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Abstract 

CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy) represents the most prevalent hereditary form of cerebral small 

vessel disease (SVD) resulting in early-onset stroke and vascular dementia. It is caused by 

stereotyped missense mutations in the transmembrane receptor Notch3, which alter the 

number of cysteine residues in the extracellular domain (ECD). This leads to the abnormal 

multimerization and extracellular deposition of mutant Notch3-ECD at the plasma 

membrane of smooth muscle cells in small blood vessels. Notch3-ECD-containing 

aggregates are the earliest manifestation of the disease and excess Notch3-ECD is believed 

to recruit functionally important extracellular matrix proteins resulting in brain vessel 

dysfunction. 

Biochemical and histological approaches on post-mortem brain tissue from CADASIL 

patients and control subjects as well as in vitro assays were used to study the consequences 

of Notch3-ECD deposition on the ECM components thrombospondin-2, fibrillin-1 and 

fibronectin and members of the latent transforming growth factor-β (TGF-β) binding 

protein (LTBP) family. It is demonstrated that the structural matrix components fibrillin-1 

and fibronectin are enriched and contribute to the prominent thickening of CADASIL 

vessel walls without co-localizing with Notch3-ECD deposits, likely as a result of fibrotic 

adaptation secondary to aggregate formation. For LTBP-1, a key regulator of the TGF-β 

signaling pathway, an accumulation as well as a striking co-localization with Notch3-ECD 

deposits is shown suggesting specific recruitment into aggregates. Furthermore, increased 

levels of the TGF-β pro-domain (also known as latency-associated peptide, LAP) were 

found implying dysregulation of the TGF-β pathway in CADASIL development. Finally, a 

direct interaction of LTBP-1 with Notch3-ECD is demonstrated and evidence for a 

co-aggregation with mutant Notch3 in vitro is provided. Conclusively, I propose LTBP-1 as 

a novel component of Notch3 deposits with a role in CADASIL pathogenesis. 
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Zusammenfassung 

CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy) ist die häufigste monogen vererbte Ursache zerebraler 

Mikroangiopathien, die zu juvenilem Schlaganfall und Demenz führen. CADASIL wird 

verursacht durch Mutationen im Notch3 Transmembranrezeptor, wobei die Anzahl der 

Cysteinreste der extrazellulären Domäne (Notch3-ECD) verändert wird. Dadurch kommt 

es zu einer Multimerisierung und Ablagerung von Notch3-ECD an der Plasmamembran 

von glatten Gefäßmuskelzellen in kleineren Arterien. Diese Aggregate gelten als die 

frühste pathologische Veränderung bei CADASIL und sind verantwortlich für die 

Rekrutierung funktionell wichtiger Proteine.  

In der vorliegenden Arbeit wurden biochemische und histologische Methoden an 

Hirngewebe von CADASIL-Patienten beziehungsweise von Kontrollen angewandt sowie 

in vitro Analysen angefertigt, um die Auswirkungen der Notch3-ECD Akkumulation auf 

die extrazellulären Matrixproteine Thrombospondin-2, Fibrillin-1, Fibronectin und 

Vertreter der latent transforming growth factor-β (TGF-β) binding protein (LTBP)-Familie 

zu untersuchen. Dabei konnte gezeigt werden, dass die strukturgebenden Matrixproteine 

Fibrillin-1 und Fibronectin in den verdickten Gefäßen bei CADASIL-Patienten angereichert 

sind, jedoch nicht mit Notch3-ECD überlagern. Vermutlich handelt es sich dabei um eine 

fibrotische Anpassung sekundär zu den Notch3-ECD-Aggregaten. Für LTBP-1, welches 

den TGF-β Signalweg reguliert, wurde sowohl eine Anreicherung als auch eine 

Ko-lokalisation mit Notch3-ECD gefunden. Dies deutet auf eine spezifische Rekrutierung 

in die Notch3-ECD Aggregate hin. Darüber hinaus wurde auch eine vermehrte 

Anreicherung der TGF-β Pro-Domäne LAP (latency-associated peptide) gefunden, was auf 

eine Involvierung des TGF-β Signalweges bei CADASIL hindeutet. Abschließend zeigen in 

vitro-Versuche, dass LTBP-1 mit Notch3-ECD direkt interagiert und dadurch auch 

ko-aggregieren kann. Damit lässt sich festhalten, dass LTBP-1 als neuartige Notch3-ECD-

Aggregatkomponente identifiziert wurde, welche vermutlich maßgebend zu der 

Pathogenese von CADASIL beiträgt.  
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1 Introduction 

Stroke is the third leading cause of death worldwide only outnumbered by coronary heart 

disease and cancer (Warlow et al., 2003). Moreover, it represents the most common cause 

for long-term neurological disability entailing a high cost expenditure estimated around 

annual 64 billion Euros in Europe (Olesen et al., 2012). 

In about 20 % of the cases, strokes are hemorrhagic resulting from vessel wall rupture, 

which causes the extravasation of blood. Eighty percent of cases, however, are ischemic 

(Figure 1) as a consequence of vessel occlusion leading to a restriction of blood supply and 

a depletion of oxygen and nutrients in the tissue surrounding the site of the insult. The 

main causes underlying ischemic stroke are large-artery atherosclerosis, cardioembolism 

and cerebral small vessel disease (SVD, Figure 1) (Warlow et al., 2003). Although SVD 

accounts for only ~20 % of acute strokes (Figure 1) and its immediate effects on short-term 

disability and survival are less severe compared to other stroke subtypes, it represents the 

major cause for long-term disability and vascular dementia, the second most common form 

of dementia after Alzheimer’s disease (Warlow et al., 2003). Moreover, recent studies 

identified SVD as the most prevalent neurological disorder in aging populations and it 

represents a considerable health care problem posing an increasing burden on our society 

(Pantoni, 2010). Thus, the exploration of the molecular causes of SVD is of high importance.  

 

Figure 1: Frequency of hemorrhagic (blue) and ischemic (orange) stroke in industrialized 
countries. Ischemic stroke is further subdivided in several subtypes according to underlying causes.  

Since this thesis focuses on cerebral SVD, an introduction into the brain vascular network is 

given in the following section. 

Hemorrhagic 
stroke 

Atherosclerosis 

Cardioembolism 

Rare causes 

Small vessel 
disease  
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1.1 Cerebral vasculature 

The brain is the organ with the highest energy demand consuming roughly 20 % of the 

cardiac output (Wardlaw et al., 2013a). Due to its low storage capacities, this demand can 

only be satisfied by a constant blood supply provided by a complex brain vascular system.   

1.1.1 Brain vascular network 

Large arteries supply the brain with blood and they reach its base to form a circuit, the 

so-called circle of Willis, which separates into the three main intracranial arteries: the 

middle, anterior and posterior artery (1-10 mm diameter). At the brain surface, each artery 

branches into a wide-ranging network of small resistance arteries (0.1-1 mm diameter) and 

arterioles (20-100 µm diameter), which then submerge deeply into the brain as perforating 

arterioles (20-50 µm diameter) terminating in the white matter (Figure 2) (Pantoni and 

Garcia, 1997). This represents a unique ”outside in” vascularization pattern from the brain 

surface into the parenchyma, whereas other major organs are usually vascularized from the 

”inside out” (Iadecola, 2013).  

The basal ganglia, representing deep grey matter, are supplied by a second less extensive 

system of shorter arterial perforators, which originate directly from the circle of Willis and 

its proximal branches, the middle and posterior cerebral artery (Figure 2) (Pantoni and 

Garcia, 1997).  
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Figure 2: Schematic overview of the brain vascular system. The white matter is supplied by 
superficial perforating arterioles arising from the middle and anterior cerebral arteries. The basal 
ganglia, representing deep grey matter, are supplied by perforating arterioles diverging directly 
from the circle of Willis and its proximal branches. The two systems of perforating arterioles 
terminate in the watershed area (green circle) (adapted from Wardlaw et al., 2013a).  

In SVD, perforating arterioles of the white and deep grey matter are affected, while the 

cortex is relatively spared (Viswanathan et al., 2006). In the deepest area of the brain, the 

so-called watershed area, the vascular network is terminating and does not overlap. Since a 

systemic or focal blood flow deficit cannot be compensated by collateral branches, this 

region is especially vulnerable to injuries (Iadecola, 2013).  

1.1.2 Structure of cerebral blood vessels 

Histological analyses over the last decades have shown that SVD is associated with 

changes in arterial morphology affecting one or more of the three principal layers: the 

tunica intima, the tunica media and the tunica adventitia (Figure 3).  
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Figure 3: Structure of an arterial vessel. The tunica intima, the innermost layer, consists of a single 
layer of endothelial cells and the tunica elastic interna. The tunica media is build up by 
circumferentially arranged vascular smooth muscle cells. The external layer, the tunica adventitia, is 
composed of mainly fibroblasts and extracellular matrix. 

The tunica intima consists of a single layer of endothelial cells that are connected by tight 

junctions sealing the vessel lumen to restrict the exchange of metabolites. The basement 

membrane, a thin layer of support tissue mainly composed of collagen type IV, 

proteoglycan, hyaluronan, fibrillin and fibronectin, underlies the endothelial cells. Next, 

the tunica elastica interna, which primarily contains elastin produced by endothelial cells, 

separates the tunica intima from the tunica media. Small fenestrations in the tunica elastica 

interna allow communications between the endothelium and vascular smooth muscle cells 

(vSMCs).  

The tunica media is composed of several layers of circumferentially arranged vSMCs 

surrounded by organized layers of elastic fibers and interlamellar matrix (collagens and 

microfibrils) to increase the elasticity and strength of the vessel wall. VSMC are highly 

specialized cells, which can contract and relax to control the vessel lumen diameter and 

thereby blood flow. Capillaries lack the tunica media completely and are built up by an 

endothelial layer, basement membrane and discontinuous pericyte cell layer.  

The tunica adventitia is an assembly of loose connective tissue consisting of mainly 

collagen type I, III and VI, fibrillin-1 and fibronectin produced by fibroblasts. This 

architectural framework not only integrates the vessels into the surrounding tissue but also 

maintains its mechanical and elastic properties and retains cytokines and growth factors. 

Tunica elastica interna

Endothelial cell

Tunica intima

Tunica media

Tunica adventitia

Smooth muscle cell
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Additionally, other cells e.g. of the inflammatory type (macrophages and lymphocytes) can 

be present.  

1.2 Cerebral small vessel disease  

1.2.1 Sporadic form 

The term cerebral small vessel disease (SVD) describes a group of pathological conditions 

with various etiologies that affect the structure and function of perforating cerebral 

arterioles and capillaries, but also venules damaging the cerebral white and deep grey 

matter (Pantoni, 2010). SVD mostly develops unnoticed for many years before becoming 

clinically evident in form of sudden-onset stroke symptoms and/or global neurological 

dysfunction including substantial cognitive, psychiatric and physical disabilities (Wardlaw 

et al., 2013a). Since small vessels are difficult to image and investigate in vivo and clinical 

manifestations are diverse, the diagnosis of SVD remains a challenge (Wardlaw et al., 

2001).  

Despite a number of clinical studies, the pathogenesis of SVD is largely unknown 

precluding the development of new treatment options. Pathological data are mainly 

available from end-stage SVD complicating the identification of the earliest disease-causing 

events. A central aspect is hypoperfusion and ischemia mediated by narrowed arteries and 

a characteristic loss of vSMCs, which impairs adaptive responses of the vessel wall to 

changes in cerebral blood flow. However, little is known how this might cause the 

neurological and cognitive symptoms (Wardlaw et al., 2013a). Moreover, pathological 

processes are influenced by various genetic and environmental risk factors such as 

advanced age, hypertension, smoking, diabetes mellitus, hyperlipidemia and atrial 

fibrillation (Iadecola, 2013) making it difficult to determine clear cause-and-effect 

correlations. This problem of “mixed pathologies” can be at least partly circumvented by 

analyzing monogenic SVD forms with a defined etiology, which due to their early onset 

show pathologies largely independent of age effects (Dichgans, 2007). They are thus 

considered valuable model diseases to uncover biological pathways promoting vascular 

changes and to provide causal links between risk factors and dementia. 

1.2.2 Monogenic forms of cerebral small vessel disease 

Several monogenic causes of SVD forms have been identified so far (Table 1). Among them 

cerebral autosomal recessive arteriopathy with subcortical infarcts and 

leukoencephalopathy (CARASIL), retinal vasculopathy with cerebral leukodystrophy 

(RVCL) and COL4A1-related SVD are very rare conditions. Far more patients suffer from 
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cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy (CADASIL), the most common monogenic cause of SVD and 

vascular cognitive impairment (Joutel et al., 1996, Chabriat et al., 2009). It thus represents 

the most widely studied inherited SVD and abundant clinical data are available, making 

CADASIL a valuable model condition to study pathological processes involved in SVD 

development.  

Table 1: Overview of hereditary forms of small vessel disease.  

Disorder  
(Mode of inheritance) 

Genetic 
identity 

Characteristic clinical features 

CADASIL 
(Dominant) 

NOTCH3 Migraine, subcortical infracts, dementia, 
mood disorder 

CARASIL 
(Recessive) 

HTRA1 Subcortical infarcts, dementia, spondylosis, 
alopecia  

RVCL 
(Dominant) 

TREX1 Retinopathy, nephropathy, migraine, 
ischemic strokes, dementia 

COL4A1-related SVD  
(Dominant) 

COL4A1 Infantile hemiparesis, intracerebral 
hemorrhage, microbleeds, intracranial 
aneurysms 

CADASIL: Cerebral autosomal dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy; CARASIL: Cerebral autosomal recessive arteriopathy with subcortical infarcts 
and leukoencephalopathy, RVCL: retinal vasculopathy with cerebral leukodystrophy; Htra1: High 
temperature requirement A1; COL4A1: Collagen type IVα1; SVD: Small vessel disease (Joutel et al., 
1996, Hara et al., 2009, Kuo et al., 2012, Richards et al., 2007). 

1.3 CADASIL 

Starting in the 1970s, a number of case reports described a hereditary cerebral disorder 

with multiple early-onset infarcts and progressive dementia in European families 

(Sourander and Walinder, 1977, Stevens et al., 1977, Sonninen and Savontaus, 1987, Davous 

et al., 1991, Tournier-Lasserve et al., 1991, Mas et al., 1992). In 1993, the acronym CADASIL 

(cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy) was coined highlighting the main characteristics of this disease 

(Tournier-Lasserve et al., 1993). Since then, more than 500 families worldwide have been 

reported. A small study from Scotland estimated the prevalence at 4.15 cases per 100 000 in 

Scotland (Razvi et al., 2005), however, the overall prevalence is unknown (Chabriat et al., 

2009). 
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1.3.1 Clinical features 

The clinical manifestations of CADASIL include a variety of neurological and 

neuropsychological aspects (Figure 4), however, four principle symptoms are considered 

central to the disease: migraine with aura, recurrent subcortical infarcts, mood disturbances 

(e.g. apathy) and cognitive impairment (Chabriat et al., 2009). The first ischemic attack 

occurs on average with ~51 years (Opherk et al., 2004). As the disease progresses, cognitive 

decline develops but may also precede the first symptomatic ischemic episodes (Amberla 

et al., 2004). Initially, executive and organizing functions are affected and patients present 

with poor concentration and general mental and psychomotor slowing and at later disease 

stages, cognitive impairment ultimately results in vascular dementia (Dichgans, 2009). 

Already by the age of 65 years, roughly 80% of the patients are demented (Kalimo et al., 

2002). 

 

Figure 4: Overview of the main clinical manifestations of CADASIL. The exact appearance of the 
first white matter abnormalities are unknown and thus represented with a dotted line (adapted from 
Chabriat et al., 2009).  

The disease progresses slowly and its aggravation is associated with recurrent strokes. 

Within a mean of 23 years after the first symptoms have occurred, CADASIL complications 

leads to death (Dichgans et al., 1998). To date, no CADASIL treatment is available except 

for the amelioration of migraine symptoms (Forteza et al., 2001). 

