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ABSTRACT 
 
Alzheimer´s disease (AD) is the most prevalent form of dementia worldwide. The major 

pathological hallmarks of the disease are neuronal loss, extracellular insoluble deposits of 

amyloid β-peptide (Aβ), and intracellular neurofibrillary tau tangles. In particular the 

amyloid β peptide (Aβ) is a small hydrophobic peptide, resulting from the sequential 

cleavage of the amyloid precursor protein (APP) catalysed by β-secretase BACE1 and 

the γ-secretase complex. In contrast, APP cleavage by the α-secretase ADAM10 prevents 

Aβ formation by cleavage within the Aβ domain. Since the precise aetiology of the 

disease is still uncertain, diagnosis of Alzheimer´s disease is not trivial, especially in the 

early stage of the disease, when disease-modifying drugs could be applied to 

significantly slow the progression of the disease. Besides neuropsychogical tests and 

imaging techniques, biomarkers reflecting these neuropathological changes, namely 

Aβ42, tau and phospho-tau levels, are measured in cerebrospinal fluid of demented 

patients. These biomarkers can support the diagnosis of Alzheimer´s disease, but they do 

not allow a complete separation between demented and non-demented elderly people. 

Thus, research on potential AD biomarkers is focused on finding new proteins or protein 

fragments, which could better correlate with the disease and reflect the pathological 

changes, ideally at the early stage of the disease. APPsα is the product of α-secretase 

cleavage, and it reflects the metabolic processing of APP. It has been proposed as a 

potential biomarker for AD, but with poor results. Several studies reported divergent 

results about changes in APPsα levels in CSF from AD patients, mainly because of the 

use of antibodies which did not exclusively detect APPsα, but they cross react with other 

product of APP metabolism. Here, a new APPsα ELISA-like sandwich immunoassay 

was developed using the new 14D6 antibody, which specifically detects APPsα in cell 

culture supernatant, human CSF and serum. APPsα levels in CSF and serum from 

Alzheimer´s disease patients and non-demented controls were measured. A moderate, but 

significant increase in APPsα levels in CSF was detected in AD patients in comparison to 

controls, whereas APPsα levels were significantly decreased in serum. The new 14D6 

immunoassay performed better than the commercially available assay for the detection of 

the α-secretase product of APP. Therefore, this new assay is broadly applicable for 

specific APPsα measurement in cell culture media, CSF and serum. 
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The second part of the thesis relates to the modulation of APP cleavage by α- and β-

secretases. In fact, detection of APP soluble fragments is not only important for 

diagnostic purposes, but also to gain further knowledges about the regulation of APP 

proteolytic processing. For example, little is known about the role of kinases in this 

process. APP intracellular domain contains several phosphorylation sites, making kinases 

an attractive target of study to better understanding the molecular mechanisms at the 

basis of Alzheimer´s disease. Moreover, kinases could be putative drug-targets, with the 

goal of reducing Aβ generation and tau phosphorylation. Dysregulation of a number of 

different kinases has been described to play a role in the pathology of AD, but only few 

of them have been extensively studied. Since an unbalanced phosphorylation rate of APP 

and related pathways could trigger AD pathology, the focus of the second part of this 

thesis is to identify new kinases, which modulate the proteolytic processing of APP. An 

RNA-interference high-throughput screening was performed to knock-down the human 

kinome (720 genes) in neuroblastoma cells expressing endogenous APP. Different 

validation strategies generated a list of putative hits, which were further investigated in 

murine embryonic neurons. Among these candidates, the kinase STK39 was identified as 

new modulator of β-secretase cleavage of APP. STK39 knock-down showed a decrease 

in APPsβ shedding, Aβ generation and BACE1 protein level in both neuroblastoma cells 

and primary neurons. These new findings show that inhibition of STK39 may be 

beneficial to prevent Alzheimer´s disease, and STK39 could be a putative interesting 

drug target.  
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ZUSAMMENFASSUNG 
 
Die Alzheimer-Krankheit (AD) ist die häufigste Demenzform weltweit. Die wichtigsten 

pathologischen Kennzeichen der Krankheit sind der Verlust von Nervenzellen, 

extrazelluläre Ablagerungen des unlöslichen Amyloid β-Peptides (Aß) und intrazelluläre, 

neurofibrilläre tau Ablagerungen. Das Amyloid-β-Peptid (Aß) ist ein kleines 

hydrophobes Peptid, welches aus der sequentiellen Spaltung des Amyloid-Vorläufer-

Proteins (APP) durch die Proteasen β-Sekretase BACE1 und den γ-Sekretase-Komplex 

resultiert. Im Gegensatz dazu verhindert die Ektodomänenspaltung innerhalb der Aβ-

Domäne von APP durch die α-Sekretase ADAM10 die Aβ-Bildung. Aufgrund der noch 

unsicheren Ätiologie der Alzheimererkrankung ist die Diagnose der Alzheimer-

Krankheit nicht einfach, insbesondere in der frühen Phase der Erkrankung, wenn 

krankheitsmodifizierende Medikamente noch angewendet werden können, um das 

Fortschreiten der Krankheit aufzuhalten. Neben neuropsychologischen Tests und 

bildgebenden Verfahren, welche diese neuropathologischen Veränderungen nachweisen 

können, werden Biomarker wie z.B. Aβ42, tau und phospho-tau im Liquor von dementen 

Patienten gemessen. Diese Biomarker können die Diagnose der Alzheimer-Krankheit 

unterstützen, erlauben aber keine 100%-ige Spezifität bei der Diskriminierung zwischen 

dementen und nicht-dementen älteren Menschen. So konzentriert sich die Alzheimer 

Biomarker Forschung auf die Suche nach neuen Proteinen oder Proteinfragmenten, die 

besser mit pathologischen Veränderungen, idealerweise in einem frühen Stadium der 

Krankheit korrelieren. APPsα resultiert durch die α-Sekretase-Spaltung von APP und 

spiegelt damit die metabolische Verarbeitung von APP wider. Es ist als potentieller 

Biomarker für die AD vorgeschlagen worden, jedoch mit sehr variablen Ergebnissen. 

Mehrere Studien zeigen divergierende Ergebnisse über die Veränderungen in den 

Spiegeln von APPsα  im CSF von AD-Patienten, vermutlich vor allem wegen der 

Verwendung von Antikörpern, die nicht ausschließlich mit APPsα, aber auch mit einem 

anderen Produkt des APP Stoffwechsels reagieren können. Deshalb wurde hier ein neuer 

APPsα ELISA-ähnlich-Sandwich-Immunoassay, unter Verwendung des neuen 14D6 

Antikörper, welcher spezifisch APPsα im Zellkulturüberstand, menschlichem CSF und 

Serum nachweisen kann, entwickelt. Die APPsα Spiegel im Serum und Liquor von 

Alzheimer-Patienten und nicht-dementen Kontrollen wurden gemessen. Eine mäßige, 
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aber signifikante Zunahme des APPsα Spiegels im CSF von AD-Patienten wurde im 

Vergleich zu den Kontrollen nachgewiesen, während die APPsα Spiegel im Serum 

deutlich sanken. Damit ist der neue 14D6 Immunoassay besser als kommerziell 

erhältliche Assays zum Nachweis des α-Sekretase-Produktes von APP und könnte somit 

eine breite Anwendung für die  Bestimmung von APPsα im Zellkulturmedium, Serum 

und Liquor finden. 

Der zweite Teil der Arbeit bezieht sich auf die Modulation der APP-Spaltung von α- und 

β- Sekretase. In der Tat ist die Detektion von löslichen APP Fragmenten nicht nur 

wichtig für diagnostische Zwecke, sondern auch für ein tiefergehendes Verständnis der 

Regulation der APP-Proteolyse. Zum Beispiel ist wenig über die Rolle von Kinasen in 

der APP Proteolyse bekannt. Die APP intrazelluläre Domäne enthält jedoch mehrere 

Phosphorylierungsstellen, wodurch Kinasen ein attraktives Studienziel für ein besseres 

Verständnis der grundlegenden molekularen Mechanismen der Alzheimer-Krankheit sind. 

Darüber hinaus können Kinasen pharmakologische Targets sein, um die Bildung von Aβ 

und Tau-Hyperphosphorylierung zu verringern. Die Dysregulation verschiedener 

Kinasen ist im Rahmen der Alzheimer Demenz beschrieben worden und könnte damit 

eine Rolle in der Pathologie der AD spielen. Jedoch wurden nur wenige von ihnen 

ausgiebig untersucht. Da eine unausgewogene Phosphorylierung von APP und 

verwandter Signalwege die Pathologie von AD auslösen könnte, steht die Studie neuer 

Kinasen, die die proteolytische Prozessierung von APP modulieren, im Mittelpunkt des 

zweiten Teils dieser Arbeit. Um das menschliche Kinom (720 Gene) in Neuroblastom-

Zellen, die endogenes APP exprimieren, in der Expression zu unterdrücken, wurde ein 

RNA-Interferenz Hochdurchsatz-Screening durchgeführt. Verschiedene 

Validierungsstrategien führten zu einer Liste von Treffern, die weitergehend in murinen 

embryonalen Neuronen untersucht wurden. Unter diesen Kandidaten wurde die Kinase 

STK39 als neuer Modulator der β-Sekretase-Spaltung von APP identifiziert. Der Knock-

down von STK39 zeigte eine Abnahme in der Bildung von APPsβ, Aβ und des 

Proteinlevels von BACE1 in beiden Neuroblastom-Zellen und primären Neuronen. Diese 

neuen Ergebnisse zeigen, dass die Hemmung von STK39 vorteilhaft sein kann, die 

Alzheimer-Krankheit zu verhindern, womit STK39 ein mutmaßliches interessantes 

pharmakologisches Target sein könnte. 
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1 INTRODUCTION 
 

1.1 Alzheimer’s disease (AD) 
 

1.1.1  History  
 
Progressive mental deterioration in the elderly has been described throughout history. 

However, only in 1906 the German Physician Dr. Alois Alzheimer, specifically 

identified symptoms and histopathological hallmarks of a dementia type which nowadays 

is known as Alzheimer´s disease. In a clinical report, Dr. Alzheimer carefully described 

the symptoms and the anatomical characteristics of his patient Auguste Deter. At the 

beginning of the disease, the 51-year-old woman showed unjustified jealousy towards her 

husband. Soon she was affected by a rapid loss of memory, disoriented in time and space, 

and hallucinated. Her cognitive capabilities were seriously impaired, leaving instead 

motoric capabilities unaltered. She was able to walk independently and to use hands 

equally well. After 4 and a half years of increasing imbecility, the patient died. 

The post mortem analysis of the brain showed an evenly atrophic brain, with 

neurofibrillary tangles impregnated of Bielschowsky´s silver staining and “minute 

military foci which are caused by deposition of a special substance in the cortex”, 

nowadays known as amyloid plaques (Alzheimer, 1907; Alzheimer et al., 1995).  

 

 
 

 

Fig. 1: Histopathological changes in Alzheimer´s disease brain. A) extracellular β-
amyloid plaque B) intracellular neurofibrillary tangle (from Sanchez, 2011). 
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Abbildung 1: Typische histopathologische Veränderungen im Gehirn von A lzheimer-Patienten. 
Mikroskopische Aufnahmen von Silberfärbungen von A) einer typischen amyloiden Ablagerung, die 

 ( ). 

Die extrazellulären amyloiden Ablagerungen weisen einen Durchmesser von 20 bis 100 µm 

auf und bestehen hauptsächlich aus Amyloid-

-Faltblatt-Struktur besitzen, aus. Interessanterweise lassen sich in den 

Plaques unterschiedlich lange Formen dieses Amyloid-  

Länge von 42 Aminosäuren (Jarrett et al., 1993; Lansbury, 1997)

und darüber hinaus weitere N- und C- -

Peptids nachgewiesen werden (Glenner et al., 1984; Masters et al., 1985). Je nach dem 

um die unterschiedlichen Entwicklungsstadien der amyloiden Ablagerungen umschreiben zu 

 Akkumulation von 

( ). 

Diese diffusen Ablagerungen wurden auch in Gehirnen von älteren Menschen ohne 

Alzheimer-Krankheit nachgewiesen (Hardy & Selkoe, 2002). Bilden sich die diffusen 

Ablagerungen weiter aus und beginnen sie feste Grenzen und einen festen Kern auszubilden, 

te Kern wird 

im Besonderen durch seine Umgebung, in der degenerierte Axone und Dendriten (Braak et 

al., 1996) sowie aktivierte Mikrogliazellen und Astrozyten (Pike et al., 1994) zu finden sind, 

charakterisiert.  

Die neurofibrillären Bündel, die in den Neuronen von Alzheimer-Patienten gefunden werden 

können, bestehen hauptsächlich aus dem Protein Tau, welches in Form von gepaarten 

helikalen Filamenten aggregiert (Terry et al., 1964). Die physiologische Funktion des Tau-

Proteins ist die Stabilisierung der axonalen Mikrotubuli (Friedhoff et al., 2000). Unter 

! "
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1.1.2 Epidemiology 
 
Alzheimer´s disease (AD) is the most common cause of dementia in the elderly, 

accounting for up to 75% of all dementia cases. Since AD is a progressive 

neurodegenerative disease, its impact to public health and social care systems is having 

great resonance considering the worldwide phenomenon of population aging (Reitz et al., 

2011). The number of people older than 65 years is expected to increase from 7% to 12% 

by 2030, with peaks in developing countries. Currently, 25 million of those people are 

affected by dementia, and most of them suffer from AD. People with dementia are 

estimated to double every 20 years. People with AD were estimated to be 4.5 million in 

2000 in US, and by 2050 this number is predicted to be quadruple. Thus, enormous 

resources are needed for appropriate care of AD and dementia patients, considering that 

the worldwide overall societal costs of dementia in 2005 in US were more than $315 

billion, without calculating the unpaid health care network like families and friends 

(Reitz et al., 2011; Wimo et al., 2011). 

 

1.1.3 Pathology 
 
The most obvious macroscopic characteristics of an Alzheimer´s disease brain is the 

weight decrease from approximately 1300-1700 g of the normal adult brain to 800-1000g 

of the AD one. The shrinking affects usually both hemispheres in a symmetrical manner, 

mostly in the cortical area and hippocampal regions (Sanchez, 2011). 

 

Microscopically, the main lesions associated with Alzheimer´s disease are senile plaques, 

neurofibrillary tangles and neuronal loss, in particular cholinergic neurons.  

Senile plaques are abnormal amyloid deposits, firstly described by Alois Alzheimer, 

where the main component is the amyloid β peptide (Aβ), a 4 kDa hydrophobic peptide 

prone to aggregation (Glenner and Wong, 1984; Masters et al., 1985a; Masters et al., 

1985b). Aβ peptide is the normal product of the sequential cleavage of amyloid precursor 

protein (APP) by β- and γ-secretase. After β-secretase cleavage, γ-secretase can cleave at 

two different positions, producing the 40 and 42 amino acid long Aβ40 and Aβ42. Both 

peptides are found in amyloid plaques, with prevalence of the Aβ42, due to its higher rate 

of fibrillization and insolubility (Serrano-Pozo et al., 2011). In pathological conditions, 

Aβ42 accumulates and aggregates in extracellular deposits, called amyloid plaques. 
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Growth and deposition of amyloid plaques are partially linked to disease progression and 

this process can be followed in vivo in patients using the Pittsburg-Compound-B (PIB) 

associated with a position emission tomography (PET) analysis (Braak and Braak, 1997; 

Braak and Braak, 1991; Verhoeff et al., 2004). Another approach to follow and 

categorize the plaques is the Thioflavin-S staining (a dye specific for the β-pleated sheet 

conformation). In this case, Thioflavin-S negative diffuse plaques are not harmful for the 

neuronal environment, and they are found in brains of cognitively normal elderly people, 

whereas Thioflavin-S positive dense-core plaques are concomitant to neuronal loss in 

many patients with AD dementia (Bussiere et al., 2004; Urbanc et al., 2002; Vehmas et 

al., 2003). Amyloid plaques accumulate preferably in the cortex (Braak and Braak, 1991).  

Another main histopathological hallmark of AD are the neurofibrillary tangles (NFTs). 

They were described for the first time by Alois Alzheimer, and they are mainly made of 

paired helical filaments which are also called fibrils (Alzheimer et al., 1995). The major 

component of neufibrillary tangles is the microtubule-associated protein tau, a 68 kDa 

protein that is hyperphosphorylated and aberrantly misfolded in diseased conditions 

(Grundke-Iqbal et al., 1986a; Grundke-Iqbal et al., 1986b; Iqbal et al., 1986). In healthy 

neurons, tau is associated with microtubules and involved in the promotion of 

microtubule formation (Gallyas, 1971). NFTs can be seen with silver staining methods 

described also as Gallyas technique (Braak and Braak, 1991) or phospho-tau specific 

antibodies, such as AT8 and PHF1 (Braak et al., 2006). The intracellular location of the 

NFTs is thought to be the main cause of breakdown of axons and dendrites (Serrano-

Pozo et al., 2011). 

Several clinicopathological studies have established a correlation between the 

distribution and amount of NFTs and the duration and severity of dementia (Bierer et al., 

1995). In particular, the distribution of the neurofibrillary tangles matches with the 

neuropsychological profile found in different progressive stages of AD dementia. 

 

1.1.4 Familial and sporadic Alzheimer´s disease 
 
Alzheimer´s disease is a heterogeneous dementia characterized by the following genetic 

and clinical features.  

The familial form of AD (FAD) consists of barely 5% of the total AD patients´ 

population. The cognitive impairment in FAD is associated with neurological symptoms 

such as spasticity, ataxia and motor control disorders at early age, between 25 and 60 
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years old, so that the familial form of AD is also called early onset AD (EOAD). The 

first evidence of genetic correlation in AD cases was the discovery of the triplication of 

the amyloid precursor protein (APP), which is located in the 21q21 locus, in patients with 

Down Syndrome and concomitant cognitive impairment by Glenner and Wong (Glenner 

and Wong, 1984). APP gene was cloned in 1987 (Kang et al., 1987; Tanzi et al., 1987), 

leading to linkage studies in families with subjects affected by FAD.  

Many missense mutations have been so far discovered in APP gene 

(http://www.molgen.ua.ac.be/ADMutations). These mutations impair APP processing via 

different mechanisms. For example, the Swedish mutation KM670/671NL is located at 

the β-cleavage site of Aβ sequence. Since this mutation provides a better substrate to β-

secretase activity, Aβ40 and Aβ42 production is increased (Citron et al., 1992; Mullan et 

al., 1992). Other mutations are localized C-terminally to the Aβ sequence, such as the 

Austrian, Iranian, French, German, London, and Florida mutations. They are linked to an 

increased production of Aβ42, which has the property to aggregate faster (Suzuki et al., 

1994). The Arctic and Dutch mutations are located in the mid region of Aβ (Levy et al., 

1990; Nilsberth et al., 2001). They change the structure of the Aβ peptide, increasing the 

aggregation property and enhancing its toxicity (for details concerning the structure of 

APP, see chapter 1.2.1, Fig.3; for APP processing, see chapter 1.2.2, Fig.4). The 

inheritance of these mutations is autosomally dominant.  

Other mutations have been found in presenilin1 and presenilin2 genes. Presenilins are the 

major components of the γ-secretase complex, the proteolytic activity of which is the 

rate-limiting step for the production of Aβ. To date, several missense mutations, small 

deletions, insertions or splice mutations have been identified in PSEN1 and PSEN2 genes 

(http://www.molgen.ua.ac.be/ADMutations). These mutations are responsible of 

increasing the relative ratio between Aβ42 and Aβ40 (De Strooper, 2007). 

 

The sporadic form of AD is the most common cause of dementia in subjects older than 

60 years, and it comprises more than 90% of all AD patients.  

The genetic component of the sporadic form is less clear in comparison with the early 

onset: several susceptibility genes have been so far reported, wherein Apolipoprotein E 

(ApoE) genotype is the strongest risk factor of this group (Myers et al., 1996). Several 

single nucleotide polymorphisms have been found in ApoE gene (Nickerson et al., 2000). 

The following most common three SNPs are responsible for the production of the three 

main ApoE isoforms: the APOE allele ε4 is reported to be the risk factor for AD, 
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whereas the allele ε2 shows a protective role; allele ε3 is the neutral common allele 

(Corder et al., 1994; Corder et al., 1993; Strittmatter et al., 1993). The different 

combination of these alleles alters ApoE function and structure (Mahley and Huang, 

2006). The APOE ε4 allele colocalizes with amyloid plaques (Schmechel et al., 1993; 

Wisniewski et al., 1994). The increased risk of developing AD carrying one ε4 allele is 

estimated to be three-fold higher in comparison to the ε3 allele, and 12-fold when 

carrying both copies (www.alzgene.org). The underlying mechanisms how ApoE might 

modulate Aβ accumulation and aggregation are still under debate. Nevertheless, studies 

so far suggest that ApoE influences in one hand Aβ clearance across the blood brain 

barrier and thus Aβ seeding and oligomerization (Castellano et al., 2011; Jiang et al., 

2008).  

 

1.1.5 The amyloid cascade hypothesis 
 
The amyloid cascade hypothesis postulates that Aβ aggregation is the first and crucial 

step at the beginning of Alzheimer´s disease pathology (Hardy and Selkoe, 2002).  This 

hypothesis was supported by the presence of Aβ as main constituent of amyloid plaques, 

and the discovery of FAD mutations in PSEN1 and PSEN2, which increase the 

production of Aβ42, accelerating the onset of Alzheimer´s disease (Ertekin-Taner, 2007; 

Glenner and Wong, 1984; Jonsson et al., 2012) 

According to this hypothesis (Fig.2), unbalanced production/degradation of highly 

aggregating Aβ42 peptides leads to the accumulation and subsequent aggregation of this 

β-amyloid peptide. The abundantly produced Aβ peptide forms first oligomers, than 

protofibrils, fibrils and finally amyloid plaques (Martins et al., 2008; Rijal Upadhaya et 

al., 2012). Aβ-mediated neurotoxicity is actually more linked to Aβ oligomers, rather 

than to monomers or fibrils, as it was thought at the beginning of AD research (Dahlgren 

et al., 2002; Walsh et al., 2002). Oligomers were found to promote calcium dysregulation 

and membrane disruption (Demuro and Parker, 2005). 

In this hypothesis, tau hyperphosphorylation and tau tangles were not taken in 

consideration. Only recently it has been shown that Aβ oligomers foster also tau 

hyperphosphorylation (Jin et al., 2011; Ryan et al., 2009).  

The amyloid cascade hypothesis was first postulated by John Hardy in 1992 (Hardy and 

Higgins, 1992) and then revised considering new findings in 2002 (Hardy and Selkoe, 

2002). 
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Fig. 2: The modified amyloid cascade hypothesis. The sequence of pathogenic events 
leading to Alzheimer´s disease dementia is caused by the toxicity of Aβ oligomers. tau 
hyperphosphorylation and tangles are downstream events that contribute to neuronal 
degeneration and cognitive impairment (from Hampel et al., 2010b). 
 

The amyloid cascade hypothesis had so far great influence not only in driving research 

for better understanding the onset of AD, but also in the development of new drugs as 

treatment for AD in pharmaceutical industries. However, treatment approaches based on 

this hypothesis failed in phase III clinical trials, since treated patients were in the 

advanced stage of the disease.  

 

1.2 Amyloid precursor protein (APP) 
 

The amyloid precursor protein (APP) belongs to a family of conserved type I membrane 

proteins which includes also APP like protein 1 (APLP1) and 2 (APLP2) in mammals, as 

well as homologue proteins like APL-1 in C. elegans and APPL in Drosophila. These 

proteins have several conserved motifs in common, like the extracellular domains E1 and 
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E2 and the YENPTY sequence, involved in the endocytosis of these proteins. Aβ 

sequence is present only in the APP sequence (Zheng and Koo, 2011).  

 

APP is constitutively expressed in the body, with prominent expression in brain, 

especially in neurons. The human APP gene is located on Chromosome 21, spanning 

approximately 240 kb (Zheng and Koo, 2011), and it was cloned for the first time in 

1987 (Kang et al., 1987). APP undergoes alternative splicing, resulting in the production 

of several mRNA and subsequently in isoforms ranging from 695 to 770 residues. The 

major isoforms are APP695, APP751, and APP770. The longest and widely expressed 

proteins, APP751 and APP770, contain the extracellular serine-protease inhibitor 

homolog sequence called Kunitz-type domain. APP695 is instead the isoform 

predominantly expressed in neurons, and it lacks the Kunitz domain (De Strooper and 

Annaert, 2000; Zheng and Koo, 2011). 

 

1.2.1 Structure of APP 
 
APP is a type 1 transmembrane protein, characterized by a large N-terminal ectodomain, 

which undergoes shedding by α- and β- secretases, a transmembrane domain, partially 

containing the amyloid β sequence, and a short C-terminal intracellular domain, probably 

involved in intracellular signalling (Haass, 2004; Kang et al., 1987). 

 
Fig. 3: Scheme of amyloid precursor protein (APP). A) The N-terminal ectodomain, 
the transmembrane domain (box) and the C-terminus are depicted. The β-amyloid 
peptide results from the cleavage by β- and γ-secretases at two different positions (Aβ40 
and Aβ42). The alternative β´site at amino acid position 11 of the Aβ sequence generates 
shorter Aβ species, whereas the α-cleavage prevents Aβ formation, by cleaving within 
the Aβ sequence. 
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1.2.2 Proteolytic processing of APP: α-, β-, γ- secretases 
 

Full length APP undergoes post- translational modifications like N- and O- glycosylation, 

phosphorylation and tyrosine sulfation (Haass et al., 2012; Lichtenthaler et al., 2011). 

