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Abstract

Program extraction has been initiated in the field of constructive mathematics, and it
attracts interest not only from mathematicians but also from computer scientists nowadays.
From a mathematical viewpoint its aim is to figure out computational meaning of proofs,
while from a computer-scientific viewpoint its aim is the study of a method to obtain correct
programs. Therefore, it is natural to have both theoretical results and a practical computer
system to develop executable programs via program extraction.

In this Thesis we study the computational interpretation of constructive proofs involving
inductive and coinductive reasoning. We interpret proofs by translating the computational
content of proofs into executable program code. This translation is the procedure we call
program extraction and it is given through Kreisel’s modified realizability. Here we study
a proof-theoretic foundation for program extraction, enriching the proof assistant system
Minlog based on this theoretical improvement. Once a proof of a formula is written in
Minlog, a program can be extracted from the proof by the system itself, and the extracted
program can be executed in Minlog. Moreover, extracted programs are provably correct
with respect to the proven formula due to a soundness theorem which we prove. We
practice program extraction by elaborating some case studies from exact real arithmetic
within our formal theory. Although these case studies have been studied elsewhere, here we
offer a formalization of them in Minlog, and also machine-extraction of the corresponding
programs.
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Zusammenfassung

Die Methode der Programmextraktion hat ihren Ursprung im Bereich der konstruktiven
Mathematik, und stößt in letzter Zeit auf viel Interesse nicht nur bei Mathematikern sondern
auch bei Informatikern. Vom Standpunkt der Mathematik ist ihr Ziel, aus Beweisen ihre
rechnerische Bedeutung abzulesen, während vom Standpunkt der Informatik ihr Ziel die
Untersuchung einer Methode ist, beweisbar korrekte Programme zu erhalten. Es ist deshalb
naheliegend, neben theoretischen Ergebnissen auch ein praktisches Computersystem zur
Verfügung zu haben, mit dessen Hilfe durch Programmextraktion lauffähige Programme
entwickelt werden können.

In dieser Doktorarbeit wird eine rechnerische Interpretation konstruktiver Beweise mit
induktiven und koinduktiven Definitionen angegeben und untersucht. Die Interpretation
geschieht dadurch, daß der rechnerische Gehalt von Beweisen in eine Programmiersprache
übersetzt wird. Diese Übersetzung wird Programmextraktion genannt; sie basiert auf
Kreisels modifizierter Realisierbarkeit. Wir untersuchen die beweistheoretischen Grundlagen
der Programmextraktion und erweitern den Beweisassistenten Minlog auf der Basis der
erhaltenen theoretischen Resultate. Wenn eine Formel in Minlog formal bewiesen ist,
läßt sich ein Programm aus dem Beweis extrahieren, und dieses extrahierte Programm
kann in Minlog ausgeführt werden. Ferner sind extrahierte Programme beweisbar korrekt
bezüglich der entsprechenden Formel aufgrund eines Korrektheitsatzes, den wir beweisen
werden. Innerhalb unserer formalen Theorie bearbeiten wir einige aus der Literatur bekannte
Fallstudien im Bereich der exakten reellen Arithmetik. Wir entwickeln eine vollständige
Formalisierung der entsprechenden Beweise und diskutieren die in Minlog automatisch
extrahierten Programme.
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Chapter 1

Introduction

An important aspect of constructive mathematics is that a mathematician has to deal with
mathematical objects only by realistic and practicable instructions. As a consequence,
proofs in constructive mathematics contain algorithms which compute a solution to the
corresponding proposition. Program extraction is a method to synthesize from proofs an
executable program which is certified with regarding the proposition as a specification. This
Thesis studies program extraction from inductive and coinductive proofs within the Theory
of Computable Functionals [SW12], TCF in short. Theoretical results are implemented as
additional features of the proof assistant Minlog [Min]. Non-trivial case studies in exact
real arithmetic due to Berger and Seisenberger [Ber09, Ber10, Ber11, BS10, BS12] are
formalized on a computer as a concrete practice of Minlog.

1.1 Background

The idea of program extraction goes back to the so-called Brouwer-Heyting-Kolmogorov
interpretation, BHK interpretation for short, of intuitionistic logic which assigns to each
formula a proof. Kleene introduced realizability [Kle45], a main mathematical tool of
this Thesis, which assigns to a formula A another formula stating n realizes A where n
is a natural number encoding a realizer of A. A realizer is intended to be an evidence
which constructively justifies a claim. Kreisel introduced modified realizability [Kre59]
which adopts Heyting arithmetic, where realizers are given in Gödel’s T. Realizability in
TCF is based on Kreisel’s modified realizability. Within TCF, atomic formulas are given
by inductive and coinductive definitions, and realizers are given in T+, an extension of
Gödel’s T [Göd58]. One may view realizability as an instance of the BHK interpretation.
A procedure called program extraction is defined based on realizability which transforms
a proof of a formula A into a realizer of A. Considering the formula A as a specification,
the realizability statement is read as a correctness statement of a realizer respecting the
specification. Program extraction is a way to synthesize a provably correct program with
respect to the specification due to a corresponding soundness theorem.

TCF is a framework of program extraction which is based on first-order minimal logic.
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The theory is extendable by means of inductive and coinductive definitions. The realizability
yields the program extraction procedure in TCF whose target language is T+. The soundness
theorem ensures that a proved formula has a realizer, which is in fact given by program
extraction. TCF supports so-called general induction principle and also classical proofs due
to the A-translation and Gödel’s dialectica interpretation.

1.2 Inductive and Coinductive Definitions

TCF adopts coinduction, considered as a dual of induction, as a main feature of program
extraction study. By inductive and coinductive definitions, we add new predicate constants
and axioms involving the predicate constants extending TCF. Such predicates are called
inductive and coinductive predicates. The main idea is the following. An inductive definition
provides a way of construction. As an example, we define even numbers by a predicate Ev
which tells us a way to construct even numbers.

Ev 0, ∀n(Ev n→ Ev(n+ 2)).

Similarly, we can also specify a list of even numbers by a predicate LE.

LE [], ∀n,ns(Ev n→ LEns→ LE(n::ns)).

These instructions of constructions are called introduction axioms. Assume P and Q are
predicates. We derive an instruction of inspection called an elimination axiom which works
in a different direction from introduction axioms.

∀n(Ev n→ P 0→ ∀n(P n→ P (n+ 2))→ P n),

∀ns(LEns→ Q []→ ∀n,ns(Ev n→ Qns→ Q(n::ns))→ Qns).

We call P and Q competitors. Intuitively, an elimination axiom tells us that the inductively
defined predicate is smaller than any competitor if all the introduction axioms replaced by
the competitor hold. Obviously it is so-called induction principles in daily mathematics.
Coinduction works in the opposite way from induction. A coinductive definition specifies
an instruction of inspection called a closure axiom instead of one of construction. Taking
an example in lists, we can say that a list is the empty list or consists of the head and the
tail which are respectively an even number and a list of even numbers. This is formulated
by the following formula.

∀ns(LEns→ ns = [] ∨ ∃m,ms(Evm ∧ LEms ∧ ns = m::ms)).

The duality may be clearer if we formulate the introduction axioms of LE in the following
logically equivalent one.

∀ns(ns = [] ∨ ∃m,ms(Evm ∧ LEms ∧ ns = m::ms)→ LEns).
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Differently from the case of inductive definitions, we derive an instruction of construction
called a greatest-fixed-point axiom, as follows

∀ns(Qns→ ∀ns(Qns→ ns = [] ∨ ∃m,ms(Evm ∧Qms ∧ ns = m::ms))→ LEns).

Intuitively, a greatest-fixed-point axiom tells us that a coinductively defined predicate is
bigger than any competitor, if the closure axiom replaced by the competitor holds. One
can consider a coinductive predicate containing lists whose tails are never inspected to be
the empty list, as long as we repeatedly apply the closure axiom. Hence, we can make
use of coinduction to reason about possibly infinite lists. This is a meaningful alternative
to make use of a function to define a sequence, because an infinite list is represented by
coinduction as a simpler ground type object instead of a functional type object. Thanks
to it, infinite objects may be observed rather directly in the realm of coinduction. This
advantage becomes more evident when we consider a function with an uncountable domain,
e.g. function spaces, to define an infinite object.

1.3 Minlog

Since we consider program extraction as a method of program development, it is crucial
to have a computer system which is a realization of our study. The Minlog system is a
general purpose proof assistant whose competitive feature is program extraction. The
development of Minlog was initiated by Schwichtenberg around 1990 as an implementation
of TCF [Sch92]. The current version of Minlog supports extraction from classical proofs
through the A-translation and Gödel’s dialectica interpretation as well as from constructive
proofs involving inductive and coinductive arguments.

We review related proof assistants. The NuPRL system [Nup, BC85] was founded
by Bates and Constable. NuPRL is one of the most important realization of the proofs-
as-programs paradigm. The PX system by Hayashi [HN87] features q-realizability. For
program extraction support of recent competitive other proof assistants as Coq, Isabelle
and Agda, see Section 2.6.5.

1.4 Contributions

The contributions of this Thesis are the following:

Theory of program extraction. We study new features to enrich TCF, our theoret-
ical foundation of studying program extraction. In addition to (simultaneous) inductive
definitions and (simultaneous) coinductive definitions, we consider nested definitions to
combine inductive definitions and coinductive definitions in TCF. This is a reasonable way
to use both of induction and coinduction in one definition. Nested definition yields axioms
for inductive and coinductive reasoning which also contain nestedness. On the other hand,
our formal calculus T+ is enriched to accommodate computational aspects of nestedness.
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The program extraction procedure is given through a soundness theorem, according to
which, if a formula A is proven, then there exists a realizer t such that t realizes A. In TCF
the target language of program extraction is T+. We extend the soundness theorem to
accommodate (strong) induction and (strong) coinduction with nestedness.

Implementation. The theoretical improvements are implemented as additional features
of the proof assistant Minlog. Our main contribution is the implementation of nested
algebras and nested recursion and corecursion operators as well as of nested inductive and
coinductive definitions. The program extraction procedure is also enriched to accommodate
the nestedness. The term normalization of arbitrary recursion operators is particularly
done via Normalization by Evaluation [BS91, BES03], which is an effective method to
implement normalization based on denotational semantics. In order to handle nested
recursion operators, the Normalization by Evaluation of Minlog is improved. For corecursion
operators Minlog offers bounded unfolding instead.

Practicing constructive mathematics. We apply TCF and Minlog to concrete case
studies in exact real arithmetic involving real numbers and uniformly continuous functions.
In order to study them, we exploit two kinds of representations: one is the function type
representation and the other is the ground type coinductive representation. For simplicity,
we restrict our real numbers to be in the interval [−1, 1]. The function type representation
of real numbers, say the type-1 representation, is a pair of a Cauchy sequence and a Cauchy
modulus which are of function types. The ground type coinductive representation of real
numbers, say the type-0 representation, is a (possibly) infinite list of digits. The more
number of digits we observe from a list, the more precise approximation of the represented
real number becomes. The representations of uniformly continuous functions follow the same
pattern. We understand real numbers and uniformly continuous functions as objects which
are approximated as good as we require and are observable more directly than functions.
Within coinduction, we achieve such representations straightforwardly; this is why we find
an advantage in studying exact real arithmetic coinductively. We present formalization of
case studies by Berger and Seisenberger in exact real arithmetic. We extract from proofs
non-trivial programs dealing with real numbers and uniformly continuous functions in
Minlog system.

1.5 Organization of the Thesis

This Thesis is organized in the following way. Chapter 2 describes TCF, our theoretical
foundation of program extraction. We review the domain-theoretic background of partial
continuous functionals. Free algebras are taken as ground types of our formal calculus
T+. We study nested algebras as well as simultaneous algebras. We use T+ as the target
language of our program extraction as well as the terms of our logical language of minimal
logic. We study inductive and coinductive definitions in first-order minimal logic, and the
notion of proofs and the realizability are given. Based on the realizability we define program
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extraction which transforms proofs into a program code in T+. The soundness theorem,
which states that the proven formula has a realizer, is proven. We practice TCF in an
elementary part of exact real arithmetic. We briefly review real numbers and uniformly
continuous functions in exact real arithmetic, and give case studies in exact real arithmetic
due to Berger and Seisenberger in Chapter 3. These case studies involving coinduction are
formalized in the proof assistant Minlog as well as in the Thesis. The downloadable Minlog
package contains the proof scripts corresponding to Chapter 3 which offer machine-extracted
programs running on a computer. Appendix A consists of two parts. The first part describes
the implementation of Minlog focusing on Normalization by Evaluation, recursion and
corecursion operators in T+ and inductive and coinductive definitions. The second part
explains a Minlog proof script from Section 3.3 in detail.
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Chapter 2

Theory of Computable Functionals

In this chapter we study the theoretical foundation for program extraction called Theory of
Computable Functionals, TCF in short. TCF provides our theoretical basis to practice pro-
gram extraction on the computer as well as on the paper. The remarkable character of TCF
is its concreteness, which becomes an advantage if one desires to have an implementation
of such a theory on a computer.

Computable objects in TCF are partial continuous functionals which model our notion
of higher type abstract computability specified by the following two principles: the finite
support principle and the monotonicity principle. During the evaluation of some functional
Φ, there are only finitely many inputs ϕ0, . . . , ϕn−1 used. Moreover, each of ϕi must be
presented to Φ in a finite form. This is the finite support principle. Assume Φ(ϕ0) evaluates
to a value k and let ϕ1 be more informative than ϕ0. Then the Φ(ϕ1) results in k as
well. This is the monotonicity principle. Then, the notion of abstract computability is
formulated as follows: an object is computable if its set of finite approximation is primitive
recursively enumerable. Such functionals are represented by the term language T+ which is
an extension of Gödel’s T.

The logic of TCF is first order minimal logic formulated in natural deduction. The logic
can be extended by inductive and coinductive definitions. Nested definitions and simultane-
ous definitions enrich the expressivity of definitions in TCF. Especially nested definitions
allow a combination of inductive definitions and coinductive ones. Classical logic is also
available as a fragment of minimal logic. We can extract from proofs computational content
via program extraction. Program extraction is based on Kreisel’s modified realizability
interpretation which enjoys the soundness theorem in TCF. Realizability statements, e.g. a
term t realizes a formula A, are formulas in TCF, and its proof is also given in TCF.

This chapter is organized as follows. In Section 2.1, we provide a concrete formulation
of partial continuous functionals due to Schwichtenberg [SW12] by means of Scott-Ershov
domains. We briefly review that our computational objects are represented by ideals which
are special elements in domains. In Section 2.2, we study T+, an extension of Gödel’s T.
This is a typed lambda calculus with constants as recursion and corecursion operators. We
briefly also review that the denotational semantics of T+ is given via ideals. A term in
Gödel’s T with arbitrary algebras denotes a total ideal. A corecursion operator, a proper
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extension from Gödel’s T, denotes a cototal ideal of a base type which can represent a
non-well founded object. In Section 2.3, we describe inductive and coinductive definitions
in TCF. Nested inductive/coinductive definitions and simultaneous definitions are also
given. Nested definitions specify a new predicate by using old ones, and simultaneous
definitions specify more than one predicate at the same time. In Section 2.4, we describe
natural deduction and proof normalization involving inductive and coinductive definitions.
The notion of proof terms is also introduced based on the Curry-Howard correspondence.
In Section 2.5, we describe Kreisel’s modified realizability interpretation. The logical
connectives of TCF are decorated in order to study computational meaning of them with
greater details, then we introduce the notion of realizability and program extraction. We
also give the soundness theorem, which claims that the proved proposition is realized by the
extracted program from its proof. This justifies the correctness of the program extraction.

2.1 Partial Continuous Functionals

We study higher type computability via partial continuous functionals. In this section, we
describe the notion of ideals which indeed are concrete representations of partial continuous
functionals. In order to provide a concrete construction of such objects we make use of
Scott’s information systems [Sco82, Win93], then ideals come as special sets which are
consistent and deductively closed. Domain theoretically speaking, an ideal is an element
in Scott-Ershov domains with free algebras as ground types. In Section 2.1.1 we study
Scott’s information systems as a way of constructing domains. In Section 2.1.2 we study
types whose ground types are given by (free) algebras. In Section 2.1.3 we study concrete
information systems based on types from which we define the notion of a partial continuous
functional of finite type.

2.1.1 Information Systems and Domains

An information system consists of three ingredients: the tokens, the consistent sets and
the entailment relation. Information systems can be viewed as deduction systems. Tokens
are assertions about a computation. A consistent set contains tokens which can be true
assertions at the same time. The entailment is a way to deduce from a set of assertions
another assertion. We first give an account on information systems in general, then we
consider concrete ones which are defined on types.

Definition 2.1.1 (Information systems). Let U , V range over finite sets. An information
system is a structure 〈Tok,Con,`〉 such that

U ⊆ V ∈ Con→ U ∈ Con,

{a} ∈ Con for any a ∈ Tok,

U ` a→ U ∪ {a} ∈ Con,

a ∈ U ∈ Con→ U ` a,
U, V ∈ Con→ ∀a∈V (U ` a)→ V ` b→ U ` b.
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Intuitively, tokens carry informative content of computation which should be consistent
and deductively closed. Assume one computation means 7, then it should not mean 13 at
the same time, and it should remain to be 7 in the future. We formulate such tokens as
ideals.

Definition 2.1.2 (Ideals). Let IS be an information system 〈Tok,Con,`〉. The ideals |IS|
are subsets of Tok whose elements x ∈ |IS| are

1. consistent: a ⊆ x→ a ∈ Con,

2. deductively closed: x ⊇ U ` a→ a ∈ x.

A cpo (|IS|,⊆, ∅) forms a Scott-Ershov domain, namely, a bounded complete algebraic
cpo. In our theory of computability functionals are of higher type in general. We consider
function spaces between information systems.

Definition 2.1.3 (Function spaces). Suppose that ISA and ISB are 〈TokA,ConA,`A〉 and
〈TokB,ConB,`B〉, respectively, and I be a finite set of indices. We define ISA → ISB to be
〈Tok,Con,`〉 such that

Tok := ConA × TokB,

{(Ui, bi) | i ∈ I} ∈ Con := ∀J⊆I(
⋃
j∈J Uj ∈ ConA → {bj | j ∈ J} ∈ ConB),

W ` (U, b) := WU `B b,

where for W := {(Ui, bi) | i ∈ I} and U ∈ ConA an application WU is defined to be
{(Ui, bi) | i ∈ I}U := {bi |U `A Ui}.

We introduce approximable maps as an alternative characterization of the function
spaces. An approximable map r is a relation between ConA and TokB which represents
an information respecting map from ISA into ISB. Intuitively r(U, b) means that if we are
given the information U ∈ ConA, then we find at least the token b ∈ TokB in the value.

Definition 2.1.4 (Approximable maps). Suppose that ISA and ISB are 〈TokA,ConA,`A〉
and 〈TokB,ConB,`B〉, respectively. A relation r ⊆ ConA × TokB is an approximable map
if the following conditions are satisfied.

1. If r(U, b0), . . . , r(U, bn−1), then {b0, . . . , bn−1} ∈ ConB.

2. If r(U, b0), . . . , r(U, bn−1) and {b0, . . . , bn−1} `B b, then r(U, b).

3. If r(U ′, b) and U `A U ′, then r(U, b).

By the following proposition ideals in a function space are indeed approximable
maps [SW12].

Proposition 2.1.5 (Ideals in a function space are approximable maps). Let ISA and ISB
be information systems. The ideals of ISA → ISB, namely, |ISA → ISB| are exactly the
approximable maps from ISA to ISB.
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2.1.2 Algebras and Types

We introduce types for our theory of computability. The ground types are given by algebras.
An algebra is specified by constructor types, and provides constructor symbols of the
constructor types. For each algebra ι, there is at least one object of type ι finitely built
from the constructor symbols. Such an object is an inhabitant and ι is said to be inhabited.
We define type forms as follows.

Definition 2.1.6 (Type forms). Let α and ξ be variables and k be positive. Type forms
are inductively defined as follows.

ρ, σ := α | ρ→ σ | µξ((ρiν)ν<ni → ξ)i<k.

In an expression (ρiν)ν<ni → ξ, ρiν is a parameter argument if ξ 6∈ FV(ρiν), ρiν is a recursive
argument if ξ ∈ FV(ρiν) and ρiν is a nested argument if ξ appears as an argument in
another expression of the form µζ((ρ

′
iν)ν<n′i → ζ)i<k′ in ρiν .

Note that ρ0 → ρ1 → . . .→ ρn−1 → σ is abbreviated as (ρν)ν<n → σ. We define FV(ρ)
to be the set of free type variables in ρ.

Definition 2.1.7 (Free variables in a type form). Define free variables in a type form τ by
induction.

FV(α) := {α},
FV(ρ→ σ) := FV(ρ) ∪ FV(σ),

FV(µξ((ρiν)ν<ni → ξ)i<k) := ∪i<kFV((ρiν)ν<ni → ξ) \ {ξ}.

We say FV(τ) to be free variables of τ .

We denote ρ(~α) to express that ρ(~σ) means replacing ~α in ρ by ~σ. We assume standard
α-equivalence and substitution. The result of substituting ~σ for ~α in ρ(~α) is denoted

by ρ(~σ). We define SP~ζ(ρ) by induction on ρ. When SP~ζ(ρ), the occurrences of ~ζ in
ρ are strictly positive, namely, not in the left hand side of an arrow type. Assume
SP~ζ(µξ((ρiν)ν<ni → ξ)i<k), then it is also ensured that each argument ρiν of a constructor
type does not have the type variable ξ in the left hand side of an arrow type.

Definition 2.1.8 (Strictly positive occurrence of type). Let ρ and σ range over type forms.
We define SP~ζ(ρ) by induction on ρ.

SP~ζ(β),
FV(ρ) ∩ ~ζ = ∅ SP~ζ(σ)

SP~ζ(ρ→ σ)
,

For all i < k, ν < ni, SP~ζ,ξ(ρiν)

SP~ζ(µξ((ρiν)ν<ni → ξ)i<k)
.

When SP~ζ(ρ), we say that the occurrences of ~ζ in ρ are strictly positive. When ~ζ is empty,
we write SP(ρ) instead of SP~ζ(ρ).
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We define inhabitedness of a type form. A type is inhabited if there exists an inhabitant
of the type assuming the inhabitedness of its type parameters. A type is absolutely inhabited
if its inhabitedness is not dependent on the inhabitednesses of its type parameters.

Definition 2.1.9 (Inhabitedness). We inductively define Inhab.

α 6∈ ~ζ
Inhab~ζ(α)

,
Inhab~ζ(σ)

Inhab~ζ(ρ→ σ)
,

There exists i, for all ν < ni, Inhab~ζ,ξ(ρiν)

Inhab~ζ(µξ((ρiν)ν<ni → ξ)i<k)
.

If ~ζ is empty, we omit the subscript and denote Inhab(ρ). When Inhab(ρ) is derived, ρ
is inhabited. When InhabFV(ρ)(ρ) is derived, ρ is absolutely inhabited. A derivation of
Inhab~ζ(ρ) is canonical if in each application of the third rule the smallest possible index i
is chosen.

In the above definition, the subscripts ~ξ in Inhab~ξ(ρ) are type variables whose inhabit-
edness cannot be used to claim the inhabitedness of ρ. Types are inductively defined in the
following way.

Definition 2.1.10 (Types). We inductively define Ty.

Ty(α),
Ty(ρ) Ty(σ)

Ty(ρ→ σ)
,

For all i < k, ν < ni, Ty(ρiν) and SPξ(ρiν) Inhab(µξ((ρiν)ν<ni → ξ)i<k)

Ty(µξ((ρiν)ν<ni → ξ)i<k)
.

When Ty(ρ) holds, ρ is a type.

In the last rule, the left premise is to ensure algebra definitions to be from strictly
positive type forms and the right premise is to ensure the inhabitedness. Algebras come as
special kinds of type.

Definition 2.1.11 (Algebra). We call ι := µξ((ρiν)ν<ni → ξ)i<k an algebra if ι is a type.

Assume ι := µξ((ρiν)ν<ni → ξ)i<k. When Ty(ι), we refer to each (ρiν)ν<ni → ξ for each
i a constructor type of ι. Conventionally we use ι as a variable ranging over algebras and κ
over constructor types. An algebra provides for each constructor type a constructor symbol
Cι,i. We abbreviate Cι,i as Ci if there is no confusion. Algebras are always inhabited, hence
there is no empty algebra.

Example 2.1.12 (Inhabitedness of algebras). We give examples and non-examples of
inhabitedness of algebras. Define Lα to be µξ(ξ, α→ ξ → ξ) and L+

α to be µξ(α→ ξ, α→
ξ → ξ). Then, Lα and L+

L(α) are absolutely inhabited, and L+
α is inhabited. Define α+ β to

be µξ(α→ ξ, β → ξ) and ια to be µξ(α+ ξ → ξ). A type form µξ(ιξ → ξ) is not inhabited,
hence not a type. Define α× β to be µξ(α→ β → ξ). A type form µξ(α× ξ → ξ) is not
inhabited, hence not a type. Both of µξ(ξ → ξ) and µξ(ξ, (ξ → ξ)→ ξ) are not inhabited.
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We take a look at examples of algebras. Here, conventional names of the constructors
are also given. We follow this convention unless it is ambiguous. For convenience, we can
write Cκ instead of κ in order to specify also the constructor’s name C.

Example 2.1.13 (Algebras). We first take a look at simple algebra definitions.

U := µξ(U
ξ) (Unit)

B := µξ(T
ξ,Fξ) (Booleans)

SD := µξ(L
ξ,Mξ,Rξ) (Signed digits)

N := µξ(0
ξ, Sξ→ξ) (Natural numbers)

P := µξ(1
ξ, Sξ→ξ0 , Sξ→ξ1 ) (Positive numbers)

Z := µξ(0
ξ,PP→ξ,NP→ξ) (Integers)

Q := µξ(#
Z→P→ξ) (Rational numbers)

D := µξ(0
ξ,Dξ→ξ→ξ) (Derivations)

The unit algebra is a singleton. The boolean algebra consists of two constructors which
are interpreted as true and false. We use the signed digits in particular to study exact real
arithmetic. The natural number algebra represents natural numbers by 0 and the successor.
The positive number algebra represents binary numbers. Informally, Sb0(. . . (Sbn−1 1) . . .)

means a binary number 1bn−1 . . . b0, i.e., a number
∑n−1

i=0 2ibi + 2n. From a positive number,
the positive and the negative part of integers are constructed by injection. The zero element
is separately given by the other constructor. In the rational number algebra, a rational
number is a pair of a positive number and an integer. The derivation algebra represents
binary trees which are constructed by the leaf and the node.

Example 2.1.14 (Algebras with parameters). We give algebra definitions with parameter
types.

Lα := µξ([]
ξ, ::α→ξ→ξ) (Lists)

×α,β := µξ(Pair
α→β→ξ) (Product)

+α,β := µξ(InL
α→ξ, InRβ→ξ) (Sum)

Uysumα := µξ(ξ, α→ ξ) (Unit sum)

Type parameters can be written with parentheses, e.g., L(α), instead of subscripts. We
accept the infix notation for ×α,β and +α,β, e.g., α× β and α + β, respectively.

The list algebra represents lists of objects of an arbitrary type α. The product algebra
makes a pair, e.g. a pair of xα and yβ written as Pairxy which is abbreviated as 〈x, y〉. The
sum algebra is for the left and the right injection. The unit sum is so-called maybe algebra,
which is either nothing or just an object of α for example in Haskell. We may call its
constructors None and Just. For them, we also write InL U and InR, respectively, by abusing
constructors of U and +.
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Example 2.1.15 (Nested algebras). Using previously defined parameterized algebras,
algebras can be nested.

Nodd := µξ(S
Uysumξ→ξ) (Nested odd numbers)

Nt := µξ(Br
Lξ→ξ) (Nested trees)

Rα := µξ(Put
SD→α→ξ,Getξ→ξ→ξ→ξ),

W := µξ(Stop
ξ,ContRξ→ξ)

(Read-write machines)

The nested odd number algebra represents even and odd numbers. Consider None of
type UysumNodd to be zero, an even. Then, SNone is one, an odd, Just(SNone) is two, an
even, S(Just(SNone)) is three, an odd, and so on. The nested tree algebra represents trees
of arbitrary height with arbitrary branching. The argument of Br is a list of Nt, which
corresponds to each branch from this node. The read-write machine algebra is a kind of a
branching tree which plays a special role in exact real arithmetic. We study it in detail in
Section 3.5.

Example 2.1.16 (Non-finitary algebras). We give non-finitary algebras. Constructor types
can be of higher types.

O := µξ(0
ξ, Sξ→ξ, Sup(N→ξ)→ξ) (Ordinals)

T0 := N, Tn+1 := µξ(ξ, (Tn → ξ)→ ξ) (Trees)

Let ~ξ be a list of types of length n and i < n. We define ~ξ(i), the i-th tail of ~ξ, as follows:
~ξ(0) := ~ξ, (ζ, ~ξ )(j+1) := ~ξ

(j)
. We modify the above definitions to support simultaneous

algebras.

Definition 2.1.17 (Simultaneous algebras). We modify type forms as follows. Let l be

the length of ~ξ, a non-empty list of type variables.

ρ, σ := α | ρ→ σ | µ~ξ ((ρiν)ν<ni → ξji)i<k,

where j is a surjection from i ∈ {0, 1, . . . , k − 1} to ji ∈ {0, 1, . . . , l − 1}. We also replace
the definitions involving µξ((ρiν)ν<ni → ξ)i<k by the following.

FV(µ~ξ((ρiν)ν<ni → ξji)i<k) := ∪i<kFV((ρiν)ν<ni → ξji) \ {~ξ },

for all m < |~ξ |, there exists i, ji = m and for all ν < ni, Inhab~ζ,~ξ (m)(ρiν)

Inhab~ζ(µ~ξ((ρiν)ν<ni → ξji)i<k)
,

for all i < k, ν < ni, Ty(ρiν) and SP~ξ(ρiν) Inhab(µ~ξ((ρiν)ν<ni → ξji)i<k)

Ty(µ~ξ((ρiν)ν<ni → ξji)i<k)
.

We call ~ι := µ~ξ((ρiν)ν<ni → ξji)i<k simultaneous algebras if Ty(~ι ).

The second rule in the above definition is modified to check the inhabitedness of each
algebra. We take a look at examples of algebras.
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Example 2.1.18 (Simultaneous algebras).

Even,Odd := µξ,ζ(ξ, ζ → ξ, ξ → ζ) (Even and odd numbers)

Ts,T := µξ,ζ(ξ, ζ → ξ → ξ, ξ → ζ) (Tree lists and trees)

Tree lists and trees are also called forests and trees [Pau00, Coq13]. We can observe the
similarity between simultaneous algebras and nested ones. The algebras (Even,Odd) can
work in a similar way as the pair of Uysum and Nodd. Also algebras (Ts,T) can work
in a similar way as the pair of LNt and Nt. The simultaneity and the nestedness can be
mixed.

Example 2.1.19 (Simultaneous nested algebra).

Not,Net := µζ,ξ(Lζ → ξ,Lξ → ζ) (Nested odd/even trees)

We give translations between simultaneous algebras and nested algebras. Let ~ι be
simultaneous algebras µ~ξ (~κ) of length l. Suppose that for a given m < l, Inhab(ξi)i<m(~κ′)
holds, where ~κ′ is the greatest sublist of ~κ such that the value types of ~κ′ is ξm. We can
define ι′m(~α) instead of ιm where all the depended simultaneous algebras in ιm are replaced
by parameter types, and also ~ι ′ of length l − 1 which is similar to ~ι but ιm is dropped and
is replaced by the independently defined ι′m(~α).

Definition 2.1.20 (Translation from simultaneity to nestedness). Assume simultaneous al-
gebras~ι = µ~ξ (~κ) of length l are given. Suppose that for a givenm < l, Inhab(ξi)i<m(κi)km−1≤i<km
holds, where k0 = 0, kl−1 = |~κ|, ki < ki+1 and all constructor types with the value type
ξm are listed by indices i, km−1 ≤ i < km. We define nestm(~ι ) to be the pair of algebras

µξm(κi)km−1≤i<km and µ~ξ−ξm(κ′0, . . . , κ
′
km−1−1, κ

′
km
, . . . , κ′|~κ|), where ~ξ − ξm is the sublist of ~ξ

excluding ξm, and κ′i is obtained by substituting each occurrence of ξm by µξm(κi)km−1≤i<km .

Definition 2.1.21 (Translation from nestedness to simultaneity). Assume an algebra
ι(α) = µξ(~κ0) with at least one parameter type α and (simultaneous) algebras ~ι = µ~ξ(~κ1) of
length l are given. Suppose that for some m < l, ι(ξm) appears in ~κ1. We define simul(ι,~ι )
to be algebras µζ,~ξ (~κ′0, ~κ

′
1), where ~κ′0 is obtained by replacing α in ~κ0 by ξm and ~κ′1 is

obtained by replacing ι(ξm) in ~κ1 by ζ.

For simplicity, we do not consider to single out simultaneous parameterized algebras
from simultaneous algebras, since it is always possible to single out non-simultaneous
parameterized algebra. We take a look at an example.

Example 2.1.22 ((Ts,T) and Nt). Consider (Ts,T) = µξ0,ξ1(ξ0, ξ1 → ξ0 → ξ0, ξ0 → ξ1),
then Inhab(ξ0, ξ1 → ξ0 → ξ0) holds. We can introduce nestedness as nest0(Ts,T) =
〈Lξ1 , µξ1(Lξ1 → ξ1)〉 = 〈Lξ1 ,Nt〉, where Lξ1 := µξ0(ξ0, ξ1 → ξ0 → ξ0). In the opposite
direction, we can also introduce simultaneity as simul(Lξ1 , µξ1(Lξ1 → ξ1)) = µζ,ξ1(ζ, ξ1 →
ζ → ζ, ζ → ξ1) = (Ts,T).
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2.1.3 Partial Continuous Functionals

Now, we think about concrete information systems. For a type ρ the information system
ISρ is defined to be a triple 〈Tokρ,Conρ,`ρ〉. The partial continuous functionals of type ρ
are defined by the ideals |ISρ|. The partial continuous functionals of type ρ→ σ correspond
to the continuous functions from |ISρ| to |ISσ|. The treatment of information systems and
ideals are due to Schwichtenberg [SW12].

Definition 2.1.23 (Information systems). We simultaneously define Tokι, Tokρ→σ, Conι
and Conρ→σ.

1. The tokens in Tokι are the type-correct constructor expressions Cι~a
∗ where each

a∗i is an extended token, namely, a token or the special symbol ∗ which carries no
information.

2. The tokens in Tokρ→σ are the pairs of U in Conρ and a in Tokσ.

3. The consistent set Conι is a finite set U of elements in Tokι such that for a specific
constructor C, say of type τ0 → · · · → τn−1 → ι, all elements of U are of the form
Cai0 · · · ain−1 satisfying that {a0m, a1m · · · , ajm} are consistent for all m < n.

4. Let I be a finite set of indices. Pairs {(Ui, bi) | i ∈ I} are in Conρ→σ if and only if

∀J⊆I
(⋃

j∈J Uj ∈ Conρ → {bj | j ∈ J} ∈ Conσ

)
.

We define `ι and `ρ→σ.

1. For any U , U `ρ ∗ and U `ρ→σ ∗.

2. Let C be a constructor, then {C~a∗0, . . . , C~a∗n−1} `ι C~a∗ if and only if {a0m, . . . , an−1m} `
am.

Based on information systems developed so far, we define partial continuous functionals
to be ideals.

Definition 2.1.24 (Partial continuous functionals). Let ISρ be the information system
〈Tokρ,Conρ,`ρ〉 of type ρ. The set of partial continuous functionals of type ρ is defined to
be the set of ideals in ISρ.

A partial continuous functional x is computable if x is a recursively enumerable set
of tokens. Among ideals, we define cototal and total ideals in which we are especially
interested. We give an explicit definition of cototal and total ideals of finitary algebras. In
general, we define cototality and totality predicates in Section 2.3.

Definition 2.1.25 (One-step extension). Consider a constructor expression with at least
one occurrence of the special token ∗. We denote P (∗) to mean such a constructor expression
one of whose occurrences of ∗ is pointed. An arbitrary P (C~a∗) is one-step extension of
P (∗), written P (C~a∗) �1 P (∗). An occurrence of ∗ is non-parametric if the path from the
root to this ∗ does not go through a parameter argument of a constructor.
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Example 2.1.26 (One-step extension in N and L). Assume algebras N and L(N). Let
P1(∗) be S ∗ in N, then P1(S ∗), namely, S(S ∗) and also P1(0), namely, S 0 are one-step
extensions, written P1(∗) �1 P1(S ∗) and P1(∗) �1 P1(0), respectively. Let P2(∗) be ∗::∗
in L(N), where the first occurrence of ∗ is pointed, then P2(∗) �1 P2(0). Let P3 be ∗::∗,
where the second occurrence of ∗ is pointed, then P3(∗) �1 P3(∗::∗). The occurrences of ∗
in P1 and P3 are non-parametric.

Definition 2.1.27 (Cototal ideals and total ideals of finitary algebras). Let ι be an algebra
and ISι be the information system of ι. An ideal x of ISι is cototal if every constructor tree
P (∗) in x has a �1-predecessor P (C~∗) in x. A cototal ideal x is total if the relation �1 on
x is well founded. An ideal is called structure-cototal (structure-total) if �1 is defined with
respect to P (∗) with a non-parametric distinguished occurrence of ∗.

Example 2.1.28 (Ideals of ISN). Consider tokens and entailment for N as in Figure 2.1.
A line also means one-step extension of nodes, namely, viewed as tokens. An arbitrary path
from a root, 0 or S ∗, forms an ideal. If a path reaches a leaf, which is a finite constructor
expression with no ∗, a set of tokens on this path is a total ideal. If a path goes from S ∗ to
the right branch, a set of tokens on this path is a cototal ideal {Sn ∗ |n ≥ 1}.

0 S ∗

S 0 S(S ∗)

S(S 0) S(S(S ∗))

S(S(S 0))

Figure 2.1: Tokens and entailment in N

Every constructor symbol C of algebra ι generates the ideal in the function space by
rC := {(~U,C~a∗) | ~U ` ~a∗}. Let ι, ~ι and ~ι ′ be algebras. If ι,~ι = nestn(~ι ′) for some n or
~ι ′ = simul(ι,~ι ), the domains |ISι| and |ISι′0|, and the domains |ISιi| and |ISι′i+1

| for each i
are isomorphic. We formulate the domain isomorphism by means of approximable maps in
the following way.

Definition 2.1.29 (Deductive closure). We define the deductive closure of U ∈ Con to be
U := {a |U ` a}.

Definition 2.1.30 (Domain isomorphism). Let ι and ι′ be algebras. The domains ISι and
ISι′ are isomorphic if there exists an approximable map r ⊆ Conι × Tokι′ such that the
following holds:

1. ∀U∈Conι ,∃V ∈Conι′
, U r = V ,
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2. ∀V ∈Conι′
, ∃U∈Conι , V = U r,

3. ∀U,V ∈Conι , U
r ⊆ V r → V ` U ,

where for U ∈ Conι we abbreviate {b ∈ Tokι′ |U r b} as U r.

Proposition 2.1.31 (Domain isomorphism between nestedness and simultaneity). Let ~ι
and ~ι ′ be algebras of length l. If nestn(~ι ) = 〈ι′n,~ι ′ − ι′n〉 for some n < l, where ~ι ′ − ι′n
is obtained by removing ι′n from ~ι ′, then |ISιi | is isomorphic to |ISι′i | for each i < l. If
simul(ι′n,~ι

′ − ι′n) = (ιn,~ι− ιn), then |ISιi | is isomorphic to |ISι′i | for each i < l.

Proof. For each m < l we denote the constructors of algebras ιm by ~Cm of length km and
the constructors of algebras ι′m by ~C ′m of length km. We define bijections φm from a token
of ιm to a token of ι′m.

φm(∗) := ∗, φm(Cmj(~a
∗)) := C ′mj(φ(a∗ν))ν<nm for each j < km.

For each m < l we define rm ⊆ Conι′m × Tokιm to be U rm b′ := U 3 φ−1m (b′), where rm is
an approximable map. We prove the three conditions of domain isomorphisms. For the
first one, we assume U ∈ Conιm and let V be {φm(b) | b ∈ U} which is in Conι′m . For the
second one, we use φ−1 instead. For the third one, we assume U, V ∈ Conιm and U r ⊆ V r,
namely, ∀b(b ∈ U → b ∈ V ). We prove V ` U which is ∀b∈U (V ` b). Assume b ∈ U . By the
assumption it implies b ∈ V , hence V ` b.

Example 2.1.32 (Isomorphism between (Ts,T) and (LNt,Nt)). Assume (Ts,T) and Nt.
The domains |ISTs| and |ISLNt

| are isomorphic and also |IST| and |ISNt| are.

2.2 T+ as an Extension of Gödel’s T

We study the syntactic aspect of computation through a formal term language. By extending
Gödel’s T [Göd58], we define a typed calculus T+. In addition to constructors and recursion
operators of the original T, we have destructors, corecursion operators and programmable
constants. One can define computation rules and also rewriting rules for a programmable
constant. The syntax of T+ is the following.

Definition 2.2.1 (T+). Let ρ, σ be types and x a variable. Define terms as follows

M,N := xρ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ |Cρ

Here Cρ is a constant, either a constructor, a recursion operator, a destructor, a
corecursion operator or a programmable constant. We study them in the next sections.
Following the standard way, we define the β-conversion.

Definition 2.2.2 (Free variables). We define a set of free variables FV(M) for a term M
by induction on the construction of the term.

FV(x) := {x}, FV(MN) := FV(M) ∪ FV(N),

FV(C) := ∅, FV(λxN) := FV(N) \ {x}.
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The term substitution M [x/N ] is intuitively the result of replacing every occurrence
of x in M by N . Formally we define it in the following way with avoiding the variable
capturing.

Definition 2.2.3 (Term substitution). For terms M , N we define the term substitution
M [x/N ] by induction on the construction of M . In the last case we suppose that a fresh
variable z is available.

x[x/N ] := N,

C[x/N ] := C,

z[x/N ] := z where z is a variable with z 6= x,

(M0M1)[x/N ] := M0[x/N ](M1[x/N ]),

(λxM)[x/N ] := λxM,

(λyM)[x/N ] := λyM [x/N ] if y 6∈ FV(M),

(λyM)[x/N ] := (λzM [y/z])[x/N ] if y ∈ FV(M).

Definition 2.2.4 (β-conversion). (λxM)N 7→M [x/N ].

In the rest of this section, we formally develop T+. Constructors and recursion operators
are given in Section 2.2.1, corecursion operators and destructors are given in Section 2.2.2
and programmable constants are given in Section 2.2.3.

2.2.1 Constructors and Recursion Operators

For each constructor type of algebra, there is a constructor symbol. We adopt each
constructor symbol as a special constant called constructors.

Definition 2.2.5 (Constructors). Let ι be an algebra µξ((ρiν(ξ))ν<ni → ξ)i<k. For each
constructor type of ι a constructor Ci is defined as a constant of type (ρiν(ι))ν<ni → ι.

Constructors are means to construct (tree structured) objects from the root to the
leaves. On the other hand, we have recursion operators to inspect an object which is built
by constructors. A recursion operator reads an object from its leaves to the root. We
define for each algebra ι the recursion operator Rτ

ι where τ is an arbitrary type parameter.
We first define map operators which are used in the definition of the conversion rules of
recursion operators. Then we define recursion operators. Later we also use map operators
to define corecursion operators.

Definition 2.2.6 (Map operator). Let ~α be a list of type variables of length l ≥ 0, ι(~α)
be an algebra µξ((ρiν(~α, ξ))ν<ni → ξ)i<k and C~α

i be the i-th constructor of ι(~α). Assume
a list of function types σi → τi for 0 ≤ i < l, written ~σ → ~τ , where l is the length of ~α.
Assuming ρ(~α) and ~π(~α) are a type and a list of types of length k, respectively, for where
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the occurrences of ~α in ρ(~α) and πj(~α) for j < k are strictly positive, we define the map
operator M~σ→~τ

λ~αρ(~α)
by induction on the construction of ρ.

