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Abstract 

Since the 1970s nanostructures were concertedly developed in the pharmaceutical field as 

drug carriers [1, 2]. Since then, the advantage of reducing potential side effects and to 

stimulate specific responses by modulating drug release and body distribution reverberates in 

a substantial number of approved products. 

The growing amount of poorly soluble drugs recently approaching the market led to an 

increased attention to nanoparticulate drug delivery systems almost exclusively consisting of 

pure active pharmaceutical ingredients. In this context, antisolvent precipitation as enabling 

technology offers an immense potential for improving drug bioavailability. With this 

technique particles in the submicrometer range can be easily and reproducibly prepared. In 

addition to the particle size dependent solubilization of the drugs [3, 4], the rapid 

precipitation kinetics within the antisolvent processes often result in thermodynamically 

metastable products, assuring for further solubilizing effects [5]. While precipitation 

reactions find application e.g. in a wide range of industrial processes [6], antisolvent 

precipitation so far rarely evolved towards a marketable level in the pharmaceutical field. 

One reason therefore is, that the mechanisms governing phase separation processes are still 

poorly understood [7, 8]. Furthermore, the transfer of the often metastable products to a 

stable, storable pharmaceutical dosage form is critical. Transformations from the amorphous 

to the crystalline state or between different polymorphs can already start within the 

precipitation process and proceed within fabrication of the final dosage form.  

Both issues are addressed within this work. A mathematical model was developed for 

simulating the particle formation process of a poorly soluble model compound, fenofibrate. 

The results are compared to experimental data and conclusions are drawn about the particle 

formation process and critical process parameters. Surprisingly, it was not solid particles 

that formed within the precipitation process, as is commonly anticipated in the  literature [9], 

but a liquid, solute rich phase. This liquid intermediate was extremely instable and rapidly 

crystallized. It was found that liquid-liquid phase is not an exceptional phenomenon for 

fenofibrate, but can be widely observed in different morphophological varieties. Upon 

detailed analysis of the precipitates of a series of poorly soluble compounds, a new approach 

was developed for stabilization of the liquid precipitate. Crystallization could be 

tremendously postponed by coprecipitation of a second poorly soluble compound and the use 
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of surface active reagents. Thereby not only sufficient time for downstream processing could 

be gained, a door was opened towards a new formulation approach for poorly soluble drugs. 

The robustness of this innovative process as well as the ability of preparing drug dispersions 

without the need of sophisticated and expensive equipment enlarge the available formulation 

space, and  suggests the application of the liquid precipitates as in-situ forming drug delivery 

system. 
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Definitions 

Polymorphism 

In this communication the term “polymorphism“ is used according to the Food and Drug 

Administration’s Abbreviated New Drug Applications Guidance (ANDA) [10]. Polymorphic 

forms in this context refer to crystalline and amorphous forms as well as solvate and hydrate 

forms. 

 • Crystalline forms have different arrangements and/or conformations of the molecules in a 

crystal lattice 

• Amorphous forms consist of disordered arrangements of molecules that do not possess a 

distinguishable crystal lattice 

• Solvates are crystal forms containing either stoichiometric or nonstoichiometric amounts 

of a solvent. If the incorporated solvent is water, the solvate is commonly known as a 

hydrate 

Exceeding this definition, within the context of this work also amorphous forms showing 

more or less liquid behavior are comprised in the term polymorph. The liquid can be formed 

by molecular interaction with solvent and antisolvent molecules. 

 

Nanoparticle 

Currently an internationally accepted definition of nanoparticles is missing [11]. As specific 

size related medical effects are not strictly limited to a certain particle size cut off, within the 

context of this work nanoparticles are defined as particles with a mean volume weight size of 

at most 1000 nm. If not pointed out elsewhere, the term particle is used synonymously for 

droplets, crystals or solid particles in general. 

 

Dispersion 

The term dispersion includes formulations containing a dispersed solid phase, a dispersed 

liquid phase or mixtures of both.  
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Notations 

1.1. LATIN LETTERS 

A interfacial surface area, m2 

ANDA Abbreviated New Drug Applications Guideline 

API active pharmaceutical ingredient 

BCS  Biopharmaceutical Classification System 

Bhom rate of homogeneous nucleation, m
-3 

s
-1

 

BHT 2.6-di-tert-butyl-4-methylphenol, butylated hydroxytoluene 

C concentration of the dissolved drug, mol m
-3

 

C
*
 concentration of the drug in a saturated solution, mol m

-3
 

C1, C2 solubility of particles with diameter d1 and d2,  mol m
-3

 

CMC critical micelle concentration, kg m
-3

 

Cs saturation solubility/solute concentration in the diffusion layer, mol m
-3

 

Cx concentration in the bulk dissolution medium at time x, mol m
-3

 

d1, d2 particle diameter, m 

d10, d50, d90  10
th
, 50

th
 and the 90

th
 percentile of the particle size distribution 

DAB diffusion coefficient, m
2
 s

-1
  

dW/dt dissolution rate, mol s
-1

 

DPPC dipalmitoyl phosphatidyl choline 

DPPG dipalmitoyl phosphatidyl glycerol 

DSC differential scanning calorimetry 

f-d force-distance 

FDA Food and Drug Administration 

G Gibbs free energy, kJ 

Glin linear growth rate, m s
-1

 

h boundary layer thickness, m 

H  enthalpy, K 

HPMC hydroxypropyl methyl cellulose 

HTS high throughput screening 

i.d. inner diameter 

k  Boltzmann constant, 1.381 
. 
10

-23
 J K

-1
 

KSP solubility product, kg m
-3

 

LogP octanol-water partition coefficient 

http://en.wikipedia.org/wiki/Enthalpy
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LCST lower critical solution temperature, K 

m total particulate mass concentration, kg m
−3

 

M molecular weight, kg kmol
-1

 

MPEG-2000-DSPE  1,2-Distearoyl-phosphatidylethanolamine-methyl-polyethyleneglycol conjugate-2000 

(MPEG-2000-DSPE) 

N total number concentration of particles, m
−3

 

NA Avogadro number, 6.023 
. 
10

26
 k mol

-1
 

NCE new chemical entities 

P  pressure, N m
-2

 

Pa  hydrostatic pressure outside a dispersed droplet, N m
-2

 

PBA population balance approach 

PC pressure control 

PCS photon correlation spectroscopy 

Pd  pressure inside a dispersed droplet, N m
-2

 

r vapor or solubility pressure of a particle with radius r, N m
−2

  

PVP polyvinylpyrrolidone; Povidone K-12 

∞ solubility pressure of a particle with an infinitely big radius, N m
−2 

 

Q  flow rate, m
3
 s

-1
 

r  particle radius, m 

R ideal gas constant, 8.314 J mol
-1

 K
-1

 

R
2
 coefficient of determination 

s detected light intensity distribution vector 

S entropy, J K
-1

 

s
*
 estimated light intensity distribution vector 

S
*
 supersaturation  

Sh Sherwood number 

SR sample receptacle 

STDEV standard deviation 

t time, s 

T  temperature, K 

TC temperature control 

Tg glass transition temperature, K 

TK Kauzmann temperature, K 

Tween 80  polyoxyethylen(20)sorbitan monooleate 

U internal energy, J 

UCST upper critical solution temperature, K 

http://en.wikipedia.org/wiki/Internal_energy
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umean mean velocity in the main tube of a mixer, m s
-1

 

V volume, m
3
 

VDIS effective volume in which the main turbulent dissipation of energy occurs, m
3
 

Vm molecular volume, m
3
 

XRD X-ray powder diffraction 

 

1.2. GREEK LETTERS 

 interfacial tension or surface tension,  J·m
−2

 

γCL interfacial energy, J m
-2

 

ε rate of energy dissipation in the turbulent flow per unit mass of the fluid (specific 

power input), J kg
-1

 s
-1

  

ζ pressure drop coefficient 

ηC dynamic viscosity of the continuous phase, Pa s 

λ0 size of the smallest turbulent eddies, m 

dµ chemical potential difference of a dissolved substance compared to its chemical 

potential in a saturated solution 

dµ
*
 chemical potential difference between a solid and the corresponding dissolved 

substance 

ρC density of the continuous phase, kg m-3
 

ρF density of the fluid, kg m
3
 

ρp density of the precipitate, kg m
-3

 

ρs density of a particle, kg m
-3

 

 mixing time, s 

τmicro-mixing micro mixing time, s 

ν kinematic viscosity, m
2
 s

-1
 

χ volume-equivalent particle diameter, m 

χc critical nucleus size (at ∆G = 0), m 
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Chapter 1. Introduction 

1.1. BACKGROUND 

Until the 1980s drug development was mainly based on the empirical screening of potential 

active pharmaceutical ingredients (API). Lead structures had often undergone considerable 

scientific investigation before being selected as a lead. Many of these substances derived 

from observed clinical side effects of already marketed drugs, by variation of natural products 

or based on a chemistry focusing on the preparation of small and structurally comparably 

simple compounds. In consequence, within the development process those candidates 

showing the most undesirable physico-chemical properties such as chemical instability or low 

aqueous solubility were eliminated. 

With the rise of high throughput screening (HTS) and combinatorial chemistry in the 

pharmaceutical industry, the automated screening of thousands of substances in in vitro 

assays became possible. Drugs were no longer solubilized in aqueous media, but more often 

in organic solvents, offering an applicability of the required assays to drug candidates with a 

wide structural diversity. Outcome of this development is a continuously increasing amount 

of poorly soluble drugs in the pipelines of pharmaceutical companies, meeting the HTS 

requirements, but failing in the aqueous environment of real life applications [12-14]. While 

about 40% of the marketed drugs show poor solubility, 70-90% of the new chemical entities 

(NCE) in the pipelines of pharmaceutical companies are pertained [15, 16]. They are 

appointed to classes II and IV of the Biopharmaceutical Classification System (BCS), 

meaning that solubility is the crucial factor for restraining their bioavailability (Figure 1). 
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Figure 1: Classification of marketed drugs (left) and NCE (right) according to the Biopharmaceutical 

Classification System [15] 

 

The need for new technological platforms to address these pipeline requirements led to the 

development of an array of formulation techniques and processes, including the use of 

cosolvents, nanosizing of the drug substance, complexing agents, surfactant-based methods, 

lipid-based approaches, solid dispersions and solutions, supersaturating drug delivery systems 

and the use of polymeric micelles [17-27]. Among these, nanosizing combines the advantage 

of an intrinsically high solubilization of the drug compounds with the applicability of very 

high drug loads, both for oral as well as parenteral applications. Its wide applicability makes 

it the mean of choice especially for neutral drug molecules. 

 

1.2. DEPENDENCE OF DRUG SOLUBILITY ON PARTICLE SIZE 

For many poorly soluble compounds, a high saturation solubility is the main factor assigning 

for the success or failure of a certain formulation approach. Saturation solubility is however 

not a constant, but depends on the kind and pH of the solvent, the temperature, the physical 

state and the particle size of the solute [28]. While in many cases not all of these factors can 

be controlled by the manufacturer, particle size is a mean that can be extensively influenced 

within the development of a given formulation. Based on fundamental physical principles, it 

has the potential to tremendously increase a drug’s bioavailability without the need for the 

additional use of adjuvants. 
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The dependence of drug solubility on particle size is described by the Ostwald-Freundlich 

equation (Equation 1, [29]), where R represents the ideal gas constant, T is the temperature, 

M is the molecular weight of the solute, C1 and C2 are the corresponding solubilities of 

particles with the diameters d1 and d2, γCL is the interfacial energy and ρs is the density of the 

particle. It states that the further particle size is decreased, the higher is the solubilization. 

While this effect is negligible in the µm-range, solubilization becomes most effective by 

application of nanoscopic material. 
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Equation 1 

 

According to Noyes and Whitney (Equation 2, [30, 31]), decreasing particle size also 

increases the dissolution rate, as it leads to a surface enlargement of the material. This is of 

advantage, as rapidly reaching the saturation solubility maximizes drug absorption and 

bioavailability. It has also been postulated, that in agitated systems a decrease in particle size 

lowers the thickness of the hydrodynamic layer surrounding the particles and thereby the 

diffusion distance for the dissolved material [32]. In the Noyes-Whitney equation dW/dt is the 

dissolution rate, DAB is the diffusion coefficient, A is the interfacial surface area, h is the 

thickness of the boundary layer and Cs and Cx are the saturation solubility respectively the 

concentration of solute in the bulk dissolution medium time x. 
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Equation 2 

 

The accompanying increase in solubility pressure is described by the Kelvin equation 

(Equation 3, [33]), where Pr /P∞ represents the ratio of the solubility pressure of a particle 

with a given radius r and a particle with an infinitely big radius; is the interfacial tension. 

Originally developed for evaluating the vapor pressure of a liquid, the Kelvin equation is 
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equally applied for both, liquid and solid dispersed phases [34]. However, it is not the size 

alone, also the interaction between particle and surrounding liquid plays a key role. Solubility 

pressure and saturation solubility depend on the interfacial tension between the dispersed and 

the surrounding continuous phase, providing additional formulation space for the developer.  

 

TRr

M

P

Pr
2

ln 


 

Equation 3 

 

1.3. THE PHYSICAL STATE AND DRUG SOLUBILITY 

51% of small organic molecules show polymorphism [35]. Polymorphs have varying 

intermolecular interactions and in consequence can differ from each other by changed 

mechanical, thermal, electrical or optical properties. The crystalline state can be defined as 

the most stable and lowest energetic state for a solid. However, different energetic levels can 

be expected for each polymorph and amorphous form (Figure 2). The energetical state is 

represented by the Gibbs free energy function (Equation 4, [36]), where the internal energy 

U is the total of the kinetic energy (motion of molecules) and the potential energy (vibrational 

and electric energy of atoms within molecules or crystals) [37]. H represents the enthalpy of 

the system, T and S the temperature and the entropy, P the pressure and V the volume. It is 

the change in Gibbs free energy G within a solution process that determines a substance’s 

solubility. Polymorphs with a high entropy and a low enthalpy change upon dissolution will 

hence show a general tendency towards higher solubilities (Figure 2). 

 

TSPVUTSHG   

Equation 4 
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Figure 2: Potential energies of different polymorphic forms of a substance (modified from [38]) 

 

Beyond its liquid phase, it is the amorphous or the least stable crystalline form of a substance 

that provides the highest solubility. Hancock and Parks [39] found a 1.1 to 5 fold increase in 

solubility between different crystal forms of a drug, while a solubility improvement by 

factors of 4.4 to 24 between the amorphous phase and a corresponding crystalline phase were 

obtained. The solubility of a liquid derivate can be expected to be even higher. The 

preparation and, even more importantly, stabilization of maximally disordered condensed 

matter is hence critical in formulation development. 

 

1.4. PREPARATION OF NANODISPERSIONS 

Nanodispersions can be either prepared by “top-down” techniques, such as milling [40-44] or 

high pressure homogenization [45-47] or by bottom up approaches, where nanoparticles are 

prepared by self-assembly of their constituents. Bottom up approaches usually involve 

changes of a solute’s solubility based on physical or chemical triggers, e.g. due to changes in 

temperature [48], ionic strength [49] or the use of antisolvents [5, 9, 50], resulting in 

precipitation of the solute. As pointed out above (Section 1.3) most advantageous in terms of 

solubility improvement are nanodispersions containing a dispersed phase with high Gibbs 

free energy, e.g. an amorphous polymorph. While top-down techniques often require 

substantial energy for transforming a crystalline sample in its amorphous equivalent, this aim 
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can often be reached in an easier way by bottom up techniques. Within precipitation 

processes most substances intrinsically manifest in their least stable form [51]. Reasons 

therefore are mainly kinetical, when phase separation occurs so rapidly that the solute 

molecules have no time to assemble into an energetically favorable crystal lattice. The faster 

phase separation occurs, the more likely is the chance that a highly energetic precipitate is 

obtained. 

Among the bottom up techniques antisolvent precipitation represents a highly effective, low 

priced and scalable approach. Briefly, a poorly soluble compound is dissolved in a solvent 

which is subsequently quenched with an antisolvent, resulting in the precipitation of the 

solute. Solvent and antisolvent need to be completely miscible, so that upon addition of the 

antisolvent the solubility limit of the dissolved compound is exceeded and phase separation 

occurs. A bulk liquid phase is obtained in which the precipitated compound is dispersed. In 

such processes phase separation typically occurs within a time frame of µs to ms [5, 6, 52], so 

that with a very high likelihood amorphous precipitates can be obtained [9, 34, 53, 54].  

The mixing process of solvent and antisolvent occurs by forming vortices that fractally 

decrease in size down to a minimum scale [6]. Beyond this micromixing scale, mixing occurs 

due to diffusion controlled interpenetration of the solvents and solute. Phase separation 

occurs at the interface or inside the solvent/antisolvent layers formed by the mixing process 

(Figure 3). The particle formation process can be directly triggered by varying the mixing 

speed until blending occurs on a time scale approaching that of the diffusion controlled phase 

separation process. It is hence a key parameter for controlling the particle formation process 

in a well directed manner. The faster the mixing process is, the smaller the particles sizes 

obtained typically are. 
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Figure 3: The influence of mixing on particle formation [6] 

 

A wide variety of mixing devices is used within precipitation processes, such as static mixers 

[9] or different kinds of batch reactor vessels which can be equipped with multiple sample 

and sensor ports [55] (Figure 4). Most reproducible results and defined mixing conditions are 

provided by rather simple structured setups, such as y- or t-shaped impinging jet reactors 

[56]. Especially the latter are well known and mathematical models exist coupling the mixing 

process to the precipitation event, thereby allowing for a better understanding of the impact 

of certain process parameters [57, 58]. 

         

Figure 4: Different kinds of mixing devices used in antisolvent precipitation. Left: static mixer [9], 

middle: batch reactor [55], right: impinging jet reactor 
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Although the flow patterns in structurally simple mixers are known, the particle formation 

process itself generally lacks detailed understanding. The mechanisms for particle formation 

are often unclear, especially in cases were structurally complex organic molecules are 

involved. Gaining control of the process is therefore often difficult and a matter of try and 

error in terms of process optimization. Besides mixing also the solvent composition, solute 

concentration and temperature are known to have certain effects [59, 60], but it often remains 

unclear and unpredictable to what extends changes in these parameters affect the final 

particle size distribution. 

Independent from the phase separation process, the stability of the obtained dispersions plays 

a key role. An antagonism exists between the need of increasing drug solubility and the 

stabilization of the dispersions. Aqueous dispersions prepared by antisolvent precipitation in 

most cases contain about 1-10% solvent. In combination with the high solubility of the 

metastable precipitate, this leads to tremendous stabilization issues due to Ostwald ripening, 

agglomeration and crystallization of the particles [5, 34]. Ostwald ripening means the mass 

transfer from smaller particles to bigger ones of the same kind due to an increased surface 

energy of the smaller particles. Crystallization on the other hand means the formation and 

propagation of a purely crystalline solid phase by conversion from either a solution or from 

an amorphous substrate with a high degree of disorder. Especially for pharmaceutical 

applications the clearly defined physical state of the drugs and excipients is a precondition for 

permanently assuring high performance of a product. It is hence stringent to find means to 

assure the morphological stability of the dispersions in order to gain the freedom for 

downstream processing of the formulations, e.g. solvent removal, concentration steps or 

drying. 
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1.5. OBJECTIVES OF THE THESIS 

The present work was accomplished as part of a cooperation project between the 

Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-

Maximilians-University Munich, the Chair of Particle Technology, Friedrich-Alexander-

University Erlangen-Nuremberg as well as the industrial partner Abbott GmbH & Co. KG, 

Ludwigshafen. Objectives of the thesis were 

1) the preparation of nanosuspensions of poorly soluble drugs by means of antisolvent 

precipitation. For obtaining the highest possible solubilizing effects the experiments 

aimed on obtaining dispersions containing amorphous drug. 

 

2) to systematically investigate the process parameters influencing the particle formation 

process for gaining a deeper understanding of the mechanisms influencing the particle 

formation process. 

 

3) the application and refinement of a mathematical model for the simulation of nucleation 

based particle formation processes. The model was thought to allow to estimate and to 

predict the impact of certain process parameters. Comparison of the model with 

experimental data was intended to be used to identify critical process parameters and to 

direct the product characteristics. In a best case scenario the model was thought of being 

capable to predict the suitability of certain drugs/solvents for antisolvent precipitation. 

 

4) to stabilize the drug dispersions in size and under maintaining their morphology. Short 

term stabilization was thought to be accomplished to allow for further downstream 

processing and the implementation of additional means necessary for a permanent 

stabilization of the dispersions. The excipients used were selected for enabling parenteral 

as well as peroral applicability. 
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Depending on the specific expertise of the cooperation parameters, experiments were partly 

accomplished at Abbott GmbH & Co. KG, at the University Erlangen-Nuremberg or at the 

Ludwig-Maximilians-University in Munich. In cases where a transfer of equipment between 

the research sites was not possible, experiments were accomplished using equivalent 

equipment and measurement conditions at both sites. Each individual set of measurements 

was accomplished using the same instrumentation, for assuring innerexperimental 

comparability of the results. 
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Chapter 2. Simulation of the Precipitation Process 

2.1. ABSTRACT 

Antisolvent precipitation has been widely investigated in the pharmaceutical industry [9, 34, 

59, 61]. However, although technologically closely related to the widely applied 

crystallization techniques, antisolvent precipitation rarely succeeded to reach a commercial 

stage in the field of amorphous drug delivery systems. Critical in this context are poorly 

understood processes as well as the need for producing stable polymorphs with sufficiently 

long shelf lives. 

Using antisolvent precipitation for the preparation of nanodispersions, the focus of this work 

was put on gaining detailed insight into the mechanism governing particle formation. It 

should enable us to further optimize this technology towards a tailor made drug delivery 

system. A simulation model was developed based on the density, the interfacial properties 

and the solubility profile of the lipophilic model drug fenofibrate. This mathematical 

approach allows for a theoretical, time resolved analysis of the particle formation process 

including rise and fade of supersaturation, nucleation and growth of the particles. In 

agreement with the simulations, particle size was found to decrease under intense mixing 

conditions, allowing for the preparation of particles with a specific mean particle size under 

defined flow rates. The efficiency of the mixing process of solvent and antisolvent was 

judged based on pressure drop measurements and compared to the simulation results. Mixing 

was found to be surprisingly energy consuming, implementing a relative ineffectiveness of 

the mixing process. The dispersions obtained by antisolvent precipitation showed a 

tremendously increased solubility compared to the crystalline drug. The precipitates were 

found to be noncrystalline, as indicated by an extreme instability and the onset of 

crystallization immediately after sample preparation. Based on the mathematical model 

developed, further investigations on the details of the phase separation process became 

possible. 



Chapter 2: Simulation of the Precipitation Process 

___________________________________________________________________________ 

 

 38 

2.2. INTRODUCTION 

For liquid solutions both upper and lower critical solution temperatures and compositions can 

exist (Figure 5) [31, 62-64]. At the critical temperature/composition solute and solvent 

become completely miscible. Below an upper critical solution temperature (UCST) or above 

the lower critical solution temperature (LCST) a miscibility gap exists where phase 

separation can occur. The region in a phase diagram in which composition and temperature 

for a mixture leave the thermodynamically stable range is called metastable. It is enclosed by 

the binodal and spinodal curves. The binodal curve represents the border to 

thermodynamically stable conditions. When crossing the binodal from the 

thermodynamically stable site, local concentration density fluctuations such that one part of 

the system gets more concentrated on the expense of another lead to local supersaturation, 

which can be diminished by separation of the solute and subsequent growth of the dispersed 

phase. 

 

Figure 5: Phase diagram of a mixture showing upper and lower critical solution temperatures (adopted 

from [62, 64]) 

 

Phase separation can occur due to two mechanisms, nucleation and growth or spinodal 

decomposition. Nucleation is a phase transition were strong changes in composition take 
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place, but which has a small spatial range, typically resulting in the formation 

droplets/particles of well defined size. Shifting a sample further across the binodal curve 

leads to increased destabilization of the system; the likelihood of nucleation increases 

(Figure 6). At infinitely high likelihood, the spinodal curve is reached. At the spinodal curve 

no thermodynamical barrier for phase separation exists anymore. Precipitation does no longer 

occur due to nucleation, but due to spinodal decomposition. Small degrees of compositional 

changes result in extended spatial decomposition. The phase separation product is hence no 

longer well defined, but demulsification results in spontaneously forming large scale 

precipitates. The occurrence of spinodal decomposition from solutions of a solid in a liquid 

phase is considered unlikely, due to the commonly broad width of the metastable zone [65]. 

Nevertheless, although nucleation remains the predominant phase separation mechanism, 

recent research lead to the conclusion that the transition between spinodal and binodal 

demixing is gradual and that short lived spinodal stages can occur prior to particle 

formation [6]. 

 

Figure 6: Dependency of the phase separation mechanism on the degree of supersaturation 
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By comparison of experimental data and model based evaluation, the mathematical 

description of precipitation processes can be of extensive use in understanding phase 

separation processes in more detail, allowing for the differentiation between the individual 

phase separation mechanisms. 

Generally, for inorganic materials the mechanisms controlling precipitation processes are 

well known and mathematical models exist describing these processes. State-of-the art are 

simulations using the population balance approach, which is capable to simulate the particle 

formation kinetics and to predict particle size distributions. For some inorganic compounds 

where the necessary physico-chemical parameters are known, even quantitative predictions of 

the expected particle sizes can be made [66, 67]. Simulations of the underlying 

hydrodynamics and the impact of mixing effects are well established. 

The development of such models of precipitation processes where organic molecules and 

solvents are involved is however complicated, and requires distinct additional skills. 

Crystallization processes may be impaired by the time-determining step of surface integration 

of the more complex molecules into an oriented crystalline polymorph of the organic 

compound. Tremendous changes in solvent composition and interfacial energy occur upon 

blending solvent and antisolvent. Especially variations in the interfacial energy are expected 

to have a main impact on nanoparticle formation processes as it affects the mass transfer to 

and from a particle as well as its wetting behavior. 

Maybe due to these reasons, only a limited amount of publications exist describing such 

experimental setups [68-70]. After all, the authors by implication agree that the general 

principles of particle formation are the same between organic and inorganic compounds as 

well as aqueous and organic solvent systems. One purpose of this work was to develop a 

mathematical model describing precipitation processes based on experimental data and 

known physicochemical characteristics of solvent, antisolvent and solute. The model was 

based on the experiences previously gained on the homogeneous nucleation of inorganic 

compounds and further developed to meet the special requirements for the fenofibrate system 

under investigation. With this model we aim to critically investigate key process conditions 

and to determine by what means particle formation can be influenced in antisolvent 

precipitation. Also the hydrodynamic effects within the mixing process were evaluated and 

conclusions were drawn about the efficiency of the mixing process. 
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2.3. MATERIAL AND METHODS 

2.3.1 EQUIPMENT AND SAMPLE CHARACTERIZATION 

Fenofibrate was used as a model compound for the investigation of the mechanisms 

governing antisolvent precipitation. It is a generic antihypercholesterolemic and 

antihypertriglyceridemic drug; its chemical structure is shown in Figure 7 [71]. Based on a 

literature research of compounds successfully used in antisolvent precipitation, fenofibrate 

was selected due to its physicochemical properties (melting point 80°C), molecular weight 

360.83 g/mol, aromatic structure, LogP 4.8), as well as its solubility in the ethanolic phase 

(“soluble” according to Pharm. Eur.) and aqueous phase 2.3 mg/l (calculated value according 

to [71]). Fenofibrate was a generous gift from Abbott GmbH & Co. KG Ludwigshafen, 

Germany. It was used in Pharm. Eur. quality. 
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Figure 7: Chemical structure of fenofibrate 

 

For the experiments fenofibrate was dissolved in analytical grade, undenatured ethanol 

absolute. The ethanol was filtered using 0.2 µm cellulose acetate membrane filters 

(Macherey-Nagel, Düren, Germany) for reducing potentially contained particulate impurities. 

The water used as antisolvent for the preparation of the dispersions was highly purified water 

prepared with a Purelab Plus laboratory water purification system (conductivity 

< 0.056 µS/cm; ELGA LabWater, Celle, Germany). Dispersions were prepared by quenching 

a 5% (w/w) ethanolic fenofibrate solution with water in a 1+5 ratio. The two solutions were 

either mixed by pipetting one to the other or by using an impinging jet reactor consisting of a 

mixing chamber fed by two syringe pumps (100DX Syringe Pump, Teledyne Technologies 

Incorporated, Thousand Oaks, USA). 

http://en.wikipedia.org/wiki/Hypercholesterolemia
http://en.wikipedia.org/wiki/Hypertriglyceridemia
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A t-shaped mixing chamber with an inner diameter of 0.5 mm (Klaus Ziemer GmbH, 

Langerwehe, Germany) was used for preparations with the syringe pumps. The outlet of the 

mixing chamber as well as the connections to the pumps consisted of PEEK tubing with the 

same inner diameter (Figure 8). For obtaining a complete flow rate dependent particle size 

distribution profile, fenofibrate dispersions were prepared at total flow rates of 12, 24, 36, 48 

and 60 ml/min (combined flow from both pumps). All dispersions were prepared without the 

use of excipients for not altering the structure of the dispersed phase or influencing the 

particle formation process. 

