of the ZBP is reduced across the

whole Ṽc-range. These two interaction-induced charac-
teristics can be understood in terms of two main mech-
anisms: (i) Applying finite bias generates a net charge
flow into the barrier region (since there the LDOS is ω-
asymmetric around ω = 0), thereby enhancing the effec-
tive barrier height for electrons entering the CCR. For
sufficiently large interaction this leads to a reduction of

conductance (Hartree effect). (ii) Turning on Ṽsd opens
phase space for inelastic scattering. Consequently the
combination of a large LDOS in the vicinity of the clas-
sical turning points (where ωmin

j � 0), interactions, and

Ṽsd > 0, leads to a high probability for backscattering,
hence a reduction of conductance. We note that both
mechanisms (i) and (ii) also apply when the temperature
is increased; in this sense, the temperature- and bias-
dependencies of the 0.7-anomaly are manifestations of
the similar physical processes.

We take the SOPT results shown in Fig. A2d and
Figs. A3b,d-f as encouraging indications that our model
has the potential to properly describe properties of the
0.7-anomaly at finite temperature and bias. To summa-
rize: the anomalous conductance decrease with increas-
ing T̃ or Ṽsd in the sub-open regime originates from the
enhancement, by the van Hove ridge apex near µ, of the

T̃ - or Ṽsd-induced increase of (i) the net charge and (ii)
the amount of inelastic scattering in the CCR.
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Figure S17: SOPT results (solid lines) for the conductance

g(Ṽc) as function of Ṽc, illustrating the qualitative changes
incurred when interactions are increased from being weak
(left panels) to rather strong (right panels, reproduced from

Figs. A2c,d). Panels (a,b) show the B̃-dependence of the

conductance at T̃ = 0, panels (c,d) show its T̃ -dependence at

B̃ = 0. Dashed lines show corresponding curves for the bare

U = 0 conductance, g0(Ṽc).
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Ṽc [Ωx]

b

self consistent Hartree

N = 101, Ωx = 0.04τ,T̃= B̃ =0

g

0

1

Figure S18: The zero-temperature linear conductance g(Ṽc)

as function of Ṽc, for several values of U , calculated a, using
pure SOPT, and b, using a self-consistent Hartree approach
(without Fock contributions). The non-monotonic behavior

of g(Ṽc) as function of increasing U seen in a is an SOPT
artefact, caused by the neglect of terms beyond 2nd order; this
artefact is avoided by the self-consistent Hartree approach, as
seen in b.

D. SOPT artefact arising for increasing U

We conclude with some comments on the choice of
interaction strength used for our SOPT calculations.

Fig. S17 compares the SOPT results for the B̃- and T̃ -

dependence of g(Ṽc) calculated at U = 0 (left panels,
dashed lines), U = 0.1τ (left panels, solid lines) and
U = 0.35τ (right panels, solid lines). The left pan-
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els show that upon turning on a weak interaction (solid

lines), the conductance g at fixed values of Ṽc, B̃ and

T̃ is shifted slightly downward due to the increase of the
Hartree barrier, leading to a slight skewing of the shape of
the conductance step relative to the corresponding non-

interacting value g0(Ṽc) (dashed lines). However, signif-
icantly larger values of U are needed (right panels) to
yield the strong type of skewing characteristic for mea-
sured conductance curves that exhibit the 0.7-anomaly.

Note that due to this large choice of U in the right pan-

els, the SOPT conductance curve g(Ṽc) at B̃ = T̃ = 0
(solid black) has been shifted upwards to actually lie
above its non-interacting value (dashed black). This

non-monotonic behavior of g(Ṽc) for increasing U (the
shift being initially downwards, then upwards, illustrated
clearly in Fig. S18a) is an artefact of SOPT’s neglect of
terms beyond 2nd order: the signs (+ or −) of Hartree
contributions are known to alternate with the order of
expansion, hence truncating the latter beyond 2nd order
generates non-monotonic behavior for the shift with in-
creasing U once the 2nd-order term becomes larger than
the 1st-order term. (fRG avoids this problem by sum-
ming up, in effect, a series of diagrams to all orders, re-

sulting in a monotonic dependence of g(Ṽc) on U , see
Fig. A1k.)

We emphasize that this SOPT artefact is problematic
only if one is interested in following the evolution of phys-
ical properties with increasing U (examples of such evo-

lution, calculated by fRG, are shown in Figs. A1e,j,k).
However, for the purpose of studying physical properties
at fixed U , SOPT does quite well: it succeeds in quali-
tatively illustrating the generic, experimentally observed

trends of how interactions affect the B̃-, T̃ -, and Ṽsd-
dependence of the conductance even if the (fixed) value
of U is rather large, because the physical origin of these
trends is robust. A detailed discussion of this point will
be published elsewhere.

Finally, we note that the above-mentioned artefact can
be avoided by adopting an approach similar in spirit to
SOPT, but using a self-consistently-determined Hartree
potential (thus treating Hartree and Fock terms on un-

equal footing): For T̃ = Ṽsd = 0, calculate the self-energy
from just the first-order Hartree diagram Eq. (S53)a to
obtain a Hartree-shifted local potential Ejσ + Ujnjσ, de-
termine the local charge njσ self-consistently, and calcu-
late the QPC transmission using Hartree-dressed Green’s
functions (see Fig. S18b).

For nonzero T̃ or Ṽsd, use Hartree-dressed (instead of
bare) Green’s functions for all thin lines in the SOPT
Eqs. (S51) to Eq. (S53), but include only the Fock di-
agram in the latter, to avoid double-counting Hartree
contributions. The Ward identity [Eq. (S55)] relating
the current vertex to the self-energy would remain intact
in this approach. Pursuing it in detail is left as a topic
for future study.
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Chapter 5

On the relation between the 0.7
anomaly and the Kondo effect

This section presents the publication “On the relation between the 0.7-anomaly and the Kondo effect: Geo-
metric Crossover between a Quantum Point Contact and a Kondo Quantum Dot” [(Heyder et al., 2014)]. In
this work we investigate the similarities and differences between the physics of a quantum point con-
tact (QPC) in the sub-open regime, where its conductance famously exhibits the 0.7 anomaly, and the
physics of a quantum dot (QD) in the regime of the Kondo effect, both experimentally and theoretically.
According to our van Hove scenario a sub-open QPC features a particularly high LDOS at the chemical
potential, resulting in strong spin fluctuations in the vicinity of the QPC’s center. A Kondo QD (KQD)
exhibits strong spin fluctuations, too, associated with screening of the localized QD spin [Glazman and
Raikh (1988)]. This correspondence explains the similar low-energy behavior of the conductance of both
geometries as function of magnetic field, temperature and source-drain voltage. We show theoretically
that in both cases a strong reduction of conductance goes hand in hand with a strongly enhanced spin
susceptibility. The finding of an enhanced spin susceptibility in the sub-open regime of a QPC is the key
motivation for an experiment presented in Schubert et al. (2014) (Sec. 9), which aims at measuring the
magnetization of a QPC in a small magnetic field with the help of Faraday rotation. These similarities
were the basis for our suggestion, in Bauer et al. (2013), that a sub-open QPC in the low-energy regime
can be described in terms of a Nozières Fermi liquid [Nozieres (1974)]. At high energies the two geome-
tries, QPC with 0.7 anomaly and KQD, exhibit different physics, as the unscreened local moment of the
KQD does not have a counterpart in the open structure of the QPC.

The Ludwig group uses the highly tunable experimental setup introduced in Sec. 3.1.1 to investigate
the continuous geometric crossover from a single barrier QPC to a double barrier QD. This crossover
is accomplished by a continuous decrease in the side gate voltage Vs: For Vc� Vs, the influence of the
central gate voltage Vc on the 2DES outweights the influence of Vs. Hence, the 1D effective barrier of the
system has a single central maximum defining a QPC. For Vc� Vs the situation is reversed. Now the
effective potential features a double barrier defining a QD. In the QPC regime, the measurement reveals
Fabri-Perot oscillations in the first conductance plateau in both short and long QPC geometries. This
hints at a non-parabolic 1D effective barrier top. The intermediate regime, in contrast, shows a flat first
plateau, which indicates a parabolic barrier. The crossover data displays a regime of coexistence between
QPC and QD, where the conductance step of the QPC geometry is modulated by strong oscillations,
indicating the emergence of quasi-localized states in the vicinity of the barrier. Finally, the QD regime is
dominated by Coulomb blockade oscillations.

Theoretically, we investigate the crossover using the 1D model introduced in Sec. 3.3.1, extended
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by an additional parameter Vs, which simulates the influence of the side gate voltage. We calculate
physical properties of our model using the functional renormalization group (fRG) in two different
versions: Our standard CLA approach (Sec. 6) failes in shallow QD geometries, where interactions
cannot be regarded as “intermediate” anymore. Here, we use a more elementary version of fRG, which
neglects the flow of the two-particle vertex. Our theoretical results reproduce all the main features of
the measured crossover.
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Quantum point contacts (QPCs) and quantum dots (QDs), two elementary building blocks
of semiconducting nanodevices, both exhibit famously anomalous conductance features: the 0.7-
anomaly in the former case, the Kondo effect in the latter. For both the 0.7-anomaly and the
Kondo effect, the conductance shows a remarkably similar low-energy dependence on temperature
T , source-drain voltage Vsd and magnetic field B. In a recent publication [F. Bauer et al., Nature,
501, 73 (2013)], we argued that the reason for these similarities is that both a QPC and a KQD fea-
ture spin fluctuations that are induced by the sample geometry, confined in a small spatial regime,
and enhanced by interactions. Here we further explore this notion experimentally and theoretically
by studying the geometric crossover between a QD and a QPC, focussing on the B-field depen-
dence of the conductance. We introduce a one-dimensional model that reproduces the essential
features of the experiments, including a smooth transition between a Kondo QD and a QPC with
0.7-anomaly. We find that in both cases the anomalously strong negative magnetoconductance goes
hand in hand with strongly enhanced local spin fluctuations. Our experimental observations include,
in addition to the Kondo effect in a QD and the 0.7-anomaly in a QPC, Fano interference effects
in a regime of coexistence between QD and QPC physics, and Fabry-Perot-type resonances on the
conductance plateaus of a clean QPC. We argue that Fabry-Perot-type resonances occur generically
if the electrostatic potential of the QPC generates a flatter-than-parabolic barrier top.

I. INTRODUCTION

A QPC is a narrow one-dimensional (1D) constriction
and a QD a small isolated puddle of charges, patterned
in a two-dimensional electron system (2DES), e. g. by ap-
plying voltages to local gates. Being key ingredients of
semiconductor-based quantum circuits, much effort has
been devoted to understand their behavior at a funda-
mental level. Here, we investigate the geometric crossover
between a QPC and a QD. The motivation for this study
is to shed light on similarities and differences between the
0.7-anomaly exhibited by the conductance of a QPC, and
the Kondo effect found in a Kondo quantum dot (KQD)
that hosts an odd number of electrons and hence contains
a localized spin.

The linear conductance G(Vc) of a QPC is famously
quantized in units of GQ = 2e2/h, when measured
as function of the gate voltage Vc defining the chan-
nel width1–3. The 0.7-anomaly is observed as an ad-
ditional shoulder when the dimensionless conductance,
g = G/GQ, reaches the value g ' 0.7 in the first conduc-
tance step4–14. It shows strikingly anomalous behavior
as function of temperature (T ), magnetic field (B) and
source-drain voltage (Vsd), which can not be explaqined
within a non-interacting model. The low-energy T -, B-
and Vsd-dependencies of the 0.7-anomaly are similar to
those of a KQD15–22 at excitation energies well below
its Kondo temperature, TK: for both QPC and KQD,

the linear conductance strongly decreases with increas-
ing B and T , while the non-linear conductance shows a
zero-bias peak as function of Vsd, that splits into two sub-
peaks with increasing B. We will call this similar behav-
ior the “0.7-Kondo-similarity” (.7KS). To explain it, Meir
and collaborators23–25 have argued that a “quasi-bound
state” in the QPC, predicted via spin-density-functional
theory, harbors a localized spin that causes Kondo-like
conductance anomalies.

We have recently proposed a scenario that explains the
microscopic origin of the 0.7-anomaly and of the .7KS
without invoking a localized spin14. In a nutshell, we
argue that the 0.7-anomaly is a direct consequence of a
“van Hove ridge”, i. e. a smeared van Hove peak in the
local density of states (LDOS) at the bottom of the low-
est 1D sub-band of the QPC, whose shape follows that
of the QPC potential barrier. Invoking a semi-classical
picture, the LDOS is inversely proportional to the veloc-
ity of an electron with given energy at a given position;
the van Hove ridge, which corresponds to a locally en-
hanced LDOS, thus reflects the fact that electrons are
being slowed down while they cross the 1D barrier consti-
tuting the QPC. The slow electrons experience strongly
enhanced mutual interactions. When the QPC barrier is
tuned to lie just below the chemical potential, transport
properties are significantly affected by these strongly en-
hanced electron interactions. In Ref. 14 we have shown
that this amplification of interaction effects is sufficient
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to fully explain the 0.7-anomaly.

The above-mentioned two scenarios for explaining the
0.7-anomaly, evoking a quasi-localized state or a van
Hove ridge, respectively, have an important common fea-
ture, namely that in both cases, the physics is governed
by slow electrons above the barrier top. In this regard,
it is not surprising that both scenarios are compatible in
their predictions for the low-energy behavior of the 0.7-
anomaly, which, as mentioned above, is similar to that
of the Kondo effect. In Ref. 14, we attributed this .7KS
to the fact that both a KQD and a QPC involve a spin-
singlet ground state featuring spatially confined spin fluc-
tuations. While for a KQD they are associated with the
screening of a truly localized spin, for a QPC they result
from the extended but curved structure of the van Hove
ridge and include a large number of spins. In both cases,
these spin fluctuations are characterized by an exponen-
tially small energy scale, called B∗ in Ref. 14, which goes
hand in hand with an enhanced local spin susceptibil-
ity. For a KQD this low-energy scale corresponds to the
Kondo temperature, TK. The .7KS pertains to energies
well below B∗; we have argued in Ref. 14 that it results
from the fact that for such low energies, both a KQD
and a QPC show Fermi-liquid behavior of the type as-
sociated with quasi-particles experiencing spatially local-
ized interactions. For the Kondo effect, a corresponding
Fermi-liquid theory has been worked out by Nozières26;
doing the same for a QPC would be an interesting chal-
lenge for the future.

Though slow electrons form the common ground for
both the van Hove ridge scenario and quasi-localized
state scenario, the two scenarios differ substantially in
their microscopic description of the slow electrons’ dy-
namics. The van Hove ridge scenario describes them
via the LDOS, thus incorporating the geometric shape
of the barrier. In contrast, the quasi-localized state sce-
nario describes them more simplistically in terms of a
magnetic moment, i.e. a truly localized state, thus ar-
riving at a seemingly simpler model, akin to the single-
impurity Anderson model. This apparent simplification,
however, comes at a price: the physics of the Ander-
son model involves a free local moment high energies,
and Fermi-liquid behavior emerges only at low energies,
when the local moment is screened. For a QPC such a
“detour” (first evoke a local moment, then argue that
it is screened) is in our opinion not needed: in our van
Hove ridge scenario, Fermi-liquid behavior is present a
priori. Moreover, in Ref. 14 we have found no indications
that a smooth parabolic barrier hosts a discrete, truly lo-
calized spin, and no similarities (in our experimental re-
sults or theoretical predictions) between the Kondo effect
and the 0.7-anomaly at high energies (& B∗), where the
Kondo effect is governed by an unscreened local moment.
This shows that when the “slow electrons” in a QPC are
probed at energies & B∗, they do behave differently from
the magnetic moment in a KQD. (In Sec. VI we offer
additional evidence for this conclusion by comparing the
behavior of the magnetization of a KQD and a QPC at

large magnetic fields.)
The differences between a KQD and a QPC come to

the fore very explicitly in the functional dependence of
the low-energy scale B∗ on system parameters such as
the gate voltage and the interaction strength (discussed

in detail in Sec. IV C below). For a KQD, the scale BKQD
∗

can not meaningfully be defined in the absence of inter-

actions (since then no local moment forms), and lnBKQD
∗

depends quadratically on gate voltage19,22,27. For a QPC,

in contrast, BQPC
∗ can be meaningfully defined even in

the absence of interactions, and lnBQPC
∗ depends linearly

on gate voltage. When interactions are turned on, BQPC
∗

is reduced strongly, but its functional dependence on gate
voltage hardly changes (see Ref. 14, Sec. S-5).

The present paper aims to elaborate the relation be-
tween local spin fluctuations and the .7KS in more detail,
and, more generally, to analyse the similarities and dif-
ferences between the Kondo effect and the 0.7-anomaly,
focussing on their dependence on magnetic field at low
temperature, in equilibrium. We experimentally and the-
oretically study the smooth geometric crossover between
a KQD and a QPC, and hence between the Kondo effect
and the 0.7-anomaly. Experimentally, we measure the
conductance throughout the QD-QPC crossover using a
highly tunable nanostructure tailor-made for this pur-
pose. In our theoretical work, we consider a 1D model
with local interactions and a smooth potential barrier,
similar to that used in Ref. 14, but now tune the shape
of the potential barrier in such a way that it smoothly
crosses over between a single barrier, representing a QPC,
and a double barrier, representing a KQD. We use the
functional renormalization group (fRG)28–31 to calculate
how transport and thermodynamic properties at T = 0
change during this crossover. This allows us to track the
extent to which features characteristic for Kondo correla-
tions do or do not survive in the QPC regime. A central
finding is that the strongly enhanced local spin suscepti-
bility in the center of the system that is found for both
a QPC and a KQD goes hand in hand with an anoma-
lously strong magnetic field dependence of the conduc-
tance. This is actually not surprising, since a large spin
susceptibility indicates a strong depletion of that spin
species that is energetically disfavoured in the presence
of a small magnetic field. Our analysis pinpoints the en-
hanced local spin susceptibility as the common feature
of both systems that underlies the .7KS regarding its de-
pendence on magnetic field.

The paper is organized as follows: Sec. II describes our
experimental setup and our measurements for the QD-
QPC crossover. Sec. III presents the model by which we
describe this crossover, discusses how the geometry of the
QPC or QD barrier influences the noninteracting LDOS
and noninteracting transmission probability, and summa-
rizes the key elements of our fRG approach for treating
interactions. Sec. IV compares fRG results and experi-
mental data for this crossover, showing that our model
captures its main features in a qualitatively correct man-
ner. Sec. V presents the results of fRG calculations for
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local properties, such as the local density, magnetization
and spin susceptibility for both a QPC and a KQD, and
for the spin susceptibility during the QPC-QD crossover,
which very clearly reveals the origin of the .7KS. Sec. VI
presents fRG results on the evolution of the magnetiza-

tion with B̃, highlighting the difference between a KQD
and QPC when probed at energies beyond B∗. Sec. VII
offers a summary and outlook. An appendix presents
and discusses a movie with fRG results that show how
the conductance evolves with magnetic field during the
QD-QPC crossover.

II. EXPERIMENTAL SETUP
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Figure 1. Geometric crossover between QPC and QD – sam-
ple and shape of effective potential. (a) Scanning electron
microscope picture of the gate layout, which features a top
gate at voltage Vt, two central gates at voltage Vc, and four
side gates at voltage Vs. Negative voltages Vc and Vs deplete
the 2DES 85 nm beneath the sample surface, inducing a tun-
able effective electrostatical potential landscape there. (b,c)
Artist’s depiction of this landscape for a QPC and QD, re-
spectively [red/yellow: high electrostatic potential; blue: low
potential, Fermi sea darkened; golden structures at top of
(b): gates]. (d-g) The effective potential Ej of the Hamil-
tonian given in Eq. (1), shown for four different choices of
the barrier shape (black lines), tuned by adjusting the central

barrier height Ṽc = Ej=0−εF, the side barrier height Ṽs (with

Ṽc,s ∝ −|e|Vc,s), and the barrier width. These choices corre-

spond to (d) a short QPC with a flat potential top (Ṽc = Ṽs);

(e) a QPC described by a parabolic potential top (Ṽc > Ṽs);

(f) a long QPC with a flat potential top (Ṽc = Ṽs); and (f) a

QD (Ṽc < Ṽs).

We use the multigate layout shown in Fig. 1(a) to lat-

erally define a nanostructure in the two-dimensional elec-
tron system (2DES) located 85 nm beneath the surface
of our GaAs/AlGaAs heterostructure. The low temper-
ature charge carrier density is 1.9 × 1011 cm−2 and the
mobility 1.2 × 106 cm2/Vs. Magnetic fields are aligned
parallel to the 2DES and to the 1D channel defining the
QPC (current direction). The field’s alignment is op-
timized by use of a two-axis magnet and controlled by
magnetotransport measurements. The electron temper-
ature in all measurements presented here is T0 ' 30 mK
according to our estimations from separate temperature
dependent measurements (not shown, see also Ref. 14).

Seven gates provide a particularly high tunability of
the central constriction region (CCR) of our device, lo-
cated at the center of Fig. 1(a) between the tips of six
gates. We apply one voltage, say Vc, to both central
gates, and another, say Vs, to all four side gates. Our
sample also contains a global top gate [see Fig. 1(a),(b)],
electrically insulated from other gates by a layer of cross-
linked PMMA (plexiglass). The top gate can be used to
adjust the carrier density of the 2DES in the contacts
of the CCR and thereby control the effective interaction
strength between electrons14. In this article we keep Vt

fixed at 0.8 V. By suitably tuning Vc and Vs, we are able
to smoothly reshape the potential landscape in the 2DES
in such a way that it crosses over from a saddle point po-
tential defining a QPC [Fig. 1(b)] to a symmetric local
minimum defining a QD [Fig. 1(c)]. The corresponding
effective 1D potential barrier shape crosses over from a
single barrier [Figs. 1(d-f)], whose top is parabolic only in
a relative narrow range of gate voltages, to a symmetric
double barrier [Fig. 1(g)].

Experimentally we have studied this smooth transi-
tion from a QD to a QPC by measuring the two-terminal
differential conductance g via the linear response of the
current to small modulations of the applied source-drain
voltage. Fig. 2 shows raw data (albeit already corrected
for the lead resistances) measured at B = 0 as a function
of Vc and Vs. For our most negative Vs-values and near
pinch-off, i. e. also negative Vc, the conductance traces
show pronounced Coulomb blockade oscillations as func-
tion of Vc (at the bottom center part of the figure). This
indicates that the CCR constitutes a single, well-defined
QD with a substantial Coulomb charging energy. When
Vs is made less negative the Coulomb blockade oscilla-
tions disappear altogether. The reason is that the local
electrostatic potential near the side gates decreases and
eventually becomes smaller than the electrostatic poten-
tial between the center gates, corresponding to a transi-
tion from a double barrier potential as in Fig. 1(g) to a
single barrier top as in Figs. 1(d-f). In the process the
QD disappears, and with it the localized states, and a
clean QPC remains. Its barrier top may or may not be
parabolic, depending on the value of Vs. At Vs ' −0.4 V,
g(Vc) clearly shows several smooth conductance steps as
function of Vc, as expected for the pinch-off curves of a
clean parabolic QPC.

The broad transition regime between QPC and QD
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Figure 2. The linear-response differential conductance g (main panel) and transconductance dg/dVc (inset) as a function of Vc

and Vs, showing the geometric crossover between a QD and a QPC. Detailed measurements of the 0.7-anomaly at fixed side
gate voltage, reported in Ref. 14 and shown in part in Fig. 6(d) below, were performed at Vs = −0.4 V, where the first plateau
is absolutely flat, implying a parabolic barrier top. Features marked by arrows are explained in the main text.

displays a combination of both 1D conductance steps
and Coulomb blockade oscillations. The latter are most
pronounced at the steps between conductance plateaus
(0 < g < 1, 1 < g < 2, . . . ) and occur in clusters with a
rather similar structure, as can be best seen in the inset
of Fig. 2, which shows dg/dVc using a color scale. This
repeating pattern of Coulomb blockade oscillations indi-
cates a coexistence of a QD in the not yet (fully) occupied
one-dimensional subband of the CCR with already fully
occupied lower one-dimensional subbands contributing to
QPC-behavior. This causes the charge configurations of
the QD to repeat at adjacent QPC conductance steps
when the number of occupied one-dimensional subbands
changes by one. Note that as Vs becomes more negative,
the spacing between Coulomb blockade peaks within each
cluster tends to increase (causing the cluster to “fan out”,
see Fig. 2, inset, bottom right corner). This reflects an
increase in the QD charging energy, brought about by
the steepening of the confinement potential when its side
barriers become higher.

Whenever a Coulomb blockade oscillation enters a con-
ductance plateau at g = 1, 2, . . . the corresponding con-
ductance maxima of the QD turn into narrow conduc-
tance dips, some of which are marked by solid arrows in
Fig. 2. We interpret these dips as Fano resonances be-
tween the 1D channel of the QPC and localized states of
the QD.

We also observe broader and very shallow conduc-
tance oscillations on the conductance plateaus deeper in

the QPC regime (at larger Vs), marked by dashed ar-
rows in Fig. 2. They are absent only in a narrow re-
gion around Vs ' −0.4 V (on the first plateau), and the
oscillation period observed for Vs < −0.4 V is shorter
than that observed for Vs > −0.4 V. We interpret these
as Fabry-Perot-like resonances that arise whenever the
barrier shape is not parabolic: as Vs is increased within
the regime of a clean QPC, starting from around Vs '
−0.8 V, we observe a transition from a long flat barrier
via a parabolic barrier near Vs ' −0.4 V to a short flat
barrier for Vs > −0.4 V, where also Vs � Vc, (as sketched
in Figs. 1(d-f) and indicated in Fig. 2). We will discuss
the origin and behavior of these Fabry-Perot resonances
in more detail in sections III B and III C below.

At a particular side gate voltage, near Vs ' −0.6 V,
two conductance traces show a marked dip (indicated by
an ellipse) near the end of the first plateau. We interpret
this distinct reduction of the conduction as reflection of
electrons caused by disorder in the form of a distinct
defect.

The multi-gate tunability of our device has the impor-
tant advantage that it allows these type of effects (Fabry-
Perot and/or disorder) to be avoided, if desired. Indeed,
at side gate voltages near Vs ' −0.4 V, no such effects
are seen around the first conductance plateau is com-
pletely flat. We have therefore used Vs = −0.4 V for
the detailed measurements of the 0.7-anomaly reported
in Ref. 14, some of which are also shown in Fig. 6(d)
below. An additional option would be to apply various

84 5. On the relation between the 0.7 anomaly and the Kondo effect



5

different voltages to the individual four side gates or the
two central gates to overcome possible disorder effects.
However, the high quality of our sample rendered such
options unnecessary, allowing us to maintain a high de-
gree of symmetry of the electrostatic potential defining
the CCR.

Fig. 2 displays two additional remarkable trends: (i)
the quantized plateaus in g(Vc) become wider as Vs is
increased. (ii) This goes along with an increase of the
step width between plateaus as is best seen in the inset
of Fig. 2 (consider the width of the white-yellow bands
in the upper half of the plot, the QPC regime). Trend (i)
indicates that the lateral confinement becomes stronger
with more positive Vs, leading to a larger characteristic
energy spacing between the 1D subbands. This also im-
plies a larger on-site exchange energy, U , between the
electrons. Trend (ii) confirms our statement, above, that
the width of the barrier, seen by electrons, decreases as Vs

is increased, because a narrower barrier causes the step
width to become wider (see the discussion in Sec. III B
and Figs. 3(a-c) below). Both trends together (which
further depend on the topgate voltage, see Supplemen-
tary Material in Ref. 14) provide us with an experimental
toolkit to precisely measure the geometry dependence of
the 0.7-anomaly. This could be used for a detailed test
of the predictions of our model in Ref. 14. A study of
this kind is beyond the scope of this work and left for the
future.

III. THEORETICAL MODEL

In this section we present the one-dimensional model
used for our theoretical description of the QD-QPC
crossover, featuring a smooth barrier and short-ranged
interactions [Sec. III A]. We first illustrate its geometri-
cal properties in the absence of interactions, by show-
ing results for the noninteracting LDOS and nonin-
teracting transmission [Sec. III B]. Within this non-
interacting framework we explain why Fabry-Perot-
type resonances occur whenever the barrier top is not
parabolic [Sec. III C]. Finally, we summarize the key in-
gredients of the fRG approach used here to treat inter-
action effects [Sec. III D].

A. Hamiltonian

To describe the QD-QPC crossover we restrict ourself
to the lowest 1D subband of the CCR and adopt the
model introduced in Ref. 14 (see its Supplementary In-
formation, Section S-4.B, “model I”), whose notational
conventions we adopt here, too. The Hamiltonian has
the form

H =
∑

jσ

[
Ejσn̂jσ − τ(d†j+1σdjσ + h.c.)

]
+
∑

j

Ujnj↑nj↓,

(1)

where n̂jσ = d†jσdjσ counts the number of electrons with

spin σ (= ± for ↑,↓) at site j. It describes an infinite
tight-binding chain with constant lattice spacing a = 1
(taken as length unit), constant hopping amplitude τ = 1
(taken as energy unit), on-site interaction Uj and on-site

potential energy Ejσ = Ej− σ
2 B̃. Here Ej = Ẽ(ja) mod-

els the smooth electrostatic potential Ẽ(x) defined by

gates, and the Zeeman energy B̃ accounts for a uniform
external parallel magnetic field. (We use tildes to dis-
tinguish model parameters from experimental ones, with

B̃ = |gel|µBB for the magnetic field, where gel < 0 for

GaAs, T̃ = kBT for temperature, and Ṽc,s ∝ −|e|Vc,s for
the central and side gate voltages.) We neglect spin-orbit
interactions and other orbital effects. We take Uj and Ej
to be nonzero only within a central constriction region
(CCR) of N = 2N ′ + 1 sites around j = 0, representing
the QD or QPC. The rest of the chain represents two
noninteracting leads with effective mass m = ~2/(2τa2)
(defined as the curvature of the dispersion at the band
bottom in the bulk), chemical potential µ and bulk Fermi
energy εF = 2τ +µ; we choose µ = 0, implying half-filled
leads. Uj is set to a constant value U within the CCR for
all but the outermost sites of the CCR, where it drops
smoothly to zero. (For an explicit formula for Uj , see
Eq. (S14) of the Supplementary Information of Ref. 14.)

The shape of Ej is governed by two parameters, Ṽc and

Ṽs, that respectively mimic the effects of the central and

side gates in experiment. Ṽc < Ṽs defines a QD with side

barrier height Ṽs w. r. t. µ [Fig. 1(f)]. Ṽc > Ṽs yields a
QPC with a single central barrier [Fig. 1(d)]. Its shape
near the top is chosen to be parabolic3, unless stated oth-
erwise [Fig. 4 features non-parabolic barrier tops]. We
parametrize parabolic barrier tops by

Ẽ(x) ' Ṽc + εF −
mΩ2

xx
2

2~2
. (2)

Here Ṽc is the barrier height measured w. r. t. the chem-
ical potential, and the barrier curvature is characterized
by an energy scale Ωx. We emphasize that by “parabolic”
barrier, we mean that the quadratic x-dependence of
Eq. (2) holds over an energy range of at least Ωx from
the barrier top (i.e. up to x-values large enough that
E(0)− E(x) & Ωx). Then the width of the conductance
step is given by Ωx.

Typical choices of the potentials described by Ej are
shown in Figs. 1(d-g), Figs. 3(a-f) and to some extent
Fig. 4 (inset). For situations where the shape of Ej is
not shown explicitly [Figs. 5(a-c), Fig. 6, Figs. 7(i-l)], it
is chosen according to a formula given by Eq. (S15) of
the Supplementary Information of Ref. 14, with js = 60
and N ′ = 150 there.

B. Noninteracting LDOS and transmission

To convey some intuition for the geometrical properties
of this model in the absence of interactions, Fig. 3 shows
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T 0(ω), for B̃ = 0. The energy ω is measured w. r. t. the chemical potential. The five panels show five potential barrier shapes
occuring during the QPC-QD crossover, namely (a) a QPC with a short flat barrier, (b) a QPC with a parabolic barrier, (c)
a QPC with a long flat barrier, (d) a shallow QD with just one discrete orbital state, and (e) a deeper QD with two discrete
orbital states.

the noninteracting LDOS, A0
j (ω), and the noninteract-

ing transmission probability, T 0(ω) (with ω measured
w. r. t. the chemical potential), for five different choices
of the barrier shape, chosen to represent various states
of the geometric crossover between a QPC and a QD.
For a parabolic QPC [Fig. 3(b)], the LDOS exhibits a
broad ridge (yellow-red) just above the band bottom,
ωmin
j = Ej − εF (solid black line), which follows the

shape of the barrier. This is the van Hove ridge men-
tioned in the introduction; it originates from the 1D van
Hove singularity at the band bottom, which in the CCR
is smeared out on a scale set by the barrier curvature
Ωx. When ω is increased from below to above the bar-
rier top, set by Ṽc, the transmission T 0(ω) changes from
0 to 1 in the form of a smooth monotonic step of width

Ωx, centered at ω = Ṽc.
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Upon raising the side gate parameter Ṽs at fixed Ṽc,
the effective barrier top eventually turns flat [Fig. 3(c)]
and the ridge in the LDOS narrows (while the maximal
value of the LDOS above the barrier increases accord-
ingly). This flatter-than-parabolic barrier shape causes
the noninteracting transmission T 0(ω) to show wiggles
at the onset of the T 0(ω) = 1 plateau, which we inter-
pret as Fabry-Perot-like resonances. They are discussed
in more detail in the next subsection. Experimentally,
we also observe the case of a short flat barrier for quite
large Vs, which we simulate in Fig. 3(a) by using a short
barrier with a quartic top (described by Eq. (3) below,
with n = 4). In agreement with the measured g(Vc) in
Fig. 2 we observe Fabry-Perot-like resonances in T 0(ω)
for both cases, short versus long flat barriers in panels
(a) and (c), and the period of the wiggles is longer for
the shorter barrier, as expected.

When the central gate parameter Ṽc is lowered below

Ṽs, we enter the QD regime [Figs. 3(d) and 3(e)]. The
LDOS now develops bound states, very narrow in energy,
that are spatially localized inside the QD and define its
single-particle spectrum. They are accompanied by reso-
nances in the noninteracting transmission. Note, though,
that the energy beyond which the T 0(ω) = 1 plateau as-
sociated with full transmission sets in, is still determined
by the broader LDOS ridges above the tops of the left
and right barriers, which are remnants of the van Hove
ridge found for the parabolic and flat barrier shapes in
(b) and (a,c), respectively. This is clearly seen in the
transmission curves in panels (c) and (e), which exhibit
very similar Fabry-Perot-like resonances near T 0(ω) = 1.
In addition, T 0(ω) in panels (d,e) shows sharp resonances
at ω < 0, reflecting the bound states in the LDOS. The
occurrence of a conductance step together with sharp res-
onances is a clear signature of the coexistence of a QD
and a QPC; our experimental data show corresponding
features in the QD regime of Fig. 2.

In the outer flanks of the potential barrier, the LDOS
has interference fringes with a period that scales as 1/v,
and the LDOS value averaged over several such fringes
likewise scales as 1/v, where vj(ω) is the semiclassical
velocity of an electron with kinetic energy ω − ωmin

j at
site j. This explains the strikingly different behavior
of the LDOS at the flanks of the potential maxima in
Figs. 3(a) and 3(b): For the short, flat barrier with steep
flanks in Fig. 3(a), the velocity vj(ω) of electrons with
ω ' µ increases rapidly with |j|. As a consequence
the LDOS at µ decreases rapidly and forms interference
fringes with an correspondingly rapidly decreasing pe-
riod. For the parabolic barrier of Fig. 3(b) the flanks
decrease much more slowly with increasing |j|, thus the
corresponding increase in Fermi velocity, the decrease in
the average LDOS and the decrease in the interference
period all occur more slowly, too.

C. Fabry-Perot resonances

In this section, we discuss the Fabry-Pero-like reso-
nances (wiggles) that are seen in both the measured con-
ductance in Fig. 2 (marked by dashed arrows) as well
as in the calculated T 0(ω), e. g. in Figs. 3(a,c), in more
detail.

For our 1D model, studied in the absence of interac-
tions, we find, in particular, that T 0(ω) shows Fabry-
Pero-like resonances whenever the QPC barrier top is
flatter than parabolic. This is illustrated in Fig. 4, which

420-2
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Ẽ
(x

)

20 1

2
1.8
1.6
1.4

  1.2

n

0

1

T
0
(ω

)

-1

(ω − Ṽc)/Ωx
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Figure 4. Noninteracting transmission T 0(ω) as function of
central gate voltage for several different barrier shapes, de-
picted in the insets, with barrier tops governed by |x|n accord-
ing to Eq. (3). (a) Flatter-than parabolic barriers with n ≥ 2,
which arise during the QPC-KQD crossover; (b) sharper-than
parabolic barriers with n ≤ 2, shown for completeness.

shows the noninteracting conductance g0(Ṽc) for a se-
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quence of barrier shapes with barrier tops given by

Ẽ(x) = Ṽc + εF − Ωx

( |x|
lx

)n
, lx =

√
2~2

mΩx
, (3)

where lx is a characteristic length. The noninteracting
transmission of a purely parabolic barrier top (n=2, black
line) is a smooth function of energy, given by3

T 0(ω) = [e2π(Ṽc−ω)/Ωx + 1]−1 . (4)

In contrast, making the barrier top flatter than parabolic
by increasing n introduces additional wiggles or reso-
nances in T 0(ω), see Fig. 4(a). Note that such structures
occur naturally in the conductance of longer QPCs and
we suspect that some previously published QPC mea-
surements have likely been performed in this regime of
flatter-than-parabolic barriers32,33. Our own experimen-
tal results, displayed in Fig. 2, demonstrate that the tran-
sition from a gate defined QD to a QPC likely covers the
regime of a long QPC with a flatter-than-parabolic bar-
rier top and, moreover, a short QPC with steep flanks can
also result in a flatter-than-parabolic barrier and Fabry-
Perot-like resonances.

For completeness, Fig. 4(b) shows examples of n ≤ 2.
Here, the transmission increases purely monotonically,
without any Fabry-Perot-like resonances. With decreas-
ing n, the potential flanks tend to “flatten”, causing
the conductance step to develop an increasingly skewed
shape: the step’s onset becomes noticeably steeper, while
the onset of the plateau is affected only weakly.

We note that it is not straightforward to distinguish
Fabry-Perot-type resonances, that occur even without in-
teractions, from many-body effects, that arise in the pres-
ence of interactions. In the light of recent experimental
work on shape-dependent barriers, including Refs. 32 and
33 and this work, a systematic theoretical study of how
Fabry-Perot-type resonances are affected by turning on
interactions would be very interesting, but is beyond the
scope of this work.

D. fRG approach

To theoretically study the effect of interactions on the
properties of the CCR at zero temperature, we used
fRG28–31, a renormalization-group-enhanced perturba-
tive expansion in the interaction. We used it to calcu-
late the linear conductance g of the CCR, and three local
quantities, the occupation nj , magnetization mj and spin
susceptibility χj of site j, defined, respectively, as

nj = 〈n̂j↑ + n̂j↓〉 , (5a)

mj = 〈n̂j↑ − n̂j↓〉/2 , (5b)

χj = ∂B̃mj |B̃=0 . (5c)

The results are presented in Secs. IV and V, below.
The details of our fRG approach are explained con-

cisely in the supplement of Ref. 14, and in more detail

in Ref. 31. Here we just summarize some key aspects.
We restrict ourselves to zero-temperature calculations in
the Matsubara formalism. Our fRG flow equations are
based on two criteria. First, we assume that mj = 0 for

B̃ = 0, thus spontaneous symmetry breaking is ruled out
a priori. This assumption is justified a posteriori by the
agreement of our fRG results with experiment, both in
Ref. 14 and in the present paper. Second, we neglect all
contributions to the flow of the interaction vertex that are
not already generated to second order in the bare (onsite)
interaction, but feed back all other terms. This so-called
coupled latter approximation31 amounts to including all
RPA-like channels on equal footing, while feeding back all
Hartree-like terms into the Fock-like equations and vice
versa. As a computational simplification, we here use
a “static” version of the coupled-ladder approximation,
which neglects all frequency dependencies in self-energies
and vertices. For the model of present interest, the results
for the zero-temperature conductance obtained via this
static simplification are qualitatively essentially the same
as those obtained by a “dynamic” calculation in which
the frequency dependence is retained, as shown explicitly
in Refs. 14 and 31 for a parabolic QPC potential.