CADASIL patients show considerable alterations on cranial magnetic resonance imaging 

(MRI), a routine neuroimaging tool widely used in clinical practice (Wardlaw et al., 2013b). 
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Symptomatic but also asymptomatic patients display characteristic white matter 

hyperintensities (Figure 5) and their extent broadly correlates with the severity of the 

clinical status (Chabriat et al., 1998, Dichgans et al., 1998, Kalimo et al., 2002). White matter 

hyperintensities, thought to arise from axonal demyelination, increase during the course of 

the disease and their absence almost excludes this diagnosis (Chabriat et al., 1998). 

Additionally, lacunes, fluid-filled cavities of past infarcts (Figure 5), and brain atrophy as a 

result from neuronal loss are frequently observed (Dichgans et al., 1999, Peters et al., 2006, 

Duering et al., 2012, Duering et al., 2013). 

 

Figure 5: MRI scans of CADASIL patients showing characteristic white matter hyperintensities 
(arrows) (Opherk et al., 2009b). 

Based on the clinical features, a number of affected families were collected in the 1990s to 

search for the underlying gene defect.  

1.3.2 Genetics 

In 1993, Tournier-Lasserve and coworkers performed genetic linkage analysis in two 

unrelated French families and mapped the CADASIL-causing locus to chromosome 19 

(Tournier-Lasserve et al., 1993). The subsequent investigation of 13 additional families 

allowed a further refinement of the genetic interval (Ducros et al., 1996) and finally the 

identification of the critical gene, NOTCH3, on chromosome 19p13 (Joutel et al., 1996).  

NOTCH3 encompasses 33 exons and encodes a single-pass type I transmembrane receptor 

of 2321 amino acids. It belongs to an evolutionary conserved family involved in cell-cell-

mediated signaling playing essential roles in the development of multicellular organisms 

(Artavanis-Tsakonas et al., 1999). In addition, Notch receptors exert functions in adult 

animals including humans, which is reflected by their involvement in several clinical 

conditions (Penton et al., 2012). They all show the same domain organization with a large 
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extracellular domain (ECD) comprising 34 epidermal growth factor (EGF)-like repeats and 

three notch/lin-12 repeats, a transmembrane domain and an intracellular domain (Notch-

ICD) consisting of seven ankyrin repeats and a PEST motif (Figure 6). Notch proteins are 

synthesized as ~280kDa proteins which undergo three successive proteolytic cleavages 

(S1-3) (Figure 6, black arrows). 

 

Figure 6: Schematic Notch3 structure. Notch3 is composed of an extracellular domain (ECD) with 
34 epidermal growth factor (EGF)-like repeats including the ligand recognition site (LRS) in 
EGF-like repeats 10/11 (orange) and three lin-12/Notch repeats. The transmembrane domain (TM) 
is followed by the intracellular domain (ICD) comprising several ankyrin repeats and a PEST motif. 
The arrows indicate the cleavage sites S1-3. 

The S1 cleavage is mediated by a furin-like convertase in the Golgi network and occurs 

during receptor transport to the plasma membrane. The cleavage products, among them 

the 210 kDa Notch-ECD fragment, remain associated non-covalently and are presented as 

heterodimers at the cell surface (Blaumueller et al., 1997). Signaling is initiated by 

membrane-bound ligands (e.g. Delta or Serrate) on neighboring cells which interact with 

the ligand binding domain located in EGF-like repeats 10/11 of the ECD (Figure 6). This 

triggers the S2 cleavage close to the plasma membrane by TNFα-converting enzyme 

(TACE), a metalloprotease also known as ADAM-17 (Brou et al., 2000). The Notch3-ECD is 

shedded and the remaining membrane-attached fragment becomes substrate for the 

γ-secretase catalyzing processing at the S3 site, an unusual cleavage occurring within the 

plasma membrane (Mumm et al., 2000). The resulting fragment, Notch-ICD, is released and 

translocates to the nucleus where it interacts with DNA binding proteins including RBP-Jk 

to regulate transcription of target genes (Fouillade et al., 2013).  

Whereas invertebrates possess only one NOTCH gene, four isoforms are present in 

vertebrates. Notch3 plays essential roles in cell fate determinations during embryonic 

development and in adulthood (Artavanis-Tsakonas et al., 1999). It is mainly expressed in 

S
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vSMCs and pericytes regulating cell growth, migration and apoptotic death (Joutel et al., 

2000, Prakash et al., 2002, Joutel et al., 2010). Notch3 knockout mice (Notch3-/-) are viable 

and fertile demonstrating a non-essential role of the protein (Domenga et al., 2004, Belin de 

Chantemele et al., 2008). While arterial vSMCs of Notch3-/- mice are indistinguishable from 

wild type cells at birth, they have an abnormal shape and a smaller size in adult mice. 

Moreover, their reactivity to changes in arterial pressure and cerebral blood flow is 

compromised especially in small arteries (Domenga et al., 2004, Belin de Chantemele et al., 

2008).  Thus, Notch3 is believed to be required for arterial differentiation and maturation of 

vSMCs in cerebral arteries. 

NOTCH3 mutations resulting in CADASIL exclusively localize to exons 2-24 encoding the 

34 EGF-like repeats (Chabriat et al., 2009). Each repeat contains a conserved number of six 

cysteine residues forming three disulfide bridges between cysteines 1-3, 2-4 and 5-6 (Figure 

7), which are required for the correct folding of the receptor (Simpson, 1997). 95 % of 

mutations lead to a single amino acid substitution, whereas in-frame deletions and splice 

site mutations are rarely observed. Substitutions predominantly affect cysteine residues 

within individual EGF-like repeats causing either the addition or the loss of a cysteine 

(Figure 7) (Joutel et al., 1997, Peters et al., 2005b). Today, more than 150 mutations are 

known and interestingly, a hotspot is found in EGF-like repeats 3 and 4, in which ~68 % of 

the mutations reside (Joutel et al., 1997, Peters et al., 2005b). Genetic testing for pathogenic 

NOTCH3 mutations is the diagnostic gold standard, since its sensitivity is close to 100 % 

(Joutel et al., 1997).  

 

Figure 7: CADASIL mutations are highly conserved. Each EGF-like repeat bears a conserved 
number of six cysteines (orange) forming three disulfide bridges (S-S) between Cys 1-3, 2-4, 5-6. The 
lack or addition (dotted circle) leads to an odd number of cysteines. Adapted from Chabriat et al., 
2009. 

1.3.3 Pathology and pathomechanism 

The gain or loss of a cysteine residue caused by CADASIL mutations generates an 

unpaired sulfhydryl group, which likely promotes disulfide bond formation between 

mutant Notch3-ECD proteins (Duering et al., 2011). This is believed to induce the 

EGF-like repeat 

Typical CADASIL 
 missense mutations 

S-S 

S-S 

C C C C C

C C C C CC C

C C C C CC
S-S 
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extracellular multimerization of shedded Notch3-ECD molecules leading to their 

accumulation in the tunica media of vessel walls (see below) (Dichgans et al., 2000, Joutel et 

al., 2000). Notch3-ECD aggregates can be detected by immunohistological staining and are 

believed to coincide with large electron-dense deposits known as granular osmiophilic 

material (GOM, Figure 8), an invariant feature of CADASIL-affected vessels (Joutel et al., 

2000, Ishiko et al., 2006). GOM are non-amyloid, basophilic structures 0.2-0.8 µm in 

diameter (Kalimo et al., 2002, Tikka et al., 2009) mostly located in extracellular indentations 

of vSMC, but also in the thickened basement membrane. Although symptoms in CADASIL 

are exclusively neurological, GOMs can be found in vessel walls of many other organs, 

allowing diagnostic electron microscopy analysis of skin biopsies (Chabriat et al., 2009).  

 

Figure 8: Pathological Notch3-ECD aggregates and granular osmiophilic material (GOM). Left: 
Section of a white matter arteriole immunostained for Notch3-ECD, showing the characteristic 
granular Notch3-ECD deposits within the thickened vascular wall in brown. Right: Electron 
micrograph of a dermal artery showing granular osmiophilic material (arrow) at the surface of a 
vascular smooth muscle cell (courtesy of Christian Opherk, ISD). 

While both Notch3-ECD aggregates and GOM are hallmarks of CADASIL, other 

morphological changes of vessel walls are also common in sporadic SVD. They are mainly 

restricted to small perforating brain vessels in the white and deep grey matter, while the 

cortex is relatively spared. Arterioles show non-arteriosclerotic thickening of the vessel 

wall especially at the tunica intima and tunica adventitia causing luminal stenosis in 

pre-capillary arterioles (less than 50 µm diameter) (Miao et al., 2004). These fibrotic changes 

likely result from increased amounts of extracellular matrix proteins such as collagen  

type I, III, IV and VI (Miao et al., 2004, Miao et al., 2006, Dong et al., 2012), elastin (Caronti 

et al., 1998) and fibronectin (Oide et al., 2008), or debris from degenerating vSMCs (Kalaria, 

1996, Ceroni et al., 2000, Miao et al., 2004). Additionally, CADASIL patients suffer from an 

irregular distribution of vSMCs in the tunica media (Miao et al., 2004), an alteration 

Notch3-ECD aggregates Granular osmiophilic 

material (GOM) 

Tunica intima 

Tunica media 

Tunica adventitia 

25µm 
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possibly preceding the degeneration and loss of this cell type in later stages of the disease 

(Miao et al., 2004) (Okeda et al., 2002).  

The molecular mechanisms underlying Notch3-ECD deposit formation and the 

pathological events leading to vessel dysfunction are incompletely understood. A variety 

of studies using cultured cells have failed to detect alterations in receptor maturation and 

signaling capacity of CADASIL-mutant Notch3 (Haritunians et al., 2002, Karlstrom et al., 

2002, Joutel et al., 2004, Peters et al., 2004, Low et al., 2006). Moreover, data from several 

CADASIL mouse models using mutated NOTCH3 (Dubroca et al., 2005, Monet-Lepretre et 

al., 2009, Joutel et al., 2010, Wallays et al., 2011) strongly suggested that loss-of-function is 

not the prevalent pathomechanism, although conflicting results have been reported 

(Arboleda-Velasquez et al., 2011). Only a few mutations located within the ligand-binding 

site (EGF-like repeats 10/11), occurring in roughly 4 % of all CADASIL patients (Monet-

Lepretre et al., 2009), cause impairment in signal transduction (Joutel et al., 2004, Peters et 

al., 2004, Monet-Lepretre et al., 2009, Arboleda-Velasquez et al., 2011). However, since 

hypomorphic Notch3 allele carriers do not show signs of CADASIL pathology (Rutten et 

al., 2013), it is likely the alteration of the number of cysteines, which confers pathogenicity 

to these mutants. Thus, novel pathogenic roles for mutant Notch3 rather than 

compromised Notch3 function have been proposed as the primary determinant of the 

disease (Joutel, 2011). 

The appearance of Notch3-ECD aggregates prior to neurological symptoms in CADASIL 

patients (Mayer et al., 1999, Lesnik Oberstein et al., 2003) suggests that they represent an 

early manifestation causative for disease development. This hypothesis is supported by 

experimental data from the TgNotch3R169C mouse model, which carries a PAC (P1-derived 

artificial chromosome) clone containing the mutant (R169C) rat NOTCH3 gene driven by 

the endogenous mouse Notch3 promoter (Joutel et al., 2010). In a time-dependent fashion, 

TgNotch3R169C mice show an extracellular accumulation of Notch3-ECD (2 months), 

followed by GOM development (5 months), brain parenchyma lesions and astrogliosis  

(12 months) and progressive white matter degeneration (20 months). Since the mice do not 

display any ischemic attacks, they likely represent an early disease model. The initial 

appearance of Notch3-ECD deposits puts them at the beginning of a cascade of events 

eventually resulting in CADASIL pathology and it is currently believed that the 

co-aggregation of additional proteins is a major determinant of this process.   

While Notch3-ECD aggregation has been well studied in vivo, little is known about the 

exact nature of the aggregation process. Using scanning for intensely fluorescent targets 

(SIFT), a confocal technique, which distinguishes single protein particles from aggregated 

forms allowing the quantitative monitoring of protein multimerization in solution (Giese et 
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al., 2005), our group has recently recapitulated the Notch3-ECD aggregation process  

in vitro. A purified recombinant Notch3 fragment comprising EGF-like repeats 1-5, the 

mutational hotspot region, only showed formation of higher order multimers when 

bearing a CADASIL-causing mutation (Opherk et al., 2009a, Duering et al., 2011), a 

mechanism mediated by disulfide bond formation (Duering et al., 2011). Moreover, 

co-aggregation of thrombospondin-2 (Duering et al., 2011), a known Notch3 interactor and 

regulator of ECM assembly (Meng et al., 2009), was observed providing first direct 

experimental evidence for a pathological co-aggregation mechanism, i.e. that other proteins 

may be sequestered into aggregates.  

Further support for such a mechanism was provided by proteomic studies of both mouse 

and CADASIL patient material (Arboleda-Velasquez et al., 2011, Monet-Lepretre et al., 

2013). Clusterin and collagen18α1/endostatin were identified as GOM components in the 

tunica media of CADASIL brain vessels collected by laser capture microdissection 

(Arboleda-Velasquez et al., 2011). Monet-Lepretre and co-workers extended this approach 

by enriching Notch3-ECD deposits from CADASIL brain material and TgNotch3R169C 

vessels through sequential fractionation and analyzing the Notch-ECD-containing fraction 

(Monet-Lepretre et al., 2013). A variety of proteins predominantly from the ECM were 

found to co-fractionate with Notch3-ECD. For two of them, tissue inhibitor of 

metalloprotease 3 (TIMP3) and vitronectin, further evidence for their presence in 

Notch3-ECD aggregates was reported and disease-related roles proposed. Their abnormal 

recruitment was suggested to cause a dysregulation of their activity contributing to the 

impaired ECM homeostasis in small vessels (Monet-Lepretre et al., 2013). 

1.4 Goals of this thesis 

Notch3-ECD aggregation in CADASIL vessel walls likely represents the initiating event of 

a continuative process involving the recruitment and sequestration of ECM proteins with 

important roles in normal vessel function ultimately leading to multifactorial toxicity. 

