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1. Einleitung 

1.1. Einführung in die Thematik 

Das Erzeugen, Sammeln und Weitergeben von Daten in großem Stil ist heute 

selbstverständlicher Bestandteil unseres alltäglichen Lebens geworden. Man denke nur etwa 

an die vielen bereits in die Milliarden [1] gehenden Online-Profile auf Facebook oder anderen 

sozialen Netzwerken, auf denen persönliche Daten freiwillig geteilt und veröffentlicht werden 

[2].  

Im Jahr 2013 erregte jedoch die Affäre um unzulässige, weltweite Datenerüberwachung der 

National Security Agency (NSA) mit der Projektbezeichnung PRISM [3], bei der Daten mit einer 

Kapazität von mehreren Zettabytes (1021 Bytes), einschließlich persönlicher E-Mails und 

Chatprotokolle, ohne Wissen und Zustimmung erfasst wurden, weltweites Aufsehen [4]. Der 

Skandal verdeutlicht die Notwendigkeit sicherer Datenschutzkonzepte um geheim zu haltende 

Daten vor Fremdzugriffen zu schützen. 

Gerade in der Medizin kommt dem Datenschutz eine immens hohe Bedeutung zu, da es sich 

bei medizinischen Daten um Daten mit sensiblen Inhalt (§ 3 Abs. 9 BDSG) handelt. Als sensible 

Daten bezeichnet man generell Daten mit Angaben über die rassische und ethnische Herkunft, 

politische Meinung, religiöse oder philosophische Überzeugung, Gewerkschaftszugehörigkeit, 

Gesundheit oder Sexualleben. 

Patientendaten, die solche sensiblen Informationen beinhalten, dürfen unanonymisiert ohne 

Einverständnis des Patienten nicht veröffentlicht und nur in Sonderfällen weitergereicht 

werden [5]. Die Sicherheit der Patientendaten ist in Deutschland nicht nur ethisch sondern 

auch gesetzlich fundiert. Informationen zu Patientendaten fallen nach Artikel § 203 des 

Strafgesetzbuches (Verletzung von Privatgeheimnissen) unter die ärztliche Schweigepflicht und 

unterliegen dem Grundrecht auf informationelle Selbstbestimmung [6]. 

Es stellt sich nun die Frage, wie es im Zuge von medizinischer Forschung ermöglicht werden 

kann, auf Patientendaten, die einem Schutzversprechen unterliegen, unter Beachtung 

desselben zuzugreifen. Kohorten-Studien, wie sie beispielsweise im Zuge des KORA- Projektes 

oder der deutschen Kohorte stattfinden [7,8], arbeiten direkt mit Probanden, die ihre Daten 

unter Erklärung ihres Einverständnisses zur Verfügung stellen. Die Daten werden hierzu in 
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vorbereiteten Studienzentren erfasst. Ein Datenzugriff ist also zu Forschungszwecken 

grundsätzlich möglich.  

Schwieriger ist es jedoch, wenn legitimes Forschungsinteresse an Datensammlungen besteht, 

deren Inhalte ohne explizite Einverständniserklärung des Patienten aufgenommen wurden. 

Solche Datensammlungen existieren nur dann, wenn es gesetzliche Grundlagen gibt, die die 

Erfassung medizinischer Daten für die gegebene Einrichtung erlauben. So beschreibt 

beispielsweise das Bundeskrebsregisterdatengesetz [9] eine dieser Regelungen. Das 

Tumorregister München etwa (TRM), erfasst sowohl identifizierende (IDAT) als auch 

medizinische (MDAT) Daten von erkrankten, spezifische Einschlusskriterien erfüllenden, 

Patienten in München und Umgebung. Datenlieferanten sind hierbei Arztpraxen und 

Krankenhäuser.  

Medizinische Daten innerhalb solcher, nicht auf Patienteneinwilligung basierender 

Krankheitsregister dürfen nur anonymisiert ausgehändigt werden. Allerdings reicht eine 

Abtrennung der IDAT von den MDAT oftmals nicht aus. Ort oder Datumsangaben innerhalb der 

MDAT, wie beispielsweise das Diagnosedatum, können als Quasi-Identifikatoren [5,10] 

missbraucht werden und somit eine Identifizierung von Personen anhand ihrer MDAT und 

Hintergrundsinformationen ermöglichen. Über den Health-Insurance-Portability-And-

Accountability-Act (HIPAA), eine amerikanische Maßnahme, die sich unter anderem bemüht 

nationale Standardisierungsregeln zu medizinischen Sicherheitsaspekten zu präsentieren, wird 

eine gepflegte Liste von Attributen, die als Quasi-Identifikatoren in Frage kämen, zur 

Verfügung gestellt [11]. 

Es existieren methodische Ansätze wie K-Anonymity, L-Diversity als auch T-Closeness, die bis 

zu einem gewissen Grad uneingeschränkte Anonymität garantieren sollen und genannte 

Gefährdungen seitens Unbefugter auch bei umfangreichem Hintergrundwissen ausschließen 

sollen [5,10,12]. In der Praxis sind diese Konzepte allerdings oft nur schwer umsetzbar und 

beschränken durch Generalisierung, Gruppierung, das Einfügen von „Dummy“-Werten und 

Datenabänderung den Informationsgehalt der Quasi-Identifikatoren bzw. der medizinischen 

Daten. Ob und in welchem Ausmaß eine Anonymisierung der Patientendaten abseits der 

Entfernung der IDAT notwendig ist, muss projektspezifisch entschieden werden.  

Eine weitere große Herausforderung zeigt sich, wenn medizinische Daten bereits existieren 

und mit medizinischen Daten aus anderen Datenquellen zusammengeführt werden sollen um 

etwa mögliche Zusammenhänge zwischen den Daten zu erkennen. Solche Szenarien treten 

zum Beispiel dann auf, wenn Studiendaten zusätzlich mit Registerdaten verknüpft werden 
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sollen. Die grundsätzliche Zusammenführung zweier Datensets wird auch als Data-Matching 

oder Record-Linkage [13] bezeichnet und detailliert unter Kapitel 1.3.2 beschrieben. Das 

Matching, also das Zusammenführen der Daten, erfolgt hierbei für gewöhnlich auf der Basis 

identifizierender Daten wie Namensattributen, Geburtsdatum, Geschlecht und Adresse. Dieser 

Vorgang ist im Kontext des Zusammenführens von Patientendaten allerdings nicht trivial und 

unterliegt komplexen Datenschutzmodellen (siehe Kapitel 1.2.1), deren Anforderungen es zu 

erfüllen gilt. So darf unter anderem das Record-Linkage nicht direkt auf den Klartextattributen 

der IDAT durchgeführt werden. Diese müssen zuerst einwegverschlüsselt werden – das 

Matching erfolgt also auf einwegverschlüsselten String-Repräsentationen. Ein solches Record-

Linkage bezeichnet man dann als Privacy-Preserving-, Anonymous- oder auch Medical-Record-

Linkage [14-20].  

Als konkretes Beispiel für die Notwendigkeit eines solchen Record-Linkage-Verfahrens stellte 

sich dem Verfasser dieser Arbeit eine Studie zu familiärem Darmkrebs in München dar (siehe 

Kapitel 1.2.1 ) [21]. Während der Mitarbeit an der genannten Studie eröffneten sich im Bereich 

des Record-Linkage einige wissenschaftlich interessante Fragestellungen. Vor allem bezüglich 

der Klassifizierung, einem wesentlichen Teilbereich des Record–Linkage-Prozesses, konnte 

Verbesserungspotential bezüglich des Standes der Wissenschaft identifiziert werden, was zu 

einer Reihe von weiterführenden Untersuchungen, Analysen und Entwicklungen bezüglich der 

Klassifizierung im Bereich des Privacy-Preserving-Record-Linkage motivierte.  

1.2. Motivation zur Durchführung der vorliegenden Arbeit 

1.2.1. Studie zu familiärem Darmkrebs 

Medizinischer Hintergrund  

Bei Darmkrebs, bzw. dem kolorektalem Karzinom, handelt es sich weltweit um die 

zweithäufigste Tumorerkrankung bei der Frau und die dritthäufigste Tumorerkrankung beim 

Mann [22]. Verschiedene Risikofaktoren erhöhen die Wahrscheinlichkeit, an Darmkrebs zu 

erkranken. Als prominent wären schlechte Essgewohnheiten, mangelnde Bewegung, Rauchen 

und hohes Alter zu nennen [23]. Abgesehen von Risikofaktoren, die auf Umwelteinflüssen 

basieren, spielen auch genetische Faktoren eine Rolle. Spezifische Gen-Dispositionen die sich 

in Krankheiten wie z.B. dem Lynch-Syndrom [24] oder dem Gardner-Syndrom [25] ausprägen, 

erhöhen das Darmkrebsrisiko immens. Der Darmkrebs, der sich normalerweise erst im hohen 

Alter manifestiert, trifft hierbei oft auch jüngere Personen. Bei familiärem Darmkrebs handelt 
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es sich hingegen um einen weiteren Risikofaktor, der unabhängig von bekannten genetischen 

Dispositionen dazu führt, dass diese Erkrankung in Familien oftmals gehäuft auftritt [26].  

Die Sterberate nach einer Zeitspanne von fünf Jahren nach der Diagnose des Darmkrebses liegt 

bei 30%-37% [27]. Für gewöhnlich umfasst die Behandlung, falls möglich, die chirurgische 

Entfernung des Tumorgewebes, unterstützende Chemotherapie, selten auch in Kombination 

mit Bestrahlung [28]. Bei rechtzeitiger Erkennung durch Vorsorgeuntersuchungen lässt sich die 

Sterberate um bis zu 60% verringern [29]. Die Koloskopie ist hierbei die zuverlässigste 

Methode, aber auch die Kosten sparendere Prüfung auf okkultes Blut im Stuhl kann Hinweise 

auf Tumorgewebe liefern [30]. Basierend auf den Fakten ist es ersichtlich, welche 

Konsequenzen eine mangelnde Vorsorge nach sich ziehen kann. 

Zielsetzung und grober Ablauf der Studie 

Im Rahmen einer Studie zu familiärem Darmkrebs (DKFS: Darmkrebs-Familienstudie), die als 

Kooperation zwischen dem Institut für Epidemiologie, Biometrie und medizinische 

Informationsverarbeitung (IBE) an der LMU in München und dem Tumorregister München 

(TRM: www.tumorregister-muenchen.de) durchgeführt wird, erfolgte eine eingehende 

Beschäftigung mit der Thematik des familiärem Darmkrebses [21]. Das methodische 

Hauptinteresse gilt hierbei dem Identifizieren medizinischer Daten von bereits erkrankten 

Verwandten der für die Studie rekrutierten, neu erkrankten Indexpatienten. Hierdurch sollen 

Erkenntnisse und Häufigkeiten bezüglich der Thematik ermittelt und gegebenenfalls 

Empfehlungen und Anpassungen bezüglich der Vorsorge von Angehörigen formuliert werden. 

Patientendaten zu Tumorerkrankungen werden routinemäßig von Krebsregistern bzgl. eines 

definierten Einzugsgebietes erfasst. Das Register, aus dem die Studie Daten bezieht, das TRM, 

umfasst ein Einzugsgebiet von 4,64 Millionen Einwohnern (Stand: 2011) aus den Regionen 

München und Umgebung.  

Leider lassen sich die Familienbeziehungen innerhalb des TRMs nicht rekonstruieren, da 

notwendige Daten zur Familienstruktur nicht im Register abgespeichert werden. Es gilt also, 

die im TRM hinterlegten medizinischen Daten (MDAT) der Angehörigen und Indexpatienten 

mit den Studiendaten, unter Erhalt der Familienstruktur, über andere Wege in Beziehung zu 

setzen.  

Mittels spezieller Erfassungsbögen (siehe Abbildung 1) werden die identifizierenden Daten 

(IDAT) naher Verwandter der neu erkrankten, an der Studie teilnehmenden Indexpatienten im 

Einzugsgebiet des TRM erfasst.  
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Abbildung 1: Datenerfassungsbogen der DKFS. 

Über ein probabilistisches Record-Linkage [31-33] Verfahren (weiterführende Erläuterungen 

hierzu unter Kapitel 2.1.2) lassen sich die hierbei erfassten IDAT der Patienten und 

Angehörigen zu den im TRM hinterlegten IDAT zuordnen. Die während des Record-Linkage-

Prozesses erstellten Links erlauben nachfolgend auch die Zuordnung der MDAT des TRM zu 

den Studienteilnehmern und ihren Angehörigen. Somit lassen sich Familienstrukturen in den 

MDAT des TRM rekonstruieren.  

Datenschutzkonzept der Studie 

Wie unter Kapitel 1.2 beschrieben, ist nicht nur die Einwegverschlüsselung der Attributwerte 

Voraussetzung für den sicheren Ablauf eines Privacy-Preserving-Record-Linkage. Studien 

müssen sich meist nach strengen Datenschutzkonzepten richten. In einer ergänzenden 

Publikation [34] wurde hierzu ein aus 7 Anforderungen bestehendes Datenschutzmodell 

vorgestellt, an dem sich die gegebene Studie orientiert. Zentraler Bestandteil dieses Konzeptes 

ist eine institutionelle sowie organisatorische Trennung der teilnehmenden Parteien in 

verschiedene Module [35]. Diese Modularisierung resultiert in einer Reihe weiterer 

Anforderungen und damit verbundener Vorsichtsmaßnahmen, um dem notwendigen 

Datenschutz zu genügen. Abbildung 2 beschreibt hierbei vereinfachend den Datenfluss 

zwischen den wichtigsten an der Studie involvierten Einrichtungen (siehe Abbildung 2). 
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Abbildung 2: Vereinfachtes Datenschutz- sowie Datenflussmodell während der DKFS 

Dabei waren abseits der Einwegverschlüsselung der Klartextdaten symmetrische sowie 

asymmetrische Verschlüsselungsschritte notwendig. Diese wurden konkret mittels AES-

Algorithmus mit einer Blocklänge von 128-Bit [36] bzw. AES/RSA mit einer Schlüssellänge von 

2048-Bit implementiert [37]. Die technischen Details des Datenschutzmodelles sind für das 

Verständnis dieser Arbeit allerdings als eher peripher zu verstehen. 

1.2.2. Klassifizierungsproblematik während der DKFS 

In der DKFS gab es eine Reihe von Aspekten, die im Bezug auf das Privacy-Preserving-Record-

Linkage Probleme bereiteten. Ein Hauptproblem zeigte sich bei der Festlegung einer binären 

Schranke, die die Menge der potentiellen Links in echte bzw. falsche Links unterteilt. Die 

Festlegung einer binären Schranke ist Teil des Klassifizierungsprozesses des Privacy-Preserving-

Record-Linkage, wobei der jetzige Stand der Wissenschaft keine eindeutige, standardisierte 

Lösung für dieses Problem präsentieren kann [38]. Das Klassifizierungsproblem wird 

nachfolgend im Bezug auf die Familienstudie eingehend erläutert. Kapitel 1.3.3 beschäftigt sich 

zudem mit dem generellen Stand der Wissenschaft zum Klassifizierungsprozess im Bereich des 

Record-Linkage, insbesondere mit Augenmerk auf binäre Klassifikation (Unterteilung aller Links 

in zwei Klassen – echte Links und falsche Links). 

Studien-
Datenbank 

Datentreuhänder:  
Record-Linkage 

Register- 
Datenbank  

Analyse- 
Zentrum 

IDAT, MDAT-Studie IDAT  

LINKS  MDAT-Studie 

MDAT-Register  



 Einleitung 12 

Während der DKFS wurde primär versucht, manuell eine Klassentrennung zu erreichen. Dies ist 

eine in der Praxis oft verwendete Methodik [33,39,40]. Grundsätzlich basiert diese auf den 

Ergebnissen des Matching-Prozesses, also den gesammelten Gewichten der erzeugten Links. Je 

höher das Gewicht eines Link ist, umso wahrscheinlicher ist es, dass es sich bei den durch IDs 

repräsentierten Entitäten innerhalb des Link um dieselbe Entität handelt. Allerdings gilt es nun, 

den Grenzwert zu finden, ab dem ein Link als echter oder falscher Link klassifiziert wird. Die 

Menge der Gewichte lässt sich wie in Abbildung 3 illustriert, jeweils als Histogramm darstellen. 

Dabei gibt die x-Achse die Höhe des Gewichtes an und die y-Achse beschreibt die Häufigkeit 

eines jeden auftretenden Gewichtes. Um das Histogramm lesbar zu gestalten, sollten die 

Gewichte gerundet werden – beispielsweise auf die nächste natürliche Zahl. Optimalerweise 

zeigen sich innerhalb des Histogramms der Gewichte bei guter Datenqualität zwei deutlich 

voneinander unterscheidbare Erhebungen (Abbildung 3a). Nicht nur Genauigkeit und 

Vollständigkeit definieren in diesem Szenario eine hohe Datenqualität sondern auch Zeitnähe, 

also ein geringer zeitlicher Abstand bei der Aufnahme der Daten. Diese Erhebungen sind als 

Klassen zu interpretieren. Die im Histogramm weiter links liegende Erhebung, also diejenige, 

die niedrigere Gewichte enthält, repräsentiert hierbei falsche Links, die weiter rechts liegende 

Erhebung echte Links. Ursache für das Auftreten dieser Erhebungen ist, dass Links  

 

Abbildung 3: Darstellung verschiedener möglicher Histogramme zur Erläuterung der während des 
Rekord- Linkage auftretenden Klassifikationsproblematik. 
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innerhalb ihrer Klasse ein ähnliches Gesamtgewicht besitzen, da ähnlich viele Attributswerte 

übereinstimmen bzw. nicht übereinstimmen. So stimmt bei echten Links meist ein Großteil der 

Attribute überein, wohingegen bei falschen Links nur wenige oder keine Attribute 

übereinstimmen. Problematisch in Bezug auf manuelle bzw. unüberwachte Klassifikation 

[41,42], die sich vollständig an den gegebenen Gewichten orientierten ist im Allgemeinen, 

wenn es keine klare Klassengrenze gibt oder die Erhebungen nicht markant genug sind, um sie 

eindeutig voneinander zu unterscheiden (Abbildung 3b). Grund hierfür können z.B. mangelnde 

Datenqualität oder ein hohes Maß an Verwandtschaftsbeziehungen innerhalb der Daten sein. 

Bei Problemfällen stimmen dann nur einige der Attribute überein, andere wiederum nicht, was 

in Gesamtgewichten resultiert, die zwischen den Standardwertebereichen für echte bzw. 

falsche Links liegen. Beispielhaft kann dies anhand von zusammenlebenden Geschwistern 

dargestellt werden. Deren Daten stimmen im Nachnamen, der Adresse und gegebenenfalls im 

Geschlecht über, unterscheiden sich jedoch im Vornamen und zumeist im Geburtsdatum (als 

Ausnahme wären Mehrlinge zu nennen). In solchen Fällen ist es oft schwierig, anhand der 

Histogramme zu entscheiden, welcher Klasse man diese Links zuordnet. Weiterhin 

problematisch sind Datensets, zwischen denen nur sehr wenige Übereinstimmungen zu 

erwarten sind, weswegen anstelle der Erhebung im oberen Gewichtsbereich oftmals durch 

viele Lücken getrennte Gewichtsanhäufungen zu erkennen sind (Abbildung 3c). Hierbei ist es 

ungewiss, in welche der Lücken ein möglicher Klassentrenner einzutragen wäre. 

Im Falle der DKFS war die Klassifikation besonders problembehaftet, da die Daten der 

Angehörigen der Patienten nicht direkt von den Angehörigen, sondern stellvertretend durch 

die Indexpatienten über Aufnahmebögen (siehe Abbildung 1) oder telefonisch gesammelt 

wurden. Oftmals fehlten den Patienten hierbei die exakten Informationen, wie beispielsweise 

der genaue Wohnort, oder das exakte Geburtsdatum ihrer Angehörigen, es wurden jedoch 

trotzdem Angaben gemacht, die dem nachfolgenden Record-Linkage jedoch eher abträglich 

waren. Die während des Klassifikationsprozesses erstellten Histogramme während des Record-

Linkage zwischen Studien- und Registerdaten entsprachen also nicht dem Optimalbeispiel aus 

Abbildung 3a, sondern eher den Problemfällen wie sie unter Abbildung 3b bzw. Abbildung 3c 

wiedergegeben wurden. Abbildung 4 zeigt diesbezüglich eines der Histogramme der Menge 

aller Links zum Record-Linkage-Durchlauf am 04.02.2014. Es ist hierbei anzumerken, dass für 

die Klassifikation innerhalb des DKFS Projektes insgesamt 9 verschiedene Histogramme 

verwendet werden, die unter anderem eine differenzierte Ansicht von Angehörigen und 

Patienten erlauben. 



 Einleitung 14 

Um der Problematik der Unsicherheit zu begegnen, ist es generell, auf datenschutzrechtlich 

unkritischen Daten, möglich, einen Unsicherheitsbereich explizit zu definieren. Hierzu wird 

eine weitere Schranke verwendet. Es ist hierbei ausreichend, die beiden Schranken, die den 

Unsicherheitsbereich aufspannen, grob abzuschätzen (Abbildung 3d). Hierbei entstehen drei 

Klassen. Die der echten Links (oberhalb der oberen Schranke), die der unsicheren/potentiellen 

Links (zwischen den Schranken), sowie die der falschen Links (unterhalb der unteren Schranke). 

Die unsicheren Links können dann manuell den echten oder falschen Links zugeordnet werden. 

Sollte das Vergleichsgewicht zweier echt übereinstimmender Entitäten beispielsweise durch 

einfache Rechtschreibfehler in den Unsicherheitsbereich gerutscht sein, so lässt sich dies 

schnell durch die eben genannte manuelle Durchsicht erkennen (Tabelle 1). Im dort 

dargestellten Beispiel würde der Patient mit den Varianten des Nachnamens 

„SMITH“/“SMYTH“ und kleinem Fehler im Geburtsdatum als identisch identifizierbar sein.  

Für solch einen Vergleich sind jedoch Klartextdaten notwendig, welche im Kontext des 

probabilistischen Privacy-Preserving-Record-Linkage, also auch in Bezug auf die DKFS, nicht 

gegeben waren. Anhand der hier vorkommenden, einwegverschlüsselten Daten ließ sich 

lediglich beurteilen, ob Attribute vollkommen übereinstimmen oder nicht. Im Falle der DKFS 

wurde die Information der einzelnen Attributübereinstimmungen im Unsicherheitsbereich 

(jedoch ohne Klartextinformation) unterstützend bei der Schrankenfindung mitverwendet 

(siehe Abbildung 5). Die Datei beinhaltete detaillierte Angaben zu linkspezifischen 

Übereinstimmungen (J), Nicht-Übereinstimmungen(N) und fehlenden Werten auf Seiten der 

Studiendaten bzw. des TRM (SF=Studie fehlt, TF=TRM Daten fehlen, BF=Daten fehlen auf 

beiden Seiten).Werte in Klammern standen für die Häufigkeit der jeweils genannten Angaben 

in Attributen in denen Mehrfachvorkommen möglich sind. Nach Durchsicht der Histogramme 

wurde die Datei genutzt um die Bestimmung des exakten Punktes des binären Klassifikators zu 

unterstützen. Im gegebenen Beispiel wurde die Schranke auf 24.9 festgelegt. Der Ausschnitt ist 

weder in der Zahl der Einträge noch in der Menge der Spalten vollständig. 

Tabelle 1: Unterschiedliche Darstellung einer Entität in zwei verschiedenen Datenbanken. 

 Datenset 1 Datenset 2 

Nachname SMITH SMYTH 

Vorname 

Geburtsdatum 

Geschlecht 

ALAN 

26.02.1983 

M 

ALAN 

25.02.1984 

M 
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Abbildung 4: Eines der konkreten Histogramme zum Record-Linkage der DKFS am 04.02.2014. 

Auch wenn für die DKFS bei der manuellen Schrankensetzung und somit bei einem gewissen 

Maß an Unsicherheit vorerst verblieben wurde, wäre es wünschenswert, automatisierte, 

binäre Klassifikationsvarianten entscheidungsunterstützend in den Klassifikationsprozess 

einzubringen.  

 

 

Abbildung 5: Ausschnitt aus der Pair-Analysis Datei vom Record-Linkage-Durchlauf der DKFS am 
19.12.2013.  
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Leider existieren keine vergleichenden Analysen zu diesen Methoden, und es ist unklar, ob die 

Methoden überhaupt zur manuellen Klassifikation verbessernd beitragen können. Der Stand 

der Wissenschaft zu genannten Klassifikationsmethoden wird weiterführend unter Kapitel 

1.3.3 beschrieben. 

1.3. Grundlagen des Privacy-Preserving-Record-Linkage 

1.3.1. Historischer Hintergrund 

Als Record-Linkage bezeichnet man den Prozess des Zusammenführens von Daten 

verschiedener Datensets. Das Record-Linkage findet dabei in vielen verschiedenen Domänen 

Anwendung. Das Gesundheitswesen [43,44], nationale Sicherheit [45], Bibliographien (hier 

auch als Authority-Control [46] bezeichnet) sowie soziale Wissenschaften [47,48] wären 

hierbei einige der Hauptanwendungsbereiche.  

Ein Teilbereich des Record-Linkage, die Klassifikation, spielte in dieser Arbeit die zentrale Rolle. 

Historisch wurde der Begriff Record-Linkage bereits relativ früh eingeführt. So verwendete 

Dunn im Jahr 1946 den Begriff zur Beschreibung einer Idee, bei der für jeden Weltenbürger ein 

Eintrag zu dem als „Book of Life“ bezeichneten Register vorgenommen werden sollte [13]. Im 

Book of Life sollte jeder Eintrag mit dem Geburtsdatum eines Individuums anfangen und dem 

Todesdatum enden. Weitere wichtige Eckpunkte des Lebens sollten zwischen diesen zwei 

Einträgen stehen. Somit gäbe es für jedes Individuum der Erde einen Eintrag im Book of Life, zu 

dem sich ein Individuum zuordnen ließe- also Grundlage für eine Art universelles Record-

Linkage. Zum damaligen Zeitpunkt wäre eine Zuordnung eines Individuums zu diesem Buch 

relativ schwer gefallen, da es noch keine wissenschaftlich fundierten, automatisierten 

Methoden gab. Die ersten Ideen hierzu folgten in den 1950ern bzw. frühen 1960ern [49,50], 

publiziert durch Howard Newcombe. Letzterer ebnete auch den Weg für die ersten 

probabilistischen Verfahren. Basierend auf seinen Erkenntnissen, dem Berechnen von 

Gewichten von Übereinstimmungen bzw. Nicht-Übereinstimmungen anhand von 

Attributshäufigkeiten, formulierten zwei Statistiker, Ivan Fellegi und Alan Sunther, 1969, einen 

optimalen Algorithmus zum probabilistischen Abgleich von Daten, der auch heute noch weit 

verbreitet Anwendung findet [31]. So sei zu erwähnen, dass das Record-Linkage-System, das 

im Methodenteil dieser Arbeit Verwendung fand, auf dem eben genannten Algorithmus 

beruht. Erwähnenswerte Verbesserungen im Bereich des Record-Linkage konnten noch in den 

90er Jahren durch William Winkler erzielt werden [51], der erste Ansätze zur Toleranz von 
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Variationen in Attributswerten, sowie Möglichkeiten der Abschätzung von Fehlerhäufigkeiten 

mittels automatisierter Methoden präsentierte.  

Das Privacy-Preserving-Record-Linkage basiert auf dem Abgleich von Hash-Werten und 

entwickelte sich in den 90er Jahren in Frankreich [19,20]. In jüngster Zeit, konkret seit ca. 

2010, fandt jedoch eine technische Revolution statt. Im Gegensatz zu den klassischen 

Methoden, die in diesen Szenarien ihre Vergleiche auf Hash-Werten der zugrunde liegenden 

Daten ausführten, verwenden die neuen Technologien Bloom-Filter [52] (näher erläutert unter 

Kapitel 1.3.2) als Vergleichsmedium um schließlich Gewichte basierend auf der String-

Ähnlichkeit zu approximieren, obgleich die Attributsausprägungen im Klartext nicht lesbar sind. 