 

 

Figure 8: Setup of the impinging jet reactors equipped with a t-shaped mixing chamber for preparation 

of the drug dispersions (image modified from www.isco.com) 

 

After dilution of the samples with deionized water, particle size was determined by static 

light scattering using a Horiba LA-950 (Retsch Technology, Haan, Germany) or a 

Mastersizer 2000 (Malvern Instruments, Herrenberg, Germany). An appropriate optical 

model was established according to Kinoshita et al. [72]. Thereby the detected intensity of 

scattered light s is mathematically transformed according to the Fraunhofer and Mie theory 

into a particle size distribution and back again into the estimated light intensity distribution 

s
*
. The conformity of s and s

*
 as a function of the refractive index was calculated with the 
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built-in software of the Horiba instrument and the optimum refractive index was converged 

towards s
*
 being very close to s. The optical model thus obtained used a refractive index of 

1.56 and an absorption coefficient of 0.012. The Span value as a measure for the particle size 

distribution was calculated according to Equation 5. The d10, d50 and d90 represent the 10
th

, 

50
th

 and the 90
th 

percentile of the particle size distribution, respectively, as measured by 

volume distribution. 

 

50

1090

d

dd
Span


  

Equation 5 

 

The results were verified by photon correlation spectroscopy (PCS) with a Zetasizer Nano ZS 

(Malvern Instruments, Herrenberg, Germany). Therefore samples were partly filtered using 

Minisart syringe filters (Sartorius AG, Göttingen, Germany) with a pore size of 1.2 µm to 

remove coarse contaminations which might disturb the PCS measurements. Although the 

particle sizes were measured directly after preparation of the dispersions, the particles were 

expected to have already undergone ripening due to growth and agglomeration. Such ripening 

effects typically start already within the precipitation process, even before the phase 

separation stops. The measured particle size distributions do hence not accurately represent 

the size of the primary particles formed. For estimating the extent of agglomeration, zeta-

potential measurements were accomplished by electrophoretic light scattering using a 

Zetasizer Nano ZS (Malvern Instruments, Herrenberg, Germany). The dispersions used for 

the zeta-potential measurements were prepared at total flow rates of 60 ml/min, using a t-

piece with 0.5 mm i.d. (Klaus Ziemer GmbH, Langerwehe, Germany). The diluted 

dispersions were investigated directly after sample preparation. The pH of the dispersions 

was automatically adjusted with 0.1 N NaOH and HCl, using the MPT2 multipurpose titrator 

(Malvern Instruments, Herrenberg, Germany). The voltage of the Zetasizer Nano ZS was set 

to 40 V; the number of runs was set to 30. After each run the system was rinsed with ethanol 

and desalted water. 
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Additionally, samples were monitored with a Nikon Labophot light microscope equipped 

with a JVC digital camera Model JVC TKC 1380E. Crystallization of the samples was 

monitored by using crossed polarized filters.  

The true density of fenofibrate was determined using an AccuPyc 1330 helium gas 

pycnometer (Micromeritics, Norcross, USA). 

Parsival software (CiT-Computing in Technology GmbH, Rastede, Germany) was used for 

simulating the particle formation process.  

 

2.3.2 SOLUBILITY CHANGES WITHIN THE MIXING PROCESS 

Upon mixing ethanolic and aqueous phase, the drug molecules pass a transient solvent 

gradient, starting from 100% ethanol and ending at approximately 16.7% (V/V) ethanol, 

which is the ethanol concentration in the final dispersion. For simulating the precipitation 

process, a solubility profile of fenofibrate in ethanol-water mixtures was accomplished by 

adding different amounts of water to a saturated ethanolic fenofibrate solution. Thereby the 

dispersions were adjusted to a defined ethanol concentration. Samples were drawn 0.75, 3, 

10, 20 and 40 min after preparation of the dispersion. They were sterile filtered using 

Minisart RC 15 filters with a pore size of 0.2 µm (Sartorius AG, Göttingen, Germany) before 

the drug concentration in the supernatant was determined spectrophotometrically using a 

Shimadzu densitometer CS-9301PC (Shimadzu Deutschland GmbH, Duisburg, Germany). 

The data set for each ethanol concentration was fitted to an exponential function and 

extrapolated to the time point of the preparation of the dispersion (0 min). Based on the so 

obtained solubility profile, the solubility of fenofibrate in a given solvent composition within 

the precipitation process was calculated. As dissolved fenofibrate showed absorption at 

wavelengths between 200 and 380 nm, secondary phase separation of the supernatant could 

additionally be recorded at a wavelength of 500 nm for differentiating dissolved drug from 

dispersed material.  
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2.3.3 ACCOMPLISHMENT OF THE SIMULATIONS 

A numerical model previously developed and successfully used by the Chair of Particle 

Technology, Friedrich-Alexander University Erlangen-Nuremberg, was used as basis for 

simulating the mixing and phase separation process of fenofibrate. Previously exclusively 

used for the simulation of phase separation processes of inorganic compounds, the model was 

refined to meet the specific needs required for describing the phase separation or complex 

organic molecules. The model was based on homogeneous nucleation, as this phase 

separation mechanism is known to predominantly occur in systems involving high 

supersaturations [73] and to be widely independent from the physical state and structural 

nature of the compound used. Secondary processes as aggregation or ripening were neglected 

in the model due to the short time span between sample preparation and characterization 

(< 2 min) and the relatively high zeta-potential of the drug particles. 

Current state-of-the-art modeling of polydisperse particulate processes is based on the 

population balance approach (PBA). In this case, the complete PBA is simplified to a 

monomodal method of moment model, calculating the 0
th

 and the 3
rd

 moment. Consequently 

the total number and mass concentrations of the particles are computed according to 

Equation 6 and Equation 7 [74], a corresponding mean particle size is calculated according 

to Equation 8 [74]. 

 

homB
dt

dN
  

Equation 6 
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Here N is the total number concentration of the particles, t is the time, Bhom is the rate of 

homogeneous nucleation, m is the total particulate mass concentration, ρp is the density of the 

precipitate, χc is the critical nucleus size, χ is the volume equivalent particle diameter and Glin 

in the linear growth rate. 

 

As growth of the obtained particles was expected to be diffusion limited rather than 

depending on surface integration of adsorbing molecules, the growth rate is particle size 

dependent and can be written as shown in Equation 9 [74], where Sh is the Sherwood 

number, KSP is the solubility product ρc is the density of the continuous phase and S
*
 is the 

supersaturation. 

 



 1
2

* 





SMKDSh

dt

d
G

C

SPAB

lin

 

Equation 9 

 

Additionally to the precipitation process, the fluid dynamics in the mixer were described by a 

simple mixing model, estimating the mixing time via the pressure drop measured [58]. 

 

2.3.4 MIXING CONDITIONS 

In the mixing process described here, two phases are combined in a t-shaped mixing 

chamber. One of these phases is an ethanolic drug solution, the other one is water which is 

used as antisolvent. Within the mixing process vortices of the blended phases are formed, 

which decrease in size through energy dissipation until a minimum vortex size is reached, the 

so called Kolmogorov eddies. Below this size mixing occurs on a molecular level by 

diffusion controlled interpenetration of the two phases. The energy introduced to the system 

is transported from bigger to smaller vortices (energy cascade) until it is converted into heat 

by viscous dissipation. The global energy dissipation of the mixing process can be calculated 

according to Equation 10 [75], where ε is the rate of energy dissipation in the turbulent flow 
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per unit mass of the fluid (specific power input), p is the pressure, Q is the flow rate and VDIS 

is the effective volume in which the main turbulent energy dissipation occurs. 

 

DISC V

Qp





  

Equation 10 

 

Knowing the energy dissipation, the theoretical size of the Kolmogorov eddies can be 

determined according to Equation 11 [75], where λ0 is the size of the smallest turbulent 

eddies and ηC is the dynamic viscosity of the continuous phase. ηC and the density of the 

continuous phase ρC were obtained from [76]. 

 

4/34/34/3

0

 CC   

Equation 11 

 

In the setup used within this work, the intensity of mixing is experimentally accessible by 

measuring the pressure drop. The pressure drop describes the pressure difference measured 

between simultaneously perfusing ethanolic and aqueous phase through the mixing setup and 

doing so with the liquids individually, without having the actual mixing effect. It is known 

that in t-mixers the pressure drop arises almost completely from the impinging jets of the two 

feed streams [77] and hence represents the major amount of viscous dissipation and friction 

in the mixing process. The higher the pressure drop of a system is, the more energy is 

consumed for the mixing process and the more intense will be the interpenetration of the 

phases. The pressure drop typically depends on the square of the mean velocity as shown by 

Equation 12 [52], where ρF is the density of fluid, ζ is the pressure drop coefficient and umean 

is the mean velocity in the main tube of mixer. 
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2

2

1
meanF upp    

Equation 12 

 

The pressure was recorded with built in sensors of the syringe pumps at total flow rates of 12, 

24, 36, 48 and 60 ml/min, using the t-shaped 0.5 mm i.d. mixing chamber. The results were 

compared to a mathematical model estimating the energy dissipation for the given setup. 

Therefore, for Schmidt-numbers smaller than 4000 the characteristic micro mixing time is 

estimated as a function of the kinematic viscosity  and the specific power input ϵ, and was 

calculated according to Equation 13 [78]. 

 




  2.17mixingmicro  

Equation 13 

 

In order to model the influence of mixing on the phase separation process, the simulation 

approach chosen starts with a purely ethanolic solution of fenofibrate and continues with the 

constant addition of water. After a mixing time the final experimental conditions of 

16.7% (V/V) ethanol are reached; consequently the solubility is reduced and a supersaturated 

solution is generated. For comparing the simulation with the experimental data, the 

theoretical micro-mixing time micro-mixing, which characterizes the mixing time at small length 

scales, is estimated as a tenth of the mixing time [79]. 

 

2.3.5 PARTICLE FORMATION 

The amount and size of precipitate formed depends strongly on the degree of supersaturation. 

The more intense mixing is, and the stronger the reduction of the solutes’ solubility is, the 

higher will be the resulting supersaturation. The supersaturation S
*
 is defined by the 

difference of the chemical potential µ of the dissolved substance compared to a saturated 

solution Equation 14 [80].  
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*ln S
TR

dµ
  

Equation 14 

 

For our purpose, supersaturation can be expressed as the concentration of a substance in 

solution C divided by its saturation concentration C
*
 (Equation 15) [81]. 

 

*

*

C

C
S   

Equation 15 

 

Precipitation can occur due to local concentration fluctuations by homogeneous or 

heterogeneous nucleation or by spinodal decomposition. While spinodal phase separation 

occurs spontaneously, for nucleation based decomposition an energy barrier has to be 

overcome in order to form thermodynamically stable nuclei. Whether phase separation of 

small molecules occurs due to nucleation or spinodal decomposition is, however, 

controversially discussed, as it is not always possible to clearly distinguish between both 

phenomena [5]. 

Assuming that phase separation occurs due to homogenous nucleation, this process can be 

described by the nucleation rate Equation 16 [52]. Here DAB is the diffusion coefficient, KSP 

is the solubility product, S
*
 is the supersaturation, NA is the Avogadro number, γCL is the 

interfacial energy, k is the Boltzmann constant, T is the temperature and Vm is the molecular 

volume. 
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Equation 16 

Homogeneous nucleation can occur when a certain amount of molecules collide in solution, 

forming clusters. The energy ∆G needed to form a nucleus with the radius r is given by 
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Equation 17 [82], with µ
*
 being the difference in chemical potential between a solid and the 

corresponding dissolved substance. 

 

CL
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Equation 17 

 

Only for particles of a certain critical size the negative volume part of the function dominates 

the thermodynamically unfavorable positive surface part, the nucleus becomes stable and 

grows by incorporation of additional molecules to the existing particle. In accordance, 

homogeneous nucleation predominantly occurs at very high supersaturations as they are 

known to occur in antisolvent processes [65] and impinging jet reactors [55]. The critical 

nucleus size can be calculated by differentiating the free energy with respect to the nucleus 

radius r to determine the maximum of the free energy, where the critical nucleus size is given 

by Equation 18 [52].  
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Equation 18 

  

Besides supersaturation, the nucleation rate depends mainly on the interfacial energy γCL, 

which determines the interfacial behavior of a particle against the surrounding fluid. When 

the composition of the continuous phase changes within the precipitation process, also the 

interfacial energy is altered significantly. 

γCL can be experimentally determined e.g. according to the Young equation [83, 84], but the 

parameters needed (e.g. surface energy of the solid) are hardly accessible and the results often 

differ in a range unacceptable for the simulations accomplished here [84, 85]. Therefore, the 

interfacial energy was determined by a model based evaluation. Based on simulations 

conducted under assuming perfect mixing conditions the interfacial energy in the model was 
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varied until the identical mean particle size was calculated as measured for the experiment 

with maximum mixing intensity. 

The diffusion coefficient DAB was estimated based on the Stokes-Einstein equation 

(Equation 19, [29]), the molecular volume Vm of fenofibrate was determined based on the 

molecular weight and the density of the drug (Equation 20). 
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Equation 19 
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2.4. RESULTS AND DISCUSSION 

2.4.1 DETERMINATION OF EXPERIMENTAL DATA FOR THE SIMULATION 

MODEL 

2.4.1.1. PARTICLE SIZE AND INTERFACIAL ENERGY 

When preparing nanodispersions of fenofibrate at different flow rates, the mean particle size 

decreased from ~4 µm at a total flow rate of 12 ml to about 250 nm at flow rates of 48-

60 ml/min. Also the particle size distribution became narrower under more intense mixing 

(Figure 9). The flow rates applied correspond to Reynolds numbers between 256 and 1282, 

calculated based on the density and dynamic viscosity of the corresponding ethanol-water 

mixture in the final dispersion. 
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Figure 9: Particle size distributions of fenofibrate dispersions prepared at flow rates ranging from 

12 ml/min to 60 ml/min (mean values of 3 runs per flow rate) 

 

Even at the highest flow rate applied (60 ml/min) some particles up to ~3 µm were observed 

by microscopical observation of the dispersions (Figure 10, left). Although their 

concentration was very low, distinct changes in mean particle size were observed when 

comparing filtered and unfiltered samples by laser diffraction and photon correlation 
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spectroscopy (Figure 10, right). Especially PCS was found to be very sensitive to the 

presence of big particles. 

   

Figure 10: Left: Observation of µm-sized drug particles by microscopical observation. Right: 

Comparison of PCS and laser diffraction data from filtered and unfiltered dispersions prepared at a total 

flow rate of 60 ml/min 

 

Based on the mean particle sizes obtained at different mixing intensities (refer also to Figure 

9), an interfacial energy γCL of 29.8 mJ m
-2

 was determined for an ethanol concentration of 

16.7% (V/V) (Figure 11). This value is in a comparable range as previously observed for 

other organic compounds [68, 86] and was subsequently used for the simulation of the 

precipitation process. 
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Figure 11: Model based evaluation of interfacial energy 

 

The zeta-potential of the dispersed phase in the pH range relevant for the preparation of the 

suspensions (pH ~6) reached values of about -27 mV, and was hence considered sufficient 

for electrokinetical stabilization of the formulations (Figure 12). The relatively high negative 

magnitude of the zeta-potential might be attributed to the adsorption of hydroxide ions to the 

intrinsically nonpolar surfaces of the fenofibrate particles [87].  
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Figure 12: Zeta-potential of fenofibrate dispersions prepared at a total flow rate of 60 ml/min 
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2.4.1.2. DRUG SOLUBILITY 

In the antisolvent precipitation process described here, the solubility of fenofibrate changes 

dynamically within the particle formation process. For process design and modeling the 

drug’s solubility in the whole solvent gradient passed within the precipitation process needs 

to be known. Therefore fenofibrate dispersions were prepared by quenching saturated 

ethanolic drug solutions with different amounts of water. From these dispersions the 

solubility of the drug in the supernatant was determined. Samples were mixed by hand, as the 

low supersaturations generated under weak mixing conditions created particles big enough to 

be completely removed by filtration. The solubility measured hence exclusively derived from 

the dissolved drug and was governed by the amorphous state of the precipitate. As expected, 

the supernatant of the freshly prepared dispersions was indeed supersaturated compared to a 

crystalline dispersion. While the supernatants were clear directly after preparation, phase 

separation occurred within minutes upon storage (Figure 13). 

 

Figure 13: Supersaturation effect in freshly prepared fenofibrate dispersions. After removal of the 

precipitate, secondary phase separation occurred as indicated by a decreasing absorption of dissolved 

drug (280 nm) and an increasing amount of precipitate (500 nm) 

 

The solubility of the drug in the presence of the precipitate continuously decreased over time. 

As it is known that the particle formation process commonly fades within less than 1 min [5, 

6, 52], the described changes in drug solubility were hence attributed to Ostwald ripening and 
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crystallization. Both effects were confirmed by microscopical observation. The rapid decline 

in drug solubility faded about 40 min after preparation of the dispersions. By that time all 

drug had crystallized and an equilibrium solubility was approached (Figure 14). 
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Figure 14: Solubility changes of fenofibrate in freshly prepared dispersions containing 10, 25, 40, 60, 70, 

80, 85, 90 and 99.98 % of ethanol 

 

The equivalent solubilities of fenofibrate at the time of precipitation (0 min) in the different 

dispersions are shown in Figure 15. These values were subsequently used for the 

mathematical modeling of the precipitations. 
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Figure 15: Solubility profile of fenofibrate at time point 0 min. The profile mimics the solvent gradient 

passed within the precipitation process 

 

2.4.2 DRUG DENSITY 

The true density of fenofibrate was determined to be 1.25 g/ml. 

 

2.4.3 OUTCOME OF THE SIMULATIONS 

Based on the experimental data computational simulations of the particle formation process 

were accomplished according to the correlations outlined under Sections 2.3.3 and 2.3.5. 

Assuming a mixing time of 1 ms the precipitation kinetics were studied. The results indicate 

that relevant supersaturation arises not until the ethanol concentration in the continuous phase 

drops below about 20% (V/V) (Figure 16). The occurrence of supersaturation is closely 

followed by the onset of nucleation. Particle formation fades after about 10 ms, while the 

supersaturation is further reduced by particle growth. These simulation results were in good 

agreement with data previously obtained for inorganic materials [6, 52, 74, 88], for which 

similar kinetical processes and time scales were observed. 
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Figure 16: Simulation of the particle formation process. Arising supersaturation is closely followed by 

nucleation and growth of the primary particles 

 

The mathematical model developed was intended to be used for a qualitative description of 

the phase separation process. So it provides feedback about whether and to what extend 

experimental results are in accordance with the presumptions of homogeneous nucleation and 

transport controlled growth. 

 

2.4.4 INTERPRETATION OF THE EXPERIMENTAL RESULTS IN THE CONTEXT 

OF THE MODEL BASED EXPECTATIONS 

A preliminary comparison between simulation and experimental data can already be made 

based on the particle sizes measured when investigating the impact of varying mixing 

intensities. According to classical nucleation theory, the particle size is expected to decrease 

under intensification of the mixing process. The reason therefore is a more rapid 

interpenetration of aqueous and organic phase. The hydrodynamic formation of ethanol-water 

layers leads to an immensely increased size of the interfacial area on the Kolmogorov scale at 

which diffusion controlled precipitation occurs. The fact that the particle size reaches a 

plateau already at total flow rates of 48 ml/min indicates that mixing is optimal for the given 
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setup. In consequence also the particle size distribution would be expected to be more 

homogeneous. However, the presence of particles in the µm-range under intense mixing 

conditions is not covered by the simulations. 

 

2.4.4.1. EFFECTIVENESS OF THE MIXING PROCESS 

The pressure drop for mixing ethanol and water at different flow rates (= blank) followed a 

square function as expected (Figure 17). In contrast, when preparing the dispersions from 

ethanolic fenofibrate solutions and water, the pressure drop surprisingly shows a linear 

dependency on the flow rate. Such a pressure drop profile would only be expected for a flow 

through packages at low Reynolds numbers, which, due to the comparably low particle 

concentrations, is not expected here.  

The difference between blank and the preparation of the dispersion indicates that the mixing 

process is influenced by mechanisms involved in the particle formation process itself. At 

intermediate flow rates more energy is required for the mixing process, while less energy is 

necessary to mix the liquids at high speed.  

 

Figure 17: Pressure drop recorded upon mixing of water and ethanol [■] or with an ethanolic fenofibrate 

solution [♦]. It is a measure for the energy dissipated for the mixing process 

 

Over all, the power input to the system was found to be about three orders of magnitudes 

higher than would have been expected based on the simulation of the mixing process (Figure 
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18). In consequence, particle sizes significantly smaller than the ones actually obtained could 

have been anticipated for optimal process conditions. In reality, mixing might be optimal for 

the given setup, but due to the high energy input required for the process still be ineffective, 

leaving a potential for further particle size reduction by changing size and shape of the 

mixing chamber. In addition to the potential impact of the dispersed phase which is formed 

within the mixing process, the higher energy dissipation might also be a result of 

noninstantaneous mixing of ethanolic and aqueous phase. Although ethanol and water are 

widely considered to mix completely, some evidence can be found in literature that mixing is 

neither necessarily instantaneous nor complete [89, 90]. 

 

Figure 18: Comparison of the experimentally determined specific power input for the mixing process (●) 

and the specific input predicted by simulating the mixing conditions () 

 

The size of the Kolmogorov eddies calculated from the specific power input for the mixing 

process ranges from ~0.9 to 6.5 µm for both, the preparation of the dispersions as well as the 

mixing of the pure solvents. High values are obtained for low mixing intensities and, due an 

increased viscosity of the ethanol-water mixtures [76], for intermediate ethanol 

concentrations around 45% (w/w). The particle sizes obtained at low flow rates are hence 

well in the range of the Kolmogorov eddies. 
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2.4.4.2. SOLUBILIZING EFFECTS OF THE DISPERSIONS 

The primary precipitate obtained was found to be non-crystalline, as was best shown by the 

fact that crystallization was observed shortly after preparation of the samples. In agreement 

with the remarkable thermodynamical instability of the primary dispersion, the precipitates 

showed a distinct solubility advantage compared to the fenofibrate’s crystalline form. The 

difference between the drug solubility measured for the precipitate directly after preparation 

of the samples and the values obtained 40 min following sample preparation are shown in 

Figure 19. The solubility was compared to the crystallized drug up to almost 9 fold increased 

for the freshly prepared amorphous precipitate. This solubilizing effect is in good agreement 

with previous findings for amorphous materials [39] and represents an interesting challenge 

for the stabilization of the dispersed phase’s size and physical state. 

 

Figure 19: Solubility advantage of the precipitate compared to crystalline fenofibrate 
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2.5. CONCLUSIONS 

A mathematical model was developed for simulating the antisolvent precipitation process of 

fenofibrate (Sections 2.3.3 and 2.3.5). The model assumes homogeneous nucleation and 

transport controlled growth of the particles. It allowed for a time resolved analysis of the 

impact of certain process parameters. By coupling the phase separation process to energy 

dissipation and mixing time (Section 2.3.4), also the impact of mixing conditions could be 

evaluated. Interfacial energy, solubility profile and density of the drug particles were 

determined based on experimental data. Based on these results first conclusions could be 

drawn about in how far the basic principles assumed in the simulations mirror the actual 

particle formation process. While the observed particle size reduction under intensified 

mixing is in good agreement with the simulations, the particle size obtained was significantly 

bigger than would have been expected. Correspondingly, the energy consumption required 

for the mixing process was found to be surprisingly high. The linear shape of the pressure 

drop profile and the presence of µm-sized particles even at optimal flow rates indicate that 

mixing might be ineffective and/or other mechanisms might be superimposed to the phase 

separation process. The hydrodynamical/mechanical impact of the forming precipitate, a 

noninstantaneous mixing of ethanol and water as well as the unequally applied flow rates 

applied for ethanolic and aqueous phase are potential explanations, as these were not 

implemented in the mathematical model applied. 
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Chapter 3. Experimental Evaluation of Certain Process 

Parameters 

3.1. ABSTRACT 

Based on the mathematical model developed for retracing the phase separation process, the 

experimental impact of a variety of process conditions was investigated for their influence on 

the resulting particle size distribution. By comparison of the experimental data with the 

results provided by the simulations, conclusions could be drawn about in how far the 

assumptions made for the model, homogeneous nucleation and transport controlled growth, 

apply to the model substance fenofibrate. Among the parameters investigated were the 

solvent to antisolvent ratio, the temperature of the educt solutions and the drug concentration. 

Tween 80 as surface active reagent was used for varying the interfacial properties of the 

continuous phase and the precipitate. Additionally a detailed review was conducted on the 

mixing process by applying differently sized and shaped mixing chambers. Homogeneous 

nucleation is generally considered to be the most likely phase separation mechanism for 

inorganic and organic substances in case of high supersaturation. It was also anticipated to 

occur for the fenofibrate system under investigation. Surprisingly, variations between the 

particle sizes obtained experimentally and those predicted by the simulations led to the 

conclusion that indeed spinodal decomposition must be the determining phase separation 

mechanism. While being in good agreement with most experimental data, a need for further 

investigations on the composition and the mechanical properties of the precipitates was 

uncovered, as also spinodal phase separation alone was incapable to explain all of the 

experimental results. Overall, the mathematical model in combination with the experimental 

investigations proved to be a powerful tool for investigating the kind and extend of the 

impact of the individual process parameters involved in the precipitation process. It allowed 

to draw conclusions about in how far the presumptions made for the model apply to a given 

experimental setup, or need to be refined. 
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3.2. INTRODUCTION 

Process conditions can in many ways influence particle formation. Thereby differentiation 

between the individual parameters is complicated, as experimental modifications often 

unavoidably affect multiple criteria. The identification of critical factors in a manufacturing 

process is hence difficult. 

The mathematical model developed in Chapter 2 allows for better understanding the impact 

of individual process parameters by disintegrating their specific effects. The impact of 

changes in interfacial energy or drug concentration on supersaturation, nucleation and growth 

can be qualitatively assessed, indicating particle size, growth, broadening or narrowing of the 

size distribution. The model is based on the assumption of homogeneous nucleation and 

transport controlled growth. Experimental results being in concordance with these 

assumptions can hence clearly be identified, while deviant results allow to draw conclusions 

about alternative phase separation mechanisms. 

The most important factors known to affect particle formation are implemented in Equation 

16, Section 2.3.5. Most significant among these are the supersaturation S
*
 as a function of the 

fenofibrate solubility KSP as well as the interfacial energy CL. Under standard conditions 

(room temperature, no excipients used) the supersaturation can be derived from the measured 

solubility of fenofibrate in different ethanol water mixtures (Figure 14). Variations can be 

reproduced in the model, indicating an expected rise or fall in particles size when, e.g. the 

interfacial energy in- or decreases. 

Mixing was already shown to gradually decrease particle size under application of higher 

specific power inputs/flow rates (Chapter 2). Despite this observation still no valid 

conclusion about the underlying phase separation mechanism and the effectiveness of the 

process could be drawn. As the flow rates applied are not equal for ethanolic and aqueous 

phase, the organic drug solution might have been pressed to the wall of the container, thereby 

impairing the mixing efficiency (Figure 21). An approach for clarifying the effectiveness of 

the mixing process in terms of particle size and energy consumption is to gain a broader 

database. An alternative geometry of the mixing chamber was provided by using a 4-jet 

impinging jet reactor, which provides a more symmetric flow pattern by introducing the 

ethanolic drug solution from an additionally added inlet at the top of the mixing chamber. 
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Also changes in the sizes of the in- and outlets of the mixing chambers used provided 

additional information on the effectiveness of the mixing process. 

 

 

Figure 20: Proposed impact of heterogeneous flow patterns (blue = water, red = ethanolic drug solution) 

 

Mixing effects and changes in the drug concentration can both be directly linked to resulting 

variations in particle size, as these factors hardly affect other process parameters. 

Even more importantly, as these are more difficult accessible by experimental evaluation, the 

mathematical model also helps to identify in how far interfacial phenomena affect the particle 

size distribution. Interfacial tension is defined as the work required to increase a surface area 

divided by that area [91]. Lowering the interfacial tension between two phases means a 

reduction of the free energy and facilitates the phase separation process as less work has to be 

employed for creating the new surface. 

Within precipitation processes, interfacial phenomena are dynamic processes, as the varying 

solvent composition continuously changes the interfacial tension between continuous phase 

and the forming precipitate. This process is best characterized by the surface tension of 

different ethanol water mixtures (Figure 21). The surface tension is the interfacial tension 

against air and changes upon variations in solvent composition in a comparable manner as the 

interfacial tension does [92]. With increasing ethanol concentration the surface- and 

interfacial tensions are lowered. 
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Figure 21: Surface tensions in ethanol water mixtures (modified from [93])  

 

The interfacial tension within the precipitation process can hardly be investigated 

experimentally, as means varying this factor usually also affect other process parameters, e.g. 

the drug’s solubility. This makes it hard to differentiate between the individual effects. The 

simulation of the precipitation process is capable to overcome this experimental drawback, as 

a model based variation of each of the individual parameters can be implemented 

independently. E.g. a different mixing regime can be superimposed to a given experimental 

setup with a known solubility profile, to draw verifiable conclusions about whether additional 

changes in interfacial tension affect the product characteristics. 

