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For we know in part, and we prophesy in part. 

But when that which is perfect is come,  

then that which is in part shall be done away. 

When I was a child, I spake as a child, I understood as a child, I thought as a child: 

but when I became a man, I put away childish things. 

For now we see through a glass, darkly; but then face to face: 

now I know in part; but then shall I know even as also I am known. 

 

 

I Corinthians 13:9–12 
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Summary 

Protein-DNA interaction is central to the understanding of transcriptional 

regulation. At present, chromatin immunoprecipitation coupled to parallel 

sequencing (ChIP-seq) is a widely used and scalable technique to identify target 

DNA sequences of transcription factors of interest. Stable isotope labeling of 

amino acid in cell culture (SILAC) has been used with protein affinity 

purification and high-resolution mass spectrometry (AP-MS) to give a 

complementary perspective of protein interactions at specific DNA sequences. 

However, large-scale SILAC AP-MS screens for protein-DNA interactions and 

their quantitative analysis were limited by issues such as cross-batch 

comparability and variation within the SILAC duplicates. 

The work in this thesis introduced several improvements in the workflow of 

SILAC AP-MS for interactions of proteins and long (> 200 bp) DNA sequences. 

Specifically, we implemented high-throughput bait generation based on parallel 

cloning. In addition, we devised a computational processing procedure capable of 

de-noising SILAC AP-MS data by automatically identifying and removing batch-

wise systematic errors. These treatments relieve the bottlenecks in scalable 

DNA SILAC AP-MS and allow for high-precision quantitative comparisons 

across experiments as well as experiment batches.  

We applied scalable DNA SILAC AP-MS to study protein interactions to highly 

conserved non-coding elements. Known to possess tightly spatiotemporal-

controlled transcriptional regulatory activity, these elements are thought to 

serve important biological functions. Their origin of conservation is a topic of 

great interest; however, experimental data are still needed to test the existing 

hypotheses. We produced an interactome for 190 ultraconserved elements 

(UCEs) – the most extremely conserved subset of the highly conserved non-

coding elements – using the scalable DNA SILAC AP-MS approach we 

developed. The interaction profile supports a “multiple binding constraints” 

hypothesis, wherein overlapping functional transcription factor binding sites 

give rise to higher evolutionary pressure that keeps each nucleotide conserved. 

We also generated a scanning differential interactome of an ultraconserved 
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enhancer at five nucleotide-resolution, where we observed the consequences of 

mutation on the changes in protein interactions.  

We cross-validated our SILAC AP-MS interactome with existing ChIP-seq data 

for transcription factor and chromatin signatures. We found that the 

interactions of proteins with our DNA affinity baits, where initial epigenetic 

priming was absent, nevertheless reflected the cellular epigenetic modifications 

at the corresponding genomic locus. This analysis, carried out over hundreds of 

DNA sequence-genomic locus pairs, strongly demonstrated the contribution of 

genetic information in establishing epigenetic states of UCEs.  

In summary, we have used scalable DNA SILAC AP-MS enabled by 

improvements developed by this work, to produce a functionally cross-validated 

UCE interactome and shed light on the question of the origin of UCE 

conservation. 
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 Introduction 

DNA, RNA and protein are complex and extremely diverse biopolymers that 

together constitute the molecular building blocks of the cell. The flow of 

information between these polymers became clear as early as 1958, when 

Francis Crick, co-discoverer of DNA structure, coined the phrase “Central 

Dogma of molecular biology” which sums up as “DNA makes RNA makes 

protein”. Protein performs myriad structural, metabolic and regulatory functions 

inside the cell, whereas DNA is the inheritable genetic material, carrying the 

information required to produce protein via RNA intermediates. 

The steps of gene expressions corresponding to the central dogma have been 

described and their general mechanisms studied in great detail. In eukaryotic 

cells, the DNA encoding a protein gene is preceded by a promoter sequence 

which marks the transcription initiation site. An RNA polymerase complex 

binds to the promoter and synthesizes pre-messenger RNA (pre-mRNA) based 

on the DNA template. During and after transcription, the pre-mRNA is modified 

at both ends. The 5’ end receives a methylated guanine “cap”, and a stretch of 

around 200 adenines is added to the 3’ end, forming the “poly(A)” tail. The pre-

mRNA containing both introns and exons is spliced to the smaller mRNA, where 

the introns are removed. The mRNA is exported from the nucleus and may be 

specifically targeted to subcellular locations (or even exported across cells), and 

is eventually translated by the ribosome. 

Gene regulation is the complex and dynamic process which controls production 

of proteins at the appropriate place and time, and may be divided temporally 

into transcriptional, post-transcriptional, and post-translational regulation. 

Conceptually, for regulation to be specific to cellular conditions while ensuring 

stability, a mechanism that provides both orthogonality and redundancy must 

be established. Both are achieved by specific physical interactions between the 

regulating molecule and their target DNA or RNA sequence motifs that are 

directly coupled to the synthesis or localization process (“trans” and “cis” 

elements, respectively). Such cis regulatory elements include transcription 

factor binding sites (TFBS) and mRNA localization motifs. Proteins fulfill the 

function of trans entities in a vast majority of processes, although there is also 
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growing evidence for RNA fulfilling this role. This thesis develops and uses 

proteomic technology to elucidate protein-DNA interactions at transcriptional 

regulatory elements that have been revealed through comparative genomics. 
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 Protein-DNA interactions in transcription regulation 1.1

 General interactions in RNA Pol-II mediated 

transcription 

The RNA polymerase II complex is responsible for transcription of mRNA in 

eukaryotic cells. RNA Pol II-mediated transcription is initiated from RNA Pol II-

specific promoters. These promoter sequences are diverse but share common 

characteristics of the “basal DNA elements”, namely: the initiator sequence 

Y2CAY5 (the A nucleotide of which becomes the first base of the mRNA), and the 

so-called “TATA box” element TATAAW3 flanked by a GC-rich sequence 

approximately 25 bp upstream of the initiator sequence. Promoters without the 

TATA box tend to contain a “downstream promoter element” AGAC, located 

approximately 30 bp from the initiation site. 

The RNA Pol II complex consists of several general transcription factors TFII(X), 

which are altogether required for promoter-targeted transcription initiation. 

First, TFIID subunits, consisting of the TATA-binding proteins (TBP) and TBP-

associated factors (TAFs), are required to direct the complex to either the TATA 

box or the downstream promoter element. The TBP directly complexes with the 

minor groove of the TATA box, introducing a near-perpendicular bend on the 

DNA towards the major groove, which in turn brings the transcription factors 

and RNA Pol II into closer proximity. Then, TFIIA, TFIIB, and TFIIF are 

recruited to the promoter in the order specified. Subsequent binding of TFIIE 

and the ATP-dependent DNA-helicase TFIIH then causes the promoter DNA 

duplex to melt, allowing the coding strand to be used as template for 

transcription. In summary, TBP is the factor that binds directly to the promoter 

DNA in a sequence-specific manner; further protein-protein interactions 

between the general transcription factors and RNA Pol II then contribute to the 

specific localization of the initiation complex. 
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 Specific protein-DNA interactions in transcription 

regulation 

Although the basal promoter elements are critical in precise determination of 

the initiation site, they are themselves insufficient for high level transcription in 

vivo. A classical scanning mutagenesis study of the β-globin promoter 

demonstrated that physiological levels of transcription in vivo require 

interactions at other, more distal elements in addition to the basal elements [1]. 

Indeed, most promoter sequences possess multiple copies of such non-basal 

elements that are targeted specifically by transcription factors known as 

“activators”. Several families of activators exist, many of which having partially 

redundant DNA sequence specificities. Non-basal elements are also targeted by 

“repressor” proteins, whose binding impedes transcription initiation directly or 

indirectly. Depending on cellular context, many transcription factors can act as 

both repressors and activators, and their nuclear localization and DNA binding 

capability can be modulated by post-translational modification. As a result, the 

transcriptional output of any given promoter depends on the relative expression 

levels of relevant transcription factors and their context-dependent mode of 

action with respect to the promoter. The multiple copies of non-basal elements 

targeting the same protein can result in a degree of redundancy, where no single 

non-basal element is critical to maintain the promoter activity.  

In addition to interactions at the promoter, sequences known as enhancers also 

interact with transcriptional factors through conventional TFBSs. By offsetting 

the local concentration of interacting transcription factors, enhancers are able to 

positively or negatively influence transcription initiation of the promoters in 

physical proximity. Because of higher-order structural organization in the 

nucleus where different parts of the chromosome are brought together, 

enhancers can act over great distances along the genomic coordinate. Indeed, 

some enhancers are known to act on promoters several hundred kilobases away. 

The way the information on an enhancer is interpreted can be described in the 

“enhanceosome” model and the “billboard” model. In the enhanceosome model, 

transcription factors bind co-operatively on the DNA through protein-protein 

interactions. This requires that the transcription factor binding sites are present 
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with strict relative positioning and orientation. The interferon-β locus is the 

hallmark example of an enhanceosome, where an array of TFBSs are placed 

next to each other, reflecting the exact topology of protein-protein interactions 

[2] . The billboard model, in contrast, proposes that the TFBSs are independently 

interpreted by the transcription factors, possibly in a multi-step process. The 

billboard model is supported, for instance, by the observation that a single 

enhancer can act both as a repressor and an activator in the same nuclear 

environment [3]. A continuum of mechanisms with characteristics of both the 

billboard model and the enhanceosome model may be attributed to different 

enhancers [4]. 

 

 Biochemistry of specific protein-DNA interaction 

Transcription factor binding sites are typically 4-20 nucleotides in length and 

can be of varying degree of specificity. The first proposed mechanism accounting 

for sequence specificity in protein-DNA interaction was the “direct readout” 

model: Base-specific hydrogen bonds and non-polar interactions would be formed 

between the major groove of the DNA and a series of amino acid side chains that 

provide the complementary chemical groups for interaction. Although consistent 

with over a thousand protein-DNA complex structures, there is no one-to-one 

correspondence between the DNA and a “complementary” protein sequence. 

Further structures have revealed that sequence specificity is generally achieved 

through combination of base-specific interaction in both the major and the minor 

grooves, as well as shape-recognition mechanisms that differentiate between 

size of DNA grooves or the form of the duplex [5].  

The different combinations of mechanisms are reflected by the various 

structures of DNA binding domains that exist, and to some extent, the 

corresponding family of transcription factor binding sites. The TRANSFAC 

database, where binding motifs for over a thousand transcription factors are 

deposited, classifies their motifs as follows: (1) basic domains, (2) zinc-

coordinating domains, (3) helix-turn-helix domains, and (4) beta-scaffold 

domains [6]. Closely related domains often have sequence specificity with 

similar characteristics, e.g. the homeodomains bind AT-rich sequences, whereas 
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the Kruppel like factors contain zinc finger domains that recognize GC-rich 

sequences.   

Transcription factors often complex to DNA cooperatively [7-9]. In the special 

case of homo-/hetero-dimers, the binding sites often consist of two palindromic or 

near-palindromic “half-sites” [10]. These half-sites may be separated by a few 

non-specific nucleotides, as is the case with the family of STAT transcription 

factors [11]. Physical interaction between transcription factors may also result 

in modulation of sequence specificity. For example, the Hox family of 

transcription factors bind to DNA through their highly-conserved 

homeodomains, which can achieve exquisite specificities upon dimerization [12].  

 

 Representation of transcription factor binding motifs 

Comparison of promoters and enhancers revealed that TFBSs generally vary in 

sequence, even for a single transcription factor. The most concise representation 

of a set of TFBSs is the “consensus sequence”, where the known sites are aligned 

and the most common nucleotide/nucleotide combination is given. For example 

TTCYWNDGAA is a consensus binding sequence for the transcription factor Stat6. 

While this representation is simple, it cannot quantitatively “score” the fit of a 

sequence to the motif. A more popular representation of a TFBS is therefore the 

position weight matrix (PWM), which summarizes the frequency or probability 

of each position in the TFBS being a specific nucleotide. The PWM allows 

calculation of the log-likelihood – the sum of log-probability across all positions 

given the specific sequence – which can be treated as a simple score for how well 

a sequence fits the ensemble of known TFBSs for a given transcription factor. 

Another advantage of the PWM is that it allows for the calculation of the 

“information content”, which is related to the degree of degeneracy of the set of 

TFBSs. As an example, Figure 1 illustrates the PWM of Stat6 as curated in the 

JASPAR database [13]. 

Because log-likelihoods are calculated from the product of probabilities for each 

position, this interpretation of the PWM assumes independence of nucleotide 

identity between each individual position of the TFBS. This assumption has 
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been shown to be invalid for some transcription factors, and representations that 

take into account base dependency can perform better in assessing a fit of a 

sequence as a TFBS. Examples of such representations include those employing 

Hidden Markov Models [14] or simply displaying all non-degenerate motifs [15]. 

Although more accurate, these models are not easy to visualize and summarize, 

and the PWM representation remains a popular choice owing to its simplicity 

and relative usefulness. 

 

 Epigenetic mechanisms 

DNA in vivo is packaged into nucleosomes, which themselves are part of higher-

order structural organization of the chromatin. The nucleosome contains a “core 

particle” that consists of two copies each of histones H2A, H2B, H3 and H4 [16]. 

A DNA duplex forms a 146 bp left-handed superhelix around the octamer, where 

basic, amide and hydroxyl groups from the histone proteins form a network of 

hydrogen bonds with the phosphate backbone of the DNA. Although much of the 

histone-DNA affinity is derived from non-base specific contacts, nucleosomes do 

nevertheless possess weak sequence specificity [17]. Although the exact 

sequence preference of the nucleosome is complex, the most prominent predictor 

of intrinsic nucleosome affinity of a DNA sequence is its GC content [18]. A 

nucleosome positioned at a promoter can impede transcription, for example, by 

burying the TATA box inside the DNA-histone interface and preventing its 

access by the transcriptional machinery. Nucleotide-resolution re-positioning of 

a nucleosome around regulatory elements can significantly modulate 
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transcriptional regulation, through mechanisms that often involve a complex 

interplay between nucleosomes and other transcription factors [19, 20]. In 

addition to the core particle, a “linker” subunit histone H1 may also be found on 

nucleosomes. The presence of histone H1 on nucleosomes results in chromatin 

compaction [21], and relative proportions of histone H1 are understood to 

account at least partially for the higher structural organization of the chromatin 

[22].  

A substantial proportion of amino acids in the histone proteins are in the 

relatively unstructured “tail” domains [23], and are subjected to extensive post-

translational modifications including acetylation, phosphorylation, methylation, 

ubiquitinylation, sumoylation and biotinylation [24-29]. These modifications can 

enhance or repress transcriptional activation through different mechanisms. For 

instance, lysine acetylation results in neutralization of positive charges that 

interact with the DNA phosphate backbone, effectively loosening the 

electrostatic histone-DNA contact. Modified histone residues generally serve as 

docking sites for modification-specific protein “readers”, which in turn are 

coupled to or recruit chromatin remodeling complexes. This results in 

compaction or loosening of the chromatin structure, thus modulating 

transcription activity via chromatin accessibility, or, alternatively, recruitment 

of proteins that catalyze further histone modification (“writers”) [30, 31]. In this 

way, readers and writers combinatorially influence the chromatin environment 

[32]. 

Other aspects of epigenetic controls include: different turnover rates of histone 

modifications [33]; spread of modifications and chromatin states into 

neighboring regions and restriction of this process by insulator sequences [34, 

35]; DNA modifications which interact with genetic mechanisms [36] and 

inheritance of chromatin modification [37]. Furthermore, chromatin itself is 

organized into chromosome territories where distal parts of the genome are 

brought into proximity: a mechanism that is exploited by distal enhancers [38, 

39].  