Although initial efforts to identify co-aggregating factors have yielded a variety of 

candidate proteins, the pathological events resulting in vessel degeneration are still poorly 

understood. This thesis aimed to extend and refine previous data on Notch3-ECD 

aggregate components by analyzing potential candidate proteins in more detail. Due to the 

extracellular localization of Notch3 deposits and the crucial role the ECM plays in vessel 

homeostasis, five ECM and ECM-associated (matricellular) proteins were selected for this 

study: fibrillin-1 and fibronectin, two major structural ECM components; LTBP-1 and 

LTBP-4, two members of the latent transforming growth factor-β (TGF-β) binding protein 

(LTBP) family of TGF-β signaling regulators; and thrombospondin-2 (TSP-2), a 
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matricellular protein known to interact with Notch3 and to co-aggregate with CADASIL 

mutants. Approaches applied in this study include biochemical fractionation and 

immunohistochemical localization on CADASIL patient brain autopsy material as well as 

in vitro interaction and co-aggregation assays. Using these techniques, I sought to provide 

an in depth analysis of the roles ECM proteins play in Notch3-ECD deposition.  
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2 Materials and Methods 

2.1 Equipment 

37 °C incubator (Function line) Heraeus 

37 °C shaker (Certomat BS-1) Sartorius 

Agarose gel chamber (40-0708) PEQLAB 

Autoclave (VX 150, DX 65) Systec 

Cell culture CO2 incubator (HERA Cell) Heraeus 

Cell culture flasks for purification (Nunclon Surface Triple 
Flasks 500cm2) 

Nunc 

Cell Strainer (40 µm) BD Falcon 

Centrifuge (Avanti J-26 XP) with swinging rotor (JS 7.5) Beckmann Coulter 

Clean bench (HeraSafe KS18) Heraeus 

Cooling centrifuge for small disposable tubes (5417R) Eppendorf 

Cooling centrifuge for large disposable tubes (Heraeus 
Megafuge 16R) 

Thermo Scientific 

Cooling Ultracentrifuge (Optima L-90K) Beckman Coulter 

Coverslides 22x50 mm #1 (Inverse microscopy) Menzel Glas 

Coverslides 24x60 mm # 1.5 (confocal microscopy) Menzel Glas 

Disposable Cell culture flasks T80 Nunc 

Disposable Cryotube (1.8 mL) Nunc 

Disposable Culture well plates (6 and 24 well) BD Falcon 

Disposable tubes (0.5 ml; 1.5 ml; 2.0 ml) Eppendorf 

Disposable tubes (15 mL) Thermo Scientific 

Disposable tubes (50 mL) BD Falcon 

Disposable well plate for protein determination  
(96well Microplates PS, F-bottom) 

Greiner bio-one 

Electrophoresis cell (Mini-PROTEAN) BioRad 

Freezer -80° C (Hera Freeze Top) Thermo Scientific 
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Homogenisator Tissue Lyser LT Qiagen 

Liquid Nitrogen Tank (Cryoplus 2) Thermo Scientific 

Microscope Axiovert 200M; Camera AxioCam MRm Zeiss 

Microscope slide (Superfrost Plus) Menzel 

Microscope, confocal (TCS SP5) Leica 

Microwave Siemens 

Needle with cannula (0,33x12 mm, Myjector U40) Terumo 

pH-Meter (Lab 850) Schott Instruments 

Power Supply (Power Pac 30) PEGLAB 

Rocking Shaker (ST5 CAT) neoLab 

Tissue grinder, Type Potter-Elvehjem with smooth pestle Wheaton 

Water bath (1005) GFL 

2.2 Chemicals  

0,05 % Trypsin-EDTA Gibco 

2-Mercaptoethanol (β-ME) ≥ 99,0 % Sigma 

Acetone Merck 

Acrylamide: Ultra Pure Proto Gel (30 %) 
37.5:1 Acrylamide/Bisacrylamide 

National diagnostics 

Agarose Sigma 

Albumin from bovin serum (BSA) 96 % Sigma 

Ammoniumpersulfat (APS) Sigma 

Ampicillin Sigma 

Boric acid Sigma 

Bromphenol Blue Sigma 

Protease inhibitor (complete Mini EDTA free cocktail tablets) Roche 

Dimethyl Sulfoxide (DMSO) Sigma 

Disodiumphosphate (Na2HPO4) Merck 

DMEM + GlutaMAX Invitrogen 
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Ethylenediaminetetraacetic acid disodium (EDTA) Roth 

Ethanol 70 %; 96 % Roth 

Ethanol absolute, for analysis Merck 

Fetal Bovine Serum (FBS) Gibco 

Ficoll PM 400 Sigma 

G418 Sulfate Calbiochem 

Glycerol ≥99,5 % Roth 

Glycin Sigma 

Hydrogen peroxide (H2O2) 30 % Merck 

Methanol ≥ 99% Roth 

Monopotassium phosphate (KH2PO4) Merck 

Orange G Sigma 

Paraformaldehyd (PFA) 4 % in PBS 7.4 Morphisto 

Penicillin/Streptomycin (10000U/mL) Invitrogen 

Peptone (from Soja) Roth 

Select agar Invitrogen 

Skim milk powder Fluka 

Sodium bicarbonate (NaHCO3) Sigma 

Sodium chloride (NaCl) Roth 

Sodium dodecyl sulfate (SDS) Pellets Serva 

Tetramethylethylenediamine (TEMED) Roth 

Tri-Sodiumcitrat-dihydrat (Na3C6H5O7xH2O) Roth 

Tris (Tris(hydroxymethyl)-Aminomethane) Merck 

Trizma base Sigma 

Tween 20 Roth 

Xylene Cyanole F.F ICN 

Xylol (Rotihistol) Roth 

Yeast extract Roth 
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2.3 Recombinant Proteins 

Fibronectin Sigma 

Human IgG1-Fc R&D Systems 

Human Notch3-Fc Chimera, aa 40-467 R&D Systems 

2.4 Human samples 

2.4.1 Human brain tissue 

Brain samples from twelve deceased elderly patients, frozen or paraffin-embedded, were 

obtained from various sources (Brain-Net, LMU, Munich [Thomas Arzberger]; INSERM 

Paris [Anne Joutel]; Leiden University Medical Center [Saskia Lesnik-Oberstein]). A total of 

six CADASIL patients, genetically confirmed (mean age 64,3 years) and six age- and 

sex-matched controls (mean age 61,3 years) were employed. 

Table 2: Overview of all brain autopsies 

Description Sex Age Diagnosis Mutation Location 

CAD 1 M 64 CADASIL R110C Gyrus frontalis medius  
CAD 2 F 66 CADASIL D239_D253del Gyrus frontalis medius  
CAD 3 M 68 CADASIL C144S Gyrus frontalis medius  
CAD 4 F 60 CADASIL R153C Frontal lobe 
CAD 5 F 70 CADASIL C1261R Frontal lobe 
CAD 6 F 58 CADASIL R153C Frontal cortex 
Ctrl 1 M 61 Control - Gyrus frontalis medius  
Ctrl 2 F 55 Control - Gyrus frontalis medius  
Ctrl 3 F 60 Control - Gyrus frontalis medius  
Ctrl 4 F 73 Control - Gyrus frontalis medius 
Ctrl 5 M 60 Control - Gyrus frontalis medius 
Ctrl 6 F 59 Control - Gyrus frontalis medius 
 

2.4.2 Brain vessel isolation 

Phosphate buffered saline (PBS)  

154 mM NaCl, 9.5 mM Na2HPO4, 1.7 mM KH2PO4, pH 7.4 

50 mg brain tissue was homogenized with 15 mL cold Minimum Essential Media (MEM, 

Invitrogen) in a tissue grinder with a total of 60 up and down strokes. An equal volume of 
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30 % Ficoll in MEM was added and centrifuged at 6000 g, 4 °C for 20 min in a swinging 

rotor. The supernatant was discarded and the pellet suspended in 1 %BSA in PBS. Next, 

the homogenate was poured onto a 40 µm Nylon mesh (Corning Life Sciences) and 

extensively washed with PBS. By inversion of the nylon mesh, vessels were collected in a 

tube and pelleted for 5 min at 3000 g. The purity of the vessels was checked under a phase-

contrast microscope.   

2.5 DNA Techniques 

2.5.1 Plasmids 

Table 3: List of plasmids. EGF: epidermal growth factor, aa: amino acids.  

Plasmid Description 
Reference /  

Cloning Strategy 

pcDNA3.1 (-) Mammalian expression vector Invitrogen 

pcDNA3_LTBP-1 

Encodes human full length LTBP-1S 
with a CD5 signal peptide, 
an N-terminal HA-tag and a 
C-terminal V5-His tag 

Nathalie Beaufort, ISD 
Munich 

pSignal_LTBP-
1ΔN_HA 

Encodes N-terminally truncated 
LTBP-1 (aa 528-1395) with a 
C-terminal HA-tag 

Jorma Keski-Oja, Helsinki, 
Finland (Saharinen et al., 
1996)  

pcDNA3_LTBP-
1ΔN_V5 

Encodes LTBP-1ΔN with a 
C-terminal V5-His tag 

Generated by restriction 
with SnaBI and BbvCI of 
LTBP-1 (Vector) and LTBP-
1ΔN_HA (Insert) 

pTT5_N3EGF1-5 
Wt_Halo 

Encodes hNotch3 EGFR 1-5 with  
a Halo fusion Tag 

Patrizia Hanecker, ISD 
Munich 

pTT5_N3EGF1-5 
C183R_Halo 

Encodes hNotch3 EGFR 1-5 with 
a Halo fusion Tag, mutation C183R 

Patrizia Hanecker 

pcDNA3_LTBP-
1ΔC_V5 

Encodes a C-terminally truncated 
LTBP-1 (aa 1-689) with a C-terminal 
V5-His tag 

Nathalie Beaufort 

 



Materials and Methods 

 

23 

2.5.2 Agarose gel electrophoresis 

Agarose Gels: 

1 % (w/v) agarose in 1xTBE buffer, melted in a microwave  

5x TBE buffer: 

445 mM Trizma base, 445 mM boric acid, 10 mM EDTA, pH 8.0  

6x DNA-loading buffer: 

60 % (v/v) Glycerol, 10 mM Tris-HCl pH 7.6, 60 mM EDTA, 2.5 mg Xylene Cyanol, 2.5 mg Orange G 

DNA fragments mixed with DNA-loading buffer were separated on a 1 % agarose Gel in 

1x TBE buffer with the addition of SYBR Safe DNA Gel Stain (Invitrogen) diluted 1:10000, 

using a constant voltage of 80 V for roughly 1 h. As a molecular marker, PeqGOLD DNA 

Ladder-Mix (PEQLAB) was used. Finally, gels were visualized on a gel-doc Fusion FX7 

(Vilber Lourmat). 

2.5.3 Restriction enzyme treatment 

Restriction enzymes (New England Biolabs): 

SnaBI (5U/µL), BbvCI (2U/µL)  

Restriction Enzyme Buffer (New England Biolabs): 

NEB4  

100x BSA (New England Biolabs): 

diluted 1:10 

Analytical restriction analysis was carried out in the following manner.  

Table 4: Analytical restriction enzyme treatment 

Component Volume 

Restriction enzyme 5 U 
Restriction buffer 3 µL 
DNA 0.6 µg 
10x BSA 3 µL 

H20 ad 30 µL 
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Preparative restriction analysis for subsequent cloning experiments was carried out in the 

following manner  

Table 5: Preparative restriction enzyme treatment 

Component Volume 

Restriction enzyme 10 U 
Restriction buffer 5 µL 
10x BSA 5 µL 
DNA 4 µg 

H20 ad 50 µL 

All restriction digestion mixtures were incubated for 1 h at 37 °C. Afterwards, the DNA 

fragments were separated on an agarose gel, extracted and purified using the GeneJET Gel 

Extraction Kit (Fermentas) according to manufacturer’s specifications.  

2.5.4 Vector dephosphorylation 

Phosphatase (New England Biolabs): 

Antarctic Phosphatase (5 U/µL)  

Phosphatase buffer (New England Biolabs): 

10x Antarctic buffer 

Table 6: Dephosphorilation of the vector 

Component Volume 

Gel extract 20 µL 
10x Antarctic buffer 3 µL 
Antarctic phosphatase 1 µL 

H20 6 µL 

In order to dephosphorylate the vector to prevent self-ligation, the gel extract was treated 

with a phosphatase for 30 min at 37 °C, followed by 5 min at 65 ° C to inactivate the 

enzyme. 

2.5.5 DNA Ligation 

Enzyme (New England Biolabs): 

T4 DNA ligase (400 U/µL) 
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Buffer (New England Biolabs):  

10x T4 DNA Ligase Reaction buffer 

Table 7: DNA Ligation Mixture 

Component Volume 

Vector 150 ng 
Insert 50 ng 
T4 Ligase 1 µL 
T4 buffer 2 µL 

H20 ad 20 µL 

Components to ligate vector and insert were mixed together and incubated 1 h at room 

temperature. 2 µL of the ligation mix was used for the subsequent transformation of 

competent bacteria. 

2.5.6 Transformation of competent bacteria 

LB-Medium: 

0.5 % (w/v) Yeast extract, 1 % (w/v) Peptone, 0.5 % (w/v) NaCl, pH 7.0; autoclaved  

LB Agar plates containing ampicillin: 

LB Medium, 0.15 % (w/v) agar, autoclaved, 100 µg/mL ampicillin is added after chilling to roughly 

50 °C. 

2 µL ligation mix was added to 50 µL of competent bacterica (E.coli DH5α, present in the 

laboratory) and incubated for 30 min on ice. A heat shock at 42 °C for 90 sec allowed the 

plasmid to permeate into bacteria. After cooling down for 2 min on ice, 250 µL LB-Medium 

was added and incubated at 37 °C for 1h under gentle agitation. Subsequently, 200 µL 

transformation mix were plated on LB Agar plates containing ampicillin. After incubation 

overnight at 37 °C, several colonies were picked from the plates in 5 mL LB-Medium + 

100 µg/mL ampicillin for small-scale DNA isolation.  

2.5.7 DNA Isolation of bacteria 

5 mL of transformed bacteria were used for small-scale DNA isolation with the NucleoSpin 

Plasmid Kit (Macherey-Nagel). The concentration and quality was checked using the 

Nanodrop ND-1000 (PEQLAB). Before the plasmid was sent for sequencing to GATC 

Biotech AG (Konstanz, Germany), analytical restriction analysis was carried out to ensure 

the correct buildup of the plasmid.  
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For large-scale DNA isolation, small amounts of transformed bacteria were diluted in 

100 mL LB-Medium + 100 µg/mL ampicillin and cultured overnight while shaking. On the 

next day, plasmid DNA was isolated with the aid of the NucleoBond Xtra Midi Kit 

(Macherey-Nagel). Again, purity and concentration was analyzed using the Nanodrop.  

2.6 Cell Culture  

2.6.1 Cell lines 

Table 8: List of cell lines. All cell lines were available in the laboratory. DMEM: Dulbecco’s 
Modified Eagle Medium 

Cell line Description Culture Medium+ 

HEK293T 
Human embryonic kidney 
cells, expressing the SV40 
large T antigen 

DMEM+GlutaMax +10% FBS + 5 mL 
Penicillin/Streptomycin 

HEK293E 

Human embryonic kidney 
cells, transfected with the 
Epstein Barr Virus nuclear 
antigen 1 (EBVNA 1) 

DMEM+GlutaMax +10% FBS + 5 mL 
Penicillin/Streptomycin + 25 µg/mL G418 

 

2.6.2 Cell Cultivation 

Cells were cultured in their respective media (see Table 8) as adherent monolayers at 37 °C 

in a humidified atmosphere of 5 % CO2. As requested, cells were passaged twice a week. 

Therefore, cells grown to 70-80 % confluency were washed once with PBS, trypsinized and 

seeded in fresh medium after resuspending in the desired ratio (roughly 1:10). Microscopic 

analysis guaranteed the condition of the cells. Frequent analysis for microplasma using the 

Venor GeM One-Step Detection Kit for endpoint PCR (Minerva Biolabs) secured a 

microplasma-free environment.   

2.6.3 Cell transfection for conditioned media 

HEK293T cells were seeded into well plates in a defined number, totaled using an 

automated cell counter (TC20, Biorad). Transfection was performed with the Fugene HD 

Transfection Reagent (Roche) according to the manufacturer’s manual. Briefly, plasmid 

and Fugene were mixed in OptiMEM (Invitrogen) and, after an incubation period of 

15 min, added to serum-free medium. Following culturing in serum-free DMEM for 48 h, 
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the medium was collected and centrifuged 10 min at 1000 g to eliminate cell debris. Finally, 

the conditioned medium was stored at -20°C until further use. 

2.6.4 Cell cryoconservation 

Freezing Medium 

FBS containing 10 % (v/v) DMSO 

90 % confluent cells grown in a T 80 flask were trypsinized and pelleted. Pellets were 

re-suspended in freezing medium, transferred into a cryotube and allowed to gradually 

freeze in a Freezing Container (Mr. Frosty, Nalgene) kept in a - 80 ° freezer overnight. On 

the next day, cryotubes were transferred into a liquid nitrogen tank for long-term storage.  

For thawing, cryotubes were allowed to quickly reach 37 °C in a water bath and 

subsequently collected in fresh medium. After centrifugation, the pellet was washed once 

with PBS and resuspended in fresh medium. Next, cells were transferred into a flask and 

allowed to sediment.  

