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6 Einleitung

1. Einleitung

1.1. Einfuhrung in die Thematik

Das Erzeugen, Sammeln und Weitergeben von Daten in groRem Stil ist heute
selbstverstandlicher Bestandteil unseres alltdglichen Lebens geworden. Man denke nur etwa
an die vielen bereits in die Milliarden [1] gehenden Online-Profile auf Facebook oder anderen
sozialen Netzwerken, auf denen personliche Daten freiwillig geteilt und veroffentlicht werden

[2].

Im Jahr 2013 erregte jedoch die Affare um unzuldssige, weltweite Dateneriiberwachung der
National Security Agency (NSA) mit der Projektbezeichnung PRISM [3], bei der Daten mit einer
Kapazitat von mehreren Zettabytes (10*' Bytes), einschlieRlich personlicher E-Mails und
Chatprotokolle, ohne Wissen und Zustimmung erfasst wurden, weltweites Aufsehen [4]. Der
Skandal verdeutlicht die Notwendigkeit sicherer Datenschutzkonzepte um geheim zu haltende

Daten vor Fremdzugriffen zu schitzen.

Gerade in der Medizin kommt dem Datenschutz eine immens hohe Bedeutung zu, da es sich
bei medizinischen Daten um Daten mit sensiblen Inhalt (§ 3 Abs. 9 BDSG) handelt. Als sensible
Daten bezeichnet man generell Daten mit Angaben lber die rassische und ethnische Herkunft,
politische Meinung, religiése oder philosophische Uberzeugung, Gewerkschaftszugehorigkeit,

Gesundheit oder Sexualleben.

Patientendaten, die solche sensiblen Informationen beinhalten, diirfen unanonymisiert ohne
Einverstandnis des Patienten nicht veroffentlicht und nur in Sonderfdllen weitergereicht
werden [5]. Die Sicherheit der Patientendaten ist in Deutschland nicht nur ethisch sondern
auch gesetzlich fundiert. Informationen zu Patientendaten fallen nach Artikel § 203 des
Strafgesetzbuches (Verletzung von Privatgeheimnissen) unter die arztliche Schweigepflicht und

unterliegen dem Grundrecht auf informationelle Selbstbestimmung [6].

Es stellt sich nun die Frage, wie es im Zuge von medizinischer Forschung ermoglicht werden
kann, auf Patientendaten, die einem Schutzversprechen unterliegen, unter Beachtung
desselben zuzugreifen. Kohorten-Studien, wie sie beispielsweise im Zuge des KORA- Projektes
oder der deutschen Kohorte stattfinden [7,8], arbeiten direkt mit Probanden, die ihre Daten

unter Erklarung ihres Einverstandnisses zur Verfligung stellen. Die Daten werden hierzu in
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vorbereiteten Studienzentren erfasst. Ein Datenzugriff ist also zu Forschungszwecken

grundsatzlich moglich.

Schwieriger ist es jedoch, wenn legitimes Forschungsinteresse an Datensammlungen besteht,
deren Inhalte ohne explizite Einverstandniserklarung des Patienten aufgenommen wurden.
Solche Datensammlungen existieren nur dann, wenn es gesetzliche Grundlagen gibt, die die
Erfassung medizinischer Daten fir die gegebene Einrichtung erlauben. So beschreibt
beispielsweise das Bundeskrebsregisterdatengesetz [9] eine dieser Regelungen. Das
Tumorregister Miinchen etwa (TRM), erfasst sowohl identifizierende (IDAT) als auch
medizinische (MDAT) Daten von erkrankten, spezifische Einschlusskriterien erflllenden,
Patienten in Minchen und Umgebung. Datenlieferanten sind hierbei Arztpraxen und

Krankenhauser.

Medizinische Daten innerhalb solcher, nicht auf Patienteneinwilligung basierender
Krankheitsregister diirfen nur anonymisiert ausgehandigt werden. Allerdings reicht eine
Abtrennung der IDAT von den MDAT oftmals nicht aus. Ort oder Datumsangaben innerhalb der
MDAT, wie beispielsweise das Diagnosedatum, konnen als Quasi-ldentifikatoren [5,10]
missbraucht werden und somit eine Identifizierung von Personen anhand ihrer MDAT und
Hintergrundsinformationen erméglichen. Uber den Health-Insurance-Portability-And-
Accountability-Act (HIPAA), eine amerikanische MaBnahme, die sich unter anderem bemiiht
nationale Standardisierungsregeln zu medizinischen Sicherheitsaspekten zu prasentieren, wird
eine gepflegte Liste von Attributen, die als Quasi-ldentifikatoren in Frage kamen, zur

Verfligung gestellt [11].

Es existieren methodische Ansatze wie K-Anonymity, L-Diversity als auch T-Closeness, die bis
zu einem gewissen Grad uneingeschrinkte Anonymitdt garantieren sollen und genannte
Gefahrdungen seitens Unbefugter auch bei umfangreichem Hintergrundwissen ausschliefen
sollen [5,10,12]. In der Praxis sind diese Konzepte allerdings oft nur schwer umsetzbar und
beschrdanken durch Generalisierung, Gruppierung, das Einfligen von ,Dummy“-Werten und
Datenabanderung den Informationsgehalt der Quasi-ldentifikatoren bzw. der medizinischen
Daten. Ob und in welchem Ausmall eine Anonymisierung der Patientendaten abseits der

Entfernung der IDAT notwendig ist, muss projektspezifisch entschieden werden.

Eine weitere grolRe Herausforderung zeigt sich, wenn medizinische Daten bereits existieren
und mit medizinischen Daten aus anderen Datenquellen zusammengefiihrt werden sollen um
etwa mogliche Zusammenhange zwischen den Daten zu erkennen. Solche Szenarien treten

zum Beispiel dann auf, wenn Studiendaten zuséatzlich mit Registerdaten verknilipft werden
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sollen. Die grundsatzliche Zusammenfiihrung zweier Datensets wird auch als Data-Matching
oder Record-Linkage [13] bezeichnet und detailliert unter Kapitel 1.3.2 beschrieben. Das
Matching, also das Zusammenfiihren der Daten, erfolgt hierbei fiir gewdhnlich auf der Basis
identifizierender Daten wie Namensattributen, Geburtsdatum, Geschlecht und Adresse. Dieser
Vorgang ist im Kontext des Zusammenfiihrens von Patientendaten allerdings nicht trivial und
unterliegt komplexen Datenschutzmodellen (siehe Kapitel 1.2.1), deren Anforderungen es zu
erflllen gilt. So darf unter anderem das Record-Linkage nicht direkt auf den Klartextattributen
der IDAT durchgefiihrt werden. Diese miissen zuerst einwegverschlisselt werden — das
Matching erfolgt also auf einwegverschlisselten String-Reprasentationen. Ein solches Record-
Linkage bezeichnet man dann als Privacy-Preserving-, Anonymous- oder auch Medical-Record-

Linkage [14-20].

Als konkretes Beispiel fiir die Notwendigkeit eines solchen Record-Linkage-Verfahrens stellte
sich dem Verfasser dieser Arbeit eine Studie zu familidrem Darmkrebs in Miinchen dar (siehe
Kapitel 1.2.1) [21]. Wahrend der Mitarbeit an der genannten Studie eréffneten sich im Bereich
des Record-Linkage einige wissenschaftlich interessante Fragestellungen. Vor allem beziiglich
der Klassifizierung, einem wesentlichen Teilbereich des Record-Linkage-Prozesses, konnte
Verbesserungspotential bezlglich des Standes der Wissenschaft identifiziert werden, was zu
einer Reihe von weiterfiihrenden Untersuchungen, Analysen und Entwicklungen bezlglich der

Klassifizierung im Bereich des Privacy-Preserving-Record-Linkage motivierte.

1.2. Motivation zur Durchfiihrung der vorliegenden Arbeit

1.2.1. Studie zu familiarem Darmkrebs

Medizinischer Hintergrund

Bei Darmkrebs, bzw. dem kolorektalem Karzinom, handelt es sich weltweit um die
zweithdufigste Tumorerkrankung bei der Frau und die dritthaufigste Tumorerkrankung beim
Mann [22]. Verschiedene Risikofaktoren erhéhen die Wahrscheinlichkeit, an Darmkrebs zu
erkranken. Als prominent waren schlechte Essgewohnheiten, mangelnde Bewegung, Rauchen
und hohes Alter zu nennen [23]. Abgesehen von Risikofaktoren, die auf Umwelteinfllissen
basieren, spielen auch genetische Faktoren eine Rolle. Spezifische Gen-Dispositionen die sich
in Krankheiten wie z.B. dem Lynch-Syndrom [24] oder dem Gardner-Syndrom [25] auspragen,
erhohen das Darmkrebsrisiko immens. Der Darmkrebs, der sich normalerweise erst im hohen

Alter manifestiert, trifft hierbei oft auch jingere Personen. Bei familidarem Darmkrebs handelt
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es sich hingegen um einen weiteren Risikofaktor, der unabhangig von bekannten genetischen

Dispositionen dazu fiihrt, dass diese Erkrankung in Familien oftmals gehauft auftritt [26].

Die Sterberate nach einer Zeitspanne von finf Jahren nach der Diagnose des Darmkrebses liegt
bei 30%-37% [27]. Fiur gewohnlich umfasst die Behandlung, falls moglich, die chirurgische
Entfernung des Tumorgewebes, unterstiitzende Chemotherapie, selten auch in Kombination
mit Bestrahlung [28]. Bei rechtzeitiger Erkennung durch Vorsorgeuntersuchungen lasst sich die
Sterberate um bis zu 60% verringern [29]. Die Koloskopie ist hierbei die zuverlassigste
Methode, aber auch die Kosten sparendere Prifung auf okkultes Blut im Stuhl kann Hinweise
auf Tumorgewebe liefern [30]. Basierend auf den Fakten ist es ersichtlich, welche

Konsequenzen eine mangelnde Vorsorge nach sich ziehen kann.
Zielsetzung und grober Ablauf der Studie

Im Rahmen einer Studie zu familidarem Darmkrebs (DKFS: Darmkrebs-Familienstudie), die als
Kooperation zwischen dem Institut fiir Epidemiologie, Biometrie und medizinische
Informationsverarbeitung (IBE) an der LMU in Miinchen und dem Tumorregister Miinchen
(TRM: www.tumorregister-muenchen.de) durchgefiihrt wird, erfolgte eine eingehende
Beschaftigung mit der Thematik des familidrem Darmkrebses [21]. Das methodische
Hauptinteresse gilt hierbei dem Identifizieren medizinischer Daten von bereits erkrankten
Verwandten der fir die Studie rekrutierten, neu erkrankten Indexpatienten. Hierdurch sollen
Erkenntnisse und Haufigkeiten beziglich der Thematik ermittelt und gegebenenfalls
Empfehlungen und Anpassungen bezlglich der Vorsorge von Angehdrigen formuliert werden.
Patientendaten zu Tumorerkrankungen werden routinemaRig von Krebsregistern bzgl. eines
definierten Einzugsgebietes erfasst. Das Register, aus dem die Studie Daten bezieht, das TRM,
umfasst ein Einzugsgebiet von 4,64 Millionen Einwohnern (Stand: 2011) aus den Regionen

Minchen und Umgebung.

Leider lassen sich die Familienbeziehungen innerhalb des TRMs nicht rekonstruieren, da
notwendige Daten zur Familienstruktur nicht im Register abgespeichert werden. Es gilt also,
die im TRM hinterlegten medizinischen Daten (MDAT) der Angehorigen und Indexpatienten
mit den Studiendaten, unter Erhalt der Familienstruktur, (iber andere Wege in Beziehung zu

setzen.

Mittels spezieller Erfassungsbégen (siehe Abbildung 1) werden die identifizierenden Daten
(IDAT) naher Verwandter der neu erkrankten, an der Studie teilnehmenden Indexpatienten im

Einzugsgebiet des TRM erfasst.
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Abbildung 1: Datenerfassungsbogen der DKFS.

Uber ein probabilistisches Record-Linkage [31-33] Verfahren (weiterfiihrende Erlduterungen
hierzu unter Kapitel 2.1.2) lassen sich die hierbei erfassten IDAT der Patienten und
Angehorigen zu den im TRM hinterlegten IDAT zuordnen. Die wahrend des Record-Linkage-
Prozesses erstellten Links erlauben nachfolgend auch die Zuordnung der MDAT des TRM zu
den Studienteilnehmern und ihren Angehoérigen. Somit lassen sich Familienstrukturen in den

MDAT des TRM rekonstruieren.
Datenschutzkonzept der Studie

Wie unter Kapitel 1.2 beschrieben, ist nicht nur die Einwegverschliisselung der Attributwerte
Voraussetzung fir den sicheren Ablauf eines Privacy-Preserving-Record-Linkage. Studien
missen sich meist nach strengen Datenschutzkonzepten richten. In einer ergidnzenden
Publikation [34] wurde hierzu ein aus 7 Anforderungen bestehendes Datenschutzmodell
vorgestellt, an dem sich die gegebene Studie orientiert. Zentraler Bestandteil dieses Konzeptes
ist eine institutionelle sowie organisatorische Trennung der teilnehmenden Parteien in
verschiedene Module [35]. Diese Modularisierung resultiert in einer Reihe weiterer
Anforderungen und damit verbundener Vorsichtsmalnahmen, um dem notwendigen
Datenschutz zu gentigen. Abbildung 2 beschreibt hierbei vereinfachend den Datenfluss

zwischen den wichtigsten an der Studie involvierten Einrichtungen (siehe Abbildung 2).
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MDAT-Register
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Abbildung 2: Vereinfachtes Datenschutz- sowie Datenflussmodell wihrend der DKFS

Dabei waren abseits der Einwegverschliisselung der Klartextdaten symmetrische sowie
asymmetrische Verschlisselungsschritte notwendig. Diese wurden konkret mittels AES-
Algorithmus mit einer Blocklange von 128-Bit [36] bzw. AES/RSA mit einer Schliissellange von
2048-Bit implementiert [37]. Die technischen Details des Datenschutzmodelles sind fiir das

Verstandnis dieser Arbeit allerdings als eher peripher zu verstehen.

1.2.2. Klassifizierungsproblematik wihrend der DKFS

In der DKFS gab es eine Reihe von Aspekten, die im Bezug auf das Privacy-Preserving-Record-
Linkage Probleme bereiteten. Ein Hauptproblem zeigte sich bei der Festlegung einer binaren
Schranke, die die Menge der potentiellen Links in echte bzw. falsche Links unterteilt. Die
Festlegung einer binaren Schranke ist Teil des Klassifizierungsprozesses des Privacy-Preserving-
Record-Linkage, wobei der jetzige Stand der Wissenschaft keine eindeutige, standardisierte
Losung fir dieses Problem prasentieren kann [38]. Das Klassifizierungsproblem wird
nachfolgend im Bezug auf die Familienstudie eingehend erldutert. Kapitel 1.3.3 beschaftigt sich
zudem mit dem generellen Stand der Wissenschaft zum Klassifizierungsprozess im Bereich des
Record-Linkage, insbesondere mit Augenmerk auf binare Klassifikation (Unterteilung aller Links

in zwei Klassen — echte Links und falsche Links).
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Wahrend der DKFS wurde primar versucht, manuell eine Klassentrennung zu erreichen. Dies ist
eine in der Praxis oft verwendete Methodik [33,39,40]. Grundsatzlich basiert diese auf den
Ergebnissen des Matching-Prozesses, also den gesammelten Gewichten der erzeugten Links. Je
hoher das Gewicht eines Link ist, umso wahrscheinlicher ist es, dass es sich bei den durch IDs
reprasentierten Entitdten innerhalb des Link um dieselbe Entitdt handelt. Allerdings gilt es nun,
den Grenzwert zu finden, ab dem ein Link als echter oder falscher Link klassifiziert wird. Die
Menge der Gewichte lasst sich wie in Abbildung 3 illustriert, jeweils als Histogramm darstellen.
Dabei gibt die x-Achse die Hohe des Gewichtes an und die y-Achse beschreibt die Haufigkeit
eines jeden auftretenden Gewichtes. Um das Histogramm lesbar zu gestalten, sollten die
Gewichte gerundet werden — beispielsweise auf die nachste natirliche Zahl. Optimalerweise
zeigen sich innerhalb des Histogramms der Gewichte bei guter Datenqualitdt zwei deutlich
voneinander unterscheidbare Erhebungen (Abbildung 3a). Nicht nur Genauigkeit und
Vollstandigkeit definieren in diesem Szenario eine hohe Datenqualitat sondern auch Zeitnahe,
also ein geringer zeitlicher Abstand bei der Aufnahme der Daten. Diese Erhebungen sind als
Klassen zu interpretieren. Die im Histogramm weiter links liegende Erhebung, also diejenige,
die niedrigere Gewichte enthalt, reprasentiert hierbei falsche Links, die weiter rechts liegende

Erhebung echte Links. Ursache fir das Auftreten dieser Erhebungen ist, dass Links

Hiufigkeit ——»

Gewicht ——»

Abbildung 3: Darstellung verschiedener mdéglicher Histogramme zur Erlduterung der wdhrend des
Rekord- Linkage auftretenden Klassifikationsproblematik.



Einleitung 13

innerhalb ihrer Klasse ein dhnliches Gesamtgewicht besitzen, da dhnlich viele Attributswerte
Ubereinstimmen bzw. nicht libereinstimmen. So stimmt bei echten Links meist ein Grof3teil der
Attribute (berein, wohingegen bei falschen Links nur wenige oder keine Attribute
Ubereinstimmen. Problematisch in Bezug auf manuelle bzw. uniberwachte Klassifikation
[41,42], die sich vollstandig an den gegebenen Gewichten orientierten ist im Allgemeinen,
wenn es keine klare Klassengrenze gibt oder die Erhebungen nicht markant genug sind, um sie
eindeutig voneinander zu unterscheiden (Abbildung 3b). Grund hierfiir kdnnen z.B. mangelnde
Datenqualitdt oder ein hohes Mal an Verwandtschaftsbeziehungen innerhalb der Daten sein.
Bei Problemfallen stimmen dann nur einige der Attribute iberein, andere wiederum nicht, was
in Gesamtgewichten resultiert, die zwischen den Standardwertebereichen fiir echte bzw.
falsche Links liegen. Beispielhaft kann dies anhand von zusammenlebenden Geschwistern
dargestellt werden. Deren Daten stimmen im Nachnamen, der Adresse und gegebenenfalls im
Geschlecht (iber, unterscheiden sich jedoch im Vornamen und zumeist im Geburtsdatum (als
Ausnahme wiéaren Mehrlinge zu nennen). In solchen Fallen ist es oft schwierig, anhand der
Histogramme zu entscheiden, welcher Klasse man diese Links zuordnet. Weiterhin
problematisch sind Datensets, zwischen denen nur sehr wenige Ubereinstimmungen zu
erwarten sind, weswegen anstelle der Erhebung im oberen Gewichtsbereich oftmals durch
viele Liicken getrennte Gewichtsanhdufungen zu erkennen sind (Abbildung 3c). Hierbei ist es

ungewiss, in welche der Liicken ein moglicher Klassentrenner einzutragen ware.

Im Falle der DKFS war die Klassifikation besonders problembehaftet, da die Daten der
Angehorigen der Patienten nicht direkt von den Angehdrigen, sondern stellvertretend durch
die Indexpatienten Uber Aufnahmebdgen (siehe Abbildung 1) oder telefonisch gesammelt
wurden. Oftmals fehlten den Patienten hierbei die exakten Informationen, wie beispielsweise
der genaue Wohnort, oder das exakte Geburtsdatum ihrer Angehorigen, es wurden jedoch
trotzdem Angaben gemacht, die dem nachfolgenden Record-Linkage jedoch eher abtraglich
waren. Die wahrend des Klassifikationsprozesses erstellten Histogramme wahrend des Record-
Linkage zwischen Studien- und Registerdaten entsprachen also nicht dem Optimalbeispiel aus
Abbildung 3a, sondern eher den Problemfallen wie sie unter Abbildung 3b bzw. Abbildung 3c
wiedergegeben wurden. Abbildung 4 zeigt diesbeziglich eines der Histogramme der Menge
aller Links zum Record-Linkage-Durchlauf am 04.02.2014. Es ist hierbei anzumerken, dass flr
die Klassifikation innerhalb des DKFS Projektes insgesamt 9 verschiedene Histogramme
verwendet werden, die unter anderem eine differenzierte Ansicht von Angehdérigen und

Patienten erlauben.
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Um der Problematik der Unsicherheit zu begegnen, ist es generell, auf datenschutzrechtlich
unkritischen Daten, moglich, einen Unsicherheitsbereich explizit zu definieren. Hierzu wird
eine weitere Schranke verwendet. Es ist hierbei ausreichend, die beiden Schranken, die den
Unsicherheitsbereich aufspannen, grob abzuschatzen (Abbildung 3d). Hierbei entstehen drei
Klassen. Die der echten Links (oberhalb der oberen Schranke), die der unsicheren/potentiellen
Links (zwischen den Schranken), sowie die der falschen Links (unterhalb der unteren Schranke).
Die unsicheren Links kdnnen dann manuell den echten oder falschen Links zugeordnet werden.
Sollte das Vergleichsgewicht zweier echt lUbereinstimmender Entitaten beispielsweise durch
einfache Rechtschreibfehler in den Unsicherheitsbereich gerutscht sein, so lasst sich dies
schnell durch die eben genannte manuelle Durchsicht erkennen (Tabelle 1). Im dort
dargestellten Beispiel wiirde der Patient mit den Varianten des Nachnamens

L,SMITH“/“SMYTH* und kleinem Fehler im Geburtsdatum als identisch identifizierbar sein.

Fir solch einen Vergleich sind jedoch Klartextdaten notwendig, welche im Kontext des
probabilistischen Privacy-Preserving-Record-Linkage, also auch in Bezug auf die DKFS, nicht
gegeben waren. Anhand der hier vorkommenden, einwegverschliisselten Daten lielR sich
lediglich beurteilen, ob Attribute vollkommen ibereinstimmen oder nicht. Im Falle der DKFS
wurde die Information der einzelnen Attributiibereinstimmungen im Unsicherheitsbereich
(jedoch ohne Klartextinformation) unterstiitzend bei der Schrankenfindung mitverwendet
(siehe Abbildung 5). Die Datei beinhaltete detaillierte Angaben zu linkspezifischen
Ubereinstimmungen (J), Nicht-Ubereinstimmungen(N) und fehlenden Werten auf Seiten der
Studiendaten bzw. des TRM (SF=Studie fehlt, TF=TRM Daten fehlen, BF=Daten fehlen auf
beiden Seiten).Werte in Klammern standen fiir die Haufigkeit der jeweils genannten Angaben
in Attributen in denen Mehrfachvorkommen maéglich sind. Nach Durchsicht der Histogramme
wurde die Datei genutzt um die Bestimmung des exakten Punktes des bindren Klassifikators zu
unterstitzen. Im gegebenen Beispiel wurde die Schranke auf 24.9 festgelegt. Der Ausschnitt ist

weder in der Zahl der Eintrage noch in der Menge der Spalten vollstandig.

Tabelle 1: Unterschiedliche Darstellung einer Entitdt in zwei verschiedenen Datenbanken.

Datenset 1 Datenset 2
Nachname SMITH SMYTH
Vorname ALAN ALAN
Geburtsdatum | 26.02.1983 25.02.1984
Geschlecht M M
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Abbildung 4: Eines der konkreten Histogramme zum Record-Linkage der DKFS am 04.02.2014.

Auch wenn fir die DKFS bei der manuellen Schrankensetzung und somit bei einem gewissen
MalR an Unsicherheit vorerst verblieben wurde, ware es wiinschenswert, automatisierte,
bindare Klassifikationsvarianten entscheidungsunterstiitzend in den Klassifikationsprozess

einzubringen.

Weight -~ | MNachname - | Vorname -~ Geburtsnam - Titel - G-Tag - GMonat - G-Jahr - | G-Datum -~
26,5 [J0,N1,5F0,TFO J(1) BF BF J J J J
26,3 J(1) (1) BF BF J J J J

25 [J0,N1,SFO,TFO J{1) [J0,NO,SFO,TF1 BF ] J J ]
23,6 [J0,NO,SF1,TFO J(1) BF BF J J J J

23 [JO,N1,SFO,TFO J{1) BF BF N J J N
22,7 [J0,N1,SFO,TFO J(1) [JO,NO,SFO,TF1 BF ] J N N
22,3 [J0,N1,SFO,TFO J{1) BF BF ] J N N
22,2/ J{1) (1) BF BF N J J N
20,6 [J0,N1,SFO,TFO [JO,N1,SFO,TFO [JO,NO,SFO,TF1 BF ] J J ]
20,5 [J0,N1,SFO,TFO J{1) BF BF ] J J ]
19,6 J(1) [J0,N1,SFO,TFO [J0,NO,SFO,TF1 BF N J J N
19,6 J(1}) [JO,N1,5F0, TFO BF BF SF N N N
19,2 [J0,N1,SFO,TFO J{1) [J0,NO,SFO,TF1 BF N J J N
18,8 [J0,N1,5F0,TFO J(1) [J0,NO,SF1,TFO BF J J J J
18,7 [J0,N1,SFO,TFO J{1) BF BF ] J N N
17,7 [J0,N1,SFO,TFO J(1) BF BF N N J N
17,7 [J0,N1,5F0,TFO J{1) BF BF J J J J

Abbildung 5: Ausschnitt aus der Pair-Analysis Datei vom Record-Linkage-Durchlauf der DKFS am
19.12.2013.
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Leider existieren keine vergleichenden Analysen zu diesen Methoden, und es ist unklar, ob die
Methoden (iberhaupt zur manuellen Klassifikation verbessernd beitragen kénnen. Der Stand
der Wissenschaft zu genannten Klassifikationsmethoden wird weiterfiihrend unter Kapitel

1.3.3 beschrieben.

1.3. Grundlagen des Privacy-Preserving-Record-Linkage

1.3.1. Historischer Hintergrund

Als Record-Linkage bezeichnet man den Prozess des Zusammenfiihrens von Daten
verschiedener Datensets. Das Record-Linkage findet dabei in vielen verschiedenen Domanen
Anwendung. Das Gesundheitswesen [43,44], nationale Sicherheit [45], Bibliographien (hier
auch als Authority-Control [46] bezeichnet) sowie soziale Wissenschaften [47,48] waéren

hierbei einige der Hauptanwendungsbereiche.

