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For we know in part, and we prophesy in part.

But when that which is perfect is come,

then that which is in part shall be done away.

When I was a child, I spake as a child, I understood as a child, I thought as a child:

but when I became a man, I put away childish things.

For now we see through a glass, darkly, but then face to face:

now I know in part; but then shall I know even as also I am known.

I Corinthians 13:9-12
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Summary

Summary

Protein-DNA interaction is central to the understanding of transcriptional
regulation. At present, chromatin immunoprecipitation coupled to parallel
sequencing (ChIP-seq) is a widely used and scalable technique to identify target
DNA sequences of transcription factors of interest. Stable isotope labeling of
amino acid in cell culture (SILAC) has been used with protein affinity
purification and high-resolution mass spectrometry (AP-MS) to give a
complementary perspective of protein interactions at specific DNA sequences.
However, large-scale SILAC AP-MS screens for protein-DNA interactions and
their quantitative analysis were limited by issues such as cross-batch

comparability and variation within the SILAC duplicates.

The work in this thesis introduced several improvements in the workflow of
SILAC AP-MS for interactions of proteins and long (> 200 bp) DNA sequences.
Specifically, we implemented high-throughput bait generation based on parallel
cloning. In addition, we devised a computational processing procedure capable of
de-noising SILAC AP-MS data by automatically identifying and removing batch-
wise systematic errors. These treatments relieve the bottlenecks in scalable
DNA SILAC AP-MS and allow for high-precision quantitative comparisons

across experiments as well as experiment batches.

We applied scalable DNA SILAC AP-MS to study protein interactions to highly
conserved non-coding elements. Known to possess tightly spatiotemporal-
controlled transcriptional regulatory activity, these elements are thought to
serve important biological functions. Their origin of conservation is a topic of
great interest; however, experimental data are still needed to test the existing
hypotheses. We produced an interactome for 190 ultraconserved elements
(UCEs) — the most extremely conserved subset of the highly conserved non-
coding elements — using the scalable DNA SILAC AP-MS approach we
developed. The interaction profile supports a “multiple binding constraints”
hypothesis, wherein overlapping functional transcription factor binding sites
give rise to higher evolutionary pressure that keeps each nucleotide conserved.

We also generated a scanning differential interactome of an ultraconserved
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enhancer at five nucleotide-resolution, where we observed the consequences of

mutation on the changes in protein interactions.

We cross-validated our SILAC AP-MS interactome with existing ChIP-seq data
for transcription factor and chromatin signatures. We found that the
interactions of proteins with our DNA affinity baits, where initial epigenetic
priming was absent, nevertheless reflected the cellular epigenetic modifications
at the corresponding genomic locus. This analysis, carried out over hundreds of
DNA sequence-genomic locus pairs, strongly demonstrated the contribution of

genetic information in establishing epigenetic states of UCEs.

In summary, we have used scalable DNA SILAC AP-MS enabled by
improvements developed by this work, to produce a functionally cross-validated
UCE interactome and shed light on the question of the origin of UCE

conservation.



Introduction

1 Introduction

DNA, RNA and protein are complex and extremely diverse biopolymers that
together constitute the molecular building blocks of the cell. The flow of
information between these polymers became clear as early as 1958, when
Francis Crick, co-discoverer of DNA structure, coined the phrase “Central
Dogma of molecular biology” which sums up as “DNA makes RNA makes
protein”. Protein performs myriad structural, metabolic and regulatory functions
inside the cell, whereas DNA is the inheritable genetic material, carrying the

information required to produce protein via RNA intermediates.

The steps of gene expressions corresponding to the central dogma have been
described and their general mechanisms studied in great detail. In eukaryotic
cells, the DNA encoding a protein gene is preceded by a promoter sequence
which marks the transcription initiation site. An RNA polymerase complex
binds to the promoter and synthesizes pre-messenger RNA (pre-mRNA) based
on the DNA template. During and after transcription, the pre-mRNA is modified
at both ends. The 5’ end receives a methylated guanine “cap”, and a stretch of
around 200 adenines is added to the 3’ end, forming the “poly(A)” tail. The pre-
mRNA containing both introns and exons is spliced to the smaller mRNA, where
the introns are removed. The mRNA is exported from the nucleus and may be
specifically targeted to subcellular locations (or even exported across cells), and

is eventually translated by the ribosome.

Gene regulation is the complex and dynamic process which controls production
of proteins at the appropriate place and time, and may be divided temporally
into transcriptional, post-transcriptional, and post-translational regulation.
Conceptually, for regulation to be specific to cellular conditions while ensuring
stability, a mechanism that provides both orthogonality and redundancy must
be established. Both are achieved by specific physical interactions between the
regulating molecule and their target DNA or RNA sequence motifs that are
directly coupled to the synthesis or localization process (“trans” and “cis”
elements, respectively). Such cis regulatory elements include transcription
factor binding sites (TFBS) and mRNA localization motifs. Proteins fulfill the

function of trans entities in a vast majority of processes, although there is also
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growing evidence for RNA fulfilling this role. This thesis develops and uses
proteomic technology to elucidate protein-DNA interactions at transcriptional

regulatory elements that have been revealed through comparative genomics.



Introduction

1.1 Protein-DNA interactions in transcription regulation

1.1.1 General interactions in RNA Pol-II mediated
transcription

The RNA polymerase II complex is responsible for transcription of mRNA in
eukaryotic cells. RNA Pol II-mediated transcription is initiated from RNA Pol II-
specific promoters. These promoter sequences are diverse but share common
characteristics of the “basal DNA elements”, namely: the initiator sequence
Y2CAY5 (the A nucleotide of which becomes the first base of the mRNA), and the
so-called “TATA box” element TATAAWs3 flanked by a GC-rich sequence
approximately 25 bp upstream of the initiator sequence. Promoters without the
TATA box tend to contain a “downstream promoter element” AGAC, located

approximately 30 bp from the initiation site.

The RNA Pol IT complex consists of several general transcription factors TFII(X),
which are altogether required for promoter-targeted transcription initiation.
First, TFIID subunits, consisting of the TATA-binding proteins (TBP) and TBP-
associated factors (TAF's), are required to direct the complex to either the TATA
box or the downstream promoter element. The TBP directly complexes with the
minor groove of the TATA box, introducing a near-perpendicular bend on the
DNA towards the major groove, which in turn brings the transcription factors
and RNA Pol II into closer proximity. Then, TFIIA, TFIIB, and TFIIF are
recruited to the promoter in the order specified. Subsequent binding of TFIIE
and the ATP-dependent DNA-helicase TFIIH then causes the promoter DNA
duplex to melt, allowing the coding strand to be used as template for
transcription. In summary, TBP is the factor that binds directly to the promoter
DNA in a sequence-specific manner; further protein-protein interactions
between the general transcription factors and RNA Pol I then contribute to the

specific localization of the initiation complex.
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1.1.2 Specific protein-DNA interactions in transcription
regulation

Although the basal promoter elements are critical in precise determination of
the initiation site, they are themselves insufficient for high level transcription in
vivo. A classical scanning mutagenesis study of the B-globin promoter
demonstrated that physiological levels of transcription in vivo require
interactions at other, more distal elements in addition to the basal elements [1].
Indeed, most promoter sequences possess multiple copies of such non-basal
elements that are targeted specifically by transcription factors known as
“activators”. Several families of activators exist, many of which having partially
redundant DNA sequence specificities. Non-basal elements are also targeted by
“repressor” proteins, whose binding impedes transcription initiation directly or
indirectly. Depending on cellular context, many transcription factors can act as
both repressors and activators, and their nuclear localization and DNA binding
capability can be modulated by post-translational modification. As a result, the
transcriptional output of any given promoter depends on the relative expression
levels of relevant transcription factors and their context-dependent mode of
action with respect to the promoter. The multiple copies of non-basal elements
targeting the same protein can result in a degree of redundancy, where no single

non-basal element is critical to maintain the promoter activity.

In addition to interactions at the promoter, sequences known as enhancers also
interact with transcriptional factors through conventional TFBSs. By offsetting
the local concentration of interacting transcription factors, enhancers are able to
positively or negatively influence transcription initiation of the promoters in
physical proximity. Because of higher-order structural organization in the
nucleus where different parts of the chromosome are brought together,
enhancers can act over great distances along the genomic coordinate. Indeed,

some enhancers are known to act on promoters several hundred kilobases away.

The way the information on an enhancer is interpreted can be described in the
“enhanceosome” model and the “billboard” model. In the enhanceosome model,
transcription factors bind co-operatively on the DNA through protein-protein

interactions. This requires that the transcription factor binding sites are present
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with strict relative positioning and orientation. The interferon-B locus is the
hallmark example of an enhanceosome, where an array of TFBSs are placed
next to each other, reflecting the exact topology of protein-protein interactions
[2]. The billboard model, in contrast, proposes that the TFBSs are independently
interpreted by the transcription factors, possibly in a multi-step process. The
billboard model is supported, for instance, by the observation that a single
enhancer can act both as a repressor and an activator in the same nuclear
environment [3]. A continuum of mechanisms with characteristics of both the
billboard model and the enhanceosome model may be attributed to different

enhancers [4].

1.1.3 Biochemistry of specific protein-DNA interaction

Transcription factor binding sites are typically 4-20 nucleotides in length and
can be of varying degree of specificity. The first proposed mechanism accounting
for sequence specificity in protein-DNA interaction was the “direct readout”
model: Base-specific hydrogen bonds and non-polar interactions would be formed
between the major groove of the DNA and a series of amino acid side chains that
provide the complementary chemical groups for interaction. Although consistent
with over a thousand protein-DNA complex structures, there is no one-to-one
correspondence between the DNA and a “complementary” protein sequence.
Further structures have revealed that sequence specificity is generally achieved
through combination of base-specific interaction in both the major and the minor
grooves, as well as shape-recognition mechanisms that differentiate between

size of DNA grooves or the form of the duplex [5].

The different combinations of mechanisms are reflected by the various
structures of DNA binding domains that exist, and to some extent, the
corresponding family of transcription factor binding sites. The TRANSFAC
database, where binding motifs for over a thousand transcription factors are
deposited, classifies their motifs as follows: (1) basic domains, (2) zinc-
coordinating domains, (3) helix-turn-helix domains, and (4) beta-scaffold
domains [6]. Closely related domains often have sequence specificity with

similar characteristics, e.g. the homeodomains bind AT-rich sequences, whereas
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the Kruppel like factors contain zinc finger domains that recognize GC-rich

sequences.

Transcription factors often complex to DNA cooperatively [7-9]. In the special
case of homo-/hetero-dimers, the binding sites often consist of two palindromic or
near-palindromic “half-sites” [10]. These half-sites may be separated by a few
non-specific nucleotides, as is the case with the family of STAT transcription
factors [11]. Physical interaction between transcription factors may also result
in modulation of sequence specificity. For example, the Hox family of
transcription factors bind to DNA through their highly-conserved

homeodomains, which can achieve exquisite specificities upon dimerization [12].

1.1.4 Representation of transcription factor binding motifs
Comparison of promoters and enhancers revealed that TFBSs generally vary in
sequence, even for a single transcription factor. The most concise representation
of a set of TFBSs is the “consensus sequence”, where the known sites are aligned
and the most common nucleotide/nucleotide combination is given. For example
TTCYWNDGAA is a consensus binding sequence for the transcription factor Stat6.
While this representation is simple, it cannot quantitatively “score” the fit of a
sequence to the motif. A more popular representation of a TFBS is therefore the
position weight matrix (PWM), which summarizes the frequency or probability
of each position in the TFBS being a specific nucleotide. The PWM allows
calculation of the log-likelihood — the sum of log-probability across all positions
given the specific sequence — which can be treated as a simple score for how well
a sequence fits the ensemble of known TFBSs for a given transcription factor.
Another advantage of the PWM is that it allows for the calculation of the
“Information content”, which is related to the degree of degeneracy of the set of
TFBSs. As an example, Figure 1 illustrates the PWM of Stat6 as curated in the
JASPAR database [13].

Because log-likelihoods are calculated from the product of probabilities for each
position, this interpretation of the PWM assumes independence of nucleotide

identity between each individual position of the TFBS. This assumption has
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A 1852 | 1849
C 1680
G 1796
T 1852 | 1839
T T C G A A

Figure 1: Representation of Staté binding sites as a position weight matrix with the
corresponding consensus sequence.

The nucleotide identities corresponding to the consensus are highlighted. Nonspecific bases are faded
in grey, and degenerate bases are highlighted in yellow.

been shown to be invalid for some transcription factors, and representations that
take into account base dependency can perform better in assessing a fit of a
sequence as a TFBS. Examples of such representations include those employing
Hidden Markov Models [14] or simply displaying all non-degenerate motifs [15].
Although more accurate, these models are not easy to visualize and summarize,
and the PWM representation remains a popular choice owing to its simplicity

and relative usefulness.

1.1.5 Epigenetic mechanisms

DNA in vivo is packaged into nucleosomes, which themselves are part of higher-
order structural organization of the chromatin. The nucleosome contains a “core
particle” that consists of two copies each of histones H2A, H2B, H3 and H4 [16].
A DNA duplex forms a 146 bp left-handed superhelix around the octamer, where
basic, amide and hydroxyl groups from the histone proteins form a network of
hydrogen bonds with the phosphate backbone of the DNA. Although much of the
histone-DNA affinity is derived from non-base specific contacts, nucleosomes do
nevertheless possess weak sequence specificity [17]. Although the exact
sequence preference of the nucleosome is complex, the most prominent predictor
of intrinsic nucleosome affinity of a DNA sequence is its GC content [18]. A
nucleosome positioned at a promoter can impede transcription, for example, by
burying the TATA box inside the DNA-histone interface and preventing its
access by the transcriptional machinery. Nucleotide-resolution re-positioning of

a nucleosome around regulatory elements can significantly modulate
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transcriptional regulation, through mechanisms that often involve a complex
interplay between nucleosomes and other transcription factors [19, 20]. In
addition to the core particle, a “linker” subunit histone H1 may also be found on
nucleosomes. The presence of histone H1 on nucleosomes results in chromatin
compaction [21], and relative proportions of histone H1 are understood to
account at least partially for the higher structural organization of the chromatin

[22].

A substantial proportion of amino acids in the histone proteins are in the
relatively unstructured “tail” domains [23], and are subjected to extensive post-
translational modifications including acetylation, phosphorylation, methylation,
ubiquitinylation, sumoylation and biotinylation [24-29]. These modifications can
enhance or repress transcriptional activation through different mechanisms. For
instance, lysine acetylation results in neutralization of positive charges that
interact with the DNA phosphate backbone, effectively loosening the
electrostatic histone-DNA contact. Modified histone residues generally serve as
docking sites for modification-specific protein “readers”, which in turn are
coupled to or recruit chromatin remodeling complexes. This results in
compaction or loosening of the chromatin structure, thus modulating
transcription activity via chromatin accessibility, or, alternatively, recruitment
of proteins that catalyze further histone modification (“writers”) [30, 31]. In this
way, readers and writers combinatorially influence the chromatin environment

[32].

Other aspects of epigenetic controls include: different turnover rates of histone
modifications [33]; spread of modifications and chromatin states into
neighboring regions and restriction of this process by insulator sequences [34,
35]; DNA modifications which interact with genetic mechanisms [36] and
inheritance of chromatin modification [37]. Furthermore, chromatin itself is
organized into chromosome territories where distal parts of the genome are
brought into proximity: a mechanism that is exploited by distal enhancers [38,

39].

Importantly, although protein-protein interactions appear to dominate in the

epigenetic processes that directly influence transcriptional activity, it has been

10
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recently shown that in vivo epigenetic states may be recapitulated by in vitro
reconstitution of native nuclear lysate to naked DNA [40]. This study, based on
flow-cytometric measurements of histone modifications on a regulatory DNA
sequence, emphasizes the primordial contribution of underlying DNA sequence

to epigenetic mechanisms.

