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1. Introduction 
 

Influenza A viruses (IAV) are important pathogens in the field of veterinary medicine, but 

also in the public health sector as emerging and re-emerging zoonotic disease. They infect a 

wide range of different species: such as wild birds, poultry and mammalian species including 

humans. Currently several subtypes are known and differentiated on the basis of their 

antigenic surface proteins. Influenza A viruses transfer in-between their reservoir host with 

constantly recurrent spill over infection to livestock animals and humans. Resulting illness in 

humans extends from mild symptoms to severe acute respiratory infections. Influenza A 

viruses are also of great importance for the livestock industry particularly for the swine and 

poultry production sectors. Especially in the poultry industry, IAV can cause enormous 

economic damages due to the stamping out policy asserted for Influenza A subtypes H5 and 

H7 in Europe. A characteristic of Influenza A viruses is the ability to adapt quickly and 

efficient to environmental (host) changes. These changes may result in variants escaping the 

immune response of the host after the administration of vaccines or become resistant to 

antiviral agents on an individual host level.  

However little is known about molecular mechanisms of Influenza evolution in inadequate 

vaccinated flocks and resulting escape mutant viruses. This thesis focusses on the 

characterization of an H5N1 escape mutant generated by passages of a highly pathogenic 

avian influenza virus of the subtype H5N1 with an antiserum. Using this in vitro approach the 

multiple replication cycles of an highly pathogenic avian influenza within an insufficiently 

vaccinated poultry flock was simulated. The characterized attenuated H5 escape mutant was 

also used as a vaccine model for the induction of an early onset of immunity in birds as well 

as in mammals. Using this modified live virus vaccine candidate an easy to administer, highly 

efficacious “single shot” preparation could be generated.   
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2. Literature Review 

2.1. Influenza A viruses 

2.1.1. Taxonomy  
 

Influenza viruses are segmented, negative stranded RNA viruses and belong to the virus 

family Orthomyxoviridae (41). Based on the number of segments of linear, single stranded 

RNA and the antigenic differences of the matrix as well as nucleoprotein the particles are 

classified by the genera Influenza A, B and C (41). Influenza A viruses are highly 

heterogeneous and can cause diseases in mammals as well as birds. In contrast influenza B 

viruses occur in humans and marine mammals, while influenza C viruses infect human as 

well as pigs (40, 69). Influenza A viruses are further classified by antigenic properties of their 

surface proteins: the haemagglutinin (HA) and the neuraminidase (NA). To date, a total 

number of 18 different HA and 11 different NA subtypes are recognized. Two subtypes were 

quite recently sequenced from samples out of South American bat species (10, 102, 103). 

Due to a considerable high number of data belonging to different isolates which were 

collected during the last decades, the introduction of additional terms and classifications 

was necessary. Therefore, the World Health Organization (WHO) has published a 

memorandum in 1980 and standardized the nomenclature of influenza A viruses. The 

nomenclature includes now Influenza genera, host species (omitted if human origin), 

geographical sites, serial numbers and the year of the isolate as well as the HA and NA 

subtypes (111). For example, the main Influenza strain included in this script is cited as 

“A/swan/Germany/R65/2006 (H5N1)”. In addition, AIV are classified into highly pathogenic 

avian influenza viruses (HPAIV), that cause nearly 100% mortality rate in gallinaceous birds, 

and into low pathogenic avian influenza strains (LPAIV) resulting in milder symptoms or even 

subclinical infections (97). 

2.1.2. The viral genome, virion structure and replication 
 

Orthomyxoviridae are spherical or pleomorphic, meaning that they differ enormously in 

shape and size. Electron microscopy analyses showed rods and spherical structures with 
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diameters from 80 nm to 120 nm after in vitro cultivation and passaging, while filamentous 

particles were found for non-passaged virus isolates (41). The genome of Influenza A viruses 

comprises about 13.600 nucleotides (nt) and is split into eight individual segments, with 

segment sizes ranging from 890 to 2341 nt. The whole genome encodes for 15 known 

proteins, some of them with partially unknown functions. Within the virus particle, each RNA 

segment is associated with one polymerase complex, consisting of the polymerase basic 

protein 1 (PB1), polymerase basic protein 2 (PB2), polymerase acidic protein (PA) and 

multiple copies of the nucleoprotein (NP) (76). The 3’ - end and the 5’ - end of the RNA 

strand are complementary to each other and form a coiled panhandle like-structure with the 

polymerase complex (Figure 1). These so-called “ribonucleoprotein complexes” (RNP) are 

arranged in a typical rod-like structure (32) - one RNP in the middle surrounded by seven 

additional RNPs (67).  

 

Figure 1: Influenza A ribonucleoprotein complex (© Paul Digard, Dept Pathology, University of 
Cambridge) 

 

The matrix protein 1 (M1) links RNPs with the viral envelope within the virus particle. The 

host cell derived lipid membrane encircles all complexes (67) (Figure 2). Within the viral 

envelope, the matrix protein 2 (M2) is embedded and serves as an ion channel (80). The two 

glycoproteins HA and NA are also anchored in the viral membrane and create surface 

projections of 10 to 14 nm out of the lipid bilayer (41).  
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Figure 2: Influenza A virion composition – scheme and electron microscopy (©Friedrich-Loeffler-

Institut, Insel Riems Bundesforschungsinstitut für Tiergesundheit; Elektronenmikroskopie: Dr. habil. 

H. Granzow; Grafikdesign M. Jörn) 

The first and essential step for virus replication is the binding of the HA to α 2.6 or α 2.3 sialic 

acids on the host cell surface (83). The virion gets into the cell via endocytosis, followed by 

the acidification of the vesicle and conformational change of the HA protein, which induces 

the membrane fusion and causes the release of the ribonucleoprotein complex into the 

cytoplasm (83). Furthermore, the M2 channel carries protons to separate the M1 protein 

from the ribonucleoprotein complex (85) and the RNP complex migrates through nuclear 

pores into the cell nucleus (54, 68). In the nucleus, the PB2 protein binds to the 3’- end of 

the cellular messenger RNA (mRNA) and adsorbs the so called 5’ - cap group on the 3’ - end 

of the viral RNA (vRNA). This step, called “cap snatching”, is essential for viral replication due 

to the fact, that the viral RNA dependent RNA polymerase is not able to induce the 

transcription process (24, 62). The so prepared vRNA is transcribed into mRNA by the viral 

polymerase (67). Viral mRNA is transported from the nucleus to the endoplasmatic reticulum 

and is used for translation into viral proteins. Those proteins are translocated back into the 

nucleus. Replication of the viral RNA starts when the concentration of NP is sufficiently high 

(76). High amounts of M1 together with the polymerase complex trigger NP attachment to 

M1. The NP-M1 complex is  transported by the non-structural protein 2 (NS2) from the 

nucleus to the cytoplasm and through the Golgi apparatus to the cell membrane (56). All 

viral components accumulate at the cell membrane and leave the cell via a budding process 

(67, 81). The NS1 protein inhibits the cellular interferon response and blocks the cellular 

repair and protection mechanisms throughout the whole replication cycle. Properties and 
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functions of Influence A segments and their corresponding proteins are shown in table 1 (6, 

33, 61, 113). 

        

Table 1: Overview of Influenza A segments and encoding proteins (table adapted from (6)) 
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2.1.3.  The Haemagglutinin (HA) 
 

The HA surface protein is a typical type I membrane glycoprotein, which consists of a 

homotrimeric structure (92). The protein is initially synthesized as precursor protein HA0 

(90). The HA serves as receptor binding protein for Influenza A viruses and has to be cleaved 

to achieve its second biological function - the induction of membrane fusion of virus and 

endosomal membrane (90). Cellular enzymes are responsible for the cleavage of the 

precursor HA0 into the subunits HA1 and HA2, which stay connected by disulphide-bonds 

(90). The cleavage site of the HA is an important pathogenicity factor for avian influenza 

viruses of subtype H5 and H7 (90). Low pathogenic influenza viruses exhibit a monobasic 

cleavage site and therefore represent the cleavage motif of trypsin-like proteases, which are 

present in the avian respiratory and gastrointestinal tract but not in brain (77). In contrast, 

highly pathogenic avian influenza viruses have a polybasic cleavage site within the HA 

protein that is recognized by ubiquitous cellular proteases (37). See also figure 3. 

Figure 3: A) Structure of the HA0 monomer and cleaved HA (11). Cleavage site: yellow, HA1: blue, 
HA2: red. B) Cleavage of HA0 into the disulfide linked subunits HA1 and HA2 at a specific cleavage 
site. TM: transmembrane domain (figures and text originated from (18) 

The globular head of the protein is formed by the HA1 subunit and includes the receptor 

binding site (RBS) (90). This RBS binds to sialic acids present on glycoproteins and glycolipids 

implemented within the host cell plasma membrane (115). Avian influenza viruses prefer to 
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use sialic acids that are linked via α 2.3 sialic acids binding to galactose (115). In contrast, α 

2.6 linkage of sialic acids is more accessible for mammalian influenza A viruses (115). 

Accordingly, avian species primarily exhibit α 2.3 linked sialic acids in their respiratory and 

intestinal epithelia cells, while respiratory epithelia from mammalian species mainly present 

α 2.6 linked sialic acids (82). Host species with expression of both types of sialic acid linkage 

are of special interest since these hosts promote replication of avian influenza viruses as well 

as mammalian influenza viruses and can act as so-called “mixing vessel” (52). Swine and 

quail are considered the major host species that enable replication and therefore 

reassortment of avian influenza and mammalian influenza viruses (further details are 

presented in chapter “Antigenicity and viral evolution”) (100). After endocytotic uptake of 

the virus particle and acidification of the endosomal compartment, a conformational change 

of the HA structure exposes the fusion peptide of the HA2 subunit. Fusion between the viral 

envelopment and the endosomal membrane occurs after initialisation by insertion of the 

fusion peptide into the cellular membrane (95). 

2.1.4. The Neuraminidase (NA) 
 

The NA surface protein is a tetrameric glycosylated polypeptide of about 50 kilo Dalton 

(105). The cytoplasmic tail starts with six polar amino acids highly conserved in all Influenza 

A neuraminidase subtypes (12), followed by a transmembrane domain and a stalk region 

variable in length (46). The transmembrane region attaches the molecule firstly to the 

membrane of the endoplasmatic reticulum and later to the viral lipid membrane (1).  

On the top of the protein, 4 symmetrical and circularly arranged monomers form the head of 

the protein (104). This form is stabilized through metal ions in the middle of the symmetrical 

axes (12). Each monomer is formed by six identical beta sheets, which are collocated to each 

other similar to a propeller. The catalytic centre of the enzyme is located on the head 

domain, with functionality only in the tetrameric form (96).  

Based on the detailed structure of the active site of the enzyme, the neuraminidase protein 

subtypes are divided into two groups (96). Group 1 contains N1, N4, N5, and N8 and Group 2 

consists of N2, N3, N6, N7, and N9. The NA equivalents of the bat influenza viruses N10 and 
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N11 differ markedly from N1 to N9, but are not discussed in the context of the present work. 

(17).  

The substrates of the neuraminidase are α 2.3 - and α 2.6 - linked sialic acids and the enzyme 

releases the free sialic acid (1). As these substrates are the receptor of Influenza A viruses, 

the NA serves as receptor-destroying enzyme cleaving the receptors elements from the host 

cell plasma membrane and the viral envelopment (1). This cleavage step facilitates the 

budding process of progeny virions, release from the host cell and prohibition of 

agglutination of particles among themselves (70). In general, the NA protein seems to be 

essential for efficient initiation (55) and spread of the infection (60), but not for viral entry, 

replication, assembly, or budding (70). NA-negative viruses have been described (87) and 

those cases supplementation of bacterial sialidases is sufficient to allow effective replication 

of NA negative mutants (11, 30).  

2.1.5. Antigenicity and viral evolution 
 

Both viral glycoproteins HA and NA determine the antigenic subtype of influenza A viruses. 

The characterization of the different subtypes is achieved by the use of mono-specific 

antisera, which are reactive only against one a single subtype (43). Accordingly, HA and NA 

are the only proteins inducing neutralizing antibodies, and are therefore highly important for 

a protective immunity within the host (63). However, this implicates that humoral immunity 

is primarily subtype specific and does not prevent from infection with a heterologous 

subtype. In addition, antibodies against the HA protein are the main determinant for 

protection against the disease, while NA specific antibodies are less important (63). In 

addition antibody-mediated immune responses from the host can results in adaptive 

reactions (“immune escape”) of Influenza viruses and the consequence is further evolution 

of the respective strains. Influenza A viruses evolve by two different mechanisms: antigenic 

drift and antigenic shift (107). These mechanisms are responsible for an enormous plasticity 

of the genome of influenza A viruses. Antigenic drift refers to the adaption of viruses by 

point mutation due to the intrinsic error rate of the viral polymerase (91). This high error 

rate leads to the development of a viral quasispecies including many different genotypes 

(16). The initiation of a sorting process within the host depends on the level of fitness of the 
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different virus genotypes and promotes replication of adapted viral genotypes. Therefore, a 

certain immunogenic pressure from the host will always lead to an adapting quasispecies 

drift. These changes over time occur more likely within the antigenic relevant genes of HA 

and NA. Changes within the binding sites of neutralizing antibodies may result in viral 

mutants that escape from the immunogenic pressure. These so called “escape mutants” are 

able to replicate in the presence of the formerly protective antibodies (34). Antigenic shift 

may result in any of three scenarios: (a) the transmission of an antigenically distinct virus 

from one animal species to another that is immunologically naïve to the virus (e.g. the 

recent avian H7N9 virus spill-over infections in humans), (b) the emergence of an 

antigenically distinct virus from an intermediate host to a naïve population, which is 

particularly associated with a reassortment event (e.g. the pandemic H1N1 virus 2009 

resulted from reassortment events in swine and was then introduced into the human 

population), or (c) a reassortment event within the same host species (89). Reassortment 

allows the exchange of viral gene segments of two co-circulating viruses. Genetically new 

assembled viral particles from a dually infected cell are a result of exchange of viral 

segments by chance and called reassortants. In theory, this results in a possible number of 28 

different segment combinations from one dually infected cell. In practice, only a subset of 

combinations is viable due to dependencies between the viral segments (primarily within 

the polymerase encoding segments)(45). Some of the substitutions of the antigenically 

important proteins HA and NA, that occur due to reassortment events, can lead to the 

development of potentially pandemic influenza A viruses. The second scenario of antigenic 

shift refers to the mediation of reassortment in a special intermediate host. These hosts are 

able to promote the replication of mammalian and avian influenza A viruses, because of 

their receptor environment (see Chapter “Haemagglutinin”). Therefore, those “mixing 

vessel” species bring up most favourable reassortants from a combined avian and 

mammalian origin (52). 
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2.1.6. Ecology and Pathogenesis of avian influenza A viruses 
 

A large variety of low pathogenic avian influenza viruses (LPAIV) circulate in wild birds. Most 

of them are apathogenic or induce only mild clinical signs (89). The role of ducks and other 

aquatic birds as the main reservoir hosts is discussed (112). They seem to be responsible for 

the spread and transmission of avian influenza to poultry farms.  

Figure 4: Reservoir and transmission of Influenza A viruses. Figure adapted from (89). 

Ducks get infected with LPAI viruses via the oral route. The viruses mainly replicate in the 

intestinal tract and can be shed in high doses within the faeces (13). Therefore, transmission 

occurs primarily by the faecal–oral route by direct or indirect contact with contaminated 

surface water (89). In general, chickens infected with LPAIV only show mild clinical signs, if 

any, but secondary infections or the infection of juvenile birds may also cause clinical cases 

(97). Typical clinical signs in LPAIV-infected chickens are associated with the respiratory tract 

and include coughing, sneezing, rales, rattles and excessive lacrimation. Furthermore, 

animals can show unspecific signs like huddling, ruffled feathers, listlessness, decreased 

activity, decreased water and feed consumption and diarrhoea (97).  
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Up to today, only AIV of subtype H5 and H7 have caused outbreaks of highly pathogenic 

avian influenza viruses (HPAIV) previously known as ‘fowl plague’. These outbreaks emerge 

after transmission of a former LPAIV to poultry and subsequent mutation to and selection of 

HPAI by multiple bird passages (59). A well characterized example is the development of 

HPAIV H7N1 from a LPAIV precursor in Italy in 1999 (4).  

HPAIV infections in gallinaceous birds result in mortalities of up to 100% within 48 h (97). 