Following these modifications, the sequential proteolytic processing of APP by α-, β-, 

and γ-secretase takes place in the secretory pathway. The cleavage of the nearly entire 

extracellular domain is accomplished by α- and β-secretases, and it results in the 

production of the soluble APP APPsα and APPsβ, respectively (Fig.4). The remaining 

membrane-tethered fragments, called α- and β- carboxyterminal fragments or CTFα and 

CTFβ, are further cleaved by γ-secretase at different positions generating either the p3 

peptide from CTFα or Aβ peptides from CTFβ. The cleavage by γ-secretase leads to the 

production of the APP intracellular domains, AICD, in both cases. Since the α-secretase 

cleavage occurs within the Aβ sequence, preventing the formation of the toxic species, 

this pathway is also referred as the non-amyloidogenic pathway. In the opposite, the β-

secretase driven pathway is called amyloidogenic pathway (Lichtenthaler et al., 2011).

 
Fig. 4: Proteolytic processing of amyloid precursor protein (APP). In the anti-
amyloidogenic pathway, α-secretase cleaves within the Aβ peptide, preventing the 
generation of toxic Aβ species. APP cleavage by β- and γ-secretases leads to the 
amyloidogenic pathway, which generates Aβ peptides. APP: amyloid precursor protein; 
APPsα: soluble amyloid precursor protein α; APPsβ: soluble amyloid precursor protein β; 
pathway by the consecutive action of b- and
g-secretase (Haass 2004). The b-secretase activ-
ity initiates Ab generation by shedding a large
part of the ectodomain of APP (APPsb) and
generating an APP carboxy-terminal fragment
(bCTF or C99), which is then cleaved by g-sec-
retase. The latter cleavage occurs within the
hydrophobic environment of biological mem-
branes. Consecutive shedding and intramem-
brane proteolysis is now summarized under
the term “regulated intramembrane proteolysis”
(Brown et al. 2000; Rawson 2002; Lichtenthaler
et al. 2011), a cellular process, which is frequent-
ly involved in important signaling pathways
(Selkoe and Kopan 2003; see DeStrooper et al.
2011). On g-secretase cleavage, Ab is liberated
and then found in extracellular fluids such as
plasma or cerebrospinal fluid (Seubert et al.
1992). In the anti-amyloidogenic pathway, APP
is cleaved approximately in the middle of the
Ab region by the a-secretase activity (Esch

et al. 1990; Sisodia et al. 1990). This processing
step generates a truncated APP CTF (aCTF or
C83), which lacks the amino-terminal portion
of the Ab domain. The subsequent intramem-
brane cut by g-secretase liberates a truncated
Ab peptide called p3 (Haass et al. 1993b), which
apparently is pathologically irrelevant. g-Secre-
tase not only liberates Ab (from C99) and p3
(from C83) but also generates the APP intracel-
lular domain (AICD) (Gu et al. 2001; Sastre
et al. 2001; Weidemann et al. 2002), which is
released into the cytosol and which may have
a function in nuclear signaling (Cao and Sudhof
2001; von Rotz et al. 2004). The amyloidogenic
and the anti-amyloidogenic processing path-
ways compete with each other at least in some
subcellular loci, since enhancing a-secretase
activity in animal models of Alzheimer disease
(AD) or in cultured cells can significantly lower
Ab generation and even amyloid plaque forma-
tion (Nitsch et al. 1992; Postina et al. 2004).

αAPP CTF βAPP CTF

AICD AICD

Cytosol

Lumen

Aβ

β

γγ

α

APP

APPsβAPPsα

APP

Anti-amyloidogenic pathway Amyloidogenic pathway

p3

Figure 1. Proteolytic processing of APP within the anti-amyloidogenic (left) and amyloidogenic (right)
pathways.
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Aβ: amyloid β peptide; βAPP CTF: C-terminal fragment β; αAPP CTF: C-terminal 
fragment α; AICD: APP intracellular domain; p3: p3 peptide (from Haass et al., 2012).  
 

The β-secretase identity has been revealed in 1999: the transmembrane aspartyl protease 

BACE1 (β-site APP cleaving enzyme 1) is responsible for the cleavage of APPsβ at the 

β-site Met 671-Asp672 (Vassar et al., 1999) and the production of the CTFβ, which can 

be either cleaved by γ-secretase liberating Aβ, or, as recently discovered, it can be further 

cleaved by α-secretase (Portelius et al., 2011b). 

 

 
Fig. 5: Alternative processing of APP. The cleavage by β-secretase leads to the 
production of the soluble APPβ fragment (β-sAPP) and the membrane bound CTFβ (C99 
CTF), which can be still sequentially cleaved by α-secretase. This cleavage prevents 
generation of longer and highly aggragable Aβ species, and produces shorter Aβ peptides, 
such as Aβ1-16, Aβ1-15, Aβ1-14 (from Portelius et al., 2011b). 
 

Additionally, BACE1 can cleave APP at the β`site, a secondary cleavage site located at 

Glu11 of the Aβ sequence, generating the CTF89. This secondary processing generates 

truncated forms of Aβ (Vassar et al., 1999). 

In contrast, many zinc metalloproteinases from the ADAMs family (a disintegrin and 

metalloproteinase domain containing protein), such as ADAM10, ADAM9 and 

ADAM17, were investigated for years as putative α-secretases for APP. Only recently, 

the identity of the APP constitutive α-secretase in neurons was assigned to ADAM10 in 

our laboratory (Kuhn et al., 2010; Lichtenthaler, 2011). RNAi mediated depletion of the 

three candidates showed that ADAM10 was indeed the only constitutive α-secretase in 

murine embryonic neurons. ADAM10 cleaves APP between Lys16 and Leu17 of the Aβ 

sequence (Kuhn et al., 2010). 

The CTFs produced after cleavage by ADAM10 and BACE1 are substrates of the γ-

secretase complex. Four main subunits are responsible for γ-secretase activity: presenilin, 

nicastrin, APH1 and PEN2 (Edbauer et al., 2002; Edbauer et al., 2003). The GxGD 

Please cite this article in press as: Portelius, E., et al., A novel pathway for amyloid precursor protein processing. Neurobiol. Aging (2009),
doi:10.1016/j.neurobiolaging.2009.06.002
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4. Discussion

It is generally believed that APP undergoes process-
ing along either one of two mutually exclusive pathways:
the “amyloidogenic” or the “non-amyloidogenic” pathway
involving !- or "-secretase-mediated cleavage of APP,
respectively, followed by #-secretase-mediated cleavage of
the remaining C-terminal APP fragment (Selkoe and Schenk,
2003). In the present study, using cell lines and one set of "-,
!- and #-secretase inhibitors, we show that APP can undergo
processing along a third, and to the best of our knowledge pre-
viously unknown pathway, in which the same APP molecule
is cleaved by !- and "-secretase in a concerted manner inde-
pendently of #-secretase.

The cell model used in this study secreted sAPP" and
A!1–40 near physiological levels to the cell-media as shown
by MALDI-TOFMS for A!1–40 (Fig. 1) and ELISA for

sAPP" (Fig. 3). This was an important criterion since an
overexpression, far above physiological levels, could lead
to aberrant processing of APP when secretase inhibitors are
applied at high doses.

The results suggest that all fragments longer than and
including A!1–17 depend on #-secretase directly or indi-
rectly. It is well established that #-secretase has multiple
cleavage sites around amino acids (aa) 34–42 of A! (Beher
et al., 2002) but it is uncertain whether #-secretase by itself
can cleave APP as N-terminally as at position 17 in the
A! sequence. The N-terminal 28 aa of A! are outside the
membrane far from the intramembraneous active site of #-
secretase. However, after cleavage of full length APP by
BACE1, a stretching force may be lost so that the remaining
C99 fragment may act as a “rubber band” pulling A! into the
membrane thus making it accessible to #-secretase. Alterna-
tively, the cleavages at aa 17-X may depend on other as yet

Fig. 7. The top panel shows a revised version of the amyloidogenic APP processing pathway. The lower panel represents a novel APP degradation pathway
including concerted !- and "-secretase cleavages.
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aspartyl protease presenilin (composed by Presenilin 1 and 2) is the catalytic subunit of 

the γ-secretase complex (Haass and Steiner, 2002) and it cleaves the CTFβ within the 

transmembrane domain generating several Aβ peptides and truncated forms of Aβ 

(Fukumori et al., 2010; Portelius et al., 2011a; Steiner et al., 2008), where the prominent 

species is Aβ40. The highly aggregating Aβ42 consists of only 10% of the total amount 

(Selkoe, 2004)  

Notably, all three proteases have been described to cleave other transmembrane proteins 

besides APP, such as growth factors, cytokines, cell surface receptors and corresponding 

ligands in the case of ADAM10 (Haass et al., 2012). Moreover, BACE1 is involved in 

the cleavage of neuregulin-1 (Fleck et al., 2013; Willem et al., 2006), and other several 

subtrates (Kuhn et al., 2012; Zhou et al., 2012). Similarly, γ-secretase is reported to 

cleave more than 50 transmembrane proteins, such as the important Notch intracellular 

signaling cascade (Wolfe, 2010; Wolfe and Kopan, 2004). 

 

1.3 Regulation of APP shedding 
 
The proteolytic cleavage in the ectodomain of the amyloid precursor protein (APP 

shedding) is regulated at two main levels: the trafficking of APP from cell compartments 

and the plasma membrane, and the regulation of secretases´activity responsible for its 

cleavage. 

 

1.3.1 Intracellular transport of APP 
 
The intracellular transport and localisation of APP plays an important role in promoting 

either the amyloidogenic or the non-amyloidogenic pathway, thus being an important 

factor for neurodegeneration.  

APP is translated in the endoplasmatic reticulum, and transported through the Golgi 

apparatus to the trans-Golgi-network. N- and O-glycosylations, as well as 

phosphorylation and tyrosin sulphation, take place in the Golgi apparatus (Haass et al., 

2012; Zheng and Koo, 2011).  

In neurons, the highest intracellular concentration of APP is found in the TGN at a steady 

state. TGN-derived vesicles transport APP to the cell surface, where α-cleavage can 
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occur. Alternatively, APP can be re-internalized via the endosomal/lysosomal 

degradation pathway (Koo et al., 1996). 

When APP full-length and APP shedding products were found in clathrin-coated vesicles, 

the involvement of the endocytic pathway in the amyloid generation became of great 

interest (Koo et al., 1996). Different approaches, mainly by inhibiting APP 

internalization impairing clathrin-dependent endocytosis with compounds or removing 

the APP internalization motif YENPTY contained in its cytoplasmic tail, could show that 

endocytosis of APP is necessary for Aβ production, resulting in increased full-length 

APP at the cell surface and APPsα secretion. The cell surface bound full-length APP is 

internalised in a clathrin-mediated manner and transported to endosomes, where it is 

cleaved by BACE1. In fact, BACE1 has an optimal activity at low pH of the endosomal 

compartments and TGN, and then either returned to the cell surface where CTFβ is 

cleaved by γ-secretase generating Aβ, or trafficked to the lysosomes and degraded (Koo 

et al., 1996; Sannerud and Annaert, 2009). Endosomally located APP can also be re-

transported to the TGN and Golgi, and thereby being still processed by β- and γ-secretase 

(Thinakaran and Koo, 2008; Vetrivel and Thinakaran, 2006). 

 

 
 

Fig. 6: APP trafficking within the cell. APP (black bars) is translated in the 
endoplasmatic reticulum, undergoes maturation through the Golgi apparatus and it is 
transported to the cell surface through the constitutive secretory pathway (1). Once APP 
reaches the plasma membrane, it is rapidly internalized (2) and trafficked to endosomal 
and recycling compartments, to the trans-Golgi apparatus or again to the cell surface (3). 
APP degradation takes place in the lysosome. Anti-amyloidogenic processing of APP 
mainly occurs at the cell surface, whereas the amyloidogenic pathway is prominent in the 
endocytic organelles (from Haass et al., 2012). 
 

phosphatidylinositol-3-kinase, mitogen-activated
protein kinase kinase, extracellular signal-regu-
lated kinase, Src tyrosine kinase, small GTPase
Rac, inositol 1,4,5-trisphosphate, cAMP, and
cytosolic calcium (reviewed in Gandy et al.
1994; Allinson et al. 2003). Lowering cholesterol
levels in cultured cells stimulates a-secretase
cleavage of APP through mechanisms involving
impaired APP endocytosis and increased steady-
state levels of ADAM10 (Kojro et al. 2001). The
effect of cholesterol depletion is not specific to
APP cleavage, because the shedding of the
human interleukin-6 receptor by ADAM10
and TACE/ADAM17 is also stimulated under
these conditions (Matthews et al. 2003).

CELLULAR TRAFFICKING OF APP

Biosynthesis and Trafficking through the
Secretory Pathway

The pathways of APP trafficking in a nonpolar-
ized mammalian cell are depicted in Figure 4.
During its transit from the ER to the PM, nas-
cent APP is posttranslationally modified by
N- andO-linked glycosylation, ectodomain and

cytoplasmic phosphorylation, and tyrosine sul-
phation. Only a small fraction of nascent APP
molecules reach the PM (estimated at !10%
based on APP overexpression in cultured cells),
whereas the majority of APP at steady-state
localizes to the Golgi apparatus and trans-Golgi
network (TGN). APP which is not shed from
the cell surface is internalized within minutes
of arrival at the cell surface because of the pres-
ence of its “YENPTY” internalization motif
near the carboxyl terminus of APP (residues
682–687 of APP695 isoform) (Lai et al. 1995;
Marquez-Sterling et al. 1997). Following endo-
cytosis, APP is delivered to endosomes, and a
fraction of endocytosed molecules is recycled
to the cell surface.Measurable amounts of inter-
nalized APP also undergo degradation in lyso-
somes (Haass et al. 1992).

Endocytic APP Sorting and Ab Production

Although attempts to characterize the role of
endocytic APP trafficking by expression of
dominant-negative dynamin mutants resulted
in discrepant findings (Chyung et al. 2003; Ehe-
halt et al. 2003; Carey et al. 2005), mutations

Late
endosome

Lysosome
Nucleus

Endoplasmic
reticulum

Golgi
apparatus
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Early
endosome
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Sorting
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Figure 4. Intracellular trafficking of APP. Nascent APP molecules (black bars) mature through the constitutive
secretory pathway (1).OnceAPP reaches the cell surface, it is rapidly internalized (2) and subsequently trafficked
through endocytic and recycling organelles to the TGNor the cell surface (3). A small fraction is also degraded in
the lysosome. Nonamyloidogenic processing mainly occurs at the cell surface where a-secretases are present.
Amyloidogenic processing involves transit through the endocytic organelles where APP encounters b- and
g-secretases.

Trafficking and Proteolytic Processing of APP
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A number of other trafficking factors have been of research interest due to their role in 

modulationg APP localisation and Aβ generation. For example, the cytoplasmic tail of 

APP was reported to interact with X11 (mint1, mint2, mint3) family members, Fe65, 

Fe65L1 and Fe65L2. Namely, the interaction between APP and X11 stabilize APP 

intracellularly, affecting both amyloidogenic and non-amyloidogenic pathway (Saito et 

al., 2011). Another member of the endocytic pathway, the GTP-binding protein Rab6, 

has been found to interfere with APP processing (Zhang et al., 2011). Also other 

components of the endocytic pathway, namely Clathrin, Dynamin I, Adaptor Protein-2, 

can regulate the production of Aβ (Sorkin and von Zastrow, 2009). In particular, in the 

presence of overexpression of the dominant-negative Dynamin 1 mutant, decreased Aβ 

production is associated with increased APPsα shedding (Carey et al., 2011) 

Moreover, the neuronal highly expressed protein SorLA/LR11 (a type I membrane 

protein) is reduced in patients with Alzheimer´s disease, and it is involved in APP 

transport between the plasma membrane, endosomes and Golgi. Overexpression of 

SorLA results in the accumulation of APP into the Golgi apparatus (Andersen et al., 2005; 

Schmidt et al., 2007). Additionally, SorLA/LR11 knock-out mice have increased levels 

of Aβ (Rogaeva et al., 2007).  

 

1.3.2 Regulation of the secretases´ activity 
 
The activity of the two secretases ADAM10 and BACE1 is regulated at different levels, 

namely at the trascription, translation, post-traslational modifications and compartments 

localisation. In these processes, colocalisazion of APP with the secretases and its 

interaction with cellular factors are important for APP shedding modulation 

(Lichtenthaler et al., 2011). 

The transcription of ADAM10 as well as the one of BACE1 is controlled by different 

transcriptional factors, which bind to the promoter region (Rossner et al., 2006; 

Tippmann et al., 2009). Moreover, the translation of ADAM10 mRNA is regulated via a 

region at the 5´-UTR, which act as a repressor, as well as for BACE1 (Lammich et al., 

2010; Lammich et al., 2011). Additionally, the stimulation of receptors with 

neurotransmitters or growth factors can increase ADAM10 activity, as result of the 

activation of different signaling pathways (Pitulescu and Adams, 2010). Also lipid 

distribution and composition at membrane level can play a role in the modulation of 

BACE1 activity (Ehehalt et al., 2003). Additionaly, natural anti-sense RNAs and 
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microRNAs have been described to control BACE1 translation (Faghihi et al., 2008; 

Hebert et al., 2008) 

As already mentioned, the intracellular localisazion of BACE is critical for its activity: 

the enzyme is especially active in acidic compartments like endosomes and TGN. As 

seen for ADAM10, also BACE activity is influenced by the cholesterol rate of the 

membrane enviroment, as well as the lipid distribution within the membrane (Dislich and 

Lichtenthaler, 2012). 

In contrast, the activity of γ-secretase is very much dependent on the correct assembly 

and maturation of the γ-secretease complex. A first immature complex is assembled in 

the ER, and then transported to the Golgi, where it undergoes glycolsylation and other 

post-translational modifications. The correct delivery of the functionally mature complex 

to the endosomes/lysosomes and to the plasma membrane, as well as the rate of the CTFs 

produced from the other secretases, are limiting steps for the activity of the γ-secretase 

(Lichtenthaler et al., 2011). 

 

1.4  Biomarkers 
 

“ Biomarkers are objective measures of a biological or pathogenic process that can be 

used to evaluate disease risk or prognosis, to guide clinical diagnosis, or to monitor 

therapeutic interventions” (Blennow, 2010; Blennow et al., 2012). 

Research on biomarkers for the diagnosis and treatment of Alzheimer´s disease is still a 

controversial field. In the recent years, advances in monitoring the progression of the 

disease have been achieved. Based on the amyloid cascade hypothesis (Hardy and Selkoe, 

2002), which considers the imbalance between the production and clearance of Aβ as 

initiating event of the disease, body fluids like cerebrospinal fluid (CSF) and plasma have 

been analysed for products of APP metabolism. Neuroimaging techniques are nowadays 

a helpful tool for identifying brain dysfunctions. These clinical investigations give 

information about the biochemical profile, morphological changes in specific brain 

regions, and they support the tracking of the presence as well as the entity of Aβ plaques.  

Many anti-Aβ drug candidates, including Aβ immunotherapy, secretase inhibitors, and 

Aβ aggregation inhibitors, are currently tested in clinical trials (Blennow, 2010; Lee et al., 

2011). 

The neuroclinical symptoms of Alzheimer´s disease show up when the homeostasis of 

the brains is already compromised. For this reason, it is of major importance to find 
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biomarkers and to develop drugs that are effective at the very early stages of the disease. 

A systematic screening of subjects with pre-dementia symptoms, together with 

administration of disease modifying drugs would be the ideal goal for effective AD 

treatment (Blennow et al., 2012). 

 
Fig. 7: Scheme of a neuron with extracellular β-amyloid plaques and intracellular 
neurofibrillary tangles. Some of the investigated CSF biomarkers from putative 
pathological processes in Alzheimer´s disease are given (from Blennow et al., 2012). P-
tau: phosphorylated tau; T-tau: total tau; VLP-1: visinin protein-like 1; NF: 
neurofilament; IL-6: interleukin 6; TNF-α: tumor necrosis factor α; TGF-β: transformimg 
growth factor β; ACT: antichymotrypsin; C1q: C1 complex subcomponent; Aβ: amyloid 
β peptide; β-sAPP: soluble amyloid precursor protein β; α-sAPP: soluble amyloid 
precursor protein α; BACE1: β-secretase. 
 

1.4.1 Cerebrospinal fluid biomarkers 
 
CSF is considered to be a particularly important source for Alzheimer´s disease 

biomarkers, being in close contact with the extracellular space in the brain where the 

major biochemical changes occurs in AD pathological conditions. CSF reflects changes 

in Aβ aggregation metabolism and the formation of neurofibrillary tangles. For this 

reason, levels of Aβ42, tau and phosphorylated tau have been extensively investigated as 

potential biomarkers. 

Levels of Aβ42 in the CSF reflect the balance between aggregation and clearance of Aβ 

in the brain. Decreased levels of approximately 50% in CSF Aβ42 are reported in AD 

AD cases (Samgard et al. 2009; Wallin et al.
2009). However, one study found that CSF T-
tau correlates with postmortem tangle load
(Tapiola et al. 2009), suggesting that the release
of tau specifically from degenerating tangle-
bearing neurons may contribute to the CSF
level of T-tau. Consistent with this idea, bind-
ing of 18FFDDNP, an agent that is reported
to label both plaques and tangles, positively
correlates with CSF T-tau levels (Tolboom
et al. 2009).

It is logical to postulate that phosphorylated
tau (P-tau) in CSF reflects the phosphorylation
state of the tau protein in the central nervous
system (CNS; Fig. 1). Positive correlations be-
tween CSF levels of P-tau181 and P-tau231 (tau
phosphorylated at residues 181 and 231, respec-
tively) and neocortical tangle pathology at
autopsy have been reported (Buerger et al.
2006; Tapiola et al. 2009). High CSF P-tau181
is also associated with a faster progression
from MCI to AD (Blom et al. 2009), and
a more rapid cognitive decline in AD cases

(Samgard et al. 2009), as well as those with
very mild AD dementia (Snider et al. 2009).
These findings support the hypothesis that the
CSF level of P-tau reflects the phosphorylation
state of tau and the formation of tangles in
the brain.

FLUID BIOMARKERS FOR AD DIAGNOSIS

b-Amyloid Isoforms

The discovery that b-amyloid (Ab) is produced
during normal cell metabolism and is secreted
into the CSF served as the basis for Ab bio-
marker development (Seubert et al. 1992). The
subsequent finding that Ab42 is the most abun-
dant species in plaques made it logical to
develop assays for this Ab isoform (Jarrett
et al. 1993). CSF Ab42 in AD is decreased to
approximately 50% of control levels, as has
been shown using several different enzyme-
linked immunosorbent assay (ELISA) methods
(Sunderland et al. 2003; Blennow 2004).

Tangle pathology
P-tau181 and P-tau231

Neuronal and axonal degeneration
T-tau, VLP-1, NF protein

Inflammation and oxidative stress
Interleukins, e.g., IL-6, TNF-α, TGF-β
Acute phase proteins, e.g., α1-ACT

Isoprostanes
Complement proteins, e.g., C1q Plaque pathology

Aβ42 / Aβ40
Aβ oligomers

β-sAPP / α-sAPP
BACE1 activity

Figure 1. Schematic drawing of a neuron with intracellular neurofibrillary tangles and three neuritic plaques,
together with two lymphocytes. Candidate cerebrospinal fluid biomarkers for different pathogenic processes
are given.
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patients, probably because the aggregation rate into plaques is very high (Blennow, 2004; 

Fagan et al., 2009; Tolboom et al., 2009). 

Levels of total tau are a measure of neuronal damage and degeneration. A marked 

increase in total tau levels correlate with a number of clinical acute manifestation of brain 

disorders (Hampel et al., 2010a; Zetterberg, 2008a). In AD-type of dementia, CSF total 

tau increases of around 3-fold in a disease progression manner from mild cognitive 

impairment (MCI) to AD (Blennow, 2004; Sunderland et al., 2006). Rapid increase in 

CSF total tau levels well correlates with rapid cognitive decline (Hampel et al., 2010a). 

Together with total tau, CSF phosphorylated tau is measured to monitor the 

phosphorylation state of tau protein that is at the basis of the tangle formation. Tau can 

be phosphorylated mainly at amino acid residues 181 and 231 (Brunden et al., 2009). 

Like tau, also phosphorylated tau181 levels increase in MCI and AD cases, well 

correlating with the severity of the disease and the conversion between early MCI, MCI 

and AD (Blennow, 2004; Hampel and Blennow, 2004; Hampel et al., 2010a).  

Recently, several studies have proven the diagnostic potential of the combination of these 

three biomarkers in the AD diagnosis (Hansson et al., 2006; Maddalena et al., 2003). 

Nowadays, simultaneous quantification of Aβ42, tau and phospho-tau provide a partial 

discrimination between AD patients and non-demented controls, with still extensive 

overlap between the groups of control subjects and AD patients (Blennow, 2004; 

Hansson et al., 2006; Hansson et al., 2010; Mattsson et al., 2010). Moreover, the 

combination of these biomarkers may also differentiate AD from other type of 

Taupathies, even if the heterogeneity of these types of dementia and the partial overlap of 

clinical presentations render the diagnosis difficult (Hampel et al., 2004; Schraen-

Maschke et al., 2008). 

To improve the pre-clinical diagnosis of Alzheimer´s disease, especially at the individual 

levels, other biomarkers have been investigated in CSF. For example, other APP 

processing products such as APPsα and APPsβ have been measured as putative 

biomarkers, since they are directly secreted into the extracellular space and diffused into 

the CSF. Controversial results have been reported in the literature, where CSF levels of 

these two proteins have been found to be slightly increased or unaltered (Gabelle et al., 

2010; Lewczuk et al., 2010; Olsson et al., 2003; Rosen et al., 2012; Zetterberg and 

Blennow, 2008). Therefore, more studies are needed to fully evaluate the potential of 

APPsα and APPsβ as new biomarkers. 
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For this reason, new specific biomarkers represent a first priority´s challenge for the 

accurate diagnosis of AD and for monitoring the effect of new drugs. 