The effective expansion parameter for static fRG is
UjA0

j (0). As a result, we find that the fRG equations de-
scribing vertex flow do not converge for geometries that
cause A0

j (ω) to be sufficiently sharply peaked near the
chemical potential, i. e. near ω = 0. This problem occurs
in the QD regime, where the shallow few-electron QD has
wide barriers near µ. We have therefore neglected vertex
flow for plots that involve this regime, i. e. in Figs. 5(a-c),
and for the movie discussed in App. A. Vertex flow was
included, however, for all other fRG results shown in this
paper, and is essential for obtaining the 0.7-shoulder in

the QPC conductance even at B̃ = T̃ = 0, as discussed
in Sec. IV B below.

In Ref. 14, we showed that our model and fRG treat-
ment of interactions are able to capture key elements of
the 0.7-anomaly in a QPC in a qualitatively correct man-
ner, including its magnetoconductance. In the next sec-
tion, we show that this is true also for the Kondo effect
in a KQD, and in fact for the entire QD-QPC crossover.

IV. MAGNETOCONDUCTANCE

In this section, we compare zero-temperature fRG
results and low-temperature experimental data for the
conductance during geometrical QD-QPC crossover, for
three different magnetic fields [Sec. IV A]. We also dis-
cuss the magnetoconductance in the KQD and QPC
regimes in more detail, showing that fRG reproduces
the characteristic magnetic-field dependence associated
with the Kondo effect and the 0.7-anomaly, respectively

[Sec. IV B]. Moreover, we discuss the Ṽc-dependence of

the characteristic low-energy scale, B̃∗, that character-
izes the strength of the magnetoconductance at low fields,

88 5. On the relation between the 0.7 anomaly and the Kondo effect
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and its relation to the static spin susceptibility of the
CCR [Sec. IV C].

A. QPC-QD crossover at finite magnetic field

Fig. 5 compares fRG results and experimental data for
the QD-QPC crossover at three magnetic fields, includ-
ing the B = 0 data already shown in Fig. 2. Figs. 5(a-c)
present model calculations of the zero-temperature linear

conductance g(Ṽc, Ṽs) (using fRG without vertex flow) for
three magnetic field values, and Figs. 5(d-f) correspond-
ing experimental data. The pinch-off value of Vc around
which the measured conductance drops to zero as Vc is
decreased, say V pinch

c , is indicated using red lines in the
raw data for B = 0 in Figs. 5(h,i), which are miniature
versions of Fig. 2 and its inset. Note that V pinch

c shifts as
a function of Vs, reflecting the capacitive influence of Vs

on the local potential between the center gates. This ef-
fect is absent in the calculated data, since our model does
not include such a cross-coupling. For better compari-
son between theory and experiment, this cross-coupling
is corrected for in the measured data in Figs. 5(d-f), by
plotting them as function of ∆Vc = Vc − V pinch

c .
The measured transition from a QD to a QPC in

Figs. 5(d-f) is smooth regardless of B. Our calculations
qualitatively reproduce the main features of the mea-
sured QPC-QD crossover: Just as for the B = 0 data
in Fig. 2, both the calculated and measured conductance
traces in Figs. 5(a-f) show the transition between a sin-
gle QD with Coulomb blockade oscillations and a QPC
with a smooth conductance step. A movie showing how
this crossover evolves continuously with magnetic field is
presented and discussed in App. A.

Moreover, both the calculated (at T = 0) and mea-
sured (at T0 ' 30 mK) data exhibit the Kondo effect in
the QD regime: it manifests itself as an enhanced conduc-
tance in the Coulomb blockade regime if an odd number
of electrons charges the QD. In such Kondo valleys, high-
lighted in Figs. 5(a-f) by red lines, the Kondo-enhanced
conductance is strongly suppressed with increasing field.
Fig. 5(g) illustrates this for the measured data by show-
ing in a single panel the three colored pinch-off curves
from Figs. 5(d-f), taken for three comparable values of
side gate voltage Vs. (These three values, Vs = −1.18,
−1.14 and −1.18, are not all the same, because a random
charge fluctuation had occurred in the sample between
the respective measurement runs, shifting the potential
landscape by a small but noticable amount.) The solid
red arrows in Fig. 5(g) mark the two Kondo valleys cor-
responding to the red lines in Figs. 5(d-f). The dashed
red arrow in Fig. 5(g) marks a third Kondo valley at a
smaller Vc-value, where, however, the Kondo effect is al-
ready very weak, since the coupling to the leads is so
small that TK < T .

In the regime of a QPC defined by a parabolic barrier

(small Ṽs, large Vs), both measurements and calculations
display the typical magnetic field dependence of the 0.7-

anomaly [marked by orange lines in Figs. 5(a-f)], namely
the development from a weak shoulder at g ' 0.7 for
B = 0 to a pronounced plateau at a reduced conductance
for finite magnetic fields.

B. Magnetoconductance of QPC and KQD

In this subsection we compare theory and experiment
in more detail, for the magnetoconductance at two fixed
values of side gate voltage, for which the system forms
a KQD or a QPC, respectively. For the QPC, we have
tuned the experimental system to have a smooth plateau
at g = 1 without any Fabry-Perot resonances on the
first conductance plateau (Vs = −0.4 V, compare Fig. 2),
while we use a parabolic barrier top for the theoretical
calculations.

Figs. 6(a,b) show measured conductance of a KQD and
a QPC, respectively, at several magnetic fields, 0 ≤ B ≤
5.8 T, and Figs. 6(c,d) show corresponding fRG results
(calculated with flowing vertex). The fRG calculations
qualitatively reproduce the gate voltage and field depen-
dencies observed by us and numerous other experimental
groups: The conductance of the KQD [Fig. 6(c)] shows

a Kondo plateau for B̃ = 0, which is suppressed into a
dip with increasing field, as expected theoretically29,34

and observed experimentally in Ref. 20 and for our own
data [Fig. 5(g), Fig. 6(a)]. The conductance step of the

QPC [Fig. 6(d)] exhibits a 0.7-shoulder at B̃ = 0, which,

as B̃ is increased, is suppressed into a double step whose
width is proportional to the magnetic field, as also seen in
numerous experiments4,7,9, including our own (Fig. 6(b),
see also Ref. 14).

Note that the shoulder at g ' 0.7 is visible in Fig. 6(d)
even for B = 0, much more so than in Fig. 5(a) above; the
reason is that the fRG scheme without vertex flow used
for Figs. 5(a-c) underestimates the effects of interactions
compared to the fRG scheme that includes vertex flow,
used for Figs. 6(c,d). For a detailed discussion of this
point, see Ref. 14.

C. Low-energy scale and excess spin susceptibility

For both KQD and QPC, the low-field expansion of g,

g(B̃) ' g(0)
[
1− (B̃/B̃∗)

2
]

(B̃ � B̃∗) , (6)

can be used to characterize the strength of the B̃-

dependence in terms of a Ṽc-dependent energy scale, B̃∗:
the smaller B̃∗, the larger the magnetoconductance. For

KQDs, the scale B̃∗ in Eq. (6) corresponds to the Kondo

temperature, B̃KQD
∗ = kBTK, according to Nozières’

Fermi-liquid26,35 description of the low-energy limit of

the Kondo model. The B̃2-dependence (6) has recently
been observed experimentally for a KQD22 and previ-
ously for a few electron double quantum dot36; for a
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Figure 5. Transition from a QD to a QPC. (a-c) fRG1 results for the conductance g(Ṽc, Ṽs), calculated at T = 0 and three

different fields, and plotted as function of the central gate voltage Ṽc for a large number of different side gate voltages Ṽs.
(d-f) Analogous to (a-c), but showing experimental data for the conductance g(Vc, Vs) in the range 0 ≤ g ≤ 1, measured at
a fixed low temperature, T0 = 30 mK. For each side gate voltage Vs, the conductance trace is plotted as function of the shift
∆Vc = Vc − V pinch

c in central gate voltage Vc relative to a Vs-dependent reference value V pinch
c (Vs), which is indicated by red

lines in panels (h) and (i). [We chose V pinch
c to statisfy g(V pinch

c ) = 0.5 in the QPC regime (Vs > −1Ṽ), and to shift linearly
with Vs in QD regime, with a slope chosen such that the red line does not cross any resonances.] Orange lines in (a-f) mark
the 0.7-anomaly, red lines mark Kondo valleys; black arrows in (d-f) mark Fano resonances. (g) The three colored pinch-off
curves from (d-f), all measured at Vs = −1.18 V, are plotted together to show how in Kondo valleys (marked by red arrows)
the Kondo-enhanced conductance is suppressed by increasing field. (h) The raw experimental data for g(Vc, Vs) at B = 0
[corresponding to (d)] is plotted over a larger range of (unshifted) gate voltages to show several conductance steps. (i) The
derivative dg/dVc of the data from panel (h). [(h) and (i) show identical data as Fig. 2 and its inset.] The red lines in (h) and
(i) show V pinch

c (Vs), as used in (d-f).

QPC, it has been confirmed in Ref. 14 Fig. 2g there).

Extracting B̃∗(Vc) from our fRG results (Figs. 6(e,f), red
lines) we find that for both KQD and QPC it exhibits

a distinct minimum, B̃min
∗ , at (say) Ṽc0, near which it

behaves as

B̃KQD
∗ ∝ exp [c1(Ṽc0 − Ṽc)2] , (7a)

B̃QPC
∗ ∝ exp [c2(Ṽc0 − Ṽc)/Ωx] , (Ṽc < Ṽc0) , (7b)
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Figure 6. Magnetoconductance: experiment vs. theory. (a,b)
Experimental conductance curves for a KQD and a QPC, at
two different, fixed Vs-values and various magnetic fields mea-
sured at a low temperature T0 = 30 mK. Here, ∆Vc is the
offset of the central gate voltage Vc relative to VQD or V0.5,
denoting the middle of the Kondo valley or the middle of the
first conductance step, respectively. The data in (a) are a sub-
section of those shown in Fig. 5(g); the data in (b) correspond
to those shown in Ref. 14, Fig. 2e. (c,d) fRG results, plotted in

a way analogous to (a,b), for the conductance g(Ṽc, B̃) at fixed

Ṽs of a (deep) KQD containing nKQD = 49 electrons, or for the
lowest subband of a QPC, respectively. (e,f) The correspond-

ing KQD and QPC low-energy scales B̃∗(Ṽc) [red lines, from

Eq. (6)] and inverse excess spin susceptibilities 1/[πχexc(Ṽc)]
[blue lines, from Eq. (9)], plotted on a log-linear scale. Note

that near the gate voltage Ṽc0 [dashed line] where B̃∗ reaches

its minimum, B̃min
∗ , the small-field magnetoresponse in (c,d)

is strongest.

for the KQD and QPC geometries, respectively. (c1 and

c2 are Ṽc-independent constants.) Eq. (7a) reproduces for

B̃∗ the behavior theoretically predicted27 and experimen-
tally observed19,22 for the Kondo temperature of a KQD.
The linear exponential behavior described by Eq. (7b) for
a QPC is valid even in the absence of interactions. There
it follows directly from the non-interacting transmission
formula for parabolic barriers, Eq. (4) (see Sec. S-5 of

Ref. 14). Experimentally, Eq. (7b) has been confirmed
in Ref. 14 (Fig. 2e there). Thus, our 1D model and fRG
treatement of interactions correctly capture the full B-
and Vc- dependence of the conductance of both KQD and

QPC, including the exponential dependence of B∗ on Ṽ 2
c

or Ṽc, respectively.

For the Kondo effect, the scale B̃∗ defined by Eq. (6)
is inversely proportional to the excess contribution of the
KQD to the static spin susceptibility at zero temperature,

1/B̃KQD
∗ = πχexc. (8)

This relation, which links the strength of the magneto-
conductance to that of local spin fluctuations, is a hall-
mark of Nozières’s Fermi-liquid theory.26 For our model,
we define the excess spin susceptibility of the CCR by

χexc(Ṽc) =
∑

j∈CCR

[
χj(Ṽc)− χj(Ṽ ref

c )
]
, (9)

where χj [Eq. (5c)] is the local zero-field spin suscepti-

bility of site j, and Ṽ ref
c a reference potential at which

the magnetoconductance is very small. As reference for a

KQD, we take Ṽ ref
c to define an even QD (EQD) charged

by an even number of electrons in an adjacent Coulomb-

blockade valley; for a QPC, we take Ṽ ref
c small enough

to define a truly open 1D channel (g > 0.999). We find
that the characteristic Fermi-liquid relation

1/B̃∗ ∝ χexc (10)

is satisfied very well for the KQD for Ṽc near Ṽc0

[Fig. 6(e)], as expected. Remarkably, we find that for

a QPC, too, a small B̃∗ goes hand in hand with a large

χexc. In fact, by using Ṽ ref
c as fit parameter, the inverse

proportionality Eq. (10) can be achieved for a QPC over

a rather large range of gate voltages Ṽc . Ṽc0, as shown in

Fig. 6(f). That the inverse relation between B̃∗ and χexc

also holds roughly for a QPC (though not as well as for
a KQD, and requiring a fit parameter in the definition
of χexc) is truly remarkable and constitutes one of the
main theoretical results of this paper: the link between
the magnetoconductance and local spin fluctuations that
characterizes the Fermi-liquid regime of the Kondo ef-
fect, namely Eq. (10), applies for the 0.7-anomaly as well.
This substantiates the argumentation, presented by us in
Ref. 14, that the .7KS is a manifestation of the fact that
a KQD and a parabolic QPC show similar Fermi-liquid
behavior at low energies.

Below, we further explore this link by theoretically
studying the relation between the magnetoconductance
and local properties in more detail, and for several dif-
ferent QD-QPC crossover trajectories.

V. LOCAL PROPERTIES

In this section we study the local properties of the CCR
at zero temperature, calculated by fRG. We here focus
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on the local density nj , magnetization mj and spin sus-
ceptibility χj [defined in Eq. (5) above]. We find that a
strong negative magnetoconductance goes hand in hand
with an enhanced local spin susceptibility in the CCR,
and argue that this connection is the microscopic origin
of the .7KS.

Figs. 7(c-f) compare the B̃-dependence of nj and mj

of a KQD and a parabolic QPC near pinchoff, whose
barrier shapes are shown by solid lines in Figs. 7(a,b),
respectively. Towards the edges of the CCR (large |j|,
Ej → 0), the density nj , plotted in Figs. 7(c,d), rises to-
ward the filling of the non-interacting leads. For the KQD
the charge near the center of the CCR is well-localized

and discrete [nKQD
j sums to nKQD = 9 between the two

distinct minima in (c)]. For the parabolic QPC, in con-

trast, nQPC
j is minimal at the center, showing no signs

of localized charge. For B̃ 6= 0, both mKQD
j and mQPC

j ,

plotted in Figs. 7(e,f), show strongly-enhanced standing-
wave oscillations in the CCR (with locally varying wave-

length λ ∼ 1/nj), but significant differences arise when B̃

increases far beyond B̃∗: For a KQD, mKQD
j saturates in

magnitude, its maxima stay fixed in position, and nKQD
j

remains B̃-independent, all indicating that a discrete spin

is being polarized. In contrast, for a QPC, mQPC
j does

not saturate for B̃ � B̃∗, its maxima shift outward, and

nQPC
j increases near the barrier center, all indicating that

a smooth redistribution of charge and spin occurs during
the polarization of the CCR, which ultimately causes the

spin-split double conductance step at B̃ � B̃∗. We con-
clude that whereas the KQD harbors a discrete, localized
spin- 1

2 local moment, a parabolic QPC does not, since the
spins in its CCR are neither discrete nor localized. A de-
tailed study of the behavior of the magnetization in large
fields B > B∗ follows in the next section below.

Despite these differences, the KQD and QPC do show
two striking similarities in the regime of small fields,

B̃ � B̃∗, relevant for the .7KS. First, mj vanishes at

B̃ = 0 (Figs. 7(e,f), blue lines), reflecting our fRG as-
sumption that no spontaneous magnetization occurs, in
contrast to the spontaneous spin splitting scenario ad-
vocated in Refs. 4–6, and 13 (see Ref. 14, Supplemen-
tary Information, p. 5 and 6, for a detailed discussion).
Second, the local static spin susceptibility χj , shown in
Figs. 7(g,h), exhibits a strong enhancement (modulated
by standing-wave oscillations) in the CCR for both KQD
and QPC. This enhancement arises through an interplay
of geometry and interactions. In the absence of inter-
actions, the bare local spin susceptibility in a QPC is
directly proportional to the LDOS at the chemical poten-
tial, χ0

j = A0
j (0)/2, and hence inherits the spatial depen-

dence of the latter, reflecting the geometry of the system.
Interactions enhance the spin susceptibility via a Stoner-
type mechanism: upon turning on a small Zeeman field
that favors spin up over spin down, interactions enhance
the spin imbalance by further depleting the spin-down
population. The same line of arguments applies for a

KQD in the low-energy regime described by an effective
Fermi-liquid Hamiltonian, involving quasi-particles that
experience a local interaction whose strength is propor-
tional to 1/TK

26.

In contrast to a KQD, an EQD shows no χj-
enhancement. This is illustrated by Figs. 7(i-l), which

display χj(Ṽc) and g(Ṽc) for four trajectories in the

(Ṽc, Ṽs) plane, corresponding to four types of geomet-

ric crossovers. Fig. 7(i) shows a QD at fixed Ṽs, whose
electron number (blue integers) is increased by lower-

ing Ṽc. It exhibits odd-even effects for both χj(Ṽc) and

g(Ṽc): the Kondo-plateaus in g(Ṽc) for odd electron num-

bers (KQDs) are accompanied by distinct peaks in χj(Ṽc)
(white lines) whereas the Coulomb valleys for even elec-
tron numbers (EQDs) are not. Fig. 7(j) shows a QPC at

fixed Ṽs, which is tuned from pinchoff into an open chan-

nel with g = 1 by lowering Ṽc. The 0.7-anomaly in g(Ṽc)

occurs for Ṽc values near Ṽc0 (red dashed line) where B̃∗
is minimal. There the two maxima in χj merge into a sin-
gle one (reminiscent of Figs. 2bA-C in Ref.25), indicating
that the barrier top has dropped below 0 (compare panel
Fig. 7(b), green circle), so that the chemical potential
cuts through the apex of the Hove ridge. Fig. 7(k) shows
a QPC-KQD crossover ending in an 11-electron KQD:
χj exhibits strong maxima in the QPC, which weaken
in the open-channel regime during the crossover to the
KQD, where they become large again. Fig. 7(l) shows a
QPC-EQD crossover ending in a 10-electron EQD, where
χj remains very small, in contrast to the case of the 11-
electron KQD in Fig. 7(k). Note that in the QPC parts
of Figs. 7(j-l), χj exhibits a ridge-like, parabola-shaped

main maximum as function of Ṽc and j that mimicks
(and indeed stems from) the Hove ridge in the LDOS as
function of ω and j [Fig. 3(a)].

The main message of Figs. 7(i-l) is that the negative
magnetoconductance seen for both KQDs and QPCs, but
not for EQDs, goes hand in hand with a strongly en-
hanced spin susceptibility, whereas the latter vanishes or
is weak for EQDs and open 1D channels. This is direct
microsocopic evidence that the strong negative magne-
toresistance observed in both a KQD and a QPC as one
of the key features of the .7KS, originates from the fact
that a QPC harbors strong local spin fluctuations similar
to those of a KQD. In this regard, our scenario is fully
consistent with the quasi-bound state Kondo scenario
proposed by Meir and collaborators23–25. In fact, the

spatial structure of χQPC
j seen in Figs. 7(j-l), namely two

peaks that merge into one as Ṽc is lowered, is consistent
with that of the spin density of the “quasi-bound states”
found for a QPC by SDFT calculations25,37 (Figs. 2bA-C
in Ref. 25). This is not surprising, since the SDFT cal-
culations were initialized using a small magnetic field to
break spin symmetry, which naturally gives rise to spin
density maxima in regions of large spin susceptibility.

We emphasize, though, that the .7KS applies only for

low energy scales, B̃ � B̃∗, because while a KQD har-
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Figure 7. Local properties of KQD [charged with nKQD = 9 electrons for (c,e,g)] vs. QPC, calculated using fRG including
vertex flow. (a-f) Fixed geometries of KQD (left) and QPC (right): (a,b) The barrier tops for a (shallow) KQD and a QPC
near pinchoff, respectively; for each, we show three barrier shapes ωmin

j = Ej − εF, used to calculate the curves in (c-l) marked

by matching colored symbols. (c,d) Local density nj , and (e,f) local magnetization mj , for 11 equidistant fields from B̃ = 0

(blue) to B̃ = 10B̃∗ (red), for the KQD and QPC potentials shown by solid lines in (a,b), respectively. (g,h) The local spin
susceptibility χj for the KQD and QPC potentials shown by solid lines in (a),(b), respectively; the spatial structure of χj
reflects that of mj for small fields, likewise showing strongly-enhanced standing-wave oscillations in the CCR. (i-l) Geometric

crossovers: χj is shown as a function of site j and Ṽc = Ṽj=0 for four trajectories in the (Ṽc, Ṽs) plane, drawn color-coded

in panel (m) [where colored symbols mark Ṽc- and Ṽs-values used in (a-l)]. Each panel (i-l) also shows g(Ṽc) for three fields

(B̃/B̃min
∗ = 0, ∼ 1, and � 1), to indicate the Ṽc-dependence of the magnetoconductance; red dashed lines mark the gate

voltage, Ṽc0, where B̃∗ takes its minimal value, B̃min
∗ . (i) A QD being charged starting from 9 electrons (up left) to 13 electrons

(down right), showing Coulomb blockade oscillations, (j) a QPC tuned from pinchoff to an open channel, (k) a crossover from
a QPC to a KQD with 11 electrons, and (l) a crossover from a QPC to an even QD (EQD) charged by 10 electrons.

bors a discrete, localized spin- 1
2 local moment, a QPC

does not, as argued above, and further elaborated in the
next section. From the perspective of the quasi-bound
state scenario of Meir and collaborators, this could be
phrased by saying that the conditions for the formation
of a quasi-bound state cease to exist at large fields. The
differences between the 0.7-anomaly and the Kondo effect
are therefore evident in deviations of the QPC conduc-
tance from the Kondo predictions as T or B approaches
or exceeds T∗ or B∗, as already detailed in Ref. 14.

VI. MAGNETIZATION

In the previous section we have argued that the local
magnetization mj of a KQD and QPC evolve in strik-

ingly different ways when B̃ increases far beyond B̃∗ [Fig-

ures 7(e) and 7(f)]: For a KQD, mKQD
j saturates in mag-

nitude, indicating that a discrete spin is being polarized.

In contrast, for a QPC, mQPC
j shows no signs of satu-

ration, indicating that a smooth redistribution of charge

and spin occurs during the polarization of the CCR. (Mi-
croscopically, this originates from differences in the ω-
dependence of the LDOS of a QD and QPC, illustrated in
Fig. 3 and discussed in detail in Sec. S-4.E of Ref. 14.) To
substantiate our conclusion that a QPC does not harbor
a discrete, localized spin- 1

2 local moment, in contrast to
a KQD, we present in this section additional fRG results

on the evolution with B̃ of the magnetization, conduc-
tance and charge of a KQD and QPC. For comparison,
we also include fRG results for the single-impurity An-
derson model (SIAM), the paradigmatic model for local
moment formation in metals.38 It describes a local level
with energy εd = Ṽc and Coulomb repulsion U for double
occupancy, that aquires a level width Γ via hybridization
with a conduction band of width D (with D � U � Γ).

For this purpose, we define the total charge and mag-
netization in the “inner” region of the CCR by

ninner =
∑

|j|≤jinner
nj , minner =

∑

|j|≤jinner
mj . (11)

For the KQD geometry, we choose the inner region to lie
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Ṽc[τ ]Ṽc[τ ]

B̃/B̃min
∗

B̃/B̃min
∗

B̃/B̃min
∗
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Figure 8. fRG results (with vertex flow included) for the large-field behavior of the single-impurity Anderson model (SIAM,
left column), a KQD (middle column, same parameters as Fig. 6(c), and a QPC (right column, same parameters as Fig. 6(d)).

(a-c) The conductance G, plotted as function of Ṽc, for five values of magnetic field; vertical dashed lines indicate the Ṽc-value

where B̃∗ is minimal, B̃∗(Ṽc0) = B̃min
∗ . (d-f) The conductance, (g-i) the total charge ninner, and (j-k) the total magnetization

minner in the CCR’s inner region, comprising sites |j| ≤ jinner [Eq. (11)]. These are plotted as functions of field B̃/B̃min
∗ , for

five different values of gate voltage Ṽc, indicated by arrows of corresponding color in (a-c). (For the SIAM, the CCR consists of
just a single central site, which constitutes the local d-level of that model, thus nSIAM

inner = nSIAM
d and mSIAM

inner = mSIAM
d .) (m-o)

and (p-r) Same conductance and magnetization data as in (d-f) and (j-l), respectively, but plotted vs. B̃/B̃∗; black dotted lines

in (p-r) have slope 1/π, indicating the small-field limiting behavior minner = B̃/(πB̃∗) expected in the Kondo limit [cf. Eq. (8)].

The inset of (r) shows a zoom of the limiting behavior for B̃/B̃∗ → 0.

between the two maxima of the KQD potential, say at

±jKQD
inner . The remaining CCR sites with jKQD

inner < |j| ≤ N ′
are excluded, since they lie outside the dot, in the CCR
barrier’s outer flanks. Although the contribution of each
such site to the CCR’s total charge or magnetization

is small, their total contribution is proportional to the
length of the outer flanks, i. e. extensive, and hence
should be excluded when discussing intensive dot prop-
erties. For the QPC geometry, in contrast, there is no
natural separation between an inner region and the bar-
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rier’s outer flanks. We will show results for inner regions
of three different sizes below: for fixed N ′ = 150, we

choose jQPC
inner = 150, 60 and 30 (they all yield qualita-

tively similar results).

Fig. 8 compares the large-field behavior of the con-
ductance, charge and magnetization of a KQD (middle
column) and a QPC (right column). The left column
shows corresponding quantities for the SIAM, which cor-
responds to a CCR with just a single site. We denote
its local charge and magnetization by nSIAM

d and mSIAM
d ,

respectively.

Panels (a-c) of Fig. 8 show the conductance as func-

tion of Ṽc for SIAM, KQD and QPC, respectively, for five

magnetic fields, specified in units of the Ṽc-independent

reference field B̃min
∗ = min[B̃∗(Ṽc)] [cf. Figs. 6(c,d)]. Col-

ored arrows indicate five fixed Ṽc-values used to calcu-
late the corresponding curves in all other panels. These
show the conductance (panels d-f), charge (panels g-i)

and magnetization (panels j-l) as functions of B̃/B̃min
∗ ,

as well as the scaled conductance G(B̃)/G(0) (panels m-

o) and magnetization (panels p-r) as functions of B̃/B̃∗.
For SIAM and KQD, the blue, green and orange curves
correspond to the local-moment regime [G/GQ ' 1 in
(a,b), local charge close to 1 in (g,h)], while the red and
purple curves correspond to the mixed-valence regime.

Upon comparing the three columns, we note the follow-

ing salient features: (i) For all five Ṽc-values, the charges

nSIAM
d , nKQD

inner and nQPC
inner all depend only weakly on B̃

(g-i). In the small-field limit, the conductance and mag-
netization shows Fermi-liquid behavior in all cases: (ii)
the conductance decreases quadratically with field (d-f),
and (iii) the magnetization increases linearly with field
(g-i). (iv) At intermediate fields both conductance (d-f)
and magnetization (g-i) go through a crossover, during
which their slopes decrease markedly in magnitude. (v)
In the large-field regime beyond this crossover, the be-
havior of the SIAM and KQD differs strikingly from that
of the QPC: SIAM and KQD exhibit behavior character-
istic of a spin- 1

2 local moment, whereas the QPC becomes

spin-polarized with a magnetization much larger than 1
2 .

To be specific, the evidence for this interpretation of
the large-field regime is as follows: (vi) For the SIAM, the
plateau in mSIAM

d saturates towards 0.5 (j); this satura-
tion is the hallmark of a polarized spin- 1

2 local moment.
(vii) At the same time, the conductance G continues to
decrease with field, albeit very slowly (d). (For the SIAM

this decrease is known to be logarithmic, ∼ 1/ ln(B̃/B̃∗),
but fRG is not sufficiently accurate to reproduce purely
logarithmic behavior.) The KQD exhibits qualitatively
similar features, though with some quantitative differ-

ences: (viii) The plateau in mKQD
inner is fairly flat, too (k),

although it does not truly saturate but instead slowly in-
creases past 0.5 for sufficiently large fields. This reflects
the fact that the KQD in Fig. 8 harbors not only one
spin- 1

2 local moment but many additional occupied lev-
els (ninner ' 50); some of these begin to contribute to

the magnetization when B̃ becomes a sufficiently large
fraction of the dot level spacing. (ix) The KQD conduc-
tance continues to decrease with field (e), but less slowly
so than for the SIAM (d), due to contributions from the
additional levels.

The above large-field features of the SIAM and a KQD
stand in stark constrast to those of a QPC: (x) its mag-
netization continues to increase with field without any
saturation (l) [the slope depends on the width of the in-
ner region: the larger jinner, the larger the slope]; and
(xi) the conductance fully saturates at G = 0.5GQ (f),
corresponding to a spin-split conductance plateau. The
absence of any saturation in the magnetization reflects
the fact that the QPC barrier lacks the isolated “inner
region” of a KQD. Instead, the CCR barrier is made up
entirely of outer flanks, along which electrons of both
spin species can freely move. As the magnetic field is
increased, the magnetization of the QPC is thus free to
increase without any intrinsic limit (in contrast to the
case of a KQD). The spin-split conductance plateau sets
in once the LDOS at the chemical potential is fully spin-
polarized.

These differences between SIAM and KQD on the one
hand and QPC on the other of course imply different
behaviors when the conductance and magnetization are

plotted versus B̃/B̃∗: (xii) For the local-moment curves
(blue, green, orange) of the SIAM, the scaled conduc-

tance G(B̃)/G(0) (m) and the magnetization (p) both
collapse onto a single scaling curve when plotted ver-

sus B̃/B̃∗. (xiii) The same is true approximately for the
KQD’s conductance (n) and magnetization (q), though
the collapse is not as perfect. Thus, for the SIAM and

KQD, the Ṽc-dependent scale B̃∗ governs both the small-
and large-field behavior of the magnetization and con-
ductance. (xiv) This is not the case for the QPC, whose
conductance (o) and magnetization (r) do not show a

collapse onto a single curve when plotted versus B̃/B̃∗.
(xv) Instead, the large-field behavior of the magnetiza-

tion is governed by a Ṽc-independent scale: when the

mQPC
inner-curves are plotted vs. B̃/B̃min

∗ , they all overlap

(l), except in the limit B̃ � B̃min
∗ [not resolved in (l)].

Also, (xvi) the field scale at which the conductance sat-

urates at G = 0.5GQ does not depend on B̃∗ at all, but

instead grows linearly with decreasing Ṽc (f).
To summarize: when the SIAM and the KQD are

tuned into their local moment regime, their conductance
and magnetization exhibit the expected crossover, gov-

erned only by a single energy scale B̃∗(Ṽc), between a
Fermi-liquid and a local-moment fixed point that is char-
acteristic of the Kondo effect, (xii,xiii). The QPC con-
ductance and magnetization, however, do not, (xiv-xvi).
This is an example, therefore, where the analogy between
Kondo effect and 0.7-anomaly breaks down – at large
fields, they are distinct physical effects.

The lack of local-moment behavior for the QPC mag-
netization at large fields is not surprising, given the open
nature of the QPC geometry. Nevertheless – and this is
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surprising and remarkable – (xvii) the small-field limit

(B̃ � B̃∗) of the magnetization is governed by B̃∗ not
only for the SIAM and KQD in the local moment regime,

but also for the QPC when Ṽc < Ṽc0: For all these,
the linear response of the magnetization to field is pro-

portional to 1/B̃∗, meaning that curves of minner vs.

B̃/B̃∗ for different Ṽc-values all have the same slope as

B̃/B̃∗ → 0. [This is illustrated by the blue, green, or-
ange lines in panels (p) and (q), which all have slope 1/π
(dashed black line), in accord with Eq. (8); and by the
green, orange and red curves in the inset of panel (r),
which have mutually similar slopes, though these do not
equal 1/π (dashed black line).] The fact that the small-

field limit of the QPC magnetization is governed by B̃∗,
(xvii) has far-reaching consequences, in that it underlies
the low-energy Fermi-liquid behavior of the QPC con-
ductance mentioned in Sec. IV C above.

We end this subsection with a parenthetic remark: As
an alternative to Eq. (11), outer flank contributions to
the magnetization can also be eliminated by considering

mexc(Ṽc) =
∑

j∈CCR

mj(Ṽc)−
∑

j∈CCR

mj(Ṽ
ref
c ) , (12)

the excess magnetization of the CCR at central gate volt-

age Ṽc relative to its magnetization at a suitably cho-

sen reference voltage Ṽ ref
c [chosen to define an even QD

(EQD) in an Coulomb blockade value adjacent to the odd
KQD, or an open QPC, as discussed in conjunction with

Eq. (9)]. Indeed, for small fields (B̃/B̃∗ � 1) one finds

mexc(B̃) ' minner(B̃) when choosing jinner = js, and
the excess susceptibility defined in Eq. (9) corresponds

to χexc = (∂mexc/∂B̃)B̃=0. However, for the large-field
regime of interest in the present subsection, the subtrac-
tion scheme of Eq. (12) is not convenient, because at suf-
ficiently large fields the second term becomes comparable
in size to the first, causing mexc to decrease.

VII. SUMMARY AND OUTLOOK

In Ref. 14, we have argued that the .7KS, i. e. the
observed similarities in the low-energy behavior of the
conductance for 0.7-anomaly and the Kondo effect, orig-
inate from geometry-induced, interaction-enhanced local
spin fluctuations, that are present both in a QPC and
a KQD. The goal of the present work has been to offer
additional evidence for this conclusion, by studying the
geometric crossover between a QD and a QPC, both ex-
perimentally and theoretically, focusing on the magnetic
field dependence at low temperatures. Our experimental
and numerical results were found to be in good quali-
tative agreement. This shows that the 1D-model with
short-range interactions introduced here, together with
the fRG approach used to treat interactions, succeeds in
capturing the essential physics of the Kondo effect, the
0.7-anomaly and the geometric crossover between them.

Our initial motivation for studying the geometric
crossover was the expectation that this would allow us
to observe an adiabatic transition from Kondo correla-
tions present in a KQD to the correlations present in a
QPC showing the 0.7-anomaly. Indeed, this idea turned
out to be fruitful: our fRG results show that an anoma-
lously strong negative magnetoconductance, one of the
key features of the .7KS, always goes hand in hand with
strongly enhanced local spin fluctuations.

The spatial structure of the local spin fluctuations
is inherited from that of the non-interacting local den-
sity of states at the chemical potential, and enhanced
by interactions in Stoner-type fashion. Roughly speak-
ing, local spin fluctuations are strong in those regions of
space where the electrons near the chemical potential are
“slow”. For a parabolic QPC, slow electrons are found in
the CCR when the barrier top is just below the chemical
potential, whereas for a KQD the odd electron is slow
simply because it is really trapped inside the dot. The
difference between these two situations does not matter
much for low energies (� |B̃∗|), thus both show behavior
characteristic of a Nozières-Fermi liquid with local in-
teractions. (These local interactions are the reason why
the .7KS also comprises similar temperature and source-
drain voltage dependences for a KQD and a QPC, see
Ref. 14 for a more detailed discussion of this point.) The
difference does matter, though, for high energies, where
we find no indications that a parabolic QPC harbors a
localized state, and where indeed no .7KS is observed.

One of the lessons learnt from Figs. 7(i-l) is that the
presence or absence of the two crucial properties dis-
cussed above, namely a strong negative magnetoconduc-
tance and strong local spin fluctuations, depends very

much on the trajectory followed in the (Ṽc, Ṽs) plane dur-
ing the QD-QPC crossover. For example, for the trajec-
tory studied in Fig. 7(k), both these features disappear in
the intermediate regime between the KQD and the QPC,
because there the barrier top is so far below the chemical
potential that the system is essentially an open channel,
with g ' 1.

It is, of course, possible to also implement QD-QPC
crossover trajectories during which the barrier top al-
ways remains close to the chemical potential. Suppose
that such a trajectory includes a wide, flat barrier top,
such as that shown in Fig. 3(b). When this barrier top
is just below the chemical potential, the electron den-
sity will be low throughout the wide barrier region, im-
plying that interaction effects will become very strong
there. This regime is conducive to the formation of a
Wigner crystal, so that the conductance can be expected
to show behavior different from that of a “standard” 0.7-
anomaly. Indeed two recent experimental papers have
studied this regime32,33 and reported interesting differ-
ences from standard 0.7-phenomenology (such as a zero-
bias peak that splits into two or even three subpeaks as
the barrier width is varied).

In our own detailed studies of QPCs, both in Ref. 14
and here, we have so far purposefully chosen to avoid the
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regime of wide, flat barrier tops. Instead, we have fo-
cussed on parabolic barrier tops and demonstrated that
these were sufficient to explain numerous features of the
standard 0.7-anomaly. Nevertheless, it would be very
interesting to systematically study the crossover from
parabolic to wide, flat barrier tops. The latter lead to
Fabry-Perot resonances even in the absence of interac-
tions (as argued in Sec. III C), and the way in which
Fabry-Perot structures in the density of states are mod-
ified or enhanced by interactions has not been explored
systematically yet.

In the limit of a very wide and flat barrier, the CCR
would represent a long 1D wire of low density, behaving
as a spin-incoherent Luttinger liquid39. Since interaction
effects become ever more important as the density de-
creases, fRG will at some point become unsuitable for
a flat barrier top when either its width is made suffi-
ciently wide or its top approaches the chemical potential
sufficiently closely from below. However, more powerful
numerical methods, such as the density matrix renormal-
ization group, could be used to study such situations.

ACKNOWLEDGEMENTS

We thank B. Altshuler, P. Brouwer, R. Egger, J. Folk,
L. Glazman, V. Golovach, A. Högele, Y. Imry, M. Kise-
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Appendix A: Evolution of g(Ṽc, Ṽs) with B̃ (movie)

In Sec. IV A, we showed fRG results (without vertex
flow) for the QD-to-QPC crossover of the conductance

g(Ṽc, Ṽs) as function of central and side gate voltage, for
three values of magnetic field [Figs. 5(a-c)]. Its continu-

ous evolution with B̃, again calculated by fRG without
vertex flow, can be viewed as a QuickTimas a separate
figuras a separate figure Movie, see the file “fRG.mov”
in the Supplementary Material. The movie shows si-

multaneously the evolution with B̃ of three data sets:

The central panel gives the conductance g(Ṽc, Ṽs) in a
three-dimensional plot formatted in the same way as
Figs. 5(a-c). The top left panel gives the frontmost curve

of the central panel, g(Ṽc, Ṽs = 0.018τ), representing the

pure QD regime; and the top right panel gives its back-

most curve g(Ṽc, Ṽs = 1.9τ), representing the pure QPC
regime. A moving horizontal line in the scale bar on the

right hand side indicates the evolution of B̃, and when-

ever it passes one of a selected set of B̃ values, that value
is indicated by a frozen horizontal line, while two curves
of matching color freeze in the top left and top right pan-
els.