Ein Teilbereich des Record-Linkage, die Klassifikation, spielte in dieser Arbeit die zentrale Rolle.
Historisch wurde der Begriff Record-Linkage bereits relativ frih eingefiihrt. So verwendete
Dunn im Jahr 1946 den Begriff zur Beschreibung einer Idee, bei der fiir jeden Weltenbiirger ein
Eintrag zu dem als ,,Book of Life” bezeichneten Register vorgenommen werden sollte [13]. Im
Book of Life sollte jeder Eintrag mit dem Geburtsdatum eines Individuums anfangen und dem
Todesdatum enden. Weitere wichtige Eckpunkte des Lebens sollten zwischen diesen zwei
Eintrdgen stehen. Somit gabe es fiir jedes Individuum der Erde einen Eintrag im Book of Life, zu
dem sich ein Individuum zuordnen lieRe- also Grundlage fiir eine Art universelles Record-
Linkage. Zum damaligen Zeitpunkt ware eine Zuordnung eines Individuums zu diesem Buch
relativ schwer gefallen, da es noch keine wissenschaftlich fundierten, automatisierten
Methoden gab. Die ersten Ideen hierzu folgten in den 1950ern bzw. frihen 1960ern [49,50],
publiziert durch Howard Newcombe. Letzterer ebnete auch den Weg fir die ersten
probabilistischen Verfahren. Basierend auf seinen Erkenntnissen, dem Berechnen von
Gewichten von Ubereinstimmungen bzw. Nicht-Ubereinstimmungen anhand von
Attributshaufigkeiten, formulierten zwei Statistiker, lvan Fellegi und Alan Sunther, 1969, einen
optimalen Algorithmus zum probabilistischen Abgleich von Daten, der auch heute noch weit
verbreitet Anwendung findet [31]. So sei zu erwdhnen, dass das Record-Linkage-System, das
im Methodenteil dieser Arbeit Verwendung fand, auf dem eben genannten Algorithmus
beruht. Erwahnenswerte Verbesserungen im Bereich des Record-Linkage konnten noch in den

90er Jahren durch William Winkler erzielt werden [51], der erste Ansatze zur Toleranz von
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Variationen in Attributswerten, sowie Moglichkeiten der Abschatzung von Fehlerhaufigkeiten

mittels automatisierter Methoden prasentierte.

Das Privacy-Preserving-Record-Linkage basiert auf dem Abgleich von Hash-Werten und
entwickelte sich in den 90er Jahren in Frankreich [19,20]. In jlingster Zeit, konkret seit ca.
2010, fandt jedoch eine technische Revolution statt. Im Gegensatz zu den klassischen
Methoden, die in diesen Szenarien ihre Vergleiche auf Hash-Werten der zugrunde liegenden
Daten ausfiihrten, verwenden die neuen Technologien Bloom-Filter [52] (ndher erlautert unter
Kapitel 1.3.2) als Vergleichsmedium um schlieBlich Gewichte basierend auf der String-
Ahnlichkeit zu approximieren, obgleich die Attributsauspragungen im Klartext nicht lesbar sind.
Man spricht hierbei auch von approximativem Record-Linkage. Prominent seien hierzu
Arbeiten von Reiner Schnell [14], Elisabeth Durham [53] sowie Peter Christen [54] genannt.
Auch wenn diese neuen Technologien vielversprechend klingen und ein definitives,
gualitatives Upgrade vor allem in Bezug auf die Sensitivitdat zum klassischen, probabilistischen
Record-Linkage darstellen, gibt es noch viele offene Aspekte, die es hierbei wissenschaftlich zu
beleuchten gibe. Mehrere deutsche Arbeitsgruppen wie beispielsweise das German Record-
Linkage-Center (www.record-linkage.de) beschaftigen sich momentan aktiv mit dieser
Technologie, und es ist zu erwarten, dass das approximative Record-Linkage bald das
probabilistische Record-Linkage im Bereich des Privacy-Preserving-Record-Linkage als den in

der medizinischen Forschung verwendeten Standardansatz verdrangt.

1.3.2. Technischer Ablauf des Privacy-Preserving-Record-

Linkage

Technisch werden beim Record-Linkage in der Regel Eintrdge zweier Datensets zueinander
zugeordnet. Der Ablauf des Record-Linkage lasst sich in vier rudimentdre Arbeitsschritte

einteilen:

e Vorverarbeitung
e Blocking/Indexing
e Gewichtsbestimmung

e Klassifikation
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Der eben genannte technische Ablauf wird grafisch in Abbildung 6 grob wiedergegeben. Die
einzelnen Arbeitsschritte werden in den nachfolgenden Unterkapiteln weiterflihrend

beschrieben.

[ Datensatz A } [ Datensatz B J
4 4
Daten Vorverarbeitung E— Blocking < Daten Vorverarbeitung

A

Gewichtsbestimmung

A

Klassifikation

[ Echte Links } [ Falsche Links ]

\/

Auswertung

Abbildung 6: Schematischer Ablauf des Privacy-Preserving-Record-Linkage.

Standardisierung (Vorverarbeitung I)

Fiir gewohnlich werden Daten vor dem eigentlichen Data-Matching Prozess durch eine
Standardisierung der Attributwerte vorverarbeitet. Diese hangt jeweils von der Doméne und
Art der Daten ab. So spielt zum Beispiel der Sprachraum, aus dem die Daten stammen, eine
entscheidende Rolle. Es gibt also  sprachspezifische  Varianten  zwischen
Standardisierungsmethodiken, auch wenn es sich grundsatzlich um dieselbe Art (z.B.
Patientendaten) von Daten handelt. Grundsatzlich dient die Standardisierung dazu,
Variationen in den verschiedenen Attributswerten gering zu halten und moglichst viele Fehler

bereits vor dem eigentlichen Data-Matching auszumerzen.

Bei Personen identifizierenden Daten im medizinischen Sektor werden die urspriinglichen
Datenfelder nach bestimmten Regeln standardisiert. Der UNICON-Regelsatz [55] ware hierbei

z.B. der Regelsatz, der in der DKFS Studie inklusive einiger szenarienspezifischer Anpassungen
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verwendet wurde. Hierbei sind folgende Anweisungen zu nennen, die wahrend der

Standardisierung umgesetzt werden.

e Ersetzung undeutscher Sonderzeichen (basierend auf ausgewdhlten Listen) in das
deutsche Aquivalent (Bsp.: é -> e).

e Entfernung ungeeigneter Zeichen. Dies betrifft Symbole, die im jeweiligen Feld nicht
auftreten sollten (Bsp.: Hans-Wagne%r -> Hans-Wagner).

e Uniforme GroBRschreibung (Bsp.: Hans-Wagner -> HANS-WAGNER).

e Umlaut-Normalisierung (Bsp.: FORSTER -> FOERSTER).

e Ersetzung von Trennsymbolen durch Leerzeichen (Bsp.: HANS-WAGNER -> HANS
WAGNER).

e Erkennung spezifischer Schlagworter. Dieser Schritt ist feldspezifisch. Im Feld , Titel”
werden hierbei beispielsweise nur giltige Titel (basierend auf einer zuvor erstellten
Liste) zur weiteren Verarbeitung zugelassen. (Bsp.: Dr.)

e Konsistenz- bzw. Formatpriifung. (Bsp.: Entfernung des Geburtsdatums bei
33.02.19083)

e Bei Attributen mit moglicher Mehrfachauspragung (z.B. Doppelname): Aufteilen der
Felder in neue Attributgruppen. (Bsp.: HANS WAGNER -> VORNAME 1:
HANS/VORNAME 2: WAGNER).

Weiterhin ist es moglich, nach phonetischen Kriterien zu standardisieren. Somit werden
Namensvarianten wie beispielsweise ,Meyer”, bzw. ,Meier”, die phonetisch Gbereinstimmen,
in eine standardisierte Variante umgewandelt. Algorithmen, die hierzu verwendet werden,
sind im englischsprachigen Raum der SOUNDEX [56] bzw. im deutschsprachigen Raum die
Koélner Phonetik [57].

Einwegverschliisselung (Vorverarbeitung II)

Ein weiterer Schritt der Vorverarbeitung fallt ausschlieRlich beim Privacy-Preserving-Record-
Linkage an. Es handelt sich hierbei um die Einwegverschliisselung der Daten, die basierend auf
ausgewadhlten Algorithmen einwegverschlisselt werden miissen bevor sie abgeglichen werden
diirfen. Beim deterministischen, bzw. dem probabilistischem Record-Linkage werden zu jedem
standardisiertem Attributswert anhand von Hash-Funktionen mathematisch nicht umkehrbare
Bit-Sequenzen, die sich beispielsweise als Hexadezimalcode darstellen lassen, erzeugt. Man
spricht hierbei von Kontrollnummern [58-60]. Als Besonderheit sei zu nennen, dass moderne
Hash-Funktionen in der Regel, ausgehend vom Ausgangswert, nahezu immer verschiedene

Hash-Werte erzeugen. Zu jedem Ausgangswort gibt es also meist exakt einen spezifischen
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Hash-Wert. Sollte es dennoch Hash-Werte geben, die zu verschiedenen Eingabewerten passen,
spricht man von Kollisionen [61], die aber extrem selten vorkommen. Zu &lteren Hash-
Funktionen wie dem MD5 wurden bereits Kollisionsfunde gemeldet. Diese gelten somit als
veraltet und sollten nicht weiter verwendet werden, wohingegen Algorithmen aus der SHA-2

oder noch besser aus der SHA-3 Familie dem aktuellen Sicherheitsstand entsprechen [62,63].

Tabelle 2 illustriert die Ausgabe zu verschiedenen Eingabewerten in Hexadezimalschreibweise,
basierend auf der SHA-256 Funktion. Trotz der hohen Textdhnlichkeit der Ausgangswerte im

vorliegenden Beispiel erzeugt die Hash-Funktion komplett unterschiedliche Riickgabewerte.

Tabelle 2: Anwendung des SHA-256 auf verschiedene Ausgangswerte.

Ausgangswert | Hash-Wert

Meier 05c2d2b4cadla3f5bf547b484ac6f4a70893e944d5bd6fe0f28db40453bf3f3c

Meyer 876fdfald1152c1d024386a1f66e7725f292ef83404fc4d3be79¢c1b51cc81c45

Auf den Hash-Werten ist zwar immer noch ein Abgleich maoglich, allerdings sind die Daten nur
noch Uber einen Worterbuchangriff identifizierbar und in den urspriinglichen Klartext
racklberfiihrbar. Bei einem Worterbuchangriff werden Wertelisten mit derselben Hash-
Funktion des unter Angriff stehenden Datensatzes einwegverschliisselt. Dies ermoglicht ein
Mapping der Hash-Werte dieser Werteliste und des unter Angriff stehenden Datensatzes.
Konsequenterweise sollte der exakte Hash-Algorithmus nicht bekannt gegeben werden, oder
es sollten spezielle Schliissel verwendet werden, die die Ausgangsfunktion modifizieren. Man
spricht hierbei auch von Hash-based Message Authentication Code Verfahren (HMAC) [64].
Alternativ lasst sich auch nach geheim gehaltenen Regeln sogenanntes ,Salz“, einfache
Buchstaben oder Zahlenketten, an die Ausgangswerte anhdngen, was einen weiteren Schutz

gegeniber Worterbuchangriffen darstellt [65].

Das approximative Record-Linkage, das eine Weiterentwicklung des probabilistischen Privacy-
Preserving-Record-Linkage darstellt, ersetzt die Einwegverschliisselung basierend auf Hash-
Werten durch Bloom-Filter [14,52]. Bloom-Filter sind Bit-Arrays, also Speicherstrukturen mit
einer festgelegten Lange und einer Indexstruktur. Die Feldwerte des Arrays lassen sich dabei

mit Bit-Werten, also mit 0 oder 1, belegen.

Initialisiert werden die Bloom-Filter in jedem Feld mit einem 0-Wert. Die Technik basiert
darauf, die zu verschlisselnden Wortketten in Q-gramme (in der Regel Bi-gramme) zu

zerlegen.
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Auf jedes Q-Gramm werden dabei mehrere Hash-Funktionen angewandt. Nach Kirsch et. Al
[66] sind zwei Hash-Funktionen ausreichend. Der Riickgabewert dieser Hash-Funktionen muss
ein Wert zwischen 0 und der Lange des Bloom-Filter sein. Diese Riickgabewerte geben nun den
Index wieder, an dem der Bloom-Filter mit einer 1 belegt werden soll. Eine erlduternde
graphische Darstellung findet sich hierzu in Abbildung 7. In diesem Beispiel werden die
Namensauspragungen ,Anna“ und ,Anne” in Bi-Gramme zerlegt auf die jeweils eine
Hashfunktionen angewendet wird. Die Hashfunktion gibt jeweils einen Riickgabewert an der
den Index spezifiziert an dem der jeweils vorliegende Bloom-Filter mit dem Bit-Wert 1 belegt

wird.

Die Berechnung der Gewichte sowohl beim Kontrollnummer- als auch auf Bloom-Filter-

Abgleich wird im nachfolgenden Unterkapitel zur Gewichtsberechnung weiter diskutiert.

Anne

AN

[] Ubereinstimmung
[ Nicht-Ubereinstimmung

Abbildung 7: Einwegverschliisselung von Werteausprégungen anhand von Bloom-Filtern.
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Blocking/Indexing

Die Zuordnung von Eintragen innerhalb zweier Datensets A und B erfolgt im Grunde
genommen durch den Abgleich jeweils eines Eintrages aus A mit allen Eintrdgen aus B. Die
Menge an notwendigen Vergleichen ist also das Kreuzprodukt der Anzahl an Eintrdagen aus A

und B:
|A] x |B|

Wirde man beispielsweise die Einwohner zweier grofRerer Stddte (1 Mio. Einwohner)
miteinander abgleichen wollen, wiirde dies in einer Billionen (1012) individuellen Vergleichen
und Gewichtsberechnungen resultieren. Geht man also wie gegeben vor, kann der
rechenintensive Aufwand oftmals das Limit der gegebenen Hardware bzw. gegebene Zeitlimits
Ubersteigen. Abhilfe hierzu schafft die Verwendung von sogenannten Indexing/Blocking-
Techniken. Am prominentesten ware die Verwendung von Blocking-Variablen zu nennen. Zwar
werden auch hier auf dem Kreuzprodukt der Eintrage Vergleiche ausgefiihrt, Gewichte werden
jedoch nachfolgend nur berechnet, wenn die verglichenen Eintrage in zumindest einer der
gegebenen Blocking-Variablen Ubereinstimmen. Es ist abzuraten, sich lediglich auf eine
Blocking-Variable zu beschranken. Hierbei kann es passieren, dass Rechtschreibfehler oder
andere Abwandlungen in Attributwerten einer in zwei Datensdtzen reprasentierten Entitat
(wie z.B. Anderung des Nachnamens bei Hochzeit) dazu fiihren, dass diese nicht bei der
Gewichtsberechnung beriicksichtigt werden. In der Praxis verwendet man deswegen mehrere
Blocking-Variablen [19], wie beispielsweise, den phonetischen Nachnamen sowie das
Geburtsdatum. In der DKFS zu familiarem Darmkrebs wurden als Blocking-Variable der

phonetische Nachname, der phonetische Vorname sowie das Geburtsjahr ausgewahlt.

Die meist angewandte Variante des Blockings beschreibt das Standard-Blocking [31], bei der
die Blocking-Variablen der Vergleiche genau (ibereinstimmen miissen, damit ein Gewicht
weiterflihrend berechnet wird. Hierbei ergeben sich Varianten. Stimmen zwei Eintrage in
mehreren Blocking-Variablen Uberein, kann dasselbe Gewicht fiir einen Vergleich mehrfach
berechnet werden. Verwendet man also einfache Listenstrukturen und hangt dort die
Informationen zu Links und ihren Gewichten aneinander, so kénnen Eintrdge mehrfach,
entsprechend der Anzahl der Blocking-Variablen auftreten. Verwendet man Hash-Strukturen,
die IDs der Links als eindeutigen Schliissel verwenden, werden die Gewichte nur einfach
abgespeichert. Dieses Phdanomen und die Auswirkungen auf die nachfolgende Klassifikation

wurden vom Autor in einer dieser Arbeit vorhergehenden Publikation naher untersucht [67].
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Weitere Varianten, die den Rechenaufwand des Blockings einschranken, ergeben sich aus dem
Sortieren der Datensatze. Hierbei ware der Sorted-Neighbourhood-Approach zu nennen bei
dem mittels eines Sliding-Windows mit fester GréRe lber die alphabetisch sortierte Datenbank
gefahren wird und Teilwortketten die innerhalb des Sliding-Windows Ubereinstimmen zum

Blockingabgleich verwendet werden. [68,69]

Beim Canopy-Clustering [70] werden Werte, die sich in der Blocking-Variable ahneln, in
denselben Cluster eingefiigt und innerhalb dieses Clusters abgeglichen. Dieses Verfahren ist
allerdings nicht auf einwegverschliisselte Daten Ubertragbar, da die verwendeten

AhnlichkeitsmaRe Klartextdaten voraussetzen.

Als Nebeneffekt hat das Blocking auch Einfluss auf Qualitatswerte, vor allem auf die Anzahl der
True-Negatives, die zur Evaluation des Record-Linkage verwendet werden kénnen (siehe
Kapitel 1.3.4). Da bei Anwendung von gut gewahlten Blocking-Variablen die Anzahl der True-
Positives, False-Positives sowie False-Negatives meist nur leicht variiert, sich aber in der Anzahl
der True-Negatives gewaltig reduziert, ist vor allem die Spezifitdt hiervon betroffen. Da die
Spezifitdit beim Record-Linkage meist jedoch nahe der 100% liegt, verwendet man aber
generell lieber den F-Measure-Wert, der unabhangig von der Spezifitdt, bzw. von den True-

Negatives fungiert [71].
Gewichtsbestimmung

Wahrend des Blockings werden Eintragsvergleiche ausgewahlt, zu denen es zu bestimmen gilt,
ob diese Vergleiche tatsachlich (ibereinstimmen oder nicht. Hierflir werden beim Privacy-
Preserving-Record-Linkage die individuellen Kontrollnummern bzw. Bloom-Filter der Eintrage
verglichen. Insgesamt gibt es hierbei drei verschiedene Herangehensweisen. Die triviale
Variante stellt das deterministische Record-Linkage dar. Hierbei werden zwei Eintrdage jeweils
als echter Link klassifiziert, falls alle Kontrollnummern paarweise exakt lbereinstimmen. Im
Gegensatz zu den anderen Varianten entfallt also beim deterministischen Record-Linkage eine
weiterfihrende Klassifizierung, eine Gewichtsbestimmung im eigentlichen Sinne findet nicht
statt. Die Methodik erzielt in der Regel Spezifitatswerte von 100%, allerdings werden samtliche
echte Links, die nur geringfligig voneinander abweichen, Ubersehen. Zwar kann gute
Standardisierung diese Fehler teilweise beseitigen, grundsatzlich liefert die Methodik jedoch
Ergebnisse mit einer vergleichsweise mangelhaften Sensitivitdt [53]. Ein prominentes Beispiel
fir die Implementierung eines deterministischen Record-Linkage Systems ist der PID-
Generator der Technologie- und Methodenplattform fiir die vernetzte medizinische Forschung

(TMF) [72], der grundsétzlich jedoch eher als Pseudonymisierungs-Instrument zu verstehen ist.
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Im Gegensatz zum deterministischen Record-Linkage stellt sich das probabilistische Record-
Linkage als fehlertoleranter dar. Hierbei wird flr jeden paarweisen Abgleich der
Kontrollnummern zwischen den zu vergleichenden Eintragen ein Einzelgewicht berechnet und
anhand der Summe dieser Einzelgewichte wird der Eintrag als echter bzw. falscher Link

klassifiziert (siehe Formel 1).

W:zwi (1)

Fiir die Erlduterung der Berechnung der Einzelgewichte sind einige initiale Definitionen
notwendig. Wahrend A und B die zu vergleichenden Datensets reprasentieren, stehen die
Mengen M und U fiir die Menge der Ubereinstimmungen bzw. der Nicht-Ubereinstimmungen

(siehe Formel 2-4).

A XB ={(a,b);a € A b € B} (2)
M = {(a,b);a=b,a € A,b € B} (3)
U=1{(ab);a+b,a€AbeB} (4)

Bei ay,...,a, bzw. bs,...,b, handelt es sich um die einzelnen Attribute zu den Eintragen a bzw. b,

aus Datenset A bzw. B (siehe Formel 5).

a=(ay,..,ap),b=(b;..,by) (5)

Nach Fellegi und Sunther resultieren Ubereinstimmungen in den Auspridgungen in einem
positiven Einzelgewicht, Nicht-Ubereinstimmung in einem negativen Einzelgewicht [31]. Die
Hohe des Gewichts wird von der Haufigkeit der zu vergleichenden Werteauspragung bzw. der
abgeschatzten Fehlerhaufigkeit in  diesem Attribut beeinflusst. Die Haufigkeit der
Kontrollummern-Auspragungen wird dabei formell durch die sog. u-Werte reprasentiert (siehe

Formel 6) [31,39].

wy, = P(a; = b; A a; = xy|(a,b) € U) (6)

Der u-Wert beschreibt konkret die Wahrscheinlichkeit, dass zwei Eintrage im Merkmal i mit
der Auspragung x; Ubereinstimmen und es sich dabei nicht um dieselbe Person/Eintrag

handelt. Die u-Werte lassen sich hierbei im praktischen Umgang direkt aus der Haufigkeit von
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zugrunde liegenden Populationen bzw. direkt aus den Datensets ableiten [39]. Kommt
beispielsweise der Vorname ,Peter” im zugrunde liegenden Datenset mit GréRe 10.000
insgesamt dreimal vor, dann betragt der u-Wert der Auspragung ,Peter” 3/10.000). Da die
Datensatze im Kontext des Record-Linkage in der Regel aus jeweils zwei Daten-Quellen

bestehen kdnnen die Datenquellen hierflr vereinfachend vereint werden.

Die in den Auspragungen auftretenden Fehlerhdufigkeiten, die ebenfalls zur
Gewichtsberechnung bendtigt werden, lassen sich durch die m-Werte reprasentieren (siehe

Formel 7).

my, = P(a; = b; A a; = xy|(a, b) € M) (7)

Der m-Wert beschreibt hierbei konkret die Wahrscheinlichkeit, dass zwei Eintrage im Merkmal
i mit der Auspragung x;. Ubereinstimmen und es sich dabei um die selbe Person/Eintrag
handelt. Die m-Werte lassen sich vereinfacht jedoch auch als invertierte Fehlerhdufigkeiten im
jeweiligen Attribut interpretieren. Typischerweise haben Adressangaben eine relativ hohe
Fehlerhaufigkeit. Wiirde man also zum Beispiel in einem Datensatz zu 10% der Falle Fehler in
den Adressangaben erwarten, ware der hierzu gehérende m-Wert 0.9. Die m-Werte kdnnen
entweder aus adhnlichen [39,73], bereits ausgewerteten Datenbestinden mit bekannten
Fehlerhaufigkeiten oder mittels einer Variante des Expectation-Maximation-Algorithmus [74]

abgeschatzt werden.

Anhand der u-Werte und m-Werte lassen sich schlieBlich die Einzelgewichte berechnen (siehe

Formel 8 bzw. Formel 9).

m.
w; = log (_l)'falls a; = b; Aa; = xi (®)
Uik
1- m; (9)
w; = l()g ,fallS a; * bi A a; = Xig
1—uy

Falls die vergleichenden Attributsauspragungen lGbereinstimmen, wird wie bereits erwahnt ein
positives Gewicht berechnet, falls die vergleichenden Attributsauspragungen nicht
Ubereinstimmen, wird ein negatives Gewicht berechnet. Zudem gilt: Stimmen
Kontrollnummern in einer seltenen Auspragungen Uberein, so resultiert dies in einem
starkeren Gewicht. Das Ubereinstimmen in hiufigen Ausprigungen kann eher auf Zufall
basieren, demnach wird ein niedrigeres Gewicht vergeben. Je hoher die abgeschatzte

Fehlerrate in einem Attribut ist, umso unbedeutender, also niedriger ist das Gewicht im
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Vergleich zu anderen Attributen mit geringeren Fehlerraten. Nach Aufaddieren der

Einzelgewichte zu einem Gesamtgewicht kann schlieBlich klassifiziert werden.

Liegt das Gesamtgewicht eines Links Uiber einem spezifischen Schrankenwert, so wird er als
echter Link bewertet, unterhalb dieser Schwelle als falscher Link. Man spricht hierbei von einer
bindaren Klassifikation (hierzu mehr unter Kapitel 1.3.2.). Das Auffinden dieses
Schrankenwertes war eine nicht triviale Aufgabe und Hauptthematik dieser Arbeit. Im
Gegensatz zum deterministischen Record-Linkage unterscheidet sich also das probabilistische
Record-Linkage darin, dass es nicht in allen Kontrollnummern exakt Gbereinstimmen muss und
somit zu einem gewissen Grad Fehler in den Daten zuldsst. Die Spezifitat erleidet hierbei in der
Regel nur geringfligige EinbulSen und liegt je nach Datensatz nahe 100%. Die Sensitivitat kann
durch das Tolerieren weniger Unstimmigkeiten im Vergleich zum deterministischen Record-
Linkage enorm verbessert werden und liegt je nach Datensatz, nach einem systematischem

Review von Silveira [75] bei den ausgewerteten Arbeiten zwischen 74-98%.

Dennoch besitzt das probabilistische Record-Linkage auf einwegverschliisselten Daten
Schwachen. Durch die Einwegverschlisselung ist es grundsatzlich nicht moglich, die
Ahnlichkeit zweier Auspragungen zu gewichten. Da bereits kleine Fehler in den
Werteauspragungen (z.B. Schmitt bzw. Schmidt) zu komplett unterschiedlichen Hash-Werten
fihren, ist es lediglich moglich, zu bewerten, ob die Werte Gbereinstimmen oder nicht (siehe

hierzu auch Kapitel 1.2.2).

