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Summary 

 

DNA repair is pivotal for genome integrity to counteract the constant threat posed by 

DNA damage. DNA lesions if left unrepaired can cause genomic instability and 

ultimately cell death. DNA-protein crosslinks (DPCs) are particularly toxic lesions as 

they interfere with essential DNA transactions such as DNA replication or 

transcription. DPCs arise by ionizing irradiation and UV-light, are particularly caused 

by endogenously produced reactive compounds such as formaldehyde, and also 

occur during compromised topoisomerase action. Although nucleotide excision repair 

and homologous recombination contribute to cell survival upon DPCs, hardly 

anything is known about mechanisms that target the protein component of DPCs 

directly. 

 This study identifies the metalloprotease Wss1 as being crucial for cell 

survival upon exposure to formaldehyde and topoisomerase 1-dependent DNA 

damage. Yeast mutants lacking Wss1 accumulate DPCs and exhibit gross 

chromosomal rearrangements. Notably, in vitro assays indicate that substrates such 

as topoisomerase 1 are processed by the metalloprotease directly and in a DNA- 

dependent manner. Thus, this study suggests that Wss1 contributes to survival of 

DPC-harboring cells by acting on DPCs proteolytically. We propose that DPC 

proteolysis enables repair of these unique lesions via downstream canonical DNA 

repair pathways and thereby promotes replication completion in the face of DPCs. 
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1 Introduction 

Ensuring that the genetic information is passed on faithfully to the next generation is 

integral to every form of life. This task, however, is challenged by constant assaults 

on the integrity of DNA. DNA lesions trigger mutagenesis and genome instability and 

thus contribute to tumorigenesis and aging (Hoeijmakers, 2001). As a consequence, 

DNA repair pathways have evolved that counteract these threats (Friedberg et al., 

2014). 

1.1 Mechanisms of DNA repair 

DNA repair is defined as the cellular process, which restores the normal sequence 

and structure of damaged DNA (Friedberg et al., 2014). The importance of functional 

DNA repair is highlighted by the fact, that cancer cells frequently display mutations in 

DNA repair genes (Furgason and Bahassi el, 2013). DNA repair deficiency results in 

mutagenesis and genome instability, which enables cancer cells to acquire new 

functions such as the disruption of tumor suppressor genes and/or the activation of 

oncogenes (Jackson and Bartek, 2009). Notably, the abrogation of DNA repair 

mechanisms is also responsible for the strong sensitivity of cancer cells to DNA 

damage inducing agents, which is exploited for cancer treatment by irradiation or 

chemotherapy (Helleday et al., 2008; Zamble and Lippard, 1995). As DNA lesions 

are very diverse in nature, they require highly specific pathways for their repair 

(Friedberg et al., 2014). Owing to intensive research efforts the repair factors needed 

for most types of lesions are known and the underlying mechanisms are generally 

well understood (Friedberg et al., 2014). 

1.1.1 Excision repair 

Excision repair comprises mechanisms, which excise damaged DNA fragments are 

excised, followed by re-synthesis of the resulting gap. Excision repair includes the 

repair of single damaged DNA bases (base excision repair, BER), small nucleotide 

tracks (nucleotide excision repair, NER) as well as DNA mismatches (mismatch 

repair, MMR) (Figure 1). All excision mechanisms share a common order of events: 

recognition, incision, repair synthesis and finally ligation. 
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Base excision repair 

BER targets DNA bases damaged by oxidation, alkylation, deamination or hydrolysis. 

BER is initiated by binding of DNA-glycosylases to the damaged bases (Krokan and 

Bjørås, 2013). DNA-glycosylases (five in yeast, at least 11 in humans) are specific 

for certain types of base modifications (Memisoglu and Samson, 2000). 8-

oxoguanine, for instance, is specifically targeted by the OGG1 glycosylase (Boiteux 

and Radicella, 2000). Upon binding, the damaged base is excised by the glycosylase 

resulting in an apurinic/apyrimidinic (AP) site. The AP site is then cleaved by an AP-

endonuclease followed by end processing by an AP-lyase. Together this results in a 

single nucleotide gap, which is then filled by insertion of a single nucleotide (short-

patch BER) or between 2 - 10 nucleotides (long-patch BER) (Zharkov, 2008). The 

generally dominant short-patch BER employs the specialized DNA polymerase β for 

gap filling, with repair being completed through ligation by DNA ligase 1 or 3 (Sobol 

et al., 1996). In contrast, long patch repair uses the canonical replication machinery 

(DNA polymerases δ/ε, the replication clamp PCNA (proliferating cell nuclear 

antigen, pol30 in yeast), DNA Ligase 1 and FEN1 (Rad27 in yeast)) for gap filling and 

ligation and operates mainly in S-phase (Levin et al., 2000; Prasad et al., 2000; 

Stucki et al., 1998). 

Nucleotide excision repair 

NER uses a strategy distinct from the direct recognition employed by BER for 

identifying sites of DNA damage. Rather then being specific to certain adducts, NER 

Figure 1: Principles of excision repair. Schematic depiction of the excision repair mechanisms base 
excision repair, nucleotide excision repair and mismatch repair. Figure based on illustrations in 
(D'Andrea, 2008). 
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identifies lesions by recognizing distortions in the structure of DNA caused by the 

lesion (Nouspikel, 2009). Lesions resulting in alterations of the DNA structure, and 

accordingly those repaired by NER, are mainly bulky adducts, such as those caused 

by UV-light (e.g. thymidine dimers) (Wood, 1999). Consequently, cells deficient for 

NER are explicitly sensitive toward UV-light exposure. Mutations in NER genes result 

in the genetic disorder xeroderma pigmentosum (XP), which is characterized by an 

extreme sensitivity to sunlight and a drastically increased risk for the development of 

skin cancer (de Boer and Hoeijmakers, 2000; DiGiovanna and Kraemer, 2012). NER 

can be initiated by two distinct mechanisms, global genome repair (GGR) and 

transcription coupled repair (TCR), which however subsequently merge into the 

same pathway (Schärer, 2013; Vermeulen and Fousteri, 2013). 

 GGR is initiated by binding of the heterodimer XPC-RAD23B (Rad4-Rad23 in 

S. cerevisiae) to the DNA strand opposing the lesion, which is thermodynamically 

destabilized by the presence of the lesion (Min and Pavletich, 2007). This explains 

the versatility of NER, as recognition is completely independent of the identity of the 

lesion itself. Alternatively, GGR can be initiated by the DDB complex, which is able to 

specifically recognize lesion that cause rather little distortions, such as cyclobutane 

pyrimidine dimers (Fei et al., 2011). After lesion recognition the DDB complex 

triggers recruitment of XPC-RAD23B. In both cases, GGR proceeds by XPC-

RAD23B recruiting the multi-subunit complex TFIIH (Compe and Egly, 2012). TFIIH 

contains two helicases, XPB and XPD, which unwind the DNA around the lesion, 

resulting in a denaturation bubble of roughly 30 nucleotides (Schärer, 2013). At this 

stage, XPA is recruited to the complex and displaces the XPC complex. Next, the two 

endonucleases XPF and XPG join the repair assembly and incise the DNA in 5’, 

respectively 3’, of the lesion (Fagbemi et al., 2011). After excision of the damaged 

DNA, the 3’ hydroxyl group generated during cleavage by XPF is used for initiation of 

repair synthesis to fill the DNA gap (Ogi et al., 2010). Finally, ligation by LIG 1 or 3 

completes the NER reaction. The final steps of repair (incision, gap filling and 

ligation) are identical for TCR, however the lesion is recognized by stalling of RNA 

polymerase II (RNAPII) at damaged sites within the transcribed strand (Vermeulen 

and Fousteri, 2013). Stalled RNAPII initiates TCR by attracting NER enzymes, 

resulting in the formation of the aforementioned denaturation bubble. This bypasses 

the need for XPC, but requires additional TCR specific factors (e.g. CSA and CSB). 

Notably, the unscheduled DNA synthesis (i.e. outside of S-phase) during gap filling, 

is a hallmark of NER and is not only used as an experimental tool to monitor NER 
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activity, but also during diagnosis of XP (DiGiovanna and Kraemer, 2012). In fact, the 

finding that cells from XP patients are deficient for UV-induced unscheduled DNA 

synthesis, established the connection between NER and XP (Cleaver, 1968).  

Mismatch repair 

MMR does not target DNA damage in the sense of chemical or physical alterations, 

but is able to recognize and repair mispaired nucleotides (Jiricny, 2013). Mismatches, 

defined as non Watson-Crick base pairs, occur mostly during replication by 

incorporation of wrong nucleotides by DNA polymerases (Arana and Kunkel, 2010). 

Notably, there is only a short window for repair, as the mismatch will be converted to 

a mutation during the next round of replication and will therefore no longer be 

recognizable. Consequently, cells deficient for MMR display very high mutagenesis 

rates and mutations of MMR genes are causative for cancer predisposition in 

patients with Lynch syndrome (also known as hereditary nonpolyposis colon cancer, 

HNPCC) (Lynch et al., 2009). A unique challenge during MMR is the identification of 

the strand containing the correct nucleotide. This is achieved by the ability of MMR to 

distinguish between the parental and the newly synthesized daughter strand, which 

contains the wrong nucleotide. Recognition of the daughter strand is linked to the 

fact, that MMR requires strand discontinuities for initiation of repair. Nicks are 

frequently present in the lagging strand, explaining why MMR is more efficient on the 

lagging strand (Pavlov et al., 2003). In addition, nicks can be de novo generated 

either by the endocnuclease activity of the MutLα complex or by RNAseH2, which 

generates nicks within the daughter strand at ribonucleotides misincorporated during 

replication (Ghodgaonkar et al., 2013; Jiricny, 2013). After binding to the mismatch, 

MMR scans the surrounding DNA for these nicks. Initiating from the nick, the 

exonuclease EXO1 (Exo1 in yeast) starts to degrade the strand containing the 

misincorporated nucleotide (Tishkoff et al., 1998). Finally, the canonical replicative 

machinery fills the gap and incorporates the correct base at the site of the former 

mismatch.  
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Figure 2: Cellular mechanisms for the repair of DNA double-strand breaks: Non-homologous end 
joining (left) and homologous recombination (right). See main text for details; Figure adapted from 
(Chowdhury et al., 2013).  

1.1.2 DNA double-strand break repair 

DNA double-strand breaks (DSB) are very toxic lesions, as a failure to repair a DSB 

results in the loss of genetic information, genomic rearrangements and potentially cell 

death (Khanna and Jackson, 2001). Notably, DSBs are not only induced by 

exogenous agents such as ionizing radiation (IR), reactive oxygen species or certain 

antineoplastic drugs (e.g. bleomycin), but are also generated physiologically during 

meiosis or immunoglobulin class switching (Mehta and Haber, 2014).  Two major 

pathways exist for repairing DSBs, homologous recombination (HR) and non-

homologous end joining (NHEJ) (Chapman et al., 2012) (Figure 2). 

Homologous recombination 

HR provides highly accurate repair of DSBs, as it uses an intact homologous DNA 

sequence as a template. Accordingly, HR is dependent on the presence of a 

homologous template, which will be in most cases the sister chromatid. As a sister 

chromatid is only available in the S- or G2-phase of the cell cycle, HR is restricted to 

these cell cycle phases. HR is initiated by rapid binding of the MRN (MRE11, RAD50, 

NBS1) complex (MRX (Mre11, Rad50, Xrs2) in yeast) to the break site (Heyer et al., 

2010). MRN collaborates with CtIP (Sae2 in yeast) to produce short 3’-single-

stranded DNA overhangs via its nuclease activity (Symington, 2014). These 

overhangs, which are readily covered by the single-strand binding protein RPA, can 
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be further extended by long-range resection mediated either by the exonuclease 

EXO1 (Exo1 in yeast) or the BLM helicase (Sgs1 in yeast) (Ferretti et al., 2013). 

Next, the recombinase RAD51 (Rad51 in yeast) is loaded on the single-stranded 

DNA, thereby replacing RPA, in a reaction mediated by BRCA2 (Rad52 in yeast) 

(Heyer et al., 2010). The resulting Rad51 filament is now able to probe the genome 

for homologous sequences (Renkawitz et al., 2014; Renkawitz et al., 2013). After 

identification of a homologous sequence, the RAD51 filament-mediated strand 

invasion enables extension of the 3’-end of the DSB with the homologous sequence 

as a template. Following end extension, the double holliday junction formed during 

repair needs to be removed. This is achieved either by the action of resolvases 

(GEN1 (Yen1 in yeast) or MUS81-EME1 (Mus81-Mms4 in yeast)) or by dissolution 

mediated by the BTR (STR in yeast) complex (Sarbajna and West, 2014). 

Non-homologous end joining 

In contrast to HR, NHEJ operates mainly during the G1-phase of the cell cycle and 

employs a rather pragmatic repair principle. Instead of restoring the original 

sequence NHEJ simply “glues” the two ends of the DSB back together, which is 

frequently accompanied by deletions or insertions (Chiruvella et al., 2013; Lieber, 

2010). NHEJ is initiated by recognition of the DSB ends by heterodimeric complex Ku 

(Ku70 and Ku80). The toroidal Ku complex bound to the DNA end acts as a node 

organizing the downstream events of NHEJ (Lieber, 2010). Ku promotes binding of 

the DNA-dependent kinase DNA-PKcs to the DSB end, which in turn activates the 

serine/threonine kinase activity of DNA-PKcs (Hartley et al., 1995; West et al., 1998). 

DNA-PKcs dependent phosphorylation stimulates end-processing by the Artemis 

nuclease (Goodarzi et al., 2006). The processed ends are subsequently ligated by 

LIG4, XRCC4 and XLF to complete repair. 

1.1.3 Postreplicative repair 

Postreplicative repair (PRR) is strictly speaking a DNA damage tolerance mechanism 

rather than a DNA repair mechanism, as PRR enables replication and thus survival in 

the face of DNA lesions without actually repairing them. If the replicative DNA 

polymerase encounters a DNA lesion (e.g. an alkylated base) it is likely to stall, as its 

active site is very narrow and it is therefore unable to accommodate damaged bases. 

The replicative helicase, however, will proceed unwinding the DNA duplex, thus 

resulting in an uncoupling of DNA unwinding and DNA synthesis (Blastyák, 2014). 

Uncoupling leads to the formation of single-stranded DNA, whose accumulation 
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triggers the PRR pathway by recruiting the ubiquitin E3 ligases Rad18 and Rad5 

(Moldovan et al., 2007). Together with the E2 conjugation enzyme Rad6, Rad18 

mono-ubiquitylates the replication clamp PCNA resulting in the activation of the error-

prone branch of PRR (Hoege et al., 2002). In addition, mono-ubiquitylated PCNA can 

be further modified by Rad5, together with the E2 Ubc13/Mms2, resulting in the 

formation of a K63-linked ubiquitin chain, which triggers the error free branch of PRR 

(Hoege et al., 2002). Mono-ubiquitylated PCNA is recognized by specialized 

translesion synthesis (TLS) polymerases, which have a more promiscuous active site 

and are thus able to incorporate nucleotides opposite to the lesion (Bienko et al., 

2005). TLS polymerases, however, insert wrong nucleotides frequently, thus resulting 

in the induction of mutagenesis. In contrast, the error-free branch of PRR allows 

replication of the damaged template by using the sequence information of the newly 

synthesized sister chromatid (Branzei, 2011). Despite the fact that several factors 

required for this reaction, termed template switching, are known, the precise 

mechanism remains enigmatic.  

1.1.4 Inter-strand crosslink repair 

Inter-strand crosslinks (ICLs) are very unique lesions, as they require not only a 

single pathway for repair, but carefully orchestrated sequential repair events, 

contributed by several canonical repair pathways (Moldovan and D'Andrea, 2009). 

ICLs arise by chemical crosslinking of the two strands of the DNA-double helix (Noll 

et al., 2006). They are particularly toxic as they inhibit strand separation during 

replication and thus block approaching replication forks (Vare et al., 2012). 

Consequently, rapidly dividing cells, such as malignantly transformed cancer cells, 

are especially sensitive to ICLs. Therefore, ICL-inducing agents (e.g. cisplatin 

derivatives or mitomycin C) are frequently used in anti-cancer therapy (Deans and 

West, 2011). 

The current model for ICL repair, the dual fork convergence model, implies that 

repair is initiated when two replication forks stall on both sides of the crosslink 

(Raschle et al., 2008; Zhang and Walter, 2014). Next, the replicative helicases are 

evicted in a process mediated by BRCA1 (Long et al., 2014), followed by 

endonucleolytic incisions on either side of the ICL. The identity of the endonucleases 

responsible for incision is, however, under debate (Zhang and Walter, 2014). The 

“unhooked” ICL is now bypassed in a two-step process. First, TLS polymerases 

synthesize over the lesion. Second, the DSB generated during incision is repaired by 
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homologous recombination using the sister chromatid, which was already repaired 

during the TLS step, as a template (Long et al., 2011). 

Fanconi anemia pathway 

The different repair activities required for ICL repair are coordinated by the Fanconi 

anemia pathway (Moldovan and D'Andrea, 2009). Mutations in genes coding for 

Fanconi anemia proteins (FANCs) result in the rare genetic disorder Fanconi anemia, 

which is characterized by bone marrow failure and cancer predisposition (D'Andrea, 

2010). Notably, Fanconi anemia patient cells are extremely sensitive toward 

crosslinking agents. In fact, cellular sensitivity to crosslinking agents is used as a 

diagnostic measure.  