Another closely related process parameter is the temperature of solvent and antisolvent. 

Thermoregulation in precipitation processes finds extensive industrial use and is known to 

have a strong impact on the resulting products [5, 48, 59]. As it significantly influences the 

solubility of most solutes, it is used to shift the binodal and spinodal curves and to determine 

the width of the metastable range for precipitation processes [94]. Figure 22 shows a typical 

correlation between temperature and the corresponding particle size as it can be observed for 

the antisolvent precipitation of organic compounds. In the given example, the impact of the 

antisolvent temperature on the resulting particle size was investigated. As can be seen, 

particle size increases due to a solubilizing effect at elevated temperatures, which exceeds the 

impact of simultaneously occurring interfacial phenomena. Although interfacial effects are 
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known to be temperature dependent [95] the main impact on the particle size distribution is 

believed to be solubility controlled.  

 

Figure 22: Particle size as a function of temperature [59] 

 

In the following, the impact of size and shape of the mixing chamber, different flow rates as 

well as a series of experimental parameters affecting the solubility and/or interfacial 

properties of the fenofibrate dispersions are investigated. All results are critically discussed in 

awareness of the theoretical predictions. Conclusions are drawn about the underlying phase 

separation mechanisms. 
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3.3. MATERIAL AND METHODS 

All drug solutions used contained 5% (w/w) of fenofibrate in ethanol absolute undenatured. If 

not pointed out elsewhere, precipitation experiments were accomplished as described under 

Section 2.3.1. The resulting particle sizes were determined by laser diffraction. For further 

information also refer to Chapter 2. 

 

3.3.1 NON-MIXING RELATED PROCESS VARIATIONS 

3.3.1.1. SOLVENT COMPOSITION 

The potential influence of the solvent composition on the particle size distributions was 

addressed by varying the solvent to antisolvent ratio and comparing the obtained particle 

sizes to the estimations of the mathematical model. Therefore samples were prepared with the 

pumping setup at a total flow rate of 24 ml/min by using the 0.5 mm i.d. t-piece. For 

obtaining a specific solvent composition in the final dispersion, the flow rates of ethanol and 

water were varied according to Table 1. 

 

Table 1: Experimental matrix for investigating the impact of solvent composition on particle formation 

                                Flow rate / ml/min 

Ethanol content / % (V/V) Ethanolic fenofibrate solution Water 

1 0.25 23.75 

5 1.20 22.80 

10 2.40 21.60 

16 2.00 10.00 

25 6.00 18.00 

50 12.00 12.00 

 

3.3.1.2. INTERFACIAL TENSION 

The interfacial tension between the particle surface and the surrounding liquid is a parameter 

expected to have a major impact on particle formation. For investigating whether changing it 

affects particle size to an extend in accordance with the suggestions of the mathematical 

model, samples were prepared by adding Tween 80 (polyoxyethylen(20)sorbitan monooleate) 
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to the aqueous phase used for sample preparation. Tween 80 V Pharma was obtained from 

Uniqema, Middleborough, United Kingdom. It was applied at concentrations ranging from 

0.0005% to 5% (w/w) of the aqueous phase. This correlates to concentrations of 4 µg –

 4 mg/ml in the final dispersion. With a critical micelle concentration (CMC) for Tween 80 of 

14 µg/ml in water [96] and 59.0 µg/ml in a 12.7% (V/V) ethanol water mixture [97], the 

CMC in a 16.7% (V/V) ethanol water mixture as used for our dispersions was expected to be 

reached at latest by using the sample containing 0.05% Tween 80 in the aqueous phase, hence 

400 µg/ml in the final dispersion. Nanodispersions were prepared at total flow rates of 

60 ml/min by using a 0.5 mm i.d. t-piece. 

 

3.3.1.3. TEMPERATURE CONTROLLED EXPERIMENTS 

While experiments were generally conducted at room temperature (23°C ±2°C), additional 

experiments were accomplished under modification of the educt solutions’ temperature. The 

temperatures of ethanolic and aqueous phase were thereby adjusted with two water baths 

(UKT 3, Edmund Bühler, Tübingen, Germany and Neslab RTE 111, Neslab Instruments, 

Inc., Newington, USA). For the aqueous phase temperatures from 1°C to 50°C were used, 

while the ethanolic drug solution was tempered between 20°C and 50°C. Due to the 

temperature dependent solubility of fenofibrate the ethanolic solution could not be cooled 

below 15°C as the solubility product was approached and the drug started to crystallize. 

Dispersions were prepared using the 0.5 mm t-piece at a total flow rate of 60 ml/min. 

 

3.3.1.4. DRUG CONCENTRATION 

Samples were prepared by varying the drug concentration in the ethanolic phase for explicitly 

addressing mass density effects on particle formation. For this purpose ethanolic drug 

solutions were prepared containing 1, 3, 5 and 7% (w/w) of fenofibrate. Additionally a 

saturated drug solution was prepared by dispersing an excessive amount of drug in ethanol 

absolute and removing undissolved material by filtration through 0.2 µm Minisart RC 15 

syringe filters (Sartorius, Göttingen, Germany). Prior to the filtration the samples had been 
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incubated over night. Dispersions were prepared using the 0.5 mm t-piece at a total flow rate 

of 60 ml/min. 

 

3.3.2 THE IMPACT OF MIXING 

Different mixing chambers were used for revealing the impact of size and shape of these 

devices on the particle size distribution. The first experimental set aimed on investigating the 

impact of the size of equally shaped mixing chambers. Besides the mixing chamber used as 

standard (i.d. of 0.5 mm, Klaus Ziemer GmbH, Langerwehe, Germany), further t-shaped 

devices were used with inner diameters of 0.15, 0.25 and 1.0 mm. The 0.15 mm i.d. 

Upchurch MicroTee Assy and the 1 mm Upchurch Tee Assy were both obtained from Klaus 

Ziemer GmbH, Langerwehe, Germany. A VICI Tee with a 0.25 mm bore was obtained from 

Macherey-Nagel GmbH & Co. KG, Düren, Germany. Samples were prepared by coupling the 

mixing chambers to 2 syringe pumps as described in Chapter 2, Section 2.3.1. Total flow 

rates of 24 and 60 ml/min were applied with a 5+1 ratio of aqueous to ethanolic phase.  

As it was open whether the unequal flow rates applied for the solvents result in impaired 

mixing efficiency, control experiments were accomplished using custom made 4-jet 

impinging jet reactors prepared by the machine shop of the University of Erlangen-

Nuremberg, Chair of Particle Technology. The aqueous phase was directed into these cross 

shaped mixing chambers from the left and right sides, while the drug solution was introduced 

from the top inlet as shown in Figure 23. 

 

Figure 23: Mechanical drawing of the cross shaped mixing chambers used for nanodispersion 

preparation 
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Symmetrical flow conditions were obtained by splitting the flow from the aqueous phase with 

a PEEK t-piece inserted between the syringe pumps and the mixing chamber (Figure 24). A 

total flow rate including the flows from all three inlets of 60 ml/min was applied for sample 

preparation. 

 

Figure 24: Sample preparation with cross shaped mixing chambers. The aqueous phase is homogeneously 

split by insertion of a t-piece 

 

No experience existed on the impact of the flow pattern in each of the 3 inlets as well as the 

outlet of the cross shaped mixing chamber. Therefore mixing chambers with varying sizes of 

the inlets and outlets were fabricated for covering a wide range of potential mixing properties 

(Table 2). As for the t-pieces, all crosses were prepared from PEEK material. 

 

Table 2: Layout of cross shaped mixing chambers used for nanodispersion preparation 

  A B C D 

Inlet ethanolic phase / mm 0.2 0.2 0.3 0.4 

Inlets aqueous phase / mm 0.5 0.3 0.5 0.5 

Outlet / mm 1.0 0.6 1.0 1.0 
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The mixing efficiency was deduced based on particle size measurements as well as from 

pressure drop measurements on the differently shaped mixing chambers. Latter were 

accomplished using the build in pressure sensors of the syringe pumps. 
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3.4. RESULTS AND DISCUSSION 

3.4.1 INFLUENCE OF THE SOLVENT COMPOSITION 

When simulating the precipitation process by using increasing amounts of ethanol in the 

dispersion, the obtained data suggest that the resulting decrease in interfacial tension leads to 

much higher nucleation rates. In consequence smaller particles are formed. Furthermore, the 

fenofibrate solubility increases at elevated ethanol concentrations. A lowered supersaturation 

then leads to a decreased nucleation rate, and hence results in the formation of bigger 

particles. According to the simulations, these two countervailing processes result in an 

optimal ethanol concentration, at which a minimum particle size can be obtained. As not only 

the composition, but also the flow rate ratio between ethanol and water was changed within 

corresponding experimental evaluation, simulations were accomplished using varying micro-

mixing times, reflecting differently intense mixing. As shown in Figure 25, the qualitative 

assumption of an existing optimized ethanol concentration was found to be widely 

independent from mixing effects. At increasingly fast mixing, the minimum is however 

shifted towards higher ethanol fractions. 

 

Figure 25: Influence of the solvent composition on the resulting particle size (simulation) 

 

Within the actual preparation of fenofibrate dispersions under varying solvent compositions, 

the existence of a particle size minimum as suggested by the simulations could not be 

http://dict.leo.org/ende?lp=ende&p=/gQPU.&search=antidromic
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confirmed. Indeed, particle size was found to increase continuously with rising ethanol 

content (Figure 26). It was concluded that interfacial events play a subsidiary role compared 

to the model based expectations, while phase separation mainly depends on the solubility of 

fenofibrate in the given solvent compositions. In addition, samples became much less stable 

the more ethanol was contained, immediately crystallizing upon sample preparation. 

Determination of the size of the primary particles was hindered by the presence of the 

crystals formed, as is indicated by the wide error bars. 

 

Figure 26: Experimental verification of the impact of the solvent composition on particle size 

 

3.4.2 THE IMPACT OF INTERFACIAL TENSION 

While already ethanol alone significantly lowers the interfacial tension between the dispersed 

and the continuous phase, even stronger effects were anticipated for the additional use of 

surface active reagents. Tween 80 was shown to decrease the surface tension of ethanol/water 

mixtures further than ethanol alone. At its critical micelle concentration Kawakami et al. 

measured a surface tension of ~39.4 mN/m, compared to ~46.5 mN/m in a corresponding 

surfactant free ethanolic water mixture (data extrapolated from [93, 97]). The ethanol 

concentration of ~12.7% (V/V) used by Kawakami is in a comparable range as the one 

applied in this study (16.7% (V/V)), so that similar effects on surface/interfacial tension can 

be expected. Due to the ethanol contained in the samples, the reduction in interfacial tension 

caused by the surfactant is moderate compared to pure water which has a surface tension of 

72.8 mN/m [93]. Nevertheless, according to the mathematical model, a decrease in interfacial 
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energy by just 10% results in a rise of the nucleation rate by up to 5 magnitudes (Figure 27). 

It was expected that especially at low surfactant concentrations interfacial effects dominate 

the particle formation, while reported solubilization effects of Tween 80 [98] would not be 

relevant until elevated surfactant levels are applied. Consequently, significantly smaller 

particles were expected than would form without the surfactant. 

 

Figure 27: Influence of supersaturation and interfacial energy on the calculated nucleation rate 

 

Compared to the mathematical model, Tween 80 indeed led to a significant particle size 

reduction (Figure 28). Nevertheless, this size reduction lacks behind the immense effects that 

had been expected from the calculated changes in the nucleation rate. 

Experimental data revealed a drop in particle size by ~30% when using Tween 80 at 

concentrations reaching its expected CMC (Figure 28, 0.05% solution). At this Tween 80 

concentration the surface of the ethanol water mixture is saturated with surfactant molecules, 

so that remaining Tween 80 is exclusively available for adsorbing to the emerging precipitate. 

Particle size reductions at lower Tween 80 concentrations were only moderate, what might be 

attributed to the interfacial tension lowering effect of ethanol. Only little additional size 

reduction can be exerted by the surfactant. Also at very high Tween 80 concentrations, only 

moderate further size reduction was observed. As expected, high Tween concentrations 

showed distinct solubilizing effects, indicated by an obviously decreasing turbidity of the 

dispersions prepared from aqueous phases containing 0.5% - 5% of surfactant. 
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Figure 28: Effect of Tween 80 on fenofibrate particle size 

 

3.4.3 INFLUENCE OF TEMPERATURE 

Most substances, like fenofibrate, show an increased solubility at elevated temperatures. In 

consequence, with increasing temperature the supersaturation in the dispersion is reduced 

when applying equimolar drug concentrations. According to the mathematical model, lower 

amounts of larger particles should form due to a decreased nucleation rate.  

When performing temperature controlled precipitation experiments, temperature variations 

only had a limited impact on particle size and size distribution (Figure 29). Only under the 

most extreme conditions applied, when the aqueous phase was cooled to 1°C and the 

ethanolic phase to 20°C, a slight increase in particle size was observed. At elevated 

temperatures only insignificant changes in particle size occurred. 
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Figure 29: Dependency of particle size and polydispersity (span) on temperature 

 

The fact that almost no changes in particle size can be observed is not only in disagreement 

with the precipitation model used for accomplishment for the simulations. Also other 

precipitation models based on heterogeneous nucleation or spinodal decomposition would 

suggest some change in the particle size distribution. Clearly, other effects exceeding 

classical phase separation theory must be superimposed to the precipitation process.  

 

3.4.4 INFLUENCE OF DRUG CONCENTRATION  

Investigating the impact of varying drug concentrations allows to exclusively monitor 

supersaturation effects on particle formation, as no other important process parameters are 

significantly affected. It hence gives the most unambiguous evidence about the underlying 

phase separation mechanisms. The higher the drug load is, the higher is the resulting 

supersaturation and the amount of precipitate formed. Simulations of the precipitation process 

indicate that, due to the higher supersaturation, an increased nucleation rate can be expected. 

In consequence, a higher amount of smaller particles would form. 

For verification of the simulation data, nanodispersions containing different amounts of 

fenofibrate were prepared with the pumping setup. As for the temperature controlled 

experiments, experimental data could not confirm the model based expectations. Particle size 
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was found to increase gradually at elevated drug concentrations (Figure 30). Also the 

polydispersity of the dispersions increased as indicated by the span values. 

 

Figure 30: Dependency of particle size and polydispersity (span) on drug concentration 

 

Considering the homogeneous appearance of the precipitate particles and the absence of 

agglomeration due to the high zeta-potential (Figure 10, Figure 12), the particle size 

distribution can be expected to be widely unaffected by ripening effects. It is evident that in 

the absence of other influencing factors such as interfacial effects or unpredictable changes in 

drug solubility, homogeneous nucleation and transport controlled growth are not the 

dominating factors which determine the product characteristics. 

 

3.4.5 IMPACT OF DIFFERENT MIXING DEVICES 

Using different t-shaped mixing chambers for the preparation of drug dispersions revealed 

that the 0.5 mm i.d. device was best suited for the preparation of the dispersions, as it resulted 

in small particles and narrow size distributions. Mixing chambers having smaller bores were 

found to be rapidly blocked within sample preparation. The 0.25 mm i.d. t-piece allowed at 

least for the preparation of sufficient amounts of dispersion for accomplishing particle size 

measurements, while the 0.15 mm i.d. device immediately showed strong accumulation of 
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solid drug at the outlet of the mixing chamber. This blockage is surprising, as the diameter of 

the mixing chamber is at least 600 to 1000 times bigger than the mean particle size. 

Comparing the t-shaped mixing devices suitable for sample preparation, particle size became 

smaller the smaller the mixing chambers were (Figure 31). While this effect is insignificant 

at very high flow rates, the impact of the mixing device was more pronounced at the 

intermediate flow rate of 24 ml/min. Nevertheless, even when using the smallest possible t-

piece at the highest flow rates, the particle size could not be decreased under a minimum 

value of about 250 nm. This size lacks behind by the order of a magnitude to the particle 

sizes anticipated under consideration of the energy consumption within the process. 

 

Figure 31: Preparation of fenofibrate nanodispersion with differently sized t-shaped mixing devices 

 

The application of the unequal flow rate ratio of 1+5 for the ethanolic and aqueous phases 

was thought to be a potential reason for the fraction of µm-sized particles obtained. By 

splitting the aqueous flow and introducing the ethanolic phase from a third inlet on top of the 

device, a more effective blending of aqueous and ethanolic phase was expected. However, 

when preparing drug dispersions using cross-shaped mixing chambers, none of them showed 

an improvement in terms of further particle size reduction. Those 4-jet reactors having wide 

inlets for the ethanolic phase even showed particle sizes about 60 nm bigger than the 0.5 mm 

i.d. t-piece (Table 3). Latter effect might be attributed to a more turbulent flow profile in the 

mixing chamber. 
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Also energy dissipation was in a comparable range for the crosses and the 0.5 mm i.d. mixing 

chamber. It was found to be mainly effected by the width of the outlet of the mixing chamber. 

 

Table 3: Comparison of mean particle size and energy dissipation of 4-jet impinging jet reactors and a 

0.5 mm i.d. t-piece 

 

 

 

In conclusion, the flow rate dependency of particle size could be confirmed to be independent 

of the size and shape of the mixing chamber. Especially the t-shaped mixing devices are very 

well suited for the highly effective preparation of nanodispersions. Optimal mixing 

conditions are obtained, resulting in a small sized and homogeneous precipitate. Although 

neither the size or shape of the mixing chamber, nor the flow rates applied allowed to 

undercut the experimental particle size limit of ~250 nm, phase separation was clearly 

effected by hydrodynamic effects; particle size and size distribution became smaller upon 

intensifying mixing. 

 

3.4.6 INTERPRETATION OF THE EXPERIMENTAL DATA 

Comparison of the experimental data and the simulations accomplished based on 

homogeneous nucleation and transport controlled growth showed an overall unsatisfying 

correlation. Especially an increase in particle size upon application of higher drug loads is in 
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contradiction to nucleation based particle formation. Using Tween 80 within the precipitation 

process revealed that phase separation was much less effected by interfacial effects than 

would have been expected. Furthermore, the fact that in the surfactant free formulations 

particle size could not be decreased below 250 nm and the existence of endemically 

contained particles in the low µm-range question the idea of nucleation based phase 

separation. 

Although generally considered unlikely for the phase separation of small molecules, spinodal 

decomposition represents a plausible explanation for the observed results. Within spinodal 

decomposition a random precipitate pattern is created, from which subsequently particles are 

formed by the interplay of thermodynamic, hydrodynamic and friction effects. Assuming 

spinodal decomposition for the given experimental setup, the spatially varying energy 

dissipation within the mixing chamber leads to a less effective breakup of the materializing 

precipitate as soon as the drug concentration is increased. The result is a rise in the average 

particle size as well as the particle size distribution. In agreement to that, the intensification 

of the mixing process led to a remarkable particle size reduction. Hydrodynamic effects can 

reach from macroscopic vortices down to the size of the Kolmogorov eddies, which in the 

given setup range from approximately 0.9 µm to 6 µm (refer also Chapter 2). Further size 

reduction can only be obtained by friction effects inside the system, which is summarizing 

referred to as viscous dissipation. Viscous dissipation is the rate at which the kinetic energy 

in turbulent flows is converted by viscous stress into thermal energy. Upon amplification of 

the mixing intensity and at elevated flow rates this effect becomes more prevalent [99]. As in 

a mortar, viscous dissipation is capable to break down the spatially extended precipitate to 

sizes distinctly smaller than the Kolmogorov scale [75, 100, 101]. A major reason for the 

obvious accessibility of the precipitates formed by spinodal decomposition is the fact that 

these primarily do not have a distinguishable interface to the surrounding medium. Such 

interfaces form within the phase separation process, simultaneously to the hydrodynamical 

shaping of the precipitate. Until completion of this confinement the precipitate is hence very 

sensitive to external triggers applied by the mixing process. The interplay of hydrodynamical 

effects and viscous dissipation define the final particle size distribution. 

The particle size reduction observed upon addition of Tween 80 to the aqueous phase is in 

good agreement with the theory of spinodal decomposition. Upon phase separation, first a 

spatially poorly defined precipitate is formed, which subsequently assumes a defined shape 
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by forming distinct interfaces to its environment [102]. Adsorption of surfactant to these 

interfaces can stabilize them already early within the phase separation process. A decrease in 

interfacial energy occurs, so that under introduction of the same energy to the system smaller 

particles with an increased surface area are obtained. 

While spinodal decomposition proves to be in good agreement with the experimental results 

discussed above, this phenomenon alone is not sufficient for explaining the impact of solvent 

composition and temperature on the precipitate. As observed in the context of concentration 

dependent changes in particle size (Section 3.4.4), a spinodal precipitate is expected to 

depend on the volume of the precipitate formed. When, due to an increase of temperature or 

ethanol concentration the solubility of fenofibrate increases, less precipitate forms. Smaller 

particles would be expected due to a facilitated hydrodynamic and viscous breakdown of the 

forming precipitate. For temperature controlled experiments, indeed an increase in particle 

size is observed when decreasing the temperature of ethanolic and aqueous phase below room 

temperature, so that higher amounts of precipitate form. Why particle size remains constant at 

elevated temperatures and why it increases at elevated ethanol concentrations (Section 3.4.1) 

cannot be terminally concluded based on the experimental results described here and will be 

discussed in detail in Chapter 1. 
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3.5. CONCLUSIONS 

Comparison between the simulations of the precipitation process and experimental data 

allowed for identifying spinodal decomposition as the dominating phase separation process. 

Spinodal phase separation was found to mainly depend on the volume of precipitate formed, 

as was shown by the fact that particle size increased upon application of elevated drug loads. 

In addition, the finally obtained particle size distribution is strongly influenced by the 

transition of the spinodal phase separation product to a particulate precipitate. In the 

underlying shaping process hydrodynamic and friction effects were found to play a key role, 

while interfacial effects have a less pronounced impact than would have been expected for 

homogeneous nucleation as alternative phase separation mechanism. However, also spinodal 

decomposition as solely phase separation mechanism fails to explain all of the observed 

phenomena. The missing impact of temperature changes and the increase in particle size 

when increasing the solvent to antisolvent ratio reveal that phase separation is superimposed 

by additional mechanisms. 
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Chapter 4. Structural Characterization of the Precipitate 

4.1. ABSTRACT 

In Chapter 2 and Chapter 3 it was shown how comparison of experimental data and 

mathematical modeling of the precipitation process allowed to gain a better understanding of 

the different factors influencing the particle formation process. However, only little 

information could be gained about the physical properties of the drug particles. Rapid 

crystallization and light-microscopical observations using cross-polarized filters indicate their 

non-crystallizing state, but this thermodynamical instability also impaired further detailed 

analysis. For the experiments described below, sample preparation was optimized in a way 

allowing particle analysis in an environment as close as possible to that in the original drug 

dispersions. Scanning electron microscopy showed that particles in the submicrometer range 

had a homogeneous structure and were most likely amorphous. Sample analysis under 

varying solvent composition was possible by using wide-field fluorescence microscopy, and 

allowed detailed insight into dynamic structural variations of the particles. The prevalent 

opinion that demulsification products obtained from antisolvent precipitation are crystalline 

or amorphous solids could not be confirmed. In opposite, fenofibrate was found to phase 

separate as a liquid, gel-like precipitate. Extension of the experiments to atomic force 

microscopy (AFM), as well as the comparison to further drugs clearly showed that the liquid-

liquid phase separation of fenofibrate is not an exception, but can be regularly observed for a 

wide variety of solutes in antisolvent precipitation. This awareness casts a new light on the 

investigated phase separation process and facilitates data interpretation for the results 

obtained concerning the process characterization. After all, the data presented in this chapter 

allow for a more specific understanding of the impact that certain process parameters have on 

the precipitates. 
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4.2. INTRODUCTION 

When screening the scientific literature for “antisolvent precipitation”, the vast majority of 

citations deal with the formation of solid particles. Concerned are not only experimentalists, 

but to the same extend researchers dealing with the theoretical background and modeling of 

the corresponding phase separation processes. The precipitation products are found to be 

either amorphous [56, 103], or consist of varying amounts of crystalline polymorphs [104-

107]. Depending on the physical state of the material, the type of salt or the particle size, 

different dissolution profiles and bioavailabilities can be obtained. 

However, considering the thermodynamical background of phase transitions, the formation of 

a solid precipitate represents only one part of the truth around precipitation processes. 

Unrecognized by many researchers, besides multiple solid polymorphs, for many substances 

also a liquid derivate exists. As early as 1897 Wilhelm Ostwald developed his famous rule of 

stage, describing a systematical order in the occurrence of phase separation products within a 

precipitation process [108]. Ostwald found, that phase separation preliminarily occurs under 

the manifestation of the phase with the highest possible Gibbs free energy. For substances 

following Ostwald’s rule, this phase often is a liquid or oil like precipitate. 

The fact that Ostwald’s rule is not universal is nowadays well known. Many substances, 

especially those with strong intermolecular interactions will bypass the liquid state and 

directly phase separate as a solid. Reasons therefore are mainly considered kinetical and are 

extensively discussed in [109]. Whether direct liquid-solid or an intermittent liquid-liquid 

phase separation occurs is not always obvious, as the liquid state of a precipitate is, due to its 

thermodynamical instability, often very short lived. In most cases rapid transformation into 

thermodynamically more stable (solid) forms, e.g. different polymorphs, occurs. However, 

there are also examples where no crystallization at all is observed and the precipitate remains 

in its liquid state for weeks or even months [110, 111]. 

The most realistic impression about the mechanistical background of phase separation 

processes is probably provided when reviewing the field of crystallization technology. In this 

sector structural homogeneity of a crystal is often a key factor. Crystallization processes are 

in consequence carried out slow, aiming on the highest possible product quality and 

reproducibility. The precipitates are comparably big in size, often in the elevated µm-range, 

what makes them accessible to direct visual characterization. In combination with a distinct 
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focus on structural analysis, the likeliness of identifying the occurrence of an intermediate 

liquid precipitate is higher than for more rapid precipitation processes aiming on amorphous 

and/or nanoscopic products. Consequently, oiling out, as liquid-liquid phase separation is also 

called, is considered a regularly observed “problem” in crystallography. It is known to slow 

down crystallization and impair product homogeneity and reproducibility. Despite this 

awareness, the pressing interest in gaining a deeper understanding of liquid-liquid phase 

separation is not even closely reflected by the amount of corresponding research activities 

[112]. 

The described mismatch in the knowledge of alternating phase separation processes might at 

least partly be ascribed to a lack of analytical techniques adressing specimen on the nano-

scale. Measurement techniques for bulk materials such as X-ray powder diffraction, Raman 

spectroscopy or nuclear magnetic resonance are inappropriate for investigating the required 

nanoscopic structural properties [113]. The target size ranges for some of the most popular 

particle characterization techniques used in laboratory routine are summarized in Figure 32. 

Although the nanoscale is widely covered by an array of different methods, structural 

information beyond “just” particle size is hardly accessible. Only AFM, above an already 

elevated size cut-off also light- and fluorescence microscopy, are indeed capable to 

distinguish between an amorphous particle or an equivalent droplet. Also electron 

microscopy is only in rare cases capable to distinguish between solid and liquid samples, as 

these usually need to be dried or frozen before use. Within the drying process sample 

solidification can occur. Spectroscopic techniques as dynamic and static light scattering as 

well as light blockage, the techniques probably most often used in colloidal carrier 

laboratories, are completely inappropriate with respect to this purpose. 
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Figure 32: Standard particle characterization techniques 

 

In addition to the analytical challenges, liquid precipitates are not uniform in structure and 

viscosity. In the literature they are referred to as oil, gel, intractable gum or tar [114]. The 

border distinguishing between liquid and solid precipitate is fluent. Concerning their 

mechanical properties, the solute rich phase resembles closest the characteristics of a 

supercooled liquid [115]. Such precipitates can contain varying amounts and kinds of 

solvent/antisolvent, which for some systems account for the major part of the constituents. 

They are known to act as plasticizers in amorphous materials [115] and are capable to 

distinctly modify their structural characteristics. Often liquid-liquid phase separation is 

observed in antisolvent processes where semipolar organic solvents as methanol, ethanol, 

acetone or ethyl acetate are applied [8, 116-121]. For such systems the precipitates typically 

contain only ~40-70% (w/w) solute. The remaining phase consisted of complexed antisolvent 

(~7-24% (w/w)) and even more importantly solvent molecules (20-35% (w/w)) [8, 117, 120]. 

The liquid precipitate is hence connected to its environment via a complex set of 

intermolecular interactions. 

