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Abstract

Financial bubbles have been present in the history of financial markets from
the early days up to the modern age. An asset is said to exhibit a bub-
ble when its market value exceeds its fundamental valuation. Although this
phenomenon has been thoroughly studied in the economic literature, a math-
ematical martingale theory of bubbles, based on an absence of arbitrage has
only recently been developed. In this dissertation, we aim to further con-
tribute to the developement of this theory.
In the first part we construct a model that allows us to capture the birth of
a financial bubble and to describe its behavior as an initial submartingale in
the build-up phase, which then turns into a supermartingale in the collapse
phase. To this purpose we construct a flow in the space of equivalent martin-
gale measures and we study the shifting perception of the fundamental value
of a given asset.
In the second part of the dissertation, we study the formation of financial
bubbles in the valuation of defaultable claims in a reduced-form setting. In
our model a bubble is born due to investor heterogeneity. Furthermore, our
study shows how changes in the dynamics of the defaultable claim’s market
price may lead to a different selection of the martingale measure used for
pricing. In this way we are able to unify the classical martingale theory of
bubbles with a constructive approach to the study of bubbles, based on the
interactions between investors.





Zusammenfassung

Finanz-Blasen sind seit der Entstehung der Finanzmärkte bis zur heutigen
Zeit gegenwärtig. Es gilt, dass ein Vermögenswert eine Finanzblase aufweist,
sobald dessen Marktwert die fundamentale Bewertung übersteigt. Obwohl
dieses Phänomen in der Wirtschaftsliteratur ausgiebig behandelt wurde, ist
eine mathematische Martingaltheorie von Blasen, die auf der Abwesenheit
von Arbitragemöglichkeiten beruht, erst in letzter Zeit entwickelt worden.
Das Ziel dieser Dissertation ist es einen Beitrag zur Weiterentwicklung dieser
Theorie zu leisten.
Im ersten Abschnitt konstruieren wir ein Model mit Hilfe dessen man die
Entstehung einer Finanz-Blase erfassen und deren Verhalten anfänglich als
Submartingal in der build-up phase beschrieben werden kann, welches dann
in der collapse phase zu einem Supermartingal wird. Zu diesem Zweck en-
twickeln wir einen Zahlungsstrom im Raum der äquivalenten MartingalmaÃe
und wir untersuchen die zu dem Vermögenswert passende Verschiebung des
fundamentalen Werts.
Der zweite Teil der Dissertation beschäftigt sich mit der Bildung von Finanz-
Blasen bei der Bewertung von Forderungen, die mit Ausfallrisiken behaftet
sind, in einer reduzierten Marktumgebung. In unserem Model ist die Entste-
hung einer Blase die Folge der Heterogenität der Investoren. Des Weiteren
zeigen unsere Untersuchungen, inwieweit Veränderungen der Dynamik des
Marktpreises einer risikobehafteten Forderung zu einer Veränderung des zur
Bewertung verwendeten Martingalmaßes führen kann. Dadurch sind wir in
der Lage die klassische Martingaltheorie von Finanz-Blasen mit einem kon-
struktivem Ansatz zur Untersuchung von Finanz-Blasen zu vereinigen, der
auf den Interaktionen zwischen Marktteilnehmern basiert.
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Chapter 1

Introduction

1.1 Motivation
Bubbles and financial crises have been recorded throughout modern history,
with probably the earliest documented events going back to the 17th and
18th century: the Dutch tulipmania of 1634-1637, the Mississippi bubble of
1719-1720 and the South Sea bubble of 1720, see Garber [28], [29]. All of
these historical events exhibit two phases: a run-up phase characterized by
a sharp increase in the price of an asset(price of tulips, shares of the Com-
pagnie des Indes, shares of the South Sea company respectively), followed by
a decline phase -the collapse of the price. Let us illustrate this fact with a
short expose of the last two historical events mentioned above.

The Mississippi bubble was created by the rise and fall of the Compag-
nie des Indes, vehicle through which John Law, France’s Controller General
of Finance tried to refinance France’s debt. The share prices of Compagnie
d’Indes rose from 1800 livres in July 1719, to 3000 livres in October 1719 and
reached a peak value of 10000 livres at the end of the year. The rise in the
price was partly motivated by large-scale takeovers of other commercial com-
panies (acquisition of the East India Company and China Company in May
1719, acquisition of the Senegalese Company in September 1719) which lead
to a monolopy over all French trade outside Europe, together with a takeover
of government functions (such as the mint and the collection of taxes). Law’s
idea was to establish a “fund of credit” which, when leveraged, could finance
and help expand the commercial enterprise: “finance of the operation came
first; expanded commercial activity would result naturally once the finan-
cial structure was in place”(Garber [28]). In January 1720, due to increasing
attempts of shareholders to convert capital gains into gold form, the share
prices began to fall below 10000 livres. Despite Law’s attempts to prevent
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the stock price’s decline, the price fell to 2000 livres in September 1720 and
to 500 livres in September 1721, the same value the stock had in May 1719.

The South Sea bubble was caused by a similar plan, though much sim-
pler, of the South Sea Company to acquire British government debt. The
Company’s share price experienced a sharp increase from about 120 pounds
in January 1720 to 775 pounds in August 1720. The speculation around the
Company’s shares lead to an increase in the prices of other Companies and
to the creation of numerous, mostly fraudulent, “bubble companies”. The
South Sea Company’s share prices fell from its peak value of 775 pounds
to 290 pounds in October 1720. The collapse is generally attributed to a
liquidity crisis caused by the “Bubble Act” passed by the Parliament in June
1720, and by the collapse of Law’s Compagnie d’Indes in September 1720,
see Garber [28], Neal [47], Neal and Schubert [48].

More recent examples of bubbles include the ones that occured around
the US banking crises of 1837, 1873 and 1907, The Great Crash of 1929, the
Japanese housing bubble of 1970-1989, the Dot-Com bubble of 1997-2002 and
the recent US housing bubble. For an overwiew of the causes that triggered
these events, see Brunnermeier and Oehmke [11] and Protter [50], [51].

Several characteristics of financial bubbles have been pointed out as rec-
curent in the economical literature. Asset price bubbles usually occur in
periods of technological and financial innovation, which leads to increasing
expectations of economic growth and profit among investors, see for example
Brunnermeier and Oehmke [11], Protter [51], Scheinkman [54]. The devel-
opement of trade between Europe and its colonies can be seen as a possible
trigger for the Mississippi and South Sea Bubbles, the advent of railroads,
the internet, and of sophisticated financial instruments and hedging tech-
niques can be seen as triggers for the Panic of 1873, the Dot-Com Bubble
and the recent credit bubble, respectively. Bubbles arise simultaneously with
an increasing trading volume of the asset, and bubbles burst once the asset’s
supply is increased or a liquidity crisis appears, see for example Brunnermeier
[10]. Furthermore, in an environment with several risky assets, asset price
bubbles can implode due to contagion, if the assets are held by the same
investors and are exposed to the same funding liquidity constraint.

An asset price bubble is defined to be the difference between the asset’s
market price and the lowest superreplicating price of its future dividents.
From the economic perspective, one has to connect the appearance and dis-
appearance of an asset price bubble at the microeconomic level with the
interactions between the market participants. In the economic literature,
investor heterogeneity and limits to arbitrage are often indicated as possible
factors behing the creation of asset price bubbles. Limits to arbitrage can
result from short-selling constraints, see Miller [46], or shocks to funding liq-
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uidity, see e.g. Schleifer and Vishny [56]).
Since most financial investments are exposed to risk and knightian uncer-

tainty, this can originate divergence of opinions among investors, or investor
heterogeneity (investors agree to disagree). Harrison and Kreps [30] point out
that agents may disagree on the value of future dividends. In Scheinkman
and Xiong [55], each investor has a set of signals and observations on which
he bases his estimation of the asset’s fundamental value. Overconfidence,
or the agents’ tendency to exaggerate the importance of certain signals, can
also lead to investor heterogeneity. In a similar way, in the model proposed
in Föllmer et. al.[25], investors may use different predictors when forecasting
future prices and this may create heterogeneous beliefs in the market. For
other interesting references on the topic of bubble formation, see for instance
Tirole [60], DeLong, Shleifer, Summers and Waldmann [21], Abreu and Brun-
nermeier [1], and the references therein.

In mathematical finance, the characterization of price bubbles in terms
martingales/strict local martingales, in the setting of a market satisfying the
“no free lunch with vanishing risk hypothesis (NFLV R)” was first introduced
by Loewenstein and Willard [44]. In Cox and Hobson [18], an asset contains
a bubble within its price process, if the discounted price process follows under
the risk neutral measure used for pricing a strict local martingale, that is, a
local martingale that is not a martingale. For a set of examples of strict local
martingales and references to additional literature on the topic, see Appendix
A.

This approach to the study of financial bubbles, referred to as the mar-
tingale theory of bubbles, was fundamented in the complete and incomplete
market settings in the seminal works of Jarrow, Protter and Shimbo [39],[40].
In Jarrow et .al [40], [36], the authors also provide a study of derivatives
written on assets exhibiting price bubbles, such as European call and put
options, American options, forward and future contracts. An interesting
property that has been highlighted in the above works is that the put-call
parity usually does not hold when the asset’s price process is driven by a
strict local martingale. The presence of bubbles in foreign exchange rates
has been studied in Jarrow and Protter [37] and Carr, Fisher and Ruf [13].
In the model constructed in [37], exchange rate bubbles are caused by the
existence of a bubble in the price of either or both the domestic and foreign
market currencies. Furthermore, in contrast to asset price bubbles that are
always positive, exchange rate bubbles can be negative. More precisely, if a
foreign currency exhange rate is positive, then its inverse exchange rate is
negative. Carr, Fisher and Ruf [13] use the Föllmer measure [24] to construct
a pricing operator for complete models where the exhange rate is driven by
a strict local martingale. This construction allows to preserve the put-call
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parity and also provides the minimal joint replication price for a contingent
claim.

Further connections between bubbles and the prices of derivatives written
on assets whose price process is driven by a strict local martingale have been
studied in Pal and Protter [49]. Karatzas, Kreher and Nikeghbali [42] extend
the results of [49], by providing the decomposition of the price of certain
clases of path-dependent options (modified call-options and chooser options)
and barrier options into a “non-bubble” term and a default term. Since the
martingale theory of financial bubbles does not allow for bubbles in the price
of bounded asset prices, in Bilina-Falafala, Jarrow and Protter [8] the novel
concept of a relative asset bubble is introduced, which allows the study of
risky assets with bounded payoffs within the current theory. With the help
of the volatility-based criteria developed by Carr et.al [12] for identifying
strict local martingales, in Jarrow, Kchia and Protter[34] a methodology for
identifying bubbles (in real time) has been developed. In a recent article,
Herdegen and Herrmann [31] discuss the stochastic investment opportunities
in market model with bubbles. For a comprehensive survey of the recent
mathematical literature on financial bubbles we refer to Protter [51].

The present thesis can be divided into two parts. In the first part, which
covers Chapter 2 and Chapter 3, we construct a model that allows for the
slow birth of an asset price bubble starting at zero, in the sense that its
initial behavior is described by a submartingale. To this purpose we fix two
local martingale measures Q and R, under which the asset’s wealth process
follows a uniformly integrable martingale and a strict local martingale, re-
spectively. In Section 2.3 of Chapter 2, we construct a flow R = (Rt)t≥0

in the space of martingale measures which moves from the initial measure
Q to the measure R, via convex combinations of the two. We provide suf-
ficient conditions under which the resulting R-bubble perceived under the
flow R is a local R-submartingale. Thus, we are able to capture in a re-
alistic way the birth and subsequent behavior of the R-bubble under the
reference measure R as follows: the R- bubble starts from its initial value as
a submartingale and then turns into a supermartingale before it finally falls
back to zero. In Section 2.4, we examine in the setting of a slight extension
of the Delbaen-Schachermayer example, the behavior of the bubble process
constructed above. We show that the sufficient conditions under which the
bubble process is a submartingale are satisfied. In the final Section 2.5 of
Chapter 2, we change our point of view and instead of using R as reference
measure, we take Q as reference. Here again, the birth of the bubble can be
described as a initial submartingale. However, its behavior is more delicate
to examine, as illustrated in the context of the Delbaen-Schachermayer ex-
ample.
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Chapter 3 is dedicated to the study of the R-bubble in stochastic volatil-
ity models. We verify that the sufficient conditions for our R-bubble process
to be a local R-submartingale hold for a variant of the stochastic volatility
model discussed by Sin [57]. Moreover, our model can be modified in such
a way that the condition no longer holds. A similar analysis of the bubble
process is done in Section 3.2 in a modified variant of the Andersen-Piterbarg
volatility model [3].

In Chapter 4 we examine the formation of financial bubbles in the valua-
tion of defaultable claims in a reduced form credit risk model. The birth of
a bubble is generated by the impact of the heterogeneous beliefs of investors
on the defaultable claim’s market wealth. A large group of investors whose
trades can influence the asset price may consider the claim to be a safe in-
vestment under certain circumstances. Their trading actions create changes
in the dynamics of the asset’s market wealth process, and these lead to sub-
sequent shifts in the selection of the martingale measures used for pricing.
Therefore, our model also provides an explanation how microeconomic inter-
actions between agents may at an aggregate level determine a shift in the
martingale measure, via a change in the dynamics of the market wealth pro-
cess. In this way we establish a connection between the impact of different
views within the groups of investors on asset prices and the classical results
of the martingale theory of bubbles, see Biagini, Föllmer and Nedelcu [4] and
Jarrow and Protter [40]. The Chapter concludes with a characterization of
the space of equivalent local martingale measures with the help of measure
pasting, characterization which allows to rigurously capture how changes in
the dynamics of the asset price process lead to different selections of local
martingale measures used for pricing.

1.2 Contributing Manuscripts
This thesis is based on the following manuscripts, which were developed by
the thesis’ author S. Nedelcu, in cooperation with coauthors:

1. F. Biagini, H. Föllmer, and S. Nedelcu [4]: Shifting martingale measures
and the birth of a bubble as a submartingale. Finance and Stochastics,
18(2): 297-326, 2014.
The results of this paper are the product of a joint work of S. Nedelcu
with two coauthors, Prof. F. Biagini and Prof. H. Föllmer. Most of the
work was developed at the LMU Munich. Certain parts where final-
ized during S. Nedelcu’s visits to Humboldt University and University
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of Luxembourg (at the invitation of Prof. H. Föllmer). After a sugges-
tion of H. Föllmer, S. Nedelcu and F. Biagini started to study a convex
flow on the space of equivalent martingale measures and proved most
of the results in Section 3, in particular Theorem 2.3.9 and Corollary
2.3.10. The argumentation concerning the economical significance of
the model which is contained in Section 2, and Section 4 which contains
the Delbaen-Schachermayer example, was developed by S. Nedelcu to-
gether with his 2 coauthors. Section 5 was developed independently by
S. Nedelcu. Section 6 was developed by S. Nedelcu together with Prof.
H. Föllmer. However, the final version of this part is mainly due to S.
Nedelcu.

2. F. Biagini and S. Nedelcu [5]: The formation of financial bubbles in de-
faultable markets. Preprint, Available at http://www.fm.mathematik.uni-
muenchen.de/download/publications, 2014.
The construction of the reduced-form credit risk framework in which
the formation of bubbles is studied, was developed by S. Nedelcu to-
gether with Prof. F. Biagini. Thus, Section 2, in which the model’s
framework is constructed, Section 3, which contains the connection
with the classical martingale theory of bubbles, and Section 5, which
contains a case study, are the result of this joint work. A significant
part of the computations contained in the proofs of these Chapters was
developed by S. Nedelcu. Furthermore S. Nedelcu suggested the use
of the predictable version of Girsanov’s theorem in the proofs concern-
ing measure changes and the existence of equivalent local martingale
measures. The main idea of Section 4, the use of the concept of mea-
sure pasting to the study of asset price bubbles, was developed by S.
Nedelcu. This plays a fundamental role in unifying a constructive ap-
proach to the study of asset price bubbles with the martingale theory
of bubbles.

The following list indicates in which way the two publications contribute
to each Chapter of the Thesis and which sections represent unpublished
manuscripts. The formulation of the statements of the Propositions, Lem-
mas, Theorems, etc. is the same as in the two manuscripts. However, the
author, who has been involved in the developement of all the results con-
tained in the two publications, provides in the present thesis a more detailed
version for most of the proofs.

1. Chapter 1 provides a presentation of the existing mathematical liter-
ature on financial bubbles. The summary of each article was written
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independently by S. Nedelcu. The Chapter concludes with a summary
of the Thesis.

2. Chapter 2 is based the Sections 2, 3, 4 and 6 of Biagini, Föllmer and
Nedelcu [4].

3. Section 3.1 of Chapter 3 is based on Section 5 of Biagini, Föllmer and
Nedelcu [4]. Section 3.2 of Chapter 3 was developed independently by
S. Nedelcu, and is based on a manuscript which is not yet published.

4. Chapter 4 is based on Biagini and Nedelcu [5]. Section 4.4.1, devel-
oped independently by S. Nedelcu as part of an earlier draft version of
Biagini and Nedelcu [4], and is based on a manuscript which is not yet
published.



Chapter 2

Shifting martingale measures

The contents of this Chapter are based on the author’s joint work with F. Bi-
agini and H. Föllmer, which is contained in the article F. Biagini, H. Föllmer
and S. Nedelcu [4]. More precisely, the present Chapter is based on Sec-
tions 2, 3, 4 and 6 of [4]. The detailed description of the author’s personal
contribution is presented in Section 1.2.

2.1 Motivation
An asset price bubble is defined as the difference between two components:
the observed market price of a given financial asset, which represents the
amount that the marginal buyer is willing to pay, and the asset’s intrinsic
or fundamental value, which is defined as the expected sum of future dis-
counted dividends. As a result, Knightian/model uncertainty may arise due
to the fact that the asset’s fundamental value definition is made in terms
of a conditional expectation. The fundamental component may be differ-
ently perceived by investors according to their choice of the pricing measure.
Thus, some agents may consider that a bubble exists in the asset price if
their choice of the pricing measure does not lead to an equality between the
corresponding fundamental value and the asset’s market value. However, as
shown in experimental economics, see Smith, Suchanek and Williams [58],
bubbles may arise even if the probabilistic structure is perfectly known and
the economic agents are kept informed across all times about the fundamen-
tal values of the assets.

In the present chapter we examine the perception of the fundamental
value. A first study on how this perception is connected to bubbles is done
in a complete market setting in [39], by Jarrow, Protter, and Shimbo, who
however point out the following inconvenient of the model: due to the unique-
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ness of the martingale measure, bubbles cannot be born in this setting. They
either exist from the start of the model (and may disappear in time), or not.
In order to overcome this difficulty, Jarrow, Protter, and Shimbo consider
in their paper on Asset price bubbles in incomplete financial markets [40] an
incomplete market model, i.e. a setting where there exist an infinite number
of local martingale measures. Hence the possible martingale measure that
can be used for pricing is not unique anymore and each measure provides a
market consistent view of the future.

In our setting the discounted price process of a liquid financial asset fol-
lows a semimartingale S under the real-world measure and D denotes the
associated cumulative discounted dividend process. We assume the existence
of an equivalent local martingale measure which turns the wealth process
W = S + D into a local martingale. By following an argument of Harrison
and Kreps [30] we prove that any martingale measure can be seen as a pre-
diction scheme that is consistent with the observed price process S from a
speculative point of view which takes into account future dividends and the
possibility of selling the asset at some future time.

However, different choices of the martingale measures may give different
assessments of the fundamental value, which is defined as the conditional
expectation of future discounted dividends under the chosen equivalent local
martingale measure. Hence, if we denote SR to be the instrinsic value pro-
cess under a martingale measure R, the bubble is defined as the difference
βR = S − SR, and this will be a non-negative local martingale under R.
Nevertheless, in this incomplete model, if the bubble is defined in terms of
one fixed martingale measure R, then it either exists from the start of the
model (if R allows the existence of bubble) or it is zero all the time. In order
to allow the birth of a bubble in this framework after the model starts, we
eliminate the time-consistency assumption.

We consider the definition of time consistency as provided in Föllmer and
Schied [26]. Time consistency amounts to the requirement that all condi-
tional probability distributions Rt(·|Ft), where Rt is an equivalent martin-
gale measure for all t > 0 belong to the same martingale measure R. Here
Rt(·|Ft) represents the market’s view at time t. In particular, a complete
market model is automaticaly time-consistent, due to the uniqueness of the
martingale measure. While time consistency is taked for granted in the math-
ematical literature, in the real financial world various interactions between
investors at the microeconomic level, like herding behavior of heterogeneous
agents with interacting preferences and expectations, actions of large traders
(see Chapter 4), or regime changes in the economy, may cause a shift of the
martingale measure. This in turn leads to a dynamics in the space of equiva-
lent local martingale measures and corresponding shifting perceptions of the
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fundamental value.
In [40], Jarrow, Protter and Shimbo consider a market model where

regime shifts occur in the underlying economy (due to risk aversion, institu-
tional structures, technological innovations etc.) at different random times.
This allows for the construction of a dynamic market model where a bubble
suddenly appears in the price of an asset at a stopping time and disappears
again at a later stopping time.

The main objective of this chapter is to provide a realistic mathematical
model which captures the two stages of a financial bubble: the build-up stage,
when the market price process diverges from the fundamental value and the
collapse phase when the market price drops and returns to the fundamental
value. To this purpose we wish to capture in the proposed setting the slow
birth of a perceived bubble starting at zero and to describe it as an initial
submartingale, which then turns into a supermartingale before it falls back
to the initial value zero. We consider two martingale measures Q and R rep-
resenting the views of two (groups of) agents. A martingale measure is often
interpreted as a price equilibrium corresponding to the subjective preferences
and expectations of some representative agent; see for example Föllmer and
Schied [27], Section 3.1. In the case of the martingale measure Q, the wealth
process W is a uniformly integrable martingale, we have S = SQ. Hence,
this subjective view can be interpreted as “optimistic” or “exuberant", since
the market price is seen to coincide with the asset’s perceived intrinsic value
computed under the pricing measure Q. In particular, under the measure Q
there is no perception of a bubble contained in the asset’s price. Under the
measure R, the market wealth process W is no longer uniformly integrable
and we have S > SR. Hence, under this view that can be characterized as
“pessimistic” or “sober”, the market price is not justified from a fundamental
point of view and is affected by a bubble.

We provide examples of incomplete financial market models where such
martingale measures Q and R coexist, see Section 2.4 of the present Chapter
and Chapter 3 for examples which concern stochastic volatility models. Fur-
thermore, we prove in the Delbaen-Schachermayer example, see Section 2.4
as well as in the stochastic volatility model of Section 3.1, that the following
condition is satisfied: The fundamental wealth WR = SR +D perceived un-
der the “sober” measure R behaves as a submartingale under the “optimistic”
measure Q. In terms of the agents’ perspectives, this behavior of WR under
the optimistic view represented by Q suggests that the pessimistic assess-
ment WR is expected to be corrected through an upward trend.

In Section 2.3, we study a flow R = (Rt)t≥0 in the space of martingale
measures that moves from the initial uniformly integrable martingale mea-
sure Q to the non-uniformly integrable martingale measure R via convex
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combinations of Q and R by putting an increasing weight on R. At each
time t, the fundamental value process is computed with respect to the mar-
tingale measure Rt. Consequently, the asset’s fundamental value is described
by the process SR. A further consequence of this construction is a shifting
perception of the asset’s fundamental value. We denote by βR = S−SR the
resulting R-bubble perceived under the flow R. In Theorem 2.3.9, we pro-
vide a crucial condition under which the birth and the subsequent behavior
of the R-bubble under the reference measure R can be described as follows:
The R-bubble starts from its initial value as a submartingale (the build-up
stage) and then turns into a supermartingale before it finally falls back to
zero (the collapse phase). In Remark 2.3.3, we provide a possible economic
intepretation for the shifting perception of the asset’s fundamental value by
refering to a microeconomic model of interacting agents described in Föllmer
et al. [25].

In Section 2.4, we consider a slight extension of the classical Delbaen-
Schachermayer setting. Instead of defining the price process along with the
measures Q and R in terms of two independent geometric Brownian motions,
we consider a more general case where the price process S and the Radon-
Nikodym density process of Q with respect to R are defined in terms of two
independent continuous martingales. We are able to explicitly compute the
processes WR and βR and show that the necessary condition for WR to be
a local submartingale under Q is satisfied.

Section 2.5 provides a study of our model from the Q-perspective. To this
purpose we compute the canonical decomposition of the R-bubble under the
measure Q and provide conditions when the the birth of the bubble can be de-
scribed as an initial submartingale with respect to the measure Q. However,
as we show in the context of our extension of the Delbaen-Schachermayer
example, the modelling of the R-bubble’s behavior is not straighforward and
requires more technical effort.

The present chapter complements the study of successive regime switch-
ing of Jarrow et al.[40] by allowing the capture of a submartingale behaviour
in the birth of a perceived bubble and also provides a framework that allows
for shifting martingale measures. This setting can be used as basis for a study
of the space of equivalent local martingale measures where the topological
characterization of this space can be related to the size of a bubble. Fur-
thermore, these contributions allow us to provide an interesting model also
from a practitioner point of view, since a dynamic in the space of martingale
measures can be connected with the interactions of the market participants
at the microeconomic level. We illustrate this in Chapter 4, by showing
how possible changes in the dynamics of the asset price process can lead to
different selections of the martingale measures used for pricing. Moreover,
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Chapter 4 provides an example of an incomplete market setting where time-
consistency fails and an asset price bubble can be born after the start of the
model.
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2.2 The Setting
Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space satisfying the usual con-
ditions: F0 contains all the P -null sets of F and the filtration (Ft)t≥0 is
right-continuous i.e. Ft = ∩u>tFu for all t ≥ 0. We consider a market model
that contains a risky asset and a money market account. We take the money
market accout as numéraire and consider directly a discounted setting, i.e. it
is supposed to be constantly equal to 1. Let D = (Dt)t≥0 be a non-negative
increasing and adapted right-continuous process representing the uncertain
cumulative cash flow generated by the risky asset. We assume that the fil-
tration is such that all martingales have continuous paths.