Chicken with peracute HPAIV infection show sever symptoms such as a comatose state, 

dehydration, diarrhea (see figure 3) and can die peracutely without any clinical sign. In case 

of an acute course of disease, individuals often also exhibit neurological dysfunction. 

Furthermore, especially gallinaceous birds show edematous (see figure 3), hemorrhagic and 

necrotic lesions in multiple organs as described by Swayne et al. (97). In contrast to LPAIV, 

the HPAIVs cause viremia and can be found in several organs. In addition, HPAIV replicates in 

the upper and lower respiratory tract and is also shed by the oronasal route (58). 

Before 2002, HPAIV have very rarely been isolated from wild birds and if so, only in close 

vicinity of ongoing outbreaks in poultry. However, this has recently dramatically changed 

with the HPAIV H5N1 outbreaks in wild birds like swans and geese in Europe and Asia (89). 

Experimental infection of ducks with HPAIV demonstrated that several species are able 

transmit the virus to chickens without showing any detectable clinical sign (31, 36). Hence, 

wild birds are now also considered as a reservoir host for HPAIV.  

              

Figure 5: Diarrhoea, apathy and oedema of chickens infected with HPAIV H5N1. 
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2.1.7. HPAIV H5N1 
 

HPAI viruses of subtype H5N1 originated from south China 1996 (106). During this time 

different LPAIVs circulated in wild waterfowls and reassortment events lead to the first 

HPAIV H5N1 strain – Goose/Guangdong/1/1996 - with a high mortality in domestic geese 

(116). Probably, infected commercial poultry were transported to Hong Kong and there the 

virus strain reassorted with LPAIV strains of subtype H9N2 and H6N1 (A/quail/HK/G1/97-

like; A/teal/HKW312/97-like). The new virus infected domestic birds as well as humans (88). 

In 2005 and 2006 this strain was detected in wild birds for the first time (89). The H5N1 

strain from 1996 was further circulating and caused several outbreaks in China. Additionally 

mutations in the stalk deletion changed the receptor specificity from the intestinal to the 

respiratory tract and domestic geese started to be the reservoirs host (15). In 2002 a novel 

H5N1 outbreak appeared with a new genotype of the Chinese strain, called “Z” (22). The “Z” 

strain was also introduced from China into poultry holdings in Hong Kong and could be 

isolated from wild birds (22). Since 2002, HPAIV H5N1 started to spread through South East 

Asia showing a variation into different clades (Thailand/Vietnam with clade 1 and Indonesia 

clade 2.1) (108). The main reservoir for these viruses was duck farms, and characteristically, 

only mild clinical signs were seen in ducks. However, these HPAIV H5N1 were shed and 

transmitted to other bird species, with very high mortality rates, especially in chickens and 

related bird species (108). 

In 2005 a huge outbreak of a new HPAIV H5N1 reassortant of clades 2.2 and 1 emerged in 

the Chinese Qinghai region. The novel virus spread efficiently via the flyways of migratory 

wild birds to Europe and Africa, and the first European outbreaks of HPAIV H5N1 in 2006 

were caused by migratory birds from the East (20). However, multiple sub lineages of the 

H5N1 strain of 1996 are still circulating till date. Since 2008 Egypt has an endemic status for 

HPAIV H5N1 of clade 2.2. Furthermore, different strains are also co-circulating in China until 

today (mainly clades 2.3.2, 2.3.4, 2.5, 4, 7 and the Qinghai lineage clade 2.2), and also 

Indonesia is endemic for H5N1 since 2006 (clade 2.1.3, 2.1.2 and 2.3.2.1) (89).  

Different reasons for the ongoing circulation and the strain variability can be designated: 1. 

Use of vaccines including antigens of clades which are genetically far away from the 
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circulating strains. 2. Backyard poultry farming and live bird markets with high risk of 

reassortment and transmission to animals as well as humans. 3. Inadequate surveillance. 4. 

on-going circulating of virus strains in waterfowl and wild birds (8, 98). Nevertheless, 

numerous effected regions like Europe, Hong Kong, Japan or Nigeria successfully eradicated 

H5N1 (89) by stamping out strategies and emerging vaccination.  



 

 

Figure 6: Timeline of major events of Goose/Guangdong/1/1996 HPAIV H5N1 evolution (89). 

Dates of major changes in the evolution of highly pathogenic H5N1, Goose/Guangdong/1/1996 – lineage, are shown. The expansion into different geographical 
areas is depicted, as is status in various hosts in different locations: solid lines show stable interactions between virus and hosts and dashed lines depict 
transient interactions. Blue lines represent aquatic poultry hosts, green lines terrestrial poultry hosts, and red lines wild birds hosts. SE Asia – South East Asia, 
GS/GD – goose/Guangdong, HK – Hong Kong (89) 
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2.2. Control and vaccination strategies 

2.2.1. Non-pharmaceutical intervention strategies  
 

Apart from vaccination and therapeutic treatment, non-pharmaceutical interventions are 

actions that help to reduce the risk of infection for individuals as well as for communities or 

animal holdings. While in human medicine the recommended methods target the informational 

communication to individuals and communities, the veterinary sector is also dealing with legally 

fixed sanctions (e.g. in Germany “Verordnung zum Schutz gegen die Geflügelpest (Geflügelpest-

Verordnung)”)(7). 

In the poultry sector, the main control strategies for the prevention of Influenza A virus 

infection are based on (a) continuous surveillance of livestock, (b) training of veterinarians and 

stockmen, (c) rapid diagnosis of H5 and H7 subtypes, (d) quarantine and movement bans, € 

disinfection of stabling and equipment and most importantly (f) stamping out strategies (8). 

These radical measures especially serve as a tool of transmission control. Therefore, the 

introduction of IAVs particularly of the subtypes H5 or H7, might cause enormous economic 

impacts as well. 

2.2.2. Vaccination 
 

Vaccines against influenza A virus infection that are licensed include inactivated whole virus 

vaccine preparations consisting of either one viral subtype (monovalent) or three viral subtypes 

(trivalent) (114). So-called split vaccines are also inactivated preparations where detergent 

mediated subvirion preparations are produced. These formulations show a reduction of 

reactivity and therefore are the most commonly used inactivated influenza vaccines for humans 

(44). Inactivated vaccines are safe as the agent is not able to replicate and therefore even in 

immunocompromised individuals an infection is not established (71). The immune response 

initiated by inactivated preparation is mostly humoral and needs to be boosted regularly (8). In 

contrast live attenuated virus formulations consist of replication competent particles. Although 
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the vaccine virus replicates, it does not induce disease as it was attenuated e.g. through cold 

adaptation(3). 

Live attenuated vaccines induce a broader immune response including cell mediated and 

mucosal immunity and are in some cases also able to induce cross protection against 

heterologous challenge infection (25, 35). However, drawbacks are the possibilities of 

transmission and reassortment of the vaccine virus strain with circulating strains and therefore 

live attenuated virus preparations are not an option for pre-pandemic control strategies (71). 

Recombinant vector vaccines are genetically engineered live non-influenza viruses (e.g. Fowlpox 

virus) that express influenza specific antigens (109). Therefore, these preparations are able to 

induce a broader immune response, but do not cause the risk of reassortment. The major 

disadvantage of some vectors is, that vector-specific antibodies including maternally derived 

antibodies can neutralize the vector and limit its efficacy with repeated use (8).  

2.2.3. Human vaccine 
 

Human influenza vaccines can be divided into two groups – pre-pandemic and seasonal vaccine 

preparations.  

The most widely used seasonal influenza vaccines include influenza A virus from subtype H3N2 

and H1N1 and influenza B strains. Twice a year the World Health Organization (WHO) 

determines the circulating influenza strains and decides which strains are included in the 

seasonal vaccine formulation (110). The decision is based on the global Influenza surveillance 

data of 137 WHO centres in 107 member states. Recently different researchers were working on 

mathematical models to forecast evolutional changes of circulating strains (51).  

Most of the formulations for humans are trivalent inactivated whole virus vaccines, 

“detergent”-split or subunit vaccines and in some cases adjuvanted for a stronger immune 

response. Mainly, the vaccines are produced in embryonated chicken eggs, concentrated, 

inactivated with formalin or beta-propiolactone and purified (114). Some newer vaccines are 

also produced in cell culture systems (72). Furthermore one trivalent live attenuated vaccine for 



23 

 

intranasal application is available in Europe (9). Seasonal influenza vaccines are mostly used for 

older or immunosuppressed people, except the live attenuated formulation, this is especially 

dedicated to children (114). 

In addition, in many countries, pre-pandemic vaccines, e.g. for H5 viruses, are stockpiled, these 

vaccines are in most cases monovalent, inactivated preparations using a single subtype, which 

was predicted to be responsible for future pandemic events (23). Actually such formulations are 

licensed for the subtype H5N1. The main challenge of these vaccines is to keep the preparations 

antigenically actual as e.g. H5N1 is ongoing to evolve (23). 

2.2.4. Poultry vaccines 
 

Since 1959, HPAIVs have caused 32 epizootics world wide (98). At the moment 59 vaccines 

against avian influenza are commercialized (27). In contrast to human vaccination strategies, 

there is no frequent update of the used vaccines and regulations are defined more locally. In 

Germany the generalized application of vaccines against avian influenza of subtype H5 and H7 is 

forbidden (7). There is the possibility to vaccinate only as an emerging strategy using 

preparations that allow the differentiation of vaccinated from infected animals (7). This was 

used for H5 e.g. in chickens in the Netherlands and for zoo birds in Germany (73). For the 

differentiation of vaccinated from infected animals certain serologic assays have to be on the 

market with corresponding vaccine preparations (94). Some of the inactivated vaccine 

preparations as well as vector vaccines full fill these requirements as the vaccines induce a 

serological response against a selected NA type (inactivated vaccines) or the vector-presented 

antigens (mostly the HA protein) (94). Serological tests for antibodies against internal proteins 

such as M1 or NP in combination with serological test against the selected NA type allows the 

differentiation of vaccinated animals from infected animals (Figure 5). 
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Figure 7: Differentiation of vaccinated animals from infected animals (DIVA strategy).  Infected animals 
show NP and HA antibodies, whereas e.g. vector-vaccinated ones only show HA-specific antibodies. 

Vaccines as a control strategy against HPAIV are used since 1994/95 (98). At this time public 

authorities of Mexico and Pakistan were forced to develop new strategies to control HPAIV 

H5N2 and H7N3 (42).  One major reason was that the usual culling strategies led to food 

shortage in the affected countries. Since this time poultry stocks in thirteen countries on the 

European, Asian and African continents were immunized against HPAIV strains of subtype H7 

and H5 (8). The majority of the used vaccines – about 99% - were used in areas enzootic for 

HPAIV H5N1 (98), this includes for example China, Egypt, Indonesia and Vietnam (5, 8, 66, 89).  

Most of the vaccines used at the moment are inactivated and adjuvanted full-virus vaccines of 

the circulating HPAIV as well as LPAIV H5/H7/H9 strains (95,5%) (98). However, these vaccine 

types do not induce a complete protection to the poultry, e.g. from virus replication and 

shedding (“sterile immunity”). In fact, this leads to the development of escape mutants by 

antigenic drift and therefore these vaccines should be adapted frequently (98). Furthermore, 

the induced immune response to these vaccines is reduced (14) and therefore also non-

permanent.  

Further used vaccines are live vector formulations licensed e.g. for chickens (Mexico/China 

Avian Paramyxovirus type 1; USA/ Mexico Fowlpox virus; USA/Egypt Herpesvirus Turkey)(98). 

Liu et. al developed a duck enteritis virus vector vaccine for ducks and submitted it for license in 

2012 (49). 
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Although vaccines were able to minimize the total number of infected countries, there are still 

regions endemic for HPAIV (8). In addition these vaccination campaigns lead to substantial 

antigenic drift of the circulating influenza viruses (21, 38).  

Further vector vaccines are under development (Avian Leukosis virus; replication-defective 

Adenovirus; Infectious Laryngotracheitis virus; Salmonella typhimurium; Equine-Encephalitis 

virus (98)) as well as live vaccines, which based on LPIAV H5 or H7 strains or – similar to human 

strains – temperature sensitive, attenuated H5 and H7 strains (8). 

2.2.5. Antivirals 
 

Antiviral drugs are in addition to vaccine strategies used as control agents in humans.  

Especially for new strains there are no other options for infection control. During the last 

decades some influenza A strains developed resistance to antiviral drugs like Oseltamivir, 

Amantadine and Flumadine the usage of these drugs has to be well considered, controlled and 

as far as practicable minimized (75). 

Oseltamivir phosphate (Tamiflu®) and Zanamivir (Relanza®) inhibit the NA of influenza A and B 

viruses and prohibit the viral spreading in the early infection stage (60). It must be administered 

as early as possible, while the peak of replication of Influenza A in the respiratory tract is 

between 24 and 72 hours after the onset of illness (60). Zanamivir is available as a dry powder 

to inhale the substance orally, whereas Oseltamivir can only be absorbed orally, when absorbed 

in the gastro intestinal tract, hepatic esterases convert it to the active form. It was shown that 

application of neuraminidase inhibitors leads to a lower frequency of secondary complications, 

shorter periods of influenza typical symptoms like depression and fever (60). However, escape 

from antivirals like NA-inhibitors are well known and several responsible mutations have been 

demonstrated (28, 99, 101). Detected example strains and substitutions are listed in table 2. 
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Influenza type Amino acid substitution Strain 
N1 H274Y H1N1 pandemic 2009 
N2 E119V endemic H3N2 
N2 R292K Endemic H3N2 

Influenza B D198N/E  
N9 R292K H7N9 

Table 2: Strains and amino acid substitutions (50, 65) detected 2003/04; 2007 to 09 and 2014. 

M2 channel inhibitors like Amantadine (Symmetrel®) or Rimantandine (Flumadine®) can also be 

used against influenza, but they are only effective against Influenza A viruses and several toxic 

side effects are described. Additionally they induce rapid emergence of drug resistant (74). 
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3.1. Abstract 
 

Influenza viruses are highly genetically variable and escape from immunogenic pressure by 

antigenic changes in their surface proteins referred to as antigenic drift and antigenic shift. To 

assess the potential genetic plasticity under strong selection pressure, highly pathogenic avian 

influenza virus (HPAIV) of subtype H5N1 was passaged in embryonated chicken eggs in the 

presence of a neutralizing, polyclonal chicken serum for 50 times. The resulting mutant had 

acquired major alterations in the neuraminidase (NA)-encoding segment. Extensive deletions 

and rearrangements were detected in contrast to only 12 amino acid substitutions within all 

other segments. Interestingly, this new neuraminidase segment resulted from complex 

sequence shuffling and insertion of a short fragment originating from the PA segment. 

Characterization of that novel variant revealed a loss of the neuraminidase protein and 

enzymatic activity, but its replication efficiency remained comparable to the wild-type. Using 

reverse genetics, a recombinant virus consisting of the wild-type backbone and the shortened 

NA-segment could be generated, however, required the polybasic hemagglutinin cleavage site. 

Two independent repetitions starting with egg passage 30 in the presence of alternative 

chicken-derived immune sera selected mutants with similar but different large deletions within 

the NA segment without any neuraminidase activity, indicating a general mechanism. In 

chicken, these virus variants were avirulent despite the still present HPAIV polybasic 

hemagglutinin cleavage site. Overall, the variants reported here are the first HPAIV H5N1-

viruses without functional neuraminidase which grow efficiently without any helper factor. 

These novel HPAIV variants may facilitate future studies shedding light on the neuraminidase in 

virus replication and pathogenicity. 
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3.2. Introduction 
 

Highly pathogenic avian influenza viruses (HPAIV) of the subtype H5N1 have been circulating in 

many regions in Asia and Africa for up to 10 years (1) raising concerns of an influenza pandemic.  

While wild waterfowl serves as a virus reservoir, poultry - primarily chicken - infected with 

HPAIV H5N1 succumb to death due to a devastating disease. In addition, the currently used 

control measures (2) like culling of infected birds, restriction of movement, enforcement of 

biosecurity, and surveillance lead to severe economic losses in the poultry industry worldwide. 

Vaccination against HPAIV H5N1 using inactivated virus preparations was implemented 

particularly in developing countries to combat the disease. However, as influenza A viruses 

continue to change their antigenicity by antigenic drift, due to base exchanges introduced 

during the error prone genome replication by the viral polymerase complex, and by antigenic 

shift, which results from reassortment of genome segments from two viruses (3), vaccines have 

to be adapted regularly. For application in humans, the world health organization (WHO) 

predetermines the vaccine composition each season. In the veterinary field, non-homologous 

vaccines are used, often resulting in non-sterile immunity in the vaccinated poultry flocks and 

thus without disruption of infection chains. In consequence, infection of those partially 

protected birds by circulating recent HPAIV H5N1 leads to the continuous emergence of escape 

variants (4-6) with an altered antigenic repertoire (6). These viruses are not neutralized by the 

antibodies present in the vaccinated flocks; hence the animals are not fully protected as 

demonstrated by the re-occurrence of morbidity and mortality (4).   