Generally, liquid-liquid and liquid-solid phase separation underlie the same general principles 

[5, 8, 117]. In both cases demulsification can either occur due to nucleation and growth or 

due to spinodal decomposition. Interfacial properties and the degree of supersaturation hence 

determine the outcome of the phase separation process. Nevertheless certain differences exist 
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between both cases that are fundamental for understanding solubility, stability and 

downstream processing of dispersions. As will be shown in the following, in the case of 

fenofibrate observed deviations from the expectations result from the fact that the drug did 

not phase separate as a solid as had been anticipated, but as a liquid precipitate. In addition to 

agglomeration, the liquid precipitates are affected by coalescence and mechanical breakup of 

the particles. In this context also the viscosity of the dispersed phase is a key factor, as it 

might trigger the potential effects of hydrodynamic and viscous stress on particle breakup 

[75]. Also solvent complexation plays an important role in liquid-liquid phase separation, and 

is indeed one of the reasons referred to for explaining its wide prevalence. Often substances 

with low melting point tend to phase separate as a liquid, as these can frequently underlie 

critical melting point reduction due to solvent complexation [111].  

In this chapter the mechanical properties and the internal structure of the fenofibrate particles 

are discussed. The impact of the composition of the surrounding continuous phase is 

evaluated. For comparison, additional experimental data were acquired from the lipophilic 

drugs lopinavir and loratadine. The obtained data allow for new insights on the phase 

separation process. 
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4.3. MATERIAL AND METHODS 

4.3.1 REAGENTS USED 

As within the previously described experiments, the main focus of the investigations was put 

on fenofibrate. Additional experiments were accomplished with the lipophilic, poorly soluble 

drugs loratadine and lopinavir. Loratadine was obtained from Chemos GmbH, Regenstauf, 

Germany, lopinavir was a gift from Abbott GmbH & Co. KG Ludwigshafen, Germany. All 

drugs used were of USP/Pharm. Eur. quality. None of the substances has distinct surface 

active properties. Their chemical structures are shown in Figure 33. 

For the experiments 5% (w/w) solutions of the drugs were prepared by dissolving them in 

sterile filtered, undenatured ethanol absolute. Except for the AFM measurements (Section 

4.3.3), the water used for preparation of the dispersions was highly purified water prepared 

with a Purelab Plus laboratory water purification system (ELGA LabWater, Celle, Germany). 

 

                  

 

 
Lopinavir     Loratadine   Fenofibrate 

Figure 33: Chemical structures of lopinavir and loratadine and fenofibrate 
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4.3.2 SCANNING ELECTRON MICROSCOPY 

Scanning electron microscopy (SEM) was applied for structural analysis of the fenofibrate 

dispersions. Experiments were accomplished using alternatively a JSM-6500 F (Joel, 

Ebersberg, Germany) or an ULTRA 55 (Carl Zeiss NTS GmbH, Oberkochen, Germany) field 

emission scanning electron microscope. The dispersions investigated were prepared as 

described in Chapter 2, Section 2.3.1 and Chapter 3, Section 3.3.1.1, reflecting the 

characteristics of samples prepared under defined flow rates and containing defined ethanol 

to water ratios. Some SEM images were accomplished with the undiluted dispersions as 

positive control. Most specimens were however diluted about 1:300 to 1:3000 for being 

capable to investigate individual particles. The dispersions were transferred to SEM carbon 

pads and dried over night under vacuum in an exsiccator. If available, samples were sputtered 

with carbon for increasing sample conductivity and reducing the thermal stress applied on the 

fenofibrate particles. 

 

4.3.3 ATOMIC FORCE MICROSCOPY 

Force-distance (f-d) measurements were accomplished from fenofibrate, loratadine and 

lopinavir dispersions using a Veeco CP-II atomic force microscope (Veeco Instruments, 

Santa Barbara, USA). For sample preparation about 80 µl of a 5% (w/w) ethanolic drug 

solution was placed on a freshly cleaved 9.9 mm diameter pelco mica disc (Ted Pella Inc, 

Redding, USA). The drugs were precipitated by addition of double distilled water. The 

supernatant was stepwise removed and replaced with additional water until a clear solution 

was obtained. Measurements using undiluted dispersions were not possible due to light 

scattering effects of the particles, which strongly attenuated the laser signal intensity. All 

measurements were accomplished under water using a MicroCell
®
 (Veeco Instruments, Santa 

Barbara, USA) for avoiding drying and crystallization of the samples. Evaporated water was 

replaced from time to time if necessary. Measurements were accomplished by using Veeco-

MLCT silicon nitrile cantilevers with a spring constant of 0.5 N/m. The sample particles were 

located on the sample holder with the built in optics of the on-axis microscope (5:1 zoom, 

10 x objective). The cantilever was placed above the sample particles and aligned between 

laser and detector (Figure 34). Depending on the elasticity of the sample, the bending of the 

cantilever was recorded and the linear part of the force distant curves was analyzed. 
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~~~~

Sample particle

 

Figure 34: Schematic illustration of AFM force-distance measurements 

 

For calibration, measurements were accomplished on blank mica. The height of the particles 

was estimated using the position of the cantilever when the first signal was recorded by 

pressing on a particle, compared to the height of the mica sample holder. AFM measurements 

were accomplished using freshly prepared dispersion of fenofibrate, lopinavir and loratadine, 

as well as a crystallized fenofibrate dispersion serving as control for a hard sample. The 

crystalline fenofibrate sample was prepared by ageing a fenofibrate dispersion over night at 

room temperature. For each sample about 10 measurements were accomplished with 

differently sized particles as well as 5 background measurements on the mica surface. Data 

was analyzed using the linear part of the extension (contact) curve of the cantilever, from 

which the spring constants of the cantilevers were subtracted. The extension curve represents 

best the elasticity of the sample. The curves were fitted linearly (loratadine, lopinavir, 

crystalline fenofibrate) or by an exponential function (fenofibrate). Graphs linearly fitted 

resembled an elasticity modulus of 1 N/m with standard deviations between 3% and 6%. The 

exponential fitting for the fenofibrate results had a R
2
 value of 0.9320. 
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4.3.4 WIDE-FIELD FLUORESCENCE MICROSCOPY 

Wide-field fluorescence microscopy images of fenofibrate dispersions were recorded with an 

Eclipse TE200 epifluorescence microscope with a high numerical aperture oil-immersion 

objective (Nikon Plan Apo 100 x 1.4 N.A. oil, Nikon GmbH, Düsseldorf, Germany). The 

samples were excited at a wavelength of 633 nm using a He–Ne gas laser with an intensity of 

0.25 kWcm
-2

, or at 532 nm using a diode-pumped solid state laser (DPSS) with an intensity 

of 0.20 kWcm
-2

 (Cobolt Samba TM Laser, cw, 100 mW LAB, Cobolt, Stockholm, Sweden). 

The fluorescence signal was detected with a back-illuminated electronmultiplying charge-

coupled camera in frame transfer mode (Andor iXon DV897, 512x512 pixels, Andor 

Technology Plc. Berlin-Adlershof, Germany). Incident laser light was blocked by a dichroic 

mirror (640 nm cutoff) and a bandpass filter (730/140 for the He-Ne gas laser and 675/250 

for the DPSS, all AHF Analysentechnik AG, Tübingen, Germany). To record wide-field 

microscopical movies of the samples, cycle times between 0.0161 and 0.41682 sec per frame 

were used. A typical movie contained 1000 frames. 

The use of the Andor iXon DV897 camera allowed for a temporal resolution of 40 ms, 

enabling the monitoring of rapid structural changes. The spatial resolution of the images was 

limited by the pixel-size of 123 nm. 

 

4.3.5 CONFOCAL FLUORESCENCE SPECTROSCOPY 

Fluorescence spectra of freshly prepared fenofibrate dispersions as well as the crystalline 

drug were acquired for investigating whether the fluorescence signals recorded by wide-field 

fluorescence microscopy were derived from a liquid precipitate, crystalline material or 

potential impurities. The fluorescence spectra were recorded using a prism-CCD 

spectrometer (EEV 1300/100-EMB-chip, Princeton Instruments, Trenton, New Jersey, USA) 

attached to a ZEISS LSM410 confocal laser scanning microscope (Carl Zeiss Imaging 

Solutions GmbH, Munich, Germany). Light source was a diode pumped cw solid-state laser 

(DLSOT-50, Soliton Laser und Messtechnik GmbH, Gilching, Germany) with a wavelength 

of 532 nm. The fluorescence light was collected using a high NA oil-immersion objective 

(Zeiss Plan Apochromat 63x/1.40 oil) and separated from the excitation light with a 

combination of a dichroic (HQ 545LP, AHF Analysentechnik, Tübingen, Germany) and a 

bandpass filter (675/250, Chroma Technology Corp, Bellows Falls, Vermont, USA). 
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ibidi µ-slides (ibidi GmbH, Martinsried, Germany) were used as sample vessel, in which the 

dispersions were filled directly after preparation. Details of the setup were described 

previously [122]. Measurements were accomplished with an undiluted ethanolic solution 

containing 5% (w/w) of fenofibrate or with dispersions freshly prepared by manually mixing 

the ethanolic drug solution with highly purified water in a 1+5 ratio. The crystalline 

fenofibrate sample was prepared by ageing a fenofibrate dispersion over night at room 

temperature. Spectra of the crystalline drug were accomplished directly on the crystals, which 

were located on the bottom of the ibidi µ-slides by using the ZEISS LSM410 microscope. 

 

4.3.6 LIGHT MICROSCOPY 

For light microscopical observations specimens were prepared under as mild mixing 

conditions as possible, for not breaking down the precipitate structures below a 

microscopically observable size range. Therefore ethanolic drug solution and water were 

blended by slowly pipetting one to the other or by directly mixing them on the microscope 

slide. Images were recorded directly after sample preparation using a Nikon Labophot light 

microscope equipped with a JVC digital camera (Model JVC TKC 1380E, Nikon GmbH, 

Düsseldorf, Germany). Crystallization of the samples was monitored using crossed polarized 

filters. 
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4.4. RESULTS AND DISCUSSION 

4.4.1 SCANNING ELECTRON MICROSCOPY 

Samples prepared by using undiluted fenofibrate dispersions gave a general overview about 

the dispersions’ structure and makeup. Figure 35 shows a droplet of undiluted suspension 

prepared by hand-mixing (pipetting) ethanolic and aqueous phase. In the middle potentially 

amorphous particles are shown, while the dispersion started to crystallize from the rim. 

Fenofibrate crystals typically had a rhombic shape. When observed in dispersion by light 

microscopy also cross shaped or five branched structures were observed. On the SEM 

samples, the presumably amorphous particles were found to be round and embedded in a 

layer of previously dissolved debris. They consisted of dried precipitate. 

 

Figure 35: SEM sample prepared from an undiluted fenofibrate dispersion containing 16.7% (V/V) 

ethanol, mixed by hand, unsputtered sample 

 

In all samples, both crystalline and amorphous material showed a strong tendency to melt 

once hit by the electron beam of the microscope (Figure 36). Potentially amorphous particles 

darkened starting from the particles’ centre. Degradation was so fast, that especially for 
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unsputtered samples hardly enough time remained for focusing the electron beam on the 

sample before the particles cleared out. Crystalline material was more resistant, requiring 

higher working voltages for melting the material. This is a clear indication of the precipitates’ 

thermodynamical instability compared to the crystalline state of the drug. A test measurement 

performed using transmission electron microscopy for getting a higher resolution and 

detecting potential nanocrystallites failed, as the particles instantaneously disappeared even at 

the lowest possible working voltage of 80 kV. 

    

Figure 36: Melting of amorphous (left) and crystalline (right) particles in the electron beam. The samples 

were prepared with the pumping setup at a total flow rate of 24 ml/min. The ethanol concentrations in the 

dispersions were 50% (V/V) (left) and 16.7% (V/V) (right) 

 

The investigation of isolated particles was facilitated by sufficiently diluting the dispersions 

prior to sample preparation. The particles typically had a homogeneous appearance without a 

distinguishable inner structure or surrounding shell (Figure 37). Particles were in the same 

size range as observed by laser diffraction, with small particle fractions in the low µm-range 

and down to sizes of about 20 nm. While the particle size distributions were inhomogeneous 

between different sample spots, the structure of the particles was comparable for all samples, 

independent from the process conditions applied (e.g. varying ethanol concentrations/flow 

rates). 
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Figure 37: Fenofibrate particles embedded in layers of solvent debris. Particles appear homogeneous 

without an internal structure. The samples were prepared at total flow rates of 12 ml/min (left) and 

24 ml/min (right). The ethanol concentrations in the dispersion were 16.7% and 50% (V/V) 

 

4.4.2 ATOMIC FORCE MICROSCOPY 

Force-distance measurements were accomplished for investigating the mechanical properties 

of the fenofibrate precipitates. For comparison, measurements were extended to the poorly 

soluble compounds loratadine and lopinavir.  

Figure 38 shows the correlation between particle size and the corresponding elasticity moduli 

derived from f-d measurements. Crystalline fenofibrate, loratadine and lopinavir showed 

elasticity moduli around 1 Nm
-1

 with a slight tendency towards lower elasticity moduli at 

increasing particle size. This means that these samples had an elasticity in the same range or 

even below that of the cantilever used. As the cantilever deformed stronger than the sample 

did, no further mechanical differentiation between the samples was possible.  
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Figure 38: Elasticity of the precipitate vs. particle size. Smaller fenofibrate particles were found to have 

higher spring constants, meaning they appear to be harder to their environment than bigger particles 

 

In contrast, the fenofibrate precipitate was found to be much easier deformable, and showed a 

strong dependency of its elasticity moduli on particle size. In fact, the particles’ elasticity 

increased exponentially corresponding to the reciprocal particle radius, thereby satisfying the 

La Place equation (Equation 21, [123]). The equation states that at constant surface tension, 

the elasticity of a specimen decreases at smaller particle sizes. Smaller samples appear to be 

harder. Originally developed for describing the pressure differences across curved gas-liquid 

interfaces, the La Place equation was found to also apply to liquid-liquid systems [124]. 

 Undetectable by laser diffraction, PCS or SEM, the AFM measurements proved that 

fenofibrate particles were liquid rather than consisting of solid amorphous material as might 

have been anticipated. As described by the La Place equation, only when reaching 

sufficiently small particles sizes, the precipitate particles approach the mechanical properties 

of a solid. Nevertheless, the composition of the precipitate was expected to be comparable for 

all particle sizes. 

 

r
PPP ad

2
  

Equation 21 
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Loratadine and lopinavir samples were found to be much harder compared to the fenofibrate 

precipitate. Nevertheless, also these particles had a round shape, lopinavir even formed 

stream like structures on the sample holder (Figure 39). It was concluded that the precipitates 

of all three drugs phase separate by passing a transient liquid state and subsequently harden 

when being exposed to the aqueous environment in which the AFM measurements were 

accomplished.  

 

Figure 39: Lopinavir particles exhibiting mechanically robust, solidified structures, indicating a transient 

liquid state of the precipitate during phase separation 

 

While the AFM cantilevers are constructed to predefinedly deform when exposed to vertical 

pressure, their stronger resistance to horizontally applied force was used for gaining a deeper 

understanding of the mechanical properties of the precipitates. As a needle, the cantilevers 

were used to horizontally pierce the particles. While loratadine and lopinavir had shown 

comparable f-d patterns within regular AFM measurements, significant differences were 

observed when exposing them to stronger mechanical stress. The mechanical behavior of 

loratadine was clearly dominated by viscoelastic deformation, resulting in particles having an 

almost putty like mechanical behavior (Figure 40). In addition, the loratadine precipitate 

showed an extreme stickiness, so that after contact with the cantilever, filaments stretching 

over multiple times the length of the original particles could be drawn. The particles 

obviously consisted of a homogeneous matrix without any observable inhomogenities. 
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Figure 40: Video snapshots of the mechanical straining of a loratadine particle. Center left: loratadine 

particle attached to the cantilever. Right: long, viscoelastically deforming filaments can be pulled out of 

the particle 

 

The lopinavir precipitates represent a further step towards complete solidification of the 

precipitate. Being the most lipophilic of the drugs investigated, lopinavir no longer showed 

deformability, even under application of significant mechanical stress. The particles were less 

sticky than loratadine and withstood the force applied by the cantilever (Figure 41). The 

cantilever deformed when pressed on the particle, while the particle itself appeared 

structurally unchanged. Whether the manifestation of the lopinavir particles can be 

considered a glass transition, with corresponding viscosities of the precipitates being larger 

than 10
12

 Pa s [91] cannot be appraised based on the above shown data, and might strongly 

depend on the environmental conditions of the measurements. 

    

Figure 41: Lopinavir particle under application of mechanical stress from the cantilever. The particles 

remain stiff and undeformable, while the cantilever (middle of the right image) bends tremendously 
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For comparison, Figure 42 resembles the liquid state of the fenofibrate particles previously 

described by f-d measurements. Their viscosity is tremendously lower than that of the other 

samples, actually resembling a true liquid. The particles did not burst or change in size when 

being penetrated by the cantilever, and immediately resumed their round shape after its 

removal. The cantilever easily penetrated almost the whole depth of the particles and was 

even capable to divide them into smaller subparticles.  

    

Figure 42: Fenofibrate particle pierced with a cantilever. The precipitates behave as a liquid with 

relatively low viscosity 

 

It is self-evident that in liquid-liquid phase separation the physical state and viscosity of the 

precipitate depend on the interaction potential between the drug molecules and the solvent. 

The more solvent is complexed and the weaker the short range interaction potential (e.g. 

hydrogen bonds, ionic interactions) between the drug molecules is, the lower will be the 

viscosity of the liquid precipitate. Considering the lipophilicity of the compounds used for the 

AFM measurements, it should be pointed out that loratadine and lopinavir, with logP values 

of 5.9 and 6.3, form much harder precipitates than the more hydrophilic fenofibrate with a 

logP value of 4.8. It is hence assumed that the solidification of the precipitate is related to the 

capability to continuously complex solvent molecules within the framework of long-range 

interactions between the drug molecules. The aqueous environment of the experiments abets 

this process, leading to a stronger desolvation of the more lipophilic compounds. 

Comparing the above described observations to the results obtained for fenofibrate 

dispersions prepared with the pumping setup, it can be anticipated, that especially in the early 

stage of the precipitation process, when an equilibrium between the precipitate and the 
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continuous phase has not yet leveled off, the ethanol rich precipitate is easily accessible to 

hydrodynamical and viscous stress. Within the phase separation process, ethanol will leak out 

of the drug rich dispersed phase, leading to an increased viscosity and surface integrity 

towards the predominantly aqueous continuous phase. In good agreement, post-preparational 

morphological changes were found to occur almost exclusively due to Ostwald ripening and 

crystallization, rather than coalescence or rupture of the particles. 

 

4.4.3 WIDE-FILED FLUORESCENCE MICROSCOPY 

For gaining additional information about the inner assembly of the particles, wide-field 

fluorescence microscopy images were accomplished from fenofibrate dispersions prepared 

without the additional use of excipients. Fenofibrate intrinsically shows intense fluorescence 

signals, so that the observations could be performed without the need of using fluorescent 

dyes, which might have altered the precipitates’ structure. 

Figure 43 shows a light-microscopical image of a diluted fenofibrate dispersion 

accomplished with the wide-field fluorescence microscope. The sample was prepared under 

the same conditions as were applied for the sample preparation within the AFM 

measurements. Correspondingly, the particles have a comparably big size and apparently 

homogeneous constitution. However, when observing the fluorescence signal of the same 

sample spot by wide-field microscopy fluorescence microscopy, the presence of a fluorescent 

particulate species inside the mother particles was revealed (Figure 44). This fluorescent 

species (subsequently called subparticles) moved rapidly inside an obviously liquid 

environment enclosed by the mother particle. The smallest subparticle size differentiable 

from the background fluorescence signal consisted of complexes of 2 to 3 pixels, 

corresponding to a side length of ~240-400 nm. The presence of the subparticles could hence 

be confirmed for mother particles with diameters > 1 µm. Whether such substructures were 

also present in mother particles in the nm-range could not be verified. 
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Figure 43: Light microscopical image of a fenofibrate dispersion. The particles have a homogeneous 

appearance 

 

 

Figure 44: Snapshot of the wide-field fluorescence microscopy movie shown in Figure 43. Subparticles are 

rapidly moving inside bigger precipitate particles 

 

Especially for very big mother particles a fluorescent outer layer with a thickness up to 5 µm 

was observed (Figure 44), which surrounded the inner dispersion. The precipitate did hence 

not consist of a pure liquid or a structurally homogenous phase as was anticipated based on 
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AFM measurements, but of a core shell structure with a solute rich outer layer. Also SEM 

imaging (Section 4.4.1) was incapable of resolving this structural feature, as the particles 

solidified upon drying, falsely suggesting an apparently homogeneously structure. Only upon 

exposing the particles to the electron beam, melting was found to occur starting from the 

inside of the precipitate, potentially indicating a denser outer layer (Figure 36). Such core 

shell structures have also been described in the literature [125], however, only under 

crystallization of the outer shell. Considering the flexibility and robustness of the fenofibrate 

precipitate upon application of mechanical stress, the surface layer of the mother particles 

must have a certain flowability and elasticity, preventing leakage of the contained dispersed 

phase. Presumable it is the bad wettability of the hydrophobic drug molecules that leads to 

rapid contraction and sealing of the particle surface one lacerated by the AFM tip. 

The formation of a mechanically stable outer layer of the fenofibrate precipitate is attributed 

to solvent depletion from the precipitate surface. As observed for loratadine and lopinavir, 

this depletion leads to an increase in sample viscosity. The fact that the outer layer of the 

particles only spans nanometers to micrometers in thickness, as well as the observation of 

rapid solidification of the lopinavir precipitate (Figure 39), suggests, that the surface 

equilibration with the continuous phase completes within seconds or even milliseconds. 

Neither within the AFM measurements, nor within wide-field fluorescence microscopy, 

structural changes were observed within the measurement  time (up to 1 hour for wide-field 

fluorescence microscopy, up to 4 hours for AFM measurements), indicating the complete 

formation of a surface layer prior to the start of the measurements. 

The dependency of the particle surface properties on the composition of the continuous phase 

was also shown by accomplishing additional wide-field microscopy measurements using 

undiluted fenofibrate dispersions, hence containing ~16.7% (V/V) ethanol. In opposite to the 

samples observed in an exclusively aqueous environment, the particles had a hardly 

distinguishable outer shell with a thickness of less than 2 pixels  246 nm, indicating a lower 

degree of solvent depletion compared to an exclusively aqueous environment. In one case 

even the bursting of a particle and spilling of the contained dispersion was observed (Figure 

45). 
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Figure 45: Video snapshot of an undiluted fenofibrate dispersion. The interior of the particles remains 

rather liquid; particles are prone to Ostwald ripening and coalescence. The particle in the middle (image 

a) bursts, its content pours out 

 

4.4.4 CONFOCAL FLUORESCENCE SPECTROSCOPY 

Spectra were accomplished by confocal fluorescence spectroscopy for investigating whether 

the subparticles were crystalline or rather having the same liquid-amorphous state as the 

mother particles. Surprisingly no shift between the spectra of dissolved drug, crystallized 

fenofibrate or the liquid precipitate were observed, so that it was not possible to 

spectrometrically differentiate between the samples (Figure 46 - Figure 48). Neither water 

nor the ethanol used for preparation of the dispersions showed a fluorescence signal, so that 

the fluorescence observed was caused by fenofibrate alone, and not by potentially contained 

a) b) 

 d) c) 
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impurities. Intensity variations of the signals were observed due to fluctuations in the local 

particle concentration. 
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Figure 46: Fluorescence spectra of a 5% (w/w) ethanolic fenofibrate solution. Only weak signals are 

obtained for the dissolved drug 
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Figure 47: Fluorescence spectra of a freshly prepared dispersion containing 7 mg fenofibrate/g 

dispersion. Depending on local concentration fluctuations, differently strong signals for the dispersed 

phase as well as dissolved drug were observed 
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Figure 48: Fluorescence spectra acquired from a crystallized fenofibrate dispersion. Signals are 

comparable to those of the liquid precipitate were obtained 

 

The fluorescence signals of the liquid precipitates were much stronger than for the dissolved 

drug and very comparable to those obtained from the crystalline drug. This similarity 

indicates a comparable interaction pattern of the fenofibrate molecules in the crystals and 

those in the freshly prepared precipitates. This is surprising, considering the much higher 

molecular mobility in the liquid precipitate. How many of the drug molecules contribute to 

the fluorophor of the drug has not been reported in literature, making further evaluation of the 

interaction pattern difficult. 

 

4.4.5 LIGHT MICROSCOPY 

Light microscopy was intended to complete the dataset for being able to fully retrace the 

underlying mechanisms of the particle formation process. Adopting the very gentle sample 

preparation conditions from AFM measurements and wide-field fluorescence microscopy, 

precipitates in the elevated µm-range could be generated (Figure 49, right). Still rarely 

observed, the thereby obtained macroscopic particles helped to confute the impression of 

homogeneity gained when investigating the samples prepared under more rigid mixing 

Crystalline fenofibrate dispersion 
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regimen (Figure 49, left). It could be confirmed that the result of the precipitation process is 

a complex multiple emulsion system, with substructures forming inside the mother particles. 

The continuous phase of the subparticle-dispersion comprised inside bigger particles 

apparently had a comparable viscosity/composition as the continuous phase surrounding the 

mother particles.  

    

Figure 49: Fenofibrate dispersions prepared under normal (left) and very gentle (right) mixing 

conditions. Even particles up to 10 µm have an optically homogeneous appearance 

 

Fenofibrate particles did, in opposite to the crystalline drug, not give any signal when being 

observed by using cross polarized filters. These optical properties in combination with the 

above described melting pattern within the SEM imaging provide strong evidence for the 

non-crystallinity of the fenofibrate precipitate. Further evidence for the absence of crystalline 

material in the precipitate is provided by thermodynamical reasons. The chemical potential of 

the drug inside the precipitate as well as in the drug depleted continuous phase is the same 

[120], so that the formation of the thermodynamically favorable crystalline state can occur in 

either of the phases, depending on kinetic factors. Crystallization was however found to 

exclusively occur outside the particles. The presence of hardly detectable nanocrystallites 

would have contradicted the free formation of crystals in solution, as they would have served 

as seeds, promoting crystallization in their direct environment, meaning inside or at the 

surface of the precipitate particles. Facing the non-crystallinity of the subparticles, and 

considering the comparable optical properties of the subparticles and the surrounding outer 

layer, it can be anticipated that both, the subparticles and the shell are composed of the same 

material. 
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A more detailed observation of the particle formation process could be accomplished 

regarding the viscous precipitates of lopinavir and loratadine. Better than for fenofibrate, the 

viscosity of the precipitates of these two drugs was high enough to withstand the 

hydrodynamic effects present within the mixing process. It can be nicely seen that the phase 

separation of loratadine and lopinavir underlies typical spinodal patterns as they are known 

e.g. for polymeric systems [91]. 

In a first step, the concentration density fluctuations arising from blending the ethanolic drug 

solution and water lead to the actual event of phase separation. A poorly defined precipitate is 

formed. Subsequently, the newly formed phase gains shape by forming a well-defined 

interface. The third step resembles the shape transformation of the interface. An 

interconnected structure of precipitate is formed from which substructures constrict, forming 

individual particles. Also the formation a multiple emulsion system as it was shown to exist 

for fenofibrate could be tracked as well for loratadine and lopinavir (Figure 50 - Figure 52). 

It can nicely be seen how the subparticles constrict from the same solute rich matrix that later 

forms the shell of the mother particles. 

The observed spinodal decomposition is presumably conveyed by noninstantaneous mixing 

of ethanol and water, as it is known to occur due to interfacial effects [89]. An indication 

therefore is the observation of entrapped droplets of organic solvent inside the precipitate 

particles (Figure 52). These ethanol droplets, infrequently observed within precipitation 

experiments of all three drugs, were distinguishable from the liquid precipitate due to their 

color and a strong tendency to coalescence. 
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Figure 50: Lopinavir dispersion prepared under weak mixing conditions. The process of decomposition 

and shaping of individual sample particles can be observed 

 

 

Figure 51: Dispersion of  lopinavir prepared under weak mixing conditions. Formation of an 

interconnected gel like network of which subparticles constrict 
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Figure 52: Dispersion of loratadine prepared under weak mixing conditions. As for the other drugs, 

droplets of organic solvent entrapped in the precipitate (centre) could be observed 

 

Although the intermediate interconnectivity found for the lipophilic compounds lopinavir and 

loratadine (e.g. Figure 51) could not directly be confirmed for fenofibrate, it is very likely 

that all three drugs phase separate according to the same mechanisms. The reason for the rare 

manifestation of spatially extended fenofibrate structures might be the low viscosity of its 

precipitate, as it was revealed by AFM measurements (Figure 38). This makes the precipitate 

too fragile to withstand the hydrodynamic and surface energy dependent rapid decay post 

sample preparation. Another explanation is, that the formation of individual fenofibrate 

particles might occur at an early state of the of the spinodal decomposition, prior to the 

manifestation of interconnected structures (see also [126]). 

 

4.4.6 NEW INSIGHTS ON THE IMPACT OF THE PROCESS CONDITIONS ON 

PARTICLE FORMATION 

The fact that not a solid, but a liquid precipitate is formed, shifts the interest from 

supersaturation defined effects on the particle size distributions to the impact of friction and 
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hydrodynamic processes going on during phase separation. The liquid state of the precipitate 

provides a wide accessibility to particle breakup, depending on the mixing intensities applied. 