11
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1.2 Highly conserved non-coding DNA sequences

As of 2013, the number of completely sequenced eukaryotic genomes was
approaching 200 [41]. This increasing wealth of complete genome sequences has
enabled extensive comparison between the genome of different species, revealing
DNA elements that are conserved between them. In closely-related species, DNA
conservation can be attributed to the small amount of time since divergence
between their ancestors. Over a larger evolutionary distance, DNA sequence
conservation is generally accepted to implicate a biological function [42]. A
conserved DNA element may encode a protein or RNA gene, or it may be
designated “non-coding”, if no evidence of a corresponding gene product has been
detected. Conserved non-coding DNA sequences are thus particularly interesting

in the context of gene regulation, as they may be potential regulatory elements.

Many classes of conserved non-coding DNA elements have been tabulated. A
family of human sequences known as ultraconserved elements (UCEs) was first
described in 2004, under very stringent conservation criteria of 100% mouse-
human sequence identity over 200 bp [43]. Other classes of lesser but still
statistically significantly conserved elements include ultraconserved regions
(95% 1dentity, > 50 bp) [44] and long conserved noncoding elements (significant
conservation > 500 bp) [45]. All are known under the umbrella term of highly-
conserved non-coding elements (HNCEs). Sets of HNCESs that were identified in
contexts of different reference species and varying evolutionary depth possess
common characteristics despite their sequence diversity. First, HNCEs are
found in proximity to similar sets of genes in the genome: namely, those that are
related to development [46, 47]. Interestingly, this localization preference holds
true across clades even though HNCEs particular to the clade bear no sequence
resemblance to each other [48]. Second, HNCE sequences are generally
significantly more AT-rich than the rest of the genome, and are often flanked by
GC-rich sequences [49]. Closer bioinformatic analysis of HNCEs has consistently

revealed large density of TFBSs and higher frequency of overlapping TFBSs.

These sequence and localization attributes of HNCEs as well as experimental

data suggest that they may be regulatory elements. Chromatin modification

12
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datasets now reveal that genes close to HNCEs (even though not necessarily the
HNCEs themselves) are particularly enriched in both H3K27Me3 and H3K4Me3
marks — modifications that are related to heterochromatin formation and
transcription activation respectively that can be found as co-existing “bivalent”
marks [50]. HNCEs can function as an enhancer driving reporter genes in
mouse and zebrafish out of their native genomic context. The resulting reporter
expression can be extremely localized and temporally restricted during
embryonic development [51]. This directly demonstrates that HNCEs are
capable of regulating transcription. These observations, combined with the
peculiar localization around developmental genes and the significant increase in
conservation of enhancers active during gastrulation, associate HNCEs with the
regulation of genes involved in body plan development. Experimental data

supporting this hypothesis, however, are still needed [52].

A central question surrounding HNCEs, particularly UCEs, is the origin of their
extreme conservation. The regulatory activity of HNCEs by itself is not
sufficient explanation, since non-conserved enhancers also exist. The overlapped
TFBSs on HNCEs may contribute to multiple constraints against loss-of-
function mutation. As an enhancer may be used multiple times and their logic
re-interpreted in a context-dependent manner, these constraints need not
manifest themselves simultaneously. However, it was argued that degeneracy
of TFBSs would require an extremely dense overlapping of functional sites that
had yet to be observed. Alternatively (although somewhat less parsimoniously),
these elements may have additional functions to that of an enhancer. Functions
such as splicing control, nonsense-mediated decay regulation, homologous
recombination, and structural maintenance of chromosomes have been proposed
[62]. Even more confounding is the observation that separate deletion of four
UCEs from mice revealed no obvious deleterious consequence to the animals or
their progeny [53]. Overall, the challenge of explaining HNCE conservation and

function remains open.

13
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1.3 Methods for study of protein-DNA interactions

Biological questions involving transcription regulation often concern any of the
following three entities: the cis regulatory DNA elements, the trans interacting
proteins, and the target genes being affected. These can be further
parameterized by various factors including cell type, signaling state, local and
global changes to chromatin structures and higher-order chromosomal

organization.

Classically, identification of cis regulatory elements and trans factors relied on
genetic and biochemical techniques, many of which were laborious and designed
to assess interactions given a priori knowledge of the interaction pair. For
example, electrophoretic mobility shift assay (EMSA) [54] and DNA footprinting
techniques [55] can assay a DNA sequence for binding to proteins, but does not
give information on the identity of the protein itself. The past decade saw
tremendous developments in both genomic and proteomic technologies, enabling
sequence-based identification and quantification of proteins and DNA in
complex mixtures. Marriage of classical biochemistry with “-omics” techniques —
notably, massively parallel DNA sequencing and high-resolution mass
spectrometry [56] — now enables unbiased discovery of both regulating DNA and

regulating protein entities.

1.3.1 Protein-centric methods for DNA interactions

Sequence specificity of a DNA-binding protein can be determined using the
protein as the bait to purify a library of DNA, and subsequently analyzing the
recovered DNA sequences. For example, “systematic evolution of ligands by
exponential enrichment” (SELEX) purifies DNA molecules with highest affinity
to the protein out of a pool of random DNA oligonucleotides flanked by invariant
adaptors [567]. The recovered DNA molecules from the first round of purification
are amplified and their sequences evolved, e.g. by error-prone PCR. The
resulting pool is again purified on the protein of interest. After several rounds of
purification, amplification and evolution, the sequence pool converges to the set

that defines the sequence specificity of the protein. Traditionally, the sequences

14
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of the resulting DNA are determined by cloning and sequencing. Higher
throughput in sequencing may be obtained by concatenating the adapter-
stripped oligonucleotides prior to cloning [58], or by using next generation
sequencing [59]. Another method for sequence specificity determination
hybridizes recombinant transcription factors to a microarray of all possible
k-mer DNA oligonucleotides (k> 8) [15]. Known as “protein binding microarray”,
this method provides a simple, high-resolution and quantitative alternative to

SELEX.

Because the above approaches assess protein-DNA interactions in absence of the
epigenetic constraints found in vivo, they are suitable for determination of
biochemical affinity of a protein with DNA. The standard method for monitoring
in vivo protein-DNA interaction is chromatin immunoprecipitation (ChIP),
where interactions at endogenous chromatin are “frozen” by formaldehyde cross-
linking. Chromatin is isolated and sheared by sonication to reduce the size of
individual DNA fragments to around 200 — 500 bp. The sheared chromatin is
then immunoprecipitated with an antibody raised against the protein of
interest. DNA 1is liberated from the recovered chromatin fraction and amplified
by PCR. Specific interaction between the factor and a given genomic locus is
assessed by quantitative real time PCR with primers targeting the locus of
interest (ChIP-PCR). Genome-wide mapping of bound chromatin is possible with
next generation sequencing. The latter combination, termed ChIP-seq, was first
published independently by at least three groups [60-62] and is now the protein-

centric method of choice, as it offers a truly global interaction profile.

A variant on ChIP-seq termed “ChIP-exo0” uses 5’-to-3’ exonuclease digestion to
degrade DNA strands up to the position where the strand is in contact with the
protein (and hence protected from digestion). The sequencing reads from the
resulting, undigested products can be used to map the position of the
transcription factor up to single nucleotide accuracy, a resolution which is far

greater than conventional ChIP-seq [63].
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1.3.2 DNA-centric methods for protein interactions

ChIP-based methods are now routinely used to identify of DNA targets of a
transcription factor of interest. However, development of equivalent technology
for the reverse question — identification of protein binders of a given DNA
sequence — is more challenging, largely owing to the lack of equivalent

biochemistry for amplification and sequencing of protein molecules.

Ab initio identification of protein interactors of a DNA sequence can be done in
high-throughput using the yeast one hybrid method. This approach is a variant
of the yeast two-hybrid method, a classical genetic screen that re-constitutes a
transcriptional activator at a reporter gene by interaction of two proteins of
interest. In the yeast one-hybrid method, the bait DNA sequence is placed in
front of the promoter driving a selection marker. The reporter strain is used to
screen a cDNA expression library of candidate DNA-binding proteins fused to a
strong transcriptional activator e.g. Gal4. If the prey-activator fusion binds to
the DNA bait, a transcriptional activator complex is recruited to the promoter of
the reporter construct and the selection gene is expressed. Appropriate selection
conditions then yield colonies, whose transformed cDNA clones encode proteins
that interact with the bait sequence [64]. Although high-throughput and
unbiased in principle, the method limits the experimental conditions to binding
of out-of-context DNA fragment to a fusion protein that is expressed in isolation.
Thus, the interaction is assessed without epigenetic constraints and protein-

protein interaction contexts are missing.

More recent developments that promise full recapitulation of cellular conditions
capture and analyze the native chromatin directly, and may be considered truely
complementary to ChIP. These methods include proteomics of isolated
chromatin segments (PICh) and insertional chromatin immunoprecipitation (i-
ChIP) [65, 66]; both employ mass-spectrometric identification of interacting
proteins. The former method uses a complementary DNA oligonucleotide to
hybridize and capture the target chromatin fraction, and the latter introduces
into the genome a binding site for an exogenous transcription factor as
purification handle. A current limitation of DNA-centric chromatin capture is

the low signal to noise ratio, owing to the lack of a protein amplification method.
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PICh thus requires a staggering amount of material (one billion cells per
purification) and was initially demonstrated on telomeric sequences which are
present in numerous copies per cell (in contrast with two copies per cell for non-
repetitive DNA elements). Use of an orthogonal binding site in iChIP allows for
protein-based tandem purification, improving the signal to noise ratio and thus
reducing the material needed (100 million cells per purification). iChIP is
currently limited by the laborious genome editing step which is required for
every target sequence and every variant thereof, nevertheless a limitation which
will hopefully be circumvented in future by more robust genome editing

technologies [67, 68].

Biochemical affinity purification of proteins coupled to mass-spectrometric
analysis (AP-MS) is an attractive approach, as it removes many of the practical
limitations mentioned above. In this method, a chemically or enzymatically
synthesized DNA bait is conjugated to an affinity handle, allowing
immobilization on agarose or sepharose beads. Nuclear lysate is incubated with
the DNA-coupled beads, washed, and the bound proteins recovered by specific
elution. Under appropriate salt and detergent concentrations and given a
suitable nuclear lysate extraction procedure, protein-protein interactions are
preserved, enabling identification of both direct DNA binders and proteins that
are part of DNA binding complexes. Although use of synthetic DNA has raised
questions regarding the missing chromatin context in the experimental
conditions, recent evidence suggests that synthetic DNA carrying a genomic
regulatory sequence is capable of recruiting histones and mimicking local
chromatin environment as found in vivo [40]. Use of synthetic DNA in AP-MS
results in amplification of interaction signals, as the copy number of DNA used
1s up to 1,000-fold that of endogenous DNA in a conventional experimental scale.
Consequently, only 1% to 10% of the material amount is required, compared to

iChIP and PiCH.

AP-MS is the staple method of this study and will therefore be elaborated in
greater depth with the principles of MS-based proteomics in the following

section.
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1.4 Mass spectrometry-based quantitative interaction

proteomics

A portmanteau of “proteins” and “genomics”, proteomics is the large scale study
of proteins. A proteomic experiment identifies and quantifies proteins from
complex biological samples, often involving some means of complexity reduction
prior to analysis. The first implementation of proteomics was in the pre-human
genome era, where samples were fractionated using two-dimensional
electrophoresis and protein identities inferred based on the results of amino acid
analysis [69], a technology with severe shortcomings that was no match for
powerful genomics technologies. Through improved technology, increased
computational power and the availability of complete genome sequences,
sophisticated means of protein identification and quantification have developed
and mass spectrometry (MS) has become the method of choice for proteomic

study.

1.4.1 MS-based proteomic workflow

MS-based proteomics may be done either “top-down” or “bottom-up”. The former
approach submits intact proteins or protein complexes to the mass spectrometer,
where they can be iteratively analyzed and fragmented in “tandem mass
spectrometry” (see 1.4.3 below). In the more widely implemented bottom-up
approach, protein mixtures are pre-processed into peptides which are then
analyzed in the mass spectrometer; once all the peptide sequences are identified,
proteins are assembled from them, based on a reference sequence database (see
1.4.4 below). This thesis exclusively employs bottom-up analysis and this

workflow will be discussed in greater depth.

A typical bottom-up proteomic experiment starts with biochemical isolation of
proteins from biological material, such as cells grown in culture or isolated from
an organism. Optional enrichment steps may be performed depending on the
biological question: For instance, a subcellular fraction may be isolated if only
proteins belonging to certain organelles are of interest; or proteins may be

affinity purified to study interactions with a specific bait.
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Peptides are then generated by treating the proteins with a combination of
proteases. Trypsin and/or lysyl-endopeptidase (LysC), which cleave C-terminally
to arginine and/or lysine, are routinely used. Peptides may be further enriched
for interesting post-translational modifications such as phosphorylation. The
final sample is a complex mixture of peptides, which is separated by high-
performance liquid chromatography (HPLC) coupled online to a mass
spectrometer via an electrospray source (see 1.4.2 below). The peptides eluting
from the HPLC column are ionized prior to entering the mass spectrometer.
These ions are then mass analyzed, fragmented and their fragment ions
analyzed again. The resulting data are processed into peptide sequences and

protein identities are inferred using a sequence database.

Proteome coverage in LC-MS studies is constrained by some technical
limitations. First, mass spectrometers have a dynamic range that is narrower
than the copy number range of proteins being expressed in biological systems.
Second, a finite number of fragment mass spectra can be acquired while
peptides are being eluted in real time from the HPLC. Hence, the sensitivity,
acquisition speed and dynamic range of the mass spectrometer directly influence
the “depth” to which a complex protein sample can be covered [70]. This depth
can be thought of as the proportion of lowest-abundance proteins that remain
undetected. Previously, whole proteome analyses required extensive sample
fractionation — such as by gel electrophoresis — with each fraction being
analyzed separately to reduce the sample complexity, and thus deepen the
proteome coverage. However, recent advances in instrumentation and
computational algorithms have made it possible to obtain a comparably deep

proteome without the need of fractionation [71-73].

1.4.2 Principles and implementations of mass spectrometry

A mass spectrometer is in essence a mass measuring instrument, consisting of
three parts: the ionizer, the analyzer and the detector. Relying on ionization of
the sample molecules, the analyzer performs mass- and charge-differentiating
perturbations on the ions, and the detector translates a measurement of

incidental ions or ion-generated current into mass-over-charge (m/z) ratios.
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Several mass-spectrometric technologies have been developed over the past

decades with differing ionization, analysis and detection approaches.

The most popular ionization method used for LC-MS is electrospray ionization
(ESI). Liquid containing peptides eluting from the HPLC column tip is subjected
to a voltage and dispersed into fine aerosol called electrospray. As the solvent
evaporates, the charge density of the droplets that carry the peptides increases.
Repulsion of like charges within the droplet causes recursive droplet fission,
eventually exposing the peptides, which accept the excess charges, to the gas
phase. Unlike many other ionization methods, electrospray is very gentle,
capable of generating multiply charged ions, and therefore is particularly
suitable for analyzing large biomolecules. Electrospray ionization was first used
In mass spectrometry almost two decades ago and was recognized with a share

of the chemistry Nobel Prize in 2002 [74].

Mass analyzers and detectors may be placed into different groups. A first group
resolves ions by recording their flight to the detector, a principle termed Time-of-
flight (TOF). The TOF analyzer relates the charge-dependent potential energy of
the ions in the electric field with the mass-dependent kinetic energy, which can
be measured by the time (hence velocity) the ions take to reach the detector.
Quadrupole mass analyzers consist of four parallel hyperbolic electrode rods.
Radio-frequency voltages offset by a direct current are applied between each
pair of opposing rods, creating an electric field which guides ions of certain m/z
in oscillating trajectories along the electrodes, while causing the other ions to
collide into them. By manipulating the voltage ratios between the two electrode
pairs over time, ions can be swiftly scanned over a desired range of m/z values.

