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Abstract

There is an urgent need for an efficient technology of disinfection and steriliza-

tion in view of the alarming dimensions health care-associated infections (HAIs) have

reached. Cold atmospheric pressure plasma (CAP) can be utilized for hygienic and

medical purposes, in particular in surface decontamination applications, and provides

a promising alternative to the conventionally used sterilization techniques. Surface

Micro-Discharge (SMD) offers a technology for generating CAP that can be applied to

wide areas.

In the present work, I investigate the plasma chemistry involved in the inacti-

vation of microorganisms by application of the SMD in order to optimize the antimi-

crobial effect. For this purpose, different strains of vegetative bacteria and bacterial

endospores are exposed to the SMD with experimental parameters such as the gas

composition, power input, treatment duration and humidity varied. At the same time,

the concentration of ozone produced by the SMD is monitored, and its correlation with

the antimicrobial efficacy is investigated.

I demonstrate that the bactericidal effect of the SMD on both the Gram-negative

Escherichia coli and Gram-positive Enterococcus mundtii is similar and strongly corre-

lates with the ozone concentration. The sporicidal effect on Geobacillus stearothermophilus

is crucially affected by the humidity, whereas the ozone concentration appears to have

no influence. In addition, I investigate the dynamic behavior of ozone produced by

the SMD by varying the geometry and the time interval for the plasma generation and

by igniting the plasma in two subsequent phases with different frequencies. Possible

explanations for the obtained results are provided.

This work fortifies the role of SMD as an efficient sterilization method and dis-

closes diverse possibilities for optimizing the antimicrobial effect.
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CHAPTER 1
INTRODUCTION



1.1 Definition of Plasma

Plasma is often referred to as the fourth state of matter. In the solid state, the

atoms, molecules and ions are arranged at fixed locations and build up a lattice. As

more heat is added to the system the interparticle bonds in the matter loosen and the

system finds itself in liquid state. As the liquid matter is heated further, the system

changes into gaseous state. The interparticle bonds become negligible compared to

the kinetic energy of the system, and the particles can move freely. As the internal

energy of a gaseous system is increased beyond their ionization energy, the neutral gas

particles can be ionized and charge carriers, i.e. electrons and ions, can move freely. A

particle system that contains freely movable charge carriers is called plasma.

The first use of the term plasma goes back to Irving Langmuir (1881 - 1957). He

associated the positive column of a DC gas discharge, the quasi-neutral part of the

discharge comprising electrons, ions and neutral gas particles, with the blood plasma

that carries different kinds of species including red and white blood cells and germs [1].

Today, it is known that the most part of the visible matter in the universe is

constituted by plasma, in particular hydrogen plasma. Intergalactic, interstellar and

interplanetary plasmas, the solar wind, solar coronas and stars, such as the Sun, red

giants and white dwarfs, are examples for the astrophysical plasmas. The ionosphere,

the plasmasphere and the van Allen radiation belts of the Earth’s atmosphere com-

prise plasma. Man-made plasmas are generated in fusion reactors, in laboratory and

technical discharges and for plasma processings.

The elementary plasma parameters extend over many orders of magnitude: The

particle density ranges from ⇠ 1 m�3 for intergalactic plasmas to ⇠ 1037 m�3 for white

dwarfs. The temperature ranges from ⇠ 103 K for laboratory and technical discharges
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to ⇠ 108 K for fusion reactors and star core. High magnetic fields of up to 104 T have

been observed from white dwarfs .

1.2 Categorization of Plasma

1.2.1 Ideal Plasma

If the mean thermal kinetic energy Ekin = 3
2 kBT exceeds the mean Coulomb

potential energy Epot = e2

4pe0
n� 1

3 , the system can be called an ideal plasma. The ratio

of the potential energy to the kinetic energy, the coupling parameter Gc, is given by the

following equation for electrons

Gc =
e2

4pe0r̄
1

kBTe
=

e2

4pe0kBTe

3

r
4pne

3
(1.1)

with the Wigner-Seitz radius (4pne/3)�1/3 used as the mean interparticle distance r̄.

For the ions of the ionization state z, the charge, the temperature and the particle den-

sity need to be changed accordingly. Hence, an ideal plasma is given if Gc ⌧ 1.

1.2.2 Thermal and Non-Thermal Plasma

In a thermal plasma, all charged and neutral particles are in a thermal equilib-

rium, i.e. electrons, ions and neutrals have the same temperature (Te ⇡ Ti ⇡ Tn).

Most of the astrophysical plasmas are thermal plasmas. Man-made thermal plasmas

are produced mainly in fusion reactors and in arc discharges. Because of the typically

high energy and energy flux density, the arc discharge is widely used in diverse areas

of engineering e.g. for welding, cutting, waste destruction, in arc furnaces, arc lamps,
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as shutters in electric circuits and in surface modification by thermal plasma chemistry

(via quenching) [2].

In a non-thermal plasma, alternatively nonequilibrium, low temperature or cold

plasma, the electrons are at a much higher temperature than the ions (Te � Ti), which

have in general the same temperature as the neutral background gas particles (Ti ⇡ Tn).

Since the mass of ions and neutral particles is much larger than of electrons, the particle

system as a whole is at room temperature. This condition can be obtained, for example,

by applying an external electric field with a high voltage (HV) at radio-frequency (RF)

using opposed electrodes at a typical distance of ⇠ mm. The ions cannot follow the

high frequency of the external field due to their heavy mass and small mobility. Hence,

the ions are hardly accelerated and the ion temperature remains at the level of the

background gas, i.e. at room temperature. On the contrary, the electrons are able to

follow the RF of the external electric field and gain energy according to the applied

input power.

1.2.3 Low-Pressure and Atmospheric Pressure Plasma

Non-thermal plasma can be sub-categorized into atmospheric pressure and low

pressure plasma applications. The advantages of the processing at low pressure in-

clude a high energy yield and precision due to the small number of collisions and a

high purity of the processed plasma gas. Low-pressure non-thermal plasmas are used

particularly for materials processing, e.g. in the plasma-enhanced chemical vapor de-

position (PECVD). However, the need for a vacuum system induces several drawbacks

such as higher expenses, longer operation times and larger space requirements that

make the plasma setup unwieldy and immobile.

The generation and application of non-thermal plasma at atmospheric pressure

allow the treatment of vacuum-sensitive materials, e.g. living tissues. The plasma gen-

erator can be modified according to the requirements in a versatile way. For example,
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the plasma can be generated and applied in an open volume and portable devices can

be designed.

1.3 Relevant Parameters of Plasma Physics

Debye Length

In a plasma, a single charge is screened by the neighboring opposite charges.

As a consequence, the Coulomb force is attenuated, which is quantified by the Debye

length

lD =

s
e0kBTe

nee2

where Te is the electron temperature and ne the number density of electrons.

Plasma Parameter

The plasma parameter

ND =
4p

3
nelD

gives the number of electrons in a sphere with the radius of Debye length.

Plasma Frequency

The characteristic oscillation of the charge carriers around their equilibrium po-

sitions is described by the plasma frequency

w2
p = w2

pe + w2
pi
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where wpe and wpi are the plasma frequency of electrons and ions, respectively, and

defined as

wpe =

s
nee2

e0me
and wpi =

s
niZ2

i e2

e0mi
,

where e0 is the vacuum permittivity, ni the number density of ions, me and mi the

mass of electrons and ions, respectively, and Zi the charge number of ions. The plasma

frequency wp can be approximated by the electron plasma frequency wpe because of the

large mass ratio of ions to electrons. Electromagnetic waves with a frequency greater

than the plasma frequency can traverse the plasma. At lower frequencies, the wave is

reflected by the plasma.

Degree of Ionization

The degree of ionization is defined as the ratio of the number density of ions to

the total number density of the system

ai =
ni

ni + nn
⇡ ni

nn

where ni and nn are the number densities of ions and neutrals, respectively. If the

system is in the thermodynamic equilibrium, the density ratio of the ions with different

degrees of ionization is given by the Saha equation:

nz+1 · ne
ni

=
gz+1

gz

2
l3 exp


� cz

kBT

�
(1.2)

nz and nz+1 are the ion densities and gz and gz+1 the degeneracies for the states of

ionization z and z + 1, respectively. cz is the ionization energy for the ionization state

z, kB the Boltzmann’s constant, T the temperature and

l =

s
h2

2pmekBT
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the thermal de Broglie wavelength of an electron, with h the Planck’s constant and me

the mass of an electron. In low-temperature laboratory plasmas, the typical degree of

ionization is between 10�7 and 10�5.

From the plasma setups used in this thesis, as will be described in the following

chapters, the electron temperature was estimated ⇠ 700 K and the electron density at

1014 - 1015 cm�3, leading to the Debye length of ⇠ 10�1, the plasma parameter ⇠ 107

- 108 and the electron plasma frequency of ⇠ MHz. With the number density of air ⇠

10�21 cm�3, the degree of ionization in the plasma volume was estimated below 10�6.

1.4 The Importance of Hygiene

1.4.1 Nosocomial Infections

Infections that occur within 48 hours after the admission to a medical facil-

ity is called nosocomial infections or alternatively hospital-acquired or health care-

associated infections (HAIs). According to Klevens et al., the estimated number of the

annual nosocomial infections in the U.S. in 2002 was approximately 1.7 million and

was higher than the number of infections with any notifiable disease [3]. The esti-

mated number of deaths associated with the nosocomial infections was approximately

99 000 and outweighed several top ten causes of death in U.S. In a recent study, Magill

et al. reported that approximately 4% of the patients in acute care hospitals in U.S. had

acquired one or more nosocomial infections in 2011 [4]. They estimated that there were

nearly 650 000 patients with nosocomial infections nationwide.

According to a report by the European Centre for Disease Prevention and Con-

trol, the estimated number of the nosocomial infections in acute care hospitals in the

European Union and Croatia was 3.2 million patients per year in 2011 - 2012 [5]. It
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was assumed that approximately 6% of patients in acute care hospitals had acquired

nosocomial infections. The Hospital in Europe Link for Infection Control through

Surveillance (HELICS) estimates that approximately 5 million nosocomial infections

occur in acute care hospitals in Europe annually, leading to 135 000 deaths per year [6].

Country-specific studies estimated 125 000 patients in Belgium [7], 46 000 patients in

Finland [8] and 321 000 patients in Great Britain [9] with nosocomial infections. In

Germany, 10 000 to 15 000 deaths were estimated from 400 000 to 600 000 nosocomial

infections in 2006 [10].

The most common pathogens from nosocomial infections are coagulase-negative

staphylococci, Staphylococcus aureus, Enterococcus species, Candida species, Escherichia

coli species, Klebsiella species and Pseudomonas aeruginosa. Additionally, multidrug-

resistant pathogens as methicillin-resistant S. aureus (MRSA), vancomycin-resistant En-

terococcus (VRE) and carbapetem-resistant P aeruginosa are among the most frequently

isolated pathogens from nosocomial infections [5, 11].

A particularly high risk of infection was found during surgeries and invasive

treatments e.g. via catheter, mechanical ventilation and intubation [3, 5]. The major

sites of nosocomial infections are Pneumonia, at the urinary tract, at surgical sites and

in the bloodstream. Patients in acute care hospitals or in intensive care units (ICUs)

generally have a weakened immune system which often increases the incidence and

mortality for the nosocomial infection [12]. The large numbers of nosocomial infections

give rise to tremendous costs for the health care system. Especially, the infection with

antibiotic-resistant bacteria extends the hospitalization, increases the risk of death and

requires costly treatments with toxic antibiotics. The estimated overall medical costs

of nosocomial infections range from 30 to 45 billion dollars per year in U.S. [13]. The

HELICS estimates that the annual economic burden of nosocomial infections in Europe

is AC13 - 24 billion [6]. Reed and Kemmerly calculated an additional medical cost of $

650 - 134 602 due to the infection with antibiotic-resistant bacteria depending on the

site of infection [14].

8



1.4.2 Surgical Hand Antisepsis

Considering the large numbers of infections, costs and deaths, the prevention

of nosocomial infections is of great importance. The proper hand disinfection of the

medical staff is as essential as the effective sterilization of invasive and non-invasive

tools used in medical facilities.

Widmer observed that 35% of sterile gloves have tiny punctures after 2 hours

of surgery [15]. Doebbeling et al. found that even unused gloves do not fully pre-

vent bacterial contamination of hands [16]. Furthermore, there have been reports

about infections by contaminated hands of the surgical team despite wearing sterile

gloves [17–19]. The European Prevalence of Infection in Intensive Care estimated that

40% of nosocomial infections come from poor hand hygiene [20]. There are many dif-

ferent handrub formulations for the surgical hand preparation. The World Health

Organization’s (WHO) Guidelines and Hand Hygiene in Health Care recommends

formulations comprising alcohol (ethanol/isopropyl alcohol), hydrogen peroxide and

gylcerol [21]. Depending on the formulation, hand rubbing from 30 seconds to 5 min-

utes are required. However, skin irritation, dermatitis, dryness and allergic reaction

are frequent side-effects from using alcohol-based handrubs [22, 23]. As pointed out

by Morfill et al., the medical staff is confronted with 60 - 100 hand disinfections a day,

which would lead to a daily disinfection time of 3 to 8 hours in total [24].

1.5 Conventional Sterilization Techniques

Effective sterilization is important for invasive as well as non-invasive tools, as

the contamination can be transmitted in diverse ways [21]. For the sterilization of

invasive tools in medical facilities, there are several commonly used techniques.
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1.5.1 Heat

Heat is the oldest and best recognized sterilizing agent. It is assumed that heat

induces a denaturation and/or coagulation of macromolecules, especially proteins and

enzymes, and causes oxidative damage especially by free radicals. Moreover, it is pos-

sible that a heat shock induces the apoptosis of cells. The application of dry heat can

impair the electrolyte balance due to the absence of water and thereby cause toxic ef-

fect.

Boiling water or saturated steam is used for moist heat sterilization. Basically,

water is not a good sterilizing agent because of its relatively low boiling temperature.

But its availability and the economical and environmental advantages favor using wa-

ter. Moist heat sterilization is quicker than dry heat sterilization because of the greater

heat conductivity of water/steam and the additional heat transfer during condensa-

tion. The most common method is performed inside a pressure vessel (e.g. autoclave)

using saturated steam at 121�C or 132�C. The typical sterilization duration varies be-

tween several minutes and 60 minutes depending on the temperature, mechanism and

object species. The main drawbacks of using hot steam are the corrosion of the metal

and sharp instruments and erosion e.g. of glass surfaces. Another major drawback is

the strong increase of water’s vapor pressure at high temperature. According to the

data from the Dortmund Data Bank [25], a temperature increase from 140�C to 160�C

entails a pressure increase from 3.6 to 6.1 bar. A further temperature increase by 20�C

to 180�C results in a pressure of 9.6 bar.

The high pressure requirements make the moist heat sterilization technique dan-

gerous and impracticable at temperatures above 132�C. If higher temperatures are re-

quired, dry heat sterilization with air as medium is used instead. Moreover, dry heat is

capable of penetrating materials that are impenetrable for steam and water vapor. It is

a prevalent belief that the primary mechanism of the sterilization by dry heat, includ-

ing incineration, is an oxidation process. Since air has a much lower heat conductivity
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than steam, the sterilization by dry heat takes much more time than by moist heat. The

suggested sterilization time depends on the temperature and varies from 60 minutes

at 170�C to "overnight" at 121�C [26]. Oag found an abrupt increase of the sporici-

dal efficacy by dry heat at 160�C, significantly reducing the required sterilization time

above this temperature [27]. Generally, the dry heat sterilization is recommended only

if steam is not applicable due to the expected surface damage as mentioned above or

due to impermeability (e.g. for petrolatum, oils and powders) [26].

The general drawbacks of the heat sterilization are the inapplicability to heat

sensitive materials and the deleterious effects to the treated material surfaces (corro-

sion, erosion and oxidation).

1.5.2 Gaseous Biocidal Chemicals

The sterilization using gaseous chemicals can be performed at relatively low

temperatures of ⇠ 35�C to 80�C [28]. The sterilizing agents can be subdivided into

alkylating and oxidizing chemicals. Commonly used alkylating chemical agents are

ethylene oxide (C2H4O), propylene oxide (C3H6O), formaldehyde (CH2O) and beta-

propiolactone (H4C3O2). Commonly used oxidizing agents are hydrogen peroxide

(H2O2), peracetic acid (CH3CO3H) and chlorine dioxide (ClO2) and ozone (O3). For the

sterilization of medical devices, the alkylating sterilants ethylene oxide and formalde-

hyde are most extensively used, while propylene oxide is frequently used especially

in the food industry. Due to the oxidative properties, the application of the oxidiz-

ing gaseous sterilization is limited to corrosion-resistant materials only. The gaseous

sterilization is strongly affected by both the ambient air, which hampers the permeabil-

ity of the gaseous sterilants, and the humidity. The predominant sterilizing chemical

gas is ethylene oxide (EtO). Compared to other gaseous chemical sterilants, EtO steril-

izes fast, especially regarding the availability of the sterilized material, shows a good

permeability (e.g. through packaging materials, occluded locations) and is associated
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with a relatively low potential of misapplication. The typically required sterilization

time varies between 30 minutes and 9 hours depending on the surface temperature

and procedure.