 

1.4.2 Plasma biomarkers 
 

Plasma biomarkers for AD diagnosis have been investigated with little success so far.  

Aβ has been examined as a peripheral biomarker for AD. Studies reported slightly higher 

level of plasma Aβ40 and Aβ42 in AD patients, although with large overlap between 

controls and AD patients (Graff-Radford et al., 2007). In addition, contradictory results 

have been published concerning the Aβ42 and the Aβ42/Aβ40 ratio as an indicator for 

AD risk (Sunderland et al., 2006; Zetterberg, 2008b; Zetterberg and Blennow, 2008; 

Zetterberg et al., 2010). The lack of correlation between plasma Aβ species and the status 

of the disease is explained from different hypothesis: first of all, APP is expressed 

ubiquitously, and it is difficult to isolate the ratio of Aβ derived from the brain; second, 

Aβ is a hydrophobic peptide, thus very likely to be bound to plasma carrier proteins, 

which make the measurement difficult and less reliable. 

Since research of Aβ as a peripheral marker for AD did not help the already difficult 

diagnosis of AD, other methods have been developed for finding more suitable 

biomarkers for AD. For example, one study (Ray et al., 2007) identified 18 novel plasma 

proteins involved in signaling and inflammation. Using this panel of new biomarkers, it 

was possible to differentiate between MCI, AD and control subjects with close to 90% 

accuracy. Changes involving increased expression levels of other plasma proteins, like 

complement factor H and alpha2-macroglobulin, were found in AD patients in another 

study (Hye et al., 2006). A full blood based algorithm for screening of AD patients was 

recently developed for testing plasma and serum, with high accuracy in diagnosing AD 

(O'Bryant et al., 2011). 

The easy sampling of plasma makes this body fluid an interesting source of biomarkers 

for AD. Therefore, more efforts in finding significant and reproducible changes to 

correlate different stages of AD are urgently needed. 
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1.4.3 Role in diagnosis and clinical trials 
 

A biomaker is a valuable tool not only to diagnose AD more precisely, but also to 

evaluate the effects of a new drug. They can be especially helpful for monitoring the 

effect of new drugs at different disease stages, and for early diagnose of AD, when 

symptoms are yet lacking or indistinct. Moreover, because AD is a very heterogeneous 

disease at clinical and neuropathological levels, accurate and specific biomarkers would 

have a role to create a better stratification of AD subtypes, increasing the chance to 

develop targeted treatments to prevent the worsening of the neurological conditions, and 

also to distinguish Alzheimer´s disease from other similar dementia. 

Nowadays, CSF biomarkers like Aβ42, tau and phsphorylated tau are considered 

informative for the diagnosis of AD. Nevertheless, these biomarkers still rely on invasive 

or expensive procedures like lumbar puncture, and this analysis is performed only when 

patients show clear sympthoms of dementia. In the opposite, disease modifying drugs are 

more effective if they are administered in the earliest stage of AD, before the 

histopathological changes of the disease become prevalent (Blennow et al., 2012) 

 

1.4.4 Therapeutic approaches to AD 
 
Different approaches have been developed in order to find treatment strategies for an 

effective treatment of Alzheimer´s disease. Many drugs have been tested in the recent 

years, maily encountering failure in clinical trials. The currently approved drugs used for 

the symptomatic treatment of AD are cholinesterase inhibitors and the NMDA receptor 

antagonist memantine (Mangialasche et al., 2010; Salomone et al., 2012). Unfortunately, 

these drugs do not affect the rapid progression of the disease, highlighting the need of 

development of disease modifying drugs. For this reason, β- and γ-secretase inhibitors 

have been used to reduce Aβ production.  The major problem of these compounds is the 

potential non-specific effect, being these two secretases involved in key pathways of the 

cellular system, like for example intramembrane cleavage of N-Cadherin, Notch receptor, 

ErbB4 and others (Salomone et al., 2012). 

Since oligomers are considered to be the neurotoxic species in AD pathology, drugs like 

tramiprosate that prevent Aβ aggregation have been developed, without determining 

major clinical improvements in Phase III clinical trials (Aisen et al., 2011). Others are 

currently tested in Phase II and III clinical trials.  
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In the opposite, drugs promoting Aβ clearance are considered a promising approach for 

AD treatment. Active immunization is used to induce the self-production of antibodies 

against Aβ, whereas passive immunization is based on antibodies produced in vitro. 

Active immunization enhances Aβ clearance via promoting the phagocytosis by 

microglia of the complex Aβ-antibody. Unfortunately, this kind of immunotherapy led to 

brain inflammation, and passive immunization has been favoured as an alternative 

strategy. The most promising Aβ targeting antibody is bapineuzumab (Kerchner and 

Boxer, 2010), even if it seems to have adverse effect on the subset of AD patients 

carrying ApoE ε4 allele.  

Since a number of new findings recently correlated tau and Aβ in the onset of AD 

pathology (Ittner and Gotz, 2011), increasing pharmacological strategies are nowadays 

focused on inhibiting tau-phosphorylation, preventing tau aggragation, and promoting tau 

disassembly. A target for the inhibition of tau phosphorylation is the kinase GSK-3β, 

which is the main enzyme involved in this process. Drugs targeting GSK-3β have shown 

so far many adverse effects (valproate) (Lonergan and Luxenberg, 2009) or no clear 

effect (litium) (Hampel et al., 2009). 

 

1.5  Kinases as modulators of APP shedding 
 
Kinases have been described in the past to be altered in AD brains, and to have a role in 

the regulation of APP processing. In fact, the cytoplasmic domain of APP contains a 

number of possible phosphorylation sites that can modify the protein structure, thereby 

having an important role in the regulation of its function, trafficking and metabolism. 

 

1.5.1 Kinases altered in AD 
 
In 2002, Manning and colleagues (Manning et al., 2002) published the full human 

kinome, comprehensive of 518 kinases. However, only a small fraction of them have 

been studied in the context of AD. Aberrant tau and APP phosphorylation seem to 

correlate with AD status, making kinases and phosphateses an interesting research topic 

and putative candidates for drug target. Cyclin dependent kinase 5 (cdk5) and glycogen 

synthase kinase (GSK3) have been studied as first candidates for AD pathogenesis 

(Drewes, 2004; Noble et al., 2005). In fact, they phosphorylate disease-associated 
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residues on tau, and they colocalize with tau tangle in brains of AD patients (Shelton and 

Johnson, 2004).  

In vivo studies showed that GSK3 and cdk5 regulate Aβ generation. Concerning the 

further, GSK3α and GSK3β isoforms have been investigated to have a role by linking 

amyloid and tau pathology. GSK3β is abundantely expressed in the nervous system, 

whereas GSK3α is mainly expressed in non-neuronal tissues. Several evidences link 

activation of GSK3β to tau pathology, Aβ synthesis, and apoptotic neuronal death. In 

particular, GSK3 phosphorylation not only enhances BACE1 activity and subsequently it 

increases Aβ production, but it also regulates Aβ production by direct phosphorylation of 

presenilin1 and APP, thereby interfering with γ-secretase cleavage of APP. Moreover, 

GSK3 phosphorylation downregulates α-cleavage of APP by inhibiting constitutive and 

PKC-induced α-cleavage. Additionally, Aβ accumulation can act as a feedback loop, 

inducing further GSK3 activation via Aβ-mediated neuroinflammation. Together with its 

role in tau hyperphosphorylation, these mechanisms can be at the basis of neuronal 

damage, ultimately leading to cognitive impairment in Alzheimer´s disease patients. 

GSK3β represents currently a putative therapeutic target for AD (Cai et al., 2012).  

In the latter, cdk5 directly phosphorylates not only tau and neurofilaments, but also APP. 

Abnormal activation of cdk5 leads to tau and APP hyperphosphorylation, enhancing the 

formation of neurofibrillary tangles and increasing Aβ production. Cdk5 is activated by 

p35 and p39. Under stress conditions, both activators are cleaved by calpain. In particular, 

the resulting active p25 binds cdk5 and it is responsible of tau and APP 

hyperphosphorylation (Shukla et al., 2012). Moreover, overexpression of p25 leads to 

increased BACE mRNA levels, and enhanced Aβ production (Wen et al., 2008). 

Increased levels of hyperactivated cdk5 and p25 have been reported in AD brains, 

making this kinase an interesting drug target as well. 

 

1.5.2 APP phosphorylation 
 

The APP cytoplasmatic domain is characterized by several phosphorylatable amino acid 

residues. APP physiological phosphorylation state has been investigated in different cell 

lines, namely neurons and dividing cells. The mature form of APP is found to be 

phosphorylated in neurons, whereas the immature form is maily phosphorylated in 

dividing cells. In both case, the major phosphorylation site in the cytoplasmic region of 

the protein is at Thr668 (numbering for APP695 isoform). Kinases like cdk5 (cyclin-
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dependent kinase-5) and GSK-3β (glycogen synthase kinase-3β) are described to 

phosphorylate APP at Thr668 in neurons (Aplin et al., 1996; Iijima et al., 2000). In 

dividing cells, the cdk5 homologue CDK1/CDC2 kinase phosphorylates APP at the same 

residue. Under stress conditions, JNK is also capable of APP phoyphorylation at the 

Thr668. The phosphorylation at this residue induces important conformational changes in 

the cytoplasmatic region of the protein and it interferes with APP binding partners 

(Suzuki and Nakaya, 2008). 

Additionally, the APP C-terminus contains the internalization motif YENPTY, spanning 

from amino acid 682 to amino acid 687 (numbering from APP 695). This motif is 

normally phosphorylatable and it regulates binding of interaction partners involved in 

cell signaling. Within APP YENPTY motif, Tyr682 and Tyr687 are alternatively 

phosphorylated by a number of different kinases, such as Abl and Src kinases (Tamayev 

et al., 2009). This alternative phosphorylation may have a role in regulating APP CTFs 

processing, by directing APP to different cellular compartments, promoting or inhibiting 

the amyloidogenic pathway of APP (Schettini et al., 2010). Additionally, 

phosphorylation of Thr668 and Thr682 are increased in AD brains (Lee et al., 2003). 

 

1.6  High- throughput screening by RNA interference 
 

RNA interference is an endogenous and natural mechanism broadly used for studying 

gene function. It has been discovered by Fire and colleagues (Fire et al., 1998) in 

Ceanorhabditis elengans, as a tool to manipulate the expression of an endogenous gene 

and to find its relevance in a specific pathway.  Through this process, the expression of a 

specific gene can be knocked down, with a high degree of specificity and selectivity, 

triggering sequence specific degradation of mRNA transcripts in the cytoplasm.  

Silencing of gene expression can be regulated via 3 major categories of small RNAs: 

miRNA, siRNA and shRNA. miRNA are endogenous regulators of the cell homeostasis, 

and they function as repressors of expression of heterologous genes. siRNA and shRNA 

can be endogenous and exogenous molecules that are either artificially inserted into the 

cell or normally produced in the nucleus for silencing the genes from which they are 

derived.  

Concerning the shRNA pathway, long double stranded RNAs (typically shRNA and pre-

miRNA) are exported into the cytoplasma by Exportin, where they are processed by the 

endonuclease Dicer to generate 21-23 bp double-stranded siRNAs. These molecules bind 
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to the Argonaute complex (Ago2 in mammals). They normally have a 3´overhang, which 

identifies the guide strand that is selected by the Ago2 for being incorporated into the 

RISC complex (RNA-induced silencing complex). The guide strand- RISC complex 

targets the complementary mRNAs, determining the cleavage and the degradation of the 

specific mRNA. The corresponding complementary strand undergoes degradation by 

exonucleases. Accidently, also the complementary strand can be integrate into the RISC, 

originating non-specific knock-down (Martin and Caplen, 2007; Rao et al., 2009a; Rao et 

al., 2009b). Synthetic double-stranded siRNAs artificially delivered into the cytoplasm 

do not need to be shortened by of unrelated genes, but they are immediately processed by 

the Argonaute-RISC complex to achieve the knock down of the specific mRNA (Rao et 

al., 2009a; Rao et al., 2009b). The match between siRNA and mRNA is usually perfect, 

and this prerequisite is required for cleavage of mRNA.  

Differently, miRNA are transcribed by RNA polymerase II and undergo post-

trascriptional modifications like polyadenylation and capping. The miRNA transcripts 

contain hairpin structures, and they are firstly processed in the nucleus by the enzyme 

Drosha (Mendell, 2005). Afterwards, pre-miRNAs are transported into the cytoplasm via 

Exportin, where they are also processed in the same way as siRNA via Dicer and the 

Argo/RISC complex. miRNA match with mRNA is imprecise, allowing miRNA to target 

hundreds of mRNA (Fabian et al., 2010; Sigoillot and King, 2011). 
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Fig. 8: RNA interference pathways in mammalian. Dicer processes endogenous or 
exogenous long dsRNA or siRNA into 21-23 nucleotides dsRNA duplexes. Most 
shRNAs and siRNAs have precise complementary with the target mRNA and their 
binding to Ago2-RISC complex mediates mRNA cleavage, thereby initiating RNA 
interference (from Cohen and Xiong, 2011). 
 

RNAi-based knock-down is a powerful tool to conduct functional studies in cultured 

cells and organisms. Nevertheless, since both siRNA and miRNA pathways use the 

endogenous RNAi machinery in the cellular system, unspecific repression of transcripts 

can occur, causing off-target effects. These off-target effects can be divided into two 

main categories: the sequence-dependent and the sequence independent off-target effects.  

Concerning the sequence-dependent off-target effects, the choice of the siRNA or 

miRNA strand which is loaded into the RISC complex is very much dependent on the 

thermodynamic stability of the dsRNA ends. If the complementary strand is loaded into 

the RISC, unwanted mRNA which shares homology to the strand sequence will be 

silenced. Moreover, the miRNA-induced off-target effect can also arise from the 

imprecise match which is at the basis of the miRNA mediated translational repression. 

While siRNA knock-down is based on the perfect complementary of the siRNA with the 

corresponding mRNA, miRNAs usually require only few nucleotides of homology in the 
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seed region at the 5´ end of the guide strand (from nucleotides 2 to 8) to target the desired 

mRNA. Even extended regions are described to mediate the same off-target effect, and 

these target sites are mostly located to the 3`UTRs of target genes (Bartel, 2009).  

The sequence-independent off-target effects are based on general impairment of the 

homeostasis of the cell (Jackson and Linsley, 2010). For example, prolonged expression 

of shRNA can saturate the endogenous regulation of gene expression, which is necessary 

to keep the physiology of the cellular system. Moreover, synthetic siRNA can activate 

the endogenous miRNA response from the cell, which interferes with the normal 

expression of many other genes. This miRNA-mediated response to exogenous siRNA is 

nowadays well documented via transcriptional profiling (Khan et al., 2009). Along with 

the physiological response of the cell against exogenous agents, also other types of 

immune and stress response can be induced by siRNA or viruses for the expression of 

shRNA (Sledz and Williams, 2004). 

Taking advantage from the availability of sequenced genomes from many organisms, 

classical genetic screening have been slowly substituted by RNAi screening. This 

approach is rapid and allows systematic screening of either the whole genome or 

pathways of interest, thereby increasing the probability to find genes responsible for 

lethal or weak phenotypes (Boutros and Ahringer, 2008; Martin and Caplen, 2007). 

Nevertheless, off-target effects can have strong impact on the output of an RNAi high-

throughput screening, leading to the production of false-positive hits. It is necessary to 

control unwanted targeting of RNAi molecules, as well as building strong validating 

approaches for the newly identified modulators of a specific pathway. 
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2 AIM OF THE WORK 
 
Alzheimer´s disease is the most common form of elderly dementia worldwide, and it is 

characterized by histopathological hallmarks such as β-amyloid depositions and 

neurofibrillary tangles. The amyloid precursor protein (APP) contains the Aβ sequence, 

the highly aggregating toxic peptide found in β-amyloid plaques. The Aβ peptide is 

generated through the sequential cleavage of APP by β- and γ-secretases. A third 

protease, called α-secretase, cleaves APP within the Aβ peptide, preventing Aβ 

production.  

 

The aim of this thesis is to address two major topics in Alzheimer´s disease:  

 

- Investigation of products of APP metabolism as new potential biomarkers in AD. 

 

Cerebrospinal fluid biomarkers such as Aβ42, tau and phospho-tau are used for helping 

Alzheimer´s disease diagnosis. Nevertheless, a precise individual diagnosis of the disease 

is yet not possible, due to the lack of 100% specificity of these and other biomarkers. 

Products of APP metabolism like APPsα and APPsβ have been detected in cerebrospinal 

fluid and plasma as putative biomarkers for increasing the accurancy of AD diagnosis. 

Specifically, APPsα has been proposed as a potential biomarker for AD. APPsα 

ectodomain results from the α-secretase cleavage of APP, which corresponds to the non-

amyloidogenic pathway. Several studies investigated APPsα levels in CSF and plasma of 

healthy subjects and AD patients, but with poorly consistent results. Here, a new 

antibody for more specific detection of APPsα will be used to establish an ELISA-like 

immunoassay. The performance of the new immunoassay will be tested in cerebrospinal 

fluid and serum, and a group of AD patients will be analysed in comparison to control 

subjects.  

 

- RNAi- screening of the human kinome to identify new modulators of APP 

shedding. 

 

Detection of APPsα and APPsβ is not only important from a diagnostic point of view, but 

also as a read out to better understand how APP processing is regulated. In particular, 
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kinases´ activity plays a role in controlling this process. In fact, abnormal regulation of 

kinases´ activity has been linked to the etiology of Alzheimer´s disease. 

Hyperphosphorylated tau and differential APP phosphorylation are key mechanisms for 

the onset of tau tagles and amyloid plaques. So far, only few kinases have been 

extensively studied for their role in Alzheimer´s disease. Here, a RNAi high-throughput 

screening of the human kinome will be performed to identify new kinases involved in the 

control of APP shedding and consequently in Aβ generation. The screening will be 

performed in neuroblastoma cells expressing endogenous APP, in order to select for 

kinases implicated in the physiological processing of APP. Best candidates will be 

validated with different strategies to exclude false-positive hits due to RNAi-mediated 

off-target effects. Neuronally expressed genes will be further selected and tested in 

murine embryonic neurons expressing endogenous APP. 
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3 Materials and methods 
 

3.1 Material 
 

3.1.1 General material and equipment 
 

Table 1: General material and equipment  

Material Manufacturer 

Analytical balance (200-0,0001 g) Ohaus 

Autoclave (Tuttnauer 3850 EL) Systec 

Balance (2000-0,01 g) Ohaus 

Falcon tubes Sarstedt 

Fridge (Santo 4°C) AEG 

Freezer (-20°C) Liebherr 

Freezer (-80°C) Heraeus 

Micro tubes (1.5 ml, 2 ml) Sarstedt 

Milli Q plus filtration system Millipore 

Multichannel pipette (300 µL) Eppendorf 

pH electrode Schott 

pH-meter WTW 

Pipettes  Eppendorf/Gilson 

Accu-Jet Brand 

Pipette tips Sarstedt 

Thermomixer Eppendorf 

Centrifuge (-4°C- Room temperature) Eppendorf 

Table centrifuge (Biofuge pico) Heraeus 

Microwave Sharp 

Incubator (37°C) Heraeus 

Vortex VF2 IKA Labortechnik 
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3.1.2 Chemical reagents 
 

Table 2: Chemical reagents 

Chemical reagent Manufacturer 

Calcium chloride  J.T. Baker 

Disodium hydrogen phosphate  Sigma 

Dimethyl sulfoxide Merk 

Ethylenediaminetetraacetic acid Sigma 

Ethanol Merck 

2-Propanol Merck 

Glycerol Sigma 

Hydrogen chloride Merck 

Magnesium chloride Merck 

Potassium chloride Merck 

Potassium dihydrogen phosphate J.T. Baker 

Sodium chloride Roth 

Tris hydroxymethyl aminomethane  Biomol 

Triton X-100  Merck 

NP-40  Sigma 

Tween 20 Merck 

Β-Mercaptoethanol Merck 

 

3.1.3 Molecular Biology 
 

Table 3: Material for molecular biology techniques 

Material Manufacturer 

7500 Fast Real-Time PCR Applied Biosystems 

Agarose Electrophoresis PeqLab 

Agarose Images (CCD Video Camera) MS 

Printer for Agarose Images Mitsubishi 

Nanodrop Implen 

UV-photometer Jasco 
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Table 4: Reagents used for molecular biology techniques 

Material Manufacturer 

1 kb-DNA ladder Gibco Invitrogen 

Agarose NA Amersham biosciences 

Ampicillin Roth 

DEPC Sigma 

HEPES Biomol 

High-capacity cDNA reverse transcription 

kit 

Applied Biosystems 

NucleoBond AX500 Kit Macherey-Nagel 

NucleoSpin Extract Kit Macherey-Nagel 

NucleoSpin Plasmid Kit Macherey-Nagel 

Oligonucleotides Sigma and Thermo 

Power SYBR-Green PCR Master Mix Applied Biosystems 

QIAshredder Qiagen 

RNeasy RNA extraction Kit Qiagen 

Restriction enzymes New England Biolabs 

T4 DNA Ligase Roche 

T4 DNA Ligase Buffer Roche 

 

3.1.4 Cell culture 
 

Table 5: Material for cell culture 

Material Manufacturer 

Bunsen Heraeus 

Sterile pipettes Sarstedt 

Sterile falcon tubes Sarstedt 

Filters (0.45 mm) VWR 

Poly-D-Lysine pre-coated plates BD Biosciences 

Cell colture plates and flasks Nunc 

Waterbad GFL 
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Liquid nitrogen tank Messer Griesheim Chronos 

Counting chamber Neubauer Optik Labor 

Incubator Heraeus 

Sterile hood Heraeus 

Centrifuge Megafuge 1.0 Heraeus 

 

Table 6: Reagents for cell colture 

Material Manufacturer 

DMEM Gibco 

DMEM-F12 Invitrogen 

Optimem Gibco 

Neurobasal Invitrogen 

DMEM-High Glucose Gibco 

B27  Invitrigen 

FCS Gibco 

Penicillin/Streptomycin Gibco 

Poly-L-Lysine Sigma 

Poly-D-Lysine Sigma 

Trypsin-EDTA (0,05%) Gibco 

LipofectamineTM 2000 Invitrogen 

LipofectamineTM RNAiMax Invitrogen 

 

3.1.5 Biochemistry 
 

Table 7: Material for biochemistry 

Material Manufacturer 

Aβ triplex assay kit MSD 

APPsα/APPsβ assay kit MSD 

Plate reader Sector Image  MSD 

Whatmann paper Macherey-Nagel 

Nitrocellulose membrane (Potran) Schleicher & Schuell 

PVDF membrane (Immobilon-P) Millipore 

SDS-PAGE Electrophoresis Bio-Rad 
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SDS-PAGE glasses and combs Bio-Rad 

Transfer  Bio-Rad 

Films SuperRX Fujifilm 

Western Blot developer (LAS-4000) Fujifilm 

 

Table 8: Reagents for biochemistry 

Material Manufacturer 

Acrylamid (19:1/ 40% w/v) Bio-Rad 

Ammonium-Persulfate (APS) Roche 

BCA-Assay Kit Uptima Interchim 

BSA Uptima Interchim 

ECL Western Blot Detection Reagent Amersham Biosciences 

ECL plus Western Blot Detection Reagent Amersham Biosciences 

I-Block Tropix 

Milk powder Frema 

Protein marker See Blue Plus 2 Invitrogen 

MSD Read Buffer MSD 

MSD standards for APPsα/APPsβ Assay MSD 

MSD standards for Aβ Triplex Assay MSD 

Protease Inhibitor Mix  Sigma 

Protein Sepharose A Sigma 

 

3.1.6 Buffers and Media 
 

Solutions were dissolved in double-distilled water (ddH20). 

Table 9: Buffers and Media 

Buffer or Medium Composition 

4X DNA Sample Buffer 30% Glycerin, 10 mM EDTA, 0,05% 

OrangeG 

4X SDS Sample Buffer 4 ml 20% Glycerin, 4 ml 20% (w/v) SDS, 

1 ml β-mercaptoethanol, 1.25 ml 1 M Tris 

pH 6,8, 10 µL 10% Bromophenolblue 

Ampicillin solution 100 mg/ml Ampicillin in 70% Ethanol 
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Antibody solution for MSD Assays TBS, 0,05% Tween 20, 1% BSA 

Bloking solution for APPsα/APPsβ Assay TBS, 0,05% Tween 20, 3% BSA 

Bloking solution for Aβ Triplex Assay TBS, 0,05% Tween 20, 1% BSA 

Bloking solution for Western Blot % Milk pouder, PBS, 0,05% Tween 20; or 

2 g I-Block, 500 ml PBS-Tween 

Freezing medium FCS, 10% DMSO 

Electrophoresis buffer for SDS-PAGE 25 mM Tris, 0.2 M Glycin, 0,1 % SDS 

LB-medium 1% Trypton, 0,5% Yeast extract, 0,5% 

NaCl pH 7 

Lysis buffer 50 mM Tris pH 7.5, 150 mM NaCl, 1% 

NP-40 ot Triton, 2 mM EDTA, PI-Mix 

PBS 140 mM NaCl, 10 mM Na2HPO4, 1,75 

mM KH2PO4, pH 7,4 

Antibody solution for Western Blot Antibody in optimal concentration, 0,25% 

w/v BSA, 0,05% Tween, PBS 

siRNA buffer 300 mM KCl, 30 mM HEPES pH 7,5, 1 

mM MgCl2 

SOB-medium 2% Trypton, 0,5% yeast extract, 0,5% 

NaCl, 10 mM MgCl2, 10 mM MgSO4, 2,5 

mM KCl 

STE 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 2 

mM EDTA 

STEN 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 2 

mM EDTA, 0,2% NP40 

STEN-NaCl STEN, 175 mM NaCl 

STEN-SDS STEN, 0,1% SDS 

TAE Buffer (50X) 2 M Tris, 1 M Acid Acetic, 50 mM EDTA 

TBS 50 mM Tris-HCl ph 7,4, 150 mM NaCl 

Transfer Buffer for Western Blot 25 mM Tris, 0,2 M Glycin 

Washing solution for MSD assays TBS, 0,05% Tween-20 
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3.1.7 Antibodies 
 

Table 10: List of antibodies 

Antibody Epitope Specie Dilution Source 

14D6 APPsα Rat 1:1000 Developed 

together with E. 