If ζ is a stopping time representing the maturity date or default time of
the risky asset and the process D is seen as a cumulative dividend process,
one can recover the setting of Jarrow et al. [40] by setting Dt := Dζ on
{ζ ≤ t} and defining the terminal payoff or liquidation value of the asset as
Xζ := (Dζ −Dζ−)1{ζ<∞}.

Let S = (St)t≥0 be a non-negative, adapted càdlàg process representing
the market price of the risky asset and denote by W = (Wt)t≥0 the corre-
sponding wealth process defined by

Wt = St +Dt, t ≥ 0.

Definition 2.2.1. A probability measure Q equivalent to P under which the
wealth process W is a Q-local martingale is called an equivalent local mar-
tingale measure.

We denote byMloc(W ) the class of all probability measures Q ≈ P such
that W is a local martingale under Q, and we asssume that

Mloc(W ) 6= ∅. (2.2.1)

The existence of an equivalent local martingale measure implies, via the
First Fundamental Theorem, that S satisfies the No Free Lunch with Van-
ishing Risk (NFLV R) condition. The converse implication is also true, see
Delbaen and Schachermayer [19]. In economic terms, NFLV R amounts to
the exclusion of all self-financing trading strategies that start with zero ini-
tial investment and generate a non-negative cash flow for sure and a strictly
positive cash flow with positive probability (arbitrage opportunities). We
provide examples of markets satisfying the NFLV R condition in Section
2.4, Chapter 3 and Section 4.4 in Chapter 4.

Furthermore, the existence of an equivalent local martingale measure im-
plies that the process W follows a semimartingale under the real world mea-
sure P , i.e. W can be written as the sum between a càdlàg local martingale
and a càdlàg finite variation process.
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Although the cumulative cash flow D associated to the risky asset is
exogenously given, the price St can be justified at any time t from the per-
spective of any probability measure Q ∈ Mloc(W ) in the following way: the
investors determine the value St at time t by taking into account the expec-
tation of the future cumulative cash-flows together with the option to sell
the asset at some future time τ . As explained in Harrison and Kreps [30],
this quantity represents the maximum amount that the risky asset is worth
for any investor pricing under the measure Q at time t. This reasoning is ex-
pressed in rigorous mathematical way in the following Lemma, more precisely
in equation (2.2.2) below.

Lemma 2.2.2. For any Q ∈Mloc(W ), the limits S∞ := limt→∞ St,
W∞ := limt→∞Wt and D∞ := limt→∞Dt exist a.s. and in L1(Q), and

St = ess supτ≥tEQ[Dτ −Dt + Sτ |Ft]
= ess supτ≥tEQ[Dτ −Dt + Sτ1{τ<∞}|Ft],

(2.2.2)

where the essential supremum is taken over all stopping times τ ≥ t.

Proof. Since W is a non-negative local martingale, it follows from Fatou’s
lemma that W is a supermartingale under Q since

EQ[Wt|Fs] = EQ[ lim
n→∞

Wt∧σn|Fs] ≤ lim inf
n→∞

EQ[Wt∧σn|Fs]

= lim inf
n→∞

Ws∧σn = Ws,

for any s ≤ t, where (σn)n≥0 represents a localizing sequence for the local
martingale W . By following the same reasoning we have

sup
t≥0

EQ[|Wt|] ≤ EQ[W0] <∞.

Therefore an application of the Martingale Convergence Theorem yields the
existence of the limit W∞ := limt→∞Wt Q-a.s. and in L1(Q). So does
S∞ := limt→∞ St, since the limit D∞ := limt→∞Dt exists by monotonicity.
Thus the right side of equation (2.2.2) is well defined. Moreover, it follows
from the optional sampling theorem that

Wt ≥ EQ[Wτ |Ft] (2.2.3)

for any stopping time τ ≥ t, due to the fact that W is a right-continuous
closed supermartingale. Since Wt = St + Dt for all t ≥ 0, (2.2.3) translates
into

St ≥ EQ[Dτ −Dt + Sτ |Ft] ≥ EQ[Dτ −Dt + Sτ1{τ<∞}|Ft], (2.2.4)
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for any stopping time τ ≥ t. Let now ζ = (ζn)n≥0 be a localizing sequence
for the Q-local martingale W . Then we get equality in (2.2.3), and hence in
(2.2.4), for n > t and τ = ζ ∧ n.So we have proved (2.2.2).

Let
SQt := EQ[D∞ −Dt|Ft], t ≥ 0, (2.2.5)

be the potential generated by the increasing process D under the measure Q.
For the sake of convenience we remind the reader the definition of a potential.

Definition 2.2.3. An adapted càdlàg process X = (Xt)t≥0 is called a poten-
tial if it is a non-negative supermartingale satisfying limt→∞ E[Xt] = 0.

An important consequence of Lemma 2.2.2 is that

St ≥ SQt = EQ[D∞ −Dt|Ft], (2.2.6)

Now we can define precisely the fundamental price of an asset as the ex-
pected future cumulative cash-flow under a given equivalent local martingale
measure.

Definition 2.2.4. For Q ∈Mloc(W ) the potential SQ defined in (2.2.5) will
be called the fundamental price of the asset perceived under the measure Q.

For any martingale measure Q ∈ Mloc(W ) and given the possibility of
selling the asset at some future time, Lemma 2.2.2 shows that the given price
of an asset can be justified from a speculative point of view. In this sense
different martingale measures provide the same assessment of the price S.
However, if one considers each martingale measure Q to represent the views
of a certain class of investors, then members of different classes may disagree
on the asset’s fundamental value SQ. In order to illustrate this point we
write the setMloc(W ) as the following reunion:

Mloc(W ) =MUI(W ) ∪MNUI(W ),

whereMUI(W ) is the space of measures Q ≈ P under which W a uniformly
integrable martingale and MNUI(W ) = Mloc(W ) \ MUI(W ). There exist
frameworks where the classesMUI(W ) andMNUI(W ) can be simultaneously
non-empty, see the examples of Section 2.4 and Chapter 3. From now on we
assume that this is the case:

Assumption 2.2.5. MUI(W ) 6= ∅ andMNUI(W ) 6= ∅.

Lemma 2.2.6. A measure Q ∈Mloc(W ) belongs toMUI(W ) if and only if

St = EQ[D∞ −Dt + S∞|Ft], t ≥ 0. (2.2.7)
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Proof. If Q ∈MUI(W ) then W is a Q-uniformly integrable martingale and

Wt = EQ[W∞|Ft], (2.2.8)

for all t ≥ 0. and this gives

St +Dt = EQ[S∞ +D∞|Ft], t ≥ 0.

which is equivalent to (2.2.7). Conversely, condition (2.2.7) implies (2.2.8),
and so W is a uniformly integrable martingale under Q.

The following Assumption guarantees that the given market price S is
justified also from a fundamental point of view i.e. there exists an equivalent
local martingale measure under which S is perceived as a fundamental price.

Assumption 2.2.7. There exists Q ∈Mloc(W ) such that

S = SQ, (2.2.9)

where SQ is the fundamental price perceived under Q as defined in (2.2.6).

Lemma 2.2.8. Assumption 2.2.7 holds if and only if S∞ = 0 a.s., and in
this case equation (2.2.9) is satisfied if and only if Q ∈MUI(W ).

Proof. By (2.2.2) the equality S = SQ implies S∞ = 0 a.s. Conversely,
if S∞ = 0 a.s. then (2.2.7) shows that S = SQ holds if and only if Q ∈
MUI(W ), which by Assumption 2.2.5 contains at least one element.

From now on we assume that Assumption 2.2.7 is satisfied, and so we
have W∞ = D∞ a.s.

Definition 2.2.9. Let Q ∈ MUI(W ). The process WQ = SQ + D, defined
by

WQ
t := EQ[D∞|Ft], t ≥ 0, (2.2.10)

will be called the fundamental wealth of the asset perceived under Q.

The above results lead to the following definition of a bubble.

Definition 2.2.10. For any Q ∈Mloc(W ) the non-negative adapted process
βQ defined by

βQ = S − SQ = W −WQ ≥ 0 (2.2.11)

will be called the bubble perceived under Q or the Q-bubble.

The following result summarizes our findings and provides a characteri-
zation of the Q-bubble.
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Corollary 2.2.11. A measure Q ∈Mloc(W ) belongs toMUI(W ) if and only
if the Q-bubble reduces to the trivial case βQ = 0. For Q ∈ MNUI(W ) the
Q-bubble βQ is a non-negative local martingale such that βQ0 > 0 and

lim
t→∞

βQt = 0, a.s. and in L1(Q). (2.2.12)

Proof. Since βQ = W − WQ, then it is easy to see that βQ is a Q-local
martingale as the difference between the Q-local martingale W and the Q-
uniformly integrable martingale WQ given by WQ

t = EQ[D∞|Ft], t ≥ 0. By
Lemma 2.2.2 and Lemma 2.2.8 we have that S and SQ converge to 0 almost
surely and in L1(Q), we obtain (2.2.12).

For Q ∈ MNUI(W ) the Q-bubble βQ appears immediately at time 0
and follows the dynamic of a non-negative local martingale. It follows from
Fatou’s lemma that βQ is a Q-supermartingale and therefore

EQ[βQ0 ] ≥ EQ[βQt ],

for all t ≥ 0. In order to overcome this model drawback, in the following
section we consider a flow in the spaceMloc(W ) that begins inMUI(W ) and
then enters the classMNUI(W ). This allows us to describe the slow birth of
a bubble starting from an initial value 0 and which follows the dynamics of
a submartingale process in the first phase.
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2.3 The birth of a bubble as a submartingale
In this section we consider a flow R = (Rt)t≥0 in the space of equivalent local
martingale measures, i.e. Rt ∈ Mloc(W ) for any t ≥ 0. The market’s view
of the future at each time t will be expressed as the conditional expectation
under the measure Rt of the future cumulative cash flows. We assume that
R is càdlàg in the simple sense that the adapted process WR defined by

WR
t := ERt [D∞|Ft], t ≥ 0, (2.3.1)

admits a càdlàg version. This implies that the adapted process SR defined
by

SRt = WR
t −Dt = ERt [D∞|Ft] = ERt [D∞ −Dt|Ft], t ≥ 0.

has also a càdlàg version. This property is for example satisfied in the dy-
namic market setting described in Jarrow et al.[40], and holds if the flow con-
sists in switching from one martingale measure to another at certain stopping
times.

Definition 2.3.1. For a càdlàg flow R = (Rt)t≥0 we define the R-bubble as
the non-negative, adapted, càdlàg process

βR := W −WR = S − SR ≥ 0.

It is easy to see that the definitions of the processes WR, SR and of the asso-
ciated bubble process βR depend on the conditional probability distributions

Rt[·|Ft], t ≥ 0. (2.3.2)

In the classical mathematical literature, these conditional probability distri-
butions which quantify the market’s view of the future at each time t are
assumed to be time consistent. This amounts to the requirement that the
conditional probability distributions {Rt[·|Ft]; t ≥ 0} belong to the same
martingale measure R0 ∈Mloc(W ). From an economic perspective, if

πt(H) =

∫
HdRt[·|Ft] = ERt [H|Ft], t ≥ 0

represents the prediction of the value of a bounded contingent claim H at
time t, then time consistency requires

πs(πt(H)) = πs(H) (2.3.3)

or equivalently
ERs [ERt [H|Ft]|Fs] = ERs [H|Fs].

for any s ≤ t. It is easy to see that (2.3.3) is satisfied if all the conditional dis-
tributions in (2.3.2) belong to the same martingale measure R0 ∈Mloc(W ).
The converse holds as well, as shown by the following proposition.
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Proposition 2.3.2. If Rt[·|Ft] 6= R0[·|Ft] for some t > 0 then time consis-
tency fails.

Proof. If Rt[·|Ft] 6= R0[·|Ft], then for some A ∈ F and some t > 0, the event

Bt = {Rt[A|Ft] > R0[A|Ft]}

has positive probability R0[Bt] > 0. In particular

1Bt(Rt[A|Ft]−R0[A|Ft]) ≥ 0.

We consider the bounded contingent claim H := IA∩Bt . Then H satisfies

πt(H) = ERt [H|Ft] ≥ ER0 [H|Ft],

and the inequality is strict on Bt. Thus we get

π0(H) = ER0 [H|F0] = ER0 [H] = ER0 [ER0 [H|Ft]]
< ER0 [ERt [H|Ft]] = ER0 [πt(H)] = π0(πt(H)),

which contradicts the time consistency condition (2.3.3).

In the time consistent case when the conditional probability distributions
Rt[·|Ft] belong to the same local martingale measure R0 ∈Mloc(W ), we are
in the setting described by Corollary 2.2.11. More precisely, if the pricing
measure R0 belongs to the setMUI(W ), then the asset price does not contain
a bubble, or a bubble already exists at time t = 0 if R0 ∈MNUI(W ).

As soon as the flow R is not constant, it describes a shifting system of
predictions (Rt[·|Ft])t≥0 that is not time consistent. Let us focus now on the
time inconsistent case. As pointed in Lemma 2.2.8, the R-bubble reduces
to the trivial case at time t if the market’s forward looking view given by a
measure Rt ∈MUI(W ) and it will be positive when the flow passes through
MNUI(W ). Our objective is to allow the flow to move from some initial
measure Q inMUI(W ) to some measure R inMNUI(W ) via adapted convex
combinations. We consider

Q ∈MUI(W ) and R ∈MNUI(W ) (2.3.4)

and let ξ = (ξt)t≥0 be an adapted càdlàg process with values in [0, 1] starting
in ξ0 = 0. On the space of equivalent local martingale measures Mloc(W )
we define the flow R = (Rt)t≥0 such that at each time t ≥ 0, we have

Rt[·|Ft] := ξtR[·|Ft] + (1− ξt)Q[·|Ft]. (2.3.5)
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Remark 2.3.3. A possible economic interpretation of our model is provided
in Föllmer et al. [25]: there are two financial “gurus”, one optimistic whose
views are captured by the measure Q, and one pessimistic whose view is cap-
tured by the measure R. The agents are divided into two groups, each group
following the predictions indicated by one of the gurus. Based on these pre-
dictions, they forecast the future prices of the asset. However, the agents may
change their affiliation from one group to another, according to the accuracy
of the predictions indicated by each guru. In consequence, the size of the
two groups will shift in time, as agents become “chartists” or “trend-chasers”.
Therefore, at any time t, the temporary price equilibrium is given by some
martingale measure Rt, which can be regarded as weighted average of Q and
R, with the size of each weight depending on the size of the corresponding
group of agents.

Lemma 2.3.4. For the flow R = (Rt)t≥0 defined by (2.3.5), the R-bubble
βR = S − SR is given by

βRt = ξt(St − SRt ) = ξtβ
R
t , t ≥ 0. (2.3.6)

The R-bubble starts at βR0 = 0, and it dies out in the long run:

lim
t→∞

βRt = 0 a.s. and in L1(R).

Proof. At time t = 0, since ξ0 = 0 we have R0 = Q ∈ MUI(W ). Therefore
the R-bubble starts at the initial value 0, since

βR0 = W0 −WQ
0 = W0 − EQ[D∞] = W0 − EQ[W∞] = 0.

Since

WR
t = ξtER[W∞|Ft] + (1− ξt)EQ[W∞|Ft]

= ξtW
R
t + (1− ξt)Wt,

(2.3.7)

we obtain

βRt = Wt −WR
t = Wt − ξtWR

t − (1− ξt)Wt

= ξt(Wt −WR
t ) = ξt(St − SRt ) = ξtβ

R
t .

(2.3.8)

Hence limt→∞ β
R
t = 0 a.s. and in L1(R), since βR converges to 0 by Corollary

2.2.11 and ξ is bounded.

By allowing the placement of an increasing weight ξt on the prediction
provided by R in (2.3.5), we are able to describe the initial behavior of the
R-bubble βR as an local R-submartingale starting from the initial value 0.
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Proposition 2.3.5. If the process ξ is increasing then the R-bubble βR is a
local submartingale under R. If ξ remains constant after some stopping time
τ1, then βR is a local martingale under R, and hence an R-supermartingale,
after time τ1.

Proof. By Corollary 2.2.11, the R-bubble βR = W−WR is a local martingale
under R. Let σ be a localizing stopping time for βR under R, i.e. the
stopped process (βR)σt := βRt∧σ is an R-martingale. Then the stopped process
(βR)σ = (ξβR)σ is an R-submartingale since

(ξβR)σs = ξs∧σβ
R
s∧σ = ξs∧σER[βRt∧σ|Fs] = ER[ξs∧σβ

R
t∧σ|Fs]

≤ ER[ξt∧σβ
R
t∧σ|Fs] = ER[(ξβR)σt |Fs]

for s ≤ t. To show that βR is a local R-martingale after time τ1, we prove
that the stopped process (βR)σ satisfies

ER[(βR)στ ] = ER[(βR)στ1 ]

for any stopping time τ ≥ τ1. By (2.3.6) we obtain

ER[βRτ∧σ] = ER[ξτ∧σβ
R
τ∧σ] = ER[ξτ1∧σER[βRτ∧σ|Fτ1∧σ]]

= ER[ξτ1∧σβ
R
τ1∧σ] = ER[βRτ1∧σ],

since ξτ∧σ = ξτ1∧σ.

Let us consider now the general case when the process ξ is a special
semimartingale under R taking values in [0, 1]. Therefore ξ admits the unique
decomposition

ξ = M ξ + Aξ, (2.3.9)

where M ξ represents the local R-martingale part and Aξ is a predictable
process with paths of bounded variation. We want to find conditions under
which initial behavior of theR-bubble βR is described by an R-submartingale
starting from 0. As in (2.3.8), the bubble βR is given by

βRt = ξt(St − SRt ) = ξtβ
R
t .

Remember that βR is an local R-martingale. By applying the integration by
parts formula, we obtain the canonical decomposition of βR

dβRt = d(ξtβ
R
t ) = ξtdβ

R
t + βRt dξt + d[ξ, βR]t

= (ξtdβ
R
t + βRt dM

ξ
t ) + βRt dA

ξ
t + d[ξ, βR]t

= (ξtdβ
R
t + βRt dM

ξ
t ) + dARt ,

(2.3.10)
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where we have denoted by AR the predictable process with paths of bounded
variation

ARt =

∫ t

0

βRs dA
ξ
s + [ξ, βR]t, t ≥ 0. (2.3.11)

The following proposition provides necessary and sufficient conditions under
which βR is a local R-submartingale.

Proposition 2.3.6. The R-bubble βR is a local R-submartingale if and only
if AR is an increasing process. If ξ is a submartingale, then the local R-
submartingale property for βR holds whenever the process [ξ, βR] is increas-
ing.

Proof. The first part is a direct consequence of (2.3.10). If ξ is a submartin-
gale then Aξ is an increasing process. Hence also∫ t

0

βRs dA
ξ
s, t ≥ 0,

is increasing, because βR ≥ 0. Thus AR increases whenever [ξ, βR] is increas-
ing.

From now on we specify the form of the flow R = (Rt)t≥0 and assume

Rt = (1− λt)Q+ λtR, (2.3.12)

where (λt)t≥0 is a deterministic càdlàg process of bounded variation that
takes values in [0, 1] with λ0 = 0. Let us denote by M = (Mt)t≥0 the Radon-
Nikodym density process of Q with respect to R

Mt = ER[
dQ

dR
|Ft], t ≥ 0. (2.3.13)

Lemma 2.3.7. The conditional distributions Rt[·|Ft] are of the form (2.3.5)
where the adapted process ξ is given by

ξt =
λt

λt + (1− λt)Mt

, t ≥ 0. (2.3.14)

Proof. For any F -measurable Z ≥ 0 and any At ∈ Ft we have

ERt [Z;At] = ER
[dRt

dR
Z;At

]
= ER[(λt + (1− λt)M∞)Z;At]

= ER[λtER[Z|Ft];At] + ER[(1− λt)ER[M∞Z|Ft];At]

= ER[λtER[Z|Ft];At] + ER
[
(1− λt)Mt

1

ER[M∞|Ft]
ER[M∞Z|Ft];At

]
= ER[λtER[Z|Ft] + (1− λt)MtEQ[Z|Ft];At].
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Since
dRt

dR
|Ft = λt + (1− λt)Mt,

we have
λt
dR

dRt

|Ft =
λt

λt + (1− λt)Mt

= ξt

and

(1− λt)Mt
dR

dRt

|Ft =
(1− λt)Mt

λt + (1− λt)Mt

= 1− λt
λt + (1− λt)Mt

= 1− ξt.

Thus we can write

ERt [Z;At] = ER[λtER[Z|Ft] + (1− λt)MtEQ[Z|Ft];At]

= ER
[dRt

dR
(ξtER[Z|Ft] + (1− ξt)EQ[Z|Ft]);At

]
= ERt [ξtER[Z|Ft] + (1− ξt)EQ[Z|Ft];At],

and this amounts to the representation (2.3.5) of the conditional distribution
Rt[·|Ft].

Lemma 2.3.8. If λ is increasing, then the process (ξt)t≥0 defined in (2.3.14)
is an R-submartingale with values in [0, 1], and its Doob-Meyer decomposition
(2.3.9) is given by

M ξ
t = −

∫ t

0

λs(1− λs)
(λs + (1− λs)Ms)2

dMs (2.3.15)

and

Aξt =

∫ t

0

Ms

(λs + (1− λs)Ms)2
dλs +

∫ t

0

λs(1− λs)2

(λs + (1− λs)Ms)3
d[M,M ]s (2.3.16)

Proof. We have that ξt = g(Mt, λt), where the function g on (0,∞) × [0, 1]
defined by

g(x, y) =
y

y + (1− y)x
(2.3.17)

is convex in x and increasing in y since

gxx(x, y) =
2y(1− y)2

(y + (1− y)x)3
≥ 0,
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and
gy(x, y) =

x

(y + (1− y)x)2
≥ 0.

By applying Jensen’s inequality, we obtain

ξs = g(Ms, λs) = g(ER[Mt|Fs], λs) ≤ ER[g(Mt, λs)|Fs]
≤ ER[g(Mt, λt)|Fs] = ER[ξt|Ft],

for any s ≤ t. Hence ξ is an R-submartingale. We apply the Itô’s formula to
ξt = g(Mt, λt) in order to obtain the Doob-Meyer decomposition (2.3.9) of ξ.
We have

ξt = ξ0 +

∫ t

0

gx(Ms, λs)dMs +

∫ t

0

gy(Ms, λs)dλs +
1

2

∫ t

0

gxx(Ms, λs)d[M,M ]s

= −
∫ t

0

λs(1− λs)
(λs + (1− λs)Ms)2

dMs +

∫ t

0

Ms

(λs + (1− λs)Ms)2
dλs

+

∫ t

0

λs(1− λs)2

(λs + (1− λs)Ms)3
d[M,M ]s

Therefore the local martingale part M ξ is given by

M ξ
t =

∫ t

0

gx(Ms, λs)dMs, t ≥ 0,

and the finite variation part Aξ is given by

Aξt =

∫ t

0

1

2
gxx(Ms, λs)d[M,M ]s +

∫ t

0

gy(Ms, λs)dλs, t ≥ 0

and this proves (2.3.15) and (2.3.16).

Theorem 2.3.9. Consider a flow R = (Rt)t≥0 of the form (2.3.12), where
λ is an increasing, right-continuous function on [0,∞) with values in [0, 1]
and initial value λ0 = 0. Assume that

WR is a local submartingale under Q (2.3.18)

or, equivalently, that

[WR,M ] is an increasing process. (2.3.19)

Then the R-bubble βR is a local submartingale under R with initial value
βR0 = 0. After time t1 = inf{t;λt = 1}, βR is a local martingale under R,
and hence an R-supermartingale.
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Proof. Remember that WR and M are both martingales under R. An ap-
plication of Itô’s product formula provides us with the following canonical
decomposition of the semimartingale WRM under R

d(WRM) = WRdM +MdWR + d[WR,M ]

Therefore the quadratic covariation [WR,M ], which represents the predictable
process of bounded variation in the canonical decomposition of WRM , is an
increasing process if and only if WRM is a local submartingale under R. It
follows from Girsanov’s theorem that this is equivalent to WR being a local
submartingale under Q.
SinceW is a martingale under Q, this implies thatWM is an R-local martin-
gale. Due to the fact thatW andM are both continuous R-local martingales,
and in particular locally square integrable local martingales, Corollary II.2
in [52] implies that the unique process [W,M ] that compensates WM must
be equal to zero. However, note that this result holds also is we assume
continuity for just one of the processes W and M . Since W is an R-local
martingale, the semimartingale decomposition of W under Q is given by

W =
(
W − 1

M
d[M,Z]

)
+

1

M
d[M,Z]. (2.3.20)

By (2.3.20) and the fact that W is a Q-martingale, we obtain [W,M ] ≡ 0.
Therefore

[βR,M ] = [W −WR,M ] = −[WR,M ] (2.3.21)

is a decreasing process. Let us compute the quadratic covariation between ξ
and βR. It follows from Lemma 2.3.7 that

d[ξ, βR] = d[M ξ, βR] + d[Aξ, βR] = gx(M,λ)d[M,βR].

Since g(x, y) is decreasing in x, we have gx(M,λ) ≤ 0. Therefore [ξ, βR] is an
increasing process. The local submartingale property of βR under R follows
from Proposition 2.3.6. The rest follows as in Proposition 2.3.5 since ξt = 1
for t ≥ t1.

Suppose that the wealth process W is strictly positive. Then there exists
a unique semimartingale L such that W is the solution of the equation

Wt = W0 +

∫ t

0

WsdLs, t ≥ 0,

or equivalently, W can be written as the Doléans exponential

W = E (L) = exp(L− 1

2
[L,L]). (2.3.22)
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The process L is called the stochastic logarithm and is given by

Lt =

∫ t

0

1

Ws

dWs, t ≥ 0.

It is easy to see that L is a local martingale under R. Using the representation
(2.3.22) of W , we factorize the fundamental wealth process WR perceived
under R as follows

WR
t = ER[WR

∞|Ft] = ER[W∞|Ft] = WtER
[W∞
Wt

|Ft
]

= WtER[exp(L∞ −
1

2
[L,L]∞) exp(−Lt +

1

2
[L,L]t)|Ft].