The main drawback of using gaseous chemicals for sterilization is the risks for

the human health. EtO has been classified as a mutagen and human carcinogen by

the International Agency for Research on Cancer (IARC). The Occupational Safety and

Health Administration (OSHA) limits the exposure to EtO by 1 ppm in 8-hour time

weighted average (TWA). Several other chemical gaseous sterilants such as formalde-

hyde, chlorine dioxide, hydrogen peroxide and propylene oxide are subject to limita-

tions as well, with the OSHA limits ranging from 0.1 ppm to 20 ppm in 8-hour TWA.

Sterilization by EtO produce toxic chemical residues and byproducts such as ethylene

glycol and ethylene chlorohydrine. Additionally, EtO has a flammability range of 3%

to 100% by volume in air and it is possible that EtO deflagrates in absence of oxygen.

1.5.3 Ultraviolet (UV) Radiation

Downes and Blount (1877) were among the first who reported about the destruc-

tion of bacteria and fungi by the sunlight [29]. The antimicrobial property of UV has

been primarily utilized for the water purification. Especially, the use of UV has been

gaining growing popularity since the disclosure about the noxious byproducts from

ozonation and chlorination [30]. The sterilization by UV is initiated by the absorption

of the photon by the pyrimidine bases of the nucleic acids (DNA and RNA). As illus-

trated by Blatchley and Peel, the absorption spectra of purine and pyrimidine bases as

well as amino acids show a maximum at wavelengths between 250 nm and 280 nm in

UVC and UVB range [31]. UVA light with wavelengths of 320 nm or more is poorly

absorbed by the nucleobases. Vacuum UV with wavelengths below ⇠ 200 nm have

been found not to contribute to the antimicrobial effect since water vapor and nitrogen

and oxygen molecules (N2 and O2), the main constituents of the ambient air, behave as
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strong absorbers in this range. The absorbed energy induces photochemical reactions,

from which a dimer is formed between two of the bases [32]. The dimer inhibits the

formation of a new nucleic acid chain and thus the cell replication [33]. Depending on

the biological indicator and the setup, the required UV dose for the inactivation of the

microorganisms vary between a few and several tens of mJ/cm2 [34, 35].

The second mechanism of the UV sterilization is the release of free radicals that

increase the oxidative stress [36], leading e.g. to the peroxidation of the lipid mem-

brane. This oxidizing process can result in DNA damage [37–39].

The main drawback of sterilization by UV is the impermeability. UV cannot pen-

etrate various packaging materials including glass and cannot reach occluded objects.

Furthermore, UV sources are relatively expensive and must be operated with care. The

National Institute for Occupational Safety and Health (NIOSH) recommends a maxi-

mal UVC dose of 0.2 µW/cm2 [40]. As UV can destroy the nucleic acids, it can cause

skin cancer and be harmful for human eyes.

1.6 Novel Sterilization Technologies

Novel technologies for sterilization have been developed and are being investi-

gated. In the following, two promising alternatives to the conventionally used steril-

ization methods are breifly described.

1.6.1 Photocatalysis

Several semiconducting metal oxides absorb light in the near-UV range (> 360

nm) and produce a electron-hole pair. This reaction and the corresponding material

are termed the photoactivation and a photocatalyst, respectively. The hole is located
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at the surface of the photocatalyst and can react with hydroxyl ions or adsorbed water

molecules to produce radicals such as OH•. The freely movable electron in the conduc-

tion band can reduce an oxygen molecule to form a superoxide anion O�
2 •. These ex-

tremely reactive species can react further to produce H2O2 and HO2• [41,42]. The most

photoactive and most frequently used photocatalyst is titan dioxide (TiO2), followed

by ZnO and WO3 [43]. Usually, catalyst particles in the dimension of nanometers are

used. A number of studies demonstrated the inactivation of different vegetative bac-

teria, some viruses, fungi, yeast and algae by photocatalysis within several tens of

minutes [41, 42, 44–46]. The exact mechanism of the photocatalytic sterilization is still

under discussion. There is growing evidence that the outer membrane of the micro-

bial cells is damaged by photocatalytis [42]. The main advantages of the photocatalytic

sterilization over the common methods include the non-toxicity and the inexpensive

operation, as highlighted by Ollis [43].

1.6.2 Photodynamic Treatment

In the beginning of the 20th century, Raabe (1900), Jesionek and Tappeiner (1903)

and Hausmann (1908) found that the combination of (fluorescent) dye and light can kill

several pathogenous microorganisms [47–49]. Since then, the photodynamic therapy

using a non-toxic dye, termed a photosensitizer (PS), and visible light has been de-

veloped. The focus lied initially on the cancer treatment. Further investigations have

expanded the area of application to ophthalmology, dentistry, skin and blood vessel

diseases and infectious diseases. The PS is delivered to the treated tissue and irradi-

ated. The excited triplet state of the PS reacts with oxygen to produce cytotoxic species.

Two pathway types have been found that produce either superoxide, hydroxyl and

lipid-derived radicals (type I) or singlet oxygen (type II) [50, 51]. Chlorins, bacteri-

ochlorins, phthalocyanines and texaphyrins are among the best investigated PS for the

cancer treatment, with hematoporphyrin derivate (known as Photofrin) as the most
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well-known example. PS with the focus on the antimicrobial properties include halo-

genated xanthenes (e.g. rose bengal), phenothiazines (e.g. toluidine blue O, methylene

blue and its derivates), acridines and perylenequinones (e.g. hypericin) [52, 53].

A variety of pathogens including MRSA, some viruses, yeast and parasites has

been reported to be inactivated by the photodynamic treatment, as shown by Ham-

blin and Hasan in an overview [53]. Malik et al. observed a fundamental difference

between Gram-positive and Gram-negative bacteria in the susceptibility to the pho-

todynamic treatment [54]. As summarized by Maisch [52], the lipophilicity of the PS

appears to play an important role. There are ongoing investigations especially on the

optimizing of the PS in order to increase the inactivation efficacy of GR- bacteria by the

photodynamic treatment.

Most of the clinical studies were performed using laser light sources with wave-

lengths of 400 nm - 750 nm. The typical radiation dose was 50 to 500 J/cm2 depending

on the depth, the light source and the PS [55]. The irradiance should not exceed 200

mW/cm2 because of hyperthermia.

The main advantage of this technique is the high precision. Both the delivery of

the PS to the tissue and the site of irradiation can be precisely located. But it is also its

main drawback, since the treatment is locally limited.

1.7 Cold Atmospheric Pressure Plasma for Steril-
ization

The conventionally used sterilization techniques are afflicted with partly serious

drawbacks. In this regard, the use of cold atmospheric pressure plasmas (CAPs) for

disinfection and sterilization has been drawing increasing attention over the last two

decades [56–60]. A comparison of the relevant parameters for sterilization using the
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Temperature
at the tissue

Treatment
duration

Damage
to the
tissue

Ecological
sound-

ness
Safety for
the user Portability

Wet heat 120 - 130 �C < 60 min yes no largely no
Dry heat > 160 �C > 60 min yes no largely no

UV ⇠ r.t.⇤ < 20 min possible yes yes no
Chemicals < 80 �C 30 - 500 min yes no no no

Photocatalysis ⇠ r.t.⇤ ⇠ 60 min partly yes yes possible
Photodynamic ⇠ r.t.⇤ ⇠ 20 min no arguable yes yes

CAP ⇠ r.t.⇤ < 10 min no yes yes yes

⇤ r.t.: room temperature

conventional methods and CAPs is shown in table 1.1, according to Laroussi and Her-

rmann et al. [61, 62]. The sterilization by the CAPs does not require high temperatures

and does not cause thermal stress to the tissue and the treated material. The reduction

of the microbial burden by 105 to 107 log requires several seconds to a few tens of min-

utes of exposure, which is very fast in comparison with the conventional methods. The

application of the CAPs is regarded safe for the user and the environment. The CAP

sterilizing system can be configured in a versatile way. Since no vacuum is required it

is possible to design portable CAP devices for sterilization, which widens the range of

application dramatically.

While thermal plasmas, generated by arc discharges in the most cases, are al-

ready available on the commercial market for example for the use in the surgery (e.g.

for cutting, ablating and coagulating) as reviewed by Lloyd et al. [63], the development

of CAP devices for the medical and hygienic purposes are still in a premature stage.

Sterilization using cold plasmas at low pressure generally works in combination with

a reactive gas vapor such as hydrogen peroxide or paracetic acid [64]. The research on

CAPs with regard to medical and hygienic application currently focuses on the sur-

face sterilization and disinfection, cancer treatment, dermatological treatment and the

dental care [56, 63, 65–69]. Different types of plasma generation and different mecha-
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nisms for the transport of the reactive agents onto the tissue and material have been

developed and discussed in the following sections.

1.7.1 Corona discharge

Corona discharge appears at a sharp edge or in the vicinity of a strong curvature

of the electrode, where the potential gradient (i.e. electrical field) is greatly enhanced

thus that the surrounding gas or liquid molecules are ionized and become partially

conductive [70]. Usually, either the point-to-plate geometry with a pin electrode or

the cylindrical geometry with a thin wire electrode are used [71]. Combined config-

urations such as the needle-to-cylinder geometry have also been developed [72]. Fig-

ure 1.1 shows the schematics of the different arrangements for the corona discharge.

Depending on the power supply mode, there are three different types of corona dis-

charge: AC, DC positive and DC negative. A number of studies have demonstrated the

antimicrobial effect of the corona discharge. Korachi et al. and Joubert et al. success-

fully inactivated different vegetative bacteria, bacterial endospores, yeasts, fungi and

algae suspended in water and recommended the use the corona discharge for the wa-

ter purification [71, 73, 74]. Scholtz et al. successfully inactivated vegetative bacteria,

yeast and bacterial endospores both spread on agar surface and in aqueous suspen-

sion [75]. Dobrynin et al. observed a higher biocidal effect if the current from the

discharge passed through the treated sample [76], whereas Machala et al. could not

see any enhancement of the bactericidal effect with the current passing through the

tissue [77]. The latter observation suggests that reactive oxygen species were mainly

responsible for the inactivation of the biological indicator. Yamamoto et al. reported

that the bactericidal effect on Escherichia coli was greatly enhanced if H2O2 droplets

were added to the corona discharge treatment [78].
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1.7.2 Glow Discharge

The glow discharge was invented in the 1870s by Sir William Crookes (1832 -

1919) by applying a high voltage in a low pressure tube (⇠ 10�6 to 10�8 bar) [79].

Electrons and ions are accelerated towards the electrodes and the "glow" appears as

the neutral gas molecules are excited by collisions. In 1933, von Engel et al. [80] suc-

cessfully operated a dc glow discharge at atmospheric pressure. An effective cooling

system for the cathode was required because of the heat generation from ion bom-

bardments and from the ohmic loss in order to prevent the transition to an arc dis-

charge. Roth et al. [81] showed that the cathode heating can be suppressed by apply-

ing radio-frequency (RF) instead of DC. Above a critical RF driving frequency, the ions

are trapped in the RF electric field. As consequences, the sputtering and erosion at
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the electrode surface as well as the contamination of the plasma were reduced and the

ion density in the plasma bulk was increased. In addition, a dielectric was attached

to at least one of the electrodes in order to prevent the glow-to-arc transition and pro-

tect the electrodes. This type of discharge was termed the One Atmosphere Uniform

Glow Discharge Plasma (OAUGDP) [82]. The schematics of the experimental setup for

both the direct and indirect treatment with OAUGDP are shown in Figure 1.2. Typi-

cal frequencies are 1 - 50 kHz with the root-mean-square (rms) voltage ranging 1 - 10

kV [61].

Montie et al. and Kelly-Wintenberg et al. showed the redution of various bacte-

ria, yeasts and viruses using the OAUGDP [83, 84]. Vleugels et al. inactivated biofilm-

forming bacteria by glow discharge at atmospheric pressure using He-O2 gas without

causing decoloration on the food surface [85].
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1.7.3 Atmospheric Pressure Plasma Jet (APPJ)

In 1998, the research team of Jeong, Babayan, Schütze and Selwyn et al. pre-

sented the atmospheric pressure plasma jet (APPJ) and its application possibilities

such as etching, plasma-enhanced chemical vapor deposition and decontamination

of chemical and biological warfare [62, 86–88]. The APPJs are usually composed of

a cylindrical body made of a dielectric and two concentric electrodes. Either a noble

gas, mostly helium or argon, or a noble gas with an admixture of oxygen or nitrogen

is fed into the body. The feed gas is ionized by the discharge and blow the reactive

species out of the nozzle in form of a luminous plume [89–91]. Figure 1.3 shows the

schematics of the typical APPJ designs [92].

Typically, RF of 13.56 MHz at a voltage of a few hundred volts is applied, result-

ing in a power consumption of 50 - 100 W [59]. The effluent usually reaches temper-

atures of 100 - 150 �C, which can be decreased to the level of room temperature e.g.

by modifying the input power signal, as shown by Weltmann et al. [93]. The bacterici-

dal effect of the APPJ has been shown by many using a variety of Gram-positive and

Gram-negative bacteria [92, 94–97]

There are several modified designs of the APPJ. One of them is the plasma nee-
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dle, developed by Stoffels et al. [59, 98]. It is a miniaturized plasma jet with helium as

feed gas at a low flow rate. The power consumption can be decreased down to 10 - 300

mW where the temperature is similar to the body temperature. The bactericidal effect

of the plasma needle has been shown by Sladek and Stoffels [99]. The primary tar-

get is the application to in-vivo tissues such as caries, skin diseases and cardiovascular

diseases.

The plasma pencil, as presented by Laroussi et al. [100], is another modified

APPJ setup. Two circular ring electrodes are attached to centrally perforated dielectric

discs inside a dielectric tube with 2.5 cm in diameter. Helium with an admixture of

oxygen was fed through at a flow rate of 1 - 10 slm [90]. The discharge was ignited by

microsecond pulses and the power consumption was 1 - 3 W. The successful inactiva-

tion of Escherichia coli by the plasma pencil was shown by Laroussi et al. [95].

1.7.4 Microwave-Driven Discharge

CAP can be generated and sustained by microwave (MW) as well. A magnetron

is commonly used as the microwave source. In the most cases, the MW frequency of

2.45 GHz is applied according to the industrial, scientific and medical (ISM) band. Ei-

ther a wave guide or a coaxial cable guides the MW to the resonator or to the discharge

head, where the feed gas is ignited [101,102]. The choice of the feed gas is not restricted,

i.e. both novel gases or ambient air can be used as the discharge medium. A detailed

analysis of the physical properties and the chemistry of the MW-driven plasma is given

by Stonies et al. [103] and Jasinski et al. [104]. Green et al. determined the electronic

temperature profiles in the air microwave plasma torch and found a relatively flat dis-

tribution around 4500 - 6500 K within 10 mm radius from the effluent core [105]. How-

ever, Kruger et al. [106,107] and Kim and Hong [108] observed that the ion temperature

is about an order of magnitude lower than the electron temperature. The temperature

of the torch effluent ranges near room temperature up to several hundred Kalvin de-
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pending on the input power [109]. The microbiocidal effect of the MW-driven CAP

have been demonstrated by several studies using different setups [109–116]. Isbary et

al. treated chronic wounds with a MW-driven plasma torch and observed a signifi-

cant reduction of the bacterial load and enhanced wound healing processes [117, 118].

Arndt et al. reported that the treatment with the MW-driven plasma torch altered the

expression of key genes that are crucial for the wound healing processes and improved

cell migration [119].

1.7.5 Dielectric Barrier-Discharge (DBD)

In 1857, Siemens [120] invented an ozone generator by applying an alternate

current at a sufficiently high voltage at the surface of two coaxial glass tubes. Here the

glass walls acted as the dielectric barriers the electric current needed to overcome. A

high voltage-driven discharge either with at least one electrode covered by dielectric

or with the dielectric between two electrodes is termed a dielectric barrier discharge

(DBD) [121]. The historical term "silent discharge", as established by Andrews [122]

because of the absence of the sparks, which are accompanied by local overheating,

generation of local shock waves and noise, also is still in use. Figure 1.4 shows the

schematic views of the frequently used DBD configurations [121, 123].

The arrangement resembles the glow discharge setup with a dielectric. In fact,

the differentiation between the glow discharge and the DBD is rather artificial, since

the same setup can operate both discharge modes depending on the discharge condi-

tions, especially the gas composition [124–126]. Bogaerts et al. [127] pointed out that

the atmospheric pressure glow discharge can be regarded as a diffuse DBD. Roth et

al. [81] observed that the glow discharge formed "coarse filaments" as the applied fre-

quency or the oxygen admixture ratio was increased.

DBDs usually operate at frequencies between the line frequency (50 - 60 Hz) and

1 MHz. There are many industrial applications using DBD because of its wide oper-
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ation range [92, 128]. The gap distance ranges between 0.1 mm to several centimeters

depending on the application and the working gas. Glass, quartz, ceramics and poly-

mers are commonly used dielectric barrier materials. The high voltage (⇠ 10 kV) AC

produces charge accumulations at the dielectric surface. If the breakdown electric field

strength is reached, a large number of filamentary micro-discharges emerge. The for-

mation and collapse mechanism and the properties of micro-discharges are described

in details in 1.8.