Under weak mixing conditions, e.g. hand-mixing of ethanolic and aqueous phase, core shell 

structures were formed, upon whose rupture the contained particles were found to be released 

into the continuous phase (Figure 45). Also, at low flow rates of 12 - 24 ml/min a binodal 

particle size distribution could be observed (Figure 9, Chapter 2), potentially reflecting the 

release of nanoparticles from destroyed bigger structures. At higher flow rates, this 

bimodality gets lost, as the size reduction of bigger structures reaches a limit. It can be 

expected that spatially extended precipitate structures do no longer persist, but are directly 

destroyed by the intense mixing forces applied at elevated flow rates. The energy required for 

breaking up the precipitate structures in the mixing setup is reflected by the high energy 

dissipation and the linear shape of the pressure drop obtained within antisolvent precipitation 

(Figure 17). At intermediate mixing intensities an increasing amount of energy is consumed 

for breaking up primarily formed structures into smaller subparticles, thereby exceeding the 

specific power input needed for mixing just ethanol and water (blank). When the particle size 

is reduced to a minimum under very intense mixing conditions, no additional energy is 

consumed for further size reduction. Energy dissipation lags behind the blank values and 

remains on a comparably low level. Presumably interfacial effects beyond the stabilization of 

the oily phase take place, facilitating the flow through the mixer. The coalescence of 

particles, which one could anticipate to occur in the mixing setup, most likely only has an 

insignificant impact on the final product properties, as the resulting coalescent underlies the 

same hydrodynamic effects as the primarily formed particles. Typically, an equilibrium levels 

off between particle breakup and recombination. 

Solvent complexation was found to play a determining role concerning the mechanical 

properties of the precipitate. For fenofibrate the viscosity respectively the thickness of a 

solvent depleted outer shell of the particles was found to increase with decreasing ethanol 

concentration in the continuous phase of the dispersions (Section 4.4.3). Also for loratadine 

and lopinavir strong indications for a solidification of the precipitate post operation were 

observed within the AFM measurements. It is evident, that besides the elasticity of a sample 

also its volume is affected by the observed solvent complexation. In comparable antisolvent 

precipitation experiments, the organic solvent was found to contribute ~30-60% of the total 

mass of the precipitate [8, 117, 120]. Lafferrère et al. [117] found a correlation between 

temperature and precipitate composition in antisolvent precipitation. In their study they 
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showed, that the fraction of the contained drug decreased by 25% in favor to complexed 

solvent/antisolvent when the temperature was increased from 10°C to 50°C. Considering the 

unchanged particle size obtained when varying the process temperatures in our setup 

(Chapter 3), the interaction between drug and solvent provides the most reliable explanation. 

The increasing solubility of fenofibrate at elevated temperatures is countervailed by the 

complexation of solvent, keeping the total volume of precipitate constant. Only by decreasing 

the temperature of the aqueous phase tremendously, a higher volume of precipitate, and 

hence bigger particles are formed. 

In the same context, the dependency of particle size on solvent composition has to be seen. 

Particle size increased continuously as the ethanol content in the dispersions was increased 

(Figure 26). Neither interfacial nor solubility related effects alone can explain this increase. 

In fact, the reason therefore presumably was an increasing amount of solvent, especially 

ethanol, complexed in the framework of intermolecular interactions of the precipitate. 
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4.5. CONCLUSIONS 

The above described observations give a good impression about the compositional and 

structural makeup of the precipitated drugs. Beyond the structural analysis of the precipitates, 

the results allow to clarify many questions raised by the observation of differences between 

the simulations accomplished and the experimental results (refer also to Chapter 2 and 

Chapter 3). 

Already at very low supersaturations (hand mixing) spinodal decomposition was observed for 

loratadine and lopinavir, as indicated by the spatially extended and gradually shaped 

precipitate. Comparable product characteristics suggest the same phase separation mechanism 

for fenofibrate. The precipitates examined within our experiments were no transient solvent 

particles as suggested by other authors [55], but the liquid precipitate was stable until 

crystallization of the drug. AFM as well as wide-field fluorescence measurements indicate 

that the elasticity of the particles primarily depends on the lipophilicity of the drugs as well as 

on the interaction potential with the solvent. The varying complexation of solvent/antisolvent 

molecules at different temperatures and solvent/antisolvent ratios represent a conclusive 

explanation of the previously described particle size dependencies. In conclusion, the particle 

formation process was governed by three major processes: 

 

a) Spinodal decomposition 

b) Complexation of solvent and antisolvent in the framework of drug molecules, which 

determine the volume and mechanical properties of the precipitate 

c) Shaping of the resulting precipitate by hydrodynamic and interfacial effects 

 

A liquid precipitate shell at the particle surface and the existence of incorporated 

nanoparticles was observed by light- and wide-field fluorescence microscopy. While for 

lopinavir and loratadine clear evidence was found, indicating that besides the main precipitate 

also such secondary particles are formed within the spinodal decomposition process, 

nucleation based phase separation of the subparticles cannot be excluded for fenofibrate, as 

the intermediate state of the demulsification process could not be monitored. The absence of 
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crystalline material after sample preparation as well as the comparable optical properties of 

the shell and the contained particles (light- and wide field fluorescence microscopy) indicates 

that the dispersed particles most likely have a comparable composition as the surrounding 

shell. Evidence was provided supporting the idea that the mother particles as well as the 

subparticles do not contain crystalline drug, which might have formed by nucleation or 

subsequent to the phase separation process. Nevertheless, a distinct interaction potential 

exists between the fenofibrate molecules in the liquid dispersions, resulting in fluorescence 

spectra comparable to that of the crystalline drug. 

If and to what extend amorphous or liquid nanoparticles below the resolution of the wide-

field fluorescent microscope (~1 µm) exist could not be determined. The required drying of 

the specimens and their observed thermal instability within electron microscopy 

measurements prohibited further investigations with sufficient spatial resolution. For 

loratadine and lopinavir solvent complexation was found to be temporarily short lived, 

leading to particles with an homogeneous inner structure and the loss of a potentially existing 

inner dispersed phase as was observed for fenofibrate. 

 



 

 



Chapter 5. Stabilization of the Dispersions 

___________________________________________________________________________ 

 

 117 

Chapter 5. Stabilization of the Dispersions 

5.1. ABSTRACT 

The physical stability of a formulation is essential for assuring a sufficiently long shelf life as 

well as for providing the experimental freedom required for downstream processing during 

manufacturing. This is especially the case for substances as fenofibrate, whose bioavailability 

can suffer significantly following phase transformations, namely crystallization [127]. 

Fenofibrate represents a worst case substance concerning phase transition stability. Different 

approaches were accomplished to inhibit the drugs crystallization, coalescence of the 

amorphous drug particles as well as to slow down Ostwald ripening. Most successful of these 

was the coprecipitation with a second liquid-liquid phase separating substance in combination 

with surfactants. Crystallization could thereby be delayed from 1 min to 1 hour. Wide-field 

fluorescence microscopy, AFM measurement and also the structural analysis of lyophilizates 

of the drug dispersions allowed to gain further insights in the structural habits of the 

precipitates. It was concluded, that the presence of butylated hydroxytoluene (BHT), which 

was used as model-coprecipitant and stabilizing agent, decreases the likelihood of nucleation 

due to its structural affinity to fenofibrate and the resulting constraint of the homologous 

interaction between fenofibrate molecules. Side effect of the weakened fenofibrate-

fenofibrate interaction pattern was a liquefaction of the coprecipitate particles, which was, 

besides fenofibrate, also observed for the poorly soluble drugs lopinavir and loratadine. It 

indicates the potential for a wide applicability of this stabilizing approach. To the knowledge 

of the author, such analysis of the structural properties of liquid-liquid phase separating 

substances has so far not been accomplished, and the proposed approach to inhibit 

crystallization is new in the field of pharmaceutical sciences. 
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5.2. INTRODUCTION 

The stability of drug dispersions can be affected by a multitude of potential destabilizing 

mechanisms. Although most publications dealing with the preparation of such dispersions 

claim to produce “stable” formulations, this term is not always properly defined. It can refer 

to the stability of a certain physical state of the primary product, e.g. a certain polymorph, to 

a given size distribution, or to both.  

The means applied for assuring dispersion stability are mostly derived from classical 

emulsion or crystallization technology, e.g. the use of certain excipients, dilution with a non-

solvent or the removal of solubilizing compounds. However, why a certain stabilization 

measure applies to one formulation but not to another is poorly understood [128], especially 

concerning the amount and kind of excipients to use. The absence of a commonly accepted 

formulation guideline must at least in part be addressed to an incomplete understanding of the 

morphology of the dispersions and the interaction mechanisms between the excipients and the 

main compounds. 

Within the scope of this work the stability of fenofibrate formulations is primarily defined as 

the absence of crystallization. Secondly, the mean particle size was thought to remain in a 

range allowing for parenteral application of the drug dispersions, preferentially below 1 µm. 

Considering the tremendous instability of amorphous fenofibrate dispersions against 

crystallization, the development of a marketable formulation was not a target. Rather, 

knowing that often liquid-liquid phase separating substances exhibit an extraordinary intrinsic 

stability again crystallization [110, 111], a subsequent transfer of the developed formulation 

approaches to compounds with a higher thermodynamical stability was aspired. For such 

substances a significantly extended and commercially attractive shelf-life seems attainable 

even without the application of classical long term stabilization techniques, such as freeze- or 

spray drying of the formulations. 

For fenofibrate a 30 min target time was established, in which crystallization and 

considerable particle growth should be avoided. Thinking beyond early formulation studies, 

30 min were thought to guarantee enough experimental freedom for implementing additional 

stabilizing means to allow for further downstream processing. Therefore the work was based 

on using dispersions in their unchanged post preparational state, without the application of 

solubility diminishing means as solvent removal or dilution. The applied stabilization 
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techniques aimed on a reduction of particle agglomeration as well as coalescence by fusion of 

the liquid dispersed phase. Most important was however to inhibit interparticulate mass 

transfer in terms of crystallization and Ostwald ripening. 

In the following, the destabilization mechanisms found to be relevant within this work are 

briefly outlined in the context of potential counteracting measures. In the Results and 

Discussion part (Section 5.4), their applicability to fenofibrate dispersions is experimentally 

investigated. In addition, a completely new approach for inhibiting the crystallization of 

liquid drug dispersions is presented: the modification of the molecular interaction profile 

inside the precipitate particles by coprecipitation with a second substance showing liquid-

liquid phase separation. Lyophilization as downstreaming operation for the conservation of 

the dispersions and adjusting the postoperational excipient content is discussed. Results from 

lyophilization studies as well as wide-field fluorescence microscopy and AFM measurements 

gave further insight into the structural properties of the fenofibrate precipitates. 

 

5.2.1 CRYSTALLIZATION 

Crystallization generally occurs due to thermodynamical reasons, as the highly ordered state 

of crystals is energetically favorable compared to the amorphous (or liquid) state of a 

substance. Fenofibrate is a particularly good example for a substance being sensitive to 

crystallization. In dispersions prepared by antisolvent precipitation, the first crystals can be 

observed directly after preparation of the dispersions, independently from the mixing 

conditions applied. The driving force for crystallization increases with increasing 

supersaturation of the solute, growth kinetics accelerate at elevated solubilities in the 

continuous phase (Figure 53). The higher the solubility is, the higher is the diffusion rate of 

molecules from an energetically less favorable particle towards a more stable polymorph 

[129]. Developing a formulation with the aim of increasing drug solubility, hence 

unavoidably threatens the dispersions’ physical stability. In antisolvent precipitation 

crystallization depends on the amount of solvent, temperature, the size and physical nature of 

the precipitate as well as the presence of excipients. 
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Figure 53: Crystallization in a supersaturated solution 

 

The bulk phase of liquid precipitation products can be interpreted as a supercooled liquid 

with an exceptionally strong interaction potential with the available solvent (and antisolvent). 

Upon liquid-liquid phase separation, the solvent thereby acts as plasticizer, which lowers the 

viscosity of the sample. In consequence, the samples’ glass transition, and also its 

crystallization behavior, can be influenced by any parameter affecting the interaction between 

solute and solvent. 

For substances showing liquid-liquid phase separation, crystallization can occur either in the 

continuous phase, in the solute rich dispersed phase or at the interphase between both. 

Generally, crystallization inside or at the surface of the dispersed phase is favored within a 

range of optimal molecular mobility, as was described for other amorphous systems [130]. In 

the case of homogeneous nucleation, it hence depends on the intensity and duration of the 

homogeneous molecular interaction between the solute molecules. In the case of 

heterogeneous nucleation, crystallization additionally depends on the interaction pattern with 

foreign nucleation sides, e.g. impurities. In both cases the molecular mobility needs to be 

high enough to allow for an oriented arrangement of the molecules. In the case of 

homogeneous nucleation, the duration of the interaction needs to be long enough to assure an 

interaction pattern sustainable enough to allow for the condensation of an amount of 

molecules exceeding the critical nucleus size (refer also to Section 2.3.5). It was shown in 

Chapter 1 that the viscosity and hence the molecular mobility of precipitates obtained by 

liquid-liquid phase separation can vary strongly. It depends on the solvation of the solute 

inside the precipitate, which can lower the homogeneous interaction between the solute 

molecules. The glass transition of the precipitate is reached when the interaction between the 

solute molecules becomes strong enough to increase the precipitates’ overall viscosity to 
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≥ 10
12

 Pas, accompanied by a corresponding reduction in molecular mobility. For 

temperature controlled systems, this state is characterized by the glass transition temperature 

Tg (Figure 54) [91]. The Kauzmann temperature TK marks the condition at which the entropy 

of the supercooled system reaches that of the corresponding crystal and the configurational 

entropy of the system becomes zero. 

 

Figure 54: Schematic description of the enthalpy variation with temperature (adopted from [131]) 

 

Crystallization is only possible, as long as a sufficiently high mobility is assured, and hence 

usually occurs at temperatures between Tg and the critical solution temperature (Figure 55). 

The exact position of the nucleation optimum for the amorphous phase depends on the 

interaction pattern between solute and solvent and is hence poorly predictable. For substances 

forming solvates, a strong interaction with the solvent can facilitate crystallization, as the 

solvent can conciliate a certain periodicity between the solute molecules. Other substances 

were found to be impossible to crystallize from a liquid precipitate, as their high molecular 

mobility prevented sufficiently strong molecular interaction [132]. Only solvent removal by 

lyophilization and careful rehydration allowed for the agglomeration of sufficient amounts of 

material to reach the critical nucleus size. For certain systems crystallization is favored at the 

interface between the dispersed and the continuous phase, again underlining the impact of the 

interaction between solute and solvent/antisolvent [106, 125, 133-135]. For fenofibrate, 

whose structure lacks the presence of hydrogen donors and which is not known for forming 

solvates [136], crystallization would be expected to increase at lower molecular mobility, as 
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this would allow for a closer approximation and more permanent interaction of the drug 

molecules. 

 

Figure 55: Schematic illustration of the parameters controlling crystallization from the amorphous state 

(adopted from [115]) 

 

For liquid-liquid phase separating substances, crystallization not only occurs inside or at the 

surface of the solute rich precipitate, but can also take place in the solute depleted continuous 

phase, which is in the presence of amorphous material supersaturated compared to crystalline 

polymorphs. The correlation between the different crystallization patterns is nicely shown 

when referring to the example of temperature controlled systems. As observed by Lafferrère 

et al. [117] and conceivable for other systems, the composition of the precipitates tends to 

increasingly comprise solvent at elevated temperatures. Neglecting gelation effects, the 

solvent complexation causes an increase in molar mobility inside the precipitate until the 

solubility limit is reached, and the precipitate dissolves. For most substances also the 

solubility in the continuous phase increases, which is directly associated with the crystal 

nucleation and growth rate. A temperature shift hence not only affects the crystallization 

behavior inside the dispersed phase, but simultaneously alters crystallization in the 

continuous phase. Primarily kinetical factors finally determine whether crystallization will 

preferentially occur in the continuous, or the solute rich dispersed phase. 

To inhibit crystallization is difficult. Crystal nuclei form on a molecular level by 

agglomeration of a certain amount of solute molecules. Crystallization inhibitors in the 

classical sense prevent nuclei formation on a sub-critical size, so that molecular agglomerates 
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redissolve before forming a thermodynamically stable solid [137]. However, due to the 

experimentally difficult identification of nanoscopic nuclei, it can be expected that the 

stabilizing effects described in literature can in many cases also be attributed to shielding 

effects of adsorbing excipients on the crystals surface, so that already existing crystallites do 

not grow to an observable size. 

Crystallization inhibitors are substances with a high interaction potential with the solute. For 

inhibitors additionally binding to the crystal surface, the inhibitor-crystal interaction needs to 

be comparably unspecific, as the multiple faces of a crystal have different structural surface 

habits. To prevent crystal growth, an inhibitor needs to bind to all of such surfaces 

simultaneously. Mainly polymers such as polyvinylpyrrolidone (PVP), cellulose derivates or 

poloxamers were used as crystallization inhibitors [138-140]. Their positive effects on 

dispersion stability were attributed to an increase of the viscosity of the continuous phase, the 

formation of a steric barrier for solute adsorption on existing crystals and/or specific 

interaction between the drug and the stabilizer, e.g. by hydrogen bonding. 

Hydroxypropylmethylcellulose (HPMC) and PVP are known to be generally capable to 

inhibit precipitation from a solution, indeed indicating interaction with the solute on a 

molecular level [138, 139]. 

Almost no research has been accomplished on the stabilization of small molecules showing 

liquid-liquid phase separation. In 1910 Flaschner and Rankin [141] developed an approach to 

influence the morphological properties of precipitation products. Intending to experimentally 

determine the critical solution temperature of different small organic molecules, they succeed 

to artificially induce liquid-liquid phase separation by the addition of a second poorly soluble 

compound and to avoid, resp. postpone, crystallization. The excipients used typically had a 

lower solubility than the solute of interest and a higher interaction potential between both 

solutes than between the solutes and the continuous phase. Galkin et al. [142] used a 

comparable technique when studying crystallization phenomena in lysozyme formulations, 

using salt, glycerol or nonadsorbing polymers to cause liquid-liquid phase separation and to 

direct the phase separation mechanism. Post precipitational stabilization of liquid precipitates 

is widely neglected in research, as liquid-liquid phase separation in the context of 

crystallization technology is widely considered undesirable and scientific focus it put on its 

avoidance. 
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Within this work, in a preliminary trial a series of excipients previously used for the 

stabilization of fenofibrate and other drug formulations were studied for their stabilizing 

functionality in the current sample system. These classical formulation approaches were 

subsequently further developed by an innovative formulation approach, the coprecipitation of 

the API with an additional liquid-liquid phase separating compound. It takes on the idea of 

influencing the morphological properties of the precipitates used by Flaschner and Rankin 

[143]. Fenofibrate was combined with a second poorly soluble compound, the antioxidant 

2.6-di-tert-butyl-4-methylphenol (butylated hydroxytoluene, BHT). Not mentioned in the 

literature in the context of having effects on the physical stability of dispersions, the 

antioxidant was selected based on its low toxicity [144-146] as well as structural properties 

indicating a strong interaction potential with fenofibrate. With a logP value of 5.3 BHT is 

even more lipophilic than fenofibrate, and with its aromatic structure not only accessible to 

lipophilic, but also to (induced) dipole-dipole interaction, as is fenofibrate. Experimental 

investigations were accomplished for controlling the physical state of the coprecipitates. 

BHT’s potential to increase dispersion stability was refined by combination with classical 

formulation strategies, namely the addition of surface active and polymeric excipients. 

 

5.2.2 OSTWALD RIPENING 

Ostwald ripening was, besides crystallization, found to be the main cause for structural 

modifications in fenofibrate dispersions. As already discussed under Section 1.4, Ostwald 

ripening describes the growth of bigger particles at the expense of smaller ones [147] (Figure 

56). The driving force for the mass transfer is the higher surface energy of smaller particles, 

which have a detrimental surface to volume ratio compared to bigger particles. Overall, 

Ostwald ripening leads to a reduction in the total surface area of the dispersed phase. 
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Figure 56: Ostwald ripening 

 

As shown above for crystallization phenomena, also Ostwald ripening increases at high 

concentrations of solute in the continuous phase. It applies to crystalline, amorphous as well 

as liquid particles, will however in most cases be fastest with liquid and amorphous materials, 

as these show a higher solubility and facilitated surface integration of the adsorbing solute 

molecules. As Ostwald ripening depends on the mass transfer between individual particles; 

systems containing a wide particle size distribution are most prone to Ostwald ripening. The 

preparation of dispersions with a homogeneous size distribution is hence an effective strategy 

for increasing their stability. In addition, Ostwald ripening might be decreased in the presence 

of adsorbing polymers as PVP as well as surface active additives. They lead to a reduced 

diffusion coefficient between the particles by shielding the particle surface [140]. 

A further technique for the reduction of Ostwald ripening is the addition of a second, poorly 

soluble compound, such as medium chain triglycerides, to the dispersed phase [148-151]. 

Diffusion controlled mass transfer of both compounds leads to varying concentrations inside 

the differently sized particles and, in consequence, to an equilibration of their chemical 

potentials. The mass transfer between the particles is reduced, and the stability of the 

dispersion can be maintained. The same mechanism was postulated to also apply to 

amorphous nanoparticles [34, 152]. BHT, primarily intended to be used as crystallization 

inhibitor, at least theoretically also has the potential to be used as Ostwald ripening inhibitor 

for fenofibrate. Prerequisite for a successful application is however the complete miscibility 

of both compounds. 
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5.2.3 OSTWALD RIPENING IN SAMPLES CONTAINING DIFFERENT 

POLYMORPHS 

In cases were crystalline as well as amorphous/liquid material is present in solution, 

crystallization and Ostwald ripening compete with each other. Mass transfer depends on the 

solubility pressure of the individual particles and the energetical advantage realized by the 

transition process ( 

Figure 57). Generally, material is transferred following an energy cascade from energetically 

less favorable small particles to bigger ones and towards a thermodynamically more stable 

polymorph.  

 

 

Figure 57: Solubility pressure and mass transfer of different particles in dispersion. Mass transfer takes 

place from small particles to bigger ones and from liquid/amorphous material to crystals 

 

Whether Ostwald ripening or crystallization dominates the ripening process also depends on 

the surface integration of solute molecules into the target structure. Surface integration into 

amorphous or liquid surfaces such as the fenofibrate precipitate is considered less critical 

than in the highly ordered molecular lattice of the crystalline drug. Crystal growth requires an 

oriented approach of solute molecules to fit into the surface lattice structure. Also the use of 
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excipients can modify the surface integration. Despite being thermodynamically 

disadvantaged, Ostwald ripening can dominate the ripening process in the case that kinetical 

reasons slow down crystallization. In most cases, Ostwald ripening and crystallization occur 

simultaneously with different growth rates for each polymorph (Figure 58). 

Analytical differentiation between Ostwald ripening and crystallization dominated processes 

is best possible using optical methods, as e.g. PCS or static light scattering are hardly capable 

to differentiate between amorphous and crystalline particles. 

 

Figure 58: Ageing of a dispersed phase by Ostwald ripening and crystallization 

 

5.2.4 AGGLOMERATION, COALESCENCE AND MECHANICAL PARTICLE 

DISRUPTION 

Besides the described solubility related phenomena, the homogeneity of dispersions can also 

be affected by agglomeration and coalescence of the contained particles. Agglomeration 

(Figure 59) especially occurs for samples containing species with opposed or very weak 

surface charges. High contents of salts can shield the surface charge, thereby destabilizing a 

formulation. In opposite, adsorption of peptizing agents with excessive positively or 

negatively charged functional groups can prevent agglomeration by electrostatic repulsion. 

Certain polymers can stabilize the dispersion upon adsorption to the particle surface by 

forming sterically repulsive layers on the particle surface. 
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Figure 59: Agglomeration and sedimentation 

 

Agglomeration can be tremendously affected by mechanical stress as is often applied during 

sample processing, leading to an increased collision rate and intensity. In the case of liquid 

dispersed phases, the amplified collisions can also boost coalescence, the fusion of particles 

(Figure 60).   

The extent to which particle fusion occurs depends on the constitution of the interfacial layer 

separating dispersed and continuous phase. Important factors are e.g. the packaging, the 

electrical charge, the intermolecular interaction and the dimensions of the molecules forming 

the interfacial layer [148]. Especially liquid particles without the protective shield of a 

surface tension lowering surfactant are sensitive to coalescence. Raising the dispersions’ 

viscosity can be used as additional stabilizing mean. At elevated viscosity the kinetical 

energy of the particles and the probability of collisions can be reduced [153]. As discussed in 

Chapter 2 and Chapter 3 neither agglomeration nor coalescence of the particles was 

observed post preparation in the excipient free fenofibrate formulations. Nevertheless, the 

hydrodynamic pressure imposed on the samples during preparations with the pumping setup 

suggests, that such phenomena can occur within the mixing process, but are negated by the 

simultaneously occurring breakdown of the precipitate (refer also to Section 4.4.6). 
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Figure 60: Coalescence of a liquid dispersed phase 

 

Simultaneously to particle fusion, mechanical stress yields in a breakup of existing structures 

and the fragmentation of the particles (Figure 61). The deformation of a particle is 

proportional to its viscosity, so that the likeliness for particle breakup decreases at higher 

viscosities of the dispersed phase [148]. However, for breaking up a liquid particle in a 

mixing process, the disruptive forces applied must exceed the interfacial forces which hold 

the particle together. In core-shell particles with weak cohesive forces, these superficial 

forces might contribute the major part to samples’ stability. 

 

Figure 61: Particle size reduction within mixing processes 

 

5.2.5 SEDIMENTATION AND FLOCCULATION 

Sedimentation and flocculation describe a density dependent separation of the dispersed 

phase. Both mechanisms depend on the density ratio between continuous and dispersed 

phase, as well as the particle size. According to the Stokes-Einstein equation (Equation 19, 

Chapter 2) [29], both mechanisms apply stronger to bigger particles and agglomerates, while 
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the movement of small particles (up to 5 m) is dominated by their Brownian motion [154]. 

Best measures for preventing sedimentation and flocculation are hence the prevention of 

agglomeration (Section 5.2.4), the preparation of small scaled precipitates as well as an 

alignment of the densities of dispersed and continuous phase. Both, sedimentation and 

floatation of the dispersed phase will not be discussed in detail within the scope of this work, 

as they have been found to be irrelevant for the formulations under investigation. 

 

5.2.6 DOWNSTREAM PROCESSING 

It is self-evident that substances that show liquid-liquid phase separation are not necessarily 

inert, but can exhibit a certain array of side effects. Also BHT, well known as antioxidative 

reagent for years [144-146], has not been applied at elevated concentrations for improving the 

physical stability of a drug delivery systems. The intention to use such substances as 

stabilizing agents hence inevitably brings with it the need to apply them at concentrations in a 

pharmaceutically applicable range. Therefore processing techniques not only allowing for 

long term stabilization of the formulations, but also to optimize the excipients concentration 

in the final product are considered highly beneficial in terms of downstream processing. The 

functional use of, in this case BHT, can thereby be extended beyond the use as liquid-liquid 

phase separation mediator and crystallization inhibitor to serve as antioxidant at 

concentrations suitable and commonly accepted for this purpose. 

Lyophilization is well known for its ability to remove not only solvents from pharmaceutical 

and food products [155], but also to reduce the concentration of other volatile compounds 

[156, 157]. The sensitivity of the compounds to sublimation within the lyophilization process 

correlates to their vapor pressure [158]. BHT, with a vapor pressure of 0.8 Pa (25 °C) can be 

expected to significantly lack behind the sublimation rates of water and most organic solvents 

used in freeze drying [71, 155], making it an ambitious task to evaluate the extent to which 

the BHT levels in the samples can be purposefully adopted. Some examples for the vapor 

pressures of solvents used in lyophilization are given in Table 4 [71]. For comparison, also 

the vapor pressure of fenofibrate is shown. 
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Table 4: Vapor pressures of different solvents used for lyophilization as well as fenofibrate and citric acid 

and BHT 

Solvent / solid compound Vapor pressure / Pa (25°C), [71] 

Acetic acid 1853 

Acetone 46396 

Acetonitrile 22798 

Ethanol 11039 

Isopropanol 10839 

Methanol 35330 

n-Propanol 3506 

tert-Butanol 6133 

Water 3266 
 
BHT 
Fenofibrate 

0.8 
0.0000007 

 

In a series of experiments, the impact of the lyophilization process on the content of BHT in 

the freeze dried product was evaluated. Thereby different excipients previously used for the 

stabilization of the dispersions were investigated for their impact on the sublimation behavior 

of BHT. In addition also trehalose, a cryoprotectant widely used in freeze drying [159], was 

used for evaluating the applicability of BHT in commonly applied freeze drying processes. 

Trehalose preferentially forms amorphous lyophilization cakes with a fine filamentous 

structure when being rapidly cooled [160] as was done within the experiments described here. 