Therefore
WR
t = WtCt, t ≥ 0, (2.3.23)

where C = (Ct)t≥0 is a semimartingale given by

Ct := ER[exp{L∞ − Lt −
1

2
([L,L]∞ − [L,L]t)}|Ft], t ≥ 0. (2.3.24)

The martingale property of W under Q implies [W,M ] ≡ 0, and so the
factorization 2.3.23 yields:

d[WR,M ] = Wd[C,M ] + Cd[W,M ] = Wd[C,M ]. (2.3.25)

Since W is strictly positive, the criterion in Theorem 2.3.9 now takes the
following form:

Corollary 2.3.10. The R-bubble βR is a local R-submartingale if [C,M ] is
an increasing process, where C is defined by the factorization WR = WC in
(2.3.23) and (2.3.24).
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2.4 The Delbaen-Schachermayer example
In the present section we provide an example of an incomplete financial mar-
ket model where Assumption (2.2.5) is satisfied and where the R-bubble βR
exhibits a local martingale behavior under R. More precisely, we show that
Condition (2.3.19) of Theorem 2.3.9 is satisfied.

Our model is a slight extension of the classical Delbaen-Schachermayer
setting, see [20]. Instead of defining the price process along with the mea-
sures Q and R in terms of two independent geometric Brownian motions,
we consider a more general case where the price process S and the Radon-
Nikodym density process of Q with respect to R are defined in terms of two
independent continuous martingales.

Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space satisfying the usual
conditions and let X(1) and let X(2) be two independent and strictly positive
continuous martingales such that X(1)

0 = X
(2)
0 = 1 and

lim
t↑∞

X
(1)
t = lim

t↑∞
X

(2)
t = 0, P − a.s.

We fix constants a ∈ (0, 1) and b ∈ (1,∞) and define the stopping times

τ1 := inf{t > 0;X
(1)
t = a}, τ2 := inf{t > 0;X

(2)
t = b} (2.4.1)

and τ := τ1 ∧ τ2. Note that τ1 <∞ P -a.s. We fix N ∈ N. An application of
Doob’s stopping time theorem to the martingale X(2) yields

EP [X
(2)
τ2∧N |Ft] = X

(2)
t∧τ2∧N .

By passing to the limit with the help of the Lebesgue’s dominated conver-
gence theorem we obtain

EP [X(2)
τ2
|Ft] = EP [ lim

n→∞
X

(2)
τ2∧N |Ft] = lim

n→∞
EP [X

(2)
τ2∧N |Ft]

= lim
n→∞

X
(2)
t∧τ2∧N = X

(2)
t∧τ2 .

Therefore
P [τ2 <∞|Ft] =

1

b
X

(2)
t∧τ2 . (2.4.2)

Now consider an asset that generates a single payment X(1)
τ at time τ , and

whose price process S is given by St = X1
t 1{τ>t}, t ≥ 0. Therefore the

cumulative dividend process D is given by

Dt = X(1)
τ 1{τ≤t}, t ≥ 0,
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and the corresponding wealth processW is given by the process X(1) stopped
at τ :

Wt = St +Dt = X
(1)
τ∧t, t ≥ 0.

Hence W is a P -martingale lower bounded by a since

Wt = X
(1)
t∧τ = X(1)

τ1
1{τ1≤τ2∧t} +X

(1)
{τ2∧t}1{τ2∧t<τ1}

> a1{τ1≤τ2∧t} + a1{τ2∧t<τ1} = a.

However, W it is not uniformly integrable, as shown in [20]. More precisely:

Lemma 2.4.1. We have

EP [W∞|Ft] = a(1− 1

b
X

(2)
t∧τ ) +

1

b
X

(1)
t∧τX

(2)
t∧τ , (2.4.3)

and this is strictly smaller than Wt = X
(1)
t on the set {τ > t}.

Proof. Equation (2.4.3) is satisfied on the set {τ ≤ t}, since

a(1− 1

b
X

(2)
t∧τ ) +

1

b
X

(1)
t∧τX

(2)
t∧τ = a(1− 1

b
X(2)
τ ) +

1

b
X(1)
τ X(2)

τ

= a(1− 1

b
X(2)
τ1

1{τ1<τ2} −
1

b
X(2)
τ2

1{τ2≤τ1})

+
1

b
X(1)
τ1
X(2)
τ1

1{τ1<τ2} +
1

b
X(1)
τ2
X(2)
τ2

1{τ2≤τ1}

= a− a

b
X(2)
τ1

1{τ1<τ2} −
a

b
b1{τ2≤τ1}

+
a

b
X(2)
τ1

1{τ1<τ2} +X(1)
τ2

1{τ2≤τ1}

= a− a1{τ2≤τ1} +X(1)
τ2

1{τ2≤τ1}

= X(1)
τ1

1{τ2>τ1} +X(1)
τ2

1{τ2≤τ1}

= X(1)
τ

and W∞ coincide with X(1)
τ . On the set {τ > t} we have

EP [W∞|Ft] = EP [X(1)
τ |Ft]

= EP [X(1)
τ1

1{τ2=∞}|Ft] + EP [X(1)
τ 1{τ2<∞}|Ft]

= aP [τ2 =∞|Ft] + EP [EP [X
(1)
τ1∧τ2 |Ft ∨ σ(τ2)]1{τ2<∞}|Ft].

(2.4.4)

Since τ2 is independent of X(1), the last term reduces to

X
(1)
t P [τ2 <∞|Ft],
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and by (2.4.2) we obtain (2.4.3). It follows from definition (2.4.1) of τ1 and
τ2 that X(1)

t > a and X(2)
t < b on on {τ > t}. Therefore ER[W∞|Ft] < Wt =

X
(1)
t on {τ > t}.

Consider the bounded martingale M defined by

Mt := X
(2)
t∧τ , t ≥ 0,

and denote by Q ≈ P the probability measure with the Radon-Nikodym
density process

dQ

dP
= M∞ = X(2)

τ > 0.

We now show thatW is a uniformly integrable martingale under Q. It follows
from Corollary II.2 and Exercise III.21 in Protter [52] that W is a Q-local
martingale since [W,M ] ≡ 0. Furthermore EP [X

(1)
τ |τ2] = 1 on {τ2 <∞} and

X
(2)
τ = EP [X

(2)
τ2 1{τ2<∞}|Fτ ], hence

EQ[W∞] = EP [X(1)
τ X(2)

τ ] = EP [X(1)
τ X(2)

τ2
1{τ2<∞}]

= bEP [EP [X(1)
τ |τ2]1{τ2<∞}] = bP (τ2 <∞)

= b
1

b
EP [X

(2)
t∧τ2 ] = 1 = W0,

(2.4.5)

and this implies uniform integrability of W under Q.
Set R := P . Then

R ∈MNUI(W ) and Q ∈MUI(W ).

As in Section 3 we now consider a flow R = (Rt)t≥0 of the form (2.3.12). By
(2.4.3), the fundamental wealth process WR perceived under R is given by

WR
t = ER[W∞|Ft] = a(1− 1

b
Mt) +

1

b
WtMt, t ≥ 0. (2.4.6)

Condition (2.3.19) of Theorem 2.3.9 is satisfied in our present case as
shown below.

Proposition 2.4.2. WR is a local submartingale under Q.

Proof. Since [W,M ] = 0, we obtain

d[WR,M ] =
1

b
d[(W − a)M,M ] =

1

b
(W − a)d[M,M ].

This implies that [WR,M ] is an increasing process, i.e. WR is a local sub-
martingale under Q.
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We now consider the R-bubble βR. By (2.4.6), the R-bubble takes the
form

βR = W −WR = (W − a)(1− 1

b
M), (2.4.7)

and so the R-bubble is given by

βR = ξβR = ξ(W −WR) = ξ(W − a)(1− 1

b
M).

In particular the R-bubble vanishes at time τ , that is, βRt = 0 for t ≥ τ .
Since condition (2.3.18) is satisfied, the R-bubble starts from its initial value
0 as a R-submartingale, which then turns into a supermartingale before it
finally returns to 0. More precisely:

Corollary 2.4.3. The behavior of the R-bubble under the measure R is de-
scribed by Theorem 2.3.9.

2.5 The behavior of the R-bubble under Q
We consider the setting of Section 2.3, where the flow R consists in moving
from a measure Q ∈ MUI(W ) to a measure R ∈ MNUI(W ) such that, at
any time t > 0, the market’s forward-looking view is given by the conditional
distribution

Rt[·|Ft] = ξtR[·|Ft] + (1− ξt)Q[·|Ft],
where ξ = (ξt)t≥0 is an adapted, càdlàg process with values in [0, 1] starting
from ξ0 = 0. It follows from Lemma 2.3.4 that the R-bubble is of the form

βR = W −WR = ξβR.

The aim of this section is to examine the R-bubble under the measure Q.
We first examine the R-bubble βR = W − WR = S − SR. We consider
that Condition (2.3.18) is satisfied i.e. WR is a local submartingale under Q.
Therefore WR admits the following Doob-Meyer decomposition

WR = MQ + AQ, (2.5.1)

whereMQ is a Q-local martingale and AQ is an increasing continuous process
of bounded variation.

Proposition 2.5.1. Under condition (2.3.18) the R-bubble βR is a uniformly
integrable supermartingale under Q. More precisely, βR is the Q-potential
generated by the increasing process AQ, that is,

βRt = ER[AQ∞ − A
Q
t |Ft], t ≥ 0. (2.5.2)
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Proof. Since W is uniformly integrable under Q such that W > MQ and
W > βR, the R-bubble

βR = W −WR = (W −MQ)− AQ

is a uniformly integrable Q-supermartingale. Since

EQ[MQ
∞|Ft] = EQ[W∞ − A∞|Ft] = Wt − EQ[AR∞|Ft], (2.5.3)

we obtain (2.5.2).

We denote by M̃ = (M̃t)t≥0 the Radon-Nikodym density process of R
with respect to Q i.e.

M̃t :=
dR

dQ
|Ft =

1

Mt

, t ≥ 0,

where M is defined in (2.3.13). We know that M̃ is a Q-martingale. More-
over, the R-bubble can be written under the form

βR = ξ̃β̃R,

where ξ̃ := ξM and β̃R := βRM̃ .

Lemma 2.5.2. The process β̃R = βRM̃ is a local martingale under Q. Under
condition (2.3.18), the processes [β̃R, M̃ ] and [βR, M̃ ] are both increasing.

Proof. Since βR is a local R-martingale, it follows from Exercise III.21 in
Protter [52] that β̃R is a local martingale under Q. Under condition (2.3.18)
the process [βR,M ] is decreasing, see (2.3.21). Applying Itô’s formula to-
gether with the integration by parts formula to β̃R = βRM̃ and M̃ = M−1

we have

d[β̃R, M̃ ] = d[βRM̃, M̃ ] = βRd[M̃, M̃ ] + M̃d[βR, M̃ ]

= − 1

M3
d[βR,M ] +

1

M4
βRd[M,M ]

and so [β̃R, M̃ ] is increasing. Moreover an application of Itô’s formula yields

d[βR, M̃ ] = − 1

M2
d[βR,M ].

Hence also [βR, M̃ ] is increasing.
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Let (λt)t≥0 be an increasing càdlàg function that takes values in [0, 1] and
starts in λ0 = 0. In the following, we focus on the special case where the flow
R = (Rt)t≥0 is of the form (2.3.12), i.e.

Rt = (1− λt)Q+ λtR,

In particular, the process ξ is now given by

ξt =
λt

λt + (1− λt)Mt

, t ≥ 0, (2.5.4)

as shown in Lemma 2.3.7.

Proposition 2.5.3. The process ξ̃ = ξM is a submartingale under Q. More
precisely, the Doob-Meyer decomposition of ξ̃ under Q is given by

ξ̃t = M̃ ξ + Ãξ (2.5.5)

with
dM̃ ξ = − λ2

(λM̃ + (1− λ))2
dM̃

and

dÃξ =
1

(λM̃ + (1− λ))2
dλ+

λ3

(λM̃ + (1− λ))3
d[M̃, M̃ ]. (2.5.6)

Proof. Note that
ξ̃t = g̃(M̃t, λt),

where the function g̃(x, y) is defined by

g̃(x, y) :=
y

xy + (1− y)

and has the following partial derivatives

g̃x(x, y) = − y2

(xy + (1− y))2
, g̃y(x, y) =

1

(xy + (1− y))2
(2.5.7)

and
g̃xx(x, y) =

2y3

(xy + (1− y))3
. (2.5.8)

Therefore g̃(x, y) is convex in x ∈ (0,∞) and increasing in y ∈ [0, 1].
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As in the proof of Lemma 2.3.8, it follows that ξ̃ is a Q-submartingale.
An application of Itô’s formula yields the Doob-Meyer decomposition of ξ̃

ξ̃t = g̃(M̃t, λt) =

∫ t

0

g̃y(M̃s, λs)dλs +

∫ t

0

gx(M̃s, λs)dM̃s

+
1

2

∫ t

0

gxx(M̃s, λs)d[M̃, M̃ ]s

=

∫ t

0

1

(λsM̃s + (1− λs))2
dλs −

∫ t

0

λ2
s

(λsM̃s + (1− λs))2
dM̃s

+

∫ t

0

λ3
s

(λsM̃s + (1− λs))3
d[M̃, M̃ ]s.

We investigate the behavior of the R-bubble βR = ξβR = ξ̃β̃R under the
measure Q.

Proposition 2.5.4. Under Q the R-bubble has the canonical decomposition

βR = M̃R + ÃR,

where the local martingale M̃R is given by

dM̃R = ξ̃dβ̃R + β̃RdM ξ̃.

The process ÃR takes the form

dÃR =
M̃

λM̃ + (1− λ)
(βRdλ− dD), (2.5.9)

where D denotes the increasing process given by

dD =
λ2(1− λ)βR

M̃(λM̃ + (1− λ))
d[M̃, M̃ ] + λ2d[βR, M̃ ].

Proof. Applying integration by parts to βR = ξ̃β̃R and using the Doob-Meyer
decomposition (2.5.5) of ξ̃, we obtain

dβR = ξ̃dβ̃R + β̃Rdξ̃ + d[β̃R, ξ̃]

= (ξ̃dβ̃R + β̃RdM̃ ξ) + (β̃RdÃξ + d[β̃R, ξ̃])

=: dM̃R + dÃR,
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where we have denoted

dM̃R = ξ̃dβ̃R + β̃RdM̃ ξ,

and
dÃR = β̃RdÃξ + d[β̃R, ξ̃].

Since β̃R is a Q-local martingale by Lemma 2.5.2 and M̃ ξ is the Q-local
martingale part of ξ̃, it follows that M̃R is a local martingale under Q. The
finite-variation part is given by ÃR and the decomposition is unique since
βR is a special semimartingale due its continuity. Since ξ̃ = g̃(M̃, λ) and
β̃R = βRM̃ , we obtain

d[β̃R, ξ̃] = d[g̃(M̃, λ), β̃R] = g̃x(M̃, λ)d[β̃R, M̃ ]

= g̃x(M̃, λ)d[βRM̃, M̃ ]

= g̃x(M̃, λ)(βRd[M̃, M̃ ] + M̃ [βR, M̃ ]).

By (2.5.7) and (2.5.6), we obtain

dÃR =
βRM̃

(λM̃ + (1− λ))2
dλ+

βRM̃λ3

(λM̃ + (1− λ))3
d[M̃, M̃ ]

− βRλ2

(λM̃ + (1− λ))2
d[M̃, M̃ ]− λ2M̃

(λM̃ + (1− λ))2
d[βR, M̃ ]

=
βRM̃

(λM̃ + (1− λ))2
dλ− βRλ2(1− λ)

(λM̃ + (1− λ))3
d[M̃, M̃ ]

− λ2M̃

(λM̃ + (1− λ))2
d[βR, M̃ ]

=
M̃

(λM̃ + (1− λ))2
(βRdλ− dD).

It follows from Lemma 2.5.2 that the process D is increasing.

Therefore the R-bubble βR can exhibit a supermartingale behavior un-
der Q in periods when the process λ stays constant and βR is a strict Q-
submartingale, if the increase in λ is strong enough to compensate for the
increase in D, as it may happen in the build-up phase of the bubble.

Definition 2.5.5. We say that the R-bubble βR behaves locally as a strict
Q-submartingale in a given random period if ÃR is strictly increasing in that
period.
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We conclude this section by examining in the setting of Section 2.4 the
qualitative behavior of the R-bubble βR from the measure Q-perspective.
According to (2.4.7), the R-bubble now takes the form

βR = (W − a)(1− 1

b
M). (2.5.10)

We have d[W, M̃ ] = −M−2d[W,M ] = 0 and d[M, M̃ ] = −M̃−2d[M̃, M̃ ].
Therefore the increasing process [βR, M̃ ] is given by

d[βR, M̃ ] = d[(W − a)(1− 1

b
M), M̃ ]

= −1

b
(W − a)d[M, M̃ ] + (1− 1

b
M)d[W, M̃ ]

=
1

b
(W − a)M̃−2d[M̃, M̃ ].

(2.5.11)

Let
φ :=

dλ

d[M̃, M̃ ]

be the density of the absolute continuous part of λ with respect to [M̃, M̃ ].

Corollary 2.5.6. The R-bubble behaves locally as a strict Q-submartingale
in periods where

φt > λ2
t (1− λt(1−

1

b
))(M̃t −

1

b
)−1(λtM̃t + (1− λt))−1. (2.5.12)

Proof. In this setting, by using (2.5.9), (2.5.10) and (2.5.11), the finite vari-
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ation part ÃR of βR is equal to

dÃRt =
M̃t

λtM̃t + (1− λt)
(βRt dλt − dDt)

=
M̃t

λtM̃t + (1− λt)
βRt dλt −

(1− λt)λ2
t

(λtM̃t + (1− λt))2
βRt d[M̃, M̃ ]t

− λ2

λM̃ + (1− λ)
d[βR, M̃ ]t

=
M̃tβ

R
t

λtM̃t + (1− λt)
φtd[M̃, M̃ ]t −

λ2
t (1− λt)

(λtM̃t + (1− λt))2
βRt d[M̃, M̃ ]t

− λ2
t

b(λtM̃t + (1− λt))
(Wt − a)M̃−2

t d[M̃, M̃ ]t

=
M̃t

λtM̃t + (1− λt)
(Wt − a)(1− 1

b
Mt)φtd[M̃, M̃ ]

− λ2
t (1− λt)

(λtM̃t + (1− λt))2
(Wt − a)(1− 1

b
Mt)d[M̃, M̃ ]t

− λ2
t

b(λtM̃t + (1− λt))
(Wt − a)M̃−2

t d[M̃, M̃ ]t.

Hence, the condition dÃR > 0 is equivalent to

M̃t

λtM̃t + (1− λt)
(1−1

b
Mt)φt ≥

λ2
t (1− λt)

(λtM̃t + (1− λt))2
(1−1

b
Mt)+

λ2
t

b(λtM̃t + (1− λt))
M̃−2

t

Multiplying by (λtM̃t + (1− λt))2 we obtain

(M̃t −
1

b
)(λtM̃t + (1− λt))φt ≥ λ2

t (1− λt(1−
1

b
)).

We now focus on the special case where the martingale X(2) in Section
2.4 is of the form dX(2) = X(2)dB for some Brownian motion B. Then the
quadratic covariation of M̃ is equal to d[M̃, M̃ ] = M̃2dt up to the stopping
time τ introduced in Section 2.4.

Let λ be continuous and piecewise differentiable with right-continuous
derivative λ′. Then the density φ is given by φ = M̃−2λ′. We define the
functions

f(x, t) := (1− 1

b
x)(λ(t) + (1− λ(t))x)λ′(t)
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and
h(t) := λ2(t)(1− λ(t))(1− 1

b
).

The following Corollary provides a characterization of the behavior of the
R-bubble under Q.

Corollary 2.5.7. Up to time τ , the R-bubble βR behaves locally as a strict
Q-submartingale as long as the process (Mt, t) stays in the domain

D+ := {(x, t); f(x, t) > h(t)},

and as a strict supermartingale under Q as long as it stays in

D− := {(x, t); f(x, t) < h(t)}.

In particular, if λ′(0) > 0 then βR behaves as a strict Q-submartingale up to
the exit time

σ := inf{t > 0; (Mt, t) 6∈ D+} > 0

from D+.

Proof. In this setting, (2.5.12) is equivalent to the condition f(Mt, t) > h(t),
and the condition f(Mt, t) < h(t) is equivalent to dÃR < 0. Note that
λ′(0) > 0 implies (1, 0) ∈ D+, hence (Mt, t) ∈ D+ for small enough t, and
this implies that the exit time from D+ is strictly positive.
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Chapter 3

Stochastic volatility models

The contents of Section 3.1 of this Chapter are based on Section 5 of Bi-
agini, Föllmer and S. Nedelcu [4], which was developed independently by
the author. Also Section 3.2 of the present Chapter was developed indepen-
dently by the author and is based on a manuscript which is not yet published.

In the present chapter, we provide two examples within the framework of
stochastic volatility models, where we can compute explicitly the processes
WR and βR and verify our condition on the submartingale behavior of WR

under Q. In Section 3.1 we present a version of the stochastic volatility model
introduced by Sin [57]. We also show that the model can be modified in such
a way the condition no longer holds. In Section 3.2 we show that βR follows a
local R-submartingale in a modification of the Andersen-Piterbarg stochastic
volatility model. The Andersen-Piterbarg model represents a generalisation
of the model of Sin [57] by allowing correlation between the Brownian motions
driving the asset price process and the volatility, respectively.

3.1 Stochastic model with independent Brow-
nian motions

Let B = (B1, B2, B3) be a 3-dimensional Brownian motion on a filtered
probability space (Ω,F , (Ft)t≥0, P ). We consider the stochastic volatility
model

dXt = σ1vtXtdB
1
t + σ2vtXtdB

2
t , X0 = x,

dvt = a1vtdB
1
t + a2vtdB

2
t + a3vtdB

3
t , v0 = 1,

(3.1.1)

where the vectors a = (a1, a2) and σ = (σ1, σ2) are not parallel and satisfy
(a · σ) > 0, and that a3 ∈ {0, 1}.
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The model (3.1.1) is obtained by doing two important modifications to
the model studied by C.A.Sin [57]. Firstly, we drop the drift term that ex-
isted in the equation of v under P . This modification is made in order to
compute the fundamental value WR in Proposition 3.1.2. Secondly, we ex-
tend the model, by allowing it to be driven by a 3-dimensional Brownian
motion instead of a 2-dimensional Brownian motion. This extension allows
us to construct a counterexample to Condition (2.3.18).

The following theorem provides the corresponding variant of Theorem 3.9
in [57].

Theorem 3.1.1. There exists a unique solution (X, v) of (3.1.1).
For any T > 0, the process (Xt)t∈[0,T ] is a strict local martingale under

P . Moreover, there exists an equivalent martingale measure Q for X such
that the densities

dQ

dP
|Ft = Mt, 0 ≤ t ≤ T,

are given by

Mt = E
(
−
∫ ·

0

vs(a · σ)

a · σ⊥
σ⊥1 dB

1
s −

∫ ·
0

vs(a · σ)

a · σ⊥
σ⊥2 dB

2
s + |α|2B3

t

)
t

, (3.1.2)

where E (Z) = exp(Z − 1
2
[Z,Z]) denotes the stochastic exponential of a con-

tinuous semimartingale Z, the vector σ⊥ = (σ⊥1 , σ
⊥
2 ) 6= 0 satisfies

σ · σ⊥ = σ1σ
⊥
1 + σ2σ

⊥
2 = 0,

and where we put |α| =
√
a2

1 + a2
2 + a2

3. More precisely, the process (Xt)t∈[0,T ]

is a martingale under Q satisfying

dXt = σ1vtXtdB
Q,1
t + σ2vtXtdB

Q,2
t , X0 = x,

dvt = a1vtdB
Q,1
t + a2vtdB

Q,2
t + a3vtdB

Q,3
t − (a · σ)v2

t dt+ a3|α|2vtdt, v0 = 1,

where BQ = (BQ,1, BQ,2, BQ,3) is a 3-dimensional Brownian motion under
Q.

Proof. We proceed as in the proof of Theorem 3.3 in [57]. We start by
showing that there exists a unique solution (X, v) of equation (3.1.1). We
define the process W = (Wt)t≥0 by

Wt = |α|−1(α1B
1
t + α2B

2
t + α3B

3
t ), t ≥ 0. (3.1.3)

Then W is continuous local martingale. Moreover

d[W,W ]t = |α|−2(α2
1d[B1, B1]t + α2

2d[B2, B2]t + α3
td[B3, B3]t)

= |α|−2(α2
1 + α2

2 + α2
3)dt = dt.
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Therefore it follows from Levy’s Theorem, see Theorem II.39 in [52], that
W is a Brownian motion under P . The process v satisfies the 1-dimensional
stochastic differential equation

dvt = |α|vtdWt, 0 ≤ t ≤ T. (3.1.4)

Due to the linearity of the coefficients, equation (3.1.4) admits a unique
solution v = E (|α|W ). Therefore X is uniquely determined as the Doléans
exponential of the square integrable process∫ t

0

σ1vsdB
1
s +

∫ t

0

σ2vsdB
2
s .

We prove that (Xt)t∈[0,T ] is a strict local martingale under P . To this purpose,
it is sufficient to prove that EP [XT ] < X0. It follows from Lemma 4.2 of [57]
that the expectation of the local martingale X under P is equal to

EP [XT ] = X0P ({wt does not explode on [0, T ]}),

where the auxiliary process (wt)t∈[0,T ] is given by

dwt = a1wtdB
1
t + a2wtdB

2
t + a3wtdB

3
t + (a · σ)w2

t dt, w0 = 1.

Moreover, w is the solution of the 1-dimensional stochastic differential equa-
tion

dwt = |α|wtdWt + (a · σ)w2
t dt, t ∈ [0, T ], (3.1.5)

where W is a P -Brownian motion defined in (3.1.3). It follows from Lemma
4.3 of [57] that the unique solution of equation (3.1.5) explodes to +∞ in
finite time with positive probability. This implies that EP [XT ] < X0.
Let us show that the process M = (Mt)t∈[0,T ] is a well defined Radon-
Nikodym density process, i.e. is a true martingale under the measure P .
It follows from Lemma 4.2. of [57] that the expectation under P of MT can
be written as

EP [MT ] = M0P ({v̂t does not explode on [0, T ]}) (3.1.6)

where v̂ = (v̂t)t∈[0,T ] satisfies

dv̂t = a1v̂tdB
1
t + a2v̂tdB

2
t + a3v̂tdB

3
t − (a · σ)(v̂t)

2dt+ a3|α|2v̂tdt,

for all t ∈ [0, T ]. The process v̂ solves the 1-dimensional stochastic differential
equation

dv̂t = |α|v̂tdWt − (a · σ)(v̂t)
2dt+ a3|α|2v̂tdt t ∈ [0, T ].