M~σ→~τ
λ~αρ(~α)

: ρ(~σ)→ (σi → τi)0≤i<l → ρ(~τ),

M~σ→~τ
λ~α(β→ρ(~α))N

β→ρ(~σ) ~MKβ 7→ M~σ→~τ
λ~αρ(~α)

(NK)ρ(~σ) ~M,

M~σ→~τ
λ~ααi

Nσi ~M 7→MiN,

M~σ→~τ
λ~αρ

Nρ ~M 7→ N if FV(ρ) ∩ ~α = ∅,

M~σ→~τ
λ~αι~π(~α)

(C
~π(~σ)
i

~N)ι~π(~σ) ~M 7→ C
~π(~τ)
i (M~π(~σ),ι~π(~σ)→~π(~τ),ι~π(~τ)

λ~β,γρiν(
~β,γ)

Nν
~K(M~π(~σ)→~π(~τ)

ι · ~K))ν<ni ,

where M · ~M stands for λx(Mx ~M) and Kj :=M~σ→~τ
λ~απj(~α)

· ~M for j < |~π|.

We define the type and the conversion rule of recursion operators.

Definition 2.2.7 (Recursion operator). Let ι be an algebra µξ((ρiν(~α, ξ))ν<ni → ξ)i<k. For

an arbitrary type τ , the type of the recursion operator Rτ
ι is defined to be ι→ ~δ → τ where

δi := (ρiν(~α, ι× τ))ν<ni → τ .
The conversion rule of the recursion operators is

Rτ
ι (Ci ~N) ~M 7→Mi(Mι→ι×τ

λξρiν(~α,ξ)
Nν λz〈z,Rτ

ι z ~M〉)ν<ni .

We call each δi a step type and each Mi a step term. If ρiν(~α, ξ) is just ξ, we conventionally
type such a part of the step type δi by currying ι×τ , namely, with duplicating ι and τ . Then
the conversion rule is given without a map operator, again by duplicating the arguments
Ni and Rτ

ιNi
~M in the step term Mi. Recursion operator Rι makes a case distinction on

the outermost constructor of the first argument. Assuming the i-th constructor is the case,
then the i-th step term is called with arguments including recursive calls of the recursion
operator. An argument consists of two parts, the previous input and the previous output
to the recursion operator, which are computed from the argument Nν of the constructor by
means of a map operator.

Example 2.2.8 (Type of Rτ
Lα

). Consider the type of Rτ
Lα

. In the form of constructor
types, n0 = 0, n1 = 2, ρ10 = α and ρ11 = ξ specify the above constructor types. Since
n0 = 0, no ρ0ν occurs, thus δ0 = τ . Next, δ1 = α→ (Lα × τ)→ τ . As mentioned, here we
use α→ Lα → τ → τ instead of the above step type with products by duplicating Lα × τ .
Therefore, the type of Rτ

Lα
is Lα → τ → (α→ Lα → τ → τ)→ τ .

Example 2.2.9 (Descending list of natural numbers). The recursion operator on natural
numbers, Rτ

N, is given as

Rτ
N : N→ τ → (N→ τ → τ)→ τ,

Rτ
N0M0M1 7→M0,

Rτ
N(Sn)M0M1 7→M1n(Rτ

NnM0M1).
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The following term Desc computes a list of natural numbers descending from the given
natural number to 1.

Desc : N→ LN

Desc := λn(RN n [] λm,l(Sm::l)).

The computation of Desc is as follows:

Desc 0 7→ [], Desc(Sn) 7→ Sn ::Desc n.

Example 2.2.10 (Recursion operator on Nt). The recursion operator on Nt is given as
follows.

Rτ
Nt : Nt→ (LNt×τ → τ)→ τ

Rτ
Nt(Br as)M 7→M(MNt→Nt×τ

λαLα
asλa〈a,RaM〉)

An important variant of recursion operators is case operators. It is to make a case
distinction on the outermost constructor.

Definition 2.2.11 (Case operator). Under the same assumptions in Definition 2.2.7, we
define Cτι to be a constant of type ι → ~σ → τ , where σi := (ρiν(~α, ι))ν<ni → τ . The
conversion rule of the case operators is

Cτι (Ci ~N) ~M 7→Mi
~N.

Following a common style found in generic programming languages, we adopt to denote a
term Cτι tι ~M also in the following way.

Case tι of C0~x0 → L0

...

Ck−1~xk−1 → Lk−1

or

Case tι of λ~x0L0

...

λ~xk−1
Lk−1,

where xiν is a fresh variable of type ρiν(~α, ι) for ν < ni and Li is a term such that Mi~xi 7→∗ Li.
We can omit ~xi when ni = 0. A line break can be replaced by a semicolon (;).

A well-known programming construction of if-then-else is given by CτB of type B→ τ →
τ → τ . We accept to denote CτBM N0N1 as follows.

if M thenN0 elseN1

We study simultaneous recursion operators.

Definition 2.2.12 (Simultaneous recursion operator). Let ~τ and ~ξ be lists of types of length

l > 0 and ~ι be simultaneous algebras µ~ξ ((ρiν(~ξ ))ν<ni → ξji)i<k. We define simultaneous
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recursion operators on ~ι. For each m < l let σm be ιm × τm and the step types δji be
(ρiν(~σ))ν<ni → τji , then the types of recursion operators are defined for m < l as follows.

R~τ
~ι,m : ιm → ~δ → τm.

The conversion rules are

R~τ
~ι,ji

(Ci ~N) ~M 7→Mi(M~ι→~σ
λ~αρiν(~α)

Nν(λx〈x,R~τ
~ι,mx ~M〉)m<l)ν<ni .

Example 2.2.13 (Recursion operator on (Ts,T)). Consider simultaneous recursion oper-
ators R~τ

(Ts,T),0 and R~τ
(Ts,T),1 which are non-nested. For 0 ≤ i < 3, let δi be

δ0 := τ0, δ1 := T→ τ1 → Ts→ τ0 → τ0, δ2 := Ts→ τ0 → τ1.

The types of R~τ
(Ts,T),0 and R~τ

(Ts,T),1 are

R~τ
(Ts,T),0 : Ts→ δ0 → δ1 → δ2 → τ0, R~τ

(Ts,T),1 : T→ δ0 → δ1 → δ2 → τ1.

The conversion rules are as follows.

R~τ
(Ts,T),0 Empty ~M 7→M0

R~τ
(Ts,T),0 (Tcons a as) ~M 7→M1 a (R~τ

(Ts,T),1a
~M) as (R~τ

(Ts,T),0as
~M)

R~τ
(Ts,T),1 (Branch as) ~M 7→M2 as (R~τ

(Ts,T),0as ~M)

Example 2.2.14 (Substitution of trees). We define a function of type T→ T→ T which
replaces each leaves Branch Empty in the first argument by the second one as follows.

λa,b(R(Ts,T),1 a b λ ,p, ,q(Branch(Tcons p q))λ ,pp).

The underscore ( ) is used as a place holder for an abstracted variable which is unused.

When only some algebras of simultaneously defined ones are needed to recur, simplified
simultaneous recursion operators suffice. Generally, we assume R~τ

~ι is defined and build
a simplified one. We first specify what algebras ιi0 , . . . , ιik from ~ι are irrelevant, that is,
are not needed to recur. We drop all δi whose final value type is one of τi0 , . . . , τik . From
argument types of each remaining δi, we drop all ιi0 , . . . , ιik and τi0 , . . . , τik . The remaining
algebras are on the other hand called the relevant algebras.

For example, we simplify R~τ
Ts,T in two ways.

1. No recursion on T. Among ~δ, δ2 and δ3 are dropped because their final value type is
τ1 which is irrelevant. Remaining step types are δ0 and δ1. The types T and τ1 occur
in δ0 no more. From δ1 we remove the type arguments T and τ1. The type and the
conversion rules are

Rτ
Ts : Ts→ τ → (Ts→ τ → τ)→ τ,

Rτ
TsEmptyM0M1 7→M0, Rτ

Ts(Tcons a as)M0M1 7→M1as(Rτ
TsasM0M1).
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2. No recursion on Ts. As we did in 1., we remove irrelevant types. Then the type and
the conversion rules are

Rτ
T : T→ τ → τ, Rτ

T(Branch as)M0 7→M0.

Example 2.2.15 (Length of a tree). We define a function Lh to count the length of a tree,
namely, the number of branches at the root node.

Lh : T→ N, Lh := λa(C a λas(RN
Ts as 0λ ,n(Sn))).

Due to the inhabitedness of types, for an arbitrary type ρ there is an inhabitant of type ρ,
namely, a term of type ρ. We can find from the derivation of Inhab~ζ(ρ) an inhabitant of
type ρ.

Definition 2.2.16 (Inhabitant). Assume τ is a type, a derivation of Inhab~ζ(τ) is given
and an inhabitant cα of each type variable α ∈ FV(τ) is given. We inductively define
from the derivation of Inhab~ζ(τ) an inhabitant of type τ . If Inhab~ζ(α) is derived by the
first rule, an inhabitant is cα. If Inhab~ζ(ρ→ σ) is derived by the second rule, there is an
inhabitant λxρc

σ of type ρ→ σ where cσ comes by induction hypothesis. If Inhab~ζ(ι), where
ι = µξ((ρiν)ν<ni → ξ)i<k, is derived by the third rule, there is an inhabitant Ci(c

ρiν )ν<ni
where Ci is the i-th constructor of ι and each cρiν for all ν < ni comes by induction
hypothesis. An inhabitant cρ is canonical if it is obtained from the canonical derivation of
Inhab~ζ(ρ).

2.2.2 Destructors and Corecursion Operators

We study destructors and corecursion operators which are defined for each algebra. In
contrast to constructors and recursion operators, here we deal with possibly non-well
founded objects. Destructors are means to inspect an object. The inspection by destructors
does not involve any repetition while the one of recursion operators does. On the other hand,
corecursion operators provide means to construct an object. While one can build finite
objects by constructors, one can build non-well founded objects by corecursion operators.

We take a look at an idea of the two new constants via an example in lists. Consider a
term M of type Lα constructed by the corecursion operator of Lα. When the destructor is
applied to M , the result tells us either

1. that M behaves as an empty list and there is nothing to inspect, or

2. that M behaves as a cons of the head x and the tail M ′ which can be further inspected.

Using the destructor repeatedly, we can inspect M , M ′, M ′′, · · ·, then we observe x, x′,
x′′, · · ·. It can be the case that the first case never happens. Through the observation by
means of a destructor, a corecursion operator provides a reasonable way to form non-well
founded objects. In fact our formulation of destructors and corecursion operators are slight
different from what one expect from the above sketch: Our observation is done through
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normalization without an explicit application of a destructor. An advantage is that our
theory of abstract computability works also for the two constants due to cototal ideals.

We define finite products and finite sums of a list of types by generalizing the product
algebra × and the sum algebra +. Intuitively the finite product is as an algebra µξ(α0 →
α1 → . . .→ αn−1 → ξ), and the finite sum is as µξ(α0 → ξ, α1 → ξ, . . . , αn−1 → ξ). Using
them, the types of destructors and corecursion operators are given.

Definition 2.2.17 (Product type
∏

). Let ~τ be a list of types. We define
∏
~τ by induction.∏

() := U,
∏

(τ) := τ,
∏

(τ, ~τ) := τ ×
∏
~τ .

Let m be the length of ~τ . We define
∏

i<m τi to be
∏
~τ .

Definition 2.2.18 (Sum type
∑

). We first define α0 ⊕ α1 as follows

U⊕U := B, β0 ⊕U := Ysumuβ0 ,

U⊕ β1 := Uysumβ1 , β0 ⊕ β1 := β0 + β1,

where β0 and β1 are not U and Ysumuα is defined to be µξ(JustL
α→ξ,NoneRξ). Let ~τ be

a list of types. We define
∑
~τ by induction.∑

() := U,
∑

(τ) := τ,
∑

(τ, ~τ) := τ ⊕
∑
~τ .

Let m be the length of ~τ . We define
∑

i<m τi to be
∑
~τ .

For readability we can abuse the sum algebra α+ β instead of α⊕ β in the definition of
the sum type. Then, we can write U + α instead of Uysumα, α + U instead of Ysumuα
and U + U instead of B. Corresponding to

∑
and

∏
, we define the generalized pairing

and injection. Then, we consider conversion rules of corecursion operator.

Definition 2.2.19 (Pairing). Suppose that ~t is a non-empty list of terms, ~τ is a non-empty
list of types, where each ti is of type τi and a natural number n is greater than 0 and smaller
than or equal to the length of ~t. We inductively define the pairing pair~τ ~t of type

∏
i<n τi.

pair()() := U, pair(τ)(t) := t, pair(τ,~τ)(t,~t ) := 〈t,pair~τ (~t )〉.

The superscript ~τ can be omitted unless it makes a confusion.

We define the injection without using InLα,β and InRα,β provided α = U or β = U. If
α = β = U, we use T and F instead of InLU and InRU, respectively. Similarly we use
Noneβ and Justβ t

β instead of InLU,β U and InRU,β t, and JustLα t
α and NoneRα instead of

InLα,U t and InRα,U U.

Definition 2.2.20 (Injection). Let ~τ be a list of types and m ≤ 0 be its length. We define

the injection in~τi<m. If m = 0, in
()
i<0 is U of type U. We can also write in0 instead. If m > 0,
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let a term t be of type τi for i < m and we define the injection in~τi<m of type τi →
∑
~τ .

We first define in
〈α0,α1〉
j of type αj → α0 ⊕ α1 for j ∈ {0, 1} .

in
〈U,U〉
0 (t) := T, in

〈U,β1〉
0 (t) := Noneβ1 ,

in
〈β0,U〉
0 (t) := Justβ1t, in

〈β0,β1〉
0 (t) := InLβ0,β1t,

in
〈U,U〉
1 (t) := F, in

〈U,β1〉
1 (t) := JustLβ1t,

in
〈β0,U〉
1 (t) := NoneRβ1 , in

〈β0,β1〉
1 (t) := InRβ0,β1t.

Then, the injection is as follows

in
(τ)
i<1(t) := t, in

(τ,~τ)
0<n+1(t) := in

〈τ,
∑
~τ〉

0 (t),

in
(τ,τ ′)
n<n+1(t) := in

〈τ,τ ′〉
1 (t), in

(τ,~τ)
i+1<n+1(t) := in

〈τ,
∑
~τ〉

0 (in
(~τ)
i<n(t)) if i < n.

Let m be the length of ~τ We can write in~τi (t) instead of in~τi<m(t), and also inmi (t) if ~τ can
be omitted.

For readability, we can abuse constructors of U and + in the following way to denote
an injection. Let in

〈α0,α1〉
j of type αj → α0 + α1 for j ∈ {0, 1} be:

in
〈U,U〉
0 (t) := InLU, in

〈U,β1〉
0 (t) := InLU,

in
〈β0,U〉
0 (t) := InL t, in

〈β0,β1〉
0 (t) := InL t,

in
〈U,U〉
1 (t) := InRU, in

〈U,β1〉
1 (t) := InR t,

in
〈β0,U〉
1 (t) := InRU, in

〈β0,β1〉
1 (t) := InR t.

Corresponding to the generalized pairing and injection, we give the generalized projection
and case distinction. Formally we can define them by means of the recursion operators on
× and + or programmable constants given in Section 2.2.3.

Definition 2.2.21 (Projection). Suppose that ~t is a list of terms of length n whose types
are ~τ . We define the projection πnk of type

∏
i<n τi → τk with the following conversion rule.

πnk (pair~τ ~t ) 7→ tk.

We define case operators on a generalized sum type.

Definition 2.2.22 (Case operator on a generalized sum). Suppose that ~α is a list of types
of length n. Let x be a variable of type

∑
i<n αi =: ρ and Mi be a term of type αi → τ . We

define a case operator Cτρ to be a constant of type ρ→ (αi → τ)i<n → τ with the conversion

rule C(inni t) ~M 7→Mi t for i < n. We also adopt a programming language style expression

of C(inni t) ~M as follows.

Case x of inn0 u0 → L0

...

innn−1 un−1 → Ln−1

or

Case x of λu0L0

...

λun−1Ln−1,
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where ui is a fresh variable of type αi and Li is a term such that Mi ui 7→∗ Li. Instead of a
line break, we can use “;” for a delimitor as in Example 2.2.29. It is converted into Miy,
provided x is of the form inni y for some i < n. We also define a term [M0, . . . ,Mn−1] of

type ρ→ τ to be λx(C x ~M).

We define destructors and corecursion operators.

Definition 2.2.23 (Types of destructor and corecursion operator). Let ι be an algebra
µξ((ρiν)ν<ni → ξ)i<k. We define constants the destructor on ι and the corecursion operator
on ι with a type parameter τ , denoted by Dι and coRτ

ι , respectively. The type of Dι is

ι→
∑

i<k

∏
ν<ni

ρiν(ι),

and the type of coRτ
ι is

τ →
(
τ →

∑
i<k

∏
ν<ni

ρiν
(
ι⊕ τ

))
→ ι.

The type τ is called the covalue type.

Example 2.2.24 (Types ofDLα and coRτ
Lα). Consider the type ofDLα . By Definition 2.2.18,

Lα →
∑

i<2

∏
ν<ni

ρiν(α,Lα) = Lα → Uysum(α×Lα). Then, the type of DLα is informally
denoted as Lα → U + α × Lα. Again by Definition 2.2.18,

∑
i<2

∏
ν<ni

ρiν(α,Lα ⊕ τ) =
Uysum(α× (Lα ⊕ τ)) provided τ 6= U. The type of coRτ

Lα is informally denoted as τ →
(τ → U + α× (Lα + τ))→ Lα. If τ = U,

∑
i<2

∏
ν<ni

ρiν(α,Ysumu(Lα)) = Uysum(α×
(Ysumu(Lα))). The type of coRU

Lα is simplified and denoted as U + α× (Lα + U)→ Lα.

The conversion rule of the destructor is given as follows.

Definition 2.2.25 (Conversion rule of destructor). Suppose that ι is an algebra defined to
be µξ((ρiν(ξ))ν<ni → ξ)i<k. The conversion rule of the destructor on ι is defined as follows.

Dι(Ci~t ) 7→ inki (pair(~t )).

The conversion rules of the corecursion operator are given as follows.

Definition 2.2.26 (Conversion rule of corecursion operator). Let ι be µξ((ρiν(ξ))ν<ni →
ξ)i<k. For the ι and an arbitrary type τ , we define the conversion rule of coRτ

ι as follows.

coRτ
ι 7→ λu,v(Case vu of ink0 t→ C0(Mι+τ→ι

λβρ0ν(β)
(πn0

ν t)[id,
coRτ

ι · v])ν<n0

...

inkk−1 t→ Ck−1(Mι+τ→ι
λβρ(k−1)ν(β)

(πnk−1
ν t)[id, coRτ

ι · v])ν<nk−1
).

If ni = 0, we take inki U→ Ci instead of a line in the above. We can omit the case distinction
and the constructor immediately comes when k = 1.
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We take a look at definitions of destructors on some algebras from Example 2.1.13,
2.1.14, 2.1.15 and 2.1.16.

Example 2.2.27 (Destructors on a simple algebra).

DU : U→ U

DUU 7→ U

DB : B→ U + U

DBF 7→ InLU, DBT 7→ InRU

DN : N→ U + N

DN0 7→ InLU

DN(Sn) 7→ InRn

DD : D→ U + (D×D)

DD0 7→ InLU

DD(Dd0d1) 7→ InR〈d0, d1〉

Example 2.2.28 (Destructors on parameterized, nested and non-finitary algebras).

DLα : Lα → U + α× Lα

DLα [] 7→ InLU

DLα(x::xs) 7→ InR〈x, xs〉

DNt : Nt→ LNt

DNt(Bras) 7→ as

DO : O→ U + O + (N→ O)

DO0 7→ InLU

DO(Sx) 7→ InR(InLx)

DO(Supf) 7→ InR(InRf)

We take a look at definitions of corecursion operators on some algebras from Exam-
ple 2.1.13, 2.1.14, 2.1.15 and 2.1.16.

Example 2.2.29 (Corecursion operators on a simple algebra).

coRτ
U : τ → (τ → U)→ U

coRτ
U 7→ λu,v(Case vu of U→ U)

coRτ
B : τ → (τ → B + B)→ B

coRτ
B 7→ λu,v(Case vu of InLU→ InLU

InRU→ InRU)
coRτ

N : τ → (τ → U + (N + τ))→ N
coRτ

N 7→ λu,v(Case vu of InLU→ 0; InRx→ S(Mx[id, λz(
coRτ

Nzv)]))
coRτ

D : τ → (τ → U + (D + τ)× (D + τ))→ D
coRτ

D 7→ λu,v(Case vu of InLU→ 0; InRx→ D(M(π0x)[id, λz(
coRτ

Dzv)])

(M(π1x)[id, λz(
coRτ

Dzv)]))

Example 2.2.30 (Corecursion operators on parameterized, nested and non-finitary alge-
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bras).

coRτ
Lα : τ → (τ → U + α× (Lα + τ))→ Lα

coRτ
Lα 7→ λu,v(Case vu of InLU→ []; InR y → π0y::M(π1y)[id, λz(

coRτ
Lαzv)])

coRτ
Nt : τ → (τ → LNt+τ )→ τ

coRτ
Nt 7→ λu,v(Br(MNt+τ→Nt

λαLα
(vu)[id, λz(

coRτ
Ntzv)]))

coRτ
O : τ → (τ → U + (O + τ) + (N→ O + τ))→ O

coRτ
O 7→ λu,v(Case vu of InLU→ 0

InR(InL y)→ S(My[id, λz(
coRτ

Ozv)])

InR(InR f)→ Sup(Mf [id, λz(
coROzv)]))

Destructors and corecursion operators are also defined on simultaneous algebras. In the
definition of destructors, we collect the relevant types of constructors whose value type is
same as the argument type of the destructor.

Definition 2.2.31 (Destructors and corecursion operators on simultaneous algebras). Let

~ι be simultaneous algebras µ~ξ((ρiν(
~ξ ))ν<ni → ξji)i<k of length l. For each m < l, we can

find a list of indices ~rm, such that ji = m if and only if i is in ~rm. For each m < l let i be
in ~rm and ı̂ be an index to get i from ~rm, namely, i = rmı̂. The type and the conversion
rule of the destructor are defined to be

D~ι,m : ιm →
∑

i<|~rm|
∏

ν<ni
ρrmiν(~ι ), D~ι,m(Ci~t ) 7→ in

|~rm|
ı̂ (pair~t ).

Let σi be a sum type ιi + τi. For each m < l we define the m-th costep type δm to be τi →∑
i<|~rm|

∏
ν<ni

ρiν(~σ). The type of the m-th corecursion operator coR~τ
~ι,m is τm → ~δ → ιm.

Its conversion rule is given as

coR~τ
~ι,m 7→ λu,~v(Case vmu of

ink
′

0 t→ C0(M~σ→~ι
λ~βρ0ν(

~β)
(πn0

ν t)[id,
coR~τ

~ι,m · ~v ]m<l)ν<n0

...

ink
′

k′−1t→ Ck′−1(M~σ→~ι
λ~βρ(k′−1)ν(

~β)
(π

nk′−1
ν t)[id, coR~τ

~ι,m · ~v ]m<l)ν<nk′−1
),

where k′ := |~rm|.

We take a look at an example of destructors and corecursion operators on simultaneous
algebras.

Example 2.2.32 (Destructors on simultaneous algebras).

D(Ts,T),0 : Ts→ U + T×Ts

D(Ts,T),0Empty 7→ InLU

D(Ts,T),0(Tcons a as) 7→ InR 〈a, as〉

D(Ts,T),1 : T→ Ts

D(Ts,T),1(Branch as) 7→ as
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Example 2.2.33 (Corecursion operators on simultaneous algebras).

coR(τ0,τ1)
(Ts,T),0 : τ0 → (τ0 → U + (T + τ1)× (Ts + τ0))→ (τ1 → Ts + τ0)→ Ts

coR(τ0,τ1)
(Ts,T),0 7→ λu,v0,v1(Case v0u of

InLU→ Empty

InRx→ Tcons(M(π0 x)[id, coR~τ
(Ts,T),0 · ~v] [id, coR~τ

(Ts,T),1 · ~v])

(M(π1 x)[id, coR~τ
(Ts,T),0 · ~v] [id, coR~τ

(Ts,T),1 · ~v]))

coR(τ0,τ1)
(Ts,T),1 : τ1 → (τ0 → U + (T + τ1)× (Ts + τ0))→ (τ1 → Ts + τ0)→ T

coR(τ0,τ1)
(Ts,T),1 7→ λu,v0,v1(Branch(M(v1u)[id, coR~τ

(Ts,T),m · ~v]m<l))

Example 2.2.34 (Infinite list of ascending natural numbers). By means of corecursion on
LN we define an infinite list of natural numbers ascending from the given n.

Asc : N→ LN

Asc := λn(coRN nλm〈m, InR(InR(Sm))〉)

The conversion sequence yielded by Asc n is

Asc n 7→∗ n::Asc(Sn) 7→∗ n::Sn::Asc(S(Sn)) 7→∗ . . . .

2.2.3 Programmable Constants

Programmable constants are constants defined by specifying a name and its type. One can
give computational meaning of such a constant by defining computation rules under some
conditions. It is also possible to give rewriting rules which are more flexible than computation
rules. Following Schwichtenberg [SW12], we first define programmable constants and
computation rules, then define rewriting rules as well.

Definition 2.2.35 (Programmable constants). A programmable constant is defined by
specifying a name C and its type ρ.

We introduce constructor patterns in order to formalize computation of programmable
constants.

Definition 2.2.36 (Constructor pattern). We inductively define CP.

CP()
,

CP~x(~P ) CP~y(Q) ~x, ~y are disjoint

CP~x,~y(~P ,Q)
,

CPx(x)
,

C~τ→ι is a constructor CP~x(~P )

CP~x((C~P )ι)
.

When CP~x(P ) holds, P is a constructor pattern with variables ~x.
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Definition 2.2.37 (Computation rules). Let D be a programmable constant of type ~σ → τ .
Computation rules of D are finitely many equations of the form

D~Pi(~yi) = Mi,

where free variables of ~Pi(~yi) and M are among ~yi under the following requirements. Each
~Pi is a constructor pattern such that for i 6= j, ~Pi and ~Pj have disjoint free variables and

are not unifiable. Moreover, the lengths of all ~Pi(~yi) are the same. This length is called the
arity of D denoted by ar(D). Each equation is also adopted as a conversion rule from the
left to the right.

Example 2.2.38 (Predecessor). Let P be a programmable constant of type N→ N. The
following equations define the predecessor of natural numbers.

P 0 = 0, P (Sn) = n.

Even if a rule does not satisfy the condition to be a computation rule, the rule can be
defined as a rewriting rule.

Definition 2.2.39 (Rewriting rule). Let D be a programmable constant of type ~σ → τ .
Rewriting rules of D are finitely many equations of the form

D ~N = M,

where Ni is of type σi. If D ~N = M is not a proven proposition, the equation has to be
added as an axiom. The consistency has to be considered as well. Each equation is also
adopted as a conversion rule from the left to the right.

Example 2.2.40 (Addition of natural numbers). Consider the addition on natural numbers
by means of a programmable constant. Let +N→N→N be a programmable constant. In the
infix notation we define the following computation rules.

n+ 0 = n, n+ (Sm) = S(n+m).

In addition, we prove the following three equations,

∀n(0 + n = n), ∀n,m((Sm) + n = S(n+m)),

∀n,m,k(n+ (m+ k) = (n+m) + k),

then add them as rewriting rules.

2.2.4 Denotational Semantics

The term calculus T+ is a concrete representation of our abstract notion of computability.
We describe denotational semantics of T+ due to Schwichtenberg [SW12] and normalization
by evaluation due to Berger and Schwichtenberg [BS91]. Considering ideals as denotation

of terms of T+, we define the relation between a token (~U, b) and the denotation of a

term M , written as (~U, b) ∈ [[M ]], by induction on the construction of M . We denote

(U1, . . . , (Un, b) . . .) by (~U, b) and (~U, b) ∈ [[λ~xM ]] for all b ∈ V by (~U, V ) ⊆ [[λ~xM ]].
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Definition 2.2.41 (Denotational semantics). Let b range over tokens, U , V , and W over
sets of tokens, x and y over variables, M and N over terms, C over constructors, and D
over a constant with computation rules as D~P (~y) = M where each of ~P is a constructor
pattern. We define the denotation of a term by induction.

Ui ` b
(~U, b) ∈ [[λ~xxi]]

(V )
,

(~U, V, b) ∈ [[λ~xM ]] (~U, V ) ⊆ [[λ~xN ]]

(~U, b) ∈ [[λ~x(MN)]]
(A)

,

~V ` ~b∗
(~U, ~V , C~b∗) ∈ [[λ~xC]]

(C)
,

(~U, ~V , b) ∈ [[λ~x,~yM ]] ~W ` ~P (~V )

(~U, ~W, b) ∈ [[λ~xD]]
(D)

.

The denotation of a term in T+ is an ideal as expected. Essential properties as
the preservation of values and adequacy with respect to operational semantics based on
conversion rules also enjoy. See [BS91, BES03] for details.

One application of the denotational semantics is normalization by evaluation, NbE in
short, which is an efficient algorithm to normalize terms [BS91, BES03, SW12]. It is also a
theoretical basis of the implementation of normalization in the Minlog system. A term is a
normal form if no conversion rule applies. For a given term M such a long normal form,
written nf(M), is computed by NbE in the following way: We first evaluate M to an object
a in some denotational semantics. Then, we retrieve from a the long normal form nf(M).
We define the interpretation of types as follows.

Definition 2.2.42 (Interpretation of types). Let Λρ be the set of all terms of type ρ. We
define the interpretation of types by induction on a type.

[[ι]] := Λι, [[ρ→ σ]] := [[σ]][[ρ]]

Meaning of free variables in an object can be given by an assignment ↑ lifting a variable
to an object. We write [[M ]]↑ to mean the object of M under the assignment ↑. We also
consider a function ↓ which retrieves a long normal form from an object. We simultaneously
define ↑ and ↓, called reflect and reify, respectively. For convenience we define ↑ on terms
rather than on variables.

Definition 2.2.43 (Reflect and reify). We simultaneously define two functions ↑ρ: Λρ → [[ρ]]
and ↓ρ: [[ρ]]→ Λρ.

↑ι (M) := M, ↓ι (M) := M,

↑ρ→σ (M)(a) :=↑σ (M ↓ρ (a)), ↓ρ→σ (a) := λx(↓σ (a(↑ρ (x)))),

where x is a fresh variable.

A problem is that what x is in the above definition. Based on the idea of de Bruijn’s index,
we introduce term families due to Berger and Schwichtenberg [BS91] and Filinski [Fil99] to
avoid this difficulty.
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Definition 2.2.44 (Term family). To a term Mρ we assign a term family M∞ : N→ Λρ

by induction on the construction of M .

x∞(k) := x, (λyM)∞(k) := λxk(M [y/xk]
∞(k + 1)),

c∞(k) := c, (MN)∞(k) := M∞(k)N∞(k),

where c is a constant.

By using term families, we can formalize Definition 2.2.43 without using a variable
name.

For term families r : N → Λρ→σ and s : N → Λρ, the application rs is defined by
rs(k) := r(k)s(k). The following is the standard way to get a term from a term family.

Definition 2.2.45 (Extraction from a term family). Let r be a term family and k be the
greatest index among indices of free and bound variables xi which occur in r(0) We define
ext(r) by the term r(k + 1).

Now we can give a refined version of NbE which is suitable for the implementation.

Definition 2.2.46 (Refined interpretation of types). Let Λρ be the set of all terms of
type ρ and ΛN

ρ be the function space from natural numbers to Λρ. We define the refined
interpretation of types by induction on a type.

[[ι]] := ΛN
ι , [[ρ→ σ]] := [[σ]][[ρ]],

Definition 2.2.47 (Refined reflect and reify). We simultaneously define two functions
↑ρ: (N→ Λρ)→ [[ρ]] and ↓ρ: [[ρ]]→ N→ Λρ.

↑ι (r) := r, ↓ι (r) := r,

↑ρ→σ (r)(a) :=↑σ (r ↓ρ (a)), ↓ρ→σ (a)(k) := λρxk(↓σ (a(↑ρ (x∞k )))(k + 1)).

For ai ∈ [[ρi]], ↑~ρ→σ (r)(a1, . . . , an) :=↑σ (r ↓ρ1 (a1) . . . ↓ρn (an)) holds. The correctness
of NbE is shown as follows.

Theorem 2.2.48 (Correctness of NbE). Let M be a term in βη-long normal form. We
have ↓ ([[M ]]↑) = M∞ where [[M ]]↑ denotes the (semantic) object of M under the assignment
given by ↑.

Proof. By induction on the construction of M .

We describe the implementation of NbE in Section A.1.1.
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2.3 Inductive and Coinductive Definitions

Inductive and coinductive definitions are means to define predicates inductively and coin-
ductively, which makes TCF extensible. These definitions provide a way to specify a prime
formula, which is sometimes not concretely given, for example in the Brouwer-Heyting-
Kolmogorov interpretation of intuitionistic logic.

We give the notion of formulas and predicates simultaneously.

Definition 2.3.1 (Formula forms and predicate forms). We simultaneously define formula
forms A, B and predicate forms P . Let X denote a predicate variable with an arity, and
the length of ~t be the same as the length of the arity of P .

A,B ::= P~t |A→ B | ∀xA,
P ::= X | {~x |A} |µX(∀~xi((Aiν)ν<ni → X~ti))i<k | νX(∀~xi((Aiν)ν<ni → X~ti))i<k.

We abbreviate A0 → . . .→ An−1 → B as (Ai)i<n → B and ∀x0 . . . ∀xn−1A as ∀~xA.

Definition 2.3.2 (Free predicate variables). We simultaneously define free predicate
variables in a formula form and a predicate form.

FPV(P~t ) := FPV(P ),

FPV(A→ B) := FPV(A) ∪ FPV(B),

FPV(∀xA) := FPV(A),

FPV(X) := {X},
FPV({~x |A}) := FPV(A),

FPV(µX(∀~xi((Aiν)ν<ni → X~ti))i<k) :=
⋃
i<k

⋃
ν<ni

FPV(Aiν) \ {X},
FPV(νX(∀~xi((Aiν)ν<ni → X~ti))i<k) :=

⋃
i<k

⋃
ν<ni

FPV(Aiν) \ {X}.

We can denote A(X) instead of A to express that A(Y ) means replacing X in A by Y .

Definition 2.3.3 (Strictly positive occurrence of predicate variables). We define SP~Y on a
formula form and a predicate form.

SP~Y (P )

SP~Y (P~t ) ,

FPV(A) ∩ ~Y = ∅ SP~Y (B)

SP~Y (A→ B) ,

SP~Y (A)

SP~Y (∀xA) , SP~Y (X) ,

SP~Y (A)

SP~Y ({~x |A}) ,
for all i < k, for all ν < ni, SP~Y ,X(Aiν)

SP~Y (µX(∀~xi((Aiν)ν<ni → X~ti))i<k) ,

for all i < k, for all ν < ni, SP~Y ,X(Aiν)

SP~Y (νX(∀~xi((Aiν)ν<ni → X~ti))i<k) .

Occurrences of ~Y in A (P ) is strictly positive if SP~Y (A) (SP~Y (P )).

Definition 2.3.4 (Inhabited formula forms and predicate forms). Let variables X and Y
range over predicate forms. We simultaneously define Inhab~Y on a formula form and a
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predicate form as follows.

Inhab~Y (X)

Inhab~Y (X~t ) ,

Inhab~Y (B)

Inhab~Y (A→ B) ,

Inhab~Y (A)

Inhab~Y (∀~xA) ,

X 6∈ ~Y
Inhab~Y (X) ,

Inhab~Y (A)

Inhab~Y ({~x |A}) ,
there exists i < k, for all ν < ni, Inhab~Y ,X(Aiν)

Inhab~Y (µX(∀~xi((Aiν)ν<ni → X~ti))i<k)) ,

there exists i < k, for all ν < ni, Inhab~Y ,X(Aiν)

Inhab~Y (νX(∀~xi((Aiν)ν<ni → X~ti))i<k)) .

A formula form A is inhabited if Inhab(A) holds, where the subscript is omitted to mean
that the empty list of predicate variables is given. A formula form A is absolutely inhabited
if InhabFPV(A)(A).

Definition 2.3.5 (Formulas and predicates). We simultaneously define F and Pred.

Pred(P )

F(P~t ) ,

F(A) F(B)

F(A→ B) ,

F(A)

F(∀xA) , Pred(X) ,

F(A)

Pred({~x |A}) ,
for all i < k, F(X~ti) and for all ν < ni, F(Aiν) and SPX(Aiν) Inhab(I)

Pred(I) ,

for all i < k, F(X~ti) and for all ν < ni, F(Aiν) and SPX(Aiν) Inhab(coI)

Pred(coI) ,

where I := µX(∀~xi((Aiν)ν<ni → X~ti))i<k and coI := νX(∀~xi((Aiν)ν<ni → X~ti))i<k. A formula
form A is a formula if F(A), and a predicate form P is a predicate if Pred(P ).

Inductively defined predicate constants, also called inductive predicates in short, extend
the system by adding the introduction and the elimination axioms. Similarly in the case
of coinductively defined predicate constants, definitions extend the system by adding the
closure and the greatest-fixed-point axioms.

2.3.1 Inductive Definitions

We give the definition of inductive predicates and its axioms.

Definition 2.3.6 (Inductively defined predicates). Suppose that formulas Ki for i < k are

of the form ∀~xi((Aiν)ν<ni → X~ti), then I := µX( ~K) is an inductively defined predicate if
Pred(I). We denote Aiν(X) to describe the free occurrences of X in Aiν . The introduction

axioms are obtained by replacing each occurrence of X in ~K by I.

∀~x((Aiν(I))ν<ni → I~t ). I+i
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We refer to each introduction axiom of I derived from Ki by I+i , possibly with additional
parentheses for the readability. Let P be a predicate variable of the same arity as I. The
elimination axiom of I is of the following form,

∀~x(I~x→ (Bi(I, P ))i<k → P~x), I−

which is referred to by I−. Let I ∩ P be {~x | I~x ∧ P~x}, then Bi(I, P ) is given as follows,

∀~x((Aiν(I ∩ P ))ν<ni → P~t ),

namely, by replacing the final occurrence of X in Ki by P and all other X by I ∩ P .
Conventionally, when an occurrence of X in the premise of the implication in Ki is not
given as a parameter argument of another predicate constant, we duplicate I and P by
currying rather than using conjunction. We call Aiν(X) a parameter premise if it does not
contain X, otherwise a recursive premise. Occurrences of X as parameter arguments of a
previously defined predicate are called nested, and predicates involving a nested occurrence
of X are called nested inductively defined predicates.

Roughly speaking, the elimination axiom I− states that if a predicate P can replace I
in I+i for all i < k, I is smaller than P . In our formulation, the strengthening is used in
the step formulas, so that I ∩ P is assumed in premises instead of P . When there is no
confusion, we can give a list of introduction axioms instead of µX( ~K) in order to define
an inductive predicate. To make parameter predicates explicit, we write parameters as
subscripts, as I~X where ~X are parameter predicates of I. For readability, it can be written

by parentheses as well, i.e., I( ~X).
We take a look at one example of inductive definition.

Example 2.3.7 (Leibniz equality). We define Leibniz equality by

eqdρ := µX(∀xρX(x, x)),

where ρ is a type parameter. The introduction and elimination axioms are

∀xρ(eqd(x, x)), eqd+

∀x,y(eqd(x, y)→ ∀xPxx→ Pxy), eqd−

where eqd(x, y) abbreviates eqdρ(xρ, yρ). We adopt the infix notation as x eqd y.

Lemma 2.3.8 (Compatibility of eqd). ∀x,y(x eqd y → Px→ Py).

Proof. Let x and y be given and assume x eqd y. We use eqd− for x eqd y to prove the
goal Px→ Py. The step formula ∀x(Px→ Px) is trivial.

We define truth T and falsity F to be T eqd T and F eqdT, respectively. We have
ex-falso-quodlibet for a certain class of formulas in minimal logic. The proof deals with the
case of coinductively defined predicates which will be described in Section 2.3.2.
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Theorem 2.3.9 (Ex-falso-quodlibet). Let A be an absolutely inhabited formula, then there
is a proof of F→ A.

Proof. First, we claim that arbitrary xρ and yρ are Leibniz equal if F is assumed. Let xρ

and yρ be given, and assume F. Trivially, (Rρ
B Fx y) eqd (Rρ

B T y x) comes by eqd+. We
use 2.3.8 with F eqdT, then (Rρ

B Tx y) eqd (Rρ
B T y x), namely, x eqd y also holds.

Let ~X be free predicate variables in A. By induction on the construction of A. Case
A0 → A1. Assume F and A0, then use induction hypothesis for A1. Case ∀~xA0. Assume
F and let ~x be given, then use induction hypothesis for A0. Case I~t. We have the
derivation of Inhab ~X(I~t ), where an index i is determined in the application of the last rule
in Definition 2.3.4. Using the claim at the beginning, our goal is same as I~s, so that the
I+i applies, then all premises of I+i come by induction hypothesis. Case coI~t. We use coI+

with a competitor predicate P := {~x |F}. The first premise is trivial. We prove the second

premise ∀~y(P~y →
∨
i<k∃~xi(

∧
ν<ni

Aiν(
coI ∪ P )∧

∧ ~Ei)). Let ~y be given and assume P~y. We

have the derivation of Inhab ~X(coI~t ), where an index i is determined in the application of

the last rule in Definition 2.3.4. Using
∨+, it suffices to prove ∃~xi(

∧
ν<ni

Aiν(
coI ∪P )∧

∧ ~Ei)
which follows from induction hypothesis.

We can define conjunction, disjunction and existential quantifier in our setting, following
Martin-Löf [ML71].

Example 2.3.10 (Conjunction, disjunction and existential quantifier). Conjunction, dis-
junction and the existential quantifier are inductively defined as predicates. Let A and B
be propositional variables, i.e., predicate variables of arity 0, and C be a predicate variable
of arity (α). We inductively define Conj, Disj and Ex.

ConjA,B := µX(A→ B → X), DisjA,B := µX(A→ X,B → X)

ExC := µX(∀xα(C x→ X)).

We can write A∧B, A∨B and ∃xA instead of Conj{|A},{|B}, Disj{|A},{|B} and Ex{x |A}. The
introduction axioms are as follows.

A→ B → A ∧B, ∧+

A→ A ∨B, ∨+0
B → A ∨B, ∨+1
∀xα(A→ ∃xA), ∃+

Let P be a propositional variable. The elimination axioms are given as follows.

A ∧B → (A→ B → P )→ P, ∧−

A ∨B → (A→ P )→ (B → P )→ P, ∨−

∃xA→ ∀x(A→ P )→ P. ∃−
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Notice that we need e.g. conjunction in the definition of axioms of inductive predicates
with a recursive argument, but the definitions of conjunction, disjunction and existential
quantifier are recursive arguments free.

Example 2.3.11 (Even numbers). Consider a predicate Even of arity (N). We define
Even to be µX(K0, K1) such that

K0 = X 0, K1 = ∀n(X n→ X(S(Sn))).

The introduction axioms are

Even 0, Even+
0

∀n(Evenn→ Even(S(Sn))). Even+
1

Let P be a predicate variable of arity (N), then the elimination axiom is

∀n(Evenn→ P 0→ ∀n(Evenn→ P n→ P (S(Sn)))→ P n). Even−

Example 2.3.12 (Pointwise equality). Apart from the Leibniz equality, the pointwise
equality is inductively definable as well. On N, we define the pointwise equality =N of arity
(N,N) as follows:

=N:= µX(X00,∀n,m(Xnm→ X(Sn)(Sm))).

The introduction and elimination axioms are

0 =N 0, (=N)+0

∀n,m(n =N m→ Sn =N Sm), (=N)+1

∀n,m(n =N m→ P00→ ∀n,m(n =N m→ Pnm→ P (Sn, Sm))→ Pnm). (=N)−

For any finitary algebra ι, we can also define the pointwise equality on Lι which is relativised
by a relation Rι on ι. We define =Lι to be

µX(X[][], ∀x,y(Rιxy → ∀xs,ys(Xxsys→ X(x::xs)(y::ys)))).