Without providing heterogeneous nucleation sides, trehalose was expected to scarcely affect 

the physical nature of the other compounds, namely fenofibrate and BHT. Beyond the impact 

of lyophilization on the composition of the dispersions, structural variations of the fenofibrate 

particles caused by the freeze drying process were investigated. 
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5.3. MATERIAL AND METHODS 

5.3.1 EXCIPIENT SCREENING 

5.3.1.1. LITERATURE BASED STABILIZATION APPROACHES 

Based on bibliographic references about fenofibrate and comparable drugs, a variety of 

polymeric and surface active reagents were investigated for their stabilizing effects. Only 

excipients applicable for parenteral administration were used. If necessary, substances with 

distinct parenteral toxicity were replaced by less toxic alternatives with corresponding 

functionality. The kind and amount of excipients was adjusted according to Table 5. The 

employed concentrations were selected based on literature data or citations referring to 

related excipients. The excipients were either dissolved in a 5% (w/w) ethanolic fenofibrate 

solution, or in the aqueous phase which was used for preparation or subsequent dilution of the 

dispersions. For increasing the experimental throughput, the dispersions were prepared by 

hand-mixing (pipetting) of ethanolic and aqueous phase. 

D-α-tocopherol-polyethylene-glycol-1000-succinate and gelatin type A were obtained from 

Sigma-Aldrich, Steinheim, Germany; Tween 80 was purchased from Uniqema, 

Middleborough, United Kingdom. Phospholipon 100H was a kind gift from 

Phospholipids GmbH, Köln, Germany. Medium chain triglycerides were a gift from 

Nordmann, Rassmann GmbH, Hamburg, Germany. Mannitol was purchased from Riedel-de 

Haen, Seelze, Germany. 
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Table 5: Literature based formulation screening for fenofibrate dispersions 

No. 
Excipient content in the 
ethanolic fenofibrate solution / % 
(w/w) 

Excipient content in 
the aqueous phase / % 
(w/w) 

Dilution medium 
Literature 
source 

1. 1% Phospholipon 100H 
0.2% Tween 80 
5.5% mannitol 

- [161] 

2. Phospholipon 100H (varying conc.) 
Tween 80 (varying 
conc.) 

- [161] 

3. 
1% Phospholipon 100H, 1.25% 
medium chain triglycerides 

0.2% Tween 80 
5.5% mannitol 

- 
[34, 161, 

162] 

4. - - 

1:1 dilution with an 
aqueous 0.25% D-
α-tocopherol-
polyethylenglycol-
1000-succinat 
solution 

[163] 

5. 
0.34% D-α-tocopherol-
polyethylenglycol-1000-succinat + 
0.66% Phospholipon 100H 

- - [161, 163] 

6. - - 
16.5% gelatin type 
A and 1% ascorbyl 
palmitate 

[61] 

 

Further screening experiments were accomplished based on a standardized dispersion, to 

which aqueous excipient solutions were added. These dispersions were prepared using a 

5% (w/w) ethanolic fenofibrate solution and water as antisolvent. Preparations were 

accomplished using the pumping setup comprising a mixing chamber of 0.5 mm i.d. Flow 

rates of 5 ml/min from the aqueous phase and 1 ml/min from ethanolic phase were applied. 

Post preparation the dispersions were combined with the aqueous stabilizer solutions in a 1:1 

ratio according to Table 6. The dispersions were optically and microscopically monitored for 

signs of agglomeration and crystallization. In case phase separation or unwanted 

morphological changes (agglomeration, crystallization) occurred, the experiments were 

aborted. An excipient free fenofibrate dispersion served as positive control. 
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Table 6: Empirical investigation of stabilizing reagents 

No. Excipient 
Excipient content in the 
stabilizer solution / % (w/w) 

Literature 
source 

Substance supplier 

1. 
Positive control (just 
fenofibrate) 

- - Abbott GmbH & Co. KG 

2. 
Hydroxyethyl starch 
(Mw 200 kDa) 

0.5% 
2.5% 

[164] 
Fresenius Kabi AG, Bad 
Homburg von der Höhe., 
Germany 

3. 

Poloxamer 188 
(Lutrol F 68, block 
copolymers based on 
ethylene oxide and 
propylene oxide) 

0.5% 
2.5% 

[9] 
BASF 
Aktiengesellschaft, 
Ludwigshafen, Germany 

4. 
Polyethylene glycol 660 
12-hydroxystearate) 
(Solutol HS 15 ) 

0.5% [91] 
BASF 
Aktiengesellschaft, 
Ludwigshafen, Germany 

5. 
Polyvinylpyrrolidone 
(Kollidon 12 PF) 

0.5% 
[59, 165-

167] 
BASF Aktiengesellschaft 
Ludwigshafen, Germany 

6. 
(Polyoxyethylen(20) 
sorbitan monooleate)  
Tween 80 V Pharma 

0.5% [161, 168] 
Uniqema, 
Middleborough, United 
Kingdom 

7. 
PEG-35 castor oil 
(Cremophor EL, 
Cremophor ELP) 

0.5% [169] 
BASF Aktiengesellschaft 
Ludwigshafen, Germany 

8. 
Gelatin 
(type A) 

0.5% 
1.0% 

[61, 170] 
Sigma-Aldrich, 
Steinheim, Germany 

9. 
D-α-tocopherol-PEG-
1000-succinat 

0.25% [171] 
Sigma-Aldrich, 
Steinheim, Germany 

 

5.3.1.2. BHT AS CRYSTALLIZATION INHIBITOR 

In addition to the literature based excipient screening BHT was investigated as potential 

crystallization inhibitor. Its chemical structure is shown in Figure 62. 

 

Figure 62: Butylated hydroxytoluene 
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Coprecipitates with fenofibrate were prepared by adding appropriate amounts of BHT to a 

5% (w/w) ethanolic fenofibrate solution, which was subsequently precipitated by addition of 

the aqueous phase. Further excipients, such as different surfactants and citric acid were added 

to either the aqueous or the ethanolic phase for further improving the dispersion stability and 

investigating the impact of varying ionic strength. As for the screening of classical excipients, 

dispersions were first prepared by hand mixing. The most promising formulations were 

subsequently transferred to the pumping setup, for optimization of the final composition. 

The hydrophilic compounds citric acid and Tween 80 were dissolved in the aqueous phase 

used as antisolvent, while the lipophilic surfactants dipalmitoyl phosphatidyl choline (DPPC), 

dipalmitoyl phosphatidyl glycerol (DPPG) and Phospholipon 100H were dissolved in the 

ethanolic phase. In a series of experiments the impact of BHT on dispersion stability was 

investigated under varying BHT to fenofibrate ratios according to Table 7. In addition, the 

concentrations of the surfactants were varied extensively for finding an optimal concentration 

range. 

 

Table 7: Weight ratios of fenofibrate and BHT applied for investigating dispersion stability 

BHT / % (w/w) Fenofibrate / % (w/w) 

10 5 

5 5 

4 5 

3 5 

2 5 

1 5 

0.5 5 

0.2 5 

0.1 5 

0.05 5 
0.01 5 

5 0 

 

For further characterization of the coprecipitates of BHT and fenofibrate, one of the samples 

was centrifuged using a Sigma 4k15 laboratory centrifuge (DJB Labcare Ltd., Newport 

Pagnell, England). The obtained residue was colored with methylene blue and sudan red 

(both Merck Darmstadt, Darmstadt, Germany) for evaluating the precipitates’ lipophilicity. 
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Following the first screening experiments, sample preparation was shifted from manual 

mixing to the more reproducible preparations using the pumping setup. Latter comprised a 

0.25 mm t-piece and PEEK tubing with the same i.d. for the in- and outlets of the mixing 

chamber. Total flow rates of 60 ml/min were applied for preparation of the dispersions, from 

which 10 ml/min were derived from the ethanolic phase, 50 ml/min from the aqueous phase. 

After discarding the forerun, each time about 5 ml of suspension were prepared. Post 

preparation, the suspensions were stored in 15 ml falcon tubes without dilution or other 

treatment (besides slight shaking for avoiding decomposition of the dispersions). All 

experiments were conducted at room temperature. The concentrations of the surface active 

compounds were adjusted for obtaining the best stabilizing effects in the dispersions, which 

typically had a much smaller particle size distribution than the hand-mixed samples. Citric 

acid was not used for dispersions prepared with the pumping setup, as it did not provide 

additional stabilization compared to an appropriate use of surfactants. 

 

In addition to the excipients used within the screening experiments, brief test runs were 

accomplished using triacetine, PVP as well as the pegylated phospholipid MPEG-2000-DSPE 

(1,2-Distearoyl-phosphatidylethanolamine-methyl-polyethyleneglycol conjugate-2000) as 

stabilizing agents. 

For the experiments using triacetine, a saturated triacetine solution was prepared by adding 

8.5 g of triacetine to 100 g of highly purified water. After equilibration the supernatant was 

used as antisolvent for the preparation of the dispersions. 

PVP was applied in combination with DPPC and DPPG as well as BHT as stabilizing agents. 

Besides PVP, which was added to the aqueous phase, all compounds were dissolved in the 

ethanolic fenofibrate solution. The concentrations applied were 4.2 mg of PVP/g dispersion, 

6.7 mg/g dispersion of fenofibrate, 4.1 mg/g dispersion of BHT, 0.1 mg of DPPC and 0.02 

mg/g dispersion of DPPG. 

MPEG-2000-DSPE was added to the ethanolic phase at 1% and 10% (w/w) of the total 

amount of phospholipids used. Corresponding to the weight of MPEG-2000-DSPE, the 

amount of DPPC in the formulations was reduced.  
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Citric acid monohydrate and triacetine were obtained from Carl Roth GmbH & Co., 

Karlsruhe, Germany. BHT and triacetine were purchased from Fluka Chemie GmbH, Buchs, 

Switzerland. PVP (Povidone K-12) was a gift from BASF, Ludwigshafen, Germany. DPPC 

and DPPG were purchased from Lipoid GmbH, Ludwigshafen, Germany. MPEG-2000-

DSPE was a kind gift of the same company. 

 

5.3.1.3.  SAMPLE ANALYSIS 

Within the excipient screening, sample stability was mainly investigated by taking samples at 

regular time points and performing light-microscopy, as well as by monitoring the presence 

of crystalline material using cross polarized filters. The light microscope used was a Nikon 

Labophot equipped with a JVC digital camera Model JVC TKC 1380E (Nikon GmbH, 

Düsseldorf, Germany). Also macroscopical observations were found to be an important 

indicator for dispersion stability, as crystals often adsorbed to the wall of the sample 

container, withdrawing them from microscopical observation. 

For selected formulations, the impact of BHT on dispersion morphology was investigated by 

wide-field fluorescence microscopy as well as AFM measurements. AFM measurements 

allowed to gain a deeper insight in the mechanical properties of the precipitates. Force-

distance measurements were used for the analysis of coprecipitates containing a 

3:5 ratio (w/w) of BHT and fenofibrate as well as of the precipitation products of the 

individual compounds. For comparison the measurements were extended to coprecipitates of 

BHT with loratadine and lopinavir. As for fenofibrate, these samples were prepared from 3:5 

mixtures of BHT with the drugs. Double distilled water was used as antisolvent. The 

precipitates containing just BHT or fenofibrate were prepared from a 5% (w/w) ethanol 

solution. Force distance curves obtained by AFM measurements were fitted exponentially. 

The resulting R2 values are summarized in Table 8. 
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Table 8: R2 values for the exponential fit from the elasticity data obtained from force-distance 

measurements 

BHT to drug ratio                    R
2
 

BHT 0.8680 

BHT:Fenofibrate 3:5 0.9928 

BHT:Lopinavir 3:5 0.9441 

BHT:Loratadine 3:5 0.9973 

 

Instrumentation, sample preparation, measurement conditions and data analysis for the 

accomplishment of the AFM and wide-field fluorescence microscopy measurements were 

equivalent as described in Chapter 1, Sections 4.3.3 and 4.3.4. 

For those dispersions prepared using the pumping setup, as well as redispersed samples from 

lyophilization experiments (see also Sections 5.3.2 and 5.4.2.2), samples were additionally 

monitored by static light scattering using a Horiba LA-950 (Retsch Technology, Haan, 

Germany). The mean particles size was investigated after sufficient dilution of the samples. 

The particle size distribution in the dispersions was analyzed using the Span values. Span 

values < 1 were considered to represent a homogeneous particle size distribution. 

Measurement conditions for the laser diffraction measurements were the same as applied in 

Chapter 2, Section 2.3.1. Some of the lyophilization products were additionally exposed to 

the field of an ultrasonic bath (Bandelin Sonorex super RK 510 H; Bandelin electronic 

GmbH & Co. KG; Berlin; Germany) for breaking down contained agglomerate structures. 

 

5.3.2 LYOPHILIZATION 

5.3.2.1. SAMPLE PREPARATION 

Lyophilization was used for downstream processing of the fenofibrate dispersions in terms of 

solvent removal and optimizing of the BHT content. Two test runs were accomplished using 

differently concentrated dispersions composed of an ethanolic fenofibrate solution and water, 

hence containing the drug as sole solute. In addition, the impact of different excipients on the 

freeze drying process was evaluated according to the experimental matrix shown in Table 9. 

Thereby different amounts of BHT, the surfactants Tween 80 and Phospholipon 100H, 

trisodium citrate as well as the cryoprotectant trehalose were investigated. 
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Table 9: Differently composed fenofibrate dispersions used for lyophilization (values represent the 

composition in the final dispersions prior to the lyophilization process) 

No. Compound 
Concentration / g/g 
dispersion 

Dispersion 1 

Fenofibrate 0.009 

BHT 0 

Phospholipon 100H  0 

Tween 80 0 

Trisodium citrate 0 

Dispersion 2 

Fenofibrate 0.007 

BHT 0 

Phospholipon 100H  0 

Tween 80 0 

Trisodium citrate 0 

Dispersion 3 

Fenofibrate 0.007 

BHT 0.007 

Phospholipon 100H  5.4E-05 

Tween 80 3.4E-07 

Trisodium citrate 0.006 

Dispersion 4 

Fenofibrate 0.007 

BHT 0.0003 

Phospholipon 100H  5.4E-05 

Tween 80 3.4E-07 

Trisodium citrate 0.006 

Dispersion 5 

Fenofibrate 0.007 

BHT 0.007 

Phospholipon 100H  5.4E-05 

Tween 80 3.4E-07 

Trisodium citrate 0 

Dispersion 6 

Fenofibrate 0.007 

BHT 0 

Phospholipon 100H  5.4E-05 

Tween 80 3.4E-07 

Trisodium citrate 0.006 

Dispersion 7 

Fenofibrate 0.007 

BHT 0.007 

Phospholipon 100H  0 

Tween 80 0 

Trisodium citrate 0 
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No. 
Compound 

Concentration / g/g 
dispersion 

Dispersion 8 

Fenofibrate 0.007 

BHT 0.007 

Phospholipon 2.6E-05 

Tween 80  8.4E-07 

Trisodium citrate 0.006 

D (+) Trehalose  0.01 

Dispersion 9 

Fenofibrate 0.006 

BHT 0.006 

Phospholipon 2.4E-05 

Tween 80  7.0E-07 

Trisodium citrate 0.048 

D (+) Trehalose  0.04 

Dispersion 10 

Fenofibrate 0.006 

BHT 0.006 

Phospholipon 2.4E-05 

Tween 80  6.6E-07 

Trisodium citrate 0.045 

D (+) Trehalose  0.07 

 

All samples were flash-frozen by directly injecting the freshly prepared dispersions into a 

Dewar containing liquid nitrogen (Figure 63). The flow rate of the dispersion was adjusted 

the way that clearly distinguishable frozen droplets sized about 0.8 mm in diameter were 

obtained. The suspensions were prepared with the pumping setup at a total flow rate of 

36 ml/min (30 ml/min for the aqueous phase, 6 ml/min for the ethanolic phase). If possible, 

the dispersions were prepared using a 0.25 mm i.d. t-piece as mixing chamber. Dispersions 

no. 1, 2, 4 and 6 shown in Table 9, had to be prepared using a 0.5 mm mixing chamber, as 

the 0.25 mm mixing chamber partly blocked due to adsorbing solute within the preparation of 

the dispersions. 
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Figure 63: Setup for flash freezing the fenofibrate dispersions 

 

The lyophilization of dispersion 1 was accomplished using an Epsilon 2-12 D, dispersions 2 

to 10 were lyophilized using of an Epsilon 2-6D freeze dryer (both Martin Christ 

Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany). The shock frozen 

dispersions were placed on lyophilization plates and cooled with liquid nitrogen until the 

onset of the vacuum of the freeze dryer. The freeze dryer was started in advance for cooling 

the plates down to -45 to -50°C and warming up the vacuum pump to assure a continuous 

freeze chain and avoid thawing of the samples. The freeze drying protocols were varied 

within the individual experimental sets, for optimizing the method and evaluating the 

robustness of the process. The protocol applied for dispersion 1 is shown in Table 10, the one 

for dispersion 2 in Table 11, the protocol applied for dispersions 3-7 is shown in Table 12 

and the one for dispersions 8-10 in Table 13. 
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Table 10: Freeze drying protocol applied for the lyophilization of fenofibrate dispersion 1 

No. Process phase Time / hh:mm Temperature /°C Vacuum / mbar 

1 Sample loading 00:00 -50 --- 

2 Main drying 00:01 -50 0.045 

3 Main drying 00:05 -50 0.045 

4 Main drying 10:00 -16 0.045 

5 Main drying 50:00 -16 0.045 

6 Main drying 00:01 -16 0.007 

7 Secondary Drying 05:00 5 0.007 

8 Secondary Drying 15:00 10 0.007 

 

Table 11: Freeze drying protocol applied for the lyophilization of fenofibrate dispersions 2 

No. Process phase Time / hh:mm Temperature /°C Vacuum / mbar 

1 Sample loading 00:00 20 --- 

2 Freezing 01:30 -45 --- 

3 Freezing 02:00 -45 --- 

4 Freezing 00:30 -20 --- 

5 Main drying 00:10 -10 0.25 

6 Main drying 47:59 -10 0.25 

7 Main drying 06:30 0 0.25 

8 Secondary Drying 00:01 10 0.001 

9 Secondary Drying 02:01 20 0.001 

10 Secondary Drying 11:59 20 0.001 

 

Table 12: Freeze drying protocol applied for the lyophilization of fenofibrate dispersions 3-7 

No. Process phase Time / hh:mm Temperature /°C Vacuum / mbar 

1 Sample loading 00:00 -50 --- 

2 Main drying 00:40 -30 0.1 

3 Main drying 05:00 -30 0.1 

4 Main drying 00:40 -10 0.1 

5 Secondary Drying 00:01 -10 0.009 

6 Secondary Drying 01:00 20 0.009 

7 Secondary Drying 99:00 20 0.009 
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Table 13: Freeze drying protocol applied for the lyophilization of fenofibrate dispersions 8-10 

No. Process phase Time / hh:mm Temperature /°C Vacuum / mbar 

1 Sample loading 00:00 -50 --- 

2 Main drying 00:40 -30 0.05 

3 Main drying 05:00 -30 0.05 

4 Main drying 65:00 -30 0.05 

5 Secondary Drying 00:01 -10 0.009 

6 Secondary Drying 01:00 20 0.009 

7 Secondary Drying 99:00 20 0.009 

 

5.3.2.2. HPLC ANALYSIS 

The concentration of fenofibrate and BHT in the lyophilizates was determined by HPLC 

using a Dionex unit (Dionex Corporation GmbH, Germering, Germany) equipped with a 

P680 HPLC pump, an ASI-100 automated sample injector, a STH 585 column oven and an 

UVD 170U diode-array detector. The HPLC column used was a Lichrospher 100 RP-18 

endcapped (5 µm) equipped with a Lichrocart 4-4 Lichrospher 100 RP-18 precolumn (both 

Merck KgaA, Darmstadt, Germany). A detection wavelength of 278 nm was used for both, 

BHT as well as fenofibrate. The oven temperature was set to 35°C, the flow rate was 

1.2 ml/min and the temperature of the HPLC vial rack was set to 25°C. 195 µl of the samples 

were transferred to the HPLC vials containing volume reducing glass inserts. Data analysis 

was performed using the Chromeleon version 6.60 SP3 Build 1485 software. 

 

5.3.2.3. SCANNING ELECTRON MICROSCOPY 

Scanning electron microscopy images were accomplished using a JSM-6500 F field emission 

scanning electron microscope (Joel, Ebersberg, Germany). Samples were directly spread on 

carbon pads placed on a copper sample holder. Before the measurements they were sputtered 

with carbon. 

 

5.3.2.4. RESIDUAL ETHANOL CONTENT 

The ethanol content in the lyophilizates was determined using static headspace gas 

chromatography. Samples were analyzed using a DANI 6000 equipped with a HS 850 

http://portal.mytum.de/service/career_service/referenzliste/dionex
http://web2.cylex.de/firma-home/dionex-softron-gmbh-2636983.html
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automated headspace sampler and a flame ionization-detector (Dani, Monza, Italy). A DB-

WAX capillary column 60 m x 0.32 mm i.d. and 0.5 μm film thickness was used (Agilent 

Technologies Sales & Services GmbH & Co.KG, Waldbronn, Germany). Helium was used as 

the carrier gas at a flow rate of 5 ml/min. Injections were carried out in split mode, with a 

total split of 1 ml/min (1:1). The injector temperature was 160°C and the detector temperature 

was set to 240°C. The oven temperature remained constantly at 60°C. Samples were provided 

in 20 ml headspace vials conditioned in the headspace oven at 80°C under continuous gentle 

shaking for 2 h. The loop temperature was set to 110°C with a transfer line temperature of 

120°C. Pressurization time for the vial, loop equilibrium and the injection time were adjusted 

to 0.16 min. Methanol was used as internal standard (Hydranal
®
-Methanol dry, Riedel-de 

Haën, Sigma-Aldrich GmbH, Seelze, Germany). 

 

5.3.2.5. RESIDUAL WATER CONTENT 

The moisture in the lyophilizates was determined by coulometric Karl-Fischer titration using 

a 737 KF Coulometer equipped with a 703 ti Stand sampling unit (both Deutsche Metrohm 

GmbH & Co, Filderstadt, Germany). For analysis ~180 mg of each sample were dissolved in 

methanol (Hydranal
®
-Methanol dry, Riedel-de Haën, Sigma-Aldrich GmbH, Seelze, 

Germany). The exact mass of methanol was determined gravimetrically. Samples were 

prepared in a glove box purged with dry nitrogen for avoiding sample hydration by the 

surrounding atmosphere. Aliquots were withdrawn with a syringe and transferred to the 

measurement cell with the titration solution (Hydranal
®
-Coulomat AG, Riedel-de Haën, 

Sigma-Aldrich GmbH, Seelze, Germany). 

 

5.3.2.6. X-RAY POWDER DIFFRACTION 

Wide angle X-ray powder diffraction (XRD) was used to study the physical state of the 

fenofibrate bulk substance as well as the lyophilized dispersions 1 and 2. Samples were 

placed on a quartz sample holder and analyzed using a XRD 3000 TT diffractometer 

equipped with a copper anode (40 kV, 30 mA, wavelength 0.154178 nm), (Richard 

Seifert & Co, Ahrensburg, Germany). Analysis was accomplished in an angular range from 

5-40° (2 theta), with steps of 0.05° at a duration of 2 s per step. 
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5.3.2.7. DIFFERENTIAL SCANNING CALORIMETRY 

40 µl crimped aluminum pans (ME-26763, Mettler Toledo GmbH, Gießen, Germany) were 

filled with ~8 mg of sample and closed with aluminum caps. Measurements were 

accomplished using a DSC 821e differential scanning calorimeter equipped with a 

TS0801RO Sample Robot (both Mettler Toledo GmbH, Gießen, Germany) and a vacuum 

oven type VO 200 (Memmert GmbH & CoKG, Schwabach, Germany). Samples of the 

fenofibrate bulk substance as well as the lyophilized dispersions 1 and 2 were used. They 

were cooled from 20°C to -50°C and reheated to 100°C with a scanning-rate of 2°C/min. 

Data analysis was performed with the STARe Software Version 9.01 (Mettler Toledo GmbH, 

Gießen, Germany). 
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5.4. RESULTS AND DISCUSSION 

5.4.1 EXCIPIENT SCREENING 

5.4.1.1. CLASSICAL STABILIZATION APPROACHES 

Lagging behind the expectations [34, 161-163], the literature based formulation approaches 

only allowed for a moderate stabilization of the fenofibrate dispersions. Significant 

crystallization occurred in all cases latest 20 min after preparation of the dispersions. Also the 

application of medium chain triglycerides as Ostwald ripening inhibitor did not fulfill its 

purpose to a comparable extend as was described in literature [34]. Latter might be attributed 

to the exchange of the parenterally inacceptable sodium dodecyl sulfate mentioned in the 

reference [34], by the less toxic surfactants Tween 80 and Phospholipon 100H. An overview 

of the results is presented in Table 14, with the individual formulations being rated in 

comparison to the stability of an excipient free drug formulation. Experimental data could 

only be qualitatively evaluated, as adhesion of crystals to the sample container (Figure 64) 

and the formation of air bubbles for dispersions prepared with the pumping setup prohibited 

proper size determination and quantification of the experimental data. 
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Table 14: Literature based excipient screening for fenofibrate dispersions.  (+) improved stability 

compared to the excipient free drug formulation; (±) equivalent stability, (-) destabilizing effect 

No. Excipients used 
Stability relative to excipient free 

fenofibrate formulation 

1. 
Phospholipon 100H 
Tween 80 
Mannitol 

± 

2. 
Phospholipon 100H 
Tween 80 
(varying concentrations) 

--  to ++ 
(depending on the concentrations 

applied) 

3. 

Phospholipon 100H 
Tween 80 
Mannitol 
Medium chain triglycerides 

+ 

4. 

1:1 dilution of the dispersion with an 
aqueous 0.25% D-α-tocopherol-
polyethylenglycol-1000-succinat 
solution 

+ 

5. 
D-α-tocopherol-polyethylenglycol-
1000-succinat 
Phospholipon 100H 

+ 

6. 
Gelatin 
Ascorbyl palmitate 

- 

 

 

 
Figure 64: White junks of agglomerated fenofibrate crystals partly adhere to the sample container upon 

crystallization of the dispersions 

 

Also the screening for the stabilizing effects of the hydrophilic excipients introduced via an 

aqueous stabilizing solution post preparation of the dispersions led to unsatisfying results. For 

most substances, crystallization, as the main destabilizing factor, was significantly increased 
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compared to the excipient free formulations (Table 15). The observed stabilizing effect of 

gelatin was predominantly attributed to an unspecific increase in sample viscosity. 

 

Table 15: Investigation of the stabilizing effects of individual excipients. (+) Improved stability compared 

to the excipient free drug formulation; (±) equivalent stability, (-) destabilizing effect 

No. Excipients used 
Stability relative to excipient free 

fenofibrate formulation 

1. Positive control (just fenofibrate) ± 

2. Hydroxyethyl starch --- 

3. Poloxamer 188 --- 

4. 
Polyethylene glycol 660 12-
hydroxystearate 

- 

5. Polyvinylpyrrolidone - 

6. Tween 80 - 

7. Cremophor EL & ELP - 

8. Gelatin + 

9. D-α-tocopherol-PEG-1000-succinat - 

 

In summary, the combination of different surfactants exhibited the best stabilizing effects on 

the fenofibrate dispersions (see Table 14 and Table 15). This could be best observed in the 

case of Phospholipon 100H, which was, at low concentrations and in combination with 

Tween 80, capable to decrease crystallization by the formation of a protective surfactant layer 

on the particle surface. However, the effective concentration range for the surfactants was 

found to be extremely narrow. Phospholipon 100H dispersions being originally homogeneous 

after preparation showed distinct agglomeration upon ageing of the dispersions (Figure 65). 

Already the decrease in total surface area due to Ostwald ripening of the dispersed phase was 

sufficient to provoke additional destabilization once a surfactant concentration required for 

surface coverage of the particles was exceeded. Also, some of the lipophilic surfactant 

enclosed inside of the precipitate particles by the precipitation process might diffuse to the 

particles’ surface, additionally increasing the local surfactant concentration and boosting 

aggregation. The formulations were also sensitive to changes in the concentrations of the 

other surfactants applied. While the described agglomeration behavior was found to be 

typical for Phospholipon 100H, crystallization became distinctly more pronounced for all 

surfactants when applied at inappropriately high concentrations. The reason therefore was 

attributed to a solubilization of fenofibrate in the continuous phase, going along with an 
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increased diffusion rate and mass transfer. Indeed, this high sensitivity of fenofibrate to the 

narrow effective concentration range of excipients applied might in part be responsible for 

the failure of some of the excipients, and outlines the need for an ongoing optimization 

process within formulation development. 

