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Abstract

An efficient way to represent the domain knowledge is relational data, where in-
formation is recorded in form of relationships between entities. Relational data is
becoming ubiquitous over the years for knowledge representation due to the fact that
many real-world data is inherently interlinked. Some well-known examples of rela-
tional data are: the World Wide Web (WWW), a system of interlinked hypertext
documents; the Linked Open Data (LOD) cloud of the Semantic Web, a collection
of published data and their interlinks; and finally the Internet of Things (IoT), a
network of physical objects with internal states and communications ability. Rela-
tional data has been addressed by many different machine learning approaches, the
most promising ones are in the area of relational learning, which is the focus of this
thesis. While conventional machine learning algorithms consider entities as being in-
dependent instances randomly sampled from some statistical distribution and being
represented as data points in a vector space, relational learning takes into account the
overall network environment when predicting the label of an entity, an attribute value
of an entity or the existence of a relationship between entities. An important feature
is that relational learning can exploit contextual information that is more distant in
the relational network. As the volume and structural complexity of the relational
data increase constantly in the era of Big Data, scalability and the modeling power
become crucial for relational learning algorithms.

Previous relational learning algorithms either provide an intuitive representation of
the model, such as Inductive Logic Programming (ILP) and Markov Logic Networks
(MLNs), or assume a set of latent variables to explain the observed data, such as the
Infinite Hidden Relational Model (IHRM), the Infinite Relational Model (IRM) and
factorization approaches. Models with intuitive representations often involve some
form of structure learning which leads to scalability problems due to a typically large
search space. Factorizations are among the best-performing approaches for large-
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scale relational learning since the algebraic computations can easily be parallelized
and since they can exploit data sparsity. Previous factorization approaches exploit
only patterns in the relational data itself and the focus of the thesis is to investi-
gate how additional prior information (comprehensive information), either in form
of unstructured data (e.g., texts) or structured patterns (e.g., in form of rules) can
be considered in the factorization approaches. The goal is to enhance the predictive
power of factorization approaches by involving prior knowledge for the learning, and
on the other hand to reduce the model complexity for efficient learning.

This thesis contains two main contributions:

The first contribution presents a general and novel framework for predicting relation-
ships in multirelational data using a set of matrices describing the various instan-
tiated relations in the network. The instantiated relations, derived or learnt from
prior knowledge, are integrated as entities’ attributes or entity-pairs’ attributes into
different adjacency matrices for the learning. All the information available is then
combined in an additive way. Efficient learning is achieved using an alternating least
squares approach exploiting sparse matrix algebra and low-rank approximation. As
an illustration, several algorithms are proposed to include information extraction,
deductive reasoning and contextual information in matrix factorizations for the Se-
mantic Web scenario and for recommendation systems. Experiments on various data
sets are conducted for each proposed algorithm to show the improvement in predictive
power by combining matrix factorizations with prior knowledge in a modular way.

In contrast to a matrix, a 3-way tensor is a more natural representation for the mul-
tirelational data where entities are connected by different types of relations. A 3-way
tensor is a three dimensional array which represents the multirelational data by using
the first two dimensions for entities and using the third dimension for different types
of relations. In the thesis, an analysis on the computational complexity of tensor
models shows that the decomposition rank is key for the success of an efficient tensor
decomposition algorithm, and that the factorization rank can be reduced by including
observable patterns. Based on these theoretical considerations, a second contribution
of this thesis develops a novel tensor decomposition approach - an Additive Relational
Effects (ARE) model - which combines the strengths of factorization approaches and
prior knowledge in an additive way to discover different relational effects from the
relational data. As a result, ARE consists of a decomposition part which derives the
strong relational learning effects from a highly scalable tensor decomposition approach
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RESCAL and a Tucker 1 tensor which integrates the prior knowledge as instantiated
relations. An efficient least squares approach is proposed to compute the combined
model ARE. The additive model contains weights that reflect the degree of reliability
of the prior knowledge, as evaluated by the data. Experiments on several benchmark
data sets show that the inclusion of prior knowledge can lead to better performing
models at a low tensor rank, with significant benefits for run-time and storage re-
quirements. In particular, the results show that ARE outperforms state-of-the-art
relational learning algorithms including intuitive models such as MRC, which is an
approach based on Markov Logic with structure learning, factorization approaches
such as Tucker, CP, Bayesian Clustered Tensor Factorization (BCTF), the Latent
Factor Model (LFM), RESCAL, and other latent models such as the IRM. A final
experiment on a Cora data set for paper topic classification shows the improvement
of ARE over RESCAL in both predictive power and runtime performance, since ARE
requires a significantly lower rank.
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Zusammenfassung

Relationale Daten sind ein leistungsfähiges Werkzeug um Domänenwissen zu repräsen-
tieren. Informationen werden als Relationen zwischen Entitäten erfasst. Da man sich
in verschiedenen Domänen zunehmend mit verketteten Daten beschäftigt, gewinnen
Relationale Daten generell an Bedeutung. Einige bekannte Beispiel relationaler Daten
sind: das World Wide Web (WWW), ein System verketteter Hypertext Dokumente;
die Linked Open Data (LOD) Cloud des Semantischen Web, eine Kollektion veröf-
fentlichter relationaler Daten; das Internet der Dinge, ein Netzwerk physischer Ob-
jekte, die interne Zustände messen und kommunizieren können. Relationale Daten
sind durch viele verschiedene Verfahren des maschinellen Lernens adressiert worden.
Die aussichtsreichsten sind im Bereich des Relationalen Lernens zu finden, dem Schw-
erpunkt dieser Doktorarbeit. Im Unterschied zu konventionellem Maschinellem Ler-
nen, wo die Entitäten oft als unabhängige Instanzen betrachtet werden, die per Stich-
probe gesammelt werden und als Datenpunkte im Vektorraum dargestellt werden,
berücksichtigt Relationales Lernen die gesamte Netzwerk-Umgebung bei der Vorher-
sage der Markierung/Klasse einer Entität oder eines Attributwertes oder einer ex-
istierenden Verbindung. Eine wichtige Eigenschaft Relationalen Lernens ist, dass
auch weiter entfernte kontextuelle Information im relationalen Netzwerk ausgenutzt
werden kann. Da das Volumen und die strukturelle Komplexität der Daten im Zeital-
ter des Big Data ständig wachsen, werden Skalierbarkeit und Modellierungsvermögen
zunehmend entscheidend für die Algorithmen Relationalen Lernens.

Bisherige relationale Lernalgorithmen basieren entweder auf einer intuitiven Repräsen-
tation des Models, wie z.B. bei der Induktiven Logischen Programmierung (ILP)
und Markov Logic Networks, oder sie gehen von einer Menge latenter Variablen
aus, um beobachtete Daten zu erklären, Vertreter sind Infinite Hidden Relational
Model (IHRM), Infinite Relational Model (IRM) und Faktorisierungs-Verfahren. Die
Modelle mit intuitiver Repräsentation involvieren häufig eine Form des Struktur-
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Lernens, was oftmals zu Skalierbarkeits-Problemen durch den typischerweise großen
Suchraum führt. Faktorisierungen gehören zu den performantesten Verfahren für
large-scale relationales Lernen, da sie mit niedriger Datendichte gut umgehen kön-
nen und die algebraischen Berechnungen leicht parallelisiert werden können. Bisherige
Faktorisierungs-Verfahren können nur Muster zentral in den relationalen Daten selbst
betrachten. Weitergehend - und das ist der Kern dieser Doktorarbeit - kann zusät-
zliche A-priori-Information entweder durch unstrukturierte Daten (z.B. Text) oder in
strukturierter Form (z.B. Regeln) durch Faktorisierungs-Verfahren ausgenutzt wer-
den. Das Ziel ist, die Vorhersagegüte der Faktorisierungsverfahren durch die Ein-
beziehung von a-Priori Wissen zu verbessern, und gleichzeitig die Komplexität des
Modells für ein effizientes Lernen zu reduzieren.

Diese Doktorarbeit enthält zwei wesentliche Beiträge:

Der erste Beitrag präsentiert ein allgemeines und neuartiges Rahmenwerk zur Vorher-
sage von Zusammenhängen in multi-relationalen Daten unter Verwendung einer Reihe
von Matrizen, die die verschiedenen instanziierten Beziehungen im Netzwerk beschreiben.
Die instanziierten Beziehungen, abgeleitet oder gelernt aus Vorwissen, werden als
Attribute von Entitäten oder Attribute von Entitäten-Paaren in verschiedene Ad-
jazenzmatrizen für das Lernen integriert. Die gesamte verfügbare Information wird
dann in additiver Weise kombiniert. Effizientes Lernen wird durch eine alternierende
Methode der kleinsten Fehlerquadrate erreicht über eine Ausnutzung von Sparse Ma-
trix Algebra und Low Rank Approximation. Zur beispielhaften Illustration werden
verschiedene Algorithmen vorgeschlagen, die Informationsextraktion, deduktives Rea-
soning und kontextuelle Information in Matrix-Faktorisierungen für Semantische Web
Szenarien und Empfehlungssysteme mit einbeziehen. Zu allen vorgeschlagenen Algo-
rithmen werden Experimente auf verschiedenen Datensätzen durchgeführt, um die
Verbesserung der Vorhersagegüte durch das Kombinieren von Matrix-Faktorisierung
mit Vorwissen aufzuzeigen.

Im Gegensatz zu einer Matrix bietet ein Tensor dritter Stufe eine viel natürlichere
Repräsentation für multi-relationale Daten, wo Entitäten durch verschiedene Typen
von Relationen verbunden sein können. Ein dreifach Tensor ist ein drei-dimensionales
Array, das multi-relationale Daten in folgender Weise repräsentieren kann: Die er-
sten beiden Dimensionen stehen für Entitäten und die dritte Dimension für ver-
schiedene Typen von Relationen. In dieser Arbeit wird durch eine eingehende Analyse
der Berechnungskomplexität von Tensor-Modellen gezeigt, dass der Dekomposition-
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srang der Schlüssel zum Erfolg eines effizienten Tensor-Dekompositions Algorithmus
darstellt und dass der Faktorisierungsrang durch Einbeziehung beobachtbarer Muster
reduziert werden kann. Auf Basis dieser theoretischen Betrachtungen ist ein zweiter
Beitrag dieser Arbeit die Entwicklung eines Tensor-Dekompositions Verfahrens, das
Additive Relational Effects (ARE) Modell, das die Stärken von Faktorisierungsver-
fahren und beobachtbaren Mustern in additiver Weise verknüpft, zur Entedeckung
verschiedener relationaler Effekte in den relationalen Daten. ARE besteht aus einem
Dekompositions-Teil, der starke relationalen Lerneffekte durch das hoch-skalierbare
Tensor-Dekompositions Verfahren RESCAL zeigt und einem Tucker 1 Tensor, der
das Vorwissen durch instanziierte Relationen integriert. Ein effizienter Kleinste-
Fehlerquadrate Ansatz wird zur Berechnung des kombinierten Modells ARE vorgestellt.
Das additive Modell enthält Gewichte, die den Grad der Zuverlässigkeit des Vorwis-
sens, evaluiert auf den Daten, reflektiert. Experimente mit verschiedenen Benchmark-
Datensätzen zeigen, dass die Einbettung von Vorwissen zu leistungsfähigeren Mod-
ellen mit kleinerem Tensor-Rang führen mit signifikanten Nutzen für die Laufzeit und
für Speicheranforderungen. Insbesondere zeigen die Ergebnisse, dass ARE state-of-
the-art Verfahren des Relationalen Lernens einschließlich intuitiver Modelle wie MRC
(ein Verfahren basierend auf Markov Logik Netzwerken mit Strukturlernen), CP,
Bayesian Clustered Tensor Factorization (BCTF), das Latent Factor Model (LFM),
RESCAL, und andere latente Modelle wie IRM übertrifft.

Ein abschließendes Experiment auf dem Cora Datensatz für Topic Klassifizierung zeigt
eine Verbesserung von ARE gegenüber RESCAL sowohl in der Vorhersagegüte als
auch in der Laufzeitperformanz, da ARE mit signifikant weniger Rängen auskommt.
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Chapter 1

Introduction

This chapter outlines the general domains for relational learning and the specific tasks
to be solved by relational models. An exhaustive survey on relational information will
be given, which can be derived from the network structure and can be useful for the
learning. The previous relational learning approaches that are most relevant to the
work presented in the thesis will be discussed. The strengths and weaknesses of these
approaches will be pointed out during discussions, as a foundation for introducing
the contributions of this thesis.

1.1 Relational Data

Most of the real-world data is inherently relational, consisting of a set of entities
related to each other in complex ways. Examples of relational data are

• Relational enterprise data, often explicitly defined by an Entity-Relationship
model.

• Industry 4.0, where the structure of a plant and the automation process are
described in terms of the involved components (entities) and their relationships
in a specific context.

• The Linked Open Data (LOD) cloud of the Semantic Web, where knowledge
from different domains is published in form of Resource Description Framework
(RDF) triples.
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• The World Wide Web (WWW), where hypertext documents are connected
through hyperlinks.

• Google’s knowledge graph, which enhances the search results by providing struc-
tured and detailed information about topics gathered from a wide variety of
sources.

• Logfile data, such as event logs which contain huge amount of related events.
• Social networks, where people are linked by social relations such as friendship.
• Biology domains, where the gene-disease interactions or relationships among

proteins, genes and chemical compounds are modeled.

For more examples of relational data, one can refer to [25].

Relational data represents information in form of the relationships between enti-
ties, which is an efficient way of knowledge representation in many domains such
as the aforementioned examples. In the course of this paper, relational data from
any domain can be represented as a labeled graph where the entities are nodes V
and the relationships are labeled edges E. A typical example is the Semantic Web
area where information elements are represented as subject-predicate-object (s, p, o)
triples. Entities (i.e. subjects and objects) are represented as nodes and statements
are represented as directed labeled links from subject node to object node. This
thesis follows the terms of subject-predicate-object triples in Semantic Web to define
relational graphs.

Definition 1 (Relational Graph). A set of triples of the form G � tps,p,oqu defines
a relational graph over a domain D, where s P V is a subject entity, p P P denotes
a relation type and o P V is an object entity or in case of a relation whose objects
are the values, a literal. The vertices V are all the entities in D. P is defined as
the set of all the relation types in D. Each edge e P E in the graph corresponds to
a relationship and is defined by a triple ps,p,oq, i.e. e is a link starting from subject
entity s to object entity o, labeled by p.

In addition, G as defined in Definition 1 is called a multi-relational graph if it contains
more than one distinct relation types, i.e. when |P| ¡ 1. Since from the definition
of G the order of subject entity s and object entity o matters, G is a directed graph.
An example of a directed graph is YAGO1 knowledge base with RDF triples. The

1http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-
naga/yago/
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statement (s,p,o) is read as “s is p-related to o”. The existence of a relationship is
modeled as a random variable Zs,p,o, where

Zs,p,o �

#
1 if entity s is p-related to entity o
0 otherwise

In most cases Zs,p,o P t0,1u will be considered, but one can also use Zs,p,o P r0,1s and
it stands for the confidence value in the statement “entity s is p-related to entity o”.

Although the definition of the relational graph G covers only dyadic relations, note
that any relation can be converted into dyadic form when more than two entities are
involved, by introducing auxiliary entities. For example, a triadic relation under the
schema of “table_match(teamA, teamB, score)” can be converted into three dyadic
relations defined by “table_teamA(match, teamA)”, “table_teamB(match, teamB)”
and “table_score(match, score)” after introducing new entities of type “match”. In
the course of this thesis, discussions on relational data will refer to dyadic relational
data without additional statement. Additionally, the term relationship will be specific
to binary relationships between entities, while relationships between an entity and its
attributes will be called attributes.

In the emerging era of Big Data, a rapidly increasing amount of relational data is
derived from diverse sources such as text, audio, video, optical character recognition
(OCR), sensor data, stream data, and etc.. Using the LOD cloud of the Semantic
Web as an example, data sets in the LOD cloud consisted of over 2 billion RDF triples
in October 2007. By the time of writing the thesis (summer of 2014), this number has
grown to more than 73 billion RDF triples and the number keeps growing since there
are increasing efforts from different communities sharing their data via the LOD cloud.
The rapid increasing amount of relational data, which carries rich information and
knowledge from different domains, can in turn benefit development of the applications
in their domains. For example, the machine-readable RDF triples enable software
driven processes based on expert knowledge, which relieves the burden of manually
checking the knowledge and is crucial for domains with tremendous information such
as biomedicine.
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1.2 Machine Learning on Relational Data

Since relational data is being generated in ubiquitous domains, with increasing volume
and structural complexity, the problem of learning in relational domains becomes
more difficult and has received a considerable amount of attention from the machine
learning community. This section will first list the main tasks that can be carried
out with machine learning on relational data. What follows is a thorough analysis on
the relational information that can be derived or exploited from the relational graph.
Consequently, an introduction of two groups of relational models will be given, i.e.
relational models learning from observed variables and relational models learning from
latent variables.

1.2.1 Relational Learning Tasks

There are three popular tasks defined on relational data, i.e. link prediction to pre-
dict the existence of relationships between entities, attribute predictions to predict
attribute values, and link-based clustering to group entities in the relational graph
based on their relational similarity. This thesis will address the link prediction prob-
lem, although the proposed models can be used for attribute prediction and link-based
clustering, as well.

1.2.1.1 Link Prediction

The objective of link prediction is to determine whether a relationship holds between
two entities. Equivalently, the goal is to determine the state of the random variable
Zs,p,o as defined in Definition 1.1. One can predict, e.g., friendships among social net-
work users, or the existence of triples in a knowledge base. As described before, the
state of Zs,p,o can be either binary or it can be a nonnegative scalar value representing
a confidence value for the existence of the relationship. A link prediction problem
can thus correspond to a recommendation system in terms of ranking the predicted
relevance of the object candidates to a given subject entity. A typical example is to
recommend items to a given user. In another family of applications, link prediction
can be used for entity resolution, when it is applied to identifying the identical under-
lying entities, i.e. when the query relation type p equals to “isEqualTo” or “sameAs”.
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A third special application of link prediction is collective classification [41, 89], where
the task is to classify the class labels of entities in the relational graph, and p equals
to “isClassOf”.

Link prediction has been applied in many existing projects and applications. It has
been used to predict relationships between different topics in Google’s knowledge
graph, in the recommendation systems of Amazon2 and Netflix3, for the task of entity
resolution from natural texts, and to build large and clean knowledge bases [10, 15, 67].

1.2.1.2 Attribute Prediction

Attribute prediction is similar to link prediction, the objective of attribute prediction
is to predict an attribute value of a given entity. For example, predicting the click-
through rate (CTR) of an online advertisement is a form of attribute prediction used
in ad-placement.