42



The explosion time of the process v̂, where by explosion we mean that the
process v̂ escapes the interval (0,∞) on which is defined, is given by

τ∞ = inf{t ≥ 0; v̂t 6∈ (0,∞)}.

We apply Feller’s test to v̂ (see Chapter 5, section 5.5 of Karatzas and Shreve
[41]) in order to prove that

P ({τ∞ = +∞}) = P ({v̂t does not explode on [0, T ]}) = 1.

As explained in Chapter 5, section 5.5 of Karatzas and Shreve [41], the Feller’s
test goes as follows: in order to determine whether a process v̂ explodes or
not in finite time, one has first to examine the behavior of the scale function
p(x) by computing the limits limx→0 p(x) and limx→∞ p(x). If

lim
x→0

p(x) = −∞ and lim
x→∞

p(x) = +∞, (3.1.7)

Then Proposition 5.22 in [41] implies that P (τ∞ = +∞) = 1. If at least one
of the equalities in is not satisfied, then we proceed to compute the function
u(x) defined in Problem 5.28 of [41] ad to examine the limits

lim
x→∞

u(x) and lim
x→0

u(x).

Theorem 5.29 in [41] states that P (τ∞ = +∞) = 1 or P (τ∞ = +∞) < 1
according to whether the equality

lim
x→0

u(x) = lim
x→∞

u(x) = +∞.

is satisfied or not.
The scale function is equal in our case to

p(x) =

∫ x

1

exp(−2

∫ y

1

−(a · σ)z2 + a3|α|2z
|α|2z2

dz)dy,

and examine the limits limx↓0 p(x) and limx↑∞ p(x). Here we distinguish be-
tween two cases:

Case 1: a3 = 0. We have

p(x) =

∫ x

1

exp(
2(a · σ)

|α|2

∫ y

1

dz)dy

= k

∫ x

1

exp(
2(a · σ)y

|α|2
)dy

= k1
|α|2

2(a · σ)
exp(

2(a · σ)x

|α|2
)− k2
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with k, k1, k2 ∈ R+. Since a · σ > 0, we have

lim
x↑∞

p(x) = +∞,

By Problem 5.27 of [41] we obtain that

u(∞) = +∞,

where
u(x) =

∫ x

1

p′(y)

∫ y

1

2

p′(z)|α|2z2
dzdy.

Moreover

lim
x→0+

p(x) = k1
|α|2

2(a · σ)
− k2 > −∞

As required by Feller’s test, we now compute

lim
x→0+

u(x) = lim
x→0+

∫ x

1

p′(y)

∫ y

1

2

|α|2z2p′(z)
dzdy

= lim
x→0+

∫ x

1

2

|α|2z2p′(z)

∫ x

z

p′(y)dydz

= lim
x→0+

∫ x

1

2

|α|2z2
exp(−2(a · σ)z

|α|2
)

∫ x

z

exp(
2(a · σ)y

|α|2
)dydz

≥ lim
x→0+

e
− 2(a·σ)
|α|2

∫ x

1

2

|α|2z2

∫ x

z

dydz

= lim
x→0+

(
e
− 2(a·σ)
|α|2

2

|α|2

∫ x

1

1

z2
(x− z)dz

)
= e

− 2(a·σ)
|α|2

2

|α|2
lim
x→0+

(− log x− x+ 1) = +∞

It follows from Feller’s Test for Explosions, see Theorem 5.29 of [41], that

P (τ∞ = +∞) = 1.

Hence v̂ does not explode on [0, T ] and

EP [MT ] = M0P ({v̂t does not explode on [0, T ]}) = M0.

This implies that the positive local martingale M has constant expectation
and therefore is a true P -martingale. We denote byQ the probability measure
having the Radon-Nikodym density process with respect to P given by M .
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It follows from Girsanov’s theorem that the process (BQ,i
t )t∈[0,T ], i = 1, 2

given by

BQ,i
t = Bi

t −
∫ t

0

1

Ms

d[M,Bi]s = Bi
t +

∫ t

0

vs(a · σ)

(a · σ⊥)
σ⊥i ds,

for all t ∈ [0, T ] is a Brownian motion under Q Hence the canonical semi-
martingale decomposition of v under Q can be written in the following way

dvt =
(
a1vtdB

1
t + a2vtdB

2
t −

1

Mt

d[M, v]t
)

+
1

Mt

d[M, v]t

=
(
a1vtdB

1
t + a2vtdB

2
t + a1

v2
t (a · σ)

a · σ⊥
σ⊥1 dt+ a2

v2
t (a · σ)

a · σ⊥
σ⊥2 dt

)
− v2

t (a · σ)dt

= a1vtdB
Q,1
t + a2vtdB

Q,2
t − v2

t (a · σ)dt.

Analogously, one can obtain the canonical decomposition of X with respect
to Q

dXt =
(
σ1vtXtdB

1
t + σ2vtXtdB

2
t −

1

Mt

d[M,X]t
)

+
1

Mt

d[M,X]t

=
(
σ1vtXtdB

1
t + σ2vtXtdB

2
t + σ1

v2
t (a · t)

(a · σ⊥)
σ⊥1 Xtdt

+ σ2
v2
t (a · t)

(a · σ⊥)
σ⊥2 Xtdt

)
+
v2
t (a · σ)

(a · σ⊥)
(σσ⊥)Xtdt

= σ1vtXtdB
Q,1
t + σ2vtXtdB

Q,2
t .

Hence, under the measure Q the bivariate process (X, v) satisfies

dXt = σ1vtXtdB
Q,1
t + σ2vtXtdB

Q,2
t , X0 = x,

dvt = a1vtdB
Q,1
t + a2vtdB

Q,2
t − (a · σ)v2

t dt, v0 = 1.

It is easy to see thatX is a positive localQ-martingale, hence aQ-supermartingale.
To show that is a true Q-martingale it is enough to show that it has constant
expectation, i.e. EQ[XT ] = X0. It follows from Lemma 4.2 from [57] that

EQ[XT ] = X0Q({v̄t does not explode on [0, T ]}),

where the auxiliary process (v̄t)t∈[0,T ] satisfies the stochastic differential equa-
tion

dv̄t = a1v̄tdB
1
t + a2v̄tdB

2
t . (3.1.8)

Since the equation (3.1.8) has linear coefficients, it follows from Remark
5.19 [41] that it has a non-exploding solution. Therefore (Xt)t∈[0,T ] is a Q-
martingale.
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Case 2: a3 = 1. We follow the same steps as in Case 1. The scale function
is in this case equal to:

p(x) =

∫ x

0

exp(−2

∫ y

1

−(a · σ)z2 + |α|23z
|α|2z2

dz)dy

= k

∫ x

1

exp(2
(a · σ)y

|α|2
)y−2dy,

where k ∈ R+. We examine the limits limx↓0 p(x) and limx↑∞ p(x). We have
that

lim
x↓0

p(x) = lim
x↓0

k

∫ x

1

exp(2
(a · σ)y

|α|2
)y−2dy = −∞

By Problem 5.27 of [41] we have that

u(0+) = +∞,

where
u(x) =

∫ x

1

p′(y)

∫ y

1

2

p′(z)|α|2z2
dzdy.

Moreover, we have that

lim
x↑∞

p(x) = lim
x↑∞

k

∫ x

1

exp(2
(a · σ)y

|α|2
)y−2dy

= +∞.

Then it follows from Problem 5.27 of [41] that

u(∞) = +∞.

It follows from Feller’s Test for Explosions, see Theorem 5.29 of [41], that

P (τ∞ = +∞) = 1.

Therefore v̂ does not explode on [0, T ] and

EP [MT ] = M0P ({v̂t does not explode on [0, T ]}) = M0.

Thus the positive local martingaleM has constant expectation and therefore
is a true P -martingale.

It follows from Girsanov’s Theorem that the Brownian motion (Bi
t)t∈[0,T ],

i = 1, 2 admits the following canonical decomposition under Q

dBi
t =

(
dBi

t −
1

Mt

d[M,Bi]t

)
+

1

Mt

d[M,Bi]t

=
(
Bi
t +

vt(a · σ)

a · σ⊥
σ⊥1 dt

)
− vt(a · σ)

a · σ⊥
σ⊥1 dt

= BQ,i
t −

vt(a · σ)

a · σ⊥
σ⊥1 dt,
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where (BQ,i
t )t∈[0,T ] is a Q-Brownian motion,for i = 1, 2. Analogously, one

obtains that the canonical semimartingale decomposition of B3 under Q is
given by

dB3
t =

(
dB3

t −
1

Mt

d[M,B3]t

)
+

1

Mt

d[M,B3]t

= (dB3
t − |α|2dt) + |α|2dt = dBQ,3

t + |α|2dt,

where (BQ,3
t )t∈[0,T ] is a Q-Brownian motion. We see that X follows under Q

the dynamics

dXt = σ1vtXtdB
1
t + σ2vtXtdB

2
t + σ1

(a · σ)v2
t

a · σ⊥
σ⊥1 Xtdt

+ σ2
(a · σ)v2

t

a · σ⊥
σ⊥2 Xtdt−

v2
t (a · σ)

a · σ⊥
(σ · σ⊥)Xtdt

= σ1vtXtdB
1,Q
t + σ2vtXtdB

2,Q
t ,

and v has the following dynamics under Q

dvt =
(
a1vtdB

1
t + a2vtdB

2
t + vtdB

3
t −

1

Mt

d[M, v]t
)

+
1

Mt

d[M, v]t

= a1vtdB
1
t + a2vtdB

2
t + vtdB

3
t +

1

Mt

vt(a · σ)

a · σ⊥
σ⊥1 a1vtMtdt

+
1

Mt

vt(a · σ)

a · σ⊥
σ⊥2 a2vtMtdt−

1

Mt

|α|2vtMtdt− (a · σ)v2
t dt+ |α|2vtdt

=
(
a1vtdB

Q,1
t + a2vtdB

Q,2
t + vtdB

Q,3
t

)
− (a · σ)v2

t dt+ |α|2vtdt.

Under the measure Q, the bivariate process (X, v) satisfies

dXt = σ1vtXtdB
1,Q
t + σ2vtXtdB

2,Q
t , t ∈ [0, T ],

dvt = a1vtdB
1,Q
t + a2vtdB

2,Q
t + vtdB

3,Q
t − (a · σ)v2

t dt+ |α|2vtdt.

Thus X is a positive local Q-martingale. As in the previous case, in oder
to show that is a true martingale it is enough to show that it has constant
expectation. By applying Lemma 4.2 from [57] we obtain

EQ[XT ] = X0Q({ŵt does not explode on [0, T ]}),

where

dŵt = a1ŵtdB
1,Q
t + a2ŵtdB

2,Q
t + ŵtdB

3,Q
t + |α|2ŵtdt. (3.1.9)

Due to the linearity of the coefficients, it follows from Remark 5.19 in [41]
that equation (3.1.9) has a non-exploding solution. Therefore (Xt)t∈[0,T ] is a
Q-martingale.
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In the setting of Chapter 2, we now consider a financial market model
with a financial asset that generates a single payment XT at time T and
whose price process S is given by St := Xt for t < T and ST = 0. Then
the wealth process is given by W = X. Theorem 3.1.1 shows that W is a
uniformly integrable martingale under Q, and so we have

Q ∈MUI(W ).

Moreover, it follows from Theorem 3.1.1 that the wealth processW is a strict
local martingale under P . We put

R := P ∈MNUI(W ).

The fundamental value WR perceived under R is given by

WR
t = ER[WT |Ft] = ER[XT |Ft], t ∈ [0, T ].

Proposition 3.1.2. The process WR admits the factorization WR = W ·C,
where the semimartingale C is of the form

Ct = 1 + (σ1c1(t) + σ2c2(t))vt, t ∈ [0, T ].

The time-dependent coefficients are given by

c1(t) = ER

[
1

vt

∫ T−t

0

eXuvu+tdB̃
1
u

]
,

c2(t) = ER

[
1

vt

∫ T−t

0

eXuvu+tdB̃
2
u

]
,

(3.1.10)

and satisfy
σ1c1(t) + σ2c2(t) < 0 (3.1.11)

for any t ∈ [0, T ).

Proof. Since process X is given by the Doléans exponential

Xt = E
(∫ ·

0

σ1vsdB
1
s +

∫ ·
0

σ2vsdB
2
s

)
t

, t ∈ [0, T ].

we have

XT

Xt

= exp

(∫ T

t

σ1vsdB
1
s +

∫ T

t

σ2vsdB
2
s −

1

2

∫ T

t

(σ2
1 + σ2

2)v2
sds

)

= exp

(
vt

∫ T

t

σ1
vs
vt
dB1

s + vt

∫ T

t

σ2
vs
vt
dB2

s −
1

2
v2
t

∫ T

t

(σ2
1 + σ2

2)(
vs
vt

)2ds

)
.
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We write W under the following factorial form

WR
t = ER[XT |Ft] = XtER[

XT

Xt

|Ft] = WtCt,

where the semimartingale C is given by

Ct := ER[
XT

Xt

|Ft] (3.1.12)

for t ∈ [0, T ]. The fact that the Brownian motion has increments independent
of the past implies that

vu
vt

= exp(a1(B1
u −B1

t ) + a2(B2
u −B2

t ) + a3(B3
u −B3

t )−
1

2
|α|2(t− u))

is independent of Ft for T ≥ u ≥ t. We fix y := vt and define

Yu = σ1y

∫ t+u

t

vs
vt
dB1

s + σ2y

∫ t+u

t

vs
vt
dB2

s −
1

2
(σ2

1 + σ2
2)y2

∫ t+u

t

(
vs
vt

)2

ds,

for u ≥ 0. In particular, we have Y0 = 0 and

YT−t = σ1y

∫ T

t

vs
vt
dB1

s + σ2y

∫ T

t

vs
vt
dB2

s −
1

2
(σ2

1 + σ2
2)y2

∫ T

t

(
vs
vt

)2

ds.

An application of Itô’s formula for the function f(x) = ex yields

eYT−t = eY0 +

∫ T−t

0

eYudYu +
1

2

∫ T−t

0

eYud[Y, Y ]u

= eY0 + σ1y

∫ T−t

0

vu+t

vt
eYudB̃1

u + σ2y

∫ T−t

0

vu+t

vt
eYudB̃2

u,

(3.1.13)

where the Brownian motion B̃ = (B̃1, B̃2) defined by B̃i
u := Bi

t+u − Bi
t,

i = 1, 2, is independent of Ft. For fixed vt = y, we have

Ct = ER[
XT

Xt

|Ft] = ER[eYT−t ] = 1 + (σ1c1(t) + σ2c2(t))y, (3.1.14)

where c1(t) and c2(t) are given by (3.1.10). It follows from an application
of Feller’s Test for Explosions, see [57], that WR

t < Wt for any t ∈ [0, T ).
Therefore

Wt(1 + (σ1c1(t) + σ2c2(t))vt) < Wt, t ∈ [0, T ),

and this implies (3.1.11).
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We consider the flow of equivalent local martingale measures R = (Rt)t≥0

defined by (2.3.12). Lemma 2.3.4 implies that the resulting bubble βR is of
the form

βR = W −WR = ξ(W −WR).

Corollary 3.1.3. If a3 = 0, the process WR is a submartingale under the
measure Q, and so the behavior of the bubble βR is again described by Theo-
rem 2.3.9.

Proof. We verify the sufficient condition in Corollary 2.3.10. Since

dCt = (σ1c1(t) + σ2c2(t))dvt + σ1vtdc1(t) + σ2vtdc2(t)

= (σ1c1(t) + σ2c2(t))a1vtdB
1
t + (σ1c1(t) + σ2c2(t))a2vtdB

2
t

+ σ1vtdc1(t) + σ2vtdc2(t).

(3.1.15)

the local martingale part of the semimartingale C is given by

MC
t =

∫ t

0

a1(σ1c1(s) + σ2c2(s))vsdB
1
s +

∫ t

0

a2(σ1c1(s) + σ2c2(s))vsdB
2
s .

Since M is the stochastic exponential defined in (3.1.2), M satisfies the
stochastic differential equation

Mt = −
∫ t

0

vs(a.σ)

(a.σ⊥)
σ⊥1 MsdB

1
s −

∫ t

0

vs(a.σ)

(a.σ⊥)
σ⊥2 MsdB

2
s .

Therefore the quadratic covariation [M,C] is equal to

[M,C]t = [M,M c]t =

∫ t

0

−(σ1c1(s) + σ2c2(s))(a.σ)v2
sMsds.

It follows from (3.1.11) that the integrand is strictly positive, and therefore
[M,C] is an increasing process. Thus βR is a local submartingale under R,
as a consequence of Corollary 2.3.10.

We now provide a modification of the model in such a way that Condition
(2.3.19) is no longer satisfied. To this aim we choose the parameters such
that

|α|2

(a · σ)
> 1,

and introduce the stopping time

τ := inf{t > 0; vt =
|α|2

(a · σ)
}. (3.1.16)

Consider a financial asset that generates a single payment Xτ0 at time
τ0 := T ∧ τ and whose price process S is given again by St := Xt for t < τ0

and St := 0 for t ≥ τ0. The wealth process is then given again by W = X.
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Proposition 3.1.4. If a3 = 1, the quadratic covariation [M,C] is a decreas-
ing process, and so condition (2.3.19) is no longer satisfied.

Proof. By using the same computations as in the proof of Proposition 3.1.2
we obtain

dCt = (σ1c1(t) + σ2c2(t))dvt + σ1vtdc1(t) + σ2vtdc2(t)

= (σ1c1(t) + σ2c2(t))(a1vtdB
1
t + a2vtdB

2
t + vtdB

3
t )

+ σ1vtdc1(t) + σ2vtdc2(t),

where c1(t) and c2(t) are given by (3.1.10). It follows that the local martingale
part of C is given by

dMC
t = (σ1c1(t) + σ2c2(t))(a1vtdB

1
t + a2vtdB

2
t + vtdB

3
t ).

and

d[MC ,M ]t = −(σ1c1(t) + σ2c2(t))(a · σ)v2
tMtdt

+ (σ1c1(t) + σ2c2(t))|a|2vtMtdt

= −(σ1c1(t) + σ2c2(t))(−|α|2 + (a · σ)vt)vtMtdt.

In view of (3.1.11) the process is decreasing on [0, τ0], since (a ·σ)vt−|α|2 ≤ 0
on [0, τ0] by the definition of τ in (3.1.16) and since v0 = 1.

3.2 Stochastic model with correlated Brownian
motions

The following example is derived from the Anderson-Piterbarg model [3],
which is generalisation of the previous case, by allowing correlation between
the Brownian motions driving the processes. Our example consists of a pro-
cess driven by a 3-dimensional Brownian motion, instead of a 2-dimensional
Brownian motion, as is the case in [3].
Let B = (B1, B2, B3) be a 3-dimensional Brownian motion defined on a fil-
tered probability space (Ω,F , (Ft)t≥0, P ) and let ρ ∈ (−1, 1). We assume
that (Ft)t≥0 is the canonical filtration generated by B = (B1, B2, B3). We
define the following Brownian motions:

dW 1
t = ρdB3

t +
√

1− ρ2dB1
t = ρdB3

t + ρ̄dB1
t ,

dW 2
t = ρdB3

t +
√

1− ρ2dB2
t = ρdB3

t + ρ̄dB2
t
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where we have denoted ρ̄ =
√

1− ρ2.
We consider the following stochastic volatility model

dXt = λ1Xt

√
vtdW

1
t + λ2Xt

√
vtdW

2
t , X0 = 1

dvt = −kvtdt+ εvtdB
3
t ,

(3.2.1)

where λ1, λ2 ∈ R and k, ε are positive constants.

Theorem 3.2.1. If ρ > 0 and λ2 < 0 < λ1 ≤ −2−ρ2
ρ2
λ2, satisfying λ1+λ2 > 0,

there exists a unique solution (X, v) of (3.2.1) and for any T > 0, the process
X = (Xt)t∈[0,T ] is a strict local martingale under P . Moreover there exists
an equivalent martingale measure Q for X with the Radon-Nikodym density
process

dQ

dP
|Ft = Mt, 0 ≤ t ≤ T,

given by

Mt = E
(∫ ·

0

α1

√
vsdW

1
s +

∫ ·
0

α2

√
vsdW

2
s

)
t

,

where the coefficieints α1 and α2 are equal to

α1 = λ2 + ρ2λ1

α2 = −λ1 − ρ2λ2

(3.2.2)

Then the process X is a martingale under Q satisfying

dXt = λ1

√
vtXtdW

1,Q
t + λ1

√
vtXtdW

2,Q
t

dvt = (−kvt + ερ(α1 + α2)v
3
2
t )dt+ εvtdB

3,Q
t .

where the W 1,Q, W 2,Q and B3,Q are Brownian motions under Q given by

W 1,Q
t = W 1

t −
∫ t

0

(α1

√
vs + α2

√
vsρ

2)ds,

W 2,Q
t = W 2

t −
∫ t

0

(α1

√
vsρ

2 + α2

√
vs)ds,

B3,Q
t = B3

t −
∫ t

0

(α1 + α2)ρ
√
vsds,

for all t ∈ [0, T ].

Theorem 3.2.1 is a consequence of the following Lemma. The tech-
niques used in Lemma 3.2.2 are derived from Piterbarg and Anderson [2]
and adapted to our case.
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Lemma 3.2.2. If λ1, λ2 ∈ R fullfil the assumptions of Theorem 3.2.1, then
(3.2.1) admits a unique solution and

EP [XT ] = P̃ (τ v∞ > T ), (3.2.3)

where P̃ is a probability measure such that the process v satisfies under P̃ the
equation

dvt = εvtdB̃
3
t − kvtdt+ (λ1 + λ2)ερv

3
2
t dt

where (B̃3
t )t∈[0,T ] is a P̃ -Brownian motion and τ v∞ represents the explosion

time of the process v, i.e. the first time v exits the interval (0,∞) at +∞.
More precisely τ v∞ = limn→∞ τn, where

τn = inf{t ≥ 0; |vt| ≥ n}, n ∈ N. (3.2.4)

Proof. First we show the uniqueness of the solutions. The process v is a
geometric Brownian motion having the form

vt = exp(εB3
t − (k +

1

2
ε2)t), 0 ≤ t ≤ T.

Therefore X is uniquely determined as the stochastic exponential of the pro-
cess ∫ t

0

λ1

√
vsdW

1
s +

∫ t

0

λ2

√
VsdW

2
s .

Then the solution of (3.2.1) is given by

Xt = exp(

∫ t

0

λ1

√
vsdW

1
s +

∫ t

0

λ2

√
vsdW

2
s −

1

2
(λ2

1 + λ2
2 + 2λ1λ2ρ

2)vsds)

= exp
(∫ t

0

(λ1 + λ2)ρ
√
vsdB

3
s +

∫ t

0

λ1ρ̄
√
vsdB

1
s +

∫ t

0

λ2ρ̄
√
vsdB

2
s

− 1

2

∫ t

0

(λ2
1 + λ2

2 + 2λ1λ2ρ
2)vsds

)
.

Let F3
T = σ(B3

s ; s ≤ T ). We compute EP [XT1{τn>T}], where τn is defined in
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(3.2.4):

EP [XT1{τn>T}] = EP [EP [XT1{τn>T}|F3
T ]] = EP [1{τn>T}EP [XT |F3

T ]]

= EP
[
1{τn>T} exp

(∫ T

0

(λ1 + λ2)ρ
√
vsdB

3
s −

1

2

∫ T

0

(λ2
1 + λ2

2

+ 2λ1λ2ρ
2)vsds

)
EP
[

exp
(∫ T

0

λ1ρ̄
√
vsdB

1
s +

∫ T

0

λ2ρ̄
√
vsdB

2
s

)
|F3

T

]]
= EP

[
1{τn>T} exp

(∫ T

0

(λ1 + λ2)ρ
√
vsdB

3
s −

1

2

∫ T

0

(λ2
1 + λ2

2 + 2λ1λ2ρ
2)ds

)
EP
[

exp
(∫ T

0

λ1ρ̄
√
vsdB

1
s

)
exp

(∫ T

0

λ2ρ̄
√
vsdB

2
s

)
|F3

T

]]
= EP

[
1{τn>T} exp

(∫ T

0

(λ1 + λ2)ρ
√
vsdB

3
s −

1

2

∫ T

0

(λ2
1 + λ2

2 + 2λ1λ2ρ
2)vsds

)
exp

(1

2

∫ T

0

(λ2
1 + λ2

2)ρ̄2vsds
)]

= EP
[
1{τn>T} exp

(∫ T

0

(λ1 + λ2)ρ
√
vsdB

3
s −

1

2

∫ T

0

(λ1 + λ2)2ρ2vsds
)]
.

We consider the local martingale

ξt := exp
(∫ t

0

(λ1 + λ2)ρ
√
vsdB

3
s −

1

2

∫ T

0

(λ1 + λ2)2ρ2vsds
)
, t ∈ [0, T ].

By replacing ξT in the above computations, we obtain

EP [XT1{τn>T}] = EP
[
1{τn>T}ξT

]
= EP

[
1{τn>T}ξT∧τn

]
. (3.2.5)

Let ξn := (ξτnt )t∈[0,T ]. Then ξn is a true P -martingale and we can define a
measure P̃ n with Radon-Nikodym density with respect to P given by

dP̃ n

dP
|Ft = ξnt , t ∈ [0, T ].

Therefore (3.2.5) becomes

EP [XT1{τn>T}] = EP̃n [1{τn>T}].

