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Summary ix 

Summary 

Nuclear factor-κB (NF-κB) transcription factors are involved in controlling numerous 

cellular processes, including inflammation, innate and adaptive immunity, and cell 

survival. In this study I show that the immunosuppressive measles virus (MV, 

Morbillivirus genus, Paramyxoviridae) has evolved multiple functions to interfere with 

NF-κB signaling in epithelial cells. The MV P, V, and C proteins, also involved in 

preventing host cell interferon responses, were found to individually suppress NF-κB-

dependent reporter gene expression upon triggering of classical NF-κB pathways, 

including TNF receptor-, RIG-I-like receptor-, or Toll-like receptor-signaling. The MV V 

protein showed the strongest suppression of classical NF-κB activity, while the 

inhibitory capacities of P or C were less pronounced. Reporter gene assays involving 

overexpression either of the IKK complex, which phosphorylates the inhibitor of κB to 

liberate NF-κB dimers, or the NF-κB dimer p65/p50 itself, indicate that MV V targets 

canonical NF-κB signaling downstream of the IKK complex. Accordingly, co-

immunoprecipitation (CoIP) experiments revealed that the V protein of MV, but not 

the P or the C protein, binds to the Rel-homology domain (RHD) of the NF-κB subunit 

p65. Both domains of the RHD of p65, responsible either for DNA binding or IκBα and 

p50 binding, were shown to be involved in the interaction with MV V. IκBα and p50, 

which are associated to p65 in non-stimulated cells, were not bound by any of the P 

gene products in CoIP experiments. Further CoIP experiments from cells co-expressing 

all NF-κB complex members, p65, p50, and IκBα, together with MV V simultaneously, 

suggest that binding of p50, IκBα and MV V to p65 are independent of each other and 

that MV V does not influence the composition of the NF-κB complex. However, the 

presence of V abolished nuclear accumulation of p65 upon TNFα stimulation as 

observed by confocal microscopy. Inhibition of TNFα-mediated nuclear accumulation 

was also observed in some cells expressing MV P, but all MV C-expressing cells showed 

nuclear p65 upon TNFα stimulation indicating that the C protein acts in the nucleus to 

suppress canonical NF-κB activity. Retention of p65 in the cytoplasm by the V protein is 

javascript:clickDictEntry(1238123225);
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neither due to direct binding of MV V to the nuclear localization signal (NLS) of p65 as 

revealed by CoIP experiments involving p65 mutants deficient in their NLS nor do MV V 

and importin α 5 compete for p65 binding. Notably, the short C-terminal domain of the 

V protein (VCTD), which is also involved in binding STAT2, IRF7, and MDA5, was 

sufficient for the interaction and for preventing reporter gene activity. As revealed by 

mutational analysis of the VCTD, binding of p65 and also of IRF7 to MV V involves at 

least two independent sites located at loop1 and 2 of VCTD. The C-terminal domain of V 

was found to be completely identical in the Schwarz MV vaccine strain, which was 

used during this study, and a wild type MV isolate. Consequently, the capacity to 

suppress NF-κB activity and the ability to bind to p65 were also equal. Interestingly, 

the VCTD is also highly conserved among different paramyxoviruses. As revealed by 

reporter gene assays and CoIP experiments the V proteins of canine distemper virus 

and Nipah virus exhibit the same NF-κB inhibitory potency and binding affinity to the 

RHD of p65 as MV V. In contrast, the parainfluenza virus type 5 V protein did not bind 

to p65 and therefore cannot interfere with NF-κB activation. Besides inhibition of the 

classical NF-κB pathway, interference of MV P gene products with the alternative NF-

κB signaling was investigated as well. CoIP experiments suggested binding of RelB 

specifically to MV V, as already observed for p65. In contrast, p100, the precursor of 

p52, showed no interaction with any of the MV proteins similar to p50, whereas p52 

was found to interact with both MV P and V. 

The effect of MV V on NF-κB activity was also investigated in the viral context. 

Therefore different recombinant viruses were generated, including the parental virus, 

a virus with a knock out of the V protein, and a virus in which the knock out was 

rescued by expression of the V protein from an inserted ORF. As illustrated by growth 

curves and Western blotting of the viral proteins, the V knock out virus exhibited the 

same growth kinetics on Vero and A549 cells as the viruses expressing the V protein. 

NF-κB-dependent reporter gene assays and quantitative real-time RT-PCR on NF-κB-

dependent genes upon infection did not reveal a major impact of the presence of V on 

NF-κB activation in epithelial cells to a certain time point. This indicates that the P and 

C proteins can substitute for the inhibitory effects of the V protein in these cells. 
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1 Introduction 

1.1 Measles virus – a representative of the virus family 

Paramyxoviridae 

Measles virus (MV) is a non-segmented, negative-sense RNA virus and belongs 

therefore to the order of Mononegavirales. It is further grouped into the family of 

Paramyxoviridae, which consists of two subfamilies the Paramyxovirinae and the 

Pneumovirinae. MV is part of the Morbillivirus genus in the Paramyxovirinae subfamily 

along with respiroviruses, rubulaviruses, henipaviruses, and avulaviruses (Fig. 3-14A).  

1.1.1 The measles virus virion – composition of the viral particle 

MV is a pleomorphic, enveloped virus with a wide range of diameters between 180 nm 

and 1 µm (Lund et al., 1984; Nakai and Imagawa, 1969). However, most of the virions 

appear to have a spherical shape with an average diameter between 100 and 300 nm 

(Rima and Duprex, 2011) (Fig. 1-1A). The lipid bilayer envelope derived from the host 

cell encloses the negative sense, single stranded RNA genome, which comprises 15,894 

nucleotides and contains six genes, separated from each other by trinucleotide 

intergenic sequences. These six genes in the order 3’-N-P-M-F-H-L-5’ encode eight 

proteins due to leaky scanning of cellular ribosomes and RNA editing by the viral 

polymerase complex (Fig. 1-1B). The transcription units are flanked by a leader (Le) 

region at the 3’-terminus encoding a short RNA of 56 nucleotides and a 40 nucleotide 

long trailer (Tr) region at the 5’-terminus. Six of the viral proteins are components of 

the virion. The 58kDa nucleocapsid (N) protein encapsidates the viral genome to 

protect it from cellular RNAses forming the ribonucleo-protein complex (RNP), which is 

the basic unit of infectivity (Fig. 1-1A). Each N protein associates with exactly six 

nucleotides of the genome. This may explain why MV strictly follows the "rule of six", 
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which states that the genome must consist of a multiple of six nucleotides to get 

properly packaged and to replicate efficiently (Kolakofsky et al., 2005). The viral RNA-

dependent RNA polymerase (vRdRp) is composed of the large (L) protein and the 

phosphoprotein (P), with L bearing the enzymatic activity and P serving as non-

catalytic co-factor. The P (54 kDa) and the L (247 kDa) protein associate with the RNP, 

which is additionally coated with the 38 kDa matrix (M) protein (Liljeroos et al., 2011), 

mediating virus assembly and budding (Cathomen et al., 1998; Iwasaki et al., 2009). 

The viral hemagglutinin (H) and fusion (F) glycoproteins surround the virion and are 

responsible for viral entry and exit. The type 2 membrane protein H (69 kDa) builds a 

dimer or a dimer of dimers (Hashiguchi et al., 2007) and mediates attachment of the 

virion to the cell by recognition of the cellular receptors, whereas the integral type 1 

membrane protein F (60 kDa) forms trimers that require proteolytic cleavage to be 

able to fuse cell membranes (Zhu et al., 2003).  

 

Figure 1-1 Measles virus – the basics 

(A) Schematic representation of a MV virion. The negative strand RNA genome is enclosed by the N protein building 
the ribonucleoprotein (RNP) complex, which is associated with the viral polymerase composed of the large protein 
(L) and the phosphoprotein (P). The matrix (M) protein links the RNP to the viral glycoproteins, the fusion (F) and 
the hemagglutinin (H) protein, located on the cellular plasma membrane. (B) The MV genome comprises six genes. 
The P gene allows expression of three different proteins. (C) Schematic overview of the MV life cycle. The whole 
replication cycle takes place in the cytoplasm. Upon binding to the cognate cellular receptor, fusion of viral and 
cellular membranes is initiated mediating entry of MV. Transcription and replication take place subsequently and 
the newly synthesized RNP is transported to the plasma membrane, where assembly and budding takes place. 
Adapted from (Moss and Griffin, 2006). 

A B

C
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The two non-structural proteins, V and C, are additionally expressed from the P gene 

(Fig. 1-2). Co-transcriptional RNA editing allows expression of the 32 kDa V protein. In 

this process, the viral polymerase stutters at a defined editing site and inserts an 

additional non-templated guanosine (G) into the transcript of the P gene between 

nucleotide 748/749 that leads to the V mRNA and a frameshift of the open reading 

frame (ORF) at that position (Cattaneo et al., 1989). Thus, the translated V protein has 

a 231 aa long N-terminal domain identical to the P protein (PVNTD), but a unique 

cysteine-rich C-terminal domain (VCTD) of 68 aa.  

 

Figure 1-2 Measles virus P gene products 

In addition to the P protein, the nonstructural proteins V and C are expressed due to insertion of an additional 
guanosine (G) between nucleotides 751 and 752 of the mRNA by RNA editing (MV V) or translation of an alternative 
ORF initiating 19 nucleotides downstream of the P/V start codon (MV C). Adapted from (Schuhmann et al., 2011). 

The VCTD was shown to incorporate two zinc atoms forming zinc finger motifs that are 

highly conserved among paramyxoviruses (Liston and Briedis, 1994). All members of 

the Paramyxovirinae subfamily are able to edit their P gene mRNA, however, the 

number of inserted G residues varies (Goodbourn and Randall, 2009). Expression of 

the C protein is achieved through leaky scanning of ribosomes and the use of an 

alternative translation initiation site on the P and V mRNAs downstream of the P/V 

start codon. This results in translation of an alternative ORF and the expression of the 

21 kDa C protein (Bellini et al., 1985). Neither C nor V is essential for MV replication 

(Radecke and Billeter, 1996; Schneider et al., 1997), however, all P gene products were 

shown to be key players of MV evading the immune system (Rima and Duprex, 2011).  
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1.1.2 The viral life cycle 

Viral entry 

In order to enter a cell the MV virion attaches to the cell surface via the H protein that 

binds to the cellular entry receptors (Fig. 1-1C). Three different receptors were 

identified so far: Signaling lymphocytic activation molecule (SLAM), also known as 

CD150, is thought to be the primary MV receptor in terms of MV pathogenesis (Tatsuo 

et al., 2000). SLAM is a costimulatory molecule expressed on activated T-cells, B-cells, 

macrophages, mature dendritic cells (DCs), platelets, and thymocytes explaining the 

highly lymphotropic nature of MV (Sidorenko and Clark, 2003). Recently, the so far 

elusive epithelial entry receptor, which was already known to exist (Ludlow et al., 

2010; Tahara et al., 2008; Takeda et al., 2007), was identified. Two independent 

studies characterized nectin-4, or poliovirus receptor-like protein 4 (PVRL4), as the MV 

entry receptor found on epithelial cells (Muhlebach et al., 2011; Noyce et al., 2011). 

Nectin-4 is expressed within adherens junctions, complexes that provide strong 

mechanical attachment between epithelial cells. The first identified, but least 

pathologically relevant receptor is CD46 or membrane cofactor protein (MCP) (Dorig et 

al., 1993; Naniche et al., 1993). Although expressed on nearly all nucleated human 

cells, CD46 can only be utilized by cell culture adapted vaccine viruses in vitro (Yanagi 

et al., 2009). However, there is recent evidence that vaccine viruses do not use CD46 in 

vivo (Kato et al., 2012). 

Upon binding of the H protein to the cellular receptor, major conformational changes 

in the mature F protein are triggered, followed by insertion of the fusion peptide into 

the target membrane and ultimately in formation of a fusion pore, leading to the 

release of the RNP into the cytoplasm (Plemper et al., 2011). 
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Replication cycle 

Once the RNP is released into the cytoplasm of the cell, viral gene expression and 

replication are set up (Fig. 1-1C). Therefore, the vRdRp transcribes the viral genes into 

mRNAs, which were shown to be 5’-capped and 3’-polyadenylated (Hall and Meulen, 

1977; Yoshikawa et al., 1986). In contrast, the transcribed leader RNA is uncapped 

exhibiting 5′ triphosphates. At every gene border, the viral polymerase either 

dissociates from the genome or reinitiates transcription of the next gene. This results 

in an mRNA gradient since genes closer to the 3’-end of the genome are transcribed to 

a higher extent than more distal genes (Cattaneo et al., 1987). The mRNAs are 

translated into proteins by the cellular translation machinery. At a certain point of 

infection, the vRdRp switches from the transcription to replication mode. This occurs 

probably when enough N protein is synthesized to encapsidate immediately the 

antigenomic RNA which serves as template for generation of new genomes. The 

emerging genome is cotranscriptionally packaged by N proteins generating new RNPs. 

Viral exit 

Both viral glycoproteins F and H are translated as transmembrane proteins and 

transported to the cell plasma membrane. The M protein mediates the interaction of 

the newly synthesized RNPs with the regions of the plasma membrane where the 

glycoproteins have been inserted to support assembly (Iwasaki et al., 2009). Finally, 

the virus is able to bud from the plasma membrane (Fig. 1-1C). 

Incorporation of the glycoproteins into the cellular membrane, can lead to fusion with 

uninfected cells, mediated by binding of H to receptors on neighboring cells activating 

the fusion function of F. This leads to the formation of multinucleated giant cells also 

known as syncytia, a hallmark of MV infected cells (Bunting, 1950). Syncytia formation 

and cell to cell spread is the main spreading strategy of MV. 
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1.1.3 Measles virus infection in vivo 

The measles virus is highly infectious to humans and causes measles, a disease that is 

still an important cause of child morbidity and mortality in many parts of the world, 

even though a safe and effective vaccine is available (Griffin et al., 2012). In 2010, 

there were around 140.000 measles deaths globally, with 95 % of them occurring in 

low-income countries with weak health infrastructures. The “MEASLES INITIATIVE” 

launched in 2001 helped to increase the vaccination rate among one-year old children 

from 72% in 2000 to 85% in 2010, which resulted in a 74% drop in measles deaths 

between 2000 and 2010 worldwide (WHO, 2012). The clinical symptoms of the disease 

like fever, rash, and conjunctivitis are just the signs of the adaptive immune responses 

against infection and not responsible for any deaths. However, MV infection induces 

several week of immunosuppression resulting in increased susceptibility to secondary 

infections that are the main causes of measles induced death (Griffin, 2010). Rare but 

serious complications of measles affect the central nervous system. 0.1% of the 

patients develop measles encephalitis within two weeks of the onset of the rash (Moss 

and Griffin, 2012). Another CNS complication that occurs months to years after acute 

infection is subacute sclerosing panencephalitis (SSPE) which is caused by a persistent 

measles virus infection. It is found in about one in 10,000–100,000 patients and most 

often occurs in people infected with measles virus before two years of age. 

Fortunately, measles vaccination programmes reduced the incidence of SSPE 

dramatically (Campbell et al., 2007).  

Infection route of MV 

Measles virus spreads among individuals via the respiratory route. Virus-containing 

droplets produced by sneezing or coughing enter the respiratory tract. Different to 

what was assumed in the past, initial infection with MV does not occur in epithelial 

cells of the upper respiratory tract, as revealed by infection studies with macaques (de 

Swart et al., 2007; Leonard et al., 2008) . Instead, the infection is rather initiated in the 

lower respiratory tract, where alveolar macrophages and DCs are infected transporting 
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MV to local lymphoid tissue (Ferreira et al., 2010; Lemon et al., 2011). The close spatial 

proximity to SLAM-positive T- and B- cells in this tissue amplifies the infection and 

promotes dissemination throughout the body. Infection of epithelial cells might come 

into play during the late phase of infection, when infected lymphocytes carry virus to 

the basal side of the respiratory epithelium infecting respiratory epithelial cells 

probably via nectin-4. Later on, the virus is released from these cells at the apical 

domain facilitating the viral transmission back into the airways. The proposed role of 

epithelial cells during virus exit is supported by a study in which a virus blind for the 

epithelial receptor remained virulent in rhesus macaques, but could not be released 

into the airways (Leonard et al., 2008). 

MV-induced immunosuppression and life-long immunity  

The MV-induced immune suppression comprises several phenomena concerning the 

adaptive immune response, like lymphopenia, predominance of Type 2 cytokine 

responses, and suppression of lymphocyte proliferation (Griffin, 2010). However, the 

underlying mechanisms are not well understood. The loss of lymphocytes 

(lymphopenia) might be due to increased susceptibility of the cells to apoptosis 

(Fugier-Vivier et al., 1997; Okada et al., 2000). Increased levels of Th2 cytokines such as 

interleukin-4 (IL-4), IL-10 and IL-13 produced by regulatory and CD4+ T-cells during MV 

infection (Griffin and Ward, 1993) leads on the one hand to an environment favoring 

B-cell maturation to establish the humoral memory important for life-long immunity 

against MV infection, on the other hand, macrophage activation is depressed and 

therefore induction of type 1 responses required for combating new pathogens is 

hampered (Griffin, 2010). Furthermore, MV F and H glycoproteins were shown to 

directly suppress proliferation of peripheral blood mononuclear cells (PBMCs), like 

lymphocytes, monocytes or a macrophages due to interaction with an unidentified 

molecule of the cell surface of PBMCs (Schlender et al., 1996). Considered together, 

these findings constitute the ’immunological paradox’ of measles virus infections: On 

the one hand most individuals successfully clear an infection and establish life-long 

immunity against MV, on the other hand they suffer from several weeks of immune 

suppression (Beckford et al., 1985).   
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1.2 The transcription factor family NF-κB – an important player 

during an antimicrobial immune response 

The nuclear factor-κB (NF-κB) was discovered in 1986 as a regulator of expression of 

the κ light chain gene in B cells (Sen and Baltimore, 1986). Since then, extensive 

research was done on the NF-κB family of transcription factors and revealed the 

involvement of NF-κB in numerous fundamental cellular processes. Besides its crucial 

role in cell survival, differentiation, and proliferation, NF-κB plays its most important 

part in the regulation of the immune system (Hayden and Ghosh, 2012). Thus, it 

controls not only the development and homeostasis of immune cells and lymphoid 

organs but is also an indispensable regulator during an immune response (Hayden et 

al., 2006). Activation of pattern recognition receptors (PRRs) such as Toll-like receptors 

(TLRs) and RIG-I-like receptors (RLRs) results in NF-κB-regulated expression of a large 

variety of cytokines and antimicrobial effector molecules that propagate and elaborate 

the initial recognition event of an invading pathogen (Dev et al., 2011). Besides this 

fundamental role in the innate immune system, NF-κB is activated upon T-cell and B-

cell receptor (TCR and BCR) engagement controlling the adaptive immune response as 

well (Ghosh et al., 1998). Accordingly, it is obvious that NF-κB is a key player during the 

host response to infection and is therefore a common target of microbial pathogens. 

1.2.1 The NF-κB family and its inhibitors 

The mammalian NF-κB family comprises five members: p65 (RelA), RelB, c-Rel, p50 

(NF-κB1), and p52 (NF-κB2). The p50 and p52 proteins are generated by proteolytic 

processing of the precursor proteins p105 and p100, respectively. The NF-κB subunits 

exist as homo- or heterodimers in the cell. All family members share a structurally 

conserved N-terminal region of about 300 amino acids, named the Rel homology 

domain (RHD). The RHD, which contains a nuclear localization signal (NLS), is critical for 

binding to cognate DNA-sequences termed κB motifs, homo/heterodimerization, and 

interaction with specific inhibitory proteins (Ghosh et al., 2012). Only p65, RelB, and 
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c-Rel possess a C-terminal transactivation domain (TAD), which is essential to initiate 

transcription. In contrast to Rel proteins, p50 and p52 lack the TAD (Fig. 1-3). However, 

p50 and p52 form either heterodimers with the Rel proteins to positively regulate 

transcription or homodimers to function as repressors by competing with TAD-

containing dimers for binding to κB sites (Hayden and Ghosh, 2012). The main 

activated form of NF-κB is a heterodimer of p65 associated with the p50 subunit.  

 

Figure 1-3 The mammalian NF-κB family and its inhibitors 

In mammalian cells five NF-κB family members exist, p65 (RelA), RelB, c-Rel, p105/p50 and p100/p52. p50 and p52 
are derived from longer precursor proteins p105 and p100, respectively. While p105 is constitutively processed, 
p100 needs a specific stimulus to induce processing. All NF-κB family members contain an N-terminal Rel-homology 
domain (RHD), but only p65, RelB, and c-Rel comprise a C-terminal transactivation domain (TAD). RelB contains 
additionally a leucine zipper (LZ) at the N-terminus. The inhibitor of NF-κB (IκB) family consists of IκBα, IκBβ, and 
IκBε and contain ankyrin repeat motifs (ANK) in their C-termini. Due to the presence of ANK repeats, the C-terminal 
domains of the precursors p100 and p105 are called IκB-like domains. According to (Ghosh et al., 2012). 

A hallmark of the NF-κB pathway is its regulation by inhibitor of κB (IκB) proteins. In 

unstimulated cells, NF-κB dimers are retained in the cytoplasm by these regulatory 

proteins, which include IκBα, IκBβ and IκBε. They are characterized by the presence of 

multiple ankyrin repeats at their C-terminus. These 33-amino acid motifs mediate 

protein-protein interactions with the RHD of NF-κB dimers. Thereby IκB proteins mask 

the NLS within the NF-κB dimers and sequester them in the cytosol in a 

transcriptionally inactive state (Hinz et al., 2012). The ankyrin repeats are also present 

in the C-terminal domains of the p100 and p105 precursors, which also function as IκBs 

(Fig. 1-3).  
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1.2.2 NF-κB activation: Two distinct pathways 

Two major pathways for activation of NF-κB are described, the classical (canonical) and 

alternative (non-canonical) pathway (Fig. 1-4) (Oeckinghaus et al., 2011). Although a 

wide range of diverse receptors stimulate the classical NF-κB signaling, only a selected 

set of receptors within the TNF receptor superfamily appears to initiate the alternative 

pathway.  

 

Figure 1-4 Two different NF-κB signaling pathways 

The classical pathway is activated by a variety of inflammatory signals. Activation of this pathway depends on the 
IKK complex which phosphorylates IκBα to induce its degradation allowing NF-κB dimers to enter the nucleus. The 
alternative pathway is activated by triggering of the receptors for lymphotoxin-β and BAFF or CD40. This pathway 
requires NF-κB-inducing kinase (NIK) and IKKα which induce processing of p52 from p100, resulting in activation of 
the p52/RelB heterodimer.  
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The classical NF-κB signaling pathway 

The classical pathway is induced by pro-inflammatory cytokines, such as tumor-

necrosis factor α (TNFα) and interleukin-1 (IL-1), by triggering innate immune receptors 

like TLRs and RLRs, as well as by antigen-receptor engagement (BCR and TCR). Signaling 

in the classical pathways generally occurs through the recruitment of adaptor proteins 

to the receptors resulting in signaling platforms crucial for the recruitment and 

activation of the central mediator of these pathways, namely the IκB kinase (IKK) 

complex. The 700-900 kDa IKK complex contains two catalytical subunits, IKKα and 

IKKβ, as well as a regulatory subunit IKKγ (NEMO (NF-κB essential modulator)) (Liu et 

al., 2012). It has been shown that IKKα and IKKβ form heterodimers in vivo and interact 

with the regulatory subunit NEMO through their C-terminal NEMO-binding-domain 

(NBD). The NBD peptide on its own was shown to inhibit the interaction between IKKγ 

and IKKα/IKKβ in a dominant negative manner and blocks activation of NF-κB. (May et 

al., 2000; May et al., 2002). Both IKKα and IKKβ contribute to the activation of classical 

signaling pathways, although in many cases IKKβ is sufficient as catalytical subunit. 