1.2.1.3 Link-Based Clustering

Different from the traditional clustering approaches which partition the entities based
on the similarity of their observed attribute values, link-based clustering groups the
entities based on their connectivity in the relational graph, i.e. based on the simi-
larity of their relationships. The task of link-based clustering is also referred to as
community detection in graphs [17], and has been included in applications such as
detecting social groups in social networks, uncovering modules (which correspond to
functional groups and associate to cancer and metastasis) in protein-protein inter-
action networks [46], grouping web pages with similar topics to enhance the PageR-
ank [76] value of websites, and grouping system elements in food webs based on their
predator-prey relationships to understand the system as a whole [17]. Link-based
clustering can be used as another way for entity resolution. While link prediction
gives a similarity measure for the likelihood that the two entities refer to the same
entity, link-based clustering provides clusters learned from the entities’ connectivity
and uses the clusters as a basics to group the similar or identical entities [71]. All
in all, link-based clustering draws a readable map of large networks to help users

2http://www.amazon.com/gp/feature.html?docId=487250
3https://www.netflix.com/global
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understand the structure of the networks.

1.2.2 Learning with Relational Information

Traditional statistical machine learning approaches assume that each sample is a ran-
dom subset of a population of entities, and that associated random variables are
independently and identically distributed (I.I.D). As a consequence, they solve the
aforementioned tasks by learning a model from a fixed-length feature vector derived
merely from the attribute values of the involved entities. However, with a relational
setting, additional pieces of information are available, referred to as relational infor-
mation, that helps to understand the complex structure of the underlying network.
In [24] two systematic ways are reviewed to construct relational features from a rela-
tional graph, i.e. one is based on entity-specific measures to detect similar entities,
and the other is based on entity-pair measures to detect similar links between pairs
of entities. Both measures can be useful for the learning. Section 1.2.2.1 and Sec-
tion 1.2.2.2 will extent these two categories of measures by giving concrete examples
and further related measures.

1.2.2.1 Entity-Specific Information

Given a relational graph G as defined in Definition 1 and an entity represented as a
node v in G, there are two distinct information sources, i.e. attribute aggregations
and structural properties, that can be simply extracted from the subgraph around v

and can be utilized to determine its class label.

a) Attribute Aggregations Attribute aggregations summarize attributes of the
neighborhood to describe local information about entity v. In [78] a hierarchy
with four levels of aggregation concepts are defined over different complexity of
the aggregations.

• Level 1 corresponds to the observed attributes without aggregation.
• Level 2 aggregates over the same kind of attributes of directly connected

entities of v, such as the average age of friends, and the class labels of
related neighbors. It has been shown that a simple predictive model based
on only the class labels of neighbor entities surprisingly outperforms some
complex models [63].
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• Level 3 aggregates over different kinds of attributes of directly connected
entities of v, such as the age of the youngest female friend that could be
expressed using conditioning on the attribute of gender and an aggregation
function min on the attribute of age.

• Level 4 aggregates attributes from entity v and the attributes of its directly
connected entities, such as the common interest shared by a user and the
user’s friends.

Besides these approaches, more complex attribute aggregations and extensive
studies on aggregations can be found in [63, 79].

b) Structural Properties Structural properties capture characteristics of the
network structure. Heuristics from graph theory and social network analysis,
such as centrality, cohesion and etc., can be used to exploit this information.

• Centrality of entity v measures its relative importance in the relational
graph. There are four main types of centrality measures of an entity v.
– Degree centrality, which is defined as the number of neighbors of v.
– Closeness centrality, which is a distance metric defined as the inverse

of the sum of the length from v to all other nodes [84].
– Betweenness centrality, which calculates how many times entity v acts

as a bridge along the shortest path between two other entities [19].
– Eigenvector centrality, which assigns a score to each entity based on

their influences in the network. Google’s PageRank is a kind of the
eigenvector centrality measure.

• Cohesion measures the node connectivity in the graph. Examples are local
clustering coefficient which quantifies how close the neighbor of entity v

can be a clique, and stability which measures the consistency of class labels
in triads.

1.2.2.2 Entity-Pair Information

Given a relational graph G as defined in Definition 1, a relation type p and an entity-
pair represented as pv1,v2q, three distinct types of measures, i.e. attribute-based
measures, link-based measures and neighborhood similarity measures, can be utilized
to determine existence of the relationship pv1,p,v2q. These three types of entity-pair
measures summarize properties of the subgraph around the subject entity v1 and the
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object entity v2.

a) Attribute-Based MeasuresAttribute-based measures, such as boolean match,
hamming distance, string similarity, cosine and etc., can be applied to the com-
mon attributes of entity-pairs to define the match of the two entities. For
example, sharing the same email address indicates the identical user with a
high probability.

b) Link-Based Measures Link-based measures assign scores to links (i.e. rela-
tionships) in the relational graph, based on the links of another relation type
or the associated attribute values of the entities involved. A typical example is
if a particular social relation holds for two persons, it might imply that there
is a high probability that they share some other social activities. Another ex-
ample is that male teenagers like action movies can be expressed using gender
attribute of the users and genre information of the movies [44].

c) Neighborhood Similarity Measures Neighborhood similarity measures cap-
ture the overlapping neighborhoods. In [61] neighborhood methods are sug-
gested, based on node neighborhoods and neighborhood similarity, can be uti-
lized to define the neighborhood similarity of two entities.

• Node neighborhoods measures include:
– Common Neighbors, which simply counts the number of neighbors the

two entities have in common.
– Jaccard’s coefficient, which is a commonly used similarity metric in

information retrieval [85] to compute ratio of the overlapping neigh-
borhoods between two entities.

– Adamic/Adar measure, which weights based on the inverse number of
common neighbors [2] and suggests the similarity if two entities share
more neighbors that are overall less frequent.

– Preferential attachment score, which is based on the idea that entities
with more neighbors have higher probabilities to be involved in a new
relationship.

• Neighborhood similarity measures are path-based and include:
– Katz score, which assumes two entities are similar if they are connected

by short paths.
– Hitting time, which measures the expected number of steps required
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for a random walk between two entities.
– SimRank, which assumes two entities are similar if they are related to

similar objects [39].
Beside these three types of entity-pair measures, the family of kernels can be
used to determine existence of the relationship between two entities. Kernel
functions defined over the attributes of the entities involved show the similar-
ity of the entity-pairs. Graph kernels can be defined for various specific graph
structures such as walks [21], cycles [36] and trees [90]. For example, a ker-
nel representing the similarity of two entities can be defined by counting the
common sub trees in the intersection graphs of the entities’ neighborhoods [62].

Relational information, as just described, provides extra information from the network
environment, which has been proved to be able to improve the prediction performance
in some use cases [82, 108].

There are different ways of integrating relational information to a machine learning
model.

Relational classifiers are one of the straightforward ways to make use of relational
information in a model. Relational classifiers define relational information as fixed-
length feature vectors and apply conventional classification or regression algorithms
on them. These relational features are predefined and computed before the learning
process. The advantage is that it enables a large number of well-established classifi-
cation or regression algorithms for learning and prediction. But the I.I.D assumption
still holds, and the relational features are only based on observed evidence (observed
attribute values and observed relationships) which excludes the information derived
from the attributes or relationships being predicted [24]. When the entities are parti-
tioned into subgroups based on their connectivity in the network, the labels of entities
can differ considerably from any classifier that makes an I.I.D assumption on the enti-
ties. Traditional classification or regression algorithms ignore the relationships among
entities and are, therefore, unable to explore the extra piece of information from the
network environment. It has been shown that modelling the dependencies between en-
tities can greatly improve the predictive performance [25, 91]. A well known example
is collaborative filtering, where users’ preferences are predicted based on preferences
of similar users. Furthermore, relational features are usually high-dimensional and
the success of a relational classifier highly depends on the feature informativeness. As
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high-dimensional features usually suffer from the curse of dimensionality4 for most
of the relational classifiers, an additional feature selection procedure is thus required
before the training process.

Beside relational classifiers, a second way of integrating relational information to a
model is to perform a feature search during the learning process. This feature search
is in the context of relational graph formed by the related entities, which is considered
as an essential distinction to the previous non-relational approaches [99] such as the
relational classifiers.

1.2.3 Relational Models

Relational data provides more information about an entity via its links. Relational
models take into account this network environment and perform a feature search
during learning, while non-relational models use more traditional features (such as
the entities’ attributes) and predefined relational features in a flat way. The goal
of relational learning is to derive a model that can make predictions (typically with
probabilities) for a large number of, or even all, possible relationships in a relational
domain. One of the many possible groupings of relational models is based on their
model representations. Relational models learning from observed variables make use
of relational representations, such as logical expressions, schema information and
ontological information, to guide the search on the relational feature space. Relational
models that learn from latent variables associate a set of latent variables to the
entities. The relational models are then expressed in form of the states of these latent
variables. This subsection will review some state-of-the-art relational models from
the groups of relational models learning from observed variables, and of relational
models learning from latent variables. The representations, learning problems and
inference methods of these models will be discussed.

1.2.3.1 Learning from Observed Variables

Early relational learning approaches, including Inductive Logic Programming (ILP)
methods such as FOIL [80], assume a consistent hypothesis (with deterministic or

4With a fixed number of training samples, the predictive power of a classifier reduces as the
dimensionality increases.
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close-to-deterministic dependencies) that logically describes the data structure, such
as

Smokespvar_1q Ð Friendspvar_1,var_2q ^ Smokespvar_2q

which represents the hypothesis that if any friend is a smoker, then this person is also
a smoker. Unfortunately ILP approaches show little robustness towards noise (not
all the smoker’s friends are also smokers) and towards missing information (whether
the friends smoke is unknown) in the data.

Statistical Relational Learning (SRL) approaches overcome these problems by work-
ing with link probabilities. Most of the existing SRL approaches define their model
based on graphical models [47] over the random variables, which can represent observ-
able attribute values, observable relationships, or latent variables. Graphical models
provide a principled way to dealing with uncertainty and complexities in the relational
data through the use of both probability theory and graph theory. Generally, random
variables are represented as nodes in the graph and the edges represent the statisti-
cal dependencies between random variables. The goal of SRL is to model the joint
distribution PpZ1, . . . , Znq over all random variables tZi|i � 1, . . . ,nu in a relational
domain, where n is the number of random variables and each Zi corresponds to Zs,p,o

as defined in Section 1.1. When modelling joint distribution of a relational graph, the
number of possible assignments in Z1, . . . , Zn is exponential to the number of random
variables n. If random variables are defined on the level of observable attribute values
or observable relationships, and the variables are binary-valued, it requires 2n param-
eters to describe the joint distribution PpZ1, . . . , Znq. For example, starting with just
3 entities and 2 possible relation types among the entities, it ends up with a fully
connected graph with the number of states 23�3�2. This high-dimensional probability
distributions becomes very problematic in computations for a relational graph as the
number of entities and relation types grows. However, graphical models can better
exploit model structure by defining random variables as shared parameters between
the observable attribute values or relationships, as a way to exploit the independence
properties that exists in many real world applications [53]. The two most common
graphical representations of distributions are Bayesian Networks (BNs) for acyclic
directed graphs, and Markov Networks (MNs) for undirected graphs, also known as
Markov Random Field. Here briefly reviews three important SRL approaches, i.e.
Probabilistic Relational Models, Bayesian Logic Programming Models, and Markov
Logic Networks.
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a) Probabilistic Relational Models Probabilistic Relational Models (PRMs)
were one of the earliest successful approaches for statistical relational learn-
ing [20, 25, 54].

The representation of a PRM, like a Bayesian network, consists of the net-
work dependency structure and the parameters quantifying the dependencies.
PRMs extend Bayesian Networks with the concept of objects from the schema
information in a relational database, and define templates for the dependency
structure. Random variables in PRMs stand for ground atoms, either based on
unary predicates (attributes), or based on dyadic relations (links). Direct edges
in the relational templates indicate direct dependencies in the ground Bayesian
Network. The parameters associating with the nodes are typically conditional
probabilities tables, as in a Bayesian Network.

There are two distinguished types of learning problems for PRMs. When both
the dependency structure and the observable attribute values are known, pa-
rameter learning is performed to estimate the likelihood of data given the de-
pendency structure, i.e. to estimate the conditional probabilities. When the
dependency structure is unknown, structure learning is required to find the set
of edges. It is known that for Bayesian Networks in general, the task of finding
the optimal structure is NP hard. PRMs use marginal probabilities or other
score functions like BIC [32] to evaluate the candidate structures. A greedy
search that iteratively adds, removes or reverses edges is used to find the de-
pendency structure with the highest score. Overall, structure learning is a far
more challenging task than parameter learning.

Exact inference in PRMs requires inference over the instantiated PRMs, which is
usually computationally intractable due to the large number of random variables
and their possible states in most real-world applications. Often approximate
inference, like loopy belief propagation, is employed instead [66].

b) Bayesian Logic Programming Bayesian Logic Programming Models (BLPs),
implemented in a software called BALIOS [49], are another class of successful
SRL models.

BLPs unify Bayesian Networks with logic programming. The representation of
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BLPs consists of a set of Bayesian clauses. A Bayesian clause differs from a
logical clause (with a deterministic value) in that it uses a conditional proba-
bility table to present the probability of the head of the clause given its body.
It is possible that the same random variable is included in the head of different
clauses. Combination rules, such as the “noisy-or” rule, are used to combine
probabilistic rules with the same head variables.

Learning in BLPs is a probabilistic extension of learning in ILP. Structure learn-
ing in BLPs has similar procedure as rule learning in ILP systems [73] which
consider all possible operations such as adding or deleting new literals to the
clause for each iteration. A score function based on maximum likelihood is
defined to evaluate the clauses.

Inference in BLPs is done via standard Bayes Net inference on the grounded
(instantiated) Bayesian clauses, which is intractable for large data sets as in
PRMs.

c) Markov Logic Networks Markov Logic Networks (MLNs) [83] are the best
known SRL models. An MLN is a probabilistic extension of logic which com-
bines Markov Networks and first-order logic. First-order logic is also known
as first-order predicate calculus, which is a formal logical system containing
constants, variables, functions and predicates.

The representation of MLNs is a set of first-order logic formulae and their cor-
responding weights, i.e. pFi,wiq. The set of formulae in MLNs describe the
dependency structure on the class level. A grounding is defined as assigning a
value from its domain to a variable in the formula. The set of formulae and
a finite set of entities in a domain can be viewed as a template to construct
such a grounded Markov network: Each node is a binary random variable cor-
responding to a ground predicate. The state of a node equals to 1 if the ground
predicate (also known as ground atom in MLNs) is true, and 0 otherwise. Fur-
thermore, a feature function fik is defined for each possible grounding of a
formula Fi, which has the value of 1 if the grounding formula is true, and 0
otherwise. An edge is created between two nodes if the ground predicates occur
in at least one formula. As a result, each grounding formula forms a clique
in the grounded Markov network. As each node is for a decision, connecting
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dependent decisions in cliques gives collective attribute prediction. A possible
world represents a state of all the random variables, i.e. the truth values of all
the ground predicates. The probability distribution over possible worlds z can
be written as:

PpZ � zq �
1
Ψ

exp

�¸
i

winipxq

�

where nipxq represents the number of true groundings for formula Fi in z, the
same weight wi is assigned to all the possible groundings of the same formula Fi,
and Ψ is the partition function that guarantees the probabilities of all possible
groundings sum up to one.

When the set of first-order logic formulae are known, parameter learning in
MLNs corresponds to estimating the weights wi from one or more relational
databases. MLNs make a close-world assumption [23] that any absent ground
predicate in the database is assumed to be false. The weights wi are computed
by maximizing the log likelihood of the data. Pseudo-likelihood is used for cal-
culating the probability of a possible world, which approximates the distribution
of z based on the product of the probabilities of each node given its Markov
blanket5. Structure learning is employed when the set of first-order logic for-
mulae are unknown, which is similar to BLPs. MLNs use the CLAUDIEN [81]
system to learn the first-order clauses and not just Horn clauses.

Inference in a MLN corresponds to predicting the truth value of a ground pred-
icate given the data. An MLN usually results in a large Markov network, which
immediately poses a challenge on computing the inference. Traditional ap-
proaches on MLNs inference consider a subset of the ground Markov network
and compute the conditional probability on it using Gibbs sampling. A more
recent and efficient approach on MLN inference Tuffy [74] partitions an MLN
program into high-level tasks (such as classification) that can be solved with
specialized algorithms [75].

In addition to PRMs, BLPs and MLNs, various SRLs have been proposed over the
decades, such as Relational Dependency Network [68] which is an extension of Depen-
dency Networks [30], Relational Markov Network [97] which is a conditional Markov
network, and DAPER [33, 31] which is an extension of entity-relationship model. For

5In a Markov network, the Markov blanket of a node is the set of its neighboring nodes
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more SRL models, one can refer to the work [25]. SRLs have been generally success-
ful on relational learning. However, the computational complexity of inference is the
essential limitation of most SRLs. Although approximate methods make inference
tractable, it is still infeasible for large-scale data. Another limitation of most SRLs is
that they often require structure learning when lacking the full knowledge about the
dependency of the data. Structure learning in SRLs is usually computational costly
and state-of-the-art approaches have been only tested on small to medium sized data
sets [12, 51].

1.2.3.2 Learning from Latent Variables

All those afore described relational learning approaches model the statistical depen-
dencies in the data with random variables that can be observed from the data. An-
other group of relational learning approaches assume a set of latent variables as ran-
dom variables that are associated to the entities. The advantage is that no structure
learning is needed. The independence properties of the network are exploited in that
the observed variables (such as relationships) are conditionally independent given the
latent variables. Once the states of the latent variables are inferred from the data,
predictions can be made via the latent representations of the corresponding entities.
Examples are Infinite Hidden Relational Model (IHRM) [107], Infinite Relational
Model (IRM) [48] and the factorization approaches.

a) Infinite Hidden Relational Model and Infinite Relational Model IHRM
assigns each entity to one latent class. The state of the random variable Zs,p,o,
as defined in Section 1.1 which corresponds to the probability of a relationship
ps,p,oq between a subject entity s and an object entity o being true, depends
on the relation type p and the latent classes L(s), L(o) of the two entities:

P
�

Zs,p,o � 1|Lpsq,Lpoq
�
� θp,Lpsq,Lpoq

where 0 ¤ θp,Lpsq,Lpoq ¤ 1. Learning in IHRM is to infer the assignments of
the latent classes and the class-relationship probabilities from the data. The
class assignments are drawn from a Chinese restaurant process (CRP) and the
number of latent classes is allowed to be infinite. Inference in IHRM uses Gibbs
sampling on only a finite number of latent classes. The underlying idea of IRM
is similar to IHRM, while the mixed membership stochastic blockmodel [3]
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generalizes it to allow more than one latent classes associated to an entity.
An important advantage of these latent-classes based models is that the la-
tent classes summarize the information of the related entities. Since the latent
classes encode information of the represented entities participating in different
relationships, information is propagated in the network via the latent classes.
However, these methods suffer the same scalability problem as most SRLs be-
cause of the sophisticated inference procedure, which hinders their application
on large-scale data.

b) Factorization Approaches Another family of approaches that learn from
latent variables are based on the factorization of matrices and 3-way tensors,
which partition the relational graph into subgroups based on their connectivity
and neighborhood similarities.