FANC proteins can be separated in three groups. The eight “group I” proteins 

are members of a large multi-subunit E3 ligase, which mediates mono-ubiquitylation 

of the two “group II” proteins FANCD2 and FANCI (the ID complex). The remaining 

“group II” FANC proteins are members of the repair pathways mentioned above 

required for ICL repair. For example, homozygous mutations in the gene encoding 

BRCA2, which is essential for the recombination step of ICL repair, result in Fanconi 

anemia (D'Andrea, 2010). The DNA damaged induced mono-ubiquitylation of the ID 

complex is critical for its localization on chromatin (de Oca et al., 2005). At the ICL 

the ID complex is crucial for stimulating the incision step during ICL repair 

(Knipscheer et al., 2009), thus explaining the sensitivity of Fanconi anemia patient 

cells to ICLs. 
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1.2 DNA-protein crosslinks 

Unique DNA lesions are DNA-protein crosslinks (DPCs), which are defined as 

proteins covalently linked to DNA. DPCs are caused by permanent trapping of 

normally transient covalent enzyme-DNA reaction intermediates (enzymatic DPCs) 

and by chemical reactions caused by a variety of exogenous and endogenous agents 

(non-enzymatic DPCs) (Figure 3). 

1.2.1 Enzymatic DPCs 

The organization of the extremely large DNA molecules within the confined space of 

a nucleus poses a challenge to all eukaryotic cells. All processes involving DNA, 

such as replication or transcription, result in the formation of positive or negative 

supercoiling. To control these topological changes cells employ several enzymes 

called topoisomerases. For instance, topoisomerase 1 (Top1) relaxes torsional stress 

within a DNA molecule by cleaving one strand of the DNA duplex. The generated 

single-strand break (SSB) allows rotation of the DNA strand, thereby relieving the 

supercoils within the DNA (Champoux, 2001). The enzyme remains covalently linked 

to the 3’-end of the SSB during this reaction. This covalent complex is referred to as 

Top1cc (Top1 cleavage complex). Normally, the relaxation reaction is completed by 

Top1 resealing the SSB. However, this can be inhibited by nearby DNA damage, 

such as abasic sites, which result in a distortion of the DNA (Pourquier et al., 1997). 

The distortion prohibits proper alignment of the free 5’-end of the SSB, thus rendering 

Figure 3: Sources of DPCs. Enzymatic DPCs are caused by trapping of normally transient covalent 
enzyme-DNA reaction intermediates. Topoisomerase 1 (Top1) can be trapped if nearby DNA 
damage (such as abasic sites) inhibits completion of the enzymatic reaction cycle. Top1-trapping 
can also be induced by small molecules, such as camptothecin, which intercalates within the 
enzyme-DNA interface. Nonenzymatic DPCs are caused by unspecific chemical crosslinking of 
proteins to DNA by agents originating from endogenous and exogenous sources. Reactive 
aldehydes, e.g. acetaldehyde and formaldehyde are produced metabolically from ethanol oxidation 
or histone de-methylation, respectively. Exogenous agents causing DPCs include IR, UV-light and 
chemical crosslinkers, such as platinum-based anticancer drugs (e.g. cisplatin). 
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it impossible for Top1 to religate the two ends. Consequently, Top1 remains 

covalently linked to the DNA. Top1ccs are not only trapped due to nearby DNA 

damage, but also by the alkaloid camptothecin (CPT). CPT intercalates within the 

Top1cc, thus inhibiting religation (Pommier, 2006). Top1ccs are very dangerous 

lesions, as during replication an approaching fork may convert the SSB into a DSB. 

Thus Top1ccs are especially toxic in rapidly dividing cells, which is exploited during 

anti-cancer therapy with camptothecin analogs such as topotecan. 

 Similarly, topoisomerase 2 (Top2) can be trapped on DNA as a covalent 

complex. Top2 differs from Top1, as it introduces not only a SSB but a DSB. A 

second DNA molecule is traversed through the DSB prior to religation of the DSB. 

This allows Top2 not only to remove, but also to introduce supercoiling. Analogous to 

inhibition of Top1 by CPT, Top2 can be trapped by the anti-cancer drug etoposide. 

Etoposide interferes with the Top2 enzymatic reaction after introduction of the DSB, 

thus potently inducing DSBs. Interestingly, the ability of Top2-like enzymes to 

generate DSBs is also utilized intentionally by cells to introduce breaks during 

meiosis. The Top2-like topoisomerase Spo11 introduces DSBs during meiosis, thus 

allowing meiotic recombination. After cleaving the DNA duplex one Spo11 molecule 

remains attached to each end of the DSBs, which needs to be removed to allow 

recombination. 

1.2.2 Nonenzymatic DPCs 

Nonenzymatic DPCs are distinct from enzymatic DPCs, as the crosslinked protein 

might be any protein in the vicinity of DNA, in contrast to enzymatic DPCs, which 

involve only specific proteins. Crosslinking is caused by reactive molecules, which 

react on the one hand with the DNA and on the other with a protein (Barker et al., 

2005). As a result, a covalent bond between DNA and protein is formed. The agents 

responsible for crosslinking can be classified by their origin, which can be either 

exogenous or endogenous. 

Exogenous sources 

IR produces locally high levels of reactive oxygen species, which then trigger various 

types of chemical reactions resulting in several types of DNA lesion (Ravanat et al., 

2014). This includes SSBs, DSBs (as a result of two SSBs in close proximity), base 

damage and DPCs. Most research activities in the past focused on IR-induced DSBs, 

however similar amounts of DSBs and DPCs are formed by exposure to IR (Barker et 

al., 2005). Interestingly, there is a direct connection between the ratio of DSBs and 
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DPCs induced by IR. Irradiation in the presence of oxygen mostly produces DSBs, 

whereas IR exposure under hypoxic conditions (i.e. in the absence of oxygen) results 

almost exclusively in the formation of DPCs (Meyn et al., 1987; Zhang et al., 1995). 

DPCs are also induced by UV light (Chodosh, 2001). However, the exact mechanism 

by which this occurs is not entirely clear. Probably, two mechanisms are involved, a 

direct mechanisms as well as crosslinking mediated by UV-induced ROS (Peak et 

al., 1985). Generally, any agent resulting in the production of ROS leads to the 

formation of DPCs. This is also the case for reactive nitrogen species, such as nitric 

oxide (NO), which are, for instance, produced by immune cells in order to kill 

invading pathogens. DNA exposure to NO results in the formation of oxanine, a 

damaged base derived from guanine (Nakano et al., 2003). Oxanine is highly 

reactive towards the amino groups of lysine and arginine and thus potently induces 

DPCs (Chen et al., 2007a; Nakano et al., 2003). In addition, most of the 

aforementioned ICL-inducing anti-neoplastic drugs (cisplatin-derivatives, mitomycin 

C) also produce DPCs, which might also contribute to their therapeutic efficacy 

(Chvalova et al., 2007; Hincks and Coulombe, 1989). In addition, DPCs are caused 

by various environmental reactive substances, such as diepoxybutane (DEB), which 

is present in tobacco smoke (Gherezghiher et al., 2013). 

Endogenous sources 

Notably, various reactive compounds capable of crosslinking proteins to DNA are 

produced endogenously as metabolic intermediates. For instance, ethanol oxidation 

by alcohol dehydrogenase (ADH) generates the highly reactive acetaldehyde 

molecule. The toxicity of endogenously produced acetaldehyde was strikingly 

demonstrated by the finding that mice deficient for the acetaldehyde detoxifying 

enzyme ALDH2 develop leukemia and anemia if lacking functional DNA repair 

pathways in addition (Garaycoechea et al., 2012; Langevin et al., 2011). Reactive 

aldehydes are even produced directly at chromatin, where every histone de-

methylation reaction produces one formaldehyde (FA) molecule (Kooistra and Helin, 

2012). FA is extremely potent in crosslinking proteins to DNA, a feature commonly 

exploited for isolating DNA-protein complexes during chromatin immuno-precipitation 

(ChIP) experiments. Crosslinkinking occurs by FA reacting with free amino or imino 

groups of amino acid side chains or DNA bases to form a Schiff base, which then 

reacts with a second amino group (Lu et al., 2010; Ma and Harris, 1988).  Notably, 

FA is classified as a carcinogen, as FA exposure results in nasopharyngeal cancer 

and squamous cell carcinomas in mammals (Swenberg et al., 2011). Similar to the 



 13 

already mentioned ALDH2, the formaldehyde-detoxifying enzyme ADH5 is essential 

in cells lacking functional DNA repair pathways (Rosado et al., 2011).  

1.2.3 Repair of DPCs 

Despite the challenge DPCs pose for cellular integrity surprisingly little is known 

about how cells exactly respond to these insults. Some canonical DNA repair 

pathways are known to provide resistance towards DPC-inducing agents, but 

mechanistic insights are scarce. The only well-studied exception is the cellular 

response to topoisomerase-dependent DNA crosslinks, for which specific pathways 

are known and thought to be well understood (Pommier et al., 2006). Repair of 

Top1ccs is initiated by proteasomal degradation of Top1 (Desai et al., 1997). The 

remaining peptide attached to the DNA is subsequently removed by the action of 

tyrosyl-DNA phosphodiesterase 1 (Tdp1), which catalyzes the hydrolysis of the bond 

between Top1’s tyrosine and the DNA’s 3’-end (Pouliot et al., 1999). As discussed 

above, Top1ccs are especially toxic, as replication will convert the crosslink into a 

DSB. Consequently, mutants deficient in the HR pathway are extremely sensitive 

toward CPT-induced Top1ccs (Malik and Nitiss, 2004). In addition, endonucleases of 

Figure 4: Depiction of different types of DPCs and cellular measures to repair them. Left panel: 
Top1-dependent DPCs are thought to be initially processed by proteasomal degradation. This 
enables access of the enzyme Tdp1, which hydrolyses the covalent bond between Top1’s catalytic 
tyrosine residue and the 3’-end of the DNA. Middle panel: Top2 and Spo11 crosslinks are unique, as 
they involve a DSB. The MRN (MRX in yeast) nuclease is able to remove these lesions by merely 
cleaving of the protein moiety. Top2 adducts can be additionally removed by the enzyme Tdp2 (not 
shown). Right panel: The mechanistic details regarding the repair of nonenzymatic DPCs are 
currently elusive. However, it is known that both HR and NER contribute, as yeast mutants lacking 
either pathway are sensitive towards FA. 
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the NER pathway have been shown to provide resistance toward CPT, however their 

precise function in the repair of Top1ccs remains unclear (Vance and Wilson, 2002). 

Top2- and Spo11-dependent crosslinks are intrinsically distinct challenges, as the 

DPCs reside in these cases at the end of a DSB. Those DPCs are removed by the 

nuclease activity of the MRN (MRX in yeast) complex or by tyrosyl-DNA 

phosphodiesterase 2 (Tdp2) (Cortes Ledesma et al., 2009; Hartsuiker et al., 2009).  

 Nonenzymatic DPCs are very different from enzymatic with respect to the fact 

that almost any DNA-associated protein might be involved. Consequently 

nonenzymatic DPCs are expected to be very diverse in nature. Thus highly 

specialized enzymes like Tdp1, which almost uniquely targets Top1ccs, are 

impractical for their repair. It is known that general DNA repair pathways like HR and 

NER provide resistance towards FA-induced DPCs (de Graaf et al., 2009). However 

no general DPC repair pathway targeting specifically the protein components of 

DPCs, irrespective of its identity, has been described so far.  
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2 Aims of this study 

 

Specific DNA repair and DNA damage tolerance pathways have been identified and 

characterized in depth for many types of DNA lesions. However, the potential threat 

caused by DNA-protein crosslinks has been rather neglected. DPCs are particularly 

toxic as they interfere with essential DNA transactions, such as DNA replication or 

transcription. Although nucleotide excision repair and homologous recombination 

have been implicated in DPC repair, no general DPC-specific pathway has been 

identified so far. Preliminary results from the Jentsch laboratory suggested a potential 

involvement of the poorly characterized metalloprotease Wss1 in the cellular 

response towards a special class of DPCs, namely Top1 cleavage complexes 

(Top1ccs). Genetic results indicated that Wss1 acts in a pathway parallel to the well-

known repair factor Tdp1. However, the precise mechanistic contribution of Wss1 

remained unclear. 

 This study aimed to identify the precise function of Wss1 in the cellular 

response to Top1ccs. Thus, the initial objective of this study was to clarify, if Wss1 

acts directly on Top1ccs. If acting directly on Top1ccs, mutant cells lacking the 

enzyme should accumulate covalently trapped Top1. To address this question we 

initially aimed to establish an assay to visualize Top1ccs. In case evidence for a 

direct role of Wss1 in Top1cc repair could be obtained a second major aim of this 

study was to test by in vitro experiments if Wss1 might act directly and proteolytically 

on Top1. 
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3 Results 

3.1 The metalloprotease Wss1 is involved in Top1cc repair 

During studies of the SUMO protein modification system, the Jentsch laboratory 

became interested in the cellular function of the metalloprotease Wss1. Several 

genetic and physical interactions of Wss1 with the SUMO system were previously 

reported, however the precise molecular function remained enigmatic (Biggins et al., 

2001; Iyer et al., 2004; Mullen et al., 2010; Mullen et al., 2011). In order to gain more 

insights into the function of Wss1 a synthetic gene array (SGA) analysis was 

conducted in the Jentsch lab, which identified a strong negative genetic interaction 

between the genes WSS1 and TDP1. Cells lacking both, Tdp1 and Wss1 (Δwss1 

Δtdp1), were found to grow extremely slow (PhD thesis M. Schwarz). As Tdp1’s 

Figure 5. Wss1 is involved in the resistance towards Top1-dependent DNA-damage. (A) Cells 
lacking Wss1 and Tdp1 display a severe growth phenotype, which is almost entirely dependent on 
the presence of Top1. Five-fold serial dilutions of cultures grown over night (adjusted to OD600 = 1) 
were spotted on YPD plates either containing 1% DMSO or 1% DMSO + 40 μM CPT. Plates were 
incubated at 30°C for 2.5 days. (B) Tetrad dissection of yeast diploid cells lacking one copy of 
WSS1, TDP1 and TOP1. Diploid cells were sporulated and treated with zymolase, followed by 
dissection. After colonies had been formed, the genotype of each spore was determined by replica 
plating on selective plates. Spores originating from a single tetrad are displayed in a vertical 
arrangement. (C) A catalytic inactive variant of Wss1 is nonfunctional, even when heavily 
overexpressed. Δwss1 Δtdp1 cells were complemented with plasmids coding for HA-tagged Wss1 or 
wss1-EQ either under control of the endogenous promoter or the ADH promoter (causing heavy 
over-expression). Five-fold serial dilutions of cultures grown over night (adjusted to OD600 = 1) were 
spotted on plates and grown for 2.5 days at 30°C. (D) Expression levels of Wss1 variants used in 
(C) as detected by immuno-blot using a HA-specific antibody. Dpm1 levels serve as loading control. 
Cells were harvested from exponentially grown cultures and extracts were prepared using the TCA 
method. 
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function in repairing Top1ccs is well known, it was tested if the slow growth of Δwss1 

Δtdp1 mutant cells is related to the action of Top1. Astonishingly, it was found that 

deletion of the gene encoding Top1 rescued the sickness of Δwss1 Δtdp1 mutant 

cells almost entirely (PhD thesis M. Schwarz). These results were confirmed 

independently by spot dilution assays as well as tetrad dissection (Figure 5A-B). 

Additionally, it was suggested that the proteolytic activity of Wss1 is required for its 

function. This was inferred from the fact that a replacement of one of the histidines 

coordinating the Zn2+ ion within the catalytic center of Wss1 by alanine (H115A) 

abrogated its function (PhD thesis M. Schwarz). Interpretation of this mutant is, 

however, complicated by the fact that this amino acid replacement likely results in 

general structural alterations. To confirm the requirement of Wss1’s proteolytic 

activity for its function a different active site variant was generated (wss1EQ), with a 

replacement of the active site glutamate E116 by glutamine (not expected to result in 

general structural alterations, M. Groll, personal communication). This variant did not 

complement the growth defect of Δwss1 Δtdp1 cells, but the protein is slightly lower 

expressed than the WT protein (Figure 5C-D). To exclude that the failure to 

complement is solely due to lower expression levels, we overexpressed wss1EQ 

under control of the ADH promoter, which failed to complement as well, confirming 

that Wss1’s catalytic activity is indeed essential in cells lacking Tdp1 (Figure 5C-D). 

Nevertheless, it remained unclear wether Wss1 would act directly on Top1ccs. We 

Figure 6. Top1ccs accumulate in cells lacking Wss1 and Tdp1. (A) Extracts of 3HA-Top1 
expressing cells prepared under harsh denaturing conditions were subjected to cesium chloride 
gradient ultra-centrifugation. Gradients were fractionated using a liquid handling work station and 
DNA-containing fractions (typically found in the bottom fractions) were identified by staining with 
SYBR gold nucleic acid stain. DNA-containing fractions were pooled, concentrated and subjected to 
buffer exchange. (B) Purified DNA was then quantified using agarose gel electrophoresis, followed 
by ethidium bromide staining. Levels of 3HA-Top1 within the DNA fraction were determined by 
immuno-blotting with HA-specific antibodies after digestion of DNA with micrococcal nuclease. Top1 
levels in whole cell extracts (prepared using the TCA method) are shown for comparison. 
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reasoned that if acting directly on Top1ccs, the sickness of the Δwss1 Δtdp1 double 

mutant should be accompanied by high levels of Top1ccs. In order to visualize 

Top1ccs in yeast cells we developed an ICE (in vivo complex of enzyme) assay 

based on protocols used for Top1cc quantification in mammalian and S. pombe cells 

(Hartsuiker et al., 2009; Subramanian et al., 2001). In brief (see Materials and 

Methods for details), exponentially grown yeast cells were lysed under harsh 

denaturing conditions by bead beating. The lysate was then subjected to cesium 

chloride gradient ultracentrifugation, thereby separating proteins (remaining on top of 

the gradient) from DNA (typically found in the bottom fractions) (Figure 6A). As only 

proteins covalently linked to DNA are expected to migrate together with the DNA, the 

amount of Top1 in the DNA-containing fractions corresponds directly to the number 

of Top1ccs. Indeed, cells lacking both Wss1 and Tdp1 show high levels of Top1ccs 

(Figure 6B), indicating that Wss1 acts directly on Top1ccs in a pathway parallel to 

Tdp1. 

