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Abbreviations 

 

µ Micro (10-6) 

17-AAG 17-Allylamino-17-demethoxygeldanamycin, tanespimycin 

17-DMAG 17-Dimethylaminoethylamino-17-demethoxygeldanamycin, 

alvespimycin 

5-FU 5-Fluorouracil 

Ac-DEVD-AMC N-acetyl-Asp-Glu-Val-Asp-7-amino-4-methylcoumarin 

ADP Adenosine diphosphate 

AHA1 Activator of HSP90 ATPase homolog 1 

AKT Protein kinase B 

ALT Alanine transaminase, also referred to as glutamic-pyruvic 

transaminase (GPT) 

AMC 7-Amino-4-methylcoumarin 

APAF-1 Apoptotic protease activating factor 1 

APE1 Apurinic/apyrimidinic endonuclease 1 

APS Ammonium peroxodisulfate 

AST Aspartate transaminase, also referred to as glutamic-oxaloacetic 

aminotransferase (GOT) 

ATCC American Type Culture Collection 

ATM Ataxia telangiectasia mutated protein 

ATP Adenosine triphosphate 

ATR Ataxia telangiectasia and RAD3-related protein 

BAK BCL-2 homologous antagonist/killer 

BAX BCL-2-associated X protein 

BCL-2 B-cell lymphoma 2 protein 

BCL-xL B-cell lymphoma-extra large protein 

BER Base excision repair 

BIM BCL-2-like protein 11 

bp Base pairs 

BRAF V-RAF murine sarcoma viral oncogene homolog B1 

BRCA1/2 Breast cancer type 1/2 susceptibility protein 

BSA Bovine serum albumin 

Casp Caspase 

CDC Cell division cycle 

CDK Cyclin-dependent kinase 

CHAPS 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate 
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CHIP Carboxyl terminus of HSC70-interacting protein 

CHK1/2 Checkpoint kinase 1/2 

CT Computed tomography 

Ctrl Control 

DAPI 4',6-Diamidino-2-phenylindole 

DDR DNA damage response 

DMEM Dulbecco's Modified Eagle Medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DNA-PKcs DNA-dependent protein kinase, catalytic subunit 

dNTP Deoxyribonucleotide triphosphate 

DSB DNA double-strand break 

e.g. For example 

ECM Extracellular matrix 

EDTA Ethylendiamintetraacetat 

EGF Epidermal growth factor 

EGF-R Epidermal growth factor receptor 

EGTA Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid 

ELISA Enzyme-linked immunosorbent assay 

EMT Epithelial-mesenchymal transition 

EphA2 Ephrin receptor A2 

ERK Extracellular signal-regulated kinase 

FACS Fluorescence activated cell sorting 

FAK Focal adhesion kinase 

FANCA Fanconi anemia complementation group A 

FCS Fetal calf serum 

FGF Fibroblast growth factor family 

FI Fluorescence intensity 

FITC Fluorescein isothiocyanate 

FOX Forkhead box family proteins 

FSC Forward scatter 

FU Fluorescence units 

GA Geldanamycin 

GBM Glioblastoma multiforme 

GIST Gastrointestinal stroma tumor 

GRP94 Glucose-regulated protein 94 

h Hour 
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HDAC Histone deacetylase 

HEPES 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid 

HER-2 Human epidermal growth factor receptor 2, also referred to as ERBB2 

HGF Hepatocyte growth factor 

HIF-1α Hypoxia-inducible factor-1α 

HIP HSC70 interacting protein 

HNSCC Head and neck squamous cell carcinoma 

HOP HSP70/HSP90 organizing protein 

HRP Horseradish peroxidase 

HSC70 Constitutively expressed isoform of HSP70 

HSP Heat shock protein 

hTERT Human telomerase reverse transcriptase 

IF Immunofluorescence 

IGF-1R Insulin-like growth factor-1 receptor 

IR Ionizing radiation 

kDa Kilodalton 

KRAS Kirsten rat sarcoma viral oncogene homolog 

m Milli (10-3) 

M Molar 

MAPK Mitogen-activated protein kinases 

MGMT O-6-Methylguanine-DNA methyltransferase 

min Minute 

MMP Matrix metalloproteinase 

mTOR Mammalian target of rapamycin 

MV Megavolts 

n Nano (10-9) 

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B-cells 

NHEJ Non-homologous end joining 

nM Nanomolar 

NSCLC Non small cell lung cancer 

PARP Poly(ADP-ribose)polymerase 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PDGF Platelet-derived growth factor 

PDGF-R Platelet-derived growth factor receptor 

PE Phycoerythrin 

PFA Paraformaldehyde 
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PI Propidium iodide 

PI3K Phosphatidylinositol 3-kinase 

PKC Protein kinase C 

PLC Phosphoinositide phospholipase C 

Pol-β DNA polymerase beta 

PUMA p53-upregulated modulator of apoptosis 

qPCR Quantitative real-time PCR 

RAF-1 V-RAF-1 murine leukemia viral oncogene homolog 1, also referred to 

as C-RAF 

RB Retinoblastoma protein 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

RPMI Roswell Park Memorial Institute Medium 

RT Radiotherapy 

RTK Receptor tyrosine kinase 

s Second 

SD Standard deviation 

SDS Sodium dodecyl sulfate 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEM Standard error of the mean 

SFM Serum-free medium 

SSB DNA single-strand break 

SSC Sideward scatter 

STK33 Serine/threonine kinase 33 

TBS Tris-buffered saline 

TEMED N,N,N’,N’-tetramethylethylenediamine 

TGF-β Transforming growth factor beta 

TMZ Temozolomide 

TRAP1 Tumor necrosis factor receptor-associated protein 1 

Tris Tris(hydroxymethyl)aminomethane 

u Unit 

VEGF Vascular endothelial growth factor 

VEGF-R Vascular endothelial growth factor receptor 

Vinc Vinculin 

vol Volume 

vs. Versus 

 



Abstract 

 11

1 Abstract 

Tumor cells strongly rely on the chaperoning function of the heat shock protein 90 

(HSP90) in order to compensate for high levels of proteotoxic stress to which they are 

exposed due to genetic aberrations and deregulated oncogenic signaling pathways. 

HSP90 is responsible for maintaining the conformational stability and function of a large 

number of client proteins, many of which play key roles in tumorigenesis, proliferation, 

angiogenesis, survival, invasion, and metastasis. Therefore, HSP90 has emerged as a 

promising target for anticancer therapies and different small-molecule inhibitors are 

currently being evaluated in preclinical studies. The pochoxime NW457 is one of these 

promising compounds and its antitumor potential is characterized here for the first time in 

combination with ionizing radiation (IR) in preclinical models of colorectal cancer and 

glioblastoma multiforme (referred to as glioblastoma in the following).  

In vitro, NW457 was found to potently sensitize human HCT116 colorectal carcinoma cells 

to ionizing radiation through caspase-mediated apoptosis induction via the mitochondrial 

pathway and enhancement of irradiation-induced clonogenic cell death. Interestingly, the 

antitumor activities of NW457 were virtually independent of the cellular p53 and KRAS 

status, suggesting that inhibition of HSP90 by NW457 might provide a novel, promising 

therapeutic option also for tumor subtypes which are deficient for functional p53 or driven 

by activating KRAS mutations. In contrast to the first-generation HSP90 inhibitor 

geldanamycin, NW457 revealed very little hepatocytotoxicity as exposure of primary 

murine hepatocytes to NW457 practically did not affect the cellular viability or perturb the 

typical hepatocellular morphology. Based on the encouraging in vitro results regarding 

NW457-mediated radiosensitization and its good tolerability by primary hepatocytes, the 

antitumor efficacy of NW457 was investigated in combination with radiotherapy in an in 

vivo model of colorectal cancer. Indeed, combined treatment with 4x 100 mg/kg NW457 

plus radiotherapy potently delayed tumor growth and prolonged the survival of 

immunocompetent Balb/c mice, thus identifying NW457 as a promising candidate 

compound for future clinical studies.  

In the second part of the present thesis, the antitumor activity of NW457 was investigated 

in human glioblastoma models. Glioblastomas are clinically associated with pronounced 

radioresistance and high invasiveness - two characteristics that might be addressed by 

the novel pochoxime HSP90 inhibitor NW457. Indeed, NW457 was found to interfere with 

the radioresistant phenotype of human glioblastoma cells as it potently induced apoptosis 

and sensitized LN229 and T98G cells towards IR-induced clonogenic cell death. 

Mechanistically, NW457 provoked the destabilization of critical regulators of the DNA 

damage response as it time-dependently induced the depletion of ATM, ATR, CHK1, and 
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CHK2. In addition to its radiosensitizing effects, NW457 demonstrated potent anti-invasive 

activities as it decreased the inherent migration of LN229 cells and also inhibited 

irradiation-induced hypermigration.  

Collectively, the data of the present work prove HSP90 as a clinically relevant target for 

novel therapy concepts for colorectal carcinomas and glioblastomas and they identify 

NW457 as a promising candidate compound for the entry of pochoxime HSP90 inhibitors 

into the clinic.  
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2 Introduction 

Cancer is a malignant neoplasm which represents the third most common cause of death 

worldwide behind cardiovascular and infectious/parasitic diseases (World Health 

Organization, 2008). It is estimated that in 2008 about 12.7 million new cancer cases were 

diagnosed and 7.6 million cancer deaths occurred worldwide, accounting for 

approximately 13% of all human deaths worldwide. These global statistics were published 

by the International Agency for Research on Cancer (IARC) as part of the GLOBOCAN 

project in 2008 which provides estimated incidence, mortality and prevalence of cancer 

worldwide (http://globocan.iarc.fr; Jemal et al., 2011). Lung cancer in males and breast 

cancer in females are the most frequently diagnosed tumor entities and the leading 

causes of cancer death worldwide, followed by prostate, colorectal, and stomach cancer 

in males and colorectal, cervical, and lung cancer in females (http://globocan.iarc.fr, 

measured by incidence rates).  

So far, economically developed countries display incidence rates for all cancers combined 

about twice as high as developing countries. In the future, global cancer rates will further 

increase both in developed and developing countries because of aging societies and 

changing lifestyle factors in the developing world.  

The importance of lifestyle factors for the development of cancer is reflected by the 

percentage contribution of genetic and environmental factors associated with cancer risk, 

estimated as 5-10% and 90-95%, respectively (Anand et al., 2008). Thus, the majority of 

cancers are not caused by inherited genetic defects, but attributed to various 

environmental factors, such as dietary habits, smoking, infections by certain viruses and 

bacteria (e.g. human papillomavirus, Epstein Barr virus, Kaposi’s sarcoma-associated 

herpes virus, Helicobacter pylori), as well as chronic alcohol consumption, obesity, 

radiation, and exposure to certain chemicals. The individual sensitivity towards these 

environmental factors, however, is presumably affected by genetic factors.  
 

Tumors arise from normal tissues and are initiated by the malignant transformation of a 

normal cell into a cancer cell. During tumor progression individual cells can spread from 

the primary tumor to distant sites and develop metastases. The majority of human cancers 

originate from epithelial tissues (Weinberg, 2007). These tumors are responsible for more 

than 80% of the cancer-related deaths per year. Epithelial tumors are termed carcinomas 

and classified into two major categories – adenocarcinomas and squamous cell 

carcinomas. The first comprises tumors originated e.g. from the lung, colon, breast, 

pancreas, prostate, and ovaries, whereas the second group involves tumors derived e.g. 

from the skin, oropharynx, esophagus, larynx, and cervix (Weinberg, 2007).  
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The minority of human cancers are spawned by nonepithelial tissues and classified into 

three major types – (i) sarcomas (e.g. osteosarcoma, liposarcoma, fibrosarcoma), 

(ii) hematopoietic malignancies including leukemias and lymphomas, and 

(iii) neuroectodermal tumors (e.g. glioblastomas) (Weinberg, 2007).  

Some tumors, however, do not match into any of these groups, as tumor cells are able to 

transdifferentiate from one lineage into another. Such a reprogramming process appears 

for instance during the epithelial-mesenchymal transition (EMT) in which epithelial cells 

lose their typical characteristics, such as polarization and cell-cell adhesion, and acquire 

properties of mesenchymal cells. The EMT is associated with profound phenotypic 

changes and involves crucial alterations in gene expression. By adopting a multifaceted 

process which normally takes place during embryonic development and wound healing, 

cancer cells acquire multiple abilities that enable cancer progression, invasion, and 

metastasis (De Craene and Berx, 2013; Sanchez-Tillo et al., 2012). The biological 

properties required for the malignant transformation of a normal into a cancer cell are 

described in the following section.  

2.1 Hallmarks of cancer 

The hallmarks of cancer originally proposed by Hanahan and Weinberg in the year 2000 

define six functional capabilities that are required for the malignant transformation of a 

normal cell into a cancer cell (Hanahan and Weinberg, 2000). Recently, their original 

wording has been restated due to progress in cancer research during the past decade. 

The revised hallmarks were published in 2011 (Hanahan and Weinberg, 2011) and 

comprise the following six characteristics: (i) sustaining proliferative signaling (formerly: 

self-sufficiency in growth signals), (ii) evading growth suppressors (formerly: insensitivity 

to anti-growth signals), (iii) resisting cell death (formerly: evading apoptosis), (iv) enabling 

replicative immortality (formerly: limitless replicative potential), (v) inducing angiogenesis 

(formerly: sustained angiogenesis), and (vi) activating invasion and metastasis (formerly: 

tissue invasion and metastasis). These hallmarks define biological capabilities that allow 

cancer cells to survive, proliferate, and disseminate into distant sites. They describe 

functions which are acquired in different tumor types via distinct mechanisms and at 

various times during the multistep development of tumors, thereby providing a solid 

concept and logical framework for understanding the remarkable biology and diversity of 

cancer (Hanahan and Weinberg, 2011).  

Conceptual progress in cancer research in the last decade has led to new mechanistic 

findings underlying the hallmark capabilities, and to the definition of two newly emerging 

hallmarks (Hanahan and Weinberg, 2011). One of them comprises the capability to 
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reprogram cellular metabolism in order to provoke cell growth and division. The second 

one involves active evasion of malignant cells from immunological destruction, primarily 

by B and T lymphocytes, macrophages, and natural killer cells.  

Additionally, Hanahan and Weinberg described two enabling characteristics that represent 

the basic prerequisite for the acquisition of both core and emerging hallmarks:  

The first one is that genomic instability and mutations provide tumor cells with genetic 

alterations that are needed to orchestrate tumor progression. Since certain mutations may 

confer selective advantage and dominance in a local tissue environment, tumor cells often 

enhance their mutation rates, e.g. by impeding the cellular surveillance systems that 

normally detect and resolve defects in the DNA.  

The second enabling characteristic highlights the important role of immune cells, 

particularly of the innate immune system, on neoplastic progression. Inflammatory cells 

can facilitate multiple hallmark capabilities by providing the tumor environment with tumor-

stimulatory molecules, such as growth factors that maintain proliferative signaling or 

prosurvival factors that limit cell death induction (Hanahan and Weinberg, 2011). Core 

hallmark capabilities, emerging hallmarks, and enabling characteristics are illustrated in 

Figure 1, and the core hallmarks are described in detail in the next section as most of 

them are functionally associated with the heat shock protein 90 - the main object of this 

work.  

 

Sustaining proliferative signaling 

One of the most fundamental traits of cancer cells is their ability to sustain proliferation. 

Whereas non-malignant cells carefully control the production and release of growth-

promoting signals, tumor cells deregulate their mitogenic signaling in order to become 

self-sufficient. One strategy of tumor cells is their autocrine stimulation of growth factor 

receptors as they can produce growth factor ligands themselves and respond via the 

expression of cognate receptors (Hanahan and Weinberg, 2011). Alternatively, cancer 

cells can proliferate in a ligand independent manner by expressing structurally altered 

receptor molecules which can be activated by autophosphorylation. In addition, growth 

factor independence can be initiated by the constitutive activation of components that are 

acting downstream of these receptors (Hanahan and Weinberg, 2011). Crucial players 

can be found e.g. in the PI3K/AKT (phosphatidylinositol 3-kinase/protein kinase B) 

pathway and the MAPK (mitogen-activated protein kinase) cascade (Jiang and Liu, 2009; 

Yuan and Cantley, 2008), which are involved in pursuing growth signals downstream of 

the epidermal growth factor receptor (EGF-R), platelet-derived growth factor receptor 

(PDGF-R), and vascular endothelial growth factor receptor (VEGF-R).  
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Figure 1. The hallmarks of cancer. 
The illustration comprises the six core hallmark capabilities originally proposed by 
Hanahan and Weinberg in the year 2000 as well as two emerging hallmarks and two 
enabling characteristics defined by Hanahan and Weinberg in their recently published 
work (2011). The hallmarks describe crucial functions acquired during tumorigenesis that 
allow cancer cells to survive, proliferate, and disseminate. Thereby, they provide a solid 
concept for understanding the biology and diversity of cancer. Acquisition of both core and 
emerging hallmarks is facilitated by two enabling characteristics - development of genomic 
instability, and inflammation by innate immune cells. The figure was modified from 
Hanahan and Weinberg, 2011.  
 

Evading growth suppressors 

In order to maintain their proliferative phenotype, tumor cells do not only rely on positively 

acting growth-stimulatory signals, but additionally evade antiproliferative signals mediated 

by growth suppressors. Therefore, cancer cells may render themselves insensitive to 

tumor suppressors, such as p53, the retinoblastoma protein (RB), and its related proteins 

p107 and p130. p53 and RB transduce extracellular and intracellular growth-inhibitory 

signals in response to genomic damage and other cellular stressors, and are able to stop 

cell-cycle progression until the optimal conditions are readjusted (Burkhart and Sage, 

2008; Levine et al., 1991; Mirza et al., 2003; Sherr and McCormick, 2002; Vogelstein et 

al., 2000). Tumor cells with defects in p53 or RB pathway function are thus losing critical 

gatekeeper functions and may proceed through their growth and division cycle.  
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Resisting cell death  

Resistance to apoptosis or other forms of cell death is a hallmark capability acquired by 

most or perhaps all types of cancer. Tumor cells evolve multiple strategies in order to 

circumvent cell death. Apoptosis can be avoided for instance by increasing the expression 

of anti-apoptotic regulators, such as the B-cell lymphoma 2 protein (BCL-2) and the B-cell 

lymphoma-extra large protein (BCL-xL), while, at the same time, downregulating pro-

apoptotic factors, such as the BCL-2-associated X protein (BAX), the BCL-2 homologous 

antagonist/killer (BAK), the p53 upregulated modulator of apoptosis (PUMA), and the 

BCL-2-like protein 11 (BIM) (Adams and Cory, 2001; Reed et al., 1998; Willis and Adams, 

2005). Furthermore, activation of the PI3K/AKT pathway acting downstream of the EGF-R 

and PDGF-R is responsible for desensitizing cancer cells to apoptotic stimuli. The 

serine/threonine kinase AKT promotes cell survival by inhibiting pro-apoptotic transcription 

factors, such as members of the Forkhead box family (FOX), while activating prosurvival 

transcription factors, such as the nuclear factor kappa-light-chain-enhancer of activated B-

cells (NF-κB) (Brunet et al., 1999; Romashkova and Makarov, 1999).  

 

Enabling replicative immortality 

Limitless replicative potential is an acquired hallmark of cancer cells that is facilitated by 

upregulated telomerase levels. Whereas the continuous multiplication of normal, non-

malignant cells is self-limited by telomere shortening to 60-70 doublings, tumor cells can 

evade this fate and become immortal. Telomeres are noncoding regions at the ends of 

chromosomes and composed of multiple tandem hexanucleotide repeats (de Lange et al., 

1990; Moyzis et al., 1988). In non-malignant cells, the telomeres shorten progressively 

during each replication cycle by losing 50 to 100 bp of their length, since the DNA 

polymerase is unable to completely replicate the 3’ ends of chromosomal DNA. This 

process involves impaired chromosome stability and is associated with an increased 

frequency of dicentric chromosomes (Counter et al., 1992). However, cancer cells are 

able to counteract this life-limiting process by upregulating the expression of telomerase, 

which adds novel hexanucleotide repeats to the end of shortened chromosomes. Indeed, 

approximately 80% of human cancers exhibit elevated telomerase activity, thus enabling 

replicative immortality (Shay and Bacchetti, 1997).  

 

Inducing angiogenesis 

Induction of neovascularization and maintenance of angiogenesis are essential processes 

during tumorigenesis. In the adult, angiogenesis is normally turned off, and the normal 

vasculature becomes quiescent, aside from physiological processes, such as wound 

healing. In contrast, angiogenesis can be reinduced during tumor development via the 
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“angiogenic switch” (Bergers and Benjamin, 2003; Ribatti et al., 2007). This fundamental 

event stimulates normally quiescent vasculature to sprout new vessels, and seems to be 

an early process during tumor development (Folkman, 1995; Hanahan and Folkman, 

1996). Tumor cells induce the angiogenic switch by deregulating the balance of 

endogenous angiogenic inducers and inhibitors (Hanahan and Folkman, 1996), e.g. by 

upregulating the expression of vascular endothelial growth factors (VEGFs), platelet-

derived growth factors (PDGFs) or members of the fibroblast growth factor family (FGF) 

(Baeriswyl and Christofori, 2009; Carmeliet, 2005).  

 

Activating invasion and metastasis 

Invasion into adjacent tissues and metastasis to distant sites are important prerequisites 

for the infiltrative and destructive growth pattern of many tumors including glioblastomas. 

Active invasion requires the interaction of multiple cellular processes involving 

(i) detachment from the original site, (ii) attachment to the extracellular matrix (ECM), 

(iii) degradation of the ECM, and (iv) migration to distant sites (Nakada et al., 2007). 

These processes are triggered by cell surface receptors including receptor tyrosine 

kinases (e.g. EGF-R, PDGF-R, MET, ephrin receptors), TGF-β (transforming growth factor 

beta) receptors, matrix metalloproteinases (e.g. MMP-2, MMP-8, MMP-9), cytokine 

receptors, and integrins, most of which are overexpressed in cancers (Nakada et al., 

2007; Teodorczyk and Martin-Villalba, 2010).  
 

In summary, the malignant transformation from normal to tumor cells is enabled by 

different hallmark capabilities that facilitate the development of typical tumor-associated 

properties which in turn further tumor progression and maintain tumor survival.  

2.2 Radiotherapy in cancer treatment 

Radiotherapy (RT), also referred to as radiation therapy, is the medical application of 

ionizing radiation as an important component of cancer treatment concepts. Depending on 

tumor type, localization, stage, and dissemination, radiotherapy is commonly applied in 

combination with surgery, chemotherapy, and molecularly targeted therapies, whereby it 

may operate in a curative or palliative manner. Notably, more than half of all cancer 

patients will receive radiotherapy during their treatment (Delaney et al., 2005).  

Like chemotherapy and molecularly targeted therapies (section 2.3), radiotherapy 

achieves its therapeutic effects by inducing different forms of cell death, such as 

apoptosis, necrosis/necroptosis, autophagy or mitotic catastrophe (Eriksson and 

Stigbrand, 2010; Gewirtz et al., 2009). Using these mechanisms, one of the major aims of 

radiotherapy is the abrogation of clonogenic tumor cell survival (Dunne et al., 2003; Held, 
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1997; Williams et al., 2008) in order to prevent tumor proliferation, 

dissemination/metastasis, and disease progression.  

The main impact of radiotherapy on the molecular level is the induction of DNA lesions 

which can occur either directly or indirectly through the creation of reactive oxygen 

species (ROS) (Hall and Giaccia, 2011). Ionizing radiation can induce different types of 

DNA damage, such as double-strand breaks (DSB), single-strand breaks (SSB), and base 

modifications (e.g. oxidation, deamination, and alkylation). Depending on the lesion type, 

cells activate different signal transduction pathways in order to arrest their cell cycle, to 

allow effective DNA repair, or alternatively to induce programmed cell death. Collectively, 

these cellular mechanisms are known as the DNA damage response (DDR) (Jackson and 

Bartek, 2009; Rouse and Jackson, 2002; Zhou and Elledge, 2000).  
 

Radiotherapy concepts for the treatment of cancer comprise different application forms of 

irradiation which are selected according to the cancer type, size, and progression state. 

External-beam RT delivers photon beams (X-rays, gamma rays), protons or heavy ions 

from an external device, whereas internal RT, also referred to as brachytherapy, utilizes a 

radiation source placed inside the body or into a surgical cavity.  

In the past years, novel radiation concepts have been developed and enabled the 

mitigation of RT-associated side effects, a better protection of the normal tissue, and a 

general advancement in the clinical outcome. However, there is still room for 

improvements in anticancer therapies, as many tumors develop gene mutations and 

exhibit resistance to radiotherapy or chemotherapeutic agents. One possible approach to 

further ameliorate the therapeutic outcome of RT patients would be the modulation of the 

cellular response towards radiotherapy by targeting specific pathways that are involved in 

crucial processes, such as tumor cell survival, proliferation, motility, and DNA repair, or 

which are known to be deregulated in specific cancer types.  

In this regard, the application of targeted agents that specifically sensitize tumor cells to 

the cytotoxic effects of irradiation represents a promising strategy to enhance the 

therapeutic efficacy. The following section provides an overview of molecularly targeted 

therapies and combinatorial antitumor treatment strategies.  

2.3 Molecularly targeted therapies 

Over the past decade, therapeutic cancer research has increasingly focused on 

molecularly targeted therapies. Compared to conventional chemotherapies which 

generally interfere with all rapidly proliferating cells, molecularly targeted drugs specifically 

target a certain signaling protein that is known to be critically involved in cancer 

pathogenesis. Hence, molecularly targeted therapies are expected to provide a novel 
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treatment modality that is more effective and less toxic than conventional 

chemotherapeutics (Thaker and Pollack, 2009).  

The development of targeted therapies has mainly focused on the inhibition of hormone 

receptors (e.g. estrogen receptor), growth factor receptors (e.g. EGF-R, PDGF-R, and 

VEGF-R), and downstream signal transducers (Argyriou and Kalofonos, 2009; Klener and 

Klener, 2012; Kwak et al., 2007).  

One of the major targets for drug development is the EGF-R, a transmembrane tyrosine 

kinase belonging to the HER/ErbB receptor family that functions as a key driver in 

carcinogenesis. Enhanced EGF-R expression and activity mediate intracellular signaling 

events that contribute to tumor development and progression, migration and invasion 

(Bianco et al., 2007; Engebraaten et al., 1993; Mendelsohn, 2001). The EGF-R is 

overexpressed in a broad range of tumor entities including head and neck squamous cell 

carcinoma (HNSCC), colon carcinoma, and malignant glioma (Ekstrand et al., 1991; 

Grandis and Tweardy, 1993). Clinically, EGF-R overexpression commonly correlates with 

reduced recurrence-free and overall survival rates (Nicholson et al., 2001).  