2.6.5 Large scale transfection for protein purification 

First, two confluent T 80 flask of HEK293E cells were trypsinized and transferred into a 

triple flask with 90 mL of fresh medium. A total of four triple flasks for each purification 

were used. For the transfection on the next day, 75 µg plasmid and 300 µg poly-

ethylenimine (Polyscience) in OptiMEM were prepared for each flask and incubated for 

25 min. In the meantime, cells were washed twice with PBS. The transfection mix was 

added to 90 mL of fresh DMEM + 10 % FCS. Five hours later, cells were washed again 

twice and replaced by 90 mL serum-free medium. Conditioned medium from cells 

transfected with LTBP-1ΔC_V5 and LTBP-1ΔN_V5 was collected two or three days later, 

respectively and cleared from cell debris by centrifugation for 10 min at 1000 g. 

Afterwards, conditioned media were immediately subjected to dialysis. 
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2.7 Protein analysis 

2.7.1 Antibodies 

Respectively, Table 9 and Table 10 list all the primary and secondary antibodies that were 

used during this thesis.  

Table 9: List of primary antibodies. WB: Western Blot; IF: Immunofluorescence, IHC: 
Immunohistochemistry, SPBA: Solid phase binding assay. 

Antibody Type Application Source/Reference 

Anti-APP A4 Mouse monoclonal WB 1:4000 Millipore 
Anti-Collagen type IV Goat polyclonal IF 1:500 Southern Biotech 
Anti-fibrillin-1 Rabbit polyclonal, 

affinity purified 
IF/IHC 
1:100 
WB 1:1000 

Lynn Sakai 
(Gayraud et al., 2000) 

Anti-fibronectin Mouse monoclonal IHC 1:300 Sigma 

Anti-fibronectin Rabbit polyclonal, 
affinity purified 

WB 1:10000 Sigma 

Anti-LAP TGF-β1 Goat polyclonal WB 1:500  
IHC 1:50 

R&D Systems 

Anti-LTBP-1 Mouse monoclonal WB 1:500  
IF 1:50  
SPBA 1:500 

R&D Systems 

Anti-LTBP-4 Rabbit polyclonal  WB 1:1000 Lynn Sakai, Portland, 
USA (Ono et al., 2009) 

Anti-Notch3-ECD (2G8) Rat monoclonal 
hybridoma supernatant 

IF/IHC 1:10 Elisabeth Kremmer, 
Helmholz Zentrum, 
Munich 

Anti-Notch3-ECD (3G6) Rat monoclonal 
hybridoma supernatant 

WB 1:20 Elisabeth Kremmer, 
Helmholz Zentrum, 
Munich 

Anti-α-SMA Mouse monoclonal, 
Cy3 (red) coupled 

WB 1:10000 SIGMA 

Anti-TSP-2 Mouse monoclonal WB 1:1000 Santa Cruz 

Anti-β-Tubulin Mouse monoclonal, 
ascites fluid 

WB 1:1000 Sigma 

Anti-V5 Mouse monoclonal SPBA 1:500 
WB 1:1000 

Invitrogen 
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Table 10: List of secondary antibodies. HRP: Horseradish peroxidase. 

Antibody Type Conjugate Application Source 

Donkey anti-goat Purified Cy2 (green) IF 1:200 Jackson 
ImmunoResearch 

Donkey anti-goat Purified, F(ab')2 
Fragment 

Rhodamine 
Red X (red) 

IF 1:100 Jackson 
ImmunoResearch 

Donkey anti-mouse Purified, F(ab')2 
Fragment 

Rhodamine 
Red X (red) 

IF 1:50-1:100 Jackson 
ImmunoResearch 

Donkey anti-rabbit Purified Cy3 (red) IF 1:100 Jackson 
ImmunoResearch 

Donkey anti-rabbit Purified, F(ab')2 
Fragment 

AF488 (green) IF 1:50 Jackson 
ImmunoResearch 

Donkey anti-rat Purified, F(ab')2 

Fragment 
Cy3 (red) IF 1:50 Jackson 

ImmunoResearch 
Goat anti-mouse Polyclonal, 

purified 
Biotinylated IHC 1:200 Vector 

Goat anti-mouse Polyclonal HRP WB 1:5000-
1:10000  
SPBA 1:1000 

DAKO 

Goat anti-rabbit Polyclonal HRP WB 1:5000-
1:10000 

DAKO 

Goat anti-rabbit Polyclonal, 
purified 

Biotinylated IHC 1:200 DAKO 

Goat anti-rat Purified Fluorescein 
(green) 

IF 1:50 Jackson 
ImmunoResearch 

Horse anti-goat Polyclonal 
purified 

Biotinylated IHC 1:200 Vector 

Rabbit anti-goat Polyclonal HRP WB 1:5000 DAKO 
Rabbit anti-human Polyclonal HRP SPBA 1:1000 DAKO 
Rabbit anti-rat Polyclonal HRP WB 1:5000 DAKO 
Rabbit anti-rat Polyclonal, 

purified 
Biotinylated IHC 1:200 DAKO 

 

2.7.2 Sequential protein extraction 

Tris Buffer: 

0.05 M Tris-HCl pH 7.5 + Protease inhibitors 
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SDS Buffer: 

Tris Buffer + 1 % (w/v) SDS + Protease inhibitors 

β-ME Buffer 

SDS Buffer + 5 % (v/v) β-ME + Protease inhibitors 

5x Lämmli buffer: 

375 mM Tris Base pH 6.8, 30 % (v/v) Glycerol, 6 % (w/v) SDS, 0.03 % (w/v) Bromphenol blue  

All steps were carried out at 4 °C. 30 mg brain tissue or purified brain vessels were 

homogenized in a tissue homogenisator with a 5 mm metal-ball (Qiagen) for 3 min at 50 Hz 

in 100 µL Tris Buffer. After spinning down for 5 min at 13200 rpm, the “Tris-faction” was 

set aside and the pellet resuspended in 100 µL SDS Buffer. After lysing 30 min on ice, the 

homogenate was sedimented for 30 min at 13200 rpm. The supernatant (SDS fraction) was 

collected and the remaining pellet was further solubilized in 100 µL β-ME Buffer for 30 min 

on ice while passing though a 29 gauge needle at least 5 times. Repeated centrifugation for 

30 min at 13200 rpm resulted in the last fraction, the “β-ME fraction”. After the protein 

amount of the Tris and SDS fraction was determined, the samples were mixed with the 

appropriate amount of Lämmli-buffer. Due to the high amount of reducing agent, a protein 

determination in the β-ME fraction was not possible. 

2.7.3 Protein Quantification  

The Tris, as well as the SDS fraction of the sequential protein extraction were quantified 

using a bicinchoninic acid assay (Thermo Scientific) with a BSA standard (Quick Start BSA 

Assay, BioRad) according to the manufacturer’s protocol.   

2.7.4 Dialysis of conditioned media 

Before conditioned medium was purified, it was fist dialyzed twice against 0.5x PBS for 

one hour and another two times against 0.5x PBS + 200 mM NaCl for one hour each. 

2.7.5 Purification of proteins using Talon beads 

Talon Wash buffer 

50mM Phosphate, 300mM NaCl, pH 7.0 

The following steps were carried out at room temperature and 4 °C for LTBP-1ΔC and 

LTBP-1ΔN, respectively. To the total amount of conditioned medium (360 mL), 2 mL (bead 

volume) TALON affinity resin (Clontech), washed three times with Talon washing buffer, 

was added and allowed to bind His-tagged proteins for one hour under gentle agitation. 
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Subsequently, the beads were spinned down for 10 min at 800 g, the supernatant was 

discarded and the beads were transferred onto a TALON 2 mL disposable gravity column 

(Clontech). After washing several times with Talon washing buffer, with and without 

adding 5mM imidazole (Fluka), the protein was eluted in PBS containing 100 mM EDTA in 

ten fractions. Protein amounts were evaluated using the Qubit protein assay (Life 

Technologies) according to the manufacturer’s instructions. To check the protein quality, 

the samples were run on a SDS-PAGE and visualized by silver staining.  

2.7.6 Solid-phase binding assay 

5x Lämmli + β-ME 

5x Lämmli + 5 % (v/v) β-ME 

20 µg/mL recombinant proteins dissolved in PBS were coated onto Maxisorp 96-well 

plates (Nunc) overnight at 4 °C. On the next day, the wells were first washed four times 

with 300 µL PBS, blocked with 1 % BSA in PBS for 1 hand then washed again. Next, 50 µL 

conditioned media from HEK293T transfected cells (LTBP-1, LTBP-1ΔC_V5, or LTBP-

1ΔN_HA) or 2 ng/µL purified LTBP-1ΔC_V5 was added for 1 h at room temperature. 

Mock transfected cells or PBS was used as a negative control. After washing, bound protein 

was detected with the appropriate first antibody (anti-V5 (detection of LTBP-1 with LTBP-

1_∆C) or anti-LTBP1 (detection of LTBP-1 with LTBP-1_∆N) and secondary antibody (anti-

mouse-HRP) diluted in PBS and sequentially added for 1 h at room temperature with an 

in-between washing step. Immune complexes were determined by incubation with TMB 

substrate solution (KPL) followed by the appropriate stop solution once the colorimetric 

reaction was visible. The optical density was measured at 560 nm and corrected with a 

measurement at 420 nm. For the calculation of the results, the unspecific binding was 

subtracted.  

To recover bound proteins from the plate, 25 µL 1xLämmli + β-ME was added to the plates 

and heated for 15 min at 95 °C.  

2.7.7 SDS-PAGE 

10x Running buffer 

0.25 M Tris, 1.92 M Glycin, 1 % (w/v) SDS  

4x Lower Tris 

1.5 M Tris pH 8.8, 0.4 % (v/v) SDS  

4x Upper Tris 

0.5 M Tris pH 6.8, 0.4 % (v/v) SDS  
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Proteins were separated using the sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) in a discontinuous system with a stacking and a separation gel 

in 1x running buffer. Table 11 shows the composition of these gels. 6 µL Precision Plus 

Protein All Blue Standards (BioRad) or 2 µL Precision Plus Protein Unstained Standards 

(BioRad) were used as molecular weight markers in case of further processing for Western 

Blots or silver staining, respectively. Electrophoresis was carried out using the minigel 

system (BioRad) at 80-120 V.   

Table 11: Composition of two 1.0 mm stacking and separation gels. AA: acryl–bisacrylamide; Tris: 
tris(hydroxymethyl)aminomethane; TEMED: tetramethylethylenediamine; APS: ammmonium 
persulfate. 

Solution  Stacking gel   Separation gel 

H20 5.88 mL 2.94 mL 
40 % AA 3 mL 0.55 mL 
4x Lower Tris - 3 mL 
4x Upper Tris 1.02 mL - 
APS 45 µL 100 µL 
TEMED 4.5 µL 10 µL 
 

2.7.8 Western Blotting 

Blotting buffer  

25 mM Tris, 192 mM Glycine, 20 % (v/v) Methanol 

10x TBST 

100 mM Tris pH 8.0, 1.5 M NaCl, 0.5 % (v/v) Tween 20  

Blocking solution 

4 % (w/v) skim milk powder in 1xTBST 

After SDS-PAGE, proteins were transferred onto a Immobilon-P Transfer Membrane 

(Millipore) in blotting buffer with a constant current of 125 mA limited to 25 V for 60-

90 min using the semi-dry system (Trans-Blot SD Semi-Dry Transfer Cell, BioRad). 

Afterwards, unspecific binding sites were inhibited in blocking solution for one hour at 

room temperature followed by incubation with the primary antibody in blocking solution 

under constant rotation at 4 °C overnight. The next day, spare antibody was removed by 

several washing steps using 1xTBST followed by incubation with the with horseradish 

peroxidase (HRP)–conjugated secondary antibody diluted in blocking solution for at least 

one hour. Subsequently, membranes were washed again in 1xTBST before developing with 

Immobilon Western Chemiluminescent HRP Substrate (Millipore) according to the 
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manufacturer’s specifications. The chemiluminesence signal was digitalized using the 

Fusion camera for the required amount of time. 

2.7.9 Silver staining 

Silver staining was performed with the Roti-Black P Silver Staining Kit (Roth) as specified 

in the manufacturer’s manual. 

2.7.10 Histological stainings 

2.7.10.1 Immunofluorescence on human Cryosections 

Histo blocking buffer 

5 % (v/v) normal donkey serum (Jackson ImmunoResearch) in PBS 

Human tissue samples were cut on a Cryostat (CM1950, Leica) in 10 µm thickness and 

stored at -80 °C until further use. On the day of the experiment, sections were thawed to 

room temperature for 15 min. Tissue was either fixed for 10 min in ice–cold acetone 

followed by air-drying for 30 min or with PFA under gentle agitation for 15 min. 

Subsequently, sections were washed 3x5 min with PBS. Thereafter, unspecific binding sites 

were blocked with histo blocking buffer for 40 min at room temperature and primary 

antibodies were diluted in histo blocking buffer and incubated overnight at 4 °C. On the 

following day, sections were first washed, incubated with the secondary, fluorescence 

coupled antibody in Histo blocking buffer for 1 h at room temperature in the dark and then 

washed again. Afterwards, sections were mounted in ProLong Gold antifade reagent (Life 

Technologies) with coverslips and sealed with common nail polish to prevent exsiccation. 

Sections were analyzed either on a confocal or inverse microscope. As an appropriate 

negative control, the first antibody was omitted in each experiment.  

2.7.10.2 AEC Staining of human paraffin sections 

Citrate buffer 

10 mM Na3C6H5O7xH2O in PBS, pH 6.0 

Paraffin sections with a thickness of 8 µm, received from Thomas Arzberger (Brain-Net, 

LMU Munich), were first deparaffinized (2x5 min Xylol) and rehydrated in a descending 

alcohol series (2 min absolute ethanol, 2 min 96 % ethanol, 2 min 70 % ethanol, 5 min PBS). 

Afterwards, sections were boiled in citrate buffer for 30 min at 95 °C to unmask antigens. 

Slides were allowed to reach room temperature, washed 2x5min in PBS and nonspecific 

binding sites were blocked for 1 h in histo blocking buffer at room temperature. Thereafter, 
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primary antibodies were diluted in histo blocking buffer and incubated overnight at 4 °C. 

The next day, slides were first washed 3x10 min in PBS. Afterwards, endogenous 

peroxidases were blocked by incubation with 0.3 % hydrogen peroxide (v/v) in PBS. 

Sections were washed and appropriate biotinylated secondary antibody diluted in Histo 

blocking buffer were applied to sections and incubated for 1 h at room temperature. After 

washing, immunoreactivity was visualized with avidin/biotin-horseradish peroxydase 

complex (Vectastain ABC-HRP kit, Vector Laboratories) and developed with 3-amino-9-

ethylcarbazole (AEC Peroxidase substrate Kit, Vector Laboratories). After washing 5 min in 

tap water, sections were counterstained with Mayer’s hematoxylin Solution (Sigma) for 

1 min to provide cytological detail and rinsed 10 min in tap water before mounting with 

ProLong Gold. Omission of primary antibodies served as a negative control. Sections were 

analyzed using a histology microscope (Zeiss). 

2.7.11 Labeling of purified proteins for SIFT 

SIFT buffer 

50 mmol/l Tris HCl, pH 7.5 

Prior to labeling the purified proteins (1.7 µM and 1.58 µM LTBP-1ΔC; 2.27 µM LTBP-1ΔN), 

samples were concentrated to 50 µL using a centrifugational filter device with a 3 kDa 

molecular cutoff (Amicon Ultra Centrifugal Filters-0.5 mL 3K, Millipore) according to the 

manufacturer’s specifications. Afterwards, green fluorescence dye (Alexa Fluor 488 

carboxylic acid succinimidyl ester, Invitrogen) was added in 2.5 fold excess, which 

covalently binds to free amines of the protein. To buffer the reaction, 100 mmol/L sodium 

bicarbonate (pH 8.5) was added and the mixture was incubated overnight at 4 °C in the 

dark.  