The initial evolution for small fields (B̃ . 2 × 10−4τ)
shows how the Kondo plateaus of the first few Kondo val-
leys, whose typical Kondo temperatures increase with dot

occupancy n, successively get suppressed as B̃ increases

[see top left panel]. For larger fields (B̃ & 2× 10−4), the
conductance in the QPC regime also begins to develop
a shoulder [see top right panel], which evolves (beyond

B̃ & 3 × 10−3) into an ever more pronounced double
step. Note that the scale bar changes from logarithmic

to linear at B̃ ' ×10−4, since the B̃-dependence of the
conductance at large fields is logarithmic for the Kondo
effect, but linear for the 0.7-anomaly. (This is another
indication that the latter does not involve local-moment
physics at large fields.)

For large magnetic fields (beyond about B̃ & 10−4)
the movie shows several sharp conductance resonances
or peaks of height g ' 1, which move in the direction

of decreasing Ṽc (toward the right) with increasing mag-
netic field. An example of such a resonance, occuring

for B̃ = 1.4 · 10−3τ and Ṽs = 0.018τ at Ṽc = 0.01303τ ,
is shown in Fig. 9. We will call these “spin-flip reso-
nances”, since their origin lies in spin-flip transitions on
the QD; in fact, they can be viewed as generalized ver-
sions of the singlet-triplet Kondo effect discussed in the
literature (see Ref. 40, and references therein). Although
the spin-flip resonances have no relevance for the 0.7-
anomaly, they are interesting in their own right, hence
we now explain their origin in some more detail.

With increasing magnetic field, the total spin of a
Coulomb-blockaded QD will increase in discrete steps.
This has been discussed in the past in terms of the
Fock-Darwin spectrum of a QD, see e. g. Fig. 5 in Ref.
41. Such a step involves adding a spin-up electron to
the lowest-lying empty dot level while removing a spin-
down electron from the highest-lying doubly-occupied
one, which occurs whenever the gain in Zeeman energy
outweights the cost in kinetic energy. The latter depends

on the QD’s level spacing, and hence on Ṽc and Ṽs. For

given B̃ and Ṽs, such a transition can thus also be in-

duced changing Ṽc. To be specific, decreasing Ṽc (as
in Fig. 9) increases the level spacing and causes a spin-
decreasing spin-flip transition, say from the dot configu-

ration (nQD
↑ , nQD

↓ ) to (nQD
↑ −1, nQD

↓ +1). Precisely at the

spin-flip transition, say for Ṽc = Ṽ flip
c , these two config-

urations are energetically degenerate, so that Kondo-like
correlations between the QD and the leads can develop,
which cause the conductance g to reach its maximum
possible value, namely 1.
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Figure 9. Example of a spin-flip resonance in the conduc-
tance of a QD. (a) Conductance (solid black line) and phases
δσ,+/π = nQD

σ (solid lines) and δσ,−/π (dashed lines), for σ=↑
(red lines) and σ=↓ (blue lines), all calculated using fRG. The

phases are all set to 0 at a reference voltage Ṽ r
c = 0.022 so

large that the CCR no longer represents a QD, but a pinched-

off QPC, with g = 0 and nQD
σ = 0. As Ṽc decreases below

0.02τ where the dot is still empty, nQD
↑ (red solid line) initially

increases in roughly integer steps as the dot is being charged,
while nQD

↓ (blue solid line) stays essentially zero, because the

fixed field B̃ is large. However at Ṽ flip
c = 0.01303τ (vertical

dashed line) a spin-flip transition occurs, where (nQD
↑ , nQD

↓ )

changes from ' (3, 0) to ' (2, 1), and the conductance shows
a spin-flip resonance of height 1. (b) Zoom-in of the same

data to the vicinity of the spin-flip transition at Ṽ flip
c .

In the movie the heights of these spin-flip resonances
typically do not reach unity, but rather fluctuate as a
function of magnetic field. This is a numerical artefact

caused by the insufficient resolution of Ṽc used when mak-
ing the movie. The numerical effort that would have been
needed to resolve these type of resonances in the movie
would have been very high, since they are typically very
narrow. (We note also that at finite temperature, the
minimum width of these resonances would be set by tem-
perature.)

The fact that g = 1 at a spin-flip resonance can be un-
derstood, following Ref. 40, using elementary concepts
from the Fermi-liquid description of zero-temperature
transport through a multi-level quantum dot. (For
present purposes, we call the entire CCR a “QD”). Such
a description is formulated in terms of the eigenphases,
say δσ,1 and δσ,2, of the scattering matrix of the QD. (A
detailed discussion of how these eigenphases can be calcu-
lated using fRG is given in our follow-up paper42.) These
eigenphases are defined w. r. t. a reference gate voltage

Ṽ r
c , at which we set δσ,1 = δσ,2 = 0. The even and odd

linear combinations of these eigenphases,

δσ,± = δσ,1 ± δσ,2 , (A1)

determine, respectively, the quantum dot’s charge nQD

and conductance g. The charge nQD, measured w. r. t.
the reference point, is given by Friedel’s sum rule:

nQD = nQD
↑ + nQD

↓ =
1

π
(δ↑,+ + δ↓,+) . (A2)

The conductance is given by the relation

g =
1

2

∑

σ

sin2 δσ,− , (A3)

valid for left-right symmetric couplings between QD and

leads, as in our model. We choose Ṽ r
c to lie near the

spin-flip transition, but sufficiently different from Ṽ flip
c

that the conductance and the phases determining it are

small at Ṽ r
c , i. e. g � 1 and |δσ,−| � π/2.

Now, when Ṽc is tuned through the spin-flip transition,

the Ṽc-induced changes in δσ,− and nQD
σ (w. r. t. to their

values, namely 0, at the reference voltage Ṽ r
c ) are related

by

∆δσ,− ' π∆nQD
σ . (A4)

This equation follows from two facts: first, one of the
spin-dependent eigenphases of the scattering matrix, ei-
ther δσ,1 or δσ,2, turns out to be essentially indepen-

dent of Ṽc throughout a Coulomb-blockade valley, so that
|∆δσ,−| = |∆δσ,+| [by Eq. (A1)]; second, the Friedel sum
rule implies that ∆δσ,+ = π∆nQD

σ . Now, since the to-

tal dot charge nQD = nQD
↑ + nQD

↓ is fixed within the
Coulomb blockade valley, the spin-dependent dot occu-

pancies change in equal but opposite manner as Ṽc is

tuned through the spin-flip transition: ∆nQD
↑ ' −∆nQD

↓ .

By Eq. (A4), this implies that both |∆δ↑,−| and |∆δ↓,−|
will pass through π/2 at essentially the same value of Ṽc,
causing the conductance g [Eq. (A3)] to show a resonance
of height ' 1 there. The case shown Fig. 9 is an exam-
ple of a so-called “triplet-singlet” transition40, where the

spin of the QD changes from 3/2 to 1/2 as Ṽc decreases

past Ṽ r
c .
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Chapter 6

fRG Approach for Inhomogeneous
Interacting Fermi Systems

This chapter presents the paper “Functional Renormalization Group Approach for Inhomogeneous Interact-
ing Fermi Systems”, published in Physical Review B [Bauer et al. (2014)]. The work provides a detailed
description of the coupled-ladder approximation (CLA) in position and frequency basis, an approxima-
tion scheme within the context of the functional renormalization group (fRG), which we have derived
specifically to calculate physical properties of inhomogeneous interacting Fermi systems. Most impor-
tantly we used the CLA to calculate the dependence of both linear transport and local properties of our
one-dimensional quantum point contact model (see Eq. (3.16) and Eq. (3.17)) on interaction strength and
magnetic field [Bauer et al. (2013)] at zero temperature. The CLA allows for an accurate description of
interactions up to “intermediate” strength, while featuring a reasonable and (by current standards) fea-
sible numerical calculation time. The CLA presented in Bauer et al. (2014) extends the work by Karrasch
et al. (2008), where the CLA is formulated in frequency space only.

As discussed in Sec. 3.3.2, the full two-particle vertex function γ2 of our QPC model has O(N4 ·
N3
f ) independent variables, where N is the number of sites of the interacting region (CCR) and Nf

is the number of discrete frequencies used in the numerics. In order to resolve the inhomogeneity of
the potential with due accuracy one usually needs N ∼ 100 sites. It turns out that a similar number
is necessary to keep track of the frequency dependence, Nf ∼ 100. These numbers are large enough
to make it unfeasible (with modern computer power) to solve the full fRG flow-equation of the two-
particle vertex, Eq. (3.21) (this is a problem of both memory and speed). Thus, one must choose an
approximation scheme that reduces the number of independent variables of the two-particle vertex to
a manageable amount, while still capturing the essentials of the underlying physics. The CLA meets
this requirement by retaining the dominant second-order space and frequency structure of the three
individual vertex channels (single diagrams of the r.h.s. of Eq. (3.21)) but discarding all additional minor
dependencies: In a first step the channels are decoupled, resulting in three independent flow-equations
for the individual vertex components, all depending on a single frequency and two space quantum
numbers only (O(N2 ·Nf )). A subsequent static and space-diagonal inter-channel feedback allows for
a coupling of these contributions without generating additional variables. The consequence is a drastic
reduction in calculation time. Importantly, the CLA is exact to second order, which includes the leading
frequency-dependence of the two-particle vertex. It sums up Hartree contributions to infinite order and
treats all random phase approximation (RPA) contributions of the two-particle vertex on equal footing.

We test the reliability of the CLA for our 1D model of a QPC using results for the linear conduc-
tance. We find that the CLA yields reliable results up to interaction strength of U∼3.6/(Ωxlx) (compare
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Eq. (3.5)), even if we apply a static version of the CLA, which fully neglects the frequency dependence
of the vertex functions.

Finally, we show how the fRG flow equation of the self energy provides a simple and efficient way
to calculate response quantities in the presence of interactions, exemplarily presenting calculations for
the spin susceptibility. A similar approach is used in Heyder (2014) (chapter 8), where we calculate the
linear conductance formula of Oguri (2001) by treating the source-drain voltage as fRG flow-parameter.

Currently, we are working on setting up the CLA for longer-ranged interactions as well. This in-
creases the number of independent variables within the CLA to O(N2L2Nf ), where L defines the range
of interactions.
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The functional renormalization group (fRG) approach has the property that, in general, the flow equation for
the two-particle vertex generates O(N4) independent variables, where N is the number of interacting states (e.g.,
sites of a real-space discretization). In order to include the flow equation for the two-particle vertex, one needs
to make further approximations if N becomes too large. We present such an approximation scheme, called the
coupled-ladder approximation, for the special case of an onsite interaction. Like the generic third-order-truncated
fRG, the coupled-ladder approximation is exact to second order and is closely related to a simultaneous treatment
of the random phase approximation in all channels, i.e., summing up parquet-type diagrams. The scheme is
applied to a one-dimensional model describing a quantum point contact.
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I. INTRODUCTION

The calculation of properties of an inhomogeneous inter-
acting quantum system requires adequate care regarding a
proper description of its spatial structure: for a lattice model,
the resolution of a potential landscape, without generating
additional finite-size effects, typically requires an extension of
∼102 sites per spatial dimension. If, in addition, the strength
of interactions can not be regarded as “weak,” a reasonable
approximation scheme must involve detailed information
about higher-order correlations. This usually demands a huge
effort for modern computers, both in memory and speed.
Thus, for a system with nontrivial spatial structure, any
approximation scheme necessarily involves a tradeoff between
computational feasibility and accuracy.

In Ref. [1], we introduced such a scheme, both reasonably
fast and accurate up to intermediate interaction strength,
within the framework of the one-particle-irreducible version
of the functional renormalization group (fRG) [2–10]. The
goal of this paper is to supply a detailed description of this
approximation scheme, called the coupled-ladder approxi-
mation (CLA), which is implemented within the context of
generic, third-order-truncated fRG. In the latter, the flow of
the three-particle vertex is set to zero, while the flow equation
of the two-particle vertex (which we will call “vertex flow”
in the following) is fully incorporated. This vertex flow has
to be incorporated if interactions can not be considered small.
In general, this constitutes a computational challenge since
the vertex generated by this flow involves a large number
O(N4) of independent functions, each depending on three
frequencies, where N is the number of sites of the interacting
region. As a result, the flow equations involve O(N4N3

f )
independent variables, where Nf is the number of discrete
points per frequency used in the numerics. Previous schemes
that included the vertex flow for models with large N made
use of an additional symmetry, e.g., Refs. [5,6] described
systems with a weak spatial inhomogeneity (either changing
adiabatically with position, or confined to a small region),
which could be treated as a perturbation, so that its feedback
to the vertex could be neglected. The resulting equations for
the vertex were solved in the momentum basis, exploiting the
fact that the single-particle eigenstates could approximately

be represented by plane waves. However, this is not possible
for models with strong inhomogeneities. Our CLA scheme
was developed to include the vertex flow for such models. It
extends the idea of Refs. [7,11], where the CLA was introduced
to parametrize the frequency dependence of the vertex for the
single-impurity Anderson model, i.e., N = 1, which reduces
the number of independent variables for that model to O(Nf).
We show that the CLA can be applied to parametrize the
spatial dependence of the vertex for models with a purely
local interaction. The number of independent variables that
represent the spatial dependence of the vertex then reduces
to O(N2), and the total number of independent variables
representing the vertex to O(N2Nf). The CLA scheme is exact
to second order [12,13] and effectively sums up diagrams of
the random phase approximation (RPA) of all three interaction
channels.

To illustrate the capabilities of our CLA scheme, we apply
it, as in Ref. [1], to a one-dimensional chain modeling the
lowest submode of a quantum point contact (QPC), a short
constriction that allows transport only in one dimension. Its
conductance is famously quantized [14–16] in units of GQ =
2e2/h. In addition to this quantization, measured conductance
curves show a shoulder at around 0.7GQ. In this regime, quan-
tities such as electrical and thermal conductance, noise, and
thermopower have anomalous behavior [17–19]. These phe-
nomena are collectively known as the “0.7 anomaly” in QPCs.

In Ref. [1], we showed that the 0.7 anomaly is reproduced by
a one-dimensional model with a parabolic potential barrier and
a short-ranged Coulomb interaction. We presented a detailed
microscopic picture that explained the physical mechanism
which causes the anomalous behavior. Its origin is a smeared
van Hove singularity in the density of states (DOS) just
above the band bottom which enhances effects of interaction
causing an enhanced backscattering. We presented detailed
results for the conductance at zero temperature, obtained
using fRG in the CLA. These numerical data were in good
qualitative agreement with our experimental measurements
and showed that the model reproduces the phenomenology
of the 0.7 anomaly. In this paper, we set forth and examine
the approximation scheme in detail. We present additional
numerical data to verify the reliability of the method for the
case where it is applied to the model of a QPC. For this, we
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present and compare data obtained by different approximation
schemes within the fRG, showing that the phenomenology
is very robust, and can even be obtained by neglecting the
vertex flow. However, including the vertex flow using the CLA
reduces artifacts and gives an insightful view on the spin
susceptibility. For the latter, we finally present a detailed
quantitative error analysis.

II. MICROSCOPIC MODEL

The approximation scheme presented in this paper can be
applied to any model Hamiltonian that can be written in the
following form:

H =
∑
ij,σ

hσ
ij d

†
iσ djσ +

∑
j

Ujnj↑nj↓, (1)

where hσ is a real, symmetric matrix, d
†
jσ (djσ ) creates

(annihilates) an electron at site j with spin σ (= ↑,↓ or +,−,
with σ̄ =−σ ), and njσ = d

†
jσ djσ counts them (in general j

can represent any quantum number, however, for simplicity
we refer to it as a site index throughout the paper). In order
to apply the CLA, the necessary property of this Hamiltonian
is a short-ranged interaction. In principle, the approximation
scheme can be set up for an interaction with finite range
(over several sites), however, since the structure then becomes
very complicated we will only discuss the case of a purely
local, i.e., onsite interaction in this paper as given by Eq. (1).
Whereas the system can extend to infinity, it is crucial that the
number of sites N where Uj is nonzero is finite and not too
large, as discussed in Sec. III H. If the system is extended
to infinity, the effect of the noninteracting region can be
calculated analytically using the projection method (see the
Appendix and Refs. [8,20]). An extension to a Hamiltonian
that is complex Hermitian and nondiagonal in spin space,
needed, e.g., to include spin-orbit effects, is straightforward. In
contrast, applying the scheme to spinless models, for which the
interaction term has to be nonlocal to respect Pauli’s exclusion
principle, is more complicated.

III. fRG FLOW EQUATIONS

In this section, we describe the functional renormalization
group (fRG) approach that we have employed to treat a
translationally nonuniform Fermi system with onsite interac-
tions, such as described by Eq. (1). We use the one-particle-
irreducible (1PI) version of the fRG [2,21]. Its key idea is to
approximately sum up a perturbative expansion, in our case
in the interaction, by setting up and numerically solving a set
of coupled ordinary differential equations (ODEs), the flow
equations, for the system’s 1PI n-particle vertex functions
γn. This is typically done in such a way that the effects of
higher-energy modes, lying above a flowing infrared cutoff
parameter �, are incorporated before those of lower-energy
modes lying below �. This yields a systematic way of
summing up parquet-type diagrams for the two-particle vertex
and for calculating the self-energy. � serves as flow parameter
that controls the RG flow of the �-dependent vertex functions
γ �

n from an initial cutoff �i , at which all vertex functions are
known and simple, to a final cutoff �f , at which the full theory
is recovered.

This idea is implemented by replacing, in the generating
functional for the vertex functions γn, the bare propagator G0

by a modified propagator G�
0 ,

G0 → G�
0 , with G�i

0 = 0, G�f

0 = G0, (2)

constructed such thatG�
0 is strongly suppressed for frequencies

below �. The � dependence of the resulting vertex functions
γ �

n is governed by an infinite hierarchy of coupled ODEs, the
RG flow equations, of the form

d

d�
γ �

n = F
(
�,G�

0 ,γ �
1 , . . . ,γ �

n+1

)
, (3)

where γ1 = −� is the self-energy and γ2 the two-particle
vertex. At the beginning of the RG flow, the vertex functions
are initialized to their bare values

γ
�i

2 = v, γ �i

n = 0 (n �= 2), (4)

while their fully dressed values, corresponding to the full
theory, are recovered upon integrating Eqs. (3) from �i to
�f .

The infinite hierarchy of ODEs (3) is exact, but in most
cases not solvable. In the generic, third-order-truncated fRG,
all n-particle vertex functions with n � 3 are neglected

d

d�
γn = 0 (n � 3), (5)

and the resulting flow equations for γ �
1 and γ �

2 are integrated
numerically. Due to this truncation, fRG is in essence an
“RG-enhanced” perturbation expansion in the interaction,
which will break down if U becomes too large. In fact, the flow
equations can be derived by a purely diagrammatic procedure,
without resorting to a generating functional, as explained
in Ref. [22]. The diagrammatic structure is such that the
flow of the self-energy and three different parquet channels
(i.e., three coupled RPA-like series of diagrams) are treated
simultaneously, feeding into each other during the flow (as
discussed in more detail below). This moderates competing
instabilities in an unbiased way. We also mention that this
approach has been found to be particularly useful to treat
models where infrared divergences play a role [3] (although
the latter do not arise for the present model).

The following statements in this section hold for most,
however, not for every flow parameter. For that reason, we
explicitly define the � dependence at this point. If a different
fRG scheme is used, one should carefully check all relations.
The general idea should be applicable for all fRG schemes.
We use fRG in the Matsubara formalism. In the following
frequencies with subscripts n, n′, n1, etc., are defined to be
purely imaginary:

ωn = iT π (2n + 1). (6)

We introduce � as an infrared cutoff in the bare Matsubara
propagator

G�
0 (ωn) = �T (|ωn| − �)G0(ωn), �i = ∞, �f = 0, (7)

where �T is a step function that is broadened on the scale of
the temperature T .

For a derivation of the fRG flow equations, see, e.g.,
Refs. [3,5]; very detailed discussions are given, e.g., in
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Refs. [8,23], for a diagrammatic derivation see Ref. [22]. The
flow equation for the self-energy reads as

d

d�
γ �

1 (q ′
1,q1) = T

∑
q ′

2,q2

S�
q2,q

′
2
γ �

2 (q ′
2,q

′
1; q2,q1), (8)

where q1, q2, etc., label the quantum number and the fermionic
Matsubara frequency. Here,S� is defined in terms of the scale-
dependent full propagator G�:

S� = G�∂�

[
G�

0

]−1G�, (9a)

G� = [[
G�

0

]−1 − ��
]−1

. (9b)

For later convenience, we divide the two-particle vertex γ2 in
four parts:

γ �
2 = v + γ �

p + γ �
x + γ �

d , (10)

where v is the bare vertex and γ �
p , γ �

x , and γ �
d are called the

particle-particle channel (P ), and the exchange (X) and direct
(D) contributions to the particle-hole channel, respectively.
They are defined via their flow-equations with γ �i

y = 0:

d

d�
γ �

2 = d

d�

(
γ �

p + γ �
x + γ �

d

)
. (11)

Explicitly, these flow equations have the following forms:

d

�
γ �

p (q ′
1,q

′
2; q1,q2) = T

∑
q ′

3,q3,q
′
4,q4

γ �
2 (q ′

1,q
′
2; q3,q4)S�

q3,q
′
3
G�

q4,q
′
4
γ �

2 (q ′
3,q

′
4; q1,q2), (12a)

d

d�
γ �

x (q ′
1,q

′
2; q1,q2) = T

∑
q ′

3,q3,q
′
4,q4

γ �
2 (q ′

1,q
′
4; q3,q2)

[
S�

q3,q
′
3
G�

q4,q
′
4
+ G�

q3,q
′
3
S�

q4,q
′
4

]
γ �

2 (q ′
3,q

′
2; q1,q4), (12b)

d

d�
γ �

d (q ′
1,q

′
2; q1,q2) = −T

∑
q ′

3,q3,q
′
4,q4

γ �
2 (q ′

1,q
′
3; q1,q4)

[
S�

q4,q
′
4
G�

q3,q
′
3
+ G�

q4,q
′
4
S�

q3,q
′
3

]
γ �

2 (q ′
4,q

′
2; q3,q2). (12c)

Here, the higher-order vertices γn�3 have already been set
to zero.

A. Frequency parametrization

Due to energy conservation, the frequencies in Eqs. (8) and
(12) are not independent:

γ1(q ′
1,q1) ∝ δ

(
ωn′

1
− ωn1

)
,

(13)
γ2(q ′

1,q
′
2; q1,q2) ∝ δ

(
ωn′

1
+ ωn′

2
− ωn1

− ωn2

)
.

In the case of the two-particle vertex, this gives a certain
freedom to parametrize its frequency dependence. The natural
choice, as will become apparent later on, is to parametrize it
in terms of three bosonic frequencies:

� = ωn′
1
+ ωn′

2
= ωn1

+ ωn2
, (14a)

X = ωn′
2
− ωn1

= ωn2
− ωn′

1
, (14b)

� = ωn′
1
− ωn1

= ωn2
− ωn′

2
. (14c)

Note that due to their definition in terms of purely imaginary
frequencies, the bosonic frequencies are imaginary too. Con-
versely, the fermionic frequencies can be expressed in terms
of the bosonic ones:

ωn′
1
= 1

2 (� − X + �), ωn′
2
= 1

2 (� + X − �), (15a)

ωn1
= 1

2 (� − X − �), ωn2
= 1

2 (� + X + �). (15b)

B. Neglecting the vertex flow

For the purpose of treating the inhomogeneous model of
Eq. (1), we take the quantum number that labels Green’s
functions and vertices to denote a composite index of site,
spin, and Matsubara frequency q1 = (j1,σ1,ω1), etc. Since

the bare propagators are nondiagonal in the site index, the
number of independent variables γ �

2 (q ′
1,q

′
2; q1,q2) generated

by Eq. (12) is very large O(N4N3
f ), where Nf is the number of

Matsubara frequencies per frequency argument kept track of
in the numerics.

The simplest way to avoid this complication is to neglect
the flow of the two-particle vertex:

d

d�
γ2 = 0. (16)

This scheme, to be called fRG1, yields a frequency-
independent self-energy, which, for the case of local interac-
tion, is site diagonal. It is exact to first order in the interaction.

C. Coupled-ladder approximation

For models where the interaction can not be considered
small, we introduced a novel scheme in Ref. [1], to be called
dynamic fRG in CLA, to incorporate the effects of vertex flow.
In the following, whenever the vertex flow is included, we
treat it using the CLA, thus calling this approximation dfRG2,
to distinguish it from fRG1, and from a static fRG scheme
including the vertex flow sfRG2 to be introduced later. The
dfRG2 scheme exploits the fact that the bare vertex

v(j1σ1,j2σ2; j3σ3,j4σ4)

= Uj1δj1j2δj3j4δj1j4δσ1σ̄2δσ̄3σ4

(
δσ1σ3 − δσ1σ4

)
(17)

is purely site diagonal, and parametrizes the vertex in terms of
O(N2Nf) independent variables.

To this end, we consider a simplified version of the vertex
flow equation (12), where the feedback of the vertex flow
is neglected: on the right-hand side we replace γ �

2 → v.
If the feedback of the self-energy were also neglected, this
would be equivalent to calculating the vertex in second-order
perturbation theory. As a consequence, all generated vertex
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contributions depend on two site indices and a single bosonic
frequency. They have one of the following structures:

Pσσ̄
ji (Π) := γΛ

p (jσΠ−ωn , jσ̄ωn ; iσΠ−ωn, iσ̄ωn)

O(v2)
jσ

jσ̄

iσ

iσ̄

σ

σ̄

Π−ωn

ωn

Π−ωn

ωn

Π−ωn

ωn

,
(18a)

P̄σσ̄
ji (Π) := γΛ

p (jσΠ−ωn , jσ̄ωn ; iσ̄Π−ωn, iσωn)

O(v2)
jσ

jσ̄

iσ

iσ

σ

σ̄

Π−ωn

ωn

Π−ωn

ωn

Π−ωn

ωn

¯

,
(18b)

Xσσ̄
ji (X) := γΛ

x (jσX+ωn , iσ̄ωn; iσX+ωn, jσ̄ωn )

O(v2)
jσ

jσ̄

iσ

iσ̄

σ

σ̄

X+ ωn

ωn

X+ ωn

ωn

X+ ωn

ωn

,
(18c)

Xσσ
ji (X) := γΛ

x (jσX+ωn , iσωn; iσX+ωn, jσωn )

O(v2)

jσ

iσ
σ̄

σ̄

jσ

iσ

X+ ωn

ωn

X+ ωn

ωn

X+ ωn

ωn

,
(18d)

Dσσ
ji (Δ) := γΛ

d (jσΔ+ωn , iσωn; jσωn , iσΔ+ωn)

O(v2)

n

jσ

iσ

σ̄ σ̄

jσ

iσ

Δ+ ωn

ωn

ωn

Δ+ ωn

Δ+ ωωn

(18e)

Dσσ̄
ji (Δ) := γΛ

d (jσ̄Δ+ωn , iσωn; jσωn , iσ̄Δ+ωn)

O(v2)

jσ

iσ̄

jσ̄

iσ

σ̄ σ

Δ+ ωn ωn

Δ+ ωnωn

Δ+ ωnωn .
(18f)

These second-order terms do not depend on the frequencies ωn

and ωn′ . Now note that no additional terms are generated if we
allow for a vertex feedback within the individual channels in
Eqs. (12a), (12b), and (12c), i.e., if we take the flow equation
of γa(A) (a = p,x,d and correspondingly A = �,X,�) and
replace the feedback of the vertex on the right-hand side by

γ2(�,X,�) → v + γa(A). (19)

This scheme is equivalent to solving RPA equations for the
three individual channels P , X, and D (see Sec. III I), with an
additional feedback of the self-energy via Eq. (9).

Note that if i =j in Eq. (18), the terms a and c, b and f

as well as d and e have the same structure w.r.t. their external
site and spin indices. As a result, it is possible to account for

an interchannel feedback in the vertex flow without generating
additional terms if the feedback is restricted to purely site
diagonal terms. As in Ref. [11], we avoid frequency mixing
by limiting the interchannel feedback to the static part of
the vertex, i.e., the vertex contributions are evaluated at zero
frequency when fed into other channels. Putting everything
together, the approximation scheme is defined by replacing
the vertex on the right-hand side of the flow equation γ̇ �

a by
(12):

γ2 → v + γa(A) + [γb(0) + γc(0)]δj1j2δj ′
1j

′
2
δj1j

′
1
, (20)

where a,b,c are cyclic permutations of p,x,d, and A,B,C

are the corresponding cyclic permutations of the frequencies
�,X,�. Since this equation is the central definition of this
paper, we explicitly write it for each of the three channels:

γ̇p(�) : γ2(j ′
1,j

′
2; j1,j2; �,X,�)

→ v + γp(�) + [γx(0) + γd (0)]δj1j2δj ′
1j

′
2
δj1j

′
1
, (21a)

γ̇x(X) : γ2(j ′
1,j

′
2; j1,j2; �,X,�)

→ v + γx(X) + [γp(0) + γd (0)]δj1j2δj ′
1j

′
2
δj1j

′
1
, (21b)

γ̇d (�) : γ2(j ′
1,j

′
2; j1,j2; �,X,�)

→ v + γd (�) + [γp(0) + γx(0)]δj1j2δj ′
1j

′
2
δj1j

′
1
. (21c)

This scheme generates a self-energy and a vertex which are
both exact to second order in the interaction. To see this we
note that first, the fRG flow equations without any truncation
are exact, and second, in the fRG truncation (5) and in the
CLA (20) the neglected terms are all of third or higher order
in the interaction.

D. Symmetries

As can readily be checked, these flow equations respect the
following symmetry relations:

Gσ�
ij (ωn) = Gσ�

ji (ωn) = [
Gσ�

ij (−ωn)
]∗

, (22a)

�σ�
ij (ωn) = �σ�

ji (ωn) = [
�σ�

ij (−ωn)
]∗

, (22b)

P σσ̄
ji = P σ̄σ

ji = P σσ̄
ij , P̄ σ σ̄

j i = P̄ σ̄σ
ji = P̄ σ σ̄

ij ,

P σ σ̄
ji = −P̄ σ σ̄

j i , (23a)

Xσσ ′
ji = Xσσ ′

ij = [
Xσ ′σ

ji

]∗
, Dσσ ′

ji = Dσσ ′
ij = [

Dσ ′σ
ji

]∗
,

X = −D, (23b)

P σσ̄
ji (�) = [

P σσ̄
ji (−�)

]∗
, Xσσ ′

ji (X) = [
Xσσ ′

ji (−X)
]∗

,

Dσσ ′
ji (�) = [

Dσσ ′
ji (−�)

]∗
, (23c)

Xσσ ,Dσσ ∈ R. (23d)

As a result, only four independent symmetric frequency-
dependent matrices are left, which we define as follows:

P �
ji (�) = P σσ̄

ji (�), X�
ji(X) = Xσσ̄

ji (X),

Dσ�
ji (�) = Dσσ

ji (�), (24)
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where the superscript � signifies a dependence on the flow parameter. At zero magnetic field, the number of independent matrices
reduces to three since in this case D↑ = D↓.

The flow equations for these matrices can be derived starting from Eqs. (12). The replacement (20) restricts the internal
quantum numbers on the right-hand side of the flow equation q3, q4, q ′

3, and q ′
4 according to the definitions (18):

ẊΛ
ji(X) =γ̇Λ

x (jσX+ωn , iσ̄ωn; iσX+ωn, jσ̄ωn )

(25b)

=T
kl,n

γΛ
2 (jσX+ωn , kσ̄ωn ; kσX+ωn , jσ̄ωn )S σ̄Λ

kl (ωn )GσΛ

σΛ

lk (X+ωn )γΛ
2 (lσX+ωn , iσ̄ωn; iσX+ωn, lσ̄ωn )

+ γΛ
2 (jσX+ωn , kσ̄ωn ; kσX+ωn , jσ̄ωn )Gσ̄Λ

kl (ωn )SσΛ
lk (X+ωn )γΛ

2 (lσX+ωn , iσ̄ωn; iσX+ωn, lσ̄ωn ) ,

Ḋji(Δ) =γ̇Λ
d (jσΔ+ωn , iσωn; jσωn , iσΔ+ωn)

(25c)

= − T
kl,n

γΛ
2 (jσΔ+ωn , kσωn ; jσωn , kσΔ+ωn)SσΛ

kl (ωn )GσΛ
kl (Δ+ωn )γΛ

2 (lσΔ+ωn , iσωn; lσωn , iσΔ+ωn)

+ γΛ
2 (jσΔ+ωn , kσωn ; jσωn , kσΔ+ωn)GσΛ

kl (ωn )SσΛ
kl (Δ+ωn )γΛ

2 (lσΔ+ωn , iσωn; lσωn , iσΔ+ωn)

+ γΛ
2 (jσΔ+ωn , jσ̄ωn ; jσωn , jσ̄Δ+ωn)S σ̄Λ

ji (ωn )Gσ̄Λ
ij (Δ+ωn )γΛ

2 (iσ̄Δ+ωn , iσωn; iσ̄ωn , iσΔ+ωn)

+ γΛ
2 (jσΔ+ωn , jσ̄ωn ; jσωn , jσ̄Δ+ωn)Gσ̄Λ

ji (ωn )S σ̄Λ
ij (Δ+ωn )γΛ

2 (iσ̄Δ+ωn , iσωn; iσ̄ωn , iσΔ+ωn) .

ṖΛ
ji(Π) =γ̇Λ

p (jσΠ−ωn , jσ̄ωn ; iσΠ−ωn, iσ̄ωn)

(25a)

=T
kl,n

γΛ
2 (jσΠ−ωn , jσ̄ωn ; kσωn , kσ̄Π−ωn )SσΛ

kl (ωn )Gσ̄Λ
kl (Π−ωn )γΛ

2 (lσωn , lσ̄Π−ωn ; iσΠ−ωn, iσ̄ωn)

+γΛ
2 (jσΠ−ωn , jσ̄ωn ; kσ̄ωn , kσΠ−ωn )S σ̄Λ

kl (ωn )GσΛ
kl (Π−ωn )γΛ

2 (lσ̄ωn , lσΠ−ωn ; iσΠ−ωn, iσ̄ωn) ,

As is the case for the diagrams (18), these equations do not
depend on ωn and ωn′ , if the same holds for γ2 on the right-
hand side. The latter is of course not the case without the
replacement (20). The initial conditions are

P �i = X�i = Dσ�i = 0. (26)

Performing the replacement (20), these equations can be
compactly written in matrix form

d

d�
P �(�) = P̃ �(�)Wp�(�)P̃ �(�), (27a)

d

d�
X�(X) = X̃�(X)Wx�(X)X̃�(X), (27b)

d

d�
Dσ�(�) = −D̃σ�(�)Wσd�(�)D̃σ�(�)

− I�Wσ̄d�(�)I�, (27c)

where we have introduced the definitions

P̃ �
ji (�) = P �

ji (�) + δji

(
X�

jj (0) + Uj

)
, (28a)

X̃�
ji(X) = X�

ji(X) + δji

(
P �

jj (0) + Uj

)
, (28b)

D̃σ�
ji (�) = Dσ�

ji (�) + δjiX
σ�
jj (0)

= Dσ�
ji (�) − δjiD

σ�
jj (0), (28c)

I�
ji = δji

[
P �

jj (0) + X�
jj (0) + Uj

]
, (28d)

which account for the interchannel feedback contained in
Eq. (20). Wp, Wx , and Wσd each represent a specific bubble,
i.e., a product of two propagators summed over an internal
frequency:

W
p�

ji (�) = T
∑
σn

Sσ�
ji (ωn)G σ̄�

ji (� − ωn), (29a)

Wx�
ji (X) = T

∑
n

[
S↑�

ji (ωn)G↓�

ij (X + ωn)

+S↓�

ij (ωn)G↑�

ji (ωn − X)
]
, (29b)

Wσd�
ji (�) = T

∑
n

[
Sσ�

ji (ωn)Gσ�
ij (� + ωn)

+Sσ�
ij (ωn)Gσ�

ji (ωn − �)
]
. (29c)

Using the above definitions, the flow equation of the self-
energy (8) can be written explicitly as

d

d�
�σ�

ji (ωn) = −T
∑
n′

[
(δjiUj + Pji(ωn + ωn′)

+Xji(σ (ωn − ωn′)))S σ̄
j i(ωn′)

−Dσ
ji(ωn − ωn′ )Sσ

ji(ωn′)

+ δji

∑
k

Dσ
jk(0)Sσ

kk(ωn′)

]
. (30)
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To summarize, dfRG2 is defined by the flow equations (27)
and (30), together with the definitions (9), (18), (24), (28), and
(29).

E. Magnetic susceptibility

In this section, we demonstrate how the fRG approach can
be used to derive expressions for linear response theory. We
start by defining the magnetic susceptibility χi at a given site
i as the linear response of the local magnetization mi to a
magnetic field B:

χi = ∂Bmi |B=0 = 1
2∂B(n↑

i − n
↓
i )|B=0, (31)

where nσ
i is the local occupation of site i with spin σ . Using

the Matsubara sum representation of the local density nσ
i =

T
∑

n Gσ
ii (ωn), we explicitly calculate the derivative w.r.t. the

magnetic field:

χi = T

2

∑
nσ

σ∂BGσ
ii (ωn)|B=0

= T

2

∑
nσ

−σGσ (ωn)∂B[σB/2 − �σ (ωn)]Gσ (ωn)|B=0

= −T

2

∑
nj

Gij (ωn)Gji(ωn)

+T

2

∑
nklσ

σGik(ωn)∂B�σ
kl(ωn)|B=0Gli(ωn). (32)

Note that the derivative of the self-energy w.r.t. the magnetic
field B has the structure of the fRG flow equation of the self-
energy (8). So, we perform the derivative by setting � = B

instead of the � dependence defined in Eq. (7). The single-
scale propagator (9) with � = B set to zero then is

Sσ,B=0 = G∂B

[
Gσ

0

]−1
B=0G = σ

2
G2. (33)

Using this in combination with the flow equation of the
self-energy (8),

∂B�σ
kl(ωn) = T

2

∑
n′j1j2j3σ ′

σ ′Gσ ′
j1j2

(ωn′)Gσ ′
j2j3

(ωn′)

× γ2(j3σ
′ωn′ ,kσωn; j1σ

′ωn′ ,lσωn), (34)

one directly arrives at the well-known Kubo formula for
the magnetic susceptibility, which is exact if the self-energy
and the vertex are known exactly. For the coupled-ladder
approximation, we directly use the explicit flow equation for
the self-energy (30), which yields

χi = − T

2

∑
n,j

Gij (ωn)Gji(ωn)

+ T 2

4

∑
nn′klj

(Gik(ωn)Gli(ωn)Glj (ωn′)Gjk(ωn′)

× [Pkl(ωn + ωn′) + Xkl(ωn − ωn′) + Dkl(ωn − ωn′ )]

− Gik(ωn)Gki(ωn)Dkl(0)Glj (ωn)Gj l(ωn)). (35)

F. Zero-temperature limit

For the numerical data presented in Sec. IV, we focused
exclusively on the case of zero temperature. For the fRG
scheme defined by Eq. (7), the limit T → 0 has to be per-
formed carefully [7]: ωn → iω (ω ∈ R) becomes a continuous
variable and �T a sharp step function, with �(0) = 1

2 and
∂ω�(ω) = δ(ω). For this combination of δ and � functions,
Morris’ lemma [21] can be applied, which yields

S�(iω)
T =0= δ(|ω| − �)G̃�(iω), (36a)

G̃�(iω) = [[G0(iω)]−1 − ��(iω)]−1, (36b)

S�
i,j (iω1)G�

k,l(iω2)
T =0= δ(|ω1| − �)�(|ω2| − �)

× G̃�
i,j (iω1)G̃�

k,l(iω2). (36c)

G. Static fRG

A further possible approximation is to completely neglect
the frequency dependence of the vertex. This is done by setting
all three bosonic frequencies �, X, and � to zero throughout.
As a result, the self-energy is frequency independent, too.
This approach, called static fRG2 (sfRG2), loses the property
of being exact to second order. It leads to reliable results only
for the zero-frequency Green’s function at zero temperature.
If knowing the latter suffices (such as when studying the
magnetic field dependence at T = 0), sfRG2 is a very flexible
and efficient tool, computationally cheaper than our full
coupled-ladder scheme.