 Given the fact that Top1ccs are known to stall replication forks (Regairaz et 

al., 2011), we asked next if the high amounts of Top1ccs in Δwss1 Δtdp1 cells result 

in cell cycle defects. Indeed Δwss1 Δtdp1 cells strongly accumulate with a G2-like 

DNA content, which is not seen in single mutants, as judged by cell cycle analysis 

using flow cytometry. Importantly, this defect is completely dependent on the 

presence of Top1, as it is not manifested in cells lacking the gene coding for Top1 in 

addition (Figure 7A). Stalled replication forks are known to activate the DNA damage 

checkpoint (a signaling cascade orchestrating the cellular response to DNA damage). 

Figure 7. Cells lacking Wss1 and Tdp1 display Top1-dependent cell cycle defects and 
permanent DNA damage checkpoint activation. (A) Cells were collected from exponentially 
grown cultures, fixed, subjected to RNAse and Proteinase digestion and finally stained with SYTOX 
green. Cell cycle profiles were recorded by flow cytometry. (B) Assessment of DNA damage 
checkpoint activation, as judged by phosphorylation of the checkpoint kinase Rad53. Cell extracts of 
exponentially grown cells were prepared by the TCA method and subjected to immuno-blotting using 
Rad53-specfic antibodies. Dpm1 levels serve as loading control. 
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Consistently, we detected a permanent activation of the checkpoint, as judged by 

Rad53 phosphorylation. As observed for the growth defect and cell cycle arrest, the 

checkpoint activation was entirely dependent on the presence of Top1 (Figure 7B). 

Taken together we conclude that Wss1 and Tdp1 are part of two distinct pathways, 

which operate in parallel to counteract the threats posed by Top1ccs.  
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3.2 Wss1 interacts with the Cdc48 segregase and the SUMO 

system 

3.2.1 Wss1 function requires direct interaction with Cdc48 

During the initial characterization of Wss1 in the Jentsch laboratory several protein-

protein interaction motifs were discovered in the C-terminal tail of Wss1 (PhD thesis 

M. Schwarz). Two short motifs resembling canonical sequences known to bind the 

Figure 8. Interaction with Cdc48 is essential for Wss1’s function. (A) Upper panel: Sequence of 
the SHP-box Cdc48 interaction motif within Wss1 is presented together with the sequence of the 
canonical Cdc48 interactor Shp1 for comparison. The amino acid replacements in the wss1SHPmut 
variant are indicated as well. Lower panel: Sequence of the VIM consensus sequence is shown 
together with the sequence of the VIM found in Wss1. In addition the position and identity of amino 
acid replacements in the wss1VIMmut variant are depicted. (B) Interaction of GST-tagged Wss1 
fragments (aa148 - C-terminus) with His-tagged Cdc48 was tested by GST pull-down assays. GST-
tagged Wss1-fragments as well as GST alone were coupled to GSH-Sepharose and incubated 
together with His-tagged Cdc48. Samples were incubated for 1 hr at 4°C prior to several wash steps 
and analysis by SDS-PAGE and Coomassie-blue staining. (C) Complementation of Δwss1 Δtdp1 
cells with 3HA-tagged Wss1 variants with altered Cdc48 interaction motifs. Five-fold serial dilutions 
of cultures grown over night (adjusted to OD600 = 1) were spotted on plates and grown for 2.5 days 
at 30°C. (D) Expression levels of Wss1 variants used in (C). Extracts of exponentially grown cells 
prepared using the TCA method were analyzed by immuno-blotting using HA-specific antibodies. 
Dpm1 levels serve as loading control. (E) Five-fold serial dilutions of cells grown over night (adjusted 
to OD600 = 1) were spotted on YDP plates either containing 1% DMSO or 1 % DMSO and 30 μM 
CPT. Plates were incubated at 30°C for 2.5 days. 
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segregase Cdc48 were identified (Figure 8A), one of which, a so called VCP- 

interacting motif (VIM) has also been predicted by a bioinformatic approach (Stapf et 

al., 2011). The other motif represents a SHP-box, which is found for example in the 

canonical Cdc48 binding protein Shp1 (Stolz et al., 2011). Wss1 variants with internal 

deletions of these motifs were found to be deficient in Cdc48 binding and are non-

functional  (PhD thesis M. Schwarz). As deletions carry the risk of resulting in general 

structural alterations, point mutants in these motifs were constructed to confirm a 

joint function of Wss1 and Cdc48 (Figure 8A). Changes in only one of the Cdc48-

binding motifs do not affect the binding of Wss1-fragments to Cdc48, as judged by 

GST pull-down assays. Wss1-fragments with amino acid replacements in both Cdc48 

interaction motifs (wss1SHP/VIMmut) however exhibit strongly reduced binding to Cdc48 

(Figure 8B). Consistent with previous results this variant fails to complement the slow 

growth of Δwss1 Δtdp1 cells (Figure 8C-D), indicating that Cdc48 binding is indeed 

essential for Wss1’s function in vivo. Notably, already alterations in the SHP-box 

Figure 9. Wss1 binding to SUMO supports its function. A) Wss1 contains two SIMs (one type a 
and one type b SIM). Sequences of SIMs within Wss1 are presented together with sequences of 
canonical SIMs. Amino acid replacements in Wss1 variants are highlighted in red. (B) Interactions of 
GST-tagged Wss1 fragments with His-tagged Smt3 were tested by GST pull-down assays. GST or 
GST-tagged Wss1 fragments were coupled to GSH-Sepharose and incubated together with 
recombinant His-tagged Smt3. Samples were incubated for 1 hr at 4°C prior to several wash steps 
and analysis by SDS-PAGE followed by either Coomassie-blue staining or immuno-blotting using 
Smt3-specific antibodies. (C) Complementation of Δwss1 Δtdp1 cells with 3HA-tagged Wss1 variants 
with altered SIMs. Five fold serial dilutions of cells were spotted on plates and grown for 2.5 days at 
30°C. (D) Expression levels of Wss1 variants used in (C). Extracts of exponentially grown cell 
prepared using the TCA method were analyzed by immuno-blotting using HA-specific antibodies. 
Dpm1 levels serve as loading control.  
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(wss1SHPmut) lead to a partial defect in complementation whereas in vitro binding 

seems unaffected, indicating that the two Cdc48 interaction motifs are at least in vivo 

not fully redundant. The requirement for functional Cdc48 interaction motifs in Wss1 

implicates that also Cdc48 function itself should become important in the absence of 

Tdp1. Indeed, cells with compromised Cdc48 function (cdc48-6) become significantly 

more CPT sensitive, if lacking Tdp1 in addition. In contrast, deletion of WSS1 in 

cdc48-6 cells has no effect (Figure 8E). We conclude that Wss1 and Cdc48 are 

jointly required to counteract Top1ccs in a pathway parallel to Tdp1. 

3.2.2 Wss1 function is linked to the SUMO system 

In addition to Cdc48 interaction, the C-terminal tail of Wss1 harbors two canonical 

SIMs (SUMO-interaction motifs) required for binding the ubiquitin-like protein SUMO 

(Mullen et al., 2010). Thus, we tested if SUMO (Smt3 in yeast) binding is essential for 

Wss1’s function. To this end, we constructed Wss1 variants in which crucial SIM 

residues were replaced by alanine (Figure 9A). Changing either SIM in Wss1 

reduces SUMO binding by Wss1, as judged by GST-pulldown assays, but variants 

with changes in both SIMs (wss1SIM1/2mut) are completely defective in SUMO binding 

(Figure 9B). However, in vivo they were at least partially able to complement the loss 

of Wss1 (Figure 9C-D). Given the fact that Wss1 was described as an unusual 

Figure 10. Wss1 is not a SUMO-dependent isopeptidase. (A) SDS-PAGE of purified recombinant 
Wss1 (wildtype and wss1-EQ) expressed in E. coli cells. (B) Wss1 was tested for SUMO 
isopeptidase activity using the commercial Smt3-CHOP assay. The Smt3-CHOP assay measures 
the cleavage of Smt3 linearly fused to a reporter enzyme, which is inactive as a fusion. Cleavage by 
an isopeptidase renders the reporter active, thus resulting in the production of a fluorescent 
substrate. The produced fluorescence correlates directly with the cleavage of the Smt3-reporter 
fusion and therefore with SUMO-isopeptidase activity. The assay was performed using several 
concentrations of Wss1 (6.25 - 400 nM). The catalytic domain of the canonical yeast SUMO 
isopeptidase Ulp1 (Ulpcd - 50 pM) served as a positive control. (C) A GST-Ubi-Smt3-V5 fusion is not 
cleaved by Wss1. GST-Ubi-Smt3-V5 was incubated alone or together with Wss1 for 2 hrs at 30°C 
prior to SDS-PAGE and analysis by immuno-blotting using Smt3-specific antibodies. 
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SUMO-dependent isopeptidase (Mullen et al., 2010), this was an unexpected result, 

as one would assume that such an activity would be entirely dependent on SUMO 

recognition. Isopeptidases are enzymes able to cleave isopeptide bonds. For 

example, de-ubiquitylation and de-sumoylation reactions are catalyzed by 

isopeptidases, which cleave the isopeptide bond between the terminal diglycine of 

ubiquitin-like proteins and the substrate’s acceptor lysine. As it was unclear how the 

proposed SUMO-dependent isopeptidase activity was related to our findings, we 

initially attempted to reproduce the reported findings. We assessed SUMO-

dependent isopeptidase activity of recombinantly expressed Wss1 with the 

commercial Smt3-CHOP assay system (Figure 10A). In this assay, SUMO 

isopeptidase activity is measured by the cleavage of a linear Smt3-reporter fusion 

(the reporter enzyme is inactive as a fusion). Cleavage of the fusion protein allows 

the production of a fluorescent substrate, which is detected in real-time with a 

multiplate fluorescence reader. Surprisingly, we were not able to detect any SUMO 

isopeptidase activity in our Wss1 preparations (Figure 10B). Additionally, we tested 

cleavage of a GST-Ubi-Smt3-V5 fusion, exactly as reported (Mullen et al., 2010). 

Again, we did not observe any cleavage by Wss1 (Figure 10C). It should be noted 

that the biochemical experiments presented in Mullen et al. raised several questions, 

given that (1) the observed activity remained active in the presence of EDTA, (2) a 

variant with alterations in three active site residues retained partial activity and (3) 

that activity was inhibited by ubiquitin-aldehyde, a classical inhibitor of thiol-based 

ubiquitin-isopeptidases. Generally, all these biochemical observations are consistent 

with the possibility that the observed activity arose from a contamination in the Wss1 

preparation, as noted previously (Su and Hochstrasser, 2010). Together with the 

findings that our Wss1 preparations were active in the experiments discussed later, 

were inhibited by EDTA and a variant with replacements of active side residues 

(wss1EQ) showed no activity, we conclude that Wss1 is most likely not a SUMO-

dependent isopeptidase.  
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3.3 Wss1 is a DNA-dependent protease 

The finding that Wss1 is not an isopeptidase raised the exciting hypothesis that 

Wss1 might in fact act directly and proteolytically on Top1ccs, thereby diminishing 

their toxicity. Indeed, Wss1 is able to cleave epitope-tagged Top1, which was 

immuno-purified from yeast cells (PhD thesis M. Schwarz and Figure 11A upper 

panel). However, cleavage does not take place when EDTA is included in the 

reaction or when the catalytic inactive variant wss1EQ is used. Furthermore, not only 

Top1 is cleaved in this reaction, but also Wss1 itself (Figure 11A, lower panel). This 

was very surprising to us, given the fact that Wss1 incubated alone (without Top1 

immuno-precipitate) does not undergo self-cleavage (Figure 11B, left lanes), 

implicating that some factor within the Top1 immuno-precipitate induces Wss1 self-

cleavage.  

 To gain more insights into the function of Wss1 we decided to further 

characterize the requirements for self-cleavage. Surprisingly, we found that already 

the addition of a whole cell extract to Wss1 is enough to trigger self-cleavage (Figure 

Figure 11. Wss1 cleaves Top1 and itself. (A) HA-tagged Top1 was purified from yeast cells by 
immuno-precipitation using HA-specific antibodies. Immuno-precipitated Top1 was then incubated 
with either BSA, Wss1, Wss1 and EDTA (10 mM) or wss1EQ for 2 hrs at 30°C. Reactions were 
stopped by addition of Laemmli buffer and analyzed by SDS-PAGE either followed by immuno-
blotting using HA-specific antibodies (upper panel) or Coomassie staining (lower panel). (B) Wss1 
(in the absence or presence of EDTA (10 mM)) or its catalytic inactive variant were either incubated 
alone (only for Wss1 without EDTA) or in the presence of whole cell extract for the indicated time at 
30°C. Reactions were stopped by the addition of Laemmli buffer and cleavage was analyzed by 
SDS-PAGE followed by Coomassie staining. Whole cell extract was prepared from exponentially 
growing WT cells using a bead beater. (C) Wss1 was incubated alone or together with cell extract 
prepared from either WT or Δtop1 cells for 45 min at 30°C. Reactions were stopped by the addition 
of Laemmli buffer and analyzed by SDS-PAGE followed by Coomassie staining. Samples were run 
on the same gel; irrelevant lanes were removed as indicated by white spacer. 
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11B). Importantly, the observed cleavage is dependent on Wss1’s catalytic activity 

as, it is inhibited by EDTA and not seen with the catalytic inactive variant wss1EQ. 

Top1 itself could be excluded as the factor responsible for cleavage induction, as 

extracts from cells lacking Top1 (Δtop1) induce cleavage to the same extent as 

Figure 12. Wss1 is a DNA-dependent protease. (A) WCE heat inactivated at 80°C for 20 min 
induces Wss1 self-cleavage. In contrast, WCE subjected to nuclease digestion completely fails to 
induce self-cleavage (asterisks denotes the nuclease). Wss1 was either incubated alone or with the 
respective WCE (untreated, heat-inactivated or nuclease treated). Reactions were stopped by 
addition of Laemmli buffer at the indicated time points and analyzed by SDS-PAGE and Coomassie-
blue staining. (B) Various types of DNA induce Wss1 self-cleavage. Wss1 (200 ng/μl) was incubated 
alone or together with different types of DNA (32 bp oligonucleotides or phage ΦX174 DNA, both 
single- (50 ng/μl) and double-stranded (100 ng/μl)). Reactions were carried out at 30°C for 2 hrs 
prior to SDS-PAGE and Coomassie-blue staining. (C) DNA polymers are required for induction of 
self-cleavage. Wss1 was either incubated alone, with DNA (ΦX174 virion) or with DNA predigested 
with nuclease for 2 hrs at 30°C. Cleavage reactions were analyzed by SDS-PAGE followed by 
Coomassie-blue staining. (D) A minimal DNA length is required to induce Wss1 self-cleavage. Wss1 
(50 ng/μl) was incubated together with DNA oligonucleotides (20μM) of different lengths for 1 hr at 
30°C, prior to analysis by SDS-PAGE and Coomassie-blue staining. (E) Equimolar concentrations of 
DNA are most effeicent in inducing Wss1 self-cleavage. Wss1 (6.6 μM) was incubated with different 
amounts of DNA (32 bp single stranded oligonucleotide) for 1 hr at 30°C. (F) Wss1 self-cleavage 
occurs in trans. Wss1 and its inactive variant wss1EQ (50 ng/μl) were either incubated alone or 
together with and without DNA (ΦX174 virion, 100 ng/μl). Reactions carried out at 30°C for 2 hrs and 
analyzed by SDS-PAGE and Coomassie-blue staining.  
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extracts from WT cells (Figure 11C). Intriguingly, even cell extracts heat-inactivated 

for 20 min at 80°C (thereby inactivating all protein components) potently induce self-

cleavage. By contrast, digestion of the cell extract with micrococcal nuclease 

abolishes cleavage induction entirely (Figure 12A). As Wss1 presumably acts on 

Top1 trapped on DNA we speculated that DNA might be the crucial component 

responsible for induction of Wss1 self-cleavage. Indeed, addition of various types of 

DNA is sufficient to induce self-cleavage of Wss1 (Figure 12B). Notably, intact DNA 

polymers are required to induce self-cleavage, as DNA predigested with nuclease 

fails to induce cleavage (Figure 12C). More precisely, a certain DNA length is needed 

for cleavage induction, as 8 bp oligonucleotides fail to induce cleavage, whereas 16 

and 32 bp oligonucleotides potently do (Figure 12D). Furthermore, equimolar 

amounts of DNA are most efficient in inducing self-cleavage, whereas very high 

concentrations are inhibitory (Figure 12E). In addition, self-cleavage occurs in trans, 

which we deduce from the fact, that the catalytic inactive variant wss1EQ is cleaved 

when WT enzyme is present in the reaction. Notably, self-cleavage is entirely 

dependent on the presence of DNA (Figure 12E).  

 Taken together, we conclude that DNA induces self-cleavage by acting as a 

scaffold bringing to Wss1 molecules in close proximity, thereby enabling cleavage in 

trans. This model explains why a certain DNA length is required (long enough to 

harbor two Wss1 molecules) and why high DNA concentrations are inhibitory (as all 

Wss1 molecules will be titrated away from each other). An alternative model, in which 

the proteolytic activity of a constitutive Wss1 dimer is activated by DNA, can be 

excluded, as Wss1 behaves as a monomer under conditions in which the cleavage 

assays are performed (Figure 13A-B).  