Matrix factorization approaches represent the relational graph G as defined in
Definition 1 by an adjacency matrix.

Definition 2 (Adjacency Matrix). An adjacency matrix X P R|S|�p|P|�|O|q for
the relational graph G is a two dimensional array, where each row represents a
subject entity s P S, each column represents a pair of relation type p P P and
object entity o P O, i.e. pp,oq. The confidence value of the relationship ps,p,oq
being true is therefore represented as an entry in X , denoted as xs,p,o.

During the learning process of matrix factorizations, the adjacency matrix X

is decomposed into a multiplication of some smaller-sized component matrices.
Accordingly, the subject entities S and the pairs of relation type - object entity
pP,Oq are mapped to a joint latent factor space with a much lower dimension-
ality, such that the interactions of S and pP,Oq are modelled as inner products
in that latent space, and predictions can be made by simple calculations on
the latent factors. Examples of matrix factorization techniques are collabora-
tive filtering, Singular Value Decomposition (SVD) which is a well-established
approach for information retrieval in identifying latent semantic factors, and
SUNS [37, 98] which is a regularized SVD and will be described in detail in
section 2.1.2. Take SUNS for example, the learning process with a single rela-
tion type where |P| � 1, can be viewed as to decompose X into factors of a
latent representation U P R|S|�r which summarizes the subject entities, a latent
representation V P R|O|�r which summarizes the object entities, and a diagonal
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interaction matrix D P Rr�r where each entry di j describes the degree of inter-
action between the i-th latent component of U and the j-th latent component
of V . r is the predefined rank, as well the number of latent components.

A 3-way adjacency tensor is a more natural representation for the multi-relational
graph G as defined in Definition 1.

Definition 3 (Adjacency Tensor). A 3-way tensor X P R|S|�|P|�|O| for the
relational graph G is a three dimensional array, where the subject entities S,
the object entities O, and the relation types P are respectively represented by
the first, the second and the third mode of X. The confidence value of the
relationship ps,p,oq being true is therefore represented as an entry in X , denoted
as xspo, where s P S, p P P and o P O.

Similar to matrix factorizations, tensor decomposition approaches use compo-
nent matrices to represent the latent space of the corresponding dimension, and
a core tensor to represent the interactions among these component matrices.
Predictions are made via generalized matrix operations to reconstruct the ten-
sor from the latent factors. A tensor provides greater descriptive flexibility for
multi-relational data than a matrix [1]. Each frontal slice in the tensor mod-
els the interaction of the subject entities and the object entities in a specific
relation. Modelling the interactions of entities under different relation types
with a tensor comes with a computational cost compared to a matrix, as the
unfoldings of a tensor from different modes correspond to three matrices. This
extra modelling complexity allows to discover different combinatorial possibil-
ities of latent vectors respectively from the subject entities, the object entities
and the relation types, as the interactions among the three are frequently lost
when a tensor is reshaped into only one matrix. In other words, instead of us-
ing linear models for matrix factorizations, tensor decompositions enhance the
modelling power using multi-linear models and simultaneously retain the scal-
ability compared to non-linear models [69] such as Support Vector Machines
with RBF kernels. Tensor decompositions have been used early in the field of
chemometrics and psychometrics [104], and in recent years they received more
attention also from machine learning and data mining community. A number
of tensor decomposition approaches have been proposed over the last decades.
Tucker [101] is one of the early tensor models and it decomposes X into factors
of a latent representation A P R|S|�r of the subject entities, a latent represen-
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tation B P R|O|�r of the object entities, a latent representation C P R|O|�r of
the relation types, and an interaction tensor G P Rr�r�r where each entry gi j k

represents the degree of interaction between the corresponding latent compo-
nents. PARAFAC (also called CP) [34, 35], can be considered as a special case
of Tucker, where the interaction tensor G is diagonal and facilitates analysis on
the latent components. Bayesian Clustered Tensor Factorization (BCTF) [94]
embeds a factorized representation of relations in a non-parametric Bayesian
clustering framework. RESCAL [71, 72], which represents the subject entities
S and object entities O with the same latent representation, provides high scal-
ability and shows strong relational learning ability. Particularly, RESCAL will
be introduced in detail later in section 3.1.2.3. The Latent Factor Model (LFM)
is a work based on RESCAL but it models additionally the correlations among
the relation types given a subject - object entity pair. These are the most
important tensor models and there are more, which can refer to a survey on
tensors [52].

For all these latent variable models, factorizations are among the most-promising
approaches as compared to IHRM and IRM for large-scale relational learning, because
of the highly paralleled computations via linear algebra (for matrices, multi-linear
algebra for tensors) and being capable of exploiting the data sparsity.

1.3 Conclusions and Motivations

So far it has been shown that given a relational graph representing relational data in
a domain, there exists huge amount of possible relational information derived from
the graph structure. As a consequence, a challenge immediately posed to all the
relational models is on the search of a large feature space. Relational models learning
from observed variables although provide an intuitive representation of the model,
they often require structure learning which is usually intractable for large-scale data
due to the large number of random variables and their possible states. Relational
models learning from latent variables overcome this problem by associating a set of
latent variables to the related entities and the learning only consists of inferring the
states of these latent variables from the data.

A second observation is that different relational models learn the rule-like relational
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information in different ways. ILP-based relational models such as PRMs, BLPs and
MLNs, can explain rules with long distance dependencies in the network structure.
Factorization of a matrix or a tensor normally considers one-step dependencies during
learning, i.e. the direct neighbor in the relational graph. If parts of the rule are not in
a big latent component, a high factorization rank is required or collective learning is
needed. Collective learning is an evolutionary process of sharing, disseminating and
further developing individual knowledge. RESCAL is a well-established tensor model
and has been proved to have collective learning effect.

A third comparison is on how to include relational information or prior knowledge
to different relational models. Relational models such as PRMs, BLPs and MLNs,
that represent the network structure with logical expressions, schema information and
ontological information, can easily include relational information into the model tem-
plate. For example, the attribute aggregations can be defined as an additional node
in PRMs, BLPs, and as an additional literal in MLNs. For factorization approaches,
aggregated attributes need to be instantiated and be added to a matrix as columns
or to a tensor as slices.

A fourth observation is regarding to information propagation. Existing relational
models either include an sophisticated inference procedure (e.g. Gibbs sampling)
for propagating information through the dependency structure, such as shown in
PRMs, BLPs, MLNS, IHRM and etc., or perform a global optimization to infer
the model parameters such as factorization approaches. Furthermore, for relational
models that include an inference procedure, the information derived from predicted
attribute values or relationships is passed along the dependency structure, whereas for
latent variable models, this piece of information is encrypted in the latent variables.

All in all, due to the high demand on performance and scalability of a relational model
for large-scale data, this thesis will focus on factorization approaches, including fac-
torization of matrices and 3-way tensors. In many cases partial knowledge about the
data is known, which can be expressed as relational information (such as aggregated
attributes and some path-based measures) or rules in form of Horn clauses. These ele-
ments of prior knowledge may be only available for parts of the network, and applying
the corresponding expression of relational information or rules to the whole network
can bring redundance. Therefore, simple but efficient extensions of factorization ap-
proaches are proposed in this thesis for integrating prior knowledge to factorization
approaches for improving the predictions, while at the same time the model retains
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good scalability and has tolerance with redundant or wrong prior information.

1.4 Chapter Map

Chapter 2 and Chapter 3 respectively present the two main contributions of this
thesis, with the goal of deploying methodologies to integrate prior knowledge into
factorization approaches for relational learning.

The first contribution described in Chapter 2 presents a general and novel framework
for predicting relationships in multi-relational data. The chapter starts with an in-
troduction on a regularized SVD, as the basics for the proposed additive framework.
An extended additive model using a set of matrices describing the various instanti-
ated relations in the network is discussed, as a theoretical support for the efficient
learning. The proposed additive model combines all the information derived or learnt
from prior knowledge as entities’ attributes or entity-pairs’ attributes in form of dif-
ferent adjacency matrices for the learning. The scenario of relation prediction in
the Semantic Web and the use case of recommendation systems are used to evaluate
the proposed framework. In the Semantic Web scenario, the three most common
approaches in that area (information extraction, deductive reasoning and machine
learning) are combined under the proposed framework for relation prediction. In the
use case of recommendation systems, both the collaborative filtering effects and the
contextual information (as prior knowledge) are utilized in the proposed framework
for the learning. Experiments on various data sets are conducted for each use case to
show the improvement in predictive power by combining matrix factorizations with
prior knowledge in a principled way.

A novel tensor decomposition model is presented in Chapter 3 as the second con-
tribution of this thesis. A 3-way tensor is a more natural representation for the
multi-relational data compared to a matrix. The chapter starts with an introduction
on tensors and tensor models. Before proposing the new tensor model, an analysis on
the computational complexity of tensor models shows that the decomposition rank
is key for the success of an efficient tensor decomposition algorithm. An analysis on
synthetic data illustrates that the factorization rank can be reduced by including ob-
servable patterns. Based on these theoretical considerations, a novel tensor decompo-
sition approach ARE, an Additive Relational Effects (ARE) model is proposed. ARE
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combines the strengths of factorization approaches and prior knowledge in an additive
way to discover different relational effects from the relational data. As a result, ARE
consists of a decomposition part which derives the strong relational learning effects
from a highly scalable tensor decomposition approach RESCAL, and a Tucker 1 ten-
sor which integrates the prior knowledge (path-based patterns or neighborhood-based
patterns) as instantiated relations. An efficient least squares approach is proposed to
compute the combined model ARE. The additive model contains weights that reflect
the degree of reliability of the prior knowledge, as evaluated by the data. Exper-
iments on several benchmark data sets show that the inclusion of prior knowledge
can lead to better performing models at a low tensor rank, with significant benefits
for run-time and storage requirements. In particular, the results show that ARE
outperforms many state-of-the-art relational learning algorithms. A final experiment
on paper topic classification shows the improvement of ARE over RESCAL in both
predictive power and runtime performance, since ARE requires a significantly lower
rank.

The last chapter concludes this thesis, discusses the possible extensions and the ap-
plication domains.

The two aforementioned contributions of this thesis are related to the following pub-
lications:

[43] Xueyan Jiang, Volker Tresp and Denis Krompass. “A Logistic Additive Model
for Relation Prediction in Multi-relational Data”. In: The European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML/PKDD) 2013 Workshop on Tensor Methods for Machine Learning, 2013.

[44] Xueyan Jiang, Volker Tresp, Yi Huang, and Maximilian Nickel. “Link Prediction
in Multi-relational Graphs using Additive Models”. In: Proceedings of International
Workshop on Semantic Technologies meet Recommender Systems & Big Data at the
11th International Semantic Web Conference (ISWC), 2012.

[42] Xueyan Jiang, Yi Huang, Maximilian Nickel, and Volker Tresp. “Combining
Information Extraction, Deductive Reasoning and Machine Learning for Relation
Prediction”. In: Proceedings of the 9th Extended Semantic Web Conference (ESWC),
2012.

[45] Xueyan Jiang, Volker Tresp, Yi Huang, Maximilian Nickel, and Hans-Peter
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Kriegel. “Scalable Relation Prediction Exploiting Both Intrarelational Correlation
and Contextual Information”. In: Proceedings of the European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML/PKDD), 2012.

[70] Maximilian Nickel, Xueyan Jiang, and Volker Tresp. “Reducing the Rank of
Relational Factorization Models by Including Observable Patterns”. In: Advances in
Neural Information Processing Systems (NIPS), 2014.

The extended additive model in Chapter 2 was proposed in Section 2.1 of [43]. In
this thesis, Chapter 2 generalizes the extended additive model from Section 3 to
Section 5 of [44] for combining all the entity-specific and entity-pair information.
As illustrations, use cases in the Semantic Web and for recommendation systems
are shown. A set of experiments for these two use cases are respectively from the
experimental parts of [42] and [45]. The ARE model in Chapter 3 is an additive
model similar to the model from [44]. The model formulation of ARE and the related
experiments are from Section 3 and Section 4 of [70].



Chapter 2

Additive Models for Relation
Prediction

This chapter extends the traditional additive models by using a set of relational ad-
jacency matrices as components describing the various instantiated relations in the
relational network. Prior knowledge is represented in form of matrices as entities’ at-
tributes or entity-pair’s attributes. The low-rank approximation of the query relation
based on these matrices are then combined in an additive way for the learning. Two
scenarios, in the Semantic Web area and for recommendation systems, are presented
to show the improvement in predictive performance by adding prior knowledge to
matrix factorizations.

The chapter begins with an introduction to matrix factorizations. Particularly, the
SUNS model will be discussed in section 2.1. Section 2.2 will present the additive
models whose solution is based on regularized SVD. Section 2.3 will describe in gen-
eral how to apply the additive models for link prediction in multi-relational graphs.
As illustrations, section 2.4 will demonstrate by using the additive models, how to
include information extraction, deductive reasoning and machine learning for relation
prediction in the Semantic Web area; Sections 2.5 will demonstrate how to exploit
both intrarelational correlation and contextual information for recommendation sys-
tems.
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2.1 A Review on SUNS

In 2006, the online DVD rental company Netflix organized a contest to improve its
recommendation system [5]. A training set of more than 100 million ratings was
released, with respect to about 500,000 anonymous customers and their ratings on
more than 17,000 movies, where each movie was rated on a scale of 1 to 5 stars. Par-
ticipating teams submit predicted ratings for a test set consisting of approximately
3 million ratings, and the evaluation is done by calculating a root-mean-square-error
(RMSE) on the held-out truth. The majority of winning entries of this competition
are models based on matrix factorizations [4, 9, 96]. Since then, matrix factoriza-
tions have become more and more popular because of their good scalability and high
predictive accuracy [56]. The basic form of the matrix factorization models infers
vectors of factors from movie rating patterns. Accordingly, both users and movies
are mapped to a joint latent factor space of a much lower dimensionality, to discover
the most descriptive dimensions for predicting movie preferences. Such a modelling
can correspond to singular value decomposition (SVD), a well-established technique
for identifying latent semantic factors in information retrieval. Applying SVD to this
recommendation system requires factorizing the user-movie rating matrix, which usu-
ally has very high sparsity since users have rated only a small percentage of all the
movies. The unknown ratings are treated as missing values in the user-movie ma-
trix. This incomplete knowledge raises difficulty to conventional SVD. Many existing
works solve it either by filling in missing ratings to make the rating matrix dense [88],
or by modelling only the observed ratings through a regularized model [55, 77, 95].
Particularly in relational domains, a relational adjacency matrix X P R|S|�p|P|�|O|q as
defined in Definition 2 is used to represent a relational graph with |S| subject entities,
|O| object entities and |P| relation types. Instead of ratings and missing values in
the user-movie matrix, each entry in the adjacency matrix X can be either 1 or 0 to
represent existence of a relationship. Thus the missing values for the user movie case
are treated as untrue for relation prediction in the relational domain. For example,
each entry in a relational database represents a true relationship, while the absent
relationships are most likely to be untrue. This close-world assumption also holds for
the Semantic Web area, where the known triples represent true relationships and the
absent triples represent untrue relationships.

One of the first line of research where matrix representations were used for relation
prediction is the SUNS framework [37, 98], which is a regularized SVD-based low-
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rank approximation technique. SUNS is selected as the basic matrix factorization
model for the proposed approaches in this chapter. SVD has been implemented
in many high performance software packages such as LAPACK1, Apache Mahout2,
scikit-learn3, MLlib4, GraphLab5, Teradata Aster6 and these implementations can
easily be extended to SUNS.

2.1.1 Data Representation

As defined in Definition 1, labeled links in a relational graph G are represented as
triples of the form (s, p, o) where subject s and object o stand for entities in a domain
and where p is the relation type, i.e. the link label. The statement (s, p, o) stands for
the relationship that “s is p-related to o”. Definition 2 defines an adjacency matrix X

where each entry xs,p,o represents the truth value of relationship (s, p, o). Moreover, a
random variable Zs,p,o is defined in Section 1.1 and is associated with the triple (s� i,
p� j, o� k). Consider that each entry in X corresponds to a random variable Zs,p,o,
xi, j, k � 1 is set when the relationship (s, p, o) is known to exist, otherwise xi, j, k � 0.
, i.e.

xi, j, k �

#
1 if an edge labeled as k exists between node i and node j

0 otherwise
,

where in multi-relational graphs, the entities including subject entities and object
entities form the nodes.

Usually, a large relational graph G comprises a sparse adjacency matrix X P RI�JK

(I � |S|, J � |O|, K � |P|), since only a small percentage of all possible relationships
exist. By using this matrix representation X , the relational graph G is accordingly
represented by a bipartite graph Γ with I subject nodes and JK pairs of relation type
- object node, i.e. (p, o) pairs. By the definition of a bipartite graph, the vertex set
V with pI � JKq vertex can be divided into mutually exclusive vertex set V1 (with
I subject nodes) and vertex set V2 (with JK pairs of (p, o)), where V1 XV2 � tu

1http://www.netlib.org/lapack/
2https://mahout.apache.org/
3http://scikit-learn.org/stable/
4https://spark.apache.org/mllib/
5http://graphlab.org/projects/index.html
6http://www.teradata.de/Teradata-Aster/overview
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and V1 YV2 � V . In the adjacency matrix X , the row vector xi, :, : P RJK shows the
neighbors of subject node i, i � 1, . . . , I, where each neighbor is related to an object
node and a relation type. Similarly, the column vector x:, j, k P RI shows the neighbors
of object node j with a specific relation type k, where j � 1, . . . , J, k � 1, . . . ,K .

2.1.2 A Regularized SVD-based Low-rank Approximation

2.1.2.1 Standard Singular Value Decomposition

Standard Singular Value Decomposition (SVD) is based on a matrix factorization
method which decomposes the adjacency matrix X P RI�JK as following [27]:

X � UDVT . (2.1)

SVD causes a linear transformation that diagonalizes matrix X into the product of
an orthogonal matrix U, a diagonal matrix D and an orthogonal matrix V . When
discarding the null space, U P RI�r and V P RJK�r are orthogonal bases respectively
spanning the column space RJK and spanning the row space RI of X , where r is the
rank of X . The diagonal entries of D P Rr�r are nonnegative real numbers organized in
a decreasing order of magnitude. Furthermore, the columns of U are the eigenvectors
of the covariance matrix X XT , and the columns of V are the eigenvectors of XT X .
The diagonal entries in D contains singular values with scaling information about
how a vector is stretched or shrunk when it goes from the column space RJK to the
row space RI .

Following [92], one can obtain from Equation 2.1

Xv:p � dpu:p (2.2)

where p � 1, . . . ,r, v:p and u:p are respectively column vectors of V and U, and dp is
a diagonal entry of D. Equivalently

XV � UD.