Kremmer 

5G11 APPsα Rat 1:10 Developed 

together with E. 

Kremmer 

192wt APPsβ Rabbit 1:100 Elan  

22C11 APP N-

terminus 

Mouse 1:5000 K. Beyreuther 

APLP1 APLP1  Rabbit  1:1000 Proteintech 

Sez6 Sez6 Rabbit  1:2000 Jenny 

Gunnersen 

Calnexin Calnexin Rabbit 1:2000 Stressgene 

STK39 STK39 Rabbit 1:500 Sigma 

ADAM10  ADAM10 C-

terminus 

Rabbit  1:1000 Calbiochem  

BACE1 (3D5) BACE1 Mouse 1:2000 B. Vassar 

5313 444-592 of 

APP sequence 

Rabbit 1:1000 C. Haass 

Anti-goat-HRP Goat IgG Donkey 1:5000 Santa Cruz 

Anti-mouse-

HRP 

Mouse IgG Goat 1:5000 Promega 

Anti-rabbit-

HRP 

Rabbit IgG Goat 1:5000 Promega 

Anti-rat-HRP Rat IgG Goat 1:5000 Santa Cruz 
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3.1.8 siRNAs, shRNAs, plasmids 
 

siRNAs were synthesized by Dharmacon (siGenome) and Qiagen, and provided in pools 

or single sequences. The siGenome kinase library was provided by Dharmacon. shRNA 

were cloned in the lab with the cloning strategy of Dr. Kuhn (Kuhn et al 2010). 

 

Table 11: shRNA  

Target Target sequence 5´-3´ 

STK39-1 CAAGAACGCGTAGCCATAAAG 

STK39-2 GCCCAACCAAACGCTAATGAA 

STK39-3 GTCCTAGAAGAGGCGATAATT 

STK39-4 GGTGATGTTACACGGAATAAA 

STK39-5 ACTATTCTTAGCAGTCAATTT 

STK39-6 GACGGCCATGATGTAGTTATA 

STK39-7 GCTCAGTACAAATAGCAGATT 

GAK-1 GAGTATGCATTAAAGCGATTA 

GAK-2 CCAAACAGCAAGACTTAATAT 

GAK-3 GCTAAGCATCCAGGACATTAT 

GAK-4 AGATACAGACCCACTCAAATT 

GAK-5 CTGTCACAGTTTGTGATTTAC 

TTBK2-1 GCACCTTTCTTGACCATATTT 

TTBK2-2 TGGCACTATGATGACGAATAT 

TTBK2-3 TTGGCTTGGCTCGACAATTTA 

TTBK2-4 AGCCAGGCTACGCAGATATAA 

TTBK2-5 ATTGCGCAGACATTCAAATAT 

TTBK2-6 TTCGAGGGACAGTTCGTTATG 

TTBK2-7 GCACCTTTCTTGACCATATTT 

TTBK2-8 CCAGCTTCTAACATCCGTGTT 

TTBK2-9 CCAACTGCCTTGGAGAGAAAT 

MAPK6-1 GCGTGATTCCAGTTTACATTA 

MAPK6-2 GACAAGTTAAACGACTTGAAT 

MAPK6-3 GAACACCTACACCAGCTATTT 
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Table 12: List of plasmids 

Name Usage 

pLKO2mod-­‐EGFP-­‐WPRE-­‐mmSPAK	
  shRNA20 STK39 Knock-down 

pLKO2mod-­‐EGFP-­‐WPRE-­‐mmSPAK	
  shRNA43 STK39 Knock-down 

pLKO2mod-­‐EGFP-­‐WPRE-­‐control	
  shRNA Control (from P.H. Kuhn) 

pCEP4/AβPP751 provided by K. Beyreuther 

peak12/AβPP695 provided by S. Lichtenthaler 

 

3.2 Methods 
 

3.2.1 Molecular biology techniques 
 

3.2.1.1 Cloning of shRNAs 
 

shRNA sequences were taken from the RC consortium and syntesized by Thermo, and 

cloned into the lentiviral vector pLKO2mod-EGFP-WPRE (Kuhn et al. 2010). 1 µg of 

vector was digested with MluI and XmaI in a final volume of 20 µL, according to the 

manufacturer. The successful digestion was confirmed by agarose gel and the digested 

vector was purified from agarose. Annealling of shRNAs complementary sequences was 

performed at 95°C for 10 min. Ligation of the digested vector and annealed oligos was 

achieved overnight. 

3.2.1.2 Agarose gel electrophoresis 
 

For the separation of DNA fragments and for controlling the quality of DNA plasmids 

and RNA, agarose gels with different percentages of agarose were set up (1% and 2%-for 

fragments smaller that 500 bp-) in 1X TAE buffer. The agarose was boiled in 1X TAE 

buffer in the microwave until it was completely dissolved, the liquid solution was poured 

into chambers of different dimensions, and 0,2 ug/ml Ethiombromid were added into the 

liquid gel and thoroughly mixed.  Combs with were inserted into the hot gel to create the 

wells. The 1Kb-DNA ladder was loaded as a marker. The electrophoresis was performed 

in 1XTAE buffer at 120-140 V. 
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3.2.1.3 Purification of DNA from agarose gel 
 

After the electrophoresis, the agarose gel was placed on a UV-lamp and the wanted 

bands were identified and cut with a scalpel. The purification of plasmids, DNA 

fragments and PCR products from agarose slices was performed using the Nucleospin 

Extract Kit according to the instructions of the manufacturer. The eluted DNA was either 

immediately used for further processing or stored at -20°C. 

 

3.2.1.4 Ligation 
 

The insertion of DNA fragments into the wanted plasmid was performed using the T4-

DNA-ligase. To increase the success of the reaction, different molar ratios between 

vector and insert were used. For the ligase reaction 1 µl T4 DNA ligase, 2 µl T4 DNA-

Ligase-buffer and ratio of 1:1, 1:5, 1:10 between vector and insert were used. The 

reaction mixture was incubate either at RT for 3 hours, or at 16°C overnight. 

 

3.2.1.5 Production of chemical competent bacteria E. coli DH5α 
 

100 ml SOB-Medium was inoculated with E. Coli DH5α, and incubated overnight at 

37°C at 200 upm. The following day the E.Coli colture was harvested. The culture was 

diluted with SOB medium until the OD600 reached 0.1, and incubated again at 37°C 

constantly monitoring the OD600 (every hour) for other 4-8 hours until the optical 

density reached 0.6. When the proper density was achieved, the colture was cooled down 

on ice for 10 min, centrifuged at 3500 rpm at 4°C for 20 min. The supernatant was 

discarded, the bacteria resuspended in TB medium and incubated on ice for another 10 

min. after another centrifugation step at 3500 rpm 4°C for 20 min, the bacteria were 

resuspended in 20 ml TB medium with 7% (v/v) DMSO and incubated on ice for 10 min, 

and aliquots of 200 µl were frozen at -80°C. 

 

3.2.1.6 Transformation 
 

Chemical competent bacteria E. Coli DH5α	
  were	
  slowly	
  thawed	
  on	
  ice.	
  100	
  μl	
  bacteria	
  

were	
  mixed	
  with	
  20	
  μl	
  of	
  each	
  ligation	
  reations	
  (1:1,	
  1:5,	
  1:10)	
  and	
  incubated	
  on	
  ice	
  

for	
  15	
  min.	
  The	
  transformation	
  was	
  performed	
  by	
  heat	
  shock	
  at	
  42°C	
  for	
  2	
  min,	
  the	
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reaction	
  was	
   cooled	
   down	
   for	
   2	
  min	
   on	
   ice	
   and	
   then	
   500	
   μl	
   of	
   LB	
  medium	
  were	
  

added	
  on	
  top	
  of	
  each	
  reaction.	
  The	
  bacteria	
  were	
  allowed	
  to	
  recover	
  for	
  30	
  min	
  at	
  

37°C	
  in	
  the	
  shaking	
  incubator.	
  

The	
   transformed	
   bacteria	
   were	
   plated	
   on	
   LB	
   agar	
   plates	
   with	
   ampicillin	
   (100	
  

ug/ml),	
  and	
  incubated	
  overnight	
  at	
  37°C. 

 

3.2.1.7 Preparation of DNA for screening of constructs – MINI preps 
 

Single colonies of bacteria were picked up from the agar plates and incubated overnight 

in 5 ml LB medium with ampicillin (100 ug/ml) at 37°C in the shaking incubator at 300 

rpm. The bacteria were centrifuged at 4°C at 4600 rpm for 15 min. the supernatant was 

discarded and the DNA was extracted using the Nucleospin plasmid kit following the 

instructions of the manufacturer. 

The extracted DNA was digested with the proper restriction enzymes and the presence of 

the insert was proved running the digested reaction in the agarose gel. Positive clone 

were sent for sequencing, to verify the accuracy of the sequence. 

3.2.1.8 Preparation of DNA for trasfection – MIDI preps 
 

Bigger concentration of plasmids were generated retransforming the wanted plasmid into 

DH5alpha E. Coli. The bacteria were incubated overnight in 200 ml LB medium with 

ampicillin (100 ug/ml) at 37°C in the shaking incubator at 300 rpm. The bacteria were 

centrifuged at 4°C at 4600 rpm for 15 min. the supernatant was discarded and the DNA 

was extracted using the Nucleobond AX500 Kit following the instructions of the 

manufacturer. 

The concentration of the extracted DNA was measured with the Nanodrop. 

 

3.2.1.9 Sequencing 
 

The sequencing reaction was performed from GATC Biotech. shRNA constructs cloned 

in the vector pLKO2mod-EGFP-WPRE were sequenced with the oligonucleotide 5’-

CCTTCACCGAGGGCCTATTTCC-3’. 
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3.2.1.10 RNA isolation 
 

In order to isolate the RNA from immortalised cells and neurons, the supernatant was 

removed and the cells were washed carefully with 1X PBS. The cells were then 

processed according to the RNeasy Mini Kit (Qiagen). To facilitate to homogenization, 

the QIAshredder spin colomn were used according to the instruction of the manufacturer. 

The quality of the extracted RNA was proved in the agarose gel, and the concentration 

was measured with the spectrophotometer. A pure RNA should have an A260/A280 of 

1.8-2.0. 

 

3.2.1.11 Reverse transcription of RNA 
 

Purified RNA was reverse transcribed with the High Capacity Reverse Transcription kit 

(ABI) following the instructions of the manufacturer. Total RNA was reverse transcribed 

with random primers and the cDNA was used for detecting the expression of the wanted 

genes via qRT-PCR. 

 

3.2.1.12 SYBR-Green qRT-PCR  
 

The specific primers for qRT-PCR were designed in the following manner: the cDNA 

sequence of the target gene was downloaded from NCBI as RefSeq and pasted into 

Primer3Plus for the primer design. To avoid amplification of contaminating genomic 

DNA, the primers were designed as exon-introns panning, so that one half of the primer 

hybridizes  to the 3’ end of the exon and the other half to the 5’ end of the following exon. 

The primers were tested using control murine or human cDNA in a standard curve 

dilution for efficiency and specificity. Different dilutions of cDNA amplified with the 

same primer pairs should give an efficiency of 1.8-2.2. The specificity was proved by the 

melting curve: a specific signal should show a sharp and clean pick for each amplified 

cDNA. The qPCR was performed using the qPCR machine “7500 fast real-time PCR” 

and the reaction was set up using the “power SYBR-Green PCR master Mix” according 

to the instruction of the producer. Each sample was measured in duplicate or triplicate in 

96-well-plate for detecting the expression of the gene of interest. Constitutively 

expressed genes like beta Actin and GAPDH were used as references in the calculation 

of the final expression rate of the gene of interest. 
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The qPCR protocol was run as follows: 

Step 1: 95°C, 10 min 

Step 2: 95°C, 15 sec 

Step 3: 60°C, 1 min 

Step 4: repeat Step 2 to Step 3 40X 

Step 5: melt curve 60°C-90°C with 0,75°C/min 

 

3.2.2 Immortalized cell lines 
 

3.2.2.1 Cell lines  
 

Human Embryonic Kidney HEK293E (immortalized with Epstein-Barr nuclear antigen 1) 

were cultured in DMEM (Dulbecco´s modified eagles medium) with the addition of 10% 

FCS and 1% Penicillin/Streptomycin. HEK293E cells are easy to grow and trasfectable 

with plasmids and siRNA. Human Embryonic Kidney HEK293T (immortalized with 

SV40 large T-Antigen) were cultivated in DMEM with 10% FCS, 1% 

Penicillin/Streptomycin and 200 ug/ml G418.  Human dopaminergic neuroblastoma cells 

SH-SY5Y cells were cultivated in DMEM-F12 (50% DMEM and 50% HAM´s F12) 

with the addition of 15% FCS, 1% Penicillin/Streptomycin, 2mM Glutamin and 1% 

NEAA (non essential aminoacids). 

 

3.2.2.2 Cell culture 
 

The regular passaging of cell lines was done under the sterile cell culture hood. The 

immortalized cells were first rinsed with 3 ml 1X PBS, incubated for few minutes with 

1,5 ml of Trypsin-EDTA to detach them from the plastic dish or flask, harvested with 

DMEM-10%FCS and centrifuged for 5 min at 1000 g at room temperature. The pellet 

was resuspended in 5 ml/each trypsinized flasks or dishes and the cells were split in 1:3, 

1:5 or 1:10 ratio dependently on the confluence of each cell line. Cultures were regularly 

expanded in either 10 cm dishes or T75 flasks. Cell viability and confluence were 

controlled under the light microscope. 

HEK293E, HEK293T and SH-SY5Y cells were grown in the incubator at 37°C and 5% 

CO2. 
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3.2.2.3 Freezing and thawing cells 
 

Stocks of each immortalized cell line were cryopreserved at -80°C or in liquid nitrogen. 

Cells were handled as for a regular passaging, the harvested pellet was resuspended in 

cold FCS with 10% DMSO and aliquots of 1 ml in 2 ml cryopreservation vials were 

made. Cells were incubated 10 minute on ice, and the transferred to cryoboxes for few 

days. Afterwards the vials were transferred into -80°C freezers and later to liquid 

nitrogen tanks. 

For recultivation, cells were quickly transferred from liquid nitrogen tanks or -80°C to a 

37°C water bath, until they were partially thawed, and taken up in the medium of the 

specific cell line. Cells were centrifuged at 1000 g for 5 min at room temperature, taken 

up again in fresh culture medium and plated in T75 flasks. 

The proper recovery of the cell culture was checked under the light microscope the next 

day. 

3 days later, the differentiation was checked under the light microscope, and cells were 

trypsinized and used for the experiment. 

 

3.2.3 Transfection of immortalized cell lines 
 

3.2.3.1 Poly-L-lysine coating 
 

Prior transfection of immortalized cell lines, the surface of plates (96-well-plate, 24-well 

plate, 6-well-plate, 10 cm dishes) was coated with a sterile solution of Poly-L-lysin 

(1:1000 in sterile H20), and incubated under the sterile hood for at least 20 min. 

Subsequently the solution was washed away twice with 1X sterile PBS. The plates were 

then used for seeding the cells. This process ensures a better attachment of the cells to the 

surface. 

 

3.2.3.2 Transient overexpression in HEK293E 
 

For transient overexpression, the optimal number for an efficient transfection of 

HEK293E was tested. Cells were seeded in poly-L-lysine coated wells at the optimal 

density (circa 1*105). 24- hours later, the transfection solution with Lipofectamine 2000 

was set up: depending on the well size (see Table 12) the Lipofectamine was diluted in 
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OPTIMEM and incubated for 5 min at RT. In the meantime the DNA was as well diluted 

in OPTIMEM. The 2 solutions were combined and then incubated for other 20 minutes, 

to allow the liposome to entrap efficiently the DNA molecules. 

 

Table 12: Lipofectamine 2000 transfection ratios. 

Well size DNA (µg) LIPOFECTAMINE 

(µL) 

Optimem (µL) 

96-well 0.1 0.2-0.5 2x5 µL 

24-well 0.5 1-2.5 2x25 µL 

6-well 2.5 5-12.5 2x100 µL 

10 cm dish 14-28 29-73 2x500 µL 

 

The liposomal solution was dropped on the cells, and the plate was gently swirled prior 

the incubation at 37°C. The next day, the supernatant was changed. 2 days after the 

transfection, the supernatant was collected to be analysed for secreted and shed proteins, 

while the cells were harvested for the lysate preparation. 

 

3.2.3.3 Transient siRNA knock-down in SH-SY5Y 
 

siRNA based knockdown was used for screening the human kinome in SH-SY5Y cells. 

The siRNA kinase library was purchased by Dharmacon (Thermo Scientific) as sets of 

four pooled single siRNA for each of the 720 genes. The most interesting candidates 

were also studied performing the knock-down with different siRNA sequences, 

transfected in a single and a pooled manner, purchased from Qiagen. 

The oligos were solubilized in 1X siRNA Buffer (Dharmacon) or RNAase free- ddH20 

(QIAGEN) in stock of 1 or 10 uM, and then frozen at -20°C in aliquots. At the time of 

use, siRNA were first thawn at RT and then kept on ice. Reverse transfection with 

Lipofectamine RNAiMax (Invitrogen) was used to efficiently deliver siRNA oligos into 

the cell. The Lipofectamine RNAi MAX was previously incubated with OPTIMEM for 5 

min at RT, and then added on top of the wanted amount of siRNA. The volume of 

LipofectamineRNAi Max, OPTIMEM and concentration of siRNA vary depending on 

the cell line, and on the size of the well, according to the instructions of the manufacturer. 

the mixture was incubated at RT for 20 min. In the meantime the cells were harvested, 

counted and diluted to the wanted concentration (5*105) in antibiotics free medium, 
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added to the mixture and plated out in the wanted well-size. siRNAs were used at 

concentrations of  5, 10, 15 nM: at these concentration siRNA off-target effects are 

minimized. 

 

Table 13: RNAiMax transfection ratios. 

Well size siRNA nM RNAiMax (µL) Optimem (µL) 

96-well 5-15 0.5 2x5 µL 

24-well 5-15 1.5 2x25 µL 

6-well 5-15 5 2x100 µL 

 

The next day 1/3 of the antibiotics free medium was added to dilute the Lipofectamine to 

monimize toxic effects. The third day, the medium was replaced with fresh one. The 

fourth day the medium was collected for the analysis of secreted and shed proteins, and 

cells were harvested for lysis or processed for RNA extraction. 

 

3.2.3.4 Toxicity assay Alamar Blue 
 

Cell health was monitored with the Alamar Blue toxicity assay. Alamar blue cell viability 

reagent is based on the molecule resazurin, which detects the reducing power of living 

cells in a quantitative manner. Resazurin is a cell permeable compound, which is reduced 

to resorufin, changing the colour of the media. The Alamar Blue solution was added to 

the supernatant with a ration of 1/10, the cells were incubated for 1-4 hours at 37°C(the 

precise time was prior assessed with a standard curve specific for the cell line and the 

well size). The fluorescence was measured at 570 nm. Since resazurin is not toxic, 

supernatants and cells can be subsequently used for further read-outs. 

 

3.2.4 Cortical and Hippocampal Embryonic Neurons 
 

3.2.4.1 Dissociation of wild-type neurons  
 

The primary neurons were extracted from E15-E16 wild-type (BL6 strain) mouse brains. 

The first day the wells were prepared for the neuronal culture, coating them with Poly-D-

Lysine: 25 ug/ml of poly-D-lysine diluted in cell culture Tested Water (Gibco) was used 

for covering the surface of the well. The coating was left for 30 min under the UV-light, 
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or for 2-3 hours at 37°C in the cell culture incubator. Afterwards the wells were washed 

twice with cell culture tested water and finally with 1X PBS at pH 7.4 (Gibco). The 

plates were kept overnight in the incubator with 1X PBS. 

The next day, the different media were prepared prior starting the explant of the neurons. 

MEDIUM 1 (DIGESTION): 9,7 D-MEM Glutamax High Glucose, 0,01g L-Cystein, 200 

U Papain, pH 7.4 

MEDIUM 2 (DISSOCIATION): D-MEM Glutamax High Glucose with 10% FBS 

MEDIUM 3 (PLATING): D-MEM Glutamax High Glucose with 10% FBS, 1% 

Pen/Strep 

MEDIUM 4 (CULTURE): 9,6 ml Neurobasal, 100 µl Glutamin 50 mM, 100 µl Pen/Strep, 

200 µl B27. 

The different media were kept at 37°C in the water bath until they were used. 

The pregnant mouse was sacrificed by cervical dislocation, the abdomen was sterilized 

with 80% EtOH and opened with a scissor. The embryos were transferred to a 10-cm 

dish in cold HBSS without antibiotics and decapitated. Brains were removed from the 

heads under a light microscope, the hemispheres were separated, the meninges were 

removed and the cortex was collected and placed in fresh cold HBSS without antibiotics. 

The HBSS was changed with MEDIUM 1 and incubated at 37°C for 15-20 min (not 

more than 6-7 embryos/tube).  Medium 1 was changed to 5 ml of Medium 2 for washing 

the tissues and then other 5 ml of medium 2 were added to the tissues for the dissociation 

process. Dissociation was performed with pipetting the neuronal tissue up and down with 

a 2 ml graduate sterile pipette. The dissociated neurons were collected apart from the 

debris in a new tube, which was spin down at 700-800 rpm for 5 min. Cells were counted 

with Trypan Blue, resuspended in medium 3 and plated at a density of 1,5*106/well for a 

6-well plate, 5*105/well for a 24-well plate or 7,5*104/well for a 96-well plate. The 

neurons were placed in the incubator at 37°C and left there for 2-3 hours. Afterwards the 

medium 3 was changed to medium 4 to keeps the cells in culture for several days. The 

medium was refreshed at need after few days, replacing only half of the volume to avoid 

stress to the neurons. 

 

3.2.4.2 Transduction of embryonic cortical neurons with Lentivirus 
 

Lentiviral particles were produced from HEK293T cells in 6-well plates or 10 cm dishes.  
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Transfection in 6-well-plates was performed as follow: 1,3 µg of transfer vector, 0,75 ug 

psPAX2 and 0,45 ug pcDNA3.1(-)-VSVG were mixed with 6,3 µl Lipofectamine 2000. 

Optimal density was calculated and cells were transfected in solution in 2 ml OPTIMEM. 

The following day, medium was changed to 2 ml of packing medium. After 24 hours, the 

packing medium containing the lentiviral particles was filtered with 0.45 µM sterile 

filters. Different dilutions of the medium are added to 60% confluent target cells. In this 

case the virus is not purified.  

Transfection in 10 cm dishes was performed as follow: 30 µg of transfer vector, 20 µg 

psPAX2 and 10,8 µg pcDNA3.1(-)-VSVG were mixed with 136 µl Lipofectamine 2000. 

Optimal density was calculated and cells were transfected in solution in 9 ml OPTIMEM. 

The following day, medium was changed to 8.5 ml of packing medium. After 24 hours, 

the packing medium containing the lentiviral particles was filtered with 0.45 uM sterile 

filters. The conditioned medium was cleared through ultracetrifugation at 22000 rpm, 2 

hours at 4°C. Afterwards the medium was discarded and the pellet containing the viruses 

was incubated with 250 µl of TBS-5-BSA buffer for 4 hours in the fridge. Viruses were 

carefully resuspended and spinned down at 3000 rpm at 4°C.  

Aliquots were frozen at -80°C. 

 

3.2.5 Protein analysis 
 

3.2.5.1 Harvesting of supernatant 
 

The conditioned medium was collected in Eppendorf tubes after 24 hours incubation, 

centrifuged at 13.000g for 1 min at RT and the supernatant was transferred to new 

Eppendorf tubes and either kept on ice for further use or frozen at -20°C for storage. 

 

3.2.5.2 Cell lysis  
 

For the investigation of intracellular proteins and membrane bound proteins, cells were 

washed once with cold 1X PBS and then incubated on ice with either 1% NP40 lysis 

buffer (STEN) or 1% Triton-X100 lysis buffer (STET) enriched with protein inhibitors 

mix for 15 min. The volume of the lysis buffer was adjusted depending on the well size: 

200 uL/well were used for 24-well plate and 300 uL/well for a 6-well plate. After 15 min 

cells were resuspended in the buffer with the pipette, collected in Eppendorf tubes and 
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centrifuged at 13.000g for 5 min at 4°C. The supernatant was transferred to new 

Eppendorf tubes and kept on ice or frozen at -20°C. 

 

3.2.5.3 Protein measurement  
 

In general, the total protein concentration was measured using the BC Assay Solution A 

and B kit (Uptima). To determine the protein concentration, Solution A and Solution B 

were mixed in a 1:50 ratio. 10 µl of lysate from either immortalized cells or primary 

neurons are were pipetted in a 96-well-plate in duplicate and the mixture of solution A 

and B was added. The plate was incubated for 30 min at 37°C and the absorption was 

measured with ELISA reader at 562 nm according to the instruction of the manufacturer. 