Figure 13. Wss1 is a monomeric protein. (A) Size exclusion chromatography was carried out on 
Superdex75 column employing the same buffer conditions used in cleavage experiments. (B) Elution 
volumes of proteins used to calibrate the sizing column. The molecular weight calculated for the 
elution volume of Wss1 in 27 kDa, closely matching the predicted molecular weight of 30.6 kDa. 
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3.4 Wss1 targets DNA-bound proteins 

3.4.1 Wss1 is a DNA-binding protein 

The idea that DNA induces Wss1 self-cleavage by acting as a scaffold implicates that 

Wss1 is a DNA-binding protein. However, no DNA-binding domain has been 

described or predicted for Wss1 so far. Thus, we directly tested DNA-binding by 

using GST-tagged fragments of Wss1’s C-terminal tail (Figure 14A) in an 

Figure 14. Wss1 contains a DNA-binding domain. (A) Schematic depiction of Wss1 and GST-
tagged Wss1 fragments used for mapping of Wss1’s DNA binding domain (light gray indicates the 
region minimally required for DNA-binding) (B) Wss1 bears a DNA-binding domain. Different 
concentrations of GST-tagged fragments of Wss1’s C-terminal tail (0.16, 0.8, 4 and 10 μM) were 
incubated together with Alexa488-labeled double stranded DNA oligonucleotides (0.1 μM) for 20 min 
at room temperature prior to separation on 6 % DNA retardation gels. Mobility shifts were visualized 
using a fluorescence scanner. Samples were run in parallel on two separate gels, as indicated with 
the dotted line. (C) Wss1 variants deficient in Cdc48 or SUMO binding are not affected in their DNA-
dependent proteolytic activity. Wss1 and the respective variants were incubated together with DNA 
(ΦX174 virion) at 30°C. The reactions were stopped at the indicated time points by addition of 
Laemmli buffer. Cleavage was analyzed by SDS-PAGE followed by Coomassie-blue staining. (D) 
Wss1 cleaves DNA-bound GST-tagged Wss1-fragments. Wss1-fragments were incubated either 
alone or with full-length Wss1 in the absence or presence of DNA (ΦX174 virion) for 2 hrs at 30°C. 
Reactions were stopped by the addition of Laemmli buffer and analyzed by immuno-blotting using 
GST-specific antibodies. 
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electrophoretic mobility shift assay (EMSA). DNA-binding, as inferred from the ability 

to retard a fluorescently labeled double-stranded oligonucleotide during 

electrophoresis, was readily detectable in Wss1’s tail. The DNA-binding domain of 

Wss1 could be mapped to a region ranging from amino acid 161 to 208 located 

directly between the Cdc48 interaction motifs (Figure 14B).  To exclude that the 

aforementioned alterations in the Cdc48 interaction motifs also affected DNA binding, 

we tested the DNA-dependent proteolytic activity of Wss1 variants with amino acid 

replacements in either both Cdc48 interaction motifs or both SIMs. However, neither 

of these variants display altered induction of DNA-dependent self-cleavage, 

indicating that alterations in the Cdc48 interaction motifs or SIMs do not affect DNA-

binding or catalytic activity (Figure 14C). 

 As Wss1 is able to cleave another Wss1 molecule in the presence of DNA, 

we next asked if this is also the case for Wss1-fragments. Therefore, we incubated 

the Wss1 fragments used for DNA-binding analysis together with full length Wss1 in 

the absence or presence of DNA. Astonishingly, only those Wss1 fragments able to 

bind DNA were cleaved by full length Wss1. Importantly, cleavage was strictly 

dependent on the presence of DNA (Figure 14D). This further indicates that DNA 

enables cleavage by Wss1 by acting as a scaffold bringing the enzyme and its 

substrate (in this case the Wss1-fragments) together. The fact that fragments without 

DNA-binding properties are not cleaved is actually expected from the scaffolding 

model, as they will not co-localize together with Wss1 on DNA. 

3.4.2 Wss1 cleaves DNA-binding proteins 

Wss1’s ability to cleave specifically DNA-bound fragments lead to the hypothesis that 

other DNA-bound proteins might be substrates as well. As Wss1 presumably acts on 

Top1 covalently trapped on DNA, we asked whether cleavage of Top1 by Wss1 also 

occurs in a DNA-dependent manner.  

 Indeed, we observed cleavage of recombinant Top1 (commercially available 

human Top1 purified from insect cells was used; functionally equivalent to yeast 

Top1 (Bjornsti et al., 1989)) when incubated together with catalytically active Wss1 

(Figure 15A). Importantly, this is strictly dependent on the presence of DNA, as no 

cleavage fragments is observed when DNA is omitted from the reaction. To gain 

more insights into the specificity of Wss1, we repeated this assay by replacing Top1 

with other proteins. Initially we focused on other DNA-binding proteins. Surprisingly, 

all DNA-binding proteins tested, such as histone H1 or Hmg1, are cleaved by Wss1 

in a strictly DNA-dependent manner (Figure 15B-C). This in stark contrast to proteins 
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without DNA-binding capabilities (BSA, GST or the aforementioned GST-Ubi-Smt3-

V5 fusion), which are not cleaved by Wss1, even when DNA is present in the 

reaction (Figure 15D-F).  

 Taken together, these data suggest that Wss1 is able to cleave any protein 

(irrespective of identity and amino acid sequence) with DNA-binding properties in the 

presence of DNA. This is probably because in the presence DNA both substrate and 

Wss1 might bind the same DNA molecule, thereby bringing them in close proximity 

Figure 15 Wss1 targets specifically DNA-bound proteins. Topoisomerase 1 (A), histone H1 (B), 
Hmg1 (C), GST (D), BSA (E) or a GST-Ubi-Smt3-V5 fusion (F) were incubated either alone or 
together with Wss1 or its inactive variant wss1EQ ((F) only with Wss1) either in the presence or 
absence of DNA (ΦX174 virion). Reactions were carried out at 30°C for 2 hrs and were stopped by 
the addition of Laemmli buffer. Proteolytic cleavage was analyzed by SDS-PAGE followed by 
Coomassie-blue staining (not in (F)) as well as by immuno-blotting using substrate-specific 
antibodies. 
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and thus enabling proteolysis. The in vitro promiscuity of Wss1, however, remained 

puzzling and indicated that Wss1 might target also in vivo a broader set of substrates 

than initially anticipated. 
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3.5 Wss1 is involved in cellular resistance towards formaldehyde 

 

 

DPCs are not only caused by the malfunctioning actions of topoisomerases and 

relatives, they are also induced by nonenzymatic reactions. Agents causing DPCs 

nonenzymatically are amongst others IR, UV-light and reactive aldehydes (see 

Introduction) (Barker et al., 2005). Among reactive aldehydes, formaldehyde (FA) is 

of explicit interest given the fact that it is produced endogenously directly within 

chromatin during every histone de-methylation event (Kooistra and Helin, 2012). 

Figure 16. Wss1 is needed for FA resistance. (A) Wss1 is needed for cellular resistance towards 
FA and operates independent of NER or HR. WT strain or strains lacking Wss1, Rad4, Rad52 or 
combinations were washed once in PBS and incubated in PBS containing the respective FA 
concentration for 15 min under constant shaking. Following two wash steps cells were then spotted 
in five-fold serial dilutions on YPD plates and incubated at 30°C for 2.5 days. (B) Wss1’s proteolytic 
activity is required for FA-resistance. Cells lacking Rad52 and Wss1 were complemented with 
plasmids coding for HA-tagged Wss1 or wss1EQ either under control of the endogenous promoter or 
the ADH promoter (causing heavy over-expression). FA treatments and spottings were performed as 
in (A). (C-D) Cdc48 binding is essential and SUMO binding is supportive for Wss1’s function in FA 
resistance. Cells lacking Rad52 and Wss1 were complemented with plasmids coding for the 
indicated HA-tagged Wss1 variants. FA treatments and spottings were performed as in (A). 
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Therefore, we decided to use FA-induced DPCs as a model to study a potential 

involvement of Wss1 with respect to the repair of nonenzymatic DPCs. To this end, 

we challenged WT strains and strains lacking Wss1 (Δwss1) with a short (15 min) FA 

pulse to induce DPCs. After removing FA by two wash steps, cells were spotted on 

plates and incubated for 2.5 days at 30°C. Cells lacking Wss1 indeed displayed 

significant sensitivity towards FA (Figure 16A). So far only the canonical DNA repair 

pathways homologous recombination (HR) and nucleotide excision repair (NER) had 

been implicated in the response to FA-induced DPCs in yeast (de Graaf et al., 2009). 

To test if Wss1’s function is integrated into one of these pathways we performed 

epistasis analysis with deletions in NER (Δrad4) or HR (Δrad52). If Wss1 would be 

part of either pathway, a deletion of WSS1 is expected to not further increase the 

sensitivity of cells lacking that specific pathway. However, the additional deletion of 

WSS1 in cells lacking NER, HR or both, increased in all cases FA sensitivity 

markedly (Figure 16A), indicating that Wss1 constitutes a third and novel mechanism 

required for resistance towards FA-induced DPCs. The requirements for Wss1 in FA- 

resistance seem analogous to the ones needed for its function in Top1cc repair. The 

catalytic inactive variant wss1EQ does not complement the strong FA sensitivity of 

Figure 17. Bulk repair of FA-induced DPCs is cleared by NER. (A) Direct measurements of FA-
induced DPC repair. Yeast cells (untreated or treated with 10 mM FA (with or without recovery time 
in FA free media)) were lysed by zymolase treatment and addition of SDS. Proteins were 
precipitated from the lysate by addition of KCl. Free DNA (meaning not crosslinked to protein) 
remained in the supernatant. The protein precipitate was washed several times prior to removal of 
proteins by proteinase K digestion and quantification of the insoluble DNA (DNA crosslinked to 
protein). (B) Quantification of DPC-repair assays as shown in (A). The ration between insoluble DNA 
and total DNA (soluble + insoluble) served as a measure of DPCs. Values of each experiment were 
normalized to the 0 hr time point. DPC levels are depicted on a log10 scale as mean values ± SD of 2 
- 4 independent experiments. DPC levels of yeast cells lacking NER (Δrad4) are presented in light 
gray whereas NER proficient cells in black. 
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Δrad52 Δrad4 cells, even when heavily overexpressed (Figure 16B). Cdc48 

interaction also appears to be essential, as a Wss1 variant with both Cdc48-

interaction motifs altered (wss1SHP/VIMmut) fails to rescue the knockout phenotype 

entirely (Figure 16C). In contrast, SUMO binding seems to be only partially required 

for function, as similarly observed for Top1cc repair, as variants with both SIMs 

mutated (wss1SIM1/2mut) still complement the knockout to a certain degree (Figure 

16C-D). To further understand Wss1’s contribution to FA resistance, we next 

performed assays monitoring directly the repair of FA-induced DPCs, which quantify 

the amount of DNA co-precipitating with protein under denaturing conditions. The 

assay was adapted from previously published methods, however, with some 

modifications (de Graaf et al., 2009). In brief (see Materials and Methods for details), 

cells from exponentially growing cultures were washed once in PBS, followed by a 

FA exposure (10 mM in PBS, 15 min) to induce DPCs. Cells were subsequently 

washed twice in PBS to remove excess FA and resuspended in fresh warm media. 

Cells were either harvested immediately or incubated at 30°C to allow for repair of 

DPCs (2 or 4 hrs). At the respective timepoints, cells were harvested, washed and 

subjected to zymolase treatment (which degrades the cell wall), followed by cell lysis 

with SDS (also denaturing all protein components and thus removing all non covalent 

attached proteins from DNA). Next, proteins were precipitated from the lysate by 

Figure 18. Cells lacking Wss1 or HR arrest specifically with a G2-like DNA content upon FA 
exposure. (A) FA was added to exponentially growing cells to a final concentration of 0.75 mM. 
Samples were harvested every 45 min and cell cycle profiles analyzed by SYTOX green staining 
and flow cytometry. (B) Quantification of cell cycle phase distribution over time after FA addition of 
two independent experiments ± SD (one replicate is shown in (A)).  
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addition of KCl. This was followed by centrifugation in order to pellet all protein, 

whereas DNA was expected to remain in the supernatant (the supernatant was 

saved to quantify the amount of soluble DNA). Next, the protein pellet was dissolved 

and re-precipitated several times, to ensure that all free DNA was removed from the 

precipitate. Finally, proteins were removed by proteinase K. The amount of insoluble 

DNA (co-precipitated in the protein pellet) and soluble DNA was now quantified by 

agarose gel electrophoresis. The ratio between insoluble DNA versus total DNA 

(insoluble and soluble) served as a measure for the amounts of DPCs. In this assay, 

WT cells repair 80 - 90% of FA-induced DPCs over the course of 4 hrs. Surprisingly, 

cells lacking Wss1, HR (Δrad52) or both repair DPCs with the same kinetics as WT 

cells do (Figure 17A-B). The only strains displaying a delay in the removal of DPCs 

are cells lacking NER (Δrad4). 

 This finding was unexpected as especially Δwss1 Δrad52 cells are extremely 

sensitive towards FA, notably even more than Δrad4 cells (Figure 16A). As a 

consequence, it seems that the FA sensitivity observed in cells lacking Wss1 or HR 

does not arise from a defect in bulk repair of DPCs. We reasoned that Wss1 or HR 

might target a special class of DPCs - highly toxic, however, small in numbers - 

thereby invisible in our assays. HR is known to be crucial for repair/tolerance of DNA 

damage during S-phase and our data indicated that Wss1 is required for suppressing 

Top1cc-dependent cell cycle defects. Thus, we speculated that this toxic class of 

DPCs might in fact consist of DPCs causing problems in S-phase (possibly through 

replication fork stalling). To test this hypothesis we analyzed the effects on the cell 

cycle status upon FA exposure in WT cells and cells lacking Wss1, HR or NER 

(Figure 18A). The quantification of cell cycle phase distributions over time (Figure 

18B) revealed a specific pattern in WT cells, which is characterized by an initial drop 

in S-phase cells accompanied by a reciprocal increase in G1 cells, followed by a 

reversion to the levels seen in unchallenged cells (Figure 18B, left panel). Cells 

lacking NER (Δrad4) display a similar response (decrease in S-phase, increase in 

G1-phase cells), however with a strong delay. By contrast, cells lacking HR (Δrad52) 

or Wss1 display an initial response identical to that seen in WT cells (consistent with 

the observation, that bulk DPC repair is functional), which is, however, followed by a 

specific accumulation of cells with a G2-like DNA content (Figure 18B, right panels). 

This indicates that cells lacking HR or Wss1 indeed suffer from cell cycle defects 

upon FA exposure despite being competent in repairing the bulk of DPCs. We 

assume that the observed cell cycle arrest is likely responsible for the strong 
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sensitivity seen in these strains. Taken together, we conclude that the bulk of DPCs 

are repaired by NER, whereas HR and Wss1 constitute equally important mechanism 

required to prevent specific cell cycle defects linked to DPCs, which remained 

unrepaired until S-phase.  
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3.6 Wss1-dependent DPC-processing directs repair pathway 

choice 

Cells lacking both Wss1 and HR (Δwss1 Δrad52) are significantly more FA sensitive 

than the respective single mutants (Figure 16A), indicating that HR and Wss1 are 

parallel mechanisms needed for cellular FA resistance. As a matter of fact, Δwss1 

cells had previously been found in a screen to exhibit increased levels of GFP-Rad52 

foci, a marker for sites of active recombination (Alvaro et al., 2007). To directly test if 

recombination is more active in cells lacking Wss1 we performed interchromosomal 

recombination assays. This assay measures the frequency of recombination events 

in diploid cells carrying two non-functional HIS1 alleles (his1-1 and his1-7, each allele 

bearing a different inactivating mutation) located on two different chromosomes 

(Pfander et al., 2005). These cells are unable to grow on media lacking histidine (SC-

HIS), unless a recombination event occurred between the two non-functional alleles 

resulting in a functional HIS1 gene. To quantify these events, fluctuation analysis was 

performed in order to measure recombination rates, i.e. the likelihood of a 

recombination event per cell division.  (Lea and Coulson, 1949; Luria and Delbrück, 

1943). To this end, liquid cultures were inoculated with a small number of cells, which 

were then grown for three days. During the incubation time recombination events can 

occur resulting in cells auxotrophic for histidine. The frequency of histidine 

auxotrophic mutants per total viable cell number was determined in 8 - 10 parallel 

cultures by plating fractions of the culture on plates lacking histidine as well as on 

non-selective plates. Recombination rates were then calculated from mutant 

frequencies by a maximum-likelihood approach using the FALCOR web-tool (Hall et 

al., 2009). Cells lacking Wss1 show indeed increased recombination levels (Figure 

19A), further indicating a parallel and partial redundant role of Wss1 and 

recombination. To test if the observed increase in recombination rates is linked to 

DPC repair we also assayed recombination rates with cells being cultured in the 

presence of FA.  
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Again, the increase in recombination upon FA exposure was clearly more 

pronounced in cells lacking Wss1 (Figure 19A). Recombination is a powerful DNA 

repair mechanism bearing, however, the risk of genomic rearrangements and other 

alterations (Mieczkowski et al., 2006). In fact, WSS1 had already been identified in a 

screen as a suppressor of gross chromosomal rearrangements (GCRs) (Kanellis et 

al., 2007). In this study, GCRs were measured as the frequency by which the 

terminal part of the left arm of chromosome XV was lost. Two counter-selectable 

markers (URA3 and CAN1) were introduced into the sub-telomeric region of Chr XV. 

Cells bearing both markers are sensitive to 5-Fluoroorotic acid (5’FOA) and 

canavanine. This allows the identification of cells, which have lost this arm of Chr XV, 

as these cells will be resistant to both, 5’FOA and canavanine. The frequency of 

GCR events can again be scored by fluctuation analysis in an approach similar to the 

one described for recombination events. We reconstructed this GCR assay system in 

our yeast background (the construction and GCR experiments were performed in 

collaboration with N. Blömeke and were already partially described in the bachelor 

thesis of N. Blömeke) and could indeed confirm the function of WSS1 as a GCR 

suppressor (Figure 19B and bachelor thesis N.Blömeke). Notably, GCR rates in cells 

lacking Wss1 were even more induced if the cells were cultivated in the presence of 

FA (Figure 19B), further confirming that cells deficient for Wss1 rely on 

recombinational repair to handle DPCs resulting in genomic rearrangements and 

Figure 19. Cells lacking Wss1 display increased recombination levels and suffer from 
genomic instability. (A) Interchromosomal recombination rates are higher in cells lacking Wss1 
and are even further increased upon FA exposure. Recombination rates between the two non-
functional hetero-alleles his1-1 and his1-7 were determined in diploid cells using fluctuation analysis. 
Fluctuation tests were performed using at least 8 parallel cultures per strain and condition grown for 
3 d at 30°C. FA-induced recombination levels were measured by addition of 1 mM FA to the growth 
media. Recombination rates are represented as mean values of three independent experiments. 
Error bars indicate standard deviations. (B) Wss1 suppresses genomic instability especially in cells 
challenged by FA. GCR rates were determined by fluctuation test using at least 8 parallel cultures. 
FA-induced GCR events were measured by addition of 1 mM FA to the growth media. The 
presented GCR rates are mean values of 2 - 4 independent experiments. Error bars indicate 
standard deviations. 