The left-hand side of Equation 2.2 tells that the dot product between a row vector
of X (i.e. xi, :, :) and the p-th latent component of V (i.e. v:p) is to project xi, :, : to
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vp:, as a measure of how much the subject node i points in the same direction as v:p.
Obviously, if two subject nodes share many common neighbors (pairs of relation type
- object node) or highly correlate with each other, they will have similar measure in
each eigenvector v:p. The right-hand side of Equation 2.2 tells that this projection
from row vector xi, :, : to eigenvector v:p can be expressed in terms of the corresponding
column basis u:p and the singular value dp. As V is orthogonal, all vectors of subject
nodes that share many common neighbors will point in the same direction in the row
space spanned by V . Similar analysis can be done with

XTU � V D .

The observation is then the pairs of relation type - object node sharing many common
neighbors (subject nodes) will point in the same direction in the column space spanned
by U and this direction can be expressed by a linear combination of the corresponding
row basis in V and the singular values in D.

Thus, the product of UD provides an abstract way of describing the subject nodes:

d1ui1 � d2ui2 � � � � � druir , i � 1, . . . , I . (2.3)

Correspondingly, V D describes the pairs of relation type - object node:

d1vl1 � d2vl2 � � � � � drvlr , l � 1, . . . , JK .

Considering the columns of U as r clusters for the column space RJK of X , each term
in Equation 2.3 tells how much node i belongs to a cluster, i.e. the membership of a
subject node i to the cluster u:p is dp. From Equation 2.2 and 2.3, the subject nodes
sharing many common neighbors point in the same direction in the space formed by
V , and have similar memberships to the clusters formed by U. Similarly, for a given
relation type the object nodes that share many common neighbors will have close
memberships to the clusters formed by V . As a result, the highly connected groups
of nodes in the relational graph G will point in the same direction in space and can
be viewed as belonging to the same cluster, due to sharing similar memberships to all
the eigenvectors [87]. Figure 2.1 shows two bipartite graphs (respectively generated
from two different relational graphs with a single relation type) and their SVDs. The
observation is that the number of latent components, i.e. the rank of X , corresponds
to the number of clusters for the links in the associated bipartite graph.
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Figure 2.1: This picture is adopted from [87], which shows two extreme cases for SVD.
The left part shows a bipartite graph generated from a relational graph where no common
neighbors exist among the subject nodes or among the object nodes. All columns (or rows)
in the corresponding adjacency matrix X are independent of each other. The rank of X is 3
which indicates 3 clusters in the graph, with each of them formed by one subject-object node
pair. The right part shows a bipartite graph generated from a highly connected relational
graph where all the nodes are connected to each other. All the columns (or rows) in X
linearly depend on each other. All the nodes belong to exactly one cluster, as the same
number for the rank of X .
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2.1.2.2 Dimension Reduction

If the nodes in a relational graph share the same or most of the neighbors, there
will be dependent rows or columns in X . In case of such redundancy, a low-rank
approximation to the adjacency matrix X is suggested and preferred to represent the
nodes in a reduced dimensional space [92].

X � Uk DkVT
k

where only the largest k singular values and the corresponding eigenvectors are re-
tained to reconstruct X , usually k    r. By discarding the least important r � k

singular values and vectors as noise, the nodes that share many common neighbors
will orient further in the same direction in the corresponding eigenvector space, and
therefore, be more similar to each other.

2.1.2.3 A Regularized SVD for Relation Prediction

Relation prediction using SVD corresponds to complete the adjacency matrix X . Af-
ter the lower dimensionality approximation compresses the space formed by X to a
joint latent factor space formed by the major eigenvectors, the subject nodes and the
relation type - object node pairs are respectively clustered by their similarity to the
corresponding latent factors. These latent factors play the role of latent representa-
tions for the subject nodes and the (p,o) pairs. Accordingly, the i-th subject node
has a latent representation of ui:, the j-th (p,o) pair has a latent representation of
v j:, and the interaction between these two latent vectors is the vector d derived from
the diagonal entries of D. From the discussion in Section 1.2.3.2 on relational models
that learn from latent variables, any query on a possible relationship with respect to
a subject node and a pair of relation type - object node can be inferred from their
latent representations. The prediction of a relationship denotes the confidence value
of the truth of the relationship. Predictions of all the possible relationships among
subject nodes and object nodes are typically represented by a densely filled matrix.
Particularly, the SUNS model [37, 98] is chosen for relation prediction. SUNS is essen-
tially a regularized SVD that applies regularization in the prediction phase to avoid
overfitting. With a regularizer λ ¡ 0, the adjacency matrix X can be reconstructed
in three different ways.
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The first way is to recover X from the joint latent factor space formed by U and V .

X̃ � Uk diag

#
d3

p

d2
p � λ

+k

p�1

VT
k (2.4)

The second way is to recover X from the column space spanned by U.

X̃ � Uk diag

#
d2

p

d2
p � λ

+k

p�1

UT
k X (2.5)

The third way is to recover X from the row space spanned by V .

X̃ � XVk diag

#
d2

p

d2
p � λ

+k

p�1

VT
k (2.6)

2.1.2.4 Scalability

The expensive part of SVD is the eigen decomposition required in Equation 2.1. For
the kind of relational data considered in this thesis, the adjacency matrix X is very
sparse and the reduced-rank reconstruction can be calculated efficiently. By exploiting
matrix sparsity, Figure 2.2 shows that the SVD decomposition scales super-linearly
with the number of nonzeros in X . Note that for an X -matrix with 105 rows, 106

columns, 107 nonzero elements and a predefined rank of 50, the computation only
takes approximately 10 minutes on a standard laptop7.

2.2 Additive Models

As described in Section 2.1.2, matrix factorization approaches predict the unknown
relationships by completing a query relational adjacency matrix. In domains with
multiple relations or attributes, represented as multiple matrices, one can improve
the predictive performance by exploiting the relational information from the rela-
tional graph. Additive models [8] has been long used to reduce the model complexity

7This set of experiments were carried out by the coauthor Yi Huang of [42].
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Figure 2.2: To evaluate the computation time for SVD decomposition on a sparse random
I � J matrix X , four experiments were carried out respectively with regard to the number
of rows (I), the number of columns (J), the number of nonzeros (nnz) and the predefined
rank of X (Rank). The kernel matrix via ker � X XT was constructed and the sparse SVD
was used on X . Each plot shows the experimental result on the computational time for
SVD as a function with three fixed parameters, and a variational one. Basically, a sparse
matrix X of size 105 � 106 with 106 nonzeros for a rank-50 SVD is under consideration.
The top left figure (red dashed) shows computational time for the SVD as a function of
I. An approximately linear dependency is observed which is related to the fact that the
number of rows of U is I as well. The top right figure (red dashed) shows computation
time for the SVD as a function of J. One can see a decrease. The reason is that with
increasing J, X XT becomes more sparse. The bottom left figure (red dashed) shows an
approximately quadratic dependency of the computational time for the SVD on nnz. Note,
that the last data point in the plot is a system with nnz � 107 requiring only 10 minutes of
computation on a standard laptop. Finally, the bottom right figure (red dashed) shows the
dependency on Rank. One can see that a 10 fold increase in Rank approximately displays
a 10 fold increase in computational cost. Each figure also shows the computational time for
calculating ker � X XT , which, in comparison, is negligible (blue continuous).
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by combining simple models as components in an additive way. This section ex-
tends the traditional additive models with each component initialized based on the
low-rank approximations of the query relation matrix. The linear combinations of
the predictions from all these components form the overall predictions for the query
relation matrix. While the traditional additive models assume that each component
corresponds to a regression surface describing the targets8, this section assumes that
each component is formed by the joint latent space spanned by its input matrix. Par-
ticularly, relational information will be represented in form of matrices used as inputs
for the additive models.

2.2.1 Problem Formulation

Following Section 2.1.1, a query relational adjacency matrix X P RI�K is derived from
a sub graph of the relational graph G (Definition 1). Particularly the relation type
in the query relation matrix X is specific to p, i.e. K � 1.

The task of relation prediction is to predict the existence of a relationship of type
p among a set of nodes, i.e. to predict the truth of xi j � 1 for the zero entries
for relation type p. Essentially, it is to derive a matrix with the same size of X but
replacing the zeros by continuous numbers which can be interpreted as the confidence
value of Ppxi j |G � 1q being true. These continuous values can then be the basis for
further analysis to tackle the tasks of classification and ranking.

In the following, relational information are in form of matrices X phq, h � 1, . . . ,H,
where H different kinds of relational information are available. Examples of relational
information in the matrix form are observed attributes of the subject nodes, observed
attributes of the object nodes and the instantiated relation of the subject-object pairs.
For details of possible relational information, see Section 1.2.2. Relational information
in form of a set of matrices will then be incorporated in the additive models.

8A target relation of interest is defined and the relationships (triples) involving the target relation
are called the targets or the target triples in this thesis.
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2.2.2 The Extended Additive Least-squares Model and Its
Normal Equations

The standard parametric method for additive models is to predefine the form of func-
tions fh (e.g., to polynomial) for the components, and then estimates the parameters
by least-squares. Here a nonparametric method based on H smoothed matrices will
be considered. A smoother matrix Sphq : RI�J Ñ RI�J is a linear mapping [8]

X̃ phq � SphqX (2.7)

where h is the index of the smoothed matrix or the component, X̃ phq is the smoothed
prediction matrix from component h. Traditional additive models can be extended
for relational learning in a way that, each smoother Sphq is assumed to depend on a
corresponding matrix X phq derived from the relational information.

The assumption of additive models is that the overall prediction is formulated as a
linear combination of predictions from the H components.

X̃ �
Ḩ

h�1
X̃ phq �

Ḩ

h�1
SphqX (2.8)

which minimize
min

tX̃phq|h�1,...,Hu
}X �

¸
h

X̃ phq}2F (2.9)

where } � }F denotes the Frobenius norm.

For solving the optimization problem 2.9, one can start with the least-squares fit for
only one component (Equation 2.7)

min
X̃phq

}X � X̃ phq}2F .

Recall that X is a sparse matrix. Efficient low rank approximation on X can be
computed via SVD on X phq (see Section 2.1.2 for details), i.e.

X̃ phq � Ur DrVT
r (2.10)

where r is the predefined rank of X phq, Ur and Vr are orthogonal matrices, Dr �
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diagtdiu
r
i�1 contains the singular values of X phq.

The smoother matrix Sphq can be viewed as a projection to the column space of X phq

and describes the regression space of component h.

Sphq � X̃ phq
�
pX̃ phqqT X̃ phq � λI

	�1 �
X̃ phq

	T

� Ur DrVT
r
�
Vr DrUT

r Ur DrVT
r � λI

��1
Vr DrUT

r

� Ur diag

#
d2

i

d2
i � λ

+r

i�1

UT
r

� X phq Vr diag

#
1

d2
i � λ

+r

i�1

VT
r X phqT

where λ is a regularizer, I is an identity matrix of size r � r.

Hence, the predictions from component h can be derived from the U-matrix, i.e.

X̃ phq � SphqX � Ur diag

#
d2

i

d2
i � λ

+r

i�1

UT
r X (2.11)

which equals to Equation 2.5 of the SUNS model.

Alternatively, the predictions from component h can be derived from the V -matrix.

X̃ phq � SphqX � X phq Vr diag

#
1

d2
i � λ

+r

i�1

VT
r X phqT X (2.12)

Now the solution (Equation 2.11 and 2.12) of one component can be extended to solve
the additive models of objective function 2.9. A sufficient condition for a solution is
that the space of residuals pX �

°
h X̃ phqq is orthogonal to the regression space of the

additive model. Since the regression space of the additive model depends on the space
of each component h, equivalently, the regression space of component h is orthogonal
to the residuals [8], i.e.

Sphq

�
�X �

Ḩ

h1�1

X̃ ph
1
q

�
� 0 ,

thus
X̃ phq �

¸
h̄�h

Sphq X̃ ph̄q � SphqX .
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Equivalently, the following systems of normal equations are necessary and sufficient
to minimize objective function 2.9.

�
�����

I Sp1q Sp1q � � � Sp1q

Sp2q I Sp2q � � � Sp2q
...

...
...

. . .
...

SpHq SpHq SpHq � � � I

�
����

�
�����

X̃ p1q

X̃ p2q

...

X̃ pHq

�
�����

�
�����

Sp1qX

Sp2qX
...

SpHqX

�
����

In [8], the Gauss-Seidel algorithm to update each X̃ phq at a time is provided.

X̃ phqnew Ð Sphq

�
�X �

¸
h̄ h

X̃ ph̄qnew �
¸
h̄¡h

X̃ ph̄qold

�
 (2.13)

2.3 Link Prediction in Multi-relational Graphs Us-
ing Additive Models

As described in Section 1.1, there is a growing amount of data published in multi-
relational graphs where information elements are represented as subject - relation type
- object triples, i.e. (s, p, o) triples. Entities (subjects and objects) are represented as
nodes and statements are represented as directed labeled links from subject node to
object node. A machine learning task of some generality is the prediction of labeled
links between entities using patterns in known labeled links in the relational graph.

The rest of this section is organized as the following: Section 2.3.1 will present a
general framework for link prediction, including the cost function and the alternating
least squares solution for parameter learning. Section 2.3.2 will discuss information
aggregation to the general framework via joint operations, the inclusion of unstruc-
tured information, interaction terms and kernels. Section 2.3.3 will describe the ap-
proach for hyperparameter tuning. Section 2.3.4 will propose several algorithms for
reference. Empirically, Section 2.3.5 will show the experimental results on synthetic
data sets.
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2.3.1 A General Framework for Link Prediction in Multi-
relational Graphs

Considering a domain with N entities and K relation types, a general framework
Madd assumes that the truth value of a triple (s� i, p� j, o� k) can be estimated
as a linear combination of directly related triples, defined as all triples (s� i, p� k 1,
o� j 1) where i is the subject, all triples (s� i1, p� k 1, o� i) where i is the object, all
triples (s� j, p� k 1, o� j 1) where j is the subject and all triples (s� i1, p� k 1, o� j)
where j is the object. Finally, triples are considered with arbitrary relation types
but where two entities from the target triple are involved, i.e. (s� i, p� k 1, o� j),
and (s� j, p� k 1, o� i). xi, j, k is as defined in Section 2.1.1 and represents the truth
value of triple (s� i, p� k, o� j). If xi, j, k � 0, the predicted x̃i, j, k ¥ 0 can then be
interpreted as a likelihood that the triple is true based on the immediate context of
the triple.

To formulate the problem, a matrix M � pX, rXsTq is formed as shown in Figure 2.3,
where X � rX1,X2, . . . ,XK s, and rXsT � pXT

1 ,X
T
2 , . . . ,X

T
Kq denotes the in-place ma-

trix transposed of X . Following the model assumption, an additive model Madd is
formulated as

x̃i, j, k �
2K Ņ

l�1
wl, j�pk�1qN mi, l �

2K Ņ

l�1
rl, i�pk�1qN m j, l �

2Ķ

l�1
hl, k mi, j�Npl�1q (2.14)

where mi, l denotes pMqi, l .

The w., ., r., ., and h., . are model parameters to be estimated. It is assumed that the
rows in M are exchangeable such that the weights wl, j�pk�1qN are independent of i,
the weights rl, i�pk�1qN are independent of j, and the parameters hl, j are independent
of both i and j. However, if type constraints on entities are considered in the model,
the segmentation of parameter space can be changed. For example, the semantics
of the relation type “like” is very different when the subject is a person than if the
subject is a dog and the object is a bone. Technically this can be achieved by defining
wl, j�pk�1qN, typepiq, and correspondingly the model would have more parameters.

The three terms in the sum in Equation 2.14 exploits respectively the subject-specific
information, the object-specific information, and the entity-pair information. The
subject-specific information represents triples where i is the subject, when l � 1, . . . ,K
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Figure 2.3: The figure shows the matrix M and illustrates the terms in Equation 2.14. The
goal is to predict the matrix entry x̃i, j, k in matrix Xk indicated by the small red circle. The
terms in the first sum (subject-specific information) are represented by the upper dashed
blue line, the terms in the second sum (object-specific information) are represented by the
lower green dotted line, and the terms in the third sum (entity-pair information) correspond
to the small rectangles.

Figure 2.4: (a): The goal is to predict the likelihood of the triple (s, p, o). In Equation 2.14,
the green triples attached to s correspond to the subject-specific information, the red triples
attached to o correspond to the object-specific information, and the purple triples linking s
and o correspond to the entity-pair information. (b): From the triple (u, hasFriend, f) and
(f, type, richPerson) one can derive via aggregation (s, hasFriendType, RichPerson), which
can be useful to predict (u, type, richPerson). (c): From (u, hasAge, Young) and (m, type,
ActionMovie) one can derive (u, youngAction, m), which is useful for predicting (u, likes,
m).
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or where i is the object, when l � K � 1, . . . ,2K . Similarly, the object-specific in-
formation represents triples where j is the subject, when l � 1, . . . ,K or where j is
the object, when l � K � 1, . . . ,2K . The entity-pair information considers all triples
that involve both i and j with any relation type (see Figure 2.4 (a)). Consider Equa-
tion 2.14 in terms of an if-then-rule where the right side of the equation describes the
condition and the left side describes the conclusion. In this view the subject ?s and
the object ?o would be variables9 and the subject-specific information describes re-
lations including the first variable, the object-specific information describes relations
including the second variable, and the entity-pair information describes relations in-
cluding both variables. All these variables are universally quantified, which means
that the expression is valid for all subjects ?s and all objects ?o. It is possible to
introduce additional variables in the condition part via exploiting further relational
information in the relational graph, as described in Section 1.2.2, and these variables
would be existentially quantified (as in Horn clauses).

2.3.1.1 Cost Function and Parameter Optimization

Equation 2.14 can be written efficiently in matrix form as

X̃ � MW � rM RsT � rM
1

HsN�K N (2.15)

where M
1
� prX1svec, . . . , rXK svec, rXT

1 svec, . . . , rX
T
K svecq is an N2 � 2K matrix. The

column vector r.svec contains all elements of the corresponding relational adjacency
matrix. W P R2K N�K N , R P R2K N�K N , and H P R2K�K are parameter matrices. The
operation r.sN�K N transforms the result of the matrix product into a N�K N matrix.

A penalized least squares cost function for Equation 2.15 is defined as

min
W, R, H

}X � X̃}2F � λW}W}2F � λR}R}2F � λH}H}2F (2.16)

where }.}F is the Frobenius norm. The last three terms are used to regularize the
solution to avoid overfitting.

9The common notation of indicating a variable by a question mark in front of a symbol is used.
Here means variables as used in logics where they represent objects. In contrast, random variables
in this thesis stand for the truth values of statements.
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Considering each term in Equation 2.15 as a component to predict X̃ , the proposed
model Madd can then be viewed as an additive model described in Section 2.2. To
optimize the parameter matrices W , R, and H is the same as to optimize each term
in Equation 2.15. Therefore, the solution 2.13 for the additive models can be used to
solve the model Madd (Equation 2.16). Particularly, predictions from components of
X̃ pWq � MW , X̃ pRq � rM RsT , and X̃ pHq � rM

1
HsN�K N need to be optimize.

Following the additive models in Section 2.2, SVD is performed firstly on each rela-
tional matrix to reduce computation and to further regularize the solution.