As reference, a standard curve with predefined concentration of BSA was used. 

Total protein concentration in cerebrospinal fluid and serum was assessed as follow: 

aliquots of 5 µL of CSF were used for determining the total protein concentration in the 

CSF, while serum was centrifuged at 3000xg for 10 min at 4°C, diluted 1:20 in PBS and 

then 5 µL were taken for BCA measurement. Each sample was measured in duplicate. 

 

3.2.5.4 Immunoprecipitation  
 

APPsα immunoprecipitation was performed using 5313 antibody, pre-bound to 25 µl of 

PAS beads. Samples were diluted in a final volume of 500 uL, PAS beads conjugated to 

the antibody were added and the mixture was incubated at 4°C for at least 2 hour on the 

inversion shaker. The immunoprecipitation was centrifuged at 8000 rpm for 1 min at 4°C. 

The supernatant was analysed in the immunoassay for depletion studies. The pellet was 

washed with 1 ml STEN-NaCl, STEN-SDS and STEN buffers. Immunoprecipitated 

proteins were dissociated from the antibody boiling the pellet with 2X Sample Buffer at 

95°C for 5 min. 

 

3.2.5.5 SDS-Polyacrylamide-gel electrophoresis 
 

The protein concentration was assessed with the BCA measurement in the cell lysate and 

normalized in order to charge the same concentration for every sample. In preparation of 

the SDS-PAGE analysis, the lysate and supernatant samples were mixed with 4X SDS-
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Sample Buffer and boiled for 5 min at 95°C. The samples in SDS-Sample buffer were 

either immediately used or frozen at -20°C. 

SDS-PAGE (SDS- polyacrylamide gel electrophoresis) is the most widely used technique 

to separate proteins under denaturing conditions. Negatively charged proteins are 

separated according to their molecular weight. In this study the percentage of acrylamide 

in the SDS-PAGE varied according to the molecular weight of the proteins under 

investigation: 8% acrylamide gels were used to separate proteins between 50 kDa and 

200 kDa, while 12% acrylamide gels were used for proteins between 10 kDa to 100 kDa. 

Polyacrilamide gels were poured in spaced glasses 1.5 mm thick, with 7.5 ml of 

separation gel and 2,5 ml of stacking gel (see composition in table 14), and allowed to 

polymerase. 

 

Table 14: SDS-PAGE. Volume of reagents for 2 polyacrylamide gels. 

Separation gel 

Reagent 8% Gel 12% Gel 

dH20 8.8 ml 7.5 ml 

40% Acrylamide-Bis  3.2 ml 4.5 ml 

Low-Tris Buffer 4 ml 4 ml 

10% APS 60 ul 60 ul 

TEMED 30 ul 30 ul 

Stacking gel 

Reagent 8% Gel 12% Gel 

dH20 6.8 ml 6.8 ml 

40% Acrylamide-Bis  1 ml 1 ml 

Upper-Tris Buffer 2.5 ml 2.5 ml 

10% APS 30 ul 30 ul 

TEMED 30 ul 30 ul 

 

Samples in Laemmli sample-buffer were loaded in the stacking gel and the gels were run 

with the Mini-Protean system of Biorad filled with Running Buffer was used for the 

electrophoresis in accordance to the instructions of the manufacturer. The molecular 

weight marker used the SeeBluePlus2 (Invitrogen). 
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3.2.5.6 Western blot 
 

The proteins separated in the SDS-PAGE were transferred to a membrane for the 

detection of the protein of interest. The transfer of the proteins was performed with the 

Western Blot. A sandwich with a sponge, 2 whatman papers, the polyacrylamide gel, the 

membrane (PVDF), 2 whatman papers, a sponge was set up. The proteins are negatively 

charged, so they will move to the positive pole, from the polyacrylamide gel to the 

membrane. The Western blot was performed in Mini Protean Blotting System filled with 

Transfer Buffer. The transfer was done at 400 mV for 65 min. Afterwards the membrane 

was briefly washed in 1X PBS-Tween and blocked with 3% Milk in 1X PBS-Tween for 

30 min on the horizontal shaker at RT. The membrane was then washed twice with 1X 

PBS-Tween for 5 min and incubated with the primary antibody against the protein of 

interest for either 1 hour at RT or overnight at 4°C on the shaker, depending on the 

antibody characteristics. The membrane was carefully washed 4 times with 1X PBS-

Tween for 5 min/each washing step. The following incubation of the proper secondary 

antibody was done for 1 hour at RT on the shaker. Afterwards the membrane was again 

washed 4 times with 1X PBS Tween, 5 min/each step. The development of the Western 

Blot was done using either ECL or ECL plus according to the instructions of the 

manufacturer. 

All primary antibodies were diluted in 10 ml 1X PBS Tween, 0,5% BSA,  0,05% w/v 

Sodium Azide at the concentration advised from the manufacturer. the secondary 

antibodies were also diluted in 10 ml 1X PBS Tween, 0,5% BSA, without Sodium Azide 

at a concentration of 1:10.000 or 1:5.000. 

 

3.2.5.7 Detection and Quantification of ECL Signal 
 

The signal of the peroxidase conjugated with the secondary antibody and excited with the 

ECL reagent was detected using the quantification machine Image System LAS-4000. 

 

3.2.5.8 Immunoassays 
 

 APPsα (6E10) and APPsβ concentrations in CSF and serum were measured according to 

the manufacturers’ instructions with the multiplex assay provided from Meso Scale 

Discovery (Gaithersburg, MD, USA). The assay uses the 6E10 antibody for detecting 
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human APPsα, binding the epitope at amino acids 3-8 of the Aβ sequence. APPsβ was 

detected in the same well with the ANGU antibody, raised against the peptide sequence 

of amino acids 591-596 of APP695 (β-secretase cleavage site). Briefly, 150 µL of 

blocking buffer was added into each well of a 96-well plate, incubated for 1 hour at room 

temperature (RT), washed three times with MSD washing buffer. Afterwards 25 µL of 

synthetic standards and samples were incubated for 1 hour at RT. Wells were washed 

three times. 25 µL of detection Sulfo-tag antibody P2-1 against the N-terminus of APP 

was added into each well and incubated for 1 hour at RT. After the last washing step, 150 

µL of reading buffer was added to each well, incubated for 10 minutes at RT and the 

signal was measured using the Sector Imager 2400. Each sample was measured in 

duplicate.  

Aβ40 concentration in cell culture supernatants was measured according to the 

manufacturers’ instructions as above with the multiplex assay Aβ triplex provided from 

Meso Scale Discovery (Gaithersburg, MD, USA). Sulfo-Tag 6E10 antibody was used for 

detecting human Aβ40, whereas Sulfo-Tag 4G8 was employed for murine Aβ detection. 

14D6 antibody was raised against amino acids 11-16 of the human Aβ sequence 

(Colombo et al., 2012), and it was biotinylated. APPsα measurements with new  antibody 

14D6 were done as above using the Meso Scale Discovery system and plates with the 

following changes: streptavidin coated plates from Meso Scale Discovery were blocked 

with 3% BSA and washed as above. 150 µL of biotinylated-14D6 antibody diluted 

1:1000 in 1% BSA in washing buffer was added to the wells, incubated for 1 hour on the 

shaker and washed three times. 25 µL of either 1:2 diluted CSF or 1:2 diluted serum was 

added into the wells. In the meantime, 25 µL of 5313 antibody (1:1000) in 1% BSA 

solution were added to the wells and incubated for 2 hours. 5313 antibody was raised 

against amino acids 444-592 of APP sequence, provided by Christian Haass (Steiner et al., 

1999). After three washing steps, 25 µL of MSD anti-rabbit-sulfo-tag antibody were 

added into each well and incubated for 1 hour.  After the last washing step, 150 µL of 

reading buffer were added to each well, incubated for 10 minutes at RT and the signal 

was measured using the Sector Imager 2400. Each sample was measured in duplicate. 

Aβ42, tau and phospho-tau181 levels were measured in the clinic as part of the routine 

diagnosis with standardized commercially available ELISA kits (Innotest, Innogenetics, 

Ghent, Belgium). Granulin levels were measured in the lab of Dr. Anja Capell. 
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3.2.6 Patients 

 

All subjects included in the study were part of the sample collection from the Psychiatric 

Clinic, Ludwig-Maximilians University, Munich. The study was approved by the Ethics 

Committee of Munich University and was performed in accordance with the Declaration 

of Helsinki. All participants provided informed written consent. Patients with 

Alzheimer´s disease were recruited at the Memory Clinic of the Department of Psychiatry, 

University of Munich, Germany. Participants diagnosed with dementia associated with 

Alzheimer’s disease fulfilled the criteria of probable Alzheimer´s disease, according to 

the NINCDS-ADRDA (McKhann et al., 1984). Cognitive testing by neuropsychological 

evaluation was performed in all patients according to Mini-Mental State Examination 

(MMSE) (Folstein et al., 1975), Consortium to Establish a Registry for Alzheimer’s 

Disease (CERAD) battery (K.A. Welsh, 1994), Multiple Choice Vocabulary Test (MWT, 

Mehrfachwahl-Wortschatz-Test) (K.H. Schmidt, 1989) and a variant of the Trail Making 

Test (TMT) (K.H. Schmidt, 1989). Controls were recruited within the Munich hospital 

and did not have cognitive complaints and scored within 1 standard deviation from the 

age adjusted mean in all subtests of the CERAD cognitive battery. CSF and serum 

samples were collected from 26 controls and 27 Alzheimer’s disease (AD) patients from 

both sexes. Samples were collected in 1.5 ml Eppendorf tubes, frozen in aliquots, and 

stored at -80°C. Aβ42, tau and ptau181 could be measured in 25 out of 26 controls, and in 

all 27 AD patients. APPsα and APPsβ could be measured in CSF of 23 out of 26 controls, 

and in 26 out of 27 AD patients. APPsα and APPsβ could be measured in serum of 24 out 

of 26 controls, and in 26 out of 27 AD patients. Age and MMSE could be evaluated in all 

26 controls and all 27 AD patients. 

 

3.2.6.1 Body fluid samples 

 

CSF samples were thawn from -80°C at the time of measurement. CSF, plasma and serum 

samples were diluted 1:2, 1:4, 1:8 and 1:16 respectively in PBS with 1% BSA and PBS 

for test experiments. CSF was diluted 1:2 in PBS with 1% BSA and serum in PBS (1:2) 

for the measurement of APPsα and APPsβ in the small clinical study. Prior either ELISA 

or Western Blot analysis, serum samples were treated with 0.1% SDS and incubated for 

10 minutes at 65°C, to mildly unfold the proteins.  
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3.2.7 Statistical analysis 
 

Statistical anylsis of the screening was performed as follow: APPsα, APPsβ and Granulin 

levels were normalized to the mean of each screening plate. To assess the effect of the 

sigle kinase knock-down on APPsα, APPsβ and Granulin secretion, the mean of the two 

replicates was calculated. For each replicate, the correlation between two independent 

measurements of all three paramenters was analysed. The cut-offs for selecting the 

scoring hits were chosen arbitrarily (see Results section). 

 

For experiments concerning the characterization of STK39 knock-down, two-tailed 

unpaired Student’s t-test was performed and reached significance if p< 0.05. 

 

In the biomarkers´study, statistical analysis was performed using GraphPad Prism 5 

(GraphPad Inc., San Diego, CA, USA). The Mann Whitney U test (two-tailed p-value) 

and unpaired Student’s t-test were used to test the statistical significance between the 

group of non-demented subjects and AD patients. Results are represented as medians and 

interquartile ranges. Differences between the two groups were considered significant if 

two-tailed p<0.05.  

The receiver operating characteristic (ROC) curve was generated via analyses in R (R-

project.org) with the help of Dr. Tobias Straub. The areas under the curve (AUC) were 

computed using the 'somers2' function in library 'Hmisc'.  
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4 RESULTS 
 

4.1 A new sandwich immunoassay for detection of APPsα in cerebrospinal 
fluid and serum. 
 

Biomarkers, as a helpful tool to diagnose Alzheimer disease, have been worldwide matter 

of deep investigation. In order to diagnose a particular disease state, it is important to 

find a molecule whose levels are easily detectable and significantly changed in healthy 

versus diseased conditions. Considering neuronal loss, extracellular amyloid plaques and 

intracellular neurofibrillar tangles as major pathological hallmarks of Alzheimer’s 

disease, biomarkers linked to these neuropathological changes have been extensively 

investigated. Aβ42, tau and phosphorylated tau have been widely used to help the 

diagnosis of AD in association with cognitive test based on neuropsycological evaluation 

(Blennow et al., 2012). Subjects with higher level of tau and phospho-tau, and at the 

same time with lower levels of Aβ42 in comparison to controls are usually categorized as 

patients with probable dementia associated with Alzheimer´s disease.   

Nevertheless these biomarkers do not allow a full and significant separation between the 

group of AD and non-demented subjects: for this reason, other proteins and peptides are 

investigated, to find meaningful changes that can be better correlated to the pathology.  

 

4.1.1 New antibody for specific detection of APPsα  
 

For example APPsα, the secreted fragment of APP produced from ADAM10 cleavage at 

the α-cleavage site, has been investigated as potential biomarker mainly in CSF and less 

in blood. Several studies have provided conflicting results: some studies reported an 

increase in APPsα levels, some other a reduction in AD patients in comparison to the 

controls (Fellgiebel et al., 2009; Gabelle et al., 2010; Lannfelt et al., 1995; Lewczuk et al., 

2010; Olsson et al., 2003; Perneczky et al., 2011; Rosen et al., 2012; Selnes et al., 2010; 

Sennvik et al., 2000).  

Most of these studies, regardless if they were performed in CSF or blood, used antibody 

6E10 for detecting APPsα, which binds amino acids 1-16 (Covance) (Klyubin et al., 

2005) of the Aβ sequence (Fig. 9A). For this reason, 6E10 antibody does not only detect 

APPsα, but also the alternative β-secretase cleavage product APPsβ´, probably 

influencing APPsα measurments.  
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In order to specifically detect APPsα, but not APPsβ´, the specific antibody 14D6 against 

the amino acids 11-16 of the human Aβ sequence was raised (Fig. 9A). To test the 

specificity of the antibody, HEK293 cells were transiently transfected with full-length 

APP wt, APPsβ, APPsβ´ , APPs-14, APPs-15, APPs-16 and the control plasmid (Linker). 

Lysates and media collected from the different transfections were tested with 14D6 

antibody to detect specific recognition of APP soluble fragments. 14D6 recognizes 

specifically the soluble ectodomain of APP generated after the cleavage by α-secretase, 

and no cross reaction was detectable via immunoblot analysis for either APPsβ´ or 

APPsβ, as shown in Fig. 9B. As transfection control, intracellular APP was detected with 

the antibody 22C11. 

 
 

Fig. 9: Validation of the new 14D6 antibody. A) 14D6 and 6E10 epitopes are indicated 
on the schematic representation of APP. Amino acid numbers refer to Aβ sequence. 
Arrows correspond to α-, β-, β´-, γ38-, γ40-, γ42- cleavage sites. The box highlights the 
transmembrane domain. B) Immunoblot of supernatants and lysate of cells transfected 
with APP wild-type, APPsβ, APPs-14, APPs-15, APPs-16. 14D6 antibody specifically 
detects APPs-15 and APPs-16. Antibody 22C11 detects cellular APP (taken from 
Taverna et al. 2013 in press).  
 

4.1.2 Validation of the new 14D6-immunoassay in supernatant from neuroblastoma 
cells 
 

In order to selectively and efficiently capture APPsα in cell culture supernatant and body 

fluids, a sandwich immunoassay was generated. This assay is based on the trapping of 

the analyte by a first specific antibody, and the detection by a second antibody. This 
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method is very specific and sensitive for the analyte, because of the two recognition sites 

of the two antbodies. For this purpose, 14D6 antibody was biotinylated, to allow high 

affinity and specific binding to streptavidin coated plates. The biotin-streptavidin binding 

is widely used in sandwich immunoassay for the capability to give low background with 

high signal-to-noise ratio, and biotin is very unlikely to interfere with the epitope-

antibody interaction.  

To demonstrate the specificity of the new 14D6-immunoassay in detecting APPsα, either 

α-secretase ADAM10 or APP was knocked-down with siRNA pools in human 

neuroblastoma SH-SY5Y cells. The conditioned medium was collected and used for 

testing the specific detection of APPsα with 14D6-immunoassay. APPsα signal was 

reduced to almost 20% in the case of ADAM10 knock-down (Fig. 10). This result is in 

agreement with a previous work done in our lab using another antibody specific for 

APPsα (Kuhn et al., 2010). APP knock-down also reduced the APPsα signal to almost 5% 

(Fig. 10). This analysis could indeed validate the specificity of the new assay for 

detecting APPsα in supernatants from neuroblastoma cells. 

 
 

Fig. 10: Validation of 14D6 immunoassay with supernatants from neuroblastoma 
SH-SY5Y cells. APPsα signal decreased upon ADAM10 and APP knock-down. CON: 
scrambled siRNA; ADAM10 KD: ADAM10 knock-down with pooled siRNA; APP KD: 
amyloid precursor protein knock-down with pooled siRNA. Given are mean and standard 
errors relative to control of six independent experiments. 
 

4.1.3 Validation of the new 14D6-immunoassay in human cerebrospinal fluid (CSF) 
 

To test whether the 14D6-immunoassay was also suitable to detect APPsα in body fluids, 

namely CSF, plasma and serum, samples of human origin were collected and analysed. 

Serial dilutions of CSF were prepared and APPsα levels were analysed. In undiluted CSF 
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sample, APPsα concentration resulted in the range of 50 ng/ml (Fig. 11) being 

surprisingly not much different from the first 1:2 dilution. Further 1:2 dilutions (1:4, 1:8, 

1:16 in Fig. 11) decreased the signal as expected. CSF APPsα concentration in other 

studies is described to have similar concentrations around 55 ng/ml, when using the 6E10 

antibody in sandwich ELISA and Western Blot.  

 
 

Fig. 11: 14D6-immunoassay in human cerebrospinal fluid (CSF). Undiluted APPsα, 
and serial dilutions of 1:2. 1:4, 1:8, 1:16 were analysed with 14D6-immunoassay. Given 
are mean and standard deviations of 2 technical replicates. 
 

Presumably APPsα concentration in the undiluted CSF was higher than the detected 

amount, but probably some other proteins or components present in CSF interfered with 

the assay, thereby resulting in the discrepancy between expected and measured 

concentration. 

To test this hypothesis, another CSF sample from a different subject was analyzed both 

by 14D6 assay and by immunoblot with the same 14D6 antibody.  Also in this case, the 

concentration of APPsα given by the immunoassay was at about 35 ng/ml, and did not 

change in the expected ratio when it was diluted 1:2 (Fig. 12B). The measured 

concentration in the immunoblot for the 1:2 dilution was similar to the immunoassay, but 

not for the undiluted sample (Fig. 12A), as assessed by densitometric comparison with 

known concentrations of APPsα standards purchased by Meso Scale Discovery.  This is a 

demonstration that in the undiluted CSF there are indeed some components interfering 

with the detection of APPsα signal. Therefore, latter measurements of APPsα in CSF 

were always performed using 1:2 dilution of CSF samples. 
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Fig. 12: Analysis of undiluted and diluted CSF. A) 14D6 immunoblot for detecting 
APPsα in CSF. Same volumes of APPsα standards with known concentrations were 
loaded as reference. The same CSF sample was loaded undiluted and diluted in 1% BSA 
solution. B) 14D6 immunoassay of the same sample analysed in A). 
 

To further confirm the identity of the signal in 14D6-immunoassay, APPsα was 

immunoprecipitated in a CSF sample using antibody 5313. This antibody binds to the 

middle region of the APP ectodomain, specifically to amino acids 444-592 (Steiner et al., 

1999). The CSF APPsα-depleted was analyzed in the 14D6 assay, and APPsα signal was 

reduced by 88% compared to the control (no IP), confirming once more the specificity of 

the signal. As further controls, immunoprecipitations without antibody and with antibody 

against E-cadherin were carried out in parallel. Both controls did not decrease the APPsα 

signal compared to the control (no IP) (Fig. 13). 

 

  
 

Fig. 13: Immunoprecipitation of APPsα in human CSF. APPsα was depleted in CSF 
with 5313, control antibody (E-Cadh) and without antibody (no AB) as further control. 
No IP: no immunoprecipitation; IP 5313: APPsα was depleted from CSF with polyclonal 
5313 antibody; IP E-cad, IP no AB: immunoprecipitation with a control antibody against 
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E-Cadherin or without antibody (IP no AB; beads only). The signal detected with 14D6 
immunoassay decreased only when APPsα was depleted. Given are mean and standard 
deviations of 2 technical replicates. 
 

Taken together, these results show that the signal measured with 14D6-immunoassay is 

specific for soluble α-cleaved APP in human CSF. 

 

4.1.4 Validation of the new 14D6-immunoassay in human serum 
 

Recently, the search of peripheral biomarkers as a measure of AD pathology has become 

of primary importance. Currently, the best diagnostic methods used for the determination 

of AD are expensive techniques, such as MRI and PET, or invasive procedure like 

lumbar puncture for the collection of CSF. Both those methods are certainly not suitable 

for massive monitoring of the progression of the disease in the population. Therefore, 

other peripheral biomarkers, which can reflect the intracerebral pathology, are under 

investigation. In particular, since CSF is daily assimilated into the blood, plasma and 

serum are valuable source of AD biomarkers. In addition, blood is normally a low-cost, 

easily accessible and collectable body fluid. 

For this reason, serum and plasma samples were collected and analyzed with the 14D6-

immonoassay. The concentration of APPsα in the plasma was ca. 6 ng/ml, much lower in 

comparison to the CSF levels and close to the detection limit of the immunoassay. 

Moreover, APPsα signal was totally abolished in further 1:2 dilutions. Thus, plasma was 

not included in the study (Fig. 14A). 

In opposition to the plasma, APPsα seems to be more abundant in the serum, giving a 

concentration of around 25 ng/ml. Further dilutions performed as expected, decreasing 

APPsα concentration in 1:2 ratio (Fig. 14B). 
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Fig. 14: Validation of 14D6-immunoassay in human plasma and serum. A) APPsα 
was detected in undiluted plasma, and in serial dilutions 1:2, 1: 4, 1: 8, 1: 16. APPsα 
concentration was close to the detection limit. B) APPsα was detected in undiluted serum, 
and in serial dilutions 1:2, 1: 4, 1: 8, 1: 16. APPsα concentration decreased accordingly to 
the dilutions. Dilutions were made in PBS. Given are mean and standard deviations of 2 
technical replicates. 
 

Similar to specificity tests performed for CSF, sera from 3 different subjects were 

analyzed by immunoblot. The serum is very rich in its total protein content, especially in 

albumin and globulins. Thus, it was necessary to immunoprecipitate APPsα from the 3 

samples with antibody 5313, in order to enrich APPsα content in the samples, and to 

allow APPsα detection via Western blot using 14D6 antibody (Fig.15A). 

Immunoprecipitated APPsα from serum has the same molecular weight as the 

recombinant APPsα-751. Due to alternative splicing, APP in the serum is APP751, 

whereas the main APP isoform in CSF is APP695 (Tanaka et al., 1988). 

 
 

Fig. 15: Analysis APPsα detection in sera from 3 different patients. A) To detect 
APPsα with 14D6 immunblot in serum, it was necessary to perform the 
immunoprecipitation with 5313 antibody. Recombinant APPsα751 was used as control. 
The most abundant isoform in the serum is APP751. B) Comparison between 
densiometric quantification of APPsα in A) and APPsα detected in sera from the same 
patients with 14D6 immunoassay. Relative differences in APPsα levels were similar for 
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both assays. APPsα751: soluble APPsα from 751 isoform; Pat: patient. Given are mean 
and standard deviations of 2 technical replicates.  
 

The same samples were also analysed by 14D6-immunoassay: the densitometric analysis 

of the detected bands in the Western Blot and the normalized APPsα concentrations 

measured with the immunoassay revealed that the differences in APPsα levels in 3 

different samples were comparable, validating the specificity of the assay in the serum 

(Fig. 15B). 

Taken together, these experiments demonstrate that 14D6-immunoassay is suitable for 

the detection of APPsα in CSF and serum from human origins, and it can be used for 

analysis of larger groups of individuals. 

 

4.1.5 Aβ42, tau and p181-tau measurements in CSF of controls and AD patients 
 

To test whether APPsα measured with 14D6-immunoassay could have valuable 

diagnostic performance in the analysis of patients with Alzheimer´s disease, CSF and 

serum of 53 subjects were collected. 27 of these subjects were diagnosed with 

Alzheimer´s disease and 26 were age-matched non-demented controls. Patients with 

Alzheimer´s disease were chosen after evaluation of the mini-mental state (MMSE) (see 

Table 15), and the diagnosis was supported by the panel of neurochemical tests regularly 

performed in the clinics to categorize patients with dementia. The neurochemical tests 

are based on the levels of Aβ42, tau and phosho-tau181.  

In the subjects selected for this study, tau and phospho-tau were significantly increased in 

AD patients, whereas Aβ42 levels were lower, but could not reach statistical significance 

with the Mann Withney test (see Table 15 and Fig. 16). The results from these 

biomarkers were as expected (Blennow et al., 2012). Aβ42, tau and ptau181 could be 

measured in 25 out of 26 controls, and in all 27 AD patients (Table 15). 
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Fig. 16: Measurement of Aβ42, total tau and p181-tau in CSF with Innotest 
(Innogenetics, Ghent, Belgium) in patients with AD and controls. A) Total tau levels. 
The Mann Whitney U test showed significant differences between controls (CON) ad 
Alzheimer´s disease patients (AD): p<0,0001****. B) p181-tau levels. The Mann 
Whitney U test showed significant differences between controls (CON) ad Alzheimer´s 
disease patients (AD): p<0,0001****. C) Aβ42 levels. p= n. s. CON, n=25; AD, n=27; 
confidence intervals =95%. The boxplots show the maximum, the minium, the upper and 
the lower quartile, and the median. These measurements were performed in the 
Psychiatric Clinic, LMU, Munich. 
 