However, the regulatory subunit of the IKK complex, IKKγ is essential to activate these 

pathways (Solt and May, 2008). Upon activation, the IKK complex phosphorylates IκB-

proteins at specific serine residues, for example serines 32 and 36 of IκBα. 

Subsequently, the phosphorylated IκBα is ubiquitinated at lysines 21 and 22, which 

targets it for its degradation by the 26S proteasome. The NF-κB dimers are released 

and translocate to the nucleus where they bind to specific DNA sequences, called κB 

sites with the consensus sequence GGGRNNYYCC (N - any base, R - purine, 

Y - pyrimidine), to activate transcription of target genes (Hayden and Ghosh, 2012).  

  



Introduction 12 

 

The alternative NF-κB pathway 

The alternative pathway responds to signals of a selected set of receptors within the 

TNF superfamily such as lymphotoxin-β receptor (LTβR), B-cell activating factor 

receptor (BAFFR) and CD40 (Sun, 2011). In unstimulated cells, a protein complex of 

TRAF2, TRAF3 and cIAP mediates constitutive proteasomal degradation of one of the 

central kinases of alternative signaling namely the NF-κB-inducing kinase (NIK). Upon 

receptor ligation, the complex is recruited to the receptor leading to a switch from 

NIK- towards TRAF3-ubiquitin-dependent degradation. This allows NIK accumulation 

(Liao et al., 2004; Qing et al., 2005) which then binds and phosphorylates IKKα. In 

contrast to classical NF-κB signaling, the alternative pathway depends strictly on IKKα 

and is independent of IKKβ and IKKγ (Senftleben et al., 2001). Activated IKKα then 

cooperates with NIK in phosphorylation of C-terminal serine residues of the NF-κB 

precursor p100. This results in p100 ubiquitination and proteasomal processing 

generating p52, eliminating the IκB-like function of p100 at its C-terminus. Therefore, 

the p52/RelB dimer is no longer sequestered in the cytosol and can translocate to the 

nucleus where it initiates expression of a variety of genes responsible for the 

functional cellular outputs of the alternative pathway, like development of secondary 

immune organs, presentation of self-antigens by thymic epithelial cells, or isotype 

switching of peripheral B cells. However, the precise identity of the target genes still 

remains elusive (Razani et al., 2011).  

Besides its crucial role in the signaling cascade of the alternative pathway NIK also 

exhibits the capacity to activate the IKK complex, the gatekeeper of the classical 

pathway, through phosphorylation of IKKα (Ramakrishnan et al., 2004; Zarnegar et al., 

2008). As a result, nearly all receptors initiating the alternative pathway also activate 

p65/p50 dimers which are part of the classical NF-κB signaling pathway. This leads to a 

cross talk between the classical and the alternative NF-κB pathway (Oeckinghaus et al., 

2011). 
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1.3 The innate immune response during MV infection 

1.3.1 Activation of the innate immune system by RNA viruses  

The first line of host defense against an invading pathogen is the innate immune 

system. Activation of innate immune cells rapidly generates an anti-microbial 

environment to defend pathogens in a general way. The sensors of the cells to 

recognize signs of infection are the PRRs which are triggered by microbial components 

known as pathogen associated molecular patterns (PAMPs). Among the array of PRRs, 

TLRs and RLRs are the primary receptors in controlling infections by RNA viruses. 

Triggering of these receptors induces a series of signaling cascades and leads to 

activation of multiple transcription factors, such as NF-κB and interferon regulatory 

factors (IRFs), resulting in the expression of proinflammatory cytokines and type I 

and III interferons (IFNs), which are potent antiviral effector proteins.  

Toll-like receptor signaling 

The Toll receptor was originally identified in Drosophila and shown later on to be 

essential for the defense against infections by fungi (Hashimoto et al., 1988; Lemaitre 

et al., 1996). Subsequently, a human homolog was identified and to date ten members 

of Toll-like receptors are known in humans. TLRs contain leucine-rich repeats required 

for pathogen recognition and Toll/interleukin-1 receptor (TIR) domains responsible for 

initiation of downstream signaling (Takeda and Akira, 2004). 

Each TLR is able to detect distinct molecular patterns of microorganisms. While TLR1, 

2, 4, 5, 6, and 11 bind mainly protein components of bacteria and parasites on plasma 

membranes, TLR3, 7, 8, and 9, which are found in the endosomal membrane, are the 

main sensors for viruses recognizing the nucleic acids that are internalized during an 

infection via endocytosis (Kumar et al., 2011). TLR3, which is expressed in various cell 

types, recognizes dsRNA, whereas TLR7 and 8 are restricted to immune cells and sense 
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ssRNA (Kawasaki et al., 2011). TLR9 also found exclusively in immune cells is activated 

by unmethylated CpG motifs within the DNA of the pathogen. In case of MV infection 

TLR3 was shown to be activated (Berghall et al., 2006) and wild type (wt) MV H protein 

was reported to bind to TLR2, activating downstream signaling (Bieback et al., 2002). 

 

Figure 1-5 Endosomal TLR-signaling 

Activation of the endosomal Toll-like receptors (TLRs) 3, 7, 8, and 9 by nucleic acids of pathogens leads to 
recruitment of the appropriate adaptor proteins and subsequent downstream signaling, which ends up in the 
activation of different transcription factors and cytokine expression. 
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Triggering of TLR signaling by the appropriate ligand causes the recruitment of adaptor 

proteins to the cytoplasmic TIR domain. Nearly all TLRs utilize myeloid differentiation 

primary response gene 88 (MyD88) as adaptor. Only TLR3 does not recruit MyD88, but 

TIR-domain-containing adapter-inducing interferon-β (TRIF) (Yamamoto et al., 2004) 

(Fig. 1-5). 

Upon recruitment to the TLRs, MyD88 binds a subset of Interleukin-1 receptor-

associated kinases (IRAKs) such as IRAK4, IRAK1 and IRAK2. Subsequently, IRAK kinases 

dissociate from MyD88 and interact with TRAF6, which ubiquitinates itself and 

activates the formation of a complex of transforming growth factor β–activated kinase 

1 (TAK1), TAK1-binding protein 1 (TAB1), TAB2 and TAB3. The TAK1 complex then 

activates the IKK complex leading to NF-κB activation as descript in chapter 1.2.2 

(Takeuchi and Akira, 2010). Simultaneously, it stimulates the mitogen-activated 

protein kinase (MAPK) pathway to facilitate activation of the transcription factor AP-1 

(activator protein-1) (Fig. 1-5). In plasmacytoid dendritic cells (pDC), TLR7, 8, and 9 

additionally activate IRF7 by a TRAF3-dependent mechanism resulting in the 

expression of type I IFNs (Honda et al., 2005).  

In contrast, the TRIF-dependent TLR signaling activates IRF3 in addition to NF-κB and 

AP-1. Upon recruitment of TRIF to TLR3, it associates with TRAF6 and TRAF3. 

Subsequently, TRAF6 stimulates in cooperation with receptor-interacting protein 1 

(RIP1) the TAK1 complex, which leads to activation of MAPK and NF-κB, whereas 

TRAF3 mediates TBK1/IKKi dependent phosphorylation of IRF3 and consequently 

expression of type I IFN genes (Fig. 1-5) (Hacker et al., 2006). TLR4 triggers the MyD88-

dependent as well as the TRIF-dependent pathway (Takeuchi and Akira, 2010). 

RIG-I-like receptor signaling 

The RNA helicase RIG-I (retinoic acid-inducible gene I) was initially identified as a 

cytoplasmic PRRs for viral RNAs (Yoneyama et al., 2004) followed closely by the 

characterization of the other two RLR family members MDA5 (melanoma-

differentiation–associated gene 5) and LGP2 (laboratory of genetics and physiology 2) 

(Yoneyama et al., 2005). The RLRs RIG-I and MDA5 are composed of two caspase 
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activation and recruitment domains (CARDs) at their N-terminus, a central DExD/H-box 

helicase domain, and a C-terminal regulatory domain (Ireton and Gale, 2011). The 

helicase domain of RIG-I and MDA5 is responsible to bind viral RNAs and exerts ATPase 

activity, whereas the CARDs mediate downstream signaling. As LGP2 lacks the CARD 

domains it has rather regulatory functions. 

 

 

Figure 1-6 RLR signaling pathways 

The RIG-I-like receptor (RLR) signaling pathway can be activated via RIG-I or MDA5, which bind RNA with a 5’ 
triphosphate (5’ppp-RNA) and short double-strand RNA (dsRNAs) or long dsRNAs, respectively. Upon ligand binding 
RLRs dimerize and bind to IPS-1, which is located in the mitochondrial membrane activating kinases and 
subsequently transcription factors to initiate expression of inflammatory cytokines or type I interferons (IFNs). 
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With the exception of pDCs, RIG-I and MDA5 are the primary sensors in nearly all cell 

types for RNA virus infections. However, they were shown to recognize different RNA 

viruses (Kato et al., 2006; Loo et al., 2008). The virus specificity of RIG-I and MDA5 is 

determined by the RNA species they detect. RIG-I is activated by uncapped 

5′-triphosphate (5′-ppp) RNA (Hornung et al., 2006; Pichlmair et al., 2006), but for 

recognition of short dsRNA 5′-ppp it might be dispensable (Hausmann et al., 2008; 

Kato et al., 2008). The distinct natural ligand of MDA5 remains still elusive, however, 

MDA5 is thought to bind to long, stable dsRNA structures (Kato et al., 2008; Pichlmair 

et al., 2009). RIG-I detects both negative and positive strand RNA viruses among them 

Sendai virus (SeV), rabies virus (RV), or Hepatitis C virus (HCV), while MDA5 has been 

shown to detect picornaviruses such as encephalomyocarditis virus (EMCV) (Gitlin et 

al., 2006; Kato et al., 2006). Interestingly, MV and other negative strand RNA viruses 

were shown to be recognized by both RIG-I and MDA5 (Berghall et al., 2006; Ikegame 

et al., 2010). Under steady-state conditions the best characterized receptor RIG-I is 

present in a closed, inactive conformation shielding the CARDs. Upon triggering, an 

ATP-dependent conformational change occurs enabling the helicase domain to bind 

RNA. Subsequently, RIG-I dimerizes and the CARDs are released and accessible for 

further signaling (Cui et al., 2008). The initial recognition by RIG-I is also tightly 

controlled by ubiquitination events. K63-linked ubiquitination by TRIM25 and RNF135 

have been found to be required for activation, whereas K48-linked ubiquitination by 

RNF125 leads to downregulation of RIG-I-mediated signaling (Arimoto et al., 2007; 

Gack et al., 2007; Oshiumi et al., 2010). Upon activation, RIG-I and MDA5 interact with 

interferon-beta promoter stimulator 1 (IPS-1) through homophilic interactions 

between CARD domains (Kawai et al., 2005). IPS-1, also known as MAVS, Cardif, or 

VISA, is located at the outer mitochondrial membrane, which was shown to be 

important for downstream signaling (Meylan et al., 2005; Seth et al., 2005; Xu et al., 

2005). Once RIG-I or MDA5 interact with IPS-1, a complex is recruited to IPS-1 including 

TRAF6, TNF receptor type 1-associated DEATH domain (TRADD), Fas-associated death 

domain (FADD) and RIP1, mediating activation of the IKK complex through cleavage of 

caspase-8/-10 to activate NF-κB. Activated IPS-1 also associates with TRAF3, followed 

by activation of TBK1 and IKKi to activate IRF3 and IRF7 analogous to TRIF-dependent 

IRF activation (Kumar et al., 2011) (Fig. 1-6).   
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1.3.2 Strategies of measles virus to evade innate immune responses – 

it’s all about the P gene products 

Since MV replication activates innate immune responses (Rima and Duprex, 2011), 

mainly through triggering of RIG-I and MDA5 or TLR3, it has developed several 

strategies to circumvent the full range of innate immune responses and the 

accompanied establishment of an anti-viral environment. MV was shown to interfere 

with innate immune responses at different stages. Its most upstream target is MDA5. 

The MV V protein binds to the helicase domain of MDA5 but not RIG-I, thereby 

blocking its activation by dsRNA and consequently inhibiting MDA5-mediated IFN 

expression (Andrejeva et al., 2004; Childs et al., 2007). Recently, it was shown that the 

V protein also binds to LGP2 probably mediating a complex between RIG-I and LGP2, 

which renders RIG-I unable to respond to RIG-I-specific PAMPs (Childs et al., 2012). 

Both interactions are mediated through the C-terminal domain of V and are conserved 

among paramyxovirus V proteins. Furthermore, V proteins of a subset of 

paramyxoviruses, including MV V, were reported to inhibit IRF3 activation, eventually 

through binding to IRF3 (Irie et al., 2012). The most downstream inhibition of PRR-

induced IFN expression, is probably controlled by the C protein, which was shown to 

act in the nucleus to evade IFN expression by yet unidentified mechanisms (Sparrer et 

al., 2012). In MV infected pDCs, TLR7 and 9 signaling was shown to be suppressed 

(Schlender et al., 2005). Again the V protein is responsible for the inhibition of IFN 

induction through MyD88-dependent TLR signaling acting as a decoy substrate for IKKα 

(Pfaller, 2009).  

Besides inhibition of IFN expression, MV proteins also inhibit IFN-signaling, which 

involves activation of the janus kinases (JAK) and the transcription factors signal 

transducers and activators of transcription (STAT) 1 and 2 upon IFN receptor (IFNR) 

triggering. MV P and V bind through their common N-terminus to STAT1, inhibiting its 

phosphorylation upon stimulation with type I IFN and subsequently the expression of 

IFN-stimulated genes (ISGs), which are important anti-viral effectors (Devaux et al., 

2007; Ohno et al., 2004). Furthermore, MV V binds to the kinase domain of JAK1, an 



Introduction 19 

additional mechanism to prevent phosphorylation of STAT1 (Caignard et al., 2007). MV 

V binds STAT2 as well, but with its C-terminal domain thus blocking the nuclear 

translocation of STAT2 presenting a further mechanism to inhibit ISG expression 

(Ramachandran et al., 2008). The C protein was found to inhibit IFN signaling as well, 

but by a so far unknown mechanism (Shaffer et al., 2003). Recently, a role for the MV 

N protein in IFN signaling inhibition was suggested (Takayama et al., 2012). 

In summary, MV has evolved multiple and powerful strategies to counteract IRF3/7-

dependent IFN induction and STAT-dependent IFN signaling mainly mediated by the P-

gene products (Goodbourn and Randall, 2009).  

1.4 Objective of the study 

While numerous recent studies on paramyxovirus innate immune antagonistic 

activities have shed light on how control of IRF3/7 and STAT is achieved, their potential 

to interfere with NF-κB is less well studied. However, activation of the NF-κB pathway 

is of critical importance during an immune response and thus it is likely that MV 

modulates this pathway. Therefore, I wanted to assess the capacity of the MV proteins 

to interfere with NF-κB signaling and to understand the underlying mechanism of the 

presumed inhibition. For this purpose different biochemical and virological assays 

were performed in cultured cells either transiently expressing MV proteins or infected 

with MV. 
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2 Material and Methods 

2.1 Material 

2.1.1 Chemicals 

All chemicals were purchased from the following companies: BD, Biorad, Fluka, 

Invitrogen, Merck, Roth, Sigma-Aldrich, Serva, VWR Prolab. 

2.1.2 Enzymes and recombinant proteins 

All restriction enzymes and the appropriate buffers were purchased from New England 

Biolabs. All additional enzymes were purchased with the appropriate buffers from the 

listed companies. 

DNA polymerase Manufacturer 

Pfu DNA Polymerase Fermentas 

Phusion High Fidelity DNA Polymerase NEB 

Taq DNA Polymerase Biomaster 

DNase/RNase Manufacturer 

TURBO DNase Deoxyribonuclease I, RNase free Fermentas 

RNase A Macherey&Nagel 

Reverse Transcriptase Manufacturer 

Transcriptor Reverse Transcriptase Roche 

RNase inhibitor Manufacturer 

SUPERase-In Ambion 
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Ligase Manufacturer 

T4 DNA Ligase  New England Biolabs 

Phosphatase Manufacturer 

Calf Intestine Alkaline Phosphatase (CIAP)  New England Biolabs 

Protease Inhibitor Manufacturer 

Complete ULTRA Protease Inhibitor Cocktail Tablets Roche 

Recombinant Protein Manufacturer 

Human TNFα Biomol 

2.1.3 Commercial kits 

Plasmid purification Manufacturer 

Nucleobond Xtra Midi Macherey&Nagel 

Cloning Manufacturer 

QIAquick Gel Extraction Kit Qiagen 

QIAEX II Gel Extraction Kit Qiagen 

QIAquick Nucleotide Removal Kit Qiagen 

QIAquick PCR Purification Kit Qiagen 

Luciferase reporter gene assay Manufacturer 

Dual Luciferase Reporter Assay System Promega 

RNA isolation Manufacturer 

RNeasy Mini Kit Qiagen 

Real time PCR Manufacturer 

Quantitect SYBR Green PCR Kit Qiagen 

Transfection Manufacturer 

ProFection Mammalian Transfection System-CaPO4 Promega 
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2.1.4 Additional reagents 

Additional reagents Manufacturer 

1 kb DNA Ladder New England Biolabs 

0,25 % Trypsin-EDTA Gibco 

Anti-Flag M2-Agarose Sigma-Aldrich 

Anti-HA Affinity Matrix; (clone 3F10) Roche 

dNTP Set Bioline 

Immobilon-P blotting membrane (PVDF) Millipore 

Lipofectamine 2000  Invitrogen 

Oligo(dT)12-18 Primer Invitrogen 

PCR Marker New England Biolabs 

Precision Plus Protein Standards Biorad 

Protein A-Sepharose GE Healthcare 

Vectashield Mounting Medium for Fluorescence Vector Laboratories 

Versene Gibco 

Whatman Blotting Paper Machery-Nagel 

Western Lightning Plus ECL Chemiluminescence 
Substrate 

Perkin Elmer 

 

http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CGUQFjAC&url=http%3A%2F%2Fwww.biocompare.com%2FProductDetails%2F390914%2FAnti-HA-Affinity-Matrix-clone-3F10.html&ei=SsS7T7HtJsjrsgbNsbCOCA&usg=AFQjCNG53FpjlWMtnl4pxdhORlHX9dPbQQ


Material and Methods 23 

2.1.5 Antibodies 

Primary antibodies 

(antigen) 

Host Manufacturer Dilution 

WB IF 

Anti-c-Rel rabbit Cell Signaling #4727 1:1000 - 

Anti-Flag M2  mouse Sigma-Aldrich - 1:200 

Anti-Flag M2 rabbit Sigma-Aldrich 1:10000 - 

Anti-HA (3F10) rat Roche 1:1000 - 

Anti-IκBα (L35A5) mouse Cell Signaling #4814 1:1000 - 

Anti-MV N (2D7) mouse Abcam ab9882 1:500 - 

Anti-MV N mouse Millipore MAB8906  1:500 - 

Anti-MV N-FITC mouse Millipore MAB8906F - 1:2000 

Anti-MV P (37069) 

(aa 2-15) 
rabbit D.Gerlier (Chen et al., 2003) 1:10000 - 

Anti-MV VCTD  (WBA/10/2) 

(aa 286-299) 
rabbit Metabion; custom-made 1:5000 - 

Anti-MV C (1240) (aa 176-186) rabbit R. Cattaneo 1:2500 - 

Anti-MV C (FEA/10/1)  

(aa 176-186) 
rabbit Metabion; custom-made 1:2500 - 

Anti-p65 rabbit Santa Cruz sc-109 1:1000 1:200 

Anti-p65 (C22B4) rabbit Cell Signaling #4764 1:1000 - 

Anti-p65-CT rabbit Millipore #06-418 1:1000 - 

Anti-p100/p52 rabbit Cell Signaling #4882 1:1000 - 

Anti-p105/50 rabbit Cell Signaling #3035 1:1000 - 

Anti-RelB (H-200) rabbit Santa Cruz sc-28689 1:1000 - 

Anti-RelB (C1E4) rabbit Cell Signaling #4922 1:1000 - 

Anti-RV P (P160-5) rabbit S. Finke 1:50000 - 
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Secondary 
antibodies 

(antigen) 

Host Manufacturer Dilution 

WB IF 

Anti-mouse HRP goat Jackson ImmunoResearch Laboratories 1:20000 - 

Anti-rabbit HRP goat Jackson ImmunoResearch Laboratories 1:20000 - 

Anti-rat HRP goat Jackson ImmunoResearch Laboratories 1:5000 - 

Anti-human HRP goat Jackson ImmunoResearch Laboratories 1:20000 - 

Anti-mouse 
tetramethylrhodamine 

goat MoBiTec 
- 1:1000 

Anti-rabbit Alexa Fluor 
488 

goat MoBiTec 
- 1:1000 
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2.1.6 Buffers and solutions 

All solutions and buffers were made in double distilled water (ddH2O). If solutions had 

to be autoclaved it is indicated. Unless indicated otherwise, all solutions were stored at 

room temperature. LB medium and LB plates were supplemented with the appropriate 

antibiotics: ampicillin (100 µg/ml), or kanamycin (25 µg/ml). 

Mini Preparation 

Flexi I 100 mM Tris-HCl pH 7.5 

10 mM EDTA 

200 μg/ml RNase 

Stored at 4°C 

Flexi II 200 mM NaOH 

1 % (w/v) SDS 

Flexi III 3 M potassium acetate 

2 M acetic acid, pH 5.75 

 

Agarose gel electrophoresis 

10x TAE 2 M Tris-HCl, pH 7.8 

0.25 M Sodium acetate x 3 H2O 

0.25 M EDTA 

1x TAE + EtBr 200 ml 10x TAE 

150 μl Ethidium bromide solution 1% 

Add ddH2O to 2 l 

OG loading buffer 50 % (v/v) 10x TAE 

15 % (w/v) Ficoll 400 

0.125 % (w/v) Orange G 

10x TE 100 mM Tris-HCl, pH 7.5 

10 mM EDTA 
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Blue juice 0.125 % (w/v) Bromphenol blue 

0.125 % (w/v) Xylenecyanol 

0.125 % (w/v) Orange G 

15 % (w/v) Ficoll 400 

50 % (v/v) 10x TAE 

Store at -20°C 

1 kb marker 380 μl 1x TE 

100 μl Blue juice 

20 μl 1 kb DNA ladder (New England Biolabs) 

Store at 4°C/-20°C 

PCR marker 167 μl Gel loading dye blue (6x) 

733 μl H2O 

100 μl PCR Marker (New England Biolabs) 

Store at 4°C/-20°C 

 

SDS-PAGE 

Jagow gel buffer 3 M Tris-HCl, pH 8.45 

0.3 % (w/v) SDS 

Jagow anode buffer 200 mM Tris-HCl, pH 8.9 

Jagow cathode buffer 100 mM Tris-HCl, pH 8.25 

100 mM Tricine 

0,1 % (w/v) SDS 

Protein lysis buffer 62.5 mM Tris-HCl, pH 6.8 

2 % (w/v) SDS 

10 % (w/v) glycerol 

6 M Urea 

5 % (v/v) β-mercaptoethanol 

0.01 % (w/v) Bromphenol blue 

0.01 % (w/v) Phenol red 

Store at -20°C 
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Stacking gel 4% 3.5 ml Jagow gel buffer 

1.4 ml acrylamide 29:1 Rotiphorese Gel 40 

18 l TEMED 

116 l APS (10 %) 

9 ml H2O 

Separating gel 10% 12 ml Jagow gel buffer 

9 ml acrylamide 29:1 Rotiphorese Gel 40 

2 ml glycerol 

17 l TEMED 

175 l APS (10%) 

12.9 ml H2O  

 

Western blotting 

10x Semi dry buffer 480 mM Tris-HCl pH 8.6 

390 mM Glycine 

0.05 % (w/v) SDS 

1x Semi dry buffer 100 ml 10x Semi dry buffer 

180 ml Methanol abs. 