The microbiocidal effect of the DBD has been demonstrated by a number of stud-

ies using different arrangements and parameters. Trompeter et al. [129] and Choi et

al. [130] demonstrated the inactivation of Escherichia coli bacteria and Aspergillus niger
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and Bacillus subtilis spores using the classical setups as shown in Figure 1.4(a) and (c).

Vandamme et al. [131] exposed a U87-luc glioma tumor in-vivo on the skin of mice

to the DBD plasma and reported a significant decrease of both the tumor cells activ-

ity and the volume of the tumor. Eto et al. [132] showed that the sterilizing effect of

the DBD can penetrate the packaging material. The number of Geobacillus stearother-

mophilus spores in a Tyvekr was reduced by 4 - 6 orders of magnitude (log) after tens

of seconds of DBD plasma exposure. Fridman et al. have developed a DBD plasma

source, termed the floating-electrode dielectric barrier discharge (FE-DBD), that ap-

plies the treated tissue as the grounded electrode [133,134]. They showed that FE-DBD

can kill bacteria including E. coli, Deinococcus radiodurans and MRSA [135–138] and the

skin flora (Staphylococcus, Streptococcus, kill yeasts, coagulate blood [133] and induce

apoptosis in melanoma skin cells [134]. A number of modified DBD setups have been

designed and tested for the microbiocidal effect with respect to the industrial and do-

mestic use: Gallagher et al. showed fast inactivation of airborne bacteria using the

dielectric barrier grating discharge (DBGD), a series of thin wires arranged in a plane

and coated by a quartz capillary [139]. Leipold et al. developed a DBD-based steril-

izer for rotating cutting devices and showed 5 log reduction of Listeria innocua within

6 minutes [140]. Schwabedissen et al. presented the "PlasmaLabel", a patented DBD

setup with a variable electrode shape, and its sterilization efficacy of 4 log in 10 min-

utes on Bacillus subtilis [141]. Eto et al. used a linear DBD with the powered electrode,

a tungsten wire, inside a quartz tube which was wrapped by the grounded aluminum

wire [142]. A sterilization efficacy of 6 log in 10 minutes of plasma exposure inside

the tube was observed using G. stearothermophilus. An embedded-type DBD similar to

Figure 1.4(d) was presented by Li et al. [143]. Up to 4 log reduction of E. coli bacteria

was achieved after several seconds of discharge. Heise et al. presented the cascaded

dielectric barrier discharge (CDBD), comprising a DBD and an excimer lamp [144].

They demonstrated a 4 log reduction of A. niger and B. subtilis spores within several

seconds [145].
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The dielectric between the electrodes limits the electric current of a single micro-

discharge, distributes them homogeneously over the surface and thereby prevents the

transition to a spark or an arc. The micro-discharges appear randomly in space and

time, as depicted by means of Lichtenberg-figures (Figure 1.5). The mechanism for the

formation of the micro-discharges is described in detail later.

1.7.6 Surface Micro-Discharge (SMD)

The surface micro-discharge (SMD) is a DBD-based arrangement designed by

Gregor Morfill et al. [150]. A planar electrode and a mesh grid electrode are attached
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to each sides of the dielectric. Usually, the planar electrode is connected to the high

voltage power supply and the mesh electrode is grounded. By applying high voltage

of ⇠ 1 - 10 kV at ⇠ 100 Hz - 20 kHz, numerous micro-discharges emerge between the

mesh electrode and the dielectric. The spatial and temporal distribution of the micro-

discharges are arbitrary. Due to the lack of a gap, the length of the micro-discharges

can be controlled to some extent by the applied voltage. Detailed descriptions about

the mechanisms and the properties of the SMD (or surface discharge, SD) are given by

Gibalov and Pietsch [123, 151]. The properties and shape can vary e.g. depending on

the input signal, as shown in Figure 1.6.

The bactericidal properties of SMD has been demonstrated by Shimizu et al.

[150]. Gram-positive Enterococcus mundtii DSM3269 and Gram-negative E.coli DSM1116

bacterial strains were exposed to the SMD plasma at different relative humidities be-

tween 20 and 80%. About 5 log reduction was observed for both strains and no sig-

nificant dependence of the bactericidal efficacy on the humidity was found. Maisch

et al. demonstrated the microbiocidal effect of SMD on a variety of microorganisms

including MRSA, S. aureus, E. coli, UV-resistant D. radiodurans and Candida albicans

biofilms. [152–154]. While there was no large difference in the inactivation kinetics

of different strains, the microbiocidal efficacy was strongly affected by the surface

property. The required treatment duration for a 3 to 5 log reduction was ten times

longer on the porcine skin than in a thin liquid film. Klämpfl et al. [155] observed 4

to 6 log reduction of diverse Gram-negative and Gram-positive bacteria, including the

multidrug-resistant MRSA and VRE, spores and fungus after thirty seconds of SMD

treatment. Bacterial endospores Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus and

G stearothermophilus were inactivated inside the wrapping material Tyvek. The viruci-

dal property of SMD has been shown by Zimmermann et al. [156]. A 6 log reduction of

adenovirus was achieved within 240 seconds of treatment. The possible application of

SMD for the cancer treatment has been discussed in several studies. Köritzer et al. [157]

reported the enhanced sensitivity of the temozolomide (TMZ)-resistant glioma cells to
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the chemotherapy after the SMD treatment. Arndt et al. [158] showed that the SMD

treatment induced senescence in melanoma cells including DNA damage, induction of

the Sub-G1 phase and increased apoptosis and pre-apoptotic events. The scope of the

SMD in industrial applications has been shown as well. Mitra et al. [159] reported 1

to 2 log reduction of the natural microbiota attached to the Cicer arietinum seed accom-

panied by the enhancement of the seed germination speed and quality. Zimmermann

et al. successfully inactivated E. coli through different textiles [160]. The inactivation

efficacy was reduced only by a factor of 2 in comparison with the treatment without

27



obstacle.

For the development of in-vivo applications, it is crucial that healthy cells are

not harmed by the SMD treatment. Isbary et al. [161] evaluated the ex-vivo treatments

of human skin with different SMD devices and observed no damage to the epidermal

and dermal layers and no significant increase of DNA damage after 60 seconds of SMD

treatment. Boxhammer et al. [162] reported that no mutagenic response was observed

on V79 Chinese hamster cells after 240 seconds of ex-vivo SMD treatment. Welz et

al. [163] treated nasal mucosa cells with SMD and observed no mutagenic effects after

up to 120 seconds of exposure.

The bacterial inactivation by SMD has been intensively discussed. Boxhammer

et al. [164] observed that the reduction of E. coli bacteria by the SMD treatment was

greatly decreased if the initial density of the bacteria exceeded a certain threshold.

They explained this observation by the shadowing effect, i.e. the overlapping of the

microorganisms, and discussed this effect in detail. Shimizu et al. [165] changed the

input power for the SMD by several orders of magnitude (⇠ 1 · 10�4 - 3 W/cm2) and

investigated the correlation between the power, the bacterial reduction and the con-

centration and the production rate of ozone. They found a very strong correlation of

the bacterial reduction with the ozone concentration and concluded that ozone could

be one major player in the inactivation of E. coli by the SMD plasma. These results are

described in detail in a later section.

1.8 Breakdown Mechanism of a Micro-Discharge

The formation of a micro-discharge breakdown is preceded by the Townsend

discharge, as illustrated in Figure 1.7(a) [166, 167]. The initial electrons from the spon-

taneous ionization in the discharge gap move towards the anode with the electron drift

28



velocity and collide with neutral molecules. Each electron drifting in the electric field

is capable of ionizing neutral gas molecules they collide with according to Townsend’s

first ionization coefficient [168]. The number of the electron-ion pairs grow exponen-

tially and an avalanche of charged particles is formed that moves towards the anode

(Figure 1.7(b)). The initial avalanche does not affect the electric field between the elec-

trodes and the produced current is negligible [169–171].

Due to the difference in the mobility, the ions in the tail of the initial avalanche ei-

ther stay in place or drift slowly towards the cathode, while the avalanche electrons are

quickly adsorbed at the anode (or anode dielectric) [170,173,174]. Secondary electrons

are produced by the radiation from the excited particles, by the ion bombardment on

the cathode or, depending on the gas composition, from the Penning effect [169, 174].

When the avalanche of the secondary electrons reach the anode, the high density of

the positive ions near the anode leads to a strong field distortion which can grow

up to a multiple of the external (displacement) electric field [169, 170, 175, 176]. The
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drifting electrons from further detachment and ionization processes are affected by

the field distortion and the charge accumulation grows in a self-amplifying process.

As a consequence, the conductivity in this area is strongly enhanced and the area ex-

pands from near anode towards the cathode, forming the cathode-directed streamer

(Figure 1.7(c)) [169,177,178]. During the streamer formation and propagation the elec-

tric field strength between the peak of the field distortion and the anode is significantly

reduced, while the field towards the cathode increases further.

When the streamer reaches the cathode, the diameter of the channel broadens

due to the interaction between the radiation from the streamer head and the cathode

surface [171]. The strong field between the cathode and the streamer remains near the

cathode surface, which is analog to the cathode layer of a glow discharge. The weak

field along the most part of the filament between the cathode layer and the anode is

similar to the positive column in a glow discharge [151, 179]. The high density of the

positive ions at the cathode gives rise to the radial expansion of the cathode layer due

to the diffusive transport of the ions and the electron emission current increases (Fig-

ure 1.7) [171]. At the peak point of the current, the relevant parameters including the

diameter of the filament, the dimensions of the cathode layer, the current, the charge

densities and the electric field strength stay approximately constant and the discharge

can be regarded as a quasi-stationary glow discharge [170]. Due to the depletion (if the

dielectric is attached to the cathode) or the accumulation (if the dielectric is attached to

the anode) of electrons at the dielectric surface, the mean electric field strength in the

filament is reduced and the radial expansion decelerates until it stops. Consequently,

the electric current decreases and finally the conductive filament fades.

The characteristic properties of the micro-discharge are given owing to the ex-

tensive studies, especially by Kogelschatz [147, 180] and Gibalov et al. [123, 151]. The

typical parameters are listed in the Table 1.2 [128, 180].

Within the filamentary micro-discharges, the temperature can reach up to sev-

eral hundred degrees. Due to the short lifetime of the micro-discharges, the surround-
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Lifetime 1 - 20 ns
Filament radius 50 - 200 µm
Peak current ⇠ 100 mA
Current density ⇠ 0.1 - 1 kV cm�2

Charge transfer ⇠ 0.1 - 1 nC
Electron density 1014 - 1015 cm�3

Electron energy 1 - 10 eV
Dissipated energy ⇠ 5 µJ

ing gas is not heated up significantly and remains at the room temperature [147].

1.9 Possible Mechanisms of the Microbiocidal Ef-
fect of CAPs

The possible sterilizing agents produced by the CAP are cytotoxic chemicals in-

cluding reactive oxygen species and reactive nitrogen species (RNS) including radicals,

UV radiation, charged particles, electric fields, chemical and physical etching as well

as sputtering. The contribution of each of them to the antimicrobial effect depends on

the plasma source, diverse treatment parameters, and the biological indicator. Heat

can be excluded.

1.9.1 Heat

As mentioned before, the term "cold" declares that the temperature increase by

the application of plasma is either nonexistent or negligible for the microbiocidal ef-

fect. The direct contribution of heat from CAPs to the inactivation of microorganisms,
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especially thermophile bacterial endospores, was ruled out. However, temperature

gradients between the plasma generator and the treated tissue give rise to thermal con-

vection that can boost the transport of reactive species, as demonstrated by Shimizu et

al. [181].

1.9.2 UV

UV photons are emitted during the relaxation processes of excited particles. At

low pressures, UV appears to play an important role for plasma inactivation of mi-

croorganisms, as summarized by Moisan et al. [182, 183] As described above, there

are two main mechanisms of UV inactivation of microorganisms: (i) The direct ab-

sorption of UV photon and formation of dimers in the nucleic acids and (ii) release of

free radicals and oxidative damage. Generally, it was found that the contribution of

UV to the microbiocidal effect of CAPs is negligible due to the insufficient radiation

power [62, 78, 184–186]. However, Boudam et al. presented a narrow range of param-

eters for the operation of DBD at atmospheric pressure where B. subtilis spores were

inactivated mainly by UV [187]. Heise et al. investigated the correlation of the sporici-

dal efficacy of the CDBD using different gases with the emission spectra and concluded

that UV was the main inactivation agent for the B. subtilis and A. niger spores [145].

1.9.3 Reactive Species

At the atmospheric pressure, the energy from the plasma is dissipated mostly

by collisions. A variety of reactive species arises from the inelastic collisions. If air is

the background gas, the most important reactive species are atomic oxygen (O), sin-

glet oxygen (1O2), ozone (O3), hydrogen peroxide (H2O2), hydroxyl radical (OH•),

superoxide anion (O�
2 ), nitric oxides (NxOy), nitric acids (HNOx). Depending on the
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transport mechanism (i.e. by diffusion or by a gas flow), the reactive species have to

be subdivided into short-lifetime and long-lifetime species [188]. A detailed list of re-

actions has been compiled by Sakiyama et al. [189] and by Dorai and Kushner [190].

The peroxidation of the lipid membrane, the oxidation of proteins and oxidative dam-

age to DNA are supposed to be the main mechanism of the microbial inactivation by

reactive species [83,137,185]. A detailed review on the CAP-generated reactive species

and their role in medicine and biology is given by Graves [191].

1.9.4 Charged Particles and Electric Field

In 1967, Sale and Hamilton [192] first presented the concept of the pulsed elec-

tric field (PEF) for the inactivation of bacteria and yeast with special respect to the food

industry. Many studies demonstrated the lethal effect of PEFs on pathogeneous mi-

croorganisms since then [193–195] and the rupture of the outer membrane has been

identified as the main mechanism [196, 197].

Many authors have introduced the sub-category of the plasma "direct" treatment

which is associated with the electric current passing through the treated tissue. The FE-

DBD is one of the most intensively investigated plasma source for direct treatments.

Fridman et al. [135] and Dobrynin et al. [198] observed enhanced bactericidal effect

by direct plasma treatment. Mendis et al. [199] and Laroussi et al. [200] suggested

that, in presence of a irregular curvature at the bacteria shell, the electrostatic tension

could lead to a rupture and induce necrosis. Another possibility has been suggested by

Stoffels et al. [201]. They point out that the typical charge a cell naturally develops in an

aqueous solution is higher than the charge a cell would gain from the direct exposure

to CAP. This also leads to rupture of the cell membrane and eventually to cell death,

but the mechanism would be no charging but decharging of the cells.

In a further discussion, Stoffels et al. [201] the microbiocidal effects of electric

currents through the liquid, if the microorganisms are suspended in it. In the case
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that the liquid medium is isolated, the charge accumulates on the surface and attracts

the ions from underneath, so that a thin (⇠ 1 mm) double layer of charged particles

is formed. A current of less than 1 mA is sufficient to induce bactericidal effect [202].

However, the microorganisms have to be on the surface or within the thin layer, for

the current decreases rapidly with depth in the medium [203]. Generally, the measure-

ment of the electric field strength and the charge density from CAP is difficult. Further

investigations on the microbiocidal effect by the electric fields from CAP depend on

the development of the plasma diagnostics technology [57].

1.10 The Scope of the Thesis

The main focus of this work lies on (i) the identification of the reactive species re-

sponsible for the microbiocidal effect of SMD and (ii) the estimation of the contribution

of the different reactive species to the microbiocidal efficacy.

As described in the previous sections, the microbiocidal property of SMD has

already been demonstrated by many researchers on various biological indicators. It is

generally assumed that the microbiocidal efficacy is due to the combination of various

sterilizing agents. An attempt to identify the responsible species for the inactivation of

E. coli by SMD was made by Shimizu et al. [165]. The strong correlation between the

ozone concentration and the bacterial reduction, as illustrated in Figure 1.8, showed

that ozone may be the major bactericidal agent.

In the following, two different surface micro-discharge setups are used to in-

activate vegetative bacteria and bacterial endospores. The temperature increase and

the UV radiation power from the SMD were found far below the lethal level for the

microorganisms. The contribution of the short-lifetime reactive species (e.g. radicals,

electrons, ions) was regarded negligible due to the gap of several millimeters between
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the plasma discharge and the microbial sample. Details on the temperature increase,

the UV radiation power and the short-lifetime species will be discussed later. Long-

lifetime reactive species were suggested mainly responsible for the microbiocidal effect

of the SMD. The concentration of ozone was monitored and analyzed as one indicator

of the long-lifetime reactive oxygen species.

Bactericidal effect by controlling gas composition

In chapter 2, the gas composition for the discharge and bacterial treatment was

varied using variety of argon, nitrogen and oxygen. The mixture ratio was changed

and the bacterial reduction by the SMD was investigated. Gram-positive Enterococcus

mundtii and Gram-negative E. coli bacteria were used as biological indicators. The bac-

teria were inoculated on an agar dish and treated for up to 120 seconds. The correlation

of the concentration and the production rate of ozone with the bactericidal efficacy was

investigated.
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Sporicidal effect at different humidities and in a wide power range

In chapter 3, the input power for the discharge was varied in a wide range over

2 orders of magnitude. The heat-resistant bacterial endospores of G. stearothermophilus

were exposed to the SMD for 5 minutes in a closed volume. The humidity was changed

in three steps in order to estimate the contribution of the water-based chemistry to the

sporicidal effect. The correlation of the concentration and the production rate of ozone

with the sporicidal efficacy was investigated.