On the next day, the unbound dye was removed by two gel filtration steps (Zeba desalt 

spin Columns, 0.5ml, Thermo Scientific) carried out according to the manufacturer’s 

protocol. At the same time, the buffer was exchanged from PBS+EDTA to the SIFT buffer. 

Purity was checked using fluorescence correlation spectroscopy autocorrelation 

measurements (Insight Reader, Evotec-Technologies). All samples had roughly the same 

amount 70 %of unbound remaining dye. Finally, samples were aliquoted (4 µL), shock 

frozen in liquid nitrogen and stored until further use at -80 °C.  

2.7.12  Scanning for intensely fluorescent targets (SIFT) 

Scanning for intensely fluorescent targets (SIFT) is a method where single protein particles 

can be distinguished from aggregated proteins in a subpicomolar concentration. The 
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samples are composed of two proteins, one labeled in red, one in green, or a single protein 

with half of the molecule marked in red and the other half in green. The setup is confocal 

and the sample in a 398 well plate is excited by two lasers (green: 488 nm; red: 633 nm). 

They lasers are directed by an oscillating and moving beamsplitter and a moving sample 

table. The locomotion is necessary to achieve a higher sensitivity since aggregated proteins 

with a lager particle size are moving with a decreased diffusion rate. The emitted photons 

of each color are detected and represented in a two-dimensional (2-D) intensity distribution 

histogram (Figure 9). Each well is scanned 5 times and the detected fluorescence intensity 

of all measurements is summed up. Shown are particle brightness’ for each fluorophore on 

the individual axis (x-axis in green; y-axis in red) in 0-250 photons/bin in dots. A bin is the 

sum of photons that are detected in a timeframe, here 40 µsec, in which the total 

measurement time is divided. Monomers with low particle brightness are found on the 

arbitrary origin while multimers and aggregates have higher bins thus are further away 

from this point. Mono-colored aggregates are found alongside the axis while dual colored 

aggregates are found in the middle of the histogram. 

 

Figure 9: Schematic representation of SIFT data evaluation with a 2-D histogram. The y-axis 
shows photons/bin for the red channel while the x-axis represents green photons/bin. Monomers 
are located in the lower left corner. Higher order multimers of one color are distributed along the 
axis and multimers of both colors in the middle of the histogram.  

After thawing aliquots, unspecific aggregates from the freezing process were removed by 

ultracentrifugation. Therefore, 4 µL samples were diluted with 100 µL SIFT buffer and 

centrifuged for 1 h at 100000 g at 4 °C. Particle amounts were checked using fluorescence 

correlation spectroscopy autocorrelation measurements and adjusted.  

For spontaneous aggregation experiments, 50 µL of red-labeled protein was combined with 

50 µL of green-labeled protein and samples were incubated for 24 hours at 37 °C and 

500 rpm. Purified and green- or red-labeled Notch3EGF1-5 Wt or C183R were kindly 

provided by Patrizia Hanecker (ISD, Munich). Before the measuring on the SIFT Insight 

reader, 3 µL of sample was diluted in 20 µL SIFT buffer in a 384-well measurement plate 

re
d 

ch
an

ne
l i

nt
en

si
ty

 I r
(p

ho
to

ns
/b

in
)

green channel intensity Ig
(photons/bin)

2501250

250

125

0



Materials and Methods 

 

36 

(Sensoplate, Greiner Bio-One). Each well was measured in triplicate with five meander per 

well with a total measurement time of 10 sec/well. Scanning parameters were set to 50 Hz 

beam scanner, 100 mm scan path length and 2000 mm positioning table movement. Results 

were evaluated with a 2D-SIFT software module (Evotec-Technologies) 

2.8 Statistical analysis 

Data generated with the solid phase binding assay were represented with mean values and 

standard error of the mean (SEM). Statistical analysis was performed applying the Mann-

Whitney Test with the Sigma Plot 12.5 software. Significance is depicted with stars:  

*: p<0.05; **: p<0.01; ***: p<0.001. 
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3 Results 

As a central event in CADASIL, mutant Notch3-ECD accumulates at the surface of vascular 

smooth muscle cells (vSMCs) in the tunica media of vessel walls, which likely promotes the 

abnormal recruitment of functionally relevant ECM proteins (Monet-Lepretre et al., 2013). 

In this thesis, potential candidates introduced below were studied in order to identify 

aggregate constituents involved in mediating Notch3-ECD toxicity using post-mortem brain 

material from CADASIL patients and controls.  

3.1 Human post-mortem brain samples 

A total of six CADASIL brain samples (mean donor age: 64.3 years) were compared to six 

age- and sex-matched controls (mean donor age: 61.3 years) with no known 

cerebrovascular disorders (Table 12). Since CADASIL mainly affects the white matter, 

regions of the frontal sub-cortex (gyrus frontalis medius and frontal lobe) were used except 

for patient 6 (CAD 6), for whom only a sample from the frontal cortex was available. The 

analysis techniques used were limited by the amount and type (frozen or paraffin-

embedded) of the obtained material (Table 12).  

For all patients, genomic sequencing of NOTCH3 exons resulted in the detection of 

previously described Notch3 mutations genetically confirming the diagnosis CADASIL. All 

mutations led to the gain or loss of one or more cysteines within a single epidermal growth 

factor (EGF)-like repeat resulting in an odd number of this amino acid residue as observed 

for the vast majority of CADASIL mutations. The patient samples display a representative 

spectrum of characteristic mutations: the missense mutations C144S, R153C (both within 

EGF-like repeat 3) and R110C (within EGF-like repeat 2) are located in exon 4 (Joutel et al., 

1997, Dichgans et al., 2000) and exon 3 (Joutel et al., 1997), respectively. The more rare 

deletion D239_D253del (within EGF-like repeat 6) locates in exon 5 and causes the loss of 

15 amino acids including three cysteines (Cys240, Cys245 and Cys251) (Dichgans et al., 

2001). Whereas all these mutations are situated within the mutational hotspot in exons 2 

through 6 encompassing 86% of all CADASIL mutations (Peters et al., 2005a), the rare 

missense mutation C1261R resides in EGF-like repeat 32 close to the Notch3 

transmembrane domain (Joutel et al., 1997).   
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Table 12: Overview of post-mortem brain samples. CAD: CADASIL, Ctrl: Control.  

Description Sex Age Mutation Application 

CAD 1 M 64 R110C Histological stainings, Immunoblot 
CAD 2 F 66 D239_D253del Histological stainings, Immunoblot 
CAD 3 M 68 C144S Histological stainings, Immunoblot 
CAD 4 F 60 R153C Immunoblot 
CAD 5 F 70 C1261R Immunoblot 
CAD 6 F 58 R153C Immunoblot 
Ctrl 1 M 61 - Histological stainings, Immunoblot 
Ctrl 2 F 55 - Histological stainings, Immunoblot 
Ctrl 3 F 60 - Histological stainings, Immunoblot 
Ctrl 4 F 73 - Immunoblot 
Ctrl 5 M 60 - Immunoblot 
Ctrl 6 F 59 - Immunoblot 
 

3.2 Analysis of Notch3 aggregates by biochemical fractionation 

3.2.1 Notch3-ECD accumulates in CADASIL-affected brains 

In a first approach, sequential protein extraction from brain samples was performed to 

enrich Notch3-ECD and potential co-aggregating proteins (Figure 10). Efficient 

solubilization of mutant Notch3-ECD requires a combination of sodium dodecyl sulfate 

(SDS) and β-mercaptoethanol (β-ME) (Duering et al., 2011, Monet-Lepretre et al., 2013). 

Therefore, a modified version of a previously established extraction protocol using 

increasing solubility strength was applied, which allows the enrichment of Notch3-ECD 

deposits. The procedure is described in detail in figure 10 A and yielded three fractions 

(Tris, SDS, β-ME), which were subsequently analyzed by immunoblotting. Analysis of one 

CADASIL (CAD 1) and one control (Ctrl 1) sample using an anti-Notch3-ECD antibody 

revealed the presence of a ~210 kDa band in the β-ME fraction of patient, but not control 

material confirming the enrichment of disulfide-bridged Notch3-ECD in 

CADASIL-affected tissue by the sequential extraction procedure. β-tubulin served as a 

loading control since it exists in a soluble monomeric as well as polymerized form and is 

thus present in each fraction (Mandelkow and Mandelkow, 1992). 
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Figure 10: Sequential extraction of human brain samples. A) Schematic representation of the 
extraction procedure. Briefly, 30 mg of brain tissue was homogenized in 50 mM Tris pH 7.5, 
centrifuged and the resulting supernatant (Tris fraction) collected. After solubilization of the pellet 
in Tris buffer/1 % SDS and re-centrifugation, the SDS-soluble fraction was obtained. Detergent 
insoluble material was finally resuspended in Tris buffer/1 % SDS/5 % β-ME and clearance by 
centrifugation yielded the β-ME fraction. B) All three fractions obtained from an extraction of a 
CADASIL patient (CAD) and a control (Ctrl) sample were subjected to SDS-PAGE and 
immunoblotted with anti-Notch3-ECD 3G6 and anti-β-tubulin antibodies. Because of the 
impossibility of determine the protein concentrations in β-ME fractions, equal loading was ensured 
by adjusting protein amounts following Coomassie staining. Shown is a representative immunoblot 
from at least five independent extractions of three CADASIL and three control autopsies each.  

3.2.2 TSP-2 and LTBP-4 are enriched in CADASIL brain samples 

Having established this effective protein extraction procedure, potential Notch3-ECD 

aggregate constituents in the β-ME fraction were analyze expecting that co-aggregating 

proteins co-distribute in this fraction. Since Notch3-ECD deposits are extracellular 

structures located at the surface of vSMCs, the focus was set on ECM and matricellular 

(ECM-associated) proteins. This approach was supported by the recent results from a study 

by Monet-Lepretre et al., which reported the preferential enrichment of ECM constituents 
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in a proteomic analysis of a Notch3-ECD enriched fraction from CADASIL brain material 

(Monet-Lepretre et al., 2013).  

First, two matricellular proteins, thrombospondin-2 (TSP-2) and latent transforming 

growth factor-β (TGF-β) binding protein 4 (LTBP-4), were selected for analysis. TSP-2 has 

been shown to interact with the shedded Notch3-ECD to mediate its re-uptake into 

neighboring cells (Meng et al., 2009, Meng et al., 2010). Moreover, our group previously 

demonstrated that TSP-2 co-aggregates with CADASIL-relevant mutant Notch3 fragments 

in vitro providing experimental evidence for a pathological co-aggregation (Duering et al., 

2011). LTBP-4 was among the proteins identified in the study by Monet-Lepretre et al. as 

component of Notch3 aggregates isolated from a CADASIL mouse model. It is a member of 

the LTBP family, which regulates TGF-β signaling, a key pathway of the cerebral 

microvasculature involved in cell proliferation, differentiation, apoptosis and extracellular 

matrix production (Ruiz-Ortega et al., 2007).  

The two candidate proteins were analyzed by immunoblotting for their distribution in the 

Notch3-ECD-enriched β-ME fractions of CAD 1-2 and Ctrl 1-2, the four samples available 

in this early phase of the project. Analysis of TSP-2 yielded a strong immunoreactivity in 

patient but not control material (Figure 11 A). For LTBP-4, although present in controls, a 

clear increase in patient samples was observed (Figure 11 B). This demonstrated 

co-fractionation of both proteins with mutant Notch3-ECD indicating their association with 

Notch3-ECD deposits. However, due to a lack of appropriate antibodies, co-localization 

studies on paraffin-embedded or frozen tissue sections could not be performed (see below). 

Thus, definite proof for the role of TSP-2 and LTBP-4 in Notch3-ECD deposition could not 

be provided during this work.  
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Figure 11: TSP-2 and LTBP-4 co-fractionate with Notch3-ECD in the β-ME fraction of CADASIL 
brains. Brain samples were sequentially extracted and the β-ME fraction was immunoblotted with 
A) anti-TSP-2 and B) anti-LTBP-4 as well as anti-β-tubulin antibodies. Representative blots from at 
least three independent extractions of three CADASIL and three control subjects are shown. 

3.2.3 Isolation of brain vessels 

During the initial analyses, immunoblotting for α-smooth muscle actin (α-SMA), a vSMC 

marker protein present in the β-ME fraction indicative for the amount of vessel tissue in the 

different samples, was also performed. As depicted in Figure 12, large heterogeneities in 

α-SMA amounts were observed despite relatively homogenous β-tubulin intensities. 

Moreover, the strongest signal was observed in one of the patient samples (CAD 2), which 

is expected to contain reduced α-SMA levels due to the well-known loss of vSMCs in 

CADASIL-affected vessels (Okeda et al., 2002). This indicated varying amounts of vessels 

in each brain extract although tissue samples from similar brain regions were used for the 

sequential extractions. Since the aim was to study differences in vessel proteins, the 

presence of roughly comparable amounts of vessels in each extract was desirable.  
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Figure 12: Brain lysates show varying contents of vessel marker α-SMA. Human brain 
homogenates were sequentially extracted and the β-ME fraction was immunoblotted with anti-
α-SMA and anti-β-tubulin antibodies. Shown is a representative immunoblot from at least five 
independent extractions. α-SMA: smooth muscle actin.  

Therefore, a previously described method (Monet-Lepretre et al., 2013) to isolate vessels 

including intraparenchymal arteries and arterioles, veins and capillaries from brain 

samples was established. The main steps of the isolation procedure are described in Figure 

13A. It allows the removal of brain parenchymal tissue including myelin resulting in highly 

pure preparations of brain vessels as demonstrated by light microscopical analysis (Figure 

13 B).  
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Figure 13: Vessel isolation from brain samples. A) 50 mg of brain tissue was homogenized in a 
tissue grinder with a smooth pestle allowing vessels to stay intact. Subsequent density gradient 
centrifugation in 15 % Ficoll resulted in pelletizing of vessels and cell debris, while myelin was 
floating on top of the gradient. After discarding the supernatant, the pellet was transferred onto a 
40-µm nylon mesh, abundantly washed and purified vessels were collected by inversion of the 
mesh. B) Microscopic examination demonstrated the purity of the preparation.  

Isolated vessels were subjected to sequential fractionation as described in chapter 3.2.1. 

Western Blotting of the β-ME fractions from three patients and three controls for α-SMA 

demonstrated the sample homogeneity and the expected reduction of α-SMA expression in 

CADASIL-affected vessels could be observed in all patient samples (Figure 14 A). Analysis 

of Notch3-ECD expression in the β-ME fractions of all available samples demonstrated the 

enrichment of Notch3-ECD in all patient, but not control vessels (Figure 14 B). The low 

intensity of the band in the CAD 2 sample is due to the low total protein amounts loaded 

(compare tubulin signals), a consequence of the impossibility to determine the protein 

concentration in the β-ME fractions. A repetition of immunoblots with adjusted protein 

amounts was not always possible due to the scarceness of the available brain material. 

However, accumulation of Notch3-ECD in the CAD 2 sample had already been 

demonstrated using whole brain material. Thus, the presence of Notch3-ECD deposits 

could be confirmed in all patients.  
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Figure 14: Immunoblot analysis of β-ME fractions from purified brain vessels. A) Vessel isolation 
allows the precise study of vessel-related proteins. Purified brain vessels were sequentially extracted 
and the β-ME fraction immunoblotted with anti-α-SMA and anti-β-tubulin antibodies. B) Notch3-
ECD is specifically enriched in the β-ME fraction of purified patient vessels. Shown is an 
immunoblot of the β-ME fraction with anti-Notch3-ECD 3G6 and anti-β-tubulin antibodies with all 
available samples. 