Das approximative Record-Linkage tritt dieser Problematik entgegen. Wie bereits unter Kapitel
1.3.2 beschrieben, werden die Auspragungen alternativ zu den vorhergehenden Methoden
mittels Bloom-Filtern einwegverschlisselt. Der Abgleich erfolgt also nicht mehr wie bei den
Vorgangervarianten auf Hash-Werten sondern auf den Bloom-Filtern. Dabei kann nicht nur wie
auf Hash-Werten festgestellt werden, ob Werte generell ibereinstimmen, sondern auch, wie

sehr sich zwei Bloom-Filter dhneln.

Die Distanz zweier Bloom-Filter zueinander lasst sich mittels des Dice-Koeffizienten (siehe

Formel 10), berechnen, der sich als passendes DistanzmaR bewiesen hat [14,76].

_2h (10)
Dap = (a+b)

Auf das Szenario des approximativen Record-Linkage Ubertragen entsprich h der Anzahl an
Bitpositionen, die in beiden zu vergleichenden Bloom-Filtern (A,B) mit 1 belegt wurden, a ist

die Anzahl an Bitpositionen, die ausschlieflich in A mit 1 belegt wurden, wohingegen b die
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Anzahl an mit 1 belegten Bitpositionen in B wiedergibt. Angewandt auf das Beispiel aus
Abbildung 7 ergibt sich ein Dice-Koeffizient von %. Der Riickgabewert der Distanzfunktion liegt

hierbei zwischen 0 und 1, wobei ein hoher Wert fiir eine hohe Ahnlichkeit steht. Da Feldwerte
in den Bloom-Filtern mehrfach belegt werden kénnen, l4sst sich die Ahnlichkeit nicht in selben
AusmaR wie bei String-Vergleichen im Klartext bestimmen. Die Ubereinstimmung wird
demnach approximiert. Daher auch der Name: approximatives Record-Linkage. Die
Einzelgewichte werden schlieBlich, wie im Falle des probabilistischen Record-Linkage, zu einem
Gesamtgewicht aufaddiert. Der Klassifikationsprozess verlauft demnach zwischen beiden
Methoden analog. Es gibt noch viele offene Fragestellungen, die zu dieser in stetiger
Weiterentwicklung befindlichen Technologie Klarung benétigen. So gab es Ende 2013
beispielsweise noch keine publizierten Aussagen dariiber, mit welchem Faktor die auf Bloom-
Filter-Vergleich beruhenden Einzelgewichte zu verrechnen waren. Beispielsweise sollte der
Nachname eine hohere Gewichtung besitzen als die Postleitzahl, da sich diese im Verlauf des
Lebens ofters andern kann. Dies wéare nur eines der Probleme, die im klassischen
probabilistischen Record-Linkage bereits gelost wurden, weswegen das approximative Record-
Linkage zu diesem Zeitpunkt noch nicht unangefochten als Standardvariante fiir Privacy-
Preserving-Record-Linkage zu interpretieren ware. Vergleichende Arbeiten haben jedoch
gezeigt, dass das approximative Record-Linkage durch die Beurteilung der Ahnlichkeit das
Potential besitzt, die dlteren Varianten in Bezug auf die Qualitdt des Matchings, vor allem was
die Sensitivitdt betrifft, zu Uberfligeln [18]. Ob und inwiefern Gewichtungen des
probabilistischen Record-Linkage auf das approximative Record-Linkage Ubertragbar sind, ist

Aufgabe aktueller Forschung.
Bindre Klassifikation

Im Falle des Privacy-Preserving-Record-Linkage ist durch die Einwegverschliisselung der
Ausgangsdaten oftmals eine manuelle Zuordnung unsicherer Links nicht moglich (siehe Kapitel
1.2.2). Dies resultiert in der Notwendigkeit von binarer Klassifikation, also im Normalfall in der
Bestimmung eines spezifischen Schrankenwertes, der die Menge der Links, basierend auf
ihrem Gewichtswert, in echte bzw. falsche Links einteilt. Die binare Klassifikation ist jedoch
nicht nur im Falle von unter Datenschutz befindlicher Daten notwendig sondern auch beim

Einsatz vollautomatischer Systeme, bei denen keine manuelle Nachkontrolle moglich ist.

Die Riickgabe des probabilistischen bzw. approximativen Record-Linkage ist eine Liste von
Links, bestehend aus einem Paar von Datenset spezifischen IDs, die eine Referenz auf den im

jeweiligen Datenset beinhalteten Eintrag darstellen, sowie ein assoziiertes Gewicht, das
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Aufschluss darliber gibt wie gut die beiden referentiellen Eintrdge zueinander passen (siehe

Tabelle 3).

Tabelle 3: Beispielhafte Darstellung des Inhaltes einer Gewichtsdatei.

IDA IDB Gewicht
1252 5332 76,74
1773 6784 74,33
34 588 71,22
788 899 55,39
1899 1754 23,76

Basiert die Klassifikation ausschlieBlich auf der Verteilung der genannten Gewichte, spricht
man von uniberwachter Klassifikation. Werden von dieser Verteilung unabhangig
Trainingsdaten verwendet spricht man typischerweise von tberwachter Klassifikation. Zudem
existieren auf Regeln basierende Klassifikationsmethoden, die in beiden der vorhergehenden
Ansdtze unterstiitzend genutzt werden konnen, aber auch als eigenstiandige Methodik

existieren.

1.3.3. Klassifikationstechniken

Uniiberwachte Klassifikation

Die uniberwachten Methoden richten sich vollstandig nach der Verteilung und den
Haufigkeiten der Gewichte, die sich auch als Histogramm illustrieren lassen. Zur Histogramm-
Erstellung werden die Gewichtswerte auf einen spezifischen Wert gerundet (beispielsweise auf
natiirliche Zahlen) und entsprechend der Haufigkeit dieses Wertes in das Histogramm
eingetragen. Bei qualitativ hochwertigen Daten zeigen sich hierbei im Histogramm der
Gewichte oftmals zwei Erhebungen, die sich leicht manuell voneinander trennen lassen (siehe
Abbildung 3a). Unabhangig vom Histogramm, aber basierend auf denselben Daten kann diese
Trennung auch durch verschiedene automatisierte Algorithmen, wie z.B. aus dem
maschinellen Lernen bekannte Clustering-Verfahren erfolgen [77-78]. Der Erfolg der
unliberwachten Klassifizierung hingt demnach stark von der Qualitdt und der generellen
Beschaffenheit der Gewichtsdaten ab. Auftretende Datenartefakte wie beispielsweise zufillig
auftretende Abstande oder Anhdufungen in zur eigentlichen Klassifikation nicht beitragenden

Gewichtsbereichen kdnnen demnach zu einer Fehlklassifikation fihren, da sie als Indikatoren
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fir Klassengrenzen fehlinterpretiert werden konnen. Gerade einfache Methoden wie

Clustering-Verfahren sind deswegen in lhrer naiven Form eher ungeeignet.

Besser funktionieren sogenannte Active-Learning Ansatze [79], bei denen es sich formell um
eine Hybridvariante aus uniiberwachter und Uberwachter Klassifikation handelt, die aber im
Grunde genommen eher den uniiberwachten Methoden zuzuordnen waren. Hierbei werden
sogenannte positive bzw. negative Keimmengen (Seeds) definiert. Diese enthalten Vergleiche,
die zu einer hohen Wahrscheinlichkeit bzw. basierend auf szenariospezifisch definierten
Kriterien ausschlieRlich echte bzw. falsche Ubereinstimmungen darstellen. Diese Keimmengen
werden dann als Trainingsdaten fir die noch unklassifizierten Links verwendet, so dass diese
basierend auf Algorithmen wie dem K-Nearest-Neighbour (KNN) oder Support-Vector-
Maschinen (SVM) den Keimmengen zugeordnet werden koénnen, bis alle Links schlieBlich
klassifiziert wurden. Peter Christen konnte hierzu in einer Arbeit demonstrieren, dass diese

Hybridansatze in der Lage sind, andere uniiberwachte Techniken zu lbertreffen [71].
Uberwachte Klassifikation

Im Gegensatz zur uniiberwachten Klassifizierung ist die Giberwachte Klassifizierung von den
Gewichten der Originaldaten unabhdngig und basiert auf im Vorfeld spezifizierten
Trainingsdaten [41,80]. Hierzu werden Trainingssets bendtigt, die in ihrer Beschaffenheit den
zu klassifizierenden Daten dhneln und deren echte Ubereinstimmungen durch das Teilen
derselben ID in beiden Teilsets bekannt sind. Auf diesen Trainingssets lasst sich nun ein
Record-Linkage durchfiihren und basierend auf ausgewahlten Qualitatskriterien wie
beispielsweise dem F-Measure eine optimale Schranke berechnen. Der Schrankenwert kann
nun ebenfalls als Klassifikator fiir die Originaldaten verwendet werden. Alternativ ist es auch
moglich, einen Entscheidungsbaum auf den Trainingsdaten zu generieren, anhand dessen
Regeln erzeugt werden konnen, die die nachfolgende Klassifikation der Originaldaten

ermoglichen [81].

Ein Problem dabei ist, dass es im Bereich des Record-Linkage extrem wenige frei-zugdngliche
auf Realdaten beruhende Trainingssets gibt, die fir solch ein Vorgehen geeignet waren. Es
existieren zwar einige downloadbare, zur Validierung von Record-Linkage geeignete, Testsets
(http://secondstring.sourceforge.net), diese sind aber als Trainingssets in Bezug auf
Klassifikation, beispielsweise im medizinischen Bereich, besonders aufgrund abweichender

Domane eher unbrauchbar.

Eine gute Ersatzmoglichkeit kann hierbei die kilnstliche Erzeugung von Trainingsdaten

darstellen. Zum Erzeugen von Patientendaten gibt es sogar eigenstdandige Software-Kits, wie
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z.B. die FEBRL-Toolbox, deren Personengenerierungsmodul auf aus Populationen
entnommenen Verteilungswerten beruht [82]. Allerdings waren dem Autor keine Arbeiten
bekannt, in denen ein solches Vorgehen, also lberwachte Klassifikation auf kinstlichen
Trainingsdaten, in der Praxis tatsachlich umgesetzt wurde. Das Fehlen festgelegter Standards
und der erhéhte Aufwand scheint viele Projektgruppen von Uberwachter Klassifikation

zurtickschrecken zu lassen.

An der Johannes-Gutenberg-Universitdit in Mainz finden Untersuchungen zu neuartigen
Uberwachten bzw. semi-lUberwachte Klassifikationsmethoden statt [83,84]. Hierbei wird
versucht, die Konzepte Bagging und Bumping auf das Szenario des Record-Linkage anzupassen.
Bei Bagging und Bumping werden zu zufalligen Ziehungen aus Populationsverteilungen
Klassifizierer generiert, deren Mittelwert als finaler Klassifizierer fiir die Originaldaten zu
nutzen ist. Sariyar ist der Meinung, dass die (iberwachten Methoden dabei die uniiberwachten
Methoden Ubertreffen konnen, allerdings gibt es auch hier noch offene Fragen beziiglich der
Parametrisierung, also der genauen Zusammenstellung dieser Trainingsdaten. So stellt zum
Beispiel die genaue Festlegung der Anzahl der Trainingsdaten, die beim Bagging bzw. Bumping

generiert werden, nach eigenen Angaben ein offenes Problem dar [84].

Regelbasierte Klassifikation

Abseits der unlberwachten bzw. Uberwachten Klassifizierung existieren auch auf Regeln
basierende Klassifikationsmethoden. Zu den Testdaten werden hierbei entweder basierend auf
Trainingsdaten oder manuell Regeln konzipiert, die bei Anwendung auf einen Link Auskunft
geben, wie wahrscheinlich es sich bei dem Vergleich um einen echten bzw. falschen Link
handelt. Solche Regeln bestehen aus Konjunktionen von atomaren Bedingungen wie z.B. ,(ist
mdnnlich) UND (Nachname stimmt (iberein)”. Das Abarbeiten einer Regel kann im Priifen
neuer Regeln resultieren und es wird gegebenenfalls ein Gewicht vergeben, das zeigt, wie stark
die Regel die finale Entscheidung beeinflusst. Nach Abarbeiten aller Regeln wird der Link
klassifiziert. Als Struktur solcher abzuarbeitenden Regeln bieten sich Entscheidungsbdaume an

[41,80].

Hierdurch ist fir die Methodik grundsétzlich keine Gewichtsdatei notwendig. Bendtigt wird
ausschlieBlich die Information, in welchen Attributen die Eintrdge (bereinstimmen.
Unterstlitzend wurde hierzu eine Variante in Form der Pair-Analysis-Datei in der DKFS

verwendet (siehe Kapitel 1.2.2).

Bislang (Stand 2012) existiert noch keine ausgiebige vergleichende Prifung der verschiedenen

Klassifikationsmethoden auf verschiedenen Testsets [38].
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1.3.4. Softwaresysteme im Bereich des Data-Matchings

Im Bereich des Record-Linkage gibt es eine groRe Auswahl verschiedener der Thematik
zuzuordnenden Softwarepakete. Hierbei handelt es sich um kommerzielle als auch frei
zugangliche Pakete. Laut Peter Christen [38] ist es bei den kommerziellen Systemen schwierig,
eine Ubersichtliche Beschreibung der verschiedenen Systeme zur Verfligung zu stellen, da sich
diese oftmals nur auf selektierte Teilbereiche der Thematik beschrdnken. Die Nutzung
kommerzieller Systeme ist fir die Forschung als kritisch anzusehen, da eine exakte
Beschreibung der Algorithmen in der Regel nicht zur Verfligung gestellt wird. Fiir die Forschung
spielen deswegen vor allem Open-Source-Projekte eine wichtige Rolle. Diese werden oft von
Forschungseinrichtungen zur Verfligung gestellt und die Algorithmen in assoziierten
Publikationen detailliert prasentiert. Im Gegensatz zu kommerziellen Produkten mangelt es
hierbei jedoch oft an Usability. Tabelle 4 gibt eine Ubersicht inklusive kurzer Beschreibungen

aktueller frei zuganglicher Softwarepakete.

Tabelle 4: Ubersicht frei zugénglicher Softwaresysteme im Bereich des Record-Linkage.

System Beschreibung Referenz

Big Match Dient dem Datenabgleich groRer Datenmengen. Besitzt jedoch kein User | [85]
Interface.

D-Dupe Ein graphisches Tool dessen Hauptaufgabe die Detektion von Duplikaten in | [86]

Netzwerken und deren Subnetzwerken ist.

DuDe Ein Toolkit bestehend aus mehreren Data-Matching Modulen. Dude besitzt | [87]
kein grafisches Interface sondern ist als Erweiterung fir Javaprojekte

konzipiert.

FEBRL Beinhaltet Algorithmen zur Datenvorverarbeitung, Deduplikation und dem | [82]
Data-Matching. Der Fokus liegt hierbei auf der Anwendung fiir medizinische
Datenbanken. Zudem ist es moglich mit FEBRL kiinstliche Testdaten anhand

realer Verteilungswerte zu generieren.

FRIL Stark parametrisierbare Data-Matching Software mit graphischem Interface. | [88]

Teilweise schwierig in der Handhabung.

Mainzlliste Webbasierter Pseudonymisierungsdienst inklusive gewichtsbasiertem, | bitbucket.org/
modularem Record-Linkage System. medinfo_mainz

/mainzlliste/

Merge ToolBox Umfangreiches Data-Matching Paket, das die Anwendung von Privacy- | [89]
Preserving-Record-Linkage mittels Bloom-Filtern gestattet. Die Module

bauen teilweise auf der kommerziellen Software Stata auf.
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System Beschreibung Referenz

OYSTER Wurde zur Erfassung und Verwaltung von Studentenakten erstellt. Enthalt | [90]

unter anderem Module fir probabilistisches Record-Linkage.

R RecordLinkage Paket fur probabilistisches Record-Linkage flr die Statistiksoftware ,R”. [91]

SILK Umfangreiches Data-Matching System, das Daten im RDF Format speichert | [92]

und abgleicht.

Sim Metrics Beinhaltet eine groRe Auswahl approximativer Textvergleichs-Funktionen. sourceforge.net

/projects/simm

etrics
TAILOR Umfangreiches Toolkit zu verschiedenen Anwendungen aus dem Bereich | [93]
des Record-Linkage inklusive einiger Klassifikationsmethoden.
WHIRL Beinhaltet einen regelbasierten Klassifikationsansatz. [94]

1.3.5. Maoglichkeiten der Evaluation

Das Hauptanliegen beim Datenabgleich ist das Erzielen einer moglichst hohen Abgleichs
Qualitat, durch die sich gleichzeitig die Gite von verschiedenen methodischen Ansatzen

abschéatzen und vergleichen lasst. Diese lasst sich anhand der Anzahl von echt bzw. falsch

Realitat
Ubereinstimmung Nicht-Ubereinstimmung
(MATCH) (NON-MATCH)
>
=
S8
= Echt Positive Falsch Positive
= 3
§ |3
] i (TRUE POSITIVES) (FALSE POSITIVES)
Ic O
=
ﬁ .
o s ¥
x :u: §, Falsch Negative Echt Negative
S =2
»n 0
S £ (FALSE NEGATIVES) (TRUE NEGATIVES)

Abbildung 8: Kontingenztafel mit dem Urteil der Klassifikation und der tatséchlichen Klasse.
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ermittelten Ubereinstimmungen, bzw. echt bzw. falsch ermittelten Nicht-Ubereinstimmungen
berechnen. Die vier beschriebenen Beobachtungen lassen sich tibersichtlich in einer vier Felder

Tafel, (siehe Abbildung 8) auf das Szenario des Record-Linkage angepasst, darstellen [33,95].

Durch die in der Vier-Felder Tafel aufgelisteten statistischen Maleinheiten (True Positives (TP),
False-Positives (FP), False-Negatives (FN), True-Negatives (TN)) lassen sich verschiedene
Qualitatsmale berechnen. Als haufig in der Statistik verwendete Qualitdtsmalle waren hierzu

die Spezifitat sowie die Sensitivitdt zu nennen (siehe Formel 11,12):

e (11)
S tat = ——
pezifitat = oy Fp
o TP (12)
Sensitivitat = TP+ FN

Die Spezifitdt berechnet den Anteil von Vergleichen, die als falsche Links klassifiziert wurden
und bei denen es sich tatsdchlich um Nicht-Ubereinstimmungen handelt. Die Sensitivitat
berechnet den Anteil von Vergleichen von echten Ubereinstimmungen an der Menge der
vorhergesagten echten Links. Fiir das Prifen von Methoden im Bereich des Record-Linkage,
wie beispielsweise die Prifung der Performanz verschiedener Klassifikatoren, zeigt sich, dass
der Spezifitdt im Regelfall eher niedrigere Wichtigkeit zugeordnet werden sollte [71]. Der
Grund hierfir ist, dass abhdngig von den Blocking-Variablen, beim Record-Linkage in der
Praxis, vor allem bei den Vergleichen von Nicht-Ubereinstimmungen, Gewichte berechnet
werden missen. Das Produkt der DatensetgroRen ist hierbei der Maximalwert der Vergleiche,
bei denen es sich in der Regel nur zum kleinsten Teil um echte Ubereinstimmungen handelt.
Bei dem GroRteil der Daten wird es sich also bei ansatzweiser korrekter Klassifikation um True-
Negatives, also Nicht-Ubereinstimmungen, die als falsche Links klassifiziert wurden, handeln.
Durch die hohe Zahl der True-Negatives im Vergleich zu auftretenden False-Positives werden in
den meisten Szenarien auch bei oftmals stark variabler Positionierung eines Klassifikators
Spezifitditswerte um 99% erzielt. Eine Ausrichtung eines Klassifikators an der maximalen
Sensitivitdt hingegen kann zur Nicht-Beriicksichtigung vieler echter Ubereinstimmungen

fuhren.

Ein geeigneteres Qualitatsmald im Kontext des Record-Linkage stellt deshalb der F-Measure-
Wert da [71,96]. Hierbei handelt es sich um den harmonischen Mittelwert der Sensitivitdt und

des positiv pradiktiven Wertes (siehe Formel 13, 14).
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TP (13)
PPV = I v Fp

PPV * Sensitivitat
FM =2 (14)

*
PPV + Sensitivitat

Beim positiv pradiktiven Wert (PPV) handelt es sich um den Anteil der korrekt klassifizierten,
echten Ubereinstimmungen an der Menge aller echten Ubereinstimmungen. Im Bereich des
Record-Linkage ware also ein hoher F-Measure-Wert mit einer hohen Abgleichsqualitat zu
interpretieren. Die Bestimmung der Qualitditsmerkmale ist nur dann moglich, wenn die echten
Ubereinstimmungen bekannt sind und sich die finale Klassifikation mit den tatsichlichen
Gegebenheiten abstimmen lasst. Hierdurch ist die Qualitat des Record-Linkage nur in Tests,
nicht aber im Realeinsatz berechenbar. Tests, bei denen die Ubereinstimmungen bekannt sind,
bezeichnet man auch als Gold-Standard [97]. Realdaten, zu denen eine Goldstandardanalyse
moglich ist, sind jedoch im Bereich des Record-Linkage extrem selten und es existieren hierzu

nur wenige Arbeiten [19].

1.4. Zielsetzung

Anhand einer Studie zu familidrem Darmkrebs (siehe Kapitel 1.2.1) wurden im Bereich des
Record-Linkage Unsicherheiten bei der manuellen, bindren Klassifikation, die zu einer
Verminderung der Abgleichsqualitdt fiihren konnten, erkannt (siehe Kapitel 1.2.2).
Unterstitzend, oder auch alternativ, existieren bereits verschiedene automatisierte
Klassifikationsansdtze, nennenswert sowohl untberwachte als auch (berwachte
Klassifikationssysteme (siehe Kapitel 1.3.3). Gerade zu Uberwachter Klassifikation existieren
jedoch im Moment keine klaren Standards. Auch werden dort zusétzlich zu den Originaldaten

Trainingsdaten bendétigt.

Da reale Trainingsdaten meist nicht zur Verfligung stehen, konnten alternativ kiinstliche
Trainingsdaten eingesetzt werden. Zu deren konkreter Beschaffenheit fanden sich jedoch
keine Empfehlungen. Ausgangspunkt der Arbeit war die Uberlegung, kiinstliche Trainingsdaten
zu erzeugen, die den Originaldaten in hohem MaRe dhneln. Basierend auf dieser Uberlegung
ergab sich die Zielsetzung, die optimale Parametrisierung bei der Konstruktion von kiinstlichen
Trainingsdaten bei der Uberwachten Klassifizierung zu untersuchen und darauf aufbauend

Empfehlungen zu erarbeiten.

Weiterhin fehlten Informationen und umfangreiche vergleichende Tests zur Performanz

unliberwachter sowie iberwachter Methoden im direkten Vergleich [38]. Das zu erarbeitende
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Uberwachte Klassifikationssystem sollte deswegen mit verschiedenen, uniliberwachten
Klassifikationsansatzen sowie der manuellen Schrankengebung, wie sie in der DKFS

Anwendung findet, verglichen werden.

Bei den zu vergleichenden uniiberwachten Methoden sollte es sich sowohl um eine einfache
Clustering-Methode, als auch um eine fortgeschrittene Technik aus dem Bereich des Active-

Learnings, die anderen uniliberwachten Methoden qualitativ (iberlegen ist, handeln [71].

Die Testdaten sollten sich in spezifizierten Parametern, der GréRe, dem Uberlappungsbereich,

sowie der Fehlerhaufigkeit unterscheiden.
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2. Material und Methoden

2.1. Vorbereitende Arbeiten und Arbeitsmaterial

2.1.1. Verwaltung der Arbeitsumgebung

Fir die angestrebten Analysen der gegebenen Arbeit waren aufwendige Berechnungen und
Arbeitsschritte notwendig, die manuell nicht mehr im realen Zeitrahmen zu bewaltigen
gewesen waren. Hierdurch bestand die Notwendigkeit fortgeschrittener
Programmiertechniken. Als zugrunde liegende Programmiersprache der implementierten
Programme fand Java 1.7 Verwendung — als Programmierinterface hierzu die Software Eclipse

(https://www.eclipse.org/).

Die Programme selber wurden kursiv und durch einen in spitzen Klammern nachfolgenden
Index entsprechend Kapitel 7 — Anhang E im Text aufgefiihrt. Die Erstellung der in dieser Arbeit
dargestellten Plots und einiger mathematischer Auswertungen erfolgte Uber die Statistik

Software ,R“ (http://www.r-project.org/).

Ein Abbild der finalen Arbeitsumgebung, also aller erzeugten Programme bzw. Klassen und
Daten, wurde zur nachhaltigen Speicherung vom Autor dieser Arbeit gesichert und
aufbewahrt. Fir die teilweise zeitintensiven Berechnungen war ein leistungsstarker Rechner
notwendig. Tabelle 5 skizziert die wichtigsten Hardwarekennziffern des zumeist verwendeten

Systems.

Tabelle 5: Wichtigste Hardwarekomponenten des Arbeitssystems.

Prozessor Arbeitsspeicher

Intel(R) Core™ i7-3770 CPU @3,4 GHz 8 GB-RAM

2.1.2. Record-Linkage: Spezifikation und Implementierung

Fir die zugrunde liegenden Tests und Entwicklungen wurde eine leicht abgewandelte Variante
des probabilistischen Privacy-Preserving-Record-Linkage, das auch in der Familienstudie
Anwendung fand, verwendet [67]. Hierbei handelte es sich um eine Implementierung des

Fellegi und Sunther Algorithmus nach Spezifikation von Martin Meyer [31,39]. Die konkrete
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Implementierung wurde innerhalb des Programmes RecordLinkage<1>, sowie der assoziierten

Klasse RecordLinkagelnput<2> umgesetzt.

Als Input dienten diesem System jeweils zwei Datensatze, die bereits standardisierte,
einwegverschlisselte Kontrollnummern von identifizierenden Daten (IDAT) beinhalteten. Das
Format dieser Daten musste dem Rickgabeformat des Programmes
GenerateControlNumbers<6> entsprechen, das zugrunde liegende Personendaten gemal
Regelvorgaben aus UNICON [55] (siehe Kapitel 1.3.2) erst standardisiert und dann mithilfe der
Hash-Funktion SHA-2 (256-Bit) [62] einwegverschlisselt.