H. Numerical implementation

Due to the slow decay of S� for � → ∞, integrating the
flow equation (8) of the one-particle vertex γ1 from � = ∞
to a large but finite value � = �0 yields a finite contribution.
For numerical implementations, the initial condition thus has
to be changed to [5]

γ
�0
1 (q ′

1,q1) = −1

2

∑
q

v(q,q ′
1; q,q1). (37)

All numerically costly steps can be expressed as matrix
operations, for which the optimized toolboxes BLAS and
LAPACK can be used. The calculation time scales asO(N3), due
to the occurrence of matrix inversions (9) and matrix products
(27). In the case of sfRG2 there are six matrix functions,
each depending only on �. As a result, the integration
is straightforward, and can be done, e.g., by a standard
fourth-order Runge-Kutta with adaptive step-size control. We
used the more efficient Dormand-Prince method [24], and
mapped the infinite domain of � ∈ [0,∞) onto a finite domain
using the substitution � = x

1−x
with x ∈ [0,1). The upper

bound for N , the maximal number of sites where Uj �= 0,
is mainly set by accessible memory. In the case of several
gigabytes, N should not exceed 104 to 105. {We note in passing
that for the one-dimensional Hubbard model [which is a special
case of the model studied below, see Eq. (40)], N values of
that magnitude would not yet be large enough to reach the
Luttiger-liquid regime for the case of small interactions U . The
reason is that for the Hubbard model the spectral weight and
the conductance have a nonmonotonic dependence on energy:
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as the energy is decreased, there is an intermediate regime
in which they first increase, before the power-law decrease
characteristic of Luttinger-liquid behavior finally sets in at
very low energy scales, i.e. very large system sizes [6,25]. For
small interactions U � 0.5τ , the latter crossover only becomes
accessible for system sizes well beyond 105 sites (see, e.g.,
Fig. 6 in Ref. [6]). To be able to see the low-energy decrease
of spectral weight for system sizes of order 105, interactions
would have to be chosen to be as large as U � 4τ , for which,
however, the CLA can no longer be trusted.}

For dfRG2, all matrices depend additionally on the Mat-
subara frequency, which is, in the case of zero temperature,
a continuous variable. This variable has to be discretized in
the numerical implementation. A good and safe choice is a
logarithmic discretization since analytic functions have most
structure close to their branch cuts, i.e., small Matsubara
frequencies. Another possible choice, used in Ref. [7], is a
geometric mesh. Since an appropriate discretization consists
of at least 100 frequencies, the upper bound for N is reduced
to 103, for which the run time already becomes quite large.

For frequency values in-between the discrete frequencies on
the mesh, the functions have to be interpolated. Intuitively, one
might expect that a nonlinear interpolation, e.g., a cubic spline,
would lead to better results. However, in our implementations
this led to a self-enhanced oscillatory behavior of the self-
energy as a function of frequency, even for a very dense
discretization mesh. To avoid such numerical artifacts, the
safest choice is a linear interpolation, where the density of the
discretization is increased until the desired accuracy is reached.

I. Relation between fRG2 and RPA

In this section, we show that in the ladder approximation
proposed here, fRG retains the quality of being closely related
to parquet-type equations. This can be seen by considering
a simplified version thereof, in which the coupling between
the three channels is neglected, i.e., using replacement (19)
instead of (20), and so is the feedback of the self-energy by
replacing G̃� by G0 in Eq. (29). In this case, each of the three
differential equations (27) reduces to the generic form

d

d�
��(ν) = ��(ν)W�(ν)��(ν), (38)

with initial condition ��i = U = δijUj (with Uj � 0, for
present purposes). If Eq. (38) converges, its solution is given
by

�(ν) = U [I + W (ν)U]−1 , (39a)

with

W (ν) =
∫ ∞

0
d�W�(ν). (39b)

Now note that Eq. (39) is also obtained if each channel is
separately treated in the random phase approximation (RPA).
Consequently, the full fRG2 scheme (either dynamic or static),
described by Eqs. (27), amounts to a simultaneous treatment
of all RPA channels with interchannel coupling via (28), and
a feedback of Hartree-type diagrams via (9).

IV. fRG RESULTS

In this section, we will discuss some properties of the results
obtained with the fRG equations stated in Sec. III, for the case
of a QPC geometry. We will compare the results for the linear
response conductance for the three approximation schemes
and discuss the spin susceptibility within dfRG2.

A. Model for a QPC

We note that Eq. (1) applies to systems of arbitrary spatial
dimensions. However, in this work we only present and
discuss results for QPCs, thus restricting the model to one
dimension. The lowest one-dimensional subband of the QPC
is modeled by an inhomogeneous tight-binding chain, with
onsite interactions:

H =
∑
jσ

[
Eσ

j njσ − τ (d†
jσ dj+1σ + H.c.)

] +
∑

j

Ujnj↑nj↓,

(40)

with Eσ
j = Vj + 2τ − σB

2 where B is a Zeeman field. For
low kinetic energies, this tight-binding model is a good
approximation for a continuum model with mass m

�2 = 1
2τa2

(where � is Plank’s constant) and potential Vj = V (x =
ja) [26], provided that the lattice spacing a is much smaller
than the length scales on which the potential changes. In order
to keep computational time small, the model should always be
chosen in such a way that the number of sites N where Vj or
Uj are nonzero is as small as possible. In other words: The
inhomogeneity should be incorporated within as few sites as
possible, without loss of adiabaticity.

We model the QPC as a smooth one-dimensional potential
barrier which is purely parabolic around its maximum at x = 0:

V (x) = Vg + μ − m

2�2
�2

xx
2, (41)

or in discrete version

Vj = Vg + μ − �2
x

4τ
j 2 (|j | < jc). (42)

Here, jc defines the range of pure parabolicity, μ is the
chemical potential, and �x is the relevant energy scale for
the QPC [16], which we define such that it has the dimension
of an energy (not frequency). The condition that a has to be
much smaller then the length scales on which the potential
changes implies the condition �x τ . Vg is the gate voltage,
which controls the height of the potential. For |j | > jc, the
potential is smoothly connected to homogenous semi-infinite
noninteracting leads. The potential can be considered as purely
parabolic regarding its low-energy transport properties if jc �√

τ/�x . In the following, we use μ = 0.5τ , �x = 0.04τ ,
jc = √

2τμ/�x , and N = 81. These values optimize the
conditions on �x , jc, and the smoothness of the potential
on the one hand and the smallness of the number of sites
N on the other hand. Typical experimental values for GaAs
QPCs are �x = 1 meV and m = 0.067me, where me is the
electron mass. The latter fixes the hopping to τ = 25 meV
and thus the length unit to a =

√
�2/2τm � 5 nm. These

values should give a rough estimate for comparison with
experiment, however, in the following we will use the system
of measurement defined by τ and a, without referring to SI
units.

045128-7

109



FLORIAN BAUER, JAN HEYDER, AND JAN VON DELFT PHYSICAL REVIEW B 89, 045128 (2014)

− 40 −20 0 20 40
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

−1 0 1 2 3 4 5 6 7

0

0.1

0.2

0.3

0 0.1 0.2 0.3

j

(ω + μ− Vj) /Ωx

ω
/
τ

A
0 j
(ω

)
Ω

x
τ
a
2

A0
j (ω) Ωxτa2

j = 0
j = 10
j = 20

bulk

Vj

0.21

0.28

(a)

(b)

FIG. 1. (Color online) (a) Local density of states Aj (ω) (color
scale) for the noninteracting Uj = 0, Hamiltonian Eq. (40) with
potential (42) at Vg = 0 (thick black line). (b) Local density of states
Aj (ω) as a function of (ω − Vj )/�x for a homogeneous tight-binding
chain (Vj = 0, gray line) and for the potential (42) at fixed site j = 0
(blue), j = 10 (green), and j = 20 (red), indicated in (a) by vertical
lines with corresponding colors.

B. Model properties

Having defined the model we first discuss its noninteracting
(U =0) properties. Figure 1 shows the local density of states
(LDOS)

Aj (ω) = − 1

aπ
ImGjj (ω + i0+) (43)

both in a grayscale plot as a function of site index and frequency
[Fig. 1(a)] and at several fixed sites as a function of frequency
[Fig. 1(b)]. Note that just above the potential [black line
in Fig. 1(a)] the LDOS is enhanced [dark region in Fig. 1(a)].
This property originates from the fact that the density of states
(DOS) of a one-dimensional system shows a divergence at
zero velocity: indeed the DOS for the homogenous version
[Vj = 0, i.e., Vg = μ = �x = 0 in Eq. (42)] of our model
[black dashed line in Fig. 1(b)] reads as

A(ω) = 1

πa
√

ω(4τ − ω)

ωτ≈ 1

2πa
√

τω
∝ 1

vclas
, (44)

where vclas is the classical velocity of the electron. Quantum
mechanically, this divergence is smeared out by the inhomo-
geneity (Vj �= 0) of a potential. Following Ref. [1], we call
this smeared van Hove singularity in the LDOS that follows
the potential a “van Hove ridge.” In the case of a parabolic
barrier with curvature given by �x [Eq. (42)], the maximum
of the LDOS is at an energy of O(�x) bigger than Vj and has a
height of O(

√
τ�x) [see dashed-dotted line in Fig. 1(b)]. For

energies below the potential maximum, electrons get reflected.

This leads to standing waves, altering the LDOS by oscillations
around its bulk value [white striped area in Fig. 1(a) and
oscillations in dark red line Fig. 1(b)].

C. Conductance of a QPC

Having discussed the properties of the noninteracting
model, we continue with the fRG results at finite interaction.
For this we first define the spatial dependence of the interaction
Uj , which, for the one-dimensional model is an effective
one-dimensional interaction resulting from integrating out
two space dimensions. Its strength depends on the geometry,
and is larger if the spatial confinement perpendicular to
the one-dimensional system is smaller. We assume that this
confinement is independent of the position in the transport
direction in the center of the QPC, with Uj=0 = U . This is
a fair assumption for a saddle-point approximation of the
two-dimensional QPC potential. For |j | → N ′ = N−1

2 , Uj

drops smoothly to zero, describing the adiabatic coupling
to the two-dimensional electron system, represented by the
semi-infinite tight-binding chain.

In Ref. [1], we showed that the 0.7 anomaly is caused by
the van Hove ridge in the LDOS discussed above. Its apex
crosses the chemical potential when the QPC is tuned into
the subopen regime, i.e., the regime where the conductance
takes values 0.5GQ < G < 0.9GQ. This high LDOS at the
chemical potential enhances effect of interactions by two
main mechanisms: first, the effective Hartree barrier depends
nonlinearly on gate voltage and magnetic field, causing an
enhanced elastic backscattering; and second, due to the high
LDOS inelastic backscattering is enhanced once a phase space
is opened up by a finite temperature or source-drain voltage.
Both effects reduce the conductance in the subopen regime,
causing the 0.7 anomaly. Since interactions are enhanced by
the LDOS, the relevant dimensionless interaction strength is
UjAj (μ)a, which scales like U/

√
�xτ in the subopen regime.

In this paper, we will concentrate on examining how
the reliability of the method depends on the interaction,
without explaining the physical mechanism underlying the
0.7 anomaly in detail (for the latter, we refer to Ref. [1]).
For the model (40), no reliable results are available from
other methods to which we could have compared our own.
Instead, we here compare the results of the different fRG
schemes fRG1, sfRG2, and dfRG2. These schemes differ in the
prefactor of the perturbative expansion of terms in order U 2 and
higher. If these terms are important, the three approximation
schemes will deviate from each other. Hence, the qualitative
and quantitative reliability can be deduced from the qualitative
and quantitative deviations between these schemes.

The first observable we discuss is the linear response
conductance at zero teperature [27]:

G = e2

h

∑
σ

∣∣2πρσ (i0+)Gσ
−N ′N ′ (i0+)

∣∣2
, (45)

where ρ(ω) is the density of states at the boundary of a semi-
infinite tight-binding chain, representing the two-dimensional
leads (for a derivation of the boundary Green’s function, see
the Appendix).

Particularly interesting in studying the 0.7 anomaly in
QPCs is the shape of the conductance trace as a function
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FIG. 2. (Color online) (a)–(c) Conductance G, as a function of gate voltage Vg , at zero magnetic field B = 0 for different values of
interaction U . (d)–(f) Conductance G at fixed interaction strength U = 3.5

√
�x , for six equidistant magnetic fields B, between 0 and 0.5�x .

Conductance is calculated using fRG1 [(a), (d)], dfRG2 [(b), (c)], or sfRG2 [black lines in (c) and (f)]. Red lines in (c) and (f) show dfRG2 data
repeated from (b) and (e) with a U -dependent shift �Vg in Vg direction (�Vg = 0, 0.001, 0.02 and 0.15�x for U = 0, 0.5, 1, 5, and 3.5

√
�xτ ,

respectively).

of applied gate voltage in the region where its value (in
units of GQ) changes from zero to one, and how this shape
changes with external parameters, such as applied magnetic
field. First of all, we emphasize the good qualitative agreement
of all three approximation schemes with each other as well as
with experimental results [compare Figs. 2(d), 2(e), and 2(f)
with Refs. [17,19] (a direct comparison of dfRG2 with
experiment is given in Ref. [1])]. This confirms that the method
qualitatively captures the physical mechanism with respect to
the conductance at zero temperature very well.

For a more quantitative analysis, we first consider the posi-
tion of the conductance step, say Vpo; even though the actual
position of the step is of minor interest experimentally, it gives
information about how accurate Hartree-type correlations are
treated. Figures 2(a), 2(b), and 2(c) show the conductance at
B = 0 for increasing values of interaction U for fRG1, dfRG2,
and sfRG2, respectively. While for dfRG2 and for sfRG2, Vpo

decreases with interaction, its behavior for fRG1 is nonmono-
tonic: Vpo decreases slightly at small values of interaction, and
increases strongly at larger values of interaction. Hence, the
conductance at large interaction is higher than the bare U = 0
value. This behavior is unphysical: whenever the density is
nonzero, an increase in U should cause an increase in the
effective barrier height due to Coulomb repulsion, and hence
a decrease in the conductance. This artifact is significantly
reduced by the vertex flow of both dfRG2 and sfRG2. For
the latter, interactions suppress the conductance more strongly
than for the former. Due to these deviations between the three
schemes, we can not make a quantitative statement about the
exact position of the conductance step Vpo.

The deviations just discussed make quantitative compar-
isons between these methods (or with others, such as RPA)
difficult if interactions are large. The reason for the difficulty is
that the Vg position of the conductance step depends sensitively
on the precise way in which Hartree-type correlations are
treated and hence differ for each of the above schemes. Hence,
it would not be meaningful to compare their predictions for

physical quantities calculated at a given value of Vg; instead,
it is only meaningful to compare the shape of their evolution
with Vg . Actually, the same is true for physical quantities that
are dominated by Fock-type correlations since internal prop-
agators have to be dressed by Hartree diagrams. Doing this is
crucial for inhomogeneous systems such as ours since an inho-
mogeneous density causes these Hartree contributions to have
a significant dependence on position and gate voltage. In the
fRG approach, the feedback of the self-energy (9) always guar-
antees that internal lines are dressed in a self-consistent way.

Let us now compare the shapes of the Vg-dependent
conductance curves for dfRG2 and sfRG2. To this end, we
replotted the dfRG2 data from Fig. 2(b) in Fig. 2(c) with a
U -dependent shift �Vg in the Vg direction (red lines). It can
be seen from comparison with sfRG2 data that the shapes of
the conductance curves are almost identical.

Next, we analyze the shape of the conductance step at
finite interaction, and how it develops with magnetic field. The
effect of an increasing magnetic field is qualitatively similar
for the three approximation schemes [see Figs. 2(d), 2(e),
and 2(f)]: the conductance step develops into a spin-resolved
double step, in an asymmetric way: while the curves hardly
change for Vg values where G < 0.5GQ, they are strongly
suppressed in the subopen regime, where the LDOS is large.
For fRG1, the Vg range, where the lowest magnetic field
B = 0.1�x significantly reduces the conductance w.r.t. the
conductance at B = 0, is larger than for dfRG2 and sfRG2.
This is related to the fact that the magnetoconductance, the
change of conductance with magnetic field, within fRG1 is
negative even for Vg values where conductance is close to zero
[this effect is too small to be visible in Fig. 2(d)]. Since this is
not the case for dfRG2 and sfRG2 it is not possible to make a
reliable statement about the sign of the magnetoconductance in
the tunnel regime. Again, we reproduced the dfRG2 data from
Fig. 2(e) in Fig. 2(f) with a shift �Vg in Vg (red line) in order to
compare their shape with the sfRG2 data (black dashed line).
The effect of the magnetic field on the conductance within
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sfRG is slightly larger for small fields and slightly smaller for
large fields than for the dfRG2 results. Based on the facts that,
first, the deviations between dfRG2 and sfRG2 are small and,
second, sfRG2 is computationally much cheaper than dfRG2,
we conclude that for preliminary studies, or when scanning a
large parameter space, one should favor sfRG2 whenever it is
sufficient to know the static part of vertex functions.

D. Susceptiblity

As explained in Ref. [1], the 0.7 anomaly is related to
an enhanced spin susceptibility in the subopen regime of the
QPC. For this quantity, an estimate of the error is available
within the dfRG2 approximation scheme. We note that the
spin susceptibility defined in Eq. (31) can be calculated in
two ways: by numerical differentiation of the magnetization
for a small magnetic field χnum, or via Eq. (35), χKubo. Like
the conductance, the value of χ is not known exactly. Thus,
we argue here as in the previous section. χnum and χKubo are
both exact to second order in the interaction, as can easily
be checked, but they differ in terms that are of order U 3 and
higher. If the difference of χnum and χKubo is significant, the
higher-order terms are non-negligible, and the results can not
be trusted.

In Ref. [1] we showed that χnum
j is enhanced due to the

inhomogeneity of the QPC potential and in addition amplified
by interactions. It has a strong Vg dependence, and is maximal
when the QPC is tuned into the subopen regime. In this regime,
at Vg = −�x/4, we compare χnum (Fig. 3 black lines) with
χKubo (Fig. 3 red lines) for different values of interaction. For
intermediate values of interaction U = 1.5

√
�xτ , both results

are essentially identical, while for a larger value of interaction
U = 3.5

√
�xτ deviations are clearly visible, however still

not too large. The qualitative features that the susceptibility
strongly increases with interaction, and that it is enhanced in
the center of the QPC, emphasized in Ref. [1], are confirmed
by both results. Furthermore, they coincide in their spatial
structure, i.e., two maxima in the center and a decaying
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FIG. 3. (Color online) Local spin susceptibility χj [Eq. (31)] as
a function of site index, for the QPC potential [Eq. (42)] at Vg =
−�x/4, calculated using dfRG2 via the the numerical derivative of
the local magnetization χ num (black lines), as well as via the Kubo
formula (35), χ kubo (red lines), for three different values of interaction.
Inset: relative error RE [Eq. (46)] (dots), as a function of interaction
U , on a log-log scale. The error scales as U 3 (compare dashed line)
since dfRG2 is exact to second order in the interaction U .

oscillating behavior. This spatial structure is mainly given
by the LDOS at the chemical potential (see Sec. IV B) and
enhanced by interactions.

For a better quantification, we define the relative error

RE = 2

∑
j

∣∣χKubo
j − χnum

j

∣∣∑
j

∣∣χKubo
j + χnum

j

∣∣ . (46)

This error is shown on a log-log scale in the inset of Fig. 3
(dots). The relative error scales like U 3 since dfRG2, and thus
χnum and χKubo, are exact to second order in U . For the larger
value of interaction U = 3.5

√
τ�x , the relative error of about

18% is quite significant and thus the value of χ is quantitatively
not reliable. The reason for this is that the dimensionless
interaction strength UjAj (μ)a ≈ 3.5 × 0.3 ≈ 1 is already
close to one. Nevertheless, the error is still dominated by the
third-order term, implying that it is controlled.

Finally, we note that the spin susceptibility in the RPA
approximation

χRPA
i =

∑
j

[Wd (0)[1 + UWd (0)]−1]ij (47)

diverges at an interaction strength for which fRG is still well
behaved. For example, if bare internal propagators are used to
calculate Wd , χRPA

i (Vg) turns out to diverge at U � 3.3
√

�xτ .
Moreover, the value of χRPA and thus also the U value
for which it diverges depends on how one chooses to treat
interactions for internal propagators of Wd . However, RPA
itself gives no recipe how to do this. In contrast, the fRG
approach gives a systematic framework for computing the
two-particle vertex, the self-energy, and their feedback into
each other, in a way that moderates competing instabilities in
an unbiased way (as mentioned in Sec. III).

V. CONCLUSION AND OUTLOOK

We have derived a fRG based approximation scheme,
called the coupled-ladder approximation (CLA), for spinful
fermionic tight-binding models with a local interaction and an
arbitrary potential. The main applications are systems with a
significant spatial dependence, in particular, models where the
electron density significantly changes with the position in real
space.

The CLA is formulated within the context of third-order-
truncated fRG schemes, in which the three-particle vertex is
set to zero, while the flow of the two-particle vertex is fully
incorporated. The CLA retains two of the main properties of
third-order-truncated fRG: it is exact to second order, and sums
up diagrams of the RPA in all channels. Since the CLA is based
on a perturbative argument, it is reliable only if interactions
are not too large.

We analyzed in detail the reliability of this approach
for a one-dimensional tight-binding model with a parabolic
potential barrier representing a QPC. For this, we com-
pared results for the conductance and the spin susceptibility
calculated using different approaches within the fRG for
different interactions up to U = 3.5

√
�xτ . We identified

the magnetic field dependence of the conductance and the
enhanced susceptibility related to the 0.7 anomaly [1], as
robust properties of the model.
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Finally, let us comment briefly on the prospects of using
the CLA approach presented here to obtain finite-temperature
results. While the formulas for the local density n and the local
susceptibility χ [Eq. (35)] are valid for arbitrary temperature
T , the conductance formula (45) holds only for the case of
zero temperature. The generalization of this formula to finite
temperature[28] involves an analytic continuation to the real
axis for both self-energy and vertex w.r.t. their frequency
arguments. However, performing such an analytic continuation
for numerical data is a mathematically ill-defined problem and
turns out to be especially difficult for matrix-valued functions.

One possibility to avoid this complication is to formulate
our CLA scheme on the Keldysh contour, in which case
there are several different possibilities for introducing the fRG
flow parameter [29]. (For a fRG treatment of the single-
impurity Anderson model, see Ref. [11].) When using
Keldysh fRG to treat equilibrium properties, the number of
independent correlators can be reduced by exploiting the
Kubo-Martin-Schwinger conditions [30]. Moreover, Keldysh
fRG in principle also allows nonequilibrium properties to be
calculated. The actual implementation of Keldysh fRG for our
model will be nontrivial, though, in particular since numerical
integrations along the real axis, where Green’s functions can
have poles, can be challenging. Another problem at finite
temperature is the violation of particle conservation due to the
fRG truncation (5) [31]. The extent of this violation might be
reduced by implementing the modified vertex flow suggested
by Katanin [32]. We believe that it would be worth pursuing
work in these directions.

ACKNOWLEDGMENTS

We thank S. Andergassen, S. Jakobs, V. Meden, and
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APPENDIX: PROJECTION METHOD

The propagator in the fRG flow [Eqs. (8) and (12)], in
general, lives on an infinite-dimensional chain. However,
since the interacting region has finite extent, we only need
to evaluate it on an N -dimensional subspace. Furthermore,
for the evaluation of Eq. (35) we need to calculate the sum
over all site indices j , including the infinite number of sites
in the leads. To this end, we perform a standard projection
procedure [8,20]. With this method, the influence of the
leads on the propagator and their contribution to the sum
can be calculated analytically if the diagonalization of the
leads is known analytically. Therefore, we define projection
operators C and L, with C2 = C, L2 = L, and L + C = 1
which divide the Hilbert space into the part that describes
the leads L and the finite-dimensional part that describes the
central region where interaction is nonzero C. Furthermore, we
define for a given quadratic Hamiltonian H (for an interacting
system H is replaced by H0 + �), Hc = CHC, Hc = CHC,
Hcl = CHL, Hlc = LHC, ωl = ωL, and ωc = ωC and write
the Hamiltonian in the basis defined by the projections

H =
(

Hc Hcl

Hlc Hl

)
. (A1)

Consequently, the Green’s function in the same basis reads as

G =
(

ωc − Hc −Hcl

−Hlc ωl − Hl

)−1

=
(
Gc Gcl

Glc Gl

)
. (A2)

with

Gc = 1

ωc − Hc − HclglHlc

, gl = 1

ωl − Hl

, (A3a)

Gl = 1

ωl − Hl − HlcgcHcl

, gc = 1

ωc − Hc

, (A3b)

Gcl = GcHclgl = gcHclGl , (A3c)

Glc = glHlcGc = GlHlcgc. (A3d)

In the following, we will only use Gl and gc as well as Gcl

and Glc expressed in terms Gl and gc, so we use the shorthand
notations G = Gl and g = gl (whether G lives on the infinite-
dimensional Hilbert space, or on the subspace of the central
contact, will be clear from its site indices).

For the case of the infinite tight-binding chain defined by
Eq. (40), the central region extends from site −N ′ to site N ′,
with N ′ = N−1

2 , and the coupling to the leads can be expressed
as

Hcl = −τ (d†
−N ′d−N ′−1 + d

†
N ′dN ′+1), (A4a)

Hlc = H
†
cl . (A4b)

Consequently,

HclgHlc = τ 2(d†
−N ′d−N ′−1 + d

†
N ′dN ′+1)

×g(d†
−N ′−1d−N ′ + d

†
N ′+1dN ′ )

= τ 2b(n−N ′ + nN ′ ), (A5)

where b = gN ′+1,N ′+1 is the boundary Green’s function
of a half-infinite tight-binding chain. Transforming into k

space and using the boundary condition 〈d†
N ′dk〉 = 0 we

get 〈d†
N ′+1dk〉 ∝ sin2(k). Together with the dispersion εk =

−μ − 2τ cos(k) and the proper normalization, this yields for
Im(ωn) > 0

b(ωn) = 1

π

∫ π

−π

dk
sin2(k)

ωn + μ + 2τ cos(k)

= 1

2τ 2
[ωn + μ − i

√
4τ 2 − (ωn + μ)2]. (A6)

The square root is defined to have a positive real part, and
b(−ωn) = b∗(ωn). (For the spin-dependent boundary Green’s
function at finite magnetic field, μ has to be replaced by
μ + σB/2.)

Next, we calculate the infinite sum in Eq. (35). We split the
sum into three parts and take k and l to be site indices in the
central region

∞∑
j=−∞

GkjGj l =
(−N ′−1∑

j=−∞
+

N ′∑
j=−N ′

+
∞∑

j=N ′+1

)
GjkGj l

=
N ′∑

j=−N ′
GjkGj l + τ 2Gk,−N ′hLG−N ′,l

+ τ 2Gk,N ′hRGN ′,l , (A7)
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with

hL =
−N ′−1∑
j=−∞

g−N ′−1,j gj,−N ′−1, (A8a)

hR =
∞∑

j=N ′+1

gN ′+1,j gj,N ′+1, (A8b)

where we made use of Eqs. (A3c), (A3d), and (A4).

Finally, we note that the last two terms are identical and
given by

h(ωn) = hL(ωn) = hR(ωn) = [g2(iωn)]N ′+1,N ′+1

= 1

π

∫ π

−π

dk
sin(k)2

[ωn + μ + 2τ cos(k)]2

= 1

2τ 2

(
ωn + μ

ωn + μ − 2τ

√
ωn + μ − 2τ

ωn + μ + 2τ
− 1

)
. (A9)
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Phys. Rev. B 65, 045318 (2002).
[5] S. Andergassen, T. Enss, V. Meden, W. Metzner, U. Schollwöck,
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Chapter 7

The effect of spin-orbit interactions on
the 0.7 anomaly in quantum point
contacts

This chapter includes the paper “The effect of spin-orbit interactions on the 0.7-anomaly in quantum point
contacts”, submitted to Physical Review Letters [Goulko et al. (2014)]. In this work we theoretically inves-
tigate the influence of spin-orbit interactions (SOI) on the shape of the first linear conductance step of
a QPC, placing special focus on their impact on the 0.7 anomaly. SOI are relativistic corrections to the
system’s Hamiltonian, obtained by expanding the Dirac equation in powers of the electron’s momen-
tum [Birkholz (2008)]. In a 2DES they originate from the strong gradient of the confining electrostatic
potential (Rashba SOI) and/or from an anisotropy of the underlying ionic crystal structure of the semi-
conducting material (Dresselhaus SOI). Their influence is best described by an effective magnetic field
~BSOI that is proportional to the electron’s wave vector ~k. In the presence of a magnetic field ~B, SOI
provoke an avoided crossing (for φ 6= 0, where φ is the angle between ~B and ~BSOI ) in the dispersion
relation of the electrons and a subsequent spin-mixing within both dispersion branches. For a QPC
geometry this results in distinct features in the linear conductance.

In order to calculate the effect of SOI on the physics of a QPC we add an additional (Rashba) SOI term
to the Hamiltonian of our QPC model (Sec. 3.3.1). This provides the framework for a systematic study
of transport in inhomogeneous 1D systems where both SOI and electron-electron interactions (EEI) are
relevant. Importantly, we define an energy scale R that describes the strength of SOI in a parabolic QPC
geometry (see Eq. (3.1)) in terms of the potential curvature Ωx, the effective mass m and a parameter
α describing the strength of SOI in the bulk. We argue that experimentally accessible values of R are
sufficient to cause detectable modulations of the linear conductance in both electron (R. 0.4) and hole
systems (R&1). We investigate the evolution of the first step’s shape with increasing magnetic field ~B at
finite ~BSOI for different φ, both in the presence and absence of EEI. The former provides crucial intuition
about the general effect of SOI in inhomogeneous 1D system, the latter reveals distinctive conductance
features, resulting from the interplay between SOI and EEI, which predicts the outcome of future QPC
experiments; most notably, this includes a double step in the linear conductance for φ=π/2 at finite EEI,
which hardly shows any dependence on magnetic field (unlike the usual linear Zeeman splitting).
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Effect of Spin-Orbit Interactions on the 0.7 Anomaly in Quantum Point Contacts

Olga Goulko,1,2 Florian Bauer,1 Jan Heyder,1 and Jan von Delft1
1Physics Department, Arnold Sommerfeld Center for Theoretical Physics, and Center for NanoScience,

Ludwig-Maximilians-Universität, Theresienstraße 37, 80333 Munich, Germany
2Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
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We study how the conductance of a quantum point contact is affected by spin-orbit interactions, for
systems at zero temperature both with and without electron-electron interactions. In the presence of
spin-orbit coupling, tuning the strength and direction of an external magnetic field can change the
dispersion relation and hence the local density of states in the point contact region. This modifies the effect
of electron-electron interactions, implying striking changes in the shape of the 0.7-anomaly and introducing
additional distinctive features in the first conductance step.

DOI: 10.1103/PhysRevLett.113.266402 PACS numbers: 71.70.Ej, 73.40.-c

Spin-orbit interactions (SOI) play an important role
in a variety of fields within mesoscopic physics, such as
spintronics and topological quantum systems. In this Letter
we study the effects of SOI on the conductance of a
quantum point contact (QPC), a one-dimensional constric-
tion between two reservoirs [1,2]. The linear conductance
G of a QPC is quantized in multiples of GQ ¼ 2e2=h,
showing the famous staircase as a function of gate voltage.
In addition, at the onset of the first plateau, measured
curves show a shoulderlike structure near 0.7GQ [3]. In this
regime QPCs exhibit anomalous behavior in the electrical
and thermal conductance, noise, and thermopower [3–11].
The microscopic origin of this 0.7-anomaly has been the
subject of a long debate [12–18]. It has recently been
attributed to a strong enhancement of the effects of
electron-electron interactions (EEI) by a smeared van
Hove singularity in the local density of states (LDOS)
at the bottom of the lowest QPC subband [15,18]. While
this explains the 0.7-anomaly without evoking SOI, the
presence of SOI can change the dispersion relation and
hence the LDOS, thus strongly affecting the shape of the
0.7-anomaly. Previous studies of SOI in QPCs exist
[19–23], but not with the present emphasis on their inter-
play with the QPC barrier shape and EEI, which are crucial
for understanding the effect of SOI on the 0.7-anomaly.
Setup.—We consider a heterostructure forming a two-

dimensional electron system (2DES) in the xy plane. Gate
voltages are used to define a smooth, symmetric potential
which splits the 2DES into two leads, connected by a short,
one-dimensional channel along the x axis: the QPC [1,2].
The transition between the leads and the QPC is adiabatic.
We also assume the confining potential in the transverse
direction to be so steep that the subband spacing is much
larger than all other energy scales relevant for transport, in
particular those related to the magnetic field and SOI, and
consider only transport in the first subband, corresponding
to the lowest transverse mode. This can be described by a
one-dimensional model with a smooth potential barrier and

local EEI [18]. The magnetic field B is assumed to be in the
xy plane, acting as a pure Zeeman field, without orbital
effects.
A moving electron in an electric field can experience an

effective magnetic field BSOI proportional to its momentum
ℏk. Depending on the origin of the electric field one
distinguishes between Rashba and Dresselhaus terms, the
former resulting from the gradient of the external potential,
and the latter from the asymmetry of the ionic lattice [24].
To be able to rotate B through any angle φ w.r.t. BSOI
we require that BSOI also lies in the xy plane. Without loss of
generality (see the Supplemental Material [25]), we choose
the y axis to be parallel toBSOI, such that the SOI contribution
to the Hamiltonian is −ασyk, where α characterizes the
strength of the (Rashba) SOI and σy is a Pauli matrix [26].
We only consider the leading SOI contribution proportional
to k and choose the spin quantization direction along B.
Without SOI, the dispersion relation ℏ2k2=2m of a

homogeneous one-dimensional model with effective
mass m splits in the presence of a Zeeman field into
two identical branches offset in energy by �B=2. On the
other hand, without a Zeeman field, the momentum-
dependent SOI splits the dispersion in k direction and also
yields a negative spin-independent energy offset of mag-
nitude ΔESOI ¼ α2m=2ℏ2. In the following, we shift the
energy origin by −ΔESOI and quote all energies w.r.t. the
new origin. If both B and BSOI are nonzero, their interplay
depends on φ, as illustrated in Fig. 1(a1)–(a3). In (a1),
where the fields are parallel (φ ¼ 0), the energy offsets
simply add, while for nonparallel fields a spin mixing
occurs, resulting in an avoided crossing [27]. For orthogo-
nal fields (φ ¼ π=2), the lower dispersion branch exhibits
either one broader minimum at k ¼ 0 if B ≥ 4ESOI, or two
minima at finite k and a maximum at k ¼ 0 otherwise. The
latter case is shown in Fig. 1(a2)–(a3).
Model.—For the lowest subband we model the QPC by a

symmetric potential barrier which is quadratic around its
maximum,
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VðxÞ≃ Vg þ μ − Cbx2=2; ð1Þ
and vanishes smoothly at the boundary of the QPC. The
barrier height Vg, measured w.r.t. the chemical potential μ,
mimics the role of the gate voltage. If Vg is swept
downwards through zero, the conductance g ¼ G=GQ
increases from 0 to 1. For B ¼ 0 this occurs in a single
step whose width is given by the energy scale
Ωx ¼

ffiffiffiffiffiffiffiffiffiffiffi
CbCd

p
, which is set by the fixed curvature of the

barrier Cb and the curvature of the bulk dispersion at its
minimum Cd [28]. For φ ¼ 0, Cd ¼ ℏ2=m.
For numerical purposes, we discretize real space and

obtain an infinite tight-binding chain with spacing a, taking
B and α constant throughout the chain. The noninteracting
Hamiltonian is

H0¼
X

j;σ;σ0
d†jσ

�

ðVjþ2τÞδσσ0 −
1

2
ðσ ·BÞσσ0

�

djσ0

þ
X

j;σ;σ0

�

d†jþ1σ

�

−τ0δσσ0 þ
iα
2
ðσyÞσσ0

�

djσ0 þH:c:

�

; ð2Þ

where djσ annihilates an electron with spin σ ∈ f↑;↓g≡
fþ;−g at site j. The effective mass of the charge carrier is
m ¼ ℏ2=2τa2 with τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ20 þ α2

p
[29]. We keep τ fixed

when varying α. The QPC barrier potential Vj ¼ VðjaÞ

(and later EEI) are nonzero only in a region of length
L ¼ 2Na centered around j ¼ 0, representing the QPC. All
results shown are for N ¼ 50. We use the smooth function
VðxÞ ¼ ðVg þ μÞ expf−ð2x=LÞ2=ð1 − ½2x=L�2Þg for the
potential, with μ ¼ 2τ. Sites j < −N and j > N represent
two leads with bandwidth 4τ. The strength of SOI in a QPC
is determined by the dimensionless parameter

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔESOI

Ωx

s

¼ α

ℏ

ffiffiffiffiffiffiffiffi
m
2Ωx

r

: ð3Þ
SOI strengths of up to α≃ 10−11 eVm have been reported in
the literature [19,27,30,31]. Typical values of Ωx ≃ 1 meV
andm≃ 0.05me for InGaAs yield R≃ 0.2. A stronger spin-
orbit effect due to an enhancement of the anisotropic Lande
g-factor is reported in Ref. [32]. Hole quantum wires have
been used to observe the spin-orbit gap [27] and the
anisotropic Zeeman splitting [33]. For hole QPCs, the larger
effective hole mass and the resulting smaller Ωx imply larger
values of R. Here we consider both small and large R, where
R≲ 0.4 is a realistic scale for electron systems and R≳ 1 is
accessible using hole systems [34], for QPCs with small
barrier curvature Cb and hence small Ωx.
System without EEI.—Many insights on the interplay

between SOI and geometry can already be gained from the
modelwithoutEEI, as shown in the left part (a1)–(d3) ofFig. 1.

FIG. 1 (color online). Effect of SOI on the model without EEI, left columns (a1)–(d3), and with EEI, right column (e1)–(e4). The left
columns (a1)–(d1), (a2)–(d2), and (a3)–(d3) represent different combinations of SOI strength R and angle φ between B and BSOI. They
highlight the correspondence between the dispersion relation ωðkÞ in a homogeneous system (a1)–(a3), the LDOS for fixed ω ¼ μ
as function of Vg on the central site of a QPC with potential barrier (b1)–(b3), the conductances of the two QPC transmission channels
(c1)–(c3), and the total conductance of the QPC for several equally spaced magnetic field values between B ¼ 0 and B ¼ 0.88Ωx
(d1)–(d3). In (a1)–(c3), the magnetic field is fixed at B ¼ 0.88Ωx, with dashed lines showing the case B ¼ 0 for comparison. The line
colors in (a1)–(a3) quantify the contribution of each spin state (red ¼ ↑, blue ¼ ↓) in the dispersion branches, to illustrate the spin
mixing at φ ≠ 0. The right column (e1)–(e4) shows the total conductance forU > 0, with φ ¼ π=2 and several combinations of R and B
[the latter were chosen smaller than in (d1)–(d3), since EEI enhance the g-factor [18]].