Man spricht hierbei auch von approximativem Record-Linkage. Prominent seien hierzu 

Arbeiten von Reiner Schnell [14], Elisabeth Durham [53] sowie Peter Christen [54] genannt. 

Auch wenn diese neuen Technologien vielversprechend klingen und ein definitives, 

qualitatives Upgrade vor allem in Bezug auf die Sensitivität zum klassischen, probabilistischen 

Record-Linkage darstellen, gibt es noch viele offene Aspekte, die es hierbei wissenschaftlich zu 

beleuchten gäbe. Mehrere deutsche Arbeitsgruppen wie beispielsweise das German Record-

Linkage-Center (www.record-linkage.de) beschäftigen sich momentan aktiv mit dieser 

Technologie, und es ist zu erwarten, dass das approximative Record-Linkage bald das 

probabilistische Record-Linkage im Bereich des Privacy-Preserving-Record-Linkage als den in 

der medizinischen Forschung verwendeten Standardansatz verdrängt. 

1.3.2. Technischer Ablauf des Privacy-Preserving-Record-

Linkage 

Technisch werden beim Record-Linkage in der Regel Einträge zweier Datensets zueinander 

zugeordnet. Der Ablauf des Record-Linkage lässt sich in vier rudimentäre Arbeitsschritte 

einteilen:  

 Vorverarbeitung 

 Blocking/Indexing 

 Gewichtsbestimmung  

 Klassifikation 
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Der eben genannte technische Ablauf wird grafisch in Abbildung 6 grob wiedergegeben. Die 

einzelnen Arbeitsschritte werden in den nachfolgenden Unterkapiteln weiterführend 

beschrieben.  

 

Standardisierung (Vorverarbeitung I) 

Für gewöhnlich werden Daten vor dem eigentlichen Data-Matching Prozess durch eine 

Standardisierung der Attributwerte vorverarbeitet. Diese hängt jeweils von der Domäne und 

Art der Daten ab. So spielt zum Beispiel der Sprachraum, aus dem die Daten stammen, eine 

entscheidende Rolle. Es gibt also sprachspezifische Varianten zwischen 

Standardisierungsmethodiken, auch wenn es sich grundsätzlich um dieselbe Art (z.B. 

Patientendaten) von Daten handelt. Grundsätzlich dient die Standardisierung dazu, 

Variationen in den verschiedenen Attributswerten gering zu halten und möglichst viele Fehler 

bereits vor dem eigentlichen Data-Matching auszumerzen. 

Bei Personen identifizierenden Daten im medizinischen Sektor werden die ursprünglichen 

Datenfelder nach bestimmten Regeln standardisiert. Der UNICON-Regelsatz [55] wäre hierbei 

z.B. der Regelsatz, der in der DKFS Studie inklusive einiger szenarienspezifischer Anpassungen 

Datensatz A Datensatz B 

Daten Vorverarbeitung Daten Vorverarbeitung Blocking 

Gewichtsbestimmung 

Klassifikation 

Auswertung 

Echte Links Falsche Links 

 

Abbildung 6: Schematischer Ablauf des Privacy-Preserving-Record-Linkage. 
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verwendet wurde. Hierbei sind folgende Anweisungen zu nennen, die während der 

Standardisierung umgesetzt werden. 

 Ersetzung undeutscher Sonderzeichen (basierend auf ausgewählten Listen) in das 

deutsche Äquivalent (Bsp.: é -> e).  

 Entfernung ungeeigneter Zeichen. Dies betrifft Symbole, die im jeweiligen Feld nicht 

auftreten sollten (Bsp.: Hans-Wagne%r -> Hans-Wagner). 

 Uniforme Großschreibung (Bsp.: Hans-Wagner -> HANS-WAGNER). 

 Umlaut-Normalisierung (Bsp.: FÖRSTER -> FOERSTER). 

 Ersetzung von Trennsymbolen durch Leerzeichen (Bsp.: HANS-WAGNER -> HANS 

WAGNER). 

 Erkennung spezifischer Schlagwörter. Dieser Schritt ist feldspezifisch. Im Feld „Titel“ 

werden hierbei beispielsweise nur gültige Titel (basierend auf einer zuvor erstellten 

Liste) zur weiteren Verarbeitung zugelassen. (Bsp.: Dr.) 

 Konsistenz- bzw. Formatprüfung. (Bsp.: Entfernung des Geburtsdatums bei 

33.02.19083) 

 Bei Attributen mit möglicher Mehrfachausprägung (z.B. Doppelname): Aufteilen der 

Felder in neue Attributgruppen. (Bsp.: HANS WAGNER -> VORNAME 1: 

HANS/VORNAME 2: WAGNER).  

Weiterhin ist es möglich, nach phonetischen Kriterien zu standardisieren. Somit werden 

Namensvarianten wie beispielsweise „Meyer“, bzw. „Meier“, die phonetisch übereinstimmen, 

in eine standardisierte Variante umgewandelt. Algorithmen, die hierzu verwendet werden, 

sind im englischsprachigen Raum der SOUNDEX [56] bzw. im deutschsprachigen Raum die 

Kölner Phonetik [57]. 

Einwegverschlüsselung (Vorverarbeitung II) 

Ein weiterer Schritt der Vorverarbeitung fällt ausschließlich beim Privacy-Preserving-Record-

Linkage an. Es handelt sich hierbei um die Einwegverschlüsselung der Daten, die basierend auf 

ausgewählten Algorithmen einwegverschlüsselt werden müssen bevor sie abgeglichen werden 

dürfen. Beim deterministischen, bzw. dem probabilistischem Record-Linkage werden zu jedem 

standardisiertem Attributswert anhand von Hash-Funktionen mathematisch nicht umkehrbare 

Bit-Sequenzen, die sich beispielsweise als Hexadezimalcode darstellen lassen, erzeugt. Man 

spricht hierbei von Kontrollnummern [58-60]. Als Besonderheit sei zu nennen, dass moderne 

Hash-Funktionen in der Regel, ausgehend vom Ausgangswert, nahezu immer verschiedene 

Hash-Werte erzeugen. Zu jedem Ausgangswort gibt es also meist exakt einen spezifischen 
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Hash-Wert. Sollte es dennoch Hash-Werte geben, die zu verschiedenen Eingabewerten passen, 

spricht man von Kollisionen [61], die aber extrem selten vorkommen. Zu älteren Hash-

Funktionen wie dem MD5 wurden bereits Kollisionsfunde gemeldet. Diese gelten somit als 

veraltet und sollten nicht weiter verwendet werden, wohingegen Algorithmen aus der SHA-2 

oder noch besser aus der SHA-3 Familie dem aktuellen Sicherheitsstand entsprechen [62,63]. 

Tabelle 2 illustriert die Ausgabe zu verschiedenen Eingabewerten in Hexadezimalschreibweise, 

basierend auf der SHA-256 Funktion. Trotz der hohen Textähnlichkeit der Ausgangswerte im 

vorliegenden Beispiel erzeugt die Hash-Funktion komplett unterschiedliche Rückgabewerte. 

Tabelle 2: Anwendung des SHA-256 auf verschiedene Ausgangswerte. 

Ausgangswert Hash-Wert 

Meier 05c2d2b4cad1a3f5bf547b484ac6f4a70893e944d5bd6fe0f28db40453bf3f3c 

Meyer 876fdfa1d1152c1d024386a1f66e7725f292ef83404fc4d3be79c1b51cc81c45 

 

Auf den Hash-Werten ist zwar immer noch ein Abgleich möglich, allerdings sind die Daten nur 

noch über einen Wörterbuchangriff identifizierbar und in den ursprünglichen Klartext 

rücküberführbar. Bei einem Wörterbuchangriff werden Wertelisten mit derselben Hash-

Funktion des unter Angriff stehenden Datensatzes einwegverschlüsselt. Dies ermöglicht ein 

Mapping der Hash-Werte dieser Werteliste und des unter Angriff stehenden Datensatzes. 

Konsequenterweise sollte der exakte Hash-Algorithmus nicht bekannt gegeben werden, oder 

es sollten spezielle Schlüssel verwendet werden, die die Ausgangsfunktion modifizieren. Man 

spricht hierbei auch von Hash-based Message Authentication Code Verfahren (HMAC) [64]. 

Alternativ lässt sich auch nach geheim gehaltenen Regeln sogenanntes „Salz“, einfache 

Buchstaben oder Zahlenketten, an die Ausgangswerte anhängen, was einen weiteren Schutz 

gegenüber Wörterbuchangriffen darstellt [65].  

Das approximative Record-Linkage, das eine Weiterentwicklung des probabilistischen Privacy-

Preserving-Record-Linkage darstellt, ersetzt die Einwegverschlüsselung basierend auf Hash-

Werten durch Bloom-Filter [14,52]. Bloom-Filter sind Bit-Arrays, also Speicherstrukturen mit 

einer festgelegten Länge und einer Indexstruktur. Die Feldwerte des Arrays lassen sich dabei 

mit Bit-Werten, also mit 0 oder 1, belegen.  

Initialisiert werden die Bloom-Filter in jedem Feld mit einem 0-Wert. Die Technik basiert 

darauf, die zu verschlüsselnden Wortketten in Q-gramme (in der Regel Bi-gramme) zu 

zerlegen. 
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Auf jedes Q-Gramm werden dabei mehrere Hash-Funktionen angewandt. Nach Kirsch et. Al 

[66] sind zwei Hash-Funktionen ausreichend. Der Rückgabewert dieser Hash-Funktionen muss 

ein Wert zwischen 0 und der Länge des Bloom-Filter sein. Diese Rückgabewerte geben nun den 

Index wieder, an dem der Bloom-Filter mit einer 1 belegt werden soll. Eine erläuternde 

graphische Darstellung findet sich hierzu in Abbildung 7. In diesem Beispiel werden die 

Namensausprägungen „Anna“ und „Anne“ in Bi-Gramme zerlegt auf die jeweils eine 

Hashfunktionen angewendet wird. Die Hashfunktion gibt jeweils einen Rückgabewert an der 

den Index spezifiziert an dem der jeweils vorliegende Bloom-Filter mit dem Bit-Wert 1 belegt 

wird.  

Die Berechnung der Gewichte sowohl beim Kontrollnummer- als auch auf Bloom-Filter-

Abgleich wird im nachfolgenden Unterkapitel zur Gewichtsberechnung weiter diskutiert. 

 

Abbildung 7: Einwegverschlüsselung von Werteausprägungen anhand von Bloom-Filtern. 
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Blocking/Indexing 

Die Zuordnung von Einträgen innerhalb zweier Datensets A und B erfolgt im Grunde 

genommen durch den Abgleich jeweils eines Eintrages aus A mit allen Einträgen aus B. Die 

Menge an notwendigen Vergleichen ist also das Kreuzprodukt der Anzahl an Einträgen aus A 

und B:  

|𝐴|  × |𝐵| 

Würde man beispielsweise die Einwohner zweier größerer Städte (1 Mio. Einwohner) 

miteinander abgleichen wollen, würde dies in einer Billionen (1012) individuellen Vergleichen 

und Gewichtsberechnungen resultieren. Geht man also wie gegeben vor, kann der 

rechenintensive Aufwand oftmals das Limit der gegebenen Hardware bzw. gegebene Zeitlimits 

übersteigen. Abhilfe hierzu schafft die Verwendung von sogenannten Indexing/Blocking-

Techniken. Am prominentesten wäre die Verwendung von Blocking-Variablen zu nennen. Zwar 

werden auch hier auf dem Kreuzprodukt der Einträge Vergleiche ausgeführt, Gewichte werden 

jedoch nachfolgend nur berechnet, wenn die verglichenen Einträge in zumindest einer der 

gegebenen Blocking-Variablen übereinstimmen. Es ist abzuraten, sich lediglich auf eine 

Blocking-Variable zu beschränken. Hierbei kann es passieren, dass Rechtschreibfehler oder 

andere Abwandlungen in Attributwerten einer in zwei Datensätzen repräsentierten Entität 

(wie z.B. Änderung des Nachnamens bei Hochzeit) dazu führen, dass diese nicht bei der 

Gewichtsberechnung berücksichtigt werden. In der Praxis verwendet man deswegen mehrere 

Blocking-Variablen [19], wie beispielsweise, den phonetischen Nachnamen sowie das 

Geburtsdatum. In der DKFS zu familiärem Darmkrebs wurden als Blocking-Variable der 

phonetische Nachname, der phonetische Vorname sowie das Geburtsjahr ausgewählt.  

Die meist angewandte Variante des Blockings beschreibt das Standard-Blocking [31], bei der 

die Blocking-Variablen der Vergleiche genau übereinstimmen müssen, damit ein Gewicht 

weiterführend berechnet wird. Hierbei ergeben sich Varianten. Stimmen zwei Einträge in 

mehreren Blocking-Variablen überein, kann dasselbe Gewicht für einen Vergleich mehrfach 

berechnet werden. Verwendet man also einfache Listenstrukturen und hängt dort die 

Informationen zu Links und ihren Gewichten aneinander, so können Einträge mehrfach, 

entsprechend der Anzahl der Blocking-Variablen auftreten. Verwendet man Hash-Strukturen, 

die IDs der Links als eindeutigen Schlüssel verwenden, werden die Gewichte nur einfach 

abgespeichert. Dieses Phänomen und die Auswirkungen auf die nachfolgende Klassifikation 

wurden vom Autor in einer dieser Arbeit vorhergehenden Publikation näher untersucht [67].  
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Weitere Varianten, die den Rechenaufwand des Blockings einschränken, ergeben sich aus dem 

Sortieren der Datensätze. Hierbei wäre der Sorted-Neighbourhood-Approach zu nennen bei 

dem mittels eines Sliding-Windows mit fester Größe über die alphabetisch sortierte Datenbank 

gefahren wird und Teilwortketten die innerhalb des Sliding-Windows übereinstimmen zum 

Blockingabgleich verwendet werden. [68,69]  

Beim Canopy-Clustering [70] werden Werte, die sich in der Blocking-Variable ähneln, in 

denselben Cluster eingefügt und innerhalb dieses Clusters abgeglichen. Dieses Verfahren ist 

allerdings nicht auf einwegverschlüsselte Daten übertragbar, da die verwendeten 

Ähnlichkeitsmaße Klartextdaten voraussetzen. 

Als Nebeneffekt hat das Blocking auch Einfluss auf Qualitätswerte, vor allem auf die Anzahl der 

True-Negatives, die zur Evaluation des Record-Linkage verwendet werden können (siehe 

Kapitel 1.3.4). Da bei Anwendung von gut gewählten Blocking-Variablen die Anzahl der True-

Positives, False-Positives sowie False-Negatives meist nur leicht variiert, sich aber in der Anzahl 

der True-Negatives gewaltig reduziert, ist vor allem die Spezifität hiervon betroffen. Da die 

Spezifität beim Record-Linkage meist jedoch nahe der 100% liegt, verwendet man aber 

generell lieber den F-Measure-Wert, der unabhängig von der Spezifität, bzw. von den True-

Negatives fungiert [71]. 

Gewichtsbestimmung 

Während des Blockings werden Eintragsvergleiche ausgewählt, zu denen es zu bestimmen gilt, 

ob diese Vergleiche tatsächlich übereinstimmen oder nicht. Hierfür werden beim Privacy-

Preserving-Record-Linkage die individuellen Kontrollnummern bzw. Bloom-Filter der Einträge 

verglichen. Insgesamt gibt es hierbei drei verschiedene Herangehensweisen. Die triviale 

Variante stellt das deterministische Record-Linkage dar. Hierbei werden zwei Einträge jeweils 

als echter Link klassifiziert, falls alle Kontrollnummern paarweise exakt übereinstimmen. Im 

Gegensatz zu den anderen Varianten entfällt also beim deterministischen Record-Linkage eine 

weiterführende Klassifizierung, eine Gewichtsbestimmung im eigentlichen Sinne findet nicht 

statt. Die Methodik erzielt in der Regel Spezifitätswerte von 100%, allerdings werden sämtliche 

echte Links, die nur geringfügig voneinander abweichen, übersehen. Zwar kann gute 

Standardisierung diese Fehler teilweise beseitigen, grundsätzlich liefert die Methodik jedoch 

Ergebnisse mit einer vergleichsweise mangelhaften Sensitivität [53]. Ein prominentes Beispiel 

für die Implementierung eines deterministischen Record-Linkage Systems ist der PID-

Generator der Technologie- und Methodenplattform für die vernetzte medizinische Forschung 

(TMF) [72], der grundsätzlich jedoch eher als Pseudonymisierungs-Instrument zu verstehen ist.  
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Im Gegensatz zum deterministischen Record-Linkage stellt sich das probabilistische Record-

Linkage als fehlertoleranter dar. Hierbei wird für jeden paarweisen Abgleich der 

Kontrollnummern zwischen den zu vergleichenden Einträgen ein Einzelgewicht berechnet und 

anhand der Summe dieser Einzelgewichte wird der Eintrag als echter bzw. falscher Link 

klassifiziert (siehe Formel 1). 

  

𝑤 = ∑ 𝑤𝑖 
(1) 

 

Für die Erläuterung der Berechnung der Einzelgewichte sind einige initiale Definitionen 

notwendig. Während A und B die zu vergleichenden Datensets repräsentieren, stehen die 

Mengen M und U für die Menge der Übereinstimmungen bzw. der Nicht-Übereinstimmungen 

(siehe Formel 2-4). 

𝐴 × 𝐵 = {(𝑎, 𝑏); 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} (2) 

𝑀 = {(𝑎, 𝑏); 𝑎 = 𝑏, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} (3) 

𝑈 = {(𝑎, 𝑏); 𝑎 ≠ 𝑏, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} (4) 

 

Bei a1,…,an bzw. b1,…,bn handelt es sich um die einzelnen Attribute zu den Einträgen a bzw. b, 

aus Datenset A bzw. B (siehe Formel 5). 

𝑎 = (𝑎1, … , 𝑎𝑛), 𝑏 = (𝑏1 … , 𝑏𝑛) (5) 

 

Nach Fellegi und Sunther resultieren Übereinstimmungen in den Ausprägungen in einem 

positiven Einzelgewicht, Nicht-Übereinstimmung in einem negativen Einzelgewicht [31]. Die 

Höhe des Gewichts wird von der Häufigkeit der zu vergleichenden Werteausprägung bzw. der 

abgeschätzten Fehlerhäufigkeit in diesem Attribut beeinflusst. Die Häufigkeit der 

Kontrollummern-Ausprägungen wird dabei formell durch die sog. u-Werte repräsentiert (siehe 

Formel 6) [31,39].  

𝑢𝑖𝑘 = 𝑃(𝑎𝑖 = 𝑏𝑖 ∧ 𝑎𝑖 = 𝑥𝑖𝑘|(𝑎, 𝑏) ∈ 𝑈) (6) 

 

Der u-Wert beschreibt konkret die Wahrscheinlichkeit, dass zwei Einträge im Merkmal i mit 

der Ausprägung xik übereinstimmen und es sich dabei nicht um dieselbe Person/Eintrag 

handelt. Die u-Werte lassen sich hierbei im praktischen Umgang direkt aus der Häufigkeit von 
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zugrunde liegenden Populationen bzw. direkt aus den Datensets ableiten [39]. Kommt 

beispielsweise der Vorname „Peter“ im zugrunde liegenden Datenset mit Größe 10.000 

insgesamt dreimal vor, dann beträgt der u-Wert der Ausprägung „Peter“ 3/10.000). Da die 

Datensätze im Kontext des Record-Linkage in der Regel aus jeweils zwei Daten-Quellen 

bestehen können die Datenquellen hierfür vereinfachend vereint werden. 

Die in den Ausprägungen auftretenden Fehlerhäufigkeiten, die ebenfalls zur 

Gewichtsberechnung benötigt werden, lassen sich durch die m-Werte repräsentieren (siehe 

Formel 7). 

𝑚𝑖𝑘 = 𝑃(𝑎𝑖 = 𝑏𝑖 ∧ 𝑎𝑖 = 𝑥𝑖𝑘|(𝑎, 𝑏) ∈ 𝑀) (7) 

 

Der m-Wert beschreibt hierbei konkret die Wahrscheinlichkeit, dass zwei Einträge im Merkmal 

i mit der Ausprägung xik übereinstimmen und es sich dabei um die selbe Person/Eintrag 

handelt. Die m-Werte lassen sich vereinfacht jedoch auch als invertierte Fehlerhäufigkeiten im 

jeweiligen Attribut interpretieren. Typischerweise haben Adressangaben eine relativ hohe 

Fehlerhäufigkeit. Würde man also zum Beispiel in einem Datensatz zu 10% der Fälle Fehler in 

den Adressangaben erwarten, wäre der hierzu gehörende m-Wert 0.9. Die m-Werte können 

entweder aus ähnlichen [39,73], bereits ausgewerteten Datenbeständen mit bekannten 

Fehlerhäufigkeiten oder mittels einer Variante des Expectation-Maximation-Algorithmus [74] 

abgeschätzt werden. 

Anhand der u-Werte und m-Werte lassen sich schließlich die Einzelgewichte berechnen (siehe 

Formel 8 bzw. Formel 9). 

𝑤𝑖 = log (
𝑚𝑖

𝑢𝑖𝑘
) , 𝑓𝑎𝑙𝑙𝑠 𝑎𝑖 = 𝑏𝑖 ∧ 𝑎𝑖 = 𝑥𝑖𝑘 (8) 

𝑤𝑖 = log (
1 − 𝑚𝑖

1 − 𝑢𝑖𝑘
) , 𝑓𝑎𝑙𝑙𝑠 𝑎𝑖 ≠ 𝑏𝑖 ∧ 𝑎𝑖 = 𝑥𝑖𝑘 

(9) 

 

Falls die vergleichenden Attributsausprägungen übereinstimmen, wird wie bereits erwähnt ein 

positives Gewicht berechnet, falls die vergleichenden Attributsausprägungen nicht 

übereinstimmen, wird ein negatives Gewicht berechnet. Zudem gilt: Stimmen 

Kontrollnummern in einer seltenen Ausprägungen überein, so resultiert dies in einem 

stärkeren Gewicht. Das Übereinstimmen in häufigen Ausprägungen kann eher auf Zufall 

basieren, demnach wird ein niedrigeres Gewicht vergeben. Je höher die abgeschätzte 

Fehlerrate in einem Attribut ist, umso unbedeutender, also niedriger ist das Gewicht im 
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Vergleich zu anderen Attributen mit geringeren Fehlerraten. Nach Aufaddieren der 

Einzelgewichte zu einem Gesamtgewicht kann schließlich klassifiziert werden. 

Liegt das Gesamtgewicht eines Links über einem spezifischen Schrankenwert, so wird er als 

echter Link bewertet, unterhalb dieser Schwelle als falscher Link. Man spricht hierbei von einer 

binären Klassifikation (hierzu mehr unter Kapitel 1.3.2.). Das Auffinden dieses 

Schrankenwertes war eine nicht triviale Aufgabe und Hauptthematik dieser Arbeit. Im 

Gegensatz zum deterministischen Record-Linkage unterscheidet sich also das probabilistische 

Record-Linkage darin, dass es nicht in allen Kontrollnummern exakt übereinstimmen muss und 

somit zu einem gewissen Grad Fehler in den Daten zulässt. Die Spezifität erleidet hierbei in der 

Regel nur geringfügige Einbußen und liegt je nach Datensatz nahe 100%. Die Sensitivität kann 

durch das Tolerieren weniger Unstimmigkeiten im Vergleich zum deterministischen Record-

Linkage enorm verbessert werden und liegt je nach Datensatz, nach einem systematischem 

Review von Silveira [75] bei den ausgewerteten Arbeiten zwischen 74-98%.  

Dennoch besitzt das probabilistische Record-Linkage auf einwegverschlüsselten Daten 

Schwächen. Durch die Einwegverschlüsselung ist es grundsätzlich nicht möglich, die 

Ähnlichkeit zweier Ausprägungen zu gewichten. Da bereits kleine Fehler in den 

Werteausprägungen (z.B. Schmitt bzw. Schmidt) zu komplett unterschiedlichen Hash-Werten 

führen, ist es lediglich möglich, zu bewerten, ob die Werte übereinstimmen oder nicht (siehe 

hierzu auch Kapitel 1.2.2).  

Das approximative Record-Linkage tritt dieser Problematik entgegen. Wie bereits unter Kapitel 

1.3.2 beschrieben, werden die Ausprägungen alternativ zu den vorhergehenden Methoden 

mittels Bloom-Filtern einwegverschlüsselt. Der Abgleich erfolgt also nicht mehr wie bei den 

Vorgängervarianten auf Hash-Werten sondern auf den Bloom-Filtern. Dabei kann nicht nur wie 

auf Hash-Werten festgestellt werden, ob Werte generell übereinstimmen, sondern auch, wie 

sehr sich zwei Bloom-Filter ähneln. 

Die Distanz zweier Bloom-Filter zueinander lässt sich mittels des Dice-Koeffizienten (siehe 

Formel 10), berechnen, der sich als passendes Distanzmaß bewiesen hat [14,76]. 

𝐷𝐴,𝐵 =
2ℎ

(𝑎 + 𝑏)
 

 

(10) 

Auf das Szenario des approximativen Record-Linkage übertragen entsprich h der Anzahl an 

Bitpositionen, die in beiden zu vergleichenden Bloom-Filtern (A,B) mit 1 belegt wurden, a ist 

die Anzahl an Bitpositionen, die ausschließlich in A mit 1 belegt wurden, wohingegen b die 
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Anzahl an mit 1 belegten Bitpositionen in B wiedergibt. Angewandt auf das Beispiel aus 

Abbildung 7 ergibt sich ein Dice-Koeffizient von 
6

10
. Der Rückgabewert der Distanzfunktion liegt 

hierbei zwischen 0 und 1, wobei ein hoher Wert für eine hohe Ähnlichkeit steht. Da Feldwerte 

in den Bloom-Filtern mehrfach belegt werden können, lässt sich die Ähnlichkeit nicht in selben 

Ausmaß wie bei String-Vergleichen im Klartext bestimmen. Die Übereinstimmung wird 

demnach approximiert. Daher auch der Name: approximatives Record-Linkage. Die 

Einzelgewichte werden schließlich, wie im Falle des probabilistischen Record-Linkage, zu einem 

Gesamtgewicht aufaddiert. Der Klassifikationsprozess verläuft demnach zwischen beiden 

Methoden analog. Es gibt noch viele offene Fragestellungen, die zu dieser in stetiger 

Weiterentwicklung befindlichen Technologie Klärung benötigen. So gab es Ende 2013 

beispielsweise noch keine publizierten Aussagen darüber, mit welchem Faktor die auf Bloom-

Filter-Vergleich beruhenden Einzelgewichte zu verrechnen wären. Beispielsweise sollte der 

Nachname eine höhere Gewichtung besitzen als die Postleitzahl, da sich diese im Verlauf des 

Lebens öfters ändern kann. Dies wäre nur eines der Probleme, die im klassischen 

probabilistischen Record-Linkage bereits gelöst wurden, weswegen das approximative Record-

Linkage zu diesem Zeitpunkt noch nicht unangefochten als Standardvariante für Privacy-

Preserving-Record-Linkage zu interpretieren wäre. Vergleichende Arbeiten haben jedoch 

gezeigt, dass das approximative Record-Linkage durch die Beurteilung der Ähnlichkeit das 

Potential besitzt, die älteren Varianten in Bezug auf die Qualität des Matchings, vor allem was 

die Sensitivität betrifft, zu überflügeln [18]. Ob und inwiefern Gewichtungen des 

probabilistischen Record-Linkage auf das approximative Record-Linkage übertragbar sind, ist 

Aufgabe aktueller Forschung. 

Binäre Klassifikation 

Im Falle des Privacy-Preserving-Record-Linkage ist durch die Einwegverschlüsselung der 

Ausgangsdaten oftmals eine manuelle Zuordnung unsicherer Links nicht möglich (siehe Kapitel 

1.2.2). Dies resultiert in der Notwendigkeit von binärer Klassifikation, also im Normalfall in der 

Bestimmung eines spezifischen Schrankenwertes, der die Menge der Links, basierend auf 

ihrem Gewichtswert, in echte bzw. falsche Links einteilt. Die binäre Klassifikation ist jedoch 

nicht nur im Falle von unter Datenschutz befindlicher Daten notwendig sondern auch beim 

Einsatz vollautomatischer Systeme, bei denen keine manuelle Nachkontrolle möglich ist. 