Importantly, although protein-protein interactions appear to dominate in the 

epigenetic processes that directly influence transcriptional activity, it has been 
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recently shown that in vivo epigenetic states may be recapitulated by in vitro 

reconstitution of native nuclear lysate to naked DNA  [40]. This study, based on 

flow-cytometric measurements of histone modifications on a regulatory DNA 

sequence, emphasizes the primordial contribution of underlying DNA sequence 

to epigenetic mechanisms. 
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 Highly conserved non-coding DNA sequences 1.2

As of 2013, the number of completely sequenced eukaryotic genomes was 

approaching 200 [41]. This increasing wealth of complete genome sequences has 

enabled extensive comparison between the genome of different species, revealing 

DNA elements that are conserved between them. In closely-related species, DNA 

conservation can be attributed to the small amount of time since divergence 

between their ancestors. Over a larger evolutionary distance, DNA sequence 

conservation is generally accepted to implicate a biological function [42]. A 

conserved DNA element may encode a protein or RNA gene, or it may be 

designated “non-coding”, if no evidence of a corresponding gene product has been 

detected. Conserved non-coding DNA sequences are thus particularly interesting 

in the context of gene regulation, as they may be potential regulatory elements.  

Many classes of conserved non-coding DNA elements have been tabulated. A 

family of human sequences known as ultraconserved elements (UCEs) was first 

described in 2004, under very stringent conservation criteria of 100% mouse-

human sequence identity over 200 bp [43]. Other classes of lesser but still 

statistically significantly conserved elements include ultraconserved regions 

(95% identity, ≥ 50 bp) [44] and long conserved noncoding elements (significant 

conservation ≥ 500 bp) [45]. All are known under the umbrella term of highly-

conserved non-coding elements (HNCEs). Sets of HNCEs that were identified in 

contexts of different reference species and varying evolutionary depth possess 

common characteristics despite their sequence diversity. First, HNCEs are 

found in proximity to similar sets of genes in the genome: namely, those that are 

related to development [46, 47]. Interestingly, this localization preference holds 

true across clades even though HNCEs particular to the clade bear no sequence 

resemblance to each other [48]. Second, HNCE sequences are generally 

significantly more AT-rich than the rest of the genome, and are often flanked by 

GC-rich sequences [49]. Closer bioinformatic analysis of HNCEs has consistently 

revealed large density of TFBSs and higher frequency of overlapping TFBSs.  

These sequence and localization attributes of HNCEs as well as experimental 

data suggest that they may be regulatory elements. Chromatin modification 
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datasets now reveal that genes close to HNCEs (even though not necessarily the 

HNCEs themselves) are particularly enriched in both H3K27Me3 and H3K4Me3 

marks – modifications that are related to heterochromatin formation and 

transcription activation respectively that can be found as co-existing “bivalent” 

marks [50]. HNCEs can function as an enhancer driving reporter genes in 

mouse and zebrafish out of their native genomic context. The resulting reporter 

expression can be extremely localized and temporally restricted during 

embryonic development [51]. This directly demonstrates that HNCEs are 

capable of regulating transcription. These observations, combined with the 

peculiar localization around developmental genes and the significant increase in 

conservation of enhancers active during gastrulation, associate HNCEs with the 

regulation of genes involved in body plan development. Experimental data 

supporting this hypothesis, however, are still needed [52]. 

A central question surrounding HNCEs, particularly UCEs, is the origin of their 

extreme conservation. The regulatory activity of HNCEs by itself is not 

sufficient explanation, since non-conserved enhancers also exist. The overlapped 

TFBSs on HNCEs may contribute to multiple constraints against loss-of-

function mutation. As an enhancer may be used multiple times and their logic 

re-interpreted in a context-dependent manner, these constraints need not 

manifest themselves simultaneously.  However, it was argued that degeneracy 

of TFBSs would require an extremely dense overlapping of functional sites that 

had yet to be observed. Alternatively (although somewhat less parsimoniously), 

these elements may have additional functions to that of an enhancer. Functions 

such as splicing control, nonsense-mediated decay regulation, homologous 

recombination, and structural maintenance of chromosomes have been proposed 

[52]. Even more confounding is the observation that separate deletion of four 

UCEs from mice revealed no obvious deleterious consequence to the animals or 

their progeny [53]. Overall, the challenge of explaining HNCE conservation and 

function remains open. 
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 Methods for study of protein-DNA interactions 1.3

Biological questions involving transcription regulation often concern any of the 

following three entities: the cis regulatory DNA elements, the trans interacting 

proteins, and the target genes being affected. These can be further 

parameterized by various factors including cell type, signaling state, local and 

global changes to chromatin structures and higher-order chromosomal 

organization. 

Classically, identification of cis regulatory elements and trans factors relied on 

genetic and biochemical techniques, many of which were laborious and designed 

to assess interactions given a priori knowledge of the interaction pair. For 

example, electrophoretic mobility shift assay (EMSA) [54] and DNA footprinting 

techniques [55] can assay a DNA sequence for binding to proteins, but does not 

give information on the identity of the protein itself. The past decade saw 

tremendous developments in both genomic and proteomic technologies, enabling 

sequence-based identification and quantification of proteins and DNA in 

complex mixtures. Marriage of classical biochemistry with “-omics” techniques – 

notably, massively parallel DNA sequencing and high-resolution mass 

spectrometry [56] – now enables unbiased discovery of both regulating DNA and 

regulating protein entities.  

 

 Protein-centric methods for DNA interactions 

Sequence specificity of a DNA-binding protein can be determined using the 

protein as the bait to purify a library of DNA, and subsequently analyzing the 

recovered DNA sequences. For example, “systematic evolution of ligands by 

exponential enrichment” (SELEX) purifies DNA molecules with highest affinity 

to the protein out of a pool of random DNA oligonucleotides flanked by invariant 

adaptors [57]. The recovered DNA molecules from the first round of purification 

are amplified and their sequences evolved, e.g. by error-prone PCR. The 

resulting pool is again purified on the protein of interest. After several rounds of 

purification, amplification and evolution, the sequence pool converges to the set 

that defines the sequence specificity of the protein. Traditionally, the sequences 
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of the resulting DNA are determined by cloning and sequencing. Higher 

throughput in sequencing may be obtained by concatenating the adapter-

stripped oligonucleotides prior to cloning [58], or by using next generation 

sequencing [59]. Another method for sequence specificity determination 

hybridizes recombinant transcription factors to a microarray of all possible 

k-mer DNA oligonucleotides (k ≥ 8) [15]. Known as “protein binding microarray”, 

this method provides a simple, high-resolution and quantitative alternative to 

SELEX.   

Because the above approaches assess protein-DNA interactions in absence of the 

epigenetic constraints found in vivo, they are suitable for determination of 

biochemical affinity of a protein with DNA. The standard method for monitoring 

in vivo protein-DNA interaction is chromatin immunoprecipitation (ChIP), 

where interactions at endogenous chromatin are “frozen” by formaldehyde cross-

linking. Chromatin is isolated and sheared by sonication to reduce the size of 

individual DNA fragments to around 200 – 500 bp. The sheared chromatin is 

then immunoprecipitated with an antibody raised against the protein of 

interest. DNA is liberated from the recovered chromatin fraction and amplified 

by PCR. Specific interaction between the factor and a given genomic locus is 

assessed by quantitative real time PCR with primers targeting the locus of 

interest (ChIP-PCR). Genome-wide mapping of bound chromatin is possible with 

next generation sequencing. The latter combination, termed ChIP-seq, was first 

published independently by at least three groups [60-62] and is now the protein-

centric method of choice, as it offers a truly global interaction profile. 

A variant on ChIP-seq termed “ChIP-exo” uses 5’-to-3’ exonuclease digestion to 

degrade DNA strands up to the position where the strand is in contact with the 

protein (and hence protected from digestion). The sequencing reads from the 

resulting, undigested products can be used to map the position of the 

transcription factor up to single nucleotide accuracy, a resolution which is far 

greater than conventional ChIP-seq [63]. 
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 DNA-centric methods for protein interactions 

ChIP-based methods are now routinely used to identify of DNA targets of a 

transcription factor of interest. However, development of equivalent technology 

for the reverse question – identification of protein binders of a given DNA 

sequence – is more challenging, largely owing to the lack of equivalent 

biochemistry for amplification and sequencing of protein molecules. 

Ab initio identification of protein interactors of a DNA sequence can be done in 

high-throughput using the yeast one hybrid method. This approach is a variant 

of the yeast two-hybrid method, a classical genetic screen that re-constitutes a 

transcriptional activator at a reporter gene by interaction of two proteins of 

interest. In the yeast one-hybrid method, the bait DNA sequence is placed in 

front of the promoter driving a selection marker. The reporter strain is used to 

screen a cDNA expression library of candidate DNA-binding proteins fused to a 

strong transcriptional activator e.g. Gal4. If the prey-activator fusion binds to 

the DNA bait, a transcriptional activator complex is recruited to the promoter of 

the reporter construct and the selection gene is expressed. Appropriate selection 

conditions then yield colonies, whose transformed cDNA clones encode proteins 

that interact with the bait sequence [64]. Although high-throughput and 

unbiased in principle, the method limits the experimental conditions to binding 

of out-of-context DNA fragment to a fusion protein that is expressed in isolation. 

Thus, the interaction is assessed without epigenetic constraints and protein-

protein interaction contexts are missing.  

More recent developments that promise full recapitulation of cellular conditions 

capture and analyze the native chromatin directly, and may be considered truely 

complementary to ChIP. These methods include proteomics of isolated 

chromatin segments (PICh) and insertional chromatin immunoprecipitation (i-

ChIP) [65, 66]; both employ mass-spectrometric identification of interacting 

proteins. The former method uses a complementary DNA oligonucleotide to 

hybridize and capture the target chromatin fraction, and the latter introduces 

into the genome a binding site for an exogenous transcription factor as 

purification handle. A current limitation of DNA-centric chromatin capture is 

the low signal to noise ratio, owing to the lack of a protein amplification method. 
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PICh thus requires a staggering amount of material (one billion cells per 

purification) and was initially demonstrated on telomeric sequences which are 

present in numerous copies per cell (in contrast with two copies per cell for non-

repetitive DNA elements). Use of an orthogonal binding site in iChIP allows for 

protein-based tandem purification, improving the signal to noise ratio and thus 

reducing the material needed (100 million cells per purification). iChIP is 

currently limited by the laborious genome editing step which is required for 

every target sequence and every variant thereof, nevertheless a limitation which 

will hopefully be circumvented in future by more robust genome editing 

technologies [67, 68]. 

Biochemical affinity purification of proteins coupled to mass-spectrometric 

analysis (AP-MS) is an attractive approach, as it removes many of the practical 

limitations mentioned above. In this method, a chemically or enzymatically 

synthesized DNA bait is conjugated to an affinity handle, allowing 

immobilization on agarose or sepharose beads. Nuclear lysate is incubated with 

the DNA-coupled beads, washed, and the bound proteins recovered by specific 

elution. Under appropriate salt and detergent concentrations and given a 

suitable nuclear lysate extraction procedure, protein-protein interactions are 

preserved, enabling identification of both direct DNA binders and proteins that 

are part of DNA binding complexes. Although use of synthetic DNA has raised 

questions regarding the missing chromatin context in the experimental 

conditions, recent evidence suggests that synthetic DNA carrying a genomic 

regulatory sequence is capable of recruiting histones and mimicking local 

chromatin environment as found in vivo [40]. Use of synthetic DNA in AP-MS 

results in amplification of interaction signals, as the copy number of DNA used 

is up to 1,000-fold that of endogenous DNA in a conventional experimental scale. 

Consequently, only 1% to 10% of the material amount is required, compared to 

iChIP and PiCH. 

AP-MS is the staple method of this study and will therefore be elaborated in 

greater depth with the principles of MS-based proteomics in the following 

section. 
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 Mass spectrometry-based quantitative interaction 1.4

proteomics  

A portmanteau of “proteins” and “genomics”, proteomics is the large scale study 

of proteins. A proteomic experiment identifies and quantifies proteins from 

complex biological samples, often involving some means of complexity reduction 

prior to analysis. The first implementation of proteomics was in the pre-human 

genome era, where samples were fractionated using two-dimensional 

electrophoresis and protein identities inferred based on the results of amino acid 

analysis [69], a technology with severe shortcomings that was no match for 

powerful genomics technologies. Through improved technology, increased 

computational power and the availability of complete genome sequences, 

sophisticated means of protein identification and quantification have developed 

and mass spectrometry (MS) has become the method of choice for proteomic 

study. 

  

 MS-based proteomic workflow 

MS-based proteomics may be done either “top-down” or “bottom-up”. The former 

approach submits intact proteins or protein complexes to the mass spectrometer, 

where they can be iteratively analyzed and fragmented in “tandem mass 

spectrometry” (see 1.4.3 below). In the more widely implemented bottom-up 

approach, protein mixtures are pre-processed into peptides which are then 

analyzed in the mass spectrometer; once all the peptide sequences are identified, 

proteins are assembled from them, based on a reference sequence database (see 

1.4.4 below). This thesis exclusively employs bottom-up analysis and this 

workflow will be discussed in greater depth. 

A typical bottom-up proteomic experiment starts with biochemical isolation of 

proteins from biological material, such as cells grown in culture or isolated from 

an organism. Optional enrichment steps may be performed depending on the 

biological question: For instance, a subcellular fraction may be isolated if only 

proteins belonging to certain organelles are of interest; or proteins may be 

affinity purified to study interactions with a specific bait.  
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Peptides are then generated by treating the proteins with a combination of 

proteases. Trypsin and/or lysyl-endopeptidase (LysC), which cleave C-terminally 

to arginine and/or lysine, are routinely used. Peptides may be further enriched 

for interesting post-translational modifications such as phosphorylation. The 

final sample is a complex mixture of peptides, which is separated by high-

performance liquid chromatography (HPLC) coupled online to a mass 

spectrometer via an electrospray source (see 1.4.2 below). The peptides eluting 

from the HPLC column are ionized prior to entering the mass spectrometer. 

These ions are then mass analyzed, fragmented and their fragment ions 

analyzed again. The resulting data are processed into peptide sequences and 

protein identities are inferred using a sequence database. 

Proteome coverage in LC-MS studies is constrained by some technical 

limitations. First, mass spectrometers have a dynamic range that is narrower 

than the copy number range of proteins being expressed in biological systems. 

Second, a finite number of fragment mass spectra can be acquired while 

peptides are being eluted in real time from the HPLC. Hence, the sensitivity, 

acquisition speed and dynamic range of the mass spectrometer directly influence 

the “depth” to which a complex protein sample can be covered [70]. This depth 

can be thought of as the proportion of lowest-abundance proteins that remain 

undetected. Previously, whole proteome analyses required extensive sample 

fractionation – such as by gel electrophoresis – with each fraction being 

analyzed separately to reduce the sample complexity, and thus deepen the 

proteome coverage. However, recent advances in instrumentation and 

computational algorithms have made it possible to obtain a comparably deep 

proteome without the need of fractionation [71-73]. 

 

 Principles and implementations of mass spectrometry 

A mass spectrometer is in essence a mass measuring instrument, consisting of 

three parts: the ionizer, the analyzer and the detector. Relying on ionization of 

the sample molecules, the analyzer performs mass- and charge-differentiating 

perturbations on the ions, and the detector translates a measurement of 

incidental ions or ion-generated current into mass-over-charge (m/z) ratios. 
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Several mass-spectrometric technologies have been developed over the past 

decades with differing ionization, analysis and detection approaches. 

The most popular ionization method used for LC-MS is electrospray ionization 

(ESI). Liquid containing peptides eluting from the HPLC column tip is subjected 

to a voltage and dispersed into fine aerosol called electrospray. As the solvent 

evaporates, the charge density of the droplets that carry the peptides increases. 

Repulsion of like charges within the droplet causes recursive droplet fission, 

eventually exposing the peptides, which accept the excess charges, to the gas 

phase. Unlike many other ionization methods, electrospray is very gentle, 

capable of generating multiply charged ions, and therefore is particularly 

suitable for analyzing large biomolecules. Electrospray ionization was first used 

in mass spectrometry almost two decades ago and was recognized with a share 

of the chemistry Nobel Prize in 2002 [74].  

Mass analyzers and detectors may be placed into different groups. A first group 

resolves ions by recording their flight to the detector, a principle termed Time-of-

flight (TOF). The TOF analyzer relates the charge-dependent potential energy of 

the ions in the electric field with the mass-dependent kinetic energy, which can 

be measured by the time (hence velocity) the ions take to reach the detector. 