720 ml H2O 

1x PBS 1.37 M NaCl 

27 mM KCl 

12 mM KH2PO4 

65 mM Na2HPO4x2H2O (pH 7.4) 

PBS-Tween 1x PBS 

0.05 % Tween 20 
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Co-Immunoprecipitation 

Standard Co-IP buffer 50 mM Tris-HCl pH 7.5 

150 mM NaCl 

2 mM EDTA 

1 mM Na3VO4 

0.5 % (v/v) NP-40 

Store at 4°C 

Add 1 Complete Protease Inhibitor Tablet per 50 ml before use 

Sepharose A Co-IP Buffer Buffer A: 100 mM Tris pH 8.0 

Buffer B: 10 mM Tris pH 7.4 

Store at 4°C 

PBS 5mM EDTA 1x PBS 

5mM EDTA 

 

Immunofluorescence 

3 % PFA/PBS 1x PBS 

3 % (w/v) paraformaldehyde 

80 % Acetone 800 ml acetone p.a. 

Add ddH2O to 1l 

50mM NH4Cl/PBS 1x PBS 

50mM NH4Cl 

PBS/0.5 % Triton X-100 1x PBS 

0.5 % (v/v) Triton X-100 

PBS/2,5 %milk/0.1 % Triton 
X-100 

1x PBS 

0.1 % (v/v) Triton X-100 

2.5 % (w/v) milk powder 

PBS/0.1 % Triton X-100 1x PBS 

0.1 % (v/v) Triton X-100 
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Bacteria growth media 

LB 85 mM NaCl 

0.5 % (w/v) Bacto yeast extract 

1 % (w/v) Bactotryptone 

1 mM MgSO4 

Autoclaved and stored at 4 °C 

LB ++ 1x LB 

20 mM MgSO4 

10 mM KCl 

LB plates 1 l LB medium 

15 g Agar 

2.1.7 Bacteria and cell lines 

The E.coli strain XL1 Blue (Stratagene) was used for amplification of plasmids. 

Cell line Description 

HEK-293T        
(ATCC-CRL-11268) 

HEK-293 was established from a human primary embryonic kidney 
transformed by adenovirus type V (Graham et al., 1977). The cell line 
HEK-293T is a derivative, which constitutively expresses the simian virus 
40 (SV40) large T antigen. 

HEp-2            
(ATCC-CCL-23) 

The HEp-2 cell line was initiated from tumors that had been produced in 
irradiated-cortisonized weanling rats after injection with epidermoid 
carcinoma tissue from the larynx of a 56-year-old male (Toolan, 1954). 

A549             
(ATCC-CCL-185) 

The A549 cell line was developed from culturing of cancerous lung tissue 
in the explanted tumor of 58-year-old Caucasian male (Giard et al., 
1973). A549 cells are human alveolar basal epithelial cells. 

293-3-46 Derived from the human embryonic kidney 293 cell line. The cells 
constitutively express T7 RNA polymerase together with MV 
nucleocapsid protein and phosphoprotein (Radecke et al., 1995) 

Vero-hSLAM This cell line is a derivative of Vero cells which constitutively expresses 
the human SLAM receptor (Ono et al., 2001). 

Vero              
(ATCC- CCL-81) 

The Vero cell line was established from the kidney of a normal adult 
African green monkey (Yasumura, 1963). 
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2.1.8 Oligonucleotides 

Primers were purchased from Metabion.  

Primers for cloning: 

# Primer name Sequence (5’-3’) 

11 NBD-Peptide forw ATA GAA TTC CTA GAC TGG AGC TGG TTA CTC GAG ATA 

12 NBD-Peptide rev TAT CTC GAG TAA CCA GCT CCA GTC TAG GAA TTC TAT 

17 p65 EcoRV forw ATA GCC ACC GAT ATC ATG GAC GAA CTG TTC CCC 

34 p65 XhoI rev  TAT CTC GAG TTA GGA GCT GAT CTG ACT 

39 p50 HindIII forw ATA AAG CTT GCC ACC ATG GCA GAA GAT GAT 

40 flag p50 HindIII forw 
ATA AAG CTT GCC ACC ATG GAC TAC AAA GAC GAT GAC 
GAT AAA GCA GAA GAT GAT CCA 

41 p50 XhoI rev ATA CTC GAG TTA AAC TTT CCC AAA GAG GTT 

43 p65 HindIII forw ATA AAG CTT GCC ACC ATG GAC GAA CTG TTC CCC 

44 p65 flag XhoI rev 
ATA CTC GAG CTA TTT ATC GTC ATC GTC TTT GTA GTC GGA 
GCT GAT CTG ACT CAG 

45 p65 1-309 XhoI rev ATA CTC GAG TTA GAA GGT CTC ATA TGT 

46 p65 1-309 flag XhoI rev  
ATA CTC GAG TTA TTT ATC GTC ATC GTC TTT GTA GTC GAA 
GGT CTC ATA TGT 

47 p65 310-551 HindIII forw  ATA AAG CTT GCC ACC ATG AAG AGC ATC ATG AAG 

48 
p65 310-551 flag XhoI 
rev  

TAT CTC GAG TTA TTT ATC GTC ATC GTC TTT GTA GTC GGA 
GCT GAT CTG ACT 

49 p65 310-551 XhoI rev  TAT CTC GAG TTA GGA GCT GAT CTG ACT 

50 flag-PIV5-V EcoRI forw 
ATA GAA TTC GCC ACC ATG GAC TAC AAA GAC GAT GAC 
GAT AAA GAT CCC ACT GAT CTG 

51 p50 RHD 1-399 XhoI rev ATA CTC CAG TTA CTT CTG ACG TTT CCT 

52 MV-V E235A forw 
CCA TTA AAA AGG GGC ACA GAC GCG CGA TTA GCC TCA 
TTT GGA ACG G 
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53 MV-V E235A rev 
CCG TTC CAA ATG AGG CTA ATC GCG CGT CTG TGC CCC TTT 
TTA ATG G 

54 MV-V R233A forw 
CAC CCA TTA AAA AGG GGC ACG CAC GCG AGA TTA GCC 
TCA TTT GGA ACG G 

55 MV-V R233A rev 
CCG TTC CAA ATG AGG CTA ATC TCG CGT GCG TGC CCC TTT 
TTA ATG GGT G 

56 MV-V R233A,E235A forw 
CAC CCA TTA AAA AGG GGC ACG CAC GCG CGA TTA GCC 
TCA TTT GGA ACG G 

58 p65 1-300 XhoI rev ATA CTC GAG TTA CTC CTC AAT CCG GTG 

59 p65 NLS- 301AAA forw 
GAT CGT CAC CGG ATT GAG GAG GCA GCT GCA AGG ACA 
TAT GAG ACC TTC AAG AGC 

60 p65 NLS- 301AAA rev 
GCT CTT GAA GGT CTC ATA TGT CCT TGC AGC TGC CTC CTC 
AAT CCG GTG ACG ATC 

62 Nipah V XhoI rev TAT CTC GAG TTA ACC GCA GTG GAA GCA 

67 flag Nipah V HindIII forw 
ATA AAG CTT GCC ACC ATG GAC TAC AAA GAC GAT GAC 
GAT AAA GAT AAA TTG GAA CTA 

70 flag-p65 HindIII forw  
ATA AAG CTT GCC ACC ATG GAC TAC AAA GAC GAT GAC 
GAT AAA GAC GAA CTG TTC CCC 

71 flag-p65 180 XhoI rev ATA CTC GAG TTA AGA AAG GAC AGG CGG 

72 p65 181 HindIII forw ATA AAG CTT GCC ACC ATG CAT CCC ATC TTT GAC 

73 
HA-importin a3 NheI 
forw 

ATA GCT AGC GCC ACC ATG TAT CCT TAT GAC GTG CCT GAC 
TAT GCC AGC CTG GGA GGA CCT GCG GAC AAC GAG AAA 
CTG 

74 importin a3 NotI rev ATA GCG GCC GCC TAA AAC TGG AAC CCT TC 

75 
HA-importin a4 NheI 
forw 

ATA GCT AGC GCC ACC ATG TAT CCT TAT GAC GTG CCT GAC 
TAT GCC AGC CTG GGA GGA CCT GCC GAG AAC C CC AGC 
TTG GAG 

76 importin a4 NotI rev ATA GCG GCC GCT TAA AAA TTA AAT TCT TT 

77 
HA-importin a 5 NheI 
forw 

ATA GCT AGC GCC ACC ATG TAT CCT TAT GAC GTG CCT GAC 
TAT GCC AGC CTG GGA GGA CCT ACC ACC CCA GGA AAA 
GAG 

78 importin a5 NotI rev ATA GCG GCC GCT CAA AGC TGG AAA CCT TCC AT 

79 
flag-CDV PVNTD HindIII 
forw  

ATA AAG CTT GCC ACC ATG GAC TAC AAA GAC GAT GAC 
GAT AAA GCA GAG GAG CAG GCC TAT 
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81 CDV-V XhoI rev ATA CTC GAG TCA TTT GAG GTC TTG GGA 

115 c-Rel HindIII forw ATA AAG CTT GCC ACC ATG GCC TCC GGT GCG TAT 

116 c-Rel XhoI rev TAT CTC GAG TTA TAC TTG AAA AAA TTC 

118 
MV VdC dloop1 BsmBI 
forw 3' ATA CGT CTC CTG GAT GCA ACC CAA TGT GCT CG 

119 
MV VdC dloop2 BsmBI 
reverse 5' ATA CGT CTC CTC CAC CGC ACA TTG GGT TGC ACC A 

120 
MV VdC dloop2 BsmBI 
forw 3' ATA CGT CTC CTG GAA CCT GCG GGG AAT GTC CC 

121 
MV VdC dloop2 BsmBI 
forw 3' ATA CGT CTC CTG GAT GCA CCT GCG GGG AAT GTC CC 

124 MV PdeltaV mut fwd 
TAG GGC CAG CAC TTC CGG GAC ACC CAT TAA GAA GGG 
CAC AGA CGC GAG ATT AGC CTC ATT 

125 MV PdeltaV mut rev 
AAT GAG GCT AAT CTC GCG TCT GTG CCC TTC TTA ATG GGT 
GTC CCG GAA GTG CTG GCC CTA 

126 
MV VdC dloop1 BsmBI 
reverse 5' ATA CGTCTC C TCC ACC GTG CCC CTT TTT AAT GGG 

129 
flag p100/p52 HindIII 
forw 

ATA AAG CTT GCC ACC ATG GAC TAC AAA GAC GAT GAC 
GAT AAA GAG AGT TGC TAC AAC CCA 

131 p52 BamHI rev TAT GGA TCC TCA CCT CCT CCA GCT CCT 

CP 
50 

MV V NotI rev ATA TGC GGC CGC TTA TTC TGG GAT CTC 

CP 
127 

PIV5 V XhoI rev TAT CTC GAG TTA AGT ATC TCG TTC 

CP 
201 

V SnaBI+5nt fwd ATA TAC GTA CCA CCA TGG CAG AAG AGC AGG CA 
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Primers for quantitative real-time RT-PCR 

Primer name Sequence (5’-3’) Annealing Temperature 

GAPDH for TGG TAT CGT GGA AGG ACT CA 53 °C 

GAPDH rev CCA GTA GAG GCA GGG ATG AT 53 °C 

IFNβ forw TCC AAA TTG CTC TCC TGT TG 47°C 

IFNβ rev GCA GTA TTC AAG CCT CCC AT 47°C 

IL-6 forw TAGTCCTTCCTACCCCCAATTTCC 53 °C 

IL-6 rev TTGGTCCTTAGCCACTCCTTC 53 °C 

MV-N forw TCA GAA CAA GTT CAG TGC AG 48°C 

MV-N rev CTT ACC ATC TCT TGC CCT AA 48°C 

RANTES forw GAGCTTCTGAGGCGCTGCT 53 °C 

RANTES rev TCTAGAGGCATGCTGACTTC 53 °C 
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2.1.9 Plasmids 

Plasmids commercially available 

Plasmid name Vector Description Provider 

Flag-c-Rel pcDNA 
Expression plasmid for the human NF-κB 
subunit c-Rel with N-terminal flag-tag  

Addgene #27253 

Flag-RelB pReceiver 
Expression plasmid for the human NF-κB 
subunit RelB with N-terminal flag-tag 

GeneCopoeia     
#EX-G0029-M11 

p100 pCMV4 
Expression plasmid for the human NF-κB 
subunit p100 

Addgene #23287 

p50 pCMV4 
Expression plasmid for the human NF-κB 
subunit p50 

Addgene #21965 

p52 pCMV4 
Expression plasmid for the human NF-κB 
subunit p52 

Addgene #23289 

p65 pCMV4 
Expression plasmid for the human NF-κB 
subunit p65/RelA 

Addgene #21966 

pCR3 pCR3 
Eukaryotic expression vector; CMV promoter 
controlled 

Invitrogen 

pRL-CMV pRL-CMV Renilla luciferase; CMV promoter controlled Promega 

RelB 
pCMV-
SPORT6 

Expression plasmid for the human NF-κB 
subunit RelB 

Open Biosystems  
#1010-7507797 
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Plasmids kindly provided  

Plasmid name Vector Description Provider 

Flag-ΔRIG-I pEFBos 
Expression plasmid for human RIG-I CARD 
domain (aa 1-284) with N-terminal flag-tag 

A.Krug 

Flag-IKKα pRK7 
Expression plasmid for human IKKα with 
N-terminal flag-tag 

K. Ruckdeschel 

Flag-IPS1 pCMV 
Expression plasmid for human IPS1 with 
N-terminal flag-tag 

S.Akira 

Flag-TRIF pRK7 
Expression plasmid for human TRIF with 
N-terminal flag-tag 

K. Ruckdeschel 

IKKβ-flag pRK7 
Expression plasmid for human IKKβ with 
C-terminal flag-tag 

K. Ruckdeschel 

Myc-MyD88 pRK7 
Expression plasmid for human IKKβ with 
N-terminal myc-tag 

K. Ruckdeschel 

p55A2-luc pBL 
Firefly luciferase controlled by NF-κB binding 
sites (Yoneyama et al., 1996) 

T.Fujita 

 

Plasmids generated in this laboratory: 

Unless otherwise indicated all ORFs were cloned into the pCR3 vector. 

Plasmid name Description Generated by 

FIag-MV C 
Expression plasmid for measles virus C protein of the 
Schwarz strain with N-terminal flag-tag 

C.Pfaller 

FIag-MV P 
Expression plasmid for measles virus P protein of the 
Schwarz strain with mutations avoiding the expression of 
the C protein and N-terminal flag-tag 

C.Pfaller 

FIag-MV V 
Expression plasmid for measles virus V protein of the 
Schwarz strain with mutations avoiding the expression of 
the C protein and N-terminal flag-tag 

C.Pfaller 

Flag-IKKγ 
Expression plasmid for human IKKγ/NEMO with 
N-terminal flag-tag in pCAGGS vector 

M. Rieder 
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Ig pCR3 vector with Ig-tag sequence upstream of MCS K. Brzózka 

Ig-MV C 
Expression plasmid for measles virus C protein of the 
Schwarz strain 

C.Pfaller 

Ig-MV P 
Expression plasmid for measles virus P protein of the 
Schwarz strain with mutations avoiding the expression of 
the C protein and N-terminal Ig-tag 

C.Pfaller 

Ig-MV PCTD 
Expression plasmid for the C-terminal domain (aa 233-
507) of measles virus P protein of the Schwarz strain and 
N-terminal Ig-tag 

C.Pfaller 

Ig-MV PVNTD 

Expression plasmid for the common N-terminal domain 
(aa 1-232) of measles virus P and V protein of the 
Schwarz strain with mutations avoiding the expression of 
the C protein and N-terminal Ig-tag 

C.Pfaller 

Ig-MV V 
Expression plasmid for measles virus V protein of the 
Schwarz strain with mutations avoiding the expression of 
the C protein and N-terminal Ig-tag 

C.Pfaller 

Ig-MV VCTD 

Expression plasmid for the C-terminal domain (aa 233-
299) of measles virus V protein of the Schwarz strain and 
N-terminal Ig-tag 

C.Pfaller 

MV C 
Expression plasmid for measles virus C protein of the 
Schwarz strain 

S.Moghim 

MV P 
Expression plasmid for measles virus P protein of the 
Schwarz strain with mutations avoiding the expression of 
the C protein 

C.Pfaller 

MV V 
Expression plasmid for measles virus V protein of the 
Schwarz strain with mutations avoiding the expression of  

C.Pfaller 

MV V dIRF7 
Expression plasmid for measles virus V protein of the 
Schwarz strain with point mutation 259AAAA avoiding 
IRF7 binding 

C. Pfaller 

MV Vwt 
Expression plasmid for wild type measles virus V protein 
of the D5 genotype with mutations avoiding the 
expression of the C protein 

C.Pfaller 

RV P Expression plasmid for rabies virus P protein K. Brzózka 
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Plasmids generated during this thesis: 
 
Unless indicated otherwise all ORFs were cloned into the pCR3 vector. 

Plasmid name Description 
Template 

(provider) 
Primers 

c-Rel 
Expression plasmid for the human NF-κB 
subunit c-Rel 

pcDNA-flag-c-Rel 115; 116  

flag-CDV V 

Expression plasmid for canine distemper 
virus V protein with mutations avoiding 
the expression of the C protein and 
N-terminal flag-tag 

pCG-CDV VΔC 

(V. von Messling) 
79; 81 

flag-NiV V 

Expression plasmid for nipah virus V 
protein with mutations avoiding the 
expression of the C protein and 
N-terminal flag-tag 

pGexGp2-NiV VΔC 

(K.P. Hopfner) 
62; 67 

flag-p50 
Expression plasmid for the human NF-κB 
subunit p50 with N-terminal flag-tag 

pCMV4-p50 40; 41 

flag-p50 RHD 
Expression plasmid for the REL homology 
domain (aa 1-366) of human p50 with 
N-terminal flag-tag 

pCMV4-p50 40; 51 

flag-p52 
Expression plasmid for the human NF-κB 
subunit p52 with N-terminal flag-tag 

pCMV4-p52 129; 131 

flag-p65 
Expression plasmid for the human NF-κB 
subunit p65/RelA with N-terminal flag-
tag in pCDNA3.1 vector 

pCMV4-p65 17; 34 

flag-p65 NTD 
Expression plasmid for the N-terminal 
domain of human p65 RHD (aa 1-180) 
with N-terminal flag-tag 

pCR3-p65 70; 71 

flag-PIV5 V 
Expression plasmid for Para-influenza 
virus type 5 V protein and N-terminal 
flag-tag 

pCR3-PIV5 V 

(C.Pfaller) 
50;CP 127  

HA-importin α3 
Expression plasmid for human importin 
α3 with N-terminal HA-tag 

pCMVTNT-T7-
importin α3 

 (Addgene #26680) 

73; 74 
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HA-importin α4 
Expression plasmid for human importin 
α4 with N-terminal HA-tag 

pCMVTNT-T7-
importin α4 

(Addgene #26679) 

75; 76 

HA-importin α5 
Expression plasmid for human importin 
α5 with N-terminal HA-tag 

pCMVTNT-T7-
importin α5 

(Addgene #26677) 

77; 78 

Ig-NBD 
Expression plasmid for Nemo binding 
domain of IKKα (aa738-743) with 
N-terminal Ig-tag (May et al., 2000) 

Annealing of 
primers 

11; 12 

MV V dMDA5 (1) 

Expression plasmid for measles virus V 
protein of the Schwarz strain with point 
mutation R233A avoiding MDA5 binding 

pCR3-MV V 54; 55 

MV V dMDA5 (2) 
Expression plasmid for measles virus V 
protein of the Schwarz strain with point 
mutation E235A avoiding MDA5 binding 

pCR3-MV V 52; 53 

MV V dMDA5 (1/2) 

Expression plasmid for measles virus V 
protein of the Schwarz strain with point 
mutations R233A E235A avoiding MDA5 
binding 

pCR3-MV V 56; 57 

MV V Δloop1 

Expression plasmid for measles virus V 
protein of the Schwarz strain with 
deletion of aa 233-250 therefore 
insertion of two Glycins  

pCR3-MV V 126; 118 

MV V Δloop1 

Expression plasmid for measles virus V 
protein of the Schwarz strain with 
deletion of aa 256-266 therefore 
insertion of two Glycins  

pCR3-MV V 119; 121 

p50 
Expression plasmid for the human NF-κB 
subunit p50  

pCMV4-p50 39; 41 

p65 
Expression plasmid for the human NF-κB 
subunit p65/RelA 

pCMV4-p65 43; 49 

p65-flag 
Expression plasmid for the human NF-κB 
subunit p65/RelA with C-terminal flag-
tag 

pCMV4-p65 43; 44 

p65 1-300 
Expression plasmid for the REL homology 
domain of human p65 lacking the NLS 
(aa 1-300) 

pCMV4-p65 43; 58 
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p65 TA-flag 
Expression plasmid for transactivation 
domain (aa 310-551) of human p65 with 
C-terminal flag-tag  

pCMV4-p65 47; 48 

p65 CTD-flag 
Expression plasmid for the C-terminal 
domain of human p65 RHD (aa 181-309) 
with C-terminal flag-tag 

pCR3-p65 72; 46 

p65 NLS- (K301A,R302A,K303A) pCR3-p65 59; 60 

p65 RHD 
Expression plasmid for the REL homology 
domain (aa 1-309) of human p65 

pCMV4-p65 43; 45 

p65 RHD-flag 
Expression plasmid for the REL homology 
domain (aa 1-309) of human p65 with 
C-terminal flag-tag 

pCMV4-p65 43; 46 

RelB 
Expression plasmid for the human NF-κB 
subunit RelB 

Digestion of 
pCMVSPORT6-
RelB with EcoRI; 
NotI 

none 

 

Full length plasmid Origin/Cloning strategy 

pBS-HHRz-MVvac2-HdRz(sc) C. Pfaller 

pBS-HHRz-MVvac2-ATU-MCS-HdRz(sc) C. Pfaller 

pBS-HHRz-MVvac2-VKO-ATU-MCS- 
HdRz(sc) 

Site directed mutagenesis of the editing site 
within the P gene (Schneider et al., 1997) within 
the helper plasmid pSK-NotI-ATU-SacII. Used 
primers: 124 + 125. Insertion into pBS-HHRz-
MVvac2-ATU-MCS-HdRz(sc) with NotI + SacII. 

pBS-HHRz-MVvac2-VKO-ATU-MCS-
VdCdW- HdRz(sc) 

Insertion of the V ORF with mutated editing site 
and mutation in the start codon of the C ORF into 
pBS-HHRz-MVvac2-VKO-ATU-MCS-HdRz(sc) using 
primers CP 201, CP 50 and restriction enzymes 
SnaBI and NotI. 
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2.1.10 Viruses 

Virus Description 

MVvac2  

Recombinant measles virus generated from the full-length cDNA 
plasmid pBS-HHRz-MVvac2-HdRz(sc). The virus has equivalent 
nucleotide sequence to Moraten and Schwartz vaccine strains 
(GeneBank accession numbers AF266287 and AF266291) (del Valle et 
al., 2007). The Moraten and Schwartz vaccines share an identical 
sequence in spite of a nominally different origin.  