Die Rückgabe des probabilistischen bzw. approximativen Record-Linkage ist eine Liste von 

Links, bestehend aus einem Paar von Datenset spezifischen IDs, die eine Referenz auf den im 

jeweiligen Datenset beinhalteten Eintrag darstellen, sowie ein assoziiertes Gewicht, das 
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Aufschluss darüber gibt wie gut die beiden referentiellen Einträge zueinander passen (siehe 

Tabelle 3).  

Tabelle 3: Beispielhafte Darstellung des Inhaltes einer Gewichtsdatei.  

ID A ID B Gewicht 

1252 5332 76,74 

1773 6784 74,33 

34 588 71,22 

788 899 55,39 

1899 1754 23,76 

 

Basiert die Klassifikation ausschließlich auf der Verteilung der genannten Gewichte, spricht 

man von unüberwachter Klassifikation. Werden von dieser Verteilung unabhängig 

Trainingsdaten verwendet spricht man typischerweise von überwachter Klassifikation. Zudem 

existieren auf Regeln basierende Klassifikationsmethoden, die in beiden der vorhergehenden 

Ansätze unterstützend genutzt werden können, aber auch als eigenständige Methodik 

existieren. 

1.3.3.  Klassifikationstechniken 

Unüberwachte Klassifikation 

Die unüberwachten Methoden richten sich vollständig nach der Verteilung und den 

Häufigkeiten der Gewichte, die sich auch als Histogramm illustrieren lassen. Zur Histogramm-

Erstellung werden die Gewichtswerte auf einen spezifischen Wert gerundet (beispielsweise auf 

natürliche Zahlen) und entsprechend der Häufigkeit dieses Wertes in das Histogramm 

eingetragen. Bei qualitativ hochwertigen Daten zeigen sich hierbei im Histogramm der 

Gewichte oftmals zwei Erhebungen, die sich leicht manuell voneinander trennen lassen (siehe 

Abbildung 3a). Unabhängig vom Histogramm, aber basierend auf denselben Daten kann diese 

Trennung auch durch verschiedene automatisierte Algorithmen, wie z.B. aus dem 

maschinellen Lernen bekannte Clustering-Verfahren erfolgen [77-78]. Der Erfolg der 

unüberwachten Klassifizierung hängt demnach stark von der Qualität und der generellen 

Beschaffenheit der Gewichtsdaten ab. Auftretende Datenartefakte wie beispielsweise zufällig 

auftretende Abstände oder Anhäufungen in zur eigentlichen Klassifikation nicht beitragenden 

Gewichtsbereichen können demnach zu einer Fehlklassifikation führen, da sie als Indikatoren 
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für Klassengrenzen fehlinterpretiert werden können. Gerade einfache Methoden wie 

Clustering-Verfahren sind deswegen in Ihrer naiven Form eher ungeeignet.  

Besser funktionieren sogenannte Active-Learning Ansätze [79], bei denen es sich formell um 

eine Hybridvariante aus unüberwachter und überwachter Klassifikation handelt, die aber im 

Grunde genommen eher den unüberwachten Methoden zuzuordnen wären. Hierbei werden 

sogenannte positive bzw. negative Keimmengen (Seeds) definiert. Diese enthalten Vergleiche, 

die zu einer hohen Wahrscheinlichkeit bzw. basierend auf szenariospezifisch definierten 

Kriterien ausschließlich echte bzw. falsche Übereinstimmungen darstellen. Diese Keimmengen 

werden dann als Trainingsdaten für die noch unklassifizierten Links verwendet, so dass diese 

basierend auf Algorithmen wie dem K-Nearest-Neighbour (KNN) oder Support-Vector-

Maschinen (SVM) den Keimmengen zugeordnet werden können, bis alle Links schließlich 

klassifiziert wurden. Peter Christen konnte hierzu in einer Arbeit demonstrieren, dass diese 

Hybridansätze in der Lage sind, andere unüberwachte Techniken zu übertreffen [71]. 

Überwachte Klassifikation 

Im Gegensatz zur unüberwachten Klassifizierung ist die überwachte Klassifizierung von den 

Gewichten der Originaldaten unabhängig und basiert auf im Vorfeld spezifizierten 

Trainingsdaten [41,80]. Hierzu werden Trainingssets benötigt, die in ihrer Beschaffenheit den 

zu klassifizierenden Daten ähneln und deren echte Übereinstimmungen durch das Teilen 

derselben ID in beiden Teilsets bekannt sind. Auf diesen Trainingssets lässt sich nun ein 

Record-Linkage durchführen und basierend auf ausgewählten Qualitätskriterien wie 

beispielsweise dem F-Measure eine optimale Schranke berechnen. Der Schrankenwert kann 

nun ebenfalls als Klassifikator für die Originaldaten verwendet werden. Alternativ ist es auch 

möglich, einen Entscheidungsbaum auf den Trainingsdaten zu generieren, anhand dessen 

Regeln erzeugt werden können, die die nachfolgende Klassifikation der Originaldaten 

ermöglichen [81]. 

Ein Problem dabei ist, dass es im Bereich des Record-Linkage extrem wenige frei-zugängliche 

auf Realdaten beruhende Trainingssets gibt, die für solch ein Vorgehen geeignet wären. Es 

existieren zwar einige downloadbare, zur Validierung von Record-Linkage geeignete, Testsets 

(http://secondstring.sourceforge.net), diese sind aber als Trainingssets in Bezug auf 

Klassifikation, beispielsweise im medizinischen Bereich, besonders aufgrund abweichender 

Domäne eher unbrauchbar.  

Eine gute Ersatzmöglichkeit kann hierbei die künstliche Erzeugung von Trainingsdaten 

darstellen. Zum Erzeugen von Patientendaten gibt es sogar eigenständige Software-Kits, wie 
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z.B. die FEBRL-Toolbox, deren Personengenerierungsmodul auf aus Populationen 

entnommenen Verteilungswerten beruht [82]. Allerdings waren dem Autor keine Arbeiten 

bekannt, in denen ein solches Vorgehen, also überwachte Klassifikation auf künstlichen 

Trainingsdaten, in der Praxis tatsächlich umgesetzt wurde. Das Fehlen festgelegter Standards 

und der erhöhte Aufwand scheint viele Projektgruppen von überwachter Klassifikation 

zurückschrecken zu lassen. 

An der Johannes-Gutenberg-Universität in Mainz finden Untersuchungen zu neuartigen 

überwachten bzw. semi-überwachte Klassifikationsmethoden statt [83,84]. Hierbei wird 

versucht, die Konzepte Bagging und Bumping auf das Szenario des Record-Linkage anzupassen. 

Bei Bagging und Bumping werden zu zufälligen Ziehungen aus Populationsverteilungen 

Klassifizierer generiert, deren Mittelwert als finaler Klassifizierer für die Originaldaten zu 

nutzen ist. Sariyar ist der Meinung, dass die überwachten Methoden dabei die unüberwachten 

Methoden übertreffen können, allerdings gibt es auch hier noch offene Fragen bezüglich der 

Parametrisierung, also der genauen Zusammenstellung dieser Trainingsdaten. So stellt zum 

Beispiel die genaue Festlegung der Anzahl der Trainingsdaten, die beim Bagging bzw. Bumping 

generiert werden, nach eigenen Angaben ein offenes Problem dar [84]. 

Regelbasierte Klassifikation 

Abseits der unüberwachten bzw. überwachten Klassifizierung existieren auch auf Regeln 

basierende Klassifikationsmethoden. Zu den Testdaten werden hierbei entweder basierend auf 

Trainingsdaten oder manuell Regeln konzipiert, die bei Anwendung auf einen Link Auskunft 

geben, wie wahrscheinlich es sich bei dem Vergleich um einen echten bzw. falschen Link 

handelt. Solche Regeln bestehen aus Konjunktionen von atomaren Bedingungen wie z.B. „(ist 

männlich) UND (Nachname stimmt überein)“. Das Abarbeiten einer Regel kann im Prüfen 

neuer Regeln resultieren und es wird gegebenenfalls ein Gewicht vergeben, das zeigt, wie stark 

die Regel die finale Entscheidung beeinflusst. Nach Abarbeiten aller Regeln wird der Link 

klassifiziert. Als Struktur solcher abzuarbeitenden Regeln bieten sich Entscheidungsbäume an 

[41,80]. 

Hierdurch ist für die Methodik grundsätzlich keine Gewichtsdatei notwendig. Benötigt wird 

ausschließlich die Information, in welchen Attributen die Einträge übereinstimmen. 

Unterstützend wurde hierzu eine Variante in Form der Pair-Analysis-Datei in der DKFS 

verwendet (siehe Kapitel 1.2.2). 

Bislang (Stand 2012) existiert noch keine ausgiebige vergleichende Prüfung der verschiedenen 

Klassifikationsmethoden auf verschiedenen Testsets [38].  
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1.3.4. Softwaresysteme im Bereich des Data-Matchings 

Im Bereich des Record-Linkage gibt es eine große Auswahl verschiedener der Thematik 

zuzuordnenden Softwarepakete. Hierbei handelt es sich um kommerzielle als auch frei 

zugängliche Pakete. Laut Peter Christen [38] ist es bei den kommerziellen Systemen schwierig, 

eine übersichtliche Beschreibung der verschiedenen Systeme zur Verfügung zu stellen, da sich 

diese oftmals nur auf selektierte Teilbereiche der Thematik beschränken. Die Nutzung 

kommerzieller Systeme ist für die Forschung als kritisch anzusehen, da eine exakte 

Beschreibung der Algorithmen in der Regel nicht zur Verfügung gestellt wird. Für die Forschung 

spielen deswegen vor allem Open-Source-Projekte eine wichtige Rolle. Diese werden oft von 

Forschungseinrichtungen zur Verfügung gestellt und die Algorithmen in assoziierten 

Publikationen detailliert präsentiert. Im Gegensatz zu kommerziellen Produkten mangelt es 

hierbei jedoch oft an Usability. Tabelle 4 gibt eine Übersicht inklusive kurzer Beschreibungen 

aktueller frei zugänglicher Softwarepakete.  

Tabelle 4: Übersicht frei zugänglicher Softwaresysteme im Bereich des Record-Linkage. 

System Beschreibung Referenz 

Big Match  Dient dem Datenabgleich großer Datenmengen. Besitzt jedoch kein User 

Interface. 

 [85] 

D-Dupe Ein graphisches Tool dessen Hauptaufgabe die Detektion von Duplikaten in 

Netzwerken und deren Subnetzwerken ist.  

 [86] 

DuDe  Ein Toolkit bestehend aus mehreren Data-Matching Modulen. Dude besitzt 

kein grafisches Interface sondern ist als Erweiterung für Javaprojekte 

konzipiert. 

 [87] 

FEBRL  Beinhaltet Algorithmen zur Datenvorverarbeitung, Deduplikation und dem 

Data-Matching. Der Fokus liegt hierbei auf der Anwendung für medizinische 

Datenbanken. Zudem ist es möglich mit FEBRL künstliche Testdaten anhand 

realer Verteilungswerte zu generieren. 

 [82] 

FRIL  Stark parametrisierbare Data-Matching Software mit graphischem Interface. 

Teilweise schwierig in der Handhabung.  

 [88] 

Mainzlliste Webbasierter Pseudonymisierungsdienst inklusive gewichtsbasiertem, 

modularem Record-Linkage System. 

bitbucket.org/

medinfo_mainz

/mainzlliste/ 

Merge ToolBox  Umfangreiches Data-Matching Paket, das die Anwendung von Privacy-

Preserving-Record-Linkage mittels Bloom-Filtern gestattet. Die Module 

bauen teilweise auf der kommerziellen Software Stata auf. 

 

 [89] 
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System Beschreibung Referenz 

OYSTER  Wurde zur Erfassung und Verwaltung von Studentenakten erstellt. Enthält 

unter anderem Module für probabilistisches Record-Linkage. 

 [90] 

R RecordLinkage  Paket für probabilistisches Record-Linkage für die Statistiksoftware „R“. [91] 

SILK  Umfangreiches Data-Matching System, das Daten im RDF Format speichert 

und abgleicht. 

[92] 

Sim Metrics Beinhaltet eine große Auswahl approximativer Textvergleichs-Funktionen. sourceforge.net

/projects/simm

etrics 

TAILOR  Umfangreiches Toolkit zu verschiedenen Anwendungen aus dem Bereich 

des Record-Linkage inklusive einiger Klassifikationsmethoden. 

[93] 

WHIRL  Beinhaltet einen regelbasierten Klassifikationsansatz. [94] 

  

1.3.5. Möglichkeiten der Evaluation 

Das Hauptanliegen beim Datenabgleich ist das Erzielen einer möglichst hohen Abgleichs 

Qualität, durch die sich gleichzeitig die Güte von verschiedenen methodischen Ansätzen 

abschätzen und vergleichen lässt. Diese lässt sich anhand der Anzahl von echt bzw. falsch  
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Abbildung 8: Kontingenztafel mit dem Urteil der Klassifikation und der tatsächlichen Klasse. 
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ermittelten Übereinstimmungen, bzw. echt bzw. falsch ermittelten Nicht-Übereinstimmungen 

berechnen. Die vier beschriebenen Beobachtungen lassen sich übersichtlich in einer vier Felder 

Tafel, (siehe Abbildung 8) auf das Szenario des Record-Linkage angepasst, darstellen [33,95]. 

Durch die in der Vier-Felder Tafel aufgelisteten statistischen Maßeinheiten (True Positives (TP), 

False-Positives (FP), False-Negatives (FN), True-Negatives (TN)) lassen sich verschiedene 

Qualitätsmaße berechnen. Als häufig in der Statistik verwendete Qualitätsmaße wären hierzu 

die Spezifität sowie die Sensitivität zu nennen (siehe Formel 11,12): 

𝑆𝑝𝑒𝑧𝑖𝑓𝑖𝑡ä𝑡 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(11) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡ä𝑡 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(12) 

Die Spezifität berechnet den Anteil von Vergleichen, die als falsche Links klassifiziert wurden 

und bei denen es sich tatsächlich um Nicht-Übereinstimmungen handelt. Die Sensitivität 

berechnet den Anteil von Vergleichen von echten Übereinstimmungen an der Menge der 

vorhergesagten echten Links. Für das Prüfen von Methoden im Bereich des Record-Linkage, 

wie beispielsweise die Prüfung der Performanz verschiedener Klassifikatoren, zeigt sich, dass 

der Spezifität im Regelfall eher niedrigere Wichtigkeit zugeordnet werden sollte [71]. Der 

Grund hierfür ist, dass abhängig von den Blocking-Variablen, beim Record-Linkage in der 

Praxis, vor allem bei den Vergleichen von Nicht-Übereinstimmungen, Gewichte berechnet 

werden müssen. Das Produkt der Datensetgrößen ist hierbei der Maximalwert der Vergleiche, 

bei denen es sich in der Regel nur zum kleinsten Teil um echte Übereinstimmungen handelt. 

Bei dem Großteil der Daten wird es sich also bei ansatzweiser korrekter Klassifikation um True-

Negatives, also Nicht-Übereinstimmungen, die als falsche Links klassifiziert wurden, handeln. 

Durch die hohe Zahl der True-Negatives im Vergleich zu auftretenden False-Positives werden in 

den meisten Szenarien auch bei oftmals stark variabler Positionierung eines Klassifikators 

Spezifitätswerte um 99% erzielt. Eine Ausrichtung eines Klassifikators an der maximalen 

Sensitivität hingegen kann zur Nicht-Berücksichtigung vieler echter Übereinstimmungen 

führen. 

Ein geeigneteres Qualitätsmaß im Kontext des Record-Linkage stellt deshalb der F-Measure-

Wert da [71,96]. Hierbei handelt es sich um den harmonischen Mittelwert der Sensitivität und 

des positiv prädiktiven Wertes (siehe Formel 13, 14).  
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𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(13) 

𝐹𝑀 = 2 ∗
𝑃𝑃𝑉 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡ä𝑡

𝑃𝑃𝑉 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡ä𝑡
 

(14) 

Beim positiv prädiktiven Wert (PPV) handelt es sich um den Anteil der korrekt klassifizierten, 

echten Übereinstimmungen an der Menge aller echten Übereinstimmungen. Im Bereich des 

Record-Linkage wäre also ein hoher F-Measure-Wert mit einer hohen Abgleichsqualität zu 

interpretieren. Die Bestimmung der Qualitätsmerkmale ist nur dann möglich, wenn die echten 

Übereinstimmungen bekannt sind und sich die finale Klassifikation mit den tatsächlichen 

Gegebenheiten abstimmen lässt. Hierdurch ist die Qualität des Record-Linkage nur in Tests, 

nicht aber im Realeinsatz berechenbar. Tests, bei denen die Übereinstimmungen bekannt sind, 

bezeichnet man auch als Gold-Standard [97]. Realdaten, zu denen eine Goldstandardanalyse 

möglich ist, sind jedoch im Bereich des Record-Linkage extrem selten und es existieren hierzu 

nur wenige Arbeiten [19].  

1.4. Zielsetzung 

Anhand einer Studie zu familiärem Darmkrebs (siehe Kapitel 1.2.1) wurden im Bereich des 

Record-Linkage Unsicherheiten bei der manuellen, binären Klassifikation, die zu einer 

Verminderung der Abgleichsqualität führen könnten, erkannt (siehe Kapitel 1.2.2). 

Unterstützend, oder auch alternativ, existieren bereits verschiedene automatisierte 

Klassifikationsansätze, nennenswert sowohl unüberwachte als auch überwachte 

Klassifikationssysteme (siehe Kapitel 1.3.3). Gerade zu überwachter Klassifikation existieren 

jedoch im Moment keine klaren Standards. Auch werden dort zusätzlich zu den Originaldaten 

Trainingsdaten benötigt.  

Da reale Trainingsdaten meist nicht zur Verfügung stehen, könnten alternativ künstliche 

Trainingsdaten eingesetzt werden. Zu deren konkreter Beschaffenheit fanden sich jedoch 

keine Empfehlungen. Ausgangspunkt der Arbeit war die Überlegung, künstliche Trainingsdaten 

zu erzeugen, die den Originaldaten in hohem Maße ähneln. Basierend auf dieser Überlegung 

ergab sich die Zielsetzung, die optimale Parametrisierung bei der Konstruktion von künstlichen 

Trainingsdaten bei der überwachten Klassifizierung zu untersuchen und darauf aufbauend 

Empfehlungen zu erarbeiten. 

Weiterhin fehlten Informationen und umfangreiche vergleichende Tests zur Performanz 

unüberwachter sowie überwachter Methoden im direkten Vergleich [38]. Das zu erarbeitende 
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überwachte Klassifikationssystem sollte deswegen mit verschiedenen, unüberwachten 

Klassifikationsansätzen sowie der manuellen Schrankengebung, wie sie in der DKFS 

Anwendung findet, verglichen werden.  

Bei den zu vergleichenden unüberwachten Methoden sollte es sich sowohl um eine einfache 

Clustering-Methode, als auch um eine fortgeschrittene Technik aus dem Bereich des Active-

Learnings, die anderen unüberwachten Methoden qualitativ überlegen ist, handeln [71].  

Die Testdaten sollten sich in spezifizierten Parametern, der Größe, dem Überlappungsbereich, 

sowie der Fehlerhäufigkeit unterscheiden.  
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2. Material und Methoden 

2.1. Vorbereitende Arbeiten und Arbeitsmaterial 

2.1.1. Verwaltung der Arbeitsumgebung 

Für die angestrebten Analysen der gegebenen Arbeit waren aufwendige Berechnungen und 

Arbeitsschritte notwendig, die manuell nicht mehr im realen Zeitrahmen zu bewältigen 

gewesen wären. Hierdurch bestand die Notwendigkeit fortgeschrittener 

Programmiertechniken. Als zugrunde liegende Programmiersprache der implementierten 

Programme fand Java 1.7 Verwendung – als Programmierinterface hierzu die Software Eclipse 

(https://www.eclipse.org/). 

Die Programme selber wurden kursiv und durch einen in spitzen Klammern nachfolgenden 

Index entsprechend Kapitel 7 – Anhang E im Text aufgeführt. Die Erstellung der in dieser Arbeit 

dargestellten Plots und einiger mathematischer Auswertungen erfolgte über die Statistik 

Software „R“ (http://www.r-project.org/). 

Ein Abbild der finalen Arbeitsumgebung, also aller erzeugten Programme bzw. Klassen und 

Daten, wurde zur nachhaltigen Speicherung vom Autor dieser Arbeit gesichert und 

aufbewahrt. Für die teilweise zeitintensiven Berechnungen war ein leistungsstarker Rechner 

notwendig. Tabelle 5 skizziert die wichtigsten Hardwarekennziffern des zumeist verwendeten 

Systems. 

Tabelle 5: Wichtigste Hardwarekomponenten des Arbeitssystems. 

Prozessor Arbeitsspeicher 

Intel(R) Core™ i7-3770 CPU @3,4 GHz 8 GB-RAM 

 

2.1.2. Record-Linkage: Spezifikation und Implementierung 

Für die zugrunde liegenden Tests und Entwicklungen wurde eine leicht abgewandelte Variante 

des probabilistischen Privacy-Preserving-Record-Linkage, das auch in der Familienstudie 

Anwendung fand, verwendet [67]. Hierbei handelte es sich um eine Implementierung des 

Fellegi und Sunther Algorithmus nach Spezifikation von Martin Meyer [31,39]. Die konkrete 
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Implementierung wurde innerhalb des Programmes RecordLinkage<1>, sowie der assoziierten 

Klasse RecordLinkageInput<2> umgesetzt.  

Als Input dienten diesem System jeweils zwei Datensätze, die bereits standardisierte, 

einwegverschlüsselte Kontrollnummern von identifizierenden Daten (IDAT) beinhalteten. Das 

Format dieser Daten musste dem Rückgabeformat des Programmes 

GenerateControlNumbers<6> entsprechen, das zugrunde liegende Personendaten gemäß 

Regelvorgaben aus UNICON [55] (siehe Kapitel 1.3.2) erst standardisiert und dann mithilfe der 

Hash-Funktion SHA-2 (256-Bit) [62] einwegverschlüsselt.  

Tabelle 6 beschreibt die in dieser Arbeit genutzten identifizierenden Basisdaten wie auch die 

hierauf basierenden standardisierten, einwegverschlüsselten Kontrollnummern so wie sie von 

der Klasse GenerateControlNumbers<6> erzeugt werden. 

Tabelle 6: In dieser Arbeit zur Gewichtsberechnung genutzte IDAT. 

IDAT  Segmentierung in Kontrollnummern. 

Nachname NACHNAME1, NACHNAME2, NACHNAME3 

Vorname VORNAME1, VORNAME2, VORNAME3,  

Geburtsdatum GEBURTSTAG, GEBURTSMONAT, GEBURTSJAHR 

PLZ PLZ 

Wohnort ORT 

Geschlecht GESCHLECHT 

Personen-Identifikationsnummer PID 

 

Während des Standardisierungsschrittes wurdenzudem eine Reihe von Kontrollnummern, die 

ausschließlich als Blocking-Variablen dienten, erzeugt. Hierbei handelte es sich um den 

phonetischen Nachnamen, den phonetischen Vornamen sowie das Geburtsdatum (siehe 

Tabelle 7).  

Tabelle 7: Blocking-Variablen inklusive der IDAT, aus der die BV generiert wurden. 

IDAT  Blocking-Variablen 

Nachname PHO_NACHNAME 

Vorname PHO_VORNAME  

Geburtsdatum GEBURTSDATUM 
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Bei diesen Variablen wurde auf eine Segmentierung während der Standardisierung verzichtet. 

Vorname und Nachname wurden anhand der Kölner Phonetik in ihre entsprechende 

phonetische Variante generalisiert [57]. Der Algorithmus zur Kölner Phonetik stammt aus einer 

von Apache zur Verfügung gestellten externen Programmier-Bibliothek 

(http://commons.apache.org/proper/commons-codec/). Während bei der Umsetzung der 

Familienstudie das Geburtsjahr als Blocking-Variable verwendet wurde, fiel in dieser Arbeit die 

Wahl auf das Geburtsdatum, da das Geburtsjahr eine starke Generalisierung darstellt und 

durch die Verwendung des spezifischeren Geburtsdatums wesentlich weniger 

Übereinstimmungen in der konkreten Blocking-Variable und demnach nachfolgende 

Gewichtsberechnungen erzeugt wurden. Diese Maßnahme erschien aufgrund der vielen 

kommenden Auswertungen, in Hinblick auf realisierbare Performanz, notwendig. Beim 

Blocking handelte es sich um Standard-Blocking (siehe Kapitel 1.3.2) auf den drei genannten 

Blocking-Variablen. Potentielle Links wurden nur einmalig abgespeichert, auch wenn diese in 

mehreren Variablen übereinstimmten [67]. 

Zu den potentiellen Links fand eine Gewichtsbestimmung statt. Bei dieser wurde ein durch 

Fellegi und Sunther [31] konzipierter Ansatz verwendet. Hierbei werden vom Typ her gleiche 

Kontrollnummern eines potentiellen Links (also beispielsweise das Geschlecht zweier 

Personen) abgeglichen und Einzelgewichte berechnet. Die Höhe dieses Einzelgewichtes basiert 

auf den Häufigkeiten der verglichenen Ausprägungen (u-Wert) und den in dieser Variable 

erwarteten invertierten Fehlerhäufigkeiten (m-Wert). Siehe Kapitel 1.3.3 für exaktere 

Erläuterungen. Die Einzelgewichte wurden nachfolgend zu Gesamtgewichten aufaddiert. 

Um zu gewährleisten, dass bei unterschiedlich auftretender Reihenfolge von Attributswerten 

in den zugrunde liegenden IDAT, wie beispielsweise innerhalb von Doppelnamen, 

Übereinstimmungen zu erkennen sind (z.B. Müller-Wagner/Wagner-Müller), wurden 

Matching-Arrays für Vornamen (VORNAME1, VORNAME2, VORNAME3) und Nachnamen 

(NACHNAME1, NACHNAME2, NACHNAME3) verwendet, in denen jeweils alle enthaltenen 

Kontrollnummerausprägungen paarweise im Kreuzprodukt miteinander abgeglichen wurden. 

Zuerst wurden hierbei die Kontrollnummern auf paarweise Übereinstimmungen untersucht. 

Beim Auffinden von Übereinstimmungen wurde ein Einzelgewicht berechnet und die 

konkreten Kontrollnummerausprägungen wurden aus dem jeweiligen Matching-Array entfernt 

bis nur noch Nicht-Übereinstimmungen oder überhaupt keine Werte mehr übrig waren. 

Anschließend wurden Gewichte zu den verbleibenden Nicht-Übereinstimmungen berechnet.  

Die Gewichtung der potentiellen Links wurde in eine Gewichtsdatei geschrieben. Jeder 

potentielle Link belegte hierbei eine Zeile und bestand aus den PIDs der verglichenen Einträge 
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der verschiedenen Datensätze, sowie deren Übereinstimmungsgewicht. Abbildung 9 illustriert 

den schematischen Ablauf des in der Arbeit verwendeten Record-Linkage-Systems. 

 

 

2.1.3. Beschreibung der verwendeten klinischen Daten 

Für diese Arbeit wurde ein realer Datensatz, bestehend aus Personen identifizierenden Daten 

zu 46.629 Patienten des Klinikums Großhadern (http://www.klinikum.uni-muenchen.de) 

verwendet. Die Patientendaten wurden dabei im Vorfeld anhand des Programmes 

GenerateControlNumber<6> standardisiert und einwegverschlüsselt. Es handelte sich dabei um 

eine zufällige Stichprobe aus einer Gesamtmenge von insgesamt 466.286 Patienten, die in den 

Jahren 2008-2012 im Klinikum zur Behandlung registriert wurden (dieser Datensatz enthielt 

keine Daten von Patienten, deren Aufnahme storniert wurde). Der zur Verfügung gestellte 
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Abbildung 9: Schematischer Ablauf des für diese Arbeit 
verwendeten Record-Linkage-Systems. 
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Datensatz entsprach somit einem Anteil von ca. 10% der Patienten, die während des 

genannten Zeitraumes tatsächlich behandelt wurden.  