4.1.6 APPsα measurement in CSF of controls and AD patients 
 

Next, 14D6-immunoassay was used to measure APPsα concentration in CSF samples. 

This measurement was performed in parallel with the commercially available 

APPsα/APPsβ immunoassay from Meso Scale Discovery. This APPsα-assay uses 

antibody 6E10 as capture antibody, which detects both APPsα and APPsβ´products of 

APP shedding. CSF samples from 23 out of 26 controls and in 26 out of 27 AD patients 

could be included in the analysis.  The concentration range of APPsα in CSF varied 

between about 25 ng/ml to 100 ng/ml in both 14D6- and 6E10-immonoassay, considering 

all samples from both groups. Afterwards APPsα measurements were normalized to the 

corresponding protein concentration of each sample.  A statistically significant increase in 

APPsα concentration was detected in AD patients compared to controls when the α-

cleaved peptide was measured with 14D6-immunoassay, whereas APPsα measurement 

performed using 6E10-assay showed only a trend to increase, which did not reach 

significance. APPsβ levels did not change in AD patients when compared to the controls 

group of subjects (Fig. 17). 
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Fig. 17: Measurement of APPsα in CSF from AD patients and controls with 14D6- 
and MSD multiplex immunoassays. A) 14D6 immunoassay. APPsα concentrations 
were normalized to the intensity of total protein concentration (a.u.: aribitrary units). The 
Mann Whitney U test showed significant differences between controls (CON) and 
Alzheimer´s disease patients (AD): p<0,005**. B) 6E10 Multiplex MDS immunoassay. 
APPsα concentrations were normalized to the intensity of total protein concentration (a.u.: 
aribitrary units). p= n. s. C) APPsβ Multiplex MSD immunoassay. APPsβ concentrations 
were normalized to the intensity of total protein concentration (a.u.: arbitrary units). p= n. 
s. The boxplots show the maximum, the minium, the upper and the lower quartile, and 
the median. Con, n=23; AD=26, confidence intervals =95%. 
 

4.1.7 APPsα measurement in serum of controls and AD patients 
 

Considering the importance of peripheral biomarkers for Alzheimer´s disease, 14D6-

immunoassay was also employed to measure APPsα concentration in serum samples. The 

analysis was performed in parallel with the commercially available Multiplex 

immunoassay from Meso Scale Discovery, which uses the 6E10 antibody. Serum samples 

from 24 out of 26 controls, and in 26 out of 27 AD patients could be included in the final 

analysis. The concentration range of APPsα in sera varied between about 5 ng/ml to 70 

ng/ml for 14D6-immunoassay, and between 1 ng/ml and 20 ng/ml in the case of 6E10-

immonoassay. APPsα measurements were normalized to the corresponding protein 

concentration of each sample. APPsα concentration in sera from AD patients was 

significantly lower compared to controls when measured with both 14D6-immunoassay 

and 6E10-assay. In the case of 6E10 assay, the significance was higher compared to the 

14D6-immunoassay. Additionally, APPsβ levels decreased in sera from AD patients 

when compared to the control group of subjects (Fig. 18). 
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Fig. 18: Measurement of APPsα in sera from AD patients and controls with 14D6- 
and MSD multiplex immunoassays. A) 14D6 immunoassay. APPsα concentrations 
were normalized to the intensity of total protein concentration (a.u.: aribitrary units). The 
Mann Whitney U test showed significant differences between controls (CON) ad 
Alzheimer´s disease patients (AD): p<0,05 **. B) 6E10 Multiplex MDS immunoassay. 
APPsα concentrations were normalized to the intensity of total protein concentration (a.u.: 
aribitrary units). The Mann Whitney U test showed significant differences between 
controls (CON) ad Alzheimer´s disease patients (AD): p<0,001 ***. C) APPsβ Multiplex 
MSD immunoassay. APPsβ concentrations were normalized to the intensity of total 
protein concentration (a.u.: arbitrary units). The Mann Whitney U test showed significant 
differences between controls (CON) ad Alzheimer´s disease patients (AD): p<0,01 **. 
The boxplots show the maximum, the minium, the upper and the lower quartile, and the 
median. Con, n=24; AD=26, confidence intervals =95%. 
 

Table 15: Absolute values of the studied parameters in controls and AD patients. 
 CON AD 

APPsα 14D6 

CSF (pg/ml) 

70033.4 ± 13290.3 

n=23 

78477.0 ± 9162.4 

n=26 

APPsα 6E10 

CSF (pg/ml) 

55326.8 ± 15901.2 

n=23 

59507.2 ± 13848.5 

n=26 

APPsβ 6E10 

CSF (pg/ml) 

93769.3 ± 22365.1 

n=23 

103021.3 ± 27160.8 

n=26 

APPsα 14D6  

SERUM (pg/ml) 

34575.9 ± 15108.9 

n=24 

31498.9 ± 11106.9 

n=26 

APPsα 6E10 

SERUM (pg/ml) 

11868.7 ± 5137.0 

n=24 

8281.4 ± 3239.6 

n=26 

APPsβ 6E10 

SERUM (pg/ml) 

4305.0 ± 2162.9 

n=24 

3306.6 ± 1478.9 

n=26 

Aβ42 (pg/ml) 613.9 ± 303.5 

n=25 

529.4 ± 188.6 

n=27 

Age (years) 60.9 ± 9.5 

n=26 

67.3 ± 8.6 

n=27 

Total tau (pg/ml) 233.9 ± 139.9 

n=25 

715.8 ± 408.4 

n=27 
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p181 tau (pg/ml) 43.5 ± 23.4 

n=25 

92.0 ± 29.7 

n=27 

MMSE 28.92 ± 1.06 

n=26 

23.81 ± 4.28 

n=27 

Abbreviations: CON: control individuals; AD: Alzheimer´s disease patients; CSF, 
cerebrospinal fluid; APPsα, soluble amyloid precursor protein α; APPsβ, soluble amyloid 
precursor protein β; Aβ42, amyloid β 1-42; MMSE, Mini Mental State Examination; n, 
number of subjects. Given are mean and standard deviations of the mean. 
 

4.1.8 ROC analysis 
 

The Receiver Operating Characteristic (ROC) is a tool broadly used to evaluate the 

performance of a diagnostic test. The ROC graphic gives information about the 

sensitivity and specificity of a test, represented by plotting the true positive rate in 

function of the false positive rate for different cut-off points of the parameter of interest. 

With this analysis, it is possible to judge the accuracy of a test in distinguishing between 

the group of the diseased subjects and non-diseased cases.  

To evaluate specificity and sensitivity of the new 14D6 immunoassay, ROC analysis was 

performed on APPsα concentrations obtained from control and AD patient samples and 

compared to the 6E10 measurements. Normalized APPsα measurements of CSF showed 

ROC AUCs (area under the curve) of 0.75 (14D6) and 0.61 (6E10), proving the better 

performance of the 14D6 assay when compared to the 6E10 assay. In contrast, in the 

serum, the AUC of 6E10 assay at 0.79 scored better than the 14D6 immunoassay with 

AUC being 0.68 (Fig. 19). 

 

 
Fig. 19: Receiver-operating characteristic (ROC) curves for APPsα measurement in 
CSF and serum. The performance of 14D6-immunoassay in detecting APPsα is 

B

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

6E10 (auc=0.61)
14D6 (auc=0.75)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

6E10 (auc=0.79)
14D6 (auc=0.68)

A



Results 

 71 

compared with 6E10 assay. A) ROC curve for CSF APPsα. The area under the curve 
(AUC) for 14D6-antibody (0.75) indicates a better performance of the assay when 
compared to the AUC of 6E10 (0.61). B) ROC curves for serum APPsα. The 6E10 AUC 
(0.79) indicates a better ferformance of the assay when compared to 14D6-AUC (0.68). 
 

4.1.9 Conclusion 1 
 

In conclusion, a new ELISA-like immunoassay was developed for specific APPsα 

detection in cell culture media, human cerebrospinal fluid and serum. The assay is 

sensitive and specifically detects APPsα-cleaved APP, but not APPsβ´, such as other 

commercially available antibodies. The assay was tested in a small clinical study 

including Alzheimer´s disease patients and non-demented controls. A significant increase 

in CSF APPsα was measured in AD patients in comparison to controls, whereas a 

significant decrease in serum APPsα was assessed. This assay needs to be further tested 

in larger cohort of patients to obtain more value as potential biomarker for AD, and as 

putative clinical monitor for disease-modifing drugs in clinical trials. 
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4.2 Screening of kinases as modulators of APP-shedding and Aβ generation 
 

4.2.1 Kinase screening set-up 
 

APP is phosphorylated at three main sites, Thr668, Tyr 682 and Tyr687, in its 

cytoplasmatic tail. The main studied phosphorylation site is Thr668, which is 

phosphorylated by cdk5/cdc2, GSK3 and JNK (mainly in stress conditions) and it is 

associated to conformational changes of the cytoplasmatic region of APP. These changes 

may function as molecular switch, as regulation of protein-protein interaction, signaling 

and intracellular traffick of APP and CTFs. Therefore, kinases are involved not only in 

APP phosphorylation, but also in controlling APP shedding and Aβ generation.  

At the moment, few kinases have been deeply characterized for their role in APP 

shedding and Aβ generation. Moreover, kinases may be putative drug targets, with the 

aim of reducing Aβ levels and tau pathology in Alzheimer´s disease. 

To identify new kinases involved in APP shedding in endogenous conditions, a siRNA 

based screening of the human kinome in neuroblastoma SH-SY5Y cells was established. 

The neuroblastoma SH-SY5Y cells are commonly used as an in vitro model for 

neurobiology, because they provide an unlimited supply of cells of human origin with 

neuronal properties, and they are efficiently trasfectable with siRNA. In this study, SH-

SY5Y cells expressed endogenous APP, in order to minimize the artificial environment 

of the experimental setting. In order to evaluate the effect of the knock-down of each 

kinase on APP shedding, the commercially available Multiplex ELISA-like 

immunoassay APPsα/APPsβ from Meso Scale Discovery was used. This assay is based 

on multi-array technology: in a single well of a 96-well plate, 2 different antibodies 

against APPsα (6E10) and APPsβ (ANGU) are spot, resulting in the simultaneous 

detection of both soluble APP. The signal is measured by electrochemiluminescence, 

which is very sensitive and allows detection of endogenous APPs. 

 

For a successful performance of a screening, it is important to set up a robust and specific 

assay for the biological process being investigated. The first step in designing a 

successful screen is to carefully choose positive and negative controls, in order to 

validate the read-out assay and to evaluate the strength of the phenotype observed.  

First of all, negative controls were evaluated. The non targeting siRNA controls, called 

CON siRNA, is a mixture of four different sequences of oligos with no complementarity 
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to any known transcript. It is a measure of the baseline changes on total gene expression 

caused by siRNA delivery in the cell system. Therefore, the siRNA transfection with this 

control has to give a very similar effect (no effect) to the so called  “water control”, 

named “non transfected” (Fig. 20). This non-transfected negative control is represented 

by seeded cells that are treated with no transfection reagent nor siRNAs. It is used to 

define whether the non-targeting siRNA treatment affects assay results. Indeed, the effect 

of non-targeting siRNA transfection on APPsα/APPsβ shedding measured with MSD-

Multiplex Immunoassay was similar to the treatment of the “water control”, excluding 

prominent off-target effects due to the siRNA treatment itself in the screening set up. The 

CON transfection was subsequently used as a reference for the whole screening and 

further validation. 

In endogenous conditions APP shedding is constitutively carried out by the α-secretase 

ADAM10, responsible for the initiation of the non-amyloidogenic pathway, and β-

secretase BACE1. Cleavage by BACE1 initiates the amyloidogenic pathway.  

To evaluate the knock-down efficiency and the specificity of the signal of APPsα/APPsβ 

multiplex immunoassay, the secreateses ADAM10 and BACE1 were knocked-down with 

pools of 4 different siRNA oligos per gene (Dharmacon), and the secretion of soluble 

APPs was analyzed. Upon ADAM10 knock-down, APPsα shedding showed a decrease 

of about 30% compared to the non-tageting siRNA pool used as control, whereas APPsβ 

levels increased to about 140%. As BACE1 was knocked-down, APPsβ levels decreased 

to about 5%, together with a very slight decrease in APPsα shedding. In fact, ADAM10 

knock-down lowers consistently APPsα shedding, whereas BACE1 knock-down 

decreased dramatically APPsβ processing, as expected (Colombo et al., 2012; Jorissen et 

al., 2010; Kuhn et al., 2010). These results confirm on the one hand the sensitivity of the 

multiplex immunoassay to detect endogenous levels of APP shedding products in SH-

SY5Y cells, and on the other hand the read out for the process of interest is validated (Fig. 

20). 

To complete the set of the screening controls for APP shedding, APP itself was knocked 

down. This control serves as a measure about knock-down efficiency, to set the 

background noise of the read-out assay, and to further validate the screening set-up. 

Upon APP knock-down, the signal of both APPsα/APPsβ was close to detection limit 

(Fig. 20). 
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The expected results on APP shedding achieved by ADAM10, BACE1 and APP knock-

down validated the screening set-up. These controls, together with the water and the non-

targeting controls were included as quality controls in each plate of the final screening.  

 

 
 

Fig. 20: Controls for the kinase screening from Dharmacon. /: negative control with 
no transfection reagents nor siRNA; CON: mixture of 4 non-targeting siRNA; A10: α-
secretase ADAM10 knock-down with pooled siRNA. BACE1: β-secretase knock-down 
with pooled siRNA; APP: APP knock-down with pooled siRNA. APPsα, APPsβ: soluble 
APP cleaved by α- and β-secretase respectively. Given are standard errors of at least 6 
independent experiments. 
 

4.2.2 Kinase screening for APP shedding 
 

RNA interference was used to selectively knock-down the human kinome in 

neuroblastoma cells SH-SY5Y, which expressed APP at endogenous levels. The kinase 

library from Dharmacon (Thermo Fisher) includes siRNA pools against 720 known and 

predicted kinases. The human kinome comprises 518 kinases, but the library includes 

also predicted kinases or kinases found only at transcriptional level. In case of multiple 

splicing isoforms of a specific gene, variants-specific siRNA were provided. The 

silencing of each kinase was achieved by reverse siRNA transfection using pooled 

siRNA (4 independent sequences targeting different regions of the same transcript). 

Variations in APP shedding were measured by Multiplex APPsα/APPsβ assay.  
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Fig 21: Screening of the human kinome for APPsα modulators. Red spot: APPsα 
level measured with Multiplex APPsα/APPsβ Immunoassay upon ADAM10 knock-down. 
Grey spots: APPsα levels measured with Multiplex APPsα/APPsβ Immunoassay upon 
knock-down of each single kinase of the human kinome (720 transcripts). Down-
regulation was performed with 10 nM siGenome pools from Dharmacon in 2 
independent experiments. APPsα: soluble amyloid precursor protein α; ADAM10 KD: 
ADAM10 knock-down. 
 

ADAM10 is the constitutive α-secretase of APP. ADAM10 knock-down showed a 

decrease in APPsα-shedding down to 40%. Therefore, as ADAM10 is the responsible 

secretase for the direct APPsα cleavage, the knock-down of any kinase was not expected 

to decrease APPsα shedding more than ADAM10 knock-down. In fact, the knock-down 

of none of the 720 kinases lead to a decrease of APPsα shedding more than ADAM10 

knock-down. This control was important in one hand to validate the experimental 

performance of each screening plate, and in the other hand to set the strength of the 

observed phenotype (Fig. 21). 

Apparently, as shown in Fig. 21, the knock-down of many kinases could impair APPsα 

shedding at different degrees, with some of them showing stronger phenotypes in 

comparison to others. Upon systematic knock-down of 720 kinases, APPsα levels either 

decreased to around 50% in comparison to the control, or increased to 2-fold. APPsα 

values were normalized to the mean of each plate, and the mean of 2 independent 

experiments was calculated. 
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Fig. 22: Screening of the human kinome for APPsβ modulators. Red spot: APPsβ 
level measured with Multiplex APPsα/APPsβ Immunoassay upon BACE1 knock-down. 
Grey spots: APPsβ levels measured with Multiplex APPsα/APPsβ Immunoassay upon 
knock-down of each single kinase of the human kinome (720 transcripts). Down-
regulation was performed with 10 nM siGenome pools from Dharmacon in 2 
independent experiments. APPsβ: soluble amyloid precursor protein β; BACE KD: 
BACE knock-down. 
 

At the same time, effects produced upon knock-down of the human kinome on APPsβ 

shedding were evaluated.  BACE1 is the β-secretase responsible of β-cleavage of APP, 

and its knock-down resulted in a decrease of APPsβ shedding down to almost 10% (Fig. 

22). As for APPsα, this treshould was considered to be the maximum effect expected on 

APPsβ shedding upon knock down of any kinase. Interestingly, knock-down of the 

human kinome resulted in broader impairment of APPsβ shedding in comparison to 

APPsα, leading to the observation that kinases are largely involved in controlling APPsβ 

shedding mechanisms. Upon systematic knock-down of 720 kinases, APPsβ levels either 

decreased to around 20% in comparison to the control, or increased to 2.6-fold. APPsβ 

values were normalized to the mean of each plate, and the mean of 2 independent 

experiments was calculated (Fig. 22). 

As protein-secretion control, granulin levels were measured upon knock-down of each 

kinase with a specific granulin immunoassay. Granulin is a secreted protein with multiple 

biological roles. In this context, it was used as a marker for controlling the integrity of 

the secretion machine in the cells treated with siRNA, and to evaluate whether the knock-

down of a specific kinase affected the overall secretion mechanism. Knock-down of the 

human kinome broadly affected granulin secretion, leading to either a decrease to ca. 

50%, or an increase of almost 2-fold of granulin levels. For each kinase, granulin levels 
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were compared to the effects on APPsα/APPsβ shedding. As control for this read-out, 

knock-down of granulin was performed, leading to a decrease in the secretion to almost 

20% (Fig. 23). 

 
Fig. 23: Screening of the human kinome for modulators of granulin secretion. Red 
spot: Granulin measured with Granulin-Immunoassay upon Granulin knock-down. Grey 
spots: Granulin levels measured with Granulin Immunoassay upon knock-down of each 
sigle kinase of the human kinome (720 transcripts). Down-regulation was performed with 
10 nM siGenome pools from Dharmacon in 2 independent experiments. GRN: granulin; 
GRN KD: granulin knock-down. 
 

In order to control cytotoxicity of siRNA mediated knock-down, the toxicity assay 

Alamar Blue was employed. This assay measures the health status of the used cell line, 

through the metabolic activity of the respiratory chain. Viable cells continously reduce 

resazurin to resorufin, a cell permeable compound that, when reduced, produces red 

fluorescence. In the screening, 16 genes out of 720 displayed more than 20% decrease in 

the Alamar Blue assay. These genes were excluded from the hit selection analysis. 

As further validation of the siRNA screening, kinases already known to be involved in 

APP processing were analysed, namely GSK3 and cdc2 as homologue of Cdk5 in cancer 

cells. The knock-down of GSK-3α and cdc2 led to a decrease in APPsβ levels only. 

These data could confirm the robustness of the approach in the identification of relevant 

kinases as APP shedding modulators (Fig. 24). 
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Fig. 24: Positive controls from the kinase screening. CON: non-targeting siRNA; 
GSK3α: Glycogen synthase kinase 3-α; cdc2: cyclin-dependent kinase 1. APPsα, APPsβ: 
soluble APP cleaved by α- and β-secretase respectively. Down-regulation was performed 
with 10 nM siGenome pools from Dharmacon in 2 indipendent experiments. 
 

4.2.3 Primary validation of best scoring hits with Dharmacon siRNA pools 
 

56 hits were selected as modulators of APP shedding. The cut-off values were assigned 

arbitrarily.  In case of APPsα, the knock-down of 4 genes out of 720 determined an 

increase higher than 150% in APPsα shedding in comparison to the control (non 

targeting siRNA), whereas a decrease in APPsα shedding of less than 65% was 

detectable upon down regulation of only 1 gene (Fig. 25). 

Since effects of kinases´ knock-down was stronger for APPsβ shedding, candidates 

impairing the amyloidogenic pathway were chosen with different cut-off values. The 

knock-down of 4 kinases led to an increase of APPsβ more than 190%, whereas 20 genes 

were selected for decreasing APPsβ shedding more than 45% (Fig. 25). 

A group of hits were found to be involved in the modulation of both amyloidogenic and 

non- amyloidogenic pathways: down regulation of 6 genes led to an increase in both 

APPsα and APPsβ shedding, 20 genes led to the decrease in the levels of both solubles, 

and 1 of them was associated to an increase in α- and a decrease in β-shedding. 

None of these 56 candidates showed changes neither in granulin levels nor in Alamar 

Blue viability assay. 
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Fig. 25: 56 best scoring hits from the primary screening selected with given cut-off 
criteria. The blue set summarizes the number of hits where the knock-down modulated 
only APPsα shedding. the red set sums up hits where the knock-down modulated only 
APPsβ shedding, and the overlap contains hits where the knock-down modulated the 
shedding of both APPsα and APPsβ, not included in the other two sets. APPsα, APPsβ: 
soluble APP cleaved by α- and β-secretase respectively. 
 

To minimize the presence of false-positive hits, these 56 candidates were re-screened in 

triplicate with lower concentration of siRNA pools in SH-SY5Y cells. The effects on 

APPsα/APPsβ shedding could be specifically reproduced for 23 out of 56 genes using 5 

nM siRNA pools for reverse trasfection. The hits were categorized in 6 groups, 

depending on the effects of the kinase knock-down on APPsα/APPsβ shedding. Granulin 

secretion was measured as control. The down regulation of 8 out of 23 genes showed an 

increase in different degrees in both APPsα and APPsβ shedding, together with no 

change in granulin levels; 10 genes were correlated to decreased levels in both solubles. 

In addition, one gene was confirmed to increase APPsα and in the meantime to decrease 

APPsβ. Moreover, one gene was responsible for a decrease in only APPsα, with no 

change in APPsβ; another one led to an increase in APPsβ only, whereas two genes 

mildly lowered APPsβ levels only (Fig. 26). 

 



Results 

 80 

 
 

Fig. 26: Validation of best-scoring hits with 5 nM siGenome siRNA pools from 
Dharmacon. The effect on APP shedding was reproducible for 23 out of 56 genes. 
Genes were divided into effect-related groups. Granulin was measured as secretion 
marker. APPsα, APPsβ: soluble APP cleaved by α- and β-secretase respectively. GRN: 
Granulin. Given are standard errors of 3 independent experiments. 
 

4.2.4 Secondary validation of best scoring hits with Qiagen siRNA pools 
 

Afterwards, to rule out off-target effects, these hits were screened using siRNA pools 

from Qiagen. These siRNA pools consist in a mixture of 4 oligos for each gene, which 

bind to different regions of the target transcript, initiating the RNAi mediated down-

regulation. 

First of all, Qiagen controls for APP shedding were tested via reverse transfection in SH-

SY5Y cells expressing endogenous APP at the concentration of 15 nM/pool. The effects 

were compared to the validated controls from Dharmacon. The strong decrease in APPsα 

shedding upon ADAM10 knock-down achieved with siRNA pools from both companies 

was associated to slightly different effects on APPsβ shedding, where its down regulation 

led to increased APPsβ levels using Dharmacon oligos. Upon BACE1 knock-down, the 

expected decrease in APPsβ shedding was observed with siRNA pools from both 

companies, whereas an increase in APPsα was detected only in case of down regulation 

with Qiagen siRNAs. A recent study from Colombo et al. showed that in differentiated 

SH-SY5Y cells α-and β-cleavage did not compete for APP shedding. Thus, the increase 

in APPsβ shedding upon ADAM10 knock-down with Dharmacon oligos and in APPsα 
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upon BACE1 knock-down with Qiagen siRNAs is likely to be an RNAi mediated off-

target effect (Fig. 27). 

APP knock down led to the depletion of both APP shedding products with siRNA pools 

from either Dharmacon or Qiagen.  

The effect of negative control CNAS (non targeting siRNA pools from Qiagen) was 

comparable with the C2P (non targeting siRNA pools from Dharmacon), resulting to no 

change in APPsα and APPsβ levels. Thus, treatment with non-targeting siRNA did not 

impair the physiological enviroment concerning APP shedding (Fig. 27). 

 

 
 

Fig. 27: Comparison between controls for the hits validation from Qiagen and 
Dharmacon. CNAS and C2P: mixture of 4 non-targeting siRNA; A10: α-secretase 
ADAM10 knock-down with pooled siRNA. B1: β-secretase BACE1 knock-down with 
pooled siRNA; APP: APP knock-down with pooled siRNA. Given are standard errors of 
at least 6 indipendent experiments. APPsα, APPsβ: soluble APP cleaved by α- and β-
secretase respectively. 
 

The validated controls from Qiagen were then used in the further confirmation of 

selected hits with Qiagen siRNA pools. The 23 selected genes were knocked down with 

15 nM Qiagen siRNA pools in SH-SY5Y cells, and the effect on APPs levels was 

measured with Multiplex APPsα/APPsβ immunoassay. The resulting phenotypes were 

compared with the variations measured in the re-screen with 5 nM siRNA pools from 

Dharmacon. 