PRL 113, 266402 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2014

266402-2

118 7. The effect of spin-orbit interactions on the 0.7 anomaly in quantum point contacts



We discuss exact results for two physical quantities, whichwe
also relate to the bulk dispersion relation: the linear conduct-
anceg and theLDOSAσ

j ðωÞ ¼ −ImGσσ
jj ðωÞ=πa,whereGσσ0

jj0 is
the retarded propagator from site j0 with spin σ0 to site j with
spin σ. Due to SOI, spin is not conserved for φ ≠ 0 and hence
Gσσ0
jj is not spin-diagonal. However at j ¼ 0 its off-diagonal

elements turn out to be negligible compared to the diagonal
ones. Thus it is meaningful to analyze the LDOS at j ¼ 0 for
given σ. The linear conductance at zero temperature can be
calculated via g ¼ g1 þ g2 ∝ Trðt†tÞ [35], where tσσ

0 ¼
Gσσ0
−N;NðμÞ is the transmission matrix of the QPC and Trðt†tÞ

equals the sumof the eigenvalues of t†t. The spin structure of t
depends on N, but the eigenvalues of t†t, which yield the
conductances g1 and g2 of the two transmission channels,
do not.
For φ ¼ 0 (Fig. 1, left column) spin is conserved and

SOI have no influence on the LDOS and the conductance.
This case is analogous to the one discussed in Ref. [18].
The bulk [i.e., VðxÞ ¼ 0] LDOS,

Aσ
bulkðωÞ ∝

∂k
∂ω

�
�
�
�
σ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
2ℏ2ðωþ σB=2Þ

r

; ð4Þ

has a van Hove singularity, diverging at the minimum
ω ¼ −σB=2 of the corresponding dispersion branch, where
the electron velocity vanishes. In the QPC, the x-dependent
LDOS is shifted in energy by the barrier potential VðxÞ.
Since the barrier breaks translational invariance, the van
Hove singularity is smeared out on a scale set by Ωx [15],
forming a ridgelike structure, called van Hove ridge
in [18]. The LDOS height becomes finite, of order
O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðℏ2ΩxÞ

p
), determined by Ωx and the curvature

ℏ2=m of the bulk dispersion. At a given position x, the
LDOS maximum occurs at an energy which isOðΩxÞ larger
than the corresponding potential energy VðxÞ−σB=2. Here
andhenceforthwequote theLDOSas a functionofVg at fixed
ω ¼ μ. Figure 1(b1) shows it at the central site j ¼ 0; the
spatially resolved LDOS is shown in Fig. 1 of the
Supplemental Material [25]. The LDOS has the same shape
for both spins. Its structure is clearly inherited from that of
the dispersion in (a1), with peak energies aligned with the
dispersion minima up to the shift of OðΩxÞ. Similarly, the
conductances g1ðVgÞ and g2ðVgÞ of the two channels in (c1)
showstepsof the sameshapewithwidths∝ Ωx [28], split byB
and aligned with the dispersion minima. This causes the total
conductance gðVgÞ in (d1) to split symmetrically into a double
step with increasing field, just as for a QPC without SOI.
Next consider the case φ¼π=2 shown in Fig. 1(a2)–(d3).

Spin mixing leads to an avoided crossing with spin gap ∝ B,
which splits the dispersion into an upper branch with a
narrow minimum and a lower branch with two minima and
one maximum (for B < 4ESOI). Note that bulk LDOS
structures separated in energy by less than Ωx are not
resolved within the QPC. In the following, we give an
intuitive explanation of how the dispersion minima relate to
the properties of the LDOS peaks and the conductance steps.

The curvatures of the lower and upper dispersion branches
are, respectively, smaller or larger than in (a1), Cd1 < Cd <
Cd2 (loosely speaking,Cd1 is the effective curvature obtained
by smearing the double dispersionminimumbyΩx, yielding a
single minimum). Because the barrier curvature Cb is fixed,
this results in two modified energy scales Ωxi ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
CbCdi

p
,

with Ωx1 < Ωx < Ωx2, which determine the LDOS peak
heights and widths, as well as the conductance step widths.
Consequently, in (b2) the LDOS peak for A↓

0 is lower and

wider than forA↑
0 . Likewise, in (c2) the conductance step for

g2ðVgÞ iswider than for g1ðVgÞ, causinggðVgÞ in (d2) to show
a strikingasymmetry for itsB-induced evolution froma single
to a double step. This asymmetry is reminiscent of but
unrelated to that known for the 0.7-anomaly—the latter is
driven by EEI, as discussed below—but should be observable
in higher conductance steps, where EEI are weaker.
For R≳ 1 more structures emerge, see Fig. 1(a3)–(b3).

Spin-mixing produces an additional “emergent” peak inA↓
0

(b3) and an additional step in g2ðVgÞ (c3) near Vg ≃ 0.
Between the two steps, the transmission g2ðVgÞ has a
minimum, corresponding to the spin gap, and the total
conductance gðVgÞ in (d3) likewise develops a spin gap
minimum with increasing B. These features can be under-
stood by looking at the spin composition of the two bulk
dispersion branches, depicted quantitatively through the
colors in Fig. 1(a1)–(a3). At k ¼ 0 the SOI field is zero
and we have pure spin-states w.r.t. the chosen quantization.
At larger jkj the SOI field increases, leading to spin-mixing.
In fact in the limit k → ∞ we find a fully mixed state
with equal up and down contributions. Since the upper
branch minimum at k ¼ 0 is in a pure spin-down state, it
corresponds to a peak only in A↓. But the minima of the
lower branch are shifted away from k ¼ 0 and have a spin-
down share besides the dominant spin-up contribution. This
causes the emergent peak in A↓ at low frequencies, whose
height increases with R, due to the stronger spin-mixing.
Interacting system.—We now include EEI via Hint ¼P
jUjd

†
j↑dj↑d

†
j↓dj↓. The on-site interaction Uj ¼ UðjaÞ

is switched on smoothly over the QPC according to
UðxÞ ¼ U expf−ð2x=LÞ6=½1 − ð2x=LÞ2�g. We set Uj ¼ 0
for jjj > N, because outside the QPC region transverse
confinement is weak or absent, and screening strong
[18,36]. We calculate the conductance at zero temperature
with the functional renormalization group technique in
the one-particle irreducible version [29,37–40] using the
coupled ladder approximation, which was presented in
Ref. [36] for a model without SOI. Generalizations neces-
sary in the presence of SOI are described in the
Supplemental Material [25].
The B dependence of the conductance for φ ¼ π=2 and

differentR in the presence ofEEI is shown in the right column
(e1)–(e4) of Fig. 1 and the corresponding transconductance
dg=dVg in Fig. 2(b)–(f). The case R ¼ 0 [see Figs. 1(e1)
and 2(a)–(c)], which is equivalent to φ ¼ 0, has been
discussed in Refs. [18,36]: once a finite magnetic field breaks
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the spin degeneracy a surplus of spin-up electrons develops in
the QPC, so that spin-down electrons experience both a
Zeeman and a Coulomb energy cost. This Stoner-type effect
depends on the LDOS at μ and hence is strongest when the
apex of the van Hove ridge touches the chemical potential,
i.e., when Vg is within≃0.5Ωx below 0 [18]. This causes an
asymmetry w.r.t.Vg ¼ 0 in theB-induced evolution of gðVgÞ
from a single to a double step in Fig. 1(e1), in contrast to the
case without EEI in Fig. 1(d1). This asymmetry is character-
istic of the 0.7-anomaly. The corresponding transconductance
in Fig. 2(b)–(c) shows a double peakwhose spacing increases
roughly linearly with B (with an EEI-enhanced g-factor),
as seen in numerous experiments [3,10,18].
The Stoner-type Coulomb enhancement of a field-

induced population imbalance is amplified when R ≠ 0,
as shown in Figs. 1(e2)–(e4) and 2(d)–(f), because of the
height imbalance for the spin-up and spin-down LDOS
peaks caused by SOI. Correspondingly, with increasing R
the double-step structure in the conductance becomes more
pronounced, the second substep becoming much broader
than the first [see Figs. 1(e2)–(e3)] and the transconduct-
ance in Fig. 2(d)–(e) shows a weakening of the lower-Vg

peak with increasing R. This reflects the increasing
curvature Cd2 of the upper dispersion branch (and hence
larger step width Ωx2). For R≳ 1, additional features,
inherited from the noninteracting case, emerge for gðVgÞ
in Fig. 1(e4): a local maximum (marked by an arrow),
followed by a spin gap minimum at lower Vg. For the
transconductance, Fig. 2(f), these features show up as a
strong secondary peak around Vg=Ωx ≃ −1 (marked by an
arrow), followed by a region of negative transconductance
(black). EEI also induce a secondary 0.7-type double-step
feature in gðVgÞ for Vg=Ωx between 0 and −1, Fig. 1(e4),
which is similar to, but narrower than that for R ¼ 0. It
originates from themainLDOSpeak inA↑

0 and the emergent

peak in A↓
0 . Unlike the regular A↓

0 peak aligned with the
upper dispersion branch, whose Vg position is governed by

the magnetic field, the emergent A↓
0 peak occurs, due to

strong spin-mixing, at nearlyB-independent energy close to
theA↑

0 peak. As a result, the two transconductance maxima
in Fig. 2(f) remain parallel with increasing B, in strong
contrast to the situation for R < 1 in Fig. 2(c)–(e).

Figures 2(g)–(l) show, for two fixed values of B, how the
transconductance evolves as jφj is increased from 0 to π=2,
thus switching on the effects of SOI. The decrease in peak
spacing with increasing jφj in Fig. 2(l) strikingly reflects
the increasing importance of spin mixing. The strong angle
dependence predicted here is a promising candidate for an
experimental test of our theory [41].
At small nonzero temperature, inelastic scattering

causes a Fermi-liquid-type reduction of the conductance,
gðT; VgÞ=gð0; VgÞ ¼ 1 − ðT=T�Þ2 for T ≪ T�, with a
Vg-dependent low-energy scale T�ðVgÞ. We expect its
magnitude to be similar to the case without SOI, typically

≃1 K]18 ]. Thus, for T ≲ 0.1 K, the T-dependence should
be very weak and the T ¼ 0 predictions applicable.
In summary, we have shown that in the presence of SOI,

the changes in the dispersion induced by the interplay of B
and BSOI can strongly affect the shape of the 0.7-anomaly.
In the absence of EEI, SOI cause an anisotropic response of
the spin splitting to the applied in-plane magnetic field.
With EEI, the 0.7-anomaly also develops an anisotropic
response to magnetic field, and if SOI are strong, the
conductance develops additional features due to the inter-
play of EEI and SOI: for φ ¼ π=2 these include a field-
induced double step in the conductance that does not split
linearly with B, followed by a spin gap minimum. The
dependence of the conductance on the angle between B and
BSOI is already apparent for R≃ 0.4, which is accessible in
experiments with electron QPCs. Hole QPCs with R≳ 1
would allow access to regimes with strong SOI.
An experimental verification of our predictions would

highlight the influence of LDOS features on the conduct-
ance and thus lend further support to the van Hove scenario
of Ref. [18] as microscopic explanation for the 0.7-
anomaly. More generally, our work lays out a conceptual
framework for analyzing the interplay of SOI, EEI, and

FIG. 2 (color online). Functional renormalization group results
for the conductance g and transconductance dg=dVg, for U ¼
3.36

ffiffiffiffiffiffiffiffi
Ωxτ

p
at zero temperature. Top row: 3d or color-scale plots of

the conductance (a) and the transconductance (b) and (c) as
functions of Vg and B, for R ¼ 0. Three bottom rows (d)–(l):
Color-scale plots of the transconductance for three choices of R
(three columns), plotted as a function of Vg and either B for fixed
φ ¼ π=2 (second row) or of φ for fixed B ¼ 0.18Ωx (third row)
and B ¼ 0.88Ωx (fourth row).
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barrier shape in quasi-1D geometries: examine how SOI
and barrier shape modify the (bare) LDOS near μ—
whenever the LDOS is large, EEI effects are strong. We
expect this to be relevant for the more complicated hybrid
superconductor-semiconductor junctions currently studied
by seekers of Majorana fermions [42–44]. A proper
analysis of such systems would require a generalization
of our approach to include superconducting effects.
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Supplemental Material to “The effect of spin-orbit interactions on the 0.7-anomaly in
quantum point contacts”

I. GEOMETRIC DETAILS OF THE MODEL

In our model the 2DES is in the xy-plane and the
QPC is directed along the x-axis (this is the direction
of motion of the charge carrier). For the directions of the
B and BSOI fields we impose the following restrictions.
To avoid orbital effects we require the magnetic field B
to be in the xy-plane of the 2DES. We also want to be
able to rotate B through any angle ϕ w.r.t. BSOI, which
implies that BSOI also must lie in the xy-plane. With
the latter condition, the BSOI field can be either parallel
to the direction of motion of the electrons (pure Dres-
selhaus contribution), or orthogonal to it (pure Rashba
contribution), or a combination of the two. But for our
mathematical model, the end results depend only on the
relative angle ϕ between B and BSOI. This means that
we can choose the direction of BSOI without loss of gen-
erality. We choose BSOI to be parallel to the y-axis, c.f.
Eq. (2) of the main text.

II. THE SPATIALLY RESOLVED LDOS

In Fig. 1(b1-b3) of the main text we show the LDOS at
fixed µ as a function of Vg on the central site of the QPC.
The behavior at the center captures all relevant features.
For completeness we include here in Fig. 1 the spatially
resolved plots of the LDOS Aσj for both spin states and
the same parameter values as in Fig. 1 of the main text.

III. SECOND ORDER FRG

The functional Renormalization Group (fRG) method
is an improved perturbation technique [1–5]. Rather than
expanding the Green’s function in orders of the coupling
and truncating the expansion, fRG introduces a flow pa-
rameter Λ into the free Green’s function G0. At zero
temperature we define

G0(iω)→ θ(|ω| − Λ)G0(iω) ≡ GΛ
0 (iω), (1)

where θ(ω) is the Heaviside step function. At the be-
ginning of the flow, setting Λ =∞ yields GΛ

0 = 0, which
means that the only contribution to the full Green’s func-
tion comes from the bare vertex. At the end of the flow,
Λ = 0 recovers the full model. The technical details of
the one-particle irreducible version of the fRG employed
in this work are presented in depth in [6]. We use the
static approximation at zero temperature, which will be
described below in Sec. III B. Since [6] does not deal with
spin-orbit interactions, no spin-mixing is possible, which
introduces additional symmetries into the system. In our
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FIG. 1. Spatially resolved plots of the noninteracting LDOS
Aσ
j at fixed ω = µ, plotted as a function of gate voltage Vg

and site index j, for B = 0.88Ωx and for spin σ =↑ (top
row) and σ =↓ (bottom row). Left column: R = 0.84, ϕ = 0.
Middle column: R = 0.84, ϕ = π/2. Right column: R = 1.26,
ϕ = π/2. All results shown are for N = 50.

case these symmetries are no longer present. In this Sup-
plement we focus on the generalizations necessary to ac-
count for such spin-mixing terms.

The second-order fRG flow equations in the one-
particle irreducible version and in the static approxima-
tion are given by
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2

d

dΛ
γΛ

1 (q′1, q1) =
1

2π

∑

ω=±Λ

∑

q′2,q2

G̃Λ
q2,q

′
2
(iω)γΛ

2 (q′2, q
′
1; q2, q1), (2)

d

dΛ
γΛ

2 =
d

dΛ
(γΛ
p + γΛ

x + γΛ
d ), where (3)

d

dΛ
γΛ
p (q′1, q

′
2; q1, q2) =

1

2π

∑

ω=±Λ

∑

q′3,q3,q
′
4,q4

1

2
γΛ

2 (q′1, q
′
2; q3, q4)G̃Λ

q3,q
′
3
(iω)G̃Λ

q4,q
′
4
(−iω)γΛ

2 (q′3, q
′
4; q1, q2), (4)

d

dΛ
γΛ
x (q′1, q

′
2; q1, q2) =

1

2π

∑

ω=±Λ

∑

q′3,q3,q
′
4,q4

γΛ
2 (q′1, q

′
4; q3, q2)G̃Λ

q3,q
′
3
(iω)G̃Λ

q4,q
′
4
(iω)γΛ

2 (q′3, q
′
2; q1, q4), (5)

d

dΛ
γΛ
d (q′1, q

′
2; q1, q2) = − 1

2π

∑

ω=±Λ

∑

q′3,q3,q
′
4,q4

γΛ
2 (q′1, q

′
3; q1, q4)G̃Λ

q4,q
′
4
(iω)G̃Λ

q3,q
′
3
(iω)γΛ

2 (q′4, q
′
2; q3, q2), (6)

where −γΛ
1 is the self-energy and γΛ

2 is the two-particle
irreducible vertex. All higher order vertices γn≥3 have

been set to zero. Here G̃Λ is defined as

G̃Λ =
[
G−1

0 + γΛ
1

]−1
=

1

iω −H0 + γΛ
1

, (7)

where H0 is the (known) Hamiltonian of the non-
interacting system. The quantum numbers qi encode the
spin and spatial degrees of freedom q ≡ (σ, j). The flow of
γΛ

2 was split into three contributions called the particle-
particle channel (P ), and the exchange (X) and direct
(D) contributions to the particle-hole channel, respec-
tively. This will allow us to simplify the flow equations
later.

For a derivation of Eqs. (2-6) see for instance [4, 6, 7].

A. Initial condition

For the numerical treatment we cannot set the initial
value of the flow parameter Λinit to infinity, but it is
sufficient that it is much larger than all relevant energy
scales. We have the following initial condition at Λinit

[4, 6, 7],

γΛinit
2 (q1, q2, q3, q4) = vq1,q2,q3,q4 , (8)

γΛinit
1 (q1, q2) = −1

2

∑

q

vq1,q,q2,q, (9)

where the vertex vq1,q2,q3,q4 is site diagonal and at site
j ≡ j1 = j2 = j3 = j4 is given by

vq1,q2,q3,q4 = Ujδσ1σ̄2 (δσ1σ3δσ2σ4 − δσ1σ4δσ2σ3) . (10)

This means that the spins q1 and q2, as well as the spins
q3 and q4 must be opposite. This leaves two possibilities:
σ1 = σ3 = σ̄2 = σ̄4 that has positive sign, and σ1 = σ4 =
σ̄2 = σ̄3 that has negative sign. Inserting this into the
initial condition for γΛ

1 yields

γΛinit
1 (q′, q) = −(Uj/2)δσ′σ. (11)

B. Approximations

We use the following approximations, see [7] and ref-
erences thereof. Firstly, we neglect the frequency depen-
dence of γΛ

2 . This is called the static approximation and
is known to give good results at T = 0 [6]. Given the
structure of the flow equation for γΛ

2 above, it is natural
to divide the flowing vertex into four parts as follows:

γΛ
2 = v + γΛ

p + γΛ
x + γΛ

d . (12)

Here v is shorthand for the bare vertex, and the flows
of γΛ

p , γΛ
x and γΛ

d were given above. The initial value

for γΛ
2 is simply the bare vertex. If we insert the bare

vertex into the flow equations for the components of γΛ
2

we observe that some of its symmetries remain preserved
in the derivative on the left hand side. For instance,
for γΛ

p we see that the first two and the second two site
indices must be identical and also that the first and the
second pair of spin indices must be opposite, respectively.
Similarly, for γΛ

x we see that the first and fourth site
index, as well as the the second and third site index must
be equal. For γΛ

d the first and the third, as well as the
second and the fourth site indices are equal. There is no
restriction on the any of the spin indices for either γΛ

x or
γΛ
d .
The next iteration would break the remaining symme-

tries, since all three channels contribute to the derivative
of γΛ

2 and then back-feed into the differential equations
for each channel. If instead we choose to only back-
feed each channel into its own differential equation, we
can preserve the symmetries described above. This im-
mensely simplifies the treatment of the equations. By
doing so, we only neglect contributions of order v3 and
higher, which justifies their neglect as long as Uj is not
too large. Altogether we obtain the following contribu-
tions:

Pσσ̄ji := γΛ
p (jσ, jσ̄; iσ, iσ̄) (13)

P̄σσ̄ji := γΛ
p (jσ, jσ̄; iσ̄, iσ) (14)

Xσ1σ2σ3σ4
ji := γΛ

x (jσ1, iσ2; iσ3, jσ4) (15)

Dσ1σ2σ3σ4
ji := γΛ

d (jσ1, iσ2; jσ3, iσ4) (16)
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Note that some elements of a channel can also satisfy
the symmetries of another channel. So for instance the
diagonal element Pσσ̄jj has the same symmetries as the di-

agonal elements Xσσ̄σσ̄
jj and Dσσ̄σσ̄

jj . If we back-feed such
elements too we preserve the symmetries in each channel,
but obtain a more accurate approximation. Therefore, in
each of the three flow equations for the channels of γΛ

2

we replace γΛ
2 on the right hand side by the appropri-

ate channels plus the site diagonal contributions of the
other channels that obey the same symmetries. The ini-
tial conditions for the three channels follow immediately
from (12): γΛinit

p = γΛinit
x = γΛinit

d = 0. Of course, for the

differential equation for γΛ
1 we need the full γΛ

2 which is
the sum of all three channels and the bare vertex.

C. Symmetries

Due to the hermiticity of the Hamiltonian the following
relation holds for the Green’s function

G(iω) = G†(−iω)⇔ Gij(iω) = G∗ji(−iω). (17)

We assume that this relation also holds for G̃Λ. If γΛ
1

is hermitian then the assumption is obviously justified.
Numerical results indeed confirm that γΛ

1 is hermitian.
We also have the following symmetries of γ2:

γ2(q1, q2, q3, q4) = −γ2(q2, q1, q3, q4) (18)

= −γ2(q1, q2, q4, q3) (19)

= γ2(q2, q1, q4, q3) (20)

This follows directly from the equation defining the two-
particle vertex, see e.g. [4]. Again we assume that these
relations hold also for γΛ

2 and moreover for each of the
separate channels. Their consistency with the numeri-
cal results will be demonstrated below. Altogether this
yields the following symmetry relations for the different
channels:

Pσσ̄ji = P σ̄σji = −P̄σσ̄ji (21)

Dσ1σ2σ3σ4
ji = Dσ2σ1σ4σ3

ij = −Xσ1σ2σ4σ3
ji (22)

Xσ1σ2σ3σ4
ji = Xσ2σ1σ4σ3

ij = −Dσ1σ2σ4σ3
ji (23)

We observe that P ↑↓ = P ↓↑ and hence the spin indices for
P will be dropped from now on, leaving only the site in-
dex. The alternative configuration P̄ follows completely
from P and does not need to be kept track of separately.
Same applies to X and D which completely define each
other. We choose to work with D. There are various
symmetries of D but there is no restriction on the spin
index. This means that there are 24 = 16 different sub-
matrices corresponding to 16 different spin configurations
of D. We choose to arrange them as follows

Dσ1σ2σ3σ4 =




↑↑↑↑ ↑↑↑↓ ↑↓↑↑ ↑↓↑↓
↑↑↓↑ ↑↑↓↓ ↑↓↓↑ ↑↓↓↓
↓↑↑↑ ↓↑↑↓ ↓↓↑↑ ↓↓↑↓
↓↑↓↑ ↓↑↓↓ ↓↓↓↑ ↓↓↓↓


 (24)

Note that the first and third spin index are fixed along
a row and correspondingly the second and fourth index
are fixed along one column. This form of the matrix
will prove convenient later. From the symmetries of D
it follows that this matrix is symmetric. Numerically we
also confirm the following relations between the different
blocks, schematically

As B B∗ C

BT Ds Eh F

(B∗)T ETh D∗s F ∗

CT FT (F ∗)T Gs

where identical symbols denote equal blocks and symmet-
ric (hermitian) submatrices are labeled by the subscript
s (h). There are only seven different blocks in total. Nu-
merically we also show that the corner submatrices As,
Gs, C and CT are real. The other submatrices are com-
plex in general. For a hermitian γΛ

1 , the first flow equa-
tion implies that γΛ

2 (q′2, q
′
1; q2, q1) = γΛ∗

2 (q2, q1; q′2, q
′
1).

Translated to the separate channels this confirms that
P must indeed be hermitian, since Pij = P ∗ji, as well as
all the remaining relations between the different subma-
trices of D.
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D. Flow equation for the P-channel

Restricting γΛ
p according to the symmetries of the P -channel we obtain the following simplified equation for the

derivative of P :

d

dΛ
Pji =

d

dΛ
γΛ
p (jσ, jσ̄; iσ, iσ̄) (25)

=
1

2π

∑

ω=±Λ

∑

k,l

1

2
·
[
γΛ

2 (jσ, jσ̄; kσ, kσ̄)G̃Λσσ
kl (iω)G̃Λσ̄σ̄

kl (−iω)γΛ
2 (lσ, lσ̄; iσ, iσ̄)

+γΛ
2 (jσ, jσ̄; kσ̄, kσ)G̃Λσ̄σ̄

kl (iω)G̃Λσσ
kl (−iω)γΛ

2 (lσ̄, lσ; iσ, iσ̄)

+γΛ
2 (jσ, jσ̄; kσ, kσ̄)G̃Λσσ̄

kl (iω)G̃Λσ̄σ
kl (−iω)γΛ

2 (lσ̄, lσ; iσ, iσ̄)

+γΛ
2 (jσ, jσ̄; kσ̄, kσ)G̃Λσ̄σ

kl (iω)G̃Λσσ̄
kl (−iω)γΛ

2 (lσ, lσ̄; iσ, iσ̄)
]

(26)

Note that the first two terms and the last two terms in the sum are equivalent after summation over ω, due to the
symmetry relations (19) and (20). We can thus keep one of the terms respectively and cancel the factor of 1/2. With
the definitions

Π
pΛ(1)
kl =

1

2π

∑

ω=±Λ

G̃Λσ̄σ̄
kl (iω)G̃Λσσ

kl (−iω) (27)

Π
pΛ(2)
kl =

1

2π

∑

ω=±Λ

G̃Λσ̄σ
kl (iω)G̃Λσσ̄

kl (−iω) (28)

the flow equation can be written more succinctly as

d

dΛ
Pji =

∑

kl

[
γΛ

2 (jσ, jσ̄; kσ, kσ̄)Π
pΛ(1)
kl γΛ

2 (lσ, lσ̄; iσ, iσ̄) + γΛ
2 (jσ, jσ̄; kσ, kσ̄)Π

pΛ(2)
kl γΛ

2 (lσ̄, lσ; iσ, iσ̄)
]

(29)

=
∑

kl

γΛ
2 (jσ, jσ̄; kσ, kσ̄)

[
Π
pΛ(1)
kl −Π

pΛ(2)
kl

]
γΛ

2 (lσ, lσ̄; iσ, iσ̄), (30)

where in the last step we used symmetry relation (19). If we now define

ΠpΛ
kl ≡ Π

pΛ(1)
kl −Π

pΛ(2)
kl =

1

2π

∑

ω=±Λ

[
G̃Λσ̄σ̄
kl (iω)G̃Λσσ

kl (−iω)− G̃Λσ̄σ
kl (iω)G̃Λσσ̄

kl (−iω)
]

(31)

we arrive at

d

dΛ
Pji = P̃jkΠpΛ

kl P̃li, (32)

where P̃ equals P plus the diagonal contributions from the other channels which have the same symmetries as P .
Explicitly we get

P̃jk = Pjk + δjk
(
Xσσ̄σσ̄
jj +Dσσ̄σσ̄

jj + Uj
)

= Pjk + δjk
(
−Dσσ̄σ̄σ

jj +Dσσ̄σσ̄
jj + Uj

)
(33)

Note also that the matrix ΠpΛ
kl is hermitian, due to the symmetry (17) of the Green’s function.

E. Flow equation for the D-channel

Restricting γΛ
d according to the symmetries of the D-channel we obtain the following simplified equation for the

derivative of D:

d

dΛ
Dσ1σ2σ3σ4
ji =

d

dΛ
γΛ
d (jσ1, iσ2; jσ3, iσ4) (34)

= − 1

2π

∑

ω=±Λ

∑

kl

∑

σ,σ′,σ′′,σ′′′

γΛ
2 (jσ1, kσ; jσ3, kσ

′)G̃Λσ′σ′′
kl (iω)G̃Λσ′′′σ

lk (iω)γΛ
2 (lσ′′, iσ2; lσ′′′, iσ4) (35)
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Observe that the summation goes over the second and fourth index of the first γΛ
2 matrix and over the first and third

index of the second γΛ
2 matrix, while the other indices remain fixed. If we want to recast this expression as a matrix

multiplication this indeed implies that the first and third spin index should be fixed along a row and the second and
fourth index along one column. This justifies the matrix scheme (24). If we arrange the spin configurations according
to this scheme we obtain the matrix equation

d

dΛ
Dσ1σ2σ3σ4
ji =

∑

kl

∑

σ,σ′,σ′′,σ′′′

γΛ
2 (jσ1, kσ; jσ3, kσ

′)ΠdΛσσ′′σ′σ′′′
kl γΛ

2 (lσ′′, iσ2; lσ′′′, iσ4) (36)

where

ΠdΛσσ′′σ′σ′′′
kl ≡ − 1

2π

∑

ω=±Λ

G̃Λσ′σ′′
kl (iω)G̃Λσ′′′σ

lk (iω). (37)

Note that the order of the spin indices on Π is not the same as on the Green’s functions. The symmetries from (24)
remain valid. With our approximation we get

d

dΛ
Dσ1σ2σ3σ4
ji = D̃σ1σσ3σ

′

jk Πdσσ′′σ′σ′′′
kl D̃σ′′σ2σ

′′′σ4

li (38)

where D̃ equals D plus the diagonal contributions from the other channels which have the same symmetries as D.
Explicitly we get

D̃σ1σ2σ3σ4

jk = Dσ1σ2σ3σ4

jk + δjk
(
Xσ1σ2σ3σ4
jj + (Pjj + Uj)δσ1σ̄2(δσ1σ3δσ2σ4 − δσ1σ4δσ2σ3)

)
(39)

= Dσ1σ2σ3σ4

jk + δjk
(
−Dσ1σ2σ4σ3

jj + (Pjj + Uj)δσ1σ̄2
(δσ1σ3

δσ2σ4
− δσ1σ4

δσ2σ3
)
)

(40)

Just like D itself, the matrix ΠdΛσσ′′σ′σ′′′
kl is symmetric, however in general not real. The structure of ΠdΛσσ′′σ′σ′′′

kl in
terms of its submatrices is the same as for D.

F. Flow equation for γ1

For the self-energy equation

d

dΛ
γΛ

1 (k′σ′, kσ) =
1

2π

∑

ω=±Λ

∑

k1,k2,σ1,σ2

G̃Λσ2σ1

k2k1
(iω)γΛ

2 (k1σ1, k
′σ′; k2σ2, kσ) (41)

we need the full γΛ
2 = v + γΛ

p + γΛ
x + γΛ

d . We abbreviate

Sσ2σ1

k2k1
=

1

2π

∑

ω=±Λ

G̃Λσ2σ1

k2k1
(iω). (42)

Taking into account the symmetry of each channel we obtain

d

dΛ
γΛ

1 (k′σ′, kσ) = δσσ′S σ̄σ̄kk′(Pk′k + δkk′Uk)− δσσ̄′S σ̄σkk′(Pk′k + δkk′Uk)

−
∑

σ1σ2

Sσ2σ1

k′k Dσ1σ
′σσ2

kk′ + δkk′
∑

l,σ1,σ2

Sσ2σ1

ll Dσ1σ
′σ2σ

lk . (43)

The first line accounts for the bare vertex and the P/P̄ -channel, while the second line contains the contribution from
the X-channel and then the D-channel. Note that the D-channel only influences the diagonal elements of γΛ

1 , due to
its symmetry.
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Chapter 8

Conductance Formula for Interacting
Fermi Systems in Keldysh Formalism

This section includes the paper “Conductance Formula for Interacting Fermi Systems in Keldysh Formalism”,
[Heyder et al. (2014)]. This work provides a detailed theoretical Keldysh description of the second order
perturbation theory (SOPT) strategy we applied in Bauer et al. (2013) in order to calculate the conduc-
tance of our one-dimensional (1D) quantum point contact (QPC) model (Sec. 3.3.1) at finite excitation
energies (finite temperature/source-drain voltage). Additionally, it presents a Keldysh-based analytical
derivation of the linear conductance formula for interacting Fermi systems formerly calculated in Mat-
subara formalism by Oguri (2001) (see Eq. (2.34)-(2.38) therein): We use the fRG flow equation of the
self energy (e.g. Eq. (3.21)) to express the derivative of the self energy w.r.t. the bias voltage in terms of
the two-particle vertex. In order to recover the result by Oguri we use a ward identity (corresponding
to particle conservation of the system Hamiltonian), which connects a vertex correction term and the
imaginary part of the self energy.

We apply this formula to calculate the linear conductance of our 1D model within second order
perturbation theory (SOPT, see also Sec. 3.3.2): Following the strategy of Oguri we truncate the vertex
functions (self energy and two-particle vertex) beyond second order in the bare interaction and plug
those into the linear conductance formula. This approach provides qualitative reliable results up to
interaction strength of U∼2.5/(Ωxlx) (compare Eq. (3.5)).

The calculation of the vertex functions in Keldysh formalism involves carrying out integrals along
the real frequency axis, where the integrand is given as product of bare Green’s functions. The structure
of those along the real axis depends on the choice of position space discretization of the continuous
1D model (see Eq. (3.16)). In Heyder et al. (2014) we discuss consequences of different discretization
schemes in detail: In case of a constant discretization (involving a site independent width of the model’s
energy band) the inhomogeneity of the CCR causes spatially confined bound states far above the po-
tential barrier. These must be treated with adequate care when carrying out the frequency integrals,
implying numerical evaluation of principal value integrals and convolutions of discrete and continuous
functions. In order to avoid the resulting high numerical effort we introduce a non-constant discretiza-
tion scheme, which narrows the energy band of the model in the vicinity of the CCR, restricting its
energy range there to values within its energy range in the leads.
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Conductance Formula for Interacting Fermi Systems in Keldysh Formalism

Jan Heyder, Florian Bauer, and Jan von Delft
Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience,

Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 München, Germany
(Dated: January 27, 2015)

We discuss various options for calculating the conductance through a central, interacting region
coupled to non-interacting fermionic leads in the Keldysh formalisms. Our starting point is the well-
known Meir-Wingreen formula for the current, whose derivative w.t.r. to the source-drain voltage
yields the conductance. We explore various ways of performing this derivative analytically. They all
exploit an exact flow equation from the function renormalization group (fRG), which expresses the
flow w.r.t. voltage of the one-particle vertex, i.e. the self-energy, in terms of the two-particle vertex.
One of these ways can be used to obtain a Keldysh-based derivation of a formula for the linear
conductance that has previously been obtained by Oguri in the Matsubara formalism. We apply
this formula to calculate the conductance for a model that has previously been shown to capture the
essential physics of a quantum point contact (QPC) in the regime of the 0.7 anomaly. The model
involves a tight-binding chain with a one-dimensional potential barrier and onsite interactions,
which we treat using second order perturbation theory (SOPT). We show that numerical costs can
be reduced significantly by using a non-uniform lattice spacing, chosen such that the occurence of
artificial bound states close to the upper band edge is avoided.

I. INTRODUCTION

Two cornerstones of the theoretical description of
transport through a mesoscopic system are the Landauer-
Büttiker1 and Meir-Wingreen2 formulas for the conduc-
tance. The Landauer-Büttiker formula describes the con-
ductance between two reservoirs connected by a central
region in the absence of interactions. The Meir-Wingreen
formula applies to the more general case that the cen-
tral region contains electron-electron interactions: it ex-
presses the current, in beautifully compact fashion, in
terms of the Fermi functions of the reservoirs, and the re-
tarded, advanced and Keldysh components of the Green’s
function for the central region.

To actually apply the Meir-Wingreen formula, these
Green’s functions have to be calculated explicitly, which
in general is a challenging task. Depending on the in-
tended application, a wide range of different theoretical
tools have been employed for this purpose. Much at-
tention has been lavished on the case of non-equilibrium
transport through a quantum dot described by a Kondo
or Anderson model, where the central interacting region
consists of just a single localized spin or a single electronic
level, see Refs. 3 and 4 for reviews. Here we are inter-
ested in the less well-studied case of systems, where the
physics of the interacting region cannot be described by
just a single site, but rather requires an extended mod-
elling, consisting of many sites.

We have recently used a model of this type in a pa-
per that offers an explanation for the microscopic ori-
gin of the 0.7-anomaly in the conductance through a
QPC5. The model involves a tight-binding chain with a
one-dimensional potential barrier and onsite interactions.
In Ref. 5 we used two approaches to treat interactions:
second-order perturbation theory (SOPT) and the func-
tional renormalization group (fRG). Our calculations of
the linear conductance were based on an exact formula
derived by Oguri6. He started from the Kubo formula in
the Matsubara formalism and performed the required an-

alytical continuation of the two-particle vertex function
occurring therein using Eliashberg theory7.

Since Oguri’s formula for the linear conductance is ex-
act, it can also be used by employing methods more pow-
erful and reliable than SOPT, for example fRG, to calcu-
late the self-energy and two-particle vertex. If this is done
in the Matsubara formalism, however (as in Ref. 5), one
is limited, in practice, to the case of zero temperature,
because finite-temperature calculations would require an
analytic continuation of numerical data from the imagi-
nary to the real frequency axis, which is a mathematically
ill-defined problem. This problem can be avoided by cal-
culating the self-energy and vertex directly on the real
axis using the Keldysh formalism8,9. However, to then
calculate the linear conductance, the ingredients occur-
ing in Oguri’s formula would have to be transcribed into
Keldysh language, and such a transcription is currently
not available in the literature in easily accesible form.

In the present paper, we find a Keldysh version of
Oguri’s formula by deriving it entirely within the Keldysh
formalism. Our starting point is the Meir-Wingreen for-
mula for the current, J(V ), with the conductance defined
by g = ∂V J . Rather than performing this derivative nu-
merically, we here perform it analytically, based on the
following central observation: The voltage derivative of
the Green’s functions that occur in the Meir-Wingreen
formula, ∂V G, all involve the voltage derivative of the
self-energy, ∂V Σ. The latter can be expressed in terms of
the two-particle vertex by using an exact flow equation
from the function renormalization group (fRG). We show
that it is possible to use this observation to derive Oguri’s
formula for the linear conductance, expressed in Keldysh
notation, provided that the Hamiltonian is symmetric
and conserves particle number. Our argument evokes
a Ward identity10, following from U(1)-symmetry, which
provides a relation between components of the self-energy
and components of the vertex.

As an application of our Keldysh version of Oguri’s
conductance formula, we use Keldysh-SOPT to calcu-
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late the conductance through a QPC using the model of
Ref. 5. We show that it is possible to greatly reduce the
numerical costs by using a non-monotonic lattice spacing
when formulating the discretized model. We present re-
sults for the conductance as function of barrier height for
different choices of interaction strength U , magnetic field
B and temperature T and discuss both the successes and
limitations of the SOPT scheme.

The paper is organized as follows: After introducing
the general interacting model Hamiltonian in Sec. II, we
present the Keldysh derivation of Oguri’s conductance
formula in Sec. III. We set the stage for explicit conduc-
tance calculations by expressing the self-energy and the
two-particle vertex within Keldysh SOPT in Sec. IV and
introduce our the 1D-model of a QPC and show and dis-
cuss conductance results in Sec. V. A detailed collection
of definitions and properties of both Green’s and ver-
tex functions in Keldysh formalism can be found in Ap-
pendix A and in Ref. 11 (in fact our paper closely follows
the notation used therein). A diagrammatic derivation
of the fRG flow-equation for the self-energy is given in
Appendix B and the Ward identity resulting from par-
ticle conservation is presented in Appendix C. In Ap-
pendix D we perform an explicit calculation to show the
fluctuation-dissipation theorem for the vertex-functions
within SOPT. Finally, we apply the method of finite
differences in Appendix E, to discretize the continuous
Hamiltonian using a non-constant discretization scheme.

II. MICROSCOPIC MODEL

Within this work we consider a system composed
of a finite central interacting region coupled to two
non-interacting semi-infinite fermionic leads, a left lead,
with chemical potential µl, temperature T l and Fermi-
distribution function f l, and a right lead, with chemi-
cal potential µr, temperature T r and Fermi-distribution
function fr. The two leads are not directly connected
to each other, but only via the central region. A similar
setup was considered in Ref. 2 and Ref. 6.