Durch die Größe des Datensatzes sollte eine relativ bevölkerungsnahe und realistische 

Verteilung von Attributen wie beispielsweise Vornamen oder Nachnamen in der Region zu 

erwarten sein. Dadurch, dass die meisten Patienten spekulativ aus dem Großraum München 

und Umgebung stammen sollten, war zu erwarten, dass der Datensatz im Gegensatz zu 

komplett künstlichen Datensätzen zudem interessante Verwandtschaftsbeziehungen wie etwa 

das Vorkommen von Zwillingen enthielt, die in der Regel hohe Anforderungen an ein Record-

Linkage stellen. 

2.2. Überwachte Klassifizierung – angestrebtes Vorgehen 

Im Zuge dieser Arbeit galt es unter anderem, ein überwachtes Klassifizierungssystem zu 

entwickeln und mit unüberwachten Klassifikationstechniken abzugleichen. Dieses überwachte 

System sollte dabei, angepasst an die Originaldaten, Trainingssets konstruieren auf denen ein 

optimaler Trainingsset-spezifischer Klassifikator ermittelbar wäre welcher schließlich als 

Klassifikator auf den Originaldaten verwendet werden könnte. Die genaue Konstruktion der 

Trainingssets in Bezug auf die einzelnen Konstruktionsparameter wie beispielsweise die Größe 

der Teilsets sollte innerhalb dieser Arbeit ermittelt, und auf beste Performanz (Abgleichsgüte) 

hin optimiert werden (siehe Kapitel 2.5 bzw. 2.6). Der generelle Ablauf der angestrebten 

überwachten Klassifizierungsmethodik konnte aber bereits spezifiziert werden und unterteilte 

sich in folgende Schritte (siehe auch Abbildung 10): 

1. Bilden von N Trainingssets A und B, basierend auf den abzugleichenden originalen 

Datensätzen A und B nach Konstruktions-Verfahren X (Details zu X galt es zu 

erarbeiten). N richtet sich hierbei nach der Performanz des zugrunde liegenden 

Hardwaresystems, wobei ein hoher Wert den maximal möglichen Fehler verringert. 

2. Auf den erzeugten N Trainingssets wird ein Record-Linkage durchgeführt. 

3. Bestimmung des optimalen Klassifikators auf jedem der erzeugten N Trainingssets. Die 

optimale Schranke wird hierbei durch nachvollziehbare Übereinstimmungen (gleiche 

IDs) innerhalb des Überlappungsbereiches der Trainingsdaten und dem hieraus 

berechenbaren F-Measure-Wert berechnet. 

4. Zu den ermittelten N Trainingsset spezifischen Klassifikatoren wird ein neuer 

Klassifikator, der das arithmetische Mittel der einzelnen Klassifikatoren darstellt, 

berechnet. Dieser neue Wert dient als Klassifikator für die Originaldaten. 
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5. Die Originaldaten werden per Record-Linkage abgeglichen. 

6. Der in (4) berechnete Klassifikator dient als unüberwachter Klassifikator auf den 

Originaldaten. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zur Entwicklung und Parameteroptimierung des Konstruktionsverfahrens X wurden in dieser 

Arbeit umfangreiche Tests und Performanzvergleiche bezüglich der Abgleichsgüte benötigt. 

Diese sollten anhand einer Vielzahl von Testsets, basierend auf den unter Kapitel 2.1.3 

beschriebenen klinischen Daten erstellt werden. 
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Abbildung 10: Konzept zur angestrebten überwachten Klassifizierungsmethodik. 
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2.3. Erzeugung von Testsets anhand klinischer Daten 

2.3.1. Notwendigkeit der Testset-Erzeugung 

Zur Einschätzung bestehender als auch neu entwickelter Klassifizierungsmethoden waren 

Datensätze notwendig, anhand derer sich Gütekriterien quantifizieren ließen und somit einen 

Vergleich der verschiedenen Methoden ermöglichten. Solche Datensätze werden im Bereich 

des maschinellen Lernens auch als Testsets bezeichnet [80]. Es war davon auszugehen, dass je 

nach Beschaffenheit der Testsets unterschiedliche Klassifizierungsmethoden zu verschieden 

guten Ergebnissen führen würden. Aus diesem Grund war es ratsam, eine möglichst breite 

Palette an Testsets mit verschieden Charakteristiken als Datengrundlage für Analysen zu 

verwenden. Im Bereich des medizinischen Record-Linkage ist die Anzahl an offen zugänglichen, 

geeigneten Testsets jedoch beschränkt oder vom Kontext her unpassend. Das Problem liegt 

hierbei nicht grundsätzlich im Zugang zu Patientendaten an sich, sondern in der notwendigen 

Beschaffenheit der Testsets. Ein geeignetes Testset hat aus jeweils zwei Datenmengen zu 

bestehen, die eine gemeinsame Teilmenge besitzen. Diese gemeinsame Teilmenge muss 

bekannt und über gemeinsame IDs oder andere Schlüsselelemente eindeutig zueinander 

zuordenbar sein (siehe Abbildung 11).  

 

Abbildung 11: Darstellung eines für im Kontext des Record-Linkage nutzbaren Testsets.  

Man bezeichnet diese Teilmenge auch als Menge der echten Übereinstimmungen (Matches). 

Im weiteren Verlauf der Arbeit wurden die größeren der beiden Teilsets eines Datensets 

jeweils als Teilset A und die kleineren der Teilsets als Teilset B bezeichnet. Nach einem Record-

Linkage-Durchlauf ließ sich die Güte des Record-Linkage anhand der Diskrepanz der 

Übereinstimmungen und Nicht-Übereinstimmungen zu den als echt bzw. falsch klassifizierten 

Links berechnen (siehe Kapitel 1.3.5).  
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Den Güteberechnungen lag die Annahme zu Grunde, dass die echten Übereinstimmungen in 

den Testsets korrekt zueinander zugeordnet wurden. Auf Realdaten gibt es hierzu keine 

Garantie, allerdings spricht man von einem Goldstandard, wenn die Übereinstimmungen im 

Klartext manuell kontrolliert zueinander zugeordnet werden [19]. Im Kontext von 

Patientendaten, die beim Zusammenführen aus verschiedenen Quellinstitutionen eine 

Einwegverschlüsselung benötigen, ist eine solche Zuordnung im Klartext, und somit die 

Erzeugung eines dem Goldstandard entsprechenden Datensatzes in der Regel nicht oder nur 

unter speziellen Bedingungen (beispielsweise innerhalb einer Kohorte) möglich. Diese Arbeit 

strebte Analysen auf einem umfangreichen Set verschieden zusammengesetzter Testsets an. 

Hierdurch wurden Methoden benötigt, die die Konstruktion solcher Testsets erlaubten. 

2.3.2. Spezifizierung der Parameter zur Testset-Erzeugung 

Zu den in dieser Arbeit durchgeführten Untersuchungen sollten die gegebenen Patientendaten 

des Klinikums (siehe Kapitel 2.1.3) genutzt werden, um eine Reihe von künstlichen, jedoch auf 

Realdaten basierenden Testsets zu erstellen. Für eine umfangreiche Auswahl an Testsets 

wurden interessante und passende Charakteristiken spezifiziert, anhand deren Kombination 

die verschiedenen Testsets letztendlich erstellt werden sollten. Bei den spezifizierten 

Charakteristiken handelte es sich um die Größe der Teilsets, die Größe des 

Überlappungsbereiches, also der Teilmenge von Patienten mit gleicher ID in beiden Teilsets, 

sowie die individuell auftretenden Fehlerraten zwischen den Attributen der Patienten 

innerhalb des Überlappungsbereiches (siehe Tabelle 9). Zur Vereinfachung wurde die 

Häufigkeit des Auftretens von Fehlern im Überlappungsbereich auch als Beschaffenheit oder 

Qualitätsstufe des jeweiligen Testsets bezeichnet. Ähnliche Charakteristiken werden bereits in 

Arbeiten von Peter Christen zur Erzeugung künstlicher Testsets verwendet [71]. Jede 

Charakteristik besaß mögliche Ausprägungen wie in Tabelle 8 weiter spezifiziert. Dabei 

handelte es sich um die mögliche Anzahl von Patienten pro Teilset (Größe), die Anzahl von 

identischen Patienten in beiden Teilsets (Überlappung) sowie die Qualitätsstufe. Eine 

Qualitätsstufe von 1 beschrieb eine gute Datenqualität d.h. ein geringes Auftreten von Fehlern 

in Attributswerten von Patienten im Überlappungsbereich, wohingegen der Wert 10 den 

schlechtesten Wert, also ein häufiges Auftreten von Fehlern, darstellte. Anzumerken ist, dass 

Größenanordnung, (also [100:1000] bzw. [1000:100]) der Teilsets für diese Arbeit keine Rolle 

spielte, wodurch sich die hieraus ergebenden Kombinationen auf 10 beschränkten. Insgesamt 

konnten somit 400 Testsets mit einzigartiger Kombination von Charakteristiken erzeugt 

werden (siehe Formel 15).  
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Tabelle 8: Ausprägungsliste der Konstruktionsparameter. 

Größe Überlappung Qualitätsstufe 

100 
1000 

10000 
25000 

5% 
25% 
50% 
75% 

1-10 

 

|𝑇𝑒𝑠𝑡𝑠𝑒𝑡𝑠| =  
(|𝐺𝑟öß𝑒| + |𝑇𝑒𝑖𝑙𝑠𝑒𝑡𝑠| − 1)!

(|𝐺𝑟öß𝑒| − 1)! |𝑇𝑒𝑖𝑙𝑠𝑒𝑡𝑠|!
 × |Ü𝑏𝑒𝑟𝑙𝑎𝑝𝑝𝑢𝑛𝑔| × |𝐵𝑒𝑠𝑐ℎ𝑎𝑓𝑓𝑒𝑛ℎ𝑒𝑖𝑡| 

                      =
(4 + 2 − 1)!

(4 − 1)! 2!
 × 4 × 10 =  

5!

3! × 2!
× 4 × 10 = 10 × 4 × 10 = 400 

(15) 

 

Durch die hohe Anzahl an Testsets deckte die Arbeit somit eine sehr breite Palette von 

Szenarien bzw. Datenbeständen ab, die ähnlich auch in der Realität auftreten könnten. 

Abbildung 12 zeigt hierbei den schematischen Ablauf der Automatisierung der Testset-

Erzeugung. Diese wurde mithilfe des Programmes CreateTestsets<7> umgesetzt. Die 400 

Testsets, jeweils bestehend aus einem Teilset A, bzw. einem Teilset B, belegten insgesamt 5,04 

GB Speicherplatz. 

Für den weiteren Verlauf der Arbeit war es wichtig, die Kenntnis zur genutzten 

Parametrisierung der Testdaten zu dokumentieren. Dies geschah direkt über den Dateinamen 

(siehe Abbildung 13).  

 

Abbildung 12: Ausschnitt aus dem Projektverzeichnis der Programmierumgebung.  

Ein führender Großbuchstabe beschrieb dabei das Teilset (A bzw. B), gefolgt von durch 

Unterstrich separierten Parameterwerten. Der erste numerische Wert hierbei kodierte die 

Größenkombination, der zweite Wert die Überlappung und der dritte Wert die Beschaffenheit.  
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Abbildung 13: Automatisierter Ablauf der Testset-Erzeugung.  
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Anzahl Größenkombinationen := 10 
Anzahl Überlappungsvarianten :=  4 
Anzahl Qualitätsstufen := 10 

o++ 

a++ o:= 0 

q:= 0 

Einlesen der 
Klinikumsdaten 

nein 

nein 

ja 

ja 

ja 

nein 
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Die numerischen Werte standen hierbei stellvertretend für die in Tabelle 9 beschriebenen 

Ausprägungen. 

Tabelle 9: Kodierung der Testset-Benennung. (siehe Abbildung 13)  

Größenkombination Überlappung Beschaffenheit 

Vermerk im 

Dateiname 

Wert Vermerk im 

Dateiname 

Wert Vermerk im 

Dateiname 

Wert 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

[100:100] 
[100:1000] 

[100:10000] 
[100:20000] 
[1000:1000] 

[1000:10000] 
[1000:20000] 

[10000:10000] 
[10000:20000] 
[20000:20000] 

0 
1 
2 
3 

5% 
25% 
50% 
75% 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Q1 
Q2 
Q3 
Q4 
Q5 
Q6 
Q7 
Q8 
Q9 

Q10 

 

2.3.3. Konkrete Implementierung der Testset-Erzeugung 

Erzeugung von Teilset A 

Bei der Erzeugung der individuellen Testsets zu dieser Arbeit wurde wie folgend vorgegangen. 

Aus dem Basisdatensatz des Klinikums wurden Daten entsprechend der Größe des zu 

erstellenden größeren Teilsets, basierend auf dem für das Testset zugeordneten 

Größenparameter, gezogen (siehe Abbildung 14a). Es handelte sich hierbei um Ziehen ohne 

Zurücklegen, weswegen in diesen neu erstellten Teilsets jeweils keine Patienten doppelt 

vorkamen (unter der Annahme, dass die Basisdaten des Klinikums weitestgehend duplikatfrei 

sind). Weiterführend wurden die jeweils größeren Teilsets eines Testsets als Testset A 

bezeichnet.  
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Abbildung 14: Erzeugung individueller Testsets basierend auf unterschiedlicher Parametrisierung.  

Erzeugung von Teilset B 

Auffüllen des Teilsets abzüglich des Überlappungsbereiches 

Die Erstellung der kleineren Teilsets, die weiterführend jeweils als Teilset B bezeichnet 

wurden, stellte sich als etwas komplexer dar. Das jeweilige Teilset B wurde gemäß des 

gegebenen Größenparameters aus demselben Topf an noch verbleibenden Klinikumsdaten, 

aus dem bereits Teilset A erstellt wurde, mit Patienten aufgefüllt. Zu beachten war allerdings, 

dass der Anteil der Überlappung in diesem Teilset B zu diesem Zeitpunkt noch nicht belegt 

wurde (siehe Abbildung 14b). 

Erstellen des Überlappungsbereiches 

Zu dem noch nicht befüllten Überlappungsbereich wurden nun Patienten (ohne Duplikate) aus 

dem Teilset A in das Teilset B kopiert. Der Überlappungsbereich enthielt somit die Patienten, 

die sowohl in Teilset A als auch in Teilset B auftraten und die über die gleich bleibende PID in 

beiden Datensätzen erkennbar waren (siehe Abbildung 14c). 
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Ohne weitere Bearbeitung wäre dieser Überlappungsbereich nun durch ein Record-Linkage 

problemlos zu identifizieren gewesen, da es sich um direkte Kopien, also 100%ige 

Übereinstimmungen in den Attributen zwischen den Patienten der beiden Teilsets handelte. 

Die Testsets dienten jedoch dem Zweck, realistische Szenarien so gut wie möglich zu 

simulieren. Aus diesem Grund wurden die Attribute der Patienten im Überlappungsbereich 

gemäß dem Beschaffenheitsparameter des jeweiligen Testsets verunreinigt bzw. mit Fehlern 

versehen.  

Einfügen von Fehlern in Kontrollnummern der Patienten innerhalb des 

Überlappungsbereiches 

Während dieses Schrittes wurden Fehler entsprechend der durch die einzelnen 

Beschaffenheitsstufen (1 bis 10) definierten Fehlerhäufigkeiten in die Kontrollnummern der 

Patienten im Überlappungsbereich übertragen. Die verwendeten Fehlerhäufigkeiten leiteten 

sich hierbei aus zwei Berichten ab, zum einem aus einen Bericht aus dem Krebsregister NRW 

[73], zum anderen zu generell empfohlenen Schätzwerten der m-Werte während eines 

Record-Linkage (also den invertierten Fehlerhäufigkeiten) in Krebsregistern [39]. Anhand der 

beiden Referenzen wurden hierbei die Beschaffenheitsstufen 1 bzw. 2 erstellt, die eine gute 

Datenqualität, so wie sie in gepflegten Registern vorkommen sollte, darstellen sollten. Die 

Differenz in den attributabhängigen Fehlerwahrscheinlichkeiten zwischen Beschaffenheitsstufe 

1 und Beschaffenheitsstufe 2 wurde verwendet, um die Fehlerhäufigkeiten in den restlichen 

Beschaffenheitsstufen (3-10) zu ermitteln. Die Beschaffenheitsstufe 10 stellte somit Testsets 

mit der niedrigsten Datenqualität dar. Die genauen Fehlerhäufigkeiten, abhängig von der 

Beschaffenheitsstufe, werden in Tabelle 10 bzw. Abbildung 15 wiedergegeben. 

Tabelle 10: Fehlerhäufigkeiten abhängig von Qualitätsstufe und Attributsgruppe 

 

Attributsgruppe 

 

Konkrete Attribute 

Fehlerquote nach 

Beschaffenheit 

Start Faktor  

Namensattribute NACHNAME1,NACHNAME2,NACHNAME3, 

VORNAME1,VORNAME2,VORNAME3 

0,025 0,025 

Datumsangaben GEBURTSTAG,GEBURTSMONAT, 

GEBURTSJAHR 

0,01 0,01 

Adressangaben PLZ,ORT 0,05 0,05 

Geschlecht GESCHLECHT 0,001* 0,005 
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Der Startwert gibt die initialen Fehlerhäufigkeiten in den einzelnen Attributsgruppen bei einer 

Beschaffenheitsstufe 1 wieder. Für jede Beschaffenheitsstufe erhöhte sich die Fehlerhäufigkeit 

um einen attributsspezifischen Faktor, der, wie erwähnt, der Differenz aus Q1 und Q2 

entsprach.

 

Abbildung 15: Mögliche Fehlerhäufigkeiten in Testsets abhängig von Qualitätsstufe und Attributsgruppe. 

Grundsätzlich gibt es verschiedene Vorkommen von Fehlern, die in den verschiedenen 

Attributsgruppen verschieden häufig vorkommen. Diese wurden nach eigenem Ermessen wie 

folgend spezifiziert: 

 Deformationsfehler: Fehler, die eine Ausprägung in eine nicht valide Ausprägung 

umwandeln.  

 Transformationsfehler: Fehler, die eine Ausprägung in eine andere valide Ausprägung 

umwandeln. 

 Fehlender Wert: Die Entität besitzt für dieses Element keine Ausprägung. 

Fehlende Werte sind besonders häufig bei den Adressangaben, aber generell in jedem Feld 

beobachtbar. Abgleiche mit fehlenden Werte werden im Record-Linkage neutral gewichtet. 

Dies bedeutet, dass es beim Auftreten von fehlenden Werten in echten Übereinstimmungen 

schwierig fallen kann, diese wegen niedrigerem Gewicht als echte Links zu klassifizieren.  

Bei Fehlern im Feld Geschlecht, bzw. in Datumsangaben handelt es sich meist um 

Transformationsfehler. Dies heißt, eine Attributsausprägung wird in eine tatsächlich 

vorkommende andere Ausprägung umgewandelt. Auch im Namen und den Adressfeldern 

dürfte die Mehrzahl der Fehler auf Transformationsfehler zurückzuführen sein. Als Beispiel sei 
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der Name „Meyer“ zu nennen. Geläufige Fehler dürften hierzu gleichklingende 

Namensvarianten sein wie beispielsweise „Meier“. Doch nicht nur phonetisch gleichklingende 

Namen bereiten hier Probleme. Auch Namensvarianten wie „Christa“ bzw. „Christel“ führen zu 

Transformationsfehlern. Weitere Transformationsfehler treten beispielsweise durch 

Namensänderung (z.B. Eheschließung) oder Adressänderungen auf. Dies kann zu einer 

positiven Gewichtung von Links führen, bei denen es sich eigentlich nicht um echte 

Übereinstimmungen handelt, und einer gleichzeitigen Verringerung des Gesamtgewichtes der 

tatsächlich übereinstimmenden Patienten. Transformationsfehler erhöhen demnach die 

Verwechslungsgefahr mit anderen Individuen. 

Deformationsfehler, die in komplett neuen Varianten resultieren, dürften eher seltener sein. 

Diese treten nur dann auf, wenn eine Ausprägung etwa durch das zufällige Hinzufügen oder 

Weglassen eines Buchstabens so stark verändert wird, dass ein neuer, in der Werteverteilung 

bisher noch nicht aufgetretener Ausprägungswert geschaffen wird. Das Weglassen des 

Buchstabens „r“ im Namen „Christoph“ würde so in der Ausprägung „Chistoph“ resultieren. 

Dies wäre eine Ausprägung, die wohl in dieser Form nicht in normaler Namensverteilung 

vorkommen würde. Deformationsfehler führen demnach beim Durchführen des 

Kontrollnummerabgleichs, ähnlich wie bei fehlenden Werten, im Normalfall zu einer generell 

schwächeren Gewichtung. 

Zu den Häufigkeiten der vorkommenden Fehler in medizinischen Daten konnten keine 

Angaben gefunden werden. Die Fehlerhäufigkeiten wurden aus diesem Grund heuristisch, also 

basierend auf eigenen Erfahrungen, geschätzt (siehe Tabelle 11 sowie Abbildung 16). 

Tabelle 11: Häufigkeit von Fehlerarten in Abhängigkeit der gegebenen Attributsgruppe. 

Attributsgruppe Transformation Deformation Fehlender Wert 

Namensattribute 70% 20% 10% 

Datumsangaben 80% 0% 20% 

Adressangaben 40% 30% 30% 

Geschlecht 70% 5% 25% 

 

Entsprechend der gegebenen Häufigkeiten wurden nun Fehler in die Kontrollnummern der 

Patienten innerhalb des Überlappungsbereiches des kleineren Teilsets eingefügt. (siehe 

Abbildung 14d). Hierbei wurde für jede Attributsausprägung ein zufälliger Fließkommawert 

zwischen 0 und 100 generiert und mit den gegebenen Fehlerraten abgeglichen. Lag der Wert 

unter dem gegebenen Schwellwert wurde ein Fehler nach nachfolgendem Schema erzeugt.  
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Abbildung 16: Häufigkeit der Fehlerart in Abhängigkeit der gegebenen Attributsgruppe.  

Bei Deformationsfehlern wurde ein zufälliges Symbol in den Hash-Werten durch ein nicht im 

Hexadezimalcode vorkommendes Zeichen ersetzt. Hierdurch entstanden neue deformierte 

Werte, die in dieser Form außer bei Auftreten des exakt selben Fehlers bisher nicht in der 

Wertemenge enthalten waren.  

Bei Auftreten von Transformationsfehlern wurde die alte Ausprägung durch eine neue aus der 

Gesamtwertemenge der Klinikumsdaten stammende Ausprägung ersetzt.  

Bei fehlenden Werten wurde der alte Hash-Wert durch einen leeren String ersetzt.  

Übertragung der Matches in das Teilset B 

Der mit Fehlern versehene Überlappungsbereich konnte nun an die bereits bestehende Liste 

an Einträgen in Teilset B angehängt werden (siehe Abbildung 14 e).  

2.3.4. Auswertung der Testsets 

In den nachfolgenden Analysen (siehe Kapitel 2.6) galt es unter anderem, die Güte 

verschiedener binärer Klassifikatoren auf den 400 gegebenen Testsets zu prüfen. Hierbei war 

nicht nur der Vergleich der Klassifikatoren untereinander interessant, sondern auch die 

Information, wie nahe sich diese Klassifikatoren mit ihrer Vorhersage qualitativ an die auf dem 

jeweiligen Testset bestmögliche Güte annähern konnten. Es galt also, initial zu jedem Testset 
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die bestmögliche Güte zu bestimmen. Definiert wurde diese in dieser Arbeit als der vom 

jeweiligen Testset abhängige maximale F-Measure-Wert, der durch eine binäre Klassifikation 

auf dem ausgewählten Testset erzielt werden kann. Die nachfolgenden Unterkapitel erläutern, 

wie bei der Bestimmung der testsetspezifischen, maximalen F-Measure-Werte vorgegangen 

wurde. 

Record-Linkage auf den Testsets 

Zu jedem der 400 Testsets wurde mithilfe des unter Kapitel 2.1.2 beschriebenen Systems ein 

Record-Linkage durchgeführt. Somit wurden 400 testsetabhängige Gewichtsdateien erzeugt, 

auf denen weiterführend der jeweils bestmögliche F-Measure-Wert berechnet werden konnte. 

Die Automatisierung des Record-Linkage auf den 400 gegebenen Testsets wurde mithilfe des 

Programmes CreateTestSetsWeights<8> realisiert. 

Bestimmung des optimalen F-Measure-Wertes  

Zu den testsetspezifischen Gewichtsdateien wurde der jeweils höchstmögliche F-Measure-

Wert berechnet. Der Algorithmus hierzu war trivial. Zu einem Schrankenwert, der die 

Gewichtsdatei in echte und falsche Links unterteilte, ließen sich jeweils anhand der bekannten 

ID Übereinstimmungen zwischen Teilset A und Teilset B die TP, FP sowie FN berechnen. Aus 

diesen Bemessungen ließ sich zum gegebenen Schrankenwert jeweils der F-Measure-Wert 

berechnen. Angefangen beim niedrigsten in der jeweiligen Gewichtsdatei anfangenden 

Gewichtswert wurde diese Schranke inkrementell um einen Wert von jeweils 0,1 in Richtung 

höherer Gewichte verschoben. An jeder Position erfolgte eine Berechnung des F-Measure-

Werts . Der Maximalwert wurde gespeichert und in eine Datei geschrieben. 

Das Inkrement von 0,1 hätte grundsätzlich auch kleiner gewählt werden können, um eine noch 

genauere Messung zu gewährleisten, resultierte aber in einer dem Faktor entsprechenden 

linearen Laufzeit-Erhöhung der Prozedur. Für diese Arbeit erschien eine Approximation auf 

eine Nachkommastelle jedoch ausreichend. Somit muss dem Leser an dieser Stelle klar sein, 

dass es theoretisch auch höhere Maximalwerte für den F-Measure-Wert gäbe, was jedoch nur 

dann der Fall wäre, wenn mehrere Links ein unterschiedliches Gewicht innerhalb eines 

Gewichtsintervalles von 0,1 besäßen.  

 Die konkrete Implementierung hierzu fand sich im Programm FMeasure<9>, mittels dessen 

die automatisierte Berechnung des F-Measure-Wertes auf allen 400 gegebenen 

Gewichtsdateien durchgeführt wurde. Die Ergebnisse wurden dabei gesammelt in eine Datei 

übertragen. Weitere Optimierungsverfahren hierzu wären denkbar. 
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Bestimmung der optimalen Schranke 

In der Praxis findet sich oft ein optimaler F-Measure-Wert, der sich nicht nur auf eine 

Gewichtsposition beschränkt, sondern ein größeres Gewichtsintervall abdecken kann. 

Abbildung 3a verdeutlicht diesen Fakt. Der optimale F-Measure-Wert ist hierbei zwischen den 

beiden Erhebungen zu erwarten, eine Klassifikationsschranke würde also unabhängig von der 

Position innerhalb des Intervalls zwischen den beiden Erhebungen im selben F-Measure 

resultieren. Für die überwachte Klassifizierung, die in den nachfolgenden Kapiteln näher 

vorgestellt wird, musste jedoch auf Trainingsdaten ein exakter Schrankenwert zum gegebenen 

maximalen F-Measure-Wert bestimmt werden, der später auf den Testdaten als Klassifikator 

verwendet werden konnte. Die Festlegung dieses Wertes wurde wie nachfolgend gehandhabt:  

1. Gibt es ein Gewichtsintervall, über das sich der maximale F-Measure-Wert streckt, so 

wird als optimaler Schrankenwert der Mittelwert dieses Intervalls spezifiziert. 

2. Gibt es mehrere Intervalle dieser Art, so wird das breiteste Intervall zur Ermittlung der 

Schranke, gewählt und Regel 1 wird auf dieses Intervall angewandt. 