The effects of 9 out of 23 genes were confirmed with siRNA pools from both companies: 

PRKCN, STK39, MAPK6, TTBK2, GAK, CDC2L1, PIK3R3, EPHA7, PFKFB1 (Fig. 
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28). Considering the low expression rate in SH-SY5Y cells indicated in “The human 

protein atlas“ (www.proteinatlas.org) of EPHA7 and PFKFB1, off-target effects could 

have provoked the seen phenotype. For this reason, these genes were excluded from 

further characterization.   

PRKCN knock-down showed an increase in both APP soluble levels in comparison to 

the control, whereas STK39, MAPK6, TTBK2 down regulation was confirmed to 

decrease both APPsα and APPsβ. Concerning GAK, CDC2L1 and PIK3R3, the knock-

down led to decreased APPsβ levels. This effect was confirmed with siRNA pools from 

both companies, while APPsα levels varied depending on the siRNA used, showing that 

probably α-secretase pathway is more susceptible to off-target effects. 

 

 
 

Fig. 28: Effects on APP shedding for the 7 validated kinases. Down-regulation was 
performed with Qiagen (Q) and Dharmacon (D) siRNA pools. APPsα, APPsβ: soluble 
APP cleaved by α- and β-secretase respectively. Given are standard errors of 3 
independent experiments. 
 

4.2.5 Effects on Aβ generation and APP mRNA upon knock-down of the validated 
hits 
 

To better understand the impact of the knock-down of 7 validated kinases on APP 

metabolism, Aβ40 secretion was measured using Mutiplex Aβ Immunoassay from Meso 

Scale Discovery. This assay is sensitive enough to detect endogenously generated Aβ40 

from SH-SH5Y cells. In the opposite, the concentration of Aβ38 and Aβ42 was too close 

to the lower detection limit, and therefore not included in the analysis. The knock-down 
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of all selected kinases but PRKCN caused a decrease in Aβ40 secretion, which is in 

correlation with the observed decrease in APPsβ (16). 

To investigate whether the concomitant variation of APP soluble levels were caused by 

an upstream regulation on APP mRNA levels, qRT-PCR was performed. APP mRNA 

strongly increased only in case of PRKCN knock-down (Table 16) in correlation with the 

observed increase in both solubles (Fig. 28). The variation on APP shedding products for 

the other genes could not be explained by consistent changes in APP mRNA levels, 

leading to the conclusion that other mechanisms may be responsible for these phenotypes. 

Finally, the knock-down efficiency was proved for each studied gene (16). 

 

Table 16: Aβ40 and APP mRNA levels upon knock-down of the 7 validated hits 

normalised to control.  
Name Aβ40 

% to CON 

 

S.E.M 

APPmRNA 

% to CON 

                      

S.D. 

KD efficiency 

% to CON 

 

S.D. 
PRKCN 

STK39 

MAPK6 

TTBK2 

GAK 

CDC2L1 

PIK3R3 

121,3 

53,3 

52,8 

64,0 

64,9 

44,5 

49,1 

14,0 

3,1 

0,6 

1,8 

3,3 

1,0 

4,4 

162,0 

71,6 

89,6 

103,1 

91,4 

75,1 

104,1 

0,0 

4,4 

11,0 

12,9 

6,7 

0,6 

16,6 

30,6 

22,5 

25,4 

47,0 

33,8 

11,0 

27,9 

4,8 

1,2 

4,0 

9,9 

5,6 

7,1 

12,5 

These effects are correlated to knock-down efficiency. Given are standard errors (S.E.M.) 
or standard deviations (S.D.). 
 

4.2.6 Validation of STK39 in mouse embryonic neurons with shRNAs 
 

In Alzheimer´s disease pathology, an important role is given to a misregulation of Aβ 

production, which triggers plaque deposition and compromises synaptic functions and 

cognitive performance in humans. The amyloid precursor protein APP is highly 

expressed in neurons at an endogenous level. Within the group of the newly identified 

kinases in SH-SY5Y neuroblastoma cells, four of them show high expression levels in 

the mouse brain, according the Allen Brain Atlas (www.brain-map.org) and BioGPS 

(biogps.org). These kinases are MAPK6, TTBK2, STK39 and GAK.  

Therefore, in order to investigate whether these newly identified kinases had a role in 

APP metabolism and in particular in Aβ generation in primary cortical neurons, a 

screening with lentivirus carrying shRNA sequences against these candidates was 

performed. shRNA sequences for knocking-down the selected kinases were chosen from 
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the RNAi consortium (www.broadinstitute.org) and cloned into pLKO-lentiviral vector 

(Kuhn, Wang et al. 2010). The viruses were tested for infectivity, knock-down efficiency 

and effect on Aβ40 secretion in murine E15/E16 isolated neurons. The best correlation 

between changes in Aβ secretion levels and knock-down efficiency was achieved for 

STK39 (Fig. 29) and shRNA “KD3” and “KD6” were selected and used for further 

detailed experiments. STK39 is highly expressed in neurons and has an important role in 

the phosphorylation of NMDA receptors at postsynaptic level (Ben-Ari, 2002). 

 
Fig. 29: Effects of STK39 knock-down in primary neurons on Aβ shedding. Down-
regulation was performed with different shRNA sequences, cloned into the pLKO 
lentiviral vector. STK39 knock-down efficiency (KD) was assessed via qRT-PCR, and 
Aβ levels were measured via MSD-Multiplex ELISA. Aβ: amyloid β peptide. Given are 
standard errors of 3 independent experiments. 
 

The effect of STK39 knock-down with the 2 selected shRNA (further called shRNA1, 

shRNA2) on APP shedding in primary cortical neurons was analysed. Both shRNA 

sequences targeted the coding region of STK39 transcript, but different exons. shRNA1 

binds to exon 2, while shRNA2 targets exon 14. They have been selected for being very 

efficient in knocking-down STK39, without impairing the neuronal viability. In knock-

down experiments, the down-regulation of a gene with at least 2 different shRNA 

sequences targeting the same transcripts minimize the risk of off-target effects in the 

studied pathway. The scrambled shRNA sequence was used as control, and the 

transduction with this virus did not show any adverse effect on the APP processing if 

compared to the non-trasfected (/) neurons (Fig. 30A). Therefore, unspecific effect due to 

viral trasfection and off-target effects caused by the scrambled sequence could be ruled 
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out. The supernatant was harvested 3 days after the viral infection, to allow an effective 

down-regulation of the kinase, and analysed for APPsα and APPsβ secretion via Western 

Blot, as well as Aβ40 generation using the Multiplex Aβ Immunoassay. The neurons 

were collected for the analysis of lysate, in order to address effects on full length APP, 

BACE1 and ADAM10 protein levels, and to confirm STK39 knock-down. Calnexin was 

used as loading control. As shown in Fig. 30, APPsα levels did not significantly change 

upon STK39 knock-down with both shRNA, while ADAM10 levels mildly decreased in 

comparison to control. Significant changes were instead detected for APPsβ, BACE1 

levels and Aβ40, where STK39 knock-down resulted in lower the protein level of all 

these three parameters (Fig. 30 A,B,C). The decrease was stronger in case of the first 

shRNA, and milder for the second shRNA. This result is probably caused by the slightly 

more efficient knock-down achieved by the first sequence of shRNA.   

 

 
 

Fig. 30: STK39 knock-down with shRNAs in primary cortical neurons. A) Western 
Blot analysis of APPsα, APPsβ, BACE1, ADAM10, APP full length (FL), STK39 and 
Calnexin (Caln) protein levels upon STK39 knock-down with 2 different shRNA 
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(shRNA1, shRNA2). B) Quantification of A). C) Aβ40 levels measured with Multiplex 
Aβ Triplex Immunoassay (MSD) upon STK39 knock-down with 2 different shRNA 
(shRNA1, shRNA2). Given are standard errors of at least 6 indipendent experiments. 
 

Apparently, decreased BACE1 protein levels upon STK39 knock-down subsequently 

impaired the β-secretase cleavage of APP, resulting in decreased in APPsβ and Aβ 

production.  

In order to evaluate whether the decrease in BACE1 protein level had in impact also in 

other known BACE1 substrates, the effects of STK39 knock-down were assessed also for 

APLP1. This protein is reported to be a substrate very efficiently cleaved by BACE1 

(Kuhn et al., 2012). STK39 knock-down resulted in a significant and reproducible 

decrease in APLP1 β-cleavage, whereas no significant change was detected in 

intracellular APLP1 of embryonic neurons (Fig. 31).  

 

 
 

Fig. 31: STK39 knock-down with shRNAs in primary cortical neurons. A) Western 
Blot analysis of APLP1 protein levels upon STK39 knock-down with 2 different shRNA 
(shRNA 1, shRNA 2). B) Quantification of A). Given are standard errors of at least 6 
independent experiments. 
 

4.2.7 Validation of STK39 in SH-SY5Y cells with single siRNAs 
 

Next, single siRNA oligos with different sequences from the previous pooled siRNA 

from Qiagen and Dharmacon were employed to reconfirm the phenotype observed in 

SH-SY5Y cells upon STK39 knock-down. The 2 siRNA sequences showed a decent 

knock down efficiency, decreasing STK39 protein levels to less than 50% (Fig. 33). 
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APPsα, APPsβ, and Aβ levels were measured in supernatants from transfected SH-SY5Y 

cells with the Multiplex APPsα/APPsβ immunoassay. Upon STK39 siRNA knock-down, 

the shedding of APP soluble forms significantly decreased as well as Aβ secretion (Fig. 

32) According to previous experiments with SH-SY5Y cells, where STK39 was knock-

down with siRNA pools, not only levels of APPsβ and Aβ40, but also APPsα decreased, 

probably due to either a major contribution of the α-secretase pathway in SH-SY5Y cells 

in comparison to neurons towards APP processing, or the susceptibility of α-secretase 

pathaway to off-target effects. 

In the cell lysate, BACE1 levels significantly decreased upon knock-down with the 

second but not with the first siRNA. Intracellular APP slightly accumulated when STK39 

was down-regulated with the first siRNA (Fig. 33). This effect was not seen so far, being 

probably a specific off-target effect of that siRNA sequence. Levels of mature and 

immature ADAM10 did not change in comparison to the control (Fig. 33). 

 
 

Fig. 32: STK39 knock-down with single siRNA from Qiagen. APPsα, APPsβ and 
Aβ40 levels were measured with respectively Multiplex APPsα/APPsβ Immunoassay 
and Multiplex Aβ Immunoassay (MSD). APPsα: soluble amyloid precursor protein α, 
APPsβ: soluble amyloid protein β; Aβ: amyloid β peptide. Given are standard errors of at 
least 6 independent experiments. 
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Fig. 33: STK39 knock-down with single siRNA from Qiagen. A) STK39, APP full 
length (FL), BACE1, ADAM10 and Calnexin (Caln) protein levels were analysed via 
Western Blot. B) Quantification of A). Given are standard errors of at least 6 independent 
experiments. 
 

4.2.8 Conclusion 2 
 

In conclusion, the human kinome was successfully screened using siRNA high- 

throughput screening technique, leading to the identification of new kinases as 

modulators of APP shedding and Aβ generation. Major efforts were dedicated to re-

screen the most interesting candidates with different validation approaches in order to 

minimize false-positive hits and off-target effects. 

Finally, STK39 kinase was identified as new modulator of APPsβ, Aβ and BACE1 

protein level.  

A detailed analysis is required to disclose the specific mechanism concerning how partial 

depletion of STK39 affects APPsβ, Aβ and BACE1 protein levels, and whether its 

trascription, translation or degradation results in lowered levels of the protein. Moreover, 

further investigation is needed to unveil how STK39 is involved in APP phosphorylation 

and in particular how it regulates the amyloidogenic pathway. 

In conclusion, inhibition of STK39 could be a potential new drug target in AD. 
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5  DISCUSSION 
 

In the first part of this thesis, a new sandwich immunoassay for detection of APPsα in 

CSF and serum was established. 

In the second part of this work, a screening of the human kinome was performed to find 

new modulators of APP shedding and Aβ secretion. The data described in the results of 

this thesis will be discussed and compared with the scientific literature in the following 

section. 

 

5.1 Biomarkers in Alzheimer´s disease 
 

Alzheimer´s disease is the most common form of dementia worldwide in people 65 years 

of age or older. The pathological hallmarks associated with Alzheimer´s disease are the 

extracellular presence of β-amyloid plaques, intracellular tau tangles, neuronal loss and 

consequent cognitive decline (Ballard et al., 2011).  

Several studies have proven the sensitivity and specificity of the combination between 

ELISA-like assay measurements of Aβ42, tau and phospho-tau for the diagnosis of AD 

(Hansson et al., 2006; Maddalena et al., 2003; Mattsson et al., 2010), together with the 

neuropsycological testing from the Mini Mental State battery, the NINCDS/ADRDA 

criteria and imaging techniques. These measurements are nowadays used to discriminate 

between nondemented aged subjects and AD patients with a sensitivity and specificity of 

above 80% (Blennow, 2004). 

Nevertheless, the diagnostic performance of CSF biomarkers in distinguishing AD from 

other types of dementia is not yet optimal for several reasons. For example, for many 

years the high percentage of clinical misdiagnosis in samples used for research on AD-

specific biomarkers had a negative impact in the output of these studies (Formichi et al., 

2006). Specifically, AD pathology overlaps with other kinds of dementia, namely the 

Lewy body dementia and cerebral amyloid angiopathy or vascular dementia (Jellinger 

and Attems, 2008; Schneider and Bennett, 2010). Moreover, a consistent percentage of 

the elderly population have β- amyloid plaques and tagles without showing any symptom 

related to dementia (Snowdon, 1997). These reasons and the fact that the precise 

pathophysiological mechanisms at the basis of AD are still unknown generate basic 

problems such as finding a biomarker that is 100% reliable for the diagnosis of AD.  
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Moreover, since the pathological process of Alzheimer´s disease begins many years 

before the clinical manifestation, a big challenge in AD research is development of early 

predictive biomarkers to develop disease-modifying drugs, in order to prevent the 

progression of the prodromal state of dementia.  

Therefore, in the first part of this thesis I focused my efforts on finding a new approach 

for possibly increasing the sensitivity and specificity of the AD diagnosis, at early stages 

of the disease and preferably in human samples that can be collected in a noninvasive 

manner, such as for example blood.  

Aside of Aβ42, other biomarkers related to the metabolic processing of APP such as 

APPsα and APPsβ, which are secreted into the extracellular space in the brain, have been 

matter of investigation in patients with Alzheimer´s disease. Intriguingly, CSF levels of 

both APPsα and APPsβ in MCI and AD patients have been found to be either unaltered 

or moderately increased (Olsson et al., 2003; Zetterberg et al., 2008; Lewczuck et al., 

2010; Rosen et al., 2012; Gabelle et al., 2000). In particular APPsα is considered an 

interesting biomarker for following new treatment studies. An increase in α-cleavage 

processing of APP is believed to shift the amyloidogenic pathway to the non-

amyloidogenic pathway (Armstrong et al., 2005; Tippmann et al., 2009). 

APPsα levels have been mostly investigated in CSF and little in blood. In particular, 

research studies reported conflicting results concerning changes in the levels of this 

fragment, finding an increase or no change between controls and AD patients. Moreover, 

a study (Wu et al., 2012) recently reported and increase in APPsα in plasma from AD 

patients, while another one (Colciaghi et al., 2004), described a reduction of APPsα and 

ADAM10 activity in platelets from AD patients. The discrepancy in these studies may be 

the result of the antibodies used for the detection of APPsα.  

 

5.2 The new 14D6-immunoassay for specific detection of APPsα in cell 
culture, CSF and serum 
 

Generally, most of the studies detected APPsα with antibody 6E10, which does not 

exclusively detect the product of α-secretase cleavage, but also the β-secretase alternative 

cleavage at β´ position (see Fig. 9A,B). This proteolytic activity of BACE1 results in the 

secretion of APPsβ´ fragment, which is thought to contribute to almost 25% of the total 

APP shedding (Zhou et al., 2011). Moreover, BACE1 activity and expression is found to 

increase in some patients with AD (Hebert et al., 2008). To overcome this problem, the 
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new antibody 14D6, which specifically detects APPsα, but not APPsβ´, was generated in 

our lab (Fig. 9A,B). This antibody was used for establishing a new sandwich 

immunoassay, which was proved to specifically detect the α-secretase product of APP 

both in CSF and serum (Fig. 12,13,14,15). Subsequently, 14D6 immunoassay was tested 

in a group of AD patients versus non-demented controls, in order to identify changes in 

the level of APPsα in CSF and serum. The new assay demonstrated higher sensitivity in 

CSF (Fig. 17, 19) in the detection of APPsα in comparison to the commercially available 

6E10 immunoassay. In particular, CSF levels of APPsα were significantly higher in AD 

patients in comparison to the controls (Fig. 17), but the overlap between the two groups 

did not allow a full separation of the healthy and diseased condition, as it is reported in 

other studies using the 6E10 antibody (Gabelle et al., 2010; Lewczuk et al., 2010; 

Perneczky et al., 2011; Selnes et al., 2010). For this reason, APPsα measurement alone 

may not reach the value of a single biomarker for the diagnosis of Alzheimer´s disease. 

However, since other studies showed either no change or even a decrease in APPsα 

levels in CSF from AD patients (Fellgiebel et al., 2009; Lannfelt et al., 1995; Sennvik et 

al., 2000), the general conclusion of the overall picture is that there is no dramatic change 

in APPsα in CSF of AD patients. Therefore, a very sensitive method such as the 14D6-

immunoassay is needed to pick fluctuation of this APP metabolic product. This concept 

can be also translated further to better understand the molecular basis of the onset of AD. 

In fact, it was believed that enhanced β-secretase cleavage of APP is coupled to 

decreased processing of APP through the α-secretase pathway. Recently, it has been 

shown that reduced α-secretase activity does not automatically result in an increased β-

secretase cleavage, in cell culture experiments and murine embryonic neurons (Colombo 

et al., 2012; Jorissen et al., 2010). 

The Mini Mental State of the majority of AD patients included into the study is above 23, 

targeting the patients´group to the very mild demented subjects. The new 14D6 assay 

significantly detects an increase in APPsα levels in AD patients, even if they are affected 

from mild AD dementia. For this reason, the new assay may be further tested as an 

additional tool for both pre-diagnosis of Alzheimer´s disease and also for monitoring 

effects on APP processing of treatments with disease-modyfing drugs in CSF and serum. 

Additionally, new drugs are typically tested in cell culture models, to monitor effects of 

new compounds in vitro, preferentially under endogenous APP expression to prevent 

artificial regulation of APP trafficking and metabolism. 14D6 assay can also be useful in 

this context, being sensitive enough to specifically detect endogenous APPsα levels in 
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cell culture models (Fig. 10). For example, acitretin is an approved drug currently in 

clinical trials for treatment of psoriasis, and it has recently been discovered to be an 

activator of ADAM10 expression, thereby increasing APPsα cleavage. Through 

stimulation of ADAM10 promoter activity, this drug promotes an increase of the mature 

form of ADAM10, enhancing the non-amyloidogenic pathway in cell culture and APP 

transgenic mice (Tippmann et al., 2009). Other AD modifying drugs acting as inhibitors 

of β-secretase activity can be tested in the same manner, suppressing BACE1 expression 

(i.e. PPARγ agonists) or inhibiting its proteolytic activity (i.e. MK-8931 from Merk, 

being actually in phase III clinical trial or LY2811376 from Ely Lilly) (May et al., 2011; 

Stamford and Strickland, 2013). In humans, BACE1 inhibition results not only in 

reduced Aβ and APPsβ generation, but also in a shift from the amyloidogenic to the non-

amyloidogenic pathway, increasing two- to three-fold the levels of APPsα shedding 

(May et al., 2011; Wu et al., 2012). In this case, the compensatory mechanisms at the 

basis of the enhanced APPsα shedding may be used as indirect read-out for the inhibitory 

treatment of BACE1. Moreover, being serum an easily accessible body fluid, the new 

14D6-immunoassay is also suitable for monitoring response to treatment in a less-

invasive and broader manner. 

Interestingly, 14D6-immunoassay performed better than the commercially available 

6E10 antibody in detecting changes of APPsα levels in AD patients in the CSF. For this 

reason, this antibody should be preferred on the other one for future α-secretase 

processing of APP in clinical studies. 

In contrast, the new 14D6 immunoassay did not show a better performance in serum in 

comparison to the 6E10, but it allows significant and specific detection of APPsα also in 

this blood fraction. Probably, as β-secretase activity is very low in blood, the interference 

of APPsβ´ while measuring APPsα concentration with the 6E10 antibody is minimal 

(Decourt and Sabbagh, 2011; Vassar et al., 1999). Therefore, the 14D6 immunoassay is 

not preferable over the 6E10 assay for detecting APPsα in serum. APPsα levels were 

found to significantly decrease in serum from patients with AD in comparison to non-

demented controls with both assays. This finding is consistent with low levels of 

ADAM10 in platelets in AD patients reported by another research group (Colciaghi et al., 

2004). As in the case of the CSF, contradictory results concerning APPsα levels in blood 

fraction were reported. In fact, a recent study reported mildly increased levels of APPsα 

in the plasma of AD patients (Wu et al., 2012). This difference can be caused by the use 

of different sources of blood biomarkers.  
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In conclusion, a new immunoassay for the specific detection of APPsα in cell culture 

experiments, CSF and serum has been established and tested in a small clinical cohort of 

Alzheimer´s disease patients with very mild dementia. Further confirmation of the value 

of this assay will be provided with larger number of patients, ideally sub-divided into 

differential stages of AD. Ideally, this assay could also be used as a tool to monitor the 

effect of new drugs on α-secretase stimulation or BACE1 inhibition, in cell culture 

experiments under endogenous APP expression levels and later on in clinical trials. 

 

5.3 Screening of the human kinome in SHSY5Y cells 
 

RNA interference has become a broadly used technique to study gene function and to 

identify new components on already known pathways. The power of this technique is 

attributable to the efficient silencing of single genes (and sometimes even specific 

isoforms) using the physiological mechanism to repress gene expression in the cellular 

system. Nowadays, RNA interference is used for high-throughput screenings in different 

cell lines and for various purposes. For this reason, this tool was used in this thesis to 

better understand how APP shedding can be modulated by changes in the kinase activity. 

So far, only a small number of kinases have been studied in the context of Alzheimer´s 

disease.  

First of all, the activity of many kinases is reported to increase in Alzheimer´s disease 

brain. For example, increased phosphorylation levels of p38 mitogen-activated protein 

kinase (MAPK) have been described in AD, in association with amyloid plaques 

pathology and tau tangles (Hensley et al., 1999). Likewise, the activity of cdk5 was 

reported to be higher in post mortem AD brains (Lee et al., 1999), and its protein levels 

are elevated in brains from mild cognitive impairment (MCI) patients (Sultana and 

Butterfield, 2007). Moreover, the expression level of casein kinase 1 (CK1) has been 

shown to be up-regulated in brains of AD patients (Yasojima et al., 2000). Another very 

well studied kinase in Alzheimer´s disease context, GSK3, is up-regulated at different 

levels: GSK3 expression was increased in the hippocampal area of AD patients, as well 

as an increased activity of GSK3 was found in the frontal cortex of AD patients, due to 

hyperphosphorylation of Tyr216 (Leroy et al., 2007).  

Second, kinases can have a role in the onset of Alzheimer´s disease interfering with 

different pathways: they can control APP processing, tau phosphorylation, neurotoxicity 

and neuroinflammation. In this thesis, we decided to focus on finding new kinases that 
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modulate APP processing. Kinases are described to play a role in the phosphorylation of 

the cytoplasmic tail of APP at position 688, and at the YENPTY motif, which represents 

not only a very important internalisation motif in the APP sequence, but also a regulated 

docking site for several interaction proteins involved in APP trafficking and cellular 

signaling (da Cruz e Silva and da Cruz e Silva, 2003). The main phosphorylated amino 

acid within APP cytoplasmic sequence is the Thr668 (numbering from the APP695 

isoform). Cdk5 and GSK-3β constitutively phosphorylate APP at this residue in neurons, 

whereas JNK phosphorylates it only under stress conditions (Kimberly et al., 2005; Liu 

et al., 2003; Taru et al., 2002).  

The goal of screening the human kinome was to find new modulators of the 

amyloidogenic and non-amyloidogenic pathways, which are at the basis of Aβ generation 

and dysregulation of APP metabolism. The complete human kinome was published in 

2002 by Manning and colleagues (Manning et al., 2002), and it described 518 protein 

kinases. For our screening, the kinase library from Dharmacon (Thermo Scientific) was 

used. The library is composed of siRNA pools, which can efficiently knock down single 

genes. The siRNA-library is designed to target 720 known and putative kinases. In order 

to develop a robust and specific assay for the screening, several parameters were 

evaluated and tested. First of all, the neuroblastoma cell line SH-SY5Y was chosen for 

screening the human kinome in a 96-well-plate format. Since the final aim of the project 

was to find modulators of APP shedding in the neuronal context and to be able to 

translate the study into Alzheimer´s disease molecular background, this cell model was 

preferred because they express neuronal features. Additionally, this cell line is 

particularly suitable for reverse transfection, which delivers siRNAs into the cytoplasm 

of the cell with the help of transfection reagents. To specifically identify changes in APP 

solubles levels, namely APPsα and APPsβ, the Multiplex APPsα/APPsβ Immunoassay 

from Meso Scale Discovery was employed. This assay detects APP solubles 

simultaneously and in a very sensitive manner in the same well of a 96-well plate. This 

immunoassay is sensitive enough to detect the endogenous secretion of the soluble APP 

fragments from SH-SY5Y cells. This was particulary remarkable, because it allowed to 

screen in minimal artificial conditions. In opposite, other studies were able to perform 

screening for APP processing only upon APP overexpression (Bali et al., 2012; Majercak 

et al., 2006). To control for general toxic effects of siRNA treatment, the toxicity assay 

Alamar Blue was used. It has been reported that high concentration of siRNA can 

increase the rate of toxicity (Birmingham et al., 2006). To lower the risk to induce 
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toxicity, a concentration of 10 nM/siRNA pool was used. Each siRNA transfection was 

performed in duplicate, to increase the confidence of finding positive hits and to avoid 

high false negative rate (Boutros and Ahringer, 2008). 