By applying the monotone convergence theorem and using the fact P (τ v∞ =
+∞) = 1 we have

EP [XT ] = EP [XT1{τv∞>T}] = lim
n→∞

EP [XT1{τn>T}]

= lim
n→∞

EP̃n [1{τn>T}] = lim
n→∞

EP̃ [1{τn>T}]

= EP̃ [1{τv∞>T}].
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The third equality follows from the fact that v follows the same law under
P̃n as under P̃ up to the explosion time τ v∞, see also Lemma 4.2 in Sin [57].
We now examine the behavior of the process v under P̃ . We apply Feller’s
test to v (see Ch.5 in Karatzas and Shreve [41]) in order to show

P̃ (τ v∞ > T ) < 1,

which implies EP [XT ] < 1, or equivalently, X is a strict P -local martingale.
We compute the scale function

p1(x) =

∫ x

1

exp
(
− 2

∫ y

1

−kz + ρε(λ1 + λ2)z
3
2

ε2z2
dz
)
dy

=

∫ x

1

exp
(2k

ε2

∫ y

1

1

z
dz − 2ρ(λ1 + λ2)

ε

∫ y

1

z−
1
2dz
)
dy

= K1

∫ x

1

y
2k
ε2 e−

4ρ(λ1+λ2)
ε

y
1
2 dy,

where K1 > 0 is some positive constant. For simplicity we denote

α :=
2k

ε2
> 0 and β :=

4ρ(λ1 + λ2)

ε
> 0

Let n be the smallest positive integer such that n ≥ α.
Then ∫ ∞

1

yαe−βy
1
2 dy ≤

∫ ∞
1

yne−βy
1
2 dy.

Since
∫∞

1
yne−βy

1
2 dy is convergent this implies

p1(+∞) = lim
x→∞

K1

∫ x

1

yαe−βy
1
2 dy < +∞.

We consider the function

u1(x) =

∫ x

1

p′1(y)

∫ y

1

2

p′1(z)ε2z2
dzdy.

and we examine the limit limx→∞ u1(x). By applying Fubini’s theorem we
obtain

u1(x) =

∫ x

1

2

p′1(z)ε2z2

∫ x

z

p′1(y)dydz =
2K2

ε2

∫ x

1

z−2−αeβz
1
2

∫ x

z

yαe−βy
1
2 dydz,
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where K2 > 0 is a positive constant. We examine first the inner integral. By
doing the substitution w = y

1
2 we get∫ x

z

yαe−βy
1
2 dy =

∫ x
1
2

z
1
2

w2αe−βw2wdw = 2

∫ x
1
2

z
1
2

w2α+1e−βwdw

≤ 2

∫ ∞
z
1
2

w2α+1e−βwdw.

Let n0 ∈ N be the smallest positive integer satisfying n0 ≥ 2α + 1. In
particular 2α + 2 > n0 ≥ 2α + 1. Then for z > 1

2

∫ ∞
z
1
2

w2α+1e−βwdw ≤ 2

∫ ∞
z
1
2

wn0e−βwdw =
2

β
z
n0
2 e−βz

1
2 +

2n0

β

∫ ∞
z
1
2

wn0−1e−βwdw

=
2

β
z
n0
2 e−βz

1
2 +

2n0

β2
e−βz

1
2 z

n0−1
2

+
2n0(n0 − 1)

β2

∫ ∞
z
1
2

wn0−2e−βwdw

=
2

β
z
n0
2 e−βz

1
2 +

2n0

β2
z
n0−1

2 e−βz
1
2

+ ...+
2n0(n0 − 1)...(n0 − (n0 − 2))

β(n0−2)+1

∫ ∞
z
1
2

wn0−(n0−1)e−βwdw

=
2

β
z
n0
2 e−βz

1
2 +

2n0

β2
z
n0−1

2 e−βz
1
2

+ ...+
2n0(n0 − 1)...(n0 − (n0 − 2))

β(n0−2)+1

1

β
z
n0−(n0−1)

2 e−βz
1
2

+
2n0(n0 − 1)...(n0 − (n0 − 1))

β(n0−2)+2

∫ ∞
z
1
2

e−βwdw

=
2

β
e−βz

1
2 z

n0
2 +

n0−1∑
k=0

2n0(n0 − 1)...(n0 − k)

βk+1
zn0−k−1e−βz

1
2 .

Therefore

u1(x) =
2K2

ε2

∫ x

1

z−2−αeβz
1
2

( 2

β
z
n0
2 e−βz

1
2 +

n0−1∑
k=0

2n0(n0 − 1)...(n0 − k)

βk+1
z
n0−k−1

2 e−βz
1
2

)
dz

=
4K2

ε2β

∫ x

1

z
n0
2
−2−αdz +

4K2

ε2

n0−1∑
k=0

n0(n0 − 1)...(n0 − k)

βk+1

∫ x

1

z
n0−k−1

2
−α−2dz

=
4K2

ε2β

1
n0

2
− α− 1

x
n0
2
−α−1

+
4K2

ε2

n0−1∑
k=0

n0(n0 − 1)...(n0 − k)

βk+1

1
n0

2
− α− 1− k+1

2

x
n0
2
−α−1− k+1

2 −K3
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Therefore,u1(+∞) = limx→∞ u1(x) < ∞, since n0

2
− α − 1 < 0. Hence, via

Theorem 5.29 in Karatzas and Shreve [41] we have that P̃ (τ = +∞) < 1,
where τ = inf{t ≥ 0; vt 6∈ (0,∞)}. In order to conclude that P̃ (τ v∞ =∞) < 1,
we show that the process v doesn’t reach 0 in finite time. To this purpose we
employ a comparison result, namely Proposition 2.18 of Karatzas and Shreve
[41]. We consider the process v̄ = (v̄)t∈[0,T ] satisfying under P̃ the equation

dv̄t = −kv̄tdt+ εv̄tdB̃
3
t .

We know that P̃ (τ0 =∞) = 1, where τ0 is the first time v̄ exits the interval
(0,∞). It follows from Proposition 2.18 of Karatzas and Shreve [41] that

v̄t ≤ vt P̃ − a.s.

for all t ∈ [0, T ]. Hence v doesn’t reach 0 in finite time.
Therefore X is a strict P -local martingale and this concludes our proof.

We now proceed with the proof of Theorem 3.2.1

Proof. We start by showing that the process M is a well defined Radon-
Nikodym density process i.e. a true martingale under the measure P . By
using the same reasoning as in Lemma 3.2.2 we obtain

EP [MT1{τn>T}] = EP [1{τn>T}EP [MT |F3
T ]] = EP

[
1{τn>T} exp

(∫ T

0

(α1 + α2)ρ
√
vsdB

3
s

− 1

2

∫ T

0

(α1 + α2)2ρ2vsds
)]
.

We define the local martingale (ξ̄)t∈[0,T ] by

ξ̄t := exp
(∫ t

0

(α1 + α2)ρ
√
vsdB

3
s −

1

2

∫ t

0

(α1 + α2)2ρ2vsds
)
,

for all t ∈ [0, T ]. As in Lemma 3.2.2, we can define the measures P̄ n with
the Radon-Nikodym density processes with respect to P given by

dP̄ n

dP
|Ft = ξ̄nt , t ∈ [0, T ].

where ξ̄nt := ξ̄t∧τn for all t ∈ [0, T ]. By passing to the limit and using the
arguments Lemma 4.2 in [57], we obtain

EP [MT ] = P̄ (τ v∞ > T ). (3.2.6)

57



The process v follows under the measure P̄ the following equation:

dvt = (−kvt + ερ(α1 + α2)v
3
2
t )dt+ εvtdB̄

3
t ,

where (B̄3
t )t∈[0,T ] is a P̄ -Brownian motion.

We apply Feller’s test to v to in order to show that v does not explode at
+∞ in finite time. We denote for simplicity

γ := −4ρ(α1 + α2)

ε
≥ 0.

The scale function is equal to

p2(x) = K4

∫ x

1

y
2k
ε2 e−

4ρ(α1+α2)
ε

y
1
2 dy = K4

∫ x

1

yαeγy
1
2 dy.

where K4 > 0 is some positive constant. Since

lim
x→∞

∫ x

1

yαdy = +∞,

and
0 ≤

∫ x

1

yαdy ≤
∫ x

1

yαeγy
1
2 dy,

it follows that limx→∞ p2(x) = +∞. Hence, via Problem 5.27 in [41] we also
have that

lim
x→∞

u2(x) = +∞,

where u2(x) is given by

u2(x) =

∫ x

1

p′2(y)

∫ y

1

2

p′2(z)ε2z2
dzdy.

Furthermore limx→0+ p2(x) > −∞ since

−∞ < − eγ

α + 1
= −eγ lim

x→0+

∫ 1

x

yαdy ≤ − lim
x→0+

∫ 1

x

yαeγy
1
2 dy.

As requested by Feller’s test we compute

lim
x→0+

u2(x) =
2

ε2
lim
x→0+

∫ x

1

z−2−αe−γy
1
2

∫ x

z

yαeγy
1
2 dydz

≥ 2e−γ

ε2
lim
x→0+

∫ x

1

z−2−α
∫ x

z

yαdydz

=
2e−γ

ε2(α + 1)
lim
x→0+

∫ x

1

z−2−α(xα+1 − zα+1)dz

=
2e−γ

ε2(α + 1)
lim
x→0+

xα+1

∫ x

1

z−2−αdz − 2e−γ

ε2(α + 1)
lim
x→0+

∫ x

1

1

z
dz

= +∞.
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Therefore it follows from Theorem 5.29 in [41] that v does not exit the interval
(0,∞) in finite time, hence P̄ (τ v∞ = +∞) = 1. It follows from (3.2.6) that
(Mt)t∈[0,T ] is a P -martingale. This allows us to define a measure Q equivalent
to P having M as density process

dQ

dP
|Ft = Mt, t ∈ [0, T ].

Applying Girsanov’s theorem, we see that under the measure Q the bivariate
process (X, v) satisfies

dXt = λ1

√
vtXtdW

1,Q
t + λ2

√
vtXtdW

2,Q
t t ∈ [0, T ],

dvt = (−kvt + ερ(α1 + α2)v
3
2
t )dt+ εvtdB

3,Q
t ,

where W 1,Q, W 2,Q and B̃3,Q are Q-Brownian motions satisfying

d[W 1,Q,W 2,Q]t = ρ2dt and d[W 1,Q, B3]t = d[W 2,Q, B3]t = ρdt,

for all t ∈ [0, T ]. Thus X remains a positive local martingale under the
measure Q. We show that X is a true Q-martingale by proving that X has
constant expectation under Q. By following the same technique as before we
obtain

EQ[XT ] = Q̃(τ v∞ > T ),

where Q̃ is an equivalent measure to Q under which v satisfies the equation

dvt = εvtdB̃
3,Q̃
t + (−kvt + ερ(α1 + α2 + λ1 + λ2)v

3
2
t )dt,

and (B̃3,Q̃
t )t∈[0,T ] is a Q̃-Brownian motion. By replacing α1 and α2 from (3.2.2)

into the equation of v we obtain

dvt = εvtdB̃
3,Q̃
t + [−kvt + ερ((2− ρ2)λ2 + ρ2λ1)v

3
2
t ]dt,

and (2 − ρ2)λ2 + ρ2λ1 ≤ 0 since λ1 ≤ −2−ρ2
ρ2
λ2. For the sake of brevity we

denote η := (2− ρ2)λ2 + ρ2λ1. The scale function of v is equal to

p3(x) :=

∫ x

1

exp
(
− 2

∫ y

1

−kz + ηρz
3
2

ε2z2
dz
)
dy = K̃

∫ x

1

y
2k
ε2 e−

ρη
ε
y
1
2 dy.

Since
0 ≤

∫ x

1

y
2k
ε2 dy ≤

∫ x

1

y
2k
ε2 e−

ρη
ε
y
1
2 dy,
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for all x ≥ 1, it follows

p3(+∞) = lim
x→∞

K̃

∫ x

1

y
2k
ε2 e−

ρη
ε
y
1
2 dy = +∞,

which implies via Problem 5.27 in [41] that limx→∞ u3(x) = +∞. As be-
fore, one can show that limx→0+ u3(x) = +∞. Hence the boundary +∞
is unattainable in finite time, therefore Q̃(τ v∞ = +∞) = 1, which implies
EQ[XT ] = 1, and this concludes our proof.

As in the previous setting, we consider a financial asset that pays no
dividends and gives a final payoff XT at time T and whose price process S
is given by St = Xt for all t < T and ST = 0.
The wealth process is equal to Wt = Xt for all t ∈ [0, T ]. Theorem 3.2.1
provides us with the two measures Q ∈ MUI(W ) and R ∈ MNUI(W ) and
we check if the bubble process βR exhibits a submartingale behavior under
R. We start by computing the fundamental value WR under R, given by

WR
t = ER[WT |Ft] = ER[XT |Ft].

Proposition 3.2.3. The processWR admits the multiplicative decomposition
WR = W ·C, where the semimartingale C defined as Ct = EP [XT

Xt
|Ft] is equal

to
Ct = 1 + (λ1g1(t) + λ2g2(t))vt, t ∈ [0, T ],

with time dependendent coefficients gi(t) which satisfy

λ1g1(t) + λ2g2(t) < 0, t ∈ [0, T ).

Proof. The desired result is obtained by following the same steps in the proof
of Proposition 3.1.2.

Let us now find the canonical semimartingale decomposition of C. We
know that

Ct = 1 + (λ1g1(t) + λ2g2(t))vt, t ∈ [0, T ].

Therefore

dCt = (λ1g1(t) + λ2g2(t))dvt + λ1vtdg1(t) + λ2vtdg2(t)

= ε(λ1g1(t) + λ2g2(t))vtdB
3
t + (λ1vtdg1(t) + λ2vtdg2(t)

− k(λ1g1(t) + λ2g2(t))vt)dt

Hence, the local martingale part of C is being given by

MC
t =

∫ t

0

ε(λ1g1(s) + λ2g2(s))vsdB
3
s , t ∈ [0, T ].

60



Proposition 3.2.4. The bubbles process βR is a local R-submartingale.

Proof. According to Corollary 2.3.10, in order for the bubble to exhibit a
local R-submartingale behavior it is sufficient that [C,M ] is an increasing
process. We remind that in this example the density process M is given by

Mt = 1 +

∫ t

0

α1

√
vsMsdW

1
s +

∫ t

0

α2

√
vsMsdW

2
s , t ∈ [0, T ].

Hence

[M,C]t = [M,MC ]t =

∫ t

0

(λ1g1(s) + λ2g2(s))ερ(α1 + α2)v
3
2
sMsds

and since (λ1g1(s) + λ2g2(s))(α1 + α2) > 0, this concludes our proof.
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Chapter 4

The formation of financial
bubbles in defaultable markets

The contents of Sections 4.2, 4.3 and 4.4 of this Chapter are based on the
author’s joint work with F. Biagini, and are contained in the manuscript F.
Biagini and S. Nedelcu [5]. The detailed description of the author’s personal
contribution is presented in Section 1.2. Section 4.4.1 of the present Chapter
was developed independently by the author and is based on a manuscript
which is not yet published.

4.1 Introduction
Aim of this Chaper is to construct a mathematical model that allows for
the formation of bubbles in the valuation of defaultable contingent claims
in a reduced form credit risk model. Furthermore, we establish a connec-
tion between the classical martingale theory of bubbles and the constructive
approach to the modelling of asset price bubbles which we propose in this
Chapter.

Credit risk models have been introduced to describe financial markets
affected by default risk, see Bielecki and Rutkowski [7] for an overview of
all the main approaches. A default risk represents the possibility that a
counterparty is not able to fullfill its obligations that are stated in a financial
contract. An example of financial intruments that are affected by default risk
are corporate bonds. These are financial products issued by a firm,that, in
exchange of a fee for this commitment, take the obligation to make specific
payments at future dates to the buyers of the corporate bonds. The firm
may be forced to default on its commitment due to different circumstances
(for example bankruptcy). This event causes losses for the bondholders if it
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occurs during the lifetime of the bond i.e. the period between the moment
when it is issued and its maturity. A corporate bond represents an example
of defaultable claim.

In a reduced form setting, see for example Bielecki and Rutkowski [7], the
firm default time is represented by a totally inaccessible stopping time, which
implies that the market cannot predict the time of the default. However, the
default time may not be a stopping time with respect to the restricted filtra-
tion. The distinction between the information that is available to the market
and information that is known within the firm (where the moment of default
is an accessible stopping time) has been studied and pointed out in the liter-
ature. Duffie and Lando [22] consider that the bond investors do not observe
the bond issuer’s assets directly, but receive instead only periodic account-
ing reports. Thus, investors draw their information from delayed financial
reports and from other publicly available data. In this way the market ob-
serves the values of the firm’s assets plus additional noise, due to the lack of
perfect information.

Cetin et al. [14] provide a different approach, where they construct a
reduced form model starting from a structural model. They consider two in-
formation sets. In their approach the firm’s management can anticipate the
default model by examining the firm’s cash flows. In constrast, the market
observes only a partition of the manager’s information set. This structure
has the default time as being an accessible stopping time with respect to the
filtration representing the information available for the firm’s manager and
a totally inaccesible stopping time with respect to the filtration representing
the information available to the market.

We consider here a classical reduced form setting, as discussed in Chapter
8 of Bielecki and Rutkowski [7], and consider a market model with constant
money market accout and the possibility of investing in defaultable claims,
i.e. contracts traded over the counter between default-prone parties.

Our objective is to provide an explanation for the mechanism that leads to
a change of the martingale measure used for pricing. We do this by modelling
the market price, which is influenced by the asset’s probability of default as
perceived by the investor. As we point out in Chapter 2, the study of asset
price bubbles in the mathematical literature has been done in the framework
of the martingale approach, see Jarrow, Protter et.al [39], [40], [36], [34],
[37] and Biagini, Föllmer and Nedelcu [4]. In an incomplete financial market
model a bubble is generated after the start of the model if a switch from
a uniformly integrable martingale measure Q to a non-uniformly integrable
martingale measure R occurs. Thus the dynamics of the discounted wealth
process is described by a uniformly integrable martingale under Q and after-
wards by a non-uniformly integrable martingale/strict local martingale under
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R.
As pointed out in Chapter 1, in the microeconomic theory of bubble for-

mation, factors such as limits of arbitrage and investor heterogeneity are
often seen as triggering the formation of asset price bubbles. Here we focus
on the investor heterogeneity concept as possible explanation for the cre-
ation of bubbles in our setting. Divergence of opinions may arise due to the
fact that investors have different estimations of the value of future dividends
(see e.g.Harrison and Kreps [30]), overconfidence (see Scheinkman and Xiong
[55]), or due to their use of different economical indicators to forecast the fu-
ture price of the asset ( see Föllmer et al.[25]).

A first attempt to explain the formation of asset price bubbles with a
constructive approach in the arbitrage-free pricing methodology is presented
in Jarrow, Protter and Roch [38]. Here a bubble is generated in the price of
a liquid financial asset traded through a limit order book via market trad-
ing activity (volume of market orders, liquidity, etc). However, unlike in
the classical martingale theory of bubbles, in [38] the asset’s intrinsic value
is exogenously determined while the asset’s price bubble (and thus also the
asset’s market price) is endogenously determined by the impact of liquidity
risk. The aim of the present Chapter is to costruct a mathematical model
that can identify possible triggers generating a bubble in the price of default-
able claims. Therefore, our setting and methods are completely different
from the ones in [38]. For the first time bubble generation is examined in
the context of defaultable markets. Furthermore, we are also able to show
how microeconomic factors may at an aggregate level determine a shift of
the martingale measure by characterizing the set of equivalent martingale
measures with the help of measure pasting, see Theorem 4.5.6. Moreover,
our model allows for the succesive creation and dissappearance of bubbles
within the price of the asset until the time of maturity.

The present Chapter has the following outline. In Section 4.2 we describe
the setting. We place ourselves in a reduced form setting credit risk model,
see Bielecki and Rutkowski [7]. Our model includes the possibility of invest-
ing in defaultable claims, i.e. contingent agreements traded over-the-counter
between default-prone parties. A defaultable contingent claim is a triplet
H = (X,R, τ), where X is the promised claim, R is the recovery process and
τ is the default time. For the sake of simplicity, the money market account
is supposed to be constantly equal to one.

We model the impact of investors’ heterogeneous beliefs on the market
wealth of a defaultable claim in the following way: at the starting moment of
our model, a given defaultable contingent claim H = (X,R, τ) is evaluated
by using the underlying pricing measure, as it is usual in the reduced form
setting, see Definition 8.1.2 in [7]. After a certain time, the claim will be to
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be considered a safe investment, if the conditional probability of default in
the remaining time interval goes below a certain threshold p ∈ (0, 1), with
p < P (0 < τ ≤ T ). The trading activity of the investors willing to buy the
claim determines a deviation from the initially estimated wealth via a factor
f , which is a function of time and of the credibility process introduced in
Definition 4.2.4. This construction also allows us to define the novel concept
of observed asset price bubble, which represents the difference between the
modified wealth process (called market wealth process) and the initially es-
timated wealth process.

Section 4.3 integrates our model in the classical martingale theory of bub-
bles. We provide conditions when an increase in the market wealth, due to
investors’ trading activity can lead to an increase in the asset’s fundamental
value, computed with respect to a corresponding martingale measure.

In Section 4.4, we construct a reduced -form model where the stochastic
intensity associated to the default time τ is driven by a Cox-Ingersoll-Ross
model. Within this model we illustrate the results of the previous sections.

Section 4.5 establishes a connection between our approach and the mar-
tingale theory of bubbles, as described by Cox and Hobson [18], Jarrow,
Protter and Shimbo [40] and Biagini, Föllmer and Nedelcu [4]. To this pur-
pose we characterize the set of equivalent martingale measures for the market
wealth process W of a defaultable claim via measure pasting, see Definition
4.5.2. This concept, as introduced in Section 6.4 of Föllmer and Schied [27],
allows us to provide a characterization of the equivalent martingale measures
forW in the following way: if σ1 denotes the starting moment of the influence
of the credibility process on the contract value, Theorem 4.5.6 shows that
all equivalent martingale measures for W are given by the pasting in σ1 of
an equivalent martingale measure for the initially estimated wealth up to σ1

with an equivalent martingale measure for (W −Wσ1)1{·≥σ1}, if 0 < σ1 < T .
This result justifies in a rigorous mathematical way how a shift in the under-
lying equivalent martingale measure is determined by a change in the wealth
process due to the impact of microeconomic factors.
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4.2 The Setting
Let (Ω,G,F, P ) be a filtered probability space where the filtration F =
(Ft)t∈[0,T ] satisfies the usual conditions of right-continuity and completeness.
Let T > 0 be a fixed time horizon. We consider a market model that con-
tains a defaultable asset with maturity date T and a money market account.
We will use the money market account as numéraire, and so we may assume
that it is constantly equal to 1. The default time of the asset is represented
by a non-negative G-measurable random variable τ : Ω → [0,+∞], with
P (τ = 0) = 0 and P (τ > t) > 0, for each t ∈ [0, T ]. Note that the random
time τ may not be an F-stopping time.

For the default time τ , we introduce the associated jump process H =
(Ht)t∈[0,T ] given by Ht = 1{τ≤t}, t ∈ [0, T ]. We refer to H as the default pro-
cess associated to the default time τ . It is obvious that H is right-continuous.
We denote by H = (Ht)0≤t≤T the filtration generated by the process H, i.e.
Ht = σ(Hu;u ≤ t) for any t ∈ [0, T ].

Let G = (Gt)t∈[0,T ] be the filtration obtained by progressively enlarging
the filtration F with the random time τ , i.e. G = F ∨ H. For the sake of
simplicity we assume G0 = F0 = H0 = {∅,Ω} and G = GT = FT ∨ HT . The
filtration G is the smallest filtration satisfying the usual conditions contain-
ing the original filtration F and for which τ is a stopping time. In the credit
risk literature G is the filtration containing the information relevant to the
market and is used for the pricing and hedging of defaultable claims.
We denote by Z = (Zt)t∈[0,T ] the F-survival process of τ with respect to the
filtration F defined by

Zt = P (τ > t|Ft), t ∈ [0, T ],

and chosen to be càdlàg. The process Z is a bounded, non-negative F-
supermartingale under P . In the credit risk literature the process Z is also
referred to as the Azéma F-supermartingale, see Coculescu et al.[16]. We
assume that Zt > 0 for all t ∈ [0, T ].

Definition 4.2.1. The process Γ = (Γt)t∈[0,T ] defined by

Γt = − lnZt = − lnP (τ > t|Ft), t ∈ [0, T ]

is called the F-hazard process of τ under P .

Since Zt > 0 this implies that Γ is well defined for every t ∈ [0, T ]. We
make the following Assumptions for the rest of the Chapter:

Assumption 4.2.2. We consider that:
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i) The immersion property holds under the measure P , i.e. all (F, P )-
martingales are also (G, P )-martingales.

ii) The hazard process Γ admits the representation

Γt =

∫ t

0

µsds, t ∈ [0, T ],

where µ = (µt)t∈[0,T ] is an F-adapted process such that
∫ t

0
µsds < ∞

a.s. for all t ∈ [0, T ]. The process µ is called the stochastic intensity
or hazard rate of τ

Note that the existence of the intensity implies that τ is a totally inacces-
sible G-stopping time. If the immersion property holds, by Corollary 3.9 of
Coculescu et al.[16] we obtain that the Azéma supermartingale Z is a de-
creasing process. Hence Γ is increasing, which implies that (µt)t∈[0,T ] is a
non-negative process. Furthermore, since the Azéma supermartingale Z is
continuous and decreasing, by Corollary 3.4 of Coculescu and Nikeghbali [17]
we have that τ avoids all F-stopping times.
The fact that Z is continuous and decreasing also implies that the process
(Γt∧τ )t≥0 represents the P -compensator for the default process H, see Propo-
sition 5.1.3 of Bielecki and Rutkowski [7] and Section 1.3 of Coculescu and
Nikeghbali [17]. Therefore the compensated process M̂ = (M̂t)t∈[0,T ] defined
by

M̂t := Ht −
∫ t∧τ

0

µsds = Ht −
∫ t

0

µ̂sds, t ∈ [0, T ].

is a G-martingale, see Proposition 5.1.3 of Bielecki and Rutkowski [7]. Notice
that for the sake of brevity we put µ̂t := µt1{τ≥t}.

Definition 4.2.3. A defaultable claim is given by a triplet H = (X,R, τ),
where:

1. the promised contingent claim X ∈ L1(FT ) represents the non-negative
payoff received by the owner of the claim at time T , if there was no
default prior to or at time T .

2. the recovery process R represents the recovery payoff at time τ of de-
fault if default occurs prior to or at the maturity date T , and it is
assumed to be a strictly positive, continuous, F-adapted process that
satisfies

EP
[

sup
t∈[0,T ]

Rt

]
<∞. (4.2.1)
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3. the G-stopping time τ represents the default time.