Graphische Auswertung in Bezug auf die Parametrisierung 

Die individuellen Testsets wurden anhand der Kombination verschiedener 

Konstruktionsparameter erzeugt. Interessant war es hierbei, ob und inwiefern die 

verschiedenen Konstruktionsparameter einen Einfluss auf die bestmögliche 

Klassifikationsqualität besaßen.  

Hierzu wurden die zu den 400 Testsets ermittelten maximalen F-Measure-Werte jeweils 

entsprechend der möglichen Ausprägungen der genannten Parameter gruppiert und der 

durchschnittliche F-Measure-Wert innerhalb dieser Gruppen abhängig von der Ausprägung des 

Parameters grafisch dargestellt. Die Ergebnisse hierzu finden sich unter Kapitel 3.1. 

2.4. Identifikation von potentiell einflussreichen Parametern 

auf die Erzeugung von Trainingssets 

Wie Sariyar [83,84] beschreibt, können gerade überwachte Klassifizierungssystemen im 

Bereich des Record-Linkage zu einer hohen Datenabgleichsgüte beitragen. Als offenes Problem 

nennen die Autoren jedoch Unklarheit über die genaue parametrische Beschaffenheit, wie 

beispielsweise die Bestimmung der Größe der zugrunde liegenden Trainingssets.  
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Um die Parametrisierung der Trainingsset in Bezug auf überwachte Klassifizierung zu 

normieren, und um hierbei ein mögliches Optimum zu ermitteln, wurde zu dieser Arbeit 

folgende Hypothese aufgestellt:  

Je ähnlicher ein Trainingsset dem zu prüfenden Testset ist, umso ähnlicher sind auch deren 

optimale Klassifikatoren. 

Die Interpretation hierzu lautete: Konstruktionsparameter, wie beispielsweise die Größe der 

Teilsets, die zur Konstruktion von Trainingssets verwendet wurden, sollten denen der 

Ausgangsdaten möglichst entsprechen. 

Diese Hypothese mag nachvollziehbar klingen, wie Han et Al. [41] in diesem Zusammenhang 

jedoch kommentieren, besteht bei solch einer Hypothese immer die Gefahr eines Overfittings, 

also einer Überanpassung der Trainingsdaten an die Ausgangsdaten. Zudem durften die 

Trainingsdaten offensichtlich mit den Originaldaten nicht komplett übereinstimmen. Es musste 

also ein Kompromiss zwischen Anpassung und Differenzierung gefunden werden. Diese 

Differenzierung war in Bezug auf überwachte Klassifizierung jedoch bereits intrinsisch 

gegeben, wenn man bedenkt, dass der echte Überlappungsbereich nicht bekannt war. Die 

Differenzierung sollte also in der Erzeugung eines neuen Überlappungsbereiches, der für eine 

überwachte Klassifikation notwendig war, erfolgen. In Bezug auf die medizinische Domäne 

musste es also Patienteneinträge in Trainingsset A geben, die sich auch in Trainingsset B 

wieder fanden, und die Beziehung dieser Einträge musste über eine identische ID 

gekennzeichnet werden. Entsprechend der Größe des definierten Überlappungsbereiches in 

den Trainingsdaten mussten also als Mindestvoraussetzung mit zusätzlicher ID 

gekennzeichnete Einträge aus Trainingsset A nach Trainingsset B kopiert werden. Versuchte 

man hierbei die Trainingsdaten möglichst stark an die Testdaten anzupassen, so hätte man 

Trainingsset A (zuzüglich neuer ID) als direkte Kopie von Testset A erzeugen können. 

Trainingsset B hingegen hätte man als eine Kopie von Testset B erzeugen können, abzüglich 

einer Anzahl zufälliger Patienten, die der Größe des neuen Überlappungsbereich entsprochen 

hätte. Das Trainingsset B hätte man dann noch mit einer Liste zufälliger Patientenkopien aus 

Trainingsset A aufgefüllt.  

Hierbei stellten sich nun einige Fragen. Käme dieses Vorgehen einer möglichst starken 

Anpassung der Trainingsdaten an die Testdaten, das aus der genannten Hypothese abgeleitet 

wurde, der Datenabgleichsqualität tatsächlich zugute? Gleich bleibende Teilsetgrößen waren 

bereits Teil des zuvor genannten Vorgehens, doch wie war es mit der Größe des 

Überlappungsbereiches? Hatte eine Anpassung des Überlappungsbereiches in den 



 55 Material und Methoden 

Trainingsdaten auf die Größe des Überlappungsbereiches in den Testdaten ebenfalls eine 

positive Auswirkung? War es notwendig, die Fehlerraten im Überlappungsbereich der 

Trainingsdaten möglichst an die der Testdaten anzupassen? War es überhaupt sinnvoll, sich 

direkt an den Originaldaten zu bedienen, also die Werteverteilung der Trainingsdaten an 

denen der Testdaten möglichst zu orientieren? 

Eine Überprüfung, ob die genannte Hypothese korrekt war und wie sie methodisch 

interpretiert werden konnte, war Teilaufgabe dieser Arbeit. 

Zu den genannten Parametern, Größe der Teilsets, Größe des Überlappungsbereiches, 

Fehlerraten im Überlappungsbereich, sowie die Werteverteilung sollten deswegen 

nachfolgend Untersuchungen vorgenommen werden, um zu prüfen, ob sich eine Anpassung 

dieser Werte an die Originaldaten positiv auf die Klassifikation eines probabilistischen Record-

Linkage-Systems auswirkten oder nicht. Sollte dies für alle der genannten Parameter der Fall 

sein, wäre die zuvor aufgestellte Hypothese bestätigt. 

Nicht geprüft wurden die Anpassung der Domäne bzw. der Datenstruktur an die 

Trainingsdaten. Es erschien offensichtlich, dass beispielsweise eine Erhöhung der 

Attributsanzahl in den Trainingsdaten zu einer durchschnittlich höheren Gewichtung von 

Datenvergleichen führen würde, was in Bezug auf eine möglichst übereinstimmende 

Klassifikation zwischen Trainings- und Testdaten kontraproduktiv gewesen wäre. Aus diesem 

Grund wurden in den folgenden Analysen stets Trainingssets mit übereinstimmender 

Datenstruktur aus derselben Domäne (Patientendaten) verwendet. 

2.5. Überprüfung des Einflusses von Konstruktionsparametern 

auf die Qualität der Klassifikation 

2.5.1. Zielsetzung der Parameterprüfung 

In den nachfolgenden Kapiteln sollte geprüft werden, ob eine Anpassung der unter Kapitel 2.4 

identifizierten, zur Konstruktion der Trainingssets genutzten Parameter an die Ausgangsdaten 

tatsächlich zu einer verbesserten überwachten Klassifizierung führte. Sollte sich zeigen, dass 

die Anpassung aller identifizierten Parameter einen positiven Einfluss auf die Klassifizierung 

ausübte, wäre dies ein Indiz für die Hypothese aus Kapitel 2.4. Unabhängig davon sollte aber 

versucht werden, die Klassifikationsqualität durch eine Bestimmung passender 
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Parameterwerte zu maximieren und eine hierauf basierende Methodik zur überwachten 

Klassifikation bei probabilistischen Record-Linkage-Systemen zur Verfügung zu stellen.  

Hierfür sollten zu jedem Testset als Template-Trainingsset bezeichnete Datensets erstellt 

werden. Diese sollten entsprechend der Hypothese aus Kapitel 2.4 mit möglichst hoher 

Ähnlichkeit zu den Orginal-Trainingssets erstellt werden. Bei der Konstruktion sollten also die 

Größe der Teilsets, die Größe des Überlappungsbereiches, Fehlerraten sowie die 

Verteilungswerte möglichst zwischen Template-Trainingsset und Testset übereinstimmen. Die 

genaue Konstruktion wird unter Kapitel 2.5.2 näher erläutert. 

Auf den Teilsets der Template-Trainingssets konnte anschließend ein Record-Linkage vollführt 

werden. Auf jeder der erzeugten Template-Gewichtsdateien konnte schließlich ein 

Klassifikator, der den F-Measure-Wert auf dem jeweiligen Template-Trainingsset maximiert, 

berechnet werden. Die hierbei erzeugten optimalen Schranken konnten wiederum als 

überwachte Klassifikatoren auf den zugrunde liegenden Testsets verwendet werden.  

Zu diesem Zeitpunkt hätte sich also bereits ermitteln lassen, wie stark die überwachte 

Klassifikation, basierend auf der Template-Parametrisierung, von der bestmöglichen 

Klassifizierung auf dem zugrunde liegenden Testset (siehe Kapitel 2.3) abwich. Ferner galt es 

jedoch zu prüfen, ob es sich bei der Parametrisierung der genannten Template-Trainingssets 

wirklich um eine optimale Parametrisierung handelte oder ob es Varianten in der 

Parametrisierung gab, die zu noch besseren Ergebnissen führten. Aus diesem Grund sollten 

weitere Trainingsset-Varianten erzeugt werden, die jeweils in einem der 

Konstruktionsparameter von den Template-Trainingssets abwichen. Die Trainingsset-Varianten 

werden in den nachfolgenden Kapiteln näher erläutert. Zu diesen Varianten sollte 

entsprechend dem Klassifikationsvorgang bei der Template-Variante erst der jeweils optimale 

Schrankenwert (bemessen am F-Measure-Wert) auf den jeweiligen Trainingsset-Varianten 

bestimmt werden und dieser dann als Klassifikator auf das korrespondierende Testset 

angewendet werden. Erneut ließ sich hierbei zu jeder Variante die Performanz des 

vorhergesagten Klassifikators, also der F-Measure-Wert berechnen. Erzielten die auf den 

Trainingsset-Varianten basierenden Klassifikatoren auch nur zum Teil bessere Gütewerte als 

die Klassifikation auf den Template-Trainingssets, so wäre die ursprüngliche Hypothese 

widerlegt und die Parameter wären für ein finales Modell entsprechend der besser 

abschneidenden Variante anzupassen. Die Ergebnisse der beschriebenen Analyse finden sich 

unter Kapitel 3.2. Abbildung 17 illustriert den eben genannten experimentellen Ansatz. 
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2.5.2. Erstellen von Template-Trainingssets 

Zu jedem der 400 unter Kapitel 2.3. erstellten Testsets wurde ein der Hypothese möglichst 

entsprechendes Template-Trainingsset erzeugt. Dieses sollte mit dem Originaltestset jeweils in 

Größe der Teilsets, Größe des Überlappungsbereiches sowie in der Häufigkeit auftretender 

Fehler im Überlappungsbereich möglichst gut übereinstimmen. Die genauen 

Konstruktionsparameter wurden hierbei über den Dateinamen der Testdaten übergeben 

(siehe Abbildung 13). Weiterhin sollte sich die Verteilung der Werteausprägungen stark an den 

Originaldatei orientieren. Das genaue Vorgehen zur Erzeugung der Template-Trainingssets 

wird unter Abbildung 18 bildlich dargestellt und weiterführend beschrieben. Zu Teilset A des 

Testdatensatzes wurde wie schon im Falle der Testseterzeugung eine identische Kopie erstellt 

(siehe Abbildung 18a). Jeder Eintrag in diesem neuen Trainingsset A wurde jedoch zusätzlich 

noch mit einer neuen ID eindeutig markiert. Zu Teilset B des zugrunde liegenden 

Testdatensatzes wurde ebenfalls eine identische Kopie erstellt (siehe Abbildung 18b). 

Allerdings wurden aus dem hierbei erstellten Trainingsset B eine zufällige Auswahl an 

Patienten entfernt. Die Anzahl entsprach dabei der Größe des Überlappungsbereiches. Aus 

Trainingsset A wurden nun zufällige Patienten entsprechend der Größe des originalen 

Überlappungsbereiches ausgewählt. Diese bildeten den neuen Überlappungsbereich (siehe 

Abbildung 18c). In den neuen Überlappungsbereich wurden entsprechend den Originaldaten 

Fehler eingefügt (siehe Abbildung 18d). Die genauen Fehlerhäufigkeiten wurden dabei über 

den Dateinamen der Testdaten übergeben. Der neu konstruierte, mit Fehlern versehene 

Überlappungsbereich, der unter Schritt d erzeugt wurde, wurde mit dem in Schritt b 

erzeugtem Datenset vereint und bildete das neue Trainingsset B (siehe Abbildung 18e). Die 

beiden konstruierten Teilsets bildeten nach vorhergehendem Schema ein auf ein Testset 

angepasstes Template-Trainingsset. 

 Die automatisierte Erzeugung der 400 auf den Testsets beruhenden Template-Trainingssets 

wurde mithilfe des Programmes CreateTemplateTrainingsset<10> realisiert. Nachfolgend 

wurden die jeweils einzelnen Teilsets der 400 Template-Trainingssets per Record-Linkage 

(CreateTrainingSetsWeights<11>) abgeglichen, was in 400 Gewichtsdateien resultierte. 

Zu jeder dieser Template-Gewichtsdateien wurde schließlich mit Hilfe der Programme 

MassFMeasures<12> analog zu Kapitel 2.3, erst ein maximaler F-Measure-Wert und 

anschließend jeweils ein hierauf basierender optimaler Template-Schrankenwert bestimmt. 

Dieser vorhergesagte Template-Schrankenwert wurde nun wiederum als Klassifikator, also als 

Schrankenwert für das jeweilige Testset, wieder verwendet und dessen Qualitätsgüte auf den 
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Abbildung 17: Schematischer Ablauf des Performanzvergleiches zwischen Klassifikatoren eines Template- 
Trainingssets und einer Trainingsset-Variante. 
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Die Template-Trainingssets setzten im Grunde genommen das exakte Wissen über die 

Parametrisierung (hier über den Dateinamen gegeben) voraus. Im Echteinsatz wären diese 

Parameter jedoch nicht ohne weiteres exakt ermittelbar. Eigentlich würde es sich um das 

sogenannte Henne-Ei-Problem handeln [98]. Um den Überlappungsbereich zu bestimmen, 

bzw. durch einen Klassifikator abzugrenzen, hätte die Größe des Überlappungsbereiches im 

Vorfeld bekannt sein müssen, was zwar auf Testdaten gegeben war, auf Realdaten jedoch 

nicht. Als Abhilfe hätte es zu diesem Beispiel theoretische Möglichkeiten gegeben, die Größe 

des Überlappungsbereiches grob abzuschätzen [71]. Es wären allerdings weitere 

Untersuchungen über die Qualität dieser Abschätzungen und Auswirkungen auf eine 

Klassifizierung, die auf Template-Trainingssets beruht, erforderlich gewesen.  

 

 

Abbildung 18: Erzeugung von auf spezifische Testsets angepasste Template-Trainingssets.  



 Material und Methoden 60 

2.5.3. Variation der Größe 

Zu jedem Testset wurden zusätzlich jeweils zwei Trainingsset-Varianten erstellt, die in der 

Größe von der Template-Parametrisierung abwichen. Hierbei galt es zu prüfen, ob die 

Klassifitkationsqualität abwich, wenn nicht die exakten Größen der Testdaten zur Konstruktion 

der Trainingsdaten verwendet wurden. 

Bei der ersten Variante wurde der Größenparameter für jeweils beide Teilsets der 

Trainingsset-Variante auf 100 festgelegt. In den meisten Fällen resultierte dies in einer 

Reduktion der Größe der Teilsets im Vergleich zu den Testdaten. Bei Teilset A dieser Variante 

handelte es sich also nicht um eine direkte Kopie von Testset A sondern um eine zufällige 

Ziehung von exakt 100 Patienten. Teilset B dieser Variante wurde analog entsprechend 

Abbildung 18 mit 100 zufälligen Patienten (abzüglich der Größe des Überlappungsbereiches) 

aus Testset B befüllt. Der Überlappungsbereich wurde analog zum Template-Trainingsset mit 

zufälligen Einträgen aus Trainingsset A befüllt und entsprechend dem Testset mit Fehlern 

versehen. Trainingssets dieser Variante wurden mithilfe des Programmes 

CreateSizeVariant1Trainingsset<14> erzeugt. 

Bei der zweiten Größenvariante wurde die Größe der Teilsets wie bei der ersten Variante nicht 

auf einen konstanten Wert festgelegt, sondern die Variante orientierte sich an den 

ursprünglichen Größenverhältnissen im Testset. Die Größe wurde hierbei jeweils halbiert, das 

Größenverhältnis blieb also erhalten. Trainingssets dieser Variante wurden mithilfe des 

Programmes CreateSizeVariant2Trainingsset<15> erzeugt. 

2.5.4. Variation der Fehlerrate 

Zur Prüfung, ob die Erhaltung der exakten Fehlerrate bei der Konstruktion der Trainingssets 

eine Rolle spielte, wurde eine Trainingsset-Variante konstruiert, bei der komplett auf Fehler im 

Überlappungsbereich verzichtet wurde. Trainingssets dieser Variante wurden mithilfe des 

Programmes CreateErrorVariantTrainingsset<16> erzeugt. 

2.5.5. Variation der Überlappung 

Um zu prüfen, inwiefern die Klassifikationsqualität bei Variation der Größe des 

Überlappungsbereiches von der Klassifikation bei Verwendung des Template-Trainingssets 

abwich, wurde in dieser Variante für die Größe des Überlappungsbereiches nicht der 
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Originalwert der Testdaten sondern ein fester Standardwert verwendet. Hierbei wurden zu 

allen der 400 Testdatensätze jeweils drei Varianten entworfen mit festen Standardwerten von 

jeweils 3%, 30% sowie 90% in Bezug auf die Anzahl von Patientendaten innerhalb des 

Überlappungsbereiches. Die Prozentzahlen bezogen sich, wie bereits unter Kapitel 2.3.2 

beschrieben, auf das jeweils kleinere Teilset. Trainingssets dieser Varianten wurden mithilfe 

der Programme CreateOverlapVariant1Trainingsset<17>, CreateOverlapVariant2Trainings-

set<18> sowie CreateOverlapVariant1Trainingsset<19> erzeugt. 

2.5.6. Variation der Verteilung 

Letztendlich wurde geprüft, ob es Sinn macht, die Verteilung der Werte in Testsets 

bestmöglich zu erhalten, oder ob die Werteverteilung eine eher vernachlässigbare Rolle bei 

der Klassifizierung spielte. Rekapitulierend: Bei den Template-Trainingssets war das 

Trainingsset A jeweils die direkte Kopie des zugrunde liegenden Testsets A. Die Verteilung der 

Werte stimmte hier also exakt überein. Trainingsset B orientierte sich ebenfalls an den 

Testdaten, variierte aber im Überlappungsbereich, bei dem es sich um direkte Kopien aus 

Trainingsset A handelte. Es sollte sich also auch in Trainingsset B um eine zumindest ähnliche 

Verteilung wie in Teilset B handeln.  

Bei der im Folgenden erläuterten, neuen Verteilungsvariante jedoch wurden die Trainingssets 

nicht wie bisher üblich mit den direkten Kopien aus den zugrunde liegenden Testsets befüllt. 

Anstelle der Template-Prozedur wurden die Trainingssets dieser Variante mit künstlich 

assemblierten Patienten belegt.  

Künstlich assemblierte Patienten bezogen ihre Ausprägungen (Attributswerte) direkt aus der 

Wertemenge des kompletten Basisdatenbestandes des Klinikums. Frequenzen und 

Häufigkeiten spielten hierbei keine Rolle, da die Chance, eine spezifische Ausprägung zu 

erhalten, gleich verteilt war. Anstelle eines Datensatzes von spezifischen Verteilungswerten 

bot diese Trainingsset-Variante also Klassifizierung basierend auf gleich verteilten Werten. 

Trainingssets dieser Variante wurden mithilfe des Programmes 

CreateDistributionVariant1Trainingsset<20> erzeugt.  
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2.5.7. Performanzvergleich der Klassifikatoren der Trainingsset-

Varianten 

Die am maximalen F-Measure-Wert kalibrierten Klassifikatoren des Template-Trainingssets 

sowie die sieben zuvor beschrieben Trainingsset-Varianten wurden entsprechend Abbildung 18 

auf die Testdaten angewandt und deren Klassifikationsgüte verglichen. Um Zufallsergebnisse 

auszuschließen und um die Interpretation der Ergebnisse zu erleichtern, wurden hierbei 

insgesamt drei komplette Sets an Trainingsvarianten bzw. Template-Trainingssets erzeugt. Das 

hierfür notwendige Hauptprogramm lautet AutomateTrainingssetProduction<21>. Insgesamt 

wurden also 9600 (siehe Formel 16) Trainingssets erzeugt und ausgewertet. 

|𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑠𝑠𝑒𝑡𝑠| = 400 × 8 × 3 = 9600. 

 

(16) 

Die Ergebnisse hierzu werden unter Kapitel 3.2 näher beschrieben. 

2.6. Vergleich von unüberwachter Klassifizierung mit anderen 

Klassifikationstechniken 

2.6.1. Zielsetzung des Klassifikatorenabgleichs 

Basierend auf den Ergebnissen aus Kapitel 3.2 sollten die Parameter des Template-

Trainingssets optimiert werden. Diese optimierte Variante der überwachten Klassifizierung galt 

es mit anderen zum Teil etablierten Klassifikationsmethoden auf den 400 erzeugten Testsets 

zu prüfen und die Performanz für einen möglichen Realeinsatz zu bewerten. Von 

Hauptinteresse war der Vergleich zu unüberwachten Systemen, die in der Praxis aufgrund der 

Unabhängigkeit von Trainingsdaten in der Regel den Vorzug bekommen. Hierbei wurde zum 

einen eine aus dem maschinellen Lernen bekannte Clustering-Methode, das Single-Linkage-

Clustering [77], das es ermöglichen soll, Links korrekt zu zwei Clustern (echte Links/falsche 

Links) zuzuordnen, angewandt. Es war zu erwarten, dass diese Methode, die nicht unbedingt 

für das Record-Linkage konzipiert wurde, im direkten Vergleich eher schlecht abschneidet. 

Zum anderen wurde eine von Peter Christen vorgestellte Methode, die 2-Step-Seeded-K-

Nearest-Neighbour-Klassifikation [71], in zwei Varianten mit den anderen Methoden 

abgeglichen. Zur Vereinfachung wurde die Methodik nachfolgend als SNN bezeichnet. 
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 Letztere Methode wurde bereits mit anderen unüberwachten Klassifikationsmethoden 

verglichen und konnte hierbei Verbesserungen bei der Zuordnungsqualität im Bereich des 

Record-Linkage erzielen. Beispielsweise übertrifft die genannte Methode den Hybrid-TAILOR 

Ansatz, von dem wiederum gezeigt wurde, dass dieser andere aus dem maschinellen Lernen 

bekannte Klassifikationsmethoden, was die finale Abgleichsqualität angeht, übertrifft [93].  

Final wurden die 400 Testdatensätze manuell, anhand der Histogramme, wie es in der Praxis 

oft üblich ist, durch den Autor dieser Arbeit klassifiziert. Bei letzterem Vorgehen handelte es 

sich um einen stark subjektiven Ansatz. Dennoch erschien es interessant, zumindest grob 

abzuschätzen, inwiefern die manuelle Schrankensetzung mit anderen Methoden mithalten 

konnte und ob die Anwendung automatisierter Methoden im Realeinsatz überhaupt 

gerechtfertigt war. In den nachfolgenden Kapiteln werden die verschiedenen Methoden 

genauer spezifiziert. 

2.6.2.  Überwachte Klassifizierung der Testdaten 

Zu jedem der 400 Testsets wurde entsprechend den Erkenntnissen aus Kapitel 3.2 jeweils ein 

parameter-optimiertes Trainingsset erzeugt. Dieser Vorgang wurde dreimal wiederholt. Der 

Grund hierfür war, dass somit zu jedem Testset mehrere auf überwachter Klassifizierung 

basierende Klassifikatoren zur Verfügung standen. Bei der Wahl eines Mittelwertes dieser 

Klassifikatoren kann also der maximal mögliche Fehler minimiert werden. 

Konkret wurde die parameter-optimierte Trainigsset-Erzeugung im Programm 

CreateFinalTrainingsset<22> implementiert. Zu jedem Trainingsset wurde analog zu den 

vorhergehenden Analysen eine Schranke basierend auf dem optimalen F-Measure-Wert 

ermittelt. Diese Schranken wurden jeweils in das entsprechende Testset eingepasst, der F-

Measure-Wert an dieser Position berechnet und für die weiteren vergleichenden 

Untersuchungen in einer Datei festgehalten.  

2.6.3. Unüberwachte Klassifizierung der Testdaten 

Single-Linkage-Clustering 

Die Auswahl einer Clustering-Methode sollte zeigen, ob es möglich war, gute Klassifizierungen 

anhand nicht auf das Record-Linkage speziell angepasster und leicht zu implementierender 

Klassifizierungsverfahren zu erhalten. Für den Praxisgebrauch wäre dies von Vorteil, da 

kompliziertere Algorithmen wie beispielsweise SNN-Klassifikation für die meisten Projekte nur 
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mit entsprechend geschultem IT-Personal umsetzbar wären. Konkret wurde für die 

vergleichende Analyse eine vereinfachte Variante des Single-Linkage-Clustering (SLC) [77] 

implementiert. Grundsätzlich handelt es sich beim SLC um agglomeratives bzw. hierarchisches 

Clustering [99], wobei jeder einzelne Gewichtswert einer Gewichtsdatei als einzelner 

Basiscluster interpretiert wird und die Cluster solange vereint werden, bis nur noch zwei 

Cluster vorhanden sind. Diese Cluster enthalten schließlich die echten bzw. falschen Links. 

Zwei Cluster werden während des Vorganges immer dann vereint, wenn die Distanz zwischen 

den nächsten Werten der in Ihnen vorkommenden Gewichtswerte jeweils minimal im 

Vergleich zu anderen Clusterpaarungen ist. Generell besitzen Clustering-Methoden eine 

Laufzeit von O(n³), was auf den 400 Gewichtsdateien, mit bis zu 2.441.271 Gewichten, zeitlich 

nicht realisierbar gewesen wäre. Lediglich für das Single-Linkage-Clustering und das Complete-

Linkage-Clustering existieren Methoden, deren Laufzeit sich durch clevere Implementierung, 

SLINK [77] bzw. CLINK[78], auf O(n²) drosseln lässt. Grundsätzlich war aber eine weitere 

Vereinfachung der SLC-Methodik innerhalb dieses Projektes möglich. Da Gewichtsdateien 

lediglich eindimensionale Daten beinhalten (Gewichtswerte), muss das SLC hierbei 

trivialerweise lediglich nach dem größten Abstand zwischen den Gewichtswerten suchen. Dies 

wurde über das Programm SingleLinkageNAIV<23> realisiert. 

Seeded-Nearest-Neighbour-Klassifikation 

In einer Arbeit von Christen [71] wird gezeigt, dass bekannte Algorithmen aus dem Bereich des 

maschinellen Lernens, konkret der k-Nearest-Neighbour-Algorithmus bzw. die Verwendung 

von Support-Vector-Maschinen, durch die Definition von Keimmengen, also auf den 

Originaldaten basierende Trainingsdaten mit offensichtlicher Klasse, sehr gut zur Klassifikation 

im Bereich des Record-Linkage genutzt werden können. Algorithmen dieser Art fasst man auch 

unter aktivem Lernen zusammen [79]. In einem ersten Schritt werden die Keimmengen 

anhand festzusetzender, Kriterien befüllt. Bei den Keimmengen handelt es sich, wie bereits 

erwähnt, um offensichtlich echte bzw. falsche Übereinstimmungen. Die Kriterien, ab wann ein 

Link einer Keimmenge zuzuordnen wäre, variieren von Fall zu Fall, es gibt hierzu also keine 

festen Vorgaben. Die in die Keimmengen übertragenen Links können dann in einem zweiten 

Schritt, in dem der eigentliche Algorithmus angewendet wird, als Trainingsdaten, die den 

Algorithmus trainieren, verwendet werden. In der genannten Arbeit von Peter Christen 

werden nur Vorschläge aber keine festen Richtlinien für die Auswahl der Keimmenge genannt. 