M � UDVT M
1
� U

1
D

1
pV

1
qT (2.17)

Only the leading singular values and corresponding singular vectors are used in the
model. Another benefit of this low-rank approximation is that the model Madd im-
plicitly benefits from a sharing of statistical strengths leading to performance im-
provements, as it is well known from Latent Semantic Analysis (LSA).

The solution 2.13 for the additive models is similar to alternating least squares, where
for each update all but one parameters are fixed. In the alternating least squares steps,
three updates iterate until convergence.

MW Ð Ur diag

#
d2

i

d2
i � λW

+r

i�1

UT
r

�
X � X̃ pRq � X̃ pHq

	
(2.18)

M R Ð Ur diag

#
d2

i

d2
i � λR

+r

i�1

UT
r

�
X � X̃ pWq � X̃ pHq

�
T

(2.19)

M
1

H Ð U
1

r 1 diag

#
pd

1
q
2
i

pd1q
2
i � λH

+r
1

i�1

U
1T
r 1

�
X � X̃ pWq � X̃ pRq

�
N2�K

(2.20)

where r and r
1 are respectively the predefined rank of M and M

1 . Particularly, for
the update in Equation 2.20 an solution in terms of the V -matrices might be more
efficient (see Equation 2.12).
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2.3.1.2 Computational Costs

Considering domains with several million entities, the computations seem to be ex-
pensive. Fortunately, relational adjacency matrices in many domains of interests are
sparse. For example, nonzero elements are often restricted to one or a small number
of blocks in the matrices due to type constraints; the user movie matrix is sparse
since users have rated only a small percentage of all the movies. As the alternat-
ing least squares algorithm is based on SVD, it exploits sparse matrix algebra for
calculating the decompositions and the computational benefits have been shown in
Section 2.1.2.4. Furthermore, one could also apply the SVD to each relational adja-
cency matrix separately or to blocks of relational adjacency matrices, instead of M.
Also, if the entries of interests is in one particular relational adjacency matrix, only
the parameters relevant to predicting the entries in that particular matrix need to
be calculated. As the alternating least squares is employed, the convergence is quite
fast, requiring fewer than 10 iterations.

2.3.2 Extensions

Relational information in different formats (structure and unstructured) can be in-
cluded to the additive model Madd by means of aggregation, interaction teams and
kernels.

Aggregation by Join Operations The triples represented in Equation 2.15 only
consider the immediate neighborhood of the triples (s, p, o). It is easy to extend
the formalism to also consider triples further away in the graph. As an example,
consider the case that the likelihood that a person likes a movie is increased if at
least one friend likes the movie. The latter information can be represented by a join
operation on two adjacency matrices, i.e. XfriendLikesMovie � min p1,XfriendOfXlikesq where
min is applied component wise. Then XfriendLikesMovie (and its transposed) is simply
added as an additional relational adjacency matrix. Now one can model (via the
subject-specific information in Equation 2.15) that a person might like “Action Hero
3” if at least one friend likes “Action Hero 3”. With Mi P pX1, . . . XP,XT

1 , . . . XT
Kq, the

general form of an aggregated adjacency matrix is Xa � min p1,
±

i Miq. Naturally,
it is not feasible to consider an infinite set of matrix products. Possible approaches
are that the user defines a small set of interesting candidates or that one applies
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structural search, e.g., by using approaches borrowed from the field of Inductive Logic
Programming. Section 1.2.2.1 lists many more forms of aggregation. For example,
instead of the min operation, one can count how many friends liked a movie, or what
percentage of friends liked a movie. Here are two interesting examples involving join
operations. First, with an assumption that a person tends to be rich if this person
has a rich friend, the triple of interest is (?u, type, RichPerson). By joining (?u,
hasFriend, ?f) and (?f, type, RichPerson), one can obtain a matrix that indicates if
anybody of a person’s friends is rich (see Figure 2.4 (b)). Second, with an assumption
that a person often prefers restaurants of the nationality of that person, the triple of
interest is (?u, likes, ?r). By joining (?u, hasNationality, ?c) and (?r, hasNationality,
?c), one can obtain a matrix that indicates if the user and the restaurant have the
same nationality.

Contextual and Unstructured Data Sometimes there is contextual information
available, often in textual form, that describe entities and relationships and can
be exploited for link prediction. For example, one can use keywords in an entity’s
Wikipedia articles as attributes of that entity. The triples (s, itsWikiPageHasKey-
word, Keyword) can simply be added as an additional relational adjacency matrix in
the approach. If a keyword can be identified as an entity, then this information is
even more valuable. Information extraction (IE) can also be used to extract triples
from text and these triples can then be presented in matrix form as well. In the
latter case, the entity-pair information in Equation 2.15 can be expected to be most
valuable. For example, if the IE system extracts with high confidence that (Jack,
knows, Jane), this could be information for predicting that (Jack, hasFriend, Jane).

Interaction Terms In Equation 2.15 a linear system is used, which is suitable in
many high-dimensional domains. Of course, one can apply more general models
such as neural networks as predictive models. Often this is unsuitable since the
computational costs would explode. The proposed approach stays with a linear model
but adds nonlinear interaction terms. As an example, assume that young users prefer
action movies. A new triple (?u, YoungAction, ?m) is defined to be true if (?u, hasAge,
Young) is true and (?m, type, ActionMovie) is true (see Figure 2.4 (c)). In general,
the entity-pair information in Equation 2.14 can be expected to be most valuable
here as well. To keep the number of these interaction terms small, a feature selection
procedure evaluating the Pearson correlation between targets and interaction term is
applied, as shown in Section 2.4 and 2.5.
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Kernel Formulation So far the discussion focused on a representation in feature
space. Here a representation in kernel space is discussed. A kernel formulation is
appropriate for data in a multi-relational graph and suitable kernels are described
in [7, 22, 62, 106]. Recall that kernel matrix ker � X XT is calculated before perform-
ing the SVD for a matrix X . Naturally, one could start with a kernel matrix suitable
for the multi-relational graph. In this view the alternating least squares solution in
Section 2.3.1.1 is an efficient way of calculating a kernel solution with two kernels.
The first one kerp., .q involving two entities, either two subjects kerps, s1q or two ob-
jects kerpo,o1q. The second kernel ker1pps,oq,ps1,o1qq involves two subject-object pairs.
Given the corresponding kernel matrices ker and ker1 , one can decompose using SVD,
i.e.

ker � UDDTUT ker1 � U
1
D

1
pD

1
qTpU

1
qT

and use the resulting terms in the update Equations 2.18 to 2.20.

2.3.3 Tuning of Hyperparameters

The proposed model Madd contains several hyperparameters that need to be tuned
(rank of approximations; regularization parameters). In [6] a random grid search
is described for the best hyperparameters using cross-validation sets (i.e. tune the
parameters on the evaluation set but not the test set).

2.3.4 Some Reference Models

For link prediction, both intrarelational correlations and contextual information can
be helpful for the learning. The general framework Madd exploits intrarelational
correlations, contextual information respectively for the subjects, the objects and the
subject-object pairs by learning from the matrix M and its extensions.

2.3.4.1 Exploiting Intrarelational Correlations

Intrarelational correlations exploits dependencies within the relation of interest and
would correspond to the data dependencies exploited in typical collaborative learning
systems. The leading approaches exploiting intrarelational correlations are based on
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a factorization of the query relational adjacency matrix X , which is regularized SVD
as described in Section 2.1.2 and is denoted as MCF.

2.3.4.2 Context Models

Contextual information consists of all other information sources except intrarelational
correlations. As illustrations, three sources of contextual information are under con-
sideration. The first one is multi-relational contextual information that is derived
from the associated relational graph. The second one concerns information from
unstructured sources, e.g., in form of textual documents describing the involved en-
tities (e.g., from the entities’ Wikipedia pages). The third one exploits the nonlinear
interactions between the associated information sources. By using low-rank approxi-
mations in the context models, the models perform latent semantic analyses and can
generalize across specific terms, i.e., the model might use similar latent representa-
tions for semantically related terms. Assume that contextual information is available
from which one can derive an estimation of how likely a target relation is true, denoted
by fi,j . The corresponding matrix F with pFqi, j � fi, j has the same dimensionality
as X and entries typically assume values between zero and one, although this is not
enforced.

Three context models that will be used in the applications are as following: Let A be
a matrix with as many rows as X , each row for a subject entity in X . The columns of
A represent features describing the subjects in X . Similarly, B is a matrix with each
row for an object entity in X . The columns of B represent features describing the
objects in X . Finally, a matrix C is formed by the Kronecker product10 C � Ab B,
i.e., C contains all possible product terms of the elements of A and B. The number of
rows in C is the number of rows of A times the number of rows of B, and the number
of columns in C is the number of columns of A times the number of columns of B.
Following the example of Figure 2.4 (c), a column in C might indicate if a movie is
an action movie and, at the same time, the user is young and the model might learn
that young people like action movies.

To control overfitting, a regularized least squares cost function for the contextual

10see Definition 8 in Section 3.1
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information F is formulated

min
W pAq, RpBq, HpCq

}X � F}2F � λA}W pAq}2F � λB}RpBq}2F � λC}HpCq}2F (2.21)

where
F � AW pAq � rBRpBqsT � rCHpCqsN�K N .

Thus the entries in F are predicted as a linear combination of the subject features in
A, the object features in B and the interaction features in C.

Let this model (Equation 2.21) be denoted as Fall. Including the intrarelational model
MCF as an additional fourth component to be optimized with F leads to the model
Madd introduced in Section 2.3.1. Additionally, one can consider more specific models
from F that contains only one component, i.e. the model FA, FB and FINTER that
contains only one component for contextual information respectively for the subject
entities, the object entities and the interaction terms of subject-object pairs. Solutions
for all these context models can be obtained using alternating least squares as model
Madd.

2.3.4.3 Hierarchical Bayes

Madd first smoothes each term in 2.16 via a regularized low-rank approximation and
then globally optimizes each term. Alternatively, one can first add X and F and then
smooth the resulting matrix. The later one is defined as a hierarchical Bayes model
MHBS for the combination of contextual information with intrarelational correlation.
The overall system MHBS is a low-rank approximation that minimizes

min
XHBS

}pX � Fq � XHBS}
2
F

Again, the solution can be based on the SUNS, in this case in the form of

X � F � UpX�FqDpX�FqpV pX�Fqq
T (2.22)
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and a regularized low-rank approach now leads to the model

XHBS � UpX�Fq
r diag

$'&
'%

�
dpX�Fq

i

	2
�

dpX�Fq
i

	2
� λ

,/.
/-

r

i�1

UpX�Fq
r

T
pX � Fq. (2.23)

where r is the predefined rank of X � F, λ is a regularizer. The basic idea in this
model is that contextual predictions should overwrite the zeros in X , prior to applying
the factorization and reconstruction.

2.3.5 Experiments on Synthetic Data

Two synthetic data sets of different size have been generated according to the mod-
eling assumptions. The target triples are a sum of four components: the first one is
modeling the interlink correlation, the second one uses triples describing the subject
entities, the third one uses triples describing the object entities, and the fourth one
uses interaction terms. In addition, triples related to the subject are involved, i.e.
describing subject attributes, and triples related to the object, i.e. describing object
attributes. Moreover, interaction triples are generated by conjunctions on subject
and object triples.

5-fold cross-validation was employed such that the subject entities are partitioned into
training, validation and test sets. In the test and validation folds, one true relation
was randomly selected to be treated as unknown (test statement) for each subject
entity in the data set and all query entries were set to 0. In the test phase all unknown
relations for the entity were then predicted, including the entry for the test statement.
The test statement should obtain a high likelihood value, if compared to the other
unknown entries. The normalized discounted cumulative gain (nDCG@all) [38] is a
measure to evaluate a predicted ranking.

Figure 2.5 shows the results of using different relational adjacency matrices. In the
first set of experiments, both the intrarelational correlation and the context models
have significant predictive power and the two models (Madd and MHBS) that uses all
sources of information improve upon the subsystems. In the second set of experiments,
the additive model Madd performs best. A model (MCF) only using intrarelational
information is quite strong. The reason is that, if sufficient amount of target triples
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are known to be true, the information on subject and object attributes is implicitly
modeled in MCF as well. This is a result also confirmed in the remaining experiments
of this chapter: if MCF is quite strong, adding subject and object information does
not improve the model further, even when the latter might have predictive power. As
a conclusion, the two combination schemes (Madd and MHBS) seem to be more robust
and perform well on both experiments.

2.4 Use Case: Relation Prediction in the Semantic
Web

In the Semantic Web area, three common approaches for deriving or predicting instan-
tiated relations are information extraction (IE), deductive reasoning (DR) and ma-
chine learning (ML). In IE, the relation of interest can be derived from unstructured
data such as texts or images and the goal is to derive a mapping from unstructured
input to statements. An IE system could be based on rules or on statistical classifiers.
In addition to unstructured information, a knowledge base in form of a triple store
of known facts forming an RDF graph might be available. Deductive reasoning is
used to derive additional true statements when a set of facts and axioms is available.
Relational machine learning also uses a set of true statements but estimates the truth
values of novel statements by exploiting regularities in the data.

Powerful methods have been developed for all three approaches [16, 86] and all have
their respective strengths and shortcomings. IE can only be employed if unstructured
information is available that is relevant to a relation, deductive reasoning can only de-
rive a small subset of all statements that are true in a domain and relational machine
learning is only applicable if the data contains relevant statistical structure. Fur-
thermore, multivariate prediction (such as SUNS) generalizes supervised learning to
predict several variables jointly, conditioned on some inputs. The improved predictive
performance in multivariate prediction, if compared to simple supervised learning, has
been attributed to the sharing of statistical strength between the multiple tasks, i.e.,
data is used more efficiently (see [100] and citations therein for a review). Due to the
large degree of sparsity of the relationship data in typical semantic graph domains, it
is expected that multivariate prediction can aid the learning process in such domains.

The goal of this section is to combine all three methods, i.e. IE, DR and ML to
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Figure 2.5: Test results on synthetic data. The first experiment (left) had 100 subjects and
80 objects, the subject attributes A had 80 columns, the object attributes B had 80 columns,
and the interaction terms C had 8,000 rows and 4,000 columns. The three context models
FA, FB, and FINTER make valuable predictions significantly above random. Fall uses subject
attributes, object attributes and interaction terms, but not intrarelational correlations in
the target triples. The combination of all three context models, i.e. Fall, is better than any
of the individual context models. The context model and the intrarelation correlation are
comparable strong in prediction: MCF gives comparable results to Fall. Both combination
schemes (Madd and MHBS) are better than the intrarelational model or the context model
on their own, so both combination schemes are sensible. There is no statistical significant
difference of the performance between Madd and MHBS. The second experiment (right)
had 1,000 subjects and 1,000 objects, the subject attributes A had 6 columns, the object
attributes B had 7 columns, and the interaction terms C had 1,000,000 rows and 42 columns.
It is shown that the additive method Madd is significantly better than the model that only
relies on intrarelational correlations (MCF). The hierarchical Bayes model MHBS does not
significantly improve w.r.t. MCF. Predictions only based on subject attributes FA, only
based on object attributes FB, and only based on interaction terms FINTER are much better
than random.
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exploit all sources of available information by using the combination models Madd and
MHBS from Section 2.3. Technically, all triples that can either be inferred explicitly
by calculating the deductive closure or on demand are added to the models. IE
supplies evidence for the statements under consideration, such as the text describing
the subject s (or object o) , the predicate11 p or text that describes the (s, p, o)
statement. And finally relational machine learning models the dependencies between
statements.

The following two sets of experiments validate the two combination models using
data from the YAGO ontology, and from Linked Life Data and Bio2RDF, all of
which are part of the Linked Open Data (LOD) cloud. It shows that the combination
models (Madd and MHBS) are most effective when the information supplied via IE is
complementary to the information supplied by statistical patterns in the structured
data, and if reasoning can add relevant covariate information.

2.4.1 Predicting Writer’s Nationality in YAGO

The first set of experiments were done on the YAGO 2 semantic knowledge base to
evaluate the model MHBS. YAGO is derived from Wikipedia and also incorporates
WordNet and GeoNames. There are two available versions of YAGO 2: core and
full. The chosen one for the experiments is the first one, which currently contains 2.6
million entities, and describes 33 million facts about these entities. The experiment
was designed to predict the nationalities of writers. Four different types of writers
were chosen: American, French, German and Japanese. E.g., the triples for American
writers were obtained with the SPARQL query:

SELECT ?writer ?birthPlace ?location WHERE {
?writer rdf:type ?nationality .
?writer yago:wasBornIn ?birthPlace .
?birthPlace yago:isLocatedIn ?location .
FILTER regex(str( ?nationality ), "American_writers", "i")

}

11In Semantic Web area, a predicate corresponds to a relation type in relational domains
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440 entities representing the selected writers were obtained, of which 354 entities (i.e.
writers) were selected with valid yago:hasWikipediaUrl statements. The following
five models were under consideration:

• ML: A ML model using the relationship of the writers’ nationality (in total
4) and information on the city where a writer was born. In total, there were
233 variables which stand for the truth values of statements of the writers’
nationality. No unstructured information is used in this ML model.

• IE: As textual source, the Wikipage of the writers was used. The terms “Ger-
man, French, American, Japanese” were removed and it ended up with 36,943
keywords. An IE system using SUNS was built.

• ML+IE: The knowledge base with IE were combined in a way that the predicted
triples derived from unstructured information are added to the adjacency ma-
trices formed by the knowledge base. Then Equation 2.22 and Equation 2.23
were applied.

• ML+AGG: Geo-reasoning was performed to derive the country where a writer
is born (from the city that a writer was born). This aggregate information
was added as a statement to the writer. Naturally, a high correlation between
country of birth and the writer’s nationality is expected (but there is no 100%
agreement!). Thus prior to machine learning, triples derived from the knowledge
base were added.

• ML+AGG+IE: As ML+AGG but the predicted triples from IE were added.

10-fold cross validation was performed for each model such that the entries of the
query relation were partitioned into training, validation and test sets. In the test
and validation folds all entries in the query relation were set to 0. The models were
evaluated with the area under precision and recall curve.

Figure 2.6 shows the results. As there are only 4 nationalities, which are almost
always mutual exclusive (there is a small number of writers with more than one
nationality), the intrarelational correlation (ML contribution) is quite weak and the
country attributes were not used. But one can see that ML improved significantly
by adding information on the country of birth (ML+AGG). The IE component gives
excellent performance but ML improves the results by approximately 3 percentage
points. Finally, by including geo-reasoning, the performance can be improved by
another percentage point. This is a good example where all three components, geo-
reasoning, IE and machine learning could be combined together for the overall best
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predictions.

2.4.2 Predicting Relationships between Diseases and Genes

In this set of experiments, information on known gene-disease patterns was extracted
from Linked Life Data and Bio2RDF, which is from the LOD cloud and is in form
of the triples (Gene, related_to, Disease). In total, 2,462 genes and 331 diseases
were considered. For genes 11,332 features and for the diseases 1,283 features were
extracted from the LOD cloud. In addition, 8,000 textual features describing genes
and 3,800 textual features describing diseases from corresponding text fields were
retrieved in Linked Life Data and Bio2RDF. The products of any gene feature and
any disease feature generate 49,801,621 potential gene-disease interaction terms (Sec-
tion 2.3.2) which were reduced to 1,132 by using a fast feature selection procedure
evaluating the Pearson correlation between targets and interaction term. The two
tasks here are to predict diseases that are likely associated with a gene, and to rank
genes based on their predicted relevance for a given disease.