Several therapeutic approaches have been undertaken to target the EGF-R, including 

small molecule tyrosine kinase inhibitors and blocking antibodies. The most successful 

compound to date is cetuximab (Erbitux®, Merck Serono), a monoclonal antibody directed 

against the extracellular domain of EGF-R (Baselga, 2001). It was the first compound 

undergoing clinical evaluation, and has been tested in numerous clinical trials, mainly in 

combinatorial regimes with irradiation and/or conventional chemotherapy (for an overview 

see http://clinicaltrials.gov). Thus, for instance, the combination of cetuximab with 

radiotherapy in a Phase III trial significantly increased the locoregional control and overall 

survival of HNSCC patients as compared to radiotherapy alone (Bonner et al., 2006; 

Bonner et al., 2010).  
 

Cancer cells exhibit multiple strategies and pathways in order to regulate fundamental 

processes such as tumor growth, proliferation, and survival. As they use parallel and 

converging signaling pathways, they may be able to circumvent specific signaling nodes 

that are deregulated, for instance due to pharmacological intervention. Therefore, 

antitumor drugs that address only one molecular target may be inefficient and elicit 

therapy resistance. One possible strategy to overcome these limitations and to improve 

the efficacy of molecular targeted anticancer therapies may be represented by drugs 

which inhibit the molecular chaperone heat shock protein 90 (HSP90). Since HSP90 is 

critically involved in the regulation of a multitude of different cellular signaling pathways 

that are important for cancer pathogenesis, pharmacological inhibition of the chaperone 

itself has emerged as a unique anticancer drug target in the past decade (Goetz et al., 

2003; Maloney and Workman, 2002; Neckers and Ivy, 2003; Neckers and Neckers, 2002; 
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Neckers and Workman, 2012; Whitesell et al., 2003). The biological role of HSP90 in the 

context of cancer and the potential of pharmacological HSP90 inhibitors are described in 

the following two sections.  

2.4 Heat shock protein 90 and its role in cancer 

HSP90 is an ATP-dependent molecular chaperone with a molecular mass of 90 kDa 

which assists to maintain the intracellular protein homeostasis (Taipale et al., 2010). 

During protein synthesis, HSP90 is involved in the de novo protein folding and the late-

stage maturation of conformationally destabilized proteins (Freeman and Morimoto, 1996; 

Picard, 2002). Moreover, the chaperone regulates the activation, stability, and 

translocation of a broad range of so-called client proteins (Young et al., 2004). These are 

defined as proteins which temporarily bind to and interact with HSP90 in order to maintain 

their function and stability. In addition, HSP90 regulates the normal protein turnover, since 

it directs misfolded and damaged proteins towards CHIP (carboxyl terminus of HSC70-

interacting protein)-dependent ubiquitination and subsequent proteasomal degradation 

(Connell et al., 2001; Xu et al., 2002).  

HSP90 is ubiquitously expressed in eukaryotic cells and represents 1-2% of total cytosolic 

proteins already under constitutive, non-stressed conditions (Welch and Feramisco, 

1982). There are five isoforms of HSP90 in humans that differ in their cellular localization: 

the cytoplasmic isoforms HSP90α, HSP90β, and HSP90N, the mitochondrial isoform 

TRAP1 (tumor necrosis factor receptor-associated protein 1), and the endoplasmic 

reticulum isoform GRP94 (glucose-regulated protein 94) (Argon and Simen, 1999; 

Csermely et al., 1998; Felts et al., 2000; Grammatikakis et al., 2002). Except the HSP90N 

isoform, HSP90 consists of three structural domains – a highly conserved N-terminal 

domain with ATPase activity, a middle domain that plays a key role in client protein 

binding and stabilization, and a C-terminal domain that possesses an alternative ATP-

binding site and is implicated in HSP90 dimerization (Prodromou and Pearl, 2003). 

HSP90N lacks the N-terminal domain and possesses a hydrophobic 30 amino acid 

sequence instead (Grammatikakis et al., 2002).  

HSP90 forms homodimers and is functionally organized in multiprotein complexes 

including HSP40, HSP70, and co-chaperones such as AHA1 (activator of HSP90 ATPase 

homolog 1), HOP (HSP70/HSP90 organizing protein), HIP (HSC70 interacting protein), 

p23, and CDC37 (cell division cycle 37 homolog) (Frydman and Hohfeld, 1997; 

Hernandez et al., 2002; Isaacs et al., 2003; Johnson et al., 1998; Johnson and Toft, 1994; 

Panaretou et al., 2002; Powers and Workman, 2007; Stepanova et al., 1996). Cycling of 

this chaperone complex is driven by ATP hydrolysis (Obermann et al., 1998; Panaretou et 
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al., 1998) which induces a conformational change of HSP90 (Csermely et al., 1993). A 

simplified model of the HSP90―client protein cycle is illustrated in Figure 2. In the initial 

step of the cycle, a client protein is loaded on the HSP90 homodimer. Upon ATP binding 

to the N-terminal site and its hydrolysis, HSP90 changes from the so-called open to the 

closed conformation (Csermely et al., 1993; Trepel et al., 2010). During the process of 

client protein folding and maturation different co-chaperones (see above) associate with 

and dissociate from the multiprotein complex, finally leading to the release of the mature 

client protein.  

 

 

Figure 2. Schematic model of the HSP90 ―client protein cycle. 
A misfolded or otherwise damaged client protein binds to the middle domain of an HSP90 
homodimer that is functionally associated in a multiprotein complex with other heat shock 
proteins and co-chaperones (not shown here). Following N-terminal ATP binding and 
hydrolysis, HSP90 undergoes a conformational change from an open to a closed 
conformation. HSP90 catalyzes the stability and maturation of its client protein that is 
finally released from the chaperone complex. This schematic model was modified from 
Trepel et al., 2010.  
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So far, more than 200 HSP90 client proteins have been identified – an updated list of 

HSP90 interactors can be found on the web page of Prof. Didier Picard’s laboratory 

(http://picard.ch/downloads). Intriguingly, the set of known HSP90 client proteins 

comprises many oncogenic kinases, transcription factors, and other crucial proteins which 

are functionally associated with the hallmarks of cancer and thus regulate critical 

processes, such as tumor growth (e.g. CDK4, CDK6, CyclinD), proliferation (e.g. EGF-R, 

HER-2/ERBB2), angiogenesis (e.g. VEGF-R, MET, HIF-1α), migration (e.g. EphA2, MET, 

FAK), and survival (e.g. AKT, IGF-1R) (Aligue et al., 1994; Annamalai et al., 2009; Basso 

et al., 2002; Eustace et al., 2004; Fortugno et al., 2003; Kim et al., 2008b; Park et al., 

2008; Stepanova et al., 1996). Based on the current body of literature which identified and 

described novel HSP90 client proteins, the illustration of the hallmarks of cancer was 

complemented with functionally relevant HSP90 clients (Figure 3).  

 

 

Figure 3. Association of crucial HSP90 client prote ins with the hallmarks of cancer. 
Multiple HSP90 client proteins are functionally associated with different hallmark 
capabilities of cancer cells and therefore play critical roles in the transformation of a 
normal cell into a cancer cell. The list of known HSP90 client proteins comprises signaling 
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molecules that are involved in genome instability, enabling replicative immortality, evading 
growth suppressors, sustaining proliferation, inducing angiogenesis, resisting cell death, 
and activating motility. AKT: protein kinase B; CDK 4/6: cyclin-dependent kinase 4/6; 
CHK1: checkpoint kinase 1; EGF-R: epidermal growth factor receptor; EphA2: ephrin 
receptor A2; FAK: fokal adhesion kinase; HER-2/ERBB2: human epidermal growth factor 
receptor 2; HIF-1alpha: hypoxia-inducible factor-1α; hTERT: human telomerase reverse 
transcriptase; IGF-1R: insulin-like growth factor-1 receptor; MMP: matrix 
metalloproteinase; VEGF-R: vascular endothelial growth factor receptor. The illustration 
was modified from Hanahan and Weinberg (Hanahan and Weinberg, 2011) and 
complemented with relevant HSP90 client proteins.  
 

Importantly, cancer cells are permanently exposed to high levels of proteotoxic stress in 

consequence of their malignant “lifestyle” (Neckers and Workman, 2012). Compared to 

non-malignant cells, tumor cells are characterized by an increased proliferation rate that is 

accompanied by a higher overall protein turnover and elevated expression of mutant 

oncoproteins, many of which are less stable than their wild-type counterparts (Whitesell 

and Lindquist, 2005). Therefore, cancer cells strongly rely on a compensatory cellular 

stress response and have an increased dependence on proteins that assist regulating 

their protein homeostasis (Whitesell and Lindquist, 2005). One important chaperone for 

maintaining proper folding of conformationally destabilized proteins is HSP90 and notably, 

it has been found to be 2- to 10-fold overexpressed in tumor cells compared to normal 

cells (Ferrarini et al., 1992; Isaacs et al., 2003; Koga et al., 2009). Moreover, HSP90 in 

tumor cells is being present in an activated form with higher affinity for ATP binding, 

whereas HSP90 in normal tissues appears in an inactive, uncomplexed form with lower 

ATP binding affinity (Kamal et al., 2003). Independent studies revealed that high 

expression of HSP90 in tumor biopsies is associated with tumor aggressiveness, invasion, 

lymph node metastasis, and decreased survival in different types of cancer (Gallegos Ruiz 

et al., 2008; Pick et al., 2007; Wang et al., 2013).  

Given the fact that tumor cells are more dependent on the chaperoning function of HSP90 

than non-malignant cells and that tumor cell HSP90 shows a higher ATP binding affinity 

(Kamal et al., 2003), the chaperone has emerged to a promising target for anticancer 

drugs that prevent ATP binding and thereby inhibit the chaperoning function of HSP90 

(Roe et al., 1999). Pharmacological HSP90 inhibitors, such as the novel compound 

NW457 that is studied in the present work, mainly focus on cytoplasmic HSP90α and β, 

as the other isoforms do not appear to be critically associated with cancer-related client 

proteins and oncogenic signaling pathways (Argon and Simen, 1999; Felts et al., 2000; 

Johnson et al., 2010). Most of the HSP90 inhibitors that have been developed interfere 

with the N-terminal ATP-binding pocket (Johnson et al., 2010), thereby impeding the 

chaperoning activity and the maturation of HSP90 client proteins. Hence, immature client 

proteins including critical oncogenic signaling proteins are released from the chaperoning 

cycle and subjected to proteasomal degradation (Figure 4). Therefore, pharmacological 
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inhibition of HSP90 has considerable consequences for cancer cells as it targets a broad 

range of fundamental oncogenic signaling pathways.  

 

 

Figure 4. Modulation of the HSP90 ―client protein cycle in the presence of the 
pharmacological HSP90 inhibitor NW457 (schematic mo del). 
A destabilized client protein binds to the middle domain of an HSP90 homodimer that is 
functionally associated in a multiprotein complex with other heat shock proteins and co-
chaperones (not shown here). As pharmacological HSP90 inhibitors, such as NW457, 
bind to the N-terminal ATP binding site of HSP90, they prevent ATP-binding and suppress 
chaperoning activity, thereby impeding the maturation of the client protein. Hence, the 
HSP90 client protein is released in an unstable conformation and finally subjected to 
proteasomal degradation. This schematic model was modified from Trepel et al., 2010.  
 

Taken together, HSP90 provides an attractive anticancer drug target as (i) the chaperone 

is specifically overexpressed in tumor cells due to elevated proteotoxic stress, (ii) many 

HSP90 client proteins are mutated or overexpressed oncoproteins with tumor-promoting 

capabilities, (iii) tumor cells are highly dependent on HSP90’s chaperoning activity, and 

(iv) pharmacological inhibition of HSP90 results in the degradation of crucial client 

proteins (Isaacs et al., 2003; Neckers and Workman, 2012).  
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2.5 Pharmacological inhibitors of HSP90 

The mechanisms of cancer cells to overcome growth control and resist cell death are 

multifaceted, thus restricting the antitumor activity of small-molecule inhibitors that target 

only one of many oncogenic signaling pathways. Hence, targeting multiple pathways 

simultaneously is assumed to provide a more effective therapeutic strategy in cancer. 

Targeting HSP90 represents a prime example for such an extensive treatment approach. 

Due to its pivotal role in the regulation of multiple oncogenic signaling pathways, HSP90 

has emerged as an attractive anticancer drug target over the past decade (Johnson et al., 

2010; Kim et al., 2009; Neckers and Workman, 2012). Since many of its client proteins 

contribute to the hallmarks of cancer (see Figure 3), HSP90 inhibition provides a potent 

strategy to simultaneously interrupt multiple pathways associated with tumorigenesis.  
 

Geldanamycin is the natural parent compound of the first class of HSP90 inhibitors having 

demonstrated antitumor activity. It is a benzoquinone ansamycin produced by 

Streptomyces hygroscopicus var. geldanus and was isolated for its antibiotic activity in 

1970 (DeBoer et al., 1970). However, it took some time until geldanamycin was 

demonstrated to specifically bind to HSP90 (Whitesell et al., 1994) and to exert potent 

antitumor activity in vitro and in vivo (Supko et al., 1995). The discovery of geldanamycin 

revealed the significance of HSP90 for tumor cells, elucidated how the HSP90 

multichaperone machinery functions, and facilitated the identification of many HSP90 

client proteins (Fukuyo et al., 2010; Grenert et al., 1997; Stebbins et al., 1997). However, 

translation of this natural compound into the clinic was hampered due to unacceptable 

hepatotoxicity at the doses required for therapeutic efficacy (Supko et al., 1995). This led 

to the development of the semi-synthetic derivatives 17-allylamino-17-

demethoxygeldanamycin (17-AAG or tanespimycin) and 17-dimethylaminoethylamino-17-

demethoxygeldanamycin (17-DMAG or alvespimycin). 17-AAG was the first HSP90 

inhibitor entering the clinic in 1999, and has been tested since then in more than 30 Phase 

I and II trials, either as single agent or in combination with other approved anticancer 

therapeutics (Kim et al., 2009). Despite its promising antitumor activity, poor aqueous 

solubility and difficulties in formulation precluded further clinical testing of 17-AAG. The 

second semi-synthetic derivative of geldanamycin, 17-DMAG, also demonstrated clinical 

activity, but again, unacceptable toxicity abandoned further clinical development of this 

compound in 2008. However, this was not the end of HSP90 as anticancer drug target - 

rather, strong efforts have been carried out in the last years in developing novel, fully 

synthetic HSP90 inhibitors which overcome the pharmacokinetic limitations of the first 

generation compounds.  
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Numerous novel second generation HSP90 inhibitors based on different non-ansamycin 

chemical scaffolds have been developed and are now undergoing clinical evaluation. One 

of the first synthetic candidates entering clinical trials was BIIB021 (Biogen), which is 

based on the purine scaffold (Kasibhatla et al., 2007; Lundgren et al., 2009) and has 

previously been shown to potently radiosensitize head and neck squamous cell carcinoma 

(HNSCC) both in vitro and in vivo (Yin et al., 2010). BIIB021 has been evaluated in seven 

Phase I/II trials in patients with breast cancer, gastrointestinal stroma tumors (GIST), and 

advanced solid tumors (http://clinicaltrials.gov; Dickson et al., 2013). The second 

generation HSP90 inhibitors currently most intensely studied include STA-9090 

(ganetespib, Synta Pharmaceuticals) and AUY922 (NVP-AUY922, Novartis). Due to their 

promising activity as single agents and in combined regimes in different preclinical tumor 

models (Eccles et al., 2008; Gaspar et al., 2010; Jensen et al., 2008; Lin et al., 2008; 

Moser et al., 2012; Okui et al., 2012; Shimamura et al., 2012; Stingl et al., 2010; Zaidi et 

al., 2012), these inhibitors have each entered over 20 clinical trials so far (see 

http://clinicaltrials.gov for the status quo).  
 

Another natural macrocyclic HSP90 inhibitor is radicicol (also referred to as monorden), 

which was originally isolated from the fungus Monosporium bonorden (Delmotte and 

Delmotte-Plaque, 1953; Kwon et al., 1992), and interferes with the N-terminal ATP-binding 

site of HSP90 (Schulte et al., 1998). The binding mode of radicicol differs from that of 

geldanamycin (Johnson et al., 2010). In contrast to geldanamycin, radicicol lacks the toxic 

hydroquinone moiety, thus making it significantly less hepatotoxic (Johnson et al., 2010). 

Despite promising antitumor activity in vitro, radicicol demonstrated metabolic instability in 

vivo which furthered the development of synthetic oxime derivatives with improved 

pharmacodynamic and pharmacokinetic properties (Agatsuma et al., 2002; Winssinger et 

al., 2009; Yang et al., 2004). The laboratory of Prof. Nicolas Winssinger (Department of 

Organic Chemistry, University of Geneva, Switzerland) played a pivotal role in this 

process and generated an extended library of pochoxime HSP90 inhibitors that are 

characterized by cellular efficacies in the nanomolar range (Barluenga et al., 2009; 

Barluenga et al., 2008; Wang et al., 2009). This library identified several pochoxime 

analogues with enhanced cellular efficacies compared to radicicol. The introduction of a 

hydroxyl group at carbon 6 on the macrocycle, e.g. in 6-hydroxy-pochoxime C, further 

improved their potency. The structures of radicicol and its synthetic pochoxime derivatives 

are shown in Figure 5. The comparison of the cocrystal structure of radicicol and 

pochoxime A with human HSP90α reveals that the synthetic oxime derivative binds to a 

different conformation of HSP90 than its natural parent compound (Figure 5B), thus 

possibly ameliorating the binding affinity and enhancing the biological activity (Barluenga 

et al., 2009; Barluenga et al., 2008; Wang et al., 2009). The derivative 6-hydroxy-
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pochoxime C (hereinafter referred to as NW457) is the compound that is studied in the 

present work.  

 

 

Figure 5. Chemical and cocrystal structures of poch oxime HSP90 inhibitors and 
their interference with the N-terminal ATP-binding pocket of HSP90. 
(A) Structures of radicicol and its synthetic pochoxime derivatives including NW457. 
(B) Structure of the N-terminal domain of human HSP90α in complex with radicicol (left) 
and pochoxime A (right). HSP90 α-helices=red, β-sheets=green, loops=grey. 
(C) Crystallographic structure of the N-terminal ATP-binding pocket of human HSP90α in 
complex with radicicol (left) and pochoxime A (right). HSP90: negatively charged regions 
= red, positively charged regions=blue; HSP90 inhibitor: carbon=grey, oxygen=red, 
nitrogen=purple, chloride=green. The figures were modified from Barluenga et al. 
(Barluenga et al., 2009).  
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The novel pochoxime series was screened in vitro for HSP90 affinity, HSP90 client protein 

depletion (HER-2/ERBB2), and cytotoxicity to two human breast cancer cell lines (SKBr3 

and HCC1954). Thereby, pochoximes A, B, and C were identified as the most potent 

compounds as they exhibited biological activity in the nanomolar range (Barluenga et al., 

2008). The efficacy of pochoxime A was further investigated in a BT-474 (human breast 

cancer cell line) xenograft mouse model, in which a dose-dependent inhibition of tumor 

growth accompanied by massive apoptosis induction could be observed (Barluenga et al., 

2008). Moreover, pochoxime A (also referred to as NXD30001, patented by NexGenix 

Pharmaceuticals) was studied in vitro in primary murine and human glioblastoma 

multiforme cells (GBM), as well as in a genetically engineered mouse model of GBM (Zhu 

et al., 2010). The authors could show that intravenously administered pochoxime A was 

able to penetrate the blood brain barrier and finally accumulated in brain tissue. 

Furthermore, the compound potently inhibited the proliferation of primary GBM cells, but 

not of non-malignant astrocytes. Growth inhibition was accompanied by the degradation of 

HSP90 client proteins EGF-R, AKT, CDK4, and CyclinD1, and finally resulted in 

apoptosis. In vivo, NXD30001 treatment induced tumor regression and significantly 

increased survival of EGF-R-driven GBM bearing mice.  

In summary, the novel pochoxime series seems to exhibit superior pharmacodynamics 

and promising anticancer activities both in vitro and in vivo compared to former HSP90 

inhibitors. As the introduction of a hydroxyl group at carbon 6 on the pochoxime 

macrocycle was reported to improve aqueous solubility and to further enhance cellular 

efficacy, 6-hydroxy-pochoxime C (hereinafter referred to as NW457) was chosen for the 

present work. As a first approach here, the antitumor potency of NW457 is studied with 

specific regard to its radiosensitizing capacity and cell death induction, both in a colorectal 

cancer system and in a model of glioblastoma multiforme.  
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3 Purpose 

Due to multiple genetic aberrations and a general upregulation of oncogenic proteins, 

cancer cells are commonly exposed to high levels of proteotoxic stress and thus critically 

rely on compensatory mechanisms in order to sustain their protein homeostasis. 

Therefore, tumor cells are highly dependent on the assistance of molecular chaperones, 

such as the heat shock protein 90 (HSP90). Since HSP90 maintains the conformational 

stability and function of numerous oncogenic proteins, it has emerged as an interesting 

anticancer drug target, and several small-molecule inhibitors with different chemical 

scaffolds have been developed in the recent years.  

One of these compounds is NW457 (6-hydroxy-pochoxime C), whose antitumor potential 

was characterized here in combination with ionizing radiation for the first time. The aim of 

the present work was to investigate whether and by which molecular mechanisms NW457 

sensitizes tumor cells to ionizing radiation. Therefore, in the first part of the thesis, the 

impact of NW457 on tumor cell radiosensitization was examined in colorectal cancer 

models with specific regard to the mechanisms of cell death induction and the relevance 

of the KRAS, p53, and BAX status. Furthermore, the tolerability of the novel HSP90 

inhibitor by primary hepatocytes and its efficacy in combination with radiotherapy in vivo 

were analyzed. The second part of the thesis investigated the radiosensitizing potential of 

NW457 in human glioblastoma cell lines and evaluated whether its combined application 

with irradiation might be a promising approach to interfere with the radioresistant and 

invasive phenotypes which are commonly associated with the pathology of glioblastomas 

and assumed to account for the unfavorable outcome of this disease.  
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4 Material 

4.1 Directory of manufacturers and suppliers 

Table 1. Manufacturers and suppliers 
 

Manufacturer City, Country 

Abbott Wiesbaden, Germany 

AbD Serotec Puchheim, Germany 

B. Braun Melsungen, Germany 

Bachem Bubendorf, Switzerland 

BD Biosciences Heidelberg, Germany 

BD Pharmingen, distributed by BD 
Biosciences 

Heidelberg, Germany 

Biochrom Berlin, Germany 

BioRad Munich, Germany 

BioTek Bad Friedrichshall, Germany 

BioVision Milpitas, CA, USA 

Cell Signaling Technology, 
distributed by New England Biolabs 

Frankfurt (Main), Germany 

Fermentas St. Leon-Rot, Germany 

Ibidi Martinsried, Germany 

Invitrogen Life Technologies Darmstadt, Germany 

Janvier Labs Le Genest Saint Isle, France 

LI-COR Biosciences Bad Homburg, Germany 

Lonza Cologne, Germany 

Macherey-Nagel Düren, Germany 

Merck Millipore Darmstadt, Germany 

Multimmune Munich, Germany 

PAA Cölbe, Germany 

Philips Healthcare Hamburg, Germany 

Promega Mannheim, Germany 

R&D Systems  Wiesbaden, Germany 

Roche Penzberg, Germany 

Siemens Munich, Germany 

Sigma-Aldrich Seelze, Germany 

Thermo Scientific Karlsruhe, Germany 

Zeiss Oberkochen, Germany 
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4.2 Cell lines 

Table 2. Cell lines 
 

Cell line Origin Source / Reference Medium CO 2 

HCT116 Human colorectal 
carcinoma; expressing 
wild-type p53 and 
mutant KRAS 

Kindly provided by P. 
Daniel, Max-
Delbrück-Center for 
Molecular Medicine, 
Berlin, Germany 

Mc Coy’s 
5A medium  
+10% FCS 

7.5% 

HCT116 BAX -/- Human colorectal 
carcinoma; BAX-
deficient subclone of 
HCT116 cell line 

Kindly provided by P. 
Daniel, Max-
Delbrück-Center for 
Molecular Medicine, 
Berlin, Germany 
(Zhang et al., 2000)  

Mc Coy’s 
5A medium  
+10% FCS 

7.5% 

HCT116 p53 -/- Human colorectal 
carcinoma; p53-
deficient subclone of 
HCT116 cell line 

Kindly provided by P. 
Daniel, Max-
Delbrück-Center for 
Molecular Medicine, 
Berlin, Germany 
(Bunz et al., 1998) 

Mc Coy’s 
5A medium  
+10% FCS 

7.5% 

Hke3 Human colorectal 
carcinoma; subclone 
of HCT116 cells 
expressing wild-type 
KRAS 

Kindly provided by S. 
Shirasawa, Fukuoka 
University, Japan 
(Shirasawa et al., 
1993) 

Mc Coy’s 
5A medium  
+10% FCS 

7.5% 

LN229 Human glioblastoma American Type 
Culture Collection 

DMEM  
+10% FCS 

7.5% 

T98G Human glioblastoma American Type 
Culture Collection 

DMEM  
+10% FCS 

7.5% 

CT26 Murine colorectal 
carcinoma; derived 
from an 
undifferentiated 
adenocarcinoma 
induced by N-nitroso-
N-methylurethane of 
Balb/c mice; carrying 
wild-type p53 and 
mutant KRAS 

American Type 
Culture Collection 

RPMI 1640 
medium 
+10% FCS 

5.0% 
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4.3 Antibodies 

4.3.1 Primary antibodies 

Table 3. Primary antibodies 
 

Antibody Source  Manufacturer Catalog 
number 

Dilution  Application 

Anti-ATM rabbit Merck Millipore #07-1286 1:500 Western blot 

Anti-ATR rabbit Merck Millipore #09-070 1:1000 Western blot 

Anti-BAK rabbit Cell Signaling 
Technology  

#3814 1:1000 Western blot 

Anti-BAX rabbit Cell Signaling 
Technology  

#2774 1:1000 Western blot 

Anti-BCL-xL 
(54H6) 

rabbit Cell Signaling 
Technology  

#2764 1:1000 Western blot 

Anti-BRAF mouse BD 
Biosciences  

#612374 1:250 Western blot 

Anti-Caspase-3 mouse BD 
Biosciences 

#610323 1:250 Western blot 

Anti-Caspase-9 mouse R&D Systems #MAB8301 1:1000 Western blot 

Anti-CHK1 mouse Sigma-Aldrich #C9358 1:1000 Western blot 

Anti-CHK2 mouse BD 
Biosciences 

#611570 1:1000 Western blot 

Anti-Cleaved 
Caspase-3 
(Asp175) 
(5A1E) 

rabbit Cell Signaling 
Technology 

#9664 1:1000 Western blot 

Anti-EGF-R-PE mouse BD 
Biosciences 

#555997 1:25 Flow cytometry 

Anti-EphA1-PE goat R&D Systems  #FAB638P 1:25 Flow cytometry 

Anti-EphA2-
Alexa Fluor® 
488 

mouse R&D Systems  #FAB3035G 1:25 Flow cytometry 
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Antibody Source  Manufacturer Catalog 
number 