In dieser Dissertationsarbeit wurden deshalb zwei Varianten zur Auswahl der Keimmenge 

gewählt. Zum einem wurde eine in der Arbeit von Peter Christen vorgestellte Formel zur 

Abschätzung der Größe der positiven bzw. negativen Keimmenge verwendet (siehe Formel 17).  
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𝑟 =
min (|𝐴|, |𝐵|)

|𝑊| − min (|𝐴|, |𝐵|)
 

(17) 

 

|W| steht hierbei für die Anzahl der Gewichte, |A| für die Größe des Teilsets A sowie |B| für 

die Größe des Teilsets B. Bei der Rückgabe-Variablen r handelt es sich um das 

Größenverhältnis zwischen der positiven und der negativen Keimmenge. Die negative 

Keimmenge wurde in dieser Arbeit, vergleichbar zur Veröffentlichung von Peter Christen, auf 

5% der Anzahl der Gewichte festgelegt (befüllt mit den niedrigsten 5% der Gewichte).  

Zum anderen wurde eine Variante implementiert, bei der feste Grenzwerte verwendet 

werden. Links mit einem Gewicht über +45 wurden zur positiven Keimmenge, Links mit einem 

Gewicht unter -15 zur negativen Keimmenge hinzugefügt. Diese Grenzwerte basierten auf 

Erfahrungswerten zur Klassifikation der Daten und waren datensatzspezifisch. Es zeigte sich 

also bereits bei der Implementierung der Technologie, dass die Methode viele Unsicherheiten 

barg und eine passende Abschätzung der Keimmenge dringend voraussetzte. Das 

grundlegende Prinzip der Erzeugung der Keimmengen wird vereinfachend in Abbildung 19 

illustriert.  

 

 

 

 

 

 

 

 

Abbildung 19: Aufteilung der Menge der Links in positive Keimmenge, negative Keimmenge sowie Menge 
der bisher unklassifizierten Links. 

Nach Bestimmung der Keimmengen konnten die enthaltenen Links nun als Trainingsdaten für 

den eigentlichen Algorithmus genutzt werden. Für diese Arbeit wurde hierzu der K-Nearest-

Neighbour-Ansatz implementiert. Der Algorithmus ließ sich wie folgend zusammenfassen. Ein 

bisher unklassifizierter Link wurde dann zu einer spezifischen Keimmenge hinzugefügt, wenn 

es sich bei diesem Link um den Link mit der niedrigsten Distanz zu k Links aus der vereinten 
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Keimmenge handelte, und sich mehr dieser nächsten benachbarten Links in der spezifischen 

positiven bzw. negativen Keimmenge befanden. Sobald alle unklassifizierten Links einer 

Keimmenge hinzugefügt wurden, war die Klassifikation abgeschlossen. Für diese Arbeit wurde 

der Wert k auf 3 festgelegt. Eine beispielhafte Illustration des Vorganges wird in Abbildung 20 

wiedergegeben. Hierbei ging es um die Klassifikation zweier bisher unklassifizierter Links. Zu 

den beiden Links wurde bestimmt, welcher der Links die minimale, aufsummierte Distanz zu 

den jeweils k nächsten Links aus der vereinten Keimmenge besaß (Abbildung 20a). In diesem 

Fall handelte es sich dabei um den Link mit niedrigerem Gewicht. Da seine nächsten drei 

Nachbarn der negativen Keimmenge angehörten, wurde der Link dieser Menge hinzugefügt 

(Abbildung 20b). Von den drei nächsten Nachbarn des letzten unklassifizierten Links befand 

sich die Mehrzahl in der positiven Keimmenge, wodurch der Link dieser Menge hinzugefügt 

wurde (Abbildung 20c). Es gab keine verbleibenden unklassifizierten Links. Die Klassifikation 

war somit abgeschlossen. Die sich in den Keimmengen unterscheidenden Algorithmen wurden 

in den Programmen KNN_Seed1<24> sowie KNN_Seed2<25> performant implementiert.  

 

 

 

 

 

 

 

 

 

 

 

Abbildung 20: Beispielhafte Illustration des KNN-Algorithmus mit k=3. 
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Manuelle Klassifikation durch Auswertung der Testset-Histogramme 

Für die manuelle Klassifikation anhand von Histogrammen wurden mithilfe des Programmes 

CreateHistogramms<26> zu jedem Testset Histogramm-Dateien erzeugt. Für die Klassifikation 

wurde hierbei eine zur DKFS analoge Darstellung gewählt (siehe Abbildung 4). Eine Schranke 

wurde dabei manuell gesetzt und der Wert in einer Datei hinterlegt. Eine Übersicht der 

Histogramme in kleinerem geordneten Format befindet sich in Anhang F. Ergebnisse 
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3. Ergebnisse 

3.1. Testset-Erzeugung 

Wie unter Kapitel 2.3. beschrieben, wurden anhand von Realdaten, die vom Klinikum 

Großhadern zur Verfügung gestellt wurden, 400 künstliche Testsets, die sich jeweils in 

mindestens einem der Konstruktionsparameter (Größe der Teilsets, Größe des 

Überlappungsbereiches, Beschaffenheit) unterschieden, erzeugt. Ein Testset bestand dabei 

jeweils aus einem Teilset A, sowie einem Teilset B. Diese Teilsets wurden jeweils per 

probabilistischem Record-Linkage abgeglichen. Zu den erzeugten Gewichtsdateien wurde 

jeweils der testsetspezifische maximale F-Measure–Wert berechnet. Um herauszufinden, 

inwieweit die Konstruktionsparameter im konkreten Fall die finale Klassifikationsqualität 

beeinflussten, wurden F-Measure-Werte anhand gleicher Ausprägung in den 

Konstruktionsparametern gruppiert, und der gemittelte F-Measure-Wert innerhalb dieser 

Gruppen bestimmt.  

Abbildung 21 zeigt hierbei die gemittelten, maximalen F-Measure-Werte abhängig von den 10 

innerhalb der Testsets auftreten Größenkombinationen der Teilsets. Jeder Messwert stellt 

hierbei den Durchschnittswert aus 40 Testsets mit der gegebenen Größenkombination dar. 

 

Abbildung 21: Gemittelter, maximaler F-Measure-Wert in Testsets mit spezifischer Größenkombination.  
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Wie sich zeigte war es schwierig, anhand der Grafik einen Trend, inwiefern die Größe der 

zugrunde liegenden Teilsets die Klassifikationsqualität beeinflusste, festzustellen. Es schien 

jedoch, dass das Matching auf Testsets, die kleine Teilsets enthalten, zu einer höheren, 

bestmöglichen Abgleichqualität führte. Der Befund deutete darauf hin, dass kleinere 

Trainingssets in weniger Vergleichen resultierten. Hierdurch ergaben sich eher lückenhafte, 

dünne Gewichtsdateien wie beispielsweise unter Abbildung 3c dargestellt. Größere 

Trainingssets neigten durch die Erhöhung der Vergleiche allein schon statistisch dazu, 

Übergangsbereiche zu verwischen (siehe Abbildung 3b). Auf dünnen Daten besaßen also 

optimale Klassifikatoren einen eher höheren maximalen F-Measure-Wert als auf dichteren 

Daten. Diese Aussage war natürlich auch stark abhängig von der gegebenen Datenqualität und 

dies sollte nicht implizieren, dass es generell leichter gewesen wäre, dünne Daten zu 

klassifizieren, da hier eine Fehlklassifikation (z.B. Auswahl der falschen „Lücke) wohl in einer 

größeren Abweichung vom echten Schrankenwert als auf dichten Daten resultiert hätte. Es 

war jedoch nicht auszuschließen, dass die Beobachtung auf eine andere Ursache, wie etwa die 

generelle Berechnung des F-Wertes zurückzuführen gewesen wäre. Zur besseren Darstellung 

wurden die Größenkombinationen auf zwei separate Achsen aufgebrochen (siehe Abbildung 

22).  

Abbildung 23 stellt den durchschnittlich höchstmöglichen F-Measure-Wert abhängig von der 

Größe des Überlappungsbereiches dar. Jeder Datenpunkt beinhaltet hierbei die 

Durchschnittswerte zu 100 verschiedenen Testsets. Es zeigte sich auf den gegebenen Daten, 

dass größere Überlappungsbereiche zwischen Teilsets in höheren, bestmöglichen F-Measure-

Werten resultierten. Diese Beobachtung ließ sich mathematisch interpretieren. Der F-

Measure-Wert stellte das harmonische Mittel der Sensitivität sowie des Positiv-Prädiktiven-

Wertes dar. Bei Vergrößerung des Überlappungsbereiches erhöhte sich mit etwa gleich 

bleibendem Verhältnis die absolute Anzahl an True-Positives, sowie False-Negatives. Die 

Sensitivität sollte somit bei Variation des Überlappungsbereiches unbeeinflusst bleiben. Der 

Positiv-Prädiktive-Wert hingegen leitete sich aus der Anzahl der True-Positives sowie der False-

Positives ab. Dieses Verhältnis veränderte sich bei Variation des Überlappungsbereiches 

jedoch, da die Anzahl der False-Positives bei Erhöhung des Überlappungsbereiches sich eher 

gleich bleibend, bzw. geringfügig absteigend verhalten sollte. Somit stieg der PPV tendenziell 

bei ansteigendem Überlappungsbereich, was wiederum in einer tendenziellen Erhöhung des F-

Measure-Wertes resultieren würde. 

Final wurden die durchschnittlich maximal erreichbaren F-Measure-Werte, abhängig von der 

zur Konstruktion verwendeten Qualitätsstufe, berechnet (siehe Abbildung 24). Jeder 
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Datenpunkt bestand hierbei jeweils aus den Ergebnissen von 40 in der Qualitätsstufe 

übereinstimmenden Testsets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 22: Gemittelter, maximaler F-Measure-Wert in Testsets mit spez. Größenkombination (3D). 

Der Trend war relativ eindeutig: Bei schlechterer Datenqualität, also dem erhöhten Auftreten 

von Fehlern in Attributen zwischen echten Patientenübereinstimmungen sank der maximal 

erreichbare F-Measure-Wert. Eine schlechtere Datenqualität führte abhängig vom Fehler zu 

einer niedrigeren Gewichtung zwischen echten Übereinstimmungen. Damit konnte es 

passieren, dass echte Übereinstimmungen als falsche Links klassifiziert wurden, was in einer 

False-Negative-Bewertung resultiert hätte. Durch Transformationsfehler konnte es zudem zur 

Erhöhung des Gewichtes einer Nicht-Übereinstimmung kommen. Hierdurch entstanden 
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vermehrt False-Positives. Die Erhöhung beider Werte wirkte sich verringernd auf den F-

Measure-Wert aus. 

 

 

Abbildung 23: Gemittelter, maximaler F-Measure-Wert in Testsets abhängig von der Größe der 
Überlappung. 

 

Abbildung 24: Gemittelter, maximaler F-Measure-Wert in Testsets abhängig von der Datenqualität. 
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3.2. Auf Trainingsset-Varianten basierende 

Klassifikationsergebnisse 

Entsprechend Kapitel 2.5 wurden 400 Template-Trainingssets erstellt, die zu jeweils einem der 

gegebenen Testsets in der Größe der Teilsets, der Größe des Überlappungsbereiches sowie der 

Fehlerhäufigkeiten übereinstimmten. Zudem wurde die Werteverteilung durch direktes 

Kopieren aus den Originaldaten weitestgehend identisch, mit Ausnahme des 

Überlappungsbereiches, übernommen. Zu den angesprochenen Template-Trainingssets 

wurden Trainingssetvarianten erstellt, die in jeweils einem der vier genannten 

Konstruktionsparameter von den Template-Trainingssets abwichen. Dies resultierte in 7 

zusätzlichen Reihen von jeweils 400 Datensets. Zur Bekräftigung der Ergebnisse wurden jeweils 

3 Serien dieser Sets sowie der Template-Trainingssets erstellt, was in insgesamt 9600 

Datensets resultierte. Auf jedem dieser Trainingssets wurde ein Record-Linkage durchgeführt, 

auf der erhaltenen Gewichtsdatei wurde der jeweils optimale Klassifikator ermittelt (also 

derjenige, der den F-Wert maximiert) und die erhaltenen Klassifikatoren wurden letztendlich in 

die jeweils zugrunde liegenden Testsets eingepasst. Die Performanz der durch die Trainingssets 

erzeugten Klassifikatoren wurde anhand von F-Wert Berechnung an der gegebenen Position 

auf den jeweiligen Testsets bemessen und die ermittelten Werte wurden für weitere 

Auswertungen dokumentiert. Abbildung 25 zeigt hierbei vergleichend die Performanz der 

verschiedenen Klassifikatoren nach Qualität der Testsets gruppiert. Die Kurve mit der 

Bezeichnung „Optimal“ beschreibt hierbei den maximal erreichbaren durchschnittlichen F-

Measure auf den Testdaten, „Overlap (1-3)“ beschreibt hierbei die Klassifikationsgüte der 

Trainingssetvarianten mit einem festen Überlappungsbereich von (90%,30% sowie 3%), 

„Template“ beschreibt die Ergebnisse zur Klassifikationsgüte anhand der Template-

Trainingssets, „Size (1-2)“ gibt die Klassifikationsgüte zu den Varianten mit konstanter Größe 

von 100 Patienten pro Testset bzw. halber Größe der original Testsets, Error bezeichnet die 

Ergebnisse die der Trainingssetvariante ohne Fehler zugrunde liegen und Distribution 

bezeichnet die Ergebnisse der Trainingssetvariante, bei der Wertausprägungen aus einer 

gleichverteilten Menge gezogen wurden. 



 73 Ergebnisse 

 

Abbildung 25: Gemittelte Klassifikationsgüte (F-Measure-Wert) von auf verschiedenen Trainingsset-
Varianten basierenden Klassifikatoren, gruppiert nach Qualitätsstufe. 

Die Grafik ist in der gegebenen Form nur schwer lesbar. Als eindeutiges Ergebnis zeigte sich 

jedoch schnell und eindeutig, dass die Trainingsset-Variante („Size1“), bei der die Größe der 

Teilsets auf 100 normiert wurde, nicht zur Klassifikation geeignet war. Die durchschnittlichen 

F-Measure-Werte lagen hierbei deutlich weit unter den Ergebnissen der anderen 

Klassifikatoren. Aus der nachfolgenden Grafik (Abbildung 26) wurde die letztgenannte 

Trainingsset-Variante entfernt und der Fokus richtete sich auf den Bereich der anderen 

Varianten  



 Ergebnisse 74 

 

Abbildung 26: Gemittelte Klassifikationsgüte (F-Measure-Wert) von auf verschiedenen Trainingsset-
Varianten basierenden Klassifikatoren, gruppiert nach Qualitätsstufe. 

In gegebener Grafik zeigten sich nun deutlich die Unterschiede der einzelnen 

Trainingssetvarianten. Zwar war die Abweichung zwischen Template-Trainingsset und der 

zweiten Größenvariante („Size2“) nicht so extrem wie bei der ersten Variante, doch auch das 

Halbieren der Teilsetgrößen resultierte in vergleichsweise verminderten F-Werten. Beide 

Ergebnisse deuteten daraufhin, dass eine allgemeine Reduktion der Teilsetgrößen zu 

verminderten F-Werten führte. Dementsprechend sollte für einen optimalen Klassifikator, wie 

es bereits bei den Template-Trainingssets Usus war, die Teilsetgröße beibehalten werden.  

Weiterhin wurde die Verteilung untersucht. Hierzu wurde nur eine Variante („Distribution“) 

geprüft, bei der die Ausprägungswerte in der Trainingssetvariante gleichmäßig verteilt wurden. 

Wie sich zeigte, führte die genannte Abweichung von der Originalverteilung ebenfalls zu einer 

relativ hohen Verminderung der Klassifikationsgüte. 

Grundsätzlich überschnitten sich die Konzepte der Größenvariation und der 

Verteilungsvariation, da sich eine Anpassung der Größe meist direkt auf die Verteilung 

auswirkte. Dass eine Abweichung der Verteilung beim probabilistischen Record-Linkage 

direkten Einfluss auf die Klassifikation hatte, war aber grundsätzlich nachvollziehbar. 

Schließlich basierte beim probabilistischen Record-Linkage die Gewichtsberechnung auf den 

unter Kapitel 1.3.2 beschriebenen u-Werten, die sich direkt aus der Häufigkeit von 

Ausprägungswerten ableiteten. 
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Die Ergebnisse zum Overlap-Parameter lieferten neue Erkenntnisse. Hierbei wurden drei 

Varianten geprüft (90% (“Overlap 1“), 30% (“Overlap2“), 3% (“Overlap3“)). Wie sich zeigte, 

verbesserte sich die Klassifikationsgüte bei jeder Verminderung der Größe des 

Überlappungsbereiches. Da die Versuche jeweils, wie bereits erwähnt, dreimal wiederholt 

wurden und sich jeweils dasselbe Bild zeigte, waren Zufallsergebnisse zu hoher 

Wahrscheinlichkeit auszuschließen. In der Variante mit 3% Überlappungsbereich konnte sogar 

die Güte des Template-Klassifikators übertroffen werden. Die ursprüngliche Hypothese, dass 

eine maximale Anpassung des Überlappungsbereiches an die originalen Testdaten zu einer 

optimalen Klassifikation führt, wurde somit widerlegt. Vielmehr zeigte sich, dass ein möglichst 

kleiner Überlappungsbereich der Klassifikation dienlich war. Wie schon die Größe wirkte sich 

auch die Veränderung der Überlappung auf die Werteverteilung aus. Je größer der 

Überlappungsbereich gewählt wurde umso mehr Orginal-Patienten wurden aus Teilset B 

entfernt und umso mehr Kopien wanderten von Teilset A nach Teilset B. Die kopierte Menge 

aus Teilset A und deren Werteverteilung lag also überrepräsentiert vor, wohingegen Werte aus 

Teilset B verlorengingen. Die Veränderung der Verteilung beeinflusste, wie bereits 

beschrieben, die u-Werte und konsequenterweise die finale Gewichtsberechnung und 

Klassifikation. 

Eine weitere neue Erkenntnis war das Ergebnis, dass Fehlerraten zur Vorhersage eines 

optimalen Klassifikators nicht unbedingt benötigt waren. Wie die Variante „Error“ in Abbildung 

26 zeigte, gab es quasi keinen Unterschied zwischen der Klassifikationsqualität zu auf den 

Template-Trainingsset basierenden Klassifikatoren, bei denen Fehlerhäufigkeiten im 

Überlappungsbereich mit denen aus den Testdaten übereinstimmten. Eine ursprüngliche 

Vermutung war es, dass eine Berücksichtigung der Fehler gerade bei Testsets niedrigerer 

Datenqualität zu einer Verbesserung der Qualität führen würde, doch dies konnte anhand von 

Abbildung 26 widerlegt werden. Die Interpretation der Hypothese, an der sich die Konstruktion 

der Template-Trainingssets orientierte, konnte also ein zweites Mal widerlegt werden. 

Analog zu Kapitel 3.1 wurden aus Gründen der Vollständigkeit noch die Abbildung (Abbildung 

27 sowie Abbildung 28) der durchschnittlichen F-Werte bei Gruppierung nach Teilsetgrößen 

bzw. Überlappung nachgereicht. Deren Ergebnisse deckten sich mit den unter Kapitel 3.1 

vorgestellten Beobachtungen. 
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Abbildung 27 : Gemittelte Klassifikationsgüte (F-Measure-Wert) von auf verschiedenen Trainingsset-
Varianten basierenden Klassifikatoren gruppiert nach Größe des Überlappungsbereiches. 

 

Abbildung 28 Gemittelte Klassifikationsgüte (F-Measure-Wert) von auf verschiedenen Trainingsset-
Varianten basierenden Klassifikatoren gruppiert nach Größe der Teilsets. 
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3.3. CLARA 

Basierend auf den vorgehenden Auswertungen war es möglich, die ursprüngliche 

Interpretation der Hypothese aus Kapitel 2.4 zu widerlegen und es konnten neue, optimierte 

Empfehlungen zu den Konstruktionsparametern formuliert werden, die die 

Klassifikationsqualität im Vergleich zur Template-Variante übertrafen. Hierauf basierte das neu 

entwickelte CLARA-System. CLARA stand hierbei für CLAssification for Record-Linkage with 

Artificial Trainingssets. Tabelle 12 beschreibt die optimierte Konstruktionsparametrisierung 

des CLARA-Systems im Vergleich zur Konstruktion der zuvor beschriebenen Template-

Trainingssets. 

Tabelle 12: Beschreibung der Parametrisierung der Konstruktion von Trainingssets des CLARA Systems. 

Konstruktions-

Parameter 

Konfiguration (Template) Konfiguration (CLARA) 

Größe der Teilsets Identische Größenverhältnisse der 

Teilsets zum zugrunde liegenden 

Testset. 

Entsprechend Template-

Trainingsset-Konstruktion 

Größe des 

Überlappungsbereiches 

Identisch zur Größe des 

Überlappungsbereiches des zugrunde 

liegenden Testsets. 

Möglichst minimal, jedoch 

ausreichend groß um eine 

Klassifikation grundsätzlich zu 

erlauben. Für diese Arbeit und 

generell als Richtwert werden 3% 

der Größe des jeweils kleineren 

Teilsets vorgeschlagen. 

Verteilung Trainingsset A identisch zu Testset A. 

Trainingsset B bis auf Überlappungs-

bereich identisch zu Testset B. 

Entsprechend Template-

Trainingsset-Konstruktion 

Fehlervorkommen Häufigkeitswerte zu 

Fehlervorkommen stimmen mit denen 

des Testsets überein. 

Es werden keine Fehler in den 

Überlappungsbereich eingebracht. 

 

Das CLARA System war hierbei von den genauen Angaben der Parametrisierung, die zuvor über 

den Dateinamen übergeben wurden, unabhängig und konnte hierdurch automatisiert im 

Praxiseinsatz verwendet werden. Die Größe der Teilsets ließ sich auch ohne Vorkenntnisse aus 

den originalen Testdaten auslesen. Schätzungen der Größe des Überlappungsbereiches waren 
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nicht mehr notwendig, da ein konstanter Wert (3%) verwendet wurde. Ebenso waren 

Schätzungen zu den Fehlerraten unnötig, da diese nach den Ergebnissen aus Kapitel 3.2 nicht 

mehr benötigt wurden, bzw. der Klassifikation nicht zugute kamen. Man versuchte die 

Verteilung, wie gehabt, möglichst unverändert zu belassen, was ohne Vorkenntnisse, wie 

bereits beschrieben, durch einfaches Kopieren aus den Originaldaten möglich war. 
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Abbildung 29: Schematischer Ablauf der ganzheitlichen CLARA-Methodik. 
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Durch Erzeugung und Schrankenberechnung mehrerer Trainingssets mit Variation im 

Überlappungsbereich konnten mehrere CLARA-Klassifikationen zu jeweils einem Testset 

hervorgesagt werden. Ein Mittelwert dieser multiplen Klassifikatoren würde also den maximal 

möglichen Fehler, also die Abweichung des Klassifikators vom eigentlichen optimalen 

Schrankenwert, minimieren, was beim konkreten Einsatz beachtet werden sollte. Abbildung 29 

beschreibt zusammenfassend den schematischen Ablauf des finalen CLARA-Verfahrens. 

3.4. Vergleich verschiedener Klassifikationsmethoden 

Basierend auf den Ergebnissen aus Kapitel 3.2 wurde das CLARA-System, das im Methodenteil 

dieser Arbeit als parameter-optimierte Variante bezeichnet wurde, modelliert. Beim CLARA-

System handelte es sich um ein System zur Konstruktion von Trainingsdaten anhand 

gegebener Originaldaten, die anschließend zu überwachter Klassifikation verwendet werden 

konnten. Ob sich das System auch für den Realeinsatz geeignet ist und ob es mit anderen, 

ausgewählten Klassifikationsmethoden konkurrieren kann, wurde über eine Reihe von 

Methodenvergleichen geprüft (siehe Kapitel 2.6). Bei den verglichenen Methoden handelte es 

sich um CLARA, Single-Linkage-Clustering, zwei Varianten des SNN-Algorithmus mit Variation in 

der Keimmenge sowie manuelle Klassifikation anhand von Histogrammen entsprechend dem 

Vorgehen in der DKFS.  

 

Abbildung 30: Durchschnittlicher F-Measure-Wert verschiedener Klassifikatoren abhängig von der 
Datenqualitätsstufe. 
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Abbildung 30 beschreibt die Abgleichsgüte der verschiedenen geprüften Klassifikationssysteme 

abhängig von der Qualität der zugrunde liegenden Testsets. In dieser sowie den nachfolgenden 

Grafiken bezeichnen die Kürzel „Optimal“ den maximal erreichbaren durchschnittlichen F-

Measure auf dem zugrundeliegenden Testset, „Clara“ steht für die Klassifikationsgüte von 

CLARA, „Manuell“ beschreibt die Klassifikationsgüte basierend auf manueller 

Schrankenfindung wohingegen „SNN(1-2)“ die Ergebnisse des SNN mit 

Keimmengenbestimmung entsprechend Formel 17 sowie Keimmengenbestimmung anhand 

festen Treshholds beschreibt. „SLC“ steht weiterführend für die Ergebnisse des Single-Linkage-

Clusterings. Es zeigten sich hierbei zwei Gruppen von Klassifikatoren. Die Klassifikatoren mit 

einem F-Measure-Wert oberhalb von 0,95 erschienen als für den Realeinsatz verwendbar, 

wohingegen die beiden verbleibenden Klassifikatoren weit unterhalb dieses Wertes lagen und 

für die Klassifikation im Record-Linkage als eher ungeeignet zu bewerten waren. Beim SLC, das 

nicht unbedingt auf das Konzept des Record-Linkage optimiert wurde, war dies noch 

nachvollziehbar, bei der ersten SNN-Variante überraschte dies allerdings. Es zeigte sich, dass 

hierbei die Auswahl der korrekten Keimmenge eine immense Rolle auf die finale Abgleichsgüte 

spielte. Die Keimmenge der ersten Variante des SNN wurde anhand einer empfohlenen Formel 

aus der Originalpublikation erzeugt, die das Konzept des SNN vorstellt [71]. Es schien, als 

würden die durch diese Formel erzeugten Keimmengen zu klein erstellt, weswegen die 

gegebene Klassifikation oft in den Randbereichen der Gewichtsdateien fehlerhafte Schranken 

vorschlug und sich demnach kaum von der Klassifikationsgüte des SLCs unterschied. Im SNN2 

wurden die Keimmengen manuell anhand von Treshholds, also festen Schrankenwerten 

erstellt. Die Bereiche wurden größer gewählt, wodurch die Klassifikationsschranken nicht 

fälschlicherweise in die Randbereiche eingepasst wurden, da diese bereits in den Keimmengen 

enthalten waren. Hierdurch konnte eine immense Steigerung der Abgleichsqualität erzielt 

werden. Als Fazit ließ sich sagen, dass die SNN Methode nur in einer Variante brauchbare 

Ergebnisse erzielen konnte. Die Auswahl der Keimmenge war demnach ein 

Unsicherheitsfaktor, der die komplette Klassifikation kompromittieren konnte. Nicht nur 

aufgrund dieses Unsicherheitsfaktors, sondern auch aufgrund der komplexen und 

anspruchsvollen Implementierung wäre Benutzern, die sich nicht tiefer mit der Methodik 

befassen, sondern diese lediglich nutzen wollen, abzuraten. Abbildung 31 beschränkt sich nun 

auf die Klassifikatoren abzüglich der ersten Variante des SNNs sowie des SLCs. 
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Abbildung 31: Durchschnittlicher F-Measure-Wert verschiedener Klassifikatoren abhängig von der 
Datenqualitätsstufe. 

Hierbei unterschied sich vor allem der SNN in der zweiten Variante von den restlichen 

Methoden. Auf Testsets mit einer Qualitätsstufe einschließlich dem Wert Q6 erzeugte der 

Klassifikator noch gute Ergebnisse, erzielte dabei sogar teils bessere Ergebnisse als die 

manuelle Klassifikation, brach jedoch ab einem Wert von Q7 in Bezug auf die Abgleichsqualität 

stark ein.  