Positive and negative controls were selected for testing the specificity of the read-out, the 

efficiency of the reverse transfection, and the expected strength of changes in the 

biological process of interest. Knock-down of the secretases primarly involved in APP 

shedding, namely the α-secretase ADAM10 and the β-secretase BACE1, together with 

the knock-down of their substrate APP, was performed. ADAM10 knock-down showed a 

decrease in APPsα shedding, whereas BACE1 down-regulation resulted in lower levels 

of APPsβ secretion, confirming the specificity of the signal detected with the Multiplex 

immunoassay. Additionally, the signal of both APP fragments was depleted upon APP 

knockdown. The non-targeting siRNA pool did not display any effect on APP shedding 

nor major toxicity in comparison to the control with non-treated cells, further confirming 

the reliability of the experimental set up (Fig. 20, 27) (Boutros and Ahringer, 2008).  

The screening of 720 kinases revealed diverse effects on α- and β- secretase pathways: 

the knock-down of the human kinome seems to have a major role in modulating APPsβ 

shedding, whereas the down-regulation of the kinases had a minor role in the regulation 

of APPsα shedding, because the number of hits identified for APPsβ was higher in 

comparison to APPsα (Fig. 21, 22, 25). None of the genes was found to decrease APPsβ 

more than BACE1 KD (Fig. 22). Interestingly, the down-regulation of the human kinome 

had a broad effect also in the secretion of granulin, which was chosen as a marker for 

controlling the general secretion machinery of the cell (Fig. 23). 

Afterwards, the data from the primary screening were normalized to allow comparison 

and combination of data from various plates (Birmingham et al., 2009) and the cut-offs 

for APPsα-and APPsβ were set: 4 out of 720 genes increase APPsα levels above 150 and 

1 of them decreased APPsα shedding below 65%; the knock-down of 4 out of 720 genes 

resulted in an increase of APPsβ levels above 190%, and for 20 of them a decreased 

below 45% was detected. Down regulation of 6 out of 720 genes increase the shedding of 

both fragments, whereas 20 of them displayed a role in decreasing their cleavage. The 

knock down of 1 gene of the whole kinase library had a differential effect on APPsα and 

APPsβ shedding. Since the down regulation of the human kinome had different effects 

towards the amyloidogenic and non-amyloidogenic pathway, it was not possible to set a 

common cut-off strategy. None of the included genes displayed a toxicity of more than 

20% in comparison to the control. In total, the screening of the human kinome for new 
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modulators of APP shedding revealed 56 genes capable of modifying the shedding of 

APPsα and/or APPsβ, without affecting cell viability. 

As further validation of the siRNA screening, kinases already known to be involved in 

APP processing were analysed, namely GSK3 and cdc2 as homologue of cdk5 in cancer 

cells. Knock-down of GSK-3α and cdc2 led to a decrease in APPsβ levels only. These 

data could confirm the robustness of the approach in the identification of relevant kinases 

as APP shedding modulators. 

 

5.4 Validation of best-scoring hits from the kinase screening 
 

As described in the introduction, siRNA technique has major advantages to study the 

physiological function of specific genes within a pathway. Nevertheless, a successful 

validation strategy is necessary to avoid the high rate of false positive hits due to off-

target effects (Sigoillot and King, 2011). Off target effects may be non-sequence and 

sequence specific. Non-sequence specific off-target effects can arise either when 

siRNA/shRNA treatment disturbs the endogenous RNAi machine, which is involved in 

the maintenance of the cell homeostasis by an accurate regulation of gene translation, or 

when the treatment induces stress-related response in the cell (Persengiev et al., 2004; 

Rao et al., 2009a; Semizarov et al., 2003) (Khan et al., 2009). The sequence specific off-

target effects originate when a siRNA sequence is responsible for the down-regulation of 

others than the target mRNA (Jackson and Linsley, 2010; Scacheri et al., 2004). siRNA, 

shRNA and miRNA may target several transcripts with a non-specific basepair match 

and downregulate the expression of unwanted genes. The probability of unspecific 

sequence match is higher if the concentration of siRNA is elevated (Sigoillot and King, 

2011). 

Here, the strategy adopted to minimize the risk of sequence-related off target effects was 

to use several siRNA oligos targeting the same transcript at different regions for each 

gene, and correlate phenotype and knock-down efficiency (Mohr et al., 2010; Sigoillot 

and King, 2011). In particular, only hits showing the same phenotype upon transfection 

of siRNA pools in SH-SY5Y cells with different sequences were considered as validated, 

namely PRKCN, STK39, MAPK6, TTBK2, GAK, CDC2L1, PIK3R3. Low 

concentration of siRNA pools implicates even lower concentration of single siRNA 

oligos, leading to lower probability of inducing sequence-related off-target effect. (Rao et 
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al., 2009a) Afterwards, small concentrations of single siRNA sequences were correlated 

to the knock-down efficiency concerning STK39. 

Moreover, shRNAs are believed to promote less off-target effects than siRNA sequences, 

maily because they are endogenously transcribed and processed in a very low but 

constant manner (Klinghoffer et al., 2010; Rao et al., 2009a). In fact, the plasmid 

containing the shRNA is immediately transferred into the nucleus by the lentivirus, 

where shRNA molecules are synthesized in a hairpin like stem-loop, which is processed 

into individual shRNAs with 2 nucleotides at the 3´overhang. After several modifications, 

mature shRNAs are finally transported into the cytoplasm where they are processed by 

the RISC complex into shorter molecules of anti-sense oligos (Rao et al., 2009a). shRNA 

mediated knock down allows to achive higher level of repression efficiency, as the 

plasmid is constantly transcribed into the nucleus via RNA polymerase II, and it has a 

longer life in comparison to synthetic molecules of siRNA. For this reason, phenotypes 

of neuronal expressed genes were validated also using shRNA sequences. The selection 

of a neuronal cell line, namely SH-SY5Y cells, facilitates the research of neuronal 

expressed kinases within the group of the 7 genes validated with 2 sequence-indipendent 

pools of siRNA. In order to investigate the expression profile of the validated genes in 

murine brain and neurons, educated search in literature, BioGPS and The Brain Atlas 

was performed. Finally, 4 out of 9 genes were consistently described to be highly 

expressed in neurons: MAPK6, TTBK2, STK39, GAK. The shRNA mediated-knock 

down screening performed with lentiviruses in murine embryonic neurons revealed that 

STK39 exhibited the strongest correlation between Aβ phenotype and knock-down 

efficiency. The correlation between knock-down efficiency and phenotype is one of the 

validation strategies to confirm the consistency of the phenotype. In contrast, together 

with sequence specific off-target effects, shRNA can also stimulate the immune response 

of the cell against the virus used for the delivery of the plasmid. Moreover, a higher viral 

titer could cause toxicity or unspecific modulation of APP processing. These effects were 

excluded through the transduction with a plasmid containing a scrabled shRNA sequence 

and the not –treated control. When two or more sequence-independent shRNA diplay a 

strong correlation between knock-down and phenotype, the probability that the selected 

hit is a false positive is lower. 
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5.5 STK39 knock-down lowers APPsβ, Aβ40 and BACE1 protein levels in 
primary neurons and neuroblastoma cells 
 

STK39 knock-down with 2 sequence-independent shRNAs reduced endogenous APPsβ 

shedding, Aβ40 secretion and lowered BACE1 protein level, without dramatically 

affecting APPsα and ADAM10 levels (Fig. 30). In contrast, STK39 siRNA mediated 

knock-down with both pools or single siRNA oligos at different concentrations (Fig. 26, 

28, 31) showed a decrease in APPsα shedding, as well as lower levels of APPsβ and 

Aβ40. This discrepancy between the effect of STK39 knock-down in neuroblastoma cells 

and neurons concerning APPsα cleavage can be interpreted from 2 different sides: it can 

be caused in one hand by siRNA mediated off-target effects, and in the second hand 

because of the different expression profile of ADAM10 and BACE1 in tumor cells and 

neurons. In the first case, miRNA off-target effects produced from siRNA oligos has 

been recently decribed in details. In a study from 2003 (Jackson et al., 2003) a series of 

siRNAs were specifically designed to target MAPK14 and IGF1R. The authors evaluated 

the effects of each single anti-sense sequence through transcriptional profiling analysis, 

and they could correlate different patterns of effects on transcription to each siRNA. The 

expression of other genes than the target of siRNA sequence was modulated in 

comparison to the control, also at very small concentration of siRNA (4 nM). Another 

similar study drawing the same conclusions was performed knocking down 12 genes 

with different siRNA, but with higher siRNA concentration (Birmingham et al., 2006). 

Concerning the different expression pattern of ADAM10 and BACE1 in different cell 

lines, BACE1 expression is high in neurons but not in cells from peripheral tissue 

(Vassar et al., 1999), whereas ADAM10 expression is prominent in SH-SY5Y cells. 

STK39 knock-down showed a highly significant reduction in APPsα shedding only in 

SH-SY5Y cells, independently upon down regulation with 2 single siRNA oligos or two 

different pools (Fig. 26, 28, 32). In neurons, STK39 knock-down lowered APPsβ, Aβ and 

BACE1 levels, without having a major effect on APPsα processing. A recent study 

investigated the contribution of α- and β-secretases in APP shedding in murine 

embryonic neurons: coupling between the activity of ADAM10 and BACE1 for APP 

cleavage was demonstrated (Colombo et al., 2012). Inhibition of β-secretase activity 

resulted in increased ADAM10 cleavage of APP, in contrast to the observed effect of 

STK39 knock-down in this work. However, APP clevage is very much dependent on the 

availability of the substrate and on the compartimentalization of mature APP. It is 

reported that only a little amount of mature APP reaches the plasma membrane, where α-
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secretase cleavage occurs, whereas the majority of APP is localized into the Golgi 

apparatus and the trans-Golgi network, where it is mostly cleaved by BACE1 (Haass et 

al., 2012). Probably, upon STK39 knock-down, trafficking of either APP or BACE1 is 

modified, and thereby α-secretase cleavage of APP does not increase.  

Moreover, APP intracellular domain can be phosphorylated at different residues, 

modulating APP processing through interaction with other proteins as well as CTFs 

localization. The further deals with APP internalization motif, YENPTY, which is 

implicated in APP internalization and regulation of Aβ production. A number of 

cytosolic adaptor proteins have been described to bind APP internalization motif, 

including Fe65, Fe65L1 and 2, Mint1 (X11α), 2 and 3, Dab1, sortin nexin 17, and c-Jun 

amino-terminal kinase-interacting protein family members (Haass et al., 2012). The 

sequence of these APP binding proteins presents phosphotyrosine-binding domains. For 

example, lower Aβ levels and amyloid plaque deposition were detected when Mint 1, 

Mint 2 or Fe65 were overexpressed in APP transgenic mice. In particular Mint proteins 

bind also ADP-ribosylation factors, which are involved in APP vesicular trafficking 

(Haass et al., 2012). The latter involves phosphorylation of specific residues at CTFs 

level, which define the destiny of CTFs processing, such as α- rather than β-cleavage, 

and APP subcellular localization. In particular, APP phosphorylation at either Tyr682 or 

Tyr687 can drive APP and/or the CTFs to the amyloidogenic or the non-amyloidogenic 

pathway. For example, a recent study described phosphorylation at Tyr687 as important 

for α- and γ-secretase processing, leading to an increase in α-CTF generation (Takahashi 

et al., 2008). In contrast, phosphorylation at Thr668 seems instead to enhance APP 

processing by β-secretase, increasing Aβ secretion (Lee et al., 2003). Moreover, it is not 

yet clear how phosphorylation at Thr668 influences Fe65 binding to APP. In some 

studies, Fe65 is reported to interact with the internalization motif YENPTY of APP and 

to regulate APP processing, decreasing APP endocytosis and Golgi and endosomal 

localisation APP (Nakaya et al., 2008; Nakaya and Suzuki, 2006; Santiard-Baron et al., 

2005). In opposite, others describe that APP phosphorylation at residue Thr-668 

introduces a conformational change in APP structure, so that binding of Fe65 is 

prevented, increasing the availability of APP for β and γ-secretase cleavage (Nakaya et 

al., 2008; Nakaya and Suzuki, 2006). Additionally, phosphorylation at Tyr682 plays an 

important role in commiting APP to β-secretase processing  by increasing the production 

of βCTF. This mechanism seems to be mediated by Shc/Grb2/APP interaction (Russo et 

al., 2002). Therefore, downregulation of the newly identified kinase STK39 may inhibit 
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the phosphorylation of APP residues important for the commitment to the β-secretase 

cleavage, namely Tyr682 and Thr668, and thereby resulting in decrease APPsβ and Aβ40 

secretion. Alternatively, MAPK are described to be activated by Shc/Grb2/APP complex 

(Russo et al., 2002; Russo et al., 2005). Partial inhibition of MAPK signaling upon 

STK39 knock-down may potentially lead to a downregulation of BACE1 transcription 

levels, resulting in less protein levels. For example, increased mRNA levels of BACE1 

have been correlated with overexpression of p25, which is the activator of cdk5 in mice. 

The p25/cdk5 complex phosphorylates the transcription factor STAT3, which binds to 

BACE1 promoter, increasing BACE1 mRNA levels (Wen et al., 2008). Two independent 

studies showed that STK39 overexpression in vitro resulted in specific activation of p38-

MAPK, but not JNK or ERK (Johnston et al., 2000; Yan et al., 2009). STK39 mRNA is 

also up-regulated in inflammatory conditions such as under stimulation of cancer cells 

with interferon and TNF-α ((Yan et al., 2007)). This finding further underlines that a 

down regulation of STK39 may be beneficial in neurodegenerative diseases that have 

inflammatory features like Alzheimer´s disease. 

 
 

Fig. 34: Schematic representation of APP intracellular domain and kinases 
interactions with APP phosphorylation sites. YENPTY is the interaction motif, 
adaptor proteins are named in the white box. Tyr682 phosphorylation can favour the 
binding of Shc and/or Grb2 adaptor proteins, leading to the activation of MAPK pathway, 

Commitment of APP to β-secretase 
cleavage 

derived from further proteolytic metabolism of both a- and b-
CTF by c secretase, seems to have transcriptional rather than
signalling functions. The transcription function is inferred
from its nuclear localisation (controversial) its interaction
with transcription associated adaptor proteins such as Fe65,
rather than with Shc and Grb2. It has been suggested that the
formation of AICD occurs at membrane levels as a
consequence of Fe65 binding to the YENPTY domain of
APP/CTFs (Cao and Sudhof 2001, 2004). The binding of
Fe65 protects AICD from proteasome degradation (Ando
et al. 2001) and favors the assembly of the Fe65-AICD and/
or Fe65/Tip60-AICD complexes. After the intramembranous
c-secretase cleavage, the AICD-Fe65 or AICD-Fe65/Tip60
complexes are released in the cytosol to translocate to the
nucleus. In the cytosol, AICD can be degraded by IDE
(insulin degrading enzyme) while Fe65 or Fe65/Tip60
translocate to the nucleus to execute their transcriptional
functions. This hypothesis is consistent with the work of
Haas and Yankner (2005) which exclude a transcriptional
role for AICD. Nakaya and Suzuki (2006), however, argue
that AICD released in the cytosol can independently
translocate to the nucleus where, assembling with Fe65/
Tip60, acquires the faculty to regulate gene expression.

Although direct and complete experimental evidence is still
lacking, it is tempting to suggest that phosphorylation can
modulate CTFs/AICD formation and fate. Indeed, the out-
come of Tyr phosphorylation may depend on the Tyr residues
involved. Tyr682 phosphorylation may commit APP to b-
secretase cleavage, formation of b-CTF, binding to Shc/Grb2
and subsequent signalling activation. b-CTF can also become
c-secretase substrate for Ab generation. Alternatively, Tyr687
phosphorylation may favor a-secretase cut with formation of
a-CTF, not bound to Shc/Grb2 and thus not involved in

signalling. a-CTF, upon c-secretase cleavage, generates not
amyloidogenic P3 fragment and AICD. AICD, derived from
this post-translational modification, could more likely interact
with Fe65/Tip60 and be involved in transcriptional regulation.

The role of Ser/Thr phosphorylation is less clear, with the
exception of Thr668 phosphorylation that can prevent Fe65
from binding to AICD and facilitate the b-secretase associ-
ation with APP, with possible increased Ab formation and
AICD release.

Overall, the data discussed in this review underline the
functional role of APP and its proteolytic products, CTFs and
AICD, supporting their involvement in a complex set of post-
translational modifications and protein/protein interactions,
that can be involved in regulating transcriptional and
signalling functions. Alterations to the potential functions
controlled by APP-CTFs-AICD, and defining the mecha-
nisms that lead to these changes, may contribute to a better
understanding of the development of the pathological
features, including Ab formation, that can lead to AD.
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and promoting the commitment of βCTFs to amyloidogenic pathway (modified from 
Schettini et al., 2010). 
 

Interestingly, whereas αCTFs are reported to be not phosphorylated in AD brains, βCTFs 

are instead phosphorylated (Russo et al., 2002; Russo et al., 2001). In particular, APP 

phosphorylation at Thr668 is up-regulated in hippocampi of AD patients, exhibiting 

colocalization with enlarged endosomes, where BACE1 is mostly active. Moreover, this 

specific APP phosphorylation has been found within dystrophic neurites around β-

amyloid plaques, and in association with phosphorylated tau. These findings have been 

confirmed also in cortical neurons, where Thr668-phosphorylated APP colocalised with 

Rab5-positive endocytic compartments (Lee et al., 2003). 

Apparently, STK39 knock-down lowers the levels of BACE1 protein in neurons and in 

SH-SY5Y cells. As well as its probable role in BACE transcription, STK39 can also 

influence the degradation of BACE1, thereby controlling the intracellular protein levels. 

The C-terminus of BACE1 is characterized by a di-leucine motif DISLL (residues 496-

500), which is necessary to target the protein to the lysosomal pathway, where it 

undergoes degradation (Koh et al., 2005). Interestingly, the activity of the di-leucin motif 

LL is regulated by the phosphorylation of the adjacent serine residue S498, which 

controls BACE recycling from early endosomes to the TGN and the cell surface (von 

Arnim et al., 2004). STK39 is a serine/threonine kinase, and therefore a direct role in 

controlling BACE degradation can also be invisaged.  

 

5.6 STK39 is linked to neurological diseases 
 

STK39 is a serine/threonine kinase, member of the STE20 family of mitogen-activated 

protein kinase-like protein kinases (Gagnon and Delpire, 2012). STK39 is widely 

expressed, with higher expression levels in brain, whereas its close homolog OSR1 is 

barely expressed (Geng et al., 2009). STK39 and OSR1 display 89% identity in their 

catalytic domain, located at the N-terminus of the sequence. Their regulatory domain is 

located to the C-terminus, where With-No-Lysine kinases (WNKs) are found to interact. 

These kinases directly interact with cation chlorid cotransporters, such as NKCC1 and 

NKCC2, modulating their activity (Gagnon and Delpire, 2012).  The cation chlorid 

cotransporters are involved in the intracellular accumulation of chloride in cortical and 

dorsal root ganglial neurons. Dysregulation of the sodium and potassium gradients may 

impair the functionality of synapses (Ben-Ari, 2002). 
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In fact, neurological disorders have been linked with mutations in STK39 gene. A 

genetic study involving 334 families found three single nucleotide polymorphisms (SNPs) 

in STK39 associated to autism (Ramoz et al., 2008). Another genome-wide association 

study demonstrated the correlation between higher risk to develop Parkinson disease and 

a SNP in STK39, which increased the activity of the kinase (Nalls et al., 2011). 

Additionally, an increase in protein expression of STK39 homologue OSR1 and WNK3 

were associated to schizophrenia (Arion and Lewis, 2011). These data provide futher 

evidence that STK39 downregulation could possibly be beneficial for a number of 

neurological diseases. Importantly, STK39 knock-out mice do not show any major 

adverse neurological phenotype (Geng et al., 2010). The development of STK39 

inhibitors is currently under debate (Glover and O'Shaughnessy K, 2011).  
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6 OUTLOOK 
 
In this thesis, the new 14D6-immunoassay for specific detection of APPsα in cell culture 

media, CSF and serum has been established as a tool to better separate a small group of 

AD patients from non-demented subjects. To increase the value of the new immunoassay 

and the statistical significance of the study, CSF and serum samples from a larger group 

of diseased and healthy subjects need to be collected. Since the analysis of combined 

biomarkers (Aβ, tau and p-tau) showed a better diagnostic performance for Alzheimer 

disease than any biomarker alone, it would be interesting to analyse a larger number of 

human samples in a multivariate analysis. This approach would allow to get more precise 

information about the temporal dynamics correlating AD symptoms and biochemical 

changes in the brain. Moreover, the new 14D6-immunoassay could offer a valid method 

to monitor the effect of disease-modifying drugs in clinical trials, where higher 

concentrations of APPsα might indicate successful inhibition of disease progression. 

In the second part of this thesis, the kinase STK39 was newly found to be involved in 

APP shedding via RNAi high-throughput screening of the human kinome. In 

neuroblastoma cells and embryonic neurons STK39 knock-down showed reduced Aβ 

generation, as well as decreased APPsβ and BACE1 protein levels. Since APP 

intracellular domain can be phosphorylated at Thr668, commiting βCTF to undergo 

preferentially β-secretase cleavage, it remains still to investigate whether upon STK39 

knock-down Thr668 is less phosphorylated, thereby diminuishing the products of β-

secretase cleavage, namely APPsβ and Aβ. This inhibition of APP phosphorylation at 

Thr668 may also result in an impaired binding of specific APP binding partners, such as 

Shc and Grb2. The APP/Shc/Grb2 complex is reported to activate MAPK signalling 

pathway.  On one hand, the reduction of BACE1 protein level upon STK39 knock-down 

may be caused by a dysregulation of MAPK cascade, resulting in a partial transcriptional 

inhibition of BACE1 mRNA, and thereby in lower protein level. On the other hand, 

STK39 may also influence BACE1 degradation by controlling the transport to the 

lysosome. Imaging experiments could track the destiny of BACE1 protein upon STK39 

down-regulation. 

Additionally, more experiments are needed to map the downstream events upon STK39 

knock-down involving the MAPK pathway. Therefore, a deep investigation of the 
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phosphorylation pattern in the whole cellular system and more precisely of the MAPK 

pathway could be of great interest to shed light on the mechanism.  
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7 SUMMARY 
 

Alzheimer´s disease (AD) is the most common form of dementia in the elderly 

worldwide. β-amyloid depositions and neurofibrillary tangles are the most common 

histopathological hallmarks of AD. The amyloid precursor protein (APP) contains the Aβ 

sequence, the highly aggregating toxic peptide found in β-amyloid plaques, which is 

generated through the sequential cleavage of APP by β- and γ-secretases. A third 

protease with α-secretase activity cleaves APP within the Aβ peptide, preventing Aβ 

production.  

 

This thesis successfully addressed two major topics in Alzheimer´s disease:  

 

- Investigation of products of APP metabolism as new potential biomarkers in AD. 

  

Cerebrospinal fluid biomarkers such as Aβ42, tau and phospho-tau are used as 

biomarkers for helping AD diagnosis. Since the specificity of these biomarkers is far 

below 100%, especially for precise individual diagnosis, other products of APP 

metabolism have been proposed as putative biomarkers, such as APPsα. A number of 

studies investigated APPsα levels in CSF and plasma of AD patients versus non-

demented controls, with poor results. In this thesis, a new antibody for detecting APPsα 

in a more specific manner was used to establish an APPsα-specific immunoassay. The 

immunoassay was tested for specificity in cell culture media, CSF and serum. 

Furthermore, its performance was assessed by analysing APPsα levels in a group of AD 

patients versus non-demented controls. A moderate, but significant increase in APPsα 

levels in CSF was detected in AD patients versus controls, whereas APPsα levels were 

significantly decreased in serum. The new 14D6 immunoassay performed better than the 

commercially available one for APPsα detection. For this reason, the new 14D6-

immunoassay has wide applications for specific APPsα measurement in cell culture 

media, CSF and serum. 

 

- RNAi- screening of the human kinome to identify new modulators of APP 

shedding. 
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Detection of the soluble APP is not only important for diagnostic purposes, but also for 

better understanding how APP processing is regulated. In particular, dysregulation of 

kinases can impair the physiological process of APP shedding. Hyperphosphorylated tau 

and impaired APP phosphorylation are key mechanisms for the onset of tau tagles and 

amyloid plaques. So far, only few kinases have been extensively studied for their role in 

Alzheimer´s disease. In the second part of this thesis, an RNAi high-throughput 

screening of the human kinome was performed to identify new kinases involved in the 

modulation of APP shedding and consequently in Aβ generation. The screening was 

performed in neuroblastoma cells expressing endogenous APP, in order to select for 

kinases implicated in the physiological processing of APP. Several candidates were 

identified and validated in neuroblastoma cells to exclude false-positive hits due to 

RNAi-mediated off-target effects. The effect of the downregulation of neuronally 

expressed genes was further assessed in murine embryonic neurons expressing 

endogenous APP. Finally, the kinase STK39 was identified as new modulator of BACE1 

protein level. STK39 knock-down showed reduced Aβ generation, as well as decreased 

BACE1 and APPsβ levels in neuroblastoma cells and embryonic neurons. 

Therefore, inhibition of STK39 could represent a new strategy for AD therapy. 
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