The introduction and elimination axioms are

[] =Lι [], (=Lι)
+
0

∀x,y(Rιxy → ∀xs,ys(xs =Lι ys→ x::xs =Lι y::ys), (=Lι)
+
1

∀xs,ys(xs =L ys→P [][]→
∀x,y(Rιxy → ∀xs,ys(xs =L ys→ Pxsys→ P (x::xs, y::ys)))→
Pxsys).

(=Lι)
−

See also Example 2.3.21 for nested definitions.
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2.3.2 Coinductive Definitions

Coinductively defined predicates come as companion predicates of inductively defined ones.
We generalize conjunction and disjunction to formulate coinductive predicates.

Definition 2.3.13 (Generalized conjunction). Assume a list of formulas ~A of length n ≥ 0.

We define generalized conjunction
∧ ~A by induction on the length of ~A.∧

() := T,
∧

(A) := A,
∧

(A, ~A) := A ∧
∧ ~A.

Let n be the length of ~A. We define
∧
i<nAi to be

∧ ~A.

Instead of repeated application of ∧+, we can call it
∧+. In the same way, instead of

repeated application of ∧−, we can say
∧−.

Definition 2.3.14 (Generalized disjunction). Assume propositions ~A of length n ≥ 0. We

define disjunction
∨ ~A by induction on the length of ~A.∨

() := F,
∨

(A) := IA,
∨

(A, ~A) :=
∨̃

(A, ~A)∨̃
(A) := A,

∨̃
(A, ~A) := A ∨

∨̃
( ~A),

where IY := µX(Y → X). We define
∨
i<n

~A to be
∨ ~A.

There is a special treatment for the case of a singleton list. This is a way to manage the
typing issue of a closure axiom of a one-clause coinductive definition without computational
assumptions, for example the cototality predicate of U, in Section 2.5.1. For n, n′ such
that n ≤ n′ ≤ ν, we also allow to write

∨
i;n≤i<n′(Ai)i<ν to mean

∨
(Ai+n)i<ν−n′ , which is a

sublist of (Ai)i<ν defined to be

(Ai+n)i<0 := (), (Ai+n)i<m+1 := (An, (Ai+n+1)i<m).

Instead of repeating ∨+
0 and ∨+

1 , we can say
∨+ if there is no confusion. In the same

way, instead of repeated application of ∨−, we can say
∨−. We abbreviate

∧
i<nAi and∨

i<nAi as
∧
iAi and

∨
iAi, respectively, when the length of ~A is not essential or there is

no confusion.

Definition 2.3.15 (Coinductively defined predicates). Suppose that for each i < k a

formula Ki of the form ∀~xi((Aiν(X))ν<ni → X~ti) is given. Then, coI := νX( ~K) is a
coinductively defined predicate if Pred(coI). The closure axiom coI− is given as follows.
Assume fresh variables ~y with the same length and types of ~ti and define formulas Ej :=
yj eqd tj for 0 ≤ j < |~t|. Then coI− is defined to be

∀~y(coI~y →
∨
i<k∃~x(

∧
ν<ni

Aiν(
coI) ∧

∧ ~Ei)).
coI−

Assume a predicate variable P of the same arity as coI. The greatest-fixed-point axiom coI+

is defined to be

∀~y(P~y → ∀~y(P~y →
∨
i<k∃~x(

∧
ν<ni

Aiν(
coI ∪ P ) ∧

∧ ~Ei))→ coI~y). coI+

where coI ∪ P is {~z | coI~z ∨ P~z}. We call the second premise the costep formula.
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Roughly speaking, the greatest fixed point axiom coI+ states that coI is greater than an
arbitrary predicate P if P can replace coI in coI−. In our formulation, the strengthening
is used in the costep formula, so that coI ∪ P comes in the conclusion of a costep formula
instead of P .

Example 2.3.16 (Coeven numbers). We define coEven, the companion predicate of Even,
as well. The closure axiom is

∀n(coEvenn→ n eqd 0 ∨ ∃m(coEvenm ∧ n eqd S(Sm))), coEven−

and the greatest-fixed-point axiom is

∀n(P n→∀n(P n→ n eqd 0 ∨ ∃m((coEvenm ∨ P m) ∧ n eqd S(Sm)))→ coEvenn).
coEven+

Example 2.3.17 (Bisimilarity). We consider a companion predicate of =Lι , written ≈
instead of co=Lι . Let R be a relation on ι, then ≈ is defined by

∀xs,ys(xs ≈ ys→ (xs eqd [] ∧ ys eqd [])∨
∃rx′,y′,xs′,ys′(Rx′y′ ∧ xs′ ≈ ys′ ∧ xs eqdx′::xs′ ∧ ys eqd y′::ys′))

≈−

∀xs,ys(P xs ys→
∀xs,ys(P xs ys→(xs eqd [] ∧ ys eqd [])∨

∃rx′,y′,xs′,ys′(Rx′y′ ∧ (xs′ ≈ ys′ ∨ P xs′ ys′)∧
xs eqdx′::xs′ ∧ ys eqd y′::ys′))→

xs ≈ ys)

≈+

We call it the bisimilarity relation relativised by R.

Example 2.3.18 (Bisimilarity between infinite lists). As a concrete example of the use
of greatest-fixed-point axioms, we prove the bisimilarity of two differently defined infinite
lists of even numbers. Here we use ≈ relativised by eqd on natural numbers. Define the
following two terms.

l0 = coRN
LN

0M0, where M0 := λnInR〈n, InR(n+ 2)〉,
l1 = coRN

LN
0M1, where M1 := λnInR〈2n, InR(n+ 1)〉.

Both of them unfold into a list 0::2::4:: . . . We prove the bisimilarity of them, i.e., l0 ≈ l1,
by means of ≈+ with the competitor predicate

Q := {s, t | ∃n(s eqd coRN
LN

2nM0 ∧ t eqd coRN
LN
nM1)}.

It suffices to prove Q l0 l1 and the costep formula. For the latter, let l′0 and l′1 be given and
assume Q l′0 l

′
1, namely, there is n′ such that l′0 eqd coRN

LN
2n′M0 and l′1 eqd coRN

LN
n′M1. We

prove the right disjunct of the costep formula. By unfolding, l′0 = 2n′::coRN
LN

(2n′+2)M0 and

l′1 = 2n′::coRN
LN

(n′+1)M1. Since 2n′+2 eqd 2(n′+1), Q(coRN
LN

(2n′+2)M0,
coRN

LN
(n′+1)M1)

holds.
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2.3.3 Totality and Cototality

We have taken a look at totality and cototality of finitary algebras in Section 2.1. We state
them in general for an arbitrary type by inductive and coinductive definitions. We define
the totality predicate and the cototality predicate of an arbitrary type.

Definition 2.3.19 (Totality and cototality predicates). Assume τ is a type and θ is a
mapping from each free variable α in τ into a predicate variable of arity (α). We define a
translation tl from a type τ into totality and cototality predicates of τ .

tlθ(α) := θ(α) if α is a variable,

tlθ(σ → τ) := {yσ→τ | ∀zσ(tlθ(σ)(z)→ tlθ(τ)(yz))} y and z are fresh,

tlθ(µξ((ρiν)ν<ni → ξ)i<k) := µ̂X(∀~xi((tlθ,ξ 7→X(ρiν)(xiν))ν<ni → X(Ci~xi)))i<k,

where µ̂ is an intermediate symbol which is instantiated by µ or ν. An inductive predicate
defined by tl from τ is called the totality predicate of τ , written Tτ , and a coinductive
predicate is called the cototality predicate of τ , written coTτ . When a (co)totality predicate

of type τ has parameter predicate variables ~P associated with free variables in τ , we can
explicitly call it a relativised (co)totality predicate, written RTτ (coRTτ ).

If there are n occurrences of µ in the definition of a type τ , there are 2n variations
of combinations of inductive definitions and coinductive definitions due to the way of
instantiating µ̂ in tlθ(τ). For a nested algebra ι depending on another algebra ι′, we can
say the ι-(co)totality ι′-(co)totality predicate, if there is no confusion. For example, the
cototality predicate of Nt which internally uses the totality predicate of Lα can be called
the Nt-cototality LNt-totality predicate.

For an algebra ι~α, we define the structure-totality and the structure-cototality predicates
STι~α and coSTι~α .

Definition 2.3.20 (Structure-totality and -cototality predicates). Assume τ is a type and
θ is a mapping from each free variable α in τ into a comprehension term {xα |T}. We
define the structure-totality and cototality predicates, STτ and coSTτ , of τ by instantiating
µ̂ in tlθ(τ) by µ and ν, respectively, and identifying formulas T→ A and A.

Example 2.3.21 (Totality and cototality predicates on N and Nt). We obtain from
tl(N) the totality and cototality predicates TN = µX(X 0,∀n(X n→ X(Sn))) and coTN =
νX(X 0,∀n(X n → X(Sn))). We obtain from tl(Nt) the four variations of totality and
cototality predicates, the Nt-total LNt-total predicate, the Nt-cototal LNt-total predicate,
the Nt-total LNt-cototal predicate and the Nt-cototal LNt-cototal predicate.

Let RTX be the relativised totality predicate on Lα. The introduction and elimination
axioms of the Nt-total LNt-total predicate TNt are

∀as(RTTNt
as→ TNt(Br as)), T+

Nt

∀a(TNt a→ ∀as(RTTNt∩Q as→ Q(Br as))→ Qa). T−Nt
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The clause and greatest-fixed-point axioms of the Nt-cototal LNt-total predicate coTNt are

∀a(coT a→ ∃as(TcoT as ∧ a eqdBr as)) coT−Nt

∀a(Qa→∀a(Qa→ ∃as(T(coT∪Q) as ∧ a eqdBr as))→ coT a). coT+
Nt

Example 2.3.22 (Structure-totality and cototality predicates of Lα). Let α be a type
variable and θ be a mapping (α 7→ {xα |T}). From tlθ(Lα) we obtain µ̂X(X [],∀x,xs(T→
X xs → X(x::xs))) which yields STL = µX(X [],∀x,xs(X xs → X(x::xs))) and coSTL =
νX(X [],∀x,xs(X xs→ X(x::xs))).

2.3.4 Monotonicity

Suppose that the occurrences of predicate variables ~X in a formula A( ~X) are strictly

positive, i.e., F(A( ~X)) and SP ~X(A( ~X)), then A( ~X) satisfies the monotonicity property ;

A(~P ) implies A( ~Q) provided ∀~x(Pi~x → Qi~x) for each i. This lemma plays an important
role in proof normalization involving nestedness. In Section 2.5.3, we prove that the map
operator is a realizer of the monotonicity lemma.

Lemma 2.3.23 (Monotonicity). Let A( ~X) be a formula, n be the length of ~X, and ~P , ~Q be

a list of predicates of length n. Assume SP ~X(A( ~X)), then A( ~X) satisfies the monotonicity

property, namely, ∀~x(A(~P )→ (∀~x(Pi~x→ Qi~x))i<n → A( ~Q)).

Proof. By simultaneous induction on the construction of A.
Case A( ~X) = ∀x̃Ã( ~X). We prove ∀~x(∀x̃Ã(~P )→ (∀~x(Pi~x→ Qi~x))i<n → ∀x̃Ã( ~Q)). Let

~x be given and assume ∀x̃Ã(~P ), ∀~x(Pi~x→ Qi~x) for each i < n, and also let x̃ be given. By

induction hypothesis, it suffices to prove Ã(~P ), which comes from the assumption ∀x̃Ã(~P ).

Case A( ~X) = B → Ã( ~X). FPV(B) ∩ ~X = ∅. Assume B → Ã(~P ), ∀~x(Pi~x→ Qi~x) for

each i < n and B, then we prove Ã( ~Q). Using the induction hypothesis, it suffices to prove

Ã(~P ), which comes from the assumption B → Ã(~P ) and B.

Case A( ~X) = P̃~t. We proceed by side induction on the construction of Pred(P̃ ).
Side case P̃ = Z. If Z = Xj for some j, then the goal is

∀~x(Pj~t→ (∀~x(Pi~x→ Qi~x))i<n → Qj
~t ).

Use ∀~x(Pj~x→ Qj~x) in the premise. Otherwise, the goal is of the form ∀~x(Z~t→ (∀~x(Pi~x→
Qi~x))i<n → Z~t ), which is trivial.

Side case P̃ = {~x | Ã(~x)}. The induction hypothesis is exactly the conclusion we desire.

Side case P̃ = I(~R( ~X)) where I is an inductive predicate µZ( ~K) and ~R is a list of

predicates. Let n′ be the length of ~R. We prove

∀~x(I(~R(~P ))~t→ (∀~x(Pi~x→ Qi~x))i<n → I(~R( ~Q))~t ).

If n′ = 0, it is trivial. Otherwise, let ~x be given and assume I(~R(~P ))~t, say I~R(~P )
~t in

short, and ∀~x(Pi~x→ Qi~x) for each i < n. We prove the goal I~R( ~Q)
~t by using I− for I~R(~P )

~t.
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Suppose that the clause formulas of I ~X are Ki = ∀~x((Aiν( ~X,Z))ν<ni → Z~t ), then the step

formulas are ∀~x((Aiν(~R(~P ), I~R(~P ) ∩ I~R( ~Q)))ν<ni → I~R( ~Q)
~t ) for each i < k. Let ~x be given

and assume (Aiν(~R(~P ), I~R(~P ) ∩ I~R( ~Q)))ν<ni . Using I+i to prove I~R( ~Q)
~t, it remains to prove

Aiν(~R( ~Q), I~R( ~Q)) for ν < ni. We use induction hypothesis for F(Aiν( ~X,Z)),

∀~x(Aiν(~R(~P ), I~R(~P ) ∩ I~R( ~Q))→ (∀~x(Ri(~P )~x→ Ri( ~Q)~x))i<n′ →

∀~x((I~R(~P ) ∩ I~R( ~Q))~x→ I~R( ~Q)~x)→ Aiν(~R( ~Q), I~R( ~Q))).

We already have the first premise. The second ones are by side induction hypotheses on
Pred(Ri( ~X)). The third one is trivial from the definition of conjunction.

Side case P̃ = coI(~R( ~X)) where coI(~Y ) is a coinductive predicate νZ( ~K) and ~R( ~X) is a
list of predicates. We prove

∀~x(coI(~R(~P ))~t→ (∀~x(Pj~x→ Qj~x))j<n → coI(~R( ~Q))~t ).

Suppose that the length of ~R is non-zero. Let ~x be given and assume coI~R(~P )
~t, and ∀~x(Pi~x→

Qi~x) for each i < n. We prove the goal coI~R( ~Q)
~t by using coI+ with the competitor predicate

coI~R(~P ). Suppose the same ~K as in the same way as the previous side case, then the costep

formula is ∀~x(coI~R(~P )~x→
∨
i<k ∃~y(

∧ ~Ei ∧
∧
ν<ni

Aiν(~R( ~Q), coI~R( ~Q) ∪ coI~R(~P )))). Let ~x be given

and assume coI~R(~P )~x. Applying coI− to coI~R(~P )~x, then
∨
i<k ∃~y(

∧ ~Ei∧
∧
ν<ni

Aiν(~R(~P ), coI~R(~P )))

holds, and use ∨− for this disjunction. For the case of i-th disjunct, assume∃~y(
∧ ~Ei ∧∧

ν<ni
Aiν(~R(~P ), coI~R(~P )). By means of ∨+0 , ∨+1 , ∃−, ∃+, ∧− and ∧+, we end up with

proving Aiν(~R( ~Q), coI~R( ~Q) ∪ coI~R(~P )) from Aiν(~R(~P ), coI~R(~P )). By the induction hypothesis

for F(Aiν( ~X,Z)),

∀~x(Aiν(~R(~P ), coI~R(~P ))→ (∀~x(Ri(~P )~x→ Ri( ~Q)~x))i<m →

∀~x(coI~R(~P )~x→ (coI~R( ~Q) ∪
coI~R(~P ))~x)→ Aiν(~R( ~Q), coI~R( ~Q) ∪

coI~R(~P ))).

The first premise is in the assumption and the second and the third ones are from the side
induction hypothesis as in the previous side case.

2.3.5 Simultaneous Definitions

We consider a generalization of predicate definitions to adopt simultaneously defined
predicates. We modify Definition 2.3.5, in the following way.

Definition 2.3.24 (Formulas and predicates with simultaneity). Let ~X be a list of predicate
variables of length l and j be a monotone surjective function from {0, . . . , k − 1} to
{0, . . . , l − 1}. We define predicate forms P by

P ::=X | {~x |A} |µ ~X(∀~xi((Aiν)ν<ni → Xji
~ti))i<k | ν ~X(∀~xi((Aiν)ν<ni → Xji

~ti))i<k.
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Let J be µ ~X(∀~xi((Aiν)ν<ni → Xji
~ti))i<k) or ν ~X(∀~xi((Aiν)ν<ni → Xji

~ti))i<k). The definition
of free predicate variables FPV is defined also for the above predicate forms.

FPV(J) :=
⋃
i<k

⋃
ν<ni

FPV(Aiν) \ { ~X}.

The strictly positive occurrences of predicate variables are modified in the following way.

for all i < k, for all ν < ni, SP~Y , ~X(Aiν)

SP~Y (J) .

The inhabited predicate forms are modified as follows. Here we mean the m-th tail of ~X by
~X(m).

for all m < l, there exists i, ji = m and for all ν < ni, Inhab~Y , ~X(m)(Aiν)

Inhab~Y (J) .

The predicates are defined as follows.

for all i < k, ν < ni, F(Aiν) and SPX(Aiν) Inhab(J)

Pred(J) .

The introduction and elimination axioms are given in a similar way as the non-
simultaneous case.

Definition 2.3.25 (Introduction and elimination axioms of simultaneous inductive defini-

tions). Let ~X be a list of predicate variables of length l and ~I be a list of simultaneously

inductively defined predicates µ ~X(∀~xi((Aiν( ~X))ν<ni → Xji
~ti))i<k). The introduction axioms

of ~I are given as follows.

∀~xi((Aiν(~I))ν<ni → Iji~ti)). (~I)+i

Let ~Q be a list of predicate variables of length l such that the arity of Qm is same as the
one of Im for each m < l, and ~P be a list of predicates of the form Im ∩ Qm. For each
m < l we define the elimination axioms I−m as follows.

∀~x(Im ~x→ (∀~xi((Aiν(~P ))ν<ni → Qji
~ti))i<k → Qm ~x). (~I)−m

Definition 2.3.26 (Closure and greatest-fixed-point axioms of simultaneous coinductive

definitions). Let ~X be a list of predicate variables of length l and ~coI be a list of simultaneously

coinductively defined predicates ν ~X(∀~xi((Aiν( ~X))ν<ni → Xji
~ti))i<k). Assume variables ~yi

for each of ~ti to form an equality Eii′ := yii′ eqd tii′ . For each m < l we find im and i′m such

that im ≤ i < i′m implies ji = m. For each m < l we define the closure axioms ( ~coI)−m as
follows.

∀~y(coIm~y →
∨
i; im≤i<i′m

∃~xi(
∧
ν<ni

Aiν( ~coI) ∧
∧ ~Ei)). ( ~coI)−m
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Let ~Q be a list of predicate variables of length l such that the arity of Qm is same as the
one of Im for each m < l, and ~P be a list of predicates of the form coIm ∪ Qm. For each
m < l we define the greatest-fixed-point axioms ( ~coI)+m as follows.

∀~x(Qm ~x→(∀~y(coIm~y →
∨
i; im≤i<i′m

∃~xi(
∧
ν<ni

Aiν(~P ) ∧
∧ ~Ei)))m<l → coIm ~x). ( ~coI)+m

Consider the algebras (Ts,T) of tree lists and trees defined in Example 2.1.18. We
define the totality predicates and the cototality predicates of them for example.

Example 2.3.27. Consider the simultaneously defined algebras of tree lists and trees
(Ts,T). We simultaneously define the predicates of (Ts,T)-totality. The (Ts,T)-totality
predicates are (TTs, TT) whose arities are (Ts) and (T), respectively. Define (TTs, TT) to
be µX,Y (K0, K1, K2) where

K0 = X Empty,

K1 = ∀a(Y a→ ∀as(X as→ X(Tcons a as))),

K2 = ∀as(Y as→ X(Branch as)).

The introduction and elimination axioms are as follows. Let P0 and P1 be predicate variables
of arities (Ts) and (T).

TTs Empty, (TTs, TT)+0

∀a(TT a→ ∀as(TTs as→ TTs(Tcons a as))), (TTs, TT)+1

∀as(TTs as→ TT(Branch as)), (TTs, TT)+2

∀as(TTs as→ S0 → S1 → S2 → P0 as), (TTs, TT)−0

∀a(TT a→ S0 → S1 → S2 → P1 a), (TTs, TT)−1

where

S0 = P0 Empty,

S1 = ∀a(TT a→ P1 a→ ∀as(TTs as→ P0 as→ P0(Tcons a as))),

S2 = ∀as(TTs as→ P0 as→ P1 as)).

The companion predicates of the above are simultaneously coinductively defined predicates
(coTTs,

coTT) of arities (Ts) and (T), respectively. They are defined to be νX,Y (K0, K1, K2),
then closure and greatest-fixed-point axioms are as follows.

∀as(coTTs as→as eqdEmpty∨
∃b,bs(coTT b ∧ coTTs bs ∧ as eqdTcons b bs)),

(coTTs,
coTT)−0

∀a(coTT a→ ∃as(coTTs as ∧ a eqdBranch as)), (coTTs,
coTT)−1

∀as(P0 as→ coS0 → coS1 → coTTs as), (coTTs,
coTT)+0

∀a(P1 as→ coS0 → coS1 → coTT a), (coTTs,
coTT)+1

where,
coS0 = ∀as(P0 as→ as eqdEmpty ∨ ∃b,bs((coTT ∪ P1)b ∧ (coTTs ∪ P0)bs ∧ as eqdTcons b bs)),
coS1 = ∀a(P1 a→ ∃as((coTTs ∪ P0)as ∧ a eqdBranch as)).
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2.4 Proofs

In this section we focus on providing our notion of proofs or derivations in TCF. The word
derivation is used for a formal representation of a proof, while the word proof is rather
used for the informal level. We formulate the term representation of natural deduction
derivations and its conversion. We leave the details of first order logic to the relevant
literature [vD94, TS00, SW12].

2.4.1 Natural Deduction

Our base logic is first-order minimal logic with the implication and the universal quantifier.
Axioms given by inductive and coinductive definitions extend the logic. We focus on defining
the term representation of derivations which is required in program extraction in Section 2.5.
We define the notion of derivations.

Definition 2.4.1 (Derivations). Let A and B be variables which range over formulas, x
range over object variables and r range over terms. We inductively define a derivation.

Assumption An arbitrary formula A is a derivation from an open assumption A.
Axiom An arbitrary axiom A is a derivation.
We depict this derivation by A. There are the introduction and elimination rules for

the implication and for the universal quantifier.
The introduction rule of the universal quantifier We assume a derivation of A which does

not contain any open assumption which has x as a free variable and construct a derivation
of ∀xA.

The elimination rule of the universal quantifier We assume a derivation of ∀xA and a
term r of the same type as x and construct a derivation of A.

The introduction rule of the implication We assume a derivation of B and construct a
derivation of A→ B with cancelling all open assumption A in the derivation of B.

The elimination rule of the implication We assume a derivation of A→ B and another
one of B and construct a derivation of B.

Those derivations are depicted as follows. The introduction rules of the universal
quantifier and the implication are denoted by ∀+ and →+ and the elimination rules of the
universal quantifier and the implication are denoted by ∀− and →−, respectively. A use of
the introduction of the implication and the corresponding cancelled open assumptions are
indicated by an assumption variable and square brackets.

Via the Curry-Howard correspondence we consider derivation terms, a term represen-
tation of derivations. We consider each axiom name as a constant of derivation terms.
For example, let I and coI be inductively and coinductively defined predicate constants,
respectively, then I+i , I−, coI− and coI+, are constants. Let c range over constants.

Definition 2.4.2 (Derivation terms). We define derivation terms by induction on the
construction of a derivation.

(Assumption) A derivation term of a derivation u : A is uA.
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.... D
A
∀xA ∀

+

[u : A]
.... D
B

A→ B →
+ u

.... D
∀xρA rρ

A(r)
∀−

.... D
A→ B

.... E
A

B →−

(Axiom) A derivation term of a derivation A by an axiom c is cA.
(∀+) A derivation term of a derivation

.... D
A
∀xA ∀

+

is (λxM)∀xA, where MA is a derivation term of D.
(∀−) A derivation term of a derivation

.... D
∀xρA rρ

A(r)
∀−

is (M∀xAr)A, where M∀xA is a derivation term of D.
(→+) A derivation term of a derivation

[u : A]
.... D
B

A→ B →
+ u

is (λAxM
B)A→B, where MB is a derivation term of D.

(→−) A derivation term of a derivation

.... D
A→ B

.... E
A

B →−

is (MA→BNA)B, where MA→B and NA are the derivation terms of D and E, respectively.

Example 2.4.3. Recall Even and TN defined in Example 2.3.11 and Example 2.3.21,
respectively. We prove ∀n(Evenn→ TN n) as follows. Suppose that S0 and S1 are the step
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formulas of Even−, i.e., P 0 and ∀n(Evenn→ P n→ P (S(Sn))). Then,

∀n(Evenn→ S0 → S1 → TN n)
Even−

n

Evenn→ S0 → S1 → TN n [Evenn]u

S0 → S1 → TN n

.... M0

S0

S1 → TN n

.... M1

S1

TN n
Evenn→ TN n →

+ u

∀n(Evenn→ TN n) ,

where M0 and M1 are

TN 0
(TN)+0 ,

∀n(TN n→ TN(Sn))
(TN)+1 Sn

TN(Sn)→ TN(S(Sn))

∀n(TN n→ TN(Sn))
(TN)+1 n

TN n→ TN(Sn) [TN n]v1

TN(Sn)

TN(S(Sn))

TN n→ TN(S(Sn))
→+ v1

Evenn→ TN n→ TN(S(Sn))
→+ v0

∀n(Evenn→ TN n→ TN(S(Sn))) .

Omitting the superscript formulas, the derivation term of the above is

λn,u(Even− nu (TN)+0 (λn,v0,v1(TN)+1 (Sn)((TN)+1 n v1))).

2.4.2 Proof Conversion

We adopt the standard conversion rules for ∀ and →. In addition, we extend the conversion
in order to support axioms of inductively and coinductively defined predicates.

Definition 2.4.4 (Proof conversion for→ and ∀). The conversions for→ and ∀ are defined
to be

[u : A]
.... M
B

A→ B →
+ u

.... N
A

B →−
7→

.... N
A.... M
B ,

.... Mx

A(x)

∀xA(x)
∀+

r

A(r)
∀−

7→
.... Mr

A(r) .
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The following conversion rule removes a certain use of the introduction and elimination
axioms which is taken as a detour.

Definition 2.4.5 (Proof conversion for inductive predicates). Let I be an inductively
defined predicate and P be a predicate variable of the same arity as I. Abbreviate the step
formulas of I− as ~S and suppose that each I+i is of the form ∀~x((Aiν(I))ν<n → I~t ). Then,
we consider the following derivation:

∀~x(I~x→ ~S → P~x)
I−

~t

I~t→ ~S → P~t

∀~x((Aiν(I))ν<n → I~t )
I+i

~x

(Aiν(I))ν<n → I~t

.... Mν<n

(Aiν(I))ν<n

I~t
~S → P~t

....
~N

~S

P~t .

Suppose that Si is of the form ∀nc~x ((Aiν(I∩P ))ν<n → P~t) and Mon abbreviates Lemma 2.3.23.
We convert the above derivation into

.... Ni

∀~x((Aiν(I ∩ P ))ν<n → P~t ) ~x

(Aiν(I ∩ P ))ν<n → P~t

.... K

∀~x(I~x→ (I ∩ P )~x)→ Aiν(I ∩ P )

.... L

∀~x(I~x→ (I ∩ P )~x)

(Aiν(I ∩ P ))ν<n

P~t ,

where K and L are respectively as follows:

∀~x(Aiν(I)→ ∀~x(I~x→ (I ∩ P )~x)→ Aiν(I ∩ P ))
Mon

~x

Aiν(I)→ ∀~x(I~x→ (I ∩ P )~x)→ Aiν(I ∩ P )

.... Mν

Aiν(I)

∀~x(I~x→ (I ∩ P )~x)→ Aiν(I ∩ P ) ,

[u : I~t]

∀~x(I~x→ ~S → P~x)
I−

~t

I~t→ ~S → P~t [u : I~t]

~S → P~t

....
~N

~S

P~t

(I ∩ P )~t

I~t→ (I ∩ P )~t
→+ u

∀~x(I~x→ (I ∩ P )~x) .

As a derivation term, the above conversion reads

I−~t (I+i ~xMν<n) ~N 7→ Ni
~t(Mon ~xMν(λ~x,u(∧+u(I− ~x u ~N))))ν<n.

We consider conversion involving coinductively defined predicates. A certain use of a
closure axiom and a greatest-fixed-point axiom is considered to be a detour and removed.
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Definition 2.4.6 (Proof conversion for coinductive predicates). Let coI be a coinductively
defined predicate and P be a predicate variable of the same arity of coI. We abbreviate∨
i<k(

∧
ν<nAiν(X)) as CX and the costep formula of coI+ as coS, then we consider the

following derivation:

∀~x(coI~x→ CcoI)
coI− ~t

coI~t→ CcoI

∀~x(P~x→ coS → coI~x)
coI+ ~t

P~t→ coS → coI~t

.... N

P~t
coS → coI~t

.... M
coS

coI~t
CcoI .

By the conversion rule, the occurrence of coI− in the above derivation is removed.

.... M

∀~x(P~x→
∨
i<k(

∧
ν<ni

Aiν(
coI ∪ P ))) ~t

P~t→
∨
i<k(

∧
ν<ni

Aiν(
coI ∪ P ))

.... N

P~t∨
i<k(

∧
ν<ni

Aiν(
coI ∪ P ))

[ui :
∧
ν<ni

Aiν(
coI ∪ P )]

.... Ki∧
ν<ni

Aiν(
coI)∨

i<k(
∧
ν<ni

Aiν(
coI))

∨+
i∨

i<k(
∧
ν<ni

Aiν(
coI))

∨−
~u ,

where we suppose that A′ is a formula ∀~x((coI∪P )~t→ coI~t) andBi
X is a formula

∧
ν<ni

Aiν(X).
Omitting i without any confusion, each Ki is given as follows:

∀~x(BcoI∪P → A′ → BcoI)
Mon ~t

BcoI∪P → A′ → BcoI

A′ → BcoI

[w : coI~t ∨ P~t] [v0 :
coI~t]

[v1 : P~t].... Li
coI~t

coI~t
∨−v0,v1

(coI ∪ P )~t→ coI~t
→+ w

A′

BcoI .

By using coI+, we can derive coI~t from P~t. Note that we can also use the derivation M for
the costep formula of coI+, then the derivation Li is given as follows:

∀~x(P~x→ coS → coI~x)
coI+ ~t

P~t→ coS → coI~t [v1 : P~t]
coS → coI~t

.... M
coS

coI~t .

As a derivation term, the above conversion rule is

coI−~t (coI+~tN M) 7→
∨− (MN)(λui(Mon~t ui λ~x,w(∨−w v0(coI+ ~x v1M))))i<n.
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2.5 Realizability Interpretation

According to Kreisel’s modified realizability interpretation, a formula of the form ∀xA(x)
is realized by a recursive function which maps a given x to a realizer of A(x). Similarly,
a formula of the form A→ B is realized by a recursive function which maps a realizer of
A to a realizer of B. In order to fine-tune computational content of proofs, we consider
computational and non-computational universal quantifiers and implications, denoted by ∀c,
∀nc,→c and→nc. These additional superscript notations are called decorations. The syntax
of decorated universal quantifiers and implications are given by modifying Definition 2.3.1
and 2.3.5.

Definition 2.5.1 (Decorated formula forms). We define formula forms by

A,B ::= P~t |A→c B | ∀cxA |A→nc B | ∀ncx A,

and ∀ and → in the definition of predicate forms are arbitrarily ∀c or ∀nc, and →c or →nc,
respectively. Then the rest of definitions are modified to accept the same rules for decorated
formula forms replacing the rules for non-decorated formula forms.

The non-computational universal quantifier was first studied by Berger [Ber93]. They
are logically equivalent, but computationally different. The computational ones, namely, ∀c
and →c, are interpreted by functions as commonly done. A realizer of ∀ncx A(x) is defined to
be a realizer of A(x) for an arbitrary x. The input x can occur in the formula A(x), but
not used to compute the output. A realizer of A →nc B is defined to be a realizer of B
provided there exists a realizer of A. Here, an existence of a realizer of A is necessary, but
it is not used.

Section 2.5.1 is devoted to discuss the decoration of clause formulas of inductive and
coinductive definitions due to Ratiu and Schwichtenberg [RS10] and Schwichtenberg [SW12].
In Section 2.5.2, we introduce the notion of realizability interpretation for our setting based
on Schwichtenberg [SW12]. We extend it to nested and coinductive definitions, then the
program extraction is given. We prove the soundness of our realizability interpretation in
Section 2.5.3. Theoretically, it claims that every theorem has a realizer.

2.5.1 Decorating Inductive and Coinductive Definitions

We consider computational inductive and coinductive definitions through decorating clause
formulas explicitly. Then, we also study non-computational inductive and coinductive
definitions. Although decorated formulas are logically the same as non-decorated formulas,
they are computationally different. This difference becomes clear from the realizability
interpretation given in Section 2.5.2. At the end of this section, we extend the notion of
proofs to the inference rules of decorated connectives. Particularly in the introduction
axioms of non-computational universal quantifier and implication we pose some restrictions
in order to keep the computational consistency.
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Definition 2.5.2 (Decorating Inductive Definitions). Suppose that an inductive predicate
I is given as

µX(∀ c/nc
~x ((Aiν(X))ν<ni →c/nc X~t ))i<k,

where ∀ c/nc and →c/nc are arbitrarily decorated. The introduction axioms I+i are obtained
by substituting I for X in Aiν . The elimination axiom I− is decorated as

∀nc~x (I~x→c (∀ c/nc
~x ((Aiν(I ∩d P ))ν<ni →c/nc P~t ))i<k →c P~x),

where ∀ c/nc and →c/nc in the step formulas are decorated as the clause formulas are.

We decorate inductively defined conjunction, disjunction and existential quantifier.
There are variants in order to specify which part of the formula has the computational
significance.

Example 2.5.3 (Decorated conjunction). We define the following decorated conjunctions.
Here, the superscripts d, u, l and r stand for double, uniformed, left and right, respectively.

A→c B →c A ∧d B (∧d)+

A ∧d B →c (A→c B →c P )→c P (∧d)−

A→nc B →nc A ∧u B (∧u)+

A ∧u B →c (A→nc B →nc P )→c P (∧u)−

A→c B →nc A ∧l B (∧l)+

A ∧l B →c (A→c B →nc P )→c P (∧l)−

A→nc B →c A ∧r B (∧r)+

A ∧r B →c (A→nc B →c P )→c P (∧r)−

For predicates Q1 and Q2 of the same arity (~τ ), we define Q1 ∩◦ Q2 to be {~x |Q1~x ∧◦ Q2~x},
where ◦ ∈ {d, l, r}.

Notice that ∩ is not used in the definitions of ∧◦. Definition 2.5.2 is therefore defined
without any circularity. Due to Definition 2.5.12, ∧u can be treated as a non-computational
inductive predicate.

Example 2.5.4 (Decorated disjunction). We define the following decorated disjunctions.
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Here, the superscripts d, u, l and r stand for double, uniformed, left and right, respectively.

A→c A ∨d B (∨d)+0

B →c A ∨d B (∨d)+1

A ∨d B →c (A→c P )→c (B →c P )→c P (∨d)−

A→nc A ∨u B (∨u)+0
B →nc A ∨u B (∨u)+1
A ∨u B →c (A→nc P )→c (B →nc P )→c P (∨u)−

A→c A ∨l B (∨l)+0

B →nc A ∨l B (∨l)+1

A ∨l B →c (A→c P )→c (B →nc P )→c P (∨l)−

A→nc A ∨r B (∨r)+0
B →c A ∨r B (∨r)+1
A ∨r B →c (A→nc P )→c (B →c P )→c P (∨r)−

For predicates Q1 and Q2 of the same arity (~τ ), we define Q1 ∪◦ Q2 to be {~x |Q1~x ∨◦ Q2~x},
where ◦ ∈ {d, u, l, r}.

Example 2.5.5 (Decorated existential quantifier). We define the following decorated
existential quantifiers. Here, the superscripts d, u, l and r stand for double, uniformed, left
and right, respectively.

∀cxρ(A→c ∃dxA) (∃d)+

∃dxA→c ∀cxρ(A→c P )→c P (∃d)−

∀cxρ(A→nc ∃lxA) (∃l)+

∃lxA→c ∀cxρ(A→nc P )→c P (∃l)−

∀ncxρ(A→nc ∃uxA) (∃u)+

∃uxA→c ∀ncxρ(A→nc P )→c P (∃u)−

∀ncxρ(A→c ∃rxA) (∃r)+

∃rxA→c ∀ncxρ(A→c P )→c P (∃r)−

Due to Definition 2.5.12, ∃u can be treated as a non-computational inductive predicate.

Example 2.5.6. Let A, B and C be formulas. Assume conjunction is right associative. In
a decorated formula A ∧r B ∧d C the formula A is treated as a non-computational formula.
The others, B and C are treated as a computational formulas. In a decorated formula
A ∧l B ∧l C the formula A is treated as computational formula. The others are treated as
non-computational ones.

Example 2.5.7. Let A and B be formulas and x be a variable. In a formula ∃lx(A),
the variable x is treated as a computational object, and the formula A is treated as a
non-computational formula. In a formula ∃rx(A ∨u B) the formula A ∨u B is treated as
a computational formula. The variable x and the formulas A and B are treated as a
non-computational variable and non-computational formulas, respectively.
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Definition 2.5.8 (Decorating coinductive predicates). Suppose that a coinductively defined
predicate coI = νX(∀~xi((Aiν(X))ν<ni → X~ti))i<k is given. As in Definition 2.3.15, we form

a formula ∃~xi(
∧
ν<ni

Aiν(X) ∧
∧ ~Ei) =: coKi(X) for each i < k and decorate it. We use ∧d,

∧l, ∧r and ∧u to specify which Aiν(X) is computational, and also use ∃d, ∃l, ∃r and ∃u to
specify which xi is computational. The following is the rule of decoration:

• Aiν followed by →c is computational.

• Aiν followed by →nc is non-computational.

• xi which occurs with ∀c is computational.

• xi which occurs with ∀nc is non-computational.

For decorated coKi(X), we form the disjunction
∨
i<k

coKi(X) by using ∨d, ∨l, ∨r and ∨u. If
there is neither→c nor ∀c in the i-th clause formula, coKi(X) is treated as non-computational
disjunct. Otherwise it is computational. The following is the decorated closure axiom.

∀nc~y (coI~y →c
∨
i<k

coKi(
coI)).

The greatest-fixed-point axioms are decorated as follows.

∀nc~y (P~y →c ∀nc~y (P~y →c
∨
i<k

coKi(
coI ∪d P ))→c coI~y).

There are two kinds of non-computational definitions. The first kind is an arbitrary
inductively and coinductively defined predicate which is marked as a non-computational
one under the two restrictions; the predicate parameters are invariant and the competitor
predicate in the elimination axiom is non-computational. They are called non-computational
inductively (coinductively) defined predicates. The second kind is a so-called special non-
computational inductive definition which is used for an inductive definition with one clause
formula involving no recursive premise and containing ∀nc and →nc only.

Definition 2.5.9 (Non-computational inductive and coinductive definitions). We extend
predicate forms in the following way

P ::=X | {~x |A} |µX(∀ c/nc
~xi

((Aiν)ν<ni →c/nc X~ti))i<k | νX(∀ c/nc
~xi

((Aiν)ν<ni →c/nc X~ti))i<k |

µnc
X (∀ c/nc

~xi
((Aiν)ν<ni →c/nc X~ti))i<k | νncX (∀ c/nc

~xi
((Aiν)ν<ni →c/nc X~ti))i<k,

where ∀ c/nc and→c/nc are arbitrarily decorated. Let J be µnc
X (∀ c/nc

~xi
((Aiν)ν<ni →c/nc X~ti))i<k

or νncX (∀ c/nc
~xi

((Aiν)ν<ni →c/nc X~ti))i<k. A predicate form J is a predicate if Pred(J) is derived
using the following additional rule for Pred.

for all Y ∈ FPV(A) \ ~X, Y is invariant

NC ~X(A) ,

for all i < k, for all ν < ni, F(Aiν) and SPX(Aiν) and NCX(Aiν) Inhab(J)

Pred(J)
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The notion of being invariant is simultaneously given in Definition 2.5.22. Let I and coI be
non-computational. inductive and non-computational coinductive predicates, respectively.
The axioms I+i , I−, coI− and coI+ are given as the same formulas as the computational
axioms, but the competitor predicate of I− and coI+ are restricted to be non-computational.

We take a look at examples.

Example 2.5.10 (Non-computational disjunction). We give a non-computational disjunc-
tion A ∨nc B := µnc

X (A → X,B → X). The introduction and elimination axioms are the
following.

A→ A ∨nc B (∨nc)+0
B → A ∨nc B (∨nc)+1
A ∨nc B → (A→ P )→ (B → P )→ P (∨nc)−

We also introduce the notion of ∪nc in the same way as decorated disjunctions.

Example 2.5.11 (Weak disjunction). For formulas A and B, we define A∨̃B to be
((A→ F)∧ (B → F))→ F which we call weak disjunction. We can prove A∨nc B → A∨̃B,
but cannot prove A∨̃B → A∨nc B. Although the conclusion A∨nc B is non-computational,
one has to make a decision, either the left or the right, in order to show it. The premise
A∨̃B does not provide such information.

The second kind of non-computational inductive definitions are as follows.

Definition 2.5.12 (One clause special non-computational inductive definitions). A non-
computational inductive definition I~Y := µnc

X (∀~x((Aiν)ν<ni → X~t ))i<k can be a one clause
special non-computational inductive definition if the following conditions are satisfied

1. There is only one clause formula, namely, k = 1.

2. All implications and universal quantifiers are non-computational.

3. Premises A0ν for ν < ni are of the form Yj~sj.

When an inductive predicate satisfies the above condition of one-clause special non-
computational inductive predicates, we always use the special non-computational inductive
version. We take a look at an example.

Example 2.5.13 (Leibniz equality, non-computational conjunction and existential quanti-
fier). We define the following special non-computational inductive predicates.

eqd := µnc
X (∀ncxα(X xx)),

∧u := µnc
X (A→nc B →nc X),

∃u := µnc
X (∀ncx (Y x→nc X)).



54 Chapter 2. Theory of Computable Functionals

Their introduction and elimination axioms are as follows.

∀ncxρ(x eqdx) eqd+

∀ncxρ,yρ(x eqd y →nc ∀ncxρ(Pxx)→c Pxy) eqd−

A→nc B →nc A ∧u B (∧u)+

A ∧u B →nc (A→nc B →nc P )→c P (∧u)−

∀ncxρ(A→nc ∃uxA) (∃u)+

∀ncxρ(∃uxA→nc ∀ncx (A→nc P )→c P ) (∃u)−

For eqd we adopt the infix notation as x eqd y. For predicates Q1 and Q2 of the same arity
(~τ), we define Q1 ∩u Q2 to be {~x |Q1~x ∧u Q2~x}.

Example 2.5.14. Consider conjunction of formulas A, B and C. If we are interested
in computational content of A only, a formula A ∧d B ∧u C can instead be decorated as
A ∧l B ∧u C.

We define the extended type τ(A) of a formula A. The extended type τ(A) is either
a type or the null type denoted by ◦. When τ(A) is a type, it tells us what the type of
an extracted program from a proof of A is. If any proof of the formula A does not have
computational content, there is nothing to extract from a proof and τ(A) results in the null
type. When no confusion may arise, we simply call τ(A) a type rather than an extended
type. Let ρ be a type, then we extend the use of the arrow type in the following way.