For each m/z value the detector the records the signal of the incidenting ion.

Another group of mass analyzers induces all ions to oscillate in a stable path
under the influence of an applied electromagnetic field, wherein the oscillation
frequency is directly dependent on m/z. The current generated by the oscillating
ions is measured and decomposed into their separate m/z contribution by
Fourier Transformation (FT). Thus, all ions are detected simultaneously. This
principle is employed in the Fourier-transform ion cyclotron resonance (FT-ICR)

analyzer, which traps ions in a magnetic field by Lorentz force [75]. The
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Orbitrap analyzer uses the quadro-logarithmic electropotential, rather than a
magnetic field, to implement the same concept. The Orbitrap consists of a
barrel-shaped electrode with an inner, co-axial electrode. The ions rotate around
the inner electrode as well as oscillating axially, and the square root of the latter
frequency 1is inversely proportional to m/z [76]. Compared to the other
instruments, this group of mass analyzers has a greater m/z resolution that
increases with detection time, and is, for instance, particularly suitable for

inference of molecular composition by their accurate mass.

1.4.3 Tandem mass spectrometry

Although the m/z deviation obtainable with instruments such as the Orbitrap
analyzer is as low as few parts per million, this accurate mass information is
still insufficient to infer the peptide sequence, because peptides of differing
sequences but identical amino acid composition have identical masses. Further
discriminating evidence can be obtained by isolating peptide ions at their m/z,
activating them to break covalent bonds. The resulting fragment ions are then
re-analyzed in a process called “MS-MS” or “MS2” (in contrast with “MS1” where
the precursor ion is detected). Because fragmentation can occur at different
covalent bonds, the resulting fragment ions generally include those generated
from breaking of the peptide backbone at various positions, especially the
peptide bonds (Figure 2). The pattern of m/z values can thus be used to re-
assemble (parts of) the original peptide sequence, which in turn is validated for

consistency with the accurate mass obtained in MS1 [77, 78].

Figure 2: Fragmentation along

O R the peptide backbone.
Breakage of different covalent
bonds along the peptide backbone
during peptide ion fragmentation
/N results in a series of N-terminal

ions and corresponding C-terminal
ions, which are named according to
the Roepstorff-Fohlmann-Biemann

(0] nomenclature. In particular, the
series of b- and y- ions are
generated by fragmentation at
different peptide bonds.
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As mentioned above, the online-coupled chromatography that runs over a finite
time imposes a practical limit on the number of MS2 scans that can be made,
frequently leaving ‘sequenceable’ precursors unfragmented. This raises the
question of how to prioritize ions for MS2 sequencing. When the identities of the
peptides of interest are known, their corresponding m/z can be specifically
monitored in MS1 and submitted for MS2 sequencing. Multiple reaction
monitoring (MRM) is one of the most widely used implementation of this
“targeted” approach [79, 80]. More commonly in proteomics, ions are prioritized
for fragmentation by their signal intensity in the MS1 acquisition. Typically,
between five and ten most intense ions measured in MS1 are submitted for MS2.
This “shotgun” approach allows MS-based proteomics to identify peptides
without a priori knowledge and is the method of choice for hypothesis-

generating studies [81].

1.4.4 Peptide and protein identification
While software packages are available for interpretation of MS spectra, the
MaxQuant suite is particularly powerful [82]. The implementation of MaxQuant

used in this thesis is described 1n this section.

Mass-spectrometric data consist of MS1 m/z peaks, with many but not all peaks
having accompanying MS2 fragmentation spectra. “Features” that are likely to
be peptide ions are derived from individual m/z peaks; subsequently,
identification of features as peptides is accomplished with reference to a protein
sequence database. In silico digestion of the protein sequences generates
theoretical peptides, which serve as candidates for matching MS1 and MS2
spectra. A peptide identification is declared when both the accurate m/z of the
MS1 feature and the MS2 fragmentation pattern are consistent with a
theoretical peptide. A score associated with each ‘spectrum sequence match’ is
calculated based on the confidence of the contributing spectral evidence. The
proportion of false identifications occurring by chance may be estimated by
matching the spectra to a nonsense “decoy” database. A database constructed
using all entries from the reference database reversed from C- to N-terminus is

commonly used, because of its identical amino acid composition distribution.
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Comparison between the decoy scores and the true scores yields a score cutoff

that is used to filter the identifications at a desired false discovery rate (FDR).

Although MS1 features that do not have corresponding MS2 spectra do not have
direct sequencing evidence, MS2-based identifications of the “equivalent”
features from other LC-MS runs may be transferred to the run being analyzed.
Features from different runs are assessed for equivalence according to their
accurate MS1 m/z and elution time. Because of variation in the chromatography
between runs, the retention times of a given peptide in these runs also differ.
This can be accounted for by interpolating between the sets of equivalent
features that are jointly sequenced across experiments. ‘Matching between runs’
is especially beneficial in the analysis of complex samples, as it is able to

increase peptide identification count by as much as 40%.

Primary interpretation of MS spectra thus results in a list of peptide sequences,
from which protein identities need to be inferred. Short peptide sequences
(generally < 7 aa) are discarded because they often occur in unrelated proteins.
Owing to sequence homology, splice variation, and redundancy in sequence
databases, a longer peptide sequence can still be part of several protein
sequences. Because such a sequence may not be unambiguously assignable to
any one of these proteins, a concept of “protein groups” is introduced. Peptides
are assigned to groups of proteins that are defined according to the principle of
parsimony (‘Ockham’s razor): The simplest set of groups that is sufficient to

explain all the identified peptides is reported.

1.4.5 Quantitative MS-based proteomics

Peptides are very diverse in their physical properties such as charge, chain
length, and hydrophobicity. These properties unequally affect each peptide’s
digestion and purification yield, behavior in chromatography, and ionization
efficiency. As a result, signal intensities of different, equimolar peptide ions in
the mass spectrometer are generally not equal. Thus, different strategies that
enable quantitative interpretation of MS data have been developed, which may

be grouped into label-based methods and label-free methods.
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Label-based quantification

In label-based methods, two or more samples are multiplexed and subsequently
quantified relative to each other. A different mass label is incorporated into each
sample prior to multiplexing. The labels uncouple peptide ion signals originating
from the different samples into separate m/z peaks. This is achieved by
introducing a defined mass-shift between the labels, typically owing to
incorporation of heavy stable isotopes in the labels. Alternatively, the labels can

make use of chemical groups that yield different masses upon fragmentation.

Labels are designed so that they are as identical as possible in their
physicochemical attributes. Thus, differentially labeled peptides of identical
sequence and modifications co-elute from the chromatography and ionize with
the same efficiency. The resulting m/z signal intensities are therefore directly
comparable. In this way, the ratio of intensities corresponds to the ratio of
peptide abundance between samples. Protein abundance ratios are then
estimated from the population of corresponding peptide abundance ratios. It
follows that the precision of label-based protein quantification improves with the

number of quantified peptides attributed to the protein.

Labels may be incorporated metabolically before protein extraction, or

3

afterwards at protein or peptide levels. In the “isotope-coded affinity tag”
method (ICAT), cysteine residues on proteins were chemically modified to
include a differentially labeled tag which also served as an enrichment handle
[83]. However, ICAT quantification is limited to cysteine-containing peptides
only; this yields fewer ratio counts, leading to suboptimal quantification
precision. A method that bypasses this limitation, termed “dimethyl labeling”,

incorporates an isotopic variant of dimethyl groups onto all free N-termini and

primary amine side-chains [84].

Multiplexed quantification in MS1 increases the complexity and thus reduces
the dynamic range of the MS1 spectra. Transferring the quantification peaks to
the MS2 spectra, which are much less complex than MS1 spectra, alleviates this
problem. The concept is used in “isobaric labeling” methods. Here, each label
contains a mass-discriminable “reporter” group, covalently linked to a

“balancing group” that adjusts all labels to the same mass. The differentially
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labeled peptides are indistinguishable in MS1. Fragmentation of these peptides
yields the different reporter groups in the MS2 spectra, where ratios of reporter
intensities correspond to ratios of peptide abundance between the samples.
Commonly used implementations of isobaric labeling include “tandem mass tag”
(TMT) and “isobaric tags for relative and absolute quantification” G'TRAQ) [85].
As mentioned, isobaric labeling enables multiplex quantification without
increasing the complexity in the MS1 scan. However, the method ties peptide
quantification to MS2-evidenced identification, and is therefore incompatible
with quantification by matching. Furthermore, MS1-based quantification can
make use of the elution profile, which can be constructed from successive MS1
spectra, to improve quantification precision. To emulate this in MS2-based
quantification, successive MS2 scans would have to be performed on the same
precursor m/z, resulting in a trade-off between quantification precision and

identification depth.

In contrast to chemical labeling, metabolic labeling methods incorporate labels
in living cells, allowing samples to be combined even prior to cell lysis. This
early mixing advantage means that all downstream handling errors are
minimized by parallelization. Formerly, °N incorporation was used to label cells
in vivo, but this method resulted in highly complex spectra because the mass
shifts between the label counterparts differ wildly between peptides. Stable
isotope labeling of amino acids in cell culture (SILAC) is now a widely-used
metabolic labeling method [86]. In SILAC, cells are grown in media containing
arginine and lysine that have different proportions of 13C and N isotopes (ArgO,
Arg6, Arg10; LysO, Lys6, Lys8). Proteins are digested with trypsin or LysC to
ensure that almost all resulting peptides are quantifiable, owing to the labeled
arginine or lysine at the C-terminus. SILAC has a clear advantage over 15N
labeling as every SILAC pair has a specific mass-shift, greatly simplifying the
process of identifying label pairs. Metabolic labeling needs to be performed over
at least five cell divisions for the labeled proteins to saturate the proteome, and
1s therefore particularly suitable for cells in culture or small animals.
Incorporation over shorter time may be performed as a “pulse” experiment to

study proteome dynamics [87].
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Intensity ratios derived from label-based methods represent relative abundances
of peptides between two or more samples. When one sample is a standard of
known amounts, the ratios can then be used to infer absolute amounts in the
remaining sample(s). Known as “absolute quantification”, this concept has been
implemented in a label-based or label-free format (see below) in technologies

such as AQUA, PrEST, and iBAQ [88-90].

Label-free quantification

Label-free methods are computational procedures that report quantitative
measurements of protein abundances without the use of a mass label. When
labeling of biological material is not possible or is cumbersome (such as in
clinical samples), label-free methods thus provide an alternative to the above

approaches.

An early and simple label-free quantification algorithm was to use the number
of MS2 spectra attributed to a given protein as a semi-quantitative measure for
that protein’s abundance [91]. This “spectral counting” method was improved by
weighing each spectrum by the probability of it being acquired given the
peptide’s physicochemical properties [92]. However, by design, spectra-based
methods trade off quantification resolution with identification confidence, as
well as being influenced by the chromatographic parameters, which generally
vary between experiments. A different approach uses the numbers of peptides
identified to estimate protein abundances. The protein abundance index (PAI) is
defined for a given protein as the ratio of observed peptide count to the
theoretically observable peptide count. Its successor — exponentially modified

PAI (= 10PA-1) — ig directly proportional to the protein abundance [93, 94].

Quantification based solely on counts of peptides and spectra is discretized by
nature. Furthermore, these approaches discard valuable information that is
latent in the 1on intensity measurements. More accurate label-free
quantification method, for instance offered by the MaxQuant suite, takes
peptide intensity information into account. In MaxQuant, peptide identifications

are first transferred between runs as far as possible (see 1.4.4 above). For each
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protein, pairwise sample comparison generates a matrix of median peptide
ratios which derived from jointly identified peptides. These ratios form over-
determined systems of linear equations that are used to back-calculate the
relative protein quantities between samples. Simply known as “label free
quantification”, this algorithm was first used to quantify the dendritic cell
proteomes to a depth of over 6,000 proteins, with superior precision to previous

label-free quantification methods [95].

1.4.6 Quantitative interactomics

Mass spectrometry has proven to be a highly sensitive technology for protein
identification. An implication of its power in the study of protein interactions is
that, when affinity-immuno-purified proteins are analyzed by mass
spectrometry, specific interactors are identified together with several hundred
that bind to the beads used in the purification or that bind non-specifically to
the bait. Thus, quantitative measures are absolutely essential to identify the

specific interactors from the remaining proteins.

Label-free algorithms have been used for quantitative analysis of pulldowns
with very good precision [96]. However, label-free quantification readouts in
affinity purification are a combination of specific-enrichment, protein expression
levels in the lysate, and any contaminants introduced during sample handling.
Unfortunately, the contribution of specific enrichment to the quantification
cannot be resolved from the other confounding factors in label-free approaches,
because these components are mixed into the same quantification “channel”. In
contrast, this is possible in label-based interaction experiments, where the
principle of “label-switching” exposes the specific interactions and confounding
factors in different combinations. Furthermore, since the resulting protein
sample from pulldowns is low in complexity (typically 500 proteins) and does not
suffer from duplication of ion peaks, label-based quantification is particularly

attractive for interaction studies.
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SILAC-based affinity purification (SILAC AP-MS) is a widely-used label-based
approach for studying protein interactions [30, 97-100]. A typical experimental
design for SILAC AP-MS is known as the “forward-reverse” setup (Figure 3).
Here, interactions are compared between a candidate bait and a control bait,
using heavy-labeled and light-labeled lysates. Two sets of affinity purifications
are performed: In the first (“forward”), the candidate bait is used to purify the
heavy-labeled lysate and the control bait is used to purify the light lysate. In
this experiment, a specific interactor with the candidate bait would have a
heavy-to-light ratio of greater than 1:1. In the second set of purifications
(“reverse”), the lysates are swapped with respect to the bait; here, a specific

interactor would have a heavy-to-light ratio of less than 1:1.

Owing to label-switching, specific interactors would therefore have SILAC ratios
that are inverse of each other. This is usually visualized in a plot of
logarithmized forward and reverse SILAC ratios known as the “forward-reverse
plot”, where specific interactors lie along the anti-diagonal. Abundance
differences of non-specific binders between the heavy and the light lysates would
give rise to log SILAC ratios of the same sign, since the heavy-to-right
enrichment/depletion is bait-independent for these proteins. Following from
these rules, contaminants introduced by manual handling, being always of the

light label state, are found in the double negative quadrant in the plot. Thus, the
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forward-reverse plot enables intuitive, visual discrimination of specific
interaction from background and contaminants. Since the label-switching design
subjects both the heavy and light lysates to affinity purification on the specific

bait, the forward and reverse experiments also serve as biological duplicates.
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1.5 Aims of this study

Comparative genomics has predicted many potential regulatory DNA elements
that have been functionally confirmed in vivo. The elements of interest in this
study were the ultraconserved elements (UCEs) introduced in section 1.2. The
primary goal of this thesis was to identify protein-DNA interactions at UCEs.
For this question to be addressed in an unbiased manner, a DNA-centric method
for protein-DNA interaction was needed. Furthermore, because the exact
biological context in which UCEs function is unknown, we focused on the
interactions that are intrinsic to the UCE sequences, as opposed to their in vivo
binding. For the above reasons, we developed a strategy for upscaling the state-
of-the-art SILAC AP-MS technology, and used it to discover proteins that bind to
or are depleted from specific UCEs.

Secondly, this thesis addresses the curious evolutionary question involving the
UCEs: What contributes to their extreme conservation? Although the hypothesis
of overlapping TFBSs has been long proposed, it has been argued against largely
based on the lack of supporting experimental data [52]. We reasoned that SILAC
UCE pulldown experiments could fill in this gap, identifying the motifs that
have direct biochemical evidence of binding and assessing the extent to which
the superimposition of functionally interacting motifs contributes to the extreme

conservation.