Quadrupole mass analyzers consist of four parallel hyperbolic electrode rods. 

Radio-frequency voltages offset by a direct current are applied between each 

pair of opposing rods, creating an electric field which guides ions of certain m/z 

in oscillating trajectories along the electrodes, while causing the other ions to 

collide into them. By manipulating the voltage ratios between the two electrode 

pairs over time, ions can be swiftly scanned over a desired range of m/z values. 

For each m/z value the detector the records the signal of the incidenting ion. 

Another group of mass analyzers induces all ions to oscillate in a stable path 

under the influence of an applied electromagnetic field, wherein the oscillation 

frequency is directly dependent on m/z. The current generated by the oscillating 

ions is measured and decomposed into their separate m/z contribution by 

Fourier Transformation (FT). Thus, all ions are detected simultaneously. This 

principle is employed in the Fourier-transform ion cyclotron resonance (FT-ICR) 

analyzer, which traps ions in a magnetic field by Lorentz force [75]. The 
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Orbitrap analyzer uses the quadro-logarithmic electropotential, rather than a 

magnetic field, to implement the same concept. The Orbitrap consists of a 

barrel-shaped electrode with an inner, co-axial electrode. The ions rotate around 

the inner electrode as well as oscillating axially, and the square root of the latter 

frequency is inversely proportional to m/z [76]. Compared to the other 

instruments, this group of mass analyzers has a greater m/z resolution that 

increases with detection time, and is, for instance, particularly suitable for 

inference of molecular composition by their accurate mass. 

 

 Tandem mass spectrometry 

Although the m/z deviation obtainable with instruments such as the Orbitrap 

analyzer is as low as few parts per million, this accurate mass information is 

still insufficient to infer the peptide sequence, because peptides of differing 

sequences but identical amino acid composition have identical masses. Further 

discriminating evidence can be obtained by isolating peptide ions at their m/z, 

activating them to break covalent bonds. The resulting fragment ions are then 

re-analyzed in a process called “MS-MS” or “MS2” (in contrast with “MS1” where 

the precursor ion is detected). Because fragmentation can occur at different 

covalent bonds, the resulting fragment ions generally include those generated 

from breaking of the peptide backbone at various positions, especially the 

peptide bonds (Figure 2). The pattern of m/z values can thus be used to re-

assemble (parts of) the original peptide sequence, which in turn is validated for 

consistency with the accurate mass obtained in MS1 [77, 78]. 
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As mentioned above, the online-coupled chromatography that runs over a finite 

time imposes a practical limit on the number of MS2 scans that can be made, 

frequently leaving ‘sequenceable’ precursors unfragmented. This raises the 

question of how to prioritize ions for MS2 sequencing. When the identities of the 

peptides of interest are known, their corresponding m/z can be specifically 

monitored in MS1 and submitted for MS2 sequencing. Multiple reaction 

monitoring (MRM) is one of the most widely used implementation of this 

“targeted” approach [79, 80]. More commonly in proteomics, ions are prioritized 

for fragmentation by their signal intensity in the MS1 acquisition. Typically, 

between five and ten most intense ions measured in MS1 are submitted for MS2. 

This “shotgun” approach allows MS-based proteomics to identify peptides 

without a priori knowledge and is the method of choice for hypothesis-

generating studies [81]. 

 

 Peptide and protein identification 

While software packages are available for interpretation of MS spectra, the 

MaxQuant suite is particularly powerful [82]. The implementation of MaxQuant 

used in this thesis is described in this section. 

Mass-spectrometric data consist of MS1 m/z peaks, with many but not all peaks 

having accompanying MS2 fragmentation spectra. “Features” that are likely to 

be peptide ions are derived from individual m/z peaks; subsequently, 

identification of features as peptides is accomplished with reference to a protein 

sequence database. In silico digestion of the protein sequences generates 

theoretical peptides, which serve as candidates for matching MS1 and MS2 

spectra. A peptide identification is declared when both the accurate m/z of the 

MS1 feature and the MS2 fragmentation pattern are consistent with a 

theoretical peptide. A score associated with each ‘spectrum sequence match’ is 

calculated based on the confidence of the contributing spectral evidence. The 

proportion of false identifications occurring by chance may be estimated by 

matching the spectra to a nonsense “decoy” database. A database constructed 

using all entries from the reference database reversed from C- to N-terminus is 

commonly used, because of its identical amino acid composition distribution. 
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Comparison between the decoy scores and the true scores yields a score cutoff 

that is used to filter the identifications at a desired false discovery rate (FDR). 

Although MS1 features that do not have corresponding MS2 spectra do not have 

direct sequencing evidence, MS2-based identifications of the “equivalent” 

features from other LC-MS runs may be transferred to the run being analyzed. 

Features from different runs are assessed for equivalence according to their 

accurate MS1 m/z and elution time. Because of variation in the chromatography 

between runs, the retention times of a given peptide in these runs also differ. 

This can be accounted for by interpolating between the sets of equivalent 

features that are jointly sequenced across experiments. ‘Matching between runs’ 

is especially beneficial in the analysis of complex samples, as it is able to 

increase peptide identification count by as much as 40%. 

Primary interpretation of MS spectra thus results in a list of peptide sequences, 

from which protein identities need to be inferred. Short peptide sequences 

(generally < 7 aa) are discarded because they often occur in unrelated proteins. 

Owing to sequence homology, splice variation, and redundancy in sequence 

databases, a longer peptide sequence can still be part of several protein 

sequences. Because such a sequence may not be unambiguously assignable to 

any one of these proteins, a concept of “protein groups” is introduced. Peptides 

are assigned to groups of proteins that are defined according to the principle of 

parsimony (‘Ockham’s razor): The simplest set of groups that is sufficient to 

explain all the identified peptides is reported. 

 

 Quantitative MS-based proteomics 

Peptides are very diverse in their physical properties such as charge, chain 

length, and hydrophobicity. These properties unequally affect each peptide’s 

digestion and purification yield, behavior in chromatography, and ionization 

efficiency. As a result, signal intensities of different, equimolar peptide ions in 

the mass spectrometer are generally not equal. Thus, different strategies that 

enable quantitative interpretation of MS data have been developed, which may 

be grouped into label-based methods and label-free methods. 
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Label-based quantification 

In label-based methods, two or more samples are multiplexed and subsequently 

quantified relative to each other. A different mass label is incorporated into each 

sample prior to multiplexing. The labels uncouple peptide ion signals originating 

from the different samples into separate m/z peaks. This is achieved by 

introducing a defined mass-shift between the labels, typically owing to 

incorporation of heavy stable isotopes in the labels. Alternatively, the labels can 

make use of chemical groups that yield different masses upon fragmentation.  

Labels are designed so that they are as identical as possible in their 

physicochemical attributes. Thus, differentially labeled peptides of identical 

sequence and modifications co-elute from the chromatography and ionize with 

the same efficiency. The resulting m/z signal intensities are therefore directly 

comparable. In this way, the ratio of intensities corresponds to the ratio of 

peptide abundance between samples. Protein abundance ratios are then 

estimated from the population of corresponding peptide abundance ratios. It 

follows that the precision of label-based protein quantification improves with the 

number of quantified peptides attributed to the protein.  

Labels may be incorporated metabolically before protein extraction, or 

afterwards at protein or peptide levels. In the “isotope-coded affinity tag” 

method (ICAT), cysteine residues on proteins were chemically modified to 

include a differentially labeled tag which also served as an enrichment handle 

[83]. However, ICAT quantification is limited to cysteine-containing peptides 

only; this yields fewer ratio counts, leading to suboptimal quantification 

precision. A method that bypasses this limitation, termed “dimethyl labeling”, 

incorporates an isotopic variant of dimethyl groups onto all free N-termini and 

primary amine side-chains [84].  

Multiplexed quantification in MS1 increases the complexity and thus reduces 

the dynamic range of the MS1 spectra. Transferring the quantification peaks to 

the MS2 spectra, which are much less complex than MS1 spectra, alleviates this 

problem. The concept is used in “isobaric labeling” methods. Here, each label 

contains a mass-discriminable “reporter” group, covalently linked to a 

“balancing group” that adjusts all labels to the same mass. The differentially 
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labeled peptides are indistinguishable in MS1. Fragmentation of these peptides 

yields the different reporter groups in the MS2 spectra, where ratios of reporter 

intensities correspond to ratios of peptide abundance between the samples. 

Commonly used implementations of isobaric labeling include “tandem mass tag” 

(TMT) and “isobaric tags for relative and absolute quantification” (iTRAQ) [85]. 

As mentioned, isobaric labeling enables multiplex quantification without 

increasing the complexity in the MS1 scan. However, the method ties peptide 

quantification to MS2-evidenced identification, and is therefore incompatible 

with quantification by matching. Furthermore, MS1-based quantification can 

make use of the elution profile, which can be constructed from successive MS1 

spectra, to improve quantification precision. To emulate this in MS2-based 

quantification, successive MS2 scans would have to be performed on the same 

precursor m/z, resulting in a trade-off between quantification precision and 

identification depth. 

In contrast to chemical labeling, metabolic labeling methods incorporate labels 

in living cells, allowing samples to be combined even prior to cell lysis. This 

early mixing advantage means that all downstream handling errors are 

minimized by parallelization. Formerly, 15N incorporation was used to label cells 

in vivo, but this method resulted in highly complex spectra because the mass 

shifts between the label counterparts differ wildly between peptides. Stable 

isotope labeling of amino acids in cell culture (SILAC) is now a widely-used 

metabolic labeling method [86]. In SILAC, cells are grown in media containing 

arginine and lysine that have different proportions of 13C and 15N isotopes (Arg0, 

Arg6, Arg10; Lys0, Lys6, Lys8). Proteins are digested with trypsin or LysC to 

ensure that almost all resulting peptides are quantifiable, owing to the labeled 

arginine or lysine at the C-terminus. SILAC has a clear advantage over 15N 

labeling as every SILAC pair has a specific mass-shift, greatly simplifying the 

process of identifying label pairs. Metabolic labeling needs to be performed over 

at least five cell divisions for the labeled proteins to saturate the proteome, and 

is therefore particularly suitable for cells in culture or small animals. 

Incorporation over shorter time may be performed as a “pulse” experiment to 

study proteome dynamics [87]. 
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Intensity ratios derived from label-based methods represent relative abundances 

of peptides between two or more samples. When one sample is a standard of 

known amounts, the ratios can then be used to infer absolute amounts in the 

remaining sample(s). Known as “absolute quantification”, this concept has been 

implemented in a label-based or label-free format (see below) in technologies 

such as AQUA, PrEST, and iBAQ [88-90]. 

 

Label-free quantification 

Label-free methods are computational procedures that report quantitative 

measurements of protein abundances without the use of a mass label. When 

labeling of biological material is not possible or is cumbersome (such as in 

clinical samples), label-free methods thus provide an alternative to the above 

approaches.  

An early and simple label-free quantification algorithm was to use the number 

of MS2 spectra attributed to a given protein as a semi-quantitative measure for 

that protein’s abundance [91]. This “spectral counting” method was improved by 

weighing each spectrum by the probability of it being acquired given the 

peptide’s physicochemical properties [92]. However, by design, spectra-based 

methods trade off quantification resolution with identification confidence, as 

well as being influenced by the chromatographic parameters, which generally 

vary between experiments. A different approach uses the numbers of peptides 

identified to estimate protein abundances. The protein abundance index (PAI) is 

defined for a given protein as the ratio of observed peptide count to the 

theoretically observable peptide count. Its successor – exponentially modified 

PAI (= 10PAI–1) – is directly proportional to the protein abundance [93, 94].  

Quantification based solely on counts of peptides and spectra is discretized by 

nature. Furthermore, these approaches discard valuable information that is 

latent in the ion intensity measurements. More accurate label-free 

quantification method, for instance offered by the MaxQuant suite, takes 

peptide intensity information into account. In MaxQuant, peptide identifications 

are first transferred between runs as far as possible (see 1.4.4 above). For each 



 
Introduction 27 

  

protein, pairwise sample comparison generates a matrix of median peptide 

ratios which derived from jointly identified peptides. These ratios form over-

determined systems of linear equations that are used to back-calculate the 

relative protein quantities between samples. Simply known as “label free 

quantification”, this algorithm was first used to quantify the dendritic cell 

proteomes to a depth of over 6,000 proteins, with superior precision to previous 

label-free quantification methods [95]. 

 

 Quantitative interactomics 

Mass spectrometry has proven to be a highly sensitive technology for protein 

identification. An implication of its power in the study of protein interactions is 

that, when affinity-/immuno-purified proteins are analyzed by mass 

spectrometry, specific interactors are identified together with several hundred 

that bind to the beads used in the purification or that bind non-specifically to 

the bait. Thus, quantitative measures are absolutely essential to identify the 

specific interactors from the remaining proteins. 

Label-free algorithms have been used for quantitative analysis of pulldowns 

with very good precision [96]. However, label-free quantification readouts in 

affinity purification are a combination of specific-enrichment, protein expression 

levels in the lysate, and any contaminants introduced during sample handling. 

Unfortunately, the contribution of specific enrichment to the quantification 

cannot be resolved from the other confounding factors in label-free approaches, 

because these components are mixed into the same quantification “channel”. In 

contrast, this is possible in label-based interaction experiments, where the 

principle of “label-switching” exposes the specific interactions and confounding 

factors in different combinations. Furthermore, since the resulting protein 

sample from pulldowns is low in complexity (typically 500 proteins) and does not 

suffer from duplication of ion peaks, label-based quantification is particularly 

attractive for interaction studies. 
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SILAC-based affinity purification (SILAC AP-MS) is a widely-used label-based 

approach for studying protein interactions [30, 97-100]. A typical experimental 

design for SILAC AP-MS is known as the “forward-reverse” setup (Figure 3). 

Here, interactions are compared between a candidate bait and a control bait, 

using heavy-labeled and light-labeled lysates. Two sets of affinity purifications 

are performed: In the first (“forward”), the candidate bait is used to purify the 

heavy-labeled lysate and the control bait is used to purify the light lysate. In 

this experiment, a specific interactor with the candidate bait would have a 

heavy-to-light ratio of greater than 1:1. In the second set of purifications 

(“reverse”), the lysates are swapped with respect to the bait; here, a specific 

interactor would have a heavy-to-light ratio of less than 1:1. 

Owing to label-switching, specific interactors would therefore have SILAC ratios 

that are inverse of each other. This is usually visualized in a plot of 

logarithmized forward and reverse SILAC ratios known as the “forward-reverse 

plot”, where specific interactors lie along the anti-diagonal. Abundance 

differences of non-specific binders between the heavy and the light lysates would 

give rise to log SILAC ratios of the same sign, since the heavy-to-right 

enrichment/depletion is bait-independent for these proteins. Following from 

these rules, contaminants introduced by manual handling, being always of the 

light label state, are found in the double negative quadrant in the plot. Thus, the 
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forward-reverse plot enables intuitive, visual discrimination of specific 

interaction from background and contaminants. Since the label-switching design 

subjects both the heavy and light lysates to affinity purification on the specific 

bait, the forward and reverse experiments also serve as biological duplicates. 
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 Aims of this study 1.5

Comparative genomics has predicted many potential regulatory DNA elements 

that have been functionally confirmed in vivo. The elements of interest in this 

study were the ultraconserved elements (UCEs) introduced in section 1.2. The 

primary goal of this thesis was to identify protein-DNA interactions at UCEs. 

For this question to be addressed in an unbiased manner, a DNA-centric method 

for protein-DNA interaction was needed. Furthermore, because the exact 

biological context in which UCEs function is unknown, we focused on the 

interactions that are intrinsic to the UCE sequences, as opposed to their in vivo 

binding. For the above reasons, we developed a strategy for upscaling the state-

of-the-art SILAC AP-MS technology, and used it to discover proteins that bind to 

or are depleted from specific UCEs.  