We assume that the underlying probability measure P is a martingale mea-
sure. The existence of P implies that there is no free-lunch with vanish-
ing risk, see [19]. We consider an intensity-based model for the valuation
of defaultable contingent claims, as described in Chapter 8 of Bielecki and
Rutkowski [7]. By using Definition 8.1.2 of [7] we set

W e
t = EP [X1{τ>T} +Rτ1{τ≤T}|Gt], t ∈ [0, T ],

to be the estimated wealth process associated to a defaultable claim H =
(X,R, τ) under P . Given

Λt := EP [X1{τ>T} +Rτ1{τ≤T}|Gt]1{τ>t}, t ∈ [0, T ]. (4.2.2)

then we can rewrite W e as

W e
t = Λt +Rτ1{τ≤t}, t ∈ [0, T ].

In the sequel, we model the impact of the trading activity of heterogeneous
investors on the initial estimated wealth process of the asset. The investors
may consider the defaultable claim to be a safe investment if some circum-
stances are verified, as we explain more in detail below. To this aim we first
introduce the following notion of credibility process which will play a crucial
role in our discussion.

Definition 4.2.4. For any t ≤ T the credibility process F = (Ft)t∈[0,T ] is
defined as

Ft = P (t < τ ≤ T |Gt),
for all t ∈ [0, T ].

It is easy to see that credibility process has the following dynamics:

Lemma 4.2.5. The process F = (Ft)t∈[0,T ] is a (G, P )-supermartingale.

Proof. This immediately follows since F can be written in the form

Ft = EP [1{τ≤T}|Gt]− 1{τ≤t}.

Let
f : [0, T ]× (0, 1]→ [1,∞) (4.2.3)

be a deterministic function in C1,2([0, T ] × (0, 1]). Fix p ∈ (0, 1) with p <
P (0 < τ ≤ T ). We assume that
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i) For all t ∈ [0, T ], f(t, x) = 1 for all x ≥ p and f(t, x) > 1 for x < p,

ii) f is strictly decreasing in both arguments for x < p.

Definition 4.2.6. The market wealth process W = (Wt)t∈[0,T ] of the de-
faultable asset is defined as

Wt = f(t, Ft)Λt +Rτ1{τ≤t}, (4.2.4)

for all t ∈ [0, T ].

The process Λ represents the defaultable claims’ initial price estimation made
by the investors. However, if at time t, the claim’s conditional probability
of default Ft goes below the threshold p ∈ (0, 1), then the asset is perceived
as a safe investment (i.e. the asset becomes “credible” enough). The credi-
bility process F can be seen as an indicator capturing the views of a large
investor who purchases the claim when F goes below the threshold p and
whose trades can affect the stock price. Everyone in the market will follow
the large investor, thus generating a possible bubble.

The impact of the fluctuations of the credibility process F on the ini-
tial value estimation Λ is quantified by the function f(t, Ft). Note that in
our model, Λ is also influenced at a time t when Ft < p, by the length of
the remaining time interval [t, T ] to maturity. Since the investors are aware
of the supermartingale property of F , see Proposition 4.2.5, the perception
of the asset as being safe at an earlier date impacts the price in a more
significant way than at a later date, i.e. if Ft1 = Ft2 for t1 < t2, then
f(t1, Ft1) > f(t2, Ft2).

Hence, our model is able to capture the fact that the views of opti-
mistic investors are expressed more fully than the ones of pessimists and
that prices are biased upwards, see Scheinkman [54]. Of course, other expla-
nations for this model are of course possible, see for example Brunnermeyer
and Oehmke[11], Hugonnier [32], Scheinkman [54].

An important consequence of this construction is the fact that the changes
in the dynamics of the underlying price process may lead to a different selec-
tion of the martingale measure used for pricing, as we point out in Section
4.3.

Remark 4.2.7. The impact of the credibility affects the value of the default-
able asset only strictly prior to the default time τ . If τ occurs before or at
T , the recovery payment Rτ will be paid, because this is settled a priori in
the contractual agreement underlying the claim. Hence R is not influenced
by the credibility process. Furthermore, at the time of maturity T , when the
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promised claim X must be delivered according to previously agreed contractual
obligations if no default occurs, we have

WT = X1{τ>T} +Rτ1{τ≤T} = W e
T ,

i.e . at time t = T there will be no difference between the asset’s market
wealth and its initial estimated wealth.

Remark 4.2.8. The martingale theory of bubbles does not allow for the
existence of bubbles in the price of assets with bounded payoffs. Therefore,
in our setting, the payoff of the defaultable claim (and of the corresponding
wealth process associated to the claim) must not be upper bounded. A possible
way of avoiding this model limitation in order to include the treament of
defaultable bonds is by introducing the concept of relative asset price bubble,
see Bilina-Falafala, Jarrow and Protter [8].

In the sequel we denote by σ1 the starting moment of the influence of F on
Λ, i.e.

σ1 := inf{t ∈ [0, T ];Ft < p}. (4.2.5)

Note that σ1 ≤ τ , see also Proposition 4.3.4.
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4.3 Bubbles in defaultable claim valuation
As in Chapter 2, we denote by Mloc(W ) the space of probability measures
Q ≈ P defined on (Ω,G), under which the market wealth process W is a
(G, Q)-local martingale and consider

Mloc(W ) =MUI(W ) ∪MNUI(W ),

where MUI(W ) denotes the collection of measures Q ≈ P that render W
a uniformly integrable martingale and MNUI(W ) = Mloc(W ) \ MUI(W ).
Typically, there exist frameworks where the classesMUI(W ) andMNUI(W )
can be simultaneously non-empty, see Section 2.4 and the examples in Chap-
ter 3.

Remark 4.3.1. Here Mloc(W ) ∩Mloc(W
e) = ∅ if 0 < σ1 < T . By contra-

diction we assume that there exists Q ∈ Mloc(W ) ∩Mloc(W
e). Then, since

WT = W e
T and W e

0 = W0, this would imply

0 = EQ[WT −W e
T ] < EQ[Wσ1+ε −W e

σ1+ε] ≤ EQ[W0 −W e
0 ] = 0,

for any ε > 0 such that σ1 + ε < T , which is of course not possible.

In particular the measure P is an equivalent local martingale measure
only for the process W e and not for the process W .

Definition 4.3.2. Let Q ∈Mloc(W ). The process WQ defined by

WQ
t = EQ[X1{τ>T} +Rτ1{τ≤T}|Gt], t ∈ [0, T ],

is called the fundamental wealth process of the defaultable claim perceived
under the measure Q.

Note that
Wt ≥ EQ[WT |Gt] = EQ[WQ

T |GT ] = WQ
t

for any Q ∈Mloc(W ), with strict inequality if W is a strict local martingale
under Q. We introduce the definition of a Q-bubble, which coincides with
Definition 2.2.11, see also Jarrow et al.[40].

Definition 4.3.3. For any Q ∈ Mloc(W ), the non-negative adapted process
βQ = (βQt )t∈[0,T ] defined by

βQt = Wt −WQ
t ≥ 0,

is called the bubble perceived under the measure Q or Q-bubble.
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As in Chapter 2, the existence and the size of the Q-bubble βQ depends
on the choice of the martingale measure. If Q ∈ MUI(W ), then βQ = 0.
For Q ∈ MNUI(W ), the Q-bubble is a non-negative local martingale with
βQT = 0. Furthermore it is also clear that there is no bubble at time T , since
at time of maturity the asset X must be delivered according to contractual
obligations, see also Remark 4.2.7. The following Proposition shows that the
market wealth process exhibits no bubbles after the time of defaults default.

Proposition 4.3.4. Let τ < T a.s. Then for any Q ∈Mloc(W )

βQt = Wt −WQ
t = 0, t ∈ [τ, T ].

Proof. Let Q ∈Mloc(W ). Then

WQ
t 1{τ≤t} = EQ[X1{τ>T} +Rτ1{τ≤T}|Gt]1{τ≤t}

= EQ[X1{τ>T}|Gt]1{τ≤t} + EQ[Rτ1{τ≤T}|Gt]1{τ≤t}
= EQ[Rτ1{τ≤t}|Gt] = Rτ1{τ≤t} = Wt1{τ≤t}.

(4.3.1)

Definition 4.3.3 introduces the concept of bubble as in the approach of Jar-
row et al.[40]. We now propose an alternative way of defining a bubble for
defaultable claims, which captures the market wealth’s divergence from the
initial estimation W e.

Definition 4.3.5. For any t ∈ [0, T ], we define the observed bubble βo =
(βot )t∈[0,T ] by

βot = Wt −W e
t = (f(t, Ft)− 1)Λt1{τ>t}, t ∈ [0, T ]. (4.3.2)

The observed bubble represents the difference between the market wealth W
and the estimated wealth W e, which is induced by the trading behavior of
a large and influential group of investors. This behavior is triggered by the
sentiment of safe investment due to the perception of a low default risk as-
sociated to the claim.

Remark 4.3.6. The choice of the function f is arbitrary. It could be also
chosen to include the appearance of negative observed bubbles. It may hap-
pen that for some reason a particular asset is not seen as trustworthy by a
consistent number of investors. In this case there could be a decrease in the
asset’s market value that may not be motivated by the underlying economic
and financial conditions.
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In the following, we examine the connection between the observed bubble
βo and a Q-bubble for a given Q ∈ Mloc(W ). By using Definition 4.3.3, we
rewrite (4.3.2) as the following sum

βot = Wt −W e
t = (Wt −WQ

t ) + (WQ
t −W e

t )

= βQt + (WQ
t −W e

t ) ≥ 0.

In particular if Q ∈MUI(W ), then βQt = 0 and

βot = WQ
t −W e

t = Wt −W e
t ≥ 0, t ∈ [0, T ].

A change in the dynamics of the market wealth from its initial dynamics
represented by W e leads to the creation of an observed bubble. However,
this may not create a bubble in the martingale sense if the market selects as
pricing measure corresponding to the wealth process W , a measure from the
setMUI(W ).
The observed bubble can be regarded as the sum of two components: the
possible bubble generated by a choice of a martingale measure belonging
to the set MNUI(W ) and the difference between the intrinsic value of the
asset and its initial estimated value. Under certain conditions, an increase in
the asset’s market wealth can lead to an increase of its’ fundamental value
making the second component of the bubble non-negative. The following
proposition provides a sufficient condition under which the estimated value
of the asset will be surpassed by its fundamental value.

Proposition 4.3.7. Let Q ∈ Mloc(W ) with Radon-Nikodym density pro-
cess Z = (Zt)t∈[0,T ] i.e Zt = dQ

dP
|Gt, t ∈ [0, T ]. If the process W eZ is a

P -submartingale, then
WQ
t ≥ W e

t , (4.3.3)

for all t ∈ [0, T ].

Proof. By applying Bayes’ theorem we obtain

WQ
t −W e

t = EQ[X1{τ>T} +Rτ1{τ≤T}|Gt]− EP [X1{τ>T} +Rτ1{τ≤T}|Gt]

=
1

Zt
EP [(X1{τ>T} +Rτ1{τ≤T})ZT |Gt]

− EP [X1{τ>T} +Rτ1{τ≤T}|Gt]

=
1

Zt
(EP [W e

TZT |Gt]−W e
t Zt).

Therefore it is sufficient that W eZ is a (G, P )-submartingale for (4.3.3) to
hold.
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4.4 The case of CIR default intensity
We now illustrate the concepts presented in Sections 4.2 and Section 4.3 by
considering a specific setting.

Let (Ω,G,F, P ) be a filtered probability space endowed with a 2-dimensional
F-Brownian motion B = (B1, B2) and we assume that F = F1 ∨ F2, where
F1 and F2 are the natural filtrations associated to B1 and B2 respectively.
As in the previous section, let the random time of default be represented
by a non-negative G-measurable random variable τ : Ω → [0,+∞], with
P (τ = 0) = 0 and P (τ > t) > 0, for each t ∈ [0, T ]. We introduce the
right-continuous process (Ht)t∈[0,T ] by setting Ht = 1{τ≤t} and we denote by
H = (Ht)0≤t≤T the associated filtration. Let G = (Gt)t∈[0,T ] be the filtration
obtained by progressively enlarging the filtration F with the random time τ ,
i.e. G = F∨H. For the sake of simplicity we assume G0 = F0 = H0 = {∅,Ω}
and G = GT = FT ∨HT .

Since the immersion property holds, the process (Bi
t)t≥0 is a continuous

G-martingale, for i = 1, 2. Furthermore, an application of Levy’s charac-
terization theorem (see Theorem II.39 in Protter [52]) yields that (Bi

t)t≥0

is a G-Brownian motion, for i = 1, 2. Therefore B = (B1, B2) remains a
2-dimensional Brownian motion in the enlarged filtration G.

Let X = (Xt)t∈[0,T ] be a process satisfying the following dynamics

dXt = σXtdB
2
t , X0 = x0, (4.4.1)

with x0 ∈ R+. It is easy to obtain the closed-form expression of X. The
(unique) process X satisfying (4.4.1) is the Doléans-Dade exponential

Xt = x0 exp(σB2
t −

1

2
σ2t), t ∈ [0, T ].

We consider the defaultable contingent claim given by the triplet (X,R, τ),
where the promised contingent claim is given by X = XT and the recovery
process R = (Rt)t∈[0,T ] is defined by setting Rt = cXt for all t ∈ [0, T ] and
some c ∈ (0, 1). By applying Doob’s maximal inequality to the martingale
X we obtain
EP [ sup

t∈[0,T ]

Rt] ≤ cγP ( sup
t∈[0,T ]

Xt ≤ γ) + cEP [ sup
t∈[0,T ]

Xt1{supt∈[0,T ]Xt>γ}]

≤ cγ(1− P ( sup
t∈[0,T ]

Xt > γ)) + cEP [ sup
t∈[0,T ]

X2
t ]

1
2P ( sup

t∈[0,T ]

Xt > γ)
1
2

≤ cγ
(
1− 1

γ2
x0e

σ2T
)

+
4c

γ2
x0e

σ2T <∞.

for some γ > 0. Hence the recovery process R satisfies (4.2.1). All through
this section we assume that 0 < σ1 < T , P -a.s.
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We assume that the stochastic intensity µ associated to the default time τ is
given by a Cox-Ingersoll-Ross model

dµt = (a+ bµt)dt+ θ
√
µtdB

1
t ,

µ0 = µ̃,
(4.4.2)

where a, θ ∈ R+, µ̃ > 0 and b ∈ R. The process µ is an affine process.
Let us compute the dynamics of the credibility process F under P within

this framework. To this purpose, we start with the following auxiliary results.

Lemma 4.4.1. The process (F̃t)t≥0 given by

F̃t = P (t < τ ≤ T |Ft), t ∈ [0, T ],

satisfies under P the following equation

dF̃t = −ψt
√
µtdB

1
t − e−Γtµtdt, t ∈ [0, T ], (4.4.3)

where (ψt)t∈[0,T ] is given by the formula

ψt = θβ(t)eα(t)+β(t)µt−Γt , (4.4.4)

with

α(t) =
2a

c2
ln
( 2λe

(λ−b)(T−t)
2

(λ− b)(eλ(T−t) − 1) + 2λ

)
, (4.4.5)

and

β(t) = − 2(eλ(T−t) − 1)

(λ− b)(eλ(T−t) − 1) + 2λ
, (4.4.6)

for all t ∈ [0, T ] with λ :=
√
b2 + 2θ2.

Proof. By using the definition of the F-hazard process, F can be be written
under the form

F̃t = P (t < τ ≤ T |Ft) = P (τ ≤ T |Ft)− P (τ ≤ t|Ft)
= 1− P (τ > T |Ft)− 1 + P (τ > t|Ft) = e−Γt − EP [e−ΓT |Ft]
= e−Γt(1− EP [e−(ΓT−Γt)|Ft]).

Since µ is an affine process, e.g. by Filipovic [23], we have that

F̃t = e−Γt(1− EP [e−(ΓT−Γt)|F1
t ]) = −e−Γteα(t)+β(t)µt + e−Γt , (4.4.7)

where α(t) and β(t) are given by (4.4.5) and (4.4.6) respectively. By applying
Itô’s formula and using (4.4.2) we obtain that F̃ satisfies the equation

dF̃t = −e−Γteα(t)+β(t)µtθ
√
µtβ(t)dB1

t − e−Γtµtdt

= −ψt
√
µtdB

1
t − e−Γtµtdt

(4.4.8)

for all t ∈ [0, T ], where ψ is given by (4.4.4).
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Lemma 4.4.2. The process L = (Lt)t∈[0,T ] given by

Lt = (1−Ht)e
Γt , t ∈ [0, T ],

follows a G-martingale and solves under P the following stochastic differen-
tial equation

dLt = −LtdM̂t t ∈ [0, T ]. (4.4.9)

Proof. See Proposition 5.1.3 in Bielecki and Rutkowski [7].

Proposition 4.4.3. The credibility process F satisfies under P the following
equation

dFt = −ψtLt
√
µtdB

1
t − F̃tLt−dM̂t − e−ΓtLtµtdt, (4.4.10)

for all t ∈ [0, T ].

Proof. It follows from Corollary 5.1.1 of Bielecki and Rutkowski [7] that

Ft = P (t < τ ≤ T |Gt) = 1{τ>t}EP [1{t<τ≤T}e
Γt |Ft]

= LtP (t < τ ≤ T |Ft) = LtF̃t.

By applying the integration by parts formula and using (4.4.3) and (4.4.9),
we obtain

dFt = LtdF̃t + F̃tdLt + d[F,L]t

= −ψtLt
√
µtdB

1
t − F̃tLt−dM̂t − e−ΓtLtµtdt.

We examine the dynamics of the process Λ in this setting.

Theorem 4.4.4. The process Λ satisfies the following equation

dΛt = Λt−(ξ1
t dB

1
t + σdB2

t − dM̂t + ξ2
t dt), (4.4.11)

for all t ∈ [0, T ], where ξ1 and ξ2 are given by

ξ1
t =

(1− c)ψt
√
µte

Γt

(1− c)eα(t)+β(t)µt + c
and ξ2

t = − cµt
(1− c)eα(t)+β(t)µt + c

(4.4.12)

for all t ∈ [0, T ].
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Proof. By (4.2.2) we have

Λt = EP [X1{τ>T} +Rτ1{τ≤T}|Gt]1{τ>t}
= EP [XT1{τ>T}|Gt] + EP [cXτ1{τ≤T}|Gt]1{τ>t}.

(4.4.13)

Let us compute the first component of the above sum. It follows from Corol-
lary 5.1.1. of Bielecki and Rutkowski [7] that

EP [XT1{τ>T}|Gt] = 1{τ>t}EP [1{τ>T}e
ΓtXT |Ft] = LtEP [XT1{τ>T}|Ft].

(4.4.14)
where Lt = (1 − Ht)e

Γt , t ∈ [0, T ]. By using the definition of the F-hazard
process together with the fact that XT is FT -measurable, we obtain

EP [XT1{τ>T}|Gt] = LtEP [1{τ>T}XT |Ft] = LtEP [EP [XT1{τ>T}|FT ]|Ft]
= LtEP [XTP (τ > T |FT )|Ft] = LtEP [XT e

−ΓT |Ft]
= LtEP [XT |F2

t ]EP [e−ΓT |F1
t ]

= LtXte
−ΓtEP [e−(ΓT−Γt)|F1

t ]

= LtXte
α(t)+β(t)µt−Γt ,

where the last equality follows from the properties of the affine process µ.
Let us focus now on the second term of (4.4.13). By following the arguments
of Lemma 4.1. of Biagini and Schreiber [6] we obtain

EP [cXτ1{τ≤T}|Gt]1{τ>t} = 1{τ>t}

(
c1{τ≤t}Xτ + cLtEP [

∫ T

0

Xse
−ΓsdΓs|Ft]

− cLt
∫ t

0

Xse
−ΓsdΓs

)
= cLt

(
EP [

∫ T

0

Xse
−Γsµsds|Ft]−

∫ t

0

Xse
−Γsµsds

)
= cLtEP [

∫ T

t

Xse
−Γsµsds|Ft]

= cLt

∫ T

t

EP [Xse
−Γsµs|Ft]ds

= cLt

∫ T

t

EP [Xs|F2
t ]EP [e−Γsµs|F1

t ]ds

= cLtXt

∫ T

t

EP [e−Γsµs|F1
t ]ds

= cLtXt(EP [

∫ T

0

e−Γsµsds|F1
t ]−

∫ t

0

e−Γsµsds).

77



By using the affine structure of the stochastic intensity µ we obtain

EP [

∫ T

0

e−Γsµsds|Ft] = EP [1− e−ΓT |Ft] = 1− EP [e−ΓT |Ft]

= 1− e−ΓtEP [e−(ΓT−Γt)|Ft] = 1− e−Γteα(t)+β(t)µt .

Therefore

Λt = LtXte
α(t)+β(t)µt−Γt + cLtXt

(
1− eα(t)+β(t)µt−Γt −

∫ t

0

e−Γsµsds
)

= LtXt

(
eα(t)+β(t)µt−Γt + c− ceα(t)+β(t)µt−Γt − c

∫ t

0

e−Γsµsds
)

= LtXt

(
c+ (1− c)eα(t)+β(t)µt−Γt − c

∫ t

0

e−Γsµsds
)

= LtXtDt.

(4.4.15)

Let us denote by D = (Dt)t≥0 the process

Dt := c+ (1− c)eα(t)+β(t)µt−Γt − c
∫ t

0

e−Γsµsds

= (1− c)eα(t)+β(t)µt−Γt + ce−Γt > 0,

(4.4.16)

a.s. for all t ∈ [0, T ]. Since D is strictly positive, we rewrite D under the
form of a stochastic exponential. By Itô’s formula we obtain

d
(
eα(t)+β(t)µt−Γt

)
= θβ(t)

√
µte

α(t)+β(t)µt−ΓtdB1
t = ψt

√
µtdB

1
t ,

where ψ is defined in (4.4.4). Therefore we have

dDt = (1− c)ψt
√
µtdB

1
t − ce−Γtµtdt

= Dt

((1− c)ψt
√
µt

Dt

dB1
t −

ce−Γtµt
Dt

dt
)

= Dt(ξ
1
t dB

1
t + ξ2

t dt),

where

ξ1
t =

(1− c)ψt
√
µt

Dt

=
(1− c)ψt

√
µte

Γt

(1− c)eα(t)+β(t)µt + c
≤ 0.

and

ξ2
t = −ce

−Γtµt
Dt

= − cµt
(1− c)eα(t)+β(t)µt + c

≤ 0.

78



An application of Itô’s product formula yields

dΛt = Ltd(XD)t +XtDtdLt + d[XD,L]t

= LtXtdDt + LtDtdXt + Ltd[D,X]t +XtDtdLt +Xtd[D,L]t +Dtd[X,L]t

= LtXtdDt + LtDtdXt +XtDtdLt

= LtXtDt(ξ
1
t dB

1
t + ξ2

t dt) + LtDtσXtdB
2
t −XtDtLtdM̂t

= Λt−(ξ1
t dB

1
t + σdB2

t − dM̂t + ξ2
t dt),

and this concludes the proof.

The following Theorem provides us with the dynamics of the market wealth
process W . We remind that in our setting the immersion property holds
under the measure P , i.e. all F-martingales are also G-martingales.

Theorem 4.4.5. The market wealth process W is a (G, P )-semimartingale
that admits the canonical decomposition

Wt = Mt + At,

for all t ∈ [0, T ], where the local martingale part M is given by

dMt = (f(t, Ft)ξ
1
t − fx(t, Ft)Ltψt

√
µt)ΛtdB

1
t + σf(t, Ft)ΛtdB

2
t

+ (cXt − f(t, Ft)Λt−)dM̂t,
(4.4.17)

and the finite variation part A is given by

dAt =
{

[f(t, Ft)ξ
2
t + ft(t, Ft)− fx(t, Ft)Lte−Γtµt +

1

2
fxx(t, Ft)L

2
tψ

2
tµt

+ fx(t, Ft)LtF̃tµ̂t − fx(t, Ft)Ltψt
√
µtξ

1
t ]Λt + cXtµ̂t

}
dt.

(4.4.18)

Proof. By applying the integration by parts formula we obtain

dWt = f(t, Ft)dΛt + Λtdf(t, Ft) + d[Λ, f(·, F )]t + cXtdHt. (4.4.19)

First we compute the dynamics of f(t, Ft). Using Itô’s formula (see Theorem
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II.32 in Protter [52]) and (4.4.10) we have

f(t, Ft) = f(0, F0) +

∫ t

0

fs(s, Fs)ds+

∫ t

0

fx(s, Fs−)dFs +
1

2

∫ t

0

fxx(s, Fs−)d[F, F ]cs

+
∑

0<s≤t

{f(s, Fs)− f(s, Fs−)− fx(s, Fs−)∆Fs)}

= f(0, F0) +

∫ t

0

fs(s, Fs)ds−
∫ t

0

fx(s, Fs)Lsψs
√
µsdB

1
s

−
∫ t

0

fx(s, Fs−)F̃s−Ls−dM̂s −
∫ t

0

fx(s, Fs)Lse
−Γsµsds

+
1

2

∫ t

0

fxx(s, Fs)L
2
sψ

2
sµsd[B1, B1]s

+
∑

0<s≤t

{f(s, Fs)− f(s, Fs−)− fx(s, Fs−)∆Fs)}

= f(0, F0) +

∫ t

0

fs(s, Fs)ds−
∫ t

0

fx(s, Fs)Lsψs
√
µsdB

1
s

−
∫ t

0

fx(s, Fs−)F̃s−Ls−dM̂s −
∫ t

0

fx(s, Fs)Lse
−Γsµsds

+
1

2

∫ t

0

fxx(s, Fs)L
2
sψ

2
sµsds

+

∫ t

0

{f(s, Fs)− f(s, Fs−) + fx(s, Fs−)F̃s−Ls−}dM̂s

+

∫ t

0

fx(s, Fs)F̃sLsµ̂sds,

where we wrote the sum of jumps as a stochastic integral as shown below∑
0<s≤t

{f(s, Fs)− f(s, Fs−)− fx(s, Fs−)∆Fs}

=
∑

0<s≤t

{f(s, Fs)− f(s, Fs−) + fx(s, Fs−)F̃sLs−∆Hs}

=
∑

0<s≤t

{f(s, Fs)− f(s, Fs−)}∆Hs +
∑

0<s≤t

fx(s, Fs−)F̃sLs−∆Hs

=

∫ t

0

(f(s, Fs)− f(s, Fs−))dHs +

∫ t

0

fx(s, Fs−)F̃sLs−dHs

=

∫ t

0

{f(s, Fs)− f(s, Fs−) + fx(s, Fs−)F̃sLs−}dM̂s +

∫ t

0

fx(s, Fs−)F̃sLs−µ̂sds.
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Therefore

f(t, Ft) = f(0, F0)−
∫ t

0

fx(s, Fs)Lsψs
√
µsdB

1
s +

∫ t

0

(
f(s, Fs)− f(s, Fs−)

)
dM̂s

+

∫ t

0

(
fs(s, Fs)− fx(s, Fs)Lse−Γsµs +

1

2
fxx(s, Fs)L

2
sψ

2
sµs

+ fx(s, Fs)F̃sLsµ̂s

)
ds.