MVvac2 MCS 

The full length cDNA plasmid pBS-HHRz-MVvac2-ATU-MCS-HdRz(sc) 
was used for rescue of the recombinant measles virus. It is a 
derivative of MVvac2 generated by insertion of a multiple cloning site 
between the P and the M gene flanked by the 5‘-UTR and the 3’-UTR 
of the P gene. 

MVvac2 VKO MCS 

Recombinant measles virus generated from the full length plasmid 
pBS-HHRz-MVvac2-VKO-ATU-MCS-HdRz(sc). The virus is a derivative 
of MVvac2 MCS generated by a point mutation within the V editing 
site to destroy V mRNA production (Radecke and Billeter, 1997; 
Schneider et al., 1997). The introduced point mutation is silent for 
the P and C protein.  

MVvac2 VKO MCS V 

The full length cDNA plasmid pBS-HHRz-MVvac2-VKO-ATU-MCS-
VdCdW-HdRz(sc) was used for rescue of the recombinant measles 
virus. It was generated by insertion of the V ORF with mutated 
editing site into the MCS of pBS-HHRz-MVvac2-ATU-MCS-VKO-
HdRz(sc). Thus the expression of the V protein is restored in the 
recombinant virus MVvac2 VKO MCS V. 

  



Material and Methods 41 

 

2.1.11 Equipment 

Instrument Manufacturer 

Agarose vertical gel electrophoresis apparatus Peqlab 

Bacteria culture incubator ISF-1-W Kühner 

Centrifuges: 

Centrifuge 5417C  

Centrifuge 5804R  

Centrifuge Evolution RC 

Biofuge pico 

Varifuge 3.0R 

 

Eppendorf 

Eppendorf 

Sorvall 

Heraeus 

Heraeus 

Cell culture incubator Sanyo 

Chemiluminescence developing system Fusion FX7 Vilber-Lourmat 

Gel Doc system BioRAD 

Freezers: 

-20°C 

-80°C Il Shin 

 

Liebherr 

Nunc 

Laminar Flow Sterileguard ClassII TypeA/B3 Baker Company 

LightCycler 2.0 Roche 

Luminometer Centro LB 960 Berthold 

Magnetic stirrer/heater VELP Scientifica 

Mixer 5432 Eppendorf 

Microscopes: 

Laser scanning microscope LSM 510 Meta 

Light microscope TMS 

UV-Light microscope IX71 

 

Carl Zeiss 

Nikon 

Olympus 

Neubauer improved cell-counting chamber Marienfeld 

PH-meter  VWR International 
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PIPETBOY acu IBS 

Pipettes (2/2,5/10/20/200/1000µl) Eppendorf; Gilson 

Polyacrylamid gel electrophoresis system  Peqlab 

Power supply Power Pack P25 Biometra 

Roller mixer SRT2 Stuart 

Semi-Dry blotting system  Peqlab 

Shaker Swip SM25 Edmund Bühler 

Spectrophotometer Nanodrop ND-1000 Peqlab 

Thermocycler T3 Biometra 

Thermomixer 5436 Eppendorf 

Thermostated hot-block 5320 Eppendorf 



Material and Methods 43 

2.2 Methods 

2.2.1 Molecular biological methods 

Polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) allows the cyclic enzymatic amplification of 

defined DNA fragments in vitro. Short oligonucleotide-fragments, which anneal to the 

complementary strains of the DNA template in an inverse orientation, determine the 

ends of the amplified DNA fragment. In the presence of dNTPs thermostable DNA 

polymerases extend these forward- and reverse-primers along the denaturated single 

stranded DNA generating a complementary DNA strand.  

Standard PCR 

Phusion DNA polymerase was used for standard PCR. The man-made chimera is 

composed of a unique dsDNA-binding domain fused to a Pyrococcus-like proofreading 

polymerase. The 3’→5’ proof-reading capacity will excise mismatched 3’-terminal 

nucleotides from primer-template complexes and incorporate the correct. PCR 

reactions were set up according to the following standard protocol: 

Component Amount/Volume 

Template-DNA 10 ng 

Primer fwd (10 μM) 5 μl 

Primer rev (10 μM) 5 μl 

dNTPs (25 µM per NTP) 0.8 μl 

5x Buffer HF or GC 20 μl 

DMSO 3 μl 

Phusion polymerase (2U/µl) 1 μl 

ddH2O Ad 100 μl 
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The following PCR program was applied: 

Step Temperature/Time Cycles 

Initial denaturation 98°C; 30 s 1 

Denaturation 98°C; 30 s 

30 Annealing 45-60°C; 30 s 

Elongation 72°C; 15 s/kb 

Extension 72°C; 10 min 1 

Storage 4°C; ∞ 1 

Correct size of PCR product was validated by agarose gel electrophoresis. For 

purification of PCR products the QIAquick PCR Purification Kit was used following the 

protocol of the manufacturer.  

Mutagenesis PCR 

Pfu DNA polymerase from the marine archaebacterium Pyrococcus furiosus was used 

for mutagenesis PCR. Pfu DNA polymerase possesses also a 3’→5’ proof-reading 

capacity. PCR reactions were set up according to the following standard protocol: 

Component Amount/Volume 

Template-DNA 10 ng 

Primer fwd (10 μM) 2.5 μl 

Primer rev (10 μM) 2.5 μl 

dNTPs (25 µM per NTP) 1 μl 

Pfu buffer with MgCl2 (10x) 10 μl 

Pfu polymerase (2.5 U/µl) 1 μl 

ddH2O Ad 100 μl 

 

http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=manufacturer&trestr=0x1001
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The following PCR program was applied:  

 

Step Temperature/Time Cycles 

Initial denaturation 95°C; 30 s 1 

Denaturation 95°C; 10 s 

25 Annealing 45-60°C; 30 s 

Elongation 68°C; 4 min/kb 

Extension 68°C; 30 min 1 

Storage 4°C; ∞ 1 

 

Correct size of PCR product was validated by agarose gel electrophoresis. 

Subsequently, DNA was digested with DpnI restriction enzyme for at least 3 hours at 

37 °C to remove all methylated template DNA (methylation generated during bacterial 

plasmid DNA amplification). 10 µl newly synthesized mutated plasmid DNA was 

directly transformed into bacteria for amplification. 

Enzymatic manipulation of DNA 

Digestion of DNA with restriction endonucleases  

For the sequence-specific cleavage of DNA molecules samples were incubated with 

restriction endonucleases in appropriate reaction conditions. The amount of enzyme 

and DNA, buffer, temperature and duration of the reaction were adjusted according to 

the manufacturer’s instructions. The digested DNA fragments were subjected to 

agarose gel electrophoresis for analysis or purification. 

Dephosphorylation of linearized vector DNA  

Restriction of vector DNA with a single enzyme may lead to subsequent re-ligation. 

Therefore, 5’-termini of vector DNA were dephosphorylated using calf intestinal 

phosphatase. The dephosphorylation was incubated for one hour at 37 °C. The 

linearized, dephosphorylated vectors were subjected to agarose gel electrophoresis for 

purification. 



Material and Methods 46 

Ligation of DNA fragments  

For the ligation of linearized vectors with DNA-fragments the T4 DNA ligase was used. 

This enzyme catalyzes the formation of phosphodiester bonds between adjacent 3’-OH 

and 5’-phosphate ends in dsDNA. The ligation reaction was incubated overnight at 

16 °C. 

Component Volume 

Digested insert (PCR product) 10 µl 

Linearized vector 0.5 µl 

T4 DNA ligase 0.5 µl 

10 x T4 DNA ligase buffer 2 µl 

ddH2O ad 20 µl 

Agarose gel electrophoresis 

Double stranded DNA fragments can be separated according to their size on agarose 

gels. Agarose was added to 1 x TAE-buffer to obtain a final concentration between 

0.7 % (w/v) - 2.0 % (w/v). The agarose suspension was boiled in a microwave until it 

was completely solubilized. Prior to loading DNA samples were mixed with 20 % 

Orange G loading buffer. Additionally, a DNA molecular weight standard (PCR or 1 kb 

ladder) was loaded. For visualization of DNA by UV-light the running buffer contained 

0.075 % ethidium bromide in 1 x TAE buffer. The gel was run for 0.5-1 h with 120 V. 

DNA fragments were visualized under UV illumination (312 nm) in a Gel 

Documentation system (BioRad).  
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Extraction of DNA from agarose gels 

PCR products and linearized vectors for ligation were isolated from agarose gels and 

purified using the QIAquick Gel extraction kit (Qiagen). Full length vectors were 

purified using the QIAEX II Gel extraction kit (Qiagen). The DNA fragment was excised 

from the agarose gel with a clean, sharp scalpel. The DNA was extracted from the gel 

slice according to the manufacture’s protocol. DNA was eluted by adding 30 to 50 μl 

sterile H2O to the center of the membrane followed by centrifugation for 1 min. DNA 

was stored at -20 ºC before further use. 

Transformation of competent bacteria 

To transform XL-1 Blue competent bacteria with plasmid DNA using the heat shock 

method, 1 µg of DNA was added to 50 µl of bacteria preparation (thawed on ice), 

mixed and incubated on ice for 20 min. After a heat shock (42 °C, 2 min), the bacteria 

were cooled on ice for 5 min. 

Then 200 µl of LB++ were added and the bacterial suspension was incubated for 30 

min at 37°C with shaking at 800 rpm. Thereafter, 100 μl of the transformation mixture 

was plated on LB agar plates containing suitable antibiotics. Plates were incubated up-

side down at 37°C overnight to allow growth of transformants and isolate single 

colonies.  

Cultivation and storage of bacteria 

Single colonies were picked from the plates and cultured in small scale (mini 1 ml) or 

large scale (50 ml) at 37°C on a rotary shaker. Therefore, LB-medium, supplemented 

with either ampicillin (100 μg/ml) or kanamycin (30 μg/ml), was inoculated with cells 

of a single colony of transformed bacteria. For the long term strain storage 1-2 ml of a 

freshly saturated bacterial culture were centrifuged at 3000 g for 5 min. The 

supernatant was removed and the bacteria were resuspended in ¼ volume of 
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LB/ampicillin. To generate a glycerol stock ¼ volume of 87 % glycerol was added and 

the cell suspension was mixed. The mixture was stored at -80°C.  

Plasmid preparation on analytical scale (Miniprep) 

Bacteria were harvested by centrifugation (30 sec, 14,000 rpm). The bacteria pellet 

was resuspended in 200 µl Flexi I (5 min, shaking). After lysis by addition of an equal 

amount of Flexi II and incubation for 5 min, the preparation was neutralized with 

200 µl Flexi III, and chilled on ice for 5 min. The precipitate was removed by 

centrifugation for 10 min at 14000 rpm and the supernatant was transferred to a new 

reaction tube, which contained 400 μl of isopropanol. The precipitated DNA was 

pelleted by centrifugation (14,000 rpm, 4 °C, 10 min), dried at room temperature and 

solubilized in 50 µl of H2O. To validate ligation of the correct insert, a control digest of 

1 μg DNA was carried out using the appropriate restriction enzymes and subjected to 

agarose gel electrophoresis. 

Plasmid preparation on preparative scale (Midiprep) 

Large scale plasmid preparations were carried out using the Nucleobond PC 100 kit or 

the Nucleobond Xtra Midi kit (Macherey-Nagel) as described by the manufacturer’s 

protocol. DNA concentrations were determined using the Nanodrop 1000 and DNAs 

were stored at -20 °C. Plasmid DNA sequencing was carried out by GATC biotech. 

Requested concentrations are 30-100 ng/µl plasmid DNA and 10 pmol/µl sequencing 

primer, both in 20 μl volume. Software of DNAMAN 6.0 and Chromas 1.45 was applied 

to analyze acquired sequences. 
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RNA isolation and reverse transcription (RT) PCR 

 RNA from mammalian cells was isolated using the RNeasy Mini Kit (QIAGEN) according 

to the manufacturer’s instructions. RNA concentration was determined on a Nanodrop 

1000 (Peqlab), and RNAs were stored at -86 °C. Purified RNA was treated with DNaseI 

(Fermentas) for 45 min at 37 °C according to the supplier’s protocol, to remove 

contamination with genomic DNA. Reverse transcription reactions were set up using 

Transcriptor Reverse Transcriptase (Roche) and Oligo-dT primers (Invitrogen). For RT 

PCR the following mix was prepared: 

Component Amount/Volume 

RNA 1 µg 

Oligo-dT (100 ng/µl) 0.5 µl 

ddH2O ad 7.1 µl 

 

The mix was heated to 65°C for 10 min and subsequently chilled on ice for 5 min 

before adding: 

Component Amount/Volume 

RT-Buffer 2 µl 

SUPERase-In 0.25 µl 

dNTP mix (25 µM per NTP)  0.4 µl 

 

The final RT reaction was heated for 30 min to 55°C, followed by 85°C for 5 min. The 

cDNA was stored at -20°C. For DNA-visualization, agarose gel electrophoresis was 

carried out. For quantitative analyses of a certain gene, qRT-PCR was undertaken. 
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Quantitative real-time RT-PCR 

For quantitative analyses of cellular mRNA levels after transfection or infection, the 

total RNA was isolated 24 h p.t./p.i. and reverse transcribed to single strand cDNA. 

Samples were diluted 1:5 and as reference a standard curve was generated by a 10-

fold dilution series of one cDNA sample (5 dilutions 1:1, 1:10, 1:100, 1:1,000, 

1:10,000). The dilutions were set to relative values for quantification of the samples. A 

master mix was prepared containing specific primers and SYBR Green, a cyanine dye 

which preferentially binds to newly transcribed dsDNA. To normalize the results, the 

same samples were subjected to qRT-PCR with primers for a (steady) housekeeping 

gene. The standards, the cDNA 1:5, and a no template sample (negative control) were 

distributed to LightCycler capillaries and placed into a rotor. 

For qRT-PCR a 20 µl PCR-mix was prepared: 

Component Amount/Volume 

cDNA 1 µl 

Primer 1 1 µl 

Primer 2 1 µl 

SYBR Green Master Mix 10 µl 

ddH20 ad 20 µl 

 

The qRT-PCR-program was comprised of the following steps: 

Temperature Time Cycles 

95°C 15 s 1 

94°C 15 s 

55 Annealing T 20 s 

72°C 10 s 

 

The melting curve was generated using following conditions: 
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Temperature Time 

95°C 10 s 

40°C 20 s 

to 95°C 0.1 °C/s 

40°C 30 s 

 

The LightCycler software 4.0 was used to obtain a relative quantification, and values of 

single samples were calculated from the standard curve. Finally, target gene mRNA 

values were normalized against GAPDH. All qRT-PCR assays were carried out in 

duplicates (standard deviations depicted as error bars). For Western blot analysis, 

additional wells were transfected with the same mixture used for transfection of cells 

later subjected to real-time PCR analysis. These cells were lysed directly in SDS sample 

buffer. 

2.2.2 Cell biological methods 

Cell culture 

Cells were grown in cell culture flasks (T25, T75, T175) with Dulbecco’s Modified Eagle 

Medium (DMEM) supplemented with 10 % (v/v) Fetal Calf Serum (FCS), 2 mM L-

Glutamine, 40 U/ml penicillin and 40 µg/ml streptomycin. All media and 

supplementary products were purchased from Gibco. In the case of 293-3-46 cells and 

Vero-hSLAM cells 2 mg/ml G418 (Calbiochem) was added to the medium on alternate 

passages. All used cell lines were cultured at 37 °C in an atmosphere with a relative 

humidity of 90 % and a CO2 content of 5 %. Twice a week, cells were suspended by 

trypsinization and split in ratio 1/6 to 1/10 into fresh cell culture flaks. 
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Thawing and freezing of eukaryotic cells 

Cells were harvested and resuspended in freezing medium containing 92 % (v/v) 

DMEM 3+ and 8 % (v/v) DMSO. 1 ml cell suspension was transferred into a cryo-tube 

and immediately stored at -80 °C (liquid nitrogen (-160 °C) for long term storage). Cells 

were thawed rapidly at 37 °C and immediately transferred into 10 ml culture medium 

to dilute the DMSO. Afterwards cells were centrifuged, resuspended with fresh culture 

medium and transferred to a tissue culture dish.  

Transfection 

One day prior transfection cells were seeded such that they would be at 50 - 60 % 

confluence at the time of transfection. Cells were transfected with appropriate 

transfection reagents. For transfection of less than two plasmids, polyethyleneimine 

(PEI) solution (1 mg/ml) was used. PEI was pre-incubated in DMEM w/o additives for 5 

min, subsequently mixed with the DNA (2.5 µl PEI/µg DNA) for 20 min and added to 

the cells. For transfection of more than two plasmids, Lipofectamine2000 (2.5 µl 

Lipofectamine/µg DNA) was used. It was pre-incubated with DMEM w/o additives for 5 

min. Plasmids DNA was diluted in DMEM w/o additives and combined with diluted 

Lipofectamine/DMEM mix. Following incubation of 20 min, the solution was added to 

the cells. For virus rescue, 293-3-46 cells were transfected with calcium phosphate 

using the ProFection Mammalian Transfection System according to the 

manufacture’s protocol. 
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2.2.3 Biochemical and protein biochemical methods  

SDS polyacrylamide gel electrophoresis (SDS-PAGE)  

For analysis of endogenous protein expression or protein overexpression after 

transfection or infection, cells were lysed with an appropriate amount of SDS- 

containing protein lysis buffer. Subsequently, lysates were boiled (5 min, 95 °C) to 

denature the proteins. SDS surrounds the protein with a negative charge and the ß-

mercaptoethanol prevents the reformation of disulfide bonds. The analytical 

separation of proteins was accomplished by discontinuous SDS-PAGE. Migration of the 

SDS-protein complexes through polyacrylamide gels in an electric field largely depends 

on their molecular mass. For electrophoresis 10 % polyacrylamide separating gels and 

4 % polyacrylamide stacking gels were prepared. Proteins were electrophoretically 

separated at a constant voltage of 40 V overnight. To estimate apparent molecular 

weights of analyzed proteins an appropriate molecular weight marker was loaded next 

to the denatured proteins onto the gels. Jagow anode and cathode buffer were used as 

running buffers (see appendix for gels and buffers). Subsequent to SDS-PAGE, the 

polyacrylamide gel was subjected to Western Blotting.  

Western blot analysis and immunodetection  

For immunoblot analysis, proteins separated by SDS-PAGE were electrophoretically 

transferred onto a PVDF membrane using a semi-dry blotting device (Peqlab). 

Therefore the stacking gel was removed and the separating gel was rinsed by 

submerging it briefly in semi dry buffer for 10 min. PVDF membranes were activated in 

100% methanol, and rinsed in semi dry buffer. The gel was then placed face-to-face 

with the membrane, sandwiched by Whatman paper (all soaked in semi-dry buffer) 

and electroblotted for 2 h at 400 mA/gel. After electroblotting the transferred proteins 

are bound to the membrane providing access for the detection by specific antibodies. 

To avoid unspecific binding the membrane was incubated in blocking solution (5 % 
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(w/v) non-fat dried milk in PBS at room temperature for 1 h or at 4 °C overnight on a 

shaker. The membrane was briefly washed three times with PBS-T. For specific 

detection of proteins the membrane was incubated with primary antibody solution for 

at least 1 h on a shaker. Alternatively, the membrane was incubated at 4°C overnight. 

After washing three times with PBS-T the membrane was incubated with an HRP-

conjugated α-immunoglobulin secondary antibody for 2 h on a shaker. Finally, the 

membrane was washed three times with PBS-T for 10 min. For developing the 

Western-Blot, the detection kit ECL reagent (PerkinElmer Life Sciences) was used 

according to the manufactor’s protocol. Membranes were directly subjected to Vilber 

Lourmat Fusion FX7 to visualize protein bands due to Chemiluminescence. 

Immunoprecipitation (IP)  

In order to identify protein interaction partners, Co-IP was applied. HEK-293T cells 

were seeded in a 6 cm dish and transfected with cDNAs coding for potential 

interaction partners. One day after transfection the cells were detached from the dish 

by 1 ml PBS + 5 mM EDTA. The cell suspension was centrifuged (5 min, 4 °C, 2,500 rpm) 

and the pellet was lysed (1 h, 4 °C) with 500 µl Co-IP buffer containing a protease 

inhibitor. Afterwards the lysates were cleared (10 min, 4 °C, 14,000 rpm) and 

transferred to a new tube. 50 µl of the supernatant was mixed with 50 µl protein lysis 

buffer as a control (input) for controlling the amount of total protein expression (10 

%). For precipitation of proteins the remaining supernatant (90 %) was incubated with 

a specific matrix (Flag, HA, or Sepharose A). 

Incubation with Flag-matrix and precipitation 

The remaining 450 µl of the cleared lysates were incubated with 100 μl anti-Flag M2-

Agarose at 4°C on a rotator overnight. This matrix is composed of agarose beads that 

are covalently linked to anti-Flag-antibody, thus capturing Flag-tagged proteins. In case 

the Flag-tagged protein interacts with another protein in the cell lysate, the whole 

complex stays captured to the matrix. The matrix was washed three times with 500 µl 

Co-IP buffer (10 min, 4 °C and subsequent centrifugation 2 min, 4 °C, 14,000 rpm) to 

remove unspecifically adsorbed proteins and subsequently heated in 100 µl protein 
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lysis buffer at 95°C for 5 min. Purified proteins were detected by SDS-PAGE and 

Western blotting.  

Incubation with Sepharose A-matrix and precipitation 

Besides using the Flag-matrix it is possible to precipitate proteins with Protein A-

Sepharose. Protein A, which is covalently conjugated to sepharose, specifically binds to 

the Ig-part of antibodies. It was used for the immunoprecipitation of Ig-tagged 

proteins. For preparation of Sepharose A, it was washed twice with buffer A (1.5 g 

Sepharose A/50 ml buffer) (30 min, 4 °C and centrifugation 2 min, 4 °C, 2,000 rpm) on a 

roller mixer. After a further centrifugation step, buffer A was removed and the beads 

incubated with 50 ml of buffer B (30 min, 4 °C). Afterwards, beads were centrifuged (2 

min, 4 °C, 3,500 rpm), reconstituted in 7.5 ml buffer B and aliquots of 1 ml stored at 4 

°C. Prior usage, the beads were washed three times with 500 µl Co-IP buffer. For 

precipitation of proteins, the cleared cell lysates (90 %) were incubated with 100 µl 

SepharoseA-matrix (o/n, 4 °C) and washed three times with 500 µl Co-IP buffer (10 

min, 4 °C and subsequent centrifugation 2 min, 4 °C, 14,000 rpm). 100 µl protein lysis 

buffer was added to the matrix. Purified proteins were detected by SDS-PAGE and 

Western blotting. 