The phenomenon of antigenic escape was classically investigated by the characterization of 

escape variants generated in vitro by virus passaging in the presence of monoclonal antibodies 

(7, 8). While antigenic sites were hereby identified successfully, such a rather artificial selection 

is limited to epitope-specific variation only. However, in silico analysis of the evolution of both 

viral surface proteins, i. e. the hemagglutinin (HA) and neuraminidase (NA), revealed several 

epistatic mutations, highlighting that immunoescape is a polygenic trait (9). In addition, we 

could show recently that cell-culture passaging of HPAIV H5N1 under the selection pressure of a 
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polyclonal chicken-derived serum resulted in attenuated viruses with numerous point mutations 

in several segments (10). To assess the immunoescape enabled by the considerable genetic 

plasticity of influenza A viruses under strong, more authentic selection pressure closer to 

conditions in vivo, we passaged an HPAIV H5N1 strain 50 times in the presence of a polyclonal 

antiserum in embryonated chicken eggs. In contrast to our previous in vitro study (10), this 

experimental approach resulted in replication-competent and stable neuraminidase-negative 

attenuated H5N1 viruses with large intra-segmental deletions in segment 6 causing a complete 

loss of neuraminidase activity. Their generation along with the in vitro and in vivo features are 

subject of this study. 

3.3. Material and Methods 
 

All experiments using HPAIV H5N1 were conducted in biosafety level 3+ containment facilities at 

the Friedrich-Loeffler-Institut (FLI), Greifswald – Insel Riems, Germany. 

Viruses and sera 

Ancestor virus for passaging was the 3rd (egg culture) passage of the reference strain A/cygnus 

cygnus/Germany/R65/2006 (H5N1) (11). The initial serum (serum A) used to implement 

neutralizing pressure originated from an individual chicken vaccinated twice with a commercial 

inactivated vaccine of the H5N2 subtype (Nobilis Influenza H5N2, Intervet, Unterschleißheim, 

Germany) and afterwards boostered with a challenge infection using HPAIV H5N1 R65/p17 (a 

passaged, but highly related variant of the original R65 strain). This immunization procedure 

was selected to allow the development of a maximum of serum antibodies against 

immunogenic influenza virus proteins, which would enable an efficient immunogenic pressure 

to HPAIV H5N1 (immunization schedule data available upon request). The immune-serum from 

another chicken (serum B) also vaccinated twice with the inactivated H5N2 vaccine and 

challenged with HPAIV R65/p17 was used as a second test serum for both the neutralization test 

and for passaging the 30th passage of H5N1 R65 in the repetition experiment generating the 

second escape variant virus EscEgg50B. A third serum (serum C) originating from a chicken 

vaccinated once with the commercial inactivated H5N2 vaccine and afterwards challenged with 
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the original HPAIV H5N1 R65/06 (serum C) was used for the generation of the third escape 

variant virus EscEgg50C. All three sera were further characterized using the hemagglutination 

inhibition test (HI; see below) against the ancestor virus H5N1 R65 scoring with the same HI-

titer of 1:128. The HI-value of the three sera is comparable to titers reported for similar 

experiments (12), and also for chicken-sera from an evaluation study under field conditions 

using the H5N2 vaccine and the HPAIV H5N1 R65 challenge infection (13). Furthermore, sera B 

and C (serum A was completely used for passaging, the neutralization testing, and the HI-assay, 

and was therefore not longer available) were tested using a commercial ELISA assay for the 

detection of antibodies against the N1-protein (ID Screen® Influenza N1 Antibody Competition 

ELISA kit, ID-vet, Montpellier, France). Both sera scored negative in the N1-ELISA.  

In addition, sera B and C as well as a negative commercially available chicken serum (Sigma 

Aldrich) were tested in dilutions from 1:2 to 1:512 against a defined amount of ancestor virus 

H5N1 strain R65 using a neuraminidase activity test (see below). Interestingly, there was an 

inhibitory effect to the neuraminidase activity detectable in the antibody positive sera that was 

dilutable, and values recorded for the non-immunized control chicken serum were statistically 

different from the data collected for the immune sera B and C (data not shown Students T-test). 

 

Passaging in egg-culture 

The principle steps for passaging virus under positive serum pressure were as follows: Virus was 

incubated with eight different antiserum dilutions at room temperature in 0.2 ml Dulbecco 

modified Eagle medium supplemented with 5% fetal calf serum for one hour with gentle 

agitation. Subsequently, eight embryonated specific pathogen free (SPF) chicken eggs (10 days 

old) were inoculated with one of the antiserum-incubated virus preparations each via the 

allantoic cavity and checked daily for embryonic death. Five days after inoculation, allantois fluid 

was harvested and MDCK cells (collection of cell lines in veterinary medicine, FLI Insel Riems, 

RIE1061) were inoculated with 50 µl of the allantois fluid. After incubation of the cells for three 

days, the cytopathic effect was assessed via light microscopy. The virus from that allantois fluid 

with the maximum serum amount still allowing viral growth was chosen for the next egg 

passage.  
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In total, 50 egg passages using a single polyclonal antiserum (serum A) were done resulting in 

the virus EscEgg50A (A/hen's egg/Germany/[A/cygnus cygnus/Germany/R65/2006]-EscEgg50-

escape/2009 (H5N1)). A control virus was mock-passaged without serum in egg culture 50 times 

in parallel (CoEgg50). Starting with the 30th passage of the experiment two additional distinct 

escape variants (EscEgg50B, EscEgg50C) were generated by passaging in egg culture (until 50 

passages were achieved) in the presence of two different polyclonal sera from chickens (serum 

B and C).  

 

Whole genome sequencing 

EscEgg50A and CoEgg50 were sequenced with a Genome Sequencer FLX (GS FLX; Roche, 

Mannheim, Germany) according to the protocol of Höper and co-workers (14) with the 

modifications of Leifer and colleagues (15). EscEgg50A was in addition sequenced after 

preparation of a randomly primed cDNA sequencing library for Titanium sequencing with the GS 

FLX according to the manufacturer’s protocol. Moreover, after RT-PCR amplification of segment 

6 of the ancestor virus, EscEgg50A, and viruses from intermediate passages (primer sequences 

available upon request), DNAs were sequenced with the Genome Sequencer FLX according to 

the manufacturer’s recommendations. Raw data was analyzed using software provided with the 

Genome Sequencer FLX. In addition, the NA-segments of EscEgg50A, EscEgg50B, and EscEgg50C 

and the HA-segment of EscEgg50Arec were sequenced using classical Sanger sequencing (16). 

Moreover, the 3’- and 5’-termini of the EscEgg50A segment 6 were determined by classical 

Sanger sequencing after rapid amplification of cDNA ends (3’ and 5’ RACE System for Rapid 

Amplification of cDNA Ends; Invitrogen, Darmstadt, Germany). 

The rearrangement of the EscEgg50A, B, C segments 6 was analyzed using Mauve (v 2.3.1.; (17)) 

with the MauveAligner algorithm. The coordinates of the rearrangements were then used for 

plotting the rearrangement graph in R (18). 

 

Generation of recombinant viruses 

The ancestor virus R65/06 and the mutants were generated by reverse genetics techniques 

according to (19, 20). To obtain a plasmid encoding the EscEgg50A NA, we performed target-
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primed plasmid amplification using the pHW2000-R65NP plasmid (26) and the full-length PCR-

amplicon.  

We constructed a pHW2000 EscEgg50A NAdel plasmid by mutating the start codon ATG (nt 21-

23) to ACG (primer sequence available upon request). Furthermore, we generated a pHW2000 

segment 6 EGFP-expressing plasmid carrying the first 118 nucleotides from segment 6 (like 

EscEgg50C) upstream to the EGFP encoding sequence followed by the 77 terminal nucleotides 

from segment 6 (like EscEgg50A). The four ATG-triplets within the first 118 nucleotides were 

silently mutated resulting in a first start codon at position 116 for expression of the EGFP 

protein. 

 

Neutralization assay  

The virus neutralization test (VNT) was performed according to a previously described 

procedure (21) with a few modifications. In brief, serum samples were heat inactivated for 30 

min at 56°C, and 3-fold serial dilutions were prepared in a 50 μl volume of cell culture medium 

in 96-well plates. The diluted serum samples were mixed with an equal volume of medium 

containing R65/06, the escape mutant EscEgg50A, or the passaged control virus CoEgg50 at a 

concentration of 102 TCID50/well. After 1 h incubation at 37°C in a 5% CO2 humidified 

atmosphere, 100 μl of MDCK cells at 1.5 × 105/ml were added to each well. The plates were 

incubated for 3 days at 37°C and 5% CO2. Viral replication was assessed by visually scoring the 

cytopathic effect without staining. Each assay was validated by comparison with positive and 

negative control sera from chicken and by titration of the used virus dilutions. Results were 

statistically evaluated by using a one way ANOVA analysis.  

 

Viral growth kinetics and Plaque size measurement 

Growth kinetics were assed on MDCK cells by infecting the cells with a multiplicity of infection 

(MOI) of 1 or 0.01 respectively. At the indicated times after infection, intra- and extracellular 

virus titres were determined. 

To examine virus induced plaque sizes, MDCK cells were seeded in six-well plates (Nunc, Thermo 

Fisher Scientific, Langenselbold, Germany), and infected with R65/06, EscEgg50A and 
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EscEgg50Arec using a MOI of 0.01. Twenty-four hours after infection under an agarose overlay, 

plaque diameters of 50 randomly selected plaques of each virus were determined (after fixation 

and staining against NP protein, see below) and mean diameters and standard errors were 

calculated. Values for the parental strain R65/06 were set to 100 % and the plaque diameters 

observed for the mutant viruses were expressed relative to this value.  

Viral growth analysis after supplementation of bacterial sialidase was performed on MDCK cells 

incubated for 2h in the presence of 1U Clostridium perfringens neuraminidase (Roche 

Diagnostics, Mannheim, Germany) per ml. Afterwards, the cell culture was infected with an MOI 

of 0.1, still in the presence of the bacterial sialidase. The viral titers of the supernatants were 

determined after 24h and 48h incubation time. Analysis of variance by Kruskal-Wallis was used 

to determine the statistical relevance of the collected data. 

 

Hemagglutination assay 

Hemagglutination activity was determined in microtiter plates by using 0.5% chicken 

erythrocytes. The reactions were performed in phosphate-buffered saline (PBS) at room 

temperature (approximately 20°C). 

 

Hemagglutination inhibition assay 

The hemagglutination inhibition assay was conducted as described in the OIE Manual of 

Diagnostic Tests and Vaccines for Terrestrial Animals (22). 

 

Indirect immunofluorescence assay 

MDCK cells grown on coverslips in 4-well culture plates (Lab-Tek™ Chamber Slide™ System, 

Nunc, Thermo Fisher Scientific, Langenselbold, Germany) were infected with EscEgg50A virus or 

the ancestor virus R65/06, respectively, and incubated for 72 h. Subsequently, the cells were 

fixed with methanol acetone (1:1) for 30 min. For the detection of NA and NP protein, the fixed 

cells on the coverslips were incubated in the given order with the following monoclonal 

antibodies each for 60 min at room temperature: (i) Mouse anti-N1 monoclonal antibody (N1 

18.2.5 Malte Dauber, Friedrich-Loeffler-Institut, Greifswald, Germany) diluted 1:5 in PBS. (ii) 
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Alexa Fluor® 488 goat anti-mouse IgG (Invitrogen, Life technologies, Darmstadt, Germany) 

diluted 1:1,000 in PBS as secondary antibody. (iii) Anti-NP monoclonal antibody (ATCC, HB-65) 

diluted 1:20 in PBS. (iv) Alexa Fluor® 546 donkey anti-mouse IgG secondary antibody 

(Invitrogen) diluted 1:1,000 in PBS. Fluorescence was detected using an Axioskop (Zeiss, Jena, 

Germany). 

 

Western blot analysis 

Forty-eight hours after infection, MDCK cells infected with EscEgg50A or the ancestor virus 

R65/06 were lysed by a freeze/thaw procedure in extraction buffer (1% Triton X-100, 2 mM 

EDTA, 0.15 M NaCl, 20 mM Na2HPO4, pH 7.6) containing proteinase inhibitor “Complete Mini” 

(Roche Diagnostics, Mannheim, Germany). The resulting protein extracts and PageRuler™ 

Prestained Protein Ladder (Thermo Fisher Scientific) were separated on a 10% SDS-

polyacrylamide gel under reducing conditions and transferred to nitrocellulose membranes 

(Whatman, Dassel, Germany) by wet western methodology. After blocking overnight in Tris-

buffered saline supplemented with 0.1% Tween (TBS-T) and 5% skim milk, the blot was 

incubated with the anti-HA antibody (23) diluted 1:5,000 in TBS-T or the anti-N1 antibody (23) 

diluted 1: 5,000 in TBS-T. As secondary antibody, a horseradish peroxidase conjugated anti-

mouse antibody (Dianova, Hamburg, Germany) diluted 1:20,000 in TBS-T was used. Antibody 

binding was visualized by chemiluminescence (Supersignal West Pico Chemiluminescence Kit; 

Pierce, Bonn, Germany) using ChemoCam System (Intas, Göttingen, Germany).  

 

Reverse transcription real-time PCR assays 

RNA extraction from allantois fluid was performed using the QIAamp Viral RNA Mini Kit (Qiagen, 

Hilden, Germany) according to the manufacturer’s recommendations. The NA-truncation 

specific reverse transcription real-time PCR (RT-qPCR) assay was optimized to work with a probe 

complementary to an ancestor sequence maintained within the EscEgg50A segment 6 sequence 

and EscEgg50A virus segment 6 specific primers (sequences available upon request). In addition, 

H5 and N1 specific sequences were detected in a duplex RT-qPCR (24). A heterologous internal 

control system (25) was detected as extraction control. The EscEgg50A-specific RT-qPCR assay 
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was carried out using the AgPath-ID™ One-Step RT-PCR Kit (Ambion, Applied Biosystems, Life 

Technologies, Darmstadt, Germany). A total reaction volume of 25 µl containing 4 µl RNase-free 

water, 12.5 µl 2X AgPath-ID™ One-Step RT-PCR master mix, 1 µl AgPath-ID™ One-Step RT-PCR 

enzyme mix, 1.25 µl NA-specific FAM-labeled primer-probe-mix, 1.25 µl extraction control-

specific HEX-labeled primer-probe-mix and finally 5 µl RNA template were merged. The assay 

was run on the ABI 7500 real-time PCR system (Applied Biosystems, Life Technologies, 

Darmstadt, Germany). The following thermal profile was used: reverse transcription at 45°C for 

10 min, PCR initial activation step at 95°C for 10 min, 42 cycles of three-step cycling consisting of 

denaturation at 95°C for 15 sec, annealing at 55°C for 20 s, and extension at 72°C for 30 s.  

 

Neuraminidase activity assay 

The ancestor virus R65, the control virus CoEgg50, the escape variant EscEgg50A, and the 

recombinant escape variant EscEgg50Arec (see below) were inactivated using 1.5 mM binary 

ethylene-imine (26) before downstream processing. All virus preparations were adjusted to the 

same genome load quantified by RT-qPCR analysis of viral segment 7 (27). Subsequently, the 

neuraminidase activity was measured using the NA-XTD™ Influenza Neuraminidase Assay Kit 

(Applied Biosystems) according to the manufacturer’s instructions. The luminescence was 

determined on a Tecan infinite 200 instrument (Tecan, Crailsheim, Germany). The 

neuraminidase activity was examined with or without applying the neuraminidase inhibitor 

oseltamivir carboxylate (10.56 nM, 256 nM, and 6600 nM; Hoffmann – La Roche Inc., Nutley, 

USA). Except for the recombinant virus EscEgg50Arec neuraminidase activity was determined 

from two independent virus preparations in each four replicates. For EscEgg50Arec, only a 

single virus preparation was measured in 4 replicates for each inhibitor concentration. A “no 

virus control” was included for every inhibitor concentration. After normalization of the raw 

data, the signal intensities were divided by the respective “no virus control” average signal to 

get adjusted values for every inhibitor/virus combination. For comparison, the reference viruses 

A/Mississippi/3/2001 (H1N1) wild type (274H) and the neuraminidase inhibitor resistant 

A/Mississippi/3/2001 (H1N1) Mutant (274Y) kindly provided by the Neuraminidase Inhibitor 

Susceptibility Network (NISN) were included.  
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Animal experiments 

The animal trials gained governmental approval under the registration number LVL 

MV/TSD/7221.3-1.1-003/07. 