Secondly, this thesis addresses the curious evolutionary question involving the 

UCEs: What contributes to their extreme conservation? Although the hypothesis 

of overlapping TFBSs has been long proposed, it has been argued against largely 

based on the lack of supporting experimental data [52]. We reasoned that SILAC 

UCE pulldown experiments could fill in this gap, identifying the motifs that 

have direct biochemical evidence of binding and assessing the extent to which 

the superimposition of functionally interacting motifs contributes to the extreme 

conservation. 

Thirdly, this thesis aims to integrate DNA-centric interaction data with 

complementary protein-centric data recently released by the ENCODE 

consortium [101], with the intention of critically assessing the relevance of AP-

MS data in the chromatin context. Specifically, this work explored the extent to 

which the DNA sequence and the nuclear proteome together define local 

epigenetic states in the nucleus. Previously, an exemplary DNA sequence has 

been demonstrated in vitro to recapitulate the native chromatin modifications 

found in its corresponding locus. Here, we attempt to generalize this observation 

by comparing chromatin modification ChIP-seq datasets to the AP-MS 

interaction profiles of the 190 UCEs sequences screened in our interactome.  
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These aims are critically dependent on quantitative interpretation of SILAC AP-

MS data. Although SILAC interactomics is quantitative by nature, actual 

interpretation of forward-reverse experiments has generally been qualitative. 

Previous studies focused on interactor calling rather than comparing enrichment 

factors across baits, and simply excluded false positives as not meaningful. This 

thesis refined the interpretation of forward-reverse SILAC AP-MS data, 

incorporating information from the so-called “false positive” hits. For this 

purpose, we implemented a simple correction procedure that quantitatively 

decouples expression changes from specific binding, improves enrichment 

estimates, reduces systematic error, and allows ratios to be used in a truly 

quantitative manner. 
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 Improving large-scale SILAC AP-MS precision by 

proteome variation uncoupling  

 

Summary 

Mass-spectrometric analysis of affinity-purified protein (AP-MS) is a powerful 

method for unbiased discovery of protein interactions with other biomolecules. 

An approach using stable isotope labeling in cell culture (SILAC) and the 

“forward-reverse” label-switching design can be used to discriminate 

contaminants from specific interactors. However, the enrichment ratios derived 

from the label-switched experiments often show large variations, preventing the 

ratios themselves from being used confidently for quantitative interpretation. 

Here, we introduce an improvement to the processing and interpretation of the 

SILAC AP-MS data, which corrects for systematic errors introduced by the 

proteome variation between labeled samples. This simple correction procedure 

significantly improves quantitative interpretability of label-based AP-MS data 

that employs label switching, and normalizes systematic differences between 

batches in large-scale affinity purification screens. 
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 Introduction 2.1

SILAC affinity purification coupled to mass spectrometry (SILAC AP-MS) has 

been used extensively to discover protein-protein, protein-peptide, and protein-

nucleic acid interactions without a priori knowledge [30, 97-100]. A typical 

SILAC AP-MS study compares interaction between a specific bait of interest and 

a control bait; for instance, a peptide against its post-translationally modified 

variant or a regulatory DNA oligonucleotide against a point mutation. The 

principle of SILAC AP-MS has already been described in 1.4.6 above. Briefly, 

heavy-labeled and light-labeled lysates are affinity-purified with the specific bait 

and the control bait in different combinations. The resulting data are typically 

visualized in the “forward-reverse” scatter plot. There, specific enrichments or 

depletions are found in quadrants wherein the forward and reverse ratios are 

inversed owing to label switching. Contaminants are found in the double 

negative quadrant.  

Often, studies employing SILAC forward-reverse AP-MS probe interactions 

against a control bearing small point mutations that were chosen rationally and 

specifically for every bait: e.g. from conservation, single-nucleotide 

polymorphism, or known post-translational modification. Because of the small 

change between the baits, data generated from such studies usually yield a 

population of specific interactors which are visually separated from the cloud of 

background binders. In these cases, the actual SILAC ratios were generally not 

needed to call interactors. Furthermore, quantitative comparisons of ratios 

between different forward-reverse experiment sets were generally not made.  

In contrast to previous studies, the main goals of this thesis are dependent on 

the ability to perform quantitative cross-comparisons of protein interactions to 

multiple DNA sequences. However, substantial variation between the forward 

and reverse ratios often observed in SILAC AP-MS data, reducing the confidence 

of simply using the average ratios for cross-comparisons. Furthermore, a 

number of proteins are found in the double positive quadrant that cannot easily 

be interpreted. This artefact originates from the variation in lysate preparation, 

and the proteins falling in this quadrant were traditionally considered “false 
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positives” and simply excluded from further analysis. This rendered SILAC 

lysates that are vastly different in their observed proteomes owing to variation 

in lysate preparation incompatible with AP-MS experiments. Furthermore, this 

qualitative treatment of arbitrarily removing false positives prevents full 

interpretation of the information in the quantitative data, because it results in 

many missing quantifications and raises the question of general reproducibility 

between experiments. Equally problematic is the presence of known 

transcription factors in the “contaminant” quadrant. Together, these anomalies 

mean that the traditional interpretation of ratios in this experimental setup 

may have been suboptimal.  

This chapter quantitatively addresses the way lysate variation contributes to 

the observable ratios in DNA SILAC AP-MS experiments. We offer a simple 

correction procedure termed “ΔP-adjustment”, which uncouples this contribution 

from bait-specific enrichment/depletion. This procedure is applicable to any 

label-switch experiment where many baits are screened using the same sets of 

lysate, and where the enrichment can be experimentally uncoupled from the 

labeling. The resulting, corrected SILAC ratios have significantly less variation 

between the forward and reverse pulldowns, and now reflect the true magnitude 

of the random errors in the experiments. We also explored the application of this 

adjustment procedure in a large-scale, multi-batch screen, and showed that 

batch-wise adjustment results in further significant error reduction when 

compared to batch blind adjustment. This observation demonstrates the need for 

large-scale, multi-batch SILAC AP-MS data to be corrected for batch-to-batch 

variation, even when the lysates used are equivalent.  
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 Derivation 2.2

 Geometrical interpretation of the forward-reverse plot 

We recall the intuitive interpretation of the SILAC forward-reverse setup as 

follows: When the heavy and light proteomes are identical, an ܽ-fold specific 

enrichment of a given protein results in forward and reverse SILAC ratios (ݔ 

and ݕ respectively) which are exactly inverse of each other. Since the ratios on 

the forward-reverse plot are logarithmized, we express them accordingly here. 

That is, 

log ݔ ൌ log ܽ ൅  ݎ݋ݎݎ݁

log ݕ ൌ െ log ܽ ൅  ݎ݋ݎݎ݁

(1) 

Suppose that, for a different protein, there is no binding preference between the 

specific and the control baits. Instead, the abundances of this protein in the 

heavy and light lysates are different, as ுܲ and ௅ܲ respectively. Here, the 

logarithmized SILAC ratios for both experiments are simply: 

log ݔ ൌ log ݕ ൌ log ுܲ െ log ௅ܲ ൅  ݎ݋ݎݎ݁

(2) 

Now we consider a hypothetical protein, which does have a binding preference 

for the specific bait but also has an abundance difference between the lysates. 

We assume that the proteome difference and the specific enrichment 

components are independent and express the expected SILAC ratios as their 

product. (This assumption is explored further in the next section.) Working 

under this assumption, and defining ∆ܲ ൌ ሺlog ுܲ െ log ௅ܲሻ then, 

log ݔ ൌ ∆ܲ ൅ log ܽ ൅     ݎ݋ݎݎ݁

log ݕ ൌ ∆ܲ െ log ܽ ൅  ݎ݋ݎݎ݁

(3) 

These equations form the basis for the visual interpretation of the forward-

reverse plot: Enrichment and depletion contribute to the anti-diagonal 
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positioning of the proteins on the plot, and difference in protein levels in the two 

lysates moves the proteins along the diagonal.  

For sets of pulldowns using the same lysates, ∆ܲ can be therefore be deduced 

from the expressions for both ratios by eliminating the enrichment variable ܽ 

and averaging over all ݊ baits: 

log ݔ ൅ log ݕ ൌ 2∆ܲ ൅  ݎ݋ݎݎ݁

∆ܲ ൌ
1
2݊

෍ሺlog ௜ݔ ൅ log ௜ݕ ൅ ௜ሻݎ݋ݎݎ݁
௡

௜ୀଵ

 

(4) 

By definition, the error term averages to zero across all baits, yielding ∆ܲ as 

simply the average of all SILAC ratios for the protein. 

∆ܲ ൌ
1
2݊

෍ሺlog ௜ݔ ൅ log ௜ሻݕ
௡

௜ୀଵ

 

(5) 

Now known, this confounding systematic error can be subtracted away to give 

∆ܲ-adjusted SILAC ratios:  
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ᇱݔ ൌ  ௉∆ି݁ݔ

ᇱݕ ൌ  ௉∆ି݁ݕ

(6) 

Interpretation of ∆ܲ is consistent with contaminant calling (∆ܲ ൏ 0) and general 

lysate variation (|∆ܲ| ≫ 0), which is summarized in Figure 4.  

This derivation of the ∆ܲ-adjustment procedure is based on the intuitive, 

geometrical interpretation of the forward-reverse plot, where independence 

between the proteome component and the enrichment component is assumed. 

However, it is clearly not possible that this assumption is valid over all 

conditions, as the maximum amount of recovered proteins is capped by the 

amount of binding sites available on the baits. Interplay between the bait 

concentration, the interactor abundance and the specific enrichment is better 

accounted for by thermodynamic considerations. In the next section, we show by 

thermodynamic derivation that the assumption of proteome-enrichment 

independence is valid over the range of conditions typically encountered in 

standard SILAC AP-MS experiments. 

 

 Thermodynamics of protein-DNA SILAC AP-MS 

Affinity purification is a reversible complex formation between a “bait” molecule 

and a “prey” molecule. In the context of protein-DNA interaction, treating each 

DNA bait and each protein or complex interactor as a single entity, then the 

interaction between the bait ܤ and prey ܲ 

ܤ ൅ ܲ ⇌ ܤ	 ∙ ܲ 

reaches the equilibrium concentration of the complex ܤ ∙ ܲ at  

ሾܤ. ܲሿ ൌ
ሾܤሿሾܲሿ

ௗܭ	
ሺ஻,௉ሻ 

 (7) 

where ܭௗ
ሺ஻,௉ሻ is the association constant between ܤ and ܲ. 
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Expressed in terms of initial concentrations ሾܤሿ଴ and ሾܲሿ଴, the above equation 

can be rewritten as: 

ሾܤ ∙ ܲሿ ൌ
ሺሾܤሿ଴ െ ሾܤ ∙ ܲሿሻሺሾܲሿ଴ െ ሾܤ ∙ ܲሿሻ

ௗܭ
ሺ஻,௉ሻ  

(8) 

This equation is quadratic with respect to the bound prey concentration ሾܤ ∙ ܲሿ, 

and whose exact solution cannot linearly and independently depend on ሾܤሿ଴ and 

ሾܲሿ଴. However, in typical SILAC AP-MS experimental conditions, this expression 

for the bait-prey complex concentration can be simplified so that it linearly 

depends on the initial prey concentration.  

We typically use 8 μg of DNA bait and nuclear lysate from 10 million cells per 

affinity purification. Transcription factor copy numbers have been determined to 

have a range of ~250 to 300,000 copies per nucleus [102]. Under an estimated 

reaction volume of 200 µl, these conditions translate to a concentration of ~20 

pM to 25 nM for each transcription factor and 250 nM of DNA bait. Within these 

parameter constraints, the DNA bait is in excess of the preys by at least ten fold, 

and so ሾܤሿ଴ ≫ ሾܤ ∙ ܲሿ. Considering (8) in this context, ሾܤሿ଴ െ ሾܤ ∙ ܲሿ can be 

approximated by ሾܤሿ଴ to yield the following simplified equation: 

ሾܤ ∙ ܲሿ ൌ
ሾܤሿ଴ሺሾܲሿ଴ െ ሾܤ ∙ ܲሿሻ

ௗܭ
ሺ஻,௉ሻ  

(9) 

Rearranging to solve for ሾܤ ∙ ܲሿ, we obtain: 

ሾܤ ∙ ܲሿ ൌ
ሾܤሿ଴ሾܲሿ଴

ሾܤሿ଴ ൅ ௗܭ
ሺ஻,௉ሻ 

(10) 

Defining a function ݂ሺݔሻ as  

݂ሺݔሻ ൌ ൭
ሾܤሿ଴

ሾܤሿ଴ ൅ ௗܭ
ሺ஻,௉ሻ൱ 

(11) 
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Then the bait-prey complex concentration at equilibrium can be expressed as 

finally as: 

ሾܤ ∙ ܲሿ ൌ ሾܲሿ଴ ∙ ݂ ቀܭௗ
ሺ஻,௉ሻቁ 

(12) 

Here, ݂  transforms the dissociation constant into a scaling factor, which dictates 

the proportion of the prey molecules that are part of the complex at equilibrium.  

The value of ݂ ቀܭௗ
ሺ஻,௉ሻቁ depends on the initial bait concentration ሾܤሿ଴, which is 

invariant across the entire screen. Thus, the bait-prey complex concentration at 

equilibrium depends linearly and independently on only the initial prey 

concentration and a function of the dissociation constant. In conclusion, the 

assumption of independence between the proteome and the specific enrichment, 

which we used for the geometrical derivation of ∆ܲ-adjustment, is valid under 

typical SILAC AP-MS experimental conditions. 

To complete the thermodynamic derivation of the ∆ܲ-adjustment  procedure, we 

now apply (12) to the ratio calculations. Given the initial concentrations of the 

control bait ሾܤ଴ሿ଴, the specific bait ሾܤଵሿ଴, the heavy-labeled prey ሾ ுܲሿ଴, and the 

light-labeled prey ሾ ௅ܲሿ଴, then the observable forward ratio ݔ is given by 

ݔ ൌ
ሾܤଵ ∙ ுܲሿ
ሾܤ଴ ∙ ௅ܲሿ

ൌ
ሾ ுܲሿ଴ ∙ ݂ ቀܭௗ

ሺ஻బ,௉ಹሻቁ

ሾ ௅ܲሿ଴ ∙ ݂ ቀܭௗ
ሺ஻భ,௉ಽሻቁ

൅  ݎ݋ݎݎ݁

(13) 

The forward-reverse plot displays the SILAC ratios in the logarithmized form.  

log ݔ ൌ ሺlogሾ ுܲሿ଴ െ logሾ ௅ܲሿ଴ሻ ൅ ቄlog ݂ ቀܭௗ
ሺ஻బ,௉ಹሻቁ െ log ݂ ቀܭௗ

ሺ஻భ,௉ಽሻቁቅ ൅  ݎ݋ݎݎ݁

(14) 

In the reverse experiment, the labels are switched with respect to the baits. The 

expression for the reverse ratio ݕ thus takes this form: 

log ݕ ൌ ሺlogሾ ுܲሿ଴ െ logሾ ௅ܲሿ଴ሻ ൅ ቄlog ݂ ቀܭௗ
ሺ஻భ,௉ಹሻቁ െ log ݂ ቀܭௗ

ሺ஻బ,௉ಽሻቁቅ ൅  ݎ݋ݎݎ݁

(15) 
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We now make an important assumption: We expect the cells that give rise to the 

heavy and the light lysates to be biochemically equivalent, i.e. any difference in 

their proteomes does not result in differences in binding affinities of proteins. 