(ρ→ ◦) := ◦, (◦ → ρ) := ρ, (◦ → ◦) := ◦.

The types of formulas and predicates are defined by simultaneous induction on the con-
struction of formulas and predicates.

Definition 2.5.15 (Type of formulas and predicates). Let A be a formula and P be a

predicate. Assume type variables ~α associated with ~Y ⊆ FPV(A) and ~Y ⊆ FPV(P ). We
define a type or a null type τ(A) and τ(P ) by simultaneous induction on the construction
of formulas and predicates.

τ(A→c B) := τ(A)→ τ(B), τ(A→nc B) := τ(B),

τ(∀cxρA) := ρ→ τ(A), τ(∀ncxρA) := τ(A),

τ(P~t ) := τ(P ), τ({~x |B}) := τ(B),

τ(X) := ξX , τ(Yi) := αi,

If I = µX( ~K) and coI = νX( ~K) are computational inductive and coinductive definitions,

τ(I) := µξX (τ(K0), . . . , τ(Kn−1)), τ(coI) := µξX (τ(K0), . . . , τ(Kn−1)),

and else if I and coI are non-computational inductive and coinductive definitions,

τ(I) := τ(coI) := ◦.
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Especially for an inductively (and coinductively) defined predicate I (or coI), τ(I) (or
τ(coI)) is referred to by the associated algebra of I (or coI). Conventionally, we write ιI
for both τ(I) and τ(coI). A formula A is computational or computationally relevant if
τ(A) is not null. Otherwise, A is non-computational. We abbreviate them as c.r. and n.c.,
respectively. We use these abbreviations also for predicates.

Now we address the issue of the notion of proofs involving ∀nc and →nc. The rules
in Definition 2.4.1 are used for ∀c and →c as they are. Consider formulas ∀ncx B and
A →nc B. The idea is that x and A can be used in B, but they should not make any
computational significance. We formalize computational object variables and computational
assumption variables in a proof, then restrict introduction rules of ∀nc and →nc in order to
be computationally consistent. Strictly speaking, the inference rules are simultaneously
defined with CV and CA. The following definition of CV is due to Berger [Ber93].

Definition 2.5.16 (Computational object variables). Let MA be a derivation. If τ(A) = ◦,
CV(M) = ∅. Otherwise, CV(M) is defined by induction on the construction of M .

CV(cA) := ∅ (cA is an axiom),

CV(uA) := ∅,
CV((λuAM

B)A→
cB) := CV((λuAM

B)A→
ncB) := CV(M),

CV((MA→cBNA)B) := CV(M) ∪ CV(N),

CV((MA→ncBNA)B) := CV(M),

CV((λxM
A)∀

c
xA) := CV((λxM

A)∀
nc
x A) := CV(M)\{x},

CV((M∀cxA(x)r)A(r)) := CV(M) ∪ FV(r),

CV((M∀ncx A(x)r)A(r)) := CV(M).

The following definition of CA is due to Ratiu and Schwichtenberg [RS10].

Definition 2.5.17 (Computational assumption variables). Let MA be a derivation. If
τ(A) = ◦, CA(M) = ∅. Otherwise, CA(M) is defined by induction on the construction of
M .

CA(cA) := ∅ (cA is an axiom),

CA(uA) := {u},
CA((λuAM

B)A→
cB) := CA((λuAM

B)A→
ncB) := CA(M)\{u},

CA((MA→cBNA)B) := CA(M) ∪ CA(N),

CA((MA→ncBNA)B) := CA(M),

CA((λxM
A)∀

c
xA) := CA((λxM

A)∀
nc
x A) := CA(M),

CA((M∀cxA(x)r)A(r)) := CA((M∀ncx A(x)r)A(r)) := CA(M).

We give the following introduction rules for ∀nc and →nc. It is necessary in order to
keep the computational consistency of our notion of proofs.
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Definition 2.5.18 (Inference rules of ∀nc and →nc). Let A, B be variables which range
over formulas, M ranges over derivations, u ranges over assumption variables, x ranges over
object variables. The elimination rules of ∀nc and →nc are the same as ones of ∀− and →−.
The introduction rule of ∀nc is

.... M
A
∀ncx A

(∀nc)+ provided

{
x 6∈ CV(M) and x 6∈ FV(B) for

any free assumption variable uB in M .

The introduction rule of →nc is

[uA]
.... M
B

A→nc B
(→nc)+u

provided uA 6∈ CA(M).

The elimination rules of ∀nc and →nc are the same as the ones of ∀c and →c.

We introduce the computational equivalence between formulas. Based on it we can omit
some decoration to simplify the matter.

Definition 2.5.19 (Computationally equivalent formulas). Formulas A and A′ is compu-
tationally equivalent if one can prove both of A→c A′ and A′ →c A, and also the identity
function is a realizer of them.

It is easy to see that A →c B and A →nc B are computationally equivalent, and so
∀cxA and ∀ncx A are, provided A is non-computational. We can omit the decorations and
simply write A → B and ∀xA. If A is n.c. and B is c.r., A ∧d B and A ∧r B are also
computationally equivalent.

2.5.2 Program Extraction

We define the program extraction algorithm which translates a proof into a program. The
notion of proofs is as given in Section 2.4 with decoration given in Section 2.5.1. The notion
of programs is T+ given in Section 2.2. We first define the realizability interpretation which
is a relation on a term in T+ and a formula. Based on the realizability interpretation, we
secondly define the program extraction algorithm. We define the empty term which is a
realizer of non-computational formulas.

Definition 2.5.20 (Empty term). Let t be a term. The empty term ε is an extension of
terms which satisfy the following:

tε := t, εt := ε, εε := ε.

For any formula and predicate A, Aε := A.
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The following is the realizability interpretation which is given by simultaneous induction
on the structure of formulas and predicates in Definition 2.3.5. For a predicate P of arity
(~τ) where the length of ~τ ≥ 0, we define another predicate P r of arity (τ(P ), ~τ).

Definition 2.5.21 (Realizability interpretation). Assume a formula A, a predicate P and

for each Yi of arity (~δi) a predicate variable Y ∗i of arity (αi, ~δi) for some type variable αi. We
define the realizability interpretation Ar of A by simultaneous induction on the construction
of formulas and predicates.

(∀cxA)r := {u | ∀x(Ar(ux))}, (A→c B)r := {u | ∀x(Arx→ Br(ux))},
(∀ncx A)r := {u | ∀x(Aru)}, (A→nc B)r := {u | ∀x(Arx→ Bru)},
(P~s )r := {u |P ru~s}, Y r

i := {u, ~x |Y ∗i u~x} (Yi c.r.),

{~x |A}r := {u, ~x |Aru}, Y r
i := Yi (Yi n.c.).

For computational inductively and coinductively defined predicates,

(J~P )r := {u, ~x | Jr
~P ru~x}, (coJ ~P )r := {u, ~x | coJr

~P ru~x}.

For non-computational inductively and coinductively defined predicates,

(J~P )r := J~P , (coJ ~P )r := coJ ~P .

For one-clause defined non-computational inductively defined predicates,

(J~P )r := J(∃ux(P r
i x))i<n

.

We can write u r A~P instead of Ar
~P r
u.

If P is a predicate variable, P r is same as P ∗ from the above definition. Invariant
formulas are defined as follows.

Definition 2.5.22 (Invariant formulas and predicates). A formula A and a predicate P are
invariant if A↔ ∃x(Arx) and P~t↔ ∃x(P rx~t ) for any ~t are derivable in TCF, respectively.

The inductive and coinductive predicates with the superscript r, namely, Ir, are called
witnessing predicates. For each an inductively (or coinductively) defined predicate J , we
define the n.c. predicate Jr, the witnessing predicate of J . Suppose that the arity of J
is (~τ), then the arity of Jr is (ιJ , ~τ). We define Jr as a non-computational inductive (or
coinductive) predicate. By means of them, the notion of realizability can be internalized in
the language of TCF.

Definition 2.5.23 (Witnessing predicates). Suppose that I~Y = µX( ~K) is an inductive
predicate of arity (~τ ), where Yi is of arity (~σi). Let ι be the associated algebra of I~Y . Assume

predicate variables ~Y ∗ such that Y ∗i is of arity (τ(Yi), ~σi). Let Ci be the i-th constructor of
ι. Let X∗ be a predicate variable of arity (ι, ~τ) and K∗i be a formula Ci r Ki with replacing
each occurrence of Xr by X∗. The witnessing predicate Ir~Y r

is defined to be an n.c. inductive
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predicate µnc
X∗(

~K∗) of arity (ι, ~τ). Suppose that Ki is of the form ∀~xi((Aiν(X))ν<ni → X~ti).
The i-th introduction axiom of Ir~Y r

is

∀~xi,~ui((Ar
iν(I

r
~Y r)uiν)ν<ni → Ir~Y r(Ci~xi~ui,~ti)) (Ir)+i

where

1. uiν occurs if Aiν is c.r., and it appears as an argument of Ci if Aiν is followed by →c,

2. xii′ with ∀c appears as an argument of Ci.

Let P be a predicate variable of the same arity of Ir~Y r
. Recall that P has to be instantiated

by a non-computational predicate. The elimination axiom of Ir~Y r
is as follows.

∀~x,u(Ir~Y ru~x→ (∀~xi,~ui((Ar
iν(I

r
~Y r ∩u P )uiν)ν<ni → P (Ci~ui,~ti)))i<k → Pu~x) (Ir)−

Recall that ∩u is defined in Example 2.5.13.
Suppose that coI~Y is the companion predicate of I~Y above. The witnessing predicate

coIr~Y r = νncX∗(
~Kr) of coI~Y is an n.c. coinductive predicate of arity (ι, ~τ). Let ~v be fresh variables

of the same length of ~y and k be the length of ~Kr. Let A∗i (X
∗) be ∃u~yi,~vi(

∧nc
ν<ni

(Ar
iν(X

∗)viν)∧∧ ~E ∧Du eqd inki (pair~vi)), where viν is not there if Aiν is n.c. The closure axiom of coIr~Y r is

∀~x,u(coIr~Y ru~x→
∨nc
i<kA

∗
i (

coIr~Y r)), (coIr)−

Let P be a non-computational predicate variable of the same arity of coIr~Y r . The greatest-
fixed-point axiom of coIr~Y r is

∀~x,u(Pu~x→ ∀~x,u(Pu~x→
∨nc
i<kA

∗
i (

coIr~Y r ∪nc P ))→ coIr~Y ru~x), (coIr)+

where ∪nc is given in Example 2.5.10.

We give some examples of witnessing predicates.

Example 2.5.24 (Witnessing predicates of conjunction). Let A and B are predicate
variables of arities (α) and (β), respectively. Let variables a be ranging over α, b over β, w
over α× β. We define the witnessing predicates of the conjunctions, namely, the witnessing
versions of Example 2.5.3.

A(∧d)rB := µnc
X (∀a,b(Aa→nc Bb→nc X〈a, b〉)),

A(∧l)rB := µnc
X (∀a,b(Aa→nc Bb→nc Xa)),

A(∧r)rB := µnc
X (∀a,b(Aa→nc Bb→nc Xb)).

The introduction and elimination axioms are

∀a,b(Aa→ Bb→ (A(∧d)rB)〈a, b〉) ((∧d)r)+

∀w((A(∧d)rB)w → ∀a,b(Aa→ Bb→ P 〈a, b〉)→ Pw) ((∧d)r)−

∀a,b(Aa→ Bb→ (A(∧l)rB)a) ((∧l)r)+

∀a((A(∧l)rB)a→ ∀a,b(Aa→ Bb→ Pa)→ Pa) ((∧l)r)−

∀a,b(Aa→ Bb→ (A(∧r)rB)b) ((∧r)r)+

∀b((A(∧r)rB)b→ ∀a,b(Aa→ Bb→ Pb)→ Pb). ((∧r)r)−
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Example 2.5.25 (Witnessing predicates of disjunction). Let P , A and B be predicate
variables of arities (), (α) and (β), respectively. We define the witnessing predicates of the
decorated disjunctions.

A(∨d)rB := µnc
X (∀a(Aa→ X(InL a)),∀b(B b→ X(InR b))),

A(∨l)rP := µnc
X (∀a(Aa→ X(JustL a)), P → X NoneR),

P (∨r)rB := µnc
X (P → X None,∀b(B b→ X(Just b))),

P0(∨u)rP1 := µnc
X (P0 → X T, P1 → X F).

The introduction and elimination axioms are as follows.

∀a(Aa→ (A(∨d)rB)(InL a)) ((∨d)r)+0

∀b(B b→ (A(∨d)rB)(InR b)) ((∨d)r)+1

∀x((A(∨d)rB)x→ ∀a(Aa→ Q(InL a))→ ∀b(B b→ Q(InR b))→ Qx) ((∨d)r)−

∀a(Aa→ (A(∨l)rP )(JustL a)) ((∨l)r)+0
P → (A(∨l)rP )NoneR ((∨l)r)+1
∀u((A(∨l)rP )u→ ∀a(Aa→ Q(JustL a))→ (P → QNoneR)→ Qu) ((∨l)r)−

P → (P (∨r)rB)None ((∨r)r)+0
∀b(B b→ (P (∨r)rB)(Just b)) ((∨r)r)+1
∀v((P (∨r)rB)v → (P → QNone)→ ∀b(B b→ Q(Just b))→ Qv) ((∨r)r)−

P0 → (P0(∨u)rP1)T ((∨u)r)+0
P1 → (P0(∨u)rP1)F ((∨u)r)+1
∀b((P0(∨u)rP1)b→ (P0 → QT)→ (P1 → QF)→ Qb) ((∨u)r)−

We introduce the notation of (∩◦)r and (∪◦)r for ◦ ∈ {d, l, r, u} in a similar way as we
did for the decorated connectives.

Example 2.5.26 (Witnessing predicates of existential quantifiers). Let x be a variable
ranging over α, v ranging over τ , and w ranging over α × τ . Also let Y be a predicate
variable of arity (τ, α). We define ExDr

Y , ExLr
Y , and ExRr

Y of the arities (α, τ), (α), and
(τ), respectively.

ExDr
Y := µnc

X (∀ncx,v(Y vx→nc X〈x, v〉)),
ExLr

Y := µnc
X (∀ncx,v(Y vx→nc Xx)),

ExRr
Y := µnc

X (∀ncx,v(Y vx→nc Xv)).
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The introduction and elimination axioms are

∀x,v(Y vx→ ExDr
Y 〈x, v〉) ((∃d)r)+

∀w(ExDr
Yw → ∀x,v(Y vx→ P 〈x, v〉)→ Pw) ((∃d)r)−

∀x,v(Y vx→ ExLr
Y x) ((∃l)r)+

∀x(ExLr
Y x→ ∀x,v(Y vx→ Px)→ Px) ((∃l)r)−

∀x,v(Y vx→ ExRr
Y v) ((∃r)r)+

∀v(ExRr
Y v → ∀x,v(Y vx→ Pv)→ Pv). ((∃r)r)−

For given formulas ∃◦xQ where ◦ ∈ {d, l, r}, we can also write (∃◦x)rQr for the corresponding
witnessing predicates ExDr

Qr , ExLr
Qr , and ExRr

Qr .

We define the term extraction algorithm et based on the realizability interpretation.

Definition 2.5.27 (Program extraction). For a proof M of a formula A we define a term
et(M) or ε of type τ(A) or ◦ by induction on the construction of the proof M . If τ(A) = ◦,
et(M) := ε. Otherwise,

et(uA) := x
τ(A)

uA
where xuA is uniquely associated with uA,

et(I+i ) := Ci, et(I−) := Rτ
ι ,

et(coI−) := Dι, et(coI+) := coRτ
ι ,

et((λuAM
B)A→

cB) := λ
x
τ(A)
u

(et(M)), et((λuAM
B)A→

ncB) := et(M),

et(MA→cBNA) := et(M)et(N), et(MA→ncBNA) := et(M),

et((λxρM
A)∀

c
xA) := λxρet(M), et((λxρM

A)∀
nc
x A) := et(M),

et((M∀cxAr)A(r)) := et(M)r, et((M∀ncx Ar)A(r)) := et(M),

where I and coI are computational, ι := τ(I) = τ(coI) and τ is determined by the type
of the competitor predicate of I− or coI+. For a special non-computational predicate I,
et(I−) := id.

Example 2.5.28 (Computational content of the identity lemma). We can prove a trivial
statement A→ A which we call the identity lemma. Proving it by assuming A and using it
to derive the goal, there is the computational content Idα extracted from this proof.

Idα : α→ α, Idαx 7→ x.

Although this lemma has no logical use to prove a formula, we can use this lemma to fine
tune the extracted program by switching block/unblock of the conversion rule. Assume
formulas A, B and C and a proof M of A. We prove (A→c B)→c (A→c C)→c B ∧d C.
Assume two premises. Asserting A, which is proven, and use the identity lemma to
A →c B ∧d C. We assume A and apply the assumptions to derive B and C, then by
(∧d)+. The extracted program is normalized to be λf,g(Idλu〈fu, gu〉 P), where P is the
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normalized et(M). When we prove straightforwardly without the identity lemma, the
extracted program is normalized to be λf,g〈f P, g P〉 which involves two times of separated
normalization of et(M). We introduce the notation of let-construction for Id in the following
way: λf,g(let u = P in 〈fu, gu〉).

A use of this technique is also found in Section 3.4.

2.5.3 Soundness Theorem

In this section we address the issue of the correctness of our program extraction. We prove
the soundness theorem which claims that if there is a proof M of a formula A, there is a
term which provably realizes A obtained by program extraction from M .

Theorem 2.5.29 (Soundness). Let M be a proof of A from assumptions uBii . We have a
proof of et(M) r A from assumptions xui r Bi.

Proof. By induction on the structure of M .
Case u : B. Trivially, et(u) = xu r B.
Case (λuAM

B)A→
cB. We find a derivation of et(λuM) r A→c B, which is ∀x(x r A→

et(M)[xu/x] r B). By induction hypothesis, we have a derivation of et(M) r B from xu r A,
hence by introduction rules of → and ∀.

Case MA→cBNA. We find a derivation of et(MN) r B, i.e., et(M)et(N) r B. By
induction hypothesis we have derivations of et(M) r A →c B, namely, ∀x(x r A →
et(M)x r B) and et(N) r A. The goal is derived by elimination rules of ∀ and →.

Case (λxM
A)∀

c
xA. We find a derivation of et(λxM) r ∀cxA, i.e., ∀x(et(M) r A). By

induction hypothesis we have a derivation of et(M) r A, hence the goal by an introduction
rule of ∀.

Case M∀cxA(x)t. We find a derivation of et(Mt) r A(t). By induction hypothesis we
have a derivation of et(M) r ∀cxA(x), i.e., ∀x(et(M)x r A(x)). Since the goal is same as
et(M)t r A(t), we use the elimination rule of ∀.

Case (λuAM
B)A→

ncB. We find a derivation of et(λuM) r A→nc B, which is ∀y(y r A→
et(M) r B). By induction hypothesis, we have a derivation of et(M) r B from y r A, hence
by introduction rules of → and ∀.

Case MA→ncBNA. We find a derivation of et(MN) r B, i.e., et(M) r B. By induction
hypothesis we have derivations of et(M) r A→nc B, namely, ∀y(y r A→ et(M) r B) and
et(N) r A. The goal is derived by elimination rules of ∀ and →.

Case (λxM
A)∀

nc
x A. We find a derivation of et(λxM) r ∀ncx A, i.e., ∀x(et(M) r A). By

induction hypothesis we have a derivation of et(M) r A, hence the goal by an introduction
rule of ∀.

Case M∀ncx A(x)t. We find a derivation of et(Mt) r A(t), i.e., et(M) r A(t). By induction
hypothesis we have a derivation of et(M) r ∀ncx A(x), i.e., ∀x(et(M) r A(x)), hence the goal
by using an elimination rule of ∀.

If the last inference is the monotonicity, Lemma 2.3.23, we can use Lemma 2.5.30.
Otherwise the last inference is an axiom of an inductively or coinductively defined predicate.
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If it is I+, I−, coI− or coI+ of computational predicate, use Lemma 2.5.31. If it is I+ or I−

of non-computational inductive predicate, use Lemma 2.5.32. If it is I+ or I− of special
non-computational inductive predicate, use Lemma 2.5.33.

We start proving the case of constants. First, we consider the map operator which
appears in the conversion rule of recursion and corecursion operators. A map operator is in
fact a realizer of a monotonicity formula, which is exactly the statement of Lemma 2.3.23.

Lemma 2.5.30 (Soundness: the monotonicity formula). Let A ~X be a formula, n be a fixed

natural number, Pi, Qi be predicates for i < n where Pi and Qi are of arity (~δi), σi = τ(Pi)
and τi = τ(Qi), and ρ(~α) be τ(A ~X) where αi = τ(Xi). Suppose that u is a variable ranging
over ρ~α, which stands for ρ(~α), v ranging over some of τi and wi ranging over τi → σi. The
map operator M~σ→~τ

λ~αρ(~α)
is a realizer of the monotonicity formula, namely,

M~σ→~τ
λ~αρ(~α)

r ∀~x(A~P → (∀~x(Pi~x→ Qi~x))i<n → A ~Q).

Proof. We prove the claim by simultaneous induction on the structure of A ~X .

Case A ~X = ∀x̃Ã ~X . Assume the induction hypothesis with a parameter variable x̃,

∀~x,u(Ãr
~P ru→ ∀~w((∀~x,v(P r

i v~x→ Qr
i (wiv)~x))i<n → Ãr

~Qr(M~τ→~σ
λ~αρ~α

u ~w))).

We prove

∀~x,u(∀x̃(Ãr
~P ru)→ ∀~w((∀~x,v(P r

i v~x→ Qr
i (wiv)~x))i<n → ∀x̃(Ãr

~Qr(M~τ→~σ
λ~αρ~α

u ~w)))).

Let ~x and u be given and assume ∀x̃(Ãr
~P r
u), let ~w be given and assume ∀~x,v(P r

i v~x →
Qr
i (wiv)~x) for each i < n, and also let x̃ be given. The assumption ∀x̃(Ãr

~P r
u) implies Ãr

~P r
u.

We prove Ãr
~Qr

(M~τ→~σ
λ~αρ~α

u ~w) by using the i.h. with replacing the free variable x̃ in i.h. as
necessary.

Case A ~X = B → Ã ~X . Assume ρ~α = τ(B → Ã ~X) = π → ρ̃~α. Notice that ~α, which

came from the free occurrences of ~X, don’t occur in π due to the condition of the formula
construction of B. Assume the induction hypothesis

∀~x,u(Ãr
~P ru→ ∀~w((∀~x,v(P r

i v~x→ Qr
i (wiv)~x))i<n → Ãr

~Qr(M~σ→~τ
λ~αρ̃~α

u ~w))),

and we prove

∀~x,u(∀y(Bry → Ãr
~P r(uy))→ ∀~w((∀~x,v(P r

i v~x→ Qr
i (wiv)~x))i<n →

∀y(Bry → Ãr
~Qr(M~σ→~τ

λ~α(π→ρ̃~α) u ~w y)))).

Let ~x and u be given and assume ∀y(Bry → Ãr
~P r

(uy)), ~w be given and assume ∀~x,v(P r
i v~x→

Qr
i (wiv)~x) for each i < n, and also let y be given and assume Bry. We prove that

Ãr
~Qr

(M~σ→~τ
λ~α(π→ρ̃~α)u~wy). By conversion, M~σ→~τ

λ~α(π→ρ̃~α)u~wy 7→ M
~σ→~τ
λ~αρ̃~α

(uy)~w, and also Ãr
~P r

(uy)

holds, hence the i.h. implies the goal.
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Case A ~X = P̃~r where P̃ is a predicate. We proceed by induction on P̃ .

Side case P̃ is a predicate variable. The conclusion P̃ r(M~σ→~τ
λ~αρ

u~w)~r is same as the first

premise P̃ ru~r, because M~σ→~τ
λ~αρ

u~w 7→ u.

Side case P̃ = {~z | Ã} where Ã is a formula. Assume the following side induction
hypothesis for Ã.

∀u(Ãr
~P ru→ ∀~w((∀~x,v(P r

i v~x→ Qr
i (wiv)~x))i<n → Ãr

~Qr(M~σ→~τ
λ~αρ̃~α

u ~w))).

Since ~z are parameters of this i.h., the goal holds by replacing variables.
Side case P̃ = J(~R ~X) where J( ~X ′) is an inductively defined predicate µZ( ~K) where

Ki = ∀~x((Ãiν( ~X ′, Z))ν<ni → Z~t ) with some decoration, and ~R is a list of predicates of the

same length of ~X ′. Then, ρ~α = ι~π(~α) where ι~β is defined to be an algebra τ(J ~X′) = µξ(~κ)

where κi = (ρiν(~β, ξ))ν<ni → ξ and πi(~α) is τ(Ri( ~X)). We prove the following formula

∀~x,u(Jr
~Rr(~P r)

u~x→ ∀~w((∀~x,v(P r
i v~x→ Qr

i (wiv)~x))i<n → Jr
~Rr( ~Qr)

(M~σ→~τ
λ~αι(~π(~α))

u ~w)~x)).

Let ~x and u be given and assume Jr
~Rr(~P r)

u~x. Also let ~w of type ~σ → ~τ be given and

assume ∀~x,v(P r
i v~x→ Qr

i (wiv)~x) for each i < n. The goal is Jr
~Rr( ~Qr)

(M~σ→~τ
λαι(~π(~α))

u ~w)~x, which

is abbreviated as Ru~x for fixed ~w. By means of (Jr)− for Jr
~Rr(~P r)

u~x, it suffices to prove

each step formula of the form

∀~x,~u((Ãr
iν(~R

r(~P r), Jr
~Rr(~P r)

∩u R)uν)ν<ni → R(C
~π(~σ)
i ~x~u, ~x)),

where C
~β
i is the corresponding constructor of the algebra ι~β. We let ~x and ~u be given and

assume Ãr
iν(~R

r(~P r), Jr
~Rr(~P r)

∩u R)uν for each ν < ni. Let fi :=M~σ→~τ
λ~απi(~α)

· ~w. Applying the

conversion rule of M~σ→~τ
λαι(~π(~α))

, the goal is same as

Jr
~Rr( ~Qr)

(C
~π(~τ)
i ~x(M~π(~σ),ι~π(~σ)→~π(~τ),ι~π(~τ)

λ~β,γρiν(
~β,γ)

uν ~f(M~π(~σ)→~π(~τ)
ι · ~f ))ν<ni , ~x).

It suffices to show Ãr
iν(~R

r( ~Qr), Jr
~Rr( ~Qr)

)(M~π(~σ),ι~π(~σ)→~π(~τ),ι~π(~τ)
λ~β,γρiν(

~β,γ)
uν ~f(M~π(~τ)→~π(~σ)

ι · ~f )) for each

ν < ni. Since Ãiν( ~X,Z) is a formula of sub construction, we can use the following induction
hypothesis to proceed.

∀~x,u(Ãr
iν(~R

r(~P r), Jr
~Rr(~P r)

∩u R)u→

∀~f,g((∀~x,v(R
r
i (~P

r)v~x→ Rr
i ( ~Q

r)(fiv, ~x)))i<n → ∀~x,v((Jr
~Rr(~P r)

∩u R)v~x→ Jr
~Rr( ~Qr)

(gv, ~x))

→ Ãr
iν(~R

r( ~Qr), Jr
~Rr( ~Qr)

)(M~π(~σ),ι~π(~σ)→~π(~τ),ι~π(~τ)
λ~β,γρiν(

~β,γ)
u~fg))).

We already have the first premise in the assumption. The second ones are straight-
forward by induction hypotheses ∀~x,v(Rr

i (~P
r)v~x → ∀~w((∀~x,v(P r

i v~x → Qr
i (wiv, ~x)))i<n →
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Rr
i ( ~Q

r)(Mv ~w, ~x))). Let g be M~σ→~τ
λ~αι(~π(~α))

· ~w, then the last premise is trivial since Rv~x is

same as Jr
~Rr( ~Qr)

(M~σ→~τ
λ~αι(~π(~α))

v ~w, ~x).

Side case P̃ = coJ(~R(~P )) where coJ( ~X ′) is a coinductively defined predicate νX( ~K) where

Ki = ∀~x((Ãiν( ~X ′, Z))ν<ni → Z~t ), and ~R is a list of predicates. Then, ρ~α = ι~π(~α) where ι~β
is defined to be an algebra τ(coJ( ~X ′)) = µξ(~κ) where κi = (ρiν(~β, ξ))ν<ni → ξ, and πi(~α) is

τ(Ri( ~X)). We prove the following formula

∀~x,u(coJr
~Rr(~P r)

u~x→ ∀~w((∀~x,u(P r
i u~x→ Qr

i (wiu)~x))i<n → coJr
~Rr( ~Qr)

(M~σ→~τ
λ~αι~π(~α)

u~w)~x)).

Let ~x and u be given and assume coJr
~Rr(~P r)

u~x. Also let ~w be given and assume ∀~x,u(P r
i u~x→

Qr
i (wiu)~x) for each i < n. We prove coJr

~Rr( ~Qr)
(M~σ→~τ

λ~αι~π(~α)
u~w)~x by using (coJr)+ with the

competitor predicate R := {u, ~x | ∃v(u eqdM~σ→~τ
λ~αι~π(~α)

v ~w ∧ coJr
~Rr(~P r)

v~x)}. It suffices to prove

the costep formula

∀~x,u(Ru~x→
∨nc
i<k(∃u~y,~v(

∧
ν<ni

Ãr
iν(~R

r( ~Qr), coJr
~Rr( ~Qr)

∪nc R)vν ∧
∧ ~Ei ∧ u eqdC

~π(~τ)
i ~v))).

Let ~x and u be given and assume Ru~x, which yields v′ such that u eqdM~σ→~τ
λ~αι~π(~α)

v′ ~w and
coJr

~Rr(~P r)
v′~x hold. Applying (coJr)− to coJr

~Rr(~P r)
v′~x, the following holds.

∨nc
i<k

(
∃u~y,~v(

∧
ν<ni

Ãr
iν(~R

r(~P r), coJr
~Rr(~P r)

)vν ∧
∧ ~Ei ∧ v′ eqdC

~π(~σ)
i ~v)

)
. (2.1)

We apply ∨− for (2.1) to the goal, then it suffices to prove the following for each i. Here
we used u eqdM~σ→~τ

λ~αι~π(~α)
v′ ~w.

∀~x,v′
(
∃u~y,~v(

∧
ν<ni

Ãr
iν(~R

r(~P r), coJr
~Rr(~P r)

)vν ∧
∧ ~Ei ∧ v′ eqdC

~π(~σ)
i ~v)→∨nc

i<k(∃u~y,~v(
∧
ν<ni

Ãr
iν(~R

r( ~Qr), coJr
~Rr( ~Qr)

∪nc R)vν ∧
∧ ~Ei ∧M~σ→~τ

λ~αι~π(~α)
v′ ~w eqdC

~π(~τ)
i ~v))

)
.

Let ~x and v′ be given and assume the premise. Using (∃u)−, there are ~y and ~v which
satisfy the premise. Let fj be M~σ→~τ

λ~απj(~α)
· ~w. We use to the goal ∨+i and (∃u)+ with ~y and

M~π(~σ)→~π(~τ)
λ~β,γρiν(

~β,γ)
vν ~f(M~π(~σ)→~π(~τ)

ι · ~f ) for each ν < ni. Then, it suffices to prove the following.

M~σ→~τ
λ~αι(~π(~α))

(C
~π(~σ)
i ~v)~w eqdC

~π(~τ)
i (M~π(~σ),ι~π(~σ)→~π(~τ),ι~π(~τ)

λ~β,γρiν(
~β,γ)

vν ~f(M~π(~σ)→~π(~τ)
ι · ~f ))ν<ni ,∧

ν<ni

Ãr
iν(~R

r(~P r), coJr
~Rr(~P r)

)vν →∧
ν<ni

Ãr
iν(~R

r( ~Qr), coJr
~Rr( ~Qr)

∪nc R)(M~π(~σ),ι~π(~σ)→~π(~τ),ι~π(~τ)
λ~β,γρiν(

~β,γ)
vν ~f(M~π(~σ)→~π(~τ)

ι · ~f )).

The former one is apparent by the conversion rule. For the latter one, we end up with proving

Ãr
iν(~R

r(~P r), coJr
~Rr(~P r)

)vν → Ãr
iν(~R

r( ~Qr), coJr
~Rr( ~Qr)

∪nc R)(M~π(~σ),ι~π(~σ)→~π(~τ),ι~π(~τ)
λ~β,γρiν(

~β,γ)
vν ~f(M~π(~σ)→~π(~τ)

ι ·
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~f )) for each ν < ni, by using ∧+i and ∧−. We use the following induction hypothesis to
prove it.

∀~x,v
(
Ãr
iν(~R

r(~P r), coJr
~Rr(~P r)

)v → ∀~f ((∀~x,v(R
r
i (~P

r)v~x→ Rr
i ( ~Q

r)(fiv)~x))i<n →

∀g(∀~x,u(coJr
~Rr(~P r)

u~x→ (coJr
~Rr( ~Qr)

∪nc R)(gu, ~x))→ Ãr
iν(~R

r( ~Qr), coJr
~Rr( ~Qr)

∪nc R)(Mρiνv
~fg))

)
.

It suffices to prove Ãr
iν(~R

r(~P r), coJr
~Rr(~P r)

)vν , ∀~x,v(Rr
i (~P

r)v~x→ Rr
i ( ~Q

r)(fiv)~x) for each i < n,

and ∀~x,u(coJr
~Rr(~P r)

u~x → (coJr
~Rr( ~Qr)

∪nc R)(M~σ→~τ
λ~αι(~π(~α))

u~w, ~x)). The first one is due to the

assumption. The second one comes by another induction hypothesis ∀~x,v(Rr
i (~P

r)v~x →
∀~w((∀~x,u(P r

i u~x → Qr
i (wiu)~x))i<n → Rr

i ( ~Q
r)(M~σ→~τ

λ~αι(~π(~α))
v ~w)~x)). For the last one, let ~x

and u be given and assume coJr
~Rr(~P r)

u~x. Our goal is same as coJr
~Rr( ~Qr)

(M~σ→~τ
λ~αι(~π(~α))

u~w, ~x) ∨nc

R(M~σ→~τ
λ~αι(~π(~α))

u~w, ~x). We apply (∨nc)+1 and prove R(M~σ→~τ
λ~αι(~π(~α))

u~w, ~x), which is straightfor-
ward by the premise coJr

~Rr(~P r)
u~x.

We prove the cases of four constants, constructors, recursion operators, destructors and
corecursion operators.

Lemma 2.5.31 (Soundness: Computational inductive and coinductive predicates). We

define I ~X of arity (~τ) to be µZ( ~K) where Ki is a formula ∀ c/nc
~x ((Aiν( ~X,Z))ν<ni →c/nc Z~t ).

Let an algebra ι~α be τ(I ~X) where αi = τ(Xi).

1. For i such that 0 ≤ i < k, the introduction axiom I+i is realized by the constructor Ci
of the algebra ι~α.

2. The elimination axiom I− is realized by the recursion operator Rι~α.

We define coI ~X of arity (~τ) to be νX( ~K) where ~K is given as the above. Let ια be τ(coI)
where αi = τ(Xi).

3. The closure axiom coI− is realized by the destructor Dι~α.

4. The greatest-fixed-point axiom coI+ is realized by the corecursion operator coRι~α.

Proof. (1) We prove Ci r ∀ c/nc
~x ((Aiν( ~X, I ~X))ν<ni →c/nc I ~X~t ). It unfolds into

∀~x,~u((Ar
iν( ~X

r, Ir~Xr)uν)ν<ni → Ir~Xr(Ci~x~u,~t ))

with the understanding that

1. only those xj with a computational ∀cxj in Ki, and

2. only those uν with Aiν c.r. and followed by →c in Ki,
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occur as arguments in Ci~x~u. The goal is same as (Ir)+i with ~Xr for the parameter predicates.
(2) Let P be a predicate variable of the same arity of I~X , and ρ := τ(P ). We

prove Rρ
ι~α

r ∀~x(I~X~x → (Ki(I~X , P ))i<n → P~x), where each step formula Ki(I~X , P ) is

∀~x((Aiν( ~X, I~X ∩d P ))ν<ni → P~t ) for each i. By unfolding, the goal is same as

∀~x,u(Ir~Xr u~x→ ∀~w((Kr
i (I

r
~Xr , P

r)wi)i<k → P r(Rι~αu~w,~t ))).

Let ~x and u be given and assume Ir~Xr
u~x. Also let ~w be given and assume for each i < k,

Kr
i (I

r
~Xr , P

r)wi (2.2)

Let Qu~t be our goal P r(Rι~αu~w,~t ). By using (Ir)− for Ir~Xr
u~x with the competitor predicate

Q, it suffices to prove all the step formulas

∀~x∀~u((Ar
iν( ~X

r, Ir~Xr ∩u Q)uν)ν<ni → Q(Ci~x~u,~t )),

with the understanding that only relevant xj and uj occur as arguments in Ci~x~u. Let ~x
and ~u be given and assume for each ν < ni,

Ar
iν( ~X

r, Ir~Xr ∩u Q)uν . (2.3)

We prove Q(Ci~x~u,~t ), which is same as

P r(wi~x(Mι~α→ι~α×τ
λβρiν(~α,β)

uν λa〈a,Rι~αa~w〉)ν<ni ,~t ) (2.4)

where ρiν(~α, β) is defined to be a type τ(Aiν( ~X,Z)). Note that (I ∩d P )r is same as
{qι×τ , ~x | ({vι | Irv~x}(∧d)r{ṽτ |P rṽ~x})q}, where ι and τ are the types of realizers of I and
P , respectively. By unfolding (2.2), we have

∀~x,~q((Ar
iν( ~X

r, Ir~Xr(∩d)rP r)qν)ν<ni → P r(wi~xi~q,~t )),

which implies our goal (2.4) provided the following holds for all ν < ni,

Ar
iν( ~X

r, Ir~Xr(∩d)rP r)(Mι~α→ι~α×τ
λβρiν(~α,β)

uν λa〈a,Ra~w〉).

Instantiating Lemma 2.5.30 as

∀~x,u(Ar
iν( ~X

r, Ir~Xr ∩u Q)u→ ∀g(∀~x,u((Ir~Xr ∩u Q)u~x→ (Ir~Xr(∩d)rP r)(gu, ~x))→
Ar
iν( ~X

r, Ir~Xr(∩d)rP r)(Mι~α→ι~α×τ
λβρiν(~α,β)

ug))),

we prove the goal. The first premise Ar
iν( ~X

r, Ir~Xr
∩uQ)uν comes by the assumption (2.3). We

prove ∀~x,u((Ir~Xr
∩uQ)u~x→ (Ir~Xr

(∩d)rP r)((λa〈a,Ra~w〉)u, ~x)). Let ~x, u be given and assume

(Ir~Xr
∩uQ)u~x, namely, Ir~Xr

u~x∧uQu~x. Using (∧u)−, we let ~x, u, assume Ir~Xr
u~x and Qu~x and

then prove (Ir~Xr
(∩d)rP r)((λa〈a,Ra~w〉)u, ~x), namely, ({v | Ir~Xr

v~x}(∧d)r{ṽ |P rṽ~x})〈u,Ru~w〉.
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By means of (∧r)+0 , it suffices to prove Ir~Xr
u~x and P r(Ru~w, ~x). The first one is in the

assumption, and the second one is same as Qu~x which is again in the assumption.
(3) We prove Dι~α r ∀~x(coI ~X~x →

∨
i<k(∃~y(

∧
ν<ni

Aiν( ~X,
coI ~X) ∧l

∧ ~Ei))), which unfolds
into

∀~x,u
(
coIr~Xru~x→ (

∨r
i<k(∃r~y(

∧r
ν<ni

Ar
iν( ~X

r, coIr~Xr) (∧l)r
∧r ~Ei)))(Du)

)
.

Let ~x and u be given and assume coIr~Xru~x. Applying (coIr)− to the assumption, the following
holds. ∨nc

i<k

(
∃u~y,~v(

∧
ν<ni

Ar
iν( ~X

r, coIr~Xr)vν ∧
∧ ~Ei ∧ u eqdCi~v)

)
.

Using (∨nc)−, (∨r)+i , (∃u)−, (∃r)+, (∧u)− and (∧r)+, we end up with proving Ar
iν( ~X

r, coIr~Xr)vν
from the very same premise. Here we used D(Ci~v) 7→ inki (pair~v).

(4) We prove

coRι~α r ∀~x(P~x→∀~x(P~x→
∨
i<k(∃~yi(

∧
ν<ni

Aiν( ~X,
coI ~X ∪ P ) ∧l

∧ ~Ei)))→ coI ~X~x),

which unfolds into

∀~x,u(P ru~x→ ∀w(∀~x,u(P ru~x→ (
∨r
i<k(∃r~yi(

∧r
ν<ni

Ar
iν( ~X

r, coIr~Xr ∪r P r) (∧l)r
∧ ~Ei)))(wu))→

coIr~Xr(
coRι~αuw, ~x))).

Let ~x, u be given and assume P ru~x. Let w be given and assume

∀~x,u(P ru~x→ (
∨r
i<k(∃r~yi(

∧r
ν<ni

Ar
iν( ~X

r, coIr~Xr ∪r P r) (∧l)r
∧ ~Ei)))(wu)). (2.5)

Recall that coIr~Xr ∪r P r stands for {qι+τ , ~x | ({v | coIr~Xrv~x} ∨r {ṽ |P rṽ~x})q}. We prove
coIr~Xr (coRι~αuw, ~x) by using coI+ with a competitor predicate Q := {v, ~x | ∃ṽ(v eqd coRι~α ṽw∧
P rṽ~x)}. It suffices to prove the following costep formula.

∀~x,v(Qv~x→
∨nc
i<k∃u~y,~u(

∧
ν<ni

Ar
iν( ~X

r, coIr~Xr ∪nc Q)uν ∧
∧ ~Ei ∧ v eqdCi~u)).

Let ~x, v be given and assume Qv~x, which yields some ṽ such that v eqd coRι~α ṽw and P rṽ~x.
By the conversion rule coRṽw goes to

Case wṽ of ink0v0 → C0(Mτ→τ+ι
λβρ0ν(~α,β)

(πn0
ν v0)[id,

coR · w])ν<n0

...

inkk−1vk−1 → Ck−1(Mτ→τ+ι
λβρ(k−1)ν(~α,β)

(πnk−1
ν vk−1)[id,

coR · w])ν<nk−1
.

Let t(wũ) be the above term. Applying (2.5) to the assumption P rũ~x,

(
∨r
i<k(∃r~y(

∧r
ν<ni

Ar
iν( ~X

r, coIr~Xr ∪r P r)) (∧l)r
∧r ~Ei))(wũ)
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holds. Using (∨r)− for this formula to the following goal∨nc
i<k∃u~y,~u(

∧
ν<ni

Ar
iν( ~X

r, coIr~Xr ∪nc Q)uν ∧
∧ ~Ei ∧ t(wũ) eqdCi~u),

it suffices to prove for each i < k that the following holds

∀q((∃r~y(
∧r
ν<ni

Ar
iν( ~X

r, coIr~Xr ∪r P r) (∧l)r
∧ ~Ei))q →∨nc

i<k∃u~y,~u(
∧nc
ν<ni

Ar
iν( ~X

r, coIr~Xr ∪nc Q)uν ∧
∧ ~Ei ∧ t(inki q) eqdCi~u)).

Let q be given and assume the premise. We use (∨nc)+i to the goal. Using (∃r)−,

(∃u)+ and (∧r)−, it suffices to prove ∀~x,~y(
∧ ~Ei → ∀nc~s ((Ar

iν( ~X
r, coIr~Xr ∪r P r)sν)ν<ni →

∃u~u(
∧
ν<ni

Ar
iν( ~X

r, coIr~Xr ∪nc Q)uν ∧
∧ ~Ei ∧ t(inki (pair~s )) eqdCi~u))). By the conversion rule,

t(inki (pair~s )) 7→ Ci(Ms0[id,
coR · w]) . . . (Msni−1[id,

coR · w]).