Intravenous pathogenicity index (IVPI) 

The determination of the intravenous pathogenicity index (IVPI) according to the OIE standard 

protocol (22) is the appropriate test to assess the pathogenicity of a certain influenza virus 

strain in avian species. The IVPI indicates the mean clinical score of ten 6-weeks-old chickens 

after intravenous inoculation. Thereto, groups of ten SPF chickens (Lohmann Tierzucht, 

Cuxhaven, Germany) were infected intravenously with the indicated viruses at 104.5 

TCID50/animal. Birds are scored on a scale ranging from 0 to 3, with 0 (healthy), 1 (sick), 2 

(severely sick), 3 (dead). After ten days of evaluation, the IVPI is calculated as the average 

scoring of 10 birds on 10 days. Viruses are classified as highly pathogenic if their IVPI is 1.2 or 

higher (22). 

Oronasal infection 

Ten SPF-chicken were housed together and infected with the indicated viruses by oronasal 

application of 104.5 TCID50/animal. Another group of ten SPF chickens was infected oronasally 

with 104.5 TCID50/animal of the control virus CoEgg50. The chickens were checked daily for 

clinical symptoms and fourteen days after inoculation serum samples of individual chicken were 

taken. Thereafter, surviving chickens were challenged by oronasal application of 106 

TCID50/animal of the ancestor virus R65/06. Serum samples from surviving animals were taken 

nine days post challenge.  

 

Serological analysis 

Pre-experimental serum samples of individual chickens and samples from surviving animals 

were heat-inactivated at 56°C for 30 min and examined for the presence of antibodies against 

the nucleoprotein of avian influenza A virus (ID Screen® Influenza A Antibody Competition ELISA 

kit, ID-vet, Montpellier, France), antibodies against the H5-protein (ID Screen® Influenza H5 

Antibody Competition ELISA kit, ID-vet), and finally antibodies against the N1-protein (ID 
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Screen® Influenza N1 Antibody Competition ELISA kit, ID-vet). Sera were also tested by an in 

vitro neutralization assay (described above) using the ancestor virus R65/06 to be neutralized. 

 

3.4. Results 
 

To simulate the selection and emergence of an escape H5 virus in a vaccinated flock of chicken, 

an H5N1 virus was forced to replicate under the multifarious immunogenic pressure applied by 

a polyclonal chicken serum. The ancestor virus HPAIV A/Swan/Germany/R65/2006 (H5N1) 

(R65/06) (11) was passaged fifty times in egg-culture in the presence of a polyclonal chicken 

serum (serum A) resulting in the escape variant virus “EscEgg50A”. A control virus that was 

mock-passaged fifty times in egg culture without serum was designated “CoEgg50”. 

 

EscEgg50A is a novel H5N1 variant with a unique truncation and sequence shuffling within 

segment 6 including inter-segmental recombination 

Expecting several individual amino acid (AA) substitutions, all genome segments of EscEgg50A 

were sequenced and deposited in GISAID (www.gisaid.org), (accession EPI338332 – EPI338339). 

Twelve individual amino acid (AA) substitutions within the whole genome (Table 1) were 

detected  for EscEgg50A, while 8 AA substitutions were found for the control virus CoEgg50 

(Table 1). For both viruses - EscEgg50A and CoEgg50 - the AA substitutions were scattered 

across the genome. Interestingly, the EscEgg50A HA-protein acquired only a single amino acid 

exchange (E385K) during 50 passages, while the identical number of passages without immune 

serum pressure led to 3 AA substitutions within the HA of the control virus CoEgg50 (Table 1). 

Besides the aforementioned AA substitutions, EscEgg50A carries a prominent sequence 

variation within segment 6 in which major parts of the coding region were deleted and the 

remaining parts were shuffled (Fig. 1 A, Table 2). In addition, 29 bases from the PA-coding 

segment 3 were incorporated into segment 6. In total, the segment 6 of EscEgg50A had a length 

of 680 nt with one single open reading frame from nt 21 to nt 209 (62 AA), encoding the 51 N-

terminal amino acids of the original NA protein followed by 11 additional unrelated AA. To rule 
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out that sequences shuffled to regions not covered by the amplification product generated by 

the segment 6-specific primers, the sequence was confirmed using the standard random RNA 

sequencing protocol for the GS FLX. In addition, RACE-PCRs were performed to sequence the 

termini of segment 6. The determined terminal sequences did not differ from the ancestor 

segment termini. 

  AA residue 

protein AA R65/06  EscEgg50A CoEgg50 

PB2 368 Q Q K 

 700 E K E 

PB1 738 E E G 

PB1F2 56 A V A 

 77 L W L 

PA 208 T I T 

 595 M I M 

HA 143 A A V 

 210 P P S 

 313 L L H 

 385 E K E 

NP 351 R K R 

NA   
deletions and 

re-
arrangement 

none 

M1 26 Q Q R 

 50 P P T 

 88 G G R 

 125 A T A 

 175 H Q H 

M2 14 E A E 

 68 V A V 

NS1   none none 

NS2 22 A E A 
 

Table 1: AA substitutions acquired by the viruses after 50 passages in egg culture with (EscEgg50A) or 
without (CoEgg50) use of a polyclonal chicken antiserum. For comparison the ancestor AA are given 
(R65/06). 
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Figure 1: Nucleotide sequence rearrangements in segment 6 of virus variants EscEgg50A, EscEgg50B, and 
EscEgg50C. (A) Rearranged EscEgg50A segment 6 together with the R65/06 donor segments 6 and 3. The 
differently colored rectangles depict the different portions of the donor segments that were rearranged 
in the EscEgg50A segment 6. Those parts of the donor segments that were not incorporated into the 
EscEgg50A segment 6 are depicted as a black line only. (B) Rearranged EscEgg50B NA with donor 
segment 6 (C) Rearranged EscEgg50C NA with donor segments 6 and 4. 
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Position within mutant virus 
strain 

 Position within ancestor virus 
R65/06 Sequence 

identity 
 First nt Last nt  Segment First nt Last nt 

EscEgg50A 1 173  6 1 173 172/173 
 174 227  6 964 1017 54/54 
 228 298  6 174 244 70/71 
 299 359  6 330 390 61/61 
 360 407  6 815 862 48/48 
 408 426  6 454 472 17/19 
 427 488  6 495 556 62/62 
 489 538  6 692 741 51/51 
 539 567  3 1490 1518 29/29 
 568 601  6 1191 1224 34/34 
 602 678  6 1320 1396 75/77 
        

EscEgg50B 1 186  6 1 186 186/186 
 190 378  6 1136 1324 188/189 
        

EscEgg50C 2 119  6 1 118 118/118 
 119 148  4 393 422 30/30 
 146 286  6 1256 1396 140/141 

 

Table 2: Compilation of the source sequences of the different EscEgg50 segment 6 variants. 
 

EscEgg50A is negative for the neuraminidase protein and for neuraminidase activity 

Indirect immunofluorescence staining and western blotting using monoclonal as well as 

polyclonal NA-specific antibodies were used to confirm the loss of the NA protein. In cell 

cultures infected with EscEgg50A, no fluorescence was detected after staining with a 

monoclonal antibody against NA (Fig. 2). The cell cultures were co-stained with anti-NP 

antibodies resulting in fluorescence showing the presence of nucleoprotein in the EscEgg50A-
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infected cell cultures (Fig. 2). Western blot analysis using a polyclonal anti-NA serum 

demonstrated a distinct band at 56 kDa in the protein preparation of the ancestor virus R65/06. 

This band was absent from the EscEgg50A virus preparation (Fig. 3A). Protein detection using a 

polyclonal anti-HA serum confirmed the presence of viral protein in the used protein 

preparations (Fig. 3B).  

To verify the loss of the enzymatic function, a neuraminidase activity assay was performed. The 

ancestor virus R65/06, the control virus CoEgg50, the EscEgg50A virus, the recombinant 

EscEgg50Arec virus, and two reference viruses of the subtype H1N1 were tested in parallel. 

Neuraminidase activity was determined with or without addition of the neuraminidase inhibitor 

oseltamivir. Independently of the inhibitor concentration, the NA-deleted preparations 

EscEgg50A and EscEgg50Arec showed no neuraminidase activity at all (Fig. 4), while the 

reference viruses as well as R65/06 and CoEgg50 exhibited neuraminidase activities as 

anticipated (Fig 4). Taken together, these results demonstrate the loss of neuraminidase 

enzyme activity of EscEgg50A and the recombinant EscEgg50Arec. 

 

Figure 2: Microscopic analysis of MDCK cells infected with the ancestor virus R65/06 or EscEgg50A.  
For immunofluorescence, cells were stained 48 hours post infection with monoclonal antibodies specific 
for NA or NP.  
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Figure 3: Detection of the hemagglutinin and neuraminidase protein by Western blot analysis. Cells were 
infected with EscEgg50A or the ancestor virus R65/06 and lysates for Western Blot analysis were 
collected 48h post infection. Both gels were loaded with equal proteins amounts and run under equal 
conditions. Molecular masses of the marker proteins are indicated. (A) Detection of the neuraminidase 
protein. (B) Detection of the hemagglutinin precursor HA0 and its processing products HA1 and HA2.  

 

Figure 4: Measurement of neuraminidase activity. Virus preparations of R65/06, CoEgg50, EscEgg50A, 
EscEgg50rec, and two reference viruses of the subtype H1N1 were adjusted to an equal genome load 
and tested using the NA-XTD™ Influenza Neuraminidase Assay Kit. Three different concentrations of the 
neuraminidase inhibitor oseltamivir carboxylate were used. Except for EscEgg50rec (four technical 
replicates from one biological replicate) signal/noise values are determined from two biological 
replicates with four technical replicates each. Error bars indicate the standard deviation. 
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Replication competence of EscEgg50A does not require any compensatory mutations or a 
functional NA protein, but a polybasic HA cleavage site 

A reverse genetics system of HPAIV H5N1 strain R65/06 (19) was used to analyze the role of 

potential compensatory mutations. While a virus composed of only seven segments could never 

be generated, the ancestor virus containing the R65/06 segments HA, NP, M, NS1, PA, PB1, and 

PB2 together with the EscEgg50A NA gene was readily reconstituted (EscEgg50Arec). 

Furthermore, the measurement of its neuraminidase activity demonstrated the loss of a 

functional N1 protein (Fig 4). Therefore, none of the 12 additional AA variations within the other 

segments of EscEgg50A were necessary to enable replication and growth in the absence of a 

functional neuraminidase, however they do assist to the viral replication (Fig 5). Moreover, we 

constructed a recombinant virus consisting of 7 segments (HA, NP, M, NS1, PA, PB1, PB2) from 

the ancestor R65/06 strain combined with the EscEgg50A segment NAATG-, in which the original 

start codon was silenced. Full replication competence of the NAATG- virus in cell culture 

demonstrated the non-essential character of the remaining coding information of the truncated 

segment 6 within EscEgg50A. Furthermore, a recombinant virus expressing EGFP from a minimal 

segment 6 (118 N-terminal nucleotides and 77 C-terminal nucleotides) was generated (data not 

shown) confirming the results observed with the NAATG- virus. In order to rule out that 

compensatory mutations occurred within the HA after transfection, the HA sequence of the 

rescued virus EscEgg50Arec was determined by classical Sanger sequencing. The HA sequence 

(nt 9-1704) of the rescued EscEgg50Arec virus was identical to the HA sequence of the ancestor 

virus R65/06. It has previously been shown for the same H5N1 strain, that exchanging the 

polybasic HA cleavage site motif RRRKKR/G to the monobasic motif ETR/G (but possessing the 

competent NA) resulted in nearly identical multi-step titers in the supernatant of MDCK cells in 

the presence of trypsin (28). Therefore, the ability to replicate and spread from infected cells is 

not impaired, as long as trypsin is provided. 

To evaluate the impact of the polybasic HA cleavage site, we generated a recombinant virus 
which carried the EscEgg50A NA gene together with a monobasic HA cleavage site. Because a 
NA-negative monobasic HA virus could not be generated, we suggest, that a polybasic HA 
protein may be a prerequisite for NA-independent replication of an H5 influenza virus. 



46 

 

 

Figure 5: Growth properties of R65/06, EscEgg50A and EscEgg50Arec. For single-step growth kinetics, 
MDCK-cells were infected at an MOI of 1 (A, B), for multistep analysis MOI 0.01 was used (C, D). Cell 
culture supernatant (extracellular, A, C) and cellular (cell-associated, B, D) fractions were collected at the 
indicated time points. Viral titres were determined by titration. The results are mean values of three 
independent experiments. Error bars indicate SEM. 

 

EscEgg50A and EscEgg50Arec exhibited significantly lower neutralization titers 

Viral escape due to the neutralizing activity of the used polyclonal serum was expected as a 
consequence of the imposed immune pressure. Therefore, the neutralization of the different 
viruses was quantified by a standard virus neutralization assay. Ancestor virus, CoEgg50, 
EscEgg50A and a recombinant virus with the ancestor backbone and the EscEgg50A NA protein 
(“EscEgg50Arec”) were tested in comparison. In addition, neutralization tests were carried out 
with a second polyclonal serum (serum B) from an H5-vaccinated and H5N1-challenged chicken. 
All tested viruses were neutralized by the passage-serum (serum A) and the second individual 
serum (serum B), however significantly lower neutralization titers were observed for the group 
of neuraminidase negative viruses (Fig. 6). Interestingly, applying one-way ANOVA analysis, 
individual neutralizing titers of the sera against the different viruses did not differ significantly 
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(Fig 6). These results indicate a more efficient neutralization capacity of all immune sera against 
viruses encoding a neuraminidase protein.  

 

Figure 6: Neutralizing activity of the serum used to generate EscEgg50A serum (A) and a second serum 
(B) as determined by a standard virus neutralization assay. The numerical values of the neutralizing 
activity are also displayed as log2 values. Results were statistically evaluated by the one way ANOVA 
analysis. p-value represent the significance of the serum neutralization of viruses lacking NA activity 
(EscEgg50A, EscEgg50Arec) in comparison to the viruses possessing NA activity (R65/06, CoEgg50). 

 

Generation of additional H5N1 segment 6 variants (EscEgg50B and EscEgg50C) 

To evaluate whether the induction of large deletions and rearrangements of the neuraminidase 

coding segment is repeatable, we passaged the virus from the 30th passage of R65/06, which 

was one of the latest passages tested positive for the parental NA and negative for the 

rearranged NA (Table 3), under the selection pressure of two different chicken sera (sera B and 

C) and obtained the two additional escape variant viruses EscEgg50B and EscEgg50C. Partial 

deletion and intra-segmental as well as inter-segmental recombination of segment 6 sequences 

were detected in the two additional variants (Fig. 1B and C). EscEgg50B exhibited one large 

deletion of 950 bp within the NA gene (accession EPI383000), while both termini of the segment 

remained nearly identical to the ancestor sequence (Fig 1, Table 2). The open reading frame 



48 

 

encoded the first 55 AA of the ancestor neuraminidase, followed by three heterologous AA and 

a stop codon.  

The segment 6 sequence of virus EscEgg50C started with 118 nucleotides identical with the 

ancestor sequence, followed by a short sequence (30 nt) with 100% homology to a sequence 

from segment 4 of the ancestor virus, followed by sequences from the 3´ terminus of segment 6 

again identical to the ancestor virus (Fig. 1, Table 2, accession EPI383001). The AA sequence 

encoded by EscEgg50C shared 100% homology to the ancestor sequence for the first 32 AA, 

followed by further 17 heterologous AAs.  

Overall, independent truncation and segment shuffling events of segment 6 occurred 

repeatedly during parallel passaging of an HPAIV H5N1 virus under multiple immunogenic 

pressures. 