Transitions between the different ozone modes

Ozone was found as one possible major player for the inactivation of microor-

ganisms by the SMD plasma treatment. So far, the concentration of ozone was ma-

nipulated by controlling the input power only. In chapter 4, the influence of the SMD

electrode’s geometry and the time span of the plasma generation on the production

and quenching of ozone was investigated. The transition between the different ozone

generation modes was highlighted.
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BACTERICIDAL

PROPERTIES WITH

CONTROLLED GAS

COMPOSITION



2.1 Experimental Setup

2.1.1 Chamber and Gas Feed

In order to control the gas composition, a vacuum-sealable stainless steel cham-

ber with an inner volume of approx. 7.2 liters was used. The SMD electrode was

placed centrally on the bottom plate of the chamber. The opening on the top side was

used for a gas feed and for the vertically movable rod, which was necessary for the gas

exchange in the volume between the sample and the SMD electrode. Inside the cham-

ber, an agar plate holder was attached horizontally to one end of the rod, as shown

in Figure 2.1 (a). Two viewports made of quartz were attached to each of two oppos-

ing side openings for the ozone measurement via optical absorption spectroscopy. In

total, four side openings were used for the electric feedthroughs and as exhausts (see

Figure 2.1(b)). The chamber was grounded.

The gas composition in the chamber was exchanged by the gas mixture flowing

through the chamber for a sufficient duration. The gas feed was controlled using two

mass flow controllers (1179AX and MF1 series, MKS Instruments, Andover, MA, USA).

Each of them was connected to one of the three gas containers: oxygen (O2), nitrogen

(N2) and argon (Ar). Hence, variety of the binary mixtures out of these gases was

made. The purity of the feed gases was at least 99.995%. The combined maximum

gas flow rate was kept constant at 4000 standard cubic centimeters per minute (sccm)

for all conditions. The individual flow rate of each controllers was adjusted according

to the required gas mixture ratio. The fraction fi of the partial gas i is described as

following

fi =
Gi

Gi + Gj
=

Gi
Gtotal

, i, j = {O2, N2, Ar} , (2.1)
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where Gi is the respective gas flow rate of the gas i and Gtotal the combined total gas

flow rate (4000 sccm). The gas feed duration was determined by means of mass spec-

trometry (QMS 100 series Gas Analyzer, Stanford Research Systems, Sunnyvale, CA,

USA). Here, the chamber was filled with pure N2 without any admixture and the time

evolution of the N2 concentration was measured. The time was recorded when the

chamber was saturated with N2. Afterwards the chamber was filled with pure O2 and

the saturation duration for the O2 concentration in the chamber was measured. This

procedure was repeated several times. As the result, the average saturation time of

approx. 210 seconds was found. It was within the computed range for a 99.9% satura-

tion with the feed gas from the modeling and calculation by Brandt [204]. Therefore,

90 seconds of time puffer were added and the gas feed duration of 300 seconds was

chosen.

The humidity was measured using a hygrometer (GFTB 100, Greisinger Elec-

tronic GmbH, Regenstauf, Germany) placed inside the closed chamber during the gas

feed and the plasma treatment. Both the relative humidity and the water content in
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the gas were displayed. The humidity also saturated after around around 210 seconds.

The relative humidity in the room ranged 35 - 60 % and the absolute water content 5.5

- 10 g/m3. The humidity inside the chamber decreased during the gas feed below 9%

in relative humidity corresponding to 2 g/m3 in water content.

2.1.2 SMD Plasma Generation and Power Dissipation

The SMD electrode comprised a polytetrafluoroethylene (PTFE, Teflonr) dielec-

tric, a stainless steel mesh grid and a planar aluminum electrode. The mesh electrode

and the planar electrode are attached to the dielectric on each side, as shown in Fig-

ure 2.2, and is embedded in a polyoxymethylene (POM) frame. A sinusoidal waveform

was applied using a function generator (HM8150, HAMEG Instruments GmbH, Main-

hausen, Germany) and amplified by an amplifier (10/10B, TREK Inc., Medina, NY,

USA). In the following, the function generator and amplifier are jointly referred to as

the power supply.

The material and measures of the dielectric, the mesh electrode and the planar

electrode are summarized in the Table 2.1. The planar electrode was connected to the

power supply and the mesh electrode was grounded. A peak-to peak voltage of 6.5

to 10 kVpp was applied at the fixed frequency of 1.0 kHz. Microdischarges emerged
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material thickness length x width

dielectric PTFE 0.5 mm 145 mm x 105 mm

mesh electrode stainless steel 1.5 mm 145 mm x 105 mm

planar electrode aluminum ⇡ 0.05 mm 124 mm x 85 mm

between the mesh electrode and the dielectric surface when the high voltage was ap-

plied.

The consumption of the input power at the SMD electrode was determined by

measuring the voltage drop across a capacitor connected in series between the mesh

electrode and the ground (see Figure 2.2). The power consumption was calculated us-

ing the Lissajous-figure method, as proposed by Manley in 1943 [205] and described in

details by Kogelschatz et al. [147,180]. In general, the electric power is calculated by in-

tegrating the product of the voltage and frequency over time. The power consumption

P averaged over the period of the applied frequency 1/ f is

P = f

t0+
1
fZ

t0

U0 · I dt , (2.2)

where t0 is the time offset, U0 the input voltage, I the electric current via microdis-

charges and t time. The electric current I is the time derivative of the charge of the

capacitor Q which, in turn, is the product of the capacitance C and the voltage drop U

across the capacitor,

I =
dQ
dt

) I dt = dQ = C dU . (2.3)

Hence, the average power consumption at the SMD electrode measured by the voltage
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drop across the capacitor is

P = f C

t0+
1
fZ

t0

U0 dU . (2.4)

Plotting U against the input voltage U0 results in a closed parallelogram. The area

of this Lissajous-figure equals the integral term in equation (2.4) and thus it is direct

proportional to the averaged power consumption P. Typical characteristic curves of

the SMD are shown in Figure 2.3. Alternatively to using the Lissajous-figure method,

the electric current from the SMD electrode could be directly measured using an in-

ductive current meter (Model 6585, Pearson Electronics Inc., USA). Figure 2.3(a) shows

the input voltage and the SMD electric current. Each peak in the current indicates

the accumulation of microdischarges in the respective time interval. Current peaks of

up to ⇠ 30 mA were registered. The input voltage and the voltage drop across the

capacitor are shown in Figure 2.3(b). The latter had the shape of a slightly distorted

sine. A small phase shift was observed between the input power and the voltage drop.

The waveform was slightly distorted from the sinusoidal curve due to the charging

at the capacitor by the micro-discharges. Figure 2.3(c) shows the voltage drop from

Figure 2.3(b) plotted against the input voltage. The shape of this Lissajous-figure is

nearly a parallelogram. The area was calculated in order to determine the power con-

sumption according to equation (2.4). Note that this Lissajous-figure was obtained by

averaging over 512 samples in order to obtain an averaged power consumption by the

plasma discharge.

Figure 2.4(a) shows the calculated power consumption at different voltages us-

ing 100% of each O2, N2 and Ar with the fixed frequency of 1.0 kHz. The curves of

the power consumption show parabolic shapes. The highest power consumption was

observed using 100% Ar as feed gas while no large difference in power consumption

was found below 7.5 kVpp using 100% O2 and 100% N2. A bifurcation of O2 and N2

curves was found at higher voltages. The power consumption using different gas mix-

tures with both the voltage and the frequency fixed (6.5 kVpp and 1 kHz, respectively)
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C = 0.1µ

is shown in Figure 2.4(b). Here, the horizontal axis indicates either the O2 fraction (for

O2 + N2 and O2 + Ar mixtures) or the N2 fraction (for N2 + Ar mixtures). The error bars

correspond to the respective standard deviation of the results from 3 measurements.

The calculated power consumption increased strongly with the fraction of Ar in the

gas composition. In O2 and N2 (O2 + N2) mixtures, the power consumption did not

change much at different mixture ratios. The power consumption was approximately

twice as high using 100% Ar as using O2, N2 or a mixture of both.
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With increasing Ar fraction fAr and increasing power consumption, the prob-

ability of the formation of spark discharges also increased. The spark discharges oc-

curred around the dielectric instead of passing through it and produced a short circuit

between the high voltage electrode and the mesh electrode. The spark discharge was

an undesirable instability in this study because of the inhomogeneous occurrence and

the large power dissipation. In 100% Ar background gas, applying voltages higher

than 6.5 kVpp resulted in a frequent formation of sparks. To avoid the spark forma-

tion, the applied voltage did not exceed 6.5 kVpp with 100% Ar and the corresponding

power consumption of 2 W under this condition was set for the experiments at constant

power consumption. The temperature increase at the SMD electrode was measured af-

ter 30 seconds of plasma generation at different input powers. Even at the highest

applied input power of ⇠ 2 W, the temperature increase did not exceed 4�C, so that the
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inactivation of the bacteria by heat from the plasma can be excluded.

2.1.3 Ozone Measurement via Optical Absorption Spectroscopy

One of the well known long-lifetime reactive species is ozone. As mentioned

in 1.7.5, DBD was first invented as ozone generator [120] and consequently the SMD,

based on DBD, is able to produce ozone in large amounts. The concentration of ozone

inside the chamber was measured via optical absorption spectroscopy. The incident

UV light was supplied by a Hg/Ar light source (AVAST Avalight-CAL, Avantes BV,

Apeldorn, the Netherlands) at the wavelength of 254 nm, which lies in the optimal

range for the absorption of photons by ozone molecules [206–208]. The UV light beam

was aligned parallel to the SMD electrode at approx. 5 mm height from the SMD elec-

trode matching the distance of the bacterial sample on the agar plate. The transmitted

light signal was recorded by a spectrometer (AVAST Avaspec-2048-USB2, Avantes BV)

through an optical fiber. Two apertures with the diameter of 1.0 mm were placed in

front of each the detector and the light source for the sake of better convergence. As

previously mentioned, the light beam passed through the chamber via two opposing

quartz viewports. Inside the chamber, a quartz cylinder of 30 mm inner diameter and

⇠ 6 mm height was mounted to the vertically movable rod instead of the agar plate

holder. During the gas feed, the quartz cylinder was detached from the SMD electrode

by pulling up the rod. After the gas feed, the rod was lowered down until the quartz

cylinder was placed on the top of the SMD electrode. By this procedure, the gas compo-

sition in the closed volume formed by the SMD electrode and the quartz glass cylinder

was fully exchanged. Moreover, the formed closed volume was well confined and the

products inside did not escape, i.e. the ozone concentration only inside the closed vol-

ume was measured. The UV light traversed the volume enclosed by the quartz tube

and was absorbed by the ozone inside. Figure 2.5(a) shows the schematic cross section

view of the chamber with respect to the absorption spectroscopy.
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The measured light signal was integrated over the wavelength from 253.5 to

254.5 nm. The integration time for the time evolutions was set to 1 second. The time

evolution was recorded for 120 seconds after the plasma ignition. The concentration

of ozone was calculated based on the Beer-Lambert Law. The intensity of light dI

absorbed by particles in a volume defined by the absorption cross section s, the particle

density N and the length of the light path dx is

dI = �INsdx ) dI
I

= �Nsdx . (2.5)

Integration over x results in

ln(I) = �Nsx + C , (2.6)

where C is a constant of integration. The boundary condition finally leads to

I(x = 0) = I0 ) C = ln(I0) ) N(I) =
1

sx
ln

✓
I0
I

◆
, (2.7)

where I0 is the transmitted light intensity through the quartz viewports without ozone,

i.e. before the ignition of the SMD plasma (t  0). The computed particle number was
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converted into the concentration of ozone with the unit of ppm under the assumption

of ideal background gases (number density ⇠ 2.5 ⇥ 1025 m�3). A detailed description

of the measurement techniques and calculation of ozone concentration via UV absorp-

tion spectroscopy is given by Samson [209]. In the wavelength range of ⇠ 254 nm,

the ozone absorption cross section reaches the maximum of ⇠ 1.15 ⇥ 10�17cm2, as re-

viewed by Hudson [210] and Molina [211]. Additionally, the ozone concentration was

averaged over 30 seconds (nO3) according to the bacterial treatment and plotted against

the O2 fraction in the gas composition. The production rate of ozone was estimated by

means of the slope of the ozone time evolution immediately after the plasma ignition.

2.1.4 Optical Emission Spectroscopy and Discharge Photographs

The emission spectra from the SMD electrode were recorded using a UV/VIS

spectrometer (TM-UV/VIS, Hamamatsu Photonics, Hamamatsu, Japan) within a wave-

length range of 200 - 800 nm. Additionally, the UV radiation power was measured in

the UVC range (⇠ 180 - 270 nm) using a UV power meter (C8026/H8025, Hamamatsu

Electronics, Hamamatsu, Japan) at a distance of ⇠ 6 mm. The measured UV power

was below ⇠ 100 nW/cm2, leading to a UV dose of 10�6 to 10�5 mJ/cm2 under the

conditions of this study. This dose is by several orders of magnitude lower than the

lethal dose for microorganisms as previously mentioned [30, 34].

For the emission spectroscopy, the SMD electrode was held vertically in front

of the viewport, as shown in Figure 2.5(b). The photographs of the SMD plasma at

different gas compositions are shown in Figure 2.6. The photographs were made using

a digital camera (Canon EOS 450D) with ISO-400, f/4 and 15 seconds of exposure time.

For the sake of a better visibility, the brightness of the photographs was enhanced

by a constant factor using an image editing program. The brightness of the plasma

increased with decreasing O2 admixture ratio. The area covered by the plasma grew
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strongly with increasing fraction of Ar in the gas composition, whereas it grew, if ever,

only slightly with increasing N2 fraction.

2.1.5 Bacterial Sample Preparation

Gram-negative E. coli DSM1116 and Gram-positive Enterococcus mundtii DSM3848

strains were used as bacterial indicators. Müller-Hinton (MH) agar filled in petri dishes

with 85 mm in diameter was used as nutrient medium. The bacterial suspension was

made by admixing a certain amount of bacteria to 5 or 10 ml of phosphate buffered

saline (PBS) using an inoculating loop. For each experiment, a new bacterial suspen-

sion was made. Depending on the requirements, one dilution step or a cascade of

dilution steps were made. The bacterial samples were prepared by inoculating 100 µl

of the bacterial suspension onto the MH agar plates. The fluid was distributed over
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the entire agar surface by smearing with a cell spreader. The preparation of the bacte-

rial samples was performed following the standard procedures of the microbiology as

described by Willey et al. [212] and Cappuccino and Sherman [213]. After the inocula-

tion, the samples were kept open in the ambient air for ⇠ 30 minutes until the sample

surface was visibly dry.

2.1.6 Sample Treatment and Evaluation

Figure 2.7 shows the photograph of the chamber with the SMD electrode inside.

The bacterial sample was fixed to the agar plate holder with the open side down. The

chamber was then closed and the gas mixture was conducted into the chamber for

5 minutes with the exhaust valve opened. For the exchange of the gas between the

bacterial sample and the SMD electrode, the agar plate was moved away from the SMD

electrode by pulling up the rod during the gas feed. After the gas feed the valve was

closed and the agar plate holder was lowered until the sample dish touched the SMD

electrode. The gap between the samples on the agar surface and the SMD electrode

was approx. 6 mm. Then the plasma was ignited by applying the high voltage. After

the required duration the plasma was extinguished by switching off the power supply.

The sample was immediately removed from the vicinity of the SMD electrode in order

to minimize the bactericidal effects from the gases containing the long-lifetime species

produced by the plasma, the so-called afterglow.

After the treatment, the bacterial samples were kept in an incubator at 36�C for

at least 16 hours. After the incubation the colony forming units (CFUs) were counted.

The bacterial reduction was determined by comparing the numbers of CFUs with those

of the untreated samples.
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2.2 Results

2.2.1 Emission Spectra

Figure 2.8 shows the emission spectra from the SMD using different O2 + N2

gas mixtures. The intensity is in an arbitrary unit but consistent in all four plots. The

strongly pronounced peaks in the wavelength range of 300 - 400 nm are the emission

lines of the N2 second positive system [214]. The intensity of the peaks decrease rapidly

with increasing O2 fraction in the gas composition. An increase of the O2 fraction to

50% resulted in an intensity fall of almost 2 orders of magnitude. The emission lines

of the N2 second positive system were observed from SMD plasmas using 100% O2 as

well (see Figure 2.8). It was assumed that a small amount of N2 residue remained in

the chamber, e.g. at the surface of the chamber wall and the SMD electrode, after 5
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minutes of gas exchange. However, the intensity was negligibly low with the intensity

unit at 0.1 - 0.5. Compared with the intensity of ⇠ 1000, the estimated fraction of N2 in

gases without N2 admixture was ⇠ 10�4.