Dilution  Application 

Anti-EphB2-PE rat R&D Systems #FAB467P 1:25 Flow cytometry 

Anti-EphB3-
APC 

mouse R&D Systems #FAB56671A 1:25 Flow cytometry 

Anti-EphB4-
FITC 

rat R&D Systems  #FAB3038F 1:25 Flow cytometry 

Anti-HSP70 mouse BD 
Biosciences 

#610608 1:1000 Western blot 

Anti-HSP70 
capture 
antibody 

mouse R&D Systems #DYC1663-2 
(DuoSet® IC 
Kit) 

1:180 ELISA  
(enzyme-linked 
immunosorbent 
assay) 

Anti-HSP70 
detection 
antibody 

rabbit R&D Systems #DYC1663-2 
(DuoSet® IC 
Kit) 

1:36 ELISA 

Anti-HSP70-
FITC 

mouse Multimmune #cmHSP70.1-
FITC 

1:100 Flow cytometry 

Anti-HSP90 
(C45G5) 

rabbit Cell Signaling 
Technology  

#4877 1:1000 Western blot 

Anti-Integrin 
αVβ3-Alexa 
Fluor® 488 

mouse R&D Systems #FAB3050G 1:100 Flow cytometry 

Anti-Integrin 
αVβ5-PE 

mouse R&D Systems #FAB2528P 1:10 Flow cytometry 

Anti-MET 
(25H2) 

mouse Cell Signaling 
Technology  

#3127 1:1000 Western blot 

Anti-p14 ARF 
(4C6/4) 

mouse Cell Signaling 
Technology  

#2407 1:1000 Western blot 

Anti-p21 
Waf1/Cip1 
(12D1) 

rabbit Cell Signaling 
Technology  

#2947 1:1000 Western blot 

Anti-p53 (7F5) rabbit Cell Signaling 
Technology  

#2527 1:1000 Western blot 

Anti-PARP 
(C2-10) 

mouse Trevigen/TACS  #4338-MC-50 1:2000 Western blot 
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Antibody Source  Manufacturer Catalog 
number 

Dilution  Application 

Anti-Phospho-
MET 
(Tyr1234/1235) 
(D26) 

rabbit Cell Signaling 
Technology 

#3077 1:1000 Western blot 

Anti-Tubulin mouse Sigma-Aldrich  #T5168 1:2000 Western blot 

Anti-Tubulin-
FITC (TUB 2.1) 

mouse Sigma-Aldrich  #F2043 1:400 Immuno-
fluorescence 

Anti-Vinculin 
(hVIN-1) 

mouse Sigma-Aldrich #V9131 1:1000 Western blot 

Isotype control 
IgG1-FITC 

rat R&D Systems  #IC005F 1:25 Flow cytometry 

Isotype control 
IgG1-FITC 

mouse BD 
Biosciences 

#555748 1:100 Flow cytometry 

Isotype control 
IgG1-PE 

mouse BD 
Biosciences 

#555749 1:10 Flow cytometry 

Isotype control 
IgG2A-Alexa 
Fluor® 488 

mouse R&D Systems #IC003G 1:25 Flow cytometry 

Isotype control 
IgG2A-APC 

mouse R&D Systems  #IC003A 1:25 Flow cytometry 

Isotype control 
IgG2a-FITC 

mouse BD 
Biosciences 

#555573 1:10 Flow cytometry 

Isotype control 
IgG2A-PE 

rat R&D Systems #IC006P 1:25 Flow cytometry 

 

4.3.2 Secondary antibodies 

Table 4. Secondary antibodies 
 

Antibody Source  Manufacturer Catalog 
number 

Dilution Application 

Anti-mouse IgG- 
IRDye® 680LT 

goat LI-COR  #926-68020 1:20000 Western blot 

Anti-mouse IgG- 
IRDye® 800CW 

goat LI-COR  #926-32210 1:20000 Western blot 
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Antibody Source  Manufacturer Catalog 
number 

Dilution Application 

Anti-rabbit IgG- 
IRDye® 680LT 

goat LI-COR  #926-68021 1:20000 Western blot 

Anti-rabbit IgG- 
IRDye® 800CW 

goat LI-COR  #926-32211 1:20000 Western blot 

 

 

4.4 Primers 

Table 5. Primers used for quantitative real-time PC R 
Primers were synthesized by Sigma-Aldrich. F: forward; R: reverse 

Name Sequence 5’-3’ 

18S-F CGGCTACCACATCCAAGGAA 

18S-R GCTGGAATTACCGCGGCT 

ATM-F CTGGAAGAAGCACAAGTATTCTGGG 

ATM-R TGGGATTGTTCGCTGCACA 

ATR-F GGTCACCACCAGACAGCCTAC 

ATR-R GAACATCACCCTTGGACCAGA 

CHK1-F ATGCCTGAACCAGATGCTCAG 

CHK1-R GAGGTTATCCCTTTCATCCAACAG 

CHK2-F CTCTTGGAAGTGGTGCCTGTG 

CHK2-R GGGTCTGCCTCTCTTGCTGA 

HGF-F ACTTCCATTCACTTGCAAGGCT 

HGF-R CTCCACTTGACATGCTATTGAAGG 

HSP70A1A-F GAAGGACGAGTTTGAGCACAAGA 

HSP70A1A-R TGATGATGGGGTTACACACCTG 

HSP90AA1-F TTCAAATTCATCAGATGCATTGG 

HSP90AA1-R AATATGCAGCTCTTTCCCAGAGTC 

Integrin Alpha V-F AACTCGCCAGGTGGTATGTGA 

Integrin Alpha V-R GACTGCTGGTGCACACTGAAA 

Integrin Beta 3-F AATGACGGGCAGTGTCATGTT 

Integrin Beta 3-R ATCAGCCCCAAAGAGGGATAA 

Integrin Beta 5-F AGGCTGGGACGTCATTCAGA 

Integrin Beta 5-R GCGAACCTGTAGCTGGAAGGT 
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Name Sequence 5’-3’ 

MET-F ATCCACCTTCATTAAAGGAGACCTC 

MET-R AAACCACAACCTGCATGAAGC 

p53-F CCGCCTGAGGTTGGCTC 

p53-R CGCCCATGCAGGAACTGT 
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5 Methods 

5.1 Cell biology methods 

5.1.1 Cell culture 

5.1.1.1 Cultivation of cell lines 

Detailed information about the utilized cell lines, their origin, and culture conditions is 

listed in Table 2. Human colorectal carcinoma cell lines were maintained in Mc Coy’s 5A 

medium (Invitrogen Life Sciences) supplemented with 10% heat inactivated fetal calf 

serum (PAA) in a humidified incubator at 7.5% CO2 and 37°C. HCT116 BAX- and p53-

deficient subclones were reselected with 0.1 mg/ml hygromycin or 0.1 mg/ml hygromycin 

+ 0.4 mg/ml G418 for four weeks prior to using them for experiments. Human glioblastoma 

cell lines were cultured in DMEM supplemented with 10% heat inactivated fetal calf serum 

in a humidified incubator at 7.5% CO2 and 37°C. In order to maintain log phase growth, 

cells were routinely split at approximately 80% confluence employing accutase (PAA) for 

detachment. All cell lines were monitored for mycoplasma infection on a regular basis 

(MycoAlert, Lonza), and only mycoplasma negative cell lines were used for experiments. 

Murine CT26 cells were maintained in RPMI 1640 medium supplemented with 10% heat 

inactivated fetal calf serum in a humidified incubator at 5.0% CO2 and 37°C.  

For long-term storage, cell lines were frozen in liquid nitrogen. Cells were detached with 

trypsin or accutase, washed with medium, and resuspended in ice-cold freezing solution 

containing 90% FCS and 10% DMSO. 1-5x106 cells were transferred to a 2.0 ml cryo 

tube, placed into a rack with ice-cold isopropanol, and frozen at -80°C overnight. 

Afterwards, cells were transferred to liquid nitrogen for long-term storage.  

For recultivation, frozen cells were thawed for 60 s at 37°C and carefully resuspended in 

20 ml of prewarmed growth medium. After centrifugation (200 g, 5 min), cells were 

resuspended in medium and seeded into 75 or 175 cm² cell culture flasks. Medium was 

changed after 24 h to remove residual DMSO.  

5.1.1.2 Preparation and maintenance of primary muri ne hepatocytes 

Primary hepatocytes were isolated from adult C57BL/6 mice by liver perfusion and percoll 

density centrifugation according to the protocol published by Gonçalves et al. (Goncalves 

et al., 2007). All solutions needed were prepared in advance (Table 6). The preparation 

was performed with kind support of Kirsten Lauber and Gabriele Zuchtriegel from the 

Walter Brendel Centre of Experimental Medicine.  
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Liver perfusion 

Liver perfusion was performed in situ using a peristaltic pump with adjustable speed. 

Therefore, the mouse was anaesthetized with isoflurane and immobilized to the 

preparation desk. The peritoneal cavity was opened and the inner organs were placed 

aside in order to have free access to the vena cava inferior and the vena porta. An Abocat 

needle (20G, 30 mm length) was introduced into the vena porta, the vena cava was 

immediately opened, and perfusion was initiated using prewarmed liver perfusion medium 

(constant flow of 5 ml/min). Perfusion was maintained until the liver was drained off blood 

and appeared pale (3-4 min). Subsequently, perfusion was continued using liver digestion 

medium containing 33 µg/ml LiberaseTM collagenase (Roche) and performed until the liver 

lobe felt very soft (5-6 min).  
 

Cell dissociation 

The perfused liver was removed from the peritoneal cavity and transferred into a Petri dish 

containing 10 ml of William’s E complete medium (WCM). The gall bladder was removed 

and the liver lobe was carefully disrupted using two Q-Tips. At this stage, a fine cloud of 

cells spread into the medium as a sign of successful dissociation. Afterwards, the cell 

suspension was forced through a 100 µm cell strainer (BD Biosciences) and diluted with 

WCM to a final volume of 30 ml. Hepatocytes were sedimented at 35 g for 5 min and the 

cell pellet was resuspended in 24 ml of WCM. 
 

Hepatocyte isolation 

Separation of parenchymal, non-parenchymal, and dead cells was performed using 

Percoll gradient centrifugation. For each 24 ml suspension of dissociated cells, two Percoll 

gradient tubes were prepared using three different Percoll density solutions each. 6 ml 

1.12 g/ml solution were applied on the bottom of a conical 50 ml tube, and carefully 

overlaid with 10 ml of 1.08 g/ml solution and 10 ml of 1.06 g/ml solution. 12 ml of liver cell 

suspension were carefully applied to the Percoll gradient in each tube. The cell 

suspension was fractionated by centrifugation at 750 g for 20 min at 20°C without brake. 

Subsequently, the two upper gradient layers containing cell debris and non-parenchymal 

cells were carefully removed. Then, the lowest layer containing the live hepatocytes was 

transferred to a fresh 50 ml tube containing 10 ml WCM. The tube was filled up to 40 ml 

volume using WCM and centrifuged at 355 g for 10 min at 20°C. The cell pellets from the 

two Percoll gradient tubes were pooled and resuspended in a final volume of 15 ml WCM. 

After centrifugation at 135 g for 5 min the cell pellet was resuspended in 5 ml William’s E 

supplemented medium (WSM).  
 



Methods 

 40

Hepatocyte cultivation 

Following isolation, cells were seeded in WSM into multiwell plates precoated with 0.2% 

gelatin solution (Sigma-Aldrich) at a density of 8x103 cells per 96-well cavity or 8-well µ-

slide (Ibidi), and 4x104 cells per 24-well cavity, respectively. Hepatocytes were maintained 

in a humidified incubator at 5% CO2 and 37°C and allowed to recover for 24 h before they 

were used for experiments.  
 

Table 6. Media and solutions used for the isolation  and cultivation of primary 
murine hepatocytes 
 

Reagent Composition 

Liver perfusion medium 0.9% NaCl 
0.05% KCl 
0.2% HEPES 
0.008% EDTA 
in aqua dest., pH 7.4 

Liver digestion medium 0.9% NaCl 
0.05% KCl 
0.2% HEPES 
0.008% EDTA 
0.07% CaCl2 

33 µg/ml LiberaseTM collagenase 
(Roche) 
in aqua dest., pH 7.4 

1.124 g/ml Percoll stock 
solution 

Easycoll, isotonic (Biochrom #L6143) 

1.12 g/ml Percoll solution 96.5 ml Easycoll 
3.5 ml PBS 

1.08 g/ml Percoll solution 61.5 ml Easycoll 
38.5 ml PBS 

1.06 g/ml Percoll solution 43.75 ml Easycoll 
56.25 ml PBS 

LiberaseTM collagenase 
solution 

1 mg LibaraseTM collagenase (Roche) 
dissolved in 1 ml 2% CaCl2 

William’s E Medium with L-Glutamine (Invitrogen Life 
Technologies) 

William’s E Complete Medium 
(WCM) 

William’s E Medium 
4% FCS (PAA) 
100 U/ml Penicillin (PAA) 
100 U/ml Streptomycin (PAA) 
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Reagent Composition 

William’s E Supplemented 
Medium (WSM) 

William’s E Medium 
4% FCS (PAA) 
100 U/ml Penicillin (PAA) 
100 U/ml Streptomycin (PAA) 
50 ng/ml EGF-R (Sigma-Aldrich 
#E4127) 
1 µg/ml Insulin (Sigma-Aldrich #I2643) 
10 µg/ml Transferrin (Sigma-Aldrich 
#T0665) 
1.3 µg/ml Hydrocortisone (Sigma-
Aldrich #H0888) 

 

5.1.2 In vitro drug treatment and irradiation 

The second generation HSP90 inhibitor NW457 (6-hydroxy-pochoxime C) is a synthetic 

derivative of radicicol and was kindly provided by Nicolas Winssinger (Department of 

Organic Chemistry, University of Geneva, Switzerland) together with the first generation 

inhibitor geldanamycin (GA). For in vitro studies the drugs were stored as 10 mM and 

100 µM stock solutions in DMSO at -20°C and were freshly diluted in the appropriate 

growth medium immediately before use. Exponentially growing cells were stimulated with 

the indicated drug concentrations or the respective DMSO concentration as vehicle 

control for the designated times. Irradiation of tumor cells was carried out at room 

temperature using a Mueller RT250 X-ray tube (Philips) equipped with a Thoraeus filter at 

200 kV and 10 mA at a dose rate of 0.52 Gy/min.  

5.1.3 Microscopic quantification of apoptotic cells  

Microscopic quantification of apoptotic cells was performed after staining with 

Hoechst 33342. Briefly, 5x105 cells per well were seeded into 24-well plates, stimulated 

with the respective drug concentrations for 24 h, and irradiated with single fractions of 

1, 3, 5, or 10 Gy respectively. Following incubation for the designated times, nuclei were 

directly stained in the culture dishes with 3 µg/ml Hoechst 33342 for 15 min, and 

examined by fluorescence microscopy (Axiovert 40 CFL, Zeiss). Cells revealing features 

of chromatin condensation (patchy Hoechst staining) or nuclear fragmentation were 

considered apoptotic. For each condition, at least 400 nuclei were counted in randomly 

selected microscopic fields of two independent wells, and the percentage of apoptotic 

cells was calculated.  
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5.1.4 Cell viability assay 

Cell viability was determined by using the Alamar Blue reagent (AbD Serotec), an 

indicator dye for measuring the reducing power of viable cells. In growing cells, the cell-

permeable, active ingredient resazurin is continuously reduced to the fluorescent product 

resorufin, which can be detected with a fluorescence spectrophotometer (excitation 560 

nm, emission 590 nm).  

Briefly, 1x104 cells per well were seeded into 96-well plates and allowed to adhere 

overnight. Cells were stimulated with the given drug concentrations +/- irradiation and 

incubated for the indicated times. Subsequently, the medium was removed and the cells 

were washed once in culture medium (due to strong autofluorescence of the applied 

HSP90 inhibitors). Alamar Blue reagent was added at 1/10 vol of culture medium and 

resazurin reduction was allowed for 4-7 h at 37°C. Resorufin fluorescence was measured 

directly in the 96-well plate using a microplate reader (Synergy Mx, BioTek) and viability 

was calculated according to the following formula:  

 

x100
[Blank] ceFluorescen] Control  Vehicle[Untreated ceFluorescen

[Blank] ceFluorescenSample] [Unknown ceFluorescen
[%]Viability 

−
−=  

5.1.5 Wound healing assay 

To investigate the migratory behavior of glioblastoma cells, wound healing assays were 

performed. Cells were seeded into specialized culture dishes with a silicone-insert in the 

middle consisting of two distinct chambers for cell seeding (µ-dishes, Ibidi). Thereby, two 

rectangular areas of confluent cells with 0.22 cm² each were generated and separated by 

a well-defined cell-free 'wound' of 8.0 mm x 0.5 mm. After adhesion for 6 h or overnight, 

cells were exposed to sublethal doses of NW457 +/- irradiation and incubated for further 

24 h. Then, the silicone insert was removed and cell migration into the wound was 

monitored using an inverse epifluorescence microscope (AxioObserver Z1, Zeiss) 

equipped with a temperature/CO2 module, a 5x objective lens, and an AxioCam Mr3 

camera (Zeiss). Movies were generated by acquiring images every 10 min over a period 

of 12 h. Individual migration paths of approximately 30 randomly selected cells per 

treatment were analyzed using the ImageJ manual tracking plugin (ImageJ 1.41o), and 

the accumulated distances were calculated using the Ibidi Chemotaxis and Migration Tool 

V2.0 (Ibidi). Additionally, the colonized area was measured using the AxioVision 4.6 

software (Zeiss) and calculated according to the following formula:  
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−=  

5.1.6 Transmigration assay 

Transmigration of glioblastoma cells was analyzed by using 96-well MultiScreen-MIC 

plates equipped with tissue-culture-treated polycarbonate membranes of 8 µm pore size 

(Merck Millipore). Cells were stained with PKH67, a green fluorescent dye for general cell 

membrane labeling (Sigma-Aldrich). Briefly, cells were washed in serum free medium, 

pelleted by centrifugation, and stained with 4 µM of PKH67 diluted in Diluent C (Sigma-

Aldrich) at room temperature for 5 min. Staining was stopped by adding 1 vol of 100% 

FCS, and 5 vol of culture medium containing 10% FCS. Afterwards, cells were pelleted, 

washed twice, and finally resuspended in medium containing 10% FCS. 2x104 PKH67 

stained cells per well were seeded into 96-well filter plates and allowed to adhere for 3 h. 

Cells were then exposed to sublethal doses of NW457. After incubation for 24 h, cells 

were washed with serum free medium, and a final volume of 80 µl medium per well +/- 

NW457 was added. In order to analyze the impact of a serum gradient on cell migration, 

assays were performed with 0% FCS in the upper and 10% FCS in the lower chamber, or 

10% FCS in the upper and 10% FCS in the lower chamber, respectively. The receiver 

plate was equipped with 340 µl medium per well +/- NW457, the prewarmed filter and 

receiver plates were assembled, and migration was allowed for 12 h at 37°C. Finally, the 

transmigrated cells, which were adherent to the lower side of the membrane, were 

harvested and quantified. Briefly, the non-migrated cells on the upper side of the filter 

were removed by washing the filter plate with ice-cold PBS containing 10 mM EDTA, 

wiping off the cells with a rubber spatula and two additional washing steps. Cells adherent 

to the lower side of the filter were lysed in 150 µl lysis buffer (Table 12), and PKH 

fluorescence in the lysates was measured in a microplate reader (Synergy Mx, BioTek). 

The percentage of transmigrated cells was calculated using a standard curve prepared 

from a dilution series of PKH stained, lysed cells according to the following formula: 
 

Curve] [Standard Slope
Curve] [Standard Intercept AxisySample] [Unknown ceFluorescen

[%] tionTransmigra
−=  
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Table 7. Composition of lysis buffer 
 

Reagent Composition 

Lysis buffer 20 mM HEPES-K pH 7.4 
84 mM KCl 
10 mM MgCl2 
0.2 mM EDTA 
0.2 mM EGTA 
0.5% NP40 

5.1.7 Immunofluorescence staining and microscopy 

The cellular morphology of primary hepatocytes was analyzed by immunofluorescence 

staining with subsequent microscopic evaluation.  

8x103 primary mouse hepatocytes per well were seeded into Ibidi 8-well µ-slides (Ibidi) 

coated with 0.2% gelatin. After adherence for 16 h, cells were treated with the indicated 

concentrations of NW457 or geldanamycin for 48 h. Afterwards, the medium was 

removed, cells were washed with PBS, and fixed with formaldehyde-containing IF fixation 

buffer for 10 min at room temperature. The fixation buffer was aspirated, hepatocytes 

were washed with PBS and permeabilized with 0.5% Triton X-100 in PBS for 5 min. For 

blocking of unspecific binding sites, cells were incubated with 3% BSA diluted in PBS 

+ 0.1% Triton X-100 for 1 h. Cells were stained with Alexa Fluor 568-labeled phalloidin 

(Invitrogen) and monoclonal anti-β-tubulin-FITC antibody for 2 h at room temperature. 

Cells were washed with PBS + 0.1% Triton X-100, and stained with Hoechst 33342 

(2 µg/ml) for 10 min. Finally, hepatocytes were washed twice with PBS + 0.1% Triton X-

100, and mounted in Fluoromount medium (Sigma-Aldrich). Microscopy was carried out 

using an inverse epifluorescence microscope (Zeiss AxioObserver Z1) equipped with a 

Zeiss Plan-Neofluar 63x/1.3 glycerin objective, AxioVision 4.6 software, and an AxioCam 

Mr3 camera (Zeiss). Filters used were 01 (BP 365/12) for DAPI, 38HE (BP 470/40) for 

FITC, and 43HE (BP 550/25) for Alexa Fluor 568 (Zeiss).  
 

Table 8. Buffers used for immunofluorescence staini ng 
 

Reagent Composition 

IF fixation buffer 3.7% PFA (Sigma-Aldrich) 
0.2% Triton X-100 
in PBS 

IF blocking solution 3% BSA (Sigma-Aldrich) 
0.1% Triton X-100 
0.1% NaN3 
in PBS 
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5.1.8 Flow cytometry 

All flow cytometric analyses were carried out with a BD LSR II flow cytometer (BD 

Biosciences). Data were analyzed with the FACSDiva software (BD Biosciences), or 

FlowJo 7.6.5 (Tree Star Inc.), respectively.  

5.1.8.1 Analysis of hypodiploid nuclei 

Internucleosomal DNA-fragmentation as a central feature of apoptosis was assessed on 

the basis of the appearance of hypodiploid nuclei according to Riccardi and Nicoletti 

(Riccardi and Nicoletti, 2006) using hypotonic propidium iodide staining buffer. 5-6x103 

cells per well were seeded into 96-well plates, allowed to adhere overnight, stimulated 

with NW457 for 24 h, and irradiated with single fractions of 1, 3, 5, or 10 Gy, respectively. 

Subsequently, culture plates were spun down and supernatants were removed. Nuclei 

were released and stained for their DNA content by incubating the cells with hypotonic 

propidium iodide (PI) staining buffer at 37°C for 5 min (200 µl buffer per 10,000 cells). 

Forward scatter (FSC), sideward scatter (SSC), and PI fluorescence of the nuclei were 

analyzed flow cytometrically and all nuclei with less than diploid DNA content were 

considered apoptotic.  
 

Table 9. Composition of PI staining buffer 
 

Reagent Composition 

PI staining buffer 50 µg/ml Propidium iodide 
0.1% (w/v) Tri-sodium citrate dihydrate 
0.1% (v/v) Triton X-100 
in aqua dest. 

 

5.1.8.2 Analysis of cell surface proteins 

Flow cytometric analysis of cell surface proteins was performed with the help of 

fluorescently labeled primary antibodies (see Table 3). Cells were seeded into 6-well 

(5x105 cells per well) or 24-well plates (7x104 cells per well), allowed to adhere for 5 h, 

and stimulated with NW457 +/- irradiation for the indicated times. Afterwards, cells were 

trypsinized and collected by centrifugation. After washing in FACS staining buffer, cells 

were distributed for different stainings into a V-bottom 96-well plate and washed again 

with FACS staining buffer. Appropriate fluorochrome-conjugated primary antibodies and 

the corresponding isotype control antibodies were diluted in FACS staining buffer and 

added to the cells (dilutions see Table 3). After incubation for 30 min at 4°C, cells were 

washed twice, and finally resuspended in 100 µl FACS staining buffer for flow cytometry. 
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FSC, SSC and the respective fluorescence signals were analyzed. Relative expression of 

surface proteins was calculated on the basis of the following formula:  
 

(isotype) FI Median
FI Median

expression Relative =  

 

Table 10. Composition of FACS staining buffer 
 

Reagent Composition 

FACS staining buffer 
(Pharmingen Stain Buffer, BD 
Pharmingen) 

0.2% (w/v) BSA 
in PBS 

5.1.9 Detection of HSP70 release into cell culture supernatants 

In order to assess whether HSP90 inhibition by NW457 induces the cellular release of 

HSP70, cell culture supernatants were monitored for HSP70 using an HSP70-specific 

ELISA kit (DuoSet® IC, R&D Systems) according to the manufacturer’s protocol. Briefly, 

0.5-1x106 HCT116 cells per well were stimulated in 6-well plates with 0-300 nM NW457 as 

described before and incubated for 48 or 72 h, respectively. Culture supernatants were 

harvested and 100 µl of 1:5 dilutions were transferred to 96-well plates precoated with a 

mouse anti-human HSP70 capture antibody provided by the kit (see Table 3) according to 

the manufacturer’s protocol. After 2 h incubation and washing, a biotinylated rabbit anti-

human HSP70 detection antibody (see Table 3) was added and the samples were 

incubated for 2 h. After washing and 20 min incubation with streptavidin-HRP (horseradish 

peroxidase), samples were exposed to substrate solution for 20 min and the optical 

density was measured at 450 nm in a microplate reader (Synergy Mx, BioTek). 

Concentrations of released HSP70 were calculated using a standard curve prepared from 

a dilution series of recombinant human HSP70.  

5.1.10 Clonogenic survival assay 

Clonogenic survival was examined with the help of colony formation assays. Cells were 

seeded as single cell suspensions into 6-well plates in a range of 150-30,000 cells per 

well in order to yield 40-80 colonies per well depending on the different stimuli. After 

adherence for 4 h, cells were subjected to different treatment modalities varying in the 

time of drug exposure: In the first approach cells were treated with 10 nM NW457 or 0.1% 

DMSO as vehicle control, concomitantly irradiated with 0-5 Gy, and incubated in drug-

containing medium under standard conditions for 14 days. In the second approach cells 

were prestimulated with 10 nM NW457 or 0.1% DMSO for 24 h and irradiated afterwards. 