To validate the specificity of the sequential extraction method, amyloid precursor protein 

(APP) was analyzed, which plays no known role in CADASIL (Paquet et al., 2010) and, like 

Notch3, represents a type I transmembrane receptor with a large extracellular domain that 

undergoes the same proteolytic cleavages. Immunoblotting of the β-ME fractions revealed 

the presence of APP in both patient and control samples, albeit at varying levels with no 

disease-related trend (Figure 15). Based on this finding, an artificial enrichment of plasma 

membrane proteins by the sequential extraction method is unlikely. It was therefore 

concluded that the vessel isolation method is suited to identify new potential Notch3-ECD 

aggregate constituents. 
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Figure 15: APP displays no CADASIL-related differences in the β-ME fraction of purified vessels. 

Purified brain vessels were sequentially extracted. Shown is an immunoblot of the β-ME fraction 
with anti-APP and anti-β-tubulin antibodies. APP: amyloid precursor protein. 

3.2.4 Fibronectin and LTBP-1 co-fractionate with Notch3-ECD in 

CADASIL-affected vessels 

Since the role of the initially identified factors TSP-2 and LTBP-4 in Notch-ECD deposition 

could not be further investigated due to the lack of appropriate antibodies (see 3.2.2), 

alternative candidates were explored. Among the four members of the LTBP family of 

TGF-β signaling regulators, LTBP-1 has by far been studied most extensively and shown to 

bind to all three TGF-β isoforms (TGF-β1, TGF-β2, TGF-β1) with similar efficiency 

(Saharinen and Keski-Oja, 2000). It mediates TGF-β sequestration by interacting with 

fibronectin and fibrillin-1, key structural components of blood vessel ECM, which had also 

been identified in the proteomic study on CADASIL brains (Monet-Lepretre et al., 2013). 

Moreover, fibrillin-1 and LTBP proteins, like Notch3, contain cysteine-rich domains 

including EGF-like repeats, which could possibly be involved in pathological disulfide 

bond-mediated aggregation processes. Based on these considerations, LTBP-1, fibronectin 

and fibrillin-1 were selected for further investigation. 

For immunoblotting experiments the β-ME fractions of purified vessels from four patients 

and four controls were used. Staining for fibrillin-1 with various antibodies did show 

conclusive results neither in control nor in patient samples (data not shown). In contrast, 

fibronectin and LTBP-1 were clearly seen in patient, but almost absent in control material. 

Staining intensities within patient samples varied considerably, with the most prominent 

signals in CAD 4 and 5. A similar pattern had already been observed for Notch3 (see 

Figure 14). Thus, both fibronectin and LTBP-1 are strongly enriched in CADASIL-affected 

brain vessels and the extent of their accumulation within individual samples parallels that 

of Notch3-ECD. This clearly demonstrated co-fractionation with Notch3-ECD indicating a 

role in Notch3-ECD deposition. 
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Figure 16: Fibronectin and LTBP-1 are increased in the β-ME fraction of CADASIL vessels. 
Purified vessels were sequentially extracted and the β-ME fraction was immunoblotted with anti-
fibronectin, anti-LTBP-1 and anti-β-tubulin antibodies. A representative blot from two independent 
extractions of six CADASIL and control subjects is shown.  

3.3 Co-localization analysis in human brain sections  

Biochemical co-fractionation might occur independently of Notch3-ECD aggregates, 

especially with ECM proteins exhibiting poor solubility. Thus, additional evidence for a 

possible connection of the examined proteins with mutant Notch3-ECD was required. 

Therefore, immunohistochemical studies on human brain sections from CAD 1-3 and Ctrl 

1-3 were performed to study their spatial distribution with respect to Notch3-ECD 

deposits. The latter can be visualized nicely by immunohistochemical staining of paraffin-

embedded as well as frozen tissue (Joutel et al., 2000).  

To confirm the presence of Notch3 deposits in the CADASIL patients, paraffin-embedded 

tissue was stained with a monoclonal anti-Notch3-ECD antibody. While Notch3-ECD 

could not be detected in control sections, it displayed elevated immunoreactivity in the 

tunica media of patient arterioles (Figure 17). Since Notch3 is exclusively expressed in 

vSMCs and pericytes of the tunica media, the extracellular deposits are located at the 

surface of these cells marking the tunica media and allowing a rough distinction of the 

three vessel layers (Joutel et al., 2000). In addition to Notch3-ECD deposits, the 

characteristic pathologic thickening of the tunica intima and tunica adventitia was 

observed (Figure 17 upper panels). 
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Figure 17: Notch3-ECD deposits are located in the tunica media in CADASIL arterioles. Paraffin-
embedded brain sections were stained with the anti-Notch3-ECD 2G8 antibody and visualized with 
AEC (reddish brown). Nuclei were counterstained with hematoxylin (blue). The images are 
representatives of two independent experiments. 

Immunofluorescence analysis allows an even more precise visualization of individual 

Notch3-ECD aggregates (Joutel et al., 2000) and co-localization analyses with additional 

proteins. Frozen tissue sections of CAD 1 and Ctrl 1 were co-stained for Notch3-ECD and 

collagen type IV, a basement membrane marker used to visualize vessels. As observed on 

paraffin sections, Notch3-ECD was not detectable in control tissue due to low expression. 

However, the focal enrichment of Notch3-ECD immunoreactivity indicative of deposits 

was observed in CADASIL arterioles (Figure 18 A) and, even more pronounced, in small 

capillaries (Figure 18 B) 
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Figure 18: Notch3-ECD is observed as granular deposits in CADASIL vessels. Frozen brain 
sections of a patient (CAD 1) and a control (Ctrl 1) were stained with the anti-Notch3-ECD 2G8 and 
anti-collagen type IV antibody, a basement membrane marker, and analyzed by 
immunofluorescence. Images are representatives for least five different experiments with three 
CADASIL and control samples each. Pictures showing arterioles (A) and small capillaries (B) were 
taken with an inverse fluorescence and confocal microscope, respectively.   

3.3.1 Fibronectin and fibrillin-1 accumulate in CADASIL vessels 

independently of Notch3-ECD deposits  

To study the localization of fibronectin, paraffin-embedded brain sections were stained 

with an anti-fibronectin antibody. In control vessels, fibronectin was detected in moderate 

amounts as a fine lining of the tunica intima and adventitia (Figure 19), where it is 

abundantly expressed (Wagenseil and Mecham, 2009). In contrast, a dramatic increase was 
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observed in the thickened tunica adventitia of CADASIL vessels in agreement with the 

increased fibronectin levels observed in immunoblot experiments (see Figure 16). 

However, the staining pattern clearly differed from that of Notch3-ECD (Figure 19 right 

panel) arguing against a co-localization with Notch3-ECD aggregates. 

 

Figure 19: Fibronectin is increased in the tunica adventitia and intima of CADASIL patients 

while Notch3-ECD is located in the tunica media. Paraffin brain sections were stained with anti-
fibronectin or anti-Notch3 2G8 antibodies and visualized with AEC (reddish brown). Cell nuclei 
were counterstained with hematoxylin (blue). Shown are representative images of three 
experiments.  

In contrast to immunoblot analysis, the fibrillin-1 antibody worked excellently in 

immunohistochemical analyses. It revealed weak immunoreactivity in control vessels of 

paraffin-embedded tissue sections showing a fibrillar structure within the tunica adventitia 

(Figure 20). In CADASIL patients, a markedly elevated signal intensity was observed 

resulting in the continuous labeling of a thin layer at the perimeter of the tunica adventitia 

(Figure 20). This finding was confirmed by immunofluorescence stainings on frozen tissue 

sections, where the signal for fibrillin-1 showed a fibrous pattern, which was strongly 

increased in CADASIL vessels. Additionally, fibrillin-1 is also detected at the tunica intima 

with a lower intensity (Figure 20), since fibrillin-1 microfibrils are also found at the tunica 

elastica interna (Wagenseil and Mecham, 2009).   
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Figure 20: Fibrillin-1 is increased in the tunica adventitia of CADASIL patients. Paraffin-
embedded brain sections were stained with an anti-fibrillin-1 antibody and visualized with AEC 
(reddish brown). Cell nuclei were counterstained with hematoxylin (blue). Frozen brain sections 
were stained with the anti-fibrillin-1 antibody and analyzed by immunofluorescence. Shown are 
representative images of two experiments with three CADASIL and three control samples.  

For fibrillin-1, a co-localization could be studied more directly by performing co-staining 

with Notch3-ECD on frozen sections of CADASIL patients (for fibronectin this was not 

possible due to the lack of an appropriate antibody). The fibrous pattern for fibrillin-1 is 

clearly distinct from the granular Notch3-ECD immunoreactivity confirming the lack of 

spatial overlap between both proteins (Figure 21). 
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Figure 21: Fibrillin-1 does not co-localize with Notch3-ECD. Frozen brain sections were stained 
with the anti-fibrillin-1 and anti-Notch3-ECD 2G8 antibodies and analyzed by immunofluorescence. 
Shown are representative images from three experiments.  

In summary, these findings suggested that the accumulation of fibrillin-1 and fibronectin in 

CADASIL vessels occurs independently of Notch3-ECD likely representing a fibrotic 

process secondary to deposit formation. Therefore, both proteins were excluded as direct 

participants in Notch3-ECD deposition.  

3.3.2 LTBP-1 is recruited to Notch3-ECD deposits 

To study the localization of the third candidate protein, LTBP-1, in CADASIL vessels, only 

immunoflouresence stainings on frozen tissue sections could be performed due to the lack 

of a suitable antibody for paraffin–embedded material. In control brain sections, arterioles 

(Figure 22 A) as well as capillaries (Figure 22 B), visualized by collagen type IV staining, 

showed a weak immunoreactivity for LTBP-1. In contrast, LTBP-1 levels were markedly 

increased in sections of CAD 1 recapitulating the enrichment observed in β-ME fractions 

after biochemical fractionation (see Figure 16). Most importantly, LTBP-1 in CADASIL 

vessels appeared not uniform but restricted to focal granules reminiscent of Notch3-ECD 

deposits, as most clearly seen in capillaries (Figure 22 B).  

Notch3-ECDFibrillin-1

CAD 1

50µm

Merge

CAD 2

CAD 3



Results 

 

52 

 

Figure 22: LTBP-1 shows a focal enrichment in CADASIL vessels. A-B) Frozen brain sections were 
stained with anti-LTBP-1 and anti-collagen type IV antibodies and analyzed by 
immunofluorescence. Shown are representative images from at least four experiments taken with A) 
an inverse microscope and B) a confocal microscope.  

Therefore, co-stainings were performed and analyzed by confocal microscopy. Indeed, 

LTBP-1 and Notch3-ECD yielded almost completely overlapping signals in all examined 

patients (Figure 23) demonstrating co-localization. This result strongly suggested specific 

LTBP-1 sequestration within Notch3-ECD aggregates. The occurrence of this finding in 

three independent patients carrying different NOTCH3 mutations argued for its specificity. 
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Figure 23: LTBP-1 co-localizes with Notch3-ECD aggregates. Frozen brain sections were stained 
with anti-LTBP-1 and anti-Notch3-ECD 2G8 antibodies and analyzed by immunofluorescence. 
Shown are representative images from at least four experiments with three CADASIL and three 
control brains taken with a confocal microscope. 

LTBP-1 represents a key mediator of the pro-fibrotic cytokine TGF-β, a well known 

regulator of microvasculature function (Doyle et al., 2012), and its recruitment into 

Notch3-ECD deposits implicates a potential involvement of the TGF-β pathway in 

CADASIL. Notably, dysregulation of TGF-β signaling has been demonstrated in a number 

of inherited vascular diseases (ten Dijke and Arthur, 2007) including cerebral autosomal 

recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), a 

recessive hereditary SVD with a CADASIL-like pathology (Hara et al., 2009,). Moreover, 

TGF-β signaling has been suggested as an important contributor to vascular remodeling in 

sporadic SVD (Thompson and Hakim, 2009). Therefore, signs of altered TGF-β activity in 

the brain samples were investigated.  

3.3.3 LAP accumulates in the tunica media of CADASIL vessels 

The TGF-β pro-protein is processed in the cell into two fragments, the mature TGF-β, a 

dimer linked by disulfide bridges, and its pro-domain, the latency-associated peptide 

(LAP) (Dubois et al., 1995) (Figure 24). LAP keeps TGF-β in an inactive state (Shi et al., 

2011) and mediates the interaction with LTBP proteins, which upon secretion of this 

complex promote its attachment to the ECM via interactions with fibronectin and fibrillins. 
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The mature TGF-β ligand can be released from the ECM by a variety of mechanisms 

(Olofsson et al., 1995, Isogai et al., 2003).  

 

Figure 24: Schematic representation of latent TGF-β synthesis and secretion. See text for details.  
LAP and mature TGF-β are non-covalently attached, while LTBP-1 and LAP are cross-linked via a 
disulfide-bridge. Orange/blue bar: pre-pro TGF-β; blue dimer: LAP (latency associated peptide); 
orange dimer: mature TGF-β (transforming growth factor-β); green hemicycle: LTBP-1 (latent TGF-β 
binding protein-1); grey waved lines: fibronectin; grey bar: fibrillin-1.  

Therefore, expression levels and localization of LAP were studied in the brain samples. 

First, protein levels were analyzed by immunoblotting of the β-ME fractions from purified 

vessels of CAD 2-5 and shown to be increased in all four CADASIL patients examined 

suggesting a specific enrichment (Figure 25 A). Next, immunohistochemical studies on 

paraffin-embedded tissue of CAD 1-3 and Ctrl 1-3 were performed to study the localization 

of LAP. While in controls expression could not be observed, LAP was strongly increased in 

CADASIL vessels (Figure 25 B). Most importantly, the immunoreactivity was restricted to 

the tunica media, the vessel layer containing Notch3-ECD aggregates. Due to the 

ineptitude of the anti-LAP antibody, immunofluorescence staining could not be performed 

preventing co-localization studies. Nevertheless, these findings suggest an LTBP-1-

mediated enrichment and sequestration of immature TGF-β within Notch3-ECD 

aggregates. It remains to be determined whether this finding has implications on TGF-β 

signaling in CADASIL pathogenesis. 
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Figure 25: LAP is increased in CADASIL brain vessels. A) The β-ME fraction of sequentially 
extracted purified brain vessels were immunoblotted with anti-LAP and anti-β-tubulin antibodies. 
Shown is a representative image of two independent experiments. B) Paraffin-embedded brain 
sections were stained with the anti-LAP antibody and visualized with AEC (reddish brown). Nuclei 
were counterstained with hematoxylin (blue). Shown are representative images of two experiments. 

3.4 LTBP-1 directly interacts with Notch3 in vitro 

From the studies on brain samples LTBP-1 emerged as highly promising candidate for a 

role in Notch3-ECD aggregation. To investigate this more directly, in vitro approaches were 

employed. Since recruitment of ECM proteins into Notch3-ECD deposits might be 

facilitated by direct protein-protein interactions (Monet-Lepretre et al., 2013), the binding 

of LTBP-1 to Notch3-ECD was investigated by applying a solid-phase binding assay, an 

approach successfully used in the past to analyze interaction partners of both proteins 

(Meng et al., 2009, Massam-Wu et al., 2010). Since correctly folded full-length Notch3-ECD 

cannot be purified (Duering et al., 2011), a recombinantly generated Notch3 fragment 
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harboring the first 11 EGF-like repeats was chosen (N3EGF1-11-Fc). For efficient expression 

and purification this fragment contained a carboxy-terminally IgG-Fc affinity tag. As a 

soluble ligand, LTBP-1 conditioned medium derived from transiently transfected HEK293T 

cells was used. There are two LTBP-1 isoforms, LTBP-1L (long) and LTBP-1S (short), 

generated by the alternative use of two separate promoters within the same gene (Koski et 

al., 1999). Whereas LTBP-1L is mainly expressed during development, LTBP-1S is the major 

isotype in adult life and was thus selected for this study (in the following termed LTBP-1) 

(Todorovic and Rifkin, 2012).  