Incubation with HA matrix and precipitation 

The cleared cell lysates containing proteins with an HA-tag were purified using 50 µl of 

an anti-HA affinity matrix, which consists of a rat monoclonal antibody against the HA-

tag coupled to agarose beads. After overnight incubation the beads were washed as 

described before and subsequently 100µl protein lysis buffer were added to remove 

the proteins from the beads. Afterwards, the lysis buffer was subjected to SDS-PAGE 

and Western Blotting. 

Immunofluorescence microscopy 

HEp2 cells were seeded on coverslips in 24-wells. After 24 h cells were transfected 

with 500 ng of plasmids using Lipofectamine 2000 transfection reagent, incubated for 

additional 24 h and then treated with 10 ng/ml TNFα. Cells were fixed after 30 min in 

3% paraformaldehyde for 20 min at room temperature and were permeabilized in 
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0.5% Triton X-100 in phosphate-buffered saline (PBS). After blocking with 2,5% milk in 

0,1% Triton X-100/PBS, fixed cells were incubated with primary antibodies, α-p65 

(rabbit; sc-109; Santa Cruz) diluted 1:50 and α-flag (mouse; Sigma) diluted 1:200 in 

0,1% Triton X-100/PBS for 1 h at 4°C, followed by incubation with fluorescence-labeled 

secondary antibodies (goat α-rabbit Alexa Fluor 488 and α-mouse 

tetramethylrhodamine, both from Molecular Probes) at a dilution of 1:200 in 0,1% 

Triton X-100/PBS for 1 h at 4°C. Nuclear chromatin was stained by adding TO-PRO-3-

iodide (Molecular Probes, 1:1000) to the secondary antibodies. Confocal laser scanning 

microscopy was performed with a Zeiss LSM510 Meta laser system using a Zeiss 

Axiovert 200 microscope. Excitation of Alexa Fluor 488, tetramethylrhodamine, and 

TO-PRO-3-iodide occurred at wavelengths of 488 nm, 543 nm, and 633 nm, 

respectively.  

Luciferase assay 

To examine NF-κB activity, the dual luciferase reporter system was applied. Therefore 

HEK-293T cells were seeded into 24-well plates one day prior to transfection. A 

plasmid for NF-κB-dependent firefly luciferase p55A2-luc (100 ng), a vector for CMV 

promoter controlled Renilla luciferase pRL-CMV (10 ng) and the indicated amounts of 

expression vectors were transfected using Lipofectamine 2000 transfection reagent 

(Invitrogen). The total amount of DNA was kept constant by supplementation with 

pCR3. In case of stimulation cells were treated with 10ng/ml TNFα. Cells were 

harvested in 200 µl passive lysis buffer (Promega) at the indicated time points and 

luciferase activities were determined from 20 µl of the lysates using Dual Luciferase 

Reporter Assay System (Promega) and the Berthold Lumat LB 9501 luminometer 

according to the manufacturer’s instruction. Firefly luciferase activities were 

normalized to Renilla luciferase activities, and mean values of mock-treated cells were 

set to 1. The mean and the standard deviation were calculated out of two 

measurements. For Western blotting, reporter assay lysates were mixed 1:1 with 

protein lysis buffer. 

  

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=manufacturer&trestr=0x1001
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2.2.4 Virological methods 

Generation of recombinant MV from cDNA (virus rescue) 

In order to reconstitute infectious virus from cloned cDNA, 293-3-46 cells were 

detached with Versene/Trypsin-EDTA (5:1) and seeded in 6-well plates. 10 µg of the 

plasmid coding for the full length MV antigenome together with the helper plasmid 

pEMC-MV L (20 ng) were transfected using the CaPO4 ProFection Mammalian 

Transfection System from Promega according to the manufacturer’s instructions. After 

incubation for 6 h under standard conditions the transfected cells were washed twice 

with DMEM 3+ and grown in 2 ml DMEM 3+ at 37 °C over night. On the next morning 

the cells were heat shocked for 3 h at 42 °C. Afterwards the cells were incubated under 

standard conditions for 24 h. In the meantime Vero-hSLAM cells were seeded in 

100 mm dishes. On the next day transfected 293-3-46 cells were taken up together 

with the medium, dropped onto the Vero-hSLAM cells and incubated at 37 °C until 

syncytia are formed. Each syncytium is picked under sterile conditions, transferred to 

Vero-hSLAM cells seeded on a 6-well plate and incubated at 32 °C. As soon as the all 

cells are infected the 6-well plate is frozen at -20 °C. After thawing, the cell debris was 

removed by low speed centrifugation (1800 rpm, 4 °C, 10 min) and the supernatants 

were aliquoted and frozen to -80 °C. Afterwards supernatants of positive rescues were 

titrated and used for stock production. 
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Virus titration 

For virus titration, Vero cells were seeded into 96-well plates. Virus stock was thawed 

and a 10-fold dilution series was prepared (7 x 450 μl DMEM + 50 μl virus/virus 

dilution). 2 hours after seeding of the cells they were infected with 100 μl of the virus 

dilution (in duplicates). 48 hours p.i., cells were fixed with acetone 80 % and stained 

with an antibody coupled to FITC against the MV N protein. Foci were counted from 

each well using a fluorescence microscope, and foci forming units per ml (ffu/ml) were 

calculated from these results.  

Generation of virus stocks 

For virus stock production, 5x106 Vero cells were infected in suspension with an MOI 

0.01. Cells were resuspended every 10 min. 1 h p.i., infected cells were seeded in T75 

flask, grown at 32 °C and 72 h post infection (p.i.) flasks were frozen at -20 °C. After 

thawing, cell debris was removed by low speed centrifugation (1,800 rpm, 4 °C, 5 min) 

and aliquots of the cleared supernatant were stored at -80 °C. To determine the 

infectious titers of the virus stocks, supernatants were titrated. 

Virus growth curve 

To analyze growth kinetics of distinct viruses, growth curves were prepared. Therefore, 

Vero or A549 cells were infected in suspension at an MOI 0.01. Every 10 min the 

infected cells were resuspended. 1 h p.i., infected cells were washed once with DMEM 

3+ and seeded into 6-well plates (1 well/virus/timepoint). 6 h p.i. the first 6-well plate 

was frozen. At 24 h, 48 h, 72 h, and 96 h p.i., further 6-well plates were frozen. 

Afterward, 6-well plates are thawed again, centrifuged at 1800 rpm for 10 min at 4 °C 

to remove cell debris and supernatants were titrated to determine the infectious titers 

at the given time points. 
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3 Results 

3.1 Measles virus P gene products suppress NF-κB activation 

upon TNFR stimulation  

Proteins expressed from the P gene of MV (P, V, and C) were shown to counteract 

multiple host innate immune pathways, including IRF3/7 and JAK/STAT signal 

transduction, whereas interference of the proteins with NF-κB signaling is only poorly 

investigated. Therefore, I wanted to determine whether they also influence NF-κB 

activity.  

The canonical NF-κB signaling pathway can be activated by various stimuli including 

tumor necrosis factor α (TNFα), a cytokine regulating immune functions as well as 

inflammatory responses (Ghosh and Karin, 2002). 

In a first step, the effect of MV P gene derived proteins on NF-κB activation in response 

to TNFα stimulation was investigated. To analyze NF-κB activity I used an NF-κB-

dependent dual luciferase assay based on two independent vectors. The plasmid for 

NF-κB-dependent expression (p55A2-luc) contains a firefly luciferase reporter gene 

under control of a trimeric repeat of the NF-κB-binding motif (PRDII) in the context of 

the IFNβ-promoter (Yoneyama et al., 1996). The plasmid pRL-CMV is composed of a 

renilla gene driven by a CMV promoter and used for normalization of transfection 

efficiency. 

The reporter plasmids were cotransfected in HEK-293T cells together with increasing 

amounts of expression vectors for MV P, V or C of the Schwarz strain. The start codon 

of the C protein was changed by site directed silent mutagenesis to prevent expression 

of MV C, in case of all P or V expressing plasmids, as described previously (Pfaller and 

Conzelmann, 2008). The P protein of rabies virus (RV-P), which suppresses activation of 

IRF-3 and STAT1/STAT2 nuclear import but has no influence on NF-κB signaling, was 

used as a negative control (Brzózka et al., 2005; Brzózka et al., 2006). Cells were 
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stimulated with 10 ng/ml TNFα 18 h post transfection and 6 h prior to cell lysis and 

NF-κB dependent luciferase activity was determined.  

 

Figure 3-1 Measles virus P gene products suppress NF-κB activation upon TNFR stimulation 

Increasing amounts (200 ng, 400 ng, 600 ng) of expression plasmids encoding for MV P, V, C, RV P or empty vector 
(EV) were transfected into HEK-293T cells with the NF-κB dependent reporter plasmid p55A2-luc and pRL-CMV for 
normalization. After 18 h cells were stimulated with 10 ng/ml recombinant human TNFα. NF-κB driven luciferase 
activity was determined 6 h post stimulation by a dual luciferase assay. The bars represent the means and the error 
bars the standard deviation of two independent experiments. Depicted is a representative experiment out of four 
repeats. Western Blot of cell lysates were probed with α-MV P/V, α-MV C or α-RV P antibodies by Western Blotting 
to determine the expression levels. Adapted from (Schuhmann et al., 2011). 

All three P gene products MV P, V and C had a considerable and dose-dependent 

inhibitory effect on TNFα-mediated NF-κB activation (Fig. 3-1). The V protein showed 

the strongest suppression, while the inhibitory capacity of MV P and C was less 

prominent. In contrast, RV P exhibited no NF-κB suppressive potential. 

These results indicate that MV P, V and C interfere with TNFα mediated NF-κB 

activation, but to a different extent.  
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3.2 NF-κB signaling via PRRs can be suppressed by MV P gene 

products 

Triggering of PRRs, like RLRs or TLRs also lead to activation of NF-κB. To test the ability 

of MV P gene products to interfere with RIG-I mediated NF-κB activation the C-

terminal deletion mutant ΔRIG-I (aa 1-284) that was shown to constitutively activate 

NF-κB (Yoneyama et al., 2004) was used. Dual luciferase reporter gene assays were 

performed in HEK-293T cells expressing ΔRIG-I as well as increasing amounts of MV P, 

V, C or RV P as control. Expression of the ΔRIG-I mutant alone led to more than 40 fold 

induction of NF-κB activity (Fig. 3-2A).  

 

Figure 3-2 NF-κB signaling via PRRs can be suppressed by MV P gene products 

Increasing amounts ( 200 ng, 400 ng , 600 ng) of vectors encoding for the indicated MV proteins were transfected 
into HEK-293T cells with either 200 ng of expression plasmids for ΔRIG-I (A), IPS-1(B), MyD88 (C), or TRIF (D) and the 
NF-κB dependent reporter system (100 ng p55A2/ 10 ng pRL-CMV). After 24 h cells were lysed and NF-κB activity 
was determined by a dual luciferase assay. The depicted values are means of two independent experiments and 
their standard deviation is displayed by error bars. Depicted are representative experiments out of three repeats. 
Lower panel: Expression of the viral proteins was assessed by Western blotting. Adapted from (Schuhmann et al., 
2011). 
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In the presence of MV V at the highest dose, activity was suppressed to nearly basal 

level. MV P had a less pronounced inhibitory effect even though it was expressed at 

much higher levels, as indicated by Western blotting using an antibody recognizing 

both MV P and V (Fig 3.2A, bottom panel). The MV C protein had intermediate 

suppressive capacity, while RV P had no significant influence on NF-κB activation. 

Signaling of the PRRs RIG-I and MDA5 is transmitted via the adaptor molecule IPS-1, 

while signal transduction of TLRs involves the adaptors MyD88 (TLR1, -2, -4, -5, -6, -7, -

8, -9) or TRIF (TLR3) (Kawai and Akira, 2009). To address the question whether MV P, V, 

and C are able to generally counteract NF-κB activation by RLRs and TLRs dual 

luciferase reporter gene assays were performed using overexpression of IPS-

1(Fig. 3-2B), MyD88 (Fig. 3-2C), or TRIF (Fig. 3-2D) for stimulation of NF-κB activity. 

Analogous with the previous experiments all MV P gene derived proteins were able to 

suppress the adaptor induced NF-κB activation, whereas expression of RV P had no 

effect (Fig. 3-2A). The level of reduction of NF-κB activity achieved by MV P and V 

appeared to be similar in these experiments; however, Western blotting revealed 

lower expression levels of MV V confirming the previous finding that the V protein is 

the most potent inhibitor of canonical NF-κB activity among the MV P gene products.  

3.3 MV V inhibits NF-κB signaling downstream of the IKK 

complex 

The previous experiments revealed that the MV P gene products suppress multiple 

pathways that lead to activation of the canonical NF-κB signaling cascade, including 

TNFR-, RLR- and TLR-signaling. All these canonical NF-κB signaling pathways converge 

on the IKK complex that is composed of the kinases IKKα, IKKβ and IKKγ (NEMO). In 

order to test whether the inhibition by MV P, V or C occurs at or downstream of these 

kinases, NF-κB-dependent luciferase expression was activated by overexpressing IKKα, 

IKKβ and IKKγ in HEK-293T cells. As positive control, the Ig-tagged NEMO-binding 

domain (NBD) was used (Ig-NBD). The NBD peptide binds to IKKγ and inhibits the 
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formation of the IKK complex which is essential for canonical NF-κB activation (May et 

al., 2000). Expression of Ig-NBD resulted in a dose dependent inhibition of IKK 

complex-induced activity, while the Ig-tag alone as well as RV P did not interfere with 

the NF-κB activation (Fig. 3-3A). The presence of MV V led to a dose dependent and 

effective reduction of the IKK complex-induced NF-κB activation comparable to the 

inhibition achieved by expression of Ig-NBD. Expression of MV P and MV C had less 

pronounced effects on NF-κB activation by the IKK complex.  

 

Figure 3-3 MV V inhibits NF-κB signaling downstream of the IKK complex 

(A) HEK-293T cells were transfected with expression plasmids encoding for IKKα, IKKβ and IKKγ (100 ng each) 
together with increasing amounts (200 ng, 400 ng, 600 ng) of vectors coding for the indicated proteins or empty 
vector and the NF-κB dependent reporter system (100 ng p55A2/ 10 ng pRL-CMV). After 12 h the cells were lysed 
and the luciferase activity was measured by dual luciferase assay. The bars represent the means and the error bars 
the standard deviation of two independent experiments. A representative experiment out of three repeats is 
shown. (B) Plasmids encoding for p65 and p50 (150 ng each) and increasing amounts (300 ng, 600 ng) of vectors 
encoding the indicated proteins were transfected into HEK-293T cells with the dual luciferase reporter system. Cells 
were lysed 12 h after transfection followed by determination of normalized NF-κB dependent luciferase activity. The 
depicted values are means of two independent experiments and their standard deviation is displayed by error bars. 
Shown is a representative experiment out of three repeats. Adapted from (Schuhmann et al., 2011). 
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To further spot the step where MV V inhibits canonical NF-κB activation, we induced 

NF-κB dependent luciferase activity by coexpression of the NF-κB subunits p65 and p50 

which assemble to the main heterodimer of NF-κB. Expression of MV V reduced the 

NF-κB activity induced by p65/p50 significantly and dose-dependently, whereas MV P 

and C showed only minor inhibitory potential (Fig. 3-3B). As expected, presence of Ig-

NBD had no effect on p65/p50 mediated NF-κB activity, as this inhibitor acts upstream 

of the transcription factors. These experiments indicate that the V protein of MV 

inhibits canonical NF-κB signaling downstream of the IKK complex.  

3.4 MV V specifically binds the NF-κB subunit p65 

The NF-κB heterodimer p65/p50 is bound to its inhibitor IκBα in unstimulated cells. In 

order to elucidate the molecular mechanism of MV P gene products to suppress 

canonical NF-κB activation, we assessed the potential of the viral proteins to interact 

with NF-κB complex members p65, p50 and IκBα in co-immunoprecipitation (CoIP) 

experiments. Extracts from HEK-293T cells coexpressing Ig-tagged MV P, V, or C 

proteins and p65 from transfected plasmids were purified by protein A-conjugated 

sepharose beads. To exclude unspecific binding of p65 to the Ig-tag or the beads the 

plasmid expressing the Ig-tag alone was coexpressed with p65 as control. Precipitates 

were subjected to SDS-PAGE and analyzed by Western blotting using antibodies 

against p65 or human IgG. Immunoprecipitation of the Ig-tagged proteins was efficient 

(Fig. 3-4A; lower right panel). In fact, the NF-κB subunit p65 was specifically co-

precipitated with Ig-MV V, whereas no interaction of p65 with the Ig-tagged P or C 

constructs was detectable (Fig. 3-4A; upper right panel).  

In further experiments, binding of p50 (NF-κB1) to flag-tagged MV proteins was 

analyzed. Flag-p65 was included as positive control. Cell extracts were purified with 

α-flag M2 affinity gel, precipitates were subjected to SDS-PAGE and analyzed by 

immunoblotting using antibodies specific for p50 and the flag epitope. While flag-p65 

efficiently co-precipitated p50, no interactions of the p50 NF-κB subunit with any of 

the flag-MV proteins could be detected (Fig. 3-4B).  
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Figure 3-4 MV V specifically binds the NF-κB subunit p65 

(A) HEK-293T cells were used to express p65 in combination with the indicated Ig-tagged proteins or the Ig-tag (Ig) 
itself (3 µg each). After 24 h cells were lysed under native conditions and Ig-tagged proteins were pulled down using 
protein A conjugated sepharose beads. Binding of p65 to measles proteins was visualized by Western blotting. 
Depicted is a representative experiment out of four repeats. (B) p50 was coexpressed in HEK-293T cells with the 
indicated flag proteins or empty vector (EV) (3 µg each). Cells were lysed 24 h post transfection and flag-tagged 
measles proteins were immunoprecipitated using anti-flag M2 affinity gel. Interactions of p50 and flag-proteins 
were analyzed by Western blotting. A representative experiment out of three is shown. (C) HEK-293T cells were 
cotransfected with vectors encoding the indicated flag-tagged constructs or empty vector (EV). CoIP assay was 
performed as described above and the proteins were stained with the indicated antibodies. A representative 
experiment out of three is shown. Adapted from (Schuhmann et al., 2011). 

To test whether any of the MV P gene products can bind to IκBα, flag tagged MV P, V, 

and C were expressed in HEK-293T cells. Flag-p65 and flag-p50 were included as 

positive controls. Cell extracts were purified with α-flag M2 affinity gel and precipitates 

were analyzed by Western blotting using antibodies against the flag epitope or IκBα. 

None of the MV P gene products were able to co-purify endogenous IκBα, whereas 

flag-p65 as well as flag-p50 showed efficient pull down of IκBα (Fig. 3-4C). 

Taken together these results indicate that only MV V, but not MV P and C, binds to the 

NF-κB subunit p65. IκBα and p50, which are associated to p65 in non-stimulated cells, 

were found not to interact with any of the P gene products.  
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3.5 RHD of p65 is sufficient for interaction with MV V 

All NF-κB subunits comprise an N-terminal RHD, which is responsible for dimerization, 

DNA-binding, and nuclear import. To determine if MV V binds to the RHD of p65, a 

fragment of p65 spanning from aa 1-309 (p65 RHD) was constructed and Co-IP 

experiments with flag-MV P, V, C were performed in HEK-293T cells. α-flag M2 affinity 

gel was used to purify the extracts. Immunoblotting of the precipitates with an 

antibody specific for the N-terminus of p65 revealed that the p65 RHD was efficiently 

pulled down by flag-MV V (Fig. 3-5A). 

 

Figure 3-5 RHD of p65 is sufficient for interaction with MV V 

(A) HEK-293T cells were cotransfected with vectors encoding for the indicated flag-tagged constructs or empty 
vector (EV) and the RHD of p65 (aa 1-309). CoIP assays were performed as described above and RHD-p65 was 
stained using α-p65 (Cell Signaling; 3035). A representative experiment out of three is shown. (B) MV V was 
coexpressed with the indicated flag tagged proteins or empty vector (EV) (3µg each) in HEK-293T cells. CoIP 
experiments were performed as described above and MV V was stained using α-MV VCTD. Depicted is a 
representative experiment out of three repeats. Adapted from (Schuhmann et al., 2011). 

Notably, RHD p65 also showed some affinity to MV P, though considerably weaker 

than to MV V. A weak affinity of the MV P protein to bind p65 was also observed 

occasionally in pull down experiments with flag tagged p65 and authentic, untagged 

MV proteins (data not shown). Taken together, we observed that MV V binds with a 

strong affinity to the RHD of p65, while a weak interaction of MV P with the RHD of 

p65 was suggested. To further verify the specificity of MV V to the RHD of p65 

interaction of flag-tagged p65, RHD p65, p50 and RHD p50 to MV V were assessed 

within one experiment. Therefore, I constructed the RHD of p50 spanning from aa 1-
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366 and the other constructs with a flag tag. CoIP experiments of the flag tagged 

proteins with authentic, untagged MV V confirmed specific binding of V to flag-p65 and 

flag-RHD p65, while no interaction of V and flag-p50 or flag-RHD p50 could be detected 

(Fig. 3-5B). These findings confirm the specificity of MV V to the RHD of p65. 

3.6 Binding of MV V to p65 is mediated via both N- and C-

terminal domains of the RHD of p65 

The RHD of p65 can be further divided into the N-terminal domain (NTD) responsible 

for DNA binding and the C-terminal domain (CTD) that mediates dimerization, nuclear 

translocation and IκB binding (Zheng et al., 2011). Figure 3-6A shows the PDB structure 

1IKN of the mouse p65/p50/IκBα complex (Huxford et al., 1998). The structure was 

displayed and colored using the PyMOL software (version 0.99rc6). The NTD of p65 is 

displayed in red and the CTD in blue. Associated with the CTD is p50 (light green) and 

IκBα (yellow). 

To define the interaction site of p65 with MV V more precisely, the flag-tagged NTD 

(aa1-180) and CTD (aa181-309) fragments of p65 were constructed (Fig. 3-6A). 

p65-RHD-flag (aa1-309) was used as positive control. CoIP experiments were 

performed expressing the flag-tagged p65 fragments and MV V in HEK-293T cells. MV 

V coprecipitated in small amounts with flag-p65-NTD and with a higher extent with a 

p65-CTD-flag (Fig. 3-6B). The amount of MV V copurified with the entire p65 RHD-flag 

was even higher. However, coexpression of flag-p65-NTD and p65-CTD-flag resulted in 

an increased level of co-purified MV V even though the amounts of transfected 

plasmids encoding for the two p65 fragments were adjusted to the transfected 

amount of single plasmids. These findings suggest that MV V binds to the NTD as well 

as to the CTD of p65-RHD and that this binding is stabilized when both domains are 

coexpressed.  
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Figure 3-6 Binding of MV V to p65 is mediated via both the N- and the C-terminal domain of the RHD of p65 

(A) Crystal structure of mouse p65 in complex with mouse p50 and human IκBα (1IKN.pdb) visualized and colored 
using PyMOL software. The NTD of the RHD of p65 (residues 19-180) is depicted in red, the CTD (residues 181-304) 
in blue. The yellow structure resembles the ankyrin repeats of IκBα (residues 67-302) and p50 (residues 245-363) is 
shown in light green. HEK-293T cells were used to coexpress MV V (B) or p50 (C) and flag-p65-NTD (aa1-180), p65-
CTD-flag (aa 181-309) or p65 RHD-flag (aa1-309). CoIP assays were performed using anti-flag M2 affinity gel. The 
purified proteins were stained with the indicated antibodies. A representative experiment out of three is shown.  