Figure 2.8(d) shows the emission spectra from SMD plasmas using 20% O2 +

80% N2 at different voltages 6.5 kVpp and 8.3 kVpp. The lines appear at the same

wavelengths but the emission intensity was higher at the higher voltage of 8.3 kVpp.

The emission spectra from O2 + Ar mixture plasmas resembled those of the O2

+ N2 plasmas due to the remaining N2 in the chamber (data now shown). Because

of the high electron density in Ar and Ar mixture plasmas and due to the very high

luminosity, the emission lines of the N2 second positive system were dominant. The

characteristic Ar emission lines were observed at the wavelengths � 700 nm [215].

51



2.2.2 Ozone Concentration

The time evolutions of the ozone concentration produced by the SMD plasma

using different gas mixtures are shown in Figure 2.9. Here, the ozone concentrations

from SMD plasmas using different O2 + N2 mixtures are shown where (a) the applied

voltage is kept constant at 6.5 kVpp, (b) the power consumption was kept constant at 2

W and (c) the applied voltage was kept constant at 10 kVpp, corresponding to power

consumptions of 3 W or more. The ozone concentration saturated within less than 30

seconds after the plasma ignition. The ozone concentration was near zero when 100%

N2 or 100% Ar was used as background gas. Both the production rate, indicated by the

slope of the curve near t = 0, and the saturation concentration of ozone increased with

increasing O2 fraction fO2.

Figure 2.9(d) and (e) show the time evolutions using different O2 + Ar gas mix-

ture plasmas at the fixed voltage of 6.5 kVpp and at the fixed power consumption of 2

W, respectively. While the saturation concentration and the production rate of ozone

increase monotonically with increasing fO2 at constant power consumption, a maxi-

mum was found between 0.2 and 0.5 in O2 fraction if the applied voltage was fixed.

This is explained by the balance between the power consumption and the O2 fraction

in the gas composition. The more O2 was added to the background gas, the less power

consumption was, as shown in Figure 2.4. On the other hand, O2 is necessary for the

formation of ozone by the three-body reaction [189, 190]

O + O2 + M �! O3 + M , (R1)

where M is the third body. Additionally, the production of atomic oxygen O as well

depends on the concentration of O2 via

O2 + e� �! O + O + e� . (R2)
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In total, the electron density in the plasma depends on the Ar fraction, while the ozone

production reaction itself depends on the O2 fraction. Hence, a maximum of ozone

yield appears at a certain O2/Ar mixture ratio. The ozone concentrations at different

humidities are compared in Figure 2.9(f), where the plasma was generated in the dry

feed gas of 20% O2 + 80% N2 and in ambient air at two different voltages 6.5 kVpp

and 10 kVpp. Lower saturation concentration was observed using ambient air as back-

ground gas at both voltages. Possible explanations are that, firstly, ozone react with

water-related species such as H, OH•, OH� etc., and secondly, the electrons from the

plasma react with water and hydrogen-associated species and the yield of the oxygen

atoms by the electron dissociation is reduced [190].

Figure 2.10(a) shows the ozone production rates from the SMD plasma using

various gas mixtures (O2 + N2 and O2 + Ar) at different O2 fractions fO2. Using O2

+ N2 gas mixtures, the ozone production rate increased monotonically under all three

conditions (6.5 and 10 kVpp and 2 W) as fO2 increased. With the power consumption

fixed at 2 W, the ozone production rate from O2 + Ar mixture plasmas also increased

monotonically as fO2 increased. A maximum of ozone production rate was observed

from O2 + Ar mixture plasmas at constant voltage of 6.5 kVpp. This is due to the balance

between the electron density and the availability of atomic and molecular oxygen as

discussed previously on the basis of the time evolution curves.

2.2.3 Survival Curves

For the evaluation of the bactericidal kinetics, the bacterial samples were ex-

posed to the SMD plasma using various background gases for different durations from

5 to 120 seconds with the power consumption kept constant at 2 W. Figure 2.11 shows

the survival curves of E. coli using four chosen feed gases 100% O2, 20% O2 + 80% Ar,

20% O2 + 80% N2 and ambient air. Additionally, the survival curves using 100% N2

and 100% Ar were also measured but are not shown, since no distinguishable reduc-
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tion of bacteria was observed ( 0.2 log) after up to 5 minutes of plasma exposure.

Two different inactivation phases were observed at all four survival curves. In the first

phase below ⇠ 30 seconds, the reduction of bacteria was fast with 4 - 4.5 log reduction

within 30 seconds. In the following phase, the bacterial reduction was slower with a re-

duction increase of less than 1 log over 90 seconds. The highest reduction of E. coli was

observed from 100% O2 plasma, followed by the O2 + Ar and O2 + N2 mixture plas-

mas with fO2 = 0.2. Although there was no large difference in the bacterial reduction

at fixed fO2, the least bactericidal efficacy was obtained using ambient air.

2.2.4 Inactivation of E. coli by N2 + Ar Mixture Plasmas

The SMD plasma was generated using N2 + Ar gas mixtures with different mix

ratios (N2 fraction fN2 = 0, 0.25, 0.5, 0.75, 1) as background gas. The bacterial samples

of both E. coli and Enterococcus mundtii were exposed to the plasma. The first experi-
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ments with 30 seconds of exposure duration showed no bactericidal effect using any

of the N2 + Ar mixtures. Even after increased exposure durations of up to 5 minutes,

no bactericidal effect was observed.

2.2.5 Inactivation of E. coli by O2 + N2 Mixture Plasmas

The E. coli bacterial samples were exposed to the SMD plasma for 30 seconds

using O2 + N2 gas mixtures with different O2 fractions ( fO2 = 0, 0.05, 0.1, 0.2, 0.5, 1).

The plasma parameters were varied in three different ways: Either the applied voltage

was kept constant at 6.5 or 10 kVpp, or the power consumption was fixed at 2 W. Figure

2.12 shows the reduction of the bacteria on logarithmic scale. In absence of O2 in the

gas composition ( fO2 = 0) no bactericidal effect was observed under all three conditions

(6.5 kVpp, 10 kVpp and 2 W). As the O2 fraction was increased, the bacterial reduction
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increased rapidly up to 3.5 to 4.5 log until fO2 reached ⇡ 0.2. A further increase of fO2

did not result in a significant increase of the bactericidal efficacy ( 0.2 log). For the

visualization of the correlation of the bactericidal efficacy with the ozone production,

the ozone concentrations in 30 seconds average, nO3, are plotted in the same diagram.

nO3, too, showed two phases of different slopes with the transition at fO2 ⇡ 0.2. For

low O2 fractions, fO2  0.2, the increase of nO3 with increasing fO2 was fast. For fO2 �

0.2, nO3 increased slower with increasing fO2 for all three conditions.
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2.2.6 Inactivation of E. coli by O2 + Ar Mixture Plasmas

The E. coli bacterial samples were exposed to the SMD plasma using O2 + Ar

gas mixtures with different mixture ratios for 30 seconds. Either the power was kept

constant at 2 W or a fixed voltage of 6.5 kVpp was applied. fO2 was changed between

0, 0.05, 0.1, 0.2, 0.5 and 1. The log reduction of the bacteria after the SMD plasma treat-

ment is shown in Figure 2.13. The corresponding ozone concentrations in 30 seconds

average, nO3, are shown in the same figure. It was assumed that all gas molecules

moved with the same thermal velocity which was constant during the SMD plasma

treatment. Under this condition, the mass flow of ozone molecules onto the sample

surface was proportional to the averaged concentration of ozone.

No bactericidal effect and no ozone concentration were measured at fO2 = 0. As
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fO2 was increased up to 0.1, the bacterial reduction increased strongly by more than

4 logs for both conditions. For higher values of fO2 up to 1, the bacterial reduction

increased insignificantly ( 0.2 log) at the fixed power consumption of 2 W. With the

applied voltage fixed at 6.5 kVpp, the bacterial reduction increased minimally by ⇠ 0.1

log as fO2 increased from 0.1 to 0.5. The bacterial reduction decreased slightly by ⇠ 0.1

log as fO2 increased further up to 1.

At constant power consumption of 2 W, nO3 increased monotonically with in-

creasing fO2. Two phases were observed with a strong increase for fO2  0.2 and a

reduced increase at higher fO2. With the applied voltage fixed, nO3 increased strongly

with increasing fO2 until 0.2, then increased slightly until fO2 was at 0.5, and decreased

as fO2 increased up to 1. In total, the shapes and tendencies of the bacterial reduction

and of nO3 were similar.

2.2.7 Inactivation of Enterococcus mundtii by O2/N2/Ar Binary
Mixture Plasmas

The samples of the Gram-positive bacteria Enterococcus mundtii were exposed to

the SMD plasma using O2 + N2 and O2 + Ar gas mixtures with different O2 fractions

in a similar way as for the tests with E. coli. The survival curves, as shown in Figure

2.14(a), were determined by changing the treatment duration from 5 to 120 seconds.

Here, the samples were exposed to the SMD plasma from four different feed gases,

100% O2, 20% O2 + 80% Ar, 20% O2 + 80% N2 and ambient air. These experimental

conditions were same as for E. coli samples as shown in Figure 2.11. The power con-

sumption was kept constant at 2 W. The bacterial reduction increased rapidly in the

first 5 seconds to 3 to 4 log. A transition phase was observed between 5 and 30 seconds

of exposure duration where the bacterial reduction increased by ⇠ 1 log within 25 sec-

onds. As the treatment duration was increased from 30 to 120 seconds, the bacterial
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reduction increased by ⇠ 1 log using 100% and 20% O2 + 80% Ar as feed gas, whereas

it nearly stagnated using 20% O2 + 80% N2 and ambient air.

Figure 2.14(b) shows the reduction of Enterococcus mundtii bacteria after 30 sec-

onds of exposure to the SMD plasma using O2 + N2 and O2 + Ar gas mixtures at

different fO2. Here, either the power consumption was kept constant at 2 W or a fixed

voltage of 6.5 kVpp was applied. No bactericidal effect was observed without O2 ad-

mixture ( fO2 = 0). The bacterial reduction increased strongly as fO2 increased from 0 to

0.1 and increased by 0.2 to 0.3 as fO2 increased from 0.1 to 0.2. With a further increase

of fO2 from 0.2 to 1, the bacterial reduction at constant power consumption increased

slightly for both gas mixtures. At the fixed voltage of 6.5 kVpp, the bacterial reduction

using O2 + N2 mixtures increased with increasing fO2, whereas a maximum of bacterial

reduction was found at fO2 = 0.5 if O2 + Ar mixtures were used.
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In total, both the survival curves and the bacterial reduction after 30 seconds

of treatment using different gas compositions showed the same tendency as from the

results with E. coli.

2.3 Discussion

The temperature increase and the UV radiation power from the SMD plasma

were found far below the lethal level for the microorganisms. The short-lifetime re-

active species cannot reach the sample surface due to the gap of 6 mm between the

SMD plasma and the sample surface with no gas flow. Thus, the contribution of heat,

UV radiation and short-lifetime reactive species to the bactericidal effect was excluded

and the search for the bactericidal agents from the SMD plasma was narrowed down

to the long-lifetime reactive species. First of all, no microbiocidal effect on both Gram-

negative E. coli and Gram-positive Enterococcus mundtii bacteria strains was observed

after 30 seconds of SMD plasma treatment if no O2 was admixed to the feed gas. This

indicates that, in the parameter range investigated in this study, the bacterial reduction

was due to the reactive species that comprise oxygen.

In order to compare the bactericidal effect of the SMD plasma using O2 + N2

and O2 + Ar mixtures as feed gas, the reduction of E. coli and nO3 were re-arranged.

Figure 2.15(a) shows the curves at the fixed voltage of 6.5 kVpp and Figure 2.15(b) at

the constant power consumption of 2 W. Under the both conditions, higher bacterici-

dal efficacy was observed using O2 + Ar than using the corresponding O2 + N2 gas

mixtures as feed gas. Additionally, the bactericidal efficacy increases as the N2 fraction

decreases. Hence, it was concluded that nitrogen reactive species contribute little to

the inactivation of bacteria by the SMD plasma.

Ar molecules possess full valence electron orbitals and are chemically more sta-

ble than N2 molecules. In comparison with N2 plasma, Ar plasma shows a higher
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electron density because there are less electron loss mechanisms such as dissociation

and activation processes. Therefore, O2 + Ar plasmas have a higher electron density

than O2 + N2 plasmas at a fixed power consumption and at the same fO2, which results

in a higher number density of atomic oxygen and ozone. In addition, the fraction of N2

in O2 + N2 gas mixtures reduced the ozone production and enhanced the quenching

of ozone in comparison with Ar fraction in O2 + Ar gas mixtures. According to the

plasma chemistry model developed by Shimizu et al. [165], the ozone molecules can

be quenched by oxidizing nitrogen based-molecules, especially nitrogen oxides (NO,

NO2). Moreover, the same averaged ozone concentrations resulted in more or less

same bactericidal property regardless of the feed gas composition. For instance, at the

constant power consumption of 2 W, O2 + Ar plasma at fO2 = 0.1 and O2 + N2 plasma

at fO2 = 0.2 match in both bacterial reduction and averaged ozone concentration. The

same tendency was shown e.g. by O2 + Ar plasma at fO2 = 0.2 and O2 + N2 plasma at

fO2 = 0.4.
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The tendencies of the curves of the bacterial reduction and nO3 show a good cor-

relation both at the fixed voltage and at the constant power consumption. The increase

of the bacterial reduction was associated with the increase of nO3. If nO3 decreased, as

shown at O2 + Ar mixture plasmas at 6.5 kVpp for fO2 = 0.5 - 1, the bactericidal efficacy

decreased, too. The slopes of both curves were found similar as well. It is impor-

tant to note that the bacterial reduction is plotted on logarithmic scale, whereas nO3 is

on linear scale. The time-dependent curves of the ozone concentration and the bacte-

rial reduction also overlapped. The survival curves (Figure 2.11 and 2.14(a)) showed a

strong increase of the bactericidal effect in the first 30 seconds after the plasma ignition,

followed by a slight increase for longer treatment durations. The ozone concentration,

as demonstrated by the time evolutions in Figure 2.9, increased strongly in the first 20

- 30 seconds after the plasma ignition and saturated.

In total, the observations from this study support the idea of regarding ozone as

the mainly responsible agent for the bactericidal effect of the SMD plasma under the

investigated conditions. A good correlation between the ozone concentration and the

bacterial reduction was found. Both the ozone concentration and the bacterial reduc-

tion increased either by increasing the power consumption or by raising the O2 fraction

fO2. The results and the conclusions are in agreement with those presented by Shimizu

et al. [165], as mentioned in the previous chapter (see Figure 1.8).

It is possible, for instance, that ozone reacted with the water vapor diffused off

the agar surface to produce water-related reactive species such as OH• that are strong

sterilants.

Despite of the different scaling of the bacterial reduction and nO3, the sharp

bend in the bacterial reduction stands opposed to the smooth bend of the averaged

ozone concentration. This is possibly due to the two-phased inactivation of the bac-

teria, suggesting that multiple mechanisms involved in the bactericidal effect of the

SMD plasma. However, the results do not evidence that ozone alone is responsible

for the bactericidal effect by the SMD plasma treatment. It is possible that other reac-
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tive species apart from ozone were involved as well or even mainly responsible for the

bacterial inactivation. The evaporation of water from the agar sample surface can lead

to the formation of water-related reactive species such as hydrogen peroxide and hy-

droxyl radicals. Furthermore, the bactericidal effect on both Gram-negative E. coli and

on Gram-positive Enterococcus mundtii was similar despite of the different cell struc-

tures of the microorganisms. This observation is in accordance with the results from

a study by Klämpfl et al. [155], where similar bactericidal effect was observed on dif-

ferent vegetative bacterial indicators. No plausible explanations for these observations

have been found yet and further detailed investigations are required.

64



CHAPTER 3
SPORICIDAL

PROPERTIES OF SMD

UNDER DIFFERENT

HUMIDITY

CONDITIONS



3.1 Bacterial Endospores

Bacterial endospores are dormant, highly resistant and non-proliferating form of

some (usually Gram-positive) bacteria. The transformation of a vegetative bacterium

in an endospore, termed sporulation, mostly occurs in absence of nutrients (carbon,

nitrogen or phosphate) in the vicinity [216–218]. The endospore transforms back to the

vegetative form if the environment is suitable for metabolism and proliferation.

A number of experiments have proven that bacterial endospores can withstand

extreme terrestrial and extraterrestrial conditions including wet/dry heat, (solar and

cosmic) UV and gamma radiation, desiccation, vacuum pressures (⇠ 10�7 Pa) and

oxidative damage for long periods of time (up to hundreds of days) without nutrition,

as summarized in several reviews [219–221]. These observations have given rise to

panspermia, the theory that microorganisms are distributed throughout the universe

by traveling on or under the surface of meteoroids, asteroids, comets and planetoids

[222]. In addition, it is believed that contamination with bacterial endospores on the

surface of spacecrafts can lead to an undesirable transport of microorganisms e.g. to

other planets. Therefore, the decontamination of the spacecraft and the equipment for

the space missions has become an intensively studied research topic [223–225].