 38 

instability. Moreover, this finding provides additional support for a model in which 

Wss1 targets specifically DPCs causing replication problems in S-phase, as GCR 

events are thought to be primarily caused by permanent replication fork stalling 

(Lambert et al., 2005).  

 In general, DNA lesions inhibiting replisome progression are not only handled 

by HR, but also by postreplicative repair mechanisms (PRR). Upon replication fork 

stalling, mono- or poly-ubiquitylation of PCNA triggers PRR (Hoege et al., 2002). 

Mono-ubiquitylation of PCNA recruits specialized TLS polymerases, which are able to 

synthesize over DNA lesions, thereby allowing replication of damaged templates. 

TLS polymerases frequently incorporate wrong nucleotides, thus resulting in the 

induction of mutagenesis (Sale, 2013). Interestingly, TLS-dependent mutagenesis 

has been observed in cells treated with FA (Grogan and Jinks-Robertson, 2012). To 

test a putative link between Wss1 and PRR, we investigated if FA-induced 

mutagenesis is affected in cells lacking Wss1. To this end, we assessed forward 

mutagenesis at the CAN1 locus. CAN1 encodes a plasma membrane arginine 

permase (normally used to import arginine), through which the toxic arginine analog 

canavanine is imported into cells. Cells with an intact CAN1 locus are therefore 

highly sensitive to canavanine. Mutagenesis at the CAN1 locus can therefore be 

measured by the appearance of canavanine resistant clones within a population. To 

measure FA-induced mutagenesis we treated cells with a short (15 min) pulse of FA 

(untreated cells were used as a reference) followed by plating of appropriate dilutions 

on either non-selective plates (to determine the total viable cell number) or plates 

containing canavanine (to score the frequency of canavanine resistant clones). 

Colonies were counted after a 3 day incubation at 30°C and mutagenesis rates were 

then scored as the number of canavanine resistant clones per total cell number. We 

could confirm TLS-dependent mutagenesis upon FA exposure, as WT cells displayed 

increased levels of mutagenesis when treated with increasing concentrations of FA, 

which was absent in cells lacking the TLS polymerase Rev3 (Δrev3) (Figure 20A). 

FA-induced mutagenesis was indeed affected in cells lacking Wss1, which display 

decreased levels of mutagenesis (Figure 20A). Notably, this effect was specific for 

DPCs, as mutagenesis and thus translesion synthesis was unaffected if induced by 

UV-light (Figure 20B). In agreement, the deletion of REV3 does not further increase 

the FA sensitivity of cells lacking Wss1, even when lacking NER as well (Figure 

20C).  
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 Taken together, these results suggest that Wss1 directs repair pathway 

choice during DPC repair. In the absence of Wss1, cells rely more on potentially 

harmful recombination pathways. By contrast, if Wss1 is presence translesion 

synthesis can occur, allowing replication of DPC-containing templates, thereby 

ensuring genomic stability in the face of DPCs. 

 

 

 

Figure 20. Wss1 promotes translesion synthesis of DPC-containing templates. (A) FA-induced 
mutagenesis is reduced in cells lacking Wss1. Mutagenesis was assessed at the CAN1 locus. Cells 
were either untreated or subjected to a 15 min pulse treatment with the indicated FA concentration 
with PBS. Mutagenesis was then detected by plating cells on canavanine containing plates and 
determination of the number of canavanine resistant clones (only cells with a mutated non-functional 
CAN1 gene are resistant to canavanine and can thus form colonies). The total viable number of cells 
was determined in parallel by plating appropriate dilutions on non-selective plates. Plating was 
performed in technical triplicates. Values represent mean values of 3 - 7 independent experiments ± 
SD. (B) UV-induced mutagenesis is unaffected by the absence of Wss1. UV-induced mutagenesis 
was assessed at the CAN1 locus. Appropriate dilutions of cells were plated on canavanine- 
containing plates (to determine the number of mutants) and non-selective plates (to determine the 
total viable cell number). Plates were then either untreated or irradiated with the indicated doses of 
UVC-light and then incubated in the dark for 3 d at 30°C. Mutation rates were scored as the number 
of canavanine resistant clones per total viable cells. Values represent mean values of 3 - 7 
independent experiments ± SD. (C) Deleting the gene encoding the TLS polymerase Rev3 from cells 
lacking Wss1 does not further increase FA sensitivity, even in cells lacking NER (Δrad4) in addition. 
The respective yeast strains were washed once in PBS and then incubated in PBS containing the 
indicated FA concentrations for 15 min under constant shaking. Following two wash steps, cells 
were then spotted in five-fold serial dilutions on YPD plates and incubated at 30°C for 2.5 days. 



 

4 Discussion 

This study describes a novel DNA repair mechanism dedicated to the repair of DPCs. 

This mechanism is build around the metalloprotease Wss1, which is the first DNA 

repair enzyme devoted specifically to the repair of DPCs. Importantly, Wss1 appears 

to have the unique ability to target all kinds of DPCs, irrespective of the identity of the 

involved proteins.1 

4.1 DNA-protein crosslink repair 

The genetic and biochemical data presented in this study allow to propose a partially 

hypothetical model for the repair of DPCs (Figure 21). The repair of DPCs comprises 

three genetically distinct pathways: NER, HR and the pathway comprising Wss1. 

Nucleotide excision repair (NER) has been shown previously to confer resistance 

toward FA-induced DPCs (de Graaf et al., 2009). In addition, we discovered that NER 

is responsible for clearing the majority of DPCs, as cells lacking the NER pathway 

(Δrad4) display a significant delay in FA-induced DPCs. DPC clearing by NER is 

apparently independent of the cell cycle, as NER deficient cells do not accumulate in 

a specific cell cycle phase (Figure 17). This is in contrast to cells lacking either 

recombination or Wss1, in which initial DPC clearing appears to be functional, yet 

which accumulate specifically in the late S/G2 phase of the cell cycle (Figure 17). We 

attribute the defect seen in cells lacking Wss1 or HR to DPCs, which have escaped 

repair by NER prior to S-phase or are resistant to NER. This is likely the case for 

DPCs containing very large protein components, as it was shown in vitro that NER is 

incapable of excising large DPCs (Ide et al., 2008). DPCs, which have not been 

repaired prior to cells entering S-phase pose a significant threat towards cellular 

integrity, as they will likely stall approaching replication forks. The data presented in 

this study indicate that cells possess two distinct mechanisms to address the 

problem of DPC-stalled replication forks: DPC repair and DPC tolerance. 

4.1.1 DPC repair 

The DPC repair pathway is build around the DPC-processing protease (termed DPC 

protease in the following) Wss1 and provides resistance towards Top1- and FA-

induced DPCs. The current model is that Wss1 breaks down the bulk of the protein 

components of DPCs proteolytically, thereby enabling progression of the replicative 

                                                

1 Parts of this Discussion will be published as a review article in Trends in Biochemical Sciences. 
Stingele et al., DNA-protein crosslink repair: proteases as DNA repair enzymes (commissioned review in 
preparation). 
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helicase. The remaining peptide remnant covalently bound to DNA will still block 

replicative polymerases. As a consequence single-stranded DNA will be formed due 

to the uncoupling of DNA unwinding and synthesis. Accumulated single-stranded 

DNA triggers PCNA ubiquitylation. This allows replication to continue by recruitment 

of mutagenic TLS polymerases, which are able to replicate even across bulky DNA 

lesions. This model is supported by the fact that formaldehyde induces mutagenesis 

(Grogan and Jinks-Robertson, 2012), and that this TLS-mediated reaction partially 

depends on Wss1 (Figure 20). However, it seems that the TLS step is of minor 

importance for cellular integrity, as the deletion of the TLS polymerase Rev3, which is 

responsible for the FA-induced mutagenesis, does not render cells sensitive toward 

FA (Figure 20). The small peptide remnant, which remains crosslinked to DNA, may 

be eventually excised by NER. The idea, that NER and Wss1 are partially acting up- 

and downstream of each other is supported by the fact, that the deletion of the gene 

Figure 21: The bulk of DPCs are repaired by NER, but DPCs that escaped repair are expected to 
stall replicative helicases during S phase. Helicase stalling might be relieved by Wss1-dependent 
DPC processing (left). However, replicative polymerases are probably unable to replicate past the 
remaining lesion (proteolytic fragment remnant covalently bound to DNA), causing an uncoupling of 
DNA unwinding and DNA synthesis and resulting in an enlargement of single-stranded DNA. 
Accumulation of single-stranded DNA, in turn, promotes PCNA monoubiquitylation and subsequent 
recruitment of TLS polymerases. Because TLS polymerases are able to synthesize past the lesion 
yet potentially by misincorporation of nucleotides, mutagenesis can occur. Conversely, if a DPC is 
left unprocessed (right), the permanently stalled replication fork might be subjected to cleavage by 
endonucleases, resulting in a single-ended double-strand break. This situation may trigger 
recombination-dependent repair, e.g. by break-induced replication (BIR), though with the risk of 
genomic rearrangements (GCRs). 
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encoding Wss1 has a significantly milder effect in NER-deficient strains than in 

recombination deficient strains (Figure 16). Taken together, DPC repair provides 

resistance towards DPCs by enabling replication of DPC containing templates, 

however bears the risk of inducing mutagenesis.  

4.1.2 DPC tolerance 

In addition to DPC repair, DPC tolerance mediated by a recombination-based 

mechanism may allow replication of DPC-containing templates, however without 

actually removing the DPC. DPC tolerance likely involves the generation of single-

ended DNA double-strand breaks (DSBs) either by replication fork run-off, as in the 

case of Top1-dependent DPCs, or endonucleolytic cleavage, as for nonenzymatic 

DPCs. These single-ended DSBs are subsequently repaired by break-induced 

replication (BIR) or homologous recombination (HR), which, however bear the risk of 

causing genome rearrangements. Because this alternative pathway is principally 

active in the absence of the DPC protease, cells lacking Wss1 suffer from hyper-

recombination and genomic rearrangements (Figure 19).  
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4.2 Regulation of Wss1 

In vitro, Wss1 has the astonishing ability to cleave any protein (tested so far), as long 

as it is bound to DNA. This remarkable promiscuity is, of course, ideal for an enzyme 

targeting nonenzymatic DPCs, which can, at least theoretically, involve almost any 

protein. However, Wss1’s ability to cleave any DNA-bound protein is a potentially 

very toxic activity. Generally, cells use sophisticated strategies to restrain 

uncontrolled proteolytic cleavage, which includes the expression of proteases as 

inactive precursors (zymogens), spatial sequestration (lysosomal proteases), 

confined active sites (proteasome) or active sites with high sequence specificity. An 

important regulatory mean to minimize unwanted cleavage, is perhaps the cellular 

concentration of Wss1, which is expressed at extremely low levels. In addition, 

Wss1’s ability to cleave another protein in vitro is entirely dependent on DNA in order 

to bring substrate and enzyme together. If this is also the case in vivo is currently not 

testable, as it has not been successful so far to generate Wss1 variants unable to 

bind DNA. These variants, when tested in complementation assays, would reveal if 

DNA binding is also required in vivo. Furthermore, the requirements for DNA in vitro 

do not appear to be very strict, but DNA in vivo is mostly chromatinized and, thus, 

might be insulated against Wss1 activation. Notably, chromatin undergoes intensive 

remodeling at sites of DNA damage and repair, which may open up the possibility for 

Wss1 activation (Tsabar and Haber, 2013). However, the exact mechanisms for 

controlling Wss1’s activity remain elusive at the moment, but it is likely that SUMO 

and Cdc48 are involved, given that SUMO and Cdc48 are critically important for 

Wss1’s role in vivo. 

4.2.1 Wss1 and SUMO 

Wss1’s functions seems to be linked to the SUMO-system, as SUMO-binding is 

partially required for its function in vivo (Figure 9). The observation that Wss1 

variants lacking SUMO-binding capacity retain a certain degree of functionality might 

be explained by the fact that Wss1’s binding partner Cdc48 bears SUMO binding 

properties itself (Bergink et al., 2013). Thus, the Wss1-Cdc48 complex likely remains 

able to bind SUMO, even if crucial residues in Wss1’s SIMs are altered. Nonetheless, 

the exact function of SUMO binding by Wss1 remains unclear and deserves further 

attention. Protein modification by SUMO is a well-known targeting factor, especially 

in DNA repair pathways. SUMOylation targets proteins to specific sites via two 

distinct mechanisms (Jentsch and Psakhye, 2013). (1) Selective SUMOylation 
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targets specific substrates, which are then recognized by SIMs of their binding 

partner. As the binding partners often possess, in addition to the SIM, direct 

recognition motifs for the SUMOylated substrates, a high degree of specificity is 

achieved. For instance, the anti-recombinase Srs2 is recruited to SUMOylated PCNA 

by a SIM and a PIP-box, which binds PCNA directly (Pfander et al., 2005). 

Alternatively, (2) SUMOylation can target entire groups of proteins, such as those 

required for HR-dependent repair of DSBs (Psakhye and Jentsch, 2012). In these 

cases, SUMO is proposed to act as glue tethering protein assemblies together in 

order to facilitate complex molecular processes, such as those occurring during HR. 

Both scenarios, substrate selective or protein group SUMOylation, are conceivable 

for targeting Wss1. The DPC itself might be SUMOylated to mark it for cleavage by 

Wss1. Support for this idea, comes from the observation that Top1 becomes 

extensively SUMOylated upon exposure to CPT, i.e. upon covalent trapping on DNA 

(Chen et al., 2007b; Mao et al., 2000). Another possibility is, that the entire stalled 

replisome along with the DPC undergo group SUMOylation, which then in turn 

facilitates Wss1 recruitment.  

4.2.2 Wss1 and Cdc48 

Cdc48-binding is absolutely required for Wss1’s function in vivo (Figure 8), but it is 

currently not clear what Cdc48 actually contributes to the repair of DPCs. The 

segregase Cdc48 is well known for its function in segregating proteins from their 

environment (Jentsch and Rumpf, 2007). In recent years it became increasingly 

apparent that Cdc48 is commonly required to extract proteins from chromatin 

(Dantuma and Hoppe, 2012). Therefore, it seems reasonable to speculate that 

Cdc48 may be required to extract DPC fragments generated by Wss1-dependent 

proteolysis. The proteins involved in DPCs are most likely DNA-binding proteins, 

which are generally very positively charged. Consequently, fragments resulting from 

a cleaved DPC are probably positively charged as well and are, thus, prone to 

remain unspecifically associated with the DNA and may therefore require Cdc48 for 

extraction. Alternatively, Cdc48 might “prepare” the DPC for cleavage by Wss1. 

Cdc48 has the ability to partially unfold proteins, which was shown to be important for 

proteasomal degradation of proteins lacking unstructured regions (Beskow et al., 

2009). As a consequence, it seems possible that Cdc48 would be able to partially 

unfold the protein component of the DPCs, which may significantly facilitate cleavage 

by Wss1. 
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4.3 A conserved family of DPC proteases? 

DPC proteases are highly advantageous for cells as they enable replication 

completion in the face of DPCs and thus promote genome stability. However, if 

similar enzymes and repair mechanisms exist in higher eukaryotes is currently 

unclear. We collaborated with Bianca Habermann (Computational Biology Group, 

MPI for Biochemistry), who conducted reciprocal BLAST searches in order to identify 

proteins homologous to Wss1 in other species. Proteins with high sequence similarity 

to S. cerevisiae Wss1 were readily identified in other fungi as well as in plants (Wss1 

branch) (Figure 22A). In addition, plants and some other fungi have a second type of 

Wss1-like proteases, which however display a distinct domain organization (UBL-

Wss1 branch). In metazoans, one type of proteases exists with weak, yet significant, 

homology to the protease domain of Wss1 (Spartan branch). The human member of 

this class is Spartan (also called Dvc1 or C1orf124). Notably, Spartan has already 

been suggested to be potentially related to Wss1 (Mosbech et al., 2012). The 

phylogenetic analysis now clearly identifies a common ancestry between Wss1 and 

Spartan proteases. In addition to the homologies within the protease domains both 

proteases display a strikingly similar domain organization (Figure 22B). The amino 

(N)-terminal protease domain is followed by carboxy (C)-terminal tails containing 

distinct protein-protein interaction motifs and domains. Both, Wss1 and Spartan 

proteases, bear sequence motifs for binding to the segregase Cdc48 (or p97 in 

higher eukaryotes), followed by domains at the far C-terminus required for the 

interaction with either ubiquitin (Spartan) or SUMO (Wss1). Notably, Spartan 

possesses an ubiquitin-binding zinc finger (UBZ), whereas Wss1 employs two SUMO 

interacting motifs (SIMs). Proteins of the Spartan family additionally possess short 

interaction motifs (PIP-boxes) for binding the replication clamp PCNA.  

 An orthologous relationship between Wss1 and Spartan and a common 

function in DPC repair is, next to sequence homology and similar domain 

organization, further suggested by functional data. Intriguingly, Spartan has been, 

similar to Wss1, implicated in repair processes at the replication fork. A series of 

recent reports described an involvement of Spartan in TLS, with its precise role 

however being highly controversial (Centore et al., 2012; Davis et al., 2012; Ghosal 

et al., 2012; Juhasz et al., 2012; Kim et al., 2013; Machida et al., 2012; Mosbech et 

al., 2012). For instance, some groups report that Spartan recruitment to stalled forks 

depends on Rad18-dependent PCNA ubiquitylation (Centore et al., 2012; Ghosal et 

al., 2012; Juhasz et al., 2012; Machida et al., 2012), whereas others report it to be 



 46 

independent (Davis et al., 2012; Mosbech et al., 2012). Furthermore, it is unclear if 

Spartan promotes UV-induced Polη foci formation (Centore et al., 2012; Juhasz et 

al., 2012), or disassembles them (Davis et al., 2012; Mosbech et al., 2012).  