Under this assumption, then 

ௗܭ
ሺ஻బ,௉ಹሻ ൌ ௗܭ

ሺ஻బ,௉ಽሻand also ܭௗ
ሺ஻భ,௉ಽሻ ൌ ௗܭ

ሺ஻భ,௉ಹሻ 

(16) 

 

Defining ܽ, the logarithmized enrichment factor between the two baits and 

∆ܲ, the logarithmized protein abundance fold change between the two 

samples: 

ܽ	 ൌ log ݂ ቀܭௗ
ሺ஻బ,௉ಹሻቁ െ log ݂ ቀܭௗ

ሺ஻భ,௉ಽሻቁ 

∆ܲ ൌ logሾ ுܲሿ଴ െ logሾ ௅ܲሿ଴ 

(17) 

Substituting (16) and (17) into the expressions for log and log ݔ  then yields ݕ

the intuitive expression for the logarithmized forward and reverse SILAC 

ratios as given in (3).  

log ݔ ൌ ∆ܲ ൅ log ܽ ൅     ݎ݋ݎݎ݁

log ݕ ൌ ∆ܲ െ log ܽ ൅  ݎ݋ݎݎ݁

 

In summary, this section shows that the biochemical bases behind the derivation 

of the ∆ܲ-adjustment procedure agrees with the geometrical interpretation of 

the forward-reverse plot. 
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 Results 2.3

To benchmark the ability of the ∆ܲ-adjustment procedure to reduce variability 

between forward and reverse SILAC pulldown experiments, preliminary SILAC 

DNA pulldowns for the UCE interactome were performed. We used two sets of 

SILAC nuclear lysate: the lysates obtained from R1/E mouse embryonic stem 

cells were purified on 47 UCE baits against a universal control bait, and lysates 

obtained from HeLa cells were purified on 23 UCE baits. Within each set, the 

pulldowns were parallelized in the 96-well plate format. 

 

 Up to 75% of the interactome have systematic, correctable 

proteome-difference errors. 

First, we visualized the distribution of ∆ܲ of all proteins for each SILAC pair of 

nuclear lysates. Since SILAC ratios are generally log-normally distributed, we 

could test the null hypothesis of ∆ܲ ൌ 0 with a Student’s T test. Correcting for 

multiple comparisons, we found significant systematic residual abundance 

difference in over three quarters of all proteins that were quantified in each pair 

of lysate at 1% FDR.  

The spread of ∆ܲ in the HeLa dataset was large, with 95% of the proteins 

displaying a systematic abundance difference over a range of 8-fold (Figure 5A). 

In contrast, 95% of proteins in the R1/E dataset showed an abundance difference 

of a range of 1.4-fold. This lower deviation was consistent with the fact that the 

R1/E lysates had been pooled from several preparations, normalizing out 

individual proteome deviations between preparations. Estimation of ∆ܲ  and its 

associated errors may be visualized for a given protein by plotting its forward 

and reverse ratios across all baits. In case of a well-behaved DNA binder, these 

ratios form a tight anti-diagonal whose distance from the anti-diagonal through 

the coordinate is directly proportional to ∆ܲ (Figure 5B). In sum, this initial 

analysis demonstrates the potential of ∆ܲ-adjustment in improving the precision 

of both datasets. 
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 adjustment significantly reduces variability between-ࡼ∆ 

forward and reverse SILAC AP-MS experiments. 

We then performed the ∆ܲ-adjustment on both pulldown datasets as described 

above. The adjustment resulted in a visually appreciable improvement in the 

ratio reproducibility between the forward and reverse experiments, as seen from 

the narrowing of data points towards the anti-diagonal where quantitatively 

reproducible enrichment/de-enrichment are expected. By calculating the root 

mean squared error (RMSE) of forward versus reverse ratios over all proteins for 

each experiment, we found that the improvement was highly significant overall: 

RMSE was reduced by 44% in the R1/E dataset and 79% in the HeLa dataset (P 

< 10-24 in both cases). Thus, even pooled lysates with normalized proteome 

differences can still benefit from the ∆ܲ-adjustment procedure. 

One metric used to score specificity of an interactor is to compare their SILAC 

ratios against the “cloud” of non-specific binders, and calculating significance 

assuming that the unspecific binder ratios are normally distributed. However, 

owing to proteome differences, the score originating from the forward ratio can 

vary greatly from that from the reverse ratio. This is reflected in the irregularly-

shaped cloud seen in the uncorrected forward-reverse plots (Figure 5C, E). 

However, the cloud of nonspecific binders become “regularized” into the anti-

diagonal, giving a shape that is ideal for outlier statistics (Figure 5D, F). 

Overall, the adjustment procedure was able to recover highly-reproducible 

quantitative interaction data that were obfuscated by proteome differences in 

the lysate. 

 

 adjustment removes false positives and recovers-ࡼ∆ 

misclassed interactors 

We next inspected the behavior of data points usually interpreted as 

“contaminants” and “false positives” in the forward-reverse plot. The former 

correspond to those in the “double negative” quadrant and the latter are those in 

the “double positive” quadrant. Both sets of data points have prevented a truly 

quantitative treatment of ratios without a manual filtering step. 
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After ∆ܲ-adjustment, the majority of points both in the “double positive” and the 

“double negative” quadrant were corrected into the main anti-diagonal where 

reproducible interactions were found. Importantly, some of these points turned 

out to be valid, highly reproducible interactors that would have been misclassed 

as contaminants without the adjustment. For instance, the proteins JUND, 

JUNB, ATF1 and ATF7 were very far from the main anti-diagonal prior to 

adjustment, and JUNB would have been classed as a contaminant as it 

appeared in the lower-left quadrant. After the correction was applied, all four 

proteins reappeared as interactors that were clearly separated from the central 

cloud of background binders. Notably, probably owing to similar binding 

specificity between these proteins, their ratios also became more similar to each 

other after correction. As expected, the non-DNA binding, actin-associated 

protein SWF1 remained in the contaminant quadrant: This protein turned out to 

have irreproducible ratios over all baits. 

In conclusion, the adjustment procedure is capable of recovering interactors that 

would have been missed owing to proteome bias between lysates, while retaining 

true, irreproducible contaminants in the contaminant quadrant. 

 

 Batch-wise ∆ࡼ-adjustment results in lower ratio 

variability in multi-batch experiments 

The main dataset in this thesis (Chapter 3) was an interactome of 216 DNA 

baits against the R1/E background. Parallelization of pulldowns on the 96-well 

format allowed up to 48 AP-MS forward-reverse pairs to be screened, resulting 

in five batches of pulldowns across several days. Even though nuclear lysates 

were pooled and equivalent aliquots were used in each batch, the lysates may 

still be subjected to different conditions on different days, possibly introducing 

systematic errors for that batch that would be random across batches. This gives 

rise to the question of whether ∆ܲ-adjustment should be applied batch-wise to 

account for batch-specific handling errors. 

Analysis of variance (ANOVA) revealed that almost 60% of the interactome had 

significantly different ∆ܲ values between batches (FDR 0.1%), strongly arguing 
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in favor of batch-wise adjustment. (Figure 6A, B). Comparing the forward-

reverse RMSE between after global adjustment versus after batch-wise 

adjustment, we found a further reduction of 20% RMSE with batch-wise 

adjustment (P < 10-15, Figure 6C). Thus, batch-wise adjustment should be used 

for multi-batch data processing even when the originating lysates were 

equivalent.  
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 Discussion 2.4

We have introduced a simple “∆ܲ-adjustment” procedure that uncouples 

proteome variation in the biological material from the true enrichment signal in 

forward-reverse SILAC AP-MS. The deconvolution was possible owing to the 

label switching in the forward-reverse experiments, exposing the proteome 

variation in different combinations with the specific enrichment. In addition, the 

range of bait and prey concentrations used in routine SILAC AP-MS 

purifications is such that the proteome variation is essentially independent from 

the specific enrichment. This assumption is generally true in affinity 

purifications where the bait is in large excess of the prey, a condition that is 

needed for analytical affinity purification experiments where observation of 

differential binding is the objective. 

The procedure significantly de-noised AP-MS datasets, automatically corrected 

for the otherwise uninterpretable false positives, recovered interactors that 

would otherwise be missed owing to proteome variation, and normalized batch-

to-batch variations. In summary, we have shown that ∆ܲ-adjustment procedure 

is a highly beneficial and often necessary preprocessing step for large-scale 

SILAC AP-MS datasets that allows high-confidence, cross-batch, quantitative 

interpretation. 

An obvious limitation of the ∆ܲ-adjustment algorithm is that it is unable to 

adjust ratios of proteins that are only quantified in one forward-reverse pair, as 

no further information is available to estimate ∆ܲ in such cases. We have, 

however, found that such cases are relatively rare owing to matching of peptide 

identifications across a large number of experiments. 

DNA pulldowns routinely use crude nuclear lysate, whose slight variation in 

preparation can introduce large apparent proteome variations. Steps such as 

dounce homogenization and lysate clearing of lipids and cytoskeleton are 

primary sources of these lysate proteome variations. Importantly, the ∆ܲ-

adjustment procedure now relaxes the requirement for perfectly correlating 

heavy and light proteomes for AP-MS, as demonstrated by its ability to collapse 

the  variation of up to 800% for proteins in the HeLa dataset, restoring its 
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interpretability. While we do not wish to imply that crude nuclear lysate can be 

prepared with less care, the adjustment does allow the lysates to be used in 

batch AP-MS despite their variation introduced through the preparation.  

An assumption that is built into our procedure is that the proteins in the heavy 

lysate have equal affinities to the bait as the corresponding proteins in the light 

lysates. This holds true in the case where all experimental conditions (except for 

the label state) are identical in the cells. Although not explored in this chapter, 

it would also be possible to extend the adjustment procedure to include cases 

where the differentially labeled cells were subjected to different stimuli. With a 

careful experimental design, it would be possible to use a similar processing to 

systematically study interactions as a function of different cellular conditions. 
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 Interactome of Ultraconserved Elements 

Summary 

Ultraconserved elements (UCEs) have been subject of great interest owing to 

their extreme sequence identity and their seemingly cryptic and largely 

uncharacterized functions. Although in vivo studies of UCE sequences have 

demonstrated regulatory activity, protein interactors at UCEs have not been 

systematically identified. Here we combined high-throughput affinity 

purification, high-resolution mass spectrometry and SILAC quantification to 

map intrinsic protein interactions for 193 UCE sequences. The interactome 

contains over 400 proteins, including transcription factors with known 

developmental roles. We demonstrate based on our data that UCEs consist of 

strongly conserved overlapping binding sites. We also generated a fine-

resolution interactome of a UCE, confirming the hub-like nature of the element. 

The intrinsic interactions mapped here are reflected in open chromatin as 

indicated by comparison with existing ChIP data. Our study argues for a strong 

contribution of protein-DNA interactions to UCE conservation and provides a 

basis for further functional characterization of UCEs. 
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 Introduction 3.1

Transcriptional regulation is determined by complex interactions of DNA, 

transcription factors (TFs), and chromatin states. Transcriptional regulatory 

elements capable of modulating gene expression have been of much interest due 

to their role in development and disease [103, 104]. Conservation analysis, 

chromatin modification state analysis and in vivo reporter assays have been 

used to identify several hundreds of such transcriptional enhancers [51, 105, 

106]. Among these, ultraconserved elements (UCEs) – DNA elements defined by 

their 100% sequence identity over 200 bp between human and mouse genomes – 

have been identified as tissue- and stage-specific enhancers [43, 51, 106]. UCE 

sequences were predicted to be enriched in binding sites for development-

associated TFs, suggesting important developmental regulatory roles. However, 

relatively few phenotypic alterations have been associated with loss or mutation 

of UCEs [107-109], and while several hypotheses have been proposed [110], little 

has been attempted experimentally to account for the ultraconservation of these 

loci. Similarly, although regulatory potential of UCEs have been demonstrated 

through embryonic reporter assays, the function and mechanism of these 

regulatory elements largely remain to be explored.  

One starting point to enhancer characterization is through interactor mapping. 

Recently, chromatin immunoprecipitation (ChIP) has mapped out interaction of 

the genome to several TFs in great detail [101]. ChIP is protein-centric, i.e. they 

map out target DNA sequences bound to pre-chosen TFs, limiting the diversity 

of interaction profiles to a priori knowledge. Furthermore, ChIP data reflect an 

end point of gene regulation, incorporating aspects such as chromatin 

homeostasis and long-range interactions, rendering the contribution of the 

underlying DNA sequence difficult to determine. Evidence from a small number 

of genomic loci as well as whole-chromosome analysis has demonstrated the 

genetic contribution to establishment of epigenetic states [40, 111]. Thus, DNA-

centric study of intrinsic interactions between DNA sequences and DNA-binding 

nuclear proteins in absence of initial epigenetic priming is valuable to 

understanding the genetic contribution to transcriptional regulation, which is 

especially important for dissecting per-nucleotide conservation of UCEs. 
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Past studies have employed a DNA-centric approach to identify potential 

binders of small numbers of DNA sequences [65, 98, 99, 112, 113]. Here we have 

developed a high-throughput platform to screen unbiased interaction profiles for 

hundreds of DNA sequences, based on our previously described pulldown 

method using high-resolution mass spectrometry and SILAC quantification [99]. 

We applied this technology to obtain an interaction map for 193 UCEs, including 

over half of all non-exonic UCEs in the genome. We found non-exonic UCE 

sequences to bind TFs and chromatin remodelers with known roles in 

developmental regulation, whereas proteins that promote chromatin compaction 

were relatively depleted. We inferred that the protein interactors bind to UCE 

sequences through densely distributed and often overlapping canonical 

transcription factor binding sites (TFBSs). Individual DNA bases that are part 

of overlapping TFBSs were on average more stringently conserved among 

vertebrates. We also obtained mapped intrinsic interactions of one UCE to five 

nucleotide resolution and found a high frequency of both gain and loss of binding 

to occur upon mutation. Finally, comparison of our intrinsic interaction map 

with existing ChIP-seq data as well as reporter assays linking previous 

independent observations [114, 115] highlight the functional relevance of these 

interactions. Overall, our interaction map points towards extremely high 

information content and complex transcription regulation logic behind many 

UCEs.  
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 Results 3.2

 The UCE interactome 

We obtained the interaction map for 129 of 256 non-exonic (nx), 36 of 114 

putative-exonic (px), 28 of 111 exonic (ex) UCEs as well as 21 human and 3 

mouse random genomic loci by affinity purification, high-resolution mass 

spectrometry and SILAC quantification in high throughput [96]. We used 

Topoisomerase-assisted cloning to insert bait sequences amplified from human 

or mouse genomic DNA into a universal vector backbone. This backbone enabled 

us to amplify the baits by parallel PCR, where one primer was labeled with 

desthiobiotin to allow streptavidin capture and specific elution of protein-DNA 

complexes (Figure 7A). Our interaction map was generated in the context of the 

R1/E mouse embryonic stem cell line, in keeping with the proposed relevance of 

UCEs in gene regulation during development, and exploiting the sequence 

identity of UCEs between mouse and human genomes.  

We performed two experiments for each DNA bait of interest. In one set of 

pulldowns (called “forward”), we incubated heavy-labeled nuclear extracts with 

the UCE bait, and unlabeled extracts with the mix of 24 random genomic 

sequences, to dilute out any binding sites arising by chance. SILAC enabled us 

to accurately quantify the enrichment of interactors of DNA bait over control 

[86]. In the “reverse” pulldowns, we switched the SILAC labels with respect to 

the baits, enabling two-dimensional separation of true interactors from false 

positives [98] (Figure 7A).  

Our screen identified a total of 1,709 proteins across the entire interactome, 

with an average of 870 proteins per MS run. Of these, 223 (13%) were quantified 

on all UCE baits, and 660 (39%) were quantified in at least half of the baits. We 

found 425 proteins with enrichment ratio greater than 1.4 for at least three 

baits (Figure 7C). These proteins represented 10.3% of the R1/E nuclear 

proteome which we measured for comparison, and showed a slight bias of 2.8 

fold towards high-abundance proteins over the 10,000-fold abundance range 

(P < 10-16, Figure 7D) – arguing that endogenous proteins of most expression 

levels were accessible from our screen. There was excellent reproducibility of 



 
Interactome of Ultraconserved Elements 52 
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SILAC ratios between the forward and reverse pulldowns (Figure 7B, median 

SILAC ratio r2 = 0.91). Binding profiles of members belonging to the same 

complex were extremely tightly correlated (Figure 7E), indicating that the 

proteins bound to the baits as complexes and providing further positive control. 

In sum, we have generated an unbiased intrinsic protein interactome for UCE 

sequences that preserves cell-specific protein-protein interactions and takes into 

account the cell’s nuclear context. 