Using (∃u)+ with uν :=Msν [id,
coR·w] and also ∧+, we end up with provingAr

iν( ~X
r, coIr~Xr∪nc

Q)(Msν [id,
coR · w]). By Lemma 2.5.30 it suffices to prove ∀~x,qι+τ ((coIr~Xr ∪r P r)rq~x →

(coIr~Xr ∪nc Q)([id, coR · w]q, ~x)). Let ~x, q be given and assume (coIr~Xr ∪r P r)q~x, namely,
({v | coIr~Xrv~x} ∨r {ṽ |P rṽ~x})q. We use (∨r)−. From coIr~Xrv~x and q = InL v, the goal is
straightforward. From P rṽ~x and q = InR ṽ, the right disjunct, which is same as Q(coRṽw, ~x),
is implied from the premise.

We also address the soundness result for non-computational predicates.

Lemma 2.5.32 (Soundness: non-computational inductive and coinductive predicates). Let

I~Y be a non-computational inductive predicate defined to be µnc
Z ( ~K) and an algebra ι~α to be

τ(I ~X) where αi = τ(Xi).

1. The introduction axiom I+i is realized by the empty term ε.

2. The elimination axiom I− is realized by ε.

Let coI ~X be a non-computational coinductive predicate defined to be νncZ ( ~K) and an algebra
ι~α to be τ(coI ~X) where each αi is τ(Xi).

3. The closure axiom coI− is realized by the empty term ε.

4. The greatest-fixed-point axiom coI+ is realized by the empty term ε.

Proof. (1) We prove ε r ∀~x((Aiν(I~X))ν<ni → I~X~t ). By unfolding and also by the definition
of ε, our goal is same as ∀~x∀~u((Ar

iν(I
r
~Xr

)uν)ν<ni → Ir~Xr
(ε~x~u,~t)). Let ~x, ~u be given and assume

Ar
iν(I

r
~Xr

)uν for each ν < ni. The formula Ir~Xr
(ε~x~u,~t ) is same as I~X~t, because the formula

I~X~t is non-computational. We use I+i , then it suffices to prove Aiν(I~X) for each ν < ni.
Since Aiν(I~X) is invariant by the definition of non-computational inductive predicates, the
assumption Ar

iν(I
r
~Xr

)uν yields Aiν(I~X).
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(2) Let P be a predicate variable of the same arity of I~X . We prove ε r ∀~x(I~X~x →
(Ki(I~X , P ))i<k → P~x) where Ki(I~X , P ) is given by ∀~x((Aiν( ~X, I~X ∩ P ))ν<ni → P~t ). By
unfolding the proposition, it is same as

∀~x,u(Ir~Xr(u, ~x)→ ∀~w((Kr
i (I

r
~Xr , P

r)wi)i<k → P r(εu~w, ~x))).

Assume ~x, u, Ir~Xr
(u, ~x), ~w, and (Kr

i (I
r
~Xr
, P r)wi)i<k. We prove P r(εu~w, ~x), which is same as

P~x because P is non-computational. Using I− with the competitor {~x |P~x}, it suffices to
prove I~X~x and step formulas (Ki(I~X , P ))i<k. Since I~X is n.c., the assumption Ir~Xr

(u, ~x) is same

as I~X~x. The assumption (Kr
i (I

r
~Xr
, P r)wi)i<k is same as ∀~x,~u((Ar

iν( ~X
r, Ir~Xr

∩r P r)uν)ν<ni →
P r(wi~u,~t )). This formula is same as the goal, because Aiν( ~X, I~X ∩ P ) for each i and P are
all invariant.

(3) We prove ε r ∀~x(coI ~X~x →
∨nc
i<k∃u~y(

∧
ν<ni

Aiν(
coI ~X) ∧

∧ ~Ei)). Since coI ~X~x and the

disjunction
∨nc are non-computational, the goal is same as coI−.

(4) We probe

ε r ∀~x(Q~x→ ∀~x(Q~x→
∨nc
i<k∃u~y(

∧
ν<ni

Aiν(
coI ~X ∪nc Q) ∧

∧ ~Ei))→ coI ~X~x).

Recall that Q, the disjunction
∨nc and coI are non-computational. Then by unfolding, the

goal is same as coI−.

Finally, we prove the soundness results of special non-computational inductively defined
predicates.

Lemma 2.5.33 (Soundness: special non-computational inductive predicates). Let I~Y be a
special non-computational inductive predicate µnc

X (∀nc~x ((Aν)ν<n →nc X~t )) where Aν is of the
form Yj~si. The empty term ε realizes I+ and the identity id realizes I−.

Proof. We prove ε r ∀nc~x ((Aν)ν<n →nc I~Y~t ). By the definition, this formula is same as
∀~x,~u((Ar

νuν)ν<n → I{~z | ∃uv(Y r
i v~z)}i<l

~t ). Let ~x and ~u be given and assume (Ar
νuν)ν<n. We

use I+ to prove I{~z | ∃uv(Y r
i v~z)}i<l~x). It suffices to prove (∃uv(Ar

νv))ν<n which is from the

assumption, since Aν is of the form Yi~s. We prove id r ∀nc~x (I~Y ~x→ ∀nc~x ((Aν)ν<n →nc P~t )→c

P~x). This formula is same as ∀~x,~u(I{~zi | ∃uv(Y r
i v~zi)}i<l~x → ∀w(∀~x,~u((Ar

νuν)ν<n → P rw~t ) →c

P rw~x))). Let ~x and ~u be given and assume I{~zi | ∃uv(Y r
i v~zi)}i<l~x, and let w be given and assume

∀nc~x,~u((Ar
νuν)ν<n →nc P rw~t ). We use I− for I{~zi | ∃uv(Y r

i v~zi)}i<l~x to prove the goal Q~x := P rw~x.

It suffices to prove the step formula ∀nc~x ((∃uv(Ar
νv))ν<n →nc Q~t ). Let ~x be given and assume

(∃uv(Ar
νv))ν<n which yields ~v such that Ar

νvν for each ν < n, hence the conclusion comes by
the assumption.

Realizability statement t r A can be viewed as a correctness assertion of t with respect
to a specification A, namely, t is correct with respect to A. The soundness theorem tells us
how to construct such a correctness proof from a proof of A. In TCF, this correctness is
indeed provable inside of TCF. Informal computational content from the soundness proof
offers an algorithm to generate a correctness proof of program extraction.
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2.6 Notes

We describe related work and possible future work to conclude this chapter.

2.6.1 T+ and Partial Continuous Functionals

Our notion of computability is based on the notion of partial continuous functionals,
which provides the denotational semantics of the formal calculus T+. Within the current
formulation of T+, it is not possible to talk about approximation of partial continuous
functionals. Huber, Karadais and Schwichtenberg [HKS10] study the theory TCF+ in
order to make the notion of approximation explicit so that it is possible to talk about
approximation in the object language. Petrakis [Pet13] has formalized Scott’s information
systems within TCF+ and Minlog. One motivation is a formalization of a constructive
proof of Kreisel’s density theorem, which seems to be feasible if the base theory is as strong
as TCF+.

2.6.2 Non-Computational Part of Proofs

The notion of non-computational part of proofs has been used by Goad [Goa80]. In the field
of proof theory, Berger studies the distinction between computational and non-computational
ingredients of proofs via computational and non-computational universal quantifiers [Ber93].
Ratiu and Schwichtenberg study the same distinction in implications [RS10]. Such log-
ical connectives are further studied by Benl, Berger, Schwichtenberg, Seisenberger and
Zuber [BBS+98], Berger [Ber05] and Schwichtenberg and Wainer [SW12]. Our formulation
follows the one by Schwichtenberg and Wainer [SW12]. Paulin-Mohring [PM89] studies a
realizability for the Calculus of Construction, considering a distinction between informative
and non-informative propositions, which is used to ignore non-computational parts of
proofs during program extraction. Based on such a distinction, Letouzey [Let02] studies
an extraction mechanism for the Coq proof assistant whose type system is the Calculus of
Construction.

2.6.3 Inductive and Coinductive Definitions

Tatsuta studies theories of program extraction TID [Tat91] and νTID [Tat98] for inductive
and coinductive definitions, respectively. While inductive and coinductive definitions in
TCF are by means of strictly positive formulas, inductive and coinductive definitions in TID
and νTID are by monotone formulas which are not necessarily strictly positive. The target
language of the program extraction of TID and νTID is untyped. Berger [Ber09, Ber11]
studies program extraction from inductive and coinductive definitions. Essentially our
formal system is similar to Berger’s one. The difference is mainly in the way of formalization.
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2.6.4 Normalizability

Normalizability of TCF proofs involving nested inductive coinductive predicates is left as
a future work. The computational content of such a normalization proof is expected to
be a proof normalizer as studied by Berger [Ber93] and by Berger, Berghofer, Letouzey
and Schwichtenberg [BBLS06]. Although corecursion operators in T+ are not meant to
be terminating, normalizability of nested recursion operators should be proven. Abel
and Altenkirch gave a predicative proof of a lambda calculus with nested inductive and
coinductive types [AA99]. Differently from our case, their corecursion is designed to be
terminating as Hagino [Hag87b, Hag87a].

2.6.5 Program Extraction in Other Proof Assistants

There are implementations of proof assistants which support program extraction. Letouzey
recently study program extraction based on realizability in the proof assistant Coq [Let08].
The extraction machinery of Coq can extract from proofs programs in OCaml. It is different
from one of Minlog in the sense that extracted programs in OCaml are outside of the formal
system of Coq, i.e., Calculus of Construction, while T+ of Minlog is inside of TCF. This
machinery of Minlog comes as an advantage, because the realizability relation is still inside
the system. It results in an automated program certification via the soundness proof in
Minlog. This feature is currently available for proofs involving at most non-nested inductive
definitions. Berghofer [Ber02] studies program extraction in Isabelle. This is based on
the work by Berghofer and Nipkow [BN02] considering the execution of proof terms in
HOL which is the logical foundation of Isabelle. There are more proof assistants which
uses the Curry-Howard correspondence to execute proof objects. The Nuprl [BC85, Nup]
is the first proof assistant which makes use of the proofs-as-programs paradigm. There
are other formalization works in program extraction in exact real arithmetic. One is due
to Chuang [Chu11] who studies computational content of proofs in Martin-Löf’s type
theory by using Agda. Proof terms in Martin-Löf’s type theory require a special care for
non-computational ingredients which come from “postulates” in contrast to the cases of
Coq and Minlog.
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Chapter 3

Program Extraction in Exact Real
Arithmetic

This chapter describes concrete applications of TCF, defined in Chapter 2, to exact real
number computation. All case studies in this chapter are not only written in this text
but also available as running examples in Minlog [Min]. Formalization is strictly done and
proofs and extracted programs are accessible and executable. The material in this chapter is
heavily based on works by Berger [Ber09, Ber11] and Berger and Seisenberger [BS10, BS12].
Precisely speaking, the program cauchysds is in [Ber09], the program ave is in [BS10, BS12]
and the programs ucf1to0, ucf0to1, app, cmp, int are in [Ber09, Ber11].

The main contribution in this chapter is strict formalization of non-trivial case studies in
exact real arithmetic and the machine-extraction of programs on the computer. The latter
one makes a major difference from the former works. In order to illustrate our work in a
readable way, we are going to be informal rather than to show strictly formalized results in
this text. In Section A.2 we provide a detailed explanation of the Minlog formalization of the
material in Section 3.3 to complement the informality of this chapter. The Minlog package,
which is downloadable at http://www.minlog-system.de/, contains the implemented
version of this chapter. Among other examples, the directory examples/analysis/ of
the Minlog package contains the files organized as follows: Section 3.2 is in ratsds.scm,
Section 3.3 is in cauchysds.scm, Section 3.4 is in average.scm, Section 3.5, Section 3.6,
Section 3.7, Section 3.8 are in readwrite.scm.

To conclude the introduction, we give a road map for our development. There are two
dimensions in our present work. One is the extraction of algorithms in exact real arithmetic,
and the other is the representation of objects in exact real arithmetic. Our material consists
of real numbers and uniformly continuous functions in concrete representations. Each of
them appear in two ways, namely, type-1 and type-0. The type-1 representation of real
numbers and uniformly continuous functions are of function type. We review basics of exact
real arithmetic of them in Section 3.1. In contrast to it, the type-0 representation of real
numbers and uniformly continuous functions are of ground type, namely, of non-function
types. Such ground-type representations are available via cototal ideals, which we have
seen in Chapter 2.
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3.1 Basics of Exact Real Arithmetic

In this section we illustrate exact real arithmetic, restricting to relevant material concern-
ing our case studies in this chapter. For a comprehensive account of this field, consult
the standard textbooks on constructive analysis by Bishop [Bis67] and by Bishop and
Bridges [BB85]. A treatment of Schwichtenberg [Sch06a, Sch06b, Sch12] is also relevant to
study computational content from proofs via realizability interpretation.

An aim to study real arithmetic in a constructive setting is to clarify the algorithmic
basis of arguments in real arithmetic. We describe an example to find a difficulty to see
an algorithmic ground in the classical setting. Assume we have natural numbers, integers
and rational numbers. A Cauchy real is defined to be a sequence of rational numbers
(an)n satisfying the Cauchyness condition: ∀k∃l∀n,m≥l(|an − am| ≤ 2−k). In this classical
construction of Cauchy reals, one cannot compute a concrete l from an arbitrary fixed k in
general. We start with constructivising the definition of Cauchy reals, such that the index l
of the convergence is practically computable. In this section, k ranges over integers and n,
m range over natural numbers.

3.1.1 Real Numbers

We give a constructive definition of Cauchy reals. A problem in the classical definition of
Cauchy reals is that we cannot effectively find an index to ensure the convergence of a
rational sequence. We can solve this by providing an additional information to compute
such an index.

Definition 3.1.1 (Cauchy reals). A pair of a sequence of rational numbers (an)n and a
Cauchy modulus M : Z→ Q is a Cauchy real if the following condition is satisfied.

∀k∀n,m≥M(k)(|αn − αm| ≤ 2−k).

We consider two kinds of inequalities, x ≤ y and x < y for Cauchy reals x, y. We define
nonnegative Cauchy reals and positive Cauchy reals.

Definition 3.1.2 (Nonnegative and positive Cauchy reals). Let x := 〈(an)n,M〉 be a
Cauchy real. Define x ∈ R0+ to be that −2−k ≤ aM(k) for all k ∈ Z. If x ∈ R0+, x is
nonnegative. Also define x ∈k R+ to be that 2−k ≤ aM(k1). If x ∈k R+, x is k-positive. We
can omit k when there is no confusion.

By the following lemma, we can find an upper bound of a real number.

Lemma 3.1.3 (Bound of reals). For every Cauchy real x := 〈(an)n,M〉 we can find an
upper bound 2kx on the elements of the Cauchy sequence: |an| ≤ 2kx for all n.

Proof. Let kx be max {|an| |n ≤M(0)}+ 1 ≤ 2kx . Then, |an| ≤ 2kx holds for all n.

We use an informal lambda notation to denote an anonymous function. We can write
�xM instead of a named function f defined by f(x) := M . We use the notation kx as given
in Lemma 3.1.3.
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Definition 3.1.4 (Arithmetic functions). For Cauchy reals x := 〈(an)n,M〉 and y :=
〈(bn)n, N〉, we define x+ y, −x, |x|, x · y and x−1 (provided that |x| ∈l R+) as follows.

x+ y := 〈(an + bn)n, �k max
(
M(k + 1), N(k + 1)

)
〉,

− x := 〈(−an)n,M〉,
|x| := 〈|an|,M〉,
x · y := 〈(an · bn)n, �k max

(
M(k + 1 + k|y|), N(k + 1 + k|x|)

)
〉,

x−1 := 〈cn, �kM(2(l + 1) + k)〉, cn :=

{
(an)−1 if an 6= 0

0 if an = 0.

Results of the above defined functions are indeed Cauchy reals.

Definition 3.1.5 (Inequalities of Cauchy reals). Let x, y be Cauchy reals. Define x ≤ y
by y − x ∈ R0+ and x <k y by y − x ∈k R+. We can omit k when there is no confusion.

An important consequence in constructive real numbers is that we can not compare two
reals as in the classical setting. Concretely speaking, this means that we cannot decide
x ≤ y or y ≤ x for arbitrarily given x and y. However, it is possible to compare a real with
an interval [Bis67, BB85]. We give this result as the approximate split property.

Lemma 3.1.6 (Approximate split property). Let x, y and z be given. If x < y then either
x ≤ z or z ≤ y.

Proof. See [Bis67, BB85].

Remark 3.1.7. The algorithmic ground of the above lemma is a decision procedure which
can be extracted as an executable program from the proof of the lemma if we formalize
them in a suitable framework.

3.1.2 Uniformly Continuous Functions

We can give a constructive definition of uniformly continuous functions on a Cauchy real in
the same spirit. The application of a uniformly continuous function to a Cauchy real and
the composition of uniformly continuous functions are also given.

Definition 3.1.8 (Uniformly continuous functions). We define a uniformly continuous
function f : I → R, where I is a rational interval. Let h be a function of I ∩ Q→ N→ Q,
α be a function of Z → N, ω be a function of Z → N and µ and ν be of Q. A tuple
〈h, α, ω, µ, ν〉 defines a uniformly continuous function f if the following conditions are
satisfied.

∀a,k∀n,m≥α(k)(|h an− h am| ≤ 2−k),

∀a,b,k∀n≥α(k)(|a− b| < 2−ω(k)+1 → |h an− h b n| ≤ 2−k),

∀a,n(µ ≤ h an ≤ ν).
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We call h a rational mapping, α a uniform Cauchy modulus, ω a modulus of uniform
continuity and µ, ν the lower and the upper bound of h, respectively. For a uniformly
continuous function f , we let hf , αf , ωf , µf and νf denote the the above five components,
respectively.

We define application of a uniformly continuous function to a Cauchy real.

Definition 3.1.9 (Application of a uniformly continuous function). Let f be a uniformly
continuous function and x := 〈(an)n,M〉 be a Cauchy real. Application of f to x, written
f(x), is defined to be

〈(hf (an, n))n, �k max
(
αf (k + 2),M(ωf (k + 1)− 1)

)
〉.

The application f(x) is indeed a Cauchy real.

Lemma 3.1.10 (Application f(x) is a Cauchy real). Under the assumptions of the above
definition, f(x) is a Cauchy real.

We define composition of uniformly continuous functions.

Definition 3.1.11 (Composition of uniformly continuous functions). Let I, J be rational
intervals and f : I → R, g : J → R be uniformly continuous functions. Assume νf , µf ∈ J .
The composition g ◦ f is defined as follows.

hg◦f : (I ∩ Q)→ N→ Q, hg◦f := �a,nhg(hf (a, n), n),

αg◦f := �k max(αg(k + 2), αf (ωg(k + 1)− 1)),

ωg◦f := �kωf (ωg(k)− 1) + 1, µg◦f := µg, νg◦f := νg.

The above composition is indeed a uniformly continuous function.

Lemma 3.1.12 (Composition g ◦ f is a uniformly continuous function). Under the as-
sumption of the above definition, the composition g ◦ f is indeed a uniformly continuous
function.

3.2 Rational Number into Signed Digit Stream

The goal of this section is to extract from proofs programs which translate a rational
number into a signed digit stream, SDS in short. The extracted program takes a rational
number in [−1, 1] as an input, and computes an SDS representation of the input rational
number. An SDS is a possibly non-well founded list of −1, 0 and 1. Suppose that di ranges
over {−1, 0, 1}. An SDS d0::d1:: . . . ::dk−1:: . . . approximates a real number as precisely as
required via rational intervals[

n−1∑
i=0

di
2i+1
− 1

2n
,
n−1∑
i=0

di
2i+1

+
1

2n

]
. (3.1)
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The SDS representation of real numbers is also referred to by the type-0 representation of real
numbers, because signed digit streams are of ground type. A finite list d0::d1:: . . . ::dk−1::[]
means a rational number

∑k−1
i=0

di
2i+1 , which is located at the center of the k-th interval.

We refer to the intervals [−1, 0], [−1
2
, 1
2
] and [0, 1] by basic intervals, and denote them

by IL, IM and IR, respectively. The algorithm in the extracted program is based on the
procedure determining for a given real number x ∈ [−1, 1], written x ∈ I, which of the basic
intervals contains x. Repeatedly applying this procedure to a given rational number a we
obtain an SDS representation of a.

3.2.1 Definitions

We start by defining algebras for our case study in rational numbers.

Definition 3.2.1 (Numbers). Algebras of positive numbers, integers and rational numbers
are defined as follows.

P := µξ(1
ξ, Sξ→ξ0 , Sξ→ξ1 ), Z := µξ(0

ξ,PP→ξ,NP→ξ), Q := µξ(#
P→Z→ξ).

The constructor # is an infix operator so that we write i#p for pP and iZ. We assume
that the rational arithmetic is already given.

Definition 3.2.2 (Totality of P, Z and Q). We define the totality predicates TP of positive
numbers, TZ of integers and TQ of rational numbers. The introduction and elimination
axioms are as follows.

TP 1, (TP)+0
∀ncp (TP p→ TP(S1 p)) (TP)+2

∀ncp (TP p→ TP(S0 p)) (TP)+1

∀ncp (TP p→P 1→ ∀ncp (TP p→ P p→ P (S0 p))→
∀ncp (TP p→ P p→ P (S1 p))→ P p)

(TP)−

∀ncp (TP p→ TZ(Pp)) (TZ)+0

∀ncp (TP p→ TZ(Np)) (TZ)+2

TZ 0 (TZ)+1

∀nci (TZ i→ ∀ncp (TP p→ P (Pp))→ P 0→ ∀ncp (TP p→ P (Np))→ Pi) (TZ)−

∀ncp,i(TP p→ TZ i→ TQ(p#i)), (TQ)+

∀ncq (TQ q → ∀ncp,i(TP p→ TZ i→ P (p#i))→ P q) (TQ)−

The following algebra is used to represent SDSs.

Definition 3.2.3 (Interval algebra I). We define the interval algebra I to be

µξ(I
ξ,CL

ξ→ξ,CM
ξ→ξ,CR

ξ→ξ).
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Cototal ideals of the algebra I represent SDSs. We are interested in rational numbers in
[−1, 1]. For this restriction, we define a comprehension term Q of arity (Q) to mean total
ideals of rational numbers in [−1, 1].

Definition 3.2.4 (Rational numbers in [−1, 1]). We define a comprehension term Q to be
{a |TQa ∧l a ∈ I}.

We define an inductive predicate I and a coinductive predicate coI of arity (Q). Finite
continued fractions of the specified form are in I. The companion predicate coI contains
even non-well founded continued fractions which are real numbers.

Definition 3.2.5 (I and coI). We inductively define a predicate I of arity (Q). Let P be a
predicate variable of arity (Q). The introduction and elimination axioms are as follows.

I0 I+0
∀nca (Ia→ I(a

2
)) I+2

∀nca (Ia→ I(a−1
2

)) I+1
∀nca (Ia→ I(a+1

2
)) I+3

∀nca (Ia→P0→ ∀nca (Ia→ Pa→ P (a−1
2

))→
∀nca (Ia→ Pa→ P (a

2
))→ ∀nca (Ia→ Pa→ P (a+1

2
))→

Pa).

I−

We coinductively define coI, the companion predicate of I. The closure and greatest-fixed-
point axioms are as follows.

∀nca (coIa→a eqd 0 ∨r ∃ra0(
coIa0 ∧l a eqd a0−1

2
)∨d

∃ra0(
coIa0 ∧l a eqd a0

2
) ∨d ∃ra0(

coIa0 ∧l a eqd a0+1
2

)).
coI−

∀nca (Pa→∀nca (Pa→a eqd 0 ∨r ∃ra0((
coIa0 ∨d Pa0) ∧l a eqd a0−1

2
)∨d

∃ra0((
coIa0 ∨d Pa0) ∧l a eqd a0

2
)∨d

∃ra0((
coIa0 ∨d Pa0) ∧l a eqd a0

2
))→

coIa),

coI+

The associated algebra of I and coI is I. Note that a list of signed digits, namely, an
ideal of I, suffices to represent a construction of our fractions. Some rational numbers
cannot be finitely represented by our fraction. This is the reason that we make use of
cototal ideals in this case study.

3.2.2 Proofs

From a proof of the Proposition 3.2.6 we extract a program which translates a rational
number into an SDS. The proof depends on Lemma 3.2.9 below which determines where
the given rational number is located.

Proposition 3.2.6 (A rational number to an SDS). ∀nca (Qa→ coIa).
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Proof. Let a be given and assume Qa. Prove coIa by coI+.

∀nca (Qa→∀nca (Qa→a eqd 0 ∨r ∃ra0((
coIa0 ∨d Qa0) ∧l a eqd a0−1

2
)∨d

∃ra0((
coIa0 ∨d Qa0) ∧l a eqd a0

2
)∨d

∃ra0((
coIa0 ∨d Qa0) ∧l a eqd a0+1

2
))→

coIa)

It suffices to prove the second premise. Let a be given and assume Qa. By Lemma 3.2.9,
we can determine whether a ∈ IL, a ∈ IM or a ∈ IR. If a ∈ IL, let a0 be 2a+ 1. If a ∈ IM, let
a0 be 2a. If a ∈ IL, let a0 be 2a− 1. In each case the equality and Qa0 hold.

The above proof depends on the next lemmas which are proved by considering the
construction of rational numbers.

Lemma 3.2.7 (Above 0 or below 0). ∀nca (TQa→ a ≤ 0 ∨ 0 ≤ a).

Proof. Assume a and TQa. Using (TQ)− for TQa, it suffices to prove

∀nciZ,pP(TZi→ TPp→ (i#p) ≤ 0 ∨ 0 ≤ (i#p)).

Let i and p be given and assume TZi and TPp. We use (TZ)− for TZi to prove i#p ≤ 0∨0 ≤
i#p. There are three step cases. Case i = 0. i#p is 0 in Q, hence the goal is trivial. Case
i = Pp′. i > 0, hence 0 ≤ Pp′#p. Case i = Np′. i < 0, hence Np′#p ≤ 0.

Lemma 3.2.8 (Comparing two rational numbers). ∀nca,b(TQa→ TQb→ a ≤ b ∨ b ≤ a).

Proof. Let a and b be given and assume TQa and TQb. By Lemma 3.2.7 we can determine
a− b ≤ 0 ∨ 0 ≤ a− b. If the left disjunct holds, we prove a ≤ b, otherwise we prove b ≤ a.
We use the fact that TQ(a− b) holds provided that TQa and TQb hold.

Lemma 3.2.9 (Standard split of rational numbers). ∀nca (Qa→ −1 ≤ a ≤ 0 ∨ −1
2
≤ a ≤

1
2
∨ 0 ≤ a ≤ 1).

Proof. Let a be given and assume Qa, namely, a ∈ I and TQa. By Lemma 3.2.8 we
determine a ≤ b0∨ b0 ≤ a for any −1

2
≤ b0 ≤ 0. Let b0 be −1

3
in this proof. We consider two

cases from the disjunction. If a ≤ −1
3
, we have a ∈ IL. If −1

3
≤ a, we derive a ≤ 1

3
∨ 1

3
≤ a

again by Lemma 3.2.8. We consider two cases. If a ≤ 1
3
, a ∈ IM holds. If 1

3
≤ a, a ∈ IR

holds.

From a finite segment of an SDS, we can compute a rational number which approximates
the SDS. Such a program is extracted from a proof of ∀nca∈I(

coIa→ ∀cn∃lb∈I(|a− b| ≤ 2−n)).
The result is essentially the same as Proposition 3.3.9.
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λa(
coR a λb(if (b ≤ −1

3
) then in4

2(InR (2b+ 1))

else if (b ≤ 1
3
) then in4

3(InR 2b)

else in4
4(InR (2b− 1))))

Figure 3.1: ratsdsQ→I

3.2.3 Program Extraction

We extract from the proof of Proposition 3.2.6 the program ratsds of type Q→ I shown in
Figure 3.2.3. Assume that a rational number a in [−1, 1] is given. The corecursion operator
applies the costep term to a, then it determines which of a ≤ −1

3
, −1

3
< a < 1

3
or 1

3
≤ a is

the case. The result is a term of sum type U + (I + Q) + (I + Q) + (I + Q). In our case, it
is an injection of a value whether in the second, in the third or in the fourth position of the
sum. Depending on where the value is, the corecursion operator chooses which constructor,
i.e., CL, CM or CR, comes next. Since the value is always the right injection of a rational
number, the unfolding can carry on with this rational number.

3.2.4 Experiments

A rational number −1 is translated into an SDS as follows. Let M be the costep term, then
ratsds(−1) unfolds as follows.

ratsds(−1) 7→ coR (−1)M

7→ CL(coR (−1)M)

7→ CL(CL(coR (−1)M))

7→ . . .

For another rational number 11
7

, ratsds computes the following.

ratsds(11#7) 7→∗ CR(CR(CM(CM(CR(CM(CM(CR(CM(CM(coR (4#7)M))))))))))

3.3 Representations of Real Numbers

In this section we deal with representations of real numbers of type-1 and type-0. The type-1
representation of real numbers is Cauchy reals which we saw in Section 3.1.1. We extract
from formal proofs programs to transform a real number of type-1 into a real number of
type-0, and vice versa. In contrast to Section 3.2, we are going to deal with real numbers
including irrational numbers. From the technical viewpoint, we make use of abstract theory
due to Berger for reasoning about real numbers, whereas our case study in Section 3.2 was
based on the concrete rational numbers.
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The rational numbers we used in Section 3.2 are concrete in the sense that they are
ideals of the algebra Q. Notice that the rational numbers which appear in the extracted
program ratsds are independent from the rational numbers which are used in predicate
definitions and proofs. According to our realizability interpretation, arguments of predicates
are irrelevant to realizers. Hence whatever the terms in formulas and proofs are, the
extracted term is not affected by them at all. In fact, the algebra Q which appears in the
extracted program ratsds comes from the associated algebra τ(TQ) in the definition of Q
via the realizability interpretation, but not from rational numbers in proofs. Based on this
observation, the rational numbers in proofs can be something else as long as we can work
consistently.

In this section, we work with the axiomatic theory of real numbers instead of a concrete
one, e.g. some theory of Cauchy reals. Here we make use of the idea of abstract theories in
order to formulate the axiomatic theory of real numbers. When we specify a new axiom,
the realizability interpretation of the axiom should be given. If the axiom comes from
an inductive or a coinductive definition, the realizer is given as a special constant. Even
if this is not the case, non-computational (or Harrop) formulas are harmless as axioms
because the empty term is the trivial realizer of such formulas. We refer to theories given
by non-computational axiom formulas as abstract theories. We define abstract theories
by using abstract types. Abstract types are just used to identify the kind of objects we
are talking about, thus type variables are suitable. The use of abstract theories results in
a clear separation between computational and non-computational ingredients of objects,
hence it is beneficial to the implementation work as well.

3.3.1 Definitions

We first define constants and axioms of our abstract theory of real number, then define
a coinductive predicate. The idea is to have a theory to reason about real numbers in
the standard interval [−1, 1]. We give the real number constant zero and some restricted
arithmetic operation on real numbers. Then, a relation “∈” is introduced in order to mean
that a real number is in a rational interval.

Let ρ be an abstract type of real numbers. The algebras N, SD, Q and etc. are all
defined in Section 2.1. The totality predicate of SD is needed.

Definition 3.3.1 (The totality predicate of SD). Define TSD, the totality predicate of SD,
to be µX(X L, XM, X R). Its introduction and elimination axiom are as follows.

TSD L (TSD)+0
TSD R (TSD)+2

TSDM (TSD)+1

∀ncd (TSDd→ P L→ P M→ P R→ Pd) (TSD)−

Suppose that a ranges over Q, n ranges over N, d ranges over SD and x, y range over
abstract real numbers of type ρ.
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Definition 3.3.2 (Z). Z is a constant of type ρ.

We have the following arithmetic operations on ρ.

Definition 3.3.3 (x+d
2

, 2x− d). Let x and d be of type ρ and SD, respectively. x+d
2

and
2x− d are terms of type ρ.

Definition 3.3.4 (x ∈ Ia,n). Let x, a and n be of type ρ, Q and N, respectively, then
x ∈ Ia,n is a term of type B. We abbreviate x ∈ I0,0 and x ∈ I d

2
,1 by x ∈ I and x ∈ Id,

respectively.

Intuitively, x ∈ Ia,n means a− 2−n ≤ x ≤ a+ 2−n. We refer to Id by basic intervals.
Suppose that ≤ is the “equal or less than” relation on Q and eqd is the Leibniz equality.

In formulas, we identify terms t of type B and the Leibniz equality t eqdT. The axioms of
the abstract theory of real numbers are given as follows. Recall that the signed digits are
taken to be integers, e.g. M to be 0.

Axiom 3.3.5 (Abstract Real Numbers).

∀x(x ∈ I), (RealBound)
Z+M
2

eqd Z. (AvZero)

∀x,a(a ≤ −1
4
→ x ∈ Ia,2 → x ∈ IL), (RealLeft)

∀x,a(−1
4
≤ a ≤ 1

4
→ x ∈ Ia,2 → x ∈ IM), (RealMiddle)

∀x,a(14 ≤ a→ x ∈ Ia,2 → x ∈ IR), (RealRight)

∀x,d(x ∈ Id → x eqd (2x−d)+d
2

), (AvVaIdent)

∀x,d,a,n(x ∈ Id → x ∈ Ia,n+1 → 2x− d ∈ I2a−d,n), (VaIntro)

∀x,d,a,n(x ∈ Ia,n → x+d
2
∈ Ia+d

2
,n+1). (AvIntro)

Notice that all formulas of Axiom 3.3.5 are non-computational.
We consider real numbers in the interval [−1, 1]. This is characterized by (RealBound).

The property of the constant Z is given by (AvZero). Informally, it means 0+0
2

= 0 as
we commonly expect. The properties of the relation x ∈ Ia,n come from the rest of the
axioms. The three axioms, (RealLeft), (RealMiddle) and (RealRight), characterize
the relation between a real number and an interval. In each case, a basic interval is decided
from the center a of the rational interval Ia,n. Since a is a rational number, the inequalities
in the first premises of the axioms are decidable. The last three axioms, (AvVaIdent),
(VaIntro) and (AvIntro), characterize the properties of the arithmetic operations which
also interact with rational intervals.

There is no computational content in abstract real numbers, but there is in the coin-
ductively defined predicate coI. Due to the realizability interpretation, the argument of
the predicate coI is discarded by program extraction. The associated algebra of coI is I, a
cototal ideal of which represents a real number in [−1, 1] through an SDS. The following
definition differs from Definition 3.2.3 in the use of abstract real numbers.
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Definition 3.3.6 (coI). Define a coinductive predicate coI of arity (ρ) to be

νX(XZ,∀ncx ∀cd(Xx→c X(x+d
2

))).

The closure and greatest-fixed-point axioms are as follows.

∀ncx (coIx→ x eqd Z ∨r ∃ry∃dd(coIy ∧l x eqd y+d
2

)), coI−

∀ncx (Px→ ∀ncx (Px→ x eqd Z ∨r ∃ry∃dd((coIy ∨d Py) ∧l x eqd y+d
2

))→ coIx). coI+

This coinductively defined predicate coI tells us the approximability of abstract real numbers
via intervals.

3.3.2 Proofs

We prove two main propositions. From the proofs of the propositions, we will extract
translators from a fast Cauchy real into an SDS and vice versa. Here, a fast Cauchy real is
a Cauchy real whose Cauchy modulus is the identity function.

Let an abstract real number x be given. The premise of the first proposition claims
that for any given precision n, there is a rational number a which approximates the x. The
proof depends on Lemma 3.3.8 which we prove later.

Proposition 3.3.7 (Cauchy to SDS). ∀ncx (∀cn∃la(x ∈ Ia,n)→ coIx).

Proof. Let x be given and assume ∀cn∃la(x ∈ Ia,n). Define the competitor predicate Q =
{x | ∀cn∃la(x ∈ Ia,n)} and apply coI+. It suffices to show the costep formula ∀ncx (Qx →
x eqd Z∨r∃ry∃dd((coIy∨dQy)∧lx eqd y+d

2
)). Let x be given and assume Qx, i.e., ∀cn∃la(x ∈ Ia,n),

hence ∃la(x ∈ Ia,2) which then yields some d′ such that x ∈ Id′ by Lemma 3.3.8. We prove
the right disjunct of the goal. Apply (∃r)+ and (∃d)+ with 2x− d′ and d′, respectively. For
the left conjunct, we prove the right disjunct Q(2x− d′), i.e., ∀cn∃la(2x− d′ ∈ Ia,n). Let n0

be given, then Qx implies that there is some a0 such that x ∈ Ia0,n0+1. By (VaIntro),
2x− d′ ∈ I2a0−d′,n0 holds, hence ∃la(2x− d′ ∈ Ia,n0) as we desired. For the right conjunct
use (AvVaIdent).

Lemma 3.3.8 claims the following. Suppose that a real number x ∈ [−1, 1] is covered by
a rational interval [a− 1

4
, a+ 1

4
]. Then, we can determine a basic interval which covers x.

Lemma 3.3.8. ∀ncx (∃la(x ∈ Ia,2)→ ∃ld(x ∈ Id)).

Proof. Let x be given and assume ∃la(x ∈ Ia,2), which yields some rational number a such
that x ∈ Ia,2 holds. Because it is decidable which of a ≤ −1

4
, −1

4
≤ a ≤ 1

4
or 1

4
≤ a holds

by Lemma 3.2.8, we find a d for the conclusion. For example if a ≤ −1
4
, x ∈ IL holds by

(RealLeft). Recall that ∃laA abbreviates ∃ra(TQa ∧l A).

From a proof of the converse of Proposition 3.3.7, we can extract a program which
translates an SDS into a Cauchy real.
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Proposition 3.3.9 (SDS to Cauchy). ∀ncx (coIx→ ∀cn∃la(x ∈ Ia,n)).

Proof. The proposition is same as ∀cn∀ncx (coIx → ∃la(x ∈ Ia,n)). We prove by induction
on n. Case n = 0. Let x be given and assume coIx. To prove ∃la(x ∈ Ia,0), let a be 0.
Then x ∈ I0,0 by (RealBound). Case n 7→ n + 1. Assume the induction hypothesis
∀ncx (coIx→ ∃la(x ∈ Ia,n)). We prove ∀ncx (coIx→ ∃la(x ∈ Ia,n+1)). Let x be given and assume
coIx, then coI− implies x eqd Z ∨r ∃ry∃dd(coIy ∧l x eqd y+d

2
). For the left case, suppose that

x eqd Z. By the induction hypothesis there is a0 such that Z ∈ Ia0,n. Using (AvIntro) with
M, Z+M

2
∈ Ia0+M

2
,n+1

holds. Then the conclusion is trivial by (AvZero). For the right case,

there are y and d such that x eqd y+d
2

and coIy. By the induction hypothesis, there is an a′

such that y ∈ Ia′,n. By (AvIntro), y+d
2
∈ Ia′+d

2
,n+1

, hence the goal, ∃la(x ∈ Ia,n+1).

3.3.3 Program Extraction

We extract from the proof of Proposition 3.3.7 a program cauchysds which translates a
fast Cauchy real into a signed digit stream. Corresponding to the use of Lemma 3.3.8
in the proof of the proposition, there is another program L, which is extracted from the
lemma, appearing inside of cauchysds. By convention, we denote a fast Cauchy real of type
N→ Q by x. Note that variables of abstract type ρ are discarded by program extraction,
hence don’t appear in extracted terms at all. The extracted programs cauchysds and L are
shown in Figure 3.2. In cauchysds, the given fast Cauchy real x is passed to the corecursion

cauchysds = λxN→Q(coRN→Q
I xλx(InR〈Lx, InR(λn(2x(n+ 1)− Lx))〉))

L = λx(Case (x(2) + 1
4
) of

i0#p→ Case i0 of

P p0 → Case (x(2)− 1
4
) of

i1#p0 → Case i1 of

P p1 → R

0→ M

N p1 → M

0→ L

N p0 → L)

Figure 3.2: cauchysds(N→Q)→I and L(N→Q)→SD

operator. When the corecursion operator unfolds, this x is given to the costep term which
computes a term of type U + SD× (I + (N→ Q)), where the actual values are injected in
the positions of SD and N→ Q. As we will see, L determines from the given x a signed
digit d such that x ∈ Id. By using this signed digit, the corecursion operator outputs this d
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as the head of the SDS and carries on with the fast Cauchy real λn(2x(n+ 1)− d) for the
next step. This Cauchy real is intended to take a closer look at x.

In L, for the given fast Cauchy real x it determines if either x ∈ IL, x ∈ IM or x ∈ IR.
The procedure of L is based on rational number reasoning. The given fast Cauchy real x is
applied to 2, then it results in a rational number, say a. This a approximates x with an
error of at most 2−2. In other words, x is covered by a rational interval of length 1

2
whose

center is a. Whatever the center a is, we can find a basic interval which covers x. This is
computed by testing a ≤ −1

4
and 1

4
≤ a.

sdscauchy = λvI,nN(RI→Q
N n

λu0

λm,f,u(Case (DIu) of InL U→ 0

InR ySD×I → f(π1y)+π0y
2

)

v)

Figure 3.3: sdscauchy

As shown in Figure 3.3, we extract from the proof of Proposition 3.3.9 a program
sdscauchy which translates a signed digit stream into a fast Cauchy real. Informally
speaking, this program computes from the given SDS ds = d0::d1:: . . . ::dn:: . . . the following.

λn

n∑
i=0

(
di

2i+1

)

Suppose that an SDS ds and a natural number n is given, then it computes the rational
approximation of the given SDS by recursion on n. In one recursion step it destructs ds
and observes nothing or a pair of d and ds′, namely, the head and the tail of ds. In the
former case it results in 0. In the latter case, we first assume that the previous value p of
the recursion is available, then it computes p+d

2
where d is viewed as an integer.

3.3.4 Experiments

We define the square root of a rational number by recursion, then translate them into SDS
by means of cauchysds. The following function sqrt computes a Cauchy real of the square
root of a rational number with a modulus M n := n+ 1.

sqrt : Q→ N→ Q

sqrt := λa,n

(
RN n 1λ ,b

(
b+ a

b

2

))
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The Cauchy reals representing
√

1
2

and
√

1
3

are defined to be sqrt1
2

and sqrt1
3
, respectively.

By means of cauchysds, they are translated into SDSs as follows:

cauchysds(sqrt1
2
) = R :: R :: M :: L :: R :: L :: M :: R :: M :: M :: . . . ,

cauchysds(sqrt1
3
) = R :: M :: R :: L :: M :: R :: M :: M :: M :: L :: . . . .

It has taken around a minute to compute the first 20 digits on the author’s computer.
In the opposite direction, sdscauchy computes a Cauchy real from an SDS. We give the
first digits from the above results and 20 to sdscauchy.

sdscauchy (”the first digits of
√

1
2
”) 20 = 741455#1048576

sdscauchy (”the first digits of
√

1
3
”) 20 = 151349#262144

As specified in Proposition 3.3.9, the results are rational approximations with the numerical
error less than 2−20. ∣∣∣ 7414551048576

−
√

1
2

∣∣∣ = 1.90915 . . .× 10−7 < 2−20∣∣∣151349262144
−
√

1
3

∣∣∣ = 3.47265 . . .× 10−7 < 2−20

3.4 Average

We develop elementary arithmetic in exact real numbers via program extraction. Instead
addition of two real numbers, we rather consider the average of two real numbers so that
the operation is closed in the interval [−1, 1]. The program of average comes from a proof
of the following proposition

∀ncx,y(coIx→ coIy → coI(x+y
2

)). (3.2)

The extracted term, which is of type I → I → I, computes an average of two SDSs. For
the brevity, assume two input ds and es of type I are of the form d0 :: d1 :: d2 :: . . . and
e0 :: e1 :: e2 :: . . ., respectively. The average d̃0 :: d̃1 :: d̃2 :: . . . is computed by the extracted
program step by step from the left end, i.e., d̃0, to the right digits. Here we introduce
notations. Consider an SDS ds = d0 :: d1 :: d2 :: . . .. Then, ds0 and ds′ stand for the head d0
and the tail d1 :: d2 :: . . ., respectively. Also the n-th tail can be written as ds(n) instead of
using “′” for n times. Firstly, it computes i0 := d0 + e0 ∈ [−2, 2]. We call this i0 the 0-th
carry. Secondly, the corecursive step computes from i0, ds

′ and es′ the following four values:
a digit d̃0, the next carry i1, ds

′′ and es′′. The last three outputs are the inputs for the next
corecursion step. In general, in, dsn+1 and esn+1 are given as inputs to the corecursive step.
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We determine d̃n and in+1 in the following way:

d̃n =


−1 if − 6 ≤ dn+1 + en+1 + 2in ≤ −2

0 if − 2 ≤ dn+1 + en+1 + 2in ≤ 2

1 if 2 ≤ dn+1 + en+1 + 2in ≤ 6

, (3.3)

in+1 = dn+1 + en+1 + 2in − 4d̃n. (3.4)

It is explained by considering intervals. To determine the first digit d̃0, it is insufficient just
to read off d0 and e0. A counter example is the inputs 1 :: . . . and 0 :: . . . which indicate two
intervals [0, 1] and [−1

2
, 1
2
]. Their average is somewhere in an approximated interval [−1

4
, 3
4
].