Abbildung 32 Durchschnittlicher F-Measure-Wert verschiedener Klassifikatoren abhängig von der 
Datenqualitätsstufe. 
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Im direkten Vergleich übertraf die manuelle Klassifikation den SNN. Im Vergleich zum CLARA-

System zeigte sich vor allem, dass der SNN nicht nur bei schlechter Datenqualität schlechter als 

das CLARA-System abschnitt, sondern auch bei guter Datenqualität.  

Hiermit verblieb noch ein direkter Vergleich zwischen CLARA und der manuellen Klassifikation, 

der in Abbildung 32 dargestellt wird. Wie sich zeigte, lag CLARA jederzeit über den manuellen 

durchschnittlichen Schätzwerten der Schrankenbestimmung. Generell lag die Klassifikation 

meist sogar nur sehr knapp unter den maximal erreichbaren F-Werten, die bei einer perfekten 

Klassifikation möglich gewesen wären. Die Datenqualität wirkte sich hierbei nicht wie beim 

KNN negativ auf das Klassifikationsergebnis aus.  
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4. Diskussion 

4.1. Begründung der Konzeption eines überwachten 

Klassifikationssystems 

Im Rahmen der DKFS wurden wissenschaftlich offene Fragestellungen und Probleme in Bezug 

auf die Klassifikation im Bereich des Privacy-Preserving-Record-Linkage identifiziert. Aufgrund 

schwieriger Datenverhältnisse, wie sie sich gerade im Fall der Daten von Angehörigen 

präsentierten, kann es Probleme bereiten, eine passende Klassengrenze bzw. einen binären 

Klassifikator zu bestimmen [67].  

Zu Problemen dieser Art gibt es nur wenig Literatur, da zum einen wohl die Datengrundlage in 

vielen Projekten eine einfachere Klassifikation erlaubt. Zum anderen scheint es, als würde die 

Relevanz der Klassifikation oft im Schatten der Gewichtsberechnung stehen, die in 

wissenschaftlicher Literatur die meiste Aufmerksamkeit genießt.  

Bei automatisierten Klassifikationsmethoden, die während eines anonymen Record-Linkage 

alternativ zum manuellen Vorgehen anwendbar wären [71], handelt es sich primär um 

regelbasierte, überwachte sowie unüberwachte Klassifikationssysteme. Während regelbasierte 

Klassifikationsmethoden meist sehr projektspezifisch aufgesetzt werden, konzentrierten sich 

die Untersuchungen der Klassifikationsmethoden in dieser Arbeit dagegen vorrangig auf den 

Vergleich zwischen unüberwachter sowie überwachter Klassifizierung [38,41,71,80]. 

Insbesondere wurde dabei eine eigens entwickelte, schon früh entworfene Idee zur 

überwachten Klassifizierung ausgearbeitet, die später mit anderen Klassifikationsmethoden 

verglichen wurde. Die Fokussierung auf die überwachte Klassifizierung rührte aus der 

Annahme, dass schlechte Datenqualität eine überwachte Klassifikation weniger negativ 

beeinflussen sollte als eine unüberwachte Klassifikation, die bei Artefakten in der 

Gewichtsmenge, wie etwa unerwartete, zufällig auftretende Gewichtssprünge, immer die 

Gefahr einer kompletten Fehlklassifikation birgt. Aufgrund der Tatsache, dass die manuelle 

Klassifikation auf Histogramm-Daten ebenfalls dieselben Probleme aufweist – also Anfälligkeit 

gegenüber Datenartefakten – stellte sich die überwachte Klassifikation als unabhängige 

Variante hierzu dar [42]. 

Zwar existieren auch im Bereich des Record-Linkage Ansätze zu überwachter Klassifikation 

[38,83,84], allerdings fehlen hier eindeutige Anweisungen bzgl. Parametrisierung und Auswahl 
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der zugrunde liegenden Trainingssets. Bezüglich des neuen Ansatzes gab es deswegen das Ziel, 

eine möglichst einfache und eindeutige Anwendung zu erlauben, die im Grunde genommen 

keine externen Trainingsdaten voraussetzte, sondern die Trainingsdaten direkt aus der 

zugrunde liegenden Testdatenmenge generierte. Dreh-und Angelpunkt dieser Arbeit war 

daher, ein derartiges System aufzusetzen und auf verschiedenen Testsets auf die 

Abgleichsgüte zu prüfen.  

4.2. Zugrundeliegende Arbeitsmaterialien  

Analysen im Bereich des Record-Linkage sind schwierig, da es an guten externen Testdaten 

mangelt [82]. Aus diesem Grund wurde anhand von Klinikumsdaten eine umfangreiche Menge 

von insgesamt 400 Testdatensätzen konzipiert, die sich in verschiedenen Parametern, der 

Größe, dem Überlappungsbereich als auch der Datenqualität unterschieden. Somit war eine 

Prüfung von Methoden, die im Bereich des Record-Linkage angesiedelt sind, unter vielen 

verschiedenen Testbedingungen möglich. Während z.B. Testdaten der Qualitätsstufe 1-2 eine 

sehr gute Datenqualität widerspiegelten, entsprachen Testdatensätze der Qualitätsstufe 8-10 

eher schwierigen Datenverhältnissen mit vielen fehlenden Werten und auftretenden Fehlern 

in den einzelnen Ausprägungen der Patienteneinträge. 

Zu jedem Testdatensatz wurde ein probabilistisches Record-Linkage durchgeführt, wodurch 

jeweils eine Gewichtsdatei für vergleichende Analysen erzeugt wurde. Das verwendete System 

entsprach hierbei in Bezug auf die Abgleichsgüte (Sensitivität/Spezifität) anderen aus 

verschiedener Literatur bekannten Angaben (siehe Tabelle 13 sowie Abbildung 33/Abbildung 

34).  

Tabelle 13: Angaben zu Spezifität und Sensitivität bzgl. probabilistischem Record-Linkage. 

Quelle Kurzbeschreibung Spezifität Sensitivität 

Boonchai et al. 

[101] 

Für eine Prüfung der Qualität eines Record-Verfahrens 

zwischen zwei künstlichen Datenbanken wurden 

einwegverschlüsselte Kontrollnummern anhand von 

Personen-identifizierenden Daten aus verschiedenen 

Quellen erzeugt und zu Datenbank-Einträgen 

zusammengefügt. 

100% 95%-100% 

  

 

Durham et al. 

[53] 

Record-Linkage auf 756.629 künstlichen Patienten-Daten, 

ausgehend von 100.000 realen Patienten mit einem 

Überlappungsbereich von 0.01 %.  

~100% ~97% 
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Quelle Kurzbeschreibung Spezifität Sensitivität 

Contiero et al. 

[102] 

Es wurde ein Abgleich auf einem Teil von Patientendaten 

des französischen Krebsregisters der Lombardie (20.724 

Einträge) mit Daten zu sozialer Sicherheit durchgeführt 

(1.021.846 Einträge) durchgeführt. Die Ergebnisse wurden 

über manuelle Kontrolle, also nach Golds-Standard 

ausgewertet. 

98.8% 96.5% 

Fonseca et al.  

[103] 

Die nationale, brasilianische HIV/AIDS 

Überwachungsdatenbank (559.442 Einträge) wurde gegen 

eine Menge von 6.444.822 Daten zu registrierten Toden 

abgeglichen.  

99.6% 87.6% 

Migowski et al. 

[104] 

In dieser brasilianischen Studie wurde versucht, die 

Qualität des Record-Linkage abzuschätzen, indem in einer 

Datenbank zu verstorbener Bevölkerung nach am Herzen 

operierten Patienten gesucht wurde.  

100% 90.6% 

Quantin et al. 

[19] 

Abgleich von manueller und automatischer Methodik im 

Burgundy-Register von Patientendaten mit zum 

Verdauungssystem assoziierten Krebsarten. 

97% 93% 

Fournel et al. 

[105] 

Abgleich des größten französischen Krebsregisters und 

Todesfällen in Frankreich zwischen 1998–2004. 

99.5% 94.8% 

Silveira et al.  

[75] 

Review verschiedener Paper und Studien in Bezug auf 

Abgleichsqualität von probabilistischem Record-Linkage. 

99-100% 74-98% 

 

Wie Abbildung 32 und Abbildung 33 demonstrieren, übertrafen die Werte zu Sensitivität und 

Spezifität abhängig von der Qualitätsstufe meist sogar die gegebenen Vergleichswerte. Bei 

Nennung mehrerer Werte in der jeweiligen Arbeit wurde innerhalb der angegebenen Grafiken 

ein Mittelwert angegeben. Berücksichtigt werden muss hierbei allerdings, dass für das eigene 

System eine optimale binäre Klassifikation, sowie das Bekanntsein der zugrunde liegenden 

Häufigkeiten der m-Werte verwendet wurden, was im Realeinsatz nicht der Fall ist und 

wodurch, mit hoher Wahrscheinlichkeit, eine verbesserte Abgleichsqualität erreicht werden 

konnte. 
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Abbildung 33: Vergleich der veröffentlichten Spezifitätswerte von probabilistischen Record-Linkage-
Methoden aus verschiedenen Literaturquellen mit Mittelwerten des Matchings in dieser Arbeit auf 
Testsets gruppiert nach Qualitätsstufe.  

 

Abbildung 34: Vergleich der veröffentlichten Sensitivitätstswerte von probabilistischen Record-Linkage-
Methoden aus verschiedenen Literaturquellen mit Mittelwerten des Matchings in dieser Arbeit auf 
Testsets gruppiert nach Qualitätsstufe. 

4.3. Hypothese als Ausgangspunkt des wissenschaftlichen 

Vorgehens 

Bei der Konzipierung des neuen überwachten Klassifikationsansatzes wurde schließlich initial 

eine Hypothese aufgestellt, die besagte: Je ähnlicher zwei Datensets sind, umso ähnlicher sind 

auch ihre Klassifikatoren. In diesem Kontext musste Ähnlichkeit definiert werden und anhand 

dessen wurde ein Template-Trainingsset konzipiert, das mit dem jeweiligen Testset in Größe 

der Teilsets, Größe des Überlappungsbereiches, sowie Häufigkeit der Fehlerraten 

übereinstimmte. Zudem wurde versucht, auch die Werteverteilung möglichst gut zu 

übernehmen, um die Ähnlichkeit zu maximieren. Es ist nicht auszuschließen, dass es hierbei 
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Ansätze gibt, die zu einer noch höheren Ähnlichkeit zwischen Test- und Trainingsdaten führen 

würden. 

Der Hypothese folgend müsste also ein optimaler Klassifikator auf diesem Template-

Trainingsset, kalibriert am maximalen F-Measure-Wert, auch auf dem zugrunde liegenden 

Testdatenset eine Klassifikation mit hoher F-Measure-Bewertung erzeugen. Widersprüchlich 

wäre es also gewesen, wenn Trainingsdaten, die nicht diesen Ähnlichkeitsanforderungen 

entsprächen, zu besseren Klassifikationsergebnissen geführt hätten. Um die Annahme also zu 

prüfen, wurden zu den 400 Testdatensets insgesamt jeweils 7 weitere Trainingsdaten-

Varianten aufgesetzt, die sich jeweils in einem Parameter, entweder der Größe der Teilsets, 

der Größe des Überlappungsbereiches, den Fehlerhäufigkeiten, oder der Werteverteilung von 

den gegebenen Template-Trainingsset unterschieden. 

Die ursprüngliche Hypothese wurde dabei widerlegt. Es zeigte sich, dass es zwar galt, Größe 

und Verteilung so gut wie möglich beizubehalten, dass jedoch Übereinstimmung des 

Überlappungsbereiches zu keiner Verbesserung der Klassifikation führte, sondern im Gegenteil 

sogar zu einer Verschlechterung. Gemäß den Analysen sollte der Überlappungsbereich, der bei 

der Methodik mit neuen Werten belegt wird, möglichst klein gewählt werden. In dieser Arbeit 

wurden 3% der Größe des kleineren Trainingssets empfohlen, um die Werteverteilung 

möglichst minimal zu beeinflussen. Sicherlich waren auch andere Werte hierzu denkbar. Es 

musste lediglich vermieden werden, dass der Überlappungsbereich komplett oder nahezu leer 

verblieb. Die generelle Aussage lautet, je kleiner der Überlappungsbereich umso besser das 

Klassifikationsergebnis, jedoch darf der Überlappungsbereich hierbei nicht leer sein. Auch ein 

Überlappungsbereich von lediglich einem oder ein paar Links hätte zu Problemen führen 

können. Der exakte Empfehlungs-Wert ist hierbei grundsätzlich nicht fest spezifizierbar, sollte 

also als Kritikpunkt und Unsicherheit der Technik im Hinterkopf behalten werden. 

Wie sich zudem zeigte, spielten auch die Häufigkeiten der Fehler in den 

Überlappungsbereichen keine entscheidende Rolle. Diese beeinflussten die Klassifikation 

weder positiv noch negativ.  

Auf die Konstruktion eines optimierten Trainingsdatensets wirkt sich dies natürlich positiv aus, 

da weder Überlappungsbereich, noch Fehler korrekt abgeschätzt werden müssen. Hätte sich 

herausgestellt, dass diese Parameter denen der Ursprungsdaten entsprechen müssten, wäre 

die Umsetzung einer Anwendung im Realeinsatz deutlich schwieriger gewesen, da man dann 

Schätzwerte zu diesen Parametern benötigt hätte. Im Grunde genommen wäre dies das 

Henne-Ei-Problem, bei dem Werte, die man eigentlich bestimmen will (z.B. die Größe des 
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Überlappungsbereichs) im Vorfeld bestimmt werden müssten. Die optimierte Variante bedient 

sich nun allerdings lediglich der gegebenen Größen der Teilsets der Originaldaten, der 

Verteilungswerte zuzüglich eines zufälligen Überlappungsbereiches, sowie einem konstanten, 

niedrigen Wert für die Größe des Überlappungsbereichs. Diese vollautomatisierbare 

Technologie wurde CLARA benannt. 

4.4. Abgleich und Bewertung verschiedener Klassifikatoren 

Um den ursprünglichen Gedanken zu bestätigen, dass überwachte Klassifizierer gerade auf 

Testdaten mit schlechter Datenqualität im Vergleich zu den unüberwachten Systemen 

überlegen klassifizieren und um die Klassifikationsgüte von CLARA zu bewerten, wurde das 

System mit Algorithmen der unüberwachten Klassifizierung verglichen. Neben einer einfachen, 

aus dem maschinellen Lernen bekannten Clustering-Methode wurde hierbei das System auch 

mit einem auf das Record-Linkage ausgelegten Klassifikator, einem zweistufigen KNN mit 

vorhergehender Bestimmung einer Keimmenge aus dem Bereich des Aktiven-Lernens, dem 

SNN, verglichen. Basierend auf Tests übertrifft der zuletzt genannte Algorithmus andere 

unüberwachte Klassifikationssysteme [71] wie beispielsweise den hochgelobten TAILOR-

Klassifikator [93]. 

Wie sich zeigte, schnitt der Clustering-Algorithmus, also das SLC, erwartungsgemäß schlecht 

ab. Naive Clustering-Algorithmen suchen prinzipiell nach besonderen Punkten, wie 

beispielsweise größeren Abständen in der Datengrundlage, und verwenden diese als 

Schrankenanker für die Klassifikation. Da diese Punkte oftmals gerade an den Rändern einer 

Gewichtsmenge vorkommen, sind die einfachen Clustering-Methoden also eher ungeeignet. 

Der SNN-Algorithmus konnte hingegen auf Daten mit hoher Datenqualität sehr gute 

Klassifikationsergebnisse, die nahe an der maximal möglichen Klassifikationsqualität lagen, 

erzielen. Einschränkend wäre hierbei zu nennen, dass die Klassifikationsgüte von der korrekten 

Auswahl der Keimmenge abhängt. Hierzu wurden zwei Varianten geprüft, wobei die eine der 

anderen stark überlegen war. Eine derartige Unsicherheit bei der Konfiguration eines Systems 

ist anwenderunfreundlich und benötigt ein gewisses Maß projektspezifischen, bzw. 

wissenschaftlichen Know-Hows. Solche Unsicherheiten sind bei CLARA nicht gegeben – die 

Anwendung ist bis auf die Festlegung der Größe des Überlappungsbereiches, für die ein 

konstanter Empfehlungswert erstellt wurde, eindeutig.  

Wie bereits ausgeführt, konnte die zweistufige Methodik gute Ergebnisse auf Testdaten mit 

hoher Datenqualität erzielen. Auf Testsets mit mangelnder Datenqualität nahm die Güte der 
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Klassifikation jedoch rapide ab, da sich mit Abnahme der Datenqualität auch die Häufigkeit von 

Datenartefakten (unerwartete Abstände, Anhäufungen) erhöht. CLARA übertraf die 

Klassifikation des genannten Klassifikators auf niedriger Datenqualität bei Weitem, 

überraschender Weise zeigte sich aber, dass CLARA auch auf Datensätzen mit hoher 

Datenqualität ähnliche bzw. sogar bessere Ergebnisse als der SNN erzielte. 

CLARA offenbart sich hierbei also als das System mit der besseren und von der Datenqualität 

unabhängigen Klassifikationsgüte. Zumal die Konfiguration einfach und eindeutig ist, stellt sich 

CLARA bezüglich der untersuchten Testdaten als das überlegene System dar. Die Laufzeit 

wurde während des Projektes nicht dokumentiert, doch auch hier scheint CLARA keine 

größeren Probleme zu bereiten. Die Konstruktion der Trainingsdaten ist in linearer Laufzeit zu 

bewältigen. Weiterhin müssen zu diesen Trainingsdaten Record-Linkage-Durchläufe 

durchgeführt werden. Diese können je nach Größe der zugrunde liegenden Daten viel Zeit in 

Anspruch nehmen. Allerdings resultieren umfangreiche Record-Linkage-Durchläufe auch in 

umfangreichen Gewichtsdateien. Alternative unüberwachte Algorithmen haben eine kubische 

bzw. quadratische Laufzeit in Bezug auf die Anzahl der Gewichte innerhalb der Gewichtsdaten. 

Die Laufzeit solcher Algorithmen sollte also auf solch umfangreichen Gewichtsdateien sogar 

über der von CLARA liegen. Genauere Untersuchungen hierzu wären jedoch notwendig, um 

gültige Aussagen zu treffen.  

CLARA übertraf auch die erreichte Klassifikationsgüte der manuellen Schrankenbestimmung 

anhand von Histogrammen. Dieses Ergebnis würde dafür sprechen, die manuelle Klassifikation 

komplett durch das CLARA-System zu ersetzen.  

Da die beiden Systeme aber komplett unabhängig voneinander fungieren - CLARA basiert auf 

Trainingsdaten, manuelle Schrankenbestimmung auf Gewichtsdaten - bietet sich am ehesten 

eine Kombination der beiden Techniken an, bei der es also immer eine gegenseitige Kontrolle 

gäbe. Größere Abweichungen zwischen den Methoden würden also schnell Hinweis darauf 

geben, dass eine der Klassifikationsmethoden eine falsche Schranke vorhergesagt hat. Hierauf 

könnten gerade auf die manuelle Schrankensetzung Anpassungen folgen. An dieser Stelle mag 

es verwundern weshalb eine Kontrolle von CLARA überhaupt nötig ist, nachdem die F-Werte in 

den Ergebnissen so nah an den Optimalwerten liegen. Der Grund ist, dass überwachte 

Klassifizierung immer eine leichte Abweichung von einer optimalen Position haben wird. Bei 

Kenntnis des ungefähren Bereichs (gegeben durch überwachte Klassifizierung/CLARA) lässt 

sich die genaue Position manuell in ein lokales Minimum oder eine passende Lücke einpassen. 
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Laut Han et Al. gibt es zudem bei überwachten Klassifikationssystemen, wie z.B. CLARA, die 

Gefahr einer Überanpassung (Overfitting) der Trainingsdaten an die Testdaten, was sich 

negativ auf die Klassifikationsgüte auswirken könnte [41,80]. Diese Befürchtung war bei der 

Anwendung von CLARA nicht zu bestätigen. Wie sich anhand der Trainingsset-Varianten zeigte, 

war das Klassifikationsergebnis immer dann am höchsten, wenn die Verteilung der 

Ursprungswerte möglichst den Originalwerteverteilungen entsprach. Generell spielt 

Overfitting für das System keine Rolle da jeder Klassifikator immer für das gegebene 

Originaltestdatenset und nicht für andere Testdatensets einzeln generiert wird. Generell lagen 

die Klassifikationsergebnisse von CLARA unabhängig von der zugrunde liegenden Datenqualität 

der Testdatensätze extrem nah am erreichbaren Optimalwert. 

4.5. Übertragung der Ergebnisse auf den aktuellen Stand der 

Wissenschaft 

Die Klassifikationsergebnisse von CLARA zeigten auf einer umfangreichen Menge von 

Testdaten, dass überwachte Klassifikation, repräsentiert durch die CLARA-Technologie, 

unüberwachter Klassifikation, repräsentiert durch SLC und den SNN, grundsätzlich überlegen 

war. Eine Auswertung in solch einem Umfang, auf einer Menge von insgesamt 400 

individuellen Testdatensätzen, hatte bisher noch nicht stattgefunden [38].  

 Manuelle Klassifikation, basierend auf Histogramm-Daten, schienbei guter Datenqualität 

valide und lag in dieser Arbeit konkret zwar unterhalb den Ergebnissen von CLARA, jedoch 

meist über den Ergebnissen der unüberwachten Technologie, jedoch ließ die 

Klassifikationsqualität auch hier bei schlechterer Datenqualität nach. Die überwachten 

Klassifikationssysteme sind hiervon unabhängig und sollten also gerade in Szenarien, in denen 

Datenqualitätsprobleme vorliegen, unterstützend genutzt werden. So würde sich zum Beispiel 

anbieten, eine Implementierung des CLARA-Systems auch in den kommenden Record-Linkage-

Durchläufen der DKFS unterstützend einzusetzen. Da überwachte Systeme grundsätzlich etwas 

gröber klassifizieren (d.h. die vorhergesagte Schranke kann von der eigentlichen Position etwas 

abweichen) sollte jedoch eine Vollautomatisierung vermieden werden. Eine Kombination aus 

manueller und unterstützender Klassifikation scheint am wirkungsvollsten.  

Neben dem Vergleich zwischen unüberwachter sowie überwachter Klassifikation wäre das 

Konzept zum CLARA-System an sich als weiterer Beitrag zum Stand der Wissenschaft zu 

nennen. Das CLARA System baut in dieser Arbeit grundsätzlich auf der Konstruktion von 

Trainingsdaten, anschließendem Record-Linkage auf diesen Daten, Bestimmung einer Schranke 
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auf den resultierenden Gewichtsdateien, sowie Einpassen der Schranke in das zugrunde 

liegende Testset auf. Da Projekte verschiedene Record-Linkage-Ansätze verwenden, sollten 

also die nicht zur Klassifikation gehörenden Schritte des Privacy-Preserving-Record-Linkage von 

CLARA entkoppelt werden. Würde man also eine Veröffentlichung von Software zu dieser 

Technologie anstreben, könnte man Tools zur Erzeugung von Trainingsdaten entsprechend der 

CLARA-Technologie sowie zur Ermittlung der Schranke auf den Gewichtsdateien der 

Trainingsdaten anbieten. Das System wäre dann mit jeder Art von auf Gewichten basierenden 

Record-Linkage-Systemen kompatibel. Für den User gäbe es lediglich zwei Parameter zu 

spezifizieren. Zum einen die Größe des Überlappungsbereiches, für den ein Empfehlungswert 

von 3% der Größe des kleineren Teilsets gegeben wird. Zum anderen ließe sich die Anzahl der 

Trainingssets spezifizieren, zu denen jeweils ein Klassifikator bestimmt wird, dessen Mittelwert 

den finalen Klassifikator darstellt (in dieser Arbeit etwa wurden zu jedem Testset jeweils 3 

CLARA-Trainingssets erzeugt). Die Anwendung wäre also einfach handhabbar. Ein Kritikpunkt 

sowie eine Einschränkung wäre der zusätzlich benötigte Festplattenspeicherplatz, der durch 

die Erzeugung von Trainingsdaten freigehalten werden müsste. 

4.6. Limitierungen der Arbeit 

Nicht beantworten kann diese Arbeit, ob eventuell andere überwachte Klassifikationssysteme 

CLARA überlegen wären und wie gut CLARA hierbei vergleichsweise in Bezug auf die 

Klassifikationsgüte abschneiden würde. Alternative Konzepte wie Bumping, Bagging oder 

Multiview [83,84] oder die Verwendung von überwachten Regressionsbäumen klingen 

vielversprechend [100]. Vergleichende Arbeiten wären hierzu notwendig. Die 

Klassifikationsgüte von CLARA erschien jedoch in der vergleichenden Analyse, basierend auf 

den maximal möglichen F-Werten bereits so gut, dass der Methodik eventuell aufgrund der 

einfachen Anwendbarkeit der Vorzug vor anderen Methoden gegeben werden sollte. Innovativ 

ist auch die absolute Unabhängigkeit von Trainingsdaten, da diese komplett aus den 

Originaldaten generiert werden, sowie die eindeutige Konfiguration, die in anderen Arbeiten 

nicht in dieser Art spezifiziert wurde, wodurch Unklarheiten in der Anwendung vermieden 

werden. Eine Vollautomatisierung der Klassifikation wäre damit unabhängig von den Testdaten 

problemlos möglich. 

Trotz der auf den Testdaten gegebenen guten Abgleichsgüte gibt es Sonderfälle, mit denen das 

System nicht gut umgehen kann und die auch hier zu einer starken Fehlklassifikation führen 

können. Würden etwa per Zufall ausschließlich Links mit einem extrem hohen 

Abgleichsgewicht (beispielsweise bei doppelten Vornamen) dem Überlappungsbereich 
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hinzugefügt werden, würde ein darauf resultierender Klassifikator alle echten 

Übereinstimmungen, unterhalb dieser Links als falsch klassifizieren. Der Lösungsansatz um 

unglückliche Zufallsziehungen zu umgehen, ist die Erzeugung mehrerer Klassifikatoren und 

hierbei die Wahl des Median bzw. des Mittelwertes der vorhergesagten Schrankenwerte. In 

den Analysen dieser Arbeit wurden hierfür jeweils drei CLARA-Trianingssets konstruiert. Je 

nach Leistungskraft der zugrunde liegenden Hardware und Umfang der angestrebten Arbeiten 

könnten aber weitere Trainingsdaten das Risiko einer starken Fehlklassifikation verringern. 

Grundsätzlich handelt es sich bei CLARA außerdem nicht formell um eine überwachte 

Klassifikation, sondern eher um eine semi-überwachte Klassifikation, da echte 

Übereinstimmungen, die jedoch nicht bekannt sind, das Ergebnis der vorhergesagten 

Klassifikatoren eventuell negativ beeinflussen können. Basierend auf den guten Ergebnissen 

erscheint dieser Einfluss aber nicht mit allzu großen negativen Konsequenzen einherzugehen.  

Weitere Einschränkungen wie Laufzeit oder auch benötigter Festplattenspeicher wurden 

bereits angesprochen, erscheinen jedoch für die meisten Projekte als eher unproblematisch.  