To ensure that the CTD of p65 is functional when expressed separately we had a look 

on its ability to bind to p50 and IκBα using CoIP experiments. Therefore the flag-tagged 

p65 fragments were coexpressed with p50 in HEK-293T cells. Immunoprecipitation of 

the flag-tagged constructs and subsequent immunoblotting revealed that p50 

coprecipitated with comparable affinity with p65-CTD-flag alone and with coexpressed 

flag-p65-NTD/p65-CTD-flag, as well as with the complete p65-RHD-flag (Fig. 3-6C right, 

upper panel). However, binding efficiency of IκBα to p65-CTD-flag and coexpressed 

flag-p65-NTD/p65-CTD-flag was reduced compared to p65-RHD-flag (Fig. 3-6C right, 

middle panel). This indicates that p65-CTD-flag is functional in terms of p50 but not of 

IκBα binding. Nevertheless, the finding that MV V interacts with both domains of p65-

RHD is yet valid, since coexpression of both domains enhances the binding affinity of 

MV V.  
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3.7 Binding of MV V to p65 does not compete with binding of 

p50 or IκBα to p65 

As MV V was shown to bind to p65, but not to p50 or IκBα this raises the question if 

the interaction of V and p65 affects the composition of the NF-κB complex 

(p65/p50/IκBα). To investigate this issue I performed Co-IP experiments with flag-p65, 

p50, IκBα and MV V. Flag-p65 was immunoprecipitated using α-flag M2 affinity gel and 

co-purification of p50 or endogenous IκBα was assessed in the presence or the 

absence of MV V. Flag-p65 was able to pull down equivalent levels of p50 (Fig. 3-7; first 

right panel) and IκBα (Fig. 3-7; second right panel) matter if MV V was present or not. 

The level of co-purified MV V was also equal irrespective whether p50 was expressed 

or not (Fig. 3-7; third right panel). This indicates that binding of p50, IκBα and MV V to 

p65 are independent of each other and that binding of MV V to p65 does not influence 

the composition of the NF-κB complex. 

 

Figure 3-7 Binding of MV V to p65 does not compete with binding of p50 or IκBα to p65 

HEK-293T cells were used to express flag-p65 in combination with p50 and V or only with one of those together 
with empty vector EV (2 µg each). After 24 h cells were lysed under native conditions and flag-tagged proteins were 
pulled down using anti-flag M2 affinity gel. Binding of p50 or IκBα to flag-p65 in the presence of MV V was visualized 
by Western blotting using the indicated antibodies. Depicted is a representative experiment out of three repeats. 
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3.8 MV V prevents nuclear translocation of p65 

The MV V protein was shown to exhibit a cytoplasmic distribution (Wardrop and 

Briedis, 1991). Together with the finding that it interacts with the RHD of p65, which 

comprises the NLS of p65, the question rises whether binding of V to p65 might 

interfere with trafficking of this NF-κB subunit. In order to address this hypothesis, 

HEp2 cells were transfected with a flag-MV V encoding plasmid, or empty vector to 

perform immunofluorescence (IF) experiments (done by Christian Pfaller).  The cells 

were stimulated with 10ng/ml TNFα 30 min prior to fixation, followed by 

immunostaining of p65 and flag-tagged MV V. The subcellular distribution of the 

proteins was assessed using a laser scanning confocal microscope. 

 

Figure 3-8 MV V prevents nuclear translocation of p65 

HEp2 cells were transfected with a vector for flag-MV V or empty vector (EV) (500 ng each). 24 h post 
transfection cells were either treated with 10 ng/ml TNFα for 30 min (+) or left untreated (-). Subsequently, cells 
were fixed and stained using rabbit α-p65, mouse anti-Flag-M2 primary antibodies, and anti-rabbit Alexa 488 or α-
mouse tetramethylrhodamine  secondary antibodies, respectively. Images were acquired by confocal laser scanning 
microscopy and show representative sections. Green: p65 (stained with specific antibody); red: flag-MV V (stained 
with α-FLAG® M2); blue: ToPro3 nuclear staining; open arrow: not flag-MV V expressing cell; closed arrow: flag-MV 
V expressing cell. Depicted is a representative experiment out of three repeats. Adapted from (Schuhmann et al., 
2011). 
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In unstimulated cells transfected with empty vector, p65 is located predominantly in 

the cytoplasm (Fig. 3-8; upper panel), however TNFα treatment resulted in almost 

complete translocation of p65 from the cytoplasm to the nucleus (Fig. 3-8; middle 

panel). In contrast, accumulation of p65 in the nucleus upon TNFα stimulation in cells 

expressing flag-MV V was severely impaired (Fig. 3-8; lower panel; closed arrows), 

while cells failing to express detectable flag-MV V showed a normal nuclear 

accumulation of p65 (Fig. 3-8; lower panel; open arrows). This demonstrates that the 

presence of MV V in cells prevents the nuclear accumulation of the NF-κB-subunit p65 

and thereby precludes its transcriptional activity. 

3.9 Nuclear translocation of p65 upon TNFα treatment in the 

presence of MV P and C 

Even though MV P and C do not bind to p65 they inhibit canonical NF-κB activation. To 

test if they somehow interfere with the nuclear translocation of p65, IF studies with 

flag-tagged MV P gene products were accomplished. Therefore HEp2 cells were 

transfected with flag-MV V as positive control or flag-MV P, C, or empty vector. 30 min 

prior to fixation the cells were treated with TNFα and the proteins were 

immunostained with antibodies against p65 or the flag-epitope. The NF-κB subunit p65 

is located in the cytoplasm in unstimulated cells (Fig. 3-9A), but translocates to the 

nucleus upon TNFα treatment (Fig. 3-9B) in cells transfected with empty vector. In cells 

expressing flag-tagged MV V the TNFα-stimulated nuclear translocation of p65 was 

blocked, and p65 was retained in the cytoplasm (Fig. 3-9C) as observed before 

(Fig. 3-8). Flag MV P expressing cells showed p65 in the nucleus as well as in the 

cytoplasm suggesting a potential inhibition of p65 nuclear accumulation (Fig. 3-9D). In 

contrast to MV P and V, MV C is located in the nucleus and cells expressing flag-MV C 

showed no retention of p65 in the cytoplasm (Fig. 3-9E). To determine nuclear 

translocation of p65 more precisely, the nuclear localization of p65 was quantified 

(Fig. 3-9F). It was discriminated between cells expressing the appropriate MV protein 

(red bars) and those that failed to express (gray bars). The quantification revealed that 

nuclear localization of p65 upon TNFα treatment was only seen in 25% of flag-MV V 

http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=appropriate&trestr=0x8004
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expressing cells, while 60% of cells expressing flag-MV P and nearly 80% of flag-MV C 

expressing cells showed p65 staining within the nucleus (Fig. 3-9F). In cells that failed 

to express MV proteins at least 80% show nuclear localization of p65 upon TNFα 

treatment. These findings suggest that MV P and V inhibit NF-κB activity upstream of 

the nuclear translocation of p65, whereas MV C probably acts in the nucleus. The 

difference in the degree of inhibition of MV P and V to inhibit p65 translocation was 

also reflected in the previous NF-κB-dependent reporter gene assays. 

 

Figure 3-9 Nuclear translocation of p65 upon TNFα treatment in the presence of MV P and C 

(A-E) Immunofluorescence in HEp-2 cells transfected with flag-tagged MV P, V, C or empty vector (EV) (500ng each). 
Cells were stimulated 24h p.t. by addition of 10 µl/well of TNFα (+) or not (-), and fixed 30 min later to perform 
immunofluorescence staining using rabbit α-p65, mouse anti-Flag-M2 primary antibodies, and anti-rabbit Alexa 488 
or α-mouse tetramethylrhodamine antibodies, respectively. Nuclei were stained with TO-PRO-3 iodide. Images 
were acquired by confocal laser scanning microscopy, and show representative sections. Flag staining is visualized in 
red, p65 staining in green, and TO-PRO-3 iodide staining in blue. (F) p65 nuclear translocation rate was quantified. 
Cells failed to express the transfected flag-construct were counted separately and termed non-expressing (gray 
bars). Cells which expressed the indicated flag-tagged measles protein were named expressing and are displayed as 
red bars. Values given are averages and standard-deviations of results from five independent images.  
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3.10  MV V does not directly bind to the NLS of p65 or interfere 

with importin α 5 binding to p65 

The nuclear import of p65 is mediated via members of the importin α family, namely 

importin α 3, 4, and 5 (Fagerlund et al., 2005; Fagerlund et al., 2008). To further clarify 

the underlying mechanism of MV V mediated inhibition of p65 nuclear translocation, 

the question whether MV V targets the NLS of p65 was assessed, and furthermore it 

was tested if MV V interferes with binding of importin α to p65.  

First of all the binding of p65 to importin α 3, 4, and 5 should be confirmed with our 

conditions. Therefore the HA-tagged importin α isoforms were expressed from 

transfected plasmids with flag-tagged p65 in HEK-293T cells. Extracts were purified 

using α-flag M2 affinity gel and precipitates were subjected to SDS-PAGE and analyzed 

by immunoblotting using antibodies specific for the HA- and the flag-epitope. As 

expected, all importin α subunits were copurified with flag-p65, however, importin α 5 

showed the strongest affinity (Fig. 3-10A).  

In order to check if MV V binds directly to the nuclear translocation signal (NLS) of p65 

two mutants of p65 were constructed. A deletion mutant (p65 1-300) lacking the NLS 

that is located at amino acid position 301 to 304, as well as a mutant with a mutated 

NLS (p65 NLS-) according to Fagerlund et al. (301AAA) (Fagerlund et al., 2005). Binding 

of flag-MV V to the mutants was assessed by CoIP experiments. As positive control full 

length p65 was included as well as the REL homology domain of p65 (p65 RHD), which 

comprises the NLS and spans aa 1 to 309. Immunoprecipitated flag-MV V displayed 

interaction with all p65 constructs even those lacking a functional NLS indicating that 

the binding of MV V to p65 is not directed to its NLS (Fig. 3-10B).  

Although MV V binds not directly to the NLS of p65, but to the RHD it might that MV V 

competes with importin α 5 for binding to p65. To test for competition in binding, the 

association of flag-p65 and HA-importin α 5 was challenged by the presence of MV V 

and vice versa in CoIP experiments against the flag-tag. Irrespective of the presence of 

MV V, HA-importin α 5 was bound to flag-p65. Furthermore, MV V co-precipitated with 
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Indeed, Ig-MV VCTD was sufficient for co-precipitation of p65 with a binding affinity 

comparable to that of full length Ig-MV V, while the other constructs did not reveal 

interaction with the NF-κB subunit (Fig. 3-11A). To clarify whether binding of the small 

VCTD is also sufficient for inhibition of NF-κB transcriptional activity, p65 and p50 were 

overexpressed in HEK-293T cells along with the Ig-tagged constructs and the reporter 

system. A similar and dose-dependent reduction of NF-κB-dependent luciferase 

expression confirmed that binding of VCTD is sufficient for inhibition (Fig. 3-11B). In 

contrast, expression of the C-terminal portion of the P protein had no considerable 

effect on p65/p50 mediated luciferase activity. In summary, the C-terminal domain of 

the V Protein is sufficient for p65 binding and inhibition of p65/p50 mediated NF-κB 

activity. 

3.12 Mutational analysis of MV V 

The CTD of MV V is a 68 aa long cysteine-rich domain (Fig. 3-12A, green marked). 

Seven cysteine residues form together with a histidine two zinc fingers that are named 

loop 1 and 2 (Fig. 3-12B) (Liston and Briedis, 1994). Homology modeling of the MV VCTD 

was accomplished using the crystal structure of PIV5 V (2B5L.pdb (Li et al., 2006)) 

(done by Johannes Söding, Gene Center). The resulting structure illustrates both zinc 

fingers that were colored using the PyMOL software. Loop 1 is displayed in orange, 

loop 2 in blue (Fig. 3-12C). 

In addition to binding to p65, the CTD of the V protein was shown to interact with a set 

of molecules important for the innate immune response, among them MDA5, STAT2 

and IRF7 (Goodbourn and Randall, 2009). In order to discriminate the different binding 

sites and functions located within the VCTD a subset of MV V mutants were generated 

and tested. It was already published that aa 233R and 235E are crucial for MDA5 

binding(Ramachandran and Horvath, 2010) and it was shown in our lab that a MV V 

mutant (MV VdIRF7) that has four amino acid exchanges to alanine in the loop2 region 

(259AAAA) failed to bind to IRF7 anymore (Pfaller, 2009). The MDA5 deficient mutants 

MV VdMDA5(1) (R233A) and MV VdMDA5(2) (E235A) were assessed together with MV VdIRF7 

and MV V for p65, IRF7 and MDA5 binding in CoIP experiments (Fig. 3-12D).  
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Figure 3-12 Mutational analysis of MV V 
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 (A) Amino acid sequence of the cyctein rich- C-terminal region of MV V (aa230- 299). The histidine and all cycteins 

residues are highlited by a blue box. (B) These residues coordinate two zinc ions building two zinc fingers.               

(C) Homology modeling of MVCTD was carried out with the crystal strucutre of PIV5 V as template and displayed 

with the PyMOL software. Loop1 is colored red, loop2 blue. Different MV V mutants were generated. The inserted 

mutations are displayed (A+B). (D + E) CoIP experiments with flag-p65, flag-IRF7, or flag-MDA5 and MV V mutants 

were performed as described above. Purified proteins were visualized with α-flag and α-MV VCTD antibodies. NF-κB 

dependent luciferase assays were performed as described above with ΔRIG-I (F) or MDA5 (G) as stimulus and 

different MV V mutants. (H) IFNβ promoter activity was measured in dual luciferase assays transfecting HEK-293T 

cells with p125-luc (100 ng) and pRL-CMV (10 ng) together with plasmids encoding for MDA5 and MV V mutants. 

IFNβ-promoter driven luciferase activity was determined 24h post transfection. The depicted values are means of 

two independent experiments and their standard deviation is displayed by error bars. Depicted is a representative 

experiment out of two repeats. 

 

Both MDA5 deficient mutants showed a reduced binding to flag-MDA5 while the 

binding affinity of the IRF7 deficient mutant to flag-MDA5 was similar to the affinity of 

parental MV V. The IRF7 deficient mutant as well as MV VdMDA5(1) exhibited reduced 

binding affinity to flag-IRF7, whereas binding of MV VdMDA5(2) was comparable to 

binding of MV V to flag-IRF7. In the CoIP assays with flag-p65, MV VdIRF7, and MV 

VdMDA5(2) showed reduced binding to the NF-κB subunit compared to MV V. However, 

none of the mutants completely failed to interact with the signaling molecules. To sum 

up, the binding sites of different signaling molecules within the MV VCTD cannot be 

clearly discriminated from each other. While for MDA5 binding only residues in loop1 

seem to be relevant, binding to p65 and IRF7 is affected by mutations within loop 1 

and 2, suggesting that binding of p65 and IRF7 to MV VCTD involves two independent 

sites located at loop 1 and 2. 

To search for mutants that completely lost their binding affinity to p65 three more 

mutants were generated. Therefore, either loop 1 (MV VΔloop1) or loop 2 (MV VΔloop2) 

was substituted to two glycine residues (Fig. 3-12A). In addition, a mutant 

(MV VdMDA5(1/2)) was cloned were both aa relevant for MDA5 binding were substituted 

to alanine (R233A, E235A). CoIP experiments with flag-p65 and the mutants displayed 

nearly no binding of all mutants to the NF-κB subunit (Fig. 3-12E), however, the CoIP 

efficiency was much lower than in Fig. 3-12D. Together with the results from the 

repeat experiments I would assume that the binding affinity of all mutants to p65 is 
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reduced but not completely lost, as already seen in Fig. 3-12D with exception of MV 

VdMDA5(1). Next, it was examined whether the reduced binding affinity to p65 of the 

mutants is also reflected in an extenuated capacity to inhibit NF-κB signaling. 

Therefore, NF-κB-dependent dual luciferase assays were performed using ΔRIG-I as 

stimulus and the different mutants (MV VΔloop1; MV VΔloop2; MV VdMDA5(1/2); MV VdIRF7) as 

inhibitor. Parental MV V was used as a reference. All mutants displayed an inhibitory 

capacity similar to that of MV V (Fig. 3-12F). In addition, inhibition of MDA5-dependent 

activation of either NF-κB (Fig. 3-12G) or IFNβ promoter (Fig. 3-12H) was tested in 

further reporter gene assays. To measure IFNβ promoter activity, a plasmid encoding 

for firefly luciferase under the control of the IFNβ promoter (p125-luc) was applied 

instead of the NF-κB reporter plasmid (Yoneyama et al., 1996). The capacities of the 

mutants to suppress NF-κB activation (Fig. 3-12G) or IFNβ-promoter activation 

(Fig. 3-12H) were quite similar. Solely, MV VdIRF7 inhibited IFNβ promoter activation 

more potent. However, these findings revealed that reduced binding to p65 was not 

sufficient to abrogate efficient inhibition of NF-κB activation. Thus, no mutants that are 

defective in the blockade of NF-κB signaling could be identified so far. Possibly, 

combinations of mutants involving the identified aa at loop 1 (R233A,E235A) and 2 

(259AAAA) would be necessary to lose MV V mediated inhibition of NF-κB activity. 

3.13 The V protein of the measles wild type isolate D5 inhibits 

NF-κB activity and binds to p65 

In the previous experiments I used MV proteins derived from the Schwarz strain 

(genotype A), a life attenuated vaccine obtained by multiple passaging on chicken 

embryo fibroblasts (Schwarz, 1962). To check if vaccine and wt measles V proteins 

differ in their ability to interfere with NF-κB activity, a wt strain obtained from the 

Robert Koch Institute in Berlin (genotype D5 – MVi/Berlin.DEU/04.08[D5]) was used to 

generate an expression plasmid coding for the V protein of wt MV. Sequencing and 

subsequent sequence alignment with the Schwarz V revealed that there are only 13 aa 

substitutions within the PVNTD and no mutation was found in the C-terminal domain 

(done by Christian Pfaller) (Fig. 3-13A). NF-κB-dependent luciferase assays in HEK-293T 
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cells illustrated that ΔRIG-I as well as p65/p50-mediated NF-κB activation was 

suppressed by both V proteins to the same degree (Fig. 3-13B and C). Furthermore, it 

was shown that binding to the NF-κB subunit p65 is also conserved between the V 

proteins of both virus strains using CoIP experiments (Fig. 3-13D). These results 

indicate that the capacity to suppress NF-κB activity and the ability to bind to p65 of wt 

and Schwarz-derived V proteins are equal. 

 

Figure 3-13 The V protein of the measles wild type isolate D5 inhibits NF-κB activity and binds to p65 

(A) Sequence alignment of the amino acid sequence of V proteins of the Schwarz strain and the wild type isolate D5. 
The sequence alignment was generated using Clustal W2 and Jalview. NF-κB-dependent luciferase assays in HEK-
293T cells were performed using ΔRIG-I (B) or p65/p50 (C) as stimulus and increasing amounts of V proteins of the 
Schwarz strain (MV V) or the wild type D5 isolate (MV Vwt) were coexpressed. (D) HEK-293T cells were cotransfected 
with vectors encoding flag tagged p65 or an empty vector (EV) and the V protein of the Schwarz strain or the D5 
wild type isolate. Flag-tagged proteins were pulled down using Flag M2 Matrix. The purified proteins were stained 
on Western blots with α-MV VCTD and α-flag antibodies. 
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3.14 CDV V and NiV V act like MV V and suppress classical NF-κB 

activity 

Since the C-terminal domains of the V proteins of the Paramyxovirinae subfamily 

members show significant conservation it was tested if the NF-κB inhibiting potential 

of the MV V protein is also conserved among paramyxoviruses. Therefore, I generated 

expression plasmids for flag-tagged paramyxovirus V proteins. We employed the V 

protein of the canine distemper virus (CDV), another member of the Morbillivirus 

genus, the V protein of the Nipah virus (NiV) of the Henipavirus genus and the V 

protein of the parainfluenza virus type 5 (PIV5) that belongs to the Rubulavirus genus 

(Fig. 3-14A; framed). To illustrate the conservation of the VCTD an amino acid sequence 

alignment of V proteins of MV (AF266291.1), CDV (AF259549.1), NiV (AF212302.2) and 

PIV5 (AF052755.1) was performed with the help of ClustalW2 and Jalview software. 

(Fig. 3-14B). 

The capacity of V proteins of CDV, NiV and PIV5 to interfere with NF-κB activation was 

compared to the NF-κB inhibiting potential of MV V using NF-κB-dependent luciferase 

assays. NF-κB was activated by applying different stimuli. Activation of the RIG-I 

pathway was achieved by overexpression of ΔRIG-I (Fig. 3-14C). Cells expressing only 

ΔRIG-I showed high induction of the NF-κB dependent luciferase activity, whereas the 

coexpression of the V proteins of MV, NiV and CDV decreased NF-κB activation in a 

dose dependent manner. The inhibitory potential of these V proteins appeared to be 

similar. In contrast to that, coexpression of PIV5 V had no effect on RIG-I mediated NF-

κB activation. However, referring to the Western blot of the viral proteins, it becomes 

obvious that the V protein of PIV5 was much lower expressed than the V proteins of 

MV, CDV and NiV.Activation of the TLR pathway was stimulated by overexpression of 

MyD88 (Fig. 3-14B). Consistently, the V proteins of MV, NiV and CDV suppressed NF-κB 

activity with a similar potency, while PIV5 V did not show any inhibitory effect. The 

Western blot illustrates again that PIV5 V was hardly expressed, whereas the V 

proteins of MV, NiV and CDV showed similar expression levels.  

http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=consistently&trestr=0x8004
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Figure 3-14 CDV V and NiV V act like MV V and suppress classical NF-κB activity 
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(A) The Paramyxoviridae family is divided into two subfamilies. The Paramyxovirinae subfamily comprises five 
genera: Respiroviruses, Rubulaviruses, Henipaviruses, Morbilliviruses and Avulaviruses, while the Pneumovirinae 
subfamily consists of two genera, namely the Pneumoviruses and the Metapneumoviruses. Abbreviations: Sendai 
virus (SeV), human parainfluenza viruses (HPIV), bovine parainfluenza virus 3 (BPIV3), mumps virus (MuV), simian 
virus 5 (SV5), hendra virus (HeV), nipah virus (NiV), measles virus (MeV), canine distemper virus (CDV), rinderpest 
virus (RPV), phocine distemper virus (PDV), newcastle disease virus (NDV), avian paramyxoviruses (APMVs), human 
respiratory syncytial virus (HRSV), bovine respiratory syncytial virus (BRSV), human metapneumovirus (HMPV) and 
turkey rhinotrachetis virus (TRTV).  Adapted from (Goodbourn and Randall, 2009). (B) Sequence alignment of 
different Paramyxovirinae V proteins: MV V: V protein of the Schwarz strain of measles virus; CDV V: V protein of 
canine distemper virus; NiV V: V protein of Nipah virus; PIV5 V: V protein of parainfluenza virus 5; The sequence 
alignment was generated using Clustal W2 and Jalview. Increasing amounts (200 ng, 400 ng, 600 ng) of vectors 
encoding the V proteins of MV, CDV, NiV and PIV5 were cotransfected into HEK-293T cells with 200 ng of an 
expression plasmid for ΔRIG-I (C), MyD88 (D), or 100 ng of each p50 and p65 (E) and the NF-κB-dependent reporter 
system (100 ng p55A2, 10 ng pRL-CMV). After 24 h, cells were lysed and NF-κB activity was determined by a dual-
luciferase assay. Values given are averages and standard-deviations of results from two independent experiments. 
Expression of the viral proteins was assessed by Western blotting using an α-flag antibody. 