5-fold cross validation was performed for each model, following the same experimental
protocol as described in Section 2.3.5.

Figure 2.7 shows the results. One can see that combining IE with machine learning is
effective in applications where a large number of relationships need to be predicted.
When predicting diseases for genes, the contextual information (reflected in Fall, from
IE but no DR available) and the ML part (reflected in MCF) are both equally strong.
In most data sets, one of the two is dominating. Both combination schemes (Madd and
MHBS) are the leading approaches and provide results significantly better than Fall

or MCF on their own. Predicting genes for diseases generally gives a weaker nDCG
score.

2.5 Use Case: Recommendation Systems

Section 2.3 has considered the problem of predicting instantiated binary relations in a
multi-relational setting and exploits both intrarelational correlations and contextual
information. A general framework for predicting links in multi-relational graphs has
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Figure 2.6: The area under curve for the YAGO 2 Core experiment as a function of the
predefined rank r of the approximation.



52 2. Additive Models for Relation Prediction

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
a
n
d F A F B

F IN
TE

R F a
ll

M C
F

M H
B
S

M a
d
d

n
D

C
G

@
a

ll

(a) Gene-Disease

0

0.05

0.1

0.15

0.2

0.25

0.3

R
a
n
d F A F B

F IN
TE

R F a
ll

M C
F

M H
B
S

M a
d
d

n
D

C
G

@
a

ll

(b) Disease-Gene

Figure 2.7: The goal is to predict the relationship between genes and diseases. The first set
of experiments ranked recommended diseases for genes and the second set of experiments
ranked recommended genes for diseases. Contextual features from disease attributes FA
and from gene attributes FB, and contribution from the interaction term FINTER were
considered. In both tasks, the combination of all context models in Fall is better than the
individual context models where FINTER is quite weak. For the first task, both combination
schemes are better than the intrarelational model (MCF) or the context model (Fall) on their
own, so both combination schemes are sensible. The hierarchical Bayes models, i.e. MHBS,
gives the best result. The results are generally better than the results reported in [42]
since, there, only contextual features from text documents were used. The second task,
predicting genes for diseases, is more difficult due to the great number of potential genes.
Intrarelational correlation (MCF) on its own is relatively weak. Again, both combination
schemes give good results.
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been presented. It is shown that efficient learning can be achieved using an alternating
least squares approach. A number of sensible algorithms were presented, which are
all modular and have unique solutions. Particularly, two combination schemes (Madd

and MHBS) have been shown to be effective and there is no clear best approach,
although there seems to be a general advantage for combing the strengths of exploiting
intrarelational correlation and contextual information.

In the applications of recommendation systems, contextual information could be ex-
tracted from the database and from textual data. One can simply treat the keywords
in the textual descriptions as additional features describing subjects or objects. In
some applications, it is useful to add aggregated information. This can be represented
as additional features as well.

3-fold cross validation was performed for each model in two sets of experiments,
following the same experimental protocol as described in Section 2.3.5. The goal is
to show the improvement on predictive performance by including prior knowledge to
exploit both intrarelational correlations and contextual information for recommending
movies and books to users. An interesting observation is that sometimes there are
significant contributions from the contextual information, but that this information
also seems to be reflected in the intrarelational correlations, so adding contextual
information to a model that uses intrarelational correlations does not further improve
performance. In general, correlated information or information that is represented
several times does not hurt performance, since a regularization is employed.

2.5.1 Modeling MovieLens Data

943 users and 1,600 movies from the MovieLens data set12 were used to evaluate if
a user has seen a movie or not. 99 user attributes were derived from age (5 classes),
gender (2 classes) and occupation (21 classes). The 89 movie attributes were de-
rived from genre, release month and keywords extracted from the Wikipedia pages.
Figure 2.8 (a) shows the results. Although the attribute information on the movies
and the users have predictive power (significantly above random), a model exploiting
intrarelational correlations (MCF) gives very good performance and the two combi-
nation models (Madd and MHBS) cannot improve beyond the performance of MCF.

12http://www.grouplens.org/node/73
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(b) Book-Crossing

Figure 2.8: (a) Experiments on movielens data. FA describes the modeling performance us-
ing only the attribute information on the movies and FB describes the modeling performance
using only the attribute information on the users. Although the attribute information on the
movies and the users have predictive power (significantly above random), a model exploiting
intrarelational correlations (MCF) gives very good performance and the two combination
models (Madd and MHBS) can not significantly improve beyond the performance of MCF.
As in the experiment on the synthetic data, there is information in the attribute data but
this information is also represented in MCF. (b) Experiments on the book-crossing data set.
The same trends can be seen as in the movielens experiments although the additive model
Madd seems to improve on the model MCF, which only exploits intrarelational correlations.
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As in the experiment on one synthetic data in Section 2.3.5, there is information in
the contextual data but this information is also represented in MCF. Additionally,
8,811 potential interaction terms were reduced to 200 by using a fast feature selection
procedure evaluating the Pearson correlation between targets and interaction term.

2.5.2 Modeling Book Preferences

The BookCrossing data set13 was used to predict if a user rated a book. The data set
consisted of 105,283 users and 340,554 books. A user is described by 5,849 attributes
(derived from age and city, province and country) and a book is described by 24,508
attributes (authors, publication year, publisher). The goal is to predict if a user would
rate (i.e. read) a book. The results in Figure 2.8 (b) show that the additive model
Madd gives best results.

13http://www.bookcrossing.com
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Chapter 3

Learning from Latent and
Observable Patterns on
Multi-relational Data via Tensors

Representing the multi-relational data by a 3-way tensor is a more natural way com-
pared to using a matrix, as a third dimension models the interactions of entities under
different relation types. This chapter starts with an introduction to tensors and tensor
decompositions. What follows is an analysis on the computational complexity of ten-
sor models, to show that a lower tensor rank guarantees fast tensor decompositions.
As the rank of a tensor also determines its generalization ability, a too low rank may
not be sufficient to represent the data. Thus there is a theoretical consideration about
under which conditions factorizations are efficient for the learning. Based on these
discussions, a novel tensor decomposition approach ARE is proposed which stands
for Additive Relational Effects. ARE combines the strengths of tensor factorizations
(particularly RESCAL) and prior knowledge in an additive way to discover different
relational effects from the networked data.

The rest of this chapter is organized as following: Section 3.1 will provide an overview
of high-order tensor decompositions, including the basic operations and some well-
established tensor models. Section 3.2 will discuss under which conditions a tensor
decomposition requires a high or a low rank. Section 3.3 will present the novel Ad-
ditive Relational Effects model, including a scalable algorithm for computation and
evaluations on several benchmark data sets to show that ARE outperforms many
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state-of-the-art relational learning algorithms in both runtime and predictive perfor-
mance.

3.1 An Introduction to Tensors and Tensor De-
compositions

High-dimensional modeling is becoming ubiquitous across the sciences and industry
due to its descriptive flexibility for multi-relational data. The advances in parallel
computational technology increase the feasibility of high-dimensional modeling for
large scale learning problems. A tensor is a multi-dimensional array that can be used
for high-dimensional modeling. Tensor decompositions were popular early in the field
of chemometrics and psychometrics [104], and in recent years they received more
attention also from machine learning and data mining community. This section will
briefly review definitions and properties of tensors, and some well-established tensor
models. For a more detailed and complete introduction to tensor decompositions, one
can refer to the survey paper from Kolda and Bader [52].

3.1.1 Notation and Preliminaries

An N-way or Nth-order tensor can be represented as a multi-dimensional array of
numerical values. The order (also known as ways or modes) of a tensor is the number
of dimensions. Particularly, a matrix is a second-order tensor, a vector is a first-order
tensor, and a scalar is a zero-order tensor. Tensor elements in form of a scalar, a
vector and a matrix can be extracted from a tensor by different ways of indexing.

Definition 4 (Entries). Fixing all indices of elements in a tensor generates a scalar.
Each entry in a N-order tensor X P RI1�I2�����IN is indexed by a N-tuple of subscripts,
pi1, i2, � � � , iNq. Element pi1, i2, � � � , iNq of the tensor X is denoted as xi1i2���iN . The i-th
entry of a vector x P RI is donated as xi. Element pi, jq of a matrix X P RI�J is
denoted as xi j . Element pi, j, kq of a third-order tensor X P RI�J�K is denoted as
xi j k .

Definition 5 (Fibers [52]). Fixing all but one indices of elements in a tensor gener-
ates a vector, which is also known as a fiber. A matrix column x: j (also denoted as
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x j) of matrix X P RI�J is a mode-1 fiber and the matrix row xi: is a mode-2 fiber. A
third order tensor X P RI�J�K has column fibers x: j k , row fibers xi:k and tube fibers
xi j:.

Definition 6 (Slices [52]). Fixing all but two indices of elements in a tensor generates
a matrix, which is also known as a slice. The horizontal, lateral, and frontal slices
of a third-order tensor X P RI�J�K are respectively denoted as Xi::, X: j:, and X::k .
Alternatively, the k-th frontal slice X::k will be denoted as Xk for convenience.

As consequences, some basic operations defined over scalars, vectors or matrices can
be carried on with tensors.

Definition 7 (Rank-one Tensor [52]). An N-order tensor X P RI1�I2�����IN is called
a rank-one tensor if it can be expressed via the outer product of N vectors.

X � ap1q � ap2q � � � � � apNq

where � is the vector outer product. Equivalently, each element of X is the product of
the corresponding elements from the vectors.

xi1i2���iN � ap1qi1
� ap2qi2

� � � � � apNq
iN

Figure 3.1 shows an example of a third-order rank-one tensor X P RI�J�K . Partic-
ularly, SVD decomposition (Equation 2.1) of a matrix X P RI�J can be viewed as a
sum of rank-one tensors, i.e. X �

°r
p�1 dp up � vp.

 =

Figure 3.1: This picture is adopted from [52]. A third-order rank-one tensor X � a � b � c,
where each element can be computed via xi jk � aibjck , for i � 1, . . . , I, j � 1, . . . , J,
k � 1, . . . ,K .

Definition 8 (Kronecker Product [52]). The Kronecker product of matrices A P RI�J
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and B P RK�L is denoted as Ab B, and can be computed via

Ab B �

�
�����

a11B a12B � � � a1J B

a21B a22B � � � a2J B
...

...
...

. . .
...

aI1B aI2B � � � aI J B

�
�����

which is a matrix of size IK � JL. Equivalently,

Ab B � ra1 b b1 a1 b b2 a1 b b3 � � � aJ b bL�1 a j b bLs

where for vectors, the operation of Kronecker product equals to the outer product �.

Definition 9 (Khatri-Rao Product [52]). The Khatri-Rao product of matrices A P

RI�K and B P RJ�K is denoted as Ad B, and can be computed via

Ad B � ra1 b b1 a2 b b2 � � � aK b bK s

which is a matrix of size I J �K. The operation of Khatri-Rao Product can be viewed
as the “matching columnwise” Kronecker product.

Definition 10 (n-mode unfolding [52]). Unfolding of a tensor X P RI1�I2�����IN , also
known as matricization or flattening, is to reorder the elements of X into a matrix.
Particularly, the n-mode unfolding of the tensor X is denoted as Xpnq and the columns
of Xpnq are the mode-n fibers of X.

Definition 11 (n-mode product [52]). The n-mode product of a tensorX P RI1�I2�����IN

and a matrix U P RJ�In is denoted as X�nU and can be expressed in terms of n-mode
unfolding of X.

Y � X�n U ô Ypnq � U Xpnq

The n-mode product of a tensor and a matrix is then to multiply each mode-n fiber
of X by a matrix U. This operation is related to a change of basis via U when the
tensor X defines a multi-linear operation.

As an example1 to illustrate most of the aforementioned concepts, let the frontal slices

1The example is adopted from [52].
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of X P R3�4�2 be

X1 �

�
��
1 4 7 10
2 5 8 11
3 6 9 12

�
�� , X2 �

�
��
13 16 19 22
14 17 20 23
15 18 21 24

�
�� .

Thus the mode-1 fibers of X are vectors of�
��
1
2
3

�
�� ,
�
��
4
5
6

�
�� ,
�
��
7
8
9

�
�� ,
�
��
10
11
12

�
�� ,
�
��
13
14
15

�
�� ,
�
��
16
17
18

�
�� ,
�
��
19
20
21

�
�� ,
�
��
22
23
24

�
�� .

The mode-2 fibers of X are vectors of�
�����

1
4
7
10

�
����� ,
�
�����

2
5
8
11

�
����� ,
�
�����

3
6
9
12

�
����� ,
�
�����
13
16
19
22

�
����� ,
�
�����
14
17
20
23

�
����� ,
�
�����
15
18
21
24

�
����� .

The mode-3 fibers of X are vectors of�
1
13

�
,

�
2
14

�
,

�
3
15

�
,

�
4
16

�
,

�
5
17

�
,

... ,

�
9
21

�
,

�
10
22

�
,

�
11
23

�
,

�
12
24

�
.

The 1-mode, 2-mode and 3-mode unfoldings of X are respectively

Xp1q �

�
��
1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

�
��

,

Xp2q �

�
�����

1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24

�
�����

,

Xp3q �

�
1 2 3 4 5 � � � 9 10 11 12
13 14 15 16 17 � � � 21 22 23 24

�
.
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Given a matrix U �

�
1 3 5
2 4 6

�
, the 1-mode product of X and U is a tensor Y P

R2�4�2 � X�1 U, with frontal slices

Y1 �

�
22 49 76 103
28 64 100 136

�
, Y2 �

�
130 157 184 211
172 208 244 280

�

Given a vector v � r1 2 3 4sT , the 2-mode product of X and v is a matrix
Y P R3�2.

Y �

�
��
70 190
80 200
90 210

�
��

Finally, three definitions are important for defining an optimization problem for a
tensor.

Definition 12 (Tensor Norm [52]). The norm of a tensor X P RI1�I2�����IN is denoted
as }X} and can be calculated via the square root of the sum of the squares of all its
elements.

}X} �

gffe I1̧

i1�1

I2̧

i2�1
� � �

IŅ

iN�1
x2i1i2���ıN

which corresponds to the Frobenius norm }X} for a matrix X P RI�J.

Definition 13 (Tensor Rank [52]). The rank of a tensor X P RI1�I2�����IN is denoted
as rankpXq and is defined as the minimal number of rank one tensors required to
generate X as their sum.

rankpXq � min

#
r

�����X �
ŗ

p�1
ap1qp � ap2qp � � � � apNq

p

+

where apnqp P RIn , n � 1, . . . ,N . Particularly, the tensor rank of a third-order tensor
X P RI�J�K is defined as

rankpXq � min

#
r

�����X �
ŗ

p�1
ap � bp � cp

+

where ap P RI , bp P RJ and cp P RK .
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Definition 14 (n-Rank [52]). The n-rank (also called multi-linear rank) of a tensor
X P RI1�I2�����IN is denoted as n-rankpXq and is defined by a tuple pr1,r2, . . . ,rNq,
where rn is the rank of the matrix Xpnq, n � 1, . . . ,N .

3.1.2 Tensor Decompositions

3.1.2.1 The CANDECOMP/PARAFAC Decomposition

The CANDECOMP/PARAFAC (CP) decomposition factorizes a tensor into a finite
sum of rank-one tensors. The idea of CP was earliest proposed by Hitchcock in
1927 [34, 35], and became popular after the introduction by Carroll and Chang [11],
and Harshmann [28] in 1970. CP has been applied in the fields of psychometrics,
chemometrics, sensor array processing, telecommunications, neuroscience, image com-
pression and classification, and many more applications that can be seen in [52].

Figure 3.2 shows the CP decomposition of a third-order tensor X P RI�J�K , which
can be formulated as

X �
ŗ

p�1
ap � bp � cp

where rank-one components ap P RI , bp P RJ , cp P RK , and r P Z� is the predefined
rank for the decomposition. Latent factor matrices of CP refer to matrices where the
columns consist of rank-one components, i.e. A � ra1 a2 . . . ars and a similar
way for B and C. Correspondingly, each element of X can be computed via

xi j k �
ŗ

p�1
aipb jpckp

where i � 1, . . . , I, j � 1, . . . , J, k � 1, . . . ,K .

+ + ... +

Figure 3.2: This picture is adopted from [52], which shows the CP decomposition of a
third-order tensor X �

°r
p�1 ap � bp � cp .
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The CP decomposition is basically unique, which means that given a predefined rank
r the rank-one components are unique except the scaling and permutation indetermi-
nacies. This uniqueness property is interesting and helpful for interpreting the latent
components.

The workhorse algorithm for CP is the alternating least squares (ALS) method [11,
28]. Algorithm 1 illustrates the CP-ALS of a third-order tensor.

Algorithm 1 CP-ALS for Third-order Tensors [11, 28]
Require: X P RI�J�K , r
1: Initialize A P RI�r , B P RJ�r , C P RK�r

2: repeat
3: A Ð Xp1qpC d BqpCTC � BT Bq:, normalize columns of A
4: B Ð Xp2qpC d AqpCTC � AT Aq:, normalize columns of B
5: C Ð Xp3qpB d AqpBT B � AT Aq:, normalize columns of C
6: until fitness ceases to improve or maximum iterations achieved
7: return A, B, C, and their norms λ

3.1.2.2 The Tucker Decomposition

The Tucker decomposition factorizes a tensor into a core tensor transformed by factor
matrices, each of which is for one mode of the tensor. The idea of Tucker decomposi-
tion was first brought by Tucker in 1963 [105], and the model was refined in subsequent
works from Levin [60] and Tucker [102, 103]. Tucker decomposition has been applied
in the fields of chemical analysis, psychometrics, signal processing, computer vision,
and many more applications that can also be found in [52].

Figure 3.3 shows the Tucker decomposition of a third-order tensorX P RI�J�K , which
can be formulated as

X � G�1 A�2 B �3 C

where A P RI�r1 , B P RJ�r2 , C P RK�r3 are the latent factor matrices respectively
for the 1-mode, 2-mode, and 3-mode unfoldings of X. G P Rr1�r2�r3 is the core
tensor showing the interaction between the latent components from the three factor
matrices. For example, the element gpgr P G shows the interaction between latent
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component ap
2, bq and cr . Correspondingly, each element of X can be computed via

xi j k �
r1̧

p�1

r2̧

q�1

r3̧

r�1
gpqr aipb jqckr

where i � 1, . . . , I, j � 1, . . . , J, k � 1, . . . ,K .

Figure 3.3: This picture is adopted from [52], which shows the Tucker decomposition of a
third-order tensor X � G�1 A�2 B �3 C.