 RT-qPCR [Cq-value] Sequences 

 H5* N1* EscEgg50A-
NA-specific† 

Master sequence 
[number of 
nucleotides] 

PA-Insertion 

Ancestor virus 
(R65/06) 13.0 15.4 neg 1396 neg 

CoEgg50 13.6 12.2 neg nd nd 

EscEgg30 17.6 20.7 neg 1235 neg 

EscEgg35 19.4 22.5 neg 1235 pos 

EscEgg36 22.2 25.2 neg 1235 pos 

EscEgg37 19.1 neg 21.3 678 pos 

EscEgg50 18.5 neg 20.7 678 pos 

 
Table 3: Results of the detection of H5 and native and rearranged N1 sequences by RT-qPCR and 
sequence length of the master sequence estimated by GS FLX sequencing. Viral RNA detected by duplex 
RT-qPCR with results presented as quantification cycle (Cq)-values >35 scored as negative. 
† Viral RNA detected by EscEgg50A-NA-specific RT-qPCR as described in the material and method section 
with results are presented as quantification cycle (Cq)-values >35 scored as negative. 
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The EscEgg50A variant is established after egg passage 36 

In order to determine more precisely the passage in which the segment 6 re-arrangement took 

place, we designed an RT-qPCR assay based specifically on the EscEgg50A segment 6 sequences. 

With this specific RT-qPCR assay, EscEgg50A virus, the ancestor virus R65/06, and viruses 

isolated after intermediate passages were analyzed. As a control, every RNA-preparation was 

tested with H5- and N1-specific duplex RT-qPCR assays in parallel (Table 3). Assessment of the 

Cq-values demonstrated that sequences specific for the finally deleted and rearranged NA of 

the EscEgg50A variant first occurred after passage 36 (Table 3). Interestingly, mixed populations 

of the original and the rearranged sequences were not detected by this sensitive assay (Table 3) 

suggesting minute frequencies of viral variants. To shed light on the sequence distribution over 

subsequent passages, segment 6 of the ancestor virus, EscEgg50A, and the intermediate 

passages were amplified with segment 6 specific primers and subjected to next-generation-

sequencing using the GS FLX. Remarkably, already the ancestor population comprised a certain 

small portion of shortened sequences besides the full-length master sequence (1396 

nucleotides); and every successive population retained these minor fractions. The master 

sequences determined from the 30th passage comprised 1235 nucleotides caused by two short 

deletions. Within the sequences detected from the 35th and 36th passage, the insertion of the 

segment 3-derived sequences, i.e. sequence shuffling, could be found in trace amounts, while 

the master sequences still resembled that one from the 30th passage. From passage 37, the 

master sequence was identical to the segment 6 sequence of EscEgg50A, being 678 nucleotides 

long with segment 3 fragments inserted. We therefore concluded that EscEgg50A is a 

replication-competent virus without neuraminidase activity, having become predominant in the 

viral population after passage 36. 

 

In-vitro characterization of the NA-deleted variants displaying an altered growth phenotype 

In order to examine the effect of the NA-deletion on viral cell-to-cell-spread (ctcs), diameters of 

50 plaques for the ancestor virus, the escape variant EscEgg50A and the recombinant 

EscEgg50Arec were measured and mean diameters and standard deviations were calculated. 

Values for the parental HPAIV H5N1 strain R65/06 were set to 100 %, and the plaque diameters 
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observed for the mutant viruses were expressed relative to this value (Fig. 7). Deletion of a 

functional NA protein resulted in a 93% reduction in plaque diameter (Fig. 7). 

Furthermore, hemagglutination using standard protocols could not be demonstrated for any of 

the NA-negative mutant viruses in contrast to the wild-type (data not shown).  

To evaluate the growth characteristics of the EscEgg50A mutant further, viral replication in cell 

culture was analyzed. EscEgg50A replicated in cell culture in the absence of exogenous sialidase 

and showed a characteristic growth phenotype of prominent 3-dimensional cloggy structures 

representing aggregates of infected cells (Fig. 2). In contrast, the parental strain R65/06 induces 

an influenza typical plaque formation in the cell monolayer. Growth kinetics were determined 

for the ancestor virus R65/06, the escape variant EscEgg50A and a reconstituted recombinant 

virus EscEgg50Arec in one-step and multi-step assays. After inoculation using an MOI of 1, a 

growth delay of the EscEgg50A and EscEgg50Arec variants until 48h post infection was observed 

for the cell culture supernatant, i.e. released virus, and viral titers at 72 h post infection 

exhibited similar values as the wild-type HPAIV H5N1 (MOI 1, Fig. 5 A). Multistep kinetics 

revealed a much more prominent delay of viral growth, especially for EscEgg50Arec (Fig. 5 C). 

Since EscEgg50Arec, which consists of the rearranged NA in the background of the parental virus 

R65/06, seem to have an impaired spread, we speculate that additional aa substitutions in 

EscEgg50A may contribute to the virus  spread, which are not present in EscEgg40Arec (Table 1). 

Viral titers from cell lysates showed no marked replication differences (MOI 1, Fig.5 B), or were 

reduced by 10fold (MOI 0.01 EscEgg50A) or 400fold (MOI 0.01 EscEgg50Arec, Fig 5 D), 

respectively. Taken together, our data demonstrate a clear effect of the used MOI which is 

consistent with the observed markedly reduced cell-to-cell-spread ability of the NA-deleted 

variants. In addition, virus release might be delayed, but is not markedly influenced by the NA-

deletion at high MOIs. 

In order to examine the effect of exogenous sialidase onto the growth characteristics, we 

cultured the ancestor virus R65/06, the escape variant EscEgg50A and the recombinant virus 

EscEgg50Arec in the presence of Clostridium perfringens neuraminidase. Interestingly, 

supplementation with that bacterial sialidase resulted in significantly improved viral titers for 

the NA-negative variants as well as for the ancestor virus (Fig. 8A). However, that titer increase 
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was more pronounced for the NA-negative viruses tested: EscEgg50A 1600fold and for the 

recombinant virus EscEgg50Arec 870fold (Fig. 8B). Therefore, the used bacterial sialidase was 

able to compensate the growth deficiency of the NA-negative viruses.  

 

 

Figure 7: Plaque sizes of R65/06, EscEgg50A and EscEgg50Arec. MDCK cells in six-well plates were 
infected at an MOI of 0.01 and overlaid with agarose for 24 h. The plaque diameters of 50 randomly 
selected plaques were determined. The average diameter of plaques formed by the wild type strain 
R65/06 was set to 100 %. Error bars indicate SEM. 
 

 NP Elisa‡  HA5 Elisa‡  NA1 Elisa‡  
Challenge 
survivors 

EscEgg50A† 4/10  3/10  0/10  3/10 
EscEgg50B 5/10  4/10  0/10  6/10 
EscEgg50C 2/10  1/10  0/10  1/10 

 
Table 4: Serology after oronasal application of EscEgg50A, B, or C 
† 14 days after inoculation and before challenge infection 
‡ positive/total tested 
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Figure 8: Viral titers after supplementation of external bacterial sialidase. MDCK-cells incubated with and 
without bacterial neuraminidase were infected at an MOI of 0.1 with R65/06, EscEgg50A and 
EscEgg50Arec. Cell culture supernatant was collected after 24h and 48h incubation time and viral titers 
were determined by titration (A). The increase of viral titers effected by the bacterial neuraminidase is 
depicted in (B). The results are mean values of two independent experiments. Graphs and statistical 
analyses were performed using SigmaPlot (Windows Version 11.0; Build11.2.0.5; Systat Software Inc.). 
The p-value of different titers from virus cultured with or without external neuraminidase was 
determined using the analyses of variance by Kruskal-Wallis. 
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The neuraminidase negative variants are fully attenuated  

To assess changes in virulence of EscEgg50A, EscEgg50B, EscEgg50C, or CoEgg50, we determined 

the intravenous pathogenicity index (IVPI) in chicken (22). With an IVPI of 2.97, the ancestor 

virus is classified as highly pathogenic (29) meaning that every animal succumbed to the disease 

within three days. The control virus CoEgg50 was also demonstrated to be an HPAIV with a very 

close IVPI of 2.55. In contrast, the IVPIs of all three NA-negative variants, EscEgg50A, EscEgg50B, 

and EscEgg50C, were 0, i.e. none of the chickens became sick. Therefore, despite the presence 

of the unchanged polybasic HA cleavage site, being the major molecular marker of HPAIV, the 

EscEgg50A, EscEgg50B, and EscEgg50C mutants are unequivocally classified as low-pathogenic. 

Almost all chicken sera (27 out of 30 animals) were scored positive by NP- and H5-antibody 

ELISA indicating occult infection whereas all those individual sera were tested negative for N1-

specific antibodies.  

To simulate natural infection via the respiratory tract, groups of ten chickens were infected 

oronasally with the three different EscEgg50 viruses. None of those birds showed any clinical 

symptoms. In contrast, all CoEgg50-infected animals succumbed to death within six days. Four 

out of ten EscEgg50A-inoculated chickens had a positive antibody reaction in an NP-specific 

ELISA, and 3 of them were also positive in an H5-specific antibody ELISA (Table 4). Five chickens 

inoculated with EscEgg50B seroconverted against NP, and 4 of them reacted also against H5. 

From the group of chickens inoculated with the EscEgg50C variant only two seroconverted 

against NP and one of these scored also positive within the H5-Elisa (Table 4). Fourteen days 

after inoculation of EscEgg50 mutants, all chickens were oronasally challenged with a lethal 

dose of the ancestor virus, the HPAIV R65/06. Remarkably, all chicken scoring positive for H5 

antibodies survived the challenge infection asymptomatically, while all other animals died 

(Table 4).  

Those results suggest a reduced infection efficacy of the EscEgg50 mutants via the oronasal 

route. Overall, the EscEgg50 viruses exhibit an apathogenic phenotype in chickens of 6 weeks of 

age. 

 



54 

 

3.5. Discussion 
 

Continuous circulation of HPAIV H5N1 viruses in poultry and wild birds with repeated spillover 

to humans is reported from South-East-Asian countries and Egypt despite extensive vaccination 

campaigns or eradication programs in place. Antigenic drift variants have arisen in immunized, 

not fully protected animals and hamper vaccine-based eradication strategies. In this study, we 

aimed to model influenza A virus immunoescape closer to the in-vivo situation by egg-passaging 

an H5N1 HPAIV under the more authentic multifarious selection pressure of a polyclonal serum 

from individual chickens,  since cell culture systems may not simulate the real situation of 

vaccinated flock herds with thousands of birds. However, to assess the enormous genetic 

plasticity of influenza viruses, we intended to implement an antigenic drift model based on 

repeated passaging in the presence of polyclonal immune-sera in embryonated egg culture. 

During egg passages, immunogenic pressure results in emergence of progeny viruses with 

mutations with an altered antigenic pattern (30). In vitro selection in presence of monoclonal 

antibodies and polyclonal (rabbit or mice derived) antisera, was utilized to identify several 

antigenic epitopes of the hemagglutinin (8, 31-34) and the neuraminidase (35). Using polyclonal 

chicken sera in a cell culture system (10), we recently obtained escape variants whose variations 

reflect immunoescape beyond the major antigenic HA epitopes affecting several viral proteins. 

Surprisingly, our repeated long-term passaging experiments resulted in the NA-deleted virus 

variants derived from HPAIV H5N1, hitherto never described before. 

Although the sera used for selection showed HI-titers similar to sera from field studies or similar 

experiments (12,13), there were no relevant changes in the HA sequence. Despite the dogma 

that antibodies against the neuraminidase were non-neutralizing and of lower relevance (36), 

the changes observed within segment 6 were significant and a functional NA protein was no 

longer expressed. On the other hand, the neutralization data suggest some effect of the 

observed segment 6 changes on the neutralizing capacity of the tested polyclonal antisera. 

Repeated passaging resulted in similar, but different NA variants. One possible explanation for 

the emergence of NA-deleted virus variants during passaging is an indirect effect onto the 
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neuraminidase gene, since neutralization might be circumvented by limiting the release of free 

floating virions but spreading instead via cell-to-cell-spread (37).  

Furthermore, since the EscEgg50A virus evolved only one AA substitution within the HA 

sequence after 50 egg passages, a stabilization of the HA sequence and some kind of 

immunoevasion due to the loss of the corresponding neuraminidase protein has to be taken 

into account. The minor role of the HA variation is further proven by the not markedly different 

neutralizing data for the EscEgg50Arec virus, which has the same HA segment as the ancestor 

virus. Furthermore, the antisera A, B, and C were each able to efficiently select the three 

different neuraminidase-negative virus variants EscEgg50A, B, and C. It could be also 

demonstrated that a direct inhibition of the neuraminidase function by antibody-positive sera is 

possible as demonstrated with a neuraminidase assay. However, the N1-specific antibody ELISA 

scored negative for the sera tested (B and C), thus rendering high amounts of N1-specific 

antibodies unlikely, but does not exclude neuraminidase antibodies at lower titers because the 

ELISA used is directed against a single epitope only. Therefore, the exact selection mechanism 

remains unclear, but the role of possible factors like neuraminidase-specific antibodies will be 

further investigated in future studies.  

The H5-virus variants we detected after 50 egg passages under pressure with an antiserum are 

unique and are focused on segment 6. Extensive deletions and rearrangements were 

ascertained exclusively in the segment 6. Interestingly, the new segments 6 resulted from 

complex sequence shuffling and two out of three variants had insertions of a very short 

sequence fragment originating from other segments. Therefore, recombination events are an 

underestimated mechanism of sequence variation in influenza viruses (38). Characterization of 

the novel variants confirmed the complete loss of the neuraminidase protein and of any 

neuraminidase activity. Recombinant viruses with a deleted ATG sequence or the insertion of 

EGFP proved that even the N-terminal residual peptide encoded by the truncated segment 6 of 

the EscEgg50A virus is not essential for virus replication. 

In previous reports, deletion of major parts of segment 6 was seen only after virus passaging in 

the presence of an exogenous sialidase (39-41) or after passaging of H3N2 viruses on MDCK cells 

(40). However, in the latter case, and in contrast to our NA-deleted variants, attempts to isolate 
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a neuraminidase negative virus strain were not successful and the authors therefore suggested 

that full-length segment 6 remained in the virus population at a lower frequency. A complete 

loss of a neuraminidase encoding segment or function is deemed impossible (42) with the only 

example of a human H3 isolate which was claimed to lack the complete segment 6 and 

addressed as seven-segmented Influenza A virus (43). Alternatively, growth of neuraminidase 

negative influenza A virus without supplementation of exogenous sialidase was demonstrated in 

vitro and in mice only if the loss of neuraminidase activity was accompanied by mutations 

around the HA receptor-binding pocket that lower avidity for receptors (44, 45). Since a 

recombinant virus composed of 7 ancestor virus R65/06-specific segments in combination with 

the segment 6 of the escape variant EscEgg50A was generated by reverse genetics, the role of 

compensatory mutations is negligible here. Replication competence could be demonstrated and 

the HA sequences did not indicate any compensatory mutations. Therefore, replication 

competence despite a truncated segment 6 is achievable without any additional compensatory 

changes in the HA protein in the presence of a polybasic cleavage site. Thus, the NA of HPAIV 

H5N1 may not be essential for virus replication and assembly but is necessary for efficient cell-

to-cell-spread and growth at low MOIs. 

The neuraminidase deletion apparently provided an advantage as the viral population shifted to 

neuraminidase-truncated viruses on embryonated eggs as was demonstrated by predominance 

of the EscEgg50A-specific sequences in the viral population from passage 37 on (Table 3). This is 

in accordance to inter-segmental recombination events within segment 6 after passaging a 

segment 6 stalk deletion mutant in egg culture, where recombination events occured within one 

passage step (38). Sequence variation of segment 6 could be verified as early as passage 30, 

leading to a truncated form of segment 6. In addition, rigorously shortened versions of segment 

6 could be detected in every passage. Since under von Magnus conditions, influenza viruses are 

known to produce defective interfering (DI) particles carrying mostly a large deletion in the P 

genes (46) and maintained in the population by co-replication. However, it is a novel finding 

that such a DI-segment can replace the full-length counterpart entirely as demonstrated by 

reconstitution of a recombinant EscEgg50A. Mechanistically, such sequence rearrangements 

were postulated to be due to viral polymerase jumping across the ends of hairpin RNA 
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structures (42), which might be to some extent the underlying reason for the observed 

truncation, shuffling, and recombination events within segment 6. 

Like previously described NA variants (40), EscEgg50A segment 6 retained the sequences 

encoding the cytoplasmic tail together with the transmembrane region of the NA protein, and in 

addition, the non-coding sequences at both the 3’ and the 5’ segment ends, required for 

efficient incorporation of the viral genome into budding particles (47).  

One possible source of a sialidase enzyme in our experiment could have been the embryonated 

egg itself (48). However, the control virus, also passaged fifty times in egg culture, showed no 

variation in the NA-sequence implying that negative selection by the polyclonal serum was 

necessary to force the NA deletion. Furthermore, EscEgg50A, -B, and -C viruses replicate in cell 

cultures without any exogenous neuraminidases refuting a determining role of the egg 

neuraminidases for generation of the NA-truncated mutants. 