To test whether the V proteins of NiV, CDV and PIV5 can block NF-κB activation 

downstream of the IKK complex as it was demonstrated for MV V, the NF-κB 

dependent luciferase assay was applied using overexpression of the p50/p65 dimer as 

stimulus. To exclude upstream activation of NF-κB, Ig-NBD was included as a negative 

control again. V proteins of MV, NiV and CDV inhibited NF-κB activity, while PIV5 V did 

not (Fig. 3-14C). However, PIV5 V was again only weakly expressed, in contrast to the 

other viral proteins. Upstream activation could be excluded, since Ig-NBD did not 

inhibit p50/p65 dependent NF-κB activity. 

Taken together, these findings revealed that the inhibitory potential of the V proteins 

of CDV and NiV is similar to that of MV V. 
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3.15 The Rel homology domain of p65 is also bound by CDV V and 

NiV V 

To test if the different paramyxovirus V proteins can also bind the NF-κB subunit p65, 

Co-IP experiments were performed. Therefore, HEK-293T cells were used to coexpress 

flag-tagged V proteins together with p65. The flag-tagged proteins and their 

interaction partners were purified from the cell lysate using Flag-M2 Matrix and 

subjected to immunoblotting. p65 was copurified with MV V, CDV V, and NiV V but not 

with PIV5 V (Fig. 3-15A). Notably, the expression levels of flag-PIV5 V was again lower. 

Since it was shown that MV V specifically binds to the rel homology domain of p65, the 

other V proteins were assessed for their binding affinity to this domain. V proteins of 

CDV and NiV clearly associated with the RHD of p65 whereas PIV5 V showed no 

interaction (Fig. 3-15B). These findings indicate that not only the NF-κB inhibitory 

potential of the V proteins of MV, CDV, and NiV is conserved but also their binding 

affinity to the RHD of p65 and that PIV5 V does not bind to p65 and therefore cannot 

interfere with NF-κB activation. 

 

Figure 3-15 The Rel homology domain of p65 is also bound by CDV V and NiV V 

HEK-293T cells were cotransfected with vectors encoding the indicated flag tagged constructs or an empty vector 
(EV) and full length p65 (A) or RHD-p65 (B). Flag-tagged proteins were pulled down using Flag M2 Matrix. The 
purified proteins were stained with α-p65 and α-flag antibodies on Western blots. 
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3.16 Binding of P gene products to other NF-κB subunits 

Besides p65 and p50, the main subunits of the classical NF-κB signaling cascade, 

additional dimers composed of other NF-κB subunits exist. RelB and p100/p52 are the 

key players of the alternative NF-κB pathway, which is involved in adaptive immune 

responses (Bonizzi and Karin, 2004). The NF-κB subunit c-Rel plays an important role in 

controlling B-cell proliferation, survival, and oncogenesis (Gilmore et al., 2004). Since 

MV infection in vivo can result in immunosuppression of the host that also involves the 

adaptive immune system (Griffin, 2010), it was checked if any of the MV P gene 

products can interfere with these NF-κB subunits. CoIP experiments with flag-tagged 

MV P, V, and C together with RelB, c-Rel, p100 and p52 were accomplished. Like p65, 

RelB exhibited binding affinity exclusively to flag-MV V (Fig. 3-16A). Notably, an 

additional 55 kDa band was seen with the α-RelB antibody directed to the C-terminus 

of RelB if MV V was present. Weak binding of c-Rel was observed to both flag-MV P 

and V (Fig. 3-16B). For p100, the precursor of p52, no interaction with any of the P 

gene products was observed (Fig. 3-16C), whereas the processed p52 associated with 

both flag-MV P and V, however, with weaker affinity to flag-MV V (Fig. 3-16D). To 

further validate these findings CoIP experiments were performed the other way 

around using flag-tagged NF-κB subunits for co-precipitation of untagged MV proteins. 

Here, flag-p65 and -p50 were included as positive and negative controls and 

references. The experiments copurifying MV P revealed only binding to flag-p52. The 

weak association of c-Rel with flag-MV P was not confirmed (Fig. 3-16E). A very weak 

band of MV P was observed with flag-p65 as already descripted in chapter 3.5. CoIP 

assays with the flag-tagged NF-κB subunits and MV V prove the binding of MV V to p65 

and p52, however, binding of V to flag-RelB and flag-c-Rel was not observed 

(Fig. 3-16F). But notably, coexpression of MV V and RelB resulted in very low 

expression levels of V (Fig. 3-16F) and this was also seen for MV P (Fig. 3-16E).  
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Figure 3-16 Binding of P gene products to other NF-κB subunits 

Lysates of HEK-293T cells expressing flag-tagged MV P, V, or C and RelB (A), c-Rel (B), p100 (C) or p52 (D) were 
purified with anti-flag M2 affinity gel. Purified proteins were visualized by Western Blooting using antibodies 
specific for the overexpressed NF-κB subunits or the flag epitope. CoIPs with flag-tagged p65, RelB, c-Rel, p50 or p52 
and MV P (E) or MV V (F) were stained with α-PVNTD or α-VCTD and the α-flag antibody. 
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Thus binding of RelB and MV V could not be confirmed but is still conceivable. The 

binding capacity of MV V to p65 was much more prominent than to p52, indicating 

that the main binding partner among the NF-κB subunits of MV V is p65. Furthermore, 

these results indicate that there is an interaction of MV P and V with the alternative 

NF-κB subunit p52. Binding of flag-MV V to RelB, and probably a processed form of 

RelB, suggests also an interaction of V and RelB in cells. 

3.17 Inhibition of the alternative NF-κB pathway 

In order to examine if binding of MV P and V to p52 and the supposed binding of MV V 

to RelB result in inhibition of the alternative NF-κB signaling pathway, NF-κB-

dependent luciferase assays were implemented. The alternative pathway was 

stimulated by overexpressing NIK, a kinase involved in the alternative signaling 

cascade. Cells overexpressing NIK without any viral protein showed high induction of 

NF-κB-dependent luciferase activity. However, the presence of MV P, V, and C caused a 

similar inhibition pattern as seen for the classical pathway (Fig. 3-17A). Since it is 

known that stimulation of the alternative signaling is not exclusive but also leads to 

activation of the classical NF-κB subunits, the observed suppression pattern might 

result from inhibition of p65 activity. To exclude activation of p65, alternative NF-κB 

activation was induced expressing directly the alternative subunits. RelB/p52-mediated 

induction was not very prominent (less than 10-fold), but this was also seen in other 

studies. Solely MV V coexpression exhibited a very slight suppressive effect on 

RelB/p52 mediated-NF-κB activation (Fig. 3-17B). Last, the effect of MV P, V, and C on 

c-Rel mediated NF-κB activation was investigated. Again, NF-κB activation was quite 

poor and there was no inhibitory capacity displayed by any of the MV P gene products 

(Fig. 3-17C). These results suggest that the assumed binding to RelB and c-Rel or the 

binding to p52 of MV P and V do not result in substantial suppression of NF-κB 

activation mediated by these subunits. However, it still remains to be investigated if 

there is any suppressive effect of the viral gene products upstream of RelB, p52 and 

c-Rel. 
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Figure 3-17 Inhibition of the alternative NF-κB pathway 

NF-κB dependent luciferase activity was measured in HEK-293T cells transfected with 200 ng of plasmids encoding 
for NIK (A), RelB/p52 (B) or crel (C), increasing amounts (200 ng, 400 ng, 600 ng) of vectors for MV P, V, or C and the 
NF-κB-dependent reporter system. The bars represent the means and the error bars the standard deviation of two 
independent experiments. Depicted is a representative experiment out of three repeats. Expression of the viral 
proteins was assessed by Western blotting using either α-flag (A) or α-PVNTD, α-VCTD, or α-MV C (B+C) antibodies. 
 

3.18 Generation and characterization of recombinant viruses MV-

vac2, MV-MCS, MV-VKO, MV-VKO+V 

To investigate the biochemical results obtained so far in the viral context, recombinant 

measles viruses were rescued. Therefore, different full-length constructs of the MV 

genome were cloned (Fig. 3-18A). The sequence of the Schwarz MV anti-genome from 

the pB(+)MVvac2 plasmid (del Valle et al., 2007) was cloned into the backbone of the 

rescue plasmid pBS-HHrz/Hdrz(sc) which was shown to significantly improve virus 

rescue efficiency (Ghanem et al., 2012). Virus rescued from this plasmid is referred to 
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as MV-vac2. To enable insertion of an additional gene, a plasmid where a multiple 

cloning site (MCS) flanked by the 5‘-UTR and the 3’-UTR of the P gene was inserted 

between the P and the M gene was constructed (done by Christian Pfaller). The 

corresponding virus is named MV-MCS. For a virus deficient in V protein expression 

(MV-VKO) a point mutation within the V editing site was inserted in the MV-MCS full 

length plasmid to destroy V mRNA production (Radecke and Billeter, 1997; Schneider 

et al., 1997). The introduced point mutation is silent for the P and C protein. The V ORF 

with mutated editing site was inserted into the MCS of the MV-VKO full length plasmid 

such that the expression of the V protein is restored in the recombinant virus MV-

VKO+V.  

To characterize the recombinant viruses on protein level A549 cells were infected at an 

MOI of 1 for 24 or 48h or mock-treated with supernatant of Vero cells lysed by freeze-

thaw. Lysates of the infected cells were subjected to SDS-PAGE followed by Western 

blotting using α-MV N, α-MV PNTD, α-MV VCTD, α-MV C and α-actin antibodies. All 

viruses expressed comparable ratios of the MV N, P, and C proteins. In case of 

infection with MV VKO no expression of the V protein was detected illustrating that 

knock out (KO) of V was successful (Fig. 3-18B).  

The recombinant viruses were further characterized with respect to their growth 

kinetics on IFN incompetent Vero cells and IFN competent A549 cells. Therefore, Vero 

or A549 cells were infected at an MOI 0.01. Infectious titers were determined 6 h, 24 

h, 48 h, 72 h, and 96 h p.i. The viruses showed similar growth kinetics on Vero cells 

(Fig. 3-18C) as well as on A549 cells (Fig. 3-18D). Surprisingly, even the KO of the V 

protein did not influence the growth of the virus on IFN competent cells. 

To sum up, the MV-VKO virus appears to be indistinguishable from the other viruses in 

regards of growth and protein expression in Vero and A549 cells. 

http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=indistinguishable&trestr=0x8004
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Figure 3-18 Generation and characterisation of recombinant viruses MV-vac2, MV-MCS, MV-VKO, MV-VKO+V 

(A) Overview of the full length plasmid used to generate the recombinant viruses MV-vac2, MV-MCS, MV-VKO and 
MV-KO+V. The Schwarz measles virus antigenome is cloned in the pBluescript vector (pBS(+)) containing a T7 
promoter and a T7 terminator and flanked by ribozyme sequences. The hammerhead ribozyme (HHrz) and Hepatitis 
delta virus antigenomic ribozyme (HdRz)  were used to enable 5’ or 3’ processing, respectively. (B)A549 cells were 
infected (MOI=1) with the indicated viruses and lysed 24h or 48h p.i.. Western blot analysis was carried out and α-
MV N (abcam/millipore), α-MV PVNTD, α-MV VCTD, α-MV C (FEA/10/1)  and α-actin were used to detect expression of 
the indicated proteins. A representative experiment out of four is shown. (C) Vero cells were infected (MOI=0.01) 
with the indicated viruses, 1h p.i. the cells were washed and frozen at 6h, 24h, 48h, 72h and 96h p.i.. Virus titers 
were determined by titration on Vero cells. Shown is the average and standard deviation of two independent 
experiments. (D) A549 cells were infected at an MOI of 0.01, 1h p.i. cells were washed and frozen at the indicated 
time points. Titration of the viral titers was carried out on Vero cells. The average and standard deviation of three 
independent experiments is shown. 
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3.19 NF-κB activation upon infection with MV-MCS, MV-VKO, MV-

VKO+V 

The recombinant viruses were used to determine if the inhibitory effects proven for 

the MV V protein are also found in the viral context. Thus, HEK-293T cells were 

transfected with the dual NF-κB-reporter system, infected 6h p.t. with MV-MCS, MV-

VKO, MV-VKO+V at an MOI of 1 or mock-treated with supernatant of frozen Vero cells 

and lysed 24h later. MV-VKO was expected to induce NF-κB activity more prominent 

than MV-MCS and MV-VKO+V, since one of the NF-κB inhibitors is knocked out in MV-

VKO. Surprisingly, analysis of NF-κB dependent luciferase activity displayed that MV-

MCS infection activated NF-κB slightly (3 fold), infection with MV-VKO resulted in only 

6 fold induction of NF-κB activity whereas MV-VKO+V infected cells showed 15 fold 

induction (Fig. 3-19A). Furthermore, Western blotting revealed that infection with MV-

VKO was slightly enhanced. Using quantitative real-time RT-PCR as an additional 

readout, mRNA levels of different NF-κB dependent genes were analyzed upon 

infection. A549 cells were infected with the indicated viruses at an MOI of 1 or mock-

treated, RNA was isolated 24h p.i. and reverse transcribed into cDNA. Quantitative PCR 

was accomplished using IL-6, RANTES, IFNβ, or MV N primers. Levels of IL-6 mRNA 

were about 600 fold induced in MV-MCS and MV-VKO infected cells, while infection 

with MV-VKO+V resulted in even 1200 fold induction (Fig. 3-19B). A similar expression 

pattern was found with RANTES mRNA levels. Induction by MV-MCS and MV-VKO was 

comparable (around 2000 fold) whereas MV-VKO+V induced twice as much (Fig. 3-

19C). In contrast, IFNβ mRNA levels were equivalent for all viruses (Fig. 3-19D). Levels 

of MV N mRNA were checked as infection control and two fold increased levels for 

MV-VKO+V revealed that infection with this virus was higher (Fig. 3-19E). This is also 

reflected in the Western blot control (Fig. 3-19F). Increased infection rate with MV-

VKO+V might explain the increased levels of IL-6 and RANTES with this virus. In sum, 

these experiments do not reveal a major impact of the presence of V on NF-κB 

activation in HEK-293T and A549 cells 24h post infection. 
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Figure 3-19 NF-κB activation upon infection with MV-MCS, MV-VKO, MV-VKO+V 

(A) NF-κB activity was determined on HEK-293T cells transfected with the NF-κB reporter system (p55A2/pRL-CMV) 
by dual luciferase assays. 6h post transfection cells were infected with the indicated viruses at an MOI of 1 and 
lysed 24h later to determine luciferase activities. Values shown are average and standard deviations of two 
independent experiments. Expression of viral proteins was assessed by Western blotting. (B-F) Real-time RT-PCRs 
for NF-κB-dependent genes in HEK-293T cells infected with the indicated viruses at an MOI of 1. 24h p.i. cells were 
lysed and subjected to real-time RT-PCR using primer specific for IL-6 (B), RANTES (C), IFNβ (D), or MV N (E) as 
infection control. Values given are average and standard deviation of two independent experiments. Shown are 
representative experiments out of two repeats. To control infection on the protein level A549 cells were infected in 
parallel and lysates were subjected to Western blotting. Protein levels were visualized using antibodies specific for 
MV N, P, V, or C. 
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4 Discussion 

NF-κB is a ubiquitously expressed transcription factor that mediates a wide variety of 

cellular responses, ranging from proliferation, differentiation, and cell survival to 

cytokine production and other proinflammatory processes thereby regulating innate as 

well as adaptive immune responses. The primary result of NF-κB activation by 

triggering of PRRs during innate immune responses is the expression of chemokines 

and pro-inflammatory cytokines, such as IL-6 or TNFα. The role of NF-κB for IFNβ 

expression is highly discussed. Early studies on the activation of the IFN-β promoter, 

which contains NF-κB, AP1, and IRF binding sites, implicated NF-κB as a key mediator 

of virus-induced IFN-β expression (Lenardo et al., 1989; Thanos and Maniatis, 1995). 

However, infection of NF-κB knockout mouse embryonic fibroblasts (MEFs) with 

Sendai virus initially suggested the lack of an essential role for NF-κB in virus induced 

IFN-β expression (Wang et al., 2007), but the same group then showed that NF-κB is 

crucial during the early phase of virus infection (Wang et al., 2010). The important role 

of NF-κB during infections in general is emphasized by reports showing that mice 

lacking different NF-κB family members become more susceptible to various viral, 

bacterial, and parasitic infections (Rahman and McFadden, 2011). However, all these 

studies were conducted in mice, and therefore the role of NF-κB in human IFN-

expression needs to be evaluated. 

In this study, it was shown that P gene products of the immunosuppressive measles 

virus, including the essential P protein, and the ‘accessory’ proteins V and C, interfere 

with activation of NF-κB in human epithelial cells. MV P, V, and C, which are 

established MV virulence factors, were found to individually suppress NF-κB-

dependent reporter gene expression in response to activation of TNF receptor, RLRs, 

or TLRs. While the V protein exhibited the most potent inhibitory capacity, MV P and C 

proteins suppressed NF-κB activation more moderately. As indicated by reporter gene 

assays involving overexpression of the IKK complex, which phosphorylates IκBα to 
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liberate NF-κB, V protein targets a downstream step in the signaling cascade. CoIP 

experiments revealed that V specifically binds to the RHD of the NF-κB subunit p65 but 

not of p50, which constitute the main dimers involved in the classical NF-κB signaling. 

As observed by confocal microscopy, the presence of MV V abolished nuclear 

accumulation of p65 upon TNFα stimulation. Notably, the short C-terminal domain of 

the V protein that is also involved in binding STAT2, IRF7, and MDA5, was sufficient for 

interaction with p65 and for preventing reporter gene activity (Schuhmann et al., 

2011). This highlights VCTD as a cellular hub for innate immune signaling molecules. 

Mutational analysis of the V protein revealed that p65, IRF7, and MDA5 recognize 

common binding sites at the C-terminal domain of V. Besides binding of MV V to the 

classical NF-κB subunit p65, CoIP experiments indicated MV V binding to the 

alternative NF-κB subunits RelB and p52. Notably, MV P, which does not bind to the 

classical subunits, was found to bind to p52 as well. These findings reveal NF-κB as a 

key target of MV and stress the importance of the V protein as the major viral 

immune-modulatory factor.  

4.1 Inhibition of NF-κB by MV P and C 

Overexpression of the MV P and C protein resulted in suppression of classical NF-κB 

activation upon different stimuli, like TNFα, ΔRIG-I, IPS-1, MyD88, and TRIF (Fig. 3-1 

and 3.2) in reporter gene assays. Immunofluorescence experiments with flag-tagged P 

revealed that MV P interferes with nuclear accumulation of the NF-κB subunit p65 to 

some extent. 40% of cells expressing flag-MV P showed no nuclear p65 upon TNFα 

stimulation (Fig. 3-9) even though P was not found to interact with p65 in CoIP 

experiments (Fig. 3-4). This partial inhibition of nuclear translocation correlates well 

with the partial inhibition of NF-κB activation seen in the reporter gene assays. Taken 

together and in view of the fact that the P protein itself is located in the cytoplasm, an 

inhibitory mechanism upstream of p65 translocation is indicated. In monocytes but not 

in epithelial cells, MV P was previously shown to directly activate the expression of the 

ubiquitin-modifying enzyme A20, a potent inhibitor of the classical NF-κB pathway 

(Yokota et al., 2008). MV P was reported to indirectly interact with a negative 
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regulatory motif in the A20 gene promoter and thereby the suppression of A20 

expression is released. It was already revealed before that MV P has transactivating 

properties due to the acid-rich PVNTD (Chen et al., 2003), however, how P reaches the 

nucleus is not known. Importantly, upregulation of the NF-κB inhibitor A20 was not 

observed in HEK-293T cells with any of the MV proteins (data not shown), excluding 

the possibility of a contribution of this recently described mechanism (Yokota et al., 

2008). Besides the potential of P to inhibit the classical NF-κB signaling pathway, P 

might have the capacity to suppress the alternative pathway as well. MV P was able to 

interact with p52 (Fig. 3-16) and to inhibit NF-κB-dependent reporter gene expression 

mediated by NIK, a kinase involved in the alternative NF-κB pathway (Fig. 3-17A). 

However, stimulation of NF-κB by RelB/p52 was apparently not impeded by P 

(Fig 3-17B). Thus, further investigations must be implemented to clarify if P interferes 

with alternative NF-κB signaling.  

In contrast to the P protein, MV C, which was shown to shuttle between the nucleus 

and the cytoplasm (Nishie et al., 2007), is mainly located in the nucleus in the steady 

state and does not interfere with nuclear translocation of p65 (Fig. 3-9). These findings 

suggest that MV C protein suppresses classical NF-κB activation within the nucleus by a 

so far unknown mechanism in analogy to the nuclear blockage of IFNβ induction 

(Sparrer et al., 2012). Notably, infection with a MV engineered to prevent expression 

of the C protein efficiently activates NF-κB in comparison to infection with the parental 

MV (McAllister et al., 2010). This indicates that the C protein plays a pivotal role to 

inhibit NF-κB activation during MV infection even though the direct capacity to 

suppress NF-κB in my in vitro studies was only moderate.  

4.2 Inhibitory mechanism of MV V  

In all conducted reporter gene assays, the NF-κB inhibitory capacity of the V protein 

was the most pronounced irrespective of the stimulus (Fig. 3-2, 3-2, 3-3). Specifically, 

in cells stimulated by overexpression of ΔRIG-I the inhibitory capacity of MV V 

appeared to be particularly pronounced (Fig. 3-2A). Interestingly, it was recently found 

that V binds to LGP2 which builds a complex with RIG-I in the presence of V and this 
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complex cannot be activated by RIG-I ligands (Childs et al., 2012). However, the 

inhibitory effect of LGP2 is operating at the level of RIG-I activation and is dependent 

on the helicase domain of RIG-I. Since I stimulated only with the CARD domains of RIG-

I, the strong inhibition of NF-κB activity cannot be explained by the interplay of V and 

RLRs. Therefore, I suggest that binding of MV V to the downstream transcription factor 

p65 is the major mechanism for suppression of RLR-mediated NF-κB activation.  