CP can be viewed as a special case of Tucker where the core tensorG is diagonal. The
CP decomposition facilitates analysis on the latent components, such as applying CP
to RDF graphs for faceted browsing [18]. Another two special cases of Tucker that will
be used in this thesis are Tucker 1 and Tucker 2 models. A Tucker 1 decomposition
of the third-order tensor X can be formulated as

X � G�3 C

where C acts as a weighting matrix on the tensor G such that the k-th frontal slice
of X is a linear combination of the frontal slices of G with weights ck:. A Tucker 2
decomposition of the third-order tensor X can be formulated as

X � G�1 A�2 B .

An example of Tucker 2 decomposition will be shown in Section 3.1.2.3.

In contrast to CP, the Tucker decomposition is usually not unique due to the fact that
the core tensor G can be modified without impact on the reconstruction as soon as

2ap is the pth column of matrix A, likewise for bq and cq
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the corresponding inverse are applied to the factor matrices. However, different efforts
have been made to improve the uniqueness by adding constrains on G to simplify the
interactions between latent components.

To compute the Tucker decomposition, a High-Order Orthogonal Iteration (HOOI)
algorithm [58] is used. Algorithm 2 illustrates the HOOI for a Tucker decomposition
of a third-order tensor.

Algorithm 2 Tucker HOOI for Third-order Tensors [58]
Require: X P RI�J�K , r1, r2, r3
1: Initialize A P RI�r , B P RJ�r , C P RK�r respectively with the leading left singular

vectors of the corresponding unfolding of X
2: repeat
3: YÐ X�2 BT �3 CT

4: A Ð r1 leading left singular vectors of Yp1q
5: YÐ X�1 AT �3 CT

6: B Ð r2 leading left singular vectors of Yp2q
7: YÐ X�1 AT �2 BT

8: C Ð r3 leading left singular vectors of Yp3q
9: until fitness ceases to improve or maximum iterations achieved
10: GÐ X�1 AT �2 BT �3 CT

11: return A, B, C, G

3.1.2.3 The Relational Model RESCAL

RESCAL is a third-order tensor decomposition that can be seen as a special case
of Tucker 2 decomposition. In RESCAL, entities including subjects and objects are
modeled in the first two dimensions and a third dimension models different relation
types. Instead of using three latent factor matrices in Tucker, RESCAL models all
entities in one latent matrix. The core tensor of RESCAL shows interactions of latent
components under different relation types. RESCAL was introduced by Nickel et al.
in recent years [71, 72] and has been applied to the tasks of link prediction, entity
resolution and link-based clustering. It has been proved that RESCAL has strong
relational learning ability and scales well with large data sets such as the YAGO
knowledge base.

Figure 3.4 shows the RESCAL decomposition of a third-order tensor X P RN�N�K ,
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which can be formulated as

Xk � ARk AT , for k � 1, . . . ,K

where N is the number of entities including both subjects and objects, A is a matrix
containing the latent-component representation of the entities in the domain and Rk

is an r � r matrix modelling the interactions of the latent components in the k-th
relation.

An important aspect of RESCAL which distinguishes it from other tensor factor-
izations models is that entities have a unique latent representation via the matrix
A. This enables a relational learning effect via the propagation of information over
different relations and regardless of whether an entity occurs as a subject or object
in a relationship.

Figure 3.4: The RESCAL decomposition on a third-order tensor X � R �1 A�2 A.

RESCAL decomposition addresses to a regularized optimization problem.

min
A,R

¸K

k�1

��Xk � ARk AT
��2

F � λA}A}2F � λR

¸K

k�1
}Rk}

2
F

To compute the RESCAL decomposition, an efficient and scalable RESCAL alter-
nating least squares (RESCAL-ALS) algorithm [71, 72] was proposed which is illus-
trated in Algorithm 3. Note that .� denotes elementwise product of matrices such
that pA. � Bqi j � ai j bi j .
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Algorithm 3 RESCAL-ALS [71, 72]
Require: X P RN�N�K , r, λA, λR
1: Initialize A P RN�r with the r largest eigenvectors of

°K
k�1pXk � XT

k q
2: repeat
3: A Ð

�°K
k�1

�
Xk ART

k � XT
k ARk

�� �°K
k�1

�
Rk AT ART

k � RT
k AT ARk � λAI

���1

4: for k � 1, . . . ,K do
5: U, S, V Ð SVDpAq
6: s Ð diagpSq
7: p Ð sb s
8: for i � 1, . . . ,r2 do
9: pi Ð

pi
pp2

i �λRq

10: end for
11: Reshape p P Rr2 to P P Rr�r

12: Rk Ð V
�
P. � pUT XkUq

�
VT

13: end for
14: until fitness ceases to improve or maximum iterations achieved
15: return A, R

3.2 On the Rank of Tensors

3.2.1 The Computational Complexity of Tensor Decomposi-
tions

The computational complexity of a tensor decomposition is estimated by counting
the number of elementary operations performed by the algorithm. As an elementary
operation takes a fixed amount of time to perform, the total computational time taken
is proportional to the number of elementary operations performed by the algorithm.
For example, the computational complexity of a matrix multiplication AB (with A P

RI�J , B P RJ�K) is OpI JKq, since the elementary operation ai j b j k is performed
I JK times. Computing a tensor decomposition usually requires some basic matrix
operations. Table 3.1 lists the runtime complexity of these basic matrix operations.

Based on Table 3.1, it can be easy to derive the computational complexity of CP,
Tucker, and RESCAL decompositions of a third-order tensor X P RN�N�K (usually
K    N) with a predefined rank r.

For each iteration of the CP-ALS algorithm (Algorithm 1), updates to the three latent
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Table 3.1: Computational Complexity of Basic Matrix Operations

Operation Complexity

Matrix Multiplication AB, A P RI�J , B P RJ�K OpI JKq, or OpnnzpAqKq�

Matrix Inversion A�1, A P RN�N OpN3q [65]
The Largest r Eigenvectors of A P RN�N OpNr2q [59]
Kronecker Product Ab B, A P RI�J , B P RK�L OpI JK Lq
Khatri-Rao Product Ad B, A P RI�K , B P RJ�K OpI JKq

� In case A is sparse. nnz stands for the number of nonzeros.

factor matrices are required. Take the update of latent matrix C as an example,

C Ð Xp3qpB d AqpBT B � AT Aq:

where A, B P RN�r and C P RK�r . The computational complexity of the Khatri-
Rao Product B d A is OpN2rq. The matrix product BT B and AT A both require
computational complexity of OpNr2q. Furthermore, since BT B � AT A is a r�r matrix,
the computational complexity of the product between BT B and AT A is Opr3q, and the
pseudo-inversion on top of the product requires another time complexity of Opr3q. As
the adjacency tensor for large scale data is usually sparse, the 1-mode unfolding Xp3q

is therefore sparse. The product bwtween Xp3q, pB d Aq and pBT B � AT Aq: requires
a runtime of O

�
nnzpXq r � Kr2

�
. So the overall time required to update C in one

iteration is O
�

N2r � 2Nr2 � 2r3 � nnzpXq r � Kr2
�
, which has a asymptotic time

complexity of O
�
nnzpXq r � N2r � Nr2 � r3

�
. Similar analysis can be done on the

updates of factor matrices B and C for CP-ALS. The conclusion is CP scales linearly
with the number of nonzeros in the adjacency tensor, quadratic to the number of
entities, cubic to the rank of tensor.

For using HOOI (Algorithm 2) to compute the Tucker decomposition, it is required
to compute the r leading left singular vectors of Yp1q in line 4 of Algorithm 2, i.e. the r

largest eigenvectors of Yp1qYT
p1q where Yp1q � Xp1qpC b BqT . The matrix product Yp1qYT

p1q
requires OpN2r2r3q elementary operations since Yp1q is a N�r2r3 matrix. To compute
the r largest eigenvectors of a N � N matrix requires a computational complexity of
OpNr2q according to Table 3.1. Nevertheless, a memory problem immediately comes
up as the line 3 of Algorithm 2 generates a dense tensor Y and Yp1qYT

p1q ends up with
a dense matrix requiring memory complexity quadratic to the number of entities N .
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Regarding to the runtime complexity of RESCAL-ALS (Algorithm 3), a detailed
analysis is given in [69]. It is shown that RESCAL scales linearly with the data size,
i.e. linearly with the number of entities, the number of relations, and the number
of known facts. The computational complexity with regard to the number of latent
components r is Opr3q.

Considering the runtime complexity, RESCAL is more efficient than CP when the
number of entities involved is large due to the fact that CP scales quadratic to N .
Furthermore, the intermediate high demand on memory for Tucker limits its appli-
cation on large scale data. RESCAL has rather low memory demand as the storage
required by all the computations is linear to the data size and the size of latent factors.

3.2.2 The Conditions on the Rank of a Tensor

The analysis on the computational complexity of CP, Tucker, and RESCAL decom-
positions for third-order tensors shows, that the rank of a tensor (either the tensor
rank or n-rank) is key for the runtime performance of tensor decompositions. The
rank of a tensor is on the other hand controlling the complexity and the generalization
ability of the model. A too low rank may not be sufficient to model the data, while
a too high rank may cause overfitting problem.

Recall that when representing a relational graph G by an adjacency matrix X (Def-
inition 2 in Section 1.2.3.2), it simultaneously records the information from G to a
bipartite graph Γ. Section 2.1.2.1 has shown that the process of matrix factorizations
(particularly SVD decomposition) is an action of grouping respectively the subject
entities and relation type - object pairs based on their connectivity. After the fac-
torization process, latent components are used to represent these subject groups or
relation type - object groups (in case of only one relation type in the adjacency matrix,
object groups).

Tensor factorizations can be analysed in a similar way where the relational graph G
is represented by an adjacency tensor (Definition 3 in Section 1.2.3.2), accordingly
represented by a bipartite graph Γ. The process of tensor decompositions compared
to matrix factorizations differs in that tensor decompositions consider correlations in
different unfolding matrices of a tensor. From Algorithm 1, 2 and 3, respectively for
CP, Tucker and RESCAL decompositions, one can see that the latent representations
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are learnt based on the column correlations of the corresponding unfolding matrix.
The 1-mode unfolding of a tensor is a matrix with each row for a subject entity,
each column for a relation type - object pair. The 2-mode unfolding of a tensor
has each row representing an object entity, each column representing a subject -
relation type pair. The 3-mode unfolding of a tensor has rows for relation types,
columns for subject - object pairs. After a tensor decomposition process, the latent
representations for subjects, objects and relation types are respectively learnt from
the correlations of relation type - object pairs, the correlations of subject - relation
type pairs, and subject - object pairs. Entity-specific information as described in
Section 1.2.2.1 can be used to exploit the first two kinds of correlations. However,
the entity-pair information that is described in Section 1.2.2.2 and demonstrated in
Figure 2.4 (c) is not yet used in the previous tensor models.

Figure 3.5: An example of 4 families, each has one child. In the three figures, the red color
relates to the marriage relation; The green color relates to the hasChild relation. Figure
(c) shows the relational graph with each dotted frame for a strongly connected component.
A strongly connected component is a maximal subgraph of a relational graph where each
vertex is reachable form any other vertex. Figure (b) shows the adjacency matrices for the
marriage relation and the hasChild relation. Figure (a) shows the bipartite graph which
corresponds to the relational graph (c).

To give a concrete example, Figure 3.5 (c) shows a relational graph of 4 families, each



72
3. Learning from Latent and Observable Patterns on Multi-relational

Data via Tensors

consisting of a pair of parents and their children. Two frontal slices representing the
marriage relation and the hasChild relation are shown in Figure 3.5 (b). Figure 3.5 (a)
gives the corresponding bipartite graph. It can be seen that the 4 pairs of marriages
are isolated in the graph as one person is usually married to exactly one another
person. It is hard to find any correlated columns or correlated rows in the unfolding
matrices of the tensor that can be used to predict a marriage. Therefore it requires
at least 4 latent components to recover the marriage matrix exactly. Technically, the
marriage matrix can be decomposed as:

X � I b

�
0 1
1 0

�

where I is an identity matrix of size 4� 4.

However, the marriage relation can be easily predicted from a pattern expressed as:

marriagepvar1,var2q Ð hasChildpvar1,var3q ^ hasChildpvar2,var3q

which is essentially the Common Neighbors (Section 1.2.2.2).

Another high rank requirement comes from the relation of myself (not plotted in the
figure), which has an identity matrix as its adjacency matrix. The myself relation
could not be learnt from the other known facts but it requires a full rank to recover
any unfolding matrix that contains it, therefore, requires a full rank for the tensor
decomposition.

From the theoretical considerations, a bound was proved to tell under which condi-
tions the tensor decompositions require a high rank or a low rank3.

Theorem 1. The tensor rank rankpXq and multi-linear rank n-rankpXq � pr1,r2,r3q

of any adjacency tensor X P t0,1uN�N�K over K relations with adjacency matrices
tXku

K
k�1 is bounded by

¸K

k�1
dppΓkq ¥ θ ¥ max

k
rankpXkq ¥ max

k
scc�pXkq

where θ is any of the quantities rankpXq, r1, or r2. Γk is the bipartite graph of

3The theoretical prove of Theorem 1, Lemma 2 and Lemma 3 in [70] was done by the coauthor
Maximilian Nickel. It is straightforward to derive Theorem 1 in this thesis by combing the three
theoretical results.



3.3 Reducing the Factorization Rank by including Observable Patterns73

relation Xk . dppΓkq is the biclique cover number of Γk , where biclique cover number
is the minimum number of complete bipartite subgraphs needed to cover all edges in
the bipartite graph. scc�pXkq is the number of strongly connected components in the
bipartite graph Γk with a constraint that each component contains more than one
element.

As shown in Figure 3.5 (c), the number of strongly connected components in the mar-
riage relation is 4, correspondingly scc� � 0 for the hasChild relation, and scc� � 0
for the myself relation. Thus the maximum number of strongly connected compo-
nents in all the relations occurs in the marriage relation, i.e. maxk scc�pXkq � 4.
Theorem 1 tells that the rank required to recover the adjacency tensor X for this
example is at least 4. Equivalently, for m marriages, a factorization model would at
least require m latent components to recover the adjacency tensor. As the compu-
tational complexity of tensor decompositions is in cubic of the rank, large m would
have rather high computation demand which render the application of factorization
approaches on this kind of relations.

To summarize, tensor decompositions are very efficient if the related bipartite graph
can be partitioned into a few fully connected groups. But they are inefficient to handle
relations that are locally connected, such as the marriage relation. Some observable
patterns that are path-based or neighborhood-based (e.g. Common Neighbors) can
easily predict relations via exploiting the entity-pair information.

3.3 Reducing the Factorization Rank by including
Observable Patterns

Motivated by the previous discussion, an Additive Relational Effects (ARE) tensor
model will be presented in this section, which derives the strong relational learning ef-
fects from the highly scalable tensor decomposition approach RESCAL, and a Tucker
1 tensor which includes observable patterns as instantiated relations. An efficient
least squares approach will also be proposed to compute the combined model ARE.
Experiments on several benchmark data sets show that ARE starts to have good
predictive performance at a very low rank, and it outperforms many state-of-the-art
relational learning algorithms.
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3.3.1 An Additive Relational Effects Model

To include the knowledge of observable patterns, an additive term that consists of
the predictions of observable pattern methods is added to the RESCAL model. Let
X P t0,1uN�N�K be a third-order adjacency tensor and M P RN�N�P be a constant
third-order tensor that contains the predictions of an arbitrary number of relational
learning methods. Figure 3.6 shows the proposed Additive Relational Effects model
(ARE), which can be formulated as

X � R �1 A�2 A�M�3 W (3.1)

where A P RN�r , R P Rr�r�K and W P RK�P.

+

Figure 3.6: The ARE decomposition for a third-order tensor X � R �1 A�2 A�M�3 W .

3.3.1.1 The RESCAL Part of ARE

The first term of equation (3.1) corresponds to the RESCAL model which has the
following interpretation: The matrix A P RN�r holds the latent variable representa-
tions of the entities, while each frontal slice Rk of R is an r�r matrix that models the
interactions of the latent components for the k-th relation. The variable r denotes
the number of latent components of the factorization.

As A encodes the information of each entity acting as a subject or as an object in
different relationships, each column of A is a latent component representing a group
of entities that share similar subject entities or similar object entities. Row n of
A represents entity n, denoted as an, n � 1, . . . ,N . This unique representation for
entities in the domain enables information propagation in the relational graph. Take
entities of employee i, employee i0, department j, team t, team t0 and relation type k
(department membership) as an example. The confidence value of a team t member
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employee i belongs to department j can be calculated via xi j k � aT
i Rka j . Assume

it is known that employee i0 from team t0 is in department j, i.e. aT
i0

Rka j � 1 for
i0 � i. As entity t shares a common object entity j with t0, the latent representation
for entity t is similar to the one for entity t0. Consequently, entity i will be similar
to entity i0 due to sharing the similar object entities (t and t0), namely ai � ai0 .
Therefore, it can be concluded that xi j k � aT

i Rka j � ai0 Rka j � 1, i.e., employee i

is most likely also in department j. Explicitly, this information propagation can be
formulated as

aT
i Rka j Ð aT

i Rk1at ^ aT
t Rk2a j ^ aT

i0 Rk1at0 ^ aT
i0 Rka j @ i, j, t . (3.2)

where k1 represents the relation type of team membership, k2 represents the relation
type teamOf.

3.3.1.2 The Observable Patterns in ARE

The second term of equation (3.1) is a Tucker 1 model. The model M �3 W shows
how informative the observable patterns are. The construction of the tensor M is as
following: Let F � t fpu

P
p�1 be a set of given real-valued functions fp : V �V Ñ R

which assign scores to each pair of entities in the entities set V . Examples of such
score functions include link prediction heuristics such as Common Neighbours, Katz
Centrality, the Jaccard coefficient, Horn clauses, and more can be found in Sec-
tion 1.2.2.2. These scores can be interpreted as confidence values of a relationship
being true between two entities. These real-valued predictions of P score functions are
collected in the tensor M P RN�N�P by setting mi jp � fppvi,v jq. In the factorization
M acts as prior knowledge that predicts the existence of relationships and the term
M�3W can be interpreted as learning a set of weights wkp, which indicate how much
the p-th piece of information in M correlates with the k-th relation in X.

In the RESCAL part, information propagation is based on the connectivity of the
associated relational graph. Equation 3.2 tells RESCAL can easily learn that all
employees from a team of a department also belong to that department. It requires
m connected sub relational graphs and consequently m latent components to model
m different departments, with each latent component for one department. However,
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prior knowledge formulated as a transitive relation

aT
i Rka j Ð aT

i Rk1at ^ aT
t Rk2a j @ i, j, t

can be used to cover all the departments. This observable pattern can be integrated
into the tensor M via a simple matrix multiplication Xk1 XT

k2
. The weighting matrix

W then weighs the importance of the product Xk1 XT
k2

to the relation k.