Drug-containing medium was replaced by drug-free medium directly before irradiation and 
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colony formation was allowed for the following 14 days. Subsequently, cells were fixed 

and stained with a solution containing 0.3% methylene blue in 80% ethanol, and colonies 

which consisted of more than 50 cells were quantified. Plating efficiencies and surviving 

fractions were determined according to the following formulas:  

The plating efficiency (PE) represents the percentage of seeded cells giving rise to 

colonies (without irradiation). The PE was calculated as follows:  
 

 
cellsseeded

100coloniescounted
  [%] PE

×=  

 

To determine the clonogenic survival in the presence or absence of NW457, two different 

plating efficiencies were calculated: PEDMSO of DMSO treated, unirradiated cells, and 

PENW457 of NW457 treated, unirradiated cells.  

The surviving fraction (SF) as a function of the irradiation dose applied, was calculated 

from the number of counted colonies with regard to the number of seeded cells and was 

calibrated on the PEDMSO or PENW457, respectively.  
 

  
PE

100
cells seeded

100colonies counted
  [%] SF

DMSO
1Gy ××=  

  
PE

100
cells seeded

100colonies counted
  [%] SF

NW457
10nM1Gy ××=+  

 

In order to quantify the radiosensitizing potential of NW457, the radiation dose giving 37% 

survival (D0) and the survival fraction at 3 Gy (SF3) were determined. Based on these 

parameters radiation enhancement ratios were calculated as the D0 or SF3 of DMSO 

treated cells divided by that of NW457 treated cells.  

5.2 Biochemical methods 

5.2.1 Preparation of whole cell protein lysates 

Whole cell protein lysates were prepared for Western blot analyses and caspase activity 

assays. Briefly, 0.2-1x106 cells per well were stimulated in 6-well plates as described 

before. Subsequently, cells were detached with a rubber spatula, transferred to a 2 ml 

tube on ice, and collected by centrifugation (11,000 g, 2 min, 4°C). Cells were washed 

with ice-cold PBS, and stored as dry pellets at -80°C until lysis. Whole cell protein extracts 

were prepared by adding approximately 100 µl of Western blot lysis buffer to 1x106 cells 

(for composition see Table 11) and incubating for 20 min on ice with occasional vortexing. 

Lysates were cleared by centrifugation (11,000 g, 10 min, 4°C), and supernatants were 
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transferred to fresh 1.5 ml tubes. Protein concentrations were determined by Bradford 

assay, and lysates were stored at -80°C until further use for a maximum of two months.  

5.2.2 Bradford assay 

In order to use accurately defined, equal amounts of total protein for Western blotting and 

caspase activity tests, the protein concentration of whole cell lysates was determined 

according to Bradford et al. (Bradford, 1976). For quantification, a standard curve of 

serially diluted bovine serum albumin (BSA, 0-300 µg/ml in PBS) was prepared. Cell 

lysates were diluted in H2O at a ratio between 1:41 and 1:101 to yield concentrations in 

the range of the standard curve. Then, 5 µl of standards and diluted samples were mixed 

with 250 µl 1x Bradford reagent (BioRad) in a 96-well plate and incubated for 5 min at 

room temperature. The absorption was measured at 595 nm in a microplate reader 

(Synergy Mx, BioTek), and sample concentrations were intrapolated from the standard 

curve.  

5.2.3 SDS-PAGE 

For Western blot analysis, whole cell protein lysates were separated by denaturing and 

reducing SDS polyacrylamide gel electrophoresis using 6-15% SDS polyacrylamide 

gradient gels.  

Separation gel solutions containing 6% and 15% acrylamide, respectively, were prepared 

by premixing separation gel buffer (pH 8.8), aqua dest., and acrylamide/bisacrylamide 

stock solution (see Table 11). Polymerization was initiated by subsequent addition of 

TEMED and ammonium peroxodisulfate (APS). Both gel solutions were rapidly transferred 

into a linear gradient mixer and casted into the gel apparatus. The separation gel was 

covered with isopropanol and allowed to polymerize for 1 h. Subsequently, isopropanol 

was removed, and the stacking gel solution was prepared by premixing stacking gel buffer 

(pH 6.8), aqua dest., and acrylamide/bisacrylamide stock solution (see Table 11). After 

addition of TEMED and APS the stacking gel was casted, and a comb was inserted to 

create the sample slots. The polymerized gel was mounted into the SDS-PAGE 

apparatus, and the electrode buffer reservoirs were filled with running buffer. Depending 

on the investigated target proteins, 10-200 µg of whole cell protein per lane were mixed 

with 1/9 vol 10x Laemmli buffer and heated to 95°C for 5 min. The samples were loaded 

into the gel pockets with a Hamilton syringe, and electrophoresis was performed for 16 h 

at 40 Volt until the bromophenol blue front had reached the lower edge of the gel.  
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Table 11. Reagents used for Western blotting experi ments 
 

Reagent Composition 

Acrylamide/bisacrylamide 
stock solution (37.5 :1) 

30% Acrylamide 
0.8% Bisacrylamide 
in aqua dest. 

Ammonium peroxodisulfate 
(APS) 

10% (w/v) APS 
in aqua dest. 

Laemmli buffer (10x) 625 mM Tris-HCl pH 6.8 
62.5% (v/v) Glycerol 
20% (w/v) SDS 
0.1% (w/v) Bromophenol blue 
10% (v/v) 2-Mercaptoethanol 
in aqua dest. 

SDS-PAGE running buffer 
(10x) 

250 mM Tris, 1.9 M Glycine 
1% SDS 
in aqua dest. 

Separation gel 6-15% (w/v) Acrylamide/Bisacrylamide 
390 mM Tris-HCl pH 8.8 
0.1% (w/v) SDS 
0.05% (w/v) APS 

Separation gel buffer 1.5 M Tris-HCl pH 8.8 
0.384% SDS 
in aqua dest. 

Stacking gel 5% (w/v) Acrylamide/Bisacrylamide 
135 mM Tris-HCl pH 6.8 
0.1% (w/v) SDS 
0.1% (w/v) APS 

Stacking gel buffer 1.0 M Tris-HCl pH 6.8 
0.74% SDS 
in aqua dest. 

Transfer buffer 40 mM Glycine 
44 mM Tris 
in 20% MeOH 

Western blot blocking buffer 5% Milk powder 
0.02% Triton X-100 
in 1x TBS 
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Reagent Composition 

Western blot lysis buffer 50 mM Tris pH 7.6 
150 mM NaCl 
1% Triton X-100 
in aqua dest. 
Supplemented with protease and 
phosphatase inhibitors directly before 
use: 
3 µg/ml Aprotinin 
3 µg/ml Leupeptin 
3 µg/ml Pepstatin 
2 mM PMSF 
Phosphatase inhibitor cocktail tablet 
PhosSTOP (Roche) 

Western blot washing buffer 
(10x) 

130 mM Tris pH 7.5 
1.5 M NaCl 
0.2% Triton X-100 
in aqua dest. 

5.2.4 Western blotting and immunodetection 

After electrophoresis, proteins were transferred onto a PVDF membrane, which had been 

activated with 100% methanol for 1 min and equilibrated in transfer buffer. Electrophoretic 

transfer was performed for 2 h at 0.5 Ampere at 4°C in transfer buffer (Table 11). 

Membranes were briefly washed in Western blot washing buffer and blocked in 5% skim 

milk at room temperature for 1 h. Incubation with the primary antibody solutions (diluted in 

Western blot washing buffer according to Table 3) was performed at 4°C overnight on a 

shaking device. After washing with Western blot washing buffer (3x 5 min), blots were 

incubated with IRDye®-conjugated secondary antibody solutions (diluted 1:20000 in 

Western blot blocking buffer, see Table 4) at room temperature for 1 h, washed again with 

Western blot washing buffer (2x 5 min, 2x 10 min, and 2x 15 min), and dried between 

Whatman® papers. The detection of IRDye® fluorescence signals was performed with an 

Odyssey® CLx infrared imaging system (LI-COR Biosciences).  

5.2.5 Caspase activity assay 

Caspase activity was examined in an enzymatic assay with whole cell protein lysates and 

fluorogenic peptides. The assay employs Ac-DEVD-AMC, a synthetic tetrapeptide 

substrate with a consensus sequence that is derived from the poly(ADP-ribose) 

polymerase cleavage site motif DEVD (Asp-Glu-Val-Asp) and labeled with AMC (7-amino-

4-methylcoumarin). Hence, it is preferentially cleaved by the effector caspases -3 and -7. 
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The release of fluorescent AMC can subsequently be used to quantify the effector 

caspase activity in apoptotic cells.  

Briefly, whole cell protein lysates of stimulated cells were prepared as described for 

Western blotting (see section 5.2.1) and protein concentrations were determined (see 

section 5.2.2). 20 µg of total protein were diluted in 100 µl caspase lysis buffer and mixed 

with equal volume of preheated (37°C) 2x DEVDase reaction buffer completed with Ac-

DEVD-AMC peptide (Bachem) and dithiothreitol (DTT) directly before the reaction. AMC-

fluorescence was kinetically measured in a microplate reader (Synergy Mx, BioTek, 

Excitation 360/9 nm, Emmission 460/9 nm) every minute for 1 h at 37°C. Relative caspase 

activity was calculated from the slope of the linear range of the resulting curves.  

 

Table 12. Buffers used for caspase activity assays 
 

Reagent Composition 

DEVDase reaction buffer 
(10x) 

375 mM HEPES-Na pH 7.4 
750 mM NaCl 
75% Sucrose 
0.75% CHAPS 
in aqua dest. 
10x DEVDase reaction buffer was used to 
prepare 2x DEVDase reaction mix, which was 
completed with 20 mM dithiothreitol (DTT) and 
100 µM AMC-conjugated peptide directly 
before reaction 

Caspase lysis buffer 20 mM HEPES-K pH 7.4 
84 mM KCl 
10 mM MgCl2 
0.2 mM EDTA 
0.2 mM EGTA 
0.5% NP40 

5.3 Molecular biological methods 

5.3.1 RNA extraction 

Total RNA was isolated by using the NucleoSpin® RNA II kit (Macherey-Nagel) according 

to the manufacturer’s protocol. Briefly, 1x106 cells were lysed in a chaotropic buffer, 

genomic DNA was sheared, isopropanol was added to adjust the binding conditions, and 

RNA was bound to the silica membrane. Afterwards, the membrane was desalted and 

contaminating DNA was subjected to DNase digestion. The membrane was extensively 

washed, and finally RNA was eluted under low ionic strength conditions.  
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5.3.2 Quantitation of RNA 

Total RNA was quantified using a NanoDrop spectrophotometer (NanoDrop 2000c, 

Thermo Scientific). The absorption at 260 nm was measured in order to calculate the RNA 

concentration according to the Lambert-Beer law, assuming that the extinction of 1 

corresponds to a pure solution of single-stranded RNA with a concentration of 40 µg/ml. 

To check for contaminations, the absorption at 280 nm was determined, and the ratio of 

A260/A280 was calculated. For highly pure solutions of nucleic acids the ratio should be in 

the range between 1.7 and 2.0. Potential contaminations resulting from the extraction 

procedure would increase the absorption at 280 nm, thus reducing the A260/A280 ratio. 

RNA was subsequently reversely transcribed into cDNA or frozen at -80°C for long-term 

storage. 

5.3.3 Reverse transcription 

1 µg of the isolated RNA was reversely transcribed with 200 u Superscript RevertAid H- 

reverse transcriptase in the presence of 50 µM random hexamers, 50 µM Oligo dT, 400 

µM dNTPs, and 1 u/µl Ribolock RNase inhibitor (all from Thermo Scientific) in a final 

volume of 20 µl. Mixtures for RNA denaturation and reverse transcription were prepared 

on ice as follows:  
 

Table 13. Reaction mix for RNA denaturation 
 

Random hexamers (Thermo Scientific) 1 µl 

Oligo(dT)18 (Thermo Scientific) 1 µl 

dNTP mix, 100 µM (Thermo Scientific)  1 µl 

Template RNA (0.5-1.0 µg) diluted in 
nuclease-free water 

9 µl 

 

After RNA denaturation at 65°C for 15 min, samples were chilled on ice, and the enzyme 

containing mixture was added:  
 

Table 14. Reaction mix for reverse transcription 
 

Nuclease-free water 2.5 µl 

5x Reaction buffer (supplied with 
reverse transcriptase) 

4 µl 

RiboLock RNase inhibitor (Thermo 
Scientific) 

0.5 µl 

RevertAid H- reverse transcriptase (200 
u/µl) (Thermo Scientific) 

1 µl 

Total volume  20 µl 
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For reverse transcription samples were incubated for 10 min at 25°C followed by 60 min at 

42°C. The reaction was terminated by heating at 70°C for 10 min. Synthesized cDNA was 

directly used for PCR or stored at -20°C.  

5.3.4 Quantitative real-time PCR 

In order to analyze the mRNA levels of different genes of interest, quantitative real-time 

PCR (qPCR) was performed with a LightCycler 480 II platform (Roche) using Maxima 

SYBR Green I mastermix (Thermo Scientific). Exon-exon boundary spanning, target-

specific primers were designed for HSP70, HSP90, the integrins alpha V, beta 3, and beta 

5, as well as the matrix metalloproteinases -2, -8, and -9 utilizing Primer Express 2.0.0 

software (Invitrogen) and purchased from Sigma-Aldrich (see Table 5). 18S rRNA served 

as reference for normalization. 

5-20 ng of cDNA were subjected to qPCR analyses with 300 nM primers and Maxima 

SYBR Green mastermix in a final volume of 20 µl (for composition see Table 15, for PCR 

protocol see Table 16), and for every target gene a relative standard curve of 6 log steps 

(1:10) was generated. Relative mRNA copy numbers were intrapolated from the 

respective standard curve and normalized on the values obtained for 18S rRNA. Finally, 

relative expression values were obtained by calibrating on the untreated control cell 

population. The following formula summarized the process of relative quantification:  
 

r)(Calibrato numbercopy  Relative(Sample)numbercopy  Relative

r)(Calibratonumbercopy  Relative(Sample)numbercopy  Relative

Calibrator
Sample

ratio expressionRelative
gene Target gene Reference

 gene Referencegene Target

×
×

=








 

 

Table 15. Reaction mix for quantitative real-time P CR 
 

2x Maxima SYBR Green/ROX qPCR  
Master Mix (Thermo Scientific) 

10 µl 

Forward primer (0.5-2 µM) 3 µl 

Reverse primer (0.5-2 µM) 3 µl 

Template cDNA (2.5-10 ng/µl) diluted in  
nuclease-free water 

2 µl 

Nuclease-free water 2 µl 

Total volume  20 µl 
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Table 16. Program used for qPCR performed on a Ligh tCycler 480 II 
 

Step Temperature 
[°C] 

Time 
[min:s] 

Number of 
cycles 

Preincubation / Initial denaturation 95 10:00 1 

Amplification 

Denaturation 95 00:10 

45 Annealing 60 00:10 

Elongation 72 00:10 

Melting Curve 

Denaturation 95 00:05 

1 Annealing 65 01:00 

Melting 97  

Cooling 40 00:30 1 

5.4 In vivo experiments 

In order to investigate the antitumor potency of the novel HSP90 inhibitor NW457 as 

radiosensitizing therapeutic in vivo, a syngenic heterotopic tumor mouse model was used. 

The experiments were conducted at the Department of Radiation Oncology of the 

University Hospital Erlangen with kind support of Udo Gaipl and Benjamin Frey.  

Throughout these studies, all mice were provided a special diet and water ad libitum and 

were kept individually in well-ventilated cages under standard conditions of humidity 

(55 ± 5%), temperature (22 ± 2°C), and light (12/12 hr light-dark cycles). The animal 

studies were conducted according to the guidelines of the Federation of European 

Laboratory Animal Science Associations (FELASA) and the Society of Laboratory Animals 

(GV-SOLAS).  

5.4.1 Tumor implantation 

Murine CT26 colon carcinoma cells were routinely cultivated as described above (see 

section 5.1.1.1). Prior to injection, cells were trypsinized, washed with Ringer’s solution 

(B. Braun), and adjusted to 4.9x106/ml in Ringer’s solution. Subsequently, 1.28x106 CT26 

cells were injected into the right flank of 8-week old female Balb/c mice (Janvier Labs) 

anesthetized with isoflurane (Abbott). Tumors were grown for 9 days consistent with an 

average tumor volume of approximately 200 mm3 and the tumor bearing mice were 

randomized into four experimental groups (NW457 only, vehicle only, 2x 5 Gy + 4x 

NW457, 2x 5 Gy + 4x vehicle).  
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5.4.2 In vivo drug administration, irradiation, and measurement of tumor volumes 

For in vivo studies NW457 was dissolved in DMSO as 100 mg/ml stock solution and 

stored at -20°C. Prior to injection, the stock solution was diluted with a half volume of 

Tween 20 followed by 8.5 volume of 0.9% NaCl (37ºC) to reach a final concentration of 

10 mg/ml (10/5/85 DMSO/Tween 20/saline). The vehicle control (DMSO) was prepared in 

the same way. A fresh preparation was used for each dosing. 100 mg/kg NW457 or 

vehicle control, respectively, were injected intraperitoneally in a volume of 500 µl on days 

9, 12, 18, and 24. Similar to the patient’s situation, irradiation was based on computed 

tomography planning in order to ensure precise and selective irradiation of the tumor 

tissue and protection of the surrounding normal tissue. Anesthetized mice (inhalation 

anesthesia with isoflurane) were positioned in a Plexiglas® box and irradiation was carried 

out on days 10 and 13 using a 6 MV linear accelerator (ONCOR, Siemens) with a total 

dose of 5 Gy. Tumor dimensions were measured every 2-3 days with an electronic digital 

caliper, and volumes were calculated using the formula (width x width x length)/2 (Euhus 

et al., 1986). The tumor growth was monitored to a maximum volume of 1,700 mm3 

according to the guidelines of the Federation of European Laboratory Animal Science 

Associations (FELASA) and the Society of Laboratory Animals (GV-SOLAS).  

5.5 Statistical methods 

5.5.1 Statistics 

Unless otherwise stated, data are presented as means ± SD for in vitro and means ± SEM 

for in vivo experiments. Mean values were compared by Student’s t-test. The threshold of 

statistical significance was set at p<0.05.  

5.5.2 Combination index 

In order to evaluate whether the combined application of irradiation and NW457 treatment 

results in antagonistic, additive or synergistic effects, the median-drug effect analysis 

method according to Chou-Talalay (Chou and Talalay, 1981, 1984) was used. This 

method calculates for each dose pair of irradiation and NW457 treatment a specific 

combination index (CI), which determines the degree of interaction between the analyzed 

therapy components, indicating either additivity (CI =1), synergism (CI <1), or antagonism 

(CI >1). The calculation was kindly carried out by Maximilian Niyazi (Department of 

Radiation Oncology, LMU Munich) based on the data obtained from FACS analyses of 

propidium iodide stained hypodiploid nuclei (see sections 6.1.3 and 6.2.1 of the results).  
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6 Results 

6.1 Targeting HSP90 with the novel small-molecule i nhibitor NW457 sensitizes 

colorectal cancer cells to ionizing radiation 

In the first part of this thesis, the impact of the novel pharmacological HSP90 inhibitor 

NW457 (6-hydroxy-pochoxime C) on tumor cell radiosensitization was investigated in 

colorectal cancer models with specific regard to the mechanisms of cell death induction 

and the relevance of the KRAS, p53, and BAX status. In addition, the tolerability of 

NW457 by primary hepatocytes and its antitumor activity in combination with radiotherapy 

in vivo were analyzed.  

6.1.1 Inhibition of HSP90 by NW457 induces the degr adation of HSP90 client 

proteins and mediates the upregulation of HSP70 exp ression, cell surface 

exposure, and release 

Pharmacological inhibition of HSP90 involves impaired ATPase activity and abrogated 

chaperone function (Prodromou et al., 1997; Stebbins et al., 1997), which in the cellular 

context leads to the proteasomal degradation of HSP90 client proteins (Connell et al., 

2001; Matts and Manjarrez, 2009). To provide a proof that NW457 acts as a potent 

inhibitor of HSP90 in tumor cells, the degradation of BRAF, Ephrin receptor A2 (EphA2) 

and EGF-R, three known client proteins of HSP90 (Ahsan et al., 2012; Annamalai et al., 

2009; Chen et al., 2012; Da Rocha Dias et al., 2005; Fukuyo et al., 2008; Gopal et al., 

2011; Lavictoire et al., 2003), was monitored. Human HCT116 colorectal cancer cells 

were treated with 0-300 nM NW457 for 24 h or 48 h, respectively, and the expression 

levels of EphA2 and EGF-R were measured by FACS surface staining, whereas BRAF 

protein levels were assessed by Western blot analyses of whole cell lysates (Figure 6A, B, 

C). Incubation with NW457 clearly induced a dose- and time-dependent decrease in 

EphA2, EGF-R and BRAF protein levels, thus strongly supporting its function as a potent 

HSP90 inhibitor. Apart from client protein degradation, upregulation of HSP90 and other 

heat shock proteins, for instance HSP70, has been described as a central feature of 

HSP90 inhibition (Jensen et al., 2008; Lundgren et al., 2009; Schilling et al., 2012; Stingl 

et al., 2010). Therefore, it was next examined, whether this upregulation could also be 

observed in case of NW457. Quantitative real-time PCR analyses revealed a profound 

induction of HSP90 and HSP70 mRNA 12 h after NW457 treatment, which was followed 

by an increase in HSP90 and HSP70 protein levels after 48 h (Figure 6C, D). In case of 

HSP70, this upregulation was also translated into cell surface exposure and release into 

culture supernatants as determined by FACS surface staining and ELISA measurements 
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(Figure 6E, F). Anti-HSP70 FACS surface staining and HSP70 ELISA experiments were 

performed in cooperation with Daniela Schilling (Department of Radiation Oncology, TU 

Munich).  

These results show convincingly that the key features of HSP90 inhibition, including 

degradation of prototypical client proteins, upregulation of HSP90 and HSP70 expression, 

as well as HSP70 externalization and release, which have been described for substances 

of the first and second generation of HSP90 inhibitors (Annamalai et al., 2009; Da Rocha 

Dias et al., 2005; Jensen et al., 2008; Schilling et al., 2012; Stingl et al., 2010), can be 

observed after treatment with NW457. It hence can be concluded that NW457 is a potent 

HSP90 inhibitor that operates in the nanomolar range. Its antitumor effects alone and in 

combination with ionizing irradiation will be characterized in the following.  
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Figure 6. HSP90 inhibition by NW457 treatment of co lorectal cancer cells as 
measured by client protein degradation, upregulatio n of HSP90 and HSP70 
expression, HSP70 cell surface exposure, and HSP70 release. 
Human HCT116 colorectal cancer cells were treated with 0-300nM NW457 for the 
indicated times and subjected to different types of analyses. (A) EphA2 and EGF receptor 
(EGF-R) surface expression was measured 24 h and 48 h after stimulation with NW457 
by flow cytometric analysis and is shown as median fluorescence intensity normalized on 
the median fluorescence of the respective isotype control. Data are means ± standard 
deviation (SD) of three independent experiments. (B) Representative dot plots of (A) and 
appropriate isotype controls. (C) Protein levels of BRAF, HSP70, and HSP90 were 
analyzed by Western blot analysis of whole cell lysates (70 µg protein per lane) 24 h and 
48 h after stimulation with NW457. Vinculin served as loading control. Blots of one 
representative experiment are shown. (D) NW457-dependent induction of HSP70 and 
HSP90 mRNA expression was measured by quantitative real-time PCR 12 h after 
stimulation. Transcription is depicted as relative expression normalized on 18S mRNA and 
calibrated on the vehicle control. Data are means ± SD of three independent experiments. 
(E) Exposure of HSP70 on the cell surface was determined by anti-HSP70 FACS surface 
staining 48 h and 72 h after treatment with NW457. Mean fluorescence intensity (Fl) 
values of propidium iodide-negative (PI-negative) cells are shown of one experiment 
performed in duplicates that displayed similar values. This experiment was performed in 
cooperation with Daniela Schilling (Department of Radiation Oncology, TU Munich). 
(F) NW457-dependent release of HSP70 was quantified by ELISA analysis of HCT116 
cell supernatants 48 h and 72 h after stimulation. Data represent means of intra-assay 
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duplicates of one experiment that displayed similar values. This experiment was 
performed in cooperation with Daniela Schilling (Department of Radiation Oncology, TU 
Munich).  

6.1.2 NW457 induces apoptosis and sensitizes colore ctal cancer cells to ionizing 

radiation 

A number of HSP90 client proteins, such as ERBB2 (HER-2), AKT, BRAF, and EGF-R, 

have been identified as key players of the cellular response to ionizing radiation in tumor 

cells (Bull et al., 2004; Machida et al., 2003). Consequently, pharmacological inhibitors of 

HSP90 were assumed to interfere with the radioresponse via the depletion of proteins 

associated with relevant pathways. Indeed, various HSP90 inhibitors were demonstrated 

to induce apoptosis and mediate radiosensitization of cancer cells (Bisht et al., 2003; Bull 

et al., 2004; Ju et al., 2011; Machida et al., 2005; Russell et al., 2003; Wang et al., 2011). 

Therefore, both apoptosis-inducing and radiosensitizing effects of the novel HSP90 

inhibitor NW457 were characterized in the following – in a first attempt using Hoechst 

33342 DNA staining and fluorescence microscopic evaluation. For this purpose, HCT116 

cells were treated with NW457 or DMSO as vehicle control for 24 h, irradiated with 5 Gy, 

and apoptotic nuclei were quantified 24-72 h after irradiation. After treatment with NW457 

alone, typical apoptosis-associated morphological changes, including chromatin 

condensation and nuclear fragmentation, were observed in a time-dependent manner 

(Figure 7A). Similar results were obtained for irradiation with 5 Gy alone. Notably, the 

combination of NW457 treatment and irradiation clearly potentiated apoptosis induction 

and strongly inhibited cell proliferation. Typical apoptosis-associated nuclear phenotypes 

of early and late apoptotic phases are depicted with higher magnification in Figure 7B. 