Thirdly, this thesis aims to integrate DNA-centric interaction data with
complementary protein-centric data recently released by the ENCODE
consortium [101], with the intention of critically assessing the relevance of AP-
MS data in the chromatin context. Specifically, this work explored the extent to
which the DNA sequence and the nuclear proteome together define local
epigenetic states in the nucleus. Previously, an exemplary DNA sequence has
been demonstrated in vitro to recapitulate the native chromatin modifications
found in its corresponding locus. Here, we attempt to generalize this observation
by comparing chromatin modification ChIP-seq datasets to the AP-MS

interaction profiles of the 190 UCESs sequences screened in our interactome.
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These aims are critically dependent on quantitative interpretation of SILAC AP-
MS data. Although SILAC interactomics is quantitative by nature, actual
interpretation of forward-reverse experiments has generally been qualitative.
Previous studies focused on interactor calling rather than comparing enrichment
factors across baits, and simply excluded false positives as not meaningful. This
thesis refined the interpretation of forward-reverse SILAC AP-MS data,
incorporating information from the so-called “false positive” hits. For this
purpose, we implemented a simple correction procedure that quantitatively
decouples expression changes from specific binding, improves enrichment
estimates, reduces systematic error, and allows ratios to be used in a truly

quantitative manner.
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2 Improving large-scale SILAC AP-MS precision by

proteome variation uncoupling

Summary

Mass-spectrometric analysis of affinity-purified protein (AP-MS) is a powerful
method for unbiased discovery of protein interactions with other biomolecules.
An approach using stable isotope labeling in cell culture (SILAC) and the
“forward-reverse” label-switching design can be used to discriminate
contaminants from specific interactors. However, the enrichment ratios derived
from the label-switched experiments often show large variations, preventing the
ratios themselves from being used confidently for quantitative interpretation.
Here, we introduce an improvement to the processing and interpretation of the
SILAC AP-MS data, which corrects for systematic errors introduced by the
proteome variation between labeled samples. This simple correction procedure
significantly improves quantitative interpretability of label-based AP-MS data
that employs label switching, and normalizes systematic differences between

batches in large-scale affinity purification screens.
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2.1 Introduction

SILAC affinity purification coupled to mass spectrometry (SILAC AP-MS) has
been used extensively to discover protein-protein, protein-peptide, and protein-
nucleic acid interactions without a priori knowledge [30, 97-100]. A typical
SILAC AP-MS study compares interaction between a specific bait of interest and
a control bait; for instance, a peptide against its post-translationally modified
variant or a regulatory DNA oligonucleotide against a point mutation. The
principle of SILAC AP-MS has already been described in 1.4.6 above. Briefly,
heavy-labeled and light-labeled lysates are affinity-purified with the specific bait
and the control bait in different combinations. The resulting data are typically
visualized in the “forward-reverse” scatter plot. There, specific enrichments or
depletions are found in quadrants wherein the forward and reverse ratios are
inversed owing to label switching. Contaminants are found in the double

negative quadrant.

Often, studies employing SILAC forward-reverse AP-MS probe interactions
against a control bearing small point mutations that were chosen rationally and
specifically for every bait: e.g. from conservation, single-nucleotide
polymorphism, or known post-translational modification. Because of the small
change between the baits, data generated from such studies usually yield a
population of specific interactors which are visually separated from the cloud of
background binders. In these cases, the actual SILAC ratios were generally not
needed to call interactors. Furthermore, quantitative comparisons of ratios

between different forward-reverse experiment sets were generally not made.

In contrast to previous studies, the main goals of this thesis are dependent on
the ability to perform quantitative cross-comparisons of protein interactions to
multiple DNA sequences. However, substantial variation between the forward
and reverse ratios often observed in SILAC AP-MS data, reducing the confidence
of simply using the average ratios for cross-comparisons. Furthermore, a
number of proteins are found in the double positive quadrant that cannot easily
be interpreted. This artefact originates from the variation in lysate preparation,

and the proteins falling in this quadrant were traditionally considered “false
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positives” and simply excluded from further analysis. This rendered SILAC
lysates that are vastly different in their observed proteomes owing to variation
in lysate preparation incompatible with AP-MS experiments. Furthermore, this
qualitative treatment of arbitrarily removing false positives prevents full
interpretation of the information in the quantitative data, because it results in
many missing quantifications and raises the question of general reproducibility
between experiments. KEqually problematic is the presence of known
transcription factors in the “contaminant” quadrant. Together, these anomalies
mean that the traditional interpretation of ratios in this experimental setup

may have been suboptimal.

This chapter quantitatively addresses the way lysate variation contributes to
the observable ratios in DNA SILAC AP-MS experiments. We offer a simple
correction procedure termed “AP-adjustment”, which uncouples this contribution
from bait-specific enrichment/depletion. This procedure is applicable to any
label-switch experiment where many baits are screened using the same sets of
lysate, and where the enrichment can be experimentally uncoupled from the
labeling. The resulting, corrected SILAC ratios have significantly less variation
between the forward and reverse pulldowns, and now reflect the true magnitude
of the random errors in the experiments. We also explored the application of this
adjustment procedure in a large-scale, multi-batch screen, and showed that
batch-wise adjustment results in further significant error reduction when
compared to batch blind adjustment. This observation demonstrates the need for
large-scale, multi-batch SILAC AP-MS data to be corrected for batch-to-batch

variation, even when the lysates used are equivalent.
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2.2 Derivation

2.2.1 Geometrical interpretation of the forward-reverse plot

We recall the intuitive interpretation of the SILAC forward-reverse setup as
follows: When the heavy and light proteomes are identical, an a-fold specific
enrichment of a given protein results in forward and reverse SILAC ratios (x
and y respectively) which are exactly inverse of each other. Since the ratios on
the forward-reverse plot are logarithmized, we express them accordingly here.

That is,

logx =loga + error

logy = —loga + error

1)

Suppose that, for a different protein, there is no binding preference between the
specific and the control baits. Instead, the abundances of this protein in the
heavy and light lysates are different, as Py and P, respectively. Here, the

logarithmized SILAC ratios for both experiments are simply:

logx =logy = log Py —log P, + error
2

Now we consider a hypothetical protein, which does have a binding preference
for the specific bait but also has an abundance difference between the lysates.
We assume that the proteome difference and the specific enrichment
components are independent and express the expected SILAC ratios as their
product. (This assumption is explored further in the next section.) Working

under this assumption, and defining AP = (log Py — log P,) then,

logx = AP +loga + error
logy = AP —loga + error

3)

These equations form the basis for the visual interpretation of the forward-

reverse plot: Enrichment and depletion contribute to the anti-diagonal
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Figure 4: Geometrical representation of the SILAC forward-reverse plot

(A) The contribution of specific enrichment to the observed ratio is in opposite signs owing to label
switching (red arrow). In contrast, the contribution of the proteome difference between the heavy and
light lysates is always in the same direction (green arrow). The result is the offsetting of SILAC ratios
from the main anti-diagonal as shown in the right panel. (B) Examples of how different proportions of
specific enrichment and proteome variation affect data points on the forward-reverse plot. An ideal
interactor would have zero abundance difference and a specific binding preference (1), whereas a truly
non-specific contaminant would have no enrichment component (4). Usually, however, both components
are visible, and ratios are shifted off the main anti-diagonal owing to the relative enrichment in the
heavy lysate (2, 5, 6) or in the light lysate (3, 4). This offsetting can push some specific interactors into
the “forbidden” contaminant and false positive quadrants. Traditionally, these ratios would be excluded
from interpretation. See also Figure 5 for how the adjustment procedure re-enables quantitative
interpretability of these cases.

positioning of the proteins on the plot, and difference in protein levels in the two

lysates moves the proteins along the diagonal.

For sets of pulldowns using the same lysates, AP can be therefore be deduced
from the expressions for both ratios by eliminating the enrichment variable a

and averaging over all n baits:

logx + logy = 2AP + error
1 n
AP = %Z(log x; +logy; + errory)
i=1

(4)
By definition, the error term averages to zero across all baits, yielding AP as

simply the average of all SILAC ratios for the protein.

n
1
AP = %Z(logxi + logy;)
i=

()
Now known, this confounding systematic error can be subtracted away to give

AP-adjusted SILAC ratios:
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x' = xe AP

y' =ye
(6)

Interpretation of AP is consistent with contaminant calling (AP < 0) and general

lysate variation (JAP| > 0), which is summarized in Figure 4.

This derivation of the AP-adjustment procedure is based on the intuitive,
geometrical interpretation of the forward-reverse plot, where independence
between the proteome component and the enrichment component is assumed.
However, it is clearly not possible that this assumption is valid over all
conditions, as the maximum amount of recovered proteins is capped by the
amount of binding sites available on the baits. Interplay between the bait
concentration, the interactor abundance and the specific enrichment is better
accounted for by thermodynamic considerations. In the next section, we show by
thermodynamic derivation that the assumption of proteome-enrichment
independence is valid over the range of conditions typically encountered in

standard SILAC AP-MS experiments.

2.2.2 Thermodynamics of protein-DNA SILAC AP-MS

Affinity purification is a reversible complex formation between a “bait” molecule
and a “prey” molecule. In the context of protein-DNA interaction, treating each
DNA bait and each protein or complex interactor as a single entity, then the

interaction between the bait B and prey P
B+P= B-P
reaches the equilibrium concentration of the complex B - P at

[BI[P]

[B.P] =
K(gB,P)

(7

where KO(IB'P) 1s the association constant between B and P.
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Expressed in terms of initial concentrations [B], and [P],, the above equation
can be rewritten as:

([Blo — [B - PD([Plo — [B - PD)

[B-P] =
KéB,P)

®

This equation is quadratic with respect to the bound prey concentration [B - P],
and whose exact solution cannot linearly and independently depend on [B], and
[P]o- However, in typical SILAC AP-MS experimental conditions, this expression
for the bait-prey complex concentration can be simplified so that it linearly

depends on the initial prey concentration.

We typically use 8 pg of DNA bait and nuclear lysate from 10 million cells per
affinity purification. Transcription factor copy numbers have been determined to
have a range of ~250 to 300,000 copies per nucleus [102]. Under an estimated
reaction volume of 200 ul, these conditions translate to a concentration of ~20
pM to 25 nM for each transcription factor and 250 nM of DNA bait. Within these
parameter constraints, the DNA bait is in excess of the preys by at least ten fold,
and so [B]y, > [B-P]. Considering (8) in this context, [B], — [B - P] can be
approximated by [B], to yield the following simplified equation:

_ [B]o([Plo = [B-P])

[B-P] =
(B,P)
K,
%)
Rearranging to solve for [B - P], we obtain:
Bly|P
5] = —(EolPlo_
[B]O + Kd '
(10)

Defining a function f(x) as

_ [Blo
f(x) - <[B]0 + KC(iB’P)>

(11
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Then the bait-prey complex concentration at equilibrium can be expressed as

finally as:

[B-P1 =[Pl f (K{"P)

(12)

Here, f transforms the dissociation constant into a scaling factor, which dictates

the proportion of the prey molecules that are part of the complex at equilibrium.
The value of f (K(EB’P)) depends on the initial bait concentration [B],, which is

invariant across the entire screen. Thus, the bait-prey complex concentration at
equilibrium depends linearly and independently on only the initial prey
concentration and a function of the dissociation constant. In conclusion, the
assumption of independence between the proteome and the specific enrichment,
which we used for the geometrical derivation of AP-adjustment, is valid under

typical SILAC AP-MS experimental conditions.

To complete the thermodynamic derivation of the AP-adjustment procedure, we
now apply (12) to the ratio calculations. Given the initial concentrations of the
control bait [By],, the specific bait [B;],, the heavy-labeled prey [Py],, and the
light-labeled prey [P.],, then the observable forward ratio x is given by

By Pyl [Pulo f (K&

£ [Bo-PL] (Plo" f (K(gBl'PL))

+ error

(13)

The forward-reverse plot displays the SILAC ratios in the logarithmized form.

log x = (log[Py]o — log[P.]o) + {logf (KU(IBO‘P”)) —logf (KéBl’PL))} + error

(14)

In the reverse experiment, the labels are switched with respect to the baits. The

expression for the reverse ratio y thus takes this form:

logy = (log[Pylo — log[P.]o) + {logf (K(EB”P”)) —logf (KU(IBO'PL))} + error

(15)
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We now make an important assumption: We expect the cells that give rise to the
heavy and the light lysates to be biochemically equivalent, i.e. any difference in
their proteomes does not result in differences in binding affinities of proteins.

Under this assumption, then

(Bo,Py) __ ;-(Bo,PL) (B1,PL) _ ;-(B1,Py)
KdOH_KdOL KdlL_Kle

and also

(16)

Defining a, the logarithmized enrichment factor between the two baits and
AP, the logarithmized protein abundance fold change between the two

samples:

a =logf (KLEB"'PH)) —logf (Kc(lBl'PL))

AP =log[Py]o — log[P.]o
(17)

Substituting (16) and (17) into the expressions for log x and logy then yields
the intuitive expression for the logarithmized forward and reverse SILAC
ratios as given in (3).

logx = AP +loga + error

logy = AP —loga + error

In summary, this section shows that the biochemical bases behind the derivation
of the AP-adjustment procedure agrees with the geometrical interpretation of

the forward-reverse plot.

40
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2.3 Results

To benchmark the ability of the AP-adjustment procedure to reduce variability
between forward and reverse SILAC pulldown experiments, preliminary SILAC
DNA pulldowns for the UCE interactome were performed. We used two sets of
SILAC nuclear lysate: the lysates obtained from R1/E mouse embryonic stem
cells were purified on 47 UCE baits against a universal control bait, and lysates
obtained from HelLa cells were purified on 23 UCE baits. Within each set, the

pulldowns were parallelized in the 96-well plate format.

2.3.1 Up to 75% of the interactome have systematic, correctable
proteome-difference errors.

First, we visualized the distribution of AP of all proteins for each SILAC pair of

nuclear lysates. Since SILAC ratios are generally log-normally distributed, we

could test the null hypothesis of AP = 0 with a Student’s T test. Correcting for

multiple comparisons, we found significant systematic residual abundance

difference in over three quarters of all proteins that were quantified in each pair

of lysate at 1% FDR.

The spread of AP in the HeLa dataset was large, with 95% of the proteins
displaying a systematic abundance difference over a range of 8-fold (Figure 5A).
In contrast, 95% of proteins in the R1/E dataset showed an abundance difference
of a range of 1.4-fold. This lower deviation was consistent with the fact that the
R1/E lysates had been pooled from several preparations, normalizing out
individual proteome deviations between preparations. Estimation of AP and its
associated errors may be visualized for a given protein by plotting its forward
and reverse ratios across all baits. In case of a well-behaved DNA binder, these
ratios form a tight anti-diagonal whose distance from the anti-diagonal through
the coordinate is directly proportional to AP (Figure 5B). In sum, this initial
analysis demonstrates the potential of AP-adjustment in improving the precision

of both datasets.
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Figure 5: AP-adjustment significantly improves SILAC AP-MS ratio precision.

A Distribution of estimated proteome difference between heavy and light lysates in the R1/E and HeLa
datasets. B Forward and reverse SILAC ratios of the protein JUNB as quantified over the 17 baits
where they were identified. C-F Forward reverse ratios of a random pulldown example prior to
adjustment (C, E) and the corresponding ratios from the sample pulldowns after adjustments (D, F).

Orange arrows indicate JUNB and JUND. Purple arrows indicate ATF1 and ATF7.
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2.3.2 AP-adjustment significantly reduces variability between
forward and reverse SILAC AP-MS experiments.

We then performed the AP-adjustment on both pulldown datasets as described
above. The adjustment resulted in a visually appreciable improvement in the
ratio reproducibility between the forward and reverse experiments, as seen from
the narrowing of data points towards the anti-diagonal where quantitatively
reproducible enrichment/de-enrichment are expected. By calculating the root
mean squared error (RMSE) of forward versus reverse ratios over all proteins for
each experiment, we found that the improvement was highly significant overall:
RMSE was reduced by 44% in the R1/E dataset and 79% in the HeLa dataset (P
< 102¢ in both cases). Thus, even pooled lysates with normalized proteome

differences can still benefit from the AP-adjustment procedure.