The high resistance of bacterial endospores are due to the multilayer structure,

the characteristic mineral content, the formation of dipicolinic acids (DPA) and the

small acid-soluble proteins (SASPs) and the capability of DNA repair [220, 226–228].

3.1.1 Multilayer Structure

The bacterial endospore has a different cell structure than the corresponding

vegetative bacterium. Characteristic for the endospores are the multiple layers protect-
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ing the spore’s core. From the outside inward, the layers are composed of the exospo-

rium, the coat, the outer membrane, the cortex and the inner membrane. The schematic

view and an electron micrograph showing the cross-section of a Bacillus endospore are

shown in Figure 3.1(a) and (b), respectively. The exosporium is the loose-fitting outer-

most layer of the endospore of Bacillus cereus and some other species. Many endospore-

forming bacteria such as G. stearothermophilus and B. subtilis either do not possess the

exosporium or contain an exosporium with a greatly reduced size [229, 230]. The ex-

osporium consists of proteins, including some glycoproteins that are characteristic for

exosporium-containing endospores [228, 229, 231, 232]. The function of the proteins

in the exosporium is unknown. The coat is a complex structure that comprises sev-

eral layers and consists of tens of mostly spore-specific proteins [226, 228, 231, 233].

Even though the individual roles of the coat’s proteins are unknown, it has been found

that the coat protects the endospore from some chemical agents and from exogenous

lytic enzymes [220, 233] The outer membrane appears not to contribute to the resis-

tance of the bacterial endospore, though it is essential for the sporulation and germi-

nation [220, 234]. The cortex consists of peptidoglycan and plays an important role in

the reduction of the water content in the endospore’s core [235–237]. A low water con-
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tent in the core enhances the resistance to wet heat and peroxide species [238, 239]. It

has been demonstrated that the water content in the core of an endospore is greatly re-

duced (28 - 50% of the wet weight) while the water content in the outer layers is similar

to that in growing cells (75 - 80% of the wet weight) [236, 237]. The inner membrane

of an endospore functions as a strong permeability barrier and protects the core from

chemical agents [220, 240].

3.1.2 Mineral Content

Bender and Marquis [241] presented procedures to completely exchange the

mineral content in the endospore cells in a controlled way without affecting the viabil-

ity. They tested a variety of mineral cations on the endospores of Bacillus megaterium, B.

subtilis niger and G. stearothermophilus strains and concluded that the resistance to wet

heat increased using H+, Na+, K+, Mg2+, Mn2+ and Ca2+, in ascending order. They

noted that the protection from wet heat was reduced using H+ and Na+ in comparison

with other mineral cations but still more effective than that of the corresponding veg-

etative cells. Beaman and Gerhardt [238] suggested that mineral cations replace water

in biopolymers of the cell core by intercalation and thus enhance the dehydration and

the protection from heat.

3.1.3 Dipicolinic Acid (DPA)

Pyridine-2,6-dicarboxylic acid, or dipicolinic acid (DPA), comprises 5 - 15% of

the dry weight of an endospore and is located in the core. Figure 3.2 shows the struc-

ture of the DPA. DPA chelates most of the divalent cations, especially Ca2+, and re-

duces the water content in the endospore’s core [220, 226, 242] Furthermore, Magge et

al. [243] observed that the endospore cells initiate the germination process and thus

degrade the protection if the concentration of DPA falls below a critical level.
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3.1.4 Small Acid-Soluble Proteins (SASPs)

The DNA of an endospore is saturated with a/b type small acid-soluble proteins

(SASPs) that are characteristic for the bacterial endospores. The SASPs are synthesized

in an abundant amount (⇠ 5% of total spore protein) in the late of the sporulation phase

and degraded in the beginning of the germination phase [220, 244]. These proteins are

mostly bound to the outside of the DNA helix and changes the DNA’s structure and

properties dramatically. In this way, the SASPs increase the endospore’s resistance to

heat, reactive chemicals and UV radiation [244].

3.1.5 DNA Repair

Bacterial endospores are metabolically dormant without enzyme activity and

damage inflicted to DNA or proteins is accumulated without being repaired in this

state. Though, the DNA repair enzymes are activated during the germination and out-

growth phase of the endospore and DNA and protein damage can be repaired to a

great extent [235, 245]. Two pathways for the DNA repair of endospores, namely the

excision and the monomerization of the spore photoproducts formed within the DNA

by UV irradiation, have been described by Fajardo-Cavazos et al. [246]. Setlow [247]
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compared the UV sensibility of various wild-type Bacillus endospores and their muta-

tions without the the capability of DNA repair and observed enhanced UV inactivation

of the latter.

3.1.6 Bacerial Endospores as Biological Indicator

Due to the protective properties described in the previous sections, bacterial

endospores are highly resistant to toxic chemicals, wet and dry heat and UV radi-

ation. The difficulty of inactivation of bacterial endospores makes them a good in-

dicator for the evaluation of sterilizing methods. The most frequently used bacte-

rial endospores as biological indicator are B. atrophaeus, B. cereus, B. subtilis and G.

stearothermophilus, but also Bacillus anthracis, which are considered as potential biolog-

ical weapons [248, 249].

3.1.7 Geobacillus stearothermophilus

A number of previous studies have demonstrated the sporicidal effect of CAPs

on different bacterial endospore strains [155, 250–252]. Several comparative studies

[253–255] concluded that, despite different experimental conditions, G. stearothermophilus

endospores are among the most resistant species to the plasma treatment and there-

fore appropriate biological indicator for assessment of the microbiocidal effect of the

plasma [227]. In the following chapters, the term "spore" is used instead of bacterial

endospore.
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3.2 Experimental Setup

3.2.1 Plasma Generation

The SMD plasma generator incorporated an aluminum sheet as planar electrode,

a ceramic plate (Al2O3) as dielectric and a stainless perforated plate as mesh electrode.

The power supply comprised an amplifier (PM4015, TREK Inc., Lockport, USA) and

a function generator (HM8150, HAMEG Instruments GmbH, Mainhausen, Germany).

The electric current was measured using an inductive current meter (Model 6585, Pear-

son Electronics Inc., USA). Additionally, an additional capacitor with the capacitance

of 0.1 µF was connected in series between the mesh electrode and the ground for the

measurement of the power consumption via the Lissajous-figure method as described

in the previous chapter. Figure 3.3 shows the schematic view of the SMD electrode

including the electric connections, the measures and the position of the light beam for

the absorption spectroscopy. The powered electrode was cut in circular shape with a

diameter of 30 mm and was attached onto the dielectric. The thickness of the dielectric

was 0.75 mm. The mesh electrode, 1.5 mm in thickness, was attached on the oppo-

71



pp ⇠

site side of the dielectric. Both the dielectric and the mesh electrode were in square

shape with a side length of 100 mm. The uniformly circular-shaped openings in the

mesh electrode were arranged in a hexagonal pattern with the lattice spacing of 7 mm.

The diameter of the opening measured 5 mm. The top view photograph of the mesh

electrode is shown in Figure 3.4(a).

High voltage with a sinusoidal waveform was generated by the power supply

and applied to the planar electrode. The applied voltage was fixed at 6.8 kVpp and the

frequency was varied from 100 Hz up to 10.0 kHz. The input voltage, the electric cur-

rent and the voltage drop over the capacitor were monitored by an oscilloscope (7000B

Series, Agilent Technologies, Santa Clara, CA, USA). The total power consumption at

the SMD electrode varied between 0.15 and 14 W. Figure 3.4(b) shows a photograph of

the SMD electrode after the ignition of the plasma at 3.0 kHz, corresponding to a power

consumption of ⇠ 5 W. The photograph was taken using 15 seconds of exposure time,

f/4 and ISO-400. The brightness was enhanced by an image editing software.
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3.2.2 Handling and Treatment of the Spore Samples

The G. stearothermophilus spore samples were prepared by drying a certain amount

of spore suspension in a saline solution on the surface of rectangular stainless steel

plates with the dimensions 30 mm ⇥ 6 mm ⇥ 0.5 mm (provided by SIMICON GmbH,

Munich, Germany). According to the specification given by the manufacturer, the

number of spores on each sample was ⇠ 1.5 ⇥ 106 . For the SMD plasma treatment

of the spores, the sample was placed on the top of a polyether ether keptone (PEEK)

block as shown in Figure 3.3. PEEK was chosen as sample holder because of its high

resistance to electrical and thermal influences. A cylindrical quartz tube with the inner

diameter of 32 mm and the height of 10 mm was placed around the sample. The SMD

electrode was then placed on top of the quartz tube with the mesh electrode down and

the planar electrode matching exactly the position of the quartz tube (see Figure 3.3).

In total, a closed cylindrical volume was confined by the PEEK block, the quartz tube

and the SMD electrode with the spore sample inside.

For the comparison of different plasma parameters and humidities, the spore

samples were exposed to the SMD plasma for 5 minutes. For the determination of the

survival curves, the treatment duration was varied from 1 to 5 minutes. After the SMD

plasma treatment, each spore sample was put into a sealable centrifuge tube with 5 ml

of Ampuwar (sterile and pyrogen-free water, Fresenius Kabi Deutschland GmbH).

The spore cells were suspended by vortexing for 30 seconds, by ultrasonic-bathing for

20 minutes and by vortexing once again for 30 seconds. Dilution series were made from

the suspension for the evaluation of the spore reduction by the SMD plasma treatment.

100 µl of the required suspension/dilution was inoculated onto a Tryptic Soy agar

(TSA) plate (Thermo Fisher Scientific Inc., Waltham, MA, USA) and spread over the

surface using a cell spreader. Then the agar plates were incubated at 55.5 �C for at

least 16 hours. Three spore samples were treated for each experimental condition. The

experiments were repeated at least 3 times for each condition. Untreated samples were
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also processed in the described way in order to evaluate the initial number on the spore

samples and the recovery rate after SMD plasma treatment.

3.2.3 Ozone Measurement via Optical Absorption Spectroscopy

As demonstrated in the previous chapter, ozone appeared to be involved in the

inactivation of bacteria by the SMD plasma exposure. In order to investigate the chemi-

cal components present in the confined volume where the spore samples were treated,

the concentration of ozone was monitored by optical absorption spectroscopy using

the same setup as described previously. The ozone measurement was performed in

the absence of a spore sample in the closed volume. The beam of UV light was aligned

parallel to the surface of the PEEK block at a distance of 0.5 mm according to the sur-

face height of the spore samples, as indicated in Figure 3.3. The measurement was

repeated 3 times for each experimental condition and the mean value and the standard

deviation were calculated.

3.2.4 Monitoring and Regulation of Humidity

The humidity was measured using the hygrometer mentioned in the previous

chapter. Before and after the SMD plasma treatment, the SMD electrode was removed

and the sensor of the hygrometer was positioned near the sample position. Then the

volume was closed again and the humidity was recorded. Three different humidity

conditions were applied for the spore treatment in this study, which are referred to

as condition A, B and C with the respective humidity of ⇠ 5.5 g/m3, ⇠ 10 g/m3 and

⇠ 17 g/m3. The conditions A and B were realized by choosing proper environmen-

tal conditions. The high humidity of ⇠ 17 g/m3 under condition C was achieved by

pipetting 40 µl of tap water onto the PEEK block and spreading it with a cell spreader.

The ambient pressure was stable at 960 ± 10 hPa for all the experiments.
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3.2.5 Measurement of Temperature

The temperature was measured both at the mesh electrode and at the sample

position after 5 minutes of plasma generation using a type K thermocouple with a tip

diameter of ⇠ 0.6 mm. A stainless steel substrate without spores was placed at the

sample position for the temperature measurement. Before the plasma ignition, the

temperature at both locations was at room temperature, ⇠ 21 �C. Figure 3.5 shows the

temperature increase plotted against the power consumption. The error bars indicate

the minimum and maximum values from three measurements. The temperature at

the mesh electrode increased monotonically with increasing power consumption and

reached ⇠ 46 �C at the highest power consumption of 14 W. At the sample position, the

temperature increase was much slower with a maximum increase of ⇠ 5 �C at 14 W. G.
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stearothermophilus spores are thermophile microorganisms that proliferate preferably at

temperatures above 50 �C. Hence, the contribution of heat to the sporicidal effect of the

SMD plasma was excluded in this study.

3.2.6 Measurement of UV Radiation Power

The UV radiation power was measured in the UVC-range using the previously

introduced UV power meter. The power consumption was varied between 0 and 14

W. The UV dose was calculated by integrating the UV power over 5 minutes. Figure

3.6 shows the UV dose plotted against the power consumption. The UV dose was very

low with  2 µJ/cm2 (near detection limit) at low power consumption of below 5 W.

As the power consumption was increased, the UV dose increased strongly up to ⇠ 40
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µJ/cm2 at 14 W. Still, the measured doses were by several orders of magnitude smaller

than the lethal doses ⇠ 10 mJ/cm2 for microorganisms [30,34,35] as mentioned in 1.5.3.

3.3 Results

First of all, the recovery from an untreated spore sample after processed in the

described way was between 0.1 and 3.5 ⇥ 106 CFUs. Partly large fluctuation was

observed which was possibly due to the fabrication procedures of the manufacturer

and/or due to the thermal convection inside the closed volume. Klämpfl [256] pre-

sented scanning electron microscope (SEM) pictures of the untreated spore samples

and pointed out the presence of the organic cell debris from the sporulation process

as well as the NaCl crystals from the fabrication. In total, 33 untreated samples were

evaluated and the average recovery from an untreated sample was ⇠ 0.7 ⇥ 106 CFUs,

about half as much as the manufacturer’s specification. As mentioned previously, the

different humidity levels are referred to as condition A (⇠ 5.5 g/m3), condition B (⇠

10 g/m3) and condition C (⇠ 17 g/m3).

3.3.1 Reduction of G. stearothermophilus after 5 Minutes of SMD
Plasma Treatment

The reduction of G. stearothermophilus spores after 5 minutes of exposure to the

SMD plasma with varied power consumption under different humidity conditions is

illustrated in Figure 3.7. Here, the number of recovered CFUs after the SMD plasma

treatment is shown in box plots, where the lower and upper edge of each box indicate

the first and the third quartile, respectively. The horizontal line inside the box marks

the median. The whiskers indicate 1.5 times of the interquartile range from the median
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and cover together with the box 99.3% of the experimental data. The dashed horizon-

tal bar in gray at 7 ⇥ 105 indicates the average recovery from the untreated samples.

The lower detection limit due to the evaluation procedure was 25, as indicated by the

dashed gray bar the at the bottom.

The reduction of spores was almost negligible ( 0.5 log reduction) at low hu-

midity under condition A in the entire power consumption range from 0.5 to 14 W.

No large difference in the spore reduction was found as the power consumption was

changed. Under condition B, the spore reduction was below 0.5 log at the lowest ap-

plied power consumption of 0.5 W. As the power consumption was increased from
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0.5 to 5.0 W, the number of recovered spore CFUs decreased and the maximum spore

reduction of 2.5 - 3 log was observed at 5.0 W of power consumption. The spore re-

duction decreased as the power consumption was increased further up to 14 W and

almost no spore reduction was observed at the highest applied power consumption of

14 W. At the increased humidity under condition C, the sporicidal efficacy increased

continuously from  1 log at 0.5 W to � 3 log at 14 W. A large fluctuation of up to 1.5

log in the spore recovery after the SMD plasma treatment was observed under condi-

tions B and C, whereas the fluctuation was comparably little under the condition A.

The fluctuation of the experimental data is not understood yet. Since the experimental

conditions for the plasma ignition were kept constant and stable for the given condi-

tions, a possible explanation is provided by the altered chemistry e.g. from the surface

modification at increased humidity. Further investigations are required to understand

this observation properly.

3.3.2 Survival Curves of G. stearothermophilus

For the investigation of the kinetics of the spore reduction, the exposure duration

of the spore samples to the SMD plasma was increased from 1 to 5 minutes. The power

consumption was kept constant at 5.0 W where the maximum of spore reduction under

condition B was found. The spore reduction under condition A was negligibly small at

 0.5 log after up to 10 minutes of SMD plasma exposure. Figure 3.8 shows the survival

curves of the spore samples after the SMD plasma treatment under condition B (a) and

under condition C (b). The survival curve data under condition A are not shown. As

shown in Figure 3.7, the spore reduction at 5.0 W was similar (⇠ 2.5 log) after 5 minutes

of SMD plasma exposure under condition B and C. Under both humidity conditions,

the survival curves showed a linear decrease (a single-phase reduction), indicating a

single process of spore inactivation by the SMD plasma.
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3.3.3 Ozone Concentration

The concentration of ozone nO3 was measured to investigate the chemistry in

the confined volume where the spore samples were treated with the SMD plasma.

The time evolutions of nO3 at different power consumptions under condition A are

shown in Figure 3.9. The error bars indicate the standard deviation from three inde-

pendent measurements. Different ozone generation modes were observed depending

on the power consumption. At the lowest applied power consumption of 0.1 W, nO3

increased slowly in the first 100 seconds after the plasma ignition and saturated at ⇠

500 ppm. At 0.5 and 1.5 W, nO3 increased rapidly in the first 50 - 60 seconds, reached a

maximum, decreased slightly and saturated at 1500 - 2500 ppm. At higher power con-

sumptions, nO3 rose rapidly within a initial duration that decreased with increasing

power, reached a maximum and dropped to zero.