To perform this assay, N3EGF1-11-Fc or the control ligand IgG-Fc were immobilized to 

microtiter plate wells and LTBP-1 conditioned medium was added. Subsequently, 

antibody-mediated labeling of bound LTBP-1 allowed quantification by a colorimetric 

detection procedure. An almost fivefold and highly significant increase in LTBP-1 binding 

to N3EGF1-11-Fc compared to the control was observed (Figure 26 A).  

To verify the binding of LTBP-1 to immobilized N3EGF1-11-Fc by immunoblotting, the 

bound proteins were recovered from microtiter plates after assay completion. Equally 

efficient immobilization of N3EGF1-11-Fc and IgG-Fc was demonstrated by comparing the 

blotting signals of recovered proteins with that of a defined amount of purified protein 

(Figure 26 B). Immunoblotting for LTBP-1 in the recovered samples revealed its presence 

only in the N3EGF1-11-Fc, but not IgG-Fc lane confirming the specificity of the binding. 

LTBP-1 appeared as a high-molecular-weight band, which most likely represents 

oligomeric LTBP-1 not dissolved under the solubilization conditions used (Figure 26 C). 
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Figure 26: LTBP-1 binds to immobilized Notch3. A) Binding of full-length LTBP-1 derived from 
HEK293T cell conditioned medium to immobilized Notch3 (N3EGF1-11-Fc) or control ligand 
(IgG-Fc) was measured by immunodetection using an anti-LTBP-1 antibody. Upon incubation with 
a peroxidase-coupled secondary antibody, the substrate was added allowing a colorimetric 
measurement. Background absorbance of conditioned media from mock-transfected HEK293T cells 
was subtracted and relative amounts of bound LTBP-1 are shown. Binding of LTBP-1 to the control 
was set to 1 and results are expressed as mean +SEM of 7 independent experiments. *** p<0.001; 
Mann-Whitney Test. B-C) Bound proteins were recovered from wells by the addition of Lämmli 
buffer after assay completion. B) Immobilized proteins bind comparably to well plates. 100 ng pure 
protein and recovered N3EGF1-11-Fc (top panel) or IgG-Fc (lower panel) were immunodetected 
using an anti-human-IgG antibody. C) Bound LTBP-1 was evaluated by immunoblotting with an 
anti-LTBP-1 antibody and predominantly detected in oligomeric form. Shown are representative 
blots from at least three independent experiments.  

To demonstrate the relevance of the solid phase binding assay, fibronectin was chosen as a 

control immobilizing partner, since its interaction with LTBP-1 is well established (Dallas et 

al., 2005). Fibronectin was immobilized with similar efficiency to microtiter plate wells as 

demonstrated by Western Blotting (Figure 27 A). Quantitation of the binding revealed a 

3.5-fold increase in LTBP-1 binding to fibronectin (Figure 27 B), indicating that the assay 

adequately reflects in vivo conditions.  
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Figure 27: LTBP-1 binds to the known interactor fibronectin with a similar affinity than to 

Notch3. A) Bound fibronectin was recovered from microtiter well plates after assay completion by 
the addition of Lämmli buffer and compared to 100 ng pure protein. Shown is a representative 
immunoblot of two independent experiments detected with an anti-fibronectin antibody. B) Binding 
of LTBP-1 conditioned media to immobilized fibronectin or plastic was colorimetrically measured 
using the anti-LTBP-1 antibody for detection. Results are expressed as mean +SEM of 7 independent 
experiments. *** p<0.001; Mann-Whitney Test. 

To map the Notch3 binding domain within LTBP-1, two truncated and epitope-tagged 

LTBP-1 expression constructs were generated. They either lack the N-terminus with the 

fibronectin interaction domain (LTBP-1ΔN) or the C-terminus containing the LAP and 

fibrillin-1 binding site (LTBP-1ΔC_V5) (Figure 28 A). LTBP-1ΔN was generated in two 

versions: HA-tagged LTBP-1ΔN_HA, which was used in assays with cell supernatants and 

V5-His-tagged LTBP-1ΔN_V5 for assays requiring purified LTBP-1. Immunoblotting with 

an anti-V5 antibody revealed molecular masses of ~220 kDa, ~120 kDa and ~140 kDa for 

LTBP-1, LTBP-1ΔC_V5 and LTBP-1ΔN_V5, respectively (Figure 28 B). 
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Figure 28: LTBP-1 deletion constructs. A) Schematic representation of the used LTBP-1 constructs 
and their domain organization including cysteine rich repeats (orange circles), a hybrid domain 
(grey circle), EGF-like repeats (blue squares) and V5-His or hemagglutinin (HA) tags (open circles). 
The fibronectin, LAP/TGF-β and fibrillin-1 binding regions are indicated. Note that LTBP-ΔC-HA 
was used in assays with cell supernatants and LTBP-ΔC-V5 in assays requiring purified LTBP-1. 
Adapted from Todorovic and Rifkin, 2012. B) Immunoblotting of LTBP-1, LTBP-1ΔC_V5 and LTBP-
1ΔN_V5 from HEK293T cell-derived conditioned media with an anti-V5 antibody.  

To assess the binding capacities of these LTBP-1 deletion fragments, they were transiently 

transfected into HEK293T cells and conditioned media were used in the binding assay. 

While the loss of the LTBP-1 N-terminus completely abrogated binding, LTBP-ΔC_V5 

retained the ability to bind N3EGF1-11-Fc (Figure 29). To exclude an indirect interaction 

mediated by other factors present in the conditioned media, LTBP-1ΔC_V5 was purified 

using an affinity chromatography approach (see 3.5). Indeed, the binding of purified 

LTBP-1ΔC_V5 was as efficient as the corresponding conditioned medium (Figure 29) 

demonstrating that the interaction is direct. 
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Figure 29: LTBP-1 binding to Notch3 is mediated by its N-terminus. Binding of conditioned media 
from HEK293T cells transfected with LTBP-1ΔN_HA and LTBP-1ΔC_V5 or purified LTBP-1ΔC_V5 
to immobilized N3EGF1-11-Fc or IgG-Fc was immunodetected using anti-LTBP-1 (LTBP-1ΔN_HA) 
or anti-V5 (LTBP-1ΔC_V5) antibodies respectively. Background absorbance of conditioned media 
from mock-transfected HEK293T cells or PBS was subtracted. Relative amounts of bound LTBP-1 
are shown. Results are expressed as mean + SEM of five (LTBP-1ΔC_V5) and four (LTBP-1ΔN_HA) 
independent experiments. n.s.: not significant, *** p<0.001; ** p<0.01; Mann-Whitney Test.  

In summary, the data suggest that the sequestration of LTBP-1 into Notch3-ECD deposits is 

mediated by a direct interaction involving a region within the first 11 EGF-like repeats of 

the Notch3-ECD and the amino-terminal 1-689 aa of LTBP-1.  

3.5 LTBP-1ΔC co-aggregates with mutant Notch3 

To provide proof for a direct participation of LTBP-1 in the Notch3-ECD aggregation 

process, a previously established in vitro assay recapitulating the multimerization of 

mutant Notch3 was used (Opherk et al., 2009a, Duering et al., 2011). This assay is based on 

scanning for intensely fluorescent targets (SIFT), a unique technique, which distinguishes 

single protein particles from aggregated multimers in a confocal setup permitting the 

quantification of de novo protein aggregation in solution (Giese et al., 2005). Purified 

proteins are labeled with different fluorescent dyes (red or green) and pairwise incubated 

to allow the formation of multimeric particles. Dye intensities reflecting particle 

composition and size are measured via a light detector following dual-laser excitation and 

results are plotted in a two-dimensional graph. As depicted in Figure 31 A, monomers and 

low-molecular-weight oligomers appear as low-intensity signals in the lower left corner of 

the plot, whereas homomeric and heteromeric multimers are represented as mono-colored 

or dual-colored high-intensity signals, respectively. 
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For analyses, the previously described wild-type and R183C mutant-carrying Notch3 

fragments encompassing EGF-like repeats 1-5 (N3EGF1-5) (Duering et al., 2011) as well as 

the LTBP-1 deletion variants LTBP-1ΔN and LTBP-1ΔC were used. The Notch3 EGF1-5 

fragment harbors the mutational hotspot region (Peters et al., 2005a) and is efficiently 

secreted by HEK293E cells and thus correctly folded (larger Notch3-ECD fragments are 

incompletely folded and invariably retained within cells) (Duering et al., 2011). Purified 

red- and green-labeled Notch3 fragments were provided by Patrizia Hanecker (Institute for 

Stroke and Dementia Research, Munich) who also assisted in performing the following 

experiments. 

For the purification of LTBP-1 deletion variants, conditioned medium from HEK293E cells 

transiently transfected with LTBP-1ΔC_V5 or LTBP-1ΔN_V5 was dialyzed and 

subsequently affinity-purified using their C-terminal V5-His tag. Silver staining of eluted 

fractions demonstrated sufficient purity of both fragments with LTBP-1ΔC_V5 showing a 

slightly better quality (Figure 30). For fluorescent labeling, elution fraction 4 of 

LTBP-1ΔC_V5 and combined fractions 4 and 5 of LTBP-1ΔN_V5 were used. To assess their 

co-aggregation potential, they were incubated in combination with wild-type or mutant 

N3EGF1-5 fragment for 1, 3 and 5/6 days to allow aggregation and subsequently analyzed 

by SIFT. Representative data of a day 1 experiment are depicted in Figure 31 B. 

 

Figure 30: Silver Staining of purified LTBP-1 fragments. Conditioned media from transiently 
transfected HEK293E cells with LTBP-1ΔC_V5 or LTBP-1ΔN_V5 were dialyzed and proteins were 
purified via their His-Tag using the Talon System. Eluted fractions 2-8 were separated by 
SDS-PAGE and visualized by silver staining. Three different batches of LTBP-1ΔC_V5 and one for 
LTBP-1ΔN_V5 were prepared.  

In line with our published data (Duering et al., 2011), N3EGF1-5 R183C formed higher-

order dual-color multimers, while the corresponding wild-type fragment did not show this 

tendency (Figure 31 B, C). When LTBP-1ΔC or LTBP-1ΔN were analyzed in combination 
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with N3EGF1-5 wild-type, no formation of dual-colored aggregates was observed. 

However, single-color LTBP-1 multimers were detected indicating self-aggregation, a 

finding already observed in the solid-phase binding assay (see Figure 26 C). Similarly, 

predominantly mono-colored multimers were formed when LTBP-1ΔN_V5 was combined 

with mutant N3EGF1-5 (Figure 31 B). In contrast, the combination of LTBP-1ΔC and 

mutant N3EGF1-5 yielded higher-order dual-color multimers with a distribution typical 

for mutant Notch3EGF1-5 fragments suggesting the generation of aggregates containing 

both proteins (Figure 31 B).  

 

Figure 31: LTBP-1ΔC specifically co-aggregates with mutant Notch3. A) Schematic representation 
of SIFT data evaluation with a 2-D histogram. Shown are particle brightnesses for each fluorophore 
on the individual axis (x-axis in green; y-axis in red) in 0-250 photons/bin in dots (a bin is the sum of 
photons that are detected in a timeframe). Adapted from Duering et al., 2011. B) Purified proteins 
were fluorescently labeled and incubated 24 h at 550rpm and 37 °C. SIFT analysis was performed in 
order to analyze the aggregational behavior of different combinations. Shown are representative 
images of 2-5 experiments with two separately purified and labeled LTBP-1ΔC_V5 batches and one 
batch of LTBP-1ΔN_V5. WT: Wild-type. 

In summary, it was concluded that LTBP-1 can multimerize with mutant Notch3, a process 

dependent on the presence of the interaction domain. These results further support the 

hypothesis that a direct interaction promotes co-aggregation. In combination with the 

findings on brain samples, they strongly suggest that LTBP-1 represents a component of 

Notch3-ECD deposits with a key role in CADASIL-relevant aggregation processes.  
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4 Discussion 

The extracellular accumulation and deposition of excess Notch3-ECD in small brain vessels 

penetrating the white and deep gray matter is an early manifestation and hallmark of 

CADASIL (Mayer et al., 1999). This process is considered the starting point of a chain of 

pathological events involving the recruitment and sequestration of functionally important 

ECM and ECM-associated (matricellular) proteins and eventually resulting in brain vessel 

dysfunction (Joutel, 2011). Using a candidate-based approach several ECM components 

with potential disease-specific roles were investigated using CADASIL patient and control 

brain samples. Five proteins were selected for analysis based on their role in ECM function. 

4.1 Thrombospondin-2  

Thrombospondin-2 (TSP-2) is an adhesive glycoprotein involved in ECM assembly and 

cell-to-matrix interactions (Calabro et al., 2014). It was selected for analysis since several 

previous studies had suggested a role in Notch3 biology (Meng et al., 2009, Meng et al., 

2010). TSP-2 binds directly to Notch3-ECD and potentiates Notch3/Jagged1 signaling 

(Meng et al., 2009). Moreover, it associates with low density lipoprotein receptor-related 

protein-1 stimulating Notch3-ECD endocytosis and clearance from the extracellular space 

(Meng et al., 2010). Most importantly with respect to CADASIL, our group previously 

demonstrated co-aggregation of TSP-2 with mutant Notch3 fragments in an in vitro 

aggregation assay (Duering et al., 2011). In the present study, an enrichment of TSP-2 in the 

β-ME fraction upon sequential extraction was observed indicating co-fractionation with 

Notch3 deposits. However, due to the lack of an appropriate antibody, 

immunohistochemical analyses in order to proof a spatial overlap could not be performed. 

Assumingly, co-aggregation of mutant Notch3-ECD and TSP-2 prevents the TSP-2-

mediated recycling of Notch3. The impaired clearance from the extracellular space in turn 

could promote the aggregation process resulting in a build-up of extracellular deposits 

over time. However, further studies are required to elucidate the precise role of TSP-2 in 

CADASIL development. 

4.2 Fibronectin and fibrillin-1 

Fibronectin and fibrillin-1 are major structural ECM components. While fibronectin is a 

dimeric protein interacting with other ECM components allowing the formation of an 

interconnected network and stable matrix, fibrillin-1 polymerizes into microfibrils to form 

a microfibrillar network (Raines, 2000). They are synthesized by vSMCs and fibroblasts and 



Discussion 

 

64 

mediate the interaction of vSMCs with the ECM influencing their adhesion, migration and 

survival in the arterial wall. Alterations in their functionality are known to have deleterious 

effects on ECM homeostasis (Judge and Dietz, 2005, White and Muro, 2011). Accumulation 

of fibronectin has previously been reported in a single CADASIL case (Oide et al., 2008). In 

the present thesis, this finding is now confirmed and extended and the abnormal 

enrichment of fibronectin as well as fibrillin-1 in brain vessels of three independent 

patients carrying different Notch3 mutations was demonstrated. However, the 

accumulation is observed within the tunica adventitia and intima, but not in the tunica 

media where Notch3-ECD aggregates are located. Immunofluorescent co-staining of 

fibrillin-1 and Notch3 clearly showed the difference in localization. This finding is 

interpreted as an indication against a direct involvement of fibronectin and fibrillin-1 in 

Notch3-ECD aggregation. It rather implies excess ECM production, which is known to 

occur during fibrosis, a pathological process also observed in CADASIL pathogenesis. 

Therefore, fibronectin and fibrillin-1 accumulation is considered as an event occurring 

secondary to Notch3-ECD deposition. A similar enrichment has been reported for various 

types of collagens (type I, III and VI) in the massively thickened tunica adventitia of 

CADASIL patients (Miao et al., 2004, Miao et al., 2006, Dong et al., 2012). Moreover, in the 

proteomic study by Monet-Lepretre et al., a number of additional matricellular proteins 

such as nidogen-1, laminin and perlecan were identified, which might accumulate due to 

arterial wall thickening (Monet-Lepretre et al., 2013). 