Tabelle 6 beschreibt die in dieser Arbeit genutzten identifizierenden Basisdaten wie auch die
hierauf basierenden standardisierten, einwegverschliisselten Kontrollnummern so wie sie von
der Klasse GenerateControlNumbers<6> erzeugt werden.

Tabelle 6: In dieser Arbeit zur Gewichtsberechnung genutzte IDAT.

IDAT Segmentierung in Kontrollnummern.
Nachname NACHNAME1, NACHNAME2, NACHNAME3
Vorname VORNAME1, VORNAME2, VORNAMES3,
Geburtsdatum GEBURTSTAG, GEBURTSMONAT, GEBURTSJAHR
PLZ PLZ

Wohnort ORT

Geschlecht GESCHLECHT

Personen-Identifikationsnummer PID

Wahrend des Standardisierungsschrittes wurdenzudem eine Reihe von Kontrollnummern, die
ausschlieBlich als Blocking-Variablen dienten, erzeugt. Hierbei handelte es sich um den
phonetischen Nachnamen, den phonetischen Vornamen sowie das Geburtsdatum (siehe

Tabelle 7).

Tabelle 7: Blocking-Variablen inklusive der IDAT, aus der die BV generiert wurden.

IDAT Blocking-Variablen

Nachname PHO_NACHNAME

Vorname PHO_VORNAME

Geburtsdatum GEBURTSDATUM
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Bei diesen Variablen wurde auf eine Segmentierung wahrend der Standardisierung verzichtet.
Vorname und Nachname wurden anhand der Kolner Phonetik in ihre entsprechende
phonetische Variante generalisiert [57]. Der Algorithmus zur Kélner Phonetik stammt aus einer
von Apache zur Verfligung gestellten externen Programmier-Bibliothek
(http://commons.apache.org/proper/commons-codec/). Wahrend bei der Umsetzung der
Familienstudie das Geburtsjahr als Blocking-Variable verwendet wurde, fiel in dieser Arbeit die
Wahl auf das Geburtsdatum, da das Geburtsjahr eine starke Generalisierung darstellt und
durch die Verwendung des spezifischeren Geburtsdatums wesentlich weniger
Ubereinstimmungen in der konkreten Blocking-Variable und demnach nachfolgende
Gewichtsberechnungen erzeugt wurden. Diese Mallnahme erschien aufgrund der vielen
kommenden Auswertungen, in Hinblick auf realisierbare Performanz, notwendig. Beim
Blocking handelte es sich um Standard-Blocking (siehe Kapitel 1.3.2) auf den drei genannten
Blocking-Variablen. Potentielle Links wurden nur einmalig abgespeichert, auch wenn diese in

mehreren Variablen libereinstimmten [67].

Zu den potentiellen Links fand eine Gewichtsbestimmung statt. Bei dieser wurde ein durch
Fellegi und Sunther [31] konzipierter Ansatz verwendet. Hierbei werden vom Typ her gleiche
Kontrollnummern eines potentiellen Links (also beispielsweise das Geschlecht zweier
Personen) abgeglichen und Einzelgewichte berechnet. Die Hohe dieses Einzelgewichtes basiert
auf den Haufigkeiten der verglichenen Auspragungen (u-Wert) und den in dieser Variable
erwarteten invertierten Fehlerhaufigkeiten (m-Wert). Siehe Kapitel 1.3.3 fiir exaktere

Erlduterungen. Die Einzelgewichte wurden nachfolgend zu Gesamtgewichten aufaddiert.

Um zu gewahrleisten, dass bei unterschiedlich auftretender Reihenfolge von Attributswerten
in den zugrunde liegenden IDAT, wie beispielsweise innerhalb von Doppelnamen,
Ubereinstimmungen zu erkennen sind (z.B. Miller-Wagner/Wagner-Miiller), wurden
Matching-Arrays fir Vornamen (VORNAME1, VORNAME2, VORNAME3) und Nachnamen
(NACHNAME1, NACHNAME2, NACHNAME3) verwendet, in denen jeweils alle enthaltenen
Kontrollnummerausprdagungen paarweise im Kreuzprodukt miteinander abgeglichen wurden.
Zuerst wurden hierbei die Kontrollnummern auf paarweise Ubereinstimmungen untersucht.
Beim Auffinden von Ubereinstimmungen wurde ein Einzelgewicht berechnet und die
konkreten Kontrollnummerauspragungen wurden aus dem jeweiligen Matching-Array entfernt
bis nur noch Nicht-Ubereinstimmungen oder {iberhaupt keine Werte mehr iibrig waren.

AnschlieBend wurden Gewichte zu den verbleibenden Nicht-Ubereinstimmungen berechnet.

Die Gewichtung der potentiellen Links wurde in eine Gewichtsdatei geschrieben. Jeder

potentielle Link belegte hierbei eine Zeile und bestand aus den PIDs der verglichenen Eintrage
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der verschiedenen Datensitze, sowie deren Ubereinstimmungsgewicht. Abbildung 9 illustriert

den schematischen Ablauf des in der Arbeit verwendeten Record-Linkage-Systems.

Einlesen der zu einem n
Testset gehdrenden )
Teilsets
+
Blocking
NACHNAME
Gewichts-bestimmung ﬁ/ Gewichte
Blocking
VORNAME
v ,
Gewichts-bestimmung Zusatzliche
Gewichte
Blocking
GEBURTSDATUM
v \
Gewichts-bestimmung ZUSét?|iChe
Gewichte

Gewichts-
St

Abbildung 9: Schematischer Ablauf des fiir diese Arbeit
verwendeten Record-Linkage-Systems.

2.1.3. Beschreibung der verwendeten klinischen Daten

Fur diese Arbeit wurde ein realer Datensatz, bestehend aus Personen identifizierenden Daten
zu 46.629 Patienten des Klinikums GroRhadern (http://www.klinikum.uni-muenchen.de)
verwendet. Die Patientendaten wurden dabei im Vorfeld anhand des Programmes
GenerateControlNumber<6> standardisiert und einwegverschlisselt. Es handelte sich dabei um
eine zuféllige Stichprobe aus einer Gesamtmenge von insgesamt 466.286 Patienten, die in den
Jahren 2008-2012 im Klinikum zur Behandlung registriert wurden (dieser Datensatz enthielt

keine Daten von Patienten, deren Aufnahme storniert wurde). Der zur Verfligung gestellte
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Datensatz entsprach somit einem Anteil von ca. 10% der Patienten, die wahrend des

genannten Zeitraumes tatsachlich behandelt wurden.

Durch die GroBe des Datensatzes sollte eine relativ bevolkerungsnahe und realistische
Verteilung von Attributen wie beispielsweise Vornamen oder Nachnamen in der Region zu
erwarten sein. Dadurch, dass die meisten Patienten spekulativ aus dem GroRRraum Miinchen
und Umgebung stammen sollten, war zu erwarten, dass der Datensatz im Gegensatz zu
komplett kiinstlichen Datensatzen zudem interessante Verwandtschaftsbeziehungen wie etwa
das Vorkommen von Zwillingen enthielt, die in der Regel hohe Anforderungen an ein Record-

Linkage stellen.
2.2. Uberwachte Klassifizierung — angestrebtes Vorgehen

Im Zuge dieser Arbeit galt es unter anderem, ein Uberwachtes Klassifizierungssystem zu
entwickeln und mit uniberwachten Klassifikationstechniken abzugleichen. Dieses liberwachte
System sollte dabei, angepasst an die Originaldaten, Trainingssets konstruieren auf denen ein
optimaler Trainingsset-spezifischer Klassifikator ermittelbar ware welcher schlieflich als
Klassifikator auf den Originaldaten verwendet werden kénnte. Die genaue Konstruktion der
Trainingssets in Bezug auf die einzelnen Konstruktionsparameter wie beispielsweise die GroRe
der Teilsets sollte innerhalb dieser Arbeit ermittelt, und auf beste Performanz (Abgleichsgiite)
hin optimiert werden (siehe Kapitel 2.5 bzw. 2.6). Der generelle Ablauf der angestrebten
Uberwachten Klassifizierungsmethodik konnte aber bereits spezifiziert werden und unterteilte

sich in folgende Schritte (siehe auch Abbildung 10):

1. Bilden von N Trainingssets A und B, basierend auf den abzugleichenden originalen
Datensatzen A und B nach Konstruktions-Verfahren X (Details zu X galt es zu
erarbeiten). N richtet sich hierbei nach der Performanz des zugrunde liegenden
Hardwaresystems, wobei ein hoher Wert den maximal moglichen Fehler verringert.

2. Aufden erzeugten N Trainingssets wird ein Record-Linkage durchgefihrt.

3. Bestimmung des optimalen Klassifikators auf jedem der erzeugten N Trainingssets. Die
optimale Schranke wird hierbei durch nachvollziehbare Ubereinstimmungen (gleiche
IDs) innerhalb des Uberlappungsbereiches der Trainingsdaten und dem hieraus
berechenbaren F-Measure-Wert berechnet.

4. Zu den ermittelten N Trainingsset spezifischen Klassifikatoren wird ein neuer
Klassifikator, der das arithmetische Mittel der einzelnen Klassifikatoren darstellt,

berechnet. Dieser neue Wert dient als Klassifikator fiir die Originaldaten.
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5. Die Originaldaten werden per Record-Linkage abgeglichen.

6. Der in (4) berechnete Klassifikator dient als uniliberwachter Klassifikator auf den

Originaldaten.

Testset A

J

Trainingsset A
(1...N)

Trainingsset-
spezifische
Klassifikatoren

Testset
Gewichtsdatei

P Testset B
Erzeugen von N B
Trainingssets nach | | .
Methode X
¢ Trainingsset B
(1...N)
Record-Linkageauf | |
Trainingsets 1...N
Trainingsset
Bestimmung optimaler Gewichtsdatei
Klassifikatoren fir < (1..N)
Trainingssets 1... N
Bildung des Arithmetischen Mittels |
der Trainingsset-Klassifikatoren
Klassifikator fur
Testset A/
Testset B
A
|
Record Linkage auf ¢
Testset A / Testset B h [
1
1
1
1
I :
Klassifikation der Testdaten unter \
Verwendung des berechneten - - !

Klassifikators

Abbildung 10: Konzept zur angestrebten liberwachten Klassifizierungsmethodik.

Zur Entwicklung und Parameteroptimierung des Konstruktionsverfahrens X wurden in dieser

Arbeit umfangreiche Tests und Performanzvergleiche beziiglich der Abgleichsgiite benétigt.

Diese sollten anhand einer Vielzahl von Testsets, basierend auf den unter Kapitel 2.1.3

beschriebenen klinischen Daten erstellt werden.
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2.3. Erzeugung von Testsets anhand klinischer Daten

2.3.1. Notwendigkeit der Testset-Erzeugung

Zur Einschatzung bestehender als auch neu entwickelter Klassifizierungsmethoden waren
Datensatze notwendig, anhand derer sich Glitekriterien quantifizieren lielen und somit einen
Vergleich der verschiedenen Methoden ermoglichten. Solche Datensatze werden im Bereich
des maschinellen Lernens auch als Testsets bezeichnet [80]. Es war davon auszugehen, dass je
nach Beschaffenheit der Testsets unterschiedliche Klassifizierungsmethoden zu verschieden
guten Ergebnissen fliihren wiirden. Aus diesem Grund war es ratsam, eine moglichst breite
Palette an Testsets mit verschieden Charakteristiken als Datengrundlage fir Analysen zu
verwenden. Im Bereich des medizinischen Record-Linkage ist die Anzahl an offen zugénglichen,
geeigneten Testsets jedoch beschrankt oder vom Kontext her unpassend. Das Problem liegt
hierbei nicht grundsatzlich im Zugang zu Patientendaten an sich, sondern in der notwendigen
Beschaffenheit der Testsets. Ein geeignetes Testset hat aus jeweils zwei Datenmengen zu
bestehen, die eine gemeinsame Teilmenge besitzen. Diese gemeinsame Teilmenge muss
bekannt und (iber gemeinsame IDs oder andere Schlisselelemente eindeutig zueinander

zuordenbar sein (siehe Abbildung 11).

Teilset A Teilset B

ID 23 ID 144
ID 24 ID 145
ID 25 ID 26
D 26 4'-’/' ID 146
ID 27 1\ ID 147
ID 28 D27

ID 29 1D 148

L—" L—"

\/ \/

Abbildung 11: Darstellung eines fiir im Kontext des Record-Linkage nutzbaren Testsets.

Man bezeichnet diese Teilmenge auch als Menge der echten Ubereinstimmungen (Matches).
Im weiteren Verlauf der Arbeit wurden die groReren der beiden Teilsets eines Datensets
jeweils als Teilset A und die kleineren der Teilsets als Teilset B bezeichnet. Nach einem Record-
Linkage-Durchlauf lie sich die Gilite des Record-Linkage anhand der Diskrepanz der
Ubereinstimmungen und Nicht-Ubereinstimmungen zu den als echt bzw. falsch klassifizierten

Links berechnen (siehe Kapitel 1.3.5).
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Den Giiteberechnungen lag die Annahme zu Grunde, dass die echten Ubereinstimmungen in
den Testsets korrekt zueinander zugeordnet wurden. Auf Realdaten gibt es hierzu keine
Garantie, allerdings spricht man von einem Goldstandard, wenn die Ubereinstimmungen im
Klartext manuell kontrolliert zueinander zugeordnet werden [19]. Im Kontext von
Patientendaten, die beim Zusammenfiihren aus verschiedenen Quellinstitutionen eine
Einwegverschliisselung bendtigen, ist eine solche Zuordnung im Klartext, und somit die
Erzeugung eines dem Goldstandard entsprechenden Datensatzes in der Regel nicht oder nur
unter speziellen Bedingungen (beispielsweise innerhalb einer Kohorte) maoglich. Diese Arbeit
strebte Analysen auf einem umfangreichen Set verschieden zusammengesetzter Testsets an.

Hierdurch wurden Methoden bendtigt, die die Konstruktion solcher Testsets erlaubten.

2.3.2. Spezifizierung der Parameter zur Testset-Erzeugung

Zu den in dieser Arbeit durchgefiihrten Untersuchungen sollten die gegebenen Patientendaten
des Klinikums (siehe Kapitel 2.1.3) genutzt werden, um eine Reihe von kiinstlichen, jedoch auf
Realdaten basierenden Testsets zu erstellen. Fir eine umfangreiche Auswahl an Testsets
wurden interessante und passende Charakteristiken spezifiziert, anhand deren Kombination
die verschiedenen Testsets letztendlich erstellt werden sollten. Bei den spezifizierten
Charakteristiken handelte es sich um die GroBe der Teilsets, die GroBe des
Uberlappungsbereiches, also der Teilmenge von Patienten mit gleicher ID in beiden Teilsets,
sowie die individuell auftretenden Fehlerraten zwischen den Attributen der Patienten
innerhalb des Uberlappungsbereiches (siehe Tabelle 9). Zur Vereinfachung wurde die
Haufigkeit des Auftretens von Fehlern im Uberlappungsbereich auch als Beschaffenheit oder
Qualitatsstufe des jeweiligen Testsets bezeichnet. Ahnliche Charakteristiken werden bereits in
Arbeiten von Peter Christen zur Erzeugung kinstlicher Testsets verwendet [71]. Jede
Charakteristik besall mogliche Auspriagungen wie in Tabelle 8 weiter spezifiziert. Dabei
handelte es sich um die mogliche Anzahl von Patienten pro Teilset (GroRe), die Anzahl von
identischen Patienten in beiden Teilsets (Uberlappung) sowie die Qualititsstufe. Eine
Qualitatsstufe von 1 beschrieb eine gute Datenqualitdt d.h. ein geringes Auftreten von Fehlern
in Attributswerten von Patienten im Uberlappungsbereich, wohingegen der Wert 10 den
schlechtesten Wert, also ein haufiges Auftreten von Fehlern, darstellte. Anzumerken ist, dass
GroRenanordnung, (also [100:1000] bzw. [1000:100]) der Teilsets fir diese Arbeit keine Rolle
spielte, wodurch sich die hieraus ergebenden Kombinationen auf 10 beschrankten. Insgesamt
konnten somit 400 Testsets mit einzigartiger Kombination von Charakteristiken erzeugt

werden (siehe Formel 15).
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Tabelle 8: Ausprdgungsliste der Konstruktionsparameter.

GroBe Uberlappung Qualitatsstufe
100 5% 1-10
1000 25%
10000 50%
25000 75%

(IGroRe| + |Teilsets| — 1)!

(15)

|Testsets| = x |Uberlappung| x |Beschaf fenheit|

(|GroRke| — 1)!|Teilsets|!

“4+2-1)! 5!
TT@— iz 0T g X 10 = 10 X Ax A0 =400

Durch die hohe Anzahl an Testsets deckte die Arbeit somit eine sehr breite Palette von
Szenarien bzw. Datenbestidnden ab, die dhnlich auch in der Realitdt auftreten konnten.
Abbildung 12 zeigt hierbei den schematischen Ablauf der Automatisierung der Testset-
Erzeugung. Diese wurde mithilfe des Programmes CreateTestsets<7> umgesetzt. Die 400
Testsets, jeweils bestehend aus einem Teilset A, bzw. einem Teilset B, belegten insgesamt 5,04

GB Speicherplatz.

Fiir den weiteren Verlauf der Arbeit war es wichtig, die Kenntnis zur genutzten
Parametrisierung der Testdaten zu dokumentieren. Dies geschah direkt Gber den Dateinamen

(siehe Abbildung 13).

4 (= Testsets
4 = A
A000
A001
A002
A003
A0D0DA4
A00S5
A00G6
A007
A008

Abbildung 12: Ausschnitt aus dem Projektverzeichnis der Programmierumgebung.

Ein fUhrender GroRbuchstabe beschrieb dabei das Teilset (A bzw. B), gefolgt von durch
Unterstrich separierten Parameterwerten. Der erste numerische Wert hierbei kodierte die

GroRenkombination, der zweite Wert die Uberlappung und der dritte Wert die Beschaffenheit.
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Einlesen der
Klinikumsdaten

v

Definieren der Parameter:

Anzahl GréRenkombinationen := 10
Anzahl Uberlappungsvarianten := 4
Anzahl Qualitatsstufen := 10

v

Initialisieren der Parametrisierung:
a :=0 // GréRenkombination

0 :=0// Uberlappung

q:=0// Qualitat

v

Erzeugung des Testsets mit der P
aktuellen Parametrisierung

I 2

q++

g < Anzahl der
Qualitatsstufen

o < Anzahl der
Uberlappungsv.

a++ 0:=0

nein

a < Anzahl der
GroéRenkomb.

Abbildung 13: Automatisierter Ablauf der Testset-Erzeugung.
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Die numerischen Werte standen hierbei stellvertretend fur die in Tabelle 9 beschriebenen

Auspragungen.

Tabelle 9: Kodierung der Testset-Benennung. (siehe Abbildung 13)

GroRRenkombination Uberlappung Beschaffenheit

Vermerk im Wert Vermerk im Wert Vermerk im Wert

Dateiname Dateiname Dateiname
0 [100:100] 0 5% 0 Q1
1 [100:1000] 1 25% 1 Q2
2 [100:10000] 2 50% 2 Q3
3 [100:20000] 3 75% 3 Q4
4 [1000:1000] 4 Q5
5 [1000:10000] 5 Q6
6 [1000:20000] 6 Q7
7 [10000:10000] 7 Q8
8 [10000:20000] 8 Q9
9 [20000:20000] 9 Q10

2.3.3. Konkrete Implementierung der Testset-Erzeugung

Erzeugung von Teilset A

Bei der Erzeugung der individuellen Testsets zu dieser Arbeit wurde wie folgend vorgegangen.
Aus dem Basisdatensatz des Klinikums wurden Daten entsprechend der GroBe des zu
erstellenden groBeren Teilsets, basierend auf dem fir das Testset zugeordneten
GroRenparameter, gezogen (siehe Abbildung 14a). Es handelte sich hierbei um Ziehen ohne
Zuricklegen, weswegen in diesen neu erstellten Teilsets jeweils keine Patienten doppelt
vorkamen (unter der Annahme, dass die Basisdaten des Klinikums weitestgehend duplikatfrei
sind). Weiterfliihrend wurden die jeweils groReren Teilsets eines Testsets als Testset A

bezeichnet.
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a Klinikumsdaten: b Klinikumsdaten: Teilset B:
Klinikumsdaten Verbleibender Pool Verbleibender Pool Ohne Matchmenge
> »
Teilset A
I
€ i TeilsetB
] ‘- _____
\ 4
c d
........... 4. —————
Matchmenge: Matchmenge: Matchmenge:
Teilset A Identische Kopien Identische Kopien Inklusive Fehler

Abbildung 14: Erzeugung individueller Testsets basierend auf unterschiedlicher Parametrisierung.

Erzeugung von Teilset B

Auffiillen des Teilsets abziiglich des Uberlappungsbereiches

Die Erstellung der kleineren Teilsets, die weiterfiihrend jeweils als Teilset B bezeichnet

wurden, stellte sich als etwas komplexer dar. Das jeweilige Teilset B wurde gemall des

gegebenen GroRenparameters aus demselben Topf an noch verbleibenden Klinikumsdaten,

aus dem bereits Teilset A erstellt wurde, mit Patienten aufgefillt. Zu beachten war allerdings,

dass der Anteil der Uberlappung in diesem Teilset B zu diesem Zeitpunkt noch nicht belegt

wurde (siehe Abbildung 14b).

Erstellen des Uberlappungsbereiches

Zu dem noch nicht befiillten Uberlappungsbereich wurden nun Patienten (ohne Duplikate) aus

dem Teilset A in das Teilset B kopiert. Der Uberlappungsbereich enthielt somit die Patienten,

die sowohl in Teilset A als auch in Teilset B auftraten und die tber die gleich bleibende PID in

beiden Datensatzen erkennbar waren (siehe Abbildung 14c).
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Ohne weitere Bearbeitung wire dieser Uberlappungsbereich nun durch ein Record-Linkage
problemlos zu identifizieren gewesen, da es sich um direkte Kopien, also 100%ige
Ubereinstimmungen in den Attributen zwischen den Patienten der beiden Teilsets handelte.
Die Testsets dienten jedoch dem Zweck, realistische Szenarien so gut wie moglich zu
simulieren. Aus diesem Grund wurden die Attribute der Patienten im Uberlappungsbereich
gemaR dem Beschaffenheitsparameter des jeweiligen Testsets verunreinigt bzw. mit Fehlern

versehen.

Einfiigen von Fehlern in Kontrollnummern der Patienten innerhalb des

Uberlappungsbereiches

Wahrend dieses Schrittes wurden Fehler entsprechend der durch die einzelnen
Beschaffenheitsstufen (1 bis 10) definierten Fehlerhaufigkeiten in die Kontrollnummern der
Patienten im Uberlappungsbereich (ibertragen. Die verwendeten Fehlerhiufigkeiten leiteten
sich hierbei aus zwei Berichten ab, zum einem aus einen Bericht aus dem Krebsregister NRW
[73], zum anderen zu generell empfohlenen Schatzwerten der m-Werte wahrend eines
Record-Linkage (also den invertierten Fehlerhaufigkeiten) in Krebsregistern [39]. Anhand der
beiden Referenzen wurden hierbei die Beschaffenheitsstufen 1 bzw. 2 erstellt, die eine gute
Datenqualitadt, so wie sie in gepflegten Registern vorkommen sollte, darstellen sollten. Die
Differenz in den attributabhangigen Fehlerwahrscheinlichkeiten zwischen Beschaffenheitsstufe
1 und Beschaffenheitsstufe 2 wurde verwendet, um die Fehlerhaufigkeiten in den restlichen
Beschaffenheitsstufen (3-10) zu ermitteln. Die Beschaffenheitsstufe 10 stellte somit Testsets
mit der niedrigsten Datenqualitat dar. Die genauen Fehlerhaufigkeiten, abhdngig von der

Beschaffenheitsstufe, werden in Tabelle 10 bzw. Abbildung 15 wiedergegeben.

Tabelle 10: Fehlerhdufigkeiten abhdngig von Qualitdtsstufe und Attributsgruppe

Fehlerquote nach

Attributsgruppe Konkrete Attribute Beschaffenheit

Start Faktor

Namensattribute NACHNAME1, NACHNAME 2 , NACHNAME 3, 0,025 0,025
VORNAME1, VORNAME2, VORNAME 3

Datumsangaben GEBURTSTAG, GEBURTSMONAT, 0,01 0,01
GEBURTSJAHR

Adressangaben PLZ,ORT 0,05 0,05

Geschlecht GESCHLECHT 0,001* 0,005
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Der Startwert gibt die initialen Fehlerhaufigkeiten in den einzelnen Attributsgruppen bei einer
Beschaffenheitsstufe 1 wieder. Fir jede Beschaffenheitsstufe erhohte sich die Fehlerhaufigkeit

um einen attributsspezifischen Faktor, der, wie erwahnt, der Differenz aus Q1 und Q2

entsprach.
= -
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Adressangaben
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Abbildung 15: Mdégliche Fehlerhdufigkeiten in Testsets abhédngig von Qualitétsstufe und Attributsgruppe.

Grundsatzlich gibt es verschiedene Vorkommen von Fehlern, die in den verschiedenen
Attributsgruppen verschieden haufig vorkommen. Diese wurden nach eigenem Ermessen wie

folgend spezifiziert:

o Deformationsfehler: Fehler, die eine Auspragung in eine nicht valide Auspragung
umwandeln.

e Transformationsfehler: Fehler, die eine Auspragung in eine andere valide Auspragung
umwandeln.

e Fehlender Wert: Die Entitat besitzt flr dieses Element keine Auspragung.

Fehlende Werte sind besonders haufig bei den Adressangaben, aber generell in jedem Feld
beobachtbar. Abgleiche mit fehlenden Werte werden im Record-Linkage neutral gewichtet.
Dies bedeutet, dass es beim Auftreten von fehlenden Werten in echten Ubereinstimmungen

schwierig fallen kann, diese wegen niedrigerem Gewicht als echte Links zu klassifizieren.