(4.4.20)

Hence by Theorem 4.4.4 and (4.4.20) we have that the quadratic covariation
[Λ, f(·, F )] is given by

d[Λ, f(·, F )]t = −fx(t, Ft)Ltψtξ1
t

√
µtΛtd[B1, B1]t

− (f(t, Ft)− f(t, Ft−))Λt−d[M̂, M̂ ]t

= −(f(t, Ft)− f(t, Ft−))Λt−dHt − fx(t, Ft)Ltψtξ1
t

√
µtΛtdt

= −(f(t, Ft)− f(t, Ft−))Λt−dM̂t − fx(t, Ft)Ltψtξ1
t

√
µtΛtdt.

By replacing the expressions of [Λ, f(·, F )] and f(t, Ft) in (4.4.19) and by
using (4.4.11) we obtain

dWt = f(t, Ft)ξ
1
t ΛtdB

1
t + σf(t, Ft)ΛtdB

2
t − f(t, Ft−)Λt−dM̂t

+ f(t, Ft)ξ
2
t Λtdt− fx(t, Ft)Ltψt

√
µtΛtdB

1
t

+ (f(t, Ft)− f(t, Ft−))Λt−dM̂t +
(
ft(t, Ft)− fx(t, Ft)Lte−Γtµt

+
1

2
fxx(t, Ft)L

2
tψ

2
tµt + fx(t, Ft)F̃tLtµ̂t

)
Λtdt

− fx(t, Ft)Ltψt
√
µtξ

1
t Λtdt− (f(t, Ft)− f(t, Ft−))Λt−dM̂t

+ cXtdM̂t + cXtµ̂tdt

=
(
f(t, Ft)ξ

1
t − fx(t, Ft)Ltψt

√
µt

)
ΛtdB

1
t + σf(t, Ft)ΛtdB

2
t

+ (cXt − f(t, Ft−)Λt−)dM̂t

+
{(
f(t, Ft)ξ

2
t + ft(t, Ft)− fx(t, Ft)Lte−Γtµt

+
1

2
fxx(t, Ft)L

2
tψ

2
tµt + fx(t, Ft)LtF̃tµ̂t

− fx(t, Ft)Ltψtξ1
t

√
µt

)
Λt + cXtµ̂t

}
dt.

This concludes the proof.

81



Let us assume Mloc(W ) 6= ∅. We are interested in deriving a general form
for the Radon-Nikodym density process of a measure Q ∈ Mloc(W ) with
respect to the measure P . To this purpose, we consider a setting where the
predictable version of Girsanov’s theorem can be applied. This allows us to
use the conditional quadratic covariation in the computation of the canonical
semimartingale decomposition of W with respect to Q, see Theorem III.40
in Protter [52].

Proposition 4.4.6. Let Q ∈Mloc(W ) with Radon-Nikodym density process
Z = (Zt)t∈[0,T ] i.e. Zt = dQ

dP
|Gt, t ∈ [0, T ]. We assume that the quadratic

covariation [Z,M ] is locally integrable. Then Z admits the representation

dZt = Zt−(b
(1)
t dB1

t + b
(2)
t dB2

t + b
(3)
t−dM̂t), t ∈ [0, T ], (4.4.21)

where (b
(i)
t )t∈[0,T ] are G-predictable processes for all i = 1, 2, 3, satisfying

0 = dAt +
[(
b

(1)
t (ξ1

t f(t, Ft)− fx(t, Ft)Ltψt
√
µt)

+ σb
(2)
t f(t, Ft)

)
Λt + b

(3)
t (cXt − f(t, Ft)Λt−)µ̂t

]
dt

(4.4.22)

dt⊗ dP -almost surely on [0, T ]× Ω.

Proof. Since the process Z = (Zt)t∈[0,T ] is a G-martingale and the hazard
process Γ admits the representation

Γt =

∫ t

0

µsds, t ∈ [0, T ],

it follows from Corollary 5.2.4. of Bielecki and Rutkowski [7] that Z can be
written under the form

Zt = Z0 +

∫ t

0

ζ(1)
s dB1

s +

∫ t

0

ζ(2)
s dB2

s +

∫ t

0

ζ(3)
s dM̂s,

for all t ∈ [0, T ], where the processes (ζ
(i)
t )t∈[0,T ] are G-predictable. Fur-

thermore, since Z is a stricly positive martingale, Z can be written as the
stochastic exponential

Zt = E (K)t , t ∈ [0, T ],

where K = (Kt)t∈[0,T ] is a local martingale given by

Kt = K0 +

∫ t

0

b(1)
s dB1

s +

∫ t

0

b(2)
s dB2

s +

∫ t

0

b(3)
s dM̂s, t ∈ [0, T ],
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with

b
(i)
t =

ζ
(i)
t

Zt
, t ∈ [0, T ].

Hence representation (4.4.21) follows.
Since the quadratic covariation [Z,M ] is locally integrable, it follows from

Chapter III in Protter [52], that the conditional quadratic covariation process
〈Z,M〉 exists and is defined as the compensator of [Z,M ]. Therefore, we can
apply the predictable version of Girsanov’s Theorem. The local P -martingale
process (Mt)t∈[0,T ] given by (4.4.17) admits under Q the following canonical
semimartingale decomposition

Mt =
(
Mt −

∫ t

0

1

Zs−
d〈Z,M〉s

)
+

∫ t

0

1

Zs−
d〈Z,M〉s, t ∈ [0, T ].

Since the process (MQ
t )t∈[0,T ] given by

MQ
t = Mt −

∫ t

0

1

Zs−
d〈Z,M〉s, t ∈ [0, T ].

is a local Q-martingale, it follows that W admits under Q the canonical
semimartingale decomposition

Wt = MQ
t +

∫ t

0

1

Zs−
d〈Z,M〉s + At, t ∈ [0, T ].

Since Q ∈Mloc(W ), this implies that

At +

∫ t

0

1

Zs−
d〈Z,M〉s = 0

dt⊗ dP -a.s. Therefore (4.4.22) follows from the fact that

At +

∫ t

0

1

Zs−
d〈Z,M〉s = At +

∫ t

0

1

Zs
Zsb

(1)
s (ξ1

t f(t, Ft)− fx(t, Ft)Ltψt
√
µt)Λtd[B1, B1]s

+

∫ t

0

1

Zs
Zsb

(2)
s σf(s, Fs)Λsd[B2, B2]s

+

∫ t

0

1

Zs−
Zs−(cXs − f(s, Fs)Λs−)d〈M̂, M̂〉s

= At +

∫ t

0

[(
b(1)
s (ξ1

sf(s, Fs)− fx(s, Fs)Lsψs
√
µs)

+ σb(2)
s f(s, Fs)

)
Λs + b(3)

s (cXs − f(s, Fs)Λs−)µ̂s

]
ds.
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We now state the following auxiliary result, that will be used later in the
proofs.

Lemma 4.4.7. On the set {τ > t} we have

Rt < Λt. (4.4.23)

Proof. Since the recovery process (Rt)t≥0 is given by Rt = cXt for all t ≥ 0,
with c ∈ (0, 1), we obtain

Rt1{τ>t} = cXt1{τ>t} = cEP [XT |Gt]1{τ>t}
= c1{τ>t}EP [XT1{τ>T} +XT1{τ≤T}|Gt]
= c(1{τ>t}EP [XT1{τ>T}|Gt] + 1{τ>t}EP [EP [XT1{t<τ≤T}|Gτ ]|Gt])
= c1{τ>t}EP [XT1{τ>T} +Xτ1{t<τ≤T}|Gt] < Λt1{τ>t}.

We consider the following form for the function f(t, x). Let

f(t, x) :=

{
1 + k(T − t)(1− x

p
) if x ≤ p, t ∈ [0, T ],

1 if x > p, t ∈ [0, T ],

where k > 0 is a positive constant. The partial derivatives of f(t, x) will be
equal to

ft(t, x) :=

{
−k(1− x

p
) if x ≤ p, t ∈ [0, T ],

0 if x > p, t ∈ [0, T ].

and

fx(t, x) :=

{
−k
p
(T − t) if x ≤ p, t ∈ [0, T ],

0 if x > p, t ∈ [0, T ].

Note that f(t, x) has bounded first and second order partial derivatives.
Furthermore the impact of the credibility process F on the wealth processW
is bounded. However the wealth process W is not bounded. For a comment
on price bubbles in the case of assets with a bounded wealth process, we refer
to Remark 4.2.8.

For this specific example of f(t, x) we show that there exist a measure
Q ∈ Mloc(W ) and compute its associated Radon-Nikodym density process
with respect to P .

Theorem 4.4.8. Suppose that the intensity process (µt)t∈[0,T ] satisfies the
condition

EP
[

exp(
1

σ2

∫ T

0

µ2
sds)

]
<∞. (4.4.24)

ThenMloc(W ) 6= ∅.
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Proof. We start by bringing the expression of the finite variation part A of
W , as given in (4.4.18), to a simpler form. Note that fxx(t, x) = 0. From
(4.4.4), (4.4.7) and (4.4.12) we obtain

dAt =
{

[f(t, Ft)ξ
2
t + ft(t, Ft)− fx(t, Ft)Lte−Γtµt +

1

2
fxx(t, Ft)L

2
tψ

2
tµt

+ fx(t, Ft)LtF̃tµ̂t − fx(t, Ft)Ltψt
√
µtξ

1
t ]Λt + cXtµ̂t

}
dt

=
{

[f(t, Ft)ξ
2
t + ft(t, Ft)− fx(t, Ft)µ̂t + fx(t, Ft)(1− eα(t)+β(t)µt)µ̂t

− fx(t, Ft)
(1− c)ψt

√
µte

Γt

(1− c)eα(t)+β(t)µt + c
Ltψt
√
µt]Λt

+ cXtµ̂t

}
dt

=
{
f(t, Ft)ξ

2
t + ft(t, Ft)

}
Λtdt+

{
[−fx(t, Ft)µ̂t − fx(t, Ft)eα(t)+β(t)µtµ̂t

+ fx(t, Ft)µ̂t − fx(t, Ft)
1− c

(1− c)eα(t)+β(t)µt + c
θ2β2(t)e2α(t)+2β(t)µtµ̂t]Λt

+ cXt

}
µ̂tdt

=
{
f(t, Ft)ξ

2
t + ft(t, Ft)

}
Λtdt+

{
− fx(t, Ft)eα(t)+β(t)µt

·
(

1 +
1− c

(1− c)eα(t)+β(t)µt + c
θ2β2(t)eα(t)+β(t)µt

)
Λt + cXt

}
µ̂tdt.

We denote

δt := −fx(t, Ft)eα(t)+β(t)µt
(

1 +
(1− c)eα(t)+β(t)µt

(1− c)eα(t)+β(t)µt + c
θ2β2(t)

)
(4.4.25)

for all t ∈ [0, T ]. It is easy to see that 0 ≤ δt < Cδ for some constant Cδ > 0
a.s. for all t ∈ [0, T ]. Therefore

dAt =
{
f(t, Ft)ξ

2
t + ft(t, Ft)

}
Λtdt+

(
δtΛt + cXt

)
µ̂tdt.

We define the measure Q1 by

dQ1

dP
|GT = Z

(1)
T , (4.4.26)

with the Radon-Nikodym density process Z(1) = (Z
(1)
t )t∈[0,T ] given by

dZ
(1)
t = b

(1)
t Z

(1)
t dB2

t ,
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and

b
(1)
t = −

f(t, Ft)ξ
2
t + ft(t, Ft) + cXt

2Λt
µt1{τ>t}

σf(t, Ft)

= − 1

σ
ξ2
t −

ft(t, Ft)

σf(t, Ft)
− cXt

2σf(t, Ft)Λt

µt1{τ>t}

=
1

σ

c

(1− c)eα(t)+β(t)µt + c
µt + k(1− Ft

p
)

1

σf(t, Ft)
1{σ1≤t}

− 1

2σf(t, Ft)

cµt
(1− c)eα(t)+β(t)µt + c

1{τ>t}

=
1

σ

cµt
(1− c)eα(t)+β(t)µt + c

(
1− 1

2f(t, Ft)
1{τ>t}

)
+ k(1− Ft

p
)

1

σf(t, Ft)
1{σ1≤t},

where we have used the fact that Λt = XtLtDt with Dt defined in (4.4.16).
We prove that Z(1) is a true P -martingale. To this purpose we show that
Novikov’s condition is satisfied i.e.

EP
[

exp
(1

2

∫ T

0

(b
(1)
t )2d[B2, B2]t

)]
<∞, P − a.s..

We have

EP
[

exp(
1

2

∫ T

0

(b
(1)
t )2dt)

]
≤ EP

[
exp

(∫ T

0

k2

σ2f(t, Ft)2

(
1− Ft

p

)2

1{σ1≤t}dt

+

∫ T

0

c2µ2
t

σ2(c+ (1− c)eα(t)+β(t)µt)2

(
1− 1

2f(t, Ft)
1{τ>t}

)2

dt
)]

≤ CEP
[

exp
(∫ T

0

c2µ2
t

σ2(c+ (1− c)eα(t)+β(t)µt)2
dt
)]

≤ CEP
[

exp
( 1

σ2

∫ T

0

µ2
tdt
)]

<∞,

where C = C(T ) > 0 is some positive constant depending on T and the last
inequality follows from (4.4.24). Therefore Z(1) is indeed a Radon-Nikodym
density process. It follows from Girsanov’s theorem that the process

B̃2
t = B2

t −
∫ t

0

1

Z
(1)
s

d[Z(1), B2] = B2
t −

∫ t

0

b(1)
s ds, t ∈ [0, T ],

is a Q1-local martingale for all t ∈ [0, T ]. It follows from Levy’s charac-
terization theorem that (B̃2

t )t∈[0,T ] is a Q1-Brownian motion with respect to
the filtration G. By applying Girsanov’s theorem we obtain the canonical
semimartingale decomposition of W under Q1:

Wt = M1
t + A1

t , t ∈ [0, T ],
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where the local martingale part (M1
t )t∈[0,T ] is equal to

M1
t = Mt −

∫ t

0

1

Z
(1)
s

d[Z(1),M ]s

= M0 +

∫ t

0

(f(s, Fs)ξ
1
s − fx(s, Fs)Lsψs

√
µs)ΛsdB

1
s +

∫ t

0

σf(s, Fs)ΛsdB
2
s

+

∫ t

0

(cXs − f(s, Fs)Λs−)dM̂s −
∫ t

0

σf(s, Fs)Λsb
(2)
s ds

= M0 +

∫ t

0

(
f(s, Fs)ξ

1
s − fx(s, Fs)Lsψs

√
µs

)
ΛsdB

1
s +

∫ t

0

σf(s, Fs)ΛsdB̃
2
s

+

∫ t

0

(cXs − f(s, Fs)Λs)dM̂s,

and the finite variation part (A1
t )t∈[0,T ] is equal by

A1
t = At +

∫ t

0

1

Z
(1)
s

d[Z(1), B2]s

=

∫ t

0

(f(s, Fs)ξ
2
s + fs(s, Fs))Λsds+

∫ t

0

(δsΛs + cXs)µ̂sds

+

∫ t

0

σf(s, Fs)b
(1)
s Λsds

=

∫ t

0

(
c

2
Xs + δsΛs)µ̂sds.

We define the process Z(2) = (Z(2))t∈[0,T ] as the stochastic exponential satis-
fying the equation

dZ
(2)
t = btZ

(2)
t dM̂t, t ∈ [0, T ], (4.4.27)

with
bt =

c
2
Xt + δtΛt

f(t, Ft)Λt − cXt

, t ∈ [0, T ]. (4.4.28)

We prove that Z(2) is a Q1-martingale. First we show that the Q1-local
martingale Z(2) is positive. For this it is sufficient to show that ∆(b.M̂)t > −1
for all t ∈ [0, T ], where b.M̂ denotes the stochastic integral of b with respect
to M̂ . We start by showing that (bt)t∈[0,T ] defined in (4.4.28) satisfies bt > −1
for all t ∈ [0, T ]. We have

bt =
c
2
Xt + δtΛt

f(t, Ft)Λt − cXt

1{τ≤t} +
c
2
Xt + δtΛt

f(t, Ft)Λt − cXt

1{τ>t}

= −1

2
1{τ≤t} +

c
2
Xt + δtΛt

f(t, Ft)Λt − cXt

1{τ>t}.

(4.4.29)
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On the set {τ > t} we have by Lemma 4.4.7, (4.2.3) and (4.4.25) that

cXt < Λt ≤ f(t, Ft)Λt, (4.4.30)

so
bt ≥ 0 on {τ > t}. (4.4.31)

Moreover bt > −1 for all t ∈ [0, T ]. Therefore the Q1-local martingale Z(2) is
positive since

∆(b.M̂)t = bt∆M̂t = bt∆Ht > −1,

for all t ∈ [0, T ]. Since Z(2) is defined as the unique solution of (4.4.27), it
follows from Theorem II.37 in Protter [52] that Z(2) is given by

Z
(2)
t = exp

(∫ t

0

bsdM̂s

)
Πs≤t(1 + bs∆Hs) exp(−bs∆Hs),

for all t ∈ [0, T ]. We have by (4.4.29) and (4.4.31) that

Z
(2)
t = exp

(∫ t

0

bsdHs −
∫ t∧τ

0

bsµsds
)

(1 + bτ1{τ≤t}) exp(−bτ1{τ≤t})

= 1{τ>t} exp
(
−
∫ t∧τ

0

bsµsds
)

+
1

2
1{τ≤t} exp

(
−
∫ t∧τ

0

bsµsds
)

≤ 1{τ>t} +
1

2
1{τ≤t} <

3

2
,

for all t ∈ [0, T ]. Therefore the positive Q1-local martingale Z(2) is also upper
bounded, hence Z(2) is a Q1-uniformly integrable martingale, see Theorem
I.51 in Protter [52]. Analogously, we obtain that

|∆Z(2)
t | = |Z

(2)
t − Z

(2)
t− | ≤ K∆,

for some K∆ > 0. Hence Z(2) has bounded jumps. It follows from Lemma
3.14 in [33] that [Z(2),M1] has locally integrable variation. Therefore its Q1-
compensator 〈Z(2),M1〉 exists and is well defined.

Since Z(2) is a Q1-martingale, we can define the measure Q2 with the
Radon-Nikodym density process w.r.t. Q1 given by

dQ2

dQ1
|GT = Z

(2)
T . (4.4.32)

It follows from Proposition 5.3.1 in Bielecki and Rutkowski [7] that the pro-
cess

M̃t = M̂t −
∫ t

0

bsµ̂sds, t ∈ [0, T ]
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is a G-martingale under Q2. Since the conditional quadratic covariation
〈Z(2),M1〉 exists underQ1, we can apply the predictable version of Girsanov’s
theorem (see Theorem III.40 in [52]) in order to compute the canonical semi-
martingale decomposition of W under Q2. We have

Wt = M2
t + A2

t , t ∈ [0, T ],

Q2-a.s., where the local martingale part (M2
t )t∈[0,T ] is given by

M2
t = M1

t −
∫ t

0

1

Z
(2)
s−
d〈Z(2),M1〉s

= M0 +

∫ t

0

(
f(s, Fs)ξ

1
s − fx(s, Fs)Lsψs

√
µs

)
ΛsdB

1
s +

∫ t

0

σf(s, Fs)ΛsdB̃
2
s

+

∫ t

0

(cXs − f(s, Fs)Λs)dM̂s −
∫ t

0

(cXs − f(s, Fs)Λs)bsµ̂sds

= M0 +

∫ t

0

(
f(s, Fs)ξ

1
s − fx(s, Fs)Lsψs

√
µs

)
ΛsdB

1
s +

∫ t

0

σf(s, Fs)ΛsdB̃
2
s

+

∫ t

0

(cXs − f(s, Fs)Λs)dM̃s

and the finite variation part (A2
t )t∈[0,T ] is given by by

A2
t = A1

t +

∫ t

0

1

Z
(2)
s−
d〈Z(2),M1〉s

=

∫ t

0

(
c

2
Xs + δsΛs)µ̂sds+

∫ t

0

bsd〈M̂,M1〉s

=

∫ t

0

(
c

2
Xs + δsΛs)µ̂sds+

∫ t

0

bs(cXs − f(s, Fs)Λs)µ̂sds

= 0,

where we have used (4.4.28). Hence W is a local martingale under Q2. Then
the equivalent probability measure Q ≈ P defined by

dQ

dP
=
dQ1

dP

dQ2

dQ1
(4.4.33)

where Q1 and Q2 are defined in (4.4.26) and (4.4.32) respectively, belongs to
Mloc(W ), i.eMloc(W ) 6= ∅.

The following proposition provides us with a sufficient condition under which
an equivalent local martingale measure Q ∈ Mloc(W ) belongs to the subset
MNUI(W ).
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Proposition 4.4.9. Let Q ∈ Mloc(W ) and we assume that 0 < σ1 < T . If
the estimated wealth process (W e

t )t∈[0,T ] is a Q-supermartingale with respect
to the filtration G, then Q ∈MNUI(W ).

Proof. Let Q ∈ Mloc(W ) such that (W e
t )t∈[0,T ] is a (G, Q)-supermartingale.

Let ε > 0 such that σ1 + ε ≤ T . We have

EQ[WT ] = EQ[W e
T ] = EQ[EQ[W e

T |Gσ1+ε]] ≤ EQ[W e
σ1+ε]

< EQ[Wσ1+ε] ≤ EQ[W0].

Therefore W is a Q-strict local martingale on [0, T ].

We now provide sufficient conditions under which Proposition 4.3.7 holds in
this framework.

Proposition 4.4.10. Let Q ∈Mloc(W ) whose Radon-Nikodym density pro-
cess with respect to P , Z = (Zt)t∈[0,T ] i.e. Zt = dQ

dP
|Gt for all t ∈ [0, T ],

satisfies

i) EP [supt∈[0,T ] Z
2
t ] < +∞.

ii) The quadratic covariation process [W e, Z] is increasing.

Then W eZ is a P -submartingale.

Proof. By applying the integration by parts formula we obtain the semi-
martingale decomposition of W eZ

d(W eZ)t = W edZt + ZtdW
e
t + d[W e, Z] = dmt + dat, t ∈ [0, T ],

where the local martingale part (mt)t∈[0,T ] is given by

dmt = Zt−dW
e
t +W e

t−dZt,

and the finite variation part (at)t∈[0,T ] is equal to

dat = d[W e, Z]t.

Hence the process W eZ is a local P -submartingale. In order to show that
W eZ is a P -submartingale, we prove

EP [ sup
s∈[0,T ]

|ms|] <∞.

Then it follows from Theorem I.51 in Protter [52] that (mt)t∈[0,T ] is a P -
martingale. We have

0 < W e
t = EP [XT1{τ>T} + cXτ1{τ≤T}|Gt] < Xt∧τ ,
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for all t ∈ [0, T ], since c < 1. Hence

EP [(W e
t )2] ≤ EP [X2

t∧τ ] <∞. (4.4.34)

for all t ∈ [0, T ]. Therefore W e is a square integrable P -martingale and
satisfies EP [(W e

T )2] = EP [[W e,W e]T ]. Let

mt = m+
t −m−t , t ∈ [0, T ],

be the decomposition of the local martingale m into its positive part m+ and
its negative part m−. Since

(W eZ)t = mt + at = m+
t −m−t + at ≥ 0,

for all t ∈ [0, T ], we have m−t ≤ at, for all t ∈ [0, T ]. Moreover

m+
t −m−t + at ≤ Xt∧τZt.

Therefore m+
t ≤ Xt∧τZt for all t ∈ [0, T ] and

|mt| = m+
t +m−t ≤ Xt∧τZt + at.

Hence

EP [ sup
t∈[0,T ]

|mt|] = EP [ sup
t∈[0,T ]

|Xt∧τZt + at|]

≤ EP [ sup
t∈[0,T ]

|Xt∧τZt|] + EP [ sup
t∈[0,T ]

[W e, Z]t]

= 2EP [ sup
t∈[0,T ]

(X2
t∧τ + Z2

t )] + EP [[W e, Z]T ]

≤ 2EP [ sup
t∈[0,T ]

X2
t ] + 2EP [ sup

t∈[0,T ]

Z2
t ] + EP [[W e, Z]T ].

By the Kunita-Watanabe inequality, see Theorem II.25 in [52], we have

EP [[W e, Z]T ] ≤ EP [[W e,W e]T ]
1
2EP [[Z,Z]T ]

1
2 = EP [(W e

T )2]
1
2EP [Z2

T ]
1
2 .

Therefore by (4.4.34) and by Doob’s maximal inequality it follows

EP [ sup
t∈[0,T ]

|mt|] ≤ 8EP [X2
T ] + 2EP [ sup

t∈[0,T ]

Z2
t ] + EP [X2

T ]
1
2EP [Z2

T ]
1
2 <∞.

We can conclude that (mt)t∈[0,T ] is a P -martingale.

Corollary 4.4.11. If Q ∈Mloc(W ) satisfies the assumptions of Proposition
4.4.10, then

WQ
t −W e

t ≥ 0,

for all t ∈ [0, T ]
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Proof. It is a consequence of Propositions 4.3.7 and 4.4.10.

We now obtain sufficient conditions under which the process W e is a R-
supermartingale on the whole interval [0, T ] for a measure R ∈Mloc(W ).