 
Figure 22: A conserved family of DPC proteases? (A) Phylogenetic tree of Wss1 and Spartan 
proteases. Reciprocal best-hit relationships as well as common domain structures are strong 
evidence for phylogenetic conservation of Wss1/Spartan proteases in eukaryotes. The protease 
domain is well conserved in fungi and plants (Wss1 branch, bottom of the tree) and more divergent 
in metazoans (Spartan branch, top of the tree). Paralogs of Wss1 bearing a ubiquitin-like (UBL) 
domain exist in plants as well as some fungal species (UBL-Wss1 branch). Dots indicate stable 
branches (bootstrap value >= 80), the scale bar indicates substitutions per site. (Tree generated by 
B. Habermann) (B) Domain structure of Wss1 and Spartan proteins. Wss1 and Spartan branches 
share similar functional motifs. Indicated domains are the conserved core of the protease domain 
(yellow stripe denotes the position of the active site), Cdc48/p97 (SHP-box, VIM, PUB), ubiquitin 
(UBZ), SUMO (SIM) and PCNA (PIP-box) binding motifs and ubiquitin-like domains (UBL). (C) Wss1 
and Spartan share common regulatory principles. Both, Wss1 (red) and Spartan (blue) require 
binding to the segregase Cdc48 (p97 in mammals) to perform their cellular functions. Whereas Wss1 
is able to bind DNA directly, Spartan is recruited to DNA via interaction with the replication clamp 
PCNA. In addition, both proteases bind to ubiquitin/ubiquitin-like modifications via their C-terminal 
tails. Wss1, which is expressed at extremely low levels, is additionally regulated via self-cleavage. 
Conversely, Spartan levels are regulated by cell-cycle specific proteasomal degradation. 
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Despite these conflicting reports, it is evident that Spartan shares several functional 

characteristics with Wss1 (Figure 22C). Both proteases bind the segregase Cdc48 

(p97 in mammals) and the interaction is essential for their function in vivo (Ghosal et 

al., 2012) (this study). Moreover, Spartan and Wss1 are both targeted to DNA either 

via direct DNA-binding (Wss1) or through interaction with the DNA-binding protein 

PCNA (Spartan) (this study) (Centore et al., 2012). If Spartan is also able to bind 

DNA directly has not been tested so far. In addition, targeting of both proteases 

involves binding to either ubiquitin (Spartan) or SUMO (Wss1). Spartan variants 

deficient for ubiquitin binding fail to localize to sites of DNA damage and are not able 

to complement Spartan deficiency (Centore et al., 2012). Similarly, Wss1 variants 

lacking SUMO binding fail to fully complement the loss of Wss1 (this study). 

However, the identity of the modified protein(s) is currently either unknown (Wss1) or 

under debate (Spartan). Next to regulated targeting, Spartan and Wss1 are controlled 

via their protein levels. Wss1, which is already expressed at extremely low levels, 

undergoes self-cleavage in trans (i.e. one Wss1 molecule cleaves another one) in 

vitro and in vivo. Spartan levels are regulated by proteasomal degradation mediated 

by the cell cycle-specific E3-Ligase APC-Cdh1 (Mosbech et al., 2012). This results in 

Spartan being present only in the S/G2 phase of the cell cycle. As discussed above, 

the tight regulation of these proteases can be explained by the fact that intracellular 

proteases are potentially very toxic. Whether Spartan’s protease activity is also DNA-

dependent is currently unclear. Generally, the requirement of Spartan’s protease 

activity for its cellular function has only been addressed sparsely. The only report 

investigating Spartan’s catalytic activity so far revealed, that at least for the 

suppression of mutagenesis its activity is required (Kim et al., 2013). Most other 

recent articles described Spartan rather as a scaffold, which acts nonenzymatically, 

yet none of these reports addressed its proteolytic activity at all (Centore et al., 2012; 

Davis et al., 2012; Ghosal et al., 2012; Juhasz et al., 2012; Mosbech et al., 2012). 

This, together with the discrepancies within the literature on Spartan, makes it 

currently impossible to infer a model for its molecular function in DNA repair. An idea 

how far-reaching Spartan’s cellular activity is came from very recent studies on flies 

and human patients. In Drosophila, Spartan deficiency results in a failure to replicate 

specifically paternal DNA during the first mitosis of the zygote (Delabaere et al., 

2014). Because paternal DNA is densely packaged in sperm involving histone-to-

protamine transitions, the authors speculate that this reaction might cause DNA 

damage, perhaps DPC formation, requiring Spartan for repair. Furthermore, 
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mutations in Spartan where identified to cause early onset hepatocellular carcinoma 

(HCC), genomic instability and progeroid features in human patients (Lessel et al., 

2014). All three known patients developed HCC in their young adulthood, which is 

especially intriguing as this is the place in the human body, where most reactive 

substances are produced. 

To sum up, further efforts are needed, to clarify Spartan’s role not only in TLS 

but, importantly, also in DPC repair, as we believe, that Spartan is the prime 

candidate for a Wss1-like DPC protease in higher eukaryotes for three reasons: (1) 

sequence homology, (2) domain organization and (3) functional analogies.  

 



 

5 Materials and Methods 

Unless stated otherwise chemicals and reagents were purchased from Applied 

Biosystems, BD, Biomol, Bio-Rad, Enzo, GE Healthcare, Life, Merck, Millipore, New 

England Biolabs, Peqlab, Pierce, Promega, Roche, Roth, Serva, Sigma and Thermo 

Scientific. Sterile flasks, sterile and de-ionized water as well sterile solutions were 

used in all experiments described. Microbiological, molecular biological and 

biochemical methods described below are based on standard procedures or on the 

instructions provided by the manufacturer (Ausubel, 2010; Sambrook, 2001). 

5.1 Microbiological techniques 

5.1.1 Escherichia coli (E. coli) techniques 

E. coli strains 

Strain Genotype Source 

XL-1 Blue 
recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac 
[F’ proAB lacIqZΔM15 Tn10 (Tetr)]  

Stratagene  

Rosetta F- ompT hsdSB(rB
- mB

-) gal dcm pRARE (CamR) Millipore 

M15 pREP4 
NaIs, Strs , Rifs , Thi- ,Lac-, Ara+, Gal+, Mtl-, F-, 
RecA-, Uvr+, Lon+         

Qiagen 

   

E. coli media 

LB medium/plates 1 % Tryptone 
   0.5 % yeast extract 
   1 % NaCl 
   1.5 % agar - only for plates 
   sterilized by autoclaving 

If applicable, antibiotics were added for plasmid selection (100 μg/ml ampicillin, 30 

μg/ml kanamycin and/or 34 μg/ml chloramphenicol). 

 

E. coli vectors 

Vector Purpose Source 

pQE32 Expression of His-tagged proteins Qiagen 
pGEX4T1 Expression of GST-tagged proteins GE 

pCoofy10 Expression of untagged proteins 
MPIB core 
facilty 
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E. coli plasmids 

Name Plasmid References 

D1205 pQE32-Cdc48 
Jentsch 
collection 

D2102 pQE32-Smt3 
Jentsch 
collection 

D4269 pCoofy10-Wss1 
PhD thesis 
M. Schwarz 

D4270 pCoofy10-wss1EQ this study 
D4271 pCoofy10-wss1SHP/VIMmut this study 
D4272 pCoofy10-wss1SIM1/2mut this study 
D4273 pGEX4T1-wss1aa148-C this study 
D4274 pGEX4T1-wss1aa148-C_SIM1mut this study 
D4275 pGEX4T1-wss1aa148-C_SIM2mut this study 
D4276 pGEX4T1-wss1aa148-C_SIM1/2mut this study 
D4277 pGEX4T1-wss1aa148-C_SHPmut this study 
D4278 pGEX4T1-wss1aa148-C_VIMmut this study 
D4279 pGEX4T1-Wss1aa148-C_SHP/VIMmut this study 
D4280 pGEX4T1-Ubi-Smt3-V5 this study 
D4281 pGEX4T1-wss1aa148-247 this study 
D4282 pGEX4T1-wss1aa148-208 this study 
D4283 pGEX4T1-wss1aa148-181 this study 
D4284 pGEX4T1-wss1aa161-208 this study 
D4285 pGEX4T1-wss1aa181-208 this study 
 

Preparation of competent E. coli cells 

Plasmid DNA was transformed into E. coli cells using chemical transformation. 

Chemical-competent E. coli cells were generated using the following protocol. LB 

media was inoculated with an OD600 of 0.05 from an overnight culture (grown at 37°C 

and inoculated from a single colony). The culture was grown at 37°C until it reached 

an OD600 of 0.5. The culture was then cooled on ice for 15 min (from now on only 

cooled containers and solutions were used) and cells were harvested by 

centrifugation (4000 g, 15 min). Cells were resuspended in cold Tfb1 buffer (30 ml 

buffer per 100 ml culture, Tfb1 buffer recipe: 30 mM KAc, 50 mM MnCl2, 100 mM 

KCl, 15 % glycerol, pH 5.8 (adjusted with HAc)). After 15 min on ice, cells were again 

harvested by centrifugation and carefully resuspended in Tfb2 buffer (5 ml buffer per 

100 ml culture, Tfb2 buffer recipe: 10 mM MOPS, 7.5 mM CaCl2, 10 mM KCl, 15 % 

glycerol, pH 7 (adjusted with NaOH)). Cells were aliquoted after a 5 min incubation 

on ice, frozen in liquid nitrogen and stored at -80°C. 
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Transformation of E. coli cells 

Chemical-competent E. coli cells were transformed with plasmid DNA using the 

following protocol. Competent cells were thawed on ice directly before use. 20 - 50 μl 

cells were mixed with plasmid DNA (10 ng) or ligation products (half reaction) and 

incubated on ice for 15 min, followed by a heat shock at 42°C for 45 sec. After 

cooling on ice, cells were recovered in 1 ml pre-warmed LB media for 1 hr on a 

rotating shaker and subsequently plated on LB plates containing the respective 

antibiotics. 

Expression of recombinant proteins in E. coli 

Wss1 

Wss1 and variants were expressed in Rosetta cells. Expression was induced with 1 

mM IPTG in a 1 l fermenter (Labfors, Infors HT) for 3 hrs at 30°C. Biomass was 

harvested by centrifugation and stored at -80°C. 

GST-tagged proteins 

GST-tagged C-terminal tails of Wss1 and GST-Ubi-Smt3-V5 were expressed in 

Rosetta cells. Liquid cultures were inoculated from an overnight culture with an OD600 

of 0.1 and grown at 30°C until OD600 reached 0.4. Cultures were then shifted to RT 

and incubated for 1hr, prior to induction of expression with 1 mM IPTG. Expression 

was performed overnight and was followed by cell harvest and storage at -80°C. 

His-tagged proteins 

His-tagged Smt3 and Cdc48 were expressed in M15(pREP4) cells. Expression was 

performed essentially as for GST-tagged proteins. Importantly, His-tagged Cdc48 

was immediately purified after expression, as freezing of the cell pellet resulted in 

very poor yields. 
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5.1.2 Saccharomyces cerevisiae (S. cerevisiae) techniques 

S. cerevisiae strains 

Strain Genotype References 

DF5 trp1-1(am) ura3-52 his3Δ200 leu2-3,11 lys2-801,  (Ulrich and 
Jentsch, 
2000) 

Y0649 DF5, cdc48-6 (Bergink et 
al., 2013) 

Y0710 DF5, his1-1/his1-7 (Pfander et 
al., 2005) 

Y0933 RC757 Mat alpha, his6 met1 sst2-1 cyh2 can1 Jentsch 
yeast coll. 

Y0934 RH448 Mat a, leu2 his4 lys2 ura3 bar1 Jentsch 
yeast coll. 

YJS23 DF5, rev3::hphNT1 This study 

YJS26 DF5, rev3::hphNT1 wss1::natNT2 This study 
 

YJS87 DF5, wss1::natNT2 This study 

YJS159 DF5, tdp1::kanMX6 This study 

YJS251 DF5, his1-1/his1-7 wss1::kanMX6/wss1::hphNT1 This study 

YJS255 DF5, rad4::hphNT1 This study 

YJS257 DF5, wss1::natNT2 rad4::hphNT1 This study 

YJS273 DF5, pADH-3HA-TOP1 wss1::natNT2 tdp1::kanMX6 This study 

YJS324 DF5, rad4::hphNT1 rev3::klTRP1 This study 

YJS325 DF5, wss1::natNT2 rad4::hphNT1 rev3::klTRP1 This study 

YJS326 DF5, rad4::hphNT1 rad52::URA3 This study 

YJS327 DF5, wss1::natNT2 rad4::hphNT1 rad52::URA3 This study 

YJS329 DF5, rad52::URA3 This study 

YJS330 DF5, wss1::natNT2 rad52::URA3 This study 
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YJS385 DF5, wss1::natNT2 tdp1::kanMX6 rad9::hphNT1 This study 

YNB3 DF5, can1::hphNT1 CAN1-URA3::ChrXV with N. 
Blömeke 

YNB4 DF5, can1::hphNT1 CAN1-URA3::ChrXV wss1::natNT2 with N. 
Blömeke 

YNB24 DF5, can1::hphNT1 CAN1-URA3::ChrXV top1::His3MX6 
wss1::natNT2 

with N. 
Blömeke 

YNB25 DF5, can1::hphNT1 CAN1-URA3::ChrXV top1::His3MX6 with N. 
Blömeke 

YMIS7 DF5, wss1::natNT2 cdc48-6 PhD thesis 
M. Schwarz 

YMIS13 DF5, wss1::natNT2 tdp1::kanMX6 PhD thesis 
M. Schwarz 

YMIS49 DF5, tdp1::natNT2 cdc48-6 PhD thesis 
M. Schwarz  

YMIS103 DF5, wss1::natNT2 tdp1::kanMX6 top1::His3MX6 PhD thesis 
M. Schwarz 

YMIS694 DF5, pADH-3HA-TOP1 PhD thesis 
M. Schwarz 

YMIS706 DF5, TOP1-3HA:: hphNT1 wss1::natNT2 PhD thesis 
M. Schwarz 

YMIS736 DF5, pADH-3HA-TOP1 wss1::natNT2 PhD thesis 
M. Schwarz 

YMIS740 DF5, pADH-3HA-TOP1 tdp1::kanMX6 PhD thesis 
M. Schwarz 

S. cerevisiae vectors 

Vector Purpose Source 

p415pADH 
Expression of genes under control of the ADH 
promoter 

(Mumberg 
et al., 1995) 

p415pWSS1 
Expression of genes under control of the WSS1 
promoter 

this study 

S. cerevisiae plasmids 

Name Plasmid References 

V0053 p415-pADH 
(Mumberg 
et al., 1995) 

D4260 p415-pWSS1 this study 
D4253 p415-pADH-3HA-WSS1 this study 
D4254 p415-pADH-3HA-wss1EQ this study 
D4261 p415-pWSS1-3HA-WSS1 this study 
D4262 p415-pWSS1-3HA-wss1EQ this study 
D4263 p415-pWSS1-3HA-wss1SHPmut this study 
D4264 p415-pWSS1-3HA-wss1VIMmut this study 
D4265 p415-pWSS1-3HA-wss1SHP/VIMmut this study 
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D4266 p415-pWSS1-3HA-wss1SIM1mut this study 
D4267 p415-pWSS1-3HA-wss1SIM2mut this study 
D4268 p415-pWSS1-3HA-wss1SIM1/2mut this study 

 

S. cerevisiae media 

YPD medium/plates   1 % yeast extract 
     2 % bacto-peptone 
     2 % glucose 
     2 % agar - only for plates 
     sterilized by autoclaving 
 
YPD G418/NAT/Hph plates after autoclaving YPD media containing 2 % 

agar was cooled to 50°C prioir to adding the 
respective antibiotic (200 mg/l G418 
(geneticine, PAA laboratories), 100 mg/l NAT 
(nourseothricin, HK Jena), 500 mg/l Hph 
(hygromycin B, PAA laboratories) 

 
SC medium/plates 0.67 % yeast extract 

0.2 % amino acid drop-out mix (one or more 
amino acids may be omitted to select for 
auxotrophy markers) 

     2 % glucose 
     2 % agar - only for plates 
     sterilized by autoclaving 
 
Amino acid drop-out mix 20 mg Ade, Ura, Trp, His 
 30 mg Arg, Tyr, Leu, Lys  

50 mg Phe 
 100 mg Glu, Asp  

150 mg Val 
 200 mg Thr 
 400 mg Ser 

 
Sporulation medium   2 % KAc, 

sterilized by autoclaving 
 

Cultivation and storage of S. cerevisiae 

Yeast cells were either cultivated on agar plates or in liquid cultures at 30°C, if not 

indicated otherwise. For cultivation on agar plates yeast cells were streaked with a 

sterile toothpick or glass pipette. Liquid cultures were typically inoculated from over 

night cultures (5 - 25 ml, inoculated from a single yeast colony on an agar plate) with 
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an OD600 of 0.2. Cultures were then grown until mid-log phase (OD600 = 0.5 - 1.0) 

under constant shaking (150 - 250 rpm on a shaking platform). Optical density was 

determined photometrically with an OD600 of 1.0 assumed to correspond to 1.5 x 107 

cells. Agar plates were sealed with parafilm and placed for short-term storage at 4°C. 

For long-term storage storage stationary cultures were mixed with 0.5 volumes of 50 

% glycerol and kept at -80°C.  

Notably, it was impossible to store the extreme sick Δwss1 Δtdp1 strain as even a 

single restreak resulted in the acquisition of suppressing mutations. Therefore, all 

cultures of this strain were inoculated from freshly dissected tetrads.  