Bei Fehlern im Feld Geschlecht, bzw. in Datumsangaben handelt es sich meist um
Transformationsfehler. Dies heillt, eine Attributsauspragung wird in eine tatsachlich
vorkommende andere Auspragung umgewandelt. Auch im Namen und den Adressfeldern

diirfte die Mehrzahl der Fehler auf Transformationsfehler zuriickzufiihren sein. Als Beispiel sei
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der Name ,Meyer” zu nennen. Geldufige Fehler dirften hierzu gleichklingende
Namensvarianten sein wie beispielsweise ,,Meier”. Doch nicht nur phonetisch gleichklingende
Namen bereiten hier Probleme. Auch Namensvarianten wie ,Christa” bzw. ,,Christel” fihren zu
Transformationsfehlern. Weitere Transformationsfehler treten beispielsweise durch
Namensdnderung (z.B. EheschlieBung) oder Adressdnderungen auf. Dies kann zu einer
positiven Gewichtung von Links flihren, bei denen es sich eigentlich nicht um echte
Ubereinstimmungen handelt, und einer gleichzeitigen Verringerung des Gesamtgewichtes der
tatsachlich Ubereinstimmenden Patienten. Transformationsfehler erhéhen demnach die

Verwechslungsgefahr mit anderen Individuen.

Deformationsfehler, die in komplett neuen Varianten resultieren, diirften eher seltener sein.
Diese treten nur dann auf, wenn eine Auspragung etwa durch das zufallige Hinzufliigen oder
Weglassen eines Buchstabens so stark verandert wird, dass ein neuer, in der Werteverteilung
bisher noch nicht aufgetretener Auspragungswert geschaffen wird. Das Weglassen des
Buchstabens ,r“ im Namen ,,Christoph” wiirde so in der Ausprdagung , Chistoph” resultieren.
Dies ware eine Auspragung, die wohl in dieser Form nicht in normaler Namensverteilung
vorkommen wirde. Deformationsfehler flhren demnach beim Durchfiihren des
Kontrollnummerabgleichs, ahnlich wie bei fehlenden Werten, im Normalfall zu einer generell

schwéacheren Gewichtung.

Zu den Haufigkeiten der vorkommenden Fehler in medizinischen Daten konnten keine
Angaben gefunden werden. Die Fehlerhaufigkeiten wurden aus diesem Grund heuristisch, also

basierend auf eigenen Erfahrungen, geschatzt (siehe Tabelle 11 sowie Abbildung 16).

Tabelle 11: Hdufigkeit von Fehlerarten in Abhdngigkeit der gegebenen Attributsgruppe.

Attributsgruppe | Transformation Deformation Fehlender Wert

Namensattribute 70% 20% 10%
Datumsangaben 80% 0% 20%
Adressangaben 40% 30% 30%
Geschlecht 70% 5% 25%

Entsprechend der gegebenen Haufigkeiten wurden nun Fehler in die Kontrollnummern der
Patienten innerhalb des Uberlappungsbereiches des kleineren Teilsets eingefiigt. (siehe
Abbildung 14d). Hierbei wurde fiir jede Attributsausprdgung ein zufilliger FlieBkommawert
zwischen 0 und 100 generiert und mit den gegebenen Fehlerraten abgeglichen. Lag der Wert

unter dem gegebenen Schwellwert wurde ein Fehler nach nachfolgendem Schema erzeugt.
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Abbildung 16: Héufigkeit der Fehlerart in Abhdngigkeit der gegebenen Attributsgruppe.

Bei Deformationsfehlern wurde ein zufdlliges Symbol in den Hash-Werten durch ein nicht im
Hexadezimalcode vorkommendes Zeichen ersetzt. Hierdurch entstanden neue deformierte
Werte, die in dieser Form aulRer bei Auftreten des exakt selben Fehlers bisher nicht in der

Wertemenge enthalten waren.

Bei Auftreten von Transformationsfehlern wurde die alte Auspragung durch eine neue aus der

Gesamtwertemenge der Klinikumsdaten stammende Auspragung ersetzt.

Bei fehlenden Werten wurde der alte Hash-Wert durch einen leeren String ersetzt.
Ubertragung der Matches in das Teilset B

Der mit Fehlern versehene Uberlappungsbereich konnte nun an die bereits bestehende Liste

an Eintragen in Teilset B angehangt werden (siehe Abbildung 14 e).

2.3.4. Auswertung der Testsets

In den nachfolgenden Analysen (siehe Kapitel 2.6) galt es unter anderem, die Gite
verschiedener binarer Klassifikatoren auf den 400 gegebenen Testsets zu prifen. Hierbei war
nicht nur der Vergleich der Klassifikatoren untereinander interessant, sondern auch die
Information, wie nahe sich diese Klassifikatoren mit ihrer Vorhersage qualitativ an die auf dem

jeweiligen Testset bestmogliche Glite annahern konnten. Es galt also, initial zu jedem Testset



52 Material und Methoden

die bestmogliche Gite zu bestimmen. Definiert wurde diese in dieser Arbeit als der vom
jeweiligen Testset abhdngige maximale F-Measure-Wert, der durch eine binare Klassifikation
auf dem ausgewadhlten Testset erzielt werden kann. Die nachfolgenden Unterkapitel erldutern,
wie bei der Bestimmung der testsetspezifischen, maximalen F-Measure-Werte vorgegangen

wurde.
Record-Linkage auf den Testsets

Zu jedem der 400 Testsets wurde mithilfe des unter Kapitel 2.1.2 beschriebenen Systems ein
Record-Linkage durchgefiihrt. Somit wurden 400 testsetabhdngige Gewichtsdateien erzeugt,
auf denen weiterfiihrend der jeweils bestmdgliche F-Measure-Wert berechnet werden konnte.
Die Automatisierung des Record-Linkage auf den 400 gegebenen Testsets wurde mithilfe des

Programmes CreateTestSetsWeights<8> realisiert.
Bestimmung des optimalen F-Measure-Wertes

Zu den testsetspezifischen Gewichtsdateien wurde der jeweils hochstmogliche F-Measure-
Wert berechnet. Der Algorithmus hierzu war trivial. Zu einem Schrankenwert, der die
Gewichtsdatei in echte und falsche Links unterteilte, lieRen sich jeweils anhand der bekannten
ID Ubereinstimmungen zwischen Teilset A und Teilset B die TP, FP sowie FN berechnen. Aus
diesen Bemessungen liell sich zum gegebenen Schrankenwert jeweils der F-Measure-Wert
berechnen. Angefangen beim niedrigsten in der jeweiligen Gewichtsdatei anfangenden
Gewichtswert wurde diese Schranke inkrementell um einen Wert von jeweils 0,1 in Richtung
hoherer Gewichte verschoben. An jeder Position erfolgte eine Berechnung des F-Measure-

Werts . Der Maximalwert wurde gespeichert und in eine Datei geschrieben.

Das Inkrement von 0,1 hatte grundsatzlich auch kleiner gewahlt werden kénnen, um eine noch
genauere Messung zu gewahrleisten, resultierte aber in einer dem Faktor entsprechenden
linearen Laufzeit-Erhéhung der Prozedur. Fiir diese Arbeit erschien eine Approximation auf
eine Nachkommastelle jedoch ausreichend. Somit muss dem Leser an dieser Stelle klar sein,
dass es theoretisch auch hohere Maximalwerte fiir den F-Measure-Wert gabe, was jedoch nur
dann der Fall ware, wenn mehrere Links ein unterschiedliches Gewicht innerhalb eines

Gewichtsintervalles von 0,1 besaRen.

Die konkrete Implementierung hierzu fand sich im Programm FMeasure<9>, mittels dessen
die automatisierte Berechnung des F-Measure-Wertes auf allen 400 gegebenen
Gewichtsdateien durchgefiihrt wurde. Die Ergebnisse wurden dabei gesammelt in eine Datei

Ubertragen. Weitere Optimierungsverfahren hierzu waren denkbar.
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Bestimmung der optimalen Schranke

In der Praxis findet sich oft ein optimaler F-Measure-Wert, der sich nicht nur auf eine
Gewichtsposition beschrankt, sondern ein groReres Gewichtsintervall abdecken kann.
Abbildung 3a verdeutlicht diesen Fakt. Der optimale F-Measure-Wert ist hierbei zwischen den
beiden Erhebungen zu erwarten, eine Klassifikationsschranke wiirde also unabhangig von der
Position innerhalb des Intervalls zwischen den beiden Erhebungen im selben F-Measure
resultieren. Fir die Uberwachte Klassifizierung, die in den nachfolgenden Kapiteln naher
vorgestellt wird, musste jedoch auf Trainingsdaten ein exakter Schrankenwert zum gegebenen
maximalen F-Measure-Wert bestimmt werden, der spater auf den Testdaten als Klassifikator

verwendet werden konnte. Die Festlegung dieses Wertes wurde wie nachfolgend gehandhabt:

1. Gibt es ein Gewichtsintervall, Uber das sich der maximale F-Measure-Wert streckt, so
wird als optimaler Schrankenwert der Mittelwert dieses Intervalls spezifiziert.
2. Gibt es mehrere Intervalle dieser Art, so wird das breiteste Intervall zur Ermittlung der

Schranke, gewahlt und Regel 1 wird auf dieses Intervall angewandt.
Graphische Auswertung in Bezug auf die Parametrisierung

Die individuellen Testsets wurden anhand der Kombination verschiedener
Konstruktionsparameter erzeugt. Interessant war es hierbei, ob und inwiefern die
verschiedenen  Konstruktionsparameter  einen  Einfluss auf die  bestmdgliche

Klassifikationsqualitat besaRen.

Hierzu wurden die zu den 400 Testsets ermittelten maximalen F-Measure-Werte jeweils
entsprechend der moglichen Ausprdagungen der genannten Parameter gruppiert und der
durchschnittliche F-Measure-Wert innerhalb dieser Gruppen abhangig von der Auspragung des

Parameters grafisch dargestellt. Die Ergebnisse hierzu finden sich unter Kapitel 3.1.

2.4. Identifikation von potentiell einflussreichen Parametern

auf die Erzeugung von Trainingssets

Wie Sariyar [83,84] beschreibt, konnen gerade Uberwachte Klassifizierungssystemen im
Bereich des Record-Linkage zu einer hohen Datenabgleichsgiite beitragen. Als offenes Problem
nennen die Autoren jedoch Unklarheit iber die genaue parametrische Beschaffenheit, wie

beispielsweise die Bestimmung der GrolRe der zugrunde liegenden Trainingssets.
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Um die Parametrisierung der Trainingsset in Bezug auf Uberwachte Klassifizierung zu
normieren, und um hierbei ein mogliches Optimum zu ermitteln, wurde zu dieser Arbeit

folgende Hypothese aufgestellt:

Je dhnlicher ein Trainingsset dem zu priifenden Testset ist, umso dhnlicher sind auch deren

optimale Klassifikatoren.

Die Interpretation hierzu lautete: Konstruktionsparameter, wie beispielsweise die Grofle der
Teilsets, die zur Konstruktion von Trainingssets verwendet wurden, sollten denen der

Ausgangsdaten moglichst entsprechen.

Diese Hypothese mag nachvollziehbar klingen, wie Han et Al. [41] in diesem Zusammenhang
jedoch kommentieren, besteht bei solch einer Hypothese immer die Gefahr eines Overfittings,
also einer Uberanpassung der Trainingsdaten an die Ausgangsdaten. Zudem durften die
Trainingsdaten offensichtlich mit den Originaldaten nicht komplett Gbereinstimmen. Es musste
also ein Kompromiss zwischen Anpassung und Differenzierung gefunden werden. Diese
Differenzierung war in Bezug auf Uberwachte Klassifizierung jedoch bereits intrinsisch
gegeben, wenn man bedenkt, dass der echte Uberlappungsbereich nicht bekannt war. Die
Differenzierung sollte also in der Erzeugung eines neuen Uberlappungsbereiches, der fiir eine
Uberwachte Klassifikation notwendig war, erfolgen. In Bezug auf die medizinische Domane
musste es also Patienteneintrage in Trainingsset A geben, die sich auch in Trainingsset B
wieder fanden, und die Beziehung dieser Eintrdge musste (iber eine identische ID
gekennzeichnet werden. Entsprechend der GréRe des definierten Uberlappungsbereiches in
den Trainingsdaten mussten also als Mindestvoraussetzung mit zusdtzlicher ID
gekennzeichnete Eintrage aus Trainingsset A nach Trainingsset B kopiert werden. Versuchte
man hierbei die Trainingsdaten moglichst stark an die Testdaten anzupassen, so hatte man
Trainingsset A (zuzlglich neuer ID) als direkte Kopie von Testset A erzeugen konnen.
Trainingsset B hingegen hatte man als eine Kopie von Testset B erzeugen kénnen, abziglich
einer Anzahl zufilliger Patienten, die der GréRe des neuen Uberlappungsbereich entsprochen
hatte. Das Trainingsset B hatte man dann noch mit einer Liste zufalliger Patientenkopien aus

Trainingsset A aufgefillt.

Hierbei stellten sich nun einige Fragen. Kame dieses Vorgehen einer moglichst starken
Anpassung der Trainingsdaten an die Testdaten, das aus der genannten Hypothese abgeleitet
wurde, der Datenabgleichsqualitadt tatsachlich zugute? Gleich bleibende TeilsetgroRen waren
bereits Teil des zuvor genannten Vorgehens, doch wie war es mit der GroBe des

Uberlappungsbereiches? Hatte eine Anpassung des Uberlappungsbereiches in den
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Trainingsdaten auf die GroRe des Uberlappungsbereiches in den Testdaten ebenfalls eine
positive Auswirkung? War es notwendig, die Fehlerraten im Uberlappungsbereich der
Trainingsdaten moglichst an die der Testdaten anzupassen? War es lberhaupt sinnvoll, sich
direkt an den Originaldaten zu bedienen, also die Werteverteilung der Trainingsdaten an

denen der Testdaten moglichst zu orientieren?

Eine Uberpriifung, ob die genannte Hypothese korrekt war und wie sie methodisch

interpretiert werden konnte, war Teilaufgabe dieser Arbeit.

Zu den genannten Parametern, GroRe der Teilsets, GroRe des Uberlappungsbereiches,
Fehlerraten im Uberlappungsbereich, sowie die Werteverteilung sollten deswegen
nachfolgend Untersuchungen vorgenommen werden, um zu priifen, ob sich eine Anpassung
dieser Werte an die Originaldaten positiv auf die Klassifikation eines probabilistischen Record-
Linkage-Systems auswirkten oder nicht. Sollte dies fiir alle der genannten Parameter der Fall

sein, ware die zuvor aufgestellte Hypothese bestétigt.

Nicht geprift wurden die Anpassung der Domédne bzw. der Datenstruktur an die
Trainingsdaten. Es erschien offensichtlich, dass beispielsweise eine Erhéhung der
Attributsanzahl in den Trainingsdaten zu einer durchschnittlich hoheren Gewichtung von
Datenvergleichen fiihren wiirde, was in Bezug auf eine moglichst Ubereinstimmende
Klassifikation zwischen Trainings- und Testdaten kontraproduktiv gewesen ware. Aus diesem
Grund wurden in den folgenden Analysen stets Trainingssets mit (ibereinstimmender

Datenstruktur aus derselben Domane (Patientendaten) verwendet.

2.5. Uberpriifung des Einflusses von Konstruktionsparametern

auf die Qualitat der Klassifikation

2.5.1. Zielsetzung der Parameterpriifung

In den nachfolgenden Kapiteln sollte geprift werden, ob eine Anpassung der unter Kapitel 2.4
identifizierten, zur Konstruktion der Trainingssets genutzten Parameter an die Ausgangsdaten
tatsachlich zu einer verbesserten tberwachten Klassifizierung fihrte. Sollte sich zeigen, dass
die Anpassung aller identifizierten Parameter einen positiven Einfluss auf die Klassifizierung
auslibte, ware dies ein Indiz fiir die Hypothese aus Kapitel 2.4. Unabhangig davon sollte aber

versucht werden, die Klassifikationsqualitdit durch eine Bestimmung passender
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Parameterwerte zu maximieren und eine hierauf basierende Methodik zur Uberwachten

Klassifikation bei probabilistischen Record-Linkage-Systemen zur Verfligung zu stellen.

Hierflr sollten zu jedem Testset als Template-Trainingsset bezeichnete Datensets erstellt
werden. Diese sollten entsprechend der Hypothese aus Kapitel 2.4 mit moglichst hoher
Ahnlichkeit zu den Orginal-Trainingssets erstellt werden. Bei der Konstruktion sollten also die
GroRe der Teilsets, die GroRe des Uberlappungsbereiches, Fehlerraten sowie die
Verteilungswerte moglichst zwischen Template-Trainingsset und Testset Gbereinstimmen. Die

genaue Konstruktion wird unter Kapitel 2.5.2 naher erlautert.

Auf den Teilsets der Template-Trainingssets konnte anschlieend ein Record-Linkage vollfiihrt
werden. Auf jeder der erzeugten Template-Gewichtsdateien konnte schlielllich ein
Klassifikator, der den F-Measure-Wert auf dem jeweiligen Template-Trainingsset maximiert,
berechnet werden. Die hierbei erzeugten optimalen Schranken konnten wiederum als

Uberwachte Klassifikatoren auf den zugrunde liegenden Testsets verwendet werden.

Zu diesem Zeitpunkt hatte sich also bereits ermitteln lassen, wie stark die Uberwachte
Klassifikation, basierend auf der Template-Parametrisierung, von der bestmdglichen
Klassifizierung auf dem zugrunde liegenden Testset (siehe Kapitel 2.3) abwich. Ferner galt es
jedoch zu prifen, ob es sich bei der Parametrisierung der genannten Template-Trainingssets
wirklich um eine optimale Parametrisierung handelte oder ob es Varianten in der
Parametrisierung gab, die zu noch besseren Ergebnissen fiihrten. Aus diesem Grund sollten
weitere  Trainingsset-Varianten  erzeugt werden, die jeweils in einem der
Konstruktionsparameter von den Template-Trainingssets abwichen. Die Trainingsset-Varianten
werden in den nachfolgenden Kapiteln ndher erldutert. Zu diesen Varianten sollte
entsprechend dem Klassifikationsvorgang bei der Template-Variante erst der jeweils optimale
Schrankenwert (bemessen am F-Measure-Wert) auf den jeweiligen Trainingsset-Varianten
bestimmt werden und dieser dann als Klassifikator auf das korrespondierende Testset
angewendet werden. Erneut lieR sich hierbei zu jeder Variante die Performanz des
vorhergesagten Klassifikators, also der F-Measure-Wert berechnen. Erzielten die auf den
Trainingsset-Varianten basierenden Klassifikatoren auch nur zum Teil bessere Gitewerte als
die Klassifikation auf den Template-Trainingssets, so ware die urspriingliche Hypothese
widerlegt und die Parameter waren fir ein finales Modell entsprechend der besser
abschneidenden Variante anzupassen. Die Ergebnisse der beschriebenen Analyse finden sich

unter Kapitel 3.2. Abbildung 17 illustriert den eben genannten experimentellen Ansatz.
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2.5.2. Erstellen von Template-Trainingssets

Zu jedem der 400 unter Kapitel 2.3. erstellten Testsets wurde ein der Hypothese maoglichst
entsprechendes Template-Trainingsset erzeugt. Dieses sollte mit dem Originaltestset jeweils in
GroRe der Teilsets, GroRe des Uberlappungsbereiches sowie in der Haufigkeit auftretender
Fehler im Uberlappungsbereich méglichst gut (ibereinstimmen. Die genauen
Konstruktionsparameter wurden hierbei lGber den Dateinamen der Testdaten Ubergeben
(siehe Abbildung 13). Weiterhin sollte sich die Verteilung der Werteausprdagungen stark an den
Originaldatei orientieren. Das genaue Vorgehen zur Erzeugung der Template-Trainingssets
wird unter Abbildung 18 bildlich dargestellt und weiterflihrend beschrieben. Zu Teilset A des
Testdatensatzes wurde wie schon im Falle der Testseterzeugung eine identische Kopie erstellt
(siehe Abbildung 18a). Jeder Eintrag in diesem neuen Trainingsset A wurde jedoch zusatzlich
noch mit einer neuen ID eindeutig markiert. Zu Teilset B des zugrunde liegenden
Testdatensatzes wurde ebenfalls eine identische Kopie erstellt (siehe Abbildung 18b).
Allerdings wurden aus dem hierbei erstellten Trainingsset B eine zufdllige Auswahl an
Patienten entfernt. Die Anzahl entsprach dabei der GréRe des Uberlappungsbereiches. Aus
Trainingsset A wurden nun zufdllige Patienten entsprechend der GroBe des originalen
Uberlappungsbereiches ausgewihlt. Diese bildeten den neuen Uberlappungsbereich (siehe
Abbildung 18c). In den neuen Uberlappungsbereich wurden entsprechend den Originaldaten
Fehler eingefligt (siehe Abbildung 18d). Die genauen Fehlerhdufigkeiten wurden dabei (iber
den Dateinamen der Testdaten Ubergeben. Der neu konstruierte, mit Fehlern versehene
Uberlappungsbereich, der unter Schritt d erzeugt wurde, wurde mit dem in Schritt b
erzeugtem Datenset vereint und bildete das neue Trainingsset B (siehe Abbildung 18e). Die
beiden konstruierten Teilsets bildeten nach vorhergehendem Schema ein auf ein Testset

angepasstes Template-Trainingsset.

Die automatisierte Erzeugung der 400 auf den Testsets beruhenden Template-Trainingssets
wurde mithilfe des Programmes CreateTemplateTrainingsset<10> realisiert. Nachfolgend
wurden die jeweils einzelnen Teilsets der 400 Template-Trainingssets per Record-Linkage

(CreateTrainingSetsWeights<11>) abgeglichen, was in 400 Gewichtsdateien resultierte.

Zu jeder dieser Template-Gewichtsdateien wurde schlieBlich mit Hilfe der Programme
MassFMeasures<12> analog zu Kapitel 2.3, erst ein maximaler F-Measure-Wert und
anschlieRend jeweils ein hierauf basierender optimaler Template-Schrankenwert bestimmt.
Dieser vorhergesagte Template-Schrankenwert wurde nun wiederum als Klassifikator, also als

Schrankenwert fiir das jeweilige Testset, wieder verwendet und dessen Qualitatsglite auf den
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Testdaten (F-Measure) dokumentiert. Der Name des hierzu verwendeten Programmes lautet

FitBorderToTestset<13>.

Testset

{

Konstruktion von
Trainingsset anhand
verschiedener
Konstruktionsparameter

Trainingsset

Trainingsset

(Template) (Variante )

Record Record
Linkage Linkage

Gewichtsdatei Gewichtsdatei

(Variante)

(Template)

Berechnung Berechnung
einer einer
optimalen optimalen
Schranke Schranke

Klassifikator
(Variante )

Klassifikator
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\ 4

Performanz des
Klassifikators auf dem
originalen Testset

Performanz des
Klassifikators auf dem
originalen Testset

A

\/

Vergleichende Analyse der Performanz
der verschiedenen Klassifikatoren

Abbildung 17: Schematischer Ablauf des Performanzvergleiches zwischen Klassifikatoren eines Template-
Trainingssets und einer Trainingsset-Variante.
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Die Template-Trainingssets setzten im Grunde genommen das exakte Wissen (ber die
Parametrisierung (hier Gber den Dateinamen gegeben) voraus. Im Echteinsatz waren diese
Parameter jedoch nicht ohne weiteres exakt ermittelbar. Eigentlich wiirde es sich um das
sogenannte Henne-Ei-Problem handeln [98]. Um den Uberlappungsbereich zu bestimmen,
bzw. durch einen Klassifikator abzugrenzen, hatte die GréRe des Uberlappungsbereiches im
Vorfeld bekannt sein miissen, was zwar auf Testdaten gegeben war, auf Realdaten jedoch
nicht. Als Abhilfe hatte es zu diesem Beispiel theoretische Moéglichkeiten gegeben, die Grolle
des Uberlappungsbereiches grob abzuschitzen [71]. Es wiren allerdings weitere
Untersuchungen Uber die Qualitdt dieser Abschdtzungen und Auswirkungen auf eine

Klassifizierung, die auf Template-Trainingssets beruht, erforderlich gewesen.

w
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Trainingsset B
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Testdatensatz B “bereich)
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Uberlappungsbereich
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Neu definierter
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Uberlappungsbereich

Uberlappungsbereich
ohne Fehlervorkommen

=

Abbildung 18: Erzeugung von auf spezifische Testsets angepasste Template-Trainingssets.
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2.5.3. Variation der Grofde

Zu jedem Testset wurden zusatzlich jeweils zwei Trainingsset-Varianten erstellt, die in der
GroRBe von der Template-Parametrisierung abwichen. Hierbei galt es zu prifen, ob die
Klassifitkationsqualitdat abwich, wenn nicht die exakten GréRen der Testdaten zur Konstruktion

der Trainingsdaten verwendet wurden.

Bei der ersten Variante wurde der GroRenparameter fir jeweils beide Teilsets der
Trainingsset-Variante auf 100 festgelegt. In den meisten Fallen resultierte dies in einer
Reduktion der GrolRe der Teilsets im Vergleich zu den Testdaten. Bei Teilset A dieser Variante
handelte es sich also nicht um eine direkte Kopie von Testset A sondern um eine zufillige
Ziehung von exakt 100 Patienten. Teilset B dieser Variante wurde analog entsprechend
Abbildung 18 mit 100 zufilligen Patienten (abziiglich der GroRe des Uberlappungsbereiches)
aus Testset B befiillt. Der Uberlappungsbereich wurde analog zum Template-Trainingsset mit
zufalligen Eintragen aus Trainingsset A beflllt und entsprechend dem Testset mit Fehlern
versehen.  Trainingssets dieser Variante  wurden  mithilfe des Programmes

CreateSizeVariant1Trainingsset<14> erzeugt.

Bei der zweiten GréRenvariante wurde die GroRRe der Teilsets wie bei der ersten Variante nicht
auf einen konstanten Wert festgelegt, sondern die Variante orientierte sich an den
urspriinglichen GroRenverhaltnissen im Testset. Die Grofle wurde hierbei jeweils halbiert, das
Groenverhdltnis blieb also erhalten. Trainingssets dieser Variante wurden mithilfe des

Programmes CreateSizeVariant2Trainingsset<15> erzeugt.