The excessive production, deposition and contraction of ECM are distinctive features of 

fibrotic diseases and usually advance over many months and years (Leask and Abraham, 

2004). Fibrosis occurs in a variety of vascular conditions including hereditary hemorrhagic 

telangiectasia, Marfan and Loeys-Dietz Syndrome and pulmonary arterial hypertension 

(ten Dijke and Arthur, 2007). The common denominator of all these vascular disorders is a 

dysregulation of transforming growth factor-β (TGF-β) signaling contributing to vessel wall 

malformations (Goumans et al., 2009). It was therefore decided to continue the candidate 

analysis by selecting extracellular factors involved in the TGF-β pathway. 

4.3 Latent TGF-β-binding proteins 

TGF-β, a well-described regulator of blood vessel formation and homeostasis, is secreted 

from cells as inactive complex and stored in the ECM. This complex, also termed large 

latency complex (LLC), consists of mature TGF-β, latency-associated peptide (LAP) and a 

member of the latent TGF-β binding protein (LTBP) family (Pardali and Ten Dijke, 2012). 

LAP keeps the mature ligand in a biologically inactive state and covalently links it to 

LTBP-1, -3 or -4 by a disulfide bond (Ramirez et al., 2007, Shi et al., 2011). Sequestration 
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within the ECM is mediated by interactions between LTBPs, fibronectin and fibrillin-1 

generating a reservoir of inactive TGF-β.  

Using mass spectrometry, Monet-Lepretre and colleagues identified LTBP-2 and LTBP-4 in 

human and murine Notch3-ECD enriched preparations, respectively (Monet-Lepretre et 

al., 2013). Thus, LTBPs as regulators of TGF-β bioavailability represent promising 

candidate molecules for a role in CADASIL pathogenesis. Since LTBP-2 does not bind 

TGF-β, the focus was set on LTBP-4 and LTBP-1, the latter being the best studied family 

member, binding equally efficient to all three TGF-β ligands (TGF-β1, TGF-β2, TGF-β1) 

(Saharinen and Keski-Oja, 2000). For both LTBPs, Western Blotting demonstrates a specific 

enrichment and co-fractionation with Notch3-ECD deposits in CADASIL samples. For 

LTBP-4, however, immunohistological analysis data could not be interpreted due to 

unclear antibody specificity and thus, a final conclusion about its role in Notch3-ECD 

aggregation could not be drawn. In contrast, LTBP-1 displayed an accumulation as well as 

a striking co-localization with Notch3-ECD deposits in CADASIL-affected vessels. The 

presence of this observation in three unrelated patients carrying different NOTCH3 

mutations argued for its specificity and suggested a role for LTBP-1 in Notch3 deposit 

formation.  

This finding prompted us to investigate the relationship between LTBP-1 and Notch3 in 

more detail. Monet-Lepretre and collegues proposed that a direct interaction is required for 

the recruitment of matricellular proteins into Notch3-ECD aggregates. Particularly, they 

established tissue inhibitor of metalloproteinase 3 (TIMP3) as a Notch3-ECD interactor and 

aggregate constituent, which is not affected by CADASIL mutations (Monet-Lepretre et al., 

2013). Therefore, a possible interaction between Notch3 and LTBP-1 was investigated using 

a solid-phase binding assay, an approach previously used to identify binding partners of 

both factors (Meng et al., 2009, Massam-Wu et al., 2010). Indeed, an interaction between the 

LTBP-1 N-terminal domain and the first 11 EGF-like repeats of Notch3-ECD was 

discovered. Since a purified mutant Notch3-ECD EGF1-11 fragment was not available and 

the mutant EGF1-5 fragments used in the co-aggregation assay (see below) could not be 

used as ligands due to their low stickiness, the effect of CADASIL mutations on the 

interaction could not be investigated. However, the data from Monet-Lepretre et al. and the 

present results from a co-aggregation assay (see below) suggest that LTBP-1 binding is 

preserved in Notch3 mutants. 

To provide proof for a direct participation of LTBP-1 in the Notch3-ECD aggregation 

process, a previously established in vitro assay based on scanning for intensely fluorescent 

targets (SIFT) was applied, which allows the quantitative monitoring of de novo aggregation 

of mutant Notch3 in solution (Opherk et al., 2009a, Duering et al., 2011). It so far represents 
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the only assay in which Notch3 aggregation can be analyzed under controlled conditions 

and it has been successfully used to demonstrate the disulfide dependency of mutant 

Notch3-ECD multimerization. Proteins used in this assay need to be purified in a correctly 

folded form and are therefore obtained from conditioned supernatants of transfected 

cultured cells. Since longer Notch3-ECD fragments are poorly secreted, a shorter Notch3 

fragment containing EGF-like repeats 1-5, the mutational hotspot region of CADASIL, are 

analyzed. As mentioned above, co-aggregation of TSP-2 with mutant Notch3 was 

demonstrated in this assay providing the first experimental evidence for a pathological 

co-aggregation mechanism (Duering et al., 2011). The present thesis demonstrated that 

while the LTBP-1 deletion variant containing the Notch3 binding site showed strong 

co-aggregation with the archetypal Notch3 mutant R183C, this tendency was not observed 

with the variant lacking the Notch3 interaction domain. Altogether, these results strongly 

suggest the recruitment of LTBP-1 into Notch3-ECD deposits by a co-aggregation 

mechanism requiring a direct interaction. 

These observations support and extend the previous results on the gain-of-toxic-function 

hypothesis by Monet-Lepretre and co-workers involving the recruitment of matricellular 

proteins into Notch3-ECD deposits. For TIMP3, they were able to demonstrate a clear 

increase in its protease activity providing first hints for a disease-related role. This 

matricellular protein is an inhibitor of ECM-degrading metalloproteases and TIMP3 

activity alterations were suggested to contribute to the impaired ECM homeostasis and 

fibrosis in small vessels in CADASIL patients (Monet-Lepretre et al., 2013). Here, LTBP-1 is 

demonstrated as a novel Notch3-ECD aggregate constituent (Figure 32). Together with the 

present data, this suggests that while structural components of the ECM such as fibrillin-1, 

fibronectin and collagens rather ubiquitously accumulate within CADASIL-affected 

vessels, direct Notch3-ECD interactors such as the matricellular proteins TIMP3 and 

LTBP-1 can be specifically trapped in Notch3-ECD aggregates. Likely, the sequestration of 

additional proteins into Notch3-ECD deposits triggers a snowball effect continuously 

promoting the recruitment of more proteins, generating new interaction surfaces and 

increasing their toxic potential. 
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Figure 32: Potential pathomechanism in CADASIL. Notch3-ECD deposits (grey bars) recruit 
LTBP-1 (green hemicycle) into deposits by a co-aggregation mechanism requiring a direct 
interaction. LTBP-1 mediates the co-sequestration of covalently bound LAP (orange dimer) into the 
deposits. Possibly, a conformational change of LAP could release mature TGF-β (blue dimer), which 
could induce the induction of ECM production.  

 

4.4 Is the TGF-β pathway dysregulated in CADASIL? 

LTBP-1 controls the extracellular storage of TGF-β by covalent association with its 

pro-domain LAP. Thus, LTBP-1 recruitment into Notch3-ECD deposits might have an 

impact on TGF-β activity. The essential step in the TGF-β signaling cascade is the release of 

the mature ligand from its association with LAP by protease-dependent or -independent 

mechanisms prior to the activation of its transmembrane receptors and the subsequent 

intracellular signaling cascade (Robertson and Rifkin, 2013). Therefore, the expression 

pattern of LAP was studied and increased levels in the tunica media of CADASIL-affected 

vessels were detected. This finding strongly suggests LTBP-1-mediated sequestration of 

LAP into Notch3-ECD deposits and indicates an involvement of the TGF-β pathway in 

CADASIL pathogenesis. 

It remains to be established whether this results in an alteration of TGF-β bioavailability 

and if so, in which way. TGF-β signaling influences a number of physiological processes 

including proliferation, differentiation, migration and apoptosis and is also a crucial 

mediator of fibrotic processes (Ruiz-Ortega et al., 2007). On vascular cells, the TGF-β has a 
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wide range of diverse effects and its function is cell-dependent. VSMCs are 

dose-dependently influenced by TGF-β: At low concentrations their migration and 

proliferation is induced by increased contractile protein expression (Rudijanto, 2007). 

Contractile vSMCs counteract daily fluctuations in arterial blood pressure to avoid 

potentially deleterious increases or decreases in cerebral blood flow. To maintain a roughly 

stable cerebral perfusion, vSMCs mediate dilation and constriction of cerebral arteries 

when blood pressure decreases and increases, respectively (Iadecola and Davisson, 2008). 

High TGF-β levels, however, inhibit the expression of contractile proteins in vSMCs 

causing cytostasis and the so-called non-contractile or synthetic phenotype (Rudijanto, 

2007). Thus, synthetic vSMCs loose their ability to contract and relax in response to blood 

pressure changes in the brain. Interestingly, the CADASIL mouse model TgNotch3R169C 

displays reduced functional reactivity of vSMCs (Joutel et al., 2010). Assumingly, elevated 

TGF-β levels in CADASIL-affected arterioles could induce the synthetic phenotype of 

vSMCs impairing their functionality and contributing to the reduced myogenic responses. 

In addition, elevated TGF-β also elicits pro-fibrotic effects on vSMCs by stimulating the 

production of ECM proteins and suppressing proteases, which degrade ECM (Massague, 

1990). The cytokine connective tissue growth factor (CTGF), secreted by endothelial cells 

and fibroblasts, is a prominent TGF-β target gene promoting fibroblast proliferation and 

matrix production of fibronectin, proteoglycans and various types of collagens (Leask and 

Abraham, 2004). Additionally, TGF-β also promotes the increased incorporation of 

fibrillin-1 into the ECM without stimulating its transcription (Kissin et al., 2002). 

Consequently, the accumulation of fibronectin, fibrillin-1 and collagens (type I, III and VI) 

(Miao et al., 2004, Miao et al., 2006, Oide et al., 2008, Dong et al., 2012) contributing to the 

prominent fibrotic thickening of CADASIL vessels could be attributed to increased TGF-β 

bioavailability.  

Dysregulated TGF-β signaling has been demonstrated in a variety of inherited vascular 

diseases including Marfan syndrome, a systemic connective tissue disorder (Doyle et al., 

2012). The disease is caused by autosomal dominant mutations in fibrillin-1 leading to 

defective microfibril formation, vessel fibrosis and vascular defects such as aortic 

aneurysms (Judge and Dietz, 2005). It is now established that increased TGF-β 

bioavailability and signaling activity is responsible for the deleterious fibrotic responses 

(Neptune et al., 2003) possibly due to ineffective incorporation of LTBP-1 into altered 

microfibrils of the vascular ECM (Gomez et al., 2009). Notch3-ECD aggregates might have 

a similar effect by sequestering LTBP-1 and preventing its incorporation into ECM. Thus, 

CADASIL and Marfan Syndrome might share a similar mechanism contributing to 

individual pathomechanisms in differently affected tissues. In Marfan syndrome, mainly 
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larger vessels such as the aorta are affected while the brain vasculature is not involved 

(Judge and Dietz, 2005).  

However, alterations in TGF-β signaling have also been reported in the cerebral 

microvasculature (Hara et al., 2009, Shiga et al., 2011). Cerebral autosomal recessive 

arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is a rare 

recessively inherited form of SVD sharing the main clinical manifestation with CADASIL, 

although additional symptoms such as alopecia (premature baldness) and vertebral disc 

herniation are also observed (Fukutake, 2011). Disease-causing recessive mutations in the 

gene encoding high temperature requirement protein A1 (HtrA1), a conserved serine 

protease, invariably result in a loss of HtrA1 activity. Consequently, a lack of substrate 

processing is considered the underlying pathomechanism (Hara et al., 2009). Studies in our 

group have shown that HtrA1 cleaves LTBP-1 in its N-terminal hinge region reducing 

LTBP-1’s ability to bind fibronectin and resulting in dysregulated TGF-β signaling 

(Beaufort et al., PNAS in press). 

Remarkably, HtrA1 was also identified in the proteomic analysis of Notch3-ECD enriched 

murine and human brain fractions (Monet-Lepretre et al., 2013). Moreover, further proteins 

with a role in TGF-β biology were found to be increased in diseased vessels. These 

included Emilin, an inhibitor of proteolytic conversion of pro-TGF-β into LAP and mature 

ligand (Hynes, 2009) and Nidogen, βig-h3/TGFBI (transforming growth factor, β induced) 

and Perlecan, all of which are TGF-β inducible ECM components (Iozzo, 1998, Melrose et 

al., 2008, Zakin and De Robertis, 2010, Monet-Lepretre et al., 2013). This lends further 

support to the hypothesis that the TGF-β pathway plays a role in CADASIL disease 

development. Surprisingly, LTBP-1 was not amongst the identified factors, which could be 

due to the use of whole brain tissue instead of isolated vessels possibly containing only 

minute amounts of LTBP-1. Alternatively, it might be difficult to detect LTBPs using mass 

spectrometry, a possibility supported by the low number of specific peptides assigned to 

LTBP-2 and LTBP-4 (Monet-Lepretre et al., 2013). 

It is tempting to speculate that a dysregulation of TGF-β activity might represent a 

common feature of both CADASIL and CARASIL. Thompson and Hakim postulated 

already in 2009 that increased TGF-β signaling might be responsible for fibrotic vessel 

alterations in sporadic SVD patients (Thompson and Hakim, 2009). Thus, a more detailed 

analysis of the different aspects of the TGF-β pathway in both diseases are required to 

substantiate its role in SVD pathogenesis. This should include a comprehensive 

examination of TGF-β signaling in TgNotch3R169C mice, which represent an established 

CADASIL model (Joutel et al., 2010). Since Notch3-ECD accumulation has been shown to 

represent one of the earliest pathological events in this model, studying its effects on TGF-β 
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pathway could deepen our understanding of disease pathomechanisms and help in 

addressing the question whether LTBP-1 co-aggregation occurs prior to vessel fibrosis. 

Additional insights might be gained by mating this strain with LTBP-1 knockout animals 

(Drews et al., 2008). 

Treatment options aiming at the restoration of normal TGF-β activity levels have already 

been proposed in Marfan syndrome. The blood pressure lowering agent losartan, which 

blocks the angiotensin II type 1 receptor and antagonizes TGF-β signaling, can prevent and 

even reverse symptoms, especially the aortic wall thickness, in a Marfan syndrome mouse 

model (Habashi et al., 2006). TGF-β acts downstream of angiotensin II, which is a potent 

vasoconstrictor inducing TGF-β1 mRNA and protein expression and subsequently vascular 

fibrosis (Ruiz-Ortega et al., 2007). In case of an increase in bioactive TGF-β in CADASIL, 

losartan might potentially have a beneficial effect on CADASIL patients as well.  

4.5 Conclusion 

Complex pathophysiological processes altering vessel morphology in CADASIL likely 

involve several interacting pathways. Recent evidence implicated a role of the TGF-β 

pathway in sporadic and familial SVD (Thompson and Hakim, 2009, Hara et al., 2009, 

Monet-Lepretre et al., 2013) and the role of TGF-β regulators fibronectin, fibrillin-1 and 

members of the LTBP family in CADASIL-related Notch3-ECD aggregation was 

investigated. LTBP-1 was identified as a Notch3-ECD interacting protein, which 

co-aggregates into CADASIL-specific deposits. Likely, LTBP-1 mediates the recruitment of 

its covalent interaction partner LAP with the possible consequence of uncontrolled release 

of mature TGF-β from its extracellular storage (see Figure 32). This could evoke fibrotic 

processes such as excess deposition of collagens, fibrillin-1 and fibronectin. Especially in 

small arterioles, the massively increased vessel wall thickness is responsible for the 

narrowing of the vascular lumen. Vessel wall modifications promote decreased cerebral 

blood flow, reduced vasoreactivity and chronic subcortical ischemia all of which are critical 

for the development of stroke and vascular dementia (Brulin et al., 2002, Miao et al., 2004).  
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