Preparation of competent S. cerevisiae cells 

Competent S. cerevisiae cells were generated from a 50 ml YPD culture grown to 

mid-log phase. Cells were harvested by centrifugation (500 g, 5 min, RT), washed 

with 25 ml sterile water and then with 5 ml SORB buffer (100 mM LiOAc  ,10 mM 

Tris/HCl pH 8.0, 1 mM EDTA, pH 8.0, 1 M sorbitol  , sterilized by filtration). After 

resuspension in 360 μl SORB buffer 40 μl carrier DNA (hering sperm DNA, 

Invitrogen, heat-denatured at 95°C for 10 min) was added and cells were either used 

directly for transformation or stored in aliquots at -80°C.  

Transformation of S. cerevisiae cells 

For transformation of S. cerevisiae competent cells were mixed with DNA (for 

plasmid trafo 19 μl cells + 1 μl DNA (“Mini-prep”), for integration 50 μl cells + 10 μl 

PCR product). 6 volumes of PEG buffer (100 mM LiOAc  ,10 mM Tris/HCl, pH 8.0,  1 

mM EDTA, pH 8.0  , 40 % PEG-3350,  sterilized by filtration) were added to the DNA-

cell mixture, which was then incubated at RT for 15 - 30 min prior to an heat-shock of 

7.5 min (less for very temperature sensitive strains) at 42°C. Cells were then 

harvested by centrifugation and recovered in warm YPD media for 4 hrs prior to 

plating on selective plates (the recovery step was omitted for auxotrophy markers). 

Selection was carried out for 2-3 days at 30°C (less for temperature sensitive 

strains). 

Genetic manipulation of S. cerevisiae 

Genes were deleted and replaced by a selection cassette using a PCR based 

strategy (Janke et al., 2004; Knop et al., 1999). In brief, selection cassettes were 

amplified using gene specific overhangs, which led to an integration of the selection 

cassette at the targeted locus after transformation thereby replacing the endogenous 
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gene. Integration events were first selected by plating on selective media and were 

subsequently confirmed by colony PCR. 

Mating type analysis of haploid yeast cells 

The mating type tester strains RC757 (Mat alpha) and RH448 (Mat a) were used to 

analyze the mating type of haploid yeast cells. The tester strains are hypersensitive 

towards the pheromone secreted by cells of the opposing mating type. One colony of 

each tester strain was resuspended in 200 μl sterile water. This solution was mixed 

with 50 ml 1% molten agar (dissolved in water, precooled to 44°C), which was then 

poured as top-agar on pre-warmed YPD plates (approx. 5 ml per plate). Strains with 

unknown mating type were now streaked or replica-plated on these tester plates. 

Strains with the opposing mating type do not allow growth of the hypersensitive tester 

strains, resulting in a halo (a region without growth) around the streaked strain.  

Mating, sporulation and tetrad analysis 

Freshly streaked strains with different mating types were mixed in 100 μl water and 

spotted on warm YPD plates. Plates were incubated for at least 3 hrs at 30°C to 

allow mating. Subsequently cells were streaked on plates selecting for diploid cells.  

Diploid cells were sporulated by washing cells from an overnight culture four times in 

sterile water and two times with sporulation media prior to resuspension in 10 

volumes sporulation media and incubation on a rotating shaker for at least 3 days at 

25°C.  

For tetrad dissection sporulated diploid cells were mixed 1:1 with zymolase 100T 

solution (1 mg/ml) and incubated for 7 min at RT. Tetrads were then dissected using 

micromanipulator (Singer MSM Systems) on YPD plates and incubated for 2-3 days. 

Subsequently genotype and mating type of each spore was determined by replica-

plating on selective plates and mating type tester plates. 

Growth and cell survival assays (spotting assay) 

Cells from fresh overnight cultures were adjusted to an OD600 of 1.0 in sterile water 

and five-fold serial dilutions were prepared in 96-multiwell plates using a multichannel 

pipette. The dilutions were then spotted on plates and typically incubated for 2.5 days 

at 30°C. For analysis of CPT sensitivity it was crucial that plates contained 1% 

DMSO and that the media was adjusted to pH 7.5. FA sensitivity was tested by 

washing 1 OD cells in 1 ml PBS prior to resuspension in 1 ml PBS containing the 

respective FA concentration (FA was added to PBS immediately before needed) and 
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incubation for 15 min on a rotating shaker. Cells were then washed twice with 1 ml 

PBS prior to serial dilution and plating as described above. 

Preparation of denatured protein extracts (TCA precipitation) 

Cells (1 OD) were harvested from exponentially grown cultures by centrifugation and 

immediately frozen in liquid nitrogen to extract proteins for analysis by immuno-

blotting. After thawing, cells were lysed by resuspension in 150 μl 1.85 M NaOH, 

7.5% β-ME and incubated for 15 min on ice. Proteins were now precipitated from the 

lysate by addition of 150 μl ice-cold 55% TCA. Lysates were kept on ice for another 

15 min to allow complete precipitation prior to centrifugation (10000g) for 20 min at 

4°C. Finally the protein precipitate was resuspended in 2x Lämmli buffer and 

incubated for 5 min at 95°C. 

Preparation of native whole cell extracts  

Cell extracts used for inducing self-cleavage of Wss1 were prepared from yeast over-

night cultures. To this end, cells (25 OD) were harvested by centrifugation, 

resuspended in 1 ml lysis buffer (50 mM Tris/Hcl pH 7.5, 150 mM NaCl, 0.1% Triton-

X100, EDTA free complete cocktail (Roche), 1 mM DTT) and lysed by bead beating 

(3min, f = 30/s) after addition of 500 μl silica beads. After lysis, the reaction tube was 

punctuated in the bottom with an injection needle, followed by centrifugation to 

harvest the lysate into a fresh reaction tube. Finally, the lysate was cleared by 

centrifugation at 4°C in a tabletop centrifuge (maximum speed) and adjusted to a 

protein concentration of 0.75 mg/ml (judged by BioRad protein assay) with lysis 

buffer. 

Measurement of interchromosomal recombination rates 

Interchromosomal recombination rates were measured in diploid cells between the 

heteroalleles his1-1 and his1-7 by fluctuation analysis (Pfander et al., 2005). To 

reduce the required hands-on time a robot-assisted protocol was established. 8 

parallel cultures per strain (2 ml, YPD pH 7.5) were inoculated and incubated under 

constant shaking over night at 30°C. Cultures were serially diluted (total dilution 

factor 1:20000) using a MICROLAB STAR line liquid handling workstation (Hamilton). 

After dilution cultures (YPD or YPD + 1 mM FA, 2ml) were incubated for 3 days 

(30°C, constant shaking). Appropriate dilutions of each culture (performed with the 

liquid handling workstation) were plated on SC plates (to determine the total viable 

cell number) and on SC-HIS plates (to determine the number of mutants within the 

culture). Plates were incubated for 3 days at 30°C prioir to colony counting. Finally 
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recombination rates (the likelihood of one recombination event per cell divison) was 

calculated using the FALCOR web tool (Hall et al., 2009).  

Measurement of gross chromosomal rearrangement rates 

GCR rates were determined using fluctuation analysis. The used GCR tester strains 

are constructed as reported previously (Kanellis et al., 2007). Analogous to 

recombination assays a robot-assisted protocol was used (Bachelor thesis N. 

Blömeke). 8 cultures per strain (2ml YPD, pH 7.5) were inoculated from single 

colonies and grown over night under constant shaking. A liquid handling workstation 

was used the next day to serially dilute (total dilution factor 1:20000, final culture) the 

cultures . The diluted cultures (2ml, YPD or YPD + 1 mM FA) were then again 

incubated at 30°C for 3 days. This incubation was followed by plating appropriate 

dilutions of each culture (performed with the liquid handling workstation) on either 

SC-plates (to determine the total viable cell number) or SC-ARG plates containing 

canavanine and 5’FOA (to determine the number of cells lacking the left arm of 

chromosome XV). Plates were incubated for 3 days at 30°C prioir to colony counting. 

Finally GCR rates (the likelihood of one GCR event per cell divison) was calculated 

using the FALCOR web tool (Hall et al., 2009). 

Measurement of mutagenesis rates 

Mutagenesis rates were assessed at the CAN1 locus. Cells (10 OD) from overnight 

cultures were harvested by centrifugation washed once in PBS (1 ml) and treated 

with 1 ml FA solution (in PBS, dilutions were prepared immediately before used) for 

15 min. After two washing steps cells were serially diluted (10 fold steps) in 96-

multiwell plates. Appropriate dilutions were plated in triplicates on either SC-plates (to 

determine the total viable cell number) or on SC-ARG plates containing canavanine 

(to determine the number of cells with a mutated CAN1 locus). Plates were incubated 

for 3 days at 30°C prioir to colony counting. Finally, mutation rates were scored as 

the number of canavanine resistant clones per total viable cell number.  

Cell cycle analysis by flow cytometry 

To analyze cell cycle distribution cells (0.5 - 2 OD) were harvested from cultures by 

centrifugation and immediately fixed in 1 ml cold 70% ethanol, 50 mM Tris/HCl pH 

7.8 and stored at 4°C until all samples were collected. Cells were then washed once 

in 1 ml Tris buffer (50 mM Tris/HCl pH 7.8) followed by RNA digestion by addition of 

520 μl RNAase solution (500 μl Tris buffer + 20 μl RNAse (10 mg/ml in 10 mM 

Tris/HCl pH 7.5, 10 mM MgCl2, DNAse activity was removed by boiling for 10 min)). 
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After an incubation for 4 hrs at 37°C cells were harvested by centrifugation followed 

by aspiration of the supernatant and resuspension in 220 μl proteinase K solution 

(200 μl Tris buffer + 20 μl Proteinase K (10mg/ml in 50% glycerol, 10 mM Tris/HCl pH 

7.5, 25 mM CaCl2)). After an incubation at 50°C for 30 min cells were again 

centrifuged, followed by aspiration of the supernatant and resuspension in 500 μl Tris 

buffer. After sonicfication of all samples (5 s, 50% cycle, minimum power, Bandelin 

SONOPLUS), 25 μl of each sample was added to 500μl SYTOX solution (999 μl Tris 

buffer + 1 μl SYTOX green, Life Technologies). Finally fluorescence of SYTOX 

stained cells were detected in the FL1 of a FACSCalibur flow cytometer (Becton 

Dickinson). 

Quantification of Top1ccs (ICE assay) 

Top1ccs were measured using an ICE assay. The protocol used was adapted from 

previously published methods for mammalian and S. pombe cells (Hartsuiker et al., 

2009; Subramanian et al., 2001). Cells expressing HA-tagged Top1 (200 OD) were 

harvested from exponentially growing cultures by centrifugation (4°C), resuspended 

in 25 ml cold PBS, pelleted again, resuspended in 2 ml cold PBS, transferred to a 2 

ml reaction tube, pelleted again and finally frozen in liquid nitrogen. After addition of 1 

ml lysis buffer (6 M guanidine chloride, 30 mM Tris/HCl pH 7.5, 10 mM EDTA, 1% 

sarkosyl, 1 mg/ml Pefabloc SC, EDTA free complete cocktail (Roche)), reaction tubes 

were filled up with zirconia beads and cell were lysed by bead beating (15 min, f = 

30/s). After lysis, the reaction tube was punctuated in the bottom with an injection 

needle, followed by centrifugation to harvest the lysate into a reaction tube (15 ml). 

Lysates were incubated at 60°C for 30 min in order to strip all non-covalent bound 

proteins from DNA. Finally the lysate was cleared by centrifugation for 10 min and 

loaded onto CsCl gradients. CsCl gradients were prepared as described before 

(Subramanian et al., 2001). Gradients were centrifuged in a SW 41 Ti rotor 

(Beckman-Coulter) for 18 hrs (32000 rpm, 25°C) prior to fractionation using a liquid 

handling workstation. To identify DNA-containing fractions, 30 μl of each fraction was 

mixed with 270 μl SYBR gold nucleic acid stain (Life technologies) and fluorescence 

was recorded using an Infinite M1000 Pro microplate reader (Tecan). Fractions 

containing the “DNA-peak” (typically three) were pooled and concentrated using 

Vivaspin 2 concentrator devices (cutoff 20 kDa, vivaproducts). Buffer was exchanged 

to TE (10 mM Tris/HCl pH 8, 1 mM EDTA) and samples concentrated to a volume of 

150 μl. DNA content was now analyzed by agaorse gel electrophoresis (0.6% gel) 

and staining with ethidium bromide. To analyze the amount of Top1 samples were 
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treated with micrococcal nuclease (15 μl sample, 1.8 μl micrococcal nuclease buffer 

(NEB), 1μl micrococcal nuclease (NEB)) for 20 min on ice prior to addition of 2x 

Lämmli buffer and analysis by SDS-PAGE followed by immuno-blotting using HA-

specific antibodies.  

Quantification of FA-induced DPCs 

The SDS/KCl method to measure repair of DPCs was adapted with some 

modifications from a previously published protocol (de Graaf et al., 2009). Cells (7 

OD) were harvested from exponentially growing cultures (YPD), washed once in 10 

ml warm PBS and again resuspendend in 5 ml warm PBS. 500μl of cell suspension 

was withdrawn as control sample (“untreated”). 4.5 ml PBS containing FA was added 

cells were incubated on a rotating shaker for 15 min at 30°C. After two wash steps 

with 10 ml warm PBS, cells were resuspendend in 9 ml pre-warmed YPD. 0.7 OD 

cells were immediately withdrawn as time point zero. Recovery was then allowed by 

incubating cultures and 30°C under constant shaking. Samples (0.7 OD) were again 

withdrawn after 2 and 4 hrs of recovery. 

All samples were processed directly after collection using the following protocol. After 

harvesting by centrifugation, cells were washed once with 250 μl zymolase buffer (10 

mM Tris/HCl pH 8, 1 mM EDTA), followed by resuspension in 250 μl zymolase buffer 

and addition of 1 μl zymolase solution (20 mg/ml in water, freshly prepared). Cell wall 

digestion was performed for 20 min at 37°C on a rotating shaker, prior to cell lysis 

through the addition of 250 μl 4% SDS. Samples were then immediately frozen in 

liquid nitrogen. After all cells had been collected at each time-point and lysed, 

samples were now processed simultaneously. Samples were thawed under constant 

shaking at 55°C for 5 min, followed by protein precipitation on ice (5 min) after the 

addition of 500 μl KCl buffer (200 mM KCl, 20 mM Tris/HCl pH 7.5). After 

centrifugation (microcentrifuge, maximum speed, 4°C), the supernatant was removed 

and used for quantification of soluble DNA. The protein pellet was resuspendend in 

500 μl KCl buffer at 55°C for 5 min, followed again by precipitation on ice, 

centrifugation and supernatant removal. This washing procedure was repeated 3 

times in total. The washed protein precipitate was finally resuspended in 500 μl 

proteinase K solution (0.2 mg/ml proteinase K in KCl buffer) and protein digestion 

was performed at 55°C for 45 min. After protein removal 10 μl BSA solution (50 

mg/ml AMBION) was added and samples were placed immediately on ice followed 

again by centrifugation. The supernatant contained now the protein associated DNA 

(insoluble DNA). RNA was removed from soluble and insoluble DNA samples by 
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addition of 1 μl RNAse A (10 mg/ml) to 50 μl sample and incubation for 30 min at 

37°C. Finally soluble and insoluble DNA amounts were quantified by agarose gel 

electrophoresis (0.7% gel) followed by staining with SYBR gold nucleic acid stain. 

Stained agarose gels were scanned on a Typhoon FLA 9000 imager (GE 

Healthcare). Band intensities were quantified using ImageJ. For quantifications the 

amount of DPCs was inferred from the ratio between insoluble DNA to total DNA 

(insoluble plus soluble DNA). 

5.2 Molecular biology techniques 

5.2.1 General buffers and solutions 

TE buffer    10 mM Tris/HCl pH 8 
     1 mM EDTA 
 
TBE buffer (5x) 90 mM Tris 

 90 mM boric acid 
 2.5 mM EDTA 
pH 8.0  

 
DNA loading dye (6x)   10 mM Tris/HCl pH 7.5 

0.15% orangeG 
60% glycerol 
60 mM EDTA 

5.2.2 DNA purification and analysis 

Isolation of plasmid DNA from E. coli 

Plasmid DNA was isolated from fresh overnight cultures (5ml LB (containing the 

required antibiotics) inoculated from a single colony) using a commercially available 

kit (AccuPrep Plasmid Mini Extraction Kit, Bioneer) closely following the 

manufacturers instructions. 

Isolation of genomic DNA from S. cerevisiae 

Genomic DNA was purified using a commercially available kit (Master Pure Yeast 

DNA Purification Kit, Epicentre) following the manufacturers instruction. Colonies 

from a freshly streaked plate were used for extraction. 

Purifcation of DNA fragments from agarose gels 

DNA was purified from agarose gels by excising the band of interest using a sterile 

scalpel followed by DNA extraction using a commercially available kit (QIAquick Gel 

Extraction Kit, Qiagen). 
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Determination of DNA concentration 

DNA concentrations were determined photometrically using a NanoDrop ND-1000 

spectrophotometer (PeqLab). Absorbance was measured at a wavelength of 260 nm. 

Concentrations were then calculated assuming that a DNA concentration of 50 μg/ml 

results in an OD260 of 1.0. 

5.2.3 Polymerase chain reaction (PCR) 

Amplification of DNA fragments was carried out by PCR. Oligonucleotides (primers) 

used in PCR reactions were manually designed and purchased from MWG Eurofins. 

Reactions were carried out in a Veriti thermocycler (Applied Biosystems). 

Amplification of DNA fragments for molecular cloning 

DNA fragments intended for molecular cloning were amplified from genomic or 

plasmid using PfuUltra II Hotstart polymerase (Agilent). Reactions were performed a 

reaction volume of 50-100 μl and  

 
PCR reaction mix:  1 μl primer A (10 pM) 
    1 μl primer B (10 pM) 
    5 μl 5x PfuUltra II buffer  
    2.5 μl dNTPs (10 μM) 
    1 μl PfuUltra II HS 
    100 ng template 
    filled up to 50 μl with sterile water 
 
Reactions were carried out using a PCR program with annealing temperature 

adjusted to primer melting temperatures and elongations times adjusted to expected 

product length according to the guidelines provided by the polymerase manufacturer. 