2.5.4. Variation der Fehlerrate

Zur Prifung, ob die Erhaltung der exakten Fehlerrate bei der Konstruktion der Trainingssets
eine Rolle spielte, wurde eine Trainingsset-Variante konstruiert, bei der komplett auf Fehler im
Uberlappungsbereich verzichtet wurde. Trainingssets dieser Variante wurden mithilfe des

Programmes CreateErrorVariantTrainingsset<16> erzeugt.

2.5.5. Variation der Uberlappung

Um zu prifen, inwiefern die Klassifikationsqualitdit bei Variation der GroRe des
Uberlappungsbereiches von der Klassifikation bei Verwendung des Template-Trainingssets

abwich, wurde in dieser Variante fiir die GroBe des Uberlappungsbereiches nicht der
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Originalwert der Testdaten sondern ein fester Standardwert verwendet. Hierbei wurden zu
allen der 400 Testdatensatze jeweils drei Varianten entworfen mit festen Standardwerten von
jeweils 3%, 30% sowie 90% in Bezug auf die Anzahl von Patientendaten innerhalb des
Uberlappungsbereiches. Die Prozentzahlen bezogen sich, wie bereits unter Kapitel 2.3.2
beschrieben, auf das jeweils kleinere Teilset. Trainingssets dieser Varianten wurden mithilfe
der Programme CreateOverlapVariantlTrainingsset<17>, CreateOverlapVariant2Trainings-

set<18> sowie CreateOverlapVariant1Trainingsset<19> erzeugt.

2.5.6. Variation der Verteilung

Letztendlich wurde geprift, ob es Sinn macht, die Verteilung der Werte in Testsets
bestmoglich zu erhalten, oder ob die Werteverteilung eine eher vernachlassigbare Rolle bei
der Klassifizierung spielte. Rekapitulierend: Bei den Template-Trainingssets war das
Trainingsset A jeweils die direkte Kopie des zugrunde liegenden Testsets A. Die Verteilung der
Werte stimmte hier also exakt liberein. Trainingsset B orientierte sich ebenfalls an den
Testdaten, variierte aber im Uberlappungsbereich, bei dem es sich um direkte Kopien aus
Trainingsset A handelte. Es sollte sich also auch in Trainingsset B um eine zumindest dhnliche

Verteilung wie in Teilset B handeln.

Bei der im Folgenden erlauterten, neuen Verteilungsvariante jedoch wurden die Trainingssets
nicht wie bisher tblich mit den direkten Kopien aus den zugrunde liegenden Testsets befillt.
Anstelle der Template-Prozedur wurden die Trainingssets dieser Variante mit kinstlich

assemblierten Patienten belegt.

Kinstlich assemblierte Patienten bezogen ihre Auspragungen (Attributswerte) direkt aus der
Wertemenge des kompletten Basisdatenbestandes des Klinikums. Frequenzen und
Haufigkeiten spielten hierbei keine Rolle, da die Chance, eine spezifische Ausprdagung zu
erhalten, gleich verteilt war. Anstelle eines Datensatzes von spezifischen Verteilungswerten
bot diese Trainingsset-Variante also Klassifizierung basierend auf gleich verteilten Werten.
Trainingssets dieser Variante wurden mithilfe des Programmes

CreateDistributionVariant1Trainingsset<20> erzeugt.
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2.5.7. Performanzvergleich der Klassifikatoren der Trainingsset-

Varianten

Die am maximalen F-Measure-Wert kalibrierten Klassifikatoren des Template-Trainingssets
sowie die sieben zuvor beschrieben Trainingsset-Varianten wurden entsprechend Abbildung 18
auf die Testdaten angewandt und deren Klassifikationsgite verglichen. Um Zufallsergebnisse
auszuschlieBen und um die Interpretation der Ergebnisse zu erleichtern, wurden hierbei
insgesamt drei komplette Sets an Trainingsvarianten bzw. Template-Trainingssets erzeugt. Das
hierfiir notwendige Hauptprogramm lautet AutomateTrainingssetProduction<21>. Insgesamt

wurden also 9600 (siehe Formel 16) Trainingssets erzeugt und ausgewertet.

|Trainingssets| = 400 x 8 x 3 = 9600. (16)

Die Ergebnisse hierzu werden unter Kapitel 3.2 naher beschrieben.

2.6. Vergleich von uniiberwachter Klassifizierung mit anderen

Klassifikationstechniken

2.6.1. Zielsetzung des Klassifikatorenabgleichs

Basierend auf den Ergebnissen aus Kapitel 3.2 sollten die Parameter des Template-
Trainingssets optimiert werden. Diese optimierte Variante der Giberwachten Klassifizierung galt
es mit anderen zum Teil etablierten Klassifikationsmethoden auf den 400 erzeugten Testsets
zu prifen und die Performanz flir einen moglichen Realeinsatz zu bewerten. Von
Hauptinteresse war der Vergleich zu uniiberwachten Systemen, die in der Praxis aufgrund der
Unabhangigkeit von Trainingsdaten in der Regel den Vorzug bekommen. Hierbei wurde zum
einen eine aus dem maschinellen Lernen bekannte Clustering-Methode, das Single-Linkage-
Clustering [77], das es ermoglichen soll, Links korrekt zu zwei Clustern (echte Links/falsche
Links) zuzuordnen, angewandt. Es war zu erwarten, dass diese Methode, die nicht unbedingt
fiir das Record-Linkage konzipiert wurde, im direkten Vergleich eher schlecht abschneidet.
Zum anderen wurde eine von Peter Christen vorgestellte Methode, die 2-Step-Seeded-K-
Nearest-Neighbour-Klassifikation [71], in zwei Varianten mit den anderen Methoden

abgeglichen. Zur Vereinfachung wurde die Methodik nachfolgend als SNN bezeichnet.
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Letztere Methode wurde bereits mit anderen uniiberwachten Klassifikationsmethoden
verglichen und konnte hierbei Verbesserungen bei der Zuordnungsqualitdt im Bereich des
Record-Linkage erzielen. Beispielsweise lbertrifft die genannte Methode den Hybrid-TAILOR
Ansatz, von dem wiederum gezeigt wurde, dass dieser andere aus dem maschinellen Lernen

bekannte Klassifikationsmethoden, was die finale Abgleichsqualitat angeht, ibertrifft [93].

Final wurden die 400 Testdatensdtze manuell, anhand der Histogramme, wie es in der Praxis
oft Uiblich ist, durch den Autor dieser Arbeit klassifiziert. Bei letzterem Vorgehen handelte es
sich um einen stark subjektiven Ansatz. Dennoch erschien es interessant, zumindest grob
abzuschatzen, inwiefern die manuelle Schrankensetzung mit anderen Methoden mithalten
konnte und ob die Anwendung automatisierter Methoden im Realeinsatz Uberhaupt
gerechtfertigt war. In den nachfolgenden Kapiteln werden die verschiedenen Methoden

genauer spezifiziert.

2.6.2. Uberwachte Klassifizierung der Testdaten

Zu jedem der 400 Testsets wurde entsprechend den Erkenntnissen aus Kapitel 3.2 jeweils ein
parameter-optimiertes Trainingsset erzeugt. Dieser Vorgang wurde dreimal wiederholt. Der
Grund hierfir war, dass somit zu jedem Testset mehrere auf Uberwachter Klassifizierung
basierende Klassifikatoren zur Verfligung standen. Bei der Wahl eines Mittelwertes dieser

Klassifikatoren kann also der maximal mogliche Fehler minimiert werden.

Konkret wurde die parameter-optimierte  Trainigsset-Erzeugung im  Programm
CreateFinalTrainingsset<22> implementiert. Zu jedem Trainingsset wurde analog zu den
vorhergehenden Analysen eine Schranke basierend auf dem optimalen F-Measure-Wert
ermittelt. Diese Schranken wurden jeweils in das entsprechende Testset eingepasst, der F-
Measure-Wert an dieser Position berechnet und fiir die weiteren vergleichenden

Untersuchungen in einer Datei festgehalten.
2.6.3. Uniiberwachte Klassifizierung der Testdaten

Single-Linkage-Clustering

Die Auswahl einer Clustering-Methode sollte zeigen, ob es moglich war, gute Klassifizierungen
anhand nicht auf das Record-Linkage speziell angepasster und leicht zu implementierender
Klassifizierungsverfahren zu erhalten. Fir den Praxisgebrauch ware dies von Vorteil, da

kompliziertere Algorithmen wie beispielsweise SNN-Klassifikation fiir die meisten Projekte nur
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mit entsprechend geschultem IT-Personal umsetzbar waren. Konkret wurde fir die
vergleichende Analyse eine vereinfachte Variante des Single-Linkage-Clustering (SLC) [77]
implementiert. Grundsatzlich handelt es sich beim SLC um agglomeratives bzw. hierarchisches
Clustering [99], wobei jeder einzelne Gewichtswert einer Gewichtsdatei als einzelner
Basiscluster interpretiert wird und die Cluster solange vereint werden, bis nur noch zwei
Cluster vorhanden sind. Diese Cluster enthalten schlieBlich die echten bzw. falschen Links.
Zwei Cluster werden wahrend des Vorganges immer dann vereint, wenn die Distanz zwischen
den nachsten Werten der in lhnen vorkommenden Gewichtswerte jeweils minimal im
Vergleich zu anderen Clusterpaarungen ist. Generell besitzen Clustering-Methoden eine
Laufzeit von O(n3), was auf den 400 Gewichtsdateien, mit bis zu 2.441.271 Gewichten, zeitlich
nicht realisierbar gewesen ware. Lediglich fir das Single-Linkage-Clustering und das Complete-
Linkage-Clustering existieren Methoden, deren Laufzeit sich durch clevere Implementierung,
SLINK [77] bzw. CLINK[78], auf O(n?) drosseln lasst. Grundsatzlich war aber eine weitere
Vereinfachung der SLC-Methodik innerhalb dieses Projektes moglich. Da Gewichtsdateien
lediglich eindimensionale Daten beinhalten (Gewichtswerte), muss das SLC hierbei
trivialerweise lediglich nach dem gréRten Abstand zwischen den Gewichtswerten suchen. Dies

wurde Uber das Programm SingleLinkageNAIV<23> realisiert.
Seeded-Nearest-Neighbour-Klassifikation

In einer Arbeit von Christen [71] wird gezeigt, dass bekannte Algorithmen aus dem Bereich des
maschinellen Lernens, konkret der k-Nearest-Neighbour-Algorithmus bzw. die Verwendung
von Support-Vector-Maschinen, durch die Definition von Keimmengen, also auf den
Originaldaten basierende Trainingsdaten mit offensichtlicher Klasse, sehr gut zur Klassifikation
im Bereich des Record-Linkage genutzt werden kénnen. Algorithmen dieser Art fasst man auch
unter aktivem Lernen zusammen [79]. In einem ersten Schritt werden die Keimmengen
anhand festzusetzender, Kriterien befillt. Bei den Keimmengen handelt es sich, wie bereits
erwdhnt, um offensichtlich echte bzw. falsche Ubereinstimmungen. Die Kriterien, ab wann ein
Link einer Keimmenge zuzuordnen wire, variieren von Fall zu Fall, es gibt hierzu also keine
festen Vorgaben. Die in die Keimmengen Ubertragenen Links kénnen dann in einem zweiten
Schritt, in dem der eigentliche Algorithmus angewendet wird, als Trainingsdaten, die den
Algorithmus trainieren, verwendet werden. In der genannten Arbeit von Peter Christen
werden nur Vorschlage aber keine festen Richtlinien fiir die Auswahl der Keimmenge genannt.
In dieser Dissertationsarbeit wurden deshalb zwei Varianten zur Auswahl der Keimmenge
gewadhlt. Zum einem wurde eine in der Arbeit von Peter Christen vorgestellte Formel zur

Abschatzung der GroRRe der positiven bzw. negativen Keimmenge verwendet (siehe Formel 17).
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____min(4}.|B]) (17)
[WT=min(lAL,1B])

|W| steht hierbei fiir die Anzahl der Gewichte, |A| fir die GroRe des Teilsets A sowie |B| fir
die GroBe des Teilsets B. Bei der Rickgabe-Variablen r handelt es sich um das
Groenverhadltnis zwischen der positiven und der negativen Keimmenge. Die negative
Keimmenge wurde in dieser Arbeit, vergleichbar zur Veroffentlichung von Peter Christen, auf

5% der Anzahl der Gewichte festgelegt (beflllt mit den niedrigsten 5% der Gewichte).

Zum anderen wurde eine Variante implementiert, bei der feste Grenzwerte verwendet
werden. Links mit einem Gewicht tiber +45 wurden zur positiven Keimmenge, Links mit einem
Gewicht unter -15 zur negativen Keimmenge hinzugefiigt. Diese Grenzwerte basierten auf
Erfahrungswerten zur Klassifikation der Daten und waren datensatzspezifisch. Es zeigte sich
also bereits bei der Implementierung der Technologie, dass die Methode viele Unsicherheiten
barg und eine passende Abschitzung der Keimmenge dringend voraussetzte. Das
grundlegende Prinzip der Erzeugung der Keimmengen wird vereinfachend in Abbildung 19

illustriert.

Geordnete
Gewichte

\ 4

Unklassifizierte Negative
Links Keimmenge
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Keimmenge

Abbildung 19: Aufteilung der Menge der Links in positive Keimmenge, negative Keimmenge sowie Menge
der bisher unklassifizierten Links.

Nach Bestimmung der Keimmengen konnten die enthaltenen Links nun als Trainingsdaten fur
den eigentlichen Algorithmus genutzt werden. Fiir diese Arbeit wurde hierzu der K-Nearest-
Neighbour-Ansatz implementiert. Der Algorithmus lief sich wie folgend zusammenfassen. Ein
bisher unklassifizierter Link wurde dann zu einer spezifischen Keimmenge hinzugefiigt, wenn

es sich bei diesem Link um den Link mit der niedrigsten Distanz zu k Links aus der vereinten
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Keimmenge handelte, und sich mehr dieser nachsten benachbarten Links in der spezifischen
positiven bzw. negativen Keimmenge befanden. Sobald alle unklassifizierten Links einer
Keimmenge hinzugefiigt wurden, war die Klassifikation abgeschlossen. Fiir diese Arbeit wurde
der Wert k auf 3 festgelegt. Eine beispielhafte lllustration des Vorganges wird in Abbildung 20
wiedergegeben. Hierbei ging es um die Klassifikation zweier bisher unklassifizierter Links. Zu
den beiden Links wurde bestimmt, welcher der Links die minimale, aufsummierte Distanz zu
den jeweils k ndchsten Links aus der vereinten Keimmenge besal (Abbildung 20a). In diesem
Fall handelte es sich dabei um den Link mit niedrigerem Gewicht. Da seine nachsten drei
Nachbarn der negativen Keimmenge angehorten, wurde der Link dieser Menge hinzugefligt
(Abbildung 20b). Von den drei nachsten Nachbarn des letzten unklassifizierten Links befand
sich die Mehrzahl in der positiven Keimmenge, wodurch der Link dieser Menge hinzugefigt
wurde (Abbildung 20c). Es gab keine verbleibenden unklassifizierten Links. Die Klassifikation
war somit abgeschlossen. Die sich in den Keimmengen unterscheidenden Algorithmen wurden

in den Programmen KNN_Seed1<24> sowie KNN_Seed2<25> performant implementiert.

(@}
o
o
I e
)
e [ ] (]
O
§ ([ [
Q [ ] {
()
Positive Keimmenge
Unklassifizierter Link
Negative Keimmenge

Abbildung 20: Beispielhafte lllustration des KNN-Algorithmus mit k=3.
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Manuelle Klassifikation durch Auswertung der Testset-Histogramme

Fiir die manuelle Klassifikation anhand von Histogrammen wurden mithilfe des Programmes
CreateHistogramms<26> zu jedem Testset Histogramm-Dateien erzeugt. Fiir die Klassifikation
wurde hierbei eine zur DKFS analoge Darstellung gewahlt (siehe Abbildung 4). Eine Schranke
wurde dabei manuell gesetzt und der Wert in einer Datei hinterlegt. Eine Ubersicht der

Histogramme in kleinerem geordneten Format befindet sich in Anhang F. Ergebnisse
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3. Ergebnisse

3.1. Testset-Erzeugung

Wie unter Kapitel 2.3. beschrieben, wurden anhand von Realdaten, die vom Klinikum
GroBBhadern zur Verfligung gestellt wurden, 400 kinstliche Testsets, die sich jeweils in
mindestens einem der Konstruktionsparameter (GroBe der Teilsets, GroRe des
Uberlappungsbereiches, Beschaffenheit) unterschieden, erzeugt. Ein Testset bestand dabei
jeweils aus einem Teilset A, sowie einem Teilset B. Diese Teilsets wurden jeweils per
probabilistischem Record-Linkage abgeglichen. Zu den erzeugten Gewichtsdateien wurde
jeweils der testsetspezifische maximale F-Measure—Wert berechnet. Um herauszufinden,
inwieweit die Konstruktionsparameter im konkreten Fall die finale Klassifikationsqualitat
beeinflussten, wurden F-Measure-Werte anhand gleicher Ausprdgung in den
Konstruktionsparametern gruppiert, und der gemittelte F-Measure-Wert innerhalb dieser

Gruppen bestimmt.

Abbildung 21 zeigt hierbei die gemittelten, maximalen F-Measure-Werte abhdngig von den 10
innerhalb der Testsets auftreten GrofRenkombinationen der Teilsets. Jeder Messwert stellt

hierbei den Durchschnittswert aus 40 Testsets mit der gegebenen GrofRenkombination dar.
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Abbildung 21: Gemittelter, maximaler F-Measure-Wert in Testsets mit spezifischer Gréfsenkombination.
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Wie sich zeigte war es schwierig, anhand der Grafik einen Trend, inwiefern die GrofRe der
zugrunde liegenden Teilsets die Klassifikationsqualitdt beeinflusste, festzustellen. Es schien
jedoch, dass das Matching auf Testsets, die kleine Teilsets enthalten, zu einer hoheren,
bestmoglichen Abgleichqualitat fiihrte. Der Befund deutete darauf hin, dass kleinere
Trainingssets in weniger Vergleichen resultierten. Hierdurch ergaben sich eher liickenhafte,
dinne Gewichtsdateien wie beispielsweise unter Abbildung 3c dargestellt. GroRere
Trainingssets neigten durch die Erhohung der Vergleiche allein schon statistisch dazu,
Ubergangsbereiche zu verwischen (siehe Abbildung 3b). Auf diinnen Daten besaRen also
optimale Klassifikatoren einen eher hoheren maximalen F-Measure-Wert als auf dichteren
Daten. Diese Aussage war natlirlich auch stark abhangig von der gegebenen Datenqualitat und
dies sollte nicht implizieren, dass es generell leichter gewesen ware, diinne Daten zu
klassifizieren, da hier eine Fehlklassifikation (z.B. Auswahl der falschen , Liicke) wohl in einer
groReren Abweichung vom echten Schrankenwert als auf dichten Daten resultiert hatte. Es
war jedoch nicht auszuschlieRen, dass die Beobachtung auf eine andere Ursache, wie etwa die
generelle Berechnung des F-Wertes zurlickzufiihren gewesen ware. Zur besseren Darstellung
wurden die GroRenkombinationen auf zwei separate Achsen aufgebrochen (siehe Abbildung

22).

Abbildung 23 stellt den durchschnittlich hochstmoglichen F-Measure-Wert abhangig von der
GroRe des Uberlappungsbereiches dar. Jeder Datenpunkt beinhaltet hierbei die
Durchschnittswerte zu 100 verschiedenen Testsets. Es zeigte sich auf den gegebenen Daten,
dass groRere Uberlappungsbereiche zwischen Teilsets in héheren, bestméglichen F-Measure-
Werten resultierten. Diese Beobachtung lie sich mathematisch interpretieren. Der F-
Measure-Wert stellte das harmonische Mittel der Sensitivitdt sowie des Positiv-Pradiktiven-
Wertes dar. Bei VergroRerung des Uberlappungsbereiches erhéhte sich mit etwa gleich
bleibendem Verhiltnis die absolute Anzahl an True-Positives, sowie False-Negatives. Die
Sensitivitit sollte somit bei Variation des Uberlappungsbereiches unbeeinflusst bleiben. Der
Positiv-Pradiktive-Wert hingegen leitete sich aus der Anzahl der True-Positives sowie der False-
Positives ab. Dieses Verhiltnis verdnderte sich bei Variation des Uberlappungsbereiches
jedoch, da die Anzahl der False-Positives bei Erhdhung des Uberlappungsbereiches sich eher
gleich bleibend, bzw. geringfligig absteigend verhalten sollte. Somit stieg der PPV tendenziell
bei ansteigendem Uberlappungsbereich, was wiederum in einer tendenziellen Erhéhung des F-

Measure-Wertes resultieren wiirde.

Final wurden die durchschnittlich maximal erreichbaren F-Measure-Werte, abhangig von der

zur Konstruktion verwendeten Qualitatsstufe, berechnet (siehe Abbildung 24). Jeder
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Datenpunkt bestand hierbei jeweils aus den Ergebnissen von 40 in der Qualitatsstufe

Ubereinstimmenden Testsets.

@ max-F-Measure

Abbildung 22: Gemittelter, maximaler F-Measure-Wert in Testsets mit spez. Gr6f8enkombination (3D).

Der Trend war relativ eindeutig: Bei schlechterer Datenqualitat, also dem erhohten Auftreten
von Fehlern in Attributen zwischen echten Patienteniibereinstimmungen sank der maximal
erreichbare F-Measure-Wert. Eine schlechtere Datenqualitdt fihrte abhangig vom Fehler zu
einer niedrigeren Gewichtung zwischen echten Ubereinstimmungen. Damit konnte es
passieren, dass echte Ubereinstimmungen als falsche Links klassifiziert wurden, was in einer
False-Negative-Bewertung resultiert hatte. Durch Transformationsfehler konnte es zudem zur

Erhéhung des Gewichtes einer Nicht-Ubereinstimmung kommen. Hierdurch entstanden
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vermehrt False-Positives. Die Erhdéhung beider Werte wirkte sich verringernd auf den F-

Measure-Wert aus.
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Abbildung 23: Gemittelter, maximaler F-Measure-Wert in Testsets abhdngig von der Gréfse der
Uberlappung.
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Abbildung 24: Gemittelter, maximaler F-Measure-Wert in Testsets abhdngig von der Datenqualitiit.
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3.2. Auf Trainingsset-Varianten basierende

Klassifikationsergebnisse

Entsprechend Kapitel 2.5 wurden 400 Template-Trainingssets erstellt, die zu jeweils einem der
gegebenen Testsets in der GroRe der Teilsets, der GroRe des Uberlappungsbereiches sowie der
Fehlerhaufigkeiten (ibereinstimmten. Zudem wurde die Werteverteilung durch direktes
Kopieren aus den Originaldaten weitestgehend identisch, mit Ausnahme des
Uberlappungsbereiches, (bernommen. Zu den angesprochenen Template-Trainingssets
wurden Trainingssetvarianten erstellt, die in jeweils einem der vier genannten
Konstruktionsparameter von den Template-Trainingssets abwichen. Dies resultierte in 7
zusatzlichen Reihen von jeweils 400 Datensets. Zur Bekraftigung der Ergebnisse wurden jeweils
3 Serien dieser Sets sowie der Template-Trainingssets erstellt, was in insgesamt 9600
Datensets resultierte. Auf jedem dieser Trainingssets wurde ein Record-Linkage durchgefiihrt,
auf der erhaltenen Gewichtsdatei wurde der jeweils optimale Klassifikator ermittelt (also
derjenige, der den F-Wert maximiert) und die erhaltenen Klassifikatoren wurden letztendlich in
die jeweils zugrunde liegenden Testsets eingepasst. Die Performanz der durch die Trainingssets
erzeugten Klassifikatoren wurde anhand von F-Wert Berechnung an der gegebenen Position
auf den jeweiligen Testsets bemessen und die ermittelten Werte wurden fir weitere
Auswertungen dokumentiert. Abbildung 25 zeigt hierbei vergleichend die Performanz der
verschiedenen Klassifikatoren nach Qualitdt der Testsets gruppiert. Die Kurve mit der

Ill

Bezeichnung , Optimal“ beschreibt hierbei den maximal erreichbaren durchschnittlichen F-
Measure auf den Testdaten, ,Overlap (1-3)“ beschreibt hierbei die Klassifikationsglite der
Trainingssetvarianten mit einem festen Uberlappungsbereich von (90%,30% sowie 3%),
,Template” beschreibt die Ergebnisse zur Klassifikationsglite anhand der Template-
Trainingssets, ,Size (1-2)“ gibt die Klassifikationsgiite zu den Varianten mit konstanter GroRRe
von 100 Patienten pro Testset bzw. halber GréfRe der original Testsets, Error bezeichnet die
Ergebnisse die der Trainingssetvariante ohne Fehler zugrunde liegen und Distribution

bezeichnet die Ergebnisse der Trainingssetvariante, bei der Wertauspragungen aus einer

gleichverteilten Menge gezogen wurden.
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Abbildung 25: Gemittelte Klassifikationsgiite (F-Measure-Wert) von auf verschiedenen Trainingsset-
Varianten basierenden Klassifikatoren, gruppiert nach Qualitétsstufe.

Die Grafik ist in der gegebenen Form nur schwer lesbar. Als eindeutiges Ergebnis zeigte sich
jedoch schnell und eindeutig, dass die Trainingsset-Variante (,Size1”), bei der die GrofRe der
Teilsets auf 100 normiert wurde, nicht zur Klassifikation geeignet war. Die durchschnittlichen
F-Measure-Werte lagen hierbei deutlich weit unter den Ergebnissen der anderen
Klassifikatoren. Aus der nachfolgenden Grafik (Abbildung 26) wurde die letztgenannte
Trainingsset-Variante entfernt und der Fokus richtete sich auf den Bereich der anderen

Varianten
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Abbildung 26: Gemittelte Klassifikationsgiite (F-Measure-Wert) von auf verschiedenen Trainingsset-
Varianten basierenden Klassifikatoren, gruppiert nach Qualitétsstufe.