Quantification of the microscopic data revealed a time-dependent, significant 

enhancement of apoptosis induction upon combined NW457 plus irradiation treatment 

versus irradiation or NW457 incubation alone (Figure 7C, *p<0.01 for all time points 

analyzed). In order to compare the potency of NW457 with a first generation HSP90 

inhibitor, HCT116 nuclei were alternatively analyzed after stimulation with geldanamycin 

(GA) in the presence or absence of irradiation. As depicted in Figure 7D, NW457 showed 

similar potency in apoptosis induction and radiosensitization of HCT116 cells as 

geldanamycin (GA).  
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Figure 7. NW457 induces apoptosis and sensitizes co lorectal cancer cells to 
ionizing radiation. 
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HCT116 cells were treated with 30 nM NW457 or DMSO as vehicle control for 24 h, 
irradiated with 5 Gy, and subjected to Hoechst 33342 staining after 24-72 h. 
(A) Representative photographs reveal chromatin condensation and nuclear 
fragmentation as typical apoptosis-associated phenotypes in response to NW457 
treatment and irradiation. Scale bars indicate 20 µm. (B) Typical apoptosis-associated 
changes of the nuclear morphology in early and late apoptotic phases are magnified from 
photographs in (A). (C) Time course analysis of NW457-mediated radiosensitization 24, 
48, and 72 h post irradiation. Values represent means ± SD of three independent 
experiments. *p<0.01 for combined treatment vs. IR or NW457 only. (D) The percentage 
of cells with apoptotic nuclear phenotype in response to IR, 30 nM NW457 or 
geldanamycin (GA) treatment was quantified 72 h after irradiation. Values represent 
means ± SD of three independent experiments. *p<0.01.  
 
In addition to apoptotic structures, morphological characteristics of mitotic catastrophe, a 

form of cell death that results from aberrant mitosis, were detected in the form of giant, 

multi-lobed nuclei and micronuclei in response to irradiation and NW457 treatment (Figure 

7A, see pictures of combined treatment).  

In summary, these data demonstrate an anti-proliferative and pro-apoptotic effectiveness 

of the novel HSP90 inhibitor NW457 in HCT116 colorectal cancer cells, which 

considerably enhances the antitumor effects of ionizing irradiation.  

6.1.3 Interaction of NW457 stimulation and ionizing  radiation occurs in a 

synergistic mode 

In parallel to microscopic evaluation, the extent of NW457-mediated apoptosis was 

examined by flow cytometric analysis of propidium iodide (PI) stained nuclei. Here, 

apoptotic nuclei are identified due to their hypodiploid (subG1) DNA content. HCT116 

cells were treated with 0-300 nM NW457 for 24 h, irradiated with 0-5 Gy, and 48 h after 

irradiation the nuclear DNA content was assessed by hypotonic PI staining and FACS 

analysis. Figure 8A shows representative nuclear DNA profiles of HCT116 cells treated 

with 100 nM NW457 or DMSO (vehicle control) +/- irradiation with 5 Gy, and Figure 8B 

depicts the percentage of hypodiploid nuclei for all combinations tested. Whereas 

irradiation alone only marginally stimulated the appearance of hypodiploid nuclei, 

exposure to NW457 resulted in a strong and concentration dependent increase, attaining 

a maximum at concentrations >100nM (Figure 8B). However, this effect was further 

elevated when the cells were additionally irradiated - a finding, which again emphasizes 

the radiosensitizing potency of NW457.  

In order to assess the quality of interaction (synergism, additivity, antagonism) between 

NW457 treatment and ionizing radiation, combination indices (CI) were calculated 

according to Chou-Talalay (Chou and Talalay, 1981, 1984) for all applied combinatory 

treatments (Figure 8C). 
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Figure 8. Exposure to NW457 time- and dose-dependen tly induces the formation of 
hypodiploid nuclei and shows a synergistic interact ion with ionizing radiation. 
HCT116 cells were treated with 0-300 nM NW457 or DMSO as vehicle control for 24 h, 
irradiated with 0-5 Gy, and subjected to hypotonic propidium iodide staining for 
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subsequent FACS analysis of hypodiploid (subG1) nuclei. (A) Representative profiles of 
the nuclear DNA content 48 h after irradiation. Numbers indicate the percentage of 
hypodiploid nuclei. (B) Dose-dependence of hypodiploid nuclei formation in response to 
treatment with NW457 measured 48 h after irradiation with 0-5 Gy. Means ± SD of four 
independent experiments are shown. (C) Combination indices (CI) calculated from the 
data shown in (B). Values highlighted in grey (CI <1) demonstrate a synergistic mode of 
action between NW457 and irradiation. (D) Time course of hypodiploid nuclei formation 
measured 0-48 h after irradiation with 5 Gy +/- treatment with 100 nM NW457. Data are 
means ± SD of three independent experiments. *p<0.01 for combined treatment vs. IR 
only.  
 

Based on the data from Figure 8B it was tested whether the observed effect - apoptosis 

induction as measured by the percentage of subG1 nuclei - was due to an additive or 

synergistic interaction between NW457 and irradiation. Basically, combination indices <1 

reveal a synergistic interaction of the two examined modalities, combination indices =1 

represent additivity, and combination indices >1 indicate an antagonistic interaction. 

Interestingly, 80% of the analyzed combinations showed synergistic effects (CI <1, 

highlighted in grey) and these were predominantly observed for combinations comprising 

irradiation doses of 3 or 5 Gy, respectively. As the combined treatment with 100 or 

200 nM plus 5 Gy irradiation resulted in the greatest synergistic effects (illustrated by 

combination indices of 0.50 and 0.49, respectively), 100 nM was selected for further 

investigating the kinetics of NW457-mediated radiosensitization. As shown in Figure 8D, 

exposure to 100 nM NW457 time-dependently increased the percentage of hypodiploid 

nuclei, and significantly enhanced irradiation-induced DNA fragmentation, when combined 

with 5 Gy (*p<0.01 for combination treatment vs. IR alone at 36 and 48 h post irradiation).  

Taken together, these data strengthen the observations from the microscopic analyses in 

section 6.1.2 and confirm the potent radiosensitizing capacity of NW457 on colorectal 

cancer cells.  

6.1.4 The radiosensitizing effects of NW457 involve  the activation of the caspase 

cascade with subsequent caspase substrate cleavage 

The data presented so far have identified the pochoxime HSP90 inhibitor NW457 as a 

potent radiosensitizer which significantly enhances the radiosensitivity of colorectal cancer 

cells by inducing apoptosis. Ionizing irradiation predominantly stimulates the intrinsic 

apoptotic pathway, which is characterized by mitochondrial release of cytochrome c with 

subsequent formation of the apoptosome, a complex of cytochrome c and APAF-1 

(Apoptotic protease activating factor 1) that in turn provokes the activation of the caspase 

cascade. Caspases are a family of aspartate-specific cysteine proteases. Upon activation, 

the initiator caspase-9 proteolytically activates the effector caspases -3, -6, and -7. These 

in turn mediate the cleavage of caspase substrates, such as the poly(ADP-
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ribose)polymerase (PARP), and finally give rise to the full biochemical and morphological 

outcome of apoptosis (Coultas and Strasser, 2000; Rudner et al., 2001; Strasser et al., 

2000). Therefore, the impact of NW457 treatment +/- irradiation on the activation of the 

caspase cascade and caspase substrate cleavage was analyzed in the next step. To this 

end, HCT116 cells were stimulated with 0-300 nM NW457 for 24 h, irradiated with 0-5 Gy, 

and 24 h later whole cell lysates were applied to Western blot analyses of pro-caspases -9 

and -3 processing as well as cleavage of the prototypical caspase substrate PARP. As 

shown in Figure 9A, administration of NW457 dose-dependently stimulated the processing 

of pro-caspases -9 and -3 with concomitant PARP cleavage. This was further augmented 

by additional irradiation, most pronounced at 300 nM plus 5 Gy. To complement the 

proteolytic processing data, caspase activity measurements were performed using the 

fluorogenic peptide Ac-DEVD-AMC (N-acetyl-Asp-Glu-Val-Asp-7-amino-4-

methylcoumarin), which mainly reflects the consensus cleavage motif of caspase-3. Here, 

a dose-dependent increase in DEVDase activity was detected (particularly in the 

concentration range >50 nM NW457), which was further amplified by additional irradiation 

(Figure 9B). Time course analyses of DEVDase activity and PARP cleavage disclosed 

that the onset of caspase activation occurred later than 12 h after irradiation (Figure 9C, 

D). Consistent with the subG1 FACS data shown in Figure 8D, DEVDase activity was 

significantly more pronounced in response to combined treatment than after irradiation or 

NW457 only approaches (Figure 9C, *p<0.05 for combination treatment vs. IR or NW457 

alone, respectively, 36 and 48 h post irradiation).  

These data confer first mechanistic insights that the novel HSP90 inhibitor NW457 exerts 

its radiosensitizing potential in colorectal cancer cells by sensitizing the cells for apoptosis 

and caspase activation via the mitochondrial pathway.  
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Figure 9. NW457-mediated radiosensitization of colo rectal cancer cells involves the 
activation of caspases and caspase substrate cleava ge. 
HCT116 cells were stimulated with 0-300 nM NW457 for 24 h, irradiated with 0-5 Gy, and 
0-48 h after irradiation whole cell lysates were prepared and then subjected to Western 
blot analyses of pro-caspases -9 and -3 processing, PARP cleavage, and caspase activity 
tests with DEVD-AMC peptide. (A) Processing of pro-caspases -9, and -3, and cleavage 
of the caspase substrate PARP were analyzed by Western blotting 24 h after irradiation 
(150 µg protein per lane). Vinculin (10 µg per lane) was used as loading control. Filled 
arrowheads indicate the full length forms, open arrowheads show the cleavage products. 



Results 

 66

Each blot is representative for one of three independent experiments. (B) Caspase activity 
was measured by DEVDase assays in protein lysates obtained from cells treated as in 
(A). 10 µg total protein was used per sample; data are means ± SD of three independent 
experiments. (C) Time course analysis of DEVDase activity 0-48 h after irradiation with 
5 Gy +/- 100 nM NW457. 10 µg total protein was used per sample. Data show means 
± SD of one representative experiment performed in quadruplicates. Data of further 
experiments are shown in Appendix 1. *p<0.05 for combined treatment vs. IR only. 
(D) Time dependence of proteolytic pro-caspase-3 processing and PARP cleavage 0-48 h 
after irradiation. 150 µg protein per lane was used for PARP and caspase-3 detection, 
10 µg for vinculin. Filled arrowheads indicate the full length forms and open arrowheads 
depict the cleavage products. Each blot is representative for one of three independent 
experiments. Western blot experiments were performed in cooperation with Anne Ernst.  

6.1.5 NW457-mediated apoptosis induction and radios ensitization do not require 

functional p53 

Stimulation of the mitochondrial apoptosis pathway by ionizing irradiation has been shown 

to essentially rely on p53-mediated induction of pro-apoptotic proteins, including the pro-

apoptotic BCL-2 family member BAX (Miyashita and Reed, 1995; Yin et al., 1997). To 

clarify whether this also applies to NW457-mediated apoptosis induction and 

radiosensitization, two previously described HCT116 subclones were employed which are 

deficient in p53 or BAX, respectively (Bunz et al., 1998; Zhang et al., 2000). The cells 

were incubated with 100 nM NW457 for 24 h, irradiated with 5 Gy, and 0-48 h after 

irradiation whole cell lysates were prepared and subjected to Western blot analyses as 

well as DEVDase activity tests (Figure 10A). As expected, p53-knockout cells revealed no 

measurable p53 expression, and irradiation-induced upregulation of p21, a prototypical 

downstream target of p53, was strongly attenuated. Nevertheless, PARP cleavage and 

DEVDase activity were clearly detected, even though to a slightly lesser extent than in 

wild-type cells. Interestingly, the caspase activation occurred virtually in the absence of 

BAX, since both the basal expression of BAX and the treatment-induced upregulation - 

which was observed in case of the wild-type cells - were essentially abrogated in the  

p53 -/- cell line. In strong contrast, genetic ablation of BAX critically interfered with 

caspase activation in response to NW457 treatment and irradiation, since only marginal 

DEVDase activity and almost no PARP cleavage were detected in BAX -/- cells. These 

data suggest that activation of the caspase cascade in response to the combined 

treatment with NW457 and ionizing irradiation does not require functional p53 but involves 

BAX-dependent mechanisms. The question that arises at this point is how caspase 

activation was initiated in p53 -/- cells, which failed to induce BAX expression. Notably, 

there were no appreciable changes in the protein levels of BAK, a close relative of BAX, 

which is discussed to be able to compensate for the loss of BAX under certain conditions, 

or BCL-xL, an anti-apoptotic member of the BCL-2 family, respectively (Kepp et al., 2007; 

Mondal et al., 2012). However, a constitutive upregulation of the pro-apoptotic cell cycle 
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regulator p14 ARF was observed in p53 -/- cells that might account for caspase activation 

in response to NW457 treatment and irradiation. In this regard it has previously been 

reported that p14 ARF can mediate apoptosis in a BAX- and p53-independent manner 

(Hemmati et al., 2002; Hemmati et al., 2006). However, the downstream effectors which 

couple p14 ARF to the signaling pathways of apoptosis remain elusive and other 

apoptosis regulators, which have not been investigated here, might also be involved.  
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Figure 10. NW457-mediated apoptosis induction and r adiosensitization do not 
require functional p53. 
HCT116 wild-type cells and p53-deficient or BAX-deficient subclones were treated with 0-
300 nM NW457 for 24 h, irradiated with 0-5 Gy, and subjected to Western blot analyses, 
DEVDase activity measurements, and FACS analyses of subG1 nuclei. (A) Upper panel: 
Western blot analysis of crucial signaling proteins involved in apoptosis after stimulation 
with 100 nM NW457 and 5 Gy 0-48 h after irradiation (150 µg protein per lane). Vinculin 
was used as loading control (10 µg protein per lane). Each blot is representative of three 
independent experiments. Lower panel: DEVDase activity measured in whole cell lysates 
(10 µg protein per sample). Data are means ± SD of three experiments. Experiments were 
performed in cooperation with Anne Ernst. (B) FACS analysis of subG1 nuclei of p53 -/- 
and BAX -/- cells 48 h after irradiation +/- NW457 treatment. Means ± SD of three 
independent experiments are shown. See Figure 8B for comparison with HCT116 wild-
type cells. (C) Combination indices were calculated from the data shown in (B). Values 
highlighted in grey demonstrate a synergistic mode of action between NW457 treatment 
and ionizing radiation (CI <1). See Figure 8C for comparison with HCT116 wild-type cells.  
 

In the next step, apoptosis induction was examined in p53- and BAX-deficient HCT116 

cells on the basis of subG1 nuclei formation. Cells were treated with 0-300 nM NW457 for 

24 h, irradiated with 0-5 Gy, and 48 h after irradiation FACS analyses of hypodiploid nuclei 

were performed (Figure 10B). p53-knockout cells revealed an NW457 dose-dependent 

increase in the percentage of subG1 nuclei comparable to the one observed in wild-type 
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cells (for combinations with 3 or 5 Gy) or even slightly increased (for combinations with 

0 or 1 Gy). Notably, enhancement of NW457-mediated apoptosis induction in response to 

additional irradiation was less pronounced in p53 -/- cells than in the wild-type. 

Consistently, the degree of synergism between NW457 and irradiation was strongly 

reduced and the number of synergistic combinations was clearly smaller in these cells 

than in case of the wild-type (Figure 10C, 7 versus 12 combinations with CI <1; for wild-

type cells see Figure 8C).  

BAX -/- cells were almost completely resistant to NW457 treatment and irradiation as 

indicated by only marginal formation of subG1 nuclei. Even treatment with 300 nM NW457 

plus 5 Gy irradiation increased the percentage of subG1 nuclei to only 25.4% (Figure 10B) 

compared to 85.1% in wild-type cells (Figure 8B). Moreover, the degree of synergism 

between NW457 and irradiation was further reduced in these cells (only 4 combinations 

with CI <1).  

These findings are in line with the data of caspase activation and suggest that both BAX-

dependent and -independent mechanisms are involved in NW457-mediated apoptosis 

induction and radiosensitization, whereas p53 obviously is dispensable. Thus, it can be 

concluded that NW457 exerts its radiosensitizing effects in colorectal cancer cells via the 

mitochondrial death pathway even in the absence of functional p53. Given that p53 is 

mutated or lost in up to 50% of colorectal cancers (Bazan et al., 2005; Lopez et al., 2012; 

Naccarati et al., 2012), NW457 appears as a highly attractive tool for anticancer therapies 

also in this regard.  

 

6.1.6 NW457 augments radiation-induced clonogenic c ell death of colorectal 

cancer cells 

In order to investigate the long-term effects of NW457 on irradiation-induced cell death, 

clonogenic survival assays were performed. This endpoint is considered as one of the 

most relevant in vitro endpoints to predict potential radiosensitizing effects in vivo.  

Depending on inherent plating efficiency and applied stimulus, HCT116 wild-type, BAX-

knockout, and p53-knockout cells were seeded in varying densities, irradiated with 0-5 Gy, 

and cultivated for 14 days in the presence or absence of 10 nM NW457. Afterwards, the 

surviving fraction was determined on the basis of the number of resulting colonies 

normalized to the number of seeded cells and the respective plating efficiency. In these 

experiments, the relatively low drug concentration of 10 nM was selected in order to 

obtain plating efficiencies of at least 50% of vehicle-treated samples. Permanent 

incubation with NW457 was deliberately chosen, since conventional chemo- and 
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molecularly targeted therapeutics are commonly administered over a prolonged time in 

the clinic.  

As can be seen in Figure 11, irradiation dose-dependently reduced the clonogenicity of all 

three cell lines. p53 -/- cells showed a certain degree of resistance, whereas BAX -/- cells 

appeared to be slightly more sensitive towards irradiation in comparison to the wild-type 

controls. Importantly, exposure to the HSP90 inhibitor NW457 enhanced radiation-induced 

clonogenic cell death in all three cell lines, with a significant reduction of clonogenic 

survival particularly being observed in the lower dose range of irradiation (1 and 3 Gy for 

wild-type and BAX -/- cells, 1 Gy for p53 -/- cells; *p<0.05). Hence, NW457 apparently 

exerts a long-term radiosensitizing effect in HCT116 cells, which is essentially 

independent of functional p53 and BAX. These findings are to a certain degree contrasting 

with the data on apoptosis induction as described in chapter 6.1.5 indicating that BAX-

deficient HCT116 cells did not undergo apoptosis. However, it has to be considered that 

apoptosis is only one form of cell death that can be induced by ionizing radiation and 

HSP90 inhibition, and that clonogenic cell death might also result from necro(pto)sis, 

mitotic catastrophe, as well as cellular senescence, or irreversible cell cycle arrest (Lauber 

et al., 2012; Roninson et al., 2001). Signs of mitotic catastrophe, such as giant, multi-

lobed nuclei and micronuclei formation, were clearly detected in NW457-treated and 

irradiated cells (see Figure 7A) and have already been described in context with other 

HSP90 inhibitors, such as geldanamycin, 17-AAG, or NVP-AUY922 (Moran et al., 2008; 

Nomura et al., 2004; Stecklein et al., 2012; Zaidi et al., 2012). Moreover, the results here 

illustrate that the HCT116 subclone with the strongest apoptosis induction in response to 

NW457 treatment (p53 -/- subclone) reveals the highest percentage of clonogenic 

survival, and vice versa (BAX -/- subclone displays the weakest apoptosis induction, but 

the lowest clonogenic survival). This might be explained, at least partially, by recent 

observations showing that tumor cells undergoing apoptosis can generate proliferation 

signals, such as prostaglandin E2, in a caspase-3 dependent manner for the surviving 

tumor cells (Huang et al., 2011).  

Taken together, these data suggest that NW457-mediated radiosensitization of colorectal 

cancer cells is not exclusively due to apoptotic cell death, but might involve other cell 

death forms which reduce the clonogenic survival independently of functional p53 and 

BAX.  

 



Results 

 71

 

Figure 11. NW457 enhances radiation-induced clonoge nic cell death in colorectal 
cancer cells. 
(A) HCT116 wild-type cells, (B) p53-deficient, and (C) BAX-deficient subclones were 
applied to clonogenic survival assays after irradiation with 0-5 Gy in the absence or 
presence of 10 nM NW457. After irradiation cells were incubated in drug-free or drug-
containing medium for 14 days, and the surviving fraction was calculated on the basis of 
the resulting colonies with more than 50 cells each. Data represent means ± SD of at least 
three independent experiments performed in triplicates. For NW457-treated samples 
normalized and not normalized data are given with respect to the plating efficiency in the 
presence or absence of NW457. Student's t-test was performed between normalized 
samples of identical irradiation dose ± NW457; *p<0.05.  
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6.1.7 Colorectal cancer cells are sensitive to HSP9 0 inhibition irrespective of their 

KRAS status 

KRAS (Kirsten rat sarcoma viral oncogene homolog) is one of the most prominent human 

proto-oncogenes as it exhibits mutations in approximately 30% of all human cancers. 

KRAS mutations are predominantly found in cancers of the pancreas, intestine, and biliary 

tract (Karnoub and Weinberg, 2008). KRAS belongs to the family of RAS proto-

oncogenes, which encode small GTPases that play key roles in signal transduction 

processes downstream of different receptor tyrosine kinases orchestrating survival, cell 

cycle, and motility (Karnoub and Weinberg, 2008). KRAS mutations occur mainly as 

activating point mutations in codons 12 and 13 and may be used as suitable biomarkers to 

predict the responsiveness to therapeutic agents targeting signaling molecules upstream 

of KRAS, such as EGF-R (Amado et al., 2008; Loupakis et al., 2009). In this regard, 

targeted EGF-R therapies based on blocking antibodies or tyrosine kinase inhibitors 

exhibit only limited success if KRAS or other downstream factors are constitutively 

activated (Amado et al., 2008; Khambata-Ford et al., 2007; Lievre et al., 2008). 

Consequently, KRAS mutations remain a therapeutic challenge, particularly in colorectal 

carcinomas, where the oncogene is mutated in up to 50% of all cases (Bazan et al., 

2005). Therefore, novel therapeutic approaches that are not sensitive to activating KRAS 

mutations are urgently needed.  

In order to define the impact of mutant KRAS on the responsiveness of colorectal cancer 

cells to NW457, this work made use of an isogenic pair of colorectal carcinoma cell lines 

differing only in their KRAS status - the HCT116 cell line, which harbors one wild-type 

KRAS allele and one KRAS allele with an activating point mutation in codon 13, and the 

Hke3 subclone, in which the mutant allele was genetically ablated by homologous 

recombination and which consequently exhibits wild-type KRAS status (Shirasawa et al., 

1993). HCT116 and Hke3 cells were treated with NW457 or the EGF-R inhibitor 

cetuximab (as an indicator of the KRAS status) for 24 h, subsequently irradiated with 0 or 

5 Gy, and cellular viability was assessed in Alamar Blue assays 48 or 72 h afterwards. 

Whereas the viability of heterozygous KRAS mutant HCT116 cells remained basically 

unaffected after exposure to cetuximab (Figure 12A, p>0.05 for cetuximab vs. none at 

48 h and 72 h), the viability of wild-type KRAS expressing Hke3 cells was reduced in 

response to cetuximab treatment (p<0.05 for cetuximab vs. none at 72 h). The detected 

inherent radiosensitivity of KRAS wild-type and mutant cells differed, as the KRAS wild-

type Hke3 cells revealed a more profound reduction in viability, particularly 72 h after 

irradiation (Figure 12A, p<0.05 for 5 Gy vs. none at 72 h). Most intriguingly, the novel 

HSP90 inhibitor NW457 clearly reduced the viability of both cell lines in a dose-dependent 
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manner (Figure 12B). For cases in which the cells had been pre-stimulated with NW457 

concentrations <100 nM, the viability of Hke3 cells was consistently lower compared to 

HCT116 cells and further decreased by additional irradiation, although this was not 

statistically significant (Figure 12B, p>0.05).  
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Figure 12. Colorectal cancer cells are sensitive to  HSP90 inhibition irrespective of 
their KRAS status. 
(A) Viability of isogenic HCT116 colorectal cancer cell lines differing only in their KRAS 
status was investigated in response to cetuximab treatment by Alamar Blue assays. 
HCT116 (KRASwt/mut) and Hke3 (KRASwt/-) cells were incubated with 20 µg/ml cetuximab 
or DMSO (vehicle) for 24 h, irradiated with 0 or 5 Gy, and subjected to Alamar Blue 
assays 48 and 72 h after irradiation. The cetuximab concentration (20 µg/ml) was selected 
according to previous publications indicating its potent cytotoxic effects on different 
colorectal carcinoma cell lines (van Houdt et al., 2010; Xu et al., 2005). Alamar Blue 
reduction was calibrated on the vehicle-treated controls (100% viability) and is shown as 
means ± SD of three independent experiments. (B) Viability of HCT116 (KRASwt/mut) and 
Hke3 (KRASwt/-) cells was investigated in response to 0-300 nM NW457 +/- irradiation. 
Cells were stimulated as described in (A). (C) Clonogenic survival of Hke3 cells after 
irradiation was examined in the presence or absence of 10 nM NW457 as described for 
Figure 11. Data represent means ± SD of three independent experiments. For NW457-
treated samples normalized and not normalized data are given. Student's t-test analysis 
was performed between samples of identical irradiation dose ± NW457; *p<0.05.  
 

In colony formation assays, irradiation dose-dependently reduced the clonogenic survival 

of both cell lines (Figure 12C). In line with the viability data above, the KRAS wild-type 

Hke3 cells revealed stronger radiosensitivity than the KRAS mutant HCT116 cells. 

Exposure to 10 nM NW457 further decreased the clonogenicity of both cell lines and 

demonstrated significant radiosensitization in cases of irradiation with 1 or 3 Gy (*p<0.05). 

From these findings it can be concluded that the compromising effects of NW457 on 

colorectal cancer cell viability and clonogenic survival are in essence independent of the 

cellular KRAS status. These results confirm very recent observations showing that other 

HSP90 inhibitors, such as ganetespib (STA-9090), 17-AAG, and PU-H71, also performed 

potent antitumor activity in tumor cell lines expressing mutant variants of KRAS 

(Acquaviva et al., 2012; Azoitei et al., 2012).  
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6.1.8 NW457 reveals very little hepatocytotoxicity 

During the preclinical development and characterization of the first generation HSP90 

inhibitors, such as geldanamycin (GA) and its derivatives 17-AAG and 17-DMAG, severe 

limitations were encountered in the form of profound hepatotoxicity (Cysyk et al., 2006; 

Supko et al., 1995), which confined the dose schedule for in vivo studies and finally 

restricted the success of these compounds in clinical trials. GA-induced liver toxicity is 

supposed to be associated with the benzoquinone ring as this moiety is metabolized by 

liver microsomes and generates free radicals that finally induce the hepatotoxic effects 

(Powis, 1989). Since radicicol and its pochoxime derivatives lack this hydroquinone 

moiety, they are thought to be considerably less hepatotoxic.  

In order to assess this in the case of the novel compound NW457 and to exclude potential 

hepatotoxic effects prior to its application in in vivo studies, primary hepatocytes were 

isolated from C57BL/6 mice and then exposed to increasing concentrations of NW457 or 

geldanamycin, respectively. Both drugs were applied in same concentrations as they had 

demonstrated comparable cytotoxic effects in tumor cells before (Figure 7D). Cellular 

viability was examined 24-48 h later in Alamar Blue assays and hepatocellular 

morphology was monitored by immunofluorescence staining.  