Weiterhin wäre zu erwähnen, dass den Analysen in dieser Arbeit stets ein probabilistisches 

Record-Linkage-System zu Grunde lag. Bei der Gewichtsberechnung spielen hierbei auch 

Häufigkeiten und dementsprechend Werteverteilungen eine große Rolle. Das CLARA-System 

wurde entsprechend für Variationen von Trainingssets, die eben genau in diesen Werten 

variieren, konzipiert. Für das probabilistische Record-Linkage bewährte sich dies als 

nachvollziehbarer Ansatz. Approximatives Record-Linkage jedoch, bei dem es sich aller 

Voraussicht nach um die Zukunftstechnologie im Bereich des Privacy-Preserving-Record-

Linakge handelt, ist von Häufigkeiten zum jetzigen Stand der Wissenschaft, soweit dem Autor 

dieser Arbeit bekannt, unabhängig. Dennoch wäre anzunehmen, dass das CLARA-System auch 

auf approximatives Record-Linkage anwendbar wäre unter der Prämisse Fehler bei der 

Konstruktion von Trainignsdaten zu Berücksichtigen. Ohne Berücksichtigung der 

Fehlerhäufigkeiten würden hier semtliche Abgleiche im Überlappungsbereich in einem Wert 

von 1.0 resultieren. Hierbei wären jedoch möglicherweise Laufzeitoptimierungen, zum 

Beispiel, eine Verkleinerung der Trainingssets oder Ähnliches denkbar. Das approximative 

Record-Linkage sollte grundsätzlich weniger von der Parametrisierung der Trainingssets 

beeinflusst werden. Um Eindeutigkeit zu bewahren, wäre der CLARA-Ansatz aber auch hier 

sicherlich einsetzbar. Eine geprüfte Empfehlung kann jedoch im Moment nur für den Einsatz 

auf probabilistischen Record-Linkage-Systemen gegeben werden. 
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5. Zusammenfassung 

Im Zuge einer Studie zu familiärem Darmkrebs wurde ein probabilistisches Privacy-Preserving-

Record-Linkage umgesetzt, dass den anonymen Abgleich zwischen Studienteilnehmern und 

eingetragenen Patienten des Münchner Tumorregisters erlaubte. Bei dieser Aufgabe konnten 

Probleme im Bereich der Klassifikation identifiziert werden. Um die hierbei verwendete 

manuelle Klassifikation zu unterstützen, wurde nach alternativen, binären 

Klassifikationssystemen gesucht. Die existierenden Techniken gingen jedoch meist mit neuen 

Unsicherheitsfaktoren einher und es fehlte an umfangreichen Vergleichen und erfolgreichen 

Einsatzberichten. Ziel dieser Arbeit war es daher, eine leicht einsetzbare Klassifikationstechnik 

zu konzipieren, die bei der manuellen Klassifikation unterstützend eingesetzt werden konnte 

und dabei anderen Methoden in der Klassifikationsgüte überlegen war. 

Bei der neu konzipierten Technik handelte es sich um ein überwachtes Klassifizierungssystem, 

das die Klassifikatoren anhand von künstlichen Trainingsdaten, die direkt aus den zu 

vergleichenden Daten generiert wurden, vorhersagte. Entsprechend der Beschreibung wurde 

das System CLARA benannt (CLAssification for Record-Linkage with Artificial Trainingssets). Die 

genaue Parametrisierung zur Erzeugung dieser Trainingsdaten wurde über Analysen zu 

Variationen in den genannten Trainingsdaten optimiert.  

Das System wurde gegenüber Techniken aus dem Bereich der unüberwachten Klassifikation 

getestet. Der Test enthielt auch einen Vergleich zur manuellen Schrankensetzung. 

Testgrundlage waren 400 auf klinischen Realdaten basierende Testsets, die sich jeweils in 

mindestens einem der Parameter Größe, Überlappung bzw. Datenqualität unterschieden. 

Anhand der vergleichenden Analyse ergab sich, dass das CLARA System den anderen 

Techniken stark überlegen war. Besonders auf Ausgangsdaten mit problematischer 

Datenqualität hielt CLARA die hohe Klassifikationsqualität, also in Szenarien, in denen 

unüberwachte Klassifikationen und auch manuelle Klassifikation oft mit Problemen behaftet 

sind. Ein weiteres Merkmal von CLARA war die einfache Anwendung, bei der es kaum zu 

Unsicherheiten kommen konnte. Eine öffentlich zugängliche Implementierung des Systems 

wurde noch nicht erstellt, ist aber für die nahe Zukunft geplant.  

Letztendlich lieferten die Analysen Indiz für die Überlegenheit der überwachten 

Klassifikationssysteme gegenüber den unüberwachten Klassifikationssystemen im Bereich des 

Record-Linkage. Überwachte Systeme bieten zudem eine von der manuellen Schrankensetzung 

unabhängige Sichtweise, weswegen diese sehr gut in Kombination verwendet werden 

könnten. 



 Literaturverzeichnis 94 

6. Literaturverzeichnis 

1. Third Quarter 2013 Financial Summary. California: Facebook, Inc.; Oct., 2013. 

2. Google – Privacy Policy. Available from: http://www.google.de/policies/privacy/ 

3. Braun S, Flaherty A, Gillum J, Apuzzo, M. Secret to PRISM Program: Even Bigger Data Seizures. 

Associated Press; 2013. 

4. Kramer M. The NSA Data: Where Does It Go?. National Geographic – Daily news; 2013. 

5. Hauf D. Allgemeine Konzepte: K-Anonymity, l-Diversity and T-Closeness. IPD Uni-Karlsruhe; 2008. 

6. Pommerening K. Datenschutz in medizinischen Informationssystemen. MedReport. 1995; 9(19):6-7. 

7. Meisinger C, Löwel H, Mraz W, König W. Prognostic value of apolipoprotein B and A-I in the 

prediction of myocardial infarction in middle-aged men and women: results from the MONICA/KORA 

Augsburg cohort study. Eur Heart J. 2005; 26: 1–8. 

8. Steinke C. Deutschlands größte Gesundheitsstudie geht in die zweite Runde. Pressemitteilung der 

Universität Greifswald beim Informationsdienstes Wissenschaft. 2012 

9. Bundeskrebsregisterdatengesetz vom 10. August 2009 (BGBl. I S. 2707)  

10. Li N, Li T, Venkatasubramanian S. T-Closeness: Privacy Beyond k-Anonymity and l-Diversity. Data 

Engineering. 2007.  

11. HIPAA Administrative Simplification. U.S. Department of Health and Human Services Office for Civil 

Rights. 2013. 

12. Sweeney L. K-anonymity: A model for protecting privacy. International journal of uncertainity, 

fuzziness and knowledge-based systems.2002; 10(5):557 – 570. 

13. Dunn H. Record Linkage. American Journal of Public Health. 1946;36(12):1412. 

14. Schnell R, Bachteler T, Reiher J. Privacy-preserving record linkage using Bloom filters. BMC Medical 

Informatics and Decision Making. 2009 Aug 25;9:41.  

15. V, Karakasidis A, Mitrogiannis V. Privacy Preserving Record Linkage approaches. Int. J. of Data 

Mining, Modelling and Management. 2009;1:206-221. 

16. Trepetin S. Privacy-preserving string comparisions in record linkage systems: a review. Information 

Security Journal: A Global Perspective. 2008; 17:253-266. 

17. Karakasidis A, Verykios V. E-Activity and Intelligent Web Construction; Idea Group Reference. 2011. 

Advances in privacy preserving record linkage. 

18. Durham E, Kantarcioglu M, Malin B. Quantifying the correctness, computational complexity, and 

security of privacy-preserving string comparators for record linkage. Inf Fusion. 2012 Oct 

1;13(4):245-259. 

19. Quantin C, Bouzelat H, Allaert FA, Benhamiche AM, Faivre J, Dusserre L. Automatic record hash 

coding and linkage for epidemiological follow-up data confidentiality. Methods Inf Med. 1998 

Sep;37(3):271-277. 

20. Quantin C, Bouzelat H, Allaert FA, Benhamiche AM, Faivre J, Dusserre L. How to ensure data security 

of an epidemiological follow-up: quality assessment of an anonymous record linkage procedure. Int J 

Med Inform. 1998 Mar;49(1):117-122. 



 95 Literaturverzeichnis 

21. Mansmann U, Stausberg J, Engel J, Heussner P, Birkner B, Maar C. Familien schützen und stärken – 

Umgang mit familiärem Darmkrebs. Eine Pilotstudie zur Inzidenz von Risikoclustern und zur 

Möglichkeit ihrer Detektion. Der Gastroenterologe 2012; 7: 271-272. 

22. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 

2011 Mar-Apr;61(2):69-90. 

23. Watson AJ, Collins PD. Colon cancer: a civilization disorder. Digestive diseases. 2011;29(2):222-8. 

24. Schneider R. Das Lynch-Syndrom – Epidemiologie, Klinik, Genetik, Screening, Therapie. Zeitschrift für 

Gastroenterologie. 2012; 50: 217-225 

25. Fotiadis C, Tsekouras DK, Antonakis P, Sfiniadakis J, Genetzakis M, Zografos GC. Gardner's 

syndrome: a case report and review of the literature. World J Gastroenterol. 2005 Sep 

14;11(34):5408-5411. 

26. Slattery ML, Levin TR, Ma K, Goldgar D, Holubkov R, Edwards S. Family history and colorectal cancer: 

predictors of risk. Cancer Causes Control. 2003 Nov;14(9):879-887. 

27. Jeffery GM1, Hickey BE, Hider P. Follow-up strategies for patients treated for non-metastatic 

colorectal cancer. Cochrane Database Syst Rev. 2002;(1) 

28. Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B, Starling N.Colorectal Cancer. 

Lancet. 2010 Mar 20;375(9719):1030-1047. 

29. He J, Efron JE. Screening for colorectal cancer. Adv Surg. 2011;45:31-44. 

30. Hewitson P1, Glasziou P, Watson E, Towler B, Irwig L.. Cochrane systematic review of colorectal 

cancer screening using the fecal occult blood test (hemoccult): an update. Am J Gastroenterol. 2008 

Jun;103(6):1541-1549. 

31. Fellegi I, Sunter A. A Theory for Record Linkage. Journal of the American Statistical Association. 

1969; 64 (328): 1183–1210. 

32. Jaro M. Probabilistic linkage of large public health data files. Stat Med. 1995 Mar 15-Apr 15;14(5-

7):491-498. 

33. Blakely T, Salmond C. Probabilistic record linkage and a method to calculate the positive predictive 

value. International Journal of Epidemiology. 2002 Dec; 31(6):1246-1252. 

34. Nasseh D, Engel J,Mansmann U, Tretter W, Stausberg J. Matching study to registry data: 

maintaining data privacy in a study on family based colorectal cancer. Fullpaper accepted for MIE 

2014. 

35. Pommerening K, Drepper J, Ganslandt T, Helbing K, Müller T, Sax U, Semler S, Speer R. Das TMF-

Datenschutzkonzept für medizinische Daten-sammlungen und Biobanken. Proceeding of: Informatik 

2009: Im Focus das Leben, Beiträge der 39. Jahrestagung der Gesellschaft für Informatik e.V. (GI); 

2009; Lübeck. 

36. Daemen J, Rijmen V. AES Proposal: Rijndael; 1999. 

37. Palanisamy V, Jeneba M. Hybrid cryptography by the implementation of RSA and AES. International 

Journal of Current Research. April 2011;33(4): 241-244 

38. Christen P. Data Matching: Concepts and Techniques for Record Linkage, Entity Resolution, and 

Duplicate Detection. Berlin Heidelberg: Springer; 2012. 



 Literaturverzeichnis 96 

39. Meyer M. Kontrollnummern und Record Linkage. Das Manual der epidemiologischen 

Krebsregistrierung. Hentschel S, Katalinie A, editor. Zuckschwerdt; 2011:57-68. 

40. Kieschke J. Methoden von Registern für die Versorgungsforschung.DNVF-Springschool. 2013. 

41. Han J, Kamber M. Data Mining: concepts and techniques. 2nd edition. San Francisco: Morgan 

Kaufmann; 2006. 

42. Mitchell T. Machine Learning. USA: McGraw Hill; 1997. 

43. Gill L. Methods for automatic record matching and linking and their use in national statistics. Tech. 

Rep. Methodolgy Series no. 25; 2001. 

44. Newcombe HB. Handbook of Record Linkage: Methods for Health and Statistical Studies, 

Administration, and Business. Oxford University Press, Inc. 1988; New York. 

45. Jonas J, Harper J. Effective counterterrorism and the limited role of predictive data mining. Policy 

Analysis. 2006; 584. 

46. Manghi P. Mikulicic M. PACE: A general-purpose tool for authority control. Metadata and Semantic 

Research; 2011. 80-92. 

47. Fogel R. New sources and new techniques for the study of secular trends in nutritional status, health, 

mortality, and the process of aging. NBER Historical Papers. 1993. 

48. Glasson E, De Klerk N, Bass A, Rosman D, Palmer L, Holman C. Cohort profile: the Western Australian 

family connections genealogical project. International Journal of epidemiology. 2008 Feb;37(1):30-

35. 

49. Newcombe H, Kennedy J. Record linkage: making maximum use oft he disciminating power of 

identifying information. Communications of the ACM. 1962;5(11):31-88. 

50. Newcombe H, Kennedy J, Axford S, James A. Automatic linkage of vital records. Science. 1959; 

130(3381):954-959. 

51. Winkler WE, Thibaudeau Y. An application of the Fellegi-Sunter model of record linkage to the 1990 

U.S. decennial census. Tech. Rep. RR1991/09. 1991. 

52. Bloom B. Space/time trade offs in hash coding with allowable errors. Communictation of the ACM. 

1970; 13(7):422-426. 

53. Durham E,Xue Y, Kantarcioglu M, Malin B. Private Medical Record Linkage with Approximate 

Matching. AMIA Annu Symp Proc. 2010; 2010: 182–186. 

54. Churches T, Christen P: Some methods for blindfolded record linkage. BMC Med Inf Decis Mak 2004; 

4(9). 

55. Hinrichs H. Bundesweite Einführung eines einheitlichen Record Linkage Verfahrens in den Krebs-

registern der Bundesländer nach dem KRG, Abschlussbericht, Projekt Deutsche Krebshilfe. 

Antragsnummer 70-2043-Ap I. OFFIS. Oldenburg; 1999 

56. Russell RC. SOUNDEX (untitled). US patent 1261167. 1918. 

57. Postel H.-J. Die Kölner Phonetik – Ein Verfahren zur Identifizierung von Personennamen auf der 

Grundlage der Gestaltanalyse. IBM-Nachrichten. 19 (1969); 925-931. 



 97 Literaturverzeichnis 

58. Appelrath HJ, Michaelis J, Schmidtmann I, Thoben W. Empfehlung an die Bundesländer zur 

technischen Umsetzung der Verfahrensweisen Gemäß Gesetz über Krebsregister (KRG). Informatik, 

Biometrie und Epidemiologie in Medizin und Biologie 1996;27: 101-110. 

59. Krieg V, Hense HW, Lehnert M, Mattauch V. Record Linkage mit kryptographierten Identitätsdaten 

in einem bevölkerungsbezogenen Krebsregister. Entwickung, Umsetzung und Fehlerraten. 

Gesundheitswesen. 2001; 63: 376-382. 

60. Thoben W, Apelrath H.-J, Sauer S. Record Linkage of Anonymous Data by Control Numbers. In: 

W.Gaul, D.Pfeifer. From Data to Knowledge: Theoretical and Practical Aspects of Classification, Data 

Analysis and Knowledge Organisation. Springer ; 1994: 412-419. 

61. Floyd J. What do Hash Collisions Really Mean? Available at: http://permabit.wordpress.com/: 

Permabits and Petabytes. 2011. 

62. Gilbert H, Handschuh H. Security Analysis of SHA-256 and Sisters. Selected Areas in Cryptography. 

2003; 175–193 

63. Stevens M. Cryptanalysis of MD5 & SHA-1. Available at: http://2012.sharcs.org/slides/stevens.pdf. 

2012. 

64. Krawczyk H, Bellare M, Canetti R. HMAC: Keyed-Hashing for Message Authentication. RMC 2014. 

65. Morris R, Thompson K. Password Security: A Case History. Bell Laboratories. 1978.  

66. Kirsch A, Mitzenmacher M. Less hashing, same performance: building a better Bloom filter. 

Algorithms-ESA 2006. Proceedings of the 14th Annual European Symposium; September 2006; 11-

13.  

67. Nasseh D, Stausberg J. Impact of variations in Anonymous Record Linkage on Weight Distribution 

and Classification. Stud Health Technol Inform. 2013;192:922. 

68. Hernandez MA, Stolfo SJ. The merge/purge problem for large databases. ACM SIGMOND. 1995; 

127-138. 

69. Hernandez MA, Stolfo SJ. Real-world data is dirty. Data cleansing and the merge/purge problem. 

Data Mining and Knowledge Discovery. 1998; 2(1):9-37. 

70. Christen P. A Survey of Indexing Techniques for Scalable Record Linkage and Deduplication. 

Knowledge and Data Engineerin; 24(9). 

71. Christen P. Automatic Record Linkage using Seeded Nearest Neighbour and Support Vector Machine 

Classification. KDD '08 Proceedings of the 14th ACM SIGKDD international conference on 

Knowledge discovery and data mining. New York, 2008; 151-159. 

72. Pommerening K, Sariyar M. Der PID-Generator der TMF. TMF-Workshop „Tools zum ID-

Management in der klinischen Forschung“. 2010. 

73. Schmidtmann I, Hammer G, Sariyar M, Gerhold-Ay A. Evaluation des Krebsregisters NRW – 

Schwerpunkt Record Linkage. Final report 11 Jun 2009. Mainz (DE): Universitätsmedizin der 

Johannes Gutenberg-Universität Mainz, Körperschaft des öffentlichen Rechts; 2009. 50. 

74. Winkler WE. Using the EM Algorithm for Weight Computation in the Fellegi-Sunter Model of Record 

Linkage. Proceedings of the Section on Survey Research Methods, American Statistical Association. 

2000. 

http://cm.bell-labs.com/cm/cs/who/dmr/passwd.ps


 Literaturverzeichnis 98 

75. Silveira D, Artmann E. Accuracy of probabilistic record linkage applied to health databases: sys-

tematic review. Rev Saúde Pública 2009. 

76. Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945; 26(3):297-

302. 

77. Sibson R. SLINK: an optimally efficient algorithm for the single-link cluster method. The Computer 

Journal (British Computer Society). 1973; 16(1): 30–34. 

78. Defays D. (1977). An efficient algorithm for a complete link method. The Computer Journal (British 

Computer Society). 1977; 20 (4): 364–366.  

79. Sarawagi S, Bhamidipaty A. Interactive deduplication using active learning. ACM KDD’02. 2002: 269–

278. 

80. Mitchell TM. Machine Learning. McGraw Hill. 1997. 

81. Breimann L, Freidman J, Olshen R, Stone C. Classification and regression trees. Chapman and 

Hall/CRC. 1984. 

82. Christen P. Febrl - a freely available record linkage system with a graphical user interface. HDKM’08, 

CRPIT vol. 80. 2008. 

83. Sariyar M, Borg A. Bagging, bumping, multiview, and active learning for record linkage with 

empirical results on patient identity data. Comput Methods Programs Biomed. 2012 

Dec;108(3):1160-1169. 

84. Sariyar M, Borg A, Pommerening K. Evaluation of Record Linkage - Methods for Iterative Insertion. 

Methods Inf Med. 2009;48(5):429-437 

85. Yancey WE. Big Match – A program for extracting probable matches from a large file for record 

linkage. Tech Rep RRC2007/01. 2007. 

86. Bilgic M, Licamele L, Getoor L, Shneiderman B. D-Duple: An interactive tool for entity resolution in 

social networks. IEEE Symposium on Visual Analytics, Science and Technology. 2006: 43-50. 

87. Draisbach U, Naumann F. Dude: The duplicate detection toolkit. Workshop on Quality in Databases. 

2010. 

88. Jurczyk P, Lu J, Xiong L, Cragan J, Correa A. FRIL: A tool for comparative record linkage. AMIA Annual 

Symposium Proceedings. 2008: 440. 

89. Schnell R, Bachteler T, Bender S. A toolbox for record linkage. Austrian Journal of Statistics. 2004; 

33(1&2):125-133. 

90. Talburt J. Entity Resolution and Information Quality. Morgan Kaufmann. 2011. 

91. Sariyar M. Borg A. The Record Linkage package. Detecting errors in data. The R Journal. 2010; 

2(2):61-67. 

92. Jentzsch A, Isele R, Bizer C. Silk-generating RDF links while publishing or consuming linked data. 

Poster at the International Semantic Web Conference. 2010. 

93. Elfeky MG, Verykios V, Elmagarmid AK. TAILOR: A record linkage toolbox. IEEE ICDE. 2002: 17-28. 

94. Cohen W. The WHIRL approach to data integration. IEEE Intelligent Systems. 1998; 13(3):20-24. 

95. Christen P, Verykios V, Vatsalan D. A Tutorial on Techniques for Scalable Privacy-preserving Record 

Linkage. CIKM 2013. 



 99 Literaturverzeichnis 

96. Powers D. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & 

Correlation. Journal of Machine Learning Technologies. 2011; 2 (1): 37–63. 

97. Versi E. “Gold standard" is an appropriate term. BMJ. 1992. 

98. Heller B. Fragen der Philosophie 1: Zugänge. Books on Demand GmbH. 2000 

99. Kaufman L. Rousseeuw PJ. Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley. 

1990. 

100. Therneau TM, Atkinson EJ. An Introduction to Recursive Partitioning Using the Rpart Routine. Mayo 

Clinic, Section of Biostatistics, Rochester. 1997. 

101. Boonchai K, Speedie S, Connelly D. Linking patients’ records across organizations while maintaining 

anonymity. AMIA 2007 Symposium Proceedings Page. 2007: p.1008. 

102. Contiero P, Tittarelli A, Tagliabue G, Maghini A, Fabiano S, Crosignani P, Tessandori R. The EpiLink 

Record Linkage Software -Presentation and Results of Linkage Test on Cancer Registry Files. 

Methods Inf Med 1. 2005. 

103. Fonseca M, Coeli C, Lucena F, Veloso V, Carvalho M. Accuracy of a probabilistic record linkage 

strategy applied to identify deaths among cases reported to the Brazilian AIDS surveillance 

database. 2010. 

104. Migowski A, Chaves RB, Coeli CM, Ribeiro AL, Tura BR, Kuschnir MC, Azevedo VM, Floriano DB, 

Magalhães CA, Pinheiro MC, Xavier RM. Accuracy of probabilistic record linkage in the assessment of 

high-complexity cardiology procedures. Rev Saude Publica. 2011 Apr;45(2):269-75. 

105. Fournel I, Schwarzinger M, Binquet C, Benzenine E, Hill C, Quantin C. Contribution of Record Linkage 

to Vital Status Determination in Cancer Patients. Stud Health Technol Inform. 2009;150:91-95. 

 

 

  



 Anhang 100 

7. Anhang 

A. Abkürzungsverzeichnis 

AES Advanced Encryption 
Standard 

  NSA National Security Agency 

BDSG Bundesdatenschutzgesetz   OYSTER Open sYSTem Entity 
Resolution 

CLARA CLAssification for Record-
Linkage with Artificial 
Trainingssets. 

  PPV Positive-Predictive-Value 
(Positiver prädiktiver Wert) 

CLINK Bezeichnung eines 
effizienten Complete-
Linkage-Clustering Ansatzes 

  PRISM Planning Tool for Resource 
Integration, Synchronization 
and Management 

DKFS Studie zu familiärem 
Darmkrebs 

  RSA Rivest, Shamir und Adleman 
(Initialen der Entwickler) 

DuDe The Duplicate Detection 
Toolkit 

  SHA Secure Hash Algorithm 

FEBRL Freely Extensible Biomedical 
Record Linkage 

  SLC Single-Linkage-Clustering 

FM F-Measure   SLINK Bezeichnung eines 
effizienten Single-Linkage-
Clustering Ansatzes 

FN False-Negatives (Falsch 
Negative) 

  SNN Seeded-Nearest-Neighbour 

FP False-Positives (Falsch 
Positive) 

  SVM Support-Vector-Maschine 

FRIL Fine-Grained Records 
Integration and Linkage 

  TAILOR RecOrd LInkAge Toolbox 
(Acronym rückwärts)  

HMAC Hash-based message 
authentication code 

  TMF Technologie- und 
Methodenplattform für die 
vernetzte medizinische 
Forschung 

IDAT Identifizierende Daten   TN True-Negatives (Echt 
Negative) 

KNN K-Nearest-Neighbour   TP True-Positives (Echt Positive 
KORA KOoperative 

Gesundheitsforschung in der 
Region Augsburg 

  TRM Tumorregister-München 

MDAT Medizinische Daten   UNICON Uniform Control Number 
Generator 

MD5 Message-Digest-Algorithmus 
(Version 5) 

  WHIRL Word-Based Heterogeneous 
Information Representation 
Language 
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 103 Anhang 

E. Programmverzeichnis 

Index Programmname Funktion (Kurzbeschreibung) Seite 

1 RecordLinkage Hauptklasse zur Durchführung eines Record Linkage auf zwei 

gegebenen Datensets. 

37 

2 RecordLinkageInput Regelt das Einlesen der Daten für RecordLinkage<1>. 37 

3 Person Zu RecordLinkageInput<2> assoziierte Klasse. - 

4 ConfigReader Zu Record Linkage<1> assoziierte Klasse. - 

5 ListComparator Zu RecordLinkage<1> assoziierte Klasse.  - 

6 GenerateControlnumbers Klasse zur Standardisierung und Einwegverschlüsselung 

identifizierender Daten. 

37 

7 CreateTestsets Klasse zur Erzeugung der 400 in dieser Arbeit verwendeten 

Testdatensätze. 

44 

8 CreateTestSetsWeights Automatisierter Aufruf der Klasse Record Linkage auf den 400 

gegebenen Testsets. 

52 

9 FMeasure Berechnung des maximalen FMeasures auf den 400 

Gewichtsdateien der Testsets. 

52 

10 CreateTemplateTrainingsset Erzeugung eines Trainingssets unter Verwendung der 

Konstruktionsparameter eines zugrunde liegenden Testsets. 

57 

11 CreateTrainingSetWeights Erzeugt zu semtlichen Trainingssets die Gewichtsdateien. 57 

12 MassFMeasure Erzeugt zu den Gewichtsdateien von Trainingssets die FMeasure 

und Schrankenwerte. 

57 

13 FitBorderToTestset Fügt einen vorhergesagten Klassifikator in ein Testset ein und 

bemisst den hierdurch erzielten F-Measure-Wert. 

58 

14 CreateSizeVariant1Trainingsset Erzeugung von Trainingssets deren Größe auf 100 festgelegt 

wurde. 

59 

15 CreateSizeVariant1Trainingsset Erzeugung von Trainingssets deren Größe im Vergleich zu den 

Testdaten halbiert wurde. 

60 

16 CreateErrorVariantTrainingsset Erzeugung von Trainingssets ohne Fehler im Überlappungsbereich. 60 

17 CreateOverlapVariant1Trainingsset Erzeugung von Trainingssets deren Überlappungsbereich auf 90% 

der Größe des kleineren Teilsets festgelegt wurde. 

61 

18 CreateOverlapVariant2Trainingsset Erzeugung von Trainingssets deren Überlappungsbereich auf 30% 

der Größe des kleineren Teilsets festgelegt wurde. 

61 

19 CreateOverlapVariant3Trainingsset Erzeugung von Trainingssets deren Überlappungsbereich auf 3% 

der Größe des kleineren Teilsets festgelegt wurde. 

61 

20 CreateDistributionVariant1Trainingsset Erzeugung von Trainingssets in denen die Werteverteilungen der 

Patienten gleichverteilt wurden. 

61 

21 AutomateTrainingsetProduction Klasse die die Produktion der 9600 Trainingssetvarianten 

automatisiert. 

63 

22 CreateFinalTrainingsset Trainingsseterzeugung entsprechend dem CLARA Konzept. 63 

23 SingleLinkageNAIV Vereinfachung des Single Linkage Clusterings. Da es sich bei 

Gewichtsdateien um eindimensionale Daten handelt ist der 

Algorithmus trivial und bestimmt die größten Abstände in den 

Gewichtsdateien als Schrankenwert. 

64 

24 KNN_Seed1 Neares-Neighbour-Algorithmus mit k = 3 und Seedmenge nach 

Formel 17 und negativem Seetanteil von 5% bestimmt. 

66 

25 KNN_Seed2 Neares-Neighbour-Algorithmus. Die Seedmengen wurden per 

Treshhold festgelegt. Oberer Schrankenwert liegt hierbei bei +45 

unterer Schrankenwert bei -15. 

66 

26 CreateHistogramms Erzeugung von 400 Histogrammen zu den Testsets . 67 

 

Einsicht in den Quellcode der Programme kann beim Autor dieser Arbeit direkt beantrag werden. 
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F. Histogramm-Übersicht der Testdatensätze 
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