Growth analysis of the NA-deleted viruses demonstrated a delay of replication, but viral titers 

achieved after 72h from MOI 1 infection were clearly in the range of the ancestor virus of about 

108 TCID50/ml. Despite of high viral titers within the supernatant, the NA-negative viruses 

displayed in vitro two marked differences in comparison to the ancestor virus: they exhibited no 

hemagglutinating activity at all, and viral cell-to-cell-spread (ctcs) was drastically reduced. NA-

negative viruses are known to lose the hemaglutinating activity (38, 49), and the lack of 

desialysation of the HA-protein (50) likely explains this phenomenon. In addition, the functions 

of HA and NA have to be orchestrated (38), and therefore, NA-negative viruses may reduce HA 

binding affinity. Whether the impairment of ctcs is due to impaired HA-NA cooperation, remains 

an open question. An NA-effect on plaque sizes was observed earlier (51). The altered plaque 

phenotypes in cell culture exhibiting cloggy like structures of tightly agglomerated cells were 

likely a result of the impaired ctcs where plaques are of a very small size.  

Despite the multibasic cleavage site within the HA protein, which is typical for highly pathogenic 

viruses, EscEgg50A exhibited an apathogenic phenotype in vivo. The deletion of the 

neuraminidase obviously led to complete attenuation of the virus in 6 weeks old chickens; 

furthermore, oronasal infection was not successful in the majority of the inoculated animals.  
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As one proposed function of the neuraminidase protein in the airways is cleavage of complex 

substrates (mucins) to mediate access to target cells and virus release from infected cells (52), 

the markedly reduced infectiousness of the EscEgg50 variants in the oronasal-infection model 

seems reasonable. Furthermore, the drastically reduced ctcs corresponds to the in vivo 

phenotype of the NA-deleted viruses. We therefore conclude that the neuraminidase protein is 

not essential for in vitro growth of HPAIV H5N1-derived viruses, but is required for host entry 

and probably spread within the host, and is therefore a substantial virulence factor in vivo. 

Overall, such attenuated H5N1 viruses carrying large deletions in their NA gene segments may 

serve as unique tool to study the role of the neuraminidase for virus assembly, growth, and 

pathogenesis. 

Furthermore, the deletion of the neuraminidase provides a new approach for attenuated life 

vaccines. Provided that wild-type virus infections cause a serological response to the NA 

detectable in vaccinated animals, an NA-deficient virus would be a perfect vaccine candidate, 

enabling the “differentiating infected from vaccinated animals” (DIVA) concept. The present 

limitation of such a vaccine strain would be still the highly pathogenic genotype of the HA-

segment, which is essential for efficient growth of the NA-deleted H5-viruses. This HA gene 

might be delivered to circulating low-pathogenic viruses, generating a novel highly pathogenic 

strain. Therefore, the essential requirement of a polybasic HA cleavage site for efficient growth 

of NA-deleted H5-viruses remains to be studied further. A future milestone would be the 

construction of high-producer NA-deleted H5 or H7 strains without polybasic HA cleavage site 

for usage as attenuated live vaccines with high safety. 
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4.1. Abstract 

 

Highly pathogenic avian influenza viruses (HPAIV) H5N1 sporadically cause severe disease in 

humans and involve the risk of inducing a pandemic by gaining the ability for human-to-human 

transmission. In naïve poultry, primarily gallinaceous birds, the virus induces fatal disease and 

the used inactivated vaccines occasionally are unable to provide efficient and early onset of 

protection. Therefore, optimized vaccines must be developed and evaluated in model systems. 

In our study, we tested a novel H5 neuraminidase-deleted influenza A virus variant to analyze 

the induction of a very early onset of immunity. Ferrets, mice and chickens were each 

immunized with a single vaccine dose seven, three and one day before lethal challenge 

infection, respectively. Sound protection was conferred in 100 % of animals immunized seven 

days prior to challenge infection. In these animals, no clinical signs were observed, and no 

challenge virus RNA was detected by real-time RT-PCR analyses of swabs, nasal washings, and 

organ samples. Moreover, the attenuated modified-live virus variant protected all chickens, 

mice, and ferrets as early as three days after vaccination against severe clinical signs. Chickens 

and ferrets developed hemagglutinin-specific antibodies after seven days, but no 

neuraminidase-specific antibodies, making this kind of neuraminidase-negative strain suitable 

for the DIVA (“differentiating vaccinated from infected animals”) strategy. 
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4.2. Introduction 

 

Highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 continues to pose a serious 

threat to poultry in several Asian and African countries. Huge economic losses are due to high 

mortality rates in infected gallinaceous birds as well as harsh restriction measures including 

stand-still and stamping out campaigns. In addition, spill-over transmission of HPAIV H5N1 from 

animals to humans caused more than 600 human infections worldwide with a case fatality rate 

of nearly 60% (WHO update April 2013). Therefore, control and eradication of HPAIV H5N1 is of 

utmost importance, even more so since the risk of an evolving highly pathogenic human-to-

human transmissible H5N1 virus [1] would be reduced.  

Ultimate eradication of viral diseases such as terrestrial rabies in Western Europe or Rinderpest 

on a global level was achieved using effective live vaccine preparations for veterinary use. Since 

the host reservoir of avian influenza viruses, aquatic wild birds, cannot be drained [2], 

eradication of endemic circulating influenza viruses or sporadic outbreaks in poultry holdings via 

stamping out strategy and vaccination campaigns was successful e.g. in Mexico [2], and should 

in principle be possible. Nevertheless H5N2 LPAIV strains are circulating in Mexico until now and 

vaccine campaigns lead to antiviral drift in field viruses. In summary, none of the vaccine 

candidates against influenza infection combines the postulated characteristics of a perfect 

vaccine, such as long-lived immunity, needle-free administration, single-dose protection and 

especially the early onset of immunity and protection against clinical signs and virus shedding 

[3].  

In the veterinary field, and especially in the poultry sector, mainly inactivated preparations are 

used for influenza virus vaccination, and only a minority of vaccines is based on modified live 

vector vaccines originating from recombinant fowl pox, Newcastle Disease [4] or Turkey 

herpesvirus (HVT) [5]. In addition, most of these preparations are recommended for a prime-

and-boost application which is difficult to achieve in target species with a very high population 

turn-over rate such as broilers. 
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The majority of human seasonal influenza vaccines are based on purified HA and NA 

formulations of currently circulating influenza A and B virus strains. Due to antigenic drift of the 

viruses these vaccines may have to be re-adjusted on an annual basis according to the 

recommendations of a panel of WHO experts [6]. This ensures an optimal antigenic match 

between vaccine field viruses, which is a prerequisite for high vaccine efficacy.  

In contrast, besides a humoral immune response modified live influenza vaccines also stimulate 

an enhanced mucosal and cell-mediated immunity. They can also induce immunological cross 

reactions against heterologous strains [7, 8].  

A key issue for an optimized vaccine against avian influenza in poultry and humans would be the 

fast induction of an early protection. So far, attempts to induce an early protection in the mouse 

model have been successful with live virus vaccines [9] or live vector vaccines [10]. Interference 

induced by the vaccine virus [9] as well as antiviral cytokine reactions followed by adaptive 

immune responses are discussed to synergistically mediate early protection [9, 10]. Modified 

live influenza vaccine preparations also present an opportunity for prepandemic vaccines. 

Several authors have demonstrated the general efficacy in animal models [11, 12].  

Here, we focused on studies to induce a very early onset of protection against HPAIV H5N1 

infection using a single application of a novel replication-competent H5 neuraminidase deletion 

mutant virus (“EscEgg50A”)[13] in chickens, mice and ferrets. 

4.3. Materials and Methods 

 

Viruses: 

The HPAIV neuraminidase-deleted mutant (“EscEgg50A”) [13] was used for immunization 

experiments. As described by Kalthoff et al. [13] the EscEgg50A mutant is a NA-deleted H5 virus, 

arisen from 50 passages in 9- to 11-day-old embryonated egg culture together with an 

antiserum. The serum originated from chickens immunized with an H5N2 vaccine. Compared to 

the ancestor virus, the mutant lost the complete NA encoding region, the protein and the 

enzymatic activity, but only 12 amino acid substitutions were detected in the other segments. 

The virus is highly attenuated in chickens and apathogenic for 6-week-old individuals, although 
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the multibasic cleavage site of the HA segment is still present. Application doses and routes are 

described in the section “animals”. 

Each challenge infection was performed by oronasal (o.n.) application of a lethal dose of 1 x 106 

TCID50 of the HPAIV strain A/Cygnus cygnus/Germany/R65/2006 (“R65”) to each individual 

animal. Both viruses are related to clade 2.2.2 [14].  

Viruses were propagated in 9- to 11-day-old embryonated egg culture without further 

supplements. 

Animals: 

All groups of animals were given standardized names: “species / infection route / days before 

challenge infection”. 

30 specific-pathogen-free six-week-old chickens (Lohmann Tierzucht, Cuxhaven, Germany) were 

immunized i.m. with a single dose of 1 x 105.5 TCID50 applying the same group scheme as for the 

mice with ten individual birds per group. The non-immunized control group consisted of four 

animals.  

Six-week-old female BALB/c mice were purchased from Charles River (Charles River Breeding 

Laboratories, Sulzfeld, Germany) and kept in an Isocage system (Tecniplast, Buguggiate, Italy). 

The mice were immunized once with a dose of 1 x 104.5 TCID50 intraperitoneally (i.p.) or 1 x 103.5 

TCID50 intramuscularly (i.m.) or o.n., respectively, seven days, three days or one day before 

challenge infection. One group per administration route served as “R65” infection control. 

Additionally, four mice were euthanized one day after o.n. immunization and four individuals 

were euthanized three days after immunization to estimate both, the immune response and 

possible viremia induced by the NA-deleted virus variant. 

Six 9-week-old ferrets (in-house breeding program, Friedrich-Loeffler-Institut, free of influenza 

virus antibodies) were immunized by intranasal application of a single shot of 1 x 10
4.5

 TCID50 

NA-deleted “EscEgg50A” H5-strain. One animal served as negative environment control, while 

three animals were challenged without prior immunization, serving as infection control ferrets.  

Mice and ferrets were immunized and infected under isoflurane anesthesia (CP-Pharma 

Handelsgesellschaft mbH, Burgdorf, Germany). During ten days after challenge, the animals 
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were checked daily for clinical signs. In addition, the individual body weight of the mice was 

measured. Any severe signs, especially loss of > 25 % of body weight (mice) or exhibition of 

neurological signs were endpoint-criteria and affected animals were euthanized.  

All animal experiments were conducted in biosafety level 3+ containment facilities at the FLI and 

were carried out in accordance with the German Animal Welfare Act, approved by the 

Committee on the Ethics of Animal Experiments of the Federal State of Mecklenburg-Western 

Pomerania (registration and approval number LALLF MV/TSD/7221.3-1.1-003/07).  

Samples: 

Combined oropharyngeal/cloacal swab samples (Bakteriette, EM-TE Vertrieb, Hamburg, 

Germany) from chickens were taken daily. For this purpose, one swab was used first orally and 

then cloacally. Swabs were suspended in 2 ml of Dulbecco’s modified Eagle medium 

supplemented with 5 % fetal bovine serum, enrofloxacin 1 mg/ml, gentamicin 0.05 mg/ml, and 

lincomycin 1 mg/ml.   

Nasal lavages using phosphate-buffered saline were taken every second day from individual 

ferrets under isoflurane anaesthesia, starting one day after immunization or infection, 

respectively. 

At the end of the experiment lung and brain tissue samples were collected from all animals and 

suspended in 1 ml of medium supplemented with 5 % fetal bovine serum and Penicillin and 

Streptomycin (PenStrep® Gibco). One stainless steel bead (∅ 5mm) per organ sample was 

added and samples were homogenized in a 2ml collection tube for 2min in a TissueLyser 

instrument (Qiagen, Hilden, Germany). After centrifugation, RNA was extracted from 

supernatant using the Nucleic Acid and Nucleospin 96 RNA Tissue kit (Macherey-Nagel, Düren, 

Germany) on a Freedom Evo robotic platform instrument (Tecan, Crailsheim, Germany).  

Viral RNA load was determined by real-time reverse transcription polymerase chain reaction 

(real-time RT-PCR). Amplification of a target sequence specific for the vaccine virus “EscEgg50A” 

was performed as described previously [13], while N1 and H5 specific amplification detection 

was performed after challenge infection [13]. For all sample matrices, analyses were performed 

over a total of 42 PCR cycles without additional cut-off.  
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Virus isolation was achieved on Madin–Darby canine kidney cells (MDCK, Collection of Cell Lines 

in Veterinary Medicine CCLV-RIE-1061) seeded in six-well plates (Costar® 6 Well Clear TC-

Treated Multiple Well Plates, Corning Life Science, Wiesbaden, Germany). Cells were inoculated 

with 100 µl supernatant of the organ samples from the mouse experiment.  

Serology: 

Blood samples from chickens were collected via the ulnar vein, from mice during the euthanasia 

process, and from ferrets via the saphenous vein. Specimens were collected in Microtainer ® 

Brad Tubes (BD, Franklin Lakes, NJ, USA), in Monovette (Sarstedt, Nuembrecht, Germany), or 

Multivette R600® tubes (Sarstedt), respectively - and processed further according to the 

manufacturer’s protocols. After inactivation at 56° C for 30 min, all sera were tested for 

nucleoprotein (NP), N1 and H5 specific antibodies using commercial ELISA assays (ID Screen® 

Influenza A Antibody Competition ELISA kit, ID Screen® Influenza N1 Antibody Competition 

ELISA kit, ID Screen® Influenza H5 Antibody Competition ELISA kit, all by ID-vet, Montpellier, 

France). Due to the limited volume of serum available from mice, these samples were only 

tested for the presence of NP-specific antibodies.  

Hemagglutination inhibition assays (HI) were conducted as described in the OIE Manual of 

Diagnostic Tests and Vaccines for Terrestrial Animals [15]. The ancestor virus “R65” was used as 

antigen. 

 

Statistical analyzes: 

Statistical analyses (Fisher exact test) of the real-time RT-PCR data were performed using the R 

software package [16].  

4.4. Results 

 

Survival and clinical signs 

Within ten days after immunization with the NA-deleted “EscEgg50A” H5-strain none of the 

animals exhibited any side effects and the strain proved to be apathogenic in the tested 

animals. 
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All animals of group “mice/i.p./1 dpi/3 dpi/7 dpi” survived the challenge infection, while all 

animals of group “mice/i.m./1 dpi/”, two animals of group “mice/i.m./3 dpi” and one animal of 

group “mice/i.m./7 dpi” succumbed to the challenge infection. “Mice/o.n./3 dpi/7 dpi” survived, 

whereas all mice of group “mice/o.n../1 dpi” died or had to be euthanized (Table 1). Two of the 

i.p. immunized mice showed only mild clinical signs including rough fur, mild depression, mucoid 

rhinorrhea and body weight loss of < 20 %. However, these animals recovered rapidly after four 

days. In contrast, animals which died or had to be euthanized and the non-immunized control 

group showed characteristic clinical signs including loss of body weight exceeding 20 % and 

neurological signs. 

Figure 1: Real-time RT-PCR of oronasal samples tested for HPAIV H5N1 strain “R65”. Different colors 
show the range of Cq values. Each box represents one sample, i.e. animal. Data were tested for 
significant differences to the infection control groups with the Fisher exact test and a confidence level of 
95 %. Groups without asterisks showed no significant differences in the statistical analyses. 
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Table 1: 
Summary of experimental results. Animals are listed as “number of animals positive/total number of animals in the trial”. Serum samples were 
harvested and tested for antibody response before challenge infection (b.c.) and after (p.c.). “nd” means no data available.
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All chickens of group “chicken/i.m./3 dpi/7 dpi” survived the infection. Nevertheless, all animals  

in group “chicken/i.m./1 dpi” died or had to be euthanized after 4 days, one day later compared 

to the challenge infection control group. All individuals of group “chicken/i.m./3 dpi“ showed 

mild depression on two days post challenge infection (dpc), but were inconspicuous afterwards. 

The group “chicken/i.m./7 dpi” did not show any clinical signs at any time point (Table 1). All 

diseased animals exhibited severe depression, ruffled feathers, ataxia, pin-point hemorrhages 

on the feet and shanks and edema.  

All immunized ferrets survived the challenge infection. In contrast, control animals exhibited 

clinical signs [17] e.g. lack of appetite, apathy or fever until 5 dpc, and had to be euthanized.  