One metric used to score specificity of an interactor is to compare their SILAC
ratios against the “cloud” of non-specific binders, and calculating significance
assuming that the unspecific binder ratios are normally distributed. However,
owing to proteome differences, the score originating from the forward ratio can
vary greatly from that from the reverse ratio. This is reflected in the irregularly-
shaped cloud seen in the uncorrected forward-reverse plots (Figure 5C, E).
However, the cloud of nonspecific binders become “regularized” into the anti-
diagonal, giving a shape that is ideal for outlier statistics (Figure 5D, F).
Overall, the adjustment procedure was able to recover highly-reproducible
quantitative interaction data that were obfuscated by proteome differences in

the lysate.

2.3.3 AP-adjustment removes false positives and recovers
misclassed interactors

We next inspected the behavior of data points usually interpreted as

“contaminants” and “false positives” in the forward-reverse plot. The former

correspond to those in the “double negative” quadrant and the latter are those in

the “double positive” quadrant. Both sets of data points have prevented a truly

quantitative treatment of ratios without a manual filtering step.
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After AP-adjustment, the majority of points both in the “double positive” and the
“double negative” quadrant were corrected into the main anti-diagonal where
reproducible interactions were found. Importantly, some of these points turned
out to be valid, highly reproducible interactors that would have been misclassed
as contaminants without the adjustment. For instance, the proteins JUND,
JUNB, ATF1 and ATF7 were very far from the main anti-diagonal prior to
adjustment, and JUNB would have been classed as a contaminant as it
appeared in the lower-left quadrant. After the correction was applied, all four
proteins reappeared as interactors that were clearly separated from the central
cloud of background binders. Notably, probably owing to similar binding
specificity between these proteins, their ratios also became more similar to each
other after correction. As expected, the non-DNA binding, actin-associated
protein SWF1 remained in the contaminant quadrant: This protein turned out to

have irreproducible ratios over all baits.

In conclusion, the adjustment procedure is capable of recovering interactors that
would have been missed owing to proteome bias between lysates, while retaining

true, irreproducible contaminants in the contaminant quadrant.

2.3.4 Batch-wise AP-adjustment results in lower ratio
variability in multi-batch experiments

The main dataset in this thesis (Chapter 3) was an interactome of 216 DNA
baits against the R1/E background. Parallelization of pulldowns on the 96-well
format allowed up to 48 AP-MS forward-reverse pairs to be screened, resulting
in five batches of pulldowns across several days. Even though nuclear lysates
were pooled and equivalent aliquots were used in each batch, the lysates may
still be subjected to different conditions on different days, possibly introducing
systematic errors for that batch that would be random across batches. This gives
rise to the question of whether AP-adjustment should be applied batch-wise to

account for batch-specific handling errors.

Analysis of variance (ANOVA) revealed that almost 60% of the interactome had
significantly different AP values between batches (FDR 0.1%), strongly arguing
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in favor of batch-wise adjustment. (Figure 6A, B). Comparing the forward-
reverse RMSE between after global adjustment versus after batch-wise
adjustment, we found a further reduction of 20% RMSE with batch-wise
adjustment (P < 1015, Figure 6C). Thus, batch-wise adjustment should be used

for multi-batch data processing even when the originating lysates were

equivalent.
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2.4 Discussion

We have introduced a simple “AP-adjustment” procedure that uncouples
proteome variation in the biological material from the true enrichment signal in
forward-reverse SILAC AP-MS. The deconvolution was possible owing to the
label switching in the forward-reverse experiments, exposing the proteome
variation in different combinations with the specific enrichment. In addition, the
range of bait and prey concentrations used in routine SILAC AP-MS
purifications is such that the proteome variation is essentially independent from
the specific enrichment. This assumption is generally true in affinity
purifications where the bait is in large excess of the prey, a condition that is
needed for analytical affinity purification experiments where observation of

differential binding is the objective.

The procedure significantly de-noised AP-MS datasets, automatically corrected
for the otherwise uninterpretable false positives, recovered interactors that
would otherwise be missed owing to proteome variation, and normalized batch-
to-batch variations. In summary, we have shown that AP-adjustment procedure
is a highly beneficial and often necessary preprocessing step for large-scale
SILAC AP-MS datasets that allows high-confidence, cross-batch, quantitative

interpretation.

An obvious limitation of the AP-adjustment algorithm is that it is unable to
adjust ratios of proteins that are only quantified in one forward-reverse pair, as
no further information is available to estimate AP in such cases. We have,
however, found that such cases are relatively rare owing to matching of peptide

identifications across a large number of experiments.

DNA pulldowns routinely use crude nuclear lysate, whose slight variation in
preparation can introduce large apparent proteome variations. Steps such as
dounce homogenization and lysate clearing of lipids and cytoskeleton are
primary sources of these lysate proteome variations. Importantly, the AP-
adjustment procedure now relaxes the requirement for perfectly correlating
heavy and light proteomes for AP-MS, as demonstrated by its ability to collapse

the wvariation of up to 800% for proteins in the HeLa dataset, restoring its
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interpretability. While we do not wish to imply that crude nuclear lysate can be
prepared with less care, the adjustment does allow the lysates to be used in

batch AP-MS despite their variation introduced through the preparation.

An assumption that is built into our procedure is that the proteins in the heavy
lysate have equal affinities to the bait as the corresponding proteins in the light
lysates. This holds true in the case where all experimental conditions (except for
the label state) are identical in the cells. Although not explored in this chapter,
it would also be possible to extend the adjustment procedure to include cases
where the differentially labeled cells were subjected to different stimuli. With a
careful experimental design, it would be possible to use a similar processing to

systematically study interactions as a function of different cellular conditions.
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3 Interactome of Ultraconserved Elements

Summary

Ultraconserved elements (UCEs) have been subject of great interest owing to
their extreme sequence identity and their seemingly cryptic and largely
uncharacterized functions. Although in vivo studies of UCE sequences have
demonstrated regulatory activity, protein interactors at UCEs have not been
systematically identified. Here we combined high-throughput affinity
purification, high-resolution mass spectrometry and SILAC quantification to
map intrinsic protein interactions for 193 UCE sequences. The interactome
contains over 400 proteins, including transcription factors with known
developmental roles. We demonstrate based on our data that UCEs consist of
strongly conserved overlapping binding sites. We also generated a fine-
resolution interactome of a UCE, confirming the hub-like nature of the element.
The intrinsic interactions mapped here are reflected in open chromatin as
indicated by comparison with existing ChIP data. Our study argues for a strong
contribution of protein-DNA interactions to UCE conservation and provides a

basis for further functional characterization of UCEs.
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3.1 Introduction

Transcriptional regulation is determined by complex interactions of DNA,
transcription factors (TFs), and chromatin states. Transcriptional regulatory
elements capable of modulating gene expression have been of much interest due
to their role in development and disease [103, 104]. Conservation analysis,
chromatin modification state analysis and in vivo reporter assays have been
used to identify several hundreds of such transcriptional enhancers [51, 105,
106]. Among these, ultraconserved elements (UCEs) — DNA elements defined by
their 100% sequence identity over 200 bp between human and mouse genomes —
have been identified as tissue- and stage-specific enhancers [43, 51, 106]. UCE
sequences were predicted to be enriched in binding sites for development-
associated TFs, suggesting important developmental regulatory roles. However,
relatively few phenotypic alterations have been associated with loss or mutation
of UCEs [107-109], and while several hypotheses have been proposed [110], little
has been attempted experimentally to account for the ultraconservation of these
loci. Similarly, although regulatory potential of UCEs have been demonstrated
through embryonic reporter assays, the function and mechanism of these

regulatory elements largely remain to be explored.

One starting point to enhancer characterization is through interactor mapping.
Recently, chromatin immunoprecipitation (ChIP) has mapped out interaction of
the genome to several TFs in great detail [101]. ChIP is protein-centric, i.e. they
map out target DNA sequences bound to pre-chosen TFs, limiting the diversity
of interaction profiles to a priori knowledge. Furthermore, ChIP data reflect an
end point of gene regulation, incorporating aspects such as chromatin
homeostasis and long-range interactions, rendering the contribution of the
underlying DNA sequence difficult to determine. Evidence from a small number
of genomic loci as well as whole-chromosome analysis has demonstrated the
genetic contribution to establishment of epigenetic states [40, 111]. Thus, DNA-
centric study of intrinsic interactions between DNA sequences and DNA-binding
nuclear proteins in absence of initial epigenetic priming is valuable to
understanding the genetic contribution to transcriptional regulation, which is

especially important for dissecting per-nucleotide conservation of UCEs.
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Past studies have employed a DNA-centric approach to identify potential
binders of small numbers of DNA sequences [65, 98, 99, 112, 113]. Here we have
developed a high-throughput platform to screen unbiased interaction profiles for
hundreds of DNA sequences, based on our previously described pulldown
method using high-resolution mass spectrometry and SILAC quantification [99].
We applied this technology to obtain an interaction map for 193 UCEs, including
over half of all non-exonic UCEs in the genome. We found non-exonic UCE
sequences to bind TFs and chromatin remodelers with known roles in
developmental regulation, whereas proteins that promote chromatin compaction
were relatively depleted. We inferred that the protein interactors bind to UCE
sequences through densely distributed and often overlapping canonical
transcription factor binding sites (TFBSs). Individual DNA bases that are part
of overlapping TFBSs were on average more stringently conserved among
vertebrates. We also obtained mapped intrinsic interactions of one UCE to five
nucleotide resolution and found a high frequency of both gain and loss of binding
to occur upon mutation. Finally, comparison of our intrinsic interaction map
with existing ChIP-seq data as well as reporter assays linking previous
independent observations [114, 115] highlight the functional relevance of these
interactions. Overall, our interaction map points towards extremely high
information content and complex transcription regulation logic behind many

UCEs.
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3.2 Results

3.2.1 The UCE interactome
We obtained the interaction map for 129 of 256 non-exonic (nx), 36 of 114

putative-exonic (px), 28 of 111 exonic (ex) UCEs as well as 21 human and 3
mouse random genomic loci by affinity purification, high-resolution mass
spectrometry and SILAC quantification in high throughput [96]. We used
Topoisomerase-assisted cloning to insert bait sequences amplified from human
or mouse genomic DNA into a universal vector backbone. This backbone enabled
us to amplify the baits by parallel PCR, where one primer was labeled with
desthiobiotin to allow streptavidin capture and specific elution of protein-DNA
complexes (Figure 7A). Our interaction map was generated in the context of the
R1/E mouse embryonic stem cell line, in keeping with the proposed relevance of
UCEs in gene regulation during development, and exploiting the sequence

identity of UCEs between mouse and human genomes.

We performed two experiments for each DNA bait of interest. In one set of
pulldowns (called “forward”), we incubated heavy-labeled nuclear extracts with
the UCE bait, and unlabeled extracts with the mix of 24 random genomic
sequences, to dilute out any binding sites arising by chance. SILAC enabled us
to accurately quantify the enrichment of interactors of DNA bait over control
[86]. In the “reverse” pulldowns, we switched the SILAC labels with respect to
the baits, enabling two-dimensional separation of true interactors from false

positives [98] (Figure 7A).

Our screen identified a total of 1,709 proteins across the entire interactome,
with an average of 870 proteins per MS run. Of these, 223 (13%) were quantified
on all UCE baits, and 660 (39%) were quantified in at least half of the baits. We
found 425 proteins with enrichment ratio greater than 1.4 for at least three
baits (Figure 7C). These proteins represented 10.3% of the R1/E nuclear
proteome which we measured for comparison, and showed a slight bias of 2.8
fold towards high-abundance proteins over the 10,000-fold abundance range
(P <1016, Figure 7D) — arguing that endogenous proteins of most expression

levels were accessible from our screen. There was excellent reproducibility of
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SILAC ratios between the forward and reverse pulldowns (Figure 7B, median
SILAC ratio r2 = 0.91). Binding profiles of members belonging to the same
complex were extremely tightly correlated (Figure 7E), indicating that the
proteins bound to the baits as complexes and providing further positive control.
In sum, we have generated an unbiased intrinsic protein interactome for UCE
sequences that preserves cell-specific protein-protein interactions and takes into

account the cell’s nuclear context.

3.2.2 Interactors of non-exonic UCEs are enriched for
development and chromatin access function

Previous in silico sequence analysis of UCEs proposed a role of transcriptional
regulatory “hubs” that recruit developmentally functional TFs [110]. Our UCE
interactome showed that non-exonic UCE sequences (nxUCE) were more
enriched in interactors regardless of SILAC ratio threshold used for interactor
calling, followed by possibly-exonic (pxUCE), exonic (exUCE) and random
genomic sequences (Figure 8A). Annotation enrichment analysis based on
SILAC ratios identified Gene Ontology terms containing the annotations neural,
nerve, forebrain, hindbrain, limb and axis as significant classifications for UCE
interactors (Figure 8B). Domain enrichment analysis based on Pfam showed
homeobox TFs were most significantly enriched at nxXUCEs (P < 10-31), and to a
lesser extent, at pxUCEs (P < 10-!2) and exUCEs (P < 0.01) (Figure 8C).
Interestingly, we also found enrichment of leucine zipper family TFs at nxUCEs
(P < 10%), a finding not previously predicted from motif analysis based on the

JASPAR TF binding motif database.

The TF binding hub proposal demands that the chromatin be accessible for
function. Intrinsic open chromatin propensity for UCE sequences could be
expected owing to AT-richness predicted to result in in poor nucleosome
occupancy [18]. Indeed, in addition to homeobox TFs, nxUCEs also favored

binding of several chromatin remodelers and other AT-rich factors including the
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A Number of proteins quantified with SILAC ratios greater than those indicated on the x-axis, summarized for
nxUCEs, pxUCEs, exUCEs and random genomic baits (mean +/- SEM). B-C Enrichment of proteins containing GO
terms (B) or TF classes (C) indicated on the x-axis for nxUCEs, pxUCEs, and exUCEs compared to random
genomic baits (mean +/- SEM). The numbers of proteins containing indicated GO words are given in parentheses.
Significance is indicated (*: P < 0.05, **: P < 0.01, ***: P < 0.001). More significant P values are displayed
explicitly. D Volcano plot of interactors enriched in nxUCE compared against random genomic loci. Enrichment
significance (Wilcoxon rank sum test) is plotted against the mean enrichment. Colored points indicate proteins
belonging to the annotated complexes or groups of proteins. E GC-content of nxUCE, pxUCE, exUCE and random
genomic baits. F-G Spearman rank correlation coefficients of SILAC ratio with bait GC content for each interactor
given the context of nxUCEs or random genomic loci (estimate +/- 95% CI). Only interactors with at least 20
quantifications were considered. Colored bars indicate proteins belonging to the PRC2 complex. See also Figure 9.
H SILAC ratios TF classes for PRC2-enriched and PRC2-deenriched nxUCE baits (mean +/- SEM).
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INO80, NuRD, HIRA, SMARCA/BAZ complexes as well as DNA topoisomerases
(Figure 8D). Many of the chromatin remodelers observed in our interactome
possess nucleosome shifting or destabilization activity [116-120]. Importantly,
although nxUCEs are slightly more AT-rich than random genomic loci (median
GC content 37.9% and 43.1%, respectively, Figure 8E), preferential enrichment
of nxUCEs for AT-rich binders including homeoboxes generally held significant
even when we binned our baits by comparable GC content (Figure 9), indicating
that the observed enrichment cannot be explained solely by sequence nucleotide

composition.