 

 Interactors of non-exonic UCEs are enriched for 

development and chromatin access function 

Previous in silico sequence analysis of UCEs proposed a role of transcriptional 

regulatory “hubs” that recruit developmentally functional TFs [110]. Our UCE 

interactome showed that non-exonic UCE sequences (nxUCE) were more 

enriched in interactors regardless of SILAC ratio threshold used for interactor 

calling, followed by possibly-exonic (pxUCE), exonic (exUCE) and random 

genomic sequences (Figure 8A). Annotation enrichment analysis based on 

SILAC ratios identified Gene Ontology terms containing the annotations neural, 

nerve, forebrain, hindbrain, limb and axis as significant classifications for UCE 

interactors (Figure 8B). Domain enrichment analysis based on Pfam showed 

homeobox TFs were most significantly enriched at nxUCEs (P < 10-31), and to a 

lesser extent, at pxUCEs (P < 10-12) and exUCEs (P < 0.01) (Figure 8C). 

Interestingly, we also found enrichment of leucine zipper family TFs at nxUCEs 

(P < 10-4), a finding not previously predicted from motif analysis based on the 

JASPAR TF binding motif database. 

The TF binding hub proposal demands that the chromatin be accessible for 

function. Intrinsic open chromatin propensity for UCE sequences could be 

expected owing to AT-richness predicted to result in in poor nucleosome 

occupancy [18]. Indeed, in addition to homeobox TFs, nxUCEs also favored 

binding of several chromatin remodelers and other AT-rich factors including the  
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INO80, NuRD, HIRA, SMARCA/BAZ complexes as well as DNA topoisomerases 

(Figure 8D). Many of the chromatin remodelers observed in our interactome 

possess nucleosome shifting or destabilization activity [116-120]. Importantly, 

although nxUCEs are slightly more AT-rich than random genomic loci (median 

GC content 37.9% and 43.1%, respectively, Figure 8E), preferential enrichment 

of nxUCEs for AT-rich binders including homeoboxes generally held significant 

even when we binned our baits by comparable GC content (Figure 9), indicating 

that the observed enrichment cannot be explained solely by sequence nucleotide 

composition. 

To further explore possible manifestation of intrinsic open chromatin propensity, 

we investigated the binding of histone H1 and the PRC2 complex, proteins 

known to promote heterochromatin formation [21, 27, 121]. Indeed, nxUCEs 

were relatively depleted in histone H1 and PRC2 complex (P < 10-12, Figure 8D), 

and this effect was equally strong in pxUCEs and exUCEs (P < 10-14 and P < 10-6 

respectively, Figure 9). PRC2 binding is known to depend partially on TFBS 

density, with absence of TFBS allowing PRC2 to bind to GC-rich regions [122]. 

Strikingly, we found that PRC2 members were among the interactors with 

strongest GC preference, but only if random genomic sequences were considered 

on their own. At nxUCE sequences where interactions were more prevailing, the 

binding of PRC2 showed no GC preference at all (P < 0.05 for SUZ12, P < 0.01 

for EZH2, EED and JARID2; see also Figure 8F, G and Figure 9), indicating that 

a different rule than GC content governs binding of PRC2 to nxUCE sequences. 

Furthermore, we found that the homeobox class of interactors – the class most 

enriched for nxUCEs – is significantly depleted at PRC2-enriched nxUCE baits 

over PRC2 de-enriched nxUCE baits (P < 0.01, Figure 8H). The differential 

enrichment became even more significant when the comparison was extended to 

all the baits (P < 10-5). These results demonstrate the inverse relationship 

between binding of TFs and binding of PRC2 in the context of UCE sequences, 

and suggest that nxUCE sequences may avoid heterochromatinization in part by 

exclusion of PRC2 owing to a large population of interactors. 



 
Interactome of Ultraconserved Elements 56 

  

 

In conclusion, we have shown that nxUCEs are not only enriched in 

developmentally relevant TFs, but are also enriched in chromatin 

destabilization proteins as well as relatively devoid of heterochromatin-

promoting proteins. These observations illustrate the inherent biochemical 

properties of nxUCE sequences appropriate to serve as TF binding hubs. 
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 UCEs are strongly enriched in overlapping TFBSs with 

conservation bias in overlapped sites. 

One proposed explanation for ultraconservation of UCEs is that of high density 

of functional TFBSs providing multiple constraints accounting for higher 

evolutionary pressure. High density of TFBSs could result in information 

compression in the form of overlapping TFBSs, a concept that has been 

postulated for UCEs and indeed observed in several other instances [110, 123, 

124]. Our dataset provided an opportunity to address the multiple-constraint 

hypothesis directly. 

We first used our quantitative UCE interactome to derive binding motifs that 

are directly relevant to UCEs. We tested for association between differential 

interactor enrichment and all possible motifs up to 8 nucleotides in length, and 

found 439 motifs associated with enrichment of 161 interactors at 5% FDR. 

These included a large number of homeobox, E-box, and leucine zipper, and 

several other motifs, as well as a number of putative motifs for several factors 

(see Experimental Procedures). We also correctly found very short motifs for a 

number of factors. For instance, we identified the CpG dinucleotide as a binding 

motif for KDM2B (P < 10-17), a H3K36 demethylase known to bind to 

unmethylated CpG at c-jun promoter through its CxxC zinc finger [125]. Binding 

of TFAP2 can be described by presence of a single-nucleotide motif “G”, 

reflecting the GC content as the major influence on the interaction. As a 

measurement of validity of our motif enrichment, Table 1 compares some of the 

most significant motifs rediscovered ab initio from our dataset to the 

corresponding known motifs.  

To test the overlapping TFBS hypothesis and its relevance for ultraconservation, 

we mapped the derived motifs to UCE sequences and other sequences, and then 

compared motif distribution as well as conservation of unmapped bases, singly-

mapped bases, and repeatedly-mapped (superimposed) bases (Figure 10A, see 

also Experimental Procedures). To allow an exhaustive analysis, we included all 

481 UCEs, 720 additional enhancers available from the VISTA database of in 

vivo enhancer activity of conserved genomic loci [106] classed by whether they  
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contain UCEs (ucVISTA) or not (ncVISTA), and 791 randomly picked genomic 

regions. 

We found nxUCEs to be most highly enriched for motif superimposition over 

random genomic loci (P < 10-48), followed by pxUCEs (P < 10-11, Figure 10B) but 
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not exUCEs. Similarly, ucVISTA sequences were more enriched for 

superimposition over random genomic loci than ncVISTA (P < 10-25 and P < 10-16, 

respectively) but less enriched than nxUCEs, consistent with UCEs being the 

most conserved core of ucVISTA enhancers. No superimposition enrichment was 

observed when we instead used non-enriched motifs taken randomly from the 

UCEs. Our finding that superimposition degree increases from ncVISTA to 

ucVISTA and finally nxUCE, and that exUCEs did not show such enrichment, 

indicate that nxUCEs represent the extreme case of overlapping TFBSs.  

To exclude the possibility that AT-richness is solely responsible for the increased 

motif superimposition at nxUCEs, we shuffled the nucleotides in all sequences 

used for superimposition analysis to generate synthetic sequences of equivalent 

GC content.  Superimposition enrichment on these sequences was severely 

abrogated (Figure 10c), indicating that AT-richness contributes to but is in 

itself insufficient to achieve the extent of superimposition observed with 

nxUCEs by chance. To support this in silico finding, we performed pulldowns on 

random, highly heterogeneous DNA sequences with average GC content of 20% 

or 40%. Our experiment showed that only some of the proteins that bound 

preferentially to UCEs also bound preferentially to the synthetic AT-rich bait 

population (Figure 11). Generally, there was insignificant correlation between 

factor preference for AT-rich sequences and enrichment at nxUCEs (Spearman’s 

ρ = 0.05, P > 0.1). Notably, factors bound to synthetic GC-rich bait populations 

were also enriched at nxUCEs, ruling out AT-richness as the sole explanation 

for motif occurrence and thus superimposition at nxUCEs. Together with the 

inherent conservation bias for GC nucleotides over AT nucleotides in UCEs but 

not in random genomic loci (Figure 11), we speculate that GC-rich TFBSs may 

be under greater selective pressure in AT-rich UCEs in order to preserve certain 

regulatory function.   
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If superimposition of TFBSs also played important biological roles, we would 

expect DNA bases involved in superimposition to be more deeply conserved. We 

therefore investigated the extent of DNA base conservation in 46 vertebrates, 

using an established conservation scoring scheme [126]. For sequences that were 

putative enhancers, the bases matched by multiple motifs were on average 

slightly but significantly more conserved than bases mapped only to a single 

motif (P < 0.001). Strikingly, this conservation bias became massively amplified 

when only AT bases were considered (P < 10-10 Figure 10D), consistent with the 

presence of many AT-rich motifs derived from our data. Conservation bias was 

also observed in ucVISTA and ncVISTA sequences, concordant with functional 

overlapping TFBSs reported for loci other than UCEs. The larger difference in 

VISTA enhancers compared to UCEs can be attributed to the lower conservation 

baseline for ncVISTA enhancers (Figure 10D). We also found the conservation 

bias to be reduced when the scoring was restricted to placental mammals 

(Figure 10E), suggesting early origins of these overlapped sites. In conclusion, 
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we have shown that nxUCEs represent the extreme case of overlapping, deeply 

conserved, biochemically functional TFBSs among enhancers. 

 

 UCE scanning mutagenesis defines protein binding 

characteristics and correlates gain of interaction with 

nucleotide conservation 

Although an implication of the multiple-constraint hypothesis is that mutation 

of nxUCEs causes deleterious consequences, it has been difficult to identify the 

exact systems that are affected. However, the conservation bias implies that 

multiple-constraint hypothesis would at least manifest itself in terms of change 

in protein binding capacity, which in turn could result in regulatory logic 

alteration at UCEs. 

In order to test this hypothesis, we performed a scanning mutagenesis of uc325, 

a non-exonic UCE that is part of a midbrain/eye development enhancer [106]. 

Each non-overlapping 5-nucleotide window of uc325 was mutated transitionally 

– the most frequent mode of nucleotide substitution in vivo [127]. Pulldown was 

performed on the resultant series of baits against the wildtype bait (Figure 12A), 

and interactors were defined as proteins whose SILAC ratios were in most 

extreme 5% of all quantified ratios. We discovered 55 interactors for the uc325 

set but only 10 for the control set based on a random genomic sequence with 

comparable GC content. Both gain and loss of interactions were found for uc325, 

covering the entire span of the bait (Figure 12C). Most of the prominent 

interaction losses were found in contiguous variants – reflecting binding sites 

that span more than five nucleotides – whereas interaction gains tend to appear 

stochastically (P < 10-5, Kolomogorov-Smirnov test, Figure 12B). In contrast, 

only a small region in the control bait appeared to contain prominent interactors 

(Figure 12B, C). These data indicate that uc325 indeed possesses a hub-like 

characteristic with numerous and diverse TFBSs as well as latent sites that 

could be reached within a few transition mutations. 
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We next investigated whether any relationship exists between uc325 

conservation and its scanning mutant interactome. Initially, we had expected 

the conservation to be correlated to the loss of binding owing to transition 

mutation, but this turned out not to be the case (P > 0.5). Surprisingly, we found 

conservation of uc325 strides to be significantly correlated with the maximum 

binding gain owing to mutation (P = 0.0017, Figure 12D), whereas such 

correlation was weaker for the control (P = 0.027). When at least two non-

correlating proteins were required to be enriched in the mutant, the correlation 

with conservation remained significant for uc325 (P = 0.0020) but not for the 

control (P = 0.12). Interestingly, AT-rich strides tended to give more drastic 

binding gain upon mutation (correlation with GC content = -0.36, P = 0.0062, 

Figure 12C). We speculate that these AT-rich strides are under selective 

pressure against developing such TFBSs which could alter the regulatory logic 

of the UCE. Alternatively, apparent strong gain of binding could be observed if 

the mutation turned a promiscuous binding site capable of binding several 

factors weakly into a well-defined, specialized binding site, thereby destroying 

the ‘hub’ characteristics which may be required for fine-tuned regulatory 

function. 

 

 Regulatory consequence of the UCE interactome 

Evidence for regulatory consequence of UCE interactors could be obtained from 

perturbation experiments and reporter assays. While it may be difficult to 

discern the regulatory logic of such complex enhancers without performing very 

deep perturbation, it should still be possible to address functionality of certain 

interactions given existing biological knowledge. To demonstrate such a case, we 

investigated the functionality of the interaction between uc400 and the protein 

GTF2IRD1.  

The 860 bp genomic region containing uc400 possesses forebrain-specific 

enhancer activity during embryonic day E11.5 (Pennachio et al., 2006). We 

found that uc400 interacts specifically with the Williams Beuren syndrome 

protein GTF2IRD1 with a SILAC ratio of around 6:1 in R1/E cells, and also with 

hGTF2IRD1 in HeLa cells (Figure 13). GTF2IRD1 is known to act as a repressor 
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via its interaction with the conserved DNA motif containing the core sequence 

GATTA [115]. Consistently, our motif analysis rediscovered GATTA as a binding 

motif for GTF2IRD1 (Table 1), which is present in three copies in uc400. 

GTF2IRD1is expressed ubiquitously with the exclusion of the forebrain during 

E10.5 [114], a finding in agreement with the forebrain-specific activity of uc400, 

the role of Gtf2ird1 as a repressor, and our interaction data. Given the degree of 

corroboration between existing literature and our data, we decided to investigate 

possible regulatory modulation of uc400 by hGTF2IRD1.  

We first confirmed that hGTF2IRD1 bound to uc400 via the GATTA motif, by 

mutating all occurrences of such motifs to GAGGA. MS-analysis showed 

hGTF2IRD1 to be the only DNA binding protein bound preferentially to the 

wildtype uc400 bait compared to the mutant bait (Figure 13B). Interestingly, the 

data immediately revealed that the mutant uc400 had also gained specific 

binding of another TF, namely hTEAD1. We then performed reporter assays 

using wildtype or mutant uc400 as an enhancer driving luciferase reporter, 

under non-targeting condition or GTF2IRD1-knockdown. Owing to auto-

regulation of Gtf2ird1 [128], we also monitored mRNA expression levels together 

with luciferase reporter activity over a time course (Figure 13D). We found that 

hGTF2IRD1 knockdown resulted in differential reporter activity modulation of 

wildtype uc400 relative to the mutant uc400. Because our mutagenesis of uc400 

reporter resulted in gain of hTEAD1 binding site (Figure 13B), we also excluded 

indirect effects of hGTF2IRD1 knockdown on reporter activity through hTEAD1 

by showing that its mRNA expression level was only modestly affected 

throughout the course of the experiment (Figure 13). In conclusion, we have 

demonstrated regulatory consequence of the interaction between uc400 and the 

hGTF2IRD1 protein. 

To further explore the regulatory relevance of UCE interactors in cellular 

contexts more globally, we compared our interaction data with existing ChIP-seq 

data from the ENCODE consortium [101]. We found 12 TFs from our screen 

with corresponding ChIP-seq data obtained from the H1 human embryonic cell 

line, giving rise to 31 cis-trans interaction pairs relevant to our loci of interest. 
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ChIP-seq measures if a TF is present at a genomic locus, therefore if there is a 

signal  

 

in ChIP-seq and a pulldown experiment has been performed on the sequence, 

then we should have also identified the factor by mass spectrometry. This was 

indeed true in 90% of the cases. Although we do not expect the strength of a 

ChIP-seq signal to directly correlate with the MS measurements – because of the 

different nature of the experiments – in 65% of the cases (20 interactions) the 

SILAC ratios indicated clear enrichment over random genomic sequences. In a 

few cases, the SILAC ratios loosely correlated with the ChIP-seq scores. We also 

found a highly significant tendency for loci with congruent interactions to have 
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more accessible chromatin than the remaining loci, as deduced by DNaseI 

hypersensitivity signal (Figure 13E). This suggests that open chromatin has an 

influence on observing intrinsic interactions in the cell. Overall, the available 

ChIP-seq data validate the relevance of our UCE interactome in a native 

genomic context.  