Amplification of targeting cassettes 

PCR amplification of selection cassettes used for genomic integrations were carried 

out using published protocols (Janke et al., 2004; Knop et al., 1999).  

Yeast colony PCR 

Correct integration of targeting cassettes was confirmed using colony PCR. For 

confirming knockouts a primer pair used with one primer annealing 300-500 bp 

upstream of the ATG of the knocked-out gene and the other annealing in reverse 

direction within the targeting cassette. This way a PCR product can only be formed if 

the cassette has replaced the targeted gene. Colony PCR reactions were performed 

exactly as published previously (Janke et al., 2004; Knop et al., 1999). 



 63 

5.2.4 Molecular cloning 

Digestion of DNA with restriction endonucleases 

Digestion of plasmid DNA or PCR products was performed using restriction enzymes 

(NEB) following the instructions provided by the manufacturer. Typically 2 μg of DNA 

was digested in a 30-40 μl reaction for 1-2 hrs. Restriction fragments intended for 

molecular cloning were typically purified by agarose gel electrophoresis. 

Ligation of DNA fragments 

Ligation reactions (20 μl) were performed using T4 DNA ligase (NEB) following the 

manufacturers instructions. Typically the reactions contained 100 ng linearized 

plasmid DNA and 3-10 fold molar excess of insert and were carried out for 30 min at 

RT. 

DNA sequencing 

DNA sequencing was carried out by the MPIB microcemistry core facility using a ABI-

Prism 3730 sequencer. Sequencing reactions contained 100-200 ng DNA and 5 pmol 

primer and were performed with the DYEnamic ET terminator cycle sequencing kit 

(GE Healthcare), following the instructions provided by the manufacturer. 

5.3 Biochemical techniques 

General buffers and solutions 

2x Lämmli buffer   125 mM Tris/HCl pH 6.8 
      4% SDS  

20% glycerol   
0.01% bromophenol blue 
2.5 % β-ME 

 
MOPS buffer 50 mM MOPS 

50 mM Tris base 
3.5 mM SDS  
1 mM EDTA 

 
SWIFT blotting buffer    5% 20x Swift buffer (G-Bioscience) 

10% Methanol 
 
TBS-T     25 mM Tris/HCl pH 7.5 

137 mM NaCl   
2.6 mM KCl   
0.1% Tween 20 

 
PBS     10 mM phosphate, pH 7.4 
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137 mM NaCl   
2.7 mM KCl 

 

5.3.1 Gel electrophoresis and immuno-blot techniques 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was performed using NUPAGE precast gradient gels (4-12%, 

Invitrogen). Electrophoresis was carried out using MOPS buffer at a voltage of 200 V 

for ca. 50 min. Samples for SDS-PAGE were prepared in 1x Lämmli buffer and were 

heated at 95°C for at least 5 min. The Precision Plus Protein All Blue Standard (Bio-

Rad) was used as a molecular weight marker in order to estimate protein sizes. 

Immuno-blot analysis 

Proteins separated by SDS-PAGE were transferred using a wet tank system (GE 

Heathcare) to polyvinylidene fluoride membranes (ImmobilionP, Millipore), which had 

been activated by incubation in methanol (1 min).  Transfer was carried out in SWIFT 

blotting buffer at 75 V for 1.5 hrs at 4°C. After transfer membranes were incubated 

with primary antibody in blocking buffer (TBS-T, 5% skimmed milk powder) overnight. 

After three washes with TBS-T (10 min) membranes were incubated with HRP-

coupled secondary antibodies for 30 - 90 min, followed again by three wash steps 

with TBS-T. Chemiluminescent signals were detected after incubating the 

membranes with substrate solutions (ECL, ECL-Plus or ECL advanced kits, GE 

Healthcare) for 1 min either by exposure of the membranes to Amersham Hyperfilm 

ECL (GE Healthcare) or by using a luminescent image analyzer (LAS-3000, Fujifilm). 

Antibodies 

Polyclonal anti-Smt3 antibody was produced in the Jentsch lab and was described 

before (Hoege et al., 2002). Anti- HA (F-7) antibodies were purchased from Santa 

Cruz Biotechnology, anti-Dpm1 (A6429) and anti-BSA (A111333) from Life 

Technologies, anti-Hmg1 (H9537) from Sigma-Aldrich, anti-Rad53 (104232), anti-

GST (19256), anti-Top1 (28432) and anti- H1 (11079) from Abcam. 

5.3.2 Protein purification and interaction analysis 

Purification of recombinant proteins from E. coli 

Wss1 

Wss1 was purified in collaboration with the MPIB microchemistry core facility using 

the following protocol. Cells were lysed in lysis buffer (50 mM Tris pH 7.5, 10 mM 
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CaCl2, 30 mM NaCl) using a high-pressure homogenizer (EmulsiFlex C5, Avestin). 

Inclusion bodies were pelleted by centrifugation, followed by two wash steps with 

wash buffer (50 mM Tris pH 7.5, 10 mM CaCl2, 30 mM NaCl, 3% Triton X-100, 1% 

CHAPS) and two wash steps with lysis buffer. After resuspension in lysis buffer 

additionally containing 5 mM DTT inclusion bodies were solubilized by addition of 4 

volumes solubilisation buffer (lysis buffer, 5 mM DTT, 8 M urea) and incubation 

overnight on a rotating wheel (4°C). After solubilization the solution was cleared by 

centrifugation. Wss1 was now refolded during five dialysis steps. First Wss1 was 

dialyzed against dialysis buffer 1 (50 mM Tris pH 7.5, 10 mM CaCl2, 30 mM NaCl, 20 

μM ZnCl2, 0.5 mM DTT, 4 M urea, 0.05% Tween20), followed by dialysis against 

dialysis buffer 2 and 3 (identical to dialysis buffer I, yet containing 2 M, respectively 1 

M, urea in addition). The two final dialysis steps were carried out against dialysis 

buffer 4 (50 mM Tris pH 7.5, 10 mM CaCl2, 30 mM NaCl, 0.05 % Tween20). Finally 

the Wss1 preparation was cleared from insoluble material by sterile filtration and 

subjected to ion exchange chromatography (Source 30S column, GE Healthcare). 

Wss1 eluted from the column in a single peak (elution buffer: 20 mM Tris pH 7.5, 

approx. 400 mM NaCl). Aliquots were immediately frozen in liquid nitrogen and 

stored at -80°C until used.  

GST-tagged proteins 

GST-tagged C-terminal tails of Wss1 and GST-Ubi-Smt3-V5 were purified from E. 

coli cells using standard protocols. In brief, cells were lysed in lysis buffer (40 mM 

Tris/HCl pH 7.5, 150 mM NaCl, 1x PefaBloc, 5 mM DTT, Roche complete protease 

inhibitors) using an EmulsiFlex C5 homogenizer (Avestin). Lysates were then cleared 

by centrifugation at 20 krpm for 30 min at 4°C. After addition of glutathione-

Sepharose beads (equilibrated in lysis buffer, GE Healthcare), supernatants were 

incubated at 4°C for 2.5 hrs on a rotating wheel. Initially, beads were washed three 

times using lysis buffer, followed by three washes with wash buffer (lysis buffer, 

containing 450 mM NaCl). GST-tagged proteins were eluted using elution buffer (40 

mM Tris/HCl, 50 mM reduced glutathione, 5 mM DTT, pH was adjusted to 7 - 8 with 

NaOH). Finally, eluted proteins were dialyzed against 5 l cold PBS overnight using 

slide-a-lyzer dialysis cassettes (Pierce) followed by aliquotation and freezing in liquid 

nitrogen. 
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His-tagged proteins 

His-tagged proteins were purified as described for GST-tagged proteins with some 

modifications. Next to using Ni-NTA-agarose instead of glutathione Sepharose, the 

following buffers were used: lysis buffer: 40 mM Tris/HCl pH 7.5, 100 mM NaCl, 5 

mM MgCl2, 20 mM imidazole, 5 mM beta-mercaptoethanol, 1x PefaBloc, Roche 

complete protease inhibitors; wash buffer: as lysis buffer, yet containing a total of 50 

mM imidazole (adjusted with HCl to pH 7 - 8); elution buffer: as lysis buffer, yet 

containing a total of 250 mM imidazole (adjusted with HCl to pH 7 - 8). 

Protein-protein interaction analysis by GST-pulldown assays 

In order to investigate direct binding, GST-tagged proteins (or GST alone) were 

incubated together with their potential binding partners and 15 μl glutathione-

Sepharose beads (50% slurry in binding buffer, GE Healthcare) in a total volume of 

400 - 500 μl binding buffer (50 mM Tris/HCl pH 7.5, 250 mM NaCl, 0.5% NP40). 

Samples were incubated for 1 hr at 4°C prior to centrifugation in a microcentrifuge (2 

min, 2 krpm, 4°C). Supernatant was removed and beads were washed three times 

with 500 μl binding buffer. After the final wash, beads were resuspended in 25 μl 

Laemmli buffer. Finally, samples were analyzed by SDS-PAGE followed by 

Coomassie blue staining and/or immunoblotting.  

Protein-DNA interaction analysis by electrophoretic mobility shift assays 

Electrophoretic mobility shift assays were used for investigating the DNA-binding 

properties of Wss1’s C-terminal tail. First, for each protein several solutions with 

decreasing concentrations were prepared in PBS (typically ranging from 2.25 μM to 

18 μM). 10 μl of each protein solution was incubated together with 2 μl fluorescently 

labeled double-stranded DNA oligos (1 μM in sterile water, sequence: Alexa488-5′-

TTCCGGCTGACTCATCAAGCG-3′) and 8 μl Tris/HCl buffer (25 mM, pH 7.5). 

Binding reactions were incubated for 20 min at 25°C prior to adding 5 μl loading 

buffer (5x NOVEX Hi-density TBE loading buffer). 6 % DNA retardation gels (Life 

technologies) were pre-run for 30 - 60 min in 0.5x TBE before loading 12.5 μl of each 

sample. Electrophoresis were performed for 15 min at 80 V, followed by 30 min at 

100 V. Electrophoretic mobility shifts were then visualized using a Typhoon FLA 9000 

imager (GE Healthcare). 
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5.3.3 Protease assays 

Wss1 self-cleavage induced by cell extracts 

Whole cell extracts (WCE) were prepared from 25 OD of an overnight culture of WT 

strains. Cells were lysed using a bead beater (MM301, Retsch Gmbh) in lysis buffer 

(50 mM Tris/HCl pH 7.5, 150 mM NaCl, 0.1% Triton X-100, 1 mM DTT and EDTA-

free complete protease inhibitor cocktail (Roche)). WCEs were adjusted to a protein 

concentration of 0.75 mg/ml, as measured by Bio-Rad Protein assay. Subsequently, 

40 μl WCE was mixed with 5 μl micrococcal nuclease buffer (50 mM MgCl2, 50 mM 

CaCl2, 5 mM DTT, 1 mM EDTA) and either 5 μl PBS or, for nucleic acid depleted 

lysates, 5μl micrococcal nuclease (30 U/μl, Roche). WCEs were then incubated for 

20 min either on ice or at 80°C for heat inactivated WCEs. Cleavage reactions were 

setup using 1 μl Wss1 (2 mg/ml in 20 mM Tris/HCl pH 7.5, 400 mM NaCl), 3 μl WCE 

and 6 μl buffer (25 mM Tris(HCl, pH 7.5) and incubated at 30°C. Reactions were 

stopped at the respective time-points by addition of 1 vol. 2x Laemmli buffer. Finally, 

cleavage was visualized using SDS-PAGE followed by Coomassie blue staining. 

Wss1 self-cleavage induced by DNA 

Typically, DNA-dependent self cleavage was assayed in 10 μl reactions, containing 

1 μl Wss1 (2 mg/ml in 20 mM Tris/HCl pH 7.5, 400 mM NaCl), 1 μl DNA, 3 μl sterile 

water and 5 μl buffer (25 mM Tris/HCl pH 7.5, 150 mM NaCl). Several types of DNAs 

were used for induction of cleavage: single-stranded viral DNA (ΦX174 virion, NEB); 

double-stranded viral DNA (ΦX174 RF I, NEB); single- and double-stranded 32 bp 

oligonucleotides (5′-GCAATCGAATCCAGCTGATCAAAGAATAGCAC-3′); single-

stranded 16 bp oligo nucleotides (5′-GCAATCGAATCCAGCT-3′); single-stranded 

8 bp oligonucleotides (5′-GCAATCGA-3′). All oligonucleotides used were 

synthesized by MWG Eurofins Operon. 

DNA-dependent cleavage of substrates 

Cleavage assays were typically performed in reactions, containing 2 μl substrate 

protein (0.5 mg/ml in 16 mM HEPES pH 8, 400 mM NaCl, 20% glycerol), 1 μl Wss1 

(2 mg/ml in 20 mM Tris/HCl pH 7.5, 400 mM NaCl), 1 μl DNA (ΦX174 virion, 1 mg/ml 

in TE, NEB), 7.5 μl H2O and 3.5 μl 25 mM Tris pH 7.5, 150 mM NaCl. Normally, 

cleavage was allowed to occur at 30°C for 2 hr. Reactions were stopped by addition 

of 1 vol. 2x Laemmli buffer. Cleavage was monitored by SDS-PAGE, followed by 

either Coomassie-blue staining or western blotting using substrate-specific 

antibodies. Cleavage reactions containing recombinant Top1 were digested with 
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micrococcal nuclease (NEB) prior to loading on SDS-PAGE gels, as Top1 displays 

an aberrant running behavior in the presence of DNA. 

Smt3-CHOP assay 

SUMO-isopeptidase activity was tested using the commercial Smt3-CHOP assay kit 

(Lifesensors). Assays were performed using the protocol provided by the 

manufacturer. Fluorescence was recorded using a M1000 Pro microplate reader 

(Tecan).
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BER Base Excision repair 
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Exo1 Exonuclease 1 
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g Gram 
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GGR Global genome repair 
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H Histidine 

H1 Histone H1 
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TCR Transcripton coupled repair 
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UBL Ubiquitin-like 

UBZ Ubiquitin binding zinc finger 

UV Ultraviolet 

VIM VCP interacting motif 

WCE Whole cell extract 

Wss1 Weak suppressor of smt3 
WT Wildtype 

XP Xeroderma pigmentosum 

YPD Yeast extract peptone dextrose 

β-ME β-mercaptoethanol 



 80 

 

Acknowledgements 

 

I would like to thank my PhD supervisor Stefan Jentsch for his great advice and 

support in all matters, work-related and personal. Stefan, I am really grateful for the 

interesting and insightful discussions, the freedom you provide, your ambition and the 

great atmosphere in your lab.  

 Moreover, I would like to thank the members of the thesis committee for kindly 

agreeing to referee this thesis. I am especially thankful to Peter Becker not only for 

co-refereeing this thesis, but also for his career advice and support. 

 I am also deeply thankful for Alex’s excellent technical support and his 

extraordinary dedication. His support was instrumental for the success of this study. 

Many thanks also go to Jochen for his help in setting up the robot-based assays and 

his assistance with all IT-related matters. In addition, I would like to thank Massimo 

for providing endless amounts of agar plates, which were essential for this study. 

Furthermore, I would like to thank the MPI’s core facility, especially Claudia and 

Sabine, for the never-ending supply of recombinant Wss1. 

 Many thanks go to Peter and Nico. I always enjoyed our common time in the 

lab very much; it was really fantastic to collaborate with you guys. Of course, I would 

also like to express my sincere gratitude to all members of the department, especially 

highlighting Boris, Claudio, Florian P., Florian W., Frank, Irina, Jörg, Kefeng, Markus, 

Max, Ramazan, Sean, Sittinan and Steven. Thank you for the good times in the lab 

and all the interesting discussions. 

 A great and warm thank you goes to my family, who was always extremely 

supportive during my entire life. Finally, from the bottom of my heart I would like to 

thank my own small family, Silvia and Tom, for the love and joy they bring into my 

life; and especially Silvia for her perpetual understanding and support. 

  



 

Curriculum Vitae - Julian Stingele 

 
Academic Education 
 
since 04/2010  PhD studies 
   Supervisor: Prof. Dr. S. Jentsch, MPI of Biochemistry, Martinsried 
 
03/2010  Diploma thesis 
   Supervisor: Dr. S. Raasi, University of Konstanz 
 
10/2007 - 06/2009 University of Konstanz, Germany 
 
06/2003   High school diploma: Wirtemberg-Gymnasium, Stuttgart 
     
 
Publications 
 
Stingele, J., Habermann, B. and Jentsch, S. 
DNA-protein crosslink repair: proteases as DNA repair enzymes. 
Trends Biochem. Sci., commissioned review in preparation. 
 
Stingele, J., Schwarz, M.S., Bloemeke, N., Wolf, P.G. and Jentsch, S. (2014) 
A DNA-dependent protease involved in DNA-protein crosslink repair. 
Cell, 158:327-38. 
 
Stingele, J., Roder, U.W. and Raasi, S. (2012) 
Surface plasmon resonance to measure interactions of UbFs with their binding partners. 
Methods Mol. Biol., 832, 263-77. 
 
Hänzelmann, P.*, Stingele, J.*, Hofmann, K., Schindelin, H. and Raasi, S. (2010) 
The yeast E4 ubiquitin ligase Ufd2 interacts with the ubiquitin-like domains of Rad23 and 
Dsk2 via a novel and distinct ubiquitin-like binding domain. 
J. Biol. Chem., 285, 20390-8. 
*equal contribution 
 
 
Awards and Honors 
 
Max Planck Institute of Biochemistry Junior Research Award 2014 
 
Selected to participate as ‘young researcher’ at the 64th Lindau Nobel Laureate Meeting, 
Lindau, Germany (June 29 - July 4, 2014) 
 