 

Figure 65: Agglomeration of a dispersion containing excessive amounts of Phospholipon 100H 

 

Knowing that the fenofibrate formulations consist of a liquid dispersed phase, the 

mechanisms proving to be most effective in stabilizing the dispersions were found to be 

equivalent to those being generally applied for emulsions. These are namely an increase in 

the viscosity of the continuous phase (gelatin), and the adsorption of a protective layer of 

surface active reagents. The functionality of the surfactants is not necessarily based on a 

reduction of the particles’ surface tension, but rather represents a mechanical barrier for mass 

transfer from and to the drug particles, thereby minimizing Ostwald ripening and 

crystallization. In contrast, at the concentrations applied, most polymeric excipients failed to 

improve dispersion stability, as they partly led to agglomeration of the particles, and more 

importantly increased the crystallization rate. For some of these macromolecular excipients, it 

can be anticipated that they impaired the surface integrity of the precipitate particles. 
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5.4.1.2. INFLUENCE OF BHT ON DISPERSION MORPHOLOGY AND 

STABILITY 

Dispersions prepared from ethanolic BHT solutions without fenofibrate were found to 

contain a thermodynamically metastable liquid precipitate, comparable to the dispersed phase 

observed for the drug (Figure 66). Crystallization set on at the surface of the dispersions or at 

the container walls, which served as nucleation sides. Once Crystallization started, the whole 

amount of BHT crystallized within about 10 min. 

 

Figure 66: Dispersion obtained from an ethanolic BHT solution upon addition of water 

 

In combination with fenofibrate, BHT formed apparently homogeneous, lipophilic 

coprecipitates. Upon centrifugation of the samples containing a 5:5 mixture of BHT and 

fenofibrate, strong coalescence of the particles was observed (Figure 67), with the dispersed 

phase being highly viscous and ductile, drawing filaments when being mechanically 

disrupted. 
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Figure 67: Coprecipitates of BHT and fenofibrate in a 5:5 ratio (w/w) coloured with methylene blue (left) 

and sudan red (right) 

 

For dispersions containing fenofibrate and BHT which were prepared with the pumping 

setup, the obtained particle size distributions became broader at increasing BHT 

concentrations. This effect was attributed to the elevated volume of the precipitate. It was 

accompanied by a tremendous reduction in mixing chamber and capillary blocking (see also 

Section 5.4.2) due to a liquefaction of the particles which facilitated the passage through the 

mixing chamber. Particles were thought to have a higher deformability compared to the BHT 

free fenofibrate formulations when being exposed to hydrodynamical and viscous stress. 

Indeed, when investigating a 3:5 mixture of BHT and fenofibrate by atomic force 

microscopy, the precipitate was found to have elasticity moduli distinctly lower than those 

obtained for fenofibrate or BHT alone (Figure 68). Extending the experiments to the drugs 

lopinavir and loratadine, it was found that this liquefaction did not occur due to a specific 

interaction between fenofibrate and BHT, but is a general phenomenon also applying to other 

lipophilic substances. The coprecipitates of lopinavir and loratadine with BHT showed 

explicitly reduced elasticity moduli compared to the individual compounds. All particles 

prepared from the same educts had a comparable appearance and mechanical properties, 

proving the homogeneity of the precipitation process without separation of the two solutes. 
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Figure 68: Elasticity of the coprecipitates of 3:5 mixtures of BHT with fenofibrate, lopinavir and 

loratadine. For comparison, also the force-distance curves for precipitates of the individual substances 

are shown 

 

The coprecipitates had a gel to rubber like appearance and were easily mechanically 

penetrable, e.g. by piercing them with an AFM tip (Figure 69, left). While the coprecipitate 

particles prepared from loratadine and fenofibrate rapidly resumed their original round shape 

after removal of the mechanical stress, lopinavir, the most lipophilic of the compounds, was 

found to form viscoelastic and extremely ductile coprecipitates that only partly reconstricted 

(Figure 69, right). None of the particles burst or showed leakage of the inner phase when 

being penetrated with the cantilever, indicating a highly flexible and cohesive surface 

structure. The exclusively aqueous environment of the continuous phase provided within the 

AFM measurements thereby seemed to promote surface integrity due to strong repulsive 

effects on the lipophilic precipitates. 
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Figure 69: Mechanical stress applied on the coprecipitates of BHT with loratadine (left) and lopinavir 

(right). Viscoelastic, chewing gum like filaments form from the lopinavir coprecipitates, while the BHT: 

loratadine particles showed predominantly elastic behavior 

 

Interestingly, when further investigating the fenofibrate dispersions by light microscopical 

observation, it was found that the addition of BHT not only affected the structural 

characteristics of the precipitate, but also led to a distinctly reduced crystallization rate, 

indicated by a decelerated and quantitatively reduced observation of crystalline material.  

Both effects were found to be concentration dependent, as an increase in the ratio of BHT to 

fenofibrate improved the dispersions’ stability against crystallization and decreased the 

dispersed phases’ viscosity. Most pronounced were these effects at weight ratios of BHT to 

fenofibrate of 1:5 to 5:5 (corresponding to mole fractions of BHT of 0.2 to 0.6). A saturation 

of the stabilizing properties of the excipient was even at BHT concentrations exceeding that 

of the drug not observed. This indicates, that a tight and hence saturable drug-excipient 

interaction, e.g. due to complexation of fenofibrate, did not occur. In addition, a long lasting 

molecular interaction would have abolished the liquid state of the precipitate in favor to a 

solid amorphous or crystalline phase. The liquefaction caused by the addition of BHT hence 

shows nicely, that the molecular interaction with the drug is only temporary. Other than 

classical crystallization inhibitors, BHT did not bind tightly to the target molecules, but 

statistically reduced the likelihood of homogeneous drug-drug interactions by the formation 

of transient drug-BHT interactions. 
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Summarizing, the addition of BHT had the following effects on the fenofibrate dispersions: 

 On a molecular level:  Transient molecular interaction between fenofibrate and 

BHT 

 On a macroscopical level:  Modification of the drug particles’ mechanical 

properties (liquefaction) 

 Thermodynamically:  Concentration dependent stabilization of the liquid 

dispersed phase and reduction of the crystallization rate 

 

The above mentioned effects of BHT on crystallization as well as the mechanical properties 

of the precipitate were more pronounced when the nucleation kinetics were shifted from the 

continuous phase towards the dispersed phase, e.g. by addition of further excipients such as 

citric acid (for background information on the varying crystallization sides refer also to 

Section 5.2.1). As with BHT, also citric acid was found to affect the structural integrity of the 

precipitate, providing further insights into the mechanisms defining dispersion stability. 

Originally intended to be used as peptizing agent for minimizing particle agglomeration 

within the precipitation process, citric acid was found to distinctly increase the particles’ 

viscosity, especially in dispersions containing no or low amounts of BHT. In addition, the 

particles’ structural integrity was tremendously impaired, leading to coalescence and particle 

rupture, upon which the coalescent particles often remained frozen in a viscous, irregular 

shaped state. Wide-field fluorescence microscopy measurements showed nicely, that the 

interaction potential of the subparticles remained weak and occurring subparticle clusters did 

not span space to form a coherent system inside the particles (Figure 70). The increased 

viscosity of the particles was hence not caused by a gelling effect, as was regularly reported 

for colloidal systems [172-174]. 

It was concluded, that, as for BHT, the impact of citric acid on the particle structure was 

based on interactions on a molecular level. Obviously, salting out effects caused by the acid 

led to an intensified interaction of the lipophilic fenofibrate molecules. The resulting reduced 

molecular mobility caused a viscosity increase in the interstitial space between the 

subparticles and an incapability to countervail structural inhomogenities in the particles’ 
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interfacial layer to the continuous phase, making the particles more sensitive to coalescence. 

The effects of citric acid were found to be independent from the dispersions’ pH. 

Summarizing, the addition of citric acid had the following effects on the fenofibrate 

dispersions: 

 On a molecular level:  Salting out effect on fenofibrate, leading to an impaired 

molecular mobility and an impaired surface integrity 

(resistance to fusion or bursting) of the particles 

 On a macroscopical level:  Coalescence and rupture of the particles; concentration 

dependent shift of the crystallization kinetics from the 

continuous phase towards the dispersed phase 

 Thermodynamically:  Crystal nucleation inside or at the surface of the 

precipitate particles; reduced crystallization rate in the 

continuous phase 

 

       
 

Figure 70: Coalescence of highly viscous precipitate particles as a result of the presence of citric acid in 

the continuous phase (sample composition: BHT:fenofibrate ratio 0.05:5, Phospholipon 100H, and 

Tween 80, citric acid) 

 

When using BHT as coprecipitant in the presence of citric acid, already BHT to fenofibrate 

ratios as low as 0.01:5 further amplified particle coalescence. At higher BHT concentrations 
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also the particles’ viscosity decreased, while the obviously occurring interaction between 

fenofibrate and BHT remained too weak to allow for the formation of a sustainable interfacial 

layer at the particle surface. The additional use of surfactants in combination with BHT was 

found to overcome this drawback. It allowed to increase the colloidal stability, as well as to 

reduce diffusion controlled interparticulate mass transfer. By the use of e.g. combinations of 

Tween 80 and Phospholipon 100H, coalescence of the particles and Ostwald ripening could 

be slowed down remarkably, while at the same time the crystallization inhibiting effect of 

BHT could be maintained. At optimized surfactant concentrations, stabilization of the 

dispersions against crystallization became so effective that the additional use of citric acid 

was no longer necessary for adjusting the crystallization kinetics between the continuous and 

the dispersed phase. The application of citric acid and other ionic compounds can be 

considered a backup option in the formulation of fenofibrate dispersions. Most importantly, 

its use provides an effective mean for understanding the underlying mechanisms which define 

the physical state of the precipitates. 

 

Summarizing, the concerted combination of citric acid, surfactants and BHT had the 

following effects on the fenofibrate dispersions: 

 On a molecular level:  Counteracting effects of BHT (increased molecular 

mobility) and citric acid (salting out, intensified 

molecular interaction); concentration dependent 

dominance of either effect 

 On a macroscopical level:  Stable particles due to internal stabilization by BHT and 

particle surface stabilization by the surfactants 

 Thermodynamically:  Crystallization is shifted from the continuous towards 

the dispersed phase, and simultaneously suppressed by 

the addition of BHT; overall reduced crystallization rate 

in the continuous as well as in the dispersed phase 

 

Despite the given interaction potential of fenofibrate and BHT, the miscibility of the 

compounds was not necessarily complete on a molecular level, as full inhibition of Ostwald 
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ripening, which might have been expected to occur in the case of complete miscibility, could 

not be obtained. Also, above BHT to fenofibrate ratios higher than 3:5, sufficient 

compositional stability of the particles could no longer be assured. Even in the presence of 

surfactants, Ostwald ripening led to the formation of liquid, BHT rich particles, identifiable 

by their elevated size and their adhesiveness to the sample container and drug crystals. In 

consequence, the 3:5 ratio was found to be the optimal concentration in terms of 

crystallization inhibition and colloidal stability of the dispersions. Also the effectiveness of 

the surfactants was found to be very sensitive to variations in the concentrations applied. 

Exceeding the concentrations required for stabilization of the dispersions, surfactants induced 

crystallization in the continuous phase by increasing fenofibrate’s solubility and hence 

interparticulate mass transport. 

The above described results hence clearly demonstrate the available pathways for influencing 

the fenofibrate dispersions’ structure and stability, the necessity of a combination of different 

kinds of surfactants however also highlights the distinct need for a fine tuning of the 

dispersions composition. As especially the concentration of the surfactants applied depends 

on the accessible particle surface and hence the amount and particles size distribution’ of the 

precipitate. The particles’ morphology mandatorily needs to be considered during 

formulation development. 

 

5.4.1.3. APPLICATION OF THE STABILIZING MEASURES TO THE 

PREPARATION OF DISPERSIONS WITH THE PUMPING SETUP 

The insights gained on the stabilizing effects of certain excipients were transferred from 

screening experiments to nanoparticle preparations using the pumping setup. Purpose of the 

transfer was to prepare dispersions with a reproducible particle size distribution and hence a 

narrow, measurable crystallization pattern. Sample preparation concentrated mainly on using 

surface active reagents as well as BHT. The use of citric acid was only accomplished to a 

moderate extend, as no additional stabilizing effect compared to the sole use of surfactants 

was expected. 

As anticipated, excipient free formulations were extremely prone to crystallization, which set 

in immediately after sample preparation (Figure 71). The elevated Span values as well as the 



Chapter 5. Stabilization of the Dispersions 

___________________________________________________________________________ 

 

 158 

width of the error bars indicate the presence of significant amounts of crystals. Due to the 

increased solubility pressure of the small particles, the instability of the dispersions was more 

distinct than was observed for the dispersions prepared under weak mixing conditions, which 

contained bigger particles directly after preparation. 

 

Figure 71: Fenofibrate dispersion prepared without the use of any additional excipients. Crystallization 

started directly after sample preparation and rapidly comprised the whole dispersed phase 

 

As for the preliminary experiments, the stability of the dispersions against crystallization and 

Ostwald ripening could be improved by the addition of combinations of surfactants. The 

concentration and weight ratio of the surfactants used had to be adjusted depending on the 

composition of the formulation and the process conditions applied. First positive results were 

obtained by using Tween 80 (conc. 0.002 mg/g dispersion) in combination with Phospholipon 

100H (conc. 0.02 mg/g dispersion) and BHT (conc. 7 mg/g dispersion) for stabilization of a 

7 mg/g fenofibrate dispersion. An apparently linear particle growth was obtained, 

accompanied by a slowed down crystallization (Figure 72). Nevertheless, Ostwald ripening 

and the formation of BHT rich particles impaired the dispersions’ stability. A sudden drop in 

Span values already 5 min after sample preparation indicates a turning point, where ripening 

of the dispersion switched from an Ostwald ripening controlled pattern, to dominating 

crystallization. A certain amount of crystals adhered to the container wall and were 

subsequently no longer analytically detectable. Microscopical observation revealed an onset 
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of particle agglomeration by the end of the experiment due to the local enrichment of 

Phospholipon 100H. 

 

Figure 72: Stabilization of a dispersion containing BHT and fenofibrate in a 3:5 ratio, stabilized with 

Phospholipon 100H and Tween 80 

 

The formulation could be further optimized by replacing the previously used surfactant 

combination with DPPC and DPPG. These phospholipids were found to be best applicable in 

a ratio of 80% (w/w) DPPC and 20% DPPG. Dispersions thus prepared were less sensitive to 

particle agglomeration and variations in the surfactant concentration than those containing 

Phospholipon 100H/Tween 80 (see Section 5.4.1). The BHT content was reduced from 

7 mg/g dispersion to 4 mg/g to minimize Ostwald ripening, while the fenofibrate 

concentration was kept constantly at 7 mg/g dispersion. Using DPPC and DPPG at 

concentrations of 0.3 mg/g dispersion and 0.01 mg/g dispersion, complete inhibition of 

crystallization could be extended from ~1 minute for the dispersions without excipients to 

1 hour for the coprecipitate (Figure 73), thereby widely exceeding the stability target range 

of 30 min. Even one day after preparation, the dispersions were only partly crystallized, while 

significant amounts of precipitate remained in its liquid state with particle sizes around 2 µm. 

Besides crystallization, also Ostwald ripening of the precipitate particles could be importantly 

slowed down. Again, the onset of crystallization was indicated by a drop in Span values 

about 60 min after preparation of the dispersion. 
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Figure 73: Stabilizing effect observed by the combinatorial stabilization of fenofibrate dispersions with 

BHT and the surfactants DPPC and DPPG 

 

Also combinations of Tween 80 and Phospholipon 100H as well as DPPC and DPPG in 

formulations without the additional application of BHT were investigated. They only allowed 

for a moderate stabilization of the dispersions. Figure 74 shows the effect of a combination 

of DPPC (conc. 29 µg/g dispersion) and DPPG (conc.7 µg/g dispersion). The surfactants 

obviously adhered to the particle surface, thereby partly inhibiting mass transport between the 

individual particles and to the emerging crystals seeds. Nevertheless, microscopical 

observation confirmed the presence of first crystals in the dispersion already 15 min after 

sample preparation, which subsequently multiplied by seeding other crystals. Due to strong 

crystal adsorption to the sample container a detectable crystal concentration was not obtained 

prior to about 40 min after sample preparation. 
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Figure 74: Fenofibrate dispersion stabilized with the phospholipids DPPC and DPPG, without the 

additional use of BHT 

 

Additional experiments were accomplished by coprecipitation of further potentially 

stabilizing compounds. However, neither polyvinylpyrrolidone, which is known to strongly 

adhere to particle surfaces as well as to act as effective crystallization inhibitor [138-140], nor 

the combination of phospholipids with triacetine, a compound known to stabilize 

phospholipid layers [175], led to an additional stabilization of the dispersion. Under 

application of PVP a slow crystal growth rate in the dispersions was maintained, which was 

in a comparable range as for the PVP free formulations (Figure 75). In opposite, the small 

and comparably well soluble triacetine caused strong Ostwald ripening with particle sizes up 

to ~8 µm. Distinguishable crystallization occurred about 20 min after sample preparation. 

Also the pegylated phospholipid MPEG-2000-DSPE, intended to be used as steric stabilizing 

agent destabilized the dispersions, rather than stabilizing them. 
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Figure 75: Dispersion of fenofibrate, BHT and the phospholipids DPPC and DPPG additionally stabilized 

by addition of 0.5% PVP to the aqueous phase 

 

A rather qualitative overview of the experimental results is shown in Table 16 The data are 

interpreted with respect to the kind and relative extend of the individual (de)stabilization 

mechanism. The experimental setup is characterized by the mixing mode (hand mixing 

versus the use of the pumping setup) as well as the kind of excipients applied. A quantitative 

analysis of the results is due to strongly varying analytical data for not completely stabilized 

dispersions not possible. Due to the difficult analytical differentiation between different 

particle species outlined in Chapter 4.2, a qualitative interpretation of the data with respect 

to the mechanistical background and the connectivity between the excipient classes and 

preparation methods applied is most comprehensive. 
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Table 16: Qualitative overview of the results on the stabilization of fenofibrate dispersions (the time span covered is 1 hour; +++ massive, immediate reaction/rapid 

proliferation; ++ moderate intensity/slow proliferation; + weak, very slow process) 

Composition 

Kind of 
surfactants 
used 

Sample 
preparation 
method 

Crystalli-
zation in the 
continuous 
phase 

Crystalli-
zation on 
the 
container 
wall 

Particles 
> 5 µm 
directly after 
sample 
preparation 

Particles 
> 5 µm 
formed by 
Ostwald 
ripening 

Agglome-
ration of 
particles 

Crystal growth 
inside the 
dispersed 
phase 
particles 

Bursting of 
particles, 
followed by 
immediate 
crystallization 

Coales-
cence of 
particles 

Only BHT (no fenofibrate 
used) 

- 
Hand-
mixing 

+ +++ + +     

Only fenofibrate (no 
excipients used) 

- 
Pumping 
setup 

++ +++ + ++     

Only fenofibrate (no 
excipients used) 

- 
Hand-
mixing 

+ +++ + +     

Only Fenofibrate DPPC, DPPG 
Pumping 
setup 

+ ++  +     

Only Fenofibrate 
Phospholipon 
100H,  
Tween 80 

Hand-
mixing 

+ ++ + +     

BHT to fenofibrate ratio 
> 1:5 

- 
Pumping 
setup 

+ ++ ++ +++     

BHT to fenofibrate ratio 
> 1:5 + excessive amount of 
surfactant 

Phospholipon 
100H 

Pumping 
setup 

++ ++ + ++ +++ +   

BHT to fenofibrate ratio 
> 1:5 + excessive amount of 
surfactant 

Phospholipon 
100H,  
Tween 80 

Pumping 
setup 

++ +   ++    

BHT to fenofibrate ratio 
> 1:5 + excessive amount of 
surfactant 

DPPC, DPPG 
Pumping 
setup 

 +       

BHT to fenofibrate ratio 
> 1:5 + excessive amount of 
surfactant 

DPPC, DPPG,  
Tween 80 

Pumping 
setup 

+ ++       

BHT to fenofibrate ratio 
> 1:5 + excessive amount of 
surfactant 

Phospholipon 
100H,  
Tween 80 

Hand-
mixing 

+ +  + ++    
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Composition 

Kind of 
surfactants 
used 

Sample 
preparation 
method 

Crystalli-
zation in the 
continuous 
phase 

Crystalli-
zation on 
the 
container 
wall 

Particles 
> 5 µm 
directly after 
sample 
preparation 

Particles 
> 5 µm 
formed by 
Ostwald 
ripening 

Agglome-
ration of 
particles 

Crystal growth 
inside the 
dispersed 
phase 
particles 

Bursting of 
particles, 
followed by 
immediate 
crystallization 

Coales-
cence of 
particles 

BHT to fenofibrate ratio 
≤ 1:5 + excessive amount of 
surfactant 

Phospholipon 
100H,  
Tween 80 

Hand-
mixing 

++ +   ++    

BHT to fenofibrate ratio 
≤ 1:5 + appropriate amount 
of surfactant 

Phospholipon 
100H,  
Tween 80 

Pumping 
setup 

 +       

BHT to fenofibrate ratio 
> 1:5+ appropriate amount 
of surfactant 

DPPC, DPPG 
Pumping 
setup 

        

BHT to fenofibrate ratio 
> 1:5 + appropriate amount 
of surfactant 

Phospholipon 
100H,  
Tween 80 

Pumping 
setup 

 +  +     

BHT to fenofibrate ratio 
> 1:5 + appropriate amount 
of surfactant 

Phospholipon 
100H,  
Tween 80 

Hand-
mixing 

 +  +     

BHT to fenofibrate ratio 
> 1:5 + insufficient amount 
of surfactant 

Phospholipon 
100H,  
Tween 80 

Hand-
mixing 

 + + +     

BHT to fenofibrate ratio 
> 1:5 + insufficient amount 
of surfactant 

Phospholipon 
100H,  
Tween 80 

Pumping 
setup 

 + + +  +   

BHT to fenofibrate ratio 
> 1:5 + insufficient amount 
of surfactant 

DPPC, DPPG 
Pumping 
setup 

 ++ + ++  +   

BHT to fenofibrate ratio 
≤ 1:5 + excessive amount of 
surfactant + citric acid 

Phospholipon 
100H, 
 Tween 80 

Hand-
mixing 

 + + + + ++ + + 

BHT to fenofibrate ratio 
≤ 1:5 + excessive amount of 
surfactant + citric acid 

Phospholipon 
100H,  
Tween 80 

Pumping 
setup 

+ ++  ++ ++    
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Composition 

Kind of 
surfactants 
used 

Sample 
preparation 
method 

Crystalli-
zation in the 
continuous 
phase 

Crystalli-
zation on 
the 
container 
wall 

Particles 
> 5 µm 
directly after 
sample 
preparation 

Particles 
> 5 µm 
formed by 
Ostwald 
ripening 

Agglome- 
ration of 
particles 

Crystal growth 
inside the 
dispersed 
phase 
particles 

Bursting of 
particles, 
followed by 
immediate 
crystallization 

Coales-
cence of 
particles 

BHT to fenofibrate ratio 
> 1:5 + excessive amount of 
surfactant + citric acid 

Phospholipon 
100H,  
Tween 80 

Hand-
mixing 

 + + ++ + +  ++ 

BHT to fenofibrate ratio 
> 1:5 + appropriate amount 
of surfactant + citric acid 

Phospholipon 
100H,  
Tween 80 

Hand-
mixing 

 + + +  +  ++ 

BHT to fenofibrate ratio 
> 1:5 + appropriate amount 
of surfactant + citric acid 

Phospholipon 
100H,  
Tween 80 

Pumping 
setup 

 +  +  +   

BHT to fenofibrate ratio 
≤ 1:5 + appropriate amount 
of surfactant + citric acid 

Phospholipon 
100H,  
Tween 80 

Hand-
mixing 

 ++ + +  ++ + + 

BHT to fenofibrate ratio 
> 1:5 + insufficient amount 
of surfactant + citric acid 

Phospholipon 
100H,  
Tween 80 

Hand-
mixing 

 + ++ ++  + + ++ 

BHT to fenofibrate ratio 
> 1:5 + insufficient amount 
of surfactant + citric acid 

Phospholipon 
100H,  
Tween 80 

Pumping 
setup 

 ++ ++ ++  ++   

BHT to fenofibrate ratio 
> 1:5 + surfactant + MPEG-
2000-DSPE 

DPPC, DPPG, 
MPEG-2000-
DSPE 

Pumping 
setup 

+  + ++     

BHT to fenofibrate ratio 
> 1:5 + surfactant + 
triacetine 

DPPC, DPPG 
Pumping 
setup 

++   +++     

BHT to fenofibrate ratio 
> 1:5 + surfactant + PVP 

DPPC, DPPG 
Pumping 
setup 

+ + ++ +  +   
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5.4.2 LYOPHILIZATION 

Lyophilization of the dispersions was accomplished for investigating the downstream 

processability of the fenofibrate formulations. Aim was not only the removal of the solvents 

ethanol and water, but also to investigate the possibility to adjust the BHT concentration in 

the samples subsequently to the actual preparation of the dispersions. An additional target 

was to gain a deeper insight into the structural habits of the shock frozen dispersions. 

 

5.4.2.1. COMPOSITION OF THE LYOPHILIZATES 

It was found that the composition of the dispersions changed within the freeze drying 

process. Independent from the process conditions applied, a significant decrease in the BHT 

content was observed for those dispersions primarily containing high amounts of the 

coprecipitant (Figure 76). None of the excipients used showed an inhibitory effect on the 

sublimation rate of BHT or formed a measurable barrier for the mass transport. Remarkable 

is the fact that dispersion 6, originally formulated without BHT (see also Table 9, 

Section 5.3.2.1), was found to contain almost 1% (w/w) of BHT in the lyophilized product. 

Dispersion 6 had been freeze dried simultaneously with dispersions 3-5 and 7. Obviously, 

partial equilibration between the sublimated BHT in the gas phase of the freeze dryer and the 

lyophilization products took place. So, within the lyophilization process small amounts of 

BHT were transferred to the originally BHT-free formulation. Also, for dispersion 4, 

containing a very low amount of BHT prior to lyophilization; no further reduction in the BHT 

content could be obtained. This indicates further optimization potential in terms of adjusting 

the recondensation rate of BHT and facilitating its rapid removal from the system. 
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Figure 76: BHT content in the fenofibrate dispersions prior and after the lyophilization process. Data are 

shown in percent (w/w) of the solid formulation compounds (fenofibrate, BHT, surfactants, citric acid 

and trehalose) 

 

The residual content of ethanol and water was found to be very low for all of the freeze dried 

samples. The ethanol concentration was in all cases below 5 ppm, and the water content had 

been reduced to below 0.1% (w/w). A sufficient stabilization against solvent induced 

crystallization or degradation of the contained drug during storage was hence given. 

 

5.4.2.2. CAKE STRUCTURE OF THE LYOPHILIZATES 

Although the sublimation of BHT was hardly affected by the kind and amount of excipients 

used, the cake structure of the lyophilizates varied strongly. While the precipitates containing 

no or low amounts of BHT showed a very nice and fluffy cake structure, those dispersions 

containing elevated amounts of BHT partly collapsed within the lyophilization process 

(Figure 77). The effect was stronger, the higher the BHT content was prior to lyophilization. 

Obviously, the removal of the contained BHT prohibited the formation of a stable cake 

structure. Trehalose was found to countervail this effect, as all samples containing trehalose 

produced stable lyophilization cakes.  
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A macroscopically retraceable electrostatic charge of the particles, indicated by the 

spontaneous condensation of the powder on charged surfaces, e.g. sample containers or 

spatulas, was found to be remarkably reduced in the presence of surfactants. 

 

Figure 77: Lyophilization cakes from dispersions 4 (top) and 5 (bottom). Dispersions containing no or low 

amounts of BHT prior to lyophilization (dispersion 4) showed nice and stable cake structures, while those 

originally containing high amounts of BHT partly collapsed upon removal of the antioxidant 

(dispersions 5) 

 

Scanning electron microscopy studies showed that after lyophilization the dispersions still 

contained clearly distinguishable particles. The size of the particles ranged from ~50 nm, 

which was the lower resolution limit of the scanning electron microscope for the current 

setup, to ~12 µm. A majority of the particles had particle sizes of about ~1-3 µm. Often these 

particles were sintered, forming three-dimensional networks in which big pores could be 

observed (Figure 78). The particles had a homogeneous structure without any signs of 

decomposition. No distinguishable difference concerning the morphology of the individual 
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particles could be identified with respect to kind and amount of excipients used. Most of the 

particles were found to be round or oblong, reflecting the original precipitational state. Some 

also had sharp edges and flat surfaces, which was considered to be an indication for the 

crystallinity of the material. No impact of the changes in sample viscosity or impaired 

particle integrity previously observed in the presence of certain excipients could be identified 

(see also Section 5.4.1.2). 

 

Figure 78: Scanning electron microscopy image of the lyophilized dispersion 2. Wide pores aligned by 

partly sintered particles can be identified at the surface of the lyophilizate 

 

In those samples containing trehalose, the drug particles were nicely embedded into the sugar 

matrix (Figure 79, top). After redispersion in water and dissolution of the hydrophilic 

compounds, a clear bifringence of the samples could be observed. The shape of the 

crystalline remnants remained comparable to that observed within electron microscopy, 

independently of the excipients used (Figure 79, top). Particle size measurements of the 

redispersed samples showed a bad reproducibility, as the lipophilic and fluffy powder was 

hardly dispersible. Overall, after redispersion mean particle sizes between 20 µm and 640 µm 

were recorded (Table 17). After exposing the samples to the field of an ultrasonic bath, 

distinct reductions in particle size were obtained, indicating a breakup of the sintered particle 

agglomerates into smaller substructures. The size reduction appears to be stronger for 
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samples containing the cryoprotectant trehalose, what might be attributed to the stronger 

spatial separation of the particles within the freeze drying process. 