As expected, geldanamycin dramatically reduced the viability of primary hepatocytes in a 

time- and dose-dependent manner (Figure 13A). Morphologically, typical hepatocellular 

features including binucleation due to amitosis and a distinctive cytoskeleton were 

observed in the DMSO-treated control population (Figure 13B). In clear contrast, 

geldanamycin-induced cell death was characterized by a complete loss of the typical 

hepatocellular shape, accompanied by cellular shrinkage, atypical distribution and 

clustering of tubulin and actin, as well as nuclear flattening. In addition, features of 

apoptosis, including nuclear fragmentation and formation of apoptotic bodies, as well as 

autophagic phenotypes with multiple intracellular vesicles were observed. In strong 

contrast, primary hepatocytes exposed to NW457 did not exhibit any of the mentioned 

characteristics, and even high inhibitor concentrations did not perturb the typical 

hepatocellular morphology. Concomitantly, the cellular viability remained virtually 

unaffected in response to the novel HSP90 inhibitor (Figure 13A).  

These results open the perspective for the in vivo application of NW457 in order to 

validate the promising in vitro results on the basis of a murine model of colorectal cancer.  
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Figure 13. NW457 reveals very little hepatocytotoxi city. 
Primary hepatocytes isolated from C57BL/6 mice were exposed to 0-300 nM NW457, 
geldanamycin, or DMSO as vehicle control for 24-48 h, and cellular viability was assessed 
by Alamar Blue assays as well as immunofluorescence microscopy. (A) Cellular viability 
was measured 24 and 48 h after stimulation with NW457 or geldanamycin (GA) by Alamar 
Blue assays. Alamar Blue reduction was calibrated on the vehicle-treated controls (100% 
viability) and is shown as means ± SD of intra-assay quadruplicates. 48 h data of one 
further experiment are shown in Appendix 2. (B) Immunofluorescence staining was 
performed 24 h after inhibitor treatment with anti-tubulin antibody, phalloidin-Alexa Fluor 
568 (actin-staining), and Hoechst 33342 (nuclear staining). Scale bars represent 20 µm. 
Immunofluorescence experiments were performed in cooperation with Michael Orth.  
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6.1.9 NW457 shows potent antitumor efficacy in comb ination with radiotherapy in 

vivo 

The antitumor efficacy of HSP90 inhibition in combination with radiotherapy has rarely 

been examined in vivo, and data on HSP90 inhibitor-mediated radiosensitization in 

colorectal cancer models to the best of my knowledge are currently not available. On the 

basis of the encouraging in vitro results regarding NW457-induced radiosensitization 

along with its excellent tolerability by primary hepatocytes, it was therefore sought to 

elucidate the antitumor effects of NW457 in combination with radiotherapy in a heterotopic 

model of CT26 colorectal cancer cells growing on the flanks of syngeneic, 

immunocompetent Balb/c mice. These in vivo experiments were kindly performed by 

Benjamin Frey and Udo Gaipl (Department of Radiation Oncology, University Hospital 

Erlangen).  

24 female 8-week old mice were subcutaneously inoculated with murine CT26 cells on 

day 0, and tumors were allowed to grow for 9 days. At this time, mice with tumors greater 

than 300 mm3 (n=3) were excluded from the study and the remaining animals with 

average tumor volumes of 212 ± 9 mm3 (mean ± SEM) were randomly distributed into four 

groups: NW457 (n=6), DMSO (n=4), 2x 5 Gy + NW457 (n=5), and 2x 5 Gy + DMSO (n=6). 

NW457 (100 mg/kg) or DMSO (as vehicle control) was administered intraperitoneally on 

days 9, 12, 18, and 24. Time points for drug administration were determined depending on 

drug tolerance and weight development. Irradiation was carried out with two fractions of 

0 or 5 Gy on days 10 and 13 after tumor implantation, respectively. Tumor volume was 

monitored every 1-3 days, and mice carrying tumors exceeding 1,700 mm3 were sacrificed 

due to legal requirements.  

Mice in the non-irradiated, vehicle control group exhibited exponential tumor growth 

(Figure 14A), and until day 21 all animals had to be sacrificed. Treatment with 4x 

100 mg/kg NW457 alone resulted in an early delay in tumor growth, which was detected 

from day 10 to day 20. Later on, tumors resumed exponential growth exceeding a mean 

volume of 1,700 mm3 until day 24. Radiotherapy plus vehicle induced a potent reduction in 

tumor growth, with four of six animals carrying tumors of less than 1,700 mm3 on day 27 

and the average tumor volume being 1234 ± 246 mm3 (mean ± SEM). Most importantly, 

the strongest inhibitory effect on tumor growth was observed in the group that had 

received the combined therapy comprising 2x 5 Gy plus 4x 100 mg/kg NW457. Here, the 

early delay in tumor growth, which was also observed in the NW457 only group, together 

with long-term growth inhibitory effects beyond day 20 resulted in an average tumor 

volume of 546 ± 110 mm3 (mean ± SEM) on day 27. Compared to the radiotherapy plus 

vehicle group, a significant reduction in tumor growth was detected in the radiotherapy 

plus NW457 group for the time points indicated (*p<0.05; **p<0.01).  



Results 

 78

 

Figure 14: Combined treatment with NW457 and radiot herapy potently delays tumor 
growth in vivo. 
NW457-mediated radiosensitization was assessed in vivo in a syngeneic heterotopic 
Balb/c mouse model of CT26 colorectal tumor cells growing on the right flank. 1.2x106 
CT26 cells were injected subcutaneously, and tumors were allowed to grow for 9 days. 
Mice with tumors of less than 300 mm3 were distributed into four groups and subjected to 
the following treatments: 4x DMSO only (n=4), 4x 100 mg/kg NW457 only (n=6), 2x 5 Gy 
+ 4x DMSO (n=6), and 2x 5 Gy + 4x 100 mg/kg NW457 (n=5). NW457 and DMSO were 
administered by intraperitoneal injection on days 9, 12, 18, and 24 (red arrowheads). 
Local irradiation was performed on days 10 and 13 (black arrowheads). In vivo 
experiments were kindly provided by Benjamin Frey and Udo Gaipl (Department of 
Radiation Oncology, University Hospital Erlangen). (A) Tumor dimensions were measured 
every 1-3 days and tumor volumes were calculated using the formula (width x width x 
length)/2. Data represent means ± standard error of the mean (SEM). Mann-Whitney U 
test was performed between the 2x 5 Gy + vehicle and the 2x 5 Gy + NW457 group. 
*p<0.05; **p<0.01. (B) Kaplan-Meier curves were generated for the tumor-specific survival 



Results 

 79

of CT26 tumor bearing Balb/c mice which had been distributed into the following treatment 
groups: vehicle only (n=4), NW457 only (n=6), 2x 5 Gy + vehicle (n=6), and 2x 5 Gy 
+ NW457 (n=5). The median survival was calculated for each group. Note that one animal 
of the group receiving 2x 5 Gy + NW457 and three animals of the group receiving NW457 
only were censored because they died from other reasons rather than being sacrificed 
due to tumor volumes >1,700 mm3 (day 21 and days 14, 19, and 21, respectively). Log-
rank test was carried out for statistical analysis of the tumor-specific survival between the 
group receiving combined modality therapy of IR plus NW457 and the groups subjected to 
IR plus vehicle (p=0.079), NW457 only (p=0.010), and vehicle only (p=0.008), 
respectively.  
 

In addition, Kaplan-Meier curves were established for the tumor-specific survival of the 

four treatment groups (Figure 14B). The median survival of the vehicle only group was 

20 days as all animals succumbed to exceeding tumor volumes within 21 days after tumor 

inoculation. Mice receiving NW457 alone showed a median tumor-specific survival of 

24 days. Interestingly, radiotherapy with two fractions of 5 Gy each prolonged the median 

survival to 33 days. However, the strongest prolongation in survival was observed in the 

group which was subjected to combined therapy with 2x 5 Gy irradiation plus 

4x 100 mg/kg NW457 as this therapeutic regime resulted in a median survival of 40 days. 

Statistical analyses revealed that the tumor-specific survival in the radiotherapy plus 

NW457 group was significantly prolonged compared to the groups receiving NW457 only 

(p=0.010) or vehicle only (p=0.008), respectively, but, presumably due to the low number 

of animals, it was not significant (p=0.079) compared to the group receiving irradiation 

only.  

In summary, the findings here identify the novel HSP90 inhibitor NW457 as a highly 

promising candidate for combined modality approaches together with radiotherapy. It 

potently radiosensitizes colorectal cancer cells irrespective of functional p53, BAX, or 

activated KRAS in vitro, reveals very little toxicity on primary hepatocytes, and shows 

encouraging antitumor efficacy in combination with radiotherapy in vivo.  
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6.2 The novel HSP90 inhibitor NW457 abrogates the r adioresistance of human 

glioblastoma cells and impairs their migratory pote ntial 

Glioblastoma multiforme (GBM) is the most common and malignant form of human brain 

tumors. It displays an aggressively infiltrative phenotype and results in a median survival 

of less than 15 months (Stupp et al., 2005). One concept to override glioblastoma-

associated intrinsic and acquired resistance towards conventional therapies comprises the 

application of targeted agents that specifically improve the outcome of radiotherapy by 

interfering with radioresistance-related signaling pathways and suppressing migration and 

invasion of glioma cells. In this context, different molecular targets have been identified, 

and some of them have been found to be designated client proteins of HSP90, thus 

rendering the chaperone itself an attractive target for GBM therapies (Dungey et al., 2009; 

Kim et al., 2008a; Nomura et al., 2004; Stingl et al., 2010; Zagzag et al., 2003; Zhu et al., 

2010). Hence, in the second part of this thesis, the efficacy of NW457 in combination with 

radiotherapy was investigated in human glioblastoma cell lines.  

6.2.1 NW457 abolishes the intrinsic radioresistance  of human glioblastoma cells 

In order to investigate the radiosensitizing potential of NW457 in glioblastoma cells, 

human LN229 and T98G cells were used. As an initial characterization of the cellular 

response to NW457 alone and in combination with ionizing radiation, the nuclear 

morphology was examined by Hoechst 33342 staining and fluorescence microscopic 

evaluation. Therefore, LN229 and T98G cells were stimulated with 0-200 nM NW457 or 

DMSO as vehicle control for 24 h, irradiated with 0-10 Gy, and apoptotic nuclei were 

quantified at the time points indicated. Representative pictures in Figure 15 reveal that 

irradiation alone reduced the proliferation, particularly of LN229 cells. However, apoptosis 

induction was observed to a very limited extent, even 54 h post irradiation. Exposure to 

NW457 alone impaired proliferation and induced typical apoptosis-associated changes in 

the nuclear morphology (for typical apoptosis-associated nuclear phenotypes of early and 

late apoptotic phases compare Figure 7B). Intriguingly, the combination of NW457 

treatment plus irradiation time-dependently potentiated nuclear fragmentation and clearly 

inhibited proliferation, which was more pronounced in LN229 cells compared to T98G 

cells. These data suggest that NW457 in combination with irradiation exerts anti-

proliferative and pro-apoptotic effects not only on colorectal carcinoma cells, but also on 

glioblastoma cells, and thus might be a promising agent to abrogate glioblastoma-

associated radioresistance.   
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Figure 15. Exposure to NW457 induces typical apopto sis-associated changes of the 
nuclear morphology and potentiates the effect of io nizing irradiation on human 
glioblastoma cells. 
(A) LN229 and (B) T98G cells were treated with 0-200 nM NW457 or DMSO as vehicle 
control for 24 h, irradiated with 0-10 Gy, and subjected to Hoechst 33342 staining after 6-
54 h. Representative photographs demonstrate typical apoptosis-related nuclear 
phenotypes in response to NW457 and irradiation in LN229 and T98G cells. Scale bars 
indicate 20 µm.  
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To confirm the observations of the microscopic analyses and to define the mode of 

interaction (synergism, additivity, or antagonism) between NW457 and irradiation in 

glioblastoma cells, the formation of hypodiploid nuclei was examined in response to 

NW457 treatment +/- irradiation by flow cytometric analysis of propidium iodide stained 

nuclei. LN229 and T98G cells were exposed to 0-200 nM NW457 for 24 h, irradiated with 

0-10 Gy, and the hypodiploid population (percentage of subG1 nuclei) was quantified 48 h 

later. Whereas irradiation alone only marginally resulted in the formation of hypodiploid 

nuclei, NW457 treatment potently stimulated the appearance of hypodiploid nuclei in a 

concentration-dependent manner both in LN229 and T98G cells (Figure 16A). The 

combined treatment with additional irradiation further increased the percentage of subG1 

nuclei, particularly in LN229 cells when NW457 was applied in a range of <100 nM.  

In order to define the quality of interaction between NW457-mediated HSP90 inhibition 

and ionizing radiation for both glioblastoma cell lines, combination indices (CI) according 

to Chou-Talalay (Chou and Talalay, 1981, 1984) were assessed for all combinations 

depicted in Figure 16A. NW457 treatment plus irradiation revealed synergism (CI <1) in 

LN229 cells mainly in cases when NW457 was administered at 30, 40, 50, or 100 nM (in 

total 17 synergistic treatment points, Figure 16B) and in T98G cells when NW457 was 

applied at 40-50 nM (in total 10 synergistic treatment points, Figure 16B).  

Taken together, these data indicate a pro-apoptotic effect of NW457 on human 

glioblastoma cell lines and suggest that the radiosensitizing potential of NW457 might be 

more pronounced in LN229 cells compared to T98G cells.  
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Figure 16. NW457 induces the formation of hypodiplo id nuclei and potentiates the 
effects of ionizing radiation. 
LN229 and T98G cells were stimulated with 0-200 nM NW457 for 24 h, irradiated with 0-
10 Gy, and stained with propidium iodide for FACS analysis of hypodiploid (subG1) nuclei 
48 h after irradiation. (A) Dose-dependent induction of hypodiploid nuclei (% subG1) in 
response to treatment with NW457 and irradiation in LN229 and T98G cells. Data are 
means ± SD of six replicates obtained from two independent experiments performed in 
triplicates each. (B) Combination indices calculated from the data shown in (A). Values 
highlighted in grey demonstrate a synergistic interaction between NW457 and irradiation 
(CI <1).  
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6.2.2 NW457 dose-dependently induces apoptosis in g lioblastoma cells as 

characterized by caspase activation and subsequent caspase substrate 

cleavage 

In order to further investigate the molecular mechanisms of NW457-induced apoptosis in 

glioblastoma cells and considering the findings in colorectal cancer cells (section 6.1.4), 

activation of the caspase cascade was analyzed in response to NW457 treatment and 

irradiation. To this end, LN229 and T98G cells were exposed to 0-200 nM NW457 for 

24 h, irradiated with 0-10 Gy, and 24 h later whole cell lysates were prepared and 

subjected to Western blot analyses and caspase activity measurements. In both cell lines, 

NW457 dose-dependently induced the processing of the pro-caspases -9, and -3 as well 

as the cleavage of the prototypical caspase substrate PARP (Figure 17A, C). Notably, in 

LN229 cells additional irradiation of 10 Gy further augmented the levels of cleaved PARP, 

consistent with an increase in DEVDase activity after combined treatment (Figure 17A, B). 

Yet, in T98G cells additional irradiation did not result in enhanced PARP cleavage 

compared to NW457 treatment alone, and DEVDase activity was not further elevated after 

combined treatment in these cells (Figure 17C, D).  

These findings are in accordance with the data presented in Figure 16 indicating that 

NW457 potently induces apoptosis in both LN229 and T98G cells, but suggesting that 

LN229 cells are more sensitive towards NW457-based combined radiotherapy treatment 

than T98G cells.  
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Figure 17. NW457-mediated apoptosis induction in gl ioblastoma cells involves the 
activation of the caspase cascade. 
LN229 and T98G cells were treated with 0-200 nM NW457 for 24 h, irradiated with 0-
10 Gy, and harvested 24 h after irradiation. Whole cell lysates were subjected to Western 
blot analyses of pro-caspases -9 and -3 processing as well as PARP cleavage. 
Upregulation of HSP70 expression was used as a marker of HSP90 inhibition. Lysates 
were also analyzed for caspase activity using the peptide substrate DEVD-AMC. 
(A) Processing of pro-caspases -9 and -3, cleavage of the caspase substrate PARP, and 
expression of HSP70 were analyzed by Western blotting using protein lysates obtained 
from LN229 cells treated as described above (150 µg protein per lane). Vinculin was used 
as loading control (150 µg protein per lane). Each blot is representative of one of two 
independent experiments. *Indicates unspecific antibody binding. (B) Caspase activity 
was measured by DEVDase assays using protein lysates of LN229 cells obtained as in 
(A). 20 µg total protein per sample were employed, and means ± SD of one representative 
experiment performed in quadruplicates are shown. Results of further experiments are 
shown in Appendix 3. (C) Processing of the pro-caspases -9 and -3, cleavage of the 
caspase substrate PARP (150 µg protein per lane), and expression of HSP70 (10 µg 
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protein per lane) were analyzed by Western blotting using protein lysates obtained from 
T98G cells treated as described above. Vinculin was used as loading control (10 µg 
protein per lane). Each blot is representative of one of two independent experiments. 
(D) Caspase activity was measured by DEVDase assays using protein lysates of T98G 
cells obtained as in (C). 20 µg total protein per sample were employed, and means ± SD 
of one representative experiment performed in quadruplicates are shown. Results of 
further experiments are shown in Appendix 4.  

6.2.3 NW457 enhances radiation-induced clonogenic c ell death of glioblastoma 

cell lines and affects critical regulators of the D NA damage response 

The efficiency of NW457 to radiosensitize glioblastoma cells in vitro was further assessed 

by clonogenic survival assays. To this end, LN229 and T98G cells were subjected to 

different treatment approaches varying in the time of NW457 exposure. In the first 

approach cells were prestimulated with 10 nM NW457 or DMSO as vehicle control for 

24 h and irradiated with 0-5 Gy. Drug-containing medium was exchanged for drug-free 

medium directly before irradiation. Data of the preincubation experiments were kindly 

provided by Karin Seidl. In the second approach NW457 or DMSO, respectively, was 

added immediately before irradiation and drug incubation was sustained over the entire 

assay period of 14 days. Clonogenic survival was determined relative to the respective 

plating efficiency of non-irradiated cells treated with DMSO or NW457, respectively. 

Irradiation alone dose-dependently decreased the clonogenic survival of both cell lines, 

yet LN229 cells revealed higher radiosensitivity compared to T98G cells (Figure 18A, B). 

Permanent exposure (14 days) to NW457 further reduced the clonogenic survival in 

response to irradiation, and this effect was more pronounced in LN229 than in T98G cells 

as illustrated by two treatment points with statistically significant radiosensitization in the 

case of LN229 cells (3 Gy and 5 Gy) and one treatment point (3 Gy) in the case of T98G 

cells. Intriguingly, 24 h preincubation with NW457 strongly decreased the clonogenic 

survival in a manner more pronounced than in the case of permanent drug incubation. 

Calculation of the radiation enhancement ratio as the D0 (IR dose resulting in 37% 

survival) or SF3 (survival fraction at 3 Gy) of DMSO treated cells divided by that of NW457 

treated cells confirmed that 24 h preincubation with NW457 further amplifies the induction 

of clonogenic cell death compared to simultaneous drug/IR exposure. The question that 

arises at this point is which molecular mechanisms account for the stronger 

radiosensitization observed in response to 24 h NW457 preincubation compared to 

simultaneous drug/IR treatment. Since previous studies have shown that several HSP90 

client proteins are functionally associated with the cellular radioresponse and depleted 

upon pharmacological HSP90 inhibition (Bull et al., 2004; Machida et al., 2003; Dote et al., 

2006), I hypothesized that preincubation with NW457 prior to irradiation might affect the 

stability of crucial regulators of the DNA damage response (DDR), thus preventing 
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efficient DNA repair upon irradiation 24 h later, and finally accounting for enhanced tumor 

cell radiosensitization in clonogenic survival assays. Therefore, LN229 and T98G cells 

were stimulated with 10 nM NW457 - as this concentration was used in clonogenic 

survival assays - and both RNA transcription and protein expression of ATM (Ataxia 

telangiectasia mutated protein), ATR (Ataxia telangiectasia and RAD3-related protein), 

CHK1 (Checkpoint kinase 1), CHK2 (Checkpoint kinase 2), and p53 were analyzed 0-72 h 

afterwards. These experiments were performed in cooperation with Michael Orth and 

Karin Seidl. Intriguingly, exposure to NW457 time-dependently induced the depletion of 

the DNA damage sensor kinase ATM and the signal transducers CHK1 and CHK2 in both 

cell lines (Figure 18C). Notably, the levels of ATM, CHK1, and CHK2 were already 

diminished within 12-24 h after drug exposure. These findings indicate that in clonogenic 

survival assays preincubation with NW457 presumably provoked the degradation of 

critical DDR-associated proteins before the irradiation was performed and that this might 

account for enhanced radiosensitivity of LN229 and T98G cells. In contrast, simultaneous 

exposure to NW457 and IR apparently limited the radiosensitizing efficacy of NW457 in 

clonogenic survival assays as the DDR was not affected at the time of irradiation, but only 

12-72 h later when the majority of IR-induced DNA damage had presumably been 

repaired. Whereas expression of the DNA damage sensor ATR remained nearly 

unaffected in T98G cells, ATR levels were slightly decreased in LN229 cells 36-72 h after 

exposure to NW457. Notably, NW457-mediated depletion of ATM, ATR, CHK1, and CHK2 

was limited to the protein level, as mRNA analyses did not reveal transcriptional 

downregulation (Figure 18D). As a sign of activated DNA damage response, a profound 

upregulation of p53 was detected in LN229 cells both on the protein and mRNA level. 

Interestingly, p53 protein expression in T98G cells was initially depleted in response to 

NW457 (12 h), but was restored at later time points due to increased p53 transcription 

which was observed 24-48 h after stimulation with NW457. In this respect, it should be 

noted that LN229 cells exhibit functional wild-type p53 activity despite a p53 mutation in 

codon 164, whereas T98G cells are homozygously mutated (codon 237) and express 

non-functional p53 (Van Meir et al., 1994). As mutant p53 is a designated HSP90 client 

protein (Blagosklonny et al., 1995; Hagn et al., 2011; Muller et al., 2008), suppressed 

chaperoning activity of HSP90 might account for the rapid depletion of mutant p53 in 

T98G cells within 12 h after NW457 treatment.  

Collectively, these findings strengthen the observations from sections 6.2.1 and 6.2.2, as 

they confirm the potent radiosensitizing capacity of NW457 also in glioblastoma cell lines. 

Moreover, the Western blot data here give mechanistic insight of how the novel HSP90 

inhibitor mediates tumor cell radiosensitization and indicate that the sequence of 
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combining pharmacological HSP90 inhibition with radiotherapy should be carefully 

considered in clinical treatment concepts as it may influence the therapeutic efficacy.  

 

 

Figure 18. NW457 augments radiation-induced clonoge nic cell death of 
glioblastoma cell lines and compromises regulators of the DNA damage response. 
LN229 and T98G cells were exposed to 10 nM NW457 in the presence or absence of 
irradiation and subjected to clonogenic survival assays, Western blot, and quantitative 
real-time PCR analyses. (A) For clonogenic survival assays LN229 and T98G cells were 
subjected to different treatment approaches varying in the time of NW457 exposure. In the 
first approach cells were prestimulated with 10 nM NW457 or DMSO as vehicle control for 
24 h and irradiated with 0-5 Gy. Drug-containing medium was exchanged directly before 
irradiation. In the second approach NW457 or DMSO, respectively, was added directly 
before irradiation and drug incubation was sustained over the entire assay period. 
Clonogenic survival [%] was determined after 14 days with respect to the plating 
efficiencies of DMSO-treated, non-irradiated cells and NW457-treated, non-irradiated 
cells, respectively. Curves show the clonogenic survival of LN229 cells in response to 
irradiation only (open symbols), 24 h preincubation with 10 nM NW457 plus irradiation 
(grey symbols), and permanent exposure to 10 nM NW457 plus irradiation (black 
symbols). D0 is the radiation dose giving 37% survival and SF3 is the survival fraction in 
response to irradiation with 3 Gy. The radiation enhancement ratio was calculated as the 
D0 or SF3, respectively, of DMSO treated cells divided by that of NW457 treated cells. 
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Data represent means ± SD of at least three independent experiments. Student's t-test 
analysis was performed between samples of identical irradiation dose ± NW457; *p<0.05. 
Data of the preincubation experiments were kindly provided by Karin Seidl. (B) T98G cells 
were treated as described in (A) and subjected to clonogenic survival assays. Survival 
curves are shown for T98G cells exposed to irradiation only (open symbols), 24 h 
preincubation with NW457 plus irradiation (grey symbols), and permanent incubation with 
NW457 plus irradiation (black symbols). Data represent means ± SD of at least three 
independent experiments. Student's t-test analysis was performed between samples of 
identical irradiation dose ± NW457; *p<0.05. Data of the preincubation experiments were 
kindly provided by Karin Seidl. (C) For Western blot analyses of proteins associated with 
the DNA damage response LN229 and T98G cells were exposed to 10 nM NW457 for 0-
72 h and the expression of ATM, ATR, CHK1, CHK2, p53, HSP70, and HSP90 was 
examined. 300 µg protein per lane was used for detection of ATM, ATR, CHK1, CHK2, 
and p53; 30 µg protein was used for analysis of HSP70, HSP90, and tubulin (loading 
control). Western blots were kindly provided by Michael Orth and Karin Seidl. (D) NW457-
dependent induction of ATM, ATR, CHK1, CHK2, and p53 mRNA expression was 
measured by quantitative real-time PCR 0-48 h after stimulation with 10 nM. For each 
gene, data were normalized on 18S mRNA and calibrated on the 0 h control. 
Transcriptional regulation is depicted as heat map encoding upregulation in red and 
downregulation in blue. The fold change is shown as log10. qPCR analyses were kindly 
provided by Michael Orth and Karin Seidl.  

6.2.4 Inhibition of HSP90 by NW457 decreases the mi gratory potential of LN229 

glioblastoma cells 

One major cause for the high malignancy of glioblastomas is their extensively invasive 

phenotype. Active glioma invasion is initiated by cell detachment from the original tumor 

site and followed by attachment to extracellular matrix (ECM) proteins which are 

subsequently degraded by tumor secreted proteases. This creates intracellular space into 

which invading glioma cells can finally migrate by cytoskeletal contraction. A prerequisite 

for these processes is the coordination of complex intracellular and extracellular 

mechanisms. As HSP90 and some of its client proteins are discussed to be involved in 

regulating tumor cell migration and invasion (Annamalai et al., 2009; Gopal et al., 2011; 

Zagzag et al., 2003), the migratory potential of glioblastoma cells was investigated in 

response to NW457 treatment in transwell migration assays.  