The general form of the model Hamiltonian reads

H = H0 +Hint =
∑

ij

hijd
†
idj +

∑

ij

Uijninj , (1)

where hij is a hermitian matrix, and Uij is a real, sym-
metric matrix, non-zero only for states i,j within the cen-

tral region. d†i/di creates/destroys an electron in state i

and ni = d†idi counts the number of electrons in state
i. While in general the index i can represent any set of
quantum numbers we will regard it as a composite in-
dex, referring, e.g. to the site and spin of an electron
for a spinful lattice model. Note, that the Hamiltonian
conserves particle number, which is crucial in order to
formulate a continuity equation for the charge current in
the system.

Defining operators L/C/R, which project onto the sub-
space of the central region/left lead/right lead respec-
tively, we can represent the quadratic part of the Hamil-

tonian as

H0 =



LH0L LH0C 0
CH0L CH0C CH0R

0 RH0C RH0R


=



Hl Hlc 0
Hcl H0,c Hcr
0 Hrc Hr


 .

(2)

We note that all matrices on the r.h.s. have the dimen-
sion of the full bare Hilbert space, but are non-zero only
in the corresponding sub-space, e.g. an entry Hlc,ij of
the coupling matrix can differ from zero only if i is a
quantum state of the left lead and j is a quantum state
of the central region.

III. TRANSPORT FORMULAS

We henceforth work in the Keldysh formalism. Our
notation for Keldysh indices, which mostly follows that
of Ref. 11, is set forth in detail in Appendix A, to allow
the main text to focus only on the essential steps of the
argument.

A. Current formula

We begin by retracing the derivation of the Meir-
Wingreen formula. In steady state the number of par-
ticles in the central region is constant. Hence, the par-
ticle current from the left lead into the central region
is equal to the particle current from the central region
into the right lead, J := Jl→c = Jc→r[We remark that
this continuity equation can also be obtained by imposing
the invariance of the partition sum under a gauged U(1)
transformation, following from particle conservation of
the Hamiltonian, see Appendix C]. This allows us to fo-
cus on the current through the interface between left lead
and central region. Expressing the current in terms of the
time-derivative of the total particle number operator of
the left lead, nl =

∑
i∈L ni, we obtain the Heisenberg

equation of motion J = −e〈ṅl〉 = −ie/~〈[H, nl]〉, where
e is the electronic charge and ~ is Planck’s constant.
Thus, considering the above definition of the Hamilto-
nian, Eq.(1), the current reads

J = − ie
~
∑

i∈L
j∈C

[
hij〈d−j (t)[d+

i ]†(t)〉 − hji〈d−i (t)[d+
j ]†(t)〉

]

=
e

~

[
Tr{(Hlc −Hcl)G−|+}

]
, (3)

with the interacting equal-time lesser Green’s function

G
−|+
i|j =G

−|+
i|j (t|t)=−i〈d−

i
(t)[d+

j ]†(t)〉 (here we used time-

translational invariance of the steady-state). Fourier
transformation of Eq.(3) yields

J =
e

h

∫
dεTr

{
(Hlc −Hcl)G−|+(ε)

}
, (4)

with h=2π~. We introduced the symbol G for a Green’s
function that depends on a single frequency only (as op-
posed to the Fourier transform of the time-dependent
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Green’s function G, which, in general, depends on two
frequencies, see Appendix A, Eq.(A.7), for details).

Following the strategy of Ref. 2, we use Dyson’s equa-
tion, Eq.(A.26), to express the current in terms of the
central region Green’s function Gc and rotate from the
contour basis into the Keldysh basis (the explicit Keldysh
rotation is given by Eq.(A.10) and Eq.(A.14c)). This
yields

J=
ie

2h

∫
dε Tr{Γl[G2|2

c − (1− 2f l)(G2|1
c − G1|2

c )]}, (5)

with retarded, G2|1
c (ε), advanced, G1|2

c (ε), and Keldysh

central region Green’s function, G2|2
c (ε), and the hy-

bridization function Γl(ε) = i Hcl(g
2|1
l (ε)− g1|2

l (ε))Hlc,
where gl(ε) is the Green’s function of the isolated left
lead. Here and below we omit the frequency argument
for all quantities that depend on the integration variable
only. Eq.(5) is the celebrated Meir-Wingreen formula for
the current [c.f. Eq.(6) in Ref. 2 for a symmetrized ver-
sion].

We now present a version of the Meir-Wingreen
formula in terms of the interacting one-particle irre-
ducible self-energy Σ (with retarded, Σ1|2, advanced,
Σ2|1 and Keldysh component Σ1|1 [Eq.(A.3), Eq.(A.7),
Eq.(A.13)]). It can be derived by means of Dyson’s equa-
tion, Eq.(A.25), which enables a reformulation of the
Green’s functions in Eq.(5) in terms of the hybridiza-
tion functions Γ, the lead distribution functions f and
the self-energy Σ:

G2|1
c −G1|2

c = G2|1
c

([
G1|2
c

]−1−
[
G2|1
c

]−1)G1|2
c

= G2|1
c

(
− i(Γl + Γr) +Σ1|2 − Σ2|1)G1|2

c ,

G2|2
c =G2|1

c

(
− i

∑

k=l,r

(1− 2fk)Γk +Σ1|1)G1|2
c . (6)

Hence, the current formula can be written as the sum of
two terms,

J =
e

h

∫
dε(f l − fr)Tr{ΓlG2|1

c ΓrG1|2
c }+

+
ie

2h

∫
dεTr{ΓlG2|1

c

(
Σ1|1−(1−2f l)(Σ1|2−Σ2|1)

)
G1|2
c }.

(7)

In equilibrium, i.e. f := f l = fr, the current must
fulfill J = 0. With the first term of Eq.(7) vanish-
ing trivially, this imposes the fluctuation-dissipation the-
orem (FDT) for the self-energy at zero bias voltage,
Σ1|1 = (1−2f)(Σ1|2−Σ2|1). Note that a similar FDT
can be formulated for the Green’s function in Eq.(5).

B. Differential conductance formula

Differentiating Eq.(5) w.r.t. the source-drain voltage
V =(µl−µr)/e, i.e. the voltage drop from the left to the
right lead, provides the differential conductance gV =
∂V J . We denote derivatives w.r.t. frequency by a prime,

e.g. f l
′

:= ∂εf
l, and derivatives w.r.t. the source-drain

voltage by a dot,
.
Gc := ∂V Gc. Using Dyson’s equation

[Eq.(A.25)], we can express the derivative of the Green’s
function in terms of derivatives of the self-energy:

.
Gα|α′c =

∑

β,β′

Gα|β′c

.
Σβ
′|βGβ|α′c + Sα|α

′
,

S1|1 =S1|2 =S2|1 =0 , S2|2 = G2|1
c

.
Σ

1|1
leadG1|2

c . (8)

Here we introduced the so called single scale propagator

S and the lead self-energy Σ
1|1
lead =−i∑k=l,r(1− 2fk)Γk

[Eq.(A.21)]. Hence, we can write the differential conduc-
tance in the form

gV =
ie

2h

∫
dεTr{Γl[

∑

β,β′

Gα|β′c

.
Σβ
′|βGβ|α′c + S2|2

− (1− 2f l)(G2|1
c

.
Σ1|2G2|1

c − G1|2
c

.
Σ2|1G1|2

c )

+ 2
.
f l(G2|1

c − G1|2
c )]}. (9)

We specify the voltage via the chemical potentials in the
leads, µl = µ + αeV and µr = µ + (α − 1)eV , with
α∈ [0, 1]. This provides

S2|2 = −2ie G2|1
c

[
αf l
′
Γl + (α− 1)fr ′Γr

]
G1|2
c . (10)

Note that in the special case α = 0, i.e. if the voltage
is applied to the right lead only, the last term in Eq.(9)
vanishes and the differential conductance takes a partic-
ularly simple form. This is a consequence of our initial
choice to express the current via the time derivative of
the left lead’s occupation.

The above derived formula for the differential conduc-
tance of an interacting Fermi system involves derivatives
of all self-energy components,

.
Σ. Below, we show how

these can be expressed in terms of the irreducible two-
particle vertex L and the single scale propagator S using
the fRG flow equation for the self-energy. While we ap-
ply this scheme only to derive a Keldysh Kubo-type linear
conductance formula, which for a symmetric Hamiltonian
yields a Keldysh version of Oguri’s formula, we want to
stress that an extension to finite bias is trivial and that
Eq.(9) can likewise be written in terms of the two-particle
vertex, following the recipe below.

In Ref. 5 we used Eq.(9) (with α = 1/2) to calculate
the differential conductance of a 1D parabolic potential
barrier in the presence of an onsite electron-electron in-
teraction (see Sec.V for details of the model). There we
used second order perturbation theory (SOPT, details
are presented in Sec.IV) to evaluate both the self-energy
and its derivative with respect to voltage. We showed
that the model, which is designed to mimick the low-
est transport mode of a quantum point contact (QPC),
qualitatively reproduces the main feature of the 0.7 con-
ductance anomaly, including both its typical magnetic
field and temperature dependence as well as the zero-bias
peak, which usually accompanies the anomaly.
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C. Linear conductance formula

In linear response, i.e. V → 0, the linear conductance
g0 does not depend on the specific choice of α. For the
sake of simplicity we use α= 1, which corresponds to a
voltage setup µl = µ+eV and µr = µ. Henceforth, a dot

implies the derivative at zero bias, e.g.
.
f l = ∂V f

l
∣∣
V=0

,

and we have
.
f l=−ef ′ and

.
fr=0. Differentiating Eq.(7)

w.r.t. the voltage, followed by setting V = 0, yields the
linear conductance formula

g0 = ∂V J |V=0

=− e2

h

∫
dεf ′Tr{ΓlG2|1

c (Γr+i(Σ1|2−Σ2|1))G1|2
c }

+
e2

h

∫
dεTr{ΓlG2|1

c ΦlG1|2
c }. (11)

All quantities in the integrand are evaluated in equilib-
rium. The voltage derivatives of the self-energy are com-
bined in the expression

Φl=
i

2e

[ .
Σ1|1−(1− 2f)

( .
Σ1|2−

.
Σ2|1

)]
. (12)

Provided that all components of the self-energy and its
derivative in Eq.(12) are known at zero bias, Eq.(11) is
sufficient to calculate the linear conductance. But, as is
shown below, it is possible to express the voltage deriva-
tives of Σ directly in terms of the two-particle vertex
L, i.e. the rank-four tensor defined as the sum of all
one-particle irreducible diagrams with four external am-
putated legs (see Appendix A). This not only reduces
the numbers of objects to be calculated, but more im-
portantly, it completely eliminates the voltage from the
linear conductance formula: whereas the derivative

.
Σ

needs information of the self-energy at finite bias, the
two-particle vertex does not. Finally, it allows for a very
compact representation of the linear conductance formula
with a clear interpretation of the individual terms.

To this end we use the fact that an exact expression for
the derivative of the self-energy w.r.t. some parameter
Λ is provided by the so called flow equation of the func-
tional renormalization group (fRG) (for a diagrammatic

derivation of this equation see Appendix B and Ref. 12.
A rigorous functional derivation of the full set of coupled
fRG equations for all 1PI vertex functions is given in e.g.
Ref. 13). Usually, Λ is taken to be some high-energy cut-
off, but it can equally well be a physical parameter of
the system, such as magnetic field, temperature or, as in
the case in question, voltage: Λ = V . The general flow
equation reads

∂ΛΣ
α′|α
i|j (ε) =

1

2πi

∫
dε′
∑

ββ′
kl∈C

S
β|β′
Λ,k|l(ε

′)Lα
′β′|αβ

Λ,ik|jl (ε′, ε; 0),

(13)

where L(ε′, ε; 0) is the irreducible two-particle vertex, de-
fined via Eq.(A.4) and Eq.(A.7). The specific form of this
equation for a given flow-parameter Λ is encoded in the
single-scale propagator S, which is given by

SΛ = −Gc∂Λ [G0,c]−1 Gc = GcG−1
0,c [∂ΛG0,c]G−1

0,cGc, (14)

with bare central region Green’s function G0,c(ε). Ac-

cording to Eq.(A.22) only its Keldysh component, G2|2
0,c ,

depends explicitly on the voltage. Additionally, we use[
G−1
0,c

]2|2
= 0, following from causality, Eq.(A.12), which

yields:

S
2|2
V=0 = G2|1

c

[
G−1
0,c

]1|2
∂V=0G2|2

0,c

[
G−1
0,c

]2|1 G1|2
c

= −2ief ′G2|1
c ΓlG1|2

c ,

S
1|1
V=0 = S

1|2
V=0 = S

2|1
V=0 = 0. (15)

It is instructive to realize that this is indeed the single-
scale propagator already introduced in the derivation
of the differential conductance via Eq.(10). The triv-
ial Keldysh structure of S now implies, that the α′|α-
dependence of the self-energy derivatives only enters via
that of the two-particle vertex:

.
Σ
α′|α
i|j (ε)=

1

2πi

∫
dε′
∑

kl∈C
S

2|2
V=0,k|l(ε

′)Lα
′2|α2
il|jk (ε′, ε; 0).

(16)

This allows us to write Eq.(12) in the form

Φli|j(ε) =
1

2πi

∫
dε′f ′(ε′)

∑

kl∈C

[
G2|1
c (ε′)Γl(ε′)G1|2

c (ε′)
]
k|l
Kil|jk(ε′, ε; 0), (17)

with vertex response part

Kil|jk(ε′, ε; 0)=L12|12
il|jk (ε′, ε; 0)− (1− 2f(ε))(L12|22

il|jk (ε′, ε; 0)− L22|12
il|jk (ε′, ε; 0)). (18)

We use the invariance of the trace under a cyclic permutation, Tr{ΓlG2|1
c ΦlG1|2

c } = Tr{ΦlG1|2
c ΓlG2|1

c }, and interchange
the frequency labels, ε↔ ε′, to obtain the linear conductance formula
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g0 = −e
2

h

∫
dεf ′Tr{ΓlG2|1

c

(
Γr + i(Σ1|2 − Σ2|1)

)
G1|2
c }+

e2

h

∫
dεf ′Tr{ΓlG1|2

c Φ̃lG2|1
c }, (19)

with the resorted vertex correction term

Φ̃ll|k(ε) =
1

2πi

∫
dε′

∑

ij∈C

[
G1|2
c (ε′)Γl(ε′)G2|1

c (ε′)
]
j|i
Kil|jk(ε, ε′; 0). (20)

In appendix C we show that particle conservation requires, that the imaginary part of the self-energy is connected to
the vertex correction part via a Ward identity

i[Σ1|2(ε)− Σ2|1(ε)] = Φ̃l + Φ̃r. (21)

This result is obtained by demanding the invariance of the physics under a gauged, local U(1) transformation, which
must hold for any Hamiltonian that conserves the particle number in the system. This symmetry implies an infinite
hierarchy of relations connecting different Green’s functions. The first equation in this hierarchy reproduces the
continuity equation used in the beginning of the above derivation. The second equation in the hierarchy is Eq.(21),
which connects parts of one-particle and two-particle Green’s function. Inserting the ward identity in Eq.(19) yields

g0 = −e
2

h

∫
dεf ′(ε)Tr{Γl(ε)G2|1

c (ε)
[
Γr(ε) + Φ̃l(ε) + Φ̃r(ε)

]
G1|2
c (ε)}+

e2

h

∫
dεf ′(ε)Tr{Γl(ε)G1|2

c (ε)Φ̃l(ε)G2|1
c (ε)}.

(22)

This formula is the central result of this chapter. It expresses the linear conductance in terms of the two-particle
vertex L, which enters via the vertex part Φ̃ [Eq.(20)] and the response vertex K [Eq.(18)]. Note that the two
terms in Eq.(22) differ in their Keldysh structure via the Keldysh indexing of the full Green’s functions, which
prevents further compactification of Eq.(22) for a non-symmetric Hamiltonian (e.g. in the presence of finite spin-orbit
interactions, see. e.g. Ref. 14). If, in contrast, the Hamiltonian of Eq.(1) is symmetric (i.e. hij=hji), Eq.(22) can be
compactified significantly using the following argument: A symmetric Hamiltonian implies that the Green’s function
G, the self-energy Σ and the hybridization Γ are symmetric, too. This in turn gives a symmetric Φ̃ via Eq.(21). Hence,
the trace in the first term of Eq.(22) is taken over the product of four symmetric matrices, and transposing yields

Tr{ΓlG2|1
c

[
Γr + Φ̃l + Φ̃r

]
G1|2
c } = Tr{ΓlG1|2

c

[
Γr + Φ̃l + Φ̃r

]
G2|1
c }. Hence, all contributions involving Φ̃l cancel in Eq.(22)

and the linear conductance now simply reads

g0 = −e
2

h

∫ ∞

−∞
dεf ′(ε)Tr{Γl(ε)G1|2

c (ε)[Γr(ε) + Φ̃r(ε)]G2|1
c (ε)}. (23)

A Matsubara version of this linear conductance formula for a symmetric Hamiltonian has been derived before in
Ref. 6 using Eliashberg theory in order to perform the analytic continuation of the vertex from Matsubara space to
the real axis. Comparison of the two formulas allows for a connection between the three Keldysh vertex components
in Eq.(18) and the ones used in Oguri’s derivation.

D. Thermal conductance formula

We end this chapter with some considerations regarding thermal conductance, i.e. the conductance induced by a
temperature difference between the leads. In the following we assume zero bias voltage, V = 0. The left lead is in
thermal equilibrium with T l=T + T̃ and the right lead in thermal equilibrium with temperature T r =T . Thus, the
temperature gradient between the leads will provide a charge current through the central region. Similar to above,
we are now interested in the linear response thermal conductance formula, g0,T = ∂T̃=0J , which we could calculate in
similar fashion as the linear conductance g0. Much easier is the following though: all terms in Eq.(22) were obtained
by once time taking the derivative of the Fermi distribution f l w.r.t. the voltage, partly explicitly in Eq.(7) and

partly from evaluating the single-scale propagator in Eq.(15). Now note, that ∂T̃=0f
l = ε−µ

T f ′ = − (ε−µ)
eT ∂V=0f

l. For
a symmetric Hamiltonian this directly implies, that the linear thermal conductance is given by

g0,T =
e

hT

∫ ∞

−∞
dε(ε− µ)f ′(ε)Tr{Γl(ε)G1|2

c (ε)[Γr(ε)+Φ̃r(ε)]G2|1
c (ε)}. (24)
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IV. VERTEX FUNCTIONS IN SOPT

In order to apply the above defined conductance for-
mulas we calculate the self-energy Σ and the two-particle
vertex L in second order perturbation theory (SOPT).
Both are defined in Eq. (A.7) and occur in the conduc-
tance formula (22). The SOPT-strategy is to approxi-
mate them by a diagrammatic series truncated beyond
second order in the bare interaction vertex ν, defined be-
low.

Within this section the compact composite index no-
tation used above is dropped in favor of a more explicit
one. We henceforth use blue roman subscripts (i1, i2, ...)
for site indices only and explicitly denote spin dependen-
cies using σ ∈ {↑, ↓}={+,−}. A green number subscript
denotes an object’s order in the interaction, e.g. Σ2 is
the desired self-energy to second order in the bare vertex
ν.

Below, the quadratic part of the model Hamiltonian,
Eq.(1), is is represented by a real matrix that is symmet-
ric in position basis and diagonal in spin space

hσij = hσji ∈ R , h = h↑ + h↓. (25)

In consequence, the bare Green’s function, too, is diago-
nal in spin space and symmetric in position space:

G0,iσ|jσ′ = δσσ′Gσ0,i|j , Gσ0,i|j = Gσ0,j|i. (26)

We distinguish between composite quantum numbers in-
cluding contour indices kn = (an, in, σn) and compos-
ite quantum numbers including Keldysh indices κn =
(αn, in, σn). The noninteracting Green’s function is rep-
resented by a directed line

G0,k1|k′1(ε) =
εk1 k1 . (27)

We choose an onsite interaction, which reduces the quar-
tic term in Eq.(1) to a single sum

Hint =
∑

i∈C
Uini↑ni↓, (28)

i.e. we evaluate the vertex functions for the case of an on-
site electron-electron interaction. Since the two-particle
interaction is instantaneous in time, we construct the

anti-symmetrized bare interaction vertex as

νk′1,k′2|k1,k2(t′1, t
′
2|t1, t2)

= Ui1δi1i2δi1i′1δi1i′2(−a1)δa1a2δa1a′1δa1a′2
× δ(t1 − t2)δ(t1 − t′1)δ(t1 − t′2)

× δσ1σ̄2δσ′1σ̄′2(δσ′1σ1
− δσ′1σ2

) , (29)

with σ̄ = −σ. Note that its spin-dependence is de-
termined by Pauli’s exclusion principle and the Slater-
determinant character of the fermionic state. After
Fourier transformation [ Eq.(A.6), Eq.(A.7)] and Keldysh
rotation [Eq.(A.10), Eq.(A.11)] we find

νκ′1,κ′2|κ1κ2
(ε′1, ε

′
2|ε1, ε2)=2πδ(ε1+ε2−ε′1−ε′2)ūκ′1,κ′2|κ1κ2

,

(30)

where we introduced the bare vertex

ūκ′1,κ′2|κ1κ2
= ui1δi1i2δi1i′1δi1i′2ξ

α′1α
′
2|α1α2

× δσ1σ̄2δσ′1σ̄′2(δσ′1σ1
− δσ′1σ2

)

=
κ1

κ2κ1

κ2

, (31)

with ui = Ui/2 and the modulo operation

ξα
′
1α
′
2|α1α2 =

{
1, if α′1 + α′2 + α1 + α2 = odd

0, else.

A. The two-particle vertex in SOPT

Our goal is to approximate the vertex part, Eq.(18),
to second order in the interaction. The fully interacting
two-particle vertex, L(ε, ε′; 0), has the following diagram-
matic representation:

Lκ′1κ′2|κ1κ2
(ε′, ε; 0) =

ε

ε

ε

ε

κ1

κ1

κ2

κ2

(32)

In SOPT, the vertex L2 is given by the sum of all 1PI
diagrams with four external amputated legs and not more
than two bare vertices. Defining the frequencies

p = ε+ ε′ , x = ε− ε′, (33)

the vertex reads

L2(ε′, ε; 0) = ū+ Lp2(p) + Lx2(x) + Ld2(0), (34)

with particle-particle channel Lp2, particle-hole channel
Lx2 and direct channel Ld2 defined as
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Lp2,κ′1κ′2|κ1κ2
(p) =

κ1 κ2

κ1 κ2

=
i

2π

∫ ∞

−∞
dε′′

∑

q1q2q′1q
′
2

ūκ′1κ′2|q1q2G0,q1|q′1(p− ε′′)G0,q2|q′2(ε′′)ūq′1q′2|κ1κ2
, (35a)

Lx2,κ′1κ′2|κ1κ2
(x) =

κ1

κ2

κ2

κ1

=
i

2π

∫ ∞

−∞
dε′′

∑

q1q2q′1q
′
2

ūκ′1q′2|q1κ2
G0,q1|q′1(ε′′)G0,q2|q′2(ε′′ + x)ūq′1κ′2|κ1q2 , (35b)

Ld2,κ′1κ′2|κ1κ2
(0) =

κ1

κ1

κ2

κ2

=
−i
2π

∫ ∞

−∞
dε′′

∑

q1q2q′1q
′
2

ūκ′1q′2|κ1q1G0,q1|q′1(ε′′)G0,q2|q′2(ε′′)ūq′1κ′2|q2κ2
. (35c)

These expressions can be derived by a straightforward
perturbation theory.

Using Eq.(26) and Eq.(31), we can identify the only
non-vanishing components in spin- and real space,

Πσσ̄
ij (p) = Lp2,iσiσ̄|jσjσ̄(p), (36a)

Xσσ′
ij (x) = Lx2,iσjσ′|jσiσ′(x), (36b)

∆σσ′
ij (0) = Ld2,iσjσ′|iσ′jσ(0). (36c)

Eq.(25) and the channel definitions, Eq.(35), imply the
symmetries

Πij = Πji , Xij = Xji , ∆ij = ∆ji, (37a)

Π(p) = Πσσ̄(p) = Πσ̄σ(p), (37b)

Xσσ′(x) = Xσ′σ(−x), (37c)

∆σσ′(0) = ∆σ′σ(0). (37d)

Moreover, and directly following from the Keldysh
structure of the bare vertex in Eq.(31), we are left with
only four non-zero components per channel in Keldysh
space. This is best seen from realizing, that the inter-
nal Keldysh structure of the diagrams in Eq.(35) only
depends on whether the sum of external indices belong-
ing to the same bare vertex is even/odd. Furthermore,
from the Keldysh structure of the bare vertex, combined
with G1|1 = 0 and the analytic properties of G, it fol-
lows that L22|22 = 0. Hence, SOPT preserves the theo-
rem of causality, Eq.(A.12), as it should. (this has also
been shown for a wide range of approximation schemes
in Ref. 15). Thus, the Keldysh structure of the channels
Y = Π, X,∆ is given by the matrix representation

Y =

(
Y K Y R

Y A 0

)
=

(
Y 1|1 Y 1|2

Y 2|1 Y 2|2

)
. (38)

We define the individual components according to the

Keldysh structure of the full vertex,

Lα
′
1α
′
2|α1α2

2 = Πψ(α′1,α
′
2)|ψ(α1,α2)

+Xψ(α′1,α2)|ψ(α1,α
′
2)

+∆ψ(α′1,α1)|ψ(α2,α
′
2), (39)

where we introduced the modified modulo operation

ψ(α1, α2, ..., αn) =

{
1, if

∑
i=1,...,n αi = odd

2, else.

That leaves us with the following explicit formulas

Π
1|2
ij (p) = −uiuj

2πi

∫
dε
[
Gσ,2|10,i|j (p−ε)Gσ̄,2|20,i|j (ε)

+Gσ,2|20,i|j (p−ε)Gσ̄,2|10,i|j (ε)
]
, (40a)

Π2|1 =
[
Π1|2

]∗
, (40b)

Π
1|1
ij (p) = −uiuj

2πi

∫
dε
[
Gσ,2|20,i|j (p−ε)Gσ̄,2|20,i|j (ε)

+Gσ,2|10,i|j (p−ε)Gσ̄,2|10,i|j (ε)

+Gσ,1|20,i|j (p−ε)Gσ̄,1|20,i|j (ε)
]
, (40c)

Π1|1(p)
∣∣∣
V=0

= [1 + 2b(p− µ)]
[
Π1|2(p)−Π2|1(p)

]
V=0

,

(40d)
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X
σσ′,1|2
ij (x) = −uiuj

2πi

∫
dε
[
Gσ̄,1|20,i|j (ε)Gσ̄

′,2|2
0,i|j (ε+ x)

+Gσ̄,2|20,i|j (ε)Gσ̄
′,2|1

0,i|j (ε+ x)
]
,

(41a)

X2|1 =
[
X1|2

]∗
, (41b)

X
σσ′,1|1
ij (x) = −uiuj

2πi

∫
dε
[
Gσ̄,2|20,i|j (ε)Gσ̄

′,2|2
0,i|j (ε+ x)

+Gσ̄,2|10,i|j (ε)Gσ̄
′,1|2

0,i|j (ε+ x)
]

+Gσ̄,1|20,i|j (ε)Gσ̄
′,2|1

0,i|j (ε+ x)
]
,

(41c)

X1|1(x)
∣∣∣
V=0

= [1 + 2b(x+ µ)]
[
X1|2(x)−X2|1(x)

]
V=0

,

(41d)

∆
σσ′,1|2
ij (0) =

uiuj
2πi

∫
dε
[
Gσ̄,1|20,i|j (ε)Gσ̄

′,2|2
0,i|j (ε)

+Gσ̄,2|20,i|j (ε)Gσ̄
′,2|1

0,i|j (ε)
]
, (42a)

∆ = ∆2|1 = ∆1|2, (42b)

∆1|1 = 0. (42c)

Here, we introduced the Bose distribution function,
b(z) = 1/(e(z−µ)/T − 1), with chemical potential µ and
temperature T . [ ]∗ denotes the complex conjugate. Note
that the components of every individual channel fulfill
a fluctuation dissipation theorem (FDT) in equilibrium
[Eqs.(40d,41d,42c)], warranting the choice of notation in-
troduced in Eq.(38). We derive this FDT in detail in
Appendix D.

Finally we write down the three components of the
SOPT two-particle vertex that occur in the vertex-

correction part, Eq.(18):

L12|22
2,iσ,lσ′|jσ,kσ′(ε

′, ε; 0) =

δσσ̄′δijδikδilui + δσσ̄′δilδjkΠ
1|2
ij (p)

+ δikδjlX
σσ′,1|2
ij (x) + δσσ′δijδkl∆

σσ′
ik (0), (43a)

L22|12
2 = ū+ Π2|1 +X2|1 + ∆, (43b)

L12|12
2 = Π1|1 +X1|1. (43c)

Utilizing the equilibrium’s FDT for the Π-, and X-
channel [Eq.(40d), Eq.(41d)], we find

Kiσ,lσ′|jσ,kσ′(ε
′, ε; 0) =

δσσ̄′δilδjk [2f(ε) + 2b(p− µ)] (Π
1|2
ij (p)−Π

2|1
ij (p))

+ δikδjl [2f(ε) + 2b(x+ µ)] (X
σσ′,1|2
ij (x)−Xσσ′,2|1

ij (x)).

(44)

We note, that this result (for µ=0) has been obtained
before by Oguri (see Eq.(4.7) of Ref. 6) using Matsubara
formalism and an analysis of the two-particle vertex
following Eliashberg7.

B. The self-energy in SOPT

Our goal is to approximate the self-energy to second
order in the interaction. The fully interacting self-energy,
Σ(ε), has the following diagrammatic representation:

Σκ′1|κ1
(ε) =

κ1

κ1

ε

ε

(45)

In SOPT, the self-energy Σ2 is given by the sum of
all 1PI diagrams with two external amputated legs and
not more than two bare vertices. This amounts to three
topologically different diagrams (the static first and sec-
ond order Hartree diagrams and the frequency-dependent
second order Fock diagram):

Σ2,κ′1|κ1
(ε) =

κ1

κ1

+
κ1

κ1

κ1

κ1

+

=
−i
2π

∫ ∞

−∞
dε′
∑

q1q′1

[
ūk′1q′1|k1q1 + γd2,k′1q′1|k1q1(0) + γp2,k′1q′1|k1q1

(ε+ ε′)
]
G0,q1|q′1(ε′). (46)

We note that, equivalently, the Fock diagram can also be expressed via either spin configuration, Xσσ or Xσσ̄,
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[Eq.(41a), Eq.(48a)] of the particle-hole vertex channel
γx2 instead of the particle-particle channel γp2.

As a consequence of the spin-dependence of both the
noninteracting Green’s function and the bare vertex,
Eq.(26) and Eq.(31), as well as the real space symme-
try of the Hamiltonian, Eq.(25), the self-energy, too, is
spin-diagonal and symmetric in real space:

Σiσ|jσ′ = δσσ′Σ
σ
i|j , Σσi|j = Σσj|i. (47)

The Keldysh structure of the self-energy is given by ma-
trix structure [Eq.(A.13)] with ΣR = Σ1|2. The theorem
of causality demands Σ2|2 = 0 [Eq.(A.12)]. Finally, ex-
plicit evaluation of the diagrams in Eq.(46) yields

Σ
σ,1|2
2,i|j (ε)=

−i
2π

∫
dε′
[
δijuiGσ̄,2|20,i|i (ε′) + δij

∑

k

Gσ,2|20,k|k(ε′)∆σσ
ik (0) + Gσ,2|20,i|j (ε′)Xσσ,1|2

ij (ε− ε′) + Gσ,2|10,i|j (ε′)Xσσ,1|1
ij (ε− ε′)

]
,

(48a)

Σ21
2 =

[
Σ12
]∗
, (48b)

Σ
σ,1|1
2,i|j (ε) =

−i
2π

∫
dε′
[
Gσ,2|20,i|j (ε′)Xσσ,1|1

ij (ε− ε′) + Gσ,2|10,i|j (ε′)Xσσ,1|2
ij (ε− ε′) + Gσ,1|20,i|j (ε′)Xσσ,21

ij (ε− ε′)
]
, (48c)

Σ
σ,1|1
2,i|j (ε)|V=0 = (1− 2f(ε))

[
Σ
σ,1|2
2,i|j (ε)− Σ

σ,2|1
2,i|j (ε)

]
V=0

. (48d)

We derive the FDT, Eq.(48d), in Appendix D.

C. Voltage derivative of the self-energy in SOPT

In order to calculate the differential conductance via
Eq.(9) we now provide explicit formulas for the voltage
derivative of the self-energy components. In principle we
could use the natural approach and differentiate the r.h.s.
of the self-energy expressions, Eq.(48), with the corre-
sponding vertex components given by Eqs.(40)-(42). To

illustrate the power of the fRG flow equation we choose
an alternative, more direct route, by expanding Eq.(16)
up to second order in the bare interaction and allow for
arbitrary values of the voltage V .

To first order in the interaction the single-scale propa-
gator, Eq.(14), reads

S
2|2
1,V =

.
G2|2
0 + G2|1

0 Σ
1|2
1

.
G2|2
0 +

.
G2|2
0 Σ

2|1
1 G

1|2
0 . (49)

Inserting both Eq.(49) and the SOPT vertex, Eq.(43c),
in Eq.(16) directly yields

.
Σ
σ,1|2
2,i|j (ε) =

−i
2π

∫
dε′
[
δijui

.
Gσ̄,2|20,i|i + δij

∑

k

[
ui

(
Gσ̄2|1

0,i|kΣ
σ̄1|2
1,k|k

.
Gσ̄2|2

0,k|i+
.
Gσ̄,2|20,i|k Σ

σ̄,2|1
1,k|kG

σ̄,1|2
0,k|i

)
+

.
Gσ,2|20,k|k∆σσ

ik (0)
]

+
.
Gσ,2|20,i|j X

σσ,1|2
ij (x) +

.
Gσ̄,2|20,i|j

(
X
σσ̄,1|2
ij (x) + Π

1|2
ij (p)

)]
,

.
Σ
σ,2|1
i|j (ε) =

[ .
Σ
σ,1|2
i|j (ε)

]∗
,

.
Σ
σ,1|1
i|j (ε) =

−i
2π

∫
dε′
[

.
Gσ,2|20,i|j X

σσ,1|1
ij (x) +

.
Gσ̄,2|20,i|j

(
X
σσ̄,1|1
ij (x) + Π

1|1
ij (p)

)]
, (50)

where the derivative of the Keldysh bare Green’s function
is given by [e.g. Eq.(A.22)]

.
G2|2
0 = G2|1

0

.
Σ

1|1
leadG

1|2
0 =2iG2|1

0

( ∑

k∈l,r

.
fkΓk

)
G1|2
0 . (51)

For compactness, we dropped all arguments that match
the integration frequency in Eq.(50).

It is important to note that the energy integral
∫
dε′

in Eq.(50) can be performed trivially for the special case
of zero temperature, T = 0: Then the derivative of the

Fermi functions in
.
G2|2
0 are Dirac delta functions [for the

definition of the voltage see Sec.(III B)]:

.
f l(ε′)

T=0
= eα · δ(ε′ − µ− eαV )

.
fr(ε′)

T=0
= e(α− 1) · δ(ε′ − µ− e(α− 1)V ). (52)

This reduces the integration in Eq.(50) to evaluating the
integrand at the chemical potentials of the left and right
lead, respectively. Naturally, this simplification proves
extremely beneficial: We can express the self-energy at
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arbitrary voltage as

Σ(V ) = Σ(0) +

∫ V

0

dV ′
.
Σ(V ′). (53)

Numerically calculating this voltage integration provides
both the self-energy Σ(V ′) and its derivative

.
Σ(V ′)

within the whole intervall 0≤ V ′ ≤ V . Hence, this pro-
cedure can save orders of magnitude of calculation time
compared to the direct evaluation of the self-energy and
its voltage derivative via Eq.(48) and Eq.(50), respec-
tively.

V. 1D MODEL OF A QPC

As an application of the above formalism, we now
study the influence of electron-electron interactions on
the linear conductance of a one-dimensional symmetric
potential barrier of height Vc (measured w.r.t. the chem-
ical potential µ) and parabolic near the top,

V (x) = Vc + µ− mΩ2
x

2~2
x2, (54)

where m is the electron’s mass. The geometry of the bar-
rier is determined by the energy scale Ωx and the length
scale lx = ~/

√
2mΩx. While the system extends to in-

finity, the potential is non-zero only within the central
region C, defined by −`/2<x<`/2, and drops smoothly
to zero as |x| approaches |`|/2. We call the outer homo-
geneous regions the left lead L (x<−`/2) and the right
lead R (x>`/2).

Numerics cannot deal with the infinite Hilbert space of
this continuous system. Hence, we discretize real space
using the method of finite differences (see Appendix E
for details), which maps the system onto a discrete set
of space points {xj}. This results in the tight-binding
representation

H=
∑

jσ

[Eσj njσ−τj(d†jσdj+1σ + h.c.)]+
∑

j∈C
Ujnj↑nj↓, (55)

with spin-dependent onsite energy Eσj = Ej −σB/2 =
Vj+τj−1 +τj−σB/2, site-dependent hopping amplitude
τj = ~2/(2ma2

j ), spacing aj=xj+1−xj and potential en-
ergy Vj = V (xj). Note that we included a homogeneous
Zeeman-field B to investigate magnetic field dependen-
cies, as well as an onsite-interaction, whose strength is
tuned by the site-dependent parameter Uj .

In Ref.5 we have used this model to investigate the
physics of a quantum point contact (QPC), a short one-
dimensional constriction We showed that the model suf-
fices to reproduce the main features of the 0.7 anomaly,
including the strong reduction of conductance as function
of magnetic field, temperature and source-drain voltage
in a sub-open QPC (see below). We argued, that the
appearance of the 0.7 anomaly is due to an interplay of
a maximum in the local density of states (LDOS) just
above the potential barrier (the “van-Hove ridge”) and
electron-electron interactions.

Here, we show that a proper choice of real space dis-
cretization scheme can minimize numerical costs. We
discuss both the noninteracting physics of the model as
well as the magnetic field and temperature dependence
of the linear conductance in the presence of interactions
using SOPT.

A. The choice of discretization

For a proper description of the continuous case it is
essential to choose the spacing much smaller than the
length scale on which the potential changes (condition
of adiabatic discretization). We model the central re-
gion by N = 2N ′+1 sites, located at the space points
{x−N ′ , x−N ′+1, ..., xN ′−1, xN ′}, where N & 100 proves
sufficient for a potential of the form Eq. (54). Due to the
parity symmetry of the barrier we always choose x0 = 0
and xj=−x−j .

The discretization of real space introduces an upper
bound, Emax = max(Vj+ 2τj−1 + 2τj), for the eigenen-
ergies of the bare Hamiltonian. In addition, it causes
the formation of a site-dependent energy band, defined
as the energy intervall where the local density of states
(LDOS) is non-negligible, i.e. where eigenstates have
non-negligible weight. In case of an adiabatic discretiza-
tion this energy band follows the shape of the potential.
At a site j it is defined within the upper and lower band
edge

εmin
j = Vj , εmax

j = Vj + wj , (56)

where the band width depends on the local spacing, i.e.
on the choice of discretization (see Appendix E for addi-
tional information):

wj=2τj−1+2τj =
~2

m

(
1

a2
j−1

+
1

a2
j

)
. (57)

Note that a larger distance between successive sites leads
to a narrowing of the energy band and vice versa; while
the lower band edge is, for any adiabatic discretization,
directly given by the potential, the upper band edge de-
pends sensitively on the applied discretization scheme.

In the following we discuss and compare two differ-
ent discretization procedures: The standard approach of
equidistant discretization (constant hopping τ) causes a
local maximum εmax

0 = V0 + 2τ of the upper band edge
in the vicinity of the barrier center. This approach leads
to artificial bound states far above the potential barrier,
which complicate numerical implementation and calcu-
lation. Hence, we recommend and apply an alternative
adaptive scheme where the spacing increases (the band
width decreases) with increasing potential, i.e. towards
j = 0. Note that this still implies a constant hopping
τ|j|>N ′=τ in the leads.