In gegebener Grafik zeigten sich nun deutlich die Unterschiede der einzelnen
Trainingssetvarianten. Zwar war die Abweichung zwischen Template-Trainingsset und der
zweiten GroRenvariante (,,Size2“) nicht so extrem wie bei der ersten Variante, doch auch das
Halbieren der TeilsetgréRen resultierte in vergleichsweise verminderten F-Werten. Beide
Ergebnisse deuteten daraufhin, dass eine allgemeine Reduktion der TeilsetgroBen zu
verminderten F-Werten fiuhrte. Dementsprechend sollte fiir einen optimalen Klassifikator, wie

es bereits bei den Template-Trainingssets Usus war, die TeilsetgrofRe beibehalten werden.

Weiterhin wurde die Verteilung untersucht. Hierzu wurde nur eine Variante (,Distribution®)
geprift, bei der die Auspragungswerte in der Trainingssetvariante gleichmaRig verteilt wurden.
Wie sich zeigte, fiihrte die genannte Abweichung von der Originalverteilung ebenfalls zu einer

relativ hohen Verminderung der Klassifikationsgtite.

Grundsatzlich  Gberschnitten sich die Konzepte der GroRenvariation und der
Verteilungsvariation, da sich eine Anpassung der GroRe meist direkt auf die Verteilung
auswirkte. Dass eine Abweichung der Verteilung beim probabilistischen Record-Linkage
direkten Einfluss auf die Klassifikation hatte, war aber grundsatzlich nachvollziehbar.
SchlieRlich basierte beim probabilistischen Record-Linkage die Gewichtsberechnung auf den
unter Kapitel 1.3.2 beschriebenen u-Werten, die sich direkt aus der Haufigkeit von

Auspragungswerten ableiteten.
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Die Ergebnisse zum Overlap-Parameter lieferten neue Erkenntnisse. Hierbei wurden drei
Varianten geprift (90% (“Overlap 1“), 30% (“Overlap2“), 3% (“Overlap3“)). Wie sich zeigte,
verbesserte sich die Klassifikationsglite bei jeder Verminderung der GrofRe des
Uberlappungsbereiches. Da die Versuche jeweils, wie bereits erwihnt, dreimal wiederholt
wurden und sich jeweils dasselbe Bild zeigte, waren Zufallsergebnisse zu hoher
Wabhrscheinlichkeit auszuschlieBen. In der Variante mit 3% Uberlappungsbereich konnte sogar
die Glte des Template-Klassifikators tbertroffen werden. Die urspriingliche Hypothese, dass
eine maximale Anpassung des Uberlappungsbereiches an die originalen Testdaten zu einer
optimalen Klassifikation flihrt, wurde somit widerlegt. Vielmehr zeigte sich, dass ein moglichst
kleiner Uberlappungsbereich der Klassifikation dienlich war. Wie schon die GréRe wirkte sich
auch die Verdnderung der Uberlappung auf die Werteverteilung aus. Je groRer der
Uberlappungsbereich gewdhlt wurde umso mehr Orginal-Patienten wurden aus Teilset B
entfernt und umso mehr Kopien wanderten von Teilset A nach Teilset B. Die kopierte Menge
aus Teilset A und deren Werteverteilung lag also Uberreprasentiert vor, wohingegen Werte aus
Teilset B verlorengingen. Die Verdnderung der Verteilung beeinflusste, wie bereits
beschrieben, die u-Werte und konsequenterweise die finale Gewichtsberechnung und

Klassifikation.

Eine weitere neue Erkenntnis war das Ergebnis, dass Fehlerraten zur Vorhersage eines
optimalen Klassifikators nicht unbedingt bendtigt waren. Wie die Variante ,,Error” in Abbildung
26 zeigte, gab es quasi keinen Unterschied zwischen der Klassifikationsqualitdt zu auf den
Template-Trainingsset basierenden Klassifikatoren, bei denen Fehlerhaufigkeiten im
Uberlappungsbereich mit denen aus den Testdaten Ubereinstimmten. Eine urspriingliche
Vermutung war es, dass eine Berlicksichtigung der Fehler gerade bei Testsets niedrigerer
Datenqualitat zu einer Verbesserung der Qualitat fihren wiirde, doch dies konnte anhand von
Abbildung 26 widerlegt werden. Die Interpretation der Hypothese, an der sich die Konstruktion

der Template-Trainingssets orientierte, konnte also ein zweites Mal widerlegt werden.

Analog zu Kapitel 3.1 wurden aus Griinden der Vollstandigkeit noch die Abbildung (Abbildung
27 sowie Abbildung 28) der durchschnittlichen F-Werte bei Gruppierung nach TeilsetgroRen
bzw. Uberlappung nachgereicht. Deren Ergebnisse deckten sich mit den unter Kapitel 3.1

vorgestellten Beobachtungen.
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Abbildung 27 : Gemittelte Klassifikationsgiite (F-Measure-Wert) von auf verschiedenen Trainingsset-
Varianten basierenden Klassifikatoren gruppiert nach Gréfie des Uberlappungsbereiches.
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Abbildung 28 Gemittelte Klassifikationsgiite (F-Measure-Wert) von auf verschiedenen Trainingsset-
Varianten basierenden Klassifikatoren gruppiert nach GréfSe der Teilsets.
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3.3. CLARA

Basierend auf den vorgehenden Auswertungen war es moglich, die urspriingliche
Interpretation der Hypothese aus Kapitel 2.4 zu widerlegen und es konnten neue, optimierte
Empfehlungen zu den Konstruktionsparametern formuliert werden, die die
Klassifikationsqualitdat im Vergleich zur Template-Variante Ubertrafen. Hierauf basierte das neu
entwickelte CLARA-System. CLARA stand hierbei fiir CLAssification for Record-Linkage with
Artificial Trainingssets. Tabelle 12 beschreibt die optimierte Konstruktionsparametrisierung
des CLARA-Systems im Vergleich zur Konstruktion der zuvor beschriebenen Template-

Trainingssets.

Tabelle 12: Beschreibung der Parametrisierung der Konstruktion von Trainingssets des CLARA Systems.

Konstruktions- Konfiguration (Template) Konfiguration (CLARA)

Parameter

GroRe der Teilsets Identische GroRenverhaltnisse der Entsprechend Template-
Teilsets zum zugrunde liegenden Trainingsset-Konstruktion
Testset.

Grole des Identisch zur GréRe des Moglichst minimal, jedoch

Uberlappungsbereiches | Uberlappungsbereiches des zugrunde | ausreichend groR um eine
liegenden Testsets. Klassifikation grundsatzlich zu
erlauben. Fur diese Arbeit und
generell als Richtwert werden 3%
der GrolRe des jeweils kleineren

Teilsets vorgeschlagen.

Verteilung Trainingsset A identisch zu Testset A. Entsprechend Template-
Trainingsset B bis auf Uberlappungs- Trainingsset-Konstruktion

bereich identisch zu Testset B.

Fehlervorkommen Haufigkeitswerte zu Es werden keine Fehler in den
Fehlervorkommen stimmen mit denen | Uberlappungsbereich eingebracht.

des Testsets Uiberein.

Das CLARA System war hierbei von den genauen Angaben der Parametrisierung, die zuvor Gber
den Dateinamen Ubergeben wurden, unabhangig und konnte hierdurch automatisiert im
Praxiseinsatz verwendet werden. Die Grof3e der Teilsets lieB sich auch ohne Vorkenntnisse aus

den originalen Testdaten auslesen. Schitzungen der GroRe des Uberlappungsbereiches waren
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nicht mehr notwendig, da ein konstanter Wert (3%) verwendet wurde. Ebenso waren
Schatzungen zu den Fehlerraten unnétig, da diese nach den Ergebnissen aus Kapitel 3.2 nicht
mehr bendtigt wurden, bzw. der Klassifikation nicht zugute kamen. Man versuchte die

Verteilung, wie gehabt, moglichst unverdndert zu belassen, was ohne Vorkenntnisse, wie

bereits beschrieben, durch einfaches Kopieren aus den Originaldaten moglich war.

x:=0
n:= GroRe des Uberlappungsbereiches
X:= Anzahl der zu erzeugenden Trainingssets bzw.

Klassifikatoren

v

X:=x+1 <

v

Datenset A

Trainingsset B/
tmp

Trainingsset B

Erzeugen einer Kopie von Datenset A inklusive zufalliger,
eindeutiger IDs

Trainingsset A

v

Erzeugen einer Kopie von Datenset B, inklusive zufalliger
IDs (Bezeichnet als Trainingsset B/tmp). Diese IDs diirfen
mit den IDs aus Trainingsset A nicht tGbereinstimmen.

I

Datenset B

v

Ersetzen von n zufélligen Eintragen aus Trainingsset
B/tmp durch Eintrége aus Trainingsset A. (Ziehen ohne
Zuriicklegen)

v

Record-Linkage zwischen Trainingsset A
sowie Trainingsset B

v

Speicherung des
Trainingsset
spezifischen
Klassifikators

Ermittlung der optimalen
Schrankenposition basierend auf F-
Wert-Maximierung anhand ID-
Ubereinstimmungen.

Trainingsset
spezifische
Gewichtsdatei

Nein

Bildung des Mittelwertes aller

Klassifikator fur
q Datenset A und

erzeugter Klassifikatoren

Datenset B.

Abbildung 29: Schematischer Ablauf der ganzheitlichen CLARA-Methodik.
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Durch Erzeugung und Schrankenberechnung mehrerer Trainingssets mit Variation im
Uberlappungsbereich konnten mehrere CLARA-Klassifikationen zu jeweils einem Testset
hervorgesagt werden. Ein Mittelwert dieser multiplen Klassifikatoren wiirde also den maximal
moglichen Fehler, also die Abweichung des Klassifikators vom eigentlichen optimalen
Schrankenwert, minimieren, was beim konkreten Einsatz beachtet werden sollte. Abbildung 29

beschreibt zusammenfassend den schematischen Ablauf des finalen CLARA-Verfahrens.

3.4. Vergleich verschiedener Klassifikationsmethoden

Basierend auf den Ergebnissen aus Kapitel 3.2 wurde das CLARA-System, das im Methodenteil
dieser Arbeit als parameter-optimierte Variante bezeichnet wurde, modelliert. Beim CLARA-
System handelte es sich um ein System zur Konstruktion von Trainingsdaten anhand
gegebener Originaldaten, die anschlielend zu Gberwachter Klassifikation verwendet werden
konnten. Ob sich das System auch fiir den Realeinsatz geeignet ist und ob es mit anderen,
ausgewahlten Klassifikationsmethoden konkurrieren kann, wurde Uber eine Reihe von
Methodenvergleichen gepriift (siehe Kapitel 2.6). Bei den verglichenen Methoden handelte es
sich um CLARA, Single-Linkage-Clustering, zwei Varianten des SNN-Algorithmus mit Variation in
der Keimmenge sowie manuelle Klassifikation anhand von Histogrammen entsprechend dem

Vorgehen in der DKFS.
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Abbildung 30: Durchschnittlicher F-Measure-Wert verschiedener Klassifikatoren abhdngig von der
Datenqualitdtsstufe.
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Abbildung 30 beschreibt die Abgleichsgiite der verschiedenen gepriiften Klassifikationssysteme
abhangig von der Qualitat der zugrunde liegenden Testsets. In dieser sowie den nachfolgenden
Grafiken bezeichnen die Kiirzel , Optimal“ den maximal erreichbaren durchschnittlichen F-
Measure auf dem zugrundeliegenden Testset, , Clara” steht fur die Klassifikationsglite von
CLARA, ,Manuell” beschreibt die Klassifikationsgiite basierend auf manueller
Schrankenfindung wohingegen »SNN(1-2)“ die Ergebnisse des SNN mit
Keimmengenbestimmung entsprechend Formel 17 sowie Keimmengenbestimmung anhand
festen Treshholds beschreibt. ,SLC” steht weiterfiihrend fiir die Ergebnisse des Single-Linkage-
Clusterings. Es zeigten sich hierbei zwei Gruppen von Klassifikatoren. Die Klassifikatoren mit
einem F-Measure-Wert oberhalb von 0,95 erschienen als fiir den Realeinsatz verwendbar,
wohingegen die beiden verbleibenden Klassifikatoren weit unterhalb dieses Wertes lagen und
fiir die Klassifikation im Record-Linkage als eher ungeeignet zu bewerten waren. Beim SLC, das
nicht unbedingt auf das Konzept des Record-Linkage optimiert wurde, war dies noch
nachvollziehbar, bei der ersten SNN-Variante iberraschte dies allerdings. Es zeigte sich, dass
hierbei die Auswahl der korrekten Keimmenge eine immense Rolle auf die finale Abgleichsgiite
spielte. Die Keimmenge der ersten Variante des SNN wurde anhand einer empfohlenen Formel
aus der Originalpublikation erzeugt, die das Konzept des SNN vorstellt [71]. Es schien, als
wirden die durch diese Formel erzeugten Keimmengen zu klein erstellt, weswegen die
gegebene Klassifikation oft in den Randbereichen der Gewichtsdateien fehlerhafte Schranken
vorschlug und sich demnach kaum von der Klassifikationsgilite des SLCs unterschied. Im SNN2
wurden die Keimmengen manuell anhand von Treshholds, also festen Schrankenwerten
erstellt. Die Bereiche wurden groer gewdhlt, wodurch die Klassifikationsschranken nicht
falschlicherweise in die Randbereiche eingepasst wurden, da diese bereits in den Keimmengen
enthalten waren. Hierdurch konnte eine immense Steigerung der Abgleichsqualitit erzielt
werden. Als Fazit lieR sich sagen, dass die SNN Methode nur in einer Variante brauchbare
Ergebnisse erzielen konnte. Die Auswahl der Keimmenge war demnach ein
Unsicherheitsfaktor, der die komplette Klassifikation kompromittieren konnte. Nicht nur
aufgrund dieses Unsicherheitsfaktors, sondern auch aufgrund der komplexen und
anspruchsvollen Implementierung ware Benutzern, die sich nicht tiefer mit der Methodik
befassen, sondern diese lediglich nutzen wollen, abzuraten. Abbildung 31 beschrankt sich nun

auf die Klassifikatoren abziglich der ersten Variante des SNNs sowie des SLCs.
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Abbildung 31: Durchschnittlicher F-Measure-Wert verschiedener Klassifikatoren abhdngig von der
Datenqualitiitsstufe.

Hierbei unterschied sich vor allem der SNN in der zweiten Variante von den restlichen
Methoden. Auf Testsets mit einer Qualitatsstufe einschlieBlich dem Wert Q6 erzeugte der
Klassifikator noch gute Ergebnisse, erzielte dabei sogar teils bessere Ergebnisse als die

manuelle Klassifikation, brach jedoch ab einem Wert von Q7 in Bezug auf die Abgleichsqualitat
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Abbildung 32 Durchschnittlicher F-Measure-Wert verschiedener Klassifikatoren abhdngig von der
Datenqualitdtsstufe.
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Im direkten Vergleich Gbertraf die manuelle Klassifikation den SNN. Im Vergleich zum CLARA-
System zeigte sich vor allem, dass der SNN nicht nur bei schlechter Datenqualitdt schlechter als

das CLARA-System abschnitt, sondern auch bei guter Datenqualitat.

Hiermit verblieb noch ein direkter Vergleich zwischen CLARA und der manuellen Klassifikation,
der in Abbildung 32 dargestellt wird. Wie sich zeigte, lag CLARA jederzeit tiber den manuellen
durchschnittlichen Schatzwerten der Schrankenbestimmung. Generell lag die Klassifikation
meist sogar nur sehr knapp unter den maximal erreichbaren F-Werten, die bei einer perfekten
Klassifikation moglich gewesen waren. Die Datenqualitdt wirkte sich hierbei nicht wie beim

KNN negativ auf das Klassifikationsergebnis aus.
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4. Diskussion

4.1. Begriindung der Konzeption eines iliberwachten

Klassifikationssystems

Im Rahmen der DKFS wurden wissenschaftlich offene Fragestellungen und Probleme in Bezug
auf die Klassifikation im Bereich des Privacy-Preserving-Record-Linkage identifiziert. Aufgrund
schwieriger Datenverhaltnisse, wie sie sich gerade im Fall der Daten von Angehoérigen
prasentierten, kann es Probleme bereiten, eine passende Klassengrenze bzw. einen binaren

Klassifikator zu bestimmen [67].

Zu Problemen dieser Art gibt es nur wenig Literatur, da zum einen wohl die Datengrundlage in
vielen Projekten eine einfachere Klassifikation erlaubt. Zum anderen scheint es, als wiirde die
Relevanz der Klassifikation oft im Schatten der Gewichtsberechnung stehen, die in

wissenschaftlicher Literatur die meiste Aufmerksamkeit genielSt.

Bei automatisierten Klassifikationsmethoden, die wahrend eines anonymen Record-Linkage
alternativ zum manuellen Vorgehen anwendbar waren [71], handelt es sich primadr um
regelbasierte, lberwachte sowie uniiberwachte Klassifikationssysteme. Wahrend regelbasierte
Klassifikationsmethoden meist sehr projektspezifisch aufgesetzt werden, konzentrierten sich
die Untersuchungen der Klassifikationsmethoden in dieser Arbeit dagegen vorrangig auf den

Vergleich zwischen uniiberwachter sowie tiberwachter Klassifizierung [38,41,71,80].

Insbesondere wurde dabei eine eigens entwickelte, schon friih entworfene Idee zur
Uberwachten Klassifizierung ausgearbeitet, die spater mit anderen Klassifikationsmethoden
verglichen wurde. Die Fokussierung auf die Uberwachte Klassifizierung riihrte aus der
Annahme, dass schlechte Datenqualitdt eine Uberwachte Klassifikation weniger negativ
beeinflussen sollte als eine uniberwachte Klassifikation, die bei Artefakten in der
Gewichtsmenge, wie etwa unerwartete, zufallig auftretende Gewichtsspriinge, immer die
Gefahr einer kompletten Fehlklassifikation birgt. Aufgrund der Tatsache, dass die manuelle
Klassifikation auf Histogramm-Daten ebenfalls dieselben Probleme aufweist — also Anfalligkeit
gegeniber Datenartefakten — stellte sich die Uberwachte Klassifikation als unabhangige

Variante hierzu dar [42].

Zwar existieren auch im Bereich des Record-Linkage Ansatze zu Uberwachter Klassifikation

[38,83,84], allerdings fehlen hier eindeutige Anweisungen bzgl. Parametrisierung und Auswabhl
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der zugrunde liegenden Trainingssets. Beziiglich des neuen Ansatzes gab es deswegen das Ziel,
eine moglichst einfache und eindeutige Anwendung zu erlauben, die im Grunde genommen
keine externen Trainingsdaten voraussetzte, sondern die Trainingsdaten direkt aus der
zugrunde liegenden Testdatenmenge generierte. Dreh-und Angelpunkt dieser Arbeit war
daher, ein derartiges System aufzusetzen und auf verschiedenen Testsets auf die

Abgleichsgite zu prifen.

4.2. Zugrundeliegende Arbeitsmaterialien

Analysen im Bereich des Record-Linkage sind schwierig, da es an guten externen Testdaten
mangelt [82]. Aus diesem Grund wurde anhand von Klinikumsdaten eine umfangreiche Menge
von insgesamt 400 Testdatensatzen konzipiert, die sich in verschiedenen Parametern, der
GroRe, dem Uberlappungsbereich als auch der Datenqualitidt unterschieden. Somit war eine
Prifung von Methoden, die im Bereich des Record-Linkage angesiedelt sind, unter vielen
verschiedenen Testbedingungen moglich. Wahrend z.B. Testdaten der Qualitdtsstufe 1-2 eine
sehr gute Datenqualitat widerspiegelten, entsprachen Testdatensatze der Qualitatsstufe 8-10
eher schwierigen Datenverhaltnissen mit vielen fehlenden Werten und auftretenden Fehlern

in den einzelnen Auspragungen der Patienteneintrage.

Zu jedem Testdatensatz wurde ein probabilistisches Record-Linkage durchgefiihrt, wodurch
jeweils eine Gewichtsdatei fur vergleichende Analysen erzeugt wurde. Das verwendete System
entsprach hierbei in Bezug auf die Abgleichsglte (Sensitivitat/Spezifitdt) anderen aus
verschiedener Literatur bekannten Angaben (siehe Tabelle 13 sowie Abbildung 33/Abbildung
34).

Tabelle 13: Angaben zu Spezifitét und Sensitivitét bzgl. probabilistischem Record-Linkage.

Quelle Kurzbeschreibung Spezifitat | Sensitivitat
Boonchai et al. | Fir eine Prifung der Qualitdt eines Record-Verfahrens | 100% 95%-100%
[101] zwischen zwei kinstlichen Datenbanken wurden

einwegverschlisselte Kontrollnummern anhand von
Personen-identifizierenden Daten aus verschiedenen
Quellen  erzeugt und zu Datenbank-Eintragen

zusammengefiigt.

Durham et al. | Record-Linkage auf 756.629 kinstlichen Patienten-Daten, | ~100% ~97%
[53] ausgehend von 100.000 realen Patienten mit einem

Uberlappungsbereich von 0.01 %.
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Quelle Kurzbeschreibung Spezifitat | Sensitivitat
Contiero et al. | Es wurde ein Abgleich auf einem Teil von Patientendaten | 98.8% 96.5%
[102] des franzosischen Krebsregisters der Lombardie (20.724

Eintrdge) mit Daten zu sozialer Sicherheit durchgefiihrt

(1.021.846 Eintrage) durchgefiihrt. Die Ergebnisse wurden

Uber manuelle Kontrolle, also nach Golds-Standard

ausgewertet.
Fonseca et al. | Die nationale, brasilianische HIV/AIDS | 99.6% 87.6%
[103] Uberwachungsdatenbank (559.442 Eintrage) wurde gegen

eine Menge von 6.444.822 Daten zu registrierten Toden

abgeglichen.
Migowski et al. | In dieser brasilianischen Studie wurde versucht, die | 100% 90.6%
[104] Qualitat des Record-Linkage abzuschatzen, indem in einer

Datenbank zu verstorbener Bevdlkerung nach am Herzen

operierten Patienten gesucht wurde.
Quantin et al. | Abgleich von manueller und automatischer Methodik im | 97% 93%
[19] Burgundy-Register von  Patientendaten mit  zum

Verdauungssystem assoziierten Krebsarten.
Fournel et al. | Abgleich des groften franzosischen Krebsregisters und | 99.5% 94.8%
[105] Todesféllen in Frankreich zwischen 1998-2004.
Silveira et al. | Review verschiedener Paper und Studien in Bezug auf | 99-100% | 74-98%

(78]

Abgleichsqualitat von probabilistischem Record-Linkage.

Wie Abbildung 32 und Abbildung 33 demonstrieren, libertrafen die Werte zu Sensitivitdt und

Spezifitat abhangig von der Qualitatsstufe meist sogar die gegebenen Vergleichswerte. Bei

Nennung mehrerer Werte in der jeweiligen Arbeit wurde innerhalb der angegebenen Grafiken

ein Mittelwert angegeben. Beriicksichtigt werden muss hierbei allerdings, dass fiir das eigene

System eine optimale bindre Klassifikation, sowie das Bekanntsein der zugrunde liegenden

Haufigkeiten der m-Werte verwendet wurden, was im Realeinsatz nicht der Fall ist und

wodurch, mit hoher Wahrscheinlichkeit, eine verbesserte Abgleichsqualitat erreicht werden

konnte.
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Abbildung 33: Vergleich der veréffentlichten Spezifititswerte von probabilistischen Record-Linkage-
Methoden aus verschiedenen Literaturquellen mit Mittelwerten des Matchings in dieser Arbeit auf
Testsets gruppiert nach Qualitdtsstufe.
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Abbildung 34: Vergleich der verdffentlichten Sensitivitdtstswerte von probabilistischen Record-Linkage-
Methoden aus verschiedenen Literaturquellen mit Mittelwerten des Matchings in dieser Arbeit auf
Testsets gruppiert nach Qualitdtsstufe.

4.3. Hypothese als Ausgangspunkt des wissenschaftlichen

Vorgehens

Bei der Konzipierung des neuen lUberwachten Klassifikationsansatzes wurde schlielRlich initial
eine Hypothese aufgestellt, die besagte: Je dhnlicher zwei Datensets sind, umso ahnlicher sind
auch ihre Klassifikatoren. In diesem Kontext musste Ahnlichkeit definiert werden und anhand
dessen wurde ein Template-Trainingsset konzipiert, das mit dem jeweiligen Testset in GroRRe
der Teilsets, GroRe des Uberlappungsbereiches, sowie Haufigkeit der Fehlerraten
Ubereinstimmte. Zudem wurde versucht, auch die Werteverteilung moglichst gut zu

tibernehmen, um die Ahnlichkeit zu maximieren. Es ist nicht auszuschlieRen, dass es hierbei



Diskussion 87

Ansatze gibt, die zu einer noch héheren Ahnlichkeit zwischen Test- und Trainingsdaten fiihren

wirden.

Der Hypothese folgend misste also ein optimaler Klassifikator auf diesem Template-
Trainingsset, kalibriert am maximalen F-Measure-Wert, auch auf dem zugrunde liegenden
Testdatenset eine Klassifikation mit hoher F-Measure-Bewertung erzeugen. Widerspriichlich
wire es also gewesen, wenn Trainingsdaten, die nicht diesen Ahnlichkeitsanforderungen
entsprachen, zu besseren Klassifikationsergebnissen gefiihrt hdatten. Um die Annahme also zu
priafen, wurden zu den 400 Testdatensets insgesamt jeweils 7 weitere Trainingsdaten-
Varianten aufgesetzt, die sich jeweils in einem Parameter, entweder der GrofRe der Teilsets,
der GroRe des Uberlappungsbereiches, den Fehlerhiufigkeiten, oder der Werteverteilung von

den gegebenen Template-Trainingsset unterschieden.