For this purpose, the LN229 cell line was chosen as microscopic analyses of the colony 

structure in clonogenic survival assays suggested that these cells might be intrinsically 

more motile than T98G cells (data not shown). LN229 cells were exposed to 0-50 nM 

NW457 for 24 h and applied to Boyden chamber transmigration assays with either 0% 

FCS in the upper and 10% FCS in the lower chamber, or with 10% FCS in the upper and 

10% FCS in the lower chamber, respectively. After 12 h the percentage of cells that had 

migrated through the filter was determined. As shown in Figure 19A, the percentage of 

migrating LN229 cells was higher in the presence of a serum gradient compared to the 

setting with 10% FCS in both chambers. Intriguingly, exposure to NW457 clearly 

decreased the transmigration of LN229 cells in a dose-dependent manner irrespective of 
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the presence of a serum gradient. Of note, this was not due to toxic effects of NW457, 

since Alamar Blue viability tests performed in parallel revealed that even in the presence 

of 50 nM NW457 the viability of LN229 cells was >90%, due to the relatively short 

exposure of 24 h (Figure 19B).  

These data indicate an anti-migratory effect of NW457 on human glioblastoma cells, 

which - together with its pro-apoptotic and clonogenic survival inhibiting effects - 

strengthens its perspective as potent antitumor agent.  

 

 

Figure 19. NW457 impairs the transmigratory potenti al of glioblastoma cells at non-
toxic concentrations. 
LN229 cells were fluorescently labelled with PKH67, exposed to 0-50 nM NW457 for 24 h, 
and applied to Boyden chamber transmigration assays. In parallel, viability was assessed 
by Alamar Blue assays. (A) Transmigration assays were performed with either 0% FCS in 
the upper and 10% FCS in the lower chamber or with 10% FCS in the upper and 10% 
FCS in the lower chamber, respectively. After 12 h, cells adherent to the lower side of the 
filter were lysed, and the percentage of transmigrated cells was calculated from the 
resulting fluorescence intensity using a standard curve. Data represent means ± SD of 
four independent experiments. (B) Viability of LN229 cells was measured 24 h after 
stimulation with 0-50 nM NW457. Alamar Blue reduction was calibrated on DMSO-treated 
control cells (100% viability), and means ± SD of three independent experiments are 
shown.  

6.2.5 Irradiation-induced hypermigration of gliobla stoma cells is inhibited by 

NW457 

Having shown that NW457 dose-dependently reduces the basal migratory potential of 

LN229 cells, the impact of NW457 on possibly irradiation-induced hypermigration was 

examined in wound healing assays. Enhanced glioma cell migration has repeatedly been 

reported in response to photon irradiation in vitro (Badiga et al., 2011; De Bacco et al., 

2011; Kil et al., 2012; Wild-Bode et al., 2001), thus providing - at least in part - a possible 



Results 

 91

explanation for the limited therapeutic efficacy of radiotherapy in glioblastoma and the 

frequently observed tumor recurrence afterwards.  

LN229 cells were seeded in special 2D invasion assay devices, irradiated with 0-3 Gy, 

and exposed to 0-30 nM NW457 for 24 h. Afterwards, the silicon-strip culture dish inserts 

were removed, thus generating cell-free “wounds” of approximately 500 µm in width, and 

the wound healing process was microscopically monitored for 12 h. Individual trajectory 

plots of the cells at the migrating front were generated, and the colonized area as well as 

the average accumulated distance per cell were calculated. As illustrated in Figure 20A, 

irradiation with 3 Gy significantly increased the inherent motility of LN229 cells, resulting in 

pronounced migration into the wound. Intriguingly, concomitant exposure to NW457 

potently abrogated irradiation-induced hypermigration as shown by a significant reduction 

in the colonized area (Figure 20B). Regarding the average accumulated distance per cell, 

irradiated LN229 cells revealed approximately 2.5-fold longer distances compared to non-

irradiated, DMSO-treated control cells (Figure 20C). Additional NW457 treatment 

significantly inhibited irradiation-induced hypermigration, although it obviously did not 

interfere with the basal migratory activity as measured by the colonized area and the 

average accumulated distance of non-irradiated cells, respectively.  

Comparing the results obtained from transmigration assays with those from wound 

healing assays, astonishingly, 30 nM NW457 induced a decrease in basal migration of 

LN229 cells only in transmigration assays and not in wound healing assays which might 

be attributed to the different experimental settings.  

Taking together both the data of transmigration and wound healing assays, NW457 

seems to interfere with both inherent migration and irradiation-induced hypermigration of 

human glioblastoma cells, which strengthens its perspective as potent antitumor agent 

and particularly as novel candidate for anti-invasive glioblastoma therapies.  
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Figure 20. NW457 abrogates irradiation-induced hype rmigration of glioblastoma 
cells. 
LN229 cells were simultaneously exposed to 0-30 nM NW457 plus 0-3 Gy irradiation for 
24 h, and their migratory potential was studied over a period of 12 h in wound healing 
assays. (A) Upper and middle row: Representative photographs of cell migration into the 
wounds (cell-free gaps) 0 and 12 h after removing the silicon-strip culture dish inserts. 
Lower row: Individual trajectory paths of at least 25 randomly selected cells per wound 
located at the left wound boarder at time point 0 h. (B) The area that had been colonized 
within 12 h in the presence or absence of NW457 +/- IR was quantified by analyzing the 
photographs at time points 0 and 12 h, respectively. Data represent means ± SD of three 
independent experiments. **p<0.05. (C) The accumulated distance per cell in response to 
NW457 or vehicle +/- IR was determined based on the individual migration paths depicted 
in (A). Values represent means ± SD of at least 25 randomly selected cells per treatment 
condition; *p<0.01.  
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6.2.6 Analysis of potential mechanisms associated w ith LN229 migration patterns 

in response to HSP90 inhibition and irradiation 

In a first attempt to illuminate potential mechanisms that might account for the migration 

patterns of LN229 cells observed in response to NW457 +/- irradiation in transmigration 

and wound healing assays, the expression of different candidates that had previously 

been discussed to modulate glioma cell invasion and migration was analyzed. Although 

numerous proteins are involved in supporting the invasive nature of glioblastomas, much 

attention has been drawn to members of the integrin family, the MET/HGF (hepatocyte 

growth factor) axis, as well as the Eph receptor/ephrin ligand system.  

Integrins represent an important group of transmembrane adhesion molecules that are 

organized as dimers of 18 different alpha and 8 beta subunits and predominantly promote 

the attachment of the cell to the extracellular matrix (ECM). Enhanced expression of 

different integrins including αvβ3 and αvβ5 was found to correlate with increased 

invasiveness and migration of glioma cells and is believed to be associated with 

irradiation-induced hypermigration (Monferran et al., 2008; Wild-Bode et al., 2001). 

Enhanced migration in response to ionizing radiation is also supposed to be governed by 

aberrant expression of the oncogenic MET receptor and its ligand HGF (hepatocyte 

growth factor) (Buchanan et al., 2011; De Bacco et al., 2011). Notably, expression of the 

MET/HGF axis has been found to correlate with the grade of malignancy (Athauda et al., 

2006; Koochekpour et al., 1997; Rosen et al., 1996). Another receptor/ligand system that 

is involved in glioblastoma migration is the Eph receptor/ephrin ligand family which 

represents the largest family of receptor tyrosine kinases with 14 Eph receptors (EphA1-

A8, EphA10, EphB1-B4, and EphB6) and 8 ligands (ephrin A1-A5 and ephrin B1-B3) 

identified (Lemke, 1997; Pasquale, 2010). Upregulation of Eph receptors including EphA2 

and EphB2 in glioblastoma cells and their association with migration, invasion, metastatic 

potential, and adverse outcome has been repeatedly reported (Liu et al., 2006; Nakada et 

al., 2004; Nakada et al., 2005; Wang et al., 2008; Wykosky et al., 2005).  

In order to elucidate whether these candidates are responsible for (i) NW457-mediated 

decrease in cell migration as was observed in transmigration assays and (ii) irradiation-

induced hypermigration and its reversal by NW457 as was observed in wound healing 

assays, LN229 cells were exposed to 0-50 nM NW457 +/- 0-3 Gy for the indicated time 

periods and subjected to expression analyses of integrins αv, β3, and β5, MET, phospho-

MET, and HGF, as well as EphA2, EphB2, and EphB3 by flow cytometry, Western blot, or 

qPCR. First, the potential involvement of integrins αvβ3 and αvβ5 in LN229 cell migration 

was examined. As shown in Figure 21A, the surface expression of αvβ3 and αvβ5 

remained unaffected both after irradiation and NW457 treatment. In addition, mRNA levels 

of αv, β3, and β5 were analyzed 0, 6, 12, and 24 h after stimulation. Neither irradiation nor 
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NW457 alone did markedly change integrin transcription. Surprisingly, combined 

treatment enhanced mRNA expression of integrins αv and β3 24 h after stimulation 

(Figure 21B), but this cannot explain reduced migration in the combined treatment group 

as compared to the irradiation only group. This suggests that irradiation-induced 

hypermigration and NW457-mediated decrease of transmigration are probably mediated 

by other molecular mechanisms.  

Next, the potential involvement of the MET/HGF axis in LN229 cell migration was 

analyzed in response to irradiation and NW457 treatment. qPCR analyses revealed only 

marginal induction of MET and HGF transcription (Figure 21C). Since the activation of the 

MET receptor is largely regulated by HGF stimulation with subsequent receptor 

phosphorylation, but potentially also by other growth factors that are present in FCS, 

LN229 cells were grown in the presence or absence of 10% FCS or 10 ng/ml HGF, 

respectively, and protein levels of total MET and phosphorylated MET were analyzed in 

Western blots (Figure 21D). It was hypothesized that irradiation might enhance 

phosphorylation of MET and therefore promote hypermigration of LN229 cells in wound 

healing assays. In the presence of 10% FCS, irradiation with 3 Gy slightly augmented 

MET receptor phosphorylation (Figure 21D). Irradiation with a higher dose (8 Gy) clearly 

increased the expression of total MET and possibly might have involved receptor 

phosphorylation at later time points. Interestingly, exposure to 30 nM NW457 slightly 

decreased the level of total MET under serum-free conditions and clearly reduced 

receptor phosphorylation. Together these data suggest a potential involvement of the 

MET/HGF axis in LN229 cell migration. However, further investigation is required for 

precise elucidation.  

In order to examine a potential role of different ephrin receptors in LN229 migration, the 

surface expression of EphA2, EphB2, and EphB3 was analyzed in response to NW457 

treatment in the presence and absence of irradiation. Interestingly, exposure to NW457 

dose-dependently induced the decline of all three ephrin receptors (Figure 21E), thus 

providing a possible mechanistic explanation for the observed decrease in LN229 cell 

migration in transmigration assays. Interestingly, Eph receptor expression was not 

increased in response to irradiation, although it might have been expected due to the 

LN229 migration pattern observed in wound healing assays. Instead, combined exposure 

to NW457 plus IR induced similar effects compared to stimulation with NW457 only, as it 

dose-dependently reduced the surface expression of all three Eph receptors. However, it 

is possible that irradiation provokes LN229 hypermigration via ephrin ligand-mediated Eph 

receptor phosphorylation. In this context, EphB2 stimulation using the high-affinity ligand 

ephrin B1 was reported to enhance cell migration and invasion of U87 glioma cells, 
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whereas treatment with a blocking EphB2 antibody inhibited the cellular motility (Nakada 

et al., 2004).  

Collectively, these data hint at an involvement of both MET/HGF and Eph receptor 

signaling in LN229 cell migration and thus provide a possible explanation - at least in 

part - for the migration patterns observed in transmigration and Boyden chamber assays 

in response to NW457 and irradiation. The data suggest that irradiation might promote 

hypermigration of glioblastoma cells - at least in part - through activation of the MET/HGF 

axis and that targeting HSP90 via the novel small-molecule inhibitor NW457 might reduce 

glioblastoma cell motility through downregulation of the ephrin receptors EphA2 and 

EphB3. In addition, other molecular mechanisms might be involved and further 

investigations are required for precise elucidation.  
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Figure 21. Analysis of potential mechanisms associa ted with glioma cell migration 
patterns in response to HSP90 inhibition and irradi ation. 
LN229 cells were concomitantly exposed to 0-3 Gy irradiation plus 0-50 nM NW457 for 
the indicated time periods and subjected to mRNA and protein expression analyses of 
different candidates supposed to be involved in glioma cell migration. (A) Relative surface 
expression of integrins αvβ3 and αvβ5 was analyzed by flow cytometry 24 h after 
stimulation and is depicted as x-fold increased expression compared to untreated control 
cells. Means ± SD of four independent experiments are shown. (B) Relative mRNA 
expression of integrins αv, β3, and β5 was analyzed by quantitative real-time PCR 0, 6, 12, 
and 24 h after stimulation and is depicted as x-fold expression of the untreated control. 
(C) Relative mRNA expression of MET, HGF, and HSP70 (positive control for NW457 
stimulation) was analyzed by quantitative real-time PCR 0, 6, 12, and 24 h after treatment 
and is shown as x-fold expression of untreated control cells. (D) For Western blot 
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analyses of MET and phospho-MET, LN229 cells were cultured in serum-free medium 
(SFM) or medium supplemented with 10% FCS, respectively. Cells were stimulated with 
0-3 Gy irradiation plus 0-30 nM NW457 for 24 h or irradiated with 8 Gy only. Stimulation 
with 10 ng/ml HGF for 2 h was used as positive control for MET receptor phosphorylation. 
120 µg protein per lane were utilized for Western blotting. (E) Relative surface expression 
of ephrin receptors EphA2, EphB2, and EphB3 was analyzed by flow cytometry 24 h after 
stimulation. Data are means ± SD of three intra-assay replicates.  
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7 Discussion 

7.1 HSP90 - an unlikely but promising drug target f or anticancer therapies 

HSP90 did at first sight appear to be an unusual and unlikely anticancer drug target when 

it was introduced in the early 1990s. Targeting a housekeeping protein which is 

abundantly expressed not only in tumor but also in non-malignant cells and which is 

indispensable for cell viability was viewed with skepticism. Targeting HSP90 with small-

molecule inhibitors was thus suspected to cause unacceptable toxicity in normal tissue 

and limit the therapeutic benefit.  

In the meantime, however, HSP90 has emerged as a promising anticancer drug target 

with 17 distinct pharmacological inhibitors having entered about 90 clinical trials 

(http://clinicaltrials.gov). The clinical success of HSP90 inhibitors will strongly depend on 

the therapeutic window which is defined as the range of drug dosage that elicits a 

therapeutically effective response without inducing unacceptable adverse effects. Thus, 

the therapeutic window of an HSP90 inhibitor depends on its selectivity for tumor cells 

over non-malignant cells. Notably, tumor cells were repeatedly shown to be more 

sensitive to HSP90 inhibitors than non-transformed cells (He et al., 2006; Kamal et al., 

2003; Llauger et al., 2005; Plescia et al., 2005; Whitesell et al., 1992) and comparative in 

vitro studies with normal fibroblasts and tumor cells revealed that the radiosensitizing 

effects of different HSP90 inhibitors were restricted to tumor cells (Bisht et al., 2003; 

Noguchi et al., 2006; Russell et al., 2003). Furthermore, non-toxic inhibitor concentrations 

demonstrated potent antitumor activity in vivo (Biamonte et al., 2006; Plescia et al., 2005; 

Vilenchik et al., 2004) and several studies indicated that HSP90 inhibitors preferentially 

accumulate in the tumor tissue whereas they are rapidly cleared from the plasma and do 

not concentrate in normal tissues (Eiseman et al., 2005; Sydor et al., 2006; Vilenchik et 

al., 2004).  
 

Different potential mechanisms are discussed to explain why pharmacological HSP90 

inhibitors are preferentially effective in tumor cells compared to non-malignant cells. 

Firstly, it is assumed that HSP90 is overexpressed in tumor cells due to elevated 

environmental stresses, such as nutrient stress, proteotoxic stress, hypoxia, and genetic 

instability, which are associated with the malignant “lifestyle” (Neckers and Workman, 

2012). Secondly, it has been proposed that in tumor cells HSP90 exists in an activated 

form with higher ATPase activity and a 100-fold higher affinity for the inhibitor 17-AAG, 

whereas HSP90 in normal cells appears in an inactivated, uncomplexed form with lower 

ATP binding affinity (Kamal et al., 2003). Thirdly, since tumor cell HSP90 was shown to be 

localized not exclusively in the intracellular milieu, but also on the cell surface and 
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secreted into the extracellular space, it has been hypothesized that this ectopic 

expression of HSP90 may promote tumor selectivity of HSP90 inhibitors (Becker et al., 

2004; Eustace et al., 2004). Whereas tumor cells constitutively secrete HSP90, normal 

cells secrete the chaperone only in response to environmental stress (Cheng et al., 2008). 

Hence, ectopically expressed HSP90 appears to be a tumor-specific drug target.  

Taken together, these findings illustrate why HSP90 has emerged as a potent antitumor 

drug target and may explain - at least in part - the enhanced tumor selectivity of HSP90 

inhibitors, even though the entire mechanism has probably not yet been fully elucidated.  

7.2 Potential benefits of NW457 in the therapy of c olorectal carcinomas and 

glioblastomas 

In the present work, the antitumor potential of the novel pochoxime HSP90 inhibitor 

NW457 was characterized for the first time in combination with ionizing radiation in 

preclinical models of colorectal cancer and glioblastoma multiforme. In the following 

section, the necessity for novel therapy concepts for colorectal carcinomas and 

glioblastomas is analyzed and the potential benefits of NW457 thereby, are discussed.  
 

Colorectal cancer is the third most common type of cancer in men (664,000 new cases 

per year, 10.0% of the total) and the second in women (571,000 cases per year, 9.4% of 

the total) worldwide. Although the development of new treatment options has led to a 

considerable improvement in the outcome of colorectal cancer in the past years, 

approximately 609,000 deaths from colorectal cancer per year are estimated worldwide, 

accounting for 8.1% of all cancer-related deaths and rendering it the fourth most frequent 

cause of death from cancer (GLOBOCAN 2008, http://globocan.iarc.fr).  

Surgery is usually the main treatment option for colorectal carcinomas and commonly 

combined with conventional chemotherapies, such as 5-FU (or the prodrug capecitabine), 

folinic acid, oxaliplatin, and irinotecan, which are administered in various regimes either as 

neoadjuvant (before surgical resection) or adjuvant (after surgery) treatment. 

Radiotherapy is a common treatment modality for cancers of the descending colon (rectal 

cancer) and implemented either as neoadjuvant or adjuvant therapy (Glimelius, 2002). For 

cancers of the ascending and transverse colon, however, the delivery of high IR doses is 

problematic due to the high mobility of these parts and the high sensitivity of the 

surrounding structures (e.g. small bowel, kidney, and liver) (Moser et al., 2009). However, 

radiotherapy provides a therapeutic option for certain high-risk subsets of colon cancer 

patients associated, e.g., with advanced tumor stages, tumor location in immobile sites, 

local perforation, or residual disease after surgery (Schild et al., 1997; Willett et al., 1993; 

Willett et al., 1999).  
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In addition to surgery, conventional chemotherapy, and irradiation, in the last years 

targeted EGF-R and VEGF-R therapies have emerged and are currently being 

investigated in combination with conventional chemotherapeutic agents, predominantly in 

patients with metastatic colorectal carcinomas (Rodriguez et al., 2007). Nevertheless, 

there is still substantial need for novel treatment options, since therapies targeting the 

EGF-R are mostly not effective in patients harboring KRAS or BRAF mutations (Cercek 

and Saltz, 2011). Notably, KRAS is mutated in up to 50% and BRAF in approximately 5-

10% of all colorectal carcinomas (Bazan et al., 2005), leading to constitutive activation of 

these oncoproteins and persistent stimulation of tumor-promoting downstream signaling 

pathways, including the RAF/MEK/ERK and PI3K/AKT/mTOR cascades. Besides aberrant 

RAS/RAF signaling, mutations of the tumor suppressor p53 frequently occur in colorectal 

carcinomas. Approximately 45% of colorectal tumors harbor mutations in the TP53 gene, 

and loss of functional p53 is known to be associated with an increased incidence of 

hepatic metastasis as well as disease progression, thus correlating with worse survival 

(Bazan et al., 2005; Iacopetta, 2003; Kastrinakis et al., 1995; Russo et al., 2005).  

Since HSP90 promotes the stability of a broad range of oncogenic signaling proteins 

including mutant KRAS, BRAF, and p53 (Acquaviva et al., 2012; Azoitei et al., 2012; 

Blagosklonny et al., 1996; Blagosklonny et al., 1995; Da Rocha Dias et al., 2005; Fukuyo 

et al., 2008; Grbovic et al., 2006; Nagata et al., 1999; Sos et al., 2009; Whitesell et al., 

1998), colorectal carcinomas are of particular interest with respect to HSP90 inhibitors. 

Inhibition of the chaperone represents a multifaceted approach and might therefore 

provide a promising treatment strategy for colorectal carcinomas including KRAS, BRAF, 

and p53 mutant subtypes.  
 

Glioblastoma multiforme is the most frequent primary brain tumor in adults and represents 

the most aggressive and lethal glial neoplasm. Glioblastomas are characterized by an 

extremely infiltrative and highly progressive phenotype which makes them very difficult to 

control and usually prevents surgical cure. The standard of care therapy involves surgical 

resection, if possible, radiotherapy, and systemic chemotherapy with DNA-alkylating 

agents, such as temozolomide (TMZ). However, the outcome remains rather poor as 

patients frequently suffer from resistance to radiochemotherapy and tumor recurrence. 

Moreover, the response rate to TMZ therapy is limited since the sensitivity towards TMZ is 

suggested to depend on the promoter status of the O-6-methylguanine-DNA 

methyltransferase (MGMT) gene and an unmethylated, activated promoter is supposed to 

be a predictor for a worse therapeutic outcome (Esteller et al., 2000; Hegi et al., 2004; 

Hegi et al., 2005). The efficacy of radiotherapy plus concomitant and adjuvant TMZ 

therapy versus radiotherapy only was recently evaluated in a Phase III trial indicating that 

combined radiochemotherapy increases the median survival time compared to 
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radiotherapy alone (14.6 months versus 12.1 months) and significantly prolongs the 5-

year overall survival (9.8% versus 1.9%) (Stupp et al., 2009; Stupp et al., 2005). However, 

as the survival times indicate, more effective treatment concepts are strongly needed to 

overcome the aggressive and lethal nature of glioblastomas.  

One promising approach to target treatment resistant and infiltrative phenotypes of 

glioblastomas might be the involvement of molecularly targeted therapies into current 

treatment concepts. Since GBMs are driven by a multitude of different genetic aberrations 

and deregulated oncogenic signaling pathways, it is unlikely that any single agent 

targeting only one of these critical factors will be efficient in more than a subset of 

glioblastoma patients. Therefore, a multitarget approach that addresses several GBM 

pathways simultaneously appears to be a superior strategy. Targeting HSP90 via small-

molecule inhibitors of the second generation, such as NW457, represents such a 

multifaceted approach and the combination with standard radiochemotherapy might 

provide a promising perspective for glioblastomas. Since multiple HSP90 client proteins 

are supposed to regulate signaling pathways associated with GBM radioresistance and 

invasiveness, the involvement of HSP90 inhibitors into novel GBM treatment concepts 

raises hope to potently attenuate both radioresistant and invasive phenotypes of this 

disease. Notably, both HSP90 inhibitors and radiotherapy are supposed to selectively 

induce their cytotoxic effects on tumor cells while sparing non-malignant tissues. Hence, 

therapeutic approaches in which pharmacological HSP90 inhibition is combined with 

radiotherapy may result in selective and synergistic tumor radiosensitization.  

7.3 HSP90 inhibitor-induced apoptosis and the dispe nsability of p53 

In the present work, HSP90 inhibition by NW457 was shown to induce apoptotic cell death 

in human colorectal cancer and glioblastoma cells in a concentration- and time-dependent 

manner. The apoptotic effects were enhanced upon combination with ionizing radiation as 

demonstrated by increased formation of hypodiploid nuclei and activation of the caspase 

cascade with subsequent PARP cleavage. Induction of apoptotic cell death as a result of 

pharmacological HSP90 inhibition has been demonstrated also for other small-molecule 

inhibitors, such as SNX-2112, geldanamycin, BIIB021, and NVP-AUY922, and shown to 

be associated with caspase activation and PARP cleavage, mitochondrial release of 

cytochrome c and AIF (apoptosis inducing factor), as well as downregulation of the anti-

apoptotic proteins BCL-2 and BCL-xL (McNamara et al., 2012; Nomura et al., 2004; Stingl 

et al., 2010; Wang et al., 2011; Yin et al., 2010).  
 

The tumor suppressor p53 functions as a “molecular node” in the DNA damage response 

and plays an important role in the regulation of cell cycle arrest, DNA repair, and 
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apoptosis (Sengupta and Harris, 2005). Interestingly, cancer cells deficient in p53 do not 

necessarily lose their ability to undergo apoptotic cell death as demonstrated in the 

present work. Functional p53 was not essential for NW457-mediated apoptosis induction, 

as caspase activation and the formation of hypodiploid nuclei were also observed in p53-

deficient colorectal cancer cells and the p53-mutant glioblastoma cell line T98G. Given the 

fact that p53 is one of the most commonly mutated genes in human cancers and mutated 

or lost in up to 50% of colorectal cancers (Bazan et al., 2005; Lopez et al., 2012; 

Naccarati et al., 2012), the present findings are of specific clinical relevance as they 

suggest that NW457-based therapies may also be efficient in tumor subtypes lacking 

functional p53.  

On the molecular level, there are several potential mechanisms how tumor cells can 

trigger p53-independent apoptosis in response to DNA damage. One of these involves the 

pro-apoptotic cell cycle regulator p14 ARF which in this work was shown to be 

constitutively upregulated in p53-deficient, but not in p53-proficient HCT116 cells, and 

which was previously discussed to induce mitochondrial apoptosis in a BAK dependent 

manner (Hemmati et al., 2006). The involvement of BAK in p53-independent apoptosis 

might also account for NW457-mediated apoptosis induction since the BCL-2 family 

member is strongly expressed in HCT116 cells and previous studies in gastric cancer 

cells demonstrated that BAK overexpression triggers activation of caspase-3 and 

provokes apoptotic cell death independent of functional p53 (Tong et al., 2004).  
 

Another possible mechanism that may be implicated in NW457-mediated, p53-

independent apoptosis induction involves the activation of the p53-related proteins p63 

and p73. Both exhibit p53-like properties and are able to activate the transcription of 

typical p53-responsive genes, such as p21, BAX, NOXA, and PUMA, finally leading to cell 

cycle arrest and/or programmed cell death (Flinterman et al., 2005; Melino et al., 2004; 

Yang et al., 1998; Zhu et al., 1998). It has been proposed that upon DNA damage in the 

absence of p53 the checkpoint kinases CHK1 and CHK2 activate the transcription factor 

E2F1, which in turn activates the transcription of p73, thus giving rise to increased levels 

of this p53 homologous protein (Marabese et al., 2003; Stiewe and Putzer, 2000; Urist et 

al., 2004). The involvement of p73 in regulating apoptosis in tumor cells lacking functional 

p53 was repeatedly described (Cai et al., 2012; Irwin et al., 2000; Oniscu et al., 2004; 

Rana et al., 2010; Stiewe and Putzer, 2000) and thus may also account for NW457-

mediated cell death of HCT116 p53 -/- cells.  
 