1. Constant discretization
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Figure 1. (a), left half: The non-interacting LDOS of the central region, A0(ε, xj), resulting from a constant real-space
discretization. The position of the discrete points xj is indicated by the x-axis ticks. Both the lower and upper band edge
follow the shape of the potential: εmin

j =V (xj) and εmax
j =V (xj)+4τ . The local maximum of εmax

j at j=0 causes the formation
of bound states for energies ε > 4τ . (c), their discrete spectrum shows up as poles in the non-interacting Green’s function
G0,0|0(ε). (a), right half: The non-interacting LDOS of the central region resulting from an adaptive real-space discretization
with c = 0.55 [Eq.(60)], i.e. the spacing aj increases towards the barrier center (see x-axis ticks). Hence, the band width
decreases with increasing barrier height, resulting in a local minimum of εmax

j at j = 0. (b), the LDOS at the central site,
A0(ε, 0), for both schemes.

We discuss the case of constant spacing a = aj , im-
plying grid points xj = aj and a constant hopping
τ = ~2/(2ma2). In a homogeneous system, V (xj) = 0,
the energy eigenstates are Bloch waves ψk(xj) = eikaj ,
which form an energy band εk = 2τ [1−cos(ka)] of width
w=4τ . Adding the parabolic potential,

V (xj) = Vc + µ− Ω2
x

4τ
j2, (58)

these states are now subject to scattering at the barrier
which causes the formation of standing wave patterns for
energies ε < V0=V (0) = Vc +µ below the barrier top.
The left half (xj < 0) of Fig. 1(a) shows the noninter-
acting central region’s local density of states (LDOS),

Aσ0(xj , ε) =−1/(πa)·ImGσ,2|10,j|j (ε) at B= 0, as a function

of position xj and energy ε. Due to the condition of
adiabaticity the energy band smoothly follows the shape
of the potential, implying a site-dependent upper band
edge, εmax(xj)=Vj+ 4τ .

The local maximum of εmax(xj) in the central region’s
center generates artificial bound states, owed to the dis-
cretization scheme, in the energy interval ε∈ [4τ, 4τ+V0].
This is illustrated in Figure 1(c), where the real and imag-

inary parts of the bare Green’s function of the central

site, G2|1
0,0|0(ε), are plotted. These bound states result

from the shape of the upper band edge: Since the band
in the homogeneous leads is restricted to energies below
4τ (unlike in the continuous case), all states with higher
energy are spacially confined to within the central region,
have an infinite lifetime and form a discrete spectrum,
determined by the shape of the applied potential V (xj).

The calculation of self-energy and two particle vertex,
Eq.(48) and Eq.(42), is performed by ad-infinitum fre-
quency integrations over products of Green’s functions.
Thus, the energy region of the upper band edge and the
local bound states must be included in their calculation
with adequate care. This involves determining the exact
position and weigth of the bound states, which requires
high numerical effort, as well as dealing with the numer-
ical evaluation of principal value integrals and convolu-
tions, where one function has poles and the other one
is continuous. While all this is doable with sufficient
dedication, we can avoid such complications entirely by
adapting the discretization scheme, discussed next.
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2. Adaptive discretization

According to Eq. (56) and Eq. (57) we can modify
the band width locally by choosing non-equidistant dis-
cretization points. In the following we discuss a non-
constant discretization scheme that reduces the band
width within the central region enough so that the up-
per band edge exhibits a local minimum at x0 rather
than a local maximum (as in the case of constant spac-
ing). In consequence the Green’s functions are contin-
uous within the whole energy band, which facilitates a
numerical treatment of interactions.

For a non-constant real space discretization it proves
useful to first define the onsite energy Ej and the hopping
τj of the discrete tight-binding Hamiltonian Eq. (55) and
then use these expressions to calculate the geometry of
the corresponding physical barrier, i.e. its height Vc and
curvature Ωx.

We specify the onsite energy to be quadratic near the
top with

Ej = Ẽj + 2τ ' Ẽ0

[
1− j2

N ′2

]
+ 2τ, (59)

where Ẽ0 is positive. We use the shape of Ẽj within C
(which, apart from its height and the quadratic shape
around the top does not influence transport properties,
as long as Ẽj goes adiabatically to zero upon approaching
j = |N ′|) to define a site-dependent hopping (amounting
to a site-dependent spacing)

τj = τ
[
1− c

2τ

(
Ẽj + Ẽj+1

)]
, (60)

where we have introduced a dimensionless positive pa-
rameter c< τ/Ẽ0 that determines how strongly the band
width is to be reduced. Note that Eq. (60) describes
a hopping, that is constant (= τ) in the leads, where

Ẽj=Vj=0, and decreases with increasing Ẽj in the cen-
tral region. This corresponds to a site-dependent lattice
spacing aj=a

√
τ/τj , which increases towards the center

of the central region. The real space position xj that
corresponds to a site j is given by

xj = sgn(j)

|j|∑

j′=1

aj′ = a
√
τ sgn(j)

|j|∑

j′=1

1
√
τj
, (61)

where sgn(x) is the sign function. Following Eq. (56), the
construction introduced in Eq.(59) and Eq.(60) leads to
an upper band edge given by

εmax
j ' Ej + τj−1 + τj ' 4τ + (1− 2c)Ẽj , (62)

which for the choice c > 0.5 indeed exhibits a smooth
local minimum at j = 0, thus avoiding the bound states
discussed above for the constant discretization, c=0.

Despite the drastic manipulation of εmax
j , the lower

band edge still serves as a proper potential barrier,

εmin
j =Vj ' (1 + 2c)Ẽj , (63)

with a quadratic potential barrier top whose height now
depends on the compensation factor c:

Vj ' (1 + 2c)Ẽj

[
1− j2

N ′2

]
. (64)

Finally, we write the potential barrier in the form given
in Eq.(58), i.e. express the curvature Ωx in units of the
constant lead-hopping τ . By comparison we find

Vc = V0 − µ, Ωx =
2

N ′
√
V0τ0. (65)

The right half (xj > 0) of Fig. 1(a) shows the LDOS
of the central region for an adaptive discretization with
c=0.55. All additional parameters are chosen such that
the resulting potential barrier matches the case of con-
stant discretization (plotted for xj < 0). Most impor-
tantly, the minimum of εmax

j at j= 0 prevents the occu-
rance of bound states above the barrier, which allows for
a faster numerical evaluation of the vertex functions. Im-
portantly, both discretization schemes approximate the
same physical system; their differences are non-neglegible
only for energies far above the barrier, i.e. far away from
the energies relevant for transport. This can be seen from
the matching grey scale at the interface j=0 for energies
ε < V0 +O(Ωx), as well as from comparison of the central
site’s LDOS in Fig. 1(c).

B. The choice of system parameters

To ensure that the discrete model reflects the trans-
port properties of the continuous barrier, Eq. (54), the
chemical potential of the system (or of both leads in non-
equilibrium) must be chosen far enough below the global
minimum of εmax(xj). Only in this case the unphysical
upper band edge does not contribute to the results. The
onsite-energy is chosen as

Ẽj = θ(N ′ − |j|)Ẽ0 exp

(
−

(
j
N ′
)2

1−
(
j
N ′
)2

)
, (66)

where θ(x) is the Heavyside step function. Note, that this
definition is consistent with Eq.(59). In order to calculate
the site-dependent coupling we use c= 0.55 in Eq. (60).
Hence, for a barrier height V0 = µ (corresponding to a
noninteracting transmission T0 =0.5, see Eq.(68) below),
we get a potential curvature Ωx = 0.039τ . Finally, the
shape of the onsite interaction is chosen as

Uj = θ(N ′ − |j|)U0 exp

(
−

(
j
N ′
)6

1−
(
j
N ′
)2

)
. (67)

C. Non-interacting properties of the model

In Ref. 5 we argued that the model of Eq.(55),
combined with a potential with parabolic barrier top,
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Figure 2. : (a)-(c), Linear conductance as a function of barrier height Vc for some values of magnetic field B with interaction
strength U increasing from left to right. (d)-(f), Linear conductance as a function of barrier height Vc for some values
of temperature T with interaction strength U increasing from left to right. Interactions cause an asymmetric evolution of
conductance with magnetic field and temperature due to the interaction-enhanced reduction of conductance in the sub-open
regime – the 0.7 anomaly.

Eq.(54), is sufficient to describe the physics of the low-
est subband of a QPC: Making a saddle-point ansatz for
the electrostatic potential caused by voltages applied to
a typical QPC gate structure provides an effective 1D-
potential of the form Eq.(54). Information about the
transverse geometry of the QPCs potential can be in-
corporated into the site-dependent effective interaction
strength Uj , see Eq.(67).

The non-interacting, spin-dependent transmission
through a quadratic barrier of height V0 = Vc + µ and
curvature Ωx, Eq. (54), in the presence of a magnetic
field B can be derived analytically16 and is given by

T σ0 (ε) =
1

e−2π(ε−V0+σB/2)/Ωx + 1
. (68)

Hence, according to the Landauer-Büttiker formula, the
non-interacting (bare) linear conductance,

g0 = −e
2

h

∑

σ

∫ ∞

−∞
f ′(ε)T σ0 (ε), (69)

is a step function of width Ωx at B=T =0, changing from
0 to 1, when the barrier top is shifted through µ from
above. This step gets broadened with temperature [see
Figure 2(d)] and develops a double-step structure with
magnetic field [see Figure 2(a)]. For all B and T the bare
conductance obeys the symmetry g0(Vc) = 1− g0(−Vc).

Furthermore, an analytic expression for the non-
interacting LDOS at the chemical potential in the barrier
center as function of barrier height Vc can be calculated

[see e.g. Ref. 17],

A0(ε=µ, 0) =
|Γ (1/4 + iVc/(2Ωx))|2

4
√

2π2eπVc/(2Ωx)
, (70)

where Γ(z) is the complex gamma-function. This is a
smeared and shifted version of the 1D van Hove singular-
ity [see Ref. 5 for further details], peaked at Vc=−O(Ωx),
i.e. if the barrier top lies sightly below the chemical po-
tential. Here, the value of the noninteracting conduc-
tance is given by g0 ≈ 0.8. Hence, we call this parameter
regime sub-open.

D. Interacting results

As was discussed in Ref. 5, the shape of the LDOS
in the barrier center lies at the heart of the mecha-
nism causing the 0.7 conductance anomaly: Semiclassi-
cally, the LDOS can be interpreted as being inversely
proportional to the velocity v of the charge carriers,
A0(ε, xj) ∝ 1/vj(ε). Hence, the average time that a
non-interacting electron with energy ε = µ spends in the
vicinity of the barrier center is maximal in the sub-open
regime (where A0(µ, 0) is maximal), resulting in an en-
hanced scattering probability and thus a strong reduction
of conductance at finite interaction strength in this pa-
rameter regime.

Figure 2 compares the bare conductance, calculated
via the Landauer-Büttiker formula [Eq.(69)], with the
conductance obtained by taking into account interac-
tions using SOPT, calculated via the Keldysh version of
Oguri’s formula [Eq.(23)], as a function of barrier height
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Vc for several values of magnetic field (panels (a)-(c))
and temperature (panels (d)-(f)), for three interaction
strengths increasing from left to right. For small but fi-
nite interactions, U

√
Ωxτ = 0.5, the shape of the LDOS

causes a slight asymmetry in the conductance curves at
(b) finite magnetic field or (e) finite temperature: A finite
magnetic field induces an imbalance of spin-species in the
vicinity of the barrier center. This imbalance is enhanced
by exchange interactions via Stoner-type physics, where
the disfavoured spin species (say spin down) is pushed out
of the center region by the coulomb blockade of the the
favoured spin-species (say spin up). Hence, transport is
dominated by the spin-up channel, resulting in a strong
reduction of total conductance in the sub-open regime
even for a small magnetic field. A finite temperature,
on the other hand, opens phase-space for inelastic scat-
tering, which, again, is strongest for large LDOS, again
resulting in the reduction of conductance in the sub-
open regime. This interaction-induced trend continues
with increasing interactions, and gives rise to a weak 0.7
anomaly at B 6= 0, Figure 2(c), or T 6= 0, Figure 2(f), for
intermediate interaction strength, U

√
Ωxτ = 1.7. Upon

a further increase of interactions, SOPT breaks down (see
below), and more elaborate methods are needed to obtain
qualitatively correct results. This was done in Ref. 5 and
Ref. 18, where we used fRG to reach interaction strength
of up to U

√
Ωxτ = 3.5; they yielded a pronounced 0.7

anomaly even at B = T = 0 and its typical magnetic field
development into the spin-resolved conductance steps at
high field.

The main limitations of SOPT when treating the in-
homogeneous system, introduced in Eq.(54), can be ex-
plained as follows: Upon increasing interactions, the
LDOS is shifted towards higher energy, as Hartree contri-
butions cause an effective higher potential barrier com-
pared to the non-interaction case. As a consequence,
a proper description of interactions requires information
about this shift to be incorporated into the calculation
of the vertex functions via feed-back of the self-energy
into all propagators. However, SOPT calculates the self-
energy and the two-particle vertex [Section IV] using
only bare propagators, which only carry information of
the bare LDOS. Together with the drastic truncation of
the perturbation series beyond second order, this lim-
its the quantitative validity of SOPT to weak interaction
strength and the qualitative validity of SOPT to interme-
diate interaction strength. Nevertheless, SOPT suffices
to illustrate the essential physics involved in the appear-
ance of the 0.7 conductance anomaly.

VI. CONCLUSION AND OUTLOOK

In this paper we discuss electronic transport through
an interacting region of arbitrary shape using the
Keldysh formalism. Starting from the well-established
Meir-Wingreen formula for the system’s current we derive
formulas for both the differential and linear conductance.
In the latter case we use the fRG flow-equation for the
self-energy as well as a Ward identity, following from the

Hamiltonian’s particle conservation, to obtain a Keldysh
version of Oguri’s linear conductance formula. As an ap-
plication we calculate the conductance of the lowest sub-
band of a QPC, which we model by a one-dimensional
parabolic potential barrier and onsite interactions - a
setup we have recently used to explore the microscopic
origin of the 0.7 conductance anomaly5. We present
detailed discussion of the model’s properties and argue
that an adaptive, non-constant real space discretization
scheme greatly facilitates numerical effort. We treat the
influence of interactions using SOPT, presenting all de-
tails that are necessary to employ the derived conduc-
tance formulas. Our SOPT-results for the linear con-
ductance as function of magnetic field and temperature
illustrate that the anomalous reduction of conductance
in the sub-open regime of a QPC is due to an interplay
of the van-Hove ridge and electron-electron interactions.

In order to improve on the interacting results we are
currently setting up Keldysh fRG. Since approximation
schemes within the fRG violate particle conservation at
finite excitation energies, future studies must prioritize
to quantify how severe this violation influences the va-
lidity of transport results. A possible alternative are
self-consistent approximation schemes, where the U(1)-
symmetry of the Hamiltonian is preserved by construc-
tion.

Appendix A: Properties of Green’s and vertex
functions in Keldysh formalism

To investigate transport properties of the system in
and out of equilibrium, we apply the well-established
Keldysh formalish8,9. Here we collect some of its stan-
dard ingredients. In large parts, we follow the definitions
and conventions given in Ref.[11].

All operators carry Keldysh time-contour indices,
a1, a

′
1, a2, ... = {+,−}, marking the position of the time

argument t of an operator as lying on the forward (−)
or backward (+) branch of the Keldysh contour. We
use Keldysh indices with or without a prime, a or a′, to
label the time arguments of annihilation or creation oper-
ators, respectively. Since the model Hamiltonian, Eq.(1),
is time-independent, the only non-zero matrix elements
of the Hamiltonian in contour space have equal contour
indices:

Ha1a
′
1

0 = −a1 · δa1a′1H0,

Ha1a2|a
′
1a
′
2

int = −a1 · δa1a2δa1a′1δa1a′2Hint, (A.1)

with {a} labeling the time arguments of annihilation op-
erators and {a′} labeling the time arguments of creation
operators. Note that a calligraphic H carries contour
indices, while a capital H does not.

We define time-dependent, n-particle Keldysh Green’s
functions as the expectation values

G
n,a|a′

i|i′ (t|t′) = G
a1,...,an|a′1,...a′n
i1,...,in|i′1,...i′n

(t1, ..., tn|t′n, ..., t′1) =

(−i)n〈Tcda1i1 (t1)...danin (tn)[d
a′n
i′n

]†(t′n)...[d
a′1
i′1

]†(t′1)〉, (A.2)
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where we use boldface notation for multi-indices x =
(x1, ..., xn). The operator dai (t)/ [dai ]

†
(t) destroys/creates

an electron at time t on contour branch a in quantum
state i, and the time-ordering operator Tc moves later
contour times to the left. In case of equal time argu-
ments, annihilation operators are always arranged to the
right of creation operators. The bare, non-interacting
Green’s function, whose time-dependence is governed by
the quadratic part of the Hamiltonian, H0, carries an
additional subscript, G0.

We define anti-symmetrized, irreducible, n-particle

vertex functions, γ
n,a′|a
i′|i (t′|t), as the sum of all 1-particle

irreducible (1PI) diagrams with n amputated ingoing
and n amputated outgoing legs. For an explicit series
representation of the one- and two-particle vertex, see
Eq.(B.1). A formula for the prefactor of every single di-
agram is given by Eq.(20) of Ref.[11].

The Dyson equation provides a direct relation between
the one-particle Green’s and vertex function:

G(t1|t′1)=G0(t1|t′1)−
∫
dτ1dτ

′
1G0(t1|τ ′1)γ(τ ′1|τ1)G(τ1|t′1).

(A.3)
Here and below, whenever quantum state indices i and
contour indices a/Keldysh indices α are implicit, they are
understood to be summed over in products.

Decomposing the two-particle Green’s yields a connec-
tion to the two-particle vertex function via

G(t1, t2|t′1, t′2) = G(t1|t′1)G(t2|t′2)−G(t1|t′2)G(t2|t′1)

−i
∫
dτG(t1|τ ′1)G(t2|τ ′2)γ(τ ′1, τ

′
2|τ1, τ2)G(τ1|t′1)G(τ2|t′2).

(A.4)

Since the Hamiltonian, Eq.(1), is time-independent,
the Green’s/vertex functions are translationally invari-
ant in time, implying that n-particle functions depend
on 2n− 1 time arguments only:

G(t1, ..., tn|t′1, ...t′n) = G(0, ..., tn − t1|t′1 − t1, ..., t′n − t1),

γ(t′1, ..., t
′
n|t1, ...tn) = γ(0, ..., t′n − t′1|t1 − t′1, ..., tn − t′1).

(A.5)

As a consequence, the Fourier-transform,

G(ε|ε′) =

∫
dtdt′ eiεte−iε

′t′G(t|t′),

γ(ε′|ε) =

∫
dtdt′ eiε

′t′e−iεtγ(t′|t), (A.6)

fulfills energy conservation. In particular, this allows for
the following representation for the one- and two-particle
functions, where calligraphic letters G and L are used
when a δ-function has been split off:

G(ε1|ε′1) = 2πδ(ε1 − ε′1)G(ε1),

G(ε1, ε2|ε′1, ε′2) = 2πδ(ε1 + ε2 − ε′1 − ε′2)G(ε2, ε
′
1; ε1 − ε′1),

γ(ε′1|ε1) = −2πδ(ε′1 − ε1)Σ(ε′1),

γ(ε′1, ε
′
2|ε1, ε2) = 2πδ(ε′1 + ε′2 − ε1 − ε2)L(ε′2, ε1; ε′1 − ε1).

(A.7)

The one-particle vertex-function Σ, introduced above, is
called the interacting irreducible self-energy. We Fourier-
transform Dyson’s equation, Eq.(A.3), which provides

G(ε)=G0(ε)+G0(ε)Σ(ε)G(ε)=
[
[G0(ε)]

−1 − Σ(ε)
]−1

.

(A.8)

Note that this is a matrix equation in both Keldysh and
position space.

The four single-particle Green’s functions and self-
energies in contour space are called chronological (G−|−,
Σ−|−), lesser (G−|+, Σ−|+), greater (G+|−, Σ+|−) and
anti-chronological (G+|+, Σ+|+). As a consequence of the
definition, Eq.(A.2), the single-particle Green’s functions
fulfill the contour-relation

G+|+ + G−|− = G−|+ + G+|−. (A.9)

We define the transformation from contour space (a =
{−,+}) into Keldysh space (α = {1, 2}) by the rotation

R =

(
R−|1 R−|2

R+|1 R+|2

)
=

1√
2

(
1 1
−1 1

)
. (A.10)

Hence, any n-th rank tensor An,α
′|α in Keldysh space is

represented in contour space by

An,α|α
′

=
∑

a,a′

[
R−1

]α|a
An,a|a

′
Ra

′|α′
. (A.11)

As can be shown explicitly (see Chapter 3.3 of Ref.11) the
Green’s and vertex functions fulfill a theorem of causality:

G1...1|1...1 = 0,

L2...2|2...2 = 0. (A.12)

The remaining three non-zero Keldysh components of the
single-particle functions are called retarded (G2|1, Σ1|2),
advanced (G1|2, Σ2|1) and Keldysh (G2|2, Σ1|1):

G =

(
0 GA
GR GK

)
=

(
0 G1|2

G2|1 G2|2

)
,

Σ =

(
ΣK ΣR

ΣA 0

)
=

(
Σ1|1 Σ1|2

Σ2|1 0

)
. (A.13)

The transformation, Eq.(A.11), provides the identities

G−|+ =
1

2

[
G2|2 −

(
G2|1 − G1|2

)]
, (A.14a)

G+|− − G−|+ = G2|1 − G1|2, (A.14b)

H1|2
0 = H2|1

0 = H0 , H1|1
0 = H2|2

0 = 0, (A.14c)

all of which are used in the derivation of the conduc-
tance formula in Sec.I. Note that a calligraphic H car-
ries Keldysh indices, while a capital H does not. The
retarded/advanced components are analytic in the up-
per/lower half plane of the complex frequency plane.
Hence, the following notation is always implied,

G2|1(ε) = G2|1(ε+ iδ) , Σ1|2(ε) = Σ1|2(ε+ iδ), (A.15)

G1|2(ε) = G1|2(ε− iδ) , Σ2|1(ε) = Σ2|1(ε− iδ), (A.16)
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with real, infinitesimal, positive δ. In contrast, the
Keldysh component is a response function, restricted to
the real frequency axis. In equilibrium, the single-particle
functions fulfill a fluctuation dissipation theorem (FDT):

Σ1|1(ε) = (1− 2f(ε))
[
Σ1|2(ε)− Σ2|1(ε)

]
, (A.17a)

G2|2(ε) = (1− 2f(ε))
[
G2|1(ε)− G1|2(ε)

]
, (A.17b)

where f(ε) = 1/(1 + exp[(ε− µ)/T ]) is the Fermi distri-
bution function.

Within this work we consider a system composed of
a finite central interacting region coupled to two non-
interacting fermionic leads: The left lead L, with chem-
ical potential µL and temperature TL, and the right
lead R, with chemical potential µR and temperature TR.
Defining operators C/L/R, which project onto the sub-
space of the central region/left lead/right lead respec-
tively, we can represent the quadratic part of the Hamil-
tonian as

H0 =



LH0L LH0C 0
CH0L CH0C CH0R

0 RH0C RH0R


=



Hl Hlc 0
Hcl H0,c Hcr
0 Hrc Hr


 .

(A.18)

where the matrices Hl and Hr fully define the proper-
ties of the isolated leads, and the matrix H0,c describes
the non-interacting physics of the isolated central region.
Finally, Hcl and Hcr specify the coupling of the central
region to the corresponding lead. Similarly, we write the
system’s Green’s function, G(ε) [Eq.(A.8)], in the same
basis (for the bare, non-interacting Green’s function G0
we set Σ=0):

G=



LGL LGC 0
CGL CGC CGR

0 RGC RGR


=



Gl Glc 0
Gcl Gc Gcr
0 Grc Gr


 .

(A.19)

We use the small letter g to denote the Green’s func-
tion of an isolated subsystem, e.g. gl(ε) is the Green’s
function of the isolated left lead L. The non-interacting
Green’s function of the central region is given by Dyson’s
equation

G0,c = g0,c+g0,cΣleadG0,c =
[
[g0,c]

−1−Σlead

]−1

.

(A.20)

Again note that this is a matrix equation in Keldysh and
position space. We incorporated environment contribu-
tions into the lead self-energy

Σlead =
∑

k=l,r

HckgkHkc. (A.21)

The individual Keldysh components of the non-

interacting Green’s function are given by

G1|2
0,c(ε) =

(
ε−H0,c − Σ

2|1
lead(ε)

)−1

, (A.22a)

G2|1
0,c(ε) =

(
ε−H0,c − Σ

1|2
lead(ε)

)−1

, (A.22b)

G2|2
0,c(ε) = G2|1

0,c(ε)Σ
1|1
lead(ε)G1|2

0,c(ε)

= −i
∑

k=l,r

[1− 2fk(ε)]G2|1
0,c(ε)Γ

k(ε)G2|1
0,c(ε),

(A.22c)

where we introduced the hybridization function, Γk(ε)=

iHck(g
2|1
k (ε)−g1|2

k (ε))Hkc.

With the interaction being restricted to the central re-
gion we use the notation Σ = Σc = CΣC for the inter-
acting self-energy. Dyson’s equation, Eq.(A.8), and the
real space structure, Eq.(A.19), yields

Gc(ε) =
[
[G0,c(ε)]−1 − Σ(ε)

]−1

. (A.23)

The matrix representation of its Keldysh structure is
given by

(
0 G1|2

c

G2|1
c G2|2

c

)
=



(

0 G1|2
0,c

G2|1
0,c G

2|2
0,c

)−1

−
(

Σ1|1 Σ1|2

Σ2|1 0

)

−1

.

(A.24)

Block matrix inversion then provides the components

G1|2
c (ε) =

(
ε−H0,c − Σ

2|1
lead(ε)− Σ2|1(ε)

)−1

, (A.25a)

G2|1
c (ε) =

(
ε−H0,c − Σ

1|2
lead(ε)− Σ1|2(ε)

)−1

, (A.25b)

G2|2
c (ε) = G2|1

c (ε)
[
Σ

1|1
lead + Σ1|1

]
G1|2
c (ε). (A.25c)

From Eq.(A.8), we can show, that the off-diagonal com-
ponents of the full Green’s function, are given by

Gkc = gkHkcGc , Gck = GcHckgk. (A.26)

For a symmetric, real Hamiltonian, the following symme-
tries hold

G1|2
0,i|j=

[
G2|1
0,i|j

]∗
,G1|2
i|j =

[
G2|1
i|j

]∗
,Σ

1|2
i|j =

[
Σ

2|1
i|j

]∗
, (A.27a)

G1|2
0,i|j=G1|2

0,j|i , G
1|2
i|j =G1|2

j|i , Σ
1|2
i|j =Σ

1|2
j|i , (A.27b)

G2|1
0,i|j=G2|1

0,j|i , G
2|1
i|j =G2|1

j|i , Σ
2|1
i|j =Σ

2|1
j|i , (A.27c)

G2|2
0,i|j=−

[
G2|2
0,j|i

]∗
,G2|2
i|j =−

[
G2|2
j|i

]∗
,Σ

1|1
i|j =−

[
Σ

1|1
j|i

]∗
.

(A.27d)
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Appendix B: Diagrammatic derivation of the fRG flow-equation of the self-energy

Here, we provide a diagrammatic derivation of the fRG flow-equation for the self-energy, Eq.(13). We use the
observation, that every diagram in the diagrammatic series of the self-energy contains a sub-diagram which appears
in the diagrammatic series of the two-particle vertex. As a consequence, taking the derivative of the self-energy, ∂ΛΣ,
w.r.t. some parameter Λ allows for a resummation of diagrams, such that the full two-particle vertex series can be
factorized. Hence, we get an equation which can formally be written as ∂ΛΣΛ =

∫
SΛLΛ, with the so called single-scale

propagator S and the two-particle vertex L, both depending on the parameter Λ.

The self-energy Σ and two-particle vertex L are diagrammatically defined as the sum of all one-particle irreducible
diagrams with two and four amputated external legs, respectively. Using the graphical representation of the bare
Green’s function, Eq.(27), and the bare vertex, Eq.(31), the first terms of their perturbation series are (we omit the
arrows for the sake of simplicity)

= + + + +Σ + + ...= (B.1a)

= + + + + +  =L + ...
(B.1b)

We introduce a parameter Λ into the bare propagator, G0 → GΛ
0 , and represent its derivative w.r.t. Λ by a crossed-out

line, ∂ΛGΛ
0 = . Hence, the derivative of the self-energy is given by

=∂ΛΣΛ [ ++ + + ...
[

+ [ ++ + ...

[

+ [ ++ + ...

[

=

=

+ ...

(B.2)

where we introduced the so called single scale propagator

= + + + + ...

= [1 + G0Σ + G0ΣG0Σ + ...] ∂ΛGΛ
0 [1 + ΣG0 + ΣG0ΣG0 + ...]

= G [G0]
−1

∂ΛGΛ
0 [G0]

−1 G

SΛ =

(B.3)

Finally, we fix the prefactor of the diagram on the r.h.s. in Eq.(B.2) by the following argument: The first order self-
energy, Σ1, is of Hartree-type and hence purely determined by the local density nj and the local interaction strength

Uj . We use the bare local density of states, A0,j(ε) = −1/π · ImG2|1
0,j|j(ε), and calculate the first order self-energy in

equilibrium

Σ1,j |V=0 = njUj = 2ūj

∫
dεf(ε)A0,j(ε) = πiūj

∫
dεf(ε)(G2|1

0,j|j − G
1|2
0,j|j) =

1

2πi
ūj

∫
dε G2|2

0,j|j(ε). (B.4)
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Hence, we end up with Eq.(13) for the derivative of the self-energy:

∂ΛΣ
α′|α
i|j (ε) =

1

2πi

∫
dε′
∑

ββ′
kl∈C

S
β|β′
Λ,k|l(ε

′)Lα
′β′|αβ
ik|jl (ε′, ε; 0). (B.5)

Appendix C: Charge conservation - Ward identity

Here we derive the Ward identity, Eq.(21), from variational principles; since the action corresponding to the Hamil-
tonian, Eq.(1), is invariant under a global U(1) symmetry, it satisfies a conservation law. Starting from the path inte-
gral representation of expectation values using Grassmann variables, the requirement of vanishing variation under the
gauged U(1) transformation yields both a continuity equation for particle current and the desired connection between
the interacting self-energy Σ, introduced in Eq.(A.7), and the vertex part Φ, defined in Eq.(20).

Within this Appendix we combine the left and right lead to L=L
⊗
R, thus representing the Hamiltonian and the

Green’s function by

H0 =

(
CH0C CH0L
LH0C LH0L

)
=

(
H0,c Hc`
H`c H`

)
, G =

(
CGC CGL
LGC LGL

)
=

(
Gc Gc`
G`c G`

)
. (C.1)

Let {ψ}, {ψ̄} be sets of Grassmann variables, i.e. fermionic fields. We write n-particle expectation values in terms of
the functional path integral,

G
n,a|a′

i|i′ (t|t′)=(−i)n〈ψa1i1 (t1)...ψanin (tn)ψ̄
a′n
i′n

(t′n)...ψ̄
a′1
i′1

(t′1)〉=(−i)n
∫
D(ψ̄ψ)ψa1i1 (t1)...ψanin (tn)ψ̄

a′n
i′n

(t′n)...ψ̄
a′1
i′1

(t′1)eiS[ψ̄,ψ],

(C.2)

where the Keldysh action is given by the Keldysh contour time integral

S[ψ̄,ψ]=

∫

C
dt
∑

ii′

ψ̄i′(t)(

[G0(t)−1]i′i︷ ︸︸ ︷
iδi′i∂t −H0,i′i)ψi(t) + Sint[ψ̄,ψ]=

∫ ∞

−∞
dt
∑

a,ii′

(−a)ψ̄ai′(t) (iδi′i∂t −H0,i′i)ψ
a
i (t) + Sint[ψ̄,ψ]

=

∫ ∞

−∞
dt
∑

a

(−a)ψ̄
a
(t)(i∂t −H0)ψa(t) + Sint[ψ̄,ψ]. (C.3)

In the last line we introduced the vector notation ψ=



ψ1

ψ2

...


 and ψ̄=(ψ1, ψ2, . . .). Note that ∂t is a diagonal matrix.

1. Gauge transformation

The action, Eq.(C.3), is invariant under the global U(1) transformation ψ → ψeiα and ψ̄ → ψ̄e−iα, where α is a
real constant. Gauging this transformation, i.e. making α space-, and time-dependent, yields to linear order in α

δψai (t) = iαai (t)ψai (t) , δψ̄ai′(t
′) = −iαai′(t′)ψ̄ai′(t′). (C.4)

Since we are interested in the current through the system, from one lead to another, it is convenient to pick α
non-vanishing only in the central region:

αai (t) =

{
αa(t), if i ∈ C
0, if i ∈ L.

(C.5)

This is equivalent to first deriving the Ward identity using an arbitrary α and then summing over the central region.
The requirement of vanishing variation under the gauged U(1) transformation now reads:

δG
n,a|a′

i|i′ (t|t′) = 0. (C.6)
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2. The continuity equation (zeroth order Ward identity)

For n = 0, Eq.(C.6) sets a condition on the variation of the partition sum. Since the measure of the path integral
is invariant under the transformation in Eq.(C.4) (implying that the U(1)-symmetry is not anomalous), this in turn
sets a condition on the variation of the action:

0 = δ

[∫
D(ψ̄ψ)eiS[ψ̄,ψ]

]
= i

∫
D(ψ̄ψ)δS[ψ̄,ψ]eiS[ψ̄,ψ]. (C.7)

The quartic term, Sint, describes a density-density interaction. Hence, its variation vanishes trivially and the variation
of the total action reduces to the variation of the quadratic term:

δS[ψ̄,ψ] =

∫ ∞

−∞
dt
∑

a,i

(−a)
[
αai (t)ψ̄ai (t)∂tψ

a
i (t)− ψ̄ai (t)∂t(α

a
i (t)ψai (t)) +

∑

i′

[
iαai′(t)− iαai (t)

]
ψ̄ai′(t)H0,i′iψ

a
i (t)

]

=

∫ ∞

−∞
dt
∑

a

(−a)αa(t)
[
∂t
(
ψ̄
a
c (t)ψac (t)

)
− iψ̄ac (t)Hclψ

a
l (t) + iψ̄

a
l (t)Hlcψ

a
c (t)

]

=

∫ ∞

−∞
dt
∑

a

(−a)αa(t)
[
− ∂t

(
ψac (t)ψ̄

a
c (t)

)
+ iTr

{
Hclψ

a
l (t)ψ̄

a
c (t)
}
− iTr

{
Hlcψ

a
c (t)ψ̄

a
l (t)
} ]
, (C.8)

where we used integration by parts in the first term Since Eq.(C.7) must hold for arbitrary α(t) this provides the
continuity equation

−∂t〈ψac (t)ψ̄
a
c (t)〉 = iTr

{
Hlc〈ψac (t)ψ̄

a
l (t)〉

}
− iTr

{
Hcl〈ψal (t)ψ̄

a
c (t)〉

}
. (C.9)

In steady-state, the time derivative of the density term on the l.h.s. vanishes and Eq.(C.9) reduces to current
conservation, i.e. the current into the central region equals the current out of the central region:

Tr
{
HlcG

−|+
cl (0)

}
= Tr

{
HclG

−|+
lc (0)

}
. (C.10)

Here we made use of the time-translational invariance of the Green’s function, Eq.(A.5), and the equivalence of the
contour Green’s function components for equal-time arguments G−|+(t, t)=G−|−(t, t)=G+|+(t, t).

3. Relation between self-energy and two-particle vertex (first order Ward identity)

For n = 1, Eq.(C.6) reads

0 = δ〈ψai (t)ψ̄a
′
i′ (t
′)〉 =

∫
D(ψ̄ψ)

[
(δψai (t)) ψ̄a

′
i′ (t
′) + ψai (t)(δψ̄a

′
i′ (t
′)) + iψai (t)ψ̄a

′
i′ (t
′)(δS[ψ̄,ψ])

]
eiS[ψ̄,ψ]. (C.11)

Since the r.h.s. contains both terms quadratic and quartic in ψ, this equation will eventually lead to a relation between
the self-energy and the two-particle vertex. For states i, i′∈C Eq.(C.11) can be written as

0 =

∫ ∞

∞
dt′′
∑

a′′

(−a′′)iαa′′(t′′)
{∫
D(ψ̄ψ)ψai (t)ψ̄a

′
i′ (t
′)

[
(−a)δ(t′′ − t)δaa′′ + a′δ(t′′ − t′)δa′a′′

+
∑

j∈C
∂t′′
(
ψ̄a
′′
j (t′′)ψa

′′
j (t′′)

)

+ i
∑

j1,j2

(
ψ̄a
′′
j1 (t′′)H`c,j1|j2ψ

a′′
j2 (t′′)− ψ̄a′′j2 (t′′)Hc`,j2|j1ψ

a′′
j1 (t′′)

)]
eiS[ψ̄,ψ]

}
. (C.12)

Again, this must be true for arbitrary α(t), providing

[(−a)δ(t′′ − t)δaa′′ + a′δ(t′′ − t′)δa′a′′ ]Ga|a
′

i|i′ (t|t′)

=
∑

j1,j2

[
H`c,j1|j2G

a′′a|a′′a′
j2i|j1i′ (t′′t|t′′t′) −Hc`,j2|j1G

a′′a|a′′a′
j1i|j2i′ (t′′t|t′′t′)

]
− i∂t′′

∑

j∈C
G
a′′a|a′′a′
ji|ji′ (t′′t|t′′t′). (C.13)
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We proceed by decomposing the 2-particle Green’s function in the first term of the r.h.s. according to Eq.(A.4). Since
the first disconnected term, G(t′′|t′′)G(t|t′), vanishes due to the current conservation, Eq.(C.9), we get

[(−a)δ(t′′ − t)δaa′′ + a′δ(t′′ − t′)δa′a′′ ]Ga|a
′

i|i′ (t|t′)

= −
∑

j1,j2

[
G
a|a′′
i|j1 (t|t′′)H`c,j1|j2G

a′′|a′
j2|i′ (t′′|t′)−Ga|a

′′

i|j2 (t|t′′)Hc`,j2|j1G
a′′|a′
j1|i′ (t′′|t′)

]
− i∂t′′

∑

j∈C
G
a′′a|a′′a′
ji|ji′ (t′′t|t′′t′)

− i
∑

j1,j2

∑

k,b

∫
dτ G

a|b′2
i|k′2

(t|τ ′2)
[
G
b1|a′′
k1|j1 (τ1|t′′)H`c,j1|j2G

a′′|b′1
j2|k′1

(t′′|τ ′1)−(j1 ↔ j2, H`c↔Hc`)
]
γ
b′1b
′
2|b1b2

k′1k
′
2|k1k2

(τ ′1, τ
′
2|τ1, τ2)G

b2|a′
k2|i′ (τ2|t

′).

(C.14)

We find the corresponding relation in frequency domain after Fourier transformation w.r.t. all time arguments t, t′, t′′,

(−a)δaa′′Ga|a
′

i|i′ (ε+ ω) + a′δa′a′′Ga|a
′

i|i′ (ε)

=−
∑

j1,j2

[
Ga|a

′′

i|j1 (ε+ ω)H`c,j1|j2G
a′′|a′
j2|i′ (ε)− (j1 ↔ j2, H`c↔Hc`)

]
− ω

2π

∫
dε′
∑

j∈C
Ga
′′a|a′′a′
ji|ji′ (ε, ε′;ω).

− i

2π

∑

k,b
j1,j2

Ga|b
′
2

i|k′2
(ε)

{∫
dε′
[
Gb1|a

′′

k1|j1 (ε′)H`c,j1|j2G
a′′|b′1
j2|k′1

(ε′ + ω)−(j1 ↔ j2, H`c↔Hc`)
]
Lb
′
1b
′
2|b1b2

k′1k
′
2|k1k2

(ε, ε′;ω)

}
Gb2|a

′

k2|i′ (ε+ ω).