Regulatory relevance of our interactome in cellular context should also be 

reflected in cellular chromatin states associated with enhancer and repressor 

activity. We therefore correlated our SILAC profiles with several histone 

methylation and acetylation ChIP-seq tracks as well with as the DNaseI 

hypersensitivity track. Initial analysis of H1-hESC ChIP-/DNase-seq data 

obtained from ENCODE revealed that, regardless of the track under 

consideration, proteins whose SILAC ratios most strongly correlated with the 

ChIP-/DNase-seq signal were those with strong GC-content preference. To 

correct for this known bias of ChIP-seq datasets [129], we report association 

between SILAC profiles and ChIP-/DNA-seq profiles in terms of deviation from 

correlation expected of the interactor’s GC preference. We validated our analysis 

by comparing SILAC profiles to the CTCF ChIP-seq track, and indeed found the 

SILAC profile of CTCF to be most strongly associated with its own binding in 

H1-hESCs (Figure 13F, arrow 6). 

The analysis recovered several known relationships between intrinsic 

interactors and cellular chromatin states at corresponding loci. For example, the 

PRC1 complex was most strongly correlated with the classical Polycomb mark 

H3K27me3, but also to a lesser extent with the enhancer marks (Figure 13F, 

arrow 6), a finding in line with the bivalent nature of H3K27 methylation and 

H3K4 methylation [50, 130]. In contrast, no correlation was observed for the 

PRC1 complex with H3K27ac, a mark which counteracts Polycomb silencing 

[131, 132]. Table S4 summarizes the full set of associations between our 

interaction data and chromatin data along with functional interpretation. These 

associations indicate that proteins involved in chromatin modification pathways 

already bind even in initial absence of epigenetic priming. Taken together, our 

analyses demonstrate the regulatory relevance of our interactome by illustrating 
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congruence between cell type-specific intrinsic interaction at UCEs and in 

cellulo chromatin modification states.  

 

 The UCE interactome is determined by the cellular 

context 

It is conceivable for DNA sequences of high regulatory information density such 

as UCEs that regulation is cell-type specific. Such variation in regulatory logic 

should reflect itself in change in interactions. To explore this, we also obtained  

interaction data for a subsample of UCEs in the HeLa cell context. Comparison 

between the two datasets revealed that homologous interactors with high 

sequence identity between mouse and human are more likely to have highly 

correlated binding. Examples of such homolog pairs include CHD7, TFAP4 and  

RCOR1 (Figure 14A). However, many highly identical homolog pairs also behave 
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differently between cell lines, indicating effects of cellular context upon intrinsic 

interaction with our baits (Figure 14A, B). For example, by using profile 

correlation across baits as a measure for complex organization (Figure 7E), we 

found that the proteins HDAC2 and HDAC1 bound to our baits in differing 

contexts: as part of the REST co-repressor complex in the HeLa background, and 

as part of the NuRD complex in the R1/E background (Figure 14C). Thus, UCE 

sequences are capable of recruiting different interactors based on the nuclear 

proteome and protein-protein interactome of the cell. 
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 Discussion  3.3

Despite the comprehensive tabulation of enhancer activities of UCEs, the 

candidate interactors responsible for regulation have not been systematically 

characterized. While protein-centric approaches such as ChIP-seq have long 

allowed for global analysis of interactions of candidate proteins with the 

genome, a DNA-centric approach is particularly suited to answering this 

question. We have applied DNA-centric interaction screening to map intrinsic 

interactions of the sequences of hundreds of ultraconserved elements to obtain 

two highly information-rich datasets: the UCE interactome and the uc325 

differential interactome. The exquisite quantitative accuracy of SILAC, 

combined with the large scale of the interactome study, allowed us to provide 

candidate interactors that can be used for follow-up studies of UCE regulatory 

logic, as well as to quantitatively address interaction tendencies of UCEs as a 

family of sequences – a question not previously addressable in smaller scale 

applications of the DNA-centric paradigm.   

The analyses demonstrated that the sequences of nxUCEs represent the 

extreme case when compared to pxUCEs, exUCEs and random genomic 

sequences in many aspects of protein-DNA interactions. They were most 

enriched in intrinsic interactors, especially those annotated to be important in 

tissue specific development; they were most refractory to intrinsically GC-rich 

binding of the heterochromatin-promoting PRC2 complex); and they were most 

enriched in deeply conserved, overlapping TFBSs. The latter phenomenon is in 

the extreme even compared to other non-ultraconserved enhancers in the 

genome. While the extent to which individual interactions contribute to the 

regulatory output remains to be determined, we have shown that interactions 

are recapitulated in cells by ChIP-seq, and as a whole corroborate with observed 

chromatin states that reflect regulatory consequences. Furthermore, UCEs 

appear to bind different factors in different cellular background which can be 

explained in part by rewired protein-protein interaction. All these findings 

provide strong experimental support to the hypothesis of nxUCEs as highly-

constrained transcriptional regulatory modules [43, 110]. 
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If nxUCEs are highly information-dense regulatory circuits, it is conceivable 

that any mutation would result in regulatory alterations with adverse effects to 

the organism. This is supported by the conservation bias of overlapping TFBSs 

inferred from the UCE interactome and the sensitivity of uc325 to mutation with 

respect to gain and loss of binders. Our observation that mutating hGTF2IRD1 

binding sites in uc400 results in gain of Tead1 binding further exemplifies the 

idea that functional binding sites can be gained spontaneously through mutation 

of an existing motif. Our finding that fine-resolution conservation of uc325 

correlated with the tendency to gain interactors also lends possibility to the 

concept that UCEs are under selective pressure that not only prevents loss of 

regulatory function, but also its logical alteration (Figure 4). This is supported 

by the discovery that while many TFBSs can be functional regardless of their 

context with neighboring TFBSs, some TFs do indeed have a strict contextual 

prerequisite [133]. Context dependent binding might provide cell-type specific 

logic that provides further conservational constraints not yet explored in this 

study. Still further contribution may come from functional constraints beyond 

enhancer function [134-136].  

We found that pxUCEs and exUCEs were less extreme in their transcriptional 

regulatory characteristics as indicated by their intrinsic interactions, in line 

with their possible functional roles beyond transcriptional regulation. We found 

pxUCEs to behave similarly to nxUCEs in some aspects (Figure 8B and Figure 

10D), to exUCEs in others (Figure 8A), and often as an average between 

nxUCEs and exUCEs (Figure 8B, 2C, and Figure 10B). This raises the 

possibility that some of the putative exons coinciding with pxUCEs may in fact 

be functional exons and others may be enhancers.  

There remains the general challenge that certain deletions or mutations of 

UCEs have failed to produce observable deleterious phenotypes [53], which can 

be interpreted against the high constraint hypothesis. However, this absence of 

evidence is not surprising, given that almost all ultraconserved enhancers 

remain to be systematically characterized at the regulatory level, where the 

context and environment under which they become indispensable need to be 

determined. Indeed, it is now known that some enhancers contribute to robust 
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regulation and are indispensable only under certain extreme conditions [137]. 

Full, systematic ab initio functional characterization of regulatory elements, 

including upstream events, context-dependent regulatory logic, and downstream 

consequences remains a daunting task. Here we have demonstrated the utility 

of our approach as a crucial initial step in the process and, complementary to the 

VISTA enhancer data which tabulated enhancer activity of UCEs, we provide 

their potential interactors. The use of insertional ChIP where the interaction 

was queried in vivo would be a very attractive follow-up in order to ascertain the 

exact cell-specificity of interactions [66]. Further integration with data obtained 

for in vivo protein-DNA interactions, protein-protein interactions, long-range 

DNA interactions, as well as gene expression data, reporter assays and 

perturbation experiments, will allow deep functional characterization of UCEs 

with the aim to discover their target genes and functional contexts as well as to 

decode their exact regulatory logic. 
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 Experimental Procedures 3.4

 Stem cell culture and nuclear extract preparation 

R1/E cells were SILAC labeled in SILAC DMEM (PAA Laboratories) containing 

either 73 mg/l Lys-8 HCl and 42 mg/l Arg-10 HCl, or the same concentration of 

Lsy-0 HCl and Arg-0 HCl. Medium was supplemented with 10% dialyzed FBS 

(PAA Laboratories), 1x non-essential amino acids (Gibco Life Technologies), 1 

mM sodium pyruvate (Gibco Life Technologies), 3 μM CT-99021 (Biomol GmbH), 

1 μM PD-0325901 (Biomol GmbH), 50 μM 2-mercaptoethanol (Gibco Life 

Technologies), 100 u/ml LIF (Millipore GmbH), and penicillin-streptomycin-

glutamate. Nuclear extracts were prepared as previously described [138] except 

for a reduced NP40 concentration of 0.5% to preserve nuclear integrity during 

cell lysis. Extracts were controlled for presence of Oct4 by western blot. 

 

 Cloning and DNA bait generation 

UCEs and 24 random mouse and human genomic loci were cloned into 

pCR8/TOPO/TA (Life Technologies). See Table S3 for genome coordinates of the 

inserts. Desthiobiotin-conjugated DNA baits of size 200 bp to 1000 bp were 

generated by PCR using the following primers: forward 5’-desthiobiotin-

CAGGCTCCGAATTCGCCCTT-3’, reverse 5’-GAAAGCTGGGTCGAATTCGCC-

3’. PCR products were concentrated by ethanol precipitation and purified from 

unincorporated primers on G-50 Sephadex columns (GE Healthcare). Baits for 

uc325 scanning pulldowns were produced by site-directed mutagenesis PCR. 

Baits for random DNA pulldown used to generate data in Figure 11 consisted of 

179 bp 5’ variable sequence with 20%, 40% or 60% GC content, followed by a 

constant 3’ sequence 5’-AAGGGCGAATTCGGAGCCTG-3’. Baits were 

synthesized as single stranded DNA by Metabion GmbH. To generate dsDNA 

bait, 100 pmol ssDNA oligo was annealed with 100 pmol desthiobiotinylated 

oligo complementary to the constant region (5’-desthiobiotin-

CAGGCTCCGAATTCGCCCTT-3’), and extended with 25 units of Klenow exo- 

fragment (Fermentas), using the provided buffer and supplemented with 25 

nmol each of dATP, dCTP, dGTP, and dTTP at 37oC for 1 hour. Pulldowns were 
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performed using 100 pmol of desthiobiotinylated bait, but otherwise as described 

in Experimental Procedures. 

 

 DNA pulldowns and mass-spectrometric analysis 

DNA pulldowns and sample preparation for mass-spectrometric analysis were 

performed as previously described [98]. Peptides derived from the bound 

proteins were separated by HPLC over a 140-minute gradient from 2% to 60% 

acetonitrile, and analyzed in an Orbitrap Elite mass spectrometer (Thermo 

Fisher Scientific, Germany). Full scan MS spectra were acquired with 120,000 

resolution in the Orbitrap analyzer, and up to the 10 most intense ions from 

each full scan were fragmented with collision induced dissociation and analyzed 

in the linear ion trap. Mass-spectrometric data were processed with the 

MaxQuant software version 1.2.6.20 [82]. The complete pulldown dataset from 

R1/E and the nuclear proteome dataset were searched against the mouse 

Uniprot database. We mapped Gene Ontology [139] and Pfam [140] annotations 

to protein groups using the Perseus module in the MaxQuant software suite. 

 

 Nuclear proteome of R1/E cells 

R1/E nuclear extracts was precipitated in four volume acetone. The pellet of 

nuclear proteins was resuspended in 8 M urea and proteins digested in solution. 

Peptides were separated by HPLC over a 240-minute gradient from 2% to 60% 

acetonitrile, and analyzed in a Q-Exactive mass spectrometer (Thermo Fisher 

Scientific, Germany) [141]. Five replicates were measured to extend proteome 

coverage. Mass-spectrometric data were processed with MaxQuant version 

1.2.6.20. 

 Reporter assays 

We cloned uc.400 into a modified pGL3/Basic firefly luciferase reporter vector 

containing a minimum mouse heat shock promoter via the Gateway system as 

previously described [98]. Primers for amplifying uc.400 were: forward 5’-

GCCTCTCTGAAGCGTTCATC-3’, reverse 5’-TGGTGTTACGGATCACAACG-3’. 
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The mutant variant of uc.400 were generated by PCR using mutagenizing 

primers and subcloned into pCR8/TOPO vector. 

Transfection and reporter assays were performed as previously described [98]. 

Knockdown of hGTF2IRD1 was achieved using shRNA vector generated using 

pSUPERIOR vector system, following the manufacturer’s protocol. The shRNA 

core half-sequences for GTF2IRD1 and non-targeting construct were 

CAGAAAGACTAAAGGAAAT and GACTAGAAGGCACAGAGGGAG, 

respectively.  Knockdown was quantified using quantitative real-time PCR and 

SYBR green system, using the standard ΔΔCt method and normalizing over 

GAPDH. Primers used for qPCR were as follows: GAPDH 5’-

CAAGGTCATCCATGACAACTTTG-3’ and 5’-GTCCACCACCCTGTTGCTGTAG-

3’; GTF2IRD1 5’-ATCATCACCAGCCTCGTGTC-3’ and 5’-

CACCTTCTTGGGGTGCTCT-3’; TEAD1 5’-CATGTCCTCAGCCCAGATCG and 

5’-AGGCTCAAACCCTGGAATGG-3’.  

 

 Data analysis  

Preprocessing 

SILAC ratios were corrected to account for residual proteome differences 

between heavy and light nuclear extracts (see Extended Experimental 

Procedures for detail). Protein groups were then filtered for having coefficient of 

determination of SILAC ratios greater than 0.2 across all baits, and for having 

log2 SILAC ratios exceeding 0.5 in at least three baits. For subsequent analyses, 

we applied a Gene Ontology annotation filter, requiring the protein groups to 

contain at least one of these words or their variants as substring of the GO 

terms: chromatin, DNA, enhancer, genome, helicase, histone, nuclear, promoter, 

RNA, splicing, transcription, and translation.  

 

Imputation  

Where imputation was required, we filled missing logarithmized quantifications 

with a normal distribution with the mean equal to the minimum SILAC ratio for 
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each protein, and the standard deviation of 0.5. This number was empirically 

determined to best simulate the errors of SILAC ratios in the dataset. 

 

Annotation enrichment analysis  

We used Pfam annotation to class interactors by domain and imputed SILAC 

ratios were used to calculate enrichment. For JASPAR prediction [13], we used 

the standard Position Weight Matrix scoring procedure, normalizing the scores 

to the maximum value attainable for each motif. 

 

Ab initio motif enrichment 

 For each k-mer motif where 1 ≤ k ≤ 8 (excluding reverse complement 

redundancies), the median motif occurrence in both orientations was 

determined. DNA baits were then divided into those having less than or equal to 

the median occurrence of the motif (“low occurrence”), and those having greater 

than the median occurrence (“high occurrence”). Wilcoxon rank sum test was 

then used to calculate significance in difference in imputed SILAC ratios 

between the “high motif occurrence” and “low motif occurrence” bait sets. We 

used Benjamini-Hochberg false discovery rate to adjust the P-value for multiple 

comparisons [142].  

 

Superimposition analysis  

We chose a minimum motif length λ, where 4 ≤ λ ≤ 7. To exclude counting the 

overlapping of different-length but otherwise redundant motifs, we applied two 

criteria for keeping a motif: (a) that the motif length was at least λ, and (b) that 

there existed no shorter motif that was a substring of the motif being considered 

or its reverse complement. Motifs only significantly associated with de-

enrichment of interactors but not enrichment were not considered. Conservation 

data were obtained from the UCSC Genome Browser (Build hg19). Non-

ultraconserved VISTA enhancer coordinates were obtained from the VISTA 
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database [106]. Conservation data were obtained from the phylop46wayAll and 

phylop46wayPlecantal tracks of hg19 respectively [126].  