However, we cannot determine the first digit d̃0 because neither of the basic intervals,
i.e., [−1, 0], [−1

2
, 1
2
], and [0, 1], can approximate such a real number. It suffices to use five

distinctive tokens to memorize this 1-length interval. The carry i0 := d0 + e0 ∈ [−2, 2] is
responsible for it.

in = −2
in = −1

in = 0
in = 1

in = 2

−1 −1
2

0 1
2

1

Figure 3.4: Intervals indicated by a carry in ∈ {−2,−1, 0, 1, 2}.

From now we take a look at our corecursive part. The average is approximated by
1
2
-length interval by reading off the digits once more from the two streams. This interval

is represented by an integer k0 := d1 + e1 + 2i0 ∈ [−6, 6]. For example, assume i0 = −2,

kn = −6
kn = −5

kn = −4
kn = −3

kn = −2

−1 −3
4

−1
2

−1
4

0 1
2

1

Figure 3.5: Intervals indicated by kn for the case in = −2.

then the left most case happens if both of d1 and e1 are −1. There are five cases from
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the combinations of d1 and e1. It is then possible to determine d̃0 meaning either of
[−1, 0], [−1

2
, 1
2
] or [0, 1]. We formalized this procedure to compute d̃n in (3.3). For further

computation we reuse this corecursive part by mapping a 1
2
-length interval indicated by k0

into a 1-length interval. It is done by applying Outd̃0(x) := 2x− d̃0. We find an i1 which

corresponds to the expected 1-length interval. For example in the case of d̃0 = −1, Out−1(x)
maps each 1

2
-length interval indicated by k0 ∈ [−6,−2] into a 1-length interval indicated

by i1 ∈ [−2, 2], where i1 = k0 − 4 · (−1). We formalized this procedure to compute in+1 in
(3.4).

3.4.1 Definitions

According to our informal idea, the following extended signed digits suffice to be the carries.

Definition 3.4.1 (Extended signed digits).

SD2 = µξ(LL
ξ, LTξ,MTξ,RTξ,RRξ)

We define the addition on SD in SD2. Intuitively, it is clear by considering SD and SD2

in integers, {−1, 0, 1} and {−2,−1, 0, 1, 2}, respectively. Formally, we define the following
function JOne.

Definition 3.4.2 (JOne).

JOne : SD→ SD→ SD2

JOne(L, L) := LL, JOne(L,M) := LT, JOne(L,R) := MT,

JOne(M, L) := LT, JOne(M,M) := MT, JOne(M,R) := RT,

JOne(R, L) := MT, JOne(R,M) := RT, JOne(R,R) := RR.

We abuse the common notation of addition + for JOne.
We formalize the idea depicted in the introduction of this section. For the given d, e

and i, we compute d+ e+ 2i =: k ∈ [−6, 6] which indicate an interval of length 1
2
, and we

then determine d′ and j for the next step. That idea yields the definitions of the following
function J and D. In arithmetic formula, J ′ and D′ can also be defined for the same
purpose.

J ′ : Z→ Z, D′ : Z→ Z

J ′(k) := if (|k| mod 4 = 3) then (−sg k) else (sg k) · (|k| mod 4)

D′(k) := if |k| ≤ 2 then 0 else (sg k)

sg(k) :=


−1 k < 0

0 k = 0

1 k > 0

We define functions J and D.
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Definition 3.4.3 (J and D). Define functions J and D of the following types,

J : SD→ SD→ SD2 → SD2,

D : SD→ SD→ SD2 → SD,

as shown in Figure 3.6 and Figure 3.7, respectively.

J(L, L, LL) := LL

J(L, L, LT) := MT

J(L, L,MT) := LL

J(L, L,RT) := MT

J(L, L,RR) := RR

J(L,M, LL) := LT

J(L,M, LT) := RT

J(L,M,MT) := LT

J(L,M,RT) := RT

J(L,M,RR) := LT

J(L,R, LL) := MT

J(L,R, LT) := LL

J(L,R,MT) := MT

J(L,R,RT) := RR

J(L,R,RR) := MT

J(M, L, LL) := LT

J(M, L, LT) := RT

J(M, L,MT) := LT

J(M, L,RT) := RT

J(M, L,RR) := LT

J(M,M, LL) := MT

J(M,M, LT) := LL

J(M,M,MT) := MT

J(M,M,RT) := RR

J(M,M,RR) := MT

J(M,R, LL) := RT

J(M,R, LT) := LT

J(M,R,MT) := RT

J(M,R,RT) := LT

J(M,R,RR) := RT

J(R, L, LL) := MT

J(R, L, LT) := LL

J(R, L,MT) := MT

J(R, L,RT) := RR

J(R, L,RR) := MT

J(R,M, LL) := RT

J(R,M, LT) := LT

J(R,M,MT) := RT

J(R,M,RT) := LT

J(R,M,RR) := RT

J(R,R, LL) := LL

J(R,R, LT) := MT

J(R,R,MT) := RR

J(R,R,RT) := MT

J(R,R,RR) := RR

Figure 3.6: Function J

Based on concrete rational numbers and integers, we define the abstract theory of
average.

Axiom 3.4.4 (Abstract theory of average). Suppose that +Z is the addition on Z. We
define the axioms of the abstract theory of average as follows.

x+k
2

+ l = x+(k+Z2l)
2

,

x+k
4

+ l = x+(k+Z4l)
4

,

x+k
2

+ y+l
2

= (x+y)+(k+Zl)
4

,

k + l = k +Z l,

x+ 0 = x,

0 + y = y,
0
2

= 0,
2k
2

= k.

In the proof, while we use equations in Axiom 3.4.4 in order to replace the left hand
side by the right hand side, the opposite way is never needed in our proofs. Moreover,
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D(L, L, LL) := L

D(L, L, LT) := L

D(L, L,MT) := M

D(L, L,RT) := M

D(L, L,RR) := M

D(L,M, LL) := L

D(L,M, LT) := L

D(L,M,MT) := M

D(L,M,RT) := M

D(L,M,RR) := R

D(L,R, LL) := L

D(L,R, LT) := M

D(L,R,MT) := M

D(L,R,RT) := M

D(L,R,RR) := R

D(M, L, LL) := L

D(M, L, LT) := L

D(M, L,MT) := M

D(M, L,RT) := M

D(M, L,RR) := R

D(M,M, LL) := L

D(M,M, LT) := M

D(M,M,MT) := M

D(M,M,RT) := M

D(M,M,RR) := R

D(M,R, LL) := L

D(M,R, LT) := M

D(M,R,MT) := M

D(M,R,RT) := R

D(M,R,RR) := R

D(R, L, LL) := L

D(R, L, LT) := M

D(R, L,MT) := M

D(R, L,RT) := M

D(R, L,RR) := R

D(R,M, LL) := L

D(R,M, LT) := M

D(R,M,MT) := M

D(R,M,RT) := R

D(R,M,RR) := R

D(R,R, LL) := M

D(R,R, LT) := M

D(R,R,MT) := M

D(R,R,RT) := R

D(R,R,RR) := R

Figure 3.7: Function D

the right hand sides are simpler than the left hand sides. Due to these conditions, we can
make use of the (proper) rewriting rules to specify the above axiom in Minlog. Then, the
normalization mechanism automatically applies axioms instead of manually applying each
axiom one by one, so that proof writing in Minlog becomes much easier.

3.4.2 Proofs

We present a proof of the formula (3.2) by closely following [BS10]. By convention on
variable names, d and e are for SD, and i and j are for SD2.

Proposition 3.4.5 (Average). ∀ncx,y(coIx→ coIy → coI x+y
2

)

Proof. Let x and y be given. Assume coIx and coIy. By Lemma 3.4.6, there exist x′, y′

and i such that x + y = x′+y′+i
2

. We prove coI x
′+y′+i

4
by using (coI)+ with the competitor

predicate P := {z|∃rx,y∃di (coIx ∧ coIy ∧ z = x+y+i
4

)}. Obviously P x′+y′+i
4

holds. It suffices to
prove the following costep formula.

∀ncx (Px→ x = 0 ∨ ∃ry∃dd((coIy ∨ Py) ∧ x =
y + d

2
)).

Let x be given. Assume Px. Here, it makes computational sense to use the identity
lemma before assuming Px. By unfolding P , there exist x̃, ỹ, i such that x = x̃+ỹ+i

4
, coIx̃,
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coIỹ, TSD2i. By Lemma 3.4.7, there exist x̃′, ỹ′, j, d such that x̃ + ỹ + i = x̃′+ỹ′+j+4d
2

. Let

y = x̃′+ỹ′+j
4

, then x = y+d
2

and Py hold.

We prove the two lemmas used in the above proof. In the following we abbreviate
∀ncx (coIx→ A) and ∃rx(coIx ∧ A) by ∀ncx∈coIA and ∃rx∈coI(A), respectively.

Lemma 3.4.6. ∀ncx,y∈coI∃di ∃rx′,y′∈coI
(
x+y
2

= x′+y′+i
4

)
.

Proof. Assume x ∈ coI and y ∈ coI. Applying (coI)− to coIx and coIy, there are four cases
from the following two disjunctions.

x eqd Z ∨r ∃rx0∈coI∃
d
d0

(x eqd
x0 + d0

2
),

y eqd Z ∨r ∃ry0∈coI∃
d
e0

(y eqd
y0 + e0

2
).

We prove the goal ∃di ∃rx′,y′∈coI
x+y
2

eqd x′+y′+i
4

for each case. (1) Assume x eqd Z and y eqd Z,

then x+y
2

is Z. Let x′, y′ be Z and i be MT. (2) Assume x eqd Z and ∃ry0∈coI∃
d
e0

(y eqd y0+e0
2

).

For the given y0 and e0,
x+y
2

is y0+e0
4

. Let x′ be Z, y′ be y0 and i be e0. (3) Similar to (2).

(4) Assume x0 ∈ coI, d0 ∈ SD, y0 ∈ coI, e0 ∈ SD such that x eqd x0+d0
2

and y eqd y0+e0
2

, then
x+y
2

is x0+y0+(d0+e0)
4

. Let x′ be x0, y
′ be y0 and i be d0 + e0.

Lemma 3.4.7. ∀ncx,y∈coI∀ci∃rx′,y′∈coI∃dj,d(x+ y + i = x′+y′+j+4d
2

).

Proof. Let x, y and i be given and assume coIx and coIy. By using (coI)−, we have the same
case distinction as in Lemma 3.4.6. (1) Suppose that x eqd Z and y eqd Z. Let x′ and y′

be both Z, then it suffices to find j and d such that i = j+4d
2

. It is solved by j := J(i, 0, 0)
and d := D(i, 0, 0). (2) Suppose that x eqd Z and ∃ry0∈coI∃

d
e0

(y eqd y0+e0
2

). Let x′ be Z and

y′ be y0, then it suffices to find j and d such that e0
2

+ i = j+4d
2

. The equation is solved
by j := J(i, 0, e0) and d := D(i, 0, e0). (3) Similar to (2). (4) Suppose that x0 ∈ coI,
d0 ∈ SD, y0 ∈ coI, e0 ∈ SD such that x eqd x0+d0

2
and y eqd y0+e0

2
. Let x′ be x0, y

′ be y0,

then it suffices to find j and d such that d0
2

+ e0
2

+ i = j+4d
2

. The equation is solved by
j := J(i, d0, e0) and d := D(i, d0, e0).

3.4.3 Program Extraction

We extract programs from the proofs. From Lemma 3.4.6, we extract cPreprocess as
shown in Figure 3.8. Here ds is a name for variables ranging over I, and u for variables
ranging over SD× I. This cPreprocess satisfies the following equations.

cPreprocess([], []) = 〈M, [], []〉,
cPreprocess([], e::es) = 〈e, [], es〉,
cPreprocess(d::ds, []) = 〈d, ds, []〉,
cPreprocess(d::ds, e::es) = 〈d+ e, ds, es〉.



92 Chapter 3. Program Extraction in Exact Real Arithmetic

λds0,ds1(Case DIds0 of

λ (Case DIds1 of λ 〈MT, ds0, ds1〉
λu〈M + π0u, ds0, π1u〉)

λu0(Case DIds1 of λ 〈π0u0 + M, π1u0, ds1〉
λu1〈π0u0 + π0u1, π1u0, π1u1〉))

Figure 3.8: cPreprocessI→I→SD2×I×I

For the given two streams cPreprocess computes the sum of the two head digits (regarding
[] as M::[]), and its tails. This sum of digits of type SD2 is a carry which contains
intermediate information to compute the average as we saw in the informal idea.

From the proof of Lemma 3.4.7, we extract the term cRoutine as shown in Figure 3.9.
The constant cRoutine of type SD2 → I → I → SD2 × SD × I × I is defined to be the

λi,ds0,ds1(Case DIds0 of

λ (Case DIds1 of

λ 〈JMMi,DMMi, ds0, ds1〉
λu〈JM(π0u)i,DM(π0u)i, ds0, π1u〉)

λu0(Case DIds1 of

λ 〈JM(π0u0), D(π0u0)Mi, π1u0, ds1〉
λu1〈J(π0u0)(π0u1)i,D(π0u)(π0u1)i, π1u0, π1u1〉))

Figure 3.9: cRoutineSD2→I→I→SD2×SD×I×I

term above. It satisfies the equations

cRoutine(i, [], []) = 〈J(0, 0, i), D(0, 0, i), [], []〉,
cRoutine(i, [], e::es) = 〈J(0, e, i), D(0, e, i), [], es〉,
cRoutine(i, d::ds, []) = 〈J(d, 0, i), D(d, 0, i), ds, []〉,
cRoutine(i, d::ds, e::es) = 〈J(d, e, i), D(d, e, i), ds, es〉.

For the given carry and two signed digit streams, cRoutine computes the carry for the next
step, the first signed digit of the average of the streams, and the tails of the input streams.

From the proof of Proposition 3.4.5, we extract ave as shown in Figure 3.10. Here q is a
name for variables ranging over SD2×I×I and w for variables ranging over SD2×SD×I×I.
Also recall that the let construction in Example 2.5.28. Note that we have three times of
cRoutine if we do not use the identity lemma in the proof of Proposition 3.4.5. It calls
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λds0,ds1(
coR (cPreprocess ds0 ds1)

λq(InL(letw = cRoutine(π0q)(π0(π1 q))(π1(π1q))

in 〈π0(π1w), InR〈π0w, π1(π1w)〉〉)))

Figure 3.10: aveI→I→I

cPreprocess to compute the first carry and the tails of the inputs. Then CoRec repeatedly
calls cRoutine in order to compute the average step by step. The second argument of the
corecursion operator, namely, M : SD2× I× I→ U + SD× (I + SD2× I× I), operates on
an argument 〈i, ds, es〉 as follows. Let cRoutine(i, ds, es) = 〈j, d̃, ds′, es′〉. Then M〈i, ds, es〉 =
InR〈d̃, InR〈j, ds′, es′〉〉. Given ds and es, let cPreprocess(ds, es) = 〈i, ds, es〉 := N . Then MN
is InR〈d̃, InR〈j, ds′, es′〉〉. Therefore by the conversion rule for the corecursion operator the
result is d̃::(coR〈j, ds′, es′〉M).

The term above can be used as a program to compute the average of stream represented
real numbers. Comparing with a result by Berger and Seisenberger [BS12], our extracted
program behaves almost the same as theirs except for a difference coming from the data
type of streams. They use the type of necessarily infinite streams, written as fixα.SD× α,
whereas we accept possibly infinite streams.

3.4.4 Experiments

We compute the average of 5
8

and 3
4
. 5

8
= 1

2
+ 0

4
+ 1

8
and 3

4
= 1

2
+ 1

4
, and hence those numbers

are R::M::R::[] and R::R::[] in the algebra I, respectively. Unfolding up to 10 times, the
average program results in

R::R::M::L::M::M::M::M::M::M::(coR〈M, [], []〉M).

It is verified as

5
8

+ 3
4

2
=

11

16
=

1

2
+

1

4
− 1

16
.

Next, we try computing the average of two irrational numbers, 1√
2

and 1√
3
. By means

of cauchysds, which we extracted in Section 3.3, the first digits of these numbers are the
following.

cauchysds(sqrt1
2
) = R::R::M::L::R::L::M::R::M::M:: . . . ,

cauchysds(sqrt1
3
) = R::M::R::L::M::R::M::M::M::L:: . . . .

The average of them are computed to be

R::R::L::M::M::R::M::M::R::M:: . . . .
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To verify the error, we first transform it into rational numbers, 329#512. The error is∣∣∣∣∣
1√
2

+ 1√
3

2
− 329

512

∣∣∣∣∣ = 3.49 . . .× 10−4,

which is smaller than 2−10 = 9.765625× 10−4 as expected.

3.5 Representations of Uniformly Continuous

Functions

We already saw a constructive representation of uniformly continuous functions in Section 3.1.
There, the representation of uniformly continuous functions involves first order function
types, hence it is called the type-1 representation of uniformly continuous functions. In
this section, we study a representation of unary uniformly continuous functions by means
of coinduction. We refer to this by type-0 uniformly continuous functions, since they are
ground type objects in contrast to type-1 uniformly continuous functions. Our main result
in this section is an extracted program which translates a type-1 uniformly continuous
function into a type-0 uniformly continuous function, and vice versa.

Recall that 〈hQ→N→Q, αN→N, ωN→N〉 defines a type-1 uniformly continuous function if
the following conditions are satisfied.

∀f,aQ,kN,n≥α(k),m≥α(k)(|h(a, n)− h(a,m)| ≤ 2−k),

∀f,aQ,bQ,kN,n≥α(k)(|a− b| ≤ 2−ω(k)+1 → |h(a, n)− h(b, n)| ≤ 2−k).

As our type-0 uniformly continuous functions, we adopt so-called read-write machines [Ber11]
or stream processors [GHP06, HPG09]. It is a W-cototal RW-total ideal, where algebras
Rα and W are defined by

Rα := µξ(Put
SD→α→ξ,Getξ→ξ→ξ→ξ),

W := µξ(Stop
ξ,ContRξ→ξ).

A W-cototal RW-total ideal is a non-well founded tree which consists of total trees of type
RW. It represents a translation of an SDS into another in the following way. The root
of the tree is either Stop or Cont r. If it is Stop, the rest of the input stream goes to the
output stream. If it is Cont r, we continue with r which is either Put dw or Get rL rM rR.
If it is Put dw, it outputs one signed digit d and continue with w. If it is Get rL rM rR, it
reads one signed digit eSD from the input and continue with re. Observe that there is a
nested structure in the procedure: the outer repetition on W and the inner one on RW. It
is crucial to have a well founded structure inside of a non-well founded structure in order to
ensure the uniform continuity. We define a read-write machine to be a W-cototal RW-total
ideal which can produce infinite signed digits, whereas its each internal component, i.e., an
RW-total ideal, has to put one signed digit by Put after getting finite signed digits by Get.
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3.5.1 Definitions

We describe the abstract theory of uniformly continuous functions. Let φ be an abstract
type of uniformly continuous functions. We define constants using this abstract type φ,
then the properties are specified via non-computational axioms.

Suppose that p, q range over Q, k, l range over N, d ranges over SD and f, g range over
φ. We define constants for the identity function and arithmetic operations Out and In on
functions such that intuitively (Outd ◦ f)(x) = 2f(x)− d and (f ◦ Ind)(x) = f(x+d

2
) hold.

Definition 3.5.1 (Id). Id is a constant of type φ.

Definition 3.5.2 (Out, In). Out and In are constants of type SD→ φ→ φ. Out d f and
In d f are abbreviated as Outd ◦ f and f ◦ Ind, respectively.

We also define an abstract inclusion relation on intervals.

Definition 3.5.3 (Sub). Sub is a constant of type φ → Q → N → Q → N → B.
Sub f p l q k is abbreviated as f [Ip,l] ⊆ Iq,k.

The axioms of the abstract theory of uniformly continuous functions are defined as
follows.

Axiom 3.5.4 (Abstract Theory of Uniformly Continuous Functions).

∀p,l(Id[Ip,l] ⊆ Ip,l), (UcfId)

∀f,p(f [Ip,0] ⊆ I), (UcfBound)

∀f,p,l,q,k(f [Ip,l] ⊆ Iq,k → f [Ip,l+1] ⊆ Iq,k), (UcfInputSucc)

∀f,d,p,l,q,k(f [I] ⊆ Id → (Outd ◦ f)[Ip,l] ⊆ Iq,k → f [Ip,l] ⊆ I q+d
2
,k+1

), (OutElim)

∀f,d,p,l,q,k(f [I] ⊆ Id → f [Ip,l] ⊆ I q+d
2
,k+1
→ (Outd ◦ f)[Ip,l] ⊆ Iq,k), (OutIntro)

∀f,d,p,l,q,k((f ◦ Ind)[Ip,l] ⊆ Iq,k → f [I p+d
2
,l+1

] ⊆ Iq,k), (InElim)

∀f,d,p,l,q,k(f [I p+d
2
,l+1

] ⊆ Iq,k → (f ◦ Ind)[Ip,l] ⊆ Iq,k), (InIntro)

∀f,q(q ≤ −
1

4
→ f [I] ⊆ Iq,2 → f [I] ⊆ IL), (UcfLeft)

∀f,q(−
1

4
≤ q ≤ 1

4
→ f [I] ⊆ Iq,2 → f [I] ⊆ IM), (UcfMiddle)

∀f,q(
1

4
≤ q → f [I] ⊆ Iq,2 → f [I] ⊆ IR). (UcfRight)

Note that the above axioms are all non-computational. The property of Id is specified by
(UcfId). Our functions are bounded due to (UcfBound). The more the input given to a
function is precise, the same or the more the output is precise due to (UcfInputSucc).
For the two operations on functions, our intuition is kept by four axioms, (OutElim),
(OutIntro), (InElim) and (InIntro). For example in (OutIntro), assume that the
codomain of the function is in Id, and the image of Ip,l by f is covered by I q+d

2
,k+1. As

(Outd ◦ f)(x) is intuitively 2f(x)− d, the image of Ip,l by (Outd ◦ f)(x) is covered by Iq,k
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whose center is shifted by λx(2x− d) and length is two times in comparison with I q+d
2
,k+1.

The last three axioms, (UcfLeft), (UcfMiddle) and (UcfRight) reduce our reasoning
on abstract functions to one on rational numbers.

We give definitions of two predicates C and coWrite which are corresponding to the
type-1 and the type-0 representations, respectively. First, we define C of arity (φ).

Definition 3.5.5 (Uniform continuity of abstract real functions). We define a predicate C
of arity (φ) to state the uniform continuity of abstract real functions as follows:

C := {f | ∀ck∃dl Bl,kf}, where Bl,k := {f | ∀cp∃lq(f [Ip,l] ⊆ Iq,k)}.

Suppose that Cf holds and let k be given to specify the precision of the output of f .
Then, there exists l specifying the required precision of the input of f , and also there exists
q for any p such that the image of the interval Ip,l is covered by the interval Iq,k. According
to the realizability interpretation, the extracted term type of the above predicate C is

N→ N× (Q→ Q),

which can be used as a type-1 uniformly continuous functions. It is considered to be a pair
of an approximating map h and a modulus of uniform continuity ω. The Cauchy modulus
α is fixed to be the identity.

Next, we define an inductive predicate ReadX and a coinductive predicate coWrite. Both
of them are of arity (φ).

Definition 3.5.6 (Read). Let X and P be predicate variables of arity (φ). Define an
inductive predicate ReadX of arity (φ) as follows.

∀ncf ∀cd(f [I] ⊆ Id → X(Outd ◦ f)→ ReadXf), Read+
0

∀ncf (ReadX(f ◦ InL)→ ReadX(f ◦ InM)→ ReadX(f ◦ InR)→ ReadXf), Read+
1

∀ncf (ReadXf →∀ncf ∀cd(f [I] ⊆ Id → X(Outd ◦ f)→ Pf)→
∀ncf (ReadX(f ◦ InL)→ P (f ◦ InL)→

ReadX(f ◦ InM)→ P (f ◦ InM)→
ReadX(f ◦ InR)→ P (f ◦ InR)→ Pf)→

Pf).

Read−

Definition 3.5.7 (coWrite). Let Q be a predicate variable of arity φ. Define a coinductive
predicate coWrite of arity (φ) as follows.

∀ncf (coWritef → f eqd Id ∨r ReadcoWritef), coWrite−

∀ncf (Qf → ∀ncf (Qf → f eqd Id ∨r ReadcoWrite∨dQf)→ coWrite f). coWrite+



3.5. Representations of Uniformly Continuous Functions 97

3.5.2 Proofs

We have two main results in this section: Proposition 3.5.11 and Proposition 3.5.14. We
start from Proposition 3.5.11 which is dependent on Lemma 3.5.8, Lemma 3.5.9 and
Lemma 3.5.10.

Lemma 3.5.8.

1. ∀ncf ∀cd∀k,l(f [I] ⊆ Id → Bl,k+1f → Bl,k(Outd ◦ f)).

2. ∀ncf ∀cd(f [I] ⊆ Id → Cf → C(Outd ◦ f)).

3. ∀ncf ∀cd∀k,l(Bl+1,kf → Bl,k(f ◦ Ind)).

4. ∀ncf ∀cd(Cf → C(f ◦ Ind)).

Proof. 1. Let f , d, k and l be given and assume f [I] ⊆ Id and Bl,k+1f , which is by
unfolding ∀cp∈I∃lq(f [Ip,l] ⊆ Iq,k+1). We prove Bl,k(Outd ◦ f), i.e., ∀cp∈I∃lq(Outd ◦ f [Ip,l] ⊆
Iq,k). Let p be given. Applying ∀cp∈I∃lq(f [Ip,l] ⊆ Iq,k+1) to p, it yields some q0 such that
f [Ip,l] ⊆ Iq0,k+1. To prove the goal ∃lq(Outd ◦ f [Ip,l] ⊆ Iq,k), let q be 2q0 − d, then it
suffices to prove Outd ◦ f [Ip,l] ⊆ I2q0−d,k. It is done by applying (OutIntro) to the
assumptions f [I] ⊆ Id and f [Ip,l] ⊆ Iq0,k+1.

2. Let f and d be given and assume f [I] ⊆ Id and Cf , i.e., ∀ck∃dl Bl,kf . We prove
C(Outd ◦ f), i.e., ∀ck∃dl Bl,k(Outd ◦ f). Let k by given and prove ∃dl Bl,k(Outd ◦ f).
Applying ∀ck∃dl Bl,kf to k + 1, it further yields l0 such that Bl0,k+1f . Let l be l0 in our
goal, the by Lemma 3.5.8.1 Bl0,k(Outd ◦ f) holds.

3. Let f , d, k and l be given and assume Bl+1,kf , i.e., ∀cp∈I∃lq(f [Ip,l+1] ⊆ Iq,k). We prove
Bl,k(f ◦Ind), i.e., ∀cp∈I∃lq(f ◦Ind[Ip,l] ⊆ Iq,k). Let p be given. Applying ∀cp∈I∃lq(f [Ip,l+1] ⊆
Iq,k) to p+d

2
, then it further yields q0 such that f [I p+d

2
,l+1] ⊆ Iq0,k. To prove the goal

∃lq(f ◦ Ind[Ip,l] ⊆ Iq,k), let q be q0 and use (InIntro).

4. Let f and d be given and assume Cf , i.e., ∀ck∃dl Bl,kf . We prove C(f ◦ Ind), i.e.,
∀ck∃dl Bl,kf ◦ Ind. Let k be given. Applying ∀ck∃dl Bl,kf to k, then it further yields l0
such that Bl0,kf , i.e., ∀cp∈I∃lq(f [Ip,l0 ] ⊆ Iq,k). Now we show that Bl0+1,kf ◦ Ind, i.e.,
∀cp∈I∃lq(f [Ip,l0+1] ⊆ Iq,k), also holds. Let p be given. Applying ∀cp∈I∃lq(f [Ip,l0 ] ⊆ Iq,k) to
p, it further yields q0 such that f [Ip,l0 ] ⊆ Iq0,k. To prove ∃lq(f [Ip,l0+1] ⊆ Iq,k), let q be
q0 and apply (UcfInputSucc) to f [Ip,l0 ] ⊆ Iq0,k. For the main goal ∃dl Bl,kf ◦ Ind, let
l be l0 and we prove Bl0,kf ◦ Ind, which is implied by Lemma 3.5.8.3 and Bl0+1,kf .

Lemma 3.5.9. ∀ncf (B0,2f → ∃ld(f [I] ⊆ Id)).
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Proof. Let f be given and assume B0,2f which implies ∃lq(f [I0,0] ⊆ Iq,2) from the definition.
Hence for some q, f [I0,0] ⊆ Iq,2 holds. We prove ∃ld(f [I] ⊆ Id) by finding a d such that
f [I] ⊆ Id holds. By case distinction on q, either q ≤ −1

4
, −1

4
≤ q ≤ 1

4
or 1

4
≤ q holds. For

each case we respectively choose L, M or R for d. This d satisfies f [I] ⊆ Id due to the
corresponding axiom, (UcfLeft), (UcfMiddle) or (UcfRight).

Lemma 3.5.9 determines a signed digit which approximates the output of uniformly
continuous functions. Suppose that we input the interval I to an abstract function and the
length of its output interval is less than 1

2
. Then, the output of the abstract function is

either in IL, IM or IR.

Lemma 3.5.10. ∀cl∀ncf (Bl,2f → Cf → ReadcoWrite∨Cf).

Proof. By induction on l. Base: l = 0. Let f be given and assume B0,2f and Cf . We prove
ReadcoWrite∨Cf by means of Read+

0 . It suffices to prove f [I] ⊆ Id and C(Outd ◦ f) for some
d. By Lemma 3.5.9, there is some d with f [I] ⊆ Id for the first one. Moreover, Cf implies
C(Outd ◦ f) provided f [I] ⊆ Id by Lemma 3.5.8.2, hence (coWrite∨d C)(Outd ◦ f) as desired.
Step: l 7→ l + 1. Assume the following induction hypothesis

∀ncf (Bl,2f → Cf → ReadcoWrite∨Cf), (3.5)

and prove ∀ncf (Bl+1,2f → Cf → ReadcoWrite∨Cf) by means of the introduction axiom Read+
1 .

It suffices to prove ReadcoWrite∨Cf ◦ Ind for all d. Let f be given and assume Bl+1,2f and
Cf . By Lemma 3.5.8.3 and Lemma 3.5.8.4, which imply Bl,2f ◦ Ind and Cf ◦ Ind for all d.
The induction hypothesis (3.5) yields ReadcoWrite∨Cf ◦ Ind for all d as desired.

Proposition 3.5.11 (Type-1 u.c.f. to type-0 u.c.f.). ∀ncf (Cf → coWritef).

Proof. Let f be given and assume Cf . We prove coWritef by the greatest fixed point axiom.
It suffices to prove ∀ncf (Cf → f eqd Id ∨r ReadcoWrite∨dCf). Let f be given and Cf , which

implies ∃dl Bl,2f . By Lemma 3.5.10, ReadcoWrite∨dCf holds.

Next, we prove Proposition 3.5.14, i.e., the opposite direction of Proposition 3.5.11. The
following two lemmas are needed.

Lemma 3.5.12. ∀ncf,k,l∀cd(f [I] ⊆ Id → Bl,k(Outd ◦ f)→ Bl,k+1f).

Proof. Let f , k, l and d be given and assume f [I] ⊆ Id and

Bl,k(Outd ◦ f). (3.6)

We prove Bl,k+1f , i.e., ∀cp∈I∃lq(f [Ip,l] ⊆ Iq,k+1). Let p0 be given such that ∃lq(f [Ip0,l] ⊆
Iq,k+1). Our goal is to find a q such as f [Ip0,l] ⊆ Iq0,k+1. The assumption (3.6), i.e.,
∀cp∈I∃lq((Outd ◦ f)[Ip,l] ⊆ Iq,k), implies ∃lq((Outd ◦ f)[I2p0−d,l] ⊆ Iq,k). Hence there is some q0
such that (Outd ◦ f)[I2p0−d,l] ⊆ Iq0,k. For this q0, we can derive f [Ip0,l] ⊆ Iq0,k+1 by means of
(OutElim).
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Lemma 3.5.13. We prove

∀ncf,k,lL,lM,lR(BlL,k+1(f ◦ InL)→ BlM,k+1(f ◦ InM)→ BlR,k+1(f ◦ InR)→ Bl,k+1f),

where l := max{lL, lM, lR}+ 1.

Proof. Let f , k, lL, lM and lR be given and assume BlL,k+1(f ◦ InL), BlM,k+1(f ◦ InM) and
BlR,k+1(f ◦ InR). We prove Bl,k+1f , i.e., ∀cp∃lq(f [Ip,l] ⊆ Iq,k+1). Let p0 be given, then our goal
is ∃lq(f [Ip0,l] ⊆ Iq,k+1). By case distinction on p0, either of p0 ≤ −1

4
, −1

4
≤ p0 ≤ 1

4
or 1

4
≤ p0

holds. For each case we let d be L, M or R, respectively. For any d we can proceed the
following to prove the goal. The assumption Bld,k+1(f ◦ Ind) i.e., ∀cp∃lq((f ◦ Ind)[Ip,ld ] ⊆ Iq,k+1)
implies (f ◦ Ind)[I2p0−d,ld ] ⊆ Iq0,k+1 for some q0. By (InElim), f [Ip0,ld+1] ⊆ Iq0,k+1 holds. For
this q0 we can prove the goal f [Ip0,l] ⊆ Iq0,k+1 because of l ≥ l0+1 and (UcfInputSucc).

Proposition 3.5.14 (Type-0 u.c.f. into type-1 u.c.f.). ∀ncf (coWritef → Cf).

Proof. It suffices to prove ∀ck∀ncf (coWritef → ∃dl Bl,kf) by induction on k. Case k = 0. Our

goal is ∀ncf (coWritef → ∃dl Bl,0f). Let f be given and coWritef . Let l be 0 and prove B0,0f ,

i.e., ∀cp∃lqf [Ip,0] ⊆ Iq,0. Let p be given q be 0. From the axiom, f [Ip,0] ⊆ I0,0 trivially holds.
Case k 7→ k + 1. Our induction hypothesis is

∀ncf (coWritef → ∃dl Bl,kf). (3.7)

Our goal is ∀ncf (coWritef → ∃dl Bl,k+1f). Let f be given and assume coWritef . We prove

∃dl Bl,k+1f . Using coWrite+ and our assumption coWritef , the following holds.

f eqd Id ∨ ReadcoWritef.

Consider two cases from the disjunction. Left case. Assume f eqd Id. We prove ∃dl Bl,k+1Id,
i.e., ∃dl ∀cp∃lq(Id[Ip,l] ⊆ Iq,k+1). Let l be k+ 1 and assume p, and also let q be p, then it suffices
to prove Id[Ip,k+1] ⊆ Ip,k+1, which is direct from (UcfId). Right case. Assume ReadcoWritef
and prove ∃dl Bl,k+1f . By using Read− for ReadcoWritef , we have the following two new goals.

∀ncf ∀cd(f [I] ⊆ Id → coWrite(Outd ◦ f)→ ∃dl Bl,k+1f)

and

∀ncf (ReadcoWrite(f ◦ InL)→ ∃dl Bl,k+1(f ◦ InL)→
ReadcoWrite(f ◦ InM)→ ∃dl Bl,k+1(f ◦ InM)→
ReadcoWrite(f ◦ InR)→ ∃dl Bl,k+1(f ◦ InR)→ ∃dl Bl,k+1f)

For the former one, let f and d be given and assume f [I] ⊆ Id and coWrite(Outd ◦ f). By
our induction hypothesis (3.7) and coWrite(Outd ◦ f), ∃dl Bl,k(Outd ◦ f) holds, i.e., there is
some l such that Bl,k(Outd ◦ f). It implies Bl,k+1f by Lemma 3.5.12 as desired. For the
latter one, let f be given and assume ReadcoWrite(f ◦ InL), ∃dl Bl,k+1(f ◦ InL), ReadcoWrite(f ◦
InM), ∃dl Bl,k+1(f ◦ InM), ReadcoWrite(f ◦ InR) and ∃dl Bl,k+1(f ◦ InR). We prove ∃dl Bl,k+1f .
From assumptions, there are lL, lM and lR such that BlL,k+1(f ◦ InL), BlM,k+1(f ◦ InM) and
BlR,k+1(f ◦ InR). By Lemma 3.5.13, Bl,k+1f holds for l := max{lL, lM, lR}+ 1 as desired.



100 Chapter 3. Program Extraction in Exact Real Arithmetic

3.5.3 Program Extraction

We study the computational contents of the proofs by program extraction. From Proposi-
tion 3.5.11 the term ucf1to0 shown in Figure 3.11 is extracted. This program corecursively

λg(
coRN→N×(Q→Q)

W g λg0(Case g0(2) of 〈k, h〉 → L10 k g0 h))

Figure 3.11: ucf1to0(N→N×(Q→Q))→W

constructs a W-cototal RW-total ideal by stacking RW-total ideals computed by L10, which
is extracted from Lemma 3.5.10 as shown in Figure 3.12. The modulus of continuity k at

λk(RN k λh,g(Put (L9h) (InR(L8ii(L9h)g)))

λl,g0,h,g1(Get (g0(L8iii Lh)(L8iv L g1))

(g0(L8iiiMh)(L8ivM g1))

(g0(L8iii Rh)(L8iv R g1))))

Figure 3.12: L10
N→(Q→Q)→(N→N×(Q→Q))→RW+(N→N×(Q→Q))

precision 2 is fed to L10, then an approximation of h as an RW-total ideal is computed. In
fact, k is the number of input signed digits to be read to determine one output signed digit.

The extracted term L10 takes as input a natural number k, a rational function g and a
function h : N → N × (Q → Q) (in our application, we only call L10 with 〈n,w〉 = h 2).
Using recursion over n, it computes an approximation of h by a complete tree of height n
with 3n leaves – an RW+(N→N×(Q→Q))-total ideal. At the leaves, a signed digit d – computed
from w using L9 in Figure 3.13 – and the remainder of the approximation of h – computed
by L8ii below, using d – is stored. At internal branching nodes, we split the domain of h

λg(if g(0) + 1
4
> 0 then if g(0)− 1

4
> 0 then R

else M else L)

Figure 3.13: L9
(Q→Q)→SD

into three subdomains – left, middle and right – modify w and h accordingly (using L8iii
and L8iv below), and recurse.

There are several more programs extracted from lemmas. From Lemma 3.5.9 we extract
L9 which is similar to L we extracted from Lemma 3.3.8. This program determines a d such
that the whole values of the given g is covered by Id. In our extracted program, it is used
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under the assumption that the values of g given to L9 is covered by an interval of length 1
2
.

Therefore, it suffices to check the value of g at 0. The terms in Figure 3.14 are extracted
from each of Lemma 3.5.8. Next, we consider the extracted program from Proposition 3.5.14

L8i
SD→(Q→Q)→(Q→Q)

L8i := λd,h(λa(2h(a)− d))

L8ii
SD→(N→N×(Q→Q))→(N→N×(Q→Q))

L8ii := λd,g,k(Case g(k + 1) of 〈l, h〉 → 〈l, L8i d h〉)
L8iii

SD→(Q→Q)→(Q→Q)

L8iii := λd,h(λa(h(
a+ d

2
)))

L8iv
SD→(N→N×(Q→Q))→(N→N×(Q→Q))

L8iv := λd,g,k(Case g(k) of 〈l, h〉 → (Case l of 0→ 〈0, L8iii d h〉
Sn→ 〈n, L8iii d h〉))

Figure 3.14: Programs extracted from Lemma 3.5.8

shown in Figure 3.15. Let f be a name of a variable ranging over W → N × (Q → Q),

λw,n(RW→N×(N→Q)
N n

λ 〈0, λa0〉
λn0,f,w0(Case Dw0 of

λ 〈Sn0, λaa〉
λr(RN×(N→Q)

RW
r λd,w1(Case fw1 of λm,g〈m, L12 d g〉)
λ ,qL, ,qM, ,qR(Case qL of

λnL,gLCase qM of

λnM,gMCase qR of

λnR,gR〈S(max nL nM nR), L13 gL gM gR〉)))
w)

Figure 3.15: ucf0to1W→N→N×(Q→Q)

q ranging over N × (Q → Q) and g ranging over Q → Q. This program computes a
uniformly continuous function of type-1 from one of type-0. The second argument n of type
N specifies the precision of the rational approximation of the function. If n is 0, the result
is a pair of 0 and a function whose value is constantly 0. It trivially satisfies the required
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precision; the error of the output has to be less than 20 for any input with the error less
than 20. If n is Sn0, we assume that n0, the previous result f of the precision n0. It is
going to compute a pair of N and Q→ Q with the precision Sn0 for the given input w0.
There are two cases to consider depending on w0. If Dw0 is InLU, the expected outcome is
the identity function with the precision Sn0, i.e., the pair of Sn0 and λaa. If Dw0 is InR r,
it inspects r by side recursion. If r is Put dw1, we apply f to w1, which is the result for
w1 of the precision n0. Since d tells us where to go to get a better precision, it shifts the
result by using L12 which is extracted from Lemma 3.5.12 and shown in Figure 3.16. If r is

λd,g,a(
g(a)+d

2
)

Figure 3.16: L12
SD→(Q→Q)→Q→Q

Get rL rM rR, there are three previous results qL, qM and qR available. It takes components
nd and gd of each qd and computes the maximum of nL, nM and nR. We require one more
precision of this maximum because we read one signed digit from the input at Get. The
other component of the pair is the composition of gL, gM and gR by L13 which is extracted
from Lemma 3.5.13 shown in Figure 3.17. For the input rational a, it checks which basic

λgL,gM,gR,a(if (a ≤ −1

4
) then gL(2a+ 1)

else if (−1

4
≤ a ≤ 1

4
) then gM(a) else g(2a− 1))

Figure 3.17: L13
(Q→Q)→(Q→Q)→(Q→Q)→Q→Q

interval covers this a and selects the appropriate gd.

Remark 3.5.15. Note that there is a slight difference between the extracted programs in
Minlog and ones presented in this section. In the case study in Minlog, there is an algebra
algB which is defined to be µξ((Q → Q) → ξ). Since there is no feature in Minlog to
name a comprehension term, we defined Bl,k of Definition 3.5.5 as an inductively defined
predicate in order to avoid writing a long formula repeatedly. We omit the occurrences of
algB in order to focus on algorithmic contents.

3.5.4 Experiments

From a type-1 uniformly continuous function f , we compute a type-0 uniformly continuous
function by means of our extracted program. We define f by 〈h, α, ω〉 where h an := −a,
αn := 0 and ω n := n + 1. The input of type1to0 is λn〈ωn, λa(ha(αn))〉 whose type is
N → N × (Q → Q). The output is graphically presented in Figure 3.18, where Cont is
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omitted, Get is a branching node and Put d is denoted by −, 0 or + respectively for d = L,M
or R.
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Figure 3.18: Type-0 representation of f(x) = −x.