These observations were are qualitatively in agreement with the results pre-
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sented by Shimizu et al. [165]. Under condition B and C, the same ozone generation

modes with similar curve shapes were observed, though the overall ozone concentra-

tion and the saturation level decreased with increasing humidity (data now shown).

Based on the time evolution data, the averaged ozone concentration over 5 minutes

nO3 was determined by integrating the time dependent ozone concentration nO3 over

5 minutes and dividing it by 5 minutes. Figure 3.10 shows nO3 plotted against the

power consumption under different humidity conditions. The shapes of the curves

were similar under all three humidity conditions. Starting near zero at 0.1 W, nO3 in-

creased strongly with increasing power consumption. A maximum of nO3 was found

at relatively small power consumptions between 0.5 and 1.5 W. As the power con-

sumption was increased past 1.5 W, nO3 decreased monotonically and fell below 200

ppm for all humidity conditions at 5.0 W. At high power consumption above 8 W, nO3
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approached zero ppm.

The overall values of nO3 decreased by almost one order of magnitude as the

humidity was increased from ⇠ 5.5 g/m3 to � 17 g/m3. The maximum of nO3 was

2000 - 2500 ppm under condition A, 500 - 1000 ppm under condition B and 150 - 400

ppm under condition C.

3.4 Discussion

The bacterial endospores of Geobacillus stearothermophilus are thermophile mi-

croorganisms that preferably proliferate at high temperatures above ⇠ 55 �C. Regard-
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ing the low heat dissipation at the SMD electrode and the low temperature increase

at the sample position, the inactivation of the endospores by heat can be excluded.

The measurement of the UV radiation power in the UVC range showed that the UV

dose from the SMD plasma was several orders of magnitude below the lethal doses for

microorganisms. The chemical species from the SMD plasma were transported onto

the sample surface mainly by diffusion. The diffusive transport is described by the

diffusion equation of an one-dimensional system

∂n
∂t

= D
∂2n
∂x2 , (3.1)

where n is the concentration of the gas particles, D the diffusion coefficient, t time

and x the distance. With the typical diffusion coefficients of gases of ⇠ 0.1 cm2/s

at the atmospheric pressure, the estimated time required for the diffusive transport

length of 10 mm was 1 - 10 seconds [257, 258]. Thus, the contribution of the short-

lifetime reactive species from the SMD plasma to the sporicidal effect is ruled out.

Consequently, it was assumed that the long-lifetime reactive species were primarily

responsible for the inactivation of the endospores of G. stearothermophilus by the SMD

plasma exposure. The single-phase reduction of the endospores in the survival curves

suggests that there was only one main mechanism involved in the inactivation process

under the investigated conditions.

Ozone is one of the long-lifetime reactive species that can be produced by the

SMD plasma in large amounts. As concluded in the previous chapter and demon-

strated by Shimizu et al. [165], ozone was strongly correlated with the bacterial reduc-

tion by the SMD plasma exposure. The correlation of the ozone concentration with the

inactivation efficacy on the endospores of G. stearothermophilus after the SMD plasma

exposure was investigated in the present study. Under each of the three humidity

conditions, the highest ozone concentrations were detected in the power consumption

range of 0.5 - 1.5 W, where the reduction of the endospores was small below 0.5 log
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under condition A and B and below 1 under condition C. The highest ozone concen-

trations of up to 2500 ppm was measured under condition A, but the spore reduction

remained low and did not exceed 1 log at any power consumption. Here, the spori-

cidal efficacy remained almost constant although there was a large difference in the

averaged ozone concentration nO3 as the power consumption was changed from 0.5 to

14 W. nO3 decreased significantly by nearly one order of magnitude as the humidity

was increased from ⇠ 5.5 g/m3 under condition A to � 17 g/m3 under condition C,

whereas the overall sporicidal efficacy increased from below 0.5 log to above 3 log. The

maximum spore reduction under condition B was found at the power consumption

of 5.0 W, where the ozone concentration dropped to zero after ⇠ 60 seconds. Under

condition C, the spore reduction increased monotonically with increasing power con-

sumption, whereas nO3 decreased monotonically with at power consumptions higher

than 0.5 W. In total, no clear correlation was found between the concentration of ozone

produced by the SMD plasma and the reduction of endospores of G. stearothermophilus.

Hähnel et al. [259] exposed the endospores of Bacillus atrophaeus to a DBD plasma

with the relative humidity in the environment varied between 0 and 70%. They re-

ported that air humidity was required for the inactivation of the endospores and the

sporicidal efficacy increased monotonically with increasing humidity. After ruling out

the contribution of UV and heat, they suggested OH• radicals as the main sporicidal

agent. Referring to these observations, the influence of the humidity on the sporicidal

efficacy was investigated in this study. It appears that humidity was essential for the

inactivation of the endospores of G. stearothermophilus under the investigated condi-

tions. Very small reduction of the endospores was observed at the comparably low

humidity of ⇠ 5.5 g/m3 under condition A. The sporicidal efficacy increased at the

moderate humidity of ⇠ 10 g/m3 under condition B and the highest reduction of up

to � 3 log was obtained at the increased humidity of � 17 g/m3. Water molecules can
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be dissociated by electrons and produce OH• radicals according to the reaction [190]

e� + H2O �! OH • +H + e� . (R3)

Alternatively, H atoms and hydroperoxyl radicals (HO2•) can be produced from reac-

tion cascades involving water molecules [180, 189, 190]. Even though OH• radicals, H

atoms and HO2• radicals are short-lifetime reactive species, their contribution to the

inactivation of the endospores must be taken into account especially at high humidity,

because they can be produced by the reactions of the long-lifetime reactive species (e.g.

ozone) with the water molecules in the vicinity of the spore sample surface. Moreover,

long-lifetime chemical species, especially H2O2, can be produced from reactions in-

volving water molecules and play a role in the inactivation of the bacterial endospores.

Reactive nitrogen species such as NO2, N2O5 and HNO3 can also contribute to the

sporicidal effect as suggested by Schnabel et al. [260].

Water condensation was observed in the confined volume between the SMD

plasma electrode and the spore sample under condition C when the applied power

consumption exceeded 1.0 W. The reactive species from the SMD plasma can react

with or dissolve in the condensed water. The formed solution on the sample surface,

containing a variety of reactive species, is termed plasma activated water (PAW) [261,

262]. The short-lifetime reactive species associated with water can be formed in PAW

as well. If the PAW reached the surface of an endospore sample, the reactive species

could have contributed to the inactivation of the endospores.

Jung et al. [263] observed an enhancement of the sporicidal efficacy by ⇠ 33% if

the endospores of Bacillus subtilis were treated with both UV and aqueous ozone. They

explained the synergistic effect of UV and ozone by the formation of OH• radicals

in the liquid. Additionally, nitric and nitrous acids formed by the SMD plasma can

acidify the PAW and promote the sporicidal effect [264, 265]. Regarding the similar

sporicidal efficacy at 0.5 - 5.0 W under conditions B and C, the increased endospore
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reduction under condition C is possibly the result of the superposition of the endospore

reduction under condition B and additional effects from the PAW appeared on the

sample surface.
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4.1 Ozone Generation by Microdischarges

In the chapters 2 and 3, the dynamic behavior of ozone generation by the SMD

was demonstrated. The generation of ozone by SMD involves a third-body reaction

(R1), preceded by the dissociation reaction of O2 molecules by electrons (R2) as de-

scribed in 2.2.2. The SMD plasma comprises a large number of micro-discharges be-

tween the surface of the mesh electrode and that of the dielectric. A single micro-

discharge is suggested to have a long cylindrical shape with a widened end at the

cathode. The description of the formation mechanism and the relevant properties of

the micro-discharges are summarized in 1.8. Due to the accumulation of charge at

the surface of the counter electrode by the micro-discharge, there are a spatial gap be-

tween the neighboring micro-discharges and a time gap between two micro-discharges

occurring at the same location.

In order to describe the relation between the geometry for the plasma produc-

tion and the plasma chemistry, a simple model was developed. The circular holes in the

perforated plate which was used as mesh electrode, is referred to as "openings" or an

"open area" with the inner diameter of d. The spatial variable r represents the distance

from the center of an opening. Two assumptions were made: (i) the energy and elec-

tron densities are uniform in a single micro-discharge. (ii) the micro-discharges have

a ideal cylindrical shape, i.e. the length and the diameter of the micro-discharges are

constant. The total power consumption is assumed to be proportional to the number

of the micro-discharges, since the radial density Ei(r) =
R

Ei(✓, r)d✓ for both electron

and energy is constant for ( d
2 � l)  r  d

2 . l is the length of a micro-discharge and has

a positive correlation with the applied voltage. The number of the micro-discharges

can be calculated by the division of the circumference of the opening, ⇡d, by the mean

distance between the neighbored micro-discharges a. Assuming that a is constant for
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different d, the energy and electron density should be proportional to ⇡d as long as

d � l, if the field strength, i.e. the applied voltage is the same. The concentration of

ozone is strongly dependent on the electron density in the plasma. With the assump-

tions made here, the ozone concentration should be controllable by varying geometric

parameters, e.g. the diameter of the mesh electrode’s opening.

The time scales which are relevant for the SMD plasma are ⇠ 1 ms and ⇠ 100

ns from the plasma frequency for electrons and for ions, respectively, the characteristic

diffusion time ⌧di f f ⇠ 10s and the lifetime of a micro-discharge ⌧MD ⇠ 10 ns. In the

present study, the possibility to control the plasma chemistry by varying the time in-

terval for plasma generation was investigated. For this purpose, the SMD plasma was

generated applying pulsed input power with the pulse width varied in a wide range

over 4 orders of magnitude.

Additionally, the dynamics of the concentration of ozone and ozone quench-

ing species was investigated by generating the SMD plasma in two sequenced phases

applying different input powers. The results should give more detailed information

about the plasma chemistry of SMD.

4.2 Experimental Setup

4.2.1 SMD Plasma Generation

The SMD plasma generator comprised a ceramic plate as dielectric, a perforated

stainless plate as mesh electrode and a circular aluminum sheet as planar electrode.

The dielectric was square-shaped with the side length of 100 mm. The planar elec-

trode was circular-shaped with the diameter of 30 mm. The thickness of the dielectric

and that of the planar electrode was 0.75 mm and less than 0.1 mm, respectively. Per-

forated stainless steel plates with different measures were used as mesh electrode as
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will be described later. The power supply comprised a function generator (33220A,

Agilent Technologies, Santa Clara, CA, USA) and an amplifier (PM4015, TREK Inc.,

Lockport, NY, USA). The input voltage, the electric current and the voltage drop across

the capacitor were monitored using an oscilloscope (7000B Series, Agilent Techonolo-

gies). An additional capacitor was connected in series between the mesh electrode and

the ground for the measurement of the power consumption via the Lissajous-figure

method as mentioned in chapter 2.

A quartz tube with an inner diameter of 32 mm and a height of 10 mm was

placed on the mesh electrode side matching the position of the circular planar elec-

trode. The absorption spectroscopy for the measurement of ozone was performed

near the surface of the SMD plasma generation. The beam of light from the light

source (Avalight-CAL, Avantes BV, Apeldoorn, Netherlands) passed through the en-

closed volume parallel to the SMD plasma electrode at a distance of less than 1 mm

from the electrode surface. The absorption spectra were determined and displayed

by a spectrometer (AvaSpec-2048, Avantes BV). A sketch of the experimental setup in-

cluding the electric connections and the position of the light beam for the absorption

spectroscopy is shown in Figure 4.1.
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4.2.2 Variation of the Geometry

The geometry for the SMD plasma generation was changed by interchanging

three different perforated plates each with a hole diameter of 2.5, 3.5 or 5.0 mm. In

all three perforated plates, the openings were hexagonally arranged with a constant

lattice spacing of 7.0 mm. The geometry of the mesh electrode is visualized in Figure

4.2, where d indicates the variable hole diameter. Continuous sinusoidal waveform

was applied at the voltages of 7 and 10 kVpp. The frequency was varied between

0.1 and 5.0 kHz. The resulting power consumption was between 0.1 and 7.5 W. Table

4.1 summarizes the mesh size, the ratio of the open area to the powered area and the

typical coverage of the open area by the SMD plasma. From the photographs of the

SMD plasma, the estimated length of the micro-discharges was 1.8 - 2.0 mm at the

applied voltages of 7.0 and 10.0 kVpp.
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Mesh Hole diameter Area ratio Plasma coverage
M25 2.5 mm 0.12 � 100%
M35 3.5 mm 0.23 ⇠ 100%
M50 5.0 mm 0.47 ⇠ 60 - 70 %

4.2.3 Variation of the Time Interval

To investigate the influence of the time interval on the SMD plasma chemistry,

a sinusoidal waveform was applied in pulses using the so-called burst mode of the

function generator. Here, only the perforated plate with 5 mm hole diameter was used

as mesh electrode. The interval between the pulses was controlled by setting the burst

period TB, which was defined as the reciprocal of the pulse frequency fP. The width

of a single pulse was controlled by setting the number of cycles in one pulse NC. The

input frequency f0 was kept fixed at 10.0 kHz and the applied voltage at 7 kVpp. Based

on these parameters, the duty cycle DC was calculated

DC =
NC

TB f0
(4.1)

and was given in percents (%). Depending on TB, NC was varied to obtain the required

duty cycle DC. TB was varied in a wide range over 4 orders of magnitude from 1 ms

to 1000 ms (1 s), resulting in 1 kHz, 100 Hz, 10 Hz and 1 Hz in pulse frequency fP. DC

was changed betweeen 10% and 50%. Table 4.2 shows the required NC for the given

combinations of TB and DC at fixed f0 of 10 kHz.

Figure 4.3 illustrates the input waveform with the both constant (at 1 ms) and

variable TB and the corresponding diagram for the power consumption with the duty

cycles of (a) 10%, (b) 20% and (c) 50%. The input frequency f0 was fixed at 10 kHz. The
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NC f0

fP TB DC

TB fP 10% 20% 30% 40% 50%
1 ms 1 kHz 1 2 3 4 5

10 ms 100 Hz 10 20 30 40 50
100 ms 10 Hz 100 200 300 400 500

1 s 1 Hz 1000 2000 3000 4000 5000

power consumption within a pulse was constant and exactly as high as the continuous

power consumption at the same input frequency (e.g. P10kHz at 10 kHz). On a larger

time scale t � TB, e.g. of the measurement duration of ⇠ 102 s, the time-average power

consumption equaled the continuous power consumption at a reduced frequency (ef-

fective frequency, feff < f0) depending on the duty cycle.

4.2.4 Two-Phase Ignition of the Plasma

For a detailed investigation of the ozone quenching mechanisms, the SMD plasma

was ignited applying 7.0 kVpp at 500 Hz, switched off after 90 s and ignited again 10

s later (at t = 100 s) applying the same high voltage at a different frequency, the final

frequency ff. The perforated plate with the hole diameter of 5 mm was used as mesh

electrode. ff was varied between 100 Hz, 500 Hz, 1.0 kHz, 3.0 kHz and 10.0 kHz. It

is known from the previous experiments that the SMD was operated in the ozone rich

mode until 1.0 kHz and ozone depletion mode at 3 kHz and 10 kHz. Additionally, the

plasma was switched off and not ignited again to measure the leakage behavior of the

ozone concentration.
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4.3 Results

4.3.1 Variation of the Geometry

From here, the different perforated plates are on referred to as M25 (mesh elec-

trode with the hole diameter of 2.5 mm), M35 (3.5 mm) and M50 (5.0 mm). Figure 4.4

shows the time evolutions of the ozone concentration nO3 at two different voltages of 7

kVpp (a1 - a3) and 10 kVpp (b1 - b3) using M25 (a1, b1), M35 (a2, b2) and M50 (a3, b3).

In order to obtain constant power consumptions for different meshes, the applied fre-

quency was adjusted with the voltage fixed at 7 kVpp or 10 kVpp. Comparably little

ozone concentrations with maximum concentrations below 500 ppm were measured

at both voltages using M25. Similar behaviors were observed using M35 and M50 for

both voltages, with a slight tendency of a faster ozone depletion using M35. At the

lowest applied power consumptions of 0.5 W (for 7 kVpp) and 0.1 W (for 10 kVpp),

nO3 increased monotonically with time. At higher power consumptions, nO3 increased

during an initial phase, reached a maximum and decreased. nO3 dropped down to zero

within the measurement duration of 120 s if the power consumption exceeded ⇠ 4.5

W depending on the conditions. The duration of the initial increasing phase and the

maximum of nO3 decreased with increasing power consumption. Two different ozone

generation modes, namely the saturation mode and the depletion mode, were found

at both voltages with the transition taking place at ⇠ 2 W using M25 and at 3.5 - 4.5

W using M35 and M50. In total, the shapes of the time evolution curves of nO3 were

similar using M35 and M50 at both applied voltages 7 and 10 kVpp

The time-dependent ozone concentration was obtained by averaging over the

measurement duration. The so calculated averaged ozone concentration nO3 is shown

in Figure 4.5. nO3 was slightly higher at 7 kVpp than at 10 kVpp using all three per-

forated plates. Using M35 and M50, nO3 increased up to ⇠ 1400 ppm as the power

consumption increased from near zero to 1.5 W and decreased continuously with the

95



pp pp

96



pp

pp

power consumption increased further. nO3 using M25 was ⇠ 250 ppm by a factor of 4 -

6 smaller than using the meshes with a bigger hole diameter and decreased monoton-

ically with increasing power consumption.