Die urspriingliche Hypothese wurde dabei widerlegt. Es zeigte sich, dass es zwar galt, Grofle
und Verteilung so gut wie moglich beizubehalten, dass jedoch Ubereinstimmung des
Uberlappungsbereiches zu keiner Verbesserung der Klassifikation fiihrte, sondern im Gegenteil
sogar zu einer Verschlechterung. GemaR den Analysen sollte der Uberlappungsbereich, der bei
der Methodik mit neuen Werten belegt wird, moglichst klein gewahlt werden. In dieser Arbeit
wurden 3% der GroBe des kleineren Trainingssets empfohlen, um die Werteverteilung
moglichst minimal zu beeinflussen. Sicherlich waren auch andere Werte hierzu denkbar. Es
musste lediglich vermieden werden, dass der Uberlappungsbereich komplett oder nahezu leer
verblieb. Die generelle Aussage lautet, je kleiner der Uberlappungsbereich umso besser das
Klassifikationsergebnis, jedoch darf der Uberlappungsbereich hierbei nicht leer sein. Auch ein
Uberlappungsbereich von lediglich einem oder ein paar Links hatte zu Problemen fiihren
konnen. Der exakte Empfehlungs-Wert ist hierbei grundsatzlich nicht fest spezifizierbar, sollte

also als Kritikpunkt und Unsicherheit der Technik im Hinterkopf behalten werden.

Wie sich zudem zeigte, spielten auch die Haufigkeiten der Fehler in den
Uberlappungsbereichen keine entscheidende Rolle. Diese beeinflussten die Klassifikation

weder positiv noch negativ.

Auf die Konstruktion eines optimierten Trainingsdatensets wirkt sich dies natiirlich positiv aus,
da weder Uberlappungsbereich, noch Fehler korrekt abgeschatzt werden miissen. Hitte sich
herausgestellt, dass diese Parameter denen der Ursprungsdaten entsprechen miissten, ware
die Umsetzung einer Anwendung im Realeinsatz deutlich schwieriger gewesen, da man dann
Schatzwerte zu diesen Parametern bendétigt hatte. Im Grunde genommen wadre dies das

Henne-Ei-Problem, bei dem Werte, die man eigentlich bestimmen will (z.B. die GroRRe des



88 Diskussion

Uberlappungsbereichs) im Vorfeld bestimmt werden miissten. Die optimierte Variante bedient
sich nun allerdings lediglich der gegebenen GrofRen der Teilsets der Originaldaten, der
Verteilungswerte zuziiglich eines zufilligen Uberlappungsbereiches, sowie einem konstanten,
niedrigen Wert fir die GréRe des Uberlappungsbereichs. Diese vollautomatisierbare

Technologie wurde CLARA benannt.

4.4. Abgleich und Bewertung verschiedener Klassifikatoren

Um den urspriinglichen Gedanken zu bestatigen, dass liberwachte Klassifizierer gerade auf
Testdaten mit schlechter Datenqualitdt im Vergleich zu den uniiberwachten Systemen
Uberlegen klassifizieren und um die Klassifikationsglite von CLARA zu bewerten, wurde das
System mit Algorithmen der uniberwachten Klassifizierung verglichen. Neben einer einfachen,
aus dem maschinellen Lernen bekannten Clustering-Methode wurde hierbei das System auch
mit einem auf das Record-Linkage ausgelegten Klassifikator, einem zweistufigen KNN mit
vorhergehender Bestimmung einer Keimmenge aus dem Bereich des Aktiven-Lernens, dem
SNN, verglichen. Basierend auf Tests Ubertrifft der zuletzt genannte Algorithmus andere
unliberwachte Klassifikationssysteme [71] wie beispielsweise den hochgelobten TAILOR-

Klassifikator [93].

Wie sich zeigte, schnitt der Clustering-Algorithmus, also das SLC, erwartungsgemaR schlecht
ab. Naive Clustering-Algorithmen suchen prinzipiell nach besonderen Punkten, wie
beispielsweise groBeren Abstdnden in der Datengrundlage, und verwenden diese als
Schrankenanker fiir die Klassifikation. Da diese Punkte oftmals gerade an den Randern einer
Gewichtsmenge vorkommen, sind die einfachen Clustering-Methoden also eher ungeeignet.
Der SNN-Algorithmus konnte hingegen auf Daten mit hoher Datenqualitdit sehr gute
Klassifikationsergebnisse, die nahe an der maximal moglichen Klassifikationsqualitat lagen,
erzielen. Einschrankend ware hierbei zu nennen, dass die Klassifikationsgiite von der korrekten
Auswahl der Keimmenge abhangt. Hierzu wurden zwei Varianten geprift, wobei die eine der
anderen stark Uberlegen war. Eine derartige Unsicherheit bei der Konfiguration eines Systems
ist anwenderunfreundlich und bendtigt ein gewisses Mall projektspezifischen, bzw.
wissenschaftlichen Know-Hows. Solche Unsicherheiten sind bei CLARA nicht gegeben — die
Anwendung ist bis auf die Festlegung der GréRe des Uberlappungsbereiches, fiir die ein

konstanter Empfehlungswert erstellt wurde, eindeutig.

Wie bereits ausgefiihrt, konnte die zweistufige Methodik gute Ergebnisse auf Testdaten mit

hoher Datenqualitdt erzielen. Auf Testsets mit mangelnder Datenqualitdt nahm die Gite der
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Klassifikation jedoch rapide ab, da sich mit Abnahme der Datenqualitdt auch die Haufigkeit von
Datenartefakten (unerwartete Abstande, Anhaufungen) erhoht. CLARA (Ubertraf die
Klassifikation des genannten Klassifikators auf niedriger Datenqualitit bei Weitem,
Uberraschender Weise zeigte sich aber, dass CLARA auch auf Datensdtzen mit hoher

Datenqualitat ahnliche bzw. sogar bessere Ergebnisse als der SNN erzielte.

CLARA offenbart sich hierbei also als das System mit der besseren und von der Datenqualitat
unabhangigen Klassifikationsgilite. Zumal die Konfiguration einfach und eindeutig ist, stellt sich
CLARA beziiglich der untersuchten Testdaten als das Uberlegene System dar. Die Laufzeit
wurde wahrend des Projektes nicht dokumentiert, doch auch hier scheint CLARA keine
groReren Probleme zu bereiten. Die Konstruktion der Trainingsdaten ist in linearer Laufzeit zu
bewiltigen. Weiterhin missen zu diesen Trainingsdaten Record-Linkage-Durchldufe
durchgefihrt werden. Diese kdnnen je nach Grofle der zugrunde liegenden Daten viel Zeit in
Anspruch nehmen. Allerdings resultieren umfangreiche Record-Linkage-Durchldufe auch in
umfangreichen Gewichtsdateien. Alternative uniiberwachte Algorithmen haben eine kubische
bzw. quadratische Laufzeit in Bezug auf die Anzahl der Gewichte innerhalb der Gewichtsdaten.
Die Laufzeit solcher Algorithmen sollte also auf solch umfangreichen Gewichtsdateien sogar
Uber der von CLARA liegen. Genauere Untersuchungen hierzu waren jedoch notwendig, um

glltige Aussagen zu treffen.

CLARA (bertraf auch die erreichte Klassifikationsglite der manuellen Schrankenbestimmung
anhand von Histogrammen. Dieses Ergebnis wiirde dafiir sprechen, die manuelle Klassifikation

komplett durch das CLARA-System zu ersetzen.

Da die beiden Systeme aber komplett unabhangig voneinander fungieren - CLARA basiert auf
Trainingsdaten, manuelle Schrankenbestimmung auf Gewichtsdaten - bietet sich am ehesten
eine Kombination der beiden Techniken an, bei der es also immer eine gegenseitige Kontrolle
gdbe. GroRere Abweichungen zwischen den Methoden wiirden also schnell Hinweis darauf
geben, dass eine der Klassifikationsmethoden eine falsche Schranke vorhergesagt hat. Hierauf
konnten gerade auf die manuelle Schrankensetzung Anpassungen folgen. An dieser Stelle mag
es verwundern weshalb eine Kontrolle von CLARA (berhaupt nétig ist, nachdem die F-Werte in
den Ergebnissen so nah an den Optimalwerten liegen. Der Grund ist, dass Uberwachte
Klassifizierung immer eine leichte Abweichung von einer optimalen Position haben wird. Bei
Kenntnis des ungefihren Bereichs (gegeben durch Gberwachte Klassifizierung/CLARA) ldsst

sich die genaue Position manuell in ein lokales Minimum oder eine passende Liicke einpassen.
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Laut Han et Al. gibt es zudem bei Gberwachten Klassifikationssystemen, wie z.B. CLARA, die
Gefahr einer Uberanpassung (Overfitting) der Trainingsdaten an die Testdaten, was sich
negativ auf die Klassifikationsglte auswirken kénnte [41,80]. Diese Beflirchtung war bei der
Anwendung von CLARA nicht zu bestatigen. Wie sich anhand der Trainingsset-Varianten zeigte,
war das Klassifikationsergebnis immer dann am hdochsten, wenn die Verteilung der
Ursprungswerte moglichst den Originalwerteverteilungen entsprach. Generell spielt
Overfitting fiir das System keine Rolle da jeder Klassifikator immer fiir das gegebene
Originaltestdatenset und nicht fiir andere Testdatensets einzeln generiert wird. Generell lagen
die Klassifikationsergebnisse von CLARA unabhdngig von der zugrunde liegenden Datenqualitat

der Testdatensatze extrem nah am erreichbaren Optimalwert.

4.5. Ubertragung der Ergebnisse auf den aktuellen Stand der

Wissenschaft

Die Klassifikationsergebnisse von CLARA zeigten auf einer umfangreichen Menge von
Testdaten, dass Uberwachte Klassifikation, reprasentiert durch die CLARA-Technologie,
unlberwachter Klassifikation, reprasentiert durch SLC und den SNN, grundsatzlich Gberlegen
war. Eine Auswertung in solch einem Umfang, auf einer Menge von insgesamt 400

individuellen Testdatensatzen, hatte bisher noch nicht stattgefunden [38].

Manuelle Klassifikation, basierend auf Histogramm-Daten, schienbei guter Datenqualitat
valide und lag in dieser Arbeit konkret zwar unterhalb den Ergebnissen von CLARA, jedoch
meist (Uber den Ergebnissen der unliberwachten Technologie, jedoch lief die
Klassifikationsqualitat auch hier bei schlechterer Datenqualitdt nach. Die {iberwachten
Klassifikationssysteme sind hiervon unabhangig und sollten also gerade in Szenarien, in denen
Datenqualitatsprobleme vorliegen, unterstiitzend genutzt werden. So wiirde sich zum Beispiel
anbieten, eine Implementierung des CLARA-Systems auch in den kommenden Record-Linkage-
Durchlaufen der DKFS unterstiitzend einzusetzen. Da Gberwachte Systeme grundsatzlich etwas
grober klassifizieren (d.h. die vorhergesagte Schranke kann von der eigentlichen Position etwas
abweichen) sollte jedoch eine Vollautomatisierung vermieden werden. Eine Kombination aus

manueller und unterstiitzender Klassifikation scheint am wirkungsvollsten.

Neben dem Vergleich zwischen uniiberwachter sowie berwachter Klassifikation ware das
Konzept zum CLARA-System an sich als weiterer Beitrag zum Stand der Wissenschaft zu
nennen. Das CLARA System baut in dieser Arbeit grundsatzlich auf der Konstruktion von

Trainingsdaten, anschlieRendem Record-Linkage auf diesen Daten, Bestimmung einer Schranke
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auf den resultierenden Gewichtsdateien, sowie Einpassen der Schranke in das zugrunde
liegende Testset auf. Da Projekte verschiedene Record-Linkage-Ansdtze verwenden, sollten
also die nicht zur Klassifikation gehérenden Schritte des Privacy-Preserving-Record-Linkage von
CLARA entkoppelt werden. Wiirde man also eine Verdéffentlichung von Software zu dieser
Technologie anstreben, kbnnte man Tools zur Erzeugung von Trainingsdaten entsprechend der
CLARA-Technologie sowie zur Ermittlung der Schranke auf den Gewichtsdateien der
Trainingsdaten anbieten. Das System ware dann mit jeder Art von auf Gewichten basierenden
Record-Linkage-Systemen kompatibel. Fir den User gdbe es lediglich zwei Parameter zu
spezifizieren. Zum einen die GroRe des Uberlappungsbereiches, fiir den ein Empfehlungswert
von 3% der GrofRe des kleineren Teilsets gegeben wird. Zum anderen lieRRe sich die Anzahl der
Trainingssets spezifizieren, zu denen jeweils ein Klassifikator bestimmt wird, dessen Mittelwert
den finalen Klassifikator darstellt (in dieser Arbeit etwa wurden zu jedem Testset jeweils 3
CLARA-Trainingssets erzeugt). Die Anwendung ware also einfach handhabbar. Ein Kritikpunkt
sowie eine Einschrankung ware der zusatzlich bendtigte Festplattenspeicherplatz, der durch

die Erzeugung von Trainingsdaten freigehalten werden musste.

4.6. Limitierungen der Arbeit

Nicht beantworten kann diese Arbeit, ob eventuell andere liberwachte Klassifikationssysteme
CLARA Uberlegen wéaren und wie gut CLARA hierbei vergleichsweise in Bezug auf die
Klassifikationsglite abschneiden wiirde. Alternative Konzepte wie Bumping, Bagging oder
Multiview [83,84] oder die Verwendung von iberwachten Regressionsbdaumen klingen
vielversprechend [100]. Vergleichende Arbeiten wadren hierzu notwendig. Die
Klassifikationsglte von CLARA erschien jedoch in der vergleichenden Analyse, basierend auf
den maximal moglichen F-Werten bereits so gut, dass der Methodik eventuell aufgrund der
einfachen Anwendbarkeit der Vorzug vor anderen Methoden gegeben werden sollte. Innovativ
ist auch die absolute Unabhangigkeit von Trainingsdaten, da diese komplett aus den
Originaldaten generiert werden, sowie die eindeutige Konfiguration, die in anderen Arbeiten
nicht in dieser Art spezifiziert wurde, wodurch Unklarheiten in der Anwendung vermieden
werden. Eine Vollautomatisierung der Klassifikation ware damit unabhangig von den Testdaten

problemlos moglich.

Trotz der auf den Testdaten gegebenen guten Abgleichsgite gibt es Sonderfalle, mit denen das
System nicht gut umgehen kann und die auch hier zu einer starken Fehlklassifikation flihren
konnen. Wirden etwa per Zufall ausschlieflich Links mit einem extrem hohen

Abgleichsgewicht (beispielsweise bei doppelten Vornamen) dem Uberlappungsbereich
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hinzugefiigt werden, wiirde ein darauf resultierender Klassifikator alle echten
Ubereinstimmungen, unterhalb dieser Links als falsch klassifizieren. Der Lésungsansatz um
unglickliche Zufallsziehungen zu umgehen, ist die Erzeugung mehrerer Klassifikatoren und
hierbei die Wahl des Median bzw. des Mittelwertes der vorhergesagten Schrankenwerte. In
den Analysen dieser Arbeit wurden hierfiir jeweils drei CLARA-Trianingssets konstruiert. Je
nach Leistungskraft der zugrunde liegenden Hardware und Umfang der angestrebten Arbeiten

konnten aber weitere Trainingsdaten das Risiko einer starken Fehlklassifikation verringern.

Grundsatzlich handelt es sich bei CLARA auflerdem nicht formell um eine Uberwachte
Klassifikation, sondern eher um eine semi-Uberwachte Klassifikation, da echte
Ubereinstimmungen, die jedoch nicht bekannt sind, das Ergebnis der vorhergesagten
Klassifikatoren eventuell negativ beeinflussen kénnen. Basierend auf den guten Ergebnissen

erscheint dieser Einfluss aber nicht mit allzu groRen negativen Konsequenzen einherzugehen.

Weitere Einschriankungen wie Laufzeit oder auch benoétigter Festplattenspeicher wurden

bereits angesprochen, erscheinen jedoch fiir die meisten Projekte als eher unproblematisch.

Weiterhin ware zu erwahnen, dass den Analysen in dieser Arbeit stets ein probabilistisches
Record-Linkage-System zu Grunde lag. Bei der Gewichtsberechnung spielen hierbei auch
Haufigkeiten und dementsprechend Werteverteilungen eine grofRe Rolle. Das CLARA-System
wurde entsprechend fiir Variationen von Trainingssets, die eben genau in diesen Werten
variieren, konzipiert. Fur das probabilistische Record-Linkage bewadhrte sich dies als
nachvollziehbarer Ansatz. Approximatives Record-Linkage jedoch, bei dem es sich aller
Voraussicht nach um die Zukunftstechnologie im Bereich des Privacy-Preserving-Record-
Linakge handelt, ist von Haufigkeiten zum jetzigen Stand der Wissenschaft, soweit dem Autor
dieser Arbeit bekannt, unabhangig. Dennoch wéare anzunehmen, dass das CLARA-System auch
auf approximatives Record-Linkage anwendbar wéare unter der Prdmisse Fehler bei der
Konstruktion von Trainignsdaten zu Berilcksichtigen. Ohne Berlicksichtigung der
Fehlerhaufigkeiten wiirden hier semtliche Abgleiche im Uberlappungsbereich in einem Wert
von 1.0 resultieren. Hierbei waren jedoch moglicherweise Laufzeitoptimierungen, zum
Beispiel, eine Verkleinerung der Trainingssets oder Ahnliches denkbar. Das approximative
Record-Linkage sollte grundsatzlich weniger von der Parametrisierung der Trainingssets
beeinflusst werden. Um Eindeutigkeit zu bewahren, ware der CLARA-Ansatz aber auch hier
sicherlich einsetzbar. Eine geprifte Empfehlung kann jedoch im Moment nur fiir den Einsatz

auf probabilistischen Record-Linkage-Systemen gegeben werden.
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5. Zusammenfassung

Im Zuge einer Studie zu familidarem Darmkrebs wurde ein probabilistisches Privacy-Preserving-
Record-Linkage umgesetzt, dass den anonymen Abgleich zwischen Studienteilnehmern und
eingetragenen Patienten des Miinchner Tumorregisters erlaubte. Bei dieser Aufgabe konnten
Probleme im Bereich der Klassifikation identifiziert werden. Um die hierbei verwendete
manuelle  Klassifikation zu  unterstitzen, wurde nach alternativen, bindren
Klassifikationssystemen gesucht. Die existierenden Techniken gingen jedoch meist mit neuen
Unsicherheitsfaktoren einher und es fehlte an umfangreichen Vergleichen und erfolgreichen
Einsatzberichten. Ziel dieser Arbeit war es daher, eine leicht einsetzbare Klassifikationstechnik
zu konzipieren, die bei der manuellen Klassifikation unterstiitzend eingesetzt werden konnte

und dabei anderen Methoden in der Klassifikationsgtite Giberlegen war.

Bei der neu konzipierten Technik handelte es sich um ein Gberwachtes Klassifizierungssystem,
das die Klassifikatoren anhand von kiinstlichen Trainingsdaten, die direkt aus den zu
vergleichenden Daten generiert wurden, vorhersagte. Entsprechend der Beschreibung wurde
das System CLARA benannt (CLAssification for Record-Linkage with Artificial Trainingssets). Die
genaue Parametrisierung zur Erzeugung dieser Trainingsdaten wurde U(ber Analysen zu

Variationen in den genannten Trainingsdaten optimiert.

Das System wurde gegenliber Techniken aus dem Bereich der uniiberwachten Klassifikation
getestet. Der Test enthielt auch einen Vergleich zur manuellen Schrankensetzung.
Testgrundlage waren 400 auf klinischen Realdaten basierende Testsets, die sich jeweils in
mindestens einem der Parameter GroRe, Uberlappung bzw. Datenqualitit unterschieden.
Anhand der vergleichenden Analyse ergab sich, dass das CLARA System den anderen
Techniken stark (berlegen war. Besonders auf Ausgangsdaten mit problematischer
Datenqualitdt hielt CLARA die hohe Klassifikationsqualitdt, also in Szenarien, in denen
uniiberwachte Klassifikationen und auch manuelle Klassifikation oft mit Problemen behaftet
sind. Ein weiteres Merkmal von CLARA war die einfache Anwendung, bei der es kaum zu
Unsicherheiten kommen konnte. Eine offentlich zugéngliche Implementierung des Systems

wurde noch nicht erstellt, ist aber fir die nahe Zukunft geplant.

Letztendlich lieferten die Analysen Indiz fiir die Uberlegenheit der (berwachten
Klassifikationssysteme gegeniber den uniiberwachten Klassifikationssystemen im Bereich des
Record-Linkage. Uberwachte Systeme bieten zudem eine von der manuellen Schrankensetzung
unabhangige Sichtweise, weswegen diese sehr gut in Kombination verwendet werden

konnten.
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A. Abkiirzungsverzeichnis

AES

BDSG

CLARA

CLINK

DKFS

DuDe

FEBRL

FM

FN

FP

FRIL

HMAC

IDAT

KNN

KORA

MDAT

MD5

Advanced Encryption
Standard
Bundesdatenschutzgesetz

CLAssification for Record-
Linkage with Artificial
Trainingssets.

Bezeichnung eines
effizienten Complete-
Linkage-Clustering Ansatzes
Studie zu familiarem
Darmkrebs

The Duplicate Detection
Toolkit

Freely Extensible Biomedical
Record Linkage

F-Measure

False-Negatives (Falsch
Negative)
False-Positives (Falsch
Positive)

Fine-Grained Records
Integration and Linkage
Hash-based message
authentication code

Identifizierende Daten

K-Nearest-Neighbour
KOoperative
Gesundheitsforschung in der
Region Augsburg
Medizinische Daten

Message-Digest-Algorithmus
(Version 5)

NSA

OYSTER

PPV

PRISM

RSA

SHA

SLC

SLINK

SNN

SVM

TAILOR

TMF

TN

TP

TRM

UNICON

WHIRL

National Security Agency

Open sYSTem Entity
Resolution
Positive-Predictive-Value
(Positiver pradiktiver Wert)

Planning Tool for Resource
Integration, Synchronization
and Management

Rivest, Shamir und Adleman
(Initialen der Entwickler)
Secure Hash Algorithm

Single-Linkage-Clustering

Bezeichnung eines
effizienten Single-Linkage-
Clustering Ansatzes
Seeded-Nearest-Neighbour

Support-Vector-Maschine

RecOrd LInkAge Toolbox
(Acronym riickwarts)
Technologie- und
Methodenplattform fiir die
vernetzte medizinische
Forschung

True-Negatives (Echt
Negative)

True-Positives (Echt Positive
Tumorregister-Miinchen

Uniform Control Number
Generator

Word-Based Heterogeneous
Information Representation
Language
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Anhang 103
E. Programmverzeichnis
Index | Programmname Funktion (Kurzbeschreibung) Seite

1 RecordLinkage Hauptklasse zur Durchfiihrung eines Record Linkage auf zwei 37
gegebenen Datensets.

2 RecordLinkagelnput Regelt das Einlesen der Daten fiur RecordLinkage<1>. 37

3 Person Zu RecordLinkagelnput<2> assoziierte Klasse. -

4 ConfigReader Zu Record Linkage<1> assoziierte Klasse. -

5 ListComparator Zu RecordLinkage<1> assoziierte Klasse. -

6 GenerateControlnumbers Klasse zur Standardisierung und Einwegverschlisselung 37
identifizierender Daten.

7 CreateTestsets Klasse zur Erzeugung der 400 in dieser Arbeit verwendeten 44
Testdatensatze.

8 CreateTestSetsWeights Automatisierter Aufruf der Klasse Record Linkage auf den 400 52
gegebenen Testsets.

9 FMeasure Berechnung des maximalen FMeasures auf den 400 52
Gewichtsdateien der Testsets.

10 CreateTemplateTrainingsset Erzeugung eines Trainingssets unter Verwendung der 57
Konstruktionsparameter eines zugrunde liegenden Testsets.

11 CreateTrainingSetWeights Erzeugt zu semtlichen Trainingssets die Gewichtsdateien. 57

12 MassFMeasure Erzeugt zu den Gewichtsdateien von Trainingssets die FMeasure 57
und Schrankenwerte.

13 FitBorderToTestset Flgt einen vorhergesagten Klassifikator in ein Testset ein und 58
bemisst den hierdurch erzielten F-Measure-Wert.

14 CreateSizeVariant1Trainingsset Erzeugung von Trainingssets deren GroRe auf 100 festgelegt 59
wurde.

15 CreateSizeVariant1Trainingsset Erzeugung von Trainingssets deren GréRe im Vergleich zu den 60
Testdaten halbiert wurde.

16 CreateErrorVariantTrainingsset Erzeugung von Trainingssets ohne Fehler im Uberlappungsbereich. 60

17 CreateOverlapVariant1Trainingsset Erzeugung von Trainingssets deren Uberlappungsbereich auf 90% 61
der GroRe des kleineren Teilsets festgelegt wurde.

18 CreateOverlapVariant2Trainingsset Erzeugung von Trainingssets deren Uberlappungsbereich auf 30% 61
der GroRe des kleineren Teilsets festgelegt wurde.

19 CreateOverlapVariant3Trainingsset Erzeugung von Trainingssets deren Uberlappungsbereich auf 3% 61
der GroRe des kleineren Teilsets festgelegt wurde.

20 CreateDistributionVariant1Trainingsset | Erzeugung von Trainingssets in denen die Werteverteilungen der 61
Patienten gleichverteilt wurden.

21 AutomateTrainingsetProduction Klasse die die Produktion der 9600 Trainingssetvarianten 63
automatisiert.

22 CreateFinalTrainingsset Trainingsseterzeugung entsprechend dem CLARA Konzept. 63

23 SingleLinkageNAIV Vereinfachung des Single Linkage Clusterings. Da es sich bei 64
Gewichtsdateien um eindimensionale Daten handelt ist der
Algorithmus trivial und bestimmt die groRten Abstdnde in den
Gewichtsdateien als Schrankenwert.

24 KNN_Seed1 Neares-Neighbour-Algorithmus mit k = 3 und Seedmenge nach 66
Formel 17 und negativem Seetanteil von 5% bestimmt.

25 KNN_Seed2 Neares-Neighbour-Algorithmus. Die Seedmengen wurden per 66
Treshhold festgelegt. Oberer Schrankenwert liegt hierbei bei +45
unterer Schrankenwert bei -15.

26 CreateHistogramms Erzeugung von 400 Histogrammen zu den Testsets . 67

Einsicht in den Quellcode der Programme kann beim Autor dieser Arbeit direkt beantrag werden.
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F. Histogramm-Ubersicht der Testdatensitze
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