In addition, Gurley and colleagues proposed another mechanism for p53-independent 

apoptosis induction as they demonstrated that the apoptotic defect of p53-deficient cells in 

response to IR-induced DNA damage can be rescued by inactivation of any of the three 
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subunits (catalytic subunit, Ku80, and Ku70, respectively) of the DNA-PK (DNA-

dependent protein kinase) (Gurley et al., 2009). This mechanism might be of particular 

interest in the context of HSP90 inhibition since NVP-AUY922 and 17-DMAG were shown 

to reduce the levels of total DNA-PKcs (DNA-PK catalytic subunit) and its 

phosphorylation, respectively, consequently compromising the repair of DNA double-

strand breaks by non-homologous end joining (NHEJ) (Dote et al., 2006; Ha et al., 2011). 

Hence, inactivation of the DNA-PKcs by HSP90 inhibitors may provide a therapeutic 

option to drive p53-deficient tumor cells into apoptotic cell death and might account, at 

least partially, for NW457-mediated apoptosis induction and radiosensitization of HCT116 

p53 -/- cells in the present work.  

7.4 Potential mechanisms underlying clonogenic cell  death upon HSP90 

inhibition 

Clonogenic survival is considered as one of the most relevant in vitro endpoints to predict 

the in vivo antitumor efficacy of ionizing radiation in the presence or absence of 

pharmacological agents. The radiosensitizing potential of NW457 was therefore 

investigated in clonogenic survival assays both in colorectal cancer and glioblastoma cell 

lines. The experiments revealed that exposure to NW457 enhanced radiation-induced 

clonogenic cell death of colorectal carcinoma cells and that this was practically 

independent of the cellular p53 and BAX status. Moreover, studies in LN229 and T98G 

cells revealed that the radiosensitizing effects of NW457 were more pronounced when the 

cells were subjected to a treatment regimen with 24 h drug preincubation before 

irradiation compared to simultaneous NW457/IR treatment. These findings indicate that 

the sequence of pharmacological HSP90 inhibition and irradiation influences the 

tumoricidal efficacy of NW457. Therefore, I hypothesized that preincubation with NW457 

prior to irradiation might affect the DNA damage response (DDR) and prevent efficient 

DNA repair upon irradiation, hence culminating in enhanced radiosensitization and 

clonogenic cell death. Indeed, Western blot analyses revealed that NW457 time-

dependently induced the depletion of the DDR-associated kinases ATM, CHK1, and 

CHK2. Importantly, the protein levels were already diminished within 12-24 h upon 

NW457 treatment. This suggests that in clonogenic survival assays, preincubation with 

NW457 presumably provoked the degradation of ATM, CHK1, and CHK2 before the cells 

were irradiated and that this might account for the enhanced radiosensitivity of LN229 and 

T98G cells. In contrast to the preincubation setting, concomitant exposure to NW457 and 

IR limited the radiosensitizing efficacy of the HSP90 inhibitor, presumably because it did 

not affect the DDR at the time point of irradiation, but at the earliest 12-24 h afterwards 
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when the majority of IR-induced DNA damage had probably already been repaired. Taken 

together, the findings indicate that the tumoricidal activity of NW457 is attributed - at least 

in part - to its compromising effects on the DNA damage response and that the sequence 

of combining HSP90 inhibitors with irradiation influences the therapeutic efficiency.  
 

According to the findings in the present work, there is accumulated evidence in the 

literature arguing for an important role of HSP90 in the DNA damage response. 

A multitude of studies showed that targeting HSP90 with small-molecule inhibitors induces 

the destabilization of different DDR-regulatory proteins, such as ATM, ATR, CHK1, CHK2, 

DNA-PK, RAD51, BRCA1, BRCA2, and FANCA (Arlander et al., 2003; Dote et al., 2006; 

Dungey et al., 2009; Ha et al., 2011; Ko et al., 2012; Koll et al., 2008; Noguchi et al., 2006; 

Stecklein et al., 2012; Zaidi et al., 2012). Studies by Noguchi and colleagues in prostate 

carcinoma and lung squamous cell carcinoma cell lines revealed that exposure to 17-AAG 

diminishes the levels of RAD51 and BRCA2, which are involved in the repair of DSBs by 

homologous recombination (HR) (Noguchi et al., 2006). These findings are in line with the 

data of a recent study in NSCLC models demonstrating that 17-AAG mediates the 

downregulation of RAD51 both on the protein and mRNA level (Ko et al., 2012). In 

addition to homologous recombination, which is restricted to S and G2 phase, DSBs can 

be repaired throughout the cell cycle by non-homologous end joining (NHEJ). This 

pathway might also be affected by pharmacological HSP90 inhibition as studies by Dote 

and colleagues indicated that the activation of the DNA-PKcs is decreased upon 17-

DMAG treatment (Dote et al., 2006). Collectively, these studies suggest that HSP90 is 

critically involved in the regulation of DSB repair and that inhibition of HSP90 may provide 

a promising strategy for tumor cell radiosensitization.  

Moreover, the base excision repair pathway (BER), which recognizes and removes small 

base adducts, such as oxidized, reduced, alkylated, or deaminated bases, is suggested to 

rely on HSP90 function, since exposure to 17-DMAG prior to irradiation was shown to 

suppress IR-induced activation of two BER key enzymes, the apurinic/apyrimidinic 

endonuclease 1 (APE1) and the DNA polymerase-β (Pol-β) (Koll et al., 2008).  

Collectively with the data of the present work, accumulated evidence argues for an 

important role of HSP90 in the DNA damage response and together they provide 

interesting insights of how HSP90 inhibitors exert their radiosensitizing effects on tumor 

cells.  
 

The colony formation assays in the present work further revealed that HSP90 inhibition by 

NW457 may be a promising therapeutic option also for tumors driven by activating KRAS 

mutations. This is in line with previous studies indicating that KRAS mutations may predict 

sensitivity to the HSP90 inhibitors 17-AAG and ganetespib (STA-9090) in NSCLC models 
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(Acquaviva et al., 2012; Sos et al., 2009). Moreover, in a recent Phase II monotherapy 

trial, ganetespib induced tumor shrinkage in 47% of patients with advanced NSCLC 

harboring KRAS mutations (Acquaviva et al., 2012), thereby suggesting that HSP90 

inhibition may offer new promise for this subtype of patients. First mechanistic insight of 

how HSP90 inhibitors might address KRAS mutant tumors was recently given by Azoitei 

and colleagues, who investigated the potency of the HSP90 inhibitors 17-AAG and PU-

H71 in breast, lung and colon carcinoma cell lines including HCT116 and Caco-2 cells 

with specific focus on their KRAS status (Azoitei et al., 2012). Drug efficacy studies 

revealed a higher sensitivity towards HSP90 inhibitors in the case of KRAS mutant cells 

(e.g. HCT116) compared to KRAS wild-type cells (e.g. Caco-2). The authors attributed the 

increased sensitivity to a vital dependence of the mutants on STK33, a serine/threonine 

kinase that was identified as a novel client protein of HSP90 and therefore as a context-

dependent therapeutic target in KRAS-driven tumors. However, the precise mechanism 

underlying the addiction of KRAS mutant tumor cells on STK33 needs further clarification, 

since different studies yielded conflicting findings in this regard (Babij et al., 2011; Frohling 

and Scholl, 2011; Luo et al., 2012; Scholl et al., 2009) 
 

In line with my findings on p53-independent induction of clonogenic cell death, also other 

studies reported that p53 is dispensable for HSP90 inhibitor-induced clonogenic cell death 

(Koll et al., 2008; Moran et al., 2008; Zaidi et al., 2012). Potential mechanisms through 

which HSP90 inhibitors, such as geldanamycin, 17-DMAG, and NVP-AUY922, may exert 

their cytotoxic effects in p53-deficient cells have been discussed in the literature. Moran 

and colleagues suggested that in p53-deficient cells geldanamycin abrogates irradiation-

induced G2 arrest and induces premature mitotic entry (Moran et al., 2008). The authors 

found that exposure to geldanamycin induced a decrease in the G2 regulatory proteins 

CHK1 and WEE1 and observed aberrant mitotic phenotypes and micronucleation in these 

cells. They concluded that p53-negative cells might undergo clonogenic cell death by 

mitotic catastrophe. This mechanism might also play a role in NW457-mediated 

radiosensitization of p53-deficient HCT116 cells and p53-mutant T98G cells in the present 

work and has to be elucidated in further studies.  

7.5 Tolerability of HSP90 inhibitors by hepatocytes  

As described in section 7.1 the clinical success of NW457 and other HSP90 inhibitors will 

strongly depend on their therapeutic window. In addition to potential general toxicities on 

normal tissue, severe hepatotoxicity may also preclude the in vivo application of novel 

small-molecule inhibitors. Therefore, potential cytotoxic effects of NW457 on primary 

hepatocytes were examined in the present work. In strong contrast to geldanamycin which 
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clearly perturbed the typical hepatocellular morphology and severely reduced the viability, 

NW457 did not induce any characteristics of hepatocytotoxicity. These findings are in line 

with data published for the NW457 relative pochoxime A whose hepatotoxicity was 

previously investigated in vivo (Wang et al., 2009). Whereas high serum levels of the 

prototypical liver enzymes ALT (alanine transaminase) and AST (aspartate transaminase) 

were detected in response to 17-AAG treatment, the respective enzyme levels were not 

elevated upon treatment with pochoxime A. Together with their potent antitumor activities, 

the absence of hepato(cyto)toxicity represents a second important prerequisite for the 

successful clinical entry of pochoxime HSP90 inhibitors, such as NW457 and 

pochoxime A.  

7.6 Targeting HSP90 for affecting tumor cell migrat ion 

In addition to a general radioresistant phenotype, glioblastomas are characterized by 

infiltrative growth patterns which also contribute to tumor recurrence and the unfavorable 

outcome of this disease. It can be assumed that glioblastoma cells which remain after 

surgical resection and migrate from the primary tumor site into the surrounding brain 

parenchyma are a putative source of tumor recurrence. Moreover, it has been reported 

that irradiation itself paradoxically provokes glioma cell migration and invasion in different 

in vitro models (Badiga et al., 2011; De Bacco et al., 2011; Kil et al., 2012; Wild-Bode et 

al., 2001). Since tumor cells that escape from the target volume of radiotherapy may 

promote tumor dissemination, radiation-induced migration might account for clinical cases 

of treatment failure. In the present work, glioma cell migration in response to irradiation 

was investigated in wound healing assays and it was shown that sublethal doses of IR 

enhanced the migration of LN229 cells compared to non-irradiated cells.  
 

The molecular mechanisms underlying intrinsic and IR-induced glioblastoma cell motility 

are complex and involve different classes of molecules, some of which are supposed to 

rely on HSP90. The involvement of HSP90 in tumor cell migration and invasion has 

repeatedly been reported (Annamalai et al., 2009; Gopal et al., 2011; Sims et al., 2011; 

Taiyab and Rao, 2011; Thuringer et al., 2011) and is supported by the present work. 

Targeting HSP90 via the novel small-molecule inhibitor NW457 was demonstrated to 

attenuate the basal migration of LN229 cells and to suppress IR-induced hypermigration. 

Hence, inhibition of HSP90 via the pochoxime NW457 might provide a new approach in 

order to interfere with the highly infiltrative phenotype of glioblastomas. These data are in 

line with other reports where different HSP90 inhibitors, including geldanamycin and 17-

AAG, were shown to efficiently decrease the migration and invasion of human 

glioblastoma cell lines (Annamalai et al., 2009; Gopal et al., 2011; Kim et al., 2008a; 
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Zagzag et al., 2003). Different mechanisms through which HSP90 inhibitors might 

interfere with tumor cell migration and invasion have been discussed and attention has 

been drawn, e.g., to the matrix metalloproteinases (MMPs), members of the integrin 

family, the MET/HGF axis, and the Eph receptor/ephrin ligand system. For instance, Kim 

and colleagues suggested a critical role for MMP-9 in glioma motility as they revealed that 

the anti-invasive action of 17-AAG on the human glioblastoma cell lines U251, U373, and 

U87 was accompanied by decreased activation of the focal adhesion kinase (FAK), which 

in turn impaired the activation of NFκB and finally reduced the secretion of MMP-9 (Kim et 

al., 2008a). In addition, the MMP family member MMP-2, which is also referred to as 

gelatinase A, has recently been described to be involved in glioma cell motility (Badiga et 

al., 2011). This study demonstrated that knockdown of MMP-2 by RNA interference 

potently inhibited irradiation-induced migration and invasion of U251 and U87 cells, thus 

suggesting a critical role for MMP-2 in glioma cell motility. In the present work, it was 

hypothesized that MMPs might also be involved in the migration of LN229 cells and thus 

account for the migration patterns observed in the migration assays upon irradiation and 

NW457 treatment. Since MMP expression is largely regulated on the transcriptional level, 

e.g., through NFκB-mediated promoter activation (Kim et al., 2005; Yan and Boyd, 2007), 

mRNA expression of MMP-2, -8, and -9 was examined in response to NW457 treatment 

+/- irradiation. It was hypothesized that MMP transcription in LN229 cells may be 

enhanced by irradiation and decreased upon NW457 treatment. However, no significant 

changes of MMP mRNA expression could be observed in my work (data not shown). 

These discrepancies may result from varying cellular growth conditions and different 

experimental setups in the present work compared to the studies mentioned above. 

Importantly, the migration and invasion assays performed by Kim et al. and Badiga et al. 

employed an artificial extracellular matrix system based on matrigel, a complex gelatinous 

protein mixture of components found in the extracellular microenvironment of many 

tissues. In contrast, the transmigration and wound healing assays in the present work 

were performed on uncoated surfaces providing no specific stimulation for increased MMP 

activation. Thus, it is not unexpected that in the present context, MMPs were not identified 

as determinants of altered LN229 migration following IR and NW457 treatment.  
 

Both the MET/HGF axis and members of the integrin family, such as αv, β3, and β5, are 

frequently deregulated in malignant gliomas and suggested to regulate cell migration and 

invasion in response to irradiation (Buchanan et al., 2011; De Bacco et al., 2011; 

Monferran et al., 2008; Wild-Bode et al., 2001). It was thus hypothesized in the present 

work that the expression of one or more of these factors was possibly upregulated in 

response to irradiation and downregulated upon NW457 treatment. Whereas integrin 

expression remained virtually unaffected both upon irradiation and NW457 treatment, the 
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presented results indicated a potential involvement of MET in LN229 motility as irradiation 

promoted both MET expression and receptor phosphorylation, even though to a moderate 

extent. A critical role for MET signaling in tumor cell migration and invasion was confirmed 

by De Bacco and colleagues demonstrating that irradiation dose-dependently induced the 

expression of MET and increased the wound healing of glioblastoma and breast cancer 

cell lines which could be prevented by addition of the MET inhibitor PHA665752 (De 

Bacco et al., 2011). Interestingly, the authors revealed that IR-induced upregulation of 

MET was a biphasic transcriptional event characterized by an early transcriptional 

response occurring within 1-2 h after irradiation and a second peak that appeared 6 h 

after irradiation and diminished after 24 h. Although the present work suggests a potential 

role of MET signaling in IR-induced hypermigration of LN229 cells, future work has to 

confirm this and it also remains to be elucidated whether HSP90 is involved in the 

regulation of MET signaling.  
 

Another receptor/ligand system supposed to promote glioma cell migration is the Eph 

receptor tyrosine kinase family. Different members have been shown to be overexpressed 

in malignant gliomas but lowly expressed in adult brain tissue, which makes ephrin 

receptors a rather tumor-specific therapeutic target (Day et al., 2013; Wykosky et al., 

2005). Upregulation of Eph receptors including EphA2, EphB2, and EphA7 in glioblastoma 

cells has repeatedly been reported to be associated with enhanced migration and 

invasion, as well as increased metastatic potential and adverse outcome in GBM patients 

(Liu et al., 2006; Nakada et al., 2004; Nakada et al., 2005; Wang et al., 2008; Wykosky et 

al., 2005). Interestingly, studies by Annamalai and colleagues revealed an essential role 

for HSP90 in regulating the stability of nascent EphA2 and maintaining the signaling 

capacity of the mature receptor (Annamalai et al., 2009). HSP90 inhibition via 

geldanamycin potently destabilized newly synthesized EphA2 protein and decreased 

ligand-dependent receptor phosphorylation. In line with these findings, the present work 

suggests a possible correlation between NW457-mediated decrease of migration and 

decline of Eph receptors EphA2 and EphB3 in LN229 cells. However, further 

investigations are necessary to clarify the precise mechanism.  
 

Even though the exact mechanisms of how HSP90 inhibitors, such as NW457, interfere 

with glioblastoma cell migration have not been fully elucidated so far, the present work 

provides further evidence that targeting HSP90 may offer a new approach in order to 

interfere with the highly infiltrative phenotype of glioblastomas. This may be of particular 

clinical relevance since the aggressively infiltrative phenotype of glioblastomas is one of 

the main reasons for the poor outcome of this disease.  



Discussion 

 110

7.7 In vivo potency of HSP90 inhibitors 

In addition to in vitro studies, the combinatorial benefit of pharmacological HSP90 

inhibition and irradiation has also been demonstrated in vivo, although the number of 

studies is still rather limited (Bisht et al., 2003; Bull et al., 2004; Yin et al., 2010; Zaidi et 

al., 2012). In spite of different pharmacological compounds, dose and radiation schedules, 

all studies clearly indicated that the therapeutic effect - as measured by tumor growth 

delay and prolongation of survival - was superior in the case of combined treatment 

compared to either treatment alone. The data shown in the present work are in line with 

this, as the in vivo application of NW457 plus radiotherapy resulted in a significant tumor 

growth delay compared to radiotherapy or NW457 administration only. Of note, all 

previously published in vivo data were obtained from xenograft models with tumors 

derived from human HeLa (cervix carcinoma), JHU12 (HNSCC), DU145 (prostate 

carcinoma), and HN3 (HNSCC) cells growing in immunocompromised mice. In contrast, 

the present NW457-based in vivo studies were performed in a heterotopic model of 

murine CT26 colorectal tumor cells growing in syngeneic, immunocompetent Balb/c mice. 

Employing such an experimental setting with immunocompetent animals might be 

superior to xenograft experiments as it allows the assessment of the impact that NW457 

might have on the immune system and particularly on the antitumor immune response. 

Having demonstrated that NW457 considerably enhances HSP70 expression, surface 

exposure, and release in vitro, one might expect that NW457 also induces the release of 

HSP70 in vivo. As a well-known immunogenic danger signal HSP70 might trigger the 

activation and recruitment of macrophages and NK cells to the tumor site (Elsner et al., 

2007; Moseley, 2000; Multhoff, 2002; Schmitt et al., 2007; Vega et al., 2008). 

Interestingly, increased levels of HSP70 were observed in xenograft tumors of human 

pancreatic cancer cells after application of the HSP90 inhibitor IPI-504 (Song et al., 2008). 

Immunological functions of secreted or membrane-bound HSP70 have repeatedly been 

described: For instance, Vega and colleagues demonstrated that HSP70 of heat shocked 

HepG2 cells translocated into the plasma membrane before it was released in a 

membrane-associated form and induced the activation of macrophages, as monitored by 

enhanced levels of TNF-α production (Vega et al., 2008). Another study showed that 

pancreas and colon carcinoma cell lines released HSP70-containing vesicles (exosomes), 

which potently stimulated the migratory capacity and cytolytic activity of NK cells (Gastpar 

et al., 2005). In consideration of these reports, the impact of NW457 on the migratory 

potential of monocytes and macrophages is currently being investigated in the 

Department of Radiation Oncology (LMU Munich), and preliminary data indicate increased 

migration of macrophages towards HSP70 containing supernatants of NW457-treated 

HCT116 cells (Anne Ernst, personal communication). Furthermore, the in vivo impact of 
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NW457 on tumor cell HSP70 expression and its potential implications for the stimulation 

of an antitumor immune response will be examined in future studies.  

7.8 Conclusion and outlook 

The present work was intended as a fundamental characterization of the novel pochoxime 

HSP90 inhibitor NW457 with regard to its antitumor potential in combination with ionizing 

radiation. Collectively, the data presented here prove HSP90 as a clinically relevant target 

for novel therapy concepts for both colorectal carcinomas and glioblastomas and identify 

NW457 as a promising candidate compound for the entry of pochoxime HSP90 inhibitors 

into the clinic. Together with the current body of literature, the present work clearly 

substantiates the strong potential of HSP90 inhibition as an approach for improving the 

efficacy of anticancer radiotherapy. Notably, no clinical trials have assessed the 

combinatorial benefit of pharmacological HSP90 inhibition plus radiotherapy so far, but 

translational clinical studies combining second generation HSP90 inhibitors with irradiation 

will certainly follow in the near future. Based on the promising in vitro and in vivo data of 

the present work and other preclinical studies, it is likely that the clinical combination of 

small-molecule HSP90 inhibitors and radiotherapy will result in synergistic effects.  

Regarding the therapeutic potential of HSP90 inhibitors for the treatment of tumors driven 

by activating KRAS and EGF-R mutations, a Phase II trial is currently investigating the 

efficacy of the HSP90 inhibitor NVP-AUY922 in advanced NSCLC with specific focus on 

the KRAS and EGF-R status and corresponding patient stratification 

(http://clinicaltrials.gov, NCT01124864). In consideration of my findings showing that the 

antitumor activity of NW457 is virtually independent of the cellular KRAS status and 

together with previous reports demonstrating potent activity of other HSP90 inhibitors in 

different KRAS-mutant tumor models (Acquaviva et al., 2012; Azoitei et al., 2012), the 

clinical results are eagerly awaited.  

In summary, targeting HSP90 with novel small-molecule inhibitors will probably have a 

bright future and the combination with conventional chemotherapeutics and radiotherapy 

may help to prevent the development of cancer drug resistance.  
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Appendix 1: Supplementary to Figure 9C. NW457-media ted radiosensitization of 
colorectal cancer cells involves caspase substrate cleavage.  HCT116 cells were 
stimulated with 0-300 nM NW457 for 24 h, irradiated with 0-5 Gy, and 0-48 h after 
irradiation whole cell lysates were prepared and then subjected to caspase activity tests 
with DEVD-AMC peptide. Time course analyses of DEVDase activity 0-48 h after 
irradiation with 5 Gy +/- 100 nM NW457. 10 µg total protein was used per data point. 
Tables show data (means ± SD) of two independent experiments each performed in 
quadruplicates.  
 

Time after 
irradiation [h] 

0 12 24 36 48 

DEVDase 
[FU/min] 

Mean SD Mean SD Mean SD Mean SD Mean SD 

Control 28,00 2,82 36,16 4,44 26,02 5,71 56,48 6,30 40,15 6,04 

100 nM NW457 26,21 7,52 77,00 11,09 59,29 3,32 85,39 7,73 88,66 9,08 

5 Gy 19,31 2,13 45,31 6,83 44,66 9,90 52,39 7,35 83,25 9,81 

100 nM NW457 
+ 5 Gy 

31,56 2,41 81,96 2,40 91,38 7,51 103,39 6,61 114,11 15,26 

 

Time after 
irradiation [h] 

0 12 24 36 48 

DEVDase 
[FU/min] 

Mean SD Mean SD Mean SD Mean SD Mean SD 

Control 23,35 17,96 46,58 2,93 27,98 0,31 28,38 4,96 45,16 3,14 

100 nM NW457 31,40 3,68 50,30 1,50 53,90 3,16 52,26 1,84 85,82 2,84 

5 Gy 34,52 5,77 47,36 3,47 46,57 2,98 50,97 7,38 76,49 2,12 

100 nM NW457 
+ 5 Gy 

33,87 3,27 59,02 7,44 65,02 2,96 90,69 15,03 95,69 1,07 

 

 

Appendix 2: Supplementary to Figure 13A. NW457 reveals very little 
hepatocytotoxicity.  Primary hepatocytes isolated from C57BL/6 mice were exposed to 0-
300 nM NW457 or geldanamycin (GA) for 48 h and cellular viability was measured by 
Alamar Blue assays. Alamar Blue reduction was calibrated on untreated controls (100% 
viability) and is shown as means ± SD of intra-assay quadruplicates.  
 

 NW457 GA 

Concentration [nM]  Mean SD Mean SD 

0 100,0 3,6 100,0 3,6 

10 98,8 3,1 97,7 1,9 

30 99,1 0,5 80,2 5,8 

50 97,1 6,2 48,4 4,7 

100 96,4 3,4 29,7 4,2 

300 99,3 6,7 30,0 5,8 
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Appendix 3: Supplementary to Figure 17B. NW457-mediated apoptosis induction in 
glioblastoma cells involves caspase substrate cleavage.  LN229 cells were treated with 0-
200 nM NW457 for 24 h, irradiated with 0-10 Gy, and harvested 24 h afterwards. Caspase 
activity was analyzed in whole cell lysates (20 µg total protein per data point) by DEVDase 
assays. Each table shows data (means ± SD) of an independent experiment each 
performed in quadruplicates.  
 

LN229 0 Gy 10 Gy  LN229 0 Gy 10 Gy 

NW457 
[nM] 

Mean SD Mean SD  NW457 
[nM] 

Mean SD Mean SD 

0 2,36 3,63 2,27 11,68  0 2,27 5,64 6,08 4,90 

50 -2,94 2,85 29,74 6,88  50 -6,49 2,87 22,45 7,72 

100 22,44 5,17 444,23 9,43  100 11,48 6,74 329,61 43,98 

200 1229,50 56,28 2077,31 85,42  200 1017,94 46,45 1171,56 45,66 

 

 

Appendix 4: Supplementary to Figure 17D. NW457-mediated apoptosis induction in 
glioblastoma cells involves caspase substrate cleavage.  T98G cells were treated with 0-
200 nM NW457 for 24 h, irradiated with 0-10 Gy, and harvested 24 h afterwards. Caspase 
activity was analyzed in whole cell lysates (20 µg total protein per data point) by DEVDase 
assays. Each table shows data (means ± SD) of an independent experiment each 
performed in quadruplicates.  
 

T98G 0 Gy 10 Gy  T98G 0 Gy 10 Gy 

NW457 
[nM] 

Mean SD Mean SD  NW457 
[nM] 

Mean SD Mean SD 

0 327,62 27,81 241,71 14,67  0 329,14 13,98 305,69 25,35 

50 319,68 12,18 344,98 24,00  50 285,10 18,16 357,71 27,62 

100 417,07 47,09 433,21 12,77  100 352,55 27,18 390,35 45,32 

200 1214,70 77,89 1124,35 40,70  200 812,77 29,72 1249,52 93,31 
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