3.3.1.3 The Additive Effects from RESCAL and the Observable Pattens

The main idea of ARE is as following: The term R �1 A �2 A is equivalent to the
RESCAL model and provides a very efficient approach to learn from latent patterns
on relational data. The tensor M on the other hand is not factorized, such that it
can hold information that is not efficient to predict via latent variable methods. As it
is not clear a priori which score functions are good predictors for which relations, the
term M�3 W learns how informative each score function is for each known relation.
By integrating both terms in an additive model, the term M �3 W can potentially
reduce the required rank for the RESCAL term by explaining links that spread in
many latent groups but can be expressed by observable patterns. For instance, by
including a copy of the observed adjacency tensor X in M (or some selected frontal
slices Xk), the term M�3W can easily model common multirelational patterns where
two different relations are correlated via xi j k �

°
p�k wkpxi jp. Since wkp is allowed to

be negative, anticorrelations can also be modeled efficiently. ARE can be regarded to
be similar in spirit to the model of [55], which extends SVD with additive terms to
include nearest neighbor information in an uni-relational recommendation setting.

After learning the latent representation of the RESCAL part and the weights for
the tensor M, the confidence value of a relationship pi, j, kq can then be computed
via a linear combination of the interactions between latent component i and latent
component j under relation k, and the interactions of the entity i and entity j in all
the observable patterns.

xi j k � aT
i Rka j �

P̧

p�1
wkpmi jp

To summarize, the ARE decomposition addresses to a regularized optimization prob-
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lem.

min
A,R,W

¸K

k�1

���Xk �
�

ARk AT �
¸P

p�1
wkpMp

	���2
F
�λA}A}2F�λR

¸K

k�1
}Rk}

2
F�λW}W}2F .

3.3.2 Updates for W

The Equation 3.1 can be rewritten in the 3-mode unfolding

Ep3q � W Mp3q

where E � pX�R �1 A�2 Aq. It is straightforward to derive the updates for W via
regularized least squares

W Ð pMp3qM
T
p3q � λW Iq�1Mp3qE

T
p3q

where I denotes the identity matrix. However, this computation contains an interme-
diate result of a dense N�N�K tensor R�1 A�2 A. It requires a runtime complexity
of OpN2Kr �nnzpMqNq for the computation which is computational costly. Further-
more, the dense tensor has a memory complexity of N � N � K which is not feasible
for large data sets as N can be large. This scalability problem can be overcome by
considering the special structure of the problem. Consider

pR �1 A�2 Aqp3qM
T
p3q � Rp3qpAb AqT MT

p3q

� Rp3q
�

Mp3qpAb Aq
�T

� Rp3q
�
M�1 AT �2 AT�T

p3q

updates for W can be alternatively computed via

WT Ð
�

Xp3qM
T
p3q � Rp3q

�
M�1 AT �2 AT�T

p3q

�
Z (3.3)

where Z � pM
p3qM

T
p3q � λW Iq�1. In Equation 3.3, the dense tensor R �1 A�2 A has

never to be computed explicitly. The runtime complexity of Rp3qpM�1 AT �2 ATqp3q is
only OpNKr3 � nnzpMqrq. Therefore the computational complexity of Equation 3.3
with regard to the parameters N , K , and r is reduced to OpNKr3q. Moreover, the
terms Xp3qMT

p3q and Z are constant and have only to be computed once at the begin-
ning of the algorithm. Xp3qMT

p3q and Mp3qMT
p3q are the products of sparse matrices and
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can be computed efficiently.

3.3.3 Updates for A and R

Following the high-scalability of the alternating least squares algorithm to compute
the RESCAL factorization (Algorithm 3), a similar optimization scheme is used to
compute the RESCAL part of ARE.

The update rules for A and R can be directly derived from RESCAL-ALS by setting

E � X�M�3 W

and computing a RESCAL factorization of E.

The updates for A can therefore be computed by:

A Ð
�¸K

k�1
Ek ART

k � ET
k ARk

	�¸K

k�1
Rk AT ART

k � RT
k AT ARk � λAI

	�1

where Ek � Xk �M�3 wk: and wk: denotes the k-th row of W .

The updates of R can be computed in the following way: Let A � USVT be the SVD
of A, where the diagonal vector s contains the singular values of A. Furthermore, let
p � sb s and regularize pi P p via pi �

pi
p2
i �λR

. Reshape p to a matrix P P Rr�r . An
update of Rk can then be computed via

Rk Ð V
�
P. �UT BkU

�
VT

where Bk � Xk �M�3 wk:.

A more detailed description of ARE-ALS is given in Algorithm 4. It can be seen that
ARE-ALS retains the good scalability of RESCAL-ALS.

3.3.4 Experiments

Various multirelational data sets are used to evaluate the ARE model. A focus is on
the generalization ability of ARE decomposition with respect to its rank. To evaluate
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Algorithm 4 ARE-ALS
Require: X P RN�N�K , M P RN�N�P, r, λA, λR, λW
1: D P RK�P Ð Xp3qMT

p3q
2: Z P RP�P Ð pMp3qMT

p3q � λW Iq

3: Initialize A P RN�r with the eigenvectors of
°K

k�1pXk � XT
k q

4: repeat
5: WT Ð

�
D � R

p3q
�
M�1 AT �2 AT

�T
p3q

�
Z

6: A Ð
�°K

k�1 Ek ART
k � ET

k ARk

	�°K
k�1 Rk AT ART

k � RT
k AT ARk � λAI

	�1
,

where Ek � Xk � M �3 wk:
7: for k � 1, . . . ,K do
8: U,S,V Ð SVDpAq
9: s Ð diagpSq
10: p Ð sb s
11: for i � 1, . . . ,r2 do
12: pi Ð

pi
pp2

i �λRq

13: end for
14: Reshape p P Rr2 to P P Rr�r

15: Rk Ð V
�
P. � pUT BkUq

�
VT , where Bk � Xk �M�3 wk:

16: end for
17: until fitness ceases to improve or maximum iterations achieved
18: return A, R, W
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the performance of the additive approach of Equation 3.1, the well-established tensor
factorizations CP and Tucker are included in the evaluation as well as the RESCAL
factorization and the non-latent model X �M�3 W (labelled as MW).

For all Experiments evaluated by the area under the precision-recall curve (AUC-PR),
k-fold cross validation was performed for each model, following the same experimen-
tal protocol as in [48, 50, 94, 71] and as described in Section 2.3.5. For experiments
evaluated by nDCG@all, k-fold cross validation was performed for each model, fol-
lowing the same experimental protocol as described in Section 2.4.1. To make a fair
comparison, experiments conducted on the same data set used the same data splits
for different models.

3.3.4.1 Social Evolution

The first set of experiments were performed on the Social Evolution data set4 [64]
which consists of multiple relations of persons living in a undergraduate dormitory.
From the relational data, a 84 � 84 � 5 adjacency tensor was constructed where the
first two dimensions correspond to persons and the third mode represents the relation-
ships between these persons such as friendship (CloseFriend), social media interaction
(BlogLivejournalTwitter and FacebookAllTaggedPhotos), political discussion (Polit-
icalDiscussant), and social interaction (SocializeTwicePerWeek). Link prediction for
each relation was performed via 5-fold cross validation. The tensor M�3W consisted
only of a copy of the observed tensor X. Including X in M allows ARE to efficiently
exploit that if a social relation holds for a pair of persons, it is likely that they also
share other social activities. It can be seen from the results in Figure 3.7 (b � f )
that ARE achieves better performance than all competing approaches and achieves
excellent performance already at a very low rank. On this data set, the predictive
power of the observable pattern model MW is quite strong and it is not constrained
by any rank requirement. As the observable patterns MW can explain most of the
known facts in the tensor X via exploiting the entity-pair correlations, the RESCAL
part of ARE therefore only needs a very low rank to model the facts that have not
been covered by the heuristics.

4http://realitycommons.media.mit.edu/socialevolution.html

http://realitycommons.media.mit.edu/socialevolution.html
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(b) PoliticalDiscussant
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(f) FacebookAllTaggedPhotos

Figure 3.7: Evaluation results for AUC-PR on the Kinship (3.7a) and Social Evolution data
sets (3.7b-3.7f)
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3.3.4.2 Kinship

The Kinship data set5 is a popular data set for evaluating relational learning algo-
rithms. It describes the complex kinship relations in the Australian Alyawarra tribe,
originally collected by [13] in terms of 26 kinship relations between 104 persons. The
task in the experiment was to predict unknown kinship relations. A 10-fold cross
validation was conducted. Beside CP, RESCAL and DEDICOM [29], the experimen-
tal results of ARE was compared to the published results of IRM [50], MRC [50],
BCTF [94], SME [26], and the latent factor model (LFM) of [40]. Table 3.2 shows
the improvement of ARE over these methods. Figure 3.7a shows the predictive per-
formance compared to the rank of multiple factorization methods. As the Kinship
data set contains many high rank relations such as relation type myself with full
rank 104, all the factorization approaches require almost full rank to model the data.
Nevertheless, it can be seen that ARE outperforms all other methods at lower ranks
significantly. Moreover, starting from rank 40 ARE already gives comparable results
to the best results in Table 3.2. As in the previous experiments, M consists only of
copies of observed frontal slices Xk . Using these frontal slices ARE can model the fact
that the relations in the kinships data set are mutually exclusive, by setting wii ¡ 0
and wi j   0 for all i � j which explains the large improvement over RESCAL.

3.3.4.3 Link Prediction on Semantic Web Data

The SWRC ontology6 [93] models a research group in terms of people, publications,
projects and research interests. The task in this set of experiments was to predict the
affiliation relation, i.e. to map persons to research groups. The experimental setting
follows the one in [62]: From the raw data, a 12058�12058�85 tensor was constructed
by considering all directly connected entities of persons and research groups in the
data. In total, 168 persons and 5 research groups are considered in the evaluation data.
The tensor M, consisted again of a copy of X. Additionally, the Common Neighbors
pattern of the form Xk Xk and XT

k XT
k (k � 1, . . . ,K) were included. These patterns

were included to explain patterns such that people who share the same research
interest are likely in the same affiliation, that a person is related to a department
if the person belongs to a research group of that department, etc.. Furthermore, a

5http://alchemy.cs.washington.edu/data/kinships/
6http://ontoware.org/swrc/

http://alchemy.cs.washington.edu/data/kinships/
http://ontoware.org/swrc/
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sparsity penalty was imposed on W and inactive observed patterns were pruned away
during iterations. Table 3.3 shows that ARE with a small rank of 15 has superior
performance compared to the three state-of-the-art link prediction algorithms (SVD,
Common Subtrees [62] and RESCAL with rank 45) in the Semantic Web area.

Table 3.2: Evaluation Results on the Kinship Data Set

Approach Aera under PR Curve Rank

IRM 66 -
MRC 86 -
BCTF 90 -
DEDICOM 69 -
CP 94 170
SME 90.7 -
Latent Factor Model 94.6 (50,50,500)
RESCAL 96 100
ARE 96.9 90

Table 3.3: Evaluation Results on the SWRC Data Set

Approach SVD Subtrees RESCAL MW ARE

nDCG@all 0.8 0.95 0.96 0.59 0.99

3.3.4.4 Runtime Performance

As discussed in Section 3.2, rank is one of the most critical parameters of factoriza-
tion methods for their computational complexity as well as for their generalization
abilities. To evaluate the trade-off between runtime and predictive performance, the
nDCG values of RESCAL and ARE were reported after each iteration of the re-
spective ALS algorithms on the Cora citation database7. In these experiments, the
classification variant of Cora was used in which all publications are organized in a
hierarchy of topics with two to three levels and 68 leaves. The relational data consists
of information about paper citations, paper and topics from which a tensor of size
28073 � 28073 � 3 was constructed. The tensor consisted of a copy of X and the

7https://people.cs.umass.edu/~mccallum/data.html

https://people.cs.umass.edu/~mccallum/data.html
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Figure 3.8: Runtime Performance on the Cora Data Set for RESCAL and ARE over itera-
tions. The 20 markers respectively on the two curves show how the predictive performance
increases after each iteration.
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Common Neighbors patterns Xi X j and XT
i XT

j to model patterns such as that a cited
paper shares the same topic, and that a cited paper shares the same author. The task
of the experiments was to predict the leaf topic of papers by 5-fold cross-validation.
The optimal rank 220 for RESCAL was determined out of the range r10,300s via
parameter selection, while ARE used a significantly smaller rank 20. Figure 3.8 shows
the runtime of RESCAL and ARE compared to their predictive performance. It is
evident that after a few iteration ARE outperforms RESCAL although the rank of
the factorization is decreased by an order of magnitude. Moreover, ARE surpasses
the best prediction results of RESCAL in terms of total runtime even before the
first iteration of RESCAL-ALS ceased.
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Chapter 4

Conclusions

4.1 Summary

Relational data is an efficient way to represent knowledge in form of subject - relation
type - object triples. As the relational data available from different domains increases
rapidly both in amount and complexity, scalable and efficient learning algorithms are
needed for the development of predictive models. This thesis considers the problem of
integrating prior knowledge into factorization approaches for learning from relational
data. The goal is to retain the good scalability from factorization approaches and
to improve the modeling power by including prior knowledge. Particularly, prior
knowledge is the comprehensive information (either in form of unstructured texts or
structured patterns) to describe the entities involved or to describe the relationships
between entities.

A survey on the types of information that can be exploited from the relational data is
given in Chapter 1. The two main contributions in the thesis, presented in Chapter
2 and Chapter 3, demonstrate how prior knowledge can be included into matrix
factorizations and tensor decompositions respectively.

Chapter 2 proposes a novel and general framework Madd to include entity-specific
information and entity-pair information in an additive model based on matrix factor-
izations. Triples representing entity-specific information and entity-pair information
are added in form of a set of matrices describing the various instantiated relations be-
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tween entities. Particularly, structure information that can be retrieved directly from
the data, derived via aggregations, or derived via join operations, is considered. Un-
structured information from text fields or textual documents describing the involved
entities (e.g., from the entities’ Wikipedia pages) is also considered. Additionally, a
kernel solution with sensible kernels is discussed. Efficient learning of the additive
model is achieved using an alternating least squares approach exploiting sparse matrix
algebra and low-rank approximations. Experiments for relation prediction on various
Semantic Web data sets, and for recommendation systems show that including prior
knowledge in factorization methods can improve the predictive power.

Chapter 3 proposed another additive model ARE which stands for Additive Rela-
tional Effects, to combine the state-of-the-art tensor decomposition method RESCAL,
and a Tucker 1 model. Essentially, factorization approaches are sufficient to exploit
entity-specific information via the correlations in the unfolding matrices of a tensor
representation of the data. RESCAL has strong relational learning ability compared
to other factorization approaches, as it allows information propagation along the re-
lational network. However, factorization approaches including RESCAL can only
exploit the information based on the connectivity of the relational network. The
entity-pair information which includes path-based or neighborhood-based patterns is
not yet well employed in previous factorization approaches. The Tucker 1 part of
ARE is responsible for including observable patterns. As RESCAL has been proved
to scale well with large knowledge bases such as YAGO, the RESCAL part of ARE
retains this good scalability. ARE therefore combines the strength of RESCAL, and
Tucker 1, where the latter contains the prior knowledge in form of observable patterns
on entity-pairs. It is shown analytically in Chapter 3 that including the entity-pair
information in tensor models can reduce the rank requirement of tensor decomposi-
tions. As the rank of a tensor is an important factor for computational complexity,
reducing the rank consequently reduces the computational time. Therefore, ARE is
a predictive and scalable algorithm. Evaluations on various data sets show that ARE
outperforms many state-of-the-art relational learning algorithms in both runtime and
predictive performance.
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4.2 Future Work Directions

In this thesis, the entity-pair information is included to the models via calculating
the predefined score functions on each entity pair. Chapter 1 gives a survey on some
path-based or neighborhood-based score functions, such as Common Neighbors. A
global optimization procedure then learns the weights for these score functions. How-
ever, some heuristics for the score functions may result in a large number of possible
relations. For example, applying the transitive rule to all the possible relation-pairs
will result in a large number of new patterns. The solution from this thesis is to
prune the inactive patterns during iterations by imposing sparsity on the weights.
However, instead of using predefined measures on entity-pair information, one can
also try to include some structure learning results as entity-pair features, such as the
path features from the Path Ranking Algorithm (PRA) [57].

Moreover, the sparsity and the size of the matrices involved in the model computations
are crucial for good scalability. One heuristic is to include type constraints when
combining the predictions of different score functions for a known relation, to obtain
sparse predicted relations. Another heuristic is to include type constraints to the
latent matrices when calculating the interactions between different latent components
for a specific relation. Particularly for the tensor decomposition model ARE proposed
in Chapter 2, considering type constraints in each step in Algorithm 4 reduces the
elementary operations needed for the calculations and therefore further speeds up the
algorithm.

4.3 Application Domains

This thesis proposed two main algorithms for combining comprehensive structured or
unstructured information to improve the predictive performance on multi-relational
data. Evaluations on various publicly available data sets show that the proposed
algorithm ARE outperforms state-of-the-art machine learning algorithms. For several
data sets, ARE gives better predictions than the so far best published results. ARE
can be applied in many ways:

ARE can be applied on knowledge base constructions: A recent work from Google
research proposed the Knowledge Vault (KV) [14]. It constructs a knowledge base



90 4. Conclusions

containing 1.6 billion facts collected from the internet. KV extracts information from
both the Web content (text-based information such as the text documents, HTML
trees, HTML tables, and Human annotated pages) and the prior knowledge (path-
based patterns) derived from existing knowledge repositories. The algorithm behind
KV to automatically construct facts is a combination of the Path Ranking Algorithm
and a neural network model similar to RESCAL. The model ARE from this thesis
is very similar to the KV algorithm in that the Tucker 1 part of ARE incorporates
prior knowledge (both path-based patterns and neighborhood-based patterns), and
the RESCAL part of ARE has collective learning ability. In comparizon to the KV
algorithm, ARE has two advantages: first, the combination is globally optimized in
ARE and, second, in ARE the rank of the factorization is decreased which is not the
case for the rank of the neural network model.

ARE can be used for predictive maintenance problems: Take each component in an
equipment as an entity, the interactions between components as different relations
between the entities. Predictive maintenance has the goal of predicting the future
trend of the equipment’s condition, such as predicting failures. By analysing the
data about the status and communications of different components, machine learning
algorithms can predict those statistically repeated behaviors. Particularly ARE can
include the expert knowledge for making predictions. For example, it is known that
overweight on a conveyor can cause transportation errors. This piece of knowledge
can be formulated as entity-pair information for the conveyor-equipment pair, with
the weight on the conveyor as feature values that is correlated to the failure caused
by the conveyor.

ARE can be used for predictive data analytics solutions: The Industry 4.0 is the
German next-generation of factory automation based on Internet of Things (IoT)
technologies. In the IoT context, huge amounts of sensors can do an accurate near-
real time sensing and monitoring of physical devices. IoT as relational data considers
each physical device as an entity, and considers the cooperation between devices as
relations. Therefore ARE can detect the correlated events on different devices and
can tackle tasks such as root cause analysis.

Besides, ARE can be used for recommendation systems, decision support and any
predictive problems on data that can be modeled as relationships between entities.
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