The production rate of ozone PO3 is defined by the slope of the time evolution

curve immediately after the plasma ignition (t = 0), as following

PO3 =
dnO3

dt

����
t=0

. (4.2)

Figure 4.6 shows PO3 from the SMD plasma using different meshes at different power

consumptions. The difference between the applied voltages 7 kVpp and 10 kVpp was

negligibly small and showed that PO3 depends only on the power consumption and

not on the applied voltage or frequency individually. Using M25, PO3 increased from
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⇠ 10 ppm/s to ⇠ 25 ppm/s as the power consumption was increased from near zero

to 2 W, and saturated at ⇠ 25 ppm/s as the power consumption was further increased.

Using M35 and M50, PO3 increased monotonically with increasing power consump-

tion. Higher PO3 were observed using M50 than using M35, if the power consumption

exceeded 2 W. The maximum PO3 obtained in this study was 125 ± 20 ppm/s using

M50 and 80 ± 10 ppm/s using M35.

4.3.2 Variation of the Time Interval

The time evolutions of ozone at different pulse frequencies fP with varied duty

cycle DC are shown in Figure 4.7. With DC at 10%, the time-dependent ozone concen-
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tration nO3 increased during the first ⇠ 60 s after the SMD plasma ignition and satu-

rated. The saturation level varied from ⇠ 1000 to ⇠ 2000 depending on fP. The highest

and the lowest concentrations were found with fP at 100 Hz and at 1 Hz, respectively.

With DC at 20% and 30%, nO3 increased in the first 40 - 50 s after the ignition and de-

creased thereafter. nO3 appeared to approach a saturation value. With DC of 40% and

50%, nO3 increased in the first  25 s, then declined to zero. No transition between

the ozone generation modes, was found when DC was kept constant and fP was var-

ied. The saturation and the overall concentrations of ozone were highest with fP at 100

Hz and 10 Hz. The lowest ozone concentrations were measured with fP at 1 Hz. The

ozone concentrations with fP of 100 Hz and 10 Hz on the one hand and with fP of 1

kHz and 1 Hz on the other hand increasingly overlapped as DC was raised from 10%

to 50%.

The time-dependent ozone concentration was averaged over the measurement

duration of 2 minutes. Figure 4.8(a) and (b) show the averaged ozone concentrations

nO3 plotted against fP (a) and against DC (b), respectively. The maximum nO3 appeared

with fP between 10 Hz and 100 Hz at any of the applied DC of 10%, 20%, 30%, 40%

and 50%. nO3 declined at 1 Hz and 1 kHz of fP.

nO3 decreased monotonically with increasing DC at any of the applied fP. At

10%, 20% and 30%, the highest and lowest nO3 were observed with fP at 100 Hz and at

1 Hz, respectively. At 40% and 50%, similar nO3 were observed with fP at 10 Hz and

100 Hz as well as at 1 Hz and 1 kHz.

The production rate of ozone PO3 by the SMD plasma was calculated by deter-

mining the slope of time-dependent nO3 immediately after the plasma ignition. Figure

4.9 shows PO3 at different fP and DC. Nearly constant PO3 was observed with fP at

10 Hz to 1 kHz. Clearly lower PO3 were measured at 1 Hz. Generally, PO3 increased

slightly with increasing DC.

99



fP

f0 V pp DC DC

DC DC DC

100



fP

DC

fP DC

101



4.3.3 Two-Phase Ignition of the Plasma

The time-dependent ozone concentrations nO3 are shown in Figure 4.10. The

vertical bars at t = 90 s and 100 s indicate the time points where the SMD plasma with

the initial frequency f0 was switched off and re-ignited with the final frequency ff,

respectively. The dots indicate nO3, when the SMD plasma was ignited and sustained

with f0 for 90 s, then switched off and re-ignited with ff (except for Figure 4.10(a),

where the plasma was not ignited for the second time). The thin solid lines represent

nO3, when the SMD plasma was generated continuously with the corresponding ff.

Figure 4.10(a) shows nO3, when the SMD plasma was switched off and not ignited

again after t = 90 s. The complete leakage of ozone (nO3 = 0) was reached after ⇠ 180 s.

The leakage of ozone was fitted by an exponential curve with

nO3(t) = nO3(t = 90s) exp
✓
� t � 90s

t

◆
.

where t ⇡ 34 s is the characteristic leakage duration. The experiments with the second

SMD plasma ignition showed an exponential decrease of nO3 during 10 s of the plasma-

off duration according to the leakage. With ff at 100 Hz, nO3 decreased after the re-

ignition and saturated at the typical saturation concentration of ozone for 100 Hz, as

shown in Figure 4.10(b). The re-ignition of the SMD plasma with ff = f0 = 500 Hz

resulted in a increase of nO3 until the ozone loss due to the leakage during the plasma-

off time (90 - 100 s) was compensated. After ⇠ 30 s, the typical saturation level for 500

Hz was reached, as shown in Figure 4.10(c). The maximum nO3 from the continuous

SMD plasma operation was observed at 1 kHz under the investigated conditions. As

shown in Figure 4.10(d), the re-ignition with ff at 1 kHz led to an increase of nO3 to

the typical level for 1 kHz. Here, the re-ignition curve followed exactly the decreasing

trend (and no saturation behavior) of the continuous nO3 curve at 1 kHz. In the ozone

depletion mode at 3 and 10 kHz, nO3 decreased linearly and dropped to zero. The

ozone depletion speed increased with increasing frequency (i.e. power consumption).
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While the slope of the linear decrease was nearly the same at 3 kHz, the depletion

speed was much higher after the re-ignition with 10 kHz than from the continuous

SMD operation at the same frequency.

No increase of the ozone concentration was observed when the initial frequency

f0 was set to 10 kHz and any frequency between 0.1 and 10 kHz was chosen as ff

(data not shown). As the SMD plasma was re-ignited with ff, the ozone concentration

remained at 0. After ⇠ 180 s of plasma generation, ozone was detected again. The

initial increase of the ozone concentration was not as fast as with no pre-ignition, but

exponential until the typical concentration was reached.

4.4 Discussion

Variation of the Geometry

With increasing power consumption until ⇠ 1.5 W, the ozone production rate

PO3 increased monotonically while the averaged ozone concentration increased in a

saturation mode and decreased in a depletion mode. The decrease of ozone in the

ozone depletion mode was much faster than the exponential decrease by leakage. It

was therefore assumed that ozone was quenched by other reactive species produced

by the SMD plasma, e.g. NO2. The transition from the ozone saturation mode to the

ozone depletion mode occurred if the production rate of the ozone quenching species

surpassed PO3.

Using M25, both the production rate and the averaged concentration of ozone

from the SMD plasma was significantly below those using M35 and M50 at the same

power consumption. As described in chapter 1, the surface micro-discharges are formed

along the boundary edge between a single opening of the mesh electrode and the sur-

face of the dielectric. With a hole diameter of 2.5 mm, the entire open area in the mesh
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was covered by the microdischarges. With the constant lattice spacing of the mesh

electrode for different meshes, the available area for the plasma production using M25

was smaller than using M35 and M50 at a fixed power consumption, as shown in ta-

ble 4.1. When M25 was used, the production of ozone was already suppressed due to

the limitation of the volume for the plasma generation. Since the ozone concentration

was similar using M35 and M50, it was assumed that a hole diameter of 3.5 mm was

sufficient for a homogeneous distribution of the SMD in a single opening of the mesh

electrode. From the photographs of the discharge, the estimated length of the micro-

discharges was 1.8 to 2.0 mm at the applied voltage of 7.0 and 10.0 kVpp and matched

approximately the radius of the M35 mesh.

Furthermore, it was possible that the production and recombination rates of

ozone and the ozone quenching species were affected by the hole diameter. In the

ozone depletion mode, the time required for the complete depletion of ozone with

M25 was shorter than with M35 and M50 at the same power consumption. This sug-

gests that the ratio of the production rate of the ozone quenching species to PO3 was

higher using M25 than using M35 or M50. In addition, it is assumed that the local heat

dissipation is increased using M25, because the power is consumed in a smaller area,

and possibly promote the thermal dissociation of ozone.

Even though partly large differences in the time evolution, averaged concentra-

tion and production rate of ozone were observed, no clear shift of the transition be-

tween the different ozone generation modes was found as the geometry for the SMD

plasma generation was varied.

Variation of the Time Interval

The time evolution and the averaged concentration of ozone were strongly af-

fected by the pulse frequency fP. The averaged concentration decreased in the follow-

ing order: 100 Hz > 10 Hz > 1 kHz > 1 Hz. A possible explanation for the low concen-

trations of ozone at 1 Hz is given by the comparably long plasma-off time of 500 - 900
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ms. It is suggested that the recombination processes of the short-lifetime species were

promoted by the low pulse frequency of 1 Hz, which greatly reduced the availability

of the short-lifetime reactive species e.g. for the formation of ozone, which requires the

atomic oxygen. Consequently, it was expected that the ozone concentration increased

with decreasing plasma-off time by increasing fP, as it was the case in this study up to

100 Hz.

At the pulse frequency of 1 kHz, however, the ozone concentration decreased.

This observation suggested that there were more than one mechanism involved in the

production and quenching of ozone, and that each of these mechanisms were differ-

ently pronounced depending on the pulse frequency. It is possible that the produc-

tion rate and recombination rate of ozone and the ozone quenching reactive species

changed at the high pulse frequency. One possible explanation is that the formation

of short-lifetime species was suppressed by the short plasma ignition time of 1 ms,

which was the pulse duration corresponding to the pulse frequency of 1 kHz. This

could have negatively influenced the production of ozone. Another possible explana-

tion is given by the non-ideal waveform generated by the power supply. The function

generator would have made pulses with no sharp edges at the boundaries thus that

power was lost with every single pulse. At the pulse frequency of 1 kHz, the number

of pulses could have been high enough thus that the accumulated power loss became

significant.

In spite of partly large differences in the time evolution, the transition between

the different ozone generation modes did not change when the pulse duration was

varied over 4 orders of magnitude. These results indicate that the chemistry from the

SMD plasma is mainly governed by the power input.

Two-Phased Ignition

The results with f0 at 500 Hz showed that the saturation concentration and the

shape of the time evolution curves of ozone were characteristic for the applied fre-
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quency/power consumption and were not affected by the ozone concentration in the

gas composition for the SMD plasma.

With f0 at 10 kHz, the ozone concentration remained at zero after the second

plasma ignition regardless of fF. This result indicates that the remaining products

from the plasma with f0 at 10 kHz in the confined volume quenched ozone and/or

atomic oxygen immediately. The ozone prohibition time of 180 s equaled the duration

required for a complete exchange of the gas in the confined volume by leakage. The

smooth initial increase of the ozone concentration with the exponential shape after the

re-ignition indicated that ozone started to be produced again after the ozone quenching

reactive species leaked away. These observations support the idea that the volume

was saturated with ozone quenching species that prohibited the ozone production and

indicate that the lifetime of ozone quenching species is long on the scale of t.

The plasma production and the driven chemistry are dependent on several pa-

rameters as shown in this chapter. The complex chemistry is still under investigation

and requires a comprehensive study including plasma physics, chemistry and fluid

mechanics. In this study, the ozone concentration was measured at one single position.

It is necessary to measure the flow pattern and the distribution of reactive species,

which can be highly non-uniform, in the future studies. Thermal convection can be

present in a closed volume since the generation of the SMD gives rise to heat dissipa-

tion at the electrode.
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CHAPTER 5
CONCLUSION



The focus of the study was the optimization and better understanding of the

inactivating effect of the SMD plasma treatment on a variety of microorganisms. For

this purpose, the microbiocidal efficacy of the SMD plasma on vegetative bacteria and

bacterial endospores was investigated with a special focus on the chemistry from the

plasma. Furthermore, a variety of parameters was modified and the impact on the

ozone chemistry from the SMD plasma was evaluated.

The contribution of UV and heat from the SMD plasma to the microbiocidal ef-

fect was ruled out. The inactivation of both Gram-negative E. coli and Gram-positive

Enterococcus mundtii bacteria on agar by the SMD plasma treatment was strongly cor-

related with the concentration of ozone produced by the plasma. Nitrogen reactive

species did not play a role under the investigated conditions. A large difference was

found in the reduction of the bacterial endospores of G. stearothermophilus after 5 min-

utes of exposure to the SMD plasma, when the humidity for the plasma generation

was varied. The response of the sporicidal efficacy was nonlinear at different humidi-

ties and no correlation with the concentration of ozone was found. The ozone con-

centration showed a dynamic, nonlinear response when the geometry and the time

interval of the SMD plasma generation was changed. The results indicate that ozone is

quenched mainly by long-lifetime species. The production of the long lifetime species

was dependent on time and the input power.

Ozone was found to be crucial for the inactivation of bacteria by the SMD plasma,

while the humidity plays the key role in the sporicidal effect. The plasma chemistry

driven by the SMD plasma, especially the production of ozone, is mainly controlled

by the input power It can be influenced by the variation of the geometry and the time

interval of the plasma generation.

More detailed studies are required for a better understanding of the findings.

Dry substrates for the bacterial samples instead of agar should be used in order to

consolidate the major contribution of ozone to the inactivation of bacteria by the SMD

plasma treatment. Additionally, the bacterial samples should be treated by the SMD
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plasma in the ozone depletion mode. Since a sort of branching of the plasma chem-

istry was found at the different humidities, the humidity should be varied in smaller

steps. The concentration of water-related reactive species, such as hydrogen peroxide,

should be monitored and its correlation with the sporicidal efficacy should also be in-

vestigated. For the variation of the ozone concentration, the SMD plasma should be

generated in one single open area with a variable inner diameter. The ozone measure-

ment could be performed at different distances from the SMD electrode in order to

determine the spatial distribution.
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List of Acronyms

a mean distance between neighboring micro-discharges

APPJ atmospheric pressure plasma jet

AC alternating current

C integration constant

CAP cold atmospheric plasma

CDBD cascaded barrier discharge

CFU colony forming unit

d hole diameter of the mesh electrode

D diffusion constant

DC duty cycle

DBD dielectric barrier discharge

DBGD dielectric barrier grating discharge

DC direct current

DNA dioxyribonucleic acid

DPA dipicolinic acid

DSM German collection of microorganisms

e elementary charge

Ekin kinetic energy

Epot potential energy

EtO ethylene oxide

f0 input frequency

fAr argon fraction

f f final frequency

fN2 nitrogen fraction

fO2 oxygen fraction

fP pulse frequency

FE-DBD floating electrode dielectric barrier discharge
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gz degeneracy for the z ionization state

h Planck’s constant

HAI health care-associated infection

HELICS Hospital in Europe Link for Infection Control through Surveillance

HV high voltage

I (measured) light intensity

I0 transmitted light intensity wihtout plasma

IARC International Agency for Research on Cancer

ICU intensive care unit

l mean length of a micro-discharge

kB Boltzmann’s constant

me mass of an electron

mi mass of an i ion

M25 mesh electrode with a hole diameter of 2.5 mm

M35 mesh electrode with a hole diameter of 3.5 mm

M50 mesh electrode with a hole diameter of 5.0 mm

MRSA methicillin-resistant Staphylococcus aureus

MW microwave

n concentration of gas particles

N particle number density

ND plasma parameter

ne electron number density

ni ion number density

Ni(r) spatial distribution of the number density of particle i

NC number of cycles in a single pulse

nO3, nO3(t) time dependent ozone concentration

¯nO3 averaged ozone concentration

NIOSH National Institute for Occupational Safety and Health

OAUGDP one atmospheric uniform glow discharge plasma

OSHA Occupational Safety and Health Administration
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PO3 production rate of ozone

PAW plasma activated water

PBS phosphate buffered saline

PECVD plasma enhanced chemical vapor diposition

PEF pulsed electric field

PEEK polyether ether keptone

PS photosensitizer

r radial distance

r̄ mean interparticle distance

RF radio frequency

RNA ribonucleic acid

RNS reactive nitrogen species

ROS reactive oxygen species

r.t. room temperature

SASP small acid-soluble protein

SEM scanning electron microscope

SMD surface micro-discharge

t time

T temperature of the system

TB burst period

Te electron temperature

Ti ion temperature

TMZ temozolomide

TSA Tryptic soy agar

TWA time weighted average

UV ultraviolet

V voltage

VRE vancomycin-resistant Enterococcus

WHO World Health Organization

x distance/length of the path
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z ionization state

Zi charge number of i ions

a degree of ionization

g coupling paramter

e0 vacuum permittivity

q polar angle

l thermal de Broglie wavelength of an electron

lD Debye length

s absorption cross section

tdi f f characteristic diffusion time

tMD mean lifetime of a micro-discharge

cz ionization energy for the z ionization state

wp plasma frequency

wpe plasma frequency of electrons

wpi plasma frequency of ions
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