To further explore possible manifestation of intrinsic open chromatin propensity,
we investigated the binding of histone H1 and the PRC2 complex, proteins
known to promote heterochromatin formation [21, 27, 121]. Indeed, nxUCEs
were relatively depleted in histone H1 and PRC2 complex (P < 10-12, Figure 8D),
and this effect was equally strong in pxUCEs and exUCEs (P <104 and P <106
respectively, Figure 9). PRC2 binding is known to depend partially on TFBS
density, with absence of TFBS allowing PRC2 to bind to GC-rich regions [122].
Strikingly, we found that PRC2 members were among the interactors with
strongest GC preference, but only if random genomic sequences were considered
on their own. At nxUCE sequences where interactions were more prevailing, the
binding of PRC2 showed no GC preference at all (P < 0.05 for SUZ12, P < 0.01
for EZH2, EED and JARID2; see also Figure 8F, G and Figure 9), indicating that
a different rule than GC content governs binding of PRC2 to nxUCE sequences.
Furthermore, we found that the homeobox class of interactors — the class most
enriched for nxUCEs — is significantly depleted at PRC2-enriched nxUCE baits
over PRC2 de-enriched nxUCE baits (P < 0.01, Figure 8H). The differential
enrichment became even more significant when the comparison was extended to
all the baits (P < 10%). These results demonstrate the inverse relationship
between binding of TFs and binding of PRC2 in the context of UCE sequences,
and suggest that nxUCE sequences may avoid heterochromatinization in part by

exclusion of PRC2 owing to a large population of interactors.
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Figure 9: Enrichment/Depletion of AT-/GC-rich binding proteins at UCEs and random genomic loci.

SILAC ratios of proteins or groups of proteins (homeobox transcription factors, NuRD complex, PRC2 complex,
and histones H1) that display strong AT-rich (top panels) or GC-rich (bottom panels) sequence preferences are
displayed against the bait GC content, colored as nxUCEs, pxUCEs, exUCEs or random genomic loci. The bar plot
underneath each scatter plot summarizes the SILAC ratio difference between each nxUCEs and random genomic
loci in 5% GC content bins (mean +/- SEM). Significance in ratio means is indicated (*: P <0.05, **: P < 0.01, ***:

In conclusion, we have shown that nxUCEs are not only enriched in
developmentally relevant TFs, but are also enriched in chromatin
destabilization proteins as well as relatively devoid of heterochromatin-
promoting proteins. These observations illustrate the inherent biochemical

properties of nxUCE sequences appropriate to serve as TF binding hubs.
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3.2.3 UCEs are strongly enriched in overlapping TFBSs with
conservation bias in overlapped sites.

One proposed explanation for ultraconservation of UCEs is that of high density
of functional TFBSs providing multiple constraints accounting for higher
evolutionary pressure. High density of TFBSs could result in information
compression in the form of overlapping TFBSs, a concept that has been
postulated for UCEs and indeed observed in several other instances [110, 123,
124]. Our dataset provided an opportunity to address the multiple-constraint

hypothesis directly.

We first used our quantitative UCE interactome to derive binding motifs that
are directly relevant to UCEs. We tested for association between differential
interactor enrichment and all possible motifs up to 8 nucleotides in length, and
found 439 motifs associated with enrichment of 161 interactors at 5% FDR.
These included a large number of homeobox, E-box, and leucine zipper, and
several other motifs, as well as a number of putative motifs for several factors
(see Experimental Procedures). We also correctly found very short motifs for a
number of factors. For instance, we identified the CpG dinucleotide as a binding
motif for KDM2B (P < 1017, a H3K36 demethylase known to bind to
unmethylated CpG at c-jun promoter through its CxxC zinc finger [125]. Binding
of TFAP2 can be described by presence of a single-nucleotide motif “G”,
reflecting the GC content as the major influence on the interaction. As a
measurement of validity of our motif enrichment, Table 1 compares some of the
most significant motifs rediscovered abd initio from our dataset to the

corresponding known motifs.

To test the overlapping TFBS hypothesis and its relevance for ultraconservation,
we mapped the derived motifs to UCE sequences and other sequences, and then
compared motif distribution as well as conservation of unmapped bases, singly-
mapped bases, and repeatedly-mapped (superimposed) bases (Figure 10A, see
also Experimental Procedures). To allow an exhaustive analysis, we included all
481 UCEs, 720 additional enhancers available from the VISTA database of in

vivo enhancer activity of conserved genomic loci [106] classed by whether they
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not exUCEs. Similarly, ucVISTA sequences were more enriched for
superimposition over random genomic loci than ncVISTA (P <1025and P < 1016,
respectively) but less enriched than nxUCEs, consistent with UCEs being the
most conserved core of ucVISTA enhancers. No superimposition enrichment was
observed when we instead used non-enriched motifs taken randomly from the
UCEs. Our finding that superimposition degree increases from ncVISTA to
ucVISTA and finally nxUCE, and that exUCEs did not show such enrichment,

indicate that nxUCEs represent the extreme case of overlapping TFBSs.

To exclude the possibility that AT-richness is solely responsible for the increased
motif superimposition at nxUCEs, we shuffled the nucleotides in all sequences
used for superimposition analysis to generate synthetic sequences of equivalent
GC content. Superimposition enrichment on these sequences was severely
abrogated (Figure 10c), indicating that AT-richness contributes to but is in
itself insufficient to achieve the extent of superimposition observed with
nxUCEs by chance. To support this in silico finding, we performed pulldowns on
random, highly heterogeneous DNA sequences with average GC content of 20%
or 40%. Our experiment showed that only some of the proteins that bound
preferentially to UCEs also bound preferentially to the synthetic AT-rich bait
population (Figure 11). Generally, there was insignificant correlation between
factor preference for AT-rich sequences and enrichment at nxUCEs (Spearman’s
p =0.05, P> 0.1). Notably, factors bound to synthetic GC-rich bait populations
were also enriched at nxUCEs, ruling out AT-richness as the sole explanation
for motif occurrence and thus superimposition at nxUCEs. Together with the
inherent conservation bias for GC nucleotides over AT nucleotides in UCEs but
not in random genomic loci (Figure 11), we speculate that GC-rich TFBSs may
be under greater selective pressure in AT-rich UCEs in order to preserve certain

regulatory function.
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If superimposition of TFBSs also played important biological roles, we would
expect DNA bases involved in superimposition to be more deeply conserved. We
therefore investigated the extent of DNA base conservation in 46 vertebrates,
using an established conservation scoring scheme [126]. For sequences that were
putative enhancers, the bases matched by multiple motifs were on average
slightly but significantly more conserved than bases mapped only to a single
motif (P <0.001). Strikingly, this conservation bias became massively amplified
when only AT bases were considered (P < 10-1° Figure 10D), consistent with the
presence of many AT-rich motifs derived from our data. Conservation bias was
also observed in ucVISTA and ncVISTA sequences, concordant with functional
overlapping TFBSs reported for loci other than UCEs. The larger difference in
VISTA enhancers compared to UCEs can be attributed to the lower conservation
baseline for ncVISTA enhancers (Figure 10D). We also found the conservation
bias to be reduced when the scoring was restricted to placental mammals

(Figure 10E), suggesting early origins of these overlapped sites. In conclusion,
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we have shown that nxXUCEs represent the extreme case of overlapping, deeply

conserved, biochemically functional TFBSs among enhancers.

3.2.4 UCE scanning mutagenesis defines protein binding
characteristics and correlates gain of interaction with
nucleotide conservation

Although an implication of the multiple-constraint hypothesis is that mutation

of nxXUCEs causes deleterious consequences, it has been difficult to identify the

exact systems that are affected. However, the conservation bias implies that
multiple-constraint hypothesis would at least manifest itself in terms of change
in protein binding capacity, which in turn could result in regulatory logic

alteration at UCEs.

In order to test this hypothesis, we performed a scanning mutagenesis of uc325,
a non-exonic UCE that is part of a midbrain/eye development enhancer [106].
Each non-overlapping 5-nucleotide window of uc325 was mutated transitionally
—the most frequent mode of nucleotide substitution in vivo [127]. Pulldown was
performed on the resultant series of baits against the wildtype bait (Figure 12A),
and interactors were defined as proteins whose SILAC ratios were in most
extreme 5% of all quantified ratios. We discovered 55 interactors for the uc325
set but only 10 for the control set based on a random genomic sequence with
comparable GC content. Both gain and loss of interactions were found for uc325,
covering the entire span of the bait (Figure 12C). Most of the prominent
interaction losses were found in contiguous variants — reflecting binding sites
that span more than five nucleotides — whereas interaction gains tend to appear
stochastically (P < 105, Kolomogorov-Smirnov test, Figure 12B). In contrast,
only a small region in the control bait appeared to contain prominent interactors
(Figure 12B, C). These data indicate that uc325 indeed possesses a hub-like
characteristic with numerous and diverse TFBSs as well as latent sites that

could be reached within a few transition mutations.
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Figure 12: a fine intrinsic interaction map of uc325.

A Non-overlapping 5 nucleotide windows spanning the 234 bases of uc325 were mutated transitionally (i.e.
A - G, C & T) and interactors compared to the wildtype in a series of SILAC pulldowns. The same was
done for a 229-base random genomic sequence with comparable GC content. B Proportion of variant
strides that show either loss or gain of binding of at least one protein owing to the mutation for uc325 and
control, given a as a function of cutoff ratio used for calling gain/loss. Contiguous differential binding refers
to differential binding that spans at least 2 strides. C Enrichment of proteins where complete pairwise
quantification was achieved for at least 80% of all strides, and where at least one stride showed localized
differential enrichment with magnitude exceeding 95% of all quantified ratios. This 95% cutoff
corresponded to log2 ratio of 0.59 for uc325 and 0.83 for the control. Interactors were ordered by the
location of a prominent differential binding (magnitude exceeding 99% of ratios across all strides). Genome
coordinates are based on the mm10 build. Conservation is based on 60-way vertebrate comparison.

D Comparison of maximum magnitude of binding gain/loss of each 5-nucleotide block to the minimum
nucleotide conservation smoothened over two successive blocks, giving an effective resolution of 10
nucleotides.
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We next investigated whether any relationship exists between uc325
conservation and its scanning mutant interactome. Initially, we had expected
the conservation to be correlated to the loss of binding owing to transition
mutation, but this turned out not to be the case (P > 0.5). Surprisingly, we found
conservation of uc325 strides to be significantly correlated with the maximum
binding gain owing to mutation (P = 0.0017, Figure 12D), whereas such
correlation was weaker for the control (P = 0.027). When at least two non-
correlating proteins were required to be enriched in the mutant, the correlation
with conservation remained significant for uec325 (P = 0.0020) but not for the
control (P = 0.12). Interestingly, AT-rich strides tended to give more drastic
binding gain upon mutation (correlation with GC content = -0.36, P = 0.0062,
Figure 12C). We speculate that these AT-rich strides are under selective
pressure against developing such TFBSs which could alter the regulatory logic
of the UCE. Alternatively, apparent strong gain of binding could be observed if
the mutation turned a promiscuous binding site capable of binding several
factors weakly into a well-defined, specialized binding site, thereby destroying
the ‘hub’ characteristics which may be required for fine-tuned regulatory

function.

3.2.5 Regulatory consequence of the UCE interactome

Evidence for regulatory consequence of UCE interactors could be obtained from
perturbation experiments and reporter assays. While it may be difficult to
discern the regulatory logic of such complex enhancers without performing very
deep perturbation, it should still be possible to address functionality of certain
interactions given existing biological knowledge. To demonstrate such a case, we
investigated the functionality of the interaction between uc400 and the protein

GTF2IRD1.

The 860 bp genomic region containing uc400 possesses forebrain-specific
enhancer activity during embryonic day E11.5 (Pennachio et al., 2006). We
found that uc400 interacts specifically with the Williams Beuren syndrome
protein GTF2IRD1 with a SILAC ratio of around 6:1 in R1/E cells, and also with
hGTF2IRD1 in HeLa cells (Figure 13). GTF2IRD1 is known to act as a repressor
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via its interaction with the conserved DNA motif containing the core sequence
GATTA [115]. Consistently, our motif analysis rediscovered GATTA as a binding
motif for GTF2IRD1 (Table 1), which is present in three copies in uc400.
GTF2IRD1is expressed ubiquitously with the exclusion of the forebrain during
E10.5[114], a finding in agreement with the forebrain-specific activity of uc400,
the role of Gtf2ird1 as a repressor, and our interaction data. Given the degree of
corroboration between existing literature and our data, we decided to investigate

possible regulatory modulation of uc400 by hGTF2IRD1.

We first confirmed that hGTF2IRD1 bound to uc400 via the GATTA motif, by
mutating all occurrences of such motifs to GAGGA. MS-analysis showed
hGTF2IRD1 to be the only DNA binding protein bound preferentially to the
wildtype uc400 bait compared to the mutant bait (Figure 13B). Interestingly, the
data immediately revealed that the mutant uc400 had also gained specific
binding of another TF, namely hTEAD1. We then performed reporter assays
using wildtype or mutant uc400 as an enhancer driving luciferase reporter,
under non-targeting condition or GTF2IRD1-knockdown. Owing to auto-
regulation of Gtf2ird1 [128], we also monitored mRNA expression levels together
with luciferase reporter activity over a time course (Figure 13D). We found that
hGTF2IRD1 knockdown resulted in differential reporter activity modulation of
wildtype uc400 relative to the mutant uc400. Because our mutagenesis of uc400
reporter resulted in gain of hTEAD1 binding site (Figure 13B), we also excluded
indirect effects of hGTF2IRD1 knockdown on reporter activity through hTEAD1
by showing that its mRNA expression level was only modestly affected
throughout the course of the experiment (Figure 13). In conclusion, we have
demonstrated regulatory consequence of the interaction between uc400 and the

hGTF2IRD1 protein.

To further explore the regulatory relevance of UCE interactors in cellular
contexts more globally, we compared our interaction data with existing ChIP-seq
data from the ENCODE consortium [101]. We found 12 TFs from our screen
with corresponding ChIP-seq data obtained from the H1 human embryonic cell

line, giving rise to 31 cis-trans interaction pairs relevant to our loci of interest.
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ChIP-seq measures if a TF is present at a genomic locus, therefore if there is a
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Figure 13: Regulatory consequence of UCE interactions

A Interaction of uc400 with TF GTF2IRD1 in R1/E compared to random genomic loci. B Disruption of
uc400 interaction with GTF2IRD1 in a GATTA 2 GAGGA mutant form uc400 compared to wildtype. C
Relative mRNA expression levels of GTF2IRD1 and TEAD1 at 12 hours post transfection for non-targeting
and GTF2IRD1-knockdown conditions (mean +/- SEM). D Luciferase reporter activity of wildtype uc400
normalized to that of the GATTA > GAGGA variant at (mean +/- SEM). Significance levels *: P <0.05, **:
P < 0.01. E Distribution of relative DNase-seq signal for the baits containing ChIP-seq interaction
congruent to the SILAC interactome, compared to the baits where no ChIP-seq signal was detected.

F Heat map of correlation deviation for all identified chromatin proteins with in vivo chromatin states

in ChlIP-seq and a pulldown experiment has been performed on the sequence,
then we should have also identified the factor by mass spectrometry. This was
indeed true in 90% of the cases. Although we do not expect the strength of a
ChIP-seq signal to directly correlate with the MS measurements —because of the
different nature of the experiments — in 65% of the cases (20 interactions) the
SILAC ratios indicated clear enrichment over random genomic sequences. In a
few cases, the SILAC ratios loosely correlated with the ChIP-seq scores. We also

found a highly significant tendency for loci with congruent interactions to have
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more accessible chromatin than the remaining loci, as deduced by DNasel
hypersensitivity signal (Figure 13E). This suggests that open chromatin has an
influence on observing intrinsic interactions in the cell. Overall, the available
ChIP-seq data validate the relevance of our UCE interactome in a native

genomic context.