Among the immunized animals, only the group “ferret/o.n./3 dpi” showed mild depression for 

three days after challenge infection, whereas all animals of group “ferret/o.n./7 dpi” stayed 

completely healthy (Table 1). 

 

Analysis of swab and nasal washing samples 

All swab samples from chickens as well as the washing samples from ferrets tested for the strain 

used for immunization (NA-deleted EscEgg50 A) viral RNA load scored negative. 

Challenge virus RNA could be detected in the swab samples of group “chicken/i.m./1 dpi” and 

the control animals with cycle of threshold (Cq) values between 18.5 and 30.7, whereas Cq 

values in group “chicken/i.m./3 dpi” were markedly higher and ranged from 32.2 to 39.7 (Figure 

1). Challenge virus RNA could not be detected in samples of the group “chicken/i.m./7 dpi”. 

Similarly, samples from group “ferret/o.n./7 dpi” scored negative for viral RNA. In contrast, in 

samples of ferret group “ferret/o.n./3 dpi” viral RNA was detected until three days after 

challenge infection (Figure 1).  

 

Analysis of organ samples 

The real-time RT-PCR analysis of organ samples collected from surviving mice, chickens as well 

as ferrets nine days after challenge infection showed no vaccine virus “EscEgg50A”-specific RNA 

loads. In contrast, organ samples taken from mice one and three days after vaccination showed 
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viral growth in MDCK cell cultures with a titer of 104.7 TCID50/ml of the NA-deleted virus (Figure 

2). 

 
Figure 2: Real-time RT-PCR of organ samples tested for “EscEgg50A”. Mice were immunized once with 
the “EscEgg50A”-mutant and euthanized after one, three or seven days (1,3,7 dpi). The green circles 
indicate samples positive for viral replication in MDCK cells after two passages. The red circle 3 dpi of 
mouse 2_1 indicates the histopathology positive tested sample for Influenza NP, as shown in the picture 
top left. 
 
HPAIV H5N1 “R65” viral genome loads detected from brain and lung from mice immunized 

three and seven days before challenge infection were markedly reduced (one animal) or scored 

negative (19 mice; Figure 3). Samples from group “mice/i.m./o.n./1 dpi” scored positive, while 

i.p. immunized mice still scored negative. The challenge infection control mice had to be 

euthanized early or died rapidly; therefore, challenge virus RNA was not detected in every single 

organ sample as shown in Figure 3. From organ samples of chickens that had to be euthanized 

or succumbed to the disease during the experiment, high challenge virus RNA loads, especially 

in the brain, could be detect. In contrast, the Cq values of the organ samples of the groups 

“chicken/i.m./3 dpi” scored significantly higher (Cq values > 30). In summary, samples from 4 of 
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10 animals from group “chicken/i.m./3 dpi” and from 10 of 10 animals from group 

“chicken/i.m./7 dpi” scored negative (Figure 3).  Finally, there was no evidence of any viral RNA 

loads in the organ samples of the immunized ferrets, while low Cq values indicating very high 

viral genome loads could be found in organ samples of the challenge infection controls (Figure 

3).  

 
Figure 3: Real-time RT-PCR of organ samples tested for HPAIV strain “R65”. Different colors show the 
range of Cq-values. One small box represents one sample, i.e. animal. Data were tested for significant 
differences to the infection control groups with the Fisher exact test and a confidence level of 95 %. 
Groups without asterisks showed no significant differences in the statistical analyses. 
 

Serology 

Prior to the experiments, sera from all chickens and ferrets were confirmed as influenza 

negative using an NP-antibody ELISA. 

All serum samples from “ferrets/o.n./1 dpi/ 3 dpi” and “chicken/i.m./1 dpi” were negative in the 

influenza NP-ELISA before challenge infection (see table 1 and figure 4). In blood samples from 
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the animals of group “chicken/i.m./7 dpi” and “ferrets/o.n./7 dpi”, an NP-specific antibody 

response could be detected. All chicken samples were also tested for H5-specific antibodies, and 

the results were comparable to the results of the NP-ELISA system (Figure 4). Additionally, in 

these samples no NA-specific antibodies could be detected. Interestingly, also ten days after 

challenge infection no NA-specific antibodies could be detected, but H5-specific antibody titers 

were present. Additionally, the ferret sera scored negative in the H5-ELISA both before and after 

challenge infection (table 1). 

The results of the HI analyses of the chicken samples confirmed the ELISA results. In the groups 

“chicken/i.m./1 dpi/3 dpi” as well as in the infection control group no HI titer could be detected 

before challenge infection, whereas the titer of group “chicken/i.m./7 dpi” ranged between 

1:128 and 1:256. Due to small sample volumes, sera from ferrets and mice, collected after 

challenge infection, could not be analyzed in the HI assay. 

 
Figure 3: NP-specific antibody responses in chicken, mice and ferrets seven, three and one day after 
immunization with the “EscEgg50A” mutant. The dashed line shows the cutoff of the influenza A 
Antibody Competition ELISA. All values below the dashed line are considered negative for avian influenza 
NP antibodies. 
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4.5. Discussion  

 

Hemagglutinin and neuraminidase surface glycoproteins of Influenza A viruses are major 

immunogenic factors of influenza vaccines. The HA protein is of utmost importance for the 

induction of a protective immune response as shown in several animal model studies [18, 19], 

and is responsible for the induction of neutralizing antibodies [20]. As shown by previous 

studies, NA-lacking influenza virus mutants exhibited a stable replication in cell culture and were 

highly attenuated in the used animal models [19, 21]. However, there were no H5-NA-lacking-

variants available before and no animal experiments in chickens were performed. Therefore, 

the novel NA-lacking virus variant “EscEgg50A” [13] was used as a modified live influenza 

vaccine model, and the study focused on the induction of a very early onset of protection. A 

single-shot, orally applicable vaccine, usable for avian as well as mammalian species – inducing 

solid protection against virus replication and shedding – would be a perfect tool to limit the 

spread of an influenza virus infection and would allow to control efficiently even severe 

outbreak situations as frequently witnessed during the on-going HPAIV H5N1 epizootic. 

In the sector of veterinary vaccines, several attenuated H5N1 modified live influenza vaccine 

constructs were shown to confer protection against clinical disease and to reduce viral load in 

organs or excretion samples, also after challenge infection using a heterologous virus strain; 

however, vaccination protocols were performed with a challenge infection at least three weeks 

after immunization [9, 11, 21, 22]. More recently, HVT-vectored H5 vaccines were shown to 

confer solid protection against infection with divergent HPAI strains, but again, challenge was 

carried out at the earliest 21 days post vaccination [5]. Recombinant and adapted live H5N1 

influenza vaccines tested in the backbone system of FluMistTM, an approach derived from 

human medicine, are immunogenic for mice as well ferrets, nevertheless, viral RNA detection 

could be achieved after single intranasal vaccination and challenge four weeks post 

immunization. Thus, viral spreading might be still possible and a very early onset of immunity 

cannot be expected [11].  
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In our study, we were able to protect mice, ferrets as well as chickens from morbidity only three 

days after single-shot immunization with “EscEgg50A” H5 virus, although there were no 

detectable NP-specific antibodies. This is in accordance with previous work by Seo and Webster 

[9, 23]. They showed that CD8+ T-lymphocytes and TLR3 and TLR7 signaling pathways are more 

important for early protection against the disease than B lymphocytes. These early responses 

can only be seen with live attenuated vaccines and are thus a major advantage over inactivated 

preparations that act mainly through humoral response [4, 5, 6]. Although far from being 

understood, especially in the avian host, strong innate immune responses including interferons 

as well as viral interference are among the factors held responsible for these early protection 

phenomena. Especially in the early phase after vaccination, the inactivated vaccines do not 

prevent infection and transmission [4, 5, 6] and may facilitate antigenic drift of virus strains 

under field conditions. Thus, field applicability is severely hampered. Nevertheless, complete 

protection without detection of challenge virus RNA in lung tissues as well as swab and lavage 

samples (Figure 1 and 3) was in our experiments only achieved in those animals that showed a 

clear seroconversion against influenza virus NP protein proving the importance of humoral 

responses for solid protection.  

In terms of application in the field, non-invasive vaccine administration would be beneficial. 

Interestingly, chickens oronasally immunized with the “EscEgg50A” H5-strain were not fully 

protected against challenge infection [13]. One possible reason might be differences in the 

receptor repertoire and the mucous barriers of chickens, ferrets and mice as well as different 

susceptibilities of the mucous membranes of these species. Furthermore, it has to be taken into 

account that the inoculated vaccine virus was administered to chickens without anaethesia, 

while ferrets and mice in our study were inoculated under isoflurane, which might lead to 

deeper penetration of the vaccine inoculum.  

In summary, the NA-deleted virus variant tested here efficiently protected all animals very early 

after a single-shot application and thus represents an interesting model for early protection 

against HPAIV. However, in terms of a true vaccine candidate, a major drawback is the polybasic 

cleavage site within the HA protein, which determines HA as a protein of the highly pathogenic 

phenotype [13]. The possibility of reassortment events between the vaccine virus strain and 
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circulating field viruses is discussed as a possible side-effect of modified live influenza vaccines. 

While this is not a relevant problem for seasonal influenza, as seasonal modified live influenza 

vaccine cannot donate novel HA and NA genes [24], usage of prepandemic modified live 

influenza vaccines beyond an endemic region is not recommended in order to avoid the 

introduction of a “new HA” [12]. To overcome this problem, future studies will especially focus 

on the generation of further H5 and H7 influenza viruses lacking NA expression combined with a 

HA cleavage site derived from low pathogenic AIV. However, Kalthoff et al. [13] showed that 

NA-deleted mutants with HA monobasic cleavage sites do not replicate in cell culture. 

Therefore, the role of adaptive mutations in the different genome segments as well as cell-

culture adapted influenza viruses as possible backbones have to be studied. Furthermore, NA 

secreting cell lines or external NA could be used and give the virus an initial aid. Adding a 

neuraminidase activity could be a promising approach especially for the o.n. application route 

for chickens. In terms of a field application in very young animals, especially one-day-old 

chickens, their immature immune system and interference with maternally derived antibodies 

should be taken into account. Here, further studies are needed, especially with regard to 

apathogenicity and immunogenicity.  

To the best of our knowledge, this is the first time that three different species were shown to be 

fully protected against the clinical outcome of an HPAIV infection by a single dose of an 

experimental modified live influenza vaccine three days after immunization. Furthermore, the 

vaccine virus preparation not only decreased the shedding of HPAIV in challenged chickens, but 

also prevented it in ferrets, and accomplished a very complete immunity in chickens, ferrets and 

mice seven days post immunization. The here described model therefore shows that a very 

early onset of protection is possible, and the NA-deleted mutant may be a promising live 

vaccine candidate for broiler flocks, which are relevant for HPAIV H5N1 spread in endemic 

regions but are slaughtered early, e.g. at an age of five weeks. Furthermore it could be used as 

an “emergency vaccine” in addition or alternatively to the pre-emptive culling strategies. 
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5. Discussion 

Influenza A viruses have an impressive genetic plasticity and variability. Antigenic shift due to 

the reassortment of genome segments is the most drastic possibility for adaptation or escape. 

However, also antigenic drift of the viral quasispecies population within an individual host and 

moreover within a population of individual hosts is a major evolutionary mechanism of 

Influenza A viruses (107). With the accumulation of adaptive mutations based on the error 

prone viral polymerase the viral quasispecies evolves rapidly. This mechanism is underlying the 

development of viral escape mutants especially in immunized host populations. Immunity, that 

is not able to block the infection chain within a host population efficiently, serves as 

evolutionary hurdle that is compensated by antigenic drift based adaptation. 

While these principles are well known, scientific approaches to simulate the scenario of an 

Influenza A infection of an immunized but not protected population are limited. In previous 

studies, the passaging of HPAIV H5N1 on cell culture in the presence of an antiserum resulted in 

escape variants with numerous mutations especially in the HA-encoding segment (29). 

Nevertheless, those mutants also lost their virulence despite a conserved polybasic cleavage site 

in the HA and were no longer highly pathogenic (29).  Therefore, in this study embryonated eggs 

were used as a growth system, which is closer related to in vivo replication, and the newly 

generated viruses are discussed here. 

Generation and in vitro characterization of a novel neuraminidase-negative H5N1 variant 

Passaging HPAIV A/swan/Germany/R65/2006 (H5N1) in embryonated chicken eggs by 

application of an immunogenic pressure with a polyclonal antiserum was performed in order to 

mimic the natural evolution of H5N1 viruses in inadequately vaccinated poultry flocks. Using this 

relevant in vitro culture system, a novel escape mutant virus - “EscEgg50A“ - was isolated 

successfully, and a control virus passaged in the same system without adaptive pressure was 

generated in parallel and named as “CoEgg50”. 
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The general applicability of the used in vitro system for studying escape mechanism could be 

demonstrated by the fact that the resulting escape mutant was neutralized by the relevant 

antiserum to a lesser extent compared with the control virus.  

While immune pressure normally leads to a series of adaptive mutations, primarily within the 

antigenic globular head of the HA protein (29), unexpectedly, the here described novel mutant 

“EscEgg50A” showed only one amino acid substitution in the HA protein located in a position 

not related to antigenicity. In contrast, the control virus “CoEgg50” exhibited substitutions of 

four amino acids within the HA, representing the background level of genetic variation due to 

polymerase errors (64). Further ten amino acid mutation events were detected in both egg-

passaged viruses distributed throughout the genome. Most interestingly, sequence analyses of 

EscEgg50A showed major deletions and rearrangements together with a nucleotide shuffle 

between different segments in its neuraminidase encoding segment 6. On the contrary, no 

substitutions at all were detected within the segment 6 of “CoEgg50”. Repeated passaging 

experiments under similar conditions resulted in two further virus isolates: “EscEgg50B” and 

“EscEgg50C”. The analysis of segment 6 of “EscEgg50B” and “EscEgg50C” revealed again major 

sequence deletions and a partly segment recombination event within segment 6.  

Therefore, antiserum-induced rearrangements of segment 6 are a non-singular phenomenon. 

Further characterization of “EscEgg50A” demonstrated the loss of the complete neuraminidase 

protein and hence the respective enzymatic activity. However, the “EscEgg50A” mutant was 

able to replicate in cell culture as well as in embryonated chicken eggs without supplementation 

of sialidase activity. This is in contrast to other reported NA-deleted viruses, which had to be 

supported by a helper virus or by an externally supplied neuraminidase to allow efficient growth 

(48, 117). In order to identify the serum component responsible for the adaptive mutations 

identified, the used serum was tested for N1-specific antibodies and neuraminidase inhibitory 

functions. While the antibody-mediated input was neglectable, an inhibitory effect onto 

neuraminidase activity by antisera in general was demonstrated. These inhibitory effects are 

possibly responsible for the loss of the neuraminidase protein within the different here 

described NA-deleted variants. This is in accordance to experiments which applied  



87 

 

neuraminidase inhibitors in vitro during influenza A passaging, which could result in the 

occurrence of neuraminidase negative viruses (48). However, also in most of these cases, 

externally supplemented neuraminidase activity was necessary for viral growth (117).  

By the generation of recombinant viruses using reverse genetics, it could be shown that no 

additional mutations in further segments were essential for replication without any 

neuraminidase activity, but clearly revealed that the polybasic cleavage site of the HA protein 

e.g. of EscEgg50A is essential for successful transfection and subsequent generation of virus 

progeny. Furthermore, the different NA-deleted virus variants demonstrate, that eight 

segments have to be present, and that a minimum composition of segment 6 (e.g. the non-

coding 3´and 5´sequences) has to be present for the generation of replicable viral particles as 

was also demonstrated by others (48, 87).  

NA-deleted mutants, but not of subtype H5, were also described by several authors, but all 

these viruses were reliant upon the supplementation of external neuraminidase or alternative 

modification in the HA encoding segment for efficient replication and growth (48, 87). By these 

results the dependency upon an orchestrated relationship between the functions of both viral 

glycoproteins was verified (117). While our recombinant virus “EscEgg50Arec”, exhibiting an 

unaltered ancestor HA in combination with a truncated segment 6, was viable, modifications of 

the HA beyond sequence variations are likely responsible for an altered receptor avidity (117). 

Indeed, a non-desialized HA protein (due to a missing neuraminidase activity) seems to be 

reasonable, and the modified receptor avidity was e.g. demonstrated by the non-

hemagglutinating nature of the NA-negative viruses (93). Despite this varied receptor avidity, 

our “EscEgg50A” virus replicated to virus titers comparable to ancestor virus titers at least after 

inoculation with a high MOI. To the best of our knowledge, this is the first description of an HPAI 

H5N1 virus that demonstrated this kind of complete NA-independent replication capacity. 