MV V was the only P gene product that substantially interacted with the NF-κB subunit 

p65 as revealed with CoIP studies (Fig. 3-4) as well as with IF images which suggested 

co-localization of MV V and p65 (Fig. 3-8). The V protein of an MV wild type isolate 

(genotype D5) bear some point mutations in its PVNTD, which is the common domain of 

P and V, while the sequence of the unique VCTD, which is responsible for p65 binding, is 

completely conserved in the wild-type isolate and the Schwarz strain. Consistent with 

this fact, binding of wild-type V to p65 and similar levels of inhibition of NF-κB-

dependent reporter gene activity were observed (Fig. 3-13). 

Binding of MV V to p65 might interfere with posttranslational modifications (PTMs) of 

p65, which are not essential for NF-κB activation, but regulate the transcriptional 

efficiency of p65 by affecting the localization, stability and ability of p65 to interact 

with DNA and transcriptional cofactors (Huang et al., 2010). Numerous regulatory 

PTMs of p65 have been reported so far, such as phosphorylation, acetylation, and 

ubiquitination. Phosphorylation of serine (S) 276 within the RHD of p65 by protein 

kinase A (PKA) promotes the interaction of p65 with the transcriptional coactivators 

CREB-binding protein (CBP) and p300 (Zhong et al., 1998). This enhances the activation 

of a subset of NF-κB target genes (Dong et al., 2008). Western Blot analysis of the 

phosphorylation state of p65 at S276 using an antibody for P-p65 S276 revealed no 

difference in the absence or presence of MV V (data not shown). However, there are 

concerns regarding the specificity of commercially available α-P-S276-p65 antibodies, 

since they were found to react with other PKA-regulated proteins, but do not detect 

S276-phosphorylation of p65 via Western Blotting (Spooren et al., 2010). Besides this 

phosphorylation within the RHD, a variety of phosphorylation sites within the TAD 

have been demonstrated (Hayden and Ghosh, 2012). Since MV V was shown to 

interact with the RHD of p65 (Fig. 3-5), these phosphorylation events will probably not 
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contribute to the inhibition seen in the presence of the V protein. Interestingly, 

ubiquitination of p65 was associated with the regulation of p65 localization (Maine et 

al., 2007). Ubiquitination seems to favor p65 localization in the cytoplasm, however 

MV V binding to p65 did not mediate ubiquitination of p65 as analyzed by Western 

blotting using an antibody against ubiquitin (data not shown).  

Another consequence of MV V binding to p65 could be the disruption of the 

NF-κB/IκBα complex. However, I could demonstrate that binding of V does not prevent 

IκBα or p50 binding to p65 (Fig. 3-7). This is also supported by the finding that MV V 

binds to both NTD and CTD of p65 RHD in contrast to IκBα and p50, which bind only to 

the CTD of p65 RHD (Fig. 3-6). Since MV V retains p65 in the cytoplasm upon TNFα 

treatment (Fig. 3-8, 3-9), I assumed that binding of V to p65 leads to the inhibition of 

p65 translocation. Upon stimulation, p65 is imported into the nucleus by a subset of 

importin α isoforms, namely importin α 3, 4, and 5 (Fagerlund et al., 2005; Fagerlund 

et al., 2008). I found that p65 interacts most efficiently with the importin α 5 subunit 

(Fig. 3-10A). In unstimulated cells, IκBα shields the NLS thereby preventing binding of 

the importin subunits (Hinz et al., 2012). Upon stimulation, IκBα is degraded in 

presence and absence of V (data not shown) and importin α molecules can recognize 

the liberated NLS of p65, bind to p65 and associate with importin β to form a trimeric 

complex. Subsequently, importin β mediates docking of the complex to the 

cytoplasmic side of the nuclear pore complex (NCP) leading to translocation of the 

complex through the NCP (Funasaka and Wong, 2011).  

Here I found that the inhibition of the translocation is not due to direct binding of V to 

the NLS of p65 (Fig. 3-10B). Furthermore, it could be excluded that the V protein 

competed with importin α 5 binding to p65 (Fig. 3-10C). However, weak binding of MV 

V to importin α 5 was observed in some experiments (data not shown), which might 

indicate that the retention of p65 in the cytoplasm in the presence of V might be due 

to interference of MV V with the import machinery. Since STAT1 and STAT2 are also 

cargos of importin α 5 (Fagerlund et al., 2002) and their nuclear translocation is 

inhibited by MV V as well (Palosaari et al., 2003), this common hub of signaling 

molecules might be a general target for MV V. However, preliminary data (not shown) 

suggest that nuclear translocation of heterogeneous nuclear ribonucleoprotein 
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complex C1/C2 (hnRNP C1/C2), an additional importin α 5 cargo (Shabman et al., 

2011), was not inhibited in the presence of V contradicting the idea of a general 

inhibition of importin α 5 mediated nuclear import. Furthermore, the inhibition of 

STAT1 translocation by V is probably rather due to inhibition of JAK1 mediated 

phosphorylation (Caignard et al., 2007) than to interference of V with importin α 5.  

The idea that MV V interferes with the import machinery in general is in turn 

supported by a study using mass spectrometry to identify interaction partners of the V 

protein, which identified different components of the nuclear pore such as nuclear 

pore complex protein 93 (NUP93) and NUP205 as well as importin α 1, importin β to 

interact with MV V (Komarova et al., 2011). Although the study could confirm well 

known interaction partners of the V protein such as STAT1 and STAT2, other 

interaction partners like LGP2, IKKα, IRF7, or JAK1 as well as p65 were not found in the 

mass spectrometry dataset. Nevertheless, possible interactions with proteins of the 

import machinery should be further investigated. NUP93 and NUP205 are part of the 

nucleoporin complex and required for correct nuclear pore assembly (Grandi et al., 

1997). Although NUP93 and NUP205 are not involved in the transfer of the 

cargo/importin complex through the NCP (Shah et al., 1998), interaction of MV V with 

both proteins, which are localized to central channel of the pore and the nuclear 

basket, might eventually block the channel. However, this would result in a general 

blockage of nuclear import, which is not observed upon expression of MV V. On the 

contrary, the blockage of the nuclear import by V is even very specific. So, it might 

rather be the importins, which are interesting targets for V mediated specific nuclear 

import inhibition. Although V could not compete with binding of importin α 5 to its 

cargo p65 (Fig. 3-10C), it might interfere with downstream events of the import 

machinery, like importin β binding. 
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4.3 MV V binds a variety of cellular proteins but with specificity 

Besides binding to p65, MV V was shown to interact with a variety of cellular proteins. 

Interestingly, these interactions seem to be very specific, since MV V binds only to 

selected members of a protein family. Here, it was revealed that the V protein 

interacts with the NF-κB subunits p65 and p52, but not with p50 or p100, the precursor 

of p52 (Fig. 3-4 and 3-16). Especially, p52 and p50 are highly conserved, which 

highlights the high specificity of V to interact with defined molecules. Since it was 

shown that p50 homodimers, which are lacking the TAD to mediate gene transcription, 

repress a subset of IFN-inducible genes (Cheng et al., 2011), it might be a strategy of 

the virus to refrain from targeting the inhibitory p50 dimer. 

It is also known that MV V binds to the RLRs MDA5 and LGP2, but not to the closely 

related RIG-I (Childs et al., 2012; Childs et al., 2007). Furthermore, MV V interacts with 

IKKα, but not with IKKβ or IKKi (Pfaller and Conzelmann, 2008). Besides its dual role in 

the canonical as well as alternative NF-κB signaling pathway, IKKα is also involved in 

the activation of IRF7 through TLR7/8/9. In vitro kinase assays showed that the IKKα-

dependent phosphorylation of IRF7 was diminished in the presence of MV V, whereas 

the phosphorylation of the NF-κB inhibitor IκBα by IKKα was not altered (Pfaller and 

Conzelmann, 2008). Thus, binding of MV V to IKKα suppresses IRF7 activation but does 

not affect activation of NF-κB. This displays another layer of specificity of MV V 

mediated modulation of the immune system. In the same study it was revealed that 

the transcription factor IRF7 is bound by MV V. However, no interaction with IRF3 

could be detected in their study. This is consistent with the finding that the V proteins 

of PIV5 and related rubulaviruses, but not MV V, targets the IRF3 rather than the IRF7 

signaling pathway, by binding to IKKi, which prevents IRF3 activation and RLR-

dependent IFNβ induction (Lu et al., 2008). In contradiction with this findings, it was 

recently suggested that V proteins of different paramyxoviruses, including MV V, 

inhibit IRF3 signaling by binding to IRF3 (Irie et al., 2012). However, this binding could 

not be verified in my experiments (data not shown), speaking for the specificity for the 

V protein to IRF7 as found before (Lu et al., 2008; Pfaller and Conzelmann, 2008). 
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All these interactions with V are mediated via its unique C-terminal domain, which 

turns out to be a hub for specific binding of numerous cellular proteins. This includes 

not only targets of the innate immunity but also proteins related to proliferation and 

cell death, like p53 family member p73, which down regulates expression of the 

proapoptotic target gene PUMA and might therefore function as a viral antiapoptotic 

factor (Cruz et al., 2006). 

Taken together, all these specific interactions of MV V with cellular proteins might 

contribute to the fine regulation and modulation of the immune system by MV, 

emphasizing the important role of the V protein for MV-mediated immune escape.  

4.4 Interactions of V with cellular molecules are often 

conserved among paramyxoviruses 

Most of the interactions of MV V with the cellular proteins are conserved among V 

proteins of other paramyxoviruses such as the interactions with MDA5, IKKα, and IRF7 

(Andrejeva et al., 2004; Kitagawa et al., 2011). Indeed, an interaction of p65 with the V 

proteins of CDV and NiV was found here (Fig. 3-15). However, no interaction was 

detected with PIV5 V, which might be either the consequence of the low expression 

levels of PIV5 V in all reporter gene assays, or PIV5 V fails to interact with p65 due to 

its nuclear localization within the cell (Precious et al., 1995). Interestingly, the V 

protein of PIV5 was reported to suppress NF-κB activation only upon triggering with 

synthetic dsRNA or upon viral infection, whereas inhibition of LPS- or TNFα-dependent 

NF-κB activity was not observed (Lin et al., 2007; Poole et al., 2002). This is in 

accordance with my NF-κB reporter gene experiments where expression of PIV5 V was 

ineffective in preventing NF-κB activity induced by ΔRIG-I, MyD88, or p65/p50 

(Fig. 3-14). Thus, it is likely that NF-κB inhibition and p65 binding is not generally 

conserved among members of the Paramyxoviridae family, but that the immune-

modulatory strategies of MV to inhibit NF-κB activation are applied by a selected 

subset of paramyxoviruses, as proven for the highly related CDV and the more distinct 

NiV.  
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This emphasizes the broad usage of the revealed NF-κB inhibitory mechanism and 

therefore it helps to understand the complex and multifaceted mechanisms, which are 

applied by paramyxoviruses to circumvent innate immune responses. 

4.5 p65 shares binding sites at the C-terminal domain of V with 

MDA5 and IRF7 

Intriguingly, numerous interactions of V with cellular proteins, such as MDA5, LGP2, 

STAT2, or IRF7 are mediated via the 68 aa long C-terminal domain of V. And it was also 

MV VCTD, which was shown to mediated interaction with p65 (Fig. 3-11).  

Since MV V interferes with different steps of the signaling cascades it is important to 

reveal the aa of motifs which are responsible for each interaction in order to be able to 

discriminate the resulting effects. Responsible aa for MV V binding to MDA5 were 

already identified in two independent studies (Ramachandran and Horvath, 2010; 

Takaki et al., 2011). Ramachandran and Horvath identified two aa (233R and 235E) as 

important for MDA5 interaction and interference by site-directed mutagenesis. In 

contrast, Takaki et al. recognized 272C to be critical for interaction with MDA5 due to 

sequence alignment of different MV strains. However, mutation of 272C or of any 

other cysteine might destroy the zinc finger structure of VCTD and affect other 

interactions as well. Therefore, the 233 and 235 mutations, located within the first 

loop, are probably more promising for dissecting V protein functions. The aa 246F and 

248D, which are important to mediate the interactions with STAT2 are also found 

within the first loop (Ramachandran et al., 2008). Residues mediating binding to IRF7 

were identified to be localized within the second loop. A stretch of four amino acids 

(aa 259-262) seems to be important for IRF7 binding and substitution of these residues 

against alanine resulted in decreased binding to the transcription factor (Pfaller, 2009). 

It could be revealed here, that aa responsible for MDA5 binding as well as for IRF7 

binding are also important for p65 binding (Fig. 3-12D). Specifically, mutants either 

lacking loop 1 or 2 were compromised to interact with p65 to the full range 

(Fig. 3-12E), however could still interfere to some degree with NF-κB or IFN promoter 
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activity (Fig. 3-12F-H). This indicates that, in case of p65 binding, both regions loop 1 

and 2 are involved in the interaction and that one of them might be enough for 

inhibition. Since binding of V to p65 was reduced rather than completely lost, the 

reduced binding is obviously sufficient for inhibition. It seems that both IRF7 and 

MDA5 binding domains overlap with the p65 binding site to MV V (Fig. 3-12D). For that 

reason, it might be possible that MV V rather binds a common hypothetical adaptor 

protein of the cellular interaction partners. Thus, the interaction at least of some 

cellular proteins with MV V might be indirect. So far, a direct binding of MV V was only 

shown for STAT1, JAK1, and MDA5 using a yeast two-hybrid approach (Caignard et al., 

2007). However, if binding of all cellular proteins is direct, the different interaction 

partners of V might compete for their common binding sites, which might be another 

layer of regulation applied by the V protein. 

 

4.6 Relevance of the P gene products for the alternative 

pathway 

In contrast to the classical NF-κB signaling pathway, which plays a major role in innate 

immune processes, the alternative pathway is rather thought to be involved in the 

regulation of the adaptive immune system. For example, mice deficient in p52 present 

defects in humoral responses and splenic microarchitecture (Franzoso et al., 1998). 

RelB deficient mice have a lack of bone marrow-derived DCs (Lo et al., 1992) and 

decreased T cell responses upon vaccinia virus infections, which leads to impaired 

clearance of the virus (Freyschmidt et al., 2007). Furthermore, it was shown that RelB-

deficient mice are more susceptible for influenza A virus infection (Castiglioni et al., 

2008). This highlights the important function of the alternative NF-κB pathway during 

viral infections.  

Here, I could show that both MV P and V interact with the alternative NF-κB subunit 

p52, but not with its precursor p100 (Fig. 3-16). This indicates that in the full-length 

protein the binding sites for MV V or P are shielded by the inhibitory C-terminus of 
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p100, which gets degraded upon stimulation of the alternative pathway. This specific 

binding might be an additional mechanism applied by MV to counteract immune 

responses. An interaction of MV V and RelB, however, was indicated in a certain 

setting of experiments only. When V was coexpressed with untagged RelB, an 

additional 55 kDa band was always co-precipitated with flag-MV V using an antibody 

directed against the C-terminus of RelB for visualization. This might be due to an N-

terminal cut of RelB, as it is seen upon 12-O-tetradecanoylphorbol-13-

acetate/ionomycin treatment of EL-4 T-cells, where RelB was shown to be N-terminally 

processed followed by degradation of RelB (Marienfeld et al., 2001). The N-terminal 

processing is also supported by the finding that the additional band was not observed 

when MV V was coexpressed with an N-terminal flag-tagged RelB. It might be possible 

that RelB processing is supported by the V protein. Besides binding to the alternative 

NF-κB subunits, the capacity of the P gene products to suppress NIK-mediated NF-κB 

signaling was also demonstrated (Fig. 3-17). Triggering of the alternative pathway also 

activates the classical NF-κB subunits. Although V interactions with the alternative 

subunits RelB and p52 suggest points of interference, it cannot be excluded that the 

inhibitory effect on NIK-mediated NF-κB activity observed in reporter gene assays is 

primarily due to inhibition of the classical pathway. The finding that RelB/p52-

mediated NF-κB activation cannot be inhibited by any of the P gene products argues in 

favor of an only minor role of the P gene products to suppress alternative NF-κB 

signaling downstream of the NF-κB subunits. However, they might target the signaling 

cascade just upstream of p52 and RelB. For example IKKα targeting of MV V might be 

involved in modulation of alternative signaling. It was shown that MV V interaction 

with IKKα does not interfere with phosphorylation of IκBα in vitro (Pfaller and 

Conzelmann, 2008), argues against an involvement of the interaction of V and IKKα to 

inhibit classical NF-κB signaling, but its role in suppression of the alternative pathway 

should be further analyzed. 
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4.7 Role of the V protein during MV infection 

To characterize the relevance of the V protein in a viral context, suitable cDNAs were 

constructed and recombinant viruses were rescued including the parental virus with an 

additional MCS, the VKO virus and the VKO virus with an ORF for the V protein within 

the MCS. The viruses were shown to grow with similar growth kinetics on Vero as well 

as on A549 cells (Fig. 3-18C+D). At least for infection of the IFN-competent A549 cells 

one could expect a growth defect of the virus deficient in V expression, due to the lack 

of V-mediated IFN-inhibiting activities, such as suppression of IFN-expression as a 

result of MDA5 or IRF3 binding (Andrejeva et al., 2004; Irie et al., 2012). However, also 

the finding that the mRNA levels of IFNβ upon infection were comparable for all 

viruses point in a direction that IFN inhibition by MV is sufficient in the viral context 

even in the absence of V (Fig. 3-19D). Similar results were obtained in a study where 

macaques were infected with viruses either deficient in V or C expression. Infection of 

the animals with the viruses revealed that the V protein had no effect on IFNβ 

induction in vivo, since no significant difference of IFNβ mRNA levels in PBMCs was 

seen between infection with the VKO or the parental virus, whereas the C deficient 

virus showed enhanced IFNβ induction (Devaux et al., 2008). Furthermore, this study 

showed that expression of IFN-stimulated genes (ISG), like MxA or OAS (2,5-oligo-

adenylate synthetase) was also not altered whether the V protein was present or not 

during infections. This is contradictory to the findings in cultivated cells, where MV V 

was shown to counteract STAT signaling at multiple steps and subsequently suppress 

ISG expression (Caignard et al., 2007; Ohno et al., 2004; Palosaari et al., 2003; 

Ramachandran et al., 2008). These findings may indicate that effects seen by studies 

overexpressing the V protein are only conditionally transferable to the situation of a 

viral infection. The effects of the V protein might be compensated by the P or the C 

protein, since they have been shown to have similar functions. For example, the C 

protein was shown to inhibit IFN induction as well (Sparrer et al., 2012) and inhibition 

of STAT signaling via STAT1 binding is mediated by the common N-terminal domain of 

the P and V protein (Devaux et al., 2007). So, a loss of the V protein in the viral context 
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may lead to a more pronounced role of either the P or the C protein and therefore 

compensate the effect normally mediated by the V protein. 

As far as NF-κB inhibition is concerned, infection of epithelial cells with the viruses 

revealed that there were also nearly no effect of the V protein on the induction of the 

NF-κB dependent genes IL-6 and RANTES, as both viruses, the VKO virus and the 

parental one, induced comparable levels of the respective mRNAs (Fig. 3-19B+C). The 

advanced induction of IL-6 and RANTES mRNA levels due to infection with the VKO+V 

virus is probably caused by an increased initial infection kinetics, which is reflected by 

the increased mRNA and protein levels of the MV N protein (Fig. 3-19E+F). The NF-κB 

reporter gene assays in HEK-293T cells showed also no difference in NF-κB activation 

comparing infections with the V deficient virus to the parental one (Fig. 3-19A). The 

enhanced induction seen with the rescued VKO virus (VKO+V) is very surprising and 

cannot be explained by the initial infection rate, as the Western blots show similar 

levels of the N protein.  

In contrast to IFNβ and ISG expression, the levels of the NF-κB dependent genes TNFα 

and IL6 were increased upon infection of macaques with the VKO virus in comparison 

to the parental one (Devaux et al., 2008). This strongly suggests that the NF-κB 

inhibitory capacity of the V protein is of importance in in vivo infections, although I 

could not detect any effect of V on NF-κB dependent genes in infections of cultured 

cell lines. This difference might result from the different cell types which were studied, 

since I used epithelial cell lines, whereas the in vivo study investigated primary PMBCs 

from infected macaques. Thus, the inhibitory effect of V on NF-κB activity in the viral 

context can be either cell type specific or solely observed in vivo. 
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4.8 Future prospects 

The biochemical data obtained in this study identify multiple targets within NF-κB 

signaling pathways for the MV P gene products. A very prominent inhibition of the 

classical pathway was seen with the V protein, which binds to the NF-κB subunit p65 

and retains it in the cytoplasm. The exact mechanism how this is achieved should be 

further investigated and studies on the modulation of the import machinery might be a 

very promising option. In particular, it would be very interesting to see if MV V 

interacts with a common hub of different signaling molecules. In addition, in vitro 

binding assays would bring further knowledge into the overall organization of the 

different inhibitory mechanisms mediated by the small 68 aa long MV VCTD.  

Clarification of the inhibitory mechanism of MV P and C would help to understand 

different aspects of NF-κB inhibition during MV infections. The compensatory 

mechanism which might be applied by the C protein in a virus which lacks the V 

protein could be investigated by generation of a virus defective in V and C expression. 

The role of MV P within the alternative signaling is of particular interest for clarification 

of the inhibitory mechanism applied by MV P, since it interacted solely with the 

alternative NF-κB subunit p52. However, P deficient virus is not viable, such that these 

studies would require first identification of relevant P domains by mutagenesis. 

The role of the inhibitory capacity of the V protein in the viral context should be 

further investigated. Thereby it would be very interesting to see whether, infection of 

cultured cells other than epithelial cells with VKO virus leads to an upregulation of NF-

κB dependent genes. PBMCs are here of special interest, since an effect in these cells 

was already observed in vivo. If the inhibitory effect of the V protein in vivo can be 

further confirmed, it might be worthwhile to check if the oncolytic efficiency, which 

was extensively utilized for MV (Galanis, 2010), can be enhanced by controlling NF-κB 

activity, which was shown to be constitutively active in cancer cells (DiDonato et al., 

2012). 
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DNA deoxyribonucleic acid 
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DTT 1,4-dithiothreit 
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IL interleukin 
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JAK Janus kinase 
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Le leader 

LGP2 laboratory of genetics and physiology 2 
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M matrix protein 

MAPK mitogen-activated protein kinase 
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MOI multiplicity of infection 
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P phosphoprotein 

p.i. post infection 

p.t. post transfection 
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PRR pattern recognition receptor 
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PVRL4 poliovirus receptor-like protein 4 

RD regulatory domain 

RHD Rel homology domain 

RIG-I retinoic acid-inducible gene I 

RIP1 receptor-interacting protein 1 

RL Renilla luciferase 

RLR RIG-like receptor 

RNA ribonucleic acid 

RNP ribonucleoprotein 

RT reverse transcriptase 

RV  rabies virus 

S serine 

SDS sodium-dodecyl sulfate 

SLAM Signaling lymphocytic activation molecule  

ss single-strand 

SSPE Subacute sclerosing panencephalitis 

STAT signal transducer and activator of transcription 

TAB TAK1 binding protein 

TAD transactivation domain  

TAK transforming growth factor β 

TANK TRAF family member-associated activator NF-κB 

TBK-1 TANK-binding kinase 1 
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TNF Tumor necrosis factor 
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