(C.15)

We set ω=0 and sum over a′′ on both sides to get the matrix equation

∑

a′′

[(−a)δaa′′ + a′δa′a′′ ]Ga|a
′

c (ε) = Y a|a
′
(ε), (C.16)

where we defined the response object

Y
a|a′
i|i′ (ε) =−

∑

a′′

∑

j1,j2

[
Ga|a

′′

i|j1 (ε)H`c,j1|j2G
a′′|a′
j2|i′ (ε)− (j1 ↔ j2, H`c↔Hc`)

]

− i

2π

∑

a′′

∑

k,b
j1,j2

Ga|b
′
2

i|k′2
(ε)

{∫
dε′
[
Gb1|a

′′

k1|j1 (ε′)H`c,j1|j2G
a′′|b′1
j2|k′1

(ε′)−(j1 ↔ j2, H`c↔Hc`)
]
Lb
′
1b
′
2|b1b2

k′1k
′
2|k1k2

(ε, ε′; 0)

}
Gb2|a

′

k2|i′ (ε).

(C.17)

With two independent contour arguments, a and a′, Eq.(C.16) results in four independent contour space relations

0 = Y +|+ = Y −|− , −2G+|−
c = Y +|− , 2G−|+c = Y −|+. (C.18)

Adding up all equations and transforming into Keldysh space [Eq.(A.10)] yields

2(G+|−
c − G−|+c ) = Y +|+ + Y −|− − Y +|− − Y −|+

Eq.(A.10)⇔ G2|1
c − G1|2

c = Y 1|1. (C.19)

As a consequence of the theorem of causality [Eq.(A.12)] we have G1|1 =0. Hence, only the summand with a′′=2 in
Y 1|1 is non-zero:

Y 1|1(ε) = b1|1(ε)− iG1|2
c (ε)Φ̃(ε)G2|1

c (ε), (C.20)

where we defined the coupling term

bα|α
′

= Gα|2c Hc`G2|α′
`c − Gα|2c` H`cG2|α′

c

Eq.(A.26)
= Gα|2c Hc`

∑

β,γ

g
2|β
` H

β|γ
`c Gγ|α

′
c −

∑

β,γ

Gα|βc Hβ|γc` g
γ|2
` H`cG2|α′

c , (C.21)

and the response function

Φ̃k′2|k2(ε) =
1

2π

∫
dε′
∑

b1,b′1
k1,k′1

b
b1|b′1
k1|k′1

(ε′)Lb
′
12|b12

k′1k
′
2|k1k2

(ε, ε′; 0). (C.22)
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Using the hybridization, Γ = iHc`(g
2|1
` − g

1|2
` )H`c, we find

b1|1 = −iG1|2
c ΓG2|1

c , b1|2 = −b2|1 = (1− 2f)b1|1. (C.23)

Hence, the response function reads (since γ22|22 =0)

Φ̃k′2|k2(ε)=
1

2πi

∫
dε′
∑

j1,j′1
k1,k′1

G1|2
k1|j′1

(ε′)Γj′1|j1(ε′)G2|1
j1|k′1

(ε′)

×
[
L12|12
k′1k
′
2|k1k2

(ε, ε′; 0)− (1− 2f(ε′))
(
L12|22
k′1k
′
2|k1k2

(ε, ε′; 0)− L22|12
k′1k
′
2|k1k2

(ε, ε′; 0)
)]
, (C.24)

in accord with Eq.(20). Finally, we multiply
[
G1|2]−1

from the left and
[
G2|1]−1

from the right in Eq.(C.19), which
provides

[
G1|2(ε)

]−1

−
[
G2|1(ε)

]−1

= −i
[
Γ(ε) + Φ̃(ε)

]
. (C.25)

Inserting Eq.(A.25) and using Σ
1|2
lead(ε) − Σ

2|1
lead(ε) = −iΓ(ε) [see Eq.(A.21)] the hybridization terms cancel and we

recover Eq.(21) (note that we combined the left and right lead, which implies Φ̃ = Φ̃l + Φ̃r):

i
[
Σ1|2(ε)− Σ2|1(ε)

]
= Φ̃(ε). (C.26)

This equation is a necessary condition that any method for describing the influence of interactions has to satisfy
in order to produce quantitative reliable results for transport properties of the system. If Eq.(C.26), and therefore
particle conservation, is violated by a chosen approach (such as e.g. truncated fRG schemes) one should exercise great
caution in interpreting the results.

Appendix D: Derivation of the fluctuation-dissipation theorem for the vertex channels and the self-energy

Below, we derive the fluctuation-dissipation theorem in SOPT for both the frequency-dependent vertex channels,
Eq.(40d) and Eq.(41d), and the self-energy, Eq.(48d).

1. FDT for the Π-channel

We use the FDT for the bare Green’s function, Eq.(A.17), to write the Keldysh Green’s function in terms of the
difference between the retarded and advanced Green’s function. With that we can write the Keldysh component of
the Π-channel as

Π
1|1
ij (p) = −uiuj

2πi

∫
dε
[
Gσ,2|20,i|j (p−ε)Gσ̄,2|20,i|j (ε) + Gσ,2|10,i|j (p−ε)Gσ̄,2|10,i|j (ε) + Gσ,1|20,i|j (p−ε)Gσ̄,1|20,i|j (ε)

]

= −uiuj
πi

∫
dε
[
1− f(ε)− f(p− ε) + 2f(ε)f(p− ε)

] (
Gσ,2|10,i|j (ε)− Gσ,1|20,i|j (ε)

)(
Gσ̄,2|10,i|j (p− ε)− Gσ̄,1|20,i|j (p− ε)

)
,

(D.1)

where we added zeros
∫
dε G2|1

0 (ε)G1|2
0 (p− ε) =

∫
dε G1|2

0 (ε)G2|1
0 (p− ε) = 0. We then use the relation

2f(ε)f(p− ε) = 2b(p− µ)[1− f(p− ε)− f(ε)], (D.2)

which yields

Π
1|1
ij (p) = −uiuj

πi

[
1 + 2b(p− µ)

] ∫
dε
[
1− f(ε)− f(p− ε)

] (
Gσ,2|10,i|j (ε)− Gσ,1|20,i|j (ε)

)(
Gσ̄,2|10,i|j (p− ε)− Gσ̄,1|20,i|j (p− ε)

)

=
[
1 + 2b(p− µ)

] [
Π

1|2
ij (p)−Π

2|1
ij (p)

]
. (D.3)

This proves Eq.(40d).
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2. FDT for the X-channel

A similar calculation as above shows the FDT for the x-channel:

X
σσ′,1|1
ij (x) = −uiuj

2πi

∫
dε
[
Gσ̄,2|20,i|j (ε)Gσ̄

′,2|2
0,i|j (ε+ x) + Gσ̄,2|10,i|j (ε)Gσ̄

′,1|2
0,i|j (ε+ x) + Gσ̄,1|20,i|j (ε)Gσ̄

′,2|1
0,i|j (ε+ x)

]

= −uiuj
πi

∫
dε
[
f(ε)− f(ε+ x)− 2f(ε)f(−ε− x+ 2µ)

] (
Gσ̄,2|10,i|j (ε)− Gσ̄,1|20,i|j (ε)

)(
Gσ̄
′,2|1

0,i|j (ε+ x)− Gσ̄
′,1|2

0,i|j (ε+ x)
)

= −uiuj
πi

[
1 + 2b(x+ µ)

] ∫
dε
[
f(ε+ x)− f(ε)

] (
Gσ̄,2|10,i|j (ε)− Gσ̄,1|20,i|j (ε)

)(
Gσ̄
′,2|1

0,i|j (ε+ x)− Gσ̄
′,1|2

0,i|j (ε+ x)
)

=
[
1 + 2b(x+ µ)

] [
X
σσ′,1|2
ij (x)−Xσσ′,2|1

ij (x)
]
. (D.4)

3. FDT for the self-energy

Finally we show the FDT for the self-energy: Using the FDT for both the X-channel of the vertex as well as of the
bare Green’s function, we can rewrite the Keldysh component of the self-energy:

Σ
σ,1|1
2,i|j (ε) =− 1

2πi

∫
dε′
[
Gσ,2|20,i|j (ε′)Xσσ,1|1

ij (ε− ε′) + Gσ,2|10,i|j (ε′)Xσσ,1|2
ij (ε− ε′) + Gσ,1|20,i|j (ε′)Xσσ,2|1

ij (ε− ε′)
]

=− 1

2πi

∫
dε′ ([1− 2f(ε′)] [1 + 2b(ε− ε′ + µ)] + 1)

(
Gσ,21
0,i|j(ε

′)− Gσ,12
0,i|j(ε

′)
)(

X
σσ,1|2
ij (ε− ε′)−Xσσ,2|1

ij (ε− ε′)
)

=− 1

2πi
[1− 2f(ε)]

∫
dε′ [2− 2f(ε′) + 2b(ε− ε′ + µ)]

(
Gσ,21
0,i|j(ε

′)− Gσ,12
0,i|j(ε

′)
)(

X
σσ,1|2
ij (ε− ε′)−Xσσ,2|1

ij (ε− ε′)
)

. = [1− 2f(ε)]
[
Σ
σ,1|2
2,i|j (ε)− Σ

σ,2|1
2,i|j (ε)

]
. (D.5)

Here we added zeros,
∫
dε′G2|1

0 (ε′)X2|1(ε− ε′) =
∫
dε′G1|2

0 (ε′)X1|2(ε− ε′) = 0, to get to the second line. Furthermore
we used the relation

b(ε− ε′ + µ) [f(ε)− f(ε′)] = −f(ε)f(−ε′ + 2µ) = −f(ε) + f(ε)f(ε′). (D.6)

Appendix E: Method of finite differences for
non-uniform grid

Our goal in this appendix is to derive a discrete de-
scription of a continuous system having the Hamiltonian
H(x) = ~2/(2m)∂2

x + V (x). While the standard prece-
dure usually involves discretization via a grid with con-
stant spacing, we focus on the more general case, where
the spacing is non-constant. This bypasses, for a proper
choice of non-monotonic discretization, the occurence of
artificial bound states close to the upper band edge, which
are a consequence of the inhomogeneity V(x).

We discretize real space using a set of grid points {xj}
(see Fig.(3)). The distance between two successive points
is given by aj = xj+1−xj . Now, a function ψ(x) and
its first and second derivatives ψ′(x) and ψ′′(x) are dis-
cretized as

ψj = ψ(xj),

ψ′j+1/2 =
ψ(xj+1)− ψ(xj)

aj
,

ψ′′j =
ψ′j+1/2 − ψ′j−1/2

aj+aj−1

2

= 2

ψj+1−ψj

aj
− ψj−ψj−1

aj−1

aj + aj−1

' 1

a2
j−1

ψj−1 −
(

1

a2
j−1

+
1

a2
j

)
ψj +

1

a2
j

ψj+1, (E.1)

where we demanded that the spacing changes smoothly

ajaj−1 aj+1

x

ψ(x)

ψj

ψj+1

ψj−1

ψj+2

xj+1xj−1 xj+2xj

Figure 3. Illustration of the choice of notation used to dis-
cretize real space.
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as a function of j, implying (aj + aj−1)aj ' 2a2
j and

(aj + aj−1)aj−1'2a2
j−1. Note that the first derivative is

defined ‘in between’ grid points.
Hence, the discretized version of the Hamiltonian

H(x)=− ~2

2m∂
2
x+V (x) at a point xj is given by

Hψj = −τj−1ψj−1 − τjψj+1 + Ejψj , (E.2)

with site-dependent hopping τj = 1/(2ma2
j ) (here and

below we set ~ = 1) and the onsite-energy Ej = τj−1 +
τj + Vj .
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Chapter 9

Towards combined transport and
optical studies of the 0.7 anomaly in a
QPC

This chapter includes the paper “Towards combined transport and optical studies of the 0.7 anomaly in a
QPC”, published in physica status solidi B [Schubert et al. (2014)]. In Bauer et al. (2013) we present func-
tional renormalization group (fRG) calculations for the spin suspectibility of our one-dimensional (1D)
quantum point contact (QPC) model (Sec. 3.3.1). We find an interaction-induced enhancement of the
QPC’s local spin susceptibility in the sub-open regime, originating from an interplay between the van
Hove ridge in the local density of states (LDOS) and strong exchange interactions in the vicinity of the
barrier center. In Schubert et al. (2014) Enrico Schubert and Alexander Högele present an experiment
which aims at confirmation of this prediction by measuring the local magnetization of a QPC in a small
magnetic field with the help of Faraday rotation technique. Additionally, they intend to measure spin-
selective transport by injecting spin-polarized electrons near the QPC. This experiment provides the
opportunity to confirm important predictions of the van Hove scenario, thus shedding additional light
on the microscopic origin of the 0.7 anomaly.
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A quantum point contact (QPC) causes a one-dimensional con-
striction on the spatial potential landscape of a two-dimensional
electron system. By tuning the voltage applied on the QPC gates
which form the constriction at low temperatures the resulting
regular step-like electron conductance quantization can show
an additional kink near pinch-off around 0.7(2e2/h), called 0.7-
anomaly. In a recent publication, we presented a combination
of theoretical calculations and transport measurements that lead
to a detailed understanding of the microscopic origin of the
0.7-anomaly. Functional renormalization group-based calcula-
tions were performed exhibiting the 0.7-anomaly even when
no symmetry-breaking external magnetic fields are involved.

According to the calculations the electron spin susceptibility is
enhanced within a QPC that is tuned in the region of the 0.7-
anomaly. Moderate externally applied magnetic fields impose a
corresponding enhancement in the spin magnetization. In prin-
ciple, it should be possible to map out this spin distribution
optically by means of the Faraday rotation technique. Here we
report the initial steps of an experimental project aimed at real-
izing such measurements. Simulations were performed for a
heterostructure designed to combine transport and optical stud-
ies. Based on the simulation results a sample was built and its
basic transport and optical properties were investigated.

1 Introduction A quantum point contact (QPC) is a
short, one-dimensional constriction usually realized within a
two-dimensional electron system (2DES), by applying volt-
age to metallic gates, thereby depleting the electrons beneath
and only leaving a narrow transport channel whose width
can be tuned by the applied gate voltage. When a QPC is
opened up by changing the applied gate voltage, its con-
ductance rises in integer steps of the conductance quantum,
GQ = 2e2

/
h [1–3], but also shows a shoulder-like intermedi-

ate step at the onset of the first plateau around " 0.7GQ. This
phenomenon, known as the 0.7-anomaly, has a very intrigu-
ing dependence on temperature (T ), magnetic field (B), and
source–drain voltage (VSD) [4–7]. A summary of the status of

various previous theoretical treatments thereof may be found
in [8].

In a recent publication [9], we presented a combination of
theoretical calculations and transport measurements that lead
to a detailed understanding of the microscopic origin of the
0.7-anomaly. The anomaly is caused by a smeared van Hove
peak in the local density of states (LDOS), whose weight,
shape, and position depends on sample geometry (width,
length, and shape of the QPC confinement potential). The
van Hove peak enhances the effect of interaction by two main
mechanisms: first, it enhances the effective Hartree barrier,
and thus the elastic back-scattering due to Coulomb repul-
sion; second, it opens up a phase space for inelastic scattering
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Figure 1 The bare local density of states, A0(x, ω), in the central
region of the QPC as a function of position x and energy ω. The
maximum of A0

j follows the shape of the band, i.e., the shape of the
applied potential, resulting in a distinct ridge-like structure (yellow),
the van Hove ridge.

which is enhanced further by increasing the temperature or
the source–drain bias voltage.

The present paper serves two purposes. First, in Section
2 we summarize some of the main results from [9], high-
lighting, in particular, one of its central predictions: the local
spin susceptibility is predicted to be anomalously enhanced
in the vicinity of the QPC. Second, in Section 3 we describe
the initial stages of an experimental project that ultimately
aims at detecting the predicted anomalous behavior of the
spin susceptibility in a QPC by optical methods.

2 Microscopic origin of the 0.7-anomaly In
experiments, QPCs are commonly defined using the field
effect to create an electrostatic saddle point potential (see,
e.g., Ref. [9], Fig. 1). To model this effective 1D constric-
tion we use a strict 1D-barrier along the electronic transport
direction x. We choose the potential, V (x), to be symmetric
around x = 0 and parabolic near the top,

V (x) = Ṽc + µ − m

2!2
"2

xx
2, (1)

where ! is Planck’s constant and m the effective electron
mass. The barrier height is governed by Ṽc, which mimics
the role of gate voltage in experiment; it is chosen such that
for Ṽc = 0, the barrier top lies at the chemical potential µ.
The barrier curvature "x defines the effective length of the
QPC, which is proportional to lx =

√
!2/(2m"x) (see [10] and

supplementary information of [9] for more details). Figure. 1
shows the bare LDOS, A0(x, ω), of the QPC as a function of
position x and energy ω (measured relative to µ). The LDOS
has a maximum right above the potential V (x) (black thick
line), visible as a yellow-red structure. This structure, which
lies at the heart of the explanation for the 0.7-anomaly, will be
called a “van Hove ridge.” Near the barrier center the ridge
maximum lies slightly higher in energy than the potential
V (x), by an amount that scales like the barrier curvature "x.

To theoretically investigate the influence of magnetic
field and interactions, we study a one-dimensional tight-
binding chain with lattice spacing a, an onsite energy given
by a discretized version of the potential (1), a local Zee-
man energy −σB/2 (thus B denotes g-factor times magnetic
field), and a purely local (onsite) interaction U. The effec-
tive strength of interaction effects scales as U/Uc, where

Figure 2 (a) Calculated linear conductance g(Vc) as a function of
barrier height for several values of magnetic field, at zero temper-
ature. Interactions cause a weak shoulder even at zero field, which
strengthens for intermediate fields and eventually develops into a
spin-resolved conductance step at high field. (b↑/b↓) Calculated
spin-resolved conductance curves for the same magnetic fields as
in (a). The conductance curves for spin-up and spin-down react
in an asymmetric fashion on an applied field: a combination of
Pauli exclusion principle and Coulomb blockade (Hartree effect)
leads to a strong reduction of ↓-conductance, resulting in the phe-
nomenon of the 0.7-anomaly. (c) Local spin susceptibility, χ(x, Ṽc),
as a function of position x and barrier height Ṽc for a fixed value
of interaction strength, U =2.5 Uc. The strongest response of the
system to a small applied magnetic field happens in the center of
the barrier and coincides with the barrier height for which the 0.7-
anomaly occurs (see (a)), highlighted with the gray dashed vertical
line around Ṽc = −0.25"x. (d) The total spin-susceptibility of the
QPC, χtot, for several values of interaction strength.

Uc =
√
!2"x/(2ma2) is inversely proportional to A0

max, the
height of the van Hove ridge at the barrier center (for details
see [10]). For this model we calculated the linear conduc-
tance and the local density and magnetization per site at
zero temperature, incorporating interaction effects using the
functional Renormalization Group (fRG) [9–14].

Figure 2a shows the calculated Ṽc-dependence of the lin-
ear conductance g = G/GQ of the lowest mode of a QPC
for several values of magnetic field and a finite interaction
strength. We find very good qualitative agreement with mea-
sured curves (see, e.g. [9]) not only for zero field, where the
asymmetry of the step becomes manifest in a weak shoul-
der (marked by gray dashed vertical line), but also at finite
field, where the single step develops via a 0.7-anomaly into a
double step of width geffµBB. Figure 2b↑ and Fig. 2b↓ show
the calculated spin-resolved conductance for the same fields
and interaction used in Fig. 2a. As expected, the conductance

© 2014 The Authors. Phys. Status Solidi B is published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com

158 9. Towards combined transport and optical studies of the 0.7 anomaly in a QPC



Original

Paper

Phys. Status Solidi B 251, No. 9 (2014) 1933

increases/decreases for the favored/disfavored (spin-up/spin-
down) electrons. But unlike in the non-interacting case (not
shown) the spin-down step is shifted much more strongly
toward negative values of Ṽc than the spin-up shift is shifted
toward positive values of Ṽc. This can be explained as follows:
Once a finite field breaks spin-symmetry, interactions push
away spin-down electron out of the QPC’s center, thereby
depleting their density around the barriers top and conse-
quently strongly reducing their probability of transmission.
The 0.7-anomaly at finite magnetic field is a natural conse-
quence of this interaction-induced asymmetry.

As explained in detail in Ref. [9], the origin of the 0.7-
anomaly is caused by the presence of the van Hove ridge
in the LDOS. Its apex crosses the chemical potential, when
the QPC is tuned into the sub-open regime, that is, when
the conductance takes values 0.5!g!1. As a consequence,
the local spin-susceptibility, χ(x) = 1

2
(∂hm(x))h=0, shows not

only a strong spatial dependence due to the inhomogeneity of
the QPC, but also a strong Ṽc-dependence, when the potential
is shifted through µ (see Fig. 2c). This also manifests itself in
the total spin-susceptibility of the QPC, χtot =

∫
x∈QPC dx χ(x),

which is plotted in Fig. 2d for several values of interaction
strength. Three direct consequences of interactions stand out:
First, interactions strongly enhance the effect of an applied
magnetic field. Second, the maximum in the QPC’s suscepti-
bility is shifted to somewhat lower values of Ṽc and, third, this
maximum occurs when the QPC is sub-open (gray dashed
vertical line in Fig. 2, compare with conductance curves in
Fig. 2a). These anomalous spatial structures in the spin sus-
ceptibility serve as the main incentive for the experimental
work described further below, whose ultimate goal is to detect
these structures by opto-transport hybrid measurements.

3 Motivation for the experiment Next, we
describe ongoing experimental work, whose ultimate goal
is to test the following prediction emerging from the theoret-
ical work described above: For a QPC tuned in the regime of
the 0.7-anomaly at zero external magnetic field, theory pre-
dicts an enhancement in the local electron spin susceptibility
[9]. At finite magnetic fields the enhanced spin suscepti-
bility should give rise to electron-spin polarization with a
spatial distribution characteristic of a QPC operated at the
point of the 0.7-anomaly (see Fig. 2a). Moreover, this polar-
ization would also result in spin-sensitive conductance. In
principle, both signatures could be probed by optical means:
while spatially-resolved Kerr or Faraday rotation could be
used to map out the local spin-polarization in the vicinity of
the QPC, polarization-selective optical spin-injection could
be exploited to create an electron-spin imbalance across the
QPC to drive spin-polarized currents. Our first step en-route
to combined transport and optical spectroscopy of a QPC
in the 0.7-anomaly regime was to design a heterostructure
that would allow to implement both spin-sensitive Faraday
rotation and spin-selective charge carrier injection.

The following experimental part is divided into three sec-
tions. In Section 3.1 we discuss the optimization process of
the heterostructure design and the results of the simulations

performed with nextnano3 [15]. In Section 3.2 we present ini-
tial transport and optical characterization measurements of
the heterostructure. Section 3.3 describes the present stage of
our experiments and provides perspectives for the combined
transport and optical spectroscopy of the 0.7-anomaly in a
QPC.

3.1 Semiconductor heterostructure design and
simulations The design of the heterostructure for com-
bined transport and optical experiments was guided by two
main objectives. On one hand, we intended to realize a high
quality two-dimensional electron system (2DES) suited for
the observation of the 0.7-anomaly in a QPC. On the other
hand, the sample structure should be designed to allow for
spin-selective optical excitations of charge carriers from the
valence band into the conduction band states of the 2DES just
above the Fermi level, and at the same time avoid excitations
of charge carriers in any other heterostructure layer. To make
all sample regions but the 2DES transparent to light at optical
frequencies that meet the resonance condition for inter-
band excitation of electrons into the Fermi sea we chose to
embed an InxGa(1−x)As quantum well (QW) hosting the 2DES
in higher bandgap materials such as GaAs and AlGaAs.
Accordingly, optical excitations from the valence band states
into the conduction band states within the InxGa(1−x)As QW
exhibit the smallest energy for interband transitions, provided
that the concentration x of indium is finite. At the same time
quantum confinement associated with the QW removes the
degeneracy of heavy- and light-hole subbands at the Γ -point
of bulk zinc blende semiconductors, which in turn ensures
“clean" dipolar selection rules for spin-selective optical exci-
tations from the heavy hole subband at Ehh into the states at
EF of the 2DES.

Figure 3 illustrates the basic layout of our heterostruc-
ture. The corresponding layer sequence along the sample
growth direction is shown in the left panel of Fig. 3. The
InxGa(1−x)As QW of variable thickness zQW and an indium
fraction x in the range of 0 < x < 0.1 is sandwiched between
GaAs and Al0.235Ga0.765As that contains a !-doping region
located at a distance z! above the QW. The AlGaAs layer acts
as a tunnelling barrier between the 2DES and the semitrans-
parent Schottky gate deposited on top of the heterostructure.
The overall thickness of the AlGaAs barrier was set to half
of the wavelength of the expected QW interband transition to
minimize optical interference effects. The silicon !-doping
provides excess electrons to form a 2DES inside the QW
and the final GaAs top cap layer prevents oxidization of
the AlGaAs barrier. In the right panel of Fig. 3 the corre-
sponding band structure profile calculated with nextnano3 is
shown for zero external gate voltage, Vt = 0, and x = 0.07,
zQW = 10 and z! = 50 nm. The band profile bending is due
to the built-in Schottky potential, accounting for the lowest
QW electron level Ee to lie below the Fermi energy, in accord
with our intention to create a modulation-doped 2DES within
the InGaAs QW.

We recall the main properties of the intended heterostruc-
ture. First the QW containing the 2DES should exhibit the
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Figure 3 Left: Schematic design of the heterostructure. It consists
of a GaAs substrate on which an InGaAs quantum well (blue),
AlGaAs spacer with a Si !-doping layer (yellow), and a GaAs cap
are grown. The 2DES formed in the InGaAs quantum well is pop-
ulated by electron transfer from the !-doping layer. A GaAs top
cap layer terminates the heterostructure. A semitransparent metal
gate on top of the heterostructure gives rise to a built-in Schot-
tky potential and allows to further bend the band structure via a
voltage Vt. The quantum well thickness zQW, the indium concentra-
tion x and the distance z! from the quantum well and the !-doping
region were used as optimization parameters in simulations with
nextnano3. Right: Band structure profile along the heterostructure
growth direction obtained from simulations for Vt = 0. Ec and Ev

denote the conduction and valance band edges, Ee and Ehh the low-
est electron and heavy-hole levels confined in the quantum well,
and EF is the Fermi energy, respectively.

smallest interband transition energy with well defined dipo-
lar selection rules for spin-selective excitations. Second the
semiconductor matrix above and below the QW should be
transparent at the intended optical frequencies. Both crite-
ria can be satisfied by the heterostructure layout of Fig. 3.
Finally, the density of the 2DES should be at least 2 ×
1011 cm−2 to ensure the required transport characteristics.

To this end we used nextnano3 to monitor the 2DES
density as a function of the optimization parameters x,
zQW and z!. The objective was to achieve a maximum
electron density inside the QW of about 3 × 1011 cm−2.
Simultaneously the interband transition wavelength of the
QW region, which follows from the energy difference
between the lowest QW hole level and the Fermi energy,
was intended to lie above 830 nm in order to not overlap
with optical transitions of carbon impurities [16] inherent
to the molecular beam epitaxy (MBE) growth process of
the heterostructure. In Fig. 3 these adjustable parameters
for the simulations are highlighted in green. Raising the
QW thickness zQW as well as the QW indium content x
mainly increases the QW interband transition wavelength.
Reducing the distance z! between the QW and the !-doping
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Figure 4 Simulation results for the QW electron density (blue)
and the interband transition wavelength (black) as a function of
gate voltage. Results are shown for three different QW thicknesses
of zQW = 8 nm (circles), 10 nm (triangles), and 15 nm (squares)
for a fixed indium content of x = 0.07 and a fixed spacer distance
between the doping region and the QW of z! = 50 nm.

layer tends to increase the 2DES density. However, at small
QW thickness, proximity of the QW 2DES and the doping
layer, and a high indium concentration typically reduce the
mobility of the QW electrons and should be avoided.

Figure 4 shows the simulation results for three different
heterostructures with an indium concentration of x = 0.07
and zQW = 50 nm. The QW thickness was taken as 8, 10,
and 15 nm to obtain a variation in the QW electron den-
sity (blue) and the interband transition wavelength (black)
as a function of the voltage applied to the semitransparent
top gate. Decreasing the gate voltage increases the energy
of the QW electron levels with respect to the Fermi energy
which gradually depletes the 2DES density inside the QW.
This depletion becomes increasingly pronounced below gate
voltages of 0.15 V until the pinch-off is reached at about
−0.4 V for all three heterostructures. The interband wave-
length remains constant for Vt > 0.25 V. At more negative
gate voltages the simulations predict a redshift of the reso-
nance condition that is associated with a decrease of the Fermi
energy. In Fig. 4 the maximum 2DES density as well as the
optical transition wavelength are close to our intended values.

3.2 Basic transport and optical characteristics
Based on these simulation results a heterostructure was
grown by MBE with an indium concentration of x = 0.07,
the separation between the QW and the !-doping layer of
zQW = 50 nm, and a QW thickness of 10 nm (compare
Fig. 3). Subsequently the sample material was character-
ized with respect to basic transport and optical properties.
To determine the electron density and mobility of the 2DES
a standard Hall bar geometry was used. The Hall bar mesa
was fabricated by conventional wet etching techniques and
AuGe/Ni/AuGe Ohmic contacts were defined as Ohmic con-
tacts to the 2DES. To allow control of the electron density
a semitransparent titanium gate with a thickness of 5 nm

© 2014 The Authors. Phys. Status Solidi B is published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 5 Measured longitudinal (black) and Hall voltages (blue)
as a function of the perpendicularly applied magnetic field at top
gate voltages of 0 V and −1.7 V (T = 4.2 K). Distortions of the Hall
voltage between plateaus are due to an asymmetry of the used Hall
bar geometry which gives rise to an Ohmic resistance contribution
to the Hall voltage.

was deposited on top of the central region of the Hall bar
structure.

The electron density and mobility were extracted from
four-terminal dc Hall voltage measurements before the sam-
ple was subjected to light. Magnetic fields of up to 5.7 T were
applied perpendicularly to the QW plane. By fitting the Hall
voltage Uxy versus the applied magnetic field B in the linear
regime at low B (Fig. 5) the carrier density of the 2DES is
extracted by

n2DES = I

e · dUxy/dB
. (2)

e is the elementary charge and I is the current through the
Hall bar. The mobility µ2DES of the electron system inside
the QW was obtained from the longitudinal voltage at zero
magnetic field Uxx(B = 0) (Fig. 5) using the relation

µ2DES = 0.75
e · n2DES · Uxx(B = 0)

(3)

and the electron density n2DES obtained according to Eq. (2).
The number in the numerator is a scaling factor imposed by
the particular geometry of the employed Hall bar structure.
The same procedure was also carried out after broad-band
illumination of the sample.

In a second step we studied basic optical properties of the
sample by investigating the photoluminescence (PL) from the
Hall bar. A cryogenic confocal microscope with an optical
spot size of 1 "m was used to record the local PL response,
which was then spectrally dispersed by a monochromator
and detected with a low-noise liquid nitrogen cooled CCD.
All measurements were carried out at a sample temperature
of 4.2 K.

The combined transport and optical characterization
results are shown in Fig. 6. The interband transition wave-
length (black) and the QW electron density (blue) are shown
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Figure 6 Transport and optical characterization of the heterostruc-
ture. Data (symbols; lines are guides to the eye) and corresponding
simulations as in Fig. 4 (dashed lines) for a heterostructure with a
QW of thickness zQW = 10 nm, 7% of indium concentration, and
z! = 50 nm. The wavelength of the photoluminescence peak max-
imum and the electron density of the QW 2DES are shown as a
function of gate voltage in black and blue, respectively. Circles and
triangles indicate the measurement results before and after light
illumination of the Hall bar, respectively. Half-filled triangles cor-
respond to electron densities measured after repeated illumination
of the sample. The photoluminescence was obtained from the cen-
tral region of the Hall bar using a confocal setup with excitation
powers of 7 "W in the range of +0.6 to −1.0 V and 0.3 "W below
−1.0 V at an excitation wavelength of 830 nm. The 2DES density
was derived from standard Hall measurements. All measurements
were carried out at 4.2 K.

as a function of gate voltage. Circles (triangles) indicate
the results of measurements done before (after) illumination
of the sample with continuous wave (cw) lasers (with 815
and 830 nm center wavelength). Dashed lines show the cor-
responding simulation results from Fig. 4 for comparison.
In the simulations all silicon dopants were assumed to be
ionized, which is realized experimentally by sample illumi-
nation. Despite an increase by ∼ 30% of the 2DES density to
around 4.2 × 1011 cm−2, upon illumination, the simulated
and experimental results are in very good agreement with
the predictions of the simulation. Consistently, the pinch-off
gate voltage where the carrier density goes to zero is shifted
to more negative values upon illumination as compared to
the simulated pinch-off voltage. Repeated illumination of the
sample did not introduce further significant changes in the
2DES density (half-filled triangles in Fig. 6), indicating a
long-term stability of the 2DES density after the initial ion-
ization of silicon dopants. The mobility of the 2DES was
determined to be ∼ 70, 000 cm2 V−1 s−1 within the entire
gate voltage range above −1.5 V after sample illumination
(data not shown).

Despite good agreement between simulations and
experiment for the 2DES density, we found considerable
discrepancy between expected and observed values for the
wavelength of the optical transition that we monitored via PL.
Figure 6 shows the wavelength of the PL peak as a function

www.pss-b.com © 2014 The Authors. Phys. Status Solidi B is published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

161



ph
ys

ic
a ssp st

at
us

so
lid

i b

1936 E. Schubert et al.: Toward combined transport and optical studies of the 0.7-anomaly in a QPC

880 890 900
0

1

2

3

in
te

ns
ity

 (a
.u

.)

885 890 895
0

1

2

3

 

Figure 7 Photoluminescence spectra recorded for a Hall bar sam-
ple at 4.2 K with a QW thickness of 10 nm and incident excitation
powers of Pexc = 183 "W (red), 12 "W (black, main, and inset
graph) and 43 nW (gray) scaled to maximum intensity values. The
photoluminescence spectra were measured in the central Hall bar
region at gate voltages of Vt = +0.6 V (flatband) under cw exci-
tation at a wavelength of 830 nm. The photoluminescence from an
area where the QW was etched away is shown in blue for reference.
Inset: photoluminescence spectra at two different gate voltages of
+0.6 V (black) and −2.0 V (green) for incident excitation power
of 300 nW.

of gate voltage recorded near the center of the Hall bar. Inci-
dent laser excitation powers were 7 "W in the voltage range
between+0.6 and−1.0 V and 0.3 "W below−1.0 V, respec-
tively. The excitation wavelength was set to 830 nm, close to
the wavelength region of carbon impurity states in GaAs at
4.2 K [16]. The mean difference between the simulated and
the measured optical transition wavelength is about 50 nm
(83 meV) and a reversed energy dispersion as a function of
gate voltage is observed (redshift in experiment vs. blueshift
in simulations for increasing electron density). We speculate
that the discrepancy partially arises from excitonic effects and
the quantum confined Stark effect that were not accounted for
in our simulations. Nevertheless, our main objective of the
heterostructure design aiming at optical QW transition ener-
gies below the band gap of GaAs was successfully achieved.

Figure 7 shows the spectral characteristics of the PL. The
spectra were measured with a confocal setup in the central
Hall bar region at gate voltages of +0.6 V (flatband con-
dition) for a cw laser excitation wavelength of 830 nm at
4.2 K. The PL exhibits an asymmetric profile reminiscent
of Fermi edge singularity [17–19] even at lowest excitation
powers down to ∼ 40 nW (gray spectrum in Fig. 7). No PL
was detected in the relevant spectral window from sample
regions where the QW was etched away (blue spectrum in
Fig. 7) indicating the QW to be the source of the PL. We find
evidence of higher-energy shoulders at 883 and 885 nm that
emerge with increasing excitation powers accompanied by
a blue-shift of the PL maximum. These characteristics were
consistently found at different spatial locations of the Hall
bar structure where the QW was not etched away. We also

Figure 8 Optical microscope image of the sample layout with eight
QPCs and two global top gates fabricated on the 10 nm InGaAs
QW heterostructure. Optical and electron-beam lithography fol-
lowed by gold deposition and lift-off were used to define gates
(yellow) on top of a square mesa with an edge length of 160 µm.
The QPCs are formed between the ends of finger-like gates (also
shown as scanning-electron micrograph insets each including a
horizontal scale bar corresponding to 1 µm length) of different
geometries. On the top of the mesa two semitransparent rectan-
gular gates were deposited which are electrically disconnected by
cross-linked PMMA from all other gates used to define the QPCs.

found that the PL was sensitive to the gate voltage. The inset
of Fig. 7 compares the PL spectra at Vt = +0.6 and −2.0 V,
showing a clear blue-shift of the PL resonance with more
negative gate voltages that was accompanied by a gradual
evolution of the PL line shape toward a symmetric Gaussian
peak (fit not shown).

3.3 Outlook The basic properties of the heterostruc-
ture described above represent a promising starting point for
in-detail transport and optical studies of the 0.7-anomaly in
QPCs. Figure 8 shows an optical micrograph of our present
sample layout implemented on a heterostructure that con-
tains a 2DES hosted by an InGaAs QW of 10 nm thickness.
Gold gates defined by optical lithography (outer yellow pads)
connect to inner gold gates processed by electron beam
lithography (light yellow) across the mesa-edges (centered
square and starlike surrounding connections). Eight QPCs
of different widths and lengths of the gated constrictions
between 200 and 500 nm are covered by layers of cross-
linked poly methyl methacrylate (PMMA) (dark gray). The
latter electrically isolates the QPC gates from the two semi-
transparent nickel–chromium top gates of 5 nm thickness
(black rectangles on top of the PMMA in Fig. 8). They allow
simultaneous optical access to the 2DES layer and tunability
of carrier density. The insets in Fig. 8 show SEM pictures of
two specific QPC geometries.

Figure 9 shows a series of conductance measurements
on a specific QPC of the sample in Fig. 8 as function of the
QPC gate voltage and a temperature of 4.2 K. Each pinch-off
curve was measured at a top gate voltage Vt set equidistantly

© 2014 The Authors. Phys. Status Solidi B is published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 9 Conductance through a QPC of the sample in Fig. 8 mea-
sured at a setup temperature of 4.2 K. Shown are eight pinch-off
curves as function of the QPC gate voltage, at various top gate volt-
ages set between−0.8 and+0.6 V in steps of 0.2 V. Integer values of
the spin-degenerate conductance quantum are highlighted by gray
solid lines. A strongly pronounced kink is consistently visible at
around 0.6 GQ (dashed line).

between −0.8 and +0.6 V. A more positive voltage applied
to the extended top gate increases the carrier density in the
vicinity of the QPC, which shifts the QPC pinch-off to more
negative voltages. Although thermally smeared out, four
conductance plateaus are clearly visible at Vt = +0.6 V.
Each emerging plateau becomes increasingly pronounced
at higher 2DEG densities since the steeper lateral QPC con-
finement potential barriers raise the sublevel spacing within
the constriction region. Additionally, a distinct kink occurs
at about 0.6 GQ throughout the whole top gate voltage range
of 1.4 V (dashed line in Fig. 9). Its position as well as promi-
nent appearance, compared to the QPC integer conductance
plateaus at 4.2 K [4, 5], are indications of a 0.7-anomaly.

The next step will involve detailed transport experiments
to study the 0.7-anomaly as a function of the QPC geome-
tries in the accessible experimental parameter space. In
opto-transport experiments we will then attempt to optically
monitor the field dependence of the spin-up and spin-down
densities in the vicinity of the QPC as a function of QPC gate
voltage Vc and top gate voltage Vt. We will also aim to per-
form near-resonant injection of spin-polarized electrons in
the vicinity of a QPC to observe spin-selective transport. We
intend to exploit the full potential of the combined optical and
transport setup in terms of position, energy and spin selective

spectroscopy to shed light on the microscopic origin of the
0.7-anomaly.
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