 

ENCODE dataset integration  

Broad histone ChIP-seq signal for histone modifications and peaks for TFBSs 

were obtained from the ENCODE histone ChIP-Seq or DNase-seq tracks 

mapped to the hg19 build using the UCSC Genome table browser. See Table S3 

for the track listing. Only loci corresponding to bait sequences with non-zero 

signal in both the DNase-/ChIP-seq track and in the control track were 

considered. For each protein, Spearman correlation coefficient was determined 

between SILAC ratios logarithmized DNase-/ChIP-seq signal density normalized 

to control signal density. Correlation coefficient deviation was calculated by 

subtracting the expected DNase-/ChIP-seq to SILAC ratio correlation given the 

bait GC content to SILAC ratio correlation, and then normalized to the 

minimum value. 
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 Discussions 

 Scalable bait production for DNA SILAC AP-MS 4.1

The UCE interactome described in Chapter 3 was derived from several hundreds 

of SILAC AP-MS experiments. Unlike immunoprecipitation techniques where 

many commercially available antibodies exist, DNA AP-MS requires sequence-

specific DNA baits which vary vastly between studies; as a result, DNA baits are 

usually prepared from first principle. The actual step of affinity purification has 

been executed in high-throughput in previous studies [96, 97], and recent 

developments in sample processing and MS instrumentation have enabled 

parallelized processing of recovered proteins and minimized the sample analysis 

time [143]. Due to these improvements, the time-limiting step in large-scale 

SILAC AP-MS screens is now the bait preparation.  

Owing to the prohibitively high cost of chemically synthesizing long DNA 

oligonucleotides, generation of DNA baits longer than 200 bp, such as those used 

in this thesis, relies on enzymatic synthesis. Long DNA sequences could be 

amplified out of genomic DNA, using polymerase chain reaction (PCR) in which 

one primer carries a chemically conjugated affinity tag. Unfortunately, the 

efficiency, purity and reproducibility of genomic PCR are highly dependent on 

both the primers and the target sequence. The issue of reproducibility was 

particularly problematic as the amount of DNA needed for an AP-MS is of a 

much larger scale than that that obtainable from a single conventional PCR 

vessel. Furthermore, a sequence-specific affinity-tagged primer would be needed 

for amplification of every genomic locus; such a primer is very expensive, costing 

over 50 times more than conventional untagged primers. 

We overcame these limitations by sub-cloning the UCE sequences into an 

intermediate vector, because vector PCR is much more efficient than genomic 

PCR. We produced a computer script that requested primer sequences through 

the Primer3 API for each UCE [144]. Thanks to the relatively low GC content of 

the UCE sequences, automated primer design was almost always successful in 

finding a primer pair within 100 bp on either side of the UCE boundary. We had 

found that genomic amplification using these primers had about 35% failure 



 
Discussions 78 

  

rate (defined as no visible product or incorrectly-sized product). Most of these 

failed amplifications could be combined across batches and iteratively re-

attempted under various conditions to achieve a correct product. The yield of 

each successful genomic PCR, however, varied greatly. We then used 

topoisomerase-assisted cloning to insert the PCR product into a universal 

backbone. This process was more than 95% successful, as judged by at least one 

of two randomly picked clones passing colony-PCR validation. Once subcloned 

into the intermediate vector, the bait was amplified using a pair of universal 

primers that bind to the backbone flanking the UCE sequences. This reaction 

was 100% successful, and the product showed no appreciable yield variation 

judged by absorbance-based DNA quantification. This improvement of yield and 

reproducibility resulting from moving from genomic to vector DNA was 

instrumental in achieving the required throughput. Once the UCE clones were 

made and validated, it was possible to generate the 200 UCE baits on demand 

within few days. 

In section 3.2.4, we generated a differential interactome of uc325 against a 

transition mutation control. Instead of sub-cloning each mutation control, which 

would involve laborious preparation and validation steps, we simply constructed 

each bait from two rounds of PCR: first, each mutant variant bait was amplified 

as two “halves”, with an overlap region where the mutation occurs; these halves 

then served as templates to re-assemble the mutagenized bait (Figure 15A). The 

first PCR was easily validated by visualizing in gel electrophoresis, where the 

combination of the “left” and “right” products would create a diagnostic pattern 

when the scanning mutant variants are placed in order (Figure 15B). The 

corroboration between the data shown on Figure 12 and the expected disruption 

of binding (given the knowledge of existing binding motifs) validated this 

differential bait generation method. Nevertheless, it turned out that a few 

interactors constantly bound either to the wildtype or the mutant, regardless of 

the underlying mutation. Since these interactions were not sequence-specific, we 

attributed their indiscriminate enrichment/depletion to the aforementioned 

additional steps required to generate the mutant baits. These additions may 

have resulted in different sets of residual proteins associated with the bait prior 
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to the pulldowns. We therefore excluded the proteins that show this behavior 

from the analysis. 

In summary, a well-chosen combination of high-throughput cloning, automated 

PCR primer design, universal affinity-tagged PCR primers for bait synthesis, 

and computational algorithms for systematic artifact exclusion together allowed 

the several hundreds of DNA baits between 200 and 1000 bp to be prepared in a 

short time and at a low cost. 
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 Quantitative interpretation of SILAC AP-MS data 4.2

The first large-scale SILAC AP-MS dataset was generated for protein-protein 

interactions [97]. The scale-free property of the known protein-protein 

interaction networks implicates that the vast majority of proteins have a modest 

number of binding partners, and only few proteins act as “hubs” for a large 

number of interactors [145]. The identities of protein binders, their affinities and 

stoichiometries are related to the physical properties of the molecules and, for a 

substantial number of small, stable protein complexes, only few quantized 

possibilities exist [146]. However, the scenario for DNA-centric protein-DNA 

interaction is very different. A DNA sequence is capable of binding a large 

number of transcription factors, each with a different stoichiometry and affinity, 

depending on the number and strengths of sites available on the sequence. 

When protein interactions at a DNA sequence are compared to those at a point 

mutation variant [98-100], the number of binding sites affected on the DNA 

sequence is minimal. However, comparison of protein interactions between two 

completely different DNA sequences typically result in a distribution of 

enrichment factors that is more continuous than that of protein-protein 

interactions.  

This continuous distribution of enrichment was indeed observed in the UCE 

interactome. Its quantitative interpretation was clearly of biochemical 

significance. The most striking evidence for this was in the binding of the 

transcription factors with known AT-rich or GC-rich sequence preferences, 

where we found strong correlations between the enrichment folds and the bait 

nucleotide compositions. Additionally, most of the downstream analyses – gene 

annotation enrichment, motif discovery, ChIP-seq data integration and 

interaction correction profiling – required that the SILAC ratios were 

interpreted quantitatively across baits. Experimentally, this quantitative cross-

comparison was made possible by the use of a universal control bait. However, 

owing to the proteome variations between lysates, errors between forward and 

reverse SILAC ratios initially prevented the quantitative treatment of these 

ratios with confidence. Even though we had pooled SILAC nuclear lysates from 

twenty preparations, in an attempt to reduce the residual heavy-to-light 
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difference as far as possible, a small residual proteome variation of up to 1.4 fold 

still remained.  

We therefore developed and applied a proteome variation uncoupling procedure 

(or “ΔP-adjustment”) to remove this systematic confounding factor from our 

dataset, taking advantage of the label-switching in the experimental design. We 

found that this procedure was able to collapse most of the errors observed 

between the forward and reverse datasets. The resulting SILAC ratios were 

pushed into distributions that are expected of ideal forward-reverse 

experiments: a cloud of oppositely-signed forward and corresponding reverse 

SILAC ratios, and an absence of ratios in the forbidden “same-sign” quadrants. 

As this ideal could be always be achieved after introducing the adjustment 

procedure, the need for false positive and contaminant calling, as had been 

traditionally done, was removed. This enabled indiscriminate, quantitative 

treatment of all SILAC ratios. 

We found better forward-reverse reproducibility if we performed the ΔP-

adjustment batch-wise rather than globally. There are important implications of 

this result: Even though the originating lysates of each batch are equivalent, 

day-to-day handling variation can produce significant batch-wise systematic 

errors. Parameters such as protein stability in the lysate, its stickiness in the 

elution process, its degree of non-specific binding owing to random variation in 

competing DNA, may all contribute to the apparent batch-wise proteome 

variations. Furthermore, with cross-batch normalization, it would in future no 

longer be absolutely necessary to calculate the amount of lysate needed prior to 

the screen, and scale the production accordingly as we have done here (“vertical 

scaling”); instead, cells may be grown and lysates prepared on demand 

(“horizontal scaling”). This is true as long as the different lysates are derived 

from cells that are biochemically equivalent with respect to their protein 

interaction affinities. 

Another implication of the ΔP-adjustment concerns other SILAC AP-MS screens 

where every forward-reverse experiment pair is performed with a different 

combination of labeled lysates; for instance, owing to genetic background 

difference or presence of a bait expression vector. In such cases, each forward-
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reverse experiment pair has its individual proteome variation that cannot be 

compared across the board. Interpretation of the SILAC ratios is then limited to 

classical interactor calling. As mentioned above, this may be acceptable for 

protein-protein interaction screens of relatively small and stable complexes. 

However, future SILAC AP-MS studies of protein-DNA interactions under 

varying cellular conditions should incorporate this consideration into the 

experimental design. 
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 Origins of UCE ultraconservation 4.3

There are several hypotheses regarding what contributes to ultraconservation of 

UCEs. Based on experimental data that demonstrated enhancer activity of 

UCEs, one popular hypothesis is that UCEs contain a high density of 

overlapping, functional TFBSs, such that no single nucleotide can be mutated 

without disrupting one or more TFBSs. An argument against the overlapped 

TFBS hypothesis as the sole contributor to the extreme conservation is often 

made as follows: Because TFBSs are degenerate, mutation of a single nucleotide 

belonging to a given TFBS does not always disrupt its ability to bind to the 

transcription factor. This degeneracy therefore requires the TFBSs to overlap so 

densely that not a single degenerate base remains. Experimental data 

supporting or refuting this hypothesis were much needed prior to this study. 

We used the UCE interactome to derive the TFBSs for which we found 

significant evidence of correlation with the binding enrichment. Mapping these 

motifs back onto the UCE sequences and other sets of control sequences, we 

found that UCEs were indeed enriched in overlapping TFBSs when compared to 

other non-conserved enhancers. Importantly, we found that the DNA bases that 

belonged to overlapping TFBSs were significantly more conserved than those 

that did not. The latter observation also applied to non-conserved enhancers, so 

the idea of overlapping TFBSs providing greater evolutionary constraint was 

clearly plausible. Combined with the significantly higher proportions of 

overlapping TFBSs for non-exonic UCEs over those for non-conserved 

enhancers, we conclude that the contribution of overlapping TFBSs to the 

extreme conservation of non-exonic UCEs is substantial.  

Based on our scanning mutagenesis pulldown with one cell line, we saw that 

indeed many positions, but not all, resulted in multiple disruption of binding 

owing to transition mutation. It is difficult to assess how strong a disruption 

there should be before the regulatory function is sufficiently abrogated to result 

in evolutionary pressure. Furthermore, given the relatively small evolutionary 

distance between human and mouse, it is more likely that individual TFBSs 
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keep their sequences despite the degeneracy. This argument, however, would 

not be applicable to HNCEs defined over larger evolutionary distances. 

There is no a priori requirement for a set of sequences, that are identified based 

solely on a given percentage sequence identity over an arbitrary length, to be 

under the same kind of evolutionary constraints. We have found, for example, 

that the enrichment and conservation of overlapping TFBSs did not apply to 

exonic UCEs. While this does not automatically imply that the underlying 

coding sequence is functionally critical, it does demonstrate the possibility that 

the constraints are distributed differently over different processes. Other 

functional constraints have been proposed, including splicing, nonsense 

mediated decay, recombination, and structural organization of the chromatin. 

The degeneracy argument, if true, would imply that UCEs are able to use the 

remaining “information space” for other functions. However, this raises the 

question of why different regulatory functions should be compressed into one 

superimposed locus, given the vastness of genome. 

One tentative hypothesis that has not received much attention in the past, but 

to which our experimental data led us, is that non-exonic UCEs may have 

evolved into “local minima” in the evolutionary pressure landscape. UCEs, 

assumed to be critical regulatory elements, may have evolved to a point of such 

complex functional logic that a mutation would result in a qualitative change in 

the regulatory logic, rather than its complete disruption. This hypothesis would 

be consistent with the positioning of UCEs close to genes involved in 

development, and corroborates many aspects of our dataset. First, the UCE 

sequences, once shuffled, were still able to yield small but significant 

enrichments in overlapping TFBSs. We attributed this finding to their AT-

richness, which is compatible with the nucleotide composition of many 

developmentally-regulating TFBSs. Second, we found a significant conservation 

bias of GC bases over AT bases in UCEs but not in random genomic loci. Since 

transition mutation inverts the GC content, this observation would be consistent 

with an evolutionary pressure to prevent formation of even more AT-rich bases. 

Finally, our scanning screen of uc325 showed that regions of UCEs that were 

deeply conserved were also those that gained interactions by mutation. This 
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“qualitative logic alteration” hypothesis would also be compatible with the 

multiple constraint hypothesis, as they each provide different contributions to 

the conservation. In this combination, the qualitative logic alteration hypothesis 

would also alleviate the requirement of the multiple constraint hypothesis for 

absolutely ubiquitous overlapping TFBSs. Further interaction and reporter 

experiments combined with sequence and conservation analysis will be needed 

to test this idea.  
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 Outlook: the interactome kaleidoscope 4.4

It is accepted that the chromatin environment is a major influence on 

physiological protein-DNA interactions, often blocking interactions that would 

otherwise take place. In general, DNA-centric methods that are based on affinity 

purification of nuclear lysate incorporate the context of the nuclear proteome 

while being uncoupled from pre-existing epigenetic forces. In the AP-MS 

approach, this unique combination of advantages further synergizes with 

sensitive and unbiased detection, and the exquisite quantification precision 

offered by mass spectrometry.   

To date, a number of protein-DNA interactomes have been published, coming 

from both the protein-centric and DNA-centric perspectives. The existing 

experimental methods for protein-DNA interaction studies cover a spectrum of 

biochemical to physiological emphases. Protein-centric methods can reveal a 

biochemical DNA sequence specificity as a motif (SELEX, protein binding 

microarray), but can also report true in vivo binding events (ChIP and ChIP-

derivatives). Similarly, DNA-centric methods can probe intrinsic protein binding 

preference of a given DNA sequence (AP-MS), or the physiological interaction at 

the native chromatin (iChIP, PiCH). Although the methods that offer in vivo 

perspectives are needed to ultimately validate hypotheses that concern gene 

regulation, approaches with heavier biochemical emphasis are still of great 

importance, because they allow for discovery of interactions in regulatory 

systems where the biological context is unknown. Scalable implementations of 

both protein-centric and DNA-centric methods now exist, and their results can 

now be used to validate each other, as we have done in this thesis. Future 

interactomes will help us better understand how the different biochemical and 

physiological emphases of each method give rise to the data that they deliver, 

and how the shortcomings of one dataset may be complemented by the strength 

of another.  

A protein-DNA interactome gives information about the binding that happens in 

one experimental condition, and thus provides a static snapshot. Better depth of 

regulatory understanding may be achieved by introducing perturbations to the 
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system being studied. Deep perturbation of protein-centric studies is becoming 

common, owing to the development of scalable ChIP-seq. For instance, this 

approach is being used by various groups to study DNA targets of a 

transcription factor across different cell types/stimuli [147, 148]. With large-

scale DNA AP-MS screens now possible, similar perturbations may be performed 

in order to study protein binders across different nuclear environments. 

Recently, a novel application of next generation sequencing was developed that 

allows deep characterization of a regulatory DNA element. Known as “massively 

parallel reporter assay” (MPRA), the approach measures the regulatory activity 

(by expression of RNA reporter barcodes) of a short enhancer, as well as 

thousands of its mutational variants. MPRA has especially promising 

applications in the field of synthetic biology, as it can be used to aid rational 

design of artificial regulatory elements. Large-scale AP-MS would be the ideal 

technique that delivers the complementary deeply-perturbed interactomes, 

which would allow the differential reporter activity to be linked by differential 

protein binding. Together, these two technologies can offer the community the 

hope that, one day, the aspiration to reverse-engineer complex, multi-factorial 

enhancers will be fulfilled. 
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