Proposition 4.4.12. Let R ∈Mloc(W ) with Radon-Nikodym density process
Z = (Zt)t∈[0,T ], where Zt = dR

dP
|Gt, for t ∈ [0, T ]. We assume that the quadratic

covariation process [Z,M ] is locally integrable.
If the processes b(i), i = 1, 2, 3, in the representation (4.4.21) of Z satisfy the
inequality

(ξ1
t b

(1)
t + σb

(2)
t )
(

1 +
c

1− c
e−α(t)−β(t)µt

)
≤ b

(3)
t µt, (4.4.35)

on the set {τ > t}, then W e is a R-supermartingale on [0, T ]. In particular
R ∈MNUI(W ).

Proof. By Theorem 4.4.4 it follows that W e satisfies under P the equation

dW e
t = dΛt +RtdHt

= Λt−(ξ1
t dB

1
t + σdB2

t − dM̂t + ξ2
t dt) +Rt−dM̂t +Rtµ̂tdt

= Λt(ξ
1
t dB

1
t + σdB2

t ) + (cXt − Λt−)dM̂t + (ξ2
t Λt + cXtµ̂t)dt

= Λt(ξ
1
t dB

1
t + σdB2

t ) + (cXt − Λt−)dM̂t + (cXtµ̂t −
ce−Γtµt
Dt

LtXtDt)dt

= Λt(ξ
1
t dB

1
t + σdB2

t ) + (cXt − Λt−)dM̂t + (cXtµ̂t − ce−Γtµt(1−Ht)e
ΓtXt)dt

= Λt(ξ
1
t dB

1
t + σdB2

t ) + (cXt − Λt−)dM̂t + (cXtµ̂t − cµ̂tXt)dt

= Λt(ξ
1
t dB

1
t + σdB2

t ) + (cXt − Λt−)dM̂t,

where we have used (4.4.12) and (4.4.15). Since [Z,M ] is locally integrable,
its P -compensator process 〈Z,M〉 exists and it is well defined. Therefore one
can apply the predictable version of Girsanov’s theorem in order to determine
the canonical semimartingale decomposition of W e under R. We have

W e
t = Nt +At, t ∈ [0, T ],

where the local martingale part N = (Nt)t∈[0,T ] is given by

Nt = W e
t −

∫ t

0

1

Zs
d〈Z,W e〉, t ∈ [0, T ],

and the finite variation part A = (At)t∈[0,T ] is equal to

At =

∫ t

0

1

Zs
d〈Z,W e〉

=

∫ t

0

1

Zs

(
(ξ1
sb

(1)
s + σb(2)

s )Λs + (cXs − Λs)b
(3)
s µ̂s

)
ds.
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Therefore A is decreasing if

(ξ1
t b

(1)
t + σb

(2)
t )Λt + (cXt − Λt)b

(3)
t µ̂t ≤ 0, t ∈ [0, T ].

This can be reformulated as follows on {τ > t}

(ξ1
t b

(1)
t + σb

(2)
t )Λt ≤ (Λt − cXt)b

(3)
t µt (4.4.36)

By replacing Λt = LtDtXt, where (Dt)t∈[0,T ] is defined in (4.4.16), (4.4.36)
becomes

(ξ1
t b

(1)
t + σb

(2)
t )LtDt ≤ (LtDt − c)b(3)

t µt

on {τ > t}, or

(ξ1
t b

(1)
t + σb

(2)
t )
(

1 +
c

1− c
e−α(t)−β(t)µt

)
≤ b

(3)
t µt,

on the set {τ > t}. Hence W e is a local R-supermartingale. Since W e
t =

Nt + At ≥ 0, this implies Nt ≥ −At, for all t ∈ [0, T ]. Therefore N is a
positive local R-martingale. The fact that A is a decreasing process together
with the supermartingale property of N imply

ER[W e
t |Gs] = ER[Nt|Gs] + ER[At|Gs] ≤ Ns +As,

for any s, t ∈ [0, T ], with s ≤ t, i.e. W e is an R-supermartingale. By
Proposition 4.4.9 we also obtain that R ∈MNUI(W ).

4.4.1 Reduced Information Setting

The credibility process F can be alternatively defined in a reduced infor-
mation setting, by conditioning the probability of default on the remaining
time interval (t, T ] with respect to the smaller filtration F. Thus F is defined
under the form

Ft = P(t < τ ≤ T |Ft), (4.4.37)

for all t ∈ [0, T ]. This would correspond to a model where the investors
cannot estimate the time of default using the larger information set Gt. The
dynamics of F are given by

Proposition 4.4.13. The credibility process F satisfies under P the follow-
ing equation

dFt = −ψt
√
µtdB

1
t − e−Γtµtdt,

where
ψt = θβ(t)eα(t)+β(t)µt−Γt , (4.4.38)
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with

α(t) =
2a

c2
ln
( 2λe

(λ−b)(T−t)
2

(λ− b)(eλ(T−t) − 1) + 2λ

)
, (4.4.39)

and

β(t) = − 2(eλ(T−t) − 1)

(λ− b)(eλ(T−t) − 1) + 2λ
, (4.4.40)

for all t ∈ [0, T ] with λ :=
√
b2 + 2θ2.

Proof. See the proof of Proposition 4.4.3.

We can compute the canonical decomposition of the market wealth pro-
cess W in the new setting. Note that the structure of the process Λ, as
computed in Theorem 4.4.4, remains unchanged.

Theorem 4.4.14. The market wealth process W is a (G, P )-semimartingale
that admits the canonical decomposition

Wt = Mt + At,

for all t ∈ [0, T ], where the local martingale part M is given by

dMt = (f(t, Ft)ξ
1
t − fx(t, Ft)ψt

√
µt)ΛtdB

1
t + σf(t, Ft)ΛtdB

2
t

+ (cXt − f(t, Ft)Λt−)dM̂t,
(4.4.41)

and the finite variation part A is given by

dAt =

{
[ft(t, Ft) + f(t, Ft)ξ

2
t − fx(t, Ft)ψtξ1

t

√
µt]Λt

+ [(
1

2
fxx(t, Ft)ψ

2
t − fx(t, Ft)e−Γt)Λt + cXt]µ̂t

}
dt.

(4.4.42)

Proof. By applying the integration by parts formula and using Theorem 4.4.4
we obtain

dWt = f(t, Ft)dΛt + Λtdf(t, Ft) + d[Λ, f(·, F )]t +RtdHt

= f(t, Ft)dΛt + Λtdf(t, Ft) + d[Λ, f(·, F )]t + cXtdM̂t + cXtµ̂tdt

= f(t, Ft)Λt−(ξ1
t dB

1
t + σdB2

t − dM̂t + ξ2
t dt)

+ Λt(ft(t, Ft)dt− fx(t, Ft)ψt
√
µtdB

1
t − fx(t, Ft)e−Γtµtdt+

1

2
fxx(t, Ft)ψ

2
tµtdt)

− fx(t, Ft)Λtψtξ
1
t

√
µtdt+ cXtdM̂t + cXtµ̂tdt

By rearranging the terms, equations (4.4.41) and (4.4.42) follow.
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We now assume that Mloc(W ) 6= ∅ and derive first a general form for the
Radon-Nikodym density process associated to a measure Q ∈Mloc(W ).

Proposition 4.4.15. Let Q ∈Mloc(W ) with Radon-Nikodym density process
Z = (Zt)t∈[0,T ] i.e. Zt = dQ

dP
|Gt, t ∈ [0, T ]. Furthermore, we assume that

the quadratic covariation [Z,M ] is locally integrable. Then Z admits the
representation

dZt = Zt(b
(1)
t dB1

t + b
(2)
t dB2

t + b
(3)
t dM̂t), t ∈ [0, T ], (4.4.43)

where (b
(i)
t )t∈[0,T ] are G-predictable processes for all i = 1, 2, 3, satisfying

0 = dAt +
[(
b

(1)
t (ξ1

t f(t, Ft)− fx(t, Ft)ψt
√
µt)

+ σb
(2)
t f(t, Ft)

)
Λt + b

(3)
t (cXt − f(t, Ft)Λt−)µ̂t

]
dt

(4.4.44)

dt⊗ dP -almost surely on [0, T ]× Ω.

Proof. Since the process Z is strictly positive, representation (4.4.43) follows
by the martingale representation theorem with respect to (G, P ), see [7].
From the predictable version of Girsanov’s Theorem we obtain thatW admits
under Q the following decomposition

Wt = Mt −
∫ t

0

1

Zs−
d〈Z,M〉s + At +

∫ t

0

1

Zs−
d〈Z,M〉s, t ∈ [0, T ].

Since Q ∈Mloc(W ), this implies that

At +

∫ t

0

1

Zs−
d〈Z,M〉s = 0

dt⊗ dP -a.s. which is equivalent to (4.4.44).

One can obtain within this setting the analogous results of Theorem 4.4.8
and Propositions 4.4.10 and 4.4.12 by following similar steps to the ones in
their proofs, Section 4.4.
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4.5 Characterization ofMloc(W ) by measure past-
ing

In this section we characteriseMloc(W ), by using the pasting of measures , a
concept which plays an important role in mathematical finance in the study
of American options, in particular in the construction of the Upper and Lower
Snell envelopes, as presented in Section 6.4 of Föllmer and Schied [27].

This technique allows us to connect the classical martingale theory of
bubbles with a constructive approach to the study of bubbles. The changes
that occur in the dynamics of the asset’s wealth process are captured through
pasting and lead to changes of dynamics in the space of equivalent local
martingale measures. Furthermore, pasting allows for a construction of an
equivalent local martingale measure for W on the whole interval [0, T ], see
Theorem 4.5.6. To this purpose we decompose the market wealth process W
as the following sum:

Wt = W σ1
t + (Wt −Wσ1)1{t≥σ1}

= W
(1)
t +W

(2)
t ,

(4.5.1)

where we denote W (1)
t := W σ1

t and W (2)
t := (Wt −Wσ1)1{t≥σ1} for t ∈ [0, T ].

Note that before the optimistic investors start to influence the price, i.e.
before the credibility process goes below the threshold p, the asset’s market
wealth coincides with the estimated wealth, and in particular,W (1)

t = W σ1
t =

W e
t on {σ1 > t}. We start our study with a model where there will be only

one shift in the dynamics of the asset’s market price at time σ1 < T .

Assumption 4.5.1. The following assumptions hold:

i) We have 0 < σ1 < T .

ii) For i = 1, 2,Mloc(W
(i)) 6= ∅.

We wish to describe the structure of the equivalent local martingale mea-
sures Q ∈ Mloc(W ). The market wealth process W coincides with the es-
timated wealth W e until the starting time σ1 of the bubble. After σ1 the
underlying price process is affected by the impact of the credibility and starts
to change, producing also an alteration of the total wealth process W that
deviates from W e. Hence an equivalent measure Q ∈ Mloc(W ) must take
into account the change in the market wealth’s dynamics that occurs after
σ1. We can interpret this as a switch of measures created by the investors’
heterogeneity or overconfidence. The endogenous construction of the asset’s
wealth process W allows us to provide a possible explanation to the dynamic

96



in the space of equivalent martingale measures as in the approach of Biagini
et al. [4] and Jarrow et al. [40]. Moreover, we show that an equivalent lo-
cal martingale measure Q for W on the whole interval [0, T ] can be obtained
through the pasting in σ1 of two equivalent local martingale measures Q1 and
Q2 corresponding to the processes W σ1 and (W −Wσ1)1{·≥σ1} respectively.

We start by recalling some results concerning measure pasting. In the
sequel let Q1 and Q2 be two equivalent measures on (Ω,GT ) and η be a
G-stopping time with 0 ≤ η ≤ T .

Definition 4.5.2. The probability measure Q

Q(A) := EQ1 [Q2(A|Gη)], A ∈ GT ,

is called the pasting of Q1 and Q2 in η.

We remind the reader of the following result which relates the conditional
expectation with respect to the measure Q with the conditional expectations
with respect to the initial measures Q1 and Q2.

Lemma 4.5.3. If Q is the pasting of Q1 and Q2 in η, then for all stopping
times ξ and all GT -measurable random variables Y ≥ 0 it holds that

EQ[Y |Gξ] = EQ1 [EQ2 [Y |Gη∨ξ]|Gξ].

Proof. See Lemma 6.40 in [27].

The following series of technical results will be used to obtain the desired
representation of the elements in the set Mloc(W ). For i = 1, 2 let Z(i) :=

(Z
(i)
t )t∈[0,T ] be the corresponding Radon-Nikodym density process

Z
(i)
t =

dQi

dP
|Gt , t ∈ [0, T ]. (4.5.2)

We put

Ut =
dQ2

dQ1

|Gt , t ∈ [0, T ]. (4.5.3)

Lemma 4.5.4. The pasting Q of Q1 and Q2 in η is equivalent to Q1 and
satisfies

dQ

dQ1

|Gt =
Ut
Uη∧t

, t ∈ [0, T ], (4.5.4)

where U is introduced in (4.5.3).
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Proof. By Lemma 6.39 in [27] we have
dQ

dQ1

=
UT
Uη
.

Furthermore

EQ1 [
dQ

dQ1

|Gt] = EQ1 [
UT
Uη

1{η≤t}|Gt] + EQ1 [
UT
Uη

1{t<η}|Gt]

=
1

Uη
Ut1{η≤t} + EQ1 [EQ1 [

UT
Uη

1{t<η}|Gη]|Gt]

=
1

Uη
Ut1{η≤t} + EQ1 [1{t<η}

1

Uη
EQ1 [UT |Gη]|Gt]

=
1

Uη
Ut1{η≤t} + EQ1 [1{t<η}|Gt]

=
Ut
Ut∧η

1{η≤t} +
Ut
Ut∧η

1{t<η}

=
Ut
Ut∧η

,

(4.5.5)

where the third equality follows from an application of Doob’s optional stop-
ping time theorem and the fourth equality follows from fact that {η > t} ∈ Gt,
since η is a G-stopping time.

This allows us to obtain the Radon-Nykodim density process Z = (Zt)t∈[0,T ]

of the measure Q obtained through pasting, i.e. Zt = dQ
dP
|Gt , t ∈ [0, T ].

Corollary 4.5.5. The process Z = (Zt)t∈[0,T ] given by

Zt = Z
(1)
t

Ut
Ut∧η

, t ∈ [0, T ], (4.5.6)

is a P -martingale with respect to the filtration G and dQ
dP
|Gt = Zt, t ∈ [0, T ].

Furthermore

Zt = Z
(1)
t∧η

Z
(2)
t

Z
(2)
t∧η
, t ∈ [0, T ],

where Z(1), Z(2) are given in (4.5.2).

Proof. By Lemma 4.5.4 and by applying Bayes formula we obtain

Zt = Z
(1)
t

Ut
Ut∧η

= Z
(1)
t

EP [dQ2

dP
|Gt]

EP [dQ1

dP
|Gt]

EP [dQ1

dP
|Gt∧η]

EP [dQ2

dP
|Gt∧η]

= Z
(1)
t

Z
(2)
t

Z
(1)
t

Z
(1)
t∧η

Z
(2)
t∧η

= Z
(1)
t∧η

Z
(2)
t

Z
(2)
t∧η
, t ∈ [0, T ].
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The following result represents the central theorem of this section and pro-
vides a way of constructing a local martingale measure Q for the process
W on the whole interval [0, T ], under Assumption 4.5.1. This new measure
takes into account the possible changes that occur in the dynamics of W .
Furthermore we can determine whether the resulting measure Q belongs to
one of the setsMUI(W ) orMNUI(W ).

Theorem 4.5.6. We assume that Assumption 4.5.1 holds.

i) Let Qi ∈Mloc(W
i), i = 1, 2, and let Q ≈ P be the measure obtained by

the pasting of Q1 and Q2 in σ1, with Radon-Nikodym density process
Zt = dQ

dP
|Gt, t ∈ [0, T ]. Then Q ∈Mloc(W ).

In addition, if Q1 ∈ MNUI(W
(1)) or Q2 ∈ MNUI(W

(2)), then Q ∈
MNUI(W ).

ii) On the other hand, let Q ∈Mloc(W ) with Radon-Nikodym density Z =
(Zt)t∈[0,T ], i.e. Zt = dQ

dP
|Gt, t ∈ [0, T ]. There exist Qi ∈Mloc(W

(i)), i =

1, 2, with corresponding Radon-Nikodym density processes Z(i)
t = dQi

dP
|Gt

given by Z(1)
t = Zt∧σ1 and Z(2)

t = Zt
Zt∧σ1

for all t ∈ [0, T ], such that Z
can be written in the form

Zt = Z
(1)
t Z

(2)
t , t ∈ [0, T ],

and Q is the pasting of Q1 and Q2 in σ1.

Proof. i) Let (τ in)n≥0 be a localizing sequence such that W (i),τ in is a Qi-
martingale on [0, T ] for i = 1, 2. We now construct a sequence of G-stopping
times (τn)n≥0 such that W τn is a Q-martingale on [0, T ], where Q is the past-
ing of Q1 and Q2 in σ1. We define the sequence of stopping times (τn)n≥0 by
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τn := τ 1
n ∧ τ 2

n, n ≥ 0. For any s ≤ t, it follows from Lemma 4.5.3 that

EQ[Wt∧τn|Gs] = EQ1 [EQ2 [Wt∧τn|Gs∨σ1 ]|Gs]
= EQ1 [EQ2 [Wt∧τn∧σ1 +W

(2)
t∧τn|Gs∨σ1 ]|Gs]

= EQ1 [Wt∧τn∧σ1 +W
(2)
(t∧τn)∧(s∨σ1)|Gs]

= Ws∧τn∧σ1 + EQ1 [W
(2)
(t∧τn)∧(s∨σ1)|Gs]

= Ws∧τn∧σ1 + EQ1 [1{s∧τn<σ1}W
(2)
(t∧τn∧σ1)∨(s∧τn)|Gs]

+ EQ1 [1{s∧τn≥σ1}W
(2)
(t∧τn∧σ1)∨(s∧τn)|Gs]

= Ws∧τn∧σ1 + EQ1 [1{s∧τn<σ1}W
(2)
t∧τn∧σ1 |Gs]

+ EQ1 [1{s∧τn≥σ1}W
(2)
s∧τn|Gs]

= Ws∧τn∧σ1 +W
(2)
s∧τn1{s∧τn≥σ1}

= W
(1)
s∧τn +W

(2)
s∧τn = Ws∧τn ,

(4.5.7)

since W (2)
t∧τn∧σ1 = (Wt∧τn∧σ1 − Wσ1)1{t∧τn∧σ1≥σ1} = 0. The second and last

equality in (4.5.7) follow from (4.5.1). In these computations, we have used
the measurability properties of the stopping times and Doob’s optional stop-
ping time theorem.
Hence Q ∈ Mloc(W ). For the second part of i) we use the fact that if
Q ∈MNUI(W ), then there exists t ∈ [0, T ] such that

Wt > EQ[WT |Gt].

This is a consequence of the fact that W is a positive local martingale and
hence a supermartingale. Therefore, the supermartingale inequality holds

Wt ≥ EQ[WT |Gt], t ∈ [0, T ].

for all Q ∈ Mloc(W ), with equality for all Q ∈ Mloc(W ). If W is not a
uniformly integrable martingale, then the inequality must be strict at least
for some t ∈ [0, T ].
By applying Lemma 4.5.3 we obtain

EQ[WT |Gt] = EQ1 [EQ2 [WT |Gσ1∨t]|Gt]
≤ EQ1 [Wσ1∨t|Gt] ≤ Wt,

(4.5.8)

where one of the inequalities is strict for some t if Q1 or Q2 belong to the set
MNUI(W ).
ii) Consider the set

Z(W ) := {Z;ZW is a P − local martingale}.
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Then the Radon-Nikodym density process Z belongs to Z(W ). By Lemma
2.3. of Stricker and Yan [59], since σ1 < T , we have that Z ∈ Z(W σ1) i.e.
ZW σ1 is a P -local martingale on [0, T ]. We define the measure Q1 ≈ P by

dQ1

dP
= Zσ1 .

and prove that Zt
Zt∧σ1

is a Radon-Nikodym density process for a measure
Q2 ≈ P such that W (2) is a Q2-local martingale on [0, T ]. Let (τn)n∈N be a
localizing sequence for the Q-local martingale W . Then

EP
[ Zt
Zt∧σ1

W
(2)
t∧τn|Gs

]
= EP

[ Zt
Zt∧σ1

(Wt∧τn −Wσ1)1{t∧τn≥σ1}|Gs
]

= EP
[ Zt
Zt∧σ1

(Wt∧τn −Wσ1)1{t∧τn≥σ1}(1{s∧τn≥σ1}

+ 1{s∧τn<σ1≤t∧τn} + 1{t∧τn<σ1})|Gs
]

= EP
[ Zt
Zt∧σ1

(Wt∧τn −Wσ1)1{s∧τn≥σ1}|Gs
]

+ EP
[ Zt
Zt∧σ1

(Wt∧τn −Wσ1)1{s∧τn<σ1≤t∧τn}|Gs
]

= 1{s∧τn≥σ1}
1

Zσ1
(EP [ZtWt∧τn|Gs]− EP [ZtWσ1|Gs])

+ EP
[
EP
[ Zt
Zt∧σ1

(Wt∧τn −Wσ1)1{s∧τn<σ1≤t∧τn}|Gs∨σ1
]
|Gs
]

=
Zs
Zσ1∧s

(Ws∧τn −Wσ1)1{s∧τn≥σ1}

+ EP
[
1{s∧τn<σ1≤t∧τn}

1

Zσ1
(EP [ZtWt∧τn|Gs∨σ1 ]

− EP [Wσ1Zt|Gs∨σ1 ])|Gs
]

=
Zs
Zσ1∧s

W
(2)
s∧τn + EP

[
1{s∧τn<σ1≤t∧τn}

1

Zσ1
(Zt∧(σ1∨s)W(t∧τn)∧(σ1∨s)

−Wσ1Zt∧(σ1∨s))|Gs
]

=
Zs
Zσ1∧s

W
(2)
s∧τn + EP

[
1{s∧τn<σ1≤t∧τn}

Zt∧(σ1∨s)

Zσ1
(Wt∧τn∧σ1 −Wσ1)|Gs

]
=

Zs
Zσ1∧s

W
(2)
s∧τn .

These computations are a consequence of the definition of W (2), see 4.5.1, of
the stopping times’ measurability properties, as well as of Doob’s optional
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stopping time theorem. Hence ( 1
Zσ1∧t

ZtW
(2)
t )t∈[0,T ] is a P -local martingale.

Thus we can define
dQ2

dP
|Gt :=

Zt
Zσ1∧t

, t ∈ [0, T ],

and by Corollary 4.5.5 it follows that Q is the pasting of Q1 and Q2 in σ1.

Theorem 4.5.6 shows how the selection as pricing measure of a martingale
measure belonging to MNUI(W ) on a stochastic time interval leads to the
formation of a bubble in the sense of Definition 4.3.3. This is made clear by
the fact that the pricing measure corresponding to the time interval [0, T ],
and which is obtained through pasting, preserves the strict local martingale
property of the wealth process W . Reciprocally, one can decompose such a
measure into two pricing measures corresponding to smaller time intervals.

Remark 4.5.7. Note however that this model can be extended to include suc-
cesive changes in the dynamics of the market wealth process W . Let (σn)n∈N
be a sequence of stopping times marking the moment when the process W
is influenced by diverse microeconomic factors (risk-aversion, liquidity etc.).
Then one can consider successive measure pastings in order to construct a
measure Q belonging toMloc(W ) on the whole interval [0, T ].
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Appendix A

Strict local martingales

This section is intended to provide the reader an introduction to strict local
martingales and a (very) short list of references to the mathematical literature
on this topic. The question whether a local martingale process is a true
martingale or a strict local martingale has generated growing interest for
stochastic analysis and also mathematical finance, especially due to their
importance in the modelling of financial bubbles.

A strict local martingale is a local martingale which is not a martingale.
One of the most known examples of strict local martingales is the inverse
3-dimensional Bessel process.

Example A.0.8. Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space and
(Wt)t≥0 is a 3-dimensional Brownian motion starting in x0 6= 0, we define
the process

Xt = ‖Wt‖−1, t ≥ 0.

One can show that (Xt)t≥0 a local martingale with the corresponding localizing
sequence τn = inf{t ≥ 0; ‖Wt‖ ≤ 1

n
}. Moreover, we have that

EP [X0] =
1

‖x0‖

while limt→∞ EP [Xt] = 0. Hence X cannot be a martingale, since it does
not have constant expectation. For a detailed proof we refer to Chung and
Williams [15].

We now provide an easy intuitive example of strict local martingale, taken
from Kazamaki [43]. For the sake of completeness, we also present the cor-
responding proof.

Lemma A.0.9. [43] Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space and
(Bt)t≥0 be a 1-dimensional Brownian motion with B0 = 0. We define the
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stopping time τ = inf{t ≥ 0;Bt ≤ t− 1}. The process (Lt)t≥0 given by

Lt = E (αBτ )t , t ≥ 0

is a strict P -local martingale, for any α > 1.

Proof. It follows from the continuity of B that

E (Bτ )∞ = exp(
τ

2
− 1),

since τ <∞. Therefore EP [exp( τ
2
)] ≤ e, which implies by Novikov’s criterion

that EP [E (Bτ )] = 1 and in particular EP [exp( τ
2
)] = e. We have that

EP [L∞] = EP [E (αBτ )∞] = EP [exp(ατ − α− 1

2
α2τ)]

≤ e−αEP [exp(
τ

2
)] = e−α+1 < 1.

Therefore L is a strict local martingale.

We conclude this section by presenting the reader a list of recent results
concerning strict local martingales.

Stochastic exponentials of continuous local martingales, often used as
density processes for absolutely continuous measure changes, have been ex-
tensively studied and several criterias for determining whether a process is a
strict local martingale or a true martingale have been developed, see Carr et
al.[12], Mijatovic and Urusov [45].

A more general approach (which doesn’t require the continuity property
of the process) for the study of right-continuous positive local martingales in-
volves the use of the Föllmer measure [24]. For each positive right-continuous
local martingale X one can associate a measure PX such that

EP [Xt] = PX(τX > t),

where τX = limn→∞(inf{t ≥ 0;Xt > n} ∧ n). The interested reader may
consult Jarrow and Larsson [35], Carr et al.[13], Kardaras et al.[42] for a
series of interesting results concerning this method. For an alternative way
of constructing strict local martingales with jumps and other examples, see
Protter [53].
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