 

Figure 79: Particles from dispersion 8 being embedded into a trehalose matrix (top) and redispersed 

agglomerate complexes of dispersion 9 (bottom) 

 

Table 17: Particle sizes measured after redispersion of selected lyophilized dispersions, prior and after 

application of ultrasound 

  
Redispersed sample  Sample after application of ultrasound 

Mean size / µm Span Mean size / µm Span 

Dispersion 1 20.974 1.430 - - 

Dispersion 5 640.522 3.924 516.480 13.737 

Dispersion 8 188.137 2.650 103.834   2.267 

Dispersion 9 395.916 7.928  29.491   2.447 

Dispersion 10   88.436 1.786   9.493   3.470 
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5.4.2.3. THE INFLUENCE OF FREEZE DRYING ON THE PHYSICAL STATE OF 

FENOFIBRATE 

DSC and XRD measurements of the lyophilizates derived from dispersions 1 and 2 

(containing fenofibrate as only solute) confirmed the optical impression of the samples’ 

crystallinity. Like the fenofibrate bulk material, the lyophilized products showed a melting 

peak at 81°C by DSC. Neither the glass transition at -20°C, nor the crystallization peak at 

40°C described in the literature for fenofibrate [176] could be observed, indicating a 

predominantly crystalline lyophilization product (Figure 80). Also the XRD diffractogram 

showed a very comparable pattern for both, lyophilized and bulk fenofibrate (Figure 81). 

Differences in the individual heights of the sample peaks might be attributed to different 

forms of the crystallites as well as an alternate orientation of the particles during sample 

preparation, both leading to a varying sample exposure within the measurements. 

 

Figure 80: DSC diagram of the lyophilizate of dispersion 1, containing only fenofibrate as solute 
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Figure 81: Diffractogram of the fenofibrate bulk substance and the lyophilization products of 

dispersions 1 and 2 

Within electron and light microscopical observation it was clearly found that, independent of 

the excipients applied, lyophilized dispersions did not containing relevant amounts 

amorphous fenofibrate. The crystallization process during lyophilization hence appeared to 

be a general phenomenon associated to fenofibrate. This outcome finds good confirmation by 

the results obtained by Waard et al. [177], who found comparable results for the 

lyophilization of fenofibrate dispersions containing butyl alcohol as organic solvent. 

 

The following reasons can be discussed for the crystallization of fenofibrate within the 

lyophilization processes: 

 Phase separation during freezing 

 Thawing of the samples during processing 

 The existence of precrystalline structures inside the liquid precipitate particles 
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Due to the extreme temperature of -196°C and the complete and instantaneous immersion of 

the dispersion droplets into liquid nitrogen, demixing and crystallization of the dispersion 

within sample preparation seems to be unlikely. At least some part of the liquid precipitate 

would be expected to remain in an amorphous state, being detectable by DSC. More likely is 

the partial thawing of the samples within the freeze drying process. A bad thermal 

conductivity of the samples might have led to superficial thawing of the frozen dispersion 

particles, especially considering the round shape of the dispersion particles and hence limited 

contact area to the lyophilization plates. On the other hand, the freeze drying equipment was 

run at its limit in terms of temperature and vacuum for assuring a constant freeze chain within 

sample processing. By applying a cryoscopic constant of 1.86 [154], the freezing point 

depression for the formulations can be calculated to range from 6-7°C for all dispersions. As 

for the flash freezing, it appears to be unlikely that the dispersions quantitatively reached a 

temperature exceeding a critical level. 

The third explanation concerning the crystallization mechanism therefore provides the most 

likely explanation. It is provided by the idea that already in the liquid precipitate 

intermolecular interactions between the fenofibrate molecules exist. Thereby the high 

molecular mobility of the drug molecules in the liquid state prevents the establishment of an 

extended periodic arrangement. A lyotropic state and microscopically observable 

birefringence were not detectable, while the interaction pattern is strong enough for forming a 

coherent liquid phase. However, the fact that a comparable fluorescence patterns had been 

found by confocal fluorescence microscopy for both, crystalline fenofibrate as well as its 

liquid precipitate, indicates a analogous molecular interaction in both kinds of samples (see 

also Chapter 4, Section 4.4.4). Fenofibrate molecules might already in the liquid state 

temporarily arrange loosely head-to-head and tail-to-tail, producing aliphatic and aromatic 

arrangements as was shown for its crystalline polymorph [136]. In the frozen state, the 

molecular mobility is decreased strong enough to allow for the establishment of a permanent 

three-dimensional structure in the precipitate. 
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5.5. CONCLUSIONS 

Excipients with different functionality were investigated for their effects on the stability of 

the fenofibrate dispersions. By the use of BHT, a new approach for stabilizing and modifying 

the physical state of liquid-liquid phase separating substances was established, the 

coprecipitation with a second liquid-liquid phase separating compound. Strong evidence 

indicates an unspecific interaction between the coprecipitants, which leads to a liquefaction 

of the sample, impaired surface integrity and slowed down crystallization. In combination 

with surfactants, a highly potent solubilizing drug delivery system is obtained, which was 

capable to delay the onset of crystallization from 1 min to 1 hour, and to prevent complete 

crystallization of the dispersions for more than 1 day. The unspecificity of the underlying 

stabilization mechanism and the transferability of the mechanical effects to the drugs 

lopinavir and loratadine thereby raise expectations towards a broad applicability to further 

poorly soluble compounds. Freeze dried fenofibrate dispersions were found to be completely 

crystalline. Considering the comparable fluorescence pattern for crystalline fenofibrate as 

well as the precipitate, a loose periodic arrangement of fenofibrate in the liquid state can be 

considered, that upon freezing and solvent removal solidifies in a crystal lattice. BHT could 

to a large extend be removed within the applied freeze drying processes, providing the chance 

to adjust the excipient concentration to a desired range within the downstream processing of 

the formulations. However, the freeze drying technology seems to be an inappropriate mean 

for the long term stabilization of fenofibrate dispersions, as the fact that the amorphous state 

of fenofibrate gets lost within the lyophilization process, as well as the accompanying 

increase in particle size, most likely abolish the solubility advantage of the liquid precipitate. 

In how far the sensitivity of the fenofibrate dispersions to freeze drying is substance related, 

or correspondingly applies to other liquid-liquid phase separating substances, needs to be 

further evaluated. 

Based on the promising results obtained on the stabilization of the liquid precipitates not only 

a broad array of API become accessible to be further developed towards a marketable liquid 

dosage form, but also fundamental properties required for the successful selection of potential 

coprecipitants were identified. These are namely a comparable lipophilicity and solubility of 

the coprecipitant and the API, as well as comparable structural characteristics allowing for a 

weak, but sustainable interaction with the drug. The case of the model-compound BHT 

showed nicely, that liquid-liquid phase separation of the individual compounds (the drug and 
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the coprecipitant) correlates very well with a good miscibility of the compounds under 

application of comparable conditions for the coprecipitation process. 
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Chapter 6. General Summary of the Thesis 

Precipitation products determine everyday life, often without being recognized for their 

interesting structural properties and potential applications of the underlying “technology”. A 

nice example for this is the beverage Ouzo, forming liquid precipitates that are stable for 

weeks or months without the addition of surfactants or other excipients [110, 178-180]. 

Nobody so far provided a concluding explanation for this fascinating phenomenon [180], 

which, without doubt, would also be of great interest for the pharmaceutical field, considering 

the immense pressure to develop new formulation approaches for the ever increasing amount 

of poorly soluble compounds [15, 16]. 

The current work not only helps to better understand phase separation phenomena for poorly 

soluble drugs, but also provides unprecedented insights in the structural properties of the 

precipitates. In addition, a new formulation approach was developed, allowing for the 

stabilization of the amorphous state of the dispersions and to purposefully direct the 

mechanical properties of the contained particles. 

 

6.1. UNDERSTANDING PARTICLE FORMATION 

A first objective of the thesis was to use antisolvent precipitation for the preparation of 

amorphous dispersions of poorly soluble drugs. While this target might seem to be trivial to 

those skilled in the field, within the accomplishment of the thesis, it turned out to be the most 

challenging task. Indeed, using first class equipment and defined mixing conditions for the 

preparation of the dispersions, supersaturations high enough for reproducibly obtaining a 

defined amorphous precipitate could be attained (Chapter 2). Nevertheless, the identification 

of the kind and properties of the particles turned out to be challenging, as they in many ways 

did not correspond to the expectations formulated in anticipation of solid-amorphous 

precipitation products. Unexpectedly, the precipitate formed within antisolvent precipitation 

did not consist of solid material, but of a liquid precipitate containing significant amounts of 

complexed solvent and antisolvent (Chapter 1, Chapter 1). 

To better understand the mechanisms defining phase separation, a simulation model 

previously used for inorganic materials was further developed to retrace the phase separation 
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process of fenofibrate (Chapter 2). As the rapidity of the process prohibited direct visual 

observation of the drug’s phase separation, the simulation model was found to be very useful 

to draw conclusions about the ongoing processes within demulsification of the drug. 

Designed to reproduce and predict phase separation processes based on homogeneous 

nucleation, the model is well suited to describe nucleation and growth of both liquid-liquid as 

well as liquid-solid phase separation, as both phenomena generally follow the same 

mechanisms [148, 181, 182]. It was found to be especially useful to distinguish in how far the 

phase separation subprocesses uncovered for fenofibrate are in accordance with the model 

based expectations and in how far further phase separation phenomena need to be considered 

(Chapter 3). Conclusions based on the particle size distribution and the structural properties 

of the precipitate allowed to portrait the exceptional complexity of the precipitation process 

and to avoid costly experimental evaluations on the micro-mixing time scale as were 

accomplished for other systems [6]. The final particle size distribution was found to be 

primarily defined by the volume of the precipitate formed, which could be influenced by e.g. 

increasing the drug load (Section 3.4.4). In contrast, sample temperature was found to have 

no impact on the particle size distribution, which was attributed to countervailing effects of 

drug solubility and solvent complexation in the precipitate (Sections 3.4.3 and 4.4.6). The 

identification of the liquid state of the precipitate was hence fundamental for understanding 

the phase separation of fenofibrate, as such important degrees of compositional variations of 

the precipitate would not have been expected for solid particles. Particle size reductions could 

be achieved by intensifying the mixing conditions (Sections 2.4.4.1 and 3.4.5). Elevated flow 

rates and decreased diameters of the mixing devices used also led to a narrowing of the 

particle size distribution. Both measures apply simultaneously to nucleation controlled phase 

separation, as anticipated by the mathematical model, as well as to spinodal decomposition, 

the spontaneous demulsification from solution without the actual event of nucleation. Only 

comparison between the experimental and the theoretical results revealed that is was indeed, 

other than preliminarily anticipated, spinodal decomposition that governs the phase 

separation process of fenofibrate. Thereby, the final particle size distribution was found to be 

dominated by mixing controlled breakdown and shaping of the emerging precipitate. The 

spatial density distribution of the precipitate was identified to be the second factor 

determining particle size. Decomposition as spatially extended precipitate is typical for 

spinodal phase separation, and seems to be favored by the interplay between drug and 

semipolar organic solvents, a phenomenon also regularly encountered in literature in the 
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context of liquid-liquid phase separation [8, 116-121]. It is the effectiveness of mixing to 

break these large scale structures which was found to be critical for the product 

characteristics. As was anticipated, also the use of excipients affected the phase separation 

process. This was especially the case for surface active compounds, which influence the 

establishment of an interface between the forming precipitate and the surrounding continuous 

phase. Latter was exemplarily shown for Tween 80, which was capable to distinctly decrease 

particles size in dispersions prepared under defined mixing conditions (Section 3.4.2). Wide-

field fluorescence microscopy proved that the fenofibrate precipitate was not homogeneous in 

structure, but that particles at least down to particle sizes of 0.8 µm contained fenofibrate rich 

subparticles (Section 4.4.3). In how far below the microscopically observable size additional 

cluster formation occurs, cannot be evaluated within the scope of this work, as the particles’ 

temperature sensitivity prevented further evaluation by transmission electron microscopy. 

Also the mechanisms by which the subparticles of the emerging multiple emulsion systems 

form, remain matter of speculation. Potential explanations are nucleation phenomena inside 

the particles or, more likely, the constriction of subparticles within the spinodal 

decomposition process. 

The obtained results concerning the size dependency of the precipitate on the initial solute 

concentration, mixing conditions as well as the observation of particles comprising 

incorporated small scale colloids are in good consistency with results reported in the limited 

amount of publications dealing with the rapid precipitation of organic compounds in 

antisolvent precipitation processes [55, 68, 70, 183]. This indicates, that for organic 

molecules often other mechanisms govern the particle formation mechanism than would be 

expected based on those being valid for inorganic materials. In many cases the consideration 

of liquid-liquid phase separation and spinodal decomposition might help to better understand 

the observed phenomena and to select appropriate measures for obtaining the desired product 

characteristics.  

Other than anticipated by the start of the thesis, the mathematical model applied failed in 

predicting the suitability of a drug to be used in antisolvent precipitation. Despite the 

systematical investigation of the process parameters, the identification of spinodal 

decomposition as phase separation mechanism limits the simulations to be used as a tool 

which allows for the differentiation from other phase separation mechanisms, rather than 

allowing to draw prospective conclusions. Based on the results obtained within this work, the 
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prediction of the applicability of a compound to anti-solvent precipitation is only possible 

based on the physico-mechanical characteristics of its precipitate. In the case of spinodal 

decomposition, these are namely the viscosity of the dispersed phase, the ability to form 

complexes with solvent and antisolvent as well as the degree to which this complexation is 

affected by adjustments of the process parameters. As summarized in Figure 82, it is mainly 

the interplay between the volume of the precipitate, its mechanical stability and the 

effectiveness of the mixing conditions applied, that govern the final particle size distribution. 

 

Figure 82: Schematic illustration of the processes affecting the particles size distribution in antisolvent 

precipitation (adopted from [88]) 

 

6.2. DISPERSION STABILITY 

Commercial relevance for amorphous drug dispersions can only be gained by assuring 

sufficient stability of the formulations. As was outlined under Sections 5.2.1 and 5.2.2, the 

development of formulations with the purpose of increasing drug solubility unavoidably 

threatens the drugs’ stability against crystallization and Ostwald ripening. In addition, for 

many dispersions it is poorly understood how or why certain stabilization approaches apply, 

while others do not [128]. Indeed, within a rapid screening of a variety of excipients, it was 
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found that commonly used stabilization approaches were insufficient to effectively improve 

the stability of fenofibrate dispersions (Section 5.4.1.1). It was a main target of the present 

work, to develop new approaches for the stabilization of amorphous drug dispersions, that 

allow to combine high solubility and morphological stability. More importantly, the work 

was focused on gaining a better inside to the underlying mechanisms, for facilitating the 

transfer of the achievements to alternative compounds. 

 

6.2.1 STRUCTURE BASED STABILIZATION APPROACHES 

6.2.1.1. CONTROLLING FENOFIBRATE CRYSTALLIZATION 

In the excipient free formulations, the crystallization of fenofibrate was found to exclusively 

occur in the continuous phase. This is surprising, as one could expect the high solvent and 

solute concentrations in the precipitate to favor nucleation inside the dispersed phase. 

Obviously, the liquid state of the precipitate provides an environment impairing 

agglomeration of drug molecules to form a thermodynamically stable nucleus. Based on the 

idea of Bonnett et al. [114] that the chemical potential of fenofibrate is the same in the 

continuous and the dispersed phase, it was found that crystallization kinetics could indeed be 

triggered to occur in either of these phases. Upon addition of citric acid and the resulting 

increase in ionic strength, nucleation was shifted to occur exclusively inside the precipitate 

particles (Section 5.4.1.2). In opposite, by application of high amounts of surfactants the 

drug’s solubility was increased to an extend favoring crystallization in the continuous phase 

(Section 5.4.1.3). Highest stability was obtained by adjusting crystallization to a 

boarderlining point, at which the likelihood of nucleation inside and outside the precipitate 

was equivalent. 

This simple observation provides a first step in understanding liquid precipitates. Citric acid 

provokes a salting out effect on the drug which is more pronounced in the lipophilic 

environment of the dispersed phase than in the hydrophilic continuous phase. The high 

density of fenofibrate molecules inside the precipitate facilitates the formation of clusters 

reaching the critical nucleus size, so that, in the presence of citric acid, the likelihood of 

crystal nucleation increases. In addition, citric acid also caused a distinct decrease in the 

particles’ structural integrity, which was attributed to the impaired molecular mobility of the 
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drug, and prohibited the compensation of structural inhomogenities at the particle surface. 

The unique correlation of the functionality of the excipients and the dispersion structure can 

be expected to apply to the liquid precipitates more than for any other physical state, and was 

subsequently used for effectively improving dispersion stability. Indeed, only the addition of 

defined amounts of surfactants allowed to stabilize the particles and to prevent coalescence, 

providing a first structure based stabilization approach for fenofibrate. 

 

6.2.1.2. COPRECIPITATION AS A TOOL TO MODIFY THE MOLECULAR 

INTERACTION 

Precipitates of liquid-liquid phase separating substances are known to often complex 

significant amounts of impurities, indicating their potential to assume unspecific molecular 

interactions [111]. The underlying structural disorder and variability of the precipitates 

provides a point of action addressed in this work to further improve dispersion stability. 

Coprecipitates of fenofibrate were prepared by addition of butylated hydroxytoluene, a 

compound showing a comparable phase separation behavior and (in)stability as the drug. 

Both substances were found to form apparently homogeneous coprecipitates in a wide 

concentration range. 

Interestingly, the addition of BHT succeeded to postpone the crystallization of fenofibrate 

from 1 min to about 1 hour after sample preparation. Complete crystallization of the drug 

could be delayed for even more than 1 day (Section 5.4.1.3). Neglecting the functionality of 

the compounds, the stabilizing effect can be considered to be even more pronounced, as no 

crystallization could be observed for BHT within the scope of the measurements. 

This success was attributed to the interaction potential between fenofibrate and BHT on the 

expense of the homogeneous interaction between fenofibrate molecules or, respectively, 

between BHT molecules. The inhibition of fenofibrate nucleation was positively correlated to 

the BHT concentration applied and found to be not saturable. This indicates a very transient 

nature of the interaction. The crystallization inhibiting effect was hence attributed to a 

statistically decreased collision rate of drug molecules in the presence of BHT. 

Side effect was a decrease in particle integrity, which was amplified and hence easily 

detectable in the presence of citric acid. BHT however did not decrease the drug’s molecular 
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mobility, but rather increased it, as it prevented the establishment of fenofibrate-fenofibrate 

complexes. Observable particle coalescence in the presence of BHT was hence attributed to 

discontinuities in the interfacial layer caused by the presence of the excipient. Again, surface 

active reagents were found to be very effective in counteracting this effect, and were capable 

to not only inhibit coalescence of the particles, but also to prevent mass transfer and crystal 

growth in the continuous phase. 

BHT not only had an impact on the molecular mobility of fenofibrate, but also on the 

lipophilic drugs lopinavir and loratadine, as was nicely shown by force-distance 

measurements accomplished on their coprecipitates (Section 5.4.1.2, Figure 38). The 

elasticity of the coprecipitate particles thereby decreased even below the value for the 

individual compounds. These results give a clear indication for the general applicability of 

the coprecipitation technique. Thereby the miscibility of BHT and the drugs does not 

necessarily need to be complete on a molecular level, as was shown by the fact that by 

addition of BHT to fenofibrate dispersions Ostwald ripening could not be inhibited, which 

might have been expected based on the result obtained by Lindfors et al. [34]. 

The use of a coprecipitant as stabilizing agent in combination with the application of surface 

active reagents represents a new formulation approach for poorly soluble drugs. It maintains 

the liquid state of the precipitate, and hence its solubility advantage compared to its 

crystalline polymorphs. More importantly, it is based on a detailed understanding of the 

molecular dynamics in the system, and hence clearly applicable to a wide variety of (not 

only) liquid-liquid phase separating compounds. The amount of the coprecipitant needed 

depends on the interaction potential between the excipient and the drug as well as the 

solvent/antisolvent system applied. For the substances under investigation within this work, 

BHT to fenofibrate ratios of 3:5 (w/w) in combination with total surfactant concentrations of 

~15 to 300 µg per g/dispersion were found to be most appropriate for the stabilization of the 

dispersions. 

 

6.2.1.3. DOWNSTREAM PROCESSING 

Lyophilization was found to be a valuable tool for solvent removal from the fenofibrate 

dispersions. Even more importantly, also the BHT content in the dispersions could be varied 

by the freeze drying process (Section 5.4.2.1). This is important, as BHT was found to fully 
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exhibit its stabilizing effects at concentrations which were significantly increased compared 

to those at which the antioxidant is commonly applied. By the application of freeze drying as 

downstream processing technology, toxicity issues connected to the use of the excipient can 

thereby be avoided. 

Surprisingly, but confirmed by the results of de Waard et al. [177], the fenofibrate dispersions 

were found to crystallize within the lyophilization process (Section 5.4.2.3). This fact as well 

as the comparable fluorescence patterns of liquid and crystalline fenofibrate polymorphs 

(Section 4.4.4) indicates that already in the liquid phase an oriented arrangement of the 

fenofibrate molecules exists, which solidifies upon solvent removal. Concerning the aim of 

maintaining the solubility advantage of the liquid precipitate, lyophilization was found to be 

rather inappropriate, as the crystalline state of the drug as well as the observed increase in 

particle size countervail this purpose. Further analysis will need to be accomplished to 

investigate whether the crystallization from the liquid phase during freeze drying is specific 

for fenofibrate or endemic for liquid-liquid phase separating substances. Also other long term 

stabilization techniques that involve solvent removal from the liquid dispersions, need to be 

undertaken a critical review, as they should not affect the amorphous state of the drug, and, in 

the best case, allow for complete rehydration of the precipitate to its original liquid state. 

 

6.3. OUTLOOK 

6.3.1 THE SIMULATION AND THE ACCOMPLISHMENT OF ANTISOLVENT 

PRECIPITATION 

Mathematical models proved to be very useful in identifying the phase separation 

mechanisms of fenofibrate. In how far such models can be further developed to efficiently 

support decision makers in the development of drug dispersion technologies is still poorly 

predictable. Spinodal decomposition, within this work identified as prevalent phase 

separation mechanism in antisolvent precipitation, still appears hardly accessible by 

mathematical description. Even without considering the impact of mixing or varying solvent 

composition, theoretical approaches developed mainly since the 1990s just recently succeed 

to effectively simulate the structural evolution in spinodal phase separation processes [102, 

184, 185]. The formation of complex emulsion systems as were observed for fenofibrate are 
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not yet included in such simulations. Models especially addressing liquid-liquid phase 

separation [186, 187] do exist, as well as such mapping coalescence [188, 189] or the 

hydrodynamical breakdown and of a dispersed liquid phase [75, 190, 191]. Kiesow et al. 

[192] provided a first approach for simulating the phase separation behavior for organic 

molecules and presented promising results concerning the predictability of liquid-liquid phase 

separation in a given solute-solvent system. However, all these models only mirror snapshots 

of individual subprocesses in phase separation. Nevertheless, the recognition of the 

importance of such models steadily increases, as they, also beyond this work, proved to be of 

great help in identifying the measures required for the tailor made particle preparation. 

Concerning the practical applicability of the experiences made with fenofibrate to other 

compounds, it becomes clear, that the mechanical properties of the precipitate must have a 

distinct impact on sample preparation as well as on dispersion stability. Under intense mixing 

conditions, the adjustment of sample viscosity by the addition of a suitable coprecipitate can 

help to control the hydrodynamical impact on the precipitate. It can hence assist to control 

particle size and size distribution. While the impinging jet reactors used within this work 

provide good control of the process conditions, other mixing devices might be more effective 

in reducing particle size. Exemplarily mentioned are cavitational mixing devices such as high 

pressure homogenizers, which are known to very effectively disrupt liquid phases [193, 194]. 

 

6.3.2 THE POTENTIAL USE OF GENERATING AND APPLYING LIQUID-LIQUID 

PHASE SEPARATION 

The structural unspecificity characterizing liquid precipitates reveals a wide applicability of 

techniques such as the above described coprecipitation with BHT. Besides the solubilizing 

effect exhibited on the drug itself, it also facilitates the solubilization of potential co-

substrates in the dispersed phase, thereby opening up additional formulation pathways. 

Liquid-liquid phase separation is not limited to a certain category of compounds, but is 

observed for a wide variety of structural and functional characteristics. It hence has the 

potential to be developed in additional fields exceeding the solubilization of poorly soluble 

drugs. Liquid phase separating substances include small organic molecules which can be 

neutral, acids or bases [55, 68, 70, 183, 195], proteins [135, 142, 196, 197] polymers [198, 
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199], inorganic compounds [200] or even colloids [201-203]. Key to the successful 

stabilization of the liquid phase is in each case to control the interaction potential between the 

solute molecules in the precipitate. Given the fact that just recently scientific interest recovers 

the prevalence and industrial applicability of liquid-liquid phase separation [111, 112, 204], it 

is not surprising that comparable data as obtained by accomplishment of this work are hardly 

described in the scientific literature. Based on the results described above and on an intense 

screening of the available publications, two classes of excipients can be identified who 

account promising for the induction and stabilization of liquid phase separation: 

First, these are substances that induce or stabilize the formation of a liquid precipitate by 

direct molecular interactions (e.g. Van-der-Waals forces or (induced) dipole-dipole) with the 

solute of interest. Such intrinsically working excipients typically are molecules that have a 

higher affinity to the solute than to the solvent, forming coprecipitates on a molecular level or 

by the formation a viscous matrix. BHT falls in this category of substances as do adsorbing or 

nonadsorbing polymers, which were used for inducing liquid phase separation in colloidal 

and macromolecular dispersions [142, 205]. 

Secondly, excipients can be applied that predominantly affect the solubilizing properties of 

the continuous phase. These include reagents as citric acid, which are capable to change the 

ionic strength, the pH, or the polarity of a solvent. Examples are acids/bases as well as 

antisolvents showing a certain miscibility with the solute’s solvent, but having poor 

solubilizing properties for the solute itself. They increase the interactions between the solute 

molecules on the expense of solute-solvent interactions (salting out). These stimuli 

extrinsically affecting the physical state of the precipitate can be extended to physical factors 

such as changes in temperature [117], application of electrical fields [206], as well as other 

physical parameters which can modify intermolecular interactions. 

It can be anticipated, that the prevalence of liquid-liquid phase separation is still 

underestimated. Reasons therefore are the facts that the liquid phase is often very transient, or 

that the optical and mechanical properties of the precipitates falsely suggest the prevalence of 

solid amorphous particles. In consequence, the recognition, analysis and understanding of 

liquid-liquid phase separation is in most cases limited to macroscopically observable 

precipitates, as are often described and expected to occur for proteins or polymer blends. 
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In thematic relation to the stabilization techniques developed for fenofibrate, the use of 

coprecipitants not only provides the experimental freedom for downstream processing of the 

dispersions. Knowing that many of the substances in the development pipelines of 

pharmaceutical companies intrinsically show distinct difficulties to be crystallized, the 

knowledge gained with the above described experiments is capable to allow for many of 

these compounds to be further developed towards a marketable dosage form. Imaginable are 

in situ forming drug delivery systems being composed of a solvent and an antisolvent that are 

mixed to form the precipitate prior to the intake of the formulation. 

Also dosage forms such as capsules containing the pure liquid precipitate appear to be an 

attractive option when considering the remarkable stability of many liquid-liquid phase 

separating substances in comparison to fenofibrate [110, 111]. By adjusting the molecular 

interaction in the precipitates, shelf lives of such products of up to 2 years appear realistic. 

Such systems would not necessarily need to consist of a dispersed system, but might just 

comprise one homogeneous phase of the liquid drug/coprecipitation product. Such drug 

delivery systems have not yet been reported in the scientific field, and might offer an 

attractive niche in the drug delivery world. Within the life cycle management of a drug, they 

offer an interesting option for prolonging the exclusivity rights of the license holder. 

Considering the wide prevalence of liquid-liquid phase separation in aqueous systems, even 

solid dosage forms, creating a liquid precipitate upon in-vivo dissolution appear possible. A 

good example of a yet poorly understood dosage form that might exhibit liquid-liquid phase 

separation is Kaletra
®

, an antiretroviral medication currently marketed by Abbott 

Laboratories. Recent investigations show, that upon dissolution of the dosage form, particle 

formation mechanism and composition, drug solubility as well as the robustness against food 

intake are very comparable to what would have been expected for liquid-liquid phase 

separating substances [207, 208]. As for the combination of BHT and fenofibrate, also 

Kaletra
®
 is composed of a system comprising two lipophilic compounds, ritonavir and 

lopinavir. 
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