Regulatory relevance of our interactome in cellular context should also be
reflected in cellular chromatin states associated with enhancer and repressor
activity. We therefore correlated our SILAC profiles with several histone
methylation and acetylation ChIP-seq tracks as well with as the DNasel
hypersensitivity track. Initial analysis of H1-hESC ChIP-/DNase-seq data
obtained from ENCODE revealed that, regardless of the track under
consideration, proteins whose SILAC ratios most strongly correlated with the
ChIP-/DNase-seq signal were those with strong GC-content preference. To
correct for this known bias of ChIP-seq datasets [129], we report association
between SILAC profiles and ChIP-/DNA-seq profiles in terms of deviation from
correlation expected of the interactor’s GC preference. We validated our analysis
by comparing SILAC profiles to the CTCF ChIP-seq track, and indeed found the
SILAC profile of CTCF to be most strongly associated with its own binding in
H1-hESCs (Figure 13F, arrow 6).

The analysis recovered several known relationships between intrinsic
interactors and cellular chromatin states at corresponding loci. For example, the
PRC1 complex was most strongly correlated with the classical Polycomb mark
H3K27me3, but also to a lesser extent with the enhancer marks (Figure 13F,
arrow 6), a finding in line with the bivalent nature of H3K27 methylation and
H3K4 methylation [50, 130]. In contrast, no correlation was observed for the
PRC1 complex with H3K27ac, a mark which counteracts Polycomb silencing
[131, 132]. Table S4 summarizes the full set of associations between our
interaction data and chromatin data along with functional interpretation. These
associations indicate that proteins involved in chromatin modification pathways
already bind even in initial absence of epigenetic priming. Taken together, our

analyses demonstrate the regulatory relevance of our interactome by illustrating
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congruence between cell type-specific intrinsic interaction at UCEs and in

cellulo chromatin modification states.

3.2.6 The UCE interactome is determined by the cellular
context

It is conceivable for DNA sequences of high regulatory information density such
as UCEs that regulation is cell-type specific. Such variation in regulatory logic
should reflect itself in change in interactions. To explore this, we also obtained
interaction data for a subsample of UCEs in the HeLa cell context. Comparison
between the two datasets revealed that homologous interactors with high
sequence identity between mouse and human are more likely to have highly
correlated binding. Examples of such homolog pairs include CHD7, TFAP4 and
RCORI1 (Figure 14A). However, many highly identical homolog pairs also behave
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Figure 14: Comparison of UCE interactomes obtained in HeLa and R1/E backgrounds

A Scatterplot showing SILAC ratio correlation between R1/E and HeLa datasets against human-mouse
protein sequence identity. Names of the proteins represented by colored points are given on the left.

B Example profiles of proteins with high human-mouse sequence identity. C Comparison of protein-
protein interactions deduced from profile correlation (see also Figure 1), showing members of the REST co-
repressor complex and the NuRD complex, and the switch of complex membership of HDAC1/Hdacl and
HDAC2/Hdac2.

differently between cell lines, indicating effects of cellular context upon intrinsic
interaction with our baits (Figure 14A, B). For example, by using profile
correlation across baits as a measure for complex organization (Figure 7E), we
found that the proteins HDAC2 and HDAC1 bound to our baits in differing
contexts: as part of the REST co-repressor complex in the HeL.a background, and
as part of the NuRD complex in the R1/E background (Figure 14C). Thus, UCE

sequences are capable of recruiting different interactors based on the nuclear

proteome and protein-protein interactome of the cell.
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3.3 Discussion

Despite the comprehensive tabulation of enhancer activities of UCEs, the
candidate interactors responsible for regulation have not been systematically
characterized. While protein-centric approaches such as ChIP-seq have long
allowed for global analysis of interactions of candidate proteins with the
genome, a DNA-centric approach is particularly suited to answering this
question. We have applied DNA-centric interaction screening to map intrinsic
interactions of the sequences of hundreds of ultraconserved elements to obtain
two highly information-rich datasets: the UCE interactome and the uc325
differential interactome. The exquisite quantitative accuracy of SILAC,
combined with the large scale of the interactome study, allowed us to provide
candidate interactors that can be used for follow-up studies of UCE regulatory
logic, as well as to quantitatively address interaction tendencies of UCEs as a
family of sequences — a question not previously addressable in smaller scale

applications of the DNA-centric paradigm.

The analyses demonstrated that the sequences of nxUCEs represent the
extreme case when compared to pxUCEs, exUCEs and random genomic
sequences in many aspects of protein-DNA interactions. They were most
enriched in intrinsic interactors, especially those annotated to be important in
tissue specific development; they were most refractory to intrinsically GC-rich
binding of the heterochromatin-promoting PRC2 complex); and they were most
enriched in deeply conserved, overlapping TFBSs. The latter phenomenon is in
the extreme even compared to other non-ultraconserved enhancers in the
genome. While the extent to which individual interactions contribute to the
regulatory output remains to be determined, we have shown that interactions
are recapitulated in cells by ChIP-seq, and as a whole corroborate with observed
chromatin states that reflect regulatory consequences. Furthermore, UCEs
appear to bind different factors in different cellular background which can be
explained in part by rewired protein-protein interaction. All these findings
provide strong experimental support to the hypothesis of nxUCEs as highly-

constrained transcriptional regulatory modules [43, 110].
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If nxUCEs are highly information-dense regulatory circuits, it is conceivable
that any mutation would result in regulatory alterations with adverse effects to
the organism. This is supported by the conservation bias of overlapping TFBSs
inferred from the UCE interactome and the sensitivity of uc325 to mutation with
respect to gain and loss of binders. Our observation that mutating hGTF2IRD1
binding sites in uc400 results in gain of Teadl binding further exemplifies the
idea that functional binding sites can be gained spontaneously through mutation
of an existing motif. Our finding that fine-resolution conservation of uc325
correlated with the tendency to gain interactors also lends possibility to the
concept that UCEs are under selective pressure that not only prevents loss of
regulatory function, but also its logical alteration (Figure 4). This is supported
by the discovery that while many TFBSs can be functional regardless of their
context with neighboring TFBSs, some TFs do indeed have a strict contextual
prerequisite [133]. Context dependent binding might provide cell-type specific
logic that provides further conservational constraints not yet explored in this
study. Still further contribution may come from functional constraints beyond

enhancer function [134-136].

We found that pxUCEs and exUCEs were less extreme in their transcriptional
regulatory characteristics as indicated by their intrinsic interactions, in line
with their possible functional roles beyond transcriptional regulation. We found
pxUCEs to behave similarly to nxUCEs in some aspects (Figure 8B and Figure
10D), to exUCEs in others (Figure 8A), and often as an average between
nxUCEs and exUCEs (Figure 8B, 2C, and Figure 10B). This raises the
possibility that some of the putative exons coinciding with pxUCEs may in fact

be functional exons and others may be enhancers.

There remains the general challenge that certain deletions or mutations of
UCEs have failed to produce observable deleterious phenotypes [53], which can
be interpreted against the high constraint hypothesis. However, this absence of
evidence is not surprising, given that almost all ultraconserved enhancers
remain to be systematically characterized at the regulatory level, where the
context and environment under which they become indispensable need to be

determined. Indeed, it is now known that some enhancers contribute to robust
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regulation and are indispensable only under certain extreme conditions [137].
Full, systematic ab initio functional characterization of regulatory elements,
including upstream events, context-dependent regulatory logic, and downstream
consequences remains a daunting task. Here we have demonstrated the utility
of our approach as a crucial initial step in the process and, complementary to the
VISTA enhancer data which tabulated enhancer activity of UCEs, we provide
their potential interactors. The use of insertional ChIP where the interaction
was queried in vivo would be a very attractive follow-up in order to ascertain the
exact cell-specificity of interactions [66]. Further integration with data obtained
for in vivo protein-DNA interactions, protein-protein interactions, long-range
DNA interactions, as well as gene expression data, reporter assays and
perturbation experiments, will allow deep functional characterization of UCEs
with the aim to discover their target genes and functional contexts as well as to

decode their exact regulatory logic.
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3.4 Experimental Procedures

3.4.1 Stem cell culture and nuclear extract preparation

R1/E cells were SILAC labeled in SILAC DMEM (PAA Laboratories) containing
either 73 mg/l Lys-8 HCI and 42 mg/l Arg-10 HCI, or the same concentration of
Lsy-0 HCI and Arg-0 HCl. Medium was supplemented with 10% dialyzed FBS
(PAA Laboratories), 1x non-essential amino acids (Gibco Life Technologies), 1
mM sodium pyruvate (Gibco Life Technologies), 3 uM CT-99021 (Biomol GmbH),
1 pM PD-0325901 (Biomol GmbH), 50 pM 2-mercaptoethanol (Gibco Life
Technologies), 100 u/ml LIF (Millipore GmbH), and penicillin-streptomycin-
glutamate. Nuclear extracts were prepared as previously described [138] except
for a reduced NP40 concentration of 0.5% to preserve nuclear integrity during

cell lysis. Extracts were controlled for presence of Oct4 by western blot.

3.4.2 Cloning and DNA bait generation

UCEs and 24 random mouse and human genomic loci were cloned into
pCR8/TOPO/TA (Life Technologies). See Table S3 for genome coordinates of the
inserts. Desthiobiotin-conjugated DNA baits of size 200 bp to 1000 bp were
generated by PCR using the following primers: forward 5’-desthiobiotin-
CAGGCTCCGAATTCGCCCTT-3, reverse 5-GAAAGCTGGGTCGAATTCGCC-
3’. PCR products were concentrated by ethanol precipitation and purified from
unincorporated primers on G-50 Sephadex columns (GE Healthcare). Baits for

uc325 scanning pulldowns were produced by site-directed mutagenesis PCR.

Baits for random DNA pulldown used to generate data in Figure 11 consisted of
179 bp 5’ variable sequence with 20%, 40% or 60% GC content, followed by a
constant 3’ sequence 5-AAGGGCGAATTCGGAGCCTG-3. Baits were
synthesized as single stranded DNA by Metabion GmbH. To generate dsDNA
bait, 100 pmol ssDNA oligo was annealed with 100 pmol desthiobiotinylated
oligo complementary to the constant region (5-desthiobiotin-
CAGGCTCCGAATTCGCCCTT-3’), and extended with 25 units of Klenow exo-
fragment (Fermentas), using the provided buffer and supplemented with 25

nmol each of dATP, dCTP, dGTP, and dTTP at 37°C for 1 hour. Pulldowns were
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performed using 100 pmol of desthiobiotinylated bait, but otherwise as described

in Experimental Procedures.

3.4.3 DNA pulldowns and mass-spectrometric analysis

DNA pulldowns and sample preparation for mass-spectrometric analysis were
performed as previously described [98]. Peptides derived from the bound
proteins were separated by HPLC over a 140-minute gradient from 2% to 60%
acetonitrile, and analyzed in an Orbitrap Elite mass spectrometer (Thermo
Fisher Scientific, Germany). Full scan MS spectra were acquired with 120,000
resolution in the Orbitrap analyzer, and up to the 10 most intense ions from
each full scan were fragmented with collision induced dissociation and analyzed
in the linear ion trap. Mass-spectrometric data were processed with the
MaxQuant software version 1.2.6.20 [82]. The complete pulldown dataset from
R1/E and the nuclear proteome dataset were searched against the mouse
Uniprot database. We mapped Gene Ontology [139] and Pfam [140] annotations

to protein groups using the Perseus module in the MaxQuant software suite.

3.4.4 Nuclear proteome of R1/E cells

R1/E nuclear extracts was precipitated in four volume acetone. The pellet of
nuclear proteins was resuspended in 8 M urea and proteins digested in solution.
Peptides were separated by HPLC over a 240-minute gradient from 2% to 60%
acetonitrile, and analyzed in a Q-Exactive mass spectrometer (Thermo Fisher
Scientific, Germany) [141]. Five replicates were measured to extend proteome
coverage. Mass-spectrometric data were processed with MaxQuant version

1.2.6.20.

3.4.5 Reporter assays
We cloned uc.400 into a modified pGL3/Basic firefly luciferase reporter vector
containing a minimum mouse heat shock promoter via the Gateway system as

previously described [98]. Primers for amplifying uc.400 were: forward 5'-

GCCTCTCTGAAGCGTTCATC-3, reverse 5-TGGTGTTACGGATCACAACG-3'.

73



Interactome of Ultraconserved Elements

The mutant variant of uc.400 were generated by PCR using mutagenizing

primers and subcloned into pCR8/TOPO vector.

Transfection and reporter assays were performed as previously described [98].
Knockdown of hGTF2IRD1 was achieved using shRNA vector generated using
pSUPERIOR vector system, following the manufacturer’s protocol. The shRNA
core half-sequences for GTF2IRD1 and non-targeting construct were
CAGAAAGACTAAAGGAAAT and GACTAGAAGGCACAGAGGGAG,
respectively. Knockdown was quantified using quantitative real-time PCR and
SYBR green system, using the standard AAC: method and normalizing over
GAPDH. Primers used for qPCR were as follows: GAPDH 5-
CAAGGTCATCCATGACAACTTTG-3 and 5-GTCCACCACCCTGTTGCTGTAG-
3’ GTF2IRD1 5-ATCATCACCAGCCTCGTGTC-3 and 5-
CACCTTCTTGGGGTGCTCT-3; TEAD1 5°-CATGTCCTCAGCCCAGATCG and
5-AGGCTCAAACCCTGGAATGG-3.

3.4.6 Data analysis

Preprocessing

SILAC ratios were corrected to account for residual proteome differences
between heavy and light nuclear extracts (see Extended Experimental
Procedures for detail). Protein groups were then filtered for having coefficient of
determination of SILAC ratios greater than 0.2 across all baits, and for having
log2 SILAC ratios exceeding 0.5 in at least three baits. For subsequent analyses,
we applied a Gene Ontology annotation filter, requiring the protein groups to
contain at least one of these words or their variants as substring of the GO
terms: chromatin, DNA, enhancer, genome, helicase, histone, nuclear, promoter,

RNA, splicing, transcription, and translation.

Imputation

Where imputation was required, we filled missing logarithmized quantifications

with a normal distribution with the mean equal to the minimum SILAC ratio for
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each protein, and the standard deviation of 0.5. This number was empirically

determined to best simulate the errors of SILAC ratios in the dataset.

Annotation enrichment analysis

We used Pfam annotation to class interactors by domain and imputed SILAC
ratios were used to calculate enrichment. For JASPAR prediction [13], we used
the standard Position Weight Matrix scoring procedure, normalizing the scores

to the maximum value attainable for each motif.

Ab initio motif enrichment

For each k-mer motif where 1 < & < 8 (excluding reverse complement
redundancies), the median motif occurrence in both orientations was
determined. DNA baits were then divided into those having less than or equal to
the median occurrence of the motif (“low occurrence”), and those having greater
than the median occurrence (“high occurrence”). Wilcoxon rank sum test was
then used to calculate significance in difference in imputed SILAC ratios
between the “high motif occurrence” and “low motif occurrence” bait sets. We
used Benjamini-Hochberg false discovery rate to adjust the P-value for multiple

comparisons [142].

Superimposition analysis

We chose a minimum motif length A, where 4 <A < 7. To exclude counting the
overlapping of different-length but otherwise redundant motifs, we applied two
criteria for keeping a motif: (a) that the motif length was at least A, and (b) that
there existed no shorter motif that was a substring of the motif being considered
or its reverse complement. Motifs only significantly associated with de-
enrichment of interactors but not enrichment were not considered. Conservation
data were obtained from the UCSC Genome Browser (Build hgl9). Non-

ultraconserved VISTA enhancer coordinates were obtained from the VISTA

75



Interactome of Ultraconserved Elements

database [106]. Conservation data were obtained from the phylop46wayAll and
phylop46wayPlecantal tracks of hgl19 respectively [126].