However, the investigation of the viral plaque sizes, applying a semisolid medium, revealed a 

tremendous reduction of plaque sizes of the NA-negative virus. A massive impairment of the 

cell-to-cell-spread (ctcs) could be deduced from these results for EscEgg50A. The impact of the 

neuraminidase onto the plaque sizes was already reported (53), but the exact mechanism 
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behind this phenomenon remains to be elucidated. For the future, studies are planned to 

investigate the ctcs of influenza viruses also in polarized epithelial cells in order to evaluate the 

effect in a system closer to the natural environmental system. 

The evaluation of the intravenous pathogenicity index (IVPI) of the generated NA-negative 

viruses categorized the tested viruses, with a large deletion of segment 6, as low pathogenic for 

chickens. Despite the polybasic cleavage site within the HA-sequence, the viruses did not induce 

any clinical disease. However, as demonstrated by seroconversion of the inoculated birds, the 

virus replicated after intravenous application. In contrast, after oronasal application of 

“EscEgg50A”, only a minority of the inoculated chickens showed seroconversion, indicating that 

the immune system of the host did not react with the viruses. Most probably the reason behind 

this is that one function of the neuraminidase protein is cleavage of complex substrates such as 

mucin of the respiratory tract (84). Therefore, NA-negative viruses might be inefficient in getting 

access to susceptible cells by being trapped within the mucin material. The new NA-deleted 

virus allows now for the first time to study this function separately e.g. in in vitro mucin 

infection models (39, 55). 

From our results we concluded, that the neuraminidase of HPAIV H5N1 is not essential for virus 

replication in both cell culture and embryonated chicken eggs. However, the neuraminidase is 

of importance for ctcs, host entry and most likely also an efficient spread within the host. 

Therefore, the neuraminidase protein is a considerable pathogenicity factor despite the fact 

that it is not essential in HPAIV H5N1 for high titer virus growth. The generally accepted viral 

neuraminidase function of enabling the release of infectious virions from the cell membrane by 

cleavage of sialic groups (1, 70) is not the only major feature of influenza NA proteins. This 

finding is unexpected and obviously tightly connected to the polybasic HA-cleavage site of 

HPAIV H5 (34). 

The here demonstrated marked attenuation of the neuraminidase-negative “EscEgg50A” variant 

together with its negative selection marker potential suggests that this virus might be a suitable 

differentiation of vaccinated from infected animals (DIVA) vaccine candidate virus. 
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The neuraminidase-negative new H5-variant as possible modified live marker vaccine 

candidate 

In order to evaluate the modified live vaccine properties of the “EscEgg50A” H5 virus, we 

performed a series of immunization-challenge experiments in three different species. Since 

onset of immunity is one of the major problems of Influenza A virus vaccines, especially the 

capacity of our modified live virus to induce an early onset of immunity against a lethal H5 

challenge infection was analyzed. A recently described fowlpox virus-based live vector vaccine 

(18) was able to induce HI antibody titers in 4-week old chickens and Seo and Webster (86) have 

shown protection of chickens immunized with H9N2 after only three days. Rauw et al. (78) 

found that serum from 1-day old chickens immunized with a live Newcastle disease vaccine 

showed a high HI titer after 2 days. As described, there are only very few studies about an early 

onset of immunity against avian influenza viruses in animals (19, 86, 118). 

We therefore immunized ferrets, mice and chickens with the EscEgg50A mutant intramuscularly 

or oronasally one, three or seven days before challenge infection. None adverse effects were 

observed after immunization, and  while animals immunized one day before challenge infection 

still succumbed to the disease, the NA-negative mutant virus protected all the animals 

immunized three and seven days before challenge infection against both death and clinical 

signs. In addition, all animals challenged seven days post immunization did even not shed any 

challenge virus, proving a very high level of immunity and protection. This kind of “sterile 

immunity” can only be reached with inactivated vaccine preparations after several 

administrations and not in all cases (98). Furthermore, even if clinical protection can be reached, 

virus shedding and low level replication are observed which are major reasons for antigenic drift 

(8, 98) as also discussed before. 

The here described highly efficient and very swift immune response to “EscEgg50A” can be 

mainly explained by two reasons. Firstly, an early immune response can mainly be guaranteed 

by live vaccines since they can induce a strong response of both the cellular as well as humoral 

immunity (25, 35), and secondly it has been described before, that the HA-protein is the main 
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immunogenic determinant for protection against the influenza A viruses (63). The here tested 

“EscEgg50A” strain contains both features and is therefore a promising candidate for 

“emergency vaccines” even for the use in broiler flocks, which are slaughtered very early making 

vaccination with conventional vaccines not feasible. Furthermore, the NA-lacking mutant 

permits a DIVA concept in combination with a suitable neuraminidase antibody detection 

system like ELISA or indirect immunofluorescence with recombinant baculovirus-expressed 

antigens (26, 94). This type of differentiation of infected from vaccinated animals can be also 

used for inactivated vaccine (2, 94) with heterotypic neuraminidase combinations. Chickens 

vaccinated with an H5N9 inactivated vaccine can for example be differentiated from an H5N1 

infection by using N1- and N9-specific test systems (57). The NA-deleted live virus mutant 

EscEgg50A would allow even an easier differentiation, since the lack of any neuraminidase 

response enables the use any neuraminidase type for differentiation without any problems of a 

cross reactivity with vaccine-derived neuraminidase-specific antibodies.   

Additional research has to be done in the future for the following major issues: The “EscEgg50A” 

mutant still exhibits a polybasic cleavage site within the HA-segment. Theoretically, 

reassortment events with wild type strains are possible which can donate “new” HA segments, 

in the case of “EscEgg50A” with the HPAIV cleavage site, to the circulating AIV strains and 

induce a potentially dangerous evolutionary situation. Hence a most promising 2nd generation 

vaccine candidate would be a NA-negative virus with a “safe” monobasic cleavage site. This 

might be achievable by implementing further changes in other segments, for example the 

polymerase complex or applying external NA-activity. These arrangements could further 

improve the vaccine candidate making the use e.g. as an emergency vaccine in the near future 

more likely.  

Secondly, chickens could be only be efficiently immunized by the intramuscular route, but not 

oronasally. One reason is probably the lack of a neuraminidase activity, since it is described that 

the enzyme cleaved the mucin of the respiratory tract (12) or the application under Isofluran 

narcosis of mice and ferrets induced deeper breathing, and it is described that the upper 

respiratory tract contains less mucin (47, 79) which would allow efficient attachment of the 
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vaccine virus. In addition, lungs of mammals and birds possess different receptor repertoires 

and it can not be excluded that viral binding affinity is also an important factor (82). 

In any case, the here presented modified live vaccine candidate is an impressive model for the 

induction of a very early onset of immunity, demonstrating the possibility of efficient 

immunization against lethal challenge infection even 3 days before challenge infection. Our data 

therefore are a promising first step in the direction of a new generation of novel highly efficient 

early onset emergency vaccines.  

Future studies will show pathogenicity and immune response also in very young animals, 

especially one day old chicken, since this age is very convenient and important for immunisation 

procedures. Furthermore it has to be tested if maternally antibodies inhibit immune response to 

the vaccine virus. 
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6. Summary 
Since about one decade, highly pathogenic avian Influenza viruses (HPAIV) of subtype 

H5N1 have been extensively circulating in poultry as well as wild birds particularly in Asian 

and African countries. Control campaigns with inadequate or inefficient vaccines, as well as 

poultry movement and wild bird migration, contributed to viral spread, reassortment with 

other circulating avian influenza strains, and antigenic drift. However, to date, no 

emergency vaccine is available, that allows sufficient and swift protection against HPAIV 

H5N1, blocks viral shedding and is easy to administer. 

The main objective of the work described here was the in-vitro and in-vivo characterization 

of a novel neuraminidase-negative variant of HPAIV H5N1 and the use as a modified life 

vaccine virus model for the early onset of protection. 

In the initial step, a highly pathogenic H5N1 isolate of clade 2.1 

(A/swan/Germany/R65/2006) was passaged fifty times in embryonated chicken eggs 

together with polyclonal antisera. After 50 passages, a virus escaping the antisera was 

isolated and named “EscEgg50A”. Surprisingly, the major observed changes were severe 

deletions and a segment shuffling within the neuraminidase (NA) encoding segment 6, 

resulting in NA-deletion and the absence of any neuraminidase activity. 

Despite NA-deletion, high titer virus growth in cell cultures and embryonated chicken eggs, 

without helper viruses or supplementary neuraminidase activity, could be observed, and a 

functional copy of the novel “EscEgg50A” mutant was constructed by using reverse 

genetics. However, propagation of the NA-deleted “EscEgg50A” strain in cell culture 

revealed significantly smaller plaque sizes and a delayed growth in relation to the ancestor 

virus. Infection studies in chickens showed apathogenicity, and neither spreading nor 

transmission of “EscEgg50A” were observed. Nevertheless, high antibody titers could be 

achieved following intramuscular application, whereas oronasal infection revealed sero-

conversion in only a portion of the inoculated chickens. 



93 

 

Apathogenicity as well as immunogenicity of “EscEgg50A” prompted to investigate 

whether the mutant is a suitable modified live vaccine model candidate for early onset of 

immunity. Balb/C mice, ferrets and chickens were therefore immunized intramascularly or 

oronasaly one, three or seven days before lethal HPAIV H5N1 challenge infection. It could 

be shown that all animals which had been immunized seven days before challenge 

infection were not only protected against clinical signs, but also against both challenge 

virus shedding and transmission. Additionally, animals immunized three days before 

challenge infection did not show any clinical sign, but viral RNA could be found in organs as 

well as swabs or nasal washing samples. The new H5 deletion mutant also allowed 

differentiation of vaccinated from infected animals, since immunized animals showed only 

antibodies against the hemagglutinin and the nucleoprotein, whereas infected ones could 

develop neuraminidase-specific antibodies. Nevertheless, presence of the polybasic 

hemagglutinin cleavage site in those H5-viruses implies the risk of generating new HPAIV 

after possible reassortments with circulating wild type strains. 

In conclusion, a first viable NA-negative H5-influenza virus was established and 

characterized, which can be used for further research e.g. about the role of NA for avian 

influenza viruses and for early onset of immunity studies. Future studies will e.g. 

concentrate on the construction and characterization of novel NA-deleted viruses of the 

subtypes H5 and H7 for in vitro studies and optimized marker vaccine candidates for oro-

nasal application. 



94 

 

7. Zusammenfassung 
 

Hochpathogene Aviäre Influenzaviren (HPAIV) des Subtypes H5N1 zirkulieren seit den ersten 

Ausbrüchen vor mehr als 10 Jahren in Wirtschaftsgeflügel und Wildvögeln, vor allem in Asien 

und Afrika. Vakzinekampagnien mit ungeeigneten oder unwirksamen Impfstoffen sowie 

Transporte von infiziertem Geflügel, sowie Wildvogelzüge führten nicht nur zur Verbreitung der 

Viren, sondern auch zu Reassortierungen mit anderen zirkulierenden Influenzaviren und zur 

antigenetischen Drift. Bis heute ist kein Impfstoff verfügbar der ausreichenden und schnellen 

Schutz vor einer HPAIV H5N1 Infektion, sowie der Ausscheidung bietet, genauso wie eine 

einfache Applikation ermöglicht und sowohl im Säugetier, als auch Vogel einsetzbar ist. Im Falle 

eines Ausbruches wäre eine solche Vaccine das perfekte Werkzeug, um eine Pandemie zu 

verhindern. 

Die in dieser Dissertation vorgestellten Arbeiten zeigen die in-vitro und in-vivo Charakterisierung 

und einer Neuraminidase-negativen H5N1 Mutante, so wie den Einsatz als Impfstoffmodel zur 

Untersuchung der Frühimmunisierung.  

Ein hochpathogenes H5N1 Isolat des Stammes 2.1 (A/swan/Germany/R65/2006) wurde 

fünfzigmal im embryonierten Hühnerei passagiert. Den Passagen wurde bei jedem Durchgang 

polybasisches Hühnerserum mit Antikörper gegen H5 und N2 beigemischt, um einen selektiven 

Druck auf das Virus zu erzeugen. Die daraus resultierende Mutante zeigte überaschenderweise 

nicht die erwarteten Veränderungen und Anpassungen im Haemagglutinin, sondern Deletionen 

und „Segment-shuffling“ im Segment 6, welches für das Neuraminidaseprotein kodiert. Des 

Weiteren konnte keine Neuraminidaseaktivität mehr nachgewiesen werden.  

Die Deletionen führten zu Veränderungen im Wachstumsverhalten des Virus und der 

Pathogenität im Tier. So konnte hier gezeigt werden, dass die Mutante ohne Zugabe von 

externer Neuraminidase oder Adaptation des Haemagglutinins in Zellkultur und Ei hohe 

Infektionstiter erreichen kann. Im Vergleich zum Ursprungsvirus aber Wachstumsdefizite 

aufweist, die sich in kleineren Plaques und langsamerem Wachstum auf Zellkultur zeigen. 
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Infektionsversuche im Huhn zeigten, dass das Virus weder Klinik auslöst, noch ausgeschieden 

oder übertragen wird, aber eine gute Immunantwort induziert. Hohe Antikörper konnten nur 

erreicht werden, wenn Hühner intramuskulär infiziert wurden, wohingegen eine Applikation 

über den oronasalen Weg nicht bei allen Tieren gelang.  

Die gute Immunantwort und Apathogenität des Virus machten es im weiteren Verlauf zu einem 

geeigneten Kandidaten für Frühimmunisierungsversuche im Säugetier- und Vogelmodell. So 

wurden Balb/C Mäuse, Frettchen und Hühner ein, drei und sieben Tage vor einer H5N1 

Belastungsinfektion mit der H5N1 Mutante intramuskulär oder intranasal immunisiert. Dabei 

konnte ein 100% Schutz vor klinischen Symptomen und der Ausscheidung des Challenge-Virus 

nach nur 7 Tagen gezeigt werden. Darüber hinaus waren die Tiere vor Klinik bereits drei Tage 

nach der Immunisierung geschützt, wobei aber virale RNA in oronasalen Proben und auch den 

Organen nachgewiesen werden konnte. 

Die Neuraminidasedeletion der Mutante ermöglichte außerdem eine Unterscheidung von 

immunisierten zu infizierten Tieren, da erstere im ELISA NP- aber keine NA-Antikörper zeigten, 

wohingegen infizierte Tiere Antikörper gegen beide Proteine bildeten. 

In Zukunft könnten NA negative Influenzaviren zusätzlich oder als Alternative zu den gängigen 

stamping out Strategien eingesetzt werden. Dafür aber sind weiter Untersuchungen essentiell. 

Die hochpathogene Spaltstelle im HA von „EscEgg50A“ impliziert das Risiko mit zirkulierenden AI 

Stämmen zu reassortieren und ist daher für den Einsatz zum Beispiel in Zuchtherden 

ungeeignet. Darüber hinaus ist das Wissen über das NA Protein und seine Funktionsweise sehr 

lückenhaft und NA-negative Mutanten könnten für zukünftige Untersuchungen genutzt werden. 
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8. Abbreviation 

 
Cq Cycle of threshold 
ctcs Cell-to-cell-spread 
DI Defective interfering 
DIVA Differentiating infected from vaccinated animals 
dpc Days post challenge 
FLI  Friedrich-Loeffler-Institut 
HA Haemagglutinin 
HI Haemagglutinition inhibition tes 
HPAIV Highly pathogenic avian influenza virus 
HVT Turkey Herpesvirus 
i.m. Intramascularly  
i.p. Intraperitoneally 
IAV Influenza A virus 
IVPI Intravenous pathogenecity index 
LPAIV Low pathogenic avian influenza virus 
M1 Matrix protein 1 
M2 Matrix protein 2 
MOI Multiplicity of infection 
mRNA Cellular messenger RNA 
NA Neuraminidase 
NP  Nucleoprotein 
NS2 Non-structural protein 2 
nt Nucleotides 
o.n. Oronasal 
PA Polymerase acidic protein 
PB1 Polymerase basic protein 1 
PB2 Polymerase basic protein 2 
PBS Phosphate-buffered salin 
PCR Polymerase chain reaction 
RNP Ribonucleoprotein complex 
RT Reverse transcription 
SPF Specific pathogen free 
TCID Tissue infectios dose 
VNT  Virus neutralization test 
vRNA Viral RNA 
WHO World Health Organization 
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