We try the opposite direction, i.e., from type-0 to type-1. Applying type0to1 to the
tree t from the first example, we obtain a function of type N → N × (Q → Q). Giving
some k to the argument of the outcome, it results in a pair of a natural number l and a
rational function g. For the experiment we give k = 3, then l = 4 and the function g is a
step function as presented in Figure 3.19. It is observable that if the error of the input is

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Figure 3.19: Type-1 representation of f(x) = 2x2 − 1 approximated by 3.

less than 2−4, the output approximates f(x) = 2x2 − 1 with the error less than 2−3.
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3.6 Application of Uniformly Continuous Functions

We study application of a type-0 uniformly continuous function to a type-0 real number.
We extract a program which takes a type-0 uniformly continuous function f and a type-0
real number x, and computes the application f(x) in type-0 real numbers.

For given w and ds of type W and LSD, the application builds another SDS to output.
In order to illustrate an intuition, we focus on Get and Put nodes of w, so that we regard
w simply as a tree with 1-branching nodes labelled with a signed digit and 3-branching
nodes. The application procedure takes a look at the root of w. If it is a 1-branching node,
it outputs the label of this node and goes on with the subtree. If it is a 3-branching node,
it reads the head of the input SDS, say d, and chooses the left, the middle, or the right
branch corresponding to d. The procedure goes on with the chosen subtree and the tail of
the input SDS.

3.6.1 Definitions

The abstract theory of the function application is based on the abstract theory of real
numbers in Section 3.3 and the abstract theory of uniformly continuous functions in
Section 3.5. We define a constant Apply for the abstract function application additionally
to the abstract theories from the previous sections.

Definition 3.6.1 (Apply). Recall that ρ and φ are used for abstract types of real numbers
and uniformly continuous functions, respectively. Apply is a constant of type ρ→ φ→ ρ.
Apply f x is abbreviated as f(x).

Then, we enrich the axiom to talk about the function application.

Axiom 3.6.2.

∀x(Id(x) eqdx), (AppId)

∀f,x,d(f [I] ⊆ Id → Vad(f(x)) eqd (Outd ◦ f)(x)), (VaOut)

∀f,x,d(f(Avdx) eqd (f ◦ Ind)(x)), (AvIn)

∀f,x,q,k(f [I] ⊆ Iq,k → f(x) ∈ Iq,k). (AppSubElem)

The constant Id works as we commonly expect due to (AppId). The operations Vad
and Outd can replace each other by (VaOut), and the same happens to Avd and Ind by
(AvIn). The relation ⊆ can be replaced by ∈ due to (AppSubElem).

The following equality between two real numbers is also used.

Axiom 3.6.3.

∀x,d(x eqd Vad(Avdx)). (VaAvIdent)

We use the predicates coI, Read and coWrite which are defined in Definition 3.3.6,
Definition 3.5.6 and Definition 3.5.7, respectively.
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3.6.2 Proofs

We prove the following proposition in order to extract a program of the function application.

Proposition 3.6.4. ∀ncf,x(coWritef → coIx→ coI(f(x))).

Proof. Let f and x be given, and assume coWritef and coIx. We use coI+ with a competitor
predicate P = {z | ∃rf,x(coWritef ∧d coIx ∧l z eqd f(x))} to prove coI(f(x)). Since the first
premise P (f(x)) is clear from the assumptions, it suffices to prove the costep formula
∀ncz (Pz → z eqd Z ∨r ∃ry∃dd((coIy ∨d Py) ∧l z eqd Avd(y))). Let z be given and assume Pz.
Unfolding Pz, there are some f0 and x0 such that coWritef0,

coIx0 and z eqd f0(x0) hold.
Our goal is z eqd Z ∨r ∃ry∃dd((coIy ∨d Py) ∧l z eqd Avd(y)). Applying coWrite− to coWritef0,
f0 eqd Id ∨r ReadcoWritef0 makes two cases. Left case. Assume f0 eqd Id. Applying coI− to
coIx0, x0 eqd Z∨r ∃ry0∃

d
d0

(coIy0 ∧l x0 eqd Avd0(y0)) makes two subcases. Each side case comes
by (AppId). Right case. Assume ReadcoWritef0. We also have coIx0 and z eqd f0(x0), hence
Lemma 3.6.5 applies.

The Lemma 3.6.5 below is responsible for determining an output signed digit by recursion
on an RW-total tree.

Lemma 3.6.5. Let P := {z|∃rf,x(coWritef ∧d coIx ∧l z eqd f(x))}, then

∀ncf,x(ReadcoWritef → coIx→ f(x) eqd Z ∨r ∃ry∃dd((coIy ∨d Py) ∧l f(x) eqd Avd(y))).

Proof. We prove the following formula which is same as the proposition.

∀ncf (ReadcoWrite f → ∀ncx (coIx→ f(x) eqd Z ∨r ∃ry∃dd((coIy ∨d Py) ∧l f(x) eqd Avd(y)))).

Let f be given and assume ReadcoWrite f . By using Read− for ReadcoWrite f , it suffices to
prove the following two step cases

∀ce∀ncf (f [I] ⊆ Ie → coWrite(Oute ◦ f)→ Qf)

and

∀ncf (ReadcoWrite(f ◦ InL)→ Q(f ◦ InL)→
ReadcoWrite(f ◦ InM)→ Q(f ◦ InM)→
ReadcoWrite(f ◦ InR)→ Q(f ◦ InR)→ Qf),

where Q := {f | ∀ncx (coIx → f(x) eqd Z ∨r ∃ry∃dd((coIy ∨d Py) ∧l f(x) eqd Avd(y)))}. First
step case. Let e and f be given and assume f [I] ⊆ Ie and coWrite(Oute ◦ f). Also let
x be given and assume coIx. We prove the right disjunct of the conclusion. Use (∃r)+
and (∃d)+ with y = (Oute ◦ f)(x) and d = e, respectively. The equality is obvious
from (VaOut) and (AvVaIdent). In order to prove Py, we use (∃r)+ with Oute ◦ f
and with x, then three conjuncts are trivial. Second step case. Let f be given and
assume ReadcoWrite(f ◦ Ine) and ∀ncx (coIx → (f ◦ Ine)(x) eqd Z ∨r ∃ry∃dd((coIy ∨d Py) ∧l (f ◦



106 Chapter 3. Program Extraction in Exact Real Arithmetic

Ine)(x) eqd Avd(y))) for each e ∈ SD. Also let x be given and assume coIx. We prove
f(x) eqd Z ∨r ∃ry∃dd((coIy ∨d Py) ∧l f(x) eqd Avd(y)). Applying coI+ to coIx, there are two
cases from x eqd Z ∨r ∃ry0∃

d
d0

(coIy0 ∧l x eqd Avd0(y0)). Left case. Assume x eqd Z. Applying
the induction hypothesis for e = M to coI(Z), (f ◦ InM)(Z) eqd Z∨r ∃ry∃de((coIy ∨d Py)∧l (f ◦
InM)(Z) eqd Ave(y)) holds, and moreover (f ◦ InM)(Z) eqd f(Z) holds by means of (AvIn)
and (AvZero), hence the goal is implied. Right case. There exist y0 and d0 such that coIy0
and x eqd Avd0(y0) hold. Applying the induction hypothesis corresponding to d0 to coIy0,
(f ◦ Ind0)(y0) eqd Z ∨r ∃ry∃de((coIy ∨d Py) ∧l (f ◦ Ind0)(y0) eqd Ave(y)) holds and we are done
because (f ◦ Ind0)(y0) eqd f(x) holds by the assumption x eqd Avd0(y0) and (AvIn).

3.6.3 Program Extraction

We extract a program from the proof of 3.6.4. Note that Remark 3.5.15 applies in this
section as well. Suppose that u is a variable name ranging over W × I and q ranging over
SD× I. The result is app which is shown in Figure 3.20. Intuitively, this function computes

λw,ds(
coRW×I

I 〈w, ds〉
λu(Case DW(π0u) of

λ Case D(π1u) of

λ InLU

λqInR〈π0q, InL(π1q)〉
λr(Case cApplyAux(r(π1u)) of λ (InLU)λv(InR v))))

Figure 3.20: appW→I→I

a trace from the root of the given type-0 function to the above by choosing at Get a branch
indicated by the input type-0 real number. The output is an SDS which consists of signed
digits which occur at Put on the computed trace.

Assume w and ds of types W and I, respectively, are given. The costep term first
destruct w. If Dw is InLU, the output is identical to the given ds. Otherwise, it results in
an RW-total ideal r. We apply cApplyAux to this r and ds, then it determines that the
result SDS is either the empty list or a pair of the head and the tail, i.e., a signed digit and
an SDS, respectively.

We extract from the Lemma 3.6.5 a program cApplyAux shown in Figure 3.21. Let f
be a variable name ranging over I→ U + (SD× (I + W× I)). For the input r and ds, this
program computes by reading finite signed digits from ds a finite path in r, so that a signed
digit is determined. There are two cases due to the recursion on r. If r is Put dw it does
not touch ds and outputs InR〈d, InR〈w, ds〉〉. It makes the corecursion operator in app to
produce a stream with the head d and the rest appw ds. Otherwise, r is Get rL rM rR. If
Dds is InLU, it interprets the ds as a rational number M::M:: . . . and the middle branch is
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λr(RI→U+(SD×(I+W×I))
RW

r

λd,w,ds(InR〈d, InR〈w, ds〉〉)
λ ,fL, ,fM, ,fR,ds(Case DIds of

λ (fMds)

λq(Case π0q of λ (fL(π1q))λ (fM(π1q))λ (fR(π1q)))))

Figure 3.21: cApplyAuxRW→I→U+(SD×(I+W×I))

taken to reach the leaf. Otherwise if Dds is InR〈d, ds′〉, it takes a branch corresponding to d
and then the recursion carries on with ds′.

3.6.4 Experiments

Define a function f(x) = 2x2 − 1 and consider its roots ± 1√
2
. It is expected that the value

f(± 1√
2
) is arbitrarily close to 0. We use app to compute the value of f( 1√

2
).

A type-1 uniformly continuous function for f is defined to be 〈h, α, ω〉 where h an =
2a2 − 1, αn = n + 1 and ω n = n + 1. Then by means of ucf1to0, we obtain the
type-0 representation of 〈h, α, ω〉. On the other hand, the type-0 representation of 1√

2
is computed by cauchysds and sqrt as in Section 3.3.4. Using app, we can compute
app(ucf1to0 f)(cauchysds(sqrt1

2
)) in an SDS as follows:

M :: M :: M :: M :: M :: M :: M :: . . . .

3.7 Composition of Uniformly Continuous Functions

From formalized proofs we extract a program which computes the composition of two type-0
uniformly continuous functions. The input of the composition algorithm is two type-0
uniformly continuous functions and the output is a type-0 uniformly continuous function.
For simplicity we regard a uniformly continuous function as a tree with 3-branching nodes
and 1-branching nodes labelled with a signed digit. It takes a look at the root of the two
input trees. When both of them are a 3-branching node, let the three subtrees of the first
input be r0, r1 and r2, then it makes a 3-branching node for the output with three subtrees
computed by composing r0, r1 and r2 with the second input, respectively. When the first
input is a 3-branching node and the second one is a 1-branching node with a signed digit d,
the output is a composition of the subtree of the first input corresponding to d, namely,
the left, the middle, or the right, and the subtree of the second input. When the first input
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is a 1-branching tree, it puts the very same 1-branching tree for the output and the rest is
a composition of the subtree of the first input and the original second input.

3.7.1 Definitions

In order to talk about the composition of abstract functions, define a constant Cmp whose
properties are given by the abstract theory.

Definition 3.7.1 (Cmp). Cmp is a constant of type φ→ φ→ φ. Cmp f g is abbreviated
as f ◦g.

We extend the abstract theory of uniformly continuous functions in Section 3.5.1 with
the following axioms.

Axiom 3.7.2.

∀f (f ◦Id eqd f) (CompIdR)

∀f (Id◦f eqd f) (CompIdL)

∀d((Id ◦ Ind)[I] ⊆ Id) (IdIn)

∀f,d(Outd ◦ (Id ◦ Ind) eqd Id) (OutIdIn)

∀f1,f2,d(f1[I] ⊆ Id → (f1◦f2)[I] ⊆ Id) (CompBound)

∀f,p,ld(f [I] ⊆ Ip,l → (f ◦ Ind)[I] ⊆ Ip,l) (UcfInputIn)

∀f1,f2,d(f2[I] ⊆ Id → f1◦f2 eqd (f1 ◦ Ind)◦(Outd ◦ f2)) (InOutIdent)

∀f,d1,d2(Outd1 ◦ (f ◦ Ind2) eqd (Outd1 ◦ f) ◦ Ind2) (AssocOutIn)

∀f1,f2,d((f1◦f2) ◦ Ind eqd f1◦(f2 ◦ Ind)) (AssocCompIn)

∀f1,f2,d(Outd ◦ (f1◦f2) eqd (Outd ◦ f1)◦f2) (AssocOutComp)

We also use the predicates coI, Read and coWrite from Definition 3.3.6, 3.5.6 and 3.5.7,
respectively.

3.7.2 Proofs

We extract from a proof a program which composes two type-0 uniformly continuous
functions. Let variable names f , g and h range over φ.

Proposition 3.7.3. ∀ncf,g(coWrite f → coWrite g → coWrite(f ◦g)).

Proof. Let f and g be given and assume coWrite f and coWrite g. We use coWrite+ with
a competitor predicate P := {h | ∃rf,g(coWrite f ∧ coWrite g ∧ f ◦g eqdh)}. It suffices to
show ∀nch (Ph→ h eqd Id∨r ReadcoWrite∨dP h). Let h be given and assume Ph, i.e., coWrite f ,
coWrite g and f ◦g eqdh. We prove the goal f ◦g eqd Id ∨r ReadcoWrite∨dP (f ◦g). Apply-
ing coWrite− to coWrite f and to coWrite g, there are four cases from the following two
disjunctions.

f eqd Id ∨r ReadcoWrite f, g eqd Id ∨r ReadcoWrite g.
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(1) Assume f eqd Id and g eqd Id. The left disjunct of the goal holds due to (CompIdL)
or (CompIdR). (2) Assume ReadcoWrite f and g eqd Id. We prove the right disjunct of the
goal. By (CompIdR), the goal is ReadcoWrite∨dP f . By Read− for ReadcoWrite f , it suffices
to prove the following two step formulas.

∀f∀cd(f [I] ⊆ Id → coWrite(Outd ◦ f)→ ReadcoWrite∨dP f),

∀f (ReadcoWrite(f ◦ InL)→ ReadcoWrite∨dP (f ◦ InL)→
ReadcoWrite(f ◦ InM)→ ReadcoWrite∨dP (f ◦ InM)→
ReadcoWrite(f ◦ InR)→ ReadcoWrite∨dP (f ◦ InR)→
ReadcoWrite∨dP f).

For the first one, let f , d be given and assume f [I] ⊆ Id and coWrite(Outd ◦ f). Prove
the goal ReadcoWrite∨P f by using Read+

0 with d. It suffices to prove the premises f [I] ⊆ Id
and (coWrite ∨d P )(Outd ◦ f). The former one is in the assumption and the latter comes
from the assumption by (∨d)+0 . For the second one, let f be given and assume the
premises. Since ReadcoWrite∨P (f ◦ Ind) holds for each d ∈ SD, we apply Read+

1 to prove
ReadcoWrite∨P f . (3) Similar to (2). (4) Assume ReadcoWrite f and ReadcoWrite g. We prove
∀ncg (coWrite g → ReadcoWrite∨dP (f ◦g)) by Read−, in order the right disjunct of the goal
holds. Base case. We prove

∀ncf ∀cd(f [I] ⊆ Id → coWrite(Outd ◦ f)→ ∀ncg (coWrite g → ReadcoWrite∨dP (f ◦g))).

Let f and d be given and assume f [I] ⊆ Id and coWrite(Outd ◦ f). Furthermore, let g
be given and assume coWrite g. We prove ReadcoWrite∨dP (f ◦g). Using Read+

0 with d, it
suffices to prove (f ◦g)[I] ⊆ Id and (coWrite ∨d P )(Outd ◦ (f ◦g)). The former one comes
by (CompBound). We prove P (Outd ◦ (f ◦g)), the right disjunct of the latter one. By
(AssocOutComp), the conclusion comes from coWrite(Outd ◦ f) and coWrite g. Step case.
We prove

∀ncf (ReadcoWrite(f ◦ InL)→ ∀ncg (coWrite g → ReadcoWrite∨P ((f ◦ InL)◦g))→
ReadcoWrite(f ◦ InM)→ ∀ncg (coWrite g → ReadcoWrite∨P ((f ◦ InM)◦g))→
ReadcoWrite(f ◦ InR)→ ∀ncg (coWrite g → ReadcoWrite∨P ((f ◦ InR)◦g))→
∀ncg (coWrite g → ReadcoWrite∨P (f ◦g))).

Let f be given and assume the premises. Also let g be given and assume coWrite g. Applying
coWrite− to coWrite g, g eqd Id ∨r ReadcoWriteg holds. From it, there are two cases. Left
case. Assume g eqd Id, then f◦g eqd f by (CompIdR). Applying each induction hypothesis
∀ncg (coWrite g → ReadcoWrite∨dP ((f ◦ Ind)◦g)) to Id and coWrite Id, (CompIdR) and Read+

1

imply the goal. Right case. Assume ReadcoWrite g. We prove ReadcoWrite∨P (f ◦g) by using
Read− for ReadcoWrite g. Side base case. We prove

∀ncg ∀cd(g[I] ⊆ Id → coWrite(Outd ◦ g)→ ReadcoWrite∨P (f ◦g)).
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Let g and d be given and assume g[I] ⊆ Id and coWrite(Outd ◦ g). Applying the assumption
∀ncg (coWrite g → ReadcoWrite∨dP ((f ◦ Ind)◦g)) to coWrite(Outd ◦g) and using (InOutIdent),
we can prove ReadcoWrite∨dP (f ◦g). Side step case. We prove

∀ncg (ReadcoWrite(g ◦ InL)→ ReadcoWrite∨P (f ◦(g ◦ InL))→
ReadcoWrite(g ◦ InM)→ ReadcoWrite∨P (f ◦(g ◦ InM))→
ReadcoWrite(g ◦ InR)→ ReadcoWrite∨P (f ◦(g ◦ InR))→
ReadcoWrite∨P (f ◦g)).

Let g be given and assume the premises, then we can prove ReadcoWrite∨P (f ◦g) by means
of Read+

1 .

Remark 3.7.4. Berger’s proof of the proposition of composition (Proposition 4.2 in [Ber11])
uses a lemma ∀ncf (coWrite f → coWrite(f ◦ Ini,d)) (Lemma 4.1 in [Ber11]). This is needed to
deal with arbitrary n-ary functions. Since we restricted our case study to unary functions,
it is unnecessary to consider this lemma.

3.7.3 Program Extraction

We extract from the proof of Proposition 3.7.3 a program cmp as shown in Figure 3.22.
Inside of cmp, there is an occurrence of M which stands for a program separately shown in
Figure 3.23. Suppose that w0 and w1 of type W are given to cmp. Unfolding the corecursion

λw0,w1(
coRW×W

W

〈w0, w1〉
λww(Case D(Case ww of λw2,w3w2) of

λ Case D(Case ww of λw2,w3w3) of

λ (InLU)

λrw(InR(RRW
rw

λd,w4(Put d (InLw4))

λ ,q0, ,q1, ,q2(Get q0 q1 q2)))

λrw(Case D(Case ww of λw2,w3w3) of

λ (InR(RRW
rw

λd,w4(Put d (InLw4))

λ ,q0, ,q1, ,q2(Get q0 q1 q2)))

λ (M rw (Case ww of λw0,w1w1)))))

Figure 3.22: cmpW→W→W
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operator, there are four cases comming from Dw0 and Dw1 as in the proof. If both of them
are the left injection of the unit, it results in Stop. If one is the right injection of some r of
type RW and the other is the left injection of the unit, it works so that the corecursion
produces Cont r. By means of the corecursion on W, every W-cototal ideals appearing at
the end of r is tagged as the next output by being injected to the left at Put. Considering
the type of the costep term τ → U + RW+τ , the value is injected at the position of W by
InL. The last case is taken care of by M. If both of the results of destructing w0 and w1 are
the right injection, suppose that Dw0 = InR r. Inside of the recursion on this r, it generates

λrw,w(InR(RRW
rw

λd,w0,w1(Put d (InR〈w0, w1〉))
λ ,f0, ,f1, ,f2,w0(Case Dw0 of

λ (Get(f0w0)(f1w0)(f2w0))

λrw(R rw

λd,w1(Case d of (f0w1)

(f1w1)

(f2w1))

λ ,r0, ,r1, ,r2(Get r0 r1 r2)))

w))

Figure 3.23: MRW→W→U+RW+W×W

one RW-total ideal by reading off finite information of w1 from its root. The number of
RW-total trees to read depends on the height of r.

3.7.4 Experiments

We compose two uniformly continuous functions f1(x) = 2x2 − 1 and f2(x) =

√
x
2
+1

2
. We

define type-1 uniformly continuous functions 〈h1, α1, ω1〉 and 〈h2, α2, ω2〉 as follows.

h1 a n = a2 − 1, α1 n = n+ 1, ω1 n = n+ 1,

h2 a n = Rn 1λb,n(
b+

ca
b

2
), α2 n = n+ 1, ω2 n = n,

where ca =
a
2
+1

2
. The type-0 represented functions are obtained by means of ucf1to0. Then

cmp computes the composition, which results in g(x) = x
2
.
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3.8 Integration

For the last case study of this chapter, we study definite integration. We extract a program
to compute the definite integral of a type-0 uniformly continuous function in type-1 real
numbers. As in the last sections, we consider uniformly continuous functions with domain
and codomain being [−1, 1]. For simplicity of the formalization, we consider the half of
the integral value, so that the integration of a uniformly continuous function is in [−1, 1]
without loss of the information. The basic idea of integration is said to be “split and
accumulate”. The computational content of our proof is exactly an implementation of this
idea.

3.8.1 Definitions

We define the abstract theory to study definite integral. Let ρ and φ be abstract types
of real numbers and uniformly continuous functions, respectively. Suppose that x and y
range over ρ, f ranges over φ, p and q range over Q, d ranges over SD and n ranges over
N. As in Definition 3.3.2, Z is a constant of type ρ. We extend Axiom 3.3.5 by adding the
followings.

Axiom 3.8.1 (Abstract theory of real numbers for definite integration).

∀n(Z ∈ I0,n) (RealZero)

∀x,y,p,q,n
(
x ∈ Ip,n → y ∈ Iq,n →

x+ y

2
∈ I p+q

2
,n

)
(RealAvrg)

The rest is to deal with integration in the abstract setting.

Definition 3.8.2 (Integration). Let
∫ H

be a constant of type φ→ ρ.

This constant is intended to mean the half of the definite integration. The properties of
this integration is specified by the following axioms. The constants Id, Outd and Ind are as
defined in Section 3.5.

Axiom 3.8.3 (Abstract Theory of Integration).

∀f
(∫ H

f ∈ I

)
(HIntBound)∫ H

Id eqd Z (HIntId)

∀f,d
(∫ H

f eqd
1

2

(∫ H

(Outd ◦ f) + d

))
(HIntOut)

∀f
(∫ H

f eqd
1

2

(∫ H

(f ◦ InL) +

∫ H

(f ◦ InR)

))
(HIntIn)
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The definite integration is bounded in [−1, 1] by (HIntBound). The definite integral of
the identity function is 0 due to (HIntId). Recall that intuitively Outd ◦ f(x) = 2f(x)− d.
A special case of the property

∫
f(x)dx = 1

2

∫
2f(x)dx is given by (HIntOut). In usual

settings,
∫ b
a
f can be computed by

∫ c
a
f +

∫ b
c
f . A special case of this property holds by

(HIntIn) which postulates that
∫ 1

−1 f is equal to
∫ 0

−1 f +
∫ 1

0
f .

3.8.2 Proofs

We prove the following proposition from which we extract a program to compute integration.

Proposition 3.8.4.

∀ncf
(

coWrite f → ∀cn∃lp
(∫ H

f ∈ Ip,n

))
.

Proof. The statement is same as ∀cn∀ncf (coWrite f → ∃lp(
∫ H

f ∈ Ip,n)). We prove it by

induction on n. Case n = 0. Our goal is ∀ncf (coWrite f → ∃lp(
∫ H

f ∈ Ip,0)). Let f be given
and assume coWrite f . Let p be 0, then it is clear by (HIntBound). Case n 7→ n + 1.
From the following induction hypothesis,

∀ncf
(

coWrite f → ∃lp
(∫ H

f ∈ Ip,n

))
, (3.8)

we prove ∀ncf (coWrite f → ∃lp(
∫ H

f ∈ Ip,n+1)). Let f be given and assume coWrite f .

We prove ∃lp(
∫ H

f ∈ Ip,n+1). Applying coWrite+ to coWrite f , there are two cases from

f eqd Id ∨r ReadcoWrite f . Left case. Assume f eqd Id. Let p be 0, then our goal is
∫ H

Id ∈
I0,n+1, which holds by (RealZero). Right case. Assume ReadcoWrite f and use Read− for
it. Side base case. We prove

∀ncf ∀cd

(
f [I] ⊆ Id → coWrite(Outd ◦ f)→ ∃lp

(∫ H

f ∈ Ip,n+1

))
.

Let f , d be given and assume f [I] ⊆ Id and coWrite(Outd ◦ f). Our goal is ∃lp(
∫ H

f ∈ Ip,n+1).

Applying (3.8) to coWrite(Outd ◦ f), there is some p′ such that
∫ H

(Outd ◦ f) ∈ Ip′,n, which

implies 1
2
(
∫ H

(Outd ◦ f) + d) ∈ I p′+d
2
,n+1

by (AvIntro). It moreover implies
∫ H

f ∈ I p′+d
2
,n+1
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by (HIntOut). We use (∃l)+ with p′+d
2

to derive the goal. Side step case. We prove

∀ncf

(
ReadcoWrite(f ◦ InL)→ ∃lp

(∫ H

(f ◦ InL) ∈ Ip,n+1

)
→

ReadcoWrite(f ◦ InM)→ ∃lp
(∫ H

(f ◦ InM) ∈ Ip,n+1

)
→

ReadcoWrite(f ◦ InR)→ ∃lp
(∫ H

(f ◦ InR) ∈ Ip,n+1

)
→ ∃lp

(∫ H

f ∈ Ip,n+1

))
.

Let f be given and assume the premises. To prove our goal ∃lp(
∫ H

f ∈ Ip,n+1), the following
two side induction hypotheses are used:

∃lp
(∫ H

(f ◦ InL) ∈ Ip,n+1

)
and ∃lp

(∫ H

(f ◦ InR) ∈ Ip,n+1

)
.

From the above side induction hypotheses, there are pL and pR such that
∫ H

(f ◦ InL) ∈ IpL,n+1

and
∫ H

(f ◦ InR) ∈ IpR,n+1. Using (RealAvrg) and (HIntIn),
∫ H

f ∈ I pL+pR
2

,n+1
holds.

Then the goal comes by (∃l)+.

3.8.3 Program Extraction

We extract from Proposition 3.8.2 the program int which computes the half of the integral
of a type-0 uniformly continuous function. This program reads the given type-0 function

λw,n(RW→Q
N nλ 0

λ ,gW→Q,w0
(Case Dw0 of

InLU→ 0

InR r → RQ
RW

r λd,w2(
g(w2) + d

2
)

λ ,pL, ,pM, ,pR(
pL + pR

2
))

w)

Figure 3.24: intW→N→Q

to accumulate the possible output digits to compute the definite integral. The second
argument is a number n to specify the bound of the computation in such a way that the
program processes the read-write machine from its root up to the n-th RW-total ideals. At
a branch, the recursively computed integral from the middle interval, which is denoted by
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an unused variable pM, is ignored because it suffices to see value on the left and the right
subintervals, namely, [−1, 0] and [0, 1]. At a leaf, the output digit is counted to contribute
to the output with concerning its height in the tree. The base case of the the side recursion
takes care of it by computing a value with division by 2. Consider RW-total ideals inside
of a W-cototal RW-total ideal. In the n-th height from the root, there are 2n signed digits
to count at the Put nodes. Indeed, this int is an implementation of what Bishop and
Bridges [BB85] have mentioned, namely, the averaging process.

3.8.4 Experiments

We compute half of the definite integral for the function f(x) :=
√
x+ 2−1. This integrand

is defined to be 〈h, α, ω〉, where h an := (RN n 1λ , b (
b+a+2

b

2
))−1, αn := n+1, and ω n := n

where Pred : N → N is the predecessor function given in Example 2.2.38. We give two
arguments to int, a type-0 function and a natural number. The first input to int is
computed by ucf1to0 from the above type-1 function. Specifying 8 as the second input, the
output is 1633

4096
whose decimal expansion is 0.398681640625 · · ·. Comparing our result with

the manually calculated definite integral 1
2

∫ 1

−1 f(x)dx =
√

3− 4
3
, the error is 0.00003583 · · · ,

which is smaller than 2−8 = 0.00390625.

3.9 Notes

We describe related work, future work and remarks for concluding this chapter.

3.9.1 Exact Real Arithmetic via Streams

An early work on algorithms of stream represented real numbers is by Wiedmer [Wie77,
Wie80]. He describes exact computation of real numbers and foundation of computability
of infinite objects, and shows many case studies including the average of real numbers
in the SDS representation. Ciaffaglione and Di Gianantonio [CG99, CG00, CG06] study
the stream representation of real numbers by means of coinduction in Coq, namely, in a
logical framework. Plume [Plu98] describes an informative report on exact real arithmetic
and an implementation of a calculator for exact real number computation. His work
includes an implementation of the average of signed digit streams as which our extracted
program is essentially the same. Ghani, Hancock and Pattinson [GHP06, HPG09] study
type-0 uniformly continuous functions, so-called stream processors, in coalgebraic setting.
Abel [Abe07] studies mixed inductive/coinductive types and describes the composition of
stream processors in a setting of equi-inductive types and equi-coinductive types. Formal
certification of algorithms of exact real arithmetic is studied by Hou [Hou06], Berger and
Hou [BH08]. They have certified algorithms which compute multiplication, division and
limit of real sequences as well as translators between Cauchy reals and SDSs and average.
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3.9.2 Program Extraction

Berger and Seisenberger [BS10, BS12] study a framework of program extraction supporting
induction and coinduction, and informally reading-off the extracted program for the average
of type-0 real numbers. Berger [Ber09, Ber11] gives a case study for type-0 representation
of uniformly continuous functions, so-called read and write machines. Being heavily based
on their work, we have given computer implemented case studies on exact real arithmetic.
An extraction of the average program is done in Agda by Chuang [Chu11] by making use
of Agda postulates. In contrast to the case of TCF (cf. also [MS13]), it requires a special
care to guarantee that Agda postulates do not prevent normalization. It is taken care of
by non-computational logical connectives in TCF and Minlog. Chuang [Chu11] moreover
studies extraction of multiplication of exact real numbers in Agda.

3.9.3 Abstract Theory

The idea to make use of abstract theory in the context of program extraction is due to
Berger [Ber09]. In our case studies, axioms are supposed to be valid in some model. For
example, we can take a concrete theory of uniformly continuous functions in [−1, 1], e.g.
formulated by type-1 uniformly continuous functions. Instantiating the abstract type φ
of uniformly continuous functions by the concrete type of type-1 uniformly continuous
functions, the axioms can be proven. An issue arises when we consider to give arguments
to an extracted program, although the extracted program itself is certified by soundness. A
hand prepared input given to an extracted program should also be correct in the theory of
program extraction. For example, a hand prepared type-1 uniformly continuous function
〈λa,n(−a), n+ 1,Pred n〉 in Section 3.5.4 should be a realizer of C f for some f . If we can
specify a term f of the abstract type φ or instantiate the abstract theory by a concrete one,
the problem is solved.

3.9.4 Formalizing n-Ary Uniformly Continuous Functions

According to Berger, n-ary type-0 uniformly continuous functions can be viewed as 3n-
branching trees [Ber09]. Although the theoretical treatment can be cleanly generalized
through the general view by Berger, it still requires the base theory to be able to formalize
algebras, predicates and abstract theories in a generalized way. We consider an extension
of the algebra Rα and W. Let SDn be an n-products of SD. For instance, SD0 is
empty, SD1 is same as SD and SD2 is a type of pairs of SD. We define Rn

α to be
µξ(SD→ α→ ξ, (SDn → ξ)→ ξ). The algebra Wn is defined to be µξ(ξ,R

n
ξ → ξ). Then,

W0 is another way to represent I, W1 is same as W and Wn consists of finite trees of
Rn

Wn , where there are 3n branches at the get node and the put node carries SDn and Wn.
This represents n-ary uniformly continuous functions. In the same manner, one can also
consider an extension of the predicates Read and coWrite. Let f range over φn, an abstract
n-ary uniformly continuous function, and e range over SDn. The constants Idn, Outn and
Inn of types φn, SDn → φn → φn and SDn → φn → φn, respectively, can be given as well.
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We denote by In the unit interval of n-dimension. Then, the introduction axioms and the
closure axiom look as follows. Let d and e range over SD and SDn, respectively.

∀f∀cd(f [In] ⊆ Id → X(Outn,d ◦ f)→ ReadnXf), (Readn)+0
∀f (∀ce(ReadnX(f ◦ Inn,e))→ ReadnXf), (Readn)+1
∀f (coWritenf → f eqd Idn ∨ ReadncoWritenf). (coWriten)−

For n = 0, (Readn)+0 works as the right disjunct of the conclusion of coI−, and (Readn)+1
becomes empty because the type of e is empty. Since they generally work for n-ary uniformly
continuous functions, the application in Section 3.6 can be done by means of coWrite0 and
coWrite1, the composition can be done by coWrite1 and coWrite1. Berger [Ber11] proves
the following in his framework: Let f be an n-ary real function and gi be m-ary ones for
i = 1, . . . , n, then coWriten f and coWritem gi for each i imply coWritem(f ◦ (g1, . . . , gn)). It
is a possible future work to extract from a formalized proof of the above proposition a
program which computes a composition of n-ary and m-ary type-0 uniformly continuous
functions.
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Chapter 4

Concluding Remarks

4.1 Overview of this Thesis

In this Thesis we have studied program extraction from nested inductive and coinductive
proofs. Our aim is to present a formalized theoretical framework for program extraction
supporting nested inductive and coinductive definitions and a proof assistant within which
program extraction can be practiced. We have enriched the Theory of Computable Function-
als, so that nested inductive and coinductive definitions can be used for program extraction.
We have implemented additional features for nested inductive and coinductive definitions to
the proof assistant Minlog, which has been developed at the logic group of the University of
Munich for more than 20 years. In order to practice program extraction in our framework
with nestedness, we have formalized case studies in exact real arithmetic due to Berger
and Seisenberger using Minlog. Non-trivial algorithms dealing with exact real numbers
and uniformly continuous functions are mechanically extracted from proofs as executable
programs in Minlog.

4.2 Contributions

We have enriched the Theory of Computable Functionals by introducing nestedness. Induc-
tive and coinductive definitions can be combinated by nestedness in the proof theoretical
side. The recursion and corecursion operators in the formal calculus T+ have been enriched
to support nestedness in the computational side. Concerning the realizability interpreta-
tion, the soundness theorem and the program extraction procedure have been extended to
accommodate nestedness and coinductive definitions.

The theoretical improvement of the Theory of Computable Functionals has been imple-
mented as additional features of the proof assistant Minlog, a computer implementation of
the Theory of Computable Functionals. The current Minlog is able to deal with nested
algebra definitions, constants, e.g. recursion and corecursion operators, on nested algebras,
coinductive and nested definitions, proofs involving such definitions, and program extraction
from nested inductive and coinductive proofs.
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Within the Theory of Computable Functionals and the proof assistant Minlog, we
formalized case studies due to Berger and Seisenberger in exact real arithmetic based on
coinductive setting. Computational content from their proof, which was informally read off
by Berger and Seisenberger, has been formally extracted by Minlog. Our formalization of
exact real arithmetic in Minlog, which contains topics listed below, is currently a part of
the downloadable Minlog package.

1. A translator from a rational number into a real number of type-0 [BMSS11].

2. A translator between a real number of type-1 and a real number of type-0 [Ber09].

3. The average of two real numbers of type-0 [Chu11, BS12, MS13].

4. A translator between a uniformly continuous function of type-1 and a uniformly
continuous function of type-0 [Ber09, Ber11, MFS13].

5. The application of a uniformly continuous function of type-0 to a real number of
type-0 [Ber09, Ber11].

6. The composition of two uniformly continuous functions of type-0 [Ber09, Ber11].

7. The definite integration of a uniformly continuous function of type-0 [Ber09, Ber11,
MFS13].

4.3 Future Work

We illustrate three possible topics for future work. The first one is proof normalization
involving coinductively defined predicates. The second is extending a feature of Minlog for
automatic generation of program certifications involving nested definitions and coinductive
definitions. The third is further exploration of program extraction in exact real arithmetic.

4.3.1 Proof Normalization

Through coinductive definitions, TCF is extended by additional closure and greatest-fixed-
point axioms. As we saw, proof conversion rules are applicable if a greatest-fixed-point axiom
is followed by a closure axiom, so that the use of closure axiom is eliminated. The proof
normalization theorem for TCF with coinductive definitions is expected to hold, and it is a
possible future work. Applying program extraction to a proof of the normalization theorem,
an NbE algorithm supporting coinductive definitions can be obtained [Ber93, BBLS06].

4.3.2 Automatic Program Certification

The proof of Theorem 2.5.29 (Soundness) contains an informal algorithm to generate
soundness proofs, namely, a given proof M of A can be transformed into a proof M ′ of
Ar(et(M)). An implementation of the computational content of the proof of the soundness
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theorem enables Minlog to automatically generate the proof M ′ from M . In other words,
this is a feature to issue a certification of an extracted program. Currently, Minlog is able
to deal with proofs involving simultaneous non-nested inductive definitions to generate
soundness proofs. Minlog can automatically generate a soundness proof also for an extracted
program from a nested and coinductive proof, provided the current feature is improved to
cover the absent cases. This is a crucial step for Minlog to become a software development
environment for certified programs.

The roadmap is as follows. The current Minlog feature for automation has to be extended
to cover the cases of closure axioms and greatest-fixed-point axioms of coinductively defined
predicates. The use of Lemma 2.5.30 (Soundness for monotonicity formulas) has to be
taken care of. The computational content of this lemma generates a proof stating that a
monotonicity formula is realized by the corresponding map operator. Generated soundness
proofs are needed to complete the nested cases of I− and coI+ in the proof of Lemma 2.5.31
(Soundness for axioms of inductive and coinductive definitions).

4.3.3 Formalizing n-Ary Uniformly Continuous Functions

In contrast to the original work by Berger, our formalization is limited to unary uniformly
continuous functions. It is left as a future work to formalize n-ary uniformly continuous
functions in a coinductive setting. While 3-branching trees are used in the unary case,
3n-branching trees suffice to represent n-ary uniformly continuous functions. We propose
to use the type SDn which is n-tuple of the signed digit algebra SD instead of SD as
we used. It can be done by using another framework as Martin-Löf’s type theory, or by
extending the type system of TCF to dependent types. The type SDn is defined as a type
dependent on a term n, and the algebras Rα and W are also parameterized by n. Terms
in T+ and inductive and coinductive definitions are also to be extended to formalize the
idea of Berger.
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Appendix A

Proof Assistant Minlog

This appendix describes the proof assistant Minlog. Minlog has been developed by Schwicht-
enberg and his colleagues for more than 20 years [Sch92, Min]. Minlog is an implementation
of TCF, namely, the goal is to make any activity based on TCF doable in Minlog. Proofs
are interactively built by a human with some support of automated proof searching. It
extracts from constructive proofs computational content based on Kreisel’s modified realiz-
ability interpretation. Program extraction from non-constructive proofs is also supported
by means of the refined A-translation [BBS02, Rat11] and Gödel’s dialectica interpreta-
tion [Sch08, Tri12]. Terms in T+ can be exported to general-purpose programming language
as Scheme and Haskell. Especially, T+ is fully supported for the Haskell export which is
due to Nordvall [MFS13]. Minlog is implemented in Scheme, and interfaces for human to
use Minlog are provided as Scheme procedures.

This appendix consists of two sections. In the first section we discuss technical aspects
of the Minlog implementation, being focused on normalization by evaluation, recursion and
corecursion operators and inductive and coinductive definitions. In the second section we
provide a commentary to work with the Minlog code to the case study given in Section 3.3.

A.1 Implementation

This section describes three selected topics from the implementation of Minlog. The first
topic is term normalization of Minlog which is done by means of normalization by evaluation,
NbE for short, described in Section 2.2.4. The second topic is the internal representation
of recursion and corecursion operators. The third topic is the internal representation of
inductive and coinductive definitions.

A.1.1 Normalization by Evaluation

Minlog’s normalization is done by means of the technique of NbE. The implementation
is based on Section 2.2.4. The idea is that a term in T+ is first sent to its denotation,
and then we retrieve from the denotational object a term which is in normal form. The
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representation of a semantic object in Minlog is a pair of a type and a native Scheme
procedure. We call such a pair an NbE object, and call a native Scheme procedure in an
NbE object an NbE value. Minlog has procedures to deal with NbE objects. Corresponding
to term families mentioned in Section 2.2.4 we also introduce procedures to send a term
to a term family and vice versa. Proof normalization is also done by NbE through the
correspondence between proofs and terms. Note that the extracted term from a proof
carries less information than the proof, since non-computational information is thrown
away due to the realizability. In order to recover the Curry-Howard correspondence, Minlog
regards non-computational parts of formulas in the same way as computational ones in
the case of proof normalization. Minlog uses the NbE algebras instead of the associated
algebras of the defined predicate constants. In contrast to associated algebras, NbE algebras
are defined with regard to non-computational universal quantifiers and implications in the
same way as computational ones. Moreover, constants as recursion operators are allowed to
carry reproduction data, which are used to reproduce the formula of the axiom from which
these constants are extracted.

In this section, we describe technical details of the implementation of NbE in Minlog
system.

A.1.1.1 Term Family

In order to implement NbE, we have to deal with bound variables in in reifying an NbE
object of higher type. A term family is used to implement the way to create bound variables.
There is a procedure to form a term family.

(nbe-make-termfam type proc)

The internal representation of term families is of the form (’termfam type proc) where
the type, type, is an internal representation of a type and the NbE value, proc, is a native
Scheme function procedure from a natural number k to an internal representation of terms.
The following procedure applies a term family termfam : N→ Λρ to a natural number k : N
to get a term of Λρ.

(nbe-fam-apply termfam k)

This procedure applies the NbE value of termfam of the form (lambda (k) ...) to k.
The following procedures sends a term to a term family and vice versa.

(nbe-term-to-termfam term)

(nbe-extract termfam)

The procedure nbe-term-to-termfam gives the term family by making a case distinction
on the construction of the given term. In any case the type is computed by term-to-type.
If the outermost construction of term is a variable or a constant, the NbE value of the
result is (lambda (k) term). If term is an abstraction λxt, the term family is given by
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Listing A.1: Abstraction case in nbe-term-to-termfam

1 (let* ((var (term-in-abst-form-to-var term))

2 (type (var-to-type var))

3 (kernel (term-in-abst-form-to-kernel term)))

4 (nbe-make-termfam

5 (term-to-type term)

6 (lambda (k)

7 (let ((var-k (make-var type k (var-to-t-deg var) (var-to-name var))))

8 (make-term-in-abst-form

9 var-k

10 (nbe-fam-apply

11 (nbe-term-to-termfam

12 (term-subst kernel var (make-term-in-var-form var-k)))

13 (+ 1 k)))))))

Listing A.2: Application case in nbe-term-to-termfam

1 (let ((op (term-in-app-form-to-final-op term))

2 (args (term-in-app-form-to-args term)))

3 (nbe-make-termfam

4 (term-to-type term)

5 (lambda (k)

6 (apply mk-term-in-app-form

7 (map (lambda (x) (nbe-fam-apply (nbe-term-to-termfam x) k))

8 (cons op args))))))

the following code snippet. Let term be the given term. For the given term λxt, var
and kernel in lines 1 and 3 correspond to x and t, respectively. The variable name x
of abstraction is renamed to xk, i.e., var-k, then the body of the function procedure is
λxk(t[x/xk]

∞(k + 1)). If term is an application t~s, where |~s| ≥ 1, the term family is given
by the following code snippet. Let term be the given term. For the given t~s, op and args

correspond to t and ~s, respectively. Then, the body of the function (lines 6–8) constructs
t∞(k)s∞(k).