ENCODE dataset integration

Broad histone ChIP-seq signal for histone modifications and peaks for TFBSs
were obtained from the ENCODE histone ChIP-Seq or DNase-seq tracks
mapped to the hg19 build using the UCSC Genome table browser. See Table S3
for the track listing. Only loci corresponding to bait sequences with non-zero
signal in both the DNase-/ChIP-seq track and in the control track were
considered. For each protein, Spearman correlation coefficient was determined
between SILAC ratios logarithmized DNase-/ChIP-seq signal density normalized
to control signal density. Correlation coefficient deviation was calculated by
subtracting the expected DNase-/ChIP-seq to SILAC ratio correlation given the
bait GC content to SILAC ratio correlation, and then normalized to the

minimum value.
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4 Discussions

4.1 Scalable bait production for DNA SILAC AP-MS

The UCE interactome described in Chapter 3 was derived from several hundreds
of SILAC AP-MS experiments. Unlike immunoprecipitation techniques where
many commercially available antibodies exist, DNA AP-MS requires sequence-
specific DNA baits which vary vastly between studies; as a result, DNA baits are
usually prepared from first principle. The actual step of affinity purification has
been executed in high-throughput in previous studies [96, 97], and recent
developments in sample processing and MS instrumentation have enabled
parallelized processing of recovered proteins and minimized the sample analysis
time [143]. Due to these improvements, the time-limiting step in large-scale

SILAC AP-MS screens is now the bait preparation.

Owing to the prohibitively high cost of chemically synthesizing long DNA
oligonucleotides, generation of DNA baits longer than 200 bp, such as those used
in this thesis, relies on enzymatic synthesis. Long DNA sequences could be
amplified out of genomic DNA, using polymerase chain reaction (PCR) in which
one primer carries a chemically conjugated affinity tag. Unfortunately, the
efficiency, purity and reproducibility of genomic PCR are highly dependent on
both the primers and the target sequence. The issue of reproducibility was
particularly problematic as the amount of DNA needed for an AP-MS is of a
much larger scale than that that obtainable from a single conventional PCR
vessel. Furthermore, a sequence-specific affinity-tagged primer would be needed
for amplification of every genomic locus; such a primer is very expensive, costing

over 50 times more than conventional untagged primers.

We overcame these limitations by sub-cloning the UCE sequences into an
intermediate vector, because vector PCR is much more efficient than genomic
PCR. We produced a computer script that requested primer sequences through
the Primer3 API for each UCE [144]. Thanks to the relatively low GC content of
the UCE sequences, automated primer design was almost always successful in
finding a primer pair within 100 bp on either side of the UCE boundary. We had

found that genomic amplification using these primers had about 35% failure
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rate (defined as no visible product or incorrectly-sized product). Most of these
failed amplifications could be combined across batches and iteratively re-
attempted under various conditions to achieve a correct product. The yield of
each successful genomic PCR, however, varied greatly. We then used
topoisomerase-assisted cloning to insert the PCR product into a universal
backbone. This process was more than 95% successful, as judged by at least one
of two randomly picked clones passing colony-PCR validation. Once subcloned
into the intermediate vector, the bait was amplified using a pair of universal
primers that bind to the backbone flanking the UCE sequences. This reaction
was 100% successful, and the product showed no appreciable yield variation
judged by absorbance-based DNA quantification. This improvement of yield and
reproducibility resulting from moving from genomic to vector DNA was
instrumental in achieving the required throughput. Once the UCE clones were
made and validated, it was possible to generate the 200 UCE baits on demand

within few days.

In section 3.2.4, we generated a differential interactome of uc325 against a
transition mutation control. Instead of sub-cloning each mutation control, which
would involve laborious preparation and validation steps, we simply constructed
each bait from two rounds of PCR: first, each mutant variant bait was amplified
as two “halves”, with an overlap region where the mutation occurs; these halves
then served as templates to re-assemble the mutagenized bait (Figure 15A). The
first PCR was easily validated by visualizing in gel electrophoresis, where the
combination of the “left” and “right” products would create a diagnostic pattern
when the scanning mutant variants are placed in order (Figure 15B). The
corroboration between the data shown on Figure 12 and the expected disruption
of binding (given the knowledge of existing binding motifs) validated this
differential bait generation method. Nevertheless, it turned out that a few
interactors constantly bound either to the wildtype or the mutant, regardless of
the underlying mutation. Since these interactions were not sequence-specific, we
attributed their indiscriminate enrichment/depletion to the aforementioned
additional steps required to generate the mutant baits. These additions may

have resulted in different sets of residual proteins associated with the bait prior
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to the pulldowns. We therefore excluded the proteins that show this behavior

from the analysis.

In summary, a well-chosen combination of high-throughput cloning, automated
PCR primer design, universal affinity-tagged PCR primers for bait synthesis,
and computational algorithms for systematic artifact exclusion together allowed
the several hundreds of DNA baits between 200 and 1000 bp to be prepared in a

short time and at a low cost.

left PCR B
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" -.-»...-'----- L 3 el 2t
mutant bait

Figure 15: High-throughput production of uc325 scanning variant baits

A PCR scheme for generation of a single variant. The pCR8 vector containing the wildtype uc325 insert
serves as template upon which the “left” and “right” mutagenesis PCRs (each one carrying a mutagenic
primer) are performed. The resulting products then serve as template for the synthesis of the actual bait,
using the same universal, affinity-tagged primers as were used for amplifying other UCE baits.

B Diagnostic gel electrophoresis to validate the identity of the first PCR step. As the reactions are loaded
in the order of the position of scanning mutation, the left half grows bigger as the right half grows smaller.
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4.2 Quantitative interpretation of SILAC AP-MS data

The first large-scale SILAC AP-MS dataset was generated for protein-protein
interactions [97]. The scale-free property of the known protein-protein
interaction networks implicates that the vast majority of proteins have a modest
number of binding partners, and only few proteins act as “hubs” for a large
number of interactors [145]. The identities of protein binders, their affinities and
stoichiometries are related to the physical properties of the molecules and, for a
substantial number of small, stable protein complexes, only few quantized
possibilities exist [146]. However, the scenario for DNA-centric protein-DNA
interaction is very different. A DNA sequence is capable of binding a large
number of transcription factors, each with a different stoichiometry and affinity,
depending on the number and strengths of sites available on the sequence.
When protein interactions at a DNA sequence are compared to those at a point
mutation variant [98-100], the number of binding sites affected on the DNA
sequence is minimal. However, comparison of protein interactions between two
completely different DNA sequences typically result in a distribution of
enrichment factors that is more continuous than that of protein-protein

interactions.

This continuous distribution of enrichment was indeed observed in the UCE
interactome. Its quantitative interpretation was clearly of biochemical
significance. The most striking evidence for this was in the binding of the
transcription factors with known AT-rich or GC-rich sequence preferences,
where we found strong correlations between the enrichment folds and the bait
nucleotide compositions. Additionally, most of the downstream analyses — gene
annotation enrichment, motif discovery, ChIP-seq data integration and
interaction correction profiling — required that the SILAC ratios were
interpreted quantitatively across baits. Experimentally, this quantitative cross-
comparison was made possible by the use of a universal control bait. However,
owing to the proteome variations between lysates, errors between forward and
reverse SILAC ratios initially prevented the quantitative treatment of these
ratios with confidence. Even though we had pooled SILAC nuclear lysates from

twenty preparations, in an attempt to reduce the residual heavy-to-light
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difference as far as possible, a small residual proteome variation of up to 1.4 fold

still remained.

We therefore developed and applied a proteome variation uncoupling procedure
(or “AP-adjustment”) to remove this systematic confounding factor from our
dataset, taking advantage of the label-switching in the experimental design. We
found that this procedure was able to collapse most of the errors observed
between the forward and reverse datasets. The resulting SILAC ratios were
pushed into distributions that are expected of ideal forward-reverse
experiments: a cloud of oppositely-signed forward and corresponding reverse
SILAC ratios, and an absence of ratios in the forbidden “same-sign” quadrants.
As this ideal could be always be achieved after introducing the adjustment
procedure, the need for false positive and contaminant calling, as had been
traditionally done, was removed. This enabled indiscriminate, quantitative

treatment of all SILAC ratios.

We found better forward-reverse reproducibility if we performed the AP-
adjustment batch-wise rather than globally. There are important implications of
this result: Even though the originating lysates of each batch are equivalent,
day-to-day handling variation can produce significant batch-wise systematic
errors. Parameters such as protein stability in the lysate, its stickiness in the
elution process, its degree of non-specific binding owing to random variation in
competing DNA, may all contribute to the apparent batch-wise proteome
variations. Furthermore, with cross-batch normalization, it would in future no
longer be absolutely necessary to calculate the amount of lysate needed prior to
the screen, and scale the production accordingly as we have done here (“vertical
scaling”); instead, cells may be grown and lysates prepared on demand
(“horizontal scaling”). This is true as long as the different lysates are derived
from cells that are biochemically equivalent with respect to their protein

interaction affinities.

Another implication of the AP-adjustment concerns other SILAC AP-MS screens
where every forward-reverse experiment pair is performed with a different
combination of labeled lysates; for instance, owing to genetic background

difference or presence of a bait expression vector. In such cases, each forward-
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reverse experiment pair has its individual proteome variation that cannot be
compared across the board. Interpretation of the SILAC ratios is then limited to
classical interactor calling. As mentioned above, this may be acceptable for
protein-protein interaction screens of relatively small and stable complexes.
However, future SILAC AP-MS studies of protein-DNA interactions under
varying cellular conditions should incorporate this consideration into the

experimental design.
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4.3 Origins of UCE ultraconservation

There are several hypotheses regarding what contributes to ultraconservation of
UCEs. Based on experimental data that demonstrated enhancer activity of
UCEs, one popular hypothesis is that UCEs contain a high density of
overlapping, functional TFBSs, such that no single nucleotide can be mutated
without disrupting one or more TFBSs. An argument against the overlapped
TFBS hypothesis as the sole contributor to the extreme conservation is often
made as follows: Because TFBSs are degenerate, mutation of a single nucleotide
belonging to a given TFBS does not always disrupt its ability to bind to the
transcription factor. This degeneracy therefore requires the TFBSs to overlap so
densely that not a single degenerate base remains. Experimental data

supporting or refuting this hypothesis were much needed prior to this study.

We used the UCE interactome to derive the TFBSs for which we found
significant evidence of correlation with the binding enrichment. Mapping these
motifs back onto the UCE sequences and other sets of control sequences, we
found that UCEs were indeed enriched in overlapping TFBSs when compared to
other non-conserved enhancers. Importantly, we found that the DNA bases that
belonged to overlapping TFBSs were significantly more conserved than those
that did not. The latter observation also applied to non-conserved enhancers, so
the idea of overlapping TFBSs providing greater evolutionary constraint was
clearly plausible. Combined with the significantly higher proportions of
overlapping TFBSs for non-exonic UCEs over those for non-conserved
enhancers, we conclude that the contribution of overlapping TFBSs to the

extreme conservation of non-exonic UCEs is substantial.

Based on our scanning mutagenesis pulldown with one cell line, we saw that
indeed many positions, but not all, resulted in multiple disruption of binding
owing to transition mutation. It is difficult to assess how strong a disruption
there should be before the regulatory function is sufficiently abrogated to result
in evolutionary pressure. Furthermore, given the relatively small evolutionary

distance between human and mouse, it is more likely that individual TFBSs
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keep their sequences despite the degeneracy. This argument, however, would

not be applicable to HNCEs defined over larger evolutionary distances.

There is no a priori requirement for a set of sequences, that are identified based
solely on a given percentage sequence identity over an arbitrary length, to be
under the same kind of evolutionary constraints. We have found, for example,
that the enrichment and conservation of overlapping TFBSs did not apply to
exonic UCEs. While this does not automatically imply that the underlying
coding sequence is functionally critical, it does demonstrate the possibility that
the constraints are distributed differently over different processes. Other
functional constraints have been proposed, including splicing, nonsense
mediated decay, recombination, and structural organization of the chromatin.
The degeneracy argument, if true, would imply that UCEs are able to use the
remaining “information space” for other functions. However, this raises the
question of why different regulatory functions should be compressed into one

superimposed locus, given the vastness of genome.

One tentative hypothesis that has not received much attention in the past, but
to which our experimental data led us, is that non-exonic UCEs may have
evolved into “local minima” in the evolutionary pressure landscape. UCEs,
assumed to be critical regulatory elements, may have evolved to a point of such
complex functional logic that a mutation would result in a qualitative change in
the regulatory logic, rather than its complete disruption. This hypothesis would
be consistent with the positioning of UCEs close to genes involved in
development, and corroborates many aspects of our dataset. First, the UCE
sequences, once shuffled, were still able to yield small but significant
enrichments in overlapping TFBSs. We attributed this finding to their AT-
richness, which is compatible with the nucleotide composition of many
developmentally-regulating TFBSs. Second, we found a significant conservation
bias of GC bases over AT bases in UCEs but not in random genomic loci. Since
transition mutation inverts the GC content, this observation would be consistent
with an evolutionary pressure to prevent formation of even more AT-rich bases.
Finally, our scanning screen of uc325 showed that regions of UCEs that were

deeply conserved were also those that gained interactions by mutation. This
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“qualitative logic alteration” hypothesis would also be compatible with the
multiple constraint hypothesis, as they each provide different contributions to
the conservation. In this combination, the qualitative logic alteration hypothesis
would also alleviate the requirement of the multiple constraint hypothesis for
absolutely ubiquitous overlapping TFBSs. Further interaction and reporter
experiments combined with sequence and conservation analysis will be needed

to test this i1dea.
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4.4 Outlook: the interactome kaleidoscope

It is accepted that the chromatin environment is a major influence on
physiological protein-DNA interactions, often blocking interactions that would
otherwise take place. In general, DNA-centric methods that are based on affinity
purification of nuclear lysate incorporate the context of the nuclear proteome
while being uncoupled from pre-existing epigenetic forces. In the AP-MS
approach, this unique combination of advantages further synergizes with
sensitive and unbiased detection, and the exquisite quantification precision

offered by mass spectrometry.

To date, a number of protein-DNA interactomes have been published, coming
from both the protein-centric and DNA-centric perspectives. The existing
experimental methods for protein-DNA interaction studies cover a spectrum of
biochemical to physiological emphases. Protein-centric methods can reveal a
biochemical DNA sequence specificity as a motif (SELEX, protein binding
microarray), but can also report true in vivo binding events (ChIP and ChIP-
derivatives). Similarly, DNA-centric methods can probe intrinsic protein binding
preference of a given DNA sequence (AP-MS), or the physiological interaction at
the native chromatin (iChIP, PiCH). Although the methods that offer in vivo
perspectives are needed to ultimately validate hypotheses that concern gene
regulation, approaches with heavier biochemical emphasis are still of great
importance, because they allow for discovery of interactions in regulatory
systems where the biological context is unknown. Scalable implementations of
both protein-centric and DNA-centric methods now exist, and their results can
now be used to validate each other, as we have done in this thesis. Future
interactomes will help us better understand how the different biochemical and
physiological emphases of each method give rise to the data that they deliver,
and how the shortcomings of one dataset may be complemented by the strength

of another.

A protein-DNA interactome gives information about the binding that happens in
one experimental condition, and thus provides a static snapshot. Better depth of

regulatory understanding may be achieved by introducing perturbations to the
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system being studied. Deep perturbation of protein-centric studies is becoming
common, owing to the development of scalable ChIP-seq. For instance, this
approach i1s being used by various groups to study DNA targets of a
transcription factor across different cell types/stimuli [147, 148]. With large-
scale DNA AP-MS screens now possible, similar perturbations may be performed

in order to study protein binders across different nuclear environments.

Recently, a novel application of next generation sequencing was developed that
allows deep characterization of a regulatory DNA element. Known as “massively
parallel reporter assay” (MPRA), the approach measures the regulatory activity
(by expression of RNA reporter barcodes) of a short enhancer, as well as
thousands of its mutational variants. MPRA has especially promising
applications in the field of synthetic biology, as it can be used to aid rational
design of artificial regulatory elements. Large-scale AP-MS would be the ideal
technique that delivers the complementary deeply-perturbed interactomes,
which would allow the differential reporter activity to be linked by differential
protein binding. Together, these two technologies can offer the community the
hope that, one day, the aspiration to reverse-engineer complex, multi-factorial

enhancers will be fulfilled.
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