For a term family r the procedure nbe-extract first computes the least natural number
k which is larger than any index of a variable in r(0), then the term r(k) is returned.

A.1.1.2 Reflect and Reify

There are two (simultaneous) procedures which translate from a term family into an NbE
object and vice versa.

(nbe-reflect termfam)

(nbe-reify object)

A term family is sent to an NbE object by nbe-reflect and the opposite direction is done
by nbe-reify. The procedure nbe-reflect makes a case distinction on the type of the
term family. If it is a type variable or an algebra, the NbE value is the term family, a native
Scheme procedure. If it is an arrow type, the NbE value of the result is computed by the
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Listing A.3: Arrow type case in nbe-reflect

1 (lambda (obj)

2 (nbe-reflect (nbe-make-termfam

3 (arrow-form-to-val-type type)

4 (lambda (k)

5 (make-term-in-app-form

6 (nbe-fam-apply termfam k)

7 (nbe-fam-apply (nbe-reify obj) k))))))

Listing A.4: Algebra case in nbe-reify

1 (let ((args (nbe-constr-value-to-args value)))

2 (nbe-make-termfam

3 type

4 (lambda (k)

5 (apply mk-term-in-app-form

6 (cons (make-term-in-const-form

7 (nbe-constr-value-to-constr value))

8 (map (lambda (obj)

9 (nbe-fam-apply (nbe-reify obj) k))

10 args))))))

following code snippet. Let type be the type of the given term family. Let a term family
λxt
∞ be given to nbe-reflect. The outermost (lambda (obj) ...) is a representation

of the abstraction λx . . . as a native Scheme procedure. Intuitively the body is given by
applying t∞ to obj. Formally, it first constructs a term family ↓ obj by reifying, then
the body t∞(k)(↓ obj)(k) is computed. Finally, nbe-make-termfam is applied to the body
abstracted by k. At the end, we apply nbe-reflect which is corresponding to ↑.

The procedure nbe-reify takes an NbE object and retrieves a term family. A term
family is built by induction on the type of the NbE object. If the type is a type variable, it
returns the NbE value of the NbE object. If the type is an algebra, it checks by means
of nbe-constr-value? whether this NbE object expresses C~t, a constructor C with
arguments ~t. If this is the case, it makes a term family by the following code snippet.
Assume type and value are the type and the NbE value of the given term family. Assume
arguments args are prepared as NbE objects corresponding to ~t in line 1. They become
reified terms in lines 8–10, then are given to the constructor to be an NbE value. If this is
not the case, e.g. it is a variable, then it returns the NbE value of the NbE object. The
next case is the arrow type. The following code snippet gives a term family from the NbE
object. The procedure nbe-object-apply is for function application of NbE objects. Let
type be the type of the given term family. The variable var-k is created with the index k

which is abstracted by the native Scheme function abstraction. The NbE object obtained
by applying the given NbE object obj to the NbE object of var-k is reified to the term
family ↓ (obj(↑ (var-k))). Further applying this term family to k+1 and abstracting by
var-k, we obtain the very term in Definition 2.2.47.
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Listing A.5: Arrow type case in nbe-reify

1 (let ((type1 (arrow-form-to-arg-type type)))

2 (nbe-make-termfam

3 type

4 (lambda (k)

5 (let ((var-k (make-var type1 k 1 (default-var-name type1))))

6 (make-term-in-abst-form

7 var-k (nbe-fam-apply

8 (nbe-reify

9 (nbe-object-apply

10 obj

11 (nbe-reflect (nbe-term-to-termfam

12 (make-term-in-var-form var-k)))))

13 (+ k 1)))))))

A.1.2 Recursion and Corecursion

Recursion and corecursion operators are constants which play an important role in the
computational interpretation of inductive and coinductive definitions. We study the
implementation of recursion and corecursion operators in Minlog.

It suffices to give (simultaneous) algebras ~ι and types ~τ to specify the recursion operator
R~τ
~ι,i. We have the following procedure to compute a list of the internal representation of

recursion operators.

(arrow-types-to-rec-consts . arrow-types)

For the argument arrow-types we give a list of types of the form ιi → τi to specify the
recursion operators. The following procedure makes an internal representation of a constant
in general.

(make-const obj-or-arity name kind uninst-type tsubst t-deg token-type .

repro-data)

The internal representation of constant is just a list consists of ’const, the identifier for
constants, as the head and the arguments given to the above procedure as the rest. The
content of obj-or-arity in the case of recursion operator is an NbE object of the recursion
operator. From the next components, name, kind, t-deg and token-type are for the name of
the constant, the kind of the computation rule of the constant, the totality degree and the
kind of token. In the case of recursion operators, name is “Rec”, kind is ’fixed-rules

meaning it is not user changeable, t-deg is 1 meaning it is a total functional, and token-
type is ’const meaning that this constant is written in a usual function application style,
respectively. For uninst-type and tsubst we give the uninstantiated type of recursion operator
and the type substitution which makes the instantiated type. An uninstantiated type is
represented by taking all parameter types ~α of algebras ~ι and all covalue types ~τ as type
variables. The type substitution tells us what substitutes ~α by ~τ . Some type variables may
be left. A procedure arrow-types-to-uninst-recop-types-and-tsubst computes the
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types of R~τ
~ι,i.

(arrow-types-to-uninst-recop-types-and-tsubst . arrow-types)

The return value of this procedure is a pair of a list of uninstantiated types of recursion
operators and a type substitution. The last argument repro-data of make-const is
optionally given when we normalize a proof. Proof normalization is implemented based on
term normalization. Terms in T+ are not sufficient to represent proofs. Minlog manages
missing information by keeping additional information in the internal representation of
recursion operator, so that it maintains the Curry-Howard isomorphism.

We explore the procedure rec-at which computes the NbE object of recursion operators
and see what the NbE object of a recursion operator and how Minlog deals with it.

(rec-at alg-name uninst-recop-type tsubst inst-recop-type

f rel-constr-names rel-simalg-names-with-uninst-recop-types .

repro-data)

Consider the NbE object of a recursion operator R~τ
~ι,i through rec-at. The first argument

alg-name, which is ιi, determines on which algebra this recursion operator is defined. The
type of the recursion operator is represented by a pair of the uninstantiated type of the
recursion operator uninst-recop-type, and the substitution tsubst. For the efficiency reason,
the instantiated type inst-recop-type is also given. The next argument f carries the number
of free variables (or parameters), which is needed in the case of proof normalization, when
variables are quantified by the outermost non-computational universal quantifier of an
elimination axiom. The following two arguments rel-constr-names and rel-simalg-names-
with-uninst-recop-types depend on the simplification of recursion operators. Considering
relevant simultaneous algebra names among all simultaneous algebras, rel-constr-names is
a list of the names of constructors from the relevant algebras, and rel-simalg-names-with-
uninst-recop-types is the list of pairs of a relevant algebra name and the uninstantiated type
of a recursion operator on the relevant algebra. Assume that we are normalizing a proof
involving an elimination axiom which is instantiated as I~t→ . . .→ P~t. The last argument
plays an important role when this recursion operator is used for proof normalization
via the Curry-Howard correspondence. The reproduction data, repro-data, are then an
implication formula I~t→ P~t which is sufficient to recover how the elimination rule is used.
The definition of rec-at is as follows. Let inst-recop-type, uninst-recop-type and
repro-data be the given inst-recop-type, uninst-recop-type and repro-data, respectively.
The return value is an NbE object constructed by the instantiated type of the recursion
operator and the NbE value. The procedure nbe-curry does currying one argument objs
into arguments of the number depicted by arity which is the sum of the number of step
cases, parameters and 1. The last 1 in line 4 is for the argument at which the recursion
works. We take a closer look at the inside of the first argument of nbe-curry, namely, lines
10–11. Let f be the given f and suppose that nbe-for-idps? is an already computed
boolean value. All arguments given to the recursion operator are kept by objs. There
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Listing A.6: Structure of rec-at

1 (let* (( f-plus-s ;number f of free variables plus number s of step types

2 (- (length (arrow-form-to-arg-types uninst-recop-type)) 1))

3 (s (- f-plus-s f))

4 (arity (+ f-plus-s 1))

5 (nbe-for-idps? (and (pair? repro-data)

6 (imp-form? (car repro-data)))))

7 (nbe-make-object

8 inst-recop-type

9 (nbe-curry

10 (lambda objs

11 ... )

12 inst-recop-type

13 arity)))

Listing A.7: NbE value given in rec-at

1 (lambda objs

2 (let* (( rec-obj (list-ref objs f))

3 (rec-val (nbe-object-to-value rec-obj)))

4 (cond

5 ((or (nbe-fam-value? rec-val) (not REC-UNFOLDING-FLAG))

6 ... )

7 ((and (nbe-constr-value? rec-val) (not nbe-for-idps ?))

8 ... )

9 ((and (nbe-constr-value? rec-val) nbe-for-idps ?)

10 ... )

11 (else (myerror "rec-at" "value expected" rec-val)))))
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Listing A.8: Case of term family

1 ((or (nbe-fam-value? rec-val) (not REC-UNFOLDING-FLAG))

2 (nbe-reflect

3 (nbe-make-termfam

4 (arrow-form-to-final-val-type inst-recop-type (length objs))

5 (lambda (k)

6 (apply mk-term-in-app-form

7 (make-term-in-const-form ;rec-const

8 (apply alg-name-etc-to-rec-const

9 alg-name uninst-recop-type tsubst

10 inst-recop-type f rel-constr-names

11 rel-simalg-names-with-uninst-recop-types

12 repro-data))

13 (map (lambda (x) (nbe-fam-apply (nbe-reify x) k))

14 objs))))))

are two bindings: the recursion object rec-obj for the argument at which the recurrence
works and the recursion value rec-val for the NbE value of rec-obj. It makes a case
distinction by the recursion value. There are four cases. The first case happens if the
rec-val is the denotation of a term family or REC-UNFOLDING-FLAG is false. The flag
REC-UNFOLDING-FLAG is true by default to enable unfolding of recursion operators, but a
user can set it to be false to unblock the unfolding. The second and the third are the case
if the rec-val is the denotation of a term with a constructor as the outermost operator. A
value of such a term is called a constructor value. The flag nbe-for-idps?, which stands for
“NbE for inductively defined predicate constants?”, is true if it is for proof normalization of
an elimination axiom. It is false if it is for term normalization or for proof normalization of
induction axiom by a computational universal quantifier ∀c. Depending on nbe-for-idps?,
either the second or the third is chosen. If the none of the above cases are applicable,
Minlog gives up the execution with putting an error message. From now we study the first
two cases to see how term normalization works. The third one deals with parameters to
recover the Curry-Howard isomorphism in addition to the second case, in order to perform
proof normalization. The following list is of the first case. A value returned by this branch
is the NbE object from a term family which is exactly the same as what we are normalizing,
namely, this code makes the reproduction of the same thing. This is what we expect for
example in the case of normalizing Rx~t where x is not formed by any constructor. In the
code, the recursion constant is generated by the lines 7–12. The arguments are prepared
from objs by the lines 13–14 by fixing an index k given to the term families.

When the rec-val is a constructor value, the recursion operator is converted with respect
to the constructor. The following code gives a value for such a case in term normalization.
What it computes as the result is the line 9, which is the step term corresponding to
the constructor of the value object applied to the arguments. From the name of the
constructor constr-name, the step-obj is chosen. It suffices to compute the arguments
called step-args which are fed to step-obj. From the list of the arguments to the recursion
operator, rel-args is a sublist of the arguments which are relevant for recurring. The
NbE objects for the relevant simultaneous recursion operators are computed for each of
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Listing A.9: Case of constructor

1 ((and (nbe-constr-value? rec-val) (not nbe-for-idps ?))

2 (let*

3 (( constr-name (nbe-constr-value-to-name rec-val))

4 ...

5 (step-obj ... )

6 ...

7 (rel-args ... )

8 ...

9 (step-arg-lists ... )

10 (step-args (apply append step-arg-lists)))

11 (apply nbe-object-app step-obj step-args)))

relevant simultaneous algebras. In the code, recobjs is their name. The argument types
of the constructor determine what the arguments to the step-obj are. The arguments
are computed and bound to step-arg-lists in the code. The internally defined function
between lines 3–25 takes two arguments, rel-arg and rel-constr-arg-type due to map,
and has three cases. The first case is for parameter arguments of the constructor, namely,
the argument type ρiν of the step case is a type variable. The condition between lines 5–7
checks that there is no common algebra both in the list of algebras appear as an argument
type of the constructor and the list of the relevant algebras of the recursion operator. The
second case is for non-nested recursive arguments of the constructor. The condition between
lines 9–14 checks that the value type of the constructor type is an algebra which is among
the relevant simultaneous algebras. This case is separated from nested cases because we
duplicate the previous input, i.e., rel-arg, and the recursive call. The last case is for
nested recursive arguments of the constructor. The main point is the use of map operators.
Instead of the duplication in the non-nested case, the previous input and the recursive
call are paired by the constructor of the product algebra and abstracted to be λx〈x,Rx~t〉
which is bound to ih-fctobjs in the code. The NbE object of the relevant map operator is
on the other hand computed by means of map-at and bound to mapobj. Finally, it returns
the NbE object representing MN (λx〈x,Rx~t〉)i<n.

Corecursion operators coR~τ
~ι,i are specified by the following procedure.

(alg-or-arrow-types-to-corec-consts . alg-or-arrow-types)

The argument alg-or-arrow-types is a list of arrow types τi → ιi. When ~τ is a list of the
nulltype, we can give ~ι instead. The difference from the case of recursion operators is the
following.

1. There is corec-at to compute the NbE object.

2. The (internal) name of the constant is "corec".

3. There is alg-or-arrow-types-to-uninst-corecop-types-and-tsubst to compute
the type.
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Listing A.10: Three cases in the function definition

1 (step-arg-lists

2 (map

3 (lambda (rel-arg rel-constr-arg-type)

4 (cond

5 ((null? ; param-arg-type : take original arg

6 (intersection (type-to-alg-names rel-constr-arg-type)

7 rel-simalg-names))

8 (list rel-arg))

9 ((and (alg-form? (arrow-form-to-final-val-type

10 rel-constr-arg-type))

11 (member (alg-form-to-name

12 (arrow-form-to-final-val-type

13 rel-constr-arg-type))

14 rel-simalg-names))

15 (list

16 rel-arg

17 (nbe-object-rec-compose ;first recobj

18 (cadr (assoc (alg-form-to-name

19 (arrow-form-to-final-val-type

20 rel-constr-arg-type))

21 rel-simalg-names-to-recobjs-alist))

22 step-objs

23 rel-arg)))

24 (else ;nested recarg-type : use mapop

25 ... )))

26 rel-args rel-constr-arg-types))

Listing A.11: Nested case

1 (else ;nested recarg-type : use mapop

2 (let*

3 (...

4 (ih-fctobjs ... )

5 ...

6 (mapobj

7 (map-at

8 rel-constr-arg-type-with-tvars new-tvars

9 rel-simalgs rel-simalgs-times-valtypes

10 new-val-tvars)))

11 (list

12 (apply nbe-object-app mapobj rel-arg ih-fctobjs))))
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Currently, corecursion operators are unchanged during NbE. Instead of NbE, terms involving
corecursion operators can be unfolded by the following procedure,

(undelay-delayed-corec term bound)

where term is a term and bound is the number of unfoldings. The procedure corec-at has
only the reproduction case which we saw in rec-at. Types of corecursion operators are com-
puted by the procedure alg-or-arrow-types-to-uninst-corecop-types-and-tsubst in
a similar way as recursion operators.

(alg-name-etc-to-rec-const

alg-name uninst-recop-type tsubst inst-recop-type

f rel-constr-names rel-simalg-names-with-uninst-recop-types . repro-data)

A.1.3 Inductive and Coinductive Definitions

Inductive definitions are taken care of by the procedure add-ids in Minlog.

(add-ids idpc-names-with-arities-and-opt-alg-names .

clause-strings-with-opt-names)

In order to define (simultaneous) inductive predicates ~I, we have to specify the names
of the predicates, the arities and the clause formulas. For idpc-names-with-arities-and-
opt-alg-names we give a list of the name of the predicate, the arity and optionally the
associated type by an algebra name. There is a naming convention algI for a predicate
name I used to define a new algebra automatically by the name algI. One can also specify
an existing algebra name instead. For clause formulas we give a list of an introduction
axiom and optionally its name as clause-strings-with-opt-names. Most of the businesses
of add-ids is to validate the given definition. For instance, if an existing algebra name
is provided for the associated algebra, it checks if the computed associated algebra from
clause formulas matches indeed. A coinductively defined predicate can be generated by
dualizing an inductively defined predicate by add-co.

(add-co idpc-name . opt-prim-prod-flag)

This function forms the closure axiom of a coinductive predicate from the introduction
axioms of a given inductive predicate idpc-name. If opt-prim-prod-flag is not given or
true, the axiom is formed with the primitive existential quantifier and conjunction, which
sometimes are preferable for efficiency reasons. If the flag is false, i.e., #f, inductively
defined existential quantifier and conjunction are used.

We give an example of proof normalization to sketch how the third case of rec-at, at
line 9 and 10 in Listing A.7, works for inductively defined predicates. A recursion operator
can encode an elimination axiom due to reproduction data. We use special algebras so-called
NbE algebras as well as reproduction data to let recursion operators and also constructors
to carry free variables needed to restore the proof.
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Example A.1.1 (Proof normalization involving the inductive predicate Even). Recall
the predicate Even defined in Example 2.3.11 with a proper decoration and consider the
following proof of Even(n + 4) →c P0 →c ∀ncn (Evenn →c P n →c P (n + 2)) →c P 4. We
refer to P 0 and ∀ncn (Evenn→c P n→c P (n+ 2)) by A0 and A1, respectively, and abuse
the name of axioms for their conclusion in the proofs.

Even− n+ 4

Even(n+ 4)→c A0 →c A1 →c P (n+ 4)

Even+1 n+ 2

Even+1 n [Evenn]u

Even(n+ 2)

Even(n+ 4)

A0 →c A1 →c P (n+ 4)

Evenn→c A0 →c A1 →c P (n+ 4)
(→c)+, u

The NbE algebra of Even is ι := µNbE
ξ (Cξ

0 , C
N→ξ→ξ
1 ) where the N in the second constructor

type comes from the ∀ncn in Even+
1 and is treated as a parameter. From this special algebra

Minlog generates a recursion operator Rτ
ι : N → ι → τ → (N → ι → τ → τ) → τ .

The conversion rules are Rτ
ι nC0M N 7→M and Rτ

ι n(C1mu)M N 7→ N mu(Rτ
ι muM N)

where the first argument n is considered as a parameter. The number of the parameters
is given as the argument f of rec-at. The term representation of the proof is λu(Rι(n+
4)(C1(n + 2)(C1 nu))). Each constructor Ci carries the number i and the inductively
defined predicate constant Even as the reproduction data. The recursion operator Rι

carries the formula Even(n + 4) → P (n + 4) instead. The normal form of the term is
λu,w0,w1(w1(n+ 2)(C1 nu)(w1 nu(Rι nuw0w1))) which represents the following normalized
proof.

[A1]
w1 n+ 2

Even+1 n [Evenn]u

Even(n+ 2)

[A1]
w1 n [Evenn]u

Even− n [Evenn]u [A0]
w0 [A1]

w1

P n

P (n+ 2)

P (n+ 4)

A1 →c P (n+ 4)
(→c)+, w1

A0 →c A1 →c P (n+ 4)
(→c)+, w0

Evenn→c A0 →c A1 →c P (n+ 4)
(→c)+, u

If there are free variables in a competitor predicate of an elimination axiom or a predicate
parameter of an inductive predicate, the types of axioms are given differently to carry all
free variables as parameters.

A.2 Commentary to cauchysds.scm

All of the case studies in Chapter 3 are formalized and running in the Minlog system [Min].
To complement the proofs illustrated rather informally, we take a look at Minlog proof
scripts on Cauchy reals and SDSs in Section 3.3 with focus on Proposition 3.3.7. In the
Minlog distribution, this is in examples/analysis/cauchysds.scm.

Using standard procedures to define algebras, axioms, predicates and etc., the corre-
sponding Scheme global variables are modified to store internal representations of definitions.
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Listing A.12: Loading libraries

1 ;(load "~/ minlog/init.scm ")

2

3 ;; Contents

4 ;; 1. A Cauchy real to an SDS. (PropA)

5 ;; 2. An SDS to a Cauchy real. (PropB)

6 ;; 3. Experiments .

7

8 (set! COMMENT-FLAG #f)

9 (libload "nat.scm")

10 (libload "numbers.scm")

11 (exload "analysis/real.scm")

12 (set! COMMENT-FLAG #t)

Proofs in Minlog are interactively built by proof tactics commands, which in fact manipulate
the goal and context stored in a global variable. Computational content from proofs is me-
chanically extracted. The program in T+ can be exported to general-purpose programming
languages as Scheme and Haskell. The imlementation of the feature for Haskell is due to
Nordvall [MFS13]. In this section the file path refers to a relative path from the Minlog
directory minlog/ of the distribution.

A.2.1 Definitions

The beginning of the code is to load the necessary libraries. The first line can be uncom-
mented to start up the Minlog system. In line 9, the library for natural number is loaded.
The entity of a library is a Scheme file placed at lib/. In line 10, the library for numbers
including rational, (type-1) real and complex numbers is loaded. We use positive numbers,
integers and rational numbers out of it. In line 11, an existing case study on real numbers
is loaded. Although we do not use existing real numbers from the library, we make use of a
proof tactic, called ord-field-simp-bwd, defined in this file for rational number reasoning.
In lines 8 and 12, the flag to allow/disallow Minlog to output a message is switched, so
that Minlog is silent except error messages during loading libraries.

It starts from declaring variable names. In lines 15 and 16, an existing variable name M is
removed. It is used in lib/numbers.scm for a variable name ranging over Z→ N which we
are going to use for another purpose. In line 18, a type variable r is declared for the type ρ
of abstract real numbers. In line 19 and 20, it declares that the variable x ranges over r after
removing the existing declaration. We define the algebra SD of the signed digits and the
programmable constant SDToInt of type SD→ Z with the computation rules. By means of
add-alg, SD is defined to be µξ(L

ξ,Mξ,Rξ). The totality predicate of an algebra is derived
by add-totality. A programmable constant is declared by using add-program-constant.
It is required to give a name and a type, where a type can also be constructed by the
arrow type “=>”. Then, the computation rules are defined by add-computation-rule. It
is obvious that the programmable constant SDToInt has a computational content to coerce
a signed digit to an integer. Here, the types of “0” and “1” in the second arguments are
inferred by Minlog. In line 26, 1 is a positive number which is given to the constructor
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Listing A.13: Variable names declaration

14 ;; 1. A Cauchy real to an SDS

15 (remove-var-name "M") ;will be used as constructor for sd

16 (remove-token "M")

17

18 (add-tvar-name "r")

19 (remove-var-name "x")

20 (add-var-name "x" (py "r"))

Listing A.14: Algebra SD

22 (add-alg "sd" ’("L" "sd") ’("M" "sd") ’("R" "sd"))

23 (add-totality "sd")

24

25 (add-program-constant "SDToInt" (py "sd=>int"))

26 (add-computation-rule (pt "SDToInt L") (pt "IntN 1"))

27 (add-computation-rule (pt "SDToInt M") (pt "0"))

28 (add-computation-rule (pt "SDToInt R") (pt "1"))

IntN of type pos=>int. On the other hand in lines 27 and 28, Minlog recognizes that 0

and 1 are of type int, but neither of nat nor pos. Due to the nature of TCF, everything
is partial in principle. Therefore, one has to prove the totality if it is necessary. In
line 30, there are three commands, set-goal, term-to-totality-formula and pt. The
last one stands for “parse term.” It first parses the string to generate an internal term
representation. The totality statement of SDToInt, namely, ∀ncd (TSDd→ TZ(SDToInt d)), is
given by term-to-totality-formula. Finally, this formula is set to be the goal to prove.
In line 31, a universally quantified variable and a premise are assumed by the command
assume with the specified names. In line 32, (TSD)− is used to the current goal. Since there
are three step cases, the Minlog generates three new goals, which are proved in lines 33–35,
36–37 and 38–40, respectively. After using ng, standing for “normalizing goal,” the first
goal becomes TZ(N1). The argument #t is used in order to normalize only the goal, but no
context. Applying (TZ)+0 , then prove TP 1 by using (TP)+0 . The second goal is TZ 0 which is
proven by (TZ)+1 . The last one is by (TZ)+2 , then prove TP 1 as in the fist case. When all
sub goals have been closed, the Minlog tells us that the proof is finished. The internally
built proof can be saved by the save command with giving a name. One can access the
proof object later by the name. In line 44, we define the algebra I which works in a similar
way as LSD. Although this algebra can be automatically extracted from the definition
of an inductively defined predicate in line 51, we manually define it here in order to give
user specified names of the algebra and its constructors. In lines 46–49, the constants
in Definition 3.3.2, 3.3.3 and 3.3.4 are given. If a programmable constant involves type
variables, type arguments have to be given as in the line 52. In lines 51–55, the coinductive
predicate coI in Definition 3.3.6 is given. It first defines the inductive predicate I of arity
(ρ) with specified associated algebra I. In lines 52–53, the clause formulas are given to
define I to be µX(X Z, ∀ncx ∀cd(Xx→ X(x+d

2
))) with the names InitI and GenI for I+0 and

I+1 , respectively. A string can represent a formula in the following syntax: allnc for ∀nc,
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Listing A.15: Totality of SDToInt

30 (set-goal (term-to-totality-formula (pt "SDToInt")))

31 (assume "sd^" "Td")

32 (elim "Td")

33 (ng #t)

34 (use "TotalIntIntNeg")

35 (use "TotalPosOne")

36 (ng #t)

37 (use "TotalIntIntZero")

38 (ng #t)

39 (use "TotalIntIntPos")

40 (use "TotalPosOne")

41 ; Proof finished.

42 (save "SDToIntTotal")

Listing A.16: Inductively defined predicate I

44 (add-alg "iv" ’("II" "iv") ’("C" "sd=>iv=>iv"))

45

46 (add-program-constant "Elem" (py "r=>rat=>nat=>boole"))

47 (add-program-constant "Z" (py "r")) ; zero

48 (add-program-constant "Av" (py "r=>sd=>r")) ;average

49 (add-program-constant "Va" (py "r=>sd=>r")) ;inverse of average

50

51 (add-ids (list (list "I" (make-arity (py "r")) "iv"))

52 ’("I(Z r)" "InitI")

53 ’("allnc x^ all sd(I x^ -> I((Av r)x^ sd))" "GenI"))

54

55 (add-co "I")

all for ∀c, -> for →c and --> for →nc. A variable followed by a hat “^” means a partial
variable, whereas a variable without it means a total variable. Apart from declared variable
names, the algebra name can be used as a variable name, e.g. sd in the line 53. In line 55,
the coinductively defined predicate coI is derived from I. The last part of the definitions is
the axioms of the abstract theory of real numbers. By means of add-global-assumption,
we postulates a formula to be an axiom with a specified name. In addition to the syntax
which we have seen, there are <= for “less than or equal” on rational numbers, # standing
for the constructor of Q, and PosToNat is for the type coercion. Also some arithmetic on
rational numbers, +, -, * and /, are there. For example, IntN 1#4 stands for −1

4
.

A.2.2 Proofs

We prove Lemma 3.2.7 and 3.2.8. In line 60, ori stands for a logical connective “or,”
which is parsed to be one of ∨d, ∨r, ∨l, ∨u depending on the computational content from
the left and the right hand formulas. In this case, it becomes ∨u since the inequality is
non-computational from its definition, thus the statement is ∀ca(a ≤ 0 ∨u 0 ≤ a).

The first cases does case distinction on the construction of the rational number rat

to yield i and p such that rat = i#p. In fact this proof tactic is a restricted form of the
elimination axiom. The second cases does the same for the integer i. There are three
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Listing A.17: Axioms

132 ;;Axioms for PropA

133 (add-global-assumption

134 "AxRealLeft"

135 "all x^,a(a<=( IntN 1#4) -> (Elem r)x^ a(PosToNat 2) ->

136 (Elem r)x^(IntN 1#2)(PosToNat 1))")

137

138 (add-global-assumption

139 "AxRealMiddle"

140 "all x^,a((IntN 1#4) <=a -> a <=(1#4) -> (Elem r)x^ a(PosToNat 2) ->

141 (Elem r)x^(0#2)(PosToNat 1))")

142

143 (add-global-assumption

144 "AxRealRight"

145 "all x^,a((1#4) <=a -> (Elem r)x^ a(PosToNat 2) ->

146 (Elem r)x^(1#2)(PosToNat 1))")

147

148 (add-global-assumption

149 "AxAvVaIdent"

150 "all x^,sd((Elem r)x^( SDToInt sd#2)(PosToNat 1) ->

151 x^ eqd(Av r)((Va r)x^ sd)sd)")

152

153 (add-global-assumption

154 "AxVaIntro"

155 "all x^,sd,a,n((Elem r)x^( SDToInt sd#2)(PosToNat 1) ->

156 (Elem r)x^ a(Succ n) -> (Elem r)((Va r)x^ sd)(2* a-SDToInt sd)n)")

cases since i is either positive, zero or negative. In any case, it is easy to determine whether
rat <= 0 or 0 <= rat. The assume tactic is for an introduction rule of implication and
the universal quantifier. New assumptions come with specified names. In lines 64, 67 and
70, the proof tactic intro applies the introduction axiom to the goal. Minlog finds an
appropriate predicate ∨u from the goal formula, and chooses (∨u)+0 or (∨u)+1 by the given
number. The use tactic applies the specified assumption, axiom, or theorem to the goal.
The name “Truth-Axiom” refers to the truth T, which is available as an axiom. One can
save the constructed proof by save command, and also can use it later as a theorem. The
following is the proof of Lemma 3.2.8. In the lines 78, 81 and so on, assert does the
implication elimination. Assume that the formula A is given as an argument and the goal is
B, then two new goals, B and B -> A, are then required to be proven. In the line 79, the
proof tactic ord-field-simp-bwd solves the equality of rational numbers, a=a-b+b. This is
one thing which we need from the external file examples/analysis/real.scm. The proven
lemma can be referred to by the name as it is done in the line 82. The elim tactic uses the
elimination axiom of an inductively defined predicate. In the line 84, elim is called with
the assumption formula a-b<=0 oru 0<=a-b, then internally it applies (∨u)− to the goal
and yields step formulas which become new sub goals. The drop command is to make the
specified assumption invisible in the context. It just changes the display, but there is no
mathematical effect. The name RatPlusLe2 is the following global assumption which is
postulated in examples/analysis/real.scm.

∀a1,a2,b1,b2(a1 ≤ a2 → b1 ≤ b2 → a1 + a2 ≤ b1 + b2).
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Listing A.18: Lemma NegOrPos

59 ; "NegOrPos"

60 (set-goal "all rat(rat <=0 ori 0<=rat)")

61 (cases)

62 (cases)

63 (assume "pos0" "pos1")

64 (intro 1)

65 (use "Truth-Axiom")

66 (assume "pos0")

67 (intro 0)

68 (use "Truth-Axiom")

69 (assume "pos0" "pos1")

70 (intro 0)

71 (use "Truth-Axiom")

72 ; Proof finished.

73 (save "NegOrPos")

The simp tactic rewrites the goal by the given equality. Now the following proof is
clear. In the proof of Lemma 3.2.9 named "StandardSplit" in the proof script, we
use inst-with-to which is a tactic for the forward reasoning. The first argument is an
assumption and the next arguments are used to eliminate ∀ and →, then the obtained
new assumption is named by the last argument. For example the line 111 makes from
SplitAtRational, a, and −1

4
a new assumption formula a ≤ −1

4
∨u −1

4
≤ a with the name

"at -1#4". By means of similar tactics we can prove the lemma "SplitProp" in line 173.
The following code snippet is the proof script of Proposition 3.3.7. The goal formula is set
to be ∀ncx (∀cn∃lax ∈ Ia,n → coIx) in line 209. We assume x and ∀cn∃lax ∈ Ia,n as Qx in line 210,
then use coI+ for the competitor Qx to prove coIx. It suffices to prove the costep formula
∀ncx (Qx→ x eqd Z∨r ∃rx0∃

d
d((

coIx0 ∨d Qx0)∧l x eqd x0+d
2

)). Assume x1 and Qx1 in line 290,
then we use (∨r)+1 to prove the right disjunct in line 291. Applying the split property lemma
to x1 and Qx1, we have ∃ld(x1 ∈ Id) in the context by the name "SP". This is done by the
command inst-with-to. We assert the same formula by assert. Invoking (assert A),
the current goal B turn into the two subgoals A and A→c B. Although It looks logically
non-sense, the application of the identity lemma in line 223 fine-tunes the computational
content. See Example 2.5.28. The command elim in line 224 is an application of (∃l)− for the
formula "SP". The goal is then ∀cd(x1 ∈ Id →nc ∃rx(∃dd0((

coIx∨d∀cn∃lax ∈ Ia,n)∧lx1 eqd x+d0
2

)).
We assume d and x1 ∈ Id as HElem in line 225, and use (∃r)+ with 2x1 − d and also (∃d)+

with d. The command split turns the goal of the form A ∧ B into the two subgoals A
and B. The lines 230–238 is to prove coIx ∨d ∀cn∃lax ∈ Ia,n. We go to the right disjunct in
line 230 and assume n in the next line. The formula Qx1 in the context is instantiated to
∃lax1 ∈ Ia,n+1 as Hex in line 232, then we use (∃l)− for this formula in line 233. Assume a as
a and x1 ∈ Ia,n+1 as HElem2. Using (∃l)+ with 2a− d, we get the new goal 2x1− d ∈ I2a−d,n.
By the axiom AxVaIntro it suffices to show x1 ∈ Id and x1 ∈ Ia,n+1 which are HElem and
HElem2, respectively. The right conjunct is x1 eqd 2x1−d+d

2
which is proven by AxAvVaIntro

and HElem. The proof is done and saved as PropA.
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Listing A.19: Lemma SplitAtRational

75 ; " SplitAtRational "

76 (set-goal "all a,b(a<=b ori b<=a)")

77 (assume "a" "b")

78 (assert "a=a-b+b")

79 (ord-field-simp-bwd)

80 (assume "Eq")

81 (assert (pf "a-b <=0 ori 0<=a-b"))

82 (use "NegOrPos")

83 (assume "NegOrPos inst")

84 (elim "NegOrPos inst")

85 (drop "NegOrPos inst")

86 (assume "Hneg")

87 (intro 0)

88 (assert (pf "(a-b)+b<=0+b"))

89 (use "RatPlusLe2")

90 (use "Hneg")

91 (use "Truth-Axiom")

92 (assume "H0")

93 (simp "Eq")

94 (use "H0")

95 (assume "Hpos")

96 (intro 1)

97 (assert (pf "0+b<=(a-b)+b"))

98 (use "RatPlusLe2")

99 (use "Hpos")

100 (use "Truth-Axiom")

101 (assume "H0")

102 (simp "Eq")

103 (use "H0")

104 ; Proof finished.

105 (save "SplitAtRational")

Listing A.20: Lemma Standard Split

107 ; "Standard Split"

108 (set-goal "all a(a <= (IntN 1#4) ori

109 ((IntN 1#4) <= a & a <= (IntP 1#4)) ori (IntP 1#4) <= a)")

110 (assume "a")

111 (inst-with-to "SplitAtRational" (pt "a") (pt "IntN 1#4") "at -1#4")

112 (elim "at -1#4")

113 (assume "a <=-1#4")

114 (intro 0)

115 (use "a <=-1#4")

116 (assume "-1#4<=a")

117 (inst-with-to "SplitAtRational" (pt "a") (pt "IntP 1#4") "at 1#4")

118 (elim "at 1#4")

119 (assume "a<=1#4")

120 (intro 1)

121 (intro 0)

122 (split)

123 (use "-1#4<=a")

124 (use "a<=1#4")

125 (assume "1#4<=a")

126 (intro 1)

127 (intro 1)

128 (use "1#4<=a")

129 ; proof finished

130 (save "StandardSplit")
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Listing A.21: Split Property Lemma

172 ; Split Property Lemma for Abstract Reals

173 (set-goal "allnc x^(all n exi a((Elem r)x^ a n) ->

174 exi sd (Elem r)x^( SDToInt sd#2)1)")

Listing A.22: PropA

208 ; "PropA"

209 (set-goal (pf "allnc x^(all n exi a((Elem r)x^ a n) -> CoI x^)"))

210 (assume "x^" "Q x")

211 (coind "Q x")

212 ;; ?_3:allnc x^(

213 ;; all n exl a (Elem r)x^ a n ->

214 ;; x^ eqd(Z r) orr

215 ;; exr x^0

216 ;; ex sd(

217 ;; (CoI x^0 ord all n exl a (Elem r)x^0 a n) andl x^ eqd(Av r)x^0 sd))

218 (assume "x^1" "Q x1")

219 (intro 1)

220 (inst-with-to "SplitProp" (pt "x^1") "Q x1" "SP")

221 (assert (pf "exl sd (Elem r)x^1( SDToInt sd#2)(PosToNat 1)"))

222 (use "SP")

223 (use "Id")

224 (elim)

225 (assume "sd" "HElem")

226 (intro 0 (pt "(Va r)x^1 sd"))

227 (ex-intro (pt "sd"))

228 (split)

229 ;CoI

230 (intro 1)

231 (assume "n")

232 (inst-with-to "Q x1" (pt "Succ n") "Hex")

233 (elim "Hex")

234 (assume "a" "HElem2")

235 (intro 0 (pt "2*a-(SDToInt sd)"))

236 (use "AxVaIntro")

237 (use "HElem")

238 (use "HElem2")

239 ; x^1 eqd ...

240 (use "AxAvVaIdent")

241 (use "HElem")

242 ; proven

243 (save "PropA")
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Listing A.23: Program extraction

282 ;; 3. Experiments

283 ;; 3.1. Cauchy Sequence -> SDS

284 (define eterm-a

285 (proof-to-extracted-term (theorem-name-to-proof "PropA")))

286 (define neterm-a (nt eterm-a))

Listing A.24: Animating

288 (animate "SplitProp")

289 (animate "NegOrPos")

290 (animate "SplitAtRational")

291 (animate "StandardSplit")

A.2.3 Program Extraction

We extract a program from the proof of PropA and experiment it. The command
theorem-name-to-proof gives the proof object of PropA. Program extraction is done
by proof-to-extracted-term. The extracted program is named as eterm-a. In the next
line, let neterm-a be the normal form of eterm-a. The computational contents from the
lemmas used in the proof of PropA should be activated. The save command also define the
constant corresponding to the computational content of the proof to save. The animate

command activates the computational content of the constant through program extraction.
The following line 294 normalizes the term neterm-a using also the animated computational
contents and prints out the result with the case expression by ppc which stands for pretty
printing with cases. Now we activate the computational content from the identity lemma as
well. The following program constant sqrt is a hand-implemented function computing the
square root of the given rational number. The result is of type N→ Q. For instance, the

following code computes the SDS representation of
√

1
2
. Programs in T+ involving core-

cursion operators can be exported to Haskell. The file examples/analysis/simpreal.scm

is required for numeric terms we used so far. Then, the next line outputs the Haskell
translation of the extracted programs in cauchysds.scm and the hand implemented square
root program to the file cauchysds.hs in the working directory.
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Listing A.25: Extracted program

293 ;; extracting a program from PropA

294 (ppc (nt neterm-a))

295 ;; [as0]

296 ;; (CoRec (nat=>rat)=>iv)as0

297 ;; ([ as1]

298 ;; Inr[let sd2

299 ;; [let a2

300 ;; (as1(Succ(Succ Zero)))

301 ;; [case (a2-(IntN 1#4))

302 ;; (k3#p4 ->

303 ;; [case k3

304 ;; (p5 ->

305 ;; [case (a2- (1#4))

306 ;; (k6#p7 -> [case k6 (p8 -> R) (0 -> M) (IntN p8 -> M)])])

307 ;; (0 -> L)

308 ;; (IntN p5 -> L)])]]

309 ;; (sd2@(InR nat=>rat iv)([n3 ]2* as1(Succ n3)-SDToInt sd2))])

Listing A.26: Animating the identity lemma

312 (animate "Id")

Listing A.27: Square root

339 ;; a rational number to the square root of it

340 (add-program-constant "sqrt" (py "rat=>nat=>rat"))

341 (add-program-constant "sqrtaux" (py "rat=>nat=>rat"))

342 (add-computation-rule "sqrtaux a Zero" "Succ Zero")

343 (add-computation-rule "sqrtaux a (Succ n)"

344 "(( sqrtaux a n) + (a / (sqrtaux a n)))/2")

345 (add-computation-rule "sqrt a n" "sqrtaux a (Succ n)")

Listing A.28: Unfolding corecursion operators

349 (pp (nt (undelay-delayed-corec

350 (make-term-in-app-form neterm-a (pt "sqrt (1#2)"))

351 5)))

352 ;; C R(C R(C M(C L(C R(( CoRec (nat=>rat)=>iv) ... )))))

Listing A.29: Haskell translation

467 ;; 3.3. Haskell translation

468 (load "~/ minlog/examples/analysis/simpreal.scm")

469 (terms-to-haskell-program "cauchysds.hs"

470 (list (list neterm-a "cauchysds")

471 (list neterm-b "sdscauchy")

472 (list (pt "sqrt") "rattosqrt")))
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[ML71] Per Martin-Löf. Hauptsatz for the intuitionistic theory of iterated inductive
definitions. In J.E. Fenstad, editor, Proceedings of the Second Scandinavian Logic
Symposium, pages 179–216. North-Holland, Amsterdam, 1971.

[MS13] Kenji Miyamoto and Helmut Schwichtenberg. Program extraction in exact real
arithmetic. Mathematical Structure of Computer Science, 2013. in press.

[Nup] Nuprl. http://www.nuprl.org/.

[Pau00] Lawrence C. Paulson. A fixedpoint approach to (co)inductive and (co)datatype
definitions. In Gordon D. Plotkin, Colin Stirling, and Mads Tofte, editors, Proof,
Language, and Interaction, pages 187–212. The MIT Press, 2000.

http://www.minlog-system.de/
http://www.nuprl.org/


Bibliography 149

[Pet13] Iosif Petrakis. Advances in the theory of computable functionals TCF+ due to its
implementation. Manuscript, 2013.

[Plu98] Dave Plume. A calculator for exact real number computation. 4th Year Project
Report, Departments of Computer Science and Artificial Intelligence, University
of Edinburgh, 1998. http://www.cs.bham.ac.uk/~mhe/plume.ps.gz.

[PM89] Christine Paulin-Mohring. Extracting f(omega)’s programs from proofs in the
calculus of constructions. In POPL, pages 89–104. ACM Press, 1989.

[Rat11] Diana Ratiu. Refinement of Classical Proofs for Program Extraction. PhD thesis,
Mathematisches Institut der Universität München, 2011.

[RS10] Diana Ratiu and Helmut Schwichtenberg. Decorating proofs. In S. Feferman and
W. Sieg, editors, Proofs, Categories and Computations. Essays in honor of Grigori
Mints, pages 171–188. College Publications, 2010.

[Sch92] Helmut Schwichtenberg. Proofs as programs. In P. Aczel, H. Simmons, and
S. Wainer, editors, Proof Theory, pages 81–113. Cambridge University Press, 1992.

[Sch06a] Helmut Schwichtenberg. Constructive analysis with witnesses. In H. Schwichten-
berg and K. Spies, editors, Proc. NATO Advanced Study Institute, Marktoberdorf,
2003, volume 200 of Series III: Computer and Systems Sciences, pages 323–353.
IOS Press, 2006.

[Sch06b] Helmut Schwichtenberg. Inverting monotone continuous functions in constructive
analysis. In A. Beckmann, U. Berger, B. Löwe, and J.V